
- ·~.,, ------- "'.· ...

COMPUTim DESIGN :FOR ASYNCHRONOUSLY Rl!PROWCIBLE !IJLTIPROC!BSIIf G

by

EARL CORNELIUS VAN HOBB, JR.

S.B., Massachusetts Institute of TechnoloS)"
1961

S.M., Massachusetts Institute of TechnoloS)"
1963

DOCTOR OF PBIIDSCPHY

at the

MASSACHUSE'l'rS IBSTI'lVl'E OF TEXmtOLOOY
September, 1966

Signature ot Author ~!?L~t.
Department of EJ.ectrcarBEi8iliffring, . ~ 21, 1966

Certttied b7 rJ-~~~-esis perv sor
~'\i/_ A/ . -

Accepted by: ·~·•·••h 5, ~-
Cb81rman, Departmental camiiitt on Graduate Students -

COMPUTER DESIG?f FOR .ASYNCHRONOUSI;r REPROWCIBLE MULTIPROCESSING

by

F.ARL CORNELIUS VAN HORN, JR.

Submitted to the Department of Electrical Engineering on August 22,

1966, in partial fulfillment of the requirements tor the degree of

Doctor of Philosophy.

.ABSTRA~

A concept is presented for designing either a computing system, or a
programming language system, so that the following problem is avoided:
during a multiprocess computation in which several processes communicate,
and in which the relative timing of the performance of the processes is
arbitrary, the output produced by the computation might not be a function
ot on4' the initial computation state, i.e., ot only the inputs and initial
program ot the computation. The design concept tor avoiding this problem
is explained by defining an apparent4' new class ot abstract machines
called machines tor coordinated multiprocessing, or MCM's. Processes are
coordinated in an MCM by means of a count matrix, which may be modified
by actions ot processes, and which determines the processes enabled to
proceed at any instant. Remarks are made to suggest that a computing
facility which behaves like an MCM can be both constructed and programmed
at reasonable cost. It is proved that every MCM has the properties ot
output f'unctionality and output assuredness. Output f'unctionality means
that each s;ymbol in every output stream. is a function on4' ot the initial
computation state. Output assuredness means that tor each output stream
the maximum number Of symbols produced in the stream, or the fact that
the number ot such s,mbols has no upper bound, is a function on'.cy ot
the initial canputation state.

Thesis Supervisor: Jack B. Dennis

Title: Associate Professor ot Electrical Engineering

ii

Preface

The Thesis discusses three broad topics: (1) a problem encountered

in some contemporary computing systems, (2) a concept for designing a

computing system in order to solve this problem, and (3) a proof that

the concept presented does indeed solve the problem.

The problem concerns multiprocessing. Multiprocessing occurs

whenever a computing system is programmed by a single user in a manner

that allows more than one sequence of actions to be performed for him

simultaneously. Suppose information is transmitted among such sequences

of actions, and suppose the relative timing of the performance of these

sequences is not under user control. The problem to which the Thesis

is addressed is that in these circumstances the output produced for a

user by the performance of such sequences might not be a :f'unction of only

the inputs and initial program that are specified by the user. A more

precise statement of the problem and a discussion of the problem's origin

and significance are the subjects of Chapter I.

A concept for designing a computing system in order to avoid the

problem just mentioned has been discovered. An attempt has been made

to capture the essence of this design concept by describing, in

Chapter II, a class of abstract machines called machines for coordinated

multiprocessing, or MCM's for short. A preview of the structure of an

MCM is given near the beginning of Chapter II.

Chapter III discusses the feasibility of constructing and

programming a computing system whose internal structure can be placed

into correspondence with the structure ot an appropriately chosen MCM.

iii

In Chapters IV and V it is proved that the problem mentioned above does

not arise in an MCM. Conclusions and suggestions for future research

are presented in Chapter VI.

The Thesis might be of interest to three groups: (l)those

concerned with designing the hardware and supervisory software of

computing systems, (2) those concerned with designing programming

language systems, i.e. , programming languages and compilers for these

languages, and (3) those concerned with the theory of autanata. The

primary orientation of the Thesis is toward the design of the hardware

and supervisory software of a computing system. The Thesis is also

relevant, however, to the design of programming language systems, in

two respects. First, the programming of a computing system constructed

along the lines to be discussed, although shown in the Thesis to be

feasible, presents an interesting challenge both to programmers, and to

the designers ot programming language systems. Second, by employing

the design concept to be discussed, it is possible to develop tor any

computer a programming language system having the property that i£' a user

interacts with the computer only by means of the language system, the

user will never encounter the problem mentioned above. Final.J.y, the

Thesis is relevant to autanata theory, because it appears that the cl.ass

ot machines called MCM's bas not been studied before.

Although the Thesis as a whole is oriented toward the area of

computer engineering practice, the topics and methods of Chapters II, IV,

and V are characteristic of the area of automata theory. The techniques

ot automata theory have been employed in the Thesis for three reasons.

First, the essence of the design concept that bas been discovered is

iv

captured more ettect1ve4' in a deacription at an abatract machine than

in a deacription at a hypothetical caaputing ayst•; in a description

at the latter kind the eHence at the desigll concept would tend to be

obscured. b7 irrelevant detail. Second, b7 expreHing the desip concept

in terms of the structure ot an abstract •chine, the nature of an

apparent4' new phencnenon is made readil1' available tor study and

CCllP&rison with other concepts in the theor,y ot automata. Third, the

mathematical language and techniques used in automata theory all.ow the

presentation of bigb4' rigoroua proofs of tacts that, althou.gh

intuit1ve4' aat1afy1ng, have turned out to be slipper,v to verif'y b7

means ot logic.

For the reasons just mentioned, the Thesis may be said to stand

both in the
1
area at caaputer engineering practice, and in tbe area

at automata theor,v. Aa with &JJ1' iD.terdiacipllnar,v vork, the technical

jargon ot one area aight not be reedi11' understood 'bJ' those working in

the other aree. An. ettort baa been made, ther~ore, to explain

technical terma not CCJllllOD to both fields, and to avoid locutions

11lte4' to be misleading.

The doctoral research program. which led to the present Thesis

began vith an inquir,v into the posaibility ot analyzing quantitative4'

the problems ot storage allocation in caaputing systems. This inquir,v

led to a search tor vaya ot characterizing the structural aspects ot

ccaputing s78teas, particul.ar4' m.ultiprograaaed caaputing systems. The

present research topic, in turn, resulted :traa. an eft'ort to describe the

properties ot those events which constitute the execution ot a single

program within a multiprogramaed syatan.

v

I should like to acknowledge grate:f'ul'.cy the support of M.I.T.'s

* Project MAC , the activities of which stimulated my search toward the

present research topic. The presentation of ideas in the Thesis bas

been substantially improved as a result ot COlllllents and suggestions by

Professors R. McNaughton, R. Y. Kain, and F. J. Corbat6. I am grateful

to my advisor, Professor Jack B. Dennis, not only for his assistance on

technical matters, but also f'or his unswerving confidence in my

abilities. Finally, to my wife, Sandra, I extend special thanks for

the typing of the manuscript, and for her encouragement and devotion.

Earl Van Horn

* Work reported herein was supported in pert by Project MAC, an M.I.T.
research program sponsored by the .Advanced Research Projects Agency,
Department of Defense, under Of:f'ice ot Naval Research Contract Number
Nonr-4102(01).

vi

"we cut up and organize the spread and flow of events as

we do, largely because, through our mother tongue, we are

parties to an agreement to do so, not because nature itself

is segmented in exactly that way for all to see."

Benjamin Lee Wharf

Vii

Abstract

Preface

Introductory Quotation

List of Figures

Contents

Chapter I. Cont•porary Multiprocessing

Introduction

Single-Process Programs

Multiprocess Programs

The Computation State

Computing J'acilities

Arbitrari~-Timed Cooperative Multiprocessing

Output Functionality

IAlrking Bugs

IAlrking Bug Ettects

Contemporary Procedure Steps tor Mu1tiprocesaing

An Example of a IAlrking Bug

Chapter II. A Machine tor Coordinated Multiprocessing

Introduction

Preview

Cells

Transactions

Get Transactions

Put Transactions

Procedure Steps

Reading and Writing

Outputting

The Schedu1er

The Count Matrix

The Enable Set

lfomenclature tor Cells

viii

11

iii

vii

.xii

1

1

1

3
5
5
8

9

12

15
J.6
19

23
23
24

'ZT
29
32
34

35
36

37
38

39
41
42

'l'he Choice Collection tor Gets and Puts

Send, Done, and BTe Tranaaot10ll18
'l'he Choice Collection

Scheduling Strategies

Specitying A Well-De:f'ined !Di

Coordination ot Processes

Tabulation ot M<>1 Properties

Chapter Ill. A Facility That Behaves Lilte an NCH

Purpose

Method

Dynamic Allocation

Ot'erview ot VM
A Viewpoint toward Secondary Storage Reterences

Introduction to Segments

Segments

Clerks

Input Devices

Output Devices

Control Matrix Elements

A Sketch ot VM's Operation

Coordination Procedure Steps

An Example -- Matrix Manipulation Again

Introduction to the Correspondence between VM
and an ?CM

The Cluster Corresponding to a Segment

The Cluster Corresponding to a Clerk

Performance Correspondences

The Cluster Corresponding to an Input Device

The Cluster Corresponding to an Output Device

The Cluster Corresponding to an Unused Bame

The Correspondence between Control and Count Matrices

Coordination Correspondences

The T:lming Correspondence

1x

61
61
62
64
64
65
68
69
71
71
73
73
76

77
79
83

Creation and Deletion Correspondences

Epilogue for the Correspondence between VM and M

The Problem of Choosing Nemes

Naming Conventions suggested to Facilitate
Creation and Dele·cion

Creation and Deletion Procedure Steps

Another :Example -- Macro Expansion

Control Matrix Implementation

Chapter IV. The Output Functionality of an MCM

Introduction

Specialization to a Single Arbitrary MCM

The Run as a Formal Description of a Canputation

'!'he History Array of a Run

Statement of the Functionality Theorem

'the Augmented Array

Introduction to the Proof

The Inductive Formulation

The Initial Step

Beginning the Inductive Step

Facts and Nomenclature about Augmented Arrays

Boundaries

The Count Matrix at the Conclusion of a Prefix Run

Resuming the Proof

The First Stage

The Second Stage

The Third Stage

Chapter v. The Output Assuredness of an MCM

Introduction

Specialization to a Single Arbitrary MCM

Types of Computations

The Traces of an Initial Computation State

The Limit Vector of a Trace

x

104

104

105
106

ill

u4
125

'136

136

136

137
14o
145
146
148
149

150

150

153
156
156
161

163

179
180

193
193
l.93
l.94
195

19T

Statement of the Assuredness Theorem l'J'r

The Formulation 198

The Construction 199

~e Contradiction 2o6

Chapter VI. Conclusions and Buggestions tor Future Research 216

Introduction 216

Asynchronous Reproducibility 216

The Conditional Nature of Asynchronous Reproducibility 217

Repeatable Input Streams 218

State Input Streams 219

The Hang-Up Phenanenon 220

Ownership 222

Questions of Necessity 224

Toward a Science of Canputer Design 226

Appendix A. The Non-Redundancy of Bye Transactions 228

Appendix B. Well-Defined MCM' s 231

Appendix C. Summary of Notation 233

References 235

Biographical Note 2?7

xi

List at Figures

1.1. Example of ou.tput-nonf'uncticmal multiprocessing

1.2. lurking bug destroying output tuncticmality

1.3. Flow-chart ot a cont-.pore.ry mo.ltiprOaeea·program

2 .1. An MOM having three cell.a

2.2. Additional propert1ee ot the JOI hav~ three eel.la

2.3. ~ical count matrix con:tiguration at the M<JI ·
having three cells

2.4. Locus at read capabilities tor a cell i in an
example at process coordination

2.5. Locus ot counts tor a cell i in a variation at
tbe exaaple at J'i«ure 2.4

2.6. Locus at counts tor a cell i in a variation at
the example ot J'igure 2.4

2.7. '1'he enabling rules

3.1. .A typical control matrix

3. 2. A typical set at existing control matrix elements

3. 3. Part ot the control matrix upon entry into an
example program

3.4.. '!'he cluster corresponding to a segment

3.5. Correspondence between a f'ull control matrix
and a count matrix

3.6. '!'he per:rormance in M of the transaction that
corresponds to a read action in VM

3.7. Permission rules tor several actions at a
clerk in VM

3.8. Segment numbers and the control segment address
ot a segment n in a two-clerk canputation

xii

ll

31

4o

51

55

86

95

100

103

l.28

3.9. List structure linking clerks having read cape.b111t7 l.28
tor a sepent

4.1. Three typical history arrays

4.2. The environment of the inductive step

4.3. A boundary

4.4. An edge boundary

142

152

15(

1'7

4.5. A set of positions in an augmented 8rJ"&7 159

4.6. A boundary and the set of positions to its left 159

4. 7 • :rour runs 164

4. 8. Principal boundaries used in the pr~ at the l.65
second case ot the inductive step

4.9. The ten possibilities in the proof' at the first stage l.66
ot the second case at the inductive step

4.10. Asymmetry in the environment ot the inductive step l.69

4.u. Boundaries used in the demonstration that there are 172
no i-requiring elements in "i

4.12. Possible locations of A~b 176

4.13. Boundaries used in the demonstration for possibilities 177
(1) and (3) that A~ is executed

4.14. The three possibilities in the proot of the third 182
stage of the second case of the inductive step

4.15. Possible locations of' A:
8

184

4.l.6. Principal boundaries used in the proof' at the third 185
stage of' the second case at the inductive step

4.17. The regions A 1 _/L, and 1) J.86

4.18. Boundaries used in the demonstration that there are l.88
no a-requiring elements in 1)

4.19. Six runs lSC)

5 .1. The boundaries Ff', Lt, and Lu

xiii

5.2.

5.3.

5.4.

5.5.

5.6.

A.1.

b Position of the desired E boundary

Flow-chart of an algorithm for :finding Rb

The element A0

x:y

The E8 and Eb boundaries redrawn

The ~ boundary

Events of interest in the demonstration of the
non-redundancy of bye transactions

xiv

203

204

'2<Y7

209

212

230

Chapter I

Contemporary Mu1tiprocessing

Introduction

This Chapter presents an explanation of' selected problems and

issues associated with contemporary multiprocessing. The explanation

is organized to achieve two specific goals: (l) the establishment of a

certain outlook, or viewpoint, toward the phenanenon of multiprocessing,

in order to provide a base for the discussions in subsequent Chapters,

and (2) the statement of the particular difficulties whose solutions are

sought in subsequent Chapters. Thus Chapter I serves as an introduction

for the Thesis as a whole.

The Chapter begins by introducing, through the use of examples,

the notion of a single-process progra.m. Next the notion of' a multiprocess

program is defined as a generalization of the notion of a single-process

program, and multiprocessing is explained to be a phenomenon that involves

the execution of a multiprocess program. Next some additional concepts

are defined, and finally several problems and issues associated with

contemporary multiprocessing are discussed in depth.

Single-Process Prograpis

A program is a recipe for transforming an initial set of values

into a final set of' values; :f'or example, the :following program tells

l

how to find the largest value present in the list of' numbers,

••• , x •
n

1. Make i be 1.

2. Make j be l.

3.

4.

If' i = n then the answer is x .•
J

Subtract xi tran xi+l and remember the result.

5. If the result is positive then add 1 to j.

6. Add l to i.

7. Go to step 3.

This program is composed of seven procedure~, and the set of' values

to which the program refers is the set of quantities named i, j, n,

and ••• , x •
n

One can imagine execution of the above program by a~,- which

passes f'ran one procedure step to the next, obeying the directions

encountered at each step. Between procedure steps a clerk might remember

in:f'o:rmation within itself'; for example, between steps (4) and (5) of' the

above program the clerk retains the result of the subtraction per:f'onned

at step (4). In general, a procedure step might direct a clerk to

modify either the clerk's own information, or the value set, or both.

The sequence of actions that a clerk performs in executing a

* program is called a process [ll, 26]. The above program is called a

sing1e-process program, because it directs the activity of exact~

one clerk.

* Numbers in square brackets refer to items in the list of references,
which follows the Appendices.

2

------------ ---

'l'he simplest kind ot digital canpu.ter, hartng one arithmetic unit

and one maao:ey unit, executes siDgle-process prograaa. 'l'he arithmetic

* unit ot sucb. a ccmputer can act aa a clerk; then the state word ot the

aritbnetic unit is clerk intomation, and each word in the memory unit

is value set inf'o:nnation.

Mul.tiproceas Prosrams

AmultiW90!8• prom.- is a set ot procedure steps that directs

the activities ot two or more clerks. Since each processing unit, such

as an arithmetic unit or i/o channel, ot a coaputing syat• can act as a

clerk, then 8J21' program permitting the aimultaneows opft'Btion ot

processing units is ana:.aaple at a multiprocess program.

one reason tor specUy"ing a computat10.aal activity in the form

ot a multiprocess prograa is that such a progNll can indicate an absence

ot sequencing constraints am.ong portions ot an activity bJ' explicitq

permitting several clerks to act s1mul.taneous]1'. Su.ch permiaaicm.a tor

s1mul.taae1ty are desirable because tll8J' all.ow a s;yatm to pertOl'lll a

canputatioaal activity more rapidl1' than 1:t the activity bad to be

performed sequent1all1'•

Two examplea ot aystma .!".!?! multiproceaa1ng, i.e., systems tbat

can execute mult1p2"0Ceaa prograu, are the Dll T090 [17], and the

DBC PIJ>-1 (23]. In the 7090, the data channel.a and the aritbnetic un:lt

* A typical arithmetic unit state word includes program counter,
instruction register, and accumulator intomation. Additional remarks
on state words are given by Conway [3].

3

---~-~- - - --- ------------~----

can execute separate processes simul.taneou..s:q: the procedure steps

executed in the data cbaune1 processes are drawn tr<lll a set.at "channel

caamands". In the Pte-1, the singl.e-chamlel sequence break. hardware

switches the aritmetic w:dt between a main process a.ad an interrupt

process.

The tem "multiprocessing" is often used to describe s79tems

having more than one processing unit. Bevertheleaa, when "multiprocessing"

is used in th1e caa.'Haporar'J' sense, it is the author's suspicion that

11&1Q" at the prob1-8 · actuall.1' being discussed might be more ettectiv~

studied. as problma at mul.tiprocesa ~ rather tmn as prob1-s

or the s1multaneou.a ue at pb¥81cal.l1' distiac.t pZOMaailag uaits. J'or

this reaaon, the tem "lmltiprocesaing" 18 ue4tl1rougbout·tbe !lbesis

to rder to a prog:rumer' a apecitica'tion ot po'Hnt1al .U.tii>le activitJ',

and DOt to rder to a particular method.tor 08Z'17izl&Ollt such a

apecitication. J'or eaaple, suppose a multiproc,•s program is written

to direct tbe activities ot two clerks. '1:t two proceas1Dg. unita are

available, tbq Jlight execute the program top:bher, each unit pla71ng

the role at cme ot the program's clerks. On the other h&Rd, if onq

one procesa:lng unit is awilable, it might Pla7 the role ot n.ow one

clerk and then the other, alternating baclt and forth between the two

clerks according to acne arbitrar;y schedul.1na strateg. ttU.tiprocesaing

occurs in both ot these situations, because in both cases a multiprocess

program is being executed.

4

The Computation State

An execution of' either a single-process program or a multiprocess

program is called a computation. At an instant during a. computation,

the computation ~ is denoted by the information contained in the

clerks end value set of' the program being executed. For example, during

the execution of' the single-process program mentioned et the beginning

of' this Chapter, the computation state at some instant is denoted both

by the information contained within the executing clerk, and also by

the information held in the value set, i.e., held in the quantities

i, j, n, and x1, x2, ••• , xn. A system performing a computation

exhibits a succession of computation states: each transition f'ran one

computation state to the next is caused by one or more processing units,

each playing the role of one of' the program's clerks.

In practice, four kinds of information are encoded into a

computation's initial state: (1) the procedure steps of a program,

(2) the initial values of the program's internal quantities, (3) the

information initially held in the program's clerks, end (4) the input~

symbols to be read during the program's execution. In other words, the

initial computation state holds, of' the information controlling a

computation's performance, just that portion which a user can specify

either explicitly, or implicitly through the use of' programs and data

prepared by others.

Computing Facilities

Many discussions to be presented in the Thesis concern the manner

in which a computing system might execute an individual program. A fact

5

that might canplicate these discussions is the tact that a(!lll.e canputin8

systems can be s:fJaultanecusq in the mid.at ot executing two or more

programs; such &1'8tems are said to be multiprc?B;r!l!ppt (10]. !he notion

of a canputing facility is introduced so that the manner in wbich an

individual program is executed can be eas1.J¥ diScussecl without regard

to whether the executing system is m:ul.tiprogram.ed.

A canputing facility is a perhaps t:trne-vart1ng collection of

hardware that executes at most one single-processor multiprocess

program at a time. Every canputing system provides at least one

facility, but a CClllputing system that is multiprOgrammed can provide

several :tacillties · s1111.ultaneousl.y". Por example, a tnical configuration

ot the al.'SS system [14] provides 24 tac111t1es. A user gains access

to one of these facilities when he id.entities himSelt to the system.by

11l0gging in II•

In providing a tacility, a canputing system provides (1) input

units by means ot which a use!' can spec:t:ry an· initial ocaputation state,

(2) processing and storage units that can pertom a cm.putation beginning

tran such an initial can.putation state, and (3) output.units that can

produce tor a user during such a canputation one or more output streams,

i.e., sequences of output symbols. .An example ot the production of

three output streams is the writing of symbols on a typewriter, a

printer, and a card punch unit.

An improved understanding of the way in which a canputing system

provides a facility can be achieved by studying some of the details of

the way in which a canputing system executes a program. A program refers

to, or directs ·the activities of, a set of objects: each object to

6

which a program reters is either a clerk,, a value set quantity, an input

device, or an output: device. Dur1nB the execu'l;ion ot a pJ."0£X'Ul, it is

appropriate tor the role of each object referred to by the program to

be played by a specitic and distinct peysical unit. Nevertheless,

there need not ex1Bt such a f'ixed corr~poncl41nce)>etween pl'Op"BDl objects

and peysical units. In particular, the role ot a progrem object m.isbt

be played by a succession of pb,pi~l uxdts, and during occasional

intervals the role ot an obJect 111gbt not be p .. 7ed b1'&J>7 un1t•

To provide a P:tv'sical unit as part at a tecility• Mi to provide a

physical unit to play tae role ot one at the obJects ref erred to by the

program the facility is execut!Qg. As was mentt911ecl,,. ~b :ph,J'Sical unit

ot a taeility migbt, be provided either con:ti!Nousq or ~ttont~.

Thus, when a c~tiN system providee one or IQOre t~Wt1es, the

system •lloc!tea its ava:Uabl.e physical um.ta ~ tbe ol>Jects that

are referred to by the programs the tacil:1t1ea are executil:ig. In

general, this allocation 1B time-vary.Lng, i.e., d.'mu!.1c; cQnamic

allocation results 1D several distinct correspondences between pb;rsical.

units and program obJects as time progresses.

An eample ot ~c all.ocation 1s tound in the previous~ mentioned

PIP-1 system. When the single facility provided· bJ' the PJP.~l executes a

program that uses the .single-channel sequence break l•t,un.:, the PIP-1 's

memOJ:'Y 'Wlit is peiwmentq allocated to hold. the pr.Cl(p'al&' s value set,

but the PIP-l's arithmetic unit 1B c1ynaudcel.J¥ allocated by the sequence

break hardware to C8,1!r7 out alternate]¥ the activitiu of the program's

main clerk .and interrupt clerk. Other examples ot ~ic allocation are

tound in the CTSS system. Here the centra:L processing unit and the main

7

memory unit are allocated dyne.mica~ among the clerks and the value set

quantities, respectively, that are referred to in the programs ot

several facilities.

Arbitrari]y-Timed Cooperative Multiprocessing

Clerks executing a multiprocess program are said to cooperate [11]

whenever information is transmitted among them,; such transmissions take

place either through the internal memories of the clerks, or through

the program's value set. Cooperative multiprocessing is assumed

throughout the present study: a facility might allow inter-clerk

cooperation, and a multiprocess program might direct such cooperation.

A multiprocess program is executed in an arbitrari]y-timed manner

just when there is at least one canputation state for which the set ot

the program's clerks accanplishing the transition to the next canputation

state is at least part::La~ determined by influences other than the

current canputation state. If a program's ,execution is arbitrari.4"­

timed, then knowledge of the current canputation state genera~ does

not imply knowledge of the next canputation state, because the next

computation state can depend on the set ot the program's clerks that

happen to accanplish the next canputation state transition.

An arbitrari]y-~ facility is one that might execute a mu1tiprocess

program is an arbitrari.4"-timed manner. A facility might be arbitrari.4"­

timed because of slight variations in the speeds of autonanous processing

units, because of replacement of one system canponent by another of

different speed, because of variations in the duration of i/o activity,

8

or, perhaps most significantly, because o'f: the scheduling strategy of

a multiprogrammed system. Arbitrarily-timed 'f:acilities are assumed

throughout the present study.

Output Functionality

A facility is outpµt-:t'unctional just when each symbol produced

in every output stream is a function only of the initial canputation state.

An alternate description of an output-functional 'f:acility gives

two intermediate definitions. A facility is {s, i, j)-out:gut-definite

just when S is an initial canputation state and each S-initiated

canputation producing a j-th symbol in output stream i produces

the same j-th symbol in output stream i. A facility if .§-output­

definite just when it is (s, i, j)-output-definite tor each output

stream, i, and each positive integer, j. Fina~, a facility is output

:functional just 'when it is S-output-definite for each initial

canputation state, s.

Many contemporary facilities are s-output-definite only if S

belongs to sane proper subset of the initial canputation states; such

facilities require a user desiring output :f'unctionality to begin each of

his canputations fran one of the S-output-definite initial canputation

states.

The present study describes methods for making the S-output-definite

subset of a facility's initial canputation states equal to the set of all

the facility's initial canputation states, so that canputations will

produce deterministic outputs regardless ot programming mistakes or

9

improper input data. In Chapter II an abstract machine for coordinated

multiprocessing is described, and a proof' is given in Chapter IV that a

facility which behaves 11.ke such a machine is an output-functional

facility.

The following two examples show that, in the absence of inter­

clerk coordination constraints such as will be proposed, cooperative

multiprocessing performed by an arbitrarily-timed facility is

nondeterministic in a way that can permit the symbol at some position

in an output stream to depend on factors other than the initial

computation state. In the first example, two clerks are ready to write

different symbols into the same output stream. If' the clerks' order of

execution is arbitrary, then either symbol can appear as the next

symbol in the output stream.

The second example is depicted in Figure l.l. suppose a clerk

canputes each of a stream of output symbols using only a result that a

second clerk computes and stores as a shared quantity. If' the first

clerk stops for an arbitrary time while the second clerk continues

execution, then an arbitrary number of symbols might be omitted i'ram

the output stream. On the other hand, if' the second stops and the

first continues, then sane particular symbol might appear in the output

stream an arbitrary number oi' times.

No one ever questions the output functionality oi' facilities that

execute only single-process programs, because single-process canputing

is inherently deterministic. Unfortunately, the term "canputer" has

been associated for so many years with single-process computing that

users sometimes expect any apparatus bearing the stamp "canputer" to

10

clerk 2

shared quantity

clerk 1

output
device

>

output
stream

Figure 1.1. Example of output-nonf'unctional multiprocessing.

11

exhibit a functional relationship between initial state and output

streams. Thus the term "multiprocess computer" has a deterministic

connotation, which is often misleading.

Lurking Bugs

As mentioned previously, many contemporary facilities for

multiprocessing appear output-nonfunctional to their users. This lack

of output functionality bas not substantially hindered the development

of canputing applications, because programmers have been able to

recognize the effects of arbitrary execution timing, and have been able

to isolate these effects fran the output streams of canputations. For

instance, a programmer might have introduced into the example of

Figure 1.1 an interlock quantity to be tested by each clerk before the

clerk proceeded with the reading or writing of the shared data quantity.

