
An On-Line System for Algebraic Manipulation

A thesis presented

by

Robert Ross Fenichel

to

The Division of Engineering and Applied Physics

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Applied Mathematics

Harvard University

Cambridge, Massachusetts

July, 1966

Copyright reserved by the author

This empty page was substih1ted for a
blank page in the original document.

PREFACE

This thesis began as a series of vague, groping memoranda. The com­

puter program at the center of this work was operational -- in an early

form -- long before it was clearly understood.

That a thesis ever condensed out of such vapor is largely to the credit

of T. E. Cheatham, Jr., C. Christensen, Michael J. Fischer, Anatol W. Holt,

Joel Moses, Anthony G. Oettinger, and Kirk Sattley. These men served as

filters for a body of material which by volume, if not by weight, far outstripped

the present thesis.

During the final throes, many of my friends had the good sense to avoid

me. They, too, made an inestimable contribution.

This thesis could not have been produced had I not had access to the

computational facilities of Project MAC, an M. I. T. research program

sponsored by the Advanced Research Projects Agency, Department of

Defense, under Office of Naval Research Contract Number Nonr-4102(01).

Richard G. Mills, Assistant Director of the project, was particularly

cooperative in alloting great quantities of unique -- and therefore priceless

-- resources. This thesis, having had this support from MAC, may be

reproduced in whole or in part for any purpose of the United States Govern­

ment.

Any felicities of style which this thesis may have are due to the patient

and incisive attention of Professor Oettinger. His cheerful service far

exceeded the call of his duty as my advisor.

The original thesis was prepared on the Compatible Time-Sharing

System at MAC. It was expertly typed into that system by Miss Eileen

Gannon. While preparing the manuscript, I received important advice from

Jerome H. Saltzer and J. Anthony Gunn. Preparation of the manuscript was

supported in part by Project TACT, a Harvard research program sponsored

by the Advanced Research Projects Agency, Department of Defense, under

Contract Number SD-265.

iii

SYNOPSIS

This thesis describes an appr·oach to the problem of programming a com­

puter for algebraic manipulation. The motivating threads of the work are

first picked up in Chapter I.

To test the descriptive intuitions urged normatively in Chapter I, an

experimental system was actually implemented. This system is described

in Chapter II and in the Appendices.

The system was variously exercised, as reported in Chapters III, IV, and

V. In addition to certain examples, Chapter III includes a more speculative

discussion of the range of the system.

The exercises chosen for Chapters IV and V (algebraic "simplification"

q.nd "limit problems," respectively) proved to be worthy of some discussion

not related to the system under test.

Finally, Chapter VI is a mass of hindsight, reconsideration, and evalua­

tion. On the basis of the experience described in preceding chapters, future

directions of work are suggested.

TABLE OF CONTENTS

Chapter

PREFACE

SYNOPSIS

I

II

INTRODUCTION

SYSTEM DESCRIPTION

2. l Data Base and Commands
2. 2 Expressions
2. 3 Application of Rules

2. 3. l Structure and Utility of a Single Rule:
Gross Description

2. 3. 2 Structure and Utility of a Single Rule:
Detailed Description

2. 3. 3 Organization of Rules
2. 3. 4 Manipulation of the EUC
2. 3. 5 Quotations

2. 4 Function Definitions

III POWER OF THE SYSTEM

3. l Abstract Automata
3. 2 Modeling and the Wang Algorithm
3. 3 Semantics and ~.::-Theory

IV ALGEBRAIC SIMPLIFICATION

4. l An Essay on Simplification
4. 1. 1 The Measure of Simplicity
4. 1. 2 The Context of Simplicity

4. 2 Three Es says at Simplification
4. 2. 1 Wooldridge-Russell Simplify (WRS)
4. 2. 2 AUTSIM
4. 2.3 An Exercise

V LIMIT PROBLEMS

iii

iv

l

5
5
6

6

7
11
12
14
16

17
20
25

31
31
34
36
36
40
44

5. 1 General Discussion 51

VI

5. 2 A FAMOUS System for Two-Sided Limit Problems 55

LOOKING AHEAD

6. l Matching
6. 2 Assertions and Rules
6. 3 Efficiency

65
68
69

APPENDICES

A COMMAND DESCRIPTIONS

A. l Commands Concerned with Expressions
A. 1. l Consider
A. 1. 2 Save
A. l. 3 Reconsider
A. 1. 4 Reset

v

75

77
77
77
78
78

TABLE OF CONTENTS

Appendix

A

B

c

A. Z Commands Dealing with Rules
A. Z. l Reset
A. Z. Z Save
A. z. 3 Retrieve
A.Z.4 Suppress
A. Z. 5 Scan
A. z. 6 Abbreviate
A. Z. 7 Evaluate
A. Z. 8 Expand
A. z. 9 Leave
A. Z.10 Replace
A. 2.11 Now
A. Z. 1 Z Addition of Rules

A. 3 Commands Concerned with Function Definition
A. 3. 1 Assert
A. 3. Z The Inner Assert Facility
A. 3. 3 Save
A. 3. 4 Reassert

A. 4 Miscellaneous Commands
A. 4. 1 Continue
A. 4. Z Desk
A. 4. 3 Hold
A. 4. 4 Listen
A. 4. 5 Quit

THE FAMOUS EVALUATION ROUTINE

FUNCTIONS

C. l Functions Which Must be Defined by the User
C. Z Numerical Predicates
C. 3 Numerical Functions
C. 4 Expression-Handling Predicates
C. 5 Expression-Handling Functions
C. 6 Miscellaneous Predicates
C. 7 Miscellaneous Functions

D CONSOLE INPUT - OUTPUT

D. 1 Input Side
D. 1. 1 Rdline
D. 1. 2. Clean
D. 1. 3 Floydpolish
D. 1. 4 Rephrase

D. 2. External Repr•entations
D. 3 Output Side

E OPERA TING CONSIDERATIONS

E. 1 Error Procedures
E. 1. 1 Mistyped Commands or Responses
E. 1. Z Host System Errors
E. 1. 3 Interrupt Signals

E. Z Scanning
E. 3 Command Levels

BIBLIOGRAPHY

vi

79
79
79
79
80
80
81
82
82
83
84
84
85
86
86
87
88
88
90
90
90
91
91
91

93

95
96
96
97
98
98
99

101
101
103
103
104
105
106

107
107
107
107
108
108

109

l

CHAPTER I

INTRODUCTION

This thesis is concerned with a program for on-line algebraic manipula­

tion. The program, called FAMOUS (my Algebraic Manipulator for

On-line USe), is thoroughly described in Chapter II. The presentation in

Chapter II is complete, but it has rather a cookbook tone. Chapter III is a

more reflective attempt to define the power and nature of the system. Alge­

braic "simplification" has been a benchmark of algebraic manipulators, and

it is discussed in Chapter IV. A more novel application, that of limit prob­

lems is discussed in Chapter V. Finally, Chapter VI consists of miscella­

neous remarks about possible and impossible lines of further work.

FAMOUS is an on-line system for the manipulation of linguistic forms.

Although these forms can have quite arbitrary interpretations, the standard

interpretation will be that they are algebraic expressions. The system is

prejudiced toward algebraic expressions by the following design features:

(1) FAMOUS expects that some expressions will be subject to evalua­

tion. The system includes an evaluation operator and subroutines for

many common mathematical functions. In addition, the system includes

facilities which allow the user to define new functions and to redefine

old ones.

(2) FAMOUS expects that unspecified, but trivial, syntactic transfor­

mations will be able to take external expressions to and from composi­

tions whose phrases are

(A) atomic expressions, such as 1 3 1 and 1x 1 , and

(B) lists, each consisting of

(i) a function name, such as 1+ 1 or 1sin 1 ,

(ii) phrases, fixed in number by the function name, which

are arguments of the named function.

(3) Some problems associated with Abelian-group operators were

not understood when the present FAMOUS system was implemented.

(See§ 6. 1.) These operators are, for example, seriously cramped

when each is permitted only a fixed number of arguments.

2 CHAPTER I

Toward the end of getting a system on the air, and in the belief that

one insightless scheme would be as good as any other, FAMOUS was

given special ad hoc preparation for dealing with the Abelian-group

operators.

(4) Throughout, I have been forced to make programmer 1 s judgments

of the relative likelihoods of various pairs of user actions. These

judgments reflect my feeling for algebraic manipulation.

On the other hand, a restriction to algebraic expressions is not neces­

sarily much of a constraint. FAMOUS allows its "algebraic expressions" to

include arbitrary functions which may or may not be defined. In this way,

regular non-algebraic constructions may be concealed as arguments of

ad hoc functions.

Rules of local change are the heart of FAMOUS. These rules are all

supplied by the user: FAMOUS does not know that x+ 0 goes to x any more

than it knows that v goes to ds/dt or that v goes to lwh.

Using these rules, FAMOUS looks at an algebraic manipulation as a

series of local changes. Localness (or, more euphoniously, proximity)

is not easy to define. It is not merely typographical, since the "x" and 11 y" of

x + y + z

are no more local to each other than the "x" and "z".

The centrality of proximity in FAMOUS was originally prompted by the

austere elegance of ~.::-theory [11, 30] , which might, indeed, be called the

study of proximity. While FAMOUS was being developed, however, a number

of remarkable and perversely encouraging results were announced by Daniel

Richards on (20] .

It seems that all of the interesting non-local properties of algebraic

expressions are recursively undecidable. Richardson explicitly proves that

"identical to zero" is undecidable, and the other properties (e.g., "linear

INTRODUCTION

in 'x' ")are derivatively murky.* To those with a Turing-Church ontology,

only the local properties(~., "literally 'x+Z' 11, "of the form 1x-x' ", etc.)

are real.

The linguistic notions of Quine [1 7, 18, 19] have shaped FAMOUS in

several different ways. The distinction between use and mention [18, § 4] ,

for example, is maintained with some care throughout.

The most striking Quinian notions taken up by FAMOUS are those of

referential transparency and opacity [19, § 30] . Because FAMOUS always

stands ready to evaluate the expressions with which it deals, referential

transparency is the rule. But even "algebraic expressions" occasionally

include opaque functions. The definite integral operator is possibly not

opaque, since one might reconstruct

b

3

s xzdx (1)

a

as

definiteintegral (a, b, X.x. x 2) (2)

so that "x" is no longer an apparent argument of the integration. But now

the inescapably opaque X. is introduced.

There would be some elegance in the restriction to a single opaque

function. Nevertheless, FAMOUS will do its best for the user who introduces

forms like (1). The precision of. (2) is bought at the price of some naturalness,

and the system can cope with a growing set of opaque functions as easily as it

could cope with a single such function.

One other feature of FAMOUS should be mentioned in this introduction.

It has been mentioned that FAMOUS stands ready to evaluate the expressions

which it handles. In addition, certain constructed expressions are evaluated

as part of the process of applying FAMOUS' rules. Naturally, a function

must be defined if it is to occur in an expression which is to be evaluated.

For example, is 1 (f(x) sin x + 3)*x' linear in x? It is if f(x) is identical
to zero.

-- ---"--------------

4 CHAPTER I

f'A\10PS curncs tu the user with a ~air nuu1lwr of lLdlction:o already

defined. These c;:cnnol be c'xpc:ctccl to bLe c·nuugh, of course, so FA\10lTS is

equipped\\ ith a pm,·<'riul '.·acilit, fur definition and rt"clefinition of functions.

This dcfinit ion Lie il ity \\as inspired by the Adv ice Taker ,,·ork of

.\lcCarthy [I)] , although it is by no rneans as arnbitious. Tht' Ach ice

lcik<'r is a thesis s1:b.cct in itself, and the FAlvlOCS function-definition

facility \\ill gL'l lilt]<" :it<c·nt;on in this thcsis. [Wa.rl"l'l1 Tc,it,·lrnan has bcC'n

'-'or:,ing in this area, and hi~ Lht'sis, PILOT: A ::-ltep fowarcl J\l;in-Con1pl~tcr

Syrnbiosis·, is a\c.tibbh, as Proivct .\lAC fechnical R''port l\!AC-TE-32. J

CHAPTER II

SYSTEM DESCRIPTION

2. 1 DATA BASE AND COMMANDS

A user's conversation with FAMOUS proceeds as he issues a series of

commands (Appendix A). These interact with each other only to

the extent that they alter the following data-base:

5

(1) a number of expressions, notably a distinguished expression~

consideration (EUC),

(2) a set of transformational rules,

(3) a set of function definitions,

(4) a hold switch, and

(5) certain backup of (1)-(3).

2. 2 EXPRESSIONS

The expression under consideration (EUC) is a two-part entity. The

primary part, called the compact expression ~~er consideration (CEUC), is

the object of all of FAMOUS' manipulation. The remainder of the EUC is the

wherelist, which provides information about abbreviations which may be used

in the CEUC.

Thus, a sample EUC is':'

a+f(x+3)

WHERE
a=2

f(t)=sin(t)+ cos(t)

Here the C EUC and where list are shown in that order, separated by the

word WHERE.

*Here and below, algebraic expressions are shown in legitimate FAMOUS
input formats (Appendix D). The functions shown in them are self­
explanatory or are explained in Appendix C.

(1)

6 CHAPTER II

The user may command FAMOUS to save the EUC, associating it with

an arbitrary name. This expression-naming facility is quite powerful. If

the CEUC ever comes to include among its variable-names the name of a

saved expression, then that expression is immediately substituted for that

name. This allows a large expression to be constructed of smaller ones, as

in the command sequence

consider xt yt z

save expression as fred

consider h-i

save expression as sam

consider sam>!<fred'!'~'(samta)

continue

which would leave

(2)

as the EUC. There is actually a simpler way to construct (2) out of the com­

ponents shown; it is described in the second paragraph of §A. 1. 1.

2. 3 APPLICATION OF RULES

2. 3. 1 Structure and Utility of a Single Rule: Gross Description

Each of the rules of FAMOUS has four parts: a form, a truth-functional

expression (tfe), a substitute, and a descriptor list. Crudely, a rule is

applicable to an expression unless

(a) the expression is not of the same shape as the form, or

(b) after the match of the form and the express ion, the tfe does not

have the value "$TRUE$".

If it is found that a rule successfully matches an expression, then

(a) if the substitute is "LEAVE", the expression is unchanged.

(b) if the substitute is "EVALUATE", the expression is replaced by

its value. Not all expressions have values, of course, and the system

will generally rankle if meaningless evaluations are attempted.

SYSTEM DESCRIPTION

(c) if the substitute is neither "LEAVE" nor "EVALUATE", then the

expression is replaced by the substitute.

2. 3. 2 Structure and Utility of a Single Rule: Detailed Descriptio;n

2. 3. 2. 1 Matching a form and an expression

If a form f is to match an expression e, then

7

(a) If the form is a number, the name of a defined function (Appendix C),

or the name of a constant, then the expression must be identical to

the form.

Examples:

The form

4

matches the expression

4

and no other. The form

sin

matches the expression

sin

and no other. If

constantp(e)

has the value "$TRUE$", then the form

e

matches the expression

e

and no other.

(b) If the form is any other single name, it matches any expression.

Example:

The form

x

8

matches all of the expressions

x

y

4

x+ y log 4

and all others as well.

CHAPTER II

(c) If the form f is the quotation of another form g, then the expression

must be identical to g.

Examples:

the form

'x

matches the expression

x

but no others, not even

'x
x+ 0

The form

'('(x+3))

matches the expression

'(x+ 3)

but no others.

(d) If the form consists of a function name f
0

and arguments f 1 ,

... ,
(1)

(2)

(3)

f , then
n

The expression e must consist of a function name e and
0

arguments e 1 , ... , en' and

For i=O, 1, ..• ,n, f. must match e., and
1 1

If g is a name which occurs more than once in f, then the

various corresponding subexpressions of e must all be

identical.

This case (with n=2) covers that of infix operators, which

are internally represented in prefix form.

SYSTEM DESCRIPTION

Examples:

The form

machine(state, symb, tape, dir, state2)

matches the expression

fsm(ql, b, 0, xxx, q5)

but not the expression

fsm(q5, 1, 1, q2)

The form

f('(x*~'3), g('x), 4, g(2), f(z))

matches the expression

g(x**3, sin(x), 4, sin(2), g(3 log x))

but not the expression

g(x*':'3, sin(x), 4, sin(2), tan(3 log x))

The form

x+x

matches the expression

2~'a'~b+ 2,:,a>:<b

but not the expression

4+ 5

2. 3. 2. 2 Preparation of the A-list

9

The primary purpose of the form-matching routine, described above in

§ 2. 3. 2. 1, is a simple pass-or-fail test. In addition, however, the matching

routine has the important task of preparing an association list (~.:Ji.~.!) for the

use of the tfe and the substitute. The a-list is a list of pairs; each pair con­

sists of a name and an associated expression.

As an expression is matched to a form, each non-constant name in the

form is paired with some subexpression. All of these pairs are placed on

the a-list.

Like the CEUC, the form, and the substitute, the tfe is algebraic in

structure. Unlike these other expressions, however, the tfe ~have a

defined value. After the form of a rule has successfully been matched

against an expression, the value of that rule's tfe is computed. Unless that

value is "$TRUE$", the rule is not applied.

10 CHAPTER II

The evaluation routine is described in Appendix B.

Many functions which may be useful in constructing tfe 1 s are built into

the system; these functions are listed in Appendix C. In addition, the user

may define his own functions (oi" redefine built-in functions) by using the

assert facility described in§ 2. 4.

One built-in function, the leave function, is of particular importance.

The two arguments of leave are a name and an expression; leave has the

value "$TRUE$" and the effect of adding the name-expression pair to the

a-list. This effect is immediate, and any previous entry with the same first

element is thus immediately superseded and effectively lost upon evaluation

of the leave.

2. 3. 2. 3 Use of the Substitute

After an expression e has passed the tests of the form and the tfe, it is

entirely replaced by an expression determined by the substitute.

