MAC-TR-11

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

PROGRAM STRUCTURE IN A
MULTI-ACCESS COMPUTER

by

J.B. Dennis

"Work reported herein was supported (in part)by Project MAC,
an M.I.T, research program sponsored by the Advanced Research
Projects Agency, Department Qf Defense, under Office of Naval
Research Contract Number Nonr-4102(01). Reproduction in whole
or in part is permitted for any purpose of the United States

Government ."

This empty page was substituted for a
blank page in the original document.

I. Introduction

A multi-access computer (MAC) system consists of processing units
and directly addressable main memory in which procedure information is
interpreted as sequences of operations on data, a system of terminal devices
through which users may communicate with procedures operating for them, and

mass memory where procedures and data may be held when not required for

- immediate reference. One fundamental attraction of the MAC concept is the

increased productivity of "computer catalyzed research"* that results from
close man-machine interaction. Another attraction is wealth of data and
procedures that are accessible to a large user community through the file

memory of a MAC system.

The practicality of the MAC concepf depends on the idea that the
power of a large computer system should be a better match to the union of
many diverse tasks than it is to any particular one. The amount of main
memory actually required for efficient execution of a procedure varies from
a few hundred words to many times the size of memories in existing machines,
depending on the nature of the procedure. Moreover, the memory requirement
of a procedure typically varies over a wide range during its execution. If

a number of diverse procedures can share a large main memory, the total

memory requirement will be subject to less fluctuation with time in conse-

quence of the statistics of sums. Procedures also differ in the frequeacy
with which interactions with the machine environment interrupt processes
in execution, and the length of pauses that result. If many processes are

‘available for execution in a machine structure, the statistics will insure

that the processing units of the system will be kept more fully occupied
than would otherwise be possible.

* with apologies to E.E. David

-2-

For a computer system that places particular emphasis on strong inter-
action with a user community, it is evident that memory and processing capacity
must be freely reassignable among the active processgs. The time écale
desirable for reallocation events to take place in a MAC system is certain
to be several orders of magnitude beyond what has been accomplished or con-

templated with existing systems.

The formulation of ‘a computer system organization and operating
philosophy raises many important questions. Two broad issues concern us
Al

in this paper:

1. What features of machine design are necessary or desirable to
facilitate dynamic allocation of computation resources among many concurrent

processes?

2. What are appropriate policies for governing the allocation of
machine resources to insure their effective utilization, and through what

techniques should these policies be implemented?

For evaluation of machine organization and features, and for realistic
study of the resource allocation problem, a suitable model of program struc-
ture is required. It is no longer adequate to consider a program as occupying
a single block of memory and requiring a specifie length of time for execution,
The varying demand of a program for space in main memory, the referencing of
common procedures, data, and files by several programs, the possibilities of
parallel processing, and the rate of interaction with environment in a MAC

system require a more sophisticated view of program atructure.

In the following paragraphs some thoughts are developed that may form
a reasonably adequate model of program structure. These concepts have grown
out of many discussions with colleagues in Project MAC*, and our experience
to date in the design and operation of multi-access computer systems.l’2 The
work on dynamic storage allocation reported by the Atlas group3 at Manchester
and the Rice University group are pioneering steps toward the objective of
our research. The formulation of the storage allocation problem in terms of
segments of memory and phases of execution by Holt5 has been very influential

on our thinking. At this writing, the ideas do not form a consistent whole,

* and E, Van Horn in particular

-3

but 1t 1- hoped thcy vul utvn u thn uﬁs tm' a .ou conpuhenaivc :tudy. .
‘uur in thn puper ugcnl mhm !ututu thtt hm bun 1ncp:|.rcd by program - . '

:tudy nﬁ rcfincmt !ning rqniud Moh ﬁeofpnntton 1n a conputa .gmtem
For the purpou of this papnt. ‘the anchin‘ .‘.nmr« discussed are primarily

«f,x S

emlea of d:luctionn m whiah uudel.l d! prﬁlut -trucmﬁ- N mﬁd

Sﬂ'm‘ nt! : »

