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ABSTRACT 

The semantics are defined for a number of meta-instructions 

which perform operations essential to the writing of programs in 

multiprogrammed computer systems. These meta-instructions 

relate to parallel processing, protection of separate computations, 

program debugging, and the sharing among users of memory segrnents 

and other computing objects, the names of which are hierarchically 

structured. The language sophistication contemplated is midway 

between an assembly language and an advanced algebraic language. 
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I. INTRODUCTION 

An increasing percentage of computation activity will be carried 

out by multiprogrammed computer systems. Such systems are 

characterized by the application of computation resources (processing 

capacity, main memory, file storage, peripheral equipment) to many 

separate but concurrently operating computations. 

We can cite three quite different examples of multiprogrammed 

computer systems to illustrate their diversity of application. The 

American Airlines SABRE passenger record system couples ticketing 

agents at dispersed offices to a central data file 1• The computer sup­

port systems of NASA provide real time control and monitoring of 

manned space flights 2. The Project MAC time-sharing system per­

mits research workers closer interaction with the powers of auto­

matic computation 3• Although these are all on-line systems, multi­

programming techniques have also been used successfully in systems 

that perform computations on an off-line, job-shop basis. 

We will review some of the distinctive properties of a multi­

programmed computer system (MCS), and then introduce some con­

cepts and terminology that have proven useful in studying the 

properties of multiprogrammed computations. As we proceed, we 

will define a number of meta-instructions that embody powers mostly 

absent from contemporary programming languages, but essential to 

the implementation of computation processes in an MCS. These 

powers relate to 1) parallel processing; 2) naming objects of compu­

tation; and 3) protection of computing entities from unauthorized 

access. The character of these meta-instructions is such that they 

might form part of a language intermediate in sophistication between 

an assembly language and an advanced algebraic language for an MCS. 

In fact, the semantics of these meta-instructions could be incorpo­

rated in the definition of an intermediate language that might be 

employed at some stage in the translation of a more advanced 

language. 
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IL PROPERTIES OF MULTIPROGRAMMED COMPUTER SYSTEMS 

Five properties of multiprogrammed computer systems are 

important to the present discussion. 

l) Computation processes are in concurrent operation for more 

than one user. 

A Multiprogrammed Computer System is generally the creation of 

many individuals working in part toward a common objective and in 

part for private goals. A successful MCS must include mechanism for 

preventing undesired interference among computations. 

2) Many computations share pools of resources in a flexible way. 

In consequence, the individual planner of a computation need not be 

concerned about efficiently using a certain fixed amount of memory and 

processing capacity which would otherwise go to waste. Resources not 

used by one computation are available to other concurrent computations. 

3) Individual computations vary widely in their demands for 

computing resources in the course of time. 

An MCS must have mechanisms (explicit or implicit) through which 

a computation may request and release resources according to need. 

Where many computations are active which are not closely coupled in 

their demands for resources, the peak demands of some computations 

will coincide with the slack demands of others. As the number of 

computations in the system is increased, the instantaneous total 

demand for resources will hover closer to the sum of the individual 

average demands. Therefore, the amount of physical resources 

required in such an MCS is governed by the average demand over all 

computations rather than by the sum of their peak demands. 

4) Reference to common information by separate computations 

is a frequent occurrence. 

In an MCS it is advantageous to allow information to be common among 

computations proceeding for different users to avoid needless dupli­

cation of procedures and data. Also, communication among separately 
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planned computations is essential to many MCS objectives. Further­

more, the sharing of a peripheral device by several computations is 

sometimes required. 

5) An MCS must evolve to meet changing requirements. 

An MCS does not exist in a static environment. Changing objectives, 

increased demand for use, added functions, improved algorithms and 

new technologies all call for flexible evolution of the system, both as 

a configuration of equipment and as a collection of programs. 

To meet the requirements of flexibility of capacity and of relia­

bility, the most natural form of an MCS is as a modular multi­

processor system arranged so that processors, memory modules and 

file storage units may be added, removed or replaced in accordance 
4 with changing requirements 
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III. CONCEPTS AND TERMINOLOGY 

SEGMENTS The smallest unit of stored information that is of 

interest in the present discussion is called a word. An ordered set 

of words grouped together for purposes of naming is called a segment. 

A segment is created at some point in time and has a definite length 

(which may vary with time) at any instant of its existence. 

Any reference by a computation to data or procedure information 

is specified by a word name 

w = [ i, a] 

consisting of the index number i of the segment containing the desired 

word, and a word address a giving the position of the word within the 

segment. The index number may be thought of as an abbreviation for 

the name of the segment. The correspondence between an index 

number and a name is established by meta- instructions which will be 

defined subsequently. 

In the programming examples (which are written in a pseudo­

Algol format) variable identifiers, array identifiers and labels will 

stand for word names. We will write word names as [ i, a] only when 

the index number must be explicitly mentioned. 

The concept of segment has influenced the design of a commercial 

computer (the Burroughs B5500), an experimental machine 5 , and one 

military system (the Burroughs B825). The use of segments in soft­

ware systems is discussed by Greenfield 
6

, Holt 7 and others. The 

design of addressing mechanisms for MCS's is discussed by Dennis 
8

. 

A fuller implementation of these concepts in a machine organization 

has been discussed by Glaser, Couleur and Oliver 9 , and interesting 

work in a similar direction is in progress at the M. I. T. Lincoln 
10 11 12 

Laboratory IBM , and is continuing at Burroughs 

PROTECTION In an MCS, a computation must be denied access 

to memory words and other objects of computation unless access is 

authorized. In particular, it seems natural to implement memory 
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protection on a segment basis. 

proceeding within some sphere 

capabilities or C-list for short. 

