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ABSTRACT

The design of airplanes, ships, automobiles, and so-called "'sculptured
parts'' involves the design, delincation, and mathematical description of
bounding surfaces. A method is described which makes possible the description
of free-form doubly curved surfaces of a very general kind, An extension of

these ideas to hyper-surfaces in higher dimensional spaces is also indicated.

This surface technique has been specifically devised for use in the
Computer-Aided Design Project at M.I.T., and has already been successfully

implemented here and elsewhere,
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SECTION 1

INTRODUCTION

The purpose of this work is to present the mathematics of a certain class
of surfaces which are suitable for the design and description of arbitrary shapes.
In the past, the subject of surface mathematics has been investigated, in ana-
lytical geometry and in differential geometry, from the standpoint of the analysis
of geometric properties of surfaces that already exist, but very little literature
has been produced on the subject of the creation of such surfaces. As a typical
example, the design of the hull of a racing yacht requires the description of a
surface of considerable subtlety and complexity, and the process is traditionally
carried out by purely graphical procedures which are exceedingly laborious,
since they entail a large amount of trial and error iteration in order to assure
that the surface is completely described, and is smooth and "fair." The design
of automobile bodies and airplane fuselages is similarly tedious and time con-
suming, although mathematical techniques have been applied to aircraft design

for a number of years.

A few papers have been written on the subject of fitting existing ship hull
shapes by means of various types of polynominals, with the two-fold purpose
of smoothing and interpolating the information contained in preliminary graphi-
cally derived hull lines, and of replacing this graphical information with for-
mulas and equations that will permit further analytical techniques to be applied,
such as structural analysis and the discipline of fluid mechanics. But these
mathematical techniques are applicable only when the surface has already been
designed to some degree of completeness, so as to furnish enough information

to make the mathematics work,

The mathematical structure of the surfaces to be described in the follow-
ing discussion has been devised to implement the surface design process itself,
so as to make it, from the designer's standpoint, extremely natural and easy.
The designer himself need not know or care about these internal mathematical
details, any more than he needs to know the specific composition of the pencils

with which he writes or the mechanics of the splines with which he now draws
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curves. The mathematics is relatively simple, but it is nevertheless too com-

plicated for hand calculation, and is designed for use on a computer.

In the design of a three-dimensional object, whether it be an airplane fuse-
lage, an automobile body, a ship's hull, or a single sculptured part of a machine,
the desigoer requires a system which will permit him to define a surface with a
minimum of input information, and then to modify this surface, if he feels so
inclined, either by changing the original input, or by adding more design con-
straints to the system.

As a specific example, suppose a designer wishes to design an airplane
fuselage, using the SKETCHPAD system. 12,3 He would like to be able to draw
the outline of the airplane as seen from the side, the outline of the airplane as
seen from above, and some arbitrarily selected section midships. With these
three arbitrary curves designed, he would like to have the computer automati-
cally and immediately generate a "fair" surface and display this surface to him
in sufficient detail so that he could make appropriate judgments. If the surface
so generated does not satisfy him, he would perhaps like to modify his original
design curves, or else he might perhaps like to add other new sections and have
the computer automatically and instantly re-fair the surface to fit this additional

information.

The following sections describe a very simple, flexible and general class
of surfaces which are able to fulfill these requirements. It will be shown that
a single algorithmic structure and essentially only two symbol types serve to

provide the following features:

1. Smooth, fair surfaces can be defined by 2 minimum number of curves,
and then adjacent surfaces can be designed to match position, slope,
curvature, and indeed any desired order of derivative along the ad-
joining boundaries.

2. The design curves that define the surface can be of any kind whatso-
ever, including circles, second-degree curves, polynominals, trans-
cendentals, and also sketched curves with no known mathematical
formula whatsoever.

3. Some classic surfaces are not necessarily members of the family
of surfaces to be described; nevertheless, these classic surfaces
can be matched along their boundaries to any order of derivative
desired.
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4. The arithmetic involved in constructing these surfaces is extremely
simple and, we have found, easyto implement on a digital computer.
It also lends itself to special-purpose computing hardware, such as
digital or analog differential analyseras. In addition, by virtue of the
form of the algorithm, the parameters that define the shapes are ex-
tremely easy to compute. (In some cases they may require no com-
putation at all.)

We intend to develop a method to construct complex arbitrary surfaces by
piecing tegether surface "patches." Each such patch will be defined by four
boundary curves, in principle, although it is harmless for one of the boundary
curves to be degenerate, and to appear as a point instead of a curve segment.
In the design of a surface, it is intended that the designer begin with a single
surface patch, or a very small number of patches, and then subdivide these
regions with additional design curves defining boundaries of smaller patches
only when the internal surface needs modification. This is somewhat at variance
with the customary procedure for mathematical curve fitting and surface fitting
of existing curves and surfaces, in which a relatively large number of surface
points already defined by some other procedure are used to obtain mathematical
expressions for a surface that best fits them. Instead, the system to be de-
scribed is intended to be used by the designer at the outset, in the process of
designing the surface, rather than later on as a means for making it mathe-

matical.

This is not to say that the surface-patch technique cannot be used to for-
mulate patch-wise mathematical expressions for existing surfaces, but rather
to indicate that the primary purpose of this surface technique is to facilitate
the initial design process itself.

When the design process is completed, the surface will be completely
mathematically defined, since this definition occurs automatically and concur-

rently with design.

Ordinarily a ship's hull or an airplane fuselage is described by certain
important curves such as, in the case of the hull, a keel curve, a midships
section, and a curve representing the sheer or deck line; these curves are
sufficient to determine a surface, since they form the boundaries of a surface
patch. However, ordinarily this primary surface will not have certain desired
characteristics, and it will have to be modified by introducing additional
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information, such as for instance one or two other section curves. When these
additional curves are introduced, the surface algorithm permits the computer,

to "re-fair'" the original hull form to contain these curves.

Similarly, an airplane fuselage can be designed by drawing a profile curve,
a maximum half-breadth curve, and a mid-section of the fuselage. Again these
curves suffice to define a primary surface, which in most cases will require
modification by the addition of a few more curves to make more explicit the
designer's wishes, As these additional curves are introduced, the original
surface will be sub-divided into patches, but the algorithm will automatically
insure continuity of surface slope and curvature (if desired) and will incorporate
these additional curves into the surface automatically. This should make initial
surface design virtually painless, and is intended to remove the tedious process
of surface fairing as it is now practiced in naval architecmré. Airplane fuse-
lages are usually somewhat simpler shapes than, say, yacht hulls, and for a
number of years second-degree curves have been successfully used for fuselage
design; on the other hand, naval architects have steadily resisted the use of such
methods in their work, since the complexity of yacht shapes makes it necessary
to pay attention to the irksome details of the geometry involved, and second-

degree curves prove to be cumbersome in such applications.

The system that is described in this report is intended to furnish the flexi-
bility that second-degree curve techniques lack, and to remove almost entirely
the need for the designer to be an analytical geometer. With this system imple-
mented on a computer, there is reason to believe that the computer can take
over all of the geometrical and mathematical burden of the design process, and
leave the user free to be a sculptor assisted by an exquisitely skillful mechan-

ical slave.

Ultimately, when a graphical input-output hardware for a computer is
available in the engineering design office, these methods will permit designers
to delineate complex shapes with great ease, by simply drawing the salient
curves that define and describe them. Already experiments along these lines
are in progress in a few isolated laboratories both in universities and in
industry. Very soon the two severe handicaps that have inhibited the wider

use of such graphical devices will be removed. These inhibiting factors have
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been high cost for the terminal hardware and small size of the working area.
Rapid strides are being made on both these fronts, and within a few vears it will

be possible not only to draw on a virtually unlimited drawing surface, but to

draw objects directly in three-dimensional space, and to view thesc constructed
0

bjects as one would view an actual physical thing.
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SECTION I

NOTATION

We shall in what follows relate the x, y, and z coordinates of points on a
surface to two independent variables u and w, so that we could write

x=f@ w
y =g, w
z = hu, w).

If the functions f, g and h were specified, then for a pair of values of u and w,
a point in space would be defined. If we held one of the independent variables
fixed, say w, then by allowing u to vary, the point in space would trace out a
curve. If subsequently we set w to a new fixed value and again allowed u to
vary, we would trace out another curve, and so on. Clearly by stepping the
values of w by small increments and allowing u to vary after each such step,
we could produce a family of space curves that would lie on the surface and
deﬁne_ it. All that is needed is some convenient and systematic way of arriving

at the functions f, g, and h.

It will turn out that the form of all of these three functions is the same;
only certain internal numerical values are different. In vector notation we can
write

[x y z} = [f u,w) g (u,w) h(u,w)]

- —-Since- V= fx*yﬁz}*ira*suitable conventional abbreviation for the vector
on the left, we introduce a similar abbreviation for the right hand side:

(uw) = [f (u,w) g (u,w) h (u,w)]

Here, in the abbreviated symbol on the left, we shall omit the comma between
the two letters. Later on, when no ambiguity can arise, we shall omit the
parentheses as well, and write simply uw to stand for the vector. Itis to be
remembered that uw does not stand for the ordinary product of the two quan-
tities, but is merely a bi-literal symbol standing for a vector whose components
are functions of the two variables.
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We plan to build up surfaces by adjoining surface ""patches,'" in an analogy
of the piecewise fitting of complicated curves by curve segments suitably joined
together.  Accordingly, we shall at the beginning focus our attention on one such
surface patch. To simplify arithmetic, we shall stipulate that the independent
variables, or parameters, u and w can take on only values between 0 and 1.
Then a surface patch can be considered to be a surface segment bounded by

four space curves, (0 w), (1 w), (u 0) and (u 1).

11
01 ul

lw
Oow

uf 10
" 00

Here, typically, the symbol (Ow) stands for the vector describing the x, y, and
z coordinates of points along the curve generated by allowing w to vary conti-

nuously from 0 to 1, while u is held fixed and equal to 0.

We shall introduce two scalar functions, FO and F1 each a function of a
single variable, These will be referred to as "blending functions" for reasons

that will become clear.

In order to compress the surface equation, and the proofs that we wish to
demonstrate, we shall use a kind of indicial notation; we introduce the indices i
and j, which can assume only the values 0 and 1, and we invoke the customary
summation convention for terms with repeated indices. This convention in our
case 8imply means that when an index is repeated in a term, we write out all
the possible terms that the actual indicial values generate, and then add them.




SECTION Il
THE SURFACE EQUATION

With these conventions and notational peculiarities in mind, we write

(uw) = (W) F, (u) + @)F (W) - @A) F,(WF j(W)-

i
(Typically, the first term on the right expands as follows:
(iW)Fi(“) = (OW)FO(u) + AW)F, ().

Thus the complete expansion would consist of eight terms, if carried out.) We
shall proceed to demonstrate that this surface equation represents a surface

that contains the four boundary curves, and is thus defined by them.

We must make a stipulation, a weak one, on the nature of the blending

functions F_ and Flz

0
F,0) =1 F (1) =0
F =1 F (0 =0

A further stipulation is that F 0 and F1 be continuous and monotonic over the

interval.

Now set u = a, where a can only be either 0 or 1. Then, substituting in

the surface equation,
(aw) = (iw)Fi(a) + (3j)Fj(W) - (ij)Fl(a)Fj(w).
Consider Fi(a) which occurs twice in the equation, By the stipulation, ifi =a,
Fi(a) =1,
Otherwise, if i #a, Fi(a) =0,

Hence all terms in the expansion that contain i # a vanish; we can set i = a and

what remains is
(aw) = (aW)Fa(a) + iai)F j(W) = (aj)Fa(a)Fj(w)
= (aw) + @)F;(W) - @)F;(W)

= (aw).
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This shows that for a = 0 or 1, and hence (aw) = (0w) or (1w), the surface equa-
tion reduces to an identity. This implies that the surface contains its boundaries.
An entirely parallel argument would show that the equation also reduces to an
identity for the other two boundaries (u0) and (ul).

Provided a pair of functions FO and Fl are chosen once and for all that
satisfy the stipulations, the surface equation may be constructed immediately
and uniquely for any set of boundary curves (u0) (ul) (Ow) and (lw). It is to be
observed that no .restrictlons have been placed on the form of the boundary
curves; there is perhaps the restriction that they form a closed boundary, at
least at the corners (ij) = (00), (01), (10), and (11) otherwise there will be mul-
tiple values within the surface segment; similarly they should be continuous
functions, but apart from these rather obvious restrictions, they can be of any
shape whatever, including curves that can only be represented by tables of

values.