(a) If the substitute is "LEAVE", then the expression e is replaced by

itself. This use of the word leave (=let alone) must be distinguished

from any mention of the leave (=deposit) function defined in

§ 2. 3. 2. 2.

(b) If the substitute is "EVALUATE", then the expression is replaced

by its value (Appendix B).

(c) In all other cases, the expression e is replaced by an expression e 1

which is similar to the substitute. This new expression e' is

derived from the substitute by considering the a-list as a list of

replacements. That is, if any name occurs both in the substitute

and as the first part of an entry on the a-list, then e' includes the

second part of that entry wherever its first part appeared in the

substitute.

SYSTEM DESCRIPTION

2. 3. 3 Organization of Rules

Rules presented to the system are catalogued by the ruletypes of their

forms.

(a) If e is a single name, then the ruletype of e is "ATOM 11
•

(b) If e is the quotation of f, then the ruletype of e is the ruletype of f.

(c) If e is f(e 1 , ... , en)' where f is a defined function, then the rule­

type of e is f.

(d) If e is f(e
1

, ... , en). where f is not a defined function, then the

ruletype of e is "UNDEFINED".

This organization is directly related to the matching algorithm of

§ 2. 3. 2. 1. Suppose that a rule applicable to the expression e is sought, and

suppose that the form of rule r has ruletype t. Then for r to be applicable

to e, it is necessary that

(a) t be "ATOM", or

(b) t be "UNDEFINED 11
, and ruletype(e) not be "ATOM", or

(c) t be ruletype(e).

When FAMOUS is looking for a rule which might be applicable to an

expression e, it searches in accordance with ruletype information. In par­

ticular,

(a) FAMOUS first searches among the rules of the same ruletype as e.

(b) If the rules of ruletype "UNDEFINED" have not been searched in

(a), and if the ruletype of e is not "ATOM", FAMOUS then searches

among the rules of ruletype "UNDEFINED".

(c) If the rules of ruletype "ATOM" have not been searched in (a),

FAMOUS then searches among the rules of ruletype "ATOM".

11

12 CHAPTER II

Within each group, the rules are searched in first-in-last-found order.

This order is of interest only in cases in which several rules are applicable

to the same subexpression.

My guess is that the more recently supplied rules are special cases of

the older ones. That is, the user doesn't really want these conflicts, but

neither does he want to refine all his old rules to reflect his growing under­

standing of what he does want. If, for example, the user has said

evaluate sin x when numberp x

and if he later has added

leave sin n when integer n

then he probably expects the later rule to take precedence.

2. 3. 4 Manipulation of the EUC

When FAMOUS is released upon the EUC, a complex and highly recur­

sive process is initiated. A detailed description could be presented, but it

seems more useful to list the more important running features:

(a) FAMOUS makes every effort to find applicable transformations.

Whenever a rule is successfully applied and a new subexpression

is produced, that subexpression is sent back to the rules. The

system is quite insensitive to the particular rules which are avail­

able, and it consequently goes through elaborate procedures to

avoid missing a possible transformation.

(b) On the other hand, FAMOUS will not send an expression back to

the rules if that expression has just returned from the rules un­

changed.

(c) Nor is it sent back if it seems to be endlessly changing. The system

uses patience, a function of no arguments, to discover the number

of times which a single expression may be given the full treatment.

SYSTEM DESCRIPTION

If any expression is still in flux after that many iterations, then

the system complains and breaks out of its rut. The patience

function provides a useful rein when the system happens to include

such rules as

replace x by x+ l

13

(d) Also along this line, FAMOUS always returns to the user after a

certain period of time, even if some opportunities for transforma­

tion are unexamined. This period of time is given by the oracular

maxtime function, which has no arguments and has a value which

is taken to be a number of tenths of seconds.

(e) The system works recursively from the bottom up. That is, the

arguments of a function are always transformed before the expres­

sion consisting of that function applied to those arguments.

(f) Addition and subtraction form a special case together, since the

system treats all implicit two-operand subexpressions of a complex

expression built of addition and subtraction. The final ordering of

the terms is determined by the expless function, which is described

in Appendix C.

(g) Similarly, multiplication and division form a special case together.

The final ordering of the factors and divisors is determined by

expless.

(h) If an expression consists of a function f applied to certain arguments,

and if the value of

opaque (f)

is "$TRUE$", then only rules having the name fas a descriptor will

be applied to any part of this expression. The set of currently neces­

sary descriptors may be a useful argument for a function in the tfe:

this set of descriptors may be found on the a-list as the value of the

name "NEED".

14 CHAPTER II

(i) If a rule with the descriptor "ABBREV" is successfully applied,

then the form f and substitute s of this rule are added to the where­

list, in a form like

s = f

2. 3. 5 Quotation

It has already been mentioned in §2. 3. 2. l(c) that parts of forms may be

quotations of other forms. This mechanism is simple enough, but it is

associated with a fairly complex scheme which is an attempt to ease dis­

crimination of literal and schematic forms.

If the C EUC is

(1) (sin O+cos O)*(sin 4 z+cos 4 z)*(sin x+cos x)

then the user who says

(2) replace sin y+cos y by f(y)

clearly wants to obtain

(3) f(O)*f(4 z)*f(x)

But what of the user who, in the face of the same CEUC, says

(4) replace sin x+cos x by f(x)

In this case, the system assumes that the "x" mentioned here is a proper

noun: the "x" of the CEUC (1). That is, this rule would go in as if the user

had straightaway said

(5) replace sin 'x+cos 1x by f(x)

and (1) will replaced by

(6) (sin O+cos O)*(sin 4 z+cos 4 z)*f(x)

SYSTEM DESCRIPTION

Still another complication arises when the user says

(7) replace sin x+ cos x by f(x) when num be rp x

Here, the system assumes (as it did with (2)), that xis a pronoun, bound

within the rule. No strange changes are made to the rule, and (1) will be

replaced by

(8) f(O)':'(sin 4 z+cos 4 z)':'(sin x+cos x)

15

Before formulating a general description of this algorithm for undercover

quotation, it will be useful to define the atomsof function. Atomsof is

applied to an expression e:

(a) If e is a constant or the quotation of another expression, then

atomsof(e) is the null set.

(b) If e is a single name, then atomsof(e) is the unit set of e.

(c) If e is f(e e), then atomsof(e) is the union over i of
1 '· • ·' n

atomsof(e.).
1

For example, atomsof ([the CEUC (1)]) is the set whose members are

z and x.

The general rule is then as follows: If the CEUC is e and the user pre­

sents a rule with tfe t and suggested form f, then the final form is derived

from f by replacing certain members of atomsof(f) by quotations of them­

selves. The affected names are exactly those which are members of

atomsof(e) but not members of atomsof(t).

In the cases (2), (4), (5), and (7), this works out as follows:

offered rule atomsof(f) atomsof(t) affected names

(2) {Yf null set none

(4) jxf null set x
(5) null set null set none

(7) Jx I {xf none

16 CHAPTER II

2. 4 FUNCTION DEFINITIONS

Appendix C contains a list of the built-in functions which may be useful

in construction of tfe 1 s and in expressions which are to be evaluated. Many

of these functions, in addition to being available to the user, are used

internally by the system.

The user may use the assert facility (§A. 3. 1) to define his own functions,

or to redefine the built-in ones. In the latter case, he must accept the possi­

bility that his assertions will violently affect the behavior and perhaps the

soundness of the system itself.

Each assertion affects a function by indicating the value to be returned

when the arguments have certain properties. When several assertions apply

to the same function, the most recent ones take precedence. This strategy

is exactly that of the rule-searcher (§ 2. 3. 3) and it is justified by the same

argument.

One important built-in function which the user may redefine is defined.

Given a name as argument, the built-in version of defined returns "$TRUE$"

or "$FALSE$" as the name is or is not the name of a defined function. As

noted in§ 2. 3. 2. 1 and § 2. 3. 3, defined functions must be recognized for

special handling by the form-matching and ruletype routines.

In order to affect the behavior of these routines, the user may wish to

redefine the defined routine, so that certain functions are falsely considered to

be defined. Examples of this strategem appear in Chapters III, IV, and V.

Similarly, the user may wish to alter the constantp function so that such

names as "e" and "pi" are given special handling.

17

CHAPTER III

POWER OF THE SYSTEM

3. 1 ABSTRACT AUTOMATA

It superficially seems useful to determine which abstract automaton

(e.g., Turing machine, push-down machine) is most nearly akin to FAMOUS.

I believe that such an investigation is doomed to sterility. To dispose of the

issue, I present the following theorem.

3. 1. 1 Theorem: Any Turing machine may be encoded in a set of rules for
FAMOUS

Consider a finite state automaton M, equipped with two semi-infinite

counters MCl and MC2, and the instruction set

(1) (a) Il(J), or "Increment the contents of MCl (c(MCl)) and go to

instruction J"

(b) I2(J), or "Increment c(MC2) and go to instruction J 11

(2.) (a) Dl(J, L), or

1. If c(MCl) :f. 0, decrement c(MCl); then

2. If c(MCl) :f. 0, do not execute subinstruction 3, but go

directly to instruction J; otherwise

3. Go to instruction L. 11

(b) D2(J, L), or

l. If c(MCZ) :f. 0, decrement c(MC2); then

2. If c(MC2) :f. 0, do not execute subinstruction 3, but go

directly to instruction J; otherwise,

3. Go to instruction L. 11

(3) HALT

3.1.1. l Lemma (Minsky, [15)):

Given the transitions of an arbitrary Turing machine T, there is an

effective procedure for programming M so that if

(1) T is started scanning the xth square of a tape with the binary number

k written on it, and

- ---------------------

18 CHAPTER m

(2) M is started with c(MCl) = 2k 3x and c(MC2) =0 1

then T will halt a.t the yth square of a tape with the binary number N written

on it if and only if M halts with

Now given the program and initial conditions of a Minsky machine M, I

construct the set R(M) of rules for FAMOUS as follows:

(l) (a.) If the nth instruction of M is 11 (J), then I include the rule

replace sta.te(n,cl,c2) by state (J,count(cl),c2)

(b) A similar rule is included if the nth instruction of M is I2(J)

(2) (a) If the nth instruction of M is Dl(J, K) 1 then I include the rules

replace state(n, 0, c2) by state (K, 0, c2)

replace state(n, count(0) 1 c2) by state (K, 0, c2)

replace state(n1 count(count(cl)), c2) by state(J, count(cl), c2)

(b) Similar rules are included if the nth instruction of M is D2(J, K).

(3) If the nth instruction of M is HALT, then I ignore it.

Statement #1: M, started in state i with c(MCl)=cl and c(MC2)=c2, halts

in state k with c(MCI)=N.

Statement #2: FAMOUS, told to continue with R(M) as rules, state and

~ defined, and

state(i, count(count(••• count(O) •••))1 count(••• count(O))) as EUC, will
~ ---cl c2

return to the user with

state(k, count(count(..• count(O) •••)), y) as EUC.

~

3. 1. 1. 2 Lemma: Statements #1 and #2 are formally equivalent.

Proof of the Lemma: Obvious.

Proof of the Theorem: Immediate from the Lemmas.

POWER OF THE SYSTEM 19

3. 1. 2 Example

To test the construction concretely and to provide an example of a com­

plete FAMOUS encoding, I consider the following Minsky machine:

1. 11(2)

2. 11(3)

3. Dl(4, 5)

4. 12(3)

5. D2(6, 8)

6. 11(7)

7. 11(5)

8. HALT

If MC2 is initially zero, this machine will double the initial contents of MCl.

Given the assertions

assert defined ('state)

assert defined ('count)

and the rules

replace state(l, cl, c2) by state(2,count(cl), c2)

replace state(2, cl, c2) by sta.te(3, count(cl), c2)

replace state(3, 0, c2) by state(5, 0, c2)

replace state(3, count(O), c2) by state (5, O, c2)

replace state(3, count(count(cl)), c2) by state(4, count(cl), c2)

replace state(4, cl, c2) by state(3, cl, count(c2))

replace state(5, cl, 0) by sta.te(8, cl, 0)

replace state(5, cl, count(O)) by state(8, cl, 0)

replace sta.te(5, cl, count(count(c2))) by state(6, cl, count(c2))

replace sta.te(6, cl, c2) by state(7, count(cl), c2)

replace state(7, cl, c2) by state(5, count(cl), c2)

experiment shows that FAMOUS will indeed take

into

sta.te(l, count(count(••• count(O), 0) ----------n

20

state(B, count(count(.•. count(O), 0) ----------2n

CHAPTER III

in time. Similarly, other finite-looking devices (~., commercial digital

computers) can easily be encoded in sets of FAMOUS rules. Even a push-

down stack running a, b, ... , z from top to bottom can be encoded by a strategem

like

stack(a, stack(b, ..• stack(z, 0) ...)))

In all of these cases, only coding tricks are being demonstrated. The

most significant of these tricks is that which allows deterministic sequential

processes to be encoded at all.

3. 2 MODELING AND THE WANG ALGORITHM

The real issue, however, is not one of encoding inputs and outputs. Since

FAMOUS is a Turing machine, discussion of FAMOUS' abstract hierarchical

power is fruitless.

Instead, the discussion must be cast in-the-informal-terms of modeling

power. There is nothing to be learned from a FAMOUS construction which is

only the same black box as some external entity. When the external entity is

coherently and compactly altered, I demand that the FAMOUS construction be

coherently and compactly patchable.

The relevant questions, therefore, are such as these:

(a) What sort of data-structures can FAMOUS handle? What operations

can FAMOUS perform on this data?

(b) In particular, what entities external to FAMOUS(~., algorithms)

can be modeled by FAMOUS?

To help answer these questions, it will be useful to consider another

example of a FAMOUS model. The external entity being modeled will be a

version of the Wang algorithm for proofs in the propositional calculus [29]

My version differs from Wang's only in that mine does not explicitly produce

proofs; instead, only "VALID" or "INVALID" is produced for each input

schema.

POWER OF THE SYSTEM 21

The Wang algorithm consists of a complete set of rules-of-inference for

the propositional calculus. These cut-free rules have the useful property

that each may be run backward. That is, any schema may be effectively

backed up through at lea st one rule to one or two other schemata. These

other schemata are "simpler" in the sense of being one step closer to the

finite goal of assertion ("VALID") or denial ("INVALID") of the one implicit

axiom.

The rules are as follows:

If "VALID" then X. _.. a , where>.. and a are sets of formulas and some

atomic formula is a member of both X. and a.

If "INVALID" then X.-+a, where X. and a. are disjoint sets of atomic

formulas.

If cl>, a - >.., p then a - >.., - cl>, p

If >.., p -+ 11', cl> then >.., - iP, p -+ 11'

If a. - >.., cl>, p and a-+ X., w, p then a-+>.. , iPAW, p

If>.., cl>, w, p - TT then >.., iPAW, p - 11'

If a. - >.., iP, w, p then a-+ >.., iPvw, p

If X., iP, p - TT and X., w, p - 11' then X., cI> vw, p - 11'

If a, <I>-X., w, p then a -x., iP:) w, p

IfX.,w,p-11' and X.,p-11',iP then >..,iP:) w,p-TT

If cl>, a-+ >.., w, p and w, a-+ >.., iP, p then a - >.., cl>:= w, p

If cl>, w, X. , p -+ 11' and X., p -+ 11', cl>, w then X., cI> =: w, p - TT

The strategy, then, is to remove the logical connectives, gradually

reducing all of the component formulas to atomic ones.* Modeling this

process in FAMOUS will present two problems:

(1) The formula-sets on either side of the arrow are not nestings of

functions of fixed numbers of arguments.

(2) These sets cannot be encoded with the simple scheme suggested

above for push-down stacks. Even after a formula has been broken

into its atomic components (i.e., they have presumably been popped

from the stack) these components must be remembered for the

validity test.

*For a better-motivated discussion of the algorithm, the original description
is still best. A realization of the algorithm via non-sequenced transforma­
tions was first proposed by McCarthy [14,§4] •

22 CHAPTER III

One is thus naturally driven to having two stacks* on each side of the

arrow. One stack on each side will be the list of formulas to be analyzed;

the other sta.ck will be a repository for atomic formulas.

I start by giving the formula as an argument to the function~· The

rules will take this expression into "VALID" or "INVALID". When two

premises arise from one formula, I join them into a larger formula whose

connector is "*". For purposes of the match algorithm, I advise FAMOUS

as follows:

assert defined ('test)

assert defined ('arrow)

assert defined ('equiv)

assert defined ('implies)

assert constantp ('valid)

assert constantp ('invalid)

assert constantp ('endl)

assert constantp ('endr}

Now I introduce two rules for the compression of our final results:

replace valid*p by p

replace invalid*p by invalid

I also need a start-up rule

replace test(a) by arrow(endla., endl, endra, list(a, endr))

two rules for collecting atomic formulas

replace a.rrow(la, 1, ra, list(x, r)) by

arrow(la, l, list(x, ra), r) when atom x

replace arrow(la, list(x, l), ra, r) by

arrow(list(x, la), 1, ra, r) when atom x

* Here is another Turing-machine model.

POWER OF THE SYSTEM

and finally the rules of Wang

replace arrow(la, 1, ra, r) by valid when

joint(atomsof la, atomsof ra)

replace arrow(la, endl, ra, endr) by invalid when

null joint(atomsof la, atomsof ra)

replace arrow(la, 1, ra, list(not p, r)) by

arrow(la, list(p, l), ra, r)

replace arrow(la, list(not p, l), ra, r) by

arrow(la, l, ra, list(p, r))

replace arrow(la, 1, ra, list(a and b, r)) by

arrow(la, l, ra, list(a, r))~•arrow(la, l, ra, list(b, r))

replace arrow(la, list(a and b, 1), ra, r) by

arrow(la, list(a, list(b, l)), ra, r)

replace arrow(la, 1, ra, list(a or b, r)) by

arrow(la, l, ra, list(a, list(b, r)))

replace arrow(la, list(a orb, 1), ra, r) by

arrow(la, list(a, 1), ra, r)*arrow(la, list(b, 1), ra, r)

replace arrow(la, 1, ra, list(implies(a, b), r)) by

arrow(la, list(a, 1), ra, list(b, r})

replace arrow(la, list(implies(a, b), 1), ra, r) by

arrow(la, list(b, 1), ra, r)~'arrow(la, l, ra, list(a, r))

replace arrow(la, l, ra, list(equiv(a, b}, r)) by

arrow(la, list(a, 1), ra, list(b, r))*

a rrow(la, list(b, 1), ra, list(a, r))

replace arrow(la, list(equiv(a, b), l), ra, r) by

arrow(la, list(a, list(b, l)), ra, r)*

arrow(la, 1, ra, list(a, list(b, r)))

Returning to the modeling questions which I raised above, I consider

them in reverse order.

