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PREFACE 

This thesis began as a series of vague, groping memoranda. The com­

puter program at the center of this work was operational -- in an early 

form -- long before it was clearly understood. 

That a thesis ever condensed out of such vapor is largely to the credit 

of T. E. Cheatham, Jr., C. Christensen, Michael J. Fischer, Anatol W. Holt, 

Joel Moses, Anthony G. Oettinger, and Kirk Sattley. These men served as 

filters for a body of material which by volume, if not by weight, far outstripped 

the present thesis. 

During the final throes, many of my friends had the good sense to avoid 

me. They, too, made an inestimable contribution. 

This thesis could not have been produced had I not had access to the 

computational facilities of Project MAC, an M. I. T. research program 

sponsored by the Advanced Research Projects Agency, Department of 

Defense, under Office of Naval Research Contract Number Nonr-4102(01). 

Richard G. Mills, Assistant Director of the project, was particularly 

cooperative in alloting great quantities of unique -- and therefore priceless 

-- resources. This thesis, having had this support from MAC, may be 

reproduced in whole or in part for any purpose of the United States Govern­

ment. 

Any felicities of style which this thesis may have are due to the patient 

and incisive attention of Professor Oettinger. His cheerful service far 

exceeded the call of his duty as my advisor. 

The original thesis was prepared on the Compatible Time-Sharing 

System at MAC. It was expertly typed into that system by Miss Eileen 

Gannon. While preparing the manuscript, I received important advice from 

Jerome H. Saltzer and J. Anthony Gunn. Preparation of the manuscript was 

supported in part by Project TACT, a Harvard research program sponsored 

by the Advanced Research Projects Agency, Department of Defense, under 

Contract Number SD-265. 

iii 



SYNOPSIS 

This thesis describes an appr·oach to the problem of programming a com­

puter for algebraic manipulation. The motivating threads of the work are 

first picked up in Chapter I. 

To test the descriptive intuitions urged normatively in Chapter I, an 

experimental system was actually implemented. This system is described 

in Chapter II and in the Appendices. 

The system was variously exercised, as reported in Chapters III, IV, and 

V. In addition to certain examples, Chapter III includes a more speculative 

discussion of the range of the system. 

The exercises chosen for Chapters IV and V (algebraic "simplification" 

q.nd "limit problems," respectively) proved to be worthy of some discussion 

not related to the system under test. 

Finally, Chapter VI is a mass of hindsight, reconsideration, and evalua­

tion. On the basis of the experience described in preceding chapters, future 

directions of work are suggested. 
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CHAPTER I 

INTRODUCTION 

This thesis is concerned with a program for on-line algebraic manipula­

tion. The program, called FAMOUS (my Algebraic Manipulator for 

On-line USe), is thoroughly described in Chapter II. The presentation in 

Chapter II is complete, but it has rather a cookbook tone. Chapter III is a 

more reflective attempt to define the power and nature of the system. Alge­

braic "simplification" has been a benchmark of algebraic manipulators, and 

it is discussed in Chapter IV. A more novel application, that of limit prob­

lems is discussed in Chapter V. Finally, Chapter VI consists of miscella­

neous remarks about possible and impossible lines of further work. 

FAMOUS is an on-line system for the manipulation of linguistic forms. 

Although these forms can have quite arbitrary interpretations, the standard 

interpretation will be that they are algebraic expressions. The system is 

prejudiced toward algebraic expressions by the following design features: 

(1) FAMOUS expects that some expressions will be subject to evalua­

tion. The system includes an evaluation operator and subroutines for 

many common mathematical functions. In addition, the system includes 

facilities which allow the user to define new functions and to redefine 

old ones. 

(2) FAMOUS expects that unspecified, but trivial, syntactic transfor­

mations will be able to take external expressions to and from composi­

tions whose phrases are 

(A) atomic expressions, such as 1 3 1 and 1x 1 , and 

(B) lists, each consisting of 

(i) a function name, such as 1+ 1 or 1sin 1 , 

(ii) phrases, fixed in number by the function name, which 

are arguments of the named function. 

(3) Some problems associated with Abelian-group operators were 

not understood when the present FAMOUS system was implemented. 

(See§ 6. 1.) These operators are, for example, seriously cramped 

when each is permitted only a fixed number of arguments. 
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Toward the end of getting a system on the air, and in the belief that 

one insightless scheme would be as good as any other, FAMOUS was 

given special ad hoc preparation for dealing with the Abelian-group 

operators. 

(4) Throughout, I have been forced to make programmer 1 s judgments 

of the relative likelihoods of various pairs of user actions. These 

judgments reflect my feeling for algebraic manipulation. 

On the other hand, a restriction to algebraic expressions is not neces­

sarily much of a constraint. FAMOUS allows its "algebraic expressions" to 

include arbitrary functions which may or may not be defined. In this way, 

regular non-algebraic constructions may be concealed as arguments of 

ad hoc functions. 

Rules of local change are the heart of FAMOUS. These rules are all 

supplied by the user: FAMOUS does not know that x+ 0 goes to x any more 

than it knows that v goes to ds/dt or that v goes to lwh. 

Using these rules, FAMOUS looks at an algebraic manipulation as a 

series of local changes. Localness (or, more euphoniously, proximity) 

is not easy to define. It is not merely typographical, since the "x" and 11 y" of 

x + y + z 

are no more local to each other than the "x" and "z". 

The centrality of proximity in FAMOUS was originally prompted by the 

austere elegance of ~.::-theory [ 11, 30] , which might, indeed, be called the 

study of proximity. While FAMOUS was being developed, however, a number 

of remarkable and perversely encouraging results were announced by Daniel 

Richards on ( 20] . 

It seems that all of the interesting non-local properties of algebraic 

expressions are recursively undecidable. Richardson explicitly proves that 

"identical to zero" is undecidable, and the other properties (e.g., "linear 
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in 'x' ")are derivatively murky.* To those with a Turing-Church ontology, 

only the local properties(~., "literally 'x+Z' 11, "of the form 1x-x' ", etc.) 

are real. 

The linguistic notions of Quine [ 1 7, 18, 19] have shaped FAMOUS in 

several different ways. The distinction between use and mention [ 18, § 4] , 

for example, is maintained with some care throughout. 

The most striking Quinian notions taken up by FAMOUS are those of 

referential transparency and opacity [ 19, § 30] . Because FAMOUS always 

stands ready to evaluate the expressions with which it deals, referential 

transparency is the rule. But even "algebraic expressions" occasionally 

include opaque functions. The definite integral operator is possibly not 

opaque, since one might reconstruct 

b 

3 

s xzdx (1) 

a 

as 

definiteintegral (a, b, X.x. x 2) (2) 

so that "x" is no longer an apparent argument of the integration. But now 

the inescapably opaque X. is introduced. 

There would be some elegance in the restriction to a single opaque 

function. Nevertheless, FAMOUS will do its best for the user who introduces 

forms like (1). The precision of. (2) is bought at the price of some naturalness, 

and the system can cope with a growing set of opaque functions as easily as it 

could cope with a single such function. 

One other feature of FAMOUS should be mentioned in this introduction. 

It has been mentioned that FAMOUS stands ready to evaluate the expressions 

which it handles. In addition, certain constructed expressions are evaluated 

as part of the process of applying FAMOUS' rules. Naturally, a function 

must be defined if it is to occur in an expression which is to be evaluated. 

*For example, is 1 (f(x)* sin x + 3 )*x' linear in x? It is if f(x) is identical 
to zero. 

-- ---"--------------
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f'A\10PS curncs tu the user with a ~air nuu1lwr of lLdlction:o already 

defined. These c;:cnnol be c'xpc:ctccl to bLe c·nuugh, of course, so FA\10lTS is 

equipped\\ ith a pm,·<'riul '.·acilit, fur definition and rt"clefinition of functions. 

This dcfinit ion Lie il ity \\as inspired by the Adv ice Taker ,,·ork of 

.\lcCarthy [I)] , although it is by no rneans as arnbitious. Tht' Ach ice 

lcik<'r is a thesis s1:b.cct in itself, and the FAlvlOCS function-definition 

facility \\ill gL'l lilt]<" :it<c·nt;on in this thcsis. [ Wa.rl"l'l1 Tc,it,·lrnan has bcC'n 

'-'or:,ing in this area, and hi~ Lht'sis, PILOT: A ::-ltep fowarcl J\l;in-Con1pl~tcr 

Syrnbiosis·, is a\c.tibbh, as Proivct .\lAC fechnical R''port l\!AC-TE-32. J 



CHAPTER II 

SYSTEM DESCRIPTION 

2. 1 DATA BASE AND COMMANDS 

A user's conversation with FAMOUS proceeds as he issues a series of 

commands (Appendix A). These interact with each other only to 

the extent that they alter the following data-base: 

5 

(1) a number of expressions, notably a distinguished expression~ 

consideration (EUC), 

(2) a set of transformational rules, 

( 3) a set of function definitions, 

(4) a hold switch, and 

(5) certain backup of (1)-(3). 

2. 2 EXPRESSIONS 

The expression under consideration (EUC) is a two-part entity. The 

primary part, called the compact expression ~~er consideration (CEUC), is 

the object of all of FAMOUS' manipulation. The remainder of the EUC is the 

wherelist, which provides information about abbreviations which may be used 

in the CEUC. 

Thus, a sample EUC is':' 

a+f(x+3) 

WHERE 
a=2 

f(t)=sin(t)+ cos(t) 

Here the C EUC and where list are shown in that order, separated by the 

word WHERE. 

*Here and below, algebraic expressions are shown in legitimate FAMOUS 
input formats (Appendix D). The functions shown in them are self­
explanatory or are explained in Appendix C. 

(1) 
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The user may command FAMOUS to save the EUC, associating it with 

an arbitrary name. This expression-naming facility is quite powerful. If 

the CEUC ever comes to include among its variable-names the name of a 

saved expression, then that expression is immediately substituted for that 

name. This allows a large expression to be constructed of smaller ones, as 

in the command sequence 

consider xt yt z 

save expression as fred 

consider h-i 

save expression as sam 

consider sam>!<fred'!'~'(samta) 

continue 

which would leave 

(2) 

as the EUC. There is actually a simpler way to construct (2) out of the com­

ponents shown; it is described in the second paragraph of §A. 1. 1. 

2. 3 APPLICATION OF RULES 

2. 3. 1 Structure and Utility of a Single Rule: Gross Description 

Each of the rules of FAMOUS has four parts: a form, a truth-functional 

expression (tfe), a substitute, and a descriptor list. Crudely, a rule is 

applicable to an expression unless 

(a) the expression is not of the same shape as the form, or 

(b) after the match of the form and the express ion, the tfe does not 

have the value "$TRUE$". 

If it is found that a rule successfully matches an expression, then 

(a) if the substitute is "LEAVE", the expression is unchanged. 

(b) if the substitute is "EVALUATE", the expression is replaced by 

its value. Not all expressions have values, of course, and the system 

will generally rankle if meaningless evaluations are attempted. 
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(c) if the substitute is neither "LEAVE" nor "EVALUATE", then the 

expression is replaced by the substitute. 

2. 3. 2 Structure and Utility of a Single Rule: Detailed Descriptio;n 

2. 3. 2. 1 Matching a form and an expression 

If a form f is to match an expression e, then 

7 

(a) If the form is a number, the name of a defined function (Appendix C), 

or the name of a constant, then the expression must be identical to 

the form. 

Examples: 

The form 

4 

matches the expression 

4 

and no other. The form 

sin 

matches the expression 

sin 

and no other. If 

constantp( e) 

has the value "$TRUE$", then the form 

e 

matches the expression 

e 

and no other. 

(b) If the form is any other single name, it matches any expression. 

Example: 

The form 

x 
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matches all of the expressions 

x 

y 

4 

x+ y log 4 

and all others as well. 

CHAPTER II 

(c) If the form f is the quotation of another form g, then the expression 

must be identical to g. 

Examples: 

the form 

'x 

matches the expression 

x 

but no others, not even 

'x 
x+ 0 

The form 

'('(x+3)) 

matches the expression 

'(x+ 3) 

but no others. 

(d) If the form consists of a function name f
0 

and arguments f 1 , 

... , 
(1) 

(2) 

(3) 

f , then 
n 

The expression e must consist of a function name e and 
0 

arguments e 1 , ... , en' and 

For i=O, 1, ..• ,n, f. must match e., and 
1 1 

If g is a name which occurs more than once in f, then the 

various corresponding subexpressions of e must all be 

identical. 

This case (with n=2) covers that of infix operators, which 

are internally represented in prefix form. 
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Examples: 

The form 

machine( state, symb, tape, dir, state2) 

matches the expression 

fsm(ql, b, 0, xxx, q5) 

but not the expression 

fsm(q5, 1, 1, q2) 

The form 

f('(x*~'3), g('x), 4, g(2), f(z)) 

matches the expression 

g(x**3, sin(x), 4, sin(2), g(3 log x)) 

but not the expression 

g(x*':'3, sin(x), 4, sin(2), tan(3 log x)) 

The form 

x+x 

matches the expression 

2~'a'~b+ 2,:,a>:<b 

but not the expression 

4+ 5 

2. 3. 2. 2 Preparation of the A-list 

9 

The primary purpose of the form-matching routine, described above in 

§ 2. 3. 2. 1, is a simple pass-or-fail test. In addition, however, the matching 

routine has the important task of preparing an association list (~.:Ji.~.!) for the 

use of the tfe and the substitute. The a-list is a list of pairs; each pair con­

sists of a name and an associated expression. 

As an expression is matched to a form, each non-constant name in the 

form is paired with some subexpression. All of these pairs are placed on 

the a-list. 

Like the CEUC, the form, and the substitute, the tfe is algebraic in 

structure. Unlike these other expressions, however, the tfe ~have a 

defined value. After the form of a rule has successfully been matched 

against an expression, the value of that rule's tfe is computed. Unless that 

value is "$TRUE$", the rule is not applied. 
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The evaluation routine is described in Appendix B. 

Many functions which may be useful in constructing tfe 1 s are built into 

the system; these functions are listed in Appendix C. In addition, the user 

may define his own functions (oi" redefine built-in functions) by using the 

assert facility described in§ 2. 4. 

One built-in function, the leave function, is of particular importance. 

The two arguments of leave are a name and an expression; leave has the 

value "$TRUE$" and the effect of adding the name-expression pair to the 

a-list. This effect is immediate, and any previous entry with the same first 

element is thus immediately superseded and effectively lost upon evaluation 

of the leave. 

2. 3. 2. 3 Use of the Substitute 

After an expression e has passed the tests of the form and the tfe, it is 

entirely replaced by an expression determined by the substitute. 

(a) If the substitute is "LEAVE", then the expression e is replaced by 

itself. This use of the word leave (=let alone) must be distinguished 

from any mention of the leave (=deposit) function defined in 

§ 2. 3. 2. 2. 

(b) If the substitute is "EVALUATE", then the expression is replaced 

by its value (Appendix B). 

(c) In all other cases, the expression e is replaced by an expression e 1 

which is similar to the substitute. This new expression e' is 

derived from the substitute by considering the a-list as a list of 

replacements. That is, if any name occurs both in the substitute 

and as the first part of an entry on the a-list, then e' includes the 

second part of that entry wherever its first part appeared in the 

substitute. 
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2. 3. 3 Organization of Rules 

Rules presented to the system are catalogued by the ruletypes of their 

forms. 

(a) If e is a single name, then the ruletype of e is "ATOM 11
• 

(b) If e is the quotation of f, then the ruletype of e is the ruletype of f. 

(c) If e is f(e 1 , ... , en)' where f is a defined function, then the rule­

type of e is f. 

(d) If e is f(e
1 

, ... , en). where f is not a defined function, then the 

ruletype of e is "UNDEFINED". 

This organization is directly related to the matching algorithm of 

§ 2. 3. 2. 1. Suppose that a rule applicable to the expression e is sought, and 

suppose that the form of rule r has ruletype t. Then for r to be applicable 

to e, it is necessary that 

(a) t be "ATOM", or 

(b) t be "UNDEFINED 11
, and ruletype(e) not be "ATOM", or 

(c) t be ruletype(e). 

When FAMOUS is looking for a rule which might be applicable to an 

expression e, it searches in accordance with ruletype information. In par­

ticular, 

(a) FAMOUS first searches among the rules of the same ruletype as e. 

(b) If the rules of ruletype "UNDEFINED" have not been searched in 

(a), and if the ruletype of e is not "ATOM", FAMOUS then searches 

among the rules of ruletype "UNDEFINED". 

(c) If the rules of ruletype "ATOM" have not been searched in (a), 

FAMOUS then searches among the rules of ruletype "ATOM". 

11 
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Within each group, the rules are searched in first-in-last-found order. 

This order is of interest only in cases in which several rules are applicable 

to the same subexpression. 

My guess is that the more recently supplied rules are special cases of 

the older ones. That is, the user doesn't really want these conflicts, but 

neither does he want to refine all his old rules to reflect his growing under­

standing of what he does want. If, for example, the user has said 

evaluate sin x when numberp x 

and if he later has added 

leave sin n when integer n 

then he probably expects the later rule to take precedence. 

2. 3. 4 Manipulation of the EUC 

When FAMOUS is released upon the EUC, a complex and highly recur­

sive process is initiated. A detailed description could be presented, but it 

seems more useful to list the more important running features: 

(a) FAMOUS makes every effort to find applicable transformations. 

Whenever a rule is successfully applied and a new subexpression 

is produced, that subexpression is sent back to the rules. The 

system is quite insensitive to the particular rules which are avail­

able, and it consequently goes through elaborate procedures to 

avoid missing a possible transformation. 

(b) On the other hand, FAMOUS will not send an expression back to 

the rules if that expression has just returned from the rules un­

changed. 

(c) Nor is it sent back if it seems to be endlessly changing. The system 

uses patience, a function of no arguments, to discover the number 

of times which a single expression may be given the full treatment. 
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If any expression is still in flux after that many iterations, then 

the system complains and breaks out of its rut. The patience 

function provides a useful rein when the system happens to include 

such rules as 

replace x by x+ l 

13 

(d) Also along this line, FAMOUS always returns to the user after a 

certain period of time, even if some opportunities for transforma­

tion are unexamined. This period of time is given by the oracular 

maxtime function, which has no arguments and has a value which 

is taken to be a number of tenths of seconds. 

