

This blank page was inserted to presenie pagination.

QUEUEING MODELS FOR FILE MEMORY OPERATION

b:v

PETER JAMES DENNING

B.E.E., Manhattan College
(1964)

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGBEE OF

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

S1-ture or Author f.b,.. ~. ~
Department of Eleotr1oal E 1n~l, 1965

Aooepted by ~ ~
Chatrman, Departmental Committee on G auate Students

.. -- .. ,-';"_-,.,_,

2

QUEUEING MODELS POR PILE MEMORY OPERATION

b7

PETER JAMES DENNING

Submitted to the Department ot Electrical Engineering
on Ma7 21, 1965, in partial fulfillment or the
requirements tor the degree or Master or Science.

AB ST BA CT

A model tor the auxilia17•memo17 function or a
segmented, multi-processor, time-shared computer
s7stem is set up. A drum s7stem 1n particular is
discussed, although no loss or generalit7 is implied
b7 limiting the discussion to drums. Particular attention
is given to the queue or requests waiting rn drum
use. It is shown that a shortest access time tirst
queue discipline is the most efficient, with the
access time being defined as the time required tor
the drum to be positioned, and is measured from the
finish or service or the last request to the beginning
ot the data transfer tor the present request. A
detailed study or the shortest access time queue is
made, giving the minimum access time probability
distribution, equations tor the number in queue,
and equations tor the wait in the queue. Simulations
were used to verity these equations; the results
are discussed. Finally, a general Markov Model for
Queues is di~cussed in an Appendix.

Thesis Supervisors J. B. Dennis
Titles Associate Prof'essor ot Electrical Engineering

ACKNOWLEDGBJIENT

I wish to eX])ress my appreciation to Project

MAC for the use of its computational facilities, without

which this paper would not have evolved; to Professor

J.B. Dennis, my thesis advisor, for the many hours

spent in discussing the ideas contained here; to

A. L. Scherr tor the use of his simulation language

and for the many useful ideas that he gave; to

Professor A. w. Drake, Professor D. c. Carroll,

A. A. Smith, and E. Van Horn for constructive and

enlightening criticisms; and to my wite Anne tor her

patience and encouragement.

4

~ QI CONTENTS

CHAP'rER l. INTRODUCTION. • • • • • • • • • • . • • • • • • • • • • • • • • . • • • • 6

CHAP!' EH 2. BACKGROUND. • • • • • • . • • • . . • • • • . • . • . • . • . • • • • • • • 9

CHAPTER J. THE DRUM SYSrEM •••••••••••••••••••••••••••• 17

).1. Introduction •.•.•••••••••.•••••••••••••.••.•.• 17

J.2. The Users' Processes Model •••••••••••••••••••• 18

J.J. The Queue••••••••••••••••••••••••••••••••••••• 29

J.4. The Drl.tms ••••••••••.•••.•••••••••••••••••••••• 40

CHAPTRR 4. THE SHORr~ST ACCESS TIME QUEUE •••••.••••••• 46

4.1. Introduction •••.•....•..•....•......••.••..••. 46

4.2. The Minimum Access Time D\stribution •••••••••• 47

4.J. Examination of the Shortest Access Queue ••.••• 56
CHAPTER 5. THE SIMULATION RESULTS. CONOLUSION8 ••••••• 65

5.1. Introduction •••••••••.•••••••••.••.••••••••••• 65

5. 2. The Drum Simulation... • • . • 66

5.J. Shortest Access Time Queue Simulation ••••••••• 74

5.4. Conclusions •......•........... _ 76

5.5. Suggestions for Future Study •••••••••••••••••• 77

APPF.NDIX 1. THE POLLACZEK-KHINTCHINE FORMULA ••••••••••• 79

APPENDIX 2. WAITING TIME IN A SHORTEST ACCESS QUEUE •••• 87

APPENDIX J. DESCRIPTION OF A MIXED-POLICY QUEUE •••••••• 91

APPENDIX 4. A Cotn'INUCUS-TIME M.ARKOV MODEL ••••••••••••• 99

BIBLIOGRAPHY ••••••••••••.•.••....••.••••......••••.•••• 105

5

g§! OF ILLUS'rRATIONS

Figure 2.1. One user in a segmented system ••••••.•..•••• 12
Figure J.l. The overall System Model •••.•••••..•.•••.••• 19

Figure J.2. Read and Write requests ••••••.•••••..••••••• 25
Figure J.J. Number of Segments per request •••..••••••••• 25
Figure 3.4. Number of pages per segment •••.•.•.••.•••••• 26
Figure 3.5. Inter-request times ••••••..•.••.••...•..•••• 26
Fi~ure J.6. Requested drum positions •••••..•..••..•••••• 27

Figure J.7. Requested drum ••••.•...•.•••..••..•••.•••••• 27
Figure J.8. The Processes Model •.•••••••••••.•••••••.••• 28
Figure J.9. A structure for the queue ••••••••.•••••••••• 31
Figure 3.10. The Queue Model •••••••••••.••••.•••.••••••• 39
Figure J.11. The Organization of the Drum •••••....•••••• 41

Figure J.12. The Delete Mechanism ••••••••••.•••••••••••• 45A
Figure 3.lJ. The Drums Model •••••••••••••••••••••••••••• 45B
Fi~ure 4.2.1. Operation of the Shortest Access Queue •••• 48

th 4 Figure 4.2.2. Access time for 1 request............... 9
Figure 4.2.J. Shortest Access time Distribution ••••••••• 50
Figure 4.2.4, Mean Access time •••.•.•••.••.•••.•....••.• 54
Figure 4.2.5. Standard deviation of access time •••.••••• 55
Figure 5.1. Waiting times in queue •••..•.••...•••.•••••• 71
Figure 5. 2 • Number in queue • . • . • . . • . • • • • . • . . • . • . • • . • • • • • 72
Figure 5.3. Number of fields used per sector ••••.••••.•• 73

Figure AJ.l. A structure of a mixed policy queue •.• 92

Figure AJ.2. Position of tagged request ••..••.•••••••••• 96
Figure AJ.3. Window movement • ..•...•..•....••.•••••....• 97
Figure AJ.4. Comparison of window movement and

tagged request position •••••••••.••••••• 98

6

CHAPTE~ ! , INTBOE>UC'UON ,

with the advent of more and more complex computing

systems it has become increasingly important to have some

reliable means for evaluating the performance of the system.

In the Compatible Time-Shared System (CTSS) at Project MAC (2),

M. I.·r., for example, the scheduling of users is a pro}.?lem

that is receiving much attention. Patel (14) has considered

first-come-first-served allocation of processor resources

to users, and a multiple-level dynamic priority scheduling

algorithm which closely models the scheduling algorithm used

in CTSS (2). Heller (10), on the other hand, has considered

the more general problem of a multiple-processor time-shared

system. The purpose of the scheduling algorithm ls to allocate

the processor resources as efficiently an·d equitably as

possible, minimizing processor idle time and user waiting

time. Various schemes for scheduling have been tested at

MAC but the one described by Patel has proved most satisfactory.

Scherr (17) has made a far-reaching study of CTSS-llke systems,

with particular emphasis on their Markovian aspects.

Before the user's waiting time can be minimized it is

necessary to minimize the processor idle time, One of the most

inefficient operations ls the swapping of information between

the core memory 'll.nd the drum or disc files, Oftentimes the

processor must stand idle during a swap, awaiting the arrival

in core of a block of data, One way to ease this difficulty

ls to use

?

one or more processors and let several programs occupy core

at once. Then during the time that the swapping tor one

program is taking place, the processors can be kept busy on

other probrams. In this way overall processor idle time can

be reduced. These ideas of multiprogramming and multiple

processors are not new; it is only recently that computer

hardware has become sufficiently sophisticated to handle the

task effectively.

Additional alleviation of the swapping problem can be

effected by making drum and disc file operation as etfieient

as possible. In single-program s7stems efficiency of drum

operation is not a problem since onl7 one program (1!:!!, program)

can demand use of the drum at a time. Clearly, in a multi­

programmed system several programs can make simultaneous

demands on the drum and disc facilities, making special

organization a must to minimize the waiting time of a given

program for its request to be serviced, and at the same time

minimizing idle time of the entire system. It is clear

that in a poorly organized drum system the inefficiency or

the drum system can seriously impair the operation of the rest

of the computing system because continued operation often

depends on the reading of infol'llBtbn into cores a program

cannot begin to operate a segment until that segment has been

placed in core. For instance, suppose we ha4 at our disposal

the means to reduce the average service time of a drum request

by two or three milliseconds. In the two or three milliseconds

8

saved muoh computation can be 1>49rformed.

In this paper we oonsider·a model tor a drum tile

memory SJ'Stem, and in particular a model for the programs

in such a system. The model will describe the manner in

which a program (or more properlJ', a prgceH) •kes requests

for file memory use. A computer silllUlation has been written

for the particular model described. In Chapter 4 a pertinent

mathematical model is given. In Chapter S the results obtained

from this model are compared with the results obtained from

the simulation. The interested reader is referred to

Scherr (17) and to Appendix 4 tor an outline of the complexitJ'

of even the most tractable of models, the Markov Model.

9

CHAPTER ~. BACKGROUND.

It is the purpose of this section to discuss some

of the concepts upon which this paper is based. One of the

problP,ms of existing time-shared systems is that the processor

must st~nd idle while the present and next user's programs

are being swapped in or out of core. One proposed solution

to the oroblem is to run one user's program in core, meanwhile

swapping the next user into a remaining -part of core. Then

the processor would be switched to the next user, and the

swapping operation would begin anew. Of course each user

would not be arbitrarily assigned half of core, but programs

would be matched in some cpmplementary manner long ones with

short ones. This mode of overlapped operation in a time-shared

system is sometimes referred to as a~ (cf. Scherr (17)).

Again, idle processor problems arise if one program should

require all available core space. Then no simultaneous

swapping could take place.

A generalization of the above solution to the problem

has been considered at length by J.B. Dennis and E Van Horn (3,6).

It is known as segmentation. Under this scheme a user's

program would be divided into a set of individually named

pa~ts, called segments. The user is assumed to have segmented

his program in the way which seems most appropriate to him.

- ---. -- ,......,.~~--~·~-.--~-~~---·-;:....-__,.-- ,i'."1:a ... '4!%£ \>'.i";O-'!'< ----?"· .:\ ";,~<,-~i;:;:i;;::;_\-'.·"i<C:.::~--:-.-~~~;:-',"".-H::---~-"""'.--:'"'"~

"

10

Segments may be classU'ied ro•ighly according to the

manner in which they may be accessed:

(l) Read-Only •.

(2) Data.

(J) Pure procedure.

Some combinations or these classes are permitted.

A l!!!l.! procedure segment is a set or instructions

which directs a process• to operate on ~but not on itself.

Thus we could ask the compiler to extract all the symbols,

variables and so forth, from a program and group them into

one segment; procedure se~ents would then be allowed to

modify and use this data. or course oertain prognms, notably

short ones, would be contained entirely in one segment.

Read-Only ~ might be input data, format specifications,·

and so forth, which are not altered by the processes in a

user's computation. Operation of a program might be in the

following manner. Some first segment would be brought into

core, together with all necessa17 data segments, which may or

may not include read-onl7 data. Then segments may act

singl7 or in groups (if several processors are available)

on the data. New segments are brought in as needed (when

a reference is made to a segment not already in core). The

programmer may wish to declare subroutine segments,

which might contain some of

• A process is carried out by a processor under the direction
of instructions in procedure segments. (J.4.7).

11

his often-used subroutines, and which for efficiency' sake

should be kept handy in core at all times. Of course certain

subroutines, such as printing or exponentiation subroutines,

might be kept in special common, or library segments, being

available for the common use of all users. In this way each

user would not need to pe given his own copy of each and

every library routine. Figure 2.1 suggests the operation

of the system, showing a time sequence of groups of segments

operating on data. The time sequence may not be in the order

in which the segments were written, and the same segment may

appear many times in the sequence. Several processors might

be available to work for one user, so that several segments

might be active at once. Note that we have indicated that

the segments are in general of various lengths. Note too

that read-only data may not need to be present in core (!!!!ln

memory) but may be referenced from, say, a drum memory

(auxiliary memory) as needed.

Clearly, by writing progrAms in segments, only a few

segments of a given program need be in core at once, the rest

being stored in auxiliary memory, perhaps on a high speed

drum. A segment in core which is being used by one or more

processes is called a working, or active segment. Segments

kept on the drum are called dormant segments. Many users,

or course, can have segments working simultaneously if there

is more than one processor available. When a segment is

working it can have one or more processes taking place in it,

depending again on how many processors are available to work

TIME
SEQUENCE
OP GROUPS
OP
SEGMENTS

input data, ro:rmat
specif1aat1ons, etc.