(b) What external entities can be modeled by FAMOUS?

23

It might, at first glance, appear that the Wang algorithm falls well within

the borders of FAMOUS' capabilities. Actually, there are some grounds for

saying that whatever black-box encoding_ may be done, no structural model of

of the Wang algorithm can be constructed within FAMOUS.

24 CHAPTER III

To be sure, there are some "coherent compact alterations" which can be

made to the algorithm without requiring more than an extra rule or two in the

model. For example, one might add

If a , p -+ \ , <P, '1i', 1T then a , <Pl '11, p _.. \ , 1T

If a , <P, p -+ }.., 1T and a , '11, p -+ \, 1T then a, p -+ \ , <PI '1r, 1T

to the algorithm, where "al b" might be read as "neither a nor b". The model

would need to be altered only to the extent of adding

assert defined ('nor)

replace arrow(la, 1, ra, list(nor(a, b), r)) by

arrow(la, list(a, 1), ra, r)*arrow(la, list(b, l), ra, r)

replace arrow(la, list(nor(a, b), 1), ra, r) by

arrow(la, l, ra, list(a, list(b, r)))

But what if the algorithm were altered so that ordering of expressions

were of importance? The propositional calculus being what it is, such an

alteration would admittedly be meaningless. But surely one can imagine a

resea.rch environment in which a union operation had to be replaced by some

sort of concatenation. Suppose, for example, that when a complex subformula

were reduced, its components had to go to the end of the "to-be-analyzed"

queue. The new FAMOUS encoding would certainly be more than a local

modification of the old one. In brief, it cannot be said that FAMOUS allows

ordered sets to be modeled cleanly.

There is another way of leading to this conclusion. That is, to observe

only that the Wang rules are not obvious enough. While the Minsky model was

virtually canonical, the Wang representation required tricky ad-hoc encoding.

This trickiness was forced by the difficulty noted: Sets don't really fit into

FAMOUS.

Entities which do fit in deal with rigid tree-structures: Algebraic formulas

and fixed-length lists.(~., state-descriptions of some automata) are the

best examples of such structures.

(a) What operations does FAMOUS perform on its data?

POWER OF THE SYSTEM 25

FAMOUS has only four different capabilities: replacement, abbreviation,

function definition, and function evaluation.

Abbreviation is replacement with an attached genealogy. It is no more

than a human-factors trick, albeit a particularly useful one.

FAMOUS' function-definition (assert) facility is not closely tied to the

rest of the system. It is almost an independent system sharing a limited

portion of the FAMOUS data-base.

Function evaluation and definition might seem, moreover, to be inessential

primitives. In principle, it seems reasonable to express the definition of sine

as set of replacements, so that

evaluate sin x when numberp x

is expressed as a simple trig~ering replacement, say

replace sin x by do(' sin, x) when numberp x

And at worst, the sine of a number x could be obtained from x by a set of

rules which encoded a "sine" program for a digital computer.

But the fact that sine can be pragmatically approximated with a digital

computer program is an accident. The meaning of~ is a differential

equation or a hypergeometric series. No sequence of syntactic replacements

is at all implicit in either of these formulations.

Even if a function's arguments and values may be syntactically specified,

the function itself may be defined in terms of scintillation counters or human

choices. No such function can be properly represented by a set of syntactic

replacements, and the oracular function-evaluation facilities of FAMOUS are

available for just this reason.

3. 3 SEMANTICS AND r~-THEORY

This matter of the meaning of programming notions (such as sine) is one

of some contention. In conversation, Bar-Hillel [l] has asserted that the

26 CHAPTER III

meaning of a compiler-language program is the code into which it compiles.

Feldman has gone so fa.r as to write that the meaning of such a program is

not defined until the compiler algorithms are specified [6, p. 33].

These points of view are so restrictive as to be almost meaningless. The

author of a program (or the designer of a language) is often unaware of the

implementation techniques which have been or could be used. Even worse,

the Bar-Hillel/Feldman views entail the belief that program synonymy is

irreflexive under conditions of changing implementation.

Such a notion of synonymy is appropriate under certain circumstances.

FORTRAN, for example, really cannot be defined without reference to the

implementation. The FORTRAN programmer is intimately concerned with

the digital computer, and it matters very much which computer that is.

On the other hand, many modern programming systems derive their

semantics from pre-computer notions of mathematics and logic. Computer

code, although it is perhaps the first referent which comes to hand, provides

no more than a slurring explanation of these systems.

Perhaps the best semantic framework in which to consider FAMOUS is

that of i~ -theory (mem-theory). In its present stage of development, this

theory is more of an attitude than a quantitative formalism, and it is

notoriously distorted or evaporated by synopsis.

I consequently shall not attempt to provide a general introduction to

'.~ -theory. In the following notes, my remarks on i~ -theory have more

mnemonic than expository intent.

(a) Mero-theory attempts to model all computational (and other) processes

as sequences of local syntactic changes. The alternate view, which

i.) -theory explicitly rejects [30, p. 2], is that of changes in tota.1

state, as perceived by an omniscient observer.

In the case of algebraic manipulation, the observer would re­

require powers exceeding those of a Turing machine (see Chapter IV).

Like i~ -theory, therefore, FAMOUS eschews any hypostatization of

a (changing or otherwise) global state.

POWER OF THE SYSTEM 27

(b) In both FAMOUS and r~ -theory, these local changes are the result

of applying transformational rules. The rules of 0 -theory are not

explicitly sequenced, and they consequently compete for roles in the

process being modeled. Like the rules of FAMOUS, they do not

drag the data about the ground; rather, they define the gradients and

let the data roll [3, p. 8].

(c) Two la.ws restrain the competition among the rules; the first la.w is

that relating to conflict [3, p. 5].

A joint a.pplication of two rules would contain conflict if it would

purport to move the same portion of the accessible universe in two

different directions at once. For example, the FAMOUS rules

repla.ce 'a by 0

replace 'a by 1

would give rise to conflict if they were simultaneously applied to the

expression

a

FAMOUS, of course, avoids conflict by the simple strategem of

applying only one rule at a time.

{d) But in so doing, FAMOUS flaunts~ -theory's second law of rule­

competition: that related to~ [3, p. 5] •

Loss is approximately the far extreme from conflict. While

the conflict-law warns against grouping rule-applications which are

not simultaneously meaningful, the loss-law warns that certain

groups of rule-applications must never be disassembled.

Consider, for example, the non-FAMOUS rules

replace "a" by 0 when the "a" appears in the context "f(a, x)"

for some non-number x

replace "b" by 0 when the "b" appears in the context "f(x, b)"

for some non-number x

These rules should obviously take

f(a, b}

into

f(O, 0)

But they will do that only if they are applied simultaneously.

If they are modeled with the FAMOUS rules

28

then

replace f('a, x) by f(O, x) when not numberp x

replace f(x, 1b) by f(x, O} when not numberp x

f(a., b}

CHAPTER III

will be taken into

f(a, O}

or

f(O, b}

If either of the suggested rules is applied first, the other cannot be

applied at all. Hence the loss law: Subject to the bound of the con­

flict law, maximal sets of rule-applications should be used simul­

taneously.

(e} Except for the conflict- and loss-laws, r.: -theory gives no guidance

for the selection of sets of rule-applications. Indeed, ~~ -theory

explicitly suggests that random choices be made at this point, so

that an underspecified system will predictably have unpredictable

behavior (10, p. 4].

At first glance, this randomness seems to be quite contrary to the

spirit of FAMOUS. Implementing true randomness in a digital com­

puter is not at all easy, but it seems from§§ 2. 3. 3 and 2. 3. 4(e}

that FAMOUS did not even try for randomness.

The non-randomness of FAMOUS is actually the result of two

isolated decisions:

(1) FAMOUS is biased toward evaluation and consequently

toward referentially-transparent constructions. This bias

leads FAMOUS to the restriction of§ 2. 3. 4(e).

(2) FAMOUS gratuitously assumes that the rule-provider knows

what he is doing. That is, rephrasing the argument of

§ 2. 3. 3, FAMOUS believes that any apparent case of conflict

is really illusory. By using the last-in-first-found algorithm

described in § 2. 3. 3, FAMOUS effectively sees only conflict­

free sets of rules.

(f} Almost any~.: -theoretic process may be viewed (from outside the

theory) as the union of two or more coupled subprocesses, each with

POWER OF THE SYSTEM 29

its own structure and rules [23], In the regions of intersection, all

of the subprocesses concerned may contribute rules; elsewhere, the

subprocesses are independent.

To the extent that a subprocess is only of behavioral interest, it rnay

be left with its oracular innards uncharted. The ·;-theoretic notion

of coupling, although still only slightly developed, does seem to pro­

vide an evocative model for the function-evaluation of F AMOlJS.

This empty page was substih1ted for a
blank page in the original document.

31

CHAPTER IV

ALGEBRAIC SIMPLIFICATION

4.1 AN ESSAY ON SIMPLIFICATION

No one can engage in mechanical algebraic manipulation without running

up against the problem of simplification. After a general-purpose algebraic

algorithm has been applied to any particular data, those data will usually be

in dissonant or unrecognizable forms. "Simplification" must be applied.

4. 1. 1 The Measure of Simplicity

The ·following dogmas are consequently implicit in nearly all existing

systems:*

(Dogma 1) There is a unique computable partial ordering R on the set

of all expressions, Each nonextendable set of equivalent expressions

has a unique least element with respect to R.

(Dogma 2) There is a computable procedure f for finding, from an

expression e, the equivalent expression f(e) which is minimal (simplest)

under R. The procedure f is distributable, so that if e is

then

is at least as simple as e.

For example, R is commonly held to suggest the following:

(3) If e is a sum or product of single names, then the simplest

expression equivalent to e shows those names in alphabetic order.

* These systems are numerous and approximately interchangeable. For a
list, see [22).

32 CHAPTER IV

(4) If e is wholly composed of numbers and arithmetic signs, then the

simplest equivalent to e is that number which is the result of the com­

putation expressed by e.

(5) If e is a product, one of whose factors is zero, then the simplest

equivalent to e is zero.

From the behavioral standpoint, in other words, R is a set of transforma­

tions. Given a large number of such transformations, implementation of an

efficient system can be a challenging puzzle.

But it is easy to become so involved in this puz~le that the real issues

are lost. Note, for example, that (3) and (4) cannot possibly be a fair sampling

of R. For surely

(x+u)*(x+v)*(x+w)*(x+y)*(x+z)

and

f(l)+f(2)+£(3)+f(4), where f(i)=2**2**i

seem simpler than

(u+x)*(v+x)*{w+x)*{x+y)*{x+z)

and

66066

Even (5) would be suspect, if a limit problem were being examined for

applicability of L 1H8pital's rule.

But suppose that patches could correct (3), (4), a.nd (5). What epicycles

of R could possibly cope with such expressions as

(6) O* sin{x)+ 1*cos(x)+2*tan{x)+3*cot{x)+4*s ec(x)+S*c sc{x)

This mathematically unruly expression has a ridiculous, complicated

graph. Expressed in sines and cosines, it is an undistinctive jumble. But

ALGEBRAIC SIMPLIFICATION

in the exact form shown, it is an indexed list of the trigonometric functions,

in the order in which we met them in high school. The expression (6) would

not be simplified by alphabetically ordering the terms, nor even by eliminating

any term.

33

And dogma (1) collapses altogether when confronted with the equivalent forms

(7) l/(ltcos x)

and

(8)

Is (7) simpler than (8)? Certainly (7) is handier if one would sketch a graph.

But integration of (7) requires the ugly z=tan(x/2) transformation, while (8)

integrates immediately.

Dogma (2) fares even worse than dogma (1). Such trivial examples as

(9) (x+y) ** 2- 2>{<x>{'y

suggest that the hill-climbing (theorem-proving) problems of dogma (2)'s

procedure!_ may be formidable,

But dogma (2) is not suggested to death; dogma (2) is proved to death:

Theorem (Richardson, [20]):

Let N be the set of one-place real functions generated by composition

from the following primitives:

rational numbers

pi

lo-i.(2)

addition

multiplication

sin

exp

34 CHAPTER IV

Now let f be a member of M, The assertion

(3x) (f(x)< O)

is recursively undecidable.

Corollary: Let N be the set of one-place real functions generated by

composition from the primitives of M and the notion of absolute value. Now

let f be a member of N. The assertion

(3 x) (f(x) f. 0)

is recursively undecidable.

Most algebraic manipulation systems* a.re at lea.st as rich as N. In all

of these systems, the rule

(10) replace x+O by x

is present. But Richardson's corollary shows that there can be no exhaustive

way of searching for the "0" of (10).

In even richer systems, of course, results like Richardson's are quite

easy to achieve. Once the trigonometric and arctrigonometric functions are

at hand, for example, it is a few minutes 1 exercise to express the floor

(greatest-integer-less-than-or-equal-to) function.** Given~ and (10),

it is trivial to express such gems as the Fermat conjecture as simplification

problems.

4. 1. 2 The Context of Simplicity

Even though (3), (4), and (5) are obviously not of universal value, they

might be said to describe simplification in certain limited contexts. In one

such context, one might add such rules as

* But not all. For example, see ALP AK [2].

** E.g., as x-(2/pi)*atan((f(x)+f(x+l))/2), where f(y)=g(y)+abs g(y), g(y) = tan (pi*y/Z)

ALGEBRAIC SIMPLIFICATION

(11) replace sin x by x

if all of sin's arguments are known to be near zero,

(12) replace x~"~n by 0 when numberp n and

greaterp (n, 3)

if everything is near zero,

(13) abbreviate sin x + cos x as f(x)

if expressions of the form sin x + cos x are confusingly numerous,

(14) replace x by y when numberp x and floatp x and equal (x,

fix(x+O. 5)) and leave ('y,fix(x+ 0. 5))

if non-integral numbers(~., 355. 0000001) very close to integers are

necessarily the results of errors (i.e., from 355),

(15) replace x by y*pi when numberp x and

integer(x/3. 1415927) and

leave('y,fix(x/3.1415927+0. 5))

If numbers which are nearly exact multiples of pi(~, 355) should be

represented as such (i.e., l l 3*pi), and

(16) replace x by 2

35

if an attempt at parameterization were discovered to have been unilluminating.

But now it is not clear how simplification differs from the rest of alge­

braic manipulation. Certainly (16) could not conceivably be part of any fixed

"simplifier". The reader may well suspect that he has ta.ken a wrong turn.

I believe that the fuzziness of "simplification" is inherent. The algebraic

notion of "simplification" disappears under scrutiny like the linguistic notion

36 CHAPTER IV

of "referent".* There appears to be no real loss to the surrounding subject

in either case.

Indeed, the vanishing of 11 si.tnplification" is of positive value. In systems

in which "simplification" is the work of a well-defined subsystem, it is

possible to ask "During such-and-such a complexity-producing manipulation,

when should the si.tnplifier be used?" The false hypostatization of "si.tnplifi­

cation" has fostered the development of a considerable literature (.!:.k, [27])

devoted to such pseudo-questions,

4. 2 THREE ESSAYS AT SIMPLIFICATION

One interesting use to which a general-purpose system like FAMOUS may

be put is i.tnitation of special-purpose systems. In this way, these s,ystems

may be described in a compact common language.

4. 2. l Wooldridge-Russell Si.tnplify (WRS)

All modern "si.tnplifiers" ca.n trace their ancestry to Wooldridge-Russell

Si.tnplify [32] , which evolved at Stanford in the years up to 1963. Despite its

age, WRS includes many features which most modern "si.tnplifiers" omit.

