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ABSTRACT 

This thesis describes a scheme for processor multiplexing in a 
multiple user, multiple processor computer system. The scheme is 
based upon a distributed supervisor which may be different for 
different users. The processor multiplexing method provides smooth 
inter-process communication, treatment of input/output control as a 
special case of inter-process communication, and provision for a 
user to specify parallel processing or simultaneous input/output 
without interrupt logic. By treatment of processors in an anonymous 
pool, smooth and automatic scaling of system capacity is obtained as 
more processors and more users are added. The basic deslqn has 
intrinsic overhead in processor time and memory space which remains 
proportional to the amount of useful work the system does under 
extremes of system scaling and loading. The design is not limited 
to a specific hardware implementation; it is intended to have wide 
application to multiplexed, multiple processor computer systems. 
The processor traffic controller described here is an integral part 
of Multics, a Multiplexed !nformation and £_omputinq Service under 
development by Project MAC at M.I.T., in cooperation with the Bell 
Telephone Laboratories and the General Electric Company. 
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Traffic Control in a Multiplexed Computer System 

CHAPTER ONE 

Introduction 

In designing a computer utility, one is faced with two distinct 

classes of problems. The first class of problems is that of 

communication between people, by sharing algorithms and information, 

and of communication between the human and the computer. We term 

this class of problems intrinsic. The second class of problems is 

sharing of resources to lower the cost per user. We term this class 

of problems technological. Our choice of terms is deliberately 

intended to convey the notion that with appropriate advances in 

technology problems lying in the second class would not even exist1 

on the other hand, technological advances can only ease the 

solutions to the first class of problems. 

The technological problem of resource multiplexing in a 

computer utility can be stated briefly as follows: Given a large 

computer system consisting of core memory, secondary storage, many 

input/output devices, and several processors1 to design an operating 

system which allows effective multiplexing of resources among many 

independent users. The design must be flexible enough to allow for 

specialized needs of many computer installations without significant 

reprogranuning, and it must scale up and down smoothly to allow easy 

growth of a computer installation. 

The intrinsic problems of man-machine communication and 

information sharing in a computer utility can similarly be stated 

briefly: Given many users, and their private stores of data, 

algorithms, and other information~ the system must provide access 

to, ability to manipulate, and controlled sharing of this 

information as flexibly as possible, while providing privacy for 

users or groups of users and protection of information against the 

accidental blunders of others. 

In this thesis we describe a design for a traffic controller: 

the processor multiplexing and cantrol communication section of an 

operating system. This traffic controller provides a workable 

solution, in a single package, to each of the following problems of 

1 



2 INTRODUCTION 

the computer utility: 

1. Multiplexing processor capacity among independent users. 

2. Organizing multiple processors to allow reliability and 

expansion. 

3. Keeping multiplexing overhead to a fraction of system 

capacity which is independent of system size. 

4. Arranging for idle processes (1) to contribute zero overhead 

in processor multiplexing time and core space. 

5. Allowing different users to see different operating systems 

while running simultaneously. 

6. Permitting parallel processing (including input/output) to a 

single user. 

7. Allowing communication of control signals between users. 

The first four of these problems have to do with resource 

sharing, and we therefore class them as technological. 

three problems are examples of intrinsic problems. 

The last 

Before going any further, we should first consider the reasons 

why the problems tackled by the traffic controller are interesting. 

First, multiplexing a processor among many independent users is an 

effective way of achieving an interactive but economical computer 

system. It is also a powerful technique which speeds production 

time of input/output limited jobs, and permits balancing of 

resources across a spectrum of jobs, none of which may be 

individually matched to the computer system. 

Secondly, organized control of identical, multiple processors 

provides a technique for expanding system capacity without the need 

to over-reach whatever is the currently available technology in 

processor speed. Also, a properly organized multiple processor 

system provides great reliability (and the prospect of continuous 

operation) since a processor may be trivially added to or removed 

from the system. A processor undergoing repair or preventive 

maintenance merely lowers the capacity of the system, rather than 

rendering the system useless. 

Third (and fourth), the ability of the basic design to scale 

over a wide range of system capacity, load, and number of processes, 

means that it may be used without modification as the basis for a 

one-processor, three-user time-sharing 

airline reservation system with 

system, a 

5000 agent 

multi-processor 

(1) A process may be loosely defined as a program in 
more careful definition will be given at the 
chapter three. 

sets, or a 

execution; a 
beginning of 

------------ -----~-- -- -----------------------------



INTRODUCTION 3 

we a the r-predi ct ion system performing dependent but parallel 

computations at thousands of •grid points.• 

Fifth, an organization in which each user sees a private 

supervisor, which may be different for different users so long as it 

follows the ground rules of traffic control, means that the system 

is easily applicable to so-called real-time or process control 

functions while simultaneously serving more standard interactive or 

over-the-counter users. This feature also aids greatly in debugging 

new versions of a supervisor while maintaining continuous operation 

of the system for regular customers. 

Sixth, smooth inter-process control conununication features open 

the way for implementation of languages which take advantage of, or 

allow expression of, parallelism in algorithms. With the same 

facility, the final requirement of intercommunication among 

otherwise independent users also becomes possible. Inunediate 

applications abound; for example, a group of persons may work on the 

same project from typewriter consoles in different buildings. 

Viewing input and output initiation as another example of 

inter-process communication places all parallel operations on a 

symmetrical and identical basis. The complexity of organizing a 

large problem requiring parallel processing capabilities is thereby 

greatly reduced. 

The interest in solutions to these problems is 

significance of the proposed traffic controller is 

solutions to all of these problems are presented in 

small collection of interacting procedures. 

clear. The 

that workable 

a relatively 

The traffic controller and operating system described here are 

being implemented as an integral part of the "Multics" system 

(~iplexed !nformation and £omputing ~ervice), which, as its name 

implies, is a computer system organized to operate as a public 

utility. The general orqanization and objectives of Multics have 

been described in a group of six papers given at the 1965 Fall Joint 

Computer Conference [l, 2, 3, 4, s, 6](2). The reader interested in 

exploring further the economic and technological justifications for 

the notions of a multiplexed computer system is referred to these 

papers, especially [l]. In this thesis we will make the assumption 

that the reader is familiar with issues such as reliability, 

accessibility, and a shared, conununity data base which underly the 

Multics concept. In particular, we assume a two-dimensional 

(2) References. indicated in square brackets. are collected in a 
separate section which begins on page 77. 



4 INTRODUCTION 

segmented address space implemented within the system hardware (3). 

In a segmented address space, a processor generates a two-part 

address for all instruction and operand fetches. The first part of 

the address is a segment number, the second a word number within the 

segment. The segmented address space is implemented by means of 

special processor hardware, which refers to a 

memory that gives the absolute core address 

map 

of the 

stored 

base 

in 

of 

core 

each 

segment. '•This map is itself a segment, the descriptor segment~ its 

absolute address is stored in a descriptor segment ~ register in 

the processor. The descriptor segment may contain missing-segment 

bits for some segments. If a program attempts to refer to one of 

these missing segments, the processor will fault to a supervisor 

procedure which can find the segment, load it into memory, and 

continue the interrupted program. 

We further assume that the memory is paged. Paging allows each 

segment to be broken up and thereby fit into core memory wherever 

space is available, without the need for contiguous locations. 

Paging is accomplished by processor hardware which is very similar 

to the segmenting hardware described above. For a thorough 

discussion of the techniques of and motivations for segmentation and 

paging, the reader is referred to several recent papers (2, 7, B]. 

The crucial feature provided by a two-dimensional address space is 

that a single segment in core may appear simultaneously in the 

address space of two different processors, with distinct segment 

numbers. The ability of independent users of the computer system to 

share segments of addressable memory is a cornerstone assumption in 

the design of the operating system. 

In order to successfully make use of shared procedure segments, 

we assume that all procedures (at least those of the operating 

system) are pure, that is, they do not modify themselves. A segment 

containing only pure procedures can then safely be shared by any 

number of processes. Data used by a procedure appears in a distinct 

segment which may or may not be shared among processes, depending on 

the purpose of the procedure. As we will see, the operating system 

is made up of closed subroutines which call on one another. When a 

subroutine has finished executing it returns to its caller. A 

private data segment is used as a .£!.!.! ~ to store the return 

location when a subroutine is called. If that subroutine calls 

another, the return location is placed on top of the call stack so 

(3) The field of computation systems, and this thesis, are replete 
with technical jargon. This thesis uses wherever possible 
terminology consistent with current literature as exemplified by 
the cited references. 
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that returns will be made in the proper order and to the proper 

location. The call stack may also b~ used for temporary storage 

needed by a procedure. By using pure procedures and a call stack 

throughout, any procedures in the supervisor may be called 

recursively, if such usage is appropriate. 

Background. 

Multiplexed 

organizations 

Critchlow, in 

computer systems 

for such systems have 

a review article [9] 

are not new, but general 

not yet been described. 

traces the evolution of 

multiprogrammed and multiprocessor computer systems, so we will not 

need to do so here. Most published work on processor multiplexing 

falls into three categories: 

1. Techniques by which a programmer may specify parallelism in 

his programs (10, 11). These papers offer suggestions for 

implementation of a system to make use of such parallel 

specification, but not a complete design. 

2. System designs to multiplex one or more processors among 

strictly independent jobs. Codd (12) and Thompson (13) 

describe multiplexed operating systems designed to speed 

processing of batch jobs on the IBM 7030 and the Burroughs 

0825 computers, respectively. A similar system has been 

designed for the GE 635 computer. Several time-sharing 

systems (see, for example, [14)) have been designed to 

multiplex a single processor among interactive console 

users. Although some of these designs allow inter-user 

procedure or data sharing, there is no provision for 

inter-process control communication. Ad hoc additions to 

these systems (4) have provided some means of inter-process 

control communication, but no general structure. 

3. Highly specialized •real-time• systems in which the specific 

application of the system heavily outweighs other features 

of the design. Examples of system designs in this latter 

category are the SABRE airline reservation system, and 

Project Mercury control, both described in [16). As would 

be expected, such designs solve their intended multiplexing 

problems, but unfortunately leave no general structure on 

which to build a system for a different application. 

(4) For example, by allowing one process to 
input/output device to another process, 
inter-console message facility [15]. 

appear to be an 
as in the CTSS 



6 INTRODUCTION 

The proposed multiprogrammed operating system for the IBM 

system/360 series of computers [17) is probably the system appearing 

in the literature which is closest in concept to the work taken up 

in this thesis. That system permits a restricted inter-process 

control communication facility for processes working under the same 

job; it remains ~o be shown that it can be extended to a 

processor configuration since details of the design have 

been published. 

Method. 

multiple 

not yet 

In chapter two, we first briefly describe the organization of 

the entire Multics operating system, so that we may view the later 

discussion of processor traffic control in an appropriate 

perspective. 

We will then study traffic control in three stages. First, we 

assume an abundance of core memory and processors so that 

multiplexing is not needed. This assumption makes it possible to 

isolate the fundamental problems of inter-process conununication. 

Then, we study the technological problem of multiplexing a limited 

number of processors among many competing processes, again assuming 

sufficient core memory to carry out the multiplexing. Chapter three 

concludes with a complete design for the traffic controller. 

Finally, in chapter four, we explore a second technological problem, 

the consequences of core memory size limitations on processor 

multiplexing. 

Chapter five reviews the entire traffic controller design and 

discusses techniques by which it may be evaluated when in operation. 

Included here is a discussion of the crucial issue of how the system 

"scales"; that is, the effect of expansion of the number of users, 

the presented load, the size of memory, and the number and speed of 

processors. 

Author 1s Note: (This note does not appear in the originally 
submitted thesis.) The time-sharing system developed at the 
University of California at Berkeley for the SDS 930 computer also 
provides a flexible multi-process capability for a single user, 
though lacking inter-user communication. The UC system, in its 
present form, has restrictions on inter-process signal timing and 
masking and handles input and output requests as a special case. It 
is based on a single processor and a limited I/O device environment. 
It is described in a working paper entitled "A User Machine in a 
Time-Sharing System," by B.W. Lampson, et al., (ARPA Doc. No. 
40.20.10) December, 1965, 



CHAPTER '!WO 

Organization of the Computer Utility 

The term •computer utility• by its very nature implies 
marketing of a useful resource in a usable form. Althouqh immense 
computing power, sharable secondary storaqe, and flexible access to 
input and output devices are indeed useful resources, the primary 
function of the compaiter utility is to organize such resources into 
a usable, and thereby marketable, form. 

From one point of view the marketing of computer resources is 
much the same as the marketing of candy bars. The man on the street 
would be quite pleased to purchase his candy bar direct from the 
factory at the candy jobber's prices. On the other hand, his 
enthusiasm wanes when he discovers that he must take not one candy 
bar but a carload, and delivery will require six weeks. In much the 
same way the ordinary computer user is quite unprepared to tackle 
the problems of managing several processors, I/O interrupts, and 
disk track organization, even though his particular problem might 
require sizable amounts of computer time, input-output, and 
secondary storage space. 

Again using the candy bar example, we observe that the candy 
bars pass through several hands: the jobber, the wholesaler, the 
distributor, before they turn up on the drugstore counter. At each 
of these levels the product of the previous level is transfonr.ed 
into a resource with a wide-r market. The carload of candy bars is 
wholesaled in gross cartons1 the distributor once a week provides 
the drugstore with boxes of 24 candy bars. Finally, the man on the 
street wanders in and purchases just one, whenever he likes. In a 
very similar manner, we may view the resources of the computer 
utility as being transformed three times, each time producing a 
resource that is successively more •marketable•: 

1. Starting with the basic hardware resources available, the 
•hardware management• procedures have the function of 
producing hardware independence. They do so by simulating 
an arbitrarily large number of •pseudo-processors• each with 
a private segmented address space (which may contain 
segments shared with other pseudo-processors), easy access 

7 



8 ORGANIZATION OF THE COMPUTER UTILITY 

to a highly organized information storage hierarchy, and 

smooth input/output initiation and termination facilities. 