12

. . .

DATA

symbols, constants,
variables, arrays,
etc.

I
I
L_ _J different times in the

process.

l {Note that data segments
ma7 vary in length at

ROUTINES.,.___ OTHER USERS LIBRARY {

Figure ~. Operation or one user in a segmented system.

1)

on it. Hence when talking or the computations within a

user• s set or segments, we shall spe<Jk or a user• s prooesse1

rather than a user's program.

Each segment will be named in some arbitra17 manner.

When a process makes reference to a segment (b7 neming it

and giving the address or some word within it) which is

not 1n core, that process is. te•porar11J' suspended until

the required segment is brought into core. Since maD7 u8ers

DIBJ' have simultaneous processes it will be necessaJ7 to have

some central control over allocation, Slt'&pping, and so forth.

The program which does this job is called the Supervisor

p:rograa. When a prooess references a segment other than the

one in which 1.t is taking plaee., tbe Supenisor will transfer

control to that segment U' it is 1n eore. Otherwise that

process must halt until the Supervisor has brought in the

needed segment. With JlllUl7 processes running there will be

a g;eat demand for drum usage. We think or a process causing

a request to be made to the drwu tor information, rather than

the process itself making the request. We can see that

references to other segments are at arbitra17 points in time,

and may be to arbitra17 segments, which -.J: have arbitral'J'

length.

14

If requests should be generated momentarily faster

than they can be serviced, then the waiting requests must

be places in a waiting line, or queue. The order in which

requests are serviced (i.e., the order in which they leave

the queue) is not necessarily the order in which they arrived

at the queue. We can see three distinct parts of the data

transmission function of the computing system: the users'

processes, which generate requests (either to read or to

write on the drum); a queue into which requests that have

to wait are placed, snd which has a selection rule for next

out, c~lled the queue discipline; and finally the ~.

One final word must be said, concerning the trans­

missi~n of data to and from the drums. It seems both desireable

and convenient to have some standard :!!!!!! of t~ansmission

and allocation, which we call the ~· It is always

possible to store pages consecutively on the drum (see Section

j.4). This requires that there exist some mechanism for

deleting unnecessary data from the drums. OnP possible

mechanism, using a percentage ~ of ~ occupancy, is

discussed in Section j.4. It is necessary for the Supervisor

to maintain some level of drum occupancy, and to have a

15

deletion policy in order to keep the drum from overflowin~.

We will see under our study of queues in Section 3.3

and Chapter 4 that for each request there is a certain drum

positioning time, or access time, that :must pass while the

requested starting page comes opposite the drum's read-write

heads. This access timP is wasted time. We seek to

minimize it.

There are two general methods of handling core allocation,

and it is not clear which method is more desireable. One

method is called pase-turning, the other segment-turning.

Under both methods, a set of pages will be grouped as a

segment and given a name. Under segment-turning a whole

segment is brought into core and kept there at least until

the various processes are finished with it. Under page-turning,

on• page of a segment at a time is brought in, and a new

pagP is brought in only when needed. Under page-turning

unneeded pages are deleted singly, while segment-turning

deletes the entire set of pages belonging to a segment if

any one of them is deletable. Page-turning seeks to minimize

wasted core spaoe; segment-turning seeks to minimize overall

processing time per user. Each method has its advantages

and disadvantages. There is some evidence that aeither is

better (cf Scherr's Thesis, where it is shown that the

scheduling and computational time quanta do not significantly

affect system operation (17)). This paper assumes a segment­

turning system.

16

In conclusions when a user's process reters to

another segment that is not present in core, it will oause

the SUpervisor to generate a request to the drums. Ord.inaril7

a request will be a read request, but it might also be a write

request it the reterenoectsegment is one in core being declared

in the ~terence as •dormant•; or it may be a delete request

it the referenced segment is being declared "dead•. The

queue will contain the waiting requests, while the drums will

service them. A proper deletion policy is needed. Finally

it is clear that the unit or information tranSlllission ought

to be the page, but the core memory allocation question, namely

whether to allocate in pages or in segments, is open tor

discussion.

CHAPTER }. THE DRUM SYSTEM •

.1,,1. Introduction.

17

The system model described here consists of three

elements: the Users' Processes, the ~. and the ~.

The Users' Processes element models requests to the Drums

to read, write, or delete. The Processes will make requests

at certain intervals given by some inter-request-time probability

distribution; they will request some quantity of data in units

of pages, beginning at a specified location on the drum. Several

drums may be present, so each request will specify which

d.rum is involved. Delete requests will be sent directly to

the drums, while read and write requests will be entered in

the Queue. The Queue will contain a list of which processes

are requesting how much data from (or to) what drum, andthe

starting location of the drum. It will act according to

some queue discipline to decide which request is next to reach

the drum, and will assign the request to a free channel to

the requested drum. When a request is assigned to a channel it

is deleted from the Queue. When a drum is notified by the

Queue that '3. rPquest is assigned to a channel it takes note

of what program has been assigned to the channel, what the

desired starting location and field are, and whether the

request is a read or a write. A certain amount of time

must elapse before the desired location has revolved into

position; this time is the access time. Once the desired

18

starting position has come opposite the drum heads the data

transfer begins, and ends after a certain amount of time,

the transfer ~. has elapsed. The sum of the access time

and the transfer time is called the service ~· The

channel idle time is the time during which the channel has

no request assigned to it. There may be some question whether

access time should be included in cha!lnel idle time. Since

access time directly affects a given request's wait be~ore

the end of its service, we h~ve included it in the service

time. Figure J.l shows the system in block diagram form,

as we have just outlined it.

We now ~ive a complete description of each element

starting with the most basic, and most probabilistic, the

Users' Processes.

~- The Users' Processes Model.

In order for proper control of all computing facilities

to be maintained, the ind1vidu~l processes in core do not

make re~uests directly to the queue and drums. As discussed

in Chapter 2, a request originates from the Supervisor, the

program which controls allocation and proper operation of

the system facilities. The Supervisor can prevent interaction

between processes, providing protection against such

delete some _p_~es
USERS' no. of program finished service

DRUMS
PROCESSES

Ith drum busy

•

drum requested startin_g_]l_osition
starting position QUEUE no. of pages

process making request ..E_rocess milki~ reg_uest
no. pages in transmission

~

Figure ls.1. The Overall System Model.

j~

.....
'°

21

happenings as some process erroneously requesting to write

on top of another's information. The supervisor will contain

the queue.

In order to nromote efficient operation, program seg-

mentation will be used (J,6). By breaking the program into

segments, efficient use can be made of core memory, since

those segments of a program in which no processes are presently

taking place should be stored on the drum and should not be

"cluttering up" core. When a process references a segment

not in core, the supervisor will request that the next

segment or segments be brought into core. Clearly while the

nP.xt segment or segments are being read into core, any waiting

processes are suspended; hence our first assumption:

Assumption l· Once a process hAs caused a request for
one or more segments to be read in, it is temporarily
syspended until its new segments are brought in. In
particular a process will be unable to cause further

requests until at least the time when it is resumed.

On the other hand, during the course of computation a

proce~s may generate some output data in core and request

that this data segment be stored on the drum, for example

so that it can reuse the same core space for further data.

Such write requests do not imply thqt the process must come

to a halt, hence our second assumntion:

Assumption £. Upon generating a write request a
process may continue, and in particular it may cause
further read or write requests while a write
request is being serviced.

21

From the above discussion, we may expect that a read

request is more probable than a write request, and so our

third assumption:

Assumption J. The probability of a process causing
a read request is not the same as that of it causing

a write request, and in general the probability of

a read is greater than that of a write.

In order to simplify space allocation on the drums,

the surface of the drum will be divided into blocks, or

pages, consisting of some fixed number of words. Thus the

number of words per page is fixed, and

Assumption ~. The unit of information transmission

and storage will be the page.

We have no reason to assume that the number of pages in an

arbitrary segment is fixed; in fact all we can say is that

long segments (those with many pages) will be unlikely as will

extremely short segments (for example one or two pages).

The number of segments in a block of n pages ia a random

variable, and in particular the probability of finding

exactly n pages in s segments may be given by a discrete

Poisson Distribution:

n=0,1,2, •••
s=l,2,J, •••

where the mean number of pages per segment is N.

(1)

Cnnsider this problem: if a process should reference

more than one segment not in core, so as in initiate the

read-in of several segments, should the Supervisor ask for

22

the several segments in a single request, or should it

make separate requests, one for each segment? We are assuming

that it is always possible to store the pages of a given

segment sequentially on the drum, that is thqt we can always

read or write a segment without interrupting the transmission

between start and finish. How this is done is considered in

some det~il in SPction J.4. For three reasons we argue that

in the event of need of several segments contemporaneously

there should be a separate request made, one for eqch segment.

First, since consecutive segments may not be all written

at once, but may have been written at widely spaced intervals,

and independently or each other, it is unreasonable to assume

that segments will always be stored consecutively; although

this could be done by the method of Section J.4. Second,

there is no assurance that the requested segments will all

be on the same drum, or that the request will even be for

consecutive segments. Finally some queue disciplines

discriminate against long requests, servicing those requiring

the shorted service times first (Section J.J); asking for

several segments in one request could well result in an

inordinately long wait for service under such a queue discipline.

We now make our fifth and sixth assumptions.

Assumption 2· Each request will be for one segment,
but at a request time a process may cause several
requests. The probability that s segments will be
requested will be exponential, that is

P(s) = e-s s=l,2,... (2)

2J

Furthermore at request time there is no reason for
all the requests to be either all read or all write;
they may be mixed, A read request, or course, will
cause suspension of the process.

Assumption £. The number of pages in the single
segment of each request will have probability of
being n pages

n=0,1,2,... (J)

where N is the mean.

When a segment is active, that is, when processes are

referencing it, the probability that the next requests occur

at each successive time instant are independent so that we

expect the arrival times or requests to be Poisson

Distributed. A request is unlikely to be made immediately

after resumption of a process from the last request, and it

is unlikely to be made an extremely long time after the

resumption of a process. The probability of exactly k

requests in a time interval t is

(at)k
P(k,t) = k! t ~ 0 (4)

where a is the average number of arrivals per unit time.

We have then

Assumption 2· The inter-request
the following distribution*

P(t) = ae-at

*See page 60.

times are taken from

t ::. 0 (5)

24

Something must be said about the starting position ot

the drum a particular request will seek. We have no information

to allow us to assume anything other than that all drum

positions are equally likely to be requested.

Assumption ~. At a particular request time all drum
positions are equally likely to be eelectedt that is,
the density ot angular positions requested will be

P(e) •in (6)

Finally something must be said about which drum is to

be requested, in the event that there are several drums in

the system. When a process is making requests tor several

segments there is no reason to assume that all the requested

segments will be on the same d!'Ull. Bence we are willing to

say that each of the D drums is equally likel7 to be requested•

Assum.ption 2· Each request is equally likely to
be tor any of the drums in the SJStem.

Assumptions J,5·,7,B, and 9 are illustrated in Pigures J.2

to '.3. 7.

Based on the discussion above, we are in a position to

construct a model for the request acti~ity of a given

process. This model is shown in P1gure 8.*

*A Note on Notations A ~ is a point at which one process
splits into two processes, which follow their own. paths. A
loin is just the opposite, where two processes become one; each
time the join is entered the pperations in the box of the
flow chart are carried out. An arrow doing this ~ I
is a termination of a process. A note ~ brackets gives the
condition_ permitting a prooeSl!I to emerge from the corres­
ponding box. A function written with an argument (.) denotes
a probability !unction tor a set of identically distributed
random 't'&riable1.

rdwr(.)

R

w

Figure 1.2. Relqtive frequencies of read and
write requests,

nseg(.)

-
1 2 3 4 5 ••• n

25

Figure .1.J.. Relative probabilities of number of
segments per reauest.

npg(•)

/
I

l 2 J

...
'

......... -- --

26

n

Figure 3.4. Relative probabilities of number of
pages per segment.

trq (.)

Figure J...j. Relative probability of 1nter­
request times.

..l.
2n

drmpos(.)

0

27

2n e

Pigure J,,.2. Relative probability ot requested
drum position.

0 1 2

Pigure la.Z· Relative probability· of requested drum.

ns

nseg(.)-ns

1-i

+ 1-i

Send n to
delete meohaniaa*

..... _ !2!:k

[.121!!]
i -1-i

i - 0 ?

>0 -o

28

Send npg(.),drmpos(.) 1
dl"ll(.), rd to Qu,ue.

f request J
(!1nished

Send drmpos(.), n,
wr to Queue.

rrequest 1
l!inishedj

Wait until time • time + w
*The delete meohanillll
is discussed in Section
).4.

nseg(.) •no. or segment• requested
rdwr(.) • rd-wr distribution
npg(.) • no. pages requested
drm(.) • requested d?'IDI

drmpoa(.) •requested drwa position
n • no. pages this request

ns • tempora1'7 segment oount

Pigure ~. The Processes Model.

