
j

t

PROGRAM ANALYSIS BY DIGITAL COMPUTER

by

DANIEL UNDERWOOD WILDE

B.S.E.E., University of Illinois
1961

S.M., Massachusetts Institute of Technology
1962

SUBMITrED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PfilLOSOPHY

at the

MASSACHUSETrS INSTITUTE OF TECHNOLOGY
June, 1966

Signature of Author ~ l,\..)\-~IJ..t,
Department of Electrical Engineering, May 13, 1966

Thesis Supervisor

Accepted by~~~~~~~~~~~----~~~~~-
Chairman, Department Connnittee of Graduate Students

PROGRAM ANALYSIS BY DIGITAL COMPUTER

by

DANIEL UNDE~D WILDE

Submitted to the Department of Electrical Engineering on May 13, 1966
in partial fulfillment of the requirements for the degree of Doctor
of Philosophy.

ABSTRACT

A comparison of the properties of non-modifying and self-modifying
programs leads to the definition of independent and dependent instruc-
t ions. Because non-modifying programs contain only independent instruc­
tions, such programs can be analyzed by a straight forward, two-step
analysis procedure. First, the program control flow is detected; second,
that control flow is used to determine the program data flow or data
processing. However; self-modifying programs can' also contain dependent
instructions, and the program control flows and' data flows exhibit
cyclic interaction. This cyclic interaction suggests the use of an
iterative or a relaxation analysis technique. The initial step in the
relaxation procedure determines a first approximation to control flow;
the second step then finds a first approximation to data flow. These
two st~ps are repeated until a steady-state condition is reached.

Algorithms for implementing the first iteration are presented. These
algorithms are capable of analyzing programs which modify their control
and processing instructions during the course of execution. In addition,
data structures are described which permit the construction of functional
expressions for the data flow or information processing. Finally, actual
output flowcharts of self-modifying programs are displayed.

Thesis Supervisor: Herbert M. Teager
Title: Associate Professor of Electrical Engineering

ii

ACKNOWLEDGEMENT

The author would like to express his deepest appreciation to

Professor Herbert M. Teager who not only served as thesis supervisor,

but also was a source of inspiration, a friend, and a confidant,

Thanks are also due the thesis readers, Professors Donald C. Carroll

and Thomas G. Stockham, for their constructive criticism and evaluation

of the thesis research.

The author would also like to thank his friends and associates at

Project MAC for their interest and conunents during many discussions on

the thesis subject, Particular thanks go to A. Scherr, R. Thurber,

and O. Wright. In addition the author would like to thank the adminis­

tration and staff of Project MAC for the support and use of the time­

shared system.

Finally, the author would like to express his heartfelt thanks to

his parents for their continuing support; and to his wife, Marylin, for

her unending confidence and encouragement.

iii

TABLE OF CONTENTS

1. S~RY. • . • • • • • • 1

2 • INTRODUCTION. • 3

3.

4.

5.

6.

2.1

2.2

2.3

Motivation •

History ••

Purpose and Scope of This Thesis •

A DISCUSSION OF THE ANALYSIS OF SELF-MODIFYING PROGRAMS.

3.1 The General Analysis Problem •

3.2 The General Analysis Procedure

3 •. 3 The Relaxation Solution Problems

3.4 Dependent Instructions •

THE ANALYSIS SOLUTION ••••

4.1 The Solution Philosophy. .
4.2 The First Iteration.
4.3 The Control Flow Solutions
4.4 The Data Flow Solutions. . .
AUTOMATIC PROGRAM ANALYSIS EXAMPLES.

. .

.

. • . 3

. 8

12

14

14

16

17

25

30

31

31

37

60

86

5 .1 The Flowchart Formats. • • • • 87

5.2 Flowcharts Containing Dependent Instructions • 92

5.3 Flowcharts Containing Other Analysis Problems ••••••• 106

CONCLUSIONS ••• • 115

iv

CHAPTER 1

SUMMARY

This chapter outlines the organization of this thesis.

The second chapter is an introduction to automatic program analysis

by digital computer. Automatic program analysis is defined as the

construction of a flowchart from an original source program without human

assistance. Development of such an analysis capability is motivated

by its possible use as a documentation and debugging tool. The history

of automatic program analysis is presented. The purposes, objectives,

scope, and restrictions of the thesis are stated.

The third chapter presents the major problems of analyzing programs

which modify themselves. A comparison of the properties of non­

modifying and self-modifyin5 programs leads to a statement of the

general analysis problem and a general analysis procedure.

The fourth chapter discusses the major techniques used in the

general analysis procedure. The solution philosophy required for a

successful analysis is stated. The general organization of the analysis

system is outlined. Finally, a more detailed description of the indivi­

dual analysis techniques is given.

The fifth chapter displays the results of applying the existing

analysis system to example programs. The layout and symbols of the output

flowcharts are explained. Automatically produced flowcharts of programs

containing particular analysis problems are presented.

I

The sixth chapter summarizes and evaluates the specific results

shown in the earlier chapters and discusses reasonable extensions

of these results,

The first appendix contains the general flowcharts of the analysis

system subroutines. The second appendix displays output flowcharts

produced by applying the analysis system to some of its own subroutines.

2

CHAPTER 2

INTRODUCTION

This chapter is an introduction to automatic program analysis.

First, the general problem of such analysis is presented, and includes

a discussion of what automatic program analysis involves and why it is

useful. Finally, the purpose, objectives, scope, and restrictions of

this thesis are given.

2.1 MOTIVATION

In the early days of computer development, a detailed step-by-step

machine-language program, i.e. numerical ·code, had to be written before

a computer could be used to solve any problem. Because writing each

new program in machine-language required excessive coding and debugging

time, special programming aids were devised. Today, all machines have

assemblers that permit the programmer to use symbolic operation codes

and symbolic addresses. In addition, debugging packages and memory-

dump routines help tbe program tester reduce debugging and testing .time.

Finally, general-purpose languages, such as FORTRAN and MAD, enable in­

experienced programmers to write programs without worrying about machine­

language errors.

All of these programming aids are designed to help the programmer

write a new routine, but are of restricted use in understanding or

3

modifying an existing program even by its original author. In such a

situation there is no substitute for adequate, clear, and pedagogically

meaningful documentation of the intent and details of the progranuning

algorithms. In the absence of such information, a user would struggle

through the code to convert the existing program back into a block

diagram or a flowchart. After the flowchart was reconstructed, the

programmer could begin to understand both the function and algorithms

of the routine as the sum of its parts. During such a reconstruction,

a human progranuner performs many tasks which could be automated; and

thus, major portions of such automatic analysis could be performed by

the computer.

Automatic program analysis can clearly be applied to any aspect of

producing pedagogically meaningful program documentation. For our pur­

poses, we shall consider the construction of an accurate and concise

flowchart from an original assembly-language source program without

human assistance to represent a useful form of such information. This

flowcharting procedure must produce the flowchart "boxes" with their

sequential processes, and all such procedures must be interconnected.

The flowchart boxes and interconnections represent the control flow of

the program, i.e. the program instruction execution sequence. The

functional relationships inside the flowchart boxes express the data

flow of the program, i.e. the program information processing. Flowcharts

are generally accepted as the sine qua non of documentation procedures.

The major difficulties in machine generated flowcharts (over and above

4

the sheer difficulty of the problem) are no different from those en­

countered in hand generated ones. The more compact, concise, and

meaningful the document, the greater the departure from machine and

processing detail; and thus the more reasoning and abstraction required

of the "analyst" and less of the user. Results of this automatic

analysis even in a somewhat detailed form would be useful either as a

debugging tool or as a documentation tool.

As a debugging tool, the analysis program could analyze and display

all possible execution paths, not just those that might be executed

during the testing session. At the same time, the analysis program

could call attention to any obvious program inconsistencies, before the

debugging and testing sessions began.

As a documentation tool, the analysis program could automatically

provide final flowcharts for program documentation. This would allow

the programmer to spend more of his time generating program code and

less time documenting code. If flowcharts were prepared automatically,

it would be easy to have an up-to-date version immediately after code

corrections or additions were made. Also, a current flowchart would

help reduce coding interruptions due to programming staff change.s. If

the results of automatic analysis were presented in a standardized

mathematical form, it should be possible for a non-programmer with a

general mathematical background to understand the algorithm and comprehend

its implications. Finally, automatic program analysis should increase

the human capability for understanding large programmed systems, by

5

raising the level at which the human being assumes an analytic role.

Besides the direct use of program analysis for debugging and docu­

mentation, there are problems which can build on the results of such

analysis. The solution of these problems requires an understanding of

the interaction between programming languages and the execution of their

generated machine code. Examples of three such problems are given, and

the following discussion includes a statement of the problem and justi­

fication for its solution.

The development of large, interactive digital systems has made the

estimation of program execution time less reliable (13). In a time­

sharing system the operations manager cannot predict the throughput of

his system, just as in a large military command-and-control system the

commander cannot ascertain the information input conditions which will

saturate his facility. A better understanding of the relationship between

a programmed system and its machine execution requires a knowledge of

execution times and storage requirements as a function of the program.

With such data, a system analyst can decide what improvements need to be

made and what improvements can be made.

Today, it is still accepted that programs which are to be used re­

peatedly should be written in machine-language, while those used, just

now and then could be written in a general-purpose compiler language.

Thus, it is possible to pay for higher programming costs with the

savings from machine-time expenses. However, this balance can shift

because of a shortage of assembly-language programmers. Since there has

6

always been a shortage of capable programmers, why not develop an

automatic machine-code-optimization procedure that could be used either

during or after the compilation of a program (10)~ Thus, relatively

efficient machine code could be generated by relatively inexperienced

prograumers.

The last example concerns the reprogramming effort required by a

change of machines. At present, this usually means converting to a new

language. However, future system managers will be concerned not only

with changes in machine language, but also changes in machine structure

(e.g., from single processing to multiprocessing). If the switch is to

be worthwhile, a manager must take advantage of the new structure, and
I

he is faced with an inevitable reprogramming task.

Also, the system manager would like to have his users or customers

take advantage of his new facilities. However, at the same time he must

not increase a user's cost per unit of processing. The answer to this

problem is to provide an automatic reprograllllling system which can convert

from one language to another and still increase efficiency by taking

advantage of all the new features which prompted the machine change (9).

Although hopefully a clear case has been made for the desirability

of machine program analysis, its feasability, practical utility, and

difficulty of realization are far from clear. Utility assessment must

await availability, and the problem is far from trivial. In fact it is

the impossibility of finding a complete, closed form solution to the

problem of program analysis (a known consequence of Turing machine theory)

7

that has in part impeded the needed theoretical interest in the problem.

Such applied work as has been noted in the literature is scattered and

is far short of the requirements for even a rudimentary flowcharter.

2. 2 HISTORY

The purpose of this section is to review the literature that has

appeared in the area of program analysis. The review is intended to

show what has been done so that the context of this thesis may be seen.

This presentation is divided into four parts: Directed-Graph Theory as

Applied to Program Analysis; Program Analysis of Compiler-Language Source

Programs; Program Analysis of Machine-Language Source Programs; and the

Presentation of Program Analysis Results via Flowcharts. The work which

we will describe is generally much too restrictive to be useful for the

patterns of assembly-language coding which are generally utilized.

2.2.1 Directed-Graph Theory

A digital computer program can be represented by a directed-graph

model; if all control paths are known ab initio. Nodes of the graph

represent blocks of code, and branches of the graph represent control

paths. With such a model, results of classical directed-graph theory

can be applied to the program analysis problem, in the sense of pre­

dicting connectivity between arbitrary nodes.

8

R. T. Prosser (11), in work done in 1959, describes the analysis of

·directed graphs by the use of boolean matrices. Two boolean matrices

are associated with each graph: the first is called the connectivity

matrix, and contains the topological structure of the diagram; the second

is called the precedence matrix, and contains the precedence relations

of the graph.

The connectivity matrix is an n by n boolean matrix, A • (aij),

where n is the number of program blocks and aij • 1 if program block j

is just preceded by program block i. The precedence matrix is an n by n

boolean matrix, Bm = (bij), which is derived from the connectivity matrix

by performing elementary matrix computations on A exactly m times. De­

pending on the operations used, bij = 1 can indicate that it is possible

to proceed from block i to block j in either.exactly m steps or at most

m steps.

C. V. Ramamoorthy (12), in work done in 1965, uses the connectivity

matrix and precedence matrices to determine the structural characteristics

of the program represented by the boolean matrices. He presents algorithms

for detectins blocks which cannot be reached from the starting block;

for finding which blocks are included in at least one loop; for par·­

titioning a graph into its unconnected subgraphs; and for determining

the entry and exit blocks, Obviously, these determinatio~s are of only

incidental interest in understanding a procedure or deriving its flow­

chart. For a general review of graph theory, see C. Berge (1).

9

2.2.2 Program Analysis of Compiler-Language Source Programs

L. Krider (8), in work done in 1964, describes an algebraic repre­

sentation of the control flow of a computer program and presents an algo­

rithm for manipulating such a representation into a form which could be

used to draw a flowchart. The algorithm· works on the assumption that

the principal information about program flow is contained in its loop

structure. The algorithm also requires that all possible destinations

of all transfer instructions must be known in advance. Thus, this pro­

cedure can only be used on algebraic source-language programs. Such a

''pattern of code" is far more restrictive than is utilized in assembly­

language progr8.Dlldng.

2.2.3 Program Analysis of Machine-Language Source Programs

L. M. Haibt (3), in work done in 1959, describes a program, the

FLO#CHARTER, which automatically produces flowcharts of programs whose

instructions are fixed and not modified or calculated during execution.

The output of the FLOWCHARTER is a set of flowcharts showing various levels

of detail, where each part of a chart is shown in more detail on a succeed­

ing chart. The FLOWCHARTER is divided into four main parts: preprocessing,

flow analysis, computation summary, and output.

The preprocessors transform input source language instructions into

an internal language. This permits the FLOWCHARTER to handle different

source languages by simply using the proper preprocessor. The flow

10

analysis program determines what information goes on each flowchart

level. This routine first determines individual blocks and then groups

the smaller blocks together into larger blocks. The computation summary

program determines, for each block, which cells are used in input/out­

put, which cells are used in calculations, and which cells are cal­

culated. No functional relationships are derived; only the variable

names are listed. The output program prints the various flowcharts.

H. M. Teager, in an unpublished work, developed a cross-referencing

program. The input of the program is a 709 FAP source-language program,

while the output is a program listing plus cross-reference information.

For each instruction location, the cross-reference information indicates

the location of all instructions in the program that might effect the

given instruction. For example, if an instruction changes or uses the

contents of a cell, all locations which similarly modify or use that

cell are listed beside the given instruction. Although helpful, sometimes

the sheer volume of output makes the information useless.

2.2.4 Presentation of Program Analysis Results

G. Hain and K. Hain (4) have developed a program which will draw

flowcharts. The blocks of the chart are positioned so that logically­

close blocks are physically close, and there is a minimum number of

connecting-line crossings. Likewise, W. Sutherland, in an unpublished

work, used the SKETCHPAD program developed by I. Sutherland (15), to

display flowcharts. In both of these works, output presentation was

11

the major concern, and the necessary machine analysis was assumed to

have been derived by other means.

2.3 PURPOSE AND SCOPE OF THIS THESIS

This paper has two purposes. The first is to present algorithms

for analyzing programs which modify their control and processing in­

structions in the course of execution. Examples of such self-modi­

fication are computed changes in operation code or operand address of

instructions. The second purpose of this paper is to present data

structures which will permit a functional expression of program data

or information processing. These algorithms and data structures were

utilized in a program analysis system which produced data and control

flowcharts from assembly~language code. Even though the procedures and

data structures were developed for a specific computer and its assembly­

language, the results are of general theoretic and practical interest.

The machine incorporates all of the most sophisticated operations of

any existing machine short of a true multiprocessor, and thus, there

are no major "surprises" to be expected from minor perturbations in the

common structure of forthcoming machines in the near future, whether

more or less powerful.

The analysis and display procedures are general in scope; the con­

cepts apply to all machines and all programs. For purposes of experimen­

tation, the analysis and display algorithms were written for the IBM

12

7094 single-address machine (5) and the FAP assembler language (6).

Input to the analysis program is the BCD listing produced by the FAP

assembler. Output from the analysis program is a flowchart, where

block interconnections show the program control flow and symbolic

functional expressions inside the blocks show the program data or

information flow. In addition, pertinent cross-reference information is

given beside each block. This information permits a human user to

begin analyzing the program at a more sophisticated level if the auto­

matic procedures break down. Sufficient routines have been written

to validate the proposed analysis algorithms and evaluate the results

of the analysis programs.

13

Chapter 3

A DISCUSSION OF THE ANALYSIS OF SELF-MODIFYING PROGRAMS

The purpose of this chapter is to introduce the major problems of

automatic analysis of self-modifying programs. First, a comparison of

the properties of non-modifying and self-modifying programs with respect

to data and control flow leads to a statement of the general analysis

problem. Second, the general solution procedure of successive approx­

imations utilized to solve this problem is outlined. Third, the problem's

introduced by the solution procedure are discussed. Finally, examples

of self-modifying programs further illustrate the analysis problems.

In the description to follow, moderate familiarity with assembly-language

progrannning and the specific mnemonics and conventions of IBM's FAP will

be assumed (5 and 6)..

3.1 THE GENERAL ANALYSIS PROBLEM

Before the general analysis problem is stated, it would be good to

review the special case of programs which do not modify themselves.

This review describes the special property of non-modifying p~ograms

which permits a straight-forward, direct analysis procedure.

