
MAC-TR-23

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Project MAC

PROGRAMMING SEMANTICS FOR

MULTIPROGRAMMED COMPUTATIONS

by

Jack B. Dennis and Earl C. Van Horn

This paper \Vas presented at the Association For Computing Machinery

Conference on Prograrnn1ing Languages and Pragmatics, San Dimas,

California, August 8-12, 1965

This empty page was substih1ted for a
blank page in the original document.

ABSTRACT

The semantics are defined for a number of meta-instructions

which perform operations essential to the writing of programs in

multiprogrammed computer systems. These meta-instructions

relate to parallel processing, protection of separate computations,

program debugging, and the sharing among users of memory segrnents

and other computing objects, the names of which are hierarchically

structured. The language sophistication contemplated is midway

between an assembly language and an advanced algebraic language.

i

TABLE OF CONTENTS

Section

ABSTRACT

LIST OF ILLUSTRATIONS

I

II

III

IV

v

VI

VII

VIII

INTRODUCTION

PROPERTIES OF MULTIPROGRAMMED COMPUTER

SYSTEMS

CONCEPTS AND TERMINOLOGY

Segments

Protection

Processes

Computations

Principals

THE SUPER VISOR

The Process List

Allocation and Scheduling

Accounting and Control

PARALLEL PROGRAMMING

Basic Primitive Operations

Lockout

An Example

Input/ Output

Motivation for Parallelism

SPHERES OF PROTECTION

Inferior Spheres

Exceptional Conditions

PROTECTED ENTRY POINTS

DIRECTORIES AND NAMING

Sharing of Retaining Objects

Desiderata for Names

Ambiguous Names

False Names

Preview

Directories

Ownership

ii

1

3

5

5

5

7

8

8

11

11

11

lZ
13

13

15

17

18

19

Zl
21

23

Z7

31

31

31

32

33

33

34

35

Section

TABLE OF CONTENTS (Cont.)

Use of Directory Structure

Creation and Deletion of Retained Objects

The Structure of Names

Sharinsr Mechanisms

:_ "i:;g a. .Fr<:>~rarnming Systern

111

Page

35

36

38

38

41

44

LIST OF ILLUSTRATIONS

A Cc1mputation

The join Procedure Step

Lock and unlock Meta- Instructions

Control of an Inferior Computation

Entry to and Exit fron1 a Protected Procedure

P.. Director-y Structure

LTsing a Programming System

lV

l 4-

l l>

22

I. INTRODUCTION

An increasing percentage of computation activity will be carried

out by multiprogrammed computer systems. Such systems are

characterized by the application of computation resources (processing

capacity, main memory, file storage, peripheral equipment) to many

separate but concurrently operating computations.

We can cite three quite different examples of multiprogrammed

computer systems to illustrate their diversity of application. The

American Airlines SABRE passenger record system couples ticketing

agents at dispersed offices to a central data file 1• The computer sup­

port systems of NASA provide real time control and monitoring of

manned space flights 2. The Project MAC time-sharing system per­

mits research workers closer interaction with the powers of auto­

matic computation 3• Although these are all on-line systems, multi­

programming techniques have also been used successfully in systems

that perform computations on an off-line, job-shop basis.

We will review some of the distinctive properties of a multi­

programmed computer system (MCS), and then introduce some con­

cepts and terminology that have proven useful in studying the

properties of multiprogrammed computations. As we proceed, we

will define a number of meta-instructions that embody powers mostly

absent from contemporary programming languages, but essential to

the implementation of computation processes in an MCS. These

powers relate to 1) parallel processing; 2) naming objects of compu­

tation; and 3) protection of computing entities from unauthorized

access. The character of these meta-instructions is such that they

might form part of a language intermediate in sophistication between

an assembly language and an advanced algebraic language for an MCS.

In fact, the semantics of these meta-instructions could be incorpo­

rated in the definition of an intermediate language that might be

employed at some stage in the translation of a more advanced

language.

1

d; lol_ dt i•,-),-, i ·.-(_J ~:-~ r1_"r11t.::' :-its.

vteLt:- .-:'s the sc-t 1'1 n;etrt-instrcictii.i.:,o

Ajsu, l_-0111-ent1c>ns fur dynainic control of

' L

IL PROPERTIES OF MULTIPROGRAMMED COMPUTER SYSTEMS

Five properties of multiprogrammed computer systems are

important to the present discussion.

l) Computation processes are in concurrent operation for more

than one user.

A Multiprogrammed Computer System is generally the creation of

many individuals working in part toward a common objective and in

part for private goals. A successful MCS must include mechanism for

preventing undesired interference among computations.

2) Many computations share pools of resources in a flexible way.

In consequence, the individual planner of a computation need not be

concerned about efficiently using a certain fixed amount of memory and

processing capacity which would otherwise go to waste. Resources not

used by one computation are available to other concurrent computations.

3) Individual computations vary widely in their demands for

computing resources in the course of time.

An MCS must have mechanisms (explicit or implicit) through which

a computation may request and release resources according to need.

Where many computations are active which are not closely coupled in

their demands for resources, the peak demands of some computations

will coincide with the slack demands of others. As the number of

computations in the system is increased, the instantaneous total

demand for resources will hover closer to the sum of the individual

average demands. Therefore, the amount of physical resources

required in such an MCS is governed by the average demand over all

computations rather than by the sum of their peak demands.

4) Reference to common information by separate computations

is a frequent occurrence.

In an MCS it is advantageous to allow information to be common among

computations proceeding for different users to avoid needless dupli­

cation of procedures and data. Also, communication among separately

3

planned computations is essential to many MCS objectives. Further­

more, the sharing of a peripheral device by several computations is

sometimes required.

5) An MCS must evolve to meet changing requirements.

An MCS does not exist in a static environment. Changing objectives,

increased demand for use, added functions, improved algorithms and

new technologies all call for flexible evolution of the system, both as

a configuration of equipment and as a collection of programs.

To meet the requirements of flexibility of capacity and of relia­

bility, the most natural form of an MCS is as a modular multi­

processor system arranged so that processors, memory modules and

file storage units may be added, removed or replaced in accordance
4 with changing requirements

4

III. CONCEPTS AND TERMINOLOGY

SEGMENTS The smallest unit of stored information that is of

interest in the present discussion is called a word. An ordered set

of words grouped together for purposes of naming is called a segment.

A segment is created at some point in time and has a definite length

(which may vary with time) at any instant of its existence.

Any reference by a computation to data or procedure information

is specified by a word name

w = [i, a]

consisting of the index number i of the segment containing the desired

word, and a word address a giving the position of the word within the

segment. The index number may be thought of as an abbreviation for

the name of the segment. The correspondence between an index

number and a name is established by meta- instructions which will be

defined subsequently.

In the programming examples (which are written in a pseudo­

Algol format) variable identifiers, array identifiers and labels will

stand for word names. We will write word names as [i, a] only when

the index number must be explicitly mentioned.

The concept of segment has influenced the design of a commercial

computer (the Burroughs B5500), an experimental machine 5 , and one

military system (the Burroughs B825). The use of segments in soft­

ware systems is discussed by Greenfield
6

, Holt 7 and others. The

design of addressing mechanisms for MCS's is discussed by Dennis
8

.

