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ABSTRACT 

"An Analysis of Time-Shared Computer Systems" 

Allan Lee Scherr 

Submitted to the Department of Electrical Engineering 
in partial fulfillment of the requirement for the degree 
of Doctor of Philosophy. 

Some of the aspects of the operation of time­
shared, interactive computer systems are analyzed. 
The emphasis is on the reaction of hardware systems 
to the demands that its users DJ&keupon it. Simply 
stated, the problem is to ch&ractM'ize both time..: 
shared systems and their users in order to be able 
to predict the performance of the two operating to­
gether. Portions of this problem include the speci­
fication and measurement of user characteristics, 
the development and verification of both sinmlation 
and mathematical models for time-shared systems, 
and the specification and measurement of performance 
metrics for such systems. The user and some of the 
fierformance measurements were made on Project MAC•s 
'Compatible Time-Sharing System" (CTSS). 

First, simulation models are used to study the 
effects of changing small details -in the operation 
of CTSS-like systems. Then, a continuous-time Markov 
process model is derived to predict the performance 
of a broad class of systems. Throughout, the CTSS 
data are used as a basis for comparison with model 
predictions. In order to be able to take measure­
ments and to build models, many definitions of 
commonly used time-shared system terminology are 
made precise. 

Thesis Supervisor: Herbert M. Teager 
Title: Associate Professor of Electrical Engineering 
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1. 

I. INTRODUCTION 

Computer systems which are able to serve a single 

user in a conversational or interactive manner have been 

in existence for relatively many years. Lately, for 

economic and other reasons, interactive computer systems 

have been implemented to simultaneously serve many users. 

At any given time in the operation of such a system, some 

portion of the interacting users may require particular 

programs to be executed. The function of the computer 

system is to execute these programs in such a way as to 

provide "reasonable" service to each user's requirement. 

A widely-used technique for providing this type of service 

is called "time-sharing", and consists of executing each 

user•s program in some order, for some time, not necessarily 

to completion. Typically, a particular user's program 

will be allowed to use a processor for a period of time, 

will be stopped so that another user•s program can run, 

and then at some later time will be continued from the 

point where it was stopped. In order to be able to continue 

a program, its status must be saved when it is stopped 

and restored when it is resumed. At the point in time 

when one user•s program is stopped and another's resumed, 

the status of the former must be saved and that of the 

latter restored. This process is called "swapping". In 
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general, the status of a program consists of the state 

of the processor as well as a copy of every instruction 

in the program. 

The primary aim of the research reported here is to 

develop techniques and models for the analysis of a broad 

class of interactive, time-shared computer systems. The 

emphasis is on the reaction of a hardware system to the 

demands made upon it by its users. Segments of the overall 

problem include: the specification of a model for and 

the measurement of user behavior, the development and 

verification of both mathematical and simulation models 

of time-shared systems, and the specification and measure­

ment of performance metrics for time-shared systems. The 

user and some of the performance measurements were made 

on Project MAC rs "Compatible Time-Sharing System" (here­

after referred to as"CTSSH, see CORBATO, 1962 and SALTZER., 

1965). 

The model development is divided into two phases. 

First, simulation models are used to study in detail the 

effects of small changes in the operation of CTSS-like 

systems. Then, continuous-time Markov processes are used 

to model more general classes of time-shared systems. 

Throughout, the CTSS measurements are used as a basis of 

comparison with the model predictions. 

The primary result obtained is that it is possible 



to successfully model users of interactive computer 

systems and the systems themselves with a good degree 

of accuracy using relatively simple models. Moreover, 

many of the results obtained and most of the techniques 

developed are applicable to the analysis of a broad class 

of interactive systems. This fact is established and 

discussed in the Conclusions (Section V). 

Since human users are an integral part of any inter­

active system, no real progress can be made in the analysis 

of the performance of such systems until the behavior of 

its users is established. The CTSS user characteristics 

were measured and modeled and are presented in Section II. 

The user model is represented as being the composite of 

the models for users working on a "mix" of different tasks. 

Thus, to a certain extent, models for a different type of 

user than those studied can be generated by using a diff­

erent task mix. 

The models for the hardware-software time-shared 

systems are divided into two classes, (Section III). First, 

simulation models are used to study three systems: (1) CTSS, 

(2) CTSS modified by the replacement of its scheduling 

procedure by a simple round-robin, and (3) a time-shared 

system using the CTSS hardware but using some multi-programm­

ing techniques to improve hardware efficiency. Using the 

operation of these simulation models, detailed measurements 
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are made of several performance parame~ers and hardware 

usage (Section IV). Where possible, simulation results 

are also compared to actual CTSS measurements for verifi­

cation. 

A simple continuous-time Markov model for single 

and multiple processor time-shared systems is derived 

for the purpose of predicting the mean of one of the 

performance measures, (Section III). The accuracy of 

the values predicted by these models is established by 

comparing them to the CTSS measurements. Then, using 

the Markov models, several examples of nrultiple-processor 

time-shared systems are investigated, (Section IV). 

The Conclusions (Section V) discuss the generality 

of the techniques and models used as well as the specific 

results obtained. It is shown that a broad class of 

systems has been covered by the techniques presented, the 

extension of these techniques to other systems is dis­

cussed, and observations are made about the operation of 

CTSS-like systems. 
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II. THE CTSS ENVIRONMENT 

The CTSS environment consists of approximately 250 

users whose individual load on the system varies from 

nearly zero up to the equivalent of several hours of IBM 

7094 time per month. The model of this environment con­

sists of a description of what a single user does during 

an elementary operation at his console, the interaction. 

Simply stated, an interaction consists of the user re­

questing and then receiving service from the system. 

The usual form of an interaction is the user's thinking, 

typing input at his remote console, waiting for a res­

ponse from the system, and finally watching output. 

From the point of view of the time-shared system, the 

user may be thought of as being in one of two states: 

either the user is waiting for the system to respond, 

or the system is waiting for the user. Since the func­

tion of a time-shared system is to execute programs 

at the request of its users, these states may be re­

phrased as: either the system does or does not have 

a program to execute for a particular user. An inter­

action can now be precisely defined as the events 

occurring between two successive exits from the state 

in which the system has a program to execute for the 

user. 
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The primary purpose for the development of a user 

model is its incorporation into models of complete time­

shared systems. The most important requirement for these 

models is that they reproduce the activities of a real 

system during several hours of operation. These models 

will be required to faithfully reproduce distributions 

of service times, hardware usage, etc. Fidelity of the 

model's minute-to-minute operation is of secondary im­

portance. 

In this section, the user interaction model is com­

pletely described, next the inherent compromises with 

reality in the model are discussed, and finally the limi­

tations on this type of model are outlined. It is assumed 

that the reader has some knowledge of the operation and 

hardware configuration of CTSS. However, Appendix A 

describes the operation of this system in detail suffi­

cient to enable understanding of the remainder of this 

report. 

The data presented in this section was taken between 

December 29, 1964 and February 4, 1965, during 112 hours 

of weekday 9:00 A.M. to 5:00 P.M. operation. Approxi­

mately 80,000 commands were monitored. The day-to-day 

changes in the data were slight, and there was stability 

in the system as well as user behavior for the duration 

of the monitoring. A more detailed discussion of these 

considerations appears at the end of this section. 
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A. ~ Composite Interaction Model 

The two states of the user during an interaction 

have a definite correspondence to the six user states 

internal to CTSS. The part of the interaction during 

which the system has a program to execute for the user 

corresponds exactly to the "Working" state and the 

"Command Wait" state. This portion of the interaction 

will be called "the working part of the interaction". 

The other part of the interaction corresponds to the 

"Dead11
1 "Dormant" 1 "Input Wait", and "Output Wait" 

states, and will be called "the console part of the 

interaction". This name is due to the fact that the 

time which the user spends in this part of the inter­

action is primarily determined by console operations. 

Exit from either the Dead or Dormant states is caused by 

the user completing a line of input which is interpreted 

as a command by the CTSS supervisory program. A line 

of input for the program serving the user terminates the 

Input Wait period. Output Wait lasts until the console 

output buffers empty. 

The event marking the transition from the working 

part of one interaction to the console part of the next 

is the completion of the program serving the user. The 

nature of this completion determines what happens during 

the following console. portion. The program may require 
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input from the console, it may have attempted to add 

to an already full output buffer, or it may terminate. 

In addition, a program may enter the Dormant state for 

a program-specified period of time. The subsequent 

transition from the console part to the working part 

occurs at the end of this "sleeping" period. A program­

generated command will be considered as a new interac­

tion with a zero console portion. 

Thus, one transition can be tied to the event of 

a program 1 s finishing, the other, usually to an event 

at the console (i.e., end of an input line or output 

buffers at a certain level). The importance of the 

other console events, i.e., the beginning and end of 

output, the beginning of input, etc., to the operation 

of the system is slight. Moreover, the volume of input­

output is negligible. Even fifty consoles transmitting 

or receiving at fifteen characters per second yield a 

total rate of only 750 characters per second. This 

figure is a maximum; the average rate on CTSS is closer 

to 100 to 150 characters per second. Furthermore, there 

is no relation of these other console events to anything 

of importance within the system. For example, output 

started during the working part of the interaction 

usually overlaps into the console part. Naturally, higher 

data rate consoles, based on devices other than key-



9. 

boards and typewriters, are possible but will not be 

considered. Appendix B contains statistics describing 

console input-output. No further separation of console 

I/O and the time the user spends thinking, etc. will 

be made; and, in fact, all of these activities will be 

lumped under the term "thinking". 

The description of the user during the console 

part of an interaction is simply the elapsed time from 

start to finish of this portion and the specification 

of the cause of the last program completion. The time 

will be specified by a probability distribution. The 

nature of the program completion marking the beginning 

of the console portion indicates what the user is doing 

during this portion. It is necessary to know, for 

example, whether a new program will be started, i.e., a 

new command, or the old one continued, etc. The dis­

tribution of the time a user requires for the console 

part of the interaction is shown in Figure 1. The mean 

value of this time was determined to be 35.2 seconds. 

The following table shows the relative probabilities 

for the various reasons that a user is in the console 

part of an interaction. These probabilities are gener­

ally not independent from interaction to interaction, 

as will be seen. 
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Activity during console part of interaction Probability 

User typing the next command (Dead or Dormant .23 

User typing program input (Input Wait) .58 

Program waiting for output buffers to empty .05 
(Output Wait) 

Program "sleeping" (Dormant) .01 

Program-generated command .12 

The time distribution shown in Figure 1 can be 

divided into several different phenomena. The impulse 

of area .12 at time zero represents the zero console 

time required for program-generated commands. The high 

probability between zero and two seconds is caused pri-

marily by the easily typed, trivial responses, such as 

merely a carriage return, in Input Wait. A user is in 

Dead or Dormant (typing a command) for at least three 

seconds. This is due to the fact that a user must wait 

until a "ready" message is typed (ten to fifteen char­

acters taking approximately one second) and then type 

the several characters constituting the command word. 

The line of input for Input Wait, however, may consist 

of only a carriage return character. The second high-

probability area at around seven seconds is due to users 

making non-trivial responses at their maximum rate. Super­

imposed onto these maxima is an extensive uniformly dis-
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tributed time caused by both the responses which require 

the user to stop to think and the time that a user is in 

the output Wait state. 

An important statistic about the nature of the user's 

activity during the console part of the interaction is 

whether or not a new command is coming next. In addition, 

it is important to know whether or not the user is in the 

Dead or Dormant state (i.e., whether or not a core-image 

is being saved on the drum). Figure 2 shows the distri­

bution of the number of interactions per command. Note 

that the probability of having another interaction of a 

command is not independent of the number of interactions 

preceding it. The average number of interactions per 

command is 2.8 • The ratio of entries to Dead versus 

Dormant is .8 to .2 • . 
During the time a user is in the working portion of 

the interaction he is loading the system. The amount of 

time that the user remains in this state is determined 

by how much of a load the system is already carrying (in 

the form of other users working) and the amount of work 

this user requires. A user•s loading during the working 

part of an interaction will be described by two parameters: 

the amount of processor time required by the user's pro­

gram during the interaction and the size of the program. 

The size of the program determines how long it will take 
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for the system to swap the user's program in and out of 

core memory and/or how many other user's programs are 

able to fit sinrultaneously into a core memory with it. 

Ordinarily, the size of a user's program remains constant 

for the duration of the command. The user's program may 

change size in CTSS, but this will be ignored in the model. 

The probability distribution of program size, shown in 

Figure 3, reflects measurements made at the end of a com­

mand, i.e., on the program's entry to either the Dead or 

Dormant state. The average program size was determined 

to be 6.3 x 103 words. The parameter of processor time 

was chosen to reflect the user's processing requirements 

because of its simplicity. Because there is no signifi-

cant overlapping of processor and channel operation in 

CTSS, the processor runs at a nearly constant rate. The 

time that a user requires the processor for an interac­

tion includes any overhead computation needed by the sys­

tem and access and transmission times for the user's pro-

gram to access the disk storage. Swapping time is not 

included in the processor time since it is a function of 

the time-shared system and not of the user. System over­

head includes scheduling and the continuous processing of 

console input. These functions are almost uniformly dis-

tributed, degrading the processor's execution rate by 

almost a constant. Disk storage is used by the user's 
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programs much in the same way as tapes are used on a con­

ventional batch-processed system. The breakdown between 

overhead computation, disk usage, and normal computation 

will be discussed later. The distribution of processor 

time per interaction is shown in Figure 4 and has a mean 

of .88 seconds. 

There is really no need to know anything more about 

a user's processing needs than the a.mount of time re­

quired. Typically, a program receives control of the 

processor for about two to four seconds at a time. During 

this period, several hundreds of thousands of instructions 

will be executed. Clearly if the structure of second-to­

second operation is not important, no instruction mixes, 

etc. are required. However, if channel operation overlaps 

processor operation to the extent that the rate of instruc­

tion execution is affected, or if multiple, special-pur­

pose processors are used in a time-shared system, infor­

mation concerning instruction mixes, command types, etc. 

is desirable. Such information is discussed next. 
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B. Limitations and Possible Extensions of the User Model 
~~ ~~ ~~-

In order to develop the interaction model, many sim­

plifications of reality have had to be made. The following 

paragraphs discuss these simplifications and attempt to 

justify them from CTSS data and other reasoning. Some 

possible expansions of the interaction model are discuss-

ed. In addition, the effects of these simplifications 

on the behavior of the model are outlined. 

The first simplification is to consider all users 

as equal in the sense that all are representable by the 

same model. The interaction model tends to average out 

the differences between individual users. However, since 

there may be as many as thirty or forty consoles being 

used simultaneously and since there is a considerable turn-

over in this user population (approximately 30 per cent 

per hour), no significant long-term errors should result. 

The model will also tend to smooth out the effects of 

users working in bursts. That is, users sometimes have 

flurries of activity, working at a high rate, followed 

by periods of comparitive inactivity. 

The next simplification is that there is no depen­

dence of the model on the total number of users sharing 

the system. Data shows that user loading, as reflected 

by the time in the console part of the interaction and 

the processor time per interaction, is relatively insen-
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sitive to the number of users sharing the system. More­

over, there has been very little drift in the means of 

the user parameters during the two months that the data 

was taken. Changes in the system tend to effect these 

user parameters, a.nd such changes will be discussed later. 

The choice of the interaction to be the basis for 

the model can be defended in several ways. First of all, 

the interaction is a.n operation which is of great inter­

est to the user. The response time of the system to a 

line of input from the user is a.n important parameter of 

a time-shared system. In fact, it is one of the few, well­

defined, measurable performance parameters available. 

This response time determines the basic rate at which the 

user can operate. Moreover, data has shown that the count 

of the number of interactions per hour is a stable, relia­

ble measure of how much the user or the system is accom­

plishing. Counts of commands per hour are much less re­

liable and have greater deviations from the mea.n. The 

fact remains, however, that users working on different 

tasks behave differently. A task is defined as the inter­

actions comprising a sequence of commands of the same type 

from start to finish. The various purposes of the user•s 

operation can be reflected by a modification of the para­

meters of the basic interaction model. Thus, different 

interaction models can be used for different types of com-
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mand sequences. In addition, information describing the 

length of command sequences in interactions per task and/ 

or commands per task is required to complete the specifi­

cation. In this way, users can be modeled by selecting 

a task type for each, using the corresponding interaction 

model for the number of commands or interactions specified 

by the appropriate distribution, and then switching tasks. 

The concept of a task is useful for retuming some of the 

fine structure to the operation of the interaction model 

a.nd for deriving a new composite interaction model with 

a different "mix" of tasks. 

The expansion of the interaction model, as outlined 

above, will first involve the definition of the task types. 

The approximately 75 CTSS commands Will be divided into 

five types, and then the parameters for the interaction 

model for each type will be presented and discussed. The 

first type of task iS (disk) File Manipulation. In terms 

of conventional batch-processed systems, File Manipulation 

is usually carried out by hand or bytabulating equipment. 

The CTSS comm&lids which correspond to this type of task 

print the contents of a file, combine riles, split files, 

list the names of the files in a user 1 s directory, delete 

files, copy files, etc. A complete listing of these com­

mands is given in Appendix B.. File Manipulation commands 

are characterized by usually consisting of a single inter-
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action and requiring little processor time. 

The second type of task is that of Program Input 

a.nd Editing. Commands of this type are used for the gen­

eration a.nd modification of disk files which contain the 

MAD, FAP, FORTRAN, etc._ source programs written by the 

user. These commands are characterized by many interac­

tions and '!!!!I. little processor time per interaction. 

Commands which generate disk files from console input for 

purposes such as memoranda, etc. are not included in 

this category. The third type of task is that of Program 

Running and Debugging. These commands cause files corres­

ponding to binary decks to be loaded and linked by a con­

ventional BSS loader. Also included are commands to 

start and stop these programs, to initiate debugging traces 

of their operation, to examine the registers of a program 

or the state of the processor, etc. Commands of this type 

a.re characterized by a. moderate number of interactions 

and more processor time per interaction than any of the 

previous types. The fourth type is that of Program 

Compilation and Assembly. These commands generate binary 

deck files from the source language files, and are char­

acterized by usually having just one interaction and re­

quiring the most processor time per interaction. 

The fifth and final type is "Miscellaneous" and con­

sists of the unclassifiable commands. Included in this 
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type are the commands which save and resume core-images 

of programs in the process of running. Also included are 

commands to generate commands, a command which will cause 

the commands listed in a disk file to be executed, the 

memoranda generating commands, etc. 

Table I presents the parameters of the various 

interaction models for each task. In addition, informa­

tion describing the relative frequency of each type of 

task is given. This data was gathered concurrently with 

the composite interaction model statistics. 
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TABLE l 

File Program In- Program Assembly Misc. 
Manipu- put and Running and Com-
lation Editin15 and Debu15. :eilation 

Command .36 .15 .12 .09 .29 Probability 

Interaction .16 • 32 .14 .04 .34 Probability 

Interactions 1.3 6.3 3.0 1.4 3,4 per Command {Avg.) 

Avg. Duration of 
Console Portion 52. 33. 38. 25. 29. 
of Interaction 
{Sec.) 

Avg. Processor 
Time per Inter- l.l o.4 1.5 3.4 o.6 
action {Sec.) 

Prob. of Activity 
During Console 
Portion of Inter-
action: 

Typing Command .61 .10 .29 .54 .12 

Program-generated .18 .06 .04 .16 .18 Command 

Input Wait .02 .84 .61 .16 .65 

Output Wait .18 .oo .05 .04 .03 

"Sleeping" .oo .oo .02 .10 .02 

Avg. Interac- 2.8 10.7 5.8 1.7 6.3 tions per Task 

Proportion of .21 .15 .25 .16 .24 Processor use 

Proportion of 
user•s total .22 .27 .18 .06 .28 
time 
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The shapes of the individual distributions for the 

parameters of the different tasks are very similar to 

those of the composite model. 

No data on program sizes was taken to go with Table 1, 

but it is fairly easy to estimate the program sizes of 

most of the command types. A breakdown of the usage of 

individual commands is also given in Appendix B. 

Since there are differences between the time a user 

takes to type a command, the time he takes to type a line 

of input to a program, etc., the question might be asked 

if the time in the console part of the interaction can 

be predicted from the mix of typed commands, Input Waits, 

Output Waits, etc. The answer is generally that such a 

prediction cannot be made, although the mix is some indi­

cation. For example, it turns out that there are signi­

ficant differences in the distributions of time in Dead 

or Dormant for File Manipulation commands and Program 

Running and Debugging commands. Perhaps the best expla­

nation of these differences is that the user requires 

different thinking times for different command input 

lines. Some commands are easy to remember and require 

no arguments; others require a complicated argument string. 

The loss of fine structure in the operation of the 

model a.mounts to a smoothing of the peaks in user activity. 

Of course, using the task model will return some of this 



structure, but the model is unlikely to reproduce every 

detail. The effects of users getting "into phase" with 

each other is still possible with the interaction models, 

but not likely. This phenomenon occurs when many users 

require service at the same time and is self-perpetuating. 

That is, as more and more users begin waiting, service 

for the individual user is reduced; and there is time for 

more users to reach the point where they require service. 

Thus, users tend to fall into step with each other; many 

working at the same time, many thinking at the same time. 

With the composite interaction model, this phenomenon will 

occur with one basic frequency. If the task model is used, 

a frequency corresponding to each task type will appear. 

In reality, there are many sub-frequencies to this rise 

and fall of the number of users in the working part of 

the interaction. 
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c. ~ Reliability of the ~ 

During the period that this data was taken, the 

hardware configuration of CTSS remained nearly constant. 

The software system was virtually the same throughout. 

Several commands were added to the system, but their 

usage did not a.mount to one per cent of the interactions. 

The day-to-day user characteristics did not change very 

much. During the 47 different time periods that the data 

was taken, there were only one or two instances of really 

unusual behavior (i.e., unusually short times for the con­

sole portion of the interaction and high processor times 

per interaction). The average of the means obtained dur­

ing each period for the console part of the interaction 

time was 34.2 , the median was 34 , and the standard 

deviation was 5 seconds. This compares with the mean 

time for the console portion for !!!.!. of the data of 35.0 • 

These figures include data taken during the evening and 

on weekendsJ In fact, no significant differences were 

noted between the user parameters for weekend and even-

ing operation and prime-time operation. The mean time 

for the console portion for prime-time only was 35.2 , 

for evening and weekend operation, 32 seconds. What 

makes this so surprising is that on non-prime-time the 

average number of users sharing the system was approximate-
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ly 10 , whereas for prime-time this average was nearly 

28 • Moreover, there was no measurable correlation be­

tween the variation of the times for the console portion 

of an interaction with time, time of day, or the number 

of users interacting with the system. 

For processor time per interaction, the average of 

the 47 means was .92 , the median was .93 , and the 

standard deviation was .15 seconds. Here again, this data 

includes both prime-time and weekend and evening opera­

tion. This compares with the overall mean of prime-time 

operation of .88 seconds of processor time per interaction 

and the non-prime-time mean of .94 • The biggest differ­

ence between prime- and non-prime-time operation turned 

out to be in the standard deviation of the means from sep­

arate periods. The evening and weekend user data tended 

to be mu.ch more erratic. With regard to the mix of inter­

action tYPes, there was no significant correlation of the 

probability of a particular tYPe of interaction with time, 

time of day, number of users interacting with the system, 

level of service, etc. The standard deviation about the 

mean probabilities for interactions of tYPes one through 

five were .16 , .16 , .28 , .31 , and .19 of the means, 

respectively. 

