ADEPT — A HEURISTIC PROGRAM
FOR PROVING THEOREMS OF GROUP THEORY

by
LEWIS MARK NORTON

S$.B., Masgachusetts Institute of Technology
(1962)

SUBMITTED IN PARTIAL FULFILIMENT
OF THE REQUIREMENTS FOR THE
DEGREE OF DOCTOR OF
PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF
TECHNOLOGY

September, 1966

Signature of Author‘%’kﬂkw
Department of Mathematics, August 22, 1966
- N
Certified by/}}fa/W!M

Accepted by%w

Thesis Supervisor

Chairman, Departmental Committee
on Graduate Students

ADEPT — A HEURISTIC PROGRAM

FOR PROVING THEOREMS OF GROUP THEORY
by
Lewis Mark Norton
Submitted to the Department of Mathematics on August 22, 1966 in partial

fulfillment of the requirement for the d)egree of Doctor of Philosophy.

ABSTRACT

A computer program, named ADEPT (A Distinctly Bmpirical Prover of Theorems),
has been written which proves theorems taken from the abstract theory of
‘groups. Its organization is basically heuristic, incorporating many of the
techniques of the human mathematizian in a "natural" way. This program has
proved almost 100 theorems, as well as serving as a vehicle for testing and
evaluating special-purpose heuristics. A detailed description of the program
is supplemented by accounts of its performance on a number of theorems, thus
providing many insights into the particular problems inherent in the design
of a procedure capable of proving a variety of theorems from this dowain.
Suggestions have been formulated for further efforts along these lines, and
comparisons with related work previously reported in the literature have been
made.

Thesis Supervisor: Marvin L. Minsky
Title: Professor of Electrical Engineering

ACKNOWLEDGMENTS

Work reported herein was supported by Project MAC, an M.I.T. research ’
program sponsored by the Advanced Research Projects Agency, Department of
Defense, under Office of Naval Research Contract Number Nonr-4102 (01). Re-
production in whole or in part is permitted for any purpose of the United

States Government.

I wish to acknowledge and thank Professor Marvin Minsky, Dr. Seymour
Papert, and Professor Manuel Blum for their criticism and guidance of the
work reported herein. I also wish to thank Joel Moses for many constructive
discussions, as well as for his preparation of a special LISP system which was
used in this project. Appreciation must also be expressed to Project MAC for
its assistance, including the cowputer time which made this project possible.
Finally, I am indebted to my wife, Judie, for her efforts in the preparation

of this report.

Chapter

II.

III.

Iv.

V.

VI.

VII.

TABLE OF CONTENTS

Title

ADSErACt. s i eviioeeseeosoacanassssovosscsssscssssssscoses

Acknowledgments. ..ceeeeeeesessensassassseacasaassassasane

INtrodUCtiON. e erseosesssssssassssssasssanasasesssssasons

Description of ADEPT — 1

Notation, Conventions, @tC.sisceesovcencnnssssssncnss
Figure 1 Example of a possible proof tree........

Description of ADEPT — II

Structure of the Program...ccceececsesssssocscsnssnes
Diagram I Flow chart for ADEPT:ceetvececersssoens
Figure 2 Proof tree for example......cceceeceacnn
Diagram II Flow chart for SCANW...eccoeveennsnses

Diagram 1Ia Flow chart for SCANW

(PROCESSING OF IMPLICATIONS) ¢sccesvosnncensenss

Diagram IIb Flow chart for SCANW

(GENERATION OF LEMMAS).ccvccsoacsooscconncoanns

Diagram IIc Flow chart for SCANW

(DETERMINATION OF SUBSTITUTIONS).:.vcseoscossass

Diagram IId Flow chart for SCANW

(PERFORMANCE OF SUBSTITUTIONS).cevcveevocccsnes

Diagram Ile Flow chart for SCANW

(BOORKEEPING) e ¢ et vvrecnenronsnccnranscsosssannse
Diagram II1 Flow chart for PUTONl......c.co0eenuns
Diagram IV Flow chart for PUTON2......c00000000s.

Special-Purpose Heuristics

The Dynamic Process of Using and Creating ADEPT......

Discussion of Selected ProblemS.:csccececeseecsccssrsocannes
Problem V-A..iecoeeersosnnctcscssscsncansssnnsssnncs
Figure 3 Proof tree for Problem V-A....ecceveosee
Problem V-B.eeeoeeescoansescsnsasscsssssssnassnnne
Figure 4 Actual output from ADEPT.c.cceeseaccccocs
Problem VeC.svevreeconessssonscsrsssanssssssoscnsons
Problem V-D.iiceecsnsesssessosssasvsosacsesssnsssanss
Problem V-E..uceeecesososssssesssessonsasnosassnseoncs
Problem V-F..coeeceoeeccscrecstssanssassssosssscsonsns
Problem V-G.eovenvecscensersanenasevocssscsnsasoscs

Limitations of the Present Program.....eceececrsvocsssonss
Problem VI-A...iececeoeensoasssossaacsasosncsersnsnas
Problem VI-B...oeeeeonassnesansascsasoansssssnsssoes
Problem VI-C..cvveveeccrensosssscnssnsaccsnsssenee
Problem VI-D..veeoceesncossenoosscnsssasnnsessancs

Extensions Of ADEPT..eceeecsesocssossnsnscsacsssncnsns

.

13
22

25
26
31
35
36
37
38
39
40

46

VIII.
Appendix I.
Appendix IT.

Appendix ITI.

Future Possibilities and ConcluSions.v.eeeeenneneennnn

Other Work in Theorem-Proving.......eeeeieerinennenn..

Theorems Proved by ADEPT................ e

Listing of the Program.

Index €O LiSEINge vu e ve s tienennesneneanans

Bibliography

I o N

Biography ot

Lhe Author

103

119

131

138

139

176

178

CHAPTER I

INTRODUCTION

Since its earliest days, research on artificial intelligence has been
concerned with the mechanization of theorem-proving. Investigators have ap-
proached the problem from two directions, combinatorial and heuristic. Pro-
grams have been constructed which operate in an essentially combinatorial
manner on statements of the predicate calculus. Due to the work of Herbrand
and Gentzen, it was known how to describe a procedure, completely mechanical
in nature; that would be able to prove every 'provable" theorem, sooner or
later. Here the word "provable" is used in its technical sense, and the
reader may refer to any book on symbolic logic. A proof procedure such as
Herbrand's is known as a complete proof procedure, and in the early days of
digital computers it was not universally appreciated that even the large
speed and memory of the computer would not s;ffice to make implementation of
a complete proof procedure practical for problems of respectable complexity.
However, due to results obtained with early codings of Herbrand's procedure,
it was soon discovered that the inefficiency of these algorithms quickly ex-
hausted the resources of the largest and fastest computers. Much work has
subsequently gone into refinements and modifications of complete proof proce-
dures, and considerable improvements have been made. Some programs of this
nature will be discussed in an appendix.

The other approach to proving theorems by computer has been the heuristic
one. Projects in this class are not to be confused with those programs, es-
sentially combinatorial in nature, which have been modified by the inclusion
of heuristics. Rather, the basic structure of the algorithm must be heuristic

in nature. The earliest such attempt, and an important one, was the Logical

AR LT L T e 3L L T T e e e G MR T N g e i

(14) Further work by these authors(ls)

Theorist of Newell, Shaw, and Simon.
was joined by the so-called "advice-taker'" approach originated by McCarthy.(7)
Many of these programs are in reality general reasoning algorithms, and their
use as theorem-provers was done merely by way of an example. The heuristic
approach holds out the enticing possibility of capturing the essence of human
procedures which enable difficult problems to be handled with a reasonable
amount of effort. The price to be paid is that of expressing, in the form of
a computer program, most of the large number of methods that people use, often
without realizing that they are doing so, while solving problems.

The work to be discussed here belongs in the second category. 1Its devel-
opment, however, has been of a different nature than that of most previous
heuristic problem solvers. In this case, there has been no attempt to develop
a general problem solving mechanism. Instead, attention has been focussed on
the abstract theory of groups(zz) (not necessarily finite), and in particular
on the question of an algorithm uniquely designed to handle theorems of this
particular area of pure mathematics. As is related at the end of this report,
the program actually constructed can be easily adapted to "advice-taker" prob-
lems in other areas — a fact hardly surprising in view of the reasoning capa-
bilities needed to solve theorems in.any branch of mathematics. But the
creation of the program was done with only group theory in mind.

In fact, the program was created ohly as a step toward a computer
procedure for solving difficult problems in the theory of groups. Just as
it was necessary to actually program Herbrand's procedure in order fully to
appreciate the difficulties which arise in using this method with a digital
computer, so it is necessary to have a program capable of handling a fair
number of group theory theorems of slight to medium difficﬁlty in order fully
to appreciate the difficulties inherent in coping with the theory of groups
using a digital computer. Existing programs had proved a few elementary re-
sults in group theory, and more are being done as time goes on, but no pro-
gram reported in the literatu;e has proved more than a handful of theorems

from this subject, and in particular, very little work in group theory has

been done by programs of a basically heuristic nature.

Most heuristic proof procedures, including the one to be discussed in
this report, employ a main routine which works backward. That is, it begins
with the statement which is to be proved, and constructs a chain of statements
in the hope of reducing the original statement to one which is known or can be
established. The chain is so constructed that if such a statement is found,
the desired conclusion is proved or partially proved. In other words, at any
point, the chain is part of a '"proof tree'" leading, by means of valid infer-
ences, to the desired conclusion, though no part of it will be a true proof
tree until some verifiable branches are generated. There is, usually, no
guarantee that the chain will be turned into a true proof. The alternative is
a forward approach, which consists of deriving statements from the hypotheses
and axioms. 1In this approach, all chains are true proofs; the problem is that
most statements proved are of no relevance to the desired result. In (1l4),
Newell, Shaw, and Simon argue for the 'working backward'" approach. They liken
it to the process a needle would use to find its way out of a haystack, as
opposed to a search for a needle in a haystack.

In addition to the basic structure of a program (that is, the
organization of its main routine), there are the special-purpose subroutines
which enable it to perform capably in a complex problem area. These sub-
routines may incorporate individual heuristics; what is more, if the main
routine is properly organized, they can be altered in various ways, thus
making it possible to perform experiments which will help determine more suc-
cessful methods for dealing with the problem area in question. This is cer-
tainly true with heuristic theorem-provers. In developing the main routine,
one must decide such questions as '"in which direction is a proof to be devel-
oped?'" But the task of establishing theorems can only be done with the ad-
ditional aid of many special-purpose techniques, each of which must be incor-
porated somehow into the basic program.

One of the advantages of the heuristic approach is that various

techniques used by human problem-solvers can be directly incorporated into

the program in a natural way. This was definitely a major consideration of
the present project. Admittedly, it is not true that people organize their
problem-solving efforts exclusively in the "working backward" manner employed
by this particular heuristic program. However, it is fair to say that a large
amount of theorem-proving is done in that fashion, and certainly a proof pro-
ceeding in that manner is "natural' in appearance. Similarly, it is easy to
attach various subroutines to a main routine organized to proceed backward.

With the organization outlined above, a computer program was written,
designed to produce efficient and natural-appearing proofs for theorems of
group theory. The program is known as ADEPT, which stands for "A Distinctly
Empirical Prover of Theorems'". As its name indicates, ADEPT is extremely
ad hoc, which should not be surprising when one considers how non-compact and
poorly formalized are the methods that people use. Thus ADEPT does not have
a neat, transparent algorithm, and any reader who feels that all mechanical
theorem-provers should be basically tidy will be disappointed in the present
work from that viewpoint. However, compensating for the complexity of the
program is the ease with which ADEPT may be augmented with direct analogues
of various shortcuts which people successfully use, and in this respect rapid
development took place in this project. A notation was developed which was
simple to use, incorporating English terms in a "Cambridge Polish' format.(s)
This helped obtain flexibility for experimenting with special-purpose heuris-
tics, and ADEPT became a useful tool for investigating the problem area of
group-theoretic theorems.

A large percentage of the special-purpose heuristics used with ADEPT
restrict the growth of the proof tree. Ideally, no irrelevant steps should
be allowed by such heuristics, and no step necessary to a correct and effi-
cent proof should be prevented from occurring. 1In practice, of course, the
heuristics are imperfect and fail to some degree in both respects. What seems
to be needed is for the program to understand where it is in a proof; to be
aware of what it is doing, and why. It is of no interest here to argue over

whether or not a program can ever 'be aware'; the effect is what is of

interest. A program which generates efficient proofs for a large number of

theorems is the goal, and if it is achieved one might as well say that the
program is "aware'"., Certainly the benefits of awareness will have been
obtained.

A great amount of effort went into achieving such a property in ADEPT.
In fact, a strong requirement was adopted from the beginning. One algorithm
was to suffice for all theorems, yet be efficient in all cases. ADEPT never
"backtracks". If for some reason it fails to prove a theorem, it does not
remove some or all heurigtic restrictions, though this could be done rather
easily. Until the program is improved, enabling it to handle that theorem
without any serious loss of efficiency in other proofs that it has success-
fully produced, it will just be unable to prove that theorem, efficiently or
inefficiently. This requirement may seem harsh, for people sometimes quit
and start over in a different way, but it must be remembered that ADEPT is
not doing advanced problems. Thus it is reasonable to experiment and find
out just how far this 'one-pass' approach can be carried.

Closly related to the idea of "awareness" is the‘question of ascertain-
ing when progress is being made in a proof. There is no simple way to do
this — no metric, no compact test. As will be seen, much of the effort of
developing a program which appears to understand what it is doing went into
an analysis of how to recognize those steps which constitute real advancement
toward the desired goal.

The construction of a theorem-prover using this phildsophy did not occur
all at once. An "evolutionary" process was involved, as the fine points of
the problem became evident. Thus the earlier versions of ADEPT served as
vehicles for understanding the task of theorem-proving better, and for sug-
gesting new heuristics to be incorporated into the program. This report
tries to make this developmental aspect of the project clear.

The presentation of both the development of ADEPT and its latest version
is supplied with numerous, detailed examples. ADEPT has been used to solve

many theorems, and each has provided new insights into the needs of any

10

algorithm which must cope with many diverse, individual theorems. Examples
are given to illuminate the reasons for various additions which have been
made to ADEPT. Others illustrate the more interesting abilities of ADEPT to
prove problems efficiently. Still others point out the deficiencies which
still remain. The totality represents a long program of experimentation, and
underlines the worth of a working system which can be readily used to explore
a prgblem area in detail.

The theorems presented to ADEPT are all familiar to a student of group
theory. For the most part, they are given in this report using a common
mathematical notation. Those terms which represent concepts which must be
defined in order to specify the theorem will be underlined when used in the
statement of a theorem. From a syntactic point of view, of course, the pre-
cise statement of the hypotheses, conclusion and relevant definitions deter-
mine the problem to be proved. A slight variation in these statements results
in a completely different problem. However, such a variation may not be a
different problem from a semantic viewpoint; i.e., its interpretation in
group theory may be equivalent. It is also possible that a variant of a
problem may have a different (e.g., broader) interpretation, yet result in
the same operations by the program. Experiments have been carried out in-
volving alternate versions of a number of problems, and indeed the notation
used by ADEPT allows flexibility in arranging such experiments. In general,
the view is adopted that if ADEPT can prove some but not all of two ér more
semantically equivalent but syntactically different versions of a theorem,
ADEPT ''can prove the theorem'.

With this introduction, it is time to begin the actual detailed report.
Chapter II introduces the notation (i.e., syntax) used by the program, and
presents other details necessary to understand the description of the opera-
tion of the program itself, which is given in Chapter III, accompanied by
numerous flow charts. The fourth chapter specifically discusses ADEPT's
special-purpose heuristics — their development, purpose, and operation.

Then, accounts of detailed problems commence, and it is felt that the number

11

and length of the problem descriptions are extremely valuable for an under-
standing of this project. Theorems successfully proved by ADEPT are the main
content of Chapter V, while Chapter VI concentrates on those theorcms which,
for any of a number of reasons, the preogram cannot handle. Chapter VII is a
description, with cxamples, of extensions to the ADEPT program which have
actually been carried out, though in some cases rather crudely. Then Chapter
VIII sugygesls possible alterations, additions, and directions for tuture work
which have not been explored to date. An appendix reviews the field of me-
chanical problem-solving in the light of the present effort, covering both
heuristic and combinatorial programs which have been reported in the litera-

ture. A bibliography and index supplement the text.

12

CHAPTER II

DESCRIPTION OF ADEPT — I
NOTATION, CONVENTIONS, ETC.

@)

ADEPT has been programmed in the language LISP 1.5, using a special
version of the system created by Joel Moses, a variant of the system currently
in use at MIT's Project mac. 4 The special version provides an increase of a
thousand words (or 14%) of binary program space by eliminating those features
of the standard LISP package which are not used by the ADEPT program. As much
of ADEPT as is possible is compiled. No new features were added to the LISP
system.

Since ADEPT is programmed in LISP 1.5, it is advantageous to have state-
ments of its own language appear as lists to LISP. As will be seen in this
chapter, the notation adopted for representing mathematical statements pos-

sesses this property. In particular, the basic (or atomic) entities of this

notation form a subset of LISP's atomic symbols. For ADEPT, a symbol is a

§

string of alphanumerics, the first of which is a letter or an asterisk. Sym-
bols are delimited by blanks or parentheses,
To describe the language used by ADEPT, one must first dgsignate which

symbols are used for variables and constants. Three types or sorts of vari-

ables and constants are provided for in the basic system, though more types
could be added in the future, as mentioned in Chapter VII. The same symbols
are used for both the variables and constants of a given type, and a flag
associated with each symbol indicates which use is being made of it at a given
time. Single letters (A through M, excluding F because of its special role in
the LISP language) are used to designate sets, the symbols F1 through F9 are
used for functions, and the symbols Al through Al2 represent variables which

may be members of sets. In addition, the program is provided with a facility

13

IR ST

to define new variables or constants as needed by internally generating new,
unique symbols.

By choosing the variable types as above, a two-level hierarchy of member-
ship is fixed. Clearly ambiguity is possible with such a system, as, for in-
stance, with a coset, which while it is a set with its own members, also can
be itself a member of a larger set, the factor group. The burden of deciding
whether such an object must be considered to be a member or a set in a partic-
ular problem rests with the user, who must use one type of symbol or the other
when he states the problem. This limitation caused no difficulties while ex-
perimenting with ADEPT; i.e., no problem required three or more explicit
levels of inclusion.

The language contains connectives or propositional terms, and the follow-
ing symbols are recognized as such: AND, OR, NOT, IMPLIES, IMPLIES2.

IMPLIES2 is the notation for the biconditional (<==>), In addition, the lan-

guage presently contains three logical constants, EQUAL2, EQUAL, and FEQUAL,

all of which are used to represent equalities. EQUAL2 is the basic symbol,
and the '"2" emphasizes the symmetric nature of equality. EQUAL and FEQUAL

are present to allow the user easy implementation of some heuristic options.
The use of EQUAL in a statement will restrict ADEPT to substitutions in only
one direction, as will be seen in Chapter III. This makes it possible for the

user, by his choice of logical constant for stating an equality, to provide

7

that an axiom such as alal-l = ¢ allow only simplifications, thus preventing
expansions. An equality to be proved, stated using FEQUAL, will be processed
differently by ADEPT from one stated using EQUAL2 or EQUAL, and this feature
will also be described in the next chapter. Experience has shown that the
flexibility provided by these options is of tremendous value. (When mathemat-
ical notation is used in this report to describe a proof, the symbol = will
ordinarily be used for equality. However, if confusion is present or if it is
important to specify the exact form of a statement in ADEPT's language, math-
ematical notation will be augmented by the symbols =_, =c and <€, correspond-

ing to EQUAL2, FEQUAL, and EQUAL respectively, and the notation for EQUAL is

i4

intended to emphasize that the second argument can be substituted for the
first, but not vice versa.)

The symbol EXISTS is used as an existential quantifier, but there is no
explicit universal quantifier. This should not be surprising, for most uses
of the universal quantifier in group theory are implicit. Any statement with
variables not bound by an existential quantifier is interpreted as being uni-
versally quantified over those variables. As for the existential quantifier,
it will be seen in the next chapter that ADEPT does not use a uniform proce-
dure to handle it. Instead, special cases are provided for separately, and
new subroutines can be created as the need for treating more cases arises,

The name syntactic constant will be used to group together connectives,

logical constants, and quantifiers. The operations performed by ADEPT upon
encountering a syntactic constant will be discussed in Chapter III.

Any symbol which is not a variable/constant or a syntactic constant is a
term. Terms can be identified by entries in tables of necessary and suffi-
cient conditions. When the operation of ADEPT is considered, it will be ex-
plained why there are in fact only two tables ~—— one of sufficient conditions
and one with definitions (necessary and sufficient conditions). There are
two terms which are given null entries in these tables — MEMBER and *PROD —
and thus may be considered to be primitives.

Terms may start either with an asterisk or with a letter, and it will be

seen that asterisked and non-asterisked terms have different roles in the

syntax of the language. Consequences of the use of the two kinds of terms
will appear throughout this report.

It is now time to see how the various symbols are combined into state-
ments. First, it is necessary to describe an intermediate notion which is
essentially a generalization of the concepts of variables and constants, and
which also is subdivided into types. Objects are defined (recursively) as
follows:

i) a set variable or constant is a set object (e.g., A);

ii) a member variable or constant is a member object (e.g., Al);

15

iii) a list of three elements, the first of which is a function
variable or constant and the second and third of which are
set objects, is a function object (e.g., (FlL A B));

iv) a list of four elements, the first three of which are as
in iii) and the last of which is a member object, is a
member object (e.g., (FL A B Al));

v) a list of one or more elements, the first of which is
an asterisked term and the rest of which are objects
of any type, is an object of type to be determined by
the user's interpretation (e.g., (*CENTER G)).

In iii), iv), and v), the compound objects, the elements of the list excluding

the first are arguments of the first element, and the list is said to be
headed by its first element. All lists conform to the syntax of the program-
ming language LISP 1.5.

Some comments on the concept of object are in order. The definition by
iii) of function objects and the closely related definition by iv) of certain
member objects are illuminated by the intended interpretation. The second
and third elements of these lists are to be understood as the domain and
range, respectively, of the function. The fourth element of the list, if
present, is the argument of the function in the mathematical sense. Thus
(F1 (*INTERSECTION H K) K) might denote the canonical map from HNK into K,
and (F1 (*INTERSECTION H K) K Al) would then denote some point of K, namely
the image of Al under the map in question. Note that function variables or
constants are not allowed to "stand alone' as function objects. All functions
have a domain and range, and the language, unlike mathematical notation, re-
quires that this must be made explicit. Incidentally, the syntax allows ob-
jects that have no interpretation. For instance, the object (F1 A B Al) is
meaningless unless Al is contained in A.

The intended interpretation also supplements the definition of objects
given by v). Here the user, in formalizing a definition or sufficient condi-

tion for an asterisked term, will determine what arguments are needed, and

16

therefore their type. (*IDENTITY G) is a possible example of a member ob-
jeect with one argument, a set object. (#INTERSECTION H K) was used above as
a set object with two set objects as arguments. Thus the asterisked term in
this kind of object syntactically is a function.

Objects are combined with the other symbols into statements or formulas
according to the following recursive definition (all statements will be lists
to LISP 1.5):

i) a list of two or more members, the first of which is a
non-asterisked term and the rest of which are objects of
any type, is a statement (e.g., (SUBGROUP H G));

ii) a list of three elements, the first of which is EQUAL,
EQUAL2 or FEQUAL and the other two of which are member
objects, is a statement (e.g., (EQUAL2 Al (*IDENTITY G)));

iii) a list of two elements, the first of which is NOT and
the second of which is a statement, is a statement;

iv) a list of three elements, the first of which is AND, OR,
IMPLIES, or IMPLIES2 and the other two of which are
statements, is a statement;

v) a list of three elements, the first of which is EXISTS,
the second of which is a variable, and the third of which
is a statement, is a statement.

Clearly, meaningless statements are possible; i.e., ones with no inter-
pretation. However, the intended use of the various forms of statements
should be clear, except for those defined by i). There is, of course, a
parallel between such statements, headed by a non-asterisked term, and the
objects headed by an asterisked term. The arguments in each are determined
by the user's use of the term. However, a statement headed by a term is in-

terpreted as a statement about its first argument. Thus (CENTER C G) says

that C is the center of G, and (HOMOMORPHISM (Fl1 G H)) says that a certain
map is a homomorphism. Non-asterisked terms, then, serve as predicates, with

a restricting convention on the order of the arguments.

17

Any statement which contains an object headed by an asterisked term can
be translated into one that does not. For instance, the statement
(INTERSECTION I (*CENTER G) H), which says that I is the intefsection of the
center of G and some set H, could be restated as (AND (CENTER C C)
(INTERSECTION I C H)). This is a direct parallel to the practice of intro-
ducing variables in a proof stated in mathematical notation; e.g., '"Let C be
the center of G, and consider the intersection I of C and H. Then...."
Though such a translation is always possible, it is not always desirable.

For instance, a user would not want to eliminate an instance of

(*INVERSE Al G) any more than a mathematician would want to say "let y be the
inverse of x" instead of simply using "x-l". (The symbol G denotes the set
on which composition, and hence the inverse, is defined.)

A converse translation, eliminating non-asterisked terms in favor of
asterisked terms, is not possible. How, for instance, could "ale G & a,€ G"
be expressed, since both (MEMBER Al G) and (MEMBER A2 G) could only be trans-
lated into (*MEMBER G), thus losing information? An object such as
(*MEMBER G) would be a variable, syntactically. To simplify construction of
ADEPT's matching routines, a convention has been adopted providing that all

objects headed by an asterisked term must be used as constants. Thus

(*MEMBER G) would be excluded (except in the unlikely case that G has but
one member), while (*CENTER G) is an object which could appear in a state-
ment. Translation from statements headed by non-asterisked terms is there-

fore limited to cases where the term uniquely specifies its first argument.

While use of asterisked terms is natural in some cases, such as the
above-mentioned example of inverses, at other times it is not obvious whether
or not such terms should be used. A number of examples will be given in
later chapters illustrating the effects of notation on specific problems. It
suffices to say here that ADEPT's language allows a degree of flexibility in
this regard which sometimes can be exploited to advantage. The program it-
self has no facilities for translating from the use of one type of term to

the use of the other.

18

All proofs constructed by ADEPT are lists of statements, developed by
operations on statements, so sufficient information on notation has been pre-
sented to allow discussion of a proof. However, for purposes of programming,

many statements have associated property lists, which are inserted into a list

which is a true statement, preceding the first element., This is the standard
form of a table entry. 1In LISP terminology, CAR of a table entry is the prop-
erty list, and CDR of a table entry is a statement. For example, statements
to be entered in the tables of conditions and definitions are accompanied by
a property list consisting of the term being specified, followed by variables
of appropriate type serving as dummy arguments. An example will clarify: a
sufficient condition for subgroup (closure under products and inverses) is
given by ((SUBGROUP A B) IMPLIES (AND (MEMBER Al A) (MEMBER A2 A)) (AND
(MEMBER (*PROD Al A2 B) A) (MEMBER (*INVERSE Al B) A))). Now if it were
desired to expand the statement (SUBGROUP H G) using this condition, the de-
sired substitution instance of the statement given in the table entry could be
obtained easily with the aid of the result of matching the property list with
the statement to be expanded. Note how the property list of a definition or
condition specifies the number and type of arguments of a term. The primitives
MEMBER and *PROD have their arguments similarly specified by null definitions —
‘ ((MEMBER Al A)) and ((*PROD Al A2 A)) respectively (where the third argument
of *PROD is the set on which the composition is defined). Needless to say,
consistency in the use of arguments must be followed in creating the tqbles of
conditions and definitions.

To complete the groundwork for the discussion in Chapter I1II of the oper-
ation of the ADEPT program, it is desirable to discuss the way in which a pro-
posed theorem is inputted to the program, and the output that is obtained from
it. Instrumental to this discussion is the fact that in the course of working
on a proof, ADEPT develops two lists, or tables. Table I is a list of known
statements — either hypotheses, axioms, or certain intermediate results;
table II is the proof tree proper.

A problem is presented to ADEPT in three statements, each of which may be

19

a conjunction. The first two are hypotheses, either (or both) of which may be
vacuous. The first of these will have all of its variable/constant symbols
fixed (i.e. flagged) as constants; any additional variable/constant symbols in
the second will not be flagged. Both statements are then "sent'" to a subrou-
tine called PUTONl (described in the next chapter) for inclusion on table I.
The third statement of input is the desired conclusion. All of its vari-
able/constant symbols will be fixed as constants except those appearing in
(sub)statements headed by the connectives IMPLIES or IMPLIES2. The conclusion
will be put on table II by the subroutine PUTON2 (also to be described imn
Chapter III). No syntax check is performed on any statements inputted or
internally formed to insure that they are legally formed, so the user must
exercise care.

In this way the determination of whether variable/constant symbols are
used as constants or variables is handled during the inputting of a problem to
ADEPT. Any such symbol not flagged as a constant is treated as a variable.

In the course of a proof, additional symbols may be generated, but the purpose
for the generation will specify their use. A restriction on the user in this
regard is actually the only unfavorable consequence observed due to the absence
of an explicit universal quantifier in the language. This is the fact that any
symbol intended to be a variable in an implication which is part of a conclu-
sion must not have been previously fixed as a constant due to its use in the
first hypothesis. For ‘example, if (LCOSET A Al B C) were the first hypothesis
(A is the left coset of B given by Al where composition is defined on the set

C — e.g., B is a subgroup of C and A is alB) then (IMPLIES (MEMBER Al A)
(MEMBER Al C)) would not be a way of stating the conclusion that A is a subset
of C. The intent, having the Al of the conclusion be a universally quantified
variable, is thwarted by the previous treatment of Al in the hypothesis as a
constant. Thus the conclusion presented as above would result in a proof that
just Al, the particular element specifying the coset, is a member of C. (Note
that the statement (IMPLIES (MEMBER Al (*LCOSET Al B C)) (MEMBER Al C)) as a

conclusion would also have the restricted interpretation, but this statement

20

could not have any other interpretation anyway!) Use of A2 in the conclusion
would remedy the problem, which is an uncommon one, since other methods of
stating conclusions avoiding implications are usually not only possible but
more natural, as in this case, the statement (SUBSET A C). The user must also
be careful when using implications in conclusions to insert hypotheses which
will fix as constants any variable/constant symbols which must be so treated
in the implication. This conceivably could necessitate dummy hypotheses.
Alternatively, the whole problem (which seldom is encountered) could have been
avoided by requiring the user to accompany the three input statements with a
list of which variable/constant symbols are to be treated as constants.

The manner in which the proof tree is developed is the subject of the next
chapter, but a few remarks will now be made concerning the structure of table
II. Basically, it is an embodiment of the "working backward" approach to
theorem-proving.(la) As indicated above, the desired conclusion becomes the
first node, or head, of the proof tree. Loosely speaking, the proof procedure
may be said to be an attempt to reduce the desired result to a statement which
is already established. For this reason, branches of the tree are called
reductions. A reduction of a node is, with one exception, a statement which,
if verified, would suffice to verify that node. A node, of course, may have
any number of reductions. The exception referred to occurs at a node which is
a statement headed by the connective AND. Such a node is immediately subdi-
vided and therefore has two and only two reductions, its conjuncts, each of
which must be verified in order to verify the conjunction. The notation of

Slagle @3)

will be used in diagrams of proof trees; reductions are indicated
by lines descending from the parent node, and reductions which must both be
proved in order to verify the parent node are linked by an arc (Figure 1).
Statements on both tables I and II have associated property lists. The
table I entries are accompanied by a line number and a numerical indicator of
the logical class to which the line belongs, a concept which will be developed

in Chapter III. The property list of a table II entry is more complex. Its

composition is as follows:

21

Figurs 1

22

i) an indicator of the line's status;
ii) a list of the line numbers of the line's immediate
predecessors;
iii) a list of the line numbers of the line's reductions;
iv) the line's number;
v) the line number assigned or that will be assigned

to the first entry on table I which has not been

checked against the line;

and an optional element present only on the property lists of lines which are

heads of subordinate trees begun in the course of a proof:

vi)

the line number of the table I entry which was used

in the creation of the line.

The use of these elements will become clearer in the succeeding chapters.

The set of possible statuses for a proof tree line is as follows:

i) VER - verified;
ii) REL - unverified and relevant;
iii) RELl - unverified, relevant, but deemed to be partially
processed;
iv) 1IRR - known to be irrelevant;
v) SIM - unverified, but simplified (or subdivided, in the
case of a conjunction) and therefore to be skipped;
vi) ST - on a subordinate tree and unverified;
vii) VERST - on a subordinate tree and verified;
viii) PNT - that line which is currently under closest exam-

ination by ADEPT. (PNT is an acronym for "pointer".)

In discussing the formal language and proof structure used in the ADEPT
project, no mention has been made of rules of inference. This is because they
are not treated formally, but in an ad hoc manner, as will be seen in the de-
tailed description of ADEPT's operation.

ADEPT has been implemented on CTSS (Compatible Time Sharing System)(z) at

MIT's Project MAC. Therefore, communication with the program from a

23

teletypewriter console is possible. Stating a problem is done by typing in
the three statements described previously, and conditions and definitions will
be requested if not found in the tables. An answer of '"NO'" will be recorded

as a null condition or definition so that terms may be undefined without re-

[ane}

petitive demands from the system for the definition. The output consists o
the final status of tables I and II. (Sometimes information on property lists
is destroyed when table 1I lines are verified, so the final output may appear
to have lines with erroneous property lists.) One observes [rom the output
whether or not a theorem has been proved simply by noting whether or not the

first entry of table II is of status VER.

CHAPTER III

DESCRIPTION OF ADEPT — II

STRUCTURE OF THE PROGRAM

As was pointed out in the last chapter, ADEPT uses a "workipg backward"
method of proof. This basic organization is outlined in somewhat more detail
in Diagram I. Examination of that flow chart will reveal that the majority of
the work of proving a theorem must take place during the steps labelled "ex-
plore consequences...'", Also it is obvious that much must be explained about
the use of the innocent word '"progress'.

Some of the occasions when entries are made to tables I and II are evident
from Diagram I. Many others are found in the "explore consequences' phases of
the program. The rest of the basic structure of ADEPT lies in the routines
which add lines to one of these tables; i.e., add a property list to a state-
ment and do any necessary processing which must accompany the placement of the
new table entry. Of course, there are also matching subroutines, and a
"tree-pruning" subroutine which is called whenever a table II entry is veri-
fied.

A few remarks regarding the tables of sufficient conditions and defini-
tions are now in order. First of all, it is important not to confuse these
tables with table I, which is the list of "known" information being used in
any one proof. The totality of informaﬁion included as definitions, etc., is
never dealt with in a.proof; only those instances of the entfies of these
tables which are put on tables I or II are processed in any detail. |

Instances of sufficient conditions are used in onl& ﬁne way. As shown
in Diagram I, if the line currently of status PNT is a staﬁement headed by a
term, then if there is a sufficient condition for that term in the table, the

appropriate instance of that condition will be added to table II as a reduction

25

¢

4

LR T T R e G S A e L T

Fhitialization and .

input of problem

T2

/" Assign status PNT to \ no such line

next line of status REL

k Call this line U (give up)

PUTON1 instance Yes Iﬁ
of consequent; H-—-Qs U headed by IMPLIES ?)
PUTON2 instance o

of antecedent

Explore consequences
(i.e., call SCANW)

‘

Print
tables
I and II

Yes ("progress?)220€

[¢]

Is U headed by a term

PUTON2 Yes [which is replaceable by
irep lacement] a sufficient condition
or a definition?

I vo

Explore consequences
of all terms in U

Yes

Done

Progress?

i

Explore consequences of all
constants in U which are
identified by statements on table I

Yes Done

Progress?

i

‘ Explore consequences of all other
terms in first hypothesis of probl

Yes f;—% Done

rogress ?

Success |Use SOLVEX to try

to establish U
Failure No

Success fUse HOMOMF to try esf 1s U headed
to establish U 41 by FEQUAL?

Fai luﬂ ‘ No

Yes [Ask user if proof)No (give up)

_ should continue

Diagram I

Flow chart for ADEPT

26

of the line of status PNT. 1In the event that a sufficient condition is not
available, the table of definitions will be consulted for a possible reduction.
Instances of definitions can also be placed on table I, and this occurs at
three steps of Diagram I which are labelled with the phrase '"explore conse-
quences ", augmented by '"of...!". In these cases, a call for definition in-
stances is being made, either for definitions of terms appearing in a proof
tree line of status PNT, terms in table I statements identifying constants in
the line of status PNT (e.g., (SUBGROUP H G) identifies H), or terms appearing
in the first hypothesis of the problem.

The method of proof utilized by ADEPT makes it natural to have a separate
table of sufficient conditions, supplying a source of material for possible
reductions. Definitions are indispensible for many reasons, and it would be
poor practice to force a check of both a sufficient condition table and a
necessary condition table in order to obtain them, hence ADEPT has a table of
definitions. As for necessary conditions per se, they could be used for the
same reasons that definitions are used in connection with adding statements to
table I, but a need for such a feature has not been observed with ADEPT. The
inclusion of such a table might be a future extension. Until such time, nec-
essary conditions for terms may be included in the definition table if the
user is sure for some reason that no attempt will be made by the program to
add to table II an instance of the definition of that term.

At present, provision is made for only one sufficient condition or defi-
nition per term. Of course, this is hardly surprising in the case of defini-
tions. However, even in the case of conditions, there is really no restriction
because of the possibility of using the connective OR. This does lead to the
equal consideration of all disjuncts, at least at present, and for harder
problems requiring selection among multiple conditions, more sophisticated
procedures will have to be implemented in order to overcome inefficiency.

In Diagram I, "initialization and input of problem" results in the place-
ment of the two hypotheses on table I and the conclusion on table II. The

conclusion, or more precisely, all conjuncts of the conclusion which are not

27

themselves conjunctions, will be assigned status REL. The main loop is then
entered, and one can think of a pointer being positioned on the first table II
line of status REL. Note that this assignment of status PNT is made only to
lines of status REL; thus, for instance, lines on subordinate trees can never
undergo the special treatment afforded to such lines.

If the current line of status PNT is an implication, an instance of it is
created by generating a new symbol for each distinct variable (not constant)
of the line, declaring these new symbols to be constants, and performing the
indicated substitution (thus achieving a process of universal specification).
The antecedent of the resulting implication is then added to table I and the
consequent becomes a reduction (of status REL) of the original implication.
(In general, reductions are tentatively assigned the status of their pre-
decessor. See, however, Diagram IV.) This terminates consideration of the
implication.

If the line of status PNT is not an implication, ADEPT at this point
calls its main subroutine, which performs a scan, deriving reductions of proof
tree lines which can be inferred from the current set of entries on table I.
This derivation can be done in various ways, with various allowed inferences,
and will be discussed in detail shortly. This is what is meant by fexplore
consequences'”. In some subsequent steps of Diagram I, it is done after adding
appropriate definition instances, if any, to table I.

Treatment of special cases by means of the subroutines SOLVEX and HOMOMF,
mentioned near the bottom of Diagram I, will be discussed at the end of this
chapter. As for the communication to the user regarding continuation of a
proof, clearly this is just a frill made possible by the on-line terminals of
the MAC time-shared system. This point on the flow chart is almost never
reached in theorems which ADEPT is able to prove.

Diagram I reveals to some extent the heuristic nature of ADEPT, at least
on one level. Of course, proceeding back from the conclusion is itself a heu-
ristic for proving theorems. 1In addition, existence of such entities as FEQUAL

allows heuristic possibilities. But a central and most difficult goal of this

28

project was to introduce, presumably by use of heuristics, an "awareness" into
the program. It seems obvious that a successful heuristic theorem-prover must
perform as though it "understood" where it was in a proof. A student, of
course, has such an ability, and to what degree it can be inserted in a pro-
gram will be reflected in the order of development of a proof and in the ratio
of necessary to irrelevant lines in the proofs produced.

The means used to attempt to achieve this ability in ADEPT include the use
of the status PNT, and the accompanying design and application of criteria for
"progress", which determine when the pointer is to be advanced. Through use
of status PNT, instances of definitions can be introduced as they become rele-
vant. Of course, this feature can be of help only until all the instances
which will be used in a proof have been produced. 1In addition, if the point
in the flow chart where terms of the first hypothesis are considered is
reached, experience shows that most of the instances will be obtained all at
once. However, the first stages of a proof often proceed more efficiently
because of this '"'selectivity" feature. Alternative methods for achieving
similar results are discussed in Chapter VIII. As for detailed discussion of
particular heuristics, this is the subject matter of the next chapter.

The flow of a proof can now be illustrated, and the example will also
serve to illuminate the content of Chapter II. The proof will be discussed
in both ADEPT's language and mathematical notation. Rather than supply appro-
priate definitions to the tables, it will be assumed that the tables are empty
(except for null definitions of *PROD and MEMBER, and a null sufficient con-
dition for MEMBER) and that ADEPT asks the user for information at the appro-
priate times.

Theorem: If K is the kernel of a homomorphism f1 mapping
G into H, then K is a submonoid of G.
This is presented to ADEPT as follows:
(AND (KERNEL K (Fl G H)) (HOMOMORPHISM (Fl1 G H)))
NIL

(SUBMONOID K G).

29

(In what now occurs, it will be assumed that an early version of ADEPT is being
used, unaugmented by a number of heuristics yet to be described.)
Table I now is as follows (since conjunctions and biconditionals are

immediately subdivided by PUTONL):

((1 1) KERNEL K (F1 G H))

((2 2) HOMOMORPHISM (Fl G H)),
K, F1, G, and H are fixed as constants, and ((REL (HEAD) (NONE) 1 1)
SUBMONOID K G) goes on table II. This line is changed from status REL to
status PNT, and the preliminary scan is fruitless. ADEPT now desires a suffi-
cient condition for submonoid, and the user responds ((SUBMONOID A B) IMPLIES
(AND (MEMBER Al A) (MEMBER A2 A)) (MEMBER (*PROD Al A2 B) A)); i.e., A is a
¢ A ==> aa e A (i.e., A is closed under composi-

2 172

tion). This results in the instance ae K &a

submonoid of B if ae A& a
2€ K ==> aa,e K being added to
table II as a reduction: ((REL (1) (NONE) 2 1) IMPLIES (AND (MEMBER Al K)
(MEMBER A2 K)) (MEMBER (*PROD Al A2 G) K)). This causes the property list of
line (1) (which had already been altered by the fruitless scan) to be changed
to (REL (HEAD) (2 NONE) 1 3), as line (2) is assigned status PNT. Property
lists will henceforth be ignored in this discussion, except that entries will
be referred to by their line numbers.

The implication is immediately split, and, assuming the symbols generated
are K1 and K2, the statement (AND (MEMBER K1 K) (MEMBER K2 K) is sent to PUTON1
for inclusion on table I, and line (3) of the proof tree becomes (MEMBER
(*PROD K1 K2 G) K). In mathematical language, to prove the desired implica-

tion, assume k, and k2 are fixed, arbitrary members of K, and prove k.k,e K.

1 172

Line (3) now hds status PNT, a scan is of no help, and the line has no
terms which are defined in the tables. The line's constants are K1, K2, G,
and K, the first two of which are identified by table I statements headed by
a term with a null definition. G is not identified at all, but K leads to a
request for the definition of kermel. The user supplies the statement
a

¢ K <==> fl(al) <— e in ADEPT's language, and the appropriate instances of

1 H
two implications appear on table I. The first of these is (IMPLIES (EQUAL

30

Figure 2

Proof tree for example

31

(F1 G H Al) (*¥IDENTITY H)) (MEMBER Al K)), and the scan which takes place after
the two entries are made to table I uses this to create the reduction (4):
(EQUAL (F1 G H (*PROD K1 K2 G)) (*IDENTITY H)). 1In other words, to prove
klkZe K, prove that f

maps k k2 into the identity. The scan and the progress

1 1

determination are programmed so that the scan now stops and line (4) takes on

status PNT. From it, an instance of the definition of identity is obtained

and put on table I. (A two-sided identity is assumed by using the definition
€

ae ay & ea;

line (4)'s constants produces the ''discovery" that (F1 G H) is a homomorphism.

<« al). This leads to no reductions, but an examination of

(Some special-case programming had to be inserted to provide that this be done,
due to the prohibition on function symbols standing alone.) Upon obtaining

the definition of homomorphism, the scan is able to produce (5): (EQUAL

(*PROD (FL G H K1) (F1 G H K2) H) (*IDENTITY H)). At this point the scan
continues, using the other half of the definition of kernel along with other
table I entries to derive facts about some of the objects in (5). Such facts
are put on table I; in this case they are (EQUAL (F1 G H K1) (*IDENTITY H))

and (EQUAL (F1 G H K2) (*IDENTITY H)). Still continuing, the scan can now
create from (5) the reductions (6): (EQUAL (*PROD (*IDENTITY H) (F1 G H K2)

H) (*IDENTITY H)) and (7): (EQUAL (*PROD (Fl G H K1) (*IDENTITY H) H)
(*IDENTITY H)), and from (6), (8): (EQUAL (F1 G H K2) (*¥IDENTITY H)) using

the definition of identity, and (9): (EQUAL (*PROD (¥IDENTITY H) (*IDENTITY H)
H) (*IDENTITY H)). From (7) is obtained (10): (EQUAL (Fl1 G H K1)

(*IDENTITY H)), and (9) is seen to be a reduction of (7) as well as of (6).
From line (8) is obtained (11): (EQUAL (*IDENTITY H) (*IDENTITY H)) which is
verified, as are all lines of the form (EQUAL Al Al). This causes a chain of
verification back to line (1), completing the proof. Thus ADEPT, using defi-
nitions of homomorphism, identity, and kernel, reduced fl(klkz) = ey to
?1(k1)f1(k2) = ey and then to ey fl(kz) =e

ge fpdey = ey () =ep,

=e fl(kl) =en and finally to e = e , an obviously valid state-

'eH H’ H H
1it. The final proof tree has the form shown in Figure 2.