The resulting resource is independent of details of hardware 

or system configuration such 

size, I/O device connection 

organization. 

as processor speed, 

paths, or secondary 

memory 

storage 

2. Working with these pseudo-processors and the information 

storage hierarchy, the •resource management• procedures 

allocate these resources among •users•, providing accounting 

and billing mechanisms, and reserving some of the resources 

for management services, such as file storage backup 

protection, line printer operation, and storage of user 

identification data. 

3. Finally, these allocated and accounted resources can be used 

by the ultimate customer of the computing utility either 

directly by his procedures or to operate any of a large 

variety of library commands and subroutines. Included in 

this library are a command language interpreter, a flexible 

I/O system, procedures to permit simple parallel processing, 

language translators, and procedures to search the 

information storage hierarchy and dynamically link to needed 

programs and data. 

We now wish to study each of these transfonnations in more detail. 

Hardware Management. 

The basic hardware resources available to the utility are the 

following: 

1. One or more identical processors. 

2. Some quantity of addressable primary (probably core) memory. 

The processors are equipped with hardware to allow 

addressable memory to appear to be paged and segmented. It 

is not necessary that all possible memory addresses 

correspond to core locations. One might expect to have 

100,000 words of core memory for each processor. 

3. A substantial amount of rapidly accessible secondary 

storage. This secondary storage might consist of a large 

volume, slow access core memory, high speed drums, disks, 

data cells, or any combination thereof which proves to be 

economical. The total amount of accessible secondary 

storage might be on the order of 100 million words per 

processor, although this figure can easily vary by more than 

an order of magnitude. 
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4. Channels to a wide, in fact unpredictable, variety of input 

and output devices, including tapes, line printers and card 

readers, typewriter consoles, graphic display consoles, 

scientific experiments, etc. In an installation committed 

primarily to interactive usage, one might find 200 

typewriter channels, plus a few dozen other miscellaneous 

devices. Each of these channels can produce signals 

The signals are 

form of processor 

indicating 

transmitted 

interrupts. 

completion 

to the 

or 

system 

trouble. 

in the 

S. Various hardware meters and clocks suitable for measuring 

resource usage. 

The hardware management routines must do two very closely 

related jobs. First, they must shield the user of the system from 

details of hardware management. The user should be essentially 

unaware of system changes such as addition of a processor, 

replacement of processors by faster models, or replacement of a data 

cell by an equivalent capacity disk memory. Except for possible 

improvements or degradations of service quality, his programs should 

work without change under any such system modification. Second, the 

hardware management routines must handle the multiplexing of system 

resources among users in such a way that the users may again be 

unaware that such multiplexing is going on. Included in this second 

job is the necessary protection to insure that one user cannot 

affect another user in any way without previous agreement between 

the two users. 

The strategy chosen here to implement this hardware management 

is the following. Using the hardware resources listed above and two 

major program 100dules, the traffic controller and the basic file 

system, simulate (by multiplexing processors and core memory) an 

arbitrarily large number of identical pseudo-processors, and an 

information storage hierarchy in which data files are stored and 

retrieved by name. 

The information storage hierarchy is a tree-like structure of 

named directories and files which is shared by all users of the 

system. Access to any particular directory or file is controlled by 

comparing the name and authority of the user with a list of 

authorized users stored with each branch of the tree. This 

structure allows sharing of data and procedures between users, and 

also complete privacy where desired. 

The pseudo-processors look, of course, very much like the 

actual hardware processors, except that they are missing certain 

•supervisory" instructions and have no interrupt capability. Each 
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pseudo-processor has available to it a private two-dimensional 

address space. Within the address space are a number of supervisor 

procedures capable of carrying out the following basic actions upon 

request: 

1. "Mapping" any named file or directory from the storage 

hierarchy into a segment of the address space. Files 

appearing in the information storage hierarchy are 

identified by a tree name which is a concatenation of the ----
name of the file within its directory, the name of the 

directory, the name of the directory containing this 

directory, etc., back to the root of the tree. As we will 

see below a utility program named the "search module" may be 

used to establish the tree name of a needed segment so that 

the map primitive may be used. The search module itself 

opnrates by temporarily mapping directories into addressable 

storage in order t"' search the.m. Use of the map primitive 

does not imply that ~ny part of the file is actually 

transferred into core storage, but rather that the· file is 

now directly addressable as a segment by the 

pseudo-processor. When the pseudo-processor actually refers 

to the segment for the first time, the basic file system 

will gain control throuqh missing-seqment and 

faults and place part or all of the segment in 

missing-page 

paged core 

memory. Except for the fact that the first reference to a 

portion of a segment takes longer than later references, 

this paging is ; nvisible to the user of the 

pseudo-processor. The same file can appear as a segment in 

the address space of any number of processors, if desired; 

options allow the processors to share the same copy in core, 

or different copies. 

2. Blocking, pending arrival of a signal from an I/O channel or 

some other pseudo-processor. A pseudo-processor blocks 

itself because the process which it is executing cannot 

proceed until some signal arrives. The signal might 

indicate that a tape record has been read, that it is 3:00 

p.m., or that a companion process has completed a row 

transformation as part of a matrix inversion. 

3. Sending a signal (here known as a "wakeup") to another 

pseudo-processor or to an input/output channel. (From the 

point of view of a pseudo-processor, an I/O channel looks 

exactly like another pseudo-processor.) The wakeup 

facility, in combination with the ability for 

pseudo-processors to share segments, permits application of 
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All 

several pseudo-processors simultaneously by a single user. 

A user may thus specify easily parallel processing and 

input/output simultaneous with computation. 

4. Forcing another pseudo-processor to block itself. This 

of 

primitive, named "Quit", allows disabling a pseudo-processor 

which has gotten started on an unneeded or erroneous 

calculation. 

these primitive functions are constructed as closed 

subroutines which are called using the standard call stack described 

in chapter one. 

Figure 2.1 

utility, while 

shows a 

figure 

typical hardware 

2.2 indicates 

configuration of the 

the apparent system 

configuration after the hardware management procedures have been 

added. An important difference between these figures is that while 

figure 2.1 may change from day to day (as processors are repaired 

and a disk is replaced with a drum) figure 2.2 always is the same, 

independent of the precise hardware configuration. 

When a pseudo-processor calls the "map• entry of the basic file 

system, the file system establishes a correspondence between a 

segment number of the pseudo-processor address space and a file name 

on secondary storage by placing an entry in a segment name table 

belonging to this pseudo-processor. It does not necessarily, 

however, load any part of the file into core memory. Instead, it 

sets a missing-segment bit in the appropriate descriptor word in the 

descriptor segment of the pseudo-processor. This bit wil1 cause the 

pseudo-processor to fault if a reference is made to the segment. 

Sometime after calling the "map" entry, the pseudo-processor 

may attempt to address the new segment. When it does so, the 

resulting missing-segment fault takes the pseudo-processor directly 

back to the segment control module of the basic file system, which 

now prepares for missing page faults by locating the file name 

corresponding to the segment number in the segment name table, 

placing the secondary storage location of the file in an active 

segment table, and creating in core memory a page table for the 

segment. This page table is filled with missing-page bits, and none 

of the file is actually loaded into core memory yet. 

The pseudo-processor is then allowed to continue its reference 

to the segment. This time, a missing-page fault takes the 

pseudo-processor to the page control module of the basic file 

system. Page control must locate two items: a space in core memory 

large enough for the missing page, and the location on secondary 

storage of the missing page. Establishing a space in core memory 

may require unloading some other page (possibly belonging to some 
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other pseudo-processor) onto secondary storage. A policy algorithm 

in the •core control• module decides which page or pages in core are 

the best candidates for unloading, on the basis of frequency of 

usage of the pages. 

Having established space in core memory for the page, and 

initiated the transfer from secondary storage, page control blocks 

the pseudo-processor pending arrival of the page. When the page is 

in, this pseudo-processor is re-awakened by the basic file system 

operating for some other process, page control returns to the point 

at which the missing-page fault occurred, and the pseudo-processor 

now completes its reference to the segment as though nothing had 

happened. Future references to the same page will succeed 

immediately, unless the page goes unused for a long enough time that 

the space it is holding is reclaimed for other purposes by core 

control. If the space is reclaimed, core control sets the 

missing-page bit in the page table ~' and writes out the page onto 

secondary storage. A later missing-page fault will again retrieve 

the page. 

As we will see in chapter four, some segments cannot take part 

in the paging in-and-out procedure1 these segments must be •wired 

down" (that is, they are not removable) since their contents are 

needed, for example, in order to handle a missing-page fault. A 

general property of the file system organization is that a 

missing-page fault cannot be encountered while trying to handle a 

missing-page fault. The reason for this organization is not that a 

recursive missing-page fault handler is impossible to organize, but 

rather that the depth of recursion must be carefully controlled to 

avoid using up all of core memory with recursion variables (at least 

the call stack ~go into a wired down segment.) The method 

chosen here to control recursion depth is to prevent recursive 

missing-page faults in the first place. 

The method of implementing the secondary storage hierarchy, the 

"map" primitive, and core memory multiplexing has been described in 

a paper on the basic file system by Daley and Neumann (4) and the 

reader interested in more detail is referred to that paper. The 

multiplexing of hardware processors to produce many 

pseudo-processors is the function of the traffic controller, and is 

the subject of the remaining chapters of this thesis. 

Resource Management. 

The hardware management programs transform the raw resources of 

the computer system into facilities which are eminently more usable, 

but these facilities must be made available (allocated) to users of 

the system before those users can accomplish anything. Also, 
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certain of the transformed facilities must be reserved for the 

system's own use in operation, administration, and preventive 

maintenance. Finally, a flexible, fair, and accurate accounting 

mechanism must be provided to determine how and by whom the system 

is actually being used. 

The most important function of resource management is to define 

the concept of a "user" of the utility. A user, is, roughly, a 

person, working on a project, who signs out a portion of the system 

facilities by "logging in." He may work in concert with other users 

of the system on a single larger project, but his coming and going 

is independently noted in system logs. The definition of a person 

working on a project must be relaxed slightly to include the 

possibility of a so-called "daemon" user (l) which is not directly 

associated with a person. The definition of a daemon user is that 

it is automatically logged in to the system when the system is 

initialized~ one cannot identify any particular person who claims to 

be this user. The daemon generally performs periodic housekeeping 

functions. (Most daemons, in fact, are creations of resource 

management, but there are also applications for customer-provided 

daemons.) 

To get the flavor of the techniques used by resource 

management, we may consider the path followed in logging in from a 

typewriter console. One pseudo-processor is reserved for a daemon 

user to which we give the name "answering service". This 

pseudo-processor is given access to every typewriter channel which 

is not presently in use. The process operating on the 

pseudo-processor activates every attached typewriter channel so that 

the channel will return a signal when a console dials up, or turns 

power on in the case of direct conner.tions. The process then blocks 

itself awaiting a signal from some typewriter channel. When a 

person dials up to a channel, that channel wakes up the answering 

service process which immediately brinas into play two more 

pseudo-processors. One psendo-processor is assigned the 

channel and a typewriter management process is initiated 

typewriter 

on that 

pseudo-processor. A "listener" process is initiated on the other 

pseudo-processor. The listener process reads from the typewriter by 

asking the typewriter manager process for the next line of input. 

The listener may have to wait if a line has not yet been typed. The 

listener can take any desired action upon the line, including 

establishing a process on yet another pseudo-processor to perform 

(1) "~·.!!15U!· .!!.• in Greek mythology, any of the secondary divinities 
ranking between the gods and men; hence, 2. a guardian 
spirit." (Webster'~ New World Dictionary, 1958.) 
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some computation. The programs executed by the listener and the 

typewriter manager come from the library, which is discussed in the 

next section, so we will not go into any further detail here. Their 

first action is, of course, to execute the "login" command to 

establish the identity of the user and his authority to use the 

system. 

Logging in is accomplished by comparing the typist's 

credentials with a list of all authorized users which is stored in 

the secondary storage hierarchy. (As we will see, the storage 

hierarchy is used extensively for administrative purposes.) When a 

match is found, information stored there indicates this user's 

access privileges, authorities, and the section of the directory 

structure in which he keeps his private files. The system log (a 

file in the storage hierarchy) is updated to show that this user is 

logged in, and the typist may now begin typing commands. 

The point of the description of logging in is to illustrate the 

techniques used in resource management, not the details. The most 

important feature of these techniques is that they are based on 

usage of the pseudo-processors and information storage hierarchy 

provided by the hardware management programs. They may, therefore, 

be debugged and replaced while the system is operating, in exactly 

the same way as any user program. They are also relatively 

independent of the configuration of the system. 

A number of similar operations are carried out by resource 

management in other areas. For example, a daemon user continually 

copies newly created files in the storage hierarchy out onto tape 

for added reliability in case of some catastrophe. Another daemon 

user periodically wakes up and "checks out the system" by running 

test and diagnostic procedures. An example of an ordinary user 

dedicated to resource management is the operator in charge of 

detachable input and output devices such as tape and disk packs. At 

his typewriter console he receives messages requesting him to mount 

reels; he may reply when the reel is mounted or it cannot be found. 

Finally, within every address space, certain resource 

management procedures are inserted in the path between a user 

procedure and the supervisor routines described under hardware 

management. These resource management procedures perform resource 

usage accounting for this process. A system of accounts is 

maintained within the storage hierarchy, which allows a project 

supervisor to allocate resources to group leaders who can in turn 

allocate to individual users. Every pseudo-processor draws on some 

account in this hierarchy. Also, among the library procedures 

available to any process are "system transaction programs" which 

allow the user to arrange special classes of service, sign up in 



ORGANIZATION OF THE COMPUTER UTILITY 17 

advance for tape drives, etc. 

0ynamic Linking, Hierarchy Search, and ~ Library. 

So far, the hardware manaqement procedures have insulated the 

user from the details of the system configuration and secondary 

storage management, and resource management 

established doora through which a user may enter 

procedures 

and leave 

have 

the 

system, and have his resource usage 

system is useful to the average user, 

and service (library) programs must 

accounted for. Before the 

however, a variety of utility 

be available to him. The 

library is merely a collection of procedures stored in one section 

of the information storage hierarchy. This library is built upon 

the foundations laid by hardware and resource management. It is 

flexible and open-ended, and procedures drawn from the library 

operate in exactly the same way as any user provided procedure drawn 

from elsewhere in the information storage hierarchy. 

