[S oA
;

MAC-TR-16

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Project MAC

CTSS TECHNICAL NOTES

by

J.H, Saltzer

ABSTRACT

This report Is a technical description of the 7094
Compatible Time Sharing System in use at Project MAC and the
M.,1.T. Computation Center. It is designed to acquaint a
system programmer with the techniques of construction which
were used in this particular time~sharling system. Separate
chapters discuss the overall supervisor program flow;
console message input and output; the scheduling and storage
algorithms; and a thumbnail sketch is given of each of the
subroutines which make up the supervisor program.

This report was prepared with the ald of the compatible
time-sharing system and the TYPSET and RUNOFF commands.

“"Work reported herein was supported (in part) by
Project MAC, an M,1.T. research program sponsored
by the Advanced Research Projects Agency,
Department of Defense, under Office of Naval
Research Contract Number Nonr-4102(01).
Reproduction in whole or In part is permitted for
any purpose of the United States Government."

This empty page was substituted for a
blank page in the original document.

At
'y

‘P?tface

The writer intends thaese notes to provide a technical
introduction to the operation of the 7094 Compatible Time
Sharing System for a user who wishes to participate Iin
programming and rclattd development of the time-sharing
system, In thelr presaﬂt rough form, the notes attempt to
fi11 as quickly as possible a need for tutorial
documnntotlon of the tlmc«sharlnz system.

The ‘cador should have consliderable experience in
computer programming, Including a knowledge of the machine
language (FAP) of the 7094 computer. He should also be at
least a casual user of the time~sharing system and . thus
fami)lar with the operating characteristics of the system,
and he should be famillar with the system description
provided In the CTSS users' manual (1), However, when
highly technlical aspects of the 7094 operation or speclial
features of the time-sharing system are discussed, the notes
will provide enough background material for a reader
familiar with these subjects.

Notg: In the Interest of getting Into distribution a maximum
amount of information in a minimum amount of time, sections
5,6, and 7 of the Technical Motes consist mostly of tables
and charts, with a minimum of verbal description. They
should provide a useful reference source, though they are
not ldocquor tutorial purposes. :

PR
PO

(T ¥, Corbats, et al: Compatible Iime-Sharing
Syatan: AWM M,1,T. Press, Cambrldze,
M"’%‘ 19863.

i)
24
L

This empty page was substituted for a
blank page in the original document.

CTSS Technical! Notes

Table of Contents

Preface.

1.

3.

b,

Introduction to the Technical Aspects of CTSS,

The Computer

Design Principles

Use ofiblsk and Drum Storage

Relat}gn Between User, User Program, and Supervisor
Supervisor Commands

The Modular Time Sharing System

Construction of the Supervisor Program
Supervisor Program Flow
Data Channel and Clock Traps

System Modules

'ﬂPUtiﬁnd Output

The General Logic of Input Flow
The General Loglc of Output Flow
An 1/0 Adapter Module

The Typewriter Coordinator Module

Other 1/0 Devices: Interface 11|

The Scheduling Algorithm and the Storage Algorithm
Thg Scheduling Algorithm
A Typical Scheduling Policy

The Background System

11
12

15
17
20
21
25

26
26
30

This empty page was substituted for a
blank page in the original document.

s

Y el

» CTSS Technlical Notes

Pollcy on Charges
The "Onfon=-Skin" Storage Algorithm

The User Dump

Appendices:

5.

6.

7.

h=A States of a User

4=-B Listing of Schedulling Algor!ithm

Fiow cqprts of Main Control and Trap Processors.
Cycle{ﬁntry of Main Control

C§mmand PrOCe§s!nzvln Main Control

Flow Diagram of the Clock Trap Processor

Flow Dfltram of RSTCPU

Flow Diagram of the Protectlion Trap Processor

The Disk Control Module.
Introductlion

The Disk Control Routines
Loadlqg;and Dumping the Disk
Disk Routine Tables

30

31

32

37
39

52

53

54
55

56

57
57
57
57

Description of Eptry Polnts and Cross-Reference Table,

Introduction

- Thumbnall Sketches

63
63

This empty page was substituted for a
blank page in the original document.

CTSS Technical Notes | PAGE 1

1. Introduction to the Technical Asaﬂcts'of'QTss.

In this section we will revlew scveral ldeas whlch are
covered in the CTSS Programmer's Guide, but from the point
of view of a system programmer rather than that of a user of
the system. We will dlscuss, in turn, the computer on which
the system operates; the. overall design principles; the
place of the disk and drum momorles in the system; the
relation between the user and the supervisor; the types of
commands; and finally, the modular construction of the
system supervisor, ‘ S ‘

Ihe Qnmnn&p;-

Whilte many of the ideas involved in the time-sharing
system are to some extent independent of the computer which
~ the system uses, a technical discussion presently requires a
specific reference to detalls of . the particular computer,
‘The computer In these notes is the IBM 7094 wlth several
special features.. The most lmpertant are; :

1. Core storage interval timer clock. This Includes an
- "alarm clock" which can cause a prozram interruption
similar to a data chtanc! Lrap.. , :

2, Mamorv protection and relocation registers. These
permit a section of the computer memory and certain
instructions to be declared “off limits"” to a program;
a trap will occur uhnntvar a. precwam atxempts to tread
"off lhults." '

3. At le&st five data ¢hanncls, connected to the following
,equipment.

Channel A: Prlntcr, punch, roadar, tapes, and
Chronolog clock.

Channel B: Tapes.
Channel C: Disk and Drum Storege.

Channe! D: Direct data Input ond output for spcclal
L experiments.

Channel E: 7750 Communications Channel (which |
' communlcatca with tvpaurltaf conso!es).

" The Pro;ect ‘MAC Computcr has two. add!tlona! channels-

Chanqu F: Disk and Drum Storage.

1

CTSS Technical Notes PAGE 2

Channel G: Hligh Speed Drum,

' Two 32K core storage modules.

These speclal features are combined with an extensive
supervisor program, known as the ''time-sharing system
supervisor' to provide a complete time-sharing system,

Design Principles.

It will be somewhat easier to understand the general
import of the ideas to be presented in these notes If some
of the principles of design of the time-sharing system
supervisor are“?tated clearly at this point,

1. Although subsidiary computers (the IBM 7750) are
an integral part of the system, as many functions as
possible are carried out by the 7094, This centralization
of supervisor control is primarily to simplify the job of a
person trying to learn how the system operates,

2, The system is designed for the maximum possible
Iinteraction rate wlth the user: the 7094 accepts each
character as it Is typed by each user. It is not necessary
for the user to communicate on a line-by-line or
paragraph-by~-paragraph basis with his program, although many
programs do not attempt to take advantage of the maximum
interaction rate.

3. Input and output from user programs are provided
by supervisor subroutines which allow the user to specify by
name the function he desires without irrelevant detail and
bookkeeping on hls part. For example, if he wishes to store
some information.on the disk he gives the supervisor the
block of information and a name by which he knows the block;
he can retrieve it later by asking for it by name. He need
never worry about disk track numbers or complicated data
channel programs. Similarly, the mechanics of communication
with a typewriter console via telephone 1lines would deter
even the most experienced programmer; but a subroutine call
Is provided which accepts a message and the information that
it is to be typed on a console; the supervisor subroutine
takes care of the rest of the detalls, This principle is
~carried to the point that the user is required to do all his
I/® via supervisor subroutine calls,

L, The supervisor is designed to be context-free,
That is, although It accepts commands from a user, it has no
direct interest in what the commands do; It considers a
command name to be merely the name of a program to be found
in a directory; when the program has been found it is loaded
and started just like a program written by the user,

kL

-crs_sv Technical Notes PAGE 3

uueimmnmimn

As mentioned above, input and output are handled by
supervisor $ubroutines for the user. This ‘comment appl!es
especlally to ‘the disk flle and the mignetic drum memory, A
special supervisor module, the disk control, handles all.
input “and output for these units, Thc dtsk control module
has been desligned so that the ‘user: ‘cannot distingulsh
between the disk and drum memorles. There are four primary
uses of - the disk files: ,

1. User files. These are fllas of Information which a
user wishes to store away for future reference, They
may consist of programs, data for programs, or any
other information the user desires, They are kept on
the disk indefinitely and allow a user to retrieve a
program several weeks after he wrote It, Thus, the
disk replaces the decks of cards and reels of magnetic

- tape usually associated with a large computer
-installatlion, ' ' . ‘

2. Working programs, When a program actually works, It
‘sharés? the computer with several other users, Since
not a]l of- these users will fit into core memory at
once, the excess are stored tumporari!y on the disk or
drum to be brought into the computer when thelr turn to
use the central processor comna up‘again. :

3. Supervisor commands. Whenever a user “types 'a super-

: visor command, he Implicitly requests ‘execution of a
program, ln»most cases, thla cemmand program Is kept
on the dlsk.‘ : o

bo - 8cratch Pad memory., Manv prosrams, such as trans=

- lators, require large blocks of temporary storage which
da not fit into core memory., The disk Is also used to
fulfily this need, S : R

All files kept on the disk (and drum) are known to the
user only by name: the supervisor disk control module keeps
for each user a dlrectory of names and <corresponding track
locations gh the disk, A simple’ chaining precedure Is .used

to locate any glven flle,

A master file directory, which contains the
identification of all potential users of the system, starts
at a fixed place on the disk and contains all pertiment

“information about~tha»usef;ilneaadinzuthé%~locatlon ‘of his

personal file directory. His file directory lists names and
starting locations on the disk of -each of his personal
files., Every user of the disk contrel module, Including
even the supervisor, must appear in the master flle
directory. As will be seen later, the supervisor modules
are also stored In relocatable binary form as files on the

CTSS Technical Notes PAGE &

disk under the user number of a special BSS loader which
starts up the system,

Relation Between User, User Program, and Supervisor.

For every possible user of the system, there |is an
entry in the Master File Directory of pertinent information
about his identification and use privileges. There is no
information, however, about the nature of the console he
might use; this information is not of Interest to the
supervisor and only concerns the user (and possibly his
program) .,

When a user logs in to the system, he is assigned a
user number and thereby becomes subject to the attention of
the scheduling algorithm, A logged-in user 1is assigned a
"state" according to the demands he 1is placing on the
system; this "state" will usually change several times while
he is using the system. Each state has an associated code
number:

0. "Dead'". This state corresponds to a user without a
program, He may be in this state hecause he has just
logged in and has not yet loaded a program, or because
his program has just completed execution and returned
him to the dead state. In all states bhut this one (and
sometimes state 3) there exists a ''core image" of a
program for this user,

1. "Dormant'", A user is in the dormant state when he has
a program which is potentially runnable, but which for
some reason the user does not want to execute at the
moment. His program is probably not being kept in core
memory but temporarily on the disk file, until he gives
the word for it to begin execution., A user will be in
this state if he has just loaded a program but has not
yet started it; or if he has just finished program
execution and returned to the dormant state, This
latter possibility differs from the similar situation
described under "dead" in that the core image of the
program remains available either for rerunning or for

postmortems,
2. "Working". A wuser is in this state whenever his
program is scheduied for execution, Working users

actively share the use of the computer, but only one of
them is actually in execution at any given instant,
while the others may be in core or stored as core
images on the disk just like the dormant users, All of
those trylng to execute are considered to be in the
working state,

|
'
P
12
)1

CTSS Technical Notes PAGE S

3. "Waiting Command". If a user is in either the Dead or
Dormant state, anything he types is considered a
command to the supervisor. When he finishes typing a
command, the supervisor places him in state 3 to
indicate that he should ‘-be actively considered by the
scheduling algorithm. When his turn comes to use the
computer, the cotresponding command program is located,
loaded if necessary, and his state Is then changed to
"working'"., Note that a command program 1is considered
to be the user's program; once It 1is 1loaded it s
indistinguishable from one of the user's own programs.

. be. "Input Walit'". When a working user program attempts to

read a line of input from the console typewriter, there
is a good chance that the user (typist) has not vyet
finished typing the line, In this case, the user is
assigned state 4, and he is temporarily ignored by the
scheduling algorithm until such time as the needed line
has arrived. Although in principle a request for input
from any device could result In the input wait state,
this state does not apply during the reading of a file
of information from the disk. The rate of Iinformation
transfer in this case is so high that more time would
be lost switching users than waiting for the first
user's input to arrive. v

S. "Qutput Wait", When a user's program attempts to type
out a serles of messages on the typewriter console,
messages may be produced at a higher rate than the
console can type, After a few such messages have been
absorbed by intermediate buffers, the user is placed in
state 5 until the messages clear sufficiently to permit
the program to proceed. The output wait state could
also apply to any output device requested by the user,
but considerations similar to those - described under
input again apply,.

One further noteworthy detall of the present
implementation makes clear future remarks. The two memory
bhanks of the computer will be referred to as "memory A" and
"memory B". The supervisor is in memory A, and user
programs are in memory B, It Is not essential! that such a
division of equipment take place, but a formalized division
greatly simplifies the programming within the supervisor.,

Supervisor Commands.

A command program is nothing more or less than a
complete program previously written by someone, which Iis.
stored In the form of a core image ready to load and run., A
number of those command programs are considered 'public
commands" and are stored in the supervisor's disk files,

B R A

CTSS Technical Notes PAGE 6

Other, private command programs may be stored in a wuser's
private file. Examples of public command programs are the
MAD and FAP translator programs. An important aspect of the
way in which the supervisor handles commands (requests for
the execution of .a command program) is that the supervisor
remains aloof, as |t were, from the operation of the command
program,

Suppose a user types the command MAD with appropriate
arguments. The supervisor accepts this Input 1line after
checking that it is in fact a command, When it Is the user's
turn to run, the supervisor looks up the command name Iin a
command directory which contains BCD command program names
and command program starting locatlions. If the command
named MAD Is found In the directory, the file named '"MAD
TSSDC," is read from the disk Into core B and started at
the location given in the directory. This command program
is now the user's program and runs exactly as If he had
written and loaded it himself, Note, however, that the
supervisor itself has po information about the command or
what it does, except its name and starting location, It is
In this sense that the supervisor Is context-free.

There are, in fact, three kinds of commands; we have
just described the operation of "disk-loaded" commands, A
second type of command, also context-free, Is the B-gore
transfer command, If the user types a B=-core transfer
command and is in a dormant state (that 1is, has a B-core
image), his core image Is loaded and the transfer is made to
a special place in his program (again given 1in the
supervisor's command directory). Examples of B-core
transfer commands are PM and FAPDBG, These functions are
carrled out by subprograms which are loaded as part of the
user's program, The third command type 1is the A-core
transfer command, which requests an action Intimately
connected with the supervisor and s thus not strictly
context~-free., Examples of this type are LAGAUT, LPGIN, and
SAVE. Here no loading is needed, since the command programs
are built into the A-core supervisor,

Ihe Modular Iime Sharinz System.

The supervisor program has been written in the form of
modules, for ease in understanding and modification. Each
module of the supervisor takes charge of a specific:
function, such as typewriter coordination, disk file input

‘and output, or scheduling of user programs, The modules are

written in languages which produce binary programs 1in BSS
relocatable form; thus the modules may communicate with each
other only through the two standard communication procedures
of BSS programs, namely the transfer vector and program
common, Thus the number of Interconnections between
separate parts of the supervisor 1Is minimized and such

CTSS Technical Notes PAGE 7

interconnections can only exist on a formal, advertised
basis. Most Importantly, the reader can study and
understand the operation of a specific module while he
still has but a vague idea of what happens inside other
modules, Figure 1,1 is a schematic illustration of a layout
in core memory of the modules of the supervisor program, and
the user programs, The diagram shows only a few of the more
important modules.