The use of EQUAL rather than EQUAL2 in the definitions of kernel and

32

identity is crucial in avoiding serious proliferation of lines. For instance,
EQUALZ in the definition of kernel would allow fl(kl)eﬁ =ey to have such
reductions as fl(kl)fl(kl) =en and EQUAL2 in the definition of inverse would
lead to even worse misfortunes. To be sure, the above proof is itself ineffi-
cient, containing several irrelevant lines. However, the current version of
ADEPT, whose development will be discussed in the next chapter, contains fea-
tures which augment the basic structure shown in Diagram I and enable the pro-
gram to avoid many needless actions. In this particular example, the proofs
given by the old and latest versions deviate starting with the reductions of

line (5), fl(kl)fl(k In the'improved procedure, substitutions of e

0) T ey H
for both fl(kl) and fl(kz) are made simultaneously and the subsequent reduc-

tion, is immediately simplified into the verifiable line e, = e

% T we n o %w
Thus the current proof contains seven nodes, and the proof tree is a straight
line. Certainly for that particular problem, that is a very efficient, natu-
rally developing proof.

The scanning procedure is probably the most important subroutine in the
program, and certainly it is the most complex. It is here that many heuristics
can be added and tested. The main function of the scan, as already indicated,
is to discover what new lines can be added to the proof tree as a result of
implications on table I, and what substitution instances of lines already on
the proof tree may be added to table II as a result of equalities on table I.
This process is handled by a double loop, and can be done in either of two
ways, both of which have been thoroughly explored with ADEPT. The first is to
cycle through table I, and for each entry of one of the appropriate forms, to
cycle through table I1II, generating all reductions of proof tree lines possible
because of this particular table I statement. The other, of course, is to
cycle through the proof tree, creating all reductions of a given line of table
II due to all of the "known facts" on table I before proceeding to the next
line of the proof.

The latter design of the scan is superior from the point of view of having

the program achieve an "awareness'" of where it is in a proof. The attention

33

of the program is not removed from, but remains focussed first and foremost
upon the proof tree and its development. One consequence of this is the ease
in which a concept of ''related" substitutions can be implemented, permitting
such steps to be made simultaneously and thus allowing such steps as the jump
from fl(kl)fl(kz) = ey to ey T ey which was seen to be desirable in the
example just given.

The current version of the scan is known as SCANW, and it will now be
explained in detail. It cycles through the proof tree in its outer loop, and
contains such refinements as the related substitution feature. To understand
its operation, the concept of logical class must be defined. (The reader will
remember that an indicator of the logical class is the second element of a
table I entry's property list.) The logical class represents an attempt by
ADEPT to group together related table I entries. For instance, all conjuncts
of a conjunction sent to PUTONl are put in the same class (except for the con-
juncts of the two conjunctions comprising the original hypotheses), and the two
implications resulting from a biconditional are in the same class. Also in the
same logical class are instances of the same definition added to table I during
a single "explore consequences of all..." execution. Finally, any lemmas de- /
rived by the program, by procedures about to be described, from a table I
implication will be in the same class as the implication. For example, if a
line on the proof tree mentions two sets H and J, both of which are subgroups
of a group G, and if both instances of the definition of subgroup are placed on
table I during the examination of the constants of this line, then all con-
juncts of both instances will be in the same logical class; in addition, if

due to table I entries a.¢ H and a,¢ H, the lemma a ¢ H is derived using the

1 2 1%2

1 2 H ==> aae H of the definition of H, then this lemma will

also be in the same class.

conjunct a,€¢ H & a
SCANW is described in Diagram II, which is augmented by Diagrams Ila - Ile,

due to the routine's complexity. When studying these flow charts, note that

this version of the scan contains within it a definition of "progress"; i.e.,

when the pointer is to be moved. This is by no means the only way to treat the

34

Entry to SCANW

Is LL "off"?

t W be all of table II starting
with the line of status PNT

Let W be the line
of status P,

Let W be all Let L1 be a list of all

of table II heads of subordinate trees
fter the lin which have been verified
f status PNT since the last such listin

no t Wl be the first line of
BOOKKEEPING | such W which is of status PNT,

(Diagtam Ile) ne REL, REL1l, or ST, and not
headed by FEQUAL or IMPLIES

4

t U be all of table I which
has not scanned Wl, plus all
table I implications which
suggested entries of L1

Consider
lrest of

no ERFORMANCE O

Let UL be the first line of U ;‘;‘h UBSTITUTIONS
: - 1 ne ram IId

Is Ul headed by IMPLIES?)

1 No
Is W1l headed by EXISTS, or does
W1l have a reduction created by
r YesQl:achmem:. using a table I implica-

(PROCESS ING OF
IMPLICATIONS

tion of the same logical class as Ul?

o
Is Ul headed by EQUAL2,
ad EQUAL, or ASSOC?
¥ Yes
DETERMINATION OF
SUBSTITUTIONS

(Diagram IIc)

Diagram II

Flow chart for SCANW

35

(Ul of form P ==> Q)

Is W1 of same form as Q, \No
or as any conjunct of Q?
lYes
I PUTONZ2 proper instance of iﬂ

(Was it already on table Ii;)

No Ye§\“
r———zgi(jls proof complete? After W1?

No

Return Note that Wl has a reduction Does Wl have a reduction
(from created by detachment using created by detachment using
SCANW) an implication in Ul's a table I implication of the
logical class same logical class as Ul?
Noy Yes
(Is W1 of status REL?) GENERAT ION
Yes No OF LEMMAS
(Diagram 11Ib)

Change status
of Wl to RELY

(;s Wl of status PNTf) L,

Yes No Exit from
this section

Note that Wl has been
""declared processed"”

v

Exit from
this section

Diagram IIa
Flow chart for SCANW

(PROCESSING OF IMPLICATIONS)

36

Ul of form P == Q)

L

Put on list L4 all operations
which would be possible on Wl if
proper instances of P were known

Exit from Is L4 empty? Consider rest of LQJ

this section

Let P' be the instance
of P corresponding to
the first entry of L4

Yes//EIs P' or every conjunct)

\\‘ of it on table I?
No

Yes/ Is P' head of a Yyes Is P' on table II
subordinate tree? in status VERST?

Noy

Is Wl of status Is w1 of status '\ Yes
ST or VERST? ST or VERST? J)

PUTON2 P' in

No
i% ' status ST as
PUTONL P', add P Is L null? head of a new
10t§c2i ;?a::m:s U No 0subordinate tree
g (1s L equal to P'?‘}i* >
Yes
Yes
>
(;PrOOE Completel—#)_w Use SCNX to make
Noy the substitution
PUTON1 Q', add Q' and to reset L
to U, in same JL
logical class as U -\\\a(froof completez_)~§9
Yes

—ﬂReturn (from SCANW)I

Diagram IIb
Flow chart for SCANW

(GENERATION OF LEMMAS)

37

(Ul of form P € Q) (Ul of form P = Q) (Ul of form (ASSOC A))

Put on list L2 all possible
substitutions in Wl of instances
of P for instances of

Put on list L2 all possible
substitutions in Wl given by
(@13y)33 = 3, (8,33)

Put on list L2 all possible
substitutions in W1 of instances
of Q for instances of P

with an indicator of the
logical class of Ul

:

L Exit from this section |

Tag each new entry of 12 J‘

Diagram IIc
Flow chart for SCANW

(DETERMINATION OF SUBSTITUTIONS)

38

Entry to this section

Yes (Is_ulem_pm———-](:onsider rest of 12]

Noj
Is Wl still of status
PNT, REL, RELl, or ST?)
Yesi
Let L3 be the logical
class associated with
the first entry of L2

Is W1 headed by
EQUAL or EQUAL2?

N
- i Let W2 be the first
Let W2 be Wl argument of the equality]

4

Make all non-conflicting substitutions
in W2 indicated by entries of L2 which
are tagged with L3, Call the result W3

lgubstitute w3 for W2 in WII

lPUTONZ resulting statemend

(Proof complete?)“No
e

Return (from SCANW)

Diagram IId
Flow chart for SCANW

(PERFORMANCE OF SUBSTITUTIONS)

39

Entry to this section

Is LL "off"?

Yes No
Has line of status PNT been Have any lines been
"declared processed" or verified? added to table II?

No Yes

\3 Yes

CHave any lines been Has line of

added to table II?

status PNT been

"declared processed" or

ified?

No ver
N Yes g

Exit B Assign status PNT

section

from this to next table II
section section line of status RE
Exit A
from this
section

Diagram Ile
Flow chart for SCANW

(BOOKKEEPING)

40

evaluation of progress, and the next chapter will discuss this whole question
in detail.

The scan, as a routine, has two arguments. One, L, is used only in the
processing of implications. The second, LL, indicates whether all of the proof
tree starting with the line of status PNT is to be scanned immediately, or if
the node of status PNT is to be scanned, and then a decision made whether to
continue or return (Diagram IIe). (The latter option is generally exercised
when SCANW is used to "explore consequences". Other uses of the scan will be
seen later.) As shown in Diagram II, before the scan is actually made, newly
proved lemmas are noted, in order that whatever steps they make possible may
be carried out. The generation and use of lemmas is part of the processing
of implications (Diagrams Ila and IIb). The double loop is then entered, and
implications and equalities are processed. Note that substitutions are not
allowed in some proof tree lines which are scanned by implications, and that
substitution instances are not actually created until the pass through table I
is completed. This, of course, enables related substitutions to be performed
together, and it is also a fact that some possible substitutions will not be
performed due to actions taken while processing implications.

When an implication is encountered, as shown in Diagram IIa, an attempt
is made to generate a reduction of the proof tree line being scanned by means
of detachment. This method, used in Newell, Simon, and Shaw's LT,(14) is
justified by modus ponens, and provides that a proof tree line P may be re-
duced to a line Q if there is an entry Q' ==> P' on table I, where P is an
instance of P' (or of a conjunct of P') and Q is the corresponding instance of
Q'. 1If an addition can be made to the proof tree by this means, certain book
keeping is done, noting that the particular proof tree line has a reduction
created in this manner. (The special treatment given to occurrences of the
use of detachment is part of the current heuristic determination of "pro-
gress".) If not, and if the proof tree line being scanned does not have a
reduction created by detachment from some other table I implication of the

same logical class, then an attempt to generate lemmas is made. A lemma is

41

simply an instance of the consequent of the implication, which can be added to
table I as a "known'" statement by virtue of the presence of the corresponding
instance of the antecedent (or all its conjuncts) on table I or as a verified
line on table II. Thus the generation of a lemma is a direct use of modus
ponens.

Quite often, a lemma which can be generated is irrelevant from the point
of view of the statements to be proved on the proof tree. This suggested the
inclusion of a relevancy check to be made before adding a lemma to table I.
With this check, no such addition is made to table I unless the lemma would
enable one or more reductions to be added to the proof tree. Once included,
the existence of the check makes it natural to discover cases where a lemma
w;uld be useful but the required instance of the antecedent: is not known to
hold. Then this instance of the’antecedent can be put on table II as the head
of a subordinate tree, and if it is subsequently verified, the lemma will be
generated by a future scanning pass if it still appears to be of use. In such
an event the verified head of the subordinate tree is also put on table I.
This is the present form of the section of SCANW which generates lemmas and
which is detailed in Diagram I1Ib.

The restriction providing that lemmas are generated only when they can
cause an addition to the proof tree is extremely important. It minimizes the
use made of a "working forward" procedure and eliminates much unnecessary
proliferation. PFor instance, suppose that G is known to be a group, and that
a, and a, are members of G, From the definition of group it will be known
that e.e G and that G is closed under composition. Thus a,a,e G, ae.
€ G, and six other inclusions could be derived immediately from the clo-

€ G,
es8,
sure statement, and each of these would lead to further "lemmas'". With the
present SCANW none of these derivations are made. (If one of these facts were
desired; i.e., on table II and unverified, detachment would have handled the
situation.) Suppose further that G is postulated to be abelian. Then none of
the numerous instances of commutativity will be put on table I unless it en-

ables a specific substitution to be made in a line of the proof tree. To

42

supplement the relevancy check, a heuristic, not indicated in Diagram II and
which will be described in Chapter IV, has been found which limits the cre-
ation of some subordinate trees to those cases where the heads are "likely" to
be verifiable.

Lines on subordinate trees are of status ST unless verified or simplified,
in which case they are of status VERST or SIM respectively, though if a re-
duction of a line of status ST is already on table II, its original status
will not be changed to ST. Lines of status ST are given a more restricted
treatment than those on the main proof tree, since inasmuch as they cannot
take on status PNT they can only be processed during scans. A second major
restriction is that sgch a line cannot itself give rise to a new subordinate
tree. This restriction to a single level of subordinate proof means that
ADEPT cannot prove theorems requiring the establishment of a complex chain of
subtheorems. Only a few of the problems considered required this kind of
proof; to do them with ADEPT it was necessary to state some lemmas explicitly
in the hypotheses.

One point is not clear on Diagram IIb, and this is the case where the
argument L is not only not null (thereby prohibiting the creation of subordi-
nate trees) but an actual statement. This situation arises when SCANW is
called by the subroutine SOLVEX while attempting to obtain a '"solution" for
a table II line of the form (331)[a1e A& Pa1]. In such a situation, L is
set to be "ale A". An examplé will be given when SOLVEX is discussed, later
in this chapter.

The discussion of lemmas will conclude with an illustration. In this
example a subordinate tree is started not because of an observed possible
substitution (the most common case), but because of an observed possible uti-
lization of an implication which is itself the consequent of an implication.

Theorem: If the center C of a group G contains all
of G, then G is abelian.
From the definition of abelian, ADEPT quickly concludes that the theorem

will be proved if, assuming 8 and g, are members of G, the identity

43

818, = 8,8, can be established. This line itself suggests no continuation,
but an examination of the terms of the first hypothesis causes an instance of
the definition of center to be placed on table I, namely [ale C <==

[aze G => aa, = azal]] & [ale C == aje G]. From this the scan finds that
the implication [aze G ==> g3, = azgl] could reduce the proof to showing

gze G, if it were known that 81€ C. This is not known, so 8¢ C becomes the
head of a subordinate tree. The scan continues and finds that due to hypoth-
esis a reduction of this line is g, € G. This is an assumption made in the
course of the proof, so the head of the subordinate tree is verified, and
subsequently the desired implication appears on table I as a generated lemma.

Continuing the scan, the proof is reduced to showing a,e¢ G, an assumption,

2
thus establishing the theorem.

Diagrams IIc through IIe are mostly self-explanatory. Diagram IIc de-
picts the determination of substitutions, and shows clearly that the logical
constant EQUAL suppresses substitutions in one direction. Note also that the
associativity axiom, which can be stated using an equality headed by EQUAL2,
can also be.stated using a term of one argument, ASSOC (which is given a
null definition), in order that the matching may be carried out by a more
efficient, special-purpose subroutine. The actual creation of reductions
which are substitution instances is shown in Diagram IId, and it should be
observed that substitutions are only made in the left half, or first argument,
of equalities on the proof tree. This particular heuristic, along with many
others, will be discussed in Chapter IV. This concludes the exposition of the
scanning subroutine.

The subroutines which add entries to table I and II, PUTON1l and PUTON2,
are outlined in Diagrams III and IV. Both routines add am appropriate prop-
erty list to the statement being added to a table, though the details of this
bookkeeping are not all given in the flow charts. Note that both routines
subdivide conjunctions and biconditionals, though PUTON2 also retains the
original line and puts it on the proof tree in status SIM. Both diagrams

contain references to the MODEL heuristic, to be introduced in the next

44

(Let U be the line
to be put on table I)

Is U headed by PUTON1 both arguments of main
AND or IMPLIES2? connective, keeping logical

lNo
Yes Is U on table
already?

D
JNO
Iégd U to tablevﬂ
Is U headed
by EXISTS?

s U headed by one
of the terms GROUP,

ASSQC, ...PHISM,

class fixed unless U is part
of original two hypotheses

Return (If first call to PUTONL
results in a completed proof,

return will occur then)

Is U on table II?)ZE-i[Verify UI

No

Proof
complete?

Generate a new
ymbol and desig-
nate it to be a

12205;:§:§n or FACTORGROUP? member constant
to lists ¥ No ¥

of these If MODEL heuristic PUTON1 instance
concepts is in effect, update of U (existential

lattice if possible,
and keep track of
imple variables which

are members of sets

Yes

Is U on table 11?7)
No

Return

specification)

Diagram III

Flow chart for PUTON1

45

(Let U be the line to be
put on table II, with its
associated property list)

Merge line number of pre-
decessor of U into list of

line numbers of predecessorsk

headed by in property list of co
mPLIES IMPLIES2 Is U of status ST?) of g al;reaz on table ?i
EXISTS, or FEQUAL" No = yI

Is U already venfied)

If the MODEL Add U to table II N T
heuristic is in (in status SIM if ° es&
effect. does it it is headed by Verify prede-
e?

Is U already \Ye
on table II?

rule out this lin AND or IMPLIES2) cessor of U
Update list of reduc-{ * | Update list of reduc-
tions on property list tions on property list

of predecessor of U of predecessor of U

(1s U on table I?

Yes ﬁm
+N°
If U is an implication

or an equality, are its
two arguments identical?

lNo
If the call to PUTONZ is
occurring during the operation

Yes
@ of SOLVEX, and U is headed by
EXISTS, can U be solved by SLVX?

PUTON2 both

arguments of Yes / Is U headed by AND,
the connective, OR. DMPLIES2 ?
keeping book- 295

] No .
keeping straight & - PUTON2 simpli-
Is any simplification fication of U:
of U possible due to r

Return (If "built-in" axioms? change status

first call to - of U to SIM
PUTON2 results JNo —
in a complete Are there any substitution
proof, return instances of U due to Return
will occur then) "built-in" axioms?

1Yes

PUTON2 all such sub-
Istitution instances

| Return '

Diagram IV

Flow chart for PUTON2

46

15 s i L - ShRe Sl

e T T R A

chapter. This is the heuristic restricting creation of some subordinate
trees.

PUTON1 compiles lists of certain information in order that searches of
table I in its entirety may be held to a minimum, It is also clear from
Diagram III that when a statement headed by an existential quantifier is added
to table I, an instance of it is immediately derived and added to table I —
a process corresponding to the classical operation of existential specifica-
tion. (Existential generalization is not possible in ADEPT without the addi-
tion of a special axiom as part of the hypotheses.)

There is one step on Diagram IV which involveg use of the subroutine
SOLVEX and thus, like one step in SCANW, will be explained when SOLVEX is
discussed. Then there is mention of "built-in" axioms, and these are a heu-
ristic feature added as ADEPT was developed. As will be seen in Chapter IV,
this feature has been very useful, but ADEPT could theoretically run with no
such axioms. 7

Diagrams III and IV indicate the possible ways that a proof tree line may
become verified, thus initiating appropriate tree-pruning by reference to the
structure reflected in the lists of line numbers of predecessors and reduc-
tions in the property list of each table II entry. The simplest situation
occurs when both arguments of an equality or implication being put on the
proof tree are identical. Such a line is verified. Another case is when a
line about to be put on table II as a reduction of some line n, is found to be
already on table II and of status VER or VERST; i.e., verified. This causes
appropriate tree-pruning starting with verification of line n. Otherwise,
verification occurs only if a line appears on both table I and table II. This
may come about in either of two ways. The line may be on table II and being
put on table I as a newly-discovered '"known' statement, or a line being put on
the proof tree may already be on table I. The latter situation is extremely
common, being the result of successfully reducing a statement to be proved to
a statement already established.

For the purpose of checking whether or not a line is on both tables, the

47

different logical constants used to express equalities may be considered
identical. While EQUAL and FEQUAL are used to achieve certain special process-
ing of statements in which they appear, clearly their presence should not pre-
vent verification of a table II equality which is on table I though expressed
with a different logical constant. The heuristic use of the extra logical
constants does not alter the fact that they all represent equality.

Diagram I contains a call to a subroutine called SQLVEX in order to pro-

cess lines of the form (3al)Pa This subroutine's effects have also been

1
noticed in the flow charts for SCANW and PUTON2. It attempts to ''solve" a

line of the indicated form, for a value of a As indicated in Chapter II, it

1
is organized in terms of special cases. The current version will only handle

Pa1 of the form P' 5 P'" or P' <« P" where either P' or P" but not both con-

tains a or Pa, of the form a

1’ 1 1© A& Qa; (or Qa,; & ae A) where Qa; is one of

the admissible Pa,'s just described. Such a line is put into the form O'a1 =

1

Q", and the conjunct a€e A, if any, is separated. The reordered line is

checked to see if the equality can be solved for a; by "multiplying" both

sides by proper inverses. For instance, 3231a3-1 =a, can be solved to obtain
-1 -1.-1 '

a; = a, a4(a3) 7. (Note that this subroutine assumes that all inverses are
defined, and therefore cannot be used for theorems about semigroups. A check
to determine the routine's applicability, though not included in the program
at present, could easily be made using the list of sets known to be groups
that is created by PUTON1l.) 1If a solution is obtained the line either will

be verified, or the indicated substitution instance of ale A added to the
proof tree as a reduction of the line under consideration, whichever is appro-
priate. If no solution is found, the line is checked to see if it is of the
form Q'a1 = Q'az, in which case again it is either verified, or the reduction
azc A added to the proof tree. If this also fails, a scan is done, with the
arguments LL and L of SCANW "on" (i.e., not null), and if a conjunct ae A was
detached from the line, L is set to precisely that conjunct. Whenever a new

line of the form (3al)P'a is put on the proof tree in the course of this

1

scan, it is checked to see if it can be solved in one of the two ways mentioned.

48

This is the call to SLVX indicated in Diagram IV. If so, the scan ends just
as if the proof were complete, and control returns to SOLVEX, which proceeds

essentially as though the original line had been solved for a All the lines

1
created of the form (3a1)P'a1 during the scan are removed from further con-
sideration; in fact, they are printed out at that time and completely removed
from tatle II. 1If the scan ends without creating a line which can be solved,
control returns to SOLVEX and then to the main routine which acts accordingly,
as shown in Diagram I.

It remains to discuss the role of SCNX, mentioned in Diagram IIb. If

during a scan initiated by SOLVEX, a substitution could be made in a line

(331)P'a1 (i.e., in P'al) if only a.€¢ A, and L is "a,e A", control is passed

1 1
by SCANW to SCNX, which allows the substitution and resets L. This is best

described by an example. Suppose that the statement ae A ==> (3a2)

[a2€ B& a, = aZC] is on table I (one part of the definition of a factor group

1
A = B/C), and that the line of table II being considered by SOLVEX is (3al)

[ale A& fl(al) = a3], where a, is being used as a constant. This will be

3
"reordered" as (3a1)[f1(al) = a3] and L set to "ale A". (Clearly the scan

will occur, as fl(al) = a, cannot be solved directly.) The scan will observe

that the substitution of aZC (or more precisely, an instance of aZC obtained

after an application of existential specification) for a; could take place if

ae A were established. SCNX receives control and adds the line (332)

[fl(aZC) = a3] to the proof tree, sets L to "aze B", and saves the information
that this substitution has been made. This suffices to illustrate the opera-
tion of SCNX, but it will be profitable to continue this example further.

Perhaps f, is a map from B/C to D/E defined by fl(alC) = fz(al)E, for some

1
map f2 taking B onto D. So, if aze D/E, the lines (.3a2)[fl(azc) = a4E],

('laz)[fz(az)E = a,E], and (3 az)[fz(az)E = fZ(aS)E] might be generated.

The last of these can be solved, giving a, = ag (for this possibly non-unique

a,. such that fz(as) =a,, where a,_, = a4E), and SCANW will now return control

5 3
to SOLVEX, which will make use of the information stored by SCNX that a2C was

substituted for aj, and put on the proof tree as a reduction of the original

49

5

procedure, which may be carried to any depth, is clearly very useful.

line (3a1)[ale A& fl(al) = a3] the line a_C € A. This "change of variables"

In Diagram I there is also a reference to a subroutine HOMOMF, which deals
with lines headed by FEQUAL. (The name HOMOMF was chosen because the routine
is used in establishing homomorphisms.) HOMOMF's task is to attempt to verify
the equality headed by FEQUAL by successive evaluation of the two arguments
of the logical constant; i.e., the two sides of the equality. It evaluates
the first argument, obtaining, if successful, a list of one or more evalua-
tions, plus the original argument. It then starts to evaluate the second
argument, stopping with success if an evaluation of the second argument is
on the list of evaluations of the first. Evaluation is done by a call to
SCANW, with table II augmented by a new '"tree' headed by the argument to be
evaluated. The use of FEQUAL and HOMOMF has proved to increase efficiency in
the establishment of equalities gimilar to the one involved in demonstrating
that a map is homomorphic. As an illustration, suppose that table I contains
the hypothesis fl(al) =e; i.e., f1 maps everything into the identity. If a
sufficient condition for a map's being a homomorphism, stated using FEQUAL,
is entered into ADEPT's tables, then in the course of proving f1 homomorphic
HOMOMF will be asked to establish the equality fl(a2a3) = fl(az)fl(a3). The
proof would proceed: fl(aza3) = e (evaluation of the first argument);
fl(az)fl(a3) =ee = e (q.e.d.).

It is possible to write a supervisor to use the full power of ADEPT to
solve a theorem with many sub-theorems. Such a program is ISOLVE, which uses
ADEPT to establish isomorphisms between groups. A routine called GENFCN was
written, which generates a canonical relation between two sets, given the
hypotheses concerning the two sets (GENFCN also uses SCANW), and ISOLVE makes
four calls to ADEPT to prove that the relation is (in this order) well-defined,
homomorphic, epimorphic, and monomorphic. (Sometimes the relation generated by
GENFCN is well-defined by construction, as in the case when the domain of the
relation is simply a group G.) This program has been used to establish a

number of isomorphisms, and these are the most impressive theorems proved by

50

the computer in the course of this project. (Incidentally, GENFCN works for
sets but ISOLVE assumes that the sets are groups.)
One fact about ISOLVE is of special interest. In order to prove a
1 %2 %% -
-1
fl(al) fl(az) = ey is given to ADEPT. In general, to prove that f1 is

relation flz G —> H is well-defined, the problem a

one-to-one requires establishment of the converse implication. However, since

fl will first be shown to be a homomorphism (if fl isn't proved to be homo-

morphic, or if any one of the four proofs is not successfully completed, ISOLVE

goes no further), one may take advantage of the theorem which states that for
a homomorphism fl, fl is one-to-one if and only if its kernel reduces to the
identity. That is, ISOLVE is justified in presenting ADEPT with the problem
fl(al) = ey =a> a, = eqs and in fact, this is exactly how it has been pro-

grammed to prove f, monomorphic, for this latter implication usually can be

1
proved more easily. Equivalently, ADEPT could be programmed to include the
heuristic — ''when asked to prove that a function fl is one-to-one, make use

of (the above theorem) whenever it is known that f1 is a homomorphism".

51

CHAPTER IV

SPECIAL-PURPOSE HEURISTICS

THE DYNAMIC PROCESS OF USING AND CREATING ADEPT

The heuristic philosophy adopted for the ADEPT project has already been
expounded, and certain of the program's heuristic features have become appar-
ent in the previous chapters. The original version of the program contained
relatively few heuristics, inasmuch as the purpose of the development of ADEPT
was to discover the difficulties which arise in the attempt to prove theorems
of group theory by computer, and then to devise means by which to overcome
these obstacles. Thus it is pertinent to discuss not only the current version
of the program, but also the development of this version, and some of the
previous states of the program. By this, of course, is not meant a revelation
of such data as the state of the program when the ability (SOLVEX) to handle
problems involving certain statements headed by an existential quantifier was
added, but rather a discussion of heuristics and features which were developed
to cope with previous lack of capability or efficiency on the part of ADEPT.
Thus this chapter supplements the previous one in giving further description
of the program, concentrating on those features whose addition was prompted by
information obtained while experimenting with early versions of ADEPT.

One such addition has been described in Chapter III, since it is pres-
ently an important part of the operation of SCANW. This is the simultanequs
performance of related substitutions, a heuristic which eliminates many previ-
ous instances of inefficiency in favor of very natural steps combining oper-
ations.

Another good example, and a simple one, is reflected in Diagram I, and
happens to represent the first difficulty which arose in this project. Ini-

tially, the program only put instances of definitions on table I as a result

52

of processing the line of status PNT. But, as is shown in Diagram I, when
ADEPT has explored the consequences of all such instances without success, it
now considers all terms in the first hypothesis of the problem and obtains the
appropriate definition instances for them. Such action was not necessary in
the proof that the kernel of a homomorphism is a submonoid, for instance, but
it is required in order to prove that the center of a group is abelian. 1In
this example, line (1) of the proof tree, (ABELIAN C G) is reduced to the
implication which is the indicated instance of the definition of abelian, which
is promptly split, thus obtaining line (3), (EQUAL2 (*PROD Cl C2 G)

(*PROD G2 Cl G)) which becomes the first line of status PNT to be searched

for terms and constants. But no explicit mention of C appears in this line,
and since the proof requires the addition of an instance of the definition of
center to table I, the examination of the terms of the first hypothesis takes
place, and the proof is subsequently completed.

Note that the implementation of this heuristic assumes the use of
non-asterisked terms to some extent. For instance, if (CENTER C G) had not
been included in the hypotheses of the above example, but instead the conclu-
sion had been stated (ABELIAN (*CENTER G) G), the heuristic as programmed
would have failed. To remedy this, and to implement the heuristic in a more
general form which will have the same effect independent of notation, all
asterisked terms of the conclusion should be examined along with the terms of
the first hypothesis.

The difficulties which suggested this heuristic reflect a second need for
augmenting the ''working backward" approach with a certain amount of "working
forward". (The generation of lemmas, of course, is the first and primary
example.) 1In other words, a procedure which only reduces desired conclusions
to established statements is not adequate for handling theorems of group
theory. Some recourse must be made to the derivation of statements from the
hypotheses, axioms, etc. Table II, the proof tree, cannot develop suffi-
ciently without such derivations, which cause expansion of table I. However,

such expansion must be controlled. Lemmas are generated only if they will be

53

of immediate use. In the same spirit, it is important to note that a check of
terms in the hypotheses is not done until the usual procedures prove inade-
quate for a given problem.

The whole question of when to obtain what information from the condition
and definition tables is a problem of information retrieval. In harder theo-
rems requiring a larger base of information, this problem could become quite
critical. Some comments on this, and some alternative methods of placing and
using definition instances on table I, will be given in Chapter VIII.

Another instance of a change which was made in the course of the develop-
ment of ADEPT was also seen in the flow diagrams of SCANW, in particular, in
Diagram IId. This is the heuristic which provides that reductions obtained by
substitutions in an equality on table II are created by substituting only in
the first argument of the equality. In other words, if a line on the proof
tree has the form P = Q, substitutions are made only in P. The rationale
behind this restriction is illustrated by an example. If it is known explic-
=P

itly that P = Pl’ P P P,P = Qn’ ooy Q1 = Q (where none of

2° """ Tl T tn? tn

1

the expressions are identical, and no other equivalences are as yet explicit-
ly "known'"; i.e., on table I), a proof of P = Q with the heuristic under dis-
cussion takes 2n steps. If substitutions are permitted in Q also, and no

other heuristic is introduced to order substitutions, a proof of P = Q might

proceed as follows: P = Q —> Pl =Q—>P, =Q —>

2
Pru 7R\
\

a process which will require on the order of n2 steps.

In return for the potential reduction of the number of steps, or at least
for release from the need to discover more sophisticated heuristics, there
would be, in theory, no cost if all equalities were treated symmetrically.

But such is not the case in ADEPT when use is made of BQUAL. However, even if
all equalities were headed by EQUAL2, there is a price to be paid in practice.

Consider the proof that the map which takes every element of a group G into

‘the identity is a homomorphism. This proof was discussed in the previous

54

chapter as an example of the use of FEQUAL. However, suppose the equality
eﬁptessing the property of being homomorphic is stated using EQUAL2. Then the
heuristic of substituting only in the léft-hand side requires the proof to
proceed: fl(glgz) =g = ge = fl(gl)fl(gz)' But this series of steps, using
only the hypothesis fl(al) = e and the definition of identifx, requires
planning heuristics of a comparatively involved nature. Por instance, to
reduce the line e = fl(gl)fl(gz) to the line ee = fl(gl)fl(gz) requires ex-
pansion of e to ee, which might be accomplished upon analysis of the
right-hand side of the equality. Even more difficult to program would be the
efficient execution of the substitutions needed to establish the final result.
(None of the expansions would normally be allowed, since the hypothesis de-
fining f1 would most naturally be stated using EQUAL, got EQUAL2, as would the
definition of identity.) Admittedly, this problem is primarily an example of
the worth of the use of FEQUAL, but it does show the kind of difficulty which
can arise due to the restriction on substitutions in equalities on the proof
tree.

There is one heuristic which was included in the original program, and
which has been retained because of its success. This particular feature is a
restriction included in ADEPT's matching subroutine, and thus was not encoun-
tered in Chapter III. 1Incidentally, the matching process used is basically
recursive and no attempt has been made to optimize it, yet it suffices quite
well. The restriction concerns the case where a single variable is being
matched against a line or part of a line on the proof tree. In other words,
all occurrences of objects, of the same type as the variable, appearing in
some table II line are desired, In this event, the variable is matched only
with simple variables or constants, not with compound objects. This case is
not to be confused with the matching of variables within a more complex ex-
pression being matched against a line of the proof tree; such variables will
be matched with any object of the appropriate type. Thus, if all reductions
made possible by a table I entry (EQUAL Al (*INVERSE Al G)) are desired from

the line (MEMBER (*PROD A2 A3 G) H), substitutions of 32-1 for a, and 513-1 for

55

-1 .
a, will be made, but the substitution of (aza for a will not be con-

3 3 2%3
sidered. However, the Al in an expression such as (¥PROD Al A2 G) may be
matched with any member object.

This heuristic has the obvious effect of controlling the expansion of a
proof tree in any problem in which it is applicable. In only one theorem pre
sented to ADEPT did it cause any unwanted effects, so it is certainly to be
considered advantageous. (The one difficulty necessitated the explicit defi-
nition of the inverse image of a point, as opposed to the use of the.general
definition of the inverse image of a set in conjunction with the definition
of a unitset or singleton; i.e., a set with one member.)

Perhaps the mos t important and revealing addition to the program is one
which occurred in stages. As alluded to in the previous chapter, the first
implementation of ADEPT had no identities or definitions 'built into" the
program. Thus simplification of a product involving the identity element
could not be accomplished until the term *IDENTITY was encountered and the
corresponding instance of its definition put on table I. Also, certain facts,
such as "fl(e) = e when f1 is a homomorphism'", had to be included with the
hypotheses for some problems, for ADEPT is not able to set up the '"construc-
tions" necessary to prove these facts. Clearly, this forced the program to be
quite inefficient in proving theorems. Such a simple-minded procedure does,
however, emulate the student who is a complete beginner at group theory.

Just as a student must assimilate simple identities involving identities,
inverses, homomorphisms, etc., it does not take long before the problems in
group theory demand facility with these facts if efficient proofs are to be
found. It was clear that ADEPT could not become proficient and handle harder
problems unless these identities could be applied more sensibly. Accordingly
a routine was introduced (into PUTON2, see Diagram 1IV) to check each line being
put on the proof tree to see if certain identities could be applied. As the
number of theorems presented to ADEPT increased, it became clear which iden-
tities should be dealt with in this way, and the routine under discussion

expanded gradually. Besides the advantage of a more natural development of

56

the proof tree, this routine offered an opportunity to make this use of
matching procedures more efficient. This is so because the identities to be
matched are not arbitrary, but fixed, and a special-purpose matching routine
can be easily implemented and used instead of the general matching routine
used by SCANW. In ADEPT's most recent version, matching is greatly speeded
up by a key-word check between the identity and the line of the proof tree.
The current set of identities handled in this way is divided into two
classes, according to the action taken if a match is found. The first set
causes a true simplification; i.e., a new line is created as a reduction of
the old line, and the status of the original line is changed to SIM. This
1

e < a, aja "t ee, a

. -1
set contains the facts ee <« e, ea 121 a

1 1
(al-l)-1 < aj, and e-l < e. There is also a subroutine by which products

<—a1,a <~ e,

1 1

of arbitrary association are checked according to these identities. Thus the

product (a2a3):=13-l will be simplified to a, even though the binary nature of

2

-1
the operation does not allow direct application of the identity a;a; € e,
(This subroutine obviously relies upon the assumption of associativity.)

The second set of identities merely causes new lines to be put on the

proof tree, without declaring the original line unworthy of further consider-

-1 -1
a .

-1
ation. In this set presently are the following facts: (alaz) = 3 1

if £, is homomorphic, fl(e) <« e, fl(al-l) = fl(al)_l, fl(ala2 =
fl(al)fl(ai); if A/B is a factor group, al-lB = (alB)-l, (alaz)B =
(alB)(azB). Application of these identities is expediated by the lists of
factor groups and homomorphic maps created by PUTONL.

It is revealing to note the analogy here between what is essentially a
transition from interpretive to compiled application of these identities with
the corresponding development in the methods used by a student in making such
steps.(lz)

The problem of deciding when a line on the proof tree has been success-
fully processed, even though the theorem may be not yet proved, is a very

difficult one. For a general theorem-prover, this problem is closely related

to the question of deciding which branch of the tree it would be most

57

profitable to investigate first. In ADEPT, the problem is sharpened; from a
given line on the proof tree reductions should be generated until and only
until the one which is "correct" is generated. This is one manifestation of
the goal of having the program appear as though it understands where it is in
the course of a proof. It turns out that there are heuristics which are fair-
ly successful in this regard for a wide range of theorems. Unfortunately,
their effectiveness decreases rapidly when irrelevant hypotheses are intro-
duced. Without any heuristics, even problems with a minimal set of hypotheses
have inefficient proofs, but while the schemes about to be discussed usually
remedy that situation, they are of limited worth with regard to overspecified
problems.

The '"progress' heuristics used by ADEPT are few, and range from trivial
to subtle and controversial. In the first category are rules such as consid-
ering a line on the proof tree of the form P ==> Q processed when an instance
of the antecedent P is put on table I and the corresponding instance of Q
becomes the reduction of the implication. In fact no other processing is
allowed on such a line except for verification if the same line P ==> Q ap-
pears on table I. Similarly, a line headed by EXISTS or FEQUAL is processed
only by the special-purpose subroutines SOLVEX and HOMOMF respectively.

The major difficulty occurs with lines of a general nature, e.g., equal-
ities or lines of the form alc A. If such a line is not verified, it never
can be declared to be sufficiently processed unless some heuristic is employed.
Two have been tried with ADEPT. Both provide for "progress" only after a line
of the proof tree has had a reduction introduced by detachment. But not all
such reductions cause "progress" to be declared. A detailed description of
the heuristics will make this clearer. Suppose that line n of the proof tree
is under current consideration; i.e., of status PNT. Heuristic A provides
that when the scan is called, all entries of table II from line n onward shall
be processed, and as soon as the line of status PNT gives rise to a reduction
by detachment it shall be declared to need no further processing if and only

1f the line of status PNT is the lone reduction of its immediate predecessor

58

R D T e ROt L o Mo i mﬁé_af‘_\vﬁty‘/ﬂ, ,_@vvrgzﬂ;g;ww&zﬁiﬁfﬂa.\L i

(not counting co-conjuncts if the predecessor is a conjunction). If this is
the case, the next table II line of status REL immediately takes on status PNT
and the scan continues. Any line not of status PNT which obtains a reduction
using detachment is not given any special treatment. Heuristic' B provides
that first only line n shall be scanned, and after it is completely processed
by all table I entries, the scan shall stop if line n has given rise to one or
more reductions via detachment. What is more, after an instance of detachment
occurs due to a table I implication, no further table I equalities in the same
logical class as the implication will be used to create substitution instances
of line n. If detachment occurs, once the scan of line n is completed control
will be returned to the main routine, which will move the pointer down; i.e.,
“progress'" will be declared. If no detachment occurs, the scan will continue
through all the rest of table II, and any line of status REL giving rise to a
reduction using detachment will be put in status REL1l, so that it cannot take
on status PNT at any later time. The restriction on creation of reductions by
substitution after instances of detachment also remains in force as the rest
of table II is processed.

‘ Heuristic A is clearly syntactic, being based on the structure of the’
proof tree preceding line n. It proceeds on the assqmption that if the proof
tree has been developing in a straight-line fashion, it is safe to proceed as
though it were inevitable that the proof would continue in this fashion. Con-
versely, if the proof is full of alternative branches, the heuristic says that
caution must be observed. It is clear that irrelevant hypotheses render heu-
ristic A ineffective, for eﬁtra table I entries cause excess branching in the
proof tree, unnecessary though it may be, and thus heuristic A will not cause
“progress" to be declared as often as it should. ‘

Heuristic B is the one currently in use in ADEPT, as was seen in Didgram
II. 1t also gives special consideration to occurrences of detachment, but it
does not refer to the shape of the tree. Unlike heuristic A, it takes notice
of applications of detachment to lines other than the one of status PNT. Since

it prevents some lines from ever taking on status PNT, unnecessary uses of

59

detachment can be harmful. Thus heuristic B is also adversely influenced by
unnecessary hypotheses, but only if they contain implications. This slightly
greater degree of insensitivity is of some advantage, and another factor in
heuristic B's favor is the greater amount of processing allowed on a line of
status PNT, so that it can continue to give rise to reductions even though one
reduction of it has been created using detachment., To allow total processing
to continue would be too inefficient, however, so the restriction involving
logical classes has been introduced. An example will clarify the reasoning
behind heuristic B, and the theorems which will be discussed in the following
chapters will serve to indicate shortcomings of this strategy. In particular,
the third part of the first example of Chapter VI shows the one situation
encountered to date where the logical class restriction fails completely.
Consider the theorem stating that the image I of a group G under a
homomorphism fl,is a subgroup of the range of fl' In the course of proving
this theorem, ADEPT must show closure of the image under composition; in par-
ticular, having fixed bl and b2 as members of I, it must be shown that blb2
is a member of I. The relevant instance of the definition of image is
a, e [<==> (3a2)[a2€ G & fl(aZ) = al], which becomes two implications on

1

table I in the same logical class. One of these causes an occurrence of de-

tachment, reducing blbze I to (3a2)[aze G & fl(az) = blb2]' This happens to
be the "correct'" step, leading to a proof of minimal length, and is but one
instance of advantageous applications of detachment which have led to the
affirmation of a connection between detachment and 'progress', as shown in
the two progress heuristics. Now, the converse implication on table I leads
to a substitution instance of blbze I that could be put on the proof tree,
namely fl(gl)fl(gz) € I, where g1 and g, are members of G which are mapped by
f1 into bl and b2 respectively. This branch would lead to a parallel proof,
doubling ADEPT's efforts, and it is this kind of proliferation which the
logical class restriction was introduced to prevent. Indeed, the vast major-

ity of the time this particular feature of heuristic B achieves exactly the

proper effect. (Note that the success of this procedure depends upon the

60

detachment's being made before the substitutions are determined. This will be
insured if the user puts all definitions which specify sets by their members
in the form ae A <==> Pal, for PUTON] splits a biconditional P <==> Q into
Q ==> P and P ==> Q, in that order.)

One more heuristic remains to be discussed in this chapter. It is a
non-trivial one, though easy to implement, and it is present because of the
nature of many definitions, namely, that they are of the form.ale A <==> Pal,

where Pa. contains an equality of the form a

1 = Q, for some object Q. When an

1
instance of such a definition is on table I, it is observed many times during
a call to SCANW that a substitution of Q (or more precisely, some instance of
€ A were

Q) could be made for some variable or constant, say a if only a

2? 2
established. Consequently a great many subordinate trees are started on table
11, headed by a node of this form. Many of these nodes represent highly un-
likely possibilities, and some are not just impossible to prove, but are
actually incorrect. To remedy this, a lattice or model of the sets involved
can now be built by ADEPT using information stored with the definitions of
various kinds of sets. This lattice is used only to cull out unlikely possi-
bilities about to be put on table II in status ST. It is not used for the
purpose of verifying a line on the proof tree, in order that all proofs may be
developed by the operations on the statements on tables I and II. An example
will show what this heuristic does and does not do. With the definition of a
factor group A = B/C is stored the following information: A, B > C. This
indicates that C is a subset of B, and that B and A have no members in common.

(The definition of a map f A —> B is accompanied by the information A, B.