Thus, we think of a computation as 

of protection 
13 

specified by a list of 

Each capability in a C-list locates by 

means of a pointer* some computing object, and indicates the actions 

that the computation may perform with respect to that object. Among 

these capabilities there are usually several segment capabilities, which 

designate segments that may be referenced by the computation and also 

give, by means of access indicators, and indication of the kind of 

reference permitted. 

x 

R 

XR 

RW 

XRW 

executable as procedure including internal read 
references for constants. 

readable as data but not executable. 

executable as procedure and readable as data. 

readable and writable as data. 

executable as procedure and readable and writable as data. 

Other types of capability are also permitted in the C- list of a compu­

tation, and will be introduced as appropriate in the discussion. Every 

capability contains an ownership indicator (0 for owned, N for not owned] 

Computations have broad powers with respect to owned computing objects 

through mechanisms to be described. In the case of an owned segment, 

for example, a computation may delete the segment, and grant or deny 

other computations access to the segment. 

During the execution of a computation, capabilities will frequently 

be added to and deleted from the C-list defining its sphere of protection 

* We use the term ''pointer" here because of its familiarity to most workers. The permanent 
representation of a pointer should not be a hardware address in the machine (main or auxilar3 
storage) as it is essential that the entire naming structure be independent of physical device 
addresses if reallocation of storage media is to be feasible. The authors suggest the 
association of a unique code (called an effective name in ref. 13) with each computing entity 
(segment, directory, e~which is assigned at the time the entity is created. 
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through the use of meta-instructions t.o be described in later sections. 

The linear subscript of a capability within a C-list is called its index 

number. It is through the use of the index number that the capability is 

exercised by processes. For example, a segment is referenced by 

giving the index number of the segment in a word name. We assume 

that the allocation of these index numbers is carried out by the system 

(i. e. , the supervisor program) during the execution of an object 

computation. 

PROCESSES We consider that the system hardware comprises 

one or more processors, which we can identify as being distinct from 

the main memory, the file storage devices and the input/ output devices. 

Each processor is capable of executing algorithms that are specified by 

sequences of instructions. A process is a locus of control within an 

instruction sequence. That is, a process is that abstract entity which 

moves through the instructions of a procedure as the procedure is 

executed by a processor. 

In a physical computer system a process is represented by the 

information that must be loaded into a processor in order to continue 

execution of the successive instructions encountered by the process. 

We call this set of information the state word of the process, and note 

that it must not only contain the accumulator words, index words, and 

the word name of the next instruction to be executed, but must also 

indicate the C-list applicable to the computation to which the process 

belongs. 

A process is said to be running if its state word is contained in a 

processor which is running. A process is called ready if it could be 

placed in execution by a processor if one were free. Running and ready 

processes are said to be active. A process that is not active is 

suspended, and is awaiting activation by an external event, such as the 

completion of an i/ o function. 
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COMPUTATIONS Loosely speaking, a computation may be thought 

of as a set of processes that are all working together harmoniously on 

the same problem or job. More precisely, we define a computation to 

be a set of processes having a common C-list such that all processes 

using that same C-list are members of the same computation. 

Notice that two processes having separate C-lists are always 

members of separate computations, even though these C-lists might 

describe the same set of capabilities. Notice also that there exist 

one-to-one correspondences among computations, spheres of protection, 

and C-lists; each computation operates within the restrictions of a 

unique sphere of protection that is specified by a unique C-list. The 

relationship among these entities is shown schematically in Fig. 1, 

PRINCIPALS The ordinary notion of a user of an MCS is of an 

individual who requests computing service from an MCS, or who inter­

acts with a time- shared MCS from a console. We generalize this 

notion by defining the term principal to mean an individual or group of 

individuals to whom charges are made for the expenditure of system 

resources. In particular a principal is charged for resources con­

sumed by computations running on his behalf. A principal is also 

charged for retention in the system of a set of computing entities 

called retained objects, which may be program and data segments, 

for example, The structure and identification of these retained objects 

is discussed in a later paragraph. 

We can clarify our notion of a principal by giving some examples. 

Each individual user of the MAC time- sharing system acts as a principal 

since he is able to utilize system resources to achieve any personal 

goal, and is restricted only by an accounting of his expenditure of basic 

resources. He may create, modify, and delete segments of procedures 

and data solely according to his personal objectives. In the MAC system 

we also find principals consisting of groups of individuals. Such a group 

principal might be responsible for the maintenance of a system of 

8 
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CAPABILITY 
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SEGMENT 
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COMPUTATION 

Figure 1. A Computation 
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IV. THE SUPERVISOR 

We use the term supervisor to denote the combination of hard­

ware and software elements that together implement a core of basic 

computer system functions around which all computations performed 

by the system are constructed. For present purposes we suppose that 

the core of functions includes mechanisms for 

1) allocation and scheduling of computing resources. 

2) accounting for and controlling the use of computing resources. 

3) implementing the meta-instructions. 

We do not inquire in the present paper as to the internal workings of 

the supervisor required to perform the above functions. Instead it is 

our aim to point out the essential features of the interface between the 

supervisor and user processes which operate in lower spheres of 

protection. However, it is helpful to think in more concrete terms 

about how the supervisor accomplishes some of its functions. 