We can gain intuitive insight into the nature of such a surface if we look

at one of the terms, say (uj)Fj w).
We have the expansion
(uj)Fj(W) = (WO)F (W) + (u)F, (w).

This represents a weighted average of the quantities (u0) and (ul). When
w=0, FO(O) =1 and FI(O) = (), and the expression becomes simply (u0). As w
increases, the weight of Fo(w) decreases, while that of Fl(w) increases, so that
the surface partakes of the nature of both boundary curves. As w approaches
the value 1, the influence of (u0) on the shape of the surface gradually disappears,
while the influence of (ul) gradually becomes dominant. Finally, atw =1, the
curve (ul) represents the shape of the surface. We can say that the surface is
generated by a gradual transition from (u0) to (ul), and that these two curve
shapes are '"blended" together by virtue of the blending functions F 0 and Fl'
This discussion is somewhat oversimplified, since we have omitted the term
(iw)Fj (u) and it too plays a part in determining the shape of the internal surface,
as does of course the term involving the corner coordinates, (ij)l“i (\1)Fj (w).



THE SURFACE EQUATION 1

The entire surface equation is seen to be symmetric in u and w, and by

virtue of this and a secondary symmetry in the functions FO and F., we can

1 ,
abbreviate proofs about the behavior of the surface along all boundaries by

exhibiting a typical proof for any one boundary.
3.1 BOUNDARY SLOPE CONTINUITY

It is our aim to design and delineate complicated surfaces by adjoining
surface patches, in a piecewise fashion, Consider two such patches A and B,

with a common boundary. For patch A the boundary is (1w); for patch B it is

(Ow), and the vectors of coordinates are equal,
A (1w) = B (0w),

Then the two patches will be continuous across their common boundary. They
will however in general be discontinuous in slope across the boundary, and we
wish to investigate this and make some amendments that will correct this dis-

continuity of slope,

We take the partial derivative with respect to u: Qur symbolism for this
partial derivative is (uw)u = %_1‘_‘:3!)_ , and when we substitute, say, u = 0, we can
write (Ow)u to mean the value of the partial derivative so obtained. Then

(W), = (W) F () + (i) Fy(w) - () F] (F, ().

i

Now substitute u =a =0 or 1, as before,

(@w), = (iw) F; @) + @) F j(W) - i) F(a) Fj(W)-
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If we now place additional constraints on the blending functions, that their first

derivatives

Fi(a) =0 (a = either O.or 1)
we obtain the result

(8w), = @), F,),
all other terms vanighing,

This implies, for example, that when a =0,

(Ow), = (00) Fo(w) + (1), F, (W),

or, the derivative anywhere along the boundary in the u direction (across the

boundary) depends only upon the derivatives at the end-points of the boundary;
it is entirely independent of the shapes of the four boundary curves, including

{

the boundary (0w) itself, B
Thus for the two patches A and B, if
AQ10) = B(00),
and
AL =B(OL)

i.e., if the boundary curves are continuous in slope in the u direction at the ends

of the contiguous boundary between patches, we are guaranteed to have

A(lw)u = B(Ow)u everywhere along the boundary regardless of the
shapes of the boundary curves of A and B. This is a remarkably powerful and
useful property, achieved at the slight expense of extending the stipulations on
the Fi‘

Similarly, the second derivative with respect to u is
= {3 1] - i3 11}
(‘1"")uu (iw) F i (u) + (“i)uqu(W) 113)] Fi (u)Fj(W)
and if we further stipulate that Fi' (a) = 0 we obtain

@%),, = @), Fw).
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This establishes second derivative (or curvature) continuity as an auto-
matic and inherent property of adjacent patches, provided their boundary curves
have this kind of continuify é.t/ the end-points of the boundary. It is easy to see
that we may escalate in thié way to any level of derivative continuity we wish
along contiguous boundaries.

3.2 SLOPE CORRECTION SURFACE

The surface equation already described is very general, in the sense that
it can contain virtually any boundary curve we wish, and it has certain benign
properties df derivative matching along boundaries; nevertheless it is not a
universal formula for all surfaces, and there are many that do not belong to its
family, We have already seen that surfaces generated by the surface equation
have a definite intrinsic slope along boundaries, whose variation is rigidly
prescribed by a simple formula, Obviously surfaces exist whose boundary
slopes do not match this intrinsic slope, except at the end-points of boundaries.
Nevertheless, we wish to be able to patch together such other surfaces with our
special surfaces, so as to have slope continuity (or continuity of any level of

derivative).

To do so, we introduce a new surface equation, describing a slope-correc-
tion surface, which when added to the first surface equation has the property of
leaving the boundaries unchanged, but causing the derivatives across boundaries

to vary in any arbitrary way we wish, as we move along the boundary.
The equation resembles the first form very strongly. It is

(uw) = (@w), G, w) + (uj)ij(W) - (ij)uwGi(“)Gj(W)-

Here, typically, (iw)‘-l is a function of w only, and describes the arbitrary
variation of the derivative with respect to u as w varies, along the curve (iw),
and similarly for the other boundaries, The vector (ij)uw represents the cross

derivatives of the four corners, Typically,

2
L 9 (uw) -
(Oo)uw dudw u - 0
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The functions GO and G1 are again blending functions or weighting func-
tions, but they have properties different from the functions FO and Fl' We
stipulate

Gyt =G,(0) =Gy(1) =G, (1) =0
] = ] =
GO(O) 1 Gl(l) 1
1 = ' =
Go(l) 0 GI(O) 0
or in the indicial notation used earlier,

Gl(a)=0, aandi =0or 1.
Gi(a)=0, a #1i,
Gi'(a) =1, a=1i,

We need to ensure that the vectors describing the boundaries vanish
identically, and that the vectors describing the slope variation along boundaries
are indeed given by the equation. The proof proceeds along precisely the same

lines we used before. First, substitute u =a. The equation becomes

(aw) = (iw), G,(8) + (8)) G,(w) - i})

i uwG:l(a)G (w).

)
= (@), 6.

Consider (aj)w. We wish to have the correction surface leave the original
boundary vectors unchanged, and hence the boundary vectors of the correction

surface must vanish; ie,
iwm) =0
(wj) =0

Then the derivatives of these boundaries must also vanish; in particular,
(iw)w =0 and then (ij)W =0, whenw =j, Hence (:«1j)W =0,

Thus (aw) = 0 indicates the desired behavior of the correction surface along a

boundary. Similarly (ua) =0,



THE SURFACE EQUATION 15

To examine the slope variation along a boundary, differentiate the
equation with respect to u:

(aw), = W) G} @) + @), Gy(¥)

- (), G} WG

j(W) .

Now substitute u =a
(aW), = (W), G (@) + (i), Gy(¥) - @), G} (@Gy(w)

As before, Gj"(a) =11if and only if 2 =1,

8o we get

(@w), = @w), G, (@) *+ (@), G,(W) - (@), G, @)G,(w)

= (@w), + @) W) - (@), G,)

= (aw), .

This demonstrates that the surface has the slope variation along the
boundary as required. To make use of this slope correction surface, we must
first determine what the intrinsic slope of the surface to be corrected is, and
then we must subtract this slope from the desired boundary slope, to yield the

correction slopes that enter into the equation, Thus if (Ow)u is the desired
slope, and

1 (Ow)u is the intrinsic slope, then
C (Ovi)u will be the correction slope,
C (OW)u = (OW)u -1 (OW)u.
The correction slopes C (iw)u and C (uj)w are the four functions that enter

into the slope correction surface, . The desired surface is obtained by adding

the correction surface to the first surface:
(uw) =1 (uw) + C (uw)

where we use the symbol I (uw) to represent the surface whose boundary slope

is being modified,



16 SECTION I

3.3 HIGHER-ORDER CORRECTION SURFACES

Analogous forms may be obtained for correction of higher derivatives along

boundaries. For second derivative correction, the surface equation is

(ww) = (dw) B @)+ @ HW) - ), @H ().

uuww
In this equation, the blending functions l-I1 have the stipulations that, for a =0
or 1 as before,
Hi(a) =0
1
I-Ii (ay=0
"
Hi (@) =0,i#a
13
H () =1,1=a,
With these constraints on the Hi’ it is easy to arrange matters so that this
second-order correction surface is zero everywhere on the boundary, has zero
slopes across boundaries, and has second derivatives across boundaries speci-
fied by (iw)u“ and (uj)ww whatever these functions may be. The addition of this

surface vector to a given surface vector will then provide a means for boundary

second-derivative correction without disturbing either the boundary shapes or
boundary slopes.

Although we have already carried out a similar proof for slope correction,

it might be well to exhibit once again the course of the argument.

First, to show that the boundary vectors are zero, substitute u = a:
(@=0o0r1l.)
(@W) = (W) B (@) + (@), JH W) - @), o H @H (W)
= (@) (W)
The term (aj)ww refers to the second derivative in the w sense at each of the

four corners, such as, typically, (00). As in the case of slope correction, we

must have

{iw) = 0 along boundaries.
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Then (iw)ww =0, (ij)Ww = 0, and in particular (zlj)ww =0, so that the
equation satisfies the boundary condition,
For boundary slope vectors, differentiate with respect to u:
] 1]
(“W)u = (i"")uuﬂi (w) + (“j)wwuﬂj(w) - (ij)uuwwHi (u)Hj(w)
Setu =a;
(W), = @), L H W
We wish to have the slope vectors vanish along boundaries, so typically
(lw)u =0 for all w.

But then (iw)uw =0 and (lw)“ww = 0 by taking derivatives. The order of

differentiation is immaterial, so
{iw) = (iw) , and finally we can conclude that
uww wwu

@j) = 0; again the right and left hand sides of the equation are

in agreement,
Finally, we differentiate again with respect to u:
ty e

(uw)un = (iW)uul'I1 () + (uj)wwuuﬂj(w) - (ii)wmmﬂi (u)Hj(W)-

Set u = a; only terms in which a2 =i remain:
1
(W')mu = (aw)uuHa”(a) + (aJ)wwuqu(W) - (*U)WW‘NHa (a)Hj(w)
= (aw)uu

Again we have demonstrated an identity, The escalation to any level of
boundary derivative correction vector is obvious.

3.4 MATRIX FORM
The surface equation

(W) = (W) F(0) + @)F ®) - GHFWF W)
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may be expanded directly into matrices, to yield:

uw) = [uo ul] Fow + [Fou Flu] ow

F lw 1w
- [Fou Flu] o0 o1] [row
10 1] |Fw

In this we have treated the indicial form term by term in a straight-
forward way., We shall in what follows omit parentheses, since no misunder-
standing can arise. Thus typically Fou is written in place of F 0(u) as a matter
of convenience and economy. Similarly, typically 00 is written instead of (00);
the reader should be reminded that this is merely a compact way of exhibiting
the x, y, z coordinates at.point (00).

It means;
00 = [x(OO), y(00), z(OO)] when written out completely.

The three vector (matrix) products are equivalent to the following three products:

[1 Fou Flu] 0 uf ul 1 ]
0 0 0 Fow

0 0 0 Flw‘

-

+ [1 Fou Flu] 0 0 0 1
ow 0 0 Fow
1w 0 0 Flw

+ [1 FOu Flu] 0 0 0 1
0 -00 -01 Fow
0 -10 -11 Flw

and in this form we can perform the addition, obtaining

u Flu] 0 ul ul 1
ow -00 -01 F w

{uw) = [1 FO
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It is slightly more convenient to rewrite this in the equivalent form

(uw) = - [-1 Fou Flu] 0 uo ul -1
ow 00 01 Fow
1w 10 11 Flw

80 as to avoid the awkward minus signs in the 3 x 3 matrix.

Two facts should be noted. The leading row vector in front of the matrix
and the trailing column vector following the matrix are transposes of one
another, but with different arguments; the matrix represents the boundary con-
ditions of a patch, The partition [00 01} is redundant, since its elements

10 11

must agree with uj and iw for u and w equal to O or 1.

We have already suggested that we can maintain slope continuity across
boundaries by suitable stipulations on F,, and we have also already suggested
that when desired we can adjust slopes across boundaries by a second additive
vector with suitable stipulations on its Gi' We shall now investigate the com-
bined form of the surface equation. To do so we shall prefix a symbol to the
vector uw to indicate whether we are talking about the first surface equation,
or the correction surface equation, and we shall omit the prefix symbol when

we are talking about the combined form, Thus

uw = suw + cuw, with
suw = the primary surface
cuw = the correction surface

uw = the combination.

