
MODELS AND DATA STRUCTURES FOR DIGITAL LOGIC SIMULATION

Signature

by

DONALD LEIGH SMITH

B.S., University of Kansas City
1962

S.B., Massachusetts Institute of Technology
1962

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 1966

of Author D.~ .. f., .. ~
Department of Electrical Engineering

. May 20, 1966

Certified by ••••.••••••••• ./~ -~~- •••••••••.
~.,..,,.. Thesis Supervisor

Accepted by ••••• :::Z::~ .. ~--~·-··· ·······
Chair111an, Departmental Committee

on Graduate Students

2.

M:>DELS AND DATA STRUCTURES FOR DIGITAL LOGIC SIMULATION

by

DONALD LEIGH SMITH

Submitted to the Department of Electrical Engineering on
May 20, 1966 in partial fulfillment of the requirements for
the degree of Master of Science.

ABSTRACT

A digital logic simulation system is proposed for design
verification. Logic to be simulated is specified with a high­
level register transfer design language, and the simulation
system operates on-line on a large time-shared computer. The
problem of 1electing adequate circuit and signal models for
this purpose is considered. Models are proposed with suffi­
cient timing detail to allow the simulation system to detect
timing errors which currently are found by manual checking or
prototype debugging.

A data structure for representing idealized circuit and
signal models and a matching simulation algorithm is discussed.
The data structure is a direct representation of a complete
subset of the design language and is organized so that it can
be incrementally modified to reflect design changes. The simu­
lation algorithm is very efficient because combinational levels
are re-evaluated only if their values are needed and may have
changed since last evaluated.

The data structure is expanded to represent detailed cir­
cuit and signal models. A method of intermixing idealized and
detailed models and efficiently simulating very large des~gns
is discussed. Extensions are proposed to the design language
so that it can be used to specify model parameters and serve
as the simulation command language.

Thesis Supervisor: Jack B. Dennis
Title: Associate Professor of Electrical Engineering

ACKNOWLEDGMENTS

The author would like to·express his gratitude to Professor

Jack B. Dennis, whose design la~age work directed the author's

attention to this subject area, and whose advice and suggestions

as thesis supervisor have been very helpful. He is also grate­

ful to Professor Eric G. Manning and Messrs. Fred L. Luconi,

Nathan R. Melhorn and Ashok Malhotra, whose interest in this

work has been most encouraging. He would like to express his

appreciation to Norma L. Burns, who typed the manuscript, and

Irene H." Ziemba, who assisted with the figures. Special thanks

are expressed to The MITRE Corporation of Bedford, Ma•aachusetts,

who generously financed this work.

3.

4.

TABLE OF CONTENTS

SECTION

ABSTRAC'l'
ACKNOWLEDGMENTS
TABLE OF CONTENTS

I INTRODUCTION

II DESIGN LANGUAGE

Figure 2-1 Four Bit Counter

III CIRCUIT AND SIGNAL MODELS

A Circuit Delay

B Level Circuits
Figure 3-1 Level Signal Values
Figure 3-2 Level Delay Line Model

"Figure 3-3 AND Gate
Figure 3-4 Combinational Logic Block Model
Figure 3-5 AND and OR Gate Hazard Values
Figure 3-6 Output Hazard for 2-Input AND Gates
Figure 3-7 Example of AND Gate Model Behavior
Figure 3-8 AND or OR Gate Settling Times
Figure 3-9 Flip-Flop Model

C Register Transfers

D Control Events

Figure 3-10 Example of Signal Spread Fault

IV DATA STRUCTURE FOR IDEALIZED MODELS

PAGE

2
3
4

7

11

12

18

19

20
22
22
23
23
25
26
28
30
32

32

33

35

37

A Level Logic 40
Figure 4-1 Combinational Level String Data Elements 42
Figure 4-2 Delay and Flip-Flop Level String

Data Elements 46
Figure 4-3 Constant Level and Fixed Memory

Data Elements 47

SECTION

IV B Control Logic
Figure 4-4 Control Logic Data Elements
Figure 4-5 Transfer Effect Table

C Time Queuing and Miscellaneous Lists
Figure 4-6 Tlme Queuing Data Structure

D Simulation Algorithm

E Discussion of Idealized Model Simulation
Figure 4-7 Unstable Circuit

V DATA STRUCTURE FOR DETAILED MODELS

VI

A Level Logic
Figure 5-1

Figure 5-2

Detailed Flip-Flop Level String
Data Elements
Detailed Combinational Level String
Data Elements

B Control Logic
Figure 5-3 Detailed Control Logic Data Elements

C Time Queuing Data Structure
Figure 5-4 Time Queuing Data Structure

D Intermixing Ideal and Detailed Models

E Data Structure Partitioning

F Summary of Data Structure Characteristics

SIMULATION COMMAND LANGUAGE

A Design Language Extensions

B Logic Testing Procedures

VII CONCLUSIONS

PAGE

48
49
50

51
52

53

57
58

60

60

61

62

65
66

67
68

70

71

75

76

77

88

90

5.

6.

--~·------ -·--~--· ... ------·---~- ~ .. -.. ~---,~-------·-. ----- "._-· - --·-

SECTION

APPENDIX A INTERMIXED SIMULATION DATA STRUCTURE

Figure A-1
Figure A-2
Figure A-3
Figure A-4
Figure A-5
Figure A-6
Figure A-7

Detailed Level String Elements
Ideal Level String Elements
Level Output Specification Structure
Constants, Memories and Stacks
Control Logic Data Elements
Activity Queuing Data Structure
Temporary Storage Lists

PAGE

94

95
96
97
98
99

100
101

APPENDIX B INTERMIXED DATA STRUCTURE SIMULATION ALGORITHM 102

1. Outline

2. Discussion of Simulator

APPENDIX C COMBINATIONAL LEVEL FORMULAS

APPENDIX D DESIGN LANGUAGE DESCRIPTION

1. Basic Structure

2. Level Logic
Figure D-1 Basic Level Delay Unit

3. Control Event and Transfer Statements

4. Integers

5. Delimiters

6. Iteration Statements

7. Conditional Statements

8. Define Feature

9. Su11DI1ary

BIBLIOGRAPHY

108

123

125

130

130

132
134

134

138

138

139

141

142

143

144

I. INTRODUCTION

For more than ten years, engineers have been utilizing general

purpose digital computers to aid in the design of new digital systems.
1

The most common form of this aid has been the use of computers to con-

vert descriptions of system logic into wiring lists and other documen­

tation for construction, debugging and maintenance.
2

Included in this

conversion process are such things as logic minimization, wiring rule

checking, component placement and wire routing. Computers have been

used to a lesser extent to simulate designs to verify that the logic

yields correct results. The inputs to these systems are generally some

special form of Boolean equations specifying flip-flop input and combi-

national logic block output formulas. Listings of these logic equations

have served to supplement or even replace the more traditional logic

diagrams.

The large number of logic equations required to specify a digital

system makes it difficult for anyone unacquainted with the design to

deduce its behavior from listings of the equations. Likewise, it is

tedious and time-consuming to formulate designs in such detail. More

concise register transfer languages have been developed for design

documentation and formulation early in the design process. 3 Experience

with design automation systems has led to the development of improved

1The first paper on computer design automation was given by S. R. Cray
and R. N. Kisch at the Western Joint Computer Conference in February,
1956 - Reference (1).

2see References (2), (3), (4), (5), (6), (7) and (8).
3The first of these register transfer languages was presented by
I. S. Reed in References (9) and (10).

7.

,------------ --------- ------------·-· -~- --·--~~

8.

4
register transfer languages for precisely describing digital systems.

These languages may describe machines at the register and decoder level,

rather than the flip-flop and gate level of the logic equation languages.

The great advantage of these new languages is that they describe hardware

at a level of detail convenient to logic designers. Such a language has

been under development at M.I.T. under the supervision of Professor

J. B. Dennis. This design language has been used as a descriptive

language for classroom exercises and to design a Microtape Controller

for use with a modified PDP-1 computer. It is intended that the design

language eventually serve as the input to a design automation and simu-

lation system.

In this thesis we will be concerned with the development of a

detailed simulation system for digital logic design verification. Models

for logic circuitry are selected, data structures for representing these

models are developed, and simulation algorithms are outlined. No simula-

tion program has been written because of coming computer system change­

s
overs at M.I.T., both at Project MAC and the Computation Center.

Most logic simulation programs have been written to simulate a

single digital system, either for debugging software to be run on the

future system or for detecting logic errors. Of those simulation pro-

grams designed for logic checkout, the large majority have been written

for synchronous machines and, in all cases known to the author, idealized

circuit models have been used. Such models exclude consideration of such

4 See References (11), (12), (13), (14) and (15).

5 There are advantages to being forced to think about the program before
being able to start any coding.

things as circuit delay, pulse width, delay tolerances and fan-out delay

variations, and cannot be used to help locate the difficult to detect

race conditions and timing errors which are especially important in

asynchronous logic checkout. Relatively few simulation systems have

been developed which translate special descriptions of designs into pro­

grams which simulate them.

Simulation for logic checkout has been widely used in the defense

industry, where great emphasis is placed on short design lead time and

production runs are short. High competition in the commercial side of

the industry is also moving effort away from prototype debugging and

toward simulation to detect logic errors as early as possible. With the

introduction of third generation computer hardware the cost of construc­

ting a prototype and modifying the design before production is increasing

rapidly, again providing economic reasons for using simulation to verify

a design before tooling up for prototype construction.

It is intended that this thesis be the basis for a simulation system

which uses the Dennis Design Language as input and operates in a large.

time-shared computer environment. In addition to checking the overall

operation of a design, this system would perform special simulations to

test for suspected race conditions and logic hazards. It is not proposed

that the system automatically check for all possible design errors, but

rather that the judgment of the designer be relied upon to select likely

problem areas and simulations for testing them. The advantages of this

approach are that no additional restrictions need be placed on designs

and the simulation system is fully compatible with current design tech­

niques. Circuit and signal models are provided with sufficient timing

9.

10.

detail for race and hazard detection. The internal data structure is

designed to facilitate on-line modification to the logic descriptions

as err.ors are detected. These modifications do not require a complete

reordering of the data structure; the data structure can be changed

incrementally. Simulation efficiency is ·improved by evaluating only

those combinational levels whose values are required and which may have

changed since last evaluated.

Section II introduces the design language by way of a brief example

and indicates the classifications of circuit and signal types in which a

design is described. In the next section we select models for represen­

ting the important characteristics of each circuit and signal type.

Section IV presents a data structure for representing ideal circuit and

signal models and outlines a simulation algorithm based on the structure .•

The structure is modified to represent detailed models in Section V and

a method for intermixing ideal and detailed models in the same· structure

is discussed. Section VI proposes modifications to the design language

so that circuit and signal timing parameters can be declared and the

language can be utilized as the simulation command language. Conclusions

are presented in Section VII.

II. DESIGN LANGUAGE

In this section we will examine the design language description of

a small part of a digital system. The motivation for doing this is to

6 demonstrate the use of some of the features of the design language and

to show that three different classes of signals are represented in such

a design description. Separate models will be developed for each of

these classes of signals and will be included in simulation data struc-

tures to be presented later. This will simplify translation from the

design language into the data structure, but more importantly, the

11.

organization is a natural way of looking at complicated digital networks.

The logic network selected for demonstrating the design language is

diagramed in Figure 2-1. The network is a four-bit counter with parity

and is realized in connnon pulse-level hardware. Arrowheads represent

pulse inputs and diamonds represent level inputs. Counter parity is

generated using carry pulses when it is stepped. Signals are named,

and the same names are used in the design language description.

In the following design language description, the counter is speci-

fied as a component interfacing with one other component called Main-

control:

6A complete syntax was written for the design language by G. J. Burnett
in Reference (16). A discussion of the language more consistent with
its present state of development is found in Reference (17), written
for M.I.T. course 6.535 by H. F. Ledg'ard. Examples of the use of the
language are found in a companion set of notes, Reference (18). Since
these references may not be available, a brief outline of the basic
design language is included in Appendix D.

COUNTER[4l overflow COUNTER[OJ ,..... COUNTERr2J COUNTER[3l COUNTERrlJ ·o-- - - - - ~.- - - - ~.- - - - ~ ~---- - ~ ~- -- - - - .,
I

2> I
I

::: 0 Interface with I
A

~· Maincontrol I
::: ~,

~ Level AND Gat~
41,

i...
Pulse OR v i-

step[OJ ci step [1 J r:::"'1 step[2b step[3] I
Gate i._ i.._ ..__ ..._ G i... .._ _J ...- ~~ r- ~~ ,.- ~I"'~ ~ rr .-- l

• ~ 0 ~ ~ I correctpar

I
1 ff" 0 1 FF o 1 ff' 0 1 FT o i FT o I

_g__ j ..._ s c R c c c R I
•• ·t ~ .. ~ ~t ·~ ••• it A~ ·~ ~ rt·~ it~ I Delay J

50 ns
i. i. i...

I
~ - ~ J i.._ i... i... --- - I .._ ..___ _J

l; ...- ~
...-

~
r--

~
i- L;; I

~ ~ ~ ~ I
L - -------- ----- ----- ----------- _J

1[4] I[OJ I[l] 1[2] 1[3]

FIGURE 2-1

Four Bit Counter

step

master
comp
master
reset

strobe

......
N

13.

1 component FOURBITCOUNTER;

2 interface MAINCONTROL;

3 input pulse strobe, Step, masterreset, mastercomp;

4 input level I[0:4];

5 output pulse overflow;

6 output level COUNTER[0:4];

7 end interface MAINCONTROL;

8 register COUNTER[0:4]; * Bit 4 is parity bit;

9 strobe: I ~ COUNTER;

10 * Step control;

11 step: step[3];

12 t COUNTER[4];

13 for i .. 1 through 3 do begin

14 step[i]: t COUNTER[i];

15 il COUNTER[i] ~ step[i-1]; end· -·
16 step[OJ: t COUNTEB.[0];

17 correctpar;

18 step[2]: g-, COUNTER[2] Sh!!! correctpar;

19 correctpar: delay (50 ns);

20 t COUNTER[4];

14.

21 * Master Reset and Complement;

22

23

masterreset:

mastercomp:

0 ~ COUNTER[0:4];

t COUNTER[0:3]; * Parity remains correct;

24 * Overflow Detection;

25 MAXCOUNT e COUNTER[0:3] • 15;

26 MAXCOUNT: overflow;

2 7 end component FOURBITCOUNTER;

The FOURBITCOUNTER component is delimited by lines 1 and 27.

(Line numbers are not part of the design language but are used here to

aid in the discussion.) Lines 2 - 7 declare the signal interface with

the component MAINCONTROL. If the counter interfaced with any other

components, the other signal interfaces would also be declared at this

point. Next come the register declarations, 'W'hich in this case consists

only of the five flip-flop register COUNTER. Note that the syntax of

the design language has much of the flavor of ALGOL syntax. Basic

Symbols are underlined when they are more than one character long and

semicolons are used to terminate statements. Asterisks are used to pre­

c~de comment statements, as in lines 8, 10, 21, 23 and 24, rather than

the ALGOL symbol comment. Identifiers made up of capital letters and

digits are used to name level signals, iden~ifiers made up of small

letters and digits are used for pulses. When a pulse identifier appears

in a statement label, hardware is to be included in the component to

execute all statements down to the next label or delay statement when­

ever that pulse occurs. Therefore the meaning of lines 11 and 12 is:

15.

whenever the pulse "step" is generated, the machine will generate the

pulse "step[3)" and complement flip-flop C0UNTER[4]. These actions are

taken simultaneously, as opposed to the sequential execution of state•

ments in an ALGOL program. This should not be surprising since the

design language is used to specify computer hardware, which is generally

highly parallel, while ALGOL is used to specify computer programs, which

are at present sequentially executed.

Lines 13 through 15 constitute an iteration statement which describes

the propagation of carrys when the counter is stepped. This feature of

the design language is provided to save the logic designer the neeeesity

of writing out descriptions for each duplication of the same hardwar•.

Level and pulse names are indexed 10 that each name is unique. Lines 16

and 17 describe the carry into the last stage of the counter, which is

slightly different from the others. Line 18 describes the gate on the

false side of COUNTER(2] which is used to complement the parity flip-flop.

Lines 19 and 20 indicate that the pulse ''correctpar" is delayed 50 ns and

used to complement the parity bit. The register reset and complet'llent

logic is described in lines 22 and 23.

Line 25 defines the combinational level MAXCOUNT and line 26 indi·

cates that an "overflow" pulse is generated whenever MAXCOUNT changes

from a zero to a one. This iMpliea the level differentiator shown in

Figure 2-1.

Note that the pulse 111tep[2]" occurs twice as a label: first, in

the expansion of line 14 for i • 2, and a second time in line 18. It

is perfectly correct for a pulse identifier to be used as a label any

16.

number of times. The meaning of this is that all statements labeled by

the same pulse become active simultaneously whenever the pulse is

generated.

From this example it can be noted that three distinct classifica­

tions of signals are represented in the design language.

l. Level Signals

This class consists of register, combinational logic and

level delay line output signals. The important character­

istic of a level signal is its logical value as a function

of time.

2. Events

These are the command signals of a digital system. They

may be generated by oscillators, other Events or level

transitions. The important characteristic of an Event is

its occurrence time. In the design language these signals

are called pulses because in many digital circuit families

they are realized as short duration p~lses. This is not

always the case - in some systems transitions in regular

level signals are used as control events. If a value

transition is to be used to generate an Event (line 23 of

example) in short duration pulse logic, a differentiator

sensitive to that transition must be used. This is not

required in all-level circuit families.

3. Transfers

This group of signals set, reset, complement and jam trans­

fer data into flip-flop registers. They are usually

realized in hardware in the same way as Events. In all­

levcl circuit families, flip-flop inputs have diode­

capacitor networks which are only sensitive to 0 to 1

value transitions. Register transfers appear in the

design language functionally, as in line 9 of the example,

and are unnamed.

17.

e) How often can I step this counter and check its parity

without risking the possibility of sampling a level

before it is settled?

Provisions must be made for simulation at the circuit block level

to answer questions of this type and provide the desired error detec-

tion capabilities. The logic designer should be able to formulate his

problem by specifying both the depth of simulation and the important

circuit and signal parameters for each part of the design. Therefore,

the models must be capable of expressing relationships between compo-

nents modeled at various depths in a compatible manner. Before

considering models for the three classes of signals discussed in

Section II and the circuit blocks which generate them, let us consider

the general problem of modeling circuit delay.

A. Circuit Delay

Logic designers use circuit delay calculations to determine at

what times levels are settled and ready to sample and in what time

intervals pulses occur. In many instances it is not necessary to make

delay calculations because enough time is allowed between each command

pulse for all levels to settle; the main reason fo.r the predominance

of synchronous logic is that most delay problems are eliminated. Even

with synchronous logic there are occasions, such as carry propagation

and parity checking, where maximum delay times are needed. In rare

instances variables are sampled as input changes are being propagated;

in these cases minimum delay times are required. 7

7see Reference (19) for discussion of manual techniques for evaluating
worst-case delay conditions.

19.

,------------·-

20.

Circuit delays cannot be treated as constants. They vary from one

circuit to another of the same type and depend upon environmental

factors such as electrical loading and operating temperature. In the

signal models developed in this section, signal changes (either pulses

or level transitions) will have both a starting time and a spread

associated with them. The starting time will be the earliest possible

time at which the change could occur and the spread will be the maximum

interval of time in which the change could occur. The circuit block

models will include minimum delay and ambiguity times, where the ambi­

guity time is the difference between minimum and maximum delay times

through the circuit. Thus the starting time for a change ~n the output

of a circuit block is the starting time of the input change plus the

minimum delay of the block. Likewise, the spread of the output is the

sum of the spread of the input and the ambiguity time of the circuit

block.

B. Level Signals

As mentioned in Section II, level signals are the outputs of flip­

flops, combinational logic, and delay lines. These circuits are enough

unlike each other to deserve their own individual models. Before going

on to discuss those models, let us first develop a model for level

signals. From the above discussion we find that whenever the logical

value of a level signal changes there is an interval of time, called

the signal spread, when the value may be changing. Normally, it is

improper to attempt to sample a level quring a spread interval, so it

is not important what values the signal takes on during that time.

This is not true if the signal enters a circuit which is sensitive to

level transitions. Such a circuit is the differentiator, which gener-

ates an output pulse whenever its input level changes from 0 to 1. The

possibility that a level signal might change values several times before

settling is termed a hazard. 8 A hazard occurring on differentiator

inputs might produce false outputs. Therefore, it is necessary to be

able to determine whether or not such levels have hazards during their

transition spreads. Multiple hazards (the possibility of more than one

double change in the value of a signal) are no worse than single hazards

so there is no need to keep a count of them. It will be shown during

the development of the combinational Logic Block that it is necessary

that old value, hazard value, and new value be given for each input in

order to calculate the hazard value (true if a hazard is present) of

the output. Thus the value of a level signal is a three bit quantity -

old value, hazard value, and new value. The simplest waveform for each

of the eight possible values is shown in Figure 3-1. If a level is

changing there is a time, called the settling time, when the change

will be completed.