THE PROCESS LIST Specifically, let the process list be a 

data structure within the supervisor, with an entry for each process 

existing in the system. Entries are created in and removed from this 

list by various meta-instructions and by other mechanisms that will 

be described. Each entry can hold the state word of its corresponding 

process, as well as accounting and scheduling information. As 

mentioned before, each process is either running, ready, or suspended. 

ALLOCATION AND SCHEDULING At any time segments of 

information will be distributed among a hierachy of storage devices 

{core, drum, disk, and tape, for example) with that information most 

relevant to the on- going computation processes located in the more 

accessible media. With each computation there is associated a set of 

information to which it requires a high density {in time) of effective 

reference. The membership of this working set of information varies 

dynamically during the course of the computation. The supervisor's 

problem is to decide how information {segments) should be distributed 

in the storage hierachy and how the queue of active processes should 

be disciplined to make most effective use of system resources in 

accomplishing the MCS mission. 
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ACCOUNTING AND CONTROL We suppose the charges for the 

expenditure of computation resources associated with the execution of 

a process are assigned to the principal that was responsible for the 

creation of the process. We also assume that each principal is given 

an allotment of resources, and that appropriate action is taken by the 

supervisor if this allotment is exceeded. 
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V. PARALLEL PROGRAMMING 

BASIC PRIMITIVE OPERATIONS The basic primitive operation 

of parallel programming is implemented by the meta-instruction 

fork w; 
14 

as suggested by Conway where w is a word name. A fork meta-

instruction initiates a new process at the instruction labelled w. The 

newly created branch process is part of the same computation as its 

creator or main process, that is, it is associated with the same C-list. 

A process that has completed a sequence of procedure steps is termi­

nated by the meta- instruction 

quit; 
after which the process no longer exists and its state word is discarded 

from the process list. A set of primitives for parallel programming 

must include a mechanism whereby one process may be continued just 

when all of a certain set of processes have completed. All that is 

required is a procedure step that will decrement a count and test for 

zero. We use the instruction 

join t, w; 

which is essentially Conway's join instruction. Here t is the word 

name of the count to be decremented and w is the word name of an 

instruction word to be executed if the count becomes zero as indicated 

in Fig. 2. It is essential that the three references to the count t not 

be separated in time by references to t from other processes. This 

requirement is indicated by the dashed box in the figure and is readily 

achieved in practice by combining the two actions into one machine 

instruction that is completed with a single reference to the count word. 

In describing algorithms involving parallel processes, it is 

convenient to declare certain quantities as private to a process. For 

this purpose the declaration 

private x; 

means that the quantity named x is to exist only so long as the 

process executing the declaration exists; that is, private data is lost 

when a process quits. At a fork the values of any quantities declared 

private to the main process are assigned as values of corresponding 

13 
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quantities of the branch process. In practice, the state word of a 

process is the natural representation of private data. If there is more 

data declared private than can be represented in the state word, the 

system must create a segment for private data which is copied at each 

fork and lost upon reaching a quit. 

LOCKOUT A provision whereby two processes may negotiate 

access to common data is a necessary feature of an MCS. Suppose a 

certain data object (which might be a word, an array, a list structure, 

a portion or all of a segment) may be updated asynchronously by several 

processes, which are perhaps members of different computations. Up­

dating a data structure frequently requires a sequence of operations 

such that intermediate states of the data are inconsistent and would 

lead to erroneous computation if interpreted by another process. 

The lockout feature proposed here presumes that all computations 

requiring access to the data object are well behaved. If it is desired 

to protect the data object from destructive manipulation by an untrust­

worthy computation, routines with protected entry points as described 

later in this paper must be employed. 

We associate with the data object a one-bit lock indicator that 

is accessible to all processes requiring use of the data object. Two 

meta-instructions are introduced that operate on the lock indicator w. 

lock w; 

The effect of the lock meta- instruction is given in Fig. 3a. The lock 

bit is set to one just when the data object has been found unlocked by 

all other processes. Again, as indicated by the dashed box, the two 

references to w must not be separated-by references to w fro.n 

other processes. The meta-instruction 

unlock w; 

resets the lock indicator to zero as in Fig. 3b. 

15 
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lock w; 

unlock v.; 

update a sequence for data object associated 
with lock indicator w • 

~'- pra::tictc. tl:e execution time of a typical update sequence is 

ite o:;wali d!:'.i the chance that a process will hang up on a lock 

!,sfru~.ti'.)i·: will be very low. However, a process may be removed 

' ( xec0L_~, ·; if a J-Yr<.Jces sor is preempted by a higher-priority 

· ;-· ~.:c.:.tation. Thus, a data object could rerY:ain locked for a sub-

1d1al time i; such preemption occurred between a lock/unlock pair. 

··1,"e' ha~gup ut other processes interrogating that lock indicator could 

;:,,~ i1ighly probable. A solution to this problem is to inhibit inter­

~'1prion oi a process between execution of a lock and execution of the 

c1owin:oi unlock. Of course, this requires that a time limit be set on 

,Le separation of lock/unlock pairs. 

AN EXAMPLE An elementary example of parallel programming 

thdt illustrates the use of these meta- rnstructions is the following 

program that evaluatec: that dot product of two vectors A and B 

uegin reala.rray A~l:r;.: 

Boolean•,;,,; real S; 

private integer i; 

: = n; 

H l 1:r"I · 

integer t; 

for i := l step 1 until i > n do 

fork e; 

quit; 
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e: begin real X; 

substance: X : = A[ i J X B [ i J 

lock w; 

S : = S + X; 

unlock w; 

joint, r; 

quit; 

end; 

r: 

end; 

Obviously, this computation is too trivial for parallel programming to 

be of practical interest. If the algorithm expressed by the statement 

labelled "substance", instead of being a simple multiplication, involved 

the operation of a large, complex system of procedures (e.g., the 

compilation of a segment of procedure), the notation of parallel pro­

cessing as used above would allow several instances of that algorithm 

to be in simultaneous execution, thus more effectively utilizing the 

presence of its procedure information in main memory. 