(e) The system works recursively from the bottom up. That is, the 

arguments of a function are always transformed before the expres­

sion consisting of that function applied to those arguments. 

(f) Addition and subtraction form a special case together, since the 

system treats all implicit two-operand subexpressions of a complex 

expression built of addition and subtraction. The final ordering of 

the terms is determined by the expless function, which is described 

in Appendix C. 

(g) Similarly, multiplication and division form a special case together. 

The final ordering of the factors and divisors is determined by 

expless. 

(h) If an expression consists of a function f applied to certain arguments, 

and if the value of 

opaque (f) 

is "$TRUE$", then only rules having the name fas a descriptor will 

be applied to any part of this expression. The set of currently neces­

sary descriptors may be a useful argument for a function in the tfe: 

this set of descriptors may be found on the a-list as the value of the 

name "NEED". 
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(i) If a rule with the descriptor "ABBREV" is successfully applied, 

then the form f and substitute s of this rule are added to the where­

list, in a form like 

s = f 

2. 3. 5 Quotation 

It has already been mentioned in §2. 3. 2. l(c) that parts of forms may be 

quotations of other forms. This mechanism is simple enough, but it is 

associated with a fairly complex scheme which is an attempt to ease dis­

crimination of literal and schematic forms. 

If the C EUC is 

(1) (sin O+cos O)*(sin 4 z+cos 4 z)*(sin x+cos x) 

then the user who says 

(2) replace sin y+cos y by f(y) 

clearly wants to obtain 

(3) f(O)*f(4 z)*f(x) 

But what of the user who, in the face of the same CEUC, says 

(4) replace sin x+cos x by f(x) 

In this case, the system assumes that the "x" mentioned here is a proper 

noun: the "x" of the CEUC (1). That is, this rule would go in as if the user 

had straightaway said 

(5) replace sin 'x+cos 1x by f(x) 

and (1) will replaced by 

(6) (sin O+cos O)*(sin 4 z+cos 4 z)*f(x) 
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Still another complication arises when the user says 

( 7) replace sin x+ cos x by f(x) when num be rp x 

Here, the system assumes (as it did with (2)), that xis a pronoun, bound 

within the rule. No strange changes are made to the rule, and (1) will be 

replaced by 

(8) f(O)':'(sin 4 z+cos 4 z)':'(sin x+cos x) 

15 

Before formulating a general description of this algorithm for undercover 

quotation, it will be useful to define the atomsof function. Atomsof is 

applied to an expression e: 

(a) If e is a constant or the quotation of another expression, then 

atomsof(e) is the null set. 

(b) If e is a single name, then atomsof(e) is the unit set of e. 

(c) If e is f(e e ), then atomsof(e) is the union over i of 
1 '· • ·' n 

atomsof(e. ). 
1 

For example, atomsof ([the CEUC (1)]) is the set whose members are 

z and x. 

The general rule is then as follows: If the CEUC is e and the user pre­

sents a rule with tfe t and suggested form f, then the final form is derived 

from f by replacing certain members of atomsof(f) by quotations of them­

selves. The affected names are exactly those which are members of 

atomsof(e) but not members of atomsof(t). 

In the cases (2), (4), (5), and (7), this works out as follows: 

offered rule atomsof(f) atomsof(t) affected names 

( 2) {Yf null set none 

(4) jxf null set x 
( 5) null set null set none 

( 7) Jx I {xf none 
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2. 4 FUNCTION DEFINITIONS 

Appendix C contains a list of the built-in functions which may be useful 

in construction of tfe 1 s and in expressions which are to be evaluated. Many 

of these functions, in addition to being available to the user, are used 

internally by the system. 

The user may use the assert facility (§A. 3. 1) to define his own functions, 

or to redefine the built-in ones. In the latter case, he must accept the possi­

bility that his assertions will violently affect the behavior and perhaps the 

soundness of the system itself. 

Each assertion affects a function by indicating the value to be returned 

when the arguments have certain properties. When several assertions apply 

to the same function, the most recent ones take precedence. This strategy 

is exactly that of the rule-searcher ( § 2. 3. 3) and it is justified by the same 

argument. 

One important built-in function which the user may redefine is defined. 

Given a name as argument, the built-in version of defined returns "$TRUE$" 

or "$FALSE$" as the name is or is not the name of a defined function. As 

noted in§ 2. 3. 2. 1 and § 2. 3. 3, defined functions must be recognized for 

special handling by the form-matching and ruletype routines. 

In order to affect the behavior of these routines, the user may wish to 

redefine the defined routine, so that certain functions are falsely considered to 

be defined. Examples of this strategem appear in Chapters III, IV, and V. 

Similarly, the user may wish to alter the constantp function so that such 

names as "e" and "pi" are given special handling. 
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CHAPTER III 

POWER OF THE SYSTEM 

3. 1 ABSTRACT AUTOMATA 

It superficially seems useful to determine which abstract automaton 

(e.g., Turing machine, push-down machine) is most nearly akin to FAMOUS. 

I believe that such an investigation is doomed to sterility. To dispose of the 

issue, I present the following theorem. 

3. 1. 1 Theorem: Any Turing machine may be encoded in a set of rules for 
FAMOUS 

Consider a finite state automaton M, equipped with two semi-infinite 

counters MCl and MC2, and the instruction set 

(1) (a) Il(J), or "Increment the contents of MCl (c(MCl)) and go to 

instruction J" 

(b) I2(J), or "Increment c(MC2) and go to instruction J 11 

(2.) (a) Dl(J, L), or 

1. If c(MCl) :f. 0, decrement c(MCl); then 

2. If c(MCl) :f. 0, do not execute subinstruction 3, but go 

directly to instruction J; otherwise 

3. Go to instruction L. 11 

(b) D2(J, L), or 

l. If c(MCZ) :f. 0, decrement c(MC2); then 

2. If c(MC2) :f. 0, do not execute subinstruction 3, but go 

directly to instruction J; otherwise, 

3. Go to instruction L. 11 

(3) HALT 

3.1.1. l Lemma (Minsky, [ 15) ): 

Given the transitions of an arbitrary Turing machine T, there is an 

effective procedure for programming M so that if 

( 1) T is started scanning the xth square of a tape with the binary number 

k written on it, and 

- ---------------------
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(2) M is started with c(MCl) = 2k 3x and c(MC2) =0 1 

then T will halt a.t the yth square of a tape with the binary number N written 

on it if and only if M halts with 

Now given the program and initial conditions of a Minsky machine M, I 

construct the set R(M) of rules for FAMOUS as follows: 

( l) (a.) If the nth instruction of M is 11 (J), then I include the rule 

replace sta.te(n,cl,c2) by state (J,count(cl),c2) 

(b) A similar rule is included if the nth instruction of M is I2(J) 

(2) (a) If the nth instruction of M is Dl(J, K) 1 then I include the rules 

replace state(n, 0, c2) by state (K, 0, c2) 

replace state(n, count(0) 1 c2) by state (K, 0, c2) 

replace state(n1 count(count(cl) ), c2) by state(J, count(cl), c2) 

(b) Similar rules are included if the nth instruction of M is D2(J, K). 

(3) If the nth instruction of M is HALT, then I ignore it. 

Statement #1: M, started in state i with c(MCl)=cl and c(MC2)=c2, halts 

in state k with c(MCI)=N. 

Statement #2: FAMOUS, told to continue with R(M) as rules, state and 

~ defined, and 

state(i, count( count( ••• count(O) ••• ) )1 count( ••• count(O))) as EUC, will 
~ ---cl c2 

return to the user with 

state(k, count(count( ..• count(O) ••• ) ), y) as EUC. 

~ 

3. 1. 1. 2 Lemma: Statements #1 and #2 are formally equivalent. 

Proof of the Lemma: Obvious. 

Proof of the Theorem: Immediate from the Lemmas. 
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3. 1. 2 Example 

To test the construction concretely and to provide an example of a com­

plete FAMOUS encoding, I consider the following Minsky machine: 

1. 11(2) 

2. 11(3) 

3. Dl(4, 5) 

4. 12(3) 

5. D2(6, 8) 

6. 11(7) 

7. 11(5) 

8. HALT 

If MC2 is initially zero, this machine will double the initial contents of MCl. 

Given the assertions 

assert defined ('state) 

assert defined ('count) 

and the rules 

replace state(l, cl, c2) by state(2,count(cl), c2) 

replace state(2, cl, c2) by sta.te(3, count( cl), c2) 

replace state(3, 0, c2) by state(5, 0, c2) 

replace state(3, count(O), c2) by state (5, O, c2) 

replace state(3, count(count(cl)), c2) by state(4, count(cl), c2) 

replace state(4, cl, c2) by state(3, cl, count(c2)) 

replace state(5, cl, 0) by sta.te(8, cl, 0) 

replace state(5, cl, count(O)) by state(8, cl, 0) 

replace sta.te(5, cl, count(count(c2))) by state(6, cl, count(c2)) 

replace sta.te(6, cl, c2) by state(7, count(cl), c2) 

replace state(7, cl, c2) by state(5, count(cl), c2) 

experiment shows that FAMOUS will indeed take 

into 

sta.te(l, count(count( ••• count(O), 0) ----------n 
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state(B, count(count( .•. count(O), 0) ----------2n 
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in time. Similarly, other finite-looking devices (~., commercial digital 

computers) can easily be encoded in sets of FAMOUS rules. Even a push-

down stack running a, b, ... , z from top to bottom can be encoded by a strategem 

like 

stack(a, stack(b, ..• stack(z, 0) ... ))) 

In all of these cases, only coding tricks are being demonstrated. The 

most significant of these tricks is that which allows deterministic sequential 

processes to be encoded at all. 

3. 2 MODELING AND THE WANG ALGORITHM 

The real issue, however, is not one of encoding inputs and outputs. Since 

FAMOUS is a Turing machine, discussion of FAMOUS' abstract hierarchical 

power is fruitless. 

Instead, the discussion must be cast in-the-informal-terms of modeling 

power. There is nothing to be learned from a FAMOUS construction which is 

only the same black box as some external entity. When the external entity is 

coherently and compactly altered, I demand that the FAMOUS construction be 

coherently and compactly patchable. 

The relevant questions, therefore, are such as these: 

(a) What sort of data-structures can FAMOUS handle? What operations 

can FAMOUS perform on this data? 

(b) In particular, what entities external to FAMOUS(~., algorithms) 

can be modeled by FAMOUS? 

To help answer these questions, it will be useful to consider another 

example of a FAMOUS model. The external entity being modeled will be a 

version of the Wang algorithm for proofs in the propositional calculus [ 29] 

My version differs from Wang's only in that mine does not explicitly produce 

proofs; instead, only "VALID" or "INVALID" is produced for each input 

schema. 
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The Wang algorithm consists of a complete set of rules-of-inference for 

the propositional calculus. These cut-free rules have the useful property 

that each may be run backward. That is, any schema may be effectively 

backed up through at lea st one rule to one or two other schemata. These 

other schemata are "simpler" in the sense of being one step closer to the 

finite goal of assertion ("VALID") or denial ("INVALID") of the one implicit 

axiom. 

The rules are as follows: 

If "VALID" then X. _.. a , where>.. and a are sets of formulas and some 

atomic formula is a member of both X. and a. 

If "INVALID" then X.-+a, where X. and a. are disjoint sets of atomic 

formulas. 

If cl>, a - >.., p then a - >.., - cl>, p 

If >.., p -+ 11', cl> then >.., - iP, p -+ 11' 

If a. - >.., cl>, p and a-+ X., w, p then a-+>.. , iPAW, p 

If>.., cl>, w, p - TT then >.., iPAW, p - 11' 

If a. - >.., iP, w, p then a-+ >.., iPvw, p 

If X., iP, p - TT and X., w, p - 11' then X., cI> vw, p - 11' 

If a, <I>-X., w, p then a -x., iP:) w, p 

IfX.,w,p-11' and X.,p-11',iP then >..,iP:) w,p-TT 

If cl>, a-+ >.., w, p and w, a-+ >.., iP, p then a - >.., cl>:= w, p 

If cl>, w, X. , p -+ 11' and X., p -+ 11', cl>, w then X., cI> =: w, p - TT 

The strategy, then, is to remove the logical connectives, gradually 

reducing all of the component formulas to atomic ones.* Modeling this 

process in FAMOUS will present two problems: 

(1) The formula-sets on either side of the arrow are not nestings of 

functions of fixed numbers of arguments. 

(2) These sets cannot be encoded with the simple scheme suggested 

above for push-down stacks. Even after a formula has been broken 

into its atomic components (i.e., they have presumably been popped 

from the stack) these components must be remembered for the 

validity test. 

*For a better-motivated discussion of the algorithm, the original description 
is still best. A realization of the algorithm via non-sequenced transforma­
tions was first proposed by McCarthy [ 14,§4] • 
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One is thus naturally driven to having two stacks* on each side of the 

arrow. One stack on each side will be the list of formulas to be analyzed; 

the other sta.ck will be a repository for atomic formulas. 

I start by giving the formula as an argument to the function~· The 

rules will take this expression into "VALID" or "INVALID". When two 

premises arise from one formula, I join them into a larger formula whose 

connector is "*". For purposes of the match algorithm, I advise FAMOUS 

as follows: 

assert defined ('test) 

assert defined ('arrow) 

assert defined ('equiv) 

assert defined ('implies) 

assert constantp ('valid) 

assert constantp ('invalid) 

assert constantp ('endl) 

assert constantp ('endr} 

Now I introduce two rules for the compression of our final results: 

replace valid*p by p 

replace invalid*p by invalid 

I also need a start-up rule 

replace test(a) by arrow(endla., endl, endra, list(a, endr)) 

two rules for collecting atomic formulas 

replace a.rrow(la, 1, ra, list(x, r)) by 

arrow(la, l, list(x, ra), r) when atom x 

replace arrow(la, list(x, l), ra, r) by 

arrow(list(x, la), 1, ra, r) when atom x 

* Here is another Turing-machine model. 
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and finally the rules of Wang 

replace arrow(la, 1, ra, r) by valid when 

joint(atomsof la, atomsof ra) 

replace arrow(la, endl, ra, endr) by invalid when 

null joint(atomsof la, atomsof ra) 

replace arrow(la, 1, ra, list(not p, r)) by 

arrow(la, list(p, l), ra, r) 

replace arrow(la, list( not p, l), ra, r) by 

arrow(la, l, ra, list(p, r)) 

replace arrow(la, 1, ra, list(a and b, r)) by 

arrow(la, l, ra, list(a, r) )~•arrow(la, l, ra, list(b, r)) 

replace arrow(la, list(a and b, 1), ra, r) by 

arrow(la, list(a, list(b, l) ), ra, r) 

replace arrow(la, 1, ra, list(a or b, r)) by 

arrow(la, l, ra, list(a, list(b, r))) 

replace arrow(la, list(a orb, 1), ra, r) by 

arrow(la, list(a, 1), ra, r)*arrow(la, list(b, 1), ra, r) 

replace arrow(la, 1, ra, list(implies(a, b), r)) by 

arrow(la, list(a, 1), ra, list(b, r}) 

replace arrow(la, list(implies(a, b), 1), ra, r) by 

arrow(la, list(b, 1), ra, r)~'arrow(la, l, ra, list(a, r)) 

replace arrow(la, l, ra, list(equiv(a, b}, r)) by 

arrow(la, list(a, 1), ra, list(b, r) )* 

a rrow(la, list(b, 1), ra, list( a, r)) 

replace arrow(la, list(equiv(a, b), l), ra, r) by 

arrow(la, list(a, list(b, l) ), ra, r)* 

arrow(la, 1, ra, list(a, list(b, r))) 

Returning to the modeling questions which I raised above, I consider 

them in reverse order. 

(b) What external entities can be modeled by FAMOUS? 

23 

It might, at first glance, appear that the Wang algorithm falls well within 

the borders of FAMOUS' capabilities. Actually, there are some grounds for 

saying that whatever black-box encoding_ may be done, no structural model of 

of the Wang algorithm can be constructed within FAMOUS. 
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To be sure, there are some "coherent compact alterations" which can be 

made to the algorithm without requiring more than an extra rule or two in the 

model. For example, one might add 

If a , p -+ \ , <P, '1i', 1T then a , <Pl '11, p _.. \ , 1T 

If a , <P, p -+ }.., 1T and a , '11, p -+ \, 1T then a, p -+ \ , <PI '1r, 1T 

to the algorithm, where "al b" might be read as "neither a nor b". The model 

would need to be altered only to the extent of adding 

assert defined ('nor) 

replace arrow(la, 1, ra, list(nor(a, b), r)) by 

arrow(la, list(a, 1), ra, r)*arrow(la, list(b, l), ra, r) 

replace arrow(la, list(nor(a, b), 1), ra, r) by 

arrow(la, l, ra, list(a, list(b, r))) 

But what if the algorithm were altered so that ordering of expressions 

were of importance? The propositional calculus being what it is, such an 

alteration would admittedly be meaningless. But surely one can imagine a 

resea.rch environment in which a union operation had to be replaced by some 

sort of concatenation. Suppose, for example, that when a complex subformula 

were reduced, its components had to go to the end of the "to-be-analyzed" 

queue. The new FAMOUS encoding would certainly be more than a local 

modification of the old one. In brief, it cannot be said that FAMOUS allows 

ordered sets to be modeled cleanly. 

There is another way of leading to this conclusion. That is, to observe 

only that the Wang rules are not obvious enough. While the Minsky model was 

virtually canonical, the Wang representation required tricky ad-hoc encoding. 

This trickiness was forced by the difficulty noted: Sets don't really fit into 

FAMOUS. 

Entities which do fit in deal with rigid tree-structures: Algebraic formulas 

and fixed-length lists.(~., state-descriptions of some automata) are the 

best examples of such structures. 