One of these features is a well-integrated polynomial facility, which I

have not tried to model in FAMOUS. The WRS treatment of non-polynomial

division is complexly tied to the polynomial facilityi WRS performs synthetic

division to find non-explicit factors. This division feature was also not

modeled. In every other respect, WES is completely described in the

remainder of this section,

WRS labels certain results as undefined; it expects the undef label to

propagate as follows:

assert defined ('undef)

assert opaque ('undef)

* The analogy is not accidental. In both cases, a totality (utterances or
expressions) is partitioned (by synonymy or algebraic equivalence), and
the equivalence classes are then hypostatized into a life of their own.
Quine [19, Chapter II] is particularly eloquent concerning these matters;
see also Craik [4, p. i 02] •

ALGEBRAIC SIMPLIFICATION

replace f(undef x) by undef f(undef x)

replace f(undef x, y) by undef f(undef x, y)

replace f(x, undef y) by undef f(x, undef y)

WRS has three rules for unary minus:

evaluate -n when numberp n

replace --x by x

replace -(a-b) by b-a

Four rules for reciprocals:

replace recip 0 by undef recip 0

evaluate recip n when numberp n and not zerop n

replace recip recip x by x

replace recip (-x) by -recip x

37

Three rules for division, one of which is only suggested here:

replace x/y by quotient when equal (0, remainder(x, y))

replace x/O by undef (x/O)

repla.ce x/y by x*recip y when not equal(O, y)

Six rules for the power operator

replace Q>:'*a by 0

evaluate a>:'>:'n when numberp a and numberp n

replace a>:o:cQ by 1

replace Q>:<>:<Q by undef (0*>!'0)

replace l>!<>!<a by 1

replace a*>!'l by a

The rules for addition a re simple, but lingering behind the first is the

assumption of a canonical ordering for products, with numbers first. This

is as good a place as any to set down a fair definition of expless (§§ 2, 3, 4(£)

and 2. 3. 4(g)). To that end, I start with an auxiliary function

38

assert complexity(x} = 2

assert if atom x then complexity x=l

assert if numberp x then complexity x=O

CHAPTER IV

and now the definition of expless itself

assert expless(a, b, $FALSE$) = lessp{complexity a, complexity b)

assert expless{a, b, $TRUE$) = not expless{a, b, $FALSE$}

assert if equal {complexity a, complexity b) then expless{a, b, $FALSE$)=

lessp{canonical a, canonical b)

assert if onep complexity a and onep complexity(b} then expless(a, b, c)=

not{alphaorder{a, b))

Now the awaited rules of addition:

replace n>:•a+m•!•a by {n+m}*a when numberp n and numberp m

evaluate m+n when numberp m and numberp n

replace a+m*a by {m+l)>'.< when numberp m

replace a+a by 2>:•a

replace b+(-a} by b+{-l}>:•a

replace a+O by a

Multiplication is similar, but non-numeric exponents are combined as well

as n\lmeric ones:

evaluate a*b when numberp a and numberp b

replace a•!<a by a>:<>:•z

replace a>:'a*':'b by a>:<>:C(b+l}

replace a>:•>:<c>:'a>:•>:•b by a*>:'(b+c}

replace a>:'recip a by 1

replace a>:•recip(a>:•*b} by a**{l-b}

replace a*>!•b•:•recip(a*>:•c) by a**(b-c)

replace a*•:Cb*recip(a) by a•:C*{b-1}

replace a.>:'{-b) by {-l}>:•a•:•b

replace l*a by a

replace O>:•a by 0

replace recip{a)>:•recip b by recip{a*b)

·;,.,

ALGEBRAIC SIMPLIFICATION 39

This completes the list of ordinary rules of WRS. Three other features of

WRS should be mentioned in this description. First of all, WRS allows users

to provide a factor list of names, When the name "x" is placed on this list,

the rule

replace a+b by x*(al+otherfactor) when

factor ('x, a) and leave('al, otherfa.ctor) and

factor ('x, b)

is added to the system.

Secondly, users of WRS are able to specify a setting of the recipmode

switch. In FAMOUS terms, recipmode is a. function to define like~·

The system includes the following rules:

replace a**(-b) by recip (a**b) when recipmode()

replace recip(a**b) by a**(-b) when not recipmode()

replace a>:'>:'n by recip(a**m) when recipmode() and

numberp n and minusp n and leave ('m, -n)

replace recip(a)**b by a*>:'(-b) when not recipmode()

Finally, WRS accepts an _expand!!_!! roughly opposite in function to the

factor list. If a name "x" is on the expand list, then the following rules are

added.

replace (a+b)>:<c by a*c + b*c when

member ('x, union(atomsof a, atoms of b})

replace (a*b)**c by a**c>:'b**c when

member ('x, union(a.tomsof a,.atomsof b))

replace (a+b)>:'*n by (a>.~*2+2*a*b+b*>:'Z)*(a+b)**m when

member ('x, union(atomsof a, atoms of b)) and

afixp n and greaterp (n, 1) and leave ('m, n-2)

replace a+recip(b) by (1 +a*b)*recip b when

member ('x, atomsof b)

replace a+n*recip(b) by (n+a.*b)>:•recip b when

member ('x, atomsof b} and numberp n

40 CHAPTER IV

4. 2. 2 AUTSilv1

This section is devoted to a partial model of the AUTSilv1 "simplifier" of

FORMAC. The incompleteness of the model is not due to any difficulties of

modeling~~· but rather to the fact that AUTSilv1 is only partially

documented.*

For the most part, of course, the rules of AUTSilv1 a.re the same as those

of WRS or any other conventional "simplifier". Only the distinctive features

of AUTSilv1 will be described here:

(a) Nothing in FORMAC corresponds in any way to the factor-list,

recipmode, and expand-list features of WRS.

(b) One type of acceptable FORMAC consta.nt is the rational number,

and it is important to note here that AUTSIM demands that all

sums, differences, products and quotients of constants be

evaluated.

assert r{a, b) = a/b

The rules first arrange for reduction to lowest terms:

evaluate r(O, a)

evaluate r(a, a)

evaluate r(a, 1)

replace r(a, b) by r{n.umerator, denominator) when

not reduced (a, b)

assert reduced(a. b)

assert if leave('g. gcd{a, b)) and not onep g and

leave{'numerator, a/g) and leave('denominator,

b/g) then not reduced{a, b)

assert gcd{a. b) = gcd(rem{b, a), abs{a))

assert if zerop rem{b, a) then gcd(a, b)=abs(a)

assert if greaterp{a, b) then gcd{a, b) = gcd{b, a)

assert rem(a, b) = abs(a) - abs{b*fix(a/b))

assert abs{a.) = a

assert if minusp a then abs a = -a

* My primary source was [z8], but I found useful bits and pieces throughout
the FORMAC literature. For a list of that literature, see (22].

ALGEBRAIC SIMPLIFICATION

The rules should also make an effort to preserve rational form:

assert quasinumber(n)=numberp nor

equal(mainof n, 1 r)

evaluate f(a, b) when infixop f and

not equal(£,'**) and

quasinumber a and quasinumber b

assert integer(x) = numberp x and

(equal(x, fix(x+O. 5)) or equal(x, fix(x-0. 5))

replace n+r(a, b) by r(a+b*n, b) when

integer n

replace n-r(a, b) by r(b*n-a, b) when

integer n

replace r(a, b) -n by r(a-b*n, b) when

integer n

replace n*r(a, b) by r(a*n, b) when

integer n

replace n/r(a, b) by r(b*n, a) when

integer n

replace r(a, b)/n by r(a, b*n) when

integer n

replace r(a, b)tr(c, d) by r(a*d+b*c, b*d)

replace r(a, b)-r(c, d) by r(a*d-b*c, b*d)

replace r(a, b)*r(c, d) by r(a*c, b*d)

replace r(a, b)/r(c, d) by r(a*d, b*c)

Finally, the rules must arrange for sign management:

evaluate -n when numberp n

replace -r(a, b) by r(-a, b)

replace r(a, b) by r(-a, -b) when minusp b

(c) AUTSIM effectively factors away the minus sign of expressions

which are raised to integral powers.

replace (-a)**n by a**n when even(n)

replace (-a)**n by -(a**n) when odd(n)

assert even(n) = integer n and zerop rem{.n, 2)

assert odd(n) = integer n and not even n

41

42 CHAPTER IV

(d) In conversation, R. G. Tobey has informed me of the following

undocumented feature of AUTSIM. If e is a sum, one of whose

terms is "log z" for some z, then AUTSIM will replace

exp(e)

by

z*exp(e')

where e' is the result of removing the "log z" term from e.

To model this facility in FAMOUS, it is necessary to have a means

of testing whether a sum contains a logarithmic term.

assert not logsum(x)

assert if equal(mainof x, 'log) then logsum x

assert if sum x then logsum x=

logsum arg(x, 1) or logsum arg(x, 2)

Given the logsum test to prevent endless searching, it is simple to

send a log-seeking syntactic device into a sum.

assert defined('findlog)

assert defined('foundlog)

replace exp x by exp findlog x when logsum x

replace findlog a by a

replace findlog(a+b) by findlog a + findlog b

replace findlog(a - b) by findlog a-findlog b

replace findlog log z by foundlog(z, 0)

Having found a logarithmic term, the rules bring this term out of

the sum.

replace a+foundlog(z, b) by foundlog(z, a+b)

replace a-foundlog(z, b) by foundlog(l/z,a-b)

replace foundlog(z, a.)-b by foundlog(';!;, a-b}

replace exp foundlog(z, a} by z>:<exp a

ALGEBRAIC SIMPLIFICATION

(e) The functions of FORMAC are divided into three classes:

(1) The four arithmetic operators

(2) Integer-valued functions, like factorial

(3) Transcendental functions

Two special switches control evaluation of expressions consisting

of integer-valued or transcendental functions applied to constant

arguments.

evaluate f(x) when quasinumber x and

(intfcn(f) and evalintfcn() or

transfcn(f) and evaltransfcn())

evaluate f(x, y) when quasinumber x and

quasinumber y and (intfcn(f) and

evalintfcn() or transfcn(f) and

evaltransfcn())

The intfcn and transfcn predicates, of course, can be defined by

enumeration:

a.ssert not transfcn(f)

a.s sert transfcn('**)

assert transfcn(1exp)

etc.

43

(f) Three undefined forms are recognized by FORMAC: zero to a

negative power, log(O), and O**O. In the first two cases, FORMAC

substitutes 0 and prints a diagnostic; the last case is ignored.

replace O**n by 0 when numberp n and

minusp n and typeout(1 zero. to. negative, power)

replace O**r(a1 b) by 0 when minusp a and

typeout(1 zero. to. negative. power)

replace log 0 by 0 when typeout('log(O))

leave O**O

(g) Finally, FORMAC is intent upon cancelling terms, and several

apparently dilatory rules are directed toward this end.

44

replace a+log(b~'c) by a+log b+log c

replace a-log(b*c) by a-log b-log c

replace log(b*c)-a by log b+log c-a

replace (a~'b)**c by a**c*b**c

replace (a/b)**c by a**c /b**c

4. 2, 3 An Exercise

CHAPTER IV

As a final experiment a.long the lines of "simplification", a FAMOUS

"simplifier" was incrementally constructed in response to the demands of a

relatively coherent series of mathematical problems,

These problems were the differentiation exercises in an elementary

text [26] • The experiment covered all of the problems involving rational

functions, trigonometric functions, inverse trigonometric functions, and

natural logarithms. The experiment was stopped at this point by a rising

tedium/machine-time ratio, but it could conceivably have been carried through

the remainder of the text.

The differentiation itself naturally gave FAMOUS no trouble at all. In

addition, differentiation proved to be a copious source of expressions worth

"simplifying". This was quite fortunate, since the cognitive dissonance of
11 simplifyable" expressions makes them very difficult to produce by hand.

The "simplifier" developed here came to include a number of really

odd-looking rules. These rules reflect recurrences of such specialized

expressions as

x*(1-(a /x)** 2)**(1I2)

On the other hand, a number of rather prosaic rules added early in the

game turned out to be undesirable in the long run. This was hardly surprising,

in view of the arguments of § § 4.1. 1 and 4. 1, 2. Inasmuch as there was no

hope for an asymptotic set of rules, the rules in question were left in.

A number of expressions could only have been unraveled by the most

bizarre ad hoc rules. These expressions were generally in one or another

factored form, and the rules which were needed to "simplify" these expressions

would have had to look a.head to the possible merits of expansion. In §6.1, I

ALGEBRAIC SIMPLIFICATION 45

discuss an improved matching procedure for FAMOUS which might be useful

in easing situations of this kind.

Here are the rules and assertions which were developed, in the order in

which they appeared; a definition of expless, not shown, preceded everything.

The first few rules a.re taken from the text:

assert defined('d)

replace d(x, x) by 1

replace d(x**n,x) by n*x**(n-1) when numberp n

replace d(u*v, x) by u*d(v, x)+v*d(u, x)

replace d(u+v, x) by d(u, x)+d(v, x)

replace d(u-v, x) by d(u, x)-d(v, x)

The expression

d(t**2-4*t+3, t)

first to be tested, became

2*t**(2-l)+0-(4*l+O*t)

and the following rules were added:

evaluate f(x, y) when nurnberp x and nurnberp y and infixop f

replace x**l by x

replace x+O by x

replace x* l by x

replace x*O by 0

The expression

2*t**3-5*t**2+4*t-3

became

and the following rule was added:

replace x-0 by x

46 CHAPTER IV

Similarly, the remaining rules were added in response to the various

demands of circumstance. Only spot-check cases will be remarked upon.

replace x-x by 0

evaluate -n when numberp n

replace x*x**n by x~'<*(n+l)

replace x*z-x~~w by x*(z-w)

replace x*(z*x+w) by z*x**2+w~<x

replace x-z*x by x*(l-z)

replace (-l)*x by -x

replace -x-y by -(x+y)

replace x~'(-z) by -(x*z)

replace x*(-z) by (-x)'~z when numberp x

replace m*(x-n) by m~'x-m*n when

numberp m and numberp n

replace m*(x+n) by m*x+m*n when

numberp m and numberp n

replace d(u/v, x) by (v*d(u, x)-u*d(v, x))/v*"''2

The expression

d(t/(t**2+1), t)

became

(t**2+ l -2*t*t) I (t** 2+ l)**2

When the rule

replace x*x by x**2

was added, the expression advanced to

(-(t**2)+ 1) I (t**2+ 1)**2

and the unary minus was finally cleared up with

replace -a+b by b-a

repla.ce a-n by a.+(-n) when

numberp n and minusp n

replace n*y+a by a-(-n)*y when numberp n and

minusp n

ALGEBRAIC SIMPLIFICATION

replace a~'b**n by a /b':'~'(-n) when nurnberp n and minusp n

replace a**n/b**n by (a /b)~~*n

replace a+n/b by a-(-n)/b when numberp n and minusp n

replace y**(-1) by l/y

The expression

d(x/ (x'~*2-4)"~'~0. 5, x)

became

((x**Z-4)**0. 5-x**Z/ (x**2-4)**0. 5)/ ((x**2-4)**0. 5)**2

The rule

replace (a**b)**c by a** (b*c)

was obvious enough, but the ungainly

replace (a-b/c**y) le by (a~'c**y-b)/c**(y+l)

was also necessary. The expression

d((x+l)**2*(x**2+2*x)**-2, x)

was treated at this time, and an impasse was reached at

(2*x+2)*(2*x+x**2-(2*x+2)*(x+ 1)) /(2*x+x**2)**3

Only an ad hoc rule could have profitably been added; the rule

now replace (a+b)*(c+e) by a*c+a*e+ b'~c+ b*e

was successfully used instead.

replace 0-y by -y

replace y by z when numberp y and floatp y and

equal (y,fix (y+ O. 5)) and leave ('z, fix (y+ O. 5))

47

------~---------------- ------~. -~_,.......-~-- -----~--

48

replace a--b by a+b

replace y*z+y*w by y* (z+w)

replace n-y by -(-n+y) when numberp n and minusp n

replace {m*y+n) /p by {m/p) *y+n/p when numberp m and

numberp n and nurnberp p

replace y**n+ y*w by y* (y**(n-1) +w) when numberp n

replace a**n/a**m by a** (n-m)

replace {-a) /b by -(a/b)

replace {a/b)**n*b**m by a**n*b**(m-n)

assert cos{u) = sin(u+l. 5707963)

replace d{sin u, x) by d{u, x)*cos u

replace d{cos, u, x) by -d{u, x)*sin u

replace -{a*b) by {-a)*b when numberp a

replace m*y-n*y by (m-n)*y

replace (sin u) **Z+(cos u)**Z by 1

assert tan (u) = sin u/cos u

assert cot (u) = cos u/sin u

assert sec (u) = recip cos u

assert csc (u) = recip sin u

replace d(tan u, x) by d{u, x)*{ sec u)**Z

replace d(cot u, x) by -d{u, x) * {csc u)**Z

replace d{sec u,x) by (sec u)*(ta.n u)*d(u,x)

replace d{csc u, x) by -(csc u)*{cot u)*d(u, x)

The expression

d{sec(x)**4-tan{x)**4, x)

became

4*(tan(x)*sec(x)** 4-tan{x)** 3*sec{x)** Z)

Only the ugliest adhocity, viz.

now replace t*s**4-t**3*s**Z by t*s**Z*(s**Z-t**Z)

would do the trick, after which

CHAPTER IV

ALGEBRAIC SIM:PLIFICATION

replace (sec u)**2-(tan u)**2 by 1

produced the desired result.

replace ·(-a)**n by a**n when even (n)

assert even (x) = integer x and zerop rem(x, 2)

assert rem (a, b) = a-abs(b*fix (a/b))

assert abs(a) = a

assert if minusp a then abs a= -a

replace cos(u)*sin(u) by (l/2)*sin 2 u

assert acos(u) =abs (a sin u -1. 5707693)

assert acot (u) = atan recip u

assert asec(u) = acos recip u

assert acsc(u) = asin recip u

replace d(asin u,x) by d(u,x)*(l-u**2)** -0.5

replace d(acos u, x) by -d(u, x)*(l-u**2)** -0. 5

replace d(atan u, x) by d(u, x) I (l+u**2)

replace d(acot u, x) by -d(u, x)/(l+u**2)

replace d(asec u, x) by d(u, x) I (abs(u) * (u** 2-1)** O. 5

replace d(acsc u, x) by -d(u, x)/(abs(u)*(u**2-l)** O. 5

replace abs(n*x) by n*abs x when numberp n and greaterp (n, 0)

replace a/(-b) by (-a)/b when numberp a

The expression

d(acot(2/x) + atan (x/2) , x)

became

O. 5/((x/2) **2+1) -- 2/(x**2*((2/x)**2+1))

The 11 --2 11 was easy enough to get rid of:

replace a-b/c by a+(-b)/c when numberp band minusp b

But the confusion in the fraction took some effort to root out:

replace u**2* ((a/u)**2+b) by a**2+b*u**2

49

50 CHAPTER IV

replcice a/((b/c)':'>:<Z-y) by a':'c':":'2/(b':":'2-y':'c':":'z) when nun1berp c or

nurnberp y

replace a/b+c/b by (a+c)/b

replace a':":'o by 1

replace O/a by 0

replace (n':'x)':":'n1 by n':":'rn':'x':":'rn when integer n and integer rn

replace d(log u, x) by d(u, x) /u

The expression

d(x':<iog x-x, x)

only got to

log x+x/x-1

without

replace a/a by 1

It is sornewhat surprising that this rule should wait so long to appear.

replace (a/b+b)/c by (a+b':":'z)/(b':'c)

replace a i a hy 2':'a

replace n':'u+u by (ni-l) ':'u when nurnberp n

replace a~:~~:~n/ a by a ~:~ ~:~ (n-1)

replace a/ a ':":'n by a':":' (1-n)

replace a':":'b':'a':":'c by a':":'(b+c)

replace a':'(b/a-c) by b-a':'c

CHAPTER V
LIMIT PROBLEMS

5.1 GENERAL DISCUSSION

51

This chapter is devoted to discussion of FAMOUS - based systems for the

solution of "limit problems". These problems are typically represented as

(1) lim E
x-+k

or

or

where E is a finite expression compounded of piecewise-analytic functions;

k is a real number, - oo, oo, or+ oo; and the desired answer is "indeterminate"

or like k.