The seeking of deterministic outputs through the skillf'ul

programming of an output-nonfunctional facility is undesirable because

the detection and the diagnosis of programming mistakes, i.e., ~,

are much more difficult in an output-nonfunctional facility than in an

output-functional facility. The issues are best understood by considering

again the example of Figure l.l in which two clerks cooperate using

shared data and interlock quantities. As shown in Figure 1.2, suppose a

bug in the procedure steps being executed by a third clerk causes the

third clerk to change the value of the data quantity shared by clerks

one and two. During some computations fran a given initial state, this

change does not affect the output stream, because at the instant of the

change, clerk one has already read the shared data quantity's current

l2


~~~~~~~~~P~li.1!!11.,_iill_lill __ ~,"~· , .•. ·. ~\~~~~~:Wifak##l~llii!l.~l!IJl!I!~. AQJJi@t81~ 
- --, - ··-. . . 

clerk 3 
~llt-iag 

~ 
procedure 
steps 

'; ~ 

clerk 2 

'-";: . :.~i 

J'igure 1.2. IAlrking bug destroying ootput tuDctional.ity. '_. 

. ' 
13 



value and clerk two has not yet set the next value. During other 

canputations tran the same initial state, the change does atf'ect the 

output stream, because at the instant of the change, the current value 

ot the shared data quantity has not yet been read by clerk one. The 

bug in the procedure steps being executed by clerk three is a lurking 

bug -- a bug whose effects are noticed during only some of the 

canputations begun tran a given initial computation state. 

The detection of lurking bugs is easiest when the programmer can 

canpletely specify timing environments for his computations; then he 

can construct test cases by specifying timing environments as well as 

input streams. However, the number of' test cases required to debug a 

program in such a circumstance is r~ the product ot the number of' 

input stream test cases needed if the system prevented lurking bugs 

multiplied by the number of timing environments desired to be tested. 

Thus the detection of bugs in a facility allowing lurking bugs is at 

best much more costly than in a facility having similar characteristics 

but preventing lurking bugs. 

The diagnosis of lurking bugs can be equally as onerous as their 
/ 

detection. As mentioned by Corbato et al. in a different context [5], a 

lurking bug appears to the programmer to be indistinguishable tran 

transient hardware failure. Breakpoints, ~c dumps, traces, and 

other diagnostic tools all require the re-running of a canputation at 

least once and possibly several times to isolate a bug into progressively 

smaller sections of' a program. Unless the programmer can reproduce the 

timing environment of the canputation in which a bug was detected, the 

programmer must choose between two alternatives: he can insert his 

diagnostic tools into the program and continue to run canputations until 

14 

---------



Providence ab.on the bug to him again, or be can tey to diagnOh using 

the program listing, the caaputat1on's ou.tput, and a dump ot the final 

canputation state• Both of these alternat1fts are coet:q as well 

as discouraging. 

IurkiDa Bug Ef'f ects 

'lhe example ot Figure 1.2 sbowB how a lurking bug's ett.ct· can be 

the destruction of output functionality. SUCh a :b.lrking bugettect, i.e., 

the production of arbitrary output tran identlcalJ3'-1nit1ated: caaputation.s, 

is called a ,!!2!-functicmality effect. 
I 

Another lurking bug ettect 1 called a nonccapletion. •eft'ect, is the 

arbitrary curtailment ot the production ot output traa identtcal.lT 

init::Latecl amputations. An individual l.Urkina ·bug Id.pt cause· either a 

nontunctionality effect, or a noncanpletion effect, or both. 

The following example describes a lurking bug causing a noncanpletion 

effect. SU.ppose a bug in the procedure steps .. being executed ·'b7 a clerk 

causes the clerk to change the procechlre COd.e: being executed by a second 

clerk. During sane canputationa 1"rall a given' iniUal. ·state, the second 

clerk baa alread;y executed the chaDged code,. and so the cange doee not 

affect the second clerk's periodic execution at an output .procecmre 

step. ])iring other ccmputationa from the same ~t;:l.aJ. state, the seeond 

clerk executes the changed code, and thereupon begins executing a loop 

ot procedure steps that excludes the output step t;be: clerk would . · 

otherwise have periodicalJ.T executed. The bug in the procedure steps 

being executed b)' the first clerk is a. lurking bug that causes a 

noncanpletion effect. 

15 



r , 

Facilities tor multiprocessing that behave like the abstract machine 

to be described in Cbapter II are proved in Cbapter IV to prevent 

nontunctionallty effects. In Chapter V, such facilities are also proved 

to prevent noncanpletion ettects. 

Contemporary Procedure Steps tor Multiprocessing 

To allow caaparison between contemp•ey tacilities fOir multiprocessing 

and the facilities to be discussed in subaequeii.t Chapters, several types 

ot procedure steps used in contemporary multiprocess programs are now 

described. In the next Section, procedure steps ot acme ot these types 

are used in an exemplary program, into which a tn>1n& error could 

introduce a lurking bug. 

The first type ot procedure step is :am [l, 3, 10]. Execution ot 

the step 

~e; 

creates a clerk that will start execution at the label e, and ~uses 

the clerk that executed the ~ to pus to the next procedure step. 

The creation ot a clerk means that there is an additional clerk 

participet.1.ag in tae eanputation; an 1.mmed.:Late]¥ recruited processing 

unit migbt·Pl.&7 the role ot the new clerk, or a new entry might be placed 

in a list, called a read,y l!!]. [ 10, 26], ot clerks whose ro1es ought to 

be played. 

Execution of the step 

~; 

[ lO] deletes the executing clerk. The deletion of a clerk means that 

16 



there is one less clerk participating in the com.putation; the processing 

unit that had played the role of a clerk being deleted might either 

join a pool of available processing units, or begin playing the role of 

the highest priority clerk on a ready list. 

One of several schemes for programming the cooperation of 

simultaneou.szy existing clerks is the scheme reported on by Dijkstra [11] 

involving semaphore quantities. Execution of the step 

X s; 

adds one to a semaphore quantity, s, using an uninterruptible increment-

memory instruction. Execution of the step 

p s• = , 
causes the executing clerk to act as if it executed the fol.lowing program: 

1. If s is greater than zero then go to step 3. 

2. Cease activity until s be~om.es greater than zero. 

3. Subtract 1 from s without interruption. 

If several clerks are at step (2) for s when s becanes greater than 

zero, then just one of these clerks, which is selected according to a 

priority discipline, proceeds to step (3). 

Procedure steps of the types X and ~ are use:f'ul for directing the 

cooperation between a clerk producing data and a clerk receiving data, 

such as the clerks of Figure 1.1. In this application the semaphore 

quantity indicates the number of data values ready for consumption in a 

variable length buffer. 

X and ~ procedure steps can also be used to restrict a critical 

section of a program's procedure steps to execution by one clerk at a 



time. Each critical section is preceded by a P and :tollowed by a v, • = 
both referring to the section's unique semaphore quantity, which will 

only take the values 1 and o. 

Dijkstra has shown that critical section control can be achieved 

without using a procedure step whose execution requires uninterruptible 

read-alter-write action [12, 20]. 1he construction is so canp11cated, 

however, that it is mainly of theoretical interest. 

S:fJllilar to the actions performed by t and 1 when used for critical 

section control are the actions of ~ :tn the· D825 system. [13], 

~ and 1m:L99i discussed by Dennis and Van Born [ 10}, and gb$!~ and 

rM.,~!~ described by .Anderson [l). Each procedure step ot these types 

acts on a binary semaphore quantity that is associated rii>h a data 

quantity specified by the procedure step. 

As described 'b1 Conway (3), execution ot the step 

~1dl c; 

subtracts 1 fran c without interruption. It the result is ·negative 

or zero, the clerk proceeds to the next step; otherwise the clerk is 

deleted. The initial value of the quantity c is the number of clerks 

that must execute the J21B in order tor one at them to proceed to the 

step :tollowing the ~· 

Dennis and Van Born ( 10] describe a ~ similar to Conway's · ~g~, 

but which specifies a label to which a clerk should transfer rather 

than quit. 

18 



An Eicample of a lil.rkins Bug 

To exemplify the use of sane of the types of procedure steps 

described in the previous section, as well as to allow the illustration 

of a lurking bug, the tollowing program is presented, which tells how 

to canpute the expression 

(AB)-1(( CD){.AB)) 

where A, B, c, and D are n by n matrices, and AB is assumed non-

singular. The language in which the program is written is similar to 

the Algol language [2]. The ~ appearing at the label "last" is a 

Conway-type ~· A f'low-cbart representation ot the program is given 

in Figure 1.3. 

~ T, U, Y, Z(l:n, l:n]; 

intem c, s; 

C :a 2; 

s := O; 

f'ork parpro; 

matrix multiply (A) times:(B) into:(T); 

V s• . , 
matrix inverse of (T) into:(U); 

~g last; 

parpro: matrix multiply ( C) times: (D) into: (Y); 

P s· = , 
matrix multiply (Y) times:(T) into:(Z); 

last: J5l1e c; 

matrix multiply (U) times:(Z) into:(answer); 

19 



CxD---?-Y 

t 
v s p s 

i 
Y x T ~z 

U x Z ~ answer 

Figure 1.3. Flow-chart of a contemporary multiprocess program. 



A clerk enters the program by passing to the symbol g~in. The 

following activity ensues when exactly one clerk enters the program. 

First the entering clerk causes a new clerk to start execution at the 

label "parpro". Then the entering clerk, after ccmputing the product AB, 

executes a X telling the parpro clerk that AB has been formed. Next 

* the entering clerk inverts AB. The parpro clerk, after computing CD, 

delays at a ~ until AB is available. Then the parpro clerk ccmputes 

(AB)(CD). Final:cy-, the two clerks join, and the last to arrive canputes 

the final answer. 

Consider the effect of a typographical error on this program: 

suppose that 

P s· = , 
had been inadvertently typed as 

P c· = ' 
If' the execution timing were such that the entering clerk proceeded all 

the way to the J~~ before the parpro clerk reached the ~' then a correct 

result would be obtained; otherwise an unreproducible incorrect result 

* App:cy-ing the Algol rule of procedure body replacement to the above 
program, the simultaneous execution by both clerks of the procedure 
"matrix multiply" occurs as it each clerk executed a separate copy of 
the procedure. The need for separate copies of the procedure in an 
implementation can be avoided, however, through the use of pure procedure 
programming techniques [ 4], in which programs, instead of directing trn ir 
own modification, direct the modification of data quantities private to 
each executing clerk (10]. 

21 



could be expected. In particular, if the program were tested using a 

facility in which as many actions as possible were performed in one 

process before any actions were performed in another, then the effects 

of the typographical error would be hidden during debugging, but might 

be discovered on an application in which simultaneous processing occurred. 

22 



Chapter n 

A Machine tor Coordinated Multiprocessing 

IntroductiOn 

This Chapter delineates a cl.ass of machines called machines '£EE, 

coordinated multiprocessing, or MtJl's tor short. An MCM is abstract, 

in the same sense that a Turing machine [8] or a finite autanaton [24] 

is abstract. In principle, it is possible to construct an MCM; indeed, 

the structure and functioning of an MCM are best understood by imagining 

the existence of an actua~ constructed physical device. Nevertheless, 

it is desirable to keep in mind that an MCM is abstract, because an 

application of an MCM need not involve the bEM.'s straightforward 

construction as a physical device. 

Although an extended discussion of MCM applications is postponed 

until Chapter III, it is useful to see examples of how an MCM can be 

applied in ways that do not constitute its straightforward construction. 

One example is the s::l.mulation of an MCM on a digital canputer through 

the use of interpretive software. Another example is the use of an MCM 

as a model for ana~ing, tran an individual user's point of view, the 

behavior of a canputing system's hardware and supervisory software. This 

last example can be expressed in another way: just as a CTSS [14] 

facility appears to a user like a virtual machine very similar to an 

IBM 70941 so also might sane facility behave as it it were an actua~ 

constructed MCM. 

23 



In Chapter III, techniques and examples are presented to suggest 

that a facility which behaves like an MCM can be usef'u.l, and can be both 

constructed and programmed at reasonable cost. In Chapters IV and V, 

it is proved that nonf'u.nctionality lurking bug effects and noncanpletion 

lurking bug effects, respectively, do not occur in an MCM. That is, it 

is proved in these two Chapters that identica~ initiated MCM 

canputations never produce arbitrary output, and that the production 

ot output fran identically initiated MCM can.putations never is arbitrarily 

cut short. The questions treated in Chapters III, IV, and V concern 

the sufficiency of an MCM for achieving various goals; questions 

concerning the necessity of an MCM remain open. 

Preview 

One of the purposes underlying the formulation of the MCM concept 

has been to bridge the gap, or provide a way station as it were, between 

the simplicity of automata theory and the canplexity of contemporary 

ccmputing systems. Specifically, the structure of an MCM is canplex 

can.pared to the structure of a Turing machine or a finite automaton, but 

is clean and symmetrical compared to the structure of a contemporary 

can.puting system. 

During the presentation of the details of MCM structure and operation, 

the reader may f'ind it helpful to have in mind a broad framework upon 

which to sort out the details as they arrive. The following paragraphs 

establish this framework by mentioning the components of' an MCM, and by 

indicating how these components work together to perform computations. 

24 



Ah MCM consists of a collection of ceJJ.s, a scheduler, and a ~ 

matrix; Figure 2.1 shows an MCM with three ceJJ.s. A ceJJ. might act 

like a main memory register of a contemporary canputing system, or a 

cell might act like a processing unit of such a system. That is, a 

cell might store information passively, or a ceJJ. might actively per:form a 

process. In performing a process, a ceJJ. per:forms a sequence of basic 

actions called transactions; in performing an individual transaction, a 

cell might read fran or write into another cell, or might change an 

element of the count matrix. 

The canputation state of an MCM is denoted by the information 

contained in the MCM' s cells and count matrix. D.lring the performance 

of a canputation, an MCM takes on a succession of canputation states: 

each transition from one canputation state to the next is acccmplished 

by the simultaneous performance of single transactions by one or more 

cells. 

The cells that are to accanplish each canputation state transition 

are selected by the scheduler. The scheduler's selection of such cells 

is affected by the immediately preceding canputation state, and perhaps 

also by the unpredictable influences that make a facility for multi­

processing be arbitrarily-timed. 

As was mentioned, a cell per:forming a transaction might change the 

count matrix. The count matrix, in turn, affects the scheduler's 

selecting of the cells that are to perform transactions. This loop of 

cause and effect -- from cells to count matrix to scheduler to cells --

25 



,- ----------------- --~,---------

cell 

munel word cell 

name2 word cell 

name3 word 

scheduler 

count matrix 

Figure 2.1. An MCM having three cells. 



1s the mechanism. by which the activities ot the cells are coordinated 

in order to prevent non:tunctionality and noncanpletion lurking bug ettects. 

The author does not know ot a ccm.temporary facility tor 

multiprocessing that behaves like an MCM in f!!V'el7 respect. Nevertheless, 

there seems to be a certain similarity between Ma4's and contell.poJ."&Z7 

facilities, no doubt because the MCM conoeptgioew out ot an effort to 

model such facilities. Specitical.q, the cells ot an MCM ttmction in a 

way that 1s in .aaaey respects similar to the behavior ot tbe processing 

units and main memory registers ot a contE1Apora17 facility. Moreover, 

the scheduler ot an MCM functions in a way that 1s sanewbat similar both 

to the behavior ot a supervisory canputation that schedules processing 

units among programs to be executed,. and to the behavior ot electronic 

hardware that diacipllnes a queue at processing units awaiting access 

to a main memory unit. 'Dle count matrix ot an JG, however, cloes not 

appear to be similar to any feature ot. a contemporary facility. 

~ 

A cell 1s u,nusual. in that it can model. either an active device like a 

processing unit, or a passive device like a memory register. A cell 

that model.s an active device is called a c],erk cell, and a cell that 

models a passive device is called a value cell. A clerk cell perto.rms a 

process that is a sequence ot tranaactiona, and a value cell stores 

information passive]¥. AB shown in Figure 2.1, the state ot a cell is 

denoted by a ~' and each cell is desigaated by a unique ~· 

It was mentioned that no contemporary facility is known that behaves 

like an MCM in every respect. Nevertheless, in order to understand the 



properties of the cells that occur in MCM's, it will be useful to 

observe how a collection of such cells might model the processing units 

and main memory registers of, say, an IBM 7090. SUch a collection 

might contain 32, 768 + 9 cells: one value cell to hold each memory 

word, one clerk cell to held each data channel state word, and one clerk 

cell to hold the central processing unit state word. These cells might 

be named: O, 1, ••• , 3f!ftrr, A, B, ••• , H, CPU. 

The state of an MCM's collection of cells can be described by means 

of a table in which the name of each cell is associated with the word 

held by the cell. Since each name is unique, such a table defines a 

single-valued function, called a content function, that takes the name 

of a cell into the word held by the cell; for example, if c{·) is the 

content function denoting some state of the 7090 cells described above, 

then the memory word at location 5 is c{5), and the state word of 

channel Bis c{B). If c{•) is a content function and x is a name, 

then the word c{x) is called the content of cell x. As an MCM passes 

from one computation state to the next, its collection of cells takes 

on a succession of states, each distinct state being described by a 

different content function. 

An interesting property of an MCM is that the designation of a celJ. 

as either a clerk cell or a value cell can be a function of time. In 

this respect, the cells of the 7090 model mentioned above are not typical 

of MCM celJ.s in general. Although each cell of the 7090 model is f'or 

alJ. time either a clerk cell or a value celJ., the general case is that a 

cell might alternate between clerk and value status as time progresses. 



This alternation of cells between clerk and value status is similar 

to the alternation of modules between active and non-active roles in 

an abstract iterative canputer described by Holland [16). 

The clerk or value status of a cell is determined at any instant 

solely fran the count matrix, in a manner to be described later. A 

clerk cell is changed into a value cell, or a value cell is changed into 

a clerk cell, by making an appropriate change in the count matrix. 

Transactions 

It was mentioned that the process each clerk cell performs is a 

sequence of basic actions called transactions. A clerk cell's performance 

of an individual transaction genera~ involves an interaction between 

the clerk cell and its environment. For example, suppose the CPU cell 

of the 7090 model mentioned above executes a store-accumul.ator 

instruction that does not specify indirect addressing. This execution 

is a sequence of two transactions: the first transaction reads fran a 

value cell the encoded store-accumulator instruction, and the second 

transaction writes into perhaps sane other value cell the accumulator 

information held in the CPU cell. These two transactions are of the 

types get and ~' respectively. Gets, puts, and transactions of three 

other types are explained later in detail. 

Each computation state transition is accomplished by the simultaneous 

performance of single transactions by one or more clerk cells. After the 

scheduler has selected the clerk cells that are to carry out a 

canputation state transition, the scheduler simultaneously transmits a 

single J!B. pulse to each clerk cell that has been selected. Upon receipt 



I - --- -------------·---r--------~---- ---

of a go pulse a clerk cell performs, not a series of transactions, but 

exactJ.¥ one transaction; specifically, a clerk.cell performs exactq 

one transaction when and onJ.¥ when it receives a go pulse. 1'he 

scheduler's operation, which will be described later, is such that 

~ clerk cells receive go pulses. 

When a clerk cell receives a go pulse, tbe transaction the cell 

perf'cmns is determined both by the cell's identity, ~d by tbe cell's 

content. For example, during the previousJ.¥ mentioned store-accumulator 

execution, the first transaction performed by the CPU cell is determined 

both by the tact tbat the cell is the CPU cell rather than, say, the B 

cell, and by the tact that the content ot the cell bas cycle intormation 

saying that an instruction tetch activity is to take place next. 

As shown in Figure 2.2 tor the MCM ot n&ure 2.1, a cell's 

identity determines a transaction table, within which tbe cell's content 

determines a transaction. Specitically, 1n a cell's transaction table 

each possible content ot the cell is associated with the .tJpe and 

parameters ot a transaction; that is, 1:f' a cell might bold &DY one 

ot n words, then there are exactly n word-transaction pairs in the 

cell's transaction table. At any instant, the transaction associated 1n 

this way with a cell's content is the transaction the cell would perform 

if it were to receive a go pulse at that instant. In other words, 1:f' 

the content ot a cell is a certain word, and ooe wishes to know the 

transaction the cell would perform upon receipt of a go pulse, one need 

onq look up the word in the cell's transaction table in order to obtain 

the type and parameters ot the desired tranaaction. 

30 



transaction 
table 

.____transaction 
table 

transaction 
table 

routes for 
go pulses 

Figure 2.2. Additional properties ot the l«:M having three cells. 

31 



Every cell has a transaction table, because, in general, every cell 

is potentially a clerk cell. A cell's transaction table is permanently 

associated with the cell; in other words, a cell's transaction table does 

not vary with time. In the 7090 model, the transaction table of the 

CPU cell describes the wired-in properties of the 7090 central processing 

unit -- in the same way that the state transition table of a sequential 

machine describes certain wired-in properties of the machine. 

Get Transactions 

The first transaction of the previously mentioned store-accumulator 

execution is of the type get. A typical get transaction is described 

in a transaction table as follows. 

get of i replace f(·) (2.1) 

The two parameters of a get are its operand~' such as i in (2.1), 

and its replacement function, such as f(•) in (2.1). In performing 

the transaction described by (2.1), a clerk cell reads the content of 

cell i, evaluates the function f(·) with this content as argument, 

and causes itself to hold the result of this evaluation. For example, 

suppose c(•) denotes the state of a collection of cells at some instant, 

and suppose (2.1) is the transaction that corresponds to c(x) in clerk 

cell x' s transaction table. If at this instant clerk cell x 

receives a go pulse, then clerk cell x will be caused to hold the 

word f(c(i)). 

The performance of a get by clerk cell x changes the content of 

clerk cell x from some word, A, to some word, B. Let us review the 

way in which the word B is determined. First, the name x determines a 

32 



transaction table. Second, the word A determines in this table a 

particular transaction -- in this case a get whose parameters are, 

say i and f(·). Third, the content of cell i is used as the 

argument off(·) to determine the word B. 

As noted above, the first transaction of the previously mentioned 

store-accumulator execution is a get. This get is determined by the 

word W that is held in the CPU cell just before the get's performance. 

The get's operand name is W's instruction location counter information, 

and the content of the cell named by this operand name is the encoded 

store-accumulator instruction. If the get's replacement f'unction is 

evaluated with the encoded instruction as argument, the f'unction yields 

for placement in the CPU cell a word X consisting of (1) instruction 

register information denoting the encoded instruction's operation part, 

(2) storage register information denoting the encoded instruction's 

address part, (3) cycle information saying that an instruction execution 

activity is to take pl.ace next, (4) instruction location counter 

information denoting a name numerically one greater than the name denoted 

by W's instruction location counter information, and (5) other 

information, such as accumulator and index register information, 

identical to the corresponding information of W. In other words, the 

replacement f'unction of the get associated with W tells how the word X, 

which replaces W, depends on the encoded instruction. 

The above example illustrates that in practice the state of a 

processing unit is usually the state of a collection of several 

information-storing elements, such as flip-flops or ferrite cores. 

When a processing unit performs a get, not every information-storing 

33 



element need change state. In fact, the replacement function of' sc:me 

particular get may be such that the states of certain elements never 

change during the get's performance, regardless of the word read as 

operand. Thus the performance of a get may involve a change in only 

"part of'" the word held in a processing unit. For present purposes, 

it will be convenient to think of the performance of a get as always 

changing the "entire" word held in a processing unit, and recognize 

that a get's performance might actually change the state of only some 

of a unit's information storing elements. In fact, for understanding 

the formal properties of an MCM, one may think of a word, not as a 

string of digits denoting states of separate elements, but as one 

symbol selected from some alphabet; with the latter point of view it is 

II II meaningless to speak of replacing part of a word. 

Put Transactions 

The second transaction of the previously mentioned store-accumulator 

execution is of the type put. A typical put transaction is described 

in a transaction table as follows. 

put of i with v replace w 

The three parameters of a put are its operand name, such as i in (2.2), 

its operand word, such as v in (2.2), and its replacement~' such 

as w in (2.2). In perfonning the transaction described by (2.2), a 

clerk ceJ.1 causes itself to hold the word w, and causes cell i to 

hold the word v; if the clerk cell and cell i are the same cell, then 

the clerk cell causes itself to hold w, and v is ignored. For 

example, suppose c(·) denotes the state of a collection of cells at some 

34 



instant, and suppose (2.2) is the transaction that corresponds to c(x) 

in clerk cell x's transaction tab1e. It at this instant c1erk cell x 

receives a go pulse, then clerk cell x will be caused to hold the 

word w, and, 1f' i is not equal to x, cell 1 will be caused to 

hold the word v. 

As noted above, the second transaction o'f the previous~ mentioned 

store-accumulator execution is a put. !l.'h1s put is determined by' the 

word X that is held in the CPU cell just before the put'a performance. 

The put's operand name is X's storage register information. 'Die put's 

operand word, which is the word to be placed in the cell named by the 

operand name, is X's accumulator information. The put's replacement 

word, which is the word to be placed in the CPU cell, is a word 

. consisting ot (l) cycle information saying that an 1natruat1on fetch 

activity is to take place next, and.(2) other information identical to 

the corresponding information of x. 

Procedure Steps 

A program M.1' be stored within a subset o'f an !Of' s cells. When an 

MCM holds a program in this way, each procedure step ot the program is 

encoded into one or more words, and each word is held by a distinct cell. 

For example, the previous~ mentioned 7090 model might hold a program 

that has as one ot its procedure steps the previously mentioned store­

accumulator instruction; this instruction is a procedure step that is 

encoded into exactly one word. 

The execution of a procedure step begins with the performance of a 

get whose operand name is the name of a cell holding an encoded procedure 

35 

---------------- -- --------------------------



step word. A procedure step execution might consist only of the 

performance of such a get, or a procedure step execution might consist 

of the performance of such a get foll.owed by the sequential performance 

of one or more transactions, each of which might be either (l) a get 

whose operand name is the name of a cell. holding an encoded procedure 

step wora, or (2) a transaction, of any of the five types, whose 

performance is requested by the procedure step itself. For example, a 

program for the 70~ model might contain procedure steps such as: 

(l) a transfer-on-minus instruction, whose execution is the performance 

of a single get, (2) a store-accumulator instruction with indirect 

addressing, whose execution is the performance of a sequence of two or 

three gets followed by a put, and (3) a convert-by-replacement-fran­

the-MQ instruction, whose execution is the performance of a sequence of 

sane number of gets fran l through 256. 

Reading and Writing 

When one says that some cell. reads another cell., the notion of 

"reading" is fair:cy clear fran contemporary usage. Nevertheless, it is 

desirable to have a more precise notion of what it means to read a cell.. 

In the MOM design as introduced thus far, the notion of reading is 

applicable in two contexts. The first application is intuitive: a 

clerk cell. performing a get reads from the cell. named by the get's 

operand name. The second application is more subtle: a clerk cell. 

performing either a get or a put reads fran itself, because the clerk 

celJ.'s content just before the performing of the get or put determines 

the particular get or put to be performed. Based on these examples, a 

36 



definition of the notion of reading may be given: a clerk cell x that 

is performing a transaction ~ fran a cel1 i just when x senses 

the content of i in order to help determine x's performance of 

the transaction. 

Similar remarks may be made concerning the notion of "writing". 

In the MCM design as introduced thus far, the notion of writing is 

applicable in two contexts. The first application is intuitive: a 

clerk cell performing a put writes into the cell named by the put's 

operand name. The second application is more subtle: a clerk cel1 

performing either a get or a put writes into itself'. Based on these 

examples, a definition of the notion of writing may be given: a clerk 

cell x writes into a cell i just when x causes a new word to be 

held by i, where the new word might or might not be the same as the 

* word previously held by i. 

Outputting 

An explanation can now be given of the method by which an MQ.1 

produces output symbols. Some of an MCM's cells are output cells; the 

designation of a cel1 as an output cell does not var.1 with time, and is 

in addition to the time-var.11ng designation of the cell as either a clerk 

cell or a value cell. There is a one-to-one correspondence between the 

output cells of an MCM and the output streams that are produced when the 

* The concepts of reading and writing described here are no doubt the 
same as the concepts analyzed by Maurer in his discussion of the "input 
regions" and "output regions" of canputer instructions [21]. 

37 



MCM pertorms a canputation. Whenever a word is written into an output 

cell, the word is not 0'14 caused to be held by the cell, but also is 

produced as the next s;ym.bol 1n the cell's output stream. 

The Scheduler 

At any instant when no transactions are being performed, the 

canpµtation state ot an MCM is denoted by the information contained in 

the ?CM' s cells and count matrix. When an !«JI per:tol"ID8 a canputation, 

the MCM takes on a succession ot canputation states: each transition 

f'rom one canputation state to the next is accanplished by the 

simultaneous pertormance ot single transactions by one or DlOre 

clerk cells. 

The set ot clerk cells that accanplish a caaputation state 

transition is selected by the scheduler on the basis ot the :I.mediate]¥ 

preceding canputation state, the transaction tables, and perhaps on 

the basis of' unpredictable in:tluences. In making such a selection, the 

scheduler behaves as 1t it carried out 1n sequence the toUoring three 

activities: (1) the determination ot an enable m, which is a set ot 

names ot enabled clerk cells, (2) the detemination ot a choice 

collection, which is a collection o:t Subsets o:t the enable set, and (3) the 

selection ot a member ot the choice collection. i'be selected member 

ot the choice collection is a set ot nam.es ot cell.a; it is to these cells 

that the scheduler transmits simultaneous go pulses in order to initiate a 

canputation state transition. The scheduler's activities are described 

later in more detail. 



The performance ot a canputation proceeds as follows. · At an 

instant when no transactions are being performed, i.e., when sane 

ccmputation state prevails, the scheduler selects a set ot clerk cell 

names in the manner outlined above and transmits one go pulse 

simul.taneously to each of the cells named in the aet. .After the 

transactions triggered by these go pulses are t1.nished, a new 

computation state prevails. At a subsequent instant, the activity is 

~ted, i.e., the scheduler again selects and sends pulses to clerk 

cells, which then accanpllsh a transition to still another canputation 

state. The succession ot ccmputation states produced in this va7 begins 

tran an initial ccmputation state specified by a user. 

The Count M!trix 

In determ1n1ng an enable set, the scheduler refers to the count 

matrix. If an )0( contains n cells, then the IG's count matrix is 

an n by n matrix. Each element ot a count matrix 1s an integer, 

called a count, that can be positive or negative. 

The intormation contained at sane instant 1n an ICM's count matrix 

allows statements to be made such as, "cell x baa ~ capability tor 

cell i", and "cell x bas write ca;pabilitz tor cell 1". Cell x 

baa read capability tor cell 1 Just when the count at row x ·and 

column 1 ot the count matrix 1s greater than zero. Cell x has 

write capability for cell 1 Just when cell x is the only cell that 

has read capabWty for cell 1. The capabillties of the cells of the 

IOI shown 1n J'igure 2.3 are the following: name2 has read capability 

for mme3, mme2 has write capability for both itself' and namel, 

39 



I 

namel 0 0 -2 

name2 3 1 1 

name3 -1 0 1 

Figure 2.3. Typical count matrix configuration of the MCM 
having three cells. 

40 



and name3 has read capability for itself. The significance of the 

fact that a cell has a read capability for another cell is explained 

in the following Section. 

The Enable Set 

At any instant between canputation state transitions, the 

scheduler's enable set is Just the set of names of those cells that are 

enabled clerk cells. In order to decide whether a particular cell is 

an enabled clerk cell, the scheduler first examines the cell's content 

and transaction table in order to discover the transaction the cell 

would perform if it were to receive a go pulse; then the scheduler makes 

its decision for the examined cell by app~ing the enabling ~ for 

the discovered transaction. The enabling rules for gets and puts are 

described below. The enabling rules for transactions of the other three 

types will be described as these types are introduced. 

The enabling rule for a get is the following: a cell that would 

perform a get upon receipt of a go pulse is an enabled clerk cell Just 

when the cell has both write capability tor itself, and read capability 

for the cell named by the get's operand name. In the example of 

Figure 2.3, suppose the name2 cell would perform a get of name3 

upon receipt of a go pulse; then the name2 cell is an enabled 

clerk cell. 

The enabling rule for a put is the following: a cell that would 

perform a put upon receipt of a go pulse is an enabled clerk cell Just 

when the cell has both write capability for itself, and write capability 

for the cell named by the put's operand name. In the example of 

41 



Figure 2.3, suppose the name2 cell wou1d perform a put of nam.el 

upon receipt of a go pulse; then the nam.e2 cell is an enabled 

clerk cell. 

For gets and puts, the notions of reading and writing correspond 

in a simple way to the notions of read capability and write capability, 

respectively; this correspondence is seen in the following restatement 

of the above enabling rules. A cell that would perform either a get 

or a put upon receipt of a go pulse is an enabled clerk cell just when 

the cell has read capability for each cell it would read, and has write 

capability for each cell it would write. 

Nanenclature for Cells 

A cell is a clerk cell just when it has write capability for 

itself; otherwise the cell is a value cell. In other words, whether a 

cell is a clerk cell or a value cell is based, not on the cell's 

construction, but on in:formation contained in the count matrix. In 

general, any cell can be a clerk cell; all it takes to make a value 

cell into a clerk cell or a clerk cell into a value cell is the 

performance of appropriate transactions, of types to be described later, 

that modify the count matrix. 

Although "being a clerk" is not really a property of a cell itself, 

it is sanetimes convenient to call a cell a "clerk cell". Specifically, 

it has been convenient, and will continue to be convenient, to call a 

cell a "clerk cell" whenever it is known or assumed that the cell has 

write capability for itself. 



·. ' 

A cell can be a clerk cell and not be an enabled clerk cell; such a 

cell is called a disabled clerk cell. For exaaple, a cell that waul4 

perform. a get upon receipt ot a go P\ll.Se is .• disabled clerk cell just 

when the cell bas write capability tor.it.-lt &D4 does not have read 

capability tor the cell oaraed by the get's operand naae. 

The Choice Collection tor Gets and Puts 

In the event that each member ot an enable set is the name of a 

cell that would perform either a get or a put upon receipt ot a go pulse, 

then the choice colJ.ection determined trail this enable set 1B just the 

* collection ot the non-empty subsets ot the enable set. 

At an instant between canputation state trauitione, the scheduler 

selects one set belonging to the choice collectioa derived tran the 

current canputation state. Aa mentioned previous~, the aeJ.ected 

member of the choice collection is a set ot naaea ot cells; it is to. 

these cells tbat the scheduler transmits sillultaneous go pulses 1n order 

to initiate a canputation state transition. The method by which the 

scheduler selects a member of the choice coll~tion v1ll be described 

later. 

*The subsets ot the set 
1
{ a, b 1 are the setas f ~ (the empty set), 

l•~, fb~, and fa, bl. 

43 



Send, Done, and Bye Transactions 

During a canputation, the count matrix is set initially by the 

specification of an initial computation state, and thereafter is changed 

only by performance of transactions of the types ~' ~' and bye. 

A typical ~ transaction is described in a transaction table 

as follows. 

send of i to e replace w 

The three parameters of a send are its operand name, such as i in (2.3), 

its sendee ~' such as e in (2.3), and its replacement word, such 

as w in (2.3). In performing the transaction described by (2.3), a 

clerk cell both causes itself to hold w, and adds 1 to the count 

at row e and column i of the count matrix. For example, let K 

be the count at row e and column i of the count matrix just before 

the performance of (2.3); then the performance of (2.3) has one of three 

e:ffects: (1) if' K is o, the performance gives cell e read capability 

for cell i, (2) if' K is less than o, the performance reduces the 

number of sends of i to e that might be performed to give cell e 

read capability for cell i, or (3) if K is greater than O, the 

performance increases the number of dones of i, described below, that 

cell e might perform to relinquish its read capability for cell i. 

The enabling rule for a send is similar to the enabling rule for a 

get: a cell that wou1d perform a send upon receipt of a go pulse is an 

enabled clerk cell just when the cell has both write capability for 

itself, and read capability for the cell named by the send's operand 

name. To perform a send, a cell need not have any capability for the 

cell named by the send's sendee name. 

44 



A typical~ transaction is described in a transaction table 

as follows. 

done of' i replace w (2.4) 

The two parameters of a done are its operand name, such as i in (2.4), 

and its replacement word, such as w in (2.4). In performing the 

transaction described by (2.4), a clerk cell named x both causes 

itself' to hold w, and subtracts l from the count at row x and 

column i of' the count matrix. For example, let IC be the count at 

row x and column i of the count matrix just before clerk cell x's 

performance of (2.4); then the performance of (2.4) bas one of' three 

effects: (1) if' ~ is 1, the performance takes away· cell x's read 

capability for cell i, (2) if' K is less than 1, the performance 

increases the number of' sends of' i to x that might be performed to 

give cell x the read capability for cell i, or (3) if K is greater 

than l, the performance reduces the number of' dones of i tbat cell x 

might perform to relinquish its read capability for cell i. 

The enabling rule for a done is the following: a cell that would 

perform a done upon receipt of a go pulse is an enabled clerk cell just 

when the cell bas write capability for itself'. To perform a done, a 

cell need not have any capability for the cell named by the done's 

operand name. 

A typical~ transaction is described in a transaction table 

as follows. 

bye to e replace w (2.5) 

The two parameters of' a bye are its sendee name, such as e in (2.5), 

and its replacement word, such as w in (2.5). In performing the 



transaction described by (2.5), a clerk cell named x causes itself to 

hold w, subtracts 1 from the count at row x and column x ot the 

count matrix, and adds 1 to the count at row e and column x ot 

the count matrix; it e is equal to x, no alteration is made to the 

count matrix. 

The enabling rule tor a bye is similar to the enabling rule tor a 

done: a cell that would perform a bye upon receipt of a go pulse is 

an enabled clerk cell just when the cell has write capability for 

itself. To perform a bye, a cell need not have any capability for the 

cell named by the bye's sendee 'name. 

The effect of clerk cell x's performance of (2.5) would seem 

to be equivalent to the effect of clerk cell x's performance of 

the sequence 

done of x replace w1 

send of x to e replace w (2.7) 

where w1 is a word to which (2.7) corresponds in cell x's transaction 

table. Although this equivalence holds in many situations, nevertheless 

transactions of the type bye are not redundant. In particular, if' bye 

transactions were omitted from the MCM design, then it would not be 

possible for the capability to write into a cell to be held at one 

instant by the cell itself, and to be held at a later instant by some 

other cell. The non-redundancy of bye transactions is explained more 

fully in Appendix A. 

An example showing how send and done transactions can be used to 

coordinate processes will be given later in this Chapter. A discussion 

ot the use ot bye transactions is postponed until Chapter III. 

46 



The Choice Collection 

The rule by which the choice coll.ection is determined fran an enable 

set bas been given for the case in which ee.ch member of the enable set 

is the name of a cell. that would perform either·a get or a put upon 

receipt of a go pulse. The ccmplete rule for the determination of the 

choice coll.ection is the following: the choice collection that is 

determined tran an enable set is just the collection of the non-empty 

subsets of the enable set, but excluding those subsets that contain tbe 

names of two or more cells that, upon receipt of a go pulse, would alter 

the same element of the count matrix. 

The enabling rules and the rule for determining a choice collection 

guarantee that simultaneously performed transactions do not conflict,; 

that is, during a canputation state transition, the following three 

statements are true: (1) each cell is written by no more than one 

clerk cell., (2) each cell that is both reed and written is written by 

the same clerk cell. that read the cell, and (3) each element of the 

count matrix is altered by no more than one clerk cell. 

Scheduling Strategies 

The scheduler makes selections frcm the choice collections derived 

from successive canputation states in such a way that the scheduler's 

strategy is reasonable. In order to understand the notion of a 

reasonable scheduling strategy, one must observe that once a clerk cell 

becanes enabled, it remains enabled at least until it receives a go 



pulse. This statement is true because a clerk cell can only becane 

disabled as the result of its own performance of a send or bye 

transaction. 

The scheduler's strategy is reasonable if and only it each enabled 

clerk cell. always receives a go pulse a finite time after the clerk cell. 

becomes enabled. The fact that the scheduler's strategy is reasonable 

is used in the proof, given in Chapter V, that an MCM prevents 

noncanpletion lurking bug effects. 

Subject to the restriction that the scheduler's strategy must be 

reasonable, the scheduler's selections from successive choice col1ections 

may be made according to any rules whatsoever, and in accordance with 

any causes or influences whatsoever. That is, any strategy at all. for 

making selections from choice col1ections is an acceptable strategy 

for making such selections, provided the strategy is reasonable in the 

above sense. For example, an acceptable scheduling strategy may involve 

remembering information about the scheduler's previous selections, or 

about the previous activity of the MCM. Furthermore, the selections of 

an acceptable scheduling strategy may be affected by unpredictable 

influences, such as the influences that make a facility for multiprocessing 

be arbitrarily-timed. 