This data was taken by a program written to run as 

part of the CTSS Supervisory Program. The data-taking 
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program was entered each time the Scheduling Algorithm 

was entered and thus was able to determine the exact 

time of user state changes. The data gathering added 

negligibly to the overhead computations of the system 

and in no other way affected the operations of the users 

being monitored. Typically, the periods monitored amount­

ed to several hours, but several periods were as short 

as one hour and some as long as eight hours. Due to the 

fact that there was a strict limit on the size of the 

data-gathering program, some important parameters could 

not be measured. This is the primary reason why the pro­

gram size distribution was gathered during a separate 

interval. 

Overhead computation can be thought of as degrading 

the effective operating rate of the processor as seen by 

the user. Overhead computation primarily involves sche­

duling and the processing of input characters from the 

remote consoles. Every 200 milliseconds, the processor 

is stopped and control is transferred to the CTSS Super­

visory Program for these purposes. Therefore, this over­

head can be considered as being uniformly distributed 

since users are generally interrupted for these functions 

many times. Rough measurements show that CTSS, operating 

with 30 users, has an approximate overhead of five per 

cent. That is, a program requiring one second of IBM 7094 
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processor time under non-time-shared operation, requires 

approximately 1.05 seconds on CTSS. As previously stated1 

all processor time measurements include this overhead. 

Also included is user programs' use of the disk {not to 

be conf'used with loading commands from the disk) as a 

tape-like1 input-output device. Data taken over the summer 

of 1964 by T. Hastings1 formerly of the M.I.T. Computa­

tion Center Programming Staff, indicates that the average 

program accesses (i.e., reads or writes) approximately 

1500 disk words per interaction. 
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D. Changes in ~ System Reflected Ez_ ~ Characteristics 

Changes in the time-shared system itself certainly 

have an effect on the behavior of the users. For example, 

if a heavy scheduling penalty is placed on the users of 

large programs, the average program size will decrease. 

In fact, over the summer of 1964, data taken by Hastings 

indicated that the average program size dropped from 

9,000 to 6,ooo words in the space of three months be­

cause of just such a scheduling policy. The addition of 

new commands, which may supplant older ones but operate 

in a different manner, will obviously affect the users 

characteristics. 
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III. MODELING TIME-SHARED SYSTEM HARDWARE AND SOFTWARE 

This section describes models which represent time­

shared hardware-software systems. The models will range 

in generality from CTSS-like systems up to idealized, 

· multiple-processor, time-shared systems. Simulation 

models which represent systems close to CTSS will be used 

to predict distributions for response times, processor 

usage, disk usage, saturation, etc., whereas more general, 

mathematical models will be used for the prediction of 

the mean values for some of these parameters. The level 

of detail incorporated into these models will match that 

of the interaction model. That is, individual instructions, 

data words, and disk tracks will not be considered. The 

models will be based on processor time for an interaction, 

transmission time for a block of words from disk to core­

memory, etc. 

The first model developed matches CTSS. The very 

same Scheduling Algorithm and storage allocation scheme 

will be used. Next, a simple, first-come, first-served, 

round-robin scheduling procedure will be substituted. 

Then, a model which incorporates multi-programming tech­

niques with the CTSS hardware configuration will be devel­

oped. Finally, a simple continuous-time Markov model will 

be used to represent both single-processor and multiple­

processor time-shared systems. 
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As was stated in the Introduction, the first three 

models to be developed are of the simulation type. Simu­

lation models are required because the level of detail 

necessary to handle some of the features studied is beyond 

the scope of mathematically tractable models. Markov 

models cannot, in general, be used to represent processes 

where other than random queueing is used. Queueing Theory 

models are not usable for processes where the arrival 

rates of service requests are a function of the service 

rate. Furthermore, the addition of pre-emptive scheduling 

complicates the mathematics beyong the point where models 

can even be formulated. 

In order that efficient simulations can be written 

using a convenient notation, a special simulation pro­

gramming language and operating system were designed. The 

language itself is fairly straightforward and about as 

readable as any of the algebraic programming languages. 

A discussion of the problem will be found later in this 

section, and a complete description of this simulation 

language and operating system will be found in Appendix C 

along with listing of the simulation programs for the 

models presented here. 
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A. The CTSS Model 

The CTSS hardware-software simulation model consists 

of six interacting sub-programs. These are: 

(1) The actual CTSS Scheduling Algorithm (see 

Appendix A). 

(2) The Console element which simulates the users' 

finishing the console portion of the interaction, 

waiting for the completion of the working part, 

etc. This element is based on the data taken in 

Section II for the composite interaction model. 

(3) The Main Control element which informs the 

Scheduling Algorithm of changes in user status, 

starts and stops the processor, initiates swapp­

ing. It does the former at the direction of 

the user element, the latter two at the direction 

of the Scheduling Algorithm. 

(4) The Storage Allocation element which directs 

the detailed operation of swapping. It controls 

the disk and drum storage elements, causing pro­

grams to be loaded and dumped in accordance with 

the "onion skin algorithm" used in CTSS. 

(5) The Processor element which is started and stopped 

by the Main Control element. 
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(6) The Bulk Storage element which simulates both 

drum and disk storage, controlled by the 

Storage Allocation element. 

The user-simulating element is based on the composite 

interaction model developed in Section II. An array of 

values indicating the status of each user is kept. When 

a user first enters the console part of an interaction, 

the amount of time he will "think" is drawn from a distri­

bution fitting the one in Figure 1. After this time elapses, 

a signal is sent to the Main Control element placing the 

user into the Working status. When a "finish" signal is 

received from the Main Control element, the process is 

repeated. 

The Main Control element has several functions: 

(1) to enter the Scheduling Algorithm every 200 milli­

seconds for the basic timing event, (2} to inform the 

Scheduling Algorithm of user status changes using the six 

CTSS user states, (3) to control the starting and stopping 

of the processor and the swapping process under the direc­

tion of the Scheduling Algorithm. An informal flow chart 

of this element is shown in Figure 5. Using the distribu­

tions presented in Section II,the Main Control element 

selects a program size and internal state for the user in 

the console portion of an interaction. Likewise, when a 

user enters the Working portion of an interaction, a program 
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size and processor time are selected. 

The Storage Allocation element is activated whenever 

a swap is to occur. Given the size and identification 

of the program to be loaded and a 11 map 11 of the current 

contents of the core memory, this element causes the pro-

per disk and drum activity to load this program. Using 

the CTSS 11 onion skin algorithm", only as much of the con­

tents of the core memory is dumped as is required to 

:make room for the incoming program. All dumping is done 

with the drum. Since all programs are loaded from loca-

tion zero, there can be only one complete program in core 

at a time. However, there also may be many partial sec­

tions of other programs in core. In CTSS, the number of 

these partially-dumped programs is limited to four. Natur­

ally, whenever a program is loaded which is already partially 

in core, only the part that is missing is transmitted from 

the drum. In addition to the transmission of the actual 

programs, each swap is accompanied by the dumping and load­

ing (with the drum) of the processor status and disk file 

status of the outgoing and incoming programs. This trans­

mission consists of approximately 500 words in each direction. 

The Processor element is started by being given the 

number of instructions to be executed. If it is stopped, 

it supplies the number of instructions actually executed. 

If it finishes, it informs the Main Control element. The 
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Bulk Storage element simulates the disk and drum systems. 

The number of words to be transmitted is supplied along 

with the type of unit (disk or drum), and the element 

signals when the transmission is completed. For the 

drum, a rotational delay uniformly distributed between 

zero and 17.2 milliseconds is used with a transmission 

time of 8.4 microseconds per word (IBM 7320A drum). The 

disk is simulated as having a head positioning delay of 

either 50, 120 , or 180 milliseconds with probabilities of 

.033 , .134 , and .833 respectively. The rotational delay 

is distributed uniformly between zero and 34 milliseconds, 

and the transmission time is 66.6 microseconds per word. 

Since up to 9320 {20 "tracks") words may be read without 

repositioning the read/write heads of the disk, some assump­

tion must be made about the organization of the programs 

on the disk. Data has shown that approximately 80 per cent 

of the programs loaded from the disk come from files which 

are arranged optimally on the disk, i.e., on adjacent 

tracks. The remainder of these files come from the user's 

file area (i.e., they are RESUME class programs, see 

Appendix B) and were determined to be arranged less op­

timally, approximately 650 words being obtained per seek. 

The interconnection of these elements is shown in 

Figure 6. Since CTSS does not overlap the operation of 
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the drum, disk, and processor, there is no interference 

at the core memory for accesses. Thus, there is no need 

to represent the core memory in the CTSS simulation. 
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B. Variations of the CTSS Model 

The first variation to be considered is a change 

in the Scheduling Algorithm. Instead of the multiple-

queue arrangement used by CTSS, a simple, first-come, 

first-served, round-robin procedure will be used. The 

time interval during which users' programs are given 

"bursts" of processor time will be a constant and not 

variable as in CTSS. The length of the burst will also 

be referred to as the "quantum time". In operation, a 

list of all of the users in the working state will be 

kept, and programs will be given bursts of processor 

time in the order that they are in this list. As users' 

programs finish, they are removed from the list; users 

whose programs have just received a burst of processor 

time are removed from the front and placed at the end of 

this list. In both cases, the remaining programs are 

moved toward the front. Programs newly entering the work­

ing status are added to the end. 

The final model to be simulated will represent a 

system in which swapping and processor operation are 

overlapped. While a program is being run by the processor, 

the program which was running previously is dumped and 

the next program to run is loaded. Since loading and dump-

ing cannot occur simultaneously, there must be room in 

the core memory for at least two complete user programs--
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the program being executed and the program being dumped 

or loaded. Should two programs intended to run in sequence 

not fit together in the core memory, the processor must 

be stopped to complete the swapping. This procedure is 

shown in detail in the informal flow chart of Figure 7. 

While a program is running, all or as much as will fit of 

the next program to run is loaded. After the quantum time 

(two seconds) is up, the swap is completed if the next 

program could not be completely loaded; a.nd then this pro­

gram is started. A dump of the stopped program is then 

begun, and the process is repeated. Scheduling is done 

strictly on the basis of program size, with a simple algor­

ithm used to sort programs in an attempt to maximize the 

number of adjacent programs fitting together in memory. 

A model in which all disk operation {including its 

use by user programs as an I/O device) is overlapped with 

processor operation is being undertaken by Mr. Donald 

Widrig of the staff of Project MAC. His simulation will 

use the same user model and simulation system developed 

and used here. A more detailed study of bulk storage device 

operation in a multi-programmed system is being carried 

out by Mr. Peter J. Denning, also of the staff of Project 

MAC,as an S.M. thesis. The results of both these studies 

will not be available inti.me to be discussed in this report. 
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c. The Need for ~ New Simulation System 

There exist dozens of different types of simulation 

programming systems. Among these are ma.ny special-purpose 

as well as several general-purpose systems. At this time, 

there exists no special-purpose simulation programming 

language specifically for use with models of digital 

computer systems. The general-purpose languages, such 

as SIMSCRIPT, GPSS, etc., all have faults which render 

them unsuitable for this type of work. Since SIMSCRIPT 

{MARKOWITZ, 1963) a.nd GPSS (IBM, 1963) are perhaps the 

most widely used of the general-purpose languages, they 

will be discussed in more detail. The basic objections 

to these languages are that: (1) their notation is not 

convenient for the description of digital systems, (2) 

they are inefficient in their use of computer time, and 

(3) their basic timing structure is not well matched to 

the structure of the digital systems being simulated. 

SIMSCRIPT is a.n event-based language. That is, the 

simulation is described, event by event, with small pro­

grams, one per event. Each event program (or sub-program) 

rrrust specify the times for the events following it. Con­

ditional scheduling of an event is extremely difficult. 

The notation is an augmented version cf FORTRAN, which 

is acceptable; but this organization does not take advantage 

of the modularity of digital systems. SIMSCRIPT 1 s list 



of coming events may grow to an indeterminately large 

size, but in a computer system there are only as many 

coming events as there are independent elements. In 

SIMSCRIPT it is difficult to distinguish the events 

associated with a particular physical element. Thus, 

44. 

the modification of such an element is frequently not 

easily accomplished. Finally, SIMSCRIPT is very diffi­

cult to learn, there are no real provisions for automatic 

tracing and other debugging aids, it is inefficient, and 

it is not available for on-line use with CTSS. 

On the other hand, GPSS is organized around the 

flow of information through a system. A fairly incon­

venient block diagram notation is used. Again, it is 

difficult to express and take advantage of modularity 

in GPSS. It is also extremely inefficient from the 

standpoint of computer time because it is executed inter­

pretively, not compiled into machine language. The use 

of canned, machine language routines is, therefore, 

difficult. It is available as a command with CTSS, but 

is rarely used, despite the fact that quite a lot of sim­

ulation is being done at Project MAC. Furthermore, GPSS 

is difficult to learn. 

As opposed to the above disadvantages, the simula­

tion programming system used here and described in detail 

in Appendix C is easy to learn, has great modularity, has 



automatic debugging features, is moderately efficient, 

and, it is felt, is very well suited to the simulation 

of digital computer systems. This new language is now 

being used by several people at Project MAC who learned 

it in approximately two or three hours of instruction. 

The language is based on MAD, and each physical element 

in a system to be simulated corresponds to a conventional 

MAD subroutine. Built-in traces of the activities of a 

running simulation can be started or stopped at any time 

by the programmer, special post-mortems are available 

which print the state of the simulation at any point, 

and real-time interaction with the simulation from a 

CTSS remote console is possible. 
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D. Continuous-Time Markov Model for ~-like Systems 

A simple continuous-time Markov process will be used 

to represent the operation of a single processor, time­

shared system. The primary reasons for developing such 

a model are to compare its predictions with those of the 

simulation models and with the actual CTSS data and to 

extend its usage to more complex systems. The basis for 

this model is the interaction model for the CTSS user, 

described in Section II. The states of the Markov pro-

cess representing a system with n users will correspond 

to the number of users in the working part of the inter­

action. That is, state j being occupied will indicate 

that j users are in the working portion of an interaction. 

Thus, the Markov process will have (n+l) states. In 

order to use a continuous-time Markov process, the distri­

butions of processor time per interaction and the duration 

of the console portion of the interaction mu.st be exponen-

tial. The mean time for the console portion will be T • , 
the mean processor time per interaction, P • In this 

development, f will include the necessary swap time per 

interaction since in CTSS swapping is not overlapped with 

computation, and the processor stands idle while swapping 

occurs. The time-shared aspect of the operation of CTSS 

will be idealized in that no overhead will be associated 

with additional users waiting for service. The processor 



will be considered as switching from program to program 

at an infinite rate with no loss of efficiency. Thus if 

there are currently j users waiting for service (i.e., 

in the working part of an interaction), the rate of exit 

to the state where (j+l) users are waiting for service 

is (nTj) ; that is, (n-j) users are in the console por­

tion of the interaction. The rate of exit to· the state 

where there are (j-1) users is This implies that 

each of the j users is receiving of the processor's 

capacity. That is, each user is finishing at a rate of 

(~) and any one of the j users is finishing at a rate 

of (i) . The rate matrix (HOWARD, 196o, p. 92 ff.) A, 

is shown below. An expression for the steady-state 

probabilities is found; expressions for the average number 

of users waiting for service and the mean ratio of waiting 

time to processor time are derived. 
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The equations for the 1T•s are: 

etc. 

yielding 

v = r!. vo l ~r 

etc. 

In general1 

1Ti = (!-t)J (~)i vo • 
n 

Making use of the fact that ) 1Ti = 1 1 the following 
i~ 

equation results: 

Letting ~ ... r 1 and solving for 1T0 : 

1 

\ nl rj 
/... (n-j)J 

j=O 



Thus 

1T. 
l 

nl ri 
(n-i)l 

\ nl rj 
L (n-j)1 

j=O 

rr0 is the steady-state probability thatthe processor 

is idle. 
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Now, let W be equal to the mean length of time 

a user spends in the working part of the interaction 

(i.e., the mean response time). Let ~ be the average 

number of users waiting for service. Then 

and 

~= 

Solving for w 

W= 

w 
~=nw+T' = 

n 

i~ 
inl ri 
{n-i)l 

n nl ri l (n-i) l 
i=O 
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n 
iri 

i~ (n-i)l 

n ri 

i~ (n-i-1) l 

n 
\ i1T. L. . l 

i=O 

= 

T 

w 
n w+T' 
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Dividing both sides by P a.nd using the definition of r 

n 
iri 

i~ (n-i) J 
w 
p== n ri 

ri~ (n-i-1) J 

Expressed in terms of v0 , 

or 

It is interesting to note that the rate matrix 

and the -resulting calculations would be the same if it 

were assumed that each program were run a finite quantum 

of time or if all programs were run to completion, i.e., 

batch processedJ This is due to the fact that there is 

no swapping loss and that the time distributions are 

exponential. Use of other types of distribution func­

tions would not, in general, yield the same results for 

any quantum size. 



52. 

E. Markov Model f2!:_ Multiple-Processor, ~-Shared Systems 

Using the same definitions and assumptions as for 

the single-processor system, a model for the operation 

of an m processor, n user time-shared system can be 

derived. From a state where j users are waiting for 

service, the exit rate to the state where there a.re (j+l) 

•t• f cn-j) t f th users wai ing or service is --ir- , he same as or e 

single processor model. If j is less than m , then 

each user•s program is assigned its own processor and the 

rate of exit to the state where (j-1) users are waiting 

for service is (t) If j is greater than or equal to 

m , the j users share the m processors just as in 

the case of a single processor, and the rate of exit to 

the state where (j-1) users are waiting is c;) • The 

rate matrix for this process is not shown since it is similar 

to the one for the single processor case. Solving the 

equation 

the steady-state probabilities are obtained: 

1 
= m-

\ n1 ri + L "'"1.,..1 .,...( n----1~) .... 1 
i=O 

~ n1 ri 
L -m..,..l ""'( n,...._-"'"1..,..) ':""1 1-m 

i=m m 



for i ~ m , 

'Ir i = 

nJ 
ri 

... l..,..J -( n---1"\") .,..1 

m-1 n i 
\' nl i \ nl r 
/... Il(n-1)1 r + /... ml(n-1)J -r:m 

i=O i=m m 

and for i L m , 

nJ 
mJ(n-1)1 

m-1 n 
\ nJ i \ nJ ri 
/.., 11(n-i)J r + /... mJ(n-1)J -r:m 

i=O i=m m 

n 
Finding "Q; = l i1r i 

i=O 

"Q; = 

m-1 
) iri 
i~ ..,..1.,..1 .,..( n,...._..,,£ .... ) ..... 1 

m~l ri 
L. .... i..,..1 .... ( n,...._-.1 .... ) ..... J 

1=0 

n 
\ iri 

+ J:m mJ (n-1) Jml-m 

n 1 

+ l ~J(n-i)Jml-m 
i=m 

The average number of processors is similar to "Q; and 
m 
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is equal to i~ (m-i) iri The expression for the ratio 
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of the average time in the working part of the interac­

tion to the average processor time per interaction is: 

w 1 
P" = r 

m-1 
\ iri 
~ iI (n-1) 1 

i=O 

m-1 

+ 

\ ri 
~ -1-1-cn---1---1-,~, + 

i=O 

n 
l ·ri 

i=m ~1(n-i)1mi-m 
n 
\ ri 
~ --( --)-~i-m 

i=m ml n-i-1 1m 

The results obtainable from the models presented 

in this section will be compared to the measurements 

made on CTSS in the next section. No closed form 

expression for ; in terms of v0 was found. However, 

as n gets large, v0 approaches zero, and 

W n 1 
P" = m r 



IV. ANALYSIS OF MODEL PREDICTIONS 

This section compares the results obtained from 

the various simulation models, the Markov models, and 
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the CTSS data. In addition, extensions into multiple­

processor systems are analyzed. Each system studied is 

compared on the basis of several metrics. Measures of 

a system's response time to requests for service, hard­

ware efficiency, scheduling procedure, and the effects 

of loading will be used to illustrate the differences 

between time-shared systems. Since the Markov model 

for the single-processor, time-shared system yields very 

accurate results, this model and its multiple-processor 

extension will be used in the discussion of both parallel 

and series connected multiple systems composed of either 

equal general-purpose processors or special-purpose 

processors. This section can be divided into two portions: 

a detailed study of CTSS and related systems, and a general 

discussion of multiple-processor, time-shared systems. 

Four measures are used to compare the results from 

the CTSS-like systems. The first of these is the depen­

dence of the mean time for the working portion of the 

interaction (i.e., response time) on the average number 

of users interacting with the system, all other para­

meters being equal. Since during the measurements of CTSS 
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in operation these other parameters could not be con­

trolled, the variation of processor time per interaction 

will be removed by including it in the measure of re­

sponse time. Therefore, the ratio of response time to 

processor time per interaction will be substituted for 

response time. It turns out that this ratio is a more 

stable measure of CTSS performance. The variation of 

this ratio as a function of the average number of inter­

acting users is a measure of how well the system responds 

to a change in its load. 

Secondly, the relationship between processor time per 

interaction and response time will be investigated. This 

will be done with no variation in the number of interact­

ing users, the distribution of processor time per inter­

action, program size, etc. This relationship is a measure 

of the scheduling policy of a system. For example, how 

a system achieves a low mean response time by more favor­

ably scheduling short running jobs can be clearly seen. 

Third, the probability densities of the response time for 

the various systems will be discussed in conjunction with 

the scheduling policies. 

Finally, the percentage usage of the processor, disk 

memory, and drum memory will be plotted as a function of 

the number of users interacting with the system. This 

plot is used in a discussion of the relationships between 
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hardware usage and scheduling policy, response time, etc. 

Througha11t the use of the above measures, the results 

from the simUlation of CTSS will be compared with the 

actual measured data. In some cases, no CTSS data could 

be measured. Since the primary objective in the CTSS measure­

ments was to characterize the user, and since time and 

space for the measuring programs was limited, some para­

meters were not measured. 

The results from approximately twenty simU.lations are 

used here. Each simulation represents the operation of 

a time-shared system under a load of between twenty and 

forty-five users for a period of eight hours. Ea.ch such 

simulatiGn cost between ten and twenty 111.lmtes of IBM 7094 

computer time. While such a cost is not exorbitant, it 

certainly put a limit on the total number of sillulations 

which could be run, and thus there were certain simUlations 

which could not be run. 

Multiple systems are divided into two types: series 

a.nd parallel. The parallel syst•• are those in which 

interactions may be processed by any one of the several 

processors in the system. The selection of which processor 

is to service a particular user's interaction depends on 

the decision process employed. Serial systems are those 

in which interactions must be processed by more tha.n one 

processor in some sequence. Both types of systems will be 
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considered for the two-processor case. The results are 

easily generalizable to cases with more than two processors 

and having any arrangement of interconnections. 

Two types of para~lel two-processor systems are dis­

cussed. First, a system in which either processor may 

serve any portion of any user•s interaction requirement 

is analyzed. This system corresponds exactly to the case 

for m equal to two of the multiple-processor Markov 

model derived in Section III. This system can be thought 

of as a single queue feeding two processors. The second 

type of system analyzed is one in which the two processors 

are able to service mutually exclusive types of interac­

tions. That is, each processor has its own queue. In 

both cases, the two processors have the same capacity and 

service the same number of users, on the average. This 

is an optimal arrangement, and the effect of a non-optimal 

situation is discussed in another example. A double-speed, 

single-processor system will be used for a basis of com­

parison with these parallel two-processor systems. A 

two-processor serial system is then discussed and analyzed. 
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A. Response Time ~ ~ Number of Users 

Figure 8 shows the ratio of mean response time {time 

for the working portion of an interaction) to mean pro­

cessor time per interaction for various systems. The 

normalization of response time with respect to average 

processor time is unnecessary for the simulated systems 

because the mean processor time per interaction was identi­

cal for all. However, the CTSS data was taken under normal 

operating conditions, and thus the data points represent 

many different means for processor time per interaction. 