‘ ‘!!n Hrﬂ: “arid Wt iﬁort&t cWé‘ ’Lf lﬁ ‘Fagard & prmn ‘a8 coumrnins ;"‘;v

«‘infémfﬁu that 4§ grovped fitd '« coffedeitn %j«h’a’ﬁéﬁ ehalleaB

- Hegments. A segment it v&-‘”‘ WPl “T€ 14 Fafarenced by & name-

. that distingutshes 16 Frow’ e e egaRCE S e intc;ct ‘dddress thet !

ulects one’ word tten ﬁu cﬁqud ut. oi wu: ﬂut cennutu:u ‘the segment.
ﬁﬁmﬁ»‘ ﬁllbd %be lgg' l_a

‘ 'f‘prcsmuw. R raet viewp
 ahould’ rangs over cﬁ: fatiger’ vatuny b Were
Hamtt wima o segmetit’ Lelth' by th it
memory - B

gtgea 8 has an uaoeum kot ¢
1t are mu-) lataagg,q

A) amc

. b) dats

k grocedure fom, tbat 1-, rdfernncc toa nu-nt u pmduﬂ mg: alten '
. 1nformat1cm contained in tha “'..ng, : 4 : =

s grocg to denote ‘the nct of exocuting a ﬂ.ngh uqum- of i.nltmct:ions
’_nt:aken ftom a nucccuian of precedun mnu. Ig . wlthgmcntot cmur
;vnyatem, a nunber ‘of processas may be in executiom d-xluncou.ly. ‘

:-v.'ysegment as procedure and one or mere segments aa’ ds
pure procedure conv:ation for pmmn m;g
~ to act;lvely reference the same pxpcndurt gw vm& m:mq. I -

o jsegméntl are in wo _,_m status. From. the progy
e 'working aegmencn con‘titu:u she cp},hczi,on 63:‘
- in main ﬂi:ectly cddnmbh wemory for ciﬁ;tm mﬂm of the current

R :_phue of his procedure. Transition of & progass. grg%mn to. another
,occuru when a new segment must join the mruu group, or s wrun; umt

| is dropped from the 3roup. ‘

o input or output unit identified by an mpnt/au:put m m An inpuc/output
5 ,;eptoccdare step. includes the mru« deviée iiing
o ""by 1)a stop instruction, or 2) am: Saput/ sutpit

“ chur.. is not ready. In the second instance we ssy an tmt/mtpuc E!.!. has

:end of an inputlwtth mg.

;4.f

c) read only data - the segment conuim dau tlmt uy be rctorcneod
by a cuqutaticu proecal ,'t hot -ndlfied o

In thts dhcuuim u: 1s anwd ‘that p:mun mt. au 1n g 3

- ‘&nd ' : N
; A -egmcnt bcing ncti.vqu reforenced as atm‘duro by . ptoceutng unu
cf the coqmtor system is said to be in W Ve will uu the term

At any 1uatruccion step & pmcn is nc:iuly mhtmcm exactly one
A, - Obaerve. that the
l.nu;;gl procmu

During one. g g ef a pror.en, a cqrm!.n mlnf. yxmpduu m m: :

MOtpt the set. cf
‘ QM, should. reside

He luppou that: cneh imt ‘0T Mnt %*“*‘i Wldau refcu to an

A procase is ¢t m ted
W M!uncm a device

commenced. A process is ¢ _M by Iy mﬂ!ﬂ' > w; ‘or 2) the

ey

i
ik
2

on means chosen tn mc zafenances to. w tﬁaﬂw Mm cmutioni and

~will be called the slfentive sament nane.
" referencea by lcmnt

 speddfic vy of mﬂm
1' "-\Sﬁ”ttd iu, . lan m:iqn of this papec.:

by ‘the prottmr iﬁ émor‘t wtth ‘a pr u:u. ﬂut #ﬂ 18
uken m:uu t‘ﬁc ’pttiou wh& tn pi*cfs‘ir G
needed in the working collection. For this mpm. proguntng um.- 5
~ systems should be designed so that the pro;m h cncmagca to segment
his p\"octdut‘! and’ thtu m a nnl’!.bh mr G!' couru. a pro;umtn; lynm
, procedure‘ tepl 1 wety- : m':m guiqrné by uu-
ke 1nstmc-._ _om include.”
1) “Crucion ef new dcta upcut. or rud-ouly dau ugunts.
2)" !tuing an cxutiug nmt.
©3) »Initutton of & nw ptoequ - ; m
4) Terniutton of ehc process, L
5y xntettng a npuut. 1n thc mk;ag collcc;ion. e
6) ‘Deloting n lwt fron :hc, ¢o] . ——
7 'chuncing uuignunl: or rol&uc of an tlwut/outpnt dtvica- e
' 8) Changing the lcngth of & dat.a lwt.
" The form taken by the name of a umt mfﬁ mkm process. wtu d!ptud