Specifying a Well-Defined MCM 

The description of the structure and functioning of an MCM is now 

complete. Within the framework that has been described, many different 

MCM's may be specified, differing, for example, in the number of cell.s, 

or in the transactions that cells can perform. In general, an MCM is 

48 



specified by giving (1) a set of cell names, (2) a set of output cell 

names that is a subset of the set of cell names, (3) a transaction 

table for each cell, and (4) a set of computation states that are the 

states which may serve as initial computation states. 

For present purposes it is desirable that an MCM be well-defined: 

an MCM is well-defined it and only it during no canputation performed 

by the MCM is an evaluation of a transaction table or a replacement 

function ever attempted with an undefined argument. That is, in a 

well-defined MCM, the transaction tables and replacement functions 

provide inf'ormation sufficient to guide the MCM's activity in every 

possible circumstance. Every MCM discussed in the Thesis is assumed 

to be well-defined. Appendix B gives both a more precise definition 

of a well-defined MCM, and a condition sufficient for an MCM to be 

well-defined. 

Coordination of Processes 

Throughout the Chapter, MCM behavior has been explained in terms of 

the actions taken to accomplish an individual computation state 

transition. In order to achieve additional insight into the way in 

which an MCM coordinates processes, let us now examine MCM behavior 

from a different point of view: let us focus attention on just a few 

clerk cells, and observe, over the course of several computation state 

transitions, how these clerk cells might interact with each other as they 

perform their individual processes, i.e., as they perform their 

individual sequences of transactions. 



The specific example to be considered concerns three clerk 

cells x, y, and z that communicate using a cell i. At time t
1 

let clerk cell x have write capability for cell 1, and let k1{·, •) 

describe the state of the count matrix, i.e., let k1{x, i) be the 

count at row x and column i of the count matrix. Let 

k
1
{x, i) = l 

kl{y, i) = 0 

k1{z, i) = 0 

As MCM operation proceeds subsequent to time t 1, clerk cell x 

might write a word w into cell i, and then, as shown in Figure 2.4, 

might make w available to clerk cell y by performing a send of i 

to y. At the time t
2 

just after this performance, the count matrix 

k
2
{·, •)would be such that 

k
2
{x, i) = l 

k2{y, i) = l 

k
2
{z, i) = 0 

Then clerk cells x and y, but not clerk cell z, might read from 

cell i any number of times, but no clerk cell would be allowed to 

perform a write into cell i. 

Next, clerk cell y, in the midst of its use of the word w made 

available to it by clerk cell x, might make the word w available to 

clerk cell z by performing a send of i to z. At the time t
3 

just 

after this performance, the count matrix k
3
{·, •)would be such that 

k
3
{x, i) = l 

k3{y, i) = l 

k
3
{z, i) = l 

50 

- ----- ----------



f(t) 

x 

Locus of read capabilities for a cell i in an example of 
process coordination. The multiple-valued function f(•) 
defined by solid lines is such that t(t) ~ x if a~d o~ if 
the count in row x and column i of the count matrix 
equals l at time t. .An arrow tran x to y at 
time t denotes the performance by cell x at a send 
ot . i to y at time t. A dark circle ~o+ x at tim.e t 
denotes the performance by cell x of a done of i 
at time t. 

51 



Then all three clerk cells might read fran cell i any number of times, 

but none would be allowed to write into cell i. 

Next, clerk cell y might perform a done ot i, thus indicating 

it has no more actions to take with respect to the current content, w, 

of cell i. At the time t 4 just after this performance, the count 

matrix k4(•, •)would be such that 

k4(x, i) = 1 

k4(y, i) = 0 

k4(z, i) = l 

Ie.ter, clerk cell x, to allow the next content of cell i to be 

written by clerk cell y, might perform a send ot 1 to y, followed 

by a done of 1. At the time t
5 

just after the performance of the 

done, the count matrix k
5
(·, •)would be such that 

k
5
(x, i) = O 

k5(y, i) = l 
k
5
(z, i) = 1 

Next clerk cell z might perform a done of i, thus indicating it 

has no more actions to take with respect to the current content, w, of 

cell i. At the time t 6 just after this performance, the count 

matrix k6(·, •)would be such that 

k6(x, i) = O 

k6(y, i) = 1 

k6(z, 1) = O 

Then clerk cell y, having write capability for cell 1, would be able 

to write a new content into cell i, and would be able to make this new 

content available to other clerk cells. Notice that if' clerk cell y 

52 



had tried to write a new content into cell i before time t 6, then 

clerk cell y would have been disabled until t 6, and so would not have 

performed the write of cell i until after t 6• 

The behavior of the clerk cells in the example given in the 

preceding paragraphs is typical of the manner in which clerk cells 

communicate during an MCM canputation. Additional occurrences of 

interest can be seen in variations of this example. Specifically, to 

observe an occurrence of a negative count matrix element, refer to 

Figure 2.5, and recall in the example the instant t 2, just after clerk 

cell y was f'irst given read capability f'or cell i. If' after t
2 

clerk cell z had proceeded much more rapi~ than clerk cell y, and 

did not attempt to read w, then before time t
3 

clerk cell z would 

have performed a done of i, and the resulting configuration of the 

count matrix k
8
(·, •) prior to t

3 
would have been such that 

ka(x, i) = l 
k {y, i) = l a 

k (z, i) = -l 
a 

This variation of the example shows that the possibility of counts being 

less than zero allows a clerk cell to anticipate, in effect, its le.ck of 

need for a read capability before being given the capability. 

To see an occurrence of a count greater than one, refer to 

Figure 2.6, and recall in the example the instant t 3, just after clerk 

cell z was given read capability for cell i. If' after t
3 

clerk 

cell x had proceeded much more rapid~ than clerk cell y, then before 

time t 4 clerk cell x would have performed a send of i to y 

53 



f(t), g(t) 

z 

(]) 

s ,, 
y i::: 

" ,-1 
(!) 
C) 

x 

Figure 2.5. 

·-

t 

time 

locus of counts for a cell i in a variation of the 
example of Figure 2.4. The multiple-valued function£(·), 
defined by solid lines, and the arrows and dark circles are 
as described for Figure 2.4. The function g{·), defined 
by a dashed line, is such that g(t) = x if and only if the 
count at row x and column i of the count matrix 
equals -1 at time t. 

------- ----- --· - -- -



f{t), h(t) 

z 

x 

Figure 2.6. 

t 

Locus or counts for a cell i in a variation of the 
example of Figure 2.4. The multiple-valued f'unction f(•), 
defined by single solid lines, and the arrows e.nd de.rk 
circles are as described for Figure 2.4. The function h(•}, 
defined by a double solid line, is sueh that h(t) • x if' 
and only it the count at row x and column 1 or the 
count matrix equals 2 at time t. 

55 



followed by a done of i, and the resulting configuration of the count 

matrix~(·, •) prior to t 4 would have been such that 

~(x, i) = O 

~(y, i) = 2 

~(z, i) = l 
This variation of the example shows that the possibility of counts 

being greater than one allows a clerk cell to anticipate, in effect, a 

slower clerk cell's need for a read capability. 

Tabulation of MCM Properties 

Given here is a summary concerning three aspects of the MCM design: 

(1) the properties of the transactions, (2) the enabling rules, and 

(3) certain items of nanenclature. The summary is intended both to 

help the reader coalesce in his mind the diverse facts about MCM's, and 

to provide the reader with a tabUlation of these facts for convenient 

reference during the reading of the Chapters to foll.ow. 

Suppose an MCM, whose set of names is N, holds a canputation state 

given by the ordered pair «:c(•), k(·, ·~,where c(·) is a content 

i'unction describing the state of the MCM's collection of cells, and 

where k(•, ·)describes the state of the MCM's count matrix, i.e., where 

k(x, i) is the count at row x and column i of the count matrix. Now 

suppose a computation state transition occurs in which only cell x 

receives a go pulse. Let the canputation state prevailing after the 

transition be given in a similar way by the pair ~' ( •), k' ( ·, • ~ • 

56 



If during the transition cell x performed 

get of i replace f'(•) 

then 

c' (x) = f'(c(i)) 

c' (a) = c(a) 

k'(a, b) = k(a, b) 

; a {: x 

; a, b belonging to N 

If during the transition celJ. x performed 

then 

put of i with v replace w 

c'(i) = v 

c '(x) = w 

c'(a) = c(a) 

k'(a, b) = k(a, b) 

; 1 {: x 

; a {: i, a , x 

; a, b belonging to N 

If during the transition cell x performed 

* then 

send of i to e replace w 

c' (x) = w 

c'(a) = c(a) 

k'(e, 1) = k(e, 1) + 1 

k'(a, b) = k(a, b) 

; a~ x 

*The ordered n-tuple <(a1, a2, ••• , an':> is equal to the ordered m-tuple 

<b1, b2, ••• , bmJ U and only Un = m, and a1 = b1, and a
2 

= b
2

, 

and ••• , and an= bn. Thus, for example, fa, b ~ = fb, a1 always, 
but (a, b ') = <b, a/ only U a = b. 

57 



If during the transition cell x performed 

then 

done ot i replace w 

c'{x) = w 

c'{a) = c{a) 

k'{x, i) = k{x, i) - l 

k'{a, b) = k{a, b) 

; a .j x 

If' during the transition cell x performed 

bye to e replace w 

then 

c'{x) =w 

c'{a) = c{a) . a# x ' 
k' (e, x) = k{e, x) + l ; e .J. x 

k'{x, x) = k{x, x) - l ; erlx 

k'(x, x) = k(x, x) ; e=x 

k'(a, b) = k(a, b) ; <a, b) f (e, x> 
(a, b) , <x, x> 

and 

Just before the transition described above, cell x is an enabled 

clerk cell. The capabilities that a cell x must have in order to be 

an enabled clerk cell. depend on the transaction that cell x would 

perform upon receipt of a go pulse. This dependence is given by five 

enabling rules, which are tabulated in Figure 2.7. 

If an MCM holds the canputation state ~( • ), k( ·, • )>, then cell. x 

has read capability for cell i just when k{x, i) > O. A cell x 

has write capability for cell. i just when cell x is the on'.cy cell. 

to have read capability for cell i. 



Transaction cell x 

would pertorm upon 

receipt of a go pulse 

get ot i replace t(•) 

send ot i to e replace w 

put ot i with v replace w 

done ot i replace w 

bye to e replace w 

Capabilities 

cell x must have 

1D order to be an 

enabled clerk cell 

Read Write 

i 

i 

x 

x 

x, i 

x 

x 

Figure 2.7. 'Die enabling rules. 

59 



r ----· -

A cell that has write capability f'or itself' is called a clerk cell. 

A cell that is not a clerk cell is called a value cell. A clerk cell 

that is not an enabled clerk cell is called a disabled clerk cell. Sane 

cells are permanently designated to be output cells. 

In the transactions listed in Figure 2.7, 

i is called an operand name 

e is called a sendee name 

v is called an operand word 

w is called a replacement word 

f'(•) is called a replacement i"unction 

60 



Chapter III 

A Facility That Behaves Like an MCM 

Purpose 

This Chapter discusses the feasibility of constructing and 

programming a computing facility that behaves toward a user as if' it 

were an actually constructed: MCM. The techniques and examples 

presented in the Chapter suggest that such a facility can be useful, 

and can be both constructed and programmed at a cost having the same 

order of magnitude as the cost of constructing and programming a 

contemporary facility for multiprocessing. The Chapter does not 

provide canplete specifications for a facility that behaves like an 

MCM, but instead treats only sane major issues concerning such a 

facility. One of the Chapter's goals is to indicate that further study 

of MCM applications of this type would be justified. 

A facility of the type discussed in this Chapter is an example of 

but one kind of MCM application. There are other ways of designing 

facilities that behave like MC.M's, and moreover, there are also MCM 

applications that do not involve the design of facilities. An example 

of the latter kind of application is a compiler whose generated code 

coordinates processing units according to the rules by which the clerk 

cells of an MCM are coordinated. A user who requests execution only of 

programs translated by such a compiler will never observe a 

nonfunctionality or noncompletion lurking bug effect, even if the 

executing facility does not itself prevent these effects. 

61 



The foregoing example, which will not be discussed turther, 

indicates the variety of MCM applications that might be discussed. The 

particular application that will be discussed in this Chapter bas been 

chosen both to illustrate the basic mechanism by which an MCM 

coordinates processes, and to show exemplary solutions for sane of the 

problems that can aris" in 101 applications genera~. Thus the 

Chapter not only describes a particular application, but concanitant~ 

provides an inventory of techniques that would be useful for developing 

other applications. 

Method 

The Chapter discusses a specific exemplary facility whose external 

characteristics are those of an MCM. This exemplary facility, 

called ,!!'. tor short, does not exist, but might serve as a guide tor the 

construction of an actual facility. The facility EF is realized by a 

canbination of hardware and supervisory software, in the same way that 

each of the few dozen facilities of a typical C'l'SS system [14] 

is realized. 

In order to highl.ight the ditterences between EF and contemporary 

fac111ties, and in order to avoid discussing details that are eas~ 

filled in by applying contemporary techniques, the Chapter describes EF 

pr1mari~ from the user's or progranmer's point of view. In 

particular, the characteristics which EF presents to a user are described 

as those of a virtual, or apparent, machine, called!!:! for short. That 

is, EF behaves toward the user as it it were an actual construction 

62 



of VM, in the same way that each of the few dozen facillt.tea' of the 

CTSS system behaves toward a user as if it were an· actual· construction 

of a machine very s 1m1lar to an IBM 7()911.. 

One at tbe tasks at the Chapter 1s. to verUy that .. beha~ like 

an appropriately' chosen MCM. ''J!>.is task will. be accanplisbed'by shOving 

that VM behaves lilte an 10:. Since by detfn1t1on BP 'bebBVes· · ]jjte VM, 

the demonstration that VM behaves like an H:!M' verli'ies -that'· IF bebaves · 

like an t.Dl, and therefore verities, by ft1' of the j;rOOts· ftiven in 

Chapters IV and V, that both nontunctionality·and noriccniptetion 

lurking bug etf'ects do not occur 1n Er. 

In the verification that EP behaves· like aii tG,· -the ilBchine 'VM ·· 

serves as a tutorial intermediary. The correspondence between El' and · 

an Ma.I is not canplete~ trivial, and. it·~ rut··to-·be21nu.CJf·eas1er 

to understand the relationship between vM and an tOI tnan'jtt :la ·to 

understand direct~ the relAt1onship betwemt· .,, arid.' an· tat. 

A description at VM is not sUttic1ent to 11h0v ·1tha'f '•":ta temi1ble. 
' ., 

For this purpose several additional toptcar are 'diSeuaffdi). {l) the ..... - .,.,,··, 

manner in wich BP mgbt be programmed· using rt'l&ligUa• asmtl:ar to the 

Algol language r21, (2') the proi;)ert1es of 1;he··~er··U&ed;·to 

translate programs written in this ~~ (3): the. "cbarabter •<Jf BP' s · 

physical units, and {4) the supervi801'1" program tbat' ·•~a processinl 

units occasiona~ execute in order to perform actMttee ~; eXi>lic1tly · 

"wired into" Er's bardware. '?be discussions ot these topics suggest 

methods f'or dealing with acme ot the major issues tbat concern .:w~a.-. 

design and use. It is· h0ped that the i-emaStttng~ probtima o:t Er's Cleaigll 

and use can be solved 'by app~ilig ccmtesD.POrari · tec!uifq\i'98. 

63 



r 

D:£I!!m!c Allocation 

The relationship between the facility EF and EF's virtual 

machine VM may be better understood if' one keeps in mind that dynamic 

allocation of Ph1'sical units among objects of prograin reference is 

assumed to occur in E.F. One of the reasons· for describing the 

properties of EF in terms of an abstraction such as VM rather than in 

terms of EF's physical units is to avoid a discussion of the can.plex, 

but fairly well understood, methods for implementing dynamic allocation; 

such a discussion would tend to obscure the primary points being made 

in the Chapter. It will be seen, however, that for EF to be feasible 

using contemporary technology, dynamic allocation is a practical 

necessity. 

As mentioned in Chapter I, dynamic allocation implies that as 

time progresses there might occur in EF several distinct correspondences 

between peysical units and the parts of VM. In other words, the role 

of any particular part of VM might be played by a succession of 

physical units, and during occasional intervals the role of a VM part 

might not be played by any unit. On account of ccynamic allocation 

activity, it cannot be said that the role of a particular VM part is 

always played by a certain pbysi~l unit; it can only be said that when 

the role of a particular VM part is played, it is always played by one 

of a cl.ass of physical units. 

Overview of VM 

The parts of VM may be thought of as objects of program reference, 

because a program for EF might refer directJ.y·to these parts. On the 



other hand, the parts of VM are not the on~ objects to which a 

program written for EF might refer: a program for EF might refer to 

objects whose relationship to the parts of VM is established by the way 

in which the program is can.piled or interpreted. An analogous 

situation prevails in the CTSS system: a program for a CTSS facility 

either might be, say, a FAP [l.8] program that refers direct~ to the 

words in the facility's 7094-like virtual machine or might be, say, a 

LISP [22) program that refers to objects called S-expressions, which 

are related in a non-trivial way to the words in the facility's 

virtual machine. 

The parts of VM are of five kinds: sesnents, clerks, input 

devices, output devices, and control matrix elements. Clerks 1 input 

devices, and output devices were discussed in Chapter I. A segment 

is an ordered set of quantities, each quantity being a value set quantity 

of' the type discussed in Chapter I. Control matrix elements are unique 

to the present development, and so have no counterpart in Chapter I. 

F.ach of these five kinds of VM parts will be described later in detail. 

A Viewpoint toward Secondary Storage References 

In order to see the general nature ot both EF and VM, it is 

desirable to draw a sharper analogy between EF and a CTSS facility [6]. 

The user of a CTSS faciJ.ity sees a virtual machine similar to a 7094, 

i.e., a machine having 32,768 virtual memory registers and having a 

virtual CPU with accumulator, index registers, etc. It is not often 

recognized in this context, however, that the user of a CTSS facility 

actually sees a much larger virtual storage system than just 32, 768 main 

65 

----- ----~-----------



memory registers: supervisory programs provide the user's can.putation 

with access to seccnda17 storage units, such as disc and drum· units. 

A user's secondary storegein:tormation is organized into ordered 

sets ot words, each set of words being called a :tile. Frail the point 

ot view ot the user, each tile is identified, not by a physical 

location, but by a BCD D8llle that consists of twelve alphanumeric 

characters. A user program refers to a tile using the tile's BCD name, 

together with one or more integers indicating the words ot interest 

in the tile. 

Reterences to files in CTSS are accan.plished when the PhiY'Sical CPU 

executes a superviso~ program. ~is program causes the CPU to pertom 

activities such as associating tbe name or the f'ile being referenced 

with the tile's· physical location, and 8UOh as keeping the tile 11open", 

an activity which involves,, fOr examp1e, l'el!Ullbel'ing the tile's name 

so that subMqUent reterences can be made using a small integer tag 

as an abbreviation ot the tile's name. 

A user's caaputation makes a reference to secondaey storage by 

executing a particular instruction that "calls the supervisor". 'Die 

system is designed so that a user's canputation caiin.ot change the 

supervisory program; therefore, as far as tlie user is concerned, the 

:f'unction pertomed by the supervisory progi'tull. might as well be "wired 

into" the hardware of the physical CPU. P"or the.t matter, the user 

would be equally satisfied 1t the CPU responded to a secondary storage 

reference by executing a microprogram: stored in the aPU itself. What 

actua~ happens is that such a "microprogram .. is in tact executed; 

the nmicroprogrem" is stored in a memory unit sepera:te trcm the CPU, 

66 



and is written in terms ot a se~ ot instructions almost identical to 

the set ot instructions in terms ot which a user program may 

be written. 

The tunctions which the supervisoey "microprogram" can cause to 

be pertormed tor a user are extremeq caaplex; nevertheless these 

functions are a propert:y of the user's virtual machine. Thus, tor 

example, the virtual. machine of a aJ.1SS facility bas the ability to 

access a large boq ot information that is referred to by invariant BCD 

names. Because the supervisoey "microprogram" can remember information 

between ca.Us, not f!1V'er'9 reference to a tile need invol.ve the use ot 

the file's f'ull. BCD name. 

The :f'11es tllat aD3S stores on behalf of a user are just as much a 

part of' the virtual machine of' the user's :f'.acUity as are the virtual 

core memory and <PU. The instructions tbat refer to fil.ea are 

instructions that invoke execution ot the su~isoey "microprogram". 

Those ot these instTUctions that., when executed, r~d and write 

information fran. and into files are actually instructions that move 

information between files and virtual core mellloey, and are thus similar 

in tunction to the "move" instructions found in many contemporary 

canputers. The tact tbat til.es are not.accessible in any way other 

than by execution ot "move" instructions is not a good reason tor 

excluding files from a CTSS virtual. machine, for otherwise, in deciding 

generally whether sanething should or should not be a part of a virtual 

machine, where would one draw the line between "accessibil.ity" and 

"non-accessibility"'? 



Introduction to Seeents 

Just as :files having BCD names are part of the virtual.machine of a 

CTSS facility, so also are named tiles ot intormation part of the 

virtual machine VM of the tacili ty EF. To toll.ow contemporary 

usage [4, 9], these tiles of intormation will, in VM, be called 

seeents. Since in CTSS a tile and a virtual core memory are both 

ordered sets of words, it is natural to merge the concept ot a file 

and virtual core memory into a single concept, name]¥, that of a sefP11ent; 

this is exact]¥ the course that bas been followed in the design of the 

Multics system [4], and will be the course followed here with respect 

to EF. In other words, in VM there are not both files and a virtual 

core memory, but only segments; each segment is accessed using a f'ull 

instruction set similar to the set of instructions used to access a 

virtual core memory. 

Just as in a CTSS facility, and even more as in a Multics 

facility, EF uses a supervisory "microprogram" to help make references 

to segments be effective. One of the functions performed by processing 

units executing this supervisory program is the CJ¥namic allocation of 

parts of segments among storage units, such as core memory, drum, and 

disc units. Not only does the supervisory program aid in the 

implementation of sefP11ents, but it also aids in the implementation of 

other VM parts; various properties of the supervisory program will be 

explained later as the need arises. 

68 



Segments 

The f'irst VM part to be explained is the segment [4, 9]. As 

mentioned above, a segment is similar in tunction both to a C'fSS tile 

and to a virtual core memory. A segment is an ordered set of ~' 

each word being what a programmer of a contemporary facility might 

call a "memory word". That is, each word denotes information, usual.4 a 

few dozen bits in amount, that might be held in a core memory register. 

The number of words in a segment is called the length of' the segment. 

Each segment of VM is designated by a distinct .!!!!!!!.' which is a 

string of BCD characters. Each word in a segment is, in turn, designated 

by a distinct address, which is a binary integer between zero and the 

length of' the segment minus one, inclusive. With respect to VM as a 

whole, therefore, each word is designated by a concatenation of segment 

name and address; this concatenation constitutes the~~ ot 

the word. 

When a processing unit makes a reference to a segment, say to read 

some word in the segment, EF might allow the reference to proceed, or 

might take some action, such as typing an error message, to indicate 

that the reference is invalid. Let us examine this latter occurrence 

more closely. When a reference is made to a word, the name ot the word 

is employed, either directly or indirectly. When a facility responds 

to a reference by saying that the reterence is invalid, it is saying, 

"There is nothing associated with this name," or to use a more 

11 .&.'l..i II contemporary locution, The object having .tf,11, s nam.e does not exist. 

When a word does not exist, then either the segment that would contain 

the word does not exist, or else the word is not an existing word of' the 

69 



segment, i.e., the word's address, which is never negative, is greater 

than or equal to the segment's length. 

Segments may be brought into and out of existence, i.e., created 

and deleted, respectively. Likewise, segments may be lengthened and 

shortened; such lengthening and such shortening are also activities of' 

creation and deletion, respectively. Creation and deletion activities 

in VM will be described later in detail. 

In understanding what a segment is, it is useful to observe that 

segmentation is just a way of' naming words. That is, words are not 

intrinsical'.cy grouped into segments, but belong to segments on:cy 

because we choose to structure their names in a certain way. The 

advantage of' giving words numerical:cy consecutive names is that sane 

of the most power:f'ul data processing techniques, such as additive table 

look-up, involve can.puting with names, or with parts of names • 

.Although segmentation is just a naming technique, it is reasonable 

to refer to a se(?Plent as sanething distinct :from its individual words. 

For example, by performing an appropriate procedure step, a computation 

might tell EF, "Se(?Plent ABC will not be read or written for a while, 

so you may allocate its words to secondary storage if you like." In 

the light of the above interpretation of segmentation as a naming 

"y technique, the foregoing message to EF can be interpreted as, ou may 

allocate to secondary storage any word whose segment name is .ABC." 

Such a message is thus seen to have significance even if se(?Plent ABC 

exists but happens to be of zero length when the message is given: the 

significance o:f' the message in these circumstances is that 1:f' ABC 

should ever be lengthened, the resulting words may be allocated to 

------ -~-- -



secondary storage. Notice that if the foregoing message is given at a 

time when se(Oll.ent ABC does not exist, as opposed to when it.exists and 

is of' zero length, then EF might indicate that the message is in'Vlllid 

by saying in effect, "I know of no such se(Oll.ent." 

Clerks 

The second VM part to be explained 1s the clerk. A clerk is that 

kind ot VM part whose role is played by a processing unit; as was 

mentioned in Cbapter I, a clerk 1s an object that passes fr(ID. one 

procedure step of a program to the next, obeying the directions 

encountered at each step. The sequence ot actions that a clerk performs 

is called a process. A multiprocess program is a pro~ that directs 

the activities ot several clerks. A program tor EF may be either a 

single-process program or a multiprocess prognun. 

An unusual feature of VM is that each clerk is designated by a 

distinct name. The name ot a clerk, like the name of a se(Oll.ent, is a 

string of' BCD characters. 

Clerks can be created and deleted, just like se(Oll.ents can be 

created and deleted. Examples of procedure steps whose executions 

in a contemporary facility woul.d create and delete clerks ~re procedure 

steps of' the types ~ and ~_i, respective~; these procedure step 

types were described near the end of Chapter I. 

!pput.Devices 

The third kind of VM part to be explained is the input device. An 

input device is that kind of VM part whose role is played by an input 

71 



unit, such as a card reader unit, or typewriter key-board unit. As an 

object of program reference, an input device is similar to what is 

called in a FORTRAN (19] program a "symbolic" input device. That is, a 

program refers consistent~ to, say, "card reader device number 4" in 

spite of the fact that the role of this device might be played on 

different occasions by distinct physical units. 

For each canputation, there is associated with every input device 

an input stream, i.e., a sequence of input Ecymbols. For example, a 

canputation's input stream from a card reader device is the information 

punched in those cards, or portions of cards, that are read during the 

canputation. In the case of a typewriter keyboard device, a canpu.tation's 

input stream :f'ran the device is the sequence of characters that are 

typed on the keyboard and that are read during the canputation. 

niring a canputation, a reference is made to an input device for 

one or more of three distinct purposes: (1) to read fran the device's 

input stream, (2) to either sense or change the state of the physical 

unit playing the role of the device, e.g., to ask, "Hopper empty?" or 

to say, "Lock keyboard, 11 and (3) to refer to the device as a whole, as 

for example to say, "I am not going to use this device :f'or a while, and 

so this device's physical unit may be allocated to play the role of 

some other device." 

Just like a clerk, each input device is designated by a distinct 

name, which is a string of BCD characters. Al.so just like a clerk, an 

input device can be created or deleted by the execution of an appropriate 

procedure step. 

72 



OutPUt Devices 

The fourth kind of VM part to be explained is the output device • 

.An output device is that kind of VM part whose role is played by an 

output unit, such as a printer unit. Like an input device, an output 

device is referred to during a computation without regard to the 

identity of the physical unit playing the role of the device. 

For each computation, there is associated with every output device 

an output stream, i.e., a sequence of output symbols. For example, a 

computation's output stream from a printer device is the sequence of 

characters produced by the printer during the computation. As with an 

input device, a reference to an output device during a computation is 

made for one or more of three distinct purposes: (1) to write into 

the device's output stream, (2) to sense or change the state of the 

physical unit playing the role of the device, and (3) to refer to the 

device as a whole. 

Like input devices, output devices are designated by distinct BCD 

names, and may be created and deleted by the execution of appropriate 

procedure steps. 

Control Matrix Elements 

The fifth kind of VM part to be explained is the control matrix 

element. The control matrix elements of VM form, not surprisingly, 

VM' s control matrix, whose function in VM is similar to that of the 

count matrix in an MCM. As shown in Figure 3.1, each row or column 

coordinate of VM's control matrix is a BCD name that might be the 

73 



namel 

name2 

name3 

Figure 3.i. A typical control matrix. The names namel through name4 
are BCD names, each of which might be the name of a segment, 
clerk, input device, or output device. 

BCD names 
, - - - - - - - - - -1 

I 
L_ 

I 
_ ___ _J 

Figure 3.2. A typical set of existing control matrix elements. De.shed 
lines enclose a tull control matrix. Batched regions are a 
typical set of existing control matrix elements. 

--------· .--



name of a segment, clerk, input device, or outPQt device. Just like 

an element of the count matrix of an :mt, each elelllent at VM's control 

matrix is an integer tbat might be positive or negative. 

Unlike the count matrix ot an MCM, the control matrix of VM does 

not necessari;q have the usual rectangular shape of a matrix. 

Furthermore, the shape of VM' s control matrix may vary during .a 

canputation. In order to understand the properties Of VM's control 

matrix, let us imagine a~ control matrix having a fixed, square 

shape and consisting of just one row and OP.e column to ~orreapoad to 

each BCD name that might be the name Of a segment, clerk, input device, 

or output device. Each element of the tull control JDatrix might or 

might not exist as an element of VM' s control 111atrix. Thus, .as shown 

in Figure 3.2, VM's control matrix migb't'. have ~ edges, isolated 

sets at elements, and ''holes". 

If a control matrix element exists, and bas the value n, then 

the element of the tull control at the s~~PoSitiozi also bas the 

value n. On the other band, it a control matrix element does not 

exist, then the element of the tull control matrix at the Mlle position 

bas a value that is given by a convention. Thia convention is 

established to facilitate the creation and deletion o~ VM parts, and 

will be explained later in the Chapter. 

Control matrix elements are not created and .deleted by clerks 

executing procedure steps that order their -creation and delet11on, but 

instead, control matrix elements are created am deleted autQDaticaJ.:cy, 

perhaps by a processing unit obeying EF's a\1Pervisor,y program. Whenever a 

clerk makes a control matrix element have a value that-does·nQt conform 

75 



,-- ~ --- -

to the convention for non-existing elements, then the control matrix 

element is created if' it does not already exist, and is given the new 

value. Furthermore, whenever a clerk makes a control matrix element 

have a value that ~ conform to the convention for non-existing 

elements, then the control matrix element can be deleted. Thus the 

clerks of VM behave as if' the f'ull control matrix existed. For the 

sake of econany, onl.¥ those f'ull control matrix elements. that do not 

conform to the convention for non-existing elements need be p~sically 

realized at any instant in the control matrix·ot VM. 

A Sketch ot VM's Operetion 

A sketch of' the basic way :Ln which VM operates when it performs a 

canputation can now be presented. This sketch is accurate, but not 

canplete; the details anitted will be filled in throughout the rest of' 

the Chapter. 

When VM performs a caaputation, each clerk ot VM performs a process 

that is a sequence of' actions. At any instant, a clerk does or does 

not have permission to proceed with its next action, depending on 

whether or not it has at that instant all of' the capabilities necessary 

to perform the action. 

In performing an action, a clerk always writes into itself'. A 

clerk x bas capabllity to write into itaelt Just when the integer in 

row x and column x of' the f'ull control matrix is greater than zero 

and the other elements in column x of' the f'ull control matrix are less 

than or equal to zero. Unless mentioned otherwise, it may be assumed 

that any clerk has write capability for itself'. 



A clerk x has capability to read any word in a segment n just 

when the integer at position <x, n) o:f the full control matrix, i.e., 

in row x and column n o:f the full control matrix, is greater than 

zero. A clerk has capability to write any word in a segment just when 

it is the only clerk that has capability to read a word in the segment. 

The action o:f a clerk might change a control matrix element. Let e 

be a clerk name, and let n be a segment name. A clerk x has 

capability to add l to the integer at position <:.,e, n:> of the full 

control matrix just when clerk x has capability to read any word of 

segment n, i.e., just when the integer at position<::x, n::> of the 

full control matrix is greater than O. On the other hand, a clerk x 

always has capability to subtract 1 from the integer at position 

<x, n> of the full control matrix. 

The above Illecbanism for changing the control matrix allows 

capabilities to read and write segments to be passed fran one clerk to 

another, and to be relinquished by clerks when no longer needed; this 

mechanism is similar to that by which processes are coordinated 

in an MCM. 

Coordination Procedure Steps 

Before an explanation is given of how VM behaves like an MCM, an 

example will be presented to show how EF might be programmed using an 

Algol-like language. In preparation :for this example, procedure steps 

o:f the types se~g and gQg~ are now introduced. 

Before defining procedure steps of the type g~gg, two examples of 

the use of this type of step will be given. First, suppose a programmer 

77 



wlshes to direct a clerk to add l to the integer at position < e, n) 

of the full control matrix. Then the programmer may write 

send 'n' 'e ' • ==== ' ' 
For a second example, suppose again that a programmer wishes to 

direct a clerk to add l to the integer at position ~' n.)> of the 

full control matrix, and suppose that the values of the quantities a 

and b are the names n and e, respective'.cy'. ·Then the programmer 

may write 

~~g a, b; 

In general, if' the expressions o<.. and f3 evaluate to the 

names n and e, respective'.cy', then the execution of 

~~go{, (3; 
adds 1 to the integer at position <::_e, n)> of the full control 

matrix. According to the rule given in the preceding Section, a 

clerk x bas permission to add l to the integer at position <e, n) 

of the full control matrix just when the integer at position<:::x, n,:> 

of the full control matrix is greater than O. 

The single quotation marks used in the first example above are the 

first operators to be introduced for use in expressions whose values 

are names. Quotation marks inhibit evaluation of the expression they 

enclose; that is, the value of the expression 

'o<' 
is the expression c;<, itsel:f. Additional operators for use in 

expressions whose values are names will be introduced later. 



If the expression o< evaluates to the' Mlle n, then the 

execution of 

~o(; 

by clerk x subtracts 1 f'ran the integer at position <x, n) 
of the :f'ull control matrix. According to 'the rule given in the preceding 

Section, a cllerk x always has permission to subtract 1 tran any 

integer in row x of 1;he f'ull control matrix. 

An Example -- Matrix ManipuJ.ation .Again 

'!be procedure steps just introduced will now be used in a program 

that directs the same canputational activity 'BS was directed by the · 

program given at the end of Chapter I. 'Dlis canputat1ona·1 activity 

is the computing of 

(AB)-l( (CD)(AB)) 

where A, B, c, and D are n by n matrices and AB is non-s~r. 

Like the program of Chapter I, the program given here is written in a 

language similar to the Algol language, an:d uses f'Our tmiporery storage 

matrices: T, u, Y, and z. The program also uses the' procedures "matrix 

multiply" and "matrix inverse ot". Each ot the matrices A, B, c, D, T, 

u, Y, and z is stored -in a distinct segnent having the corresponding name. 

The coding that would correspond to the fork appearing in the ==-= 

program of Chapter I is anitted, because the notion of £2&~ in EF bas 

not yet been discussed. Instead, the program is given in two com.pound 

statements: one directing the activity of a c1erk named "alpha", and 

the other directing the activity of a clerk named "beta". The clerks 

79 



may enter their respective compound statements s1multaneous4'", or in 

arbitrary order. 

Just before the entry into a com.pound statement by the first clerk 

to enter its compound statement, the control matrix is assumed to have 

the configuration depicted partial..cy' in Figure 3.3. It may be assumed 

that unless Figure 3.3 indicates otherwise, each element in columns A 

through beta of' the full control matrix is O. Thus, for example, 

Figure 3.3 indicates that clerk beta has write capability :f'or 

segment Y. Figure 3 .3 does not show the entire control matrix: 

clerks alpha and beta are assumed to have read capability for the 

seSJ!lents into which the procedure steps of the program are encoded, and 

each clerk is assumed to have write capability :f'or one or more temporary 

storage seSJ!lents. 

The compound statement entered by clerk alpha is the following. 

senn 'C' 'beta'· ==== , , 
~ 'D', 'beta'; 

matrix multip4r (A) times:(B) into:(T); 

~!:nd 'T', 'beta'; 

matrix inverse of (T) into: (U); 

matrix multip4'" (U) tirnes:(Z) into:{answer); 

~ 'Z'; 

Bo 



A B c D T u y z 

nlpha 1 1 1 l 1 1 0 0 

beta 0 0 0 0 0 0 1 1 

Figure 3.3. Part of the control matrix upon entry into 
an example program. 

81 

1 

0 

o" 
CD 
c+ 
!ll 

0 

1 



The compound statement entered by clerk beta is the following. 

matrix multiply (C) times:(D) into:(Y); 

done 'C'; =•== 
done 'D'; 
===== 

matrix multiply (Y) times:(T) into:(Z); 

done 'T'; =··= 
send 'Z', 'alpha'; 
=-== 

end =·= 
A clerk enters its ccmpound statement by passing to the s1JD.bol 

RSit.D· The following activity ensues when exactly two clerks, 

named alpha and beta, enter their respective compouncl statements. 

Clerk beta might bave to wait to be given read capability tor C and D. 

* Then alpha and beta might compute T and Y simu1taneou.sly • 

Next bets might have to wait to be given read capability tor T. 

Then alpha and beta might compute U and Z simultaneously. Final.q, 

alpha might have to wait to be given read capability for Z in order to 

compute the final answer. After both clerks exit from their respective 

compound statements, the control matrix will be the same as it was 

before the clerks entered the compound statements. 

* As during the execution of' the program ot Chapter I, the simultaneous 
execution by both clerks of' the procedure "matriX multiply" occurs as 
if' each clerk executed a separate copy of' the procedure. 

82 



Introduction to the Correspondence between VM and an MCM 

The purpose ot the next several Sections is to show that VM 

behaves like an M<>l. Tb.is will be accanplished by establishing a 

correspondence between the parts of VM and the canponents of a certain 

MCM. In order to establish this correspondence, additional details 

concerning VM's operation will be introduced. as necessary. The 

correspondence itself, together with the description of Ma.1 operations 

given in Chapter II, will serve to define VM precise~. 

The particular MCM to which VM will be shown to correspond 1s 

desigcated by the letter M. The machine M, like any MCM, is described 

by four quantities: (1) a set ot cell names, (2) a set ot output cell 

names that is a subset of the set ot cell names, (3) a transaction 

table tor each cell, and (4) a set of initial canputation states. The 

machine M is an abstraction employed to show, via the proofs ot 

Chapters IV and V, that EF has certain properties, name.Q-, tbat El' 

prevents nonfunctionality and noncanpletion lurking bugs. 

Consider the set i) ot the BCD names by which the segments, clerks, 

input devices, and output devices ot VM can be designated.. The 

set i) contains all the names that might designate such VM parts; at 

any instant ~ a few of the names belonging to i> might desigcate 

parts that actually exist. The names belonging to l) are not partitioned 

according to the kind of VM part that they designate; on the contrary 

each name belonging to 1) can, on separate occasions, be the name of a 

segment, clerk, input device, or output device. 

83 



Corresponding to each name in -V there is a cluster of cells in M. 

Every cell of M belongs to exactly one cluster. If' n is a name 

belonging to V , then the cells in the cluster corresponding to n 

have the names 

n.µ 

n.a 

n.a 

n.3fa 

n.O 

n.l 

• 

Th ls 
II II 11 11 II II e symbo µ, a, a, ~~, and ~a stand for mode , output , state , 

"primary pointer", and "state pointer", respectively. The 

numerals o, 1, 2, ••• are addresses. 

The number of cells in a cluster is finite, and is the same f'or all 

clusters. The number of cells in M is the number of cells in a cluster 

times the number of names in 1). Notice that the number of cells in M 

is fixed, even though the structure of VM changes fran time to time as 

the result of creation and deletion activity. 

As was mentioned, each name in 1> , at any instant, is either used 

as the name of an existing segment, clerk, input device, or output 

device, or is not used as the name of any existing object. The usage 

of the cells in a cluster depends on which of these five conditions 

84 



prevails for the name to which the cluster corresponds. The usage 

of' the cells in a cluster will now be explained for each of' these 

f'ive conditions. 

'?he Cluster Corresponding to a Segment 

If' n is the name of a segment of length, say, 3, then the cluster 

corresponding to n is shown in Figure 3.4. Cell n.µ always holds a 

word that denotes the "mode" of' the cluster n. In Figure 3.4 the 

cell n.µ holds the symbol s, denoting "segment". When cluster n 

is a segment cluster, cells n.-a, n.a, n ••• , and n.•a are not used, 

,J " It It d" and so hol.d a word that is the symbol 'P' denoting empty or undef'ine • 

To each address with which a word is associated in a segment there 

corresponds in the segment's cluster a cell having the address and 

holding the associated word. For example, in Figure 3.4 the word 

having address 1 in segment n is the word x, and in cluster n 

the cell named n.l holds the word x. Moreover, to each address, 

between 0 and the 1.ength of a segment minus 1 inclusive, with 

which !:!2 word is associated in a segment there corresponds in the 

segment's cluster a cell having the address and holding the word ~. 

For example, in Figure 3.4 there is no word associated with address 3 

in segment n, and in cluster n the cell named n.3 holds the 

word ~. It is assumed that ~ is not a word that can belong to a segment. 

'?he Cluster Corresponding to a Clerk 

If n is the name of a clerk, then every cell of' the cluster 

corresponding to n hol.ds the word ~' except eel.ls n.µ and n.a. 



• 

• 

• 

n.4 ~ 
n.3 ~ 

2 y < > n.2 y 

l x < ,.... n.l x 

0 w < )' n.O w 

; ~ n.1(0' ! 
addresses words n."" ~ 

n.a ~ 

n.a {> 
segment n in VM 

n~ 
s 

~ 
cell words in 
names cells 

M's cluster corresponding to segment n 

Figure 3.4. The cluster corresponding to a segment. 

86 



Cell n.µ bolds the word c, denoting "clerk", and cell n.o holds 

the word that is the state word of clerk n 1n VM. 

Performance Correspondences 

Before the configuration of a cluster corresponding to an input 

device, output device, or unused name 1s described, an explanation will 

be given concerning the correspondence between the actions performed 

by clerks in VM and the transactions perf'ormed by clerk cells in M. 

When clerk x performs an action in VM, the corresponding activity 

in M is the performance of one or more transactions by clerk cell x.a. 

For example, 'When clerk x reads the word at address 6 in segment 1, 

clerk cell x.a performs a get of 1.6. 

The way in which the execution of a procedure step in VM 

corresponds to the performance of a sequence ot transactions in M 

may be understood by means of the following example. Suppose that in VM 

the procedure step 

Add one to segment 1, address 6 

is encoded into the word at address 14 in segment .xp, in a code 