A fuller implementation of these concepts in a machine organization

has been discussed by Glaser, Couleur and Oliver 9 , and interesting

work in a similar direction is in progress at the M. I. T. Lincoln
10 11 12

Laboratory IBM , and is continuing at Burroughs

PROTECTION In an MCS, a computation must be denied access

to memory words and other objects of computation unless access is

authorized. In particular, it seems natural to implement memory

5

protection on a segment basis.

proceeding within some sphere

capabilities or C-list for short.

Thus, we think of a computation as

of protection
13

specified by a list of

Each capability in a C-list locates by

means of a pointer* some computing object, and indicates the actions

that the computation may perform with respect to that object. Among

these capabilities there are usually several segment capabilities, which

designate segments that may be referenced by the computation and also

give, by means of access indicators, and indication of the kind of

reference permitted.

x

R

XR

RW

XRW

executable as procedure including internal read
references for constants.

readable as data but not executable.

executable as procedure and readable as data.

readable and writable as data.

executable as procedure and readable and writable as data.

Other types of capability are also permitted in the C- list of a compu­

tation, and will be introduced as appropriate in the discussion. Every

capability contains an ownership indicator (0 for owned, N for not owned]

Computations have broad powers with respect to owned computing objects

through mechanisms to be described. In the case of an owned segment,

for example, a computation may delete the segment, and grant or deny

other computations access to the segment.

During the execution of a computation, capabilities will frequently

be added to and deleted from the C-list defining its sphere of protection

* We use the term ''pointer" here because of its familiarity to most workers. The permanent
representation of a pointer should not be a hardware address in the machine (main or auxilar3
storage) as it is essential that the entire naming structure be independent of physical device
addresses if reallocation of storage media is to be feasible. The authors suggest the
association of a unique code (called an effective name in ref. 13) with each computing entity
(segment, directory, e~which is assigned at the time the entity is created.

6

through the use of meta-instructions t.o be described in later sections.

The linear subscript of a capability within a C-list is called its index

number. It is through the use of the index number that the capability is

exercised by processes. For example, a segment is referenced by

giving the index number of the segment in a word name. We assume

that the allocation of these index numbers is carried out by the system

(i. e. , the supervisor program) during the execution of an object

computation.

PROCESSES We consider that the system hardware comprises

one or more processors, which we can identify as being distinct from

the main memory, the file storage devices and the input/ output devices.

Each processor is capable of executing algorithms that are specified by

sequences of instructions. A process is a locus of control within an

instruction sequence. That is, a process is that abstract entity which

moves through the instructions of a procedure as the procedure is

executed by a processor.

In a physical computer system a process is represented by the

information that must be loaded into a processor in order to continue

execution of the successive instructions encountered by the process.

We call this set of information the state word of the process, and note

that it must not only contain the accumulator words, index words, and

the word name of the next instruction to be executed, but must also

indicate the C-list applicable to the computation to which the process

belongs.

A process is said to be running if its state word is contained in a

processor which is running. A process is called ready if it could be

placed in execution by a processor if one were free. Running and ready

processes are said to be active. A process that is not active is

suspended, and is awaiting activation by an external event, such as the

completion of an i/ o function.

7

COMPUTATIONS Loosely speaking, a computation may be thought

of as a set of processes that are all working together harmoniously on

the same problem or job. More precisely, we define a computation to

be a set of processes having a common C-list such that all processes

using that same C-list are members of the same computation.

Notice that two processes having separate C-lists are always

members of separate computations, even though these C-lists might

describe the same set of capabilities. Notice also that there exist

one-to-one correspondences among computations, spheres of protection,

and C-lists; each computation operates within the restrictions of a

unique sphere of protection that is specified by a unique C-list. The

relationship among these entities is shown schematically in Fig. 1,

PRINCIPALS The ordinary notion of a user of an MCS is of an

individual who requests computing service from an MCS, or who inter­

acts with a time- shared MCS from a console. We generalize this

notion by defining the term principal to mean an individual or group of

individuals to whom charges are made for the expenditure of system

resources. In particular a principal is charged for resources con­

sumed by computations running on his behalf. A principal is also

charged for retention in the system of a set of computing entities

called retained objects, which may be program and data segments,

for example, The structure and identification of these retained objects

is discussed in a later paragraph.

We can clarify our notion of a principal by giving some examples.

Each individual user of the MAC time- sharing system acts as a principal

since he is able to utilize system resources to achieve any personal

goal, and is restricted only by an accounting of his expenditure of basic

resources. He may create, modify, and delete segments of procedures

and data solely according to his personal objectives. In the MAC system

we also find principals consisting of groups of individuals. Such a group

principal might be responsible for the maintenance of a system of

8

C-LIST

SEGMENT

SEGMENT
CAPABILITY

SEGMENT
SEGMENT
CAPABILITY

COMPUTATION

Figure 1. A Computation

9

.. ,,,i'

· c rt ci : J

_., Still a third

c:r:,2<: the c_cJrnn1un procedures of an extensive desi~n

.. :J it -Lri :-:..i1·iint.: in!orrnat1c:_i11 proces::.~11~ system, the a~cr~ts

::·c<ll· ;,s pri11'1pals, hut s[n-,11lv crJnu11unicate with a set of

io, , ,: · t"--- '.:1 •L na!)le tncrn tu pt:rfurrn well-defi. u interrogations ~·£

a. r-:1 i I!-"!' - CT\ l ''', :1 ~<:;:traLJy-storec: data ba.se. In ;;uch a system, a

pri: ip«l rnil'ttt consist of a tc<irn ol c,ystc~n r~lanncrs and programmers

r,0 :,,,,Jl_sciJ;,_ :· .;· t.i:t• ::sc:.:.ccss of a single aspect :Jf the systen1ts rnission.

:.':-_· ' "-'"-· c.I ,-.-;, : 1,uter support tor a manned oipace flight,

"'" : ;,1,- :·:·i_:, 'i·dls c,iulci be responsible fur diiferent aspects of the

rLi,_. '· :<: , - -- ,_,_,,_i.-!aLc c during p!·upulsion, tracking while in orbit, orbital

.. u1-i:p1.:.ta.t.:. •i lu~·dii..:.ctl data pr()Cf:~s111s, etc.

10

IV. THE SUPERVISOR

We use the term supervisor to denote the combination of hard­

ware and software elements that together implement a core of basic

computer system functions around which all computations performed

by the system are constructed. For present purposes we suppose that

the core of functions includes mechanisms for

1) allocation and scheduling of computing resources.

2) accounting for and controlling the use of computing resources.

3) implementing the meta-instructions.

We do not inquire in the present paper as to the internal workings of

the supervisor required to perform the above functions. Instead it is

our aim to point out the essential features of the interface between the

supervisor and user processes which operate in lower spheres of

protection. However, it is helpful to think in more concrete terms

about how the supervisor accomplishes some of its functions.