Accordingly, using this notational convention, we will take derivatives, with
respect to u, of the surface equation suw in order to determine its slope vector

in the u direction,



20

1 1
suwu = - [0 F0 u ]?1 u] 0 sul sul
s0w s00 s01

slw s10 sll|

- [—1 Fu Flu] 0 suou sulu

0
0 0 0
0 0 0
We substitute u = 0, and obtain
sow_= [soou 3010] Fow} .
Flw

SECTION I

-1
F w
Flw

-1
Fw
F.w

Now consider, for example, s00u and the desired oou. The symbol sOOu
refers to the slope vector at a corner; we have already seen that at corners the
correction surface c00u =0, and 80 oou = soou. This is bourne out intuitively

by the reflection that at (ij) corners, the two crossing boundary curves com-

pletely define the slopes there; since this is 80, no correction of slope need or

can be applied.
Hence we should write

sow_ = [oou 01“] Fow)
Flw

-

By analogy and symmetry we can write the remaining three statements;

slw_= [mu 11u] rrow'
LF1¥ |
su0 = [Fou Flu] 'oow'
10, |

w
11w

sul_ = [Fou Flu] [o01

L
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In order to obtain a desired slope vector along any of the boundaries, we add

the correction surface, whose equation is

CUW = - [—1 Gou Glu] 0 cuoW culw .-1
cOw c00 c01 G.w

u uw uw 0
clw cl0 cll G,w

u uw uw 1

As we have already remarked, the desired surface uw is the sum of the vectors

suw and cuw, Hence the correction slope vector, such as, typically, cqu, is

cuOw = uow - [Fou Flu] [oow]
10
W.

This is an entry in the correction surface matrix.

Now we introduce a new fact: the corner cross derivatives of the primary
surface equation are all zero. To show this, differentiate the indicial expres-
sion first with respect to u, then with respect to w, and finally setu =a, w=b,

where a and b are as usual either 0 or 1, We have

uw, = (W)F] (@) + (u]) Fy(#) - ()F] @F,w), and
uw o = O F] @+ @), Fl (W) - ADF] (WF] ().

Evidently this expression vanishes for (uw) = (a b). This shows that the corner
"twists", or cross derivatives, of the original surface all vanish; itis a
peculiarity of the first fundamental surface equation.

Hence we can assert that

clj =1ij ; This says that the desired twists at corners are
uw

uw
identical with the correction surface twists, since the fundaments surface has
no twist, We shall use this result to replace the partition coouw c01uw
clo cll
uw uw

with

00 01

uw uw
10 11

uw uw
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We can rewrite the expression for cuo  as follows:
w

cuc = [1 —Fou —Flu} uOW
00
w
10
W]
and

cul = [l —Fou -F u] —ul

and of course, perhaps trivially,

0= {I—Fu Ful o
0

Each of these matric products represents an clement of the top row of the

correction surface matrix,

Since the row matrix {l —Fou —Flu] is common to these three products,

it can be factored out and introduced into the matrix [—l Gou Glu} to yield

[- {1 -F U —Flu} G u Glu}

which is the same as the vector

[-1 Fou Fu G Glu}

We replace the elements of the top row of the correction surface matrix

by the three matrices 0 ‘ruO and ul
W w
1
0 100 01
W | "Tw
0 10 11
w W



THE SURFACE EQUATION

8]
e

This causes it to become a 5 x 3 matrix, and we now have the intermediate

result,
- 1T,
cuw = - [—1 Fou Flu (JOu Glu} 0 qu ulw !“ 1
|
0 00 01 L Gw |
w W ] 0 ;
0 10 11 LG wi
w w Pl |
o
cOw 00 01
u uw uw
clw 10 11
U uw uw |

By similar procedures, we can write for the elements of the first column

of the correction surface matrix,

cOw = [Ow 00 01 } 1
u u u u
~F0w
A
clw = [1w 10 11 | 1
u u u uJ
—Fow
>_F1W

and again trivially, perhaps,

o:[ooo} 11

|

-F w

: J

- w
Fl

When we factor out the common column matrix as before, and replace each

entry of the column matrix ( o ] by the above expressions,
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we obtain the complete matric expression for the correction surface:

_ T A
cuw = - [-1 Fu Fu Gou Glu] 0 oo [uo |[ul -1
0 o |o oo |o1 Fw
0 o | o |11 Fw
ow | 00 o1 [ 00 | o1 | | Gyw
1w 10 | 11 10 11 G.w
L7 u ul Tul Tuw uw | | 1]

If now we border the original surface equation matrix, it can be written,

[ I [ W i - T
suw [1 Fou Fu G Glu] 0 Juw | wr} olo 1
ow |oo| o1} oo Fyw
iw |10 121 ofo Fw
0 0 ol ojo Gyw
0 0 ol oo G,w

In this bordering process, the value of the matric product is unchanged.

Since the pre~ and post-multiplicative matrices in this equation are the
same as those of the correction surface equation, we can add the two 5 x 5
matrices and pre- and post-multiply by the two vectors. We shall perform, in
fact,

uw = suw + cuw, and obtain

r b r h
= | 0 1 -1
uw [ 1 Fou Flu Gou Glu] 0 uo ul u - u -
ow 00 01 00w 01W Fow
1w 10 11 10w 11w 'Flw
ow 00 01 00 01 G . w
u u u uw uw 0
.lwu 10u 11u muw l,luw'_ i lej

This is a general expression for a slope~-matching, slope continuous surface patch

with entirely arbitrary boundaries and entirely arbitrary slopes across these
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boundaries, There are no stipulations whatever on the nature of the boundary
slope function. The stipulation on the F and G functions have already been dis-

cussed,

Now that we have constructively arrived at a general expression for sur-
faces that have a prescribed boundary vector and a prescribed boundary slope
vector, it might be interesting to apply a proof to a conjectured higher order
surface equation in which not only boundaries, boundary slopes, but also

. boundary second derivatives are vector quantities under control.

We postulate, therefore, that by analogy the surface equation is

uw = - [-1 Fju Fu Gu Gu Hy Hu]

1 0 1
" q r -
0 uo ul ug ul ul ul -1
w w ww ww
Oow 00 01 00 01 00 01 F.w
w w uww wwW 0
1w 10 11 10w 11w 10ww 11WW Flw
Xt ow 00 01 00 01 00 01 G.w
u u u uw uw uww uww 0
1w 10 11 10 11 10 11 G.w
u u u uw uw uww uww 1
ow 00 01 00 01|00 01 H.w
uu uu uu uuw uuw uuww Uuww (]
1w 10 11 10 11 10 11 H,w
uu uu uu uuw auw uuww uuww | L 1

It represents a surface patch whose vectors of coordinates, slope, and curva-
ture as well, are everywhere arbitrary along its boundaries. The first column
and first row of the 7 x 7 matrix represent these boundary conditions; the re-
mainder of the matrix is redundant, since the quantities this partition contains

must all come from the column and row by differentiation,

We can test this equation by seeing whether it contains a boundary curve,
To this end, set u = 0, so that we check whether it contains the boundary (0w),
We obtain, invoking the stipulations on the F, G, and H functions,
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ow = - [_1 1 0 0 0 0 o]

(o 00 01 00 01 00 01 (-1 ]

w Ay WwW WW
ow 00 01 00 01 00 01 F w [
W w WW WW 0 ‘
F owi
N\ _ o GOW ‘
I le \
—_— —_ U — — P P HOW |
- | leJ

In the boundary matrix we have omitted irrelevant terms, because of the
zero's in the pre-multiplying vector. We obtain, by performing the multipli-

cation,

ow=- [ow 0 0 0 0o 0 o 1

= 0w, which is the hoped-for identity.

We can next try to see whether the equation also conforms to the boundary
second derivative conditions. It will be more convenient in what follows to

introduce some abbreviated notation,
Set
{fu] - {-1 Fu Fu Gu Gu Hyu Hlu]

and a similar expression for [fw} .
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Set the 7 x 7 boundary comdition matrix equal to [B] .
With these abbreviations, the surface equation is
oo o] ) [ T
We differentiate with respect to u:
w== ([ [3 + (8] [3)) [] T
and again:

o m= ([ (3 w2 [0 [2) « (8] [m))m] T

We wish to investigate the right hand side of this equation for u =0, that is,
for uw o= Owu“. The blending function vector and its derivatives become

2

0
[fo]:[-1100000

[T
e o
o o
o o
- o
o o
o e
2

As for the first and second partial derivatives of the [B] matrix, all
elements of [B ] and [B ] vanish except for those in the top row,
u uu

Then

[f"o] [B] = [Owuu Oouu Oluu Oouuw OIU.UW oouuww OllluWW]

2 [ro] [B] =[ the nu vector]

[fO] [Buu] ={ 0 _Oouu i % huw uuww _Oquww]

The sum of these vectors is evidently
Finally,

= Owuu , as expected,
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We have shown that the extended surface equation satisfies the second
derivative boundary conditions. In a similar way it can be shown to satisfy the
first derivative boundary conditions, but this was skipped in favor of the proof
for the higher derivative, since the procedure exhibits a few interesting points,

By analogy we could construct matrix products to represent surfaces
which satisfy even higher derivative conditions across boundaries.

3.5 BOUNDARY CURVES

It is often convenient to use particular boundary curve functions defined
by the curve end-points and end-point tangent vectors, We can use the blending
functions themselves to define such curves. For example, the u0 boundary

curve can be described by the equation

uo = [Fou Flu Gou Glu] 00

where the column vector contains the end-point information, We observe that

the row vector becomes [1 0o 0 0] ‘when u = 0; it becomes [0 10 0] ,

when u =1, Again, if we take derivatives of this row vector with respect tou

we obtain [F v F.'u Go'u G 'u] and this becomes [0 0 1 0] foru=0,
0 1 1

and it becomes [0 0 0 1] foru=1,

With this behavior of the row vector, it is easy to see that the equation

does indeed represent a curve satisfying the end-point conditions,

The matrix form of the surface equation has been shown to be

— [_1 F,u Fu G Glu] 0 w0 ur wo wu |[-1

Ow 00 01 00 01 Fw
w w

ow 00 01 00 01 G . w
u u '3 uw uw 0

iw 10 11 10 11 G,w
L u u u uw uw 1
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Now when. in computing uw, we perform the matrix multiplication from

the lett, we have for the second entumn

{-1 Fou Fu Gu Glu} ?ru()

1 0
200
10
oo |
s
i 10 !
Lo
= -ul - {F u I'u Gu G u} r()0 W seulh - ul =0,
0 1 0 1] |
10 |
00
u\
10 -
u,,

L
Now if similarly ul, u0 and ul are functions of the same kind, their
w w
corresponding column products vanish just as in the case of u0., Accordingly,

the resulting product of the three matrices has the form

aw -[p 0o 0 o -1 = b,
] ‘

Gyw

I
[ G w!
L7172
where P is the product of the row vector and the first column of the matrix, or

P - [-1 F()u 1"111 G[)u Glu} w ]‘
Oow
1w
0w

u
1w

u

= 9 ‘J ( »
{Fou Flu (Ou GluJ W

Flw
Ow

1w
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If again the elements of the column vector, 0w, 1w, Owu and lw‘-l are
likewise functions described as outlined, we can write typically

Ow = (00 01 00 01 ] I'Fw‘
w w

0
Flw
Gow
[Gy¥
For the complete column vector we have
fow | = [oo 01 00 o, | [Fw]
w w 0
Iw 10 11 10 11 F.w
w w 1
ow 00 01 00 01 G.w
u u u uw uw 0
_lwu_ _10u llu 10uw lluw_ ~G1w J

When we substitute this result for the column vector, we obtain the surface

equation

uw = [ Fju Fl“ Gou Glu] FOO 01 oow 01w Fow
10 11 10 11 F.w

w w 1
00 01 00 01 G w

u u uw uw 0
10 11 10 11 G, w
L u u uw uw] L1

This is a particularly convenient form for computation. The 4 x 4
matrix contains nothing but information about the corner coordinates, corner
slopes, and corner twists; all entries are constants, and the partitions of the
matrix systematically group these quantities. The leading row vector and
the trailing column vector are transposes of one another, (but with different

arguments, of course.)