. User Area

Core < {
Memory Clock trap 1/0 Adapter
..Processor |
Main 1/0 Adapter
Control L Supervisor
Storage Typewriter F area

Allocator Coordinator |
Scheduling Disk

Algorithm Control

| L.Machine trapllocations |)

Figdre 1,1 -~ Possible core Memory Layout.

While the system is operating, the modules of the
supervisor are in the form of a complete program loaded and
l1inked together in core memory. However, copies of each
module in BSS form are stored in the disk file., In addition
to the modules normally used in the system there may be
newer modules being debugged, or older modules kept as
backup in case the presently used version suddenly develops
an unforeseen bug., The system is started up by placing a
modified BSS loader into core memory and giving this loader
a special control card which speciflies a 1ist of modules to
bhe loaded and 1linked together. The steps involved in
starting the system are as follows: first, a 7094 program
loads the disk from a tape copy made of the disk following
the latest previous use of the time-sharing system; then,
another 7094 program loads and starts operating the 7750
computer, which handles console typewriter input and output.
Now, a special BSS loader which contains a copy of the disk

43

CcTsS ‘Tecﬁwf‘éifj -euat',,. " PAGE 8

ﬂcontrol module I's loadod, frem a :card reader or: tape,, into
the 7094, The toader s followed" by a- “tupcrvtsor -name
_card,” The BSS loader has a user ‘number, and: thus has
. access to the disk files with the ald of: Lts disk eontrol
. module, The "supcrvtsor ‘name ‘card” specifles the.name of a
‘disk flle accessibte to the BSS-leader which: .contalns a list
‘of names of the’ at:k files to-be loaded te~form a supervlsor

program,

There are two lntercst!ns aspects of thls procedure for
loading the time-sharing system supervisor. Flirst, maximum
use is made of existing programs, such as the disk control

- module, Second, if a module being checked :out*vdevelops -a
" bug, It can be very easily removed from the system (and an
older, reliable version substituted) with a minimum of fuss

and bother, simply by a reloading of the special BSS loader
with a supervisor name card which specifies a different list
of disk flles to be Toaded to produce the supervisor. This
feature Is vital In a system which is in use while still in

‘a state of developmaent.

In conclusion, a plcture of the magni tude ‘of this
undertaking, in terms of relative .slze of the programs

‘Involved, may be of Interest, *?fﬁhce supervisor program

consists of about 12,000 (decimsl) instructions plus tables,
This figure compares with 11,0000 for the MAD compiler,

16,000 for the FAP assembler, and some 60,000 instructions

in the older IBM Fortran |l compller, - ‘Thus: In the proper

perspectlive, the time~-sharing systom supervisor Is an ’
undertaking comparable to the development of a completely

new compller system, in add¥tion to the FAP and MAD

translators, command: programs totaling another 6,000

instructions are necessary to frame out a "usable" time
sharing system,

CTSS Technical Notes PAGE 9

2. Construction of the Supervisor Program

lntroduction.

In this section we examine the general flow of control
within the supervisor program and consider when and how it
obtains control, and what happens when it does. In doing
so, we will get a slightly closer, but not detailed view oF
several of the important supervisor modules. :

Supervisor Program Elow.

Suppose a user's program is operating. The program Is
located in core B, and has control of the computer; tle
supervisor |Is located in core A but is not presently in
operation, There are three events which can cause the
control of the computer to transfer to the supervisor, s
indlcated in figure 2.,1.

First, if any user at any typewriter types a character,
he causes a data channel trap at the 7094, Control passes
to one of several speclal supervisor modules caltled
Input-Output Adapters. The approprliate Adapter accepts the
character, performs any necessary code conversions on it,
and places it into a common input pool buffer along with the
typist's "user number', Control then returns to the
interrupted program which continues as 'if nothing had
happened. A data channel! trap is a true "interruption!" as
it may occur at any point In the user's program.

A second event which glves control to the supervisor is
the following: after a period of time known as a '"clock
burst,'" and typlcally of value 0.2 seconds, a clock trap
occurs, ‘which passes control of the computer to the

supervisor clock trap processor, At this time the
supervisor does most of its '"housekeeping'" work. The
typewriter coordinator processes input and output between
user programs and typewriter consoles. The supervisor

examines commands typed by other users and makes notes,
Finally, the supervisor consults the scheduling algorithm
module to learn whether or not this user should be permitted
another "clock burst'! of running time. If he Is allowed to
continue running, his program is restarted at the point at
which it was interrupted by the clock trap; If not, another
user is allowed to run, and a "swap' may have to take place.

We have thus far looked at two ways In which control
may pass from the user's program to the supervisor, Both of
these traps, data channel and clock, have the property that
they may occur at any point in the user's program, The
third event which causes control to pass to the supervisor
however, is completely under the user's control. This event

Protection ' S ; .- Clock N Data Channel
ta;p» _ A -~,trap . o _ - trap

) AN

'
1
'
J

Protectlion |
“trap
‘nrbccssor ,

‘ CIock trap
ﬁrocessor

»! 1cooro |

|erae | trao 0o scue
{from | from -
jcore . core .o

" iband | Aor

{swap no suap

. _jneeded needed

) juyseL $819

r
!
|
{
}
i
i
)
B
|
e
4
|

1
|
L

- T f»’—en‘g l%q'

Transfer to : return to Note: 'CIOck and
core B S !nterrupted ~data channel -
program program - traps will

; - : ' ~oceur while
swapping.

01 35vd

Figure 2.1 -- CTSS supervisor, overall flow,

CTSS Technical Notes PAGE 11

Is the (presumably) intentional protection mode violation;
the signal that the user is calling on the supervisor to
perform some special subroutine function. When such a
subroutine call occurs, of course, the operation of the
supervisor depends on exactly which subroutine has been
requested. In general, however, If the user's state has not
changed as a result of the subroutine call, control returns
to him directly as soon as the subroutine operation has
finished, unless he used up his "clock burst" durlng the
operation of the subroutine. If the user's state has
changed as 'a result of a subroutine call, for example, a
call which requests a change from working to dormant status,
control passes Instead to that portion of the supervisor
concerned with locating and running another user program,

For the interpretation of the flow diagram 1in fligurc
2.1, the operation of the data channel and clock traps must
be understood. These two traps may be elther epnabled or
« In the supervisor, they are almost always enabled
and disabled together. |If a trap Is enabled, the program In
operation, whether user or supervisor, may be interrupted at
any time; the program has no control over Iinterruptions
except to disable the traps. On the other hand If the traps
are disabled, when a trapping condition occurs the program
is not interrupted; instead the trap 1is remembered unti’
such time as the traps are re-enabled (restored). The
ability to-disable traps, yet remember them, is necessary In
order that the supervisor may handle all traps In an orderly
manner,

The dotted boundary in figure 2.1 is the disable~enable
boundary; all programs inside the boundary run with data
channel and clock traps disabled, those modules outside the
boundary run with data channel and <c¢lock traps enabled.
Thus a data channel trap gannot occur while 1in the
scheduling module but may occur while in the disk control
module,

When a clock or data channel trap occurs, further clock
and data channel traps are Immedliately disabled, The
supervisor continues to run with traps dlisabled until it
elther returns to the interrupted program or it goes to the
sway (main control) section.

Note that care must be taken to insure that an enabled
supervisor subprogram is never entered following a trap from
the very same program, To make sure that this does not
happen, the clock trap processor never goes to the swap
section if a trap has come from core A, Instead, If a swap
is needed, only a switch is set, and return is made directly
to the point of interruption of the core-A subroutine. When

CTSS Technical Notes PAGE 12

the subroutine has finished, It returns to the user program
via the common user return RSTCPU, Since the user may have
run out of time during the subroutine operation, RSTCPU
checks the swap switch and if a swap Is needed, performs the
transfer to the swap section whicn the clock trap processor
was afraid to do before.

System Modyles.

After the brief consideration of a general picture of
the supervisor operation, it may be useful here to list all
of the modules with a brief sketch of their diverse
purposes. The block diagram, figure 2,2, shows the general
relationships between the various modules, although flow of
control between modules is not unambiguously indicated,

Each module 1is a subroutine, or group of related
subroutines, filed by a six-character primary name and a
secondary name corresponding to the language in which the
module Is written. The first four characters of the primary
name are mnemonically related to the function of the module
and the last two characters are a number Iindicating the
version of the module, Some modules, because of thelr size,
are split between two or more files, Such a .split may or
may not imply separateness of functions of the parts of the
module. The names of the modules and their functions In the
version "1A1" system are:

Primary File

Name Function

MAIN Initialize time=-sharing supervisor,
cLpc Clock trap processor,
CTRL Main Control Section.
STAR Storage algorithm,
SCDA)

SCDB

ScDC Scheduling algorithm,»
SCDD ¢

SCDE

SCDF

SCDG |

TC@2R Z Typewriter coordinator.

PMTA Protection mode violation processor.

CTSS Technical Notes PAGE 13

RTRN Common exit routines to return to
trapped programs,
SAVR Save and restore user machine conditions.
UTRP Process STR, floating point, and data
channel traps for user programs,

RFLX Processes user input lines,
coMC Miscellaneous subroutines.
COMD Command directory (no instructions).
CONV BCD conversion routines.
@NLN Do on=line |/® for supervisor,
EDBG Post mortem and trace routines for

’ ‘ debugging the supervisor,
LOGAY
L@GB LOGIN, LAG@EUT commands,*
LAGC
SAVC Start, save, restor, resume commands,
9CcTC PCTLK, @CTPAT, and @CTTRA commands.
DSKI1 Disk control,
ADPi v 7750 1/0 adapter.
AP75 - 7750 Write subroutines.
TSTO Assign 7750 storage.*»
CHNE Channel E hardware subroutlines,
HI1GH High speed 1lne adapter.,
UNIT ; Assign and look up logical user numbers.
DCER Handles channel E errors.
PLOTS

or Channel D 1/0 adapter.
KLUD
* |Indicates a module written In the MAD language, The

other modules are written in FAP,

NOTE: More detail about the entry points of each module is
contained in Chapter 7.

]

Start STR, FPT Protectlion Interval
traps Mode timer
v1011t!on tr[p
UIRA E DAP, HIG
Initialize Process uffer _JClock trap | _ [Typewriter | __IKhannel E Hardware
System User trap typewriter Processor Coordinator 1/0 Adapter Interfac
input hhannﬁ
NILTI CTER
Maln cheduling Match sslign 7750 Handle
Control 1gorithm physical & Ehannel E

LOGIN torage pisk Command ommon ave and
LAGOUT lgorlthA Control Dlrectory xit estore Mach
Fommand) outin onditlions
User
Program
Subroutines called by many modules:
Icotrect Miscellane- ecimal fo- n-1lne 1/0 upervisor
Istatistlcs pbus routines inary conv, or super- ebugging
tc, {sor

Figure 2.2 -- Block diagram of supervisor showing important inter-module links,

SaJON B |uyoal SSLD

«T AnYA

CTSS Technical Notes PAGE 15

3. Input and OCutput
lntroduction.

In this section we will study the communication between
the user and his program in the time-sharing system, We

will discuss specifically how a typewriter communicates with
the system, although the ideas can easily be extended to
more exotic forms of input and output devices

To allow a continuous flow of input or output between
the typewriter and the user's program, which may not be 'in
core memory at all times, the supervisor provides buffers
for the data being transmitted. Input messages are buffered
in core A, within the supervisor, while output messages are
buffered in the 7750 computer.

Ihe General Logzic of lnput Flow.

Figure 3.1 1Is a flow diagram of the handling of input
from a typewriter by the time-sharing system. We may begin
with a user typing a character on his typewriter, This
character travels via telephone lines to the 7750 computer,
The 7750 accepts the character, and turns on the 7909 data
channel. The 7909 data channel places the input character
in a buffer in the 7094 memory and causes a 7094 data
channel trap to the appropriate 7094 input adapter. The
input adapter program moves the character into a character
pool buffer, in the form of a word containing the character
in the address and logical user number in the decrement.
This format, used for all character-oriented devices, is
known as "Interface 1", The character pool buffer s
capable of holding about 600 such characters (for 30 users).
The 7094 then returns to whatever business it was about when
the trap occured,

The characters in the character pool buffer are thus
left for a later section of the supervisor to examine and
eventually route to the proper destination. It 1is
fundamental that the 7094 computer responds to input
character by character so that if a user program desires, it
can communicate back and forth on a character by character
basis with the user,

Further processing of input resumes when a clock trap
occurs, giving the supervisor program intentional, compiete
control of the computer. At this time the input characters
are processed in two stages. The first stage, handled by
the typewriter coordinator module, collects characters into
messages, Each user has a separate secondary read buffer,
and all characters which he types are moved to his secondary
read buffer by the typewriter coordinator. No further

S9JON [eo2luyd9)] SS1)

7094 | |
Data ‘ Clock trap i Clock trap
Channel E | | processor (after
trap : | : TCOORD done)
l | |
(Eﬁar, + phys. un?g) Decode | TCOORD I Move completed
and l Put SRB lines to
imove character|luser f----- appropriate
7909 data Adapter] jinput In user's| |no, 1 , |buffer,
channel L_-X__|Jinput |lchar, secondary \ ! |
E buffer | |to read i : :
' char, buffer; | not at at
1 pool | Mark - : command | 'command
[7750 | v | buffer | completed | level evel
T H | lines by ! \
! t ILINES I \
| | | ¥ | v
type- type=| etc. return to | return to | continue
writer|\|writer interrupted | clock trap ' clock trap \
m program ' processor : processing \\
! \
char.,,user no. ¥
| User
' command
RDTELY TCOORD buffer
Input Adapter l Typewriter l ,
Coordinator A call to subroutine RDFLX

obtains a line from the
user lines buffer iIf there
is a line for that user.
If not, STATUS(USER) is
changed to !nput Wait,

Figure 3.1 -- Simplified tnput Flow,

91 3yvd

CTSS Technical Notes PAGE 17

action is taken unless one of the characters typed by the
user Is found to be a "break" character such as a carriage
return or other special character designated by his program
as a break character. When a break character is found among
the 1{input characters his message 1is considered to be
complete, and no more characters are placed in his secondary
read buffer, |If more characters remain 1in the character
pool buffer for this user, they are left there until his
secondary read buffer is free. A program switch is set to
indicate that this user has completed typing a message, The
typewriter coordinator attempts to thus dispose of all of
the characters in the character pool buffer by distributing
them to user secondary read buffers.

When the typewriter coordinator is finished moving
characters into the secondary read buffers, the second stage
of input processing begins., At this stage, handled by the
clock trap processor module, completed messages are
delivered to their final recipients' "mailboxes", If the
user is at command level (dead or dormant) the message is a
command and is placed in the user's command buffer. If the
user is not at command level, the message is for his
program, and so it is moved to the '"user lines' buffer.
There the message remains until his program calls upon the
supervisor subprogram RDFLX for final delivery.