THE PROCESS LIST Specifically, let the process list be a

data structure within the supervisor, with an entry for each process

existing in the system. Entries are created in and removed from this

list by various meta-instructions and by other mechanisms that will

be described. Each entry can hold the state word of its corresponding

process, as well as accounting and scheduling information. As

mentioned before, each process is either running, ready, or suspended.

ALLOCATION AND SCHEDULING At any time segments of

information will be distributed among a hierachy of storage devices

{core, drum, disk, and tape, for example) with that information most

relevant to the on- going computation processes located in the more

accessible media. With each computation there is associated a set of

information to which it requires a high density {in time) of effective

reference. The membership of this working set of information varies

dynamically during the course of the computation. The supervisor's

problem is to decide how information {segments) should be distributed

in the storage hierachy and how the queue of active processes should

be disciplined to make most effective use of system resources in

accomplishing the MCS mission.

11

ACCOUNTING AND CONTROL We suppose the charges for the

expenditure of computation resources associated with the execution of

a process are assigned to the principal that was responsible for the

creation of the process. We also assume that each principal is given

an allotment of resources, and that appropriate action is taken by the

supervisor if this allotment is exceeded.

12

V. PARALLEL PROGRAMMING

BASIC PRIMITIVE OPERATIONS The basic primitive operation

of parallel programming is implemented by the meta-instruction

fork w;
14

as suggested by Conway where w is a word name. A fork meta-

instruction initiates a new process at the instruction labelled w. The

newly created branch process is part of the same computation as its

creator or main process, that is, it is associated with the same C-list.

A process that has completed a sequence of procedure steps is termi­

nated by the meta- instruction

quit;
after which the process no longer exists and its state word is discarded

from the process list. A set of primitives for parallel programming

must include a mechanism whereby one process may be continued just

when all of a certain set of processes have completed. All that is

required is a procedure step that will decrement a count and test for

zero. We use the instruction

join t, w;

which is essentially Conway's join instruction. Here t is the word

name of the count to be decremented and w is the word name of an

instruction word to be executed if the count becomes zero as indicated

in Fig. 2. It is essential that the three references to the count t not

be separated in time by references to t from other processes. This

requirement is indicated by the dashed box in the figure and is readily

achieved in practice by combining the two actions into one machine

instruction that is completed with a single reference to the count word.

In describing algorithms involving parallel processes, it is

convenient to declare certain quantities as private to a process. For

this purpose the declaration

private x;

means that the quantity named x is to exist only so long as the

process executing the declaration exists; that is, private data is lost

when a process quits. At a fork the values of any quantities declared

private to the main process are assigned as values of corresponding

13

1-------1

I I
I T:=T-1 I

T
0

I
I

:FO I
L ___ ____ _J

Figure Z. The join Procedure Step

GOm W

quantities of the branch process. In practice, the state word of a

process is the natural representation of private data. If there is more

data declared private than can be represented in the state word, the

system must create a segment for private data which is copied at each

fork and lost upon reaching a quit.

LOCKOUT A provision whereby two processes may negotiate

access to common data is a necessary feature of an MCS. Suppose a

certain data object (which might be a word, an array, a list structure,

a portion or all of a segment) may be updated asynchronously by several

processes, which are perhaps members of different computations. Up­

dating a data structure frequently requires a sequence of operations

such that intermediate states of the data are inconsistent and would

lead to erroneous computation if interpreted by another process.

The lockout feature proposed here presumes that all computations

requiring access to the data object are well behaved. If it is desired

to protect the data object from destructive manipulation by an untrust­

worthy computation, routines with protected entry points as described

later in this paper must be employed.

We associate with the data object a one-bit lock indicator that

is accessible to all processes requiring use of the data object. Two

meta-instructions are introduced that operate on the lock indicator w.

lock w;

The effect of the lock meta- instruction is given in Fig. 3a. The lock

bit is set to one just when the data object has been found unlocked by

all other processes. Again, as indicated by the dashed box, the two

references to w must not be separated-by references to w fro.n

other processes. The meta-instruction

unlock w;

resets the lock indicator to zero as in Fig. 3b.

15

a)

b)

,--- ----,
>----I _ _, w >--1 _I __

0

W: • 1

I
I
I
I

I I L ______ J

t>------1 w:. 0 .,..._ __ t> ----

Figure 3. Lock and unlock Meta-Instructions

16

lock w;

unlock v.;

update a sequence for data object associated
with lock indicator w •

~'- pra::tictc. tl:e execution time of a typical update sequence is

ite o:;wali d!:'.i the chance that a process will hang up on a lock

!,sfru~.ti'.)i·: will be very low. However, a process may be removed

' (xec0L_~, ·; if a J-Yr<.Jces sor is preempted by a higher-priority

· ;-· ~.:c.:.tation. Thus, a data object could rerY:ain locked for a sub-

1d1al time i; such preemption occurred between a lock/unlock pair.

··1,"e' ha~gup ut other processes interrogating that lock indicator could

;:,,~ i1ighly probable. A solution to this problem is to inhibit inter­

~'1prion oi a process between execution of a lock and execution of the

c1owin:oi unlock. Of course, this requires that a time limit be set on

,Le separation of lock/unlock pairs.

AN EXAMPLE An elementary example of parallel programming

thdt illustrates the use of these meta- rnstructions is the following

program that evaluatec: that dot product of two vectors A and B

uegin reala.rray A~l:r;.:

Boolean•,;,,; real S;

private integer i;

: = n;

H l 1:r"I ·

integer t;

for i := l step 1 until i > n do

fork e;

quit;

17

e: begin real X;

substance: X : = A[i J X B [i J

lock w;

S : = S + X;

unlock w;

joint, r;

quit;

end;

r:

end;

Obviously, this computation is too trivial for parallel programming to

be of practical interest. If the algorithm expressed by the statement

labelled "substance", instead of being a simple multiplication, involved

the operation of a large, complex system of procedures (e.g., the

compilation of a segment of procedure), the notation of parallel pro­

cessing as used above would allow several instances of that algorithm

to be in simultaneous execution, thus more effectively utilizing the

presence of its procedure information in main memory.

INPUT/OUTPUT A basic power of computations in an MCS is

the ability to communicate with peripheral (input/ output) devices. Two

classes of communication have evolved in terms of implementation in

present day computer systems. In the simpler class a process requests

the transmission of a unit of information (word or fraction of a word)

to or from a peripheral device and waits in _suspended status until the

information is transmitted before continuing. (A processor, as

contrasted with the process, may be executing other processes during

the wait interval, however.) This form of implementation is appropriate

for low data-rate situations, and also where a close interaction between

the computation and the peripheral devices is required (e.g., quick

response to brief inquiries from a remote console).

18

In the second form of input/ output operation, a sequence of

interactions between memory (i.e., a segment) and the peripheral

device occurs in response to an initiation signal from a process. The

process remains suspended until all interactions between memory and

the peripheral device have been completed.

In either case a principal characteristic of the input/ output

operation is the elapse of time between initiation and completion. This

input/ output wait is generally long compared with the instruction

execution time of a typical central processing unit. For our purposes

we will not distinguish further between these two lorms of input/ output

operations, and will call both by the term i/ o function.