‘I‘he form taken by effcctive “segment nma lli‘ll ln limited in. bi.t length

| by considcrationn of hatduu nnd prozru-ia; ocm mu!o:c. ‘the number

of diutinct effective names will be fini.tc. bN: aust cormnly be large |

kfenough to cpver nll workmg umta at any. th., IM(the. co:c of uding "

a bit to the hpgth of nwt mn is not .rm and the total m-h: of
work:lng negmenti u unp:edicmle ic 1- nppmprtatt to choon o lcugzh mh |

_that the expected mumber of porkin; ugpncq Tequires only & amall fm:gon

)of 311 pou!.ble affect::l.ve legatnt nml.

. Some gesments pnrtici.p;cin; in t:he cou:po of a procnu are. cruud by‘ :
the procen 1tu1f.r Othcr nmtn rctcnnced bg thl pmu leul:uta
procedure and data obj.cto nomny rnidlng in fih mry. Ne will m -

thé term file name to deai.;nate the ducriptor (hu:luding the context in

~ which' the descriptor is used) that selects a procaduu or data usnnt for .
o ‘Avretrieval from file memory. The set of ﬁle names of uﬁﬁltl in - oplntlml
~ .system wtll, in general, have an claboutc pnfix qtmtuu 1n conuqmncc of
i the hicrarchy of ‘user groups, the chntucturiltiel ‘of pmmin; lmsc
| systems, and the interrelations among pubtie- pmﬂunn The mmlty for
. this prefix structure makes it difficult if not {spossible to specify the

. required length of a direct uury encoding of the file names of segments.

. We will say that a segment is ac t;v uhnnmr 1e hu an uuoctatod

:effect.ive segment name such that: rcfcrnncu to. it cr:l:m durm the axecution
- of any proceu are effective. If no, efluctivo m h mochtod with &

segment, the segment is inactive. To clarify thc mm of dun terms,

- We suppose the computer -yutun io opentcd 1n meh m that the following L
A- 'conditionn are met: : _ P

1) All negment: occupying nin memory are active.

'2) The mass memry 1s divided into two functiosal pazte - m
3) ALl ;egncnu mmiumﬂi&rymm ‘adtive.
&) ALl segnents occupying file memory Ave fnective.

Condition 2'is not neunt ‘to i.q:ly that auxiuaty, mry nnd ﬁh u-ory are
physically distinct in a MAC system, In a pmt:lcll r.altution of a multi-
access computer system thc uin wry will hc ﬂnt.to in sise and, in genersl,

AN

EEE e e B Ty B SN

e

the sum of all vorklns nnout lensch- will mb.mmny exceed this’ cwtty..l‘

11T

The g_x_x_ning g eerVn u ‘an extension ei uin uanry uud to k«p wi:ktng '
procedure md dlte eeghente ‘not eurtently‘in uin memory for mcuctan.

It is important to understand that two categories of decisions haveibeen

implied dy:our discussion - thoss: made by the user or hi.c pm;rlﬁ.u lyeten,

.and exeeutive deciltonl -nde to ‘effect alidtitfou or. echnduling fuuctionsa

- 1) ?"m‘e deehien' of:-which segments hev’e"m_g status ‘vfo_r a p'neeue
" is part of the epeetnmies of ‘the process, Thus, these Miuou .
‘are made by the. user or the: M -yacm\m:htn wvhich he n |
’“wbrkiug. : ' . : '

'2) ,Ihe»deeietonwtoaqpvese}c-tweae*hiﬁviiufﬂciu"ﬂe-bty end-auiilihci“
. memory’is cohcerned with allocatién of mafn mémory. Decisions of
-+ this. type’ mlennt executive or- eupervuoty £ucuen¢ of the eyetn..