29

The reader ma7 be asking what justification there is

for assuming the particular probabilit7 distributions that have

been chosen; in particular wh7 we have chosen Poisson

distributions as ~ppo•ed to other distributions. It will be

noted that these choices are completel7 arbitrary, and cannot

be properl7 determined until some statistics are available

about the s7stem we are dtscussing. It is felt that the

assumptions that have been made are reasonable.

J...l. Ifil!. Queue.

The model of the queue is more straightforward and

deterministic than the model of the prooesses. When a request

is received from a process it is entered in a list within the

Queue Element. Each entry in the list contains the following

informations an i4entification number of the process requesting,

the number of pages involved in the transmission, the desired

starting location on the drum, the identification number of

the desired drum, and whether the request is a read or a write.

The number of pages is an important piece of information since

it can be used to determine when the transmission is ended.

JO

A possible structure for the Queue's list, which we

will refer to simply as the queue, is shown in Figure J.9.

In this list two pointers are used, one to indicate the lower

limit of the number 1n the~ (the shgded region), the other

to indicate the upper limit. Both pointers are periodically

incremented and are modulo capacity of queue. The lower pointer

is moved down one position eqch time a new entry is made, and

the upper pointer is moved down one position each time a

requestleaves the queue. If the next out is not the least

recent entry, then all items above are moved down one position

to fill the gap. The shaded area represents the number in

the queue, frequently referred to as the length of the queue.

'There ls a Boolean signal received from each of the

drums indicating whether or not that drum is ~ (all

channels to it 1n use). Whenever all channels to a drum

are busy, any :requests arriving for that drum must wait in

11ne, end a waiting line, or queue, is formed. If requests

arrive too much faster than they can be serviced, the length

of queue could become equal to its capacity and any further

requests will be lost, Such a development ls disastrous,

since it would render a process useless. Hence the average

arrival rate must not exceed the average service rate, where

the rates are defined to be the reciprocals of the

average interarrival and service times, respectively.

next out ... -c----

latest entry

next entry-"""' Direction
of push

number
in

queue

Figure .:L.,2. A structure for the queue stack.

31

capacity
of

queue

'.32

When the Queue is aware that a drum is not busy, it

looks down the list to determine which if any requests want

the free drum. It then chooses one of them according to the

queue discipline, assigns it to some free channel to that

drum, the deletes the entry from the list.

The queue discipline is simply the rule !!21:. selection

of ~ 2B,l. We consider four queue disciplines applicable to

our situations

(1) First come, first served.

(2) Shortest access time first.

('.3) Shortest Job first.

(4) Mixed policy.

ill nm .2..2!!!!. !1ill served.

This is the "fair" or •equitable" queue discipline,

where requests are serviced in the order of their arrival,

and is the case when the •next out• of Figure).9 is the

"latest entry". It does !!2! result in the most efficient

operation. It is analogous to the normal situation encountered

in a post office, when one wishing to buy a single stamp

must wait behind a person with several packages. Certainly

the waiting time ls greatly increased because of ill fortune,

whereas the person ahead would not be significantly delayed

to give way. Since a process is equally likely to ask for

any drum position, and since the present drum position is

likely to be anything, with the first come first served queue

discipline the average access time is half the drum revolution

time. LatJ us represent the time a request is in the serv1oe

s7stem. (the ti.llle from when a process makes a request until

the time service ls completed) b7 Ts• Let the drum revolution

time be T. Let the average t:ranster ti.llle be Tt• And let

the average wait 1n the queue be Wq• Then tor t1rst come first

served,

Ts • wq + Tt + T/2

~ Shortest Access ~ First.

(l)

Under this queue discipline the next out is selected

acoording to following rules

Choose the one tor which the ~otational pos1t1on1ng
dela7 until the desired starting address is m1n1Jllllm.

Now if more than one request for a given drum is in the queue,

on the average the access time will be less than half the

drum revolution time; this ls so since with more 1n the

queue the probability that there ls a request tor the present

drum position ls gre3ter than for a queue of length one. It

•ill be shown later that the m1n1.Jlum access time is roughly

inversely proportional fo the length of the queue. Hence

for this queue discipline

Ts ... wq + Tt + T/ii (2)

where n is the average number in the queue, and Wq ls

not the same numberically as for the tirst come first served

queue with the same n. Observe that the shortest access time

queue is a dyn':llllic priorit7 queue, one for which the priorities

ot requests are changing randomly.

~-·-·-......----;-""'··- ------·-· -·---- ---··:-------·~------:-~~-~,...,--·~·-,,.- --.·-::-·

J4

ill Shortest lS!l!, !!!.!:ll,.

Under this queue discipline the following rule is

used to select the next outs

Select the request tor whioh the servioe time is
a miniJllWll. The service time is the S\Dl ot the access
time and the transfer time.

A little thought should convince the reader that under this

queue discipline the access time is not minialzed, but 7et

it will in general be le·ss than T/2 tor queues ot length two

or more. Hence

(J)

where T/n < T' < T/2 , and wq is not the same numerically

as for either a first come first se~ed or shortest access,

queue having the same length n.

J.5

(4) Mixed Polic1 Queues.

It will be noted that the shortest access time queue

~nd the shortest job first queue are queues in which a continuous

number of priorities exist. Suppose we become concerned

about requests which might have to wait an inordinately

long t lll.e, perhaps because of 111 fate, perhaps because its

job time is long. This could be a real problem in the shortest

job first case (what of the longest job of all?). It ought

not to be too much of a problem in the shortest access time case,

since each time a request is to leave the queue, it has an

equal chance among all the others or being chosen. This is

only partially trae tor the Shortest Job Pirst Case, where

the job time has a random component. the aco.ess time; and if

the transfer tiu component be very long, then the job time

depends almost entirely on the transfer time. Notioe that tor

very short transfer times, the shortest job queue will approach

in operation the shortest access queue. one wq. ot circum­

venting the problem of some ~equest waiting 1no:rd1natel7 long

is to introduce a skip limit into our lllodel. Each time a request

is skipped over as next out, a counter assooiated with that

request is incremented. If this ~ ~ ever exceeds the

skip limit then this request is next. What we have done

in essence is to add a first come fil"llt served cOJtponent to

the queue. As the skip 11m1t is lowered a- shortest access time

or shortest job queue behaves more an4 more like a first come

first served queue. In fact a queue with the skip limit set

to zero is .1ust a first come first served queue~

)6

We w111 include no more d1scuss1on on mixed policy

queues since the problem is 1n general complex and unsolved.

We w111, however, mention the skip limit once again in Chapter 5

under the discussion of simulation results. Pinally, another

mixed policy queue ls discussed in Appendix). Por further

discussions on the matter, the reader is referred to the

literature (1,9,13,15,16).

i.Sl A Comparison of Queue Disciplines.

In Appendix 1 we have related the mean number 1n the

service svstem, whioh includes those being serviced and those

in the line, to the mean and variance of the service time

distribution. We w111 denote the number in· the s7stem by L.

The random variable of the service time, ts• is the access

t1m~ ta' plus the transfer time, tt• The service distribution

·can be found from a oonvolution of the access distributiorr w1th

the transfer time distribution. We will show la,er that

both of the.se can be found, hence the service distribution

·can be four·d. In particular, the mean service time, Ts' is

T
8

•Ta+Tt (4)

2 And the variance of the service time, as , is

as2 ., at2 + a; (5)

since we are assuming independence of ta and tt• Let us

. denote the function relating L, T
8

, and a: b7

L • F(T
8
,o!) "" P(Tli+Tt' aa2 + at2) (6)

J7

The function P trom equation (6) ta such that a decrease

in either or both of Ts and a: will result in a reduction

in L. The transfer time distribution •111 remain the same

tor all queue disciplines since it is a function ot the number

ot pages per segment, which is fixed before band, and is

•ssumed to be identical tor all processes.

Let the total number or processes in all be N. Then

N "" w + L (7)

where w is the number or working prooesses. The eftioienoy

ot a system can be measured crudely by the number or processors

working, and is
• N - L T. efficiency • N • -,r- • l - if (8)

To maximize the effioiency, L must be minilllized. Thus the

optimum queue discipline is the one tor which is minim1zed.

Notice further that the number of processors that can be

kept working is just the number or working prooessrs1

number ot busy processors • w = Nfl - #> (9)

Por the simplest system, the single!"processor system, w must

nei;·er be less than one it the processor is to be continuously

busy.

On the average the transfer time is the same for all

queue disci~lines {because it relates directly to the number

or pages in a segment). On the average the access time is

explicit~- minimized only by the shortest access time queue.

·rherefore the service time for the shortest access queue will,

on the average, be a minim.um, compared to other queues.

We see that the shortest access time queue ainimizes the

service tiae, while the queue which .bears the •shortest job

first• does not minimize the·average service t1me. The

apparent oontradiotion is resolved when we realize that the

shortest access queue chooses the shortest job first 9!! ~

average, while the •shortest job tirst• queue selects the

shortest instant!'Wous job. Nevertheless equatiQn (6) tells

us that the shortest access queue must have minimal L associa~ed

with it, and is therefore the aost etfioient•. In tact,

any queue which does not ainim.ize the access ti.lie must be

less efficient than a shortest access time queue, when

efficiency is defined by equqtlon (8). Chapter 4 ls 4evoted

to a detailed study of this queue.

Based on the above discussion, we give the Model of the

Queue in Figure J.10.

*This conclusion is verified by simulation. See Chapter 5.

ST ABT

0--+-i
o_....nq

Wait tor request

Store progno, drm, drmpos
npg, rd or wr, in queue.

nq + l__.,. nq

39

YES
drmbs7(i) >--YE.;;..;.S..,,< all drums busy?

NO

Seleot next out according
to queue discipline and
skip limit, if any.

Send drmpos, npg, progno,
rd or wr, to drum no. i.

nq - 1-nq

=O >0

NO

npg • no. pages requested
rd a read request
wr • write request

drm • the drum desired
dl'!llpos • the starting position

drmbs7(i) • indicates i1l:l drum bus;y
nq • number in queue

Pigure lL!Q.. The Queue Model.

40

J...!t. IM~·
S1nce the method ot distributing pages on the

drum 1s or considerable importance, we will discuss it r1rst.

Consider Figure 3.11. The drum, we suppose, 1s divided into

sectors as viewed from a cross-section, where the number or

sectors is an integer. The number or words per page is just the

number or words that can be written ar0und the circumference

ot the drum divided by the number of sectors. The drum is

divided int.o rings, and the width or one such ring 1s a field.

A field is one !!2!:!l in width, and a word is typically 36 binary

bits. Each field is subdivided into a number ot tracks, each

ot which is associated with one read-write ~· The same

head is used for reading and tor writings a read amplifier

or write amplifier is connected as needed. The operation a·

head is presently performing is oalled its status, and there

is a delay associated with switching between read and write

status. This selection delay is about the same time as for

three or four words to pass beneath the head, so ordinarily

the first few words on a page will be left 'blank to allow

tor this delay.

It was stated previously that it is possible to write

a segment of N pages on the drum contigu•"Jusly. We indicate

how this can be done. The question is: suppose some of the

sectors in a field are used, how can a string of N pages be

written consecutively, especially it a page would. have

Shaded squares are a consecutive
string or pages, each with a
pointer to the next.

41

------ Tracks per field

Figure .l&ll· Organization of the drum.

·-

42

to be written on a ased sector? The answer is that we

do not attempt to write the pages in the same field. We

require only that during a write operation there be at least

one free field per sector. Pirst of all, suppose that each

sector was allowed to have all but C of its fields in use,

where C is the number of channels to the drum, and where

any channel can access any field. Suppose further that

whenever fewer than c fields were free on a given sector a

deletion occurred immediately. Then the drua could handle

C simultaneous write requests beoauae a tree tield can always

be round. In reality a delete might not oocur when necessary,

and also there is the possibilit7 that a .. gaent is longer·

than the number or sectors, which implies that more than one

of its pages would be written on the same sector. It would

be better to set a drum occupancy level, which is the ratio

of allowed fields per sector to the actual number ot existing

fields per sector:

cccupancy level ~ ~ (l)

where P is the number of fields per sector, c is the number

of channels to the drum. Then whenever the occupanc7 level

is exceeded, some sort or emergency condition would be set

up, and any unnecessary segments would be removed from the

drum (they would be deleted, or the7 might be moved to a

lower level of sto~e, ror ezample a disc tile). In such

a case the occupancy level would have to be less than the

upper bound set b7 the equality sign in (l) to allow for

statistical fluctuations. Simulation has shown that

> 4)

occupancy levels 1n excess or 93. are possible with a proper

deletion policy, tor typical parameters. Bee Chapter S.
When a write request coaea, the pages are written

on the drwa on the tirst tree tield on each sector, and a pointer

is lett, to direct a read operation to 1'he next ti•ld of a

consecutive ~tring ot pages. These painters are indicated by

arrows in Pigure J.11. Thus it i• possible to have a string

ot consecutive pages written (and read) without interruption.