Since peripheral devices are part of the physical resources of a

computer system, the use of i/ o functions must be restricted to

computations authorized to do so. It is natural to consider an i/ o

function as representing another class of capability that may be entered

in the C-list that defines a sphere of protection. This capability is

then exercised by the meta-instruction

execute i/ o function i;

where i is the index number of an i/ o function capability in the C- list

of the computation. Performance of this procedure step by a process

causes initiation of the i/ o function represented by the ith entry of the

C-list. The process then becomes suspended and remains so until the

i/ o function has completed. It then becomes active again to perform

subsequent procedure steps.

Particular stress has recently been placed on ability to specify

computations that may compute in parallel with input/ output operations.

Within the scheme presented here, this goal is easily achieved through

the execution of fork meta-instructions prior to the execution of i/ o

functions.

MOTIVATION FOR PARALLELISM The motivation for encourag­

ing the use of parallelism in a computation is not so much to make a

particular computation run more efficiently as it is to relax constraints

19

on the order in which parts of a computation are carried out. A multi­

program scheduling algorithm should then be able to take advantage of

this extra freedom to allocate system resources with greater efficien•':'.'···

Moreover, the notation of parallel programming is a natural way

of expressing certain frequently occurring operations of computations

running in an MCS. Suppose, for example, we wish to program a

computation to receive messages from any of a number of user consoles,

where the messages are to arrive in some unknown and arbitrary order,

and it is not known whether some consoles will ever send messages.

Let listen(i, j) be an integer procedure that waits for a message to be

received f-rom console i and writes the message in the segment

with index number j. The value of listen is set to the number of

symbols in the message. Let analyze(i, j, n) be a procedure which

scans a message of n symbols received from console i and

written in segment j , and takes whatever action is necessary in

response to the content of the message. Then the message- receiving

computation described above may be programmed as follows.

begin private integer i;

for l step i until i > n do

fork e;

quit;

e: begin integer j, n·
'

= create segment RW;

n = listen(i, j);

analyze (i, j, n);

quit;

end;

end;

The create segment meta-instruction introduces a segment

capability into the C-list of a computation and is discussed in a

following section.

20

.It is useful to think oi a computatio1,'s <>];here u: protec·1o;i as

ha,·ing been established bv another comp~;tation, that is, by the aCLlr'i1

0£ a process operating within another sphere of protection. A n1a 1 or

~easor, icir taLing t.h:5 · .. ;c:·;v 0:,Jncer;"s tt1.e debugging of programs ii'l

"''):"~" i:·r··i2Ja:·:·;!11i .. ·.2 1a.r:~LLc2.c· .'>\ • ':'r ,J'LS). i'owever, other uses of

this concep! a-::e aJso ;io~s1;:J1t-:'.

:r: <:•:nnection \vi:'.. ;::-o;.:ra:r testirs •debugging), suppose that the

; :'·~St' Dcocesses must have

<.C•.<.3'i "_; i:i..:.- ·). U1e 1.:::>·~ · .., c:.~r,1-'-'Lnb'. c..d)_1ects pertinent to the progran1

·;•;<ler test, as weu d.~ tu vie procedure segrncnts of the PLS. Since

the program under test is lli<eiv LJ be 1aultv, it is desirable to protect

1.)oth the !lSer's permanent Objects, and auy objects created by the PLS

•r: his oehalf frorn ur1intentional use or destruction by the procedure

c ir:.g debuggeci.

INFERIOR SPHERES To allow the processes under test to be

-·perated within a sphere of protection distinct from the one effective

·or the PLS, we define several n1eta-instructions.

i : = create sphere w; Append an owned inferior sphere

capability to the C- list with index

number i . The word name w

is the return point for exceptional

conditions, as explained later.

The pr:cess executing this meta-instruction operates in a sphere

we cal; the superior of the created sphere. Once in possession of an

inferior sphere capability (Fig. 4), a process may grant some of its

capabilities to the inferior sphere by the following rr1eta-instruction.

2 1

C-LIST

INFERIOR
SPHERE
CAPABILITY

SEGM!NT
CAPABILITY

.-----
/ " \

I --~ \
\ /'-' I ', / -- ----­SUPERIOR COMPUTATION

----....
/ '
/~\
\ J

" I ' / ------INFERIOR COMPUTATION

SEGMENT

Figure 4. Control of an Inferior Computation

i . - grant

x

R

XR

RW

XRW

j, k; Grant capability j to in­

ferior sphere k with in­

dex number i . Here j

and k are index numbers

in the current C- list, and i

is an index number in the

inferior C-list.

The granted capability is entered in the C-list of inferior sphere k

and may be a segment capability, i/ o function capability, entry capa­

bility, or directory capability. Entry and directory capabilities are

discussed in later paragraphs. The braces mean that one of the strings

within them must be selected to form part of the meta-instruction.

Here >.. stands for the null string. The string O indicates that the

inferior sphere is to have ownership powers with respect to the granted

capability. The other strings can be used only if j is the index

number of a segment capability. In this case the capability is passed

down with restricted access authority. For example,

i : = grant X j, k;

grants authority to execute the segment but not to read it, write it, or

exercise ownership of it. The grant meta-instruction cannot be used

to pass a capability that is not implied by a capability present in the

higher sphere.

start i, w; Initiate a process at instruction word

name w within inferior sphere i .

The new process commences with no private data, that is, a zero state

word except for the instruction word name w .

EXCEPTIONAL CONDITIONS Next we ask what should happen

if a process operating in an inferior sphere encounters an exceptional

condition, that is, a procedure step requiring intervention by a higher

level before the object process may continue in a sensible manner.

23

:orne exct>ptional cc:.ndiLo;"s call for action b:. the supervisor. These

: 'lC ludc;

1) Fault.

A memory parity error is a good example. '}'he supervisor 1s

responsible for correct operation of processor and rr1ernory units.

2) Resource excess. A resource excess occurs if a process

invokes resources in an arnount exceen~ng the allotment to the principa.

responsible for its computation.

3) Addressing snag. An addresain2 sna2 c<:CU"S when a p:roces;:;

'-'enerates a valid address, nut the des·re-·J it't•:rr~.-.ttion ;5 ":ithE'r not .r

;;,upcrv1sor must n1ovc the <1Psired ;:·J·;: --,,~._". :_r

. de storage and set i.:1-' the ne• es s;:; r 1 · , f

Othc r exceptional c or:cii tio ns s

computation of the process in trouoL:. __;,n-:e -.JT,\ the prucedt·:·es whic·n

::stablished the process know how ttiesc .ondit1ons should be 111terpretec:

These exceptional conditions are:

1) Sphere violation. A sphere viu .. :i.:~ .. '- •ccurs if a pr•_,,_ess re!<..:t~

to a capability that does not exist in t:E: C- ;i,.,t. .•£ its corr.putation, 1;,r

makes invalid use of a capability (atten.~Jts t:J write in a segmE·Y:t i -

\vhich only the execution capability 1s at..~borized, L,Jr e:xan1plc :. ~\

sphere \·1olation also takes place if a refer~:ncc is rnc,Cl<.. .)cyu::d tr:l:

limits of a segment.