(a) What operations does FAMOUS perform on its data? 
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FAMOUS has only four different capabilities: replacement, abbreviation, 

function definition, and function evaluation. 

Abbreviation is replacement with an attached genealogy. It is no more 

than a human-factors trick, albeit a particularly useful one. 

FAMOUS' function-definition (assert) facility is not closely tied to the 

rest of the system. It is almost an independent system sharing a limited 

portion of the FAMOUS data-base. 

Function evaluation and definition might seem, moreover, to be inessential 

primitives. In principle, it seems reasonable to express the definition of sine 

as set of replacements, so that 

evaluate sin x when numberp x 

is expressed as a simple trig~ering replacement, say 

replace sin x by do(' sin, x) when numberp x 

And at worst, the sine of a number x could be obtained from x by a set of 

rules which encoded a "sine" program for a digital computer. 

But the fact that sine can be pragmatically approximated with a digital 

computer program is an accident. The meaning of~ is a differential 

equation or a hypergeometric series. No sequence of syntactic replacements 

is at all implicit in either of these formulations. 

Even if a function's arguments and values may be syntactically specified, 

the function itself may be defined in terms of scintillation counters or human 

choices. No such function can be properly represented by a set of syntactic 

replacements, and the oracular function-evaluation facilities of FAMOUS are 

available for just this reason. 

3. 3 SEMANTICS AND r~-THEORY 

This matter of the meaning of programming notions (such as sine) is one 

of some contention. In conversation, Bar-Hillel [l] has asserted that the 
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meaning of a compiler-language program is the code into which it compiles. 

Feldman has gone so fa.r as to write that the meaning of such a program is 

not defined until the compiler algorithms are specified [ 6, p. 33]. 

These points of view are so restrictive as to be almost meaningless. The 

author of a program (or the designer of a language) is often unaware of the 

implementation techniques which have been or could be used. Even worse, 

the Bar-Hillel/Feldman views entail the belief that program synonymy is 

irreflexive under conditions of changing implementation. 

Such a notion of synonymy is appropriate under certain circumstances. 

FORTRAN, for example, really cannot be defined without reference to the 

implementation. The FORTRAN programmer is intimately concerned with 

the digital computer, and it matters very much which computer that is. 

On the other hand, many modern programming systems derive their 

semantics from pre-computer notions of mathematics and logic. Computer 

code, although it is perhaps the first referent which comes to hand, provides 

no more than a slurring explanation of these systems. 

Perhaps the best semantic framework in which to consider FAMOUS is 

that of i~ -theory (mem-theory). In its present stage of development, this 

theory is more of an attitude than a quantitative formalism, and it is 

notoriously distorted or evaporated by synopsis. 

I consequently shall not attempt to provide a general introduction to 

'.~ -theory. In the following notes, my remarks on i~ -theory have more 

mnemonic than expository intent. 

(a) Mero-theory attempts to model all computational (and other) processes 

as sequences of local syntactic changes. The alternate view, which 

i.) -theory explicitly rejects [30, p. 2], is that of changes in tota.1 

state, as perceived by an omniscient observer. 

In the case of algebraic manipulation, the observer would re­

require powers exceeding those of a Turing machine (see Chapter IV). 

Like i~ -theory, therefore, FAMOUS eschews any hypostatization of 

a (changing or otherwise) global state. 
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(b) In both FAMOUS and r~ -theory, these local changes are the result 

of applying transformational rules. The rules of 0 -theory are not 

explicitly sequenced, and they consequently compete for roles in the 

process being modeled. Like the rules of FAMOUS, they do not 

drag the data about the ground; rather, they define the gradients and 

let the data roll [3, p. 8]. 

(c) Two la.ws restrain the competition among the rules; the first la.w is 

that relating to conflict [3, p. 5]. 

A joint a.pplication of two rules would contain conflict if it would 

purport to move the same portion of the accessible universe in two 

different directions at once. For example, the FAMOUS rules 

repla.ce 'a by 0 

replace 'a by 1 

would give rise to conflict if they were simultaneously applied to the 

expression 

a 

FAMOUS, of course, avoids conflict by the simple strategem of 

applying only one rule at a time. 

{d) But in so doing, FAMOUS flaunts~ -theory's second law of rule­

competition: that related to~ [ 3, p. 5] • 

Loss is approximately the far extreme from conflict. While 

the conflict-law warns against grouping rule-applications which are 

not simultaneously meaningful, the loss-law warns that certain 

groups of rule-applications must never be disassembled. 

Consider, for example, the non-FAMOUS rules 

replace "a" by 0 when the "a" appears in the context "f(a, x)" 

for some non-number x 

replace "b" by 0 when the "b" appears in the context "f(x, b)" 

for some non-number x 

These rules should obviously take 

f(a, b} 

into 

f(O, 0) 

But they will do that only if they are applied simultaneously. 

If they are modeled with the FAMOUS rules 
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then 

replace f('a, x) by f(O, x) when not numberp x 

replace f(x, 1b) by f(x, O} when not numberp x 

f(a., b} 
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will be taken into 

f(a, O} 

or 

f(O, b} 

If either of the suggested rules is applied first, the other cannot be 

applied at all. Hence the loss law: Subject to the bound of the con­

flict law, maximal sets of rule-applications should be used simul­

taneously. 

(e} Except for the conflict- and loss-laws, r.: -theory gives no guidance 

for the selection of sets of rule-applications. Indeed, ~~ -theory 

explicitly suggests that random choices be made at this point, so 

that an underspecified system will predictably have unpredictable 

behavior (10, p. 4]. 

At first glance, this randomness seems to be quite contrary to the 

spirit of FAMOUS. Implementing true randomness in a digital com­

puter is not at all easy, but it seems from§§ 2. 3. 3 and 2. 3. 4(e} 

that FAMOUS did not even try for randomness. 

The non-randomness of FAMOUS is actually the result of two 

isolated decisions: 

(1) FAMOUS is biased toward evaluation and consequently 

toward referentially-transparent constructions. This bias 

leads FAMOUS to the restriction of§ 2. 3. 4(e). 

(2) FAMOUS gratuitously assumes that the rule-provider knows 

what he is doing. That is, rephrasing the argument of 

§ 2. 3. 3, FAMOUS believes that any apparent case of conflict 

is really illusory. By using the last-in-first-found algorithm 

described in § 2. 3. 3, FAMOUS effectively sees only conflict­

free sets of rules. 

(f} Almost any~.: -theoretic process may be viewed (from outside the 

theory) as the union of two or more coupled subprocesses, each with 
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its own structure and rules [ 23], In the regions of intersection, all 

of the subprocesses concerned may contribute rules; elsewhere, the 

subprocesses are independent. 

To the extent that a subprocess is only of behavioral interest, it rnay 

be left with its oracular innards uncharted. The ·;-theoretic notion 

of coupling, although still only slightly developed, does seem to pro­

vide an evocative model for the function-evaluation of F AMOlJS. 
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CHAPTER IV 

ALGEBRAIC SIMPLIFICATION 

4.1 AN ESSAY ON SIMPLIFICATION 

No one can engage in mechanical algebraic manipulation without running 

up against the problem of simplification. After a general-purpose algebraic 

algorithm has been applied to any particular data, those data will usually be 

in dissonant or unrecognizable forms. "Simplification" must be applied. 

4. 1. 1 The Measure of Simplicity 

The ·following dogmas are consequently implicit in nearly all existing 

systems:* 

(Dogma 1) There is a unique computable partial ordering R on the set 

of all expressions, Each nonextendable set of equivalent expressions 

has a unique least element with respect to R. 

(Dogma 2) There is a computable procedure f for finding, from an 

expression e, the equivalent expression f(e) which is minimal (simplest) 

under R. The procedure f is distributable, so that if e is 

then 

is at least as simple as e. 

For example, R is commonly held to suggest the following: 

(3) If e is a sum or product of single names, then the simplest 

expression equivalent to e shows those names in alphabetic order. 

* These systems are numerous and approximately interchangeable. For a 
list, see [22). 
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(4) If e is wholly composed of numbers and arithmetic signs, then the 

simplest equivalent to e is that number which is the result of the com­

putation expressed by e. 

(5) If e is a product, one of whose factors is zero, then the simplest 

equivalent to e is zero. 

From the behavioral standpoint, in other words, R is a set of transforma­

tions. Given a large number of such transformations, implementation of an 

efficient system can be a challenging puzzle. 

But it is easy to become so involved in this puz~le that the real issues 

are lost. Note, for example, that (3) and (4) cannot possibly be a fair sampling 

of R. For surely 

(x+u)*(x+v)*(x+w)*(x+y)*(x+z) 

and 

f(l)+f(2)+£(3)+f(4), where f(i)=2**2**i 

seem simpler than 

(u+x)*(v+x)*{w+x)*{x+y)*{x+z) 

and 

66066 

Even (5) would be suspect, if a limit problem were being examined for 

applicability of L 1H8pital's rule. 

But suppose that patches could correct (3), (4), a.nd (5). What epicycles 

of R could possibly cope with such expressions as 

( 6) O* sin{x)+ 1*cos(x)+2*tan{x)+3*cot{x)+4*s ec(x)+S*c sc{x) 

This mathematically unruly expression has a ridiculous, complicated 

graph. Expressed in sines and cosines, it is an undistinctive jumble. But 
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in the exact form shown, it is an indexed list of the trigonometric functions, 

in the order in which we met them in high school. The expression (6) would 

not be simplified by alphabetically ordering the terms, nor even by eliminating 

any term. 
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And dogma (1) collapses altogether when confronted with the equivalent forms 

(7) l/(ltcos x) 

and 

(8) 

Is (7) simpler than (8)? Certainly (7) is handier if one would sketch a graph. 

But integration of (7) requires the ugly z=tan(x/2) transformation, while (8) 

integrates immediately. 

Dogma (2) fares even worse than dogma (1). Such trivial examples as 

(9) ( x+y) ** 2- 2>{<x>{'y 

suggest that the hill-climbing (theorem-proving) problems of dogma (2)'s 

procedure!_ may be formidable, 

But dogma (2) is not suggested to death; dogma (2) is proved to death: 

Theorem (Richardson, [ 20] ): 

Let N be the set of one-place real functions generated by composition 

from the following primitives: 

rational numbers 

pi 

lo-i.( 2) 

addition 

multiplication 

sin 

exp 
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Now let f be a member of M, The assertion 

(3x) (f(x)< O) 

is recursively undecidable. 

Corollary: Let N be the set of one-place real functions generated by 

composition from the primitives of M and the notion of absolute value. Now 

let f be a member of N. The assertion 

(3 x) (f(x) f. 0) 

is recursively undecidable. 

Most algebraic manipulation systems* a.re at lea.st as rich as N. In all 

of these systems, the rule 

( 10) replace x+O by x 

is present. But Richardson's corollary shows that there can be no exhaustive 

way of searching for the "0" of (10). 

In even richer systems, of course, results like Richardson's are quite 

easy to achieve. Once the trigonometric and arctrigonometric functions are 

at hand, for example, it is a few minutes 1 exercise to express the floor 

(greatest-integer-less-than-or-equal-to) function.** Given~ and (10), 

it is trivial to express such gems as the Fermat conjecture as simplification 

problems. 

4. 1. 2 The Context of Simplicity 

Even though (3), (4), and (5) are obviously not of universal value, they 

might be said to describe simplification in certain limited contexts. In one 

such context, one might add such rules as 

* But not all. For example, see ALP AK [2]. 

** E.g., as x-(2/pi)*atan((f(x)+f(x+l) )/2), where f(y)=g(y)+abs g(y), g(y) = tan (pi*y/Z) 
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( 11) replace sin x by x 

if all of sin's arguments are known to be near zero, 

( 12) replace x~"~n by 0 when numberp n and 

greaterp (n, 3) 

if everything is near zero, 

(13) abbreviate sin x + cos x as f(x) 

if expressions of the form sin x + cos x are confusingly numerous, 

( 14) replace x by y when numberp x and floatp x and equal (x, 

fix(x+O. 5)) and leave ('y,fix(x+ 0. 5)) 

if non-integral numbers(~., 355. 0000001) very close to integers are 

necessarily the results of errors (i.e., from 355), 

( 15) replace x by y*pi when numberp x and 

integer(x/3. 1415927) and 

leave('y,fix(x/3.1415927+0. 5)) 

If numbers which are nearly exact multiples of pi(~, 355) should be 

represented as such (i.e., l l 3*pi), and 

(16) replace x by 2 
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if an attempt at parameterization were discovered to have been unilluminating. 

But now it is not clear how simplification differs from the rest of alge­

braic manipulation. Certainly (16) could not conceivably be part of any fixed 

"simplifier". The reader may well suspect that he has ta.ken a wrong turn. 

I believe that the fuzziness of "simplification" is inherent. The algebraic 

notion of "simplification" disappears under scrutiny like the linguistic notion 
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of "referent".* There appears to be no real loss to the surrounding subject 

in either case. 

Indeed, the vanishing of 11 si.tnplification" is of positive value. In systems 

in which "simplification" is the work of a well-defined subsystem, it is 

possible to ask "During such-and-such a complexity-producing manipulation, 

when should the si.tnplifier be used?" The false hypostatization of "si.tnplifi­

cation" has fostered the development of a considerable literature (.!:.k, [ 27]) 

devoted to such pseudo-questions, 

4. 2 THREE ESSAYS AT SIMPLIFICATION 

One interesting use to which a general-purpose system like FAMOUS may 

be put is i.tnitation of special-purpose systems. In this way, these s,ystems 

may be described in a compact common language. 

4. 2. l Wooldridge-Russell Si.tnplify (WRS) 

All modern "si.tnplifiers" ca.n trace their ancestry to Wooldridge-Russell 

Si.tnplify [ 32] , which evolved at Stanford in the years up to 1963. Despite its 

age, WRS includes many features which most modern "si.tnplifiers" omit. 

One of these features is a well-integrated polynomial facility, which I 

have not tried to model in FAMOUS. The WRS treatment of non-polynomial 

division is complexly tied to the polynomial facilityi WRS performs synthetic 

division to find non-explicit factors. This division feature was also not 

modeled. In every other respect, WES is completely described in the 

remainder of this section, 

WRS labels certain results as undefined; it expects the undef label to 

propagate as follows: 

assert defined ('undef) 

assert opaque ('undef) 

* The analogy is not accidental. In both cases, a totality (utterances or 
expressions) is partitioned (by synonymy or algebraic equivalence), and 
the equivalence classes are then hypostatized into a life of their own. 
Quine [ 19, Chapter II] is particularly eloquent concerning these matters; 
see also Craik [ 4, p. i 02] • 
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replace f(undef x) by undef f(undef x) 

replace f(undef x, y) by undef f(undef x, y) 

replace f(x, undef y) by undef f(x, undef y) 

WRS has three rules for unary minus: 

evaluate -n when numberp n 

replace --x by x 

replace -(a-b) by b-a 

Four rules for reciprocals: 

replace recip 0 by undef recip 0 

evaluate recip n when numberp n and not zerop n 

replace recip recip x by x 

replace recip (-x) by -recip x 
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Three rules for division, one of which is only suggested here: 

replace x/y by quotient when equal (0, remainder(x, y)) 

replace x/O by undef (x/O) 

repla.ce x/y by x*recip y when not equal(O, y) 

Six rules for the power operator 

replace Q>:'*a by 0 

evaluate a>:'>:'n when numberp a and numberp n 

replace a>:o:cQ by 1 

replace Q>:<>:<Q by undef (0*>!'0) 

replace l>!<>!<a by 1 

replace a*>!'l by a 

The rules for addition a re simple, but lingering behind the first is the 

assumption of a canonical ordering for products, with numbers first. This 

is as good a place as any to set down a fair definition of expless ( §§ 2, 3, 4(£) 

and 2. 3. 4(g) ). To that end, I start with an auxiliary function 
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assert complexity(x} = 2 

assert if atom x then complexity x=l 

assert if numberp x then complexity x=O 

CHAPTER IV 

and now the definition of expless itself 

assert expless(a, b, $FALSE$) = lessp{complexity a, complexity b) 

assert expless{a, b, $TRUE$) = not expless{a, b, $FALSE$} 

assert if equal {complexity a, complexity b) then expless{a, b, $FALSE$)= 

lessp{canonical a, canonical b) 

assert if onep complexity a and onep complexity(b} then expless(a, b, c)= 

not{alphaorder{a, b) ) 

Now the awaited rules of addition: 

replace n>:•a+m•!•a by {n+m}*a when numberp n and numberp m 

evaluate m+n when numberp m and numberp n 

replace a+m*a by {m+l)>'.< when numberp m 

replace a+a by 2>:•a 

replace b+(-a} by b+{-l}>:•a 

replace a+O by a 

Multiplication is similar, but non-numeric exponents are combined as well 

as n\lmeric ones: 

evaluate a*b when numberp a and numberp b 

replace a•!<a by a>:<>:•z 

replace a>:'a*':'b by a>:<>:C(b+l} 

replace a>:•>:<c>:'a>:•>:•b by a*>:'(b+c} 

replace a>:'recip a by 1 

replace a>:•recip(a>:•*b} by a**{l-b} 

replace a*>!•b•:•recip(a*>:•c) by a**(b-c) 

replace a*•:Cb*recip(a) by a•:C*{b-1} 

replace a.>:'{-b) by {-l}>:•a•:•b 

replace l*a by a 

replace O>:•a by 0 

replace recip{a)>:•recip b by recip{a*b) 
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This completes the list of ordinary rules of WRS. Three other features of 

WRS should be mentioned in this description. First of all, WRS allows users 

to provide a factor list of names, When the name "x" is placed on this list, 

the rule 

replace a+b by x*(al+otherfactor) when 

factor ('x, a) and leave('al, otherfa.ctor) and 

factor ('x, b) 

is added to the system. 