Fundamental to the usage of the system are dynamic linking and 

storage hierarchy search procedures. The pseudo-processor provided 

by hardware management has the capability of producing a linkage 

fault when a procedure attempts to refer to a segment which has 

never been mapped into addressable storaqe. When establishing a new 

pseudo-processor, one normally places a linkage fault handler in the 

new address space. When the new pseudo-processor encounters a 

linkage fault, the linkage fault handler (linker) locates the needed 

segment in the information storage hierarchy by calling the search 

module. The linker then maps the segment into addressable storage 

with the "map" primitive discussed earlier, and resets the 

inter-segment linkage pointer which caused the fault so that faults 

for that reference will not occur in the future. 

By providing an appropriate algorithm to search the information 

storage hierarchy for needed segments, the user can arrange that a 

newly established pseudo-processor execute any desired sequence of 

procedure. The search may, of course, include those sections of the 

information storage hierarchy containing library procedures provided 

by the utility. 

For example, consider the sequence of linkage faults and 

searches implicit in the logging-in procedure described earlier. 

The answering service establishes a new pseudo-processor to run the 

"listener" process, initially mapping into its address space the 

standard system linker, a search algorithm which looks at the system 

library, and a one-instruction procedure which attempts to transfer 

(through a linkage fault) to a program named "listen". The 

pseudo-processor is started at the planted transfer instruction. Of 

course, it immediately gets a linkage fault, and the linker calls 
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the search module to locate the "listen• program. The search module 

finds a procedure by this name in the system library, the linker 

maps it into addressable storage, and the transfer instruction is 

continued. This time it completes execution, and the "listen• 

procedure is now in control of the pseudo-processor. As it calls on 

various subroutines, 

manager process, 

appropriate searches 

for example to communicate with the typewriter 

it gets more linkage faults, and triggers 

through the library. As needed, the address 

space of the pseudo-processor collects the subroutines and data 

segments required to operate a listener process. 

An important library procedure is the "Shell", a command 

language interpreter which is called by the listener to interpret 

the meaning of a command line typed by the user. The Shell takes a 

typed command to be the name of a subroutine to be called with 

arguments, e.g., if the user types the command 

PL/I ABCD 

the Shell would take this to mean that it should call a subroutine 

named "PL/I" with one argument, the character string "ABCD". It 

therefore sets up linkage to a subroutine named PL/I (with a linkage 

fault in the path, of course) and attempts to call the subroutine. 

The resulting linkage fault causes a search of the library for, and 

linkage to, a procedure segment named "PL/I". When the PL/I 

compiler ultimately begins execution, it will similarly search for 

and link to the file named ABCD and (presumably) translatP ~he PL/I 

program found there. 

Among the library procedures commonly executed as commands are 

procedures to help type in and edit new files to be stored in the 

information storage hierarchy, translators for program 

commands to alter the search algorithm, for example to 

portion of the hierarchy containing the user's own 

files, 

search 

data 

and 

a 
and 

procedure segments. Note that through the mechanism of the Shell, 

any procedure segment, public or private, appearing 

information storage hierarchy and to which a user has access 

can be called as a command from the console. 

in the 

rights 

Other library procedures include an input/output control system 

which allows symbolic reference to inout and output streams and a 

substantial measure of device independence. These procedures 

include necessary inter-process communication facilities required to 

overlap input/output with other computation. 

Through the mechanism of the linker and the search module an 

arbitrarily elaborate collection of utility programs may be 

established, yet all such programs are on an identical footing with 

the user's own programs. That is, they may be checked out and 

replaced while the system is in operation using the full resources 
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of the system to aid in the checkout. The open-endedness of the 

library means that i~_is likely that there will be some users who 

never execute anything but procedures from the library. It is even 

possible, through the mechanism of access control provided in the 

information storage hierarchy, to have a user who, since he has no 

access to any compilers or input editors, can only execute commands 

found in some library. 

Summary. 

We have in this chapter seen a brief overview of several 

aspects of the organization of a computer utility. In this 

overview, we have seen how the raw resources of the system are 

successively transformed, first into configuration- and detail­

independent resources consisting of pseudo-processors and an 

information storage hierarchy, secondly into allocated and accounted 

resources ready to be put to work, and finally, through a linker, 

search module, and system library, into a full scale, flexible 

operating system with a multitude of readily accessible utility 

procedures. Our overview has necessarily been too broad-brush to go 

into much detail on how these various techniques are implemented. 

The reason for the overview has been to give enough of a framework 

so that we can study in detail the particular problem of processor 

multiplexing, one of the fundamental aspects of hardware management. 

Chapter three begins our study of this topic. 
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CHAPTER THREE 

Traffic Control in the Computer Utility 

In chapter two we divided the operating system of a computer 

utility into three layers: hardware management, resource 

management, and the library. In this chapter we split the layer of 

hardware management into memory (core and secondary storage) 

management and processor management. We take up the detailed study 

of processor management, assuming that the memory management 

modules--the basic file system--already exist and operate as was 

briefly described in chapter two. Our general strategy here will be 

to begin by assuming that there are no technological problems of 

processor multiplexing. After examining the intrinsic problems 

which remain, we introduce the technological problems one by one. 

SECTION ONE: THE CONCEPT OF "PROCESS" 

In the sections which follow, "traffic control" will be 

described as the problem of multiplexing a limited number of 

processors among many processes and providing inter-process 

communication. We should therefore first define precisely our use 

of the term "process." 

A process is basically a program in execution by a processor 

(1). This definition, while it appears to be precise, is in fact 

somewhat vague because the terms "program" and "processor" can be 

given widely varying interpretations. Although the IBM 7094 central 

processor, and a program coded in the FAP language, are a good 

example of the terms "processor" and "program" (and could be used to 

(1) Dennis and Van Horn [11] have used the words "locus of control 
within an instruction sequence," to describe a process; the 
alternative term "thread" (suggested by V. Vyssotsky) is 
suggestive of the abstract concept embodied in the term 
"process." 

20 
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help provide one concrete definition of a process) we may observe 

other examples of "processors" and "programs." 

For instance, one can consider the M.I.T. Compatible 

Time-Sharing System (15] to be a "processor" whose instruction set 

consists of system commands. One may give this processor a program 

in the form of a list of commands (RUNCOM) ~ he may then talk of his 

"process" proceeding from command to command in his program. The 

fact that the implementation of _each of his commands may actually 

cause five data channels and two central processing units to execute 

instructions simultaneously is irrelevant to this particular 

definition of a process. 

We may thus conclude that the essential element in the 

definition of a process is a statement about the capabilities of a 

processor~ the processor is not necessarily one implemented in 

hardware, but rather a composite processor made up of the hardware 

and programs of the system in which the process is executed. The 

composite processor may have either more or fewer apparent 

capabilities than the actual hardware processors which are the basis 

of the system. 

'As was described in chapter two, the fundamental technique of 

the traffic controller is to simulate an arbitrarily large number of 

pseudo-processors, each with its own two-dimensional address space. 

Each pseudo-processor is given the following capabilities: 

1. Accessibility to a private segmented 

instructions and data. This address 

address space for 

space may include 

segments accessible to other pseudo-processors. 

2. An instruction repertoire including the usual arithmetic, 

logic, shift, and conditional branch instructions. 

3. Ability to "fault" (a type of conditional subroutine jump) 

upon execution of certain instructions. 

4. Ability to call on supervisor procedures to extend the 

defined address space of the pseudo-processor, and to 

communicate control signals with other pseudo-processors and 

input/output channels. 

If one likes, the last ability can be described as an extension of 

the instruction repertoire of the hardware processor. 

The one capability of commonly described operating system 

pseudo-processors which is not included in our pseudo-processor is 

the "interrupt," or •courtesy call," a jump to a special subroutine 

in response to an arbitrarily timed (asynchronous) signal, for 

example, from an input/output channel. As we will see, the ability 

to use several communicating pseudo-processors provides a flexible 
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and easy to use facility to replace the interrupt. 

Our definition of a process is now clear. A process is a 

program in execution by a pseudo-processor. The internal tangible 

evidence of a process is a pseudo-processor stateword, which defines 

both the current state of execution of the process and the address 

space which is accessible to the processor. There is, then, a 

one-to-one correspondence between processes and statewords, and also 

between processes and address spaces. It will in fact be convenient 

to make use of this correspondence and identify a process with its 

address space. In terms of the two-dimensional segmented address 

space hardware described in chapter one, every process is identified 

with a descriptor segment. If we further assume for simplicity that 

descriptor segments are not shared between processes, we may 

establish a one-to-one correspondence between processes and 

descriptor segments. The stateword of a process includes a pointer 

to the descriptor segment of the process. 

To maintain our definition of a process despite the realities 

of processor and memory multiplexing, we will place within the 

address space of every process a set of procedures--the traffic 

controller--which exercise further capabilities of the actual 

processor. Most of the instructions of the traffic cn-troller will 

in fact be carried out within the addr~ss space of this process, but 

they are viewed as part of the implementation of the 

pseudo-processor. 

SECTION TWO: TRAFFIC CONTROL WITH DEDICATED PROCESSORS 

Our strategy of discussion of the general problem of 

multiplexing is to start by assuming an abundance 

processor 

of actual 

processors and of core memory. In particular, we assume that there 

is a processor available to assign to every process, and that there 

is enough core memory available so that at least the current 

procedure of every process is resident in core. We will discard 

these assumptions later, but for the moment they allow us certain 

insights into the problems of traffic control: we are ablP. ~o 

separate the intrinsic problems of inter-process control 

communication from the technological problems of processor and core 

memory multiplexing. 
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~-Process Control Communication. 

The intrinsic problem of inter-process control communication is 

to provide a means for two or more processes to work in parallel, 

cooperating on a single computation. This cooperation requires that 

the processes be able to synchronize their operation, that is, one 

process must be able to wait for a signal from another. The signal, 

when it comes, means that the first process may continue, for 

example because some input data it needs has now been prepared. 

(Another problem of inter-process control communication is that of 

turning off a process which has gotten started on an erroneous or 

unneeded computation. We postpone consideration of this problem 

until section three of this chapter.) 

We start by considering a single process. This process follows 

a programmed path in its procedures, performing whatever 

computations are indicated there. Let us formalize slightly the 

structure of the program being executed by the process to see if we 

can determine what are its needs for traffic control. We may 

picture the process as having a work queue which is a list of 

"tasks" to do stored in a segment accessible to the process. We 

envision the process looking in the work queue, discovering a task 

there, and performing the computation indicated. When finished with 

this task, it goes back to its work queue for the next task. Let us 

assume that there is some mechanism by which some other process can 

add tasks to the work queue. If the second process should add a 

task to the work queue while the first process is executing another 

task, it is apparent that the first process will not discover the 

existence of the new task until it has completed its previous task. 

According to our assumptions about the capabilities of the processor 

executing this process, there is no way for the second 

force the first one to stop what it is doing and look 

queue. A process can only follow its program. 

process to 

at its work 

Suppose the process should finish executing the last task in 

its work queue. What should it then do? It could loop by 

continually looking in the work queue, and finding nothing look 

again. When another process adds a new task, the process will 

discover it immediately and begin computation. A different solution 

is for the process to block itself until some new work arrives. The 

ability to block a process is a traffic control function which we 

will conceive as a closed subroutine: 

call block: 

In the dedicated processor system this subroutine can be implemented 

in hardware by a ~ instruction. We will see later, when we study 

processor multiplexing, that the call to block will be taken to be 

an opportunity to give the processor to another process. 
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An immediate complication arises if a process blocks itself. 

When a new task is added to the work queue of a process which has 

blocked itself, the process must somehow be unblocked ("wakened".) 

Unblocking means that the closed subroutine "block" returns to its 

caller. 

We thus conclude that for a single process, the only "traffic 

control" feature which is needec'I is the ability for a process to 

block itself, and for another process to be able to waken the 

blocked process. We may define two execution states of a process, 

running and blocked. A process is running if it is executing 

instructions, it is blocked if it is waitinq for a signal to 

continue execution. 

The Two-Process System. 

The next level of complexity we wish to consider is the 

two-process, two-processor system. Since each process has its own 

processor, we do not yet need to become involved in issues of 

processor multiplexing. Assume for the moment two identical 

one-process systems as described above are placed side by side. If 

the two systems are independent, there are no particular 

complications. The two-process system is of interest, however, 

because we wish to provide some means of communication between the 

two processes. We provide this communication by means of an area of 

core storage which appears in the address space of ~ processes--a 

common segment. If the common segment is read-only (neither process 

can alter its contents) then there is still no communication between 

the processes. They are however, sharing a section of memory which 

may contain either data or procedure. 

If either process can alter the contents of the common segment 

we have a means of communication between the processes. Let us name 

the two processes "A" and "B", and assume that "B's" work queue is a 

common segment between "A" and "B". Supoos 0 th;:it "B" is running, 

working on some previous task in the work queue, and "A" adds 

something to the work queue. Then, when "B" is finished with its 

earlier task it will discover the task froin "1\11 in the queue, and 

perform it. 

Suppose "B" finishes its last task and calls block. If "A" now 

comes along and places new work in the queue, "B" will not look at 

the queue, because he is blocked. "A" must do somP.thing to cause 

"B" to wake up. In addition to data communication, an inter-process 

control communication function is needec'I. We claim this as a 

traffic control function, and provide another closed subroutine 

named wakeup. 
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With the two-process system, 

call wakeup; 

means unblock the other process. Again, it is simple to wire such a 

function into the hardware of the system, and "call wakeup" becomes 

the execution of a single instruction by "A". To qeneralize to a 

system with many processes and an equal number of processors, we 

need merely add the concept of a process(or) identification tag, and 

generalize the traffic controller entry (or hardware instruction) 

to: 

call wakeup(B); 

if "B" is the identification tag of the process to be wakened. 

An example of ~ ~-process system. 

We consider now a specific example of a two-process system. In 

this example, process "A" is performing a lengthy computation, and 

occasionally produces numbers to be typed on the typewriter. 