Even though these means were all close to the overall mean 

of .88 seconds, using the ratio of response time to pro­

cessor time gives less variance to the results than just 

the raw response time. The CTSS data points shown in 

Figure 8 were measured during all periods of operation-­

prime-time, weekends, and evenings. Through these points 

is passed a cubic, least-squared error fit. The RMS 

deviation from this fit was a surprisingly low l.2 • 

The data points resulting from the simulations of 

CTSS are also shown in Figure 8. All of the simulation 

data points are well within the envelope of the CTSS points 

and are close to the cubic fit. 

The prediction of the single-processor Markov model 

is also shown in Figure 8. In order to use this model, 
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the mean processor time per interaction must be increased 

to take into account the mean swapping time per interaction 

because the processor is idle during swapping in CTSS. The 

mean swapping time per interaction was measured and found 

to be .56 seconds. Thus, the mean net processor time per 

interaction is 1.44 seconds. A mean time for the console 

portion of an interaction of 35.2 seconds was used. These 

t f (~) values were subs ituted into the expression or r for 

the single-processor Markov model in the last section. 

The results obtained from this expression must be increased 

by a factor equal to the mean processor time per inter­

action, including swapping, divided by the mean processor 

time per interaction without including swapping time. This 

is done to keep the ratio in terms of the .88 second pro­

cessor time per interaction. The implications of the good 

fit of the results obtained from the Markov model to the 

CTSS data will be discussed in the conclusions. No sig-

nificance should be attached to the way the Markov curve 

crosses the fit to the CTSS data. 

Also shown in Figure 8 is the data obtained from the 

simulation of CTSS with its scheduling algorithm replaced 

by a first-come, first-served, round-robin scheduler. 

Each user•s program was allowed to run for at most two 

seconds. If it had not finished by that time, it was pre-
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empted and placed at the end of the queue, and the next 

user swapped in and run. The slightly worse performance 

of this system compared to CTSS can be attributed strictly 

to the difference in scheduling. The difference between 

this system and that of the Markov model can be attributed 

to the fact that they have slightly different swapping 

overheads. 

The overlapped swapping and processing simulation 

model•s results are also shown in Figure 8. The reason 

for the improvement in performance is that the time that 

the processor is idle because of swapping is down to .33 

seconds per interaction, a decrease of approximately 

41 per cent from the CTSS value. 

The ratio of response time to processor time can be 

thought of as indicating what part of the system's capa­

city a user is receiving. For example, a value of ten 

for this ratio indicates that, on the average, a user re­

ceives one tenth the capacity of the system. As expected, 

this ratio is just over one for only a few interacting 

users and nearly equal to n , the number of users, as n 

gets large. The increase over a unity value for n equal 

to one or two is due to swapping time. As n increases, 

this ratio increases slowly due to the fact that not all 

interacting users require service at once. For large n , 



nearly all of the users are in the working portion of 

the interaction and the ratio approaches n • 



64. 

B. Scheduling Policy ~ Response ~ Distributions 

The average response time to a particular processor 

time requirement can be a useful parameter. It is used 

here to show how the CTSS Scheduling Policy differs from 

the round-robin,first-served system. These measurements, 

made from simulations and shown for a load of twenty-five 

interacting users in Figure 9, is highly dependent on 

the distribution of processor time per interaction, and 

the one used to obtain these measurements was shown in 

Figure 4 in Section II. It is clear that CTSS obtains its 

slightly better mean response time by favoring the short­

running interactions at the expense of the long ones. The 

-primary effect is that the swapping overhead is reduced. 

The reason for this effect is that the longer-running 

interactions, with low priority, are run for a longer time 

when they are finally run. This is one of the advantages 

of a dynamically variable quantum time. The "shortest­

operation-first" aspect of CTSS scheduling seems to be 

slight, and is discussed in the conclusions. 

Figure 10 shows the response time versus processor 

time per interaction for CTSS under varying loads. The 

shift from an effective quantum time of two seconds to 

one second can be clearly seen at loads of approximately 

28 users. Figure 11 shows the same curves for the round-
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robin, first-served scheduler for 25 users and values 

of quantum times from .5 to ten seconds. Using a 

quantum time of ten seconds is almost equivalent to a 

policy of running all programs to completion. The 

variability of the response times about the means plotted 

can be estimated by the jaggedness of the plots. From 

this it could be deduced that the CTSS scheduling algorithm 

yields somewhat less predictable response times than 

does a round-robin, first-come, first-served scheduler. 

This is in agreement with the result of job-shop schedul­

ing showing that first-come, first-served scheduling 

yields higher a mean completion time with a lower variance 

than shortest-operation-first scheduling, (see CONWAY, 

1964, p. 102). This "trade-off" will be diScussed in the 

conclusions. 

There are several restrictions on the response time 

as a function of processor time. If the scheduling 

procedure does not schedule on the basis of job types 

or attempt to predict the processor time for an interac­

tion, the slope of' the response time versus processor 

time curve must be greater than or equal to unity at all 

points. Furthermore, the response time as a function of 

the processor time, w(p) , must satisfy the following 

relation: 



= 
n s t q~E) (p + w(p) dp ~ 1 

0 

where n is the number of users interacting with the 

system, p is the processor time per interaction, q(p) 

is the probability density of p , t(p) is the think time 

as a function of p , and w(p) is the scheduling policy 

f'unction-- the response time as a function of p • All 

that this relationship expresses is that the scheduling 

policy cannot attempt to provide more than one second of 

processor time per second to the users. 

Figure 12 shows the response time distributions for 

CTSS (simulation) and round-robin scheduling with quanta 

of .5 and two seconds. Unfortunately there is not 

enough room on the graph to show the differences between 

CTSS and the round-robin schedulers for large response 

times. The CTSS response time distribution has by far 

the longest tail. The effects of CTSS favoring the short­

er interactions is evident again in the higher probability 

for shorter response times. The round-robin with a quantum 

time of two seconds yields almost exactly the same distri­

bution as for longer quanta, except for differences in 

means. An interesting effect can be seen upon comparing 

the distributions for the two different round-robin schedulers. 

With a quantum time of .5 seconds, it would be expected 

that the probability of extremely short response times 
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should increase over the case with a quantum of two seconds. 

However, the effect is that a .5 second quantum increases 

swapping overhead sufficiently to overcome most of the 

advantage of a small quantum time to short running users. 

The data points from the CTSS measurements are not shown 

in Figure 12 because they coincide almost exactly with 

the results of the CTSS simulation. 

As a further means of comparison, the mean response 

times of the various systems simulated are listed below 

(all figures are for 25 users): 

System Mean ResEonse Time (seconds} 

CTSS 7.0 

Round-Robin 
Quantum .5 10.7 

Quantum = 1.0 7.7 

Quantum= 2.0 7.3 

Quantum = 10.0 8.1 

Overlapped Swapping 5.1 version of CTSS 

The differences in the mean response times for the round­

robin schedulers are due to the differences in swapping 

overhead. Other effects of changing the quantum size are 

discussed in the conclusions. 
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C. Hardware Usage 

Figure 13 shows the percentage usage of the processor 

for users• program execution as a function of the number 

of interacting users. Shown are the CTSS data points as 

well as the points from the simulations of CTSS, the 

round-robin system with a quantum time of two seconds, 

and the system with overlapped swapping. The phenomenon 

of saturation can be clearly seen. As the number of users 

increases, the usage of the processor increases until some 

limit is reached. With completely overlapped swapping, 

this limit would be 100 per cent. But since there is some 

swapping overhead, the limit is approximately 6o per cent 

for CTSS and the round-robin system and 75 per cent for 

the (imperfectly) overlapped system. It is interesting 

to note that these curves are equal to the quantrty- (l-11"
0

) 

of the Markov models within a multiplicative constant, 

where 1T 
0 

is the steady-state probability of zero users 

waiting for service, and the constant is equal to the 

asymptote of the usage curves. (The Markov model predic-

tions are not plotted since they are so close to the measur­

ed results.) 

Since saturation can be identified with the probability 

of zero users waiting for service, it will be defined as 

follows: saturation occurs when the probability of zero 

users waiting for service is lower than some small number , € • 
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The specification of e is arbitrary, but typically 

might be .01 • 
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Figure 14 shows the usage of the drum and disk for 

swapping as percentage of total time. As is expected, 

the usage of the disk and drum increases with the number 

of interacting users. The usage of the disk for CTSS 

is slightly larger than that of the round-robin. This 

effect is a result of the preference shown by the CTSS 

Scheduling Algorithm for short-running interaction. This 

preference extends to interactions which have received 

no service; and since these interactions very often re­

quired loading from the disk, the a.mount of disk usage 

is up slightly. The drop in disk usage for CTSS at 

approximately 30 users is due to the fact that the CTSS 

scheduler switches to an effective quantum time of one 

second at that point (see Figure 10). With a smaller 

quantum time, there is more swapping and thus an increase 

in the use of the drum. Comparing the CTSS disk and drum 

usage with that of the round-robin scheduling (quantum 

time is two seconds), it is apparent that CTSS has a 

slightly lower swapping overhead. This is due to the 

fact that the CTSS Scheduling Algorithm uses different 

quanta depending on the number of users waiting for ser­

vice at a particular time-- the fewer the users waiting, 

the longer the effective quantum. 

The approximately 10 per cent usage of the drum and 
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and 30 per cent usage of the disk implies that, if inter­

processor interference could be eliminated, a single disk 

or drum could service more than one processor. The only 

condition on this statement is that the storage capacity 

of the disk or drum would have to be increased to take 

care of the additional users• disk files or core-images. 

In the system with overlapped swapping and processor 

use, the total use of the bulk storage devices increases 

with the usage of the processor, as is the case with the 

unoverlapped systems. At a load of 45 interacting users, 

the usage of the drum was 12.7 per cent, of the disk, 

33.8 per cent. Unoverlapped usage of the drum amounted 

to 8.5 per cent, of the disk, 9.1 per cent. Unfortunately, 

runs were not made with more users, and saturation opera­

tion with the overlapped system was not achieved. However, 

an extrapolation of the measurements taken indicates a 

saturation level of usage for the processor at approximately 

75 per cent. 
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D. Multiple Systems 

Parallel multiple-processor systems can be divided 

into two basic classes depending on the ability of a 

single processor in the system to serve requests. In a 

multiple system with general-purpose processors, any 

processor can service any request. In effect, requests 

to be serviced (i.e., programs to be executed) are drawn 

from a single queue. The alternative multiple-system 

arrangement uses special-purpose processors to the extent 

that a single processor can serve only certain types of 

requests. In this case, a processor draws requests to 

be serviced from the queue containing the proper type 

of request. In practice, a multiple system may contain 

both types of operation: a group of processors fed from 

a single queue, and many queues differentiated by the type 

of request being serviced by the attached processor group. 

The third kind of multiple system is the serial type in 

which jobs must pass through two or more time-shared pro­

cessors in sequence. An example of such a system would 

be one with input and output processors which pre- and 

post-process all jobs for the main processor. 

In general, any multiple system can be analyzed by 

considering each group of processors individually, as will 

be discussed. Two parallel multiple systems, each with 
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two processors, will be analyzed. Their performance will 

be compared to a single-processor system of the same 

capacity in total instructions executable per unit time. 

Next, a study of the effects of augmenting a CTSS-like 

system with a processor capable of simple character manip­

ulation and channel operations to take care of some of 

the job types normally executed at the central processor. 

The augmented system will be compared to CTSS on the basis 

of performance and additional cost. Finally, serial mul­

tiple systems will be analyzed. 
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1. Equal Capacity, Parallel Multiple Systems 

The first multiple system to be considered is one 

with two general-purpose processors. Assume that each 

processor has the capacity of the single processor of 

the CTSS system (IBM 7094-I) and that the same swapping 

overhead is present. Thus, the average net processor 

time per interaction is 1.44 seconds, .88 seconds of use­

ful processor time and .56 seconds of processor idle 

time due to swapping per interaction. With an average 

"think" time of 35.2 seconds, the para.meter r is .o41 • 

The results from the Markov model of a two-processor, 

time-shared system are plotted in Figure 15. The average 

waiting time (time in the working portion of an interac­

tion) is shown as a f'unction of the number of users inter-

acting with the system. 

A system wi.th two special-purpose processors can be 

equivalent to two separate time-shared systems if each 

sub-system is used, on the average, by half of the user 

population and each is equally loaded (i.e., equal P's 

and T 1 s ). As will be seen, this is an optimal situa­

tion. Any deviation from the ideal results in an increas-

ed overall mean response time. For such a system, the 

mean response time can be calculated as a function of n , 

the number of interacting users, by using n 
~ in the 

expression for the response time for the single-processor 
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Markov model. The results of this calculation are also 

shown in Figure 15. 

As a basis for comparison, a single-processor system 

of exactly the same capacity as the two-processor systems 

will be used. If the single-processor system is exactly 

twice as fast for every operation, the r for this system 

is .02 , exactly half that of the duplex systems. The 

mean response time for this system is plotted in Figure 15 

as a function of the number of interacting users. 

Looking at the three systems from the standpoint of 

overall mean response time, the double-speed, single-pro­

cessor system is superior. The two processor, single-queue 

system is better than the two-processor, two-queue system. 

The reasons for the differences in the systems can be ex­

plained in tenns of their degrees of freedom. The single­

processor system can turn the entire capacity of its pro­

cessor to the execution of a single job. Thus, the single­

processor system is superior by almost a factor of two to 

the two-processor systems when the number of users is small. 

The only difference between the two-processor, single-queue 

system and the single-processor system is their perfonnance 

when only one user is waiting for service. The difference 

between the two-processor, two-queue system and the two­

processor, single-queue system is accountable to the fact 

that there are times when the queue of one processor of the 
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double-queue system is idle, and its capacity cannot be 

used to relieve the other processor. The fact that the 

plots all join into the same straight line is indicative 

of the fact that all three systems have identical capacity. 

The full capacity of all three systems is used because the 

number of interacting users is sufficient to keep all of 

the queues non-empty nearly all of the time. Thus, running 

in complete saturation, the performance of each of these 

systems is identical. 



2. "Polymorphic" Systems 

The two-processor, two-queue system is of special 

interest because it can be used to represent a system with 

two special-purpose processors. In such a system, the 

users interact with one processor at a time, and the pro­

cessor that is used is determined by the type of task the 

interaction performs. The assumption will be made that 

the mix of interaction types remains constant regardless 

of the service a user receives. Thus, the relative proba­

bilities of different types of interactions remains fixed. 

Reference should be made to the end of Section II for the 

measurements made of the probabilities of different types 

of interactions. In order to quantitatively analyze the 

two-queue, two-processor situation, the following variables 

are defined: 

ai the probability that a user's next irmr­

action will require the use of processor i • 

The sum of the a 1 s is unity. 

Pi the mean processor time per interaction 

for processor i • This time includes 

any non-overlapped swapping time. 

Ti the mean time for the console portion of 

interactions using processor i (i.e., 

"think 11 time) • 

n = the total number of users interacting with 

all processors. 
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All of the above parameters are determined by user 

behavior and the speeds of the various processors. The 

following variables are functions of the above: 

ni the mean number of users interacting 

with processor i • 

= the mean time for the working portion of 

interactions using processor i {i.e., 

response time). 

W = the overall mean response time. 

The analysis of multiple, special-purpose processor 

systems will be carried out for only two processors, but 

the extension to any number is straightforward. In order 

to determine the wi and w , the ni must be found. 

For a two-processor system, ~ = n - n1 and thus only 

nl need be found. The expression for nl 

nl = 
a.l {Wl+Tl) 

n 
a.1cw1+T1) + a.2<w2+T2J 

was found by equalizing the rate of users starting inter­

actions of type one and the rate of users finishing inter­

actions of type 1 • This equation can also be interpreted 

as the total number of users multiplied by the mean propor­

tion of the time that a single user is interacting with 

processor number 1 • Since the Wi are non-linear func­

tions of the ni , and since both are unknown, the ni are 

perhaps best found by a relaxation technique {i.e., a value 
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is assumed for n1 , ~ , w1 , and w2 are calculated; a 

new value for n1 is calculated, etc., etc.). This being 

done, the overall mean response time per interaction can 

be found: 

In the two multiple systems previously discussed, the 

two-processor, two-queue system was "balanced". That is, 

each processor served the same average number of users, 

each had the same associated mean think and processor time 

per interaction. In general, values for the parameters of 

a system with special-purpose processor will not be so 

favorable. The parameters under the control of the systems 

designer are the Pi and the ai • Selectively scheduling 

on the basis of command type by giving certain commands 

higher scheduling priority, the probabilities for the occurr­

ence of interactions associated with "out-of-favor" commands 

will decrease as users abandon their use as being too time 

consuming. The Pi can be changed by shifting "capacity" 

around the system; that is, by manipulating processor speeds. 

Comparisons between two systems without involving economic 

issues makes sense only if both have the same overall capa­

city to execute instructions or to process interactions. 

If capacity is defined in terms of instructions per second 

or interactions per second, then manipulation of the Pi 

which leaves the total capacity unchanged is subject to 

the following constraint: 
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m 

l 
~l 

l = pi 
c 

Here C is the capacity of the entire system in inter­

actions per second, and m is the total number of process­

ors. A solution to the problem of minimizing W as a 

function of the ai and Pi is possible, but is best 

taken up after a consideration of the two-processor, two­

queue system in an unbalanced mode of operation. If the 

processors are unbalanced, the operation of the total sys­

tem exhibits an interesting phenomenon as one of the pro­

cessors saturates before the other. 

The following describes a specific example of a two-

processor, two-queue system drawn from a real world situa-

tion. Nature being what it is, this system is unbalanced. 

The effects of imbalance, possibly remedies for it, and 

differences in performance are all discussed. The example 

described has another merit in that an interesting actual 

situtaion is analyzed. 

Using the data concerning the mix of task types for 

the CTSS user (Section II), some predictions will be made 

on the cost and performance of a CTSS system augmented by 

an auxiliary special-purpose processor. Of the five types 

of tasks that CTSS performs, two of these can clearly be 

accomplished by a processor which is simpler than that of 

the IBM 7094 with little increase in the mean processor 
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times per interaction for these tasks. Specifically, the 

Program Input and Editing commands involve very little 

data processing. A simple character-oriented processor 

could probably do the same manipulations as are required 

of the 7094 processor in much the same time. Fewer instruc­

tions would have to be executed since no unpacking and re­

packing of characters is necessary in the character-oriented 

processor. Furthermore, such a processor would be con­

siderably cheaper than an equivalent speed (for Input and 

Editing), general-purpose, parallel arithmetic, floating­

point processor. The other type of task which a very sim­

ple processor could perform is that of File Manipulation. 

The operations involved are simply that of controlling a 

disk channel so as to copy, concatenate, split, merge, etc. 

disk files. If such a processor were added to the present 

configuration, it would relieve the load on the central 

processor of the 7094 to the extent of handling nearly half 

of all of the interacting users, nearly half of all the 

interactions, and approximately 35 per cent of all users• 

processing requirements. First, the performance improve-

ment brought about by the addition of this auxiliary, special­

purpose processor will be analyzed; then a few general 

statements about the additional cost of the system will be 

made. 

Essentially, the auxiliary processor will transform 
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CTSS into a two-processor, two-queue system. For the sake 

of simplicity, the assumption will be made that the aux­

iliary machine is able to process interactions of the File 

Manipulation and Program Input and Editing types at the 

same speed as the IBM 7094 processor. Furthermore, assume 

that the swapping overhead is the same as in the normal 

version of CTSS (.39 of the total processor time per 

interaction). These assumptions are reasonable since the 

auxiliary processor will probably be somewhat slower than 

the IBM 7094, but its swapping overhead will be lower due 

to its smaller programs and the possibility of "read-only" 

routines for common functions which are not swapped. Using 

the data of Section II and the definitions of the previous 

pages (processor number 1 will be the auxiliary}: 

a.l = .48 

a.2 .52 

pl = .63 = 1.03 seconds :or 
P2 

1.11 1.82 seconds -:-or= 

Tl = 39.3 seconds 

T2 = 31.3 seconds 

W is found as described before and is plotted in 

Figure 16 along with the values for normal CTSS as a func­

tion of the total number of interacting users. In both 
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cases, the Markov model was used to obtain the Wi • 

It is interesting to note, for example, that the "augmented" 

version of CTSS yields the same mean overall response time 

at 45 users as the normal CTSS does at 30 • The 

distribution of overall response time for each system will, 

in general, have different shapes. The normal CTSS overall 

mean response time should have a smaller variance than that 

for the augmented system. Figure 17 shows a plot of the 

mean number of users interacting with each portion of the 

system as a function of the total number of users. Since 

the capacities of the two systems and the user preferences 

between them (the ~i are nearly equal, the ni are 

nearly equal until the total number of users in the system 

reaches approximately 40 • At this point the values of 

the ni divergel The mean number of users interacting 

with the less heavily loaded auxiliary processor remains 

constant at 21 , and any additional users added to the 

entire system show up in the mean number of users interact­

ing with the 7094 central processor. The reasoning which 

explains this phenomenon is that because the 7094 processor 

is more heavily loaded than the auxiliary one, the mean 

response time for the 7094 processor increases more per 

user added to the system than that of the auxiliary. As 

a response time increases, more users are held waiting for 

the corresponding processor on the average, and the response 
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time increases still more. This effect is analogous to 

a positive feedback situation in an amplifier-- saturation 

occurs. As the total number of users increases, the 7094 

processor is forced into saturation and holds more and more 

of the total number of interacting users, leaving the 

auxiliary processor with a steadily decreasing proportion 

of the user population. 

By manipulating either the Pi or the ai , or 

both, both processors can be kept out of saturation or 

at least equally saturated. Taking the expression for 

n
1 

presented in the previous discussion substituting for 

(1-rroi) 
yields an equation in terms 

of the Pi , rr
0

i , and ai which nru.st be satisfied in the 

steady-state: 

Both processors can be kept equally saturated if the rr•s 

are set equal. This will insure that neither processor 

saturates leaving the other unsaturated (i.e., rr
0

i = 0 , 

and rr
0

j i 0 ). Doing this yields the balance condition: 

Looking at the example under consideration and keep­

ing the constant capacity restriction in mind, the only 
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way to achieve balance would be either to encourage 

users to shift their interaction mixes toward the File 

Manipulation and Program Input and Editing, or to speed 

up the 7094 processor (perhaps by installing a Model II 

7094) and allow a slight decrease in the performance of 

the auxiliary processor. 

Returning to the example, the effects of adding the 

auxiliary processor is to increase the number of users 

that can be effectively served by 50 per cent. The addi­

tional cost of the system is just that of the auxiliary 

processor and the hardware necessary to simultaneously 

access a disk file from two different processors. Certain­

ly, this additional cost will be well under 50 per cent 

of the cost of the IBM 7094 CTSS configuration. Any fur­

ther discussion of costs at this point would involve going 

beyond the purposes of this example. 