Secondly, users of WRS are able to specify a setting of the recipmode 

switch. In FAMOUS terms, recipmode is a. function to define like~· 

The system includes the following rules: 

replace a**(-b) by recip (a**b) when recipmode() 

replace recip(a**b) by a**(-b) when not recipmode() 

replace a>:'>:'n by recip(a**m) when recipmode() and 

numberp n and minusp n and leave ( 'm, -n) 

replace recip(a)**b by a*>:'(-b) when not recipmode() 

Finally, WRS accepts an _expand!!_!! roughly opposite in function to the 

factor list. If a name "x" is on the expand list, then the following rules are 

added. 

replace (a+b)>:<c by a*c + b*c when 

member ( 'x, union(atomsof a, atoms of b}) 

replace (a*b)**c by a**c>:'b**c when 

member ('x, union(a.tomsof a,.atomsof b)) 

replace (a+b)>:'*n by (a>.~*2+2*a*b+b*>:'Z)*(a+b)**m when 

member ( 'x, union(atomsof a, atoms of b)) and 

afixp n and greaterp (n, 1) and leave ('m, n-2) 

replace a+recip(b) by (1 +a*b)*recip b when 

member ('x, atomsof b) 

replace a+n*recip(b) by (n+a.*b)>:•recip b when 

member ('x, atomsof b} and numberp n 
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4. 2. 2 AUTSilv1 

This section is devoted to a partial model of the AUTSilv1 "simplifier" of 

FORMAC. The incompleteness of the model is not due to any difficulties of 

modeling~~· but rather to the fact that AUTSilv1 is only partially 

documented.* 

For the most part, of course, the rules of AUTSilv1 a.re the same as those 

of WRS or any other conventional "simplifier". Only the distinctive features 

of AUTSilv1 will be described here: 

(a) Nothing in FORMAC corresponds in any way to the factor-list, 

recipmode, and expand-list features of WRS. 

(b) One type of acceptable FORMAC consta.nt is the rational number, 

and it is important to note here that AUTSIM demands that all 

sums, differences, products and quotients of constants be 

evaluated. 

assert r{a, b) = a/b 

The rules first arrange for reduction to lowest terms: 

evaluate r(O, a) 

evaluate r(a, a) 

evaluate r(a, 1) 

replace r(a, b) by r{n.umerator, denominator) when 

not reduced (a, b) 

assert reduced(a. b) 

assert if leave('g. gcd{a, b)) and not onep g and 

leave{'numerator, a/g) and leave('denominator, 

b/g) then not reduced{a, b) 

assert gcd{a. b) = gcd(rem{b, a), abs{a)) 

assert if zerop rem{b, a) then gcd(a, b)=abs(a) 

assert if greaterp{a, b) then gcd{a, b) = gcd{b, a) 

assert rem(a, b) = abs(a) - abs{b*fix(a/b)) 

assert abs{a.) = a 

assert if minusp a then abs a = -a 

* My primary source was [z8], but I found useful bits and pieces throughout 
the FORMAC literature. For a list of that literature, see (22]. 
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The rules should also make an effort to preserve rational form: 

assert quasinumber(n)=numberp nor 

equal(mainof n, 1 r) 

evaluate f(a, b) when infixop f and 

not equal(£,'**) and 

quasinumber a and quasinumber b 

assert integer(x) = numberp x and 

(equal(x, fix(x+O. 5)) or equal(x, fix(x-0. 5)) 

replace n+r(a, b) by r(a+b*n, b) when 

integer n 

replace n-r(a, b) by r(b*n-a, b) when 

integer n 

replace r(a, b) -n by r(a-b*n, b) when 

integer n 

replace n*r(a, b) by r(a*n, b) when 

integer n 

replace n/r(a, b) by r(b*n, a) when 

integer n 

replace r(a, b)/n by r(a, b*n) when 

integer n 

replace r(a, b)tr(c, d) by r(a*d+b*c, b*d) 

replace r(a, b)-r(c, d) by r(a*d-b*c, b*d) 

replace r(a, b)*r(c, d) by r(a*c, b*d) 

replace r(a, b)/r(c, d) by r(a*d, b*c) 

Finally, the rules must arrange for sign management: 

evaluate -n when numberp n 

replace -r(a, b) by r(-a, b) 

replace r(a, b) by r(-a, -b) when minusp b 

(c) AUTSIM effectively factors away the minus sign of expressions 

which are raised to integral powers. 

replace (-a)**n by a**n when even(n) 

replace (-a)**n by -(a**n) when odd(n) 

assert even(n) = integer n and zerop rem{.n, 2) 

assert odd(n) = integer n and not even n 
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(d) In conversation, R. G. Tobey has informed me of the following 

undocumented feature of AUTSIM. If e is a sum, one of whose 

terms is "log z" for some z, then AUTSIM will replace 

exp(e) 

by 

z*exp(e') 

where e' is the result of removing the "log z" term from e. 

To model this facility in FAMOUS, it is necessary to have a means 

of testing whether a sum contains a logarithmic term. 

assert not logsum(x) 

assert if equal(mainof x, 'log) then logsum x 

assert if sum x then logsum x= 

logsum arg(x, 1) or logsum arg(x, 2) 

Given the logsum test to prevent endless searching, it is simple to 

send a log-seeking syntactic device into a sum. 

assert defined('findlog) 

assert defined('foundlog) 

replace exp x by exp findlog x when logsum x 

replace findlog a by a 

replace findlog(a+b) by findlog a + findlog b 

replace findlog(a - b) by findlog a-findlog b 

replace findlog log z by foundlog( z, 0) 

Having found a logarithmic term, the rules bring this term out of 

the sum. 

replace a+foundlog(z, b) by foundlog(z, a+b) 

replace a-foundlog(z, b) by foundlog(l/z,a-b) 

replace foundlog(z, a.)-b by foundlog(';!;, a-b} 

replace exp foundlog(z, a} by z>:<exp a 
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(e) The functions of FORMAC are divided into three classes: 

( 1) The four arithmetic operators 

(2) Integer-valued functions, like factorial 

(3) Transcendental functions 

Two special switches control evaluation of expressions consisting 

of integer-valued or transcendental functions applied to constant 

arguments. 

evaluate f(x) when quasinumber x and 

(intfcn(f) and evalintfcn() or 

transfcn(f) and evaltransfcn()) 

evaluate f(x, y) when quasinumber x and 

quasinumber y and (intfcn(f) and 

evalintfcn( ) or transfcn(f) and 

evaltransfcn( ) ) 

The intfcn and transfcn predicates, of course, can be defined by 

enumeration: 

a.ssert not transfcn(f) 

a.s sert transfcn( '**) 

assert transfcn( 1exp) 

etc. 
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(f) Three undefined forms are recognized by FORMAC: zero to a 

negative power, log(O), and O**O. In the first two cases, FORMAC 

substitutes 0 and prints a diagnostic; the last case is ignored. 

replace O**n by 0 when numberp n and 

minusp n and typeout( 1 zero. to. negative, power) 

replace O**r(a1 b) by 0 when minusp a and 

typeout( 1 zero. to. negative. power) 

replace log 0 by 0 when typeout('log(O)) 

leave O**O 

(g) Finally, FORMAC is intent upon cancelling terms, and several 

apparently dilatory rules are directed toward this end. 
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replace a+log(b~'c) by a+log b+log c 

replace a-log(b*c) by a-log b-log c 

replace log(b*c)-a by log b+log c-a 

replace (a~'b)**c by a**c*b**c 

replace (a/b)**c by a**c /b**c 

4. 2, 3 An Exercise 

CHAPTER IV 

As a final experiment a.long the lines of "simplification", a FAMOUS 

"simplifier" was incrementally constructed in response to the demands of a 

relatively coherent series of mathematical problems, 

These problems were the differentiation exercises in an elementary 

text [ 26] • The experiment covered all of the problems involving rational 

functions, trigonometric functions, inverse trigonometric functions, and 

natural logarithms. The experiment was stopped at this point by a rising 

tedium/machine-time ratio, but it could conceivably have been carried through 

the remainder of the text. 

The differentiation itself naturally gave FAMOUS no trouble at all. In 

addition, differentiation proved to be a copious source of expressions worth 

"simplifying". This was quite fortunate, since the cognitive dissonance of 
11 simplifyable" expressions makes them very difficult to produce by hand. 

The "simplifier" developed here came to include a number of really 

odd-looking rules. These rules reflect recurrences of such specialized 

expressions as 

x*( 1-(a /x)** 2)**( 1I2) 

On the other hand, a number of rather prosaic rules added early in the 

game turned out to be undesirable in the long run. This was hardly surprising, 

in view of the arguments of § § 4.1. 1 and 4. 1, 2. Inasmuch as there was no 

hope for an asymptotic set of rules, the rules in question were left in. 

A number of expressions could only have been unraveled by the most 

bizarre ad hoc rules. These expressions were generally in one or another 

factored form, and the rules which were needed to "simplify" these expressions 

would have had to look a.head to the possible merits of expansion. In §6.1, I 
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discuss an improved matching procedure for FAMOUS which might be useful 

in easing situations of this kind. 

Here are the rules and assertions which were developed, in the order in 

which they appeared; a definition of expless, not shown, preceded everything. 

The first few rules a.re taken from the text: 

assert defined('d) 

replace d(x, x) by 1 

replace d(x**n,x) by n*x**(n-1) when numberp n 

replace d(u*v, x) by u*d(v, x)+v*d(u, x) 

replace d(u+v, x) by d(u, x)+d(v, x) 

replace d(u-v, x) by d(u, x)-d(v, x) 

The expression 

d(t**2-4*t+3, t) 

first to be tested, became 

2*t**(2-l )+0-( 4*l+O*t) 

and the following rules were added: 

evaluate f(x, y) when nurnberp x and nurnberp y and infixop f 

replace x**l by x 

replace x+O by x 

replace x* l by x 

replace x*O by 0 

The expression 

2*t**3-5*t**2+4*t-3 

became 

and the following rule was added: 

replace x-0 by x 
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Similarly, the remaining rules were added in response to the various 

demands of circumstance. Only spot-check cases will be remarked upon. 

replace x-x by 0 

evaluate -n when numberp n 

replace x*x**n by x~'<*(n+l) 

replace x*z-x~~w by x*(z-w) 

replace x*(z*x+w) by z*x**2+w~<x 

replace x-z*x by x*(l-z) 

replace (-l)*x by -x 

replace -x-y by -(x+y) 

replace x~'(-z) by -(x*z) 

replace x*(-z) by (-x)'~z when numberp x 

replace m*(x-n) by m~'x-m*n when 

numberp m and numberp n 

replace m*(x+n) by m*x+m*n when 

numberp m and numberp n 

replace d(u/v, x) by (v*d(u, x)-u*d(v, x) )/v*"''2 

The expression 

d(t/(t**2+1 ), t) 

became 

(t**2+ l -2*t*t) I (t** 2+ l )**2 

When the rule 

replace x*x by x**2 

was added, the expression advanced to 

(-(t**2)+ 1) I (t**2+ 1 )**2 

and the unary minus was finally cleared up with 

replace -a+b by b-a 

repla.ce a-n by a.+(-n) when 

numberp n and minusp n 

replace n*y+a by a-(-n)*y when numberp n and 

minusp n 
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replace a~'b**n by a /b':'~'(-n) when nurnberp n and minusp n 

replace a**n/b**n by (a /b)~~*n 

replace a+n/b by a-(-n)/b when numberp n and minusp n 

replace y**(-1) by l/y 

The expression 

d(x/ (x'~*2-4)"~'~0. 5, x) 

became 

( (x**Z-4)**0. 5-x**Z/ (x**2-4)**0. 5 )/ ((x**2-4)**0. 5)**2 

The rule 

replace ( a**b)**c by a** (b*c) 

was obvious enough, but the ungainly 

replace (a-b/c**y) le by (a~'c**y-b)/c**(y+l) 

was also necessary. The expression 

d( (x+l)**2*(x**2+2*x)**-2, x) 

was treated at this time, and an impasse was reached at 

(2*x+2)*(2*x+x**2-( 2*x+2)*(x+ 1) ) /(2*x+x**2)**3 

Only an ad hoc rule could have profitably been added; the rule 

now replace (a+b)*(c+e) by a*c+a*e+ b'~c+ b*e 

was successfully used instead. 

replace 0-y by -y 

replace y by z when numberp y and floatp y and 

equal (y,fix (y+ O. 5)) and leave ('z, fix (y+ O. 5)) 
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replace a--b by a+b 

replace y*z+y*w by y* (z+w) 

replace n-y by -(-n+y) when numberp n and minusp n 

replace {m*y+n) /p by {m/p) *y+n/p when numberp m and 

numberp n and nurnberp p 

replace y**n+ y*w by y* (y**(n-1) +w) when numberp n 

replace a**n/a**m by a** (n-m) 

replace {-a) /b by -(a/b) 

replace {a/b)**n*b**m by a**n*b**(m-n) 

assert cos{u) = sin(u+l. 5707963) 

replace d{sin u, x) by d{u, x)*cos u 

replace d{cos, u, x) by -d{u, x)*sin u 

replace -{a*b) by {-a)*b when numberp a 

replace m*y-n*y by (m-n)*y 

replace (sin u) **Z+(cos u)**Z by 1 

assert tan (u) = sin u/cos u 

assert cot (u) = cos u/sin u 

assert sec (u) = recip cos u 

assert csc (u) = recip sin u 

replace d(tan u, x) by d{u, x)*{ sec u)**Z 

replace d(cot u, x) by -d{u, x) * {csc u)**Z 

replace d{sec u,x) by (sec u)*(ta.n u)*d(u,x) 

replace d{csc u, x) by -(csc u)*{cot u)*d(u, x) 

The expression 

d{sec(x)**4-tan{x)**4, x) 

became 

4*(tan(x)*sec(x)** 4-tan{x)** 3*sec{x)** Z) 

Only the ugliest adhocity, viz. 

now replace t*s**4-t**3*s**Z by t*s**Z*(s**Z-t**Z) 

would do the trick, after which 

CHAPTER IV 
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replace (sec u)**2-(tan u)**2 by 1 

produced the desired result. 

replace ·(-a)**n by a**n when even (n) 

assert even (x) = integer x and zerop rem(x, 2) 

assert rem (a, b) = a-abs(b*fix (a/b) ) 

assert abs(a) = a 

assert if minusp a then abs a= -a 

replace cos(u)*sin(u) by (l/2)*sin 2 u 

assert acos(u) =abs (a sin u -1. 5707693) 

assert acot (u) = atan recip u 

assert asec(u) = acos recip u 

assert acsc(u) = asin recip u 

replace d(asin u,x) by d(u,x)*(l-u**2)** -0.5 

replace d(acos u, x) by -d(u, x)*(l-u**2)** -0. 5 

replace d(atan u, x) by d(u, x) I ( l+u**2) 

replace d(acot u, x) by -d(u, x)/(l+u**2) 

replace d(asec u, x) by d(u, x) I (abs(u) * (u** 2-1)** O. 5 

replace d(acsc u, x) by -d(u, x)/(abs(u)*(u**2-l)** O. 5 

replace abs(n*x) by n*abs x when numberp n and greaterp (n, 0) 

replace a/(-b) by (-a)/b when numberp a 

The expression 

d(acot(2/x) + atan (x/2) , x) 

became 

O. 5/( (x/2) **2+1) -- 2/(x**2*( (2/x)**2+1 )) 

The 11 --2 11 was easy enough to get rid of: 

replace a-b/c by a+(-b)/c when numberp band minusp b 

But the confusion in the fraction took some effort to root out: 

replace u**2* ( (a/u)**2+b) by a**2+b*u**2 
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replcice a/( (b/c)':'>:<Z-y) by a':'c':":'2/(b':":'2-y':'c':":'z) when nun1berp c or 

nurnberp y 

replace a/b+c/b by (a+c)/b 

replace a':":'o by 1 

replace O/a by 0 

replace (n':'x)':":'n1 by n':":'rn':'x':":'rn when integer n and integer rn 

replace d(log u, x) by d(u, x) /u 

The expression 

d(x':<iog x-x, x) 

only got to 

log x+x/x-1 

without 

replace a/a by 1 

It is sornewhat surprising that this rule should wait so long to appear. 

replace (a/b+b)/c by (a+b':":'z)/(b':'c) 

replace a i a hy 2':'a 

replace n':'u+u by (ni-l) ':'u when nurnberp n 

replace a~:~~:~n/ a by a ~:~ ~:~ (n-1) 

replace a/ a ':":'n by a':":' ( 1-n) 

replace a':":'b':'a':":'c by a':":'(b+c) 

replace a':'(b/a-c) by b-a':'c 
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LIMIT PROBLEMS 

5.1 GENERAL DISCUSSION 
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This chapter is devoted to discussion of FAMOUS - based systems for the 

solution of "limit problems". These problems are typically represented as 

(1) lim E 
x-+k 

or 

or 

where E is a finite expression compounded of piecewise-analytic functions; 

k is a real number, - oo, oo, or+ oo; and the desired answer is "indeterminate" 

or like k. 

Freshmen are occasionally given "limit problems" involving the character­

istic function of the set of rational numbers, Sometimes other unruly func­

tions are used, depending upon the imagination of the instructor. Despite the 

existence and persistence of these non-Borel anomalies, my restriction to 

piecewise analyticity excludes few problems found in elementary texts. 

The most striking thing about limit problems is the fact that only one 

" effectively computable procedure for solving them - L'Hopital's Rule -

seems to exist. Unfortunately, this is not to say that L 1HSpital's rule solves 

all limit problems. 

Consider, for example, 

( 4) lim sin x/ exp x 
x-+i"oo 

" The answer is plainly zero, but L'Hopital's rule is of no help. 
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A more malignant example starts with 

(5) lim exp x/exp x 
x-+-too 

CHAPTER V 

Here again, the answer is plain. But the answer is reached through sim­

" plifica.tion, not through L'Hopital's rule. And if (5) had been written as 

(6) lim exp x/(exp x + f(x)*exp(x**Z) ) x-++oo 

where f(x) is a Richardson function ( § 4. 1. 1), non-obviously identical to 

zero, the answer would not have been plain at all. 

The example keeps the following disappointing theorem from being very 

surprising. 