3) The insertion of program forks and the: ‘emiu‘utton of ‘pmmn'
form part of the description of a proeedure and are eptci!led by
the designer ‘of the procedure. s -

4) The assignment of phyucel pmmm units to- processes u a

. supervisoty fumction,.

COEte ation of Effective Name
The process of meking a seguent active occurs with the firet occurence

" of the eegment: file neue durmg the execu:ion of any procen. At that point '
-an effective segment nm met be taken fron a pool of eveilable eftecuve
,‘nenee. “The legment must be retrieved‘ frdi Hle -mry. and its euoc!.atiou

with the eelect:ed effective nm met be nl:ebltnhed to pemit mkm

referencel

A working eegment created thtough the execution of a process is eutonet-u

’ ically associated with a un{que effective neue fton the pool of effective names,

‘by the act of ite creation. Similarly, a process may erase a segment, thus
returning its effective name to the pool. A supervisory process mt h‘ve fthe
power to revoke nemee issued ‘to a process if ‘the process has hu;.eﬂ niny ntuee

w8w

for an excessive time. In normal operation, it would not appear unreasonable
for a user to retain some associations of effective names for an extended

period, perhaps many months, were this required By the nature of his work.

Spheres of Protection » _
One cardinal principle in the design of a MAC system is that a computa-

tion proceeding for one user muat not interfere with correct execution of any
other computation. Each ongoing process in the computer system is concerned

at any time with a certain group of procedure and data segments and with certain
input/output devices., The process must be denied access to segments and devices
that’iS'not properly authorized. This is necessary so that possibly faulty
programs may be run in the system without endangering other computations.
On-line program debugging would not otherwise be practical. It is convenient

to think of each process as operating within a sphere of protection* contain-
ing all segments that may be legally referenced and input/output devices with
which the process is permitted to communicate. References by a process to
segments or devices not within the sphere of protection are illegal and result

in termination of the process.

It is helpful to think of a sphere of protection B as having been
egtablished through the action of a process operating in a distinct sphere of
protection A. In this connection, we shall refer to A as the immediate
superior of B, and B as an immediate inferior of A. We suépoae there is
exactly one sphere of protection that has no immediate superior and is called

the master sphere.

“The set of all spheres of protection together witﬁ the superior-inferior
relation form in general, a tree in which the master sphere is the vertex. In
this tree a sphere A is superior (inferiox) to a sphere B if there is a down-
ward'(upvard) path in the tree from A fo B. In later paragraphs we discuss
reasons for permitting the hierarchy of spheres of protection to have many
levels., 1In relation to the hierarchy of spheres of pfotection, processes must
have further powers realiged through meta-instructions. If sphere B {s an
immédiate inferior to spheré A, & proceas ir A’mnlt be able to: - -

K0T |

% After E. Van Horn

| undefined operation code. An excaptiml sondition. ui-m in e P!N‘“

1) create B.

:2) enter a segmeat valid in sphere A as valid in sphére B,
3) initiate a process in aphnre B o ‘
4) terminate all processes in sphere B. ,
5) delete sphere B, and in consequence all spheres inferior :o l. :

o The relation between spheres of protection. would"aot be: mhtnly_,
specified without mention of W mm. ‘A-progedure step . l B
encountered by a proceu that is mmmlng 4n its sphere of. proue:m:g“
causes an exceptional condition, Emlu AT & n:eroneo to an- !.uv.i“f,
segment or device name, & non-existent address within a segment; or &s -

terminates that pmceu and 1n1t1a:el A~ Opecui.c process in the- Mimly

’

superior sphere of protection.

Program Development

The ._tjee; ‘of a MAC system developa s new ms:- by e’mieaiia& with
a programming language system. Suppose the processes performed by the mnﬁ-
ming system on behalf of one user are carried out in a dlltimt sphere of
protection we shall label A for short. -These pmnm crmc s nusber of
segmant:s which are reforcnced as data in sphers A and-constitute the coding
of the user's procedure. To perform the user’s preésdure; sphare A crsates