We shall refer to the 4 x 4 matrix as the "boundary condition" matrix,
and shall assign to it the symbol B, so that the matric equation for the surface
could be written
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uw = [ Fou F.u Gou Glu] B Fow

1

Gow

[ Gy W ]
It must be remembered that each of the entries in B is a three-vector,

whose components are x, y, and z coordinates and slopes and twists. This

means that B is really a tensor.
3.6 BLENDING FUNCTIONS

We can relate the blending function vector to a so-called basis vector

in the following way. Let [ul u ] be a vector whose elements are a set

2 3 Y
of linearly independent functions of the variable u.  Then we can postulate

the existence of a matrix M such that

[Fou Flu Gou Glu] = [u1 u, u, u4] M.

To evaluate the M matrix, we substitute u = 0, u = 1 on both left and right
hand sides of the equation. Then we take derivatives of both sides, and

again substitute u = 0 andu = 1. There results

FFOO F1° G00 GIO = 01 02 03 04
Fol Fll Gol Gll 1l 12 13 14 "
1 1 ] v ] 1 1 1
FOO F10 GOO, G10 01 02 03 04
] 1 1 \ t 1 ] 1 4
-FOI Fll Gol Gll J _11 12 13 14_‘
The matrix on the left is the identity matrix 100 0 by virtue
01 0 0
0 01 0
0 0 0 1

31
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of the stipulations on the blending functions and their derivatives. From this,

we conclude that r I
01 02 03 04

11 12 13 14

' ] 1 ]
01 02 03 04

' ] ' '
11 12 13 14

- -

and we need only find the inverse of this matrix (if possible) to obtain M.

(In the matrix, the notation 1'2 means d(uz) typically., )

vmsttma—

du u=1

In the next section we shall for the first time be specific about the
basis vector | u1 u, u3 u 4 ], but it is interesting and important to realize
that so far in the discussion nothing has been said to diminish the generality
of the mathematical structure. It is hoped that the reader will not lose
sight of the fact that the surface equations in their several forms can be
implemented in many ways. We propose to develop one such implementation -

in detail, but it is only ope of many.
3.7 CUBIC BASIS VECTOR
Let the basis vector be

3 2
(ul u, u, u4] = [u u ulj.
The vector on the right contains four specifically chosen linearly independent
functions of u, the powers of u, and when multiplied by a coefficient vector

yields cubic polynomials:

[u3 uzul] =Au3+Bu2+Cu+D.
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By the reasoning of the last section, we have for this vector basis,

..1_

[ - |
o © M M=

0
1
0
2

W O -~ O

from which we can obtain the desired inverse

2 =2 1 1
M= [-3 3 -2 -1
0 0 1 90
1 0 0 0

Now we can write

3 2
[Fou Flu Gou Glu] = [u u u 1] M

We shall abbreviate the notation for the basis vector in what follows. We
shall write

[us u2 u 1] =

L}
and [w3 w’ wl].= W.

The matrice surface equation

uw = [Fu Fju Gu Gu] B rFow-
Flw
Gow
161¥ )
now becomes, simply and compactly,
uw = UMB Mt Wt. {Superscript t means transpose. )

If U and W are cubic basis vectors, then the surface patch is the so-called
bi-cubic surface. Such surfaces are very easy to compute, particularly
since the basis vector is so easy to evaluate. In passing it is important to
remark that the above compact surface equation is not limited to cubics;
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U and W are not restricted to cubic basis vectors, and M is simply the matrix
that generates the appropriate set of blending functions. Among other pos-
sibilities, U and W might be higher order polynomial basis vectors; or they
might be any set of linearly independent functions. Provided the associated

M-1 matrix has an inverse, these basis vectors are acceptable.

We can write, for w held fixed, an expression for a u ~ varying curve
on the surface:
t. .t
w = U(MBM W) = UA

where A is a column vector of constant coefficients. We can write a simi-
lar expression for u held fixed and w varying. The matrix product MBMt

is the same in either case. This suggests that for any surface patch this
product should be evaluated first; thereafter, we can either obtain u-varying,

w-constant curves or w-varying, u-constant curves in an obvious way.

We shall investigate another basis vector that is composed of another
set of linearly independent functions (not powers of u) in a later article.

3.8 DIFFERENCE EQUATIONS

If the basis vectors are polynomial bages, we can invoke the techniques
of finite differences to calculate points on the surface patch.

Consider the matrix

L = 10 0 0
11 0 0
¥1 110
1 111
Then a a
L b = a+b
c a+b+c
d a+b+c+d

If a, b, c, d are respectively third, second, first and zero-order differences

of the cubic n3, then the column matrix on the right of the equation represents




oo
(3]
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the corresponding differences for the cubic (n + 1)3. The differences for

(n+ k)3 are given by

.
Lk J’a where Lk means kK successive
b

c |

oL

)
multiplications by the L matrix.

When n = 0, we can easily find that

b | | -6
o= ] for cubics.
c 1
{
d | Lo
Using this,
K- [ 0001 ] ¥ J’G-!
L -6 .
| i
‘ 1
L O,

In this expression, the vector [0 0 0 1] serves to select the bottom element

of the resulting column vector after k multiplications by L.

By extension, we can write the more complete statement

3 k

(K K k1] = (000 1] L 6 0 0 0]
-6 2 0 o!
11 1 0|
0 0 0 1J

We shall callthe [0 0 0 1] vector l; and we shall call the 4 X 4 matrix N,

so that

2
E okt k1) - 18N
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Now let the usual parametric variable u be represented by u = k&, where
k=0,1, 2. ... and where 3 is an increment size. Then

 wuay = ik 53

52

Call this last square matrix 4. Then
U= lLk NA.

This expression states that we may step along the u parameter, in S incre-
ments, by successive multiplications by the L matrix, and thus evaluate
the U vector at these steps. In order for u to go from 0 to 1, k must start
at 0 and go to -%—, since k 8 = 1,

We can also write, for the W parameter

W = lLkNA

The surface equation in difference form can now be written out in
full:

uw = leNA M B Mt At Nt Ltk lt.

Call the partial product NA M B M At N = Sy & SQUTe 4 X 4 matrix,

Then L S(’0 = S10 a new square matrix,

and LjS

00 = Sjo’ after j multiplications.

We remember that for any column of S00 the multiplication by L is a process

of cumulative addition, as shown by

a a
L |b = a+b
a+b+ec

="

a+b+c+d
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We can write in general that

Ls, Lt - s

jk j+l, k+1l

where the new square matrix is obtained from the old by cumulative addition

of column elements, followed by cumulative addition of row elements. These
operations are furthermore commutative, which means that we obtain the same
result if we first add row elements and then afterward add column elements:

We have, finally, that atu=0, w=0
the surface equation is

00 =18 ltandingeneral

00
aw = 1 Sjk 1 whereu = i®, w=k3, and sjk has been formed

from S 00 by j column additions and k row additions.

This obviously furnishes an extremely simple way to generate discrete points
on a surface patch. The pre-multiplier ! has the effect of selecting the bottom

row of S and similarly the post-multiplier lt has the effect of selecting the

jk

last column of Sjk' The bottom right hand corner element of sjk is the value

of the coordinate for a point on the surface, atu=3jd, w = k8.

Consider 1 Sj o This represents the row vector obtained after j cumula-
tive addition operations have been performed on the columns of SOO' The
right hand element of this vector is the value of the coordinate atu = j3,
w =0, We can hold u fixed and step out successive values of the coordinate
for w - varying, simply by cumulative addition on this row vector alone. In

this case, the resulting right hand element is the marching coordinate value.

An analogous remark can be made for the product SOk 1 T. This is a
column vector, and successive cumulative additions of its elements marches

out values of the surface coordinate for w = kO fixed, and u varying.

Although the arithmetic of the foregoing difference method is very
attractive, it posseases certain drawbacks that must be made explicit. The
coordinate values are precise if and only if no truncation error whatever is
allowed in the arithmetic. Error is cumulative, and the least departure from
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a precise number at the start will rapidly propagate. In the Amatrix there
are numbers of 8 8 magnitude; for 100 calculated points along a curve, this
calls for 6 decimal digits, all exact, or 18 binary bits. For display purposes,
100 points along a curve are adequate, but for engineering purposes this
information is too sparse. To calculate intermediate points, the & matrices
need to be changed and the S matrix recalculated. Furthermore, it is clear
that we soon reach an upper limit on the number of available bits in the
computer word, becasue of the rapid growth of 83,

We can of course use the difference technique to calculate coefficients
for a cubic and then calculate points using them. For consider

uw=UMBMT ATNTLTk IT.

In this, the partial product M B MT AT N’r LTk represents a square

matrix whose last column consists of the coefficients for the cubic at fixed
w = k&, withu varying: If S, 18 this square matrix,

uw=USk1T=U A
B
C
D

The cubic can be generated by digital methods for any u, or it could be
generated quite easily by analog differential analyses hardware. The inte-
grators of the analog differential analyses are loaded from the values of the
column coefficient vector, and it is then unclamped and allowed to generate
the curve, Meanwhile the digital machine can perform a cumulative addition
on the rows of Sk to yield Sk 1 The last column of this new matrix then
contains the new coefficients for the curve of w = (k + 1) 5, ready to be
loaded iuto the integrators.

Recent developments in hardware, particularly a hybrid digital-analog
multiplying device, may make it possible to generate surfaces for display
directly from the indicial forms of the equation, or from the matrix form

w = UMB MT WW
without the necessity for recourse to this last difference technique. I is
however interesting to know that the method exists. '
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SECTION IV
HYPERSURFACES — HIGHER DIMENSIONS

We can readily extend the surface equation to describe hyper-surfaces
immersed in hyper-space. For this purpose we shall introduce a slight variant
on our notation. We shall write typically

u
i

Fiu. i=0or1l.

This will be a standard replacement for the biending function notation. The

stipulations on the Fi are as before, so that if u =a, a =0 or 1, we can write

a
i

it

Owhena#i

a

i 1 when a =1i.

For slope continuity across boundaries, typically
1
?‘ = 0 where this symbol means the first derivative of the biending
function with the argument = a.
For higher order continuity across boundaries, the additional stipulations
on the blending fucntions are the same as for ordinary surfaces with two degrees

of freedom and have already been discussed.

The general surface equation for hyper-space is, in indicial form,

. vV w
=uk...)., ...
fuvw ) (uj )Jk
uw
+ z
(ivk...)ik...
. uv
+
(i]W...)ij...
+o
uvw

S (N1 kL
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In this equation, N is the number of independent parameters in (u v w...); it is
the number of degrees of freedom of a point on the hyper-surface. The indices

i, J, k etc. can take on only the values 0 or 1.

Let us proceed to prove that this surface contains a boundary, say for

example the boundary (u 0 0. . .). We hope that the following equality holds:
uoo...)=@mjk. . .)?ﬁ. o
FE0k. . )fﬁ ..
“@jo. . .)?;). .
+
- (N-D(E k. . )?]OE ..

The last term in this expression is non-vanishing if and only if all indices other
than i are zero, i.e., j =0, k =0, etc. We can accordingly rewrite this term

as
(N-1) (00, . )?

Next consider the second term on the right:
uf
iok., .. e
u ik
It is non-vanishing if and only if k =0, etc.

We can accordingly rewrite it as

(100. ..y, .

A similar consideration applies to

@jo...) T ;) . . . which also becomes

(100...)‘;.
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There are evidently N~1 such terms, all identical, and they are removed by the
last term. All that is left is the term

00

ujk. ")jk"'

but since j = 0 and k = 0, we finally have (u 0 0 . . .) on the right. This establishes
the identify, and the surface equation has thus been shown to contain this boundary
curve. It is trivial to show that the surface contains all boundaries, and is defined
by them.

We can also show that the hyper-surface contains boundary surfaces
of lower order. We shall content ourselves with the case for N =3, and show
that it contains surfaces for N = 2 which are identical with our ordinary surfaces.

We have

@vw) =ik

]
+uvm?:
+(1yw ]

uvw

—2(1)’1{)ij Kk

Set v = 0. Then substituting, and retaining only non-vanishing terms,

(which means that j must be replaced by 0 whenever it occurs, and ;’ = g =1)
mom=mon:
. uw
+
(i0Kk) ik
+(i0w)r

-2aomr:
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i2
or
@Wow =m0k
K
u
+ (i ;
(10w)i
. uw
—(10k)1, K"

This Is the two~degree-of-freedom surface

(uw) = (uk) E - (iw) i“-(ik) l‘l‘:’

We shall next consider the slope vector of such a hyper-surface.

partial derivatives with respect to one of the variables, say u, and get

. v w
(uxw...)u-(UJI\...)ujk
Cdv u' w
(v ...)ik...
. u'v
*(13\»...)11_...
u'vw
- (N- Pjk. .0,
(N-1) (i ]t )1].k
In this, set u = 0,
v w
=0jk. ..
Ovw...) =] ) wik
0" w
vk, ..
@y ik
0" v

*(1J\V...)i MR

0'vw

SN k)

We take
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or

(va..Ju=ij..Ju;:...,

]

since all other terms vanish by virtue of ? 0.