Delay Lines

The model for a level delay line is shown in Figure 3-2. The

important characteristics are the minimum delay, TD' and the delay

ambiguity, TA. If level I makes a change beginning at t with spread ts'

the level 0 will make the same change at t +TD with spread ts +TA·

8see Sections VIII and IX of Reference (20) by D. A. Huffman.

21.

--··------ ·------.---------·-- --- --~-~--~~------~·---~~.------- ~

22.

1

a) 0

1

b) 0

1

c) 0

1

d) 0

1

e) 0

1

£) 0

1

g) 0

1

h) 0

,.. spread ~ Old

I
I 0

I
0

I

I I I 0

I I
I I 0

I
1

1

I ,, 1

I
I I 1

I
starting time settling time

FIGURE 3-1

Level Signal Values

Delay

I ----...,...,.-111111 Minimum TD

Ambiguity TA

1----.............. 0

FIGURE 3-2

Level Delay Line Model

VALUES

Hazard

0

0

1

1

0

0

1

1

~

0

1

0

1

0

1

0

1

Combinational Logic Block

Combinational logic blocks are the standard level logic circuits

whose outputs are some Boolean function of their inputs. Examples

include level inverters, AND gates, OR gates, NAND gates, etc. Typical

of this type of circuit is the 2-input AND gate of Figure 3-3. The

truth table for this circuit is shown in Figure 3-3 (b). Such a truth

table can always be written for a member of this group and is the most

important characteristic of the block.

11 12 0

11 J 0 0 0

v • 0 0 1 0
1 0 0

12 1 1 1

(b)

FIGURE 3-3

AND Gate

The detailed model for a combinational logic block is shown in

Figure 3-4. It consists of a combinational block with zero minimum

delay followed by a delay line with zero delay ambiguity .

I
n

.

. .

.:-......

....... ,,...

.....

f(I 1 ,I2 ···In) O' .-. Delay
,,...

TA TD

FIGURE 3-4

Combinational Logic Block Model

0_.

23.

~------ ---· --··

24.

Note that the delay ambiguity is included in the left part of the model.

Thus, in the many cases where minimum delay is unimportant, the left

part can be used as the complete model. The function f(l1 , 12 ••• In)

is a mapping of the old, hazard and new values of the inputs into old,

hazard and new values of the output, O'. The old value of O' is a

Boolean function of the old values of the inputs, just as the new value

of O' is the same Boolean function of the new values of the inputs. On

the other hand, the hazard value of O' is a Boolean function of the old,

hazard and new values of the inputs.

9 Karnaugh maps for calculating the hazard value for the outputs of

2-input AND and OR gates are given in Figure 3-5. Again, leftmost bits

of the arguments are the old values, the middle bits are the hazard

values, and the rightmost are the new values. The method used to deter-

mine the entries in these graphs is illustrated in Figure 3-6. Two

sample sets of waveforms for the case where the inputs to the AND gate

of Figure 3-3 both change at the same time and the same spread are

given. The minimum delay time and delay ambiguity of the gate are

assumed to be zero.

Figure 3-6 (a) shows that if 12 goes to "O" before I 2 goes to "l"

then no transient pulse is generated. If the timing is reversed, as

in Figure 3-6 (b), a transient pulse is generated. Since the only

information given is that both signals are changing during the spread

interval, either case is possible. Therefore, the hazard value is "l"

9see pages 131-142 of Reference (21) by S. H. Caldwell.

25.

I
I

1
2

000 010 011 001 101 111 110 100

000 0 0 0 0 0 0 0 0

010 0 1 1 1 1 1 1 1

011 0 1 1 1 1 1 1 1

001 0 1 1 0 0 1 1 1

101 0 1 1 0 0 1 1 0

111 0 1 1 1 1 1 1 1

110 0 1 1 1 1 1 1 1

100 0 1 1 ~~ 0 1 1 1

(a)

000 010 011 001 101 111 110 100

000 0 1 1 0 0 1 1 0

010 1 1 1 1 0 1 1 1

011 1 1 1 1 0 1 l 1

001 0 1 1 0 0 1 l l

101 0 0 0 0 0 0 0 0

111 1 1 1 l 0 1 1 1

110 1 1 1 1 0 1 1 1

100 0 1 1 1 0 1 1 0

(b)

FIGURE 3-5

AND and OR Gate Hazard Values

26.

0

11

12

0

101

000

000

101

000

~spread ~

I I
I I

101

Old Value
~Hazard Value

\ ~New Value

\.__~10_0~~~~-0~0~0:__~

000 000

(a)

~ spread ~
I
I

001 101

I
100

\ 000

010

f \ 000

(b)

FIGURE 3-6

Output Hazard for 2-lnput AND Gate

as shown in the shaded square of Figure 3-5. An examination of either

part of Figure 3-6 indicates that the functions cannot be simplified

to eliminate the need for one of the input value bits. Thus the old,

hazard and new values of all inputs to a combinational logic block are

required to compute the output hazard value.

Let us now propose and discuss a method for determining the

settling time (and thus the spread) of the output level O' of the

combinational logic block model of Figure 3-4. Whenever an input to

the combinational logic block changes, the output O' is re-evaluated.

The delay ambiguity, TA' is added to the settling time for the changing

input level. If this sum is larger than the present settling time for

level O' then it replaces it. When time moves forward to the settling

time of O' the new value replaces the old value and the hazard value

becomes zero. Thus, the unsettled level O' becomes settled.

Figure 3-7 (a) shows the detailed model for a 2-input AND gate.

Figure 3-7 (b) illustrates its behavior for the set of given input

waveforms. Unsettled levels are indicated in this figure as being half

way between a settled "l" and a settled "O". The signal OUT is just

signal O' delayed TD seconds. Signal O' becomes unsettled whenever one

of the inputs becomes unsettled and remains so until TA seconds after

both inputs are settled. Note that level O' takes on the unsettled

value 000. This occurs because the initial change in input r 1 does not

change the output until input r
2

also changes. Thus the value of a

level may not be changing even though it is unsettled.

27.

-~~----·- -

28.

Combinational Delay
Variable Line

11

~
11 /\ 12

I ·I O'
TD • OUT

12 TA

(a)

Hazard Value
Old Value New Value

101
001

101
001 I

1
2

_....;:o;.;;;o.;:;.o _ _.I 1
I

...
_ _....'-----~--lT_.Al~lOl 000 001 . .

O' _QQQj
I
I

I I
IE- TD~ 000

OUT tOOO ~,~~~~~~~~~~
001

(b)

FIGURE 3-7

\/
100

000

I 100
I I ooo
I I

~TA~ ~TAIE--
100 I ~~ ooo

101

t I

2

100
~000

Example of AND Gate Model Behavior

A weakness in this method of computing settling times is illus­

trated in Figure 3-7 (b). The value t 2 for the second settling time

for level O' is incorrect; the correct value should be t 2
1

• This is

because level O' should be settled TA seconds after either of the

inputs has settled at "O". The simple approach of selecting the

maximum possible settling time would tend to cause correct situations

to be flagged as illegal during a simulation. At first this method

was considered acceptable because it does not require evaluation of a

combinational level's output value to calculate its settling time.

In Section V we will find that it is necessary to re-evaluate combi­

national levels whenever an input changes. Therefore a more accurate

method of calculating settling times can be used without great

additional cost.

Figure 3-8 indicates how to calculate output settling times for

2-input AND and OR gates. If the output value is changing, the

settling time of the change is calculated by adding the gate's ambi­

guity time, TA' to the settling time of one of the inputs, either t 1

or t
2

• The figure shows which input settling time to choose for each

input value pair - t 1 , t 2 , the maximum of the ~wo or the minimum of

the two. Zero entries indicate that no output changing is occurring

and a settling time should not be calculated.

29.

30.

I /\ I
1 2

000 010 011 001 101 111 110 100

000 0 0 0 0 0 0 0 0

010 0 Min t2 t2 t2 t2 Min Min

011 0 tl Max Max t2 Max tl tl

001 0 tl Max Max t2 Max tl t
1

101 0 tl tl tl 0 tl tl tl

111 0 tl Max Max t2 Max tl tl

110 0 Min t2 t2 t2 t2 Min Min

100 0 Min t2 t2 t2 t2 Min Min

(a)

I VI
1 2

000 010 011 001 101 111 110 100

000 0 tl tl tl 0 tl tl tl

010 t2 Max tl tl 0 tl Max Max

011 t2 t2 Min Min 0 Min t2 t2

001 t2 t2 Min Min 0 Min t2 t2

101 0 0 0 0 0 0 0 0

111 t2 t2 Min Min 0 Min t2 t2

110 t2 Max tl tl 0 tl Max Max

100 t2 Max tl tl 0 tl Max Max

(b)

FIGURE 3-8

AND and OR Gate Settling Times

Flip-Flops

Flip-flop output levels are modeled the same way as other level

signals. Old and New Values have the same meaning as before. A Hazard

Value of "l" indicates the rapid recomplementation of the flip-flop

before the previous change has settled. Again minimum delay time and

delay ambiguity reflect the spread of possible transition delays when­

ever the flip-flop's output is changed. The spread of the output cha~e

is calculated by adding the flip-flop's ambiguity time, TA' to the

spread of the transfer which caused the change.

There are special restrictions on flip-flop inputs which should be

included in the model. The first of these is that an attempt to simul­

taneously set and reset a flip-flop with different signals is improper

and should flag an error during simulation. In many logic families the

normal method for complementing a flip-flop is to use a single signal

31.

to both set and reset it. When two separate signals are used the result

is ambiguous due to variances in arrival times and amplitudes. Similarly,

an attempt to simultaneously complement and either set, reset or comple­

ment a flip-flop with different signals is improper. The last special

restriction applies only to complement inputs. Attempts to strobe these

too soon after the flip-flop output has begun to chan~e can lead to

incorrect output values. Therefore, the flip-flop model shown in Figure

3-9 includes a mechanism for detecting attempts to complement the output

value before TC seconds (minimum complement time) after the output begins

to change. TC is a constant like TA and TD provided to the simulator

by the logic designer.

r--------

32.

'

- Flip-Flop -Set Inputs

Complement I

Reset Inputs

nputs -~ ,.c
FFO' .- Delay FFOUT ..-. -

-- ,.A
TD -

FIGURE 3-9

Flip-Flop Model

Differentiators

These circuits produce output command events whenever their inputs

make 110" to "l" transitions. The spread of the output event is the

same as the spread of the input level change which generates it. If a

differentiator input ever has a hazard value of 11111
, a simulation error

flag is set.

c. Register Transfers

These signals are modeled somewhat differently than the level

signals we have been discussing. The important characteristic of this

type of signal is its behavior when activated rather than its value at

any instant of time. Therefore transfers are modeled in terms of their

effects on registers. The complete specification of a register transfer

include·s:

1. The type of transfer, such as jam transfer, ones transfer,

zeros transfer, or complement transfer.

2. The name of the destination register and a specification

of the bits affected.

3. The names of the sdurce level tignals to be t:s:atts!~n:':red

to the <leatinat.ion regi•ter. Source" levels may ~ nip ...

flop (register)~ combinational logic, or delay line o~t'P\'ts.

4. The delay ambiguity time for the trans:iier. This ft&\lre is

used to· represertt the propagation difference between the

minimum and maxi.n»rt transfer ~ths 1iiben timing might be an

important factor in • aimu14t!on. ?he spre•d ot & regi1rer

transfer b caleulat~d by aUing t&e transfer ambi.aui.ty

time to the spread of thl! eoimnsnd event wich activa.te•

the transfer.

5. lf a transfe-r is •ver attempted when one or IUOl'e of the

source levels i,- chansing value, a sj,elatipn •i:t'or .i•

flagged.

D. Control Events

Control events may cause register transfers to occur and, provided

that certain level signals have the proper values, may cauu other

control events to become active immediately or at some later time. The

model for a control ev.enl: includes:

1. A list of transfer' whidl take place wh~mever the event

becomes active.

2. A list of level signals which act as coJld,itions for the

events that may be triggered by this event. The value

each of the condition levels is sampled whexa the event

of

becomes active. Associated. with each level is a list of

control .event - delay time pair•. Those control events

33.

34.

associated with condition levels with correct values are

made active after the paired delay time has elapsed. A

sampled condition level whose value may be changing causes

a simulation alarm to be flagged.

3. Control event minimum delay time.

4. Control event ambiguity time. When modeling timing very pre­

cisely this parameter is used to indicate maximum possible

differences in arrival times of this signal to the various

points it fans out to. The spread of any given activation

of a control event is calculated by adding its ambiguity

time to the spread of the control event or level transition

which activated it.

This completes the development of detailed simulation models for

signals and level circuit blocks. Before introducing simulation data

structures based on these models, let us point out a serious weakness

in the manner in which signal spreads are computed. The signal spread

concept was introduced to detect logic design faults, either those

involving level hazards feeding differentiators, or those caused by

Events sampling tevels which may, depending on circuit variations, have

more than one possible value. This second detection problem can be

stated as follows. Given that Event p samples Level Lat any time t

within its spread of occurrence times, can Level L have more than one

possible value? Unfortunately, the models do not keep track of the

interdependence of signal spreads and can only determine whether or not

the spreads overlap. This leads to the detection of logic faults which

do not, in fact, exist. A simple example of this is illustrated in

Figure 3-10. During a simulation run pulse p is found to have a spread

(ts) greater than the minimum delay time (~D) of the flip-flop. There­

fore, the spreads of pulse p and the transition of level L overlap, as
.

shown in Figure 3-10 (b), and a false error detection is made. A situ-

ation which can generate a large number of incorrect fault. detections

is a signal feedback loop such as a delay line ring used as a time pulse

distributor. If non-zero delay ambiguity is assigned to any circuit or

signal in the loop the amount of spread in the signal increases each

35.

time it goes around the loop. Thus signals are generated with increasing

spreads and cause more and more incorrect error detections.

p out

FT o

(a)

p
IE- t __.,.

S I
spread

L

(b)

FIGURE 3-10

Example of Signal Spread Fault

36.

A timing model capable of avoiding these difficulties must retain

additional information so that the dependence of signal spreads on the

occurrence times of other signals can be calculated. One way of doing

this is to keep track of signal histories. When possible sampling

faults are detected the histories both the Event and Level are traced

back to their common sources, if any. Then the signal spreads are

recalculated forward from those points removing ambiguity common to

both. Pre-simulation analysis can be used to determine in advance

which parts of a signal's history should be retained and thus sharply

reduce the amount of storage required. Designs which require extre111ely

long signal histories could be rejected as not simulatable. An alter­

nate approach would be to carry signal histories through only a fixed

number of circuit blocks. This technique would not be able to establish

remote signal dependencies, but the mcn;-e coumon cases, such as the one

in Figure 3-10, would be detected. Such modeling would still require

longer running time and a greatly expanded data space and is not con­

sidered here. Instead, the responsibility for avoiding incorrect fault

detection is assigned to the designer using the simulator.

Logic designers generally are aware of the areas of their designs

which may contain timing errors. The most fruitful uses of detailed

timing simulations are in specially tailored tests of such problem areas

rather than exhaustive testing of complete designs. The fault detection

problem discussed above is not as severe in these special cases if

adequate means are provided for masking out obviously incorrect error

detections. It is clear that as simulation becomes less expensive and

more desirable, a more adequate method of establishing signal spread

interdependences must be provided.

IV. DATA STRUCTURE FOR IDEALIZED MODELS

Two categories of information can be provided by logic simulation

based on the models of Section III. The first is used to check the

overall behavior of the simulated design against design objectives and

includes the values of registers or other level signals at selected

times. The second category consists of information about possible logic

hazards and timing errors; this aids the logic designer in tracking down

and correcting these more difficult to detect design errors. The simu­

lation data structure and matching simulation algorithm presented here

are based on idealized circuit models - fan-out, delay and transition

times are ignored and level hazard detection is not included. Only

information in the first category can be provided by such a simulation.

The data structure will be expanded to deal with the complete circuit

and signal models in Section V.

This simulation system is designed to be operated on-line by the

logic designer and communicates with him via a modified form of the

design language. In order of importance, the system design goals are:

a) Any design, synchronous or asynchronous, that can be described

in the design language should be simulatable.

b) Timing and parallel operation should be modeled as consist­

ently and accurately as possible. Simulations must be

repeatable.

c) It should be possible to make incremental modifications to

a simulation as the designer makes changes to his design

language description.

37.

,----~-----~- ---·--------------

38.

d) The simulation system should be densely packed to allow

large designs to be simulated with a minimum of memory

swapping.

e) The simulation system should be organized to run as fast
l"

as possible.

f) The data structure should be organized to ease translation

back and forth between it and the design language.

g) The logical complexity of the system should be minimized

to reduce the effort needed to program and describe it.

A large number of digital simulations have been based on idealized

circuit models similar to the ones used in this section. In some of

these cases simulation systems have been provided to translate special

10 forms of a design's logic equations into a program which simulates it;

often special simulation programs had to be written for each new design. 11

In each case, special code was included in the program to simulate each

logic equation or circuit block of the design. The simulation systems

developed here use a data structure, derived from the design language

description of the logic to be simulated, as the input to a fixed,

table-driven simulation procedure. There is a close correspondence

between the design language description and the data structure it repre-

sents. This is because the data structure is actually a direct

10see References (3), (13), (22) and (23) for examples. In all cases
known to the author special descriptions of the designs had to be
made for input to the simulation systems.

11Examples of such programs and techniques for increasing their effi­
ciency are found in References (24), (25), (26) and (27). An example
of macroscopic simulation of digital systems is found in Reference (28).

representation of a subset of the design language. Thus it is fairly

easy to translate back and forth between them and make incremental

modifications to the data structure. This organization results in a

densely packed simulation structure. The price paid for this is slower

running speed, but the extra time is more than made up by re-evaluating

a combinational level value only when its value is needed and its inputs

may have changed since it was last evaluated.

39.

The requirement for incremental changes to the data structure leads

to consideration of list structures. Large parts of the data structure

are formulated in this manner. It is often much more time-consuming to

recover information from list structures than equivalent fixed data

blocks. Fixed blocks are used to represent data whose size is not likely

to be incrementally altered and in those cases where list structures

would be unnecessarily wasteful of space or difficult to quickly access.

Lists are used to describe variable length information which the

designer may later wish to add to or delete from. This results in a

mixture of interrelated lists and fixed blocks of many different lengths.

The total data structure can be divided into three separate inter­

connecting parts. The first two change size or shape only to reflect

changes in the logic design being simulated. The third part of the

structure is modified during a simulation run.

1) Level Logic

This structure describes the output values and interconnections

of the registers, combinational logic blocks, level delay lines

and differentiators. Special structures are also included to

simulate constants and memory interfaces.

40.

2) Control Logic

Control events, register transfers, and their interrelations

are described in this part of the data structure. A special

Transfer which terminates the simulation is included.

3) Time Queuing and Miscellaneous Lists

This part of the structure is used by the simulation program

to queue up future activities and keep track of temporary

information such as subroutine arguments and input-output data.

A. Level Logic

Information describing output level signals is included as part of

the data for each flip-flop, combinational logic block and level delay

line. This information consists of the value of the level,
12

which may

be sampled by Events or be a source for a Transfer, and a list of all

circuit blocks with outputs dependent on the value or transitions of

this level. It is convenient for the simulation program to be able to

access this information no matter what the source of the output signal

might be. Therefore output signal information is stored in the same

format for flip-flops, combinational logic blocks and level delay lines.

Flip-flops are organized into n-length strings in the data structure,

where the value of n depends on the machine the simulation is run on.

Registers of length n or less are represented as adjacent bits on the

same string and larger registers are represented as adjacent bits on

two or more flip-flop strings. This allows straightforward register

12only single bit values are used in this Ideal Model structure because
level hazard detection is not included.

transfer specifications. To preserve uniformity in accessing output

signal information and to allow simplified specification of a group of

levels for Transfers, combinational logic blocks and level delay lines

are also organized in n-length strings. Levels which are sources for

the same multiple-line Transfers, or which are indexed bits of the same

level register in the design language description, are ordered together

within the same string. This presents an optimization problem because

the same level may be a source for several transfers.

Figure 4-1 illustrates the data element representing a string ·of

combinational logic blocks. The conventions used in the figures illus­

trating data elements are as follows:

a) Small blocks containing information are called cells.

b) Cells outlined in solid lines are part of fixed block made

up of adjacent registers of memory.

c) Cells outlined in dotted lines are part of a list made up

of generally non-adjacent registers of memory threaded

together with pointer addresses.

d) Solid arrows between cells indicate that the source cell

contains a pointer to a destination element of the type

shown.

e) Dotted arrows are the same as solid ones except that the

source cell may contain the null pointer indicating a

void destination.

Although all cells are represented in the figures by the same size

blocks, this does not imply that all cells need be the same size in the

41.