1
This indicates that there is no reason to assume that the sets A and B are
not disjoint.) Similarly for a sub-factor group D = E/G of a factor group
1/G, the definition is augmented by the information D, I D E =>G. So if the
hypotheses of a problem provide that A = G/H, B = G/K, C = H/K, D = B/C, and
1< G, ADEPT can construct the model D, A, B> C, G 2H DK. This lattice
N

I

will be used in conjunction with other hypotheses about variables and

61

REES Y Dt RTINS D S e bR dar s ARSI S

&

constants. PFor instance, suppose a, is known to be in H. Then the state-

ment a,¢ B will be ruled out by a s:lmp‘le reference to the lattice. "1‘ K will
be discarded as unlikely, for a general member of H ¢an seldom be shown to be

& member of a particular subset of H. ae G will be allowed, but not autogat-

ically verified. a.,¢ I will be allowed, since it is quite possible, and such

1
a s‘tatement is often provable in group-theoretic problems (as opposed to
‘1‘ K).

This heuristic only examines lines of the form a¢ A vhere L3 is a simple
variable or constant, as opposed to a compound object such as a product. This
is so wmainly because of the difficulty of formulating and applying rules for
accepting or rejecting the more complex statements . For instance, suppose
that 3 and a, are both members of G and H is & subset of G. Even though it
is reasonable to exclude statements such ‘u ae H with almost any specification
of H, as long as it is a proper subgroup of G, it is not always wise to exclude
the statement ‘1‘2' H. To be sure, often this is also a8 fruitless head for a

subordinate tree, but H might be a set such as the coset a.J, where J is some

1
other subset of G. Another restriction on the heuristic's applicability is
that 1t is not used to examine proposed lines for the main proof tree. If- it
were, it would be impossible to use ADEPT to prove such facts as "the center C
of an abelian giwp G is the whole group." 1In this problem, it is known from
the definition of center that C is a subset of G, and it must be shown that
any member a of G is a member of C. Clearly the heuristic must not be allowed
to prevent the necessary conclusion from being p}lced on the proof tree! For-
tunately, the heuristic serves its purpose quite adequately, though it is re-
stricted to apply only to lines of the form ae A about to be put on subordi-

nate trees, where a, is a simple variable or constant.

1
This feature, known as the MODEL heuristic, was implemented so that it

can be used or not as desired. Tests with isomorphism problems have shown a

steady decrease of sbout 1/3 in the length of a proof, with all lines discarded

being indeed irrelevant. The decrease in processing time was nearly the same, ~

being only slightly less, due to the nature of the information to be handled

in the lattice, which allows very fast processing of this heuristic. Clearly
because of the nature of many definitions in group theory and modern algebra
in general, this is an important special-purpose feature.

Though the MODEL heuristic is an important addition to ADEPT because the
single operation it performs is so often desirable, it is not a profound exam-
ple of the use of a semantic model. Such models are not uncommon in
theorem-proving. A simple example would be the augmentation of a proposition-
al calculus theorem-prover with a subroutine which tested a proposed line by
evaluating it using one of the possible assigmments of truth-values to its
variables. The best-known example of the use of a semantic model is the
"diagram" in Gelernter's geometry-theorem proving machine.(5’6) This program
and its use of a model is discussed in Appendix I. In general, heuristic pro-
grams for proving theorems often can be improved by inclusion of some model
of the intended interpretation of its domain, to act as a filter or guide for
using the more syntactic procedures in the algorithm.

Other insights have been gained during the course of this project. Be-
cause they did not lead to the addition of important heuristics, and because
they are best discussed in the light of particular examples, they are not
considered here, but postponed until the next chapter, which discusses select-

ed theorems successfully proved by ADEPT.

63

CHAPTER V

DISCUSSION OF SELECTED PROBLEMS

ADEPT has been used successfully to prove nearly 100 theorems. To be
sure, some of these have been very simple problems, but many have been of a
relatively involved nature. 17 have been proofs of isomorphisms by ISOLVE,
each of which involves at least 3 if not 4 separate sub-theorems (depending on
whether or not the relation requires explicit proof that it is well-defined).
The greatest number of nodes in a proof tree was 73 (see the third problem dis-
cussed in this chapter), and no single proof by ADEPT took more than 63 minutes
of computer time, though the composite isomorphism theorems took up to 9 min-
utes. Among the more complicated theorems not described in this chapter were
proofs that (alA)-1 is the same set as Aa _l, and that for a homomorphism fl’

1

K, where K is the kernel of fl' Other lengthy

-1 .
{fl (al)} is the same set as a;

proofs completed by ADEPT are parts of theorems which cannot be done in en-
tirety by the present program, and will be discussed when inadequacies of
ADEPT are considered in a later chapter. Not counting the isomorphism theo-
rems, only 4 proofs took over 2 minutes of computer time; 4 contained 30 or
more nodes in the proof tree. (In the intersection of these two classes of
difficult theorems were 3 problems.)

The particular problems discussed in this chapter are presented either
because they serve as excellent illustrations of various features of ADEPT, or
because the problems themselves are of interest, particularly those into which

a special insight has been obtained through their use as examples for ADEPT.

64

Problem V-A

One group of problems presented to ADEPT is concerned with intersections
of subgroups:

1) The intersection of two subgroups of a group is itself

a subgroup.

2) The intersection of two normal subgroups is itself normal.

3) The intersection of a normal subgroup and an arbitrary

subgroup is normal in the arbitrary subgroup.

Consider the last of these from the point of view of stating it formally.
There are many possibilities. One is to say in effect — '"let I be the inter-
section of H and J, where H is normal in G and J is a subgroup of G; prove
that I is normal in J." This statement may appear to omit some of the con-
tent of 3) above (e.g., G is not stated to be a group, and H is not stated to
be a subgroup), and indeed it does if one must state explicitly all supporting
assumptions. But the facts that H is a subgroup of G and that G is a group
are not used explicitly in the proof of this theorem. However, the definition
of normality implicitly assumes that the set in question is a subset of a
group, because it only makes sense if inverses are defined. (A normal set
itself may not necessarily be a subgroup, according to this interpretation.)

These remarks about assumptions have been made just because the proof of
3) can be carried out using the above statement provided that it is assumed
that all definitions make sense. This is the way ADEPT has proved this theo-
rem. The proof is now exhibited, following which a discussion of the conse-
quences of explicitly stating the additional justifying hypotheses is pre-
sented.

The hypotheses are put on table I: 1) I is the intersection of H and J,
ii) H is normal in G, and iii) J is a subgroup of G. The first line of table

II, the proof tree, is (1) I is normal in J. From the definition of normality

65

(Circled line numbers indicate references to previously existing lines.)

Figure 3

Proof tree for Problem V-A

66

€ 1 =w> (alaz)al-le I. Assuming an instance of the

is obtained (2) ae J & az
antecedent results in the addition of iv) jlc J and v) jze I to table I and of
3) (jljz)jl-lc I to the proof tree, where j1 and j2 are constants. Status PNT
is given to this line. No steps are possible from the hypotheses on table I as
it stands. The set constant I ié identified by 1) and the appropriate instance
of the definition of intersection is added to table I: wvi) ae H & ae J =>
aje Tand vii) a6 I ==>a ¢ H& ajed. Thus (4) (3,3,)3," ¢ H & (3,3,)3, e J
goes on table II, and it is split into (5) (jljz)jl-le H and (6) (jljz)jl-le J.
This application of detachment to (3) causes status PNT to be given to the next
line on the proof tree of status REL as soon as all other reductions that can
be made from (3) are completed. Since no further steps are possible, the proof
continues by examining (5) (since (4) has been disposed of by splitting).

Again no progress is possible from table I as it stands. The constant H in (5)

causes viii) alc G &a,86 H ==> (alaz)al-le H, an instance of the definition of

2
normality, to be put on table I because of ii). Them the proof tree is aug-
mented by (7) jle G &jze H, which yields (8) jl‘ G and (9) jzc H. Work is
now completed on line (5), and line (6) is placed in status PNT. Table I as
it stands can cause further progress on table II (all lines from (6) to the
end will be considered by SCANW), namely from line (9) is created (10) jze I,
which is verified (line v) on table 1) and therefore line (9) is also verified.
Line (6) must now be examined in detail, and the definition of J is added to
table I: ix) ale J D> alc G, x) a e J & azc J =mad> a,a¢ J, xi) eGe J, and
xii) ae J ==> a 'lc J. This leads to the following reduction of (6): (11)

1
13838 jl'le J, which become (12) j;3,¢ J and (13) jl-lc J. This completes
consideration of line (6). The next line of status REL is line (8), and it
takes on status PNT. Table I as it is yields (14) jlc J as a reduction of (8).
Line iv) of table I is verification of this, which results in verification of
(7), since the other conjunct of (7) is the already verified line (9). Thus
line (5) is verified. Line (12) is the next line to take on status PNT. From

vii) on table I is obtained (15) j € I, and then from x), (16) jle J & j2¢ J.

132
As (16) is split, it is seen that jls J is line (14), already verified, and the

67

lone reduction of (16) becomes (17) jle J. Next line (13) is scanned, yield-
ing (18) jl-le I and a reference to line (14), and thus line (13) is verified.
Attention moves to line (15), which suggests (19) jljze H & jljze J. This
fruitless move is not avoided by ADEPT, and it yields (20) jljzc H and a cir-
cular reference to (12). Line (17) is now considered, and vii) on table I
gives a reference to line (10), which is verified, thus causing a chain of
verification leading through (17), (16), (12), (1), (6), &), 3), 2), (1),
and the proof is complete. The final proof tree is shown in Figure 3. Lines
(15), (18), (19), and (20) were unnecessary.

Now suppose that the hypothesis that H is a subgroup of G had been stated
explicitly. Line (5) would then have two reductions — the one due to the
normality of H (line (7) above, which is split into (8) and (9)), and another
due to the hypothesis that H is a subgroup — namely (10') jljzc H & jl-le H,
which is a useless step. (10') immediately is split into (11') and (12'). 1In
fact, not only is extra work generated, but ADEPT, with its one-pass organiza-
tion, is unable to prove the theorem at all. The extra hypothesis confounds
the algorithm as follows:

After line (5) is processed, line (6) is put into status PNT due to the
two applications of detachment to (5). Before the terms and constants of (6)
are examined, a scan is done, and line (8) is seen to generate the reduction
(13" jle H by application of detachment using the conjunct of the definition
of H as a subgroup which states that H is a subset of G. Line (8) is therefore
marked unworthy of further processing by putting it in status RELl. After
further lines are generated by the scan, the constants of line (6) are finally
examined, and the instance of the definition of subgroup due to the fact that
J is a subgroup is put on table I. This suffices to process line (6), as in
the proof just presented. But the next line of status REL is no longer line
(8), and the assignment of status PNT is made to a later line on the proof
tree, thus providing that line (8) never can be scanned by the axioms saying
"J is a subgroup'. The proof above shows that verification of line (8) is a

necessary part of the proof, and that it is verified because J is a subgroup

68

of G. ADEPT has passed over this crucial line, and therefore can not produce
a proof of this version of the theorem.

For the problem of proving that the intersection of two normal subgroups
is normal, the introduction of explicit but unnecessary hypotheses (namely that
the two normal sets are in fact subgroups) causes ADEPT to do extra work but
does not cause the program to be unable to supply a proof. The ADEPT algorithm
is unaffected by the manner of statement of the problem that the intersection
of two normal subgroups of a group is again a subgroup of that group. As a
matter of fact, this proof is done without a single unnecessary line; i.e., all

lines on the proof tree contribute to the verification of the head of the tree.

69

Problem V-B

The second problem to be examined in detail is a rather simple one,
though, like the previous example, it cannot be proved by ADEPT if given an
unnecessary hypothesis. The proof will be discussed, and a reproduction of
the actual output from ADEPT is provided. (Note that table I is not printed
out in serial order, and that the symbols VERA2 and A2 are used for the sta-
tuses VERST and ST.) Also to be noted in this example is a detail involving
the implementation of the simultaneous performance of related substitutiomns.

Theorem: A subset H of an abelian group G is normal.

1

Proof: It suffices to show that if ac G and a,€¢ H, then (alaz)al_ ¢ H.

2
Assuming an instance of the antecedent, it remains to prove the corresponding
instance of the consequent. In dealing with a particular instance, ADEPT has
to generate new symbols internally, which are specified to be constants. The
symbols G04088 and GO4089 seen in the output are the symbols created by ADEPT
for this purpose. For the following discussion, A3 and A4 will be used in-
stead. Thus line (3) would appear as (MEMBER (*PROD (*PROD A3 A4 G)
(*INVERSE A3 G) G) H), or in mathematical notation, (a3.4)33-1e H. A check of
the terms of this line causes no action, since MEMBER has a null sufficient
condition and definition, *PROD has a null définition, and there is no defini-
tion of *INVERSE in ADEPT's table. (The latter is effectively compiled into
PUTON2 by means of "built-in'" axioms, as described in Chapter IV.) Examination
of the constants of (3) yields two set constants G and H which are defined by

three statements on table I. Therefore instances of the corresponding defini-

tions appear on table I, as indicated below (using mathematical notation):

vi) ae G & a,¢ G ==> a,a, =a,a, (from ii), (ABELIAN G G))
vii) ae G & ae G ==> alaze G
viii) G is associative (from iii), (GROUP G))
ix) ch G

70

(?r'\d (subset h g) (and (abellan g g) (group g)))
n
(normal h g g)

(((1 ., 1) SURSET H 6) ((2 . 2) ABELIAN 6 G) ((3 . 3) GROUP

G) ((& , &) MEMBER GOLOB8 G) ((S . &) MEMBER GO4089 H) ((9 .
10) MEMBER (+IDENTITY 6) 6) ((12 . 9) MEMBER (+#PROD GOkOSS
GO40R9 G) G) ((13 ., 9) MEMBER (eINVERSE 604088 G) 6) ((15 .

9) MFMRER G0OA089 G))

(C(6 . 9) IMPLIFS (AND (MEMBER Al G) (MFMRFR A2 G)) (FQUAL
(*PROD A1 A2 G) (*PROD A2 Al 6))) ((7 ., 10) IMPLIFS (AND (MFMRFR
Al R) (MEMBER A2 G)) (MEMBFR (=PROD Al A2 6) 6)) ((8 ., 10)
ASSOC G) ((10., 10) IMPLIFS (MFMRFR Al R) (MEMBFR (*|NVFRSF

Al 6) 6)) ((11 , 11) IMPLIES (MEMRER Al H) (MFMRFR Al G)) (
(16 . 9) FQUAL («PROD (*PRODN GOKOS8 GOLNAY G) («INVERSF R0kNSS
G) G) («PROD (»INVERSFE GO4088 G) («PROD GOADES GOA089 B) R))
g;%? « 9) EQUAL (+«PROD GOLO08S GOLOBY G) (+PROD ROLOS9 GOKOSS

2

(C(VER (HFAD) (2 NONE) 1 &) NORMAL H 6 G) ((VER (1) (3 NONE)

2 NILL) IMPLIES (AND (MEMBER Al G) (MEMBER A2 H)) (MEMBER (

*PROD («PROD A1 A2 G) (#INVERSE Al G) G) H)))

(C(VER (2) (16 10 NONE) 3 12) MEMBER (+PROD («PROD G0k088 (04089
R) (*INVERSE G0OM08S G) G) H) ((VERA2 (HEAD) (5 NONE) & 12 6)

AND (MEMBER (+PROD G04088 GO4089 G) G) (MEMBER («INVERSE GO4OSS
6G) 6)) ((VERA2 (&) (11 7 NONE) ‘5 12) MEMBER (+PROD G04088 G04089
G) 6) ((VERA2 (k&) (NONE) 6 12) MEMBER («INVERSE G0&088 G) G)
((VERA2 (5 HEAD) (9 NONE) 7 12 6) AND (MEMBER GO4088 G) (MEMBER
GOL0BY G)) ((VERA2 (7) (NONE) 8 NILL) MEMBER 604088 G) ((VERA2
(7) (12 NONF) 9 12) MEMBRER G04089 G) ((IRR (3) (NONE) 10 12)
NTLL MEMRER (+PROD GN&08S («PROD GONO89 («INVERSE GO4083 G)

G) 6) H) (CIRR (5) (NONE) 11 NILL) NILL MEMBER (+PROD GOL088
GOLNBRA G) H) ((VERA2 (9) (NONE) 12 NILL) MEMBER GO0&089 H) (

(A2 (HEAD) (1k NONE) 13 NILL 6) AND (MEMBER GOM088 G) (MEMBER
(+PROD 604089 (+INVERSE GO&088 G) G) G)) ((A2 (13) (NONE) 14
NILL) MEMRER (+PROD 604089 (+INVERSE G04088 @) G) G) ((VERA2 -
GOAORR €3 K1) (CVER. 33 (ONED 16 NILL) MEMNER (~PROD (PRODT "
3 1) G : MEMBER («PROD (+PRQD
33?289 GOLNBA G) (~INVERSE 0088 G) G) H)) ‘ PRO

4

R 28,1A6+1,783

?13ure«h

Actual output from ADEPT

71

€ G (from iii), (GROUP G))

1€ H == aje G (from i), (SUBSET H G))

€ G and line v) is a,e H). Associativity is expressed by the

xi) a
(Line iv) is a,

statement (ASSOC G), allowing the use of a special matching subroutine, as
opposed to an explicit line
PRI | == =
viii') a;e€ G & (a2€ G & aze G) ==> (alaz)a3 al(a2a3).
SCANW now causes the following lines to be put on the proof tree as two
subordinate trees:

4) a,a,e G &a -le G

374 3
(5) aza,e G
(6) a3'1e G
) a3e G & a,e G
(8) aje G (immediately verified)
9) a,e G

Verification of (7) or (4) would allow the consequent of vi), the abelian
axiom, to cause a substitution in line (3).

From line viii), (10) a3(a433_1) € H is obtained as a reduction of (3).
Line (3) has not been involved in a use of detachment, and no verification of
it has occurred, so the scan proceeds to the rest of the proof tree (through
line (10)). This causes: from (5) because of vii), a reference to (7); from

(5) because of xi), (l1) a € H; from (6) because of x), verification due to

3%
line (8); from (9) due to xi), (12) a,e H. Since line (12) is line v) of table
I, it is immediately verified, thus completing verification of lines (4)
through (9), and rendering line (11) irrelevant.

The scan continues, yielding two new subtrees because of vi) and (10):

-1
(13) a,€ G & aa; ‘e G

-1 , .
aa, ‘e G (a3e G being line (8))
(15) ahe G & a3-le G, which is immediately verified since both its

conjuncts have been verified.

(14)

This completes the scan of the proof tree through line (10) as was indi-

cated, and since new lines have been added to the proof tree, the scan of the

72

whole tree (lines (3) - (15)) is redone. As shown in Diagram II, no line on
table I is used to scan any lines on table II that it already has scanned
unless the line is an implication which is now augmented by a verified head of
a subordinate tree it suggested. This is the case with line vi), and since
line (4) is verified, table I is augmented by xii) a -16 G, and

3846 G, xiii) a

. -1~ -1
xiv) (a3a4)a3 = a, (a334). Then, analogously, xv) a

3

46 G and xvi) a3a4 =

3483 are obtained from line (7).

Scanning line (3) with these new lines, two substitutions are found, and
since lines xiv) and xvi) have arisen due to the same table I entry (line vi))
and thus are in the same logical class, these substitutions are considered to
be related. However, they conflict, and cannot be performed together, so they
are done one at a time. As it happens, the substitution suggested by xvi) is
performed first, yielding (16) (8483)33-16 H. As described in the last chap-

ter, this is immediately collapsed into a,€ H, which is already verified as

4
line (12). This suffices to complete the proof.

If line i) of table I had been (SUBGROUP H G), ADEPT would have gone off
on a dead end, thinking line (3) to be processed after generation by detacﬁment
of the reduction a3a4e H & a3~le H. Efficient means of avoiding such difficul-
ties (i.e., without backtracking) are clearly of great interest, and this sub-

ject will be approached in a later chapter.

73

Problem V-C

Sometimes ADEPT produces a very inefficient proof even when no unnecessary
hypotheses have been explicitly stated. This is the case for the following
theorem: A conjugate D of a subgroup H of a group G is itself a subgroup of G.
(A conjugate of a subgroup H is specified by a member a, of G, and is the set
such that a,e D <==> (333)[a3¢ H & a, = (3133)51-1]; i.e., D = alﬂal—l.) The
proof given by ADEPT for this theorem is 73 lines long, of which 49 are due to
"false leads." It is easy to see how this happens by observing the development
of only a small section of the proof.

To prove D a subgroup, it is necessary to show closure under composition,

so assuming d,e¢ D and d.e D, d

2 3 293 293
(alaS)al'I] is to be proved. SOLVEX quickly reduces the problem to showing

¢ D must be shown; 1i.e., (3a3)[33¢ H&d =
-1 -1,-1
a, ((d2d3)(a1) ') ¢ H, which is immediately changed to
-1
*
a, 7 (@8)a)) e B (%),
The desired continuation is to observe that the membership of d, and d, in

2 3

D allows substitution of (a]_hl)al-1 and (alhz)al-1 for d, and d, respectively

3
in (¥), where h1 and h2 are then known to be in H. The two substitutions are
related, and will be performed simultaneously, yielding the following reduction
of (*): al-l((((alhl)al-l)((alhz)al-l))al) ¢ H, which immediately will be
collapsed into hlhze H. This soon will be verified inasmuch as H is a sub-
group. But, from (*) are derived 3 other reductions, each of which leads to
much extra work. Two of these arise because of associativity, and the third

is a direct application of the closure-under-products conjunct of the defini-
tion of the subgroup H to line (*). All of these entries are on table I by
this time, and so there is no selectivity involved. A similar situation

arises when proving the closure of D under inverses. Perhaps the greatest

difficulty in theorem-proving is "knowing'" when a proof is on the right track.

Once again, the reader is referred to the later chapters.

74

Problem V-D

A lesson in the use of ADEPT may be learned from the following example.

The commutator of two members a and a, of a group G, denoted in mathe-
matical notation by [al,azl, is defined by [al,az] = ((al-laz-l)al)az. This
concept can, of course, be defined for ADEPT, and identities concerning com-
mutators can be proved. ADEPT is not primarily designed for manipulation of
identities, and all but the simplest of these requires a large amount of com-
puter time, though there are some fairly obvious heuristics which could be
applied to this very special problém area to remedy this. Such digressions
are not relevant to the ADEPT project, but insights from one particular simple
identity problem happen to be valuable in general. The problem is:
[al,azl-1 = [az,all.

Although either the notation (COMMUTATOR A3 Al A2 G) or
(*COMMUTATOR Al A2 G) may be employed, assume the latter is used. The prob-
lem then may be stated in ﬁ;ny ways. One is to give ADEPT the conclusion
(EQUAL (*INVERSE (*COMMUTATOR Al A2 G) G) (*COMMUTATOR A2 Al G)). Remembering
that no substitutions are made in the second argument of an equality on the
proof tree, it is seen that this will produce a fairly lengthy chain of sub-
stitutions, resulting in a correct proof, but a proof made quite long due to
the application of the associativity axiom. No improvement is obtained using
FEQUAL. For this problem there is a way out, however. A sufficient condition,
known to ADEPT, for INVERSE, is given by "az is the inverse of a; if aya, = e".
This can be used if the usual asterisked notation for inverse is not employed;
i.e., if the conclusion of the problem is put in the form: (INVERSE

(*COMMUTATOR A2 Al G) (*COMMUTATOR Al A2 G) G). Doing this works very well,

simply because related substitutions are made simultaneously, so that the

1

reduction of the application of the sufficient condition is (((az— al-l)az)al)

(((al-laz-l)al)az) = e, which is immediately collapsed into e = e, a line

75

which is verified as it is put on the proof tree. This is a very striking
example of the value of doing related substitutions simultaneously and per-
forming certain operations on a line, such as this "collapsing", at the time
of its placement on the proof tree.

The point of all this is that different ways of &oing problems are often
not too similar in their demands upon the resources of computer time and mem-
ory. Even if ADEPT were much more highly developed than it is at present,
including possession of the ability to choose the '"correct" path of the proof
tree more often, it well may not be able to take the statement of a problem
and transform it into the most advantageous form. ADEPT should be able to
solve the problem in any form, sooner or later, but the user can be asked to
utilize some ingenuity in setting up the form of the hypotheses, conclusions,
and definitions. ADEPT is flexible enough to allow significant experimentation
along these lines, perhaps to the end that future programs will be able to

take this burden from the user,

76

Problem V-E

The following is a problem that has been considered by other theorem-prov-
ing programs: a group, every element of which is of order 2, is abelian.

ADEPT has no provision for numbers, but for an element a; to be of order 2

simply means that it must satisfy the equation a = e. One would like to

121
give this problem to ADEPT and have it come up with a proof. But, faced with
proving 818, = 8,8, the program has no idea how to proceed. None of the
axioms can be applied to the statement glg2 = gzgl. Now it turns out that a
simple proof of this theorem, requiring no "construction,'" follows from the
-1 -1

-1
13, = ¢ that a, =a; . The proof proceeds: 818, =8 & =
-1

1

consequence of a

(gzgl)_1 = 8,8 ADEPT proves this theorem given the hypothesis a a

172
It does so with very little wasted effort, due to the restriction on matching
simple variables and the immediate simplification of expression such as
(gl'l)-l-

Of course, this is hardly fair, for in order to have ADEPT prove this
theorem, the user must know how the proof proceeds! Clearly ADEPT has to be
more clever, though a user who was very familiar with the program might real-
ize which of the two ways of stating the "order 2" hypothesis was preferable
(that is, if he were aware of both alternatives). One way to approach this
difficulty would be to program into ADEPT a feature whereby insertion of the

fact a,a, = e on table I causes the consequence a 1 to appear. This

1'1

would have to be programmed carefully, so that very little time would be spent

1- %

checking all lines being put on table I to see if they are of this form. Such

a feature would properly be called a heuristic.

= g ==

Another approach would be to make explicit use of a lemma, a;a,

a; = al-l. Under which conditions this lemma would be put on table I is a
difficult problem. 1In addition, even if this lemma were not brought onto

table I to "confuse" proofs of other problems, its use in this problem causes

77

a proof of twice the length, requiring four times the time of the original
proof with the simple hypothesis a = al-l.

The empirical approach to theorem-proving demands the incorporation of
such lemmas or heuristics as the one described above. There are certainly
direct analogues to the inclusion of such facts in ADEPT in the learning pro-
cess of a student of group theory. This is in contrast to specification of a
"complete" proof procedure (e.g., Herbrand's), which has a different orienta-
tion than that of a student. It is known that complete procedures are very

prone to fatal combinatorial explosion. The question is: Can an empirical

approach handle enough special cases efficiently to surpass the other approach?

78

Problem V-F

One of the first problems considered in conjunction with ADEPT was one of
the most troublesome: The kernel of a homomorphism f1 reduces to the identity
if and only if f1 is one-to-one. This theorem can be divided into two parts,
and, defining a unitset to be a set with a single element, details of this
problem will now be considered.

Let £, be a homomorphism from G to H, K its kernel, E the unitset con-

1
taining the identity bf G, and first assume that K is a subset of E; i.e., K
reduces to the identity. To be shown is that f1 is one-to-one. A sufficient
condition for f1 to be one-to-one is that if fl(al) = fl(az), then a =a,.
The usual proof proceeds by contradiction; if fl(aS) = fl(a4) does not imply
a, =a, for some ag and a,, then fl(a3a4-1) - f1(33)f1(a4)-1 (since f1 is
homomorphic) = eys 890 5334'1¢ K. However, 33‘4-1 # e since ay * a,, contra-
dicting the assumption that K reduces to e

ADEPT has no provision for proofs by contradiction, but a reformulation
of the sufficient condition is all that is needed to allow ADEPT to solve this
| problem: f, is one-to-one if fl(al)fl(aZ)-l = e, implies alaz'l =e,. This
is clearly equivalent, and the proof proceeds straightforwardly: aa, =eq
if aaaa-lc E, if 33a4-1c K, if f1(8386-1) = e, but fl(a3a4-1) -
f1(83)f1(84-1) = fl(.=.n3)f1(34)-1 e Thus the formulation of the sufficient
condition is important, and it is reasonable to expect a user of ADEPT to
supply appropriate entries to its tables, just as in ProblemV-D it was argued
that the user should be expected to employ ingenuity in choosing the form of
statement of a theorem.

For the converse, it is the definition of one-to-one that is important,
and indeed this half of the theorem is more treacherous. Here, assuming f1 is

one-to-one, it is desired to show that K is contained in E. So assume kle K

and attempt to prove kle E; i.e., kl =g If the definition of one-to-ome

79

used is that if fl(al) = fl(az), then a; =a,, an infinite loop is generated:

kl = e, if fl(kl) = fl(eG) if fl(fl(kl)) = fl(fl(eG)), etc. This loop could

be stopped artificially, but that seems to be an unnecessary extra check to
add to the program. Alternatively, an effort could be made to make sure that

the argument of a function was in its domain, but this would not help in the

case G = H. If the definition of one-to-one is: fl(al)fl(az)-1 = ey, ==
a,"l =
8%

nective FEQUAL is available, and the definition of one-to-one can very natural-

s ADEPT will have no "ideas'" as to how to proceed. But, the con-

ly be phrased fl(al> = fl(aZ) ==>a, =a,, and the proof proceeds: kl = e,

if fl(kl) = fl(eG)' Evaluating the left-hand side: fl(kl) = ey since kle K.

Evaluating the right-hand side: fl(eG) = ey since f1 is homomorphic. That
comp letes the proof of this theorem, which is another example where the forms

of definitions, etc. are critical.

80

Problem V-G

Among the proofs of isomorphisms produced by ISOLVE (see Chapter III),
none contain any surprises. The proofs have been of isomorphisms of a trivial
to a relatively complex nature. The simplest required ISOLVE to go through
the motions of proving a group G isomorphic to itself. As a related problem,
GENFCN may be overridden, and the relation fl(al) = (glal)gl-1 for some 8¢ G
inserted, and this will be shown to be an isomorphism. Similarly, for G
abelian, fl(al) = al-1 can be shown to be isomorphic by ISOLVE.

The most complicated isomorphism that has been done by ISOLVE is to prove
that G/H is isomorphic to (G/K)/(H/K). This statement only makes sense for the
case that K and H are normal subgroups of G, and AﬁéPT is able to prove the
justifying fact that, under these hypotheses, H/K is a normal subgroup of G/K.
To prove the isomorphism, the assumptions of the normality of K and H need not
be stated explicitly, as they play no further role in the proof. The entire
proof of isomorphism, including the generation of a map from G/H to (G/K)/ (H/K)
by GENFCN, took 7% minutes of computer time and 40 entries on the proof tree.
Of these, 7 were used in the proof that the relation is well-defined, 18 in the
proof that it is homomorphic, 12 in the proof that it is onto, and 3 to prove
that it is one-to-one. 2 lines of the proof that it is well-defined and 6
lines of the proof that it is homomorphic were irrelevant; i.e., useless
branches. (Incidentally, if GENFCN is asked to provide a relation from
(G/K)/ (H/K) to G/H, the corresponding proof of isomorphism takes 9 minutes
of computer time and 44 lines.) Without the use of the MODEL heuristic, the
same proof would have been generated, but with an additional 30 to 40 irrele-
vant lines at a cost of 3 to 4 extra minutes of computer time.

Other isomorphisms established by ISOLVE include that of G and K when f1
is an isomorphism from G to H and f2 is an isomorphism from H to K; that of G

with G/{eG};‘that of G/ (Ker fl) with fl(G) for a homomorphism fl; and that of

81

G/fl-l(K) with H/K for an epimorphism f1 from G to H (where K is a normal
subgroup of H). ADEPT is able to prove all justifying theorems to show that
these problems make sense — for instance, in the last example, that fl-l(l()
is indeed a normal subgroup of G. ISOLVE does not automatically go through
these justifying theorems; it assumes the problem to be well-defined. But
ADEPT has been given the associated theorems which establish this, and it has
proved them.

ISOLVE may also be used to establish theorems about other relations. For
instance, rather than give ADEPT separate theorems, ISOLVE may be run in an
attempt to "prove" that the relation (generated by GENFCN) fl(al) = aH from
G to G/H is an "isomorphism"; ISOLVE will produce proofs that the relation is
homomorphic and onto, and will, of course, fail to show it to be one-to-one.
Another such example is the canonical relation between G/K and fl(G)/fl(K)
which also is an epimorphism but not an isomorphism, for a general epimorphism
fl' This relation must also be proved to be well-defined, as opposed to the
map from G to G/H which is trivially well-defined by its defining equation.

It is interesting to observe that though the term *LCOSET (which stands
for "left coset") appears often in the statement on the proof trees of the
isomorphisms involving factor groups, its definition, which is not negded in
order to establish the isomorphisms, is never put on table I by ADEPT, thus
saving a great deal of effort. This is a good illustration of why it is not
desirable to go to the tables for instances of definitions of all terms that
appear in the course of a proof regardless of whether or not they appear in
lines of status PNT.

To conclude this chapter, an insight gained from ISOLVE should be men-
tioned. The selective introduction of instances of definitions; i.e., the
controlled growth of table I at the start of a problem, mentioned in Chapter
III, could, of course, be used by ADEPT in each of the 4 sub-theorems handed
to it by ISOLVE. This involves, in general, obtaining the definition of each
term in the hypotheses of an isomorphism theoiem 4 times. It has been found

that the class of proofs involved in establishing isomorphisms is not sensitive

82

to selective growth of table I, and consequently it is more profitable to

have ISOLVE call ADEPT with the instances of definitions of all terms in the
hypotheses already on table I. Thus ISOLVE can consult the table of defini-
tions once for all 4 sub-theorems. The determination of the relative merits
of such trade-offs is one of the types of insights into proving theorems about

groups by computer which can easily be obtained by experimentation with ADEPT.

83

CHAPTER VI

LIMITATIONS OF THE PRESENT PROGRAM

The previous chapter, in addition to illustrating proofs produced by
ADEPT, has also served as an introduction into the limitations of the present
program. The remainder of this report will be devoted almost entirely to dis-
cussions of various types of theorems with which ADEPT cannot cope. These
types fall into different classifications. For instance, there are those
which ADEPT cannot do simply because it is not broad enough. Such theorems
include facts involving the introduction of numbers, say as orders of finite
groups. Another such group is theorems requiring statements using double
existential quantifiers, which cannot be handled by SOLVEX at present. These
theorems are not significantly harder in any sense of the word; they simply
require additional subroutines for ADEPT.

Another class of theorems might be called the overspecified class. Such
a grouping has no mathematical basis in group theory, but it is a label to be
applied to those theorems with extra hypotheses with which ADEPT performs so
erratically, as seen in the last chapter. As theorems become more complex,
even those with minimal sets of hypotheses will cause similar difficulties for
ADEPT. A decision must be made whether or not this can be overcome by heu;is-
tics, or whether a completely different approach to theorem-proving will
ultimately have to be adopted.

There are also theorems which require new and different methods of proof.
In contrast to those which require introduction of additional types of con-
cepts, these theorems are often significantly more difficult. Mechanization
of proof by contradiction, use of constructions in proofs, etc., all must be

considered. Finally, it is important to ask if the reasoning used in advanced

84

theorems of group theory is fundamentally different from that used in ele~-
mentary theorems? 1Is it the case that it is not a matter of extending ADEPT
to be much, much more sophisticated, but rather a matter of implementing an
entirely different form of human thought process, though perhaps in conjunction
with a more sophisticated ADEPT? The logician is tempted to rely upon the
theoretical fact that all theorems of mathematics follow or issue from the
basic axioms of the system; the pure mathematician has reservations for he
knows that intuition and other rather illogical procedures play a large part
in his advanced work. The choice of methods with which to prove an advanced
theorem is an excellent example of a step which cannot be done by simple pro-
cessing of hypotheses, conclusion, and relevant definitions.

All these considerations must be taken into account when discussing the
future of theorem-proving by computer, and when discussing the level to which
a program like ADEPT for proving one class of theorems should be perfected.

The class of theorems for which ADEPT is best suited should be clear.
ADEPT produces proofs which follow directly from given axioms, lemmas, and
definitions. To some extent this can be augmented, perhaps by such methods
as proof by contradiction. But clearly the approach used in ADEPT is
ill-suited to many methods of proof, such as construction of counter-examples,
a procedure certainly in the repertoire of any good group theorist.

Before continuing this discussion, it will be profitable to consider
specific problems of two kinds. The first kind includes problems that ADEPT
either can "almost" prove, or that are closely related in content to problems
that ADEPT has proved. The second type is a group of problems of a different
nature, involving new concepts and methods, which have been considered in

detail with proof by ADEPT in mind.

85

Problem VI-A

It would certainly appear that ADEPT should be able to prove that the

center of a group is a normal subgroup. However, it cannot, and the reasons

why are instructive.
Proving that the center is closed under products is done easily, by a
version of the following argument: Let C be the center of a group G, and let

€ and <, be members of C. To show clczc C requires proving that (clcz)g1 =

gl(clcz) for g€ G. But (clcz)g1 = cl(czgl) = cl(glcz), since c, ¢ C, and
cl(glcz) = (clgl)c2 = (glcl)CZ = gl(clcz), since ¢ C. There is inefficiency

in ADEPT's actual proof, to be sure, but it proceeds straightforwardly.

The next step is to prove closure under inverses. Assuming c,¢ c, ¢, € Cc

must be proved, or cl-lgl = glcl-l for any 8¢ G. There is more than one way

~-

to do this, but no way that does not require a bit of ingenuity. One method

is to use a "construction'"; i.e., the reverse of the procedure of simplifica-

. -1 -1 -1 -1 -1 -1
tion. This proof proceeds: C; Bp = 85¢ ¢ ©18;%; 816,

since c,e C. This approach requires clever heurigtics to introduce the appro-

priate construction. An even neater proof is as follows: c1-181 =

(gl-lcl)-l = (clgl-l)-l - 81c1-1’ This proof depends upon the identities
l-la2 = (az-lal)-1 and alaz—l = (azal_l)-l. Now ADEPT "knows" the identity
-1

(8132)-1 = a, al-l, as explained in Chapter IV, and this suffices to provide

one of the equalities needed for this proof, for (clg]'-]')-1 matches (alaz)-l,

-1; such a match re-

-1)-1 __ to obtain

i.e., is of that form. But cl'lg1 does not match az-la

quires an explicit intermediate step — ¢

1
- - -1(
1 &1 7% 18
the proper form.

It is not profitable for ADEPT to explicitly check every line against the

identity al-la2 = (az-lal)‘l, even though it seems natural to check for in-
-1 -1
a

. -1
stances of the identity (alaz) = a, 1

. Neither is it profitable to use

86

-1.-1
a, = (a1 1) as a symmetric equality. (Remember that it is written now using

EQUAL, not EQUAL2. This is an example where extra programming is dictated to
make possible the reverse substitution, rather than opening the problem up to
a proliferation of substitutions by using EQUAL2.) So again heuristics need
to be discovered to enable ADEPT to prove this theorem without introducing
provisions in the algorithm which would virtually insure large increases in
useless effort for all proofs in general.

Another mishap occurs when trying to prove that the center is normal.
Assuming c,e C and g€ G, the desired conclusion is (glcl)gl-le C. The "ob-
vious" step to ADEPT is to proceed as in the first two parts of this theorem,
namely to show that ((glcl)gl_l)g2 = gz((glcl)gl-l) (*) for any g,¢ G, a
reduction obtained by detachment, using the definition of center. And the
algorithm provides that no other use of the definition of center can then be
made with respect to the line (glcl)gl-le C (see Diagram II and the discussion
of heuristic B for '"progress" in Chapter IV). For most theorems, this re-
striction of ADEPT is well-justified, for most theorems progress as the first

part of this one did. To prove c.c,e C, ADEPT showed (clcz)g1 = gl(clcz),

1%2
and to carry out a parallel branch starting with ¢y e C is needless prolif-
eration of effort. However, to show normality the simple proof is to proceed
(8101)81-1¢ c if (c]_gl)gl-1 (=c;) ¢ C. Indeed, to prove (*) requires either
some kind of planning, a construction, or substitution in both sides of (*),
none of which are presently possible in ADEPT.

Thus, though ADEPT has enabled the computer to produce many proofs, em-
phasis on those types of problems which give it trouble indicates that a rad-
ical re-examination of the whole philosophy of ADEPT's design may be necessary.

Or perhaps the difficulty is that the proper heuristics have not yet been

isolated.

87

Problem VI-B

Thére is a second problem on which ADEPT fails that is not dissimilar
from the preceding one. Consider the theorem that the map fl(al) = al- from
a group G into itself (the map taking every element into its inverse) is
homomorphic if and only if G is abelian. One half of this gives ADEPT no
trouble; in fact for G abelian, the map in question is isomorphic and ISOLVE
proves this.

The converse is not hard, but requires ingenuity of the same type as that
needed in the second part of the previous theorem. To show G abelian, ADEPT
must establish the identity 818, = 8,8 under the hypothesis that f1 is
homomorphic. Completing the proof requires use of a ''construction"; in

1.-1

particular, a substitution of the form a, <€ (al_) . Note that the execu-

1
tion of such a step would require a message to the simplifying routine associ-
ated with PUTON2, imnsuring that the new line will not be simplified. The proof
proceeds: gz, = ((8,8,))" = £,(1g,)"" = (£, E N = @ g, D =
((8281)-1)-1 = 8,8, (Close examination of this proof reveals that the hy-
pothesis defining the map f1 must be written using EQUAL2. The converse of
this theorem, showing fl to be an isomorphism when G is abelian, requires only
EQUAL in the defining equation of the map.)

Further discussion of this theorem would only parallel comments made

while discussing the last problem. However, in Chapter VIII some possible

means of overcoming difficulties such as these will be suggested.

88

Problem VI-C

It is a theorem of group theory that fl(K)_l = K for any subset K of fl's
domain, if f1 is a monomorphism, The inclusion K& fl(K)—1 is trivial and is

true for any homomorphism £ ADEPT proves it with ease. The converse is

1
much harder, and appears to demand an approach not possible with ADEPT. At
least, the most obvious proof to the author is one which is ill-suited to
ADEPT's algorithm. It seems to require a controlled "working forward" ap-
proach which cannot be supplied by the "lemma-proving' procedure which is made
possible by lines of status ST on table II. Briefly, the proof proceeds as
follows:

Assume a.¢€ fl(K)_l. Then fl(al) € fl(K)’ which, by the definition of

1

image, means that fl(al) = fl(az) for some aze K. But fl is one-to-one, so

a2 = a1 and therefore a1

Now consider the problem as ADEPT sees it —- given the assumptions and

¢ K, which was to be shown.

assuming a.é€ fl(K)-l, the line to be proved is a e K. But K is an arbitrary

1
subset, and in addition no substitutions are possible for a;s so ADEPT is
unable to continue. From the point of view of working backwards, the above
proof depends on the implication (:332)[826 K & a = az] ==> a e K. However,
even if ADEPT 'knew" this fact, SOLVEX would attempt to '"solve" the line
(3a2)[aze K& a; = a2] for a,, and would come up with the "reduction" a € K,
which is no help at all. Thus determination of a candidate for this variable

a, must proceed by more devious methods. The fact that the definition of

2
fl(K)-l causes a e fl(l()‘l to imply an identity involving f(al) as opposed to

a; may be able to be used as the '"tip-off" that the usual procedures of ADEPT

will not suffice for this proof.

89

Problem VI-D

The last problem which will be discussed to illustrate limitations of
ADEPT for proving theorems of the type it is best suited to prove is the nec-
essary and sufficient condition for equality of two (left) cosets aH and a,H:
aIH = azﬂ <mu> az-le H. This theorem is an example of how everything can go
wrong!

First, consider proving az-lalc H from the equality of the cosets. ADEPT
has no "ideas" except to attempt to show a, and a, to be members of aH or aZH,
which is suggested due to the form of the definition of left coset, for if any
of these lemmas could be established, a substitution would be possible in the
original line. Now a, and a, are general members of a group G of which H, alH,
and aZH are subsets. Therefore the MODEL heuristic will not allow these candi-
dates for heads of subordinate trees to appear on table II. Portunately, the
user has the option of not using the MODEL lattice (though he may not know
when not to use it), and at least it is possible to get ADEPT to proceed with
Fhis proof.

Since alﬂ and aZH are the same set according to the hypotheses, each of
these four heads of subordinate trees is a reduction of one of the other three.
For example, to show ae a H it suffices to show ae 'IH' The fact that

2

a.¢ 33H for any ay is a simple one, and ADEPT can prove it quickly if given

3
it as an explicit problem. However, as a line of status ST, it cannot be
proved, for the proof that aje a3H requires "solving" by SOLVEX the line
(334)[84C H& a; = 3334]. As shown in Diagram I, only lines of status PNT
are ever processed by SOLVEX, and a line of status ST can never take on status
PNT. Thus the present version of ADEPT is stymied.

One possibility, which would not cause great amounts of additional effort

per proof, would be to try to "solve' every such line put on table II (i.e.,

90

always trying a call to SLVX in Diagram IV). If the line were not immedi-
ately solved, it would not be scanned as described in Chapter III unless it
were of status PNT. The example in this theorem can be solved immediately,

yielding a3-la3e H which quickly reduces to e.e H, which could be verified

G
from part of the definition of subgroug. But again trouble develops, for if
H were explicitly assumed to be a subgroup, the original conclusion would be
reduced to showing az-lc H & ae H, which is certainly a fruitless attempt at
a solution. Furthermore, this reduction is derived by detachment, and thus
az-lale H would be removed from further consideration, and by the time the
status ST lines were verified, the substitutions in the original conclusion
could no longer be made, since the pointer would have been moved down (i.e.,
status PNT would have been assigned to some subsequent line of the proof
treé).