If a program is non-modif:ying, the set of all po&sible .. outc.omes

for each instruction is a function of the instruction itself and'is

14

independent of all other program instructions. For example, an absolute

transfer instruction, TRA Y, is an independent instruction because all

of its outcomes are determined by the instruction itself. On the other

hand, a tagged transfer instruction, TRA Y, l, is a dependent instruction

because its outcomes are a function of the contents of the index register

and thus the instructions and data which affected it. There is a wide

class of such dependent instructions which must be treated in the general

case.

The independence property of non-modifying programs permits a

straight-forward, two-step analysis procedure. First, the program con­

trol flow is determined by finding the outcome sets of all the transfer

or control instructions. These results are used to draw the flowchart

box outlines and interconnections. Second, the program data flow is

determined by finding the outcome sets of all the information processing

instructions. These results are then processed as a function of the

control flow to produce the symbolic functional expressions for inside

the flowchart boxes. In summary, the independence property permits a

two-step analysis procedure because the control flow can be found with­

out regard to the data flow.

However, if a program is self-modifying, the above two-step analysis

procedure cannot be used because it assumes instruction independence.

If a program contains dependent instructions, such as a tagged transfer

instruction, the control and data flows are a function of each other.

The outcome set of a tagged transfer is a function of the index register

loading instruction, but the set of index loading instructions can be a

15

·-··_, ~- .•o.-.

function of the outcomes of the tagged transfer instruction itself.

Because of this control flow - data flow interaction, a new analysis

procedure is needed for self-modifying programs. To be feasible, such

a procedure must perforce fall short of a complete dynamic analysis of

the program's execution, and instead consider just a few static itera­

tions.

3.2 THE GENERAL ANALYSIS PROCEDURE

If the control flow and data flow of a self-modifying program are

to be determined, a procedure must be found for handling the control

flow - data flow interaction cycle. This cyclic behavior of self­

modifying programs suggests the use of an iterative or a relaxation

solution technique.

Since data flow is always a function of control flow, the initial

step in the relaxation solution procedure should determine a first

approximation to the control flow. The second step would then determine

a first approximation to the data flow as a function of control flow.

The first two steps would be repeated until all the outcomes of all the

dependent instructions have been found and the analysis results have

reached a steady-state condition. Only then can the control flow results

be used to construct the flowchart box outlines and interconnections,

and the data flow results to produce the symbolic functional expressions

for inside the flowchart boxes.

16

3.3 THE RELAXATION SOLUTION PROBLEMS

The relaxation solution procedure is the iterative application of

the two-step analysis process for· non-modifying programs. Because of

the control flow - data flow interaction cycle of self-modifying pro­

grams, both steps must be modified. The purpose of this section is to

review the problems solved by the two-step procedure and to show how this

process must be modified to solve the relaxation problems.

3.3.1 Control Flow Modifications

Control flow represents the program instruction execution sequence

and is used to construct the flowchart box outlines and interconnections.

This execution sequence can be modeled by a directed graph where nodes

represent flowchart boxes and directed branches represent box inter­

connections. More specifically, let each node of the control gr~ph re­

present a program block. Let a block be defined as a sequential set of

instructions between a transfer entry point and the next transfer entry

or exit point. Thus, a block is completely processed once its first

member instruction is executed. Therefore, a directed graph whose

nodes represent program blocks displays only execution sequence infor­

mation. The major control flow graph construction problems are breaking

the program into blocks and then interconnecting those blocks in proper

sequence. Now, the differences between finding the control graph of a

non-modifying program and of a self-modifying program are discussed.

17

The first control graph construction step is the detection of all

control or transfer instructions. Each of these instructions generates

a set of outcomes, i.e. entry and exit points. For non-modifying pro­

grams, all entry and exit points can be determined from the individual

control instructions. Figure 3.la shows examples of entry and exit

points generated by independent control instructions. However, in the

case of self-modifying programs, some entry and exit points cannot be

in:mediately determined because of dependent instructions. Figure 3.lb

shows an example of such a dependent instruction, the tagged transfer,

where the entry points cannot be determined from the transfer instruc­

tion itself. Therefore, the control graph construction procedure must

be modified to handle missing entry and exit points.

Figure 3.1 - Entry and Exit Points

TRA A EXIT POINT

A ENTRY POINT

TZE B

B

EXIT POINT

ENTRY POINT

ENTRY POINT

a. Entry and Exit Points Generated by Independent Instructions

A TRA A, 1 EXIT POINT

ENTRY POINTS ?

b. Entry and Exit Points Generated by a Dependent Instruction

18

'' . .., ":. ·.•.,.'-'

In the second construction step the entry and exit points are pro­

cessed to determine the program blocks. In the non-modifying case, the

application of the block definition is straight forward. In the self­

modifying case, some entry and exit points are initially missing. There­

fore modification to the block definition is required so that a first

approximation to the program blocks can be made.

The third construction step interconnects the blocks or nodes in

the proper execution sequence. In the case of non-modifying programs,

all interconnections can be made ~ecause all control instruction out­

comes are known and blocks are completely defined. In the case of self­

modifying programs, some block connections cannot be made because of in­

complete control instruction outcome sets. Therefore, the block inter­

connection procedure must be modified so that assumed control graph

branches can be inserted at points where incomplete outcomes occur.

The final construction step places the control flow information

into some data structure. The control flow information of a non­

modifying program can be stored in a rigid data structure because its

information is completely known and is not changed by later analysis.

However, the data structure used to represent the self-modifying program

needs to be flexible because it contains information which might be up­

dated by later analysis results.

19

3.3.2 Data Flow Modifications

Data flow represents the data or information processing performed

by the program and is used to generate the functional expressions for

inside the flowchart boxes. This data processing can be modeled by a

directed graph where the nodes represent cell references or operators

and the directed branches represent the processing sequence. A cell

is either a memory location or a central processor register. An operator

is a machine operation, such as ADD or MULTIPLY.

The data flow graph removes the sequential constraint imposed by

the digital computer. This removal permits a better presentation of

the program's data processing algorithm by removing references to tem­

porary storage and displaying parallel processing paths. The data flow

is an implicit function of the control flow because control flow determines

the order of instruction execution and thus the arrangement of data flow

graph nodes and branches. Figure 3,2 shows a simplified program and its

data graph.

Figure 3.2 - A Data Flow Graph

AXT 10,l

CI.A A•

REPEAT ADD B,l

TIX REPEAT,1,1

STO c

a. The Program b. Its Data Flow Graph

20

The major data flow graph construction problems are determining where

and how each cell is referenced and then interconnecting those references

in the proper sequence to form the data flow graph. Now, the differences

between finding the data flow graph of a non-modifying program and of a

self-modifying program are discussed.

The first data graph construction step is the detection of all in­

structions which change or use data or information. Each of these instruc­

tions generates a set of outcomes, i.e. a set of references to various

cells. In the case of non-modifying programs, the reference outcomes of

each instruction can be found from the instruction itself. While in

the case of self-modifying programs, some outcomes may not initially

be known. For example, the cells referenced by the dependent instruction,

CI.A **, cannot be determined until after the actual address of the in­

struction itself has been found. Thus, the reference detection procedure

must be modified to handle dependent data referencing instructions.

The second construction step determines the effect of each cell

reference. The reference effect can be found from the instruction itself.

Let a reference which changes tne contents of a cell be known as an active

reference. Let a reference which only uses the contents of a cell be

known as a passive reference. For example, the CI.A A instruction makes

a passive reference to A and then an active reference to the accumulator,

AC. The ADD B instruction first makes a passive reference to cells B

and AC and then makes an active reference to the AC.

21

The third construction step determines the processing sequence of

the data references. When a program makes a passive reference to a cell,

it obtains the contents placed there by that cell's latest executed

active reference. In a static analysis it is only possible to find all

possible latest active references for each passive reference; only a

dynamic or interpretive process can detect the single latest active

reference. The latest reference set for· each passive reference can be

Figure 3.3 - Latest Reference Sets

_l

STO~

\ t-i

\
\

'~ '
' sro<p I

I

I I
I I

~ : I
I

I I ~

CLA~

t
a. Dual Search Path

STO~
I
I

I
I

CLA$
I

I

STO@

i

STO~

t-

,,

~

~

Cl.Ad>

t
b. Loop Search Path c. Parallel Search Path

22

found by searching back through the program as a function of the control

flow until all control paths are terminated by an active reference.

Figure 3.3 shows examples of latest reference sets. The dashed arrows

indicate latest references produced by passive reference - active ref­

erence matches. In the case of non-modifying programs, all data ref-

erences are known and control flow is completely determined. Such is

not the case for self-modifying programs. Since individual passive ref­

erences can be missing, not all the latest reference sets may be found.

Since individual active references can also be missing, latest reference

searches may be improperly terminated. Finally, since control flow paths

can be missing because they are functions of yet to be determined data

flow, latest reference searches may be incorrect. Thus, the latest ref­

erence searching procedure must be modified to handle dependent instructions.

The final construction step places the latest reference information

into a data structure which permits the generation of symbolic functional

expressions for inside the flowchart boxes. The data structure must

allow the analysis program to carry latest reference expressions forward

to each passive reference that needs them. The data structure must

also permit the analysis program to compress and simplify those func­

tional expressions. Figure 3.4 shows examples of functional expression~.

The second expression in each example is preferred. In the non-modifying

program, all control paths and data references are known. Therefore,

the latest reference structure can be rigid, and the functional

23

Figure 3.4 - Functional Expressions

~~

CLA A

ADD B

STO TEMP

~~

CIA TEMP

ADD C

STO D

+

_,L

~ ~

{:
.. TEMP + C

•A+B+C

a. Removal of Temporary Stores

24

~1r

CLA A

STO X

..._

J ,.
CLA B

STO X

1"

~
CLA X

STO Y
.. x
"'A or B

,.,

b. Multiple Values

expressions are final. In the self-modifying program case, some

control paths and data references can be missing. The latest reference

data structure must be flexible because its information may be changed

in later iterations.

3.4 DEPENDENT INSTRUCTIONS

Because of the large number of machine instructions and assembly

pseudo-operations in the FAP assembly-language, it is necessary to limit

the number and format of dependent instructions which the automatic

analysis program will initially handle. The purpose of this section is

to list and describe these dependent instructions.

3.4.1 The Transfer Switch

The first example of a control flow - data flow interaction problem

is the transfer switch. A transfer switch occurs when a program changes

its e:~ecution path by replacing or modifying its own instructions.

Figure 3.Sa shows one of the many forms of the transfer switch. In this

example, the transfer instruction at location A is picked up and stored

over an existing instruction at location B. When the program next

reaches location B, control will be switched to location C. The transfer

instruction at location A is dependent because its outcome is a function

of its storing instruction. In this example the control flow problem of

25

Figure 3.S - Dependent Instructions

B CI.A A TSX SUB,4

S'l'O B CALLING A TRA A,l
SEQUF.NCE

c RETURN
LOCATIONS

A TRA C l
a. The Transfer Switch b. The Subroutine Call c. The Calculated TratU1fer

A CI.AC

STA B A CI.A* B A CI.A B,l

B CI.A**

l B BSS 25

cl. The Changed Address e. The Indirect Address f. The Tagged Address

26

determining which location receives control from the switch interacts

with the data flow problems of detecting the switch and determining its

l~cation.

3.4.2 The Subroutine Call and Return

The second example of control flow - data flow interaction is the

subroutine call and return. Figure 3.Sb shows its general form. In
this example, the subroutine is called by the calling instruction, TSX.

The calling instruction is followed by a set of locations which form the

subroutine calling sequence. The calling sequence set may be empty.

The calling sequence is followed by a set of subroutine return locations,

i.e. locations to which the subroutine transfers control when it is

finished. Here too, the return set may be empty. The subroutine call

and return sequence are dependent because its outcomes are a function

of the subroutine itself. In this example the control flow problems of

determining the length of the calling sequence and the number of return

locations interact with the data flow problem of finding where and how

the subroutine calculates its return.

3.4.3 The Calculated Transfer

The third example of a control flow - data flow interaction is the

calculated transfer instruction. A calculated transfer occurs when a

27

transfer instruction calculates its possible outcomes, i.e. the set of

locations to which it transfers control. Figure 3.Sc shows one of the

forms of the calculated transfer, the tagged transfer. The tagged

transfer uses its address and tag to determine which location receives

control. Thus, the tagged transfer is a dependent instruction because

its set of outcomes are a function of the index loading instruction.

In this example the control flow problem of finding the set of locations

which can receive control from the tagged transfer interacts with the

data flow problem of finding where and how the index register is loaded.

3.4.4 The Modified Instruction

The fourth example of a control flow - data flow interaction is the

modified instruction. A modified instruction occurs when a program

modifies or changes a portion of an existing instruction. Figure 3.Sd

shows one of the many forms of the modified instruction. In this example

the address portion of the instruction at location B is changed by the

previous instruction. The instruction at location B is dependent because

its outcome is a function of its modifying instruction. In this example

the data flow problem of determining the new address portion of location B

interacts with the control flow problem of finding which locations change

the address portion of location B.

28

3.4.5 The Indirect Address

The fifth example of control flow - data flow interaction is the

indirect addressed instruction. Figure 3.5e shows one of the forms of

the indirect addressing. In this example the instruction at location A

uses the address portion of location B to determine which location it

references. The indirect address instruction at location A is dependent

because its outcomes are a function of the instruction which last changed

the address portion of location B. In this example the data flow problem

of determining the address portion of location B interacts with the

control flow problem of finding where that address was last changed.

3.4.6 The Tagged Address

The last example of control flow - data flow interacti?n is the tagged

address instruction. A tagged address occurs when an instruction uses

an index register to calculate its effective address. Figure 3.5f shows

an example of a tagged address instruction. In this example the instruction

at location A uses index register one to calculate which location is

picked up from the table at location B. The tagged address instruction

is dependent because its outcome is a function of the index loading in­

struction. In this example the data flow problem of deciding which lo­

cation is picked out of the table interacts with the control flow problem

of determining where the index register was last loaded.

29

I-

CHAPTER 4

THE ANALYSIS SOLUTION

In the previous chapter a comparison of ~he properties of non­

modifying and self-modifying programs led to the definition of

independent and dependent instructions. The dependent instructions of

self-modifying programs caused control flow - data flow interaction

requiring an iterative analysis procedure. The problems introduced

by iteratively applying the straight-forward, two-step analysis pro­

cedure for non-modifying programs were discussed.

This chapter presents the approximation procedures used by the

first it~ration to bootstrap itself through the control flow - data

flow interaction cycle discussed in Chapter 3. First, the solution

philosophy required for a S\.ccessful analysis is stated. Second, the

general organization of the first iteration is outlined. This outline

describes the data acquisition and data processing sequence and shows

the use of intermediate data flow analysis results to improve control

flow approximations and vice versa. Finally, a more detailed presenta­

tion describes how the control and data flow steps handle the dependent

instructions listed in Chapter 3.

30

4.1 THE SOLUTION PHILOSOPHY

If an automatic program analysis system is to be successful, it

should be able to analyze long, core-length programs, such as assemblers

and compilers. When long programs are analyzed, the analysis system

may generate intermediate data tables that are at least two or three

times as long as the original input program. Because it may not be

possible to retain all of the intermediate tables in core, these

results should be placed on external lists. Because of these large,

external data lists, .the analysis procedure should wherever possible

consist of sorting, merging, and scanning. Any searching of these

lists or other data structures should be avoided or delayed whenever

possible. If this data processing philosophy is to be successful,

a set of temporary result lists and a processing sequence must be

developed.

4.2 THE FIRST ITERATION

Because the first iteration uses intermediate data flow analysis

results to improve its control flow approximations and vice versa, a

general outline of the first iteration organization would be helpful

before the detailed dependent instruction solutions are discussed.

The first iteration is divided into four parts: Data Gathering, Data

Processin_g, Data Reduction, and Function Generation and Output. The

organization and information processing are also graphically displayed

in Figure 4.1 and Figure 4.2.

31

Figure 4.1 - The First Iteration Organization

Phase 1 - Data Generation

Start Reading Assembly Tape
t

Read Next Instruction

"End" 'f ____ _..; ______ Identify Instruction Opcode

/ I I '-
"Transfer" "Storage" "Data" "Reference"

/ { ~
Make Transfer
List Entries

Phase 2 - Data Processing

Make Storage
List Entries

Make Data
List Entries

Approximate Subroutine Returns

t
Find Portion Changed

t
Find Constants and Results

t
Find Modified Instructions .,

Find Transfer Switches

Phase 3 - Data Reduction !
Break Program Into Blocks ,.

Approximate Missing Branches

l
Find Latest References

Phase 4 - Function Generation j
Construct Functional Expressions

'f
Print Output

32

~
Make Reference
List Entries

Figure 4.2 - The First Iteration Information Processing

Phase 1 - Data Generation

Transfer
Lists

Phase 2 - Data Processins

t
Add Subroutine
Entry and Exit

Points

Correct for
Transfer Switches

Phase 3 - Data Reduction

t
Control Tables

t
Add Approximated

Links

Storage
Lists

Phase 4 - Function Generation

L
~ Output

33

Data
Lists

Reference
Lists

Add Portion Used

Flag Constants
and Results

Flag Modified
Instructions

I
Reference Tables

Add Latest Reference
Tables

t
Construct Functional

Expressions

4.2.1 Data Gathering

The first phase transforms the input program from a set of assembly­

language instructions into a set of temporary data lists. The input

program is scanned one line at a time. First, the line is decoded

and interrogated for such information as octal instruction, its

assigned memory location, BCD instruction operation code, and absence

or presence of a tag or indirect address. The assigned memory location

and octal instruction were produced by the FAP assembler. They are

used by the analysis program as bookkeeping aids for generating list

or table entries, e.g. the assigned memory location is used in each

table entry so that later analysis phases can determine which

instruction originally generated the entry. The BCD operation code

is used to decode the instruction because it permits some "interpreta­

tion" of programmer intent, e.g. data and storage pseudo-operations

can be distinguished from executable instructions. Tagged and indirectly

addressed instructions are detected so that special analysis procedures

can be initiated.