Theorem: Let N be the set of one-place real functions defined for the 

Richardson corollary ( § 4. 1. 1). Then there is no recursive decision pro­

cedure for statements of the form 

1· 
x :.n+ 00 

f(x) = 0 

for fin N. 

Proof: Suppose such a decision procedure existed, and let g be a 

function in N. Then the following are equivalent: 

( 3: x)(g(x) :/. 0) 

and 

lim g(x sin x) :/. 0 
x-+oo 

But it is known to be undecidable whether g is identically zero. QED. 

Despite the theorem, textbook problems are handled so mechanically 

by competent students that it seemed worthwhile to prepare a set of FAMOUS 

rules which would attack these problems. 
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The "two- sided" limit problems of type ( 1) turn out to be quite a ~it 

cleaner than the "one-sided" problems of types (2) and (3). In the case of 

limits of type (1), piecewise analyticity .. of the function_! allows us to 

replace 

(7) liro f( E ) 
x-+k 

by 

(8) f ~~ E ) 
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But the corresponding transformations for one-sided limits are not legiti­

mate. At their points of singularity, piecewise analytic functions comply 

with the (7)-to-(8) rule by letting one or both of (7) and (8) be indeter­

minate. The corresponding expressions for one-sided limits, however, are 

often both defined - and different in value. In an effort to return to the 

ordinary, inside-out evaluation rule, the misleading notations k+ and k­

have been used to represent values of real variables. 

Theorem: Let P be the set of one-place real functions generated by 

composition from the primitive notions of 

the rationals 

pi 

log 2 

addition 

multiplication 

division 

sin 

exp 

abs 

Suppose f(x) is in P and J~~+ f(x) = a. Then the statement 

As x descends to k, f(x) descends to a 

is recursively undecidable. 
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Proof: Suppose the decision procedure denied by this theorem existed, 

and let g be a function in P. Observe that 

(a) If a total function h(x) ever has the value v, then h(sin(l/x)/x) has 

the value v - infinitely often, in fact - in every open interval 

(0, a) 

(b) x/(abs xtl) is always defined, and its magnitude is always less 

than 1. It is negative when and only when xis. 

Thus g is always greater than or equal tO zero if and only if 

x*g(sin(l/x)/x)/(a.bs g(sin(l/x)/x) +l) 

descends to zero as x does. But it is recursively undecidable whether g is 

always greater than or equal to zero. QED. 

into 

This theorem describes one of the reasons why the technique which takes 

lim exp recip sin x 
x-u+ 

exp recip (Ot) 

and consequently into 

+ 00 

cannot be generalized very far. To be sure, one~ specify the treatment 

of any number of fixed one-place functions. For example, one chooses 

between 

(value of sin k) + 

and 

(value of sin k) -
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as a replacement for 

Ji~+ sin x 

by simply finding the quadrant in which k lies. But the situation is beyond 

saving when the (two-place) arithmetic operators are introduced. The solu­

tion of 

Jira+ exp recip (tan x - sin x) 

is not approached by the transformation into 

exp recip ( (0+) - (O+) ) 

5. 2 A FAMOUS SYSTEM FOR TWO-SIDED LIMIT PROBLEMS 

The arguments of the preceding section show that one-sided and two­

sided limit problems are (to a first approximation, ignoring possible 

degrees of unsolvability) equally and impossibly difficult. Experience, of 

course, suggests that textbook problems of these types are about equally 

and trivially easy. 

In any event, there can be no question that one-sided limit problems 

require for their solution a large and disorderly miscellany of correlative 

information. 

For this reason, no machine system was developed for one-sided limit 

problems. This section describes a FAMOUS system for the solution of 

two-sided limit problems. The system was developed in exactly the order 

in which it is presented. 

The reader will notice any number of implausible rules which, he should 

also notice, are largely eclipsed by rules which follow them. The last-in­

first-found rule-search of§ 2. 3. 3 should be recalled. 

To represent 

lim E 
x-k 
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I use the notation 

limit (x, k, e*) 

where E* is the FAMOUS representation of E. The basis and induction 

step for one-place functions are simple: 

(1) assert defined ('limit) 

(Z) replace limit (x, k, y) by y when atom y 

( 3) replace limit (x, k, x} by k 

( 4) replace limit (x, k, f(y} ) by £(limit (x, k, y) ) 

For the case of the (two-place) arithmetic functions, the rule 

(NOT 5) replace limit (x, k, f(y, z} ) by£ (limit (x, k, y}, limit (x, k, z} } 

must not be included. Taking the limits of the arguments y and z may lead 

to one of the indeterminate forms. To aid in describing these forms, I 

introduce three constants: 

(5) assert constantp ('infinity) 

(6) assert constantp ('plusinfinity) 

(7) assert constantp ('minusinfinity) 

(8) assert infinite (x} = equal (x, 'infinity) or equal (x, 1plusinfinity) or 

equal (x, 'minusinfinity) 

Now the indeterminate forms can be explicitly listed: 

(9) assert constantp ('indeterminate} 

(10) assert indet (a) = equal (a., 'indeterminate} 

( 11) assert nasty sum (a, b)= indet a or indet b 

(lZ} assert if infinite a then nastysum (a, infinity} 

(13} assert if infinite b then nastysum (infinity, b} 

( 14} assert nasty sum (plus infinity, minus infinity} 

(15) assert nastysum (minusinfinity, plusinfinity} 

(16) assert nastydifference (a, b)=indet a or indet b 

( 1 7) as Sert if infinite a then na.stydifference (a, infinity} 

(18) assert if infinite b then nastydifference (infinity, b) 

(19) assert if infinite a then nastydifference (a, a) 

(20) assert nastyproduct (a, b)=indet a or indet b 

(Zl} assert if infinite a then na.styproduct (a, 0) 
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(22) assert if infinite b then nastyproduct (0, b) 

(23) assert nastyquotient (a, b)=indet a or indet b 

(24) assert if infinite a and infinite b then nastyquotient (a, b) 

(25) assert nastyquotient (0, 0) 

(26) assert nastypower (a, b)=indet a or indet b 

(27) assert if infinite a or equal (0, a) then nastypower (a, 0) 

(28) assert if infinite b then nastypower {l, b) 

(29) assert na stypower (a, infinity) 

And in the cases of the arithmetic operators, I simply 

(a) Determine the limits of the arguments; 

(b) If they do not lead to indeterminacy, apply rules which serve 

the purpose of {NOT 5); 

(c) Transform the expression into quotient form and apply 
. /\ 

L'Hopital' s rule, if the rules equivalent to (NOT 5) have 

not been applied. 

Step (c) is not without its difficulties. Given that 

tan (2 t) ~'csc 4 t 
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becomes 0 ~' ao as t goes to zero, it is not obvious that the useful equivalent 

quotient is 

(30) tan 2 t/sin 4 t 

rather than 

(31) csc 4 t/cot 2 t 

An algorithm for choices of this kind is not forthcoming, and it is 

consequently necessary to try both alternatives simultaneously until one 

is fruitful. This stategem must even be applied to expressions which are 

already quotients; one might be given (31), and one would hope for a path 

through ( 30). 

With this discussion in mind, I tentatively separate the arguments of 

the arithmetic operators: 
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( 32) 

( 3 3) 

( 34) 

( 35) 

( 36) 

( 37) 

(38) 

(39) 

( 40) 

( 41) 
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assert defined (' sumlimit) 

assert defined (' differencelimit) 

assert defined ('productlimit) 

assert defined ('quotientlimit) 

assert defined ('powerlimit) 

replace limit (x, k, el+e2) by sumlimit (el, e2, x, k) 

replace limit (x, k, el-e2) by differencelimit (el, e2, x, k) 

replace limit (x, k, el':'e2) by productlimit (el, e2, x, k) 

replace limit (x, k, el/ e2) by quotientlimit (el, e2, x, k) 

replace limit (x, k, el**e2) by powerlimit (el, e2, x, k) 

The sumlimit, , .. , powerlimit functions will ultimately be a handle 

on the limits of the arguments: 

(42) assert defined ('limitsum) 

(43) assert defined ('limitdifference) 

(44) assert defined ('limitproduct) 

(45) assert defined ('limitquotient) 

(46) assert defined ('limitpower) 

(47) replace sumlimit (el,e2,x,k) by limitsum (el,e2,x,k, limit (x,k,el), 

limit (x, k, e2) ) 

(48) replace differencelimit (el, e2, x, k) by limitdifference (el, e2, x, k, 

limit (x, k, el), limit (x, k, e2) ) 

(49) replace productlimit (el, e2, x, k) by limitproduct (el, e2, x, k, 

limit (x, k, el), limit (x, k, e2) ) 

(50) replace quotientlimit (el, e2,x, k) by limitquotient (el, e2,x, k, 

limit (x, k, el), limit (x, k, e2)) 

(51) replace powerlimit (el,e2,x,k) by limitpower (el,e2,x,k, 

limit (x, k, el), limit (x, k, e2) ) 

Before that, however, sumlimit, ... , powerlimit provide a good point 

at which to perform, in accordance with the arguments of § 5. 1, all the 

"simplification" one cares to describe. 

Most of this manipulation, of course, will conform to the patterns of 

Chapter IV: 

(52) replace differencelimit (el, el, x, k) by 0 

(53) replace sumlimit (el,el,x,k) by 2* limit (x,k,el) 

etc. 
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It is natural to take this opportunity to shortcut (2): 

(54) replace sumlimit (el, c, x, k) by limit (x, k, el) + c when constantp c 

(55) replace sumlimit (c, e2, x, k) by limit (x, k, e2) + c when constantp c 

(56) replace differencelimit (c, e2, x, k) by c - limit (x, k, e2) when 

constantp c 

(57) replace differencelimit (el, c, x, k) by limit (x, k, el) - c when 

constantp c 

(58) replace productlimit (el, c, x, k) by c':' limit (x, k, el) when constantp c 

(59) replace productlimit (c, e2, x, k) by c~' limit (x, k, e2) when 

constantp c 

(60) replace quotientlimit (c, e2, x, k) by c':' recip limit (x, k, e2) when 

constantp c 

(61) replace quotientlimit (el,c,x,k) by limit (x,k,el)/c when constantp c 

(62) replace powerlimit (el, c, x, k) by limit (x, k, el)•:•*c when constantp c 

(63) replace powerlimit (c, e2, x, k) by c':'~' limit {x, k, e2) when constantp c 

But one must be sure to catch the forms which are already indeterminate: 

(64) replace sumlimit (el, e2, x, k) by indeterminate when nastysum {el, e2) 

(65) replace differencelimit (el, e2, x, k) by indeterminate when 

nastydifference (el, e2) 

(66) replace productlimit (el, e2, x, k) by indeterminate when 

nastyproduct (el, e2) 

(67) replace quotientlimit (el, e2, x, k) by indeterminate when 

na styquotient (el, e2) 

(68) replace powerlimit (el, e2, x, k) by indeterminate when 

nastypower (el, e2) 

Finally, this is the place to introduce miscellaneous outside information 

about special cases for which solutions are known, A large, important, 

non-recursive set of these cases is associated with the "order" considerations 

described by Hardy [9] . 

For example, suppose that the problem at hand is 

limit (x, plusinfinity, el/e2) 
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In general, it is not known that this should become zero. 

(69) assert not knownzero (el, e2, var) 

It is known, of course, that 

limit (x, plus infinity, x/ exp x) 

should become zero: 

(70) assert if equal (mainof e2, 'exp) and equal (arg (e2, 1), 

var) then knownzero (var, e2, var) 

as should 

limit (x, plusinfinity, log x/x) 

(71) assert if equal (mainof el, 'log) and equal (arg(el, 1), 

var) then knownzero (el, var, var) 

Given that 

limit (x, plus infinity, a /b) 

should become zero, so should 

limit (x, plusinfinity, log a/b) 

and 

limit (x, plusinfinity, a/exp b) 

(72) assert if equal (mainof el, 'log) and knownzero (a~g(el, 1), e2, var) then 

knownzero (el, e2, var) 

(73) assert if equal ( mainof e2, 'exp) and knownzero (el, arg(e2, 1), 

var) then knownzero (el, e2, var) 

Now the following rule puts all these definitions into operation: 

(74) replace quotientlimit (el, e2, x, plusinfinity) by 0 when 

knownzero (el, e2, var) 

In the best of times, the result of limitsum, •.• , liinitpower is that 

one may find the desired solution by applying the appropriate operator to 

the liinits of the operator's former arguments. 
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(75) replace limitsum (el, e2, x, k, a, b) by a+b when atom a and atom b 

(76) replace limitdifference (el, e2, x, k, a, b) by a-b when atom a and 

atom b 

(77) replace limitproduct (el, e2, x, k, a, b) by a*b when atom a and atom b 

(78) replace limitquotient (el, e2, x, k, a, b) by a/b when atom a and atom b 

(79) replace limitpower (el, e2, x, k, a, b) by a**b when atom a and atom b 

In all the interesting cases, of course, (75) - (79) are illegitimate. Here 

the remarks attending (30) and (31) must be kept in mind, and the choose func­

tion is the means by which I follow two branches at once. Choose, defined 

below, simply determines which alternative quotient form has reached a state 

which is expressible without limit notation. 

Notice that the choose mechanism does ~keep the EUC from being 

infinitely subject to change. In fact, choose increases the probability that 

the patience limit ( § 2. 3. 4(c) ) will be struck. But once patience has 

stopped the infinite recursion along one branch, the system may be able to 

realize that the other branch has borne fruit. 

(80) assert defined ('choose) 
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(81) assert limitfree(x) =null joint (funcsof x, list ('limit, 'sumlimit, 
1limitsum, 'differencelimit, 1limitdifference, 'productlimit, 

'limitproduct, 'quotientlimit, 'limitquotient, 'powerlimit, 'limitpower) 

(82) replace choose (a, b) by a when limitfree a 

(83) replace choose (a, b) by b when limitfree b 

/\ 
Here, finally, is l'Hopital's rule. The next five rules take expressions 

with arithmetic main operators, turn these expressions into quotients, and 

differentiate. 

(84) replace limitsum (el, e2, x, k, a, b) by log (-choose ( 

quotientlimit (exp(el)*d(el, x), exp(-e2)*d(e2, x), x, k), 

quotientlimit (exp(e2)*d(e2,x),exp(-el)*d(el,x),x,k))) when 

nastysum (a, b) 

(85) replace limitdifference (el, e2, x, k, a, b) by log choose ( 

quotientlimit (exp(el)*d(el, x), exp(e2)*d(e2, x), x, k), 

quotientlimit (exp(-e2)*d(e2, x), exp(-el)*d(el, x), x, k) ) when 

nastydifference (a, b) 
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(86) replace limitproduct(el, e2, x, k, a., b) by -choose( 

quotientlimit(d(el, x)*e2**2, d(e2, x), x, k), 

quotientlimit(d(e2, x) *el**2, d(el, x), x, k)) when 

nastyproduct(a, b) 

(87) replace limitquotient(el, e2, x, k, a, b) by choose( 

quotientlimit(d(el, x), d(e2, x), x, k), 

quotientlimit(d(e2, x)*el**2, d{el, x)*e2**2, x, k)) when 

nastyquotient(a, b) 

(88) replace limitpower(el, e2, x, k, a, b) by exp(-choose 

(quotientlimit(el*d(e2, x)*(log el)**2, d(el, x), x, k), 

quotientlimit (d( el, x)*e2**2, el*d( e2, x), x, k))) when 

nastypower(a, b) 

In (84)-(88), ~is just the differentiation operator, defined as in § 4. 2. 3. 

These rules (and (64)-(68)) make an important assumption about the constants 

and functions liberated by (2)-(4), some of the "simplification" rules, (54)-(68), 

the "order" considerations, and (75)-(79). That is, that these expression­

parts will be continually combined. The infinite predicate, after all, will not 

recognize 

infinity + 1 

or the like. The following rules might also be considered part of the shortcuts 

(54)-(63). 

One could make some of the crucial functions opaque, and then have the 

following rules examine "NEED" ( § 2, 3. 4(h)) so as to take effect only when 

absolutely necessary. I have not bothered with such a refinement. 

(89) evaluate f(x, y) when numberp x and numberp y and infixop f 

(90) evaluate -n when numberp n 

(91) replace -infinity by infinity 

(92) replace -plusinfinity by minusinfinity 

(93) replace -minusinfinity by plusinfinity 

(94) assert nx() "' infinite x and numberp n 

(95) replace n+x by x when nx() 

(96) replace x+x by x when infinite x 

(97) replace x+y by indeterminate when nastysum(x, y} 

(98) replace x-y by x+(-y) when infinite x or infinite y 
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(99) replace plusinfinity*n by plusinfinity when 

numberp nor equal(n, 'plusinfinity) 

( 100) replace plusinfinity*n by minus infinity when 

numberp n and minusp n 

(101) replace minusinfinity~'x by -(plusinfinity*x) 

( 102) replace infinity*x by infinity 

(103) replace x*y by indeterminate when nastyproduct (x, y) 

( 104) replace x/y by x>:<recip y when infinite x or infinite y 

(105) replace n**plusinfinity by plusinfinity when numberp n 

(106) replace n**plusinfinity by 0 when numberp n and lessp(n, 1) 

( 107) replace n**plusinfinity by infinity when numberp n and 

les sp( n, -1) or infinite n 

(108) repla.ce x**n by infinity when nx() 

( 109) replace plusinfinity**x by plus infinity 

(110) replace minusinfinity~'*n by plusinfinity when even n 

( 111) replace infinity**n by plus infinity when even n 

( 112) replace minusinfinity**n by minus infinity when odd n 

( 113) replace x~'*n by recip(x**(-ri) )when nx( ) and minusp nor 

equal (n, 'minusinfinity) 

( 114) 

( 115) 

(116) 

( 117) 

( 118) 

( 119) 

( 120) 

( 121) 

( 122) 

( 123) 

( 124) 

( 125) 

replace x*~'Y by indeterminate when nastypower(x, y) 

repla.ce £(indeterminate) by indeterminate 

evaluate recip x when numberp x 

replace recip 0 by infinity 

replace recip x by 0 when infinite x 

evaluate log x when numberp x 

replace log 0 by minusinfinity 

replace log x by plusinfinity when infinite x 

evaluate exp x when numberp x 

replace exp minusinfinity by 0 

replace exp infinity by indeterminate 

replace exp plusinfinity by plusinfinity 

Additional rules similar to ( 116)-( 125) are needed as new functions are 

brought into play. 