This result is analogous to the one obtained for boundaries of ordinary
surfaces; it says that the slope anywhere on a boundary is a function only of the
slopes at the "ends" of the boundary, and are otherwise independent of the
boundary shapes, Slope continuity across boundaries is a consequence.

The hyper-surface equation just developed is defined by ordinary curves,
or single-degree-of freedom boundaries; we can also write a hyper-surface
equation for N degrees of freedom, defined by boundaries with N-1 degrees of
freedom. We shall exhibit the resuit for N = 3:

(uvw =(va);l
+(ujw)]T’
+mvm:

v

i

-aiw

uw
—(ivk)ik

. v w
-wsmjk

.2 uvw
+01Mijk

The proof that this space contains, for example, the boundary subspace

(0 v w) follows the preceding proofs in principle and will not be carried out.
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SECTION V
SURFACE NORMAL VECTORS

5.1 GENERAL SLOPE CONTINUITY CRITERIA

The surface normal vector furnishes a convenient mechanism for the in-
vestigation of genereal criteria for continuity of surface slope across boundaries
between surface patches. It will be seen that the continuity conditions already
established are much stronger than are necessary, but that they are expedient.

Put !

v= 352

W= [xy5,5)
for the tangent vectors of a surface patch at some point. Let us assume that
another adjacent surface has a common boundary curve along u = constant, w
varying, so that W is common to both patches. Let the parameter for this second
patch be v, and for its tangent vector put

V= [xv yv zv] .

COMMON
BOUNDARY
CURVE
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rI“he two surfaces will be continuous in slope across the boundary at the point in

question in case the three vectors U, W, and V are coplanar there.
The surface normal vector for one surface is
N=UxW.
If V is perpendicular to N,
V-N=0,

But then in this case, the three vectors U, W and V are coplanar since they are

all perpendicular to N,
In detail, this gives

N=UxW-= [JnyJz]

a vector whose components are the familiar Jacobians, and

VN = VNT
= [XV yV ZV] JX = xV yV zV =0
Jy xu yu zu
Jz *w Yw 2w

(This is the so-called ""scalar triple product' of the vectors.) Thus the vanishing
of the determinant of the matrix of the three tangent vectors is the general condi-
tion for slope continuity between two patches, at any point on their common
boundary.

This equation also shows that we may have slope continuity of surfaces
even though the curvilinear coordinates of the two surfaces are not slope -

continuous across the boundary,

If the tangent vectors U and V are equal everywhere along the boundary
curve, the determinant is sure to vanish; similarly if the tangent vectors U and
V are scalar multiples of one another, even when the scalar multiplier is a

variable quantity.
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GENERAL CONSTRUCTION - TANGENT SURFACES

Suppose that a surface A already exists, defined by the parametric vector

equation

A= [x¢ 8) v ) 240)]
Let a be a curve on the surface; it is always possible to write the vector equation

for a in either of two forms:

alb )= [x(¢) v() z(¢)]

or
a(8)= [« 8) y(8) 28)]

Suppose we wish to attach a surface B to surface A, in such a way as to make
curve a common to both surfaces, and suppose furthermore that we wish to

maintain slope continuity across this mutual boundary.

We shall consider curve a to be the boundary (0w) of the B surface. We
are at liberty to design, arbitrarily, a projection of the other three boundaries,
(u0), (ul), and (1w), Say for example that we design these curves in the xy pro-
jection. Then the curves represent the x and y components of their coordinate

vectors.
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We are now ready to obtain the missing z component of the tangent vector
across (Ow). We first compute the surface normal to A along curve a. For this

purpose we can use any one of the expressions
@8y x (# Oy
or (¢9)¢ xa(f)g

or a(P)y x ($8)y

Each expression yields a surface normal N; the three results are identical,
We can evaluate this surface normal vector at any point on (Ow) since we have a

correspondence between w and the variables ¢ and § -
We also have the equation
(Ovv)u NT = 0. This is the familiar condition for surface slope
continuity.
Let N= [a b c] after evaluation at w.
Then the equation becomes
[xtow), yiow), z(om), ] [a

b =0

C

We already have the x and y components of this equation, and can solve for the

z component:

a x(Ow)u + b y(Ow)u )

2(0w), =
“e
This z component has a magnitude that ensures that the complete vector
(Ow)u is coplanar with surface A at w. Hence (()w)‘1 is the desired tangent vector

of surface B across (0w).
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We next find the z tangent vector components z(OO)u and z(01)‘1 from (0w)u,

and use them in the equation
1 -
2(0w) | = z(00) Fow + z(01) F,w.

Here the 1 superscript indicates that this is an intermediate result; it is the
intrinsic boundary tangent vector for the F-type surface, and does not yet match
the z(Ow)u vector function obtained from the A surface.

Accordingly, we must add to the F-type surface a G~type tangent vector
correction surface, so as to make the combination have the desired slope along

(Ow).

This G-type correction surface is, as we have already shown,

(4] (o1 [+
w’ = [1 Gyu Glu] 0 w0 uil) .
ow®  -00° -01¢ G.w
u uw uw 0
we -10° -11€ G.w
u uw uw 1

The superscript ¢ indicates that this is a correction surface.

Slope correction is necessary only along the boundary (0Ow); we can enter

the value for Owﬁ in the matrix, but the other entries must be locked at in detail.
We have, for the slope correction across (0w),

ow’ = ow - ow
u u u

These latter two quantities have already been found for the z component, and so

C.
Owu is known.

Consider lw:i . This is at a free boundary, (1w), remote from (0w), and
we can set it equal to 0. Then 1oﬁ and llﬁ are both zero also. On the other
hand uofv and ul“; are connected to (Ow) at (00) and (01) and so we must specify
them in such a way as to satisfy the conditions at these points. Elsewhere, they

too are arbitrary.
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We write the G function expression:

(uw) = [1 Gou Glu] 0 uoW u1W 1
ow -00 -01 G w

u uw uw 0
0 0 0 le

(we omit the ¢ super-script temporarily. )

Performing the first multiplication, we have
1

(W) = [OquOu I uo =00, Gou I ul, -OluwGOu] Gyw

le

Consider the element uow - OO“WGOu in the row vector. Since qu is
arbitrary, it would be convenient to choose it so as to make the entire vector

element vanish. We therefore write

ud = 00 G u,
w uw 0

Then 00W 0 as it should, and
gsince w0 =00 G 'u,
wu uw 0
00 = 00 as it should.
wu uw

Similarly, we may set

ul =01 G u,
w uw 0

The result of these choices of qu and ulw is to reduce the G equation to
c

uw =0wcGu.
u 0

This represents the correction surface z component which must be added to the
z component of the F surface in order to obtain slope continuity along (Ow) between

the given A surface and the designed B surface.
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5.2 ADJACENT-PATCH SLOPE CONTINUITY

It is sometimes desirable to define the boundary curves for two adjacent
patches so that at the junction between the curves the tangent vectors have the
same direction but are of different magnitudes. This is particularly useful when
the boundary curves are parametric cubics, because then the magnitudes of the
tangent-vectors at the end points control the behavior of the curve segment.

$1 01

ul

Oow

¢0 uo
00

As a specific case, consider the boundary (Ow) common to two patches; let
the tangent vectors at (00) and (01) for the first patch be 004, and 01 ¢ and let
the tangent vectors for the next patch be oou and 01u

If the tangent vectors have the same direction, they are scalar multiples of one
another,

or OQu = m 00‘1>
and 01u =n 01¢.

Suppose that the patch (‘ib w) already exists. We need to obtain an appropriate
expression for (uw) so as to match surface slopes across (Ow). By the results
of the preceeding article, we can accomplish this in very general ways, but in
our present case let us make a special requirement on the tangent vectors: let
us assume that everywhere across (Ow) the tangent vectors have the same
direction, and differ pnly in magnitude. Then for any w,

ow = A ow ¢
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where X\ is a scalar. We know that \ takes the value m at w=0, and takes the
value n at w =1, and we conclude that ) therefore must be a scalar function

of w.

With this relationship between (Owu) and (0w¢) the vector cross product is
always the null vector:

ow), x @wg = [0 0 o]

Hence the scalar triple product of (Ow)u, {Ow) ¢, and (Ow)W vanishes for any
(Ow)w. This ensures that the two surfaces will be continuous in slope across
(0w) for any shape of (0w) and for any A = A (w) that has the proper behavior

at w=0 and w =1,
We could for example take
Aw) = m(l-w) + nw.

This is a linear variation of A with respect to w. It has one disadvantage,
however, in that it introduces un-wanted cross derivatives or twists at (00)

and (01). In order to avoid this, we might use
AW) = m Fow + nFlw.

Then the required slope function across (0w) for the (uw) patch is
Ow“ = (m Fow +n Flw) 0w¢.

We can check to find the cross derivatives introduced by this relationship.
The cross-derivative is obtained by differentiating with respect to w, and
yields

H

t 1)
ow (me+nF1w) 0w¢

uw 0
+
+ (m Fow n Flw) 0w¢w.

At(00), 00 = m 00
uw

and at (01), 01 = n 0w
uw
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This shows that the A\ function does not introduce additional twists at the
corners of the patch, beyond, of course, those already inherent in the (¢pw)

surface.

If the (uw) surface already exists, defined perhaps by an F-type equation,
its intrinsic tangent vector across (Ow) is a known function of (Ow), say 0‘}/“,
where the 1 superscript indicates that it is an intermediate result. Then,

as before, the correction of slope is

sz = Owu - Owi. The correction surface

is (uw)c = Ow:iGOu.

When this correction surface is added to the original surface, the combination
will be continuous in slope with the ($w) surface across (0w). The u and ¢
curvilinear coordinates of the two patches will be continuous in slope across

(Ow), but their tangent vectors will be different in magnitude.
5.3 APPLICATIONS
Let dU represent a differential vector, so that

au = [axdy dz], in which

= 9x 9x
dx —audu +awdw.

= % dy
dy =gy du * gy o

=9z 9z
dz =55 du + SEdw.

If dU is tangent to a u-varying, w-fixed curve, these become

J

ax = %Edu = x_du
du u
dy = Yy du.
dz = zu du, since dw = 0.

Hence dU = [x y z ] du.
u“u u
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Similarly, if dW is a differential vector tangent to a w-varying, u-fixed

curve,

aw = [xwywzw] dw.

The normal differential vector at a point of the surface will be given by

the vector cross product:

dn = dU x dW
yuzu Zu u xuyu
= du dw.
ywzw zwxw XwYw

The determinants that comprise'the elements of the vector are the

jabobians Jx’ Jy and Jz so that we may write
dn = [JJJ]dudw.
Xy z

The magnitude of dn is equal to the differential area of the elemental parallelo-
gram described by dU and dW. This magnitude is

|an| =/an - an o] fu ©

du dw \/sz +32 + 3.

From this, we can construct an algorithm for finding surface areas of patches;

we simply perform numerical integration of the expression

1/'1
a= [ JIo 430 +3d 2 dudw.
0 o0 X y z

Again, if N is the unit normal vector to the surface at a point, then

dn = N|dn|, from which
_ Gdn
YT el
Jd_d B
= X X _z
s S S
where § = \/ng + Jy2 + ng .
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The quantities J_x, i[, J_z_ are the coordinate components a, b and ¢
S S S

of the surface normal.

If the surface is to be manufactured by milling with a ball-end cutter of
radius R, then the cutter-center vector [xc yc zc ] is related to the surface
vector [x y z] by the simple expression

[xc Yo zc] = [xy z] + R [abc] .
This describes a ''parallel" surface spaced a distance R away from the

designed surface.

The normal vector can also be used to calculate volumes enclosed by

surface patches and planes, as follows,

Suppose we wish to calculate the volume contained between a surface

patch and the xz plane.

\/

y
L l XZ plane

We can imagine the volume broken up into a number of slender prisms
whose axes are all parallel to the y axis (and perpendicular to the xz plane.)
The area of the base of one of these prisms is the projection of the small

element of surface area, or

dA = J dudw.
y y
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The volume of this prism is

dV = ydA = yJ  dudw
Y v

- -

Vo= J / yJV du dw.