Second, entries are added to the various data lists according to the

BCD operation code. For transfer instructions, entries are added to

the various Transfer Lists, e.g. the Entry and Exit Point Lists. For

referencing instructions, entries are added to the Active and Passive

Reference Lists. For data generation pseudo-operations, entries are

added to the Data List. For storage generation pseudo-operations,

entries are added to the Storage List, etc. Each list entry uses

information decoded from the original instruction, e.g. if the instruction

is tagged or indirectly aDdressed, special flags are set in its entries

so as to alert later analysis phases.

4.2.2 Data Processing

The second phase determines program properties by using data

processing techniques on the temporary data lists. In general, the

lists are sorted to place them in proper order and then sequentially

scanned to detect program properties.

First, general program properties are detected. Transfer Lists

are sorted and scanned to determine first approximations to subroutine

return points. These new entry and exit points are added to the Entry

and Exit Point Lists. The Reference Lists are sorted and scanned to

detect which portions of each cell are actively referenced; which cells

are only passively referenced, i.e. constants; and which cells are only

actively referenced, i.e. results.

Second, special program properties are determined. Modified

instructions are detected by comparing each Active Reference List

entry with those on the Data and Storage Lists. If a proper match is

not found, the actively referenced location is flagged as a possible

modified instruction. Possible transfer switch locations are found

by comparing each entry on the Passive Reference List against all

entries on the Ex.it Point List. A match indicates a passive reference

35

to a location which contains a known transfer instruction. The matching

Exit Point entry and the Reference Lists are then used to find a first

approximation to the outcomes of the transfer switch. The new outcomes

are added to the Entry and Exit Point Lists.

4.2.3 Data Reduction

The third phase transforms the processed temporary data lists into

more convenient data structures. Generally, this involves sorting the

lists into proper order and then placing each list entry into a new

data structure by either scanning or searching the list.

First, the Transfer Lists which contain sorted entry and exit

point information are transformed into Control Tables which represent

the approximated control flow graph. The Entry and Exit Pnint Lists

are used to break the program into blocks and to interconnect those

blocks. This topological information is then represented in the Control

Tables. Finally, the Control Tables are interrogated to detect unreachable

blocks and to approximate and to insert missing control branches.

Second, the Reference Lists are resorted and transformed into

Reference Tables by associating each Active and Passive Reference List

entry with the block in which it occurs. Next, the "latest reference

set" for each passive reference is found by searching the Control and

Reference Tables. Finally, the latest reference information is placed

into a suitable data structure.

36

4.2.4 Function Generation and Output

The fourth phase transforms the Latest Reference Tables into

functional expressions and places those expressions in a suitable data

structure for final output.

4.3 THE CONTROL FLOW SOLUTIONS

This section.presents the solution techniques used to solve the

control flow problems discussed in Chapter 3. First, the control flow

graph structure is presented so that the end result is known in advance.

This discussion includes the desired structure properties and a structure

which incorporates those properties. Second, the solution techniques

used to bootstrap through the dependent instruction interaction cycle

are presented. These techniques include detecting the entry and exit

points, determining the program blocks, and interconnecting the blocks.

4.3.1 The Control Graph Data Structure

The data structure which contains the control flow information must

have two characteristics. First, the structure must permit forward and

backward movement in the control flow graph. Forward, because the program

is executed in that direction; backward, because the latest reference

search is easier to program for that direction. Second, the structure

must permit expansion and contraction of the control flow graph. Expansion,

37

I

because later analysis iterations may detect new blocks; contraction,

because those same iterations may wish to rejoin blocks.

A modification of Ross's plex (14) produces a data structure which

incorporates the proper characteristics. The complete structure will be

referred to as the Control Tables and is composed of three separate

tables: the Topology Table, the To Table, and th~ From Table. Figure 4.3

shows the general component of each of these three tables.

Figure 4.3 - The Control Tables

I ---+ START END

lJ ' -
TO TO

TO fl POINTER - :/}

FROM fl FROM

" ,J POINTER -

' ...!I.
7 -

-
a. Topology Table b. To Table c. From Table

38

The Topology Table serves as.the "card catalogue" for analysis

results. When the analysis program needs information about a given

block, it can be found through the Topology Table once the Block Number,

I, is known. The Topology Table entries are numbered sequentially with

the starting program block coming first, the second block second, etc. A

Topology Table entry is composed of seven sequential words. The first

word contains the STARTing and ENDing location of the particular block.

The second word is the "catalogue card" for the blocks which can be

reached from the particular block. The left half contains the count

of those blocks, and the right half points into the To Table where the

Block Numbers of those reachable blocks are stored. The third word is

the "catalogue card" for the blocks which can pass control to this

particular block and is constructed similarly to the secon~ word. The

fourth through seventh words are reserved for data flow information and

will be discussed in a later section.

The To Table contains a variable length entry containing the Block

Number of each block reachable from the given block. Likewise, the

From Table contains a variable length entry containing the Block Number

of each block which can pass control to the given block.

4.3.2 Detecting the Entry and Exit Points

During the Data Gathering Phase, entr.ies are added to the temporary

Transfer Lists whenever a transfer or control type instruction is found.

39

If the data structure of these lists is to conform with the general

solution philosophy discussed earlier, the structure must permit

individual entries to be added as required but yet allow all entries

to be processed as a group.

These characteristics can be incorporated into two lists, the

Entry Point List and the Exit Point List. The Entry Point List contains

the entry point entries, and the Exit Point List contains the exit

point entries. The format of the list entries is shown in Figure 4.4.

The "f" portion of each entry retains information about the function

or purpose of the transfer instruction which generated the entry,

e.g. remembers that the instruction was an absolute transfer, a subroutine

call, or a tagged transfer. The "Entry Point" portion of each entry

contains the core location of the entry point. The "Exit Point" portion

of each entry contains the core location of the exit point.

Figure 4.4 - The Entry and Exit Point List Formats

f
ENTRY
POINT

EXIT
POINT

EXIT
f POINT

ENTRY
POINT

a. Entry Point List b. Exit Point List

40

Generating the Entry and Exit Point List entries involves detecting

all control instructions and determining their outcome sets. The outcome

of an independent control instruction can be determined from the

instruction itself. Figures 4 .5 and 4 .6 show examples of list entries

generated by independent instructions during the Data Gathering Phase.

Note that, except in special cases which are discussed later, Entry and

Exit Point List entries are made in pairs. This procedure facilitates

breaking the program into blocks. However, there is a small but impor-

tant percentage of control instructions which are dependent and whose

outcome sets cannot be determined by the Data Gathering Phase. Now,

three such dependent instructions are discussed to indica~e how their

Entry and Exit Point List entries are generated.

Figure 4.5 - The Entry and Exit Point Entries of an Absolute Transfer

A TRA B _... EXIT -, POINT

t \
f, B, A f, A, B

\ l
B L ENTRY

""' POINT

a. The Program b. The Entry List c. The Exit List

41

f.

Figure 4.6 - The Entry and Exit Point Entries of a Conditional Transfer

A TZE B EXIT
POINT

ENTRY f, A+l, A f, A, A+l POINT
f, B A f, A, B

J I ENTRY B POINT

a. The Program b. The Entry List c. The Exit List

The first example of a dependent control instruction is the Transfer

Switch. Figure 4.7a shows how a Transfer Switch might occur in a program.

During the Data Generation Phase, Entry and Exit Point List entries are

made for the TRA C instruction, and Active and Passive Reference List

entries are made for the Cl.A A and STO B instructions, During the Data

Processing Phase, the analysis program detects a passive reference to a

location containing a transfer instruction. In this case the Passive

Reference List contains a passive reference to location A generated by

the CIA A instruction, and the Exit Point List contains an entry at

location A generated by the TRA C instruction. Thus, the Data Processing

Phase knows that the CIA A instruction fills the accumulator with an

42

Figure 4.7 - The Transfer Switch

B EXIT
POINT

}

' CI.A A ENTRY f, c ' A f, A, c POINT STO B

l I c ENTRY
POINT

f, B+l, B f, B, B+l

T r-=· f, c ' B f, B, c
A TRA c POINT

a. The Program b. The Entry List c. The Exit List

Figure 4.8 - Transfer Switch with Passive-Active Reference Separation

A

B

c

CI.A y
TRA B

STO Z

CI.Ax

STO C

X TRAM

Y TRAN

-

. 43

EXIT POINT

ENTRY POINT (from somewhere else
in the program)

ENTRY POINT

EXIT POINT

instruction that passes control to location C. It also knows that the

instruction is at location A and the "f" portion of its Exit Point List

entry indicates an absolute transfer, TRA. The Data Processing Phase

determines where the accumulator stores the transfer instruction by

noting that the "next" passive reference to the AC after the active

reference to the AC generated by the CLA A instruction is the STO B

instruction. Therefore, since the STO B instruction actively references

location B, the transfer instruction is stored into B. Because control

can be split two ways at location B, two entry point - exit point pairs

are added to the end of the lists as shown in Figures 4.7b and 4.7c. The

"f" portions of these new entries indicate generation by a Transfer Switch.

Note that care must be taken to determine whether or not the passive

reference which picks up the transfer is separated from the active

reference which stores the transfer by either an entry or exit point.

If the references are separated, the "correct" active reference cannot

be found until after the first approximation to the control flow has been

determined, Le •. during the second iteration. Figure 4.8 shows such a

case. The TRAN instruction is stored into location C, not Z. Finally,

the Da.ta Processing Phase must determine whether the transfer instruction

which causes the switch can be executed in its original location. This

is done by seeing if there is a data or storage pseudo-operation on the

Data or Storage Lists in a location "just above" the location of the

transfer instruction. If there is, the Entry and Exit Point List entries

originally generated by the transfer are removed because the transfer

44

instruction "appears" to be included in a "data area" and is "probably"

not executed in its original location.

The second example of a dependent control instruction is the

Subroutine Call and Return. Figure 4.9a shows how a subroutine call can

occur in a program. Subroutine return points must be found so that the

proper Entry and Exit Point List entries are made and the program can

later be broken into the correct blocks. For analysis purposes, there

are two types of subroutines. The first type is the external subroutine

which is assembled separately from its calling program and need not be

available for analysis. An external subroutine can be detected by a

call which transfers control to a location in the Transfer Vector,

i.e. a location before the first executable inst.ruction. The external

subroutine return information must be supplied as input information

along with the original input program. This information is processed

during the Data Gathering Phase and is used to generate Entry and Exit

Point List entries.

The second type of subroutine is the internal subroutine. It is

assembled along with its calling program and is available for analysis.

During the Data Gathering Phase, a Subroutine Return List containing

internal subroutine calls and probable subroutine returns is constructed.

A subroutine is usually called in the FAP language by a TSX instruction.

A subroutine usually returns via a tagged, absolute transfer, such as a

TRA '.'small constant", 4. 'When a TSX instruction is found, a call entry

is added to the end of the Return List; when a probable subroutine return

45

Figure 4.9 - The Subroutine Call and Return

EXIT
\

A TSX SUB, 4 POINT f, SUB, A

1
CAU.ING f, B ' A

?
SEQUENCE

f, B+l, A
• •
•

B ENTRY f, B+n, A
POINTS ?

• FOR
RETURNS

a • The Program b. The Entry List

Fi~ure 4.10 - The Subroutine Return List

A TSX SUBl,4

B TSX SUB2,4
SUBl, A

SUB2, ·B

SUBl x, 1

Y, 1
:.~ ~~ z, 2

x TRA 1,4

SUB2

~~ ~~
y TRA 1,4

z TRA 2,4

a. The Program b. The Return List

46

l
f, A, SUB

\
f, A, B
f, A, B+l

• • •
f, A, B+n

c. The Exit List

SUBl, A

x, 1

SUB2, B

Y, 1

z, 2

c. The Sorted
Return List

,;; .

instruction is foundt a return entry is added to the end of the Return

List. Figure 4.lOa shows an example of a program; Figure 4.lOb shows its

Subroutine Return List; and Figure 4.lOc shows its sorted Return List.

Note that in the sorted listt the returns for each subroutine are grouped

together under its entry point or starting location. This technique

assumes that all instructions of each subroutine are sequentially

grouped togethert e.g. SUBl and SUB2 do not have any common instructions

in Figure 4.lOa. If subroutines do have common instructionst this

approximation procedure produces invalid return points which must be

corrected after the first approximation to control flow has been

determinedt i.e. in a later iteration, Figures 4.9b and 4.9c show how

the entry point and exit point entries are added to the end of the lists

for each subroutine call.

The third example of a dependent instruction is the calculated

transfer. Figure 4.11 shows how one form of the calculated.transfert

the tagged transfert might occur in a program. Note that the tagged

transfer in Figure 4.11 has a symbolic or relocatable address and is

"probably" not a subroutine return. During the Data Generation Phase,

only the location of the Ex.it Point is known, i.e. the location of the

tagged transfer instruction. Therefore, only a single Exit Point List

entry can be made and is shown in Figure 4.llc. Its "f" portion shows a

tagged transfer, and its "Entry Point" portion is flagged as unknown.

The problem of the missing entry points is passed on to later analysis

phases,

47

Figure 4.11 - The Calculated Transfer

A TRA A, 1 EXIT
POINT I f, A, "?"

I
a. The Program b. The Entry List c. The Exit List

4.3.3 Determining the Program Blocks

After the Data Generation and Data Processing Phases detect the

control instructions and generate the Transfer List entries, the Data

Reduction Phase uses the lists to determine the program blocks. First,

the lists must be ordered. The Entry Point List is sorted on its

"Entry Point" column; the Exit Point List is sorted on its "Exit Point"

column. Second, the program is broken into blocks by sequentially

scanning the two lists and recognizing the various entry and exit point

patterns.

48

T~ere are four different types of blocks which produce four

different Entry and Exit Point patterns. These are:

1. Blocks with both entry and exit points,

2. Blocks with only exit points,

3. Blocks with only entry points, and

4. Blocks with neither entry points nor exit points.

The patterns are recognized by detecting the occurrence of certain

mathematical relationships between the "Entry Point" portion of the

sorted Entry Point List entries and the "Exit Point" portion of the

sorted Exit Point List ent~ies. Each list has its own pointer which

specifies the current entry on the list, e.g. the Entry Point List

Pointer specifies the Current Entry Point. The term, Next Entry Point,

refers to the next different entry after the current entry. Since both

lists have been sorted, it is always true that the Next Entry Point be

greater than the Current Entry Point. Likewise, the next Exit Point

must be greater than the Current Exit Point. As the respective entries

are processed, the pointers are moved down the lists. The recognition

process is recursive, and the recognition expressions stated below

assume that all entries and exits for the previous block have been

processed.

49

> 1-.,,

1. The current block has both entries and exits:

Current Entry • Previous Exit + "l"

Current Entry <Current Exit

Current Exit < Next entry

2. The current block has only exits:

Current Entry rf: Previous Exit + 11111

Current Entry) Current Exit

3. The current block has only entries:

Current Entry • Previous Exit + "l"

Cui-rent Exit) Next Entry

4. The current block has neither entries nor exits:

Current Entry r Previous Exit+ "l"

Current Entry < Current Exit

Figure 4.12a shows a·flowchart outline which contains a block with

both entries and exits. Block Q can be reached from location b and

transfers control to locations 1 and y. Block Q starts at location j

and ends at location k. Figures 4.12b and 4.12c shows the Sorted Entry

and Exit Lists. If Block P has already been formed, then the arrows on

the two sorted lists point to the current list entries. Block Q has

both entries and exits because the list entries satisfy the first set

of relationships shown above, i.e. j • i + 1, j (k, and k < 1. The

START of Block Q is j, and the END is k. Figures 4.12c, d, and e show

50

p

Q

R

FigUre 4.12 - A Block with both Entry Point end Exit Point Entries

~

<
l i~

" r
I

)

~~

I

,~k

f

j

k

1
m

b
y

R z

a. The Program

h i

1 •

1 -•
~~ *'

j k

2

1 ..
~~ ~~

1
r

m.

1

1

k

F
d--

~

d. The Topology Table

f, h, • f, i, x
~f, j, b f, k, 1 ~

f, 1, k f, k, y

I f, m, :r.:

b. Sorted Entry List c. Sorted Exit List

~ --, f x

~

7 f 1

f y ,... f :r.:

~ ~

f ,,,. •
,. f b

~

f k 7

e. The To Table f, The From Table

51

the Control Tables for Block Q, Since there are two Exit List entries

with an "Exit Point" portion of k, there are two To Table entries,

1 and y. Since there is only one Entry List entry with an "Entry

Point" portion of j, there is only one From Table entry, b. In this

example and those to follow, the entries in the To and From Tables are

core locations, not Block Numbers. The core locations are replaced by

Block Numbers after the program has been broken into blocks.

Figure 4.13a shows a flowchart outline which contains a block with

only exits. Block Q only exits to location y. (The entry at i + 1 can

be missing because of a calculated transfer not generating its en~ry

point entries during the Data Generation Phase.) Block Q starts at

location i + 1 and ends at location j. Figures 4.13b and 4.13c show

the Sorted Entry and Exit Lists. If Block P has already been formed,

then the arrows on the two sorted lists point to the current list entries.