It has already been observed in Chapter III that the design of ADEPT,
and in particular, the restricted processing given to lemmas, is not oriented
to proofs which must go back many "levels" to original definitions. In this
spirit one would suggest that the user include with the specific hypotheses of
this theorem the lemma aj€ a3H. Even with this approach, the user can run
afoul! The use of asterisked terms happens to be critical in this instance.
Assuming that the user inputs the lemma in the form (MEMBER A3
(*LCOSET A3 H G)) (where A3 is a variable), the proof will be completed easily.
Without the asterisked term, the user must state the lemma as a translation of
"let A be a left coset a3H; then a3
application of detachment to the original conclusion. Since aze A matches
az-lale H, the proof would be "reduced' to showing that H is the coset

€ A", and this would cause an undesirable

(az-lal)H. This inference is completely valid, and the new line does happen
to be provable, but only with great effort. Thus there is a definite need for
the use of the asterisked term in this problamj

The converse of this theorem is really a conjunction, namely to prove that

a,He< a,H and azl-l < alﬂ if az-lale H. This proceeds normally, and requires

1 2

explicit assumption that H is a subgroup. One inclusion parallels the other

91

in its proof, though ADEPT has no way of detecting this and profiting by the
observation. The parallel is not quite complete; proving the inclusion

€ H, which, while implied by a a.€ H,

a,He a H comes down to observing al—la N

2 1 2

is not derivable by ADEPT. This situation is analogous to the one in the first
problem described in this chapter, and no more need be said here.

This discussion of this last theorem may seem to be lengthy and to place
undue emphasis on the limitations of ADEPT. However, despite the inept per-
formance just outlined, ADEPT did manage to prove many theorems! But all
heuristics break down sooner or later, and a clear discussion of the impli-
cations of ADEPT's organization was certainly in order. Shortly, discussion
will resume on the worth, limitations, and future of ADEPT, including possible
corrective modifications which could be made, but first, problems of another
class should be discussed — those with new features to which ADEPT could be
adapted. After all, future work must take into account more kinds of theorems
and harder theorems, as well as theorems very similar to the ones already

discussed.

T Note that a more general statement of the lemma, such as eG€ B ==

36 aBB, could lead to still another undesirable effect if it were not stated

using the asterisked term *LCOSET. If the table I entry were (IMPLIES (AND
(MEMBER (*IDENTITY G) B) (LCOSET A A3 B G)) (MEMBER A3 A)), then any occurrence

a

of detachment using this implication would give rise to a table II entry with
a variable, namely B. While variables in table II entries are not forbidden,
they can lead to an entry which is difficult to prove or which has no interpre-

tation. Here a proof tree line a,e H could be reduced to a conjunction, one

4

conjunct of which is e e B, for a completely unspecified variable B. Thus the

user must beware of imglications P ==> Q on table I which have the property
that if a table II entry Q' leads to a reduction P' using detachment, then P'
contains (free) variable; i.e., in creating the instance P' using the informa-
tion obtained in finding the match of Q' and Q, constants were not substituted
for all of the variable symbols of P. This situation can be avoided by making

use of the well-known equivalence (used in the reduction of statements to

prenex normal form): (Val)[Pa1 = Q] = (3a1)Pal ==> Q. In the above

92

example, the lemma could have been stated (IMPLIES (EXISTS B (AND (MEMBER
(*IDENTITY G) B) (LCOSET A A3 B G))) (MEMBER A3 A)). With this statement,
trouble is averted, though, of course, an extension to SOLVEX would be nec-

essary to actually handle any reductions generated by detachment using it.

93

CHAPTER VII

EXTENSIONS OF ADEPT

One method of proof which ADEPT does not use is mathematical induction,
and it was this metﬁod which was considered in most detail as a specific ex-
tension of ADEPT. Theorems which are proved naturally by induction are not
too common in group theory, even when groups of finite order are considered,
but enough were isolated in order to justify this section of the investigation.
Most involve terms with a varying number of arguments, such as a finite prod-
uct or intersection. Consequently, important questions of notation arise. It
is simple enough to define a new type of variable or constant to represent
integers, and N, N1, ..., N9 are used for the integer symbols, which may be
variables or constants. Having done this, how shall the new concepts be
represented?

The easiest concept to represent is the iterated product of the same
variable — :lf'f:i or (al)n. Using an asterisked term, this may be written
(*EXP Al N G), where G is the set on which the composition is defined. The
general iterated product is more difficult. Consider the product aj...8,
which is to be denoted by the term *GPROD with some appropriate set of argu-
ments which will include G, the set with the composition. Any notation used
for this must be flexible enough to allow easy statement of such products as
fl(al)"‘fl(an)’ It must also be easy to express the fact that if n is 1 in
either product, the generalized product collapses to a single object. But
this object (a1 or fl(al) in the examples given) is subscripted. It is impor-
tant to notice that the subscripts of the letter "a" in the following two ex-

pressions are not used in the same way: (1) a.e¢ G & a,e G =% a_a,e G;

1 172

) fl(al...an) = fl(al)...fl(an). In (1), the subscripted letters are used
as symbols for simple variables. The particular integers used as the sub-
scripts have no significance. In (2), the subscripts are used to specify an
ordering of the variables. Indeed, in (2), the unsubscripted letter is a
meta-gymbol denoting any variable/constant symbol, and the subscript yields
information on the order and number of these symbols.

Retaining the spirit of Polish notation, the term *SUB is introduced, to
be used whenever a subscript is used to specify ordering, etc. A variable
symbol can easily play the part of the meta-symbol, and a tentative represen-
tation for a)...a is (*GPROD (*SUB A9 1) (*SUB A9 N) G).

This is not satisfactory, and in order to see this, consider the equali-
ties a,...a ; = (al...an)an. and fl(al)...fl(an.) - [fl(al)...fl(an)]fl(an.).
(n' is the successor of n, ordinarily n + 1.) These are both instances of one
general fact, which should be expressible by one statement. However, in the
cgrresponding representations for these identities, the occurrences of
(*SUCCESSOR N) are at different levels of the expression, and the matching
routine will not suffice. Stating the situation in another way, it is impos-
sible for ADEPT to have a schema of the form P(n) = Q(n) where n occurs at
arbitrary levels in the syntax of P.

One possible notation which will at least suffice, though it is cumber-
some, is to include as arguments of *GPROD:

i) the subexpression of ii) which is the subscripted
subexpression of the general element;
ii) a symbol acting as a meta-symbol for the general element
of the product;
iii) the number of elements in the product;
iv) the set upon which the composition is defined.
Similarly, a single subscripted object is written using as arguments of *SUB:
i) same as 1) for *GPROD;
ii) same as ii) for *GPROD;

iii) the value of the subscript.

95

The first argument mentioned is present to allow for a distinction between
fl(an) and [fl(a)]n. Thus fl(al)"'fl(an') = [fl(al)"'fl(an)]fl(an') can be
written: (EQUAL (*GPROD Al (F1 G H Al) (*SUCCESSOR N) H) (*PROD (*GPROD Al

(F1 G H Al) N H) (*SUB Al (F1 G H Al) (*SUCCESSOR N)) H)). This is an instance
of the general statement (EQUAL (*GPROD A8 A9 (*SUCCESSOR N9) A) (*PROD

(*GPROD A8 A9 N9 A) (*SUB A8 A9 (*SUCCESSOR N9)) A)), where A8, A9, N9, and A
are (free) variables. It is not necessary to indicate in some way that A8
must match a subexpression of whatever expression A9 matches, for this will
automatically be the case in any well-formed use of *GPROD.

Together with the preceding general statement, the identity (EQUAL
(*GPROD A8 A9 1 A) (*SUB A8 A9 1)) gives an inductive definition of *GPROD.
Using such a definition, it is reasonable to consider such theorems as
fl(al"'an) = fl(al)"'fl(an) for a homomorphism fl’ or (al...an)-1 =
an_l...al-l. Both proofs are exactly the same in structure, step by step.

Each is a natural use of induction, and each requires an additional hypothesis.
For the first, this hypothesis is as follows: (EQUAL2 (F1 G H (*SUB A8 A9 N9))
(*SUB A8 (F1 G H A9) N9)). This is an explicit connection between two legal
notations, according to these conventions of notation, for expressions such as
fl(al)' Thus there is actually still a need for a schema; in this case a
s;hema to the effect that P[(*SUB A8 A9 N9)] = (*SUB A8 P[A9] N9), where P is
any of a fairly large class of terms.

Leaving this incomplete discussion of the problems of notation, the
question of the implementation of the method of mathematical induction will
now be considered. The greatest difficulty here is an obvious one — how to
decide algorithmically when to attempt a proof by induction. This decision,
including the identification of the specific variable on which the induction
is to be performed, is not an easy one. Surely one condition which must al-
ways be present in a theorem which is provable by this method is the appearance
of a term which is defined by a definition which is inductive in form; i.e.,
of the form "X, Y,..., Z are special instances of a ___ , and if A is a____,

the element given by the (usually simple) operation ¢ on A (or on A and some

96

other 's) is a ." For instance, a common example is the positive

integers, given by "1 is a positive integer, and if n is a positive integer,
n+ 1 is also a positive integer." *GPROD, the term discussed above, has an
inductive definition.

While the presence of a term that is inductively defined is a necessity
for the use of induction, it is certainly not true that use of induction is
appropriate in all theorems which contain mention of such terms. Many theo-
rems involving finite groups, for instance, are not proved by induction on the
order of the group. To be short and to the point, a method has not been found
to enable ADEPT to reasonably decide when to use induction.

Once such a decision is made, there is little further trouble. A super-
visor along the lines of ISOLVE has been written which, when asked to prove
some proposition P(n), asks ADEPT to prove P(l) and P(n) ==> P(n'). This suf-
fices to handle most instances of induction encountered in elementary group
theory. In general, more freedom is needed to specify the basic case, and a
non-rigid concept of successor is needed.

Using the supervisor just described, NSOLVE, a user may decide that a
proof should be done by induction, and have it done by machine. The two the-
orems mentioned earlier in this chapter are provable by NSOLVE, as well as the

simple fact that ae G == a "¢ G for any semigroup G. Using the same guide-

1
lines for notation described above, NSOLVE can be given problems involving,
say, finite intersections of sets. For example, consider the problem that the
intersection of any finite number of subgroups is itself a subgroup. This is
done easily by NSOLVE if the lemma stating that the intersection of two sub-
groups is a subgroup is known to it. It seems reasonable to assume that this
lemma would be present as a disjunct of the sufficient condition for subgroup
available for use on any non-trivial problems. (The proliferation inherent

in such assumptions will be discussed in the next chapter.) Given this lemma,
only one extension had to be made to ADEPT. This was to have the search which

sees if a line about to be put on table II is already on table I take into

account (free) variables as arguments of terms on table I. That is, a

97

statement of the form P(al), where a, is a variable, on table I carries the

1
force of its universal generalization, and therefore should suffice to verify
any statement P(az) being put on the proof tree. Heretofore, all statements
put on table I with variables happened to be either implications or equalities,
and thus a simple check for equality of two statements, one on table I and one
one table II, was sufficient (given that EQUAL and EQUAL2 were considered
identical), since the scan would discover other possible inferences. In this
problem, however, a table I statement (SUBGROUP (*SUB A A N9)) with (free)
variables A and N9 has to cause verification of such lines on the proof tree
as (SUBGROUP (*SUB H H 1)). Such an extension to ADEPT is clearly necessary
and desirable, and can be implemented in a manner so that it will not increase
running time significantly.

The preceding paragraphs have mentioned only very simple problems prov-
able by induction. The following discussion is of a considerably harder the-
orem. Included here because the proof requires induction, this theorem's
discussion will also serve to illustrate the problems that will arise when
definitely more advanced theorems are given to mechanical proof procedures.
Truly a "Pandora's box catastrophe" .is very near, and only inspired heuris-
tics will ward it off.

The theorem is that every finite group has a composition QEEESQr and
first, a proof of this is outlined, in order to make the following comments
more intelligible. A compositidh series of a group G is a series of subgroups
Blseees A) of G such that A - {eG], A =G, A, , is normal in A, and A /A, |
is simple for i = 2,..., n, and all the Ai's are distinct. To aid in the proof
is the lemma that A/B is simple (has no non-trivial normal subgroups) if and
only if B is a maximal normal subgroup of A. Proceeding to induct on the
order of G, the basis step is completed by demonstrating that ({eG}) is a
composition series of length 1 for G if G has order 1. Assuming that any
group of order < m has a composition series, a group G of order m + 1 is shown
to have one by considering its maximal normal subgroup H. H must have order

< m, and therefore has a composition series CAI,...,_AR), where An = H. Then

98

B i TR I o I e e I S Lt e iEemiies e o SRERELEET R W

it can be shown that (Al""’ An, G) is a composition series for G. This
completes the inductive step and therefore the proof.

Now consider just a few of the details glossed over in the above outline,
which cannot be omitted in a machine's proof. The definition of a maximal
subgroup H of a group G includes a statement that the order of H, o(H), is
strictly less than o(G). To conclude from o(G) =m + 1 and o(H) < o(G) that
o(H) < m requires an explicit step, using one of the numerous relations con-
necting <, £, =, 2, and >. Certainly these relations cannot be given to ADEPT
as lemmas, but must be built (or "compiled") into the program, and in a way
that will not cause proliferation of effort. Perhaps this can be done not by
special-purpose matching routines for Polish notation expressions, but by a
subroutine built around the use of the linear '"lattice'" model of the integers.
Another step left out of the proof is one which might be given as a lemma for
this theorem, and that is that every finite group G such that 1 < o0(G) has a
maximal normal subgroup. (How would ADEPT prove this innocent fact?) Another
detail requires that the definition of order of a group state that a group of
order 1 contains one element, and if the definition does not specify this
element to be the identity, ADEPT must be able to prove the admittedly trivial
fact that it is the identity.

In addition, demonstration of a candidate for a composition series in-
volves a use of existential quantifiers which is not among the special cases
which SOLVEX can now handle. This, of course, will be a frequent occurrence
as new types of theorems are proposed for ADEPT, and some of the necessary
exteﬁsions will be more difficult than others.

It is the author's hope that the preceding discussion will clearly illus-
trate the difficulties and considerations inherent in proofs of more complex
theorems. No solutions have been delineated, partly because it is the author's
contention that the harder theorems introduce radically different types of
reasoning processes than those used in the types of theorems for which ADEPT
was constructed.

Mostly just to prove that it could be done, even though making use of an

99

extension of SOLVEX written to cope with only the above theorem and making use
of a '"loaded" definition of composition series, a version of the preceding
problem was formulated which NSOLVE successfully proved (with 26 lines and
using 33 seconds of machine time). The statement of the problem is given here
in mathematical notation, and the translation into Polish notation follows the
spirit of the previous discussion on notation for series, iterated products,
and the like.

A composition series is defined for this purpose by the inductive state-
ment: B = {eB} == (B) is a composition series of length 1 for B; if B has a
maximal normal subgroup and (Al,..., A) is a composition series for it, then

n

(B .» B) is a composition series for B, wherem =n + 1, A, = B, for i < m,
m 1 L

1"
and Bm = B. The theorem itself is given as a conjunction of lemmas, followed
by the conclusion: [G is a group and o(G) < n] ==> G has a composition series.
NSOLVE is told to induct on n. The lemmas used are:
i) [A is a group and o(A) S 1] ==> A = {eA};
ii) A is a group ==> [A has a maximal normal subgroup
which is itself a group, and [o(A) < m + 1 ==> the
order of the maximal subgroup of A is < m]];
iii) A has a composition series ==> there exist an integer
m and subgroups Bi such that (Bl"'°’ Bm) is a
composition series for A.
Even these specially chosen statements caused difficulties. 1In particu-
lar, it was discovered that certain conjunctions on the proof tree were such
that it made no sense to attempt to prove one conjunct before the other was

"not

established, and a provision was introduced to flag such a conjunct as
discarded but not to be considered until such and such a time'". This was
crudely done, and is best not described in detail!

Before embarking on the next chapter for a final discussion of the future
of mechanical theorem-proving as revealed in the light of the ADEPT program,

one other example will be considered. Much of the reasoning used in the types

of theorems which ADEPT encounters is applicable to problems previously given

100

to "advice-takers'". In particular, an investigation was made to see what
modifications would have to be made to ADEPT to solve a version of the MIKADO
problem, originated by Safier(zo) and discussed by Slagle.(24) It turns out
that very few are necessary. The access to tables of definitions and suffi-
cient conditions is blocked, for advice-taker problems are stated in
self-contained packages. Koko, Nankipoo, Katisha, and Mikado are declared to
be variables (it does not matter which kind!), and one extension is made to
SOLVEX, allowing an expression of the form (331)...(3an)P(al,..., an), for
some expression P which is a single term followed by its arguments, to be
"'solved" if a statement P(bl,..., bn) is on table I. The problem can then be
proved by ADEPT if stated as follows:
hypotheses:
i) (Unmarried*female Katisha)
ii) (Unmarried*male Koko)
iii) (Not*think*dead Mikado Nankipoo) ==> (Can*stay*alive Koko)
iv) (Can*appear*safely Nankipoo) ==> (Can*produce Koko Nankipoo)
v) (Not*accusing Katisha Nankipoo) ==> (Can*appear¥*safely Nankipoo)
vi) (Not*claiming Katisha Nankipoo) ==> (Not*accusing Katisha
Nankipoo)
vii) (381)(Can*produce a; az) ==> (Not*think*dead Mikado a2)
viii) (Married Katisha) ==> (Not*claiming Katisha al)
ix) (3a1) (Can*marry a; a2) ==> (Married az)
x) (Bal)(Can*propose a; Katisha) ==> (3a1)(Can*marry ay Katisha)
xi) (Unmarried*female az) & (381)(Unmarried*ma1e al) ==> (jal)
(Can*propose a az)
conclusion:
(Can*stay*alive Koko)
and a, are assumed to be variables; i.e., the first six

1 2

hypotheses form the first comnjunction of input, and the last five hypotheses

In the above, a

form the second.

This statement of the problem should be compared closely with that given

101

in Slagle.(za)

The propositions involving causality used in Slagle's proof
were not used with ADEPT, so it is not surprising that ADEPI's proof is
shorter; in fact, it is much shorter, taking only 14 seconds instead of
Slagle's 5.7 minutes. But ADEPT is not an advice-taker in a general sense,
so the preceding comparisons are not too cogent. It suffices to say here
that ADEPT can handle at least some advice-taker problems. In Appendix I,

a more detailed discussion of advice-takers and how they differ from ADEPT

will be given.

102

CHAPTER VIII

FUTURE POSSIBILITIES AND CONCLUS IONS

It is time to evaluate the ADEPT project and discuss possibilities for
future work uncovered through insights and experience obtained from the pro-
gram. To do this to best advantage requires a restatement of the purposes
for which ADEPT was created. Primarily, the goal was to obtain a program
which could handle a significantv number of theorems of elementary group the-
ory. Nee&leu to say, these theorems were to be drawn from ‘the simplest
results, the foundations of the subject. These seem to fall into four main
classes: i) those which require "'cbnstruqtions"', such as the proof that a
left identity is also a right identity, 11i) those which follow by straight-
forward inferences from basic concepts, 1ii) those which depend to a large
extent on knowledge of simple facts in number theory, such as easy results
regarding finite groups, and 1iv) those which urvevu illustrative examples.
It was decided to use theorems of the second type, on the sasumption that the
deductive reasoning required to handle them would be most gﬁneully applicable
to all kinds of theorém-proving.

As a matter of fact, consideration of the development of the simple proof
that the kernel of a homomorphism is a subgroup of the domain of that homomor-
phism was instrumental in defining the basic structure of ADEPT. Subsequent
consideration of numerous theorems of the same type led to the growth of ADEPT
to its present form, complete with a nﬁmbet of special-purpose heuristics.
Indeed, the limited goals for ADEPT as a program have bee;l met, for nearly
one hundred theorems of group theory have been proven by this computer algo-
rithm, and the program has sufficed to provide legitimate evaluation of vari-

ations in the algorithni and their effects.

103

It may be objected that the proofs produced by ADEPT are sometimes inef-
ficient, not to mention that some problems of the type that is ADEPT's spe-
cialty "stump"-the program completely. In reply one has only to note that any
routine which can produce proofs of all the various facts that ADEPT has es-
tablished in consistently less than two minutes of computer time per proof
cannot be seriously inefficient. (The isomorphism theorems if considered as
three or four ''proofs" each conform to this statement.) This is particularly
cogent when one considers that ADEPT is written in LISP 1.5, a language not
noted for execution speed. As for the similar problems with which ADEPT cannot
cope, they are not numerous. Indeed, most ﬁave been discussed in earlier
chapters, on the assumption that examination of shortcomings is more instruc-
tive than perusal of successes. The fact remains that the successes far out-
number the failures. More importantly, the class of theorems for which ADEPT
was designed has been essentially exhausted in the course of fhis project.

This fact has two important consequences. One is the fact that improvements
made to ADEPT in order to enable it to prove those theorems of the same fype
which it cannot prove wouldvnot result in a program which could prove many
more theorems. The other is that refinements designed to increase effiéiency
could only be used on the same theorems, which do not now require prohibitive
amounts of effort. |

More serious.is the complaint that, though ADEPT can prove an imprgssive
number of theorems, many must be stated in a "correct'" manner in order for the
program to be successful. In many instances this complaint is, in the author's
opinion, not valid. 1In particular, it is maintained that a user can be reason-
ably a;ked to exercise care in deciding upon the form of statements presented
to ADEPT, as least at this stage in the art of theorem-proving. For instance,
choices between asterisked and non-asterisked notation, or between the various
logical constants for equality are often critically important, and the user
has a responsibility to aid ADEPT in this heuristic matter. The complaint is
valid, however, in the case where the number, and not the form, of the hypoth-

eses is in question. The user cannot be expected to know the minimal set of

- 104

hypotheses needed for a proof. Thus this is a definite shortcoming of the
ADEPT program,

Changes designed to ameliorate this failing could be tested on the same
theorems which ADEPT has already considered, by making use of the enormous
number of possible ways of overspecifying the hypotheses to these problems.
This is the case even if only "natural” unnecessary assumptions are introduced.
But the weakness of ADEPT in coping with overspecified theorems is an indica-
tion that more serious difficulties will arise when more difficult problems,
based on a broader base of known concepts, are considered. For instance, the
introduction of numbers and their associated properties could complicate a
proof considerably. Add to this another inefficiency which has been tolerated
until now but which must be faced in the near future, namely excess branching
due to the associativity axiom, and a good case has been made for conducting a
full-scale investigation of more efficient theorem-proving with an eye to a
much larger class of problems.

How, then, can such difficulties be overcome? Can it be by additional
special-purpose heuristics, or by some general planning heuristics, or by an
entirely different and more appropriate algorithm? The answer, as is so often
the case, is probably a combination of the possible courses of action. Still,
it seems that the most efficacious improvement would be the introduction of
some kind of planning. This could take a variety of forms. In fact, some
planning is already present in ADEPT. HOMOMF effectively delineates a plan to
be followed to attempt to verify certain equalities (those given by FEQUAL).
On a larger scale, ISOLVE represents a plan for approaching an isomorphism
problem. Similar plans could be developed for other special subclasses of
theorems or types of lines on the proof tree. One possibility is a special
executive like ISOLVE designed for closure problems. A closure problem is
one where, assuming a variable or variables are members of some set, it is to
be shown that a certain function of those variables is again a member of the
set. Showing sets to be subgroups or normal are problems of this kind. As

was seen in Chapter V, efficiency difficulties have occurred in such theorems,

105

and a plan incorporated in a supervisor might be an angwer to such troubles.
To resort in this manner to separate routines for each kihd of problem
is an abandonment of any hope of developing a general-purpose problem solver,
except for a program to perform the very trivial deductions which form the
core of most proofs. Such despair may be justified, but this cannot be argued
conclusively at this date. For one thing, there are more general ways to
attempt planning. One such possibility would not be hard to try with ADEPT,
and proﬁably should be tried soon. This particular planning heuristic will
now be elaborated upon in some detail.

In Chapter III the phrase "explore consequences of all terms...”

was
used, to indicate a call to SCANW to mat;h against lines on the proof tree

all instances of definitions of the terms in question as well as all other hy-
potheses and accumulated "knowledge' on table I at the time of the call. In
the early stages of a problem this amounted to a planning heuristic, for due
to the selective placement of entries on table I, very little was on table I
except entries associated with the terms in question. Thus the "plan" was to
apply to a line on the proof tree only facts known about terms, etc. of that
one particular line. As the proof progressed, and more entries appeared on
table I, this heuristic gradually "“disappeared", giving way to.a procedure

of a much more "brute-force" character. Why not employ this heuristic at all
times, thus incidentally eliminating the need for selective placement of
entries on table I? This could be done by "indexing" all table I entries,
according to their origin. Obviously there would be the original hypotheses,
and the lemmas which were added during the proof, but more importantly, those
entries which were definitions of terms could be "tsgged" by that term, and
singled out from table I whenever that term was spotted in a line of the proof
tree. Thus for every line of status PNT, whenm it was scanned table I could be
divided into two parts — a select part including all definitions of terms or
constants in the line being scanned (and perhaps the original hypotheses), and

the remainder of table I. Clearly the select subset would be used alone by

the scan at first, and if no success or progress resulted, possibly but not

106

necessarily the remainder would be considered.

In conjunction with the changes now being suggested, two details should
be implemented. One concerns a more involved check of the constants of a line
being examined. At present, for each constant of the line, a search is made
through table I for entries which define it. To be precise, a constant A is
defined by an entry of the form (TERM A ...), and the resulting action is the
placement on (the select portion of) table I of the proper instance of the
definition of TERM. This procedure handles set and function constants ade-
quately, but very seldom provides any informaﬁion regarding constants which
are members of sets. To remedy this, the procedure could be supplemented by
a search of table I for terms defining not only the constants of the line of
status PNT, but also all set constants A from table I entries of the fomm
(MEMBER Al A), where Al is a constant of the line of the proof tree being
examined. (For asterisked notation this procedure would put on (the select
portion of) table I an instance of the definition of *TERM when Al was found
in an entry of the form (MEMBER Al (*TERM ...)).) This would provide a more
complete determination of which entries of table I are relevant to a given
proof tree line of status PNT.

In addition, it is suggested as a result of experience, that certain
entries of the select portion of table I be given even higher.priority. This
might be too difficult to implement to be practical, but the idea is this.
Consider the case where a line n of the proof tree has given rise to a reduc-
tion n, due to an application of detachment from an implication of table I in
logical class m. Suppose further that'other table I entries in the same log-
ical class could have caused substitutions in line n, if this weré not pre-
vented by the restriction described in connection with "progress heuristic"
B. The suggestion is that if the same "inhibited" substitutions are now pos=-
sible in a line of the proof tree which is either 8 itself or a reduction of
n)» that these should be done first, and given a definite priority. As an
illustration of this, the reader is urged to refer back to Problem V-C, and to

note that implementation of this suggestion would remove the inefficiency

107

associated with that proof.

The heuristics just described, by analyzing more completely the content
of a line of the proof tree, including, in the last suggestion, an element of
analysis of how the line originated, clearly would implement a greater degree
of "awareness'" to the program, so that it could be maintained more cogently
that ADEPT would be performing as though it knew where it was in a proof. On
a more prosaic level, proofs would run faster, if only because just a subset
of table I would be used by SCANW except in unusual cases. Some proofs would
no doubt be shorter from the point of view of the number of lines on the proof
tree, but it is less clear that increased efficiency would manifest itself
noticeably in that manner. Another important advantage would be gained —
namely that the separation of a select portion of table I before scanning
would enable ADEPT to cope successfully with problems involving a longer total
table I; i.e., problems with more hypothese; or problems involving a broader
base of concepts. There is no reason to believe that single lines of the
proof tree in such problems would have more terms and constants than at pres-
ent; thus the size of the select portion of table I for any given line should
remain small and manageable.

While the previous heuristics would enable ADEPT to handle more assump-
tions, hypotheses, etc., they do nothing to alleviate a similar problem —
more branches on the proof tree. As theorems become more complex, and ADEPT
acquires a broader base of 'knowledge', lines of the proof tree will have
greater numbers of reductions. One example of this was alluded to briefly in
the last chapter — sufficient conditions will have to be disjunctions with
many clauses. Under these conditions, it will be impossible to expect ADEPT
to consider reductions of lines in the order of their generation, as is pres-
ently done. Some choice will have to be made, on the basis of the particular
context of the theorem at a point in its proof. One isolated suggestion was
made in the preceding discussion concerning a proposed priority for substitu-
tions ''delayed" by prior applications of detachment. A crude choice could be

based on length or complexity of a reduction, with "simpler" reductions being

108

processed first. Such a heuristic might work in some cases, but it is the
author's opinion that any such completely syntactic heuristic would have lim-
ited effectiveness. Perhaps it would be best to use a complexity heuristic
only in cases where one alternative is dramatically simpler than the others,
as sometimes happens when a '"correct' substitution results in a "collapsing"
of a lengthy expression to a very simple one.

Other possible criteria for ordering reductions of a line are based on
the history of the reductions. For instance, since generation of reductions
by detachment has been seen to be correlated with progress, perhaps reductions
generated in this manner should be considered first. Another possibility
which may have a desirable effect is to keep track of the logical class of
the table I entry which is used in generating each reduction of a line on the
proof tree. Then a list of all logical classes of table I entries used in
the steps from the head of the tree to any particular branch would be avail-
able. (When an implication is split and the reduction is an instance of the
consequent of the parent line, there is no associated logical class, but
neither is there any other reduction necessitating a decision.) Given this
history of a line, priority could be given to reductions generated due to
axioms, etc., in a new logical class, or in a little-used logical class, or
perhaps in a logical class that had not been used recently. This would be a
manifestation of the heuristic stating that all the hypotheses may be needed
for a successful proof.(16)

Another suggestion is to make use of a grouping of terms into classes
according to their generality. For instance, subgroup is probably the most
general term which defines a set in group theory. In contrast, an inverse
image can be considered to be a fairly specific set. With such a grouping,
which would not have to be too refined, preference could be given to reduc-
tions generated using table I entries obtained from definition instances of
the more specific terms. The rationale behind this proposal is shown in
many of the examples of the earlier chapters. Many theorems involve subgroups,

for instance, but the presence of the instances of the definition of subgroup

109

must not cause a lot of extra branches, as it presently does in ADEPT. So
this is a heuristic which might help the program to cope with overspecified
problems and problems with many hypotheses.

Some of the above suggestions may be futile hopes. One important fact is
that because of this project, it is or may soon be possible to test such heu-
ristics. Using ADEPT or a slightly (not greatly) improved ADEPT and the more
difficult of the theorems already proved by ADEPT along with some of a slight-
ly harder nature, it should be possible to obtain significant evaluation of
the effectiveness of such schemes, and of different combinations and prior-
ities in combinations of such schemes.

Incidentally, the worth of some of these proposed heuristics will vary
according to the degree to which a hypothesis is liable to be necessary. For
simple problems, this means that techniques used to cope with theorems stated
with deliberate "red-herring" hypotheses will vary from those used for more
ideally stated problems. For harder problems, it means that because of the
larger number of hypotheses per problem, and therefore the lessened likelihood
that any one hypothesis will be "correct" for a given step, and because of hy-
potheses included due to uncertainty over their relevance, different criteria
for evaluation may be needed than were optimum for simpler problems. To give
an example, the suggested "approval' for use of axioms of varied logical class
is obviously a heuristic which could lead to wasted effort in the presence of
irrelevant hypotheses.

A couple of other details involving ordering of reductions are of more
certain usefulness. The MODEL heuristic can be applied to lines of the main
proof tree, not to accept or completely reject lines as it does for those of
status ST, .but to give an indication of the likelihood of proving a reduction
of the form ae A. And it hardly needs to be mentioned that when one reduc-
tion happens to be a conjunction, which will itself be of status NILL, that
this branch should be ordered according to the worst evaluation of the two
co-conjuncts. Such pessimism is only common sense since both conjuncts would

have to be established in order to verify their predecessor.

110

o ittt

R e T e T LI P O ST TRTeg Yt

R IR AL SRS L, 2

It should be noted that adoption of schemes for ordering reductions
raises questions about the order in which the total proof proceeds. Some
heuristics would appear to decrease the need for complete scans, but if SCANW
is not called often, a new procedure will be necessary to adequately process
lines of status ST, the subbrdinate trees. - It will be necessary to specify

when to end processing of a selected reduction. If processing is ended in the

‘same way as that of a line of status PNT is terminated at present, where does

the program go next? The answer nearest to the spirit of the present version
is illustrated as follows: Suppose line (4), say, has just been processed,
and the next line of status REL able to take on status PNT is line (6). Per-
haps line (6) is a reduction of line (3), and another reduction of (3), say
line (9), is of higher priority. Then simply interchange lines (6) and (9)
and proceed as usual.

Some other heuristics which can properly be called planning heuristics
are suggested by'features of previous work in problem-solving by computer
which were not included in ADEPT. For instance, the difference-operator tech-

(15) have an obvious application for the

niques of Newell, Shaw, and Simon
establishment of identities. For example, when an equality requires a switch-
ing of constants, as in a proof that a set is abelian, the axiom concerning
the inverse of a product may be useful, as in Problem V-E. While it would
seem impractical to develop a complete GPS-like routine to handle such steps,
certainly some sort of comparison between halves of an equality could be
developed and used to some degree in the choice of the next step to be made
by ADEPT, as well as a means of evaluating progress. A more specific heuris-
tic is suggested by a particular example in one of the GPS papers.(ls) There,
planning is done by "abstracting'" the problem; since the domain of the example
is the predicate calculus, this could be done by ignoring connectives and the
order of the variables. ADEPT has need of such an approach in its treatment
of associativity. Here the abstracting would be accomplished by ignoring

grouping; i.e., "remove the parentheses'. There are strong reasons for for-

mally considering‘composition as a strictly binary operation, for this

111

simplifies the task of formalizing and programming group-theoretic algorithms
tremendously. But it has become obvious that at certain times in some prob-
lems, ADEPT must be able to "stand back' and consider the lines of the proof
tree in this more abstract form, thus making optimum use of the known hypoth-
esis of associativity. Surely it would not be difficult to decide upon a
precise form for this special-purpose planning heuristic and then to implement
it within ADEPT.

What are the implications of the implementation of planning heuristics
for the methods of determining '"progress' in ADEPT? Is heuristic B, which is
presently in use, suitable for a program altered in ways such as have been
considered above? The answer is that heuristic B is not sophisticated enough,
but more constructive comments are not as easy to make. Of course, if a pri-
ority scheme is adopted to order reductions of lines, the method of assigning
priorities will probably also be of some application for a determination of
progress. For instance, if terms are classed according to specificity, gen-
eration of a reduction of a line by detachment using a table I line arising
from the definition of a very general term may well not be considered grounds
for declaring 'progress" or for putting a line of status REL into status RELL.
Conceivably, with good enough planning and ordering heuristics, there would be
no need for status REL1l. Or if determination of order of reductions depended
strongly upon which were generated by detachment, perhaps a progress heuristic
should not be based so strongly on application of detachment. It does seem,
however, in the light of results obtained so far with ADEPT, that uses of
detachment must be given some kind of special consideration in either planning
or evaluating steps in any extension of ADEPT.

Of course, if special-purpose executives, like ISOLVE, are constructed,
as was suggested above for closure problems, the need for lower-level planning
and evaluation of progress will decrease markedly. In fact, since a large num-
ber of theorems considered thus far with ADEPT are closure problems, it might
be a worthwhile short-term project to develop such an executive in order to

evaluate the special-purpose approach. In contrast, development of planning

112

heuristics and more sophisticated progress heuristics should be done in light
of more theorems than those considered so far in the course of this project.

It should also be noted that other existing heuristics besides those
connected with "progress' may be rendered unproductive by the adoption of
planning techniques. Just as an example, the heuristic of substituting in
only one half of an equality on the proof tree may be found to be of no fur-
ther value. As in all this discussion, precise statements about effects can
not be made until a particular combination and implementation of some or all
of the possible new heuristics is adopted and fixed.

As mentioned at various times in this report, part of the effort of ex-
tending ADEPT will have to be devoted to development of specific subroutines
to augment the existing program. These are not heuristics, but merely capa-
bilities for different types of problems. SOLVEX will have to be able to

handle expressions of the form (3a1)Pa for a broader class of expressions

1
Pal, including expressions themselves headed by an existential quantifier.

The need for a routine to discover 'constructions'" or expansions has been seen
in a number of examples. Such a routine will not be easy to develop. It will
have to include heuristics, quite possibly ones very reminiscent of Newell,
Shaw, and Simon's GPS.(15) This routine will govern those cases where equal-
ities expressed using EQUAL (including those handled by the simplification
routines associated with PUTON2) should be applied in the unnatural direction.
It should also be capable of either performing or setting up intermédiate

1,-1

steps so that ADEPT can perform substitutions such as a -1 <—-(a2a1-)y o,

122
which were seen to figure in some of the theorems covered in Chapter VI.

As difficult as it will be to devise a "construction'" subroutine, an
even more difficult task will be to decide algorithmically when to use it.
Here the realm of the unexplored has been reached. No longer does the orien-
tation of ADEPT seem .so productive, but still it is infinitely preferable to
the orientation of the complete predicate calculus procedures. Here open,

creative minds are needed to cross a gap of ignorance. Similar situations

have come up before in this report. When should induction be used? What

113

procedure can isolate the variable on which the induction will take place?

For proofs by contradiction, efficiency virtually demands prior selection of
the hypothesis most likely to be contradicted by the consequences of assuming
the denial of the conclusion. Even more difficult is the question of when to
abandon proof of a proposed theorem and try to construct a counter-example for
it. (Incidentally, a good "give-up" heuristic could conceivably make it
practical to try all of the methods of proof on a given problem, thus elimi-
nating the need to choose between proof by induction, contradiction, etc.,
without increasing the total amount of effort involved by a very high factor.)
And ultimately, could a computer program generate likely candidates for
theorems? -

Returning from this dash into the world of the relatively distant future
of theorem-proving by computer, consider problems of only slightly greater
difficulty than those already done by ADEPT. In particular, consider briefly
how the concepts of orbit of an element and order of an element are naturally
used in the proof of the Sylow theorems, which need only mention order of the
group in their statements. This is not an isolated example; to prove more
advanced theorems one must know what method to use, and the method often in-
volves introduction of other concepts. In part, one learns from experience,
but if only from experience the result is a group theorist like the author,
who is unable to prove a theorem unless he has seen the proof of a similar
one! But how does the mind of the creative mathematician work? Could a
scholar outline an algorithm suitable for a computer? 1Is it not more likely
that a programmer attacking this problem will meet the same frustration as
Dr. A. L. Samuel met when he found that expert checkers players did not under-
stand how they played the game?

Thus the author firmly believes that radically different approaches are
used in the thought processes of human mathematicians as they work on harder
theorems, and therefore different algorithms will be needed to prove harder
theorems by computer. Indeed, though it could be broadened to prove more the-

orems, ADEPT is already to the point where its orientation has approached the

114

e S S iy T et T T e T e L e e M T A SRR T T

limit of its productiveness, and fresh ideas are needed in order to produce
efficient proofs of harder theorems. There will, however, be need for ADEPT,
or rather for an improved ADEPT, in future problem-solving programs no matter
what their organization, for harder theorems will have sub-theorems which are
precisely the type of problem for which ADEPT was constructed. In addition,
part of the reasoning process of harder proofs, partiéularly once a general
method of proof has been chosen, will involve just those very logical infer-
ences that ADEPT can handle.

In summary, what has been done is this. Starting with a desire to capture
in an algorithm suitable for a machine the human thought-processing used in
elementary group theory, a program was developed. Before this development
could be accomplished, a decision had to be made between two possible orienta-
tions — the '"mechanical" and the "heuristic". The former had been considered
more extensively in previous projects. On the surface it seemed that a com-
binatorial, manipulative approach with a simple but powerful theory behind it
was ideally suited to a computer program, as well as providing the satisfying
theoretical "completeness" which is a consequence of the theory. But the pre-
vious efforts had shown that what seemed ideal in theory was not at all ideal
in practice, and in fact discouraging barriers were encountered in the realm
of efficiency. At the same time, the heuristic approach had not been shown to
be necessarily superior, but at least it was a viable alternative. Its main
advantage is that the programmer can avail himself of human experience in a
direct way. By introspection and investigation of mathematical reasoning as
seen in the literature, an attempt can be made to understand how the human
mathematician is able to reduce what is combinatorially a gigantic problem
to manageable size. (It must not be overlooked that even this "size" is not
small when one takes into account the "experience of the ages", the store of
knowledge and effort of centuries before.) Thus the investigation takes on a
two-fold interest ~— not only is there the attempt to construct a working
algorithm, but there is the endeavor of under;tanding in part the techniques

of the brain, and formalizing those steps of logical deduction that are done

115

IR i s, e T et L T e

literally without thinking.

There is no claim here that what is best for the mind is best for the
machine. It is certainly conceivable that the optimum way for a computer to
prove theorems bears little relation to human thought. But at the present
time it is not known what this might be. One 'mon-human' orientation has
already been seen to not be the answer. Meanwhile, progress can be made, both
in developing algorithms and in understanding the problem itself, by consider-
ation of what people know about what is, after all, a uniquely human ability
at this time.

Pointed in this direction, the development of ADEPT began. First and
foremost, as has been seen, the program has been successful, though this fact
may have been obscured at times by the discussion of ADEPT's shortcomings and
what could be done next. Not only have non-trivial theorems been proved by a
computer program, but a huge number of insights into the natures of specific
problems and types of problems as they are approached algorithmically have
been obtained. Furthermore, heuristics have been discovered and evaluated,
now that a suitable vehicle for such experimentation is in existence. It will
be instructive to list briefly, in a single compact list, the heuristics used
in the course of this project.

1) Implementation, through the use of specially introduced
logical constants for equality (EQUAL and FEQUAL), of
restrictions on substitutions and of different methods
of processing lines.

2) Substitutions allowed in one side only of an equality
(EQUAL or EQUAL2) on the proof tree.

3) Performance of related substitutions simultaneously,
implemented through the use of a '"logical class" for
table I entries.

4) Processing of lines headed by an existential quantifier
by special cases, as opposed to a uniform procedure.

5) Selective placement of definition instances on table I,

116

done as terms are encountered in the course of a proof.

6) Restricted matching allowed for expressions consisting
of just one free variable.

7) "Compiled'" application of common identities as a line is
put on the proof tree, sometimes resulting in simplification
of the line, and other times resulting in additional
substitution instances of the line.

8) The MODEL heuristic, allowing rejection of some new sub-
ordinate trees started by an expression of the form
(MEMBER Al A), using a "lattice'" model of the sets invelved.

9) Various progress heuristics, in particular, heuristics
A and B, involving consideration of detachment.

Some of these heuristics have proved more successful than others. For
instance, numbers 1), 3), 6), 7), and 8) seem to have proved their value con-
clusively, and can be retained in essentially their present form. Others, as
implied in the preceding discussion of possible improvements, may be found to
be of less importance or worth. And obviously, new heuristics are still
needed.

Though ADEPT never was intended to embody a 'complete" procedure, é
‘moment's reflection will gshow that some of the above heuristics further limit
ADEPT's theoretical power. For instance, sometimes 'progress' is declared
erroneously, as in the overspecified version of Problem V-A. It would, of
course, be a trivial matter for ADEPT to be programmed so that once it became
"gtuck", it lifted these heuristic restrictions and redid the problem in a
more comprehgnsive manner. (It is a less trivial matter to "know" when the
program is "stuck!) But such a recovery procedure is of little interest, as
is obvious from the original abandonment of a "complete" procedure. A de-
crease in ADEPT's theoretical power caused by a heuristic is of no concern,
if the heuristic permits more efficient proofs for more theorems in general,
where "more", of course, has to refer to a great many more theorems than are

"foiled" by the proposed heuristic. Certainly the heuristics included in

117

ADEPT conform to this policy. They have enabled ADEPT to perform acceptably,
and what is more, this report has been candid sbout those examples which point
out shortcomings of the heuristics.

The question can be raised: Why stop here? Many possibilities, both
immediate and more long-range, exist for continued work. The answer is not
simply that one has to stop someplace; this is in reality a natural
break-point. This is not to say that what exists of ADEPT is perfected; it is
not even to say that the discussion of future possibilities suggests answers
to all of the problems raised in the earlier chapters. However, as stated
earlier, no simple alterations or extensions to the program will enable it
to handle a significant number of new theorems. Juite the contrary; unless
major additions are created, only better proofs of theorems already provable
will result.

Therefore, this project (and this report) comes to an end. Those diffi-
culties encountered and overcome in the course of these efforts can now be
handled routinely in the future, freeing further researchers in the area of
heuristic problem-solving so that they may be able to concentrate more clearly
on the harder problems ahead.