We require rapid inter-field switching, a teature aTailable

on high+ speed. drwaa. It is to be noted that if the drum is

be be operated this way it will have to maintain its own

•Pield Usage Table• s1JDilar in principle to the •Track Usage

Table·• used in crss with the disc(2). When a write request

arrives, th1s table is consulted to lboate the nearest

free tield on the given sector.

As long as the supervisor's deleteion policy sees to

it there are alwa7a sufficient tree fields on each sector, the

drum operation is straightfo'Mlard. The delete mechanism shown

in P1gure J.12 determines how ma117 pages are to be deleted trcm

the drwa; it does this whenever the desired occupancy level

is exceeded. We may model the behavior of a deletlonn by

picking a random drum address and deleting one page trom each

sector unt11 N pages are deleted. A •deletion• may be to

remove the offending pages to a lower level of storage, or

it 11117 be to obliterate the pages entirely.

44

Once a channel is &Sl!ligned, the drua obsenes whether

the request is a read or a write, and switches the heads associated

with that t1eld to that status, as soon as the starting sector

is •pposite the heads. Note that the set ot heads associated

with a giyen tield 1118.7 be in use b7 ditterent requests trom

sector to sector. When the starting page is 1n pol!l1tion, the

data transfer begins, allowing tille tor the nitchiiag dela7

at the top of each page. Three or tour words lett blank on

a page is .ruttioient tiae tor this. At the bottoa ot each page

is an End of Page mark, with a pointer to to tbe tield containing

the next page, which initiates switching to that field; or

course the heads there are put into the p1'0per status.

Pinall7, at the end of the last page or thesegment, an"Bnd

of Plle DllU'k will be encountered, and the channel is treed

for the next request.

The ideas for the drum model are embodied in Figure).1).

Wait for 1Dd~cat1on that
a process -.its to wr1te­

n page•.

ptotal +
> -----< ptotal

npg(.)-pg

dpg + pg pg

ptotal - pg__..p~tal

o-Jpg

ptotal a total no. pages on da
pct • per cent d!'ml ocoupano
dpg • no. pages to be delete

pg • telllporar)' page count ·

Sen4 •49i..te dpg
pagee• to drmu.

Pmre l.all· The Oelete aechan1sm.

This empty page was substih1ted for a
blank page in the original document.

4SB

O~buq

Wait tor request from Queue ... --~

Assign a free channel

RD WB

Send drm.bsy
to Queue.

.--------1rd or wr npg_.,. n

time Delay of swap time
or one page.

BOP EOP

Bead pointer,
inritch to that
field, set status

capacity • no. of channels
nbus7 • no. busy channels

npg • no. of pages

Send starting
loc!ltion to
SUperT1sor

drmbsy • indicator that drum busy

P1gure la.ll· The Drums Model.

>0

Write EOP and pointer
to next field.

drm.bs:r oft

CHAPl'ER ~. m SHORTEST ACCESS !!!!:! QUEUE.

4.1. Introduction.

In Section J.J it was shown that the shortest access

time queue discipline ls the most efficient; it ls the purpose

of Sections 4.2 and 4.J to analyze this queue as best can

be done. The shortest access time queue is a special form of

the shortest job first queue. Solutions have been obtained

for shortest job first queues with the input rates independent

of the queue length. No solutions have been obtained for a

shortest job queue in which the input rate ls dependent on

the queue length, that ls, when there ls only a finite number

of requestors. In the next two sections we do not attempt

to solve for the probability densities of queue length,

waiting times, and service times; rather we talk only of the

averages, which become time independent at equilibrium, when

the input rate to the system is the same as the output rate

from the system. In Section 4.2 we derive a probability

density function for the minimum access time as a function

of the me~n nUJi.ber in the queue; then in Section 4.J we combine

these results with the results of Appendix 1 to obtain some

approximate expressions for the number in the queue, and for

the waiting time in the queue.

47

4.2. ~ Miniaum Access Time Distribution.

The access time is derined as the time rrom the exit

or a request rrom the queue until the requested starting

sector has come op~s1te the read-write heads. It is simpl7

a positioning time. We have shown. 1n Section).).5 that a

queue discipline which minimizes the access time is the most

erficient; we wish to derive the access time distribution

in this section, and in a later section we will determine the

waiting times in queue using the Pollaczek-Khintchine Pormula

(Appendix 1). We derine the Ii.lowing quantities, given

that n are in the queues

Ri • requested starting sector or the drum ror the 1th
request in the queue.

D(t) • The angular drua position at time t.

Ai(t) •required access time at t1ae t tor the 1th
request given that the present dl'WI position
1s D(t).

a = random variable of minilllWI access time, which
takes on values a

0
•

T = drum revolution time.

The model of the shortest access time queue discipline shown

in figure 4.2.1 best illustrates what is going on.

The comparators compare the requested starting sector

with the present drum. position and give as an output the

required access time. The Min(.) boz selects the min111l111l or

its inputs and sets its output to this 'YB.lue. To s1mplir1

the derivation we will asSUlle that the Min(.) box normalizes

its output with respect to the drum. revolution t1m.e T, so

48

D(t)

8i
~COllPAllATOBS

Ai Ct)

82 r-Ai(t

I Min(.) a
:

l\i ~ ~~(t)

Pigure ~. Operation ot shortest access queue.

that a is a traction between 0 and 1. We have

a=+ Min (Ai(t),~(t), ••• ,"n_(t)] (1)

where 0 ~ a ~ l • We are interested in the probabilit7

densit7 or a as a tunction or n, the number in the queue.

It was stated 1n Section J.l that the probability density

or the Hi is uniform., that is, all drum sectors are equall7

likel~ to be requested. Further we are assuming random

segment lengths. If segment lengths and starting positions

are random, the present drum position, which is the drum

position just ~ the finish or the last request (so tha~

the next request ls about to be assigned)~ is random, and b7

s7J11111etry and the independence of requests, we may assume that

it is uniformly distri'buted.*

*This is not true 1n the case or short segments because the
drum will have rotated only a short distance. This matter
ls discussed further in Section 4.2, page 63.

But if D(t) and Bi for each i are uniform, then Ai(t) must

be uniform for each 1; that is, the 1th request's access time

is equall.7 likel.7 to be any fl'fiotion of a drum revolution.

Figure 4.2.2 shows the density f'unction tor Ai (t), which has

been normalized with respect to the dl'UJll revolution time, T.

•o 1

Fisure 4,2,2, Access time tor 1th request.

Now, the probability that a > a
0

is just

P[a > •o] • P[Ai (t')>ao•• .. •An(1'-)>ao]
t

t• - '

But the R1 are independent, so that the Ai(t/T) are also

independent, and

t t• • 'f

But P(A1.(t•:)>a
0

] 1s just the shaded portion or Figure 4.2·.2,

and is simply (1 - a
0
). Then

J(a > •o] • (1 - •o>n

equivalently P[a ~ a 0] • 1 - (1 - a
0

)n

and P (a) • d- P(a < a] a o
0

- o

P (a) • n(l - a)n-l
a o o

(2)

(3)

Equation (3) 1s the _probabil1t7 density or a, given~ n

are in the queue, Figure 4.2,) shows P
8

(a
0

) tor a few values

or n.

50

Figure ~. Shortest Aocess Time Distribution.

By the def1n1tion of conditional probability:

paN(ao,n) = pa/H(ao/n)PN(n)

where N is the random variable of the number in the queue,

which takes on va-lues n. Then

The mean access time, a , is

Integration by parts over a
0

leads to

a""
00 _!_
I: n+l PN(n)

n•l

The second moment, ~' ls

00 1
= I: I a

0
2n(l - a)n-lp (n)da

nsl 0 o N o

Integration bv parts over a
0

leads to

2 "'.;' 2 1
a = ~ n+l n+2 PN(n)

n=l

The variance of the access time distribution ls then

-2 .. 2
- a = I: (n+l)(n+2) PN(n)

n=l ..
[I: -1.. ()]2 - n•l n+l PN n

51

(.5)

(6)

(7)

Note that we hqve not specified PN(n), the distribution of

the number in queue. Note too that it is !!2! the same as the

time distribution of n. It is the distribution of number

in queue as seen by the departing requests--•• need PN(n)

taken over 1nstqnts when the next request is extracted from

the queue, which doe.s not happen at uniform intervals. It

is a reasonable assumption* that PN(n) is a normal distribution.

This is only an approximation, since the normal distribution

would allow for some probability of negative n, which is

physically meaningless' tbis must be used carefully when

*Based on the Central Limit Theorem.

52

n ts small enough so that the portion of the normal curve

extending below nsO ls appreciable, especially when the variance
2 -of PN(n), an 1 is large, so that ar?>N. PN(n) ts

1 _ri -2 2) PN(n) = - eAl'L.-~(n - n) /a J2.iTo n
n

Putting (8) into (5),

(8)

a .. i -. -1 - ~ exp[-i(n - ii) 2/a-2 J (9)
n=l "./fiia 'n+ .L /

11
n

And putting (8) into (7),

2 .. l 2 .- - 2 2
aa • I: - (n+l) (n+2) e:xP!.-i(n - n) /an] (10)

n-1 ,/2!iia n

Equations (9) and (1) cannot be reduced further, even if

the summations are taken to be integrations over the infinite

interval. These equations do, however, 71eld readily to a

comuuter, and ramilies of curves for a and ~a2 have been

assembled and are shom in Figure 4.2.4 and 4.2.5. The

axes are normalized so that, given the drum revolution time

T, values of access time can be found.

We wish to note the limiting forms of equations (9)

and (10). These occur for n >> 1, and for a << n. n Figures

4.2.4 and 4.2.5 show that for n::. 8 we may ignore the effects

of an, for an of interest (see Seotton 5.2), with only a

small error. Now if an ls very small compared to n then

the normal curve approaches a unit impulse in the limit,

5'.3

and the summations of equations (9) and (10) reduce to a

single value, taken at n • n. Thus for on<< n:

at n = n (ll)

oa = n.!l J n/(n+2) at n = n (12)

It is to be noted that (ll) and (12) are evaluated at

n • n, JJ.nd that the approxilllF.!.tion is very good if the conditions

are met; this is evidenced in Figures 4.2.4 and 4.2.5, where

equations (ll) and (12) have been drawn. One of the prime

assumptions of this derivation is that the drum positions

at successive request-granting times are independent. If the

drum positions at successive request-granting times are not

independent, then the access distribution is in error. This

is the case if the average length of requests is small compared

to a drum revolution. See the discussion on page 6).

In Appendix 2 one further result of interest is

obtained. The form of the probability density for the waiting

time in queue is derived and is shown to be exponential. This

is in excellent agreement with the simulation results discussed

in Section 5.?.

NOBMALIZED
ACCESS
TIMB

o.s

o.4

O.)

0.2

0.1

o.o

\

~,

Dotted lines show region where
Normal approximation breaks down.

antr

-~·,~
.-- ~~ . _,

Ozi•2 , _.---~~~ n •n-4

.. 1'1 --·--On•4
---- ----- ~--;;::~~•;::::-._._ .. , -· -

• - - ~~> - -,

I I I I I I I I I I
0 1 2) 4 s 6 7 8 9 10

AVERAGE HUMBEB IN QUEUE

Aoa~ss time normalized w.r.t. drum revolution time,
as a tunotion ot average number in queue. ·

4.2.4.

"' ~

NORMALIZED
srANDARD DEVIATION
OF ACCESS TIME

1.0 ...

o.

a =l

Dotted region shows where
normal approximation breaks down.

.{._
n a =2

..... , / n a •3 a =4

.-- n-. n\ -·

''""'-:-.. -·:--......_ --.-·-·--· ::::S:....'""'- ---~:::::::-:-._ -·-·-:-=:=c­~-~::::::==i...-~-·­i rn
a-n+lvn+2

O.Ot--~---~~-+-~~+-~--t~~-t-~~-+-~--t--~-+----
0 2 4 6 8

Figure ~. Standard deviation of
drum revolution time,
average number in the

10 12 14
access t1me,normal1zed wrt
as a function of the
queue.

16 18 20
AVERAGE NUMBER

IN QUEUE.

\J\
\J\

!t..,l. Examination ot Shortest Access !!!!! Queue.