Note that the second stage, which removes the message
from the secondary read buffer, is not strictly necessary;
the user's secondary read buffer could be considered as his
mailbox. The second stage could consist only of noting
completed messages from users at command level, A floating
buffer scheme to do this simplification could easily be
implemented,

An important reason for the modular construction of the
system supervisor is well illustrated by the input scheme,
There may be any number of Input adapter modules
communicating with character-oriented devices, Each of
these modules, upon obtaining control from a data channel
trap caused by its hardware Iinput device, can place
characters in the character pool buffer In the standard
Interface | format. The pracessing done by the typewriter
coordinator is completely independent of the source of the
character in the character pool buffer. The adapters can be
considered as "matching devices" between the specialized
hardware requirements of different input devices and the.
standardized characteristics of the input interface of the
typewriter coordinator,

Ihe General Logic of Qutput Flow.

Having looked briefly at the input side of
communication between wuser and user program, we will
postpone detailed discussion of the input modules until we

in a way quite simllar to

" produce -nput an!y,uueh Mo

* cohstan{ly expect to be. 9vcrhuzdgaad

figure 3.2, a flow. diourmaf Mmg,#

" for 29 words; since three .12-blt characters .
~ word, there is ronm-fofia "l&nﬁ” of ah charactgrs plus a

’carrta;e return.

~ 71750 :computer.

€TSS Technical Notes PAGE 18

Output is handlad
_some ‘necessary
%j’a prqgram can
fe a ‘typist can
the dther hand, the
o off 1f too much

have surv:yad the related output *ﬁg; If
Wit

di fferences, : The major M!ﬁrm. PR
produce Qiﬁw &t 8 :yery high Lo, . -

output proceasor cap east). Y
output comes eut -in too shor me; . .the taput processor
cannot turn off a tynist without ";ytn; htm and perhaps
lostng some of his typed Gh!flﬁtﬂ&ic«* ;

Thus one can- make sure durtns Innut that the system
keeps up with the typists by mqk!gg the character poo
buffer large enough to. .aceent. thq xtmum fiumber of
characters that all the typ!sts ‘could produce In, say, two
seconds. Then, If the typewrlter . coprdinator attempts to
empty the character pool buffer.at least. once per second,

 only very rarely w!ll the buff:: owcrfiaw and the typists
told to das%st. S Gl g

“bne contrast, thc output sqcttons ofL:ho supervlsor must
with oaqutput 1llines
. than. the. typewrlters.

] 1y .by refusing
re ls r&om for the
fars. are :full, the
Tt™ status, The user

The: supervisaf haadios the 9@ﬁb

to accept output from a nﬂfmm
data in the output: buffers, - 4f 2,
user's program |s placed in "outant wa

- program does: not. ratura. to. wo&kg;; gsgtug unt!l buffer space

is avai!nbie for thc pra;ram'&,w];pn:a‘

mth thnsc mnﬂdofaﬂm m Mad, m& can now look at

’ sing. ° Output
originates whoaxﬁha user's program cs calls ‘ghe supervisor
sub-program - WRFLX or WRFL¥A, Tha d& §. message 1s
converted to 12-bit form If It is mot stready 1n that form
(that is, if -the user is in the .normsl, 6-bit mode) and
moved Inte the primery write buffer, Thls ,hyffer has room
are stored in a

. Subroutlnt WRFLX. .now calls :bnﬂnuﬁaux adapter. module at
the entry point WRTELY tﬂ~nfk%§.tMs-&nﬁg;mntlon~aut on the
form_ an error

return, tmmver;te amm&m’m nsodo» not have

room for the message. |f this.ls. Qu¢~fg;sa, WRELX itself
© performs an arrar nttuvnwuhiah-aggcgq the. -
- walt: stutus, - When space ,;i

u;ar in output
HECOMeS. -BMNS . :the HL1750 will
send a completion signal back to the 7085, and. this user
will come back, to worklng status. ks ‘soon as the .user
begins exacutln; agaln, s e WRELX starts .over from

' the beginning, moving the messége I[nto the primary write

buffer (since the buffer may have been used hx someone else
‘whiltle the flrst user was in ouaauz ualt).' _— v

CTSS Technical Notes

WRFLX

'

Move lline to

Figure 3,2 -- Output flow.

PAGE 19

Primary Write
Buffer sl
Primary
AWrite
JBuffer
WRTELY |
|
IG%ZBS‘ Get | (29 words)
Tine number of
Physical Unit !
‘+ I
Do code conver-
sion for this
device
Place data in
Channel Output |= — =1 — E
Buffer foutput
Buffer
! |
TGET 1s 7750 |
storage space |
* . (Full Javailable? Yy
| return) yes
Set OUTPS ’ 7909 Channel E
Write 7750 7750
7T N
Perform e ' N
3,4 return ' ﬁ .
Return 'to caller| Type Type Type
at 4,4 writer| {writer writer

(TCOORD and WRTELY)

Assuming, however, that

the

7750 has

room for

the

message, the output adapter encodes the message and delivers

it to

the

7750,

next section,

A detailed description
adapter, and of the criterion used to determine
not the 7750 has "room" for a message is the subject of

of the

whether

output
or
the

CTSS Technical Notes PAGE 20

WRFLX also does some processing of the output line, |t
locates the last non-blank character in the 1ine and inserts
a carrliage return character after it, while it deletes the
trailing blanks. For those applications where this
processing is not desired, an alternate entry, WRFLXA s
provided which puts out the line exactly as given.

Since calls to WRFLX and WRFLXA always must specify an
integral number of words, they also always specify a
multiple of 3 or 6 characters, depending on the status of

FULSW, In those cases where a different number of
characters is desired, the null character, 57 (octal) may be
inserted to fill out the last word in the block. The

typewriter coordinator will ignore null characters found in
the secondary write buffer,

Note that the only communication between the
input-output adapter (the two functions are really handled
by 2 single module) and the rest of the supervisor is via
the primary read buffer (Interface b and the
subroutine-type call to the output adapter. The resulting
independence makes it very easy to remave one |1/0 adapter
program and insert another for a different <class of
input-output devices,

An 1/0 Adapter Module.

We are now familiar enough with the general Jlogic of
input and output to study in detail the modules which
perform it. We start with an 1/0 adapter module, but
remember that this 1is only a description of a typical
adapter module and that any other program with similar
characteristics with respect to the primary input and output
buffers can, and occasionally does, replace the particular
one we are studying.

The 1/0 adapter module is of course split into two
quite independent parts, one handling input and the other
output. Let us consider the output section first, as
illustrated in figure 3,2, The output adapter performs the
necessary code conversion for the user's particular device
(teletype, 1050, flexowriter, etc.) and places the data in
the proper format for the 7750, one character per word, with
the user's telephone line number in the decrement, The
supervisor module UNIT maintains a table of correspondence
hetween actual wuser, as identified by telephone line
numbers, and internal logical user numbers. Each user, as
he dials into the system, is assigned a logical user number
for easy ldentification. The adapter must then establish
whether or not there Is room for the message in the 7750
buffer area. A separate module, TST®, keeps track of how
much space is avallable in the 7750, and this module also
decides the policy of who should be allowed how much space

CTSS Technical Notes PAGE 21

there. There Is room for 10,000 characters in the 7750
buffer, and the amount which any user mmay have is known as
his allotment, ALAT. |If N characters are actually in use at
the time a user asks for output space, his allotment is’
calculated as

AL@T = (10000 - N)/&

If the total number of his characters in the 7750 will not
exceed ALPT, he Is allowed to perform his output. If he
will exceed AL@T, an error return is given to indicate that
he should go into output wait.

Consider now the input adapter module, figure 3,3. i
this case, control comes to the input half of the module via
a data channel trap; there is at least one character in the
adapter's input buffer. The input adapter picks up the
character, converts It from the 7750 format to Interface |
format for the character pool buffer and replaces the user
telephone line number with his internal logical user number,
It then checks to see if this character is really a
completion signal from the 7750 saying that a 31 character
buffer has been typed out on this user's typewriter, If it
is a completion signal, the adapter <calls TST@ (at entry
point TGIVE) to tell it to release a block of 31 characters
assigned to this user., All other characters are placed into
the character pool buffer for later processing by <calling
entry point T@P@@AL in the typewriter coordinator. The input
adapter restarts the 7909 data channel program, and retur..
via the common exit module to the program that was
interrupted by the data channel trap.

Jhe Ivpewriter Coordinator Module.

Figure 3.4 is a flow diagram of the typewriter
coordinator program. As indicated, the coordinator only
handles input processing, Actually, WRFLX and WRFLXA,
described previously, are written as part of the typewriter
coordinator module,

The typewriter coordinator is called as a subroutine
once every time a clock trap occurs, by the clock trap
processor. |ts. purpose, you may recall, 1is to collect
characters from the character pool buffer into messages in
individual secondary read buffers, The coordinator begins
by examining the characters in the character pool buffer at
one time. Let us follow the path of processing of a single
character, First, the character is checked to see If it 1is
one of the characters in the break character list. |If it is
one of the three special '"quit-class" characters, (quit,
interrupt, or data-phone hang-up) this character by itself
Is considered to be a complete message to the supervisor,
and the ILINES table is set to indicate that there is a

CTSS Technical Notes PAGE 22

Channel E data
channel trap

i

typewriter ‘ Get character

A just typed.
7750 7909 -

"~~® channel E
T /

typewriter }* /

/ { Do code

¥ /. | conversion
Adapter
Input l
Buffer
| BS2US | Get

logical user no.

l

Is this a 7750
v yes | completion signal?
‘TGIVEI Notify TSTO no :
that this user has
ty§e3731 charac?ers
an 50 space is
free. _IQEQQLJ place
this character
in input pool,

L 4
Can user be allow-
ed to produce more
output?

yesl no |

TOPOOL | Reset L .
OUTPSW(USER) o/ Restart 7909
Data channel

Return to interrupted

program via common
exlt,

Figure 3.3 -- Input Adapter Flow Diagram,

waiting message from this user, To alert the supervisor
that this is a special message, the prefix of [ILINES(USER)
is set to MZE and the quit~-class character is placed in the
address of ILINES(USER). 1If the character is not a break

CTSS Technical Notes PAGE 23

call from clock
trap se;tlon.)

AGet next character.
Characterp——w— — Is it Quit, Hangup, yes *
Pool or Interrupt?

‘Buffer no Set ILINES(USER)
' l\ to MZE char.

put |qg{!s there room
char. nolin this user's
back sec, read buffer?
“Y§§
Is this an Check FULSW(USER)
ves lerase or kill
character
no
' Move character

Map into to user's sec.
6=-bit equiv. read buffer,

v Y

Reset line Is this a break
or prevlious character (or Is
character, S.R.B. full?) yes
no
Q ‘ Set ILINES(USER)
to PZE FIRST,,n

Repeat for next

S acter -

done

return to caller

Figure 3.4 -- Flow diagram of Typewrliter Coordinator.

character it will have to be moved into the user's secondary
read buffer, so the program then checks to see if there is
any room left In the secondary read buffer. |f the buffer
is full, the varlable ILINES(USER) will contain some
non-zero buffer address; this Is an Indlication to the
coordinator program not to attempt to use the secondary read
buffer., Instead, this character 1is put back into the
character pool buffer.

Assuming that all these tests are passed, the program
then checks the variable FULSW(USER) to determine whether or

CTSS Technical Notes PAGE 24

not the user's program is using a ‘full (12-bit BCD) mode.
If the user is using the ordinary 6-bit mode, the 12-bit
character coming from the typewriter will have to be
translated. This translation includes two Important
features. First, if the character is elther the ''delete
line" or 'delete preceding character," the 1line, or last
character, in the user's secondary read buffer is discarded.
Secondly, on all other characters a mapping 1is performed,
when possible, from the 12-bit character to one of the
allowed 6-bit BCD characters, For example, a small letter
"a" and a capital letter "A" can both be mapped into the BCD
letter "A" with octal code 21; however, certain special
characters such as the semicolon have no possible mapping
into 6-bit codes., iIf these non-mappable characters are
encountered, they are discarded at this point,

Having performed a - 12-to-6 bit conversion when
necessary, all characters other than quit-class break
characters are stored in the user's secondary read buffer,
packed either 3 or 6 characters per word, depending on
whether the user is using 12-bit or 6-bit mode. The final
check is to see either if the character is an ordinary break
(end-of~-message) character or if it filled up the secondary
read buffer. If either case is true, the variahle
ILINES(USER) is set to contaln "PZE FIRST,,n" where FIRST is
the address of the secondary read buffer, and '"n" 1is the
number of words In the buffer, This is the (indication to
t?e supervisor that this user has a complete, waiting Iinput
line, '

This entire processing operation iIs repeated once for
each character found in the character pool buffer. We have
not discussed here the inter-console communication
facilities provided by the AD@PT feature of the typewriter
coordinator,

Typical buffer sizes used by the typewriter coordinator
are:

Primary read (Character Pool) buffer: 600 characters
(for 30 users).

Secondary read buffer; 2 per user: 14 words.

Primary write buffer; 1 Only: 29 words (1 line).

The typewrliter coordinator conslists of about 500
instructions and about 2000 words of buffer space.

dr

W e ERCTRN
- K s e e

CTSS ne‘hntbatlnotes e PAGE 25

-Q:.hg.:.LLQD.u.lmz mm:u-

so far, the dlscussion has been restricted to
character-oriented tnput/output devices, Including the
typewriter., All such devices have worked through the
character interface of the time-sharing system, known as
Iinterface 1. Any char;ctaf~twpo.‘devlce can easily be
attached to thc sys;¢m~by=provldlug an..1/0 adapter program

- which converts the raw hardware. interface into the standard
~ format of Interface 1, which qonslsts of one character/word

in the character pool buffar,

There Is also another broad class of devices, such as
magnetic tape, which work Iin terms of words, and blocks of
words. A second interface is provided for these devices.
The detalls of Interface 1) can be found In M,I,T,
Computation Center memarandum cc-zze. . For any Ilnput or
output device for . which . Intarface || appears to be
appropriate, an 1/0 adapter module may be written to perform
the function of match!ns. the ha;duafe characterlstics . to

, Interface ll.

~ CTSs Tecﬂﬁlggi;ﬂe

4, The Schedu]inz Alzprlthmjahd the staf?géwkijbftthm

introduction. - ‘
In this sectlon we euamine~vtha operation of two
important modules ' of the ‘time-shering - supervisor: the

" module which decldes who- should run next ahtfor- how long,
and the module which allocates the user "memory’ area among
various user programs., These two functione; scheduling and
allocatlon, are in fact closely rela:ed. and have been
separated the ‘supérvisor 7 betause the ' particular
algorithms used ‘parmit the saparetc-coﬁildhfttlen of the two
problems, A more coniplex a%zd*%thﬂ?ﬂﬂhﬁ% f”jsider both of
~ these functions slmﬂtamouﬂfv m - :

" modules, A“third. , ,

‘both of these mb&ﬂ%ﬁlo a?thl i ;
separate module, The proper g se 7 Funct lons
Ts still open to debate, and the m "ts delt jbed here may
not represent the best possible organ!zattoﬂ.‘f A

| v, ;,t ffff

A1l scheduling policy Is contalned in the scheduling
module; in fact no mechanics of the time-sharing system are
per formed by this module, The scheduling module is for the
rest of the supervisor a sage who |s occasionally asked for
an opinlion, but not asked to do anything else., Since
mechanics are absent, the schcduttni‘mndula Is well sulted
to the MAD language, in which It Is written, Since It Is
hardly necessary to write an .Involved desc¢ription of a
well-organized 4AD program, only the policy involved will be
stated, A reader interested in exploring how the policy is
carried out can easily understand the program itself, The

explanatory comments at the beginning of the program serve

to provide sufficlient documentation.