appropriate for clerk x. The execution of this procedure step by 
I 

clerk x corresponds 1n M to the performance by clerk cell. x.a 

of the following sequence of transactions. 

get of xp.14 replace f 1(•} 

get of i.6 replace 1'2(•) 

put of i.6 with v replace w 

If the content of cell xp.14 just before clerk cell x.a performs (3.1) 

is c1(xp.l4}, then t 1(•) is such that t 1(c1(xp.14}) is a word to 



which (3.2) corresponds in clerk cell x.a's transaction table. 

Similarly, if the content of cell i.6 just before clerk cell x.a 

performs (3.2) is c2(i.6), then f 2(•) is such that f 2(c2(i.6)) is a 

word to which (3.3) corresponds in clerk cell x.a's transaction table. 

In (3.3), the word v equals c2(i.6) + 1, and the word w is a word 

to which sane transaction () corresponds in clerk cell x.a's 

transaction table. This transaction e' which might be, for example, a 

get of xp.15, is such that when clerk cell x.a performs e, clerk 

cell x.a will read the next encoded procedure step word. 

From the above example is may be seen how the step-by-step 

execution of procedure steps by a clerk in VM corresponds to the 

performance of a sequence of transactions by a clerk cell in M. This 

correspondence is achieved by an appropriate specification of the 

transaction tables of M. Thus the transaction tables of M are a 

description of the sets of executable procedure steps, or "instruction 

sets", of the clerks of VM. 

The Cluster Corresponding to an Input Device 

As was mentioned previously, a reference to an input device is 

made for one or more of three purposes: (l) to read from the device's 

input stream, (2) to sense or change the state of the device, and (3) to 

refer to the device as a whole. A reference to an input device as a 

whole occurs in a communication between clerks, or in a conmunication 

between a clerk and a processing unit that is executing a supervisory 

program. such a communication might say, for example, "Obtain your 

i II 
11De i next input from dev ce n, or v ce n is no longer needed." A 

reference to an input device as a whole always speaks about the device 

88 



and its properties, and never actually manipulates the device. A 

reference to a device as a whole may occur regardless of whether the 

device exists, and regardless of its actual properties. Since such 

references are not necessarily related to the properties of input 

devices, then the occurrence of such references tells us nothing about 

the properties of input devices, and so the possibility of such 

references may be ignored in establishing a correspondence between 

input devices and clusters of cells. Thus, in establishing a 

correspondence between an input device and a cluster of cells, only 

two types of reference need be accounted for: (l) reading from the 

device's input stream, and (2) sensing or changing the state, or 

conf'iguration, of the device. These same considerations apply as well 

to the establishing of a correspondence between an output device and a 

cluster of cells. 

The design of an MCM is such that the content of a cell, once set 

initially, can be changed only by a clerk cell writing into the cell, 

and not by external influences. Any external influences that affect 

the performance of a computation must affect the computation through 

inf'ormation encoded into the initial computation state. Thus an input 

device's entire input stream, consisting of symbols on, say, punched 

cards, must be encoded into the initial computation state. This 

encoding is accomplished as follows. 

Let n be the name of an input device. The first symbol in the 

input stream of n is held in cell n.O, the second symbol is held in 

cell n.2, the third symbol is held in cell n.4, etc. (The usage of 

the cells having odd addresses will be explained later.) Any 

89 



even-addressed cells in cluster n that are not needed to hQld input 

stream symbols for device n bold the word ,P. Since there is always a 

practical limit on the number of' symbols in an input stream, then tbe 

finite number of' cells in a cluster can be chosen. so that there is no 

chance for the number of' symbols in an input stream to exceed the 

number of' available cells. Since M is an abstraction that does not 

have to be actually constructed, then the ~er ot cells in a cluster 

can be arbitrarily large. A n\lllber of' cells in a cluster equal to 
(1010) 

10 

should be sufficient to assure that any input stream found in practice 

can be encoded into the cells of' a cluster. 

For the input device n, the cell n.µ hol.da the word i, denoting. 

"input device". Also 1 the cell n .a is not used. and so holds the 

word "'· Finally, the cell n.rcrc holds a non-negative even integer 

giving the address of' the cell that holds the next 81111bol to be read 

from the input stream during a computation. 

The way in which the reeding of a symbol f'rom the input stream of' 

an input devic.e by a clerk of' VM corresponds to the performance of a 

sequence of transactions by a clerk eell of M may be understood by 

means of the following example. When clerk x of' VM reads from the 

input stream ot input device n, the corresponding sequence of 

transactions performed in M by clerk cell x.a is the following. First, 

clerk cell x.a performs a get of n.2('1( to discover the address, 

say 4, of the cell to be reed. Then clerk cell x.a performs a put 

of' n.rc~ to place into cell n.rc• an address that is always two 

greater than the previous address held.in that cell, and that 1a. in this 



case the address 6. Then clerk cell x.a performs a get of n.4 

to obtain, in this case, the third symbol in the input streaa ot input 

device n. The tact that a sequence at traneactions ot the foregoing 

kind is always performed to correspond to the reading of an input 

stream is a property ot M' a transaction tables. 

The state or configuration ot an input device is distinct from the 

input stream of the device. In general, the· state at an illplt device 

might be affected either by- the action ot clerks in VM, or by external 

influences. For example, a clerk can issue an order to lock a 

typewriter ke7board, or an operator can make a card reader "rea~" by 

placing a deck of cards into a hopper. !he giving ot an order by a 

clerk of VM to change the state of input device .n corresponds in K 

to the writing ot a word into the cell n.a. The words written into 

cell n.a express in coded form the particular orders appropriate to 

the device n. 

When a clerk senses the state ot an input device, the clerk is, 

in effect, reading a symbol from an input stream., becauae the state ot 

the input device may, in general, be attected by influences external to 

VM. This ~ input stream ot an input device is distinct from the 

previous~ discussed primary input stream ot an input device. The 

successive symbols in a state input stream denote the successive device 

states that are sensed during a computation. Specifically, the 1-th 

symbol in the state input stream of an input device is a symbol denoting 

the intormatiou sensed ou the i-th occasion that the state at the input 

device is sensed, by any clerk, during a computation. 

91 



The state input stream of an input device is encoded into odd­

addressed cells in the same way that the primary input stream of the 

device is encoded into even-addressed cells. For input device n, 

the first symbol in the state input stream is held in cell n.1, the 

second symbol is held in cell n.3, the third symbol is held in cell n.5, 

etc. Any odd-addressed cells in cluster n that are not needed to 

hold input symbols in the state input stream for device n hold the 

word ~- The cell n.:rca. holds a non-negative odd integer giving the 

address of the cell that holds the next symbol to be read from the 

state input stream during a computation. A transaction sequence that 

reads from the state input stream of an input device is analogous to a 

transaction sequence that reads the primary input stream of an input 

device. 

The treatment of a state input stream on a par with a primary 

input stream is unusual. The similarities between these two kinds of 

input streams are seldom emphasized, because in practice there is an 

important distinction between them: a user can completely specify a 

primary input stream, but·usuall.y cannot completely specify a state 

input stream. For present purposes, however, this distinction is not 

important; the successive input device states sensed during a computation 

must be considered an input stream to VM, because these states are, in 

general, affected by influences external to VM. The fact that we have 

had to consider a symbol sequence not completely specifiable by a user 

to be an input stream is a fact that will be discussed further in 

Chapter VI. 



The description of a cluster corresponding to an input device is 

now complete. Let us review the roles of the cells in a cluster 

corresponding to an input device n. The primary input stream is held 

in the even-addressed cells, starting with cell n.O. The state input 

stream is held in the odd-addressed cells, starting with cell n.1. 

Even- or odd-addressed cells that are not used hold the word ¢. The 

cells n.1(1( and n.1(0' hold the addresses of the next cells in cluster n 

to be read from the primary and state input streams, respectively. 

The cell n.a holds a word that is an encoding of the most recent 

order for change of state issued by a clerk to device n. The 

cell n.a is not used, and so holds the word ¢. The cell n.µ holds 

the word i, denoting "input device". 

The Cluster Corresponding to an Out;eut Device 

The symbols that the clerks of VM place in the output stream of 

output device n are, in M, written into cell n.a, which is 

designated in M as an output cell. An order given by one of the clerks 

of VM to change the state of output device n without affecting the 

output stream corresponds in M to the writing of a word into the 

cell n.a. 

Since a clerk of VM can sense the state of an output device, and 

since this state might be affected by external influences, therefore 

an output device has a state input stream similar to that of an input 

device. Just as for an input device, the symbols in the state input 

stream of the output device n are held in the cells n.l, n.3, etc., 

with any unneeded odd-numbered cells holding the word ¢. The 

93 

-----··-- -



cell n.1(a holds the address of the next cell in cluster n to be 

read from the state input stream during a com.putation. A transaction 

sequence that reads from. the state input stream of an output device is 

analogous to a transaction sequence that reads from. either input 

stream of an input device. 

For the output device n, the even-addressed cells, and the 

cell n.1(1( are not used, and so hold the word ~- The cell n.µ 

holds the word o, denoting "output device". 

The Cluster Corresponding to an Unused Bame 

It the name n is not used in VM, then every cell in cluster n 

holds the word ~-

The Correspondence between Control and Count Matrices 

At sane instant during a VM computation, let kf( •, •) denote VM' s 

f'ull control matrix; that is, let k:f'(x, n) be the integer at 

position <x, n> of the f'u.11 control matrix. Similarly, let 11n,(•, ·) 

denote the corresponding count matrix of M. Recall that the value Of 

an element of kf(·, •) is either the value of the corresponding element 

of VM's actual control matrix, or is dictated by a convention, to be 

described later, that gives the value of a non-existent control 

matrix element. 

Figure 3.5 shows the count matrix corresponding to a 2 by 2 

f'ull control matrix. In general, the correspondence between kf(·, •) 

and k (•, •) is given as follows. Let k (x.a, n.b) be an arbitrary m m 

-~ --~----



- . 
' < r T' ,_ • r ~ • ~- '.,,...,,., ~ ~ ~ ' < : 0 

I 
namel 

3 4 
-----·· .... ...,.:; l ~-· .. J ... 

~ ·:. 

. 'l -

: .. colUilns tc:ii'"f .~. ;'~h1jnna•"'i0r _: 
Q:'"'~;~~~:i,:d. )' . .; ·iv~J}~~ ; . 

.. r-...-:-.-. -:·.-) ..... -.. -.,, ~h' 1 .;t_.(1]'\ _~0-,·~ - • .-.t1-:s--J-:·;-.t"""··~ ~~·.i!e ~.:;"···- .:·~ ~- -·1.,, 

0 , ....... . . . .. 
. ,.o .. , .. ;···· 

' ~; ' 

.,:, d ~ .... \.: ·. .• \: .:1 ~:. ri 

0 0 
- --- ~--------------------

l'igure 3. 5. Oorreaponclenee between a tull control •trix 
and a count utrix. 

95 

',"•"J p . 

. .... , 



element of km(·, -). Then 

km(x.a, n.b) = kf'(x, n) 

k (x.a, n.b) = 0 m ; a # a 

The above correspondence implies a constraint on the initial 

configuration of' M's count matrix: some elements of' the count matrix 

are always zero, and other elements are always equal. This constraint 

amounts to a restriction on the set of M's allowable initial 

canputation states. 

In order to preserve the correspondence between control and count 

matrices throughout the performance of corresponding canputations by 

VM and M, a restriction must also be placed on M's transaction tables. 

A restriction sufficient for this purpose will be given in the next 

Section, following an explanation of the transaction sequences that 

are per:fonned to correspond to the execution of send and done ==== =---= 

procedure steps. 

Coordination Correspondences 

The final action in the execution of' 

g~nd 'n', 1 e 1
; (3.4) 

is to add l to the integer at position ~e, n,::> of the f'ull control 

matrix. The per:formance of this action by clerk x of VM corresponds 

in M to the per:f ormance of the following sequence of transactions 



by clerk cell x.o. 

send of' n.µ to e.o replace wl 

send of n.a to e.o replace w2 

send of n.o to e.o replace w3 

send of n.m to e.a replace w 
p 

In (3.5), w1 is a word to which (3.6) corresponds in cell x.a's 

(3.5) 

(3.6) 

(3.7) 

transaction table. Likewise in (3.6), w2 is a word to which (3.7) 

corresponds in the same transaction table. In (3.8), m is the 

maximum address of a cell in a cluster, and p is the number of' cells 

in a cluster. One might say that in correspondence to the execution 

of (3.4), the whole cluster n is sent to cell e.a. 

Likewise, the final action performed by a clerk x executing 

done 'n'; === 

is to subtract 1 from the integer at position <(_x, n~ of the full 

control matrix. The performance of' this action corresponds in M to the 

performance of a sequence of dones by clerk cell x.a, one done f'or 

each cell in cluster n. 

The above correspondences for §~g's and gQn~'s suggest the 

following restriction on M's transaction tables. For each cell x, a 

send, done, or bye transaction may appear in cell x's transaction 

table only as part of a transaction sequence, such as (3.5)-(3.8), 

which when performed by cell x would make identical alterations to 

count matrix elements in one row and several columns, the row 

corresponding to a cell whose name ends in ".a", and the columns 



corresponding Just to the cells in one cluster. In conJunci;ion with 

the t:l.ming correspondence discussed 1n the next Section, this 

restriction is sufficient to maintain during a computation a correspondence 

between VM' s control matrix and M's 00U11t matrix. 

The T1.m1.ng Correspondence 

The object ot this Section is to describe bov the strategy at M's 

scheduler can be established so as to,maintain a correspondence 

between the behavior qt VM and the behavior ot M. As was mentioned 

in Chapter II, the strategy ot M's s~ed.ulei: is 'the schm.e by which 
. , . 

the scheduler makes selections trail successive choice collections. 

It may be ?"ecalled that a choice collectiOQ is derived trcn a 

canputation state by appqing both _.the enabllDg rules .and a rule to 

prevent clerk cells tran altering the same count matrix elelllent 

simultaneousq. Frail out ot the choice collection derive4 trcn a 

given canputation state, the scheduler se1ects,. in acc~nce with 

its strategy, one set ot names to be tlle set ot the names.of the cells 
\. • ' ~ ' • I • 

that will accanplish the next computation state transition. 

It is assumed that each clerk .in VM proceeds autooanousq, and 

that the actions ot several clerks J118.Y overlap in time in an ar~itraey 

wy. The autonanous behavior of cle;rks in \1)( may ,:t>e. contraste.d with 

the synchron~s bebaviQr ot clerk cells ~ M; in a C<DJ>Utation 

performed by M, all transactions ot one computati<>n; state _transition 

are canpleted befol".e the next computation state .transition :I.a begun. 

The main task in explaining the strategy of M's scheduler is to 

establish a method by 'Which the autonanous clerk behavior ot VM may be 

modeled by the synchronous clerk cell behavior ot M. 

98. 



The modeling ot VM's behavior in terms ot M's behavior is 

achieved by letting the perforaance ot transactions in M occur both 

instantaneousl.1', and illllled1ate4 upon receipt of a go pulse. It is 

legitimate to talk about instantaneous transaction performances in M, 

since M is an abstraction that does not have to be actually constructed • 

.An alternative to letting the performance of a transaction be 

instantaneous is to let the performance ot a trenaaction have a 

duration much smaller than any duration ot interest in VM. 

The process that a clerk in VM performs may be divided into a 

sequence ot actions, each ot which has non-zero, finite duration, and 

each of which involves the sensing and/or changing of the state of another 

VM part. For example, the reading by a clerk x ot the word at 

address 7 in se8Jllent n is such an action. A!& shown in Figure 3.6, 

this action bas a certain duration for the word being read ~d a certain 

duration tor clerk x. n.t.ring the interval when the word at address 7 

in segment n is in use tor this action, no other clerk reads or writes 

the word. Likewise, during the interval when clerk x is in use tor this 

action, no other clerk reads or writes the state word of clerk x. 

In the example of Figure 3.6, the transaction that corresponds in M 

to the read action in VM is a transaction performed by clerk cell x.a, 

and is a get of n.7. For convenience, let us imagine that corresponding 

computations occur in VM and M s1mu.ltaneaus~. Then. in the example ot 

Figure 3.6, the transaction corresponding in M to the read action in VM 

is peri'omed in M at an instant during the interval when in VM both 

clerk x and the word b~ing read are in use tor the read action. 

99 



VM 
part 

word at 
address 7, 
segment n 

clerk x 

KCll 
cell 

cell n.7 

clerk cell x.a 

A bashed interval is the 
interval during which the VM 
part is in use f'or the reading 
by clerk x of' the word at 
addre.$S 7 in segment n. 

time 

time 

Instant of' the performance of' the transaction 
corresponding to the above read action. 

Figure. 3.6. !he performance in M of' the transaction that corresponds 
to a read action in VM. 

100 



The action-transaction correspondence in the example of Figure 3.6 

is in one respect not typical of action-transaction correspondences 

in general, because in this example the performance of the read action 

in VM corresponds to the performance of just one transaction in M. 

In general, the performance of an action by a clerk in VM corresponds 

to the performance of one or more transactions by a clerk cell in M. 

For example, to an action that reads from an input stream in VM there 

corresponds in M the performance of three transactions, two of which 

manipulate an address pointer. For another example, to an action that 

adds one to a control matrix element of VM there corresponds in M the 

performance of a number of send transactions equal to the number of 

cells in a cluster. 

For sane action performed by a clerk in VM, consider the interval 

/!:it during which all parts of VM that participate in the action are 

in use for the performance of the action. The transaction or 

transactions, always finite in number, that correspond to this action 

are performed in M during the interval ,6t. This timing correspondence 

holds for every action performed in VM. The scheduler of M makes 

selections from choice collections, and schedules the transmission of 

go pulses, so that this timing correspondence is maintained. 

The rules by which clerks of VM obtain permission to proceed are 

constructed to correspond to the rules for the formation of choice 

collections in M in such a way that it is possible for M.' s scheduler 

to maintain the above timing correspondence. A sketch indicating 

the general nature of Vl~'s permission rules was given previously. A 

complete list of the rules for the actions discussed so far is given 

101 



in Figure 3.7. Additional permission rules will be given as new 

actions are introduced. Notice that each permission rule can be 

inferred fran the correspondence between VM and M. For example a 

clerk, having write capability f'or itsel.t, must have, not read 

capability, but write capability, tor an input device in order, to read 

:f'rom the input stream of the device. This is because the .reeding of 

an input stream corresponds in M to the perfol'llBnce of' three 

transactions, one of which is a put that increments the pointer 

indicating ~e next symbol to be read. 

A capability possessed by a clerk ot VM can be taken away fran 

the cler' on~ by an action performed by the clerk itsel.t, specifically, 

by the clerk's decrementing of a control matrix integer. Thus, 

whenever a clerk bas permission to perform. an action, it continues 

to have that permission until the action is performed. It is assumed 

that once a clerk of VM bas permission to perform an action, it does 

perform that action after a finite time. 'l'his assumption means that 

the strategy by which M's scheduler maintains the timing correspondence 

between VM and M is a strategy that is reasonable, in the sense 

described in Chapter II. 

The timing correspondence between VM and M implies that there is 

not a simple correspondence between the state of VM at some instant 

end the computation state of Mat the same instant. For example, M 

can have e definite canputetion state at an instant when in VM actions 

are still being completed. This lack of a simple correspondence between 

machine states seems to be a consequence of the modeling of autonan.ous 

clerk behavior by synchronous clerk cell behavior. 

102 



- ---~-·-~----

_,,., "'· --:- ···"".:•_,_, . . _.,,.- - . . . . / ~ 

Clerk JC has read capebilit;r tor part n just wheai the 
integer at position <x, n> ot the tull control matrix is 
sr-ter tban zero. Clerk x baa write capab1Ut7 tor 
part n Just when clerk JC bas sole read capabilit;r :f'or 
part n. 

Action clerk x 

Will perf OJ.'l!l 

read from a word in sepent. n 

write into a word in sep.ent n 

read traa the primal"T input 
stream ot input dev~ce n 

read :f'rcm the state in:p\lt 
stream ot input dnice n 

ccm1end a cl:ump at state of 
input device n 

write into the output stream of' 
output dnice n 

read tran the state input stream 
ot output device n 

cCllll&lld a cbaap ot atate ot 
output device n 

add one to the integer at 
position <•, n> ot the 
tull control mtrix 

subtract one 1"rcm the integer at 
poaition Q., n) at the 
:f'ull control •trix 

Capabilities clerk x must 

have to perform the action. 

Bead Write 

n x 

x, n 

JC, n 

JC, n 

x, n 

x, n 

x, n 

x, n 

n x 

x 

l'igure 3.7. Permission rules for several actions of a clerk in VM. 

103 



~---

Creation and Deletion Correspondences 

The creation of a VM part n corresponds in M to the performance 

of a sequence of puts that change cluster n from the cluster of an 

unused name into the cluster of the VM part being created. Likewise, 

the deletion of a VM part n corresponds in M to the performance of a 

sequence of puts that change cluster n from. the cluster of the VM 

part being deleted into the cluster of an unused name. 

The creation of a YM part corresponds in M to at least one 

writing of a non-~ word into a cell that previous:cy- held the word ~. 

Likewise, the deletion of a VM part corresponds in M to at least one 

writing of the word ~ into a cell that previous:cy- held a non-~ word. 

Therefore, in order to have permission to perform an action that creates 

or deletes a VM part n, a clerk x of VM must have write capability 

for part n, as well as, of course, write capability for itself'• 

Epilogue for the Correspondence between VM and M 

The transaction sequence correspondences for certs.in creation­

deletion procedure steps to be introduced later have yet to be described. 

Except for the discussion of these correspondences, the explanation 

of the correspondence between VM and M is now complete. The machine M 

is constructed to correspond internal:cy- to VM. Therefore the external 

behavior of VM, i.e., the relationship between the initial state and 

output streams of VM, is identical to the'external behavior of M. Thus 

after the transaction sequence correspondences mentioned above have 

been discusse·d, it will have been shown that there is an MCM which VM 

behaves like, and so the proofs of Chapters T.V and V will verify that 

non:f'unctionality and noncompletion lurking bugs do not occur in VM. 

104 



Attention now turns again to the way in which EF might be 

programmed using an Algol-like language. The specif'ic concern of the 

next three Sections is the explanation of some procedure steps whose 

executions create and delete VM parts. 

The Problem of Choosing Names 

Although the previously mentioned permission rule for creation and 

deletion actions is sufficient to assure a correspondence.between VM 

and M, it remains to be shown that it is easy to write useful VM 

programs that direct creation and deletion activity. The major problem 

in writing such programs concerns the choice of names to be given to 

VM parts being created. 

From the correspondence between VM and M, the following statement 

about VM may be inferred: the name of a VM part being created is 

never chosen arbitrarily, in accordance with influences external to VM, 

at the instant of the part's creation. To understand why this 

statement is true, consider the transactions that correspond in M to a 

creation action performed by a clerk x in VM. These transactions are 

puts into some particular cluster, say cluster n. 

is determined by the word held in clerk cell x.a 

In M, the name 

just before the 

n 

creation action begins in VM. Therefore, in VM, the name n is 

determined from the corresponding state word of clerk x, i.e., from 

the state word of clerk x just before the creation action. Thus the 

name n is the only name that may be given to the VM part being created, 

because the choice of any other name would fail to preserve the 

correspondence between VM and M. Thus the selection of the name n 

105 



must not be made arbitrari4", but must be "programmed": the name n 

can either be specified explicit4" 1n the program being executed, or 

be computed as part of the computational activity being performed. 

When choosing a name :f'or a VM part to be created, or when 

programming such a choice, a computation's planner, either a programmer 

or a compiler, must avoid two potential di:f':f'iculties. First, the name 

of' the part to be created might inadvertent4" be chosen so that the 

clerk executing the creation procedure step will never receive write 

capability for the name and hence never have permission to create the 

part. Second, the name of the part to be created might inadvertent4" 

be chosen to be the same as the name of a VM part that already exists 

and that will not be deleted before the part being created is required. 

It is desirable to have at hand a method for choosing names, or for 

programming the choice of names, so that these two difficulties can 

be systematical4" avoided. Such a method is described in the 

next Section. 

Naming Conventions SUsgested to Facilitate Creation and Deletion 

This Section describes four programming and design conventions, 

the adoption of which will allow the two problems mentioned above to be 

circumvented in a practical manner. The conventions are interrelated, 

and accomplish their intended purpose on4" if all four are adopted. 

It may be noted, however, that adherence to neither any nor all of 

these conventions is required in order to maintain a correspondence 

between VM and an MCM; the conventions have been formulated mere4" to 

106 



'• -.,- . 

facilitate the programming of' creation and deletion activity. The 

second of the four conventions is the previous]¥ pranised convention 

that gives values for non-existing control matrix elements. 

The first convention is the following:· the name ot each created VM 

part shou1d contain as a largest explicitly delimited prefix the name 

of' the creating clerk. For eD111ple1 if' clerk x were to create 

another clerk, the new cl~rk might be named 

x:y 

and if' clerk x:y. were to create a segment, the sepent might be named 

x:y:m 

This convention allows the generation of arbitrariJ¥ l;ong names. 

References using such long names can be made praeticel using the 

attachment scheme discussed by Dennis [9]• In,tl!d.s scheme a clerk bas 

available to it a number Of' attachment!!!!.· After a correspondence 

bas been established between a tag and some portion of' a name, 

subsequent references can be stated more compact4r using the tag and 

the remainder of' the name. During the performance of' a computation, 

tag correspondences can be changed, saved, and restored 1n a manner 

similar to the manipulation at quantities in index registers. An 

example of' an application of the attachment c~cept 1s the use in C'1'SS 

of a small integer tag to refer to a file that bas been "opened" [6]. 

Two more examples of' applications of theatt.cbment concept are found 

in the Mu1tics system: a sesnent number is a tag abbreviating a 

see.ment's tree name, and a base register number is a tag abbreviating a 

segment number [15). Notice that a programmer working in an Algol-like 



language need not be aware that the attachment concept is being employed 

in the execution of a compiled program. 

The second convention gives values for non-existing control matrix 

elements. At some instant during a VM computation, let kf(•, •)be 

the full control matrix, and let k (·, ·)be the actual control matrix. 
a 

As mentioned previously, for each <(_x, n")- such that ka(x, n) 

exists, then 

kf(x, n) = ka(x, n) 

The convention to be described now gives kf(x, n) for each «x, n.)> 

such that k (x, n) does not exist. The explanation of this convention 
a -

requires consideration of two separate cases. 

The first case in defining kf(x, n) where ka(x, n) does not exist 

is the case in which n contains a colon. Let y be the longest 

explicitly delimited prefix in n. Then n = y:m, where m does not 

contain a colon. I:f x = y, then 

and otherwise 

Thus a VM name, considered as a potential clerk name, has write 

capability for any name having its own name as largest explicitly 

delimited prefix, unless VM' s actual control matrix indicates otherwise. 

The second case in defining kf(x, n) where ka(x, n) does not exist 

is the case in which n does not contain a colon. Here it is assumed 

that there is some master name, say p, such that if x = p then 

108 



and otherwise 

Thus the master name, which might be the name of a clerk not expected 

to be deleted, has write capability f'or any name that does not contain a 

colon, provided VM's actual control matrix does not indicate otherwise. 

For stating the third and fourth conventions, let n be any 

name in VM, and let x be the name in VM that is given as follows: 

if n contains a colon, then x is the largest explicitly delimited 

prefix of' n, otherwise, x is the master name. 

The third naming convention is the following. Let n and x 

be as mentioned above, and let y be the name of a clerk such that 

y 1 x. When clerk y is programmed to delete a VM part having the 

name n, clerk y should be programmed to do the following two things 

just after the deletion: (1) add one to the integer at position <x, 

of the full control matrix, and (2) make the integer at position <y, 
of the full control matrix less than or equal to zero. A sequence of 

actions performed according to this third convention is sufficient to 

n> 

n) 

restore write capability for name n to the name x, provided that the 

fourth convention is adhered to. 

The fourth convention is the following. Let n and x be as 

mentioned above. Whenever x is the name of a clerk, and clerk x is 

programmed to give write capability for n to sane other clerk, then 

clerk x should be programmed to make the integer at position<:_x, n~ 

of' the full control matrix be exactly equal to zero. Furthermore, 

clerk x should be program.med to perfonn no more subtractions from 

109 



this integer until clerk x itsel:f' has pertol'ILed an action requiring 

read capability tor name n. 

The ettects ot these taur conventions are 'beat explained using an 

example. SUppoae clerk x bas not ~t pertOl'lled all1' action involving 

the name x:m, where m does not contain a colon, and suppose column x:m 

of the control matrix does not exis.t initial.q. Suppose cle.rk x now 

creates the segment xzm. Clerk x bas peraisaion to perform. this 

creation action because clerk x is guaranteed to·have write capability 

tor the name x:m.. Since clerk x bas alwaJS had write ca]IW.bili't7 tor 

the name x:a, then it is certain that no otber clerk bas previousq 

created a VM part having the D8l1e xzm. •otice that ei..ents ot 

column xzm ot the control matrix either may be created a\ the ti.me 

clerk x creates sepent x:m, ~r •7 be crea\ed as tbey are needed. 

Once sepent x:m. exists, capabilities tor it may be passed aaong 

clerks. When aepent x:m is.deleted, write capa.bilit;r tor name xzm. 

will be passed back to clerk x, which may then cr•t• another VII part 

having the naae x:m.. 

The tour conventions impq that a clerk x which bas write 

capability for itsel:f' alwa;ys bas permission to create a VK ~rt with 

the nam.e x:m, where m does not contain a col.ml, provided that the 

nam.e x:m is currentq unused. In order to guarantee •t the DIUll8 n 

ot a part being created b7 a clerk x is currctq unused, the plaml.er 

of a computation need onq arrange that the smallest.~licitq delimited 

suftix in the name n is distinct trom the suttixes of this sort in 

the names ot the current'.cy' existing VK parts tbat were created, not 

by aey clerk, but by clerk x itsel:f'. A clerk ma;y be programmed to 

no 



achieve this distinctness in a name's suffix through the use ot a 

counter, or by any other means appropriate to the calculation 

being performed. 

Creation and DeJ.etion Procedure Steps 

Four types of procedure steps will naw be introduced. The 

execution of any one of these procedure steps either creates or 

aeletes a VM part. These procedure steps make use of the naming 

conventions Just discussed, and are fol'Dl\llated tor convenient use in 

the programming example to be given in the next Section~ In the 

following definitions of these procedure steps, let .x be the name ot 

the executing clerk. 

The first type of procedure step is 

51:ea~e ~!~ o(; 

The expression o< must evaluate into a name that does not contain a 

colon, say the name m. Execution ot this procedure step creates a 

segment named x:m. The segment is initially of zero length; the 

subsequent writing of words into the segment will cause its length to 

be increased as required. 

The second type of procedure step is 

~Qt~ o<', ~ , e; 

The expression o< must evaluate into a name· that does not contain a 

colon, say the name m. The expression (:J must evaluate into the name 

of a segment, say the name s. ~The string e must be a label. :E;xecution 

of this procedure step creates a clerk named x:m. The state word ot 

clerk x:m is made identical to that of clerk x, with two exceptions: 

lll 



(1) clerk x:m is set of' find its first procedure step at the label e, 

and (2) segment s is made the private seetnent, sometimes called the 

stack segment [4], of' clerk ~m. The private segment of a clerk 

is a segment into which the clerk may store temporary results; a clerk 

norma~ retains write capability f'or its private segment. Following 

the creation of' the clerk x:m, the clerk x, as part of the execution 

of the fork procedure step, acts as if' it executed the following 
=== 

sequence of' procedure steps. 

send 'x:m', 'x:m'; ==== 
done 'x:m'; ==== 
send IS I' 'x:m'; ==== 
done IS t; 
= 
send 'r'' 'x:m' ;-
=== 

Here r is the name of' the segment that contains the encoded fork ===;::: 

procedure step which clerk x is executing. The execution of the 

r2~~ procedure step might be sufficient to cause the clerk x:m to 

begin execution at the label e, even as clerk x simultaneously 

continues execution by passing to the procedure step following the fork. 
=== 

The third type of procedure step is 

delete ol..; 
===== 

The expression De( must evaluate into a name, say the name n. If n 

contains a colon, then let the name p be the largest explicitly 

delimited prefix in n, and otherwise, let p be the master name. 

If' n 1 x, then execution of' the procedure step deletes the VM part n. 

Following this deletion, and as part of' the execution of the delete ===== 

112 



procedure step, the clerk x acts as if' it executed the following 

sequence of procedure steps. 

send 1 n 1 
, 

1 p 1 
; 

=== 

done 'n'; 
==== 

If n = x, then the execution of the delete procedure step is equivalent == 
to the execution of the procedure step gui~, described below. 

The fourth type of procedure step is 

gui~; 

If' x contains a colon, let the name p be the largest explicitly 

delimited prefix in x, and otherwise, let p be the master name. 

In addition, let r be the name of the segment containing the encoded 

~ui~ procedure step. The execution of the ~it procedure step consists 

of the following actions: (1) the subtracting of' 1 fran the 

integer at position <(x, r)> of the full control matrix, (2) the 

adding of 1 to the integer at position <:p, x)> of' the full control 

matrix, (3) the subtracting of' 1 fran the integer at position <:_x, x';;> 
of the full control matrix, and (4) the deleting of clerk x. 

The permission rule for the execution of any of the four types of 

procedure steps defined above is the following. To execute one of the 

steps, a clerk must have three capabilities: (l) write capability for 

itself, (2) read capability for the segment containing the encoded 

procedure step, and (3) write capability for the name of the VM part 

being created or deleted. In addition, the execution of a fork requires === 
read capability for the segment that is to becane the private-segment 

of the created clerk. 

113 



r·-. ----------------_ .----

The general nature of the transaction sequences :lnM that correspond 

to creation and deletion actions in VM was mentioned in a.previous 

Section. Descriptions of the exact transaction sequence correspondences 

for the four types of procedure steps introduced above are anitted, 

because, except as discussed below, these correspondences may be 

easi]¥ deduced frm the correspondences between- 'VM. parts and clusters 

of cells, and fran the previous]¥ numtic:med transaction sequence 

correspondences for procedure steps of the types 1SQi and lil2al• 

The one non-trivial aspect Of the transaction sequence 

correspondences for the procedure .steps ju&t illtroduced is the fact 

that the transaction sequence c~ponding to 1l mi must end with a 

bye transaction. Let x .be the name ~ the clerk executing a quit, 

and let p be as it was def'ined in the above detiniticm ot a ~· 

Then the transaction sequence that corresponds to clerk x's 

execution Of ~ concludes with 

bye to p.a replace f, 

In the event that execution of the ~ causes clerk , x to give up 

write capability for itself, then, as shown in Appendix A, a sequence 

Of sends and dones cannot be substituted for this bye transaction. This 

is the only circumstance in :which the use of a bye transaction is 

required in order to maintain the correspondence between VM and M. 

Another Ex!mple -- Macro E:q>ansion 

To illustrate how E8 might be programmed to perform a reasonab]¥ 

canplex data processing task, a program, written in an AJ.gol-l:lke 

language, will now be presented that directs·the expansion of nested 

114 



'·. . . ~ . . ''!- ,.:-,,, ' 

macro calls [18] in a source program character string. It 1e assumed 

that all macros have been previously def'ined.1 but that the expansion 

of one macro may reveal calls on other macros, and so on, to arbitrary 

depth. The nature of the computation is such that at any instant the 

number ot clerks in existence is roughly equal to the depth of the 

macro nest being processed at that instant. 

Strategy. The strategy of-the program is to feed the source string 

to a first clerk, which expands one layer of macro calls and generates a 

first intermediate string. ff the first clerk detects additional 

macro calls as it is generating its intermediate string, it creates, 

and feeds its intermed1ate string to, a second clerk, which might for a 

similar reason create, and feed its intermediate st!'ing to, a third 

clerk, and so on. 

Each of the strings, source and intermediate, is stored in a series 

of seSJllents, each seSJllent containing a piece of a string of perhaps 

several hundred characters. When then-th clerk is able to generate 

an entire Se@Jlent in which no i"urther macro calls exist, it outputs 

this segment instead of sending it on to the (n+l)-st clerk. In 

this circumstance, if there already exist clerks ot ordinality higher 

than n, the n-th clerk generates an "end message", which causes the 

higher-order clerks to eventually generate their output and then quit. 

Meanwhile, the permission rule mechanism autanatically prevents 

outputting by the n-th clerk until the higher order clerks have 

finished their outputting. 

115 



Lansuage Conventions. Some language conventions to be used in 

the program will now be explained. Iater the program itself will be 

stated and discussed in detail. 

First, the operators that appear in name expressions will be 

introduced. As has been mentioned, single quotation marks inhibit 

evaluation of the string they enclose. For example, the value of 

the name expression 

'x:ab 1 

is the string 

x:ab 

.An:y- arithmetic expression whose value is a non-negative integer 

is a name expression whose vallle is the string of decimal numerals 

giving the arithmetic value of the expression. For example, the value 

of the name expression 

16 + 8 

is the string of two numerals 

24 

The character "I" appearing in a name expression, and not belonging 

to a quoted string, is a concatenation operator. For example, the value 

of the name expression 

'sam',(16 + 8) 

is the string 

sam24 

For another example, the value of the name expression 

'sam:' I '(16 + 8)' 

is the string 

sam: (16 + 8) 

116 



In the evaluation of a name expression, after any arithmetic 

expressions have been evaluated, and after any quotation marks and 

concatenation operators have been applied, the result might be a 

string beginning with a colon. If the result of arithmetic, quotation, 

and concatenation evaluation is a string beginning with a colon, then 

* the name of the executing clerk is placed to the left of the string. 

For example, if x is the name of the executing clerk, the string 

:ab 

becan.es the name 

x:ab 

Af'ter a string is examined for a leading colon, and modified if 

such a colon is found, the string is searched from left to right for 

occurrences of the sub-string ":*"· Whenever such a sub-string is 

found, the longest string that lies immediateJ.¥ to the left of the 

sub-string and that does not contain a colon is deleted, along with 

the sub-string ":*" itself. For example, the string 

x: sam:*:a 

becomes the name 

x:a 

* This usage of colon, and the following usage of ":*" were inspired by 
the notation that has been suggested by Daley and Neumann [7] for 
referring to hierarchically structured files. 

117 



If an initial or final colon remains after this operation, the colon is 

deleted. For example, the two strings 

x:•:ab:c and x:y:* 

becane, respectively, the names 

ab:c and x 

A more canplicated example of a name expression, 'Whose evaluation 

invokes almost all of the above rules, is the expression 

':*: sam' I (2 + 2) 

If x:y is the name of the executing clerk, then this expression 

evaluates to the name 

x:sam4 

The explanation of name expression operators is now canplete, and 

sane other conventions will now be discussed. Variables in arithmetic 

expressions refer to words in the executing clerk's private segment. 

For example, execution of the procedure step 

alpha := alpha + 1 

adds l to the quantity alpha in the executing clerk's private 

segment. Two different clerks executing this statement will modify 

two distinct, possibly unequal, quantities. For another example, 

i:f' x:y is the name of the executing clerk, and if the quantity alpha 

in clerk x:y's private segment is equal to 5, then the value of 

the name expression 

':sam'((e.lpha + 3) 

is the name 

x:y:sam8 

ll.8 



Two different clerks evaluating this name expression might generate 

two different names. 

References to words in other segments besides the executing 

clerk's private segment have the form 

a<..~ 

where o{ is a neme expression, and (3 is a variable. The meaning of 

such a reference is best explained using an example. The quantity 

ref erred to by 

'a' .alpha 

is the word in segment a at the address that is the same as the 

address of the word alpha in the executing clerk's private segment. 

Thus, if the quantity alpha in the executing clerk's private segment 

is the word at address 7 in that segment, then execution of the 

procedure step 

'a' .alpha := 'a' .alpha + 1 

adds l to the word at address 7 in segment a. 

Variables declared ~~ are assigned to the same address in the 

private segment of every clerk; this convention makes it easy for a 

clerk initializing the activities of a new clerk to store quantities 

into what will becane the private segment of the new clerk. 

Two final conventions are the following. First, for legibility, 

the Algol operator "·-" .- is replaced by 11=11
• Second, tor compactness, 

the procedure step 

ll9 



where o< and (3 are name expressions, is defined to be equivalent to 

the sequence of procedure steps 

done oo(; ........ 
~ Program• The coding of the macro expansion program can now be 

presented. On a tirst reading, it is suggested that the reader read 

into the program as far as he can easily, then skip to the explanation 

that tollows the program, and then refer back to the program as he 

reads the explanation. 

Assumed to be declared outside the program are the procedures 

"read input into", "write output tram", "end ot input segment", 

"initialize analyze", "analyze",. "add end message to", and "remove 

end message from". All ot these procedures and the program itsel;f' 

are assumed to be encoded into the words ot one segment. A single 

clerk, whose name is not the master name, is assumed to enter the 

program at the label "expand". At the time of this clerk's entry, the 

control matrix is assumed to have two rows and five columns: the row 

tor the entering clerk is a row of five l's, and the row tor the 

master name is a row of five O's. The five columns correspond to 

(1) the entering clerk itself, (2) the entering clerk's private 

segment, (3) the procedure segment, (4) a segment named "inputseg" 

containing the computation's entire input string, and (5) a segment 

named "outputseg" into which the computation's entire output string 

is to be assembled. 

120 



expand: 

read: 

scan: 

first: 

second: 

input: 

output: 

gwi~gQ switch = input, output, more, done; 

out = l; 

':priv' .in = out; 

fork 'scanner', ':priv', scan; ==== 
g;~X~ 'outputseg', ':scanner'; 

gr~~~~ g~~~~~ 'piece'jout; 

~ end of input segment (inputseg) ~g~~ ~g~g end; 

read input into (':piece' lout) from:(inputseg); 