Combinational
Level String

Value

Input Change Tags

Bit 1 Specification

Bit 2 Specification

. . .
Bit n Specification

Reference Name

Length
L - - - - - - - -
I Formula
r - - - - - - - - -

Length
~ - - - - - - - -
I Formula
•- - - - - - - - - -

V'

~

Output
Specification

,.. "'/41 -r------------ I
/ /

/ / /
/ /

/ I
/

/
/

Delay Specification

Dependent Comb1natlona1
I Level String I
- - - - - - - - - - - - 1
I Bit Number I
1-Depend.eiit-com6iiiation81 -,
I Level String - - - - - - - - - - - - i
~- _ - -B~t-N~~e~ __ - _I

Formula

Reverse Polish Formula

FIGURE 4-1

Differentiator
Specification

- - - ---I 0 - 1 Output Event

' ' ' ' ' ' '

1 - 0 Output Event

Delay
Specification

~
Delay Level String

Bit Number

Amount of Delay

Combinational Level String Data Elements

.i:--
1'.l

l

l

data structure. The amount of information stored in a cell varies and

there may be circumstances where it is worthwhile having different size

cells. A case in point is a two-cell location specification of a

combinational level bit. The first cell contains the address of the

combinational Level String and the second cell contains the bit number.

It is possible to include all of this information in a single word for

many computers. Therefore cell is not necessarily synonymous with com-

puter word or address field.

The data element for a combinational Level String consists of an

n + 4 cell fixed block followed by a variable length list. The first

43.

cell in the element contains the values last calculated for the n output

levels. Cell 2 contains an Input Tag bit for each of the output values.

A "l" indicates that one of the inputs to that combinational logic block

may have changed since the last time the output value was re-evaluated;

a 11011 indicates the output value is still valid. The next n cells con-

tain pointers to Output Specifications for each of the combinational

blocks. The next cell contains a reference name which is used by the

routine which translates back and forth between the data structure and
\

the design language.

The last cell in the element contains a pointer to a list specify­

ing formulas to be used to compute the output level values. The first

cell on this list contains the number of bits for which the first formula

is valid. The second cell has a pointer to a formula for these bits.

Next follow pairs of lengths and formulas until the end of the list is

reached. If some of the bits on the combinational Level String are un-

used, the list ends before the sum of the lengths totals up to n.

r------- ----· ---- .. ·-- --~-------~~------~-- ~ -~~--~-~- --·-·--~--.--~-~~-----

44.

The formulas themselves are modified Reverse Polish representa-

tions of combinational formulas found in the design language description

. lf 13 itse . For example, the formula (A[0:4] A (--, B[3:7] V C[0:4])}

would be translated (A', a, B', b, --,, C', c, V, A}, where A', B', and

C' are pointers to the level strings representing A, B and C, and a,

b and c are the bit numbers of A[OJ, B[3] and C[O] respectively. Each

symbol is contained in its own cell on the formula and operators must

be distinguishable from pointers to level strings. Figure 4-1 shows

that Formulas are represented in fixed blocks. This is done because it

is unlikely that a formula would be modified incrementally; more likely

it would be completely changed.

The structure for an Output Specification is a three-cell fixed

block and a variable length list. If the level feeds a differentiator,

the first cell on the block points to a two-cell Differentiator Speci-

fication. The first cell on this fixed table points to the Event, if

any, triggered by a "0" to "l" transition of the output level. The

second cell is for "l" to "0" transitions. If the output level feeds

a delay line the second cell of the Output Specification contains a

pointer to a Delay Specification. The first two cells of the Delay

Specification indicate the delay string and bit number of the delay

line and the third cell specifies the amount of delay. There is never

a need for a level to feed more than a single delay line because any

parallel network of ideal delays and combinational logic can be converted

13see Appendix C for a detailed discussion of Formulas.

to an equivalent serial network. The third cell in the Output Specifi­

cation points to the list of all combinational logic blocks which use

the level output as an input. When an Input Change Tag is set for some

level during a simulation, these lists are used to propagate input

changes to all combinational logic blocks dependent upon that level.

The data elements for Delay Level and Flip-Flop Level Strings are

given in Figure 4-2. Note that values, output specification pointers

and reference names are arranged as they were for combinat.ional Level

Strings. The values of delay lines and flip-flops are always kept up­

to-date and their input change tags (second cell) are always zero. Thus

it is not necessary for the simulation routines which evaluate combina­

tional level values, test for transfer level values, or require output

specification info~mation, to distinguish between the three types of

levels.

Level delay line inputs are specified at their source - only values,

output specifications and reference names are included in Delay Level

String data elements. Information about flip-flop inputs is included

in the Transfer data elements. However· it is quite possible for one

Transfer to be resetting a flip-flop at the same instant another is

setting or complementing it. This could be handled by the simulation

program by arbitrarily allowing one or the other to have precedence

depending on the order they are acted upon. Logic errors of this type

are considered to be important enough, even at this level of simulation,

to include additional information in the data structure for their detec­

tion. Therefore separate cells are included in Flip-Flop Level String

elements to accumulate set, reset and complement input activations

45.

r---- - --- --

46.

during an instant of time. At the end of the instant, this information

is used to re-evaluate the flip-flop values and detect flip-flop input

timing errors.

0

Bit

Bit

Delay
Level String

Value

1 sp_ecification

2. specification . . .
Bit n specification

Reference Name

0

~
~

Vectors
Pointing to

Output
Specifications

Flip-Flop
Level String

Value

0--------0

Bit 1 s ecif ication

Bit 2 s ecif ication

Bit n s ecif ication

Reference Name

Set Ta s

Input Tags Reset Ta s

C lement Ta s

FIGURE 4-2

Delay and Flip-Flop Level String Data Elements

The level elements of Figure 4-3 have been included to model constant

levels (wires to power busses) and standard addressable memories. The

Memory Block may be used to ease the modeling of interfaces with non-

logic devices such as core memories, tape drives and drums. Input change

tags are included as part of each constant Level String for compatibility

with Combinational Level Strings, although the tags are always reset.

The memory model is so different than the other level sources that no

attempt was made to make it cOl'llpatible with them. The first four cells

specify address length, location, 14 maximum value, m, and a reference

name for use of the translation routine. The next m + 1 cells repre-

sent the simulated memory. If it is necessary to simulate a memory

with word length greater than the memory cell size, two or more Memory

Blocks with the same address must be used. Mem:>ries act as the sources

or destinations of a special set of Transfer operations.

Constant
Level String

Value

0 ~---------------~---~---

(

~

Memory

Address Length

Level String Address
Specification Hi.gh Order Bit Number

' Maximum Address

Reference Name

Word 0

Word 1 . .
Word m

FIGURE 4-3

Constant Level and Fixed Memory Data Elements

14This implies that the address field cannot be any longer than n,
the number of bits in a level string. This is reasonable because
it should not be necessary to simulate large memories.

m

47.

~. Co~tE.£1 iogic

Tbe d.ata .elelll9flts repx"e.sentif1* contr9l logic are shown in Figure

4-4, 'lbe fi:rst tw cells of an Event element po;i.Jt.t to Gate Lists which

t"epreeertt tile co~trot g•tes ~.trohe-d by the Event. the gates in Gate

List J. ar• eonditioned by levtls wt.th value "l" and those on Gate List 0

by l•vds with v.alue ''On. the first tw cells of each gate specifica­

tion 11.st the l~el •ttift$ and bit numbEu: of the conditioning level.

'L'M third ~e.11 p~inl:s to ·the Ust of !vents triggered if the conditioning

19Vel h•s th• rig~t v~lue. Associated with each Event on an Event List

b a ,del1w ti1JM! befor.a activation; pube delay lines are built in here.

1.'}le third cell of •n Eveftt element contains a reference name used

by thft 'fOUti.~ whic.·h translates back and fot'th between the data structure

and the de•ign language. The lut cell points to the list of Transfers

which ta}(e p1~e l4he-n the Event becomes active. Unlike the design language,

,all 'l'ransfeJ"s are uncond.itional.. Conditional Transfers are achieved by

irttrod\ICing a ~w co11ditiorta.l Event which activates the Transfer. This

§iJ!piifie~ the data $tructure by eliminating the need for equivalent of

a !'Tr-.nefJir Qata List" without reducing the generality of the structure.

the first cell of a Transfer element specifies its type. Figure 4-5

cont4ins the t:rut:h tables for the set of transfers available with standard

set"'J:'e.~et ... c~lement flip-flops. A complete set of eight is included to

·tran.sfe~ eQU.rce J4vel strings to destination flip-flop strings. A second

set !s usad t9 t~a~sfer Memo~y Block contents to flip-flop strings, a

t))ir<J. if fpr l~vel string to memory tran~fers- and a fourth for memory to

~mt!lry trattsfers. ·These sets must b.e distinguishable because of the

format differences between Memory Blocks and level strings. Jam transfers

Event

Gate List 1

Gate List 0

Reference Name

Transfer List ~

Gate List

- - - --1" - - condldoning -
-rt. __ ~~e! ~t:i~g-

- - - I

\ Gate
\

\
\

\
\

\

Bit Number
~ - - - - - - - - -

Gated Event List
.l
I - - condltloning- -

_ !ie~e! ~t:i~g-t- -
I Bit Number

j - Gated Event List

~ r -
L

Transfer List

Transfer

Transfer

FIGURE 4-4

1
I
1

J

- .J

Control Logic Data Elements

Gated Event List

- - - - - - - - - - - 1 A Event

- - - ~eia; ~i~e- - - i
L - - - - - - - - - - - 1
I Event
t - - - - - - - - - - - ;
L _ _ _ !?e!al !i~ _ _ _ J

Transfer

Operator

Length

Source Level
Striru;1; or Memor

High Order
Bit Number

Destination Level
Str irut or Memor

. High Order
Bit Number

.i:­

'°

~--. --~--.. ---~~·,----

50.

Transfer Name Symbol Resultant B Value

Jam A IC> B 0 0 1 1

One's Set A~B 0 1 1 1

Zero's Reset 15
A B 0 0 0 1

One's Complement A t B 0 1 1 0

Negative Jam --, A =i>B 1 1 0 0

Zero's Set --, A_. B 1 l 0 l

One's Reset 15
--,A B 0 l 0 0

Zero's Complement --,AtB l 0 0 1

Values Before Transfer {: 0 0 l l

0 1 0 1

FIGURE 4-5

Transfer Effect Table

15This is consistent with the present fornulation of the design language.
I would prefer that the meaning of the symbol ",..}' be changed so that
a destination bit is reset if the corresponding source bit is a one
rather than a zero, as it is presently defined. This makes the place­
ment of the source gate on the true or false side of a flip-flop
consistent with set and complement transfers and eliminates the need
for an implied inverter when a combinational level is used as a reset
transfer source.

are all that are absolutely necessary for memory reading and writing,

but the additional transfers are easily and inexpensively included and

may eliminate the need for a memory buffer register to be included on

51.

a flip-flop string. A special transfer is included which causes termi­

nation of a simulation when it is activated. The number of contiguous

bits being transferred is contained in cell two of each Transfer element.

Cells three and four specify the source level string or memory and the

left-most bit number. Cells five and six do the same for the destination.

c. Time Queuing and Miscellaneous Lists

This part of the data structure satisfies needs for data fields

which vary during a simulation. This includes the queuing of future

simulation activity, handling recursive subroutine arguments and pro­

viding a means for storing input and output data which varies in length

during a simulation.

An important part of this structure is shown in Figure 4-6. The

Activity Queue, AQ, is a time-ordered lis.t of future Events to be

activated and Delay values to be changed. 'When the simulation program

determines that an Event or Delay Level value change is to occur at

some time t, an entry is added to the Event List or Delay Value List

associated with t. If there is no previous entry on the AQ at time t,

one is inserted. The first cell on the AQ contains the present value

of simulated time and is called the Clock. The Clock is stepped by

deleting the first three cells of the AQ. The second cell points to

the Event List which is presently active; this is called the Immediate

Event List. Likewise, the third cell points to the Immediate Delay

Value List.

Activity Queue Event List

r - - - - - - - - - , - 1 ~--

_I - - - J't-
r- /

Event - J
I

I- - - - - '!i~ - -
Event

~e!al Ya!u: ~ist
1 /

I_ ___ E!e~t _ L!s~ L
I
L-

1
Event -1' /

Time ~ - - - - - - - - - - ~/ '
__ E!e~t_L!s! ___ ~ ' I

t- -
L _ ~e!al ya!u: ~i~t- _ -"

......
.........
' ' '

Delay Value List

- J

...... ~ - - - - - - - - - - - ,
~ _D:l~y_L:v:l_S!r!n~ _

I
r
t­

1
Bit_N~m~e: __ - i - - - -

Va!u: _ _ _ _ ~ - - - - -
t _D:l~y_L:v:l_S~r!n~ _ i

- ~ ~ - Bit Number - - - - -
L -

Value - J

FIGURE 4-6

Time Queuing Data Structure

Active Flip-Flop List

r - - - - - - - - - - - ,
~F!i~-!l~p-~v:l_S!r~n~ ~
I Bit Number - - - - - - - - - - - - ~
~F!i~-!l~p-~v:l_S!r!n~ -I
L ___ B!t_N~m~e: ___ J

Flip-Flop Tag List

r -.- - - - - - - - - - ,
!Flip-Flop Level String I - - - - - - - - - - - - ,
I Bit Number r - - - - - - - - - - - i
rF!i~-!l~P_L:v:l_S~r!n~ i

L ___ B!t_N~m~e: ___ J

V1
N

....

53.

A number of temporary storage. lists are kept by the simulation pro­

gram. Two of these, the Active Flip-Flip and Flip-Flop Tag Lists, are

included in Figure 4-6. They are used to keep track of the flip-flops

which are changing value at a given instant of time. Additional lists

are used to store recursive subroutine arguments. Data lists are used

by the simulator to accumulate output messages. A special Transfer

operation is provided to add messages to these lists.

D. Simulation Algorithm

A simulation begins by initializing flip-flop and delay line values,

setting all combinational level Input Change tags and setting up the

initial AQ. The Active Flip-Flop and Flip-Flop Tag lists are initially

empty. The simulation takes off from there and continues until the

Halt Transfer is executed-or the AQ becomes empty. The algorithm pro­

ceeds as follows:

1. The Events on the Immediate Event List are activated one at

a time until it is emptied.

a) When an event is activated it is removed. from the list.

b) All conditioning levels on the Event's Gate Lists are

tested and new Events are added to the AQ if the values

are correct.

c) All transfers on the Event's Transfer List are activated

one at a time. Whenever one of a flip-flop's input tags

is set for the first time, the flip-flop's level string

location and bit number are added to the Active Flip-Flop

List. If an attempt is made to set a complement tag when

r------~------ --

54.

it is already set, the flip-flop's Reference Name and

bit number are given to the translation routine so .that

the user can be informed that a flip-flop input error

has been detected. If the special Terminate Transfer is

activated the Simulation Terminate Tag is set and the

Reference Name of the Event is stored. This causes the

simulation to stop at the end of that instant of time.

2. The new output values for the flip-flops listed on the Active

Flip-Flop List are computed. If more than one input tag is

set for a flip-flop, its value is unchanged. Otherwise the

Set Tag causes the output value to become one, the Reset Tag

causes the output value to become zero, and the Complement Tag

causes the output value to complement.

a) The Set, Reset, and Complement Tags are not cleared at this

time. If more than one input tag is set for the same flip­

flop, the flip-flop's Reference Name and bit number are

given to the translation routine so that the user can be

informed that a flip-flop input error has been detected.

b) If the output value is unchanged, the flip-flop is removed

from the Active Flip-Flop List and added to the Flip-Flop

Tag List. This list is used to keep track of all flip­

flops whose input tags have been set in a simulated instant

of time.

c) The flip-flop's Output Specification block is checked.

If the flip-flop output is the input to a 11011 to "l"

differentiator and it has made this transition, the

differentiator's output Event is added to the It1111ediate

Event List. A similar test is made for the "l" to "O"

differentiator, if any.

55.

d) If the flip-flop output is the input to a level delay and

its value changed, an entry is made to an AQ Delay Value

List to cause the delay line output to make the same change

after the amount of delay listed on the Delay Specification.

Any previous entry for the level delay listed at the same

time is deleted. The previous entry was a record of tran­

sient behavior and is therefore replaced by an entry with

the newer value.

3. The value changes listed on the Innnediate Delay Value List are

made one at a time.

a) If the new value is the same as the old, the delay line is

removed from the Immediate Delay Value List.

b) The delay line's Output Specification block is checked. If

the output is an input to a differentiator and its value

makes the proper change, the differentiator output Event

is added to the Immediate Event List.

c) If the delay output is an input to another delay and its

value changed, an entry is added to the proper Delay Value

list as in 2(d).

56.

4. Input Change Tags are propagated to all combinational level

bits dependent upon flip-flops still listed on the Active

Flip-Flop List and delay lines still listed on the Immediate

Delay Value List. This is done by using the Dependent Combi­

national Level list which is part of each Output Specification.

a) If a combinational level's Input Change Tag is already

set, there is no need to propagate tags past that point.

b) If one of these dependent combinational level bits is an

input to a differentiator, its new value urust be computed.

If the value makes the proper transition the differentiator

output Event is added to the Immediate Event List.

c) If one of the dependent combinational level bits is an

input to a delay, its new value urust be computed. If the

value changes an entry is added to the proper Delay Value

List as in 2 (d).

d) If the new value of a combinational level bit is calculated

for one of the above tests and the value is found not to

change, the Input Change Tags do not have to be set for

combinational levels dependent on it.

5. The remaining entries on the Active Flip-Flop List are added

to the Flip-Flop Tag List. The Immediate Delay Value and

Active Flip-F~pp lists are cleared. If the Immediate Event

List is empty, then the simulator proceeds to step 6. Other­

wise, it returns to step 1.

6. The Set and Reset Tags for all flip-flops on the Flip-Flop Tag

List are cleared and the Flip-Flop Tag List is cleared. If

the Simulation Terminate Tag is set 1 control is passed on to

the translation routine along with the Reference Names of the

termination Events. Otherwise the Clock is stepped. If the

AQ is empty, control is passed on to the translation routine,

else the simulator returns to step 1.

E. Discussion of Idealized Model Simulation

The simulation program whose algorithm has been outlined above

operates under the control of another program which translates user

connnands, formulated in the design language, into a data structure and

16
passes control to the simulation program. After the simulation program

terminates itself and returns control, the t~anslator outputs results

to the user and either returns control to the simulator or waits for

new connnands. The problems involved in writing such a translator are

difficult; indeed, the translator is likely to be larger than the more

complicated simulator of the next section. These problems are the same

as those faced in translating compiler level languages into object pro-

grams and have been under extensive investigation for some time. The

data structure is organized to ease these problems, otherwise they are

not considered here.

The behavior of the simulator at any given instant of time is to

simultaneously activate all register transfers and level delay line

output changes due to past activity. These level changes are then

16Note that the simulation program and translation program need not be
in core at the same time. This allows additional space for data
structure.

57.

58.

instantly propagated through all the combinational logic. Any register

transfers triggered by these changes are then simultaneously activated,

etc. until the logic settles. Level hazards on differentiator inputs

may or may not cause the generation of extraneous control pulses.

Unstable circuits, such as the simple example of Figure 4-7, will cause

flip-flop input alarms to be generated. The circuit will not oscillate

because flip-flops are constrained to change values no more than once

in an instant of time. If some delay were inserted into each feedback

loop, the circuit would oscillate under simulation .

0 ..- ..-. 0 ..._ ..._.

1 0

Ff
s c ..R.. .. ~ ~~ j

start pulse

FIGURE 4-7

Unstable Circuit

Although it does not aid in detecting and isolating timing--errors,

the simulator should be of great help in checking out the gross behavior

of a design. This is especially true early in the design cycle. The

timing behavior of the simulator is as good as one can get from discrete

time idealized models. Running speed, although not the highest

priority design goal, should be competitive with other simulation

programs of comparable depth and generality. An outstanding character­

istic of the simulator is that combinational levels are evaluated only

when their values are needed and only if they may have changed since

last evaluated. This feature becomes especially valuable for large

designs, because ordinary logic simulators spend a large amount of their

time evaluating combinational levels which could not have changed or

whose values are not required. Another important characteristic of the

simulator is the ease with which small changes can be made in the simu­

lated design.

59.

60.

V. DATA STRUCTURE FOR DETAILED MODELS

We are now prepared to expand the data structure developed in the

last section to represent the complete circuit and signal models of

Section III. The modified structure will include circuit ambiguity time,

signal spread, flip-flop minimum complement times and old, new and hazard

signal values for logic hazard detection. 17 The effects of these changes

on the size of the data structure and the complexity and speed of the

simulator will be discussed. Further modifications will be made so that

both ideal and detailed models can be intermixed within the same data

structure. A method of partitioning the data structure for simulating

large systems will be introduced. This data structure is designed for a

simulation system which is operated on-line by the logic designer and

communicates with him via a modified form of the design language, as was

the case for the idealized model data structure. Therefore the design

goals listed at the beginning of Section IV also apply here.

A. Level Logic

Most of the data structure expansion required to represent

detailed circuit and signal models occurs in the data elements repre-

senting level circuits. Illustrations of the data structures for detailed

flip-flop and combinational level strings are shown in Figures 5-1 and

5-2. The structure for detailed delay level strings is not illustrated

because it is the same as the combinational level structure without

17Illustrations of the completed data structure are given in Appendix A.
An outline of a simulation algorithm based on this structure is in
Appendix B.

Detailed Flip-Flop
Level String

Value _{_Old-Hazard-Newl_*

Transit ion TC!&_s · *
Strobe Ta_g_s *

Bit 1 ~ecification

Bit 2 ~ecification
. ..