Freshmen are occasionally given "limit problems" involving the character­

istic function of the set of rational numbers, Sometimes other unruly func­

tions are used, depending upon the imagination of the instructor. Despite the

existence and persistence of these non-Borel anomalies, my restriction to

piecewise analyticity excludes few problems found in elementary texts.

The most striking thing about limit problems is the fact that only one

" effectively computable procedure for solving them - L'Hopital's Rule -

seems to exist. Unfortunately, this is not to say that L 1HSpital's rule solves

all limit problems.

Consider, for example,

(4) lim sin x/ exp x
x-+i"oo

" The answer is plainly zero, but L'Hopital's rule is of no help.

52

A more malignant example starts with

(5) lim exp x/exp x
x-+-too

CHAPTER V

Here again, the answer is plain. But the answer is reached through sim­

" plifica.tion, not through L'Hopital's rule. And if (5) had been written as

(6) lim exp x/(exp x + f(x)*exp(x**Z)) x-++oo

where f(x) is a Richardson function (§ 4. 1. 1), non-obviously identical to

zero, the answer would not have been plain at all.

The example keeps the following disappointing theorem from being very

surprising.

Theorem: Let N be the set of one-place real functions defined for the

Richardson corollary (§ 4. 1. 1). Then there is no recursive decision pro­

cedure for statements of the form

1·
x :.n+ 00

f(x) = 0

for fin N.

Proof: Suppose such a decision procedure existed, and let g be a

function in N. Then the following are equivalent:

(3: x)(g(x) :/. 0)

and

lim g(x sin x) :/. 0
x-+oo

But it is known to be undecidable whether g is identically zero. QED.

Despite the theorem, textbook problems are handled so mechanically

by competent students that it seemed worthwhile to prepare a set of FAMOUS

rules which would attack these problems.

LIMIT PROBLEMS

The "two- sided" limit problems of type (1) turn out to be quite a ~it

cleaner than the "one-sided" problems of types (2) and (3). In the case of

limits of type (1), piecewise analyticity .. of the function_! allows us to

replace

(7) liro f(E)
x-+k

by

(8) f ~~ E)

53

But the corresponding transformations for one-sided limits are not legiti­

mate. At their points of singularity, piecewise analytic functions comply

with the (7)-to-(8) rule by letting one or both of (7) and (8) be indeter­

minate. The corresponding expressions for one-sided limits, however, are

often both defined - and different in value. In an effort to return to the

ordinary, inside-out evaluation rule, the misleading notations k+ and k­

have been used to represent values of real variables.

Theorem: Let P be the set of one-place real functions generated by

composition from the primitive notions of

the rationals

pi

log 2

addition

multiplication

division

sin

exp

abs

Suppose f(x) is in P and J~~+ f(x) = a. Then the statement

As x descends to k, f(x) descends to a

is recursively undecidable.

54 CHAPTER V

Proof: Suppose the decision procedure denied by this theorem existed,

and let g be a function in P. Observe that

(a) If a total function h(x) ever has the value v, then h(sin(l/x)/x) has

the value v - infinitely often, in fact - in every open interval

(0, a)

(b) x/(abs xtl) is always defined, and its magnitude is always less

than 1. It is negative when and only when xis.

Thus g is always greater than or equal tO zero if and only if

x*g(sin(l/x)/x)/(a.bs g(sin(l/x)/x) +l)

descends to zero as x does. But it is recursively undecidable whether g is

always greater than or equal to zero. QED.

into

This theorem describes one of the reasons why the technique which takes

lim exp recip sin x
x-u+

exp recip (Ot)

and consequently into

+ 00

cannot be generalized very far. To be sure, one~ specify the treatment

of any number of fixed one-place functions. For example, one chooses

between

(value of sin k) +

and

(value of sin k) -

LIMIT PROBLEMS 55

as a replacement for

Ji~+ sin x

by simply finding the quadrant in which k lies. But the situation is beyond

saving when the (two-place) arithmetic operators are introduced. The solu­

tion of

Jira+ exp recip (tan x - sin x)

is not approached by the transformation into

exp recip ((0+) - (O+))

5. 2 A FAMOUS SYSTEM FOR TWO-SIDED LIMIT PROBLEMS

The arguments of the preceding section show that one-sided and two­

sided limit problems are (to a first approximation, ignoring possible

degrees of unsolvability) equally and impossibly difficult. Experience, of

course, suggests that textbook problems of these types are about equally

and trivially easy.

In any event, there can be no question that one-sided limit problems

require for their solution a large and disorderly miscellany of correlative

information.

For this reason, no machine system was developed for one-sided limit

problems. This section describes a FAMOUS system for the solution of

two-sided limit problems. The system was developed in exactly the order

in which it is presented.

The reader will notice any number of implausible rules which, he should

also notice, are largely eclipsed by rules which follow them. The last-in­

first-found rule-search of§ 2. 3. 3 should be recalled.

To represent

lim E
x-k

56 CHAPTER V

I use the notation

limit (x, k, e*)

where E* is the FAMOUS representation of E. The basis and induction

step for one-place functions are simple:

(1) assert defined ('limit)

(Z) replace limit (x, k, y) by y when atom y

(3) replace limit (x, k, x} by k

(4) replace limit (x, k, f(y}) by £(limit (x, k, y))

For the case of the (two-place) arithmetic functions, the rule

(NOT 5) replace limit (x, k, f(y, z}) by£ (limit (x, k, y}, limit (x, k, z} }

must not be included. Taking the limits of the arguments y and z may lead

to one of the indeterminate forms. To aid in describing these forms, I

introduce three constants:

(5) assert constantp ('infinity)

(6) assert constantp ('plusinfinity)

(7) assert constantp ('minusinfinity)

(8) assert infinite (x} = equal (x, 'infinity) or equal (x, 1plusinfinity) or

equal (x, 'minusinfinity)

Now the indeterminate forms can be explicitly listed:

(9) assert constantp ('indeterminate}

(10) assert indet (a) = equal (a., 'indeterminate}

(11) assert nasty sum (a, b)= indet a or indet b

(lZ} assert if infinite a then nastysum (a, infinity}

(13} assert if infinite b then nastysum (infinity, b}

(14} assert nasty sum (plus infinity, minus infinity}

(15) assert nastysum (minusinfinity, plusinfinity}

(16) assert nastydifference (a, b)=indet a or indet b

(1 7) as Sert if infinite a then na.stydifference (a, infinity}

(18) assert if infinite b then nastydifference (infinity, b)

(19) assert if infinite a then nastydifference (a, a)

(20) assert nastyproduct (a, b)=indet a or indet b

(Zl} assert if infinite a then na.styproduct (a, 0)

LIMIT PROBLEMS

(22) assert if infinite b then nastyproduct (0, b)

(23) assert nastyquotient (a, b)=indet a or indet b

(24) assert if infinite a and infinite b then nastyquotient (a, b)

(25) assert nastyquotient (0, 0)

(26) assert nastypower (a, b)=indet a or indet b

(27) assert if infinite a or equal (0, a) then nastypower (a, 0)

(28) assert if infinite b then nastypower {l, b)

(29) assert na stypower (a, infinity)

And in the cases of the arithmetic operators, I simply

(a) Determine the limits of the arguments;

(b) If they do not lead to indeterminacy, apply rules which serve

the purpose of {NOT 5);

(c) Transform the expression into quotient form and apply
. /\

L'Hopital' s rule, if the rules equivalent to (NOT 5) have

not been applied.

Step (c) is not without its difficulties. Given that

tan (2 t) ~'csc 4 t

57

becomes 0 ~' ao as t goes to zero, it is not obvious that the useful equivalent

quotient is

(30) tan 2 t/sin 4 t

rather than

(31) csc 4 t/cot 2 t

An algorithm for choices of this kind is not forthcoming, and it is

consequently necessary to try both alternatives simultaneously until one

is fruitful. This stategem must even be applied to expressions which are

already quotients; one might be given (31), and one would hope for a path

through (30).

With this discussion in mind, I tentatively separate the arguments of

the arithmetic operators:

58

(32)

(3 3)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

CHAPTER V

assert defined (' sumlimit)

assert defined (' differencelimit)

assert defined ('productlimit)

assert defined ('quotientlimit)

assert defined ('powerlimit)

replace limit (x, k, el+e2) by sumlimit (el, e2, x, k)

replace limit (x, k, el-e2) by differencelimit (el, e2, x, k)

replace limit (x, k, el':'e2) by productlimit (el, e2, x, k)

replace limit (x, k, el/ e2) by quotientlimit (el, e2, x, k)

replace limit (x, k, el**e2) by powerlimit (el, e2, x, k)

The sumlimit, , .. , powerlimit functions will ultimately be a handle

on the limits of the arguments:

(42) assert defined ('limitsum)

(43) assert defined ('limitdifference)

(44) assert defined ('limitproduct)

(45) assert defined ('limitquotient)

(46) assert defined ('limitpower)

(47) replace sumlimit (el,e2,x,k) by limitsum (el,e2,x,k, limit (x,k,el),

limit (x, k, e2))

(48) replace differencelimit (el, e2, x, k) by limitdifference (el, e2, x, k,

limit (x, k, el), limit (x, k, e2))

(49) replace productlimit (el, e2, x, k) by limitproduct (el, e2, x, k,

limit (x, k, el), limit (x, k, e2))

(50) replace quotientlimit (el, e2,x, k) by limitquotient (el, e2,x, k,

limit (x, k, el), limit (x, k, e2))

(51) replace powerlimit (el,e2,x,k) by limitpower (el,e2,x,k,

limit (x, k, el), limit (x, k, e2))

Before that, however, sumlimit, ... , powerlimit provide a good point

at which to perform, in accordance with the arguments of § 5. 1, all the

"simplification" one cares to describe.

Most of this manipulation, of course, will conform to the patterns of

Chapter IV:

(52) replace differencelimit (el, el, x, k) by 0

(53) replace sumlimit (el,el,x,k) by 2* limit (x,k,el)

etc.

LIMIT PROBLEMS 59

It is natural to take this opportunity to shortcut (2):

(54) replace sumlimit (el, c, x, k) by limit (x, k, el) + c when constantp c

(55) replace sumlimit (c, e2, x, k) by limit (x, k, e2) + c when constantp c

(56) replace differencelimit (c, e2, x, k) by c - limit (x, k, e2) when

constantp c

(57) replace differencelimit (el, c, x, k) by limit (x, k, el) - c when

constantp c

(58) replace productlimit (el, c, x, k) by c':' limit (x, k, el) when constantp c

(59) replace productlimit (c, e2, x, k) by c~' limit (x, k, e2) when

constantp c

(60) replace quotientlimit (c, e2, x, k) by c':' recip limit (x, k, e2) when

constantp c

(61) replace quotientlimit (el,c,x,k) by limit (x,k,el)/c when constantp c

(62) replace powerlimit (el, c, x, k) by limit (x, k, el)•:•*c when constantp c

(63) replace powerlimit (c, e2, x, k) by c':'~' limit {x, k, e2) when constantp c

But one must be sure to catch the forms which are already indeterminate:

(64) replace sumlimit (el, e2, x, k) by indeterminate when nastysum {el, e2)

(65) replace differencelimit (el, e2, x, k) by indeterminate when

nastydifference (el, e2)

(66) replace productlimit (el, e2, x, k) by indeterminate when

nastyproduct (el, e2)

(67) replace quotientlimit (el, e2, x, k) by indeterminate when

na styquotient (el, e2)

(68) replace powerlimit (el, e2, x, k) by indeterminate when

nastypower (el, e2)

Finally, this is the place to introduce miscellaneous outside information

about special cases for which solutions are known, A large, important,

non-recursive set of these cases is associated with the "order" considerations

described by Hardy [9] .

For example, suppose that the problem at hand is

limit (x, plusinfinity, el/e2)

- --• - ------ ------ -T - ------ ------------ - -~ -• ~ --- -- -------

60 CHAPTER V

In general, it is not known that this should become zero.

(69) assert not knownzero (el, e2, var)

It is known, of course, that

limit (x, plus infinity, x/ exp x)

should become zero:

(70) assert if equal (mainof e2, 'exp) and equal (arg (e2, 1),

var) then knownzero (var, e2, var)

as should

limit (x, plusinfinity, log x/x)

(71) assert if equal (mainof el, 'log) and equal (arg(el, 1),

var) then knownzero (el, var, var)

Given that

limit (x, plus infinity, a /b)

should become zero, so should

limit (x, plusinfinity, log a/b)

and

limit (x, plusinfinity, a/exp b)

(72) assert if equal (mainof el, 'log) and knownzero (a~g(el, 1), e2, var) then

knownzero (el, e2, var)

(73) assert if equal (mainof e2, 'exp) and knownzero (el, arg(e2, 1),

var) then knownzero (el, e2, var)

Now the following rule puts all these definitions into operation:

(74) replace quotientlimit (el, e2, x, plusinfinity) by 0 when

knownzero (el, e2, var)

In the best of times, the result of limitsum, •.• , liinitpower is that

one may find the desired solution by applying the appropriate operator to

the liinits of the operator's former arguments.

LIMIT PROBLEMS

(75) replace limitsum (el, e2, x, k, a, b) by a+b when atom a and atom b

(76) replace limitdifference (el, e2, x, k, a, b) by a-b when atom a and

atom b

(77) replace limitproduct (el, e2, x, k, a, b) by a*b when atom a and atom b

(78) replace limitquotient (el, e2, x, k, a, b) by a/b when atom a and atom b

(79) replace limitpower (el, e2, x, k, a, b) by a**b when atom a and atom b

In all the interesting cases, of course, (75) - (79) are illegitimate. Here

the remarks attending (30) and (31) must be kept in mind, and the choose func­

tion is the means by which I follow two branches at once. Choose, defined

below, simply determines which alternative quotient form has reached a state

which is expressible without limit notation.

Notice that the choose mechanism does ~keep the EUC from being

infinitely subject to change. In fact, choose increases the probability that

the patience limit (§ 2. 3. 4(c)) will be struck. But once patience has

stopped the infinite recursion along one branch, the system may be able to

realize that the other branch has borne fruit.

(80) assert defined ('choose)

61

(81) assert limitfree(x) =null joint (funcsof x, list ('limit, 'sumlimit,
1limitsum, 'differencelimit, 1limitdifference, 'productlimit,

'limitproduct, 'quotientlimit, 'limitquotient, 'powerlimit, 'limitpower)

(82) replace choose (a, b) by a when limitfree a

(83) replace choose (a, b) by b when limitfree b

/\
Here, finally, is l'Hopital's rule. The next five rules take expressions

with arithmetic main operators, turn these expressions into quotients, and

differentiate.

(84) replace limitsum (el, e2, x, k, a, b) by log (-choose (

quotientlimit (exp(el)*d(el, x), exp(-e2)*d(e2, x), x, k),

quotientlimit (exp(e2)*d(e2,x),exp(-el)*d(el,x),x,k))) when

nastysum (a, b)

(85) replace limitdifference (el, e2, x, k, a, b) by log choose (

quotientlimit (exp(el)*d(el, x), exp(e2)*d(e2, x), x, k),

quotientlimit (exp(-e2)*d(e2, x), exp(-el)*d(el, x), x, k)) when

nastydifference (a, b)

62 CHAPTER V

(86) replace limitproduct(el, e2, x, k, a., b) by -choose(

quotientlimit(d(el, x)*e2**2, d(e2, x), x, k),

quotientlimit(d(e2, x) *el**2, d(el, x), x, k)) when

nastyproduct(a, b)

(87) replace limitquotient(el, e2, x, k, a, b) by choose(

quotientlimit(d(el, x), d(e2, x), x, k),

quotientlimit(d(e2, x)*el**2, d{el, x)*e2**2, x, k)) when

nastyquotient(a, b)

(88) replace limitpower(el, e2, x, k, a, b) by exp(-choose

(quotientlimit(el*d(e2, x)*(log el)**2, d(el, x), x, k),

quotientlimit (d(el, x)*e2**2, el*d(e2, x), x, k))) when

nastypower(a, b)

In (84)-(88), ~is just the differentiation operator, defined as in § 4. 2. 3.

These rules (and (64)-(68)) make an important assumption about the constants

and functions liberated by (2)-(4), some of the "simplification" rules, (54)-(68),

the "order" considerations, and (75)-(79). That is, that these expression­

parts will be continually combined. The infinite predicate, after all, will not

recognize

infinity + 1

or the like. The following rules might also be considered part of the shortcuts

(54)-(63).

One could make some of the crucial functions opaque, and then have the

following rules examine "NEED" (§ 2, 3. 4(h)) so as to take effect only when

absolutely necessary. I have not bothered with such a refinement.