3. Serial Multiple Systems 

A serial multiple system is one in which users 1 

interactions are processed by two or more processors 
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in sequence. That is, af'ter a user completes the "think" 

time, his job requires P1 seconds of processor time on 

the first time-shared processor, P2 seconds on the second 

time-shared processor, etc. For two processors, the 

think time T and the response time of the first processor 

w1 appear to the second processor as the actual think 

time. Therefore, using the results from the single-process­

or Markov model: 

= 

Similarly, for the first processor: 

The solution to these two equations is simply obtained 

by adding them and solving for the net response time, 

wl + w2 : 
p p 

W = W + W n [ 1 + 2] - T 
1 2 = "2" l-11" ol l-11" o2 

A serial system such as this one would be a good 
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model for a real system in all of the jobs processed 

by the main computer (processor 1) are then sent to an 

output computer for post-processing. For non-saturation 

operation, a relaxation teciihique such as described pre­

viously must be used to find the steady-state values for 

wl and w2 separately. 
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V. CONCLUSIONS 

The purpose of this section is to analyze the gen­

erality of the techniques and models presented as well 

as to summarize and discuss the specific results obtained. 

The use of mean response time as a performance metric is 

discussed and the generality of the techniques and models 

for predicting the performance of interactive time-shared 

systems is evaluated. Furthermore, results concerning 

the specific systems studied are outlined and analyzed. 

The most important performance aspect of any man­

machine system is the quantity of results obtained (in 

terms of "significant" problems solved) per unit time. 

At this time, such a quantity is unmeasurable. The pro­

ductivity of a machine user might be represented in simpler, 

more tractable terms. By excluding an evaluation of the 

relative merits of the problems solved, productivity can 

be measured in terms of sub-solutions (or "micro-solutions") 

obtained per unit of time. In this way the use of time 

rate of interaction can be defended as being a well-defined, 

measurable quantity which approximates (however roughly) 

the ultimate performance metric. Since the number of inter­

actions per unit time can be derived in terms of the response 

time and the user think time distributions and because the 

use of the response time allows the machine performance to 
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be separated from users' performance, the distribution of 

response times was chosen to be the primary system perfor­

mance measure. Other parameters of interest, such as 

the mean number of users queued at a particular processor, 

can be derived from mean response time. 

The problem can also be viewed from the hardware 

aspect. A system which performs a useful processing func­

tion at a certain performance level and cost (measured 

both in hardware and user time) is clearly "better" than 

a functionally equivalent one with the same performance 

level but a higher cost. In a sense, a measure of cost 

is the complexity and duty factor (percentage of use) of 

the hardware portion of the system. Moreover, there is an 

infinite variety of possible information processing ser­

vices that can be utilized by a user, and an infinite num­

ber of possible system organizations to provide him these 

services. The tasks a system performs, as well as the 

level of acceptable performance and hardware complexity, 

are obviously important issues. However, primary attention 

is paid to system performance as characterized by the dis­

tribution of response times which are, in turn, derivable 

from the characterizations of both the user and the inter­

active system. 

There are many metrics which can be used to describe 

a distribution of response times. For some purposes the 
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maximum might be equated with the "worst-case"; the minimum, 

with the best achievable service. The mode of the distri­

bution indicates the most probable level of service. A 

simple metric such as the mean (with or without a measure 

of expected deviation) characterizes most of these aspects, 

is computed readily, and is extremely useful in modeling. 

For this reason, it will be used as the principle character­

izing feature of interactive performance. 

A fairly simple model for a generalized interactive 

system can be developed in terms of the mean response times. 

This model can be viewed as an arbitrary network of unilateral 

delays through which the processes necessitated by user 

interaction pass. The delays are of two types: those due 

to the user, and those due to the hardware system. User 

causes delays represent the time it takes for users to ob­

serve console output from previous interactions, to think 

over their next moves, and finally to produce console input 

which will request further services from the hardware system. 

All of these activities are lumped under the single term 

"thinking". The system induced delays represent the response 

times of the various sub-systems which comprise the hard-

ware portion of the entire interactive system. Each node 

in the network may have any number of branches entering or 

leaving it as long as there is at least one in each direction. 

Each branch leaving a node has a probability of its being 



selected by a user in preference to the others. This 

probability is a function of the specific service or type 

of interaction selected by the user. The allocation of 

hardware resources to various jobs by the system will be 

taken into account in the processing delays. In general, 

the delays and probabilities may be any arbitrary function 

of the state of the entire system or its past history. 

The user induced delays represent the think times for various 

types of interactions. The processing delays take into 

account the capacity of the processors, the distribution 

of processor time, etc. for the particular type of inter­

actions being delayed. 

There may be portions of the system which are inaccess­

ible to a number of its users. After assuming that certain 

numbers of users are interacting with each portion, the 

object is to determine the steady-state values of every 

delay in the network. In general, there may not be a 

steady-state solution if arbitrary delay functions are 

allowed. However, if all delays are positive and do not 

decrease with the addition of users to the corresponding 

branch, an analogy can be made to passive electrical circuits; 

and the existence of a steady-state solution can be shown 

to always exist. 

A sub-class of this generalized interactive system 

model has been analyzed. This sub-class differs from the 
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general model because of two simplifying constraints. 

First, the probabilities for choosing an exit branch from 

a node are assumed to be constants. These probabilities 

represent the users• choice of interaction types. Since 

the CTSS data showed that the mix of the five interaction 

types remained nearly constant from day-to-day over a period 

of more than two months (see Section II, Part C), this 

simplication is justifiable. Secondly, there are restric­

tions on the functional dependence of the delays. In all 

of the systems discussed, the think times were constants. 

This was done on the basis of the CTSS data, as was dis­

cussed in Section II, Part c. The only restriction on 

the delays is that they be some known function of the flow 

of users• interactions through the network. 

The processing delays were determined with the use of 

the single and multiple-processor Markov models, but they 

may be determined by simulation of the individual sub-systems 

themselves. Note that it should not be necessary to simu­

late the entire interactive system-- simulation is necessary 

only for those portions of the system which are not mathe­

matically analyzable. In some cases, it may be necessary 

to do a few simulations of a sub-system in order to determine 

the net processor time per interaction. That is, the pro­

cessor time per interaction required by the user is known, 

but the effective expansion of this processor time due to 
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overhead factors such as non-overlapped swapping, etc., 

may have to be determined by simulation. The Markov 

models are useful if: (1) the sub-system is time-shared; 

a.nd (2) the net processor time per interaction is a simple 

function of the processor time the user originally requires. 

This second condition ca.n be amplified by the observation 

that the terms (~) a.nd (~) in the original rate matrices 

for the Markov models (see Section III, Parts D and E) ca.n 

easily be made into more complicated functions a.nd still 

be soluble for the steady-state occupancy probabilities. 

If the system is not time-shared (in the sense used in 

this report) or the accuracy of the Markov models is not 

sufficient, some other Markov process or method of analysis 

ca.n be employed. The delay networks for a few specific 

examples of interactive systems are shown in Figure 18. 

It may be the case that processor time per interaction 

is not the appropriate parameter because the processor is 

not the rate-determining factor in a sub-system. In all 

of the examples studied, the processor speed determined the 

basic rate of operation. It may well be that there exist, 

or will someday exist, systems whose rate-determining ele­

ment is, for example, the bulk storage device. For such 

a case, it might make more sense to use the term "bulk 

storage use per interaction" rather tha.n "processor time 

per interaction". Thus, in all of the discussions of pro-
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cessor time, the possibility of substituting the time 

required for some other device should be kept in mind. 

At this point, some observations will be made about 

the specific systems studied. First, some general remarks 

concerning the operation of CTSS-like systems will be 

presented and then some of the implications of the specific 

results obtained will be analyzed. 

Perhaps the most important result of the research 

in this report is that time-shared systems and their users 

can be successfully modeled. The consistent, predictable 

behavior of users interacting with time-shared systems 

was not a foregone conclusion at the onset of the research-­

it had to be established. That a simple model is sufficient 

to represent a time-shared system user did not come as a 

complete surprise, but neither was it obvious from consid-

ering the situation .!! priori. The same statement can be 

made of the modeling of CTSS. The accuracy of the single­

processor Markov model in predicting the CTSS mean re­

sponse time function was somewhat more surprising. The 

implications of this accuracy will be discussed later in 

this section. 

As was seen during the discussion of mean response 

time as a function of the number of interacting users, 

{Section IV, Part A), the operation of CTSS can be split 

into two segments-- saturated and unsaturated. The exact 
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point of crossover between these two regimes of operation 

is somewhat hazy since saturation can only be defined with 

reference to a probability. That is, a time-shared system 

enters saturation when the probability of zero users waiting 

for service becomes less than some small number. Theoret­

ically, the point where there is zero probability of an 

empty queue does not exist except for an infinite load on 

the system. The most important factor in determining when 

a system enters saturation is the mean net processor time 

per interaction. In non-saturated operation, the addition 

of another interacting user has little effect on the mean 

response time of the system; whereas for saturated operation, 

an additional user makes a noticeable difference. There 

is a distinct difference in the way a CTSS-like system re­

sponds on the two sides of the saturation point. The diff­

erence in mean response time for loads of twenty and thirty 

users is much more noticeable (to the CTSS user) than the 

difference between loads of ten and twenty users. 

Another interesting phenomenon is the effect that 

changes in the performance of a time-shared system have on 

the behavior of the users. All of the data and results 

presented so far in this report were taken during a period 

when the operating characteristics of CTSS were stable. 

However, if a heavily used command is changed so that its 

average processor time is increased (thus increasing the 
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mean response time), users are likely to decrease their 

usage of this command. If a new command is added which 

accomplishes the same function as an established command 

in a faster or more elegant manner, changes in the distri­

butions of think time and processor time per interaction 

should be expected. 

There are other factors which can affect user char­

acteristics. If the scheduling procedure gives low priority 

to a user's program because of one of its characteristics 

(e.g., program size), users seem to try to eliminate these 

"objectionable" features from their programs and interaction 

usage (e.g., attempt to write and use smaller programs). 

Thus, it seems that scheduling, if properly executed, could 

be used to "mold" the users to some extent by assigning 

priority on the basis of job type, program size, program 

running time, user think time, etc., etc. Then the user, 

in trying to "beat the system", will tend to conform to 

the image of what the writers of the scheduling program 

considered to be the ideal user. Fortunately (or unfortun­

ately) users are generally not so flexible that they can 

all arrange their ¥Sage so as to always be in the highest 

priority group. If users were this flexible, all would 

have the same priority; and any scheduling procedure, no 

matter how complex at the onset of its use, would result 

with simple round-robin behavior. 
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The fact that the single-processor Markov model 

produces accurate predictions of the mean response time 

as a function of the number of users interacting with the 

system has several interesting implications. The model 

(see Section III, Part D) is a highly simplified version 

of the processes occurring in a highly complex hardware­

software system. Many features which would seem essential 

to the operation of actual time-shared systems are not 

present in the Markov model: swapping (except as a constant 

overhead factor), quantum time, priority scheduling, etc. 

Moreover, the distributions of think time and processor 

time per interaction are fit in the model by exponentials 

with the proper means. The fact that all of this detail 

may be omitted and still leave a model which accurately 

predicts mean response time is startling. The implication 

is that only mean think time, mean processor time {including 

swapping), and the number of users interacting with the 

system are of first order effect, and that the rest of the 

details have second or third order effect. 

It might be possible to obtain better mean response 

times than those predicted by the Markov model by the use 

of a "shortest job first 11 procedure. The ability to predict 

accurately the length of a job is essential to such a sched­

uler. As the accuracy of its prediction mechanism is re­

duced, performance rapidly approaches the level of a first-
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come, first-served or random scheduler. 

The chief effect of the quantum size (except in pre­

dicting schedulers) is to change the swapping overhead 

and thereby affect the mean response time. In a system 

where the quantum time has no effect on the swapping over­

head (such as in a system with complete swapping overlap), 

the quantum size has no effect on the mean response time. 

The quantum size, however, always has an effect on the 

shape of the distribution of response times. 

There is no reason to believe that the Markov model 

for a multiple-processor system serving a single-queue of 

users is not just as accurate as the single-processor model. 

The results it predicts are completely reasonable: that 

for equal capacity systems, the performance of the single­

processor system will be better than that of the two-processor 

system. Furthermore, given equal capacity systems with 

the same number of processors, the system with the fewest 

number of queues will yield the best performance. Extra­

polating these results, the conclusion can be made that 

for equal capacity systems, the fewer the number of processors 

and queues, the better the mean response time. The obser­

vation should be made that at saturation, all equal capacity 

systems have the same performance, and a system with fewer 

processors should require no less main storage or swapping 

activity than a system with more processors. However, if 
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traditional computer economics hold, the fastest possible 

processor will provide the best processing capacity per 

dollar. 

Polymorphic systems, appearing to yield the worst 

performance from the equal capacity comparison, begin to 

be very attractive with the introduction of economic 

considerations. In the example discussed (see Section I.V, 

Part D-2), the performance of CTSS could have been improved 

to the point of allowing approximately 45 users to be 

served with the same mean response time as 30 with the 

addition of hardware representing less than ten per cent 

of the monthly rental of CTSS (an IBM 14-- and an additional 

channel and file control for the 1302 disk). 

What constitutes acceptable response time is a ques­

tion that is completely open to discussion. However, there 

is certainly no relationship between the point at which 

a system saturates and whether or not the response times 

at that point are acceptable. Thus, the question of whether 

or not it is desirable to operate a system in saturation 

must be settled by other considerations. Given a maximum 

acceptable mean response time, the maximum number of users 

to be served, and a specification of user characteristics, 

the most desirable system meeting these requirements will 

be the cheapest. The cheapest system is very likely to 

be the one with the lowest processing capacity consistent 
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with meeting the specifications. This system~ be ~ 

in saturation. 

So far in this discussion, most of the results cited 

were derivable from considerations of the CTSS data and 

the Markov models. There are, of course, many factors 

which the Markov model cannot be made to predict, and a 

more detailed model must be used. As was seen, the simula­

tion models were able to predict the distribution of re­

sponse times, hardware usage, response time as a function 

of processor time required, etc. Most of these parameters 

were discussed sufficiently when they were presented. 

Perhaps the most interesting result of the simulations is 

the fact that good accuracy can be obtained from a fairly 

simple model (when compared to the actual system). The 

biggest problem in simulation modeling, as in all model 

building, is to retain all "essential" detail and remove 

the non-essential features. It is felt that the efforts 

in this direction in the case of the simulation models 

was successful. 

Summarizing the overall accomplishments of this re­

search, the proof that time-shared systems and users can 

be accurately modeled is of first importance. Secondly, 

if mean response time is of primary interest, simple mathe­

matical models can be constructed having good generality 

and yielding accurate results. Excellent predictions of 
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parameters other than mean response time can be obtained 

from more detailed, but still highly simplified simula­

tion models. 
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APPENDIX A - DESCRIPTION OF CTSS 
~--~~~- ------

1. The CTSS Hardware 

Simply stated, the CTSS configuration is an IBM 7094 

(Model I) computer, augmented by disk and drum storage, 

connected through an IBM 7750 transmission controller to 

users' remote consoles, each consisting of a keyboard 

and printer. By typing at the console, a user may comnron­

icate with either the CTSS Supervisory Program or a pro­

gram activated by this Supervisor. A line of input inter­

preted by the Supervisor is called a "command". Commands 

cause programs to be loaded from disk storage. These 

programs are queued, and each is executed for a short 

period of time, not necessarily to completion. The se­

quence of programs to be run and the duration of each 

"burst" of processor time is determined by a sub-routine 

in the Supervisor called the 11 Scheduling Algorithm". The 

following is a list of the hardware elements in the sys­

tem and a brief description of the function of each. 

1. Central Processing Unit (CPU) - normal 7094 with 

the addition of automatic relocation and memory 

protection. Automatic relocation is not used on 

the present system as all programs are loaded be­

ginning with location zero. In the protection 

mode, all memory references are checked against 
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pre-set "memory bounds"; and if an out-of-bounds 

reference occurs, the CPU is trapped. Programs 

are given only enough space as is required. The 

limits on this space are location zero and the 

memory bound. In addition, the execution of any 

channel operating or tape handling instructions 

causes a protection mode violation and a trap to 

the Supervisor. In addition, an Interval Timer 

is also attached. This device can cuase a trap 

after a program-specified time interval. The 

time unit is 1/60-th of a second. 

2. Core Memory - 2 modules of 32,768 36 bit words. 

The two units are designated "Core A" and "Core B". 

These units do not operate independently, and 

only one of them can operate during a given cycle. 

The access time is 2 microseconds. Core A holds 

only the CTSS Supervisory Program and Core B is 

used to hold users' programs as they are being 

executed. 

3. The system configuration during the time the data 

was taken consisted of up to seven I/O channels: 

a. Conventional tape channel with six tapes, 

printer, punch, and card reader. Used for 

batch-processed programs only. 

b. Conventional tape channel with six tapes. 
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Used for batch-processed programs only. 

c. Direct Data Channel - used to connect non­

standard I/O devices to system. At present, 

only the Electronic System Laboratory's 

Display Console is connected. This unit 

consists of a CRT, light pen, buttons, etc. 

Displays are originated and maintained by 

the 7094, but light pen tracking and coor­

dinate rotation, translation, and expansion 

are done by local circuitry. 

d. Disk and Drum Channel and File Control -

A 1301 Model 2 disk file and a 7320 drum 

were connected. The 1301-2 contains 20,000 

tracks of 466 words each. Access time con­

sists of arm positioning, 165 ms. average, 

and rotational delay, 19 ms. Words are 

transmitted at a rate of 66.6 microseconds/ 

word. This disk was replaced by a 1302 

Model 2 disk on January 12, 1965, but be­

cause of the way it was used its character­

istics remained practically the same as the 

1301-2 for the period of the monitoring. 

The 1302-2 has a capacity of 40,000 tracks. 

A 466 word track size was used (half capa­

city} to maintain system continuity while 



new system programs were developed. The 

drum has a capacity of 186,400 words (400 

tracks). Reading heads are switched elec­

tronically so that the average access time 

is just the average rotational delay, 8.6 ms. 

The transmission rate is approximately 30 

microseconds/word. 

e. IBM 7750 Transmission Control - a stored 

program computer used to coordinate input­

output through a telephone switchboard to 

user•s consoles, IBM 1050 1 s and Teletype 

Model 35•s. Both of these units type out­

put at approximately 10 characters per sec­

ond, including the timing for carriage 

returns. 

f. Disk and Drum Channel and File Control -

Same as Channel D. 

g. High Speed Drum Channel and File Control -

A model 7320A drum is used with a capacity 

of 208,6o8 words, access time of 8.6 ms. 

average, and transmission rate of approxi­

mately 9 microseconds/word. On the install­

ation of this channel (September 14, 1964), 

Channel F was removed and its disk and drum 

files were placed on Channel D. The 1302 



Model 2 replaced both 1301-2 disks on 

January 12, 1965. 

The almost 20 million words (40,000 tracks) of disk 

file storage are primarily for the use of the approximate­

ly 300 CTSS users at Project MAC. Each user is allotted 

between 50 and about 1000 tracks of space for his own use. 

Typically, a user's tracks will contain files of source 

decks of programs in MAD, FAP, FORTRAN, etc., binary decks 

ready for the conventional BSS loader, data files, core­

images, etc. A core-image is an exact copy of the contents 

of the core memory after a program has been loaded, linked, 

and possibly run, along with the status of the CPU. The 

core-image is only as long as it has to be; unused cells 

are not saved. The CTSS Supervisory Program has an area 

on the disk which is used to hold the core-images of nearly 

80 command programs, a library for the BSS loader, etc. 

Drum storage is used to hold core-images of user pro­

grams queued for execution. When a user's program is select­

ed for running, it is transfered from the drum to Core B. 

The core-image previously in Core B is dumped to the drum. 

However, only the CPU status and enough of the old core­

image to make room for the new one is placed on the drum. 

All core-images are always loaded into Core B starting 

at the first location, thus there will never be more than 

one complete core-image in Core B at a time. Other core-
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images, as many as four, may be split between Core B and 

drum storage. This process of dumping and loading user 1 s 

programs is called "swapping". 
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2. The CTSS Software 

Users are assigned one of six internal states: 

O Dead. User has no core-image on the drum and 

is not waiting for service. 

1 Dormant. User has a core-image on the drum, but 

is not waiting for service. 

2 Working. User has a core-image and is being serv­

ed. That is, his program is either being run by 

the CPU or it is in the queues waiting for service. 

3 Waiting Command. User has no core-image and is 

waiting to be given service for the first time. 

A core-image will be obtained from the disk and 

when loaded, the user•s status will be changed 

to "Working". 

4 Input Wait. The user•s program required console 

input. The core-image is on the drum, and the 

user is no longer in the queues. Upon completion 

of a line of input, the user is placed back into 

the Working state. 

5 output Wait. The user•s program has filled its 

console output buffers and attempted to add more. 

After the buffer empties to a certain point, the 

user is returned to the Working status and further 

output can occur. While a user•s program is in 
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output Wait, the core-image is on the drum, and 

the user is no longer in the queues. 

The difference between the Dead and Dormant states 

is simply whether or not a user is left with a core-image 

after a command program finishes. Most commands finish 

in the Dead status. However, commands for the loading, 

linking, and running of BSS files leave a core-image. 

This is done so that post-mortems, traces, etc. may be 

initiated. In addition, any program can be stopped by 

the user from his console by typing a special character 

sequence. This action, called a 11 quit", puts the program 

into Dormant. It may be restarted at any time by the 

appropriate command. A core-image may be saved on the 

disk in a permanent file and then restored at a later time 

by the appropriate sequence of commands. 

Swapping and the use of the CPU are non-overlapped 

in the version of CTSS studied. During either of these 

activities, control is returned to the Supervisor via 

traps for various reasons. Every ~ a character is re­

ceived at the 7750 from a console, the 7750 channel traps 

the 7094 CPU. The input character along with a source 

identification is immediately transmitted to Core A, with 

no processing being done. Every 200 milliseconds a clock 

trap occurs. At this time all input characters received 
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since the previous clock trap are sorted by user and 

appended to the corresponding input line. Any user sta­

tus changes brought about by the completion of an input 

line are communicated to the Scheduling Algorithm. out­

put from programs is handled in much the same way except 

that the buffering is in the 7750. 

Whenever the Scheduling Algorithm determines that a 

user•s program is to be stopped or pre-emp~ed, the swapp­

ing procedure is started. Priorities are assigned user 1 s 

programs on the basis of length and previous running time. 

In order to keep efficiency up~ longer programs are given 

slightly less priority because they require longer swapp­

ing time. Icnger programs, :when thq finally are to run, 

are usually allowed a longer period of CPU time. In more 

detail, the Scheduling Algorithm ha• nine queues in :which 

users wait. These queues are ordered; the zeroth queue 

has the highest priority, the eighth, .the lowest. When 

users enter the Command Wait status from Dormant via a 

command, a queue assignment is made basedcon the size of 

the command core-image. If the memory bOllnd is greater 

than 4096, queue number three is assigned, otherwise queue 

number two. The next user to run is always selected from 

the highest priority, non-empty queue. If a user remains 

in the same queue for more than 6o seconds without being 

run, he is moved to the end of the next higher priority 
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queue. 