Bit n Specification

Reference Name

Set Ta_g_s

Reset Tags

Comulement Tags

Activi~ Ta_g_s *

v

Output Specification
Differentiator
Specification

/"I >P<CLucannn L - - -1 0 ~ 1 Event ~
// ;// n.ln •neoifi~Hon ~ 1 ~ 0 Event

/ /
/ /

/
/

List * \
' ' '

I * \
(Mininrum Co lement Time \\

\ \
\ .
\ Tag Activity List * \

'

~ - - - - - - - - - - - - 1 ',
~ ____ T!g_T~: ___ -*~ \

Delay Specification

Delav Level Stri

Bit Number

Amount of Dela

Dependent Combinational
Level List

I- ___ Ag '!i!le_C~l! __ -*-t \. ____________ -,
~ ____ T!g_T~: ___ -*~ ~C~m~i~a~i~ll!l_~v:l_S~r!n~I

_Ag '!i1!1E!_c:l! ___ *J ~ ___ ~i~ ~u~:r _____ I

~C~~i~a~i~n~l-~v:l_S~r!ng:
L

L _ _ _ ~i~ ~ul,!lb~r _ _ _ _ _1

FIGURE 5-1

Detailed Flip-Flop Level String Data Elements

°'

Detailed Combinational
Level String

Value _{Old-Hazard-New)*

Transition T~s

Strobe Ta_g_s

Bit 1 ~ecification

Bit 2 S__p_ecification . . .
Bit n S_p_ecification

I- -

I-
I- -
L

Reference Name

-~nflt~ _
Formula

-~ngt~ _

Formula

*

* ,,,

_,

Output Specification

Delav Specification

Differentiator
Specification

---1 O ~ 1 Event I
1 _. 0 Event ,,,,,,,,,, //

/ // /
/ /

/
1

Dependent Combinational ~ '
Level List \ '- Delay Specification

/
/

* /I e -- ,, I

/
(
\
\
\

Ambbuitv Time *

Tag Activity List

~ - - - -T:g~T~; ~~~~~I J------
1- ___ Ag '!'i~_C!l! ___ -I

Tag Tv>e _ _ _ _ -I
~ - - - - - - -
L ___ Ag '!'i~_C!l! ____ t

Formula

Reverse Polish Formula

FIGURE 5-2

' \ '
\
\
\
\

\
\
\

Delav Level Stri

Bit Number

Amount of Dela

Dependent Combinational
Level List

\rc~~i~~i~n:l-L:v:l-S~r~nd
1-------------lill
I- _ _ _ ~i~ ~u~b!r _ _ _ _ _

1
I-c~~i~~i~n!l _ L!v!l _ S~r!n~
'- ___ ~i~ ~u~b!r ____ J

Detailed Combinational Level String Data Elements

°' N

formulas. Data cells which have been expanded or added to the idealized

structures of the last section are marked with asterisks. Note that

each level value cell has been expanded to include three output value

bits - old, hazard and new. It was shown in Section III that these

three values are sufficient and necessary to calculate the output hazard

values of dependent combinational levels. Detailed level string value

cells are therefore three times larger than those for idealized level

strings, provided the string length, n, is unchanged.

The second and third cells of detailed level string elements

each contain a new tag bit for each level represented on the string. A

level's Transition Tag is on during the time spread of each of its

value transitions. Whenever a Transfer is executed which changes the

value of a flip-flop, the flip-flop's Transition Tag is set. Cell five

63.

of the flip-flop's Output Specification contains its ambiguity time, TA·

This is added to the signal spread of the transfer to determine the time

to reset the Transition Tag. When flip-flop value changes are propa­

gated through the dependent combinational logic, each combinational

level's transition spread is calculated as a function of its ambiguity

time and the transition spread of its inputs. Likewise the signal spread

for a level delay's value transition is calculated by adding its ambiguity

time to the spread of its input signal's transition. If a level's value

is sampled by an Event or if it serves as a Transfer source while its

Transition Tag is set, an alarm message is generated by the simulator

to inform the logic designer. Each level signal also has a Strobe Tag

which is set whenever it is sampled by an Event or Transfer. It remains

-- -- ---~- ---~~~-·~--..--~-~-...-----~---- ___.........,~;.-:-· --,--. ~--~-- ----~- -----~- ~---

64.

set until the spread of the sampling signal is completed. An alarm

message is generated if a level' s output value changes while its Strobe

Tag is set.

The last cell of a detailed flip-flop level string element

contains an Activity Tag for each flip-flop on the string. These are

used to detect flip-flop complement input rates which are too high.

The last cell of a flip-flop's Output Specification contains its minimum

complement time, Tc· Whenever a flip-flop's Transition Tag i.s set, its

Activity Tag is also set. When the Transition Tag is reset, the Activity

Tag is reset after a delay of TC time units. Therefore the Activity Tag

is set during the interval when it is improper to activate any of the

flip-flop's complement inputs. An attempt to do so would cause an alarm

message to be generated.

In addition to checking for minimum complement time violations,

further flip-flop input error detection is accomplished by using the

Set, Reset and Complement Tags. Rather than resetting these tags every

time the clock is stepped, as is done for the idealized case, they remain

on throughout the signal spreads of the set, reset and complement Trans­

fers. If more than one of these tags is on at the same time for the same

flip-flop, or if a complement transfer attempts to complement a flip-flop

whose Complement Tag is already on, an alarm mes~age is generated.

One of the important features of the idealized simulation system

of Section IV is that a combinational level is re-evaluated when its

value is needed, and only if one of its inputs may have changed since

last evaluated. This is accomplished by setting Input Change Tags for

all combinational levels dependent upon a flip-flop or level delay whose

value changes. Unfortunately this same technique cannot be applied to

detailed combinational levels. A characteristic of the detailed model

65.

of a combinational circuit is that its output may still be changing for

a period of time, equal to its ambiguity time, after its inputs are all

settled. Furthermore, the output of a combinational circuit does not

always change when one of its inputs changes. Suppose a signal. were to

sample the level during that period of time, and that this was the first

time the level had been sampled since one or more of its inputs had

changed values. If the simulation program were to attempt to re-evaluate

the level at this time, it would be unable to determine whether or not

the level might still be changing, The most satisfactory way of guarding

against this situation is to re-evaluate detailed combinational levels

whenever their input values change. Therefore Input Change Tags are no

longer required. Naturally, if a combinational level is re-evaluated

and found not to be changing, there is no need to re-evaluate the combi­

national levels dependent upon it. Since input level values and transi­

tion spreads are always known when output transition spreads are

calculated, the more accurate method of calculating them discussed in

Section III can be used.

B. Control Logic

The data elements representing control logic are shown in

Figure 5-3. Note that the only changes are the additions of ambiguity

time cells to Event and Transfer elements. When an Event or Transfer is

activated, its signal spread is calculated by adding its ambiguity time

to the signal spread of the triggering Event or level transition.

Event

Gate List I

Gate List 0 I-

Ambig_uitr Time *
Reference Name

Transfer List ["'

'

Gate List Gated Event List

- -= ~ C~~~i~n!n; ie~e! ~t~i;g~ 1 7t = = = = ~n~ = = =
- Bit Number Delay Time

~ - - - - - - - - - - - - I- - - - - - - - - -
~ _ -~t~d_E'!e~t_J.!s~ __ ~ ~ ____ ~n~ __

._ c~~i~i~n!Il§ !ieye! ~tEi~-4 l ___ !e!ar !'i~ _

' ' '

~ ___ !i~ ~u~~r- __ _

l - Gated Event List J

' ' ~
Transfer

I- - - -
L Transfer

FIGURE 5-3

Detailed Control Logic Data Elements

~

Transfer

th
Source Level

Strina or Memor
High Order
Bit: Humber

Destination Level
Strina or HelllOr

High Order
Bit HU11lber

- ~

- _,

*

-I
~

J

0-.

°'

Modifications to the data structure were considered for detecting Event

18
doublets. Doublets can cause trouble in logic because they may

behave as a single Event in one section of the logic, and as more than

one in some other section. If an Event doublet triggers a complement

Transfer, it is not clear which state the destination register will

settle in. This situation would be detected through use of the regis-

ter's Activity Tags as discussed above. Another place where doublets

67.

might cause trouble is on logic interfaces. If the designer is concerned

about the possibility of doublets on a line, he can cause them to be

detected by using the signal to complement a dummy flip•flop with

appropriate minimum complement time. 19 Therefore, it is not considered

worthwhile to include special provision in the data structure for Event

doublet detection.

C. Time Queuing Data Structure

The structure used to queue up simulation activity is illus-

trated in Figure 5-4. Asterisks are once again employed to mark data

cells which have been added to the Activity Queue discussed in Section IV.

Cells have been added to the Event and Delay Value Lists to carry signal

spread information. When the simulation program becomes aware that an

Event or level delay value change is to be activated, an entry ia placed

on an Event or Delay Value list. This list is attached to an Activity

18rwo or more occurrences of the same Event at close to the same time;
the signal spreads may even overlap.

19This is an example of a powerful simulation technique to be discuased
more fully in Section VI.

Event List Activity Queue Delay Value List

r-----------~ r-----------, __.,;-----------,
~ ____ ~v~n~ ____ ~ - __ -t ____ !i~ _____ ~ - _ }tr _ ~l!Y _ L~v~l-S~r!n~ _ -I

~S~u:c~ 2o~!e~i~n_T!~*~ ' .. ___ E!'e~t_L!s~ ___ -L.--- / ~ ___ B!t_N~m~e: ___ ~

J-----~v~n~----~ ', .. -~!a¥Ya!u~!-i~t--~ / ~----V~l~e ____ ._ 4
L S~u:c~ 2~!e~i~n_ T!~* J ' /t- ___ R~s~t _ L!s~ ___ *-I / ~ __ ~e~t!i~g_ T!~ __ *-I

/ x'\}- - - - - !i~- - - - - ~ / ~ - ~!a¥ !-e~! ~t:i~- -I

Reset List

/ ~ ___ E!'e~t_L!s~ ___ ~// ~ ___ B!t_N~~e: ___ -I

r
..

// I- _ ~e!a~ ya!u~ !-i~t- _ .. ~ ____ V!l~e- _. ___ -4

_________ ,, __,_ ___ R~s~t_L!s~ ___ *J L __ ~e~t!i~g_T!~ __ *J
Level String *·.A- -
- - - - - - - - - 1
Bit Number *

~ - - - - - - - - - - - ~
~ ___ !a~ !Yfe ___ -*-t
J- __ !-e!'e! ~t:i~g- _ -*~

.. ___ B!t_N~m~e: __ -*~

L ___ !a~ !~e- ___ *J

FIGURE 5-4

Time Queuing Data Structure

•

°' O> .

Queue time cell containing the starting time of the activation; i.e.,

the earliest possible time the Event or level delay value change could

begin. One cell of the entry contains the activation's settling time,

or the latest possible time before the Event or level delay value change

would be completed if the Event or level delay had zero ambiguity time.

Thus the actual completion time of an Event activation is the sum of

the Event's ambiguity time and the activation's source completion time.

Likewise, the time to reset the level delay's Transition Tag is calcu­

lated by adding its ambiguity time to the level transition's settling

time.

Reset lists have been added to the AQ structure to queue up the

resetting of Transition, Strobe, Set, Reset, Complement and Activity

Tags. During the execution of a simulation program, it is often neces­

sary to refer to the reset times of these various tags; in some cases

it may even be necessary to change some of the reset times. It would

be extremely inefficient to search through the entire AQ structure

every time such a reference or change must be made. Therefore Tag

Activity Lists have been added to each level's Output Specification.

(See Figures 5-1 and 5-2.) Every time an entry is added to an AQ Reset

List to reset some level's status tag, a matching entry is added to the

level's Tag Activity List. The first cell of the entry specifies the

type of tag to be reset. The second cell points to the AQ time cell

containing the reset time. When the tag is reset, the Tag Activity List

entry is deleted. Therefore a search through a short Tag Activity List

is all that is required to fetch the reset time for a status tag. An

additional search through a single AQ Reset List is required to delete

a tag reset entry.

69.

70.

D. Intermixing Ideal and Detailed Models

The memory space required for a detailed simulation of a design

is estimated to be approximately 25% greater than that required for the

idealized modeling of Section IV. Running times should be substantially

greater, between 2 and 3 orders of magnitude. Most of this additional

time is taken in calculating the more complex values and settling times

for level signals and in the bookkeeping associated with the various tag

bits. As mentioned at the end of Section III, the most fruitful use of

detailed logic simulation is in specially tailored testing of known

problem areas. Only a limited area of the design need be represented

with detailed timing models; the rest could quite satisfactorily be done

with idealized models. By setting ambiguity times to zero, the idealized

models can be realized using the detailed data structure, but processing

time would not be reduced. Therefore the data structure should be modi-

fied so that both idealized and detailed Level Strings can be intermixed

in a single structure.

There is not enough time savings to warrant inclusion of ideal-

ized Events and Transfers in the intermixed structure. Instead, a special

value for ambiguity time, called Z, is included. If any Event or Transfer

has l ambiguity time, its signal spread is always zero no matter what the

spread of the signal triggering it. In this way idealized Events and

Transfers can be modeled in the intermixed data structure.
20

20~ b" •t . b d b h d . f 1 t" . c am 1gu1 y time can e use y t e esigner to suppress a se 1m1ng
alarms such as the one generated by the circuit of Figure 3-10.

71.

g ambiguity time is also used to make Level String Outputs ideal.

When a detailed signal is an input to a circuit with idealized outputs,

the signal spread is ignored and the input is assumed to occur at the

earliest of possible times. Thus, if a level signal generated by a

detailed circuit model enters an idealized combinational level block,

any transition in the value of the input signal is assumed to occur at

the leading edge of its spread. Likewise, when a detailed Transfer uses

an idealized flip-flop as a destination, the spread of the Transfer is

always treated as if it were zero and the flip-flop changes value

irrnnediately.

There are certain references to Level Strings in the data

structure where it is necessary to specify which type of model is used

to represent the levels. For example, if a level is specified as an

Event Conditioning Level within some Event's Gate List, it is necessary

to know whether or not to check the level's Transition Tag and set its

Strobe Tag. In the data structures discussed thus far a level signal is

referred to by specifying its Level String and bit number. In these

special cases an additional cell must be included specifying model type,

either idealized or detailed.

E. Data Structure Partitioning

The data structures required to represent large designs can

become very large; more than one central memory load may be needed.

Since it is very desirable to be able to simulate indefinitely large

designs, methods should be provided to partition data structures so that

not all of them need reside in central memory at the same time. If the

simulations are to operate in a time-shared environment, such as Project

72.

MAC's new MULTICS system, they are likely to get better treatment from

the storage allocation routines if they restrict their data space

requirements over short periods of time. The design languag~ aids

segmentation of the data structure because designs are described in

sections called components. Inter-component interfaces. are specified

with all levels and pulses given. The designer is in the best position

to know which components interreact the closest with each other and he

could designate sets of components to be grouped together to form

sections of data structure.

All data elements representing interface levels between these

data sections would be grouped together on data section 0, which would

21
reside in central memory permanently along with the simulation program.

It is suggested that the entire Activity Queue structure remain in

central memory all the time, otherwise partial queues would have to be

continually merged and any savings would be offset by bookkeeping costs.

All references to Level Strings, Events and Transfers within

the data structure nrust include a cell specifying the element's data

section. During a sinrulation all activity local to a section is executed

before moving on to the next section. Ideal Combinational Levels

residing on section 0 are always re-evaluated when their Input Change

Tags are set. This is done to avoid referring to information on a

"non-permanent" section after moving on to another. To re11¥lve the

21In the case of a MULTICS type realization, the computer system's
normal storage allocation routine would automatically move things
in and out of core as they are used. In more conventional systems,
the simulation program would have to initiate these swaps.

necessity of propagating level signal changes immediately from section

to section as they are discovered, Input Change Lists must be established

for each non-permanent section. These lists contain the names of all

combinational levels whose inputs are changing, and the settling times

of these inputs. Thus when a level signal change propagates through

section 0, the level on section 0 is re-evaluated and the combinational

level names on its Dependent Combinational Level List must be placed on

the appropriate Input Change Lists. When the program moves on to a new

section, the signal changes on its Input Change Level List are propagated

into the logic. Before the clock can be stepped, all Input Change Level

Lists must be empty.

Events may have gate conditioning levels and Transfers on more

than one non-permanent data section. When an Event crosses a section

interface in the design language description. a new Event is created in

the corresponding data structure and is unconditionally triggered by the

original Event with zero additional minimum delay and delay ambiguity

times. All of the original Event's activities in the destination section

are assigned to the new Event, which is part of the data structure on

the destination section.

Note that the way in which a design is partitioned into data

sections and the order in which the sections are acted upon by the

simulator may vary simulation results. This is true because flip-flops

are constrained to make no more than one output change at one instant

of time. When more than one type of flip-flop input is simultaneously

active, either the first input which the simulator processes dominates,

or the flip-flop output is not allowed to change at all. Since the

73.

74.

order in which the inputs are processed depends on the data structure

partitioning and the order in which the sections become active, the

output of a flip-flop with multiple active inputs may also be dependent

upon them.

This dependency can be eliminated by forcing the simulator to

execute all Events on the Immediate Event List before propagating level

changes into differentiators. Then all the Events generated by the

first level change propagation would be executed before propagating

their effects through the logic, etc. Operating in this manner would

seriously reduce the amount of time the simulator could spend on one

section before having to move on to the next. This is a high price to

pay, so the output values of flip-flops with input errors (multiple

active inputs) are allowed to vary with the way a designer partitions

his design.

The simulation program can use the Immediate Event List,

Immediate Delay Value List, Immediate Reset List and the Input Change

Lists to anticipate section usage and ask the system memory allocation

routine to ready sections in advance of actual usage. The optimum

section size to use depends on the storage allocation algorithm used by

the time-sharing system. If the section size is too small there would

not be enough activity within it at a simulated "instant" of time to

make the partitioning technique pay. If the section size is too large,

parts of it might be swapped out because of disuse. For a given design,

the smaller the non-permanent section size, the larger section zero

must be because more interface signals are required.

F. Summary of Data Structure Characteristics

The data structure we have been discussing can be used as the

basis of a simulation system capable of being of great value in tpe

detection and isolation of common timing errors, as well as checking

gross behavior of a design. The timing behavior is very realistic and

the data structure is capable of both synchronous and asynchronous

75.

logic. The data structure allows intermixing of idealized and detailed

circuit and signal timing models for optimizing simulation efficiency,

and the data sectioning system allows very large systems to be simulated.

Only the activity queuing structure, data section 0, two non-permanent

data sections and the simulation program need be in central memory at

any given time for efficient operation.

r-------------- ------~-----

76.

VI. SIMULATION COMMAND LANGUAGE

In this section we will propose some extensions to the design

language so that it can be used both as input·to the simulation system

and as the simulation conm1and language. These extensions can be divided

into the following categories:

1) Model Declaration Statements

These are to be used to declare timing information about cir­

cuits and signals and to specify storage- arrays which are useful in

simulating logic interfacing with the design under test. Statements are

also included to declare the initial state of the design prior to a

simulation, and to specify. which components are to be grouped together

to form a simulation data section.

2) Editing Statements

These are used to make on-line modifications to the design

description file which the simulation system is currently working with.

Statements and components can be added or deleted and names can be changed.

3) Simulation Commands

These statements are used to control the simulation system. They

are used to translate the design description into a simulation data struc­

ture, initialize the Activity Queue, start the simulation, and specify

conditions for termination.

4) Output Statements

These commands are used to generate output messages during a

simulation and to print out the values of level signals after the simu­

lation has terminated.

We will now introduce the proposed design language extensions and

give some exa~les of their use. After this is completed, simulation

procedures and techniques will be discussed.

A. Design Language Extensions

The following declarations are introduced to specify the circuit

and signal parameters TA' TD and TC of Section Ill:

ambiguity

min delay

min complement

TA , ·< list of levels, pulses and transfers >

TD , <level list > ;

Tc , <register list >

Delay Ambiguity declarations can be made for any level, pulse

(event), or transfer.. In the case that no ambiguity declaration is made

for an element, it is represented by an ideal model during simulation •.

If the designer wishes to have an element represented by a detailed

model with no additive ambiguity, he must declare it with TA equal

77.

zero. A Minimum Delay declaration can be made for any level signal.

Normally, level signals are represented by a bit on a Flip-Flop or

Combinational Level String. If TD is declared for a level, a Delayed

Level String bit is attached to its output and the value of the level is

represented by the delay output. This is true for both ideal and

detailed models. Minimum Complement!!!!! declarations can only be made

for registers and sub-registers. TC is assumed to be zero if undeclared.

Examples:

min complement

min delay

ambiguity

40, A[0:31], B[4:10J ;

20, C[0:31], D = A[4] A B[7]

15, A, D, A~ C, oscl ;

--~-.------..----~----.-..- - ------ ----.---·--·-- --· :-

78.

To properly test a design, it may be necessary to simulate inter-

faces with core memories, magnetic tape drives and other memory devices.

The following declarations are introduced to specify fixed and variable

size storage arrays:

memory <memory name > [<bit indices >, < number of words >

<address name>[< address indices>]];

< stack name > [< bit indices >,

< address name > [< address indices >]];

22 Memory declarations are used to specify storage arrays with fixed

size and word addresses. A declaration includes the array's name, bit

indices (therefore word length), number of words, and the names of its

address levels. Valid Memory addresses extend from zero to number of

words minus one. Stack declarations are used to introduce variable

length storage arrays. Words may be added to and deleted from the top

of a stack during simulation. Addressing is done relative to the top of

the stack. Stack declarations include their names, bit indices (word

length), and the names of their address levels.