The particular scheduling policy described here is not
the .only such policy, and may not be the best policy,
~particularly in the choice of the parameters given In the

program listing, However, It Is a typlcal policy, and the
parameters given are typical parameters. If one concludes

.. that a different paramater, or a completely different

policy, will produce better results, then a different
~version of the schedullng algorithm may be easily inserted
into the system instead. Here, then, are the Important
aspects of this algorithm. Figure 4.1 is a flow diagram of
the scheduling algorithm which may be easler to follow than

(q

CTSS Technical Notes » PAGE 27

the program Itself on the first reading of the policy rules.
These rules apply to system version 1lA3,

1,

3.

4,

6.

7.

8.

All users in state 2 or 3, "working" or "waiting
command," are kept in a set of queues, which may be
considered to be one long queue of wusers to run, In
order. ’

The queues may be re-ordered at the end of each <c¢lock
period or more frequently, depending on events
occurring during that clock period. A clock period is
a short period of time, typically 200 ms., during which
some user program runs uninterrupted except for data
channel traps.

Each queue has an Integer valued priority level, In
general, all the users In the queue with level "j" are
run before any users in the queue with level "j+1",
There are MAXLVL+1l levels, numbered from 0.
(Typically, there may be 9 levels,)

A "“quantum" 1{s the shortest period of ¢time the
algorithm ever attempts to run a user., A user may run
more than one quantum, depending on his level, A user
at level "j" is normally allowed to run 2.P.j quanta,
although he may be preempted by the arrival of a user
with higher priority.

A user at level "j" |s moved to level "j+1" after he
has run 2,P,j quanta at level "j", Usually, he then

stops running in favor of other users at level "j",

A user at level "j" is moved to level "j-1" after he
has waited "QNTWAT'" 60ths seconds without running at
all, Typlically, this waiting time may be 60 seconds.,

A user starts at a level depending on his program
length such that the time required to load his program
is a fixed proportion of the running time permitted at
that level, Thils proportion fixes roughly the maximum
efficiency of the system. (The efficiency may be
lower, because of pre-emption. See §, below,) The
"level of entry" function can easily be changed to
reflect a different policy.

A user at level "j" may be pre-empted at the end of the
next clock burst by a user entering the queues with a
higher priority, The pre-emption will take place |if
the user now running has run 1longer than would the
pre-emptor.,

CTSS Technical Notes

PAGE 28

begins

EVENT 0 : ‘ R ;,,.swAP¢-1 L :
system initialize SCHEDL—» Nﬁﬂﬂskﬁ—-ﬂ eturn
startup run baq_;goun
EVENT 1. {move lona wattlaﬂ. mxn long. runnlng
clock ——P»jusers to end of PMcurrent user to endpdecide
interrupt higher prlornty of lougr prlorlty .
(200 ms) qucua : Queue o
(o = -)
Delete from|- > declde
Queues ,
"‘éf!ﬁ LG ecide .
Hueug: ',Lnihnt A,
L . user return
EVENT 2 >
. a user '
. _changed
statg
=’om9uga levcyﬁj;y.‘ dec ide
Jbased on :
length
delets from }— > decide
queuUesS o
EVENT 3
dumping of old
user begins
EVENT & -——-————IP harge old- uscr for. dumpln; time
dumping of old less nsw ¥ a8 higher | ,
user done; load riority or.old user |s.background|return: S
of new user lse charsg new. u;er for dump. ‘ '

figure 4.1--Flow diagram of Scheduling Algorithm,

(SCHEDL,)

T

PAGE 29

CTS§ Technical Notes
Flow diagram of scbgdullng;Ajsoflthm (cont,)

EVENT 5————[charge -new. usgré?ar restoring time P e

restoring. of newlunless bagk;pund.ls new user, in 1

user done, . New. Jwhich case.charge old user, Set
user to begin = |new. user to. run for tlme based on decide

running

EVENT 6 -»fSet LENGIH of . useril o ot adeci de
user changed :- ‘J NS S e ,
length

Compute LEVEL but don't change

lqueues., Allow longgr running |
time if new LEVEL I's of lower p——>Ppreturn

priority than prewious LEVEL.

i Yé"s T “return

Is head of queues user| no. .
jdifferent from currenth - —preturn
ke Stk 1

_Has curren;fuagr run fqr as, longi no
- of e85 use —®return

SWAP4F-1 - '
NEWUSR 4—head of queues uSer'

OLDUSR1k—rcurrant userv

Jreturn |

(When the SNAP sﬁitch s set nbn-zero, the supervisor will
call EVENT's 3, 4, and 5 in succession as soon as it «can.
NENUSR will be the next user to run. , ’

flgure b.1--Flow diagram of Schedullihg Algorithm. (SCHEDL.)

T

. hrésffééhhfcéi;ﬁqtos

' PAGE 30

9. . When a user leaves states 2 or 3 he |s removed from the

- 'queues, When he returns to state 2 or 3 he is assigned

8 new priority level; his previcus ruaning time Is not

taken into cons ideration, ' TRed the stgorithm ‘concerns

Itsel primarily with ‘k‘;ﬂfn%ﬁR %imﬁs ‘within

‘Interactions.” A program calling for s new “command s

not conslidered 3 new |nteraction, but Its- lervel may be
‘changed |f the new command s longer,

10. If a user returns to state 2 or 3 he Is Dlaced at the
~ end of the queue at his prlority level based on pro;ram
length,

<mmumun.d§nm

It will be seen from tha‘prnxrnm cod!nz that one user,
user number zero, -may be accorded special treatment at

“various points in the algorithm, - User zero: nopncsents the

background batch=processing system which is maintained by
the supervisor both for compatibility with older systems and
to provide a guaranteed backta: of -work for the computer in
case no regular (“foreground") users should need service for
a time, The following additional policy rules describe the
position of the back;round systum wlth respoct to the other
users:

11, The background system is atways at tho end of the gqueue

of users to be run. If the queue should become empty,
~ the background system will then run until some other
user enters the queue, '

12, The back;rouhd operator mav “fcrcc" the background .

' 'system to be run by depressing. certaln keys on his

console., The background system will be brought In at

‘the next clock trap, and - run exclusively untll the

operator signals that normal, time-shared - operation
should continue. R 3 ‘

13. It Is possible to guarantee the background system a
' certain percentage of the facllity of the computer, by
setting the varlable "PB" to the desired percentage in
the initialization of the algorithm. When "PB" s
non~zero, the background system will pre-empt whenever

it falls behind its guaranteed percentage. :

Policy on Charges

The above enumeration of policy rules does not describe
all of the coding In the scheduling algorithm module. As
ment ioned In the introduction, a certaln amount of

time=accounting policy is maintained in this module. This
policy is handled by the codlng following “events" 3, &, and

CTSS Technical Notes PAGE 31

5. (See program listing for definition of an Yevent.") A
brief description of this charging policy can be stated in
the following five rules: ‘

1. Each user pays for central processor time used,

2, A user may pay for the time it takes to load him and
dump him depending on whom he follows or precedes,
Note that with the present storage algorithm, loading
and dumping of a wuser are pot overlapped with
computation.

3. The background system is specially privileged; it never
pays for loading or dumping itself,

' With the exception of background, all users pay for
their own 1load time. The previous user pays for
background loading time. : v

5. A user pays for his dump unless he is being pre-empted
by a higher-priority user., In the latter case, the
higher priority user pays for the dump. The next user
always pays for a background dump,

The storage allocation algorithm presently used by the
time~-sharing supervisor has as Its main virtue simplic¢ity.
There is no question that a more sophisticated procedure can
be devised, and will be when time permits, However, even
the present simple allocation algorithm illustrates some of
the important features which must be possessed by. any
storage algorithm,

The simplicity of the storage allocation algorithm
results from two basic features: dumping and loading of user
programs are not overlapped with computation, and relocation
of user programs is not attempted, Thus all wusers are
loaded starting at absolute location zero,

The simplest possible storage algorithm would operate
as follows: when a user must be dumped on to the drum, his
entire program is dumped; assuming only one user in memory
at a time, all of memory is now avallable for the next
program, when necessary, The current storage algorithm
attempts to improve this performance by dumping only enough
of a user to fit in the next user; the earlier user s
therefore split Into two parts, the one part on the drum
memory, and the other part in core memory, where Its
integrity Is insured by the memory protection feature. Thus
if the first user should be allowed to return to core memory
his next loading can be done more quickly than in the case
where he was completely dumped from core memory.

- €TSS Teﬁmtc&’%ﬁates R ~ PAGE 32

slnce a third user, fonwlnt ﬁm som, may be Iarger ‘
than the second, it may be mesmv at a fsuur tfme t£o dump
more of the first user, : ,

To tllustrate the splitting, ebnskﬁtr ﬁtzurta 4,2-4,6,
in which several successive states of the user memory area
are shown, In k.2, user A Is occup¥ing mast of core memory,
‘and is about to he dumped I'n favor-of user 8. Following the
dump, core~maﬁory ‘appears - in g, &3, with:part of user A
in core, part on theé drum. Now, user C .is ' 'to -be brought
into memory, so user 8 Is split in the sgme -fashion, as
shown in figure 4.4, If the next user.no, rnqutras a larger
‘'space, as indicated in flg‘ clholy . € must be. completely
dumped, the dump of B must fmteshéd, ‘ond the -dump of A
continued a little farther, Thn result is shown in 4.5, |If
now, following user B, user A I's to 'run sgele, the ' dump of
- user D will have t¢ he complete But only the part of A which
. was dumped will have to be ret%oreﬂf thua 1mufas~aame time.
i Thq result !s shown in M.G. : .

ln thls exampte, only two unn, Aw &, were split
betwcen ‘memory ‘and “the ‘dtum at one-tlme, : As: mlnv as 16
users may be split between core and the . dm ATl dumps
onto the drum are made in blocks of 2048 mrds. ~

"Although in the Itlustration oaly - i amall camount of
time was saved ultimately by not: éumnins a!l of A at flrst,
~in a different situstion:the “te¢h v e mey e ‘much more

-effective, Consider for exmw. e wmmm “when ‘only
two or three conséle users;’ %ﬁams»auri‘.aei:se~ ‘smeLV -programs, are
using the system, ‘with background seuniileg = large share of
the time, Sincd buckgraind i3 stways e&ﬁ&"‘m‘; most of
o It remains ‘tn core at ‘a1l timés; onlyiewough *I's ~dumped to

‘make room for the smaller foreground ussrs when “they need

tlme. In thls cau. tlm savtuz em bc lauc. o '

Iha;nash.nunn'

when a user |s dumped fm wa mu, a fna Is
created on the drum memory.l » Th's fll. lncludes two

- sectionss

1. The uscr mehtm eondt‘um swtw mtn, and the
- User disk status table ﬂném&u th& cursrcnt
mﬂon of Ma user ﬂlt dir)

7 2. Tho user' s core lmt“ _
"‘, The second uetlon ‘Is not wrlttm M a mr zolng to the

- "dead" state, The flle created Is of: mnrr mode, and

" named “000021 UDBUMP." for user 21, etc.. This flle Is
- considered one of ‘the supervisor's personal ﬂtes and ' does
not appear In the user’s file dlredtory.

CTSS Technlical Notes PAGE 33

In figures 4.8, 4,9 and 4,10, are illustrated the three
subroutines of the storage algorithm, DUMP, UNDUMP, and
FREEUP. DUMP and UNDUMP are subroutines called by the
supervisor to perform the functlions indicated by their name.
The following notes may help in interpretation of these flow
diagrams.,

1. If DUMP is called to dump a working status user,
it actually only dumps his machine and disc status
tables and leaves the core memory dump to the
routine which tries to make room for the next
user, This is done because at the.time the order
is given to dump a user it is not known how much
of him will have to go.

2. UNDUMP calls on subroutine FREEUP to dump out
enough space for the new user to fit Into core.
Only then can it restore the new user core Image
and his status tables,

3. Subroutine FREEUP is called with one parameter
("NWORDS"), the number of words of core memory
needed for the next user.

CTSS Teghnical Notes * PAGE 34

‘User area
- of
Core Memory

‘remaining (| | o |
partAqf 4Ll) .

space J|
used by} . .
‘space spbcé, | B :’¥L‘sbace '
Yneaded used - |} . |£. needed .
%by:S‘, bx 8:;a4>' :%b s ¥ jyfby.c

‘uyz ‘ :) :\” o “QS

this

----- "stil)
: here

nly
this
much
comes
from
~drum

bl b5 4.6
figures 4.2-4,6--The Onion Skin S;orazg Algorithm,

CT§S<fééﬁﬁlé§f Notes

‘Dr*’

all SCHEDL
(Event 3)

i$=tﬁi;§<§6pm

no

PAGE 35

on- h ’:th d’m‘, o
um _for user]
S 3{7 'yés :

.umhviach‘"é
konditions &
‘Plsk status

Dump all of
user on low
speed drum

r disk thru

Return

fread buffer

figure 4, 7-~Flow diagram of subroutine DUMP.

UNDUMP.

1

Return

figure 4,8--Flow diagram of subroutine UNDUMP,

CTSS Technlcat Notes © PAGE 36

S FREEUP

8 . . - .

ind . smallest
= mser with a

o , | partial dump : -
E (If any) |

no ‘retufn : | .

ls t&&s~us& e
core image yes
OGQ m S ‘

b ‘i no
£ , |

Tnish dump
or this

[arite out

nough words | qg——
to make room|

Return

Figure 4,9 -- Flow diagram of subroutine FREEUP, e

CTSS Technlical Notes PAGE 37

Appenaix 4. A

States of a User

dormant

output wait working

‘walting command

Tinput walt

Figure 4,10

Additional transitions not shown:

1. Quit signal = any state to 'dormant"
2, Forced LOGOUT - any state to "waiting command"

Description of states:

0 dead - not walting to run and no core image;
command level.

dormant - not waiting to run but has core Image;
command level,

working - waliting in queues to run or running.
waiting command - waiting in queues for first run
of a command.

input wait - program waiting for input from consale,
output wait - typewriter output buffers filled,

—

L I — W N

A1l input from the console is interpreted as commands when a
user is dead or dormant. He is said to be at command level
when in either of these two states.