Process "B" is operating the typewriter. The work queue of process 

"B" is a buffer into which "A" puts th~. r~sults he wishes to have 

typed. To operate the typewriter, "B" executes a "type-out" 

instruction, which takes 100 milliseconds, and types one character. 

If "A" falls behind, "B" will type out everything in its work 

queue, and block itself. Then, if "A" puts a new message in "B's" 

queue, he must wake up B. For simplicity, he always wakes up "B"; 

we make the convention that the wakeup call does nothing if "B" is 

already running. Figure 3.1 is a flow diagram of the two-process 

system. 

What if process "B" falls behind? This means "A" is producing 

If the results at an average rate faster than "B" can print them. 

work queue is long enough, this does not hurt anything. The 

situation is detected when "A" discovers that the work queue is 

full. ("Full" is a relative concept, based perhaps on a 

consideration of how far ahead of the typewriter we wish the 

computation to get.) A solution is to put as the last entry of the 

queue, not a piece of data, but a special flag, which means "help, I 

am blocked;" after which "A" blocks itself. By agreement between 

"B" and "A", when B discovers this flag at the end of his queue, he 

will wake up "A". We may redraw the flow diagrams of "A" and "B" as 

in figure 3.2 to take into account this possibility. 

We may now ask, "Why use two processes instead of one?" One 

reply is that after the computatioh of a result and a decision to 

print it, we can logically do 

1. computation for typewriter code conversion, and 
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2. waiting for the "type-out" instructions, 

simultaneously with the computation of the next result. If we were 

satisfied to do everything serially, we could do so by using only 

one process. The serial approach would mean that the total job time 

would be longer, and that the typewriter would often pause while 

awaiting the next computation. 

There are, of course, many other applications for a two-process 

system. In our example, we have the ability for the process 

computing results to get ahead of the slower typewriter. Another 

example would be typewriter input in which a typist can type 

requests to a computing process; by using two processes, the typist 

can type ahead in those cases where he has requested an 

exceptionally long computation. Such a facility is extremely 

important for smooth man/machine interaction since the human being 

is rarely matched perfectly with the computation rate of his 

program. 

Channel Logic. 

It will be profitable to introduce one further complication to 

our example, since we have begun a discussion of input/output. If 

we require that "A" do typewriter code conversion on his computed 

results and place in the work queue for "D" only numbers "ready to 

go", it is then possible to replace process "B" with a channel. A 

channel is really nothing more than a simple processor with a 

wired-in program such as the one that process "B" was following. It 

is activated by placing work in a queue a,rrd sending it a wakeup 

signal. The channel is capable of returning a wakeup signal when it 

is done, or when it runs into trouble, if appropriate entries are 

made in its queue. We will learn in the next section that one of 

the jobs of the traffic controller in the complete, multiplexed 

system is to translate processor interrupts originating from 

hardware devices attached to the system I/O channels into wakeups 

for the appropriate processes. 

A Critical Race Between Processes. 

Before going on to a more complex system, we may examine an 

especially awkward problem of multi-process traffic control which 

shows up even in our two-process, dedicated processor model. 

Looking again at the method of communication between "A" and "D", we 

find that process "A" goes through two steps: 

1. Put task into work queue of process "B". 
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"2. Wake up process "B" • 

Process "B"' when it needs work, also goes through two steps: 

1. Look in work queue, find it empty. 

2. Call block. 

Since process "A" and process "D" are running simultaneously, 

there is a distinct possibility that the order of events in time is 

the following: 

1. "B" finds work queue empty. 

2. "A" places task in queue. 

3. "A" wakes up "B". 

4. "B" calls block. 

By our convention that wakeup does not affect a running process, 

process "A's" attempt to wake up "B" was ignored. Unfortunately, 

"B" has blocked itself and missed the signal intended to wake it up. 

This problem is similar in nature to the "critical race" of 

switching networks. Its resolution requires some help from the 

traffic controller; the primitive functions block and wakeup so far 

specified are not sufficient to resolve the problem. our solution 

is to invent a "wakeup waiting" switch which is associated with 

process "B". Whenever process "A" calls wakeup, whether "B" is 

running or blocked, "B's" wakeup waiting switch is turned on. When 

"B" calls block, block returns immediately if the wakeup waiting 

switch is on. In addition, "B" is given access to its wakeup 

waiting switch to reset it. 

With this addition to the machinery of the traffic controller, 

process "A" goes through the following two steps: 

l. Put task into work queue of process "B". 

2. Wakeup process "B", turning wakeup waiting switch on. 

while process "B" does the following: 

l. Reset the wakeup waiting switch to off. 

2. Look in queue, find it empty. 

3. Call block, which returns if wakeup waiting is on. 

It does not matter now what the specific time relationships of "A" 

and "B" are, process "B" will never miss a wakeup signal. The 

essential requirement of any solution to this race problem is some 

way for process "B" to check a variable accessible to both 

processes, then get blocked before the other process can possibly 

change the value of the variable. This requirement dooms all 

attempts of the processes to arrange interlocks themselves without 
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the aid of a special feature in the Traffic Controller. (This last 

statement is not quite true; it is possible for process "A" to delay 

by doing busy work for a fixed length of time at an appropriate 

point so as to permit "B" to get blocked. This type of solution 

lacks generality, since any change in the characteristics of the 

system might require a new delay value to be inserted for every such 

timing dependent interlock.) 

One of the reasons for choosing the particular pair of 

primitives block and wakeup is that all critical races which might 

occur in inter-process control corri.rnunication are concentrated in a 

single race, which is resolved by a single simple mechanism. 

Sununary of Traffic Control Needs So Far. 

Up to this point, since we have only considered dedicated 

processor systems. we have been able to restrict the traffic contrnl 

needs of these systems to that of inter-process control 

communication. The problem of inter-process control corrimn~ication 

is, briefly. that there must be a way for one process to signal 

another that there is work to do; there must al~n h~ a way for a 

process to wait for such a signal. We have pronosed that the 

traffic controller provide three facilities for inter-process 

control communication: 

1. Entry point block, to wait for a siqnal. 

2. Entry point wakeup, to send a signal. 

3. The wakeup waitinq switch, to resolve signalinq races. 

In passing, we also introduced the concept of a process 

identification tag; this latter feature is needed in systems of more 

than two processes to identify the process being wakenen in a call 

to wakeup. 

SECTION THREE: PROCESSOR MULTIPLEXING 

In this section we discard the assumption that a separate 

processor is dedicated to every process in the system. 

assume that a limited number of processors must 

(multiplexed) among the many processes. The job of 

Instead, we 

be shared 

the traffic 

controller is to make the multiplexed system look like a dedicated 

processor system by creating one pseudo-processor for each process. 
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To this end, it will need to use two system facilities not directly 

available to a process: the ability to switch a processor from the 

address space of one process to that of another, and the ability to 

snatch a processor away from a running process and give it back 

later (the system interrupt.) Since there is competition for 

processors, the ideas of queuing, priority, and pre-emption must ibe 

introduced. Finally, an important task of the traffic controller in 

a multiplexed system is to provide an interface with input/output 

channel hardware to translate I/O signals into wakeups for the 

appropriate processes. 

As we proceed, we will discover that the traffic controller 

logically splits apart into two major pieces: the "system interrupt 

interceptor," which provides the interface with the processor 

interrupt hardware, and the "process exchange," which actually 

performs processor multiplexing. 

In the previous section, we made the observation that in a 

dedicated processor system inter-process communication could be 

implemented easily in hardware. When multiplexing is introduced, 

however, the desired flexibility of implementation--the scheduling 

algorithm, for example--precludes any realistic opportunity of 

avoiding a traffic controller based partly on hardware and partly on 

program. This is not to say that hardware implementation of the 

traffic controller described here is impossible, but rather 

inadvisable. 

In this section, we continue to make the assumption that 

sufficient core memory is available for at least the current 

procedure of every process. In the next chapter we will explore the 

added complications when this assumption cannot be made. 

System Interrupts. 

A system interrupt is a hardware signal directed to a specific 

processor which causes that processor to interrupt its activities, 

store its state in an interrupt stack (similar to the call stack 

described in chapter one), and begin fetching instructions from a 

special subroutine corresponding to the interrupt. Connected with 

system interrupts are several features which are indispensable to 

operation of a multiplexed, multi-process system. We describe these 

features briefly here. 

Associated with each processor are one or more interrupt ~· 

When a condition arises which requires that a processor be 

interrupted, one of these interrupt cells may be set on by some 

active device--an I/O channel or a processor. Each interrupt cell 

has an established priority relative to every other interrupt cell. 

It is possible for a processor to set one of its own interrupt cells 
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on. 

Whenever an interrupt cell is set ~· an interrupt signal is 

sent to the processor. The processor ~ay choose to ignore 

temporarily, but remember, the interrupt signal by operating in 

inhibited mode. Upon arrival of an interrupt signal, or if 

inhibited, when the processor leaves the inhibited mode, the 

interrupt signal causes the processor to reset the highest priority 

interrupt cell which is ~· store its state, and jump to a special 

procedure corresponding to the interrupt cell which was reset. 

In addition to the general inhibiting mode mentioned above, a 

processor may mask individual interrupt cells to prevent generation 

of an interrupt signal when the masked interrupt cell is set on. If 

an interrupt cell which is on is unmasked, it immediately generates 

an interrupt signal. 

We will often refer to a hardware device known as an interval 

timer. This device has the following properties: 

l. There is a separate interval timer for each processor. 

2. The interval timer is a register which may be loaded and 

stored by the supervisor program. 

3. The interval timer counts down on a regular basis, for 

example at a fixed time rate, or whenever the processor 

makes a memory access. 

4. Whenever the interval timer counts to zero it sets a system 

interrupt cell belonging to its processor; it continues 

counting into the negative numbers. 

5. It is possible to disable the timer interrupt mechanism so 

that no interrupt will occur if the timer register passes 

zero. 

Processor Switching. 

If there are many processes and few processors, it follows that 

there must be some mechanism by which processors are switched from 

one process to another. We ignore for the moment the problem of 

deciding that a particular switch should be made, and concentrate 

instead on the mechanics of switching. An implication of switching 

a processor from one process to another is that somehow the address 

space of the new process must be acquired by the processor. This 

acquisition requires saving and reloading a portion of the processor 

stateword by a special hardware instruction. 

Recall from chapter one that the address space accessible to a 

processor is defined by the contents of a descriptor segment base 

register in the processor, which contains the absolute address of 

the base of a descriptor segment. The descriptor segment, in turn, 

--··--------
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contains the absolute address of the base of each segment accessible 

to the processor. 

A processor must be very careful when acquiring a new address 

space to make sure that it does so in an orderly manner. Consider, 

for example, what happens if a processor is executing instructions 

from segment number 28, and is fetching an instruction from location 

1172 in that segment. If the instruction orders the processor to 

reload its address space pointer (descriptor segment base regist-er), 

the proce~sor will do so, and then go on to fetch the instruction in 

location 1173, segment 28, in the newly acquired address space. 

Unless we have planned ahead, the instruction found there may not be 

the appropriate one at all. There are at least three alternative 

ways of planning ahead: 

1. Build a special address-space-switching instruction into the 

processor. This instruction would deposit the complete 

processor stateword, including instruction location counter, 

and reload a complete new stateword, including an 

instruction location counter. 

2. Simulate the address-space-switching instruction by pro­

gram. This can be done by disabling the two-di~ensional 

address space hardware (switching to "absolute" addressing 

mode) completely for long enough to reload the descriptor 

segment base register and transfer to the proper point in 

the new address space. 

3. Arrange that the procedure containing the address space 

acquisition instruction be a common procedure appearing in 

every address space in the system, and that it have the same 

segment number in every address space. 

The third solution is completely adequate as long as we assume 

that there is a one-to-one correspondence between address spaces and 

processes in the system. For simplicity, we adopt both this 

assumption and the third alternative. In every process, then, one 

segment number is reserved. It contains a procedure we will name 

"Swap-DBR", short for "swap descriptor segment base register." This 

procedure is called with one argument, the identification tag of the 

process to switch to: 

call Swap-DBR(J): 

Swap-DBR is a closed subroutine, called with a standard call stack 

as described in chapter one. Figure 3.3 illustrates the operation 

of this subroutine in the case where process "K" calls to switch 

control of the processor to process "J". The blocks representing 

steps of Swap-DBR are d~awn twice for clarity, once in process "J" 
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Figure 3.3 -- Flow of control in Swap-OBR. 
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and once in process "K". It is understood, of course, that Swap-DBR 

is really a shared conunon procedure. The dotted line indicates the 

path of the processor; at the step "LDBR" (Load Descriptor Segment 

Base Register) the processor jumps to the address space of "J". 
Note in this figure that since Swap-DBR obtains its return 

location from the top of the call stack in process "J", it returns 

to the location at which "J" called Swap-DBR. This location clearly 

does not have to be the same as the location from which "K" called 

Swap-DBR. If any other process ever subsequently calls Swap-DBR(K), 

control will reappear in process "K" immediately following the LDBR 

instruction in the address space of "K". It is clear then, that 

Swap-DBR, now operating for process "K", and using "K's" call stack, 

will return to the point in process "K" from which Swap-DBR was 

originally called. 

One further question needs to be answered before ending our 

consideration of process switching: how does Swap-DBR know how to 

acquire the address space of process "J"? There must be a table 

relating process identification tags and descriptor segment base 

register values. This table, a segment common to all processes, is 

known as the process table. It contains an entry for every process 

in the system. The process identification tag is the index key to 

this table. As we explore the implications of processor 

multiplexing we will find that this table is the primary data base 

of the traffic controller, and that it contains considerably more 

information about a process than just the location of its descriptor 

segment. With one item stored here we are already familiar: the 

wakeup waiting switch, which was described in section 2 of this 

chapter. 

Processor Dispatching. 

If there are many processes and few processors, it follows that 

not all unblocked processes can really be running. We must expand 

our notion of execution states of a process to include a third 

possibility: a "ready" process. Thus a process may be in one of 

three execution states: 

1. Running. A running process is executing on some processor. 

2. Ready. A ready process would be executing if only a 

processor were available. 