Memories and Stacks can be used as sources and destinations of

transfer statements. Memories are specified in transfer statements the

same way as registers are. The current values of ·the address levels

determine which cell is used. Stack transfer specifications may contain

additional arguments called address indexes. The address indexes are

22 Similar to memory declarations used by Y. Chu in Reference (17).

added to the current values of the address levels to determine how far

the cell to be used is from the top of the stack. If an attempt is

made to access or modify a non•exi1tent Stack or Memory Cell, an error

message is transmitted to the system user.

The following statement types are uaed to add and delete words

on the top of a stack:

push < stack name > < level expression and integer list >;

.P.22. < stack name > < level expression or integer >;

~ statements cause the value of each level expression or integer

to be placed on the top of the stack, beginning with the first on the

list. If a level expression or integer ia not the same length as the

Stack's word length, the left-most bita are either filled with zeros

or truncated. When .E2R. state111ents are executed, the level expression or

integer is evaluated and that number of words are deleted from the top

of the stack.

The execution of Push and Pop statements generally changes the
-

addresses of infortnation already on the •tack. Theoretically, a Stack

may grow indefinitely during a simulation. In any given realization of

the simulation system, there would be an upper bound on stack growth.

Since the address levels and address indexes are specified in advance~

only a finite number of cells from the top can be addressed, An attempt

to Pop words from an empty stack will cause an error message to be

reported to the user.

79.

80.

Examples:

memory CORE[0:31, 1024, MA.R(6:15]],
INDEXREG[0:31, 64, IR[0:5]];

* read core into accumulator;

tpO:
tpl /\ RC:

tp4 /\ RC:

0 ~·MAR;
!£. IR[0:5] = 0 then CAR MAR
else CAR + INDEXREG MAR;
0 ~AC;
CORE ... AC;

In the above example, the subregister CAR is the address portion

of the instruction register. Bits 0 through 5 of the instruction

register specify which of 64 index registers to use. Index register 0

always contains zero. Note that more than one Memory or Stack can be

declared in a single statement.

In the following example, a Stack will be used to represent the

magnetic tape in a rough simulation of an incremental magnetic tape

drive. The tape drive can read or write forward or backspace by single

eight-bit characters. The tape drive is driyen by a thirty-two bit

machine so all tape movements are in four character blocks. The register

TDA is used in the simulation to contain the location of the read-write

head relative to the last character written on the tape. When a new

character is written by the tape drive, its erase head may destroy

characters further down the tape, so no information beyond the last

character wr.i·tten can be read. In the simulation the first thing done

on a WRITE conunand is to delete this information.

* rough simulation of incremental tape drive;

register
stack

TDA[O:lS];
TAPE[O: 7, TDA];

* backspace tape WCT words (WCT pr~viously declared on interface);

BACKSPACE: TDA + 3 X WCT => TDA;
0 ,._, BACKSPACE;

* read 4 tape characters into buffer register;

READ: 0 ,._,BR;
TDA - 4 ... TDA;
delay 100;
TAPE[0:7, 3]· ... BR[24:31];
TAPE[, 2] _. BR[l6:23];
TAPE[, l] ... BR[8:15];
TAPE ... BR[0:7];
0 ~READ;

* write buffer register onto tape;

WRITE: .E2£ TAPE, TDA;
0 ,.., TDA;
delay 100;
push TAPE, BR[24:31], BR(l6:23],

BR[8:15], BR[0:7];
0 ,.., WRITE;

The following statements are used to specify the initial state of

a design before simulation begins. If register or memory contents are

undeclared, their initial values are zero. Initial stacks are empty

if their contents are not specified.

initialize

initialize

initialize

initialize

<register name > = <value >
<register name > = < value >

' . . . ,

< memory name >, < address > : < value >
< value >, < address > : < value > , .••

, . . . '
<value >

<stack name>, <value>, ... , <value>;

< delay name > • <value >
<delay name > == <value >

' .. •· ,

81.

82.

Level delays are initialized over their entire lengths - no transi-

tions can be stored anywhere except at their input terminals. All

flip-flop and combinational level values are assumed to be settled.

The outputs of unitialized level delays take on the same values as

their inputs. Although separate statement types are given for registers,

delays, memories and stacks, there is no reason why these should not be

intermixed in the same initialize statement. 23

Example:

initialize A= 7, CORE, 20: 7654, 444312, 67334, B = 16,
INPUTLIST,. 5, 4, 3, 2, 1, 0, C = 41 ;

The following statement is used to declare which components are to

be grouped together to form a simulation data section.

section <component list > ;

If a component is later declared to be a part of another section or

is deleted, it is removed from its present section. All components not

declared in a section statement are assigned to section 0 and kept in

core permanently during a simulation.

An important service to be provided by the command language is the

ability to make on-line modifications to a design being simulated. The

following editing statement types are suggested for this function.

23
rt is not obvious which number base should be used for simulation
input and output. Because the hardware is simulated in such detail,
there are strong arguments for base eight numbers because engineers
find them convenient during logic debugging.

83.

delete component < component list >

delete <component name > <statement >
< statement > ; end delete

< component name > ; <statement >
< statement > ; end add ;

rename <new name > I <old name > • ... • <new name >I

< old name > ;

The actions of these statements are fairly self-evident. Delete

component statements are used to remove entire components. The second

and third statement types are used to delete and add statements within

some component description. A new component can be created by making

the first statement on an add list a component declaration. An example

of this is given below. Rename statements are used to change the names

of components, levels and pulses.

Examples:

delete component

delete

sum:

end delete

add

sum:

tape control

connnoncontrol ;

A[0:2] _, B[0:2]
C[0:3] D[0:3]

connnoncontrol ;

A[0:2] D[0:2]
C[0:3] B[0:3]

r-------

84.

add

component

interface

inputoutputcontrol

inputoutputcontrol

commoncontrol

end component

end add ;

inputoutputcontrol

iocontrol/inputoutputcontrol, ccontrol/commoncontrol

We are now ready to introduce command statements which control the

translation of a design description into a simulation data structure,

and which initiate and terminate a simulation.

translate for simulation

end translate

start < pulse list >

stop ;

restart < pulse list > ;

singlestep < pulse list >

The Translate for Simulation command is used to caµse the design

description file which the simulation system is working with to be trans­

lated into a simulation data structure file. Once this cOT1111and is given,

all delete and add commands will automatically be executed on both the

design description and the simulation data structure files until the

End Translate command is given. After that, additions and deletions are

made only to the design language file.

85.

Use of a Start command causes the Activity Queue to be emptied and

all pulses on the command's argument list to be placed on the Immediate

Event List. All oscillator pulses are also placed on the Immediate Event

List and all Clock Event pulses (discussed below) are added to the

Activity Queue. Register and Memory values are set to zero and Stacks

emptied. All Initialize statements are executed in the order which they

appear in the design. All combinational levels and delay lines are

evaluated, and simulated time is set to zero. Si,mulation commences from

that point and continues until an error alarm is detected, the Activity

Queue becomes empty, or the Terminate Transfer is executed. A Stop state­

ment can be inserted in the design wherever a register transfer statement

is legal. The simulation terminates whenever it is executed.

When a Restart command is given, the pulses on its argument list are

added to the Immediate Event List and simulation commences. Singlestep

commands behave the same way except that the simulation terminates when­

ever ;t moves forward to a new time with a non-empty Immediate Event List.

The designer may use this command to single-step time when he is trouble­

shooting a design problem.

Examples:

start

tp3:

CLOCK = 97943:

tpO, pulselin, carry2

if AC = 0 then stop

stop ;

The last example shows a ~ ~ causing termination. The special

symbol CLOCK refers to a register containing the current value of simulated

86.

time and may only be used in statement labels of the above form. Clock

Event pulses are placed in the initial Activity Queue when Start

conunands are given.

The next set of statements are used to generate output messages

during a simulation:

< level and text list >

tprint < level and text list >

text < text name >, < string of output characters without 11
;

11 >

Print and tprint statements are inserted into a design just as stop

statements. Whenever one of them is executed, an output message is

generated for the user. Tprint includes the value of the simulated clock

along with the message. Messages consist of the new values of level

signals and fixed character strings specified with Text declarations.

The following example illustrates how the output statements might be used

to trace the usage of blocks of hardware.

* Trace on fixed point multiply instruction

text ml, Multiply Arguments Are ;
text m2, Product Is ;

MULTIPLY: tprint ml, AC, BR

-, MULTIPLY: tprint m2, CA

In this example, when the signal MULTIPLY comes on, the AC and BR

registers are multiplied together. The product ends up in the CA

register before MULTIPLY is turned off. With the trace included in the

simulated design, the following kind of messages are presented to the

user every time the multiply instruction is used:

T
T

47800
47920

Multiply Arguments Are
Product Is CA = 4400.

AC 440 BR 100.

The following special forms of the Print command can be used to

output the contents of the Activity List. This is especially valuable

when simulation terminates because of detection of an error alarm.

print AL * entire Activity List ;

print AEL * all Event Lis ts attached to Activity List

print ~ * likewise for Delay Value Lists

print ARL * likewise for Reset Lists

87.

The following statements are introduced to allow the user to specify

simulation alarm conditions which he is not interested in detecting, The

statements instruct the simulator not to stop on the specified alarms or

24
report them to the user.

suppress hazard alarm < list of differentiated levels > ;

suppress sampling alarm < list of level/sampling pulse pairs > ;

suppress undefined transfer <list of transfer/activating pulse pairs >

suppress register input alarm < register list > ;

Examples:

suppress hazard alarm SYNCl, AC = 256 ;

suppress sampling alarm AC[4], tpl, BR[lO], tp2

suppress undefined transfer AC ~ BR, tpS A (IR = 410)

suppress register input alarm IOR, PBR, MSK[4:10] ;

24The meaning of these alarm conditions is pointed out in Appendix B.
Note that illegal Memory and Stack address, empty Stack, and register
minimum complement time alarms are not suppressable because these are
considered modeling errors.

88.

B. Logic Testing Procedures

We are now prepared to discuss the general procedures which a logic

designer might use to test his design by simulation. The first thing he

would do is use the regular computer system software to create or retrieve

a design description file for the simulation system to work in. The

design in this file may contain more components than he wishes to simu­

late, so he removes them with Delete commands. Simplified models for the

deleted components which interfaced with the remaining design can be

created using Add commands. Design language models may also be introduced

for external devices which interface with the design, but were not

included in the original file. The designer may wish to change some of

the design's timing parameters with Add and Delete commands.

If the designer is interested in checking for the occurrence of

certain conditions during simulation, he may add special logic to the

design to detect them. The special logic can initiate output messages or

even terminate the simulation, if he wishes. This technique amounts to

including special debugging logic in the simulated design. Dummy differ­

entiators may be placed on interface level signals to detect level

hazards. Interface pulses may be used to complement dummy flip-flops

to detect pulse doublets closer together than the minimum complement

times of the dummy flip-flops.

Additional Print and Tprint statements may be included to output

information during the simulation. Register and storage array initial

state declarations may be changed. Declarations are made stating which

components are to be grouped together to form simulation data sections.

When the designer is satisfied that the design language description is

89.

complete, he causes it to be translated into a simulation data structure

file by issuing a translate for simulation cO!Jllland. He then gives a start

command to initialize the Activity Queue and begin the simulation.

If the simulation terminates due to an error alarm, the designer will

investigate the design description and the state of the simulated design

to determine if the alarm is valid or the result of improper modeling of

delay parameters. Print commands can be given on-line to interrogate the

system about level values and the Activity List contents when simulation

terminated. If the designer decides that the design was improperly modeled,

he changes some of the delay time parameters and issues either a Start or

a Restart command. If he is unable to determine what the problem is, he

may insert more debugging logic into the design and/or single-step part

of the simulation. If he wishes, he can give register transfer commands

on-line when simulation is not active.

After he has isolated a problem, he may wish to simulate some alter­

nate solutions. The regular canputer system software can be used to

store copies of the present design description and simulation data

structure files away for future use while he tries the alternatives.

When he finds an alternate he likes, he may make changes to the original

design description file. When he is tired or wants to think about a

problem he can save his files to be retrieved when he returns.

----·---·--··----··-------··- -·- -· - -· -·--------.,.---~-----...-,,.,-~;-·~-------, --=----·...--------- -·--

90.

VII. CONCLUSIONS

The work reported in this thesis has been directed toward the

development of a logic simulation system for design verification. The

system would accept the Dennis Design Language as input and operate

on-line in a large time-shared computer environment. It would serve

as a design tool to interact with an intelligent designer during the

design process, rather than being an automatic process which exhaus­

tively checks out a design.

The idealized model simulation system discussed in Section IV has

advantages over other such systems found in the literature. Simulation

efficiency is greatly improved because combinational levels are re­

evaluated only when their values are required, and may have changed

since last evaluated. This advantage tends to increase with the size

of the design being simulated. Flip-flop input error detection h~lps

locate many of a system's solid design errors. Synchronous and asyn­

chronous designs can equally well be simulated. The internal data

structure of the simulator is a direct representation of a logically

sufficient, but not minimal, subset of the design language. Translation

from the complete design language into this subset and from there into

the data structure should not be too difficult. Likewise, the transla­

tion of output information into terms of the input description should

present no difficulties. It would not be unreasonable for early

versions of the simulation system to require designers to use the sub­

set of the design language directly represented in the data structure

to describe their designs. The data. structure was formulated so that

incremental changes could be made to it rather than retranslating the

entire structure when a small modification is made to the source

description. It is acknowledged that an incremental translator would

be complicated and that there are difficult problems that must be

solved in order to construct one.

Important factors considered by an engineer evaluating the per-

formance of a design are whether or not the interface behavior is as

specified and whether or not it is deterministic over the specified

range of operating conditions. The internal behavior of the design

need not be deterministic and logic designers may take advantage of

25
that fact to maximize the design goals. An example of this is the

case where the value of some flip-flop is not used by an instruction

and will be cleared before the next instruction. The designer may be

able to reduce the cost of implementing the instruction by using logic

which causes the value of that flip-flop to be non-deterministic.

If the internal behavior of a design is deterministic, obviously

its interface behavior ImlSt also be deterministic. Signal spread was

introduced to the data structure as an attempt to check whether or not

the behavior of each element of a design is deterministic. The spread

91.

of a signal transition or event activation is the range of its occurrence

time probability density function. The detailed model simulation system

25
Unfortunately there are cases where designers have violated wiring
rules or have taken advantage of special circuit characteristics,
which are not checked during circuit testing, to minimize cost or
maximize speed. Such practices are ill-advised because they tend
to reduce system reliability.

92.

uses signal spreads to detect the sampling of a changing level by a

pulse or ambiguous flip-flop outputs due to multiple simultaneous input

pulses. The circuit models are considered adequate for these purposes.

The weakness in the modeling results from considering each signal spread

to be independent, when the occurrence time density functions are

actually dependent. This results in flagging correct situations as logic

faults. It is felt that the system is still useful because these incor­

rect error detections can be eliminated by remodeling or error message

suppression.

Acceptable methods were introduced to the simulation data structure

and algorithm for detecting level hazards, intermixing idealized and

detailed models in the same structure and partitioning data structures

so that more complex ma.chines could be simulated. Extensions were pro­

posed to the design language to furnish special information needed as

input to the simulation system and so that the language could also be

used as the on-line simulation command language.

There are a number of ways of extending or improving the work

reported here. The first of these would be the development of a mqre

satisfactory method of checking for non-deterministic logic behavior.

A more general approach to modeling signal spread, which takes account

of spread dependencies, is to make restrictions on either the number of

levels of signal interdependence (how many logic stages of past signal

history to be maintained by the model) or the class of designs to be

simulated. The latter restrictions would be used to eliminate the

requirement of indefinitely long signal histories for completely accurate

models of certain pathological networks.

93.

Further work to be done includes the translation of the data

structures and rough algorithm outlines discussed here into a computer

program to be implemented on Project MA.C's new MULTICS system, when it

becomes available. This will require a routine for translating the

directly realized subset of the design language into the simulation

data structure. If the complete design language is to serve as input

to the simulation system, a pre-processor for translating it into the

accepted subset must be written. The non-trivial problems involved with

incremental translation of corrections must be solved if that feature is

to be included in the simulation system.

A topic of considerable interest is that of providing adequate

provisions for out.putting information to the designer during a simula-

tion. The output commands introduced in Section VI are comparable with

simulation output techniques found ~n the literature. If these commands

were used to any great extent, the simulation system would become severely

output limited and the advantages of on-line operation would be lost.

This seems to be a fruitful application area for displays. For example,

26 a display might be used to simulate a coml>uter control panel which

could be modified on-line. A by-product of this approach might be the

development of more functional computer operator and maintenance console

designs.

26This is similar to the printed simulation output discussed in
Reference (1).

94.

APPENDIX A - INTERMIXED SIMULATION DATA STRUCTURE

This appendix consists of a set of illustrations of the intermixed

data structure of Section V. The conventions used are the same as the

ones used for the Ideal data structure illustrations in Section IV.

Note that Ideal and Detailed Level String elements are the same size to

make it simple to change the model to be used for a given level circuit.

A level string can contain representatives of both models in any inter­

mixed order. There are a variety of ways of representing the circuit

and signal models in a data structure. The only claim made about the

structures shown here is that they seem reasonable for the design goals

of Section IV. The Tag Activity List in Figure A-3, the data portion

of the Stack in Figure A-4, and all of Figures A-6 and A-7 are shown as

list structures because their lengths are modified during a simulation.

The criterion for choosing whether or not to represent other structures

with list structures or fixed blocks was the likelyhood of their lengths

being modified when a designer modifies his design. There is a trade­

off between the ease of incremental modification of the data structure

to represent design changes, and the access speed of information during

a simulation. If incremental modification of the data structure is not

done, all structures which remain of fixed size during a simulation

should be realized as fixed blocks.

Footnotes are used with the figures to clarify the meaning of some

of the cell contents and to point out interrelationships between figures.

Appendix B outlines a simulation algorithm based on this data structure.

Detailed Combinational
Level String

Value (Old-Hazard-New

I_

I

o-------
Transition Tags

Strobe Tags

Bit l Specification

Bit 2 Specification

Bit n Specification

Reference Name

_ !_.e:ig~h­

Formula r - - - - - - - -
I- ___ !_.e:ig~h- __

L - - Formula

0

Detailed Delay
Level String

Detailed Flip-Flop
Level String

Value (Old-Hazard-New Value (Old-Hazard-New

0 0 o-------
Transition Tags Transition Tags

Strobe Tags Strobe Tags

Bit 1 Specification Bit 1 Specification

(1)
Bit 2 Specification

(1) Bit 2 Specification

Bit n Specification Bit n Specification

Reference Name Reference Name

Set Tags

Formula (2) Reset Tae:s

c lement Tags

1 ~I Reverse Polish Formul Activit

(1) Pointers to Output Specification element of Figure A-3.
(2) Refer to Appendix C for discussion of formulas.

FIGURE A-1

Detailed Level String Data Elements

0

(1)

\0
VI

I
(

0

0

Ideal Combinational
Level String

Value(l)

I~ut Change Ta_g_s

Bit 1 S_pecification

Bit 2 ~ecification
. . .

Bit n ~ecification

Reference Name

0

0

- ~~g!h_
Formula

- J
1- - -

""

.....

-~(2) .,,,
.,,.

0

0

0

Ideal Delay
Level String

Value1fY

Bit 1 S_E_ecification

Bit 2 Sp_ecif ication . . .
Bit n ~ecification

Reference Name

Formula

0

0

0

......

-~(2)
#' ,,,

0

0

0

Ideal Flip-Flop
Level String

Value1ry

Bit 1 ~ecif ication

Bit 2 S_E_ecif ication . . .
Bit n Specification

Reference Name

Set Tqs

Reset Tqs

Complement Tqs

L -

~~g!h_

Formula • .,.. Reverse Polish Formul

(1) Old Values and Hazard Values not carried.
(2) Pointers to Output Specification element of Figure A-3.

FIGURE A-2

Ideal Level String Data Ele!!!E;9ts

0

0

0

........

-~(2) ,,,, ,,,

\0

"'
l

I

'i

Differentiator
Spec if ica tion

0 ~ 1 Ou9?.ut Event

Section

1 ~ 0 Ou~ut Event

Section

Dependent Combinational
Level List

r - - - - - - - - - - - - ~
~c~~i~~i~n!l_L~v~l_S~r!n~

Section -I
~ - - - - - - -(~)- - - -
~ - - - - _TlP~ - - - - - ~

Bit Number t - - - - - - - - - - - - i
~C~i~~i~U!l_~v~l_S~r!n~

~ _ _ _ _ ~e~t!O~ _ _ _ _ i

~ - - - - _TV'~(~)- - - - ~
L Bit Number - J

/

Output Specification (l)

Differentiator
S_l!_ec ifica t ion

Delay Specification

Dependent Combinational
~ Level List

/ Tag Activity List
/

/ Ambiguity Time <2-Y

Minimum Complement Time(7)

-
',

Delay Specification

-- Section

Tvoe(5

Bit Number

Amount of Dela

' - - , ' - - - - - - (3}
......... - - !ai !Yl?e~4} - - -I

~ Ti~ _ - - - i

Tag Activity List

~ - - ~a; ~Yfe_ - - - i
~ - - - -T~~ - - - - J
l - - - - -

(1) Pointed to from Level String elements of Figures A-1 and A-2.
(2) Always special value Z for ideal outputs.
(3) Transition, Strobe, Set, Reset, Complement, Activity or Hazard Value.
(4) Pointer to Time cell on Activity Queue of Figure A-6.
(5) Specifies whether or not Hazard Values must be carried.
(6) Specifies whether or not a new value must be computed for

dependent level when the output changes.
(7) Included only for detailed flip-flops.