€TSS Technlcel Notes

Description of Transitions

‘ - - the . user typed in a defined
command and ls placcd In the queues to wait his turn to run,

i T t;:;f“, Roklog - the user begins to run the
conmand or - *'@f#rst time, From now on. @%u-command program
is treated exactly l!ke 3 user prazramu T

Wmam- the user's uro:nm needs input from
:he co?solo and the usef-h;a aet yst t!ped in an. laput llne.
RDFLX . ,

: 5O i - tha user ‘typed In an input line
termlnated wlth a braak charactnr._* '

$ - ‘the ‘user's program has zenerated

| enough outpatbto flti chc output buffars;.(ﬂRFLX)
- quteut walt to working - the output buffer: are empty.

worklog to waltlng commind - the user's program Issued a
command. (CHNCPM or NEXCPM), '

sorking to dormant - the user's program finished Its
computa:lon but the core image.is stikl. -useful. (QARMNT)

' . 9 d. .~ the user typed In a .deflped
commtnd whieh mav bacrate on bl: core - kagsc or. may destroy
it and start fresh,

yorking Lo dead - the user's program .. finished Iits
computation and the core’ lmage l: to be dcstroyed (DEAD).

dnman.:_mmun&- supervuor ls rntu:lnz the user's
progfram wlithout a console. !ntcrac:ioa* (SkE

SCDA

PXVI DD VI DD OO DI I NV I DI I DI LI DI DI IV OO ODDDDTDVD 00D

" CTSS Technical’ Notiegw -

: T. M&Tu&@ #w &.

1. Dsream ES WHICH. US!
2, DF{E%&E& g;
3. DE (

4. CHARGES ‘USERS FOR

ENDWG H%Tﬂ 'TIM’ km"f

SCHED. HAS SOLE RESPONS FE¥L¥YY
THE FOLLOWING, COMMON ARRAYS:

'srgrus; Z &{i)sm;u@ OF,
WHERE STA 8
0 DEAD - im mﬁr

'LENGTH'
'LEVEL'

LOADED WITH THE Exﬁgﬂ;

THE FOLLOWENG ‘COMMON mﬁm Aﬁf J

» -;;-xeaps mcae w THE Fﬁu&cﬁ EACH- U

b ‘ '"ussns, surusRY
6+ msuo
.m%w

R*ti*t*"i* Tfo ﬁﬁARqunSQ:*“‘ ﬂg"ikqoa{THM RRERNRRIREENRRER S

’EVENT‘

CTSS rechhtcal‘no:g;_.-., S " PAGE 40

'WATTIM' = THE LAST TIME THAT. A,ussn BEGAN TO WAIT
'LINMUL' - USER LINE MULTIPLIER
"PLIST' = THE POSITION LIST SPECIFIES THE POSITIONS
' . OF Tneugsens wgiggbzgg%é; Tus_ggggugﬁngggge
ULIST' = THE USER LIS

WHICH CORRESPOND T0 THESE QUEUE POSITIONS
"ENDPTR' - ENDPTR(J) 1S END OF ‘QUEUE J IN PLIST , , ‘
"NOTIME' - NOTHME(J) 1S5 SET TO .2 IF USER INACTIVE .
AND USER J WILL suassqhsanv BE LOGGED OUT

THE FOLLOWING couﬂou VAnt:\;rs aaz US£0
'MXUSRS' - MAX. NO. OF FOREGROUND USERS
'CURUSR' = CURRENT USER, RUNNING 0ﬂ~ssAPPiNG
'QLDUSR' - LAST USER TO. BE. RUN, WHEN 'SWAP' .NE. 0
'NEWUSR' < NEXT USER TO BE BUN, WHEN 'SWAP' .NE. 0
"RPAYUSR' - THE USER CURRENTLY : !iuesina ¥IME :

"SYSTIM' = TIME SYSTEM WAS [N {9;415&« =
"BEGTIM' - THE LAST TIME. 'CURUSR’. BEGAN to RUN |
'QUANTM' - MAX{ RUNNING: TIME AT LEVEL 0
YMAXTIM' = USER RUNS AT SAME LEVEL uuer.'MAxrlm'
'TBASE' - BASE TIME FOR- COMBUTING 'MAXT.AM'
"PAYTIM' - LAST TIME A uss&;{;;;”f;.g,n FOR TIME

"LEVTIM' = LAST TIME "CURUSR' WAS RUNNING AT CURRENT LEVEL
"SWAP' - NON-ZERO REQUESTS: ’f.,{_ﬁ&;o& TO RUN

o 'NEWUSR! AS: SOON AS 1T CAN -
'HAxLVL' Tﬂ£~uaxtanu,9atga:_;”Lsxsaio vei 'MAXLVL')
'MINLVL' - THE MANIMUM PRIORITY LEVEL ALLOWED
"FULLVL' - INIT. LEVEL. FQ&~!@BLL€§ﬁu¥° FuLL cona USER

"EMPLVL' - INITIAL LEVEL F ‘ CORE YSER
YFULLEN' - LENGEH. ;{ §§3R¥~&; ¥EL !FBLLVL'
'pR! - auaaasxsﬁn ‘ & FOR BACKGROUND

'QNTNAT' - QUANTM uAt;tﬂa Fib a;st£VEL CHANGE
- TO- NEXT HIGHEST @ N LEVEL
"LEVINC' < AMOUNT PRIORITY. ~«-ut~15»mncasasso WHEN
USER nsruaus TO WORKING FROM INPUT OR OUTPUT WAIT
"INACTV' = MAX, TIME INACT.IVE BEF

ORE: -L.OGOUT
"HANGUP' - MAX. TIME BEFORE tu&ﬂf&¥€‘1lﬁ£ is HUNGUP

COMMON VARIABLES Resaaazn T0 8Y scusn, 8UT
NOT SET OR CHAMGED BY SCMESD, :

"BKGTIM' -~ TOTAL TIME. aneaenﬁuaa MAS RUN

"SWPSW' = NON=ZERQ WHEN sapeuvtses ns SWAPPING AND

~ COMMAND LOADING-

| 'PROBN(J)" - NON=-ZERO uusu uszn 4 |s Locsea N

USER J |s ADG??ED : ,

"SCHED, CALLS THE: melm mwrmzs , o ‘
INITQ. = INITIALIZES QUEUES ‘
HEDUSR, = RETURNS THE HEAD.. 08 qusus USER
AT HIGHEST NON-EMPTY PRIORITY LEVEL OR 0
DELQUE.(J) - DELETES USER J FROM QUEUES
ENDQUE (J) - PLACES USER J AT END OF QUEUE LEVEL(J)

[T S VHE PR

(13

AN RIS T g
5

DDAV IVIDNIIIIINDIIDDRD

CTSS Technical ﬂéies“' . | PAGE 41

BEGQUE.(J) - PLAcss USER J. AT BEG OF QUEUE LEVEL(J)
ILOG2, (N) - RETURNS INTEGER PART OF LOG .TO BASE 2 N -
F.(J) = CONVERTS FORWARD INDEX 'J' TO BACKWARD
INDEX FOR REFERRING TO MAD ARRAYS
lNITlH. - INITIALIZE TIME ACCOUNTING
INTIM, - USER 'U' LOGGED IN
OUTIM, - USER 'U' LOGGED OUT
CHARGE.(U,T) - CHARGE USER ‘U’ FOR TIME L
GETOTL., - RETURNS THE TOTAL TIME SYSTEM HAS RUN™
DELTIM,.(T) - RETURNS DELTA 'T' - THE DIFFERENCE
BETWEEN 'GETOTL.()' AND TIME 'T'
TIME 'T' IS ALSO SET TO GETOTL.(0)
CURTIM.(0) - RETURNS THE CURRENT TIME SINCE MIDNIGHT
"OF DAY SYSTEM WAS INITIALIZED
MONSC1. (EVENT, USER, ARG) MONITORS SCHED,
MONSC2. 1S CALLED WHEN.SCHED, CHANGES COMMON
PLOT1, (EVENT, USER, ARG) 'PLOTS SYSTEM ON ESL SCOPE
PLOT2. IS CALLED WHEN SCHED. CHANGED COMMON

EXTERNAL FUNCTION(A, 8, C)
ENTRY TO SCHED.
" NORMAL MODE 1S INTEGER

R
R.. SHORTEN LINKAGE, SETUP USER INDEX, CALL MONITORING SUB.,
Re. CALL PLOTTING ROUTINE
R.. ASSUME COMMON WILL BE CHANGED. AND DISPATCH ON YEVENT!
R

EVENT = A

USR = B

LUSER = [, (USR)

ARG = C

EXECUTE MONSC1, (EVENT, USR, ARG)
EXECUTE PLOT1, (EVENT, USR, ARG)
MONITR = CHANGE

STATEMENT LABEL MONITR, RETURN, CHANGE

TRANSFER TO EVNT(EVENT)

CTSS Technical Notes T ~ PAGE 42

i . 0, INITIALIZE SCHEDULING ALGORITHM FOR N USERS
I ZE 1NDEPENDENT eONHaﬂ VARlAstes -
 EVNT(0) MXUSRS =

INACTV = 216“00
HANGUP = 7200
"R
Ree INIT{ALIZE QUEUES AND TIME ACQOU&TING
EXECUTE INITQ,
EXECUTE INITIM,
R

R.. INITIALIZE TABLES

THROUGH JLOOP, FOR J = 0, 1, J .G. UMAX
JUSER = 1,(J) ‘

; JLOOPR LINMUL(JUSER) = 1

R.. SET BACKGROUND(USER 0) 7O RDN

Reo USER 0 IS ALWAYS IMPLICITLY AT END OF QUEUES
SYSTIM = CURTIM, (0)

STATUS(1,(0Q)) =

SWAP = 18

FIRST3 = 1B

BGMAX = 180

TRANSFER TO CHANGE

PAGE 43

sy CTSS Technical Notes

R.. 'EVENT' .E, 1, CLOCK lﬂ!t!RUPT
Res ASSUME. COMMON. WiLL. nar BE cuﬁﬁczn
EVNT(1) MONITR = RETURN
; ICUR = |, (CURUSR) ,
= T = GETOIL €0)
= o R., DO THE FOLLQWING cnecxrus eyza? 10 SECONDS
s R.. CHARGE PAYING USER FOR TIME
R R.. MOVE LONG WAITING USERS UP IN PRlORtTY
L R.. LOGOUT INACTIVE USERS, HANG UP INACTIVE LINES
LR ~ WHENEVER T .G. CHECKT = .
L CHECKT = T + 600
: EXECUTE CHARGE.(PAYUSR, DELTIﬁ (PA*TIM))
THRQUGH: KLOOP, FOR K = 1, 1, K .G, UMAX
WHENEVER K .E, CURUSR,, TRANs?Eh To KLOOP
KUSER = [, (K)
DELT = T =~ WATTIM(KUSER)
o WHENEYER STATUS (KUSER) .E, 3 .ga. STATUS(KUSER) .E, 2
L : ' , wnzua¥£a DELT .G. nﬂrﬂar h,, LEVEL(KUSER) .G, MINtVL
| . _MONITR = CHANGE | o |
o ' EXECUTE DELQUE.(K).
B ~ LEVEL(KUSER) = LEYEL(KUSER) -1
= 3 - . 'EXECUTE ENDQUE. (K, , v
g WATTIMCKUSER) = T
TIMLEV(KUSER) = 0
Eun OF‘CGﬁBFftoﬂkt
waenzvea DELT «G. IHACFv‘ &ND. LtNENO(KUSER) .E. O
. MONITR = CHANGE = :
NOTIMEC(KUSER) = 2
 WATTIM(KUSER) = ¥
END - OF CONDI T FONAL
'OTHERwISE
‘WHENEVER DELT .G, unueup .kuﬁ 'ADOPT (KUSER) .E. 0
. MONITR = CHANGE o
" NOTIME(KUSER) = &
WATTIM(KUSER), = T
END OF CONDITIONAL
END OF CONDITIONAL
KLOOP CONT I NUE
END OF CONDITIONAL
R.. ~ MOVE LONG RUNN!NG 'cunusa' DOWN IN PRIORITY |
WHENEVER CURUSR NE. 0 AND. T .G. MAXTIM ~
1 AND, .NOT, SWAP : : >
MONITR = CHANGE
EXECUTE DELQUE.(CURUSR) .
 WHENEVER LEVELC(ICURY L. MAXLVL,
1 LEVELCICUR) = LEVEL(ICUR) + 1
EXECUTE ENDQUE.(CURUSR)
LEVTIM = T
TIMLEV(ICUR) = 0
MAXTIM = T + TRUN.(CURUSR, LEVEL(ICUR))
END OF CONDITIONAL
TRANSFER TO DECIDE

EVNT(2) WHENEVER USR .NE. 0, TRANSFER TO

 CTSS Technical Notes

R.. 'EVENT' .E. ' 'usa'('lusg

_ GHAHGEB»§TATE
Ree - DISPATCH Qﬂ MEH STATE, =

GRORE. R wm41ﬁ1 TRANS I THONS
0" iéﬂéﬁ;x; . |

TRANSFER T0 RETURN .
R

Reo - 'USR'('JUSER') WENT DEAD, EVENT G NlLL NOT OCCUR
STAT(U) EXECUTE DELQUE.(USR) _

STATUS(LUSER) = @

TRANSFER TO DECIDE

R
Ree 'USR'('IUSER') WENT DORMANT WHILE RUNNING
Re o OR ‘PUSHED -QUIT BUTTON

STAT(1) EXECUTE DELQUE.(USR) }
STATUS(JUSER) .= 1
WHENEVER USR .E. CURUSR, TRANSFER TO DECIDE
TRANSFER T0 CHANGE A

R.. _ 'usn'('lu5£a) 10 aEGtN woaxaua AFTER 1/0 WAITING
R.. -OR-ALARM CLOCK RETURN FROM DORMANT ‘TO WORKING
STAT(Z) WHENEVER STATUS(IUSER) .GE. & .OR, StAIBS(sussa) E. 1
WHENEVER STATUS(IUSER) .NE. 1 .
WHENEVER LEVEL(TUSER) - LEVINC .se. MINLVL,
1 LEVEL(IUSER) = LEVELCIUSER) < LEVINC
LEV = LEVELF.(LENGTH(IUSER))
WHENEVER LEVY .L. LEVEL(!USERJ, LEVEL(IUSER) = LEV
- TIMLEV(IUSER) = ¢
END OF CONDITIONAL
- EXECUTE ENDQUE, (USR)
WATT H4(LUSER) = GETOTL,(0)
STATUSCIUSER) = 2
TRANSFER TO' DECIDE
END OF CONDITIONAL
TRANSFER TO RETURN
R
Res 'usa'('iusen') BEGAN NAITING FOR A COMMAND
STAT(3) LEV = LEVELF.(LENGTH(IUSER))
WHENEVER STATUS(IUSER) .E, 2 .OR, STATuscnussa) +Es 3
WHENEVER LEV .G, LEVEL(1USER)
EXECUTE DELQUE.(USR)
TRANSFER TO . COMAND
~ END OF COND{TIONAL
OTHERWI SE

COMAND LEVEL(IUSER) = LEV

EXECUTE ENDQUE, (USR)