Block Q has only exits because the list entries satisfy the second set

of relationships shown above, i.e. k 1i+1 and k > j. The START of Block Q

is i + 1, and the END is j. Figures 4.13c, d, and e show the Control

Tables for Block Q. Since there is one Exit List entry with an "Exit

Point" portion of j, there is one To Table entry, y. Since there are

no Entry List entries with an "Entry Point" portion of i + 1, there are

no From Table entries for Block Q.

Figure 4.14a shows a flowchart outline which contains a block with

only Entry List entries. Block Q receives control from location i, but

transfers control directly to the next sequential block. Figures 4.14b

52

p

Q

R

Figure 4.13 - A Block with only Exit Point Entries

i+l r-:--,
j~y

a. The Program

,
I h i

J I
1

1

~:: \ l~ $~

I\ ~ i+l j

1 ,.-

0 0

~ .. 1:: ~

I k 1

1

1 -
~ * * I

d. Topology Table

f, h, a
~f. k, b

b, Sorted Entry List

__.,_
7 f x

.
7 f y

r+' f z

e. To Table

53

' f, i, x
f, j, y ~
f. 1, z

J

c. Sorted Exit List

.. --, f a

,. f b

f. From Table

and 4.14c show the Sorted Entry and Exit Lists. If Block P has already

been formed, then the arrows on the two lists point to the current list

entries. Block Q has only entries because the list entries satisfy the

third set of relationships shown above, i.e. j = i + 1 and 1 > k. The

START of Block Q if j, and the END is k - 1. Figures 4,14c, d, and e

show the Control Tables for Block Q. Since Block Q exits directly to

the next block, an exit is inserted from location k - 1 to location k.

Thus Block Q has one To Table entry, k. Note that Block R has two From

Table entries, b and k - 1. Since there is one Entry List entry with

an "Entry Portion" of j, there is one From Table entry, i.

Figure 4.15a shows a flowchart outline which contains a block with

neither entry not exit points. Figures 4.15b and 4.15c show the Sorted

Entry and Exit Lists. If Block P has already been formed, then the

arrows on the two lists point to the current list entries. Block Q has

neither entries nor exits because the list entries satisfy the fourth

set of relationships shown above, i.e. j 1 i + 1 and j <:. k. The START

of Block Q is i + 1, the END is j - 1. There are no To or From Table

entries.

4.3.4 Interconnecting the Blocks

In the previous section, techniques for breaking the program into

blocks and constructing the Control Tables were described. Now, these

tables must be checked to insure that the blocks have been properly

54

Figure 4.14 - A Block with only Entry Point Entries

h •
i

p
x

t f, i, j
j f, h, • f, i, x

Q -+f, j. i f, 1, m,._

k f, k, b f, 1, y

1 f, m, 1 f, n, z R

\
m
n s

•• The Program b, So~ted Entry List c. Sorted Exit List

h f x

p 2 f j

1 f k

f y

j . k-1 f m

Q 1 f z

1

2
R

f •
m n f i

1 f k-1
s

1 f b

T T f 1

d. Topology Table e. To Table f. From Table

55

r-
1

p

Q

R

Figure 4.15 - A Block with neither Entry Point nor Exit Point Entries

h

~: i

i+l Q j-1

j

~; k

a. The Program

h i

1

l'

....

j-1

0 0

0 0

1

T
d, Topology Table

f, h, a
~f. j, b

b. Sorted Entry List

f x

f y

e. To Table

56

f, i, x
f, k, y~

c. Sorted Exit List

f a

f b

f. F-rom Table

and totally interconnected so that all program blocks are used in the

analysis. The purpose of this section is to discuss techniques for

testing block interconnections, detecting isolated or improperly

connected blocks, and correcting improper block connections.

The program being analyzed must be assumed to be a ''well connected"

program where each program block can be reached from at least one of the

program starting blocks. (A subroutine can have any number of starting

blocks or entry points.) If a block cannot be reached from a starting

block, there must be some reason for its isolation. Detecting isolated

blocks first requires constructing a list of blocks which can be

reached from one of the starting blocks and then determining which

blocks are missing from this reachable block list.

As each isolated block is detected, the reason for its isolation

must be determined; and its Control Table entries corrected. If the

block should be isolated, its Topology Table entry is flagged as such.

However, if the block should not be isolated, the proper assumed

connection branches must be inserted into the Control Tables to make the

isolated block reachable from its true predecessor blocks. After the

Control Tables have been corrected for the isolated block, a new list

of reachable blocks is constructed; and the detection procedure is

repeated. This detection and correction procedure is repeated until

all blocks are either reachable or flagged as truly isolated. Because

of the generality of assembly-language programming, there are many

different reasons for isolated blocks. It is at this point that

individual algorithms must be developed for each class of reasons.

57

Probably the most common reason why a block should be isolated

is that it contains data or storage pseudo-operations and is not meant

to be executed. (Of course, there will always be the programmer who,

for reasons known only to himself, uses data or storage pseudo-operations

to generate executable code.) Figure 4.16a shows the structure of a

program containing such a block. If this type of block is found missing

from the reachable block list, its reason for being isolated can be

verified as follows. First, the Data and Storage Lists are scanned to

see if they contain at least one entry whose program location places it

within the isolated block. Second, the Control Table entry of the block

preceding the isolated block is checked to see if it is terminated by

a single absolute transfer. If both conditions are satisfied, the block

is truly isolated; and a data or storage flag is set in its Topology

Table entry.

Another common reason wl1y a block should be isolated is that it

contains a subroutine calling sequence. Figure 4.16b shows the structure

of a program containing such a block. If this type of block is found

missing from the reachable block list, the To Table entry of the prece­

ding block must show that it is terminated by a subroutine call. Because

of the generality of assembly-language programming, a calling sequence

can contain any type of instruction or pseudo-operation. At this stage

of analysis, the isolated block can only be flagged as an assumed

calling sequence. In a later iteration after the subroutine return

approximations have been verified, the interaction between subroutine

58

Figure 4.16 - Isolated Blocks

TRA SKIP EXIT
POINT

A OCT 1

B DEC 100

TABLE BSS 20

SKIP ENTRY
POINT

a. The Data or Storage Block

TSX SUB,4

PZE COUNT

PZE TABLE

EXIT
POINT

ENTRY
POIN1'

b. The Calling Sequence Block

TABLE TRA TABLE,l

TRA A

TRA B

TRA C

•
' •

c. The Dispatch Table

59

.i-. ABSOLUTE ~TRANSFER
ISOLATED BLOCK
CONTAINS DATA OR
STORAGE D

LJ

D.+SUBROUTINE GALL

D CALLING SEQUENCE ?

~SUBROUTINE RETURN ?

~GGED TI<ANSFER ,,.,

,'~~
~ ~DISPATCH TABLE

\

'D+
..
•

calling sequences and subroutine returns can be used to verify the

flagging of blocks as calling sequences.

One common use of the calculated transfer is in a dispatch table.

A dispatch table is a sequential set of blocks where the first block is

terminated by a tagged transfer and the other blocks are terminated by

an absolute transfer. The contents of the index register of the tagged

transfer are used to determine which dispatch table block receives

control from the tagged transfer block. Figure 4.16c shows a program

containing a dispatch table. When the program is broken apart, the

blocks in the dispatch table are formed as a function of exit points

alone, because the entry points of the tagged transfer are missing.

Thus, no connections are made between the tagged transfer block and the

dispatch blocks. When a reachable block list is constructed, the dispatch

blocks and those connected to them are missing. Therefore, assumed

branches must be inserted into the Control Tables to interconnect the

tagged. transfer block and the dispatch blocks as shown by the dashed

arrows in Figure 4.16c. These assumed branches permit the analysis

program to reach the blocks which are connected to the dispatch blocks.

In a later iteration after the set of possible index regfster values

has been determined, the assumed branches can be verified.

4.4 THE DATA FLOW SOLUTIONS

This section presents the solution techniques used to solve the

data flow problems discussed in Chapter 3. First, the data flow graph

60

data structure is presented so that the end result is known in advance.

This discussion includes the desired structure properties and a structure

which incorporates those properties. Second, the solution techniques

used to bootstrap through the dependent instruction interaction cycle

are presented. These techniques include generating the active and

passive references, finding the latest reference sets, saving the

latest reference information, and constructing the functional expressions.

4.4.1 The Data Graph Data Structure

The data structure which contains the data flow information must

have three characteristics. First, the data flow information should

be incorporated into the control flow structure so that the latest

reference searches can be easily performed. Second, the structure should

permit the Active and Passi·1e Reference List entries to be associated

with the block in which they occur in order to facilitate the latest

reference searches. Third, the structure should retain the latest

reference information in such a way as to provide for passing the func­

tional expressions generated by each active reference on to those passive

references which will need the expressions.

The first two desired characteristics can be accomplished by

enlarging the Topology Table entry for each block to include "catalogue

cards" for data flow information. Figure 4.17 shows the enlarged

Topology Table block entry. The construction and interpretation of the

61

Figure 4.17 - The Enlarged Topology Table

h
I ~ START END

~ -
f

<

TO
TO

TO # - fi
POINTER

FROM # FROM -POINTER I .J

ACTIVE # ACTIVE To Table
POINTER """

PASSIVE fi PASSIVE
POINTER

IATEST fi
LA.TEST -POINTER

USER fi
USER ~ _ ... -POINTER F

Topology Table - }

FROM
fi

From Table

~ ..i ""
ETC.

~ -)
(ACTI

- -'>- #
I

VE

-
Active Table

62

- ------- --------------------~-----------~-

new table words are the same as before, i.e. the left side gives the

table entry count, and the right side points to those entries in the

given table. The third characteristic can be fulfilled by properly

constructing the four new tables, i.e. the Active, Passive, Latest,

and User Tables. The format and construction of these tables will

be intr.oduced as they are needed.

4.4.2 Generating the Active and Passive References

The purpose of the Reference List entries is to tell the later

analysis phases what and where information is changed, used or needed,

The Data Generation and the Data Processing Phases construct the

individual active and passive reference entries, The Data Reduction

Phase uses the active references to find the latest reference sets for

each passive reference. The Functional Generation Phase uses the latest

references to construct the functional expressions for inside the

flowchart boxes. If this processing chain is to be successful, the

initial Reference Lists must be properly constructed.

During the Data Gathering Phase, entries are added to the

temporary Reference Lists whenever an instruction which changes or uses

information is found, If the data structure of these lists is to

conform with the general solution philosophy discussed earlier, the

structure must permit individual entries to be added as required but

yet allow all entries to be processed as a group.

63

These characteristics can be incorporated into two lists, the

Active Reference List and the Passive Reference List. The Active

Reference List contains the active reference entries, and the Passive

Reference List contains the passive reference entries. The format of

the list entries is shown in Figure 4 .18. The "f" portion of each

entry retains information about the function or purpose of the instruction

which generated the reference entry, e.g. remembers that the instruction

was a plain STA instruction which changes only the address portion of

the "Cell Changed"; was a CLA instruction with a symbolic operand address

of **; or was a tagged STO instruction. The "Cell Changed" portion of

an active reference entry is the cell number of the cell changed by the

active reference. (For bookkeeping purposes, the central processor

registers are also assigned cell numbers.) The "Cell Used" portion of

a passive reference entry is the cell number of the cell used by the

passive reference. The "Instruction Cell" portion of both entry types

is the cell number of the cell which contains the instruction which

generated the entries.

Generating the Active and Passive Reference List entries involves

detecting all referencing instructions and determining their outcome

sets. The outcome of an independent reference instruction can be

determined from the instruction itself. Figures 4.19 and 4.20 show

examples of list entries generated by independent instructions during the

Data Gathering Phase. The number of entries made for each instruction

is a function of its operation code. As in the case of control

64

Figure 4.18 - The Active and Passive Reference List Formats

f
CELL

CHANGED
INSTRUCTION

CELL

a. The Active Reference List

f CELL
USED

INSTRUCTION
CELL

b. The Passive Reference List

instructions, there is a small but important percentage of referencing

instructions which are dependent and whose outcome sets cannot be determined

by the Data Gathering Phase. Now, three such dependent instructions are

discussed to indicate how their Active and Passive Reference List entries

are generated. This discussion shows how special Reference List entries

are used to initiate special procedures to handle dependent instructions.

The first example of a dependent reference instruction is the

changed address instruction. Figure 4.21a shows how a changed address

instruction might occur in a program. Since the Data Generation Phase

has no way of knowing in advance that the instruction at location B is

modified, the Data Generation Phase generates the normal Reference List

entries for that instruction as shown in Figures 4.2lb and 4.2lc. The

latter figure shows a passive reference with an unknown "Cell Used"

portion because of the double asterisk in the instruction at location B.

During the Data Processing Phase, the active reference to the instruction

65

Figure 4.19 - The Reference List Fntries of the Cl.A Instruction

B Cl.A A

a. The Program

f, AC, B

b. The Active
Reference List

f, A, B

c. The Passive
Reference List

Figure 4. 20 - The Reference List Entries of the ORA Instruction

B ORA A

a. The Program

f, AC, B

b. The Active
Reference List

66

1
f, AC, B
f, A B

c. The Passive
Reference List

Figure 4.21 - The Reference List Entries for a Changed Address Instruction

A CLA c

STA B f, AC, A f, c, A

B CLA ~.~··

f' B A + 1 f' AC, A + 1
'

,..,,
f' AC, B f, "?"

'
B

I c

a. The Program b. The Active c. The Passive
Reference List Reference List

Figure 4.22 - The Reference List Entries for an Indirectly Addressed Instruction

B l CLAo', A

f, AC, B f, A, B

A f l
a. The Program b. The Active c. The Passive

Reference List Reference List

67

at location B by the STA instruction is detected. Thus, the analysis

program must find the functional expression for the "Cell Used" by

location B before it can find the functional expression for the information

processing performed by that instruction. This order of functional

determination can be initiated by setting a special flag in the "f"

portion of the passive reference entries for the modified or changed

instruction. Therefore, the latest reference searching procedure can

detect the changed instruction flag and can initiate the proper search

procedure.

The second example of a dependent reference instruction is the

indirectly addressed instruction. Figure 4.22a shows how an indirectly

addressed instruction might occur in a program. Because the indirect

address asterisk can be detected while the instruction line is being

decoded, the Data Generation Phase knows it has an indirectly addressed

instruction and can generat~ the proper Reference List entries. For

such an instruction, the analysis program must first find the functional

expression for the address portion of the cell specified by the operand

address of the instruction before it can determine the functional

expression for the information processing performed by the instruction.

In Figure 4.22a at location B, the address portion of cell A must be

found before the contents of the AC can be determined. This order of

functional generation can be initiated by constructing a passive reference

entry whose "f" portion indicates an indirect instruction. Therefore,

the latest reference searching procedure can detect the indirect flag

and initiate the proper search procedure.

68

Figure 4.23 - The Reference List Entries for a Tagged Instruction

l \
B CLAA,l f, AC, B f, A, B

J l
a. The Program b. The Active c. The Passive

Reference List Reference List

The third example of a dependent reference instruction is the tagged

instruction. Figure 4.23a shows how a tagged address instruction might

occur in a program. Again, because the presence of a tag can be detected

while the instruction line is being decoded, the Data Generation Phase

knows it has a tagged instruction and can generate the proper Reference

List entries. For such an instruction, the analysis program must first

find the functional expression for the index register specified by the

tag before it can determine the functional expression for the information

processing of the tagged instruction. In Figure 4.23a at location B, the

contents of the index register must be found before the contents of the

AC can be determined. This order of functional generation can be initiated

by constructing a passive reference entry whose"£" portion indicates a.

tagged instruction and an index number. Therefore, the latest reference

searching procedure can detect the tag flag and initiate the proper

search procedure.

69

4.4.3 Finding the Latest Reference Sets

In the previous section the motivation and technique for constructing

the necessary Reference List entries were described. The function of

these entries is to insure that the analysis program can decide the

sequence in which it needs to determine the information processing of

the program. The purpose of this section is to explain how the analysis

program decides which latest reference searches are required and how

the program performs those searches.

After all the Reference List entries have been made by the Data

Gathering and Data Processing Phases, the Data Reduction Phase associates

each Reference List entry with the program block in which the reference

occurs. First, the Reference Lists are sorted on their "Instruction

Cell" portion to place them in the same sequence as the Topology Table.

Second, the Active and Passive Reference Lists are scanned, and their

entries placed into the Act~_ve and Passive Reference Tables. Figure 4. 24a

shows an example program block and its instructions. Figures 4.24b and

4.24c show the Sorted Active and Sorted Passive Reference Lists for the

example block. Figure 4.24d shows how the entries of those two lists

would be placed in the Reference Table.

The latest reference searching procedure must find all the latest

references for each Passive Reference Table entry. The search procedure

should be performed iteratively but yet be able to decide the search

sequence and handle any program topology, such as loops or parallel paths.