FIGURE N-3

Level Output Specification Structure
\0

'

-.{J

Constant Level String(l) Memory(2) Stack (2)

Address Leng_th

Address Level Striil.ll:

Section<3>

Address Leil.ll:th

Address Level String

Section<3>

I 0 Val;..-- J
~e ~e

H:l,g_h Order Bit Number H:l,g_h Order Bit Number

Maximum Address__,_ m Maximum Address__,_ m

Reference Name Reference Name

Word 0 _ W~r~ Q _ _ _ _ -I
r Word 1
i- - - -

Word l . . .
I- -

Word m '- - - Word m

(1) Note that Constant Level Strings do not require Transition or Strobe Tags
because they are Ideal models. They require no Output Specifications
because their values never change.

(2) Used to simulate special interfaces and to store output data.
(3) Must be some section as Memory or sect~on 0.

FIGURE A-4

Constants, Memories and Stacks

-1
-I

- _I

ID
C» .

Event

Gate List 1
..

Gate List 0 ..
Ambiguity Time <3>
Reference Name ...,
Transfer List ~

Gate List

- -- -.r - - - - - - - - - - - - 1
_____,.. .. c~n~i~i~n!n~ !_.eyC~)~t:i~g~

\
\

\
\

\
\

\
\

Section
~ - - - - - - - - - - - -T (2)
.. - - - - - ¥1>! - - -
~ ___ ~i~ ~U1!11>~r- _
~ __ G~t!d_Eye~t_L!st -I
~C~n~i~i~n!n~ !_.eye! ~t:i~g~

Section - ~ .. -
~ -
~ -

- - - -Tv>! - -
Bit Number

l __ G~t!d_Eye~t_L!s~ _

~ - -
.. - -
~

.. -
l - -

Transfer List

Transfer
- - - - I - -
Section{)

Transfer ~
- I - - - -i

- ;e~t~on<) J
- - - - - - - -

(1) Must be present active section or section 0.
(2) Detailed or Ideal - determines whether or not Input Change

and Transition Tag checked and Strobe Tag set.
(3) If Event or Transfer is Ideal, this value is Z.
(4) Number of high order bit of designated sub-string.
(5) Detailed or Ideal - determines whether or not destination

Set, Complement and Reset Tags should have spread.

FIGURE A-5

Control Logic Data Elements

Gated Event List

Event

_ ~e~t!o~ _

,
- ~

~
_ ~!ar !i~- ___ ~

.. - - Event - ~
t- ____ ~e~t!o~ ____ ~

l ___ ~e!a~ !i~- ___ J

Transfer

Ambi2uitv Time(3)

Operator

Lenstth
Source Level

Strinst. Memorv or Stack

Section(!)
e (2)

High Order Bit Number(~)
Destination Flip-Flop

Strinst. Memorv or Stack
Section (1)

TV1>e{5)

High Ord~r Bit Number(4)

\0
\0

Event List Activity Queue Delay Value List

r - - - - - - - - - - - ~ r - - - - - - ~) - - - 1 ~ - - - - - - - - - - - ,
f- ____ ~v~n~ ____ ~ - _ _ _ t- ____ '!'i1.:1e _

1
____ -I ..,... ..,...)ff- _ D~l~y- L~v~l - S~r!n~ _ ~

t- ____ S~c~i~n- ___ 1 ') ___ E~e~t_L!s~ ___ -1..,,,.....,... / ~ ____ S~c~i~n- ___ ~

1-S~u:c~ 9o~p!e~i~n_T!m~ 1 ' ' I- _ ~e!aI ya!u~ !-i~t- _ ~ / I- ___ B!t_N~m~e: ___ 1
I- ____ ~v~n~ ____ 1 ', /'~ ___ R~s~t_L!s) ___ ~ // t ____ ya!u~ ____ 1
I- ____ S~c~i~n- ___ ~ /'4- ____ '!'i~e? ____ 1 / I- __ ~e~t!i~g_T!m~ __ ~
LS~u:c~ 901.:lP!e~i~n_T!m~ J / I- ___ E"~·e~t_L!s~ ___ 1// I- _D~l~y_L~v~l_S~r!n~ _ ~

// I-_ ~e!a~ya!u~ !-i~t- _ 1 ~ ____ S~c~i~n- ___ ~
Reset List /. -l - Reset List - J Bit Number

t- - - - - - - - - - - - ~

r -
I- -
I- -

_ !-e~e! ~t:i~g- _

Section

.../....
......

- 1

~
Bit Number

~ - - - - - - - - } - - ~
Tag Type <2

I- - - - - - - - - - - - i
Level String

I- - - - - - - - - - - - ~
~ ____ S~c~i~n- ___ ~

1 Bit Number
r - - - - - - - -) - - i
L - - - !'a~ '!'YI?e52_ - - J

~ _ _ _ _ ya!u~ _ _ _ _ ~

L __ ~e~t!i~g_T!~ __ J

(1) May be pointed to from Tag Activity List of Figure A-3.
(2) May be Transition, Strobe, Set, Reset, Complement,

Hazard Value Activity or Input Tag Type. Input is used
to clear all three input tags for ideal flip-flops.

FIGURE A-6

Activity Queuing Data Structure

......
0
0

Section Input List(l)

r - - - - - - - - - - - 1
Level String

~ - - - - - - - - - - - ~
~ ___ B!t_N~m~e: ___ ~

~ _ _ !;-eye! ~t:i~g- _ _ ~

L ___ B!t_N~m~e: ___ J

Active Level List

r - ,
~ __ !;-eye! ~t:i!!-g __ - ~
~ ____ S!c~i~n- _ - - 4
~ -
~

__ B!t_N~~e: ___ 4
!;-eye! ~t:i~g- __ ~

~ ____ s~c~i~n- - ~
L ___ B!t_N~m~e: - J

Detailed Flip-Flop List Ideal Flip-Flop List

r - - - - - - - - - - - - , f - - - - - - - - - - - - 1
~D~t!i!e~ !l!P:F!oe ~t:i~g1 ~ !d~a! !l!P:~!oe ~t:i~g- ~
~ ____ ~e~t!o~ ____ ~ ~ _ _ _ _ ~e~t!o!!- _ _ _ _ -i

~ ___ ~i~ ~111!'1>~r- _ • _ ~ ~ ___ ~i~ ~u~~r- ___ ~

~T:a~s~e: 9~!e~i~n_T!m~ ~ ~ !d~a! !l!P:F!oe ~t:i~- ~

~~t!i!e~ !l!P:F!oe ~t:i~g4 ~ ____ ~e~t!o~ ____ i

~ _ _ _ _ ~e~t!O!!- _ _ _ _ 4 L ___ ~i~ ~u~!r ____ J

~ ___ ~i~ ~u~~~- ___ 4
LT:a!!-s~e: ~o~!e~i~n_T!lll! j Ideal Input Tag List

r - - - - - - - - - - - - ,
~ !d!a! !l!P:F!oe ~t:i!!-8_ ~
~ _ _ _ _ ~e~t!O!!- _ _ _ _ 4

Bit Number
~ - - - - - - - - - - - - ~
~ !d~a! !l!P:F!oe ~t:i!!-g_ ~

Section
~ - - - - - - - - - - - - i
l ___ ~i~ ~u~b!r ____ J

(1) One of these lists is provided for each non-permanent data section.
All pointers entered on these lists are for interface signals
found on section 0.

FIGURE A-7

Temporary Storage Lists
~
0
~ .

102.

APPENDIX B - INTERMIXED DATA STRUCTURE SIMDLATION ALGORITHM

In this appendix we shall discuss a simlation algorithm based on

the intermixed data structure discussed in Section V and illustrated in

Appendix A. This will be done in a format similar to that used in

Section iv to discuss the simulation algorithm based on idealized cir­

cuit and signal models.

The center of a si111Ulation is the Activity Queue, which is a time­

ordered list of all future activity for the si11111lator to undertake. The

structure of the AQ (Figure A-6) consists of a list of time cells con­

taining progressively larger values of time. Each time cell has a pointer

to an Event.List, a Delay Value List and a Reset List. The Event List

contains the locations (addresses and section numbers) of the Events

which the simulator knows must be activated when si1111lated TIME reaches

the value contained in the time cell. An Event's time of activation is

the earliest possible time at which it could occur (starting time of

Section III). Listed with an Event's location on the Event List is a

source completion time. The Event's settling ti~, or the latest possi­

ble time at which it could occur, is found by adding its ambiguity time

(contained in the data block describing it) and its source completion

time.

The Delay Value List contains the locations (string addresses, bit

numbers and sections) of all level delays whose output values the simu­

lator knows will change when simulated TIME reaches the value contained

in the time cell. Accompanying each level delay's location is its new

value and a settling time. This settling time is added to the delay's

ambiguity time to determine the settling time of the output change.

Likewise, the Reset List contains the location (string addresses, bit

numbers, sections and tag types) of all status tags which the simulator

knows must be reset when simulated TIME reaches the value contained in

the attached time cell.

103.

When the simulator determines that an Event is to be activated, it

adds the Event's location and source completion time to the (possibly

empty) Event List attached to a time cell containing the Event's start­

ing time. If no such time cell exists, one is created and placed on the

AQ in the proper time position. Likewise when the siuailator finds that

a level delay value should change, or a status tag should be reset,

entries are added to Delay Value and Reset Lists attached to the correct

AQ time cells. Once an Event is placed on an Event List it is not

removed until activated, but the source completion time portion of the

entry may be modified. Likewise Delay Value List entries are not deleted

until activated, but the new values and settling times may change. Reset

List entries may be deleted before activation time. During the execution

of a simulation the simulator may attempt to set a status tag and find it

already set. When this happens the simulator must fetch the tag's old

reset time and compare it with the newly computed one. If the new reset

time is chosen, the old Reset List entry is deleted and a new entry is

added to the Reset List attached to the AQ time cell containing the new

reset time.

Each status tag is part of the description of some level. When an

entry for that tag is added to or deleted from a Reset List, a matching

entry is also added to or deleted from the Tag Activity List attached to

104.

the level's Output description (Figure A-3). The matching entry consists

of a cell containing the status tag type (Transition, Strobe, Set, Reset,

Complement, Hazard or Activity) and a pointer to the AQ time cell which

the Reset List is attached to. The simulator uses the Tag Activity List

to fetch old tag reset times when comparisons are required, and to locate

old Reset List entries when they are to be deleted.

The simulator operates under the control of another program which

translates user commands, formulated in the extended design language of

Section VI, into the data structure. This program, which we will call

the translator, also translates outputs from the simulator into messages

for the user. A simulation begins with an initial state for all level

signals and an initial Activity Queue based on instructions from the

user. The top time cell on the AQ is called the CLOCK and contains an

initial value of zero. During the rest of this appendix the value of

the CLOCK, or top time cell, is referred to as simulation TIME. When

all of the entries attached to the top time cell have been activated the

cell is deleted, stepping the CLOCK. The simulation stops when the

simulator steps the CLOCK and finds the AQ empty or the Simulation Termi­

nation Tag set. This tag is set when the Terminate Transfer is executed

or when the simulator detects and informs the translator about a simula­

tion alarm. The Event List attached to the top time cell on the AQ is

called the Inunediate Event List. It contains those Events which are

currently active. Likewise the Immediate Delay Value List and Inunediate

Reset List contain value changes and tag resets which are currently

active.

105.

The simulation data structure is divided into a number of data

sections. At any given time, the simulator will be working with sec­

tion 0 and one of the other sections, called the "non-permanent"

sections in Section V. The non-permanent section being worked at a

given time is called the Active Section and is selected by a round robin

process. When simulation begins an Active Section is selected. All

value changes in the Innnediate Delay Value List for section 0 and the

Active Section are activated. All status tags on the Innnediate Reset

List for section 0 and the Active Section are reset. All Events on the

I11Dnediate Event List for section 0 and the Active Section are activated.

The activation of an Event may cause new Events to be added to the Imme­

diate Event List. The process is continued until there are no more

I11Dnediate Event List entries for section 0 and the Active Section.

At this point all level changes brought about by the Event activa­

tions and the level delay value changes are propagated through the logic.

This will cause more entries to be added to the AQ; in particular, more

Events may be added to the Innnediate Event List. Any of these belonging

to section 0 and the Active Section are activated and their change~ are

propagated through the logic. This is continued until no new Events are

added to the I11Dnediate Event List for these sections. The propagation

of level changes through the logic will generally cause section interface

levels to change. Each non-permanent data section has a Section Input

List (Figure A-7). When an interface level changes, its location is

placed on the Section Input List of its destination non-active section.

When this section becomes active, the level changes on its Section Input

List are propagated through the logic.

106.

After all immediate activity for section 0 and the Active Section

has been completed, the next section on the round robin is made active.

All status tags on the Immediate Reset List are reset and immediate delay

value changes are activated for the new Active Section. All Events on

the Immediate Event List for the Active Section are activated. The level

changes brought about by the changing flip-flop, delay, and interface

levels are propagated through the logic. Additional Events entering the

Immediate Event List for section 0 and the Active Section are activated,

etc. until no new ones are· added.

This process is continued on around the sections until all immediate

activity has been. completed; i.e., the immediate lists and all Section

Input Lists are empty. The simulator is then ready to step the CLOCK.

First it must make arrangements for the ideal flip-flop input tags which

were set during the last instant of time to be reset. This is done by

adding· a number of entries to the Tag Reset List attached to the next

AQ time cell. The Sinmlation Termination Tag is then tested to see if

it has been set. If so, control is passed on to the translator. Other­

wise the CLOCK is stepped and the simulator begins over with the new set

of immediate activity lists.

During the processing of an instant of simulated time, the simu­

lator uses a number of lists to store temporary information (Figure A-7).

The Section Input Lists were mentioned above. An Ideal Flip-Flop List

is used to keep track of ideal flip-flops with active inputs. A Detailed

Flip-Flop List serves the same function for detailed flip-flops. An

Active Level List is used to remember level signal changes which have not

107.

yet been propagated through the logic. Finally, there is an Ideal Input

Tag List which is used to record ideal flip-flops whose input tags will

require resetting before stepping the CLOCK.

r-----·- ---------- --

108.

1. Outline

The following is a fairly detailed outline of the simulation algo­

rithm discussed above. The phrases "the translator is informed that •••

alarm has occurred" and "output information is passed on to the trans­

lator" occur several times in the outline. These phrases do not imply

that the simulation is interrupted for these output messages, but rather

that they are added to an output buffer. The simulator may pass control

over to the translator to process these messages at regular intervals

and whenever the output message buffer becomes full.

Before a simulation begins, all delay line, flip-flop and detailed

combinational level values are initialized and the Input Change Tags for

all idealized combinational levels are set. The Activity Queue is

initialized and all other lists of temporary information are emptied.

The first section to become the Active Section is the lowest numbered

one other than zero.

I. The next section on the round robin becomes the Active Section.

A. All Immediate Reset List entries for section 0 and the Active

Section are activated and deleted from the list.

1) This causes various Transition, Strobe, Set, Reset,

Complement and Activity Tags to be reset for detailed level

bits.

2) If the Tag Type entry (Figure A-6) is Input, all three

flip-flop input tags (Set, Reset and Complement) are reset.

Input Tag reset entries are only used to clear ideal flip­

flop input tags.

109.

3) A special Tag Type (Figure A-6) is reserved for detailed

flip-flop Transition Tags. When a detailed flip-flop's Transi­

tion Tag is reset, its New Value replaces its Old Value, its

Hazard Value is reset, and an entry is added to the AQ to cause

its Activity Tag to be re.set. (See V - B (3) below.)

4) If a flip-flop Hazard Value bit is reset, the flip-flop's

location (level string, bit and section number) is added to the

Active Level List. The flip-flop's Output Specification is

checked to see if it feeds a level delay. If it does, an entry

is added to an AQ Delay Value List to cause the level delay

value to make the same change at TIME plus the amount of delay

listed in the Delay Specification (Figure A-3). The reset time

for the flip-flop's Transition Tag plus the amount of delay is

used as the source completion time on the new entry. (See V - B

(4) below for special case which causes a Hazard Value bit reset

entry to be added to the AQ. This is an optional feature.)

B. All level locations (strings, bit and section numbers) on the

Active Section's Section Input List are added to the Active Level

List, and the Section Input List is emptied. These levels are all

interface signals and therefore are on section 0.

II. The value changes for section 0 and the Active Section listed on

the Immediate Del.ay Value List are executed.

A. The settling time for each change is calculated by adding the

delay line's ambiguity time to the settling time included in the

Delay Value List entry (Figure A-6).

110.

1) The delay line's Transition Tag is set. An entry is added

to the AQ to cause it to be reset at the delay line's settling

time. If the Transition Tag is already set, its old resetting

time on the AQ is replaced with the new one.

2) If the delay line ambiguity time is e, the Transition Tag

is not set and the delay line settling time equals TIME, the

current value of CLOCK.

B. If the delay line's value or settling time has changed, its

location (delay string, bit and section number) is added to the

Active Level List.

l) The delay's Output Specification Block is checked to see if

it feeds a. second level delay line. If so, an entry is added

to the Delay Value List attached to the AQ time cell containing

TIME plus the amount of delay listed on the Delay Specification

(Figure A-3). The added entry consists of the location of the

second delay line (string, bit and section), the current Hazard

and New Values of the input delay line and a settling time equal

to the sum of delay of the second delay line and the settling

time of the input delay line. If the second delay line is ideal,

the Hazard Value in this entry is zero no matter what the input

delay line's Hazard Value might be. If another entry is already

present on the same Delay Value List for the same level delay

bit, the old entry is deleted.

2) If the level delay's New Value has made a transition, its

Output Specification is checked to see if it feeds a differen­

tiator sensitive to this transition. If it does, the differ-

entiator's output Event is added to the Immediate Event List.

The settling time of the level delay is taken as the Event's

source completion time (Figure A-6).

lU.

3) If the level delay's Hazard Value has changed to one and it

feeds a differentiator, the translator is informed that a Hazard

Alarm has occurred and is given the Reference Name and bit

number of the level delay. Any differentiator fed by the level

delay and not activated in (2) above is also activated.

C. Each value change entry is removed from the Immediate Delay

Value List as it is activated.

III. The section 0 and Active Section Events on the Immediate Event List

are activated one at a time and deleted from the list until no more remain.

A. An Event is re100ved from the list when it is activated. It's

completion time is computed by adding its ambiguity time to the

source completion time accompanying it on the Immediate Event List.

If the Event has a ambiguity time, TIME is taken as its completion

time.

B. All conditioning levels on the activated Event's Gate Lists are

tested (Figure A-5). All Event locations contained on Gated Event

Lists attached to conditioning levels with correct values (l's on

Gate List 1 and O's on Gate List O) are added to the AQ. The acti­

vation time of each of these Events, or the value of the AQ time

cell to which the entries will be attached, is calculated by adding

TIME to the delay time accompanying the Event on the Gated Event

List. The source completion time of each of these Events is computed

112.

by adding the same delay time to the completion time of the pres­

ently activated Event.

1) When an ideal level is tested, its Input Change Tag .is

checked to see if it needs to be re-evaluated (this tag can

only be set for combinational levels). If so, it may be depend­

ent on other ideal combinational levels which may also need re­

evaluation. Therefore, the subroutine which evaluates ideal

combinational levels should be recursive.

2) When a detailed level is tested by an Event or Transfer with

non-zero signal spread (completion time not equal to TIME), the

level's Strobe Tag is set. A Reset List entry is added to the

AQ so that the tag will be reset at the sampling Event or Trans­

fer's completion time. Thus a detailed level's Strobe Tag is

set during the interval of time when it might be sampled.

If the Strobe Tag is already set when the level is tested,

the tag's previous reset time is compared with the completion

time of the sampling signal. If the previous reset time is

earlier, it is replaced by the completion time.

The Old Value is the one always used when testing detailed

levels.

3) If the Transition Tag of a detailed level being tested is

set, the translator is informed that an Event Sampling Error

has occurred and is given the Reference Name of the sampling

Event and the Reference Name and bit number of the level.

113.

C. The Transfers on the activated Event's Transfer List are executed.

The completion time for each is the sum of its ambiguity time and

the completion ti._me of the activated Event. If a Transfer's ambi­

guity time is H, TIME is taken as its completion time.

1) Ideal Transfer sources may require re-evaluation as in B (1)

above.

2) Strobe Tags are set for detailed Transfer sources as in B (2)

above.

3) If the Transition Tag of a detailed Transfer Source is set,

the translator is informed that an Undefined Transfer alarm has

occurred and is given the Reference Name and bit number of the

level and the Reference Names of the Transfer and activated

Event.