INPUT/OUTPUT A basic power of computations in an MCS is 

the ability to communicate with peripheral (input/ output) devices. Two 

classes of communication have evolved in terms of implementation in 

present day computer systems. In the simpler class a process requests 

the transmission of a unit of information (word or fraction of a word) 

to or from a peripheral device and waits in _suspended status until the 

information is transmitted before continuing. (A processor, as 

contrasted with the process, may be executing other processes during 

the wait interval, however.) This form of implementation is appropriate 

for low data-rate situations, and also where a close interaction between 

the computation and the peripheral devices is required (e.g., quick 

response to brief inquiries from a remote console). 

18 



In the second form of input/ output operation, a sequence of 

interactions between memory (i.e., a segment) and the peripheral 

device occurs in response to an initiation signal from a process. The 

process remains suspended until all interactions between memory and 

the peripheral device have been completed. 

In either case a principal characteristic of the input/ output 

operation is the elapse of time between initiation and completion. This 

input/ output wait is generally long compared with the instruction 

execution time of a typical central processing unit. For our purposes 

we will not distinguish further between these two lorms of input/ output 

operations, and will call both by the term i/ o function. 

Since peripheral devices are part of the physical resources of a 

computer system, the use of i/ o functions must be restricted to 

computations authorized to do so. It is natural to consider an i/ o 

function as representing another class of capability that may be entered 

in the C-list that defines a sphere of protection. This capability is 

then exercised by the meta-instruction 

execute i/ o function i; 

where i is the index number of an i/ o function capability in the C- list 

of the computation. Performance of this procedure step by a process 

causes initiation of the i/ o function represented by the ith entry of the 

C-list. The process then becomes suspended and remains so until the 

i/ o function has completed. It then becomes active again to perform 

subsequent procedure steps. 

Particular stress has recently been placed on ability to specify 

computations that may compute in parallel with input/ output operations. 

Within the scheme presented here, this goal is easily achieved through 

the execution of fork meta-instructions prior to the execution of i/ o 

functions. 

MOTIVATION FOR PARALLELISM The motivation for encourag­

ing the use of parallelism in a computation is not so much to make a 

particular computation run more efficiently as it is to relax constraints 

19 



on the order in which parts of a computation are carried out. A multi­

program scheduling algorithm should then be able to take advantage of 

this extra freedom to allocate system resources with greater efficien•':'.'··· 

Moreover, the notation of parallel programming is a natural way 

of expressing certain frequently occurring operations of computations 

running in an MCS. Suppose, for example, we wish to program a 

computation to receive messages from any of a number of user consoles, 

where the messages are to arrive in some unknown and arbitrary order, 

and it is not known whether some consoles will ever send messages. 

Let listen(i, j) be an integer procedure that waits for a message to be 

received f-rom console i and writes the message in the segment 

with index number j. The value of listen is set to the number of 

symbols in the message. Let analyze(i, j, n) be a procedure which 

scans a message of n symbols received from console i and 

written in segment j , and takes whatever action is necessary in 

response to the content of the message. Then the message- receiving 

computation described above may be programmed as follows. 

begin private integer i; 

for l step i until i > n do 

fork e; 

quit; 

e: begin integer j, n· 
' 

= create segment RW; 

n = listen(i, j); 

analyze ( i, j, n); 

quit; 

end; 

end; 

The create segment meta-instruction introduces a segment 

capability into the C-list of a computation and is discussed in a 

following section. 

20 
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INFERIOR SPHERES To allow the processes under test to be 

-·perated within a sphere of protection distinct from the one effective 

·or the PLS, we define several n1eta-instructions. 

i : = create sphere w; Append an owned inferior sphere 

capability to the C- list with index 

number i . The word name w 

is the return point for exceptional 

conditions, as explained later. 

The pr:cess executing this meta-instruction operates in a sphere 

we cal; the superior of the created sphere. Once in possession of an 

inferior sphere capability (Fig. 4), a process may grant some of its 

capabilities to the inferior sphere by the following rr1eta-instruction. 
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i . - grant 

x 

R 

XR 

RW 

XRW 

j, k; Grant capability j to in­

ferior sphere k with in­

dex number i . Here j 

and k are index numbers 

in the current C- list, and i 

is an index number in the 

inferior C-list. 

The granted capability is entered in the C-list of inferior sphere k 

and may be a segment capability, i/ o function capability, entry capa­

bility, or directory capability. Entry and directory capabilities are 

discussed in later paragraphs. The braces mean that one of the strings 

within them must be selected to form part of the meta-instruction. 

Here >.. stands for the null string. The string O indicates that the 

inferior sphere is to have ownership powers with respect to the granted 

capability. The other strings can be used only if j is the index 

number of a segment capability. In this case the capability is passed 

down with restricted access authority. For example, 

i : = grant X j, k; 

grants authority to execute the segment but not to read it, write it, or 

exercise ownership of it. The grant meta-instruction cannot be used 

to pass a capability that is not implied by a capability present in the 

higher sphere. 

start i, w; Initiate a process at instruction word 

name w within inferior sphere i . 

The new process commences with no private data, that is, a zero state 

word except for the instruction word name w . 