TIMLEV(IUSER) = 0

WATT IM(IUSER) = GETOTL (d)
END OF CONDITIONAL
STATUS(IUSER) = 3
TRANSFER TO DECIDE

PAGE 44~

CTSS Technical Notes PAGE 45

R.. 'USR'('IUSER"') ENTERED INPUT WAIT
STAT(4) WHENEVER STATUS(IUSER) ,E, 2
EXECUTE DELQUE, (USR)
STATUS(IUSER) = 4
TRANSFER TO DECIDE
END OF CONDITIONAL
TRANSFER TO RETURN
R
Res 'USR'('IUSER') ENTERED OUTPUT WAIT
STAT(5) WHENEVER STATUS(IUSER) .E, 2
EXECUTE DELQUE,(USR)
STATUS(IUSER) = 5
TRANSFER TO DECIDE
END OF CONDITIONAL
TRANSFER TO RETURN
R
R.. THE NEXT THREE EVENTS ALWAYS OCCUR IN SEQUENCE
Res WHEN CONTROL 1S TRANSFERRED FROM 'OLDUSR' TO ‘'NEWUSR'
Res AS A RESULT OF 'SWAP' BEING SET NON-ZERO.
R.. 'OLDUSR' DOES NOT PAY FOR HIS DUMP, UNLESS
Reo 'NEWUSR' 1S OF EQUAL OR LOWER PRIORITY,
R.. 'NEWUSR' ALWAYS PAYS FOR BEING RESTORED EXCEPT
R.. BACKGROUND NEVER PAYS FOR DUMP OR RESTORE.
R
Res 'EVENT' .E. 3, SAVING OF 'USR'('IUSER') 1S BEGINNING
Res EVENT 3 MAY BE CALLED FOR ANY OF THE FOLLOWING:
R 1. FREEING UP CORE B BECAUSE 'CURUSR' EXTENDED SIZE
R 2. FREEING UP CORE A DRUM BUFFERS FOR SWAPPING
R 3. DUMPING 'OLDUSR'
R 4, DUMPING OTHER USERS TO MAKE ROOM FOR 'NEWUSR'
BOOLEAN SWPSW, FIRST3, DMPOLD, SWAP
EVNT(3) WHENEVER SWPSW
WHENEVER FIRSTS
FIRST3 = 0B
EXECUTE CHARGE,(PAYUSR, DELTIM,(PAYTIM))
WHENEVER LEVEL(I,(NEWUSR)) ,GE, LEVEL(1,(OLDUSR))
-1 .AND, OLDUSR .NE, 0 .OR. NEWUSR .E, 0
PAYUSR = OLDUSR
OTHERWISE
PAYUSR = NEWUSR
END OF CONDITIONAL

TIMLEV(1,(OLDUSR)) = TIMLEV(I,(OLDUSR)) + DELTIM,(LEVTIM)

OTHERWI SE
EXECUTE CHRGSW.
WHENEVER USR .E. OLDUSR
DMPOLD = 1B
OR WHENEVER DMPOLD .AND, USR .NE. OLDUSR
1 .AND. NEWUSR .NE, 0
PAYUSR = NEWUSR
END OF CONDITIONAL
END OF CONDITIONAL
END OF CONDITIONAL
TRANSFER TO CHANGE

¢TSS Technical ug:u- . LR FAGE 46 .

- R...'EVENT' «Eo by, RESTO&QNG OF ‘ﬂ!HﬂSﬁ’ !S BEGINNJNG
EVNT(4) EXECUTE CHRGSW. , '
WHENEVER NEWUSR .E, V
PAYUSR = OLDUSR
OTHERWISE
PAYUSR = NEWUSR
END OF CONDITIONAL ,
WHENEVER STATUS(I.(OLDUSR)). .E. 2, _ ' .
1 WATT1M(I.(GLDUSR)) = GETOTL.(0) ﬁ ' :
CURUSR = NEWUSR : _
TRANSFER TO CHANGE ' : .
R

' R.. "EVENT' .E, 5, "NEWUSR' BEGINS RUNNING AFTER RESTORE
. EVNT(5) EXECUTE CHARGE, (PAYUSR, DELTIM.(P&?T!H))
' PAYUSR = NEWUSR

WHENEVER STATUS(I.(NEWUSR)) .E. 3, STATUS(I (NEWUSR)) =2
BEGTIM = GETOTL. (0) '

LEVTIM = BEGTIM

MAXTIM = BEGTiM + TRUN. £NEWU$R, LEVEL(l (NEWUSR)))
1 ~TIMLEV(Y, (NﬁNUSﬂ)) -

SWAP = 4B

FIRST3> = 1B

DMPOLD = uB

TRANSFER TO DECIDE

EVNT(6)

EVNT(7)

EVNT(8)

EVNT(11)

EVNT(9)

EVNT(10)

CTSS Technical NNotes o PAGE 4;

Reo 'EVENT® .E. 6, 'USR'('IUSER’') CORE IS OF LENGTH 'ARG'
R.e JUST BEFORE ENTERING: WAITING COMMAND
R.. OR LENGTH CHANGED NN!LE RUNN!NG
LENGTH(JUSER) = ARG-
WHENEVER USR ,E, GURHSR
LEV = LEVELF.(LENGTH(IUSER))
WHENEVER LEV .G, LEVEL(IUSER),
MAXT IM = BEGTIM + TRUN (CURUSR, LEV) - TIMLEV(IUSER)
END OF CONDITIONAL
TRANSFER TO CHANGE -
R

R.,. "EVENT' .E, 7, OPERATOR SET KEYS TO 'ARG'

- KEYS. = ARG

BACKGR = ARG
TRANSFER TO DECIDE
R

Res 'EVENT' +E. 8, 'USR'('IUSER') LOGGED IN PROPERLY
"LINMUL(IUSER) = ARG

EXECUTE INTIM, (USR)

TRANSFER TO CHANGE
R

R,., "EVENT' .E. 9, "USR'('IUSER') LOGGED OUT

EXECUTE OUTTIM,(USR)

TRANSFER TO CHANGE

R
R.. "EVENT' .E. 10, IS 'NENUSR' STILL RUNABLE

WHENEVER STATUS(!,(NEWUSR)) .E, 2
1 +OR. STATUS(l.(NEHUSR)) +Es 3, TRANSFER TO RE?URN
SWAP = 0B

TRANSFER TO DECIDE
R

Reo "EVENT' .E. 11, '"USR'('IUSER') DIALED UP COMPUTER
WATTIM(IUSER) = GETOTL,(0)

NOTIME(IUSER) = 0

TRANSFER TO CHANGE

R ‘

 DECIDE

" CHANGE

RETURN

CTSS Technical Notes . ~ PAGE 48

R.. COMMON EXIT FROM SCHED, '

R.. DECIDi 1F 17 1S TIME TO RUN A NEN USER
R

R

.o NO DEClSION NHILE SNAPFQNG
WHENEVER SWAP, TRANSFER TO HGNITR

R
Re. CHECK |F BACKGROUND NOT. MfET!NG QUARAHTEED PERCENTAGE
WHENEVER BKGTTHM .L., (PB/100,) » GETOTL.(0) . .
1 +AND. CURUSR .NE. O, BACKS#“‘ ; S :

U = HEDUSR, (0)

WHENEVER BACKGR .NE. 0 .OR. KEYS .NE. 0, U= .
R :
Re. RUN USER 'U' IF 'CURUSR' HAS RUN AS LONG AS 'U' WOULD
WHENEVER U NE, CURUSR ,AND,

1 . (PREMPT.(TRUN,(U, LEVEL(}. (U)))) +OR;, CURUSR .E, 0)
2 +OR, STATUS(1,(CURUSR)) .NE. 2 ,0R. BACKGR .NE. 0
- MONITR = CHANGE: I
SWAP = 18 ‘ IR ; . :
NEWUSR = U R SRR ~
OLDUSR = CURUSR ST
BACKGR = ¢

END OF CONDITIONAL
R
R.. CALL MONSC2, IF COMMON CHANGED, ELSE JUST RETURN

TRANSFER TO MONITR

EXECUTE MONSC2,

EXECUTE PLOT2,

~ FUNCTION RETURN

T R
IR U UV, P

CTSS Technlcat"i&dﬁes‘“ R PAGE us

R.. INTERNAL FUNCT IONS
TRUN R.. 'TRUN' - COMPUTES RUN TIME FOR USER 'DU' AT LEVEL 'L
INTERNAL FUNCTION TRUN, (DU, DL) =
1 TBASE + LINMUL(I, (0u)) * QUANTM'~ 2 ,P, DL
R
LEVELF R.. 'LEVELF' = COMPUTE PRIORITY LEVEL BASED ON LENGTH 'LEN'
INTERNAL FUNCT IONCLEN) |
ENTRY TO. LEVELF, |
WHENEVER LEN .GE. FULLEN
L = FULLVL |
OTHERW I SE o |
L = EMPLVL + 1L0G2. (LENI(FULLEN/(Z .P. (FULLVL=EMPLVL))))
END OF CONDITIONAL | |
FUNCTION RETURN L |
END OF FUNCTION

R
PREMPT R.. 'PREMPT' - IS TRUE IF PREMPTION IS PERMITTED
Res .. BASED ON TIME INTERRUPTER HILL RUN 'INTRUN'
BOOLEAN PREMPT.
~ INTERNAL FUNCTION PREMPT, (INTRUN) o
1 INTRUN L. GETOTL.(0) - BEGTIM

R.. SUBROUT INE TO CHARGE SWAPPING TIME
CHRGSW R., FOREGROUND PAYS FOR BACKGROUND SWAP UP TQ 3 SECONDS
INTERNAL FUNCTION ,
ENTRY TG CHRG SW, |
TDEL = DELTIM, (PAYTIM)
WHENEVER OLDUSR .E. 0 ,AND, TDEL .G. BGMAX
EXECUTE CHARGE . (PAYUSR, BGMAX) |
EXECUTE CHARGE.(0, TDEL-BGMAX)
OTHERWI SE
EXECUTE CHARGE. (PAYUSR. TDEL)
END OF CONDITIONAL |
FUNCT ION RETURN
END OF FUNCTION

e
o
[0
I
)

'i VECTOR VALL E - :
~ VECTOR VALU
 Re. 'MXUSRS' MUST BE .LE, 51 mo ’mi.m.' uus’r B‘E .LE 10

CTSS Technical Motes

R.. COMMON

VAR!ABLES

- VECTOR VALUES. COMRLC = 3256

1
VECTOR VALUES COMRLC = 3256 1
VECTOR. VALUES UMAX. = s;
VECTOR VALUES UMAX = 51

DIMENS | ON
DIMENS I ON
DIMENS ION

DIMENS 10N
"DIMENS 10N
DIMERNS 10N -
DIMENSION.

 DIMENSION

‘DIMENS [ON

" DIMENSION

S MAXLY = 10
MAXLY = 10

FAKE(32561)
DUMMY0(51), STATUSGSI), LWH(S‘H, LEVEL(SI)
TIMLEV(5]) .

. RDIMENS 10N WATT IM(51), L!NMJLU)): :.',MYQU”
" DIMENS ION

BLIST(731," ULIST(D),” DWAMYLUD), F.Mbmauo)
TOTLEV(O) R

DUMMY6(51), TAL(S1), TAZ(s,:u TA3(51)
TAB(S1), TUL(S1), TUI(51), ‘rustsn
Tut(il) ;‘WJM;(SAJ,# Amt A ,;; 4 .;.)_J . .
ITINECS1), PROBN(SI). . PROGN(o
LINENO(513, LINCR(51),

FULLSW(51) . '

"DIMENS 10N UDWAIT(&&};JRﬂbRDS(SII*
DIMENS |ON WTIMES(51)
DIMENSION UNITID(S1),

- DIMENSION . | LINES (51 51

" 'DIMENS ION ‘UL INE(S ¢ 7;) {,“;,,
DIMENS [ON AWAKE(51), TlM!NB(51)¢ CLULONLAL
DIMENS ION oxeaaa(sx:, OKPROG(51).,- | , 6
DIAENS ION DUMMYC(27), PBUEFLO) . .
DIMENS 10N DUMMYE (465 1,

" PROGRAM COMMON ~ DUMM¥S, 'STAT

Epﬂmiéﬂb
PROGRAM COMMON FAKE | -
_PROGRAM COMMON ENBWD A
R.. COMMON ARRAYS SET ,AND. cumsm

e L
PROGRAM COMMON WATTIM, LINMUL, DU
PROGRAM COMMON DUMMYS, ENDPTR, TOTLEN .. .
R.. TABLES SET BY LOGIN, UPDATED B8Y TIME ACCODUNTING
PROGRAM COMMON DUMMYS, TAl, TA2, TA3, TAW
PROGRAM COMMON Tul, ~ TU2, TUS, TUs, UTIME
PROGRAM COMMON NOTIME | |

 R,. TABLES SET 8Y LOGIN

PROGRAM COMMON ITIME, PROBN, PROGN

Re. USER OPTIONS(CHECKED BY CLKINT AND TCORRD)

PROGRAM COMMON LINENO, LINCR, MANUAL, RSPONS, FULLSW
R.. TABLES FOR DISK MH'QNNG
PROGRAM COMMON UDMAIT, RWORDS, WWORDS, RTIMES, WTIMES '

~Rss OTHER USER TABLES

PROGRAM COMMON 'UNITID, COMMND, INTRSW, HUNGSW, *'.INES

PROGRAM COMMON OUTPSMW, COMCTR, 10D, ULINE, . .INCT

PROGRAM COMMON UCLOCK, UCHARG, AMAKE, TIMINC, ¢°.0CON
PROGRAM COMMON ADORT, OKPROS, OKPROS, COMFSW :

“ Ro. COMMON VARIABLES Ser AND QHWEQ BY SCHEDL, ONLY

PROGRAM COMMON HMXUSRS, CURUSR, OLDUSR, NEWUSR, PAYUSR

PROGRAM COMMON SYSTIM, BEGTIM, QUANTM, MAXTIM, TBASE

CTSS Technical Notes

PROGRAM COMMON PAYTIM, LEVTIM,
PROGRAM COMMON FULLVL

PROGRAM

COMMON

EMPLVL,

FULLEN,

PROGRAM COMMON LEVINC, INACTYV,
R.. VARJABLES SET BY LOGIN
PROGRAM COMMON SPROBN,

R..
PROGRAM

PROGRAM .

PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
R.. USER
R..

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

OTHER VARIABLES

USER,
SWPSW,
COMT IM,
CLKTIM,
DSKLOC,
BUFULL,
PBUFF,

SPROGN

DATE,

COMSW,

USRWAT,
MXL INE,
BASEAD,
DUMMYC
DUMMYE,

SWAP,

PB,
HANGUP

DATEYR,
TOTTIM,
SWPWAT,
NWORDS,
WAIT,

DBUF1,

MACHINE CONDITIONS STATUS TABLE

(NOT REFERRED TO BY MAD PROGRAMS)
END OF FUNCTION

MAXLVL,
QNTWAT

TIMNOW,
BKGTIM,
COMWAT,
STOPSW
DUMMY B8,

DUMMYG,

MINLVL

NUSERS
SWPT IM
AUTOND
READY

DBUF 2

PAGE 51

CTSS Technical Note PAGE 52

5. . Flow Charts of Main Control and,Trap‘Prpgessqrs.