The •olution to a queueing problem in which the policy

is based on a continuous number ot priorities, such as the

shortest job first and shortest access tlme queues, is not

easily obtainable. In particular no solution has yet been

obtained tor a finite requesting population, under a shortest­

job-first type queue discipline, since the arrival rate ot

requests tends to depend heavily on the size ot ·the queue

and the service time. As the queue become tull, the rate

of arrival ot requests teiids to slacken because there are fewer

members of the requesting population outside of the service

system. In this section we will deri~e a set ot approximate

equations tor the number in the queue as a function of input~

and service parameters, and indicate an iterative procedure ,;

tor solving them.

We supl)Ose that the queu~ is in statistical equ1libriWI,

that is, the system has been in operation sufficiently .long

that the timP. average ot m.maber in the system is constant.

We shall use the following notation:

n • the mean number in the queue.

Wq =mean wait on a request in the queue.

T • drum revolution time.

Ts = mean service time.

57

Tt = mean transfer time.

Ta = mean access time.

a = mean arrival rate.

b = mean service rate.

A = mean interval till the next request from one
process, from the time it resumes.

s = mean number of pages per segment.

m = number of sectors around the drum.

N = nopulRtion size, -i.e., the total number in
the queue, Plus the number in service, plus the
number generating ~equests.

r =traffic intensity ratio, i.e., the average
number of busy channels.

In the previous section we saw that due to independence

of requests, random segment lengths, andrandom present drum

position, that at each request-granting time, each request

was equally likely to be next out. We have a series of

Bernoulli trials, then, with a probability of ~ of a particular

request being picked at a given trial, and probability

1 (1 - k) of being overlooked, where k is the number in the

queue at the time of the trial. On the average we can say

that the probab1l~ty of being chosen on any trial is approximately

~. where n is the average number in the queue. Therefore
th the probability of being chosen on the k requesting-granting

time after a request enters the queue is, on the average,

given by a geometric distribution, which we denote by P(k).

58

Then (1)

We wish to determine the waiting time of a request in the

queue. The z-transform of equation (1), which we denote

by p; (.z) , 1 s

pkt(z) = ~ (1 - l)k-l(l) zk
k=l n n

whioh oan be reduoed to the olosed form

p;(z) = n - c: - l)z (2)

The mean number of trials before the given request is next

out is

- d t]
k • dZ ~(z) z=l "'n

And the variance is

2 - d
2 t d t [d t]2]

ak • L--z ~(z) + dz ~(z) - dZ pk(z) z•l
dz

2 ok • n(n - l)

(3)

(4)

The average wait is just the average number of Rervioe

intervals that must pass while a request is in the queue.

!f a request arrives just before a servioe begins it must

wait only (n - 1) intervals; if it arrives just after a

serv1oe beg.ins, it must wait n intervals, as given by

equation (3). On the average, then, it must wait (n - t)
servioe intervals, The watt 1n the queue is therefore

W = (n - f) T q s (5)

59

We suppose that eaoh interval is of duration Ts• where Ts

is the mean service time, and

Ts • Ta + Tt

and where Ta is the mean access time. For n in the queue,

we can use equation (11) of Section 4.2, so that

T • ...!_
s n+l (6)

It is reoalled that Ta • T/(n+l) is an approximation, becoming

more aocurate with inoreasing n. The mean transfer time is

the time to service ~he mean number of pages per segment,

which is
(?)

where s • mean number or pages per segment,

m = number of sectors around the drum.

B7 putting (7) into (6) we obtain

(8)

We have noted that the shortest access time queue is a

random output queue, so that we c~ use the result or

Appendix 1, which says that

Mean number in the service 87Stem • mean number in queue
mean service rate mean arrival rate

(9)

where the mean service rate is b = l/(mean service time),

and thP. mean arrival rate is a• l/(mean arrival time).*

* We are assullling as in SP.ction 3.2 that arrivals are Poisson,
and that segment lengths are Poisson distributed. That is,
the pro'bab1lit7 or e:zactl7 k requests in a time t is

P(k,t) • (at)k e-•t t ~ 0
k. (continued)

60

Equation (9) is exact only when the arrival and service rates

are independent of the number in the queue, which is not

the case in the finite population system we are discussing.

We can use equation (9) because there must exist an equivalent

infinite-population system whose equilibrium arrival rate is

the same as the arrival rate to the shortest access system

when it is in equilibrium. We proceed to substitute the

appropriate quantities into (9) and then solve for n, the

mean number in the at equilib~ium.

First note that r, the traffic intensitz ratio, is

where a is the arrival rate at equilibriWll. The probability
of' finding exactly k segments in a block of n pages 1s

k
P(k,n) • (n,l) e-n/a nal,2,J, •••

where s is the mean number of pages per segment. The
waiting time between poisson arrivals is

so that

P(t)dt = P(no arrivals during time interval t)
X P(one arrival in time interval dt)

k • (~tl e-at]k-0 .<a)(dt)

t :::. o.

also the time average number of busy channels:

r ,. a _ mean arrival rate
bC - mean service :rate

where c = number of channels,

b = mean service rate

a = mean arrival rate.

61

The mean number in the service system is just (n+r). Now

if the interarrival time for one workilll1; process is A, then

at equilibrium it must be, for all working processes,

A .. !
(N - n - rl a (10)

Because (N-n-r) are not in the service system, and are therefore

making requests. We can now fill in (9) to get:

.in:!:.tl = --...,._......-n..__,.. __
~ CN - n - r}

s A
(11)

We define a quantity R to be

(12)

Note that R is an intensity ratio for one process, and

(1))

Then the intensity ratio r is

Ts
r • ~ = ------,4;;---- • R (N - n - r)

(N - n - r) (l4)
Solving (14) for r, we find

R
r = (N - n) r-+li (15)

62

After putting (15) into (11) and l)erforming the appropriate

algebraic manipulation, we find

n = ___ N.__ ___ _

Jl + B) 2
1 + IC(n + HR)

(16)

The form ot equat1on(l6) h~s been chosen because it ls

solvable b;r a process known as relaxation {or iteration),

in which a guess at n is put into the right side of (16), keeping

in mind that R • B(n). A new Yalue of n is obtained. This

new value of n is placed into the right side of (16) as

before, 7ielding ;vet another value ot n. This process is

continued until the new value or n is the same as the previous

value. It ws.s found thRt (16) converges rapidly, within

five cycles.

Collecting the results,

n .. N

Jii + B~~ (l?a)
1 + c(n +i)

wq = {n - t) BA c (l?b)

Ts •BA c (l?c)

A simulation has been carried out to test equations (17).

The value ot n was round to be within l.:C ot the simulated values;

the value of Wq was within SC. These answers were considered

satistactorr in view of the approximate nature of the

derivation.

Due to the nature of this nroblem we are unable to

63

sa7 an7thing about the standard deviation of our results.

Simulation has shown that the standard deviation of the number

in queue is less than 1.0, while the standard deviation of

the waiting time was in general somewhat larger than the

mran. In particular, one simulation reported a maxiDllUl

wait of about ten times the m~an.

As a final note we want to point out that one of the

basic assumptions of this section and the previous section

is that the drum position is random at each request-granting

time. Thismeansthat the drum positions at successive request­

granting times are independent. But this need not be the

case. Suppose for instance that the transfer time, Tt' is

a small fraction of the drum revolution time,T (for example,

suppose the average transfer time, Tt - O.lT). Clearly,

it this is the case, the drum positions at successive request­

granting times are dependent, because we can say that the

problilbility or the drum being onl7 O.lT away is much greater

than being, say, O.ST away. This is obvtously contradictory to

the assumption of independent drum positions at successive requeRt­

grant1ng times. Consequently we expect the access time to be

below the ~redicted values, since the probabil'ity of finding a

request wanting the present drum position is greater than

it the drum position is random. If the access time were

smaller than the predicted values, then both Wq and n would

be smaller than predicted, Ts would be Slllllller, and the

system operat!onshould be more efficient. SilllUlation has

shown that this is the case, that efficiency is increased

64

when segments are short. In particular, '91nce (N-n-r)

processes are working, then the fraction of processes that

are working is

(N - n - r) R - n
N • i1(1 + a)

(18)

If n substantially decreases, by (lR) the efficiency sub­

stantially increases. The greater the efficiency, the

greater the number of prboessors that can be kept busy. It'

is to be noted that when Tt is of the same order of magnitude

as T, or larger, then the drum positions at successive

intervals become independent, and the analysis of this

section is valid.

CHAPTER j. M SIMULATION RESULTS. CONCLUSIONS.

5.1. Introduction.

65

In order to observe the operation of the model of

the entire drum system, which is discussed in Chapter 3,

it was decided to simulate the system. Project MAC computation

facilities were used; the simulation was written in SIM, a

new simulation language conceived and implemented by A.L. Scherr

at Project MAC (l?). SIM is an augmented version of the

MAD programming language, adding several new statements to

those already existing in MAD. It has the powert'tll advantage

that the logical flow of the simulation is the same as the

logical flow of the actual system. Each element of the system

(see Figure 3.1), namely the processes, the queue, and the

drums, is specified in the s1mulation as an Element (which

is translated into a MAD external function by a SIM pre­

compiler). The inter-elemental signals shown in Figure 3.1

are implemented in SIM by !Q'Stem variables, which allow a

signal to be transmitted from one element to another. A

main program called SIMSYS coordinates the activity of the

elements.

Three simulations were run. One was a simulation of

the entire drum system discussed in Chapter 3. Another was

a simulation of the shortest access time queue discussed

in cta.pter 4. Section 5.2 discusses the drum s1mulation, and

Section 5.3 discusses the queue simulation. A third simul­

ation was used to develop Appendix 2, and is discussed there.

66

5.2. The ~ Simulation.

The three elements of the s1.mUl.ation were the Users'

Processes, the Queue, and the Drwas. These elements and the

signals that were passed among them are shown in Bigure 3.1.

The logical flow of each element is the aaae as shown in

the flow graphs of Figures).BA,).BB,).10, and).12, where

the models of the Processes, the Queue, and the Drums are

depicted.

CTSS has available a random number generator, which

is usefUl in the simulation of the Processes to generate

the probability distributions discussed in Section 3.2.

The random number generator returns a number between zero and

one from a uniform distribution. This can be used to get

numbers from other distributions in the following manner.

Pirst the CUllUlative distribution or the given distribution

1s found, which will have probabilities varying between zero

and one. The randoa nUJllber generator can be used to select

one of these values of probability. This value is substituted

into the cumulative distribution which has been solved for

the random variable. In the drum simulation numbers from

e:xponential distributions were needed. Such e:xponentially

distributed random variables can be obtained in the following

manner. Suppose we want to select a random number ri,om the

exponential distribution of interarrival times, which has

been shown to be

P(t) = ae-at (1)

Denoting the cumulative distribution by Q(t), we have

t -at -at Q(t) = I ae dt = 1 - e (2)
0

Solving for t,

t = - 1 ln (1 - Q(t)) (J) e.

But in Q(t) all probabilities in the interval (O,l) occur

uniformly, so we can use the random number generator to

select a probabilty Q(t); substitution into (3) ~ields

the desired exponentially distributed random variable, t.

Equation (3) was used in the Process Model to select

waiting times t1l the next request, and to select the

number of pages in a segment.

The following data were taken during a typical

simulation, for each queue discipline:

(l) per cent process idle time;

(2) waiting time in the queue;

(J) number in the queue;

(4) service times;

(5) access times;

(6) channel idle times;

(7) number of fields used per sector on the drum.

The following set of parameters was considered typical.

Practional drum occupanc7 •••••••••••••
Number ot processes, ••••••••••••••••••
Mean inter-request time •••••••••••••••
Mean number pages per segment •••••••••
Read-write ratio •••••.••....•••••.••••
Num'ber or drtllD.S •• •.••.••••••••••.•••••

Number or channels each dl'Ulll, •••••••••
Number of fields each drum •••••••.••••
Number of sectors on drum •••••••••••••
Number of words per page ••••••••••••••
Drum revolution time ••••••••••••••••••

.90
20.
lS.
10.

3.
J.
3.

2S6.
64.
64.
16.?

68

msec,

msec,

The following per cents ot process idle time were found for

each queue 4isciplines

Pirst come first served............... SS~

Shortest job first.................... 44~

Shortest Access time first............ 41%

Other simulations using modified sets of parameters

(tor example, two drums with two channels e~ch; or longer

service times, that is, more pages per segment) showed the

same result--the shortest access time queue discipline results

in minimum idle time. This point has been discussed under

our comparison ot queues in Section 3.J.S.

Probabilit7 distributions of all data were taken.

Three of them were of particular interest, and are reproduced

he.re. These were the waiting time in queue, the number in

queuP. 1 and the number of fields used per sector per drum.