EXCEPTIONAL CONDITIONS Next we ask what should happen 

if a process operating in an inferior sphere encounters an exceptional 

condition, that is, a procedure step requiring intervention by a higher 

level before the object process may continue in a sensible manner. 
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:orne exct>ptional cc:.ndiLo;"s call for action b:. the supervisor. These 

: 'lC ludc; 

1) Fault. 

A memory parity error is a good example. '}'he supervisor 1s 

responsible for correct operation of processor and rr1ernory units. 

2) Resource excess. A resource excess occurs if a process 

invokes resources in an arnount exceen~ng the allotment to the principa. 

responsible for its computation. 

3) Addressing snag. An addresain2 sna2 c<:CU"S when a p:roces;:; 

'-'enerates a valid address, nut the des·re-·J it't•:rr~.-.ttion ;5 ":ithE'r not .r 

;;,upcrv1sor must n1ovc the <1Psired ;:·J·;: --,,~._". :_r 

. de storage and set i.:1-' the ne• es s;:; r 1 · , f 

Othc r exceptional c or:cii tio ns s 

computation of the process in trouoL:. __;,n-:e -.JT,\ the prucedt·:·es whic·n 

::stablished the process know how ttiesc .ondit1ons should be 111terpretec: 

These exceptional conditions are: 

1) Sphere violation. A sphere viu .. :i.:~ .. '- •ccurs if a pr•_,,_ess re!<..:t~ 

to a capability that does not exist in t:E: C- ;i,.,t. .•£ its corr.putation, 1;,r 

makes invalid use of a capability (atten.~Jts t:J write in a segmE·Y:t i -

\vhich only the execution capability 1s at..~borized, L,Jr e:xan1plc :. ~\ 

sphere \·1olation also takes place if a refer~:ncc is rnc,Cl<.. .)cyu::d tr:l: 

limits of a segment. 

2) Halt instruction. A halt means "terminate this process and 

notify superior'' as contrasted with quit which n1eans 11 terrninate this 

process and forget it. " 

3) Breakpoint instruction. A breakpoint is substituted for other 
) 

instructions by a debugging progran1 in order to conduct a 



breakpoint analysis of a program under test, A breakpoint has the 

same effect as halt except that a different indication is presented to 

the superior procedure. 

4) Undefined instruction. A processor generates this condition 

when it is called upon to execute an undefined operation code. 

5) Arithmetic contingencies. Such events as "divide check" call 

for action by a superior procedure when not explicitly handled by the 

inferior computation, 

In any of these events, the process in which the exceptional 

condition occurred becomes suspended, and a new process is initiated 

in the superior sphere at the instruction word specified when the 

inferior sphere was created. The new process starts with two pieces 

of private data: a number indicating the reason for the interruption, 

and an index number of an owned suspended process capability that is 

appended to the C-list of the superior sphere at the time of interruption. 

This capability allows the superior computation to have access to the 

state word of the process in which the exceptional condition occurred. 

The following meta-instructions are defined with respect to a 

suspended process capability. 

fetch status i, w; 

set status i, w; 

continue i; 

Fetch the state word of suspended 

process i and write at word name w. 

Set the state word of suspended pro­

cess i according to information at 

word name w. 

Reactivate suspended process i and 

delete from the C- list. 

Notice that the set status meta-instruction must disallow a change in 

certain critical parts of the state word of the suspended process. For 

example, the superior sphere must not be able to cause the state word 

of the suspended process to point to a different C-list. 
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A debugging procedure needs primitive commands which allow 

it to "pick up the pieces" after a computation under test has mal­

functioned, The following meta-instructions are useful under these 

circumstances, 

stop k; Suspend all processes operating in 

inferior sphere k . 

Execution of this meta-instruction causes each active process in 

inferior sphere k to be suspended. Corresponding to each inferior 

process a suspended process capability is created in the C-list of the 

superior sphere, Also, a process in the superior sphere is initiated 

to correspond to each inferior process, just as though the inferior 

process had encountered an exceptional condition. 

Capability j in the C-list of inferior sphere i can be 

examined by the meta- instruction 

examine i~ j, w; 

The information contained in the capability is copied into several 

words starting at word name w • 

H the inferior computation has clogged its C-list with unneeded 

capabilities, the superior computation can remove them with 

ungrant i, j; 

which erases capability j from the C-list of inferior sphere i . 
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VII. PROTECTED ENTRY POINTS 

An important class of situations arises when a peripheral device 

is operated or a data object is manipulated on behalf of several con­

current computations. Examples of this situation are: 

1) A control routine for transferring messages between user 

computations and remote terminals of a given class. 

Frequently, a system of remote terminals is coupled to a central 

processing system through a single i/ o function (rather than one per 

terminal device). 

2) A routine which updates a data base and may be called 

asynchronously by many separate user computations. 

The planning of such a routine':' requires that calling computations be 

protected from each other. IT A and B are two computations 

using the routine S , it must not be possible for a malfunction of A's 

processes to cause incorrect execution of B's procedures. Clearly, 

neither A nor B should be able to modify the common data D 

used by S • Furthermore, A and B must be forced to initiate 

operation of S at a proper entry point, for erroneous transfer of 

control to an arbitrary instruction of S is likely to cause meaning­

less modification of the common data D • However, if D is to be 

written by S , then the processes executing S must have in their 

C-lists the capability to write in segment D as well as the capa­

bility to execute any instruction of S • 

It follows that a modification or change of C-list must accompany 

transfer of control to S • A mechanism for accomplishing such 

restricted use of a procedure we call a protected entry point. 