A user is normally allowed a burst of CPU time equal 

to .5 seconds multiplied by 2 to the power of the user's 

queue number. Thus, a user of level 3 would normally run 

for (.5)(2)(2)(2) = 4 seconds. If a user exceeds this 

time while running, he is removed from his present queue 

and placed at the end of the next lower priority one. A 

user is pre-empted, that is, another user will be swapped 

in, if the current user is no longer the first user in 

the queues, and he has run as long as the new first user 

will run, computing the burst as above. When a user re­

turns to the Working status from Input or output Wait, his 

queue number is re-computed by size as above, but it re­

mains the same if it is already as good as or better than 

queue 2. If a user goes from Dormant to Working vis a 

program generated "sleeping period", the old priority level 

is used. If a program generated command is encountered, 

the new queue is either the old one or is computed by size, 

whichever yields the lower priority. A listing of the 

Scheduling Algorithm appears below. 
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SCDA R********** TIME SHARING SCHEDULING ALGORITHM **************** 
R T. HASTINGS AND R. DALEY 
R 
R THE SCHEDULING ALGORITHM PERFORMS THE FOLLOWING FUNCTIONS 
R 
R 1. DETERMINES WHICH USER IS TO RUN NEXT 
R 2. DETERMINES WHEN NEXT USER IS TO RUN 
R 3. DETERMINES HOW LONG NEXT USER IS TO RUN 
R 4. CHARGES USERS FOR SWAPPING AND RUNNING TIME 
R 5. KEEPS TRACK OF THE STATUS OF EACH USER 
R 
R THE SCHEDULING ALGORITHM IS CALLED FROM THE SUPERVISOR BY 
R EXECUTE SCHED.CEVENT, USER, ARG) 
R AFTER ALL TRAPS HAVE BEEN DISABLED 
R 'USER' IS BETWEEN 0 AND THE MAX. NO. OF USERS, 'MXUSR 
R THE SIGNIFICANCE OF 'USER' AND 1 ARG' DEPEND ON 'EVENT' 
R OR ARE MEANINGLESS AS DESCRIBED BELOW 
R 'EVENT' DESCRIPTION 
R 0 INITIALIZATION OF SCHED. 
R 1 CLOCK INTERRUPT 
R 2 'USER' HAS CHANGED TO STATE 'ARG' 
R 3 BEGINNING OF SAVING 'USER' CORE IMAGE 
R 4 BEGINNING OF RESTORING 'USER' CORE IMAGE 
R 5 'USER' BEGINS RUNNING, AFTER SWAP 
R 6 'USER' CORE IMAGE NOW HAS LENGTH 1 ARG' 
R 7 OPERATOR SET BACKGROUND KEYS TO 'ARG' 
R 8 'USER' LOGGED IN, 'ARG 1 IS LINE MULTIPLIER 
R 9 I USER I LOGGED OUT 
R 10 IS 'NEWUSR' STILL RUNABLE 
R 11 'USER' DIALED UP COMPUTER 
R 
R TO CLARIFY THE ORDER IN WHICH EVENTS HAPPEN, BLOCKS 
R OF CODING BRACKETED BY COMMENTS HAVE BEEN PLACED IN 
R TYPICAL ORDER OF EXECUTION FOR A COMMAND 
R ALL TIME IS KEPT IN SIXTIETHS OF A SECOND AND VARIABLES 
R ENDING WITH 'TIM' ARE TIMES SINCE SYSTEM WAS 
R LOADED WITH THE EXCEPTION OF 'SYSTIM' 
R StHED. HAS SOLE RESPONSIBILITY GOR SETTING AND CHANGING 
R THE FOLLOWING COMMON ARRAYS AND VARIALBES 
R 
R THE FOLLOWING COMMON ARRAYS ARE USED 
R 'STATUS' - THE STATUS OF EACH USER 
R WHERE STATUS(J) MAY BE 
R 0 DEAD - NOT WAITING TO RUN AND NO CORE IMAGE 
R 1 DORMNT - NOT WAITING TO RUN 
R 2 WORKING - WAITING IN QUEUES OR RUNNING 
R 3 WAITING COMMAND - WAITING IN QUEUES FOR COM. 
R 4 INPUT WAIT - PROGRAM WAITING FOR INPUT 
R 5 OUTPUT WAIT - OUTPUT BUFFERS FILLED 
R 'LENGTH' - LENGTH OF USER CORE IMAGE IN WORDS 
R 'LEVEL' - USER'S PRIORITY LEVELCO, ... , 'MAXLVL') 
R 'TIMLEV' - ELAPSED TIME RUN AT CURRENT LEVEL 
R 1 \~ATTIM' - THE LAST TIME THAT A USER BEGAN TO WAIT 
R 'LINMUL' - USER LINE MULTIPLIER 
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R 1 PLIST' - THE POSITION LIST SPECIFIES THE POSITIONS 
R OF THE USERS WHICH ARE IN THE WORKING QUEUE 
R 'ULIST' - THE USER LIST INDICATES THE USER NUMBERS 
R WHICH CORRESPOND TO THESE QUEUE POSITIONS 
R 'ENDPTR' - ENOPTR(J) IS ENO OF QUEUE J IN PLIST 
R 'NOTIME' - NOTIME(J) IS SET TO 2 IF USER INACTIVE 
R ANO USER J WILL SUBSEQUENTLY BE LOGGED OUT 
R 
R THE FOLLOWING COMMON VARIABLES ARE USED 
R 1 MXUSRS 1 - MAX. NO. OF FOREGROUND USERS 
R 'CURUSR' - CURRENT USER, RUNNING OR SWAPPING 
R 'OLDUSR 1 - LAST USER TO BE RUN, WHEN 'SWAP' .NE. 0 
R 'NEWUSR' - NEXT USER TO BE RUN, WHEN 'SWAP' .NE. 0 
R 'PAYUSR' - THE USER CURRENTLY PAYING FOR TIME 
R 'SYSTIM' - TIME SYSTEM WAS INITIALIZED 
R 'BEGTIM' - THE LAST TIME 'CURUSR' BEGAN TO RUN 
R 1 QUANTM 1 - MAXIMUM RUNNING TIME AT LEVEL 0 
R 1 MAXTIM' - USER RUNS AT SAME LEVEL UNTIL 'MAXTIM' 
R 1 TBASE' - BASE TIME FOR COMPUTING 'MAXTIM' 
R 'PAYTIM' - LAST TIME A USER WAS CHARGED FOR TIME 
R 1 LEVTIM' - LAST TIME 'CURUSR' WAS RUNNING AT CURRENT LEVEL 
R 'SWAP' - NON-ZERO REQUESTS SUPERVISOR TO RUN 
R 'NEWUSR 1 AS SOON AS IT CAN 
R 1 MAXLVL' - THE MAXIMUM PRIORITY LEVELCO ••• 'MAXLVL 1

) 

R 1MINLVL 1 - THE MINIMUM PRIORITY LEVEL ALLOWED 
R 'FULLVL' - INIT. LEVEL FOR 'FULLEN' TO FULL CORE USER 
R 1 EMPLVL 1 - INITIAL LEVEL FOR EMPTY CORE USER 
R 'FULLEN' - LENGTH FOR ENTRY AT LEVEL 1 FULLVL 1 

R 'PB 1 - GUARANTEED PERCENTAGE FOR BACKGROUND 
R 'QNTWAT 1 - QUANTM WAITING TIME BEFORE LEVEL CHANGE 
R TO NEXT HIGHEST PRIORITY LEVEL 
R 1 LEVINC 1 - AMOUNT PRIORITY LEVEL JS INCREASED WHEN 
R USER RETURNS TO \r«JRKING FROM INPUT OR OUTPUT WAIT 
R 'INACTV' - MAX. TIME INACTIVE BEFORE LOGOUT 
R 'HANGUP' - MAX. TIME BEFORE INACTIVE LINE IS HUNGUP 
R 
R COMMON VARIABLES REFERRED TO BY SCHED. BUT 
R NOT SET OR CHANGED BY SCHED. 
R 1 BKGTIM 1 - TOTAL TIME BAtKGROUND HAS RUN 
R 1 SWPSW' - NON-ZERO WHEN SUPERVISOR IS SWAPPING AND 
R COMMAND LOADING 
R 1 PROBN(J) 1 - NON-ZERO WHEN USER J IS LOGGED IN 
R 'AOOPTCJ) 1 

·- PROBN(J) .ANO. AOOPT(J) .E. lB, TJ.iEN 
R USER J IS ADOPTED 
R 
R SCHED. CALLS THE FOLLOWING SUBROUTINES 
R INITQ. - INITIALIZES QUEUES 
R HEDUSR. - RETURNS THE HEAD OF QUEUE USER 

.R AT HIGHEST NON-EMPTY PRIORITY LEVEL OR 0 
R OEL~UE.(J) - DELETES USER J FROM QUEUES 
R ENDQUE.(J) - PLACES USER J AT END OF QUEUE LEVEL(J) 
R BEGQUE.(J) - PLACES USER J AT BEG OF QUEUE LEVEL(J) 
R ILOG2.(N) - RETURNS INTEGER PART OF LOG TO BASE 2 N 
R I.CJ) - CONVERTS FORWARD INDEX 'J' TO BACKWARD 
R INDEX FOR REFERRING TO MAO ARRAYS 
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INIT1M. - INITIALIZE TIME ACCOUNTING 
INTIM. - USER 'U' LOGGED IN 
OUTIM. - USER 'U' LOGGED OUT 
CHARGE.CU,T) - CHARGE USER 'U' FOR TIME 'T' 
GETOTL. - RETURNS THE TOTAL TIME SYSTEM HAS RUN 
DELTIM.CT) - RETURNS DELTA 'T' - THE DIFFERENCE 

BETWEEN 'GETOTL.() 1 AND TIME 'T' 
TIME 'T' IS ALSO SET TO GETOTL,(0) 

R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 
R 

CURTIM.(0) - RETURNS THE CURRENT TIME SINCE MIDNIGHT 
OF DAY SYSTEM WAS INITIALIZED 

MONSCl,(EVENT, USER, ARG) MONITORS SCHED. 
MONSC2, IS CALLED WHEN SCHED. CHANGES COMMON 
PLOTl.CEVENT, USER, ARG) PLOTS SYSTEM ON ESL SCOPE 
PLOT2. IS CALLED WliEN SCHED. CHANGED COMMON 

EXTERNAL FUNCTION(A, B, C) 
ENTRY TO SCHED. 
NORMAL MODE IS INTEGER 

R 
R, • 
R, • 
R, • 

SHORTEN LINKAGE, SETUP USER INDEX, CALL MONITORING SUB., 
CALL PLOTTING ROUTINE 
ASSUME COMMON WILL BE CHANGED, AND DISPATCH ON 'EVENT' 

R 

R 

EVENT = A 
USR = B 
IUSER = I .CUSR) 
ARG ,. C 
EXECUTE MONSCl,(EVENT, USR, ARG) 
EXECUTE PLOTl.CEVENT, USR, ARG) 
MONITR = CHANGE 
STATEMENT LABEL MONITR, RETURN, CHANGE 
TRANSFER TO EVNTCEVENT) 

R .. 'EVENT' ,E, O, INITIALIZE SCHEDULING ALGORITHM 
R,. INITIALIZE INDEPENDENT COMMON VARIABLES 

R 

MXUSRS 31 
MAXLVL = 8 
MINLVL 0 
FULLVL • 3 
EMPLVL = 2 
FULLEN = ~096 
PB = 0 
QNTWAT • 3600 
LEVINC '" 0 
QUANTM = 30 
TBASE = 0 
INACTV = 216000 
HANGUP • 7200 

R,, INITIALIZE QUEUES AND TIME ACCOUNTING 
EXECUTE INITQ. 
EXECUTE INITIM. 

R 
R,, INITIALIZE TABLES 

THROUGH JLOOP, FOR J = O, 1, J .G, UMAX 

FOR N USERS 



JUSER = I ,CJ) 
JLOOP LINMULCJUSER) = 1 

R 
R.. SET BACKGROUNDCUSER 0) TO RUN 
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R.. USER 0 IS ALWAYS IMPLICITLY AT END OF QUEUES 
SYSTIM • CURTIM,(0) 
STATUSCl.CO)) • 2 
SWAP • 18 
FIRST3 • 18 
BGMAX .. 180 
TRANSFER TO CHANGE 

R 
R •• 'EVENT' .E. 1, CLOCK INTERRUPT 
R.. ASSUME COMMON WILL NOT BE CHANGED 

EVNT(l) MONITR = RETURN 
ICUR = l.CCURUSR) 
T = GETOTL.CO) 

R •• DO THE FOLLOWING CHECKING EVERY 10 SECONDS 
R.. CHARGE PAYING USER FOR TIME 
R.. MOVE LONG WAITING USERS UP IN PRIORITY 
R.. ALSO LOGOUT INACTIVE USERS 
R.. AND HANGUP INACTIVE LINES 

WHENEVER T .G. CHECKT 
CHECKT = T + 600 
EXECUTE CHARGE,(PAYUSR, DELTIM.CPAYTIM)) 
THROUGH KLOOP, FOR K = 1, 1, K .G. UMAX 

WHENEVER K .E. CURUSR, TRANSFER TO KLOOP 
KUSER = I .CK) 
DELT = T - WATTIMCKUSER) 
WHENEVER STATUSCKUSER) .E. 3 .OR, STATUSCKUSER) .E. 2 

WHENEVER DELT .G. QNTWAT .AND. LEVEL(KUSER) .G. MINLVL 
MONITR = CHANGE 
EXECUTE DELQUE.(K) 
LEVELCKUSER) = LEVEL(KUSER) - 1 
EXECUTE ENDQUE.(K) 
WATTIM(KUSER) = T 
TIMLEVCKUSER) = 0 

END OF CONDITIONAL 
OR \'/HEN EVER PROBN C KUSER) , NE. 0 

WHENEVER DELT .G. INACTV .AND. LINENOCKUSER) .E. 0 
MONITR = CHANGE 
NOTIMECKUSER) • 2 
WATTIM(KUSER) = T 

END OF CONDITIONAL 
OTHERWISE 

\llHENEVER DELT ,G, HANGUP ,AND. ADOPTCKUSER) .E. 0 
MONITR = CHANGE 
NOTIME(KUSER) = 4 
WATTIMCKUSER) = T 

END OF CONDITIONAL 
END OF CONDITIONAL 

KLOOP CONTINUE 
END OF CONDITIONAL 

R 
R.. MOVE LONG RUNNING 'CURUSR' DOWN IN PRIORITY 
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WHENEVER CURUSR ,NE. 0 .AND. T .G. MAXTIM 
1 .AND. ,NOT, SWAP 

MONITR • CHANGE 
EXECUTE DELQUE.CCURUSR) 
WHENEVER LEVELCICUR) .L. MAXLVL, 

1 LEVELCICUR) = LEVELCICUR) + 1 

R 

EXECUTE ENDQUE.(CURUSR) 
LEVTIM = T 
TIMLEVCICUR) = 0 
MAXTIM = T + TRUN.CCURUSR, LEVELCICUR)) 

END OF CONDITIONAL 
TRANSFER TO DECIDE 

R,. 'EVENT' .E. 6, 1 USR 1
(

1 1USER 1
) CORE IS OF LENGTH 'ARG' 

R.. JUST BEFORE ENTERING WAITING COMMAND 
R.. OR LENGTH CHANGED WHILE RUNNING 

EVNTC6) LENGTHCIUSER) = ARG 
WHENEVER USR .E. CURUSR 

LEV • LEVELF.CLENGTHCIUSER)) 
WHENEVER LEV .G. LEVELCIUSER), 

1 MAXTIM • BEGTIM + TRUN,(CURUSR, LEV) - TIMLEVCIUSER) 
END OF CONDITIONAL 
TRANSFER TO CHANGE 

R 
R •• 'EVENT' .E. 2, 'USR'C'IUSER') CHANGED STATE 
R,, DISPATCH ON NEW STATE, IGNORE REDUNDANT TR~NSITIONS 

EVNT(2) WHENEVER USR .NE. O, TRANSFER TO STATCARG) 
TRANSFER TO RETURN 

R 
R., 'USR'C'IUSER') BEGAN WAITING FOR A COMMAND 

STAT(3) LEV= LEVELF.CLENGTHCIUSER)) 
WHENEVER STATUS(IUSER) .E, 2 ,OR, STATUS(IUSER) .E. 3 

WHENEVER LEV .G. LEVEL(IUSER) 
EXECUTE DELQUE.CUSR) 
TRANSFER TO COMAND 

END OF CONDTIONAL 
OTHERWISE 

COMAND LEVEL(IUSER) = LEV 

R 

EXECUTE ENDQUE.CUSR) 
TIMLEVCIUSER) = 0 
WATTIM(IUSER) = GETOTL.(0) 

END OF CONDITIONAL 
STATUSCIUSER) = 3 
TRANSFER TO DECIDE 

R .. 'EVENT' .E. 10, IS 'NEWUSR' STILL RUNABLE 
EVNTClO) WHENEVER STATUSCl.CNEWUSR)) .E. 2 

1 .OR, STATUSCl.CNEWUSR)) .E. 3, TRANSFER TO RETURN 
SWAP = OB 
TRANSFER TO DECIDE 

R 
R,, THE NEXT THREE EVENTS ALWAYS OCCUR IN SEQUENCE 
R,, WHEN CONTROL IS TRANSFERRED FROM 'OLDUSR' TO 1 NEWUSR 1 

R.. AS A RESULT OF 'SWAP' BEING SET NON-ZERO. 
R,, 'OLDUSR 1 DOES NOT PAY FOR HIS DUMP, UNLESS 
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R. • 'NEWUSR 1 IS OF EQUAL OR LOWER PR I OR I TY. 
R •• 1 NEWUSR 1 ALWAYS PAYS FOR BEING RESTORED EXCEPT 
R.. BACKGROUND NEVER PAYS FOR OUMP·OR RESTORE. 
R 
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R •• 'EVENT' .E. 3, SAVING Of 'USR 1 ( 1 1USER 1 ) IS BEGINNING 
R.. EVENT 3 MAY BE CALLEO FOR ANY OF THE FOLLOWING: 
R 1. FREEING UP CORE B BECAUSE 1 CURUSR 1 EXTENDED SIZE 
R 2. FREEING UP CORE A ORUM BUFFERS FOR SWAPPING 
R 3. DUMPING 'OLOUSR' 
R ~. DUMPING OTHER USERS TO MAKE ROOM FOR 'NEWUSR' 

BOOLEAN SWPSW, FIRST3, OMPOLO, SWAP 
EVNT(3) WHENEVER SWPSW 

WHENEVER FIRST3 
FIRST3 • OB 
EXECUTE CHARGE.CPAYUSR, DELTIM.CPAYTIM)) 
WHENEVER LEVELCl.(NEWUSR)) .GE. LEVELCl.COLDUSR)) 

1 .ANO. OLDUSR .NE. 0 .OR. NEWUSR .E. 0 
PAYUSR • OLDUSR 

OTHERWISE 
PAYUSR • NEWUSR 

ENO OF CONDITIONAL 
TIMLEV(l.COLOUSR)) • TIMLEVCl.COLDUSR)) + OELTIM.CLEVTIM) 

OTHERWISE 
EXECUTE CHRGSW. 
WHENEVER USR .E. OLOUSR 

DMPOLD • lB 
OR WHENEVER DMPOLD .ANO. USR .NE. OLDUSR 

1 .AND. NEWUSR .NE. 0 
PAYUSR • NEWUSR 

ENO OF CONDITIONAL 
END OF CONDITIONAL 

ENO OF CONDITIONAL 
TRANSFER TO CHANGE 

R 
R •• 'EVENT' .E. 4, RESTORING OF 1 NEWUSR' IS BEGINNING 

EVNT(4) EXECUTE CHRGSW. 
WHENEVER NEWUSR .E. 0 

PAYUSR • OLDUSR 
OTHERWISE 

PAYUSR • NEWUSR 
END OF CONDITIONAL 
WHENEVER STATUSCl.(OLDUSR}) .E. 2, 

1 WATTIMCl.COLOUSR)) • GETOTL.(0) 
CURUSR • NEWUSR 
TRANSFER TO CHANGE 

R 
R •• 'EVENT' .E. 5, 'NEWUSR' BEGINS RUNNING AFTER RESTORE 

EVNT(5) EXECUTE CHARGE.CPAYUSR, DELTIM.CPAYTIM)) 
PAYUSR • NEWUSR 
WHENEVER STATUSCl.CNEWUSR)) .E. 3, STATUSCl.CNEWUSR)) • 2 
BEGTIM • GETOTL.(0) 
LEVTIM • BEGTIM 
MAXTIM • BEGTIM + TRUN.CNEWUSR, LEVELCl.CNEWUSR))) 

1 •TIMLEV(l.(NEWUSR)) 
SWAP • OB 
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FIRST3 • lB 
DMPOLO " OB 
TRANSFER TO DECIDE 

R,. 1 USR'C'IUSER') ENTERED INPUT WAIT 
STATC4) WHENEVER STATUS(IUSER) ,E, 2 

EXECUTE DELQUE,(USR) 
STATUSCIUSER> = 4 
TRANSFER TO DECIDE 

END OF CONDITIONAL 
TRANSFER TO RETURN 

R 
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R.. 1 USR'C'IUSER 1
) TO BEGIN WORKING AFTER 1/0 WAITING 

R,, OR ALARM CLOCK RETURN FROM DORMANT TO WORKING 
STATC2) WHENEVER STATUS(IUSER) ,GE, 4 ,OR, STATUS(IUSER) ,E, 1 

WHENEVER STATUSCIUSER) ,NE, 1 
WHENEVER LEVELCIUSER) - LEVINC ,GE, MINLVL, 

l LEVELCIUSER) • LEVELCIUSER) - LEVINC 
LEV= LEVELF.CLENGTHCIUSER)) 
WHENEVER LEV .L. LEVELCIUSER), LEVELCIUSER) =LEV 
TIMLEVCIUSER) = 0 

END OF CONDITIONAL 
EXECUTE ENDQUE.(USR) 
WATTIM(IUSER) = GETOTL,(0) 
STATUSCIUSER) = 2 
TRANSFER TO DECIDE 

END OF CONDITIONAL 
TRANSFER TO RETURN 

R 
R,, 'USR'C'IUSER') ENTERED OUTPUT WAIT 

STATC5) WHENEVER STATUS(IUSER) .E, 2 
EXECUTE DELQUE.CUSR) 
STATUSCIUSER) = 5 
TRANSFER TO DECIDE 

END OF CONDITIONAL 
TRANSFER TO RETURN 

R 
R,, 'USR'C'IUSER') WENT DORMANT WHILE RUNNING 
R,, OR PUSHED QUIT BUTTON 

STAT(l) EXECUTE DELQUE,CUSR) 
STATUS(IUSER) = l 

R 

WHENEVER USR .E. CURUSR, TRANSFER TO DECIDE 
TRANSFER TO CHANGE 

R.. 'USR'C'IUSER') WENT DEAD, EVENT 6 WILL NOT OCCUR 
STAT(O) EXECUTE DELQUE,(USR) 

STATUS(IUSER) = 0 
TRANSFER TO DECIDE 

R 
R.. I EVENT I • E. 7, OPERATOR SET KEYS TO I ARG I 

EVNT(7) KEYS = ARG 
BACKGR = ARG 
TRANSFER TO DECIDE 

R 
R •• 'EVENT' .E. 8, 'USR 1

(
1 1USER 1 ) LOGGED IN PROPERLY 
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EVNT(8) LINMULCIUSER) = ARG 
EXECUTE INTIM,(USR) 
TRANSFER TO CHANGE 

R 
R .. 'EVENT' .E, 9, 'USR'C'IUSER') LOGGED OUT 

EVNT(~) EXECUTE OUTTIM,CUSR) 
TRANSFER TO CHANGE 

R 
R,. 'EVENT' ,E, 11, 1 USR 1 

( 
1 IUSER') DIALED UP COMPUTER 

EVNT(ll) WATTIM(IUSER) • GETOTL,(0) 

DECIDE 

CHANGE 

RETURN 

NOTIMECIUSER) = 0 
TRANSFER TO CHANGE 

R 
R,, COMMON EXIT FROM SCHED, 
R., DECIDE IF IT IS TIME TO RUN A NEW USER 
R 
R,. NO DECISION WHILE SWAPPING 

WHENEVER SWAP, TRANSFER TO MONITR 
R 
R,, CHECK IF BACKGROUND NOT MEETING GUARANTEED PERCENTAGE 

WHENEVER BKGTIM ,L, (PB/100,) * GETOTL,(0) 
1 .AND, CURUSR ,NE, O, BAr.KGR = 1 
U = HEDUSR,(0) 
WHENEVER BACKGR ,NE, 0 ,OR, KEYS ,NE, 0 , U = 0 

R 
R., RUN USER 1 U1 IF 'CURUSR' HAS RUN AS LONG AS 'U' WOULD 

WHENEVER U ,NE, CURUSR ,AND, 
1 (PREMPT,(TRUN,CU, LEVELCl,(U)))) ,OR, CURUSR ,E, 0) 
2 ,OR, STATUS(l,CCURUSR)) ,NE, 2 ,OR, BACKGR .NE. 0 

MONITR = CHANGE 
SWAP = lB 
NEWUSR = U 
OLDUSR = CURUSR 
BACKGR = 0 

END OF CONDITIONAL 
R 
R,, CALL MONSC2, IF COMMON CHANGED, ELSE JUST RETURN 

TRANSFER TO MONITR 

R 
R 

EXECUTE MONSC2, 
EXECUTE PLOT2. 
FUNCTION RETURN 

R.. INTERNAL FUNCTIONS 
R,, 'TRUN 1 - COMPUTES RUN TIME FOR USER 1 DU 1 AT LEVEL 'DL' 

INTERNAL FUNCTION TRUN,CDU, DL) = 
1 TBASE + LINMUL(l,(DU)) * QUANTM * 2 ,P, DL 
R 
R,, 'LEVELF' - COMPUTE PRIORITY LEVEL BASED ON LENGTH 'LEN' 

INTERNAL FUNCTIONCLEN) 
ENTRY TO LEVELF. 
WHENEVER LEN .GE. FULLEN 

L = FULLVL 
OTHERWISE 

L = EMPLVL + ILOG2.CLEN/(FULLEN/(2 ,P, CFULLVL-EMPLVL)))) 
END OF CONDITIONAL 



R 

FUNCTION RETURN l 
END OF FUNCTION 
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R.. 'PREMPT' - IS TRUE IF PREMPTION IS PERMITTED 
R.. BASED ON TIME INTERRUPTER WI LL RUN 1 1NTRUN 1 

BOOLEAN PREMPT. 
INTERNAL FUNCTION PREMPT.CINTRUN) = 

1 INTRUN .L. GETOTL.(0) - BEGTIM 
R 
R •• SUBROUTINE TO CHARGE SWAPPING TIME 
R,. FOREGROUND PAYS FOR BACKGROUND SWAP UP TO 3 SECONDS 

R 
R 

INTERNAL FUNCTION 
ENTRY TO CHRG SW, 
TDEL • DELTIM,(PAYTIM) 
WHENEVER OLDUSR .E. 0 .AND, TOEL .G. BGMAX 

EXECUTE CHARGE.CPAYUSR, BGMAX) 
EXECUTE CHARGE.CO, TDEL-BGMAX) 

OTHERWISE 
EXECUTE CHARGE.CPAYUSR, TDEL) 

END OF CONDITIONAL 
FUNCTION RETURN 
END OF FUN CT I ON 

INSERT FILE COMNlA 
END OF FUNCTION 
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APPENDIX B - ADDITIONAL CTSS DATA 

This appendix contains statistics describing console 

input-output and the internal states of users as well 

as the relative usage of the CTSS Commands. 