These are plotted in Figures S.l, 5.2, and S.3 for each

queue discipline. The means and the maximum points are

indicated. It is notable that the mean wait for First Come

First Served was 17.l msec, while for Shortest Access Time

First and Shortest Job First it was significantly less,

6.8 msec for Shortest Job First and 6.) msec for Shortest

Access Time First. Again the Shortest Access Time Queue

lead to the minimum wait. It is also of significance that the

shape of the waiting time in queue distritution is exponential

as predicted by Appendix 2. The number in the queue (Pigure 5.2)

was about 8 for First Come First Served, and half that for the

other two queue disciplines. The number of fields per

sector per drum (Figure 5.3), is not dependent on the queue,

but is dependent only on the deletion policy, which is shown

in Figure).12. It is interesting to note that it is

normally distributed, and that at desired occupancy level of

90~ the maximum. data point was 242 out of 256 fields used (95~).

The mean was 2)0 fields used (90~). Tnis was for a 88lllple

of 24,500 points. We conclude that oooupqnoy levels in excess

of 90(can be maintained without overflow.

The remaining three distributions are not plotted here,

but we will discuss each briefly. The service distribution

was found to have approximately the same shape as the

number of pages per segment distribution, but it was distorted

due to the inclusion of the acoess.ti.Jlle in the service time.

The mean service time was found to be the SUJll of the mean

access time and the mean transfer t 1me, as expected.

The access time distribution was uniform for First

?O

Coae First Served, with a mean or 16.?/2 msec • 8.34 msec, as

expected. For Shortest Access Time Pirst this distribution

was round to follow closely the predictions of Section 4.2.

The access distribution tor Shortest Job Pirst was aolll9Where

between the Pirst Come Pirst Served and Shortest Access Time

distributions, as expected.

Finally the channel idle time distribution showed

that there was an insignitic!l!lt amount ot channel idle time.

Let us mantion what the maxilllWll waits in the queue

were. First Come First Served had the smallest maximum

wait, as expected, and Shortest Job First had the largest.

Some numbers are, for the typical parameters listed on page 68,

Pirst Come First Served.......... 62. msec
Shortest Access Time............. 65. msec
Shortest Job Pirst ••••••••••••••• 100. msec

Note that the Shortest Access Time does not cause waits

too much longer than the First Come First Served Queue.

Other siaUlations were run, in which the Shortest Job

First queue was observed to have a maximum wait of 4 sec,

for parameters not too different from the ones listed on

page 68.

A last point: queues in which the skip 1.1!!!1*

was used h~v. a •First Come First Served• component, and

are accordingly less efficient than a Shortest Access Time

queue. A skip limit or ten in a Shortest Access Time queue

cause4 its .effieiency to be only slightly greater than

*Section J.J.4.

PROBABILITY
cnooo>

JOO

200

100

0
o.o s.o

F1gµn ial•

l!!:.§1 come first serveds mean•l7.l mseo, max-62.4 mseo.
Shortest Aooess i1!1!5ts means6.J2 mseo, max-63.9 mseo.
Shortest job ~' means6.84 mseo, max-100.6 mseo.

SHORTEST ACCESS TIME & SHORTEST JOB FIRST (6000 data points)

FIRST COMB :!IBH SERVED (6000 data points)

10.0 11$'.,0 20.0 25.0 JO.O J,5.0

Probability densi~ies of waiting time in queue
for ve.rious queue disc1pl1nee.

40~0

...:J

'""

PROBABILITY
(X 1000)

200

100

SHORTEST ACCESS TIME FIRST
(mean=S.6, max=12)

(8000 data points)

SHORTEST JOB FIRST
(mean=S.O, max=13.0)

FIRST COME FIRST SERVED
(mean=8.5, max=l?.O)

0~1 I ' I I ~ I =-+---=- I t

0 2 4 6 8 10 12 14
NUMBER IN QUEUE.

Figure 5.2. Probability densities of number in queue
for various queue disciplines.

16 18 20 -..:>
I\)

1

I

I
1

I
l

..
··1·

.l

PROBABILITY
(X 1000)

500

480

400

JOO

240

200

100

20

0 50 100 150

Number Fields Used per

Pigu.re ~ Probability density of number of
fields used per sector.

250

a First Come First Served queue.

5.J. Shortest Access !!!!!. Queue Simulation.

This simulation was composed or two elements, one

to make requests, and the queue. With Section 4.J, the

arrival rate of requests at equilibrium is

a = (4)

where
(5)

and T • drum revolution time,
A = inter-request times per working process,
c = number of channels,
s = mean number of pages per segment,
11 "" number of sectors per drum,
n = mean number in the queue.

The simulation was seeking to test equations (17) for

Section 4.3'y> which are

n=
N

+ (1 + Rl
2

1 Rc(n + NR)

W = (n - t) R A c q

(6)

(7)

Four single-channel (c = 1) simulations are considered here.

The parameters were:

Parameter ~ 1 set number 2 J 4

'f 16.7 msec 16.7 msec 16.7 msec 16.? msec
A 15.0 msec 5.0 msec o • .s msec 1.0 msec
s 4.0 s.o 40.o 2.0
m 64.o 64.o 64.o J2.0
N 20.0 10.0 25.0 s.o

75

The results, were, for simulation samples of about 3000 data

points, as follows.

Parameter n wq
set number R£§dicted simuJ.ated predicted simµlated

1 12.85 12.97 27.78 msec 26.91 msec
2 7.96 7.99 29.48 • 29.01

3 24.00 23.68 260.98 II 259.12
4 3.98 4.oo l,S.30 II 16.54

It is apparent that the agreement is good.

One last points in Section 4.3 it was •entioned that

if the drum position is not random, that is, when short

segments were used, then the access times should decrease,

and in particular the number in the queue and the w~iting

II

"
II

times should decrease. The following simulation Terified thisl

Parameters:

T "' 16.7 msec
A= 1.0 msec
s .. 3.3
m .. 64.o

Results:
n

3.86

RandO!!l

wq

17.11 msec

Function .2!. time
n wq

2.48 11.40 msec

There is a significant difference, and fortunately the

errors are in favor of much increased operational efficiency.

From Section •.3 the efficiency is

Efficienc:v:

N - n
N(l + R)
Band om

.. 32~

Function 2.f time

.. 46~

76

5.4. Conclusions.

In this paper we have shown that tor a segmented

multip~ogrammed, 11Ulilprooessor computing system, the

following is truea proper maintenanoe or aux1lia17 memo17

oan greatly improve system ettioiency. We have shown how

this can be done. In partioulart

(1) It is generally possible to store pages consecu­

tively on the drum, and proper deletion policy

can be used to maintain oooupanoy levels in

excess or 90•.

(2) The Shortest Access Time queue discipline is

the most efticient queue tor an auxilia17

memory, where time is spent waiting tor mechanical

parts to llOYe into some proper position.

It request size• are large, that is if segments

contain many pages, then it is not difficult

to derive equatio111tor the average number in

queue, and. for the ~verage wait in the queue.

It the segments are short, these equations break

down, but provide an upper limit tor the average

number in queue and the ave"."8.ge wait in queues

The error is in favor ot increased ettic1enc7.

(4) A reasonable probabilistic model tor the processes

in a segmented computing system has been given

in this paper.

?1

(5) Simulation is a particularly uset'Ul tool for

analyzing problems of the complexity of computing

systems, for it is frequently helpful in providing

a starting point for analysis.

(6) "ixed-Policy queues may be used in drum (or

diso) auxiliary memory systems when we become

concerned that some requests might hive to wait

inordinately long. A •skip limit• ,ueue was found

to be more efficient than a •window• queue (aee

Appendix 2).

5.5. Suggestions for future studf.

(1) The deletion polio1 .2f ~ Processes ~.

Although it is possible to preTent drum overflow,

and to maintain 90~ occupancy, exactly what deletion

policy is the best, if any? See chapter 2 and

Section).4 for discussion.

(2) '.!'.h!_ •page-turning• !!.a. •segment-turning• allocation

problem of Chapter 2 should be considered in

detail.

(3) The finite population, shortest job type of

queue is yet to be completely analyzed.

78

A P P E N D I C E S

?9

APPENDIX!• THE POLLACZEK-KHINTCHINE FORMULA.

In this apnendiz we will derive an equation which

Sa~ty (16) refers to as the Pollaczek~Khintchine Formula

(Saaty, pp 40-43). Saaty has derived 1t tor the poisson

input. single channel, equilibriWll·queue. We will extend the

reasoning to 1ac.lude the c-channel server. Since we talk

only of the number 1n the system, the queue discipline is

irrelevant to our discussion, until we begin to talk of

waiting timet.

Suppose that arrivals occur at ran4om aocording to

a poisson process at a rate a per unit time, to a waiting

line in statistical equilibrium, before a o-channel facility.

They are served according to some arbitrary service-time

distribution at a raWI b per unit t1llle per channel. We assume

that if the service rate of one channel is b per unit time,

then it is be per unit time for all c channels operating

together. Suppose that a departing request leaves q in the

system behind, including those in service, and that some time

t will elapse before the next dep.'3.rture. Let the waiting

line increase in length by)t requests during this one

service interval. If the next departing request leaves q'

behind in the system, we can relate q and q' as follows:

q' c max (q - 1, 0) + k = q - 1 + d + k (1)

where d(q) = 0 if q > 0
d(q) = l if q = 0

By int~oducing d(q) we eliminate the max expression.

80

We assume that equilibrium values for the first and

second moments E(q) and E(q2) of the number in the system

exist, where we are treating q as a random variable. We note

that E(q) • E(q') and E(q2) = E(q• 2) since both q and q' are

assumed to have the same equilibrium distribution. We observe

that since equilibrium, eaeh departing request must leave

behind identical time-independent queues, each having the

same probability distribution. Now, from the definition,

d2 = d, and q(l - d) = q. Thus, taking the expected value of

(1) we have

E(q') = E(q) • E(l) + E(d) + E(k)

but since E(q) = E(q') we have

E(d) = l - E(k)

During an inter-departure interval of length t we have

E(k)
00 k

= t k~ e-at = at
k=O k.

(2)

(J)

(4)

Let us denote the combined service distribution for all

c channels operating in parallel by S(t). Taking the

expectation of E(k) with respect to this service time

distribution we see that

00

E(k) = J (at) S(t) dt
0

00

= a/ t S(t) dt
0

E(k) = :0 = r

(6)

81

since the mean of S(t) is l/bo. But since se have not

specified S(t), E(k) • r is unaffected b7 the t1pe of serYice

d1atr1bution. Then

E(d) = l - r (7)

Now, if the probability of the queue increasing b7 k is

independent of the length of queue, q, and of d, which

depends only in q, anr expectation over products of r, q,

and d is just the product of the respective expected values.

Therefore

E(k2) • [•((at) 2 •at) S(t) dt
0

which is an average over all time. But

E(k2) • [•(at) 2 S(t) dt + [•(at) S(t) dt
0 0

... a2 :2t + -t s a s

But the variance of 2 S(t), as, is

Therefore

Finally,

a 2 = t2 - t2s s s

If we square both sides of equation (l)s

r • .;
0

(8)

q• 2 = (q - 1)2 + 2(q - l)(d + k) • (d + k)2

q• 2
R q2 - 2q(l • k) + (k - 1)2 + d(2k - 1) (9)

82

Equation (9) was obtained by using qd = O, and d2 = d.

Because of equ111br1um,

E(q 2) - E(q• 2) = 0 = 2E(q)E(k - 1) + E((k - 1)2)
+E(d)E(2k - 1) (10)

Recall that the validity of (10) depends on the independence

of q and k. Solving for E(q) and using equations (6), (7),

and (8), we have the Pollaczek-Khlntchlne Formulas

E(q) E((k - 1) 2) + E(d)E(2k - 1)
= 2E(l - k)

a 2a 2 + r 2 + r - 2r + 1 + (l - r)r - (1 - r)
= ---=s ____________,~_,,,,...--------------------

r2 + a2a 2
E(q) = r + 2(1 - r>8

2 - 2r

a
r = be (11)

Thus, once we know the variance of the service time dlstribuuion,

the average number in the system, E(q) ls determined. It

is important to note that E(q) is an average taken over

instants just following departures, and ls not the time

avera~e. If Et(q) ls the time average, all we can say

without further argument ls that

E(q) < Et(q) < E(q) + 1

In general the average number in the service system equals

the sum of the avera~e number of busy channels (here it ls

r = :
0

) plus the average number in line.

To obtain the average wait in the waiting line, which

we will denote by E(w), we observe that a(E(w) + £-c) is the

SJ

expected number of arrivals during the expected time of one

request in the service system, if the queue discipline is

first come first served, beGB.use .;c is the mean service time.