~~~~ ':piece',out, ':scanner'; 

out = out + l;

out = l;

next clerk started = ~~~g~;

initialize analyze;

g~~~~~ g~~~g~ 'piece' lout;

g;g~g switch[analyze (':*:piece'! in) generate:(':piece' lout)];

g~~~~~ ':*:piece'lin;

in = in + l;

g;~~g second;

£~--,next clerk started ~g~~ g;g~g putout;

next clerk started = !~~~~;
add end message to (':piece'jout);

~~X~ ':piece'lout, ':scanner';

remove end message from (':piece'lout);

121

putout:

more:

again:

done:

write output from (':piece'jout) into:(outputseg);

~~g second;

.!~ next clerk started ~ i2~2 again;

create seament 'priv •·; ====== ~-
':priv' .in = out;

!~'scanner', ':priv', scan;

&!!~ 'outputseg', ':scanner';

next clerk started • true; =-
ta~ ' : piece' I out, ' : scanner';

out = out+ l;

gQtO first; ---
1'-inext clerk started a& E2 doneout;

next clerk started • ~i

add end message to (':piece•jout);

sive ':piece'lout, ':scanner';

doneout: Q.s~s ':piece' I out;

ilB ':*:piece' (in, ':*';

~ 'outputseg', ':*';

s.1iet1 ':*:priv';

gui~;

end: add end message to'(' :piece' I out);

~!$ ':piece' jout, ':scanner';

delete ':piece'jout· --==. ,
end ==

Explanation. A detailed explanation of the execution of the

program will now be given. The input string is divided into segmented

pieces by a clerk whose name is, say, "canpiler". The pieces, which

are named

canpiler:piecel
canpiler:piece2

•
•

are given to the first created clerk, which is named

compiler: scanner

The private segment of this first scanner clerk is named

canpiler:priv

The integer-valued procedure

ana:qze (A) generate:(B)

absorbs input pieces through the parameter A, performs one layer of

macro expansion, and emits segmented output pieces through the

parameter B. These output pieces for the first scanner clerk

are named

compiler:scanner:piecel
canpiler:scanner:piece2

The ana~er procedure, like each of the procedures called during

the program's execution, is assumed to not direct its own modification,

but is assumed to store temporary quantities in the calling clerk's

private segment. In addition, the ana:qzer procedure is assumed to

store private-to-clerk ~ quantities [2] in the calling clerk's private

segment; thus with respect to each clerk, the ana~er procedure

"remembers" its status between calls. These ~ quantities are

initialized for each clerk when the clerk calls the procedure

"initialize analyze".

A clerk returning from the analyzer is switched to the label "input"

just when another input piece is needed.. The previous input piece is

deleted, and 1 is added to an input count "in11 so that the analyzer

will read the next piece of its input string.

A clerk returning from the analyzer is switched to the label

"output" just when the analyzer has filled an output piece segment with a

string in which there are no additional macro calls. If a clerk of

next higher order exists, an end message is sent to this clerk. After

any such end message has been returned, the current clerk writes the

data of the current output piece into the computation's output segment,

but retains the segment of this output piece to collect further output.

A clerk returning from the analyzer is switched to the label "more"

just when an output piece contains additional macro calls. The output

piece is given to the clerk of next highest order, which is created

if' necessary. Then 1 is added to an output count II II out , and a new

output piece segment is created before another call is made to

the analyzer.

A clerk returning from the analyzer is switched to the label "done"

just when the analyzer has detected that its input piece contains an

end message, and before any other processing of the input piece is

performed, but only after the analyzer has first switched the clerk to

either "output" or "more" in order to complete the processing of a

perhaps partially filled output piece segment. At the label "done",

an end message is sent to and returned from a higher order clerk, if' a

124

higher order clerk exists. Then both the input piece, containing the

original end message, and the capability to write into the computation's

output segment are returned to the clerk of next lowest order, and

the current clerk quits.

There are no other labels to which a clerk returning from the

analyzer can be switched. When the "compiler" clerk detects the end

of the computation's input segment, the "com.piler" clerk sends an end

message to the first scanner clerk, but does not exit from the program

until the :first scanner clerk returns this message. When the "compiler"

clerk exits from the program, the full control matrix is the same as

it was when the "compiler" clerk entered the program.

Control Matrix Implementation

This Section suggests how EF's physical units and supervisory

programs might be designed in order to implement the most novel

feature of VM, namely, the control matrix. To speed the communication

of ideas, a suggested design for control matrix implementation will be

developed within the general tramework of the Multics system [4].

Specifically, the Section will discuss how the current design for the

Multics system might be modified so as to provide to a user both a

control matrix, and the permission rule mechanism associated with the

control matrix. These remarks concerning a modification to Multics

are made only for illustrative purposes; no claim is made that this

modification would be an appropriate change in the existing plans

for Multics.

125

First the notion of a process in Multics w111 be related to the

notions of process and clerk that have been used in the Tbeeis. Since

everry Multics process is a sequence at actions, the notion of a process

in Mu1tics is canpatible with the notion of process that has been used

in the Thesis. In the Mul.tics literature, however, one often finds

statements such as, ''Frocess x does 8uch-and·such." Although it

is possible to give a reasonable interpretation to an assertion that a

sequence at actions does sanething, neverthel.ess the viewpoint that has

been adopted in the Thesis is that of attributing an action in a

process to an entity, called a clerk, that performs the action, and

not to the process itself'. Thus statanents in.the M.U.tics literature

like, "Process x does such-and-such" will becane here, "Clerk x

does such-and-such." Notice that there is a one-to-one correspondence

between processes and clerks.

To simplif.y the discussion, it will be assumed that a user employs

in a computation Just a fixed number of clerks, a fixed number of

segments, and a control matrix; it will also be assumed that each

clerk always has write capability for itself, but not read capability

for any other clerk. In other words, input devices, output devices,

creation-deletion activity, and inter-clerk state word accessing will

be assumed to not be employed in a user's canputation. The present

discussion may, however, be extended in a straightforward manner to

take into account these anitted topics.

Working under the above assumptions, let us review some of the

features of Multics in order to define a viewpoint toward the system.

Associated with each clerk x is a descriptor segment (15], each

descriptor of which contains access control information and allocation

information tor a speci:l'ic segment used by clerk x. .Although clerk x

makes its first reference to a segment n using what would in VM be

called the ~ ot segment n, subsequent reterences to segment n

occur indirectly through segment n's descriptor in x's descriptor

segment. The address of segment n's descriptQr in x's descriptor

segment is called x' s sesment Il;Wllber for n. .Af'ter x first ref'ers

to n, x ma7 make subseq"QBnt references to n using x's segment

number for n. Thus x's segment' number for n constitutes an

attachment tag [9] abbreviating segment n's name. Further

abbreviation of segment references through attachment is allowed through

the use of the E.!!! registers.

Control Sepents. In order to implement the control matrix of a

multiprocess computation running within Multics, let there exist tor

each clerk of the computation# in additi<>Jl to a descriptor segment, a

control seeent. Part of the tunction of ca clerk• s control sepent

is to realize the clerk's row in the· canputation' s control matrix.

Each entry in a clerk's control segment corresponds to a sepent.

As indicated in Figure 3.8, the entries for a segment n in the

control segments of a canputation all occur at the same address. This

situation is in contrast to the situation that prevail.a in a

computation's descriptor segments. The entries, i.e., descriptors, tor a

segment n in the descriptor segments ot a canputation may occur at

ditterent addresses. That is, each segment ot a canputation has o~

one control sepent address, but each segment of a canputation might have

many distinct sepent numbei-s, one number tor each clerk ot

the computation.

t
segment

I._____.
descriptor
segment

_l"" __ _

control
aepent
ll4f'ess

control
sepaent

control
sep.ent

descr1pt01'f
sepaent

Figure 3. 8. Sepent numbers and tile cont-rol se..-.t adclresa c4 a
segment n in a two-clerk caapitation.

control segaents

--t-
i

descriptor segment
ot clerk .x

Figure 3.9. List structure linking clerks baviilg read capability
tor a segment. Botation is that used in the text.

128

A control segment address is assigned to a segment n by the

computer system just when n is first accessed by any one of a

computation's clerks. At that time also, a segment number is assigned

to n; but for the accessing clerk only. A subsequent first access

to n by a second clerk will cause the assignment of perhaps a

different segment number to n for the second clerk, but in order to

update the control segment of the second clerk, the original control

segment address assignment must be discovered and used.

In Multics a clerk becomes attached through its descriptor segment

to an:y segment that it accesses. No modification to this rule is

being proposed. Since it will be necessary for a clerk, often in

" " it obedience to a supervisory microprogram , to make access to s own

control segment, and to the control and descriptor segments of other

clerks, therefore control and descriptor segments will possess, after

first access, sejJilent numbers with respect to each accessing clerk.

In addition, control and descriptor segments will be assigned not

only segment numbers, but also control .segment addresses. The

assignment of control segment addresses to control and descriptor

segments is subject only to the convention that if i is the control

segment address of the control segment of a clerk x, then i+l must

be the control segment address of the descriptor segment of clerk x.

The Structure ~ ~ Accesses. The main requirement of a

design for control matrix implementation is that operations on the

matrix be efficient, in terms of both time and storage, after first

accesses have been made. First accesses to segments trigger the

incremental construction of the control matrix data structure about to

l29

,. •l

be described. It ia assumed that contemporaey data proceHing

techniques, such as baah-addreaaing and list structUNs, can be applied

to carr,r ou.t this inCr918Dtal conatruc•ion in a aatiafacto1"1' way. ~

ahov that a control matrix impleaentation ia indeed feasible, it will

be aalSUllll8d now, and tbrou.lbou.t the rest ot the Section, that all first

accesses haft occurred. 'J!be tora ot the resulting control •tr:lx data

structure will now be described.

It aepent n baa control aepent addreH i, then the en.t17 at

acldreH i in clerk x'a control aepeat holdl three itemaz (1) the

integer JC at poaition ~' n) ot the cc:apu.tation' a ccntrol matrix,

(2) clerk x'a a--.nt JJ.Uab8r tor n, and (3) a double pointer. It

sepent n 18 a central or cleaariptor·aepen't, then it- (1) and (3)

bave no aipiticaaoe. Let us asame that sepent ·n 1• not a control

or descriptor aeperrt. It K 1• leaa than or equal to sero, then the

double pointer :tield is eap~, i.e., contains acae ccnftlltior:aal bit

pattern denoting"emp~", and otherviae, the double pointer tield 1s

part ot a bi-directicmal circular list tJ'1ng together tbe control

aepenta ot all clerks that have read. capability tor aeg11nt n. In

this list, a portion ot which ia 41agreme4 in Pigure 3.9, the pointers

at addreaa i iD clerk x'a control &8@11119Dt gift the control sepent

addresses, call 'bbela a and b, ot the two control aegaenta adjacent

to x'a control se9M11t on the list. 1b. p.ill acceaa.to the next

double pointer in the directicn ot, 99.7, the ad4reaa a, clerk x

first accesaea its own ccmtrol segment at adclreH a to obtain its own

segment· 11W1ber for tbe control segment pointed to. In that control

]JO

sepent at addresa i is found tbe double pointer that 1a next on the

list in the "a" direction.

Since the entries in tbe double pointer f1el4 of a control sepent

are control sepent acldreases, their designation at specitic control

segments 1• indepen4ent ~ their residency in U¥ particular control

segment. 1'hus1 ord.1.Darf teclmiquea at list manipulation may be· used

to splice a control aepent in or out ot a list.

It a user could program in a general ft7 the manipulation at

control sepent a44.resaes or cODtrol .. trix elements, then he 11.ight

experience n~ionalit;r andnonccapletion l.Ju'!king bug effects,

because the '981.1Mas ~control aepent aclclresaesaild control 11&tr1x

el.ements can depend. on the unpre41ctablA iD!tluencea that aft'ect the

* progress otclerb with respect to each other. !beretore,control

segment addressee and control ratrix el.emeDta aust be utills-4

"behind the user's back" -- in the aaae.aenae· tbat the atate at maaoq

allocation in Mllltics is hidden trm ·~he user. The suggested method

tor hiding control sepent addresses and control matrix elements from

the user is to employ' these quantities on~ within deacriptor and

control segments, and to restrict user access to control segments in

the same ft¥ that user acceH to descriptor se.,.ents· ta re.1i:r1cted.

in Multics.

* It is useful to understand tbat the progrullled manipulation of sepent
numbers does not give rise to lurking bugs, because segment
num.bers are assigned to segments on the basis ot· tDt progress or each
individual clerk, Just as index registers are assigned to data quantities.

131

Descriptor Segm.ent Modif'ications. The suggested modif'ica.tion to

!6lltics calls for each descriptor in a descriptor segment to contain

not two but three major items: access control information, allocation

information, and the control segment address of the segment the descriptor

describes. Also, additional access control information is required

in each descriptor in the form ot tour additional bits: a ~ enable

bit, a write enable bit, a ~ blocked bit, and a ~ blocked bit.

Suppose that i is the control segment address ot a segment n,

and that j is clerk x' s segment number for n. From the discussion

so tar, one can conclude that the i-th entry in x's control segment

contains j, and that the .1-th entry in x's descriptor segment

contains i. After a clerk y bas first made access to the control

and descriptor segments of clerk x, then clerk y can, and presumably

near:cy always does, make subsequent access to these segments using

its own segment numbers tor these segments. Therefore, tran the point

ot view of a clerk such as clerk y, there exists a bi-directional

link between the entries tor segment n in clerk x's control and

descriptor segments. Two such bi-directional links are shown in

Figure 3.8.

The Permission~ Mechanism. An explanation will now be given

of the implementation of four types of actions: (l) reading from an

ordinary segment, i.e., fraa a segment that is neither a control

segment nor a descriptor segment, (2) writing into an ordinary segment,

(3) adding 1 to a control matrix element, and (4) subtracting 1

from a control matrix element.

132

A clerk reads f'rom an ordinary segment in the following way.

If' the Multics~ permit bit (15) is on, and the read enable bit

is also on, then the reading proceeds normally. If' the read enable

bit is off', then the read blocked bit is turned on, and the clerk goes

into the blocked status (26).

A clerk writes into an ordinary aegm.ent in the following way. If'

the !<fu.ltics ~ permit bit is on, and the write enable bit is also

on, then the writing proceeds normally. If the write enable bit is

off, then the write blocked bit is turned on, and the clerk goes into

the blocked status.

A clerk x adds 1 to the integer at position ~e, n';> of the

control matrix by acting as if it executed the following program.

l. If the read enable bit in x's descriptor of' n is off',
turn on the read blocked bit in the same descriptor, and go
into the blocked status; otherwise proceed to step (2).

2. Determine the control segment address of' n by referring
to x's descriptor of' n.

3. Add 1 to the control matrix integer f'or n in e's control
segment. If the result is +l, perform the following steps.

a) Splice e's control segment into the read capability list
for n.

b) Turn on the read enable bit in e's descriptor of' n.

c) If' the read blocked bit is on in the same descriptor~
turn it off' and take e out of' the bloc~ed status.

133

A clerk x subtracts 1 frOlll the integer at poeitim <x, n)

or the control matrix b7 acting as 1:t it e:1tecuted tbe tollowing prograa.

l. Detel"lline the control ee91UDt a44re•• or n b7 I"ererring to
x's descriptor ~ n.

2. Sub.tract 1 :traa the control matrix integer tor n in x' s
control segment. It the result is o, perf'oa the f'olloving
steps.

a) !Urn off the read enable and write enable bits in x' s
descriptor or n.

b) Splice x 'e control sepent out or the rea4 capability
list tor n.

a) Examine the double pointer field tor n · in x' s control
segment. It the field 1a not empt7, and 1:t its· we
addresses are equal, say to scae address a, then perform
the tolloWiq steps.

i) Bx:utine x'• control aepent at a to obtain x•a
sepen.t number tor the control aegaent of' sane clerk, p.
BIC.am:IM x' s control •e.-nt ·at: a+l, w ·ob:ta-in x' a
se91lMlt n'Ull1!1er f'or thedeaeriptor ~ ot p.

ii) Examine p's control segment at the control segment
address ot n to detera:tne p's i!te911M11Hmllber :f'or n.

iii) Turn on the write enable bit in p's descriptor ot n.

iv) It the write blocked bit is on in the •me descriptor,
turn it ott, and take p out of the blocked status.

It is clear that the incrementing and decrementing ot control

matrix elements can be implemented either b7 hardware, or b7 a

supervisoey program.

l'!!! Associative Memorz. Each processing unit in the GE 645

computing S78tem, on which Multics is current:cy being implemented, contains

an associative memory in which information obtained during recent

accesses to a clerk's descriptor segment, and to page tables, is

remembered [15] • '.rhe problem ot detecting invalid entries in this

associative memory su:tf'ers on}3' a small aupentation because ot the

134

modification that has been outlined here. The aupentation to this

problem is small because a read or write capability possessed by a

clerk can on.q be denied to the clerk by an action performed by the

clerk itself', specifically, by the clerk's decrementing of a control

matrix integer.

Conclusion. Many issues concerning the modification or Multics

to realiZe a control .matrix have not been discussed. lfevertheless,

it is clear that the implementation of a control matrix in .Multics is

veey like:cy to be feasible, and that this implementation would be worth

expl.oring :l"urther in the event tbat the goals to be achieved by such an

implementation should prove desirable.

Similar remarks .may be made concerning the Chapter's overall

topic, the facility EP. It is clear tbat the construction and use of a

facility that behaves like an IOI are both very like~ to be feasible,

and that a :l"urther exploration of the problems involved would be

.,1ustified in the event tbat the goals to be achieved were deemed desirable.

135

Chapter IV

The Output Functionality of an MCM

Introduction

This Chapter presents a proof of the fact that nonfunctionality

lurking bug effects do not occur in an MCM, or in other words, that every

MCM is output-:f'Unctional. According to the definition given in Chapter I,

an MCM is output-i'unctional just when each output symbol produced in

every output stream of the MCM is a function on:cy- of the MCM's initial

computation state. It may be recalled from the description in

Chapter II that an MCM produces an output symbol just when a clerk cell

writes into one of the MCM's designated output cells.

In pursuit of the proof of output i'unctionality, a set-theoretic

entity called a ~ is introduced as a formal description of a

computation. Then the notion of a history array is introduced to

describe certain properties of a run. Using runs and history arrays, a

theorem, called the functionality theorem, is stated and proved; the

truth of the i'unctionality theorem implies that every MCM is output­

i'unctional.

Specialization to a Single Arbitrary MCM

The remarks to be made in this Chapter concern one speci:f'ic, but

arbitrary, MCM. This MCM, which will be designated by the letter M,

is described by four quantities: {l) a set N of cell names, {2) a set Q

of output cell names that is a subset of N, {3) a transaction table J{i)

136

for each i belonging to N, and (4) a set I of initial computation

states. It is assumed that this machine M is well-defined, in the

sense described near the end of Chapter II. Since M is arbitrary, the

remarks to be made about M, including the :f'unctionality.theorem, are

true for any well-defined MCM.

The Run as a Formal Description of a Canputation

A computation is an instance of the behavior of the machine M; in

other words, a computation is that activity which ensues when M is

started up from an initial computation state. The problem of describing a

computation performed by M may be compared with the problem of

describing an instance of the behavior of, say, a finite autanaton [24].

Since the identity of each successive state of a finite autanaton is

determined by the immediately preceding state, then an instance of the

behavior of a finite automaton is determined solely by the automaton's

initial state, and therefore is described canpletel.¥ by this initial state.

A computation performed by M is determined, in general, not only

by M's initial computation state, but also by the successive selections

that M's scheduler makes in response to perhaps unpredictable inf'luences.

A suitable description of a computation performed by M must therefore

both give the initial computation state, and also identify the clerk

cells that participate in each computation state transition. One kind

of description that meets these specifications is the run. A run is an

ordered pair such as

where S is an initial canputation state, and T is a transition sequence,

137

-------- ------~--~-~----~--·~~~ ' . ~:·'-- ,.., -~

in which each Ti is a set containing the names ot the clerk cells that

accanplish the i-th caaputation state transition ot the denoted

canputation. Thus, tor example, a run with T equal to

<T1, T2, ... , Tm)
is a run that describes a canputation in which m caaputation state

transitions occur. The number of elements in a run's transition

, sequence is called the l.ength ot the run; the length ot the run < s, T >'
above, is therefore m.

Not eveey set-theoretic entity having the :tom ot a run describes a

ccmputation that M might perf'orm. Specitic.a111', if <s, T> 1s a run,

then S must belong to I, the set ot 1.n1tµal caaputation atates ot M, and

each element Ti ot the sequence T must be a mmber ot the clloice

collection that is derived trcm the caaputat1on state 1-ed:lately

preceding the i-th canputation state tl"&Q81tion. It •Y be recalled

fran Chapter II that the choice collecti<>Jl deri~ tran a .canputation

state is a collection ot sets ot cell names; it is tran th1a collection

that the scheduler selects one set to be the set ot the names .ot the

cells that will accanpliah the next canputation state treuit1Ql.

The :f'oregoing restrictions on the initial cc:mputation state and

transition sequence ot a run may be expressed concisely by sa7ing that

every run must be possible. A run is possible Just when j,,t describes a

canputation that .M misbt pertorm. In orie:r that the notion ot a possible

run might be thoroughly understood, an alternate, more formal definition

ot a possible run will now be developed.

To aid in the defining of a possible run, let two tunctions, e(•)

and n(•, ·),be defined in the toll.owing way. Suppose M holds sane

138

·;-.;·,·:

arbitrary computation state s, not necessarily be].o;Qging to I. J:,et e(S)

denote the choice colJ.ection derived fran s, and it A is a set of

names of celJ.s, let n(S, A) denote the can.putation state that prevails

after each of the celJ.s named in A bas performed its next transaction •

. A run, (s1 , T>, is possible if' and ~ u*

s1 6 I

** and

where

; 1 ~ Jt'T

It is convenient to define tbe predicate p(·, ·) ~ 1ibat p(S, T) is

true just when (s, T > is a. possible run. Ben01ltiforth, every run

discussed 1s asSUlrled to be possible.

A useful concept is that of a prefix run. A rua, P • < u, v),
1s a m;etie of the run, R = < s, T >, if' and ·only if:. S :a. U and V 1s

* The proposition A € B is true it and on.:cy- if' A b~l.ongs to B. For
example, a~ (a, bi. The set-theoretic and logical notation being
introduced in footnotes is Sl.UllDBrized in Appendix 'C. . . ·

**The set 5!/F is the danair;l .of the tw:icti<>Jl F, 1·.,;e,., tbe set of arguments
tor which F is defined. A sequence, such as T above, may be thought of
as a function that takes an integer :t into the .i"'!th -element of the
sequence. Thus, for example, the danain of the sequence
<T1, T2, •• • , Tm') is tbe set fl, 2, ••• , ml•

139

an initial subsequence of T. For example, the prefix runs of

are

<S, <T1, T2> /
<s, <>)
<s, (T1>>
<s, <T1, T2) >

where ()is the empty sequence. Clearly, if R is a possible run,

then every prefix of R is also a possible run.

The History Array of a Run

Let us recall fran Chapter II the notion of writing into a cell.

A clerk cell x writes into a cell i just when x causes a new

word to be held by i, where the new word might or might not be the

same as the word previously held by i. The only circumstances in

which a write into a cell occurs during a canputation are the following

two circumstances: A clerk cell performing a put writes into the cell

named by the put's operand name, and a clerk cell performing any

transaction writes into itself'. The notion of writing is vital for

understanding the notion of a history array; the latter notion is

now introduced.

Let R be a run, describing, of course, a canputation that might be

performed by the machine M. If M bas n cells, then there are

exactly n rows in the history array H of the run R; that is, to each

cell there corresponds a row in H, and vice-versa. If i is a cell

name, then the number of elements in row i of H is one greater than

14o

the number of writes into cell i that occur during the canputation

denoted by R. Specifically, the elements of the array H are defined

as follows: Hij is the word written into cell i by the j-th

write into cell i during the computation denoted by R, and HiO is

the word held initially in cell i, that is, before any writes into

cell i have occurred. Thus row i of H is a "history" of the words

that are caused to be held by cell i, either by writing, or by M's

being placed in an initial computation state.

Before explaining further the notion of a history array, it is

convenient to introduce a more concise way of talking about runs:

events that occur during the computation denoted by a run will be said

to occur "during the run", even though the latter locution is not,

strictly speaking, correct.