(89) evaluate f(x, y) when numberp x and numberp y and infixop f

(90) evaluate -n when numberp n

(91) replace -infinity by infinity

(92) replace -plusinfinity by minusinfinity

(93) replace -minusinfinity by plusinfinity

(94) assert nx() "' infinite x and numberp n

(95) replace n+x by x when nx()

(96) replace x+x by x when infinite x

(97) replace x+y by indeterminate when nastysum(x, y}

(98) replace x-y by x+(-y) when infinite x or infinite y

LIMIT PROBLEMS

(99) replace plusinfinity*n by plusinfinity when

numberp nor equal(n, 'plusinfinity)

(100) replace plusinfinity*n by minus infinity when

numberp n and minusp n

(101) replace minusinfinity~'x by -(plusinfinity*x)

(102) replace infinity*x by infinity

(103) replace x*y by indeterminate when nastyproduct (x, y)

(104) replace x/y by x>:<recip y when infinite x or infinite y

(105) replace n**plusinfinity by plusinfinity when numberp n

(106) replace n**plusinfinity by 0 when numberp n and lessp(n, 1)

(107) replace n**plusinfinity by infinity when numberp n and

les sp(n, -1) or infinite n

(108) repla.ce x**n by infinity when nx()

(109) replace plusinfinity**x by plus infinity

(110) replace minusinfinity~'*n by plusinfinity when even n

(111) replace infinity**n by plus infinity when even n

(112) replace minusinfinity**n by minus infinity when odd n

(113) replace x~'*n by recip(x**(-ri))when nx() and minusp nor

equal (n, 'minusinfinity)

(114)

(115)

(116)

(117)

(118)

(119)

(120)

(121)

(122)

(123)

(124)

(125)

replace x*~'Y by indeterminate when nastypower(x, y)

repla.ce £(indeterminate) by indeterminate

evaluate recip x when numberp x

replace recip 0 by infinity

replace recip x by 0 when infinite x

evaluate log x when numberp x

replace log 0 by minusinfinity

replace log x by plusinfinity when infinite x

evaluate exp x when numberp x

replace exp minusinfinity by 0

replace exp infinity by indeterminate

replace exp plusinfinity by plusinfinity

Additional rules similar to (116)-(125) are needed as new functions are

brought into play.

63

The system described in this section was applied to a small but representa­

tive sample of problems from elementary and advanced texts [26, 31] • All

of these problems were successfully solved.

This empty page was substih1ted for a
blank page in the original document.

CHAPTER VI

LOOKING AHEAD

This chapter is devoted to (rather speculative) discussion of possible

improvements on the extensions to the work described earlier.

6. 1 MATCHING

65

The FAMOUS matching algorithm described in § 2. 3. 2. 1 provides a

comprehensive means of checking the tree-stucture of an algebraic expres­

sion. The elegance of the algorithm does not alter the fact th1t tree-struc­

ture is hopelessly inadequate to the problem at hand.

The trouble is that an expression <:>may "contain" an expression \(tin a

sense other than that of syntax (tree-structure). FAMOUS makes an inade­

quate detour toward this fact when it is handling rules whose forms have

Abelian-group operators as ruletypes. FAMOUS will, for example, succeed

in applying the rule

(1) replace x-x by 0

to the expression

(2) (at b) - (ht c)

even though "b-b" is not a subexpression of (2). Similarly, Joel Moses' re­

markable SCHATCHEN program [16, pp. 11-13] will find

(3) a~'x*':'2tn when numberp n

in the expression

FAMOUS will not, on the other hand, find

(5) exp(logzta)

66 CHAPTER VI

in

(6) exp (x+ logy+ 2)

The trick which worked in the case of (1) - (2) is not universal, and one

is led to adhocities like that of logsum (§4. 2. 2(d)).

From one point of view, of course, seeking a "universal" matching

algorithm is futile. One might, after all, hope that such an algorithm would

match 0 successfully with any expression which is identically zero.

But a lesson of Chapter V is surely that recursive undecidability can

be a remote and unthreatening form of hopelessness. Reconsidering ex­

amples (1) - (2) and (3) - (4), I see that a rule was looking at an expression

~for a portion satisfying certain conditions. That portion wwas to be

changed, say to e. By examining ~and the rule, the system discovered

the expression

(7) r.i (w, w)

equivalent to ~; the result of the whole operation is

(8) r.i (e, w)

These examples suggest a new notion of matching, perhaps a supermatch

function, which uses the present (shape-testing and a-list-building) match as

a subroutine. As before, a rule either succeeds in transforming an expres­

sion, or it leaves that expression unchanged.

Even though the expression is ultimately unchanged, however, the rule

may have made any number of tentative changes (like the ~-to-(7) change)

before withdrawing. All changes, both these scratchwork ones and those per­

formed by successful rules, are specified in terms of skeletons (like the

present forms and substitutes) and a-lists.

A rule's applicability to a given expression is tested, then, by fitting

that expression to an initial skeleton. A given rule may have a number of

different initial skeletons; from the expression's point of view, these are

alternatives.

LOOKING AHEAD 67

Associated with each initial skeleton is a tfe which

(a) tests the a-list arising from the match;

(b) adds to or alters the a-list; and

(c) chooses which of the rule 1 s next-level skeletons is, in conjunction

with the a-list, to be thought of as describing the expression.

As might be inferred from my use of "next" in (c), the process may then

be iterated. If the match is not found to be unsuccessful at one or another

point, the expression is changed to that expression which is described by the

last skeleton and a-list.

For example, a rule might have the initial skeletons

(9) ix

(10) n'~('x)

(11) 'x+m

(12) 1x-m

(13) n':'('x)+ m

(14) n~"('x)-m

(1 5) m-n('x)

(16) m-'x

where the associated tfe 1 s made sure that the n's and m's were numbers.

The second stage might allow the rule to view any expression of any one of

the forms (9) - (16) as being of the form

(1 7) a'!'('x) + b

The tfe associated with (17) might then ask about the expression's y-intercept

or whatever.

There is any amount of floss which, it seems at first, can easily be added

to this general scheme. For example, one might add a facility whereby iden­

tifiers (~., "quadratic") could be singled out and given fixed, special match­

ing properties. These identifiers might even be given arguments (~.,

"quadraticin (x, a2, al, aO)"). The possible mechanisms are many, and any is

probably easily implemented in programming languages like FLIP [zs) and

68 CHAPTER VI

CONVERT [8] •

The real problems of supermatch are not implementation proplems. The

detailed design will interact strongly with the design of'an associated control

language; the user who has to advise supermatch must not feel that he is be­

ing forced to program. Qq.ite possibly, much of the "floss" indicated above

will necessarily be left behind,

6. 2 ASSERTIONS AND RULES

Despite the arguments of § 3. 2, the reader may feel that my opposition

to "compiling rules into function definitions" is founded on a distinction with­

out a difference. More subtly, the reader may feel that the problems discuss­

ed in Chapter III do not arise "in practical cases".

It is interesting to examine a simple example. Consider the assertions

(1) assert factorial (x);;; x* factorial (x-1)

(2) assert factorial 0=1

Following these assertions and the rule

(3) evaluate factorial x when numberp x

the expression

(4) factorial (3)

will become

(5) 6

as it should. What rules, when "compiled" by some unspecified compiler,

would have the sam.e effect as (1) - (3) ? TJie obvious choices are

(6) replace factorial (x) by x*factorial (x-1) when numberp x

(7) replace factorial (0) by 1

· . . : ... -

LOOKING AHEAD 69

but these are plainly wrong. From (4), these rules produce a greater or

lesser portion of the infinite expression

(8) 3*(3-1)*(3-(1+1))*(3-(1+1+1))* ...

The "(x-1)" of (6), unfortunately for (6), is a construction, not a difference.

I try again:

(9) replace factorial (x) by x*factorial (y) when numberp x and

leave ('y, x-1)

(7) replace factorial (0) by 1

Now, (9) and (7) are somewhat better: they take (4) into

(10) 3*2*1 *l

leaving me with several alternatives. The rule

(11) evaluate x*y when numberp x and numberp y

will do the trick, of course, but it does much more than what is required. I

can do no better than to replace (9) and (7) by

(12) replace factorial (x) by fact (x, factorial (y)) when

numberp x and leave ('y, x-1)

(7) replace factorial (0) by 1

(13) replace fact (x, y) by z when numberp y and leave ('z, x':'y)

6. 3 EFFICIENCY

The current FAMOUS implementation presents a mean lethal dose of

inefficiency. That is, approximately half of the problems given to FAMOUS

have been solved so slowly that the users have lost interest in waiting for

their solutions.

The figure "one-half", moreover, is probably charitable. The system's

major user is overmotivated; all of the system's users have been more inter­

ested in seeing what the system can do than in seeing what the system can do

70 CHAPTER VI

with some predetermined problem. The system has, of course, strongly

reinforced an increasingly trivial problem mix.

Where is the time all going? At first, elegant inefficiences of implemen­

tation were thought to be the sink. A number of these inefficiencies were

rooted out, but the resulting improvements in performance were disappoint­

ing.

This is not to say that implementation flaws could not be the time-waster.

A number of important implementation strategies have not been attempted.

Often, these implementation-oriented notions would have had repercussions as

far away as the external appearance of the system.

For example, the present ruletype mechanism is easy to criticize. A

FAMOUS differentiator has all its rules in a single pile which must be searched

for each application. One might think in terms of a more fine-grained rule­

~function, or one might give up ruletype altogether in favor of a system

in which the EUC and the rules were parts of a multiply-connected plex­

structure [21) • This last suggestion is most intriguing, but it is not prac­

tical within the present host system (CTSS LISP).

In other algebraic manipulators, several strategems are used to improve

efficiency. Without drastic modification, these strategems are generally

irrelevant to FAMOUS,

In FORMAC and els~where, for example, each expression carries an

"already-simplified" bit. This bit serves to lock the "simplifier" out of

certain subexpressions when the expression is reshuffled.

In FAMOUS , of course, the rules are continually changing. An ex­

pression which has been "simplified" today many still require further

"simplification" tomorrow. An "already simplified" bit just cannot be set.

Even worse, the significance of the patience bound(§ 2. 3. 4(c)) must not

be forgotten. Even though an expression has been processed by a given set of

rules, that expression may still be subject to processing by those same rules.

Finally, consider the case of a rule which builds an expression e' out of

subexpressions e 1 , ... , en taken from an old expression e. On occasion,

LOOKING AHEAD 71

e 1 will surely deserve retreatment by the rules. If, for example, the rules

are

(1) replace a/a by 1

and

(2) replace a+ a by 2*a

then the processing of

(3) (s in 4 z) / 2 + (sin 4 z) / 2

must not stop at

(4) 2'~(sin 4 z) /2

On the other hand, the

(5) sin 4 z

of (4) need not be examined after (4) is reached. (5) was, after all, a sub­

expression of (3), and rule (2) was not applied until the subexpressions of

(3) became stable.~'

But this account of (5) is not perfectly general. Suppose, for example,

that the EUC is an expression in x whose derivative at x =2 is wanted, It is

reasonable to run the compressive evaluation and the expansive differentiation

at once; I would use the command sequence

assert opaque (1d)

hold

replace x by 2

consider d($, x)

continue

* Here I am pushing the patience issue under the rug.

72 CHAPTER VI

This scheme assumes, of course, that although

d(x~":'2, x)

will not turn into the senseless form

The "2~'x" which does appear will have its "x" replaced by 2. But in the

notation of the example (1) - (5) , this means that subexpressions of the old

expression are being resubmitted to the rules.

To take another case of a strategem common in other algebraic manipulators,

consider the class of rules including

(6) replace x-x by 0

(7) replace O~'x by 0

(8) replace x/ x by 1

Rules in this class make superfluous entries on the a-list. In cases (6) - (8),

the name "x" is not used in construction of the tfe or substitute.

Because they cause whole pieces of expressions to be discarded, and

because they are so easy to implement, rules like (6) - (8) are extremely

popular with existing "simplifiers". These rules are frequently and easily

implemented in no distinguishable form: they are woven into the fabric of

the system in innumberable places.

In FAMOUS applications, it is true that (6) - (8) are common rules. But

(9) replace x-y by indeterminate when nastydifference (x, y)

(10) replace x*y by indeterminate when nastyproduct (x, y)

(11) replace x/y by indeterminate when nastyquotient (x, y)

are also useful at times, and even

(12) replace x-x by pi

(13) replaceO'~xbye

LOOKING AHEAD

(14) replace x/x by pi'~~'e

are legitmate, although a little unusual.

If FAMOUS knew, in some sense, that (6) - (8) were present and un­

trammeled by any of (9) - (14), it could do very nicely. But the present

FAMOUS never makes any global observations.

73

With even the most limited inter-rule considerations, the prospects

for improving efficiency seem very good indeed. A human being, given the

rules

(15) replace d(c, x) by 0 when numberp c

(16) replace d(x, x) by 1

(1 7) replace d(u~-'v, x) by u':'d(v, x) + v'~d(u, x)

(18) replace 0'·~x by 0

(19) replace l ':'x by x

(20) replace 0 + x by x

will, after reflection or experience, come to know the rule

(21) replace d(c'~x, x) by c when numberp c

which, where it is applicable, is an efficient summary of all of (15) - (20) .

The argument which condemns (21) as implicit in - and superfluous to

(15) - (20) does not argue for speed of operation. One is reminded of

Quine's discussion [16, p. 26) of economy of axiomatization versus econo­

my of length of proof.

One is also reminded of the tradeoffs in compiler construction, where

discrimination of special cases (for loops with DO-loop logic, procedure

blocks called 0 times or one time, etc.) proves to be feasible and reward­

ing.

The compiler analogy is particularly encouraging. Just a few years ago,

certain compiler techniques were thought to be so inherently inefficient that

they would never rise above the status of academic curiosities. Now that

those techniques are better understood, they are commonly as fast as the less

elegant alternatives.

74 CHAPTER VI

The present FAMOGS does not carry even the first suggestion of an

attack upon this probler:n of inter-rule considerations. But the present

FAMOUS has quite fulfilled its purpose if it has suggested only what the re­

wards of such an attack r:night be.

APPENDIX A

COMMAND DESCRIPTIONS

The commands of FAMOUS may be divided into four main groups:

(a) Four commands are concerned with expressions.

(b) Eleven commands are concerned with rules.

(c) Three commands are concerned with function definitions.

(d) Five commands have miscellaneous metafunctions.

75

In the syntactic descriptions below, the following conventions are used:

(a) e's always represent expressions, in the input form described in

§ D. 1.

(b) id's represent single names, in the input form described in §D. 2(a).

(c) n's represent integers, in the input form described in § D. 2(b).

(d) Capitalized strings are literally intended, as are punctuation marks

other than brackets and braces.

(e) Optional phrases are shown in brackets.

(f) Alternatives are listed vertically between braces.

Summary of Commands

ABBREVIATE e AS e'

ASSERT (IF e THEN] { ~:o:.~·}
CONSIDER e [· WHERE el =eJ. [. e2=ez [· ... [· en:::e~] .. ·] J J
CONTINUE

DESK

EVALUATE e [WHEN e 1]

EXPAND id

HOLD

LEAVE e [WHEN e 1)

LISTEN

76

NOW I
ADDREVIATE e A'.::i e'

EVALUATE e f WHEN e' ~
E XPA!'\D 1d

RF:PL/\.CL e DY e' WHF:l'\ c'']
QUIT

REASSERT Jd J (SCA!\)
1

REC OI'\SlD!·~ lZ (n)

I l
l{EPLACF: c BY e' I \\'HEN(;"_

RESET

EXPRESSION

EXPRESSIONS

RC LES

lZE TR IE VE id (id 1 ,id2 l····
L

RULF:

SAVI:

ASS ER TIO NS

EXPRESSION

RCLF:S

AS id

SC:\N f\ l: LL:S ~ (id I , id
2

Cd]
~

[Sl'PPFESS ' id.>.
I
I

I

[' id l n ~ -
' id

n J

APPENDIX A

... J l) J

_J
)

COMMAND DESCRIPTIONS 77

A. 1 COMMANDS CONCERNED WITH EXPRESSIONS

A. 1. 1 Consider

CONSIDER e [, WHERE e 1 =e]_ [·ez=ez [... [en =e~] ..• J J J

In the usual case, the expression e becomes the CEUC and the new

wherelist is specified by the remainder of the command. If no wherelist is

specified, the wherelist is made null.

then

If the peculiar name "$" is a member of

atomsof(e)

(1) the new CEUC is formed by substituting the old CEUC for every

appearance of "$" in e, and

(2) the wherelist is made null.

In either case, the new EUC is finally printed out with the next sequential

expression-number.

Examples:

consider x - f(sin 2 g), where f(z) = z':'*2, g=2':'a

consider $+$

A. 1. 2 Save

SAVE EXPRESSION AS id

The EUC is stored in a file named

EXPS id'

where id' is a short name printed out in response to the~ command. Any

expression previously associated with this name (id) and this file (EXPS id')

is lost.

The na~e id may not contain periods.

78 APPENDIX A

The utility of the~command is best understood in connection with

the continue command (§A. 4. 1).

Examples:

save expression as fred

save expression as schroedingerequation

A. 1. 3 Reconsider

RECONSIDER (n)

The expression and wherelist which were numbered (n) become the EUC,

which is printed out.

If no expression so numbered is known to the system, the system com­

plains.

An elusive bug in the host system (CTSS LISP) occasionally causes

FAMOUS to lose expressions numbered "(l)".

Examples:

reconsider (12}

reconsider (3)

A.1.4 Reset

RESET

EXPRESSION

EXPRESSIONS

(a) The CEUC disappears.

(b) The expression number is set to 0.

(c) The numbered expressions leading up to the just-vanished one are

forgotten.

(d) If the command is typed with the final "s", all expressions named

via~ (§A. 1. 2) are forgotten.

Examples:

reset expression

reset expressions

COMMAND DESCRIPTIONS 79

A. 2 COMMANDS DEALING WITH RULES

A. 2. 1 Reset

RESET RULES

All the current rules disappear.

Example:

reset rules

A. 2. 2 Save

SAVE RULES AS id

All the current rules are stored on the disk in a file named

RULES id'

where id' is a short name printed out in response to the~ command. Any

set of rules previously associated with this name (id), and with this file

(RULES id'), is lost.

The name id may not contain periods.

The utility of the ~command is best understood in connection with

the retrieve command (§A. 2. 3).

Examples:

save rules as george

save rules as almostwooldridge

A. 2. 3 Retrieve

RETRIEVE id [(id1 [• id2 [•... [, idn] •·• J J >]
The optional portion of this command is a descriptor list.