63 

The system described in this section was applied to a small but representa­

tive sample of problems from elementary and advanced texts [ 26, 31] • All 

of these problems were successfully solved. 
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CHAPTER VI 

LOOKING AHEAD 

This chapter is devoted to (rather speculative) discussion of possible 

improvements on the extensions to the work described earlier. 

6. 1 MATCHING 
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The FAMOUS matching algorithm described in § 2. 3. 2. 1 provides a 

comprehensive means of checking the tree-stucture of an algebraic expres­

sion. The elegance of the algorithm does not alter the fact th1t tree-struc­

ture is hopelessly inadequate to the problem at hand. 

The trouble is that an expression <:>may "contain" an expression \(tin a 

sense other than that of syntax (tree-structure). FAMOUS makes an inade­

quate detour toward this fact when it is handling rules whose forms have 

Abelian-group operators as ruletypes. FAMOUS will, for example, succeed 

in applying the rule 

( 1) replace x-x by 0 

to the expression 

(2) (at b) - (ht c) 

even though "b-b" is not a subexpression of (2). Similarly, Joel Moses' re­

markable SCHATCHEN program [ 16, pp. 11-13] will find 

(3) a~'x*':'2tn when numberp n 

in the expression 

FAMOUS will not, on the other hand, find 

(5) exp(logzta) 
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in 

(6) exp (x+ logy+ 2) 

The trick which worked in the case of (1) - (2) is not universal, and one 

is led to adhocities like that of logsum (§4. 2. 2(d) ). 

From one point of view, of course, seeking a "universal" matching 

algorithm is futile. One might, after all, hope that such an algorithm would 

match 0 successfully with any expression which is identically zero. 

But a lesson of Chapter V is surely that recursive undecidability can 

be a remote and unthreatening form of hopelessness. Reconsidering ex­

amples (1) - (2) and (3) - (4), I see that a rule was looking at an expression 

~for a portion satisfying certain conditions. That portion wwas to be 

changed, say to e. By examining ~and the rule, the system discovered 

the expression 

(7) r.i (w, w) 

equivalent to ~; the result of the whole operation is 

(8) r.i ( e, w) 

These examples suggest a new notion of matching, perhaps a supermatch 

function, which uses the present (shape-testing and a-list-building) match as 

a subroutine. As before, a rule either succeeds in transforming an expres­

sion, or it leaves that expression unchanged. 

Even though the expression is ultimately unchanged, however, the rule 

may have made any number of tentative changes (like the ~-to-(7) change) 

before withdrawing. All changes, both these scratchwork ones and those per­

formed by successful rules, are specified in terms of skeletons (like the 

present forms and substitutes) and a-lists. 

A rule's applicability to a given expression is tested, then, by fitting 

that expression to an initial skeleton. A given rule may have a number of 

different initial skeletons; from the expression's point of view, these are 

alternatives. 
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Associated with each initial skeleton is a tfe which 

(a) tests the a-list arising from the match; 

(b) adds to or alters the a-list; and 

(c) chooses which of the rule 1 s next-level skeletons is, in conjunction 

with the a-list, to be thought of as describing the expression. 

As might be inferred from my use of "next" in (c), the process may then 

be iterated. If the match is not found to be unsuccessful at one or another 

point, the expression is changed to that expression which is described by the 

last skeleton and a-list. 

For example, a rule might have the initial skeletons 

( 9) ix 

( 10) n'~( 'x) 

( 11) 'x+m 

( 12) 1x-m 

( 13) n':'('x)+ m 

( 14) n~"('x)-m 

( 1 5) m-n('x) 

( 16) m-'x 

where the associated tfe 1 s made sure that the n's and m's were numbers. 

The second stage might allow the rule to view any expression of any one of 

the forms (9) - (16) as being of the form 

( 1 7) a'!'( 'x) + b 

The tfe associated with (17) might then ask about the expression's y-intercept 

or whatever. 

There is any amount of floss which, it seems at first, can easily be added 

to this general scheme. For example, one might add a facility whereby iden­

tifiers (~., "quadratic") could be singled out and given fixed, special match­

ing properties. These identifiers might even be given arguments (~., 

"quadraticin (x, a2, al, aO)"). The possible mechanisms are many, and any is 

probably easily implemented in programming languages like FLIP [zs) and 
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CONVERT [ 8] • 

The real problems of supermatch are not implementation proplems. The 

detailed design will interact strongly with the design of'an associated control 

language; the user who has to advise supermatch must not feel that he is be­

ing forced to program. Qq.ite possibly, much of the "floss" indicated above 

will necessarily be left behind, 

6. 2 ASSERTIONS AND RULES 

Despite the arguments of § 3. 2, the reader may feel that my opposition 

to "compiling rules into function definitions" is founded on a distinction with­

out a difference. More subtly, the reader may feel that the problems discuss­

ed in Chapter III do not arise "in practical cases". 

It is interesting to examine a simple example. Consider the assertions 

(1) assert factorial (x);;; x* factorial (x-1) 

(2) assert factorial 0=1 

Following these assertions and the rule 

(3) evaluate factorial x when numberp x 

the expression 

(4) factorial (3) 

will become 

(5) 6 

as it should. What rules, when "compiled" by some unspecified compiler, 

would have the sam.e effect as ( 1) - (3) ? TJie obvious choices are 

( 6) replace factorial (x) by x*factorial (x-1) when numberp x 

( 7) replace factorial (0) by 1 

· . . : ... -
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but these are plainly wrong. From (4), these rules produce a greater or 

lesser portion of the infinite expression 

(8) 3*(3-1)*(3-(1+1) )*(3-(1+1+1) )* ... 

The "(x-1)" of (6), unfortunately for (6), is a construction, not a difference. 

I try again: 

(9) replace factorial (x) by x*factorial (y) when numberp x and 

leave ('y, x-1) 

(7) replace factorial (0) by 1 

Now, (9) and (7) are somewhat better: they take (4) into 

( 10) 3*2*1 *l 

leaving me with several alternatives. The rule 

(11) evaluate x*y when numberp x and numberp y 

will do the trick, of course, but it does much more than what is required. I 

can do no better than to replace (9) and ( 7) by 

(12) replace factorial (x) by fact (x, factorial (y)) when 

numberp x and leave ('y, x-1) 

( 7) replace factorial ( 0) by 1 

( 13) replace fact (x, y) by z when numberp y and leave ( 'z, x':'y) 

6. 3 EFFICIENCY 

The current FAMOUS implementation presents a mean lethal dose of 

inefficiency. That is, approximately half of the problems given to FAMOUS 

have been solved so slowly that the users have lost interest in waiting for 

their solutions. 

The figure "one-half", moreover, is probably charitable. The system's 

major user is overmotivated; all of the system's users have been more inter­

ested in seeing what the system can do than in seeing what the system can do 



70 CHAPTER VI 

with some predetermined problem. The system has, of course, strongly 

reinforced an increasingly trivial problem mix. 

Where is the time all going? At first, elegant inefficiences of implemen­

tation were thought to be the sink. A number of these inefficiencies were 

rooted out, but the resulting improvements in performance were disappoint­

ing. 

This is not to say that implementation flaws could not be the time-waster. 

A number of important implementation strategies have not been attempted. 

Often, these implementation-oriented notions would have had repercussions as 

far away as the external appearance of the system. 

For example, the present ruletype mechanism is easy to criticize. A 

FAMOUS differentiator has all its rules in a single pile which must be searched 

for each application. One might think in terms of a more fine-grained rule­

~function, or one might give up ruletype altogether in favor of a system 

in which the EUC and the rules were parts of a multiply-connected plex­

structure [ 21) • This last suggestion is most intriguing, but it is not prac­

tical within the present host system (CTSS LISP). 

In other algebraic manipulators, several strategems are used to improve 

efficiency. Without drastic modification, these strategems are generally 

irrelevant to FAMOUS, 

In FORMAC and els~where, for example, each expression carries an 

"already-simplified" bit. This bit serves to lock the "simplifier" out of 

certain subexpressions when the expression is reshuffled. 

In FAMOUS , of course, the rules are continually changing. An ex­

pression which has been "simplified" today many still require further 

"simplification" tomorrow. An "already simplified" bit just cannot be set. 

Even worse, the significance of the patience bound(§ 2. 3. 4(c)) must not 

be forgotten. Even though an expression has been processed by a given set of 

rules, that expression may still be subject to processing by those same rules. 

Finally, consider the case of a rule which builds an expression e' out of 

subexpressions e 1 , ... , en taken from an old expression e. On occasion, 
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e 1 will surely deserve retreatment by the rules. If, for example, the rules 

are 

(1) replace a/a by 1 

and 

(2) replace a+ a by 2*a 

then the processing of 

( 3) ( s in 4 z) / 2 + ( sin 4 z) / 2 

must not stop at 

(4) 2'~(sin 4 z) /2 

On the other hand, the 

(5) sin 4 z 

of (4) need not be examined after (4) is reached. (5) was, after all, a sub­

expression of (3), and rule (2) was not applied until the subexpressions of 

(3) became stable.~' 

But this account of (5) is not perfectly general. Suppose, for example, 

that the EUC is an expression in x whose derivative at x =2 is wanted, It is 

reasonable to run the compressive evaluation and the expansive differentiation 

at once; I would use the command sequence 

assert opaque ( 1d) 

hold 

replace x by 2 

consider d($, x) 

continue 

* Here I am pushing the patience issue under the rug. 
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This scheme assumes, of course, that although 

d(x~":'2, x) 

will not turn into the senseless form 

The "2~'x" which does appear will have its "x" replaced by 2. But in the 

notation of the example (1) - (5) , this means that subexpressions of the old 

expression are being resubmitted to the rules. 

To take another case of a strategem common in other algebraic manipulators, 

consider the class of rules including 

( 6) replace x-x by 0 

( 7) replace O~'x by 0 

( 8) replace x/ x by 1 

Rules in this class make superfluous entries on the a-list. In cases (6) - (8), 

the name "x" is not used in construction of the tfe or substitute. 

Because they cause whole pieces of expressions to be discarded, and 

because they are so easy to implement, rules like (6) - (8) are extremely 

popular with existing "simplifiers". These rules are frequently and easily 

implemented in no distinguishable form: they are woven into the fabric of 

the system in innumberable places. 

In FAMOUS applications, it is true that (6) - (8) are common rules. But 

(9) replace x-y by indeterminate when nastydifference (x, y) 

( 10) replace x*y by indeterminate when nastyproduct (x, y) 

( 11) replace x/y by indeterminate when nastyquotient (x, y) 

are also useful at times, and even 

( 12) replace x-x by pi 

(13) replaceO'~xbye 
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(14) replace x/x by pi'~~'e 

are legitmate, although a little unusual. 

If FAMOUS knew, in some sense, that (6) - (8) were present and un­

trammeled by any of (9) - (14), it could do very nicely. But the present 

FAMOUS never makes any global observations. 
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With even the most limited inter-rule considerations, the prospects 

for improving efficiency seem very good indeed. A human being, given the 

rules 

( 15) replace d(c, x) by 0 when numberp c 

( 16) replace d(x, x) by 1 

(1 7) replace d(u~-'v, x) by u':'d(v, x) + v'~d(u, x) 

( 18) replace 0'·~x by 0 

( 19) replace l ':'x by x 

(20) replace 0 + x by x 

will, after reflection or experience, come to know the rule 

( 21) replace d( c'~x, x) by c when numberp c 

which, where it is applicable, is an efficient summary of all of ( 15) - ( 20) . 

The argument which condemns (21) as implicit in - and superfluous to 

( 15) - (20) does not argue for speed of operation. One is reminded of 

Quine's discussion [ 16, p. 26) of economy of axiomatization versus econo­

my of length of proof. 

One is also reminded of the tradeoffs in compiler construction, where 

discrimination of special cases (for loops with DO-loop logic, procedure 

blocks called 0 times or one time, etc.) proves to be feasible and reward­

ing. 

The compiler analogy is particularly encouraging. Just a few years ago, 

certain compiler techniques were thought to be so inherently inefficient that 

they would never rise above the status of academic curiosities. Now that 

those techniques are better understood, they are commonly as fast as the less 

elegant alternatives. 
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The present FAMOGS does not carry even the first suggestion of an 

attack upon this probler:n of inter-rule considerations. But the present 

FAMOUS has quite fulfilled its purpose if it has suggested only what the re­

wards of such an attack r:night be. 
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COMMAND DESCRIPTIONS 

The commands of FAMOUS may be divided into four main groups: 

(a) Four commands are concerned with expressions. 

(b) Eleven commands are concerned with rules. 

( c) Three commands are concerned with function definitions. 

( d) Five commands have miscellaneous metafunctions. 
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In the syntactic descriptions below, the following conventions are used: 

(a) e's always represent expressions, in the input form described in 

§ D. 1. 

(b) id's represent single names, in the input form described in §D. 2(a). 

(c) n's represent integers, in the input form described in § D. 2(b). 

(d) Capitalized strings are literally intended, as are punctuation marks 

other than brackets and braces. 

(e) Optional phrases are shown in brackets. 

(f) Alternatives are listed vertically between braces. 

Summary of Commands 

ABBREVIATE e AS e' 

ASSERT (IF e THEN] { ~:o:.~·} 
CONSIDER e [· WHERE el =eJ. [. e2=ez [· ... [· en:::e~] .. ·] J J 
CONTINUE 

DESK 

EVALUATE e [WHEN e 1 ] 

EXPAND id 

HOLD 

LEAVE e [WHEN e 1 ) 

LISTEN 
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NOW I
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A. 1 COMMANDS CONCERNED WITH EXPRESSIONS 

A. 1. 1 Consider 

CONSIDER e [, WHERE e 1 =e]_ [·ez=ez [ ... [ en =e~ ] ..• J J J 

In the usual case, the expression e becomes the CEUC and the new 

wherelist is specified by the remainder of the command. If no wherelist is 

specified, the wherelist is made null. 

then 

If the peculiar name "$" is a member of 

atomsof(e) 

( 1) the new CEUC is formed by substituting the old CEUC for every 

appearance of "$" in e, and 

(2) the wherelist is made null. 

In either case, the new EUC is finally printed out with the next sequential 

expression-number. 

Examples: 

consider x - f(sin 2 g), where f(z) = z':'*2, g=2':'a 

consider $+$ 

A. 1. 2 Save 

SAVE EXPRESSION AS id 

The EUC is stored in a file named 

EXPS id' 

where id' is a short name printed out in response to the~ command. Any 

expression previously associated with this name (id) and this file (EXPS id') 

is lost. 

The na~e id may not contain periods. 
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The utility of the~command is best understood in connection with 

the continue command (§A. 4. 1). 

Examples: 

save expression as fred 

save expression as schroedingerequation 

A. 1. 3 Reconsider 

RECONSIDER (n) 

The expression and wherelist which were numbered (n) become the EUC, 

which is printed out. 

If no expression so numbered is known to the system, the system com­

plains. 

An elusive bug in the host system (CTSS LISP) occasionally causes 

FAMOUS to lose expressions numbered "(l)". 

Examples: 

reconsider (12} 

reconsider (3) 

A.1.4 Reset 

RESET 

EXPRESSION 

EXPRESSIONS 

(a) The CEUC disappears. 

(b) The expression number is set to 0. 

(c) The numbered expressions leading up to the just-vanished one are 

forgotten. 

(d) If the command is typed with the final "s", all expressions named 

via~ (§A. 1. 2) are forgotten. 

Examples: 

reset expression 

reset expressions 
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A. 2 COMMANDS DEALING WITH RULES 

A. 2. 1 Reset 

RESET RULES 

All the current rules disappear. 

Example: 

reset rules 

A. 2. 2 Save 

SAVE RULES AS id 

All the current rules are stored on the disk in a file named 

RULES id' 

where id' is a short name printed out in response to the~ command. Any 

set of rules previously associated with this name (id), and with this file 

(RULES id'), is lost. 

The name id may not contain periods. 

The utility of the ~command is best understood in connection with 

the retrieve command (§A. 2. 3). 

Examples: 

save rules as george 

save rules as almostwooldridge 

A. 2. 3 Retrieve 

RETRIEVE id [ (id1 [• id2 [ •... [, idn] •·• J J >] 
The optional portion of this command is a descriptor list. 
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Certain rules from the ~d package named id are added to the current 

stock. A rule r is taken if either 

(a) the command's descriptor list is null, or 

(b) the command's descriptor list contains some descriptor of r. 

If no rule package named id is known to the system, the system complains. 

Examples: 

retrieve george 

retrieve sam (*) 

retrieve almostwooldridge (dx, abbrev) 

A. 2. 4 Suppress 

SUPPRESS 

The parameters of this command are descriptors. 

Certain of the current rules are lost. A rule r is lost if the command's 

descriptor list contains some descriptor of r. 

Examples: 

suppress (*) 

suppress (dx, abbrev, expand) 

A. 2. 5 Scan 

SCAN RULES [(id1 [, id2 [ , ... [. idn] ... ] ]>] 
The optional portion of this command is a descriptor list. 

Certain of the current rules are displayed for the user's comment. The 

other rules are unaffected. 
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A rule r is among those scanned if either 

(a) The command's descriptor list is null, or 

(b) The command's descriptor list contains some descriptor of r. 

The user may make any one of five comments after a rule is presented. 

(a) "OK" will cause the rule to be retained. 

(b) "NG" will cause the rule to be lost. 

(c) "OKOK" will cause the rule to be retained and the scan to be dis­

·continued. 

(d) "NGNG" will cause the rule to be lost. In addition, printing of 

scanned rules is discontinued, and the "NG" response is assumed to 

have been given for each scanned but unprinted rule. 

(e) "LABEL" id will cause the descriptor id to be added to the descriptors 

of the rule. The rule is printed out again for further comment. 