7

u W
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SECTION VI
CORNER TWIST VECTORS

6.1 THE QUASI-SPHERE

1t is possible to choose a parametric cubic that very nearly approximates
a circle for one quadrant, We shall go into detail about this shortly; intuition
suggests that similarly we ought to be able to construct an approximation of an
octant of a sphere by means of a bicubic surface, bounded by these approxi-

mations to circles.

For the circle approximation, let us assume that we will be content to
make the quasi-circle pass through a point on the true circle atu = 1/2. (This
is not the best possible approximation, but it yields quite good results and the

arithmetic is simple.)

We shall assume a circle of unit

radius, centered at the origin, with
end-point values of the parameter u
as shown. The tangent vectors are

symmetric, but have yet undefined

magnitudes.
-a
We have
3 2
Xx=|u u u 1} M {0 Where the column vector on the
1 right represents the end conditions
a for the curve.
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When u = 1/2, this becomes

xré [1248} {2 2 1 1 0
-3 3 -2 -1 1
0 0 1 0 a
|1 0 0 0 0
=é [1248J [2.a
3 - 2a
a
L o

(4 + 2

/2
2

1
3 (-2+a+6-4a+4a) =

o |~

a=8x-4, Butatu=1/2, x= since it is a point on the circle

(by symmetry, at 4l)'

Hence a = 4 (f? - 1). This is the required magnitude of the two tangent
vectors at u =0 and u = 1. (Calculation reveals that the quasi-circle has a

radius of about 1.00016 at u = 1/3 (at T or 30°) so it is a good approximation.)

We now establish a coordinate system for the sphere, and show its

boundary curves.

104, 11

ul = degenerate curve
boundary
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The boundary curves 0w, 1w, and ul are all unit circles; the boundary u0

however is a degenerate circle, and appears as a point.

We shall first investigate the z component of the uw surface vector

= : [ 00 1 00 1 1 Ir
z(uw) [Fou Fu Gu Glu} 0 0 W O o
10 11 10 11 F.w

W W 1
00 01 00 01 G.w |
u u uw uw 0 |
10 11 10 11 G w!
u u uw uw | 1 B

= [Fou Flu Gou Glu] 1 0 0 -a FOW
1 0 | 0 -a F ow
0 0 0!
0 ! GOW
0o 0] 0 0 G, w
When we perform the first multiplication, we obtain

Z(uw) = [Fou - Fu Lo | o | -a(Fu -+ Flu)} F oW
Flw

(XOV\

G w
L1

But Fou + Flu = 1, by virtue of the definition of the ¥ functions.

Hence

:Fw—ale.
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The curvilinear coordinates for w constant thus vield constant z; this implies
that z is independent of the other variable u, and the w curves are plane curves,
They must of course be quasi-circles.

We have obtained the value of the number a by investigating a unit circle.
For a circle of radius r, the tangent vector magnitudes must be proportional to

r, or equal to ra. We can find these radii for various values of w from either

the quasi-circle y(0w) or x(1w).

We have

x(1w) = [10 1110 11 ] F w
W W 0
Fow
1
G w
0
G w
and
¥ (0w 00 01 00 01 ] Fow]
(oW { W W [— O\
Fow
1“
G w
O\
G
1Y
in e¢ither case,
r(0w) = {0 [ : 01 FI’ wﬂ
’ J 0
Fow
1
G w
G w
L 1 2
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For w fixed, the x and y coordinates of a quasi-circle are given by
x = |Fu Fu Gu G 1} 0
[ (S el i
r
ar

0
and

y = {Fou Flu Gou Glu} T

where r is a function of w, shown above.

But
- - . -
0 0 0 0 0 fl’ w
| r,
\
r 0 1 a 0 | Fow
_ |
- 0 | ‘
ar 0 a a 0 i (;0\\'
L 0 J L0 0 0 0 G w |
and

( r 1 .(0 1 a 0 B 0\\

i 0 ‘ o 0 0 0 Fow

1 0 ’ 0o 0 0 0 \ G w
i i
i o

| -ar] 0 -a -a 0 | —le

We obtain these last results by simply writing rows in the 4 x 4 matrix that
correspond to elements in the vector of the left side. When we combine

results, we have
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= r 7 9
x(uw) [Fou Fu Gu Glu] 0 00 o [Fow
0 1 a 0 Flw
2

0 al|a 0 Gow
(0 0|0 0 |Gw|

yw) = [Fou Fu Gu Glu] [‘o 1]a o Fow
o o|lo o F,w

o 0|0 o G,w
0 -a -a2 0 G w‘J

_ J L™

The equation for z(uw) has already been shown,

The striking thing about the B matrix as it appears in these equations is
that is has non-zero entries in the bottom right partition,

00 01
uw uw
10 11 By comparison, we see
uw uw
that x(00 = a2/
)
and y(10 = —a2
uw) :

These are the crogs-derivatives at the corners 00 and 10, All other cross
derivatives vanish. We shall refer to these cross-derivatives as "twists" of
the surface; uwuw is the twist vector at a generalized point on the surface.

6.2 THE EXACT SPHERE

A bi-cubic surface cannot fit a sphere exactly, and it would be interesting
to see whether by an appropriate choice of F and G functions other than cubics,

an exact equation can be constructed.
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The functions

Fu - cos
OU cos

and

FO0o = Fol =0
1 '
F O - Fll =0
as well as
FO =1 ri1lr =20
F10 0 Fll = ]

We shall choose these functions, and determine appropriate G functions

so that the equation

(u) = [Fou Flu Gou (,;]u:l

represents an exact circle, and not the approximation of the last section.

We already have the well-known parametric equations for a circle;
X -~ sinau

y & cos au where a

rx’:[:ﬂ
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We can compare the X equation with

2 2
x(wy - [cos au sin  au Gou Glu] 01
1
a
0
2
= sin au - aG.u
0
: 2
Then sinau = sin au ~+ JGOu, whence
1 2
Gou o (sinau - sin au).
Again,
2 2 | 1
¥y = cosau [cos au sin au | G u G.u| 1
; 0 1]
i 0
r
|
l-a
2
cos au = cos au - aGlu
whence

1 2
G.u - N (cos au - cosau).
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We can easily verifv that these G functions satisfy the same stipulations
as the cubic G functions:
G0 =G1-=20
0 0
G.0 = Gll =0

1

B '

(rOO -1 Gol = 0
1 1

G, 0 = 0 1 = 1.

If we now use the same boundary value matrices as were used in the

. i . , i e
previous case of the quasi-sphere, but with a = Py throughout, we obtain for
the z component of the surface veetor

zuw Fw -aG w.
uw) 0 1
This is. with the new F and G functions

2 2
suw) 7 ocosT aw - (cos T aw - cos aw)

Cos aw.,

As before. this shows that the z coordinate of the surface is independent
of u: the w curves are plane curves, and thev arc indeed circles. Their radii
are given by

X(1w) (10 11 10 1]“ } F()\\’
B w ;
Fl\\'

St

hON
L(]IWJ

1 -~ .
0 1 a 0 I \»7
J 0

]

¥ \\"

o

I |

Gow

0 l

“le_jf
= F.w - aG w
1 0

2 2
sin” aw - (sin aw - sin aw)

or r =  sinaw,
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Then
x(uw) = [Fou Flu Gou Glu} 0

ar

= r(Flu + aGOu) = sin aw sin au,

and

yvuw) s [Fou Flu Gou Glu} T

-ar

= r(FOu - aGlu)

2 2
= sinaw (cos” au - cos au - cos au)

- sin aw cos au.

The resulting parametric equations, when collected, are

X = sinaw sin au
y = sinaw cos au
Z ¥ COS aw

and these are well-known.

This demonstrates that the sphere is a special case of the general surface

equation, provided the blending functions are suitably chosen.

The F and G functions are by inspection, seen to be linear combinations of

the linearly independent functions of u,

2 .2 )
{COS au sl au cOs au s1n au} N

and this may be taken as an appropriate basis vector. Then

2 2
[Fou Flu Gou Glu} = [cos au sin au cosau sinau} [M]
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where the M matrix is, in this case,

~
1 0 0
0 1 J1
a
M =
N 0 0 0
1
0 0 -
L a
Incidentally, its inverse is
1 0 1
1 0
M- i
R 0 0
0 0 -a

[=I
I

IS
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SECTION VII
RULED SURFACES

The locus of straight lines connecting corresponding points on two curves

(u0) and (ul) is a surface., The lines are called "rulings' of the surface.

ul

u0

The equation for a generalized line of the surface is also the equation for
the surface:
(uw) = @ul)w - @@O)wW + (u0).
This is equivalent to
uw) = (@ul)w + (u0) (1-w),
From this equation we obtain the derivatives

@), = @ w + (@) (1-w)
Wy = @I) - (u0)

(aw) = @) - (@) .

7.1 DEVELOPABLE SURFACES

A special case of such ruled surfaces is of importance and interest, If
the ruled surface has the property of being tangent, along the rulings, to a
moving plane which rolls around the surface, then it may be deformed by simple
bending and flattened out into a plane. Such a process is called "development"
of the surface. We call such surfaces '"developables' or "wrapped surfaces".
(A sheet of paper can be wrapped around the two curves (u0) and (ul) to form

the surface. These surfaces are also known as "convolutes'.)
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The tangent-plane condition can be established by showing that the tangent
vector at a point on (u0), the tangent vector at a corresponding point on (ul),
and the tangent vectors along the line joining these points, are all coplanar. We
need to form the scalar triple product of these vectors, and show that it

vanishes.
The tangent vectors in question are (uO)u, (ul)u, (uO)w and (ul)w.

First observe that, for a ruled surface,

(uw)w = (ul) - (0), This tangent vector is independent of w, so
that (uo)w = (ul)w. Moreover, the vector is simply the line segment joining
the two points, as might be expected. We can write, for the scalar triple
product,

o)

1
(=]

(u].)u
(ul) - (u0)
where the notation represents the determinant of the matrix of the three (row)

vectors. If the determinant vanishes for all values of u, the surface is

developable.

The preceding describes an analytical test to ensure that a ruled surface
is developable. We shall now describe a construction that will enable us to
define a ruled surface by means of two space curves. Suppose that the two
space curves are defined by vector functions of two different parameters,

u and ¢

$1

ul




RULED SURFACES 73

The scalar triple product is

(u0)

u
®1)y =0
@1) - (u0)

If we consider u the independent variable, the equation enables us to find
¢ for any value of u; this value of ¢ determines the point on (¢1) which corre-
sponds to a point on (u0), so that the line joining these points is coplanar with
the tangent to (1) and the tangent to (u0). We allow u to vary, and obtain
related P values; these values of  enable us to evaluate the components of the
vector (¢b1). These components are the same as the components of the desired

(ul) vector.

Provided we remember that the (unspecified) functions of u and¢ are
different, the symbolism
ul) = @1, ¢ =¢ @
represents the statement that the [x y z] vector is the same for both.
With the correspondence established between points on the two curves,
we can write the equation for the developable surface,
(uw) = (ul)w + (0) (1 - w).
This is the ruled surface equation, but with a special relationship between

curves (ud) and (ul).
7.2 PLANE/SURFACE INTERSECTIONS
The general surface equation can be cast in the form

uw = UBWT where U and W are vector functions of u and w
respectively, and where B is a square matrix describing the boundary curves.

For example, we might be dealing with the first F-type surface equation,

aw = - [-1 Fu Flu] 0 u ul -1
ow 00 01 Fw
w 10 11 F.w

1

in which these vectors and the matrix are explicit:
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Since uw is in reality a vector consisting of an x, a y and a z component,

there are three B matrices which we can call Bx By Bz'

We wish to find the intersection of this surface with the plane
ax + by + cz +d =0,
We can substitute x = UBXWT, y= UByWT and z = UBZWT into this equation,
and write the result in the form

U [an+bBy+ch] wl o+ d=o.

It is permissible to interchange the order of multiplication from aU, bU,
cU to Ua, Ub, Uc because a b and ¢ are scalars. In this form, the sum

[an + bBy + ch]‘ = §, a square matrix function of u and w, and

USW’r = -d is an equation in the two variables u and w. If wis
assigned a fixed value, there results an equation in u which when solved will
yield a point on the intersection curve of the surface with the plane, (provided

of course such a point exists for the chosen value of w.)

If the surface in question is a bi~cubic, the matrix S is no longer a
function of the variables u and w, but consists of constant elements. In this
case the above procedure reduces to the solution of a series of cubic equations
in u, where the coefficients of the cubics are determined by successive fixed

values of w.

In any case, if the spacing of the w values is close, the old value of u
just previously determined for a particular choice of w can appropriately be
used as a first trial solution for the new value of w. Algorithms for the
improvement of this initial trial value of u are not difficult to construct, and

will not be discussed in detail.