The mechanism we describe supposes that a process calling the 

protected procedure executes it in a distinct sphere of protection R 

returning to the original sphere of protection A upon completion. 

The change of association of process with C-list implied here is 

* Introduced as a "protected service routine" in ref. 4. 
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accomplished by the enter meta-instruction which requires an addition­

al capability, the entry. An entry capability is created by the owner 

of a protected procedure through the use of the meta-instruction 

h . - create entry w, n; 

where h is the index number in the creator's C-list of the created 

capability. Here w is the word name [i, a] , and i must be the 

index number in the creator's C-list of an owned procedure segment. 

The entry capability thus created authorizes calls to be made to the 

word names [ i, a] through [ i, a+ n l inclusive. Also included in the 

entry capability is a pointer to the C-list of the creating computation. 

Once created, the entry capability can be copied into the C- lists of 

other computations, using mechanisms to be described. 

The entry to and exit from a protected procedure is depicted 

schematically in Fig. 5. To enter a protected procedure a process 

gives 

enter j, r, k; 

where j is the index number of an entry capability. The calling 

process is suspended, and a new process is created. The C-list of 

this new process will be the C- list specified by the entry, with the 

addition of two new capabilities. One is a suspended process capa­

bility pointing to the state word of the calling process, and the other 

is a duplicate of the capability having index k in the caller's C-list. 

The index numbers of these capabilities are reported as private data 

in the state word of the new process. The new process is set to 

begin execution at word name [ i, a+ r] , where i and a are 

quantities specified in the entry, as mentioned above. Notice that i 

is an index number with respect to the new C-list, not that of the 

caller, and also that r must satisfy 

05rSn 

where n is also specified in the entry. The remainder of the new 

state word is set equal to the corresponding parts of the caller's 

suspended state word. Finally the new process is made active. The 

protected procedure thus given control can use the fetch status, set 
status, and continue meta-instructions to communicate with the 
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PROCESS LIST 

PROCESS 
ENTRY 

SUPERVISOR 
---+---

C-LIST SPHERE A SPHERE R 

ENTRY ...., 
CAPABILITY 

\ 

ENTER 

CONTINUE 

Figure 5. Entry to and Exit from a Protected Procedure 
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VIII. DIRECTORIES AND NAMING 

Until now, we have been discussing those aspects of an MCS 

that deal with the active performance of computing tasks for the 

benefit of the system's users. Now consider the fact that in most 

MCS' s, even if no active computing is taking place, each principal 

of the system is still represented passively in the system by a set 

of retained objects. Every retained object is either a segment, an 

i/ o function, an entry, or a directory. Here we are letting the 

segment play a role which has been ascribed to something called a 

file in many MCS's, particularly in the MAC system. In the present 

formulation, a file is simply a long- lived segment. 

SHARING OF RETAINED OBJECTS The possibility of rapidly 

and automatically controlling the sharing among principals of retained 

objects, chiefly procedure and data segments, is one of the main 

characteristics that distinguishes the MCS from other types of com­

puting systems 
3

. The importance of sharing is testified to by the 

fact that the file manipulating machinery of the MAC system has 

recently undergone a major revision, motivated in part by a desire 

f ·1· h h . 15 • to ac1 itate sue s anng 

Besides being useful to individual users who wish to borrow 

each other's routines, a sharing mechanism is also useful to a group 

of users who wish to reference certain segments in common. Such 

segments might be a set of library routines, or a set of procedures 

making up a programming language system. It is natural to think of 

these segments as being owned by a principal associated with the 

group of users as a whole. A mechanism (such as the one to be 

described} is required for permitting an individual user to gain access 

to the directory of the group principal. 

DESIDERATA FOR NAMES Through the capabilities in their 

C-lists, computations can, among other things, manipulate retained 

objects. In performing these manipulations, the processes of a 

computation must specify information that unambiguously 
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distinguishes each object of interest from all other retained objects 

in the computing system. Such information constitutes the name of 

the ob.1ect. 

Retained obJeCts are created and deleted arbitrarily, and any 

particular object may remain in existence for an arbitrarily long 

tin1e. There are two reasons why the name of an object can never 

be changed by the sy sten1 throughout the object 1s entire existence. 

First, if a name is changed, then all usages of that name that are 

imbedded in other ob_iects (e.g. segments) within the system must 

be updated. This alternative may be dismissed as being entirely 

impractical ir. a large MCS. The second reason why the system must 

leave all names unchanged is that every retained object is frequently 

referred to directly by people. People are used to thinking in terms 

of invariant names; to find that yesterday's "X'' is suddenly today's 

"Y'' would be disconcerting. 

Another requirement which human usage places on the names 

of objects is that they should be alphanumeric and have mnemonic 

significance. Each principal should be able to choose freely the 

names by which he will identify the objects he retains, without regard 

to the choices of names made by other principals. 

AMBIGCOUS l'\M1ES If the names of two different objects ha\·e 

been freely chosen by two different principals, those names may 

possibly be identical. When this common string of characters is 

generated subsequently by a process, the computer system will not 

be able to determine which of the objects is being designated. 

a string of characters is said to form an ambiguous name. 