(f) "UNLABEL1' id will cause the descriptor id to be removed from among 

the descriptors of the rule .. The rule is printed out again for further 

comment. 

If the scan ends normally (i.e., not via (c) or (d) ), the system prints 

'DONE'. 

Examples: 

scan rules 

scan rules (*) 

scan rules (dx, abbrev) 

A. 2. 6 Abbreviate 

ABBREVIATE e AS e 1 

A new rule is added to the current stock (§A. 2.12). 

(a) The raw form is e 

(b) The raw tfe is "$TRUE$" 

(c) The raw substitute is e' 
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(d) The raw descriptor-list is the unit set of "ABBREV" 

If the hold switch (§§A. 2. 11, A. 4. 1, and A. 4. 3) is not on, the co:itinue 

command (§A. 4. 1) is initiated after the rule has been added. 

abbreviate 2. 71828 as e 

abbreviate a':'b':":'y as f(y) 

A. 2. 7 Evaluate 

EVALUATE e (WHEN e'] 

A new rule is added to the curren: stock (§A, 2. 12). 

(a) The raw form is e 

(b) The raw tfe is e', if e' is given, otherwise "$TRUE$" 

(c) The raw substitute is "EVALUATE" 

(d) The raw descriptor-list is the unit set of "EVALUATE" 

If the hold switch(§§ A. 2. 11, A. 4. 1, and A. 4. 3) is not on, the continue 

command (§A. 4. 1) is automatically initiated after the rule has been added. 

Examples: 

evaluate log 2 

evaluate sin x when numberp x 

evaluate p(x, y) when numberp x and numberp y and 

infixop p 

A.2.8 Expand 

EXPAND id 

The par.,meter of this command is the name of an abbreviation. That 

is, it is the "e" of 

abbreviate 2. 71828 as e 
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or the "f" of 

abbreviate a~<b>:<>:<y as f(y) 

The wherelist is searched for an abbreviation with this name. If no such 

abbreviation is found, the system complains and returns to command level. 

If the abbreviation is found on the wherelist, in the form e = e', then 

(a) It is deleted from the whe relist. 

(b) The rule that created it is deleted from the current stock. 

(c) A new rule is added to the current stock (§A. 2. 12). 

(1) The raw form is e 

( 2) The raw tfe is "equal (id, 1 id)" 

( 3) The raw substitute is e' 

( 4) The raw descriptor-list is the unit set of "EXPAND" 

(d) If the hold switch(§§A. 2. 11, A. 4. l, and A. 4. 3) is not on, the 

continue command(§ A. 4.1) is automatically initiated. 

Examples: 

expand e 

expand f 

A. 2. 9 Leave 

LEAVE e [WHEN e~ 

A new rule is added to the current stock(§ A. 2. 12). 

(a) The raw form is e. 

(b) The raw tfe is e', if e' is given, otherwise "$TRUE$" 

(c) The raw substitute is "LEAVE" 

(d) The raw descriptor-list is the unit set of "LEAVE" 

If the hold switch(§§A. 2. 11, A. 4. 1, and A. 4. 3) is not on, the continue 

command (§A. 4.1) is automatically initiated after the rule has been added. 
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Examples: 

leave log 0 

leave sin x when integer x 

A. 2, 10 Replace 

REPLACE e BY e' [WHEN e"] 

A new rule is added to the current stock (§A. 2, 12). 

(a) The raw form is e 

(b) The raw tfe is e", if e" is given, otherwise "$TRUE$" 

(c) The raw substitute is e' 

(d) The raw descriptor-list is null 
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If the hold switch (§§A. 2. 11, A. 4. 1, a.nd A. 4. 3) is not on, the continue 

command (§A. 4. 1) is automatically initiated after the rule has been added. 

Examples: 

replace l*y by y 

replace x + y by factr * (otherl + other2) when commonfactor (x, y) 

A. 2.11 Now 

NOW 

ABBREVIATE e AS e' 

EVALUATE e [wHEN e~ 
EXPAND id 

REPLACE e BY e' [wHEN e•J 

(a) The current stock of rules is hidden safely from the rest of the system. 

(b) The hold switch is turned off. 

(c) The command indicated by the parameters is initiated. 

(d) The rules hidden in (a) are restored; the rule generated by (c) is lost. 
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Examples: 

now abbreviate 2. 71828 as e 

now evaluate sin x when numberp x 

now expand e 

now replace l~'y by y 

A. 2. 12 Addition of Rules 
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The rule which finally enters the current stock will generally be somewhat 

different from the rule first specified by the user. The following transforma­

tions a re performed: 

(a) The ruletype of the form is added to the rule's descriptor list. 

(b) If 

opaque (ruletype(getexp())) 

has the value "$TRUE$", then ruletype(getexp()) is added to the des­

criptor list. 

(c) The form is altered as described in § 2. 3. 5. 

(d) If the peculiar name "$"appears in the form, it is replaced by the 

CEUC. 

(e) For every function name f in the form which is 

(1) Not a member of atomsof(the tfe) (§ 2. 3. 5), and 

(2) not the name of a defined function, but 

(3) a function name in the CEUC, a clause 

equal (f, 'f) 

is conjoined to the tfe. 
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A. 3 COMMANDS CONCERNED WITH FUNCTION DEFINITION 

A. 3. 1 Assert 

ASSERT [IF e THEN] { :~~ .~·} 
The intention is to define or redefine the outermost function of e'. In 

particular, if this function f is ever applied to arguments which satisfy the tfe 

e, then it is intended by this assertion to guarantee that f has the value 

"$TRUE$", "$FALSE$", or the value of e", depending upon which form is 

used. 

(a) If the optional part of this command is not present, e is taken to 

be "$TRUE$". 

{b) An effective e" is chosen ("$TRUE$", "$FALSE$", or the given one). 

(c) Say that e' was given as f(e 1 , e 2 , ..• , en). If any e. is a number; 
l 

identical to some e., j > i; an APVAL; or not a single variable name; 
J 

then e. is replaced in e' by a new variable-name e'., and the clause 
l l 

I 

equal (e., e.) 
l l 

is conjoined to the tfe e. 

(d) Say that e' is now f{el, ez., ... , e~). 

(1) not a member of atomsof(e), and 

(2) either 

If any e! is 
l 

(a) an atom-name or function-name in the CEUC, or 

(b) the name of a constant, or 

( c) the name of a defined function 

then e! is replaced by its quotation in the value e", and the clause 
l 

equal (e!, '(e!)) 
l l 

is conjoined to the tfe e. 

(e) If any function-names in e or e" are not names of defined functions, 

warnings are printed. 
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(f) The system prints its interpretation of the polished assertion, and 

the user is expected to express his approval or disa.pproval: 

(1) If the user types "OK" then the assertion is passed on to the inner 

assert mechanism (§A. 3. 2). 

(2) If the user types "NG", the assertion is discarded. 

Examples: 

assert not meter() 

assert maxtime () = 30 

assert patience() = 5 

assert opaque(z) = equal (x, '(')) 

assert factorial( z) = z*factorial( z-1) 

assert factorial(O) = 1 

assert expless(a, b, c) 

assert if atom x and atom y and alphaorder(x, y) then expless(y, x, z) 

assert if numberp x or numberp y then expless(x, y, z) = not numberp x 

A. 3. 2 The Inner Assert Facility 

The inner assert facility accepts one assertion (IF tfe THEN f(id 1, 

•.. , id ) = e) at a time. 
n 

(a) The assertion is pla.ced on the list of all assertions made in this 

copy of FAMOUS. 

(b) If the tfe is "$TRUE$", then the system is given the definition 

Any previous definition off is lost. 

( c) If the tfe is not 11 $TRUE$" but the function f has a previous definition; 

say 

Then a new function g is introduced with the definition 
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and the system is given the definition 

f(id
1

, ..• , idn) = if tfe then e otherwise g(id1, • id ) 
n 

(d) If the tfe is not "$TRUE$" and the function f has no previous definition, 

then the system prints a warning and accepts the definition 

f(id 1, .•. , idn) = if tfe then e otherwise "UNDEFINED" 

A. 3. 3 Save 

SAVE ASSERTIONS AS id 

The assertions on the present list are stored in a file named 

ASSERT id1 

where id' is a short name printed out in response to the~ command. 

Any set of assertions previously associated with this name (id) and this file 

(ASSERT id') is lost. 

The name id may not contain periods. 

The utility of the~ command is best understood in connection with the 

reassert command (§A. 3. 4). 

Examples: 

save assertions as basics 

save assertions as transcendentals 

A. 3. 4 Reassert 

The intention is to add the assertions saved in the package id to the 

present list, using the inner assert facility (§A. 3. 2). 
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If the "(SCAN)" parameter is present, each assertion is displayed for 

the user's comment. The user may make a.ny one of four comments after an 

assertion is displayed. 

(a) "OK" will cause the assertion to be handed on to the inner assert 

facility. 

(b) "NG" will cause the assertion to be ignored. 

(c) "OKOK" will cause the assertion to be handed on to the inner assert 

facility. In addition, the printing of incoming assertions is discon­

tinued for the remainder of the command, and the response "OK" is 

considered to have been given for each unprinted assertion. 

(d) "NGNG" will cause the command to be immediately discontinued. 

Examples: 

reassert basics 

reassert transcendentals (scan) 
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A. 4 MISCELLANEOUS COMMANDS 

A. 4. 1 Continue 

CONTINUE 

(a) If the CEUC is null (as it is after reset, §A. 1. 4), then the system 

complains and returns to command level. 

(b) If any name of a saved expression (§A.1. 2) is found among 

atomsof(getexp()), then that expression is substituted for that name. 

The wherelist of the saved expression is added, where consistent, 

to the wherelist of the EUC. 

(c) The hold switch is turned off. 

(d) The EUC is thrown to the rules. 

(e) The expression number is incremented. 

(f) The new EUC is printed. 

Example: 

continue 

A. 4. 2 Desk 

DESK 

The system is thrown into a desk-calculator mode of operation. Succes­

sive expressions are read from the typewriter, passed to the rules, and gen­

erally discarded. Precisely, 

(a) An expression is read from the console. 

(b) If it is "STOP" the system returns to command level. 

(c) The CEUC is substituted for each appearance of"$" in the expression. 

(d) The expression becomes the CEUC. 

(e) The wherelist becomes null. 

(f) The continue command is initiated. 

(g) Control returns to (a). 
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Exilrr1ple: 

desk 

A. 4. 3 Hold 

HOLD 

The hold switch is turned on. The utility of the hold cornrnand is best 

understood in connection with the abbreviate, evaluate, expand, leave, and 

replace comrnilnds (§§A. Z. 6-A. Z. 10). 

Example: 

hold 

A. 4. 4 Listen 

LISTEN 

Sec § E. 3. 

Exarnple: 

listen 

A. 4. 5 Quit 

QUIT 

See § E.3. 

Exan1ple: 

quit 
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THE FAMOUS EVALUATION ROUTINE 

The value of an expression is computed as follows: 

(a) The host system (CTSS LISP) forces the following names to be 

distinguished as ''AP V ALS'': 

blank eor oblist 

breaks eqsign period 

cleanout floydftab pluss 

colon floydgtab prime 

comma fnflags rpar 

er fsleft singles 

dash fwleft slash 

dollar inlist star 

eof lpar tytab 
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If e is an APVAL, then e has a predetermined value which is gen­

erally not useful to FAMOUS. The APVALs should consequently 

be avoided. 

(b} If e is "$TRUE$", "$FALSE$", a number, a constant, or the name 

of a defined function, then the value of e is e. 

(c) If e is "NEED", then the value of e is a set of descriptors, as 

described in § 2. 3. 4(i). 

(d) If e is a name which appears as the first pa.rt of a pair on the a-list, 

then the value of e is the second part of that pair. 

(e) If e is the quotation of an expression e', then the value of e is e'. 

(f) If e is 

then the successive ei' s are evaluated until eK is found to have the value 

"$FALSE$". When this happens, the value of e is said to be "$FALSE$" 

and eK+l' ••• , en are not evaluated. If all of e 1, , en have value 

"$TRUE$", then e has value "$TRUE$". 
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(g) If e is 

then the successive ei's are evaluated until eK is found to have value 

"$TRUE$". When this happens, the value of e is said to be "$TRUE$" 

and eK+l' ••• , en a.re not evaluated. If all of e 1 , .•. , en have value 

"$FALSE$", then e has value "$FALSE$". 

(h) If e is f(e 1, .•• , en)' a.nd if f is a. defined function, then the value of e 

is the result of applying the function named by f to the values of e 1 .•• en. 

(i) If e is f(e 1, ••. , en)' and if f appears a.s the first part of an entry on 

the a-list whose second part is g, then the value of e is the value of 

g(el • ..• 'en). 

Several parts of the evaluation routine have not been described. In the first 

place, I have not discussed cases of conflict: names on the a-list which a.re also 

APVAL 1s, etc, There are rules governing such conflict, but I find it improbable 

that a user of FAMOUS could ma.ke anything useful of his knowledge of these rules. 

Nor have I discussed some additional ways in which it is possible for an 

expression to acquire a value. These ways, like the conflict-rules of the 

previous para.graph, are accidental bequests of the implementation. They seem, 

once again, to have no proper interest for the user of FAMOUS. 
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APPENDIX C 

FUNCTIONS 

Throughout this appendix, e's are expressions and b' s are truth-values. 

C. 1 FUNCTIONS WHICH MUST BE DEFINED BY THE USER 

Use 

expless(e 1, e 2 , b) 

Purpose 

Expless is the system's source of advice about the 
ordering of products and sums. If the user prefers 

to 

he should be sure that 

expless(e
1

, e 2 , $FALSE$) 

is $FALSE$. Similarly, 

expless(e
1

, e 2, $TRUE$) 

should be $FALSE$ if 

is preferred to 

For example, suppose the user favors the order 

numbers/names/(complex factors) 

in products, and 

(complex terms)/na.mes/numbers 

in sums. Then he might define expless by the assertions 

assert expless(a, b, c) 
assert complexity (x) = 2 
assert if atom x then complexity x = 1 
assert if numberp x then complexity x = 0 
assert expless (a, b, $FALSE$)= lessp (complexity 

a, complexity b) 
assert expless (a, b, $TRUE$) = not expless (a, b, 

$FALSE$) 
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Use 

maxtime() 

meter() 

opaque(f) 

patience() 

APPENDIX C 

Purpose 

To these assertions, alphabetical ordering of names 
and other refinements might now be added. Of course, 
the trickiness of expless would not have been thrown 
to the user if only prosaic orderings could be specified. 

See § 2. 3. 4(d); typical values run between 30 and 100. 

If meter() does not have the value "$FALSE$", then the 
system will clock its excursions from command level, 
and the running time (in tenths of seconds) will be printed 
upon each return. 

See § 2. 3. 4(h) 

See§ 2. 3. 4(c) 

C. 2 NUMERICAL PREDICATES 

Use 

fixp(x) 

floatp(x) 

greaterp(x, y) 

lessp(x, y) 

minusp(x) 

onep(x) 

zerop(x) 

$TRUE$ !ff 

x is in integral internal representation 

x is in non-integral internal representation 

X>Y 

x< y 

x<O 

zerop(x-1) 

fxj ~ 3*10-
6 

C. 3 NUMERICAL FUNCTIONS 

The five arithmetic operators are available. Exponentiation, which 

is written with FORTRAN' s double asterisk, has the peculiar definition 

x**y = if minusp y and floatp y then x IYI otherwise xy 

Other functions available include the following: 

Use 

addl(x) 

asin(x) 

Comment 

x+l 

-1 Sin (x) 
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Use 

atan(x) 

cosh(x) 

exp(x) 

fix(x) 

float(x) 

log(x) 

max(x, y, 

min(x, y, 

minus(x) 

recip(x) 

sin(x) 

sinh(x) 

subl(x) 

tanh(x) 

'z) 

• z) 

Comment 

-1 Tan (x) 

x e 

(sign of x) (greatest integer ~1xp, in integral repre­
sentation 

x, in non-integral representation 

natural log 

largest of x, y, ••• , z 

smallest of x, y, ••• , z 

-x 

l/x 

x-1 

C. 4 EXPRESSION-HANDLING PREDICATES 

Use $TRUE$ lif 

afixp(e) numberp (e) and fixp (e) 

anti(e) e is - or I 

associativep(e) e is +,*•AND, or OR 

atom(e) e is a single number or name 

commonfactor(e 1, e 2) factor(e 1, e
2

) or factor(e
2

, e 1 ) or e 1 and e 2 have an 

explicit common factor. If commonfactor(e
1

, e 2) 

has the value "$TRUE$", then commonfactor has 
used leave to set "FACTR", "0THERl 1', and 
"OT~ on the a-list, so that 

e 1 = FACTR*OTHERl 

e
2 

= FACTR*OTHER2 

constantp(e) numberp(e) 

97 
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Use 

defined(e} 

factor (el' ez) 

infixop(e} 

numberp(e) 

sum(e} 

typeout(e) 

APPENDIX C 

$TRUE$ Hf 

e is the name of a defined function 

(numberp(e
1

) and numberp(e 2) and zerop(e
1 

- e
2

}) or 

(el and ez are identical} 

e 1 is an explicit factor of e
2

• If factor(e
1

, e
2

) has the 

value "$TRUE$", then factor has used leave to set 
"OTHERF ACTOR" on the a-list, so tha_t __ 

e
2 

= e 1 ~•0THERFACTOR 

e is +, -, *•I,*':', AND, or OR 

e is a number 

e is a sum or difference 

a.lwa.ys "$TRUE$", types eon the console 

C. 5 EXPRESSION-HANDLING FUNCTIONS 

Use Value 

arg(e, n) nth argument of outermost function of e 

atomsof(e) See § 2. 3. 5 

canonical(e) A number, invariant with e. If e is a number, then e. 

funcsof(e} Set of function-names appearing in e. 

leave( id, e) See § 2. 3. 2. 2 

listif(e) !J atom(e) then unit set of e otherwise e. 

mainof(e) If atom(e) then e otherwise outermost function-name 
of e. --

ruletyp e( e) See § 2. 3. 3 

C. 6 MISCELLANEOUS PREDICATES 

Use 

a1phaorder(id
1

, id
2

) 

member(x, y) 

null(x) 

subset(x, y) 

$TRUE$ Iff 

id
1 

is lexicographically =:; id
2 

xis empty 

xcy 
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C. 7 MISCELLANEOUS FUNCTIONS 

Use 

getexp() 

getn(} 

gettype() 

joint{x, y) 

list{x, y, ... , z) 

setdifference(x, y) 

union(x, y) 

Value 

CEUC 

Expression number 

R uletype( get exp()) 

.!!_null (x n y) then the null set otherwise some member 

of x n y 

Set whose members are x, y, ..• , z 

~(zty and z Ix) 

xuy 
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APPENDIX D 

CONSOLE INPUT-OUTPUT 

The console I/O facilities are physically and logically a separate part of 

FAMOUS. 