3. Blocked. A blocked process has no use for a processor at 

the moment; it is waiting for a wakeup signal. 

From the notion of a ready process, we may invent immediately the 

"ready list", a list of all ready processes. This list is the basis 
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for dispatching a processor when it is released by another process. 

We can now begin to perceive the dim outlines of an implementation 

of processor multiplexing within the framework of "block" and 

"wakeup". A call to the traffic controller to wake up a blocked 

process means "put it on the ready list." When a process calls to 

block itself it means "I am temporarily abandoning the processor. 

Switch it to some process on the ready list." 

If we place' in the process table entry for each process a 

three-way switch to indicate the execution state of the process (the 

running/ ready/ blocked switch) we may then draw a flow diagram of 

the closed subroutines Block and Wakeup as in figure 3.4. In the 

implementation of Block, once a decision has been made (in the 

example, by process "K") as to what process should be run next 

(process "J"), "K" calls Swap-DBR to execute the switch. Recall 

that control vanishes from process "K" somewhere in the middle of 

Swap-DBR. Not until 

1. some other process puts "K" back in the ready list (by 

calling Wakeup(K)), and 

2. some other process, calling Block, switches control to "K" 

will Block, in process "K", receive a return from Swap-DBR. At that 

time, Block returns control to the program in process "K" which 

originally called it. Thus every process in the system moves back 

and forth among the running, ready, and blocked states, as indicated 

in figure 3.5. 

One further comment may be made about the organization of the 

procedure named "Block." The last three steps of the flow diagram 

(in which we locate a ready process, change its execution state to 

running, and switch to it by calling Swap-DBR) can be collected 

together into a closed subrou!:ine, named "Getwork". Although at 

this point such modularity simply places these three steps under a 

mnemonic name, we will find in the next section that the subroutine 

named Getwork is again needed to implement scheduled processor 

pre-emption. We emphasize again that Block, Getwork, and Swap-DBR 

are closed subroutines using the standard call stack. 

Processor Scheduling. 

Within the framework 

described, we can begin to 

of processor multiplexing so far 

look at the problem of processor 

scheduling1 that is, deciding which processes should be allowed to 

run at any given time. We are not interested here in deciding 

particular questions of scheduling policy, but rather in providing a 

framework with as much flexibility as possible in which to establish 
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scheduling policies. 

There are clearly two opportunities to make scheduling 

decisions in the administration of the ready list: when a process 

is placed in the ready list, and when the time comes to take one 

out. Arranging an appropriate scheduling mechanism must be a 

compromise between the interests of flexibility of scheduling policy 

and efficiency of administration. An organization in which a 

processor spends 40% of its computing capacity deciding what to do 

next is undesirable. We may thus dismiss immediately any schemes 

which require any significant computation which is proportional to 

the number of ~recesses on the ready list. This requirement tends 

to exclude computation at the time of choosing a process to run. 

Instead we will consider only techniques of scheduling in which the 

priority of a process is established at the time it is placed in the 

ready list. We will maintain the ready list "in order" so that the 

dispatcher (Getwork) need merely choose the process at the head of 

the ready list. 

There are still at least three alternative forms of scheduling, 

and our present objective is to determine what framework is 

appropriate to allow all of these alternatives. The simplest 

scheduling technique is first-come, first-served1 it is implemented 

by placing new processes at the end of the ready list, in order of 

arrival. If in figure 3.4 we change the step "Put J in ready list" 

to •put J at end of ready list" we have established this technique. 

The next more elaborate scheduling technique is "fixed priority." 

Here, every process in the system has a fixed priority number 

relative to every other process. (The priority label can be stored 

in the process table.) Procedure Wakeup places a process in the 

ready list in order according to the value of its priority label. 

Neither of these two alternatives makes any great demand on the 

organization of the traffic controller. 

The third scheduling technique, however, does. We may name 

this technique the "computed priority" technique. Here, whenever a 

process is placed on the ready list., its priority is computed 

according to some algorithm which may, for example, take into 

account the amount of system resource that the process has already 

used, or the leng~ of time other processes have been waiting in the 

ready list. In this case the process is placed in the ready list in 

order according to the value of its computed priority label. We may 

now make the observation that each process should schedule itself, 

since each process knows factors which influence its needs for a 

processor. Strictly speaking, it is impossible for a process to 

schedule itself, since it cannot be allowed to execute until it has 

been scheduled. We can, however, again take advantage of our 
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assumption of a one-to-one correspondence between address spaces and 

processes. We do so by making the convention that the priority 

computation algorithm for process "A" is a closed subroutine named 

"Schedule" within the address space of process "A". Process "B" may 

then wake up "A" by switching temporarily to the address space of 

"A", calling the procedure named Schedule (which will put "A" in the 

ready list at an appropriate point) and then switching back to the 

address space of "B". 

The intent to allow a process to 

algorithm should not be construed to 

provide 

mean that 

its own scheduling 

the user of the 

system is to dictate his own scheduling policy; such an arrangement 

would surely be putting the rabbit in charge of the lettuce. We 

intend instead to obtain two important features: 

1. The data base on which scheduling decisions for a process 

are made can be private to the process; the alternative 

would be system-wide accessibility to every scrap of 

information which might possibly be needed to make the 

scheduling decision. With a private scheduler it becomes 

that much easier to modify the scheduling algorithm to use 

an additional piece of data without relocating the data to a 

system-wide table. 

2. It becomes possible for two different processes to use 

totally different scheduling algorithms. While both 

scheduling policies are certainly provided by the system, an 

administrative authority to use a non-standard scheduler is 

a very flexible and powerful tool to obtain easily a special 

grade of service. A process tending a real-time experiment, 

for example, might be allowed to use a scheduler which 

always puts it at the head of the ready list. Conversely, a 

process which is purchasing an extremely low grade of 

computer service (presumably at a less expensive rate) might 

be assigned a scheduler which habitually places him at the 

end of the ready list. It is also possible to try an 

experimental scheduling policy on one or a few processes 

without forcing this policy on all users of the system. 

By analogy, we might consider the "traffic control" techniques 

used in regulating automobile traffic on an expressway. One could 

a~tempt to impose a "master controller" which keeps track of the 

position of every automobile and orders lane changes in an optimum 

fashion. It is much more practical instead to allow each driver to 

make such decisions on the basis of some standard laws, the position 

of his automobile relative to a few others nearby, and his own 
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desires as to speed and which exit to take. In this analogy we see 

both the "limited overhead" aspect of each decision, and also the 

ability for different drivers to use different policies, as long as 

they fit into the same general legal framework. By requiring that 

even non-standard schedulers be provided by the system the chances 

of extending the analogy to an irresponsible driver who ignores the 

legal framework are minimized. 

We may implement our rule that "each process schedules itself" 

by complicating the Wakeup procedure slightly. In place of the step 

(in figure 3.4) containing "Put J in ready list" we substitute "call 

Ready-Him(J) ". "Ready-Him" is 

containing procedure Swap-DBR. 

a second entry into the 

(Remember that this segment 

segment 

takes 

care of all address space switching, and is therefore in a fixed 

location in every process.) Ready-Him goes through four steps 

(assume that "J" is waking up "K") : 

1. Load descriptor segment base register to switch to the 

address space of "K" • 

2. Call procedure Schedule in the address space of "K" • 

3. Load descriptor segment base register to return to the 

address space of "J". 
4. Return to caller (Wakeup) in "J". 

Process "K" has been successfully scheduled; process "J" may now go 

about its business. 

At the risk of disclosing the existence of modules not yet 

discussed, figure 3.6 is a block diagram of the complete process 

exchange. In this figure, the solid arrows represent closed 

subroutine calls; dotted lines are data paths. The two modules 

named "Restart" and "Quit" will be explained shortly. 

~-emption Scheduling. 

Our traffic control framework is now almost complete. The one 

major piece of machinery left to install comes from the answer to 

two closely related questions: 

1. What if when a process begins to run, it merely runs and 

runs, without ever calling Block? If this happens one 

processor does not take part in the multiplexing. 

2. What if a process is added to the ready list by a scheduler 

which thinks that this process is far more important than 

any process presently running? Must the important process 

wait until some other process decides to call Block? 
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A first reaction to these questions might be, "so what?" The 
real problem these questions raise, however, is significant: how to 

guarantee adequate response time to requests for processor time. 

The priority scheduling mechanism so far described is not sufficient 

to provide guaranteed response in an environment where running time 

of a job cannot be predicted. In addition to priority scheduling, a 

mechanism must be available to return a running process to the ready 

state~ a processor must be pre-empted. The mechanism used is, of 

course, the system interrupt. 

For traffic control purposes we will 

cells from each processor and name them 

reserve three interrupt 

internal interrupts to 

input/output devices, 

we will see below, the 

distinguish them from interrupt cells set by 

the external interrupts. For reasons 

internal interrupts are given lowest priority. Since the traffic 

controller may decide to trinqer an internal interrupt, a 

always masks internal interrupts whenever it enters the 

controller. (The reason for this masking will become clear 

The three interrupt ce~ls are used for: 

1. Processor interval timer runout. 

2. Pre-emption by the scheduler. 

3. Quit--one process turns off another. 

processor 

traffic 

later.) 

The problem of a long-running process is solved~ then, by 

having the processor interval timer trigger an interrupt cell if a 

process runs "too long." What constitutes "too long" is left up to 

the scheduler of that process. We extend the ready list to contain 

pairs of entries: a process to run, and a running time limit. When 

the dispatcher (Getwork) chooses a process from the head of the 

ready list, it loads the processor interval timer with the specified 

time limit. When the interval timer runs out, it sets the internal 

interrupt cell reserved for it, thereby interrupting the processor. 

If the timer runout interrupt should occur, the processor will 

suddenly find itself in the system interrupt interceptor, a 

control module. This is an indication that the process 

traffic 

should 

return to the ready state. We therefore provide a procedure named 

"Restart" which is to be called by the system interrupt interceptor 

whenever a timer runout interrupt occurs. Restart merely 

l. Calls the scheduler to put this process back on the ready 

list. 

2. Calls Getwork to turn the processor over to the highest 

priority process available. 
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The other problem, that of a scheduler convinced that the 

process it has just placed at the top of the ready list is more 

important than any presently running process, is solved with the 

same mechanism: force the process to call Restart, by causing an 
interrupt. A scheduler, then, when it schedules a very 

high-priority process may wish to inspect even the list of running 
processes, and set the pre-emption interrupt cell of one of the ., 
processors. Since we have been careful to arrange that: 

1. All processors are equivalent ("anonymous"), and 

2. the particular processor executing the scheduler is masked 

for pre-emption as long as it is in the traffic controller, 

the scheduler need merely pick the lowest priority process from the 

list of processes currently running. It is entirely possible that 

the scheduler will choose the processor on which it is now 

executing. If so, the instant that this processor exits from the 

traffic controller it will be interrupted; the system interrupt 

interceptor will call Restart, and the high-priority process will be 

on its way. If the scheduler chooses a different processor, some 

other process will meet the same fate. 

It has not been our intent here to become involved in issues of 

scheduling policy, but rather to provide a framework within which 

many policies can be implemented. Among the scheduling policies 

which may be easily incorporated within this framework are a simple 

round robin or a multi-level priority queue based on processor or 

total resource usage. Any priority-computation algorithm which 

calculates a fixed queue number or priority label can be used. 

~ Quit Module. 

In a practical system it often turns out that a process gets 

into a loop, begins producing large quantities of unneeded output, 

or uses up more resources than its owner has agreed to pay for. In 

any of these cases, it is necessary to "turn off" the process. The 

Quit module is provided for this purpose; it can force a running or 

ready process into the blocked state. If one process makes the 

observation (we do not ask how) that another process should be 

turned off, it may 

call Quit (K) 

to shut off process "K". The procedure Quit follows is 

straightforward: 

1. If the proces~ in question is already blocked, nothing need 

be done. Quit returns to its caller. 
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2. If the process in question is running, the Quit module 

resets the Wakeup Waitiag switch for the process, and 

generates a system interrupt, the "Quit interrupt," for the 

appropriate processor. The meaning of the interrupt is that 

the process should call Block; in the description of the 

system interrupt interceptor below, we see exactly how this 

call comes about. 

3. If the process being blocked is ready, it is merely removed 

from the ready list and its process table entry modified to 

show that it is blocked. 

If a later change of heart occurs, the process which 

quit can be restarted by calling Wakeup for it. 

One of the responsibilities of the resource 

procedures of the operating system is to insure that a 

has been 

management 

typewriter 

user, for example, can always get a signal through to some process 

requesting that a looping process be "quit". 

Although the Quit module does not call other process exchange 

modules, it should be considered part of 

because its activities must be coordinated 

other process exchange modules. 

Review 

the 

and 

process exchange 

interlocked with 

In section three we introduced a wide variety of ideas and it 

may be useful to review them briefly here before proceeding. 

The problems of processor multiplexing are technological. That 

is, they stem from the fact that we wish to share resources for 

economy. A solution to the problem of processor sharing must be 

able to: 

l. Dispatch processors to waiting ("ready•) processes when a 

process blocks itself. 

2. Provide a technique of priority scheduling of processors 

among processes whose running times are unknown a priori, 

with pre-emption to help guarantee response time. 

3. Perform the mechanics of switching from one process to 

another in such a way that each process may have a different 

operating system, including a private scheduler, if desired. 

4. Control the.overhead cost of multiplexing so that it does 

not grow combinatorially with the complexity of the system. 

In order to achieve multiplexing of a few processors among many 

processes, it is necessary to use two special hardware devices, the 

system interrupt and the ability to switch a processor from one 
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address space to another. Processor switching is accomplished by a 
module named Swap-DBR, which must appear in the same segment in all 
address spaces. When a process calls swap-DBR(K), the processor 
disappears from this process 1 to reappear in module Swap-DBR in the 
address space of process K. The processor then returns to the last 
place in process K which called swap-DBR. The process table 
contains a list of process tags and descriptor segment base register 
values for Swap-DBR. 