The search sequence for each passive reference is dictated by the special

70

Figure 4.24 - Topology Table with Active and Passive Entries

9 TZE 20 I
10 CIA 100 f, AC, 10 f, 100, 10

11 ADD 101 f, AC, 11 f, 101, 11
f, 102, 12 f, AC, 11

12 STO 102
f, AC, 12

13 TZE 30 f, AC, 13

14 r
a. The Program b. Sorted Active List c. Sorted Passive List

START, END 10 13 r+ f 14 r+ f 9

TO 2 f 30 ...
From Table

1 To Table

ACTIVE

PASSIVE

3

lJ s f, 100, 10 f, AC, 10 • -r

LATEST f, 101, 11 f, AC, 11

USER f, AC, 11 f, 102, 12

f, AC, 12 Active Table
Topology Table

f, AC, 13

d. The Tables
Passive Table

71

flags set in the "f" portion of the passive reference entry. The search

procedure involves searching back from each passive reference entry on

all control paths until each path is terminated by a matching active

reference entry; the initial passive reference entry; or a previously

searched block. A matching active reference is an active reference

whose "Cell Changed" portion matches the "Cell Used" portion of the

initial passive reference. The "f" portion of each passive reference

entry states which cell bits are used by the passive reference; the "f"

portion of each active reference entry states which cell bits are

changed by the active reference. Thus, the latest reference searching

procedure is capable of detecting partial bit matches and can continue

searching along a path until all "Cell Used" bits have been matched by

"Cell Changed" bits.

If the "f" portion of the passive reference indicates a changed

address, the latest references for the changed address must first be

determined. If the first search finds only one latest reference and

determines that the latest reference stores a constant into the changed

address, a second search can be performed to find the latest references

for the cell specified by the previously determined constaht. Figure 4.2Sa

shows an example of a first search resulting in a constant. The first

latest reference search on the changed address instruction at location Y

indicates its true "Cell Used" is location Z. The second latest reference

search can be performed as if location Y was a CLA Z instruction. On

the other hand, if the first changed address search finds one or more

72

variable expressions for the changed address, no accurate second search

can be performed during the first iteration. Figure 4.25b shows an

example of a first search resulting in a variable. The first latest

reference search on location Y indicates that the address portion of Y

comes from the address portion of X. However, the address portion of X

is a variable because of the STA X instruction. Therefore, no second

search csn be performed during the first iteration. Only an approximate

expression of the form, AC • C(a/X), can be produced as output for

location Y after the first iteration. In Iverson Notation (7), a/X

indicates the address portion of location X; and C(x) means "the contents

of location x".

Figure 4.25 - Programs with Changed Addresses

STA X

CIA X CIA X

STA Y STA y

y CIA ** y CIA **

x 1 PZE Z 1 x T PZE

a. A Constant b. A Variable
Changed Address Changed Address

73

If the "f" portion of the passive reference indicates an indirect

address, the address portion of the cell specified by the address o(the

indirect instruction must first be determined. If the first search

finds only one latest reference to that cell and determines that the

latest reference stores a constant into that cell, a second search can

be performed to find the latest references for the cell specified by the

previously determined constant. Figure 4.26a shows an example of a first

search resulting in a constant. The first latest reference search on the

address portion of X indicates that it is a constant, Z. The second

latest reference search is performed as if location Y was a Cl.A Z

instruction. On the other hand, if the first search determines that one

or more variable expressions are stored into the address portion of the

location specified by the indirect instruction, no accurate second

search can be performed during the first iteration. Figure 4.26b shows

an example of a first search resulting in a variable. The first latest

reference search on location Y indicates that the address portion of X

comes from the address portion of W. Thus the address portion of X is

a variable because of the STA X instruction. Therefore, no second search

can be performed during the first iteration. Only an approximate

expression of the form, AC • C(a/W), can be produced as output for

location Y after the first iteration.

If the "f" portion of the passive reference indicates a tagged

reference, latest reference searches are performed on both the "Cell

Used" and the index register of the tagged instruction. The first search

74

Figure 4.26 - Programs with Indirect Addresses

CI.Aw

STA X

y CI.A* x
y CI.A* x

x l PZE Z 1 x 1 PZE 1
a, A Constant b. A Variable

Indirect Address Indirect Address

determines the latest references for the "Cell Used", i.e. which instructions

could have last made entries into ~he table headed by the "Cell Used"

location. The second search determines the latest references for the

index .register used by the tagged instruction, i.e. which instructions

last modified the index register. Two searches are performed because

there is little chance that the index register is a constant and that

the exact "Cell Used" can be determined by the first iteration.

Finally, if the "f" portion of the passive reference entry does

not contain any special latest reference search flags, the latest

reference search is performed directly on the "Cell Used" portion of

the passive reference.

75

4.4.4 Saving the Latest Reference Information

After the latest reference set of a passive reference has been

determined, the latest reference information must be saved in a data

structure which permits the generation of function expressions for each

instruction and the transmission of those expressions to other instructions.

The purpose of this section is to discuss temporary list structures for

latest reference information and the final Latest Reference Tables

which fulfill the above requirements.

If the data structure of the temporary Latest Reference Lists is to

conform with the general solution philosophy discussed earlier, the

structure must permit individual entries to be added as requi~ed but

yet allow all entries to be processed as a group. These characteristics

can be incorporated into two lists, the Latest Reference List and the

User List. The Latest Reference List contains latest reference entries

which remember the locations of all latest references for each passive

reference. The User Reference List contains user entries which remember

the locations of the passive references which will require the functional

expressions produced by each active reference. The format of the list

entries is shown in Figure 4.27.

The Latest Reference List entries are divided into three parts. The

first portion is the "Latest Reference Cell" and is the "Instruction

Cell" of the Active Reference Table entry which produced the match during

the latest reference search. The second portion is the "Cell Used" and

is the same "Cell Used" as in the passive entry which initiated the latest

76

Figure 4.27 - The Latest Reference and User List Formats

LATEST REFERENCE CELL USED PASSIVE
CELL INSTRUCTION CELL

a. The Latest Reference List

LATEST REFERENCE CELL CHANGED ACTIVE
POINTER INSTRUCTION CELL

b. The User List

reference search, The third portion is the "Instruction Cell" of the

passive entry and is used to identify which Latest Reference List entries

are associated with each Passive Reference Table entry,

The User List entries are also divided into three parts. The first

portion is the ''Latest Reference Pointer" and points to the location

which contains its Latest Reference mate. 'l'he second portion is

the "Cell Changed" of the Active Reference Table entry which produced

the match. The third portion is the "Instruction Cell" of that Active

77

Reference Table entry and is used to identify which User List entries

are associated with each Active Reference Table entry.

As each latest reference search match is found, one entry is added

to the Latest Reference List and the User List. The absence of Latest

Reference List entries for a passive reference indicates no latest

references were found. Figure 4.28 shows the Latest Reference List

and User List entries that would result for a program where a functional

expression is needed by two instructions elsewhere in the program. The

functional expression generated by location 11 is needed at locations 20

and 30. At location 20 there is a passive reference to location B

which has one latest reference at location 11. Thus, a single latest

reference entry is added to the Latest Reference List showing the latest

reference information, and one user entry is added to the User List.

Likewise, at location 30 there is a passive reference to location B

which has one latest reference at location 11.

The temporary lists are transformed into the final Latest Reference

Table and the User Table by associating each list entry with the program

block in which it occurs. The Latest Reference List is sorted on its

"Passive Instruction Cell" portion while the User List is sorted on its

"Active Instruction Cell" portion. The resulting list entries are

associated with the blocks in which they occur by scanning the ordered

lists and constructing the ''Latest" and "User" entries in the Topology

Table. Figure 4.29 shows the resulting tables for the example shown

in Figure 4.28.

78

10

11

19

20

29

30

39

Figure 4.28 - A Program where Symbolic Results are needed at Two Later Points
in the Program

CI.A A

STO B

CI.A B

CI.A B

a. The Program

£, AC, 10

f, B, 11

£, AC, 20

f, AC, 30

b. Active
Table

79

f, A, 10

f, AC, 11

f, B, 20

£, B, 30

c. Passive
Table

10, AC, 11 .. ,._..__,.,, AC, 10

11, B, 20 ~~~-... , B, 11

11, B, 30-'(~-••, B, 11

I
d. Latest

List

l
e. User

List

Figure 4.29 - The Final Data Flow Tables

START, END 10 19

TO f, AC, 10 ,. f, A, 10

FRO~ f, B, 11 f, AC, 11

ACTIVE

PASSIVE .. ~ f, AC, 20 --~..-.i f, B, 20

LATEST

USER ~ f, AC, 30 r+' f, B, 30

START, END 20 29
Passive Table

TO Active Table

FROM

ACTIVE

PASSIVE
..

LATEST

USER

START, END 30 39
~

TO -,. 10, AC, 11•-.,.~------+--..., .. , AC, 10

FROM ---.-.... ~, B, 11

ACTIVE 1-+--, B, 11

PASSIVE L..+ 11, B, 20~ User Table

~ ~
LATEST

USER '------~;. 11, B, 20'""~..:---~

Topology Table Latest Table

80

In summary, each Latest Reference Table entry points from a passive

reference back to an active reference which is a member of the passive

reference's latest reference set. Each User Table entry points from

an active reference forward to a passive reference which will need the

functional expression generated by the active reference.

4.4.5 Constructing the Functional Expressions

A functional expression is generated for each active reference entry.

The instruction operation code retained in the "f" portion of the active

reference entry dictates its functional expression format. As the

construction of a new expression begins, the expression format is found

by extracting the instruction operation code from the active reference

"f" portion and using the code as a table lookup pointer for the Format

Table. The Format Table entry for each instruction indicates the

functional expression format for each of the active references of the

instruction. The table entry includes the number of entries to be

expected in the Active and Passive Reference Tables and the operator

symbols to be used in constructing the functional expressions. Whenever

possible, a latest reference expression already generated for a previous

active reference is substituted for each passive reference in the new

active reference expression. Now, functional expression construction

is discussed in detaf~ using the program in Figures 4.28 and 4.29 as

an example. First, the discussion will explain how the functional

81

expressions, AC a A and B =A, are constructed for locations 10 and 11.

Second, the discussion will outline how the expression, B • A, is

transmitted from location 11 to locations 20 and 30.

The Active Reference Table entry for location 10 in Figure 4.29 is

"f,AC,1011 where "f" indicates a CIA instruction. The Format Table entry

for a CI.A instruction indicates an expression format of:

"CELL CHANGED" • 0 LATEST EXPRESSION" (or "CELL USED" if no latest expression)

The Passive Reference Table entry for the CI.A instruction is found by

finding a matching "Instruction Cell" value of 10. In this case the

passive entry is "f ,A, 10". The Latest Reference Table entries for this

passive reference are found by matching the two right-hand portions of

each entry.

location 10.

In this case, there are no latest reference entries for

Thus, the functional expression for location 10 is AC •A.

The new functional expression is held for final output processing

by adding it to the functional Output List. Figure 4.30 outlines the

data structure of the Output List. The final output processing will need

to sequence the functional expression strings according to instruction

location. To facilitate this resequencing, a message pointer is constructed

and added to the Message Pointer List. The left half of each Message

Pointer List entry indicates the instruction location to which its

expression applies, and the right side points to the expression itself.

Thus, the Output List expressions are ordered by sorting the single

82

Figure 4.30 - The Functional Expressions on the Output List

10 - -~ 10 l 3 - .,.

11 AC

- 3

A
1...i

-
a. Message Pointer List b. Output List

entry Message Pointer List instead of the variable length entry Output

List.

Once the functional expression is constructed, the User Table must

be checked to see if any instructions further on in the program need this

expression. The user entry for the active reference entry is found by

matching the two right-hand portions of each entry. In this case

there is one user entry, ''Pointer ,AC, 10". This user entry states

that the latest reference entry at the end of the pointer wants to know

the just derived expression for the AC. The analysis program follows

the.pointer to its Latest Reference Table entry mate, "10,AC,11". Once

the entry is found, its "Latest Reference Cell" portion is replaced by

a pointer to the just constructed functional expression on the Output

List. Also, the latest reference entry is flagged as having an expression

83

pointer. Now, the latest reference entry at location 11 knows where the

functional expression for the AC can be found, i.e. the functional

expression has been transmitted from location 10 to location 11.

The active entry for location 11 in Figure 4.29 is "f,B,11" where

"f" indicates a STO instruction. The Format Table entry for the STO

instruction indicates an expression format of:

"CELL CHANGED" = "LATEST EXPRESSION" (or "CELL USED" if no latest expression)

The Passive Reference Table entry for the STO instruction is "f,AC,ll".

One matching latest reference entry, "Expression Pointer,AC,11" is found.

This is the latest reference entry that was found by following the pointer

of the previous user entry. The functional expression for location 11

is constructed by first adding the "Cell Changed" to the Output List.

In this case, the "Cell Changed" is B. Next, the symbolic equal sign

is added to the Output List. Finally, the expression pointer of the

latest reference entry is followed to its functional expression, AC = A.

The expression is scanned until the equal sign is found, and the

remaining entries after the equal sign are copied onto the Output List.

Thus, the expression, B =A, is generated for location 11.

Finally, two identical user entries (Pointer,B,11 and Pointer,B,11)

are found for location ll in Figure 4.29. Each of the entry pointers

is followed to its latest reference mate. Each ''Latest Reference Cell"

portion is replaced by a pointer to the just derived functional expression,

84

B =A, on the Output List; and the latest reference entry is flagged

as having an expression pointer. Thus, when locations 20 and 30 are

reached, the functional expression for location B is available.

85

CHAPTER 5

AUTOMATIC PROGRAM ANALYSIS EXAMPLES

In the previous chapter the approximation procedures used by the

first iteration to bootstrap itself through the control flow - data

flow interaction cycle were shown~ This outline described the data

acquisition and data procP.ssing sequence and showed the use of inter-

mediate data flow analysis results to improve control flow approximations

and vice versa. In addition, a detailed presentation described how the

control and data flow steps handled the dependent instructions.

This chapter displays the results of applying the existing automatic

analysis system to example programs. First, the layout and symbols of

the output flowcharts are explained. Second, flowcharts of programs

containing dependent instructions are described. Third, flowcharts of

programs containing othet" analysis problems are presented. All output

examples were automatically produced on-line by an IBM 1052 printer

keyboard connected to the Project MAC IBM 7094 time-shared computer (2).

Because the IBM 1052 printer does not normally contain the complete

Iverson Notation character set (7), character substitutions have been

made.

86

5.1 THE FLOWCHART FORMATS

The analysis program should display its results in a form suitable

for human use. Because the flowchart has become a standard vehicle for
I

program documentation, it is also used here. Currently, the analysis

system has two levels of flowchart detail: the Topological Flowchart

and the Detailed Flowchart. The Topological Flowchart presents the

control flow of a program by displaying its block execution sequence.

The Detailed Flowchart exhibits both control and data flows by displaying

the block execution sequence, the functional expressions, and

pertinent cross reference information. One example of each flowchart

type is discussed in detail so that only the highlights of later

examples need to be explained.

5.1.1 The Topological Flowchart

Fi·gure 5 .1 exhibits an example of a Topological Flowchart. The

program always starts at Block 1. The asterisks represent the instruc~

tions contained within d block. The number at the upper left of each

block is its Block Number. The dots represent control flow paths.

The block inputs always enter at the top of the block; the outputs

always exit at the bottom. No attempt has been made to minimize line

crossings by rearranging blocks. Now, the interpretation of the flowchart

symbols of Figure 5.1 is given.

Block 1 is the starting block and exits to either Block 2 or Block 4.

87

Figure 5.1 - A Topological Flowchart

1

2

3

~

5

6

7

11

*
*
*
*)

*
*
*
*)

*
*
*
*

* (
*

*

.

.

. . . .

. . . .

.•..•••......•....•...••.....•.•.•••.. E 4

. F?

*)•........................... ' 5

* (...•.•........••........••...•••................... ' 4
*
* *) ... ~IR

*(.......•..........•......... ,.••.. rE4-

*
*
*

* (
*
*

*
*
*
*) .. • • • • . • • . • • • ... • • • • . • r R

*
*
*
*

88

Block 2 can be reached from Block 1 and has an "E4" exit. The "E"

designates an exit to an external subroutine; the "4" indicates

that the external subroutine returns control to Block 4.

Block 3 is unreachable and has no exits. Because it follows an

external subroutine exit, it is probably a subroutine

calling sequence.

Block 4 can be reached from Block 1 and "E2". The "E" signifies

an entry from an external subroutine; the "2" denotes that

the external subroutine is called by Block 2. Block 4 has

an "IS" exit. The "I" specifies an exit to an internal

subroutine; the "S" reveals that the internal subroutine

returns control to Block 5.

Block 5 can be reached by an "I4" entry which denotes a ret;urn

from an internal subroutine called at Block 4. Block 5

has a "NR" exit which indicates a non-returning external

subroutine call.

Block 6 can be reached by an "IE4" entry where the "IE" designates

an internal subroutine entry and the "4" reveals that the

subroutine is called by Block 4. Block 6 exits to Block 7.

Block 7 can be reached from itself or Block 6 and exits to Block 10

or to itself.

Block 10 can be reached from Block 7 and exits via an "IR". The

"IR" specifies an internal subroutine return, such as a

TRA 1,4.

Block 11 appears to be a data and storage area.

89

5.1.2 The Detailed Flowchart

Figure 5.2 shows an example of a Detailed Flowchart. The first

three lines and the last line on the flowchart page were produced by

the time-sharing monitor as it prepared the final analysis phase for

execution. The left side of the output exhibits the original symbolic

source instructions and their assigned core locations; the right side

displays the flowchart box outlines, interconnections, and functional

expressions. The Block Numbers are shown above each block. The

starting and ending core locations of each block are shown on the left

side of the block. The block inputs always enter at the top or upper

right of the block; the outputs always exit at the bottom or lower right.

The numbers to the right of the entering or exiting dots are Block Numbers

to which or from which control is transferred. The expressions inside

the flowchart boxes are the functional expressions. The expressions

outside the boxes are cross reference expressions preceded by the

location number of the instruction which generated the expression. Now,

the flowchart symbols of Figure 5.2 are explained.