D. 1 INPUT SIDE 

The input side of FAMOUS consists of four separate programs. 

(a) The rdline routine collects characters into names and determines 

when a logical line has been completed. 

(b) The ~ routine performs miscellaneous functions to simplify the 

syntactic structure of the input stream. 

(c) The floydpolish routine is a table-driven precedence-grammar 

phrase finder. 

(d) The rephrase routine rearranges the phrases discovered by 

floydpolish into the standard internal form used by FAMOUS. 

D. 1. 1 Rdline 

D. 1. 1. 1 Dividing the Input Stream Into Useful Units 

The primary task of rdline is division of the input stream into meaning­

ful groups of characters. These groups are known a.s elements. 

(a) A string beginning with one of 

1 (apostrophe) 

, (comma) 

= 
+ 
- (minus) 

I 
is an element which ends with that character. 
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(b) A string beginning with an asterisk is an element which ends with 

(1) that character, if the next character is not also an asterisk, or 

(2) the next character, if it is also an asterisk. 

(c) A string beginning with a letter is an element which ends just before 

the first following one of 

(blank or carriage return) 

* 
' (apostrophe) 

, (comma) 

I 
= 

+ 
- (minus) 

(d) A string beginning with a number or decimal point is an element which 

ends just before the first following one of 

(blank or carriage return) 

(plus sign or minus sign not preceded by letter "E") 

* 
' (apostrophe) 

, (comma) 

= 

I 

D. 1, l, 2 Determining the End of a. Logical Line 

At the end of each physical typed line, or whenever a superfluous right 

parenthesis is detected, rdline must decide whether the logical line has come 

to an end. Rdline will consider the logical line complete when 

(a) All left parentheses have been matched, and 

(b) The la.st element is not an infix operator, an equal sign, a comma., 

"WHEN", "THEN", "WHERE", "AS", or "BY". 
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Physical input lines may not be longer than 72 characters. Input is in 6-bit 

mode, so the CTSS kill(?) and delete(") conventions [ 5,§AC. 2. 02] are 

available. 

D. l. 2 Clean 

The primary purpose of~ is highly implementation-dependent. In 

addition, clean serves a special function with respect to unary plus and minus 

signs. 

Floyd [ 7, pp. 322-323] and others have observed that unary plus and 

minus signs may be distinguished by the elements which precede them. Clean 

does this and then either 

(a.) Ca.uses a. following number to absorb the sign, or 

(b) Changes the sign to a.n unambiguous function-name. 

D. 1. 3 Floydpolish 

Floydpolish is exactly the precedence-grammar phrase-marker described 

by Floyd [ 7] • The grammar now used is 

<exp>:: = < te rm>r exp><aop><term> 

<term>:: = < factor1< tenn>< mop><factor> 

<fa.ctor>:: = <p rimary>I< p rimary>**<fa.ctor> 

<primary : : = < idn>j< idn><args>,(<exp>) 

<args>:: =<primary>/( ) j(<a rglist>) 

<arglist>:: = < exp>l<exp>.< a rglist> 

<a.op>:: = + 1-1 OR 

<mop :: =~'[I/AND 

<idn>:: =Any element not(,), comma, ~'*• a mop, or an a.op. 

which has the precedence table 
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element f 

~ 1 

-1 
( 2 

3 

aop 5 

mop 7 

** 7 

idn 9 

9 

Some sample phrases generated by this grammar are 

4 sin 3 log x 

f(b( ) + 3 x)**b( )**3. 6 

lessp(x, y) and lessp(y, z) 

D. 1. 4 Rephrase 

l 

10 

4 

4 

6 

8 

10 

2 

APPENDIX D 

Rephrase is a rather specialized routine which is almost wholly 

determined by vagaries of the current internal representation of expressions. 

The one interesting feature of rephrase is provoked by phrases of the form 

< idn> < args > 

For example, the expression 

4 sin f(x) 

contains three such phrases. 

The innermost of these, "f(x)", is easy to handle. The parentheses 

give it away as a case of functional application. 

In the next case, that of "sin f(x) 11
, rephrase asks if~ is a defined 

function, Since it is, this phrase is also considered to express functional 

application. 
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In the final case, that of the whole expression, neither of the previous 

arguments is applicable. The expression is treated, therefore, as if it had 

been written 

4'!' sin( f( x)) 

D. 2 EXTERNAL REPRESENTATIONS 

(a) A string of 30 or fewer letters, periods, dollar signs, and digits, 

the first character of which is a letter, represents the name of a 

function or variable. 

(b) A string of decimal digits represents an integer. A preceding 

sign is optional. 

( c) A string cons is ting of 

(1) Decimal digits 

(2) A decimal point 

( 3) Decimal digits 

represents a real number. A preceding sign is optional. For ex­

ample, "3.14159" represents an approximation to pi. 

(d) A string consisting of (l) - (3) of (c) and 

(4) The letter 'E' 

(5) Optionally, a sign 

(6) One or two decimal digits 

represents a real number. Let the numbers represented by (1) - (3) 

and (5) - (6) be x and y, respectively. Then the number represented 

by (1) - (6) is x~<lO**Y· 

A preceding sign is optional. For example, "31. 4159E- l ", 

"+ 3. l4159EO", and "0. 314159El" all represent the same approxi­

mation to pi. 

{e) The apostrophe represents the quotation function. For exa.mple, 

'x 

and 
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'(x) 

equivalently represent the quotation of x. 

(£) Extra blanks are harmless; they may be freely used to improve the 

readability of input. 

(g) Similarly, extra right parentheses at the end of a logical line are 

harmless; counting them is a waste of time. 

D. 3 OUTPUT SIDE 

FAMOUS' output routines are much simpler than the input ones. They 

utilize only the most conservative precedence relations, and they seem to have 

no external interest. 

Every expression printed out by FAMOUS is in a permissible input form. 
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OPERATING CONSIDERATIONS 

E. 1 ERROR PROCEDURES 

E. 1. 1 Mistyped Commands or Responses 

Whenever FAMOUS expects a stereotyped input, a non-standard line is 

handled in the following standard way: 

(a) The message "Eh?" is printed,* 

(b) Any waiting typed input is discarded, and 

(c) FAMOUS tries to read a new input line to replace the erroneous one. 

E. 1. 2 Host System Errors 

107 

The host system (CTSS LISP) will complain under various circumstances. 

For example, the user may ask that a valueless expression be evaluated, or 

he may ask the system to deal with numbers of unworkable size. 

After a complaint from the host system, FAMOUS is back at its command 

level. 

E. 1. 3 Interrupt Signals 

A console interrupt signal [5, § AC. 2. 02] causes an immediate host system 

error ( § E. 1. 2). These signals may be useful if faulty function-definitions 

cause looping in the system. 

For brief periods during the execution of certain commands, the data-base 

is in an inconsistent or meaningless state. Console interrupt signals are ig­

nored during these periods. 

*"Thus, the user is forced to read his input line to find the error, rather than 
possibly being misled by a message unrelated to the actual error." [ 24, p. 462] 
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E. 2 SCANNING 

The user may occasionally cause FAMOUS to scan some list of rules or 

assertions. He is then given an opportunity to comment on each of the scanned 

items. 

The user may indicate in one of these comments that he wishes the scan 

to stop. In general, however, the scan will continue until the list being 

scanned is exhausted. When a list is exhausted, the system prints the mes­

sage "DONE". 

E. 3 COMMAND LEVELS 

FAMOUS is a looping LISP program. To get out of this loop, the quit 

command may be used. 

To move in the other direction, the~ command has been provided. 

This command simply executes the CTSS LISP function~ [ ] [ 12, p. 2] 

return from listen puts the system back at FAMOUS command level. 



109 

BIBLIOGRAPHY 

1. Bar-Hillel, Y. , Luncheon conversation, November 30, 1965 

2. Brown, W. S., "A Language and System for Symbolic Algebra on a 

Digital Computer", Proceedings of the 1965 IBM Scientific Computing 

Symposium on Computer - Aided Experimentation (to appear) 

3. Chagnon, Spencer O., "The Simulation Rule and Admissible Events in 

Simulation, " in ( 11) 

4. Craik, K. J. W., The Nature of Explanation, Cambridge, England, 

The University Press, 1943 

5. Crisman, P.A. (ed.), The Compatible Time-Sharing System: A 

Programmer's Guide (second edition), Cambridge, M. I. T. Press, 

1965 

6. Feldman, Jerome A., "A Formal Semantics for Computer-Oriented 

Languages", Ph. D. Thesis, Carnegie Institute of Technology, 1964 

7. Floyd, Robert W., "Syntactic Analysis and Operator Precedence", 

Journal of the Association for Computing Machinery, X (July 1963), 

pp. 316-333 

/ 

8. Guzman-Arenas, Adolfo, and Harold v. Mcintosh, "CONVERT", pre-

sented at the Symposium on Symbolic and Algebraic Manipulation, 

March 29 - 31, 1966 

9. Hardy, G. H., Orders of Infinity, London, Cambridge University 

Press, 1924 

10. Holt, Anatol W. , "The Semantics of the Simulation Rule", in ( 11) 

11. Holt, Anatol W., et al, ~: -Theory: Technical Documentary Report 

# 1, Princeton, New Jersey, Applied Data Research, 1965 (articles 

paginated separately) 



- ---·-~ ----~----~-------·~---. ---·~--... -. ··-----··- -~ -·,,---.- ~ --~-

110 

Bibliography (continued) 

12. Martin, William A., and Timothy P. Hart, "Time-Sharing LISP", 

M. I. T. Artificial Inteligence Project Memorandum #6 7, 1964 

(unpublished) 

13. McCarthy, John, "Programs with Common Sense", Mechanisation of 

Thought Processes, London, H.M. Stationery Office, 1959 pp. 77-84 

14. "The Wang Algorithm for the Propositional Calculus 

Programmed in LISP", M. I. T. Artificial Intelligence Project Memor­

andum #14, 1960 (unpublished) 

15. Minsky, Marvin L., "Recursive Unsolvability of Post's Problem of 
1Tag 1 and Other Topics in Theory of Turing Machines", Annals of 

Mathematics, LXXIV (1961 ), pp. 437-455 

16. Moses, Joel, "Symbolic Integration", M. I. T. Artificial Intelligence 

Project Memorandum #97, 1966 (unpublished) 

17. Quine, Willard Van Orman, From a Logical Point of View, Cambridge, 

Harvard University Press, 1961 

18. Mathematical Logic, Cambridge, Harvard University 

Press, 1958 

19. -------'' Word and Object. Cambridge, Technology Press, 

1960 

20. Richardson, Daniel, PhD Thesis, University of Bristol (England), 1966 

21. Ross, Douglas T., and Jorge E. Roc;lriguez, 11 Theoretical Foundations 

for the Computer-Aided Design System", Proceedings of the 1963 Spring 

Joint Computer Conference, Baltimore, Spartan Books, 1963, pp. 305-322 



Bibliography (continued) 

22. Sammet, Jean E., "An Annotated, Descriptor-Based Bibliography on 

the Use of Computers for Non-Numerical Mathematics", I. B. M. 

Technical Report TR 00.1427, 1966 

23. Shapiro, Robert M., "System Coordination and a Formal Definition of 

Coupling ", in (11) 

24. Shaw, J.C., "JOSS: A Designer's View of an Experimental On-Line 

Computing System'', Proceedings of the 1964 Fall Joint Computer 

Conference, Baltimore, Spartan Books, 1964, pp. 455-464 

25. Teitelman, Warren, "FLIP: A Format List Processor". M. I. T. 

Artificial Intelligence Project Memorandum #87, 1965 (unpublished) 

111 

26. Thomas, George B., Jr., Calculus and Analytic Geometry (third edition). 

Reading, Massachusetts, Addison-Wesley, 1960 

27. Tobey, R. G., "Experience with FORMAC Algorithm Design " I. B. M. 

Technical Report TR 00.1413, 1966 

28. Tobey, R. G., Bobrow, R. J., and S. N. Zilles, "Automatic Simplification 

in FORMAC 11
, I. B. M. Technical Report TR 00. 1343, 1965 

29. Wang, Hao, "Toward Mechanical Mathematics'', I. B. M. Journal of 

Research and Development, IV (January 1960), pp. 2-22 

30. Warshall, Stephen, "An Informal Description of ~,: -Theory", (unpub­

lished), 1966 

31. Widder, David V., Advanced Calculus. Englewood Cliffs, New Jersey, 

Prentice - Hall, 1947 

32. Wooldridge, Dean, Jr,, "An Algebraic Simplify Program in LISP", 

Stanford Artificial Intelligence Project Memorandum #11, 1963 



This empty page was substih1ted for a 
blank page in the original document. 



CS-TR Scanning Project 
Document Control Form 

Report # LC.S -TR -JS 

Date: /J..../ II I ~5 

Each of the following should be identified by a checkmark: 
Originating Department: 

D Artificial lntellegence Laboratory (Al) 
)&_Laboratory for Computer Science (LCS) 

Document Type: 

~ Technical Report (TR) 0 Technical Memo (TM) 

0 Other: -----------
Document Information Number of pages: 11e(1J.s-/mt'i<F~s) 

- Not to include DOD forms, printer lntstructlons, etc ... original pages only. 

Originals are: 

0 Single-sided or 

~ Double-sided 

Print type: 
0 Typewriter 0 Offset Press ~ Laser Print 

Intended to be printed as : 

0 Single-sided or 

Jx:1 Double-sided 

D Ink.Jet Printer 0 Unknown D Other:.~~~~~~-

Check each if included with document: 

~DOD Form 

0 Spine 

0 Other: 

~ Funding Agent Form 

D Printers Notes 

------------
Page Data: 

~ CoverPage 

0 Photo negatives 

Photographs/Tonal Material (byP9119number): ________ _ 

Other '"* clw:ripliololpllge number): 

Description : Page Number: 

°XmAG£ ;tJ11f ( {t ~I 18''j L\rv~TffO ctBLANk flJr;;;s) j i l -'Vi) /";).1
7 

UbM:8Lk_,3 I w~i tw~6LJ<, ,5~71, ~N'*8L-~<t]-Y'tJ 
Y,N\.8L.~ IOj-l/IJL\iN~GLk.. 

Scanning Agent Signoff: 

Date Received: i'-1-1.L/'JL Date Scanned: l~1J:l1J.r... Date Returned: ld.-1~ I JS 

Scanning Agent Signature: ~. f Jv, <aaJi., 



UNCLASSIFIED 
Security Classification 

DOCUMENT CONTROL DATA - R&D 
(Security claasilication ol title, body of abetract and indexing annotation must be entered when the overall report is classified) 

I. ORIGINATING ACTIVITY (Corporate author) 2a. REPORT SECURITY CLASSIFICATION 

Massachusetts Institute of Technology UNCLASSIFIED 

Project MAC 2b. GRo'lfone 

3. REPORT TITLE 

An On-Line System for Algebraic Manipulation 

.. DESCRIPTIVE NOTES (Type of report and inclusive dates) 

Doctoral Thesis, Applied Mathematics, Harvard University, July 1966 .. AUTHOR(SJ (Last name, first name, initial) 

Fenichel, Robert R. 

.. REPORT DATE 7a. TOTAL NO. OF PAGES l'b NO. OF REFS 

December 1966 120 32 ... CONTRACT OR GRANT NO . ... ORIGINATOR'S REPORT NUMBERtS) 

Office of Naval Research, Nonr-4102 ( 1) MAC-TR-35 (THESIS) b. PROJECT NO. 

NR 048-189 9b. OTHER REPORT NO(S) (Any other numbers thet may be 
c. RR 003-09-01 assigned this report) 

d. 

10. AVAILABILITY I LIMITATION NOTICES 

Distribution of this document is unlimited 

II. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY 

Advanced Research Projects Agency 
None 3D-200 Pentagon 

Washington, D. c. 20301 
13. ABSTRACT FAMOUS is an on-line system for the manipulation of linguistic forms. 
Although these forms can have quite arbitrary interpretations, the standard interpret-
at ion is that they are algebraic expressions. FAMOUS allows its "algebraic expressions" 
to include arbitrary functions which may or may not be defined. In this way, regular 
non-algebraic constructions may be concealed as arguments of ad hoc functions. Rules of 
local change are the heart of FAMOUS, and supplied by the user. Using these rules, 
FAMOUS looks at an algebraic manipulation as a series of local changes. The centrality 
of proximity in FAMOUS was orginally prompted by 'I:!- theory, which might be called the 
study of proximity. 

The presentation in Chapter II is complete, but it has rather a cookbook tone. 
Chapter III is a more reflective attempt to define the power and nature of the system. 
Algebraic "simplification" has been a benchmark of algebraic manipulators, and it is 
discussed in Chapter IV. A more novel application, that of limit problems, is discussed 
in Chapter V. Finally, Chapter VI consists of miscellaneous remarks about possible and 
impossible lines of further work. 

... KEY WORDS 

Algebraic manipulation On-line computer systems Real-time computer systems 
Machine-aided cognition On-line manipulators Time-sharing 
Multiple-access computers Time- shared computer systemi 

DD (M.l.T.) 1473 FORM 
1 JAN 84 UNCLASSIFIED 

Security Classification 