Table 2 shows the measured steady-state probabilities 

of a user console state (idle, input, or output) and of 

the internal states (Dead or Dormant, Working or Command, 

Wait, Input Wait, and Output Wait). For example, the 

probability of finding a user's console idle with an 

internal state of Dead or Dormant is .276 • The probab­

ility of an idle console (regardless of internal state) 

is .502 , etc. Table 3 shows the mean occupancy times 

for these states. 

Table 4 gives a list of each of the CTSS console 

commands, separated by task type with the relative usage 

in a sample of 110,050 commands. 



-
Console~ Internal Dead or Working or Input Output 

State State Dormant Command Wait Wait Wait 

Idle .276 .136 .090 0 

Input .057 .005 .119 0 

Output .114 .038 .059 .105 

TOTAL .448 .179 .268 .105 

TABLE 2 - Steady-State Probabilities 

TOTAL 

.502 

.182 

.316 

1.000 

~ 
w 
~ . 



Console~ Internal r Dead or Working or Input output 

~State State Dormant Command Wait Wait Wait 

Idle 36.8 8.6 11.7 --

Input 7.6 0.3 15.5 --

output 15.2 2.4 7.6 77.8 

TABLE 3 - Mean Occupancy Times (seconds) i....o 
w 
I'\) . 



Table 4: RELATIVE FR~UENCY OF COMMAND USAGE 

Conunands of Type 1 Commands of Type 2 Commands of Type 3 Commands of Type 4 
(File Manipulation) (Program Input and (Program Running (Compilation and 

Editing) and Debugging) Assembly) 

AR CHIV ,017 CTESTg ,001 CTESTl ,001 CTEST2 ,011 
CHMODE ,018 REVISE ,000 CTEST3 ,006 CTEST6 ,001 
COMB IN .011 INPUT .010 CTEST4 .002 CTEST8 ,000 
COMFil. .018 EDIT ,040 FAPDBG .005 DYNAMO .001 
CRUNCH .016 FILE .045 LOADGO ,031 MADTRN .010 
CTEST5 ,000 ED .045 MADBUG ,001 BEFAP .ooo 
CTEST7 ,000 TFILE .002 NCLOAD .003 BLODI .ooo 
DELETE .060 OCTPAT ,001 COMIT .ooo 
EXTBSS .001 Total .142 OCTTRA ,000 GPSS ,000 
PRINTF ,060 RESIDR .003 LISP .002 
REMARK .ooo LDABS .ooo AED .002 
RENAME .014 OCTLK .008 FAP .013 
RQUEST .017 PATCH .ooo MAD .037 

LISTF ,058 LOAD .009 OPL .ooo 
PRBIN .002 PM .006 SNOBOL .001 
PRBSS .oo~ TRA .ooo 
PRINT .01 USE .003 Total .086 

COPY .021 START .029 
LOG .ooo VLOAD .005 Commands of ~e 5 

SPLIT .002 SIDPAT .ooo (Miscellaneous 
UPDATE .010 STRACE .001 GEN COM ,000 UPDBSS .004 MODIFY .001 Total .114 RESUME .187 (includes R) Total .349 RUN COM .009 

RUNOFF .008 
DIT'ro .001 

Note: LOGIN, LOGOUT, etc, were not included MEMO ,000 
in these counts and account for .030 of the SD .004 
usage. SP .ooo 

SAVE .060 
TYPSET .009 

Total ,278 

I-' w w . 
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APPENDIX C - .!!!!, SIMUIATION PROGRAMMING SYSTEM 

This section describes a means for preparing and 

running programs to simulate digital computer systems. 

A language,, based on the Michigan Algorithm Decoder (MAD, 

see ARDEN, 1963) and scheme for organizing such programs 

is presented. The simulation language is ba.aed both on 

the way digital systems are organized and on the methods 

a designer uses to specify such a system. The organiza­

tion of the operating system for a s1.mu,J.e.tion is, explained 

and the specific implementations -are discussed. Finally~ 

this simulation programming syatea is COJllP&l"ecl to several 

other widely used ones. Examp1es and 1Di'02'11At1on required 

to use the system are also presented. 



1. Organization of !: Simulation 

The design of a large digital computer system is 

generally divided into several parts. For example, the 

memory system is usually not designed by the same people 

who design the instruction processing unit or the input/ 

output channels and devices. Moreover, the software and 

environment aspects fall into completely different pro­

vinces. Therefore, it is felt that this same modularity 

should be preserved in the specification of a simulation 

of such a system. Such an organization would have several 

advantages: (1) different people could independently 

specify the simulation programs for their modules, needing 

to work together only to the extent that the original de­

signers did (ideally, the designer of the module could 

also write the simulation program); (2) a change in the 

internal operation of one of the modules or elements in 

the simulation would not disturb the rest; (3) the tradi­

tional, well-known 9rganization of a digital computer sys­

tem can be maintained thereby increasing the understanda­

bility of the simulation program; etc. 

The place of the software parts of the system is clear 

in simulations with great detail: the programs are simply 

loaded into the memory simulation element and executed. 

However, in a less detailed simulation, the software f'unc­

tions can either be distributed among the various hardware 
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elements or, more naturally, be lumped into the control 

section of the simulated system. 

The specification of a program to simulate a large 

system is now reduced to the specification of the elements 

which comprise the system. Two factors must be defined 

in this specification: the series of events occurring 

within the element and the timing of these events with 

respect to events occurring in the remainder of the sys­

tem. Note that this problem is identical to the one faced 

by the original system designer. 

The implementation of this element specification as 

a module in a simulation program should involve nothing 

more than expressing the series of events and their timing 

in some convenient notation. Since most events within 

elements of a computer system require some computation, 

an algebraic programming language such as FORTRAN, MAD, 

etc. is sufficiently well-known and convenient to provide 

this capability. Communications with other elements with­

in an event could be accomplished by "sending" outputs 

from one element to another. Timing, then, depends on 

the occurrence of inputs, fixed time increments, variable 

increments and combinations of these. The element speci­

fication language to be developed incorporates communica­

tions with other elements and the definition of timing 

with a conventional algebraic language in a natural wa:y. 
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Translation in this language from the timing charts and 

flow diagrams of the hardware designer should th~n be as 

natural as that from software flow diagrams to an alge­

braic language. 

Looking at the simulation structure from an overall 

view, a digital system will be represented by a number of 

programs, one for each element of the system. Since the 

real elements operate simultaneously, their programs 

should at least appear to run simultaneously. Thus, ele­

ment specifications can be written as if they will be 

operating in parallel with the rest of the system, there­

by preserving the organizational relationships of the 

original system. 

The element specification language itself is an 

.augmented version of MAD. It includes all of the MAD 

declarations and statements plus additional statements for 

defining timing and communication. The translation to 

machine language is accomplished by a pre-processor and 

the normal MAD compiler. Element specifications become 

relocatable subroutines (in the usual sense}. The system 

is implemented for use on both CTSS and normally batch­

processed IBM 7090 1 s. 
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2. System Variables 

One of the factors of an element specification is 

the definition of its interconnection with other elements. 

For this purpos~ a special type of variable is introduced, 

the "system variable". As in real digital systems, ele­

ments may have inputs and outputs, an output originating 

from a single element and fanning out to one or more others. 

System variables must be referred to by the same name wher­

ever they are used and must be declared as either input 

or output system variables by each element specification 

in which they appear. Two statements are provided for 

the declaration of system variables: 

OUTPUT VARIABLES 'list' 

INPUT VARIABLES 1list 1 

where 'list' is a list of MAD variable names separated 

(1) 

(2) 

by commas. The mode (i.e., floating-point, integer, etc.) 

of a system variable may be declared at the programmer's 

option; however, it should be the same mode in all ele­

ments. A system variable may be an array; but if it is 

multidimensional, it must have the same dimension vector 

in every element in which it occurs. 

There are no restrictions on the naming of system 

variables other than those of the MAD compiler. Input 

system variables must not appear on the left side of a 
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substitution statement. Moreover. no system variable can 

be declared as an output of more than one element. In 

operation. whenever a MAD substitution statement having 

an output variable on the left side is executed. the new 

value is instantaneously transmitted to the elements 

where this system variable is an input. 
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3. Timing 2!_ Events 

As ~s previously stated, an event consists of 

communication, next event selection, and normal computa­

tion. By use of the system variable declarations and 

the statement repetoire of MAD these functions can be 

accomplished. 

Timing may be specified in two different types of 

statement. In every case, the last statement of one 

event and the first statement of the next are separated 

by a timing statement. First, the time between events 

may depend on the state of the element at the beginning 

of this delay. Such delays can be specified by either: 

DEIAY OF •expression• 

WAIT UNTIL •expression' 

(3) 

(4) 

where •expression• may be any legal MAD arithmetic ex­

pression. A statement of type (3) causes a delay between 

events equal to the value of •expression•. The type (4) 

statement causes a delay between events such that the 

event occurs when the value of simulation "time" reaches 

the value of 'expression•. Thus, simulation time is in­

cremented by the value of the delay as the delay statement 

is executed. Moreover, the state of the remainder of the 

elements in the simulation is brought "up to date" during 
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this execution. 

Alternately, the delay between events can depend on 

the time of the arrival of inputs from other elements. 

Such delays are specified by the following statement: 

WAIT FOR INPUT (5) 

where the delay is equal to the increment necessary to 

bring the simulation time up to the point of the next in­

put from another element. In dealing with elements which 

have many inputs from various sources, the following state­

ments are useful: 

WAIT FOR INPUT $•input variable name•$ (6) 

WAIT FOR INPUT FROM $•element name•$ (7) 

Statement type (6) causes a delay until the specified 

input variable is sent, type (7), until an input origin­

ates from the specified element. Neither (6) nor (7) 

have been implemented in the present system, but experience 

has indicated that they would be useful if available. 

Timing can be specified by combinations of the two basic 

types of delay statements. For example, 

WAIT FOR INPUT OR UNTIL •expression• (8) 

causes a delay until the time of the next input or until 

the point where simulation time reaches the value of 

•expression•, whichever occurs first. The statement 

WAIT FOR INPUT AND UNTIL •expression' (9) 
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causes a delay until the time of the next input or until 

the point where time equals •expression•, whichever occurs 

last. Similarly, the following statements are also allow­

ed: 

WAIT FOR INPUT OR DEIAY OF 1 expressicn 1 (10) 

WAIT FOR INPUT AND DELAY OF 'expression' (11) 

and their use is similar to that of (8) and (9). 



4. Element Specification-Form and Restrictions 

The first line (exclusive of comments) of an element 

specification defines the name of the element: 

ELEMENT 1name' (12) 

where •name• is any legal MAD variable name. At the start 

of the simulation, time zero, control passes to the state­

ment just after the element name defining statement (type 

12). Any desired initialization should be placed between 

this point and either the execution of the first delay 

statement or the first appearance of an output variable 

on the left side of a substitution statement. Also, all 

system variable declaration statements (types 1 and 2) 

must occur in this initialization segment and must not 

be placed in such a way as to cause them to be executed 

more than once. The last line of an element specification 

is: 

END OF SPECIFICATION (13) 

All lines following this statement will be ignored. 

In addition, there are two other items of importance. 

Any element specification may refer to a variable named 

"TIME" whose value is always the current value of simula­

tion time. The mode of TIME must be declared by the pro­

grammer (or left as normal mode). In any case, this mode 



(integer or floating-point) nrust be the same in every 

element in a sinrulation. Furthermore, care must be 
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taken that if the mode of TIME is integer, all expres­

sions in the delay statements (types 3 - ll) ~ be 

integer expressions and not of mixed mode. This restric­

tion is due to a foible of the MAD compiler. Care should 

be1ak.en that the smallest non-zero time increment used 

in a delay statement with floating-point TIME is never 

so small that it will be truncated when added to TIME. 

For integer time, TIME may go up to a 35 bit number if 

care is taken and up to a 27 bit number in any case. A 

second variable named "INPUT" is available. It is of 

the Boolean mode and its value is "lB" if and only if 

an input was received during the previous delay. That 

is, INPUT is reset to "OB" at the beginning of any de­

lay and set to "IB" on the arrival of any input. 

Element specifications are compiled in the form of 

MAD external functions. Internal functions containing 

delays, etc. may be used; but outside of an internal 

function definition,. no use should be made of the follow­

ing MAD statements: 

FUNCTION RETURN 

ENTRY TO •name•. 

END OF FUNCTION 

END OF PROGRAM 



Furthermore, should control pass to the •END OF SPECIFI­

CATION• statement or to a FUNCTION RETURN, the simulation 

will immediately stop. 

Diagnostic printouts from either the MAD pre-pro­

cessing program, the MAD compiler, or the simulation op­

erating system will occur in the event that an error occurs. 

Most of the restrictions are covered in this way. 

A final area of trouble is the use of output variable 

setting substitution statements as the last statement in 

a ''TIIBOUGH" loop. The exact reason for this problem is 

easily solved by making the last statement in such loops 

II CONTINUE" • 
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5. Examples of Element Specification 

The following are three examples of element specifi­

cation. They are fairly simple but serve to illustrate 

some of the features of the simulation language. 

1. Oscillator 

This element will have no inputs and a Boolean out­

put named 11 TRIG 11 which oscillates with a period of 10 • 

L 

ELEMENT OSC 
OUTPUT VARIABLES TRIG 
TRIG = OB 
DELAY OF 5. 
TRIG = • NOT. TRIG 
TRANSFER TO L 
BOOLEAN TRIG 
END OF SPECIFICATION 

first line. 
initialization. 
initialize TRIG. 
want half the period. 
change output. 
contirrue. 
mode declaration. 
last line. 

TIME, in the above element, is floating-point. 

2. Gated Oscillator 

This element is the same as in Example 1, except 

that it has a Boolean input, GATE, which, when lB causes 

the oscillator to start. When GATE is reset to OB , 

the oscillator will immediate1y stop and its output re­

turn to zero. 

ELEMENT GATOSC 
INPUT VARIABLES GATE initialization 
OUTPUT VARIABLES TRIG 

Ll TRIG = OB 
I2 WAIT FOR INPUT wait for GATE to come up 

WHENEVER .NOT.GATE, TRANSFER TO I2 
L3 WAIT FOR INPUT OR DELAY OF 5. wait half period or for 

WHENEVER INPUT, TRANSFER TO Ll GATE to come down. 
TRIG = .NOT.TRIG change output. 
TRANSFER TO L3 continue. 
BOOLEAN TRIGj GATE 
END OF SPECIFICATION 



The simplifying assumption is made that after GATE comes 

up the only input arriving will be GATE coming down. No­

tice that if the "OR" of the compound delay at L3 were 

made an "AND" the current output pulse would always be 

finished completely before the oscillator turned off. 

3. Memory 

The following element specification will sinrulate 

a 1000 word memory with an access time of 2 units. 

Assuming three inputs: 

ADDR 
MEMIN 
MEMJO 

-the memory address being referred to. 
-the word to be stored by the memory. 
-the "go" signal. Its value is zero for no 
action, positive to write a.nd negative to 
read. When it changes to non-zero, the 
other inputs are assumed to be set up. 

and two outputs: 

MEMOUT -the word being read out by the memory. 
MEMRDY -the ready signal from the memory. It 

is non-zero when ready. 

The element specification is: 
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ELEMENT MEM 
OUTPUT VARIABLES MEMOUT, MEMRDY 
INPUT VARIABLES ADDR, MEMIN,MEMGO 
MEMRDY = lB 

initialization. 

send fact that memory is ready. 
wait for the "go" signal. Ll WAIT FOR INPUT 

WHENEVER MEM10.E.O,TRANSFER TO 
MEMRDY = OB 
DEIAY OF 2 
WHENEVER MEMGO.G.O 

CONT(ADDR) = MEMIN 
OTHERWISE 

MEMOUT = CONT(ADDR) 
END OF CONDITIONAL 
MEMRDY = lB 

L2 WAIT FOR INPUT 
WHENEVER MEMJO.NE.O,TRANSFER TO 
TRANSFER TO Ll 

R 
R 

NORMAL MODE IS INTIDER 
BOOLEAN MEMRDY 
DIMENSION CONT(lOOO) 
END OF SPECIFICATION 

Ll if "go" zero, resume waiting. 
turn off r 

wait access time. 

if writing,put new contents in. 

if reading,output requested cell. 

send ready signal. 
interlock. Reception of ready 

L2 should cause go to drop. 
go back and wait for the 
next service request. 
remark card. 

dimension of memory size. 

Notice that if the "go" signal were to come up again 

immediately after the interlock, continuous memory opera­

tion would result. In this case the ready signal will stay 

up for zero time. This is sufficient because of the inter­

lock. TIME is used as an integer variable in this element. 

The problem of interlocking signals is sometimes 

complex both in real and simulated systems. To insure 

that an output is received at more than one place it is 

usually most convenient to have this output hold its value 

for a finite length of time (perhaps 1 unit). Interlock 

techniques are usually a matter of taste and several differ­

ent schemes are used in the element specifications shown. 
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6. The Sinrulation Operating System 

The sinrulation operating system is a group of 

programs which cause the element specification programs 

to appear as if they are being simultaneously executed. 

Since events occur in instants of time, the only real 

problem is with simultaneous events. Events not occurr­

ing at the same time are simply queued in the order of 

their occurrence a.nd sequentially executed. Events set 

to occur simultaneously are executed in an arbitrary, 

but not random, order. 

Basically the operation of the system is as follows 

(let n be the number of elements in the system): 

1. Let. j = 1 , let TIME = 0 • 

2. Enter the jth element at its entry point 

(just after the "ELEMENT 1name 111 statement. 

3. Control returns to the operating system via 

a. a system variable declaration statement. 

The name and location of the variable is 

added to the proper list and control is 

returned to the element at the point from 

which it came. 

b. a delay statement. The time for the next 

event, for this element, as specified by 

the delay statement, is placed in a list 
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of next-event times. If the element is 

waiting for an input, a notation is made. 

The location of the delay statement is 

recorded. The next operation is step 4. 

c. an output being sent error, the simulation 

is stopped. (At least one delay must pre­

cede the first "send11
• This is taken care 

of by the translator.) 

4. Let j 

step 2. 

j+l , if j is less than n , go to 

5. The list of next-event times is scanned for the 

lowest time. In case of duplicates, the first 

is used. If all elements are waiting for inputs, 

the simulation is stopped. TIME is incremented 

to the value of this nearest event. In case TIME 

is greater than this value, no change is made; 

i.e., a negative delay is made a zero delay. 

Control is now transferred to the point of the 

last delay in the element corresponding to this 

nearest event. 

6. Control is returned to the operating system via 

a. a system variable declaration statement 

or a FUNCTION RE'l'URN--error, simulation 

is stopped. 
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b. a delay statement. The time for the 

next event for this element, as specified 

by the delay statement, is placed in a 

list of next-event times. Notations are 

made of the location of the delay state­

ment, the type of delay, etc. The next 

operation is step 5. 

c. an output being sent. Checks are made to 

determine that this is a valid "send". A 

linear subscript is computed by taking 

the difference between the location origin­

ally declared and the location being sent. 

If the variable is not subscripted, the 

linear subscript Will be zero. The new 

value for the variable is sent to all ele­

ments. where it is an j.nput using the linear 

subscript. The status of any waiting ele­

ment receiving an input is appropriately 

changed. Control returns to the element 

at the point from which it came. 

The simulation operating program has the following entry 

points: 



MAIN99 

IN9999 

OUT999 

DELAY9 

WAIT99 

WVD999 

WAD999 

TIME99 

RESTRT 

TRACER 

STOP TR 

PRSTAT 
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-original entry to begin simulation. 

-entry to declare input variables. 

-entry to declare input variable. 

-simple delay entry. 

-simple "wait for input" entry. 

-"wait .2!. delay" entry. 

-"wait and delay" entry. 

-entry to return the value of TIME in the 

accumulator (for routines other than element 

specifications). 

-entry to restart the simulation at time zero. 

-entry to start the diagnostic trace.(see below) 

-entry to stop the diagnostic trace. (see below) 

-entry to print out the status of the simulation. 