-- - ·-·-._--· ~--- - ------------ ---- ----- ·--------c"--------~--- ----

80 APPENDIX A

Certain rules from the ~d package named id are added to the current

stock. A rule r is taken if either

(a) the command's descriptor list is null, or

(b) the command's descriptor list contains some descriptor of r.

If no rule package named id is known to the system, the system complains.

Examples:

retrieve george

retrieve sam (*)

retrieve almostwooldridge (dx, abbrev)

A. 2. 4 Suppress

SUPPRESS

The parameters of this command are descriptors.

Certain of the current rules are lost. A rule r is lost if the command's

descriptor list contains some descriptor of r.

Examples:

suppress (*)

suppress (dx, abbrev, expand)

A. 2. 5 Scan

SCAN RULES [(id1 [, id2 [, ... [. idn] ...]]>]
The optional portion of this command is a descriptor list.

Certain of the current rules are displayed for the user's comment. The

other rules are unaffected.

COMMAND DESCRIPTIONS 81

A rule r is among those scanned if either

(a) The command's descriptor list is null, or

(b) The command's descriptor list contains some descriptor of r.

The user may make any one of five comments after a rule is presented.

(a) "OK" will cause the rule to be retained.

(b) "NG" will cause the rule to be lost.

(c) "OKOK" will cause the rule to be retained and the scan to be dis­

·continued.

(d) "NGNG" will cause the rule to be lost. In addition, printing of

scanned rules is discontinued, and the "NG" response is assumed to

have been given for each scanned but unprinted rule.

(e) "LABEL" id will cause the descriptor id to be added to the descriptors

of the rule. The rule is printed out again for further comment.

(f) "UNLABEL1' id will cause the descriptor id to be removed from among

the descriptors of the rule .. The rule is printed out again for further

comment.

If the scan ends normally (i.e., not via (c) or (d)), the system prints

'DONE'.

Examples:

scan rules

scan rules (*)

scan rules (dx, abbrev)

A. 2. 6 Abbreviate

ABBREVIATE e AS e 1

A new rule is added to the current stock (§A. 2.12).

(a) The raw form is e

(b) The raw tfe is "$TRUE$"

(c) The raw substitute is e'

82 APPENDIX A

(d) The raw descriptor-list is the unit set of "ABBREV"

If the hold switch (§§A. 2. 11, A. 4. 1, and A. 4. 3) is not on, the co:itinue

command (§A. 4. 1) is initiated after the rule has been added.

abbreviate 2. 71828 as e

abbreviate a':'b':":'y as f(y)

A. 2. 7 Evaluate

EVALUATE e (WHEN e']

A new rule is added to the curren: stock (§A, 2. 12).

(a) The raw form is e

(b) The raw tfe is e', if e' is given, otherwise "$TRUE$"

(c) The raw substitute is "EVALUATE"

(d) The raw descriptor-list is the unit set of "EVALUATE"

If the hold switch(§§ A. 2. 11, A. 4. 1, and A. 4. 3) is not on, the continue

command (§A. 4. 1) is automatically initiated after the rule has been added.

Examples:

evaluate log 2

evaluate sin x when numberp x

evaluate p(x, y) when numberp x and numberp y and

infixop p

A.2.8 Expand

EXPAND id

The par.,meter of this command is the name of an abbreviation. That

is, it is the "e" of

abbreviate 2. 71828 as e

COMMAND DESCRIPTIONS 83

or the "f" of

abbreviate a~:<>:<y as f(y)

The wherelist is searched for an abbreviation with this name. If no such

abbreviation is found, the system complains and returns to command level.

If the abbreviation is found on the wherelist, in the form e = e', then

(a) It is deleted from the whe relist.

(b) The rule that created it is deleted from the current stock.

(c) A new rule is added to the current stock (§A. 2. 12).

(1) The raw form is e

(2) The raw tfe is "equal (id, 1 id)"

(3) The raw substitute is e'

(4) The raw descriptor-list is the unit set of "EXPAND"

(d) If the hold switch(§§A. 2. 11, A. 4. l, and A. 4. 3) is not on, the

continue command(§ A. 4.1) is automatically initiated.

Examples:

expand e

expand f

A. 2. 9 Leave

LEAVE e [WHEN e~

A new rule is added to the current stock(§ A. 2. 12).

(a) The raw form is e.

(b) The raw tfe is e', if e' is given, otherwise "$TRUE$"

(c) The raw substitute is "LEAVE"

(d) The raw descriptor-list is the unit set of "LEAVE"

If the hold switch(§§A. 2. 11, A. 4. 1, and A. 4. 3) is not on, the continue

command (§A. 4.1) is automatically initiated after the rule has been added.

84

Examples:

leave log 0

leave sin x when integer x

A. 2, 10 Replace

REPLACE e BY e' [WHEN e"]

A new rule is added to the current stock (§A. 2, 12).

(a) The raw form is e

(b) The raw tfe is e", if e" is given, otherwise "$TRUE$"

(c) The raw substitute is e'

(d) The raw descriptor-list is null

APPENDIX A

If the hold switch (§§A. 2. 11, A. 4. 1, a.nd A. 4. 3) is not on, the continue

command (§A. 4. 1) is automatically initiated after the rule has been added.

Examples:

replace l*y by y

replace x + y by factr * (otherl + other2) when commonfactor (x, y)

A. 2.11 Now

NOW

ABBREVIATE e AS e'

EVALUATE e [wHEN e~
EXPAND id

REPLACE e BY e' [wHEN e•J

(a) The current stock of rules is hidden safely from the rest of the system.

(b) The hold switch is turned off.

(c) The command indicated by the parameters is initiated.

(d) The rules hidden in (a) are restored; the rule generated by (c) is lost.

COMMAND DESCRIPTIONS

Examples:

now abbreviate 2. 71828 as e

now evaluate sin x when numberp x

now expand e

now replace l~'y by y

A. 2. 12 Addition of Rules

85

The rule which finally enters the current stock will generally be somewhat

different from the rule first specified by the user. The following transforma­

tions a re performed:

(a) The ruletype of the form is added to the rule's descriptor list.

(b) If

opaque (ruletype(getexp()))

has the value "$TRUE$", then ruletype(getexp()) is added to the des­

criptor list.

(c) The form is altered as described in § 2. 3. 5.

(d) If the peculiar name "$"appears in the form, it is replaced by the

CEUC.

(e) For every function name f in the form which is

(1) Not a member of atomsof(the tfe) (§ 2. 3. 5), and

(2) not the name of a defined function, but

(3) a function name in the CEUC, a clause

equal (f, 'f)

is conjoined to the tfe.

86 APPENDIX A

A. 3 COMMANDS CONCERNED WITH FUNCTION DEFINITION

A. 3. 1 Assert

ASSERT [IF e THEN] { :~~ .~·}
The intention is to define or redefine the outermost function of e'. In

particular, if this function f is ever applied to arguments which satisfy the tfe

e, then it is intended by this assertion to guarantee that f has the value

"$TRUE$", "$FALSE$", or the value of e", depending upon which form is

used.

(a) If the optional part of this command is not present, e is taken to

be "$TRUE$".

{b) An effective e" is chosen ("$TRUE$", "$FALSE$", or the given one).

(c) Say that e' was given as f(e 1 , e 2 , ..• , en). If any e. is a number;
l

identical to some e., j > i; an APVAL; or not a single variable name;
J

then e. is replaced in e' by a new variable-name e'., and the clause
l l

I

equal (e., e.)
l l

is conjoined to the tfe e.

(d) Say that e' is now f{el, ez., ... , e~).

(1) not a member of atomsof(e), and

(2) either

If any e! is
l

(a) an atom-name or function-name in the CEUC, or

(b) the name of a constant, or

(c) the name of a defined function

then e! is replaced by its quotation in the value e", and the clause
l

equal (e!, '(e!))
l l

is conjoined to the tfe e.

(e) If any function-names in e or e" are not names of defined functions,

warnings are printed.

COMMAND DESCRIPTIONS 87

(f) The system prints its interpretation of the polished assertion, and

the user is expected to express his approval or disa.pproval:

(1) If the user types "OK" then the assertion is passed on to the inner

assert mechanism (§A. 3. 2).

(2) If the user types "NG", the assertion is discarded.

Examples:

assert not meter()

assert maxtime () = 30

assert patience() = 5

assert opaque(z) = equal (x, '('))

assert factorial(z) = z*factorial(z-1)

assert factorial(O) = 1

assert expless(a, b, c)

assert if atom x and atom y and alphaorder(x, y) then expless(y, x, z)

assert if numberp x or numberp y then expless(x, y, z) = not numberp x

A. 3. 2 The Inner Assert Facility

The inner assert facility accepts one assertion (IF tfe THEN f(id 1,

•.. , id) = e) at a time.
n

(a) The assertion is pla.ced on the list of all assertions made in this

copy of FAMOUS.

(b) If the tfe is "$TRUE$", then the system is given the definition

Any previous definition off is lost.

(c) If the tfe is not 11 $TRUE$" but the function f has a previous definition;

say

Then a new function g is introduced with the definition

88 APPENDIX A

and the system is given the definition

f(id
1

, ..• , idn) = if tfe then e otherwise g(id1, • id)
n

(d) If the tfe is not "$TRUE$" and the function f has no previous definition,

then the system prints a warning and accepts the definition

f(id 1, .•. , idn) = if tfe then e otherwise "UNDEFINED"

A. 3. 3 Save

SAVE ASSERTIONS AS id

The assertions on the present list are stored in a file named

ASSERT id1

where id' is a short name printed out in response to the~ command.

Any set of assertions previously associated with this name (id) and this file

(ASSERT id') is lost.

The name id may not contain periods.

The utility of the~ command is best understood in connection with the

reassert command (§A. 3. 4).

Examples:

save assertions as basics

save assertions as transcendentals

A. 3. 4 Reassert

The intention is to add the assertions saved in the package id to the

present list, using the inner assert facility (§A. 3. 2).

COMMAND DESCRIPTIONS 89

If the "(SCAN)" parameter is present, each assertion is displayed for

the user's comment. The user may make a.ny one of four comments after an

assertion is displayed.

(a) "OK" will cause the assertion to be handed on to the inner assert

facility.

(b) "NG" will cause the assertion to be ignored.

(c) "OKOK" will cause the assertion to be handed on to the inner assert

facility. In addition, the printing of incoming assertions is discon­

tinued for the remainder of the command, and the response "OK" is

considered to have been given for each unprinted assertion.

(d) "NGNG" will cause the command to be immediately discontinued.

Examples:

reassert basics

reassert transcendentals (scan)

90 APPENDIX A

A. 4 MISCELLANEOUS COMMANDS

A. 4. 1 Continue

CONTINUE

(a) If the CEUC is null (as it is after reset, §A. 1. 4), then the system

complains and returns to command level.

(b) If any name of a saved expression (§A.1. 2) is found among

atomsof(getexp()), then that expression is substituted for that name.

The wherelist of the saved expression is added, where consistent,

to the wherelist of the EUC.

(c) The hold switch is turned off.

(d) The EUC is thrown to the rules.

(e) The expression number is incremented.

(f) The new EUC is printed.

Example:

continue

A. 4. 2 Desk

DESK

The system is thrown into a desk-calculator mode of operation. Succes­

sive expressions are read from the typewriter, passed to the rules, and gen­

erally discarded. Precisely,

(a) An expression is read from the console.

(b) If it is "STOP" the system returns to command level.

(c) The CEUC is substituted for each appearance of"$" in the expression.

(d) The expression becomes the CEUC.

(e) The wherelist becomes null.

(f) The continue command is initiated.

(g) Control returns to (a).

COMMAND DESCRIPTIONS 91

Exilrr1ple:

desk

A. 4. 3 Hold

HOLD

The hold switch is turned on. The utility of the hold cornrnand is best

understood in connection with the abbreviate, evaluate, expand, leave, and

replace comrnilnds (§§A. Z. 6-A. Z. 10).

Example:

hold

A. 4. 4 Listen

LISTEN

Sec § E. 3.

Exarnple:

listen

A. 4. 5 Quit

QUIT

See § E.3.

Exan1ple:

quit

This empty page was substih1ted for a
blank page in the original document.

APPENDIX B

THE FAMOUS EVALUATION ROUTINE

The value of an expression is computed as follows:

(a) The host system (CTSS LISP) forces the following names to be

distinguished as ''AP V ALS'':

blank eor oblist

breaks eqsign period

cleanout floydftab pluss

colon floydgtab prime

comma fnflags rpar

er fsleft singles

dash fwleft slash

dollar inlist star

eof lpar tytab

93

If e is an APVAL, then e has a predetermined value which is gen­

erally not useful to FAMOUS. The APVALs should consequently

be avoided.

(b} If e is "$TRUE$", "$FALSE$", a number, a constant, or the name

of a defined function, then the value of e is e.

(c) If e is "NEED", then the value of e is a set of descriptors, as

described in § 2. 3. 4(i).

(d) If e is a name which appears as the first pa.rt of a pair on the a-list,

then the value of e is the second part of that pair.

(e) If e is the quotation of an expression e', then the value of e is e'.

(f) If e is

then the successive ei' s are evaluated until eK is found to have the value

"$FALSE$". When this happens, the value of e is said to be "$FALSE$"

and eK+l' ••• , en are not evaluated. If all of e 1, , en have value

"$TRUE$", then e has value "$TRUE$".

94 APPENDIX B

(g) If e is

then the successive ei's are evaluated until eK is found to have value

"$TRUE$". When this happens, the value of e is said to be "$TRUE$"

and eK+l' ••• , en a.re not evaluated. If all of e 1 , .•. , en have value

"$FALSE$", then e has value "$FALSE$".

(h) If e is f(e 1, .•• , en)' a.nd if f is a. defined function, then the value of e

is the result of applying the function named by f to the values of e 1 .•• en.

(i) If e is f(e 1, ••. , en)' and if f appears a.s the first part of an entry on

the a-list whose second part is g, then the value of e is the value of

g(el • ..• 'en).

Several parts of the evaluation routine have not been described. In the first

place, I have not discussed cases of conflict: names on the a-list which a.re also

APVAL 1s, etc, There are rules governing such conflict, but I find it improbable

that a user of FAMOUS could ma.ke anything useful of his knowledge of these rules.

Nor have I discussed some additional ways in which it is possible for an

expression to acquire a value. These ways, like the conflict-rules of the

previous para.graph, are accidental bequests of the implementation. They seem,

once again, to have no proper interest for the user of FAMOUS.

95

APPENDIX C

FUNCTIONS

Throughout this appendix, e's are expressions and b' s are truth-values.

C. 1 FUNCTIONS WHICH MUST BE DEFINED BY THE USER

Use

expless(e 1, e 2 , b)

Purpose

Expless is the system's source of advice about the
ordering of products and sums. If the user prefers

to

he should be sure that

expless(e
1

, e 2 , $FALSE$)

is $FALSE$. Similarly,

expless(e
1

, e 2, $TRUE$)

should be $FALSE$ if

is preferred to

For example, suppose the user favors the order

numbers/names/(complex factors)

in products, and

(complex terms)/na.mes/numbers

in sums. Then he might define expless by the assertions

assert expless(a, b, c)
assert complexity (x) = 2
assert if atom x then complexity x = 1
assert if numberp x then complexity x = 0
assert expless (a, b, $FALSE$)= lessp (complexity

a, complexity b)
assert expless (a, b, $TRUE$) = not expless (a, b,

$FALSE$)

96

Use

maxtime()

meter()

opaque(f)

patience()

APPENDIX C

Purpose

To these assertions, alphabetical ordering of names
and other refinements might now be added. Of course,
the trickiness of expless would not have been thrown
to the user if only prosaic orderings could be specified.

See § 2. 3. 4(d); typical values run between 30 and 100.

If meter() does not have the value "$FALSE$", then the
system will clock its excursions from command level,
and the running time (in tenths of seconds) will be printed
upon each return.

See § 2. 3. 4(h)

See§ 2. 3. 4(c)

C. 2 NUMERICAL PREDICATES

Use

fixp(x)

floatp(x)

greaterp(x, y)

lessp(x, y)

minusp(x)

onep(x)

zerop(x)

$TRUE$!ff

x is in integral internal representation

x is in non-integral internal representation

X>Y

x< y

x<O

zerop(x-1)

fxj ~ 3*10-
6

C. 3 NUMERICAL FUNCTIONS

The five arithmetic operators are available. Exponentiation, which

is written with FORTRAN' s double asterisk, has the peculiar definition

x**y = if minusp y and floatp y then x IYI otherwise xy

Other functions available include the following:

Use

addl(x)

asin(x)

Comment

x+l

-1 Sin (x)

FUNCTIONS

Use

atan(x)

cosh(x)

exp(x)

fix(x)

float(x)

log(x)

max(x, y,

min(x, y,

minus(x)

recip(x)

sin(x)

sinh(x)

subl(x)

tanh(x)

'z)

• z)

Comment

-1 Tan (x)

x e

(sign of x) (greatest integer ~1xp, in integral repre­
sentation

x, in non-integral representation

natural log

largest of x, y, ••• , z

smallest of x, y, ••• , z

-x

l/x

x-1

C. 4 EXPRESSION-HANDLING PREDICATES

Use $TRUE$ lif

afixp(e) numberp (e) and fixp (e)

anti(e) e is - or I

associativep(e) e is +,*•AND, or OR

atom(e) e is a single number or name

commonfactor(e 1, e 2) factor(e 1, e
2

) or factor(e
2

, e 1) or e 1 and e 2 have an

explicit common factor. If commonfactor(e
1

, e 2)

has the value "$TRUE$", then commonfactor has
used leave to set "FACTR", "0THERl 1', and
"OT~ on the a-list, so that

e 1 = FACTR*OTHERl

e
2

= FACTR*OTHER2

constantp(e) numberp(e)

97

98

Use

defined(e}

factor (el' ez)

infixop(e}

numberp(e)

sum(e}

typeout(e)

APPENDIX C

$TRUE$ Hf

e is the name of a defined function

(numberp(e
1

) and numberp(e 2) and zerop(e
1

- e
2

}) or

(el and ez are identical}

e 1 is an explicit factor of e
2

• If factor(e
1

, e
2

) has the

value "$TRUE$", then factor has used leave to set
"OTHERF ACTOR" on the a-list, so tha_t __

e
2

= e 1 ~•0THERFACTOR

e is +, -, *•I,*':', AND, or OR

e is a number

e is a sum or difference

a.lwa.ys "$TRUE$", types eon the console

C. 5 EXPRESSION-HANDLING FUNCTIONS

Use Value

arg(e, n) nth argument of outermost function of e

atomsof(e) See § 2. 3. 5

canonical(e) A number, invariant with e. If e is a number, then e.

funcsof(e} Set of function-names appearing in e.

leave(id, e) See § 2. 3. 2. 2

listif(e) !J atom(e) then unit set of e otherwise e.

mainof(e) If atom(e) then e otherwise outermost function-name
of e. --

ruletyp e(e) See § 2. 3. 3

C. 6 MISCELLANEOUS PREDICATES

Use

a1phaorder(id
1

, id
2

)

member(x, y)

null(x)

subset(x, y)

$TRUE$ Iff

id
1

is lexicographically =:; id
2

xis empty

xcy

FUNCTIONS 99

C. 7 MISCELLANEOUS FUNCTIONS

Use

getexp()

getn(}

gettype()

joint{x, y)

list{x, y, ... , z)

setdifference(x, y)

union(x, y)

Value

CEUC

Expression number

R uletype(get exp())

.!!_null (x n y) then the null set otherwise some member

of x n y

Set whose members are x, y, ..• , z

~(zty and z Ix)

xuy

This empty page was substih1ted for a
blank page in the original document.