2) Halt instruction. A halt means "terminate this process and

notify superior'' as contrasted with quit which n1eans 11 terrninate this

process and forget it. "

3) Breakpoint instruction. A breakpoint is substituted for other
)

instructions by a debugging progran1 in order to conduct a

breakpoint analysis of a program under test, A breakpoint has the

same effect as halt except that a different indication is presented to

the superior procedure.

4) Undefined instruction. A processor generates this condition

when it is called upon to execute an undefined operation code.

5) Arithmetic contingencies. Such events as "divide check" call

for action by a superior procedure when not explicitly handled by the

inferior computation,

In any of these events, the process in which the exceptional

condition occurred becomes suspended, and a new process is initiated

in the superior sphere at the instruction word specified when the

inferior sphere was created. The new process starts with two pieces

of private data: a number indicating the reason for the interruption,

and an index number of an owned suspended process capability that is

appended to the C-list of the superior sphere at the time of interruption.

This capability allows the superior computation to have access to the

state word of the process in which the exceptional condition occurred.

The following meta-instructions are defined with respect to a

suspended process capability.

fetch status i, w;

set status i, w;

continue i;

Fetch the state word of suspended

process i and write at word name w.

Set the state word of suspended pro­

cess i according to information at

word name w.

Reactivate suspended process i and

delete from the C- list.

Notice that the set status meta-instruction must disallow a change in

certain critical parts of the state word of the suspended process. For

example, the superior sphere must not be able to cause the state word

of the suspended process to point to a different C-list.

25

A debugging procedure needs primitive commands which allow

it to "pick up the pieces" after a computation under test has mal­

functioned, The following meta-instructions are useful under these

circumstances,

stop k; Suspend all processes operating in

inferior sphere k .

Execution of this meta-instruction causes each active process in

inferior sphere k to be suspended. Corresponding to each inferior

process a suspended process capability is created in the C-list of the

superior sphere, Also, a process in the superior sphere is initiated

to correspond to each inferior process, just as though the inferior

process had encountered an exceptional condition.

Capability j in the C-list of inferior sphere i can be

examined by the meta- instruction

examine i~ j, w;

The information contained in the capability is copied into several

words starting at word name w •

H the inferior computation has clogged its C-list with unneeded

capabilities, the superior computation can remove them with

ungrant i, j;

which erases capability j from the C-list of inferior sphere i .

26

VII. PROTECTED ENTRY POINTS

An important class of situations arises when a peripheral device

is operated or a data object is manipulated on behalf of several con­

current computations. Examples of this situation are:

1) A control routine for transferring messages between user

computations and remote terminals of a given class.

Frequently, a system of remote terminals is coupled to a central

processing system through a single i/ o function (rather than one per

terminal device).

2) A routine which updates a data base and may be called

asynchronously by many separate user computations.

The planning of such a routine':' requires that calling computations be

protected from each other. IT A and B are two computations

using the routine S , it must not be possible for a malfunction of A's

processes to cause incorrect execution of B's procedures. Clearly,

neither A nor B should be able to modify the common data D

used by S • Furthermore, A and B must be forced to initiate

operation of S at a proper entry point, for erroneous transfer of

control to an arbitrary instruction of S is likely to cause meaning­

less modification of the common data D • However, if D is to be

written by S , then the processes executing S must have in their

C-lists the capability to write in segment D as well as the capa­

bility to execute any instruction of S •

It follows that a modification or change of C-list must accompany

transfer of control to S • A mechanism for accomplishing such

restricted use of a procedure we call a protected entry point.

The mechanism we describe supposes that a process calling the

protected procedure executes it in a distinct sphere of protection R

returning to the original sphere of protection A upon completion.

The change of association of process with C-list implied here is

* Introduced as a "protected service routine" in ref. 4.

27

accomplished by the enter meta-instruction which requires an addition­

al capability, the entry. An entry capability is created by the owner

of a protected procedure through the use of the meta-instruction

h . - create entry w, n;

where h is the index number in the creator's C-list of the created

capability. Here w is the word name [i, a] , and i must be the

index number in the creator's C-list of an owned procedure segment.

The entry capability thus created authorizes calls to be made to the

word names [i, a] through [i, a+ n l inclusive. Also included in the

entry capability is a pointer to the C-list of the creating computation.

Once created, the entry capability can be copied into the C- lists of

other computations, using mechanisms to be described.

The entry to and exit from a protected procedure is depicted

schematically in Fig. 5. To enter a protected procedure a process

gives

enter j, r, k;

where j is the index number of an entry capability. The calling

process is suspended, and a new process is created. The C-list of

this new process will be the C- list specified by the entry, with the

addition of two new capabilities. One is a suspended process capa­

bility pointing to the state word of the calling process, and the other

is a duplicate of the capability having index k in the caller's C-list.

The index numbers of these capabilities are reported as private data

in the state word of the new process. The new process is set to

begin execution at word name [i, a+ r] , where i and a are

quantities specified in the entry, as mentioned above. Notice that i

is an index number with respect to the new C-list, not that of the

caller, and also that r must satisfy

05rSn

where n is also specified in the entry. The remainder of the new

state word is set equal to the corresponding parts of the caller's

suspended state word. Finally the new process is made active. The

protected procedure thus given control can use the fetch status, set
status, and continue meta-instructions to communicate with the

Z8

PROCESS LIST

PROCESS
ENTRY

SUPERVISOR
---+---

C-LIST SPHERE A SPHERE R

ENTRY,
CAPABILITY

\

ENTER

CONTINUE

Figure 5. Entry to and Exit from a Protected Procedure

29

,,_,

p_:_- idte~

l ' i;: ',f[• -t.-·

[, ' ~l ' ' 't ,,
il ; ... ,,

' '~ ·:, r c ;:. pa~:· 1 I i 1

L1...i.! (r.i_', ~' ; i ; :; (-; ' l . c a l ' l \ ;:1 l : "
\ -1 ~) j '. :· i ii t. ~: (Jit··~·cL._·,r··
___ ..i.._ ____ _

(_- () i! '-.; i. :-; t ~ entt~1· j

i 1: ::-: t l u \~ '. : ,) t'

VIII. DIRECTORIES AND NAMING

Until now, we have been discussing those aspects of an MCS

that deal with the active performance of computing tasks for the

benefit of the system's users. Now consider the fact that in most

MCS' s, even if no active computing is taking place, each principal

of the system is still represented passively in the system by a set

of retained objects. Every retained object is either a segment, an

i/ o function, an entry, or a directory. Here we are letting the

segment play a role which has been ascribed to something called a

file in many MCS's, particularly in the MAC system. In the present

formulation, a file is simply a long- lived segment.

SHARING OF RETAINED OBJECTS The possibility of rapidly

and automatically controlling the sharing among principals of retained

objects, chiefly procedure and data segments, is one of the main

characteristics that distinguishes the MCS from other types of com­

puting systems
3

. The importance of sharing is testified to by the

fact that the file manipulating machinery of the MAC system has

recently undergone a major revision, motivated in part by a desire

f ·1· h h . 15 • to ac1 itate sue s anng

Besides being useful to individual users who wish to borrow

each other's routines, a sharing mechanism is also useful to a group

of users who wish to reference certain segments in common. Such

segments might be a set of library routines, or a set of procedures

making up a programming language system. It is natural to think of

these segments as being owned by a principal associated with the

group of users as a whole. A mechanism (such as the one to be

described} is required for permitting an individual user to gain access

to the directory of the group principal.