If the plane is given by, say, the equation
x +d=0

the solution procedure is unaltered. Not much simplification results.
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SECTION VIII
RATIONAL POLYNOMIAL FUNCTIONS

8.1 BOUNDARY CURVES AND BLENDING FUNCTIONS

Two kinds of curves have for many years been traditionally used in air-
plane lines design — cubic polynomials, and conics. Unfortunately, each of
these curve forms for itself has certain drawbacks. In the parametric form,
for ordinary cubics, the entire shape of a curve segment is governed by end
tangent vectors. Sometimes these end tangent vectors lead to unwanted hooks
and bulges in the curve segments. On the other hand, conics, although more
benignly behaved, cannot by their very nature yield curves with points of
inflection. Yet such curves very often exist in aircraft shapes — as for in-

stance in the case of wing fillets.

Because of these short-comings, a new curve type has been developed.
It is based upon rational polynomial functions. It contains both conics and
ordinary cubics as special cases, and provides a great degree of generality

and flexibility,
We start by establishing the form of this function.

Let v be a vector, so that for examplev = [Xyzl]Jorv = [Xyl]or
v = [x1]. The first of these can be thought of as the vector (or matrix) of
coordinates on a space curve; the second is the vector of coordinates for a
plane curve, and the last is the vector of a single coordinate. Since this last
vector yields the most general case, we shall begin with it, and show how one
might evaluate a set of numbers in a matrix to define each of the parametric

coordinates of a curve,

The product of v and a variable scalar w is wv = [wx w]. Here both

wx and w are cubic functions of a parameter, v, and obviously
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This is the ratio of two cubic polynomisls (hence the term "rational func-
tion). We can represent the two cubic polynomials by the matric equation

wv = [udu2uij A,

Since wv = [wx w], the matrix A must consist of four rows and two columns
of constant coefficients. We now proceed to show how these numbers may be

found so as to define a coordinate of a curve.

We shall be interested in the end-point coordinates of the curve at v = 0
and v = 1, These coordinates are v, = [X, 1] andv, = [x, 1] respect-
ively. A tangent vector anywhere on the curve is clearly

v = [x' 0]

where the prime mark means differentiation with respect to the parameter v.
The tangent vectors at v = 0 and v = 1 are therefore vo' = [x,' 0] and

vl' = [xl' 0] respectively.

Now differentiate both sides of
wv = fuduZul] A  and obtain

(wv)' = [3u22u10] A,

Substitution of u = 0 and u = 1 into these two expressions yields

'wovo' [0 0 0 17
w, Vv 1111
11 - A.
Wy V) 0010
(wlvl)ij 3210
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The 4 x 4 matrix on the right has an inverse, and we may write

[ T wov )
0001 WOVO
1111 W, V
A = 11
1]
0010 (wovo)
t
(3 21 OJ .(wl vl)_
2 -2 11 wov0
- |- 3 -2 -1 wlv1 .
t ]
0 01 0 Yo vo-rwov0
1 ]
_1 0 0 0.4 .wl v1+w1v1J

The square matrix inverse is constant and always the same, and reappears in
the algebra so often that we shall henceforth call it the matrix M.

The matrix equation can be factored and rewritten in the form

A=M [wg 0 o o] [v]
0 Wy 0 0 v, .

l wo' 0 Y 0 vo'

0 wl' 0 wl- _vl'_

The right hand matrix of v's represents the desired end conditions on the

curve., In our present case, it is of course a 4 x 2 matrix.

The middle matrix is 4 x 4 and contains the four numbers [Wo ¥y wo' wl'] .
Any arbitrary set of four numbers inserted into this matrix will serve to define
a unique pair of cubic functions of the parameter u, from which x can be found,

by using, as we have said, the ratiox = -Y;vx— .

Instead of picking these four numbers arbitrarily, however, we shall
impose further conditions on the curve until enough conditions are imposed

) 1]
to define [Wo Wy Wo' W,'] uniquely.



78 SECTION VIII

We begin by introducing desired second derivative vectors at the end-

points; these vectors are clearly

v." = [xo" 0] and

0
"o "
v [x1 0].
(Incidentally, in the case of vectors v' = [x'y' 0], v'' = [x" y" 0] if
the determinant of the matrix [x’ y'J vanishes, the curve will have a
x' yu
point of inflection at v. If the determinant is positive, the center of
curvature will lie on the left as one proceeds along the curve; if the
determinant is negative, the center of curvature lies on the right. If
two curve segments have equal v' and v'’ at a junction, they are contin-
uous both in slope and curvature at such a junction.)

When we take second derivatives of both sides of
wv = [uduul] A, we obtain
(wv)' = [6u200] A,
Atu = 6, this is

(Wovp)' = [0 2 0 0] M Fwo A

L1 - Tt ' L " "
But(wovo) = wy''vy + 2w0v0 + W,V andsolvingforwov0 ,

L . " oo " - 1 1
v, vo = (wo vo) Yo' Yo 2 Wy Vo

Now (w, v )" = [-6 6 -4 -2) Fwo o
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Furthermore, since in general

WY)" = [(wH)" W],

the quantity w" is the second component of the vector of (wv)" and therefore is

associated with the last column of the matrix (\v v

But the last components of v_ and v, are both 1, and the last components of v _!

0 1 0
and vl‘ are both zero. Hence

WO” = [-6 6 -4 =2 F\voq

w 1

;M= -6 6 -4 =2 f - bl 2w vy !
Yo Vo [-6 6 -4 ] | W (VO vo) Wyl Ve
\\'1 (v1 —VO)
Lot _ .1
W (VO VO) + WV
! - . !
L\\l (V1 VO) W,V
= G\\l(vl—vo)-—l\\o 0'-)\\ '(vl—vo)—’w xl'—Z\\'
Collecting,
, "o oo dv ! B (v~ -2 '
“OVO on( 4VO)+\\1( (&1 VO) Vl)
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We now restore this last expression to matrix form:

1 t 1 7
Wo¥o = [Wo W, Wo' W] [~4 Y

- - 1]
6 (v1 vo) 2v1

- '
2vo

S IY

In our present case, the matrix on the right consists of a column of numbers

and a column of zeros. Hence the column of zeros can be discarded, and the
result i8 2 4 X 1 matrix. On the left, L vo" is a scalar,

Similarly, we can find by analogous algehraic procedures that

" - t ] (¢ - 1)
w].v1 = [wo wl wo w1 ] 6 (vo vl) +2 vo
4 Vl'
2(vy-v,)
- ¥
-2 _

Then, writing a matrix equation, we have, so far,
1] " = t 1
[Wo Vo' W3y (W W, Wo' W,'] [P|Q]

where [P|Q] represents a 4 x 2 matrix consisting of the separate 4 x 1 matrices

for Yo vo" and W, vl", written side by side as columns.

We now introduce another condition. Let it be required that the curve
pass through the point v, = [xc 1] whenu = -%- . (This value of u is of

course arbitrary, )
This condition leads to

1 -
Ve = T8 [1248] M Y Yo
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By algebraic manipulations similar to the preceding, we can rearrange the

equation to read

= ' ' B 1]
Svc-— [wowlw0 wl] 4v0+vO

- 1
4v1 v1

Yo

-V
L 1
This is an equation in which e has two components, X, and 1. The right hand
matrix is a 4 x 2. Call it the R matrix. Then we can adjoin these matrices,
to obtain

[w0 vo" Wy vl" 8vc] = [wo L wo' wl'] [PQR].
Now [ P Q R] represents a 4 x 4 matrix; P and Q are each 4 x 1 matrices, but
Ris a4 x 2 matrix, We next transfer Y vo" and w, vl" to the right hand
side, obtaining

= 4 1 - "
[OOSVC] [wo w1 ¥ wl] [PQR] A 0 0 0

The right hand matrix is now a 4 x 4. Provided its determinant does not vanish,

it has an inverse, and

(W ¥ wo' wl'] =[0]0 |8vc] 8

where S is the 4 x 4 inverse of the matrix.

Now that [w0 v,
‘ pletely defined, since the rational function

wo' and wl' ] have been evaluated, the curve is com-
is completely defined.
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8.2 PLANE CURVES

With some loss of generality and flexibility, we can have v = [x y 1],
a plane curve. We shall next show that for an appropriate choice of

[Wy W, wo' and wl’] » the curve reduces to a conic.

We have the equation
WV = [WX Wy W]
= [u3 w? 1] A,
In this case, A is a 4 x 3 matrix. Now if the top row of this matrix is
[0 0 0], the equation reduces to
WYV = (u2 ullA

when the top row of A has been omitted. A i8 now a 3 x 3 matrix, and it is
possible to show that this equation is a parametric form for the general conic,
expressed as a quadratic rational function.

For the top row of A, we have the vector equation

[2 -211] (wov0 7 =100 0]
1M
! L}
Yo' Yot Yo Vo
1 1
~w1 v, + wlvld
Expanding:
- r t ' LI
2w0v0 2w1vl+w0 Vot Wo Vg tW YV tW V) [0 0 0}
Collecting:
' = ' ' 1 =
Yo (2v0+v0)+w1(2v1-|»v1)+w0 (vo)+w1 (vl) [0 0 0]

In matrix form,

- 1 1 1
[0 0 0] = [w0 W Y wl] 2v0+v0

- ]
2v1+v1

Yo

Y1
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The matrix is a 4 x 3.

Now we can adjoin a column to the matrix and an element to the vector,

and write
- , . . ;! ‘2 , 1
[OOOWO] [WO Wy Yy wl] Yot Vo 1
-2V, +V 0
|
!
| Yy 0
i
Lo 0
then
[w,o w,o w'! w'l = [000 w_ ] 2v,+ v ‘ 1W_l
0 1 0 1 0 o |
-2 r,! 0
v,y ‘
0
A
| v l 0

If the indicated inverse exists, then a solution can be obtained in terms of Wi
Furthermore, WO can be set equal to 1 arbitrarily.
The matrix has an inverse in case the determinant

-2 vl+v1' # 0.

As a test, construct a conic with end conditions

[v. ] Too1] .

0 1 ! \71.__._____’\1
|

; P11

\«l »\_

' 100

VO '
i V. —————

v, ! [ 100 0

L1 L J
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r 7 r 7 r
2v, +v' = [002] +[100] = 1
—2v1+v' [-2~-2-2] +[100] -1
Yy 001 0
v 111 1
L 1 J L

We first test to see whether the determinant vanishes:

-1 -2 -2
0o 0 1 = =
1 1 1

will have an inverse.

The matrix is 1 0 2
-1 -2 -2
0 01
1 11
then

l t 1 -

[ wy WO v, ]
whence [1 w, w ' wl’] =

1 0

The conic equation is

wy = [uduul]

-1 =2
= -1. Hence the augmented matrix

11
1 and its inverse is 01 0 2]
0 0-1-1-1
0 0 0 1 0
0 1-1-2-2]
[0 00 1] 01 0 2

0-1~1-1

001 0|

1—1—2—2J
[1 -1 -2 -2].
2-2 11 1 0 0 0_ (V] 11
3 3-2-1 0-1 0 0 111
00 1 0 -2 010 100
10 0 0 0 -2 -1 1 0 0
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= (wu2u1] [0 0 11 001
1-1-2 1 111
-2 010 100
1 000 100
= (wdu2u1y; [0 0 0] = vdu1 [-2-1 0
-2-1 0 1 0-2
1 0-2 001
0 0.1
[wx wy w] = [-2u2+u|-u2] -2u+1]
X =u
2 =2
y = 120 = 1% " The curve is hyperbolic, with an
asymptote at 1 -2x = 0, x = -;—-

It is always possible in all of the foregoing to set Wo = 1. This is
because all equations are homogeneous. It is never possible for Wy = 0,
since this leads to certain degenerate cases.