One final comment should be made. It has been suggested to the author
by Tim Hart that heuristics developed by experinents‘such a8 have been carried
out with ADEPT may be able to be restated in a form compatible with "complete"
procedures, and incorporated into them, perhaps to the end that a basically
combinatorial approach will surpass the basically heuristic, empirical ap-
proach. This is in no way an argument against the ADEPT project. If such a
reliance on heuristics which can only (or at least more easily) be discovered
through the more natural orientation to theorem-proving used in ADEPT, can
then be transferred to a more mechanical program, the dividing line between
the two approaches will virtually disappear, and advﬁntage will have been
taken of the best virtues of both. To the author, though, the most important
contributions will still be the heuristics. Hopefully, ADEPT will pave the

way for important discoveries of that nature.

118

APPENDIX 1

OTHER WORK IN THEOREM-PROVING

This discussion of related work in theorem-proving has been placed after
the body of the report on ADEPT for two reasons. The first is that before
understanding the approach used in ADEPT it would not be clear which previous
projects were relevant as background. Secondly, this history can now be sup-
plied with comparisons and comments on the author's contributions.

The appearance of theorem-proving as a branch of artificial intelligence
was inevitable. As soon as researchers began to explore the potentialities
of digital computers for tasks other than numerical computation, and more
specifically, as soon as nonenumerical tasks requiring "intelligence' were
seen to be legitimate subject areas for computer programs, artificial intelli-
gence was in existence. It is not the intention of this commentary to deflne
. the proper bounds of this area of computer science, or to become involved in
a harangue over the use of the word "intelligence". The fact is that it be-
came possible to conceive of a digital computer, properly programmed, making
decisions and performing tasks that in human experience necessitated ''thought"
and reasoning of a higher level than merely mechanical operations. Such possi-
bilities were highly exciting. If achieved, computers could become extremely
powerful and valuable aids, much more so than they are because of their com-
putational capabilities alone. As a by-product, scientists would have a use-
ful model of a class of human mental processes. Consequently, artificial
intelligence projects were undertaken. Not surprisingly, the first tasks
expiored in these endeavors contained a large element of mechanical procedure
and only a small amount of required “éhinking". Excellent examples were found:

in gameé and in the theorems of the early chapters of Russell and Whitehead's

119

monumental Principia Mathematica. Closely related, though not usually put

upder the category of artificial intelligence, was the effort to make rough
translations from one language to another.

Work in all these areas became more sophisticated. An admirable achieve-
ment was made by Dr. A. L. Samuel in his master-level checkers program,(21) a
milestone in artificial intelligence, and an excellent example of a
special-purpose program designed to do only one task, and to do it well. Pro-
grams for computerized formal mathematics also became more ambitious, and the
early programs for doing mathematical logic were joined by such successes as

Gelernter's geometry program ©,6)

@23)

gram. Because of its self-contained nature, at least in the early stages

and Slagle's symbolic integration pro-

of the subject, and its ease of formalization, the theory of abstract groups
became a frequent subject of theorem-proving programs. But the successes
were followed by a long series of slight improvements, without any real
break-through.

Meanwhile, a number of investigators delineated a problem area of "logi-
cal deductive reasoning', independent of subject matter. Often with ambitious
claims of generality and applicability, programs were constructed to handle a
wide variety of questions. Some, as GPS — Newell, Shaw, and Simon's General
Probliem Solver,(15) were actually crude models of human rational thought. By
necessity, these general programs contained heuristics — procedures designed
to cope with certain cases or combinations of events in a manageable way; pro-
cedures believed to be of wide applicability but not necessarily guaranteed to
be always productive. Heuristic, general routines needed to be tested on some
particular syllabus. Often this syllabus was drawn from the theorems of some
branch of mathematics.

In any event, the attempt to prove theorems of formal mathematics by
computer is not done as an end in itself, but as a step toward the achievement
of artificial intelligence, in the hope of achieving a much greater usefulness

of digital computers. At the present day such a hope is far from realization,

and so work in artificial intelligence continues to concern itself with

120

theorems, games, etc.

Henceforth this discussion will concentrate only on the area of
theorem-proving by computer. Progress is being made constantly, and the
state of the art is no doubt rather more advanced than can be seen from the
literature, due to the time lag involved in publishing. 1In particular, pro-
jects are known to be under way at MIT and at Carnegie Tech at this time, and
undoubtedly other work is in progress elsewhere. However, only what has been
published will be presented here.

The fundamental difference between the mechanical and heuristic ap-
proaches to theorem-proving has already been maintained. A familiarity with
the general organization of a "complete'" proof procedure has been assumed,
and ADEPT itself is an example of the heuristic, albeit special-purpose, ap-
proach. What has not been done is to point out how far other projects have
gone, and to compare ideas used in ADEPT with some of those used in earlier
programs.

Beginning with the mechanical, combinatorial approach, what can be said
about the capabilities of the many programs of this nature which have been
written, and what means have been employed to reduce combinatorial explosion?
The most encouraging report is that of Wos, Robinson, and Carson,(29) which
relates that a program (hereafter called the "Wos program'') solved Problem
V-E (a group each of whose elements is of order 2 is abelian) in as little as

5.18 seconds. The main heuristic used was the so-called "set of support strat-

egy', which can be described precisely only in terms of a formal logical sys-

tem, but which amounts to giving special consideration to the conclusion and
special hypotheses (in this case the hypothesis that aja; =e for all ay in
the group). Since the proof procedure works forward, attempting to generate
a contradiction from the hypotheses and the denial of the conclusion, this
means that the program looked for contradictory sets of statements only among
sets of statements containing clauses derived from the two lines which were
singled out. In ADEPT, such a heuristic would essentially say that any proof

must make use of all special hypotheses, where the user, as in the case of the

121

Wos program, tells the program which hypotheses are to be so treated.

In the Wos paper, the interplay between the set of support strategy and
an arbitrary bound imposed on the complexity of statements generated is dis-
cussed. The latter involves a guess as to the complexity of the proof of a
proposed theorem. Not surprisingly, in the presence of an accurate guess the
set of support strategy is of little help. But its worth is clear in the
absence of such a guess, for with the strategy a 37.5 second proof is obtained
when no bound is specified, while a 411 second proof with a conservative bound
and no proof at all with no bound is obtained without the set of support strat-
egy. ADEPT's performance on this problem has already been discussed. Its
"“working backward" elminates much of the need for the set of support strategy,
inasmuch as most irrelevant lemmas in ADRPT are automatically excluded. It
was seen that ADEPT could not solve the problem without being explicitly told
about a consequence of the hypothesis, namely a, = al'l for all a, in the
group. As described in Chapter V, ADEPT proved two versions of the restated
problem, and one took 22 seconds while the other took 82 seconds. Only 18
lines on the proof tree were needed in the latter case, as opposed to over a
thousand for Wos' worst case. In conclusion it should be pointed out that
this problem is quite a bit more suitable for a combinatorial theorem-prover
than many which have been solved by ADEPT.

The Wos program, of course, profited by the experience of its predeces:
sors. It uses a variation of the Herbrand procedure that was formalized by
J. A. Robinson,(lg) using a single rule of inference, resolution, which is
rather well-suited for the task of mechanization. Robinson, in turn (as is
excellently recounted in his 1963 paper(ls)), drew upon improvementé outlined

3)

by Davis and Putnam and othergs. All in all, much effort has been spent on
developing an extremely efficient formalization of a complete proof procedure,
greatly refining Herbrand's original scheme. For instance, properties common
to the syntax of contradictory sets have been utilized. But refinements in
the procedure are not heuristics, and are.not even subject-oriented.

(26,27,28)

Hao Wang has done a great deal of investigation along similar

122

lines. For instance, he has improved procedures by developing separate algo-
rithms for statements of different syntactic forms; i.e., different patterns
of quantifiers in prenex normal form. Wang's papers contain the most persua-
sive arguments for the combinatorial as opposed to the heuristic approach.
Unfortunately, his arguments for the preferability of a sound theory and
complete procedure seem based on a faith that such an approach can, with ef-
fort, be made successful. No program has been demonstrated to date to support
this faith. If it is a justifiable hope, Wang's arguments would be hard to
ignore; if, as this author believes, the hope is forlorn, then the theoretical
advantages of a complete procedure are irrelevant.

This concludes an admittedly brief account of combinatorial
theorem-proving programs. Before a discussion of specifically heuristic
problem-solvers is begun, mention should be made of the work of a man who had
no interest in computer programs for formal mathematics, but who nonetheless
has completely captured the spirit and worth of heuristics in his pedagogical

(16,17) are "musts"” for

approach. Prof. G. Polya's books on problem-solving
anyone who is interested in the procedures used by people while doing "formal"
reasoning.

In the field of artificial intelligence, perhaps no researchers are bet-
.ter known than Newell, Shaw, and Simon. Their programs — first the Logical

)(15)

Theorist (LT)(14) and then the General Problem Solver (GPS — have had

an enormous impact upon this area of computer science. (Perhaps, as Newell

(13) this impact has been too great, causing a lack of innova-

himself notes,
tion in approaching artificial intelligence.) LT was conceived and implemented
a decade ago, yet its ideas have reappeared in most subsequent heuristic
problem-solvers. Partly, this is due to Newell, Shaw, and Simon's emphasis on
simulation of human behavior, because, being concerned with uncovering models
of human thought processes, these researchers specified algorithms and heuris-
tics which seem very natural, for they attempt to capture our (the human's)

way of approaching problem-solving. For a number of reasons, work in

theorem-proving often turns to draw upon human experience, and in so doing,

123

e e

emulates LT. For instance, an introduction to the gross inefficiency inherent
in a blind "working forward'" approach as found in the early combinatorial
theorem-provers leads one to the observation that people often work backward
from the conclusion, either completely so as in LT, almost so as in ADEPT, or
at least keeping the goal in mind to guide steps taken, as can be said of GPS.
"Working backward" is for many problem areas a high-level heuristic, and a
very effective one for reducing irrelevant effort. It was one of the main
points made by the LT project.

Adoption of a "working backward" type of procedure usually involves the
use of a matching subroutine, and ADEPT has one just as did LT. Now, as then,
this subroutine accounts for a significant fraction of the effort expended by
the entire program. Newell, Shaw, and Simon experimented with heuristics
(the similarity tests) designed to facilitate matching, but had limited suc-
cess. As they pointed out, those possible matches which heuristics can easily
recognize as not worth sending to the matching subroutine are just those which
the subroutine itself rejects after a minimal amount of work. In ADEPT, very
little effort was spent trying to improve the matching process. The only fea-
ture incorporated for this purpose was the special-purpose matching routine to
handle the checking of a fixed list of common axioms and identities by PUTON2.
Here, use of a quick check for key terms common to axioms and the proof tree
line was sufficient to expedite the matching of these particular statements.

Particularly on a superficial level, there is a great deal of similarity
between LT and ADEPT. Both use ad hoc methods chosen to handle a particular
problem area. Since the "task environment" of LT, propositional calculus, is
semantically simpler (i.e., of less content) than group theory, it is not
strange that LT is a less complicated program. Both ADEPT and LT employ
non-complete procedures. LT seems more formally structured than ADEPT, but
this is due largely to the nature of the problem area. Still, ADEPT does not
use '"methods'", tried in turn on lines of the proof tree. Instead, each axiom
is allowed to operate on the proof tree line, in turn (or at a special time,

in the case of the common axioms and identities which have been singled out),

124

in whatever way its syntax permits. Modus ponens plays a prominent role in
each program, though the specific use of this rule of inference takes different
forms in each. However, on a more detailed level, again partly due to the
nature of the problem areas, ADEPT is more resourceful than LT. Not only does
it contain more heuristics, but it can be extended to include or test other
special-purpose heuristics which might be developed. It makes more use of the
context of the problem, as, for instance, in the examination of terms and
constants of a proof tree line, and in the recognition of table I lines
defining constants used in the proof, thus enabling instances of definitions

to be used to better advantage.

The creators of LT discovered a property of heuristics that also has been
observed in ADEPT, namely that they enable a program to reach a '"plateau" of
per formance, beyond which it is very difficult to progress without very dif-
ferent heuristics. This was mentioned in Chapter VIII as primarily a property
of the problem area, the author maintaining that harder problems necessitate
new methods. This differentiation of problems is harder to observe in systems
oriented around the predicate calculus, and perhaps this was one reason which
led Newell, Shaw, and Simon to leave the impression that what is needed is a
more powerful set of general-purpose heuristics as opposed to different heu-
ristics for different classes of problems.

In any event, new heuristics were (and are) needed, and GPS followed LT.
GPS is a much more ambitious project, with many psychological implications.
Intended to be a model of problem-solving in many areas, GPS was tested on
problems in propositional calculus and trigonometry. 1Its basic organization
is much too well known to need recounting here; suffice to say it employs
certain ''goal types' to apply operators that reduce differences between known
statements and desired statements. The operators and differences must be
specified and characterized for each problem area to which GPS is directed;
the methods or ''goal types" are fixed, and conform roughly to means-end anal-
ysis. Clearly ADEPT has no similarity to GPS in general organization. Yet

GPS has been mentioned in passing in this report, primarily in Chapter VIII,

125

because it appears that attempts to remedy some of ADEPT's weak points may be
able to profit from insights gained in the GPS work. Comparing present with
desired results has an obvious analogue in the establishment of identities,
and a proposed low-level planning heuristic for use with GPS, namely abstrac-
tion of the problem, seems applicable to more efficient treatment of associa-
tivity, as described previously in Chapter VIII.

While discussing the work of Newell, Shaw, and Simon, a paper of Newell

and Ernst(13)

should be mentioned as giving a provocative overview of heuris-
tic programming. Its perspective on program organization appears that it
might be very useful to anyone contemplating new routines for problem-solving.
While by no means as far-reaching as Minsky's Steps Toward Artificial Intelli-
33522,(11) the paper is quite general, and helps to unite the field, as have
Minsky's papers.

Perhaps the project nearest in spirit to ADEPT is the Geometry-Theorem

Proving Machine of Gelernter.(5’6)

First reported in 1958, the geometry
machine is a heuristic theorem-prover designed specifically for one branch of
mathematics. In fact, like ADEPT, it handles a subclass of the elementary
theorems of its subject, namely theorems involving congruences, parallel
lines, and equality or inequality of segments and angles. Over 50 such the-
orems were successfully proved by the geometry machine, and it became a use-
ful vehicle for testing special-purpose heuristics. Thus it was the first
program to successfully handle a significant number of theorems from a par-
ticular branch of formal mathematics. Like ADEPT, it used a "working back-
ward" procedure which was ad hoc in formalization, and not complete. Even
some of the particular heu?istics used in the two programs are closely re-
lated. Both programs single out certain deductions to be made immediately
on a proof tree line. Also, both programs make use of a diagram.

At this point of similarity, the divergence between the two projects
becomes most clear. Gelernter's geometry machine is totally dependent upon
its diagramming feature. This is in no way a fault of the program; it is to

its credit that this semantic model proves so powerful for its problem domain.

126

However, anyone acquainted with group theory will hardly be surprised that the
semantic model used in ADEPT plays a relatively minor role. Of course, the
relative importance of one heuristic is hardly a major factor for evaluation,
but its consequences are, for the geometry machine, due to the success of the
diagram heuristic, did not have to develop any other means for controlling
proliferation of effort, and indeed was incapable of handling even the sim-
plest of theorems without recourse to a diagram. With ADEPT, the basic orga-
nization had to be more clever tb allow efficient proofs, and, as argued
throughout this report, whatever success has been obtained in this regard
reflects progress toward a theorem-prover which "understands' where it is in
a proof, and is able to make use of context. The formal part of the geometry
machine has no such capabilities, for they were not needed. Thus both the
geometry machine and ADEPT have been success ful programs for a branch of
formal mathematics, but ADEPT was forced to contain more sophisticated tech-
niques, and the research involved in their development is more likely to be of
value in the future.

The idea of a diagram, or more generally, a semantic model, is a very
fruitful one, and was first propounded by Minsky.(lo) A use for a model was
found in group theory, as seen in ADEPT's MODEL heuristic, and there is every
reason to believe that other subjects will lend themselves to other realiza-
tions of this general idea. Certainly future workers in theorem-proving must
be alert to the possibility of favorable uses of such a feature.

The other prqjects relevant to this report are the general question-
answering systems that come under the heading of "édvice-takers". The

@) and it is oriented to the develop-

advice-taker was conceived by McCarthy,
ment of a system which would be capable of learning and working with any
subject area, including "everyday situations'". To do this, it was designed
so that it was very general, handling all facts in the same way, and what is
more, in a raﬁher simple form which was intended to facilitate use of the

system by many people. Because of this generality, the advice-taker is a

victim of ambition. Like the combinatorial theorem-provers, it is ill-guited

127

to the introduction of techniques based on context, and heuristics intended to
become an integral part of the program's structure. Like heuristic programs,
it lacks formal theory, forcing a reliance on ad hoc programming which in this
case is thwarted by the proposed generality of the system. Admittedly,
McCarthy did not see it in this light; rather the advice-taker was to profit
by an ability to accept heuristics in exactly the same way as the data base
and questions. But the method of introduction of statements makes use of a
variation on formal logic which retains some characteristics of English, just
as in ADEPT. This means that heuristics must also be stated in this form,
which appears to be a harsh requirement. In theory, a huge bootstrapping
operation could be undertaken, but this appears beyond the capacity of present
systems.

In order to deal in detail with "everyday situations', McCarthy proposed
that formal predicates of ability and cause be introduced,(g) along with
statements expressing properties of and relations between these predicates
(such as a statement saying that if A can cause an event a, and if event a
causes event b, then A can cause event b). Sample problems proposed for the
advice-taker were stated in terms of these predicates. In some cases, such as

(20,24) (considered at the end of Chapter VII), the use of

the Mikado problem
these predicates was not necessary to express the essential content of the
problem, as was seen in the version of the Mikado problem posed for ADEPT.
Still, the expanded version serves as an illustration of a possible way of
working with a problem-solver of great generality. One should note, however,
that the character of the problem is not altered by the presence of additional
predicates and axioms; the result is simply a more complex problem of the

same type.

The actual algorithm which is the advice-taker is very simple, and it is
small wonder that ADEPT has enough deductive power to "answer" versions of
some advice-taker problems. However, it would be erroneous to claim that
ADEPT can do anything that an advice-taker can. In fact, two versions of an

(24)

advice-taker have been created, one by Slagle and one by Black,(l) and

128

both have interesting capabilities not useful for formal mathematics and there-
fore not included (and difficult to insert) in ADEPT. Slagle's DEDUCOM is
imbedded in the LISP interpreter, and this simple fact allows great flexibility
in use of symbol processing and arithmetic capabilities of LISP. Introduction
of even simple arithmetic to ADEPT would be rather awkward. More importantly,
both advice-takers allow multiple answers to questions, and the solutions of
problems created by this feature are non-trivial.

In terms of ADEPT, the ability to provide multiple answers means free
variables on table II, something which is not provided for at present. Black
gives an excellent account of the difficulties these variables create and
their implications for program organization. The matching routines become
more complex and, as is to be expected, a larger amount of effort per problem
is needed in order to find all answers. There is no doubt that multiple an-
swer capability is necessary to a general deductive system; it is also true
that it is an ability not needed in formal mathematics such as group theory.

Early versions of Black's program fell into infinite loops at times be-
cause they did not check whether a line being put on the proof tree was al-
ready on the tree. ADEPT checks this in PUTON2, and it does not seem to be a
time-consuming process, as Black feared. Other loops occurgéd from axioms
with hidden pitfalls, like (IMPLIES (NOT (NOT Al)) Al), which would allow to
a line A2 on the proof tree the reduction (NOT (NOT A2)), which in turn would
have a reduction (NOT (NOT (NOT (NOT A2)))), etc. ADEPT encountered a very
similar difficulty in Problem V-F due to the hypothesis fl(al) = fl(az) >
a, = az. With ADEPT, the problem was circumvented by use of FEQUAL. Black
also found the form and order of hypotheses to be critical in some problems, -
as did Slagle. To make deductive algorithms independent of such factors would
almost necessarily introduce an unbearable degree of inefficiency.

Black experimented with some heuristics to improve his advice-taker. One
was a bound on the proof tree by means of various length restrictions. This
purely syntactic strategy was less than satisfying. He discussed poséible

schemes for stopping or avoiding loops. He also proposed grouping axioms and

129

hypotheses according to their main terms or connectives. This is done in the
present implementation of ADEPT. For one thing, in order to facilitate
PUTON2's application of common identities, special lists are kept of all
homomorphisms and factor groups, so that a separate search of table I for

this information is unnecessary. Table I itself is split into two parts, as
might be deduced from Figure 4. All the equalities and implications are on
one part, and only this part is used directly by SCANW. However, such stream-
lining is hardly of crucial importance to the efficiency and success of the
program. (Warren Teitelman(zs) has also explored some modifications of Black's
advice-taker.)

This concludes the account of various projects related to the ADEPT pro-
ject and how ADBPT contrasts with them. No mention has been made of other
important areas in which many feel that significant progress must be made in
order for any large advances to be made in artificial intelligence. One is
learning and another is organization of data and concepts. ADEPT is not a
learning program, and would not be a suitable foundation for one. Learning,
of course, refers to machine assimilation of knowledge, as opposed to in-
creasing the 'knowledge'" of a program by the addition of more routines by .a
programmer. Slagle points out that his DEDUCOH(ZQ) (and therefore ADEPT)
Ylearns' when given more information, such as a new axiom or definition. In
a limited sense this is true, particularly from the advice-taker orientation.
Yet it would appear that real machine learning must involve programmed induc-
tion and generalization or adaptation facilities.

As for data organization, even less is known on How to proceed., List
structures have been standard up until now. Indeed, all of the programs men-
tioned in this chapter under the general heading of "heuristic", including
ADEPT, have been written using list processing languages. Without these
languages these programs would have been almost impossible to write. Still,

one wonders if a fresh view toward data organization could be helpful.

130

L

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

T e SUL T I TAT A D e T I e e s R R R e

APPENDIX II

THEOREMS PROVED BY ADEPT

(GROUP G)
NIL
(SEMIGROUP G)

(AND (KERNEL K (FL G H)) (HOMOMORPHISM (Fl G H)))
NIL
(SUBGROUP K G)

(AND (KERNEL K (F1 G H)) (HOMOMORPHISM (Fl G H)))
NIL
(NORMAL K G G)

(AND (CENTER C G) (ASSOC G))
NIL
(SUBMONOID C G)

(CENTER C G)
NIL
(ABELIAN C G)

(AND (CENTER C G) (AND (GROUP G) (SUBSET G C)))
NIL
(ABELIAN G G)

(AND (CENTER C G) (AND (SUBSET H C) (GROUP G)))
NIL
(NORMAL H G G)

(AND (SUBSET H G) (AND (ABELIAN G G) (GROUP G)))
NIL
(NORMAL H G G)

(AND (SUBSET H G) (AND (ABELIAN G G) (GROUP G)))
NIL
(ABELIAN H G)

(AND (INTERSECTION I H J) (AND (SUBGROUP H G) (SUBGROUP J G)))
NIL
(SUBGROUP I G)

(AND (INTERSECTION I H J) (AND (NORMAL H G G) (NORMAL J G G)))
NIL
(NORMAL I G G)

(AND INTERSECTION I H J) (AND (SUBGROUP J G) (NORMAL H G G)))

NIL
(NORMAL I J G)

131

13) (AND (IMAGE I (Fl G H)) (AND (HOMOMORPHISM (F1 G H)) (GROUP G)))
NIL
(SUBGROUP I H)

14) (AND (CONJUGATE D Al H G) (AND (GROUP G) (SUBGROUP H G)))
NIL
(SUBGROUP D G)

15) (AND (AND (SUBGROUP H G) (LCOSET D Al H G)) (MEMBER Al H))
NIL
(SUBSET D H)

16) (AND (SUBSET A G) (AND (LCOSET D (*IDENTITY G) A G) (GROUP G)))
NIL
(SUBSET D G)

17) (AND (SUBSET A G) (AND (LCOSET D (*IDENTITY G) A G) (GROUP G)))
NIL
(SUBSET D A)

18) (AND (SUBSET A G) (LCOSET D (*IDENTITY G) A G))
NIL
(SUBSET A D)

19) (AND (GROUP G) (AND (SUBSET A G) (AND (LCOSET D (*IDENTITY G) A G)
(RCOSET E (*IDENTITY G) A G))))
NIL
(SUBSET D E)

20) (AND (GROUP G) (LCOSET D Al G G))
NIL
(AND (SUBSET G D) (SUBSET D G))

21) (AND (GROUP G) (AND (LCOSET D Al G G) (RCOSET E Al G G)))
NIL
(SUBSET D E)

22) (AND (SUBGROUP H G) (LCOSET D Al H G))
NIL
(MEMBER Al D)

23) (AND (SUBGROUP H G) (NORMALIZER D H G))
NIL
(SUBSET H D)

24) (NORMALIZER J H G)
NIL
(NORMAL H J G)

25) (GROUP G)
NIL
(NORMAL G G G)

26) (UNITSET E (*IDENTITY G))
NIL
(NORMAL E G G)

27) (UNITSET E (*IDENTITY G))

NIL
(SUBGROUP E G)

132

28) (AND (COMMUTATOR Al A2 A3 G) (ASSOC G))
(EQUAL2 (*PROD A2 A3 G) (*PROD A3 A2 G))
(EQUAL Al (*IDENTITY G))

29) (AND (COMMUTATOR Al A2 A3 G) (AND (ASSOC G) (AND (ABELIAN G G)
(AND (MEMBER A2 G) (MEMBER A3 G)))))
NIL
(EQUAL Al (*IDENTITY G))

30) (AND (AND (COMMUTATOR Al A2 A3 G) (COMMUTATOR A4 A3 A2 G)) (ASSOC G))
NIL
(EQUAL (*INVERSE Al G) A4)

31) (AND (AND (COMMUTATOR Al A2 A3 G) (COMMUTATOR A4 A3 A2 G)) (ASSOC G))
NIL .
(INVERSE A4 Al G)

32) (AND (GROUP G) (AND (MEMBER Al G) (MEMBER A2 G)))
NIL
(AND (EXISTS A3 (EQUAL (*PROD Al A3 G) A2)) (EXISTS A3 (EQUAL
(*PROD A3 Al G) A2)))

33) (SUBGROUP H G)
NIL
(IMPLIES (AND (MEMBER Al H) (MEMBER A2 H)) (MEMBER (*PROD Al
(*INVERSE A2 G) G) H))

34) (GROUP G)
(EQUAL2 Al (*INVERSE Al G))
(ABELIAN G G)

35) (GROUP G)
(AND (EQUAL (*PROD Al Al G) (*IDENTITY G)) (IMPLIES (EQUAL
(*PROD Al Al G) (*IDENTITY G)) (EQUALZ Al (¥INVERSE Al G))))
(ABELIAN G G)

36) (AND (HOMOMORPHISM (Fl G H)) (KERNEL K (FL G H)))
(IMPLIES (MEMBER Al K) (EQUAL Al (*IDENTITY G)))
(ONETOONE (F1 G H))

37) (AND (AND (HOMOMORPHISM (F1 G H)) (KERNEL K (FL G H))) (ONETOONE
(F1 G H)))
NIL :
(IMPLIES (MEMBER Al K) (EQUAL Al (*IDENTITY G)))

38) (AND (AND (AND (LCOSET D Al H G) (SETINV I D G)) (SUBGROUP H G))
(GROUP G))
NIL
(RCOSET I (*INVERSE Al G) H G)

39) (AND (AND (LCOSET D Al H G) (LCOSET E A2 H G)) (AND
(SUBGROUP H G) (ASSOC G)))
(AND (MEMBER (*PROD (*INVERSE A2 G) Al G) H) (EQUAL
(*PROD (¥INVERSE Al G) A2 G) (¥INVERSE (¥PROD (*INVERSE A2 G)
Al G) G)))
(AND (SUBSET D E) (SUBSET E D))

40) (AND (AND (HOMOMORPHISM (F1 G H)) (AND (MEMBER Al G) (INVENT I
(F1L G H Al) (F1 G H)))) (KERNEL K (Fl G H)))
NIL
(LCOSET I Al K G)

133

41) (AND (NORMAL H G G) (SUBSET K G))
NIL
(NORMAL H K G)

42) (AND (AND (SUBSET A B) (SUBSET B G)) (AND (CENTRAL C A G)
(CENTRAL D B G)))
NIL
(SUBSET D C)

43) (AND (HOMOMORPHISM (FL G H)) (AND (RIMAGE J K (Fl G H))
(INVIMAGE I J (Fl G H))))
NIL
(SUBSET K I)

44) (AND (AND (EPIMORPHISM (F1 G H)) (CENTER C G)) (AND
(RIMAGE I C (FL G H)) (CENTER D H)))
NIL
(SUBSET I D)

45) (AND (EPIMORPHISM (Fl G H)) (IMAGE I (Fl G H)))
NIL
(SUBSET H I)

46) (AND (HOMOMORPHISM (F1 G H)) (AND (ABELIAN G G) (IMAGE I
(F1 G H))))

NIL
(ABELIAN I H)

47) (AND (AND (HOMOMORPHISM (F1 G H)) (SUBGROUP K G)) (RIMAGE I K
(F1 G H)))
NIL
(SUBGROUP I H)

48) (AND (NORMAL K G G) (AND (RIMAGE I K (F1 G H)) (EPIMORPHISM
(F1 G H))))
NIL
(NORMAL I H H)

49) (AND (AND (HOMOMORPHISM (Fl1 G H)) (NORMAL K G G)) (AND (RIMAGE I K
(F1L G H)) (IMAGE J (F1 G H))))
NIL
(NORMAL I J H)

50) (AND (HOMOMORPHISM (F1 G H)) (AND (SUBGROUP K H) (INVIMAGE D K
(F1 G H))))
NIL
(SUBGROUP D G)

51) (AND (HOMOMORPHISM (Fl G H)) (AND (NORMAL K H H) (INVIMAGE D K
(FL G H))))
NIL
(NORMAL D G G)

52) (AND (SUBGROUP H G) (AND (FACTORGROUP B K G) (SUBFGRP C K H G)))
NIL
(SUBSET C B)

53) (AND (SUBGROUP H G) (AND (FACTORGROUP B K G) (SUBFGRP C K H G)))

NIL
(SUBGROUP C B)

134

54)

55)

56)

57)

58)

59)

60)

61)

62)

63)

64)

65)

66) v

67)

(AND (NORMAL H G G) (AND (FACTORGROUP B K G) (SUBFGRP C K H G)))
NIL :
(NORMAL C B B)

(GROUP G)
(IMPLIES (MEMBER Al G) (EQUAL (F1 G G Al) (*IDENTITY G)))
(HOMOMF (F1 G G))

(GROUP G)
NIL
(ISOMORPHIC G G)

(ISOMORPHISM (F1 G H))
NIL
(ISOMORPHIC G H) '

(ISOMORPHISM (Fl G H))
NIL
(ISOMORPHIC H G)

(AND (GROUP G) (AND (ISOMORPHISM (Fl G H)) (ISOMORPHISM (F2 H K))))
NIL
(ISOMORPHIC G K)

(AND (ISOMORPHISM (F1 G H)) (ISOMORPHISM (¥2 H K)))
NIL '
(ISOMORPHIC K G)

(AND (FACTORGROUP D E G) (AND (UNITSET E (*IDENTITY G)) (GROUP G)))
NIL
(ISOMORPHIC G D)

(AND (FACTORGROUP D E G) (UNITSET E (*IDENTITY G)))
NIL
(ISOMORPHIC D G)

(AND (AND (FACTORGROUP D K G) (KERNEL K (Fl G H))) (EPIMORPHISM
(F1 G H)))

NIL

(ISOMORPHIC D H)

(AND (AND (FACTORGROUP D K G) (KERNEL K (FL G H))) (EPIMORPHISM
(F1 G H)))

NIL

(ISOMORPHIC H D)

(AND (AND (FACTORGROUP D K H) (FACTORGROUP E I H)) (AND
(INTERSECTION I H K) (SUBGROUP K H)))

NIL

(ISOMORFHIC D E)

(AND (AND (FACTORGROUP D K H) (FACTORGROUP E I H)) (AND
(INTERSECTION I H K) (SUBGROUP K H)))

NIL

(ISOMORPHIC E D)

(AND (AND (FACTORGROUP D I G) (FACTORGROUP E K H)) (AND |
(EPIMORPHISM (Fl1 G H)) (INVIMAGE I K (Fl1 G H))))

NIL

(ISOMORPHIC D E)

135

68)

69)

70)

71)

72)

73)

74)

75)

76)

77)

78)

79)

(AND (AND (FACTORGROUP D I G) (FACTORGROUP E K H)) (AND
(EPIMORPHISM (Fl1 G H)) (INVIMAGE I K (F1 G H))))

NIL

(ISOMORPHIC E D)

(AND (AND (FACTORGROUP A H G) (FACTORGROUP B K .G)) (AND
(SUBFGRP C K H G) (FACTORGROUP D C B)))

NIL

(ISOMORPHIC A D)

(AND (AND (FACTORGROUP A H G) (FACTORGROUP B K G)) (AND
(SUBFGRP C K H G) (FACTORGROUP D C B)))

NIL

(ISOMORPHIC D A)

(AND (ABELIAN G G) (GROUP G))

NIL

(ISOMORPHIC G G)

(IMPLIES (MEMBER Al G) (EQUAL (FL G G Al) (*INVERSE Al G)))
(overriding GENFCN)

(AND (MEMBER Al G) (GROUP G))
NIL
(ISOMORPHIC G G)
(IMPLIES (MEMBER A2 G) (EQUAL (F1 G G A2) (*PROD (*PROD Al A2 G)
(*INVERSE Al G) G)))
(overriding GENFCN)

(AND (GROUP G) (FACTORGROUP D H G))
NIL
(ISOMORPHIC G D)
(fails on one-to-one, thus proving epimorphic)

(AND (FACTORGROUP D K G) (AND (FACTORGROUP E I H) (AND'
(RIMAGE I K (F1 G H)) (EPIMORPHISM (Fl G H)))))
NIL
(ISOMORPHIC D E)
(fails on one-to-one, thus proving gpimorphic)

(AND (LCOSET D Al H G) (AND (LCOSET E A2 H G) (AND (ASSOC G) (AND
(MEMBER Al D) (SUBSET D E)))))
NIL

(MEMBER (*PROD (*INVERSE A2 G) Al G) H)

(AND (SETINV I H G) (AND (NORMAL H G G) (SUBGROUP H G)))
NIL

(AND (SUBSET H I) (SUBSET I H))

(AND (SETINV I H G) (SUBGROUP H G))
NIL
(SUBGROUP I G)

(AND (SETINV I H G) (AND (NORMAL H G G) (AND (SUBGROUP H G) (ASSOC G))))
NIL
(NORMAL I G G)

(AND (CENTER C G) (ABELIAN G G))

NIL
(SUBSET G C)

136

80)

81)

82)

83)

84)

85)

- 86)

(HOMOMORPHISM (Fl G H))

(AND (AND (EQUAL (*SEQ (A9 N2) 1 A) (A9 1)) (EQUAL (*SEQ (F9 A B
(49 N2)) 1 B) (F9 A B (A9 1)))) (AND (EQUAL (*SEQ (A9 N2)
(*SUCCESSOR N3) A) (*PROD (*SEQ (A9 N2) N3 A) (A9 (*SUCCESSOR N3))
A)) (EQUAL (*SEQ (F9 A B (A9 N2)) (*SUCCESSOR N3) B) (*PROD (*SEQ
(F9 A B (A9 N2)) N3 B) (F9 A B (A9 (*SUCCESSOR N3))) B))))

(FEQUAL (F1 G H (*SEQ (Al N1) N G)) (*SEQ (F1 G H (Al N1)) N H))

(HOMOMORPHISM (F1 G H)) ,

(AND (AND (EQUAL (*SEQ A8 A9 1 A) (A8 A9 1) (EQUAL (*SEQ A8 A9
(*SUCCESSOR N1) A) (*PROD (*SEQ A8 A9 N1 A) (A8 A9 (*SUCCESSOR N1))
A))) (EQUAL (F9 A B (A8 A9 N1)) (A8 (F9 A B A9) N1)))

(FEQUAL (F1 G H (*SEQ Al ALl N G)) (*SEJ Al (F1 G H Al) N H))

(AND (SEMIGROUP G) (MEMBER Al G))

(AND (EQUAL (*EXP A9 1 G) A9) (EQUAL (*EXP A9 (*SUCCESSOR N1) G)
(*PROD (*EXP A9 N1 G) A9 G)))

(MEMBER (*EXP Al N G) G)

(AND ($SUBGROUP (H 1) G) ($SUBGROUP (H (*SUCCESSOR N)) G))

(IMPLIES (AND ($SUBGROUP A C) ($SUBGROUP B C)) ($SUBGROUP
(*INT A B) C))

($SUBGROUP (*FININT H N) G)

(AND ($NORMAL (H 1) G G) (SNORMAL (H (*SUCCESSOR N)) G G)) ‘
(IMPLIES (AND ($NORMAL A C C) ($NORMAL B C C)) ($NORMAL (*INT A B) C C))
(SNORMAL (*FININT H N) G G) ,

(NULL)

(AND (AND (IMPLIES (AND (GROUP A) (LEP (ORDER A) 1)) (EQUAL A
(*UNITSET (*IDENTITY A)))) (IMPLIES (GROUP A) (AND
(SHAS*MAX*NORM*SUB A) (AND (GROUP (*MAX*NORM*SUB A))

(IMPLIES (LEP (ORDER A) (*SUCCESSOR N1)) (LEP (ORDER

(*MAX*NORM*SUB A)) N1)))))) (IMPLIES ($HAS*COMP*SERIES A)

(EXISTS N3 (EXISTS (B N4) (COMP*SERIES ((B N4) N3) A)))))
(IMPLIES (AND (GROUP G) (LEP (ORDER G) N)) ($HAS*COMP#SERIES G))

(AND (AND (UNMARRIED*FEMALE N7) (UNMARRIED*MALE N5)) (AND (IMPLIES

. (NOT*THINK*DEAD N8 N6) (CAN*STAY*ALIVE N5)) (AND (IMPLIES
(CAN*APPEAR*SAFELY N6) (CAN*PRODUCE N5 N6)) (AND (IMPLIES
(NOT*ACCUSING N7 N6) (CAN*APPEAR*SAFELY N6)) (IMPLIES
(NOT*CLAIMING N7 N6) (NOT*ACCUSING N7 N6))))))

(AND (IMPLIES (EXISTS N1 (CAN*PRODUCE N1 N2)) (NOT*THINK*DEAD N8 N2))
(AND (IMPLIES (MARRIED N7) (NOT*CLAIMING N7 N1)) (AND (IMPLIES
(EXISTS N1 (CAN*MARRY N1 N2)) (MARRIED N2)) (AND (IMPLIES (EXISTS N1
(CAN*PROPOSE N1 N7)) (EXISTS N1 (CANAMARRY N1 N7))) (IMPLIES (AND
(UNMARRIED*FEMALE N2) (EXISTS N1 (UNMARRIED*MALE N1))) (EXISTS N1
(CAN*PROPOSE N1 N2)))))))

(CAN*STAY*ALIVE N5)

(N5 = Koko

N6 = Nankipoo
N7 = Katisha

N8 = Mikado)

137

APPENDIX III

LISTING OF THE PROGRAM

The reader who attempts to use the listings included in ﬁhis appendix
will find that they do not conform in all details with the descriptions given
in the bedy of this report. Any discrepancies of this sort were introduced
solely to make the report easier to comprehend, and do not really misrepresent
the actual operation of the program.

The various LISP functions are made into a system by means of a file such
as COMPIL. Following execution of this file, the user may call ADEPT ;ls a
LISP function of two arguments. The first of these is to be either "NIL" or
"MODEL", and determines whether or not the MODEL heuristic is to be in effect.
The second argument is to be either "NIL" or ﬁINDUCT"; and is the present
means whereby NSOLVE can be called, when use of mathematical induction is
desired. (Warning: Even with the special LISP system available to the author
and extensive use of REMOB,(s) it was not possible to load all the functions
into the system at once by use of COMPIL as presented here. This would pre-
sumably be the case with most LISP systems.)

The file DEFNS DATA contains the sufficient conditions and definitions
used by the author. The two remaining lists in this file represent certain
of the built-in axioms and lattice information for use with the MODEL heuris-

tic, respectively.