DESIDERATA FOR NAMES Through the capabilities in their

C-lists, computations can, among other things, manipulate retained

objects. In performing these manipulations, the processes of a

computation must specify information that unambiguously

31

distinguishes each object of interest from all other retained objects

in the computing system. Such information constitutes the name of

the ob.1ect.

Retained obJeCts are created and deleted arbitrarily, and any

particular object may remain in existence for an arbitrarily long

tin1e. There are two reasons why the name of an object can never

be changed by the sy sten1 throughout the object 1s entire existence.

First, if a name is changed, then all usages of that name that are

imbedded in other ob_iects (e.g. segments) within the system must

be updated. This alternative may be dismissed as being entirely

impractical ir. a large MCS. The second reason why the system must

leave all names unchanged is that every retained object is frequently

referred to directly by people. People are used to thinking in terms

of invariant names; to find that yesterday's "X'' is suddenly today's

"Y'' would be disconcerting.

Another requirement which human usage places on the names

of objects is that they should be alphanumeric and have mnemonic

significance. Each principal should be able to choose freely the

names by which he will identify the objects he retains, without regard

to the choices of names made by other principals.

AMBIGCOUS l'\M1ES If the names of two different objects ha\·e

been freely chosen by two different principals, those names may

possibly be identical. When this common string of characters is

generated subsequently by a process, the computer system will not

be able to determine which of the objects is being designated.

a string of characters is said to form an ambiguous name.

Such

The problem of ambiguous names also manifests itself in more

traditional, non-multiprogrammed computing environn1ents when

groups of independently written subprograms are to be combined into

one large program. One author has called for "an orderly corpus of
16

symbology 11 designed to prevent name conflicts before they occur

Others have offered a solution based on the loading-time definition of
17

each subprogram 1s symbolic interface with its environment

3Z

The most straightforward way of eliminating the possibility of

name ambiguities within an MCS is to restrict each principal in his

choice of names; a principal can be required to begin every one of

the names of his objects with a string of characters that constitutes

his principal name. The remainder of the name of an object, its

chosen name, may then be freely selected by the principal retaining

the object. This method of preventing name conflicts has been
18

employed in the MAC time- sharing system

FALSE NAMES In order to conserve storage, it is reasonable

to embed within a procedure segment only the chosen names of the

objects being referenced, with the understanding that the computer

system can supply the principal name because it knows which principal

initiated the process that is executing the procedure segment. Even

if a principal has a complex program consisting of many procedure

segments, each containing references to the others, the above

scheme still insures that when the author. principal operates the

program the system will always supply the correct principal name

to augment the chosen names embedded within the segments.

A serious problem arises, however, if this program is shared

with a second principal and this principal attempts to execute the

program. Intersegment references will evoke the name of the second

principal, rather than that of the author. The names thus formed

will be false names, because they will designate objects that are

very different from those intended by the author. Such names will

often designate no existing object at all, but occassionally they may

designate objects of the second principal that are unrelated to the

borrowed program.

PREVIEW The problem arises of simultaneously realizing

the following four goals: (1) to avoid the creation of ambiguous

names, (2) to provide reasonable freedom for a principal to choose

some portion of the names of his objects, (3) to allow intersegment

references to consist of parts of names rather than full names, and

(4) to permit sets of objects to be shared without invalidating internal

references.

The solution we propose stipulates that each reference to an

object be derived from a partial name relative to some directory of

objects, together with the index number of a capability pointing to

that directory. Moreover, we allow the directories of the system to

be organized into a hierarchical structure, as suggested by Daley

and Neumann
19

This approach has two major advantages:

(1) A whole subhierarchy of objects can be communicated

among several computations or principals by passing a

single pointer to the head directory of the subhierarchy.

(2) It is easy to design the MCS so that programs can be

shared without the possibility that false names will be

generated by their execution.

In the following paragraphs we define the proposed naming

structure and introduce the meta- instructions necessary for compu­

ting within its framework.

DIRECTORIES A directory is a set of items, each being an

association between a name component and a capability which points

to a segment, ii o function, entry or another directory. Recall that

each capability includes an ownership indicator (0 for owned, N for

not owned), and that a segment capability includes an indication

(R, W, X or a combination) of the type of reference permitted. Each

item of a directory also contains an access indicator (p for private,

F for free). The interpretation of these indicators in directories is

explained below.

Associated with each principal is exactly one directory called

a root directory, which stands at the head of a hierarchy of the

principal1 s retained objects. We allow perhaps many items to point

to the same object, and in consequence, an object may be accessible

through the directory structure from different root directories.

34

OWNERSHIP A principal always ~his root directory.

Otherwise, an object is owned by a principal just if that principal

owns a directory in which there exists an item with an 0 indicator

that points to the object. Thus, a principal owns an object if and

only if there is a path through the directory tree from his own root

directory to the object such that each node of the path contains an

0 indicator.

When the supervisor creates a computation on behalf of a

principal, it always places in the C-list of such a computation a

directory capability with an 0 indicator that points to the principal' s

root directory. The principal is then said to~ this computation

and each of its processes. These processes are then permitted to

exercise powers of ownership with respect to objects owned by the

principal.

USING THE DIRECTORY STRUCTURE The powers of a

computation with respect to tne directory structure are embodied in

meta-instructions as follows. We suppose that any process has at

least one entry in its C-list giving it a directory capability.

j acquire

x
R

XR

RW

XRW

i, < name component >

Here i is the index number of a directory capability. This

directory is searched for an association with< name component>,

the corresponding capability is entered into the C- list of the compu­

tation to which the running process belongs, and its index number is

reported as j . Capability j is tagged 0 if and only if directory i

is tagged 0 in the C-list, and the capability being loaded is tagged 0

in directory i . A sphere violation results if the capability

35

referenced is tagged P in the directory item and directory capability

i is not owned (i.e. contains an N indicator). In the case of a

segment, the type of reference permitted may be changed from that

permitted in the directory item, but an attempt to enlarge the class

of reference permitted to a non owned segment is also deemed a

sphere violation.

release i;

Remove the capability with index number i from the C-list of the

running process.

Ownership of an object implies the ability to modify it, delete

it, and grant access to the ob.1ect by other principals.

place
p

F
i, <name component>, j;

Here i must be the index number of an owned directory capability.

An item is inserted in directory i associating the capability having

index number with< name component>.

remove i, < name component >

The item associated with< name component> in owned directory i

is removed from the directory.

CREATION AND DELETION OF RETAINED OBJECTS Segments,

entries, and directories can corne into existence upon execution of

the following meta-instructions.

x

R

segment XR

= create

entry w, n:

directory

36

RW

XRW

A capability pointing to the created object is entered into the C- list of

the process with an 0 indicator, and its index number is reported

as i • Note that a name is not associated with the object at the time

of its creation, but only when an entry is made for it in some directory

by means of a place meta-instruction.