Such 

The problem of ambiguous names also manifests itself in more 

traditional, non-multiprogrammed computing environn1ents when 

groups of independently written subprograms are to be combined into 

one large program. One author has called for "an orderly corpus of 
16 

symbology 11 designed to prevent name conflicts before they occur 

Others have offered a solution based on the loading-time definition of 
17 

each subprogram 1s symbolic interface with its environment 
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The most straightforward way of eliminating the possibility of 

name ambiguities within an MCS is to restrict each principal in his 

choice of names; a principal can be required to begin every one of 

the names of his objects with a string of characters that constitutes 

his principal name. The remainder of the name of an object, its 

chosen name, may then be freely selected by the principal retaining 

the object. This method of preventing name conflicts has been 
18 

employed in the MAC time- sharing system 

FALSE NAMES In order to conserve storage, it is reasonable 

to embed within a procedure segment only the chosen names of the 

objects being referenced, with the understanding that the computer 

system can supply the principal name because it knows which principal 

initiated the process that is executing the procedure segment. Even 

if a principal has a complex program consisting of many procedure 

segments, each containing references to the others, the above 

scheme still insures that when the author. principal operates the 

program the system will always supply the correct principal name 

to augment the chosen names embedded within the segments. 

A serious problem arises, however, if this program is shared 

with a second principal and this principal attempts to execute the 

program. Intersegment references will evoke the name of the second 

principal, rather than that of the author. The names thus formed 

will be false names, because they will designate objects that are 

very different from those intended by the author. Such names will 

often designate no existing object at all, but occassionally they may 

designate objects of the second principal that are unrelated to the 

borrowed program. 

PREVIEW The problem arises of simultaneously realizing 

the following four goals: ( 1) to avoid the creation of ambiguous 

names, (2) to provide reasonable freedom for a principal to choose 

some portion of the names of his objects, (3) to allow intersegment 

references to consist of parts of names rather than full names, and 

( 4) to permit sets of objects to be shared without invalidating internal 

references. 



The solution we propose stipulates that each reference to an 

object be derived from a partial name relative to some directory of 

objects, together with the index number of a capability pointing to 

that directory. Moreover, we allow the directories of the system to 

be organized into a hierarchical structure, as suggested by Daley 

and Neumann 
19 

This approach has two major advantages: 

( 1) A whole subhierarchy of objects can be communicated 

among several computations or principals by passing a 

single pointer to the head directory of the subhierarchy. 

(2) It is easy to design the MCS so that programs can be 

shared without the possibility that false names will be 

generated by their execution. 

In the following paragraphs we define the proposed naming 

structure and introduce the meta- instructions necessary for compu­

ting within its framework. 

DIRECTORIES A directory is a set of items, each being an 

association between a name component and a capability which points 

to a segment, ii o function, entry or another directory. Recall that 

each capability includes an ownership indicator (0 for owned, N for 

not owned), and that a segment capability includes an indication 

(R, W, X or a combination) of the type of reference permitted. Each 

item of a directory also contains an access indicator (p for private, 

F for free). The interpretation of these indicators in directories is 

explained below. 

Associated with each principal is exactly one directory called 

a root directory, which stands at the head of a hierarchy of the 

principal1 s retained objects. We allow perhaps many items to point 

to the same object, and in consequence, an object may be accessible 

through the directory structure from different root directories. 
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OWNERSHIP A principal always ~his root directory. 

Otherwise, an object is owned by a principal just if that principal 

owns a directory in which there exists an item with an 0 indicator 

that points to the object. Thus, a principal owns an object if and 

only if there is a path through the directory tree from his own root 

directory to the object such that each node of the path contains an 

0 indicator. 

When the supervisor creates a computation on behalf of a 

principal, it always places in the C-list of such a computation a 

directory capability with an 0 indicator that points to the principal' s 

root directory. The principal is then said to~ this computation 

and each of its processes. These processes are then permitted to 

exercise powers of ownership with respect to objects owned by the 

principal. 

USING THE DIRECTORY STRUCTURE The powers of a 

computation with respect to tne directory structure are embodied in 

meta-instructions as follows. We suppose that any process has at 

least one entry in its C-list giving it a directory capability. 

j acquire 

x 
R 

XR 

RW 

XRW 

i, < name component > 

Here i is the index number of a directory capability. This 

directory is searched for an association with< name component>, 

the corresponding capability is entered into the C- list of the compu­

tation to which the running process belongs, and its index number is 

reported as j . Capability j is tagged 0 if and only if directory i 

is tagged 0 in the C-list, and the capability being loaded is tagged 0 

in directory i . A sphere violation results if the capability 
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referenced is tagged P in the directory item and directory capability 

i is not owned (i.e. contains an N indicator). In the case of a 

segment, the type of reference permitted may be changed from that 

permitted in the directory item, but an attempt to enlarge the class 

of reference permitted to a non owned segment is also deemed a 

sphere violation. 

release i; 

Remove the capability with index number i from the C-list of the 

running process. 

Ownership of an object implies the ability to modify it, delete 

it, and grant access to the ob.1ect by other principals. 

place 
p 

F 
i, <name component>, j; 

Here i must be the index number of an owned directory capability. 

An item is inserted in directory i associating the capability having 

index number with< name component>. 

remove i, < name component > 

The item associated with< name component> in owned directory i 

is removed from the directory. 

CREATION AND DELETION OF RETAINED OBJECTS Segments, 

entries, and directories can corne into existence upon execution of 

the following meta-instructions. 

x 

R 

segment XR 

= create 

entry w, n: 

directory 
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A capability pointing to the created object is entered into the C- list of 

the process with an 0 indicator, and its index number is reported 

as i • Note that a name is not associated with the object at the time 

of its creation, but only when an entry is made for it in some directory 

by means of a place meta-instruction. 

This illustrates the point that names are a convenience for 

principals. Different names may be convenient for different principals, 

and no name need be assigned unless a principal may need to select 

that object from the directory structure at a later time. Thus, for 

example, segments may be created by computations for temporary 

storage purposes without affecting the directory structure. 