A scheduler maintains a ready list, an ordered list of 
processes ready to execute, each with a time limit. A process 
leaves the running state by calling the module - Getwork, which 
locates the highest priority process in the ready list and calls 
Swap-DBR. There are two reasons why a process may leave the running 
state: it may desire to block itself, or it may be pre-empted by 
another process. In the first case the process calls the Block 
module voluntarily. In the second, a system interrupt forces it to 
call the Restart module. 

Scheduling of a process (placing it in the ready list) is 
--\ 

accomplished by a module named •schedule• in the address space of 
the process. If a process wishes to wake another up, it calls the 
module named Wakeup which, by calling the subroutine Ready-Him, 
switches to the address space of the awakening process, calls 
schedule, and switches back to the address space of the caller. 
This technique allows each process to be scheduled by a scheduler 
which makes a limited overhead decision which may be based in part 
on factors known only to the process being scheduled. One option 
available to a scheduler is to pre-empt a running process by 
triggering a pre-emption interrupt in the appropriate processor. 

Finally, an entry named •ouit• is provided to allow one process 
to turn off another which has gotten into a loop or is otherwise 
performing a valueless service. 

All of these modules are closed subroutines which are called, 
and call on one another, using a standard calling stack. These 
modules together form the process exchanqe. We next wish to examine 
'that part of the traffic controller which interfaces with the system 
interrupt hardware, the system interrupt interceptor. 



THE SYSTEM INTERRUPT INTERCEPTOR 47 

SECTION FOUR: THE SYSTEM INTERRUPT INTERCEPTOR 

The traffic controller becomes involved in interrupt handling 

for two reasons: 

1. The system interrupt is the tool by which pre-emption 

decisions of the scheduler may be enforced. 

2. In order to allow a process to communicate with an input/ 

output channel, the traffic controller must intercept 

signals coming from the I/O channel and direct them to the 

correct process. 

In the discussion of the process exchange, we saw that three 

kinds of system interrupts were generated by the process exchange 

itself: 

1. Timer runout interrupt (ordered by scheduler). 

2. Pre-emption interrupt (ordered by scheduler). 

3. Quit interrupt (signal from another process). 

These three system interrupts are internal interrupts. In addition 

to the three internal system interrupts, the hardware input and 

output devices of the system generate a large variety of interrupts 

to indicate completion, progress, or trouble. These are external 

interrupts. An important distinction between the interrupts 

generated by the process exchange and the externally generated 

interrupts is that the former are directed to the process running at 

the time while the latter are usually of interest to some other 

process, the one which initiated the I/O action, for example. 

Since the external interrupts generally "belong" to some other 

process of unknown and possibly higher priority, they are given 

priority over the internal system interrupts. All system interrupts 

are given priority over scheduled work. By appropriate arrangement 

of procedure, the effect of this arbitrary priority assignment on 

scheduling and response times can be minimized. The procedure 

executed at the instant of the external system interrupt is only 

enough to determine which process has the real interest in this 

interrupt, and to reflect a wakeup signal to that process. 

Flow within ~ system interrupt interceptor. 

The system interrupt interceptor is automatically entered by 

all system interrupts. After passing through a short piece of code 
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which saves the processor state in an interrupt stack, the interrupt 

interceptor masks further interrupts of equal or lower priority. Up 

to this point, execution has been in inhibited mode. O~ce the 

processor state is saved and the mask is set, the unmasked 

interrupts may be permitted1 the processor leaves inhibited mode. 

The system interrupt interceptor now calls an appropriate 

procedure, known as an interrupt handler. Upon return from the 

interrupt handler, the processor state is restored (including the 

previous state of the interrupt mask) and control returned to the 

point at which the interrupt happened. Figure 3.7 is a flow diagram 

of the system interrupt interceptor. 

The interrupt handlers are brief and they 

coded with certain restrictions. They cannot 

faults, including page-not-in-core faults, or 

interrupts (for example by calling Block.) 

It is important to realize that the 

must be carefully 

contain programmed 

depend on further 

system interrupt 

interceptor is executed as a part of the process which happens to be 

running on the processor at the time of the system interrupt. A 

system interrupt interrupts the processor, not the process1 the 

internal system interrupts do, however, imply that the traffic 

controller should change the execution state of the process. The 

distinction between a processor interrupt and the change of 

execution state of a process cannot be over-emphasized. We may 

note, however, that the processor time used to service an external 

system interrupt can be metered, and charged to the process 

responsible rather than the one which answered the interrupt. 

The handler invoked for an external interrupt is in principle 

fairly simple: decode the meaning of the external interrupt and 

call wakeup for the appropriate process or processes. (It .is 

entirely possible that a single system interrupt may represent an· 

event of interest to several processes.) Since the extern~l 

interrupt decoding procedure is executed as a part of the 

interrupted process, all procedures and data necessary to decode the 

meaning of the interrupt must be available to all processes. 

Procedures for internal interrupts. 

The internal interrupt handlers are more complex since internal 

interrupts imply that some special action by the Traffic Controller 

itself is needed. The internal interrupts are given the following 

priority: 

1. Pre-emption interrupt. 

2. Time-out interrupt. 
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3. Quit interrupt. 

The pre-emption and time-out interrupts are handled identically. 
The handler for the pre-emption interrupt calls the Restart entry of 
the process exchange. The Restart entry changes the state of the 
process to ready, reschedules the process, and calls Getwork to give 
the processor to the highest priority process available. Sometime 
later, the process which called Restart will come to the top of the 
ready list, and obtain a processor. At that time, Restart will 
return to the system interrupt interceptor. The system interrupt 

interceptor then returns directly to the point of the pre-emption 

interrupt. 
The lowest priority system interrupt is the quit interrupt. 

This interrupt means that the process now running should immediately 
revert to the blocked state. The procedure for this interrupt is 

straightforwards 

1. Unmask the processor. 
2. Call entry point Block in the process exchange. 

The process which has just blocked itself is now at the mercy of the 
originator of the quit interrupt. A wakeup signal from another 
process will cause a return from Block to the quit interrupt handler 
in the system interrupt interceptor. This return is interpreted to 

mean that the process should be ailowed to continue, so the system 
interrupt interceptor returns directly to the point of the quit 

interrupt. 



CHAPTER FOUR 

Traffic Control with Limited Core Memory 

The traffic controller design of chapter three is based on one 

very important premise: that sufficient core memory is available 

for the procedures and data bases required to do processor 

multiplexing. The procedures of the traffic controller constitute a 

trivial issue since they are shared among all or nearly all 

processes. The data bases are another matter, however, since they 

tend to be repeated once for every process, or are proportional in 

size to the number of processes. For every proces~ with its own 

private address space there must be a descriptor segment and data 

about the process. This data base consists of the process 

stateword, the call stack, and the wakeup waiting switch1 a 

centrally located table of descriptor segment pointers is also 

necessary. 

In this chapter our objective is to find out what special 

efforts are required to minimize the quantity of such data which 

must be kept in core memory at all.times. We will see that wiLh 

appropriate and carefully designed intercommunication between the 

traffic controller and the basic file system, it is possible to 

reduce the core requirements of most processes to zero when they are 

blocked, thus opening the way to an almost unlimited number of 

processes "in the system." Similarly, we will find that the core 

memory requirements of even a ready process consist of only a few 

table entries. 

The reasons for such an objective are two-fold. First, we wish 

to be able to balance the capacity of the processors with as small 

an amount of core memory as possible. Secondly, we would-like to be 

able to have an arbitrarily large number of processes "in the 

system", but not presently demanding processor time, without 

increasing the core memory size needed to balance the processor 

capacity. 

Since core memory multiplexing is within the province of the 

basic file system, it may be profitable to review briefly the 

techniques used in core memory management. The reader is advised to 

reread the section on core memory management in chapter two if he is 

not thoroughly familiar with the basic file system. In that 

51 
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section, recall, we noted that the basic file system operates with 

one system-wide table, the active segment table, and one table per 

process, the segment name table. The active segment table contains 

pointers to the secondary storage location of each segment for which 

a missing-page fault might occur (each "active" segment); it is the 

primary source of data when a missing-page fault occurs. Since as 

mentioned in chapter two the organization of the basic file system 

precludes recursive missing-page faults, the active segment table is 

a segment which is "wired-down". That is, it must not take part in 

core multiplexing1 it remains in co~e at all times. 

The segment name table belonging to a process contains a list 

of all segments belonging to this process1 it provides a 

correspondence between the segment number used to address the 

segment and the tree name of the file in secondary storage. The 

segment name table does not need to be wired-down, but it must be 

active, since a missing-segment fault encountered when looking in 

the segment name table would ~e impossible to handle. 

~ Memory Needed ~ ! Running Process. 

With this background, we can now outline the core memory 

requirements of a running process. (For reference, table I is a 

catalog of the data bases mentioned here.) First, the process must 

be capable of handling a missing-page fault in order to retrieve 

pieces not in core; this implies that the part of its descriptor 

segment describing the page control and traffic control modules of 

the file system is in core, as well as the procedures of page and 

traffic control. Since page control refers to the active segment 

table to find pointers to pages on secondary storage, that table 

must be in core. Since page control wishes to block the process 

while awaiting the arrival of the page from secondary, it must be 

possible for it to call Block in the traffic controller without 

getting a missing-page fault. Since Block calls Getwork, which 

looks at the ready list, the ready list (and process table entries 

for processes appearing in the ready list) must be in core memory. 

Before giving the processor away to another process, 

must save the process stateword including the status of 

stack which represents the trail by which the process 

Swap-DBR. This information is needed so that when this 

Swap-DBR 

the call 

got to 

process 

regains a processor it can return to its work. This information 

could be saved in the process table entry for this process. We will 

find, however, that once the process leaves the running state, its 

stateword does not need to stay in core memory. We therefore make 

up a special segment private to the process, the 

segment. Whenever a process is running, its process 

process data 

data segment 
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must be in core memory so that the process can deposit its stateword 
and leave running status if. necessary. When executing in the 
hardware management p~ocedures, the process data segment is used as 
the calling stack. 

It is also necessary that a running process be able to handle A 

missing-segment fault. Since segment control must look at the 
process' segment name table to interpret the meaning of the 
missing-segment fault, it must be able to access the segment name 
table witbQut getting another missing-segment fault. It follows 
that the segment name table of a process must be •active" whenever 
the process is running. By definition, •active• means that there is 
an entry in the active segment table and a page table in wired down 
core. 

Summarizing, then, a running process must have the following 
information in core: 

1. Certain pages of its descriptor segment, containing descrip-

tors of traffic control and page control. 
2. A page table for the segment name table. 
3. A process data segment, to receive the process stateword. 
4. Entries in the active segment table for the segment name 

table and the process data segment. 
5. Process table entry for itself. 

In addition, we found that the ready list and process table entries ,. 
for processes on the ready list must aiso be in core, so that the 
running process can leave the running state if it has to~ following 
a missing-page fault. 

When a process has all five items mentioned above in core 
memory, we say it is loaded1 we may summarize the core requirements 
of a running process by saying that a running process must be 
loaded. 

Figure 4.1 is a schematic illustration of a loaded process. 

This figure is simplified for intelligibility; for example, the 
traffic controller and basic file system would probably consist of 
several segments instead of one each as shown. Page tables are not 
shown, it is assumed that all segments are paged, however. 
Abbreviations are explained on the diagram. The arrows leading out 
of tables represent table entries containing pointers to the objects 
indicated. The descriptor segment is divided into universal 
descriptors shared by all processes, and private descriptors 
belonging to one or a few processors. 
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Figure 4.1 -- Schematic diagram of a running process. 
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Core Memory Needed ~ ~ Ready Process. 

The core memory requirements of a ready process are determined 

by our ability to change its status to running and switch to it, 

when it comes to the top of the ready list. If the process happens 

to be loaded, there is certainly no problem in switching to it. We 

can, however, switch to a process which is missing part of the list 

of loaded items, if we can arrange to recreate them at the instant 

of the switch or to have the process retrieve them itself. 

Let us examine each of the pieces of information making up a 

loaded process to see which, if any, a ready process can get along 

without. Consider first the descriptor segment. The segment 

descriptor words appearing in the descriptor segment of any process 

may be divided into three classes, namely 

1. Descriptors pointing to traffic control and basic file 

system segments which are shared by all processes in the 

system. 

2. Descriptors pointing to segments known to 

process by virtue of their appearance 

segment name table. 

this particular 

in the process' 

3. Descriptors containing missing-segment bits. Unused segment 

numbers and segments which have not been used for a long 

time will have a missing-segment bit. 

We may observe first that any descriptor of the second category can 

by replaced by one containing a missing-segment bit1 if the 

missing-segment bit later causes a fault, segment control can 

rebuild the descriptor by reference to the segment name table. We 

may observe next that all descriptor segments will have an identical 

set of descriptors of the first category. From this line of 

reasoning, it follows that we may discard the descriptor segment of 

any process which is not running, and recreate its descriptor 

segment whenever it becomes necessary to change it to running state. 

The descriptor segment may by recreated (in Swap-DBR) by creating an 

empty, wired-down segment from a pool of free core, and copying into 

it the contents of a descriptor segment "template". This template, 

buitt up at the time the system is initialized, is a data segment 

accessible to all processes in the system. It contains all the 

descriptors of the first category, above, plus missing-segment 

faults for all other descriptors. 

We have complicated slightly the subroutine Swap-DBR, which must 

now check to see if the process it is switching to is loaded and, if 

not, establish a new descriptor segment for the process. We place 

in the process table a flag which, if ~means that the process is 
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not loaded. Figure 4.2 is a flow diagram of Swap-DBR including the 

added complication of checking the loaded flag. 

Consider next the segment name table of a ready process. We 

must preserve the ability for the process to take missing-segment 

faults when we switch to it, so it can fill in the rest of its 

descriptor segment by itself. When a missing-segment fault occurs, 

segment control looks into 

file name corresponding to. 

fault. For this reference 

there must be a page table 

(Page control can retrieve 

the segment name table to 

the segment number which 

to the segment name table 

in core for the segment 

the individual pages of the 

look up the 

caused the 

to succeed, 

name table. 

segment name 

table on missing-page faults as long as the secondary storage 

location of the segment name table appears in the wired-down active 

segment table.) However, we can again arrange to discard this page 

table when the process is not actually running by the following 

strategy: After switching to the process, but before any 

missing-segment faults can occur, Swap-DBR can call segment control 

directly (at a special entry point) and ask it to make up a page 

table for the segment name table. This is possible only if the 

location of the segment name table on secondary storage is still in 

core in the active segment table so that segment control does not 

have to search for it in the directory hierarchy (using 

missing-segment faults). 