Block 1 is the starting block and exits to either Block 2 or Block 3.

The first instruction of Block 1 is at location l; the last

is at location 3. At location 1 the contents of location V

are placed into the accumulator. At location 2 the contents

of location V are moved to location W. The cross reference

expression at the right of location 2 states that the AC was

changed to the contents of Vat location 1. The line for

location 3 is blank because of unprogranuned subroutines. (See

Appendix 1 for missing subroutine information.) If the

90

Figure 5. 2 - A Detailed Flowchart

r runs 000000
\~ 1907.0
EXECUT I OtJ.

01 CLA
02 STD
03 TZE

04 CLA
05 STD

05 Al CLA
07 STA
10 TSX

11 v BSS
12 \'/ RSS
13 x OCT
14 y BSS
15 z BSS

R 4.750+3.000

v
w
Al

x
y

\'J
z
$EXIT,4

1
1
1
1
1

1

1 * *
* AC=V *
* \·J=V *
* *

3 * *) •••

2

4 * *
* AC=l *
* Y=l *

5 * *

3

6 * * (.•.
* AC=V *
* A/Z=A/V *
* *

10 * *) .•.

4

11 * *
* *
* *
* *
* *
* *

15 * *

91

1 A.r=V

3

4 AC=l

1
2 \·l=V
6 Ar=V

NP

programming was complete, the line would show V:O; and the

cross reference expression would state that the AC was V at

location 1.

Block 2 can be reached from Block 1 and exits directly to Block 3.

The first instruction of Block 2 is at location 4; the last

is at location 5. At location 4 the contents of X are placed

into the AC, Since the contents of X are constant, the

symbol X is replaced by its constant value, 1, in the func­

tional expression for location 4. At location 5 the constant,

1, is stored into location Y.

Block 3 can be reached from either Block 1 or Block 3 and has a

non-returning exit. The first instruction of Block 3 is

at location 6; the last is at location 10. At location 6,

the contents of location W, which are now the contents of

V, are placed into the AC. The cross reference expression

states that the contents of V were placed in W at location 2.

At location 7 the address portion of Z is replaced by the

address portion of V.

Block 4 is unreachable. It begins at location 11 and ends at

location 15. Block 4 is empty because it contains data

and storage locations.

5.2 FLOWCHARTS CONTAINING DEPENDENT INSTRUCTIONS

The purpose of this section is to show examples of automatically

produced flowcharts for programs containing dependent instructions. The

example programs have been kept short so as to spotlight the individual

dependent instructions, Instead of being viewed as programs in themselves,

92

the examples might be thought of as being imbedded in larger programs.

Since both the Topological and Detailed Flowchart conventions have been

discussed, only the pertinent results are explained in the ·following

examples.

5.2.1 The Transfer Switch

Figure 5.3 shows the first example of a program containing a transfer

switch. At location 3 a passive reference is made to location 5 which

contains a transfer instruction, TRA END. At location 4 the transfer

switch is stored into location 3, i.e. Al. Thus, Block 1 is terminated

by a transfer switch, and control paths are generated from Block 1 to

Blocks 2 and 4. Note, the analysis program found that the transfer

instruction at location 5 can be executed in that location. Therefore,

Block 2 is terminated at location 5.

Figure 5.4 shows a second example of a program containing a transfer

switch. The analysis program found that the transfer instruction at

location 10 is not executed in its original core location. Thus,

location 10 is included in Block 3 as data.

5.2.2 The Subroutine Call and Return

Figure 5.5 shows an example of a program ~ontaining subroutine calls

and returns. At location 4 the internal subroutine, "IN", is called.

The analysis program detects the internal subroutine entry point at

93

Figure 5.3 - A Transfer Switch Executed in its Original Location

r runs 000000
w 1423.4
EXECUTION.

01
02
03 Al

04
05 A

06 x
07 y

CLA
STO
CAL

S L\·I
TRA

OCT
BSS

10 F.t!D TSX

R 5.283+2.833

x
y
A

Al
mo

1
1

$EXIT,4

1

1 * *
* AC=l *
* Y=l *
* AC=TRA END *

3 * *) •••

2

4 *
*
*

5 *

Al=TRA mo *
*
*
*) •••

3

5 * *
* *
* *

7 * *

4

10 *
*

10 *

* (...
*
*) •••

94

1 AC=l

11

3 AC=TRfl FNn

4

1,2

Nfl

Figure 5.4 - A Transfer Switch Not Executed in its Original Location

r run5 000000
w 1614.9
EXECUTION.

01
02
03

04
05

06
07
10

Al

x
y
A

CLA
STO
CAL

SLW
TRA

OCT
BSS
TRA

11 END TSX

R li.483+3.150

x
y
A

Al
END

1
1
ENO

$EXIT,4

1

3

4

5

6

10

11

11

1

* *
* AC=l *
* Y=l *
* AC=TR/\ END *
* *) •••

2

*
*
*
*

Al=TRA EtlD
*
*
*
*) •••

3

* *
* *
* *
* *
* *

4

*
*
*

* (...
*
*) ..•

.,

95

1 Ar=l

4

3 AC=TR/I. EMO

4

1,2

NP

r runs 000000
w 1607.0
EXECUTION.

02 CLA
03 STA
04 TSX

05 x PZE

06 TSX

07 CLA
10 STO
11 TSX

12 IN CLA
13 STO
14 TRA

15 A OCT
16 B BSS

Figure 5.5 - Subroutine Calls and Returns

A
x
IN,4

0

$EXTERN, 4

A
B
$EXIT,4

A
8
2,4

1
1

1

2 • *
* AC=l *
* A/X=A/1 •
• *

4 • *) •••

2

5 *
•

5 *

* •
*

3

6 *
•

6 •
•
fr) •••

••••••••••••••••••••••••

4

7 * * (•••
* AC•l ,,
* B•l *
* •

11 * *) •••

5

12 • * (•••
* AC=l •
* B=l •
• •

14 * *) •••

6

15 * * • •
• *

16 * •
••••••••••••••••••••••••

96

2 AC=l

I 3

11

E4

E3

7 AC=l

NR

IEl

12 AC=l

IR

location 12 and the return at locRtion 14. Because the subroutine returns

via a TRA 2,4, location 5 is assumed to be a single instruction calling

sequence. External subroutines are called at locations 6 and 11.

5.2.3 The Calculated Transfer

Figure S.6a shows the Detailed Flowchart of a program containing a

tagged transfer instruction. The analysis program assumes that Blocks 2

and 3 can be reached from Block 1. The ''L4" and ''LS" entries to Block 1

indicate that they close control loops from Blocks 4 and 5. Likewise,

the ''Ll" exits from Blocks 4 and 5 specify loops back to Block 1.

Figure S.6b shows the Topology Flowchart for the same program.

5.2.4 The Changed Address

Figure 5.7 shows the first example of a program containing a changed

address instruction. At location 1 the address portion of W, the constant 7,

is stored into the address portion of location 2. When the instruction

at location 2 is executed, it is a CLA 7. Therefore, the contents of

location 7 or Z are placed into the AC at location 2. This address

change can be traced during the first iteration because a single constant

was used as the new address for the changed address instruction.

Figure 5.8 shows the second example of a program containing a changed

address. The address portion of location Y is used as the new address

at location 4. In this case location Y appears to be a variable during

97

Figure 5,6a - A Calculated Transfer
r runs 000000
w 1730.8
EXECUTION.

00 Al
01

02

03

04 B
05
06

07 c
10
11

12 A
13 0
14 E
15 F

LXA
TRA

TRA

TRA

CLA
STO
TRA

CLA
STO
TRA

OCT
OCT
OCT
BSS

A,l
•,l

B

c

0
F
Al

E
F
Al

1
1
2
1

1

0 * •(•••
*
*

1 *

I Xl•A/l *
*
*) •••

2

2 *
*

2 *
*
*
*) •••

3

3 *
*

3 *

. (...
*
*) •••

4

4 * * (••.
* AC•l *
* F•l *
* *

6 * *) •••

5

7 * * (.••
* AC•2 *
* s=-2 *
* *

11 * *) •••

6

12 * *
* *
* *
* *
* *

15 * •·

98

l4,l5

3

1

5

2

4 AC•l

ll

3

7 AC•2

ll

Figure 5.6b - The Topology Flowchart of the Program in Figure 5.6a

1

2

3

5

6

*
*
*

. (*

*)

.) *
*
*
*)

*(

*
*

. (*

*
*
*
*

99

.........................

Figure 5.7 - A Changed Address Using a Single Constant

r run5 000000
\'I 1741.5
EXECUT I Ot1,

00 Al CLA
01 ST A
02 x C LA
03 STO
04 TRA

05 \·! PZF
06 y BSS
07 z OCT

R 3,583+3.400

\·J
x
**
y
Al

z
1
1

1

0 * * (...
* AC=7 *

* f\/X=A/7 *
* Af>Z *
* Y=Z *

* *
4 * *) •.•

2

5 * *
* *

* *

* *
7 * *

*************+**********

100

Ll

0 f\(',= 7
1 /\/X=A/7
2 f\l. = z

Ll

Figure 5.8 - A Changed Address Using a Single Variable

r runs 000000
w 1801.0
EXECUT I OfJ.

00 Al
01
02
03
011 B
05
06

07 c
10 0
11 x
12 y

CL/\
STA
CLA
STA
CLA
STO
TRA

BSS
OCT
PZF:
PZF.

R 4.200+2. 783

x
y
y
B

** c
Al

1
1
D
0

1

0 * * (...
* /\C=lO *
* A/Y=A/10 *
* AC=/\/10 *
* /\/B=A/ A/l 0 *
* AC=C (A/ All 0) *
* C=AC *
* *

6 * *) •••

2

7 * *
* *
* *
* *
* *

12 * *

101

L1

0 AC=lO
1 A/Y=A/10
2 AC=A/10
3 A/P=A/f'../10
4 f\C=r. (A./ A/ 10)

L1

the first iteration because of the STAY instruction at location 1.

Because the analysis program believes that the new address of location 4

is also a variable, the functional expression for that location states

that the AC contains the contents of the location whose address is 10 or

D. (In Iverson Notation, A/A/10 • A/10.)

Figure 5.9 shows a third example of a program containing a changed

address. The instruction at location 5 can have its address changed

from either location 1 or location 4. The cross reference expressions

at location 5 show the two possible values for its new address. If

location 1 changes the address, it becomes location 10 or D. If location 4

changes the address, it becomes location 12 or E. Because the address

of location 5 can be changed from two possible locations, its func-

tional expression states that the contents of an undetermined location

are placed into the AC.

5.2.5 The Indirect Address

Figure 5.10 shows the first example of a program containing an

indirectly addressed instruction. The analysis program detects that

the address portion of location A is a constant and that location 0

actually is a CI.A C instruction. Therefore,. location 1 loads the contents

of location C into the AC. During the first iteration, the Data Gathering

Phase had no reason to generate a passive reference to location C. Thus,

the analysis program does not yet know that location C is the constant, 1.

Figure 5.11 shows a second example of a program containing an

102

Figure 5. 9 - .\ Changed Address Using Two or More Expressions

r run5 000000 000000
w 1809.3
EXECUTION.

1

0 * * (•••
00 Al CLA x * AC•lO *
01 STA B * A/B•A/10 *
02 TNZ B * *

2 * *) •••

2

3 * *
03 CLA y· * AC•l2 *
04 STA B * A/B•A/12 *

4 * *

3

5 * •(...
05 B CLA ** * AC•C(••) *

* *
06 STO z * Z•CC••) *
07 TRA Al * *

7 * ...) ...
·~**********************

4

10 * *
10 0 OCT 1 * *
11 x PZE D * *
12 E OCT 2 * *
13 y PZE E * *
14 z BSS 1 * *

14 * *

R 5.566+3.783

103

L3

0 AC-=10

3

3 AC•l2

1
1 A/B•A/10
4 A/BcA/12
5 AC•C(**)

L1

Figure 5 .10 - An Indirect Address Using a Constant

r runs 000000
\·J 2 0 5 3. 7
EXECUTION.

00 Al CL/*
01 STO
02 TR/\

03 A PZE
0 ti B BSS
05 c OCT

R 3,933+2.950

/\
B
/\ 1

c
1
1

1

0 * * (..•
* AC=C *
* B=C *
* *

2 * *) ..•

2

3 * *
* *
* *
* *

5 * *

104

L1

0 f\(',=C

L1

Figure 5.11 - An Indirect Address Using a Single Variable

r run5 000000
w 1816.8
EXECUTION.

00 Al CLA
01 STA
02 CLA*
03 STO
04 TRA

05 B BSS
06 c OCT
07 D PZE
10 E PZE

R 3.433+2.550

D
E
E
B
Al

1
1
c
0

1

0 * * (•.•
* AC=6 *
* A/f=A/5 *
* AC=A/6* *
* B=A/6* *
* *

4 * *) •.•

2

5 * *
* *
* *
* *
* *

10 * *

105

Ll

0 AC=6
1 A/E=A/6
2 Ar.=A/5*

Ll

indirectly addressed instruction. In this case the indirectly addressed

location, E, is a variable during the first iteration because of the

STA E instruction at location 1. Thus, the functional expression for

location 2 states that the AC is loaded indirectly from a location whose

address is 6 or c. Once again, the analysis program does not yet know

that location C is a constant.

Figure 5.12 shows a third example of a program containing an

indirectly addressed instruction. At location 5 the cross reference

expressions state that the address portion of the indirectly addressed

location, X, can be either 11 or 13. Because the indirectly addressed

location can have more than one expression, the functional expression

states that the AC is loaded indirectly from X.

5.2.6 The Tagged Address

Figure 5.13 shows an example of a program containing tagged

instructions. At location 3 a tagged passive reference is made to location V

using index register one. This is stated by the functional expression,

AC c V(l). The cross reference expression at location 3 states that

index register one was loaded with a constant, 1, at location 2.

5.3 FLOWCHARTS CONTAINING OTHER ANALYSIS PROBLEMS

The purpose of this sec~ion is to show examples of automatically

produced flowcharts for programs containing general analysis problems

which should be handled by any analysis system,

106

Figure 5.12 - An Indirect Address Using Two or More Expressions
r runs 000000
w 1717.6
EXECUTION.

l

0 * •< ••• L3
00 Al CLA D * AC•ll *
01 STA x * A/X•A/11 * 0 AC•ll
02 TNZ A2 * *

2 • •> ••• 3

2

3 * *
03 CLA F * AC•l3 * 04 STA x * A/X•A/13 * 3 AC•l3

4 * *

3

5 * •< ••• l
05 A2 CLA• x * AC•X• * l A/X•A/11 • * 4 A/X•A/13
06 STO 8 * B•X• * 5 AC•X•
07 TRA Al * *

7 * •> ••• Ll

4

10 * *
10 B BSS 1 * *
11 c OCT 1 * * 12 0 PZE c * *
13 E OCT 2 * *
14 F PZE E * * 15 x PZE 0 * *

15 * *

R 4.483+3 .• 466

107

Figure 5.13 - A Tagged Instruction

r runs 000000
\·J 18 5 6. 0
EXECUTION.

00 Al CLA
01 STA
02 LXA
03 CLA
04 STO
05 LXA
06 CLA
07 STO
10 TRA

11 T OCT
12 u BSS
13 v OCT
14 \'/ BSS
15 x OCT
16 y OCT
17 z BSS

R 3.550+2.400

T
u
U,l
V,1
w
X,2
Y,2
z
Al

1
1
2
1
3
4
1

1

0 * * (...
* AC=l *
* A/U=A/1 *
* IXl=A/A/1 *
* AC=V(l) *
* W=V(l) *
* I X2=A/3 *
* AC=Y(2) *
* Z=Y(2) *
* *

10 * *) •••

2

11 * *
* *
* *
* *
* *
* *
* *
* *

17 * *

108

Ll

0 /\C=l
1 A/U=A/1
2 IXl=/l./A/1
3 Ar=V(l)

5 IX2=A/3
6 AC=Y(2)

Ll

5.3.1 The Program Loop

Figure 5.14 shows an example of a program containing a loop. A

passive reference is made to location A at location 2. The cross

reference expressions indicate that A has two possible values. The

first, A = 1, is generated by location l; the second, A = 2, is generated

by location 5. Note that the analysis program detects the second

expression even though location 5 is ahead of and in a loop with loca­

tion 2. Because of the difficulty in displaying the expression, AC = 1

or 2, the symbol A is retained in the functional expression for loca­

tion 2.

5.3.2 Temporary Storage

Figure 5.15 shows a program which uses temporary storage. The

constant value of A is carried through the sequence of loads and stores

of the AC until location 12, where D = 1. Likewise, the constant value

of W is carried through loads and stores of the MQ until location 13,

where Z = 2. Thus, all references to temporary storage are eliminated

tit locations 12 and 13.

5.3.3 Parallel Latest Reference Search Pa!;h!,

Figure 5.16 shows a program which contains two parallel latest

reference search paths from a passive reference to an active reference.

At location 5 there is a passive reference to B. The latest reference

109

Figure 5.14 - A Program Loop

r runs 000000
w 1823.7
EXECUTION.

00 CLA
01 STO

02 Al CLA

03 STO
04 CLA
05 STO
06 TRA

07 x OCT
10 y OCT
11 A BSS
12 B BSS

R 4.966+2. 783

0
x
A

1

2
A

B
y
A
Al

6

7
1
2
1
1

12

1

* *
* AC=l *
* A=l * 0 AC=l
* *

2

* * (... l2
* AC=A * 1 A=l
* * 5 A=2
* B=A * 2 Ar=A
* AC=2 *
* A=2 * 4 AC=2
* *
* *) .•• l2

3

* *
* *
* *
* *
* *
* *

110

Figure 5.15 - The Elimination of Temporary Storage References

r runs 000000
w 1832.4
EXECUTION.