The owner of a segment, entry, or directory can cause it to 

cease to exist by using the following meta-instruction. 

delete i, < name component >; 

The owned object pointed to by the capability associated with< name 

component> in directory i is deleted so that it has no further 

existence. Any attempts to exercise capabilities pointing to a 

deleted object are treated as sphere violations. 

The release and remove meta-instructions differ from delete 

in that the former meta-instructions simply remove capabilities 

from C-lists and items from directories, respectively, while the 

object itself continues its existence if there are other capabilities 

and items pointing to it. 

We suppose then that the existence of a segment, entry, or 

directory extends from its time of creation until either specifically 

delete'ed by its owner~ until release'ed from all C-lists and 

remove' ed from all directories. This convention yields the 

possibility of having a retained object with no owner. This seems 

quite reasonable because the following situation may occur frequently. 

An obsolete subroutine segment S is remove'ed from the directories 

of a library principal L but remains in use by principals A, B, and 
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C. The segment was previously owned by L, but now has no owner. 

The existence of S continues just until A, B, and C have abandoned 

use of it. Since we assume there can be no more than one owner of 

an object, the only alternatives are to assign ownership to one of 

A, B, or C (but how do we choose?), or to generate separate copies 

of S for each sharing principal. 

THE STRUCTURE OF NAMES Since every computation 

initially has in its C- list at least one root directory capability, it is 

clear that by giving a series of acquire's, a computation can make 

its way through the directory structure along any path, as long as 

it knows the correct series of name components to use. A series of 

name components leading from a directory to an object is called the 

partial name of the object with respect to that directory. 

Because of the structure of the directories, an object can 

have many names, as well as many partial names with respect to 

any directory. For example, the directory structure in Fig. 6 

shows a particular segment, owned by the principal FORTRAN, 

which has the following names. 

FORTRAN, MATRIX, MULTIPLY 

DENNIS, EXPERIMENT, SUBROUTINES, MATMULT 

DENNIS, CIRCUITTHEORY, MAXPROD 

VANHORN, DENNISEXP, SUBROUTINES, MATMULT 

Notice that the item named DENNISEXP within the root directory 

VANHORN points to the directory whose full name is DENNIS, 

EXPERIMENT. 

SHARING MECHANISMS Two mechanisms to allow the sharing 

of retained objects are described here. One mechanism gives 

blanket authority to all computations within the system to acquire 

the shared object. The other mechanism allows the owner of an 

object to specifically authorize each instance of its sharing. 
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The meta-instruction 

i : = link <principal name > ; 

inserts into the C-list at index i a non-owned directory capability 

pointing to the root directory named< principal name>. Using the 

acquire meta-instruction, a computation can thus gain access to any 

object in the directory structure of any principal, provided that the 

directory items leading from the principal directory to the object all 

contain F indicators. 

Any more selective sharing mechanism requires an explicit 

interaction between the borrower and the lender. We propose that the 

shared capability be passed between the C-lists of two computations 

that interact via the enter meta-instruction. 

A typical interaction might proceed as follows. The lender 

first creates a free entry capability in one of its directories. The 

borrower then uses link and acquire to place this entry capability in 

its C-list. The borrower next creates a special entity in its C-list, 

called a receiver, by means of the meta-instruction 

i : = receive; 

Finally the borrower exercises the entry obtained from the lender by 

using enter. Parameters passed as private data provide to the lender 

the index i of the receiver in the borrower's C-list, as well as 

information identifying the capability desired to be borrowed. 

The lender is thus given control, and proceeds to verify the right 

of the borrower to obtain the capability requested. In particular, the 

lender may wish to verify that the borrower computation is in fact 

owned by a certain principal. For this purpose the lender uses the 

meta- instruction 

s : = owner j; 

where j is the index in the lender's C-list of the suspended process 

capability generated by the enter operation, and s is a string giving 

the principal name of the owner of the suspended process. 
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Having completed its verification, the lender then acquire's into 

its own C-list the owned capability it wishes to transmit. If this capa­

bility has index k , the meta- instruction 

transmit j, i, k; 

replaces receiver i in the C-list of suspended process j with the 

owned capability k , giving it an N tag. 

Having modified the borrower's C-list, the lender then returns 

control to the borrower with continue. At this point the loan is com­

plete; the borrower may now exercise the capability and place it in one 

of his own directories. 

AN EXAMPLE - USING A PROGRAMMING SYSTEM Suppose a 

user wishes to use a programming system (PS). The retained ob­

jects (procedure segments, directories, entries, etc.,) of PS are 

on file in the hierarchical organization already outlined (Fig. 7a). 

The user has his objects organized in a private hierarchy (Fig. 7b). 

If the use of PS is only desired for one user then it is appropriate 

for an owned item in the user's directory structure to point to the 

directory structure of PS. If it is desired to make PS available to 

many or all principals at an installation, it is appropriate to place 

the directory hierarchy of PS under a principal of its own or as a 

subhierarchy within the domain of a common programming system 

principal. In either case, a computation for a user involving retained 

objects, both of his own and of the PS, would be carried out in the 

following manner: 

1) The user initiates a process which acquires access capa­

bilities for the two hierarchies of directories - one for 

his own files and one for PS- by executing the necessary 

sequence of meta-instructions. Suppose these capabilities 

have index numbers i and j respectively. 

2) PS is called with i and j as parameters. PS does 

all addressing within the directory structure relative to the 

roots of their trees represented by entries i and j 

of the C-list (Fig. 7). 
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