(see below) 

Two features are added as an aid to debugging. First, 

there is an entry which prints the status of the simula­

tion. This information includes the name, location, value, 

source, and destinations for every system variable as well 

as the name, and status of every element. The status of 

an element is described by the location of the last delay, 

its type, and the time associated with it. This time is 

the value at which the delay is to end or, in the case of 

a simple wait, the value of TIME when it began. This status 
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can be printed by a call to "PRSTAT" at any point in the 

simulation except during the initialization period. The 

other debugging feature is the trace routine. The execu­

tion of every delay statement and the sending of every 

output variable (except those which have no destination) 

is noted by: the name of the element in which the state­

ment occurs, the location of this statement, the current 

value of TIME, and either the type of delay or the name, 

subscript, and value of the system variable being se-t. A 

trace may be started at any time after initialization and 

then stopped, restarted, etc. 

This simulation programming system has been in almost 

continuous use by the author and some others for approxi­

mately eighteen months and is free of errors. Aside from 

simulating time-shared systems, use has been made of this 

system for the simulation of a storage system, sequential 

logic circuits, etc • 

.. 
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The following pages contain listings of the element 

specifications used in the simulations. 
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ELEMENT MAIN 

R •• MAIN CONTROL ELEMENT FOR CTSS SIMULATION, 
R THIS ELEMENT SUPERVISES THE ENTRY OF PROGRAMS INTO ACTIVE 
R STATUS, CALLS THE SCHEDULING ALGORITHM FOR CLOCKED ENTRIES, 
R PROGRAM STATUS CHANGES,ETC,, SUPERVISES DUMPING AND LOADING 
R AND SIGNALS THE CONSOLES. THE VARIABLES USED ARE--
R STATUS,,,,STATUS OF PROGRAM (SAME AS IN SCHED.) 
R LENGTH.,,.LENGTH OF PROGRAMS 
R INTCYC,,,,NO, OF CYCLES TO END CURRENT INTERACTION, 
R SWAPGO,,,,SIGNAL TO STORAGE ALGORITHM TO BEGIN SWAP, VALUE 
R IS THE SIZE OF THE PROGRAM TO BE SWAPPED. SIGN IS 
R POSITIVE IF PRG ON DRUM, NEG. IF ON DISK, 
R OLDSTA •• ,,STATUS OF PROGRAM BEING DUMPED 
R NXTUSR,,,,NEXT USER TO BE RUN CNEWUSR) 
R NEWUSR •••• NEXT USER TO BE RUN 
R CURUSR., •• CURRENT USER 
R OLDUSR •••• USER BEING DUMPED 
R GO •••••••• SIGNAL FROM CONSOLE INDICATING INPUT FINISH. 
R RDY ••••••• SIGNAL TO CONSOLE INDICATING INPUT WAIT (IF 
R NEGATIVE) OR PROGRAM FINISH (IF POSITIVE). 
R SWPDON •••• SIGNAL FROM STO. ALG. INDICATING SWAP FINISH 
R CPUGO.,,,,START SIGNAL FOR CPU. 
R CPUBSY •••• BUSY SIGNAL FROM CPU 
R CYCDON •••• SIGNAL FROM CPU INDICATING NO, OF INSTRUCTIONS 
R EXECUTED. 
R 
R •• 1/0 VARIABLES. 

R 

OUTPUT VARIABLES CPUGO,SWAPGO,OLDSTA,NXTUSR,LSTUSR,RDY 
INPUT VARIABLES SWPDON,CPUBSY,GO,CYCDON 

R •• INITIALIZE SCHEDULING ALGORITHM, 
NC=NCONS,(0) 
EXECUTE SCHED.(0) 
EXECUTE SCHED.(6,0,32767) 
NXTIME=TIME 
SWPSW .. O 
THROUGH LO, FOR J=l,l,J,G,NC 
RDY(J)=l 

LO LINMUL(l,(J))=l 
R 
R •• MAIN TIMING LOOP. 

LOOP WAIT FOR INPUT OR UNTIL NXTIME 
R 
R SEE IF TIME FOR A CLOCKED ENTRY TO SCHED, 

R 

WHENEVER TIME,GE,NXTIME 
EXECUTE SCHED.(l) 
NXTIME•TIME+CLKINT 
WHENEVER ,NOT.INPUT .AND, SWAP.E.O, TRANSFER TO LOOP 

END OF CONDITIONAL 



R •• CHECK INPUT STATUS OF EACH CONSOLE. 
THROUGH Ll, FOR J=l,l,J.G.NC 

R 
WHENEVER GOCJ).NE.O 

WHENEVER STATUS (I. CJ)). E.4 
R USER IS COMING OUT OF INPUT WAIT, 

INTCYC(J)•CYCINT.(J) 
RDY(J)=O 
EXECUTE SCHED.(2,J,2) 

OR WHENEVER STATUS(l.(J)).LE,l 
R USER JUST FINISHED COMMAND. 

INTCYC(J)•CYCINT.CJ) 
EXECUTE SCHED.(6,J,PRGSIZ.(J)) 
RDY(J)=O 
EXECUTE SCHED.(2,J,3) 

END OF CONDITlONAL 
Ll END OF CONDITIONAL 

R 
R •• CHECK STATUS OF SWAP, IF GOING ON, 

WHENEVER .NOT.SWPDON, TRANSFER TO L2 
R •• SWAP FINISHED, SET SWITCHES, RESTART CPU. 

SWPSW=O 
SWAPGO=O 

LWl WAIT FOR INPUT 
WHENEVER SWPDON, TRANSFER TO L~ll 
WHENEVER CURUSR,E.O, TRANSFER TO L2 
CPUGO•INTCYCCCURUSR) 

LW2 WAIT FOR INPUT 

R 

WHENEVER .NOT.CPUBSY, TRANSFER TO LW2 
TRANSFER TO LOOP 

R •• SEE IF SWAP IN PROGRESS. 
L2 WHENEVER SWAP.E,O, TRANSFER TO L5 

WHENEVER SWAPGO .NE ,0, TRAN SF ER TO LOOP 
SWPSW=l 
WHENEVER OLDUSR.E,O, TRANSFER TO L3 

R •• STOP CPU SO SWAP CAN BEGIN. 
CPUGO•O 

LW3 WAIT FOR INPUT 
WHENEVER CPUBSY, TRANSFER TO LW3 
INTCYCCOLDUSR)=INTCYCCOLDUSR)-CYCDON 
WHENEVER I NTCYC (OLDUS R). LE. 0, I NTCYC ( OLDUS R) •l 

L3 WHENEVER STATUS(l.CNEWUSR)).E.3 

R 

SWAPGO=-LENGTH(l.(NEWUSR)) 
OTHERWISE 

SWAPGO=LENGTH(l,(NEWUSR)) 
END OF CONDITIONAL 
NXTUSR=NEWUSR 
LSTUSR=OLDUSR 
OLDSTA=STATUS(l.(OLDUSR)) 
TRANSFER TO LOOP 

R •• NOT SWAPPING, CHECK CPU. 
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L5 WHENEVER CURUSR.E.O .OR. CPUBSY, TRANSFER TO LOOP 
CPUGO•O 



LW4 

R 

PUBSY•lB 
EQUIVALENCE CCPUBSY,PUBSY) 
WAIT FOR INPUT 
WHENEVER CPUBSY, TRANSFER TO LW4 
INTCYC(CURUSR)•O 
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R •• SEE IF PROGRAM GOES DEAD, DORMANT, OR INTO 1/0 WAIT, 
TEM•CONSTA, ( 0) 
WHENEVER TEM,E,3 

INTCYC(CURUSR)•CYCINT,(0) 
EXECUTE SCHED.(6,CURUSR,PRGSIZ,(0)) 

OTHERWISE 
RDY(CURUSR)•TIME 

END Of CONDITIONAL 
EXECUTE SCHED,(2,CURUSR,TEM) 

R •• 'SWAP' MUST BE SET, BEGIN SWAPPING. 

R 
R 

WHENEVER SWAP.E,O, FUNCTION RETURN 
SWPSW•l 
TRANSFER TO L3 

BOOLEAN CPUBSY,KILL,PUBSY,SWPDON 
DIMENSION GOC50),RDYC50),INTCYC(50) 
NORMAL MODE IS INTEGER 
VECTOR VALUES CLKINT•200000 
INSERT FILE COMNlA 
END OF SPECIFICATION 



WAIT 

LWOO 

LWOl 

FREEUP 

ELEMENT STOALG 
R.,THIS ROUTINE TAKES CARE OF SWAPPING PROGRAMS, 
R •• THE VARIABLES USED ARE--
R CORUSR,,.,LIST OF USER NOS, FOR CORE USERS. 
R COREUB,,,,UPPER BOUND LIST FOR CORE USERS. 
R CORELB,,,,LOWER BOUND LIST FOR CORE USERS. 
R NINCOR •• ,.NUMBER OF USERS IN CORE, 
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R MXCORE,,,.MAXIMUM NUMBER OF USERS ALLOWED IN CORE. 
R SWAPGO,,,,GO SIGNAL TO BEGIN SWAP. VALUE IS 
R +SIZE OF NXTUSR WHEN NXTUSR ON DRUM, 
R 0 FOR NO ACTION, 
R -SIZE OF NXTUSR WHEN NXTUSR ON DISK. 
R NXTUSR •••• NO, OF NEXT USER (NEWUSR). 
R XMIT.,,,,,GO SIGNAL TO BULK STORAGE TO XMIT A PROGRAM 
R BETWEEN CORE AND DRUM OR DISK, DEPENDING 
R ON SIGN OF 'XMIT'. 
R XMTRDY •••• READY SIGNAL FROM BULK STORAGE, 
R SWPDON,, •• READY SIGNAL TO MAIN CONTROL, 
R CONDS,,,,,NO. OF WORDS FOR MACHINE CONDITIONS AND DISK 
R STATUS OF A USER, ALWAYS DUMPED AND LOADED. 
R 
R,,1/0 VARIABLES, 

R 

INPUT VARIABLES SWAPGO,OLDSTA,NXTUSR,XMTRDY,LSTUSR 
OUTPUT VARIABLES XMIT,SWPDON 

VECTOR VALUES CONDS=714 
R •• INITIALIZATION, 

XMIT•O 

R 

NINCOR•O 
SWPDON=OB 

R .. WAIT HERE FOR S~IAP GO SIGNAL FROM MAIN CONTROL. 
Wlft T FOR I!. PUT 
WHENEVER SWAPGO,E.O, TRANSFER TO WAIT 

R 
R,,DUMP OLD USER, TELL SCHED. ALG, 

EXECUTE SCHED,(3) 
R •• IF LAST USER NOTO, DUMP MACHINE CONDITIONS TO DRUM, 

XMIT=CONDS 

R 

WAIT FOR INPUT 
WHENEVER ..NOT,XMTRDY, TRANSFER TO LWOO 
XMIT•O 
WAIT FOR INPUT 
WHENEVER XMTRDY, TRANSFER TO LWOl 
WHENEVER OLDSTA.NE,2, TRANSFER TO BIGDMP 
WHENEVER NINCOR,G.NBUFF, TRANSFER TO DMPONE 

R.,MAKE ENOUGH ROOM IN CORE FOR NEW USER. 
WHENEVER NINCOR.E.O 

XMIT=SWAPGO 
TRANSFER TO DMPDON 

OR WHENEVER NXTUSR,E.CORUSR(l) 
XM I T•CORE LB ( 1) 
TRANSFER TO DMPDON 



LWl 

LW2 

LW3 

LW4 

L2 

DMPDON 
LWS 

LW6 

LWlOO 

LWlOl 

R 

OR WHENEVER .ABS.SWAPGO.LE.CORELB(l) 
XMIT•SWAPGO 
TRANSFER TO DMPDON 

OR WllENEVER .ABS.SWAPGO.L.COREUB(l) 
XMIT•.ABS.SWAPGO-CORELB(l) 
WAIT FOR INPUT 
WHENEVER .NOT.XMTRDY, TRANSFER TO LWl 
XMIT•O 
WAIT FOR INPUT 
WHENEVER XMTRDY, TRANSFER TO LW2 
XMIT•SWAPGO 
CORELB(l)•,ABS.SWAPGO 
TRANSFER TO DMPDON 

OTHERWISE 
XMIT•COREUB(l)-CORELB(l) 
WAIT FOR INPUT 
WHENEVER .NOT.XMTRDY, TRANSFER TO LW3 
XMIT•O 
WAIT FOR INPUT 
WHENEVER XMTRDY, TRANSFER TO LW4 
THROUGH L2, FOR J=l,l,J,GE,NINCOR 
CORUSR(J)•CORUSR(J+l) 
COREUB(J)•COREUBCJ+l) 
CORELB(J)•CORELBCJ+l) 
NINCOR•NINCOR-1 

END OF CONDITIONAL 
TRANSFER TO FREEUP 

R,,ALL DUMPING DONE, LOAD HAS JUST STARTED, INFORM 
R •• SCHEDULING ALGORITHM AND WAIT FOR COMPLETION, 

R 

EXECUTE SCHED,(4) 
WAIT FOR INPUT 
WHENEVER .NOT.XMTRDY, TRANSFER TO LWS 
XMIT•O 
WAIT FOR INPUT 
WHENEVER XMTRDY, TRANSFER TO LW6 
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R •• PROG. LOADED, LOAD MACHINE CONDITIONS, ETC, FROM DRUM, 
R •• ALG,, GIVE FINISH SIGNAL TO MAIN CONTROL ELEMENT. 

XMIT=CONDS 
WAIT FOR INPUT 
WHENEVER .NOT,XMTRDY, TRANSFER TO LWlOO 
XMIT•O 
WAIT FOR INPUT 
WHENEVER XMTRDY, TRANSFER TO LWlOl 
EXECUTE SCHED,(5) 
SWPDON=lB 
WHENEVER NINCOR.G,O .AND, NXTUSR,E,CORUSR(l) 

CORELB(l) •O 
TRANSFER TO LW7 

END OF CONDITIONAL 
CORELBCO)=O 
COREUB(O)=.ABS.SWAPGO 
CORUSR(O)=NXTUSR 
N INCOR=N INCOR+l 



u 
LW7 

DMPONE 

L4 

LW8 

LW9 

LS 

BIGDMP 

LWlO 

LWll 

DELETE 

L6 

R 
R 

THROUGH L3, FOR J•NINCOR,-1,J.LE,O 
CORELB(J)•CORELB(J-1) 
COREUB(J)=COREUB(J-1) 
CORUSR(J)•CORUSR(J-1) 
WAIT FOR INPUT 
WHENEVER SWAPGO.NE.O, TRANSFER TO LW7 
SWPDON:zOB 
TRANSFER TO WAIT 

R,,NO MORE WRITE BUFFERS, COMPLETE DUMP OF USER 
R,,CLOSEST TO BEING COMPLETELY DUMPED. 

R 
R 

JJa2 
SIZEaCOREUB(2)-CORELB(2) 
THROUGH L4, FOR J=3,l,J.G.NINCOR 
WHENEVER SIZE.G.COREUB(J)-CORELB(J) 

JJ .. J 
SIZE•COREUB(J)-CORELB(J) 

END OF CONDITIONAL 
XM IT:sS I ZE 
WAIT FOR INPUT 
WHENEVER .NOT.XMTRDY, TRANSFER TO LW8 
XMIT•O 
WAIT FOR INPUT 
WHENEVER XMTRDY, TRANSFER TO LW9 
THROUGH LS, FOR J=JJ,l,J.GE.NINCOR 
CORELB(J)•CORELB(J+l) 
COREUB(J)•COREUB(J+l) 
CORUSR(J)•CORUSR(J+l) 
NINCOR:zNINCOR-1 
TRANSFER TO FREEUP 

R.,OLD USER NOT IN WORKING STATUS, DUMP ENTIRELY. 

R 
R 

WHENEVER OLDSTA.I .O, TRANSFER TO DELETE 
XMITaCOREUB(l) 
WAIT FOR INPUT 
WHENEVER ,NOT.XMTRDY, TRANSFER TO LWlO 
XMIT•O 
WAIT FOR INPUT 
WHENEVER XMTRDY, TRANSFER TO LWll 
THROUGH L6, FOR J=l,l,J.GE.NINCOR 
CORELB(J)•CORELB(J+l) 
COREUB(J)=COREUB(J+l) 
CORUSR(J)•CORUSR(J+l) 
NINCOR=NINCOR-1 
TRANSFER TO FREEUP 

NORMAL MODE IS INTEGER 
BOOLEAN SWPRDY,XMTRDY,SWPDON 
DIMENSION CORELB(S),COREUB(S),CORUSR(5) 
VECTOR VALUES NBUFF=4 
END OF SPECIFICATION 
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LOOP 
WAITl 

WAIT2 

ELEMENT BULK 
R •• THIS ELEMENT SIMULATES BOTH THE DISK AND DRUM. 
R 
R •• 1/0 VARIABLES. 

R 

R 

INPUT VARIABLES XMIT 
OUTPUT VARIABLES XMTRDY,DSKUSE,DRMUSE 

DSKUSE=O 
DRMUSE=O 
XMTRDY=OB 
WAIT FOR IN>UT 
WHENEVER XMIT.E,O, TRANSFER TO WAITl 
WHENEVER XMIT.G.O 

TEM•DRMDEL.(XMIT) 
DRMUSE=DRMUSE+TEM 

OTHERWISE 
TEM=DSKDEL.(,ABS.XMIT) 
DSKUSE=DSKUSE+TEM 

END OF CONDITIONAL 
DELAY OF TEM 
XMTRDYalB 
WAIT FOR INPUT 
WHENEVER XMIT.NE.O, TRANSFER TO WAIT2 
TRANSFER TO LOOP 

NORMAL MODE IS INTEGER 
BOOLEAN XMTRDY 
END OF SPECIFICATION 
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LOOP 
WAITl 

WAIT2 

WAIT3 

STOP 
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ELEMENT CPU 
R •• THIS ELEMENT SIMULATES A CPU WITH NO SIGNIFICANT 
R •• CHANNEL OPERATION GOING ON WHILE IT IS OPERATING. 
R 
R •• 1/0 VARIABLES. 

INPUT VARIABLES CPUGO 
OUTPUT VARIABLES CPUBSY,CVCDON,CPUUSE 

R 
C RJUSE•O 
CPUBSY•OB 
WAIT FOR INPUT 
WHENEVER CJ'UGO.E.O, TRANSFER TO WAITl 
CPUBSY•lB 
STARTT•T I ME 
TEM•FTOl.CITOF,(CPUGO)/INRATE,(0)) 
FINTIM•TIME + TEM 
TEM•CPUGO 
WAIT FOR INPUT OR UNTIL FINTIM 
WHENEVER CPUGO.E.O 

CYCDON•(TIME-STARTT)•INRATE.(0) 
WHENEVER CYCDON,GE,TEM, CYCDON•TEM-1 
CPUBSY•OB 
TRANSFER TO STOP 

OR WHENEVER TIME.GE.FINTIM 
CVCDON•TEM 
CPUBSY•OB 
WAIT FOR INPUT 
WHENEVER CPUGO.NE,O, TRANSFER TO WAIT3 
TRANSFER TO STOP 

END OF CONDITIONAL 
TRANSFER TO WAIT2 

R 

R 

CPUUSE•CPUUSE+TIME-STARTT 
TRANSFER TO LOOP 

NORMAL MODE IS INTEGER 
FLOATING POINT INRATE,,ITOF, 
BOOLEAN CPUBSY 
END OF SPECIFICATION 



LO 

LOOP 

LWl 

JOINT 
Ll 

ELEMENT CONS 
R •• THIS ELEMENT SIMULATES ALL OF THE CONSOLES. 
R •• THE VARIABLES ARE--
R GO •••••••• SIGNAL TO MAIN CONTROL INDICATING CONSOLE'S 
R COMPLETION OF INPUT. 
R RDY ••••••• SIGNAL FROM MAIN CONTROL INDICATING EITHER 
R USER'S PROGRAM IS IN INPUT WAIT (IF NEG.) OR 
R FINISHED (IF POSITIVE). 
R NXTACT •••• LIST OF TIMES FOR CONSOLES TO FINISH INPUT, 
R IF ZERO, CONSOLE IS WAITING FOR PROGRAM. 
R NXTIME •••• TIME OF NEXT EVENT (CONSOLE FINISHING INPUT). 
R NCONS ••••• NUMBER OF CONSOLES. 
R 
R •• 1/0 VARIABLES. 

R 

INPUT VARIABLES ROY 
OUTPUT VARIABLES GO 
NC=NCONS.(0) 

R •• INITIALIZATION. 

R 

DELAY OF 1 
THROUGH LO, FOR 1•1,1,1.G.NC 
GO(l)•O 
NXTACT( I )•0 
CONTINUE 

R •• MAIN LOOP. 

R 

NXTIME•O 
THROUGH Ll, FOR 1•1,1,1.G.NC 
WHENEVER NXTACT(l).NE.O 

WHENEVER NXTACTCl).G.TIME, TRANSFER TO JOINT 
GO( I) •Tl ME 
WAIT FOR INPUT 

WHENEVER GO(l).NE.TIME 
PRINT FORMAT ERR,TIME 
EXIT. 
V'S ERR=$10HCONS ERR. Kl2•$ 

END OF CONDITIONAL 
WHENEVER RDY(l).NE.O, TRANSFER TO LWl 
NXTACT (I) •O 
GO(l)•O 
TRANSFER TO Ll 

OTHERWISE 
l'IHENEVER RDY(l).E.O, TRANSFER TO Ll 
NXTACTCl)•TIME+INTDEL.(I) 

END OF CONDITIONAL 
WHENEVER NXTIME.G.NXTACTCl).OR.NXTIME.E.O, NXTIME•NXTACT(I) 
CONTINUE 
WHENEVER NXTIME.E.O 

WAIT FOR INPUT 
OTHERWISE 

WAIT FOR INPUT OR UNTIL NXTIME 
END OF CONDITIONAL 
TRANSFER TO LOOP 



R 
NORMAL MODE IS INTEGER 
DIMENSION RDY(50),G0(50),NXTACT(50) 
END OF SPECIFICATION 

l~. 



R •• ELEMENT TO.CONTROL CPU AND SWAPPING FOR OVERLAPPED 
R •• OPERATION OF OISK, DRUM, AND PROCESSOR. 
R 

R 

ELEMENT CPUCTL 
INPUT VARIABLES STARTU,GO,CPUBSY,CYCDON 
OUTPUT VARIABLES NEEDU,RDY,CPUGO,NEWUSR 
OUTPUT VARIABLES NQ,Q 
NORMAL MODE IS INTEGER 

CPUGO=O 
NUSERS=NCONS.(0) 
THROUGH LO, FOR J=l,l,J.G.NUSERS 
RDYCJ)=l 

LO CONTINUE 

R 

NQ•O 
NEWUSR•O 
NEEDU=lB 

R •• HERE WHEN IDLE, WAIT FOR NEW USER TO COME ALONG, 
IDLE WAIT FOR INPUT 

CHECKU. 

LO AO WT 

LOOP 

LWl 

HOLD 

PUS TOP 

LW2 

WHENEVER NEWUSR.E,O, TRANSFER TO IDLE 
R 
R •• WAIT FOR LOAD OF NEW USER. 

R 

WAIT FOR INPUT 
CHECKU. 
WHENEVER STARTU.NE.NEWUSR, TRANSFER TO LOADWT 

R •• LOAD DONE, INTERLOCK. 

R 

NEEDU=OB 
CPUGO=INTCYC(NEWUSR) 
SWPSW=O 
EXECUTE MONSCl.CS,NEWUSR,0) 
sTATUSCl.(NEWUSR))=2 
GETNXT. 
WAIT FOR INPUT 
WHENEVER STARTU,NE.O, TRANSFER TO LWl 
WHENEVER .NOT.CPUBSY, TRANSFER TO LWl 
CHECKU. 