4) If the transfer source is a memory, the memory's address

value is checked to make sure that it is no greater than m,

the maximum cell address. If the address is too large, the

translator is informed that an Illegal Memory Address alarm has

occurred and is given the Reference Names of the memory, the

transfer, and the activated Event.

5) If the transfer source is a stack, a similar test is made

on its address value. If it is out of bounds, the translator

is informed that an Illegal Stack Address alarm has occurred

and is given the Reference Names of the stack, the transfer, and

the activated Event.

6) If the transfer destination is a memory or stack, the above

address tests are made and the transfer is executed.

114.

7) If the transfer destination is an idealized register,

flip-flop Set, Reset and Complement Tags are set for those

bits whose source values are correct. If an attempt is made

to set a Complement Tag when it, or one of the other two tags,

is already on, the translator is informed that a Register Input

~ has occurred and is given the Reference Name and bit

number of the flip-flop and the Reference Names of the Transfer

and activated ·Event. The same thing is done if an attempt is

made to set a Set or Reset Tag when one of the other two tags

are on. When a flip-flop's first input tag is set, its string

and bit number is added to the Ideal Flip-Flop List.

8) If the transfer destination is a detailed register, flip­

flop Set, Reset and Complement Tags are also set for those bits

whose source values are correct. A Register Input Error is

reported to the translator under the same conditions discussed

in (7) above. In addition, if an attempt is made to set a

flip-flop's Complement Tag while its Activity Tag is on, the

translator is informed that a Minimum Complement Time Error has

occurred and is given the Reference Name and bit number of the

flip-flop and the Reference Names of the Transfer and activated

Event. When a tag is set for the first time since last reset,

an entry is added to the AQ to cause it to be reset at the

transfer's completion time. Subsequent attempts to set the tag

result in a comparison of its old reset time and the completion

time of the transfer. If the old reset time is earlier, it is

replaced with the completion time.

115.

If a detailed flip-flop's three input tags are all off and

a transfer sets one of them, the flip-flop's location (string,

bit and section) and the completion time of the transfer are

added to the Detailed Flip-Flop List. If the first tag to be

turned on is the Set or Reset Tag, subsequent attempts to set

the same tag before setting one.of the others will also add an

entry to the Detailed Flip-Flop List, provided that the comple­

tion time of the transfer is less than the reset time for the

tag. When a group of pulses are resetting a flip-flop, the

flip-flop must be reset by the minimum of the completion times

of the pulses. Therefore an entry is added to the Detailed

Flip-Flop List when a new input is activated with a completion

time which may be earlier than the previous active inputs of

the same type. Once an input error is detected, no more

entries are added to the Detailed Flip-Flop List. The detailed

flip-flop evaluation routine (discussed in V below) will not

change the output value or settling time of a flip-flop with

an input error because its new value is ambiguous.

9) If a Push or Pop Transfer is activated, the necessary cells

are added to or deleted from the specified stack and the maxi­

mum stack address is re-evaluated. If an attempt is made to

Pop words from an empty stack, the translator is informed that

an Empty Stack Pop error has occurred and is given the Reference

Names of the stack, the Pop Transfer, and the activated Event.

10) If an Output Transfer is activated, the specified output

information is passed on to the translator.

116.

11) If the Terminate Transfer is activated, the Simulation

Terminate Tag is set and a Terminate Messa.ge is passed on to

the translator including the Reference Name of the activated

Event.

IV. New output values are computed for the flip-flops listed on the

Ideal Flip-Flop List •

.A. The input" tags are not reset. If more than one input tag is

set for the same flip-flop, its output.value is unchanged. Other­

wise the Set Tag causes it to become 1, the Reset Tag O, and the

Complement Tag causes the value to complement.

B. If a flip-flop's output value changes, its location is added

to the Active Level List.

1) The flip-flop's Output Specification is checked to see if

it feeds a differentiator sensitive to this transition. If it

does, the differentiator's output Event is added to the Immedi­

ate Event List. TIME is taken as the accompanying source

completion time.

2) The Output Specification is also ~becked to see if the

flip-flop feeds a level delay. If it does, an entry is added

to an AQ Delay Value List to cause the level delay value to

make the same change at TIME plus the amount of delay listed in

the Delay Specification (Figure A-3). The accompanying settling

time is also the sum of TIME and the amount of delay listed in

the Delay Specification. If another entry for the same level

delay bit is alreapy present on the same Delay Value List, the

old entry is deleted.

V. New outp~ values are c.omputed .fOJ: the flip-flops listed on the

Detailed rlip-Flop List.

117.

A. If ~e Detailed Ylip-FlOJI 4ist contains mo~e than one entry for

the i;ame f1ip-fl.op, all but the en~:t"Y with ;minimum completion time

is 4eleted.

B. l'.he new output valU? fo+ ea~h flip·tl.op is calculated and its

entry is re!W)ved froth the Detail~d Flip~Flop List.

1) The .Old Value bit .i.$ unchaJl$ed while the New Value bit is

e.alcula.ted the same way a.s ;tl;le new value of •n ideal flip-flop

in IV - A above.

2) If the flip-flop's New Value bit changes~ its Transition

Tag is s.et if previously off. An eatry is added to the AQ to

reset the tag at the flip-flop's new settling time. This is

calculat~d by adding the input completion tilne listed on the

Detailed Flip-Flop List to the flip-flop's ambiguity time.

l'hus the Transition Tag is on whenever the flip-flop's value

might be changing, and therefore ambiguous.

3) When a flip-flop's Transition Tag is first turned on, its

Activity Tag is also set. When the Transition Tag is reset, as

in I - A (3) above, an entry is added to the AQ to reset the

Activity Tag ,.C time units later, where ,.C is the minimum com­

plement time of the flip-flop. Therefore the Activity Tag is

on whenever it ia illega1 to strobe the flip-flop's complement

input. If the activity Tag is already on when the Transition

Tag is turned on, the Activity Tag's reset entry (there must

be one) is deleted from the AQ. This technique for resetting

118.

~---~------------

the Activity Tag is used because it is not necessary to change

Activity Tag reset entries every time the flip-flop's settling

time changes.

4) If the flip-flop's Transition Tag is already on when its

New Value bit changes, the Hazard Value bit is set. The flip­

flop's old settling time (the time when the Transition Tag is

reset) is compared with its new settling time. If the old

settling time is earlier, it is replaced by the new one and an

entry is added to the AQ to have the Hazard Value bit reset at

the old flip-flop settling time. (This feature is optional.)

5) If the flip-flop's Transition Tag is already on and the

New Value bit is unchanged, the new settling time is compared

with the old one. If the new settling time is earlier, it

replaces the old one. If the Hazard Value bit is on, the

Transition.Tag reset time can be no earlier than the Hazard

Value bit reset time (see 6 above). If no reset time is listed

for the Hazard Value bit, the Transition Tag reset time is not

changed.

C. If a flip-flop's Hazard Value bit, New Value bit, or settling

time has changed, its location (string, bit and section) is added

to the Active Level List.

1) The flip-flop's Output Specification is checked to see if

it feeds a level delay. If it does, an entry is added to an AQ

Delay Value List to make the same change in the level delay

output at TIME plus the amount of delay. The entry consists of

the location of the delay (string, bit and section), the Hazard

and New Value bits of the input flip-flop, and a settling time

equal to the amount of delay plus the settling time of the

input flip-flop. If the delay line is ideal, the Hazard Value

bit in the entry is zero no matter what the flip-flop's Hazard

Value might be. If another entry for the same level delay is

already present on the same Delay Value List, it is de.leted.

119.

2) If the flip-flop's New Value bit has changed, its Output

Specification is checked to see if it feeds a differentiator

sensitive to this transition. If so, the differentiator's out­

put Event is added to the Immediate Event List. The settling

time of the flip-flop is used as the Event's source completion

t:l.me.

3) If the flip-flop's Hazard Value has change~ to one and it

feeds a differentiator, the translator is informed that a Hazard

!!,!!!!! has been detected and is given the Reference Name and bit

number of the flip-flop.

VI. At this point the Active Level List contains the locations of all

flip-flops, level delays, and section interface levels whose values or

settling times have changed and have not been propagated through the rest

of the level logic. These changes are now propagated through the use of

the Dependent Combinational Level Lists, which are part of each Output

Specification.

A. If a dependent level is ideal, its Input Change Tag is set.

1) If the Input Change Tag is already set, there is no need to

propagate the change past that point. Whenever a new value is

1--

120.

-- --~ --- -----~~--· --~ -- - ---·- ---- ···-· ---.-------..--.----__.._...--.--- ---.- ------~-~-<" ~--~~-· ----~---- --- --

computed for an ideal combinational level, its Input Change

Tag is reset.

2) If the level is an input to a differentiator, its new value

must be computed. If the value makes the transition which the

differentiator is sensitive to, the differentiator's output

Event is added to the Inunediate Event List. TIME is used as

the Event's source completion time.

3) If the level is an input to a level delay, its new value

must also be computed. If the value changes, an entry is added

to an AQ Delay Value List to cause the level delay value to

make the same change at TIME plus the amount of delay listed in

the Delay Specification. The value change entry's settling time

is the same as its starting time, TIME plus the amount of delay.

4) If the level's dependent combinational levels are on a non­

permanent section other than the Active Section, its new value

must be computed. If the value changes, the level's location

(string, bit and section) is added to the destination section's

Section Input List if not already on it.

5) If the new value of the level is calculated in (2) or (3)

above and found not to have changed, the change need not be

propagated further. If the new value was not calculated or was

found to change and the level's dependent combinational levels

are on section 0 or the Active Section, the change is propagated

to all of them.

B. If a dependent level is detailed, its new value and settling

time is computed.

1) Since detailed level outputs are evaluated at all times,

the subroutine which evaluates detailed combinational output

levels and settling times is never used recursively.

121.

2) If the level's New Value bit has made a transition and it

feeds a differentiator sensitive to this transition, the

differentiator's output Event is added to the Immediate Event

List. The level's settling time is taken as the Event's source

completion time.

3) If the level's Hazard Value has changed to one and it feeds

a differentiator, the translator is informed that a Hazard Alarm

has been detected and is given the level's Reference Name and

bit number.

4) If the level's dependent combinational levels are on a non­

permanent section other than the Active Section and its value

or settling time has changed, its location (str·ing, bit and

section) is added to the destination Section Input List, if not

already on it.

S) If the level's dependent combinational·levels are on

section 0 and the Active Section and its value or settling time

has changed, the change is propagated to the dependent levP-ls.

C. After a level's changes have been propagated to all combinational

levels dependent on it, it is removed from the Active Level List.

VII. All entries on the Ideal Flip-Flop List are transferred to the Ideal

Input Tag List. If a flip-flop is already on the Tag List, the second

entry can be deleted. At this point the Ideal Flip-Flop, Detailed Flip­

Flop and Active Level Lists are empty. If the Immediate Event List

------~. ------- -----~--~---~- ~--,-------.-.-i-..---------- -~-----

122.

contains some more entries for section 0 or the Active Section, the

simulator returns to step III.

VIII. If the Inunediate Event List or one of the Section Input Lists is

not empty, the simulator returns to step I. Otherwise entries are added

to the Reset List attached to the AQ time cell next to the top to reset

Input Tags for all of the ideal flip-flops on the Ideal Input Tag List.

If the Simulation Terminate Tag is set, control is passed on to the

translator. If not, the CLOCK is stepped. If the AQ is empty, control

is passed on to the translator along with a Simulation Completed message.

Otherwise the simulator returns to step l with the lowest numbered section

other than zero becoming the Active Section.

123.

2. Discussion of Simulator

The algorithm outlined above accurately simulates the models of

Section III in most respects. In those cases where flip-flop inputs may

lead to ambiguous outputs, the algorithm reports an alarm and chooses

one of the possible outputs. There is a weakness, however, in the way

that output signal spread is calculated for differentiators. The simu­

lator assumes that it can correctly calculate the settling time of a

level transition when it first becomes aware that the transition is

occurring. This is not true for a flip-flop because subsequent set or

reset inputs with less signal spread may reduce the spread of its output.

This in turn can be propagated through the logic to cause combinational

signal spreads to be reduced. Therefore it is possible for the simulator

to discover that an Event, generated by a differentiator and already

activated, actually has smaller signal spread than originally calculated.

It is not possible to make signal spread corrections to previously

activated Events in the data structure of Appendix A. In order to be

able to do so, an additional list would have to be added for each

detailed level's Strobe Tag and detailed flip-flop's Set, Reset and Com­

plement Tag. The Strobe Tag List would contain the names and completion

times of each Event and Transfer sampling the level. (In the case of

Transfers, both the Transfer's and the activated Event's locations would

be recorded.) Then if it becomes necessary to adjust an Event's comple­

tion time, the new reset time for the Strobe Tag can be recalculated

unambiguously. When a new Event or Transfer samples a level, an entry

is added to the Strobe Tag List. When the Strobe Tag is Reset the list

is cleared. Input tag lists would function in a similar way so that

124.

flip-flop output settling times could be recalculated unambiguously when

an input completion time is revised. Since it may be necessary to

revise the completion times of Events crossing data section boundaries,

each non-permanent data section would have an Event Spread Revision List.

The above structures and procedures were left out of the above

outline and the figures of Appendix A because they would just add furthe~

complications. It should be clear how to incorporate them into the data

structure and simulation algorithm. Note that additional cost is pri­

marily in extra data space requirements because the lists are not referred

to except when completion time revisions are necessary.

125.

APPENDIX C - COMBINATIONAL LEVEL FORMULAS

The combinational formulas used in the simulation data structure

(Figures A-1 and A-2 of Appendix A) are modified Reverse Polish represen-

tations of the design language combinational formulas found in the

description of the system being simulated. They are used by a push-down
-

store routine which makes a single pass from the top to the bottom of a

formula and evaluates it. When the evaluator reads the name of an argu-

ment (a pointer to a level string and the bit number of the left-most

bit)* it fetches the argument and adds it to the top of the push-down

store. When it reads the name of an operator on the formula, the correct

number of arguments are removed from the top of the store, operated on,

and the result is added to the store. The number of arguments is fixed

for each operator type; all operators discussed here have either one or

two arguments. There is no upper bound to argument lengths, so more than

one push-down store cell may be required to store an argument. Special

symbols are included in the formula character set which allow the con-

catenation of more than one level substring value to form a single

argument, the expansion of a single level bit value into a multibit

argument, and to change the current value for argument length. Another

special symbol, 0, is used to signify the end of a formula. Th~ result

of the evaluation of a well-formed formula is a single argument in the

push-down store, which is the value of the formula.

*Throughout this appendix argument locations are specified by a pointer
to a level string and the left-most bit number. In the actual data
structure, the argument's section number and mode~ type (idealized or
detailed) must also be included.

----"-~"---------------------~-~

126.

Normal Boolean formulas map into the data structure in a straight-

forward way. For example, the design language formula (A[0:4]

A(-., B[3:7] V C[0:4])} would be translated as (A ', B' b a,,,--,,

c, V, A, O}, where A', B' and C' are pointers to the level strings

representing A., Band C, and a, band c are the bit numbers of A[OJ,

C' ,

B[3] and C[OJ. Each symbol is contained in its own cell on the formula,

and the operators must be distinguishable from pointers to level strings.

The sample formula is pointed to from the combinational level string

representing the five bits to be evaluated using the formula. Immedi-

ately preceding the cell pointing to a formula is a cell containing the

length of the value to be calculated. (Again refer to Figure A-1 or

A-2). In this case the argument length is five, and five bit arguments

are fetched when the evaluator reads argument names. If the cell pre-

ceding the pointer to the above formula had contained a three, the meaning

of the formula would be (A[0:2] A (--, B[3:5] V c[0:2]}.

It may be necessary to concatenate the value of more than one level

substring together to form a single argument. The special concatenation

symbol, /, is used for this purpose. For example, the formula fA[0:9]

© Bf3:7],C[0:4]} would be translated (A', a, /, 5, B', b, 5, C', c, Et>, O}.

Note that the concatenation symbol is followed by length-argument name

pairs until the lengths add up to the current argument length. In the

above example the argument length is ten and the concatenation stops

after the value of the substring C[0:4] is fetched. Another special

symbol $, is introduced to allow a single bit value to be expanded into

a multibit argument. For example, the formula fA[OJ A C[0:4]} would be

translated ($, A', a, C', c, A, 0}, where the formula length would be five.

127.

The argument lengths for the relational operators (=, f, <, ~. >,

and ~) are generally greater than the length of the single bit resultant.

Therefore the special symbol, #, is included for changing the current

argument length. For example, the single bit formula {A[0:4] = B[3:7]}

would be translated {#, 5, A', a, B', b, =, O}. When the formula is

evaluated, the execution of the "c" operator causes the argument length

to reset to one. This same technique can also be used to fetch argu­

ments for the convenience operators and, which forms the logical "and"

of all bits of its argument, ,2!., which forms the logical "or" of all

bits of its argument, and~. which forms the "sum mod 2" of all bits

of its argument. For example, the formula {and (C[0:4]) = .2!. (A[0:2])}

would be translated {#, 5, C', c, ~. #, 3, A', a, .£!:, =, OJ.

In the above discussion we have shown how to translate well-formed

combinational level formulas from the current version of the design

language into the simulation data structure. We shall now propose that

the design language be extended to include the counnon arithmetic operators

+, -,X,-:- and~ (remainder) in combinational level formulas. These

functions can be easily and cheaply realized by the simulation system and

would be useful for rough simulations of arithmetic components before

they are designed in detail, or after they have been completely checked

out. These operators may also be used to make macroscopic models of

arithmetic functions which may be inserted into a design. Their operation

may be compared with detailed simulations of the same functions, and

differences in their behavior reported to the de.signer. This may often

be preferable to inserting canned answers to be compared against during

simulation.

128.

Each arithmetic operator requires two arguments. It is proposed

that all arguments be treated as positive integers and that the length

of the result be the same as the length of the longest argument. If the

result of one of these operations is actually longer than this, the extra

high order bits would be truncated. When the shorter arguments are

translated into the data structure, zeros are concatenated on the left

end to make both arguments and the result all the same length. Only

the subtraction operator can produce "negative" results, and these would

be represented in two's complement form.

The arithmetic formula (A[0:15] + (3X C[0:9])} would be translated

(A ', T t I a, , , ' 6, a, z, 10, C', c, X, +, O}, where T is a pointer to

a constant level string with the sixteen bit value 3, and t is the left-

most bit number. Likewise g and z specify a six bit constant level

string of all zeros. Therefore the length of all arguments and the

resultant is sixteen. What if n, the level string length for simula-

tion system, is less than sixteen? This was not a problem for the non-

arithmetic formulas because they can be split into separate formulas

for each group of bits. The special right shift symbol, , is introduced

to solve this problem. It is used to truncate low order bits from the

top argument on the push-down store and reduce the current value of

argument length by the same amount. For example, suppose the eight

high order combinational bits given by the above formula are represented

on one level string, and the other eight on another. The data structure

formula (of length eight) for the high order bits would be {#, 16, A',

a, T, t, I. 6, a, z, 10, c'' c, ')(, +, , 8, n}. The formula (again of

length eight) for the low order bits would be (A', a', T, t', C', c',

129.

X, +, O}, where a' and c 1 are the bit numbers for A[8] and C[S] and t'

is eight greater than t in the original formula. Note that for the high

order or left-most eight bits, the complete sixteen bit result is gener­

ated and then the eight low order bits are shifted off. This technique

was not necessary for the low order bits because a formula could be

generated for them with all arguments of length eight. This would not

be possible if the addition operator were replaced by a subtraction

operator. Therefore another special symbol, -, is introduced which

truncates high order bits from the top argument on the push-down store

and reduces the current value of argument length by the same amount.

The two symbols, ~and-, can be used together to select any contiguous

bits of a result. An alternate for the low order eight bit formula

given above is Ui, 16, A'' a, T, t, I' 6, z, z, 10, c'' c, ><, +, , 8, n}.

Note that when a formula is used to evaluate detailed levels,

independent settling times must be calculated for each bit. The rules

illustrated in Figure 3-8 can be used for non-arithmetic formulas because

they are specified in detail. There are a number of alternate detailed

realizations of arithmetic formulas and each output bit generally depends

on a number of input bits. Since the main objective of arithmetic

formulas is simulation efficiency, crude detailed models of them are

justified. Therefore it is proposed that the settling time for each

changing level be calculated by adding its ambiguity time to the max~mum

of the input settling times.

130.

APPENDIX D - DESIGN LANGUAGE DESCRIPTION

In this appendix we shall present a brief discussion of the more

important features of the logic design language developed at M.I.T.

under the supervision of Professor J. B. Dennis. A syntax was con­

structed for the language by G. J. Burnett in his MS thesis, Reference

(16), submitted in August, 1965. Subsequently, a set of notes describing

the language was "Written by H. F. Ledgard for M.I.T. course 6.535 in

November, 1965. These notes were based primarily on Burnett's thesis,

but a number of modifications were made to conform to Professor Dennis's

notation and to define -t:he language more precisely. Most of the mate­

rial .presented here is an edited form of these notes, Reference (17).