138

ADDANTEC, 162
ADDCONSQ, 162
ADEPT, 141
ALIMATCH1, 169
ALLSUBSTS, 165
ALLVBLES, 164

' ANDARGS, 162
ANDEND, 169
ANDTERMS , 169
APPENDM, 162
ARGOF1l, 166
ASSOCM, 165
ASTERISKED, 165
ATMS, 168
CADDAAR, 166
CADDDAAR, 166
CADDDAR, 166
CHECKXMODEL, 160
CHNGW, 165
COMPIL, 172
COMPOS ITION, 155
CONNECTIVE, 164
DEFNS DATA, 170-171
DELPR, 168
DRLTF, 168
FIFTH, 165
FREEVBLE, 168
GENFCN, 154
GERNSET, 160
GENSUBST, 164
GENVBLE, 168
GFIND, 169
GMATCH, 163
GMATCH1, 163
QMBMB, 169

INDEX TO LISTING

139

GTFRM, 161
HMM, 159
HOMOMF, 153
IMPMATCH, 163
INWM, 158
INWM2, 158
INVREDO, 167
INVSUB, 167
1SOLVE, 142
MASK, 162
MATCH1, 162
MEET, 160
MDOFL, 167
MIRGEA, 168
MODEL MAKE, 160
MONOMF, 156
NEXT, 166

- NOLOOK, 165

NOWWHICH, 160
NSOLVE, 143
OoN, 164
ONLY, 153
ONLYMEMB, 168
ON2, 149
ON2AVER, 162
PMATCH, 165
PRODARGS, 167

“ PUTN2, 149

PUTON1, 148
PUTON2, 149
PUT2, 149-150
RESRV, 164
ROFV, 165
ROPW, 166
RPICE, 166

RPLCEF, 168
RPLCL, 169
RPTSUB, 167
SCANW, 146-147
SCNX, 152
SIFT, 158
SIXTH, 165
SLVX, 153
SOLVE, l44-145
SOLVEX, 151
SOLVX, 143
SOLVXP, 153
SPREAD, 165
SUPSUB, 164
SUPXEC, 164
SWMEMB, 160
TACK, 168
TERMS, 164
VBLES, 164
VERIFY, 157
WLDFN, 155
WLDFN1, 155

140

ADEPT

DEFINE{ ((ADEPT(LAMBODA(QM5 WH)

(PROG(WL W X Y Z1 Z2 23 Z4 N 16 Q QFl
QML QM2 QM3 QM4 QM6 FQM2 FQM3 FQM4 U2 U3 ZN VV1 VV2 CL Z4A Z48B)

(SETQ

N (QUOTE NILL))

(FILESEEK{QUOTE DEFNS)(QUOTE DATA))

(SETQ
(SETQ
(SETQ
(SETQ

X (READ))
Y (READ))
XX (READ))
QM1 (READ)})

LISP
U Ul QLL QL2 XX CX CXL LON

(FILEENDRD{QUOTE DEFNS) (QUOTE DATA)}

Hl . (SETQ Z1 {QUOTE({NILL.A){NILL.B){NILL.C)(NILL.D)INILL.E}
(NILLoG) INILLHIINILLI)(NILL.J) (NILL.K) (NILL.M)})))
(SETQ Z2 (QUOTE((NILL.FL)INILL.F2)(NILL.F3)INILL.F4)(NILL.F5)
(INILL.FO)(NILL.FT)INILL.F8) (NILL.F9))))
(SETQ 23 (QUOTE((NILL.AL){NILL.A2)(NILL.A3)INILL.A4)(NILL.AS)

INILLAG) (NILLOAT)INILL.AB)INILL.A9)INILLLALO)I(NILL.ALL)(NILLWGAL2))))

{SETQ IN (QUOTE((NILL.N)INILL.NL) (NILL.N2){NILL.N3}
INILLoN4) INILLNS)INILL.NG) EINILLN7IINILLN8) INILL.N9) 1))

(SETQ

Q NIL)

(SETQ QM2 NIL)(SETQ QM3 NIL)(SETQ QM4 NIL)(SETQ QM6 NIL)

{SETQ
{SETQ
(SETQ
(SETQ
(SETQ
{SETQ
(SETQ
{SETQ
(SETQ
{SETQ
(SETQ
(SETQ
(SETQ
(SETQ
(SETQ
(SETQ
(SETQ

QL1 NIL)

QL2 NIL)

24 1)ISETQ Z4A 1){(SETQ 248 1)
16 NIL)

LON NIL)

VV1 NIL)(SETQ VvVv2 NIL)
WL NIL)

W NIL)

U2 (ROFLX()))

Ul (ALLVBLES{VBLES U2))}
Z1 (RESRV Ul 1))

Z2 (RESRV Ul Z2))

I3 (RESRV Ul Z3}}

IN (RESRV Ul ZIN))

CL (ALLVBLES(TERMS U2 {ALLVBLESIVBLES U2)))))

U3 (ROFLX{I))
U {(ROFLX{))}

{COND((EQUAL(CAR U){(QUOTE IMPLIES))

(SETQ
{SETQ
(SETQ
(SETQ
{SETQ

H1A (COND{(EQUAL(CAR U2) {QUOTE AND}) (SETQ UL (PUTONLICONS Z4A N) U2)))

(7
({SETQ

Ul (ALLVBLES{VBLES U}))}
IZ1 (RESRV Ul Z1)}
22 (RESRV Ul Z2))
Z3 (RESRV Ul 23))
IN (RESRV Ul ZIN))

(GO HiAY))

({SETQ Ul (PUTONI(CONS Z4A 148) U2})))

4B (ADD1 Z4B}))

(COND({NULL U3)(GO H18}))

{SETQ
(SETQ

U2 u3)
U3 NIL)

(GO H1A)
H18 (COND{(MEMBER(CAR U) (QUOTE(ISOMORPHIC ONEGCNE)))
{SETQ Ul (ISOLVE U)))

((NULL WH)(SETQ Ul (SOLVE U))}
AT (SETQ Ul (NSOLVE UMI))
(GO H1)

[RRR R

sToPy))

141

00010
00020
00030
00040
00050
00060
00070
ocase
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420

00430

00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560

ISOLVE LISP
DEFINE({{ISOLVE(LAMBDA(U) {PROGI(UL EQN FV FV2)
X1 (COND{INULL CL)II(GO X2)))
(SETQ Ul (GTFRM{CAR CL)}{QUOTE Y) NIL Z48))
{SETQ CL (CDR CL))
{SETQ 248 (AODl Z4B))
(60 X1)
X2 (SETQ FV (CONS vVl vv2))
{SETQ FQM2 QM2) (SETQ FQM3 QM3) (SETQ FQM& QM4}
(SETQ EQN (RDFLX(}))}
(COND{{EQUAL{CAR L) {QUOTE ONEONE))(GO B)))
(SETQ Ul (MEMOF1 VV1 (QUOTE ISOMORPHISM)))
X4 (COND({NULL UL}(GO X3))
((EQUAL (CDAAR U1)(CDR UIIGO F&)))
(SETQ Ul (CDR Ul))
(G0 X4)
X3 (COND{{NULL EQN)(SETQ EQN (GENFCN(COR U)))))
(COND([NULL EQN) (GO F1)))
(PRINT EQN)
{SETQ VYVl (CAR FV)){SETQ vv2 (COR FV})
{SETQ QM2 FQM2)(SETQ QM3 FQM3)(SETQ QM4 FQM4) (SETQ QM6 NIL)
{SETQ UL (PUTON1(CONS 2Z4A Z4B} EQN))
(SETQ Z4B (ADOL Z481) -
(SETQ FV2 (CONS vVl vv2))
(COND{ {EQUAL (CAR EQN) (QUOTE IMPLIES)) (GG A)))
(SETQ Ul (WLDFN{COR EQN)))
(COND{INULL U1)(GO F2}))
(SETQ Ul (CAADR EQN))
(SETQ VvVl (CAR FV2)){SETQ vv2 (COR Fv2})
(SETQ QM2 FQM2) (SETQ QM3 FQM3) (SETQ QM4 FQM4) (SETQ QM6 NIL)
(GO Al)
A (SETQ Ul (CAARICDAODR EQN))}
Al (SETQ Ul (SOLVE(LIST(QUOTE HOMOMF) (CONS Ul (COR U}II))
(COND{ (NULL U1)(GO F3))}
(SETQ 26 NIL)(SETQ LON NIL)
(SETQ Wl NIL)
(SETQ W NIL)
(SETQ VV1 (CAR FV2))I(SETQ vv2 (COR Fv2))
USETQ QM2 FQM2) (SETQ QM3 FQM3) ISETQ QM4 FQM&) {SETGQ QM6 NIL)
(COND{ (EQUAL(CAR EQN){QUOTE IMPLIES)}I(GO P}}}
P1 (SETQ UL (SOLVEILIST(QUOTE ONTO)(CONS(CAADR EQN)(CDR L)))}
({COND((NULL UL)(GD F4))})
(SETQ 26 NIL)(SETQ LON NIL)
(SETQ w1l NIL)
(SETQ W NIL)
{SETQ VV1 (CAR FV))(SETQ vvZ (COR FV))
(SETQ QM2 FQM2) {SETQ QM3 FQM3) (SETQ QM4 FQM4) (SETQ QM6 NIL)
8 (SETQ Ul (MONOMF EQN N))
(CONDC(NULL U1)(GO F5)))
C (PRINTIQUOTE QEDN)
{RETURN T)
F1 (PRINT(QUOTE(CANNOY FIND RELATING FUNCTION}))
{60 H1)
F2 (PRINT(QUOTE(CANNOT PROVE FUNCTION WELL DEFINED)))
(GO H1}
F3 (PRINTIQUOTE(CANNOT PROVE FUNCTION HOMOMORPHIC)))
(GO Hl)
F4 (PRINT{QUOTE(CANNOT PROVE FUNCTION EPIMORPHIC)))
{60 Hl)
F5 (PRINT(QUOTE(CANNOT PROVE FUNCTION MONCMORPHIC))}
HL (RETURN F)
F6 (PRINT V)
(PRINT(QUOTE BECAUSE))
(PRINTILIST(QUOTE ISOMORPHISM}(CAAR UL)))
(60 C)
P (SETQ Ul (CADOR EQN))
(SETQ VV2 (SUBST Ul EQN Vvv2))
(SETQ EQN U1}
(60 P1)
IRRRE] STAPI}N)))

142

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110

. 00120

00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690

NSOLVE LISP
DEFINE(((NSOLVE(LAMBOA{U) (PROGIUL FV) .
(SETQ FV (CONS VV1 VV2))(SETQ FQM2 QM2)(SETQ FQM3 QM3) (SETQ FQM4 QM4)
(SETQ ULl (SUBST 1 (QUOTE N} U))
(PRINTIQUOTE(ATTENMPTING PROOF BY INDUCTION)}))
(SETQ Ul (SULVE Ul))
(COND((NULL U1) (GO F1)))
(PRINTIQUOTE(BASIS STEP PROVED)))
({SETQ LON NIL)
{SETQ 16 NIL)ISETQ W1l NIL)I(SETQ W NIL){SETQ VV1l (CAR FV))(SETQ VV2
(COR FV)){SETQ GM2 FQM2)(SETQ QM3 FQM3) (SETQ CH& FQM4) (SETQ QM6 NIL)
{SETQ Ul (PUTOML{CONS Z4A I4B)(SUBST(QUOTE EQUAL)(QUOTE FEQUAL) U)})
(SETQ 248 (ADD1 248))
(SETQ U (SUBST(QUOTE(=SUCCESSOR N)) (QUOTE N} U)}
(SETQ ZIN (RESRVIQUATE(N)) IN))
(SETQ Ul (SOLVE (CONS{QUOTE INOUCTION} U)))
(COND{ (NULL U1)(60 F2)})
(PRINT{QUOTE(INDUCTIVE STEP PROVED)))
(PRINT(QUOTE QED))
(RETURN T)
F1 {PRINTI{QUOTE(CANNOT COMPLETE BASIS STEP)))
(RETURN F)
F2 {(PRINT{QUOTE(CANNOT COMPLETE INDUCTIVE STEP)))
(RETURN F)
Mmm STOPI I)

SOLVX LISP
DEFINE{ ({SOLVX{LAMBDA(U) (PROGIUL U2 U3 S}
(COND({ON(CADDR U} ZNI(GO B)))
(60 EXTEND)
B (SETQ Ul (CADDOR VU})
Bl1A (COND((EQUAL(CAR U1){QUOTE EXISTS)) (GO 81))
((CONNECTIVE(CAR U1})(60 B82)))
(SETQ U2 (MEMOFLl VV1 (CAR Ul))}
B4A (CONDUINULL U21(GO 83)))
(SETQ U3 (GMATCHI(CDR U1){CAR U2))}
(CONDU(NULL U3) (GO B4)))
(SETQ U3 (PUTN2 NIL (CONS{CAR U1}
(CAR U2))(CADDDAR U}})
(COND((NULL U3) (GO B4)))
(RETURN U3)
B4 (SETQ U2 (COR U2))
(60 B4A)
Bl (SETQ Ul (CADDR Ul))
(GO BlA)
B3 (SETQ U2 (MEMOF1 Vvv2 (QUOTE IMPLIES)))
B3A (COND((NULL V2)(GO B2))
({EQUAL{CAADAR U2)(QUOTE AND)) (GO 85))
((EQUAL(CAADAR U2)(CAR U1)){60 B6)))
B38 (SETQ U2 (COR V2))
(GO B3A)
86 (SETQ U3 (GMATCHICDR ULl){COADAR U2)))
{CONOD{ (NULL U3)(GO B38)))
(SETQ U3 (PUTN2 NIL (CAAR U2)(CADDDAR U}))
(COND{ (INULL U3}{GO B3B))
((MEMBER U3 (QUOTE(DONE NEXT)))(RETURN U3}))
(SETQ S U3)
(60 838)
85 (CONDI(MEMBER(CAR Ul) (ATMS{CDADAR U2}))
(SETQ U2 (APPEND U2 (LIST(LISTICAAR U2) (CAR(CDADAR U2))}
{LIST(CAAR U2) (CADR(CODADAR U2)))1})))
(GO B38)
82 (COND((NOTI(NULL S))}{(RETURN S})}
EXTEND (RETURN NIL)
mmn sTOPII)))

143

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
0019¢C
00200
00219
00220
00230
00240

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380

SOLVE LISP

DEFINE({ {SOLVE (LAMBDA (V) ¢ 00010
{PROGIUL U2 U3 U4 Z5 S) 00020
{COND((EQUAL(CAR U){QUGTE INDUCTION))}(GO [))) 00030

H (SETQ UL (PUTNZ NIL U NIL)) 00040
(COND({EQUAL Ul (QUOTE DONE))}(GO H4)}) © 00050
H2 (COND{ (EQUAL(CAAAR W)(QUOTE REL))(GO H3))) : 00060
(SETQ W1 (APPEND W1 {CONS{CAR W)} NIL)})) : 00070
{SETQ W (COR #)) _ 00080
(60 H2) 00090
H3.. (SETQ W (CONS{SUBST{GUOTE PNT)IQUOTE REL) (CAR WII(COR Wi 00100
H3A' (COND((EQUAL(CADAR W)(QUOTE IMPLIES)) (60 HH)) 00110
({EQUAL 25 (QUOTE INDUCTION)I(GO 111)) : 00120
{SETQ U (SCANW NIL NIL)) 00130
H38 (COND((EQUAL U (GUOTE DONE))(GO Hé}) _ . 00140
{({EQUAL U (QUUTE NEXTV) (GO HS5A)) : 00150
{{EQUAL U (QUDTE NEXT))(GO H5))) , © 00160

HH (SETQ U (CAR W)) ‘ : 00170
(COND({CONNECTIVE(CADR U)) GO H6))) 00180
{SETQ UL (GTFRM(COR U)(QUOTE X) (CADDOAR U) NIL)) . 00190
(COND[{NULL UL)(GO H8)) : 00200
{(EQUAL Ul [QUOTE DONE)){GO H41)) , 00210

{GO H54) 100220
H8 (SETQ Ul {ALLVBLES(TERMS{COR UM (ALLVBLESIVBLESICOR U111))) 00230
(SETQ S NIL) 00240
HBA (CONDU{NULL U1)(GO H8B))) 00250
(SETQ U2 (CONS{CAR Ul) NIL)) 00260
{SETQ U3 (COR U1)) 00270
(SETQ UL NIL) 00280
H81 [CONDC((NULL U3)(GO H82)) 00290
{ {EQUAL(CAAR UZ)(CAAR U3)){SETQ U2 (APPEND U2 00300
(CONS(CAR U3) NIL}I)) 00310

{T (SETQ Ul (APPEND Ul (CONS(CAR U3) NIL)}))}} 00320
(SETQ U3 (CDR U3)) 00330
(GO H81) ’ 00340
H82 (COND{INULL U2)160 H83})) 00350
{SETQ U3 (GTFRM(CAR UZ)(QUOTE Y) NIL Z4B)} 00360
(CONDI(NULL U3){GO HB821)) 00370
{{EQUAL U3 (QUOTE DONE)}{GO H4)) - 00380
((EQUAL U3 {QUOTE NEXT)}{GO H5A1}) . 00390

{ {EQUAL (CAAR U2) (QUOTE ISOMORPHISM)})(SETQ Z4B (ADD1 248)))) 00400
(SETQ 25 (QUOTE GEN)) 00410
H821 (SETQ U2 {COR U2)) 00420
(GO HB2) " ' 00430
H83 (SETQ Z48 (ADD1 Z48)) ‘ ; 00440
(GO H8A) : 00450
H8B (COND{{NULL Z5)(GC H9)) 00460
{INOTINULL U)}{SETQ Z5 NIL))) 00470
(SETQ U3 (SCANW NIL Z5)) 00480
(SETQ 25 NIL) , 00490
(COND(INULL U3) (GO H9))) ' : 00500
(SETQ U U3) © 00510
(GO H3B) . 00520
H9 (COND{ INULL. U) (GO H10A)} 00530
~ (LEQ S NI(GO H10)}) : 00540
(SETQ S N) . 00550
(SETQ U2 (ALLVBLES(VBLES{COR U))})) 00560
{CONDICNULL U2) (GO H10))) 00570
H91 (SETQ Ul (APPEND U1 (ARGOF1(CAR U2) VVI))) 00580
{SETQ U2 (CDR U2)) 00590
{COND{ (NOT(NULL U2))(GO H91))) 00600
{GO HB8A) 00610
H6 (COND((EQUAL(CADR U)(QUOTE IMPLIES)}(GO H6A)) 00620
* ({EQUAL(CADR U)(QUOTE DEFER)) (GO H6E))) . 00630
(GO HB) A 00640
H6A (SETQ Ul (ALLVBLES(VBLES{CADDR U)1)) : , ' 00650
{SETQ Ul (RPLCL U1)) 00660
(COND((NOT{NULL UL))(SETQ U (CONS(CAR U) (GENSUBST 00670
TCAR U1)(CDR UL)(COR ¥)1)))) : 00680

{SETQ U1l (PUTONLICONS 24A Z4B8)(CADDR U))) . - v , 00690
(SETQ 248 (ADD1 24B)) ' : 00700
(COND((EQUAL Ul {QUOTE DONE)}{GO H4)) .. : © 00710
{{LEQUAL Ul (QUOTE NEXT)}(GO H5A))) 00720
(SETQ Ul (PUTN2 NIL (CADDDR U)(CADDDAR U))) 00730
H6AL “(CONDCINULL U1)(G0 H8)) ‘ ‘ 00740
(({EQUAL Ul (QUOTE DONE)} 60 H4))) } . 00750

(60 H5A) © 00760
H6E 1SETQ UL (PUTN2 NIL (CADDR U)(CADDDAR Ui)) : : - 00770
(G0 HéAL) _ 00780
H10 (CONDI(EQUAL(CADR U)(QUOTE EXEISTS))(60 H6B))) o 00790
H10C (SETQ U NIL) 00800
(SETQ U1 CL) 00810
(GO H8A) 00820

144

H10A (COND((EQUALICADAR W) (QUOTE EXISTS)) (GO H6B))
{(EQUAL(CADAR W) (QUOTE FEQUAL))I(GO H6D)))
H108 ({PRINT(QUOTE(DRASTIC MEASURES NEEDED))} ’
(PRINT(QUOTE(TYPE YES IF POINTER SHOULD BE MOVED DOWN)))
(SETQ U (RDFLX{)}))
(COND({EQUAL U (QUOTE YES}I(GO HS5)))
(GO H4F)
H68 (SETQ Ul (SOLVEXICAR W)})
H681 (COND((NULL Ul) (GO H6BAY)
{{EQUAL Ul (QUOTE NEXT))(GO H5))
({EQUAL Ul N) (GO HSA))
" {(EQUAL Ul (QUOTE DONE))IGO H4)))
H68A (COND{INOT{(NULL U))(GO H10C)))
(SETQ Ul (SOLVX(CAR W)))
(COND{ {NOTINULL UL)) (GO HeB1)))
{PRINT(QUOTE EXISTS))
(GO H108)
H6D (SETQ Ul (HOMOMF{CDAR Wl}))
(COND((EQUAL Ul (QUOTE NEXT))(GOD HS5))
(INOT{EQUAL Ul (QUOTE DONE)})(GO H10B)})
H4 (PRINT VV1)(PRINT VV2)(PRINT WI1)(PRINT W)
{RETURN T)
H51 (SETQ 24B (ADD1 Z4B))
H5 (CONDU(NULL (NEXT NIL))(GO HSE)))
{GO HH)
H5A1 (SETQ Z48 (ADD1 24B))
H5A (COND{ (NOT(NULLINEXT NIL))){GO H3A)))
HS5E (PRINT(QUOTE(PANIC HS5E SOLVE))}
H4F (PRINT VV1)I{PRINT VV2)(PRINT W1){PRINT W)
{RETURN F))
I (SETQ Z5 (CAR W)
(SETQ U {CDR U})
(GO H)
Il (SETQ ZI5 NIL)
(GO HH)
11))) STOPMIINI D)

145

00830
00840
00850
00860
00870
00880
00890
00900
00910
00920
00930
00940

© 00950

00960
00970
00980
00990
01000
01010
01020
01030
01040
01050
01060
01070
01080
01090
01100
01110
01120
01130
01140
01150
01160
01170
01180

SCANW LISP
DEFINE{ ((SCANW{LAMBDA(L LL)
(PROG(S S1 U Ul U2 U3 U4 U5 U6 VT UB FLG)
“(SETQ § NIL}
(SETO FL6 NIL)
(SETQ ULl (ONLY(APPEND W1 W){QUOTE(VERA2))))
AlA (COND{INULL ULM(GO A2))
((MEMBER(CADDDAAR Ul) Z26)(60 AA))
({MEMBER{QUOTE HEAD)(CADAAR UL))(SETQ FLG (CONS(SIXTH
[CAAR Ul}) FLGI)))
AA (SETQ Ul (COR Ul))
(60 AlA)
A2 (CONDCINULL W){SETQ Ul NIL))
“CINULL LL)(SETQ Ul (CONSICAR W} NIL)))
((EQUAL LL N)(SETQ vl (CDR W)))
(T (SETQ Ul W)))
A2A (COND((INULL U1)(GO CI))
(SETQ U2 (CAR ULl)} (SETQ Ul {CDR Ul})
(COND((NOLOOK(CADDDAR U2)1{60 AZA))
{(MEMBER(CADR U2) (QUOTE(IMPLIES FEQUAL DEFER OR))} (GO A2A1))
(SETQ U (ROFV(FIFTH(CAR U2)) FLG))
(SETQ U4 NIL)
(CHNGW U2}
A28 {COND((NULL U)(GO A3)))
(SETQ U3 {CAR U)) (SETQ U (CDR U))
(COND((EQUAL{CADR U3) (QUOTE IMPLIES))(GO B4))
((EQUAL(CADR U2) (QUGTE EXISTS))(GO A28))
. {{MEMBER(CONS {CADODAR U2){CDAR U3}) LON){&O dZB))
({{EQUAL{CADR U3)(QUOTE EQUAL)) (GO 83))
- {CEQUAL{CADR U3)(QUOTE EQUAL2)){GO B82))
({EQUAL (CADR U3)(QUOTE ASSOC))IGC 86)))
(GO A28)
A3 (COND({(NULL U4} (GO A2A)}
({NULL S)IGO A31))
((NOLOOK{CADDDAR U2)) (GO A2AY))
A3l (SETQ U5 (CAAR U4))
(SETQ U6 (CDAR U4))
{SETQ U7 (COR V4))
(SETQ U4 NIL)
A3A (COND((NULL UT}(GO A3B))
((EQUAL U5 (CAAR UT))(SETQ U6 (APPEND U6 {CDAR UT)))}
(T (SETQ U4 (APPEND U4 (CONS(CAR UT} NILI))))
(SETQ UT (COR U7
(GO A3A}

A38 (COND{ (MEMBER({CADR U2)(QUATE(EQUAL EQUAL2))}{SETQ U (CADDR U2}))

(T (SETQ U (CDR U2}}))
(SETQ U6 (SUPXEC U6 U))
A3D (COND{(NULL U6)(GO A3))
((MEMBER{CADR U2) {QUOTE(EQUAL EQUAL2)))
ISETQ U (LIST(CADR U2} {CAR U6) (CADODR U2)1})
(T (SETQ U (CAR U6))))
(SETQ U6 (CDR U6))
(SETQ U3 (PUTNZICOND((MEMBER(CAAR U2) (QUOTE(RELL PNT)))
NIL}(T (CAAR U21}) U (CADDDAR U21))
(COND{ {NULL U3)(GO A3D))
{(EQUAL U3 (QUOTE DONE)}) (RETURN U3))
{(EQUAL U3 (QUOTE NEXT))(GO A3E}))
A301 (SETQ S N)
(GO A3D)
A3E (COND{(NULL LL)(RETURN(QUOTE NEXTV))))
(SETQ S1 U3)
{GO A301)
82 (SETQ U5 (ALLSUBSTSICADDR U3)(CADDDR u3)
{COR U2)(CDAR U3)))
(COND({NULL US5)(GO B31))
{SETQ U4 (APPEND U4 (CONS U5 NIL)))
83 (SETQ U5 (ALLSUBSTS(CADDOR U3)(CADDR U3)
(CDR U2}(CDAR U3)))
B3A (COND(INDT(NULL U5))(SETQ U4 (APPEND U4 (CONS US NIL)I)))
(GO A2B)

B6 (COND((NOT{MEMBER(QUOTE #PROD) (ALLVBLESC{ATMSICDR U2)1)))

(60 A28)))
{SETQ U5 (ASSOCM(CADDR U3)(CDR UZ)(CDAR U3)))
{GO 83A)
84 (SETQ US {ALLMATCH1(CADDOR U3)(CDR U2}))
841 (COND{(NULL US)(GO B8))
(INULL S){GO B41A))
{(NOLOOK (CADDDAR U2)1(GO A2A}})

B41A (SETQ U6 (PUTN2(COND({MEMBER(CAAR U2)(QUOTEEREL] PNT)))
NILI(T (CAAR U21))(GENSUBST{CDAR US)(CAAR US)
{CADDR U3)) (CADDDAR U2)))

{CONDU{NULL U6)(GO B4A))
((EQUAL U6 (QUATE DONE) } (RETURN U6))
({EQUAL U6 (QUOTE NEXT))(GD B4B)})

146

00010
0C020
00030.
00040
00050

- 00060

00070
00080
00090
00100
00110
00120

- 00130

00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00260 .
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800
00810
00820
00830

B418 (SETQ S N)
842 (COND((EQUALICAAR U2)(QUOTE REL)) (GO B84C))
((EQUALICAAR U2)(QUOTE PNT))ISETQ S1 (QUOTE NEXT))))
B43 (SETQ LON (CONS{CONS(CADODAR UZ2}{CDAR U3)) LON))
843A (SETQ U5 (CDR US))
(GO 841)
B&A- (COND((ON{GENSUBSTICDAR U5) (CAAR U5){CADOR U3)i
(ROFW{CADDDAR U21))(60 B42)))
(GO B43A)
B4B (CONDCINULL LL)IRETURNIQUOTE NEXTV)})}
(SETC S1 veé)
(60 B8418)

B4C (SETQ U6 (GFIND(CADDDAR U2))}

(COND((EQUAL(CAAR U6)(QUOTE REL)}ISETQ W (SUBST
(SUBSTIQUOTE REL1)(QUOTE REL) U6} U6 W)}
(60 B43)

BS - (COND{ (MEMBER (CONS{CADDDAR U2) {CDAR U3)) LON) (GO A2B)))
({SETQ U5 (IMPMATCHICADDDR U3)(COR U2)))

A10 (COND{{NULL U5)(GO A28))

((NULL S)(GO B81))
- {{NOLOOK(CADDDAR U2))(G0 A2A))}

B8l (SETQ U6 (GENSUBSTI(CDAR US)(CAAR US5)(CADDR u3)))
(COND((ON U6 (APPEND VYVl VV2)){GO B8A))

({EQUALICAR US6)IQUOTE AND))(GO Al10C}))) -

A108 (SETQ U7 (ON2AVER U6))

[CONDC INOTINULL. U7} (GO Al4))
((EQUAL(CAAR U2){QUOTE A2))(GO AlO0A))
(INULL L)(GO ALOF))

((EQUAL L U6)(GD AL06)))

AlOA (SETQ US (COR U5))

(60 A10)

Al106 (COND((NOT(EQUAL{CADR U2){QUOTE EXIST)))(GO ALlOA)))
(SETQ S (SCNX S (CADR L}{CAR U5) (CADDDR u3) u2))
(COND{(EQUAL S (QUOTE DONE)) (RETURN S1)

({ATOM S)(GO Al10A))}

(SETQ L (COR S)) (SETQ S (CAR S))

(GO Al0A) ’

ALOF ' (SETQ U6 (PUTON2(LISTI(QUOTE A2)(LIST(QUOTE HEAD)}

(LISTIQUOTE NONE)) Z4 N (CAAR U3)) U6 NIL)}

(CONDCINOTINULL US6))(SETQ S N)))

(GO Al0A)

AlOC (SETQ U7 (ANDARGS Ué6))

A10D {(COMDI(NULL UT)(GO BBA}) :

(CEQUAL(CAAR UT){QUOTE AND))I(GO Al0E))

_ (LON{CAR UT)IAPPEND VV1 VV2)) (GO ALlO0E}))

(GO A108)

A10E (SETQ U7 {CDR UT))

(G0 A10D)

Al4 TCONDUIMEMBER(QUOTE HEAD) UT)(GD Al4A))

: (TEQUAL (CAAR U2)(QUOTE A2)1(GO Al0A}))

Al4A (SETQ US (CONS Z4A uS))

{SETQ U7 (PUTONL(CONS Z4A (CDAR U3)}) U6))

(COMD((NULL UT)(GO 88B})

({MEMBERICAR U6) (QUAOTE(AND EXISTS)))
{SETQ U (APPEND U (ROFVICAR US) NIL})))
CINEMBER(CAR U6){QUOTE(EQUAL2 EQUAL IMPLIES)))
" (SETQ U (APPEND U (CONS(CGNS(CONS(CAR us)
(COAR U3)) USINILINY)

(COND((EQUAL UT (QUOTE DONE)) (RETURN UT))
(LEQUAL UT (QUOTE NEXT)}ISETQ S1 U7ll)

(SETQ S N)

(COND({EQICOR U8) N){GO B8B)))

B8A (SETQ U6 (GENSUBST(CDAR US)(CAAR US}{CADDDR U3)))
(SETQ U8 N}

(60 Al4A)

888 (SETQ U8 NIL)

(GO AlOA}

C (SETQ 26 (APPEND FLG Z6))
(CONDU{INULL LL)(GO D))

(INULL S)(RETURN S1})
CINULL S1)(SETQ LL (QUOTE GEN)))
(CEQUAL S1 (QUOTE NEXTII(GO C1)))

(GO Al)

Cl (SETQ Ul (NEXT NIL))

(CONDCINULL U11)(GO C2)))

(SETQ S1 N)

(SETQ LL (QUOTE GEN))}

(GO Al)

C2 (PRINT{QUOTE(PANIC C2 SCANNW)))
(RETURN{QUOTE DONE)}

D (COND(INOT(NULL S1))(RETURN {SUBSTI(QUOTE NEXFV)(QUOTE NEXT) S11))

((NULL S)(SETQ LL N})}
(GO A1) D))} STOPRHIDIM)

147

00840
00850
00860
00870
00880
00890
00900
00910
00920
00930
00940
00950
00960
00970
00980
00990
01000
01010
01020
01030
01040
01050
01060
01070
01080
01090
01100
01110
01120
01130
01140
01150
01160
01170
01180
01190
01200
01210
01220
01230
01240
01250
01260
01270
01280
01290
01300
01310
01320
01330
01340
01350
01360
01370

‘01380

01390
01400
01410
01420
01430
01440
01450
01460
01470
01480
01490
01500
01510
01520
01530
01540
01550
01560
01570
01580
01590
01600
01610
01620
01630
01640
01650
01660

PUTON1 Lisp

OEFINE(({PUTON1(LAMBDA{L U)(PROGIUL U3 U4)

(COND((MEMBERI(CAR U} {QUOTE(IMPLIES EQUAL EQUALZ2 ASSOC))})
(GD C))

((EQUAL{CAR U} (QUOTE AND}){GO 82))

((EQUAL(CAR U} (QUOTE IMPLIES2))(GO B))

((ON U VV1)(RETURN NIL}))

(SETQ UL N)

(SETQ Z4A (ADD1 Z4A))

(SETQ VV1 [APPEND VV1 (CONS(CONS L U) NIL}))
(COND((EQUAL(CAR U) (QUOTE EXISTS})II(GO B1))

((EQUAL(CAR U)(QUOTE GROUP))(SETQ Q (ALLVBLES(CONS
(CADR U) Q1)))

((MEMBER(CAR U) (QUOTE(HOMOMORPHISM 1SOMORPHISM
EPIMORPHISM MONOMORPHISM}}) (SETQ QL1
(GTFRM{CONS(QUOTE HMPRP)(CDR U))

(QUOTE XX) NIL QL1))}

((EQUAL(CAR U} {QUOTE FACTORGROUP}){SETQ QL2 (GTFRM

(CONS(QUOTE FGPRP)(CDR U)I(QUOTE XX) NIL QL2))))}
{COND((NULL QM5)1GO A2))
((AND(EQUAL(CAR U} (QUOTE MEMBER)) (ATOM{CADR U} })
(SETQ QM2 (CONS{CDR U) QM2})))
(MODELMAKE U)
A2 {COND((NOT{ON U (APPEND W1l W))}(RETURN U1)))
Al (SETQ U3 (VERIFY U))
(COND({NULL U3){RETURN Ul}))
(RETURN U3)
C (COND((ON U VV2)}(RETURN NIL}))
(SETQ Ul N)
(SETQ Z4A (ADD1 Z4A))
(SETQ vv2 (APPEND vv2 (CONS{CONS L U) NIL)))
(COND{ (EQUAL(CAR U)(QUOTE ASSOC))(SETQ Q (ALLVBLES
(CONSICADR V) Q}¥))))
(COND((ON U (APPEND W1 W))(GO Al}))

((EQUAL(CAR U)[QUOTE EQUAL))(SETQ U (CONS(QUOTE EQUAL2
J(COR U))

((EQUAL(CAR U)(QUOTE EQUAL2))(SETQ U (CONS(QUOTE EQUAL)
(COR U}I)))

{GO A2)

81 (COND{(NOT(ON U (APPEND W1 W))} (GO B1A}))
(SETQ U3 (VERIFY U))
(COND(({EQUAL U3 (QUOTE DONE)) {RETURN U3}]}

({EQUAL U3 (QUOTE NEXT)IISETQ Ul U3)}))

B8lA (COND((ON(CADR U) Z3)(G0 B1B}))

(PRINT(QUOTE(EXISTS BlA PUTON11))
(RETURN (QUOTE DONE))
81B (SETG U3 (GENSYM))
{SETQ U4 (SUBST U3 (CADR U)(CADOR U)))
[COND{(NULL{GENVBLEI(CADDR U})){SETQ Z3 (CONS
(CONS(QUOTE RES) U3) 23)))
(T (SETQ 23 {CONS(CONS{QUOTE GEN) U3} Z31)))
(SETQ U3 (PUTONLICONS Z4A {CDR L)) u4))
(GO B2A)

B (SETQ U (LIST N (LIST(QUOTE IMPLIES)(SUBST{QUOTE EQUAL)
(QUOTE SEQUAL){CADDR U}){CADR W MILIST(QUOTE IMPLIES)
{CADR U)(SUBST(QUOTE EQUAL2)(QUOTE SEQUAL)ICADDR U11111)

82 (COND({INOT(EQUAL(CDR L) N}}(GO B21})

({EQUAL(CAADR U)(QUQOTE AND))I{SETQ Ul (PUTON1 L (CADR U))))

(T (SETQ Ul (PUTON1(CONS{CAR L) Z4B)(CADR U}))))}
(SETQ Z4B (ADD1 248))
(GO B22)

821 (SETQ Ul (PUTONY L {CADR U)))

B22 (COND((EQUAL Ul (QUOTE DONE})(RETURN Ul})
((NOTCEQUALI(COR L) N)I{SETQ L (CONS Z4A (CDR L))}
{{EQUAL{CAADDR U) (QUOTE AND))(SETQ L (CONS Z4A N)))
(T (SETQ L (CONS Z4A Z4B))))

(SE¥Q U3 (PUTON1 L (CADDR U)))

B2A (COND{(ORINULL U1)(MEMBER U3 (QUOTE(NEXT DONE))))} (RETURN U3)})

(RETURN U1}
11)3) STOP))IMY)

148

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
06500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690

PUTON2 LISP

DEFINE({(PUTN2(LAMBDAIL U M) (PROG{UL)
(CONDU(NULL L)(SETQ L (QUOTE REL))))
(CONDUINULL M)(SETQ Ul (CONS(QUOTE HEAD) NIL)))

((ATOM M)(SETQ Ul (CONS M NILI))
(T (SETQ ULl (CONS(CAR M} NIL)I))

(RETURNIPUTONZ(LIST L Ul (CONS{QUOTE NONE) NIL} 24 N)

u M) D))

DEFINE(({PUTON2(LAMBDA(L U M)(PROG()
(COND{{ON U (APPEND W1l W)){RETURNIONZ2 L U M)))

((EQUALI(CAR L)} (QUOTE A2))(GO A}))

BO (RETURNIPUTZ2 L U M)}
B1 (COND((MEMBER(CDR U) QM2)(GO BO))
((MEMBER(CODR U) QM6)(GO B3))
({NULL (CHECKMODEL{COR U))) (GO 82)))
(Ga BO)
B2 (SETQ QM6 (CONSICDR U) QMé))
B3 (COND{(ATOM M) (RETURN NIL)))

(RETURN (QUOTE REJECT))

A

(COND((MEMBER{CAR U) (QUOTE(IMPLIES EXISTS IMPLIES2 FEQUAL)))

(RETURN NIL)) ((NULL QM5)(GC B80))
{ (AND(EQUAL(CAR U) (QUOTE MEMBER)) {ATOM(CADR U}))IGO B81)))

(GO BOY)2}
DEFINE(((ON2(LAMBDA(L U M) (PRDOGIU3)
(COND((NULL M){GO A1D1})

((ATOM M) (GO AlA)})

(SETQ U3 (ADDANTEC(CAR M) U)}
(CONDUINULL U3) (GO AlC))

(INULL(CDR M})(RETURN U3})
((EQUAL U3 (QUOTE B)II{GO AlC)))

{SETQ U3 (ADDCONSQ{CONS{CADR M) U3)}(CAR M}))
(RETURN N}

AlA

(SETU U3 (ADDANTEC M U))

(CONDU(NULL U3){RETURN NIL))

((EQUAL U3 (QUOTE 8))I60 AlF)))

(SETQ U3 (ADDCONSQ U3 M))
(RETURN N}

AlC

(COND((NULL{CDR M)){RETURN NIL)))

(SETQ U3 (ADDCONSQ(CADR M)(CAR M})}
(RETURN N}

AlD

(COND(INOT(EQUAL(CAR L1}I(QUQTE A2))){RETURN NILI))

{SETQ U3 (CAR(GFIND U}))
(COND((NOTIMEMBERICAR U3) (QUOTE(A2 VERA2)}))(RETURN NIL))

{ (MEMBER(QUOTE HEAD) (CADR U3)) (RETURN NIL)})

(SETQ M (SUBST(CONS(QUOTE HEAD){CADR U3))(CADR U3) Uu3))
(SETQ M (APPEND M (CONS{SIXTH L} NIL)))
(COND{{ORINULL W)(LESSP(CADDDR U3)(CADCDAAR W}))

(SETQ Wl (SUBST M U3 W1)}))
(T (SETQ W (SUBST M U3 wW))))

(RETURN NIL}

AlF

(SETQ U3 (VERIFY(CDRIGFIND M})))

(CONDUINULL U3) (RETURN N)))
(RETURN U3})N}
COMPILEU{PUTN2 PUTONZ ON2)) STOP))))

PUT2 LISP
DEFINETT{PUT2(LAMBDAIL U M)(PROGI(Z Ul U2 U3 U4 L1)
(SETQ Ul N)
(SETQ Z Z4)

(SETQ 24 (ADDY 24))
(CONOC{ (MEMBER (CAR U} (QUCTE{AND OR IMPLIES2)))(GO B4)})

B5

(SETQ W {APPEND W (CONS (CONS L U) NIL)}}

(CONDU(NULL M) (GO A2))

((ATOM M) (GD 81))
(INULL(COR M)}) (GO A2A)))

(SETQ U3 (ADDCONSG(CDR M) (CAR M}})

(GO A2)
A2A (SETQ Ul (QUOTE A))
(GO A2)
81 (SETQ U3 (ADDCONSQ Z M))
A2 (CONDUION U (APPEND VV1 VV2))I(GO A3))
UINOTINULL QFL))(GO C1)))
A2C (COND((MEMBER(CAR U) (QUOTE(IMPLIES EQUAL EQUAL2))}(GO A6))

((EQUAL(CAR U)(QUOTE [MPLIES2)}{GO I})

(CAND(NULL CX) (EQUAL{CAR U)(QUOTE EXIST)))(GO E))
((EQUAL (CAR U){QUOTE QR)) (GO D})

((EQUAL(CAR U){QUOTE ANDIHIGO AT)))

149

00010
00020
00030
00040
00050
Qco60
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
Q0250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
Q0420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530

Q0010
00020
00030
00040
040050
00060
00070
000840
00090
00100
00110
00120
00130
00140
Q0150
00160
00170
00180
00190
00200
00210

A2B (SETQ -U4 (ALLVBLES{ATMS U)))
(SETQ U2 (INVM U U4))
(COND{ INULL U2)(RETURN(HFM U U4 U1 L Z1)))
(SETQ W (SUBSTICONS N (CDR L)1 L W)}
(SETQ U3 (PUTN2(CAR L} U2 1))
(GO Al2A)
B4 (SETQ L1 {CAR L)} .
(COND(INOT{EQUAL L1 (QUOTE A2)})(SETQ L (CONS N {CDR L)))}}
(GO B85) '
A3 (SETQ U3 (VERIFY U))
(COND{ (EQUAL Ul (QUOTE A))(SETQ Ul (QUOTE B}))
({EQUAL U3 (QUOTE DONE))(RETURN U3))
({EQUAL U3 (QUOTE NEXT))(GD A9%A)))

A98 (COND{{EQUAL (CAR U)(QUOTE AND)}) (GO Al0)})

A8 [RETURN u}l)

A6 (COND{(EQUALICAR U)(QUOTE EQUAL)I (GO A6A))
((EQUAL{CAR U)(QUOTE EQUAL2)) (GO A68)))

A6C (COND((EQUAL(CADR U)(CADDR U)){GD A3))}

{GO A28)
A6A (COND{{ON(CONS{QUOTE EQUAL2){CDR U)) VV2)(GO A3))}
{60 A6C)
A68 (COND((DN(CONS{QUOTE EQUALI{CDR U)) ¥V2)(GO A3))} "
(GO A6C)
A7 (SETQ u2 24)) :
(COND{ {AND{ EQUAL (CAADDR U)(QUUTE MEMBER)){ATOM(CAR{CDADDR U)))}{60 ATA
M
ATB (SETQ U3 (PUTN2 L1 (CADR UJ(CONS Z NIL)})
(CONDUINULL U3) (60 A12))
{(MEMBER U3 (QUOTEINILL A)))(GO A12))
((EQUAL U3 (QUOTE B)){(GO Al3A))
(LEQUAL U3 (CUOTE NEXTV)){(GO Al3B)}
{ €EQUAL U3 (QUOTE DONE)){RETURN U3))
((EQUAL U3 (QUOTE NEXT)){SETQ Ul U3))
{(EQUAL U3 (QUOTE REJECT)) (RETURN NIL))
{T (SETQ U2 U3})
AL2 (SETQ -U3 (PUTN2 L1 (CADDR UI(CONS Z (CONS UZ Z4))}))
A12A (COND((MEMBER U3 {QUOTE(DONE NEXT)))(RETURN U3)))
(GO AQ9)
ATA (SETQ U (LISTICAR U)(CADOR U)(CADR U)))
(COND{(NULL QM5) (GO ATB)) .
(CAND{EQUAL (CAADDR U) (QUOTE MEMBER)) {ATOMI(CARI(CDADOR U))))
- (SETQ U (NOWWHICH U)}))
(60 AT8)
Al0 (SETQ U& (ANDARGS U))
Al6 (COND{ENULL U4) (GO A8))
((ONICAR U4)(APPEND W1 W}){GO Al5}))
Al7 (SETQ U4 (CDR U4))
(60 Al6)
Al5 (SETQ U3 (VERIFY(CAR U4)))
(COND((EQUAL U3 (QUOTE DONE)) (RETURN U3))}
{(EQUAL U3 (QUOTE NEXT))I(GO Al5A)})
(60 AlT7)

Al1S5A (COND{(EQUAL VUl (QUOTE B))(SETQ UL (QUOTE NEXTV}))

(T (SETQ ULl (QUOTE NEXT1)))
(GO AlT)
A9A (COND((EQUAL Ul (QUOTE B))(SETQ Ul (QUOTE NEXTV)})
(T (SETQ Ul (QUOTE NEXT))))
(GO A98)
Al38 (SEVQ Ul (QUOTE NEXT))
Al13A (SETQ U3 (PUTN2 L1 (CADDR U} Z1)
(GO Al2A)
Cl1 (CONDI(ANDIEQUAL(CAR L){QUOTE REL)}{ON U QFl})}
{RETURN{QUOTE DONE)))}
(60 A2C)
0 (SETQ U3 (PUTNZ L1 (CAOR U) 2))
(COND{{EQUAL U3 (QUOTE NEXT))(SETQ Ul U3))
((EQUAL U3 (QUOTE OCNE)) (RETURN U3)))
(60 Al3A) .
I (RETURN(PUTN2 L1 (LISTI(QUOTE AND){LIST(QUOTE IMPLIES)
(SUBSTIQUOTE EQUAL2)(QUOTE SEQUAL)(CADDR L)) (CADR U))
(LIST{GQUOTE IMPLIES)(CADR U}(SUBST(QUOTE EQUAL}
({QUOTE SEQUAL) (CADDR VI))) ZI))
€ (SETQ L1 (SLvX U))
(COND{(EQ L1 N){RETURNIQUOTE DONE)))
}(GO A28)

)11)}) COMPILELLPUT2))

sTaPII))

150

00220
00230
00240
00250
00260
00270
00280
00290
00300

. 00310

00320
00330
00340
00350
00360
00370
00380
00390
0040C
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
06800
00810
00820
00830
00840
00850
00860
00870
00880
00890
00900
00910
00920

. 00930

00940
00950
00960
00970
00980

SOLVEX Lise
DEFINE({ (SOLVEX(LAMBDA(U) ’
(PROG(Z UL S U2 U3 U4 US U6 QF2 L U7 FU)
(COND{ (NOT(ON(CADDR U) Z3))(RETURN NILI))
(SETQ U7 (GENSYM))
(SETQ Z3 (APPEND I3 (CONS(CONS N UT) NIL)))
{SETQ FU (CDR U))
" (SETQ U (SUBST UT (CADDR U) U))
(SETQ Z 14)
Al (SETQ Ul (CADDDR U))
{SETQ L N)
{SETQ U2 (QUOTE(EQUAL EQUAL2))}
(COND({ (MEMBERICAR U1} U2} (GO A2))
(CEQUAL(CAR U1)(QUOTE AND})(SETQ Ul (COR Ul1)))
(T (RETURN NIL)))
{COND{ (MEMBER(CAAR U1} U2)(GO AlC))
((EQUALICAAR U1){QUOTE MEMBER)) (GO AlB)))
{RETURN NIL}
Al8 (COND((EQUAL(CADAR Ul) UT)(SETQ L (CAR Ul)))
(T (RETURN NIL)))
CCOND((MEMBER(CAADR Ul) U2}{SETQ Ul {(CAOR U1}))
(T (RETURN NIL)})
(60 A1D)
ALC (COND{{(EQUAL{CAADR U1} {QUOTE HENBER!)(SETQ L (CADR uirh)
" AT (RETURN NIL}))
(COND{{EQUAL(CADR L) UT)ISETQ Ul {(CAR UL}})}
AT (RETURN NIL})})
AlD (SETQ S (CODDR L)}
A2 (COND((MEMBER UT(VBLES(CADR U1)}))(GO A2A))
(IMEMBER UT (VBLES(CADOR UL)))(GD A28))}
(RETURN NIL)
A2A(COND({MEMBER UT (VBLES(CADOR UL))}(RETURN NIL)))
(GO A3)
A28 (SETQ Ul (CONS(CAR U1)(CONS({CADDR U1)(CONS(CADR U1) NIL}}I})
A3 (SETQ U2 (PUTN2 NIL (CONS{QUOTE EXIST)(CONS U7
(CONS Ul NIL))) NIL))
{COND{ (EQUAL U2 (QUOTE DONE)) (GO A6E}))
[SETQ U2 (SCANW L (QUOTE GEN)))
(COND{(EQUAL U2 (QUOTE NEXT) (GO E))
(({EQUAL U2 (QUOTE DONE) (GO A4)))
(GO El)
A4 (CONDUINULL WLI(GO A4A))
({EQUAL{CAAAR W1) (QUOTE VER))(RETURN U2)))
(GO AGE}
A4A (COND((EQUALICAAAR W)(QUOTE VER))(RETURN U2)))
AGE - (CONDUINULL S}IGOD E2)))
E3 (SETQ W (MASK Z))
(SETQ QF2 NIL)
(SETQ Ul (QUOTE MEMBER))
(SETQ U3 (PUTN2 NIL (CONS UL (CONS CX1 S))
(CADDDAR V)))
(COND((NULL U3) (RETURN NIL))
{{MEMBER U3 (QUOTE(DONE NEXT)))(RETURN usl))
{RETURN N)
€2 (SETQ U6 (VERIFY FU))
(PRINT FU}
- (PRINTILISTICADR FU)(OUOTE EQUALS) Cx1))
{COND({EQUAL U6 (QUOTE DONE)) {RETURN U6)))
E (SETQ W (MASK 2))
(SETQ QF2 NIL)
(RETURN (QUOTE NEXT)) N
El (SETQ M (MASK 2))
. {SETQ QF2 NIL)
(RETURN NIL) 1)})M)
COMPILE((SOLVEX))
STOP)})