Again, we have complicated Swap-DBR in order to cut down on the 

minimum core requirements of a ready process. After switching to 

the process, Swap-DBR must check to see if it is loaded and, if not, 

ask segment control to create a page table for ("activate") its 

segment name table. Figure 4.3 is a flow diagram of Swap-DBR 

showing this latest addition. As an indication of things to come, 

we have drawn the block containing "call segment control to activate 

the segment name table" outside Swap-DBR in a special module named 

the process bootstrap module. 

Consider finally the process data segment. This segment is 

needed for two reasons: as a call stack when executing in the 

traffic controller, and to provide a place for Swap-DBR to leave the 

stateword when the process leaves running state. Again, there is a 

strategy by which we can remove this data base from core when the 

process is not running. The strategy works as follows: suppose we 

try to switch control to a process which does not have its process 

data segment in core. We do so planning that the process bootstrap 

module should retrieve the -information itself by means of 

missing-segment and missing-page faults after activating the segment 

name table. This would work except for one detail: when the 

bootstrap module gets a missing-page fault, page control will want 
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to block the process until the page arrives from secondary storage. 
Blocking the process requires depositing its stateword in the 
process data segment, which is the very thing being retrieved. we 
can resolve this problem by having Swap-DBR create an empty 

"interim" process data segment before switching to an unloaded 

process. The interim process data segment is used by the process 

bootstrap module as a call stack, and by Swap-DBR to store the 

process state whenever the process leaves running status while 

trying to retrieve its real process data segment. Figure 4.4 is a 

complete diagram of Swap-DBR. 

In review, then, a ready process must have the following 

personal information in core so that it can bootstrap itself back to 

the loaded state: 

1. An entry in the active segment table for its segment name 

table. 

2. An entry in the process table for the process. 

When a process has these two table entries in core, we say it 

is an active process. We can summarize the core requirements of a 

ready process by saying that a ready process must be active, but it 

does not ha~e to be loaded. 

When S-locked Processes ~ ~ Active. 

A line of reasoning essentially the same as that above leads us 

to the conclusion that a blocked process must also be active in 

order to accept a wakeup signal. The information in core for an 

active process is the minimum quantity of 

remain in core such that the process can 

information which must 

survive by itself and 

bootstrap itself in. If the information in the process table and 

active segment table is removed from core, it is inevitable that 

some other process will have to provi?e substantial aid in getting 

this process back in operation. Reconstructing either of these 

table entries requires retrieval of information from the secondary 

storage hierarchy, by means of missing-segment and missing-page 

faults. As shown in the previous section, when switching to a ready 

process it is not in general possible for the preceding user of a 

processor to provide this help, so we require that all ready 

processes be active. 

The situation for a blocked process is quite different. In 

most cases, there is no reason why a process calling the wakeup 

entry cannot first check to see if the process being awakened is 

active and, if not, retrieve the information necessary to activate 

it. The cases in which the calling process cannot provide this aid, 
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in fact, are only two: 

1. The calling process is operating in the basic file system, 

has discovered a previously requested page is now in core, 
and is attempting to wake up the blocked process to inform 
him of this fact. 

2. The calling process is operating in the system interrupt 
interceptor, and is attempting to wake up the other process 
because a system interrupt has arrived. 

Both of these cases represent situations in which the basic 
file system cannot tolerate a missing-page fault, the first because 
a missing-page fault has already occurred for the process doing the 
call, and the second because the interrupt may have occurred while 

handling a missing-page fault. (Recall our restriction of no 
recursion on missing-page faults.) 

We therefore make a note in the process table if a process is 

expecting a wakeup from either of these two sources, and agree to 
leave suClh processes active. We may, however, safely deactivate any 

blocked process which is not waiting for such a wakeup. When a 
process is deactivated, there is no longer any information 

whatsoever in wired-down core memory pertaining to the process1 the 
number of deactivated processes in the system is limited only by the 

amount of secondary storage the system is willing to devote to the 

tables needed to remember them. 
As a summary of the various state transitions which a 

can undergo, we repeat the state diagram of figure 3.5 
cognizance of unloading and deactivation in figure 4.5. 

£2!!_ Memory Management ~ Processor Multiplexing. 

process 
taking 

Processor multiplexing adds a new dimension to the problem of 
multiplexing core memory usage. In addition to the ability to write 

out little-used pages it is now possible both to unload and 
deactivate processes to free up core space. We will also discover 
that it is possible to postpone the loading of a process if there is 

insufficient free core available. 
The first step in managing the core requirements of the traffic 

~ntroller is to divide the process table into two tables: the 
active process table and the known process table. The active 

process table is wired-down to core and contains an entry for every 
active process. All other processes appear in the known process 

table, which may be paged out on to secondary storage. To activate 

an inactive process prior to waking it up, one must first locate the 

information describing the process in the known process table and 
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copy it into a vacant slot in the active process table. This 

operation, of course, will generally result in one 

fault for the known process table and any number 

missing-segment 

of missing-page 

faults. The next step in activating the 

the basic file system and ask it to find 

the process being activated. Locating 

inactive process is to call 

the segment name table of 

in secondary storage the 

segment name table will again, in general, require 

and missing-page faults. 

Management of a wired-down table requires some 

the table will not grow without bound. In the case 

missing-segment 

guarantee 

of the 

that 

active 

process table, we may control its size by assigning an upper limit 

to the number of allowed active processes. Once this number is 

reached, if someone wishes to activate a process he must first look 

through the active process table for a blocked process to 

deactivate. The activation and deactivation is, of course, part of 

the responsibility of the traffic controller and is actually carried 

out by the Wakeup module when it discovers that it has been asked to 

wake up an inactive process. The decision as to which blocked 

process to deactivate is in the province of a policy module called 

by Wakeup. The active segment table is managed in a similar 

fashion. 

Unloading of a process is carried out by the core control 

module of the basic file system when it needs space in a fashion 

similar to unloading a single page. The decision to unload a 

process rather than a page, and which process to unload, is again 

handled by a policy module called by core control. 

Reloading an unloaded process, recall, is done by Swap-DBR when 

the process comes to the top of the ready list. This action poses a 

most interesting problem. Suppose that at the top of the ready list 

are a large number of unloaded processes. If left to its own 

devices, the traffic controller will begin loading the first one, 

only to have it immediately block itself waiting -for its process 

data segment to come in. The traffic controller will then assign 

the again free processor to the next process, and begin it loading 

also, and the next, and the next. In the fashion of a sorcerer's 

apprentice, traffic control will rapidly fill up all of available 

core memory with processes trying to load themselves. 

We can forestall such a circumstance by realizing that the 

decision to reload a process is really a commitment of a 

considerable amount of core memory resource, both for the special 

segments needed to load it, and also for private segments which the 

process will begin to use as soon as it is loaded. We therefore 

give to core control, the submodule of page control which is in 

charge of core resource commitments, the privilege of responding 
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"no" when Swap-DBR requests core memory space to build a descriptor 

segment in preparation for loading a process. Core control can make 

a decision to give a "no" response on the basis of the amount of 

available core and the number of processes already loaded. 

What should Swap-DBR do if it receives a "no" response from 

core control? The meaning of this response is that core is too full 

to reasonably commit resources xo load another process. Swap-DBR 

therefore gives an error return to its caller, Getwork. Getwork, 

upon receiving this error return, can then run down the ready list 

looking for a loaded process to run instead. If no loaded process 

is found, we have a situation similar to that when the ready list is 

empty: there is no useful work for the processor to do at the 

moment. As we will see in chapter five this condition may indicate 

that the resources of the system are not well matched to the load. 

The simplest way to handle this condition is to place the 

processor in some sort of a busy loop, 

ready list over and over for a loaded 

for example searching the 

process. Eventually some 

other processor, or this one upon taking a system interrupt, will 

add a loaded process to the ready list. This last strategy depends 

upon the fact, not previously mentioned, that the basic file 

uses a daemon process to manage the secondary storage devices 

"drum daemon") and it is careful never to unload this 

system 

(the 

daemon 

process. If core is overcrowded to the point that core control 

refuses the loading of any new processes, it will have already begun 

output to free up some core memory. TherP.fore, whenever a processor 

goes into a busy loop because it cannot load a ready process, it is 

guaranteed that there will soon be an output completion interrupt 

from the se·condary storage device asking to wake up the drum daemon. 

Summary 

Again, we have introduced a host of ideas and would do well to 

pause and sununarize them. The fundamental problem addressed in this 

chapter has been to discover techniques by which processor traffic 

control can be accomplished without usurping all of core memory for 

the traffic controller and its data bases. The procedures of the 

traffic controller are fixed in size and shared among all processes; 

the real concern is with the data bases. We identify two kinds of 

data bases which cause difficulty: those private tables which are 

repeated once for every process in the system, and shared tables 

which contain entries for every process. 

For a process to be running, it must be loaded. A loaded 

process has a descriptor segment in core, and other private 

necessary to allow it to take missing-segment faults. 

appears in wired-down tables so that it may properly 

tables 

It also 

handle 
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missing-page faults. 
A ready process does not need to be loaded, but merely active, 

meaning that it still has in core the wired-down table entries 
permitting it to take page faults. In this way, the process can be 
switched to running status in short order when it comes to the top 
of the ready list7 it can then retrieve on its own the other tables 
it needs to operate outside the traffic controller. In order to 
switch control to an unloaded process, swap-DBR must first create 
empty descriptor and process data segments from a pool of free core 
memory and copy a descriptor segment template into the descriptor 
segment. The template contains descriptors for the traffic 
controller, basic file system, and the process bootstrap module, 
which bootstraps the rest of the process back into core memory. 

Blocked processes do not even need to be active unless they are 
to be reawakened by arrival of a system interrupt or by the basic 
file system. An inactive process requires no information whatsoever 
to be stored in wired-down core tables, but it requires some effort 
and missing-page faults by another process to reactivate it. 

As demand for core fluctuates, policy algorithms determine 
which pages to write out, and processes to unload or reactivate. 
One important policy algorithm refuses to allow too many processes 
to be loaded at once J when the traffic controller is told by the 
basic file system that it cannot run an unloaded process, it instead 
searches for a loaded one to run. It is possible that a processor 
may not be able to find any useful work to do even though the ready 
list is not empty, since beginning to work on an unloaded 
would merely tend to overload the core memory resources. 

With this examination of the interaction between core 
and processor multiplexing, our detailed design of the 
controller is complete. As a final step, we next wish to 
some properties of this particular traffic control design: 
reacts to a mismatched load, and how it scales in size. 

process 

memory 
traffic 

consider 
how it 



CJIAPTER FIVE 

System Balance and Scaling 

In the previous chapters we have been concerned exclusively 
with the organization of a computer utility, stressing the detailed 
requirements of process~r multiplexing. In this chapter we stand 
back from the resulting design and look at it from two related 
aspects: system balance and system scaling. We use a limited 
defini.tion of system balance, namely the relation between processor 
capacity and memory size for a given presented load. System scaling 
is the ability of the design to scale in capacity up or down over a 
wide range of presented loads. 

In doing so, we purposely 
attempt to answer. One 
implications of the design, is 
exploration for the future. 

System Balance. 

raise many 
intent, in 
to indicate 

more questions than we 
addition to indicating 

interesting areas of 

One of the first problems confronting the administrator of a 
computer system is to find out how well his system is working. In 
this section we propose some simple tests which help answer whether 
or not processor and core memory are being used effectively. Our 
co11111enta only scratch the surface of a difficult problem, and 
completely ignore many important aspects of system balance such as 
whether or not the input/output channel capacity of the system is 
appropriate. A very simple model of. the system consisting only of 
processors, core memory, and a •1arge enough• secondary storage and 
I/O capacity is the basis for the following comments. It is assumed 
that the load presented to the system is somehow homoqenous and 
non-varying. 

The particular balance problem we are concerned with here is to 
determine whether or not a system's core memory and processors are 
balanced relative to eabh other, and to the presented load. In 
addition to measurements of the characteristics of the presented 
load and of the operation of the system, we can perform certain 

simple but very revealing experiments. For example, since the core 
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memory is paged and allocation is extremely flexible, it is possible 

to vary its effective size almost continuously by removing a page at 

a time from the pool of allocatable pages. One problem is that to a 

certain extent, it is possible for a shortage, say of core memory, 

to be taken up by a surplus of processor capacity. One other 

problem which is characteristic of the paged memory strategy used by 

the basic file system is that no matter how much memory is 

available,, it will all be used. Finally, one must realize that the 

solution to a recognized imbalance may lie in any of several 

directions. For example, a shortage of core memory might be 

corrected by l) purchasing more core memory, 2) readjusting a core 
memory multiplexing algorithm, 3) discouraging large programs by 

appropriate charges, or 4) improving a popular translator program 

to produce shorter object code. Any or all of these techniques, 

plus others, may be appropriate for a given situation. 

The problem of deciding whether or not balance has been 

achieved is complicated by the possibility that a mis-tuned policy 

algorithm is causing •thrashing•, that is excessive overhead caused 

by unnecessary processor switching or page swapping. Such thrashing 

can turn a resource surplus into a resource shortage. Before 

meaningful measurements can be made of system balance, it is 

necessary to convince oneself that the balance measurements will not 

be distorted by thrashing. 

Thrashing can be detected by an appropriate set of measurements 

also. Consider first the case of core memory. If the core 

multiplexing algorithm permits too many processes to be loaded for 

the size of core memory available, those processes will fight very 

hard for the remaining core space for 

result the average age of a page being 
their private 

written out 

pages7 as 
for "lack 

a 
of 

usage• may become quite short. If pages are written out only to be 

read in again an instant later, thrashing exists. We may postulate 

the following rough rule of thumb to indicate whether nor not core 

thrashing is occuring: If the average age of pages being written 

out is less than the average time that a process remains loaded, the 
chances of writing out a page which is still in use are very high 7 

and we have prima facie evidence of thrashing caused by the core 
management algorithm. One appropriate correction to make for this 

situation might be to reduce the average number of loaded processes, 

as was described in chapter four. 