This illustrates the point that names are a convenience for

principals. Different names may be convenient for different principals,

and no name need be assigned unless a principal may need to select

that object from the directory structure at a later time. Thus, for

example, segments may be created by computations for temporary

storage purposes without affecting the directory structure.

The owner of a segment, entry, or directory can cause it to

cease to exist by using the following meta-instruction.

delete i, < name component >;

The owned object pointed to by the capability associated with< name

component> in directory i is deleted so that it has no further

existence. Any attempts to exercise capabilities pointing to a

deleted object are treated as sphere violations.

The release and remove meta-instructions differ from delete

in that the former meta-instructions simply remove capabilities

from C-lists and items from directories, respectively, while the

object itself continues its existence if there are other capabilities

and items pointing to it.

We suppose then that the existence of a segment, entry, or

directory extends from its time of creation until either specifically

delete'ed by its owner~ until release'ed from all C-lists and

remove' ed from all directories. This convention yields the

possibility of having a retained object with no owner. This seems

quite reasonable because the following situation may occur frequently.

An obsolete subroutine segment S is remove'ed from the directories

of a library principal L but remains in use by principals A, B, and

37

C. The segment was previously owned by L, but now has no owner.

The existence of S continues just until A, B, and C have abandoned

use of it. Since we assume there can be no more than one owner of

an object, the only alternatives are to assign ownership to one of

A, B, or C (but how do we choose?), or to generate separate copies

of S for each sharing principal.

THE STRUCTURE OF NAMES Since every computation

initially has in its C- list at least one root directory capability, it is

clear that by giving a series of acquire's, a computation can make

its way through the directory structure along any path, as long as

it knows the correct series of name components to use. A series of

name components leading from a directory to an object is called the

partial name of the object with respect to that directory.

Because of the structure of the directories, an object can

have many names, as well as many partial names with respect to

any directory. For example, the directory structure in Fig. 6

shows a particular segment, owned by the principal FORTRAN,

which has the following names.

FORTRAN, MATRIX, MULTIPLY

DENNIS, EXPERIMENT, SUBROUTINES, MATMULT

DENNIS, CIRCUITTHEORY, MAXPROD

VANHORN, DENNISEXP, SUBROUTINES, MATMULT

Notice that the item named DENNISEXP within the root directory

VANHORN points to the directory whose full name is DENNIS,

EXPERIMENT.

SHARING MECHANISMS Two mechanisms to allow the sharing

of retained objects are described here. One mechanism gives

blanket authority to all computations within the system to acquire

the shared object. The other mechanism allows the owner of an

object to specifically authorize each instance of its sharing.

38

UJ

'°

FORTRAN

0 1·\
MATRIX

,/

/

DENN IS

•

I~ VANHORN g" •
N EXPERIMENT N /'

CIRCUIT,HEORY ~ / DENNISEXP"

• •
N I ~UBROUT~S~
MAXPROD ,t1 : "'\

MULTI PL y I ~ /,.,
~ MATMULT ,

0/
SEGMENT

Figure 6. A Directory Structure

The meta-instruction

i : = link <principal name > ;

inserts into the C-list at index i a non-owned directory capability

pointing to the root directory named< principal name>. Using the

acquire meta-instruction, a computation can thus gain access to any

object in the directory structure of any principal, provided that the

directory items leading from the principal directory to the object all

contain F indicators.

Any more selective sharing mechanism requires an explicit

interaction between the borrower and the lender. We propose that the

shared capability be passed between the C-lists of two computations

that interact via the enter meta-instruction.

A typical interaction might proceed as follows. The lender

first creates a free entry capability in one of its directories. The

borrower then uses link and acquire to place this entry capability in

its C-list. The borrower next creates a special entity in its C-list,

called a receiver, by means of the meta-instruction

i : = receive;

Finally the borrower exercises the entry obtained from the lender by

using enter. Parameters passed as private data provide to the lender

the index i of the receiver in the borrower's C-list, as well as

information identifying the capability desired to be borrowed.

The lender is thus given control, and proceeds to verify the right

of the borrower to obtain the capability requested. In particular, the

lender may wish to verify that the borrower computation is in fact

owned by a certain principal. For this purpose the lender uses the

meta- instruction

s : = owner j;

where j is the index in the lender's C-list of the suspended process

capability generated by the enter operation, and s is a string giving

the principal name of the owner of the suspended process.

40

Having completed its verification, the lender then acquire's into

its own C-list the owned capability it wishes to transmit. If this capa­

bility has index k , the meta- instruction

transmit j, i, k;

replaces receiver i in the C-list of suspended process j with the

owned capability k , giving it an N tag.

Having modified the borrower's C-list, the lender then returns

control to the borrower with continue. At this point the loan is com­

plete; the borrower may now exercise the capability and place it in one

of his own directories.

AN EXAMPLE - USING A PROGRAMMING SYSTEM Suppose a

user wishes to use a programming system (PS). The retained ob­

jects (procedure segments, directories, entries, etc.,) of PS are

on file in the hierarchical organization already outlined (Fig. 7a).

The user has his objects organized in a private hierarchy (Fig. 7b).

If the use of PS is only desired for one user then it is appropriate

for an owned item in the user's directory structure to point to the

directory structure of PS. If it is desired to make PS available to

many or all principals at an installation, it is appropriate to place

the directory hierarchy of PS under a principal of its own or as a

subhierarchy within the domain of a common programming system

principal. In either case, a computation for a user involving retained

objects, both of his own and of the PS, would be carried out in the

following manner:

1) The user initiates a process which acquires access capa­

bilities for the two hierarchies of directories - one for

his own files and one for PS- by executing the necessary

sequence of meta-instructions. Suppose these capabilities

have index numbers i and j respectively.

2) PS is called with i and j as parameters. PS does

all addressing within the directory structure relative to the

roots of their trees represented by entries i and j

of the C-list (Fig. 7).

41

,Jc.
rv

b)

DIRECTORIES

OF USER

c) C-LIST

--- ~I --- J _j
- - DIRECTORY I I

Fi,~ urt.~ ~I.

a) -----1 DIRECTORY

DIRECTORIES
OF PS

l;sing a 1-)r 1)~,ran11ning Sy:-;tl'n1

J
~

ACKNOWLEDGEMENT

\'{e are indebted to Project MAC and the Compatible Time­

Sharing Svste1n for the opportunity to make observations that have

moti\·atect rn;1ch of the content of this paper. Our notion of tht,

capability list sterns from the "program reference table" idea first

used in the Burroughs 135000 system. The value of duplicating

private data at a fork was pointed out by H. Witsenhausen in an

;in pub !is hed rnern orandurn.