151

00010
00620
00030
00040
00050
00060
00070
00080
06090
00100.
00110
00120
00130
00140
00150
00160
00170
00180
00190
002C0
00210
00220
00230
00240
00250
00260 .
00270
00200

- 00290

00300
C0310
00320
00330
00340

‘00350

00360
00370
00380

00390

00400
00410
00420
00430
00440
00450
00460

" 00470

00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600

- 00610
- 00620

00630
00640
00650

SCNX LISP

DEFINE(({SCNX{LAMBDA(S L Ul U US)(PROGIU2 U3 U4)

8
Bl

C

0
13

D2

E
El

E2

(SETQ U (GENSUBST{(CDR U1)(CAR Ul) U))
(SETQ U2 (LIST(QUOTE{EQUAL Al A2))(QUOTE(EQUAL2 Al A2))))

{SETQ U3 (CAR U2))

(SETQ U4 (RPLCE(QUOTE(AL A2)) NIL))
(COND((NULL V4)(G0 B8) 1)
(SETQ U3 (GENSUBST(CAR U4)(CDR U4) U3))

(SETQ U4 (MATCHL U3 U))

{CONDL{NULL V%) (GO C))
{{MEMBER L {CDAR U4))(G0 D))
{SETQ U4 (COR U4))
(GO B1)
(SETQ U2 (CDR U2)) :
(COND({NULL U2)(RETURN S}))
(G0 A)
{SETQ U3 (CDAR U4))
(COND{{EQUALICAR U3) N}{GO D2}))
((EQUAL(CAR U3) L)(60 D2)))

(GO E)
(SETQ U3 (CDR U3)]

{60 D1}

(SETQ U4 (ALLVBLES(VBLES(CAR U3))))
(CONDUINULL U4) (RETURN S))
{{FREEVBLEICAR U4))(GO E2)))

(SETQ U4 (COR U4))

(60 E1)
(SETQ U2 (CAR U4))

(SETQ U4 (CDR US5))

(SETQ U4 (CONS{CAR U4)(CONS u2
(SUBST(CAR U3} L (CDODR U4)))))

(SETQ CX W)

4
61

62

H

H1

[SETQ L 24)
(SETQ U4 (PUTN2 NIL U4 (CADDDAR U5)))
{SETQ CX NIL)
{COND{ (NULL U4) (RETURN $))
((EQUAL L Z4)(RETURN S$)))
{SETQ UL {QUOTE(MEMBER Al A)))
(SETQ U4 (RPLCE(QUOTE (Al A)) NIL))
(COND{ (NULL U4} (GO G)))
(SETQ UL (GENSUBST(CAR U4)(COR U4) UL})
{SETQ U4 (MATCH1 U1 U))
(COND((NULL U4)}{GO H))
({MEMBER U2 (CDAR U4))(GO G211}
{SETQ U4 (COR U4)) .
(60 G1)
(SETQ Ul (GENSUBSTICDAR U4)(CAAR U4) Ul))
(SETQ U4 (GENSYM))
(SETQ I3 (CONS{CONS N U4) Z3))
(SETQ UL (CONS N (SUBST U4 U2 UL)))
(SETQ S (COR{GFIND L)))
(SETQ W {SUBST(SUBST U4 U2 S) S W)}
{SETQ U3 (SUBST U4 U2 (CAR U3)))
(COND{ INULL QF2}{SETQ QF2 [CONS U4 U3)))
(TOSETQ QF2 (CONS U4 (SUBST U3 (CAR QF2)(CDR QF2))))))
{60 H1)
(COND((NULL QF2)(SETQ QFZ {CONS U2 (CAR U3))))
(T(SETQ QF2 (CONS UZ {SUBST{CAR U3)(CAR QF2)(COR QF2})1))))
(SETQ U1 N)
(SETQ L (ROFW L))

HIA (COND(INULL L)(RETURN ULl)))

N

(SETQ S (SLVX(CDAR L)})

{COND((EQ S N)(RETURN (QUOTE DONE)}}))
(SEYQ L (COR L))

{GO H1lA)

ni STOP) })

152

Q0010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
0019¢
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
0037¢C
00380
00390
00400
00410
00420
00430
00440
0045¢C
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
0058¢.
00590
0060C

00610

00620
00630
00640
00650

SLVX LISP
DEFINE(({SLVX{LAMBDA(U) (PROGIUL U2}
(CONDC(NULL QF2){GO Al)})
(SETQ CX1 (SOLVXPICDADDR U}{CAR QF2}))
(CONDCINULL CX1)(GO ALY))
(SETQ CX1 (SUBST CXx1 (CAR QF2)(CDR QF21))
(RETURN N}
Al (SETQ CX1 (SOLVXP(CDADDR U){CADR U}))
(COND({NOT(NULL CX1))(RETURN N}))
(SETC Ul (CADDR VU)})
(SETQ U2 (GMATCH(CADR U1)(CADDR UL} 1)
(CUNDCINULL U2) (RETURN NIL))
((NOT(EQUAL(CAAR U2)(CADR U)))(RETURN NIL})
({NULL QF2)(SETQ Cx1 (CADR U2)))
(T (SETQ CX1 (SUBST(CADR U2)(CAR QF2}(CDR QF2)))))
(RETURN N} 1))))
DEFINE(((SOLVXP(LAMBDA(U3 U)(PROG(UL P PP)
(SETQ P (QUOTE =PRGOD))
(SETQ PP (QUOTE #INVERSE))
A {SETQ Ul (CAR U3))
(COND((ATOM UL) (GO Al))
((EQUAL(CAR Ul) P)(GO B1))
({EQUAL(CAR VUl) PP){GOD C1)))
(RETURN NIL)
Al (COND{(EQUAL UL U)(RETURNICADR U31)}}
(RETURN NIL}
B1 (COND({(MEMBER U (VBLES(CADR U1})) (GO B2)))
(SETQ U3 (LIST{(CADOR UL}{LIST P (LIST PP (CADR Ul)
(CADDDR UL))(CADR U3)}{(CADDDR U1))})
(GO A)
B2 (COND((MEMBER U (VBLESICADDR U1l)))(RETURN NIL)})

(SETQ U3 (LIST(CADR UL}(LIST P (CADR U3)(LIST PP {CADDR U1)

(CADDDR U1}){(CADDDR U1))))

(GO A)
Cl1 (SETQ U3 (LISTI(CADR UL)(LIST PP (CADR U3){(CADDR Ul}}))
(GO A) Y1)}
COMPILE((SOLVXP)) STOP)IN)
HOMOMF LIse

DEFINE({ (HOMOMF{LAMBDA(L) (PROG(U3 U4)
(SETQ U3 Z4)
{SETQ U4 (PUTN2 NIL (CADR L} NIL})
(SETQ U4 (SCANW NIL{QUOTE GEN)))
(SETQ QF1 (ONLY(ROFW U3)(QUUTE(REL REL1))))
(SETQ W (MASK U3))
(SETQ U3 Z4)
({SETQ U4 (PUTN2 NIL (CADDR L) NIL))

{COND((NOT(EQUAL U4 (QUOTE DONE)))(SETQ U4 (SCANW NIL (QUQGTE GEN))I))

(SETQ QF1 NIL)
(SETQ W (MASK U3))
(COND((EQUAL U4 (QUOTE DONE))I{SETQ U4 (VERIFY L))))
{RETURN U4} 1))
DEFINEU((ONLY(LAMBDA(U L)
(CONDUINULL U} NIL)U(MEMBER(CAAAR U) L) (CONS(CAR U)
{ONLY(CDR U) L)MIUT (ONLY{(CDR U} L))))} 1))
STOPI)))

153

0co10
Q0020
00030
00040
00050
00060
¢0070
00080
00090
Qo100
Qo110
00120
00130
00140
00150
00160
Q0170
00180
00190
60200
00210
00220
00230
00249
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360

000l0
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170

| sttt

GENFCN LIse

DEFINE{ { (GENFCN{LAMBDA(L) (PROG(VU Ul U2 U3 U4 U5 Ué $)

Al

(SETQ U4 (CONSIGENSYM)(GENSYM)))
(SETQ Z3 (CONS{CONS N (CAR U4)) 23))
(SETQ 22 (CONSICONS(QUOTE RES)(COR U4)) 12))
{CONDI(EQUAL(CAR L)(CADR L)) (60 E}}}
(SETQ U6 (CADR L))

(SETQ U3 14)
(SETQ U (GENSYM))

(SETQ Z3 (CONS(CONS(QUOTE GEN) V) 23))

{SETQ Ul (PUTON1(CONS 24A Z4B)(LIST(QUOTE MEMBER) U U6)})
(SETQ Ul (PUTN2 NIL (LIST(QUOTE OUMMY) U) NIL))

(SETQ Ul (SCANW N {QUOTE GEN)))

{SETQ Ul (COR{ROFW U3)})

(SETQ W (MASK U3))

. {SETQ U3 {MEMOF1 VV1 (QUOTE MEMBER)))

A2

A5

A6

AT

s2

03
A8

D2

(COND{(NULL S)(SETQ U2 (CONSI{LIST U6 U U) NILIN)Y
(CONDT(NULL V1) (GO D2}1))
(SETQ U (GENVBLE(CDAR U1}))
(COND{{NULL UI(GO D3))}
(SETQ U5 U3)
{CONDUINULL US5)(GO D3))
((EQUAL U (CAAR US5)}{GO A6)))
{SETQ U5 (CDR VU5))
(GO AS5)
(CONDI(NULL S)(GO S2}))
(SETQ U5 (CADAR U5))
(SETQ Vé U2})
{CONDI{(NULL U6) (GO A8))
{{EQUAL U5 (CAAR U6)1(GO D))}
{SETQ U6 (COR U6))
(GO AT) :
{COND((EQUAL{CAR L){CADAR U5))(GO0 C))}
(SETQ U2 (APPEND U2 (CONS{LIST{CADAR U5) U
{CADDAR U1)) NILI))

(GO A8)
{COND¢ INULL SI{SETQ U2 (APPEND U2 (LIST(LIST N)1))))
(SETQ Ul (COR Ul))
(GO A2)
(COND((EQ S NI{(RETURN NIL))}
(SETQ@ S N}
({SETQ U6 (CAR L)}
(GO Al)
(SETQ U6 (SUBST(CAR U4) U (CADDAR ul)})

c
Cl

D

[3
N

(RETURN(LISTIQUOTE IMPLIES)(LIST(QUOTE MEMBER)
(CAR U4){CAR L) I{LIST(QUOTE EQUAL) (LIST(CDR U4)
(CAR LI(CADR L){CAR U4)) U6 D)
(RETURNILISTIQUOTE EQUALI(LISTICOR U4)(CAR L)
(CADR LI{SUBSTI(CAR U4) U (CADDAR Ul)})
(SUBST(CAR U4)(CADAR US)(CADDAR U&)) 1)

(SETQ U6 (CAR U4))

(GO C1)

1M STOP))))))

154

00010
00020
00030
0004C
00050
00060
00070
Cc0080
00090
00100
00110
00120
00130
00140
00150
Q0160
00170
00180
00190
00200

00210

00220
00230
00240
00250
00260
00270

© 00280

00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
gos520

WLOFN LISP
DEFINE(({COMPOSITION(LAMBDA(U VB) (PROG(UL)
A {(COND{{ATOM U) (RETURN NIL))
((ON(CAR U) Z2)ISETC Ul (CONSCL[SY(CAR Ul(CADﬂ v}
(CADDR L)) UL}
(T (RETURN NIL}))
{SETQ U (CADDDR U})
(COND{(EQUAL U VB)(RETURN U1)))
(GO A) 1))
DEFINE({ (WLDFN(LAMBODA(EQN) {PROG(UL U2)
(PRINT(QUOTE{MUST PROVE RELATION WELL DEFINED))I
(PRINTIQUOTE(IS INVERSE RELATION ONE TO ONE)))
{SETQ Ul (GENSYM))
(SETQ U2 (CDAR EQN))
(SETQ 22 (CONS(CONSIQUOTE RES) U1} 22))
{SETQ Ul (MONOMF(LISTIQUOTE EQUAL)(LIST Ul (CADR U2)
(CAR U2)(CADR EQN))(CADDR U2)} NIL))
(COND{ (NULL UL)Y{RETURN NIL)})
(SETQ 26 NIL)
(SETQ LDN NIL)
(SETQ W1 NIL)
{SETQ W NIL)
(RETURN T) 11 1))
DEFINE(({WLDFN1(LAMBDA(US U5 U6 UT)IPROGIFV S ULl U2 U3}
({SETQ Ul (CONSI{GENSYM) (GENSYM)))
‘(SETQ Z3 (CONS{CONS{QUOTE RES)(CAR U1)) {CONS{CONS{QUOTE RES)
(COR U1}y 2340
(SETQ U3 (GENVBLE U4))
CO (COND((ATOM U5)(GO C1))
({EQUAL(CAR U5) (QUOTE «LCOSET))}(60 C4)))
Cl (SETQ U2 (LIST(QUOTE EQUALI(LIST{QUOTE #PROD)(LIST(QUOTE #INVERSE)
(SUBSTICAR Ul) U3 US)(CADR U6)){SUBST(COR Ul) U3 U5}
"{CADR US))(LIST{QUOTE #IDENTITY)(CADR U6))))}
€2 (COND((NULL S$){6G0 C3))
({NULL QM5)(GO C2A)))
{SETQ FV (LIST(QUOTE MEMBER) U3 (GENSET U3 U7)))
(SETQ FV (PUTON1(CONS Z4A Z48)(LIST(QUOTE AND)(SUBST(CAR Ul) U3 FV)
‘(SUBSTI(COR ULl) U3 FVI)))
(SETQ 248 (ADOL1 Z48B))
C2A (SETQ FV (SOLVE(LIST(QUOTE IMPLIES)UZ S)))
(COND{INULL FV)(RETURN NIL)})
(RETURN N}
C3 (SETQ S v2)
(SETQ U5 U4)
(SETQ U6 {COR U6))
{60 CO)
C4 (SETQ U2 (LIST(QUOTE MEMBER)(LIST{QUOTE #PROD)I(LIST
* (QUOTE ®INVERSE) (SUBSTICAR UL} U3 (CADR US))ICADDDR US))
(SUBSTICOR Ul) U3 (CADR U5)){(CADODR US)){CADDR U5}))
(G0 C2)
1 STOP)I I

155

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
Q0110
00120
00130
00140
00150
00160
00170
00180
0019¢
00200
00210
00220
0023¢C
00240
00250
00260
0027¢
00280
00290
00300
00310

00320

00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500

DEFINE({ {(MONOMF (LAMBDA(EQN S)(PROG(UL U2 U3 U4 U5 U6 UT FV)
(SETQ U6 (CADR EQN))
{COND((FREEVBLE(CADDDR U6))(GO B8)))

MONGMF

Al (SETQ U2 (CONS 14A I4))
(SETQ FV (CONS Vvl vv2))
(SETQ U4 (GENSYM})
{SETQ 23 (CONS{CONS{QUOTE GEN) U4} 23))

(SETQ U3 (PUTONL{CONS Z4A Z4B) (LIST(QUOTE MEMBER} U4 (CADR U6)))) .
(SETQ U3 (PUTNZ NIL (LIST(QUOTE DUMMY) (SUBST U4

(CADDDR U6) U6}) NIL))

{SETQ U3 (SCANW N {QUOTE GEN)))

(SETQ U3 Z4)
{SETQ VV1l NIL)(SETQ vVv2 NIL)
(SETQ U4 (PUTONL (CONS Z4A 748) EQN))

{SETQ U4 (SCANW NIL (QUOTE GENI))

(SETQ U4 (GFIND U3)}

(COND{(NULL U4} (RETURN NIL)}}

(SETQ U5 (CADOR{CODADDR{(GFIND(CAADAR U4)))))
{SETQ U4 (CADDR U4})}

{SETQ 26 NIL)
{SETQ LON NIL)
{SETQ W1 NIL)
[SETQ W NIL) .
{SETQ Z4 (CDR U2))(SETQ Z4A (CAR U2)}
(SETQ VV1 (CAR FV)){SETQ vv2 {COR FV)})
(SETQ U7 gM2)

({SETQ QM2 FQM2) (SETQ QM3 FQM3) (SETQ QM4 FQM&) (SETQ QMé NIL)
{COND{INULL S)(RETURN(WLDFN1 U4 US U& UT)))

((ATOM U4) (6D A2))

((EQUALICAR U4)(QUGTE #LCOSET)) (GO A6))}

A2 (SETQ Ul {GENVBLE U4)}
{CONDC{NULL UL} (GO A8)))

ASETQ U3 (SOLVXP(LIST U4 (LISTI(QUOTE #IDENTITY)
(CAODR U6}1)) U1})

(COND((NULL U3}(GO A8})))

(SETQ FV (PUTON1(CONS Z4A 24B){LISTIQUOTE EQUAL} Ul U3}))

{60 .0)

A6 (SETQ FV (PUTONL(CONS Z4A 24B){LIST(QUOTE HENBER)

(CADR U4)(CADDR U4))})

(SETQ Ul (GENVBLE u4))

(60 D}

A8 (SETQ FV (PUTONL{CONS Z4A Z4B) (LIST(QUOTE EQUAL} U4

LISP

(LISTLQUGTE = IDENTITY) (CADDR U6)))))

D (SETG 248 (ADD1l 248))

(COND{INULL QN5) (60 DO))

{INULL U1)(60 DO)))
(SETQ FV (PUTONLI{CONS Z4A 24B)(LIST{QUOTE MEMBER) Ul (GENSET Ul U
(SETQ Z48 (ADD1 248))

DO {SETQ FV (SOLVE{LIST(QUOTE EQUAL) US
(LIST(QUOTE #IDENTITY)(CADR U6))))}

(CONDU{NULL FV)(RETURN NIL)))

(RETURN N}

8 (SETQ ULl (COMPOSITION(CADOR EQN)(CADODR V6)))

(COND{{NULL U1){(60-A1)))

81 (COND({ON(LISTIQUOTE ONEONE) (CAR Ul}) VV1)(SETQ U1l (CDR Ul}})

(T (GO Al1)))
(CONDI{NULL U1)({GO B82)))

(60 Bl}

82 (PRINT{(QUATE(FUNCTION IS A COMPOSITION OF MONOMORPHISHS)))

(RETURN N)

11

STOPII D)

156

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
oollo
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
C0400
00410
00420
00430
00440
00450
00460
0047C
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610

L

VERIFY LISP

DEFINEU({VERIFY(LAMBDA(U)

(PROGIUL U2 U3 U4 U5 U6 U7 TT NN 6)

(SETQ G {QUOTE A))
A0 (SETQ U2 Wl)
Al (CONDU(NULL U2)(GO A2)}
((EQUAL G (QUOTE A)}(GO AlAN)
((EQUALICAR U6)(CADDDAAR U2))(GO A3))}

AlB (SETQ Ul (APPEND Ul (CONSICAR U2) NIL))}

(SETQ U2 (COR U2))
(GO Al)
AlA (COND{(EQUAL U (CDAR U2)){(GO A3)))
(GO AlB)
A3 (SETQ U3 (CAAAR V2))
(COND((MEMBER U3 (QUOTE({VER VERA2 IRR))} (GO A6)}
({EQUAL G (QUOTE A))(GO A3C))
((EQUAL G (QUOTE BJ1)(GO A3D))
((ONLYMEMB(CDR U6) [CADAAR U2))(G0 A3Cl)))
A3C3 (SETQ U7 (DELTF{COR U6) (CADAAR U2}))
(SETQ U3 (CONS U3 (CONS UT (CDDAAR U2))))
A3E (SETQ U2 (CONS{CONS U3 (CDAR U2)}(CDR U2)))
A98 (COND{INULL TT)(SETQ Wl (APPEND Ll U2)))
(T (SETQ W (APPEND Ul U2})))
{GO. A7)

A30 (COND({MEMBER(CDR U6) (CADDAAR U2)){GU A3C)))
(SETQ UT (DELPRICDR U6} {CAODAAR U2)))

{SETQ U3 (CONS U3 (CONS(CADAAR U2){CONS UT{CORICDDAAR U2})))))
(GO A3E)

ABCZ (COND({MEMBER (QUOTE HEAD){CADAAR U2} 1(GO A3C3)))
{GO A3C)

A3Cl (COND((EQUAL U3 (QUOTE A2)){GO A3C2)))

A3C (SETQ U3 (CAR U2))

(SETQ U2 (CDR U2))
(COND{ (EQUAL G (QUOTE C)) {60 A3F))
((EQUAL 6 (QUOTE A)J(SETQ UAs (CONSICADODAR U3) NIL)IM)
(SETQ U4 (MIRGEA(TACK{CADAR U3)}{CAR U6)) VU4))
(SETQ US (MIRGEA(TACK(CADDAR U3){CAR U6)) US))
(COND({EQUAL(CAAR U3) (QUOTE A2)) (60 A4))
({EQUAL{CAAR U3} (QUOTE PNT))(SETQ NN (QUOTE NEXT))))
(SETQ U3 (CONS{CONS(QUOTE VER)(CDAR U3))(COR U3)}1})
A3A - {SETQ U2 (CONS U3 u2))
(GO A98B)

A3F (SETQ U5 (MIRGEA{TACK(CADDAR U3)(CAR U6)) U5))
({COND{ (EQUAL(CAAR U3){QUOTE PNT))}{SETQ NN (QUOTE NEXT)}))
{SETQ U3 (CONS(CONS(QUOTE IRR}I{CDAR U3)){CONS N {CDR U3))
(GO A3A)

A4 (SETQ U3 {CONS(CONS{QUOTE VERA2)(CDAR U3))(CDR U3}))
(GO A3A)

A2 {(CONDUINULL TTH(GO A2A)))
(GO AT)

A2A (SETQ TT N)
(SETQ Ul NIL)
(SETQ U2 W)
(G0 Al)

A6 {(COND((EQUAL G {QUOTE A}){RETURN NIL)))

A7 (CONDC(EQUAL G (QUQTE C)) (GO A7A)))
(SETQ G (QUUTE B))

(COND({NULL U4} (GO ATA)))
(SETQ U6 (CAR U4))
(SETQ U4 (COR U4))
A78 (SETQ TT NIL)
(SETQ Ul NIL)
(GO AO0)
ATA (CONDUINULL US)I(GO C1)))
(SETQ U6 (CAR US))
(SETQ U5 (CDR US5))
(SETQ G (QUOTE C))
(GO A78B)

Cl (CONDLINULL W1)1GO .C2))

({EQUAL(CAAAR WE}{QUOTE VER)}(RETURNIQUOTE DONE})))
{RETURN NN)

C2 (COND{(EQUAL(CAAAR W)(QUOTE VER))(RETURN{QUOTE DONE))))
(RETURN NN} 1))))

COMPILE((VERIFY))

sTOP)

157

¢oc10
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
Q0210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
80470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
Qo710
00720
00730
00740

INVM LISP
DEFINE(L L INVMILAMBDAIU U2} (PROGIUL U4 US LL)
(SETQ LL Q)
(CONO({MEMBER{CAR U)(QUOTE(IMPLIES FEQUAL EXISTS)})
{RETURN NIL})
{ INOT(AND{MEMBER{QUOTE «PROD) U2) {MEMBER(QUOTE #INVERSE}) L21))
(RETURNCINVMZ U U5 U2))))
B4 (CONDC(NULL LL)(RETURN{INVMZ U US U2}))))
(SETQ Ul (PMATCH(CAR LL) U))
B3 (CONOC{NULL UL}(GO B1})}
(SETQ U4 (INVSUB(PRODARGS(CDAR Ul}))}
(CONDUINULL U4) (GO B82)))
(SETQ U [INVREDO(CDAR Ul) U4 U (CAR LL)))
(SETQ U5 U}
82 (SETQ VUl (CODR Ul))
(GO 83)
81 (SETQ LL {(CDR LL))
(GO B4) 1))))
DEFINEC (L INVM2(LAMBDA(U U5 U6} (PROGIUL U2 U3 U4 S1)
{COND{ (NULL US5)(SETQ S1 N1)})
(COND{ (MEMBER[QUOTE #INVERSE} U6) (GO E1))}
(SETQ Ul (LIST NIL NIL)}
{SETQ U2 (LIST NIL))
(SETQ U3 (LIST NIL))
{COND({ANDIMEMBER{QUOTE =PROD) U6){MEMBERI{QUOTE #IGENTITY) Us))
(SETQ U4 (LIST N NI)} g
(T (SETQ U4 (LIST NIL NILI))}
(GO E9)
El (SETQ U2 (LIST N))
(COND({MEMBER (QUOTE *PROD) U6)(60 E2)))
(SETQ Ul {(LIST NIL NIL))
(SETQ U4 (LIST NIL NIL))
(COND((MEMBER(QUOTE #IDENTITY) U6)ISETQ U3 (LIST N)))
(T (SETQ U3 (LIST NILIID)
(60 E9)
E2 (SETQ ULl (LIST N N}
(COND({MEMBER(QUOTE =IDENTITY) U6)(GD E3)})
(SETQ U3 (LIST NIL)}
(SETQ U4 (LIST NIL NIL))
(GO E9)
E3 (SETQ U3 (LIST N))
(SETQ U4 (LIST N N))
E9 (SETQ U3 (SIFT(APPEND Ul (APPEND U2 (APPEND U3 Us)))))
A (COND{INULL U3)(G0 D))
({SETQ U2 (CAAR U3))
(SETQ US (CADAR U3))
{SETQ U1l (RPLCE(QUOTE(AL A)) NIL))} . :
(COND{{NULL U1)(GO 8)))
(SETQ U2 (GENSUBSTICAR ULI(CDR Ul) U2)}
{SETQ US (GENSUBST(CAR ULI{COR Ul) US5))
B . (SETQ Ul (MATCHL U2 U))
(CONDLINULL ULI(GO CI))
{SETQ S1 NIL) .
(SETQ U (RPTSUB US U2 U VU1))
C (SETQ U3 (CDR U3))
(GO A)
D (CONDUINULL S1I)IRETURN U)})
(RETURN NIL} }}))))
DEFINE({{SIFT(LAMBDA(U)}{PROGIUL U2)
{SETQ Ul (QUOTE(((*PROD Al (=INVERSE Al A) A}
(SIDENTITY A))((*PROD(#INVERSE Al A) Al A)
(s IOENTETY A})((®INVERSE(=INVERSE Al A} A) Al)
(({#INVERSE(#IOENTITY A) A}{=IDENTITY A))
({#PROD Al (=IDENTITY A) A) Al)
({sPROD (#JIDENTITY A) Al A) ALI))
A (CONDUINULL U)IRETURN U2))
((EQUAL(CAR U) NI(SETQ U2 (CONSICAR ULIV2})))
(SETQ U (COR U))
(SETQ Ul (COR U1))
(GO A) 1))
COMPILE((INVM})
STOP))}))

158

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
gol110
00120
00130
00140
00150
00160
00170
00180
00190
00200
oc210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
0039¢
00400
00410
00420
00430

. 00440

00450
00460
00470
00480 -
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710

MODEL LISP
DEFINE{ ((MODELMAKE{LAMBDA(U)(PROG(UL U2 U3)
(SETQ Ul QM1)
A0 (CONDU(NULL UL)(RETURN NIL)}
({EQUAL(CAR U)(CAAAR UL1))(6GO Al)))
(SETQ Ul (COR Ul))
(GO AQ)
Al (SETQ Ul (CAR UL))
{SETQ U2 (RPLCE{ALLVBLESI{VBLES{CDAR U1))}(ALLVBLES(VBLES(COR U))}))}
(COND({(NULL U2){GO AlB}))
{SETQ Ul (GENSUBST{CAR U2){CDR U2) Ul})
Al1B (SETQ Ul (GENSUBSTI(CDR U)(CDAR U1){CDR Ul}))
{SETQ U2 (CAR Ul))
A2 (COND{(NULL U2)(GO A3)))
(SETQ U3 (ALLVBLES{CAR U2}})
(SETQ U QM3)
{SETQ QM3 NIL)
A2A (CONDU(NULL UX(GO A2C))
((NULLINEET(CAR U} U3))({SETQ QM3 (CONS{CAR U) QM3)})
{T (GO A28)))
A2a1 (SETQ U (CDR U})
(GO A2A)
A2B (SETQ U3 (ALLVBLES(APPEND(CAR U} U3)))
(GO A2Al)
A2C (SETQ QM3 (CONS U3 QM3))
({SETQ V2 (CDR U2))
(GO A2)
A3 - (SETQ Ul (COR V1))
A3A (COND{(NULL UL)(RETURN NIL))
{ LEQUAL(CAAR U1)(CADAR U1)}{GO A38)1))
(SETQ QM4 (SWMEMBICAR U1){CONS(CADAR U1l) (CONS{CAAR Ul) NIL}) QM4&))
A3B {SETQ Ul (COR Ul}}
(GO A3A) Y)Y
DEFINE(((CHECKMODEL (LAMBDA(U) (PROGIUL U2 U3)
(SETQ Ul QM2)
A0 (COND(INULL ULI(GO A1)}
(CEQUAL(CAAR ULI{CAR U)I(SETQ U2 {CONS{CADAR Ul) U2))})
(SETQ U1l (CDR Ul)}
(GO AQ)
Al (CONDCUINULL U2} (RETURN T)))
(SETQ UL QM3)
AlA (CONDCINULL UL){RETURN T))
((MEMBER(CADR U} {CAR U1))}{GO A2})}
{SETQ Ul (COR V1))
(GO AlA)
A2 (SETQ Ul (CAR U1)}
{SETQ U3 u2)
A2A (COND((NULL UZ){RETURN NIL))
((MEMBER(CAR U2) U1l)(GO A3)))
{SETQ U2 (CDR VU2))
{GD A24A)
A3 {SETQ Ul QM4)
(SETQ U2 NIL)
A3A (COND{(NULL VU1)I(GO A4))
((EQUAL(CAAR UL)}(CADR U))(SETQ U2 (CONS{CADAR Ul) u2))))
(SETQ Ul (COR U1))
(GO A3A)
A4 (CONDT{INULL U2)(RETURN TI))
A4A (COND(INULL U3)(RETURN NIL))
((MEMBER(CAR U3) U2){SETQ U3 (CDR U3}})
{T (RETURN T)))
(GO A4A))))))
DEFEINE((L {MEET{LAMBDA(U1 U2)
(CONDCINULL V1) NIL)((MEMBER{(CAR Ul) U2) (CONSICAR UL} (MEET
(COR U1) U2)))IIT (MEET{(CDR ul) U2))))N
DEFINE(((SWMEMB(LAMBDA(UL U2 L)
{CONDCINULL L)(CONS Ul NIL))((EQUAL UL (CAR L)) L)

((EQUAL U2 {CAR L)IIICDR L)){T (CONS(CAR L)(SWMEMB Ul U2{COR L))))D) 1))

DEFINE{ ((INOWWHICH(LAMBOA{U) (PRCG(UL)
(SETQ Ul (CDADR U)}
(CONO((MEMBER Ul QM6) (RETURN U))
({MEMBER U1l QM2)(GO A))
CENULL (CHECKMODEL Ul))(RETURN U)))
A (RETURN(LIST{CAR U)(CADDR U}(CADR U}}})}1))
DEFINE(({GENSET(LAMBDA{U L)I(PROGI()
A {(CONDUINULL L) (GO B))
(CEQUAL(CAAR L} U)IRETURNICADAR L)1)}
(SETQ L (COR L))
(GO A)
B (PRINT(QUOTE(GENSET IS RETURNING NONSENSE))}
(RETURN(QUOTE XX)} 1))}
sTOoPNI)

160

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
Qol1c¢
00120
Q0130
00140
00150
00160
00170
00180
Co190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370

00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
007310
00720
00730
00740
0075¢
00760
00770
00780
00790
00800
00810

GTFRM LISP
DEFINE(((GTFRM{LAMBDAIU L Z LN)
{PROG{UL1 U2 U3 U4 S)
A (COND((EQUAL L (QUOTE Y))(SETQ U4 Y))
© . {{EQUAL L (QUOTE X)}I{SETQ U4 X))
(T (SETQ U4 XX)))
A1 (COND((NULL U4)(GO A2))
({EQUALICAAAR U4)(CAR U)) (GO Al1}))
(SETQ U4 (CDR U4))
{60 Al}
All (COND{(NULL{CDAR U4)) (GO AlB)))
(SETQ Ul {CDAAR U4))
~(SETQ U2 (CDAR U4))
(SETQ U3 (ALLVBLES(VBLES U2)))
(SETQ U3 (RPLCEF U3 (ALLVBLES(VBLES(CDR U))}))}
(CONDUINULL U3){GO AlA)))
(SETQ U2 (GENSUBST{CAR U3){COR U3) U2))
(SETQ Ul (GENSUBST(CAR U3)}(COR U3) Ul})
AlA (SETQ U2 (GENSUBST(CDR U) Ul u2))
({COND((OR(EQUAL L (QUOTE X)) (EQUAL S N)){(RETURN
(PUTNZ NIL U2 2)))
({EQUAL L (QUOTE XX)1(GO B))
(T (RETURN{PUTONL{CONS Z4A LN) U2}}})
AlB (CONDI(EQUAL L (QUOTE X))(SETQ S N}}
(T (RETURN NIL)))
(SETQ L (QUOTE Y))
(GO A}
A2 {COND{(EQUAL L (QUOTE X))(PRINT(QUOTE
(CAN YOU GIVE ME A SUFFICIENT CONDITION FOR) 1))
(T (PRINTIQUOTE (CAN YOU GIVE ME A DEFINITION OF}))))
(PRINT(CAR U})
(SETQ Ul (RDFLX())}
(CONDU(EQUAL Ul {QUOTE NO)}(SETQ Ul (CONS(CONS(CAR U)
- NIL)Y NILID))
{COND((EQUAL L{QUOTE Y)I(SETQ Y (CONS Ul Y1)}
({EQUAL L{QUOTE X)I(SETQ X (CONS Ul X))}
(T (SETQ XX(CONS VUl XX})))
(SETQ U4 (CONS Ul NIL))
(GO All)
8- (CONDUINOT(ON U2 LN))(SETQ LN (APPEND LN
{CONS(CONS N U2} NIL)))))
(RETURN LN}
1)1)) STOPIM))

161

00010
00020
00030
0004¢C
00050
00060
00070
00080
00090
00100
Q0110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
0027¢
00280
00290
0030¢
00210
00320
00330
00340
0C350
00360
00370
00380
00390
004CO
00410
00420

MATCH '

(SETQ U3 (CARIGFIND M}))
(SETQ US (APPENDMICADDR U3) 2)}
(CONDI INULL US5) (RETURN NIL)))

(SETG U4 {CONSICAR U3)(CONS(CADR U3)(CONS US (CDODR U3)))))
(COND{(ORINULL WI{LESSP M (CADDDAAR W))}

(SETQ W1l (SUBST U4 U3 W1))?
(T (SETQ W (SUBST V& VU3 W)}))
(RETURN NIL} 1))
DEFINE(L (APPENDM(LAMBDALL Z)

(COND((MEMBER Z L) NIL) (T {CONS Z L))} D)D)
DEFINE(L (LADDANTEC{LAMBDAIM U) [PROGIU3 U4 US5)

({SETQ U3 (CARIGFIND U)})

LISP
OEFINE(({ (ADDCOUNSCULAMBDA(Z MI{PROGIU3 U4 U5)

{COND({GMEMB M (CADDR U3})(RETURN NIL}}
(LEQUAL M (CADDDR U3))(RETURN NIL))

{ENULLUANDEND M (CADDR U3)))(RETURN NIL))
({MEMBER(CAR U3){QUOTE(VER VERA2)))I(RETURN(QUOTE B)))}

A2A (SETQ U5 (APPENDM(CADR U3) M)}
(COND{ (NULL US){RETURN NiL))}

(SETQ U% (CONS(CAR U3){CONS US (CODR U3))))
(COND((ORINULL W)(LESSP{CADDDR U3} (CADDDAAR 1))

{SETQ Wl (SUBST U4 U3 wWl1}))
(T (SETQ W (SUBST U4 U3 W))))
(RETURN {CADDDR U3)}) 1})))
OEFINE(((ANDARGS(LAMBOA(U) (PROG()

(COND((EQUAL {CAADR U) (QUOTE AND)) (GO Al})
({EQUAL(CAADDR U) (QUOTE AND)) (GO A2)))

(RETURNICOR U})

Al (COND({EQUAL{CAADDR U)(QUOTE AND)) (GO A31))
(RETURN(APPENDICDR U) {ANDARGS{CADR U})))
A2 (RETURN{APPEND(COR U) (ANDARGS(CADDR U} 1))
A3 (RETURNUAPPEND(CDR U) {APPEND(ANDARGS(CADR U)) (ANDARGS (CADOR U}I1)})

1))

DEFINE({ ({ON2AVER(LAMBDA tU) (PRUG(VL}
(SETQ Ul (GFIND U))
(COND{ (NULL V1) (RETURN NIL))

((EQUAL(CAAR U1)(QUOTE VERA2}){(RETURN(CADAR Ui

(RETURN NIL)}) D))

DEFINE(({MATCHL1{LAMBDAIU L) (PROGIUL U2)

(CONDC(NULL L)(RETURN NIL})
((ATOM(CAR L}I{GO A2)))
(SETQ Ul (MATCH1 U (CAR LI))

(CONDC{NULL UL)(RETURN(MATCHL U {(CDR L))}

(SETQ U2 (MATCH1 U (CDR L))}
(COND(INULL U2){RETURN U1}))
{RETURN - (APPEND Ul U2))

A2 (CONDC(ATOM U}(GO AS))
COFREEVBLE(CAR U)} (GO Al))

((EQUALICAR U)(CAR L))(GO A5)))

({RETURNIMATCHY U (COR LIM)

Al (COND((ONICAR L) Z2)(GO AS5)}))
{RETURNIMATCHL U (CDR LI

AS (SETQ Ul (GMATCH U L)}

(CONDI (NULL UL} (RETURN (MATCH1 U (CDR L)1)

(SETQ U2 (MATCHL U (CDR L))}
{RETURN (CONS U1 U2)) 1))
COMPILE({ADDCONSQ APPENDM ADDANTEC))
COMPILE(LANDARGS ON2AVER MATCH1))
DEF INE{{ (MASK{LAMBDA(Z) (PROG(U Ul U2)
(SETQ U W)
A (COND({NULL UJ{RETURN W))
({EQUAL Z (CADDDAAR U)1(GG B)})

(SETQ Ul (APPEND UL (CONS(CAR U) NIL)))

{SETQ U (COR U))
{GO A)
8 (COND{(NULL U}(GO D))

((MEMBER(CAAAR U)(QUOTE(REL REL1)})ISETQ U2{APPEND U2 (CONS{CAR U}

NIL)}})

(T (SETQ Ul (APPEND Ul (CONS{CAR U) NIL)II))

(SETQ vV (COR U))
(GO B}
0 (PRINT V2)
(RETURN Ul) 1))))
CONPILE((MASK))
STOP)

162

00010
00020
00030
00040
00050
00060
00070
00080
60090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
004206
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750

GMATCH LISP

DEFINE(((IMPMATCH(LAMBDA(U M) {PROG(UL U2 U3 U4)
({COND((EQUAL(CAR U)(QUDOTE EQUAL)I(GD Al})

(({EQUAL (CAR U) (QUOTE EQUAL2))(GO A2))
((EQUAL (CAR U){QUOTE EXISTS)) (GO A8))
({EQUALICAR U){QUOTE IMPLIES))(GO A6))
(CEQUAL(CAR U} (QUOTE AND))}I{GO A3)))
(RETURN NIL)
Al (SETQ U2 (CONS(CADR U) NIL))}
(G0 A4)
A2 {SETQ UZ (COR V))
A4 (CONDCINULL U2)(RETURN UL)))
(SETQ U3 (CAR U2)) (SETQ U2 (CDR L2))
{SETQ U4 (GMATCH U3 M))
(COND((NOTINULL U4))}(SETQ Ul (APPEND Ul (CONS U4 NILI)MI))
(COND{{EQUAL{CAR M) {QUOTE EXISTS)) (GO A4))
(CMEMBER(CAR M) (QUOTE(EQUAL EQUAL2)))(SETQ U4 (MATCH1 U3 (CONS
(CADR M) NILIIII(T (SETQ U4 (MATCH1 U3 (COR MI))))
(COND{ INOT{NULL U4))(SETQ Ul (APPEND Ul U4))))
(GO A4)
A3 {SETQ U2 (ANDARGS W)}
(GO A7)
A6 (SETQ V2 (CDDR U))
(SETQ Ul (ALLMATCH1(CAR U2} M})
AT (COND((NULL U2)(RETURN Ul))}
(SETQ U3 (CAR U2)) (SETQ U2 (COR U2}
(SETQ Ul {APPEND Ul (IMPMATCH U3 M)})
(GO AT)
A8 (SETQ 23 {SUBSTI(CONS{QUOTE RES){CADR U))
(CONS N (CADR V)) 23))
[SETQ Ul (IMPMATCHICAODDR U) M))
{SETQ 23 (SUBST{(CONS N (CADR U}}
(CONS(QUOTE RES){CADR U)) 23))
(RETURN UL1) 1))}
DEFINE({{GMATCHI(LAMBDA(U Ul U2 V2}(PROGIV3 V4)
(COND{(NULL U) (GO Al))
UINULL U1) (RETURN NIL)})
{(ATOM U)(GC AS51))
CLATOM(CAR UD) (GO A2))
{CATOMICAR UL))(RETURN NIL)))
{SETQ V3 (GMATCHL(CAR U)ICAR ul) V2 v2))
(COND U (NULL V3)(RETURN NIL)))
(SETQ v4 (GMATCHLICDR U)(COR V1) Uz Vv2)}
(COND((NULL V&) (RETURN NIL)})
(RETURN(CONS LAPPENDI(CAR V3)(CAR V4)) (APPENDI(COR V3)(CDR V4)}))
Al {(COND{INULL UL)M{RETURNICONS U2 V2))))
(RETURN NIL)
A2 (CONDU(FREEVBLE(CAR U)) (GO A3))
({EQUAL(CAR UJICAR U1)){60 A4))
((AND(MEMBERICAR U)(QUOTE(EQUALZ EQUAL)})
(MEMBER(CAR Ul) {QUOTE(EQUAL2 EQUAL)IIII(GO A4)))
(RETURN NIL)

A3 (SETQ V3 (GMATCH1 (CDR UJ(CDR V1) U2 v2))
(COND(INULL V3){RETURN NIL))) .
(RETURN{CONS {APPENDICONS{CAR UINIL)(CAR V3)) (APPENDI{CONS(CAR U1}

NILMCDR Vv3))))

A5 (COND{(ON(CAR Ul) 23)(GO A5B}))
{RETURN NIL)

A58 (RETURN(CONS({CONS U U2)(CONS{CAR Ul) v21))

AS51 (COND{(FREEVBLE U) (GO A5))

((EQUAL U (CAR UL))(RETURNI{CONS U2 Vv2))))
(RETURN NIL}

A4 (RETURN(GMATCH1 (CDR U)(COR UL) Y2 V2)}}) 1)))

DEFINE(((GMATCH{LAMBDA{U U1} (PROGIVT V2 V3 V4 V5 V6)
(SETQ V7 (GMATCHL U Ul (CONS N NIL){(CONS N NIL)}}
(COND{ (NULL VT7)(RETURN NIL)))

(SETQ v2 (COR V7)) (SETQ VT (CAR V7))

Al (SETQ V3 (APPEND V3 (CONS(CAR VT) NILI))
(SETQ V4 (APPEND V4 (CONSICAR Vv2) NILI))

AlA (SETQ V2 (CDR V2))

(SETQ V7 (CDR V7))
(COND((NULL VT)(RETURN (CONS V3 V4)}))
((MEMBER(CAR V7} V3)(60 A2)))
(60 Al}
A2 (SETQ V5 v3)
(SETQ V6 V4)

A3 {(CONDU{EQUALICAR VT7)(CAR V5))(G0 A4})}
(SETQ V5 (COR V5)) (SETQ vé6 (CDR vé&))
(GO A3)

A4 (CONDC(EQUALICAR V2){CAR V61)(GC Al1A)D)}
{RETURN NIL) 1))