, This section consists of flve flow charts of Main
Control, the clock and protection trao processors, ‘and the
module RSTCPU, These flow diagrams are to: help provide. a

temporary bridge between complete lack of #nformation about
these modules and the assembly Ilstfngs thamsevves.b

‘Call SCHEDL
{ (Event 10)
Last chance
to set
SWAP # 0

Is NEWUSR in yes
"Walting rommand" ‘

F

Dump USER
Restore NEWUSR

Call SCHEDL
(Event S)

<P

Figure 5.1 -~ Cycle entry of Maln Control,

ls command

on disk.

yes

7

Is user
= NEWUSR

yes

CTSS Technical Notes

-G

s

Dump USER
Restore NEWUSR

v

Call SCHEDL
(Event 5)

Y

s user yes

= NEWUSR | m—

%

Dump USER
Restore tables
for NEWUSR

s command

[in _core B

yes

no

Transfer to

core A command

Y

Load command
file into
core B

l |

PAGE 53

Insure
Enough Room
for command
(FREEUP)

Reset user

machine conditions
and active files,

v

Call SCHEDL
(Event 5)

<P

Figure 5.2 ~- Command Processing in Main Control.

‘200 ms
clock
trap

ave Lo
Machine ,
COnd[tIons'

OUTPSW(1) # 0 -

é"*ﬁﬁ"

- Is
STATUS(I) = 5

' yes

“call SCHEDL
change STATUS

|(Event 2) to “}

Y

lto Working (2)]

e.er,

,f-ovfof nput

Set OUTPSW(!)

{s lt%NES(l)
ative
¥ M

is S ATUS(!)

- ’yQ_' ‘

11s 1lne a

scommand
- ycs:

“twe WATT

" jmove ;ommand*

iineito
Lall SCHEDL
SYATUS

CTSS Tecknlcal ‘Notes

PAGE 54

(1 1Is the -user
index In the
polltag 1oop.

[Process

—fQult

QO

"command bgpf"“nu
iEVQnt 2) to b

‘33!-.1 - l

" ’ ‘ ;] aj § ‘ _».-., 3 pm |

i fnput'
d ltnb to

‘»Repeath?gr

one

Call SCHEDL
[(Event 1)

[Move usarv
’machlne -

¥

Return to
interrupted
Program via
Common Exlc

Figure 5.3 -- The Clock Trap Processor,

CTSS Technical Notes

€D

[1s SwAP # 0] vEs >

-

IDid user interrupt?| ves
no

no

v

| Is he expecting

interrupts?

*, ves

Type:
"No Action"

v

Check for HTR <

Save current ILC,
Reset I1LC for

Interrupt

Y

Drop user interrupt level

v

Type new level number

at ILC location

Restore Machine
Conditions

Y

Go to user,

;\O l yes >

Type "PROGRAM
STOP AT 0000 [~

Figure 5.4 -- Flow diagram of RSTCPU (Restart user.)

PAGE S5

CTSS Technical Notes PAGE 56

Protection
‘Mode
v%olatlon

Save user

machine
condl tions

=

|Does user’s [ves
ILC violate

Fus

Plck up
violating
Instruction

I

Plick up word
at address of
: T!A

: Is thls a L)
Transfer to .

user subroutinet : .
(In protection

section,)

Figure 5.5 == The Protection trap processor,

CTSS Technical Notes PAGE 57

6. The DiSk Control Module,

Iptroduction.

As mentioned earlier, there are four distinct uses of
the disk and drum memories: 1) temporary storage of working
programs which do not fit 1Into memory; 2) storage of
supervisor command programs; 3) storage of user programs and
data; and 4) scratch pad storage by user programs, These
uses have enough in common, however, that a single interface
program, the Disk Control Module, handles all use of these
memories, Calls from the supervisor are not distinguished
from calls from a user program, In particular, the
supervisor does not attempt at any time to use the disk
except through the disk control module,

In addition to this disk control program, there 1Is a
palr of disk load and disk dump programs which are used for
off-1ine input to and output from the disk memory. These
routines are not part of the supervisor and in fact do not
presently operate while the time-sharing system is running.
The dump routine copies the contents of the disk memory onto
tape for backup purposes, and processes users' request cards
to produce printed and punched copies of thelr personal
files. The load routine copies a tape onto the disk to
re-initialize the time-sharing system, and also processes
users' request cards to add files (consisting of punched
cards) to the disk,

Ihg _QL§B Control _B_Q.U_I_Ln.ﬁﬁo
A complete, though slightly out-of-date, technical
description of the current disk control module may be found

Iin the Computation Center Memo CC-196, July 11, 1962. A new
disk control module is currently being designed.

Loading and Dumping the Disk.
A complete technical description of the two programs
LDEDT (disk load editor) and DPEDT (disk dump editor) may be

found in the Computation Center Memo CC-108, May 9, 1963,
An operational description Is provided in Memo CC-212,

Disk Routine Tables.

The format of the master file dlirectory 1is shown In
figure 6,1, Figure 6.2 is the layout of the user disk
status table as it appears In the disk routine and as it
appears on the drum or disk when a user leaves core memory.

(The first track of the M,F,D, s

Module 1.)

CTSS Technical Notes

Chain Word
Programmer Problem
Number number
Track Address of user
Quota flle dlrectory.

stored on

- PAGE 58

two~-word
entries

etc,

track 0 of

Figure 6,1 -- Format of Master Flle Directory

UTABLE

chalin word

document

tracks

used

‘Primary file name

Secondary file name

Mode

flle
number

track

Date last
used

number of
tracks

\/\

TRCNT

count of tracks used

QUOTA

track quota

FILNR

| Historical-not used

UFILTR

Pointer to current
track usage table track

Figure 6,2 -- The Disk Status tabhle,

\

k-word
entries

total size,

Current
track of
user's
file
directory
(466 wds,)

551 words.

FFDRTR
TPONLY
CHNGD

ACTTBL

DEFMOD

ASNMOD

UFLGS

TRKOVR
SVUFDT

CTSS Technical Notes PAGE

Location of first
|track usage table track
Historical not used

Switch-~UFD has been
changed
IPrimary T1le name

Secondary file name

Buffer addresses

Track to be written next

Word count

Word count

\//\
\/\

Loglical Module Assignment

Historlical

not used

Error Flags

Amount track quota is

User flle directory

laddress

7=-word
entries Active
File
S> Table .
10 x 7
words
5 words

Figure 6.2 (cont.,) ‘The User disk status table,

59

CTSS Technical Notes PAGE 60
7. Description of Entry points and Cross Reference Table

Introduction.

An invaluable aid in studying the operation of any
single -module or subroutine within a module is a thumbnail
sketch of each of the subroutines which It calls, |If such a
sketch is avallable, attention can remain within the module
being studied; the reader need not have a detailed
understanding of how the subroutine works to comprehend the
program which calls the subroutine., Also, when 1looking at
the thumbnail sketch of a subroutine to flgure out what it
does, it is useful to have some idea of which other modules
also call this subroutine; this allows one to establish the
“"nlace'" within the system of the subroutine, In this
section, then, is listed each entry point of each module, a
brief description of what the entry point does, and a 1list
of all modules of the supervisor which call this entry
point. The Information In this section pertains to version
"1A1" of the time=-sharing supervisor. All program slzes are
given in octal,

Module ADP|
Function: 7750 1/0 adapter module,
Size: 2340 words,

Entry Points:

WRTELY Subroutine to write a line on a
teletype,
RDTELY Subroutine to accept characters

from a teletype.
callers: CHNE (ETRAP)

CTSS Technical Notes PAGE 61

Module: AP75
Function: Handles 7750 buffers.
Size: k47 words.,

Entry Points:
WT7750 Write output on 7750,
callers: ADPI, HIGH

Module: CHNE

Function: Hardware routine to drivé data channel E
(7750 and teletypes), Contains 7909
channel programs, :

Size: 363 words,

Entry Polints:
CHANLI Subroutine to initialize 7750 and
channel E,
callers: CTRL, MAIN

WR7750 Subroutine to transmit data to
1750,
callers: AP75

ETRAP Channel E data channel trap entry,
callers: MAIN, channel
E data channel trap.

STPPE Shut down channel £ for high-speed
drum,
callers: STPR

STARTE Restart channel E after ST@PE
has stopped it,
callers: ST@R

Module:
Functlion:
Size:

gntrvaolnts;

‘Module:
Functloné
Slze:

Entry Points:

cLec

 CTSS “Technical Notes

PAGE 62

Clock ‘trap processor module.

1377

STCLPC

CLKINT

GETOTL

ADDTIM

CceMmc

Subroutine to start up Interval
timer clock.

-ca!lers. CTRL, MAIN

Interval tlmer trap entry.
callers: MAIN; clock ;rap.

Get time svsgg@“hsa,beeh*rdnnlng.
callers:,‘s D - ,

Update tlme uscd.

' cat*ers~ QTRL, STER

Miscellaneous cubrcutlnesi

146

ENKEYS

STOPRIF

COMCHK

SETUSR

Subroutlne to enter console kavs
of interrupt to CTSS,
callers: CLPC, CTRL, PMTA

~ Subroutine to stop If key 24 Is

down,

"callerss PMTA, RTRN

Subroutine to search command
directory for command In loglcal
AC.

‘caliers: ctpc, CTRL

Subroutine to establ!sh current
user as a disk user.

callers: CTRL, LPGA, PMTA, SAVC
STPR

Module:
Function:
'Slze:-

Entry Points:

f;: . Module:

Functlon:

CTSS Technical Notes

BRPOM

SWEEP

CEMD

'The command

372

CPMDIR
FILE
Lpsl&
ENDLDG

START

- callerss -

TFILE

oo

PAGE 63

Scan adaption system,
callers: CL@C, TCPR, PMTA, RDFX,
LPGA '

CMtlnue BROOM scan,
g:ézgrs. CLBC. TCOR, PMTA, RDFX,

directory.

Entry to command directory

- coatrol word,

ea*der' CQMC (CAMCHK) SCHED

'vﬂlfnzt entry&t@ FILE entry in

command directory.
callers: CLEC

. .Dlrect entry to LPGIN entry in
 _comnend directory.
tn14trs=

~CLPC, CTRL, PMTA, STPR

Dlrect entry to ENDLDG entry In
command dlrectory.
callers: CLDC, CTRL, LPGA

Direct entry to START entry in
command dlractory.
- CAPC

Direct entry to TFILE entry in

command directory.

callers: CL@C

Conversion routines.

Slze;

Entry Points:

Module:

Functlion,

Size:

Entry Points:

LTSS Technical Notes PAGE 64

2468
CTIME
TCTIME

DTBC

BTDC

oTse
8TRC

ROYTIM

CTRL

Subroutine to convert time In 60th
to BCD 1/10th miautes,
ca!%ers' LlGA, LBGB

SUhrout!ne to convert time In 60th
to BCD In ,01 hours, ,
callers: LQPA, PMTA) | -

Subroutine to cenvert declmal to

binary. :

ealters.auﬁﬁuc&SETUSR), L@GA, LOGB, ‘
DNLN. PMTA , P

Subroutine to convart binary to | i;‘
decimal, e,
callers: LoGA, PMTA '

Subroutlne to ceavart octal(sco) to
binary.
caller: #CTC

Subroutine to coavert blnary to

~octal BCD.

caliers: @CTC, PMTA, STOR, RTRN

Subreutine to obtaln user command
time used, to be typed with the

HREADYY comment.

callers: CLAC, CTRL

Main contrél module,

1160 -

~ CHNCOM

NEWCEM

Entry to pick up next program- o R
inftiated coomand If any, - -
callers: @CTC, PMTA, SAVC o

Entry to set up new command
for user,
callers: PMTA

iy

Ero o, T

: Mddule:

Size:

Entry Points:

CTSS Technlcal Notes PAGE 65

coLn
DEAD
ENDUSR
ENDCOM

CYCLE

CRQUIT

ILLCAM

DCER

2168

EPRINT

ALLSAY

ALLRST

Entry to restart system after
XEC loop, etc.

,Ca]!Qfo‘ FDBP(PANIC), MAIN

Entry to place current user Ih
"DEAD" status,
callers: LﬂGﬁ, “PMTA, SAVC, ST@R

Entry to set user status and type
ready. - R

callers: @CTC, PMTA, RTRN

Entry at end of command - ready
not typed.

caller: LPGA, PMTA

Entry to check for more work to do.
caTlér: CLQC)‘PMTA, RTRN -

Subrout!ne to find if current

- user has pushed “QU!T" while

in supervlsor. :
caller: PMTA, RTRN

" Entry after Illegal sequence

of commands,
caller: OCTC, SAVC

Onfifne‘prlht subroutine (saves
channel A),
calter: CHNE, NSK1, STAR

‘Subroutine which saves all baslc
maching conditions,

callers: CHNE, DSKI1

Subroutine which restores all
basic machine conditions,
ca1lsrs° CHNE, DSKI

Module:

Function: .

Slize:

Entry Points:

CTSS Technical Notes PAGE 66

DSKI

Disk control module

11506

DINIT

.OPEN

.CLOSE
.ASIGN
.APEND
JWRITE
FILE

+RELRW

+SEEK

+READ

«ENDRD

+DLETE

Inftialize disk routine,
caller: MAIN

Sign user on to disk,
callers: COMC(SETUSR), CTRL,
LAGA, MAIN, PMTA, SAVC

Remove user from disk file.
callers: LPGA, LPGB, PMTA

Inftialize writing a new file,
callers: LPGB, PMTA, SAVC, ST@R

Add to end of an old disk file,

callers: LﬂGB, PMTA, SAVC

Write data with a disk flle.
callers: LPGB, PMTA, SAVC, ST@R

Terminate writing of a flle.
callers: LPGB, PMTA, SAVC, STPR

Open a flle for relative
read/write.
callers: LPGB, PMTA, SAVC

initialize a disk file for
reading.

callers: CTRL, LOGB, PMTA,
SAVC, STPR

Read data from a disk file.
callers: CTRL, LPGB, PMTA,
SAVC, ST@R

Terminate reading from a disk
file

callers: CTRL, LPGB, PMTA,
SAVC, STOR .

To delete a disk flle and Its
tracks.,
callers: PMTA, SAVC

CTSS Technlical Notes

+CTEST

+GTFLG

+SETDU

+STATL

+FILDR

+UPDAT

+DF INE

+RESET

JFSTAT

+SETAB

«RDWAT

+CHECK

+STKER

+ERASE

Check 1If a disk chanhel is In
operation,
(not used,)

Pick up error or control flags,
callers: PMTA

Set current disk user,
callers: CTRL, LPGB, MAIN,
PMTA, SAVC, ST@R

Get location of disk user status
tables,)
callers: MAIN

Read a track of user file
directory.
callers: PMTA

Update user flle directory
onto disk,
callers: PMTA, SAVC

Define a new loglcal module
number,
(not used,)

Reset all flles in actlive status,
callers: CTRL, PMTA, SAVC

Obtain information about a file.
callers: CTRL, PMTA

Set memory swltches for A or B,
callers: CTRL, L@PGB, MAIN, PMTA,
RTRN, SAVC, ST@PR

Read out and reset channel
waiting time,
callers: CTRL, SAVC, STPR

Walt until all disk activity Is
finished,
callers: STPR

Set error return on disk track
callers: CPMC(SETUSR), CTRL,
LPGA, L@GB, MAIN, STOR, RTRN

Delete a flle from directory,
but teave its tracks.,
callers: PMTA, ST@R

PAGE 67

Module:
Function:
Size:

Entry points:

Module:
Functlion:
Slize:

Entry Points:

CTSS Technical Notes

+GETDS

« RENAM

EDBG

LTy

PAGE 68
Get status of active disk ffles.
callers: SAVC

Change name or mode of a file.
caller: PMTA :

System debugging alds

764

PANIC

ADUMP
BDUMP

TRACE

HIGH

Entry to take a panic dump of
both cores, '

callers: Console operator's
restart: MAIN

Subroutine to dump memory A.
caller: CL@C

Subroutine to dump memory B,
caller: CLOC

Subroutine to print out a trace
of all traps.
caller: CLAC

High Speed line adapter

252

RDHIGH

WRHIGH

Read high speed line.

caller: ADPI

Write high speed line.
caller: ADPI

Module:

Function:

Size:

Entry Points:

Module:
Function:
Size:

Entries:
Called By:

Module:

Function:

CTSS Technical Notes PAGE. 69
LAGA, B, C

Login and logout commands and associated
subroutines,

A 1713

B 1206

C 131

LOGIN, TSS login command,
caller: PMTA

LAGERR Entry in case of error setting
up user's file directory.
callers: CPMC(SETUSR)

ENDLG, TSS Automatic logout entry,
caller: COMDIR

LAGAUT TSS logout command,
caller: CPMDIR

MAIN
Main Program
2205

(MAIN PROGRAM) Initialize system, set up trap
returns, start system running.