But this must be just the number in the system immediately

after a customer departs, that is, E(q), so

aE(w) + ~ = r + be 2(1 - r)
a

but r = be' so 2 + 2 2 r a as
wq = E(w) = 2a(l - r) {12)

We have pointed out that r is just the number of busy channels

and that E(q) is the expected number in the system. Inspec-

tion of (11) will show that the number in line, Lq' must be

Lq =
r2 + a2a 2

s
2(1 - r)

We have the interesting and important result

L
wq = + (lJ)

Notice that this is exact only if the number in the system,

E(q), is independent of the service time or the arrival

rate, as pointed out after eauation (10). We also note that

if (Wq + b~) is the time of one customer in the service

system, then bc(W + bl) is one more than the number in
q c

the system, E(q). This is so because if E(q) are in the

system, then E(q) - 1 service interv~ls pass while one request

is in the system. Therefore bcWq = E(q) and we have the

second result

In words:

w = lli1
q be

w = averape number in the line
q average arrival rate

= average nu~ber in the system
average servioe ?'!lte

These are true for erbitl'Jlry service distributions.

84

(14)

It is interesting to note that if the service times

are exponential, that is, thP service follows a poisson

law, then the interval between departures is given by

S(t) = bee-bot t ~ 0

It is a well-know fact that for this type of distribution

the variance equals the mean squared, that is,

= 1
0

= (l/bc) 2

Substitution of this into (11) yields

r2
Lq + r = r + 1 _ r

From which it follows that

r2
Lq = 1 - r

and E(q)
,.. __ r_

1 - r

Consider for a moment the geometric distribution

(15)

(16)

(17)

(18)

85

It is known that this distribution describes the number

in a service system with exponential input and output

(Saaty, 17, pp 38ff). The expected number in the system is
...

L = I: k rk (l - r)
k = 0

= (l - r)r :r ~ rk
k=l

__ r_
- 1 - r

which is the same as (17). Then we can find the variance

of (18) which is

~ k2 k (1) L2 .. r - r -
k=O

2 r
aL =

(1 - r)

2
aL = L(L + l)

...
= (l - r)r .S. r .S.. I: rk - L2

dr dr k=O

r2
+

(l - r) 2

(19)

We have the result that for the exponential input, exponential

output system the number in the system is given by (17),

the number in queue by (16), and the variance of the number

in the system by (19). The results of this se~tion will hold

for queues in which the discipline is random as well as for

first come first served. They hold for random disciplines

because, on the average, the number of service intervals

that must pass before service is the same as for first

come first served. This is seen in Section 4.3. In fact

the equation for the mean number in the queue, Lq is accurate

if the following conditions are satisfiedt

86

(1) all requests stay in the queue until served;

(2) the service time distribution for all channels
is the same, with parameter b;

(3) channels serve one at a time;

(4) a channel serves the next request, if any are
are waiting in the queue, as soon as it finishes
with the last request.

A little thought will show that it these tour rules hold,

the length of the queue is the same for all disciplines,

although the mean wait, Wq' will vary. (Morse, 13, p. 117).

87

APPENDIX g_. WAITrnG !!!m .!!! ! SHORTEST ACCESS QUEUE.

In this appendix the probability density function for

the waiting time in a shortest aoess time queue is derived.

We define the following random variables:

A = r.v. of aocess time, taking on values a.

N • r.v. of number of requests to exit the queue
before a given request exits, taking on values n.

P • r.v. of number of pages per segment, taking on
values p.

R = r.v. of number of requests in the queue, taking
on values r.

T s r.v. of transfer time, taking on values t.

W = r.v. of waiting time in queue, taking on values w.

Sinoe at each trial (request-granting time) all requests

are assumed to be equally likely to exit next (Section 4.2)

the distribution of N is geometric. As on page 58,

equation (1), the conditional distribution of N given ti.hat

B are in the queue is

(1)

where B is the random variable of the number of requests

in the quP-ue. Denoting the density function of Ras Pa{r)s

(2)

We are interested in the wait in queue, so we have defined

the random variable or watt to be w. Then

(J)

88

For a single channel queue the wait in the queue is N access

times plus N transfer times. As in Section 3.2 we assume the

number of pages per segment to be a random variable, P, where

(4)

and c is a constant proportional to the mean number of pages

per segment. If T' is the drum revolution time and S

the number of sectors around the drum, then the transfer time

for one pages is T'/S. Denoting the random·variable of transfer

time by T, we have for the density function or Tt

with the constant k defined as

k .. -L
ii T'

8

and Ns is the average number of pages per segment.

in the queue is, from above

W = N (A + T) = NA + NT • 1 + z

with 1 = llA and z • NT.

(Sa)

(Sb)

The wait

From S!"Ction 4.2, the cumulative distribution of ·the

access time is

But 1 = NA. Then

P(7 S. a] • P(A S. iJ = 1 - (1 - i>N

= 1 - [Cl - i>-N/a]-a (6)

Now let u = -a~. Then

P[y ~a] = 1-((1 + u)l/u]-a

For large N, u approaches zero and we know

lim (l + u]l/u = e
u-+O

Thus for large N /'

P[y ~ a] Rf l - -a e

89

(7)

(8)

and the density function for the access time component

of the wait in queue is

-a e (9)

Using an elementary probability transformation, the density

function for z = NT is

Pz(b) = k PT(~) = ~ b e-(kb)~
N

Defining Kn = k~ = S/T'NN
8

we have

(10)

Since A and T are independent random variables, the conditional

density function for w, given N and R .is

the convolution of 17<a) This eimluates to be

(12)

* This approximation is surprisingly good for N > 10.

Recalling equation (3),

Putting (1) and (12) into (J),
2

PWNR(w,n,r) a [(~-l)2 e-w][(l-~)n-l(;))(P8(r)]
2

PWNR(w,n,r) = (k/n) e-w (l_!)n-1(1) P (r)
((k/n)-l)2 r r R

90

If N is large, as it is asswned to be, then PR(r) ls

approximately Normal by the Central Limit Theorem, and

2 - 2 2
() (k/n) -w (l_!)n-1(1) __!__ 9 -(r-R) /2gr PWNR w,n,r ~ 2 e

((k/n)-1) r r ~ r

(lJ)
which ls the required joint density function of waiting time

in the queue. The simulation has shown that for the mean queue

length, R, greater than about 10 with gr<<B (which ls the case

when R;;.. 10) this approximation 1s valid. Thus in the

steady state situation, it is clear that the probability

density for waiting time in the queue is approximately

exponential, a fact verified by simulation (Section 5.2).

91

APPENDIX J. DESCRIPTION OF ~ MIXED-POLICY QUEUE.

The oueue described in this section has been proposed

as a shortest access time queue, but one for which we are

concerned that a particular request may be continually over­

looked due to the random nature of selection. Consider for

example a queue which has many requests in it (at least thirty).

Such a queue might occur if it were decided to request

pages singly instead of in segments. In Section 4.J it

is shown that the waiting time of a request until it leaves

a random output queue is given by a geometric distribution,

with the expected wait equal to n service intervals, where

n is the aveFage number in the queue. Now if n is large,

then it is conceivable that a request might have to wait for

a very long time: the .variance of the geometric distribution

is (n)(N - 1) ~ n 2 if n is large.

Consider the queue shown in Figure AJ.l. A new request

is always added to the bottom of the stack. A section of

the stack, of length N, is considered, the remaining requests

in the queue being ignored for the while. We shall refer to

the portion of the queue under consideration as being viewed

through a window, of size N. The top of the window is

always at the top of the stack. The requests in the window

are labelled Hi,R2 , ••• ,~, and are considered according to

the shortest access time first queue discipline. Whenever

the request marked a1 is removed, the window is moved down

until its top coincides with the next request a1 • It

92

iHNDOw

M

Next in ~

Figure !lal. Structure of a Mixed-Policy Queue.

93

appears that Hi might have to watt until the Nth service

time before it leaves, but no longer (by then it would be

the only reouest in the window); thus it seems that an upper

bound can be placed on the waiting time in the window,

namely (N - 1) service intervals. But this is not so.

Consider the request marked ~· Suppose by some quirk of

fate that requests are serviced as follows. R1 ,R2 , ••• ,

~-l'~+1 , ••• ,R2N•~· This would happen if R1 , ••• ,~-l

were serviced before ~; but then the window has become

positioned at ~· and the next (N - 1) requests could be

serviced before ~· It is clear that the maxim1 un watt in the

window ts 2(N - 1). Since the arrival rate is given by

an ave:rage, the expected wait before reaching the window is

M; an upper bound to the wait is M + 2(N - 1) service intervals.

We are assuming M > N.

To find a lower bound on the waiting time, consider

the following argument. Suppose a request enters the queue

.1ust before the window makes a jump of N, then suppose the

window moves one position at the end of each service interval.

The request in question would then wait only (M - N) service

intervals to reach the window. Then suppose it were let

out immediately. The minimum wait ts therefore M - (N-1)

= (M - N + 1). We have set an upper limit on the waiting time:

wmax = (M + 2(N - 1)) t9 (l)

94

and the lower limit of waiting time is

W i = (M - (N - 1)) t m n s
(2)

Equations (1) and (2) assume that M ~ N.

On the average the window is not full. We can think

of the nroblem as a flow problem, with requests flowing into

the bottom of the wondow at the rate of one per service

interval, end filtering out through the window at the same

rate. Let us imagine one of the requests being tagged so

that we can keep track of it. If we know on the average how

far down the window a request moves before it exits then

we know the mean wait in the window. Simulation of the

problem for several window sizes was carried out, and it

was found that on the average the tagged request went

half way down the window before exiting. Then we can write

N -
wav = (M • 2-> ts (3)

Figure AJ.2 shows the probability densities of a request

being at various positions in the window. It is to be noticed

that the tagged request spe~ds considerably more time at the

upper and lower ends of the window then at the center.

The standard deviation was found to be 0.8 of the mean, so

the contention that the request is a ~ on the average is

not too certain. This implies that the probabilities of

Wmaz and Wmin are not small. Figure AJ.J shows the probability

density of window .1umps. The average window jump is about
N 3• Figure AJ.4 shows the following: the mean position reached

95

by the taggecl request, and the mean w1 ndow movement when it

moves, both as a function of window size.

Recall that for efficient access time queueing the

mean in the queue had to be at least eight. Hence we would

require that the window length be N ~ 16. But since M > N,

the overall queue would have to have an expected length M + N > 32.

It appears that the use of the minimum access time

queue without the window, but with the "skip limit" mentioned

in Section J.J.5 ls better for the following reason. The

skip limit could be set to an upper limit of 2(N - l) so that

the maximum wait for that queue would be the same as given

by equation (1), but with M = o. Since the "skip limit"

queue with the same maximum is longer than the corresponding

"window" queue, the access time ls shorter, and more efficient

queueing is had.

PROBABILITY
(X 1000)

400

200

N=lO

N=20 N=40

'
N=30

Ill::+: F : y f .-1 I ,,,,,. o ¥'* T J ; I
0

top of
window

5 10 15 20

w1ndow length N
25 30 35

Figure AJ.2. Probabilitv density of position of tagged request.

40

'° °'

PROBABILITY
(X 1000)

200

100 N=40

N=20 N=JO

0 +-~~-+-~~""-+~~~--~_..--~~-+-~~ ~~~+-~----~
0 5 10 15 20 25 JO 35

NUMBER TO ENTER WINDOW WHEN r·r MOVES

Figure ~. Probability density of number entering window
when it moves.

4o
'° -..:>

MEAN
NUMBER

2.0

10

average position of tagged request
w.r.t. top of window at departure.

/

average number admitted
to window at each

_, move~nt

. .~·

/-~~
~~

o--~~-+~~~--~~--1~~~--~~~1--~~-+-~~~+-~~-4

0 5 10 15
WINDOW 'SIZE

20 25 JO

Figure AJ.4. A comparison of window movement and average
time spent in the window.

35 40

'° co

99

APPBIDIX ~. ! CONTINUOUS-~ MARKOV ~.

With Howard (11, pp. 92ff) we define a rate Matrix [A],

having elements aij• The rate matrix is similar to the

familiar Markov transition probability matrix exeept that the

elements a 1 j represent transition rates from the 1th to the

jth state. The rates are assumed to be taken from exponential

distributions. A transition matrix, then, is a discrete form

of a rate matrix. Sinee we consider an equilibrium system

the overall rate of change must be zero. Define a state

probability vector P, where P = [p1 ,p2 , ••• ,pM] and pi is the

prbbability that the system has 1 requests in it. Because

of equilibrium,

[P][A] = 0 (1)

We make the following assumptions.

(1) All requests join the queue and do not leave
until service is eomplete.