1

0 * * (••• l1
00 Al CLA A * AC•l *
01 LDQ w * MQ•2 *
02 STO 8 * B•l * 0 AC•l
03 STQ x * X•2 * 1 MQ=2
04 CLA B * AC•l * 2 B=l
05 LDQ x * M0•2 * 3 X•2
06 STO c * C•l * 4 AC=l·
07 STQ y * Y•2 * 5 ~Q=2
10 CLA c * AC.,1 * 6 c .. 1
11 LDQ y * MQ•2 * 7 Y=2
12 STO D * D=l * 10 AC•l
13 STQ z * Z•2 * 11 MQ=2
14 TRA Al * *

14 * *) ••• L1

2

15 * *
15 A OCT 1 * * 16 B PZE * *
17 c PZE * *
20 0 PZE * *
21 w OCT 2 * *
22 x PZE * *
23 y PZE * * 24 z PZE * *

24 * *

R 4.633+3.450

111

Figure 5.16 - Parallel Latest Reference Search Paths

r runs 000000
w 1840.3
EXECUTION.

00 Al
01
02

03
04

05 A2
06
07

10 A
11 B
12 c
13 x
14 y

CLA
STO
TZE

CLA
STO

CLA
STO
TRA

PZE
BSS
BSS
OCT
BSS

R 4.600+3.083

A
B
A2

x
y

B
c
Al

0
1
1
1
1

1

* C... L3
*

0 *
*
*
*

AC=O
B=O *

*
0 AC=O

2 * *). • • 3

2

3 * *
* AC=l *
* Y=l * 3 AC=l

4 * *

3

s * * (••• 1
* AC=O * 1 B•O
* C•O * s AC=O
* *

7 * *) ••• Ll

4

10 * *
* *
* *
* *
* *
* *

1lf * *

112

; ··~' '

search discloses two paths from location 5 to the active reference to

B at location 1. The first path is from Block 3 through Block 2 to

Block l; the second path is from Block 3 directly to Block 1. The cross

reference expression at location 5 states that B = O. Thus, the func­

tional expression for location 5 is AC • O.

5.3.4 Multiple Latest Reference Search Paths

Figure 5.17 shows a program which contains a passive reference with

multiple latest references. At location 5 there is a passive reference

to X. The cross reference expressions show two latest reference values.

The first is X = 1 generated by location 1 in Block l; the second is

X • 2 generated by location 4 in Block 2. Because there are two latest

expressions for X at location 5, the symbol X is used in the functional

expression, AC = X.

113

.'">;"ii''-

..

10 * *
10 " OCT 1 * *
11 8 OCT 2 * *
12 x BSS 1 * *
13 y BSS 1 * *

13 * *

R 3.866+3.316

114

CHAPTER 6

CONCLUSIONS

In the previous chapters some of the problems and solutions of

automatic program analysis were discussed. The initial problem that

the analysis system faced was the cyclic interaction of control flow

and data flow due to dependent instructions. This cyclic behavior

suggests an iterative procedure in which current results were used to

update and improve earlier approximations. The techniques and proce­

dures of the first iteration were presented, and actual flowcharts of

programs containing dependent instructions were displayed.

An analysis system should uncover what a program does and should

transmit it to the user in a comprehensible form. The purpose of

this chapter is to discuss the usefulness of the first iteration output

and to suggest paths that can be followed in the second iteration to

further improve the utility of these results.

6 .1 THE USEFULNESS OF THE FIRST ITERATION OUTPUT

When a programmer begins to layout a program, he has a specific

job or function he wishes the machine to perform. For example, he

might wish to write a subroutine which calculates sine x. The programmer

knows that he must develop an algorithm for calculating sine x and

then convert his algorithm into machine code.

115

First, the programmer remembers from past experience that there

is an infinite series expansion for sine x of the form:

sine x = x 3 x
3~

+ 5
x
5~

7 x
7!

+

Second, the programmer knows that he must truncate the infinite series

after the n-th term because his machine has limited speed and accuracy.

Therefore, he develops an approximate function of the form:

n
sine x E

i=l

2i+l x
(2i+l) !

Third, the programmer might now decide to transform his truncated series

into a rational approximation or to reduce the series length by applying

Chabyshev economization.

Fourth, the programmer minimizes the number of instructions and

execution cycles by deriving an expression which can be imbedded in a

program loop. If the third step was omitted, the expression might be

of the form:

= SUM. l 1- + (-1) i x2 -----i (i - l)
SUM. ·

1
'

1-

Fifth, the programmer codes his algorithms using his own personal

coding conventions and programming tricks.

116

When a program analysis system is applied to the final program it

should reverse the programming process and uncover what the program does.

Because there are still unprogrammed subroutines in the functional expres­

sion generation program of the first iteration, the output flowcharts

for the above example cannot be shown. If all functional expression

generation subroutines were available, the first iteration should output

expressions at the level of the fourth step shown above, i.e • .h£!! a

program does~ it does.

In general, the output results show that it is possible to

automate the initial stages of analyzing self-modifying prograns. Such

stages involve scanning the input program, detecting connected pieces,

constructing elementary functional relationships, and pointing out

trouble areas. The feasibility even at this level is open to question

because the four analysis phases currently total some 11,000 instructions,

pseudo-operations, and macros which assemble into nearly 100,000 memory

locations. The time-shared execution time averages about thirty seconds

for each of the short example programs shown in Chapter 5. {Because the

analysis system was developed and debugged on an experimental time-shared

system, the analysis program organization was dictated by the characteris­

tics of the time-sharing monitor, not execution time or memory length.

Thus, times and lengths are somewhat exaggerated.) It is hard to give

an objective evaluation as to the usefulness of the first iteration

output because the missing functional generation routines made it impos­

sible to ask a large sample of programmers to use the output in their

117

r··
I

debugging or documentation tasks. It is true that the usefulness of these

output results would be improved if they were refined by a second

iteration.

6 • 2 THE PmBLFJfS OF THE SECOND ITEBATION

Throughout the first iteration, many approximations were made in

order to bootstrap through the control flow - data flow interaction

cycle. The second iteration must check those approximations and update

them if necessary. The purpose of this section is to point out and

describe promising areas of further research which should improve

the results of the first iteration.

Probably the first area which should be explored is the utilize-

tion of the functional expressions generated at the end of the first

iteration. This would involve the development of a functional expression

simplification and manipulation subroutine simi~ar to the work being

done with the LISP progranming language. Such a subroutine would be used

to remove the superfluous Iverson Notation symbols introduced by the

many program procedural and bookkeeping operations, e.g., A/A/l • A/l • 1.

A second promising area is the utilization of the input data of

the program being analyzed. This would require the development of a

descriptive language which would convey the meaning and scope of the

input data. Such additional information could be used to reduce the

almost limitless possible program outcomes.

118

A third promising area is the development of a second iteration

which would interact on-line with a human analyzer. The first iteration

would handle the routine analysis functions and tell the second iteration

where help was needed. The second iteration would display its current

results and ask for help. After the human being decided how the situa­

tion should be handled, the second iteration would use the new directions

to update its current analysis results.

119

APPENDIX ONE

FLmc:I..~RTS OF THE ANALYSIS pgoc_;]l.AM

The purpose of this appendix is to present the flm·1charts of the

analysis program. The presentation is divided into four parts according

to the analysis phases as shown in Figure 4.1. Because of the size and

cowplexity of the analysis proGrams, only execution order and computation

sumrna ry are shm·~n.

120

PHASE ONE

MAINl is the main program of Phase One as shown in Figure 4.1.

MAINl reads the input program one line at a time. Since the FAP assembler

produces a variable format output tape, MAINl must decide what type of

information is present on each line. Usually, MAINl will scan through

the page headings, comments, and blank lines until the Transfer Vector

is reached. Thereupon, the Transfer Vector entries are copied into the

Transfer Vector Table. When an instruction is found, control is trans­

ferred to OPCODE for operation code identification. After OPCODE has

identified the instruction and picked up its code word, RECODE recodes

the instruction line into various lists as a function of the code word.

RECODE scans across the code word bit by bit. If a bit is set or

on, control is transferred to its particular subroutine. Bit 1 is used

to find the first executable instruction. Bit 2 is used tc· flag an

instruction which must be treated as an exception. Bit 3 signifies a

type 1 transfer, i.e. one which always transfers to the location specified

by its address, e.g. a TXI instruction. Bit 4 denotes a type 1 transfer

which can be tagged or indirectly addressed, e.g. a TRA instruction.

Bit 5 specifies a type 2 transfer, i.e. one which can transfer control

to either the address location or the next sequential location, ·e.g. a

TXH instruction. Bit 6 signifies a type 2 transfer which can be tagged

or indirectly addressed, e.g. a TZE instruction. Bit 7 shows a type 3

transfer, i.e. one which can transfer control to either of the next two

121

sequential instructions, e.g. a ZET instruction. Bit 8 denotes a type 4

transfer, i.e. one which can transfer control to any of the next three

sequential instructions, e.g. a CAS instruction. Bit 9 is reserved for

the TSX instruction. Bits 10 and 11 are used by the XEC and various

I/f instructions. Bits 12 and 13 specify Storage and Data Pseudo Opera­

tions, such as BSS and OCT. Bits 14 through 19 are reserved for the

various referencing instructions. The Refer type transmlts information

from one location to another, e.g. a Cl.A instruction. The Use type uses

the contents of one location to transform the contents of another loca­

tion, e.g. the ORA instruction. The Test type tests the contents of

various locations in order to make a transfer decision, e.g. the TZE

instruction. The Set type sets the contents of a location to a known

value, e.g. the STZ instruction. A Shift instruction shifts the bits

of some register, e.g. the ALS instruction. An Arithmetic type performs

numerical operations, e.g. the ADD instruction. Bits 27 to 36 contain

a compact Short Code used to recode the instruction's operation code.

The Short Codes are numbered consecutively and lend themselves to table

lookups.

122

Figure Al,l - MAINl

Next Line

MAINl

+
Get Input Program Name

+
Read External TSX File'

t
Next Input Program Line ~.L_~-:;_, ________ .,

+
--..:a)- Read

Yes
Is Line a Page Heading?------------~~

t
,

No
Yes Is Line a Comment?

+ No

..

No Is Line a ''MACRO" Instruction? I T Yes
~ Set Macro Definition Flag------------~,.

No Is Macro Definition Flag Set?

J Yes
T No

Is Line a Macro "END" Instruction? --------">'"4 , t Yes

Reset Macro Definition Flag~-------------~-i:11~•

'-----i:l~Convert Assigned Location from BCD to Binary

+ Convert Numerical Instruction from BCD to Binary

t

123

No
Was BCD Operation Code Blank? ~--------------------------,

.I. Yes
No 'f

Is Inside Transfer Vector Switch On?

t Yes
___ N_o_ Was BCD Location Blank?

f Yes

Reset Inside Transfer Vector Switch~ Next Line

Make Transfer Vector Table Entry ----!)--~Next Line

No
'--------~~ Is Instruction Line the Transfer Vector Heading?~------~~

f Yes

Set Inside Transfer Vector Switch---~>=~Next Line

Construct BCD Operation Code <E----------------------------'
t

If Indirect "*" Found, Set Indirect Flag

t
If Address has Set "'~*" Flag

t
Identify BCD Opcode and Pickup Code Word (OPCODE)

t Not
Make List Entries (RECODE)- "END"->- Next Line

t "END"

Process Internal TSX Returns

t r-> Read Ntxt Line

l_________ Is Line the Last Line Used Statement?
No t Yes

Make Special Exit List Entry for Last Location

t
~ Read Next Line

CN Is It tymbol Heading Line?
o I

v Yes

Construct Symbol Table

y
HAIN2

124

Figure Al.2 - OPCODE

OPCODE

t
Find Matching BCD Operation Code Entry

' Pickup Code Word Entry
f

Transmit Code Word to RECODE~ MAIN!

The OPCODE Table Entry:

BCD Instruction Operation Code

1 2 3 4 5

Bit 1 - Executable Instruction

Bit 2 - Exception

Bit 3 - Type 1 Transfer

Bit 4 - Type 1 Tag Transfer

Bit 5 - Type 2 Transfer

Bit 6 - Type 2 Tag Transfer

Bit 7 - Type 3 Transfer

Bit 8 - Type 4 Transfer

Bit 9 - TSX Transfer

Bit 10 - XEC Instruction

Bit 11 - I/~ Instruction

Bit 12 - Storage Pseudo Operation

Bit 13 - Data Pseudo Operation

Bit 14 - Refer Type Reference

Bit 15 - Use Type Reference

Bit 16 - Test Type Reference

Bit 17 - Set Type Reference

Bit 18 - Shift Type Reference

Bit 19 - Arithmetic Type Reference

27

Bits 27 to 36 - A Compact Numerical Instruction Code
used to recode the Operation 9ode for
later table lookup identifications

125

36

Figure Al.3 - RECODE

RECODE

t·
_...__N_o_Is Executable Instruction Bit Set (Bit l)?

~ Yes
Yes_ ___ ls First Executable Instruction Flag Set?

t No
Add Instruction Location to Starting Location List

+ Set First Executable Instruction Flag

~
Is Exception Bit Set (Bit 2)?

t Yes

No

Does Instruction Short Code Indicate an "END"?

t No
Does Instruction Short Code Indicate an "ENTRY'·'

f Yes

Add Entry Location to Starting Location List

t
Set First Executable Instruction Flag

t

Yes)- MAINl

Add Starting Location Entry to the Entry Point List~MAINl

Copy Binary Location and Binary Instruction Onto Binary File ~-~

t
ls Type 1 Transfer Bit Set (Bit 3)?

t No
Yes

Is Type 1 Tag Transfer Bit Set (Bit 4)? ---a.i'>-TlTAG

t No
Yes

Is Type 2 Transfer Bit Set (Bit 5)? --~>-~ T2

I No

T

126

Yes Is Type 2 Tag Transfer Bit Set (Bit 6)?) T2TAG

t No
Yes Is Type 3 Transfer Bit Set (Bit 7)?) T3

T No
Yes Is Type 4 Transfer Bit Set (Bit 8)? ;.: T4

t No
Is TSX Transfer Bit Set (Bit 9)?

t No

Yes) TSXTRN

Is XEC Bit Set

t No
Is I/0 Bit Set

f No
Is Storage Bit

t No
Is Data Bit Set

f No
Is Refer Type Reference Bit Set (Bit 14)?

+ No

(Bit 10)? Yes)" XEC (Not Programmed)

() ? Yes b I/"- () Bit 11 • --.ai.7 - "' Not Programmed

Set (Bit 12)? yes>-- STORAG

(Bit 13)? Yes~ DATGEN

Yes> REFER

Yes Is Use Type Reference Bit Set (Bit 15)? --"'I)- USE

t No
Is Test Type Reference Bit Set (Bit 16)?

+ No
Is Set Type Reference Bit Set (Bit 17)?

Yest> TEST

Yes)Ion SET

t No
Yes Is Shift Type Reference Bit Set (Bit 18)? --..llJ~- SHIFT·

t No
Yes Is Arithmetic Type Reference Bit Set (Bit 19)? --->~ ARITH

t No
MAINl

127

Figure Al.4 - Tl

Tl

t
Increment Entry Point List Counter

t
Make Single Entry Point List Entry

t
Increment Exit Point List Counter

t
Make Single Exit Point List Entry----l)i- RECODE

Figure Al.S - TlTAG

Tl TAG

No t
""----Is the Type 1 Transfer Tagged?

t Yes
Set Tagged Flag in "f"

No t
~--- Is Transfer Address "Small Constant"?

t Yes
Set Probable Subroutine Return Flag in "fir

t
Make TSX Return List Entry

t
the Type 1 Transfer Indirectly Addressed?

t Yes
Set Indirect Flag in "f"

t ~o
'---~.?Ja Are Either Tagged or Indirect Flags Set?)

t Yes
Increment Exit Point List Counter

t

Tl

Make Single Exit Point List Entry Using Flagged "f" +RECODE

128

Figure Al.6 - T2

T2

t
Increment Entry Point List Counter

t
Make .Double Entry Point List Entry

t
Increment Exit Point List Counter

t
Make Double Exit Point List Entry-.+ RECODE

Figure Al,7 - T2TAG

T2TAG

c:::.
t

the Type 2 Transfer Tagged?

t Yes

Tagged Flag in "f"

t
Is the Type 2 Transfer Indirectly Addressed?

t Yes

Set Indirect Flag in "f"

t
--~- Are Either Tagged or Indirect Flags Set~>- T2

t Yes
Increment Exit Point List Counter

t
Make Single Exit Point Entry Using Flagged "f"

t
Make Single Exit Point Entry With no Flag in "f"

t
Increment Entry Point List Counter

t
Make Single Entry Point Entry With no Flag in "f" ~RECODE

129

Figure Al.8 - T3

T3

t
Increment Entry Point List Counter

+
Make Two Entry Point List Entries

+ IncreQent Exit Point List Counter

Make 'I\w Exit Point List Entries-->- RECODE

Figure Al.9 - T4

Increment Entry Point List Counter

+
Make Three Entry Point List Entries

t
Increment Exit Point List Counter

+ Make Three Exit Point List Entries-->· RECODE

130

Figure Al.10 - TSXTRN

No

Yes

TSXTR.~

+
Does TSX Call External Subroutine?

+ Yes

Find Subroutine Name in Transfer Vector Table

+
Does Subroutine Return?