REFERENCES

1. Desrnoncle, W. H., Real-Time Data Processing Systen1s: Intro­

ductory Concepts, Prentice-Hall, Englewood Cliffs, N. J., 1964

2. Harnlin, J. E., ''A General Description of the 2\l"ational Aeronautics

<crnd Space Administration Rcal-Tirne Con1puting Complex,"

Proceedings of the 19th '.'Jational Conference, AZ. Z-l to AZ. Z-22,

Association for Computing .\1.achinery, New York, 1964

3. Fano, R. M., "The .'v1AC system: The Computer Utility Approach,''

IEEE Spectrum (January 1965), pp. 56-64

4. Dennis, J. R., and E. Glaser, "The structure of On-Line Informa­

tion Processing Sy.sterns,'' Information Systen1s Sciences: Proceed­

ings of the Second Congress, 1-11, Spartan Books, Baltimore, 1965

h. Iliffe, J. K., and J. G. Jodeit, 11 A Dynamic Storage A11ocation

Scht:mc,11 The Computer Journal (October 1962), pp. ZOO-Z09

6. Greenfield, .'vl. N., "Y/\CT Segmentation,'' AFIPS Conference

Proceedings 21, Spartan I3ook;;, Baltimore, l 9GZ, po. 307- 315

7. Holt, A. \V., ''Program Organization and Record Keeping for

Dvnamic Storage Allocation. Communications of the ACl\!1

(October 1961), pu. 4ZZ-431

8. Dennis, J. B., "Segn1cntation and the Design of 1V1ultiprograrnrned

Computer Systems,'' Journal of the AC.\1 (October 196S), \'iaverly

Press, Daltirnore, pp. 58C)-60Z

9. Claser, E., J. Coulcur a.nd C. Oliver, ''System Design of a

Con1puter for Tirne -Sharing Applications,'' AFIPS Conie rence

Proceedings 27, Soartan Dooks, Baltimore, 1965, pp. 197-Z03

44

10. Forgie, J. W., "A Time- and Memory-Sharing Executive Program

for Quick-Response, On-Line Applications," AFIPS Conference

Proceedings 27, Spartan Books, Baltimore, 1965, pp. 599-611

11. Comfort, W. T. , "A Computing System Design for User Service,"

AFIPS Conference Proceedings 27, Spartan Books, Baltimore, 1965,

pp. 619-62.6

12. McCullough, J. D., K. H. Speierman, and F. W. Zurcher,

"A Design for a Multiple User Multiprocessing System," AFIPS

Conference Proceedings 27, Spartan Books, Baltimore, 1965,

pp. 611-619

13. Dennis, J. B., Program Structure in a Multi-access Computer,

Project MAC, Technical Report MAC-TR-11, M. I. T. , Cambridge,

Mass., 1964

14. Conway, M., "A Multiprocessor System Design," AFIPS Conference

Proceedings 24, Spartan Books, Baltimore, 1963, pp. 139-146

15. The Compatible Time-Sharing System: A Programmer's Guide,

Crisman, P. (editor), second edition, M. I. T. Press, Cambridge,

Mass., 1965, Section AD. 2

16. Hosier, W. A., "Pitsfalls and Safeguards in Real-Time Digital

Systems with Emphasis on Programming," IRE Transactions on

Engineering Management, EM-8 (June 1961), pp. 99-115

17. McCarthy, J., F. J. Corbato, and M. M. Daggett, "The Linking

Segment Subprogram Language and Linking Loader." Communications

of the ACM (July 1963), pp. 391-395

18. The Compatible Time-Sharing System: A Programmer's Guide,

M.I. T. Computation Center Staff, first edition, M.I. T. Press,

Cambridge, Mass., 1963

45

: .. :t..' ; .. I j" ,- J l l' f > c: .l l; _;

i j: ':.1.

CS-TR Scanning Project
Document Control Form

Report# L&s-Jfl.-J..3

Date : /J...1 JJ 1~s

Each of the following should be identified by a checkmark:
Originating Department:

D Artificial lntellegence Laboratory (Al)
~Laboratory for Computer Science (LCS)

Document Type:

X Technical Report (TR) D Technical Memo (TM)

D Other:
-~~~-~~-~--

Document Information Number of pages: si(S'i-if"IAC~J
Not to include DOD forms, printer lntstructions, etc ... original pages only.

Originals are:

D Single-sided or

~Double-sided
Print type:
0 Typewriter D Offset Press

Intended to be printed as :

D Single-sided or

)'2(Double-sided

D Laser Print

D Ink.Jet Printer)i_ Unknown D Other: ______ _

Check each if included with document:

.)8., DOD Form

D Spine

)a. Funding Agent FoilTI

D Printers Notes

~CoverPage
D Photo negatives

D Other: ------------
Page Data:

Blank Pages(byP11119llUlftbM): roLLuw\NcL TllLA ff\.Gk

Photographsff onal Material (by119 number): ________ _

Other < .. ._...,,,.,.. numbelj:

Description : Page Number:

zlnAGE'. [l)A<f! (1 -S"~)<AN#~o T;rt5d--8U,¥Vk FAG=$\\ l-iVJ

Scanning Agent Signoff:

Date Received: /)_ 1_J 1_1..1.X Date Scanned: _1_1 lo I 9 6 Date Returned: _}_1.!.!_1 q {;
'"'
~(L.J~

Scanning Agent Signature: ___ ~...;..__;;.....;......;;;.....;;..i.__IV_~~....__-

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DAT A - R&D
(Security claesUicatlon ol tllle, body of abstract and lndexinQ annotation mu et be entered when the overall report i a classified)

1. ORIGINATING ACTIVITY (Corporate author) 2a. REPORT SECURITY CLASSIFICATION

Massachusetts Institute of Technology UNCLASSIFIED

Project MAC
2b. GROUP

3. REPORT TITLE

Progranuning Semantics for Multiprogranuned Computations

.. DESCRIPTIVE NOTES (Type of report and inclusive dates)

A paper presented at the ACM Progranuning Conference, August 1965 .. AUTHOR($) (Laat name, lint name, initl•I)

Dennis, Jack B,' and Earl c. Van Horn

.. REPORT DATE 7•. TOTAL NO.OF PAGES
rb.

NO. OF REFS

December 1965 51 19
8a. CONTRACT OR GRANT NO. ... ORIGINATOR'S REPORT NUMBER($)

Office of Naval Research, Nonr-4102(01) MAC-TR-23 b. PROJECT NO.

Nr-048-189
c. 9b. OTHER REPORT NO(S) (Any other manbers that may be

assigned this report)

d.

10. AVAi L.A81 LI TY I LIM! T ATION NOTICES

Qualified requesters may obtain copies of this report from DDC.

II. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency
None 3D-200 Pentagon

Washington, D. c. 20301
13. ABSTRACT

The semantics are defined for a number of meta-instructions
which perform operations essential to the writing of programs in
multiprogrammed computer systems. These meta-instructions
relate to parallel processing, protection of separate computations,
program debugging, and the sharing among users of memory segments
and other computing objects, the names of which are hierarchically
structured. The language sophistication contemplated is midway
between an assembly language and an advanced algebraic language,

14. KEY WORDS

Computer On-line computer systems Time-sharing
Ma chine-a id ed cognition Progranuning semantics Time-shared computer systems
Multiple-access computers Real-time computer systems

DD FORM
1 JAN 84 1473 (M.1.T.) UNCLASSIFIED

Security Classification