System loader

MTRA

TSS system statistics collector.

CTSS Technical Notes PAGE 70
Size: 6 (Dummy not presently used)

Entry Points:
MBNITR . Entry to put away statistics.

caller: CL®OC

EREAD Entry to obtain collected
statistics,
caller: PMTA

Module: @CTC
Function: Octlk, Octpat, and Octtra commands
Size: 200

Entry Points:
PCTLK: TSS @CTLK command for core B,

caller: C@EMDIR

PCTPAT: TSS @CTPAT command for core B,
caller: COMDIR

@CTTRA: TSS PCTTRA command for core B.
callers: COMDIR

Module: ANLN
Function: On=1ine device manipulators for supervisor
Size: 420

Entry Points:
- CL@CIN Read data and time from chronolog

clock,
callers: L@OGA, MAIN

PRINT Print 72 character line on-line.
callers: CTRL, LOGA, MAIN,
PMTA, RTRN, ST@R

CTSS Technical Notes PAGE 71

PUNCH Punch a card on-line.
caller: LPGA

Module: KLUD (PLAT at Computation Center)
Function: Channel D 1/9 Adapter,
Size: 2161 at Center, 7173 at MAC

Entry Polints:
PL@TS Plot statistics on 7094 scope
(center),
caller: CL@C

DSC@PE Display information on ESL scope.
caller: PMTA

DTRAP Channel D trap entry,
callers: MAIN, channel D data
channel trap.

DDTRAP Direct data trap entry,
callers: MAIN, direct data trap.

STOPD Stop data channel D for High
Speed Drum,
Caller: ST@R

STARTD Restart data channel D after
High Speed Drum,
caller: STOR

Module: PMTA
Function: Protection trap brocessor.
Slze: 5144

Entry Points:
PTRAP Entry on protection mode trap.
callers: MAIN; Protection mode
violation,

CTSS Technical Notes PAGE 72

BKSERV Entry to service background
: (requested by Keys).,
caller: CTRL

ERR@R Entry to comment after a disk
error, (not used)

DPRINT Entry to print out a disk error
on=line.

caller: MAIN

DERR Entry to process a disk error,
caller: MAIN

USERER To process disk track error for
user,

callers: CTRL, RTRN

Module: RFLX

Size: 2705

Entry Points:
RDFLXA Entry for a user to obtain a line
from common input buffer,
caller: PMTA

T ENTLIN Entry for supervisor to add a
1ine to common input buffer,
callers: CL@C, PMTA

RSSRB Entry to reset all input lines
for this user,
callers: CLPC, CTRL, PMTA, TC@R

RSSWB Entry to reset user's output
lines.
callers: CL@C, CTRL, LOGA,
TCAR
Module: RTRN

Stze: . 241

Entry Points:

Module:
Function:
Size:

Entry Points:

vy

Module:

Function:

CTSS Technical Notes PAGE

RSTCPU
CMEXIT

CMXRTN

LBAD. 4

SAVC
Save,
624
XDUMP

SAVE

RESUME
XLPAD

START

SAVR

Entry to return to user program,
callers: CTRL, LOGA, MAIN,
PMTA, SAVC

Entry to return to interrupt
program,

callers: CHNE(ETRAP), CLQC
DSKI, PL@OT, UTRP

Cell contalning return location,
callers: EDBG(TRACE)

Cell containing IR4,
callers: EDBG(TRACE)

restore, resume and start commands,

This is the SAVE command entry
point.
callers: C@PMDIR

-Subroutine to save a user,

(Used by XDUMP and ENDL@G).
callers: LPGA(ENDLAG)

TSS resume command.
callers: COMDIR

TSS restor command.
caller: CPMDIR

TSS start command,
caller: COMDIR

Save and restore routine,

73

Size:

Entry Points:

Module:

Function:

Slze:

Entry Polints:

Module:

Function:

CTSS Technical Notes PAGE 74

2468
SAVCPU Subroutines to save bhasic user
' machine conditlions,
callers: CLPC, PMTA
RESTAR Subroutine to restore basic user
machine condlitlions,
callers: PMTA, RTRN
LPNGSV: Subroutine to save complete user
machine conditions,
callers: STOR
LNGRST: Subroutine to restore complete user

machine conditlions.
callers: SAVC, STOR

SCDA, B, C, D, E, F, G, H

Scheduling, time accounting, and monitoring,
including all subroutines,

A 1567 F 266

B 421 G 73

C 523 H 20

D 22 »

E 174

SCHEDL Entry to notify schedullng algo-

rithm that something has happened.
callers: CL@C, CTRL, LOGA, MAIN,
PMTA, SAVC, ST@R, ADPI

MPNSCD,MPNINF Monlitoring
caller: PMTA

STPR

Storage allocation algorithm module.

e AT T e e e s et

ry

Slize:

"~ Entry Polints:

quule:_
Function:

Stze:

Entry Points:

CTSS Technical Notes PAGE 75

2165

DUMP ‘Subroutlne ‘to dump user onto dlsk.
B callers: CTRL ,

UNDUMP Subroutine to restore a user from
; the disk, T
callers: CTRL

FREEUP - Subroutine to freeup N words of

memory B,
;allers- CTRL, PMTA, SAVC

TC'R"

“Typewriter coordinator = break processor.

5205

TCOORD Subrbu:lne to collect input char-
: acters Into messages and look for
break characters,
cailars. cttc

WRFLX Subreutine to write a message on a
‘ typewriter, Follow message with a
.. carriage.

rz%ggn
calters: CTRL, LPGA, LﬂGB,
#CTC, PMTA, RTRN, STOR, SAVE

WRFLXA Subroutine to wrlte a message on a
, typewriter, No carriage return
- provided. o
~callers: CLOGC, LPGA, PMTA

RSSRB, Subréutlnc to reset a user's
‘ A ary read huffer,
, ca'laraa RFLX. -

TOPOOL Subroutine to pllcc an input
chafacter !n the character pool
bu ff'(’ P :
callers: ABAP(RDTELY), HIGH

Module:

Function:

Size:

Entry Points:

Module:
Function:
Size:

Entry Points:

CTSS Technical Notes PAGE 76

RDLINE Obtaln an Input line from break
processor,
caller: CL#C
TSTO
7750 storage allocator, (MAD)
254
TGET Subroutine to obtain a block
of 7750 storage.
callers: AP75
TGIVE ~ Subroutine to glve back
a block of 7750 storage,
callers: ADAP(RDTELY), HIGH, AP7S
TRESET Subroutine to discard all of a
user's present output stored
in 7750.
callers: AP7S
UNIT

Asslgns loglical unit numbers to consoles

247

ASNUNI

US2BS

Subroutine to assign a logical

unit pumber to a physical unit,
callers: ADAP, HIGH

Subroutine to look up a physical
unit number glven a logical unit
number, -
callers: ADPI, AP75S

CTSS Technical Notes PAGE 77

BS2US Look up logical unit number given
physical unit number,
callers: ADPI, AP75

ERSUNI Subroutine to erase logical unit
assignment,
callers: CL@PC, LPGA

Module: UTRP
Function: Process user traps.
Slze: 4228

Entry Points: _
ATRAP Process data channel trap
from channel A,
callers: MAIN, channel A
data channel trap.

BTRAP Process data channel trap
from channel B,
callers: MAIN, channel B data
channel trap.

STRTRP Process STR in a user's program.
' callers: MAIN, STR trap,

FLPTRP Process floating point traps
in user program,
callers: MAIN, floating point
trap.

CTRAPS Subroutine to check for waiting
traps.
callers: RTRN

UPCLOC Subroutine to update core clock
for current user.
callers: CL@QC

This empty page was substituted for a
blank page in the original document.

CS-TR Scanning Project
Document Control Form Date : _/&/ 1795

Report#_ LcsTR-16

Each of the following should be identified by a checkmark:
Originating Department:

O Artificial Intellegence Laboratory (Al)
Do e Laboratory for Computer Science (LCS)

Document Type:

P, Technical Report MR) [Technical Memo (TM)
O Other:

Document Information Number of pages: §¢(37-/mnc¥s)

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
3 Single-sided or O Single-sided or
A Double-sided JX(Double-sided
Print type:

] Typewriter [offsetPress [] Laser Print
OR] ket Printer] Unknown [J other

Check each if included with document:

X DOD Form (JJ O Funding Agent Form M Cover Page
O spine [0 Printers Notes O Photo negatives
O other:

Page Data:

Blank Pagesy sess numbes:

Photographs/Tonal Material ey pege numbes:

Other (ot descriptontpege numbed;
Description : Page Number:

L macx MAE (-8 Juwitten TTLE Oraw LR
TROLE o woalT, $Lhnk, TAQLE arfw,cvaS
BLANK | -j7 wmr QL
(nﬁﬁﬂmwm covgm, 0op(2) JReTYS (3)

Scanning Agent Signoff:
Date Received: /-/ 1! /95 Date Scanned: _[/ _g_/ig Date Returned: _} /1195

?
Scanning Agent Signature: %’\AMJL&-_ Rov 604 DSALCS Fom d

ggclﬁséifiéd
Security Classification

DOCUMENT CONTROL DATA - R&D

(Becurity classification of title, body of abetract and indexing annotation must be entered when the overall report is olaseified)
1. ORIGINATIN G ACTIVITY (Corporate suthor) 2a. REPORT SECURITY C LASSIFICATION
Unclassified

25. amouP

Massachusetts Institute of Technology
Project MAC

3. REPORT TITLE
Project MAC
TR-16 CTSS Technical Notes

I'4. DESCRIPTIVE NOTES (Type of report and inclusive dates)
Technical description of 7094 Compatible Time-Sharing System
5. AUTHOR(S) (Last name, Hirst name, initial)

Saltzer, Jerome H.

6. REPORT DATE 7a. YOTAL NO. OF PAGRS 7b. NO. OF REFS
March 15, 1965 77 + IV 3
8a. CONTRACT OR GRANT NO. 95 ORIGINATOR'S REFPORT NUMBEN(S)
Nonr 4102(01) ‘
b PROJECT NO. TR-16
‘ DSR 9457
. b, &;r.uln n,pon'r NO(S) (Any other numbere that may be assigned i
d. E)
10. AVAILABILITY/LIMITATION NOTICES ;
No limitation
11. SUPPL EMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

ADVANCED RESEARCH PROJECTS AGENCY through
OFFICE OF NAVAL RESEARCH

13. ABSTRACT

This report is a technical description of the 7094 Compatible Time-
Sharing System in use at Project MAC and the M.I.T. Computation Center.
It is designed to acquaint a system programmer with the techniques of
congtruction which were used in this particular time-sharing system.
Separate chapters discuss the overall supervisor program flow; console
message input and output; the scheduling and storage algorithms; and a
thumbnail sketch is given of each of the subroutines which make up the
supervisor program.

This report was prepared with the aid of the compatible time-gsharing
system and the TYPSET and RUNOFF commands.

DD 1525‘:4 1473 Unclassified

Security Classification

‘Unclassified
Security Classification

14 KEY WORDS

LINK C
ROLE wY

LINK B
ROLE

LINK A
ROL K

wT

Computers

Multiple-access computers
On-line computer systems
Real-time computer systems
Time-sharing

Time-shared computer systems

i A LI

1. ORIGINATING ACTIVITY: Eater the name and address
of the contractor, subcontractor, grantee, Department of De-
f:“l\ll activity or other organization (corporate author) issuing
the report.

2a. REPORT SECURTY CLASSIFICATION: Enter the over-
all security classification of the report. Indicate whether
“’‘Restricted Data’’ is included. Marking is to be in accord
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200. 10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
m:rdkinga have been used for Group 3 and Group 4 ‘as author-
iz

3. REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases should be unclassified,
If a meaningful title cannot be selected without classifice-
tion, show title classification in all cupltlll in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES If eppropriste, enter the typse of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting perlod is
covered.

S. AUTHOR(S): Enter the name(s) of suthor(s) as shown on
or in the report. Enter last name, first name, middle initial.
If military, show rank and branch of service. The name of
the principal author is sn absolute minimum requirement,

6 REPORT DATE: Enter the date of the report as day,
month, year; or month, yean If more than one date appears
on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count
should follow normal paginstion procedures, i.e., enter the
number of pages containing information.

76. NUMBER OF REFERENCES Enater the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If sppropriate, enter
the applicable number of the contract or grant under which
the report was written.

8d, 8¢, & 8d. PROJECT NUMBER: Enter the appropriate

_ military department identification, such as project number,
subproject nu iber, system numbers, task number, etc,

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi-
cial report number by which the docament will be identified
and controlled by the originsting activity. This number must
be unique to this report.

9. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator
or by the sponsor), also enter this number(s).

17, AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than those

INSTRUCTIONS

imposed by security classification, uulng standard statements
such as:

(1) **Qualified requo-tou may obtain copies of this

report from DDC."’
““Foreign announcement and dissemination of this
report by DDC is not authorized.’’

‘“U. 8. Government agencies may obtain coples of 4
this report directly from DDC. 'Other qualified DDC
users shall request through

2
(&)

(4) **U. S. military agencies may obtain copies of this
report directly from DDC. Other qualified users
shall request through

“All distribution of this report is controlled Qual-
ified DDC users shall request through

(5)

I the repost has been furnished to the Office of Technical:
Services, Department of Commaerce, for sale to the public, indi-
cate this fact and enter the price, if known.

1L SUPPLEMENTARY NOTES: Use for additional explane-
tory notes.

12, SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay-
ing for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
sunimary <! the document indicative of the report, even though
it may alsc appear elsewhere in the body of the technical re-
port. If additional space is required, a continuation sheet shall’
be attached.

It is h:?:ly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shail end with }
an indication of the military security classification of the in-
formation in the paragraph, represented as (T8), (8), (C), or (U).

There is no limitation on the length of the abstract. How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. !donﬂ-
fiers, such as equipment mode! designation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con-
text. The assignment of links, rales, and weights is optional.

F ORM
1 JAM -,

DD 1473 (BACK)

Unclassified
Security Classification