Returning to the explanation of history arrays, let us examine,

with the aid of Figure 4.1, the appearance of a few typical history

arrays. If no canputation state transitions occur during a run, i.e.,

if the run is of length zero, then as shown in Figure 4.l(a), the

history array of the run consists of just one column. If exactly one

transaction occurs during a run, and if this transaction is a put of i

that is performed by a cell x where x is not equal to i, then as

shown in Figure 4.l(b), exactly two rows of the run's history array

contain two elements each, and any remaining rows of the array contain

one element each. AB shown in Figure 4.l(c), the history array of a run

of substantial length would most likely have a jagged right edge, since

the maximum column subscript in any row is equal to the number of writes

that have occurred into the cell to which the row corresponds.

141

0

{a) For a run of length zero.

i

x

0 1

(b) For a run during which exactly one transaction is performed,
namely, a put of i performed by a cell x where x is
not equal to i.

0 l

(c) For a run of substantial length.

Figure 4.1. Three typical history arrays.

One can think ot the array H as a set of ordered pairs of the

form [25]

* Using this convention tor the history arrays G and H1 the statement

means, considering an array to be a function whose domain is a set of

ordered pairs, that

In other words, H is defined everywhere that G is defined, and each

element of G is equal to the corresponding element of H.

A usetu1 property of history arrays is that it G and H are the

history arrays of the runs P and R,, respectively,, and it P is a, ·p~

of R, then

G C:: H

That this inclusion is true may be verified in three steps. First, P

and R both have the same initial computation state; therefore the

zeroth columns of G and H are equal. Second, it the J-th write into

cell i actually occurs in P, i.e.,, it Gi.1 is defined, then since P

is a prefix of R,, the J-th write into cell. i must occur in R, i.e.,

Hij must be defined. 'l'b.eretore H is det1ned everywhere that G is

* The proposition A~ B is true 1t and only it A is included in B,, i.e.,
if' and only it A is a subset of B. For ~le,, { aJ s;;;. fa, b 1 ,
[a, bi s;;;_ fa, b3 ,, and f ~ f:_ (a, b3 ,, where {} is the empty set.

de:fined. Third, since the events in P up to and including the j-th

write into cell i are identical to the events in R up to and including

the j-th write into cell i, then the j-th word written into cell i

must be the same in both P and R, and so Gij must equal Hij• Therefore, G

and H are equal everywhe:f.e that G is defined. The truth of the

inclusion is thus verified.

Let us define the proposition #Hij to be true if and only if the

history array element Hij is defined, i.e., if and only ii'

(i, j> E JrH.
The relation of similarity, .-..J, for two history arrays G and H is

defined as follows.

* if and only if

(4.1)

In other words, two history arrays are similar if and only if they are

equal at every position where both are defined.

It is convenient to define the function h(·, ·) so that h(S, T) is

the history array of the run <s, T). In other words, ii' His the

history array of <(:s, T_)., then

H = h(S, T)

* The proposition (x)A, where A is usually a f'unction of x, is true if
and only if A is true for every x. The proposition A A B is true ii'
and only if both A and B are true. The proposition A ~ B is true ii'
and only if A implies B, i.e., if and only if either A is false, or
both A and B are true.

144

Statement of the Functionality Theorem

The functionality theorem is stated as follows: :for the machine M,

any two possible runs that have the same initial computation state have

similar history arrays. In symbols, the functionality theorem is

(S){T){V)[p(S, T) A p(S, V) ~ h(S, T) ~ h(S, V)) (4.2)

It must be emphasized again that since the machine M is arbitrary, the

functionality theorem, when proved, will hold for any MCM.

What is the relationship between the :t'unctionality theorem and the

notion of output functionality? Output functionality holds just when

each word written into every output cell is a function only of the

initial computation state. The functionality theorem says that each

word written, not just into every output cell, but into every cell, is a

function only of the initial computation state. That is, the

functionality theorem asserts· complete functionality, not just output

functionality. It is clear that the functionality theorem implies

output functionality. One way of understanding the functionality

theorem is to observe that if every cell were an output cell then the

theorem would not just imply, but be equivalent to output functionality.

It was mentioned at the beginning of Chapter II that questions

concerning the necessity of the MCM design remain open. A particularly

intriguing open question is, "Is complete functionality necessary :for

output functionality?" A proper answer to this question requires a

broader framework than that being developed here, and is beyond the

scope of the Thesis. Speculations concerning how this question might

be answered are indulged in in Chapter VI. It may be noted that

145

canplete functionality is a worthwhile design goal in its own right,

because canplete functionality materially facilitates the debugging

of programs.

The remainder ot the Chapter is devoted to a proof ot the

functionality theorem, (4.2).

The Aueented Array

The proof of (4.2) will be given as an inductive proof of a

proposition that implies (4.2), name:cy-

(S)(T)(V)[p(S, T) /\ p(S, V)~ a(s, T) r.J a(s, V)] (4.3)

The function a(· , ·) is defined so that if (s, ;> is a run, then

a(s, T) is the aUeJ!!ented array of the run (s, ~. Just as for

history arrays, two augmented arrays are similar if and on:cy- if they

are equal at every position where both are defined.

The augmented array of' a run has the same form as the history

array of the run; that is, if an array is considered as a function

defined on ordered pairs, then a run's augmented array and history

array both have the same danain. The augmented array ot a run contains

all. the information contained in the history array of the run, plus

additional information. Specifically, if' ~' T >is a run and

H = h(S, T)

A = a{s, T)

then

146

; <i, j> E Jj'H and j ~ 0

; (i, o) E JYu

where xij and yij are explained below, and where the &Jmb'O'l (J; whictl

is assumed to not be the name ot a cell ot M,.means- "emptt•or

"meaningless".

In the above definition, position <xij' y ij) ot A ''1'i-ites" ·

position <i, j > ot A. That is, the quantity xij is the name ot

the cell that performs the j-th write into cell i during the

run <s, T>, and the quantity yij is the number ot writes tllat:·a..ve;

occurred into the cell xij during the run <s, T >up to the. inB'tant:

just before the cell xij performs the j-th write into cell i.

In other words, it A1j = <a, b, c), and j ~ o, then one mi.t say

that during <s, T >' ~ "writes" A1i what actuai:cy bappeils·, is that

the j-th write into cell i is a write ~the w0rd· . a ilito cell 't;

and this write is performed by cell b at an iniJtant Vhen met~- ·c

writes have occurred into cell b. Thus concerning ea~ writ~ 'that

occurs during <s, T), the array A not only tells' the woioa written,

but also tells both the name ot the cell that did the writ1n8,·and

the ordinality ot the writing cell's content.

Just as f'or a history array, let the proposition #Aij be true
11" and only if' the augmented array element Aij is'detined. Then the

definition ot similarity, {4.1), applies to'augmented'ar:rBys as well·

as to history arrays. If' (s, T) and <s, v> are runs, then clearly·

a{s, T) ~ a{s, V) __...,... h(S, T) ~ h(S, V)

and so {4.3) implies the functionality theorem, {4.2).

If' <s, v) is a prefix of' (s, T), then

a{s, v) c: a{s, T)

This statement is true because f'or each <i, j> such that {a{s, v))ij is

defined, the tbre~ caaponents of (a(S, V))1j and the three canponents

of (a(S, T))ij depend~ on the events in (s, v) and (S, rr),
respective~, up to and including the j-th write into cell i; since

~, V > is a prefix of <s, ~, then these events in <s, v> are

identical to these events in <:s, T~.

Introduction to the Proof'

The proof of (4.3) will be an inductive proof that uses as the

variable of' induct:t.on the length of successive4 longer prefixes of

the run (s, v>. The initial step of' the induction is to show

that a(S, T) is.s~lar to the augmented array of ~s, v>•s prefix

of length o. The inductive step is to show that 11' a(S, T) is similar

to the au(9nented array of <s, v) 's prefix of' length n, then a(S, T)

is similar. t9 the aUQlllented array of' <s, v) 's prefix of length n + 1.

After both the in~tial step, and the simplest case of the two cases

in the inductive step have been proved, a digression will be made to

introduce several auxiliary concepts that will be uset'ul in proving the

second case of the inductive step. Following the digression, the proof'

of the second case of the inductive step will.be given. Since this

proof of' the second case is canplex, the proof of the second case will

be divided, for convenience, into three stages. In turn, the first

stage will be divided into five tasks, and the third stage will be

divided into three tasks.

148

The Inductive Formulation

In order to define the inductive proof of C4.3) precisely, the

function uC·, ·)is now introduced so that if' Vis a transition

* sequence and n is a non-negative integer, then

u{v, o) = ()

u{V, n) = <v1, v2, ••• , vn>
u{V, n) = V

; n 6. ffv

; n,Gl'Vandn >o

Let the predicate~{·) be defined so that ~Cn) is true if' and only if'

a{s, T) r....1 a{s, u{V, n))

For example, if' n €. !Jv, then ~{n) is true if and only if' the

augmented array of <s, T> is similar to the aUeJUented array of

c('s, v.).•s prefix of length n.

By the induction principle, C4.3) is equivalent to

Cs)(T)(V) { p(S, T) /\ pCS, V) ~ (4.4)

~Co) A {n)[n :;::::.- o ~ c~Cn) ~ ~(n+l))J}
Proposition {4.4) is easily transformed into

Cs)(T)(v) [p{s, T) A PCs, v)~ ~co> J

A Cs)(T)(V)(n) [{pCS, T) A p{S, V) A n > 0 /\ ~(n)) -7- ~cn+l)]

The initial step and the inductive step in the inductive proof of {4.3)

will be established by proving the first and second conjuncts,

respectively, of {4.5).

*The proposition A t/= B is true if' and only if A does not belong to B.

r-;-----

The Initial Step

The truth of the first conjunct ot (4.5) follows :rrcm the i"Bct' that

the runs < s, T) and <s; v) have a caraon 1D1tial ccnputation

state s. To verify this first conjUnct, obsem that during

(s, u(V, o)) no writes are performed into aey cell, and. so the

augmented array a(S, u(V, O)) consists at just 'tlle 0-tb column.

It c(·) is the content function denoting the state ot M's cells

when M:bas the caaputation states, and 1f' 1' is the set of M"'s cell

D811les, then

[a(S, u(V, o))]iO • (c(i), f>, t>)
But it 1s also true that

[a{S, T)] 10 = ~(i), ,, f>)

; 1EIC'

; i EK

Therefore, the arrays a(S, T) and. a(s, u(V, O)}·are equal everywhere

that elements are defined in both, and so we •ve

a(S, 'r) ~ a(S, u(V, o))

which is :ic(O). 'fhus, in the inductive proot' ot (4.3), the initial step

bas been proved.

BesinniDI the Inductive Step

In presenting the inductive step in the proof ot (4~3), 1.e., in

presenting the proof of the second conjunct of (4.5),the toll.Owing

150

notation will be used.

R = <s, u(v, n)>
R' = <s, u(V, n+l)>

R+ = <_s, T>

A= a(s, u(V, n))

A' • a(s, u(V, n+l))

A+ = a(s, T)

Thus in the inductive step we are given

p(S, T) /\ p(S, v) A n ~ 0 /\ A ~ A+

and we must prove

A' ;"\J A+

(4.6)

The environment of the inductive step is diagrammed in Figure 4.2.

According to the definition of similarity, (4.1), the job of'

the inductive step is to show that

(i)(j)(#Aj_j /\ #A~j ~ Alj = A~j) (4.8)

'l'he truth of' (4.8) will be established by showing that Ai,j = A~.1
f'or an arbitrary array position, <1, j>, at which both A' and A+

are defined.

The simpler of the two cases to be considered is the case in which

position <1, j> is defined in A. Since R is a prefix of' R1
, we have

Aij = A1j

By similarity 1 we have

+
Aij = Aij

and so

I A+
Aij = ij

151

D
ij

A A'

c
ij ij

Figure 4.2. The envirorunent of the inductive step.

152

The second case to be considered is the case in Which position

(1, ~ is not defined in A; this is the c~e that 1&:. a.epiC~ in

Figure 4.2. Here the j-th write into cell i occurs 'ln the t:tans~tion

f'ran R to R'; one might say that A:i.J is a "new" element at' A' ~;. Just -·

as for the first case in the proof' of' the inductive step, the ptoO:r
+

of' A:ij = Aij relies on the lmowledge that R is· a pl"e1'1x at R' , and . '.

rv + . . .
that A= A • In addition, specific MCM properties, such~ the·

enabling rules, are utilized.

The proof' of the second case is canplex. An adeqUate·· pre'sentat!on

of this proof' requires the uae of' several auxiliary concepts. :•: !he

number and intricacy of' these concepts make it undesirab.le to· '· ·
introduce each at its first use during the proof'. Therefo~, ~'

digression is made in the next three Seetions to bitrodUCe ·'theSe: 1 ·

concepts all at once; tolloWing this digression the prodt'of'' the

functionality theorem is resumed and can.pleted.

Facts and Nanenclature about AupentedArrays

Let A be the augmented array of a run~R~ . Recall that

if' #Aij' i.e., if' Aij is defined, then

Aij =(a, b, c>
Here ii' j = O then a is the initial content ot cell ·1, and li·• J,-,

and c = ~. If j > o then a· equals Hij' and -'\c "writes
11

Aij'· ' It'.

will be convenient to use the notation

lAij = a

2Aij = b

3Aij = c

153

- ·---~------------------ ----~

This notation, .<bougb unconventional, will prove much less cumbersaae

than, say, (A
13

) 1, (A
13

)
2

,, and (A1J)
3

•

i. The

zeroth-w;r.-~'jiten con.tent of cell i 1s the init~l content of cell 1.

The quant11'¥ 2413 is the name of the cell ~t 1s the ~-tb-!£a1ter

ot cell 1. I.t is meap1ngJ ess to speak of. the 0-th-writer -at cell 1.

The quantity -/-tt 1s 1;be write 9£41nalit;.y ot the J-th-writer of

cell i. It is meaningless to speak ot the write orQ:i.Dality ot

the Q .. th--writer ot.cell. i •.

Every,~1me ,.celJ. 1 per:tonaa a transac.tion, cell 1 writes into

itself. Theret.ore, it

2A1,j+l • .. i

i.e., 1t the .. (J< + l)-.. t-~iter ot cell. i, i.s ~ell 1 itsel;f, then

during the rµn R ce;Ll .. i is ~ to receive a go pulse at an :l.utant

when cell i bas been written into .1 tµtes •. ~

3Ai,,J+l • J

and position (i, .1) of A is sa14..to be an. ~ted poe1;Uon ot A,

and AiJ is said to be an &,!CUt§. e]ement ot A.

If A
1
J is an.executed el.anent ot A, then~ is a transaction

associated in a natural way with the element Ai.1' name.Qr, the transaction

corres~g in cell i's transaction table to the word 1A
13

• It

and ~:it this transaction is such that cell i requirt:ts positive

count for a cell x 1n order to be enabled to perform the transaction,

then A1.1 is said to be an x-requiring element of A. Notice tbat a

statement that A13 is x-requiring implies tbat A1.1 is executed.

154

••• ·'<-- ~.; ·;

If Aij is executed, then A1j is i-requiring. Thus, it A1j is

x-requ1ring1 then A1j is i-requiring. ~1 :Lt -\j is

x-requiring, and x is not equal to 11 then tl;le, tranaacticm as~~ted

with Aij is either a set ot x1 a put ot x, or a send ot x.

An x-requiring element Aij DIB1' be either x-re''P'• x-m.tW•
or both, or neither. An x-requiring element A

13
is z-.i-eMSng or

x-writing 1t and~ it the transaction associated w1th.A13 reads

or writes, respectivel.1'1 cell x. Jfotioe that a stataumt tbat Aij

is x-reading or x-writ1ng implies that Aij is x-requiri,Dg, which 1n

turn implies that Aij is executed.

If A
13

is x-readina and x is not equal to i, tben the

transaction associated with Aij is a get .~ x. It Aij is x .. wrj,ting

and x is not equal to i 1 then the tranaaction asaoc:1ated vit!l A1 j

is a put at x. It Aij is either i-r~ or 1-writ~ ~the

transaction associated with A13 might be~ at. the· five tn>e•· If~

is both x-reading and x-writ1ng, then x is equal to 1, 8Dd the

transaction associated with A1j might be any ot the five types. J'ina~1

tben

the transaction aesociated with A1j is a send at x.

If and ~ 1t A,_j • <w, x, y), then ~ is .. 1-writing, and .A,q
is said to write A1j. Similar~, 1t and oncy it dur1ng the run deacri.bed

by A, a cell x reads a cell i after exactl.1' y and j writes

have occurred into the cells x and 11 respectiveq, ~ ~ is

said to~ A1j.

155

Boundaries

To isolate in an augmented array those elements having properties

of interest, use will be made of boundaries, which are described by

boundary vectors. As shown in Figure 4 .3, a boundaq iS an imaginary

line drawn between the elements ot an array so that each row ot the

array is crossed exactly once. A boundary vector B describes a

boundary in an array A by giving the number ot elements to the lett

of the boundary 1n each row ot A. Thus 1:t B1 = j, then Aij is the

element just to the right ot the B boundary 1n row i o'f A.

Associated with each augmented array is exactly one ~ boundary,

which is described by a boundary vector called the .!!!I! vector ot the

array. As shown 1n Figure 4.4, the edge vector E ot an array A is

defined tor each cell 1 in the following way.

Ei • maxim.um j such that :J/:Aij

Tb.at is, the elements ot E point to the right-most elements of A, and

the E boundary falls just to the ~ ot .these elements. Thus, 1:t A

is the augmented array ot sane run, R, then tor each cell i, 1A1E is
i

the content of cell i at the conclusion ot the caaputation denoted

by R. An important property of the edge vector E ot an augmented

array A is that every executed position in A lies to the lett ot

the E·boundary.

The Count Matrix at the Conclusion of a Prefix Run

Let A be the augmented array ot a run R. It has been shown how

one can extract information fran A on a small scale; that is, it bas

been shown how one can identif'y elements ot A that are x-requiring,

156

A

1,.

A..

.,·,-i'

1

. t

L
r

·.-.. .l.

E .. ~ ..

157

a. W.••f•=--cr11>ed,;v,:: , ~ ..) -
the bOUIMlar7 Teetor, B

· ·-}-'lo; 1"~:-~_.-.~ .::1,f ;-? ~-l·t-., A ~-,i;;. '(.__ ;.,,:JJ:..-"' -

.~·· . {'

'·'

........... _ .
• ·;F.

''

:f /

.. ·;

.,

·ji. •;: ~J.-:: . ·' ~

tbe edge ~
L'l<~:-•1:·,:1

e4ae vector, E.
f' .r:":l,'.lS . ~ '~ / , ~ ,, •;;:

~. '• ' ...

·~· ... :

x-writing, etc. Methods will now be developed for extracting

information fran A on a large scale; that is, methods will now be

developed for summarizing information fran. whole sections of A.
'

As shown in Figure 4.5, let o< be a set ot positions in A. Let

us define

NA(x, i, o{)

to be the number of generalized ~ Et. ! !2 ~ in the region o(of

the array A. An element A is a generalized send of 1 to x if pq

and on4" if Apq is executed, and the execution of Apq adds 1 to the

count at position< x, i) of the count matrix. In other words, Apq

is a generalized send of i to x if and on4" if A is executed and pq

either (1) the transaction associated with \q is a send of i to x,

or (2) the transaction associated with \q is a bye to x, and x ~ p,

and i = p. A1ternative (2) can be explained in another way: if the

transaction associated with the executed element A is a bye to x, pq

and if x ~ p, then A is a generalized send of p to x. Notice pq

that every generalized send of i to x is i-requ1ring.

Let us also define

DA (x, i, a<.)

to be the number ot generalized dones Et. ! & ~ in the region a<.

of the array A. An element Apq is a generalized done of i by x

if and on4" if Apq is executed, and the execution of \q subtracts

tran the count at position < x, i> of the count matrix; it is a

1

property of the MCM design that Apq can be a generalized done of i

by x on4" if x = p. In other words, \q is a generalized done of i

by x if and ~ if x = p, and A is executed, and either (1) the pq

158

A

Figure 4.5. A set of positions in an augmented array.

ribed boundaey desc
by B

A

t8

Figure 4.6. A boundaey and the set at positions to its left.

159

transaction associated with A is a done of i, or (2) the transaction pq

associated with Apq is a bye to e, and e , x = p, and i = x = p.

Alternative (2) can be explained in another way: if the transaction

associated with the executed element A is a bye to e, and if e # p, pq

then A is both a generalized send of p to e, and a generalized done pq

of p by P• This situation, in which the transaction associated with

the executed element Apq is a bye to e, and e , p, is the only situation

in which an element Apq is both a generalized send and a generalized done.

As shown in Figure 4.6, let B be a boundary vector describing a

boundary in A, and let f3 be the set of positions lying to the left

of the B boundary. Recall that A is the augmented array of a run R,

and let k(· 1 ·) describe the state of the count matrix in the initial

canputation state of R. Let us define

KJtCx, i, ~ >

so that

KJt(x, i, f3) = k(x, i) + NA (x, i, f3) - DA (x, i, f3) (4.9)

The significance of the quantity KJt(x, i, /l) is the following. Suppose

there is sane run P that is a prefix of R and that bas an augmented

array whose edge vector is B. Then KJt(x, i, f3) gives the count at

position (x, i) of th~ count matrix at the conclusion of the run P.

An understanding of the above remark about ~(x, i, ~) is vitally

important for an adequate canprehension of the proof of the :f'unctionality

theorem. Let us therefore review that import of (4.9). Consider an

instant between two successive canputation state transitions in the

computation denoted by the run R. Let machine M's behavior up to this

instant be described by a run P that is a prefix of R. It

160

the edge vector of the augmented array of P is B, and if, es in Figure 4.6,

the B boundary is drawn in the array A, then to every transaction

performed during P there corresponds a unique executed element to the

left of the B boundary, i.e., in the region/3. Sane of these elements

in (::l might be generalized sends of i to x, some might be

generalized dones of i by x, some might be both, and some might

be neither. Consider the count at position 4('x, i)> of the count

matrix; equation (4.9) says that what this count is at the conclusion

of P equals what this count was at the start of P, plus the number of

generalized sends of i to x performed during P, minus the number

of generalized dones of i by x performed during P.

Resuming the Proof

The digression introducing auxiliary concepts is now complete.

Let us continue with the proof of the functionality theorem. Recall

that the inductive step's second case, depicted in Figure 4.2, is

being discussed. This case is the second case in the establishing

of (4.8), i.e., the case in which position <:,i, j::> is not defined

in A. I + I + The quantities R, R , R , A, A , A , i, and j as used now

are the same quantities that were used when the proof was begun. These

quantities will remain bound in this way for the remainder of the proof.

For the remainder of the proof, also, let us define x, y, z, end w

so that A~ is the element of A' that writes Alj' and so that A:w is the

161

+ + element of A that writes Aij• For convenience, the remainder of the

proof is divided into three stages:

(1) a proof' that <x, y) = <z, w),

(2) a proof' that if' the transaction associated with A~ is a

+
put, send, done, or bye, then Aij = Aij' and

(3) a proof' that if' the transaction associated with ~ is a

I - A+ get, then Aij - ij•

Before the first stage of' the proof is begun, several quantities

will be introduced that will be useful in all three stages. The first

0 0 quantity is the array A • The array A has the form of an SUE!1Jlented

array, although there may not exist a run whose aUE!1Jlented array is A0
•

0 + The array A is defined everywhere that either A or A is defined, and

0 0 + nowhere else. If A then A equals either A , or A , or both; pq pq pq pq
~ + 0 since A = A , then there is no ambiguity in saying that A is equal pq

+ * to both A and A q• A convenient way of understanding the construction pq p

of' A0 is to consider that an array such as A is a set of ordered pairs

of the form

<<i, j), Aij>
0 ** + and observe that A is the set-theoretic union of A and A •

+ 0 Let E, E', E, and E be the d t f th A A'' A+, e ge vec ors o e arrays ,

and A0
• Let R- be the prefix run + of R whose performance immediate~

+ precedes the writing of Aij• Let A- be the aUE!1Jlented array of R-, and

* 0 The usefulness of working with the array A was pointed out by
Prof. J. B. Dennis.

**The union of {a, b1 and ~a, c) is £a, b, cf·

let E- be the edge vector of A-. Figure 4.7 shows the relationship of

+ the run R- to the run R , and the relationship of the run R to the

run R'.

Figure 4.8 shows the E and E- boundaries drawn in A0
• IAl.ring the

computation state transition of R' that immediate~ follows the

* performance of R, Alj is written. Therefore #Ai,j-l and -,#Aij' and
0

so the E boundary falls just to the left of Ai,j-l• Similar reasoning

- 0 shows that the E boundary also fa.Us just to the left of Ai, j-l •

As shown in Figure 4.8, let o<. be the set of positions in A0 to

the left of both the E and E- boundaries. Let f3 be the set of positions

to the right of the E boundary and to the left of the E- boundary.

Let "(be the set of positions to the left of the E boundary and to

the right of the E- boundary.

The First Stage

The object of the first stage of the proof of the second case of

0 0 the inductive step is to show that A and A are one and the same xy zw
element. For convenience, the reasoning is divided into (1) an

enumeration of possibilities, and (2) five explicit~ indicated tasks.

Enumeration!!£.. Possibilities. During the computation state

transition of R' that immediate~ follows the performance of R, A' is
xy

executed. Therefore #A and 1 #A y+l' and so, as shown in Figure 4.9,
xy x,

A~ lies just to the right of the E boundary. Similar reasoning shows

that A0 lies just to the right of the E- boundary. zw

* The proposition -iA is true if' and only if' A is not true.

163

+ (a) Run R- is a pref'ix of run R •

R'

R

(b) Run R is a prefix of run R'.

I I >
~ time

\, + it A+
Azw wr es ij•

I >

Figure 4.7. Four runs. Back marks denote canputation state transitions,
assumed here to be instantaneous.

E

ij

Figure 4.8. Principal boundaries used in the proof of the
second case of the inductive step.

165

zw

zw

(1) (2) (3) zw

zw

zw

(4) (5) (6) zw

zw

zw
(8) (9) xy

(10) xy & zw

Figure 4.9. The ten possibilities in the proof of the first stage
ot the second case of the inductive step.

J.66

xy

Figure 4.9 shows that element ~ might lie either to the lef't

of' the E- boundary, or just to the right of' the E- boundary, or at least

one position away fran and to the right of the E- boundary. For each

of these three.possibilities, exactly the seme three possibilities exist

0 tor ~w with respect to the E boundary, making a total of' nine

possibilities. For one ot these possibilities, nB111el.y, that in which

0 0 -A and A lie just to the right of the E and E boundaries, 'Jey' zw .

respectively, A0 and A0 might or might not be one and the same element. 'Jey' zw
0 0 For the other eight possibilities, it is clear tbat A'Jey' and Azw cannot

be one and the same element. Thus there are ten possibilities in all,

which are depicted in Figure 4.9. The job ~ the first stage ot the

second case of the inductive step is to disprove the first nine ot

these possibilities.

l'!.!,! One. The first task is to disprove possibilities (2), (5),,

and (8) of Figure 4.9. Let us restrict our attention to these three

+ possibilities,, and recall that Azw is executed. It is not known,

however, that Azw is executed, and an argument establishing this tac1i

will now be presented. This argument Yill be given in much greater

detail than will be usual in the rest ot the proof,, in order to allow

the reader to becane accustaned to the notation being used, and in order

to help the reader's intuition develop along sound lines.

Since for possibilities (2),, (5), and (8),, A~w lies to the left

ot the E boundary, there.tore A lies to the left of the E boundary. zw

Since one element of A lies to the right of' the E boundary, then at

least one element of' A must lie.to the right of A • Therefore, #A 1 •
Z'W z, WT

+ + + Since A is executed, then #A w+l and 2A w+l = z. By the inductive zw z, z,
l"V + +

hypothesis we have A =A , and theretore Az,w+l = Az,w+l• Therefore

2A 1 = z, and so A is executed.
z,w~ zw

Digression. In order that the reader's intuition will not be led

astray by the simplicity of' the foregoing argument, a digression will

now be made to alert the reader to sane of' the subtlties of' the problem

of' proving the inductive step. Consider possibility {l) of' Figure 4.9.

It will be shown later that for possibility {l) A- is executed. It
x::/

would seem. that this fact could be established by relying on an

apparent symmetry between possibilities {l) and (5). Suppose one

tried to establish this fact, that ~ is executed, by an argument

similar to the argument which established for possibility (5) that Azw

is executed. The new argument would be constructed fran the old one

by interchanging x and y with z and w, respectively, by

interchanging R-, A-, and E- with R, A, and E, respectively, and by

interchanging R+, A+, and E+ with R', A', and E', respectively. The

new argument would be valid up to the point at which it invokes the

"inductive hypothesis" that A-~ A'. The proposition A-~ A' is not

implied by the inductive hypothesis, (4.6). -c:::: + In fact, since A _ A ,

- ,.-...J therefore A = A' is
+,-v

implied by the fact that A =. A', which is the

inductive conclusion, (4.7). Thus one would have wandered into the

time-honored pitfall of invoking that which one was trying to prove.

The notion given to us by untutored intuition of' a symmetry

between possibilities (l) and (5) has proved false. Indeed, there is

an inherent asymmetry in the environment of the inductive step, as

shown in Figure 4.10. Thus armed with a better understanding of the

168

c=
- A+ A

""- I
""' "' 1: I

"' " : llC 211 "'
""' ""-~ 1 ·\.)

""-·~ I
" c= '-.. I ""-

A A'

Figure 4.10. Asymmetry in the envirorunent of the inductive step.
Solid lines represent known relationships; dashed
lines represent relationships to be proved.

problem, let us resume the reasoning of the first stage. Recall that

we have just established for possibilities (2), (5), and (8) of'

Figure 4.9 that A is executed. The presentation will continue to zw

be more detailed than will be usual.

+ + Resumption of Task One. When Azw writes Aij' a certain

transaction, call it €), is performed. By the inductive hypothesis

rv + + A = A , we have A = A • zw zw Therefore when A is executed, the same zw

transaction e is performed. + Since the execution of A writes cell i, zw

then the execution of A writes cell i. zw

writes Aiv for some v < j. Thus 2Aiv = z
JL+ ~ + +

then 7fAiv" By A= A we have Aiv = Aiv"
+ + +

and 3A1v = w. Therefore Azw writes Aiv"

Since -,#Aij' then ~w

and 3Aiv = w.
+

Since #Aij'
+

Therefore 2Aiv = z
+ But by construction Azw

+ writes Aij' and we know v < j. This contradiction has been obtained

from the assumption that either possibility (2), or (5), or (8) of'

Figure 4.9 prevails. Therefore possibilities (2), (5), and (8) have

been eliminated.

~ ~· The second task. is to establish a result that does not,

by itself', eliminate any of' the possibilities of Figure 4.9, but that

is rather just a useful intermediate result. This result is that there

are no !-requiring elements of A0 whose positions belong to)(; recall

that the region 'tf has been defined as indicated in Figure 4.8. The

result will be shown by assuming the contrary and deriving a contradiction.

Any i-requiring element in 't must be executed in run R. Let ~q be

an arbitrary i-requiring element such that A is one of' the first pq

!-requiring elements in 't to be executed in R. That is, of perhaps

several i-requiring elements in 't that are executed simultaneously

in R before any others, Apq is an arbitrary one.

Let RP be the prefix run of R whose performance immediately

precedes the execution of A ; let AP be the history array of RP, and pq

let# be the edge vector ot AP. Figure 4.ll shows the# boundary

drawn in A 0 • Notice that since fl is a prefix of R, the # boundary

lies everywhere on or to the left of the E boundary.

As shown in Figure 4.ll, let f be the set of positions in A0 to

the left of both the # and E- bounda;ries. Let er be the set of

positions to the right of the # boundary and to the left of the E­

boundary. Let ~ be the set ot positions to the left of the #

boundary and to the right of the E- boundary. Since A~ is i-requiring,

then at the conclusion of -#, cell p baa read capability for cell i,

* and so according to (4.9),

K(p, i, f U 't) > O (4.10)

Digression. In (4.10), as throughout the remainder of the proof

of the f'unctionality theorem, the subscripts of K, N, and D are

anitted. No ambiguity arises f'ran the anission of the array subscript

0 on N and D, because this subscript may always be taken to be A • No

ambiguity arises from the anission of the run subscript on K, because

the initial count matrix is the same for all runs being discussed.

Resumption of Task Two. Since A is one of the first !-requiring
--- pq

elements in 't to be executed in R, and since any i-requiring element

* The set A U B is the union of A and B.

Figure 4.11.

----- - ---- -- -- --- ----- ·---~---~-:---- ------

E

er, (3

pq

:o
a- ij

Boundaries used in the demonstration that there
are no i-requiring elements in ¥. .

172

of A lying in 't is executed in R before A is executed, therefore pq

there are no i-requiring elements in "?:. Since every generalized send

of i to p is i-requiring, therefore

N(p, i, ?°') = 0

and so

N(p, i, ,P) = N(p, i, f U t')

Clearly

N(p, i, f U CJ) ~ N(p, i, f)
and so

N(p, i, f U CJ} ~ N(p, i, f' U 'L) (4.11)

Since generalized dones of i by p occur only in row p 0 of A , and

since in row p of A0 the # boundary lies on or to the right of

the E- boundary, then

D(p, i, p Ucr) ~D(p, i, f' U t:) (4.12)

Combining (4.10), (4.11), and (4.12) with the definition of K, (4.9),

we have

K(p, i, f LJ cJ) > 0

This last proposition says that at the conclusion of R-, cell p has

read capability for cell i.

As indicated in Figure 4.7, the run R- is the prefix of R+ that

just precedes the execution of A+ •
zw

+
By construction, the element A zw

. + writes Aij' and so at the conclusion of R-, cell z has write

capability, i.e., sole read capability, for cell i. Therefore, by the

0 0 0 above result, z = p; thus A lies in row p of A • Since A was zw pq

constructed to lie in)/, then in row p, the E boundary lies to the

right of the E- boundary. 0 Since A lies in row p and just to the zw

173

right o:f the E- boundary, then A
0 lies in ~. Therefore only zw

possibilities (2), (5), and (8) of Figure 4.9 can prevail. But these

possibilities have already been eliminated. This contradiction shows

that there are no !-requiring elements in Y.
~ ~· The third task is to disprove possibilities (4), (6),

(7), and (9) of Figure 4.9. Recall that the regions ~and (:3 have

been defined as indicated in Figure 4.8. At the conclusion of R,

cell x has write capability for cell i, and so

K(x, i, o(LJ 'j) > 0

Since there are no i-requiring elements in JI,
N(x, i, o<.) = N(x, 11 ~ U '/)

Clearly

N(x, i, o< U f>) ~ N(x, i, Q(.)

and so

N(x, i, o(U {3) ? N(x, i, o< U K'>
For possibilities (4), (6), (7), and (9), in row x or A0 the E

boundary lies on or to the right of the E- boundary. Therefore

D(x, i, a< U {3) ~ D(x, i, ca< U)')
Thus

K(x, i, o(LJ ~) > 0

which says that at the conclusion of run R-, cell x has read

capability for cell i.

At the conclusion of R-, cell z has sole read capability for

cell i. Therefore x = z. But since x # z in possibilities (4), (6),

(7), and (9), therefore possibilities (4), (6), (7), and (9) have been

eliminated. On~ possibilities (1) and (3) of Figure 4.9 remain to

be eliminated.

~ Four. The next task is to show that in possibilities (l)

and (3) of Figure 4.9, A- is executed. Since A0 lies to the left of
xy xy

the E- boundary, we have #A~,y+l" I.et A;b be the element of A- that

writes A~,y+l" The task is to show that <a, b> = <x, y).

- 0 -Since Aab is executed, then Aab lies to the left of the E boundary.