We remark in passing that when

[Wo Wy wo' wl'] =[1100]
the equation reduces to the ordinary parametric cubic, given by

v=o(uduiul] M ”vo"

Y
and w is constant and equal to 1, Hence the rational polynomial functions
contain as special cases all conics, ordinary cubics, and of course therefore
straight lines and circles,

85
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Their use as boundary curves for surface patches is obvious., They
maintain tangent vector continuity between adjacent patches; indeed, if the
F 0 and Fl functions are constructed as rational functions, we can establish

the F1 function

Y3

F,(u) = .
1 3u2-3u+1

This function has the end conditions

- - -

['vo 00 1
v1 111
vo' = 1T 00 )
vl' 1 00
vo" 000
_vl"J L0 0 0“
Since v," = )\vo’ = 0{1 0 0] andv;" = )\vl' = 0[1 0 0], the

curve has a point of inflectionat u = 0 and u = 1. Hence its use insures
curvature continuity across boundaries between patches, provided of course

the boundary curves have similar curvature continuity at patch corners.
The cure is symmetric, Furthermore, we can put
Fo(u) =1 - Fl(u)

and obtain directly the Fo function, another cubic rational function, with

similar properties to Fl.
8.3 AN EXAMPLE

We shall work out the equation for the F,(u) blending function with the
customary stipulations that

Fl() =1, ’Fl(O) = F,'(0) = F,'(1) = 0,

and with the two additional stipulations that Fl"(O) = Fl"(l) = 0 as well,
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This blending function will give both slope and curvature continuity across the
common boundary between two contiguous patches. The end-conditions are,

forv = [Fo(u) 17,

v, 1 o)
V1 1 1
v 0 Oil
Vl' i 0 0
VO"! 0 0
L Y1 Lo 9

The matrix [ P Q R] - r—vo” 0 0 OW

ool

0 vl' 0 0

(0 0 0 0

0 0 0 0
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Now set Vo =
[wo wl
Now 1fw0 =
[w0 w1
we have
A =M

and substituting the values of |

Finally, wv

= [008v]S

[0 0 4 8]

= [8 8 -24 24].

wO' wl'] = [11 -3 3]
%o ¥
11
' 1
wo' Ve T Wy Y
-WL' vt W vl’
1 ' .
wO w1 w0 wl ]:
-2 1 1 0 1
3 -2 -1 1 1
0 1 0 0 =3
0 0 0 3 3
2
[wx w] = [u u ulj

[wx W] = [u3| 3u2—3u+1]

(= = =

1, instead of 8, the equation becomes

—

o O ©

-3

[T e N =

SECTION VIII
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3
Hence x = —o— = L = F, (u) as required. The other
w 1
Ju” -3u+1
F_ function is
0
u3
Fo(u) = 1-F1(u) =1~
Su -3u + 1

-u3+3u2-3u+1

3u2-8u+1

This is seen to be a rational cubic function also.
8.4 PLANE CURVE THROUGH A POINT

The plane curve vectorisv = [x y 1], wv = [wx wy w]. Here
the polynomial denominators in x = -:-’5 andy = -!3- are both the same.

As before, the end conditions on the curve are contained in the
matrix {vo 1.

We wish to cause the curve to pass through some arbitrary point Ve
(commonly called a "shoulder point") and it will turn out that we shall also
be free to choose some arbitrary slope at this point. It is important to
distinguish between the term "slope' and "tangent vector”. The slope of a
curve implies that the direction of the tangent vector is known, but the magnitude

of the vector is not under our control.

We begin by assuming some value of the parameter u to correspond to

Vo For purposes of illustration, let u = -21-— at this point,
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Then, from wv = [usuzul] A, we write

- i
vc—8[1248]M Yo Yo

11

' 1]
Wo Vo + Wo Vo

] 1
AMARAA vl-

Observe that we have arbitrarily set W, = 1. This is harmless, since

the equation i, as we have observed, homogeneous.

By multiplying the matrices, combining, and collecting terms as we
have done before, we achieve the result
= ! 1 ]
8v, = [w, W, W' w'] Mv0+vo

- '
4v1 v1

Yo

N -

The matrix on the right is a 4 x 3 matrix; to make it square, so that it
can have an inverse, we need an additional column. This column can be pro-

vided by a scaler equation, and the slope relationship will furnish this equa-
tion.

We first find an expression for the tangent vector at v o Differentiating,
we obtain as usual,
(3u2u10] A

wv) =
w' = (s®2u10] M (W ]
' Wl
*
Yo
1
[ ™1 ]
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This last equation comes from the equation for (wv)' by an argument that

we have used before; that since wv = [wx wy w], (wv)' = [(wx}' (wy)' w'].

Hence w' corresponds to the last column of (wo v

o
Y

™, vy

(w1 vl)'_~1
which is "wo )

™1

wo'
wl'_

1
Now at VC, we have already set u = - We make this substitution, and

obtain, from

wv' o= (wv) -w'v

V'*—l— -6 6 -1 1 w.o (v -v)

¢~ 1 | ] 0 I
w1 (V1 - VC)

o 1 - : '
; \\0 (VO vC) + WO vO
([ S
Lwl (vl VC) + oW, v1

When we perform the indicated multiplications, and then collect results

and restore to matrix form, we have
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We are now ready to introduce the slope condition. We could write

% = -i-: , but this would yield awkward results when the slope became very
great and approached an infinite slope. Instead, we choose two numbers a

and b s0 that ax' = by'. It is obvious that these numbers can very appropri-
atelybea = sin & , b = cos § where 8 is the slope angle. Then, for Vor

1 1]
0=byc-axc

This is a scalar equation.

Now x'c is the first component of v'c, and y'c is the second component
of v'c. Hence these quantities correspond to the first and second columns of
the matrix in the equation for v'c, respectively. We can write this out in

detail:
= ' ' [~ ey Yuv ]
0 [w0 w1 wo w1 1 b -G(yo yc) yo

8y, -y )y,

Ye ™Y
L yc-yl J
-a r-G(x-x)--Ax'.1 = [w, W, W' w'] p
0 ¢ 0 01 0o 1
q
= - '
6(x1xc) X
r
X, =X, 8
X%

where the brackets on the right enclose the resulting 4 x 1 matrix (or column

vector).

The factor 4 (of 4 vc') obviously drops out of the equation,
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We now adjoin this to the equation for Ve Again we can drop the 8 (from
8 vc), and obtain

[vc 0] = [wo v, wo' wl'] —4v0+vo' P
4v1—v1 q

o T .

L ™ 8

The vector on the left consists of four components: [xc Ve 1 0]; the
matrix on the right is a 4 x 4 matrix. If it has an inverse, S, then we can

t ]
solve for [wo W W W, ] by the equation

] ! =
[w0 v w0 vy ] [vc 0] S.

These values of the w vector cause the curve to satisfy the desired

conditions.
8.5 SECOND DERIVATIVE VECTORS
We have already discussed rational functions for
v =[x 1] (andofcourse [y 1] and [z 1].)
In particular, we showed that curves based upon these functions can
usually have arbitrary first and second derivative vectors at the end-points,

and in addition can be caused to pass through some shoulder point vc, also

arbitrarily chosen.

When the vector v = [x y 1], the complete generality of the resulting
curves is somewhat curtailed, We shall investigate the conditions under which

such a plane curve can satisfy end conditions including second derivatives.
We have already obtained an expression for the vector

[wovo" wlvl"] = [w, w, wo' wl'] [PlQl

Before, the vectors Wy vo" and w, vl" were actually scalars, since they came

from v" = [x"0]. Butsincev" = [X" y" 0], they are each 2-component
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vectors, and their combination makes a 4~-component vector. Similarly P and
Q are now each 2 4 x 2 matrix, and their combination is a 4 x 4 matrix.

We carry L vo" and w
the null vector:

1 vl" across the equal sign, and obtain on the left

- [ [ - " ]
[0000] = [wy w wg' W' [p]e] v"| 0 0
"

00 v1

00 |00
00 |0 0]

The matrix on the right is 4 x 4. Now the condition that must hold, in
order for there to be a solution for [wo w1 wo' wl' ], is that this matrix
must be singular; the determinant of this matrix must vanish.

This last remark tells ua that A
arbitrarily. However,. it is always possible to make the determinant of the
matrix vanish by thg adjustment of any one of the four components of vo" and
v.". Thus if one of the four components is the number a, we can expand the

1
determinant in such a way as to obtain the equation.

" and vl" cannot be chosen entirely

k1 a+ k2 = 0, from which a can be found,
Suppose the matrix is, or has been caused to be, singular. Then, if

[0000]=[w0w w' w'] S,

170 1 ]
we make it non-singular by an appropriate modification, In some cases, this
might consist in adding 1 to an element in the top row of S, As an illustration,
we might have

] t
[000w01=[w0w1w0w1] S +

c o o o
©c o o ©
e O o o
©c O O M-
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It can be seen that this modification is still a valid equation; if the
modified S matrix now has an inverse, we can immediately obtain it and solve
for the w vector.

As an illustration, consider the end conditions

[, | (0 0 1]
vl 1 1 1
vo' 1 00
v, ) 100
vo" 1 0 0

v a0 oJ

We plan to adjust a in vl" until the matrix is singular,

We require first the matrix [ P | Q] , which is given by

(—4 vo' 6 (v0 - v1) +2 vo'-
6 (vl - vo) -2 vl' 4 vl'
-2 vc' 2(vy - Vl)

_-2 (v1 - vo) -2 vl' _J

Substitution of the end conditions gives the 4 x 4 matrix:

(.40 [-6 6] + (2 0]] [-4 0 -4 -6]
[6 6] -2 0] 4 0 4 6 4 0
-2 0 -2 -2 ) -2 0 -2 =2
-2 -2 2 0 | L2 2 -2 o]

In passing, we note that if our end conditions had been vo" = [0 0 0}
and if also vl" = [0 0 0], the resulting matrix would be singular, because
the first and third columns of { P| Q] are identical. However, this is not

our present case.
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We now subtract the matrix

rvo” 00] [1 00 0]
00 v | Joo|ao
00loo 00]00

o0 joo] |00 00

from [ P | Q] and obtain

-5 0 -4 -6

4 6  (4-a) 0
-2 0 -2 -2
| -2 -2 -2 0

By a series of reductions accomplished by multiplying rows of the matrix

and additions (or subtractions) of rows to remove elements, we can obtain the

determinant
(a-1) -1 | =0
1 -1
This implies
a = 2,

This is the value of a that makes the matrix singular.

The singular matrixis |-5 0 -4 -6
4 6 2 0
-2 0 -2 =2
-2 =2 -2 0
We make it non-singular by adding 1 to the top left element. The matrix

is now

4 6 2 0
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and corresponds to the vector [w, 0 0 0] on the left of the equation.

The inverse of this matrix is

L : |
E 2 1 -6 3 |
-1 0 3 -1| =R
-1 -1 3 -3 1‘
-1 0 2 0
Finally, [w0 Wy WO' wl'] = [WO 0001 R

If we arbitrarily set w_ = 2, then the required solution is just the top

0
row of R, or

. i . —
o W1 W' W'l =[21 -6 3]
With these numbers known, the curve equation is completely defined. We

obtain it by substition in the canonical form:

2
wv:[ugu ul] M Erwovo
;\V Vl
;w’v0+w vo'
! 1 ]
LW]‘Vl-FWlV1
2
- (uuturr M (o002 ]
‘111
[0 0 6] + [2 0 0]
l(3 33 +[100]
= (wWuui) (2-211 [0 o 2
-3 3 -2 -1 11 1
0 0 1 o] |2 o -6
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-6

no
[T I -]

o

The separate equations for the x and y coordinates of the curve can be

exhibited:
3
4u - 5u2 + 2U
N R
-u +6u - 6u+ 2

3
u

y =

3 2
-u + 6u - 6u+2

In the foregoing, certain matrices have occurred. These matrices are
significant ones, and can be written as transformations of the common

atrix |
matrix VO]

as follows:

For the conic condition matrix,

’2V0+V0' ) 2 0 1 0] —voﬂ

-2 v1 + v ! | 0 -2 0 1 v,
Yo |1 0 0 0 vo’

| v, J i 0o 1 0 0‘ ’vl"
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For theu = % VY, shoulder point condition,
- g - o - -
4v0 +v0 4 0 1 0 v0

— ' —
4 v1 v1 . 0 4 0 1 v1
1
v0 1 0 0 0 v0
= - 1
L Vl ] _0 1 0 OJ i v1 )

For the P and Q matrices associated with WO VO" and w1 vl",
r J - 1 7 7
- t i - i

4, | 0 0 -4 0 Yo |
6v. -6v_-2v' |- -2
v1 VO v1 . l 6 4] 0 ; v1
-2 v 0 0 -2 | v
v0 0 v0
-2 2 -2 '
L v1 + 2 VO | L 0 0 | V1
~6v 5 v ! -
6 v0 6 \1 + 2V ( 6 6 2 0 VOW
! !
4 v ! o 0 o 4 v,
- 1
= -
- c - 1
2 v0 2 V1 2 2 0 0 v0
!
-2 ! 0 0 0 -2 !
"2V ] I IR
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