R •• HERE WHEN USER STARTED. 
FINTIM=TIME + BURSTT.(0) 
WAIT FOR INPUT OR UNTIL FINTIM 
WHENEVER .NOT.CPUBSY 

R •• CPU STOPPED. FINISH OFF USER, 
CPUGO=O 

PUBSY=lB 
EQUIVALENCE (CPUBSY,PUBSY) 
WAIT FOR INPUT 
WHENEVER CPUBSY, TRANSFER TO LW2 
TEMSTA=CONSTA.(0) 
WHENEVER TEMSTA.NE.3 

RDY(CURUSR)=TIME 
DELQ, ( CURUSR) 

END OF CONDITIONAL 



LW3 

LW4 

STOP PU 

LWS 

LW6 

R 

R 

GETNl 

GETN2 

EXECUTE MONSCl,(2,CURUSR,TEMSTA) 
SWPSW•l 
EXECUTE MONSCl,(3,CURUSR,0) 
STATUSCl.(CURUSR))•TEMSTA 
NEEDU•lB 
CHECKU, 
WHENEVER NEWUSR.E.O, TRANSFER TO IDLE 
WHENEVER STARTU,E,NEWUSR, TRANSFER TO LOOP 
CHECKU, 
WAIT FOR INPUT 
TRANSFER TO LW3 

OR WHENEVER TIME,GE,FINTIM 
WHENEVER NEWUSR,NE,O, NEEDU•lB 
WHENEVER ,NOT.CPUBSY, TRANSFER TO PUSTOP 
CHECKU. 
WHENEVER NEWUSR.NE.O .AND •• NOT.NEEDU 

NEEDU=lB 
END OF CONDITIONAL 
WHENEVER STARTU.NE.O, TRANSFER TO STOPPU 
WAIT FOR INPUT 
TRANSFER TO LW4 
CPUGO•O 
SWPSW=l 
EXECUTE MONSC1.C3,0LDUSR,0) 
WAIT FOR INPUT 
WHENEVER CPUBSY, TRANSFER TO LWS 
INTCYCCOLDUSR)•INTCYCCOLDUSR)-CYCDON 
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WHENEVER INTCYCCOLDUSR).LE.O, INTCYCCOLDUSR)=l 
NEEDU•lB 
CHECKU. 
WHENEVER NEWUSR.E.STARTU, TRANSFER TO LOOP 
WAIT FOR INPUT 
TRANSFER TO LW6 

END OF CONDITIONAL 
CHECKU, 
TRANSFER TO HOLD 

BOOLEAN CPUBSY,PUBSY,NEEDU,CHANGE 
DIMENSION G0(50),RDY(50),INTCYCC50),Q(50) 

INTERNAL FUNCTION 
INTRY TO GETNXT. 

CHECKU. 
WHENEVER NQ.E.O ,QR, CNQ,E.l .AND. CURUSR,NE.0) 

NEWUSR=O 
FUN CT I ON RETURN 

OR WHENEVER CURUSR.E,0 
NEWUSR=Q(l) 
FUN CT I ON RETURN 

END OF CONDITIONAL 
THROUGH GETNl, FOR J•l,l,J,G.NQ 
WHENEVER Q(J).E,CURUSR, TRANSFER TO GETN2 
PRINT COMMENT $CURRENT USER NOT IN QUEUE.$ 
EXIT. 
J•J+l 



CHECKl 

SORTO 

SORTl 
SORT2 

R 

R 

WHENEVER J.G.NQ, J=l 
NEWUSR•Q(J) 
FUNCTION RETURN 
END OF FUNCTION 

INTERNAL FUNCTION 
ENTRY TO CHECKU. 
CHANGE .. OB 
THROUGH CHECKl, FOR J•l,l,J.G.NUSERS 
WHENEVER RDY(J).E.O .OR. GO(J).E,O, TRANSFER TO CHECKl 
WHENEVER STATUS(l,(J)),LE.l 

EXECUTE MONSCl,(2,J,3) 
STATUS(l.(J))•3 
LENGTH(l,(J))•PRGSIZ.(0) 
MONSCl.(6,J,LENGTH(l,(J))) 

OTHERWISE 
EXECUTE MONSCl,(2,J,2) 
STATUS(l,(J))=2 

END OF CONDITIONAL 
INTCYC(J)•CYCINT,(0) 
RDYCJ)•O 
WHENEVER NEWUSR.E,0 

NEWUSR•J 
END OF CONDITIONAL 
NQaNQ+l 
Q(NQ)"J 
CHANGE=lB 
CONTINUE 
WHENEVER CHANGE, SORTQ, 
FUN CT I ON RETURN 
END OF FUNCTI Oil 

INTERNAL FUNCTION 
ENTRY TO SORTQ, 
CHANGE=OB 
THROUGH SORT2, FOR J=l,l,J,GE,NQ 
THROUGH SORTl, FOR JJ•J+l,l,JJ,G,NQ 
WHENEVER LENGTH(l.(Q(J))).G.LENGTHCl,CQCJJ))) 

1 .AND. CHANGE, TRANSFER TO SORTO 
WHENEVER LENGTH(l,(Q(J))),L,LENGTH(l,(Q(JJ))) 

1 .AND. ,NOT.CHANGE, TRANSFER TO SORTO 
TRANSFER TO SORTl 

R 

TEM,.Q(J) 
Q(J)•Q(JJ) 
QCJJ)•TEM 
CONTINUE 
CHANGE=.NOT,CHANGE 
FUNCTION RETURN 
END OF FUNCTION 

INTERNAL FUNCTION CA) 
ENTRY TO DE LQ. 
THROUGH DELl, FOR J=l,l,J,G,NQ 

DELl WHENEVER Q(J).E,A, TRANSFER TO DEL2 
PRINT COMMENT $USER TO BE DELETED NOT IN QUEUE,$ 
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PRINT FORMAT XX,A,CURUSR,OLDUSR,NEWUSR,NQ,Q(l),,,Q(25) 
V'S XX=$4HARG•l2,3H CUl3,3H OUl3,3H NUl3,3H NQl3, 

1 /251 3*$ 
EXIT. 

DEL2 THROUGH DEL3, FOR J=J+l,l,J,G,NQ 
DEL3 Q(J-l)=QCJ) 

R 

NQ .. NQ-1 
sORTQ. 
FUN CT I ON RETURN 
END 0 F FUNCTION 

INSERT FILE COMNlA 
END OF SPECIFICATION 

Note that MONSCl Is a data taking routine called with the 
same arguments that the CTSS Scheduling Algorithm used. 



R •• SWAP CONTROL FOR OVERLAPPED SWAPPING. 
ELEMENT B LKCTL 

R 
R •• 1/0 VARIABLES. 

OUTPUT VARIABLES OLDUSR,CURUSR 
INPUT VARIABLES NEEDU,NEWUSR,XMTRDY 
OUTPUT VARIABLES STARTU,XMIT 
NORMAL MODE IS INTEGER 
BOOLEAN NEEDU,XMTRDY 

R 
R,.INITIALIZATION, 

STARTU=O 
CURUSR=O 
OLDUSR=O 

R 

XMIT=O 
LSIZE=O 
DSIZE=O 
LENGTH ( 0) = 77776K 
STATUS(0)=2 
VECTOR VALUES STASIZ=714 

169. 

R •• HERE WHEN CURRENT USER RUNNING AND NO NEW USER. 
IDLE WAIT FOR INPUT 

LOAD 
LOADl 

R 
WHENEVER NEWUSR.NE.O, TRANSFER TO LOAD 
wHENEVER .NOT,NEEDU .OR, CURUSR.E.O, TRANSFER TO IDLE 

R 
R •• DUMP CURRENT USER, NO NEW USER 

OLDUSR=CURUSR 

R 

CURUSR=O 
WHENEVER STATUS(l,(OLDUSR)),E,0 

DSIZE=O 
OTHERWISE 

DSIZE=LENGTHCl,(OLDUSR)) 
END OF CONDITIONAL 
BULKGO,(DSIZE+STASIZ) 
DSIZE=O 
WHENEVER NEWUSR.NE,0 

CURSIZ=O 
TRANSFER TO LOADl 

END OF CONDITIONAL 
BULKGO,(STASIZ+LENGTH(O)) 
CURUSR=O 
TRANSFER TO LOOP 

YET. 

R •• LOAD NEW USER WHILE OLD USER RUNNING. 
CURSIZ=LENGTH( l,(CURUSR)) 
LSIZE=LENGTHCl.(NEWUSR)) 
WHENEVER LSIZE.G.C77777K-CURSIZ), TRANSFER TO HARDFT 

R 
R •• NEW USER FITS INTO CORE WITH CURRENT USER. 

WHENEVER STATUS( I .CNEWUSR)) ,E,3 
BULKGO, CSTASI Z) 
BULKGO,(-LSIZE) 

OTHERWISE 



LWl 

Ll 

LW2 

HARD FT 

LW3 

L2 

LW4 

R 

BULKGO.CSTASIZ+LSIZE) 
END OF CONDITIONAL 
LSIZE=O 
WHENEVER NEEDU, TRANSFER TO Ll 
WAIT FOR INPUT 
TRANSFER TO LWl 
OLDUSR=CURUSR 
STARTU=NEWUSR 
CURUSR=NEWUSR 
WA IT FOR INPUT 
WHENEVER NEEDU, TRANSFER TO LW2 

TARTU=O 
~HENEVER STATUS(l.(OLDUSR)),E.O 

DSIZE .. O 
OTHERWISE 

DSIZE•CURSIZ 
END OF CONDITIONAL 
BULKGO.(DSIZE+STASIZ) 
DSIZE=O 
TRANSFER TO LOOP 

170. 

R •• NEW USER WILL NOT FIT INTO CORE WITH CURRENT USER. 
LS I ZE=CURS I Z+LS I Z E-77777K 
WHENEVER STATUSCl.CNEWUSR)).E.3 

BULKGO.CSTASIZ) 
BULKGO.(CURSIZ-77777K) 

OTHERWISE 
BULKGO.(STASIZ+77777K-CURSIZ) 

END OF CONDITIONAL 
WHENEVER NEEDU, TRANSFER TO L2 
WAIT FOR INPUT 
TRANSFER TO LW3 
STARTU=-N EWUSR 
OLDUSR=CURUSR 
WHENEVER STATUS(l.(OLDUSR)),E.O 

DSIZE=O 
BULKGO. (STAS I Z) 

OTHERWISE 
BULKGO.CSTASIZ+LSIZE) 
DSIZE=CURSIZ-LSIZE 

END OF CONDITIONAL 
WHENEVER STATUS(l.(NEWUSR)),E.3 

NOSEEK, (1) 
BULKGO.C-LSIZE) 
NOSEEK.(0) 

OTHERWISE 
BULKGO.CLSIZE) 

END OF CONDITIONAL 
LS I ZE=O 
STARTU=NEWUSR 
CURUSR=NEWUSR 
WAIT FOR INPUT 
WHENEVER NEEDU, TRANSFER TO LW4 
STARTU=O 
WHENEVER DSIZE.G.O, BULKGO,(DSIZE) 



DSIZEaO 
TRANSFER TO LOOP 

R 
R,, INTERNAL FUNCTION TO WORK DISK AND DRUM. 

INTERNAL FUNCTION CARG) 
ENTRY TO BULKGO, 
XMIT•ARG 

Bl WAIT FOR INPUT 
WHENEVER NEWUSR,NE,O .AND, CURUSR,E.O 

CURUSRaNEWUSR 
END OF CONDITIONAL 
WHENEVER ,NOT,XMTRDY, TRANSFER TO Bl 
XMIT•O 

B2 WAIT FOR INPUT 

R 

WHENEVER XMTRDY, TRANSFER TO B2 
FUNCTION RETURN 
END OF FUNCTION 

INSERT FILE COMNlA 
END OF SPECIFICATION 

171. 



LOOP 

WAITl 

WAIT2 

172. 

R., THIS ELEMENT SIMULATES BOTH THE DRUM AND THE DISK, 
R •• IT PROVIDES A FACTOR, 1 10FACT 1 , TO THE CPU ELEMENT GIVING 
R •• THE AVERAGE FACTOR OF DEGRADATION BETWEEN 0 AND 1, 
R 

R 

R 

ELEMENT BULK 
INPUT VARIABLES XMIT,CPUBSY 
OUTPUT VARIABLES XMTRDY,IOFACT,DKOUSE,DSKUSE,DMOUSE,DRMUSE 

DSKUSE=O 
DRMUSE=O 
DKOUSE=O 
DMOUSE=O 
XMTRDY=OB 
IOFACT"l. 
WAIT FOR L PUT 
WHENEVER XMIT,E.O, TRANSFER TO WAITl 
WHENEVER XMIT.G,0 

TEM=DRMDEL,(XMIT) 
10FACT•,7 
DRMUSE=DRMUSE+TEM 
WHENEVER CPUBSY, DMOUSE=DMOUSE+TEM 

OTHERWISE 
TEM=DSKDEL.C.ABS.XMIT) 
DSKUSE=DSKUSE+TEM 
IOFACT=,988 
WHENEVER CPUBSY, DKOUSE=DKOUSE+TEM 

END OF CONDITIONAL 
DELAY OF TEM 
XMTRDY=lB 
WAIT FOR INPUT 
WHENEVER XMIT,NE,O, TRANSFER TO WAIT2 
TRANSFER TO LOOP 

FLOATING POINT IOFACT 
NORMAL MODE IS INTEGER 
BOOLEAN XMTRDY,CPUBSY 
END OF SPECIFICATION 



LOOP 
WAI Tl 

AGAIN 

WAIT2 

STOP 

~IAIT3 

173. 

R •• CPU FOR OVERLAPPED CPU AND BULK MEMORY OPERATION. 
R •• SAME AS OLD CPU ELEMENT, EXCEPT THAT 1 IOFACT' GIVES 
R •• FACTOR OF SLOWDOWN BECAUSE OF OVERLAP, 
R 

R 

R 

R 

ELEMENT CPU 
INPUT VARIABLES CPUGO,IOFACT 
OUTPUT VAR I ABLES C RJBSY ,CYCDONi PUUSE ,NPUUSE 
GPUUSE•O 
NPUUSE•O 

C RJBSY•OB 
WAIT FOR INPUT 
WHENEVER CPUGO,E.O, TRANSFER TO WAITl 
CPUBSY•lB 
CYCDON•O 
PUGO•CPUGO 

FINTIM•TIME+FTOl.CITOF.(CPUGO-CYCDON)/CINRATE.(O)•IOFACT)) 
FACT•IOFACT 
STARTT•T IME 
WAIT FOR INPUT OR UNTIL FINTIM 
WHENEVER CPUGO,E.O .OR. IOFACT,NE,FACT 

CYCDON •CYCDON+FTO I , (I TOF. (Tl ME-STARTT)* I NRATE. (0 )•FACT) 
GPUUSE•GPUUSE+TIME-STARTT 
NPUUSE•NPUUSE+FTOl.CFACT•ITOF.(TIME-STARTT)) 
WHENEVER CYCDON.GE,PUGO 

CYCDON=PUGO 
STARTT=TIME 
WHENEVER CPUGOJ. E.O, TRANSFER TO STOP 

END OF CONDITIONAL 
WHENEVER CPUGO.NE,O, TRANSFER TO AGAIN 
CPUBSY=OB 
TRANSFER TO LOOP 

OR WHENEVER TIME,GE.FINTIM 
CYCDONaPUGO 
GPUBSY•GPUBSY+TIME+STARTT 
NPUBSY=NPUBSY+FTOl,(FACT•ITOF,(TIME-STARTT)) 
CPUBSY.,OB 
WAIT FOR INPUT 
WHENEVER CPUGOJ.. l[,O, TRANSFER TO ~IAIT3 
TRANSFER TO LOOP 

END OF CONDITIONAL 
TRANSFER TO WAIT2 

NORMAL MODE IS INTEGER 
FLOATING POINT ITOF.,INRATE.,IOFACT,FACT 
BOOLEAN CPUBSY 
END OF SPECIFICATION 



174. 

This program provides random numbers of various types, etc. 
EXTERNAL FUN CT I ON CARG) 
INTEGER ARG 
ENTRY TO BURST. 

R ENTRY TO GIVE BURST TIME IN l/60THS, 
FUNCTION RETURN 120 

R 
R 

ENTRY TO BURSTT. 
R GIVES QUANTUM TIME. 

FUNCTION RETURN 2 000 000 
ENTRY TO NCONS. 

R GIVES NUMBER OF CONSOLES ••• 
FUNCTION RETURN 35 
ENTRY TO PRGS I Z. 

R RETURNS PROGRAM SIZES ACCORDING TO FOLLOWING DISTRIBUTION. 
VECTOR VALUES SIZDIS = ,155, 

1 .045, .27, .03, .05, .03, .02, .0725, .015, .01, .035, 
2 .025, .015, .005, .0025, .01, .01, .01, .005, .0025, .005, 
3 .005, .01, .005, .oo, .0025, .oo, .005, .oo, .005, .oo, 
4 ,005, ,005, ,005, .005, .oo, .oo, .oo, .0025, .oo, .005, 
5 .005, ,0075, .oo, .oo, .oo, .oo, .oo, .oo, .005, .005, 
6 .005, .005, ,005, .oo, .oo, .oo, .oo, .oo, .oo, .015, 
7 .0025, .oo, .005, .0125, .04501 
R LAST ENTRY IS .00001 TOO HIGH TO INSURE WORKING. 

X=RAflNO. ( 0) 
TOT=O. 
THROUGH Ll, FOR l=O.,l.,TOT.GE,X 

Ll TOT=TOT+SIZDIS(I) 

R 

INT=Cl+TOT-X)•500. 
WHENEVER INT,G,32766.,INT=32766, 
TRANSFER TO RETURN 

ENTRY TO CONST A. 
R RETURNS THE NEW STATE FOR A PROGRAM, VALUE IS 
REITHER 0,1,3, OR 4. 

R 

TOT=RANN0.(0) 
WHENEVER TOT.LE •• 631, FUNCTION RETURN 4 
WHENEVER TOT.LE •• 812, FUNCTION RETURN 0 
WHENEVER TOT,LE •• 88, FUNCTION RETURN l 
FUNCTION RETURN 3 

ENTRY TO INRATE. 
R ARBITRARY RATE OF INSTRUCTION EXECUTION. 

FUNCTION RETURN ,2 
R NO. OF INSTRUCTIONS EXECUTED FOR AN INTERACTION, 
R •• VALUES FOR CPU TIME DISTRIBUTION. 

VECTOR VALUES CPU= 
1 • 5072, • 0449, • 0609, • 0393, • 0363, 
2 .0304, .0248, .0250, .0217, .0186, 
3 ,0148, .0119, .0100, .0090, .0085, 
4 • 0076, • 0070, • 0065, • 0058, • 0053, • 0052 

ENTRY TO I NTCYC. 
ENTRY TO CYCINT. 
X=RANNO, (0) 



WHENEVER X.G •• 99 
CPUT•5. + 24.7•(-LOG.Cl.-RANNO.CO))) 

OR WHENEVER X.G •• 97 
CPUT•4. + R~RN0.(0) 

OR WHENEVER X.G •• 94 
CPUT=3. +RANNO.CO) 

OR WHENEVER X.G •• 895 
CPUT•2. + RANNO.CO) 

OTHERWISE 
TOT•O. 
THROUGH LL, FOR l=O.,l.,OB 
TOT• TOT+ CPUCI) 

LL ~IHENEVER TOT .G.X, TRANSFER TO LLL 
LLL CPUT•l/10. + .l•RANN0.(0) 

R 

END OF CONDITIONAL 
INT•CPUT/5E-6 
TRANSFER TO RETURN 

ENTRY TO INTDEL. 

175. 

R DELAY BEFORE AN INTERACTION. 12 PERCENT OF THE TIME 
RAN INTERACTION HAS A ZERO CONSOLE PART (BECAUSE 
R OF A PROGRAM GENERATED COMM.). THIS IS TAKEN CARE 
R OF BY nlE 1 RING 1 ELEMENT. THE FOLLOWING DISTRIBUTION 
R YIELDS A TIME BETWEEN 0 AND 2 
R SECONDS WITH A PROBABILITY OF .0784 AND A TIME 
R DISTRIBUTED WITH A MAX OF .05104 AT 6. (8,) 
RAND A MEAN OF 41.34, ADDED TO 2, 

R 

WHENEVER RANN0,(0),LE •• 0784 
INT•2E6•RANN0.(0) 

OTHERWISE 
INT•1E6•C2.+SPRAN.C.167,.8244,358.26)) 

END OF CONDITIONAL 
TRANSFER TO RETURN 

ENTRY TO DRMDEL. 
R DELAY FOR 'ARG' WORDS FROM DRUM, 

INT=ARG•8.4 + RANN0,(0)•17200. 
TRANSFER TO RETURN 

R 
ENTRY TO DSKDEL. 

R DELAY FOR 1ARG 1 WORDS FROM DISK. 
WHENEVER RANN0,(0),G,,2 

BASIS•20.•466. 
OTHERWISE 

BASIS=l.4•466, 
END OF CONDITIONAL 
TOT=O. 
THROUGH L2, FOR INT=ARG+BASIS•RANN0,(0),-BASIS,INT.L.F•BASIS 
X•RANNO, (0) 
WHENEVER X.L •• 033 

X=SOOOO, 
OR WHENEVER X.L •• 167 

X=120000. 
OTHERWISE 

x .. 180000. 
END OF CONDITIONAL 



L2 

RETURN 

R 

TOT•TOT+X+RANN0.(0)•34000. 
CONTINUE 
INT•TOT+66.5927•ARG 
WHENEVER INT .LE.l., INT•l. 
FUNCTION RETURN FTOl.(INT) 
INTEGER FTOl .,F 

ENTRY TO NOSEEK, 
R ENTRY TO SAY IF NO INITIAL DISK SEEK REQUIRED. 

F•ARG 
FUNCTION RETURN 

R 
INTERNAL FUNCTION 

176. 

R THIS ROUTINE GENERATES RANDOM NUMBERS OF TWO KINDS. 
R 'EXPRAN. 1 RETURNS A NUMBER EXPONENTIALLY DISTRIBUTED 
R FROM 0 CE,P,(-X)) WITH A MEAN OF 1.0 
R 'DMPRAN.' RETURNS A NUMBER WHICH IS DISTRIBUTED 
R ACCORDING TO A DAMPED EXPONENTIAL FROM 0 (X•E.P,(-X)) WITH A 
R MEAN OF 1. O. 
R 

R 

R 

ENTRY TO EXPRAN. 
FUNCTION RETURN (-LOG.(1,-RANN0,(0))) 

ENTRY TO DMPRAN. 
FUNCTION RETURN (-LOG.(RANNO,(O)•RANN0.(0)))/2, 
END OF FUNCTION 

R SUBROUTINE TO RETURN RANDOM NUMBER FROM DISTRIBUTION-­
R PCA.P.2)(T)(EXP(-AT)) + QCl/TAU) FOR T,LE.TAU AND 
R (A.P.2)(T)CEXPC-AT) OTHERWISE. 
R 
R PROGRAM WORKS BY PICKING UNIFORM DISTRIBUTION WITH 
R PROBABILITY Q = 1-P, EXPONENTIAL WITH PROB, P, 
R 

INTERNAL FUNCTION (A,P,TAU) 
ENTRY TO SPRAN. 
WHENEVER RANN0,(0).G,P 

FUNCTION RETURN RANNO.(O)•TAU 
OTHERWISE 

FUNCTION RETURN 2.•DMPRAN,(0)/A 
END OF CONDITIONAL 
END OF FUNCTION 
END OF FUNCTION 
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