As shown in Figure 4.12, A~b might lie in either o(or!· It will

now be shown that A~b does not lie in o(by assuming the contrary and

deriving a contradiction. By construction, A;b is executed, and

so #A~, b+l' and 2A;, b+l = a. The assumption that A~b lies in o<.
implies #Aa,b+l" Since A ""-IA-, therefore both 2A;,b+l =a and

Aab = A;b. Thus, since ~b is x-writing, then Aab is x-writing.

Since-, #Ax,y+l' therefore Aab writes Axv for some v < y+l. Therefore

2Axv = a and 3Axv = b. We have #A~, because v ~ y and #A~. Since

,,.._, - - - - -A = A then ,.,A = a and
3
A = b. Therefore A b writes A • Since

c:XV XV a XV

v < y+l, then ~b does not write A;,y+l.. But by construction A:b does

- 0 -J write Ax,y+l" Therefore A
8

b does not lie in""" •

We now know that A~b lies in~· By construction A;b writes A;,y+l"

0
Therefore Aab is x-requiring, and so there is at l.east one x-requiring

element in tB. .Any x-requiring element in /3 must be executed in

run R-. I.et A0 be an arbitrary x-requiring element such that A- is pq pq

one of the first x-requiring elements in fl to be executed in R-. It

will now be shown that p = x.

I.et RP be the prefix run of R- immediately preceding the execution

of \q• I.et AP be the augmented array of#, and let Ff be the edge

vector of AP. Figure 4.13 shows the # boundary drawn in A0
• Since RP

is a prefix of R-, the -Bf boundary lies everywhere on or to the left of

175

D

E

D
ab?

ab?