an ingerior sphere of protection B in which the segiients ‘of the user's pro-

grain appear as procedure or data, accovding eomm.uounm:om ,
programming systm, And uhm initistes & process in’ nphm ‘B i“uip‘timi
conditions ariains in sphere B terminate ‘the precess and nnmunh & proceas
in sphere A. Exceptional conditioms should not octuw fn the nieutton of the
language system procedures in sphere A as they are pr2sumably debugged programs.
If one does occur a process is created in the sphete C that is Mnly

superior to A, o - . : RN

. The reasons for phcin. :phcu B taiuim' to-A rather than directly
under C are several, Pirat, it is umni mt the progrumming mm in A
should have the power. of creating, dehuag. and cnout.!.ag resourves to

ksphere B. Second, the programming system 1:\ A is eware of the i.ntmnuttu
. to be mede for excepttoncl condi&ionl mmumw & process me‘ll in
B, whereas exceptiml cOML:mI]
'reauw re sction bv a higher avatem.

Ang wmwmmﬂ

-10-

Clearly, it could readily be desirable to extend the superior-inferior
relationship to more levels: A user may be debugging a programming language
system; a teaching program may run under a programming system, and interact

with many students whose data must be held confidential.

Allocation and Scheduling

We assume that it is essential for successful operation of a MAC system
that the effect of a malfunction (due to either a programming error or a
transient hardware fault) of a process operating in a sphere of protection
be confined to itself and processes operating in inferior spheres. Thus,
modification of segments containing the current allocation of devices,main
memory, effective segment names and other system resources, must be disallowed
for any process except one operating in the master sphere. Thus, a process
wishing to have a system resource assigned or released from its domain must

communicate with the master sphere (by means of meta-instructions).

It is envisioned that processes in the master sphere serve the following

functipns:

.1) Maintain allocation tables and prevent conflicts in assignments.

2) Maintain queues of processes available for execution and waiting
for input/output events.

3) Take appropriate action upon exceptional conditions arising in
immediately inferior spheres.

4) Establish and delete spheres of protection inferior to itself in
response to commands given by staff personnel through a suitable

private terminal.

_ Inferior to the master sphere, several executive systems could exist,
each within its own sphere of protection. Each system would authorize alloca-
tion of system resources to spheres inferior to itself, and execute allocation
and scheduling acts by communicating with the master sphere. One or more of
the executive systems could be in operation while another was being debugged
or modified.

Carrying these thoughts a step further, it is attractive to arrange a

supervisor in a MAC system so that executive functions are done by modules of

procedure opeuting in separate spheres "dl’ﬁrotocéian. On- line Mbminj of
supervisory modules would: then be possible in parallel ‘with normal systont
operation. Furthermore, the effects of hardware or program failures neeurle;
in supervisory operation could be confined to a limited part of t.he aupct.ivuory
system - only master sphere failures would be catastrophic.

III. Machine _Featurea

Memory References gy a Proceuinﬁ Un:l.t

"To exploit the aegment structure of progtm, it is evident thlr.
processing unit muat: supply the nm of the i,ntended nesnent as well a8 the
address whenever reference is made to mln nenory. Includ&ng l:he mt
name as an extension of the conventionnl addteu in 1upract1ca1 for mcul
reasons: For any reasonable leusth of eﬁfective ugyent nawe, the c!!&ctﬂwy
of procedure representatiou in memory vould quifer badly. 8ec0nd1y. ‘since
effective segment names are not auigned until execution thu. 1a¢1ndiu them
directly in the instruction format would tequire violation of pure p!ocodute

Toding

A solution is to include several special registers cl.lhd w
regigters in the procening unit as in ngre la. The mm Iagisters
can be loaded with segment names by inltructionl open to all processes. The
typical single address i.nstructiou code format is then expanded .uum, as
shown in Figure 1lb.to ‘include a field that nehctl :he data uttuhmt regleter
containing the segment name pertinent to :he deta refcrence of the imstruction,
Procedure references by a processing unit are ude to the segment named i.n the
~ procedure attachment register. The procedure attachunt register could be’
automatically loaded from one of the data ettachunt registers when a traasfer
of control or a subroutine entry inatruction 1: execul:ed. ‘

Storage Mapping lardware
The storage mapping hardware discussed below m deviged with the follow-

ing objectives
'1) - It should be possible to redistribute msin memory when working - S
~reference to new segments is required without having to move seguent
coritent between physical memory locations. : ‘

«12-

2) Modification of segment content should not be necessary to preserve
effective references among segments when the allocation of memory

is changed.