(2) Each channel serves one request at a time, and
does not begin the next request until the present
request is finished.

(J) As soon as a channel becomes idle, the next request
enters service, provided there are some in the queue.

(4) The queue discipline is first eome first served,
or else random. For any other queue discipline
thqt satisfies (1) through (J) the expressions
for state probabilities and average number in
line are the same, but the waiting time in the
queue is not the same. See closing remarks of
Appendix 1.

We use the following notation:

M = the size of the finite number number in the
total population being considered--it is the
sum of the number in the service system nlus the
number making reauests.

100

a = mean request rate per requester, where 1/a =
mean interarrival interval per l!equestor.

b = mean service rate per channel, where l/b = ts'
the mean service time.

c = the number of parallel channels providing service.

Pn = the probability of the service system having n
of the M possible requestors in it.

If the system 1n in state n (indicating that n requests are

in the service system, and that (M - n) are remaining outside

in the requesting population) then the rate Of exit to the

state (n+l) is nb for n~aand is cb tor n>o. We have the

rate matrix

-Ma Ma 0 0

b -b-(M-l)a (M-l)a 0

0 2b -2b-(M-2)a (M-2)a ...

(A] .,. ...
cb -cb-2a 2a 0

0 cb -cb-a a

0 ~ cb -cb

At the cth row the matrix is

[•• (c-l)b -(c-l)b-(M-c+l)a (M-c+l)a 0

-cb-(M-c)a (M-c)a . . . 0 cb

... 0 0 ob -cb-(M-o-l)a

..

Because of equation (1) we can write

-Map
0

+ bp1 = 0

Map
0

- bp1 - (M-l)ap1 + 2bp2 = 0

and in general

(M-n+l)apn-l - nbpn - (M-n)apn + (n+l)bpn+l = 0

(M-n+l)apn-l - cbpn - (M-n)apn + cbpn+l = 0

101

Adding the nth end the (n-l)th e~uations, which is equivalent

to adding adjacent columns in [A], we have by recursion

P2
__ M-1 _ M(M-1) 2

"""2"" rpl - 2 r Po

_ M(M-l)(M-2),,,(M-n) n
Pn - n: r Po

so that
M: n

~n<c Pn = n!(M-n): r p
0

M' rn 1 c<_n:sM p = c!(M:n): n li:c Po c

a where r -b , p
0

is found from the requirement that

Po = c-1
E

n=O

M
E Pn = 1

n=O

M:
n!CM-n)!

rn +

1
M M' rn _1_ E c: (M:n) ! n=c n-c c

(2)

(J)

(4)

102

It h is the average number of processes actually in operation,

k the number being serviced, and Lq the number in line, then

k + h • Lq = M

and because of equilibrium

The

The

h • ~ = r k

number being serviced is

k ...

number

c-1 M c-1
t npn + c ~ p = c - t

n=O n=c n n:=O

in line is

L ,..
q

M
t (n-c) Pn

n=O

(c-n) Pn

and as usual the waiting time in the line is

L

wq '"'-f
The number in the system is

M
L • L + k • t n Pn

q nsO

The efficiency ls

number of working processes
M •

M - L - k g
M
M

M - t n p
n=O n "" ------.M..-..--

(5)

(6)

(7)

(8)

(9)

(10)

The summations can be evaluated on a computer without too

much difficulty if the factorials are expressed as logarithms,

and use is made of the tact that
n

n! = exp [t ln (i)]
i•l

10)

It is interesting that a olosed form for (10) oan be

obtained when there is one ohannel, i.e., when o=l. In this

case equations (2) become

M' n Pn = (M:n)! r p0 n=O,l, ••• ,M (11)

and (4) becomes

p -
1

0 M M! rn I: (M-n) ! n=O

r = ~ (12)

Then L is the number in the system, and L-r-Lq is the number

in the line.

(lJ)

Consider

M-L -=
Po

M n M' n M M.' r'n - •r=I: -M-n (M-n-1)! n•O
(14)

expanding (14) we find

!!::l! = M + M(M-l)r + M(M-l)(M-2)r2 + ••• (15)
Po

But

..l. = 1 + Mr + M(M-l)r2 + M(M-l)(M-2tr'J + • •. (16)
Po

Comparison of (15) and (16) reveals that

Solving for L,

M-L (..1. _ l) !
P

0
= P

0
r

l - p0
L = M - --r---

(l?)

(18)

104

All that is needed to find L is an evaluation of p
0

, not

an evaluation of each Pn as well. The number in the queue is

l - p0
Lq = L - r = M - r - r

So that the waiting time in queue is

L M
Wq:-Sls:--!: a a a

where t
8

= ~' the mean service time.

l - Po
ar

(19)

(20)

The interested reader is referred to A.L. Scherr's

Doctoral Thesis, in which it is shown that Multiprocessor

time-shared computing systems are in general, accurately

described by Markov Models.

105

BIBLIOGRAPHY

1. Churchman, c.w., et al. Introduction to oyerations
Research (Chapter 14, "Queueing Models" • New York,
John Wiley, 1957.

2. Corbato, F.J., et al. The Compatible Time-Sharing
System: ! Programmer's ~. Cambridge, M.I.T.
Press, 1963. Also 2nd Edition, 1965.

J. Dennis, J.B.
Computer.
MAC-TR-11.

Program Structure in ~ Multi-Access
Cambridge, M.I.T., Project MAC Memo

4. Dennis, J.B. An Example of Intersphere Communication
And Asynchronous Parallel Processing. Cambridge,
M.I.T., Proiect MAC MPmo MAC-M-189: September, 1964.

5. Dennis, J.B. Automatic Scheduling of Priority Processes.
Cambridge, M.I.T. Project MAC Memo MAC-M-187:
October, 1964.

6. Dennis, J.B. Segmentation and the Design of~­
Programmed Computer Svstems. Cambridge, M.I.T.
Project MAC memo: Januar~ 1965.

7. Dennis, J.B., and Van Horn, E.c. Nesting and Recursion
of Procedures in~ segmented Memory. Cambridge, M.I.I'.
Project MAC memo.

8. Feller, W. Probability Theory and its Anplications.
New York: John Wiley, 1950.

9. Flores, Ivi:m. Derivation of ~ '../aiting-time Factor ill
~ Multiple-bank Memory. Journal of the American
Association for Computing Machinery, Vol. II,
No. 3 (July, 1964), pp 265-282.

10. Heller, Nel5on B. Stochastic ModPls of a Multiple
Access QQID.puter. M.I,T. March 1963:' -

11. Howard, R.A. Dynamic Progr9mming and Markov ProcesBes.
Cambrid~e: M.I.T. Press, 1960.

12. Lee, Y.W. Statistical Theory of Commun1cqt1on, (chapters
J-6). New York: John Wiley-;-1964.

106

13. Morse, P.M. Queues, Inventories, and Maintenance.
·New York: John Wiley, 196j. ~

14. Patel, Nitin R. A Mathematical Analysis of Computer
l.1al Sharing siete!lls. Cambridge: M.I.T. Operations
Besearoh Center Interim Technical Report No. 20,
"uly, 1964.

15. Riordan, J. Stochastic Service Systems. New York:
John Wiley •. 1962.

16. Saaty, T.l. flements g.(Queue1~ Theory.
MoGraw-Bil Booi Company, l9 •

New York:

l?. Scherr, A.I.. An Analn1R 2(T~-Shared Computer
Systems. c&iiibridge:.I~T.~ourse 6 Ph.D. TQesis,
Junt\ 196"5. Published as Project MAC Technical
Report MAC-TB-18, August, 1965.

18. Witaenhausen, H. A No~ ga Asynchronous Parallel
Proo;ss'f!· Cambri es M.I.T. Project MAC Memo
Mlc- -is , July, 196 •

An extensive bibliography for the entire f1eld of queueing
theory is to bP. found et the end of Saaty•s book, reference
(18) above.

CS-TR Scanning Project
Document Control Form

Report # Lc=i _:ffi_ J.J

Date : .!!:_1 It I h

Each of the following should be identified by a checkmark:
Originating Department:

D Artificial lntellegence Laboratory (Al)
)!. Laboratory for Computer Science (LCS)

Document Type:

~Technical Report (TR) D Technical Memo (TM)

D Other:
---~~~~----

Document Information Number of pages: 108(1 JJ-lml\C~)
Not to Include DOD forms, printer lntstrUCtlons, etc ... orlglnal pages only.

Originals are:

D Single-sided or

~ Double-sided

~ri~t type:
)&. Typewrier D Offset Prass

Intended to be printed as :

D Single-sided or

1'(Double-sided

D Laser Print

D InkJet Printer D Unknown D Other: _______ _

Check each if included with document:

~DODForm
D Spine

~ Funding Agent Form

D Printers Notes

~Cover Page

D Photo negatives

D Other:
---------~~-

Page Data:

Blank Pages(byii.numllef): __________ _

PhotographsfTonal Material tbY...uenumberl: ________ _

Other ,,_~number):
Description : Page Number:

-:CMACJf }°'<\ Af l (\- I c; J i..vNlf).l"b JITL(FAC'te)J.-'t§A}-<Ntf'Jlk,) YSB - JO~
(1 o9- J IJ°) 5c..,.NC.,,,(VLAiJL) Gov~ E4,1vD»t&" f 1J.iAl\/TJ

Q o oJ TR.GT:S- {Z)

Scanning Agent Signoff:

Date Received: I d..J_Jj__I q5 Date Scanned: _J_1.1_151_ Date Returned: _Li _!J_1 ? 6

Scanning Agent Signature: _ ___,~....._"""'"u.,g.-J<=¥+--'Jv'-"'-.J.;...~~-w--4'----

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D
(Security cl•••lllc•tlon oJ tltl•, body ol .b•tr•ct ,...d lndexlna annotation muet ba .ntered wflen the overall report i• cla••llled)

I. ORIGINATING ACTIVITY (Corporate .uthor) 12•. REPORT SECURITY CLASSIFICATION

Massachusetts Institute of Technology UNCLASSIFIED
Project MAC j Zb. GRouP

a. REPORT TITLE

Queueing Models For File Memory Operation

4. DESCRIPTIVE NOTES (?)'peat report and lnclu•lve date•)

Master's Thesis, Electrical Engineering
!I. AUTHOR(Sl (Leet name, flut name, lnltlal)

Denning, Peter James

ti. REPORT DATE
, •. TOTAL ~~SOF PAGES I'"· NO.~~ REFS

November 1965
ea. CONTRACT OR GRANT NO. 9e. ORIGINATOR'S REPORT NUMBER(S)

Office of Naval Research, Nonr-4102(01)
b, PROJECT NO. MAC-TR-22 (THESIS)

Nr-048-189

d.

gb, OTHER REPORT NO(SJ (Any other numbeu thet may be
•••IQned thle report)

10. AVAILABILITY/LIMITATION NOTICES

Qualified requesters may obtain copies of this report from DDC.

II. SUPPL.EMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

None
Advanced Research Projects Agency
3D-200 Pentagon
Washington, D.C. 20301

13. A!!ISTRACT

A model for the auxiliary memory function of a segmented, multi­
processor, time-shared computer system is set up. In particular, a
drum system is discussed, although no loss of generality is implied
by limiting the discussion to drums. Particular attention is given
to the queue of requests waiting for drum use. It is shown that a
shortest-access-time-first queue discipline is the most efficient, with
the access time being defined as the time required for the drum to be
positioned. Time is measured from the finish of service of the last
request to the beginning of the data transfer for the present request.
A detailed study of the shortest-access-time queue is made, giving the
minimum-access-time probability distribution, equations for the number
in queue, and equations for the wait in the queue. Simulations on CTSS
were used to verify these equations; the results are discussed. Finally,
a general Markov Model for Queues is discussed in an Appendix.

14. KEY WORDS

Computer
Machine-aided cognition
Multiple-access computers

On-line computer systems
Queueing models
Real-time computer systems

DD (M.l.T.) 1473 FORM
I JAN 04

Time-sharing
Time-shared computer systems

UNCLASSIFIED

Security Classification

Scanning Agent Identification· Target

Scanning of this document was supported in part by
the Corporation for National Resear,ch Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-Jl029.

The scanning agent for this project was the
Document Services department of the M.I. T
Libraries. Technical support for this project was
also provided by the M.I. T. Laboratory for
Computer Sciences .

•. ~ ·.~-~ .. :.1.~ j i_.1_[.. ~ 1.~ ~-· !.~~ 1 .. ~·'.·.~:~.1.~_.1-.= .. ~:~1.~ ~.t.: j :_: j ;_· j._: j ~ ·... : .; ;: : : .·.·.·.·.·.·.·::::::::::::::::::::::::::::::::::: ::-:-:.:-:·:-:

darptrgt.wpw Rev. 9/94