~D
p

x,y+l

y
cA v--

Figure 4.12.
0

Possible locations of Ab" a


~~~iit~~~~x~1~•~···~~~~~w:i.~~Jii~ ... l!J!IQit&%¥ilt;i.$!c,L.&¥i .. 1ar.,,:•~.~.Jt'ltt•~ - '' -·· ·. . . . . 

E 

" 

' ' 

t1 
er, f3 

pq 

~ 
. -

.. 
,, 

·-

t') y 

~~ o<. ~ o< ' ~-.> 

v 
' 

,_, 

' ' . ,. 

Figure 4.13. Boundaries used in the demonstration tor 
possibilities (l) and (3)tbat Ak-1• exeouted. 

177 



\ 

the E- boundary. As shown in Figure 4.J3, let f be the set of positions 

to the left of both the E and # boundaries. Let O'"" be the set of' 

positions to the right of the E boundary and to the left of the # 

boundary. Let ~be the set of positions to the left of the E boundary 

and to the right of' the -Ff boundary. 

Since A- is x-requiring, then at the conclusion of RP, cell p pq 

has read capability for cell x. Therefore 

K(p, x, f U er ) :::> O 

Since A- is one of the first x-requiring elements in {3 to be executed pq 

in R-, and since any x-requiring element of' A- lying in ff"" is executed 

in R- before A- is executed, therefore there are no x-requiring pq 

elements in rr. Th.us 

N(p, x, f ) = N(p, x, F u 0-) 

and so 

N(p, x, f U 1:) ~ N(p, x, f LJ CJ) 

Since in row p of A0 the # boundary lies on or to the right of the E 

boundary, then 

D(p, x, f LJ 7:) ~ D(p, x, f U () ) 

Thus 

K(p, x, f LJ (; ) > 0 

and so at the conclusion of R, cell p has read capability for cell x. 

It is known that at the conclusion of R, cell x has sole read 

capability for itself, because during the computation state transition 

of' R' that immediately follows the run R, cell x, in writing into 

cell i, also writes into itself. Therefore p = x. 

------------~--------------



The element \q was chosen arbitrarily out of the set of x-requiring 

elements in /3 that are executed first in R-. Since p == x, therefore 

t:l - 0 all x-requiring elements in / executed first in R lie in row x ot A • 

Since only one element of fl in row x can be executed first in R-, 

therefore the set of x-requiring elements in fJ that are executed first 

in R- contains only one element, namely A;q. Suppose q > Y• Then A;b 

writes A- '"""l before A- is executed, and so A-b is an x-requiring 
~J· q a 

element in f3 that is executed before the f'irst x-requiring element 

in (8, namely A;q' is executed. Therefore q ~ y. Since ~ lies just 

to the right of the E boundary, then q ~ y, tor otherwise ~q would not 

lie in fl· Therefore q = y, and A~ is the first x-requiring element 

in /3 to be executed in R-. Thus for possibilities (1) and (3) of 

Figure 4.9 it has been shown that A~ is executed. 

~ ~· 1'he next task is to eliminate possibilities (1) and (3) 

rV - -Since A is i-writing, then by A = A , A is xy xy 

i-writing. Since -r#A~j' then A~ writes A~v for sane v < j. Since 

"V -A =A , then A1v is written by Axy. But Axy is not executed. This 

contradiction eliminates possibilities (1) and (3) of' Figure 4.9. 

Possibilities (1) through (9) of Figure 4.9 bave been eliminated. 

Therefore < x, y > = (z, w>, and so A~ writes Aj_j and A~ writes A~j· 
This canpletes the first stage of the proof of the second case of the 

inductive step. 

The Second Stage 

!he object of the second stage of the proof of the second case of 

the inductive step is to show that it the transaction associated with 

179 



A' is a put, send, done, or bye, xy 

transaction associated with A' • xy 

, + e then Aij = Aij• Let be the 
rv + + 

Since A = A , then Axy = Axy. 

Since A ~ A' , then A = A' • Therefore A.,:.,,. = A:,, and the transaction xy xy ...., ...., 

associated with A+ is also (3. Consider two alternatives: (a) x, i, xy 

and (b) x = i. 
If x , i, then e must be a put of i. Let v be the operand 

word of e. Then the execution of A' writes the word v xy 

Therefore 

Aj_j = (v, x, y) 
Likewise, the execution of A:Y writes the word v into A~j· Therefore 

A;j = (v, x, y> 
+ 

Therefore Aij = Aij for alternative (a). 

If x = i, then {) can be a put, send, done, or bye. Let w be 

the replacement word of e. Then the execution Of A:i,j-l writes the 

word w into Alj; recall that since -.#Aij then j > o. Therefore 

Aij = <:_w, i, j-1)> 
+ + Likewise, the execution of Ai,j-l writes the word w into Aij" 

Therefore 

A~j = <::.._w, 1, j-1.:> 
+ Therefore Aij = Aij for alternative (b). Thi& completes the second 

stage of the proof of the second case of the inductive step. 

The Third Stage 

The object of the third and final stage of the proof of the second 

case of the inductive step is to show that if the transaction associated 

with A~ is a get, then Aij = A~j· Since the transaction {:; associated 

J.8o 



with ~ is a get, then x = i and y = j-1. Thus we have for the third 

f I + + r'-1 + stage that Ai j 1 writes Ai. and that A. . 1 writes A. . • Since A =A 
' - J i, J- J.J 

and AC:::. A', therefore the transaction() is associated with both 

Ai' . l and A'. . 1 • Let the operand name of e be a. Let b and c 
,J- J.,J-

1 I + + be such that A. j 1 reads A b and A. j 1 reads A • The major job of 
i, - a 1, - ac 

the third stage is to show that b = c. For convenience, the third 

stage is divided into (1) an enumeration of possibilities, and 

(2) three explicitly indicated tasks. 

Enumeration ,2!: Possibilities. Figure 4.14 depicts three 

possibilities: (1) b < c, (2) b > c, and (3) b = c. Since R is the 

prefix of R' that immediately precedes the reading of A'b by A! . 
1

, 
a 1, J-

then A~b -lies just to the right of the E boundary. Similar reasoning 

shows that A0 lies just to the right of the E- boundary. ac 

Possibility (1) will be disproved first. It will turn out that a 

proof which eliminates possibility (2) can be constructed from the 

proof which eliminates possibility (1) by an interchange of notation. 

This symmetry between possibilities (l) and (2) is due, at least in 

rv + part, to the fact that whenever A= A would seem to be needed in 

disproving either possibility (1) or possibility (2), A~ A- may be 

,-v -invoked instead. As indicated in Figure 4.10, we know A== A 

'"V + - + because A = A and A C: A • Thus the difficulty will not be 

encountered here that was encountered when symmetry was sought between 

possibilities (1) and (5) in the first stage of the proof of the second 

case of the inductive step. 

Figure 4.14. 

The first task is to disprove possibility (1) of 

For possibility (1), let r and s be such that A­
rs 

181 



ab ac 

i,j-1 

(a) b <. c 

ac ab 

i,j-l 

(b) b > c 

E E 

ab tac 

i,j-1 

(c) b = c 

Figure 4.14. The three possibilities in the proof of the third stage 
of the second case of the inductive step. 

182 

--~~------ -- ----



writes A- • Since A- is executed, 
ac rs A0 lies to the left of the E­rs 

boundary. As shown in Figure 4.15, A- might lie in either-< or A. rs t' 

It will now be shown that A0 does not lie in o(. This fact will rs 

be shown by assuming the contrary and deriving a contradiction. By 

construction A;s is 

0 
assumption that Ars 

executed, and so #A- +l.' and 2A- +l = r. r,s r,s 

lies in o(. implies #A +l" Since A ~A-, 
r,s 

therefore 2Ar,s+l = r. Therefore Ars is executed. Since A;s is 

rv - .JI. a-writing, then by A= A , Ars is a-writing. Since --i7fAa,b+l' 

then A writes A for some v < b+l. Therefore 
2
A = r and rs av av 

The 

A = s. Since v ~ b < c and #A- , therefore #A- and by A _:::: A-, 3 av ac av 

A- = r and 
3

Aa-v = s. Therefore A- writes A- • Since v ~ b < c, 
2~ n D 

then A- does not write A- • But by construction A- does write A- • 
rs ac rs ac 

0 
Therefore A rs 

does not lie in o<. 
0 

As shown in Figure 4 .16, A rs lies in (3. Let Rr be the prefix 

of' R- immediately preceding the execution of A- • Let Ar be the 
rs 

r ...:r r augmented array of R , and let ~ be the edge vector of A • Figure 4.16 

...:r o r - ..:r shows the ~ boundary drawn in A • Since R is a pref ix of R , the ~ 

boundary lies everywhere on or to the left of the E- boundary. 

As shown in Figure 4.17, let A be the set of positions in A0 to 

the left of both the E and ff boundaries. Let~ be the set of positions 

to the right of the E boundary and to the left of the Ef boundary. 

Let -U be the set of positions to the l.eft of the E boundary and to the 

right of the Ef boundary. 

It will now be shown that there are no a-requiring el.ements in i). 

This fact will be shown by assuming the contrary and deriving a 

contradiction. /my a-requiring element in -0 must be executed in R. 

183 



E 

D 
D 

rs? 

ab 

Figure 4.15. 

rs? 

ac 

i, j-1 

Possible locations of A
0 

• 
rs 

184 



E 

rs 

ab ac 

1, j-l. 

Figure 4.16. Principal boundaries used in the proof' of the third stage 
of' the second case of the inductive step. 



rs 

ab 

i,j-1 

Figure 4.17. The regions A, )A-, and iJ. 

186 



Let Ao be an arbitrary a-requiring element such that A is one of the 
pq pq 

first a-requiring elements in"'\) to be executed in R. Let RP be the 

prefix of' R immediate~ preceding the execution of' Apq• Let AP be the 

augmented array of' i9, and let 'if be the edge vector of' AP. Figure 4.18 

shows the Ff boundary drawn in A0
• Since IiJ is a prefix of' R, the"# 

boundary lies everywhere on or to the left of the E boundary. 

Figure 4.19 shows the relationship among the runs Rr, R-, and R+, and 

the relationship among the runs #, R, and R'. 

As shown in Figure 4.18, let t=> be the set of positions to the 

left of both the pf and 'Bf boundaries. Let er be the set of positions 

to the right of' the '# boundary and to the left of the 'Bf boundary. 

Let 1: be the set of positions to the left of' the # boundary and to 

the right of the Ff boundary. 

Since Apq is a-requiring, then at the conclusion of' RP, cell p 

bas read capability f'or cell a. Therefore 

K(p, a, f U "t) > 0 

Since A is one of the first a-requiring elements in\) to be executed pq 

in R, and since any a-requiring element of' A ~ing in ?: is executed 

in R bef'ore ~q is executed, therefore there are no a-requiring 

elements in 7:. Hence 

N(p, a, f) = N(p, a, f U ~) 
and 

N(p, a, f U <T ) ~ N(p, a, f U 1: ) 



f 

E 

rs 

Li) ) pq 

Boundaries used in the demonstration that there 
are no a-requiring elements in lJ. 

188 



I I I I 
't-------V- I 
I _ I 
I R I 
I 

R' 

R 

I I I > 

I >-\time 
A! j 1 reads A'b• 
i, - a 

A' is executed. pq 

Figure 4.19. Six runs. Hack marks denote computation state 
transitions, assumed here to be instantaneous. 



Since 1n row p of A0 the '# boundary lies on or to the right of the Ff 

boundary, then 

D(p, a, f' tJ <T) ~ D(p, a, f U "t ) 
Thus 

K(p, a, f U CJ ) > O 

and so at the conclusion of Rr, cell p bas read capability for cell a. 

r -Since R is the pref:lx of R that 11111led1ate]3' precedes the writing 

of A;c by A;s' then at the conclusion of Rr, cell r bas sole read 

capability tor cell a. Therefore p = r. Then A~ belongs to"\), 

and A~s belongs to /3. But, as may be seen in Figures 4.16 and 4.17, 

it is impossible tor an element 1n -0 and an element in (1 to belong 

to the same row. This contradiction shows that there are no a-requiring 

elements in \) • 

In the first task, which is to eliminate possibility (1) of 

Figure 4.14, the following two results have been established: A0 lies rs 
in{:!>, and there are no a-requiring elements 1n I). With the aid of 

Figures 4.16 and 4.17, a contradiction will now be obtained that 

eJ1m1nates possibility (l). 

At the conclusion of R, cell 1 bas read capability tor cell a. 

Thus 

K(i, a, A U U ) > O 

Since there are no a-requiring elements 1n ""'\), then 

N(i, a, A ) .. B(i, a, A U\) ) 

and 

lf(i, a,) U f< ) ~ B(i, a, A U \) ) 

190 



Since in run R-, A- must write A- before A-i J 
1 

reads A- , therefore, rs ac , - ac 

as shown in Figure 4.16, in row i of J..0 
the r boundary lies on or to 

- 0 -the l.eft of the E boundary. In row i ot A , the E boundary 

coincides with the E boundary. Therefore in row 1 the pf boundary 

lies on or to the left of the E boundary, and so 

D(i, a, A U f< } ~ D(i, a, A U il } 
and 

K(i, a, A U )A} > O 

r Thus at the,conclusion ot R , cell i bas read capabillty tor cell a. 

r At the conclusion o:f' R , cell r has sole read capability :f'or 

cell a. Therefore, r • i, and so in row r the E boundary coincides 

with the E- boundary. Therefore no element in row r can lie in fl • 
But A0 lies in A. This contradiction el1.minates possibility (l} ot rs r 
Pigure 4.14. 

~ !!!2• The next task is to disprove possibility (2} of 

Figure 4.14. As mentioned before, an argument eliminating possibility (2} 

can be constructed tran the argument given above to eJ1m1nate 

possibility (l}. The new argument is constructed by interchanging b 

with c, by interchanging R, A, and E with R-, A-, and E-, respectively, 

+ + + and by interchanging R', A', and E' with R , A , and E , respectively. 

+ 
~ ~· The third and final task is to show that A:i_j • Aij• 

It has been established that only possibility (3} of Figure 4.14 
0 0 

prevails, namely, that ..A&b and A
8

c are one and the same element. It is 

known that the transaction, e 1 associated with Ai, j-l is a get of a, 

and that the same transaction, 8 , is associated with A~, J-l • Thus we 

have that when Ai,J-l writes AlJ' Ai,J-l reads A~b' and we have that 

191 



+ + + + + 
when Ai,j-l writes Aij' Ai,j-l reads Aab· Clearzy #A8 b. Since A~b 

,....., + 
must be written bef'ore it is read, then #Aab. Since A = A , then 

+ C::I I I + Aab = Aab. Since A _A , then Aab = A8 b. Thus Aab = Aab. 

Let the replacement function of' e be f( • ) • We have 

Aij = ~f(1A~b), i, j-1:> 

+ <c +> > Aij = f l~b , i, j-1 
+ Therefore Aij = Aij• This canpletes the third stage of the proof' of 

the second case of the inductive step. 

For the second case in the proof of (4.8), it has been shown that 

+ = Aij for any of the five types of transactions that might be 

associated with A~. The inductive step is thus canplete, and the 

functionality theorem. has been proved. 

Q. E. D. 

192 



? 

Chapter V 

The Output Assuredness of an MCM 

Introduction 

This Chapter presents a proof of the fact that noncompletion 

lurking bug effects do not occur in an MCM, or in other words, that 

every MCM is output-assured. An MCM is output-assured if and only if 

for each initial computation state the output produced by a computation 

begun from the initial computation state is never arbitrarily cut short, 

provided the user does not prematurely abort the computation. 

In pursuit of the proof of output assuredness, a set-theoretic 

entity called a trace is introduced as a formal description of an MCM's 

potential or future behavior subsequent to a start-up from an initial 

computation state. Then the notion of a limit vector is introduced to 

describe certain properties of a trace. Using traces and limit vectors, a 

theorem, called the assuredness theorem, is stated and proved; the 

truth of the assuredness theorem implies that every MCM is output-assured. 

Specialization to a Single Arbitrary MCM 

As in Chapter IV, the remarks to be made in this Chapter concern 

one specific, but arbitrary, MCM. This MCM, which will be designated 

by the letter M, is described by four quantities: (1) a set N of cell 

names, (2) a set Q of output cell names that is a subset of N, (3) a 

transaction table J(i) for each i belonging to N, and (4) a set I of 

initial computation states. It is assumed that this machine M is 

193 



well-defined, in the sense described near the end of' Chapter II. Since M 

is arbitrary, the re11arka to be made about M, including the assuredness 

theorem, are true for any well-defined Mall. 

!rn>eS Of' Computation& 

A computation is an instance of' the behavior of' the •chine M. A 

computation baving a finite nuaber of' state transitions is either 

teminatins: or aborted, depending on whether or not there are no 

enabled clerk cells at the conclusion of' the computation. 

There is no such thing as a computation with an infinite number 

of' state transition&; either a computation tel'llinates, or else there 

comes a time wben the user of' the machine M, baving seen enough, creates 

an aborted computation by stopping M's activity. 

An aborted computation should not be thought of' as a "black sheep" 

indicating the failure of' M to perform as hoped tor. In some 

applications of' systems for multiprocessing, it is speci:tica~ deaired 

that a system's activity~ terminate, i.e., that the syst• ~ 

reach a state in which no further actions can take place. 

The set-theoretic entity called a run has been formulated as a 

formal description of' a caaputation; recall tbat the length of' a run ii 

the number of' elements in the run' s transition sequence. Then the 

above remarks indicate that eveey run of' the •chine M is a finite.!':!!!!' 

i.e., a run of' finite length, and tbat everr run ot M is either 

terminating or aborted. 

194 



1'be Traces of an Ipiti!l Qo!lputatiqn State 

Suppose a ueer starts up the •chille M troa aome initial 

caaputation state S, and let r(S) be ·the set O'l poaa:Lble nm.a that can 

proceed frcm s. While the user does not, in ceneral, kn.ow whioh run 

in r(S) he will get for his trouble, be doea :bave ~.choice 1D. the 

amtter -- he .-r cbooae OM traa allOllC a Ht ot progrea-aiTit~ longer 

runs presented sequentia~ to hill by N. Spec1.ficaJ.l1', ea:eh tranaition 

f'rom one Qompu:-..tiOD state to the next mark& tlM pr08eatatioa of' a new 

run to the user. It such a traneition 71el4a a CCllllputation state in 

which at least one cell 1a an enabled elerk cell, then the user bas 

the option either O'l choosing the run obtained by stopping M at the 

present time, or ot vait1Dg until.after the MlCt tl'Q81ttcm in hopes 

that the run he VOU.ld obtain by •topping M.at 1;bat tille would be -.ore 

to his liking. 

It is known that each run preaented to a user is a pouible run, 

and that the 1trate11 ot M's acheduler ill naaonable; u:eept tor these 

tacts, ve bave no Dowledge at all of the .-.ner in wbicb M selects 

the runs it presents to a user. It is possible, taerefore,. to explain 

the presentation ot 8Jl7 sequence of runs b;r saying that Wen J( is 

started up tl'Oll an initial caaputation state, ll selects a set of 

reasonab~ aalleduled possible rune and the~r pre#fen~• these runs 

to the user sequentia~ until the user chooses one b;y stopping K's 

operation. This .aaodel ot M's activitJ' will be used in subsequent 

developments; no generality is lost in doing so, ~cause this aodel can 

be used to explain &:QY' activity of' M tbat we are allowing ourselves 

to observe. 

195 



When a user starts up M :from some initial caaputetion state B, 

then the set o:f' runs that M illlllediately selects tor presentation to 

the user is called a trace of s. In general, there are many traces 

associated with S. On each occasion when M is started up from. the 

computation state s, M arbitrarily- selects one o:f' the traces of S to be 

the set o:r runs that M will present sequentially- to the user during 

the ensuing caaputation. 

Every trace contains a run of length zero. If' a trace contains a 

run of length m, then it contains exactly- one run of length m, and 

contains all of the prefixes o:f that run. Every member o:f a trace is a 

finite run. 

When M is started up fraa an initial computation state, M's 

operation might termiDate, i.e., M might reach a computation state in 

which there are no enabled clerk cells. This situation prevails it 

and only it at the time of M's start-up, M selects a trace containing a 

terminating run. 1'his trace is necessarily finite, i.e. necessarily­

contains a finite nuaber of (:finite) runs, because a terminating run 

cannot be a prefix ot sane longer run. 

On the other band, when M is started up from. an initial computation 

state, M's operation might never terminate, i.e., M might never reach a 

caaputation state in which there are no enabled clerk cells. This 

situation prevails if' and only if' at the time of' M's start-up M selects a 

trace that does not contain a terminating run. Since the strategy of' M's 

scheduler is reasonable, then this trace cannot be finite, and must 

therefore contain an in:finite number o:f' (finite) aborted runs. Thus 

the situations which one might be tempted to :formalize using runs of' 

196 



infinite length are here being formalized using infinite traces, each 

containing on~ finite runs. 

The Limit Vector of a Trace 

The limit vector L of a trace T is similar in structure to a 

boundary vector. That is, to each cell of M there corresponds an 

element of L, and vice-versa. If j is the maximum number of writes 

occurring into cell i in the runs belonging to T, then 

If there is no upper bound on the number of writes occurring into 

cell i in the runs belonging to T, then 

L = ~ i 

If M has chosen to behave according to a trace T whose limit vector 

is L, then the fact that Lj = i says that belonging to T there is a 

run in which j writes occur into cell i. Since this run is of 

finite length, then it must be presented to the user in finite time. 

Therefore, if the user waits long enough, j writes will occur into 

cell L No matter how long the user waits, however, no more than j 

writes will occur into cell i. On the other hand, if Li = ~' then the 

user can observe as many writes into cell i as he cares to wait for. 

Statement of the Assuredness Theorem 

Let the function t(·) be defined so that t(S) is the set of traces 

according to which M might choose to behave when M is started up :fran 

the initial computation states. Also, let the function v(•) be 

defined so that v{T) is the limit vector of the trace T. The 

197 



assuredness theorem is stated as follows: for each initial computation 

state S, all traces belonging to t(S) have equal limit vectors. In 

symbols, the assuredness theorem is 

(S)(T)(U)(T E- t(S) A U (;- t(S) ~ v(T) = v{U)) (5.1) 

What is the relationship between the assuredness theorem an~ the 

notion of output assuredness? output assuredness holds just when for 

each output cell x, one or the other of the following two statements 

is true: (1) the maximum number of words that can be written into 

cell x is a :t'unction only of the initial computation state, or 

(2) the fact that the number of such words has no upper bound is a 

function only of the initial computation state. The assuredness 

theorem says that one of these two statements is true, not just for 

each output cell x, but for each cell x. That is, the assuredness 

theorem asserts complete assuredness, not just output assuredness; 

clearly the assuredness theorem implies output assuredness. It may 

be noted that complete assuredness is a worthwhile design goal in its 

own right, because complete assuredness materially facilitates debugging. 

The remainder of this Chapter is devoted to a proof of the 

assuredness theorem, (5.1). 

The Fonnulation 

The assuredness theorem will be proved by deriving a contradiction 

frc:m the assumption that for the initial computation state S, there 

exists in t(S) two traces, T and U having limit vectors Lt and Lu 

respectively, such that for some cell i, 

L~ 1 L~ 
l. l. 

(5.2) 

198 



* It will be further a~sumed that 

Lu ~ f> /\ (Lt • f> V Lt> Lu) i i i i 

llotice that for the onq other possibility implied b7 (5.2), a 

(5.3) 

contradiction may be derived by intercbangmg the roles ot T and U in 

the f'ollowing argument. 

'l'he argument leading to a contradiction consists of' two parts. 

a b First, two particular runs, R belonging to T and R belonging to U, 

will be constracted. Second, a contradiction ccncerning these two 

runs will be derived. 

!l.'he ConstructiClll 

The concepts ot au@JDented array and edge vector, introduced in 

Chapter r.v, will be used here. !rhe following notation will prove 

convenient: if' a is a lower case Ranan letter, then the augmented 

array ot the run Ba is Aa, and the edge vector of' Aa is 'i'1. 
Let a be the set of' the names ot the cells that are written into 

** at most a finite number of times in the runs ot u. That is, 

a• fn EB: L~,i"} 
where B is the machine M's set of' cell names. B3' asswn.ption (5.3), 

i Ea. 

* The proposition A V B is trae if' and onq if' either A or B or both 
are true. 

**'l'he set £a € A : B 3 , where B is usual.]¥ a :f'unction of' a, is the 
set.ot just those elements of' A for which Bis true. 

199 



Let the predicate 1(·) be defined so that 1(Re) is true if and 

e e u 
on~ if R belongs to T and R exceeds one of the finite limits of L • 

Specif'ica~, 1(Re) is true if and on~ if* 

Assumption (5.3) :iJll.plies that there is at least one run for which 

JC(•) is true. 

(5.4) 

e e For a run R of length o, Ec = 0 tor each cell c. Since for 

each cell c, L~ ~ O, therefore JC(•) is false for the run belonging 

to T and having length o. As was mentioned above, assumption (5.3) 

implies that there belongs to Tat least one run tor which JC(·) is 

true. a Therefore there belongs to T a run R that is the longest run 

for which 1 ( • ) is false. a That is, R is constructed to be the longest 

run that belongs to T and that does not exceed any of the finite limits 

u of L • 

In proving the functionality theorem. in Chapter 'IV, the 

proposition (4-.3) was proved, which says that aey two possible runs 

which have the same initial can.putation state have similar augmented 

arrays. Since all runs belonging to either T or U are possible, and 

since all these runs have the same initial computation state s, 

therefore any two of these runs have similar augmented arrays. Thus it 

is meaningf'u.l to let A0 be the union of the augmented arrays ot all the 

runs belonging to T and u. 

* The proposition (3x)A, where A is usua~ a function ot x, is true 
if and on~ if there exists at least one x such that A is true. 



Figure 5. l shows the Lt, Lu, and Ff boundaries drawn in A 0 • lfotice 

a a t that although E is the edge vector ot the run R , the vectors L 

u and L are not necessarily the edge vectors of' any runs. 

a Having constructed the run R , the next task is to construct a 

b a- b a""' b run R that belongs to U and tor which A ~-A • Since A =A for 

b b any R belonging to U, then R need only be constructed so that tor 

each cell n, Ff ~ Eb. Figure 5.2 shows the position ot the Eb 
n n 

b boundary for the desired R • It will now be shown that the execution 

of the algorithm depicted in flow-chart form in Figure 5.3 always 

b yields a suitable R after a finite number of steps. 

First it will be shown, by assuming the contrary and deriving a 

contradiction, that during the execution of the algorithm of Figure 5.3, 

the "error" exit is never followed. At an instant when the "error" 

exit is followed, U is finite, Rb is the longest run in U, and E: > E: 

b b u for sane cell n. Since every run in U is a prefix of R , then E = L , n n 
a and since U is finite, then n E: a. Since by construction of R , 

1(Ra) is false, then the negation of' (5.4) for Re = Ra is true. In 

other words, it is true that 

(Ra (; ~) V (c){c E a ~ ~ ~ L~) (5.5) 
a Recalling that by construction R E T, and putting c = n, where n 

is that cell mentioned above for which Ff > Eb, n n 

n Ea~ Ff'~ Lu 
n n 

From above, n Ea, and so t3 ~Lu. But from above also, Eb= Lu 
n n n n 

and Ff > Eb, and so Ff' > Lu. This contradiction shows that during n n n n 

the execution of the algorithm of Figure 5.3 the "error" exit is 

never followed. 

201 



Ordinates at which 
one at the limit 
vectors equals ~ 



Figure 5.2. Position of the desired Eb boundary. 

203 



m := 0 

b R : = the run of length m in U 

W := the set of the names of the cells 
that are written ~to one or more 
times during run R 

~--'ll f 
.,,. yes 
.....r;;,,,---~-1---~~-=-~-rs W empty? 

done 

error 

.?igure 5.3. 

n := an arbitrary member of W 

w := f x E- W : x ./: n ~ 

+ i yes b 
'----+----- Is Ea L E ? 

n- n 

! no 

m := m + l 
no 

Is there a run 

t yes 

of length m in U? 

Rb := the run of length m in u 

J 

b Flow-chart of an algorithm for finding R . 

204 



Whenever execution of the test "Is Ea ~Eb?" gives a "no" n --...;;: n 

answer, then a "yes" answer to this test is obtained af'ter a finite 

number of iterations around the lower loop. In order to show that this 

statement is true, it must first be established that whenever t3' >Eb n n 
f f'or some n, then there exists a run R that belongs to U and for 

which E
8 ~ Ff. n n 

u .L f If' L = ~, then R clear:cy" exists, because then there 
n 

is no upper bound on the number of writes into cell n in the runs 

of U. If' Lu 1 ~' then by definition of a, n c a. n 
a Using R E: T 

in (5.5), and as before putting c = n and using n c a, then Ea <.Lu. n- n 

Then Rf' exists for the case in which L~ , ~' because there exists 

some run Rf that belongs to U and for which Ff = Lu. 
n n 

Since the lower loop is entered when 'ff' >Eb for same n, and n n 

since there exists a run Rf that belongs to U and for which ~ ~ ~' 
b f b therefore R is a pref ix of this R and the length of R upon entry into 

f the lower loop is less than the length of R • Since iterations around 

the lower loop increase the length of Rb, then the "yes" exit is sure to 

be taken from the lower b f' f loop when R = R , or sooner. Since R is of 

h II 11 finite length, then t e yes exit 1s sure to be taken from the lower 

loop after a finite number of iterations. 

The "done" exit is taken from the upper loop after a finite number 

of iterations, because the lower loop always takes a finite number of 

a iterations, and because the finite length of R assures that W is 

i F lly i "d 11 b in tially finite. ina , upon ex t at one , R is a run with the 

a desired properties, because for each n such that E ::::>'O, the 
n 

execution of the algorithm has uncovered a run R(n), having edge 

vector E(n), whose length is less than or equal to that of Rb and for 



which 'If ~ E(n). Since tor each such n, R(n) is a pretix ot Rb, n ~ n 

then tor each such n, E(n) ~ Eb, and so tor each such n, Ff1 ~ Eb. 
n ~ n n n 

On the other hand, it n is such that 'If • o, then elearq 'If ~ Eb. 
n n -- n 

b i'hus an R bas been constructed that belongs to U and tor which 

Aa ~Ab. 

The Contradiction 

a The run ll is the longest run in T that does not exceed any ot the 

f'inite liraits set by Lu. c Let R be the run in T ot length OD.e greater 

than the length ot Ra. 'l'hen there exists sOllle cell k into which 

exactly Ill writes occur in Re, where m • ~ + 1. 'Blus f~, i.e., 

~ is defined, but -if~. lfotice that cell k 1a not necessaril.1' 

the same as the cell i mentioned in the asawaption to be 

contradicted, (5.2). Cell k is one ot the tirst "trea119aaers" ot Lu, 

whereas cell 1 is an arbitrary "trespe.seer" ot Lu. 

Let ( .x, y) be d~ined so that A:,. writes ~· Aa shown in Figure 5.4., 

A~ lies just to the right ot the i1 bOunda,ey, and so y • ~· 
c 

By construction, it is known that tor the run R belonging to 'f, 

Ac is executed. 
x:r 

It will now be shown tor each run Rd belong1ug to U, 

-, #Ad ..,..
1

, or in other words that Lu ~ y. x,J. x Thia tact will be shown by 

d assuming the contrary encl deriving a contradiction. Let R be a run 

belonging to U such that ~d ...,..
1

• Since Ac is executed, then by 
Xu· x:f 

c..-v d d ' c 
A =A we have that Axy is executed. Since Axy is k-writing, then by 

Ac:::::_ Ad we have that A~ writes ~ tor sc:ae v ~ x\· Since by 

u :/I.Ac JI. c construction m • Lk + l, then v < m. Since. ,,."lml' then ..-'Altv' anO. by 



Figure 5.4. 

.,.,b 

.c. 

The element A0 
• 

xy 



cr.J d c c 
A =A we have that A-- is written by A • 

c c 
But AxY writes A.km' and -Kv' xy 

v < m. This contradiction shows that Lu ..::::::. y. x-

It will now be shown that Lu = x 
a y. Since y = E , and, by construction 
x 

b 
of R , 

b 
therefore y ~ E . x 

b b u 
But since R G U, then Ex ~ Lx' 

and so u u From the preceding paragraph, L ~ y, and so L = y. x x 
a b The situation concerning the runs R and R is shown in Figure 5.5, 

where for clarity the Ea and Eb boundaries are shaped differently than 

in preceding Figures. In accordance with the construction of Ac 
xY 

and~' Figure 5.5 shows A~ lying just to the right of the Ff' 
0 boundary, and Akrrl lying to the right of, and exactly one position away 

from the Ea boundary. In accordance with the construction of Rb, 

Figure 5.5 shows the Eb boundary lying everywhere on or to the right of 

a u a the E boundary. Since L = y = E , therefore in row x of A0 the Eb 
x x 

boundary coincides with the Ea boundary. Thus Ea = Eb = y = x x 
Figure 5.5 shows 0 b that in row k of A the E boundary 

a with the E boundary. This fact is true because m = ~ + 1. 

u b / Lk = m-1, and so Ek_ !:::::: m-1. 
a b r/3-

Since Ek = m-1, then Ek_ ~ It" 

also coincides 

That is, 

Since 

b a 
the E boundary lies everywhere on or to the right of the E boundary, 

b-......_ a -r13 b u 
therefore Ek -;:;::; Ek. Thus it = Ek = m-1 = Lk · 

It will now be shown that cell x is an enabled clerk cell at 

the conclusion of Rb. As shown in Figure 5.5, let o< be the set of 

positions in A0 to the left of both the Ea and Eb boundaries. Let /3 
o a be the set of positions in A to the right of the E boundary and to 

b the left of the E boundary. 

Let 8 be the transaction associated with Ab • By Aa ~ Ab, e xy 

is also the transaction associated with Aa • Since x might equal k, xy 

208 



P.o 

km 

Figure 5.5. The Ff and Eb boundaries redrawn. 



then f) might be any of the five transaction types. At the conclusion 

of Ra, cell x is an enabled clerk cell that is enabled to perf'orm (). 

In order to show that cell x is also an enabled clerk cell at the 

conclusion of Rb, it must be shown that at the conclusion of Rb 

cell x is enabled to perform tJ. 
b To show that at the conclusion of R , cell x is enabled to 

perform e, two points will be demonstrated: (l) if cell x has 

a read capability for an arbitrary cell r at the conclusion of R , then 

b cell x has read capability for cell r at the conclusion of R , and 

(2) if cell x has write capability for any arbitrary cell w at 

a the conclusion of R , then cell x has write capability for cell w 
b at the conclusion of R • 

Digression. Just as in Chapter "IV, the subscripts on K, N, and D 

will be omitted here, for the same reasons that justified their omission 

in Chapter "IV. Specifically, the subscript of N and D may be taken here 

0 to be A , and the subscript of K does not matter here since all runs 

being discussed have the same initial count matrix. 

Resumption. The truth of point (1) mentioned above, concerning 

read capability for a cell r, is easily demonstrated. Since cell x 

a has read capability for cell r at the conclusion o:f' R , then 

K(x, r, o<.) > 0 

Clearly 

N(x, r, Ci'( U (3 ) ~ N(x, r, o<) 

210 



a b o Since the E and E boundaries coincide in row x of A , then 

D(x, r, ~ U {}, ) = D(x, r, o<) 

'l'herefore 

K(x, r, o( U (3 ) > 0 

b and so cell x has read capability for cell r at the conclusion of R • 

The truth of point (2) mentioned above, concerning write capability 

tor a cell w, is demonstrated by an argument similar to that used 

several times in Chapter IV. First it will be shown that there are 

now-requiring elements in fl, by assuming the contrary and deriving a 

0 0 b contradiction. Let A be an arbitrary element of A such that A is pq pq 

one of the first w-requiring elements in (3 to be executed in Rb. Let RP 

b b b be the prefix run of R that just precedes the execution of Apq in R • 

Figure 5.6 shows the Fl boundary drawn in A0
• 

Let f' be the set of positions in A0 to the le~ of both the Ea 

and Ff boundaries. Let er be the set ot positions in A
0 to the right 

ot the !fl boundary and to the left of the Fl boundary. Let "t' be the 

set of positions in A0 to the left of the Ea boundary and to the right 

of the # boundary. 

b Since A is w-requiring, then pq 

K(p, w, f U 0-) > 0 

Since Ab is one of the first w-requiring elements in I< to be executed pq r 
in Rb, then there are no w- requiring elements in rr . Thus 

N(p, w, f ) = N(p, w, f LJ ~ ) 

and so 

N(p, w, f U t ) ~ N(p, w, f U er ) 

2ll 



Figure 5.6. The ~ boundary. 

212 



Since in row p ot A0 the ~ boundary- lies on or to the left of the I!' 

boundar,y, then 

D(p, w, f U 't ) ~ D(p, w, f U <r) 

!here:tore 

X(p, v, f LJ Z') > 0 

and cell p has read capability for cell w at tbe ooncluaion of Ra. 

It is known that at the conclusion of R8
, cell· x baa write 

capability, 1. e., 10J.e read capabili~, -ror cell v. !heretore p = x, 

and so ~q lies in {J. But in row x ot A0
, the t" boundaey coincides 

with the Eb boundarJ', and so no el.ellent in row x ot A0 can lie 

in /3. Thia ccmtrediction shows tbat there are no v-requirin.g 

eleMnts in {J . 
Let z be an arbitrary cell name, auoh that z ,. x. With the aid 

of !'igu.N 5.5, it will now be shown tbat cell z cloe• not haft read 
b capability for cell v at the conclusion ot R • At the conclusion 

of run R8
, cell x baa write capability tor cell v, and so cell z 

a does not have read capabilit7 tor cell w at the conchtsion ot R • 

'l'heretore 

K{z, v, o<') ~ 0 

Since there are no w-requirina elements in ~ , 

R(z, v, ~ U (3 ) • •(z, w, o<.) 
0 b Since in row z ot .A , the J!l boundary lies eTerJWhere on or to the 

right ot the J! boundary, then 

D(z, w, o<. U f3 ) 3- D(z, w, o<) 

K(z, w, o< LJ~} ~O 

213 



c------------------- ~----

and cell z, an arbitrary cell. not the same as cell x, does not have 

b read capability for cell w at the conclusion of R • 

The above result shows that no cell other than perhaps cell x 

has read capability for cell w at the conclusion of Rb. 'fb.us if 

cell b x bas read capability for cell w at the conclusion of R , then 

cell b x has write capability for cell w at the conclusion of R • It 

a is known that at the conclusion of R , cell x bas write capability 

for cell w, and it bas already been shown that if cell x had read 

a capability for saae cell at the conclusion of R , then cell x bas 

b read capability for the cell at the conclusion of R • Therefore, 

b cell x has read capability for cell w at the conclusion Qf R , 

b and so cell x bas write capability for cell w at the conclusion of R • 

The demonstration of point (2) is now complete. 

It bas been shown that cell x has the same capabilities at the 

conclusion of Rb as it does at the conclusion of Ra. Since~= E:, 

a 'V b and A =A , then cell x bas the same content at the conclusion 

of Ra as it does at the conclusion of Rb. Since cell x is an enabled 

clerk cell at the conclusion of' Ra, therefore cell x is an enabled 

clerk cell at the conclusion of Rb. 

b b u 
At the conclusion of R , Ex = Y = Lx· 

is never written in any run belonging to U, 

is never executed in any run belonging to u. 

Therefore position <x, y+l> 

and therefore position <x, y) 

b Thus, after the run R 

is presented to the user, the cell x, even though it is an enabled 

clerk cell, will never receive a go pulse no matter how long the user 

214 



waits. 'l'his resu1t means tbat the strategy ot M's scheduler is not 

reasonable, and contradicts the tact tbat the strategy of M's 

scbedu1er is reasonable. 

This contradiction proves that assumption (5.2) is false. Since 

the on~ other possibility that (5.2) implies can be contradicted by 

interchanging the roles ot T and U in the preceding argument, then (5.2) 

has been contradicted. 
t u Thus L1 = L1 for each cell i, and the 

assuredness theorem has been proved. 

Q. E. D. 

215 



Chapter VI 

Conclusions and SUggestions f'or J'uture Research 

Introduction 

Previous Chapters have described acme results of research on the 

subject of multiprocessing. 'l'he present Chapter discusses the possible 

eff'ects that this body at results might have in the f'ield at ccmputer 

science and engineering. In discussing the e:rtects of the present 

reaearch, the Chapter pursues two related topics: e:rtecta the research 

might have on applications, and avenues along which the research might 

be continued. 

Asyp.chronous Reproducibility 

'l'he Thesis bas reported on a concept f'or designing a ccmputing 

facility- to meet certain performance criteria. An attept has been 

made to capture the essence ot this design concept by- formulating a 

claBB ot abstract machines called machines f'or coordinated multiprocessing, 

or MCM' s. The performance criteria that an MCM bas been shown to 

satisfy are the criteria of output functionality and output assuredness. 

In showing that an MCM is both output-functional and output-assured, 

it has actua].4 be&n shown that an MCM bas the properties of' ccmplete 

functionality and ccmplete assuredness. Let us sum up these latter 

properties using the term asynchronous reproducibility: to say- that 

the behavior ot an MCJ( is asynchronou.sl.y reproducible ia to say that 

216 



the MCM.has both the property of com.pJ.ete tull.ct:S.~llty·and the 

property ~ oom.plete asaureclnesa. 

'l'he :tact tba:t an )llll's behavior_ is aap.ehroaQUeq reproducible 

means that i:t one a~ up -an Mell· on two dittw•i·CMCM:S.OU tram the 

sam.e arbitl'U7 ini:tial CClaP\ltat:J,.on ~tate, ~:-toi- •eh. ceU., .QD.e will 

observe the same sequeace ~ words WJ:'ittea ~to.·tAe c•~ d\U'iag both 

com.putations, provided one does not prema_..q a'bort .-~r or both 

~ the com.putations. 'l'he adjective "asynchronous" aeans "without 

regard to the relative timing among them". Thus as~ 

reproducibility M8U tbat the aequenceot words vrittu into·each 

cell is reproducible, bv.; tllat the .relatin t:l.miag ~ 'ti~ procmction­

of such sequences tor several ce.lls:is not nec.eavlli'·nPl!'~ible. 

!!t Con4ittonal .. ture ot .Aeaehroa!u!. BIP!odupiiiU§Y 

As111chroa~ nsproducibUit7 cl.oaf~ .-n taa:t,-1'5.'8·. tctua~ 

possible to start ·UP an 11:¥ tram. tbe aaae,. arbitRl"J' ,j,ait1-l com.putation 

state on two ditterent OCQaSiOlllS. AaJnohrQllOU .. NP~j.\>ility ~ 

on:cy that i:t an JOI is started up from 1lhe ,,_e, a:r;obitraey: initial 

canputation state QD. two clif:terent occ;aai()G8,. tmm the., . ..- aequences 

ot words will be written into its cell.a· ~--·both ocoea,t.ona, provided 

the canputations are not prematur,:q aborted. 

Consider a f'acillty in which a clerk is able to obtain fraa a 

clock device the date and time of ci&J.'• It 1a IOSti'ble·)tor the behavior 

ot such a facility to be asynchronousq reproduo~ble, even thcmgb &D¥ 

given instance ot its 1*lav1or cannot actual:q be.repl'QeluCed· 1'!le 

sequence of values read traa the clock device 9~t1tutesan input 

217 



stream to the facility. In deciding whether the facility has 

asynchronously reproducible behavior, we must ask ourselves, 11 I:f' the 

clock input stresm were reproduced, along with all other initial 

conditions, would the facility's cell histories be reproduced?" I:f' 

and only if' for all initial conditions, including clock input streams, 

the answer to this question is ''yes", then the facility has 

asynchronously reproducible behavior. 

Repeatable Input Streams 

To prevent the occurrence of lurking bugs of' the two types 

mentioned in Chapter I, it is sufficient to construct a facility with 

asynchronously reproducible behavior. In practice, however, a user 

of such a facility will not benefit from the facility's asynchronously 

reproducible behavior unless be is able to repeat at will the initial 

conditions of a computation. Thus, when a facility is constructed to 

have asynchronously reproducible behavior, it is a practical necessity 

that the facility also be constructed to allow a user to provide, say, a 

previously prepared tape as a substitute for any input stream not 

normally under the user's control. SUch an input stream might be, for 

example, the sequence of values read from a clock, or the sequence of 

responses obtained from requests for access to a "common file" shared 

by several users. 

From the point of' view of the designer of' a facility, the 

requirement that the facility have repeatable input streams means the 

following: a clerk must not be allowed to read any quantity that in 

the midst of a computation might be affected by external influences 

218 



and tor which the designer is not w1ll1ng to Pl"OTide a mecbaniBIR 

all.owing a user to repeat at will the quantit7 1s sequence ot values. 

For example, based on this requirement, a deaigller might choose to 

not allow a clerk to sense the state ot llelllOr1' all.ocation, and lligbt 

choose to not allow a clerk to read a t:fpler register tllat tell.a when 

the clerk's current processing unit will start pla71ng the role ot 

another clerk. For still another exaaple, suppose the designer ot a 

tacillt7 does choose to allow a clerk to read the time ot da7, and 

therefore also chooses to allow a user to switch the tacillt7 between 

reading the time ot da7 and reading, sat, a previous:cy- prepared tape. 

Consider the designer's dilema now in deciding whether to allow this 

switching between the clock and the tape to be perf'omed by a clerk as 

well as b7 a user. ~e requireaent ot repeatable inputs 1Daed1ate:cy­

resolves the issue: to all.ow such switching b7 a clerk would be sel.:t­

detee.ting, because, as a result ot a prograa bug, and without the 

user's knowledge, a clerk might start reading the time ot da1' instead 

ot the prepared tape. 

Clear:cy- the requirement ot repeatable inputs, like the requirement 

ot asynchronous reproducibility-, is a strong design criterion in the 

sense tbat it serves to eliminate trom. consideration m&!Q' possible 

system designs. 

State Input Streams 

In Cbapter III it was .mentioned tbat the state input stream o:t an 

input or output device is usual:cy- not repeatable at the will ot the 

prograomer. To allow a prepared tape to be substituted tor a state 

219 



input stream, however, is likely to lead to difficulties. For 

example, a clerk may sense f'ran a tape-simulated state input stream 

that a device is "rea~" when in f'act the device is not. The device 

might then be sent an improper canmand, which could cause the reading 

or primary input stream values dif'f'erent f'rom the values intended by 

the user. The problem of designing an input or wtput device so that 

its behavior can be repeated in synchronism with a canputation is a 

good subject f'or future research. 

The Hans-Up Phenaaenon 

An interesting phenanenon that can occur in an MCM is the ,E!:!!S-,!!E· 

In the canputation states, a clerk cell x is hung up if' and only if' 

the f'ollowing two statements are true: (l) clerk cell x will never 

becane enabled in any canputation that proceeds tran the computation 

states, and (2) the truth of' statement (l)-can be established by 

examining only the canputation state s, and the types and operand 

names of the transactions in the MCM's transaction tables. Statement (2) 

means, in particular, that the existence of a bang-up depends neither 

on the potential occurrence of an endless loop, nor on any other f'act 

that can be discovered only through what would be in ef'f'ect a simulation 

of' each ccmputation that can proceed f'ran the canputation state s. 

An example of a canputation in which clerk cell x is hung up 

is one in which clerk cell x requires read capability for a cell 1 

in order to be enabled, and in which no cell at all bas read capability 

f'or cell 1. 

220 



It is also possible for two clerk cells to be mutually hung up. 

For example, consider a computation state in which a clerk cell x 

requires read capability f'or a cell i in order to be enabled, and 

in which a clerk cell p requires read capability for a cell k in 

order to be enabled. Then clerk cells x and p are both hung up 

in any such computation state in which clerk cell x has read 

capability f'or cell k, and clerk cell p has reed capability for 

cell i. 

Clearly one can have more than two clerk cells mutually bung up on 

each other, and it is not difficult to construct examples of complex 

hung-up modes in which an arbitrary number of clerk cells are hung up 

for a variety of reasons. 

The assuredness theorem says that the effects of an MCM bang-up 

are reproducible in the following sense. If during a computation f'ran 

an initial computation state s, a user observes that clerk cell x 

is hung up after exactly y writes have occurred into clerk cell x, 

then during any subsequent computation f'rom s, the user will observe 

exactly y writes into cell x and no more, provided he waits 

long enough. 

It is possible that not only the effect but also the mode of an 

MCM bang-up is reproducible; this possibility is a worthwhile subject 

for future research. 

It appears that a hang-up results from an inconsistency in the 

specification of the computational activity, as f'or example if one 

221 



tried to program. the simultaneous execution of 

a := g(b) 

by one clerk, end 

b := f(a) 

by another clerk. A contemporary facility might respond to this 

ambiguity bJ' making an arbitrary choice as to which statement to execute 

first. A facility that behaves like an MCM, however, would always 

respond to this ambiguity by banging up. 

The bang-up mode in which no cell at all bas read capability for 

some cell can be avoided by using the concept of ownership discussed 

in the next Section. The cataloging of other bang-up mod.es and the 

:finding of methods to avoid these modes are topics :for :l"uture research. 

Ownership 

It is possible :for the cells o:f an MCM to perform enough dones of 

sane cell i so that no cell has read capability for cell i. After 

such a total relinquishment of cell i, no cell can ever again obtain 

read capability :for cell i, because read capability for cell i can 

on~ be obtained as a result of the action of a cell that already bas 

read capability for cell i. 

The concept of ownership is a method of preventing total 

relinquishment in a :facility that behaves like an MCM. It is hoped 

that the following explanation of this concept will be of assistance 

in the search for ways to prevent hang-up modes other than total 

relinquishment. 

222 



When the ownership concept is employed in a facility, then :tor 

each part n, such as a segment, clerk, input device, or output device, 

there is in every ccaputation state either exact:cy- one part, or 

exactq one unused name, that is the owner of the part n. 

Clerk x is the owner of, say, segment n i:t and only i:t a 

special ownership _ill at position <x, n >of the control matrix 

is on. The :tact that clerk x is the owner at segment n means the 

following: an enormously large number, say 
(1010) 

10 

is considered to be added to the integer at position ~x, n~ ot the 

control matrix, and the result is considered to be the number at 

position <x, n) of the control matrix for the purpose of determining 

capabilities. Thus the owner at a part always has read capability 

ror the part. 

Ownership of the segment n may be conveyed from clerk x to 

clerk e by clerk x's execution of the procedure step 

convev 'n' 'e' • m=li!!I 1 I 

Ex:ecution of this procedure step turns on the ownership bit at 

position <e, n) of the control matrix, and turns off the ownership 

bit at position (x, n > of the control matrix. 

The use of ownership in a facility that behaves like an MCM does 

not imply a modification to the MCM design as presented in Chapter II. 

The canbination of ownership bit and integer in a control matrix element 

is just a special way o:t encoding an extremely large count. E:x:ecutions 

of send's and done's affect only the integer parts of control matrix 
-- ==== 

elements, because in practice it is impossible for enough !!11~ 1 s and 

223 



done's to be performed to affect ownership. The transfer of ownership ==·· 
brought about by an execution of a g_onve1 procedure step corresponds 

to the performance in an MCM of the (7.1) number of send transactions, 

followed by the performance of the (7.1) number of done transactions. 

Qu.estions of Necessity 

Questions that should prove very stimulating to :ruture research 

are questions of the form, "Is property A of the MCM design necessary 

for satisfying performance criterion Bt" For example, the question 

raised in Chapter IV concerning whether complete :f'unctionality is 

necessary for output :f'unctionality is a question of this type. fb.e 

key to the proper formulation of such questions of necessity is to 

recognize that their proper formulation requires a framework broader 

'f;han that of the MCM design itself. Tb.at is, in order to state such 

questions, one must have in mind a class of machines for multiprocessing 

that includes the class of MCM's. Then with respect to this class of 

machines, property A is necessary for criterion B if and only if the 

sub-class of machines satisfying criterion B is included in the sub-

class of machines having property A. 

Let us consider what a reasonable class, µ, of machines for 

multiprocessing might be. The class µ ought to include the class 

of MCM' s. Also, µ ought to include a class of machines that are models 

of contemporary facilities for multiprocessing. One such class of 

machines is the class of machines that are like MCM's, but that have no 

count matrices, and that have schedulers which transmit go pulses 

according to arbitrary schemes. 



The class µ consisting of just MCJl's and cont•porary 111ltiprocessing 

models is not veey :interesting. For example, recall tr.ca Chapter I 

that contemporary tacilities for lllUltiprocessing are not, in general, 

output-:tunctional. It was shown in Chapter IV, however, that JD('s 

are output-:f'uncticmal. 'J!ieretore, with respect to the class µ as 

developed so far, the count matrix and enabling rules found in the Ma.f 

design are, in a trivial sense, neceaaar;y tor output tunctionallty. 

To make a non-trivial assertion of the necesait7 ot sane MC>! 

feature that is not tound in any contemporary facility, one must include 

inµ more machines than just Ma.t's and models ot contemporary 

f'acillties. What might be the structure ot these additional machines? 

The ean.putation state ot such a machine might be given by a vector of 

state variables. Sane ot these variables would be s1111 Jar to words in 

MCX cells, in that their histories would be ot interest. in the criterion 

ot asynchronous reproducibility. The rest ot the variables in the 

can.putation state Tector would be similar to elellents in an MCM' s 

count matrix~ in that their histories would not be ot interest in the 

criterion of asynchronous reproducibility. Each active element ot 

such a machine might be memoryless, but might have "tentacles" 

extending to sane subset of the canputation state variables. Upon 

receipt of a go pulse, an active element would read the variables at 

the ends ot its tentacles, and then give new vahles to sane or all of 

these variables, according to its "wired in" properties.* Go pulses 

* 'l'his scheme was suggested by R. Gamm.ill. 

225 



would be transmitted to active elements by a scheduler on the basis 

of both current canputation state, and other influences. 

If' the class µ is augmented by including in it, say, the class of' 

"tentacle" machines described above, then a search for the answers· 

to questions of necessity with respect to µ would amount to a study 

of the properties and performance of' various specializations of the 

"tentacle" structure. A further exploration of such questions of 

necessity is left tor :future research. 

Toward a Science of Computer Design 

As was mentioned previously in the Chapter, the criteria of 

asynchronous reproducibility and input repeatability pl.ace strong 

requirements on the design of a computing facility; that is, these 

criteria serve in the design process to eliminate from consideration a 

greet many possible designs. 

Computer design today is an art. Today an engineer designing a 

computer cannot help but be worried that the apparently arbitrary 

decisions he makes may prove wrong or inconsistent when his canputer 

is used in sane application. Designers have too much choice; criteria 

must be formulated which serve to determine es many aspects of a 

computer's design as possible. The development of' such criteria helps 

to turn computer design from en art into a science. 

A science of computer design must be based on :f'undamental principles 

of at least two kinds: (1) performance criteria, and (2) postulates 

characterizing the technological and economic environment. An example 

of a postulate might be, 11The cost of' high-speed, randan access memory 

226 



will never be low enough to eliminate the need tor a storage hierarchy." 

Once a satistactory set at criteria and postulates has been tormulated, 

then one may deduce, rather than design, the structure ot a computer. 

Of' course, several sets of criteria and postulates might exist, each 

appropriate tor a difterent class of applications. 

The present research has contributed toward the reduction of canputer 

design fran an art into a science by displaying the performance criterion 

at asynchronous reproducibility, and by showing that it is possible to 

satisfy this criterion with a reasonably economical computer design. 

The present research, however, is merely a beginning; the seeking of 

criteria and postulates tor a science ot computer design is a most 

fruitful subject tor future research efforts. 



.Appendix A 

'l'he Bon-Redundancy ot Bye Transactions 

In Chapter II's Section on send, done, and bye transactions, it was 

mentioned that bye tranaacticma are not redundant 1n the JOI design. This 

assertion will now be explained 1n more specific te:rma. 

Consider the class ot events wb1ch we 8halJ. call events !!J.. .m! A• 

An event ot type A is said to have oc~ed just when both o~ the following 

statements are true: (1) at one instant BCllle cell z bas write capability 

tor itself, and (2) at a later instant acne 9tber cell has write capab~ty 
,l;. 

tor·cell x. 

If' bye transactions are included in the MCM design, then an MCM can 

be constructed in which an event ot type A can occur. For example, suppose 

that at sarie time t 1 weey element 1n column x ot an M<J('s count matrix 

is zero, except that the element at position <x, x> equals one. n.ir1ng 

the interval between time t 1 and sane later time t 2 let cell x 

pertom a bye to e tor sarie. e not equal to x, and let this performance 

be the only perf'Ol'DJ.8.nce ot a transaction by any cell between the times t 1 

and t 2• At time t 2, eveey element in column x ot the count matrix is 

zero, except that the element at position ~' x> equals one. 'l'he 

circumstances ot this example constitute an event ot type A. 

It bye transactions are excluded tran the MOM design, then no MCM 

can be constructed in which an event ot type A can occur. This tact will 

be proved by assuming it is tal.se and deriving a contradiction. That is, 

it 1s now assumed that there exists an MCM which does not perf'om bye 

228 



transactions, but in which an event ot type A can occur. In order to 

describe the event ot type A which can occur in the assumed Maf, 

let t 1, t 2, and x be chosen so that at t:lm.e t 1 the cell x bas 

write capebilit7 tor itsel:t, and so that at the later time t 2 saae 

other cell has write capabillt:r tor cell x. 

As shown in Figure A.l, cell x performs at least one done ot x 

in the interval between t 1 and t 2• Let .a denote tbe computation 

state transition during which the la.at su,ch done is pertOl"'llled· By the 

enabling rule for dones, cell x has write capabilit:r tor itsel:t just 

bef'ore the transition a. 'l'heref'ore, no aenda ot x are performed 

during a, and so just atter a, no cell, other than perbape cell x 

itsel:t, has read capability tor cell x. 

Since at time t 2, cell x does not have read capability tor 

itsel:t, then by construction ot a, we know that just .U-ter a cell x 

does not have read capability tor itsel:t. Therefore, just after a 

no cell at all has read capability -:tor cell x. 'l'hua, after a bas 

occurred no cell can ever again have read capability tor cell x, 

because every transaction that adds to an element in column x ot the 

count matrix requires read capability tor cell x in order to be enabled. 

The above result contradicts the fact that some cell has write 

capability tor cell x at the time t 2• This contradiction means that 

if' bye transactions are excluded from the MCM design, then no M<>I can be 

constructed in which an event o-:l type A can occur. As ws shown 

previously, the inclusion ot bye transactions in the MCM design does allow 

events of type A to occur, and so bye transactiona are not redundant. 

229 



Cell x has 
write capability 
for itself'. 

Some cell other than 
cell x has write 
capability tor cell x. 

The computation state transitions that 
occur between the times t 1 and t~, 
and during which cell x performs 11 
done ot x. 

The instant 

The transition a-----

The instant just after o;_...-

Figure A.l. Events of interest in the demonstration ot the 
non-redundancy- ot bye transactions. 

230 

time 



Appendix B 

Well-Defined MCM' s 

The notion of a well-defined MCM was introduced near the end of 

Chapter II. Presented here is both a more precise definition of' a 

well-defined MCM, and a condition sutticient for an MCM to be well-

defined. 

An MC>f is well-defined if' and o~ if' during each caaputation 

pertormed by the MCM, every caaputation state held by the MCM is 

proper f'or the MCJI. An MCM holds a canputation state that is proper 

for it if' and on~ if' both of' the following statements are true for 

each cell x: {l) to cell x's content there corresponds a transaction 

in cell x' s transaction table, and {2) if' cell x is an enabled 

clerk cell that would upon receipt of' a go pulse, pertorm 

get of i replace f'{•) 

* then cell i's content belongs to the danain of' f'{·). 

A condition will now be presented that is suf'ticient tor an MCM 

to be well-defined. For each cell x, consider the set, W{x), of' words 

cell x might hold. The set W{x) contains: (1) each word that 

cell x holds in any initial computation state, {2) each word that is 

the replacement word of' any transaction listed in cell x's transaction 

* The danain of a function is the set of' arguments for which the function 
is defined. 

231 



--- ---- ------ --------~--·-------··· -·--·----- ---~-v---------~--

f~'!.i .'; ~. 

* table, (3) each word in the range ot the replacement tunotion ot 8D1' 

get listed in cell x's transaction table, and (4) each word that is 

the operand word ot a put baving operand name x and listed in aD1' 

transaction table except cell x's tranaaction table. !lhus W(x) is 

sure to contain ne17 YOrc1 tbat cell x vill ever hold, but W(x) 

may- contain sane word8 that cell x will never hold. 

An MCM is well-def'ined tt, but not necessariq onq tt, both ot 

the toll.owing statements are true for each cell x: (1) cell x'a 

transaction table lists a transaction to correspond to each diatinct 

word in W(x), and (2) W(x) is a subset ot the danain ot the repi.acement 
; .. ' .. 

function ot each get having operand mune x and listed 1D •?11' 

transaction table. 

* The range ot a tunction is the set ot the tunction'a poaaible 
output values. 

232 



Appendix C 

SUmnaey of Rotation 

The set-theoretic and logical notation introduced in footnotes, 

principally in Chapter IV, is aum1&r1sed here. i!le n\Dber in 

parentheses folloving the explanation ot a symbol gives the page on 

which the symbol was tirst uaed. 

The subsets ot the set {a, b ~ are the sete: [ S (the •Pt)'° aet), 

{a 3, [ b ~ , and {a, b ~ • (p. 43) 

The proposition A ~ B 1' true it and on;cy- it A 18 111.clllded. in B, i.e., 

it and on:Qr it A is a subset ot B. For example, fa~· s;;;; [a, b~ , 

fa, bS ~fa, b~, and l ! c [a, bJ, where f { is the 
•pty set. (p. 143) 

'l'b.e proposition A E: B is true it and ~ it A belongs to B. For 

example, a E [a, b ~ •. (p. 139) . 

The proposition A ¢ B is true it and on~ it A does not belong 

· to B. (p. 149) 

The union of ~a, b ~ and fa, c ~ is }a, b, c 1 · (p. 162) 

The set A U B is the union of A and B. (p. 171) 

The ordered n-tuple <a1, a
2

, ••• , an) is equal to the ordered m-tupl.e < b1, b2 , ••• , bm) if' and on~ 1:f' n = m, and a1 = b1, and a2 • b2 , 

and ••• , and an= bn. Thus, for example, [a, bj = {b, aj always 

but <a, b) = ~' a) on~ 1:f' a = b. (p. 56) 

233 



The set JrF is the dana.in of the :function F, i.e., the set of arguments 

for which F is defined. A sequence may be thought of as a :function 

that takes an integer i into the i-th element of the sequence. Thus, 

for example, the danain of the sequence <T1, T2, ••• , Tm) is 

the set [ 1, 2, ••• , m ~. (p. 139) 

The proposition--.A is true if' and ~ if A is not true. (p. 163) 

The proposition A /\ B is true if' and on:cy if both A and B are 

true. (p. 144) 

The proposition A V B is true if' and only if' either A or B or both 

are true. (p. 199) 

The proposition A_.... B is true if' and on:cy- if A implies B, i.e., if' 

and on:cy if either A is false, or both A and B are true. (p. 144) 

The proposition (x)A, where A is usually a :function of x, is true 

if and only if' A is true for every x. (p. 144) 

The proposition (3x)A, where A is usually a :function of x, is true 

if and only if there exists at least one x such that A is true. 

(p. 200) 

The set {a 6 A : B ~, where B is usually a :function of a, is the 

set of just those elements of A for which B is true. (p. 199) 

234 



References 

1. .Anderson, J. P. Program structures for parallel processing. 
~· ACM.§ (Dec. 1965), 786-788. 

2. Bottenbruch, H. Structure and use of' AWOL 60. J. ACM 2 
(Apr. 1962), 161-221. - -

3. Conway, M. E. A multiprocessor system design. JiFll>S Conf. Proc. 
24 (Nov. 1963), 139-146. Spartan Books, Baltimore:-- -- --

4. 

6. 

1· 

8. 

9. 

10. 

11. 

12. 

/ Corbato, F. J., and Vyssotsky, v. A. Introduction and overview of 
the Multics system. AFIPS Conf. Proc. :?I (Nov. 1965), 185-196. 

Corbat6, F. J., Merwin-Daggett, M., and Daley, R. C. .An 
experimental time-sharing system • .AFIPS Conf. Proc. 21 (May 1962), 
335-344. National Press, Palo Alto, CalU:-- -- --

Crisman, P.A. (Ed.) ~Compatible Time-Sharing System!::. 
Programmer's Guide. M.I.T. Press, Csmbridge, Mass., 2d ed., 1965. 

Daley, R. c., and Neumann, P. G. A general-purpose file system for 
secondary storage. ~ Conf. Proc. :?I (Nov. 1965), 213-229. 
Spartan Books, Baltimore. 

Davis, M. Computability~ Unsolvability. McGraw-Hill, New 
York, 1958. 

Dennis, J. B. Se@llentation and the design of multiprogrammed 
computer systems. i!_. ACM ]g (Oct. 1965), 589-602. 

Dennis, J. B., and Van Horn, E. c. Progranuning semantics for 
multiprogrammed computations. Comm. ACM.,2 (Mar. 1966), 143-155. 

Dijkstra, E. w. Cooperating Sequential Processes. Mathematical 
Department, Technological University, Eindhoven, Netherlands, 
Sept. 1965. 

Dijkstra, E. w. Solution of a problem in concurrent programming 
control. Cooun. ~ .§ (Sept. 1965), 569. 

13. D825 !l2§E.. Burroughs Corp., 1963. 

235 



14. Fano, R. M. The MAC system: the canputer utility approach. 
Jig Spectrum g (Jan. 1965) 1 56-64. 

15· Glaser, E. L., Couleur, J. F., and Oliver, G. A. System design 
of a canputer for time-sharing applications. ~ ~· ~· fil. 
(Bov. 1965), 197-202. Spartan Books, Baltimore • 

. , 
J.6. Holland, J. A universal computer capable ~ ,.xecut~ an arbitrary 

number of sub-programs simultaneously. Proe. Eastern~ eari;euter 
~., Dec. 1959, 1Q8.. ]Jd, · Aseoo-. . for ~, ~·,. •ew:. lork. 

' 

17. ~ 7.222. ~Processing System Reference MBnual. I.B.M. Corp., 1962. 

J.8. J1!! 7090h094 Pr."'PS 3y:ttps,~ ,S M!9bai ProS;ry. !FAF). 
I.B.M. Corp., l 3. 

20. Knuth, D. E. Ad41tiOD.&l c~ts on a. l>J.'9b.laa.. in. ,.conc~ent. 
programming control. ~· ~ .2 (~ 1966), 321--~· 

21. Maurer, w. D. A theory Of canputer. instructi~,;; i!.• M!! 1:2 
(Apr. 1966), 226-235· . · . . : 

22. McCa~, J., et al. ~ l.5 Proqapaer's M!lpull. M.I.'r. Prese, 
Cam.bridge, Maf!B., 1962. . . 

23. Programmed~ Processor-.! Manual. Digital F.(iuipment Corp., 
Maynard, Mass., 1962• 

24. 

25. 

26. 

Rabin, M. o., and Scott, D. Finite autanata and their decision 
problems. IBM.!!• !!!.• Dey • .l (Apr.; 1959h· UJj.,125. 

. . 
Suppes, P. Axianatic ~ Theory• Van Nostrand, Princeton, 1960. 

. ~ . 
Vyssotsky, v. A., Corbato, F. J., e.nd ~wham, R, M. Structure of 
the Multics supervisor. ~ ~· ~· fil. (:Nov. 1965), 203-212. 
~rtan Books, Baltimore. 



Biographical Note 

Earl Cornelius Ven Horn, Jr. was born in Cincinnati, Ohio on 

January 24, 1939· He attended the Cincinnati public schools, graduating 

from Walnut Hills High School in June, 1957. He received the S.B. 

and S.M. degrees in Electrical Science and Engineering from the 

Massachusetts Institute of Technology in June, 1961, and February, 1963, 
respective:cy. In June, 1965, he was married to the former Sandra Ann 

Wallaesa of Cherry Bill, New Jersey. 

In 1962 Mr. Van Born was e Teaching Assistant tor the M.I.T. 

Electrical Engineering Department. In 1963 he was a Research Assistant 

tor the M.I.T. Electronic Systems Laboratory, the facilities of which 

he used in his Master's thesis research concerning a computer-controlled 

psychological experiment. Since 1963 he has been a Research Assistant 

tor M.I.T. 's Project MAC, which has supported his current research in 

the field of computer system organization. 

While in high school end college he pursued interests in theatrical 

lighting end audio technology. During SUlllller vacations he worked for the 

General Electric Company on instrumentation tor jet engine testing, for 

the Bendix Corporation in the testing of digital systems, tor the 

Aerospace Corporation in research on digital adaptive control systems, 

end for Information International, Inc. on the preliminary design of a 

digital computer. In recent years he has had the opportunity to serve 

es consultant for Computer Control can.peny, Inc., Honeywell, Inc., and 

Abt Associates, Inc. 

Mr. Van Horn is a member of Tau Beta Pi, Eta Kappe Nu, Sigma Xi, 

the Association tor Computing Machinery, end the Institute of Electrical 

and Electronic Engineers. He is co-author of two publications: 

A computer-controlled experiment in human prediction. Fourth National 
Symposium on Human Factors in Electronics (Mey 1963). Institute of 
Electrical end Electronic Engineers, New York. (with L. Sterk) 

Programmine; semantics :for multiprogrammed computations. ~· ACM .2 
(Mar. 1966), 143-155· (with J. B. Dennis) · 



This empty page was substih1ted for a 
blank page in the original document. 