A similar thrashing problem exists for processors. If, in an 

effort to improve response time to short requests, the processor 

scheduling algorithm places too short a time limit on most 

processes, the predominant cause 

timer runout rather than release 

of processor switching 

of a- processor by a 

will be 

process 
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blocking itself. Each timer runout introduces one extra scheduling 
operation and an extra dispatching operation later, when the process 
is picked up again. In addition to increasing overhead, if timer 
runouts are the predominant cause of processor switching, it is 
possible that average response time is actually degraded. For an 
intuitive notion why this is true, consider 10 processes each of 
which need 5 seconds of processor time. If each is run to 
completion,, followed by the next, the first process will be served 
after five seconds, the second after 10, etc., the last after so. 
On the other hand, suppose that each process is served for only 1 

second, then the processor is switched to the next, etc., in a round 
robin. In this case, the first process to enter the system will not 
get out until 46 seconds have passed, the last still leaving at so. 
If processor switching adds overhead, the delay times would be even 
more. 

We conclude that it can be unprofitable to have pre-emption 
occur very often. Again, we may postulate a rough rule of thumb to 
detect processor thrashing: If more than half (or some other 
appropriate threshold) of processor switching operations are 
generated by running out of scheduled time, we may claim prima facie 
evidence of processor thrashing. Again, one possible correction to 
reduce thrashing is clear: adjust the processor scheduler to 
increase the average time limits it sets. 

On the other hand, timer runouts are the primary technique 
available to the processor scheduling algorithma to improve response 
time on short requests. To guarantee adequately short response time 
for short requests for processor time it may well be necessary for 
the scheduler to push the system in the direction of processor 
thrashing by shortening its time limits. The tradeoffs required to 
produce a given quality of service while avoiding excessive overhead 
and undue delays for some jobs are an interesting area for 
exploration. 

Once one is convinced that neither the core multiplexing nor 
the processor multiplexing algorithms are thrashing unnecessarily, 
it becomes possible to ask questions about system balance. To a 
ce,rtain extent, the importance of having processor and memory 
capacity balanced depends on how closely the presented load exhausts 
total system capacity. In a very underloaded system, severe 
imbalance may have little effect. In a system operating at the 
threshold of overload, a slight mis-a'llocation of resources can be 
very damaging. In order to talk sensibly about the state of balance 
of core and processor capacity, let us assume that the load on the 
system has been adjusted (by regulating the number of logged-in 
interactive users, for example) to the point that response time is 
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just adequate. We can then look at the state of balance of the 

system. The primary tool to use here is the measurement of 

processor idle time. Recall from chapter four that a processor may 

be idle for one of two reasons: 

l. There is actually no work to do. 

2. The ready list contains work, but the core multiplexing 

algorithm refuses to allow any more processes to be loaded. 

When a processor is idle for the first reason, we have a potential 

case of processor overcapacity. On the other hand, a certain aniount 

of processor overcapacity may be essential to provine responsive 

service under peak load conditions. Again, the desire for service 

quality must be carefully weighed against the desire to maintain 

only enough processor capacity. 

If the percentage of total time spent by processes in idling 

for the second reason is very great, we have evidence that the 

allowable load is being limited by the amount of core memory 

available. Reducing processor capacity will have very little effect 

on total system capacity or service quality under these conditions. 

On the other hand increasing only memory size will increase total 

system capacity or service quality. 

The related problem of detecting core memory overcapacity is a 

little bit trickier since, as mentioned before, a paged core memory 

multiplexing strategy tends to use up all available memory, no 

matter how much there is. On the other hand, this very flexibility 

of allocation of memory can be turned into an experimental tool. 

One need merely •turn down• the size of core memory a little at a 

time by removing small blocks of memory from consideration by the 

core multiplexing algorithm. As the appropriate memory size is 

reached, processor idle time will begin to mount and the desired 

information of where memory •undercapacity• begins has been 

obtained. 

We thus have several simple handles and tools available for 

detecting whether or not the resources of the system are well 

matched to the job they are trying to do. First, simple 

measurements indicate whether or not the scheduling algorithms are 

thrashing1 after they are appropriately adjusted, and the load is 

adjusted to give reasonable response time, one can determine the 

state of balance of the system by measurements and an appropriate 

experiment. It is essential, of course, that the necessary 

performance monitoring •meters" be included in the traffic control 

and core control procedures. It is most important to realize that 

tuning a system requires consideration not only of hardware 
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efficiency, but also of service quality as measured by the 

distribution of response times for various size computation 

requests. One must ·also be prepared for the possibility that the 

presented load will change, either in total resources used or in 

detailed character. In either case, the picture of system balance 

would be expected to change also. 

System Scaling. 

Our final area of inquiry is the range of system capacity and 

organization permitted by the traffic control scheme. Two specific 

features in the traffic controller are directly concerned with the 

problem of scaling. First, the decisions of the scheduler are 

limited in overhead1 that is, the amount of computation required to 

schedule a process does not depend on the number of other processes 

or processors in the system. Secondly, the interface with the basic 

file system has been organized in such a way that a process not 

presently making demands on the system can be effectively ignored. 

An idle process requires no space in core memory, even in tables, 

and does not increase the overhead of processor multiplexing. 

What then, are the limitations on scaling which remain inherent 

in the design of the traffic controller? There are at least two 

distinct kinds of limitations which arise. 

First, an important •constant• of the traffic controller is the 

total amount of computation required to schedule a process by a call 

to wakeup, plus the amount of computation involved in dispatching a 

processor by a call to Block. We will use the term process switch 

!!.!!!!. to denote this sum, while recognizing that it may be more 

appropriate to measure computation by counting processor 

instructions rather than measuring the time required to execute the 

instructions. The average amount of computation a process does 

before it calls block, (average running time) which is a 

characteristic of the presented load, combines with the process 

switch time to determine the overhead ·of processor multiplexing. 

(We are ignoring as a trivial complication the fact that extra 

process switching caused by pre-emption increases overhead also.) 

If we claim that an idle processor is not contributing to the 

total computation performed by the system, it is clear that the 

fraction of total computation spent in multiplexing overhead does 

not depend on the size of the system in any way, or even on the 

speed or number of processors. It depends only on the relative 

values of these two •constants•, one a characteristic of the traffic 

controller, the other a characteristic of the load. 
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From this fact we glean one clue about the way the system 
scales: it may not be profitable to split a single computation 
among several parallel processes if each of the parallel processes 
will have a run time short relative to the process switch time. We 
have here a limitation on the nature of the presented load, rather 
than the total computation required by the load1 acquiring extra 
processor capacity, for example, will not reduce the fraction of 
overhead, although it will provide ·the ability to absorb the 
overhead. 

The second kind of limitation inherent in the design of the 
traffic controller is found in the accessibility to the ready list. 
When the scheduler places a process in the ready list, and when the 
dispatcher (Getwork) removes a process from the ready list, there is 
a brief period during which the contents of the ready list must not 
be changed by another processor. During this period, the processor 
which is using the ready list ~ the list by setting a lock cell 
non-zero. Each processor checks the lock cell before accessing the 
ready list, and if it finds the lock 2!!,r it must loop, waiting for 
the cell to go off, which signifies that .the first processor has 
finished with the ready list. (Proqramming a multiprocessor 
interlock is a non-trivial task, and is usually done with the aid of 
special processor or memory hardware.) Since the ready list is only 
available on a one-at-a-time, first-come, first-served basis, it 
represents a potential bottleneck if there is more than one 
processor. The seriousness of the bottleneck depends on the amount 
of computation performed while the ready list is locked and the 
frequency of scheduling and dispatching operations. If, for 
example, it is observed that for a certain presented load processors 
do l' of their computation with the ready list locked, it is clear 
that in a 100-processor system the ready list is virtually always 
locked by some processor and it represents a major bottleneck. On 
the other hand, in a two processor system only one scheduling 
operation out of 100 would result in a wait for the ready list to 
become free. 

competition among processors for the use of the ready list 
presents a problem similar to the problem of competition for the use 
of memory ports. One avenue of solution to this problem might be to 
break up the ready list into a number of sublists, each of which is 
locked separately, and arrange some strategy to insure that low 
pri..crity processes from one list are not served before high-priority 
processes from another. 

There are at least two important directions in which the system 
may scale almost indefinitely without any hindrance from the traffic 
controller whatsoever. First, the number of idle processes in the 
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system may grow to a quantity bounded only by the amount of 

secondary storage required to remember them. By design, idle 

processes cost the system nothing in the way of core memory space or 

processor time. Scaling in this direction allows construction, for 

example, of an airline reservation system with 5000 agent sets in 

which each agent set is serviced by one process, and at most several 

hundred are active at once. 

Secondly, if one adds the needed processor and memory capacity, 

there may be any number of so-called "scientific" jobs in the 

system--processes with extraordinarily long average running times. 

Such processes do not bring into play either of the fundamental 

limitations of the traffic controller since they generate virtually 

no scheduling operations themselves. 

The important conclusion to be drawn from our discussion of 

scaling is that the basic scheme for traffic control can be used as 

the basis of a wide variety of types and sizes of computer systems; 

real-time, production, payroll, interactive work, etc. As 

technology of computer hardware evolves, the traffic con~roller 

represents a starting point for future designs; its fundamental 

limitations in scaling will need to be re-evaluated in the light of 

such hardware evolution. 

A few final comments are in order concerning the 

supervisor" concept on which the traffic controller has 

Recall that the hardware management procedures 

"distributed 

been 

are 

appearing in the address space of each pseudo-processor. 

these procedures can be shared among all processes, there 

reason why every process must use the "standard version" 

based. 

segments 

Although 

is 

of 

no 

any 

procedure except Swap-DBR, which carries out mechanics of process 

switching. As long as the procedures respect the conventions of the 

system-wide data bases (process table, ready list, etc.) they can be 

distinct and can carry out distinct policies. 

This organization is of interest to our discussion of scaling 

for two reasons. First, it provides the means of limiting the cost 

and complexity of decisions made by even a "standard version" of 

some supervisor policy-making module, by limiting the amount of 

information about a process which must appear in a system-wide data 

base. The processor scheduler, for example, by always executing in 

the address space of the process being scheduled, has access to the 

process data segment and any other private information about the 

process needed to make a scheduling decision. This information does 

not need to be placed in a table accessible to all processes. 

Secondly, the distributed supervisor organization permits 

different processes to have different copies of the hardware 

management modules, and therefore to see radically different 
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operating systems. This flexibility permits a system to be used, 
for example, for real-time or process control applications while 
simultaneously serving more routine customers. Aqain, since the 
scheduler for a process is the one provided by the process, the 
relative priorities of different operating systems can be distinct 
and independent. This same organization permits simple checkout of 
a •new• supervisor by one or a few system programmers without 
affecting continuous operation of the •01d• supervisor to regular 

customers. 
The distributed supervisor, then, contributes to the range and 

variety of customers and applications to which a single computer 
installation may be applicable. 



CHAPTER SIX 
Sununary of Ideas 

In the words and flow charts of chapters three and four we have 
described a relatively brief collection of algorithms, collectively 
known as the traffic controller, which are intended 
workable solutions to each of the following problems 
traffic control raised by a computer utility: 

to 
of 

provide 
processor 

l. Processor multiplexing. This includes both sharing of 
processors among many users to provide interactive response 
(sometimes called time-sharing) and switching among 
procedures in respon~e to interrupts so as to keep both 
processors and I/O equipment as fully utilized as possible 
(sometimes called multi-programming.) 

2. Multiple processor organization. The problem here is to 
organize the system so as not only to increase its capacity 
by adding processors, but also to insure that operation can 
continue without program changes in the event that a 
processor breaks down. 

3. Size and overhead. The overhead cost of processor multi­
plexing should not grow out of proportion to the size of the 
system as that size is increased. 

4. Distributed supervisor. If each user can see his •own" 
supervisory system which may be different than the one 
others see, the way is opened for simultaneous service to 
real-time or process control functions, regular computing 
customers, and a system programmer checking out a •new• 
system. 

s. Parallel processing ability. Any user of the system .should 
be able to specify parallelism in his algorithms, both to 
speed a compute-bound algorithm, and to provide input/output 
simultaneous with computation. 

6. User control conwnunication ability. Independent users 
should be able to send control signals back and forth to 
each other so as to be able to utilize effectively the 

data-sharing facility provided by the file system. 
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We have described the first three of these problems as 

technological, with the implication that the problems would not 

exist in a sufficiently advanced technology. The last three we 
describe as intrinsic, meaning that these problems will exist in 

some form in the computer utility no matter how advanced a 
technology is reached. 

To meet these objectives, we have designed a traffic controller 

which simulates an arbitrarily large number of pseudo-processors, 

each with its own two-dimensional address space. The traffic 

controller appears as a group of segments in that address space; it 

contains entries which furnish the inter-process control 

communication necessary for parallel processing and inter-user 

communication. It also intercepts interrupts from I/O devices and 

converts them into inter-process control signals. 

The multiplexing of the traffic controller is organized around 

a ready list, an ordered queue of processes ready to run, and a 

priority scheduler which places processes in the ready list in 

response to control signals. All processors service the ready list 

independently. Time limits on tasks in the ready list are used to 

trigger processor pre-emption; by setting appropriate time limits 

the processor scheduler can control response time to requests for 

computation. For fast response a scheduler can pre-empt a processor 

directly. 

To limit the processor overhead cost of multiplexing, the 

scheduler is a procedure in the address space of the process being 

scheduled. An intricate interface between the traffic controller 

and the basic file system limits the core memory overhead cost of 

multiplexing in such a way that there may be an indefinitely large 

number of idle processes in the system. 

Together, the procedures of the traffic controller can form the 

basis for a wide variety of operating systems on a wide variety of 

computers. As computer technology advances, the basic scheme 

described here may be used as a starting point for m::>re advanced 

designs. 
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