101

APPENDIX D

CONSOLE INPUT-OUTPUT

The console I/O facilities are physically and logically a separate part of

FAMOUS.

D. 1 INPUT SIDE

The input side of FAMOUS consists of four separate programs.

(a) The rdline routine collects characters into names and determines

when a logical line has been completed.

(b) The ~ routine performs miscellaneous functions to simplify the

syntactic structure of the input stream.

(c) The floydpolish routine is a table-driven precedence-grammar

phrase finder.

(d) The rephrase routine rearranges the phrases discovered by

floydpolish into the standard internal form used by FAMOUS.

D. 1. 1 Rdline

D. 1. 1. 1 Dividing the Input Stream Into Useful Units

The primary task of rdline is division of the input stream into meaning­

ful groups of characters. These groups are known a.s elements.

(a) A string beginning with one of

1 (apostrophe)

, (comma)

=
+
- (minus)

I
is an element which ends with that character.

102 APPENDIX D

(b) A string beginning with an asterisk is an element which ends with

(1) that character, if the next character is not also an asterisk, or

(2) the next character, if it is also an asterisk.

(c) A string beginning with a letter is an element which ends just before

the first following one of

(blank or carriage return)

*
' (apostrophe)

, (comma)

I
=

+
- (minus)

(d) A string beginning with a number or decimal point is an element which

ends just before the first following one of

(blank or carriage return)

(plus sign or minus sign not preceded by letter "E")

*
' (apostrophe)

, (comma)

=

I

D. 1, l, 2 Determining the End of a. Logical Line

At the end of each physical typed line, or whenever a superfluous right

parenthesis is detected, rdline must decide whether the logical line has come

to an end. Rdline will consider the logical line complete when

(a) All left parentheses have been matched, and

(b) The la.st element is not an infix operator, an equal sign, a comma.,

"WHEN", "THEN", "WHERE", "AS", or "BY".

CONSOLE-INPUT-OUTPUT 103

Physical input lines may not be longer than 72 characters. Input is in 6-bit

mode, so the CTSS kill(?) and delete(") conventions [5,§AC. 2. 02] are

available.

D. l. 2 Clean

The primary purpose of~ is highly implementation-dependent. In

addition, clean serves a special function with respect to unary plus and minus

signs.

Floyd [7, pp. 322-323] and others have observed that unary plus and

minus signs may be distinguished by the elements which precede them. Clean

does this and then either

(a.) Ca.uses a. following number to absorb the sign, or

(b) Changes the sign to a.n unambiguous function-name.

D. 1. 3 Floydpolish

Floydpolish is exactly the precedence-grammar phrase-marker described

by Floyd [7] • The grammar now used is

<exp>:: = < te rm>r exp><aop><term>

<term>:: = < factor1< tenn>< mop><factor>

<fa.ctor>:: = <p rimary>I< p rimary>**<fa.ctor>

<primary : : = < idn>j< idn><args>,(<exp>)

<args>:: =<primary>/() j(<a rglist>)

<arglist>:: = < exp>l<exp>.< a rglist>

<a.op>:: = + 1-1 OR

<mop :: =~'[I/AND

<idn>:: =Any element not(,), comma, ~'*• a mop, or an a.op.

which has the precedence table

104

element f

~ 1

-1
(2

3

aop 5

mop 7

** 7

idn 9

9

Some sample phrases generated by this grammar are

4 sin 3 log x

f(b() + 3 x)**b()**3. 6

lessp(x, y) and lessp(y, z)

D. 1. 4 Rephrase

l

10

4

4

6

8

10

2

APPENDIX D

Rephrase is a rather specialized routine which is almost wholly

determined by vagaries of the current internal representation of expressions.

The one interesting feature of rephrase is provoked by phrases of the form

< idn> < args >

For example, the expression

4 sin f(x)

contains three such phrases.

The innermost of these, "f(x)", is easy to handle. The parentheses

give it away as a case of functional application.

In the next case, that of "sin f(x) 11
, rephrase asks if~ is a defined

function, Since it is, this phrase is also considered to express functional

application.

CONSOLE INPUT-OUTPUT l 05

In the final case, that of the whole expression, neither of the previous

arguments is applicable. The expression is treated, therefore, as if it had

been written

4'!' sin(f(x))

D. 2 EXTERNAL REPRESENTATIONS

(a) A string of 30 or fewer letters, periods, dollar signs, and digits,

the first character of which is a letter, represents the name of a

function or variable.

(b) A string of decimal digits represents an integer. A preceding

sign is optional.

(c) A string cons is ting of

(1) Decimal digits

(2) A decimal point

(3) Decimal digits

represents a real number. A preceding sign is optional. For ex­

ample, "3.14159" represents an approximation to pi.

(d) A string consisting of (l) - (3) of (c) and

(4) The letter 'E'

(5) Optionally, a sign

(6) One or two decimal digits

represents a real number. Let the numbers represented by (1) - (3)

and (5) - (6) be x and y, respectively. Then the number represented

by (1) - (6) is x~<lO**Y·

A preceding sign is optional. For example, "31. 4159E- l ",

"+ 3. l4159EO", and "0. 314159El" all represent the same approxi­

mation to pi.

{e) The apostrophe represents the quotation function. For exa.mple,

'x

and

106 APPENDIX D

'(x)

equivalently represent the quotation of x.

(£) Extra blanks are harmless; they may be freely used to improve the

readability of input.

(g) Similarly, extra right parentheses at the end of a logical line are

harmless; counting them is a waste of time.

D. 3 OUTPUT SIDE

FAMOUS' output routines are much simpler than the input ones. They

utilize only the most conservative precedence relations, and they seem to have

no external interest.

Every expression printed out by FAMOUS is in a permissible input form.

APPENDIX E

OPERATING CONSIDERATIONS

E. 1 ERROR PROCEDURES

E. 1. 1 Mistyped Commands or Responses

Whenever FAMOUS expects a stereotyped input, a non-standard line is

handled in the following standard way:

(a) The message "Eh?" is printed,*

(b) Any waiting typed input is discarded, and

(c) FAMOUS tries to read a new input line to replace the erroneous one.

E. 1. 2 Host System Errors

107

The host system (CTSS LISP) will complain under various circumstances.

For example, the user may ask that a valueless expression be evaluated, or

he may ask the system to deal with numbers of unworkable size.

After a complaint from the host system, FAMOUS is back at its command

level.

E. 1. 3 Interrupt Signals

A console interrupt signal [5, § AC. 2. 02] causes an immediate host system

error (§ E. 1. 2). These signals may be useful if faulty function-definitions

cause looping in the system.

For brief periods during the execution of certain commands, the data-base

is in an inconsistent or meaningless state. Console interrupt signals are ig­

nored during these periods.

*"Thus, the user is forced to read his input line to find the error, rather than
possibly being misled by a message unrelated to the actual error." [24, p. 462]

108 APPENDIX E

E. 2 SCANNING

The user may occasionally cause FAMOUS to scan some list of rules or

assertions. He is then given an opportunity to comment on each of the scanned

items.

The user may indicate in one of these comments that he wishes the scan

to stop. In general, however, the scan will continue until the list being

scanned is exhausted. When a list is exhausted, the system prints the mes­

sage "DONE".

E. 3 COMMAND LEVELS

FAMOUS is a looping LISP program. To get out of this loop, the quit

command may be used.

To move in the other direction, the~ command has been provided.

This command simply executes the CTSS LISP function~ [] [12, p. 2]

return from listen puts the system back at FAMOUS command level.

109

BIBLIOGRAPHY

1. Bar-Hillel, Y. , Luncheon conversation, November 30, 1965

2. Brown, W. S., "A Language and System for Symbolic Algebra on a

Digital Computer", Proceedings of the 1965 IBM Scientific Computing

Symposium on Computer - Aided Experimentation (to appear)

3. Chagnon, Spencer O., "The Simulation Rule and Admissible Events in

Simulation, " in (11)

4. Craik, K. J. W., The Nature of Explanation, Cambridge, England,

The University Press, 1943

5. Crisman, P.A. (ed.), The Compatible Time-Sharing System: A

Programmer's Guide (second edition), Cambridge, M. I. T. Press,

1965

6. Feldman, Jerome A., "A Formal Semantics for Computer-Oriented

Languages", Ph. D. Thesis, Carnegie Institute of Technology, 1964

7. Floyd, Robert W., "Syntactic Analysis and Operator Precedence",

Journal of the Association for Computing Machinery, X (July 1963),

pp. 316-333

/

8. Guzman-Arenas, Adolfo, and Harold v. Mcintosh, "CONVERT", pre-

sented at the Symposium on Symbolic and Algebraic Manipulation,

March 29 - 31, 1966

9. Hardy, G. H., Orders of Infinity, London, Cambridge University

Press, 1924

10. Holt, Anatol W. , "The Semantics of the Simulation Rule", in (11)

11. Holt, Anatol W., et al, ~: -Theory: Technical Documentary Report

1, Princeton, New Jersey, Applied Data Research, 1965 (articles

paginated separately)

- ---·-~ ----~----~-------·~---. ---·~--... -. ··-----··- -~ -·,,---.- ~ --~-

110

Bibliography (continued)

12. Martin, William A., and Timothy P. Hart, "Time-Sharing LISP",

M. I. T. Artificial Inteligence Project Memorandum #6 7, 1964

(unpublished)

13. McCarthy, John, "Programs with Common Sense", Mechanisation of

Thought Processes, London, H.M. Stationery Office, 1959 pp. 77-84

14. "The Wang Algorithm for the Propositional Calculus

Programmed in LISP", M. I. T. Artificial Intelligence Project Memor­

andum #14, 1960 (unpublished)

15. Minsky, Marvin L., "Recursive Unsolvability of Post's Problem of
1Tag 1 and Other Topics in Theory of Turing Machines", Annals of

Mathematics, LXXIV (1961), pp. 437-455

16. Moses, Joel, "Symbolic Integration", M. I. T. Artificial Intelligence

Project Memorandum #97, 1966 (unpublished)

17. Quine, Willard Van Orman, From a Logical Point of View, Cambridge,

Harvard University Press, 1961

18. Mathematical Logic, Cambridge, Harvard University

Press, 1958

19. -------'' Word and Object. Cambridge, Technology Press,

1960

20. Richardson, Daniel, PhD Thesis, University of Bristol (England), 1966

21. Ross, Douglas T., and Jorge E. Roc;lriguez, 11 Theoretical Foundations

for the Computer-Aided Design System", Proceedings of the 1963 Spring

Joint Computer Conference, Baltimore, Spartan Books, 1963, pp. 305-322

Bibliography (continued)

22. Sammet, Jean E., "An Annotated, Descriptor-Based Bibliography on

the Use of Computers for Non-Numerical Mathematics", I. B. M.

Technical Report TR 00.1427, 1966

23. Shapiro, Robert M., "System Coordination and a Formal Definition of

Coupling ", in (11)

24. Shaw, J.C., "JOSS: A Designer's View of an Experimental On-Line

Computing System'', Proceedings of the 1964 Fall Joint Computer

Conference, Baltimore, Spartan Books, 1964, pp. 455-464

25. Teitelman, Warren, "FLIP: A Format List Processor". M. I. T.

Artificial Intelligence Project Memorandum #87, 1965 (unpublished)

111

26. Thomas, George B., Jr., Calculus and Analytic Geometry (third edition).

Reading, Massachusetts, Addison-Wesley, 1960

27. Tobey, R. G., "Experience with FORMAC Algorithm Design " I. B. M.

Technical Report TR 00.1413, 1966

28. Tobey, R. G., Bobrow, R. J., and S. N. Zilles, "Automatic Simplification

in FORMAC 11
, I. B. M. Technical Report TR 00. 1343, 1965

29. Wang, Hao, "Toward Mechanical Mathematics'', I. B. M. Journal of

Research and Development, IV (January 1960), pp. 2-22

30. Warshall, Stephen, "An Informal Description of ~,: -Theory", (unpub­

lished), 1966

31. Widder, David V., Advanced Calculus. Englewood Cliffs, New Jersey,

Prentice - Hall, 1947

32. Wooldridge, Dean, Jr,, "An Algebraic Simplify Program in LISP",

Stanford Artificial Intelligence Project Memorandum #11, 1963

This empty page was substih1ted for a
blank page in the original document.

CS-TR Scanning Project
Document Control Form

Report # LC.S -TR -JS

Date: /J..../ II I ~5

Each of the following should be identified by a checkmark:
Originating Department:

D Artificial lntellegence Laboratory (Al)
)&_Laboratory for Computer Science (LCS)

Document Type:

~ Technical Report (TR) 0 Technical Memo (TM)

0 Other: -----------
Document Information Number of pages: 11e(1J.s-/mt'i<F~s)

- Not to include DOD forms, printer lntstructlons, etc ... original pages only.

Originals are:

0 Single-sided or

~ Double-sided

Print type:
0 Typewriter 0 Offset Press ~ Laser Print

Intended to be printed as :

0 Single-sided or

Jx:1 Double-sided

D Ink.Jet Printer 0 Unknown D Other:.~~~~~~-

Check each if included with document:

~DOD Form

0 Spine

0 Other:

~ Funding Agent Form

D Printers Notes

Page Data:

~ CoverPage

0 Photo negatives

Photographs/Tonal Material (byP9119number): ________ _

Other '"* clw:ripliololpllge number):

Description : Page Number:

°XmAG£ ;tJ11f ({t ~I 18''j L\rv~TffO ctBLANk flJr;;;s) j i l -'Vi) /";).1
7

UbM:8Lk_,3 I w~i tw~6LJ<, ,5~71, ~N'*8L-~<t]-Y'tJ
Y,N\.8L.~ IOj-l/IJL\iN~GLk..

Scanning Agent Signoff:

Date Received: i'-1-1.L/'JL Date Scanned: l~1J:l1J.r... Date Returned: ld.-1~ I JS

Scanning Agent Signature: ~. f Jv, <aaJi.,

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D
(Security claasilication ol title, body of abetract and indexing annotation must be entered when the overall report is classified)

I. ORIGINATING ACTIVITY (Corporate author) 2a. REPORT SECURITY CLASSIFICATION

Massachusetts Institute of Technology UNCLASSIFIED

Project MAC 2b. GRo'lfone

3. REPORT TITLE

An On-Line System for Algebraic Manipulation

.. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Doctoral Thesis, Applied Mathematics, Harvard University, July 1966 .. AUTHOR(SJ (Last name, first name, initial)

Fenichel, Robert R.

.. REPORT DATE 7a. TOTAL NO. OF PAGES l'b NO. OF REFS

December 1966 120 32 ... CONTRACT OR GRANT NO ORIGINATOR'S REPORT NUMBERtS)

Office of Naval Research, Nonr-4102 (1) MAC-TR-35 (THESIS) b. PROJECT NO.

NR 048-189 9b. OTHER REPORT NO(S) (Any other numbers thet may be
c. RR 003-09-01 assigned this report)

d.

10. AVAILABILITY I LIMITATION NOTICES

Distribution of this document is unlimited

II. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency
None 3D-200 Pentagon

Washington, D. c. 20301
13. ABSTRACT FAMOUS is an on-line system for the manipulation of linguistic forms.
Although these forms can have quite arbitrary interpretations, the standard interpret-
at ion is that they are algebraic expressions. FAMOUS allows its "algebraic expressions"
to include arbitrary functions which may or may not be defined. In this way, regular
non-algebraic constructions may be concealed as arguments of ad hoc functions. Rules of
local change are the heart of FAMOUS, and supplied by the user. Using these rules,
FAMOUS looks at an algebraic manipulation as a series of local changes. The centrality
of proximity in FAMOUS was orginally prompted by 'I:!- theory, which might be called the
study of proximity.

The presentation in Chapter II is complete, but it has rather a cookbook tone.
Chapter III is a more reflective attempt to define the power and nature of the system.
Algebraic "simplification" has been a benchmark of algebraic manipulators, and it is
discussed in Chapter IV. A more novel application, that of limit problems, is discussed
in Chapter V. Finally, Chapter VI consists of miscellaneous remarks about possible and
impossible lines of further work.

... KEY WORDS

Algebraic manipulation On-line computer systems Real-time computer systems
Machine-aided cognition On-line manipulators Time-sharing
Multiple-access computers Time- shared computer systemi

DD (M.l.T.) 1473 FORM
1 JAN 84 UNCLASSIFIED

Security Classification