COMPILE((IMPMATCH GMATCHL1 GMATCH)) STOP)))

163

00C1GC
00020
00030
00040
00050
00060
c0070
00080
06CS%0
Q0100
Q0110
Q0120
00130
00140
00150
00160
00170
00180
0019¢C
00200
00210
00220
00230
00240
00250
00260
00270
00280
60290
60300
Q0310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
G051¢
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
acric
00720
00730
0074C
0C750
00760
00770
00780
00790
00800
60810

VBLES Lisp
DEFINE(((VBLES(LAMBDA(U)(PROG(}
(CONDUINULL U)I(RETURN NIL))
{(ATOM U) (RETURN{VBLESI{CONS U NIL)}})
(LATOM {CAR U))(GGC ALY))
(RETURNIAPPENDIVBLES({CAR U} }(VBLES(COR U}}))
Al {CONDU{ONICAR U) Z1){GO A2))
({ON(CAR U) IN)I(GO A2))
((ON{CAR U) 22)(G0C A2})
C(ON(CAR U) 231160 A2)))
(RETURN (VBLESICOR U)))
A2 (RETURN(CONS(CAR U)(VBLES(CDR U))}) 1) }})
OEFINEC((ALLYBLES{LAMBDA(U)

(CONDUINULL V) UI{IMEMBERI{CAR UJ(CDR U}) (ALLVBLES{CDR U))l

(T (CONS(CAR U} (ALLVBLES(CDR U)I})} D)D)
DEFINEC(({RESRVILAMBOAIU Z)
(CONDUINULL Z) Z)((MEMBERICDAR Z} U)
({CONS{CONS(QUOTE RES)(CDAR 2))
{RESRV U (CDR Z1)))
. (T. (CONS{CAR Z)(RESRV U {CDR Z2))})} M)
DEFINE(((ON(LAMBDALU 2)
(CONDU(NULL Z) NILJC(EQUAL U (CDAR Z)) T)
(T (ON U (CDR 2)))) 1))
DEFINE(((CONNECTIVE(LAMBDA (U}
(COND({MEMBER U (QUOTE!IMPLIES IMPLIES2 OR DEFER
EQUAL FEQUAL EQUAL2 EXISTS AND NOT)})} T)
(T F}} 1))}
DEFINE(({TERMS(LAMBDA{U L) (PROG()
(COND([NULL U)IRETURN NIL))
((ATOM(CAR U))(60 AL)))
(RETURN (APPEND(TERMS(CAR U) L)ITERMSI{COR U) L}})
Al (COND{{CONNECTIVE(CAR U))}(GO A2))
({EQUAL(CAR U} (QUOTE ASSQC)) (GO A2))
((NUMBERP(CAR U)){G0 A2))
((MEMBERICAR U) L){GO A2)))
(RETURN(CONS U (TERMS{CDR U) L))}
A2 (RETURN (TERMS {COR U) L)) 1))))
DEFINE({{GENSUBST(LAMBDA(L M U){PROGI)
{CONDCINULL L)(RETURN U})
((ATOM(CAR L)) (GO A))
((ON(CAAR L)} 22)(G0 B)))
C {(RETURN{SUBSTI(CAR L)(CAR M) (GENSUBST(COR L)}{COR M) U)})
A (COND(UEQUAL(CAR L)}{CAR M))(RETURNIGENSUBST(CDR L)
(COR M) UM}
(60 C)
8 (COND((ATOM(CAR M})(GO C))
{{ON(CAAR M) Z2}{RETURN(GENSUBSTICAR L)
{CAR M) {GENSUBSTICOR L)(CDR M) U)}))})
{60 C) 1))
COMPILE((VBLES ALLVBLES RESRY ON))
COMPILE((CONNECTIVE TERMS GENSUBST)Y)
DEFINE(({SUPXECILAMBDA(U6 U) (PROG{SUP RET Ul}
A (CONDUINULL U6){RETURN RET)))
(SETQ SUP NIL)
(SETQ RET (CONS{SUPSUB U6 V) RET))
B (CONDU{NULL U6) (GO B1))

(INOT{MEMBERICDAR U6) SUP)II{SETQ Ul (CONS{CAR U6} ULI))

(SETQ U6 {CDR Us))
(G0 8)
Bl (SETQ U6 Ul)
(SETQ Ul NIL)
(G0 A) ¥ N)
DEFINE(((SUPSUBI(LAMBDA{U6 U)(PROG(U3)
(SETQ U3 Ue)
Al (COND(INULL U3){GO B1))
((EQUALICDAR U3} U)(GO 821}
(T (SETQ U3 (CDR U3))))
(GO AL}
Bl {CONDI(ATOM U)(RETURN U}}}
(RETURN(CONS(SUPSUB U6 (CAR U))(SUPSUB Ué (CDR UI))}
B2 (SETQ SUP (CONS(CDAR U3) SuP))
(RETURN (CAAR U3)) 1))}))
STOP))))

164

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
6019¢C
00200
00210
00220
0023¢
00240
00250
00260
00270

.00280

00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630

- 00640

00650
00660
00670

00680

00690
00700
00710
00720

ROFV Lise
DEFINE{ { {NOLOOK(LAMBDA (M)
(COND((MEMBER(CAAR(GFIND M))(QUOTE{VER IRR VERA2 NILLM))
TWIirT £)) 1N
DEFINE(((SPREAD(LAMBDA{A) LUNPACK(CARIGET A (QUOTE PNAME)}))))))
DEFINEC((ASTERISKED(LAMBOA(A) (COND{{EQUAL STAR
(CAR{SPREAD A))) TI(T F)) })))
DEFINE(((FIFTH(LAMBDA(U)(CAR{CDDDDR U}I))))}
DEFINE(({SIXTH(LAMBDA(U) (COND((NULL{CDR(CDODDDR U})} NIL)
{T (CADR{CDODDR U}})) 11}))
DEFINE(((ALLSUBSTS(LAMBODA(L M U LN}(PROG(UL U2 S}
(SETQ Ul (GMATCH M U))
(CONDC(NOT(NULL ULIDMISETG Ul (CONS Ul NIL)ID}
Al (CONDCINULL UL)(GO A2)))
(SETQ U2 (APPEND U2 (LIST(CONS(GENSUBSTICDAR Ul)
(CAAR UL} L)(GENSUBST{CDAR UL){CAAR UL} M)}))}
{SETQ Ul (CDR Ul))
(GO Al)
A2 (CONDUINOTI(NULL S)) (GO A3)))
(SETQ S N)
(CONO((MEMBER(CAR U) (QUOTE(EQUAL EQUALZ2!))(SETQ U {CONS(CADR U} NIL}))
(T (SETQ v (CDR U))))
(SETQ Ul (MATCH1 M U))
(GO Al)
A3 (CONDCINULL U2)(RETURN NIL)))
(RETURNICONS LN U2)))))
DEFINE(((ASSOCM{LAMBDA{M U LN)(PROG(UL)
(COND((MEMBER{CAR U) (QUOTE(EQUAL EQUAL2)})ISETQ U (CADR U})))
(SETQ Ul (PMATCH M U))
(CONDCINULL ULY{RETURN NIL)})
(RETURN{CONS LN UL)) 1))1))
DEFINE{ ((PMATCH{LAMBDA(M U)(PRDOG(ULl U2 U3 S)
(SETQ Ul (CONS{QUOTE(=PROD Al (#PRCOD A2 A3 A} A))
{GUGTE{#PROD(»PROD Al A2 A} A3 A)}))
(SETC Ul (SUBST M (QUOTE A) Ul))
(SETQ U2 (RPLCE(QUOTE(AL A2 A3}) NIL))
(CONOC{NOT(NULL U2)})(SETQ UL (GENSUBSTICAR U2)(CDR U2) Ul))))
C {SETQ U2 (MATCH1(COR Ul) W)}
A {CONDUCINULL U2)(GO B)))
(SETQ U3 [(APPEND U3 (LIST(GENSUBST(CDAR U2)(CAAR U2) Ul}))
(SETQ U2 (CDR U2}))
(GO A)
B (CONDUINOT(NULL S))(RETURN U3)))
(SETQ S N)
{SETQ Ul (CONS(CDR U1)(CAR Ul)))
(G0 C) N
DEFINE(({ROFVILAMBDA(Z FLG)(PROGI{VU U1)
{CONDU{EQUAL Z N)IRETURN Vv2)))
(SETQ U vv2)
A (CONDUINULL U)(RETURN Ul))
((MEMBER(CAAAR U) FLG){SETQ UL(APPEND Ul (CONSICAR U} NIL))}))
((LESSP{CAAAR U} Z){GO B))
(T (RETURN{APPEND Ul U}
8 {SETQ U [COR L)}
{Gg A))))))
DEFINE(({{CHNGW{LAMBDA(U){PROGIU1 U2 U3 U4)
(COND({EQUAL(FIFTH(CAR U} Z4A){RETURN NIL)))
{SETQ Ul W)
Al (COND({NULL UL)(RETURN NIL})
({EQUAL(CDAR U1)(CDR UI)I{GO A2))}
(SETQ U2 (APPEND U2 (CONS{CAR Ul}l NIL)))
(SETQ Ul (COR Ul))
(GO Al)
A2 (SETQ U3 (CAAR U1))
{SETQ U4 (SIXTH U3}
(SETG U3 (LIST(CAR U3){CADR U3} (CADDR U3} (CACCOR U3) Z4A))
(CONDCINOTINULL U4))(SETQ U3 (APPEND U3 (CONS U4 NIL)I}))
(SETQ W (APPEND U2 (CONS{CONS U3 (COR U)J(CDR ULIN)}
(RETURN NIL} 1))
STAP1I) M)

165

C0010
Ga020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00206
Qo210
00220
00230
00240
00250
00260
00270
00280
ccz29c
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
Q0400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690

NEXT LISP
DEFINE{ LINEXT(LAMBDA(L) (PROG(])
(COND({NOT(EQUAL{CAAAR W) (QUOTE PNT)}1{(G0 BL)))
(SETQ W1l (APPEND W1 (CONS(SUBSTIQUOTE REL)
{QUOTE PNT)(CAR W}) NILI})
8 (SETQ W (CDR W))
(COND((NULL W)IRETURN NIL))
((EQUALICAAAR W)(QUOTE RELII(GO C)))
81 (SETQ W1 (APPEND W1 (CONS(CAR W) NIL))}
(GO B)
C {(COND({EQUAL(CADAR W){QUOTE DEFER)} (G0 D))}
Cl (SETQ W (CONS{SUBSTIQUOTE PNT)(QUOTE REL)(CAR K1} (COR W1))
{RETURN N)
D (SETQ L {CDAAR W)}
(COND{ (MEMBER(CADOR L) {CACDAR(GFIND(CAAR L})})(GO C1))
CUNULLICDR W)){RETURN NIL)})
(SETQ W1 (SUBST 24 (CADDR L) Wl))
(SETQ W (APPEND W (CONSISUBST Z4& (CADOR L)(CAR W)) NIL)))
(SETC Z4 (ADD1 Z4))
(60 8) 1))))

DEFINE(((CADDDAR{LAMBDA(U) (CAR(CDDDAR U I)1)}
DEFINE({ (CADDOAAR{LAMBDA(U) (CADRICDDAAR U))))))
DEFINE({ (CADDAAR{LAMBDA(U) {CARICDDAAR UII) 1)}
DEFINE{ { (RPLCE(LAMBDA(U UL)}(PROG(UZ U3 U4 U5 U6)

(SETQ U2 V)

Al (CONDUINULL U2){GOD As))

{(FREEVBLE{CAR U2))(GO A3))}

A2 (COND((ON(CAR U2) Z1){SETQ U5 Z1))
((ON{CAR U2) ZN)(SETQ U5 IN))
((ON{CAR U2) Z2)(SETQ U5 Z2))

(7 (SETQ U5 13)))

{SETQ U6 {CAR U5))

A2C (COND{{NULL U5)(GD A5))

((EQUAL N (CAAR U51)(GO A4)))

A2D (SETQ U5 (COR US)}

(60 A2C)

A3 (COND{(MEMBER{CAR U2) U1)(GO A2)))

A3A (SETQ U2 (CDR U2))

{GO Al)

A4 (CONDU(MEMBER(CDAR U5) Ul)(GO A20))
{{MEMBERI(CDAR US) U)(GO A2D))

{ {MENBER{CDAR U5) U3)(GO A20)))

(SETQ U3 (CONS(CDAR US) u3))

{SETQ U4 (CONSC(CAR U2) U4))

(GO A3A)

A5 (PRINT(QUOTEINOT ENCUGH VARIABLES)))

(PRINT Ué)

(SETQ U (ROFLX(1))

(SETQ U5 (CONSI(CONS N U) NIL))

(COND((EQUAL U6 (CAR Z1))}{SETQ Z1 (APPEND 21 U5)))
((EQUAL U6 (CAR IN)){SETQ IN CAPPEND IN U51))
((EQUAL U6 (CAR 12))(SETG Z2 (APPEND 22 US5)))}
(T (SETQ 23 (APPEND 23 US))))

{GO A4)

A6 (CONDUINULL U3)(RETURN NIL)))

(RETURN(CONS U3 U4}]))}*')))

OEFINE(({ARGOF1(LAMBDA{U L) (PROGIUVL)

(COND{ (NULL L)(RETURN NIL))

({CONNECTIVE(CADAR L}) (RETURN(ARGOFL U (COR L)}

((ASTERISKED{CADAR L})(RETURN(ARGOFL U (CDR L))

({ON U 22)(GO A))

(CEQUAL U (CADDAR L))(RETURN(CONSICDAR L)
(ARGOFL U (COR L))}

{RETURN{ARGUF1 U (CDR L)))

A (CONDI{(ATOM{CADDAR L)) (RETURNIARGOF1 U {CDR L})))
((EQUAL U (CAR(CADDAR L)1) (RETURN{CONSI{CDAR L}
(ARGOF1 VU (COR L))

(RETURN({ARGOF1 U (CDR L))) 1))

DEFINE(((ROFW(LAMBDA(N) (PROG(U)

(SETQ U W)

A (CONO(INULL U)(RETURN NIL))

((GREATERP M (CADDDAAR U}) {SETQ U (COR U))
(T (RETURN U)))

(GO A) 1}I))

COMPILE(INEXT CADODAR CADDDAAR CADDAAR RPLCE ARGOF1 ROFW))

STOP)}

1}
n

166

00010
00020
00030
00040
00050
00060
0C070
00080
0G09¢
00100
Qo110
00120
00130
00140
00150
00160
00170
60180
00190
00200
Qo210
00220
00230
00240
00250
00260
00270
00280
0029¢
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
C0440
00450
00460
00470
00480
00490
©0500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750

LT T

ATMS LISP
DEFINE({ ((GENVBLE(LAMBDA(U)} {PROGIUZ U3)
{SETQ U2 Z3)
A (CONDCINULL U2)(GO B))
((CEQUAL(CAAR U2){QUOTE GEN)}(SETQ U3 (CONSICDAR U2) U3))))
(SETQ U2 (CDR uU2))
{GD A)
B (SETQ U2 [ATMS U)})
C (CONDUINULL U2)(RETURN NIL))
({MEMBER{CAR U2) U3} (RETURN{CAR U2))))
(SETQ U2 (COR U2))
(GO C) 1))
DEFINEC((ATMS({LAMBDA(U) {COND{{NULL U) NIL){(ATOM U}
(CONS U NIL))I(T (APPEND(ATMSICAR U))(ATMS(COR UI)))I)IDID)
DEFINE(({RPLCEF{LAMBDAIU U1)(PROGIU2 U3)
(SETQ u2 z3)
A (COND((EQUAL{CDAR Z3)(QUOTE Al)}{(GO B)))
(SETQ Z3 (COR 23))
(GO A)
8 (SETQ U3 {RPLCE U ul))
(SETQ 23 U2}
{RETURN U3) 1})))
DEFINE(({FREEVBLE(LAMBDA(U) {PROG(UL}
(SETQ Ul (APPEND Z1 (APPEND 22 (APPEND I3 IN)})))
Al (CONOC{NULL UL)(RETURN NIL)}
({EQUAL U (CDAR U1l))(GO A2)))
(SETQ Ul {CDR U1))
(GO Al)
A2 (CONO((EQUAL{CAAR Ul) NI{RETURN T)))
{RETURN NIL) ¥}))
DEFINE({(TACK{LAMBDAIL M) (PROG{U1)
(SETQ Ul (CONS(CONS(CAR -L) MINIL))
Al (SETQ L (CDR L))
(COND{ {NULL LI(RETURN UL}))
(SETQ Ul (APPEND Ul (CONSICONS(CAR L) M) NIL))}
(GO Al} 11)))
DEFINE({(MIRGEA{LAMBDA(L M)(PROG()
Al (COND{INULL L)(RETURN M)}
({EQUAL(CAAR L)(QUOTE HEAD})I(GO A2})
((EQUAL(CAAR L) (QUOTE NONE)) (GO A2))
({ATOM(CAAR L))(GO A2}))
C(SETQ L (CONS{CONS(CAAAR L){CDAR L)) {CONS{CONS(CDAAR L}
(CDAR L)){CDR L))))
(GO A1}
A3 (SETQ M (APPEND M (CONS (CAR L) NIL)))
A2 (SETQ L (COR L))
(GO Al) 1))
DEFINE(({DELPR{LAMBDA(M L) {PROGIUL)
Al (CONDU(NULL L)(RETURN U1))
({ATOM(CAR L)) (GO A2))
((EQUAL M (CAAR L)}{GD A&}
((EQUAL M (CDAR L))I(GO A3)})
A2 (SETQ Ul (APPEND Ul (CONS{CAR L) NIL)))
(SETQ L (COR L))
(GO Al)
A3 {SETQ L (CONS(CAAR L}(CDR L}}}
(RETURN (APPEND UL L))
A4 (SETQ L (CONS(CDAR L}IICDR L))
[RETURN (APPEND U1l L)))))}))
DEFINE(((ONLYMEMB(LAMBODA(M L}
(CONDU{NULL{COR L)) (COND{{EQUAL M (CAR L)) THI(T F1))
((EQUAL(CADR L){QUOTE HEAD))(COND{(EQUAL M (CAR L)} TXIIT FI)N}
A LEQUALICAR L) (QUOTE HEAD)) (COND((EQUAL M (CADR L)) TILT F)))
(T F)) 3H))
DEFINE{((DELTF(LAMBDA(M L) (PROG(U]1)
Al (COND((EQUAL(CAR L) M) IRETURN (APPEND Ul (COR L}})})
(SETQ Ul (APPEND Ul (CONS {CAR L) NIL)))
{SETQ L (CDR L)}
(G0 A1})
COMPILE((FREEVBLE TACK MIRGEA DELPR ONLYMEMB DELTF})
STOP)

168

00010
0002¢
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
80350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700

GFIND
DEFINE(((ANDEND(LAMBOA{M U} (PROG(U1)
Al (CONDC(NULL U)(RETURN N))
{(ATOM(CAR U)}(GO A2)})
AlA (SETQ U {CDR U))

(GO Al)

A2 (COND{ (EQUALICAR U){QUOTE NONE)) (GO AlA)))

(SETQ ULl (GFIND(CAR U)))

(COND((EQUAL (CADR U11{QUOTE AND)){GO A3}))

(GO AlA)

A3 (COND((MEMBER M (ANDTERMS(CADDAR U1})) (RETURN NIL)))

(GO ALA) 1)) _

DEFINE({ (ANDTERNS{LAMBDA(U) (PROG (UL U2)

(CONDI (ATOM(CAR U}) (GO B)))

(SETQ Ul (GFIND{CAAR U)})

(COND{ (EQUAL(CADR U1) (QUOTE AND))(SETQ U2 (ANDTERMSICADDAR Ul))}))
{T (SETQ U2 (CONS{CAAR U) NIL)))}

A2 {SETQ Ul (GFIND{CDAR U))}
(COND((EQUAL [CADR UL) {QUOTE AND)){GO A3)))
(RETURNICONS (CDAR U) U21) _
A3 (RETURN{APPEND{ANDTERMS{CADDAR U1l)) U2)}
8 [SETQ UL (GFINDICAR UM}
{COND((EQUAL{CADR UL) (QUOTE AND)) (RETURN(ANDTERMS(CADDAR U1)}}))
(RETURN{CONS(CAR U} NIL)) 13)))
DEFINE{ { (GFIND(LAMBOA (M} (PROG(U)
(SETQ U (APPEND W1 W))
Al (COND((NULL U)(RETURN NIL))
((ATOM M){GO B})
((EQUAL M (CDAR U))(RETURN(CAR U))})
A2 (SETQ U (CDR U})

{60 al)

8 (COND({EQUAL M (CADDDAAR U)}{RETURNICAR U})}}

(GO A2) 1))))

COMPILE{ (ANDEND ANDTERMS GFIND))
DEFINE(({ALLMATCHL(LAMBDA{U M) (PROGIUL U3)

{COND((EQUAL{CAR U)(QUOTE AND))(SETQ U (CONS U (ANDARES UII))
{T (SETQ U (CONS U NILI)))

8 (COND((NULL U)(RETURN U1}))

{SETQ U3 (GMATCHICAR U) M))

{COND((NOT(NULL U3))(SETQ Ul (APPEND Ul (CONS U3 NIL)))))

(SETQ U (CDR U))

(GO B) 1))

DEFINE({ (GMEMB(LAMBDA{M U)
(COND(INULL U) F)
{ (ATOM{CAR U))(COND({EQUAL M (CAR U)) T)
(T (GMEMB M (CDR U1))))
{T (COND{(EQUAL M {CAAR UI} T)
((EQUAL M (CDAR U)) T}
(T (GMEMB M (CDR U})I1)} 1))
DEFINE({(RPLCL(LAMBDA(U) (PROGIUL U2 U3)
A0 (COND{INULL U)(GO 8)))
{SETQ U3 (APPEND 21 (APPEND Z2 (APPEND Z3 IN))})
Al (COND({EQUAL(CAR U)(CDAR U3})(GD. A31))

(SETQ U3 (CDR U3))

(GO Al}

A3 (COND((EQUAL(CAAR U3)(QUOTE RES)I{60 A4)})

(SETQ U3 (GENSYM))

{SETQ UL (CONS U3 U1})

{SETQ U2 (CONSICAR U) U2))

{COND{(ON(CAR U) Z1)(SETQ Z1 (CONSICONS(QUOTE RES) U3} Z1)))
({ONCCAR U)ZN)(SETQ IN (CONS(CONS{QUOTE RES) U3} INID)
C(ON(CAR U) Z2)(SETQ 22 (CONS(CONSIQUOTE RES) U3} Z21))
(T (SETQG Z3 (CONS(CONS{QUOTE RES) U3) Z3))))

A4 (SETQ U (CDR U)) : :

(GO -A0)

B (CONDI{(NULL U1) (RETURN NIL)}))

{RETURNICONS UL U2)))1)))

COMPILE{ (ALLMATCH1 GMEMB RPLC1))
STOP)

169

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
Qo280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400C
00410C
0042¢
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580

00590

00600
00610
00620
00630
00640
00650

00660

00670
00680

DEFNS DATA

(

((SSUBGROUP A B))((SNGRMAL A B C))

(UMEMBER Al A))UINORMAL A B C))U{SEMIGROUP A))((ASSOC A))((ABELIAN A 8))
(USUBSET A B))

((SUBGROUP A B) IMPLIES(AND(NEMBER Al A) (MEMBER A2 A))
{AND(MEMBER (#PROD Al A2 B) A)(MEMBER{®INVERSE Al B) AN}
({SUBMONCID A B) IMPLIES(AND({MEMBER Al A)(MEMBER A2 A))
{MEMBER(#PROD Al AZ B) A))

({HOMOMORPHISM(F1 A 8)) IMPLIES(AND(MEMBER Al A)

(MEMBER A2 A))(AND(MEMBER(F1 A B8 Al) B8)(EQUAL2

(F1L A B (*PROD Al A2 A))(=PRODIF1 A B AL}(FL A B A2) B8))))
C{HOMOMF(F1 A B)) IMPLIES{AND{MEMBER Al A} (NEMBER A2 A))
(FEQUAL(F1 A B (#PROO Al A2 A))(sPRODIFL A 8 Al)

(F1 A 8 A2) B)))

((ONTO(F1 A B)) IMPLIESU{MEMBER Al B8)(EXISTS A2
(AND{MEMBER AZ A){EQUALIFL A B A2) AL)}))

(UINVERSE AL A2 A) EQUAL({*PRGD Al A2 A)(sIDENTITY A})
({SHAS®COMPSSERIES A) EXISTS N1 (EXISTS(B N2}
(COMP#SERIES({B N2) N1} AN}

((ONETCONE(FL A B)) IMPLIES(ANDIAND(MEMBER Al A)

(MEMBER A2 A))(EQUAL(*PROD{#INVERSE(FL A 8 Al) B)

(F1 A B A2) B)(=IDENTITY B}))(EQUAL(*PROD

{#INVERSE Al A)-A2 A){«IDENTITY A)))

{(RCOSET A Al B C))((LCOSET A Al B C))

11

({SSUBGROUP A B)){{SNORMAL A B C)) LINULLY)

({«FININT A N9) AND(EQUAL(#FININT A 1){Aa 1))}
(EQUAL(#FININT A (#SUCCESSOR N3}) (#INT{(aFININT A N3)

(A (#SUCCESSOR N311)))

((#SEQIAL N} A)MI(«EXP Al N A))

({{#SUCCESSOR N}) -

({MEMBER Al A))({sPROD Al A2 A))}{(ASSQC A))

(CIMAGE A (F1 B C)) IMPLIES2(MEMBER Al A)(EXISTS A2
(ANDIMEMBER A2 8) (SEQUAL(F1 B C A2) ALY}))
((HOMOMORPHISM(FL A B)) IMPLIES(MEMBER Al A}

(MEMBER(F1 A B Al) B))

((INVERSE Al A)) ((«IOENTITY A))

({GROUP A) AND(IMPLIES(AND{MEMBER Al A)

(MEMBER A2 A))(MEMBER({®PROD Al A2 A) A))}(AND

(ASSOC A) (AND(MEMBER(«IDENTITY A) A)

(IMPLIES(MEMBER Al A) (NEMBER(®INVERSE Al A) A}
((CONJUGATE A Al 8 C) ANDIMEMBER Al C)

(IMPLIES2(MEMBER A2 A)(EXISTS A3 (AND(MEMBER A3 B)

(EQUAL A2 (ePROD(=PROD Al A3 C)I(«INVERSE Al C} C)}I 1)
((SUBGROUP A B) AND(IMPLIESIMEMBER Al A)

(MEMBER Al 8))(AND(IMPLIES(ANDI(MENBER AL A}

(MEMBER A2 A))IMENBER (ePROD Al A2 B) A))
CANDIMEMBER(*IDENTITY B) AJIIMPLIES(MEMBER Al A)
(MEMBER(« INVERSE Al B) A}))))

((KERNEL A (F1 8 C))

IMPLIES2({MEMBER Al A) (EQUALLFL 8 C A1) (=IDENTITY C)))
(CABELIAN A 8) IMPLIES(ANDIMEMBER Al A) (NEMBER A2 A))
(EQUAL (#PROD ‘AL A2 B)(#PRAD A2 Al B))}

({SEMIGROUP A) ANDIIMPLIES(AND(MEMNBER Al A)

(MEMBER A2 A)) (NEMBER(#PROD Al A2 A) A}IC(ASSOC A))}
({CENTER A B) AND(IMPLIESUIMEMBER Al A) (MEMBER Al B))
(IMPLIESZ({NEMBER Al A)(IMPLIES(MEMBER A2 B)

(EQUAL(#PROD Al A2 B)(#PROD A2 Al B))}))

(UINTERSECTION A 8 ©) IHPLIE$2(HENBER Al A) LAND

(MEMBER Al B){MEMBER Al C)))

CINORMAL A B C) IMPLIES(AND(MEMBER Al B)(MEMBER A2 A))
(MEMBER(sPROD(SPROD Al A2 CI({®INVERSE Al C) C) AN}
((COMMUTATOR Al A2 A3 A) EQUAL2 Al («PROD(*PROD(«PRCOD
(#INVERSE A2 A)(sINVERSE A3 A) A) A2 A) A3 A))
((NORMALIZER A B8 C) IMPLIES2(MEMBER Al A)(IMPLIES
(MEMBER A3 B) (MEMBER(*PROD{*PROD Al A3 C}

{#INVERSE Al C) C) 8}))

(IREMAGE A B (F1 C D)) IMPLIES2{MEMBER Al A)(EXISTS A2
(ANDIMEMBER A2 B){SEQUALIF1 C D A2) Al}}))
((EPIMORPHISMIFL A B)) AND{IMPLIES(MEMBER Al B) (EXISTS A2 (AND
(MEMBER A2 A)(EQUAL2(F1 A 8 A2) ALI}II{EMPLIESIMENBER A3 A)
(MEMBER(F1 A B A3) B)))

((MONOMORPHISM(F1 A B)) AND{(ONEONE(F1l A B))
(IMPLIES{MEMBER Al A)(MEMBER(F1 A 8 Al) B)))

((RCOSET A Al 8 C) ANO(MEMBER Al C)(IMPLIES2(MEMBER A2 A)
(EXISTS A3 (AND(MEMBER A3 8) (SEQUAL(SPROD A3 AL C) A2)))1))
((LCOSET A Al 8 C) AND(MEMBER Al C) (IMPLIES2(MEMBER A2 A)
(EXISTS A3 (ANDU(MEMBER A3 B)(SEQUAL(®PROD Al A3 C) A2))1)))
((SETINY A B C) IMPLIES2(MEMBER Al A)

({EXISTS A2 ,(AND(MEMBER A2 BY(SEQUAL(®INVERSE A2 C) AL }))

170

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
oo0z210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540

00550

00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800

(UFACTORGROUP A B D) AND(AND

(IMPLIESZ(MEMBER{*LCOSET Al B D) A)(MEMBER Al D))
CIMPLIESIMEMBER Al B) (EQUAL(®LCOSET Al 8 D)

(#1DENTITY A))DIUINPLIES(MENBER Al A)

(EXISTS A2 [AND(MEMBER A2 D) (EQUAL Al

(#LCOSET A2 B8 011))

(LUNITSET A Al) IMPLIES2({MEMBER A2 A) (SEQUAL A2 Al))
(CINVEIMAGE A B (F1 C D)) IMPLIES2{MEMBER Al A) (NEMBERIF1 C D Al) 8))
((SUBSET A 8) IMPLIESIMEMBER Al A) (MEMBER Al B))
({ISOMORPHISM(FL A B)) AND{ANDIONEONE(F1 A 8))

(IMPLIES(MEMBER Al B)(EXISTS A2 (AND

(MEMBER A2 A)UEQUAL2IFL A B A2} AL)))1)(IMPLIES(MEMBER A3 A)
(MEMBER(F1 A B A3) B1))

({SUBFGRP A 8 C D) AND

{IMPLIES2({MEMBER(=LCOSET Al 8 D) A)(MEMBER Al C))
(IMPLIES(MEMBER AL A)

(EXISTS A2 {AND{MEMBER A2 C){EQUAL Al

(«LCOSET A2 8 D)))))

C{COMPoSERIESI(A N1) N2) 8) ANO(IHPLIES(EQUAL 8 (sUNITSET
{SIDENTITY 8)))(COMPeSERIES((B N1) 1) 8))(IMPLIES(AND(
SHASeMAXSNORMeSUB B) (DEFERIEXISYS N4 (EXISTS(C N5) (COMPeSERIES
((C ‘N5) N&)(»NAX*NORMeSUS B)I)))))

(ANDICOMPoSERIESL (D N3) N6) B) (ANDIAND(EACH(EQUALID N3)(C N5))
(#PREDECESSOR N6)) (EQUALID N6) B)) (EQUAL (*PREDECESSOR N6) N4)))))
((ONETOONE(F) A B)) IMPLIES(FEQUALIFL A 8 Al)

(F1L A B A2))(EQUAL AL A2))

(CINVPNT A Al (F1 B C)) ANDU(IMPLIESIMEMBER A2 A)

(EQUAL(FL B C A2) AL))UIMPLIESI(EQUALIF] B8 C A2)

ALY (MEMBER A2 A)})

((CENTRAL A B C) AND(IMPLIESIMEMBER Al A){MEMBER Al C)

YU IMPLIES2({MEMBER Al A)(IMPLIES(MEMBER A2 B)

(EQUALTSPROD Al A2 CI(=PROD AZ Al C)))))

"
({HMPRP(F1 A B)) (F1 A B (eIDENTITY A})(SIDENTITY B)
(F1 A 8 {SINVERSE Al A))(=INVERSE(F1 A B Al} B)
(F1'A B (#PROD Al A2 A))(#PRODIF1 A B Al)
"(F1 A B A2) 8))
(CFGPRP A B D) (=LCOSET(®INVERSE Al D) 8 D)
(#INVERSE(#LCOSET Al 8 D) A)(=LCOSET(#PROD
Al A2 D) B D) (#PROD{=LCOSET Al B D)(SLCOSET A2 8 D) A))
M
({SUBSET A B)((A 8))(A B))
((FACTORGROUP A B D)({A)(B D))(B D))
({HOMOMORPHISH(FL A BII(LAY(B)))
((EPINORPHISMIFL A B))I(LA)(B)))
({MONOMORPHISHIFL A B))LLA)(B)))
({ ISOMORPHISMIFL A B))((A)(B)))
((SUBGROUP A BI(L(A B)I(A B))
({IMAGE A (F1 B CHIt(A CI)MLA C))
(IKERNEL A (F1 B C))IU{A BIILA B))
({RIMAGE A B (F1 C DIILIB C)(A DI)IB C)LA D))
((INVIMAGE A B (F1 C D))({A C)(B DIY(A C)(B DV}
({SUBFGRP A B C D)}{(A)(B C DII(B.CI(B DI(C D))
((ABELIAN A B)((A B))(A B))
({CENTER A B)((A B))(A B))
(LINTERSECTION A 8 C){{A B
(INORMAL A B CI{(A B CI)IA BI(A C)IB C))
((NORMALIZER A 8 CIU(A B C))tA CItB C))
((CONJUGATE A Al 8 C){tA B C)I(A C)iB C))
((RCOSET A Al B C}(LA B C)IC(A C)(B C)}
C(LCOSET A A1 B C){(A B C)){A C)(B C)}
({SETINV A B C)((A 0 ClMaA Gt C))
CUINVPNT A AL (F1 8 C))ICLA BYI(A B)
(lCENTRAL ABCHtASB C)I(A cite C)

CIILA BI(A C))

)
)

171

00810
00820

- 00830

00840
00850
00860
00870
00880
00890
00900
00910
00920
00930
00940
00950
00960
00970
00980
00990

© 01000

01010
01020
01030
01040
01050
01060
01070
01080
01090
01100
01110
01120
01130
01140
01150
01160

01170
' 01180

01190
01200
01210
01220
01230
01240
01250
01260
01270
01280
01290
01300
01310
01320
01330
01340
01350
01360
01370
01380
01390
01400
0l4l0
01420
01430
01440
0145¢

oo

COMPIL LISP
COMMON((Wl W Z4 N QF1 VvVl Vv2 QM5 CX))
LOAD{(PUT2))
COMMON((QM1 QM2 QM3 QM4 QM6 IN))
COMMON((Z1 Z2 23 Q QF2 XX QL1 QL2))
COMMONI[X Y Z6 FQM2 FQM3 FQM4 CL Z4A Z4B CX1 LON))
LOAD((SOLVEX))
LOAD((VERIFY))
LOAD{ (PUTONL))
COMPILE((PUTONL))
LOAD{{(GTFRM))
COMPILE({GTFRM)})
LOAD({HFM))
COMPILE((HFM})
LOAD((GMATCHN))
LOAD((NEXT})
LOAR((ROFV))
COMPILE((NOLOOK SPREAD ASTERISKED FIFTH SIXTH)})
COMPILE((ALLSUBSTS ASSOCM PMATCH ROFV CHNGW})
LOAD{ (SCNX))
COMPILEI(SCNX})
LOADC (INVM))
COMPILE((INVM2 SIFT))
COMMON((SUP))
LOADU{VBLES))
COMPILE({SUPXEC SUPSUB))
LOAD{ (RPTSUB))
LOAD{{GFIND))
LOAD({MATCH))
LOAD((ATMS))
COMPILE({ATMS GENVBLE RPLCEF))
LOAD({ HOMOMF) }
COMPILE((HOMOMF ONLY))
LOAD((PUTON2))
LOAD((MODEL))
COMPILE({(MODELMAKE CHECKMODEL))
COMPILE{(MEET SWMEMB NOWWHICH GENSET))
LOADLISLYX))
COMPILEI({SLVX})
LOAD{ (MONOMF)}
COMPILE((MONOMF))
LOAD{ {WLOFN})
COMPILE({COMPOSITION))
EXCISE(#T#)

172

00010
00020
0C030
00040
00050
00060
60070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420

00430

P i L G e ne T T o s B

1Y)

2)

3)

4)

5)

6)

7)

8)

9)

BIBLIOGRAPHY

Black, F., 1964. A Deductive Question Answering System, doctoral dis-

sertation, Harvard University, Cambridge, Mass.

Crisman, P. A. (ed.), 1965. The Compatible Time-Sharing System - A

Programmer's Guide (Second Edition), Cambridge, Mass.: M.I.T.
Press.
Davis, M., and Putnam, H., 1960. A computing procedure for quantifica-

tion theory, Journal of the Association for Computing Machinery,

July, 7:201-215.

Fenichel, R. R., and Moses, J., 1966. A N

Version of CTSS LISP,

Artificial Intelligence Memo 93, Massachusetts Institute of Tech-
nology (Project MAC), Cambridge, Mass.

Gelernter, H., 1959. Realization of a geometry theorem-proving machine,
in [A], pp. 134-152.

Gelernter, H., Hansen, J. R., and Loveland, D. W., 1960. Empirical
exploration of the geometry theorem machine, in [A], pp. 153-163.

McCarthy, J., 1959. Programs with common sense, Proceedings of the
Symposium on Mechanisation of Thought Processes, National Physical
Laboratory, Teddington, England, London: H. M. Stationery Office,
PP. 75-84.

McCarthy, J., et al., 1962. LISP 1.5 Programmer's Manual, Cambridge,

Mass.: M.I.T. Press.

McCarthy, J., 1963. Situations, Actions, and Causal Laws, Stanford

Artificial Intelligence Project Memo 2, Stanford University, Palo

Alto, Calif.

173

10)

11)

12)

13)

14)

15)

16)

17)

18)

19)

20)

21)

22)

23)

Minsky, M. L., 1956. Notes on the Geometry Problem, I and II (mimeo-

graphed), Artificial Intelligence Project, Dartmouth College,
Hanover, Vt.
Minsky, M. L., 1961. Steps toward artificial intelligence, in [A],
pp. 406-450.
Minsky, M. L., 1965. Matter, mind and models, in [B], pp. 45-49.
Newell, A., and Ernst, G., 1965. The search for generality, in [B],
pp. 17-24.
Newell, A., Shaw, J. C., and Simon, H. A., 1957. Empirical explorations
of the logic theory machine, in [A], pp. 109-133.
Newell, A., Shaw, J. C., an& Simoa, H. A., 1959. Report on a general

problem-solving program, Proceedings of the International Conference

QE Information Processing, Paris: UNRSCO House, pp., 256-264.
Polya, G., 1954. How to Solve It, Princeton, N.J.: Princeton.

Polya, G., 1954. Mathematics and Plausible Reasoning, Princteon, N.J.:

Princeton, 2 vols.

Robinson, J. A., 1963. Theorem-proving on the computer, Journal of the
Association for cégguting Machinery, April, 10:163-174.

Robinson, J. A., 1965. A machine-oriented logic based on the resolution
principle, Journal of the Association for ngguting Machinerz,
January, 12:23-41.

Safier, F., 1963. "The Mikado" as an Advice Taker Problem, Stanford
Artificial Intelligence Project Memo 3, Stanford University, Palo
Alto, Calif.

Samuel, A. L., 1959. Some studies in machine learning using the game of
checkers, in [A}], pp. 71-105.

Scott, W. R., 1964. Group Theory, Englewood Cliffs, N.J.: Prentice-
Hall.

Slagle, J., 1961. A heuristic program that solves symbolic integration

problems in freshman calculus, in [A], pp. 191-203.

174

24) Slagle, J., 1965. Experiments with a deductive question-answering

program, Communications of the Association for Computing Machinery,

December, 8:792-798.

25) Teitelman, W., 1966. PILOT: A Step Toward Man-Computer Symbiosis,

doctoral dissertation, Massachusetts Institute of Technology,
Cambridge, Mass.

26) Wang, H., 1960. Toward mechanical mathematics, IBM Journal of Research

and Development, January, 4:2-22.
27) Wang, H., 1960. Proving theorems by pattern recognition - I,

Communications of the Association for Computing Machinery, April,

3:220-234.
28) Wang, H., 1961l. Proving theorems by pattern recognition - II, Bell

Systems Technical Journal, January, 40:1-42.

29) Wos, L., Robinson, G. A., and Carson, D. F., 1965. Efficiency and
completeness of the set of support strategy in theorem proving,

Journal of the Association for Computing Machinery, October

12:536-541.

[A] Feigenbaum, E. A., and Feldman, J. (eds.), 1963. Computers and
Thought, New York, N.Y.: McGraw-Hill.

[B] Kalenich, W. A. (ed.), 1965. Information Processing 1965 (Proceedings

of IFIP Congress 65), International Federation for Information

Processing, New York City, Washington D.C.: Spartan.

175

INDEX

(Underlined references indicate definitions)

advice-taker, 7, 101 ff, 127 ff
argument (of object or statement),
16, 17
backtracking, 10, 68, 73
"built-in" axioms, 33, 56 ff
“"change of variables', 50
connective, 14
constant, 13, 20
logical comstant, 14
syntactic constant, 15
construction, 77, 86, 88, 113
definitions, 15, 19, 24, 25 ff
detachment, 41, 58, 107, 109, 112
EQUAL, 14, 32, 38, 44, 87
EQUALZ, 14
existential generalization, 47

existential specification, 45, 47

EXISTS, 15
"explore consequences", 25 ff, 34,
106

FEQUAL, 14, 50, 80

GENFCN, 50, 81

head (of tree), 21

HOMOMF, 26, 50, 105

IMPLIES2, 14

ISOLVE, 50 ff, 64, 81 ff, 105

isomorphism, (see ISOLVRE)

lemma, 34, 36, 37, 41 ff, 72 ff,
91

LISP, 13

logical class, 21, 34, 59, 107

logical constant, 14

matching, 55, 57, 124

mathematical induction, 94, 96 ff

MODEL heuristic, 44, 45, 46, 6l ff,
81, 90, 110
necessary condition, 27, (also see
' definitions)
object, 15
compound object, 16
Project MAC, 13, 23, 28
progress, 10, 29, 34, 41, 58 ff,
112 f£f
heuristic A, 58 ff
heuristic B, 59, 87, 107, 112
property list, 19

of a condition or definition, 19

of a table I entry, 21, 30
of a table II entry, 21 ff, 30
PNT, 23
PUTON1, 45
PUTONZ2, 46
quantifier, 15, 20, 48

reduction, 21

related substitution, 33, 34, 39, 52,

73, 74, 75

scanning, 33 ff

SCANW, 26, 34 £f, 49, 50, 54

SCNX, 37, 49

semantic model, 61 ff, 126 ff

SLVX, 46, 49, 91

SOLVEX, 26, 48 ff, 90

statement, 17

status, 23

subordinate tree, 23, 37, 42 ff,
61 ff, 72 ff

subscript, 94 ff

sufficient condition, 15, 19, 24,
25 ff

symbol, 13

syntactic constant, 15

table I, 19, 21, 25 [f

table II, 19, 21 ff, 25 ff

table entry, 19

term, 15
asterisked term, 15, 16, 18, 53,
91, 92n
non-asterisked term, 15, 17, 18,
53, 91, 92n

time, 64, 81, 100, 102

tree, 21 ff, 47

type, 13

universal specification, 28

variable, 13, 20

verification, 47 ff

working backward, 8, 21, 25, 28, 122,
124

working forward, 42, 53, 89

177

BIOGRAPHY OF THE AUTHOR

Lewis Mark Norton was born in Derby, Connecticut on August 18, 1940. He
attended public schools in Shelton, Connecticut and was graduated valedictorian
of his high school class in 1958. He attended M.I.T. as an undergraduate with
the aid of a National Merit Scholarship, receiving his S.B. in Mathematics in
June, 1962. He then enrolled at M.I.T. as a graduate student and held a
National Science Foundation Cooperative Graduate Fellowship for the academic
year 1962-63. Since 1963 he has been a Research Assistant associated with
Project MAC, and expects to receive his Ph.D. in Mathematics in September,
1966.

The author has been employed by Charles W. Adams Associates, Incorporated,
Bedford, Massachusetts, Northern Research and Engineering Corporation,
Cambridge, Massachusetts, and Sikorsky Aircraft, Stratford, Connecticut, and
has accepted a position with the MITRE Corporation, Bedford, Massachusetts,
effective September, 1966. Since 1962 he has been a member of the Association
for Computing Machinery, the American Mathematical Society, and the Mathe-
matical Association of America, and an associate member of the Society of the

Sigma Xi.

178