Ledgard also prepared a companion set of notes, Reference (18), which

contains a number of examples of the usage of the language. The reader

who is interested in a more complete description of the language is

referred to all three of the above references. Note that the language

is still under development and therefore is subject to change. Some

additions to it have been proposed in this thesis, but they have not

been included here.

1. Basic Structure

The design language borrows heavily from the ALGOL programming

language for its syntax, as does the similar language which is described

by Y. Chu in Reference (17). For example, semicolons are used to

delimit statements, statements may be continued from line to line

indefinitely, multi-character special symbols are underlined, and the

special symbols begin and ~ are used group several statements together

to form a single statement.

The specification of a system in the design language consists of

the descriptions of its basic sub-systems, or sections of logic, called

components. The description of a component begins with the declaration:

component < component name or abbreivation > ;

Following this is a description o·f all signal interfaces which the com­

ponent has with other components. Each interface description consists

of three parts:

a) The declaration:

interface < external component name or abbreviation >

naming the interfacing component.

b) A series of input and oµtput declarations giving all

connections to the interfacing component.

c) The statement:

end interface;

131.

After all interfaces have been specified, the internal logic of the

component is described with a series of statement types to be discussed

later. The component description ends with the statement:

!.rut component < component name or abbreviation > ;

example:

component MEMORY CONTROL;

interface PROCESSOR;

input level DATA[O:l7], ADDRESS[O:ll];

output level WORD[O:l7];

input pulse read, alter, write;

output pulse rddone, wrdone, ready;

!lli!. interface;

interface MEMORY;

output level YSEL(0:63], XSEL(0:63], B[0:17], R, W, I;

~ interface;

register

~component MEMORY CONTROL;

Note that in the above example both pulse and level interface signals

can be declared. Levels are referred to by a series of capital letters

and numbers in the design language. A series of small letters and numbers

,.--- - ----- --- . ~-~----- --~--~~-----

'

132.

are used to name pulses. the language can be use·d· t-0 describe pulse

exei ted lo~ic, leve 1 excited logic, and mixture& of the two.

2. L!vel Logic

One of the basic building blocks of a contpofiE!nt U the register.

tt is i:i group of orte or more binar)t' elements, genera Uy flip-flops, that

are used to store informatioti in tbe form (1£ "1 1s'' anci "O'~". Itegisters

ate declared and bytes of registers are rertatlied by the £eil0wing

declarations:

registei-< register list~

su~~egister < subregister list > I
< register > ;

examples:

rsgister A[0:2], B;

dubregi&tet C[O:SJ, n[2],
E[O] I F[O: 10];

Declaration of the capitaliz~d
names •ttd llt.acketed compoilents
of the register liat as registers;
the brackets centain the index of
t1\e first (leftmost) and last
{rightmost) cells included in the
regts ter. After a: register is
initially d•clared or if a register
has only one cell, the brackets
a~d indices may be dropped.

Bytes of the register on the right
of the slash can also be referred
to by the subregister names on
the left.

Register A contains 3 flip-flops
indexed 0 through 2; register B
contains 1 non-indexed flip-flop.

Previously declar~d register F is
being subdivided into 3 bytes.
Note that C[0:8] and F[0:8] can be
referred to interchangeably, as
can 1)(2] and F[9], and E[O] and
F[10].

A good portion of logic descriptions are built frO!tt combinational

1eve1s dependent upon other combinational level and regis~r va1ues. As

a r~sult, a complete set of logical, opeJtators ar~ included to formulate

combinat!onal expressions:

v
/\

•

The logical "or" of its two operands.

The logical "an~" of its two operands.

The logicai ';not 1' of the ~perand
on the right.

The logical "sum module 2" of its
two operands.

:f:., <, >, ~. ~

and (< level list >)

£!:. (< level list >)

!!!221. (< level list >)

examples:

S /\ R

A[0:2] V B[0:2]

S /\ A[0:2]

A[0:2] = B[0:2]

and (Af0:2], B[0:2])

~ (A[0:2])

133.

The relational operators "equal",
"not equal", "less than", "greater
than", "less than or equal" and
"greater than or equal".

The logical "and" of all cells on
the argument list.

The logical "or" of all cells on
the argument list.

The logical "sum module 211 of all
cells on the argument list.

The levels S and R are combined in
a logical "and".

The registers A and B are combined
in a logical "or", carried out on
a ~by cell basis.

The single level S is combined in
a logical "and" with ~ cell of
register A.

This expression has the logical
value 11111 (true) if each cell of
register A has the same logical
value as the corresponding cell
of register B; the logical value
110 11 otherwise.

This expression has the logical
value 11111 if all cells of registers
A and B have the logical value 11111

;

otherwise the logical value is 11011
•

This expression has the logical
value 111" if an Q2..Q. number of the
cells of register A have the
logical value 11111

; othetvise "011
•

_Equivalence statements are introduced t_o assign names to combina­

tional expressions SQ that· they may be referred to conveniently. These

statements are of the fot'lll:

< name > < expression > ;

The name assigned by the stat~ent may be used to replace any

occurrence of the named expression.

134.

examples:

ADD = (IR[3:8] = 42);

SUM[0:31] = A[0:31] $ B[0:31] $ C[0:31];

C[i-1] _ C[i] /\ (A[i] $ B[i])V (A[i] /\ B[i]);

The basic level delay unit of the design language is diagrammed in

Figure D-1. Output level G remains at 110 11 until the input level F under­

goes a 110 11 to "l" transition, at which time level G becomes 11 111 for t

units of time and then returns to the 11011 state.

F ~~~--~--~-D-e-la-y~t~ ·I • G

FIGURE D-1

Basic Level Delay Unit

This delay unit is described by the following statement:

G = delay (F, t);

3. Control Event and Transfer Statements

One of the basic operations of.a digital system is the transfer of

information from one register to another. The following symbols are

used to describe the excitation of transfers and the transfers themselves:

The control operator, indicating
that the expression to the ~ of
the ":" represents an~ that
initiates the action indicated to
the right of the ":". The scope
of the control operator extends
to the next control operator or
to the end of the component.

=>

examples:

sum: A[0:2] => B[0:2];

sum ~ S: A[0:2] => B[0:2];

--, S: A[0:2] => B[0:2];

sum V S: A[0:2] => B[0:2];

The jam transfer operator, indi­
cating that the level expression
to the left of the "=>" is to be
transferred to the register given
to the right of the "=>" on a
cell by cell basis.

135.

Ones transfer operator, indicating
that the ones of the level expres­
sion to tii';-Ieft of the 11-+ 11 are to
be transferred to the register
given to the right of the "-" on
a cell by cell basis. If no
left operand is given, all cells
on the right are set to "l".

Zeros transfer operator, indi­
cating that the ~ of the level
expression to the left of the "~"
are to be transferred to the
register given to the right of the
'~" on a cell by cell basis. If
no left operand is given, all cells
on the right are reset to "0".

The complement transfer operator,
indicating that each cell of the
register given to the right of the
"t" is to be complemented only if
the corresponding cell of the level
expression to the left is a "l".
If no left operand is given, all
cells on the right are complemented.

On the occurrence of the sum pulse,
the contents of A[OJ replaces the
contents of B[OJ, A[l] replaces
B[l], and A[2] replaces B[2].

On the occurrence of the sum pulse,
if the level S is 11111

, then A[O]
replaces B[OJ, etc.

When level S has a "l" to 11 0 11

transition, A[O] replaces B[O], etc.

On the occurrence of the sum pulse
or a 110 11 to "l" transition of level
S, A[OJ replaces B[O], etc.

r~-- -~------~~~-----~ -- _,,~~-------

136.

sum: A[0:2] ~ B[0:2];

A[0:2], B[0:2];

i C[0:2];

C[0:2] i D[2:4];

On the occurrence at the sum pulse.

A[OJ replaces B[O], etc.; C[O],

C[l] and C[2] are complemented;

and if the old value of C[O] = 1,

D[2] is complemented, etc.

Note that control events may be either pulse occurrences or level

transitions. The last example illustrates the use of a control event

to initiate several actions. Since all actions within the scope of the

same event are activated simultaneously, the order in which they are

listed is irrelevant. Therefore, in the last example the old value of

C[0:2] is used to complement D[2:4], rather than the new complemented

value. The same control event expression may be used to the left of any

number of control operators. This has the same effect as grouping all

statements within the scope of these control operators together under

the scope of any one of them. All statements would be activated simul­

taneously when the control event is activated.

Control events may also be used to activate pulses. Any further

actions initiated by the pulse occur simultaneously with the pulse's

activation.

examples:

sum:

tpla:
tpl:

S:

t~l·
AL0;2] => B[0:2];
i C[0:2];
C[0:2J i D[2:4];
tpla;

sum;

This has same effect as the last
example.

The pulse sum is activated when
level S makes a ''O" to "l"
transition.

Delay statements are used in the language to introduce pulse

excited delay lines. The scope of a delay statement extends to the

next control operator, delay statement, or the end of the component.

examples:

sum:

tpl:

tp2:

delay (50 ns);
1 ... R;

0 ~ B;
delay (50 ns);
1 ... R;
0 ~ S;
delay (100 ns);
bp2;

~ (4 µs, TP2D);
1 ... B;

50 ns after the occurrence of
pulse sum, flip-flop R is set
to "l".
On the occurrence of pulse tpl,
flip;.flop B is cleared to 110 11

;

after a 50 ns delay, flip-flop
R is set to "l" and flip-flop
S is cleared to 110 11

; after an
additional 100 ns delay pulse
tp2 occurs.

This statement declares a single­
shot with output level TP2D.

137.

On the occurrence of pulse tp2,
level TP2D goes to 11111 and remains
there for 4 µs before returning
to ~'O". When TP2D changes from
11111 to "O", flip-flop B is set
to "l". Level TP2D may be used
as an input to combinational
logic network, just as flip-
flops outputs are.

Equivalence statements may be used to assign pulse names to control

events, just as they are used to name combinational levels.

example:

sum (tpl v tp4) /\ s; Pulse sum occurs whenever pulse
tpl or tp4 occurs and level S is
in ·the 11111 state.

Pulse oscillators are declared in the following manner:

~ < pulsename >(<time between pulses>);

examples:

~ osc (160 ns);

go V osc: dela~ (160 ns);
osc;

osc pulses occur every 160 ns.

This is an example of a delay
loop oscillator. Pulse osc
occurs every 160 ns, once pulse
go occurs.

~-----~-----·-,,._ _____ _
-------,.~-------------·----

138.

4. Integers

It is sometimes convenient to specify constants such as register

indices and delay values symbolically and assign values to the symbols

at some other place in a design description. Therefore, a capability

for declaring and assigning values to integers is included in the

design language:

integer < integer list >;

< integer > : = < value >;

example:

integer
register

n:= 31;

n, dl;
A[O:n], B[O:n], C[O:n];

dl:= 100;

sum: delay (dl ns);

5. Delimiters

This statement type is used to
declare integers used within the
design. A series of small letters
and numbers are used to name
integers.

This statement type is used to
assign a value to an integer.

Integer n is used to specify the
maximum bit index for registers
A, B and C. Integer dl is used
to specify the length of a pulse
delay line.

A number of special _delimiting characters can be used within

component descriptions. Some of them were used in preceding examples.

*

[J

Semicolon, used to delimit
statements in the language.

Asterisk, used to mark the
beginning of a comment statement.

Brackets, used to enclose level
and pulse indices.

The comma, used to separate argu­
naents and expressions on a list.
The c0111Da can also be used in
certain contexts as a concentra­
tion character, indicating that a
series of registers or levels
separated by commas is to be
considered as a unit.

()

6. Iteration Statements

Parentheses, used to separate
operators from their operand
lists and to enclose expressions
where necessary for clarity.

Block delimiters, used to enclose
a number of statements which are
considered as a unit; i.e., as a
single statement.

139.

The above declaration, equivalence, action and delay statements are

amply sufficient for describing any design which is describable in the

present form of the design language. The remaining statement types are

included for conciseness of notation and ease of expression. The basic

iteration statement is constructed as follows:

for < index > : = < for list > do < statement >;

The scope of the i£!: statement may be extended to include any number of

statements by simply enclosing them within a begin - end pair, as in

ALGOL.

example:

for i := 0, 1, 2, 3 do begin 0 ~ A[i];

0 ~ B[i]; end· __ ,
The "for list" in the above example is an example of what will be

referred to as an "initialization list". In order to extend the use of

the basic-iteration statement, we define the following alternative

construction:

<for list >

< for list >

< for list >

: : =
::=

: :=

< initialization list >
< initialization list > step < integer >

while < Boolean expression >

< initial value of index > through
< final value of index >

and the following symbols are used in constructing "for lists":

+, - , X, I arithmetic operators, with their
normal meaning in constructing
arithmetic expressions.

,-------·--

140.

examples:

for i := 0 step 1 while i s: 3 do begin 0 - A[i];

0 - B[i]; end· --·
for i := 0 throush 3 do besin o - a[iJ;

0 - B[i]; end· --·
The material within the besin - end brackets of the for statement

is an indexed description of losic to be constructed. The indexing is

present because a number of pieces of hardware have the same construc­

tibn, but different names or positions in a device. The index takes on,

in sequence, those values specified by the for list until the list

expires or the Boolean expression becomes false. The index can be used

wherever needed between the begin - end pair and has no meaning outside

these brackets.

To eliminate the use of certain index values for a limited number

of statements within a for statement, we define the "where" statement

as follows:

where <index > I= <constant list > do begin <statement > ~;

The where statement is used in constructions of the following form:

for while do

begin

where < index > I= < constant list > do < statement >;

end· __ ,
The constant list contains valid index values from the encompassing

for statement. The statements within the scope of the where statement

are not converted to hardware for these index values.

·,-,·

7. Conditional Statements

Actions are often conditioned by level signals in digital systems.

We have already discussed techniques for constructing control event

expressions, which can handle conditional actions as in the following

examples:

go /\ (READ V WRITE) : done;

go /\ TRANS /\ (READ V WRITE) :

go /\ -, TRANS /Ii (READ V WRITE)

1 ... A[OJ;

0 ~ A[l];

These statements ar.e interpreted as follows: "On the occurrence of the

go pulse, if either of the levels READ or WRITE are 111°, then the pulse

done is activated; if level TRANS is also "l"', then 111 11 replaces the

value of A[OJ, otherwise "O" replaces the value of A[l]. As the condi­

tioning expressions become more complicated, and if a number of actions

are conditioned by slightly different expressions, the following con­

struction might be preferred:

if < boolean expression > ~ < statemen.t > else < statement >

where the term <statement> refers to action, equivalence or iteration

statements and the "else" part of the construction is optional. The

same structure can be used to construct combinational expressions:

if < boolean expression > ~ < expression > ~ < expression >

we may now rewrite the above examples as:

go: ll READ V WRITE then

~;

if TRANS ~ 1, A(OJ ~ 0,...,, A[l];

end· __ ,
Example of combinational expression:

ADDRESS[8:23J if IOREQUEST

il DATAREQUEST

if INSTREQUEST

~ IOADD(8:23J

~ cAR[8:23]

~ PC[8:23];

141.

----·------------

142.

Note that "if" statements are often less clumsy than an equivalent

set of state~nts in the previous notation. Their most important virtue

is that they are usually easier for people to understand.

8. Define Feature

This feature is provided so that units of logic, which may occur

more than once in a design, need only be described once. Its usage is

directly analogous to macro definition statements in macro-assembly

language computer programs. A unit described using the define feature

is specified in the following format:

define <unit name > (<parameter list >);

< declarations >

~definition <unit name>;

The parameter list contains an ordered sequence of parameters needed to

specify the unit; e.g., input and output signals, internal signal names,

number of flip-flops, etc.

example:

define adder (A, B, S, n);

input level A[l:n], B[l:n];

output level S[l:n];

integer n;

end definition adder;

The designer may insert a previously defined unit in his design

by writing:

insert <unit name > (<parameter list >);

Each time the designer inserts a defined unit, he must provide

unique values for the parameters specifying internal signal names.

Unique na1lle9 are automatically generated for internal signal names

not included as part of the parameter list.

example:

insert adder (AC, BR, SUM, 24);

9. Summary

The design language presented here is capable of comfortably

describing many types of digital systems, both synchronous and asyn­

chronous. It could serve as the input language for a processing

system which automatically generates wiring instructions for hardware

or a design simulation system. However, the language is not to be

considered complete or rigorously defined. The naming problem and the

problem of structuring the design language are particularly difficult

to solve.

143.

r---,----------· ----------~--

144.

BIBLIOGRAPHY

(1) S. R. Cray and R. N. Kisch, ".A Progress Report on Computer Appli­
cations in Computer Design," Proc. WJCC, pp. 82-85; February,
1956.

(2) H. L. Engel (Ramo-Wooldridge), "Ma.chine Language in Digital
Computer Design," Proc. WJCC, pp. 182-186; May 6-8, 1958.

(3) T.A. Connolly, "Automatic System and Logical Design Techniques
for the RW-33 Computer System," IRE International Conv. Rec.,
Pt. 2, pp. 124-132; 1960.

(4) W.L. Gordon, "Data Processing Techniques in Design Automation,"
Proc. EJCC, pp. 205-209; 1960.

(5) W.A. Hannig and T.L. Ma.yes, "Impact of Automation on Digital
Computer Design," Proc. EJCC, pp. 211-232; 1960.

(6) A.L. Leiner, et al., "Using Digital Computers in the Design and
Maintenance of New Computers," IRE Transactions, Vol. EC-10,
No. 4, pp. 680-690; 1960.

(7) W.K. Orr and J.M. Spitze, "Design Automation Utilizing a Modi­
fied Polish Notation," Proc. FJCC, pp. 643-650; 1964.

(8) K. Jacoby and A.R. Laliberte' (Philco), "Using a Computer to
Design a Computer," COU!Puters and Automation, Vol. 15, No. 4,
pp. 36-39 and 58; April, 1966.

(9) I. S. Reed, "Symbolic Design Techniques Applied to a Generalized
Computer," M.I.T. Lincoln Lab., Lexington, Mass. TR No. 141;
January 3, 1957.

(10) T.C. Bartee, I.L. Lebow and I.S. Reed, "Theory and Design of
Digital Systems," The McGraw-Hill Book Co., Inc., New York,
N.Y.; 1962.

(11) H.P. Schlaeppi, "A Formal Language for Describing Ma.chine Logic,
Timing and Sequencing (LOTIS)," IEEE Transactions, Vol. EC-13,
No. 4, pp. 439-448; 1963.

(12) H. Schorr, "Computer-Aided Digital System Design and Analysis
Using a Register Transfer Language," IEEE Transactions, Vol.
EC-13, No. 6, pp. 730-737; 1964.

(13) R.M. McClure, "A Progrannning Language for Simulating Digital
Systems," Journal of the ACM, Vol. 12, No. 1, pp. 14-22;
January, 1965.

(14) G. Metze and S. Seshu, "Computer Compiler, Part I - Preliminary
Report," Report No. R-264, University of Illinois Coordinated
Science Laboratory; August, 1965.

(15) Y. Chu, "An Algol-Like Computer Design Language," Commun. ACM,
Vol. 8, No. 10, pp. 607-615; October, 1965.

(16) G.J. Burnett, "A Design Language for Digital Systems," MS
Thesis at M.I.T.; August, 1965.

(17) H. Ledgard, "A Design Language for Digital Systems," M.I.T.
Course 6.535 Notes; November 23, 1965.

(18) H. Ledgard, "A Set of Basic Logical Building Blocks; Examples
of the Design of Logical Networks," M.I.T. Course 6.535 Notes;
November 23, 1965.

(19) Y.C. Lee and R.J. Merkert (RCA), "Evaluating Worst-Case Condi­
tions," Electronic Des., Vol. 11, pp. 54-61; March 1, 1963.

(20) D.A. Huffman, "The Synthesis of Sequential Switching Circuits,"
Journal of the Franklin Institute, Vol. 257, No's. 3-4,
pp. 161-190, 275-303; March and April, 1954.

(21) S.H. Caldwell, "Switching Circuits and Logical Design," John
Wiley and Sons, Inc., New York, N.Y.; 1958.

(22) M. Lehman, R. Eshed and Z. Netter, "The Checking of Computer
Logic by Simulation on a Computer, 11 The Computer Journal, Vol. 6,
No. 2, pp. 154-162; 1963.

(23) J.F. Griffin and M.J. Hains (IBM), "An Experiment with the
Simulation of Machine Logic and Control," 1965 IEEE Intl. Conv.
~·, Part 3, pp. 51-66; March, 1965.

(24) G.N. Stockwell (Nortronics), "Computer Logic Testing by Simu­
lation," IRE Trans., Vol. MIL-6, pp. 275-282; July, 1962.

(25) S. Rubin, "Simulation and Model of an Input-Output Unit for
Airborne Computers, 11 Technical Report AFAL-TR-64,312, Air
Force Avionics Laboratory; 1964.

(26) M.A. Breuer, "Techniques for the Simulation of Computer Logic,"
Commun. ACM, Vol. 7, No. 7, pp. 443-447; July, 1964.

(27) R.P. Larsen and M.M. Mano, "Modeling and Simulation of Digital
Networks," Commun. ACM, Vol. 8, No. 5, pp. 308-312; May, 1965.

(28) A.L. Scherr, "An Analysis of Time-Shared Computer Systems,"
M.I.T. MAC-TR-18 (THESIS); June, 1965.

145.