These objectives are accomplished by interposing two control memories
called the segment index and the page index, and some control logic, between
the processing unit and main memory, as shown in Figure 2. For simplicity
only one processing unit is presumed, though the principle is equally valid
for a multiprocessor gystem. The segment index contains entries, each
consisting of a sphere name-segment name pair and a code that indicates the
nature of references to the segment that are legal within the associated
‘ spheie of protection. Wheﬁever the process in execution attempts to load
an attachment register with a new effective segment name, the segment name
and the sphere of protection are presented to the segment index. This pair
413 associatively matched against the corresponding fields in the segment
index. If a match is found, the new segment name is legal—~ the class code
is placed in a class indicator associated with the attachment register, and
- exécution of the process is continued. 'If no match is found, reference ta
the segment is not valid in the current sphere of protection. This is an
exceptional condition that terminates the process. From the forgoing, it is
evident that the attachment registers will only contain segment names to
. which valid references may be made within the current sphere of protection.

The page index is used to rename equal-size blocks of main memory, and
‘contains one entry for each block of main memory. Each segment conaists of
an integral number of block-sized pages. Therefore, an address within a
éegment is.broken into the concatenation of a 2535 number and a line number

within the page. Each entry in the page index memory contains an effective

E segment name, a page number and a block number. The block number gives the

block in main memory where the indicated page of the named segment is to be
found. When the processing unit makes a reference to main memory, it
supplies to the page index the name of a segment from one of its attachment
registers, and the effective address within the segment generated by normal
techniques. The effective address is split into page number and line, and
the segment name and page number are used in an associative look up in the
page index to find the block number to be used for accessing main memory.

- The page number and block number are loaded into an extention of the attach-

ment register so further references to the same page do not require use of

-13-

the page index. If no match is obtained in the page index, the referpgnce was
to an address outside the current bounds of the segment and an exceptional
condition exists. ' ’

The equality searches i’cquired in the segment index and page index
could be performed by hardware asspciative memories. However, pseudo-associa-
tive memory realized through conventi;mql_ location addressed memory and hash
addressing 1is presently more economical md ptobgﬁly faster on the average.
The page index memory must be ‘m'y fast, u ' rtfci."chce to it is needed for
a sizable fraction of main memory references. Its size is rather small,

e.g. 1024 entries for a main memory of '239’ words partitioned into iMmd

blocks. The segment index memory does not have to be so fast, but r.qutr-n‘
a number of entries that is dependent of the mtﬁre of the processes active
at any time. The segment index might, itself, be one of the segaents sharing
the main memory. ‘ v -

(1)

o
9.

()

T1iffe, J-’K..lnd'd’ G. Jodeit, A dynuteat

i

REFERENCES

M.I.T. Computation Center, The compatible tina-during system:
= pmsgw » m& . r.'r.f W; Cadbridg "‘. *iu‘u. 5 (1963)

SR

'bennia, J.B., A ‘multiuser couputnti.on f&cility for education und

rasearch com M, ‘Vol. 7 no.‘ 9, pp. 521-529 (Seycmbor 1964).

e : P N L +

fxmum, T,, g_g. &. . o«-»lml .m e m m on

5} g Somp., Vol. BC-11, no, 2 &m&; 1962).:

Ty

e lllocltion lcheme, i
ﬂuu J. Vol. 5, pp. 200-209 (Octolnr 1962).

Holt, A.W., Program organization and record keeping for dy_namic
storage allocation, Comm. ACM, Vol. 4, no. 10, pp. 422-431
(October 1961). :

[“ephere | —

sphere name

|}
data i
—<> to
.
attach- ! ' segment name
ment ‘1 ' memory
registers |
system

proc. att. reg. address /

special processor registers

attachment index
opcode ' address
tag tag

modified instruction format

Figure 1 - Generation of Memory References

—s'[-

from

processor

m—

N

Figure 2 - Storage Mapping Hardware

segment index

class

—

sphere |segment ﬂclass

sphere
seguent

page
address

line

invalid

—

page index

segment page ﬁ—?lock

—9'[-

block =~

to

memory
line