+ No
Increment Exit Point List

t
Make Exit Point List Entry Using Non-Returning "f" ->RECODE

~ Increment Entry Li.st Pointer

+
Make Entry Li.st Point Entry Using External TSX "f"

t
Increment Exit List Pointer

t
Make Exit List Point Entry Using External TSX "f"-?>- RECODE

""-----?--Make TSX Return List Entry+ RECODE

131

Figure Al.11 - DATGEN

DATGEN

f
Increment Data List Counter

t
Find Number of Locations Generated by the Data):'seudo Operation

+ Construct Data List Entry Showing First and Last Location

t
Make Data List Entry-::- RECODE

Figure Al.12 - STORAG

STORAG

+ Increment Data List Counter

+
Find Number of Locations Reserved by the Storage Pseudo Operation

f
Construct Storage List Entry Showing First and Last Location

t
Make Storage List Entry_,_ RECODE

132

Figure Al.13 - REFER

REFER

~
Instruction Short

~
Instruction Have

Use Code to get Reference Table Entry

.....;N...;o~ Can a Tagged Address?

~ Yes
..,.-.. N-.o.._Is Instruction Tagged?

f Yes
Set Tagged Flag in "f"

+ Save Index Number in "f"

+ No ---'lllloo Can Instruction Have an lndirect Address?------------~

f Yes
No

Is Instruction Indirectly Addressed? ~---------------#<-! t Yes
Set Indirect Flag in "f"

t
Use Reference Table Entry to Determine Construction of List Entries

t
Construct the Active and Passive Reference List Entries

f
Increment the Active and Passive Reference List Counters

t
Add Entries to Active and Passive Reference Lists~ RECODE

133

Figure Al.14 - USE

,Ur
Use Instruction Short Code to get Reference Table Entry

No t
,.....,_ ___ Can Instruction Have a Tagged Address?

J ·Yes
No T

tooo10------Is Instruction Tagged?

t
Set Tagged Flag in "£"

t
Save Index Number in "f"

~ h
'"------;;•Can Instruction Have an Indirect Address?~--~----~---------------.!t~

J Yes
f No

Is Instruction Indirectly Addressed?--~~----------------~--------:1~

+ Yes

Set Indirect Flag in "£"

f
Use Reference Table Entry to Determine Construction of List Entries

t
Construct the Active and Passive Reference List Entries

+ Increment the Active and Passive Reference List Counters

t
Add Entries to Active and Passive Reference Lists~RECODE

134

Figure Al.15 - TEST

TEST

t
Use Instruction Short Code to gel Reference Table Entry

No t
Can Instruction Have a Tagged Address?

t Yes
No

Is Instruction Tagged?

f Yes

Set Tagged Flag in "f"

t
'-----;;-Can Instruction Have an Indirect Address?

t Yes

No

No
Is Instruction Indirectly Addressed?----------------~

t Yes

Set Indirect Flag in "f"

+ Use Reference Table Entry to Determine Construction of List Entries<

t
Construct the Passive Reference List Entries

+
Increment the Passive Reference List Counters

f
Add Entries to Passive Reference List~RECODE

135

Figure Al .16 - SET

SET

+ Use Instruction Short Code to get Reference Table Entry

No + Can Instruction Have a Tagged Address? t Yes
No

Is Instruction Tagged?

t Yes

Set Tagged Flag in "i"

+
Save Index Number in "£"

+ No
'------'::>-Can Instruction Have an Indirect Address?--------------~-;.

J Yes
y No

Is Instruction Indirectly Addressed?-----------·-------~~

+ Yes

Set Indirect Flag in "["

+
Use Reference Table Entry to Determine Construction of List Entries

t
Construct the Active Reference List Entries

+ Increment the Active Reference List Counter

+ Add Entries to Active Reference List--?- RECODE

136

Figure Al.17 - SHIFT

SHIFT

f
Use Instruction Short Code to get Reference Table Entry

No t
Can Instruction

t Yes
No

Is Instruction

Have a Tagged Address?

Tagged?

t Yes

Set Tagged Flag in "f"

t
Save Index Number in "f"

+ Use Reference Table Entry to Determine Construction of List Entries

t
Construct the Active Reference and Passive Reference List Entries

t
Increment the Active Reference and Passive Reference List Counters

t
Add Entries to Active Reference and Passive Reference Lists +.RECODE

137

Figure Al .18 - ARITH

Ar TH

Use Instruction Short Code to get Reference Table Entry
~·

,...1--~6 ... 0
- Can Instruction Have a Tagged Address?

No } ._ ____ Is Instruction Tagged?
Yes

t Yes

S'et Tagged Flag in "f"

~
Save Index Nw..ber in ."f"

t
.._ __ ...,_ Can Instruction '!lave an Indir·ect Address? _.;;N~o __________ ...,

t Yes Ho
Is Instruction Indirectly Address•d? --------------~~

t Yes

Set Indirect Flag in "f"

t
Use Reference Table Entry to Determine Construction of List Entries

+ Construct the Active Reference and Passive Reference List Entries

t
Increment the Active Reference and Passive Reference List Counters

t
Add Entries to Active Reference and iassive Reference Lists~RECODE

138

I. '· - '.~:

PHASE TWO

MAIN2 is the main program of Phase Two as shown in Figure 4.1.

MAIN2 calls seven subroutines which perform the required Data Processing

functions. Because of programming considerations, the Data Reduction

function of breaking the program into blocks is performed at the end of

this phase. SET21 reads the various temporary data files into memory.

PART finds which portions of each cell are actively referenced. CONSAT

determines which ~assive reference entries reference constants and which

active reference entries reference results. GETCON finds the value of

each constant cell by scanning the Binary File. SWITCH detects any

transfer switches and corrects the Entry Point and Exit Point Lists.

CHANGE identifies and flags all modified instructions. TOPSET breaks

the program into blocks and constructs the Control Tables.

139

Figure Al. 19 - MAIN2

MAIN2

+
Read Various Files into Memory (SET21)

+
Find Total Portion Changed (PART)

+ Find Constants and Results (CON SAT)

t
Get the Value of the Constant Locations (GETCON)

+
Find Changed Instructions (CHANGE)

t
Find Transfer Switches (SHITCH)

t
Find Program Topology (TOPSET)

t
MAIN3

140

-----~-----....,..-----~------------- -·-·--

Figure Al.20 - SET21

SET21

t
Load the Entry Point File

t
Load the Exit Point File

t
Load the Active Reference File

t
Load the Passive Reference File

t
Load the Data File

t
Load the Storage File-+ MAIN2

Figure Al.21 - PART

PART

t
Sort Active Reference List on "Cell Changed"

t
Sort Passive Reference List on "Cell Used"

t
.---l!lo-Get Next New "Cell Used" Portion on Active List Not Found MAIN2

t Found

Find All Active List Entries with that "Cell Used" Portion

t
"Or" the Portion Changed Codes of the "f" Portion of those Entries

t
Store Total Portion Changed Code in the "f" Portion of those Entries

Yes l
'--~-Are There More Actives on Active Reference List?

f No
MAIN2

141

Figure Al.22 - CONSAT

Yes

Yes

CONSAT

t Not Found
Find Active Reference with new "Cell Changed" Portion------Passive

t Found

~ind Passive Reference with

t Found

Not Found
new "Cell Used" Portion-----... Active

Is "Cell Changed" equal to "Cell Used"?,...,_ ___________ ...,

t No

Is "Cell Changed" Greater Than ••cell Used"?

+ No
Set Result Flag in "f" Portion of Active Reference

t
Are No

Passive There More Active Reference Entries?

t Yes

Get Next Active Reference ~--------------------l""1

Set Constant Flag in "f" Portion of Passive Reference

Are

Get

t
Passive Reference Entries?~)- Active There More

t Yes

Next Passive Reference ~--~--------------~o?:liol

Active->- Set Result Flag in "f" of Remaining Active Entries -> MAIN2

Passive--+- Set Constant Flag in "f" of Remaining Passive Entries~ MAIN2

142

Figure Al.23 - GETCON

GETCON

t
Load the Binary File

+----->~ Are There More Constant Locations?~>- MAIN2

+ Yes
Get Next Constant Location

No +
1-111..._.__ ___ ls It a New Constant Location?

'
+· Yes

.----""..,..Are There More Binary Entries? No>- MAIN2 ,,. J
y Yes

Get Next Binary Entry

Yes t
.._--Is Binary Location Less Than Constant Location?

I No
Yes T

....,...._~--~Is Binary Location Greater Than Constant Location?
~ t No

.._.,.._ ___ Make Constant Value File Entry

143

Figure Al.24 - SWITCH

SWITCH

~ re er .. A
l

Th e More Constant Locations? No :>=MAIN2

+ Yes
Get Next Constant Location

- No Is It a + New Constant Location?

--""
+ Yes

Are Ther
No

e More Data or Storage List Entries? ~-----------.

t Yes

Get Next Data or Storage List Entry

No Is Const + ant Location in Data or Storage Entry?

J Yes

Not Found Find Ref erenced Exit Point List Entry"""'....._ _______ ~

i Found

Find Whe re Transfer Switch is Stored

+ Add New Entry and Exit Point List Entries

~

Yes Can Tran
f
sfer Instruction Be Executed in Place?

t No

-- Remove I ts Entry and Exit Point List Entries

144

Figure Al.25 - CHANGE

CHANGE

t
-----'~Are There More Result Locations? No>- NAIN2

t Yes

Get Next Result Location

No f
"'"""'~---Is It a New Result Location?

_L Yes
l No

--- Are There 'More Data or Storage List Entries?---------.

+ Yes
Get Next Data or Storage List Entry

+
Is Result Location in Data or Storage Entry Locations?

No

Yes

I Get Nex+ Pa.,ive Reference Entry

~ Does "Instruction Cell" equal Result Location?

+ Yes
Set Changed Flag in "f" of Passive Reference

145

Figure Al.26 - TOPSET

TOPS ET

t
Sort Entry Point List on its "Entry Point" Portion

t
Sort Exit Point List on its "Exit Point" Portion

f
No>- MAIN2 ~ Can There Be Another Block? ,

+ Yes

Does This Block Have Both Entries and Exits? No

t Yes

1-o.-1~,-·- Construct Topology, To, and From Entries

No Does This Block Have Only Exits?~~~~~~~~~~

l Yes

...... ~~-Construct Topology and To Entries

f No
Does This Block Have Only Entries?~~~~~~~~-.

f Yes
Construct Topology and From Entries

t
~..L~,~~ Construct To and From Entries to Next Block

This Block Has Neither Entries nor Exits

f
~ Construct Topology Table Entry

146

PHASE THREE

MAIN3 is the main program of Phase Three as shown in Figure 4.1.

MAIN3 calls five subroutines which perform the required Data Reduction

functions. SE?31 reads the Control Tables into memory and converts the

To and From Table contents from instruction locations to Block Numbers.

CONECT checks the block interconnections and makes the required correc­

tions. LOOP detects all program loops and flags both To and From Table

loop closing branches. SET32 loads the Active and Passive Reference

Lists into memory and constructs the active and passive entries in the

Topology Table. IATEST determines the latest reference sets for each

passive reference and stores the latest reference information in the

Latest Reference and User Lists.

~7

Figure Al.27 - MAIN3

MAIN3

+ Read Control Tables into Memory (SET31)

t
Check Block Interconnections (CONECT)

t
Flag Program Loops (LOOP)

t
Read Reference Lists into Memory (SET32)

t
Find the Latest Reference (LATEST)

t
MAIN4

148

Figure Al.28 - SET31

SET31

t
Load Topology Table into Memory

+
Load To Table into Memory

t
Sort To Table into Sequential Order

+ No
~----1".;-;,;r Arc There ~'lore To Table Entries?--------------~

t Yes

Get Next To Table Entry

t
Next Topology Entry "START" Portion

+ To Table Entry Equal "START"?

+ Yes

Replace To Table Entry by Block !\umber of Topology Entry

Resort To Table into Original Order ~

t
Load From Table into Memory

t
Sort From Table into Sequential Order

149

No
,..---~~Are There More From Table Entries?~~--~--~~--~-.

.} Yes

Get Next From Table Entry

~
Next Topology Entry "END" Portion

t
From Table Entry Equal "END"? c: Get

0 Does

t Yes

'----~-Replace From Table Entry by Block Number of Topology Entry

Resort From Table into Original Order ~------~----'

'1
Load Starting Location List into Memory

+
Sort Starting Location List into Sequential Order

t No
---~ Are There More Starting Location List Entries?------...

t Yes

Get Next Starting Location List Entry

rGet

~ Does

t
Next Topology Entry "START" Portion

t
Starting Location List Entry Equal "START"?

t Yes
...._ ____ Replace Starting Location List Entry by Block Number

Load Data and Storage Lists into Memory~MAIN3

150

Figure Al.29 - CONECT

CONE CT

t No
-""'"'"'~Are There More Starting Blocks? _.;;.;.;:; __________ ~

f Yes

Get Next Starting Block

f
--- Place Starting ~lock on Reachable List

No
Are There More Unused Reachable List Entries?_.-----~

. t Ye&
Get Next Reachable List Entry

t
No

---~Does That Entry Have More To Table Entries?-------~~

t Yes

Get Next To Table Entry

Yes T
....,. __ Is That To Table Entry Already on Reachable List? t No

""If~- Place To Table Entry on Reachable List

.._ ______ ~ ... Sort Reachable List

+
Get First List Entry

f No
Does Its "START" Equal First Instruction Location?--..,>-~Error f Ye•

151

No
---~Are There More Reachable List Entries?----------

Yes t
.....,.;....-- Is It Next Sequential Block?

Yes

.L No
f No

Is Missing Block a Data or Storage Block?------

~
"'"""~-- Set Data or Storage Block Bit in Topology Entry

Yes

r----'.._, Find Out Why Block is Missing ...i;o------------'

t
Correct Control Table Entries---?- CONECT

Get Last Reachable List Entry......;&---------------~

t Yes
Does Its "END" Equal Last Instruction Location? ---lit)' ... MAIN3

I No
No 'f .__ ___ ls Missing Block a Data or Storage Block?

+ Yes
Set Data or Storage Block Bit in Topology Entry~--=) MAIN3

152

Figure Al.30 - LOOP

LOOP

t
Construct A Reachable Block List

+
____ .._Are There More Unused Reachable Block List Entries?

t
No)r MAIN3

Yes

Get Next List Entry and Call It The Root Block

t
Place Root Block on Temporary List

No t
'-----Are There More Unused Temporary List Entries?~---------------..

t Yes

Get Next Temporary List Entry

t No
~---!).""""Does That Temporary List Entry Have More To Table Entries?~~---

+ Yes

Get Next To Table Entry

Y Yes
Is That To Table Entry Equal to Root Block?~------------------,

+ JYes Is That To Table Entry Already on Temporary List? ' t
No

No

~- Plac~ To Table Entry on Temporary List -...--

Set Loop Flag in "f" Portion of To Table Entry

t
Find Corresponding From Table Entry

t
..,,. Set Loop Flag in "ti' Portion of From Table Entry

153

------ -----------------

Figure Al.31 - SET32

SET32

f
Load Active Reference List into Memory

t
Load Passive Reference List into Memory

t
....--~- Get Next Block "START" and "END"

t No
Are There More Active Reference List Entries?------~----~~----.

t Yes

Get Next Active Reference List Entry

+ No
Does This Active Entry Occur Between "START" and "END"? -----.

t Yes

Add Active Entry to Active Table

t
Increment The Block Active Table Entry Count

Store Active Table Count in This Block's Topology Entry

+ '--~---Store Active Table Pointer in This Block's Topology Entry

Store Active Table Count in This Block's Topology Entry...t;,,..---J

t
Store Active Table Pointer in This Block's Topology Entry

t
Repeat Above Process for Passive List

t
Load Constant Value List into Memory~ MAIN3

154

Figure Al.32 - I.ATEST

I.ATEST

t
Construct a Reachable Block List

~
Are There More Reachable Block List Entries? No) MAIN3

t Yes
Get Next Reachable Block List Entry

t
No Does Block Have More Passive Reference Table Entries?~ More Passives

f Yes
Get Next Passive Reference Entry for This Block

t Yn
Is This passive Reference Flagged as Constant? More Passives

J No
T Yes Is This Passive Reference Flagged as Changed? .,_ Changed

t No
Is This Passive Reference Flagged as Indirect? Yes) Indirect

+ No
Find Latest References on "Cell Used" (LOOK)~ More Passives

Changed-il--Find Latest References on Changed Address (LOOK)

f Yes
More Than One Ls test Reference Found? More Passives

~ No
No Does Latest Reference Use a Constant? ,.. More Passives

t Yes
Reset "Cell Used" Portion of Passive Reference Entry to the Constant

(

155

Reset Changed Flag in "f" of Passive Reference Entry

t
Find Latest Reference on New "Cell Used" (LOOK)--;;.- Nore Passives

Indirect--->- Is Indirectly Addressed Location a Constant? No

t Yes

Get Constant Value

t
Reset "Cell Used" Portion of Passive Reference Entry to the Constant

t
Reset Portion Used in "f" of Passive Reference Entry

t
Reset Indirect Flag in "f" of Passive Reference Entry

t
Find J,atest Reference on New "Cell Used" (LOOK)-)o-Hore Passives

Find Latest Refere1:ces on Indirectly Addressed Location (LOOK)..,..,.__ __ _,

t
Hore Passives

156

LOOK

f No
Does This Block Have More Active Reference Tsble Entries? ~-------.1~

J. Yes
T Not Found Find Active Reference Just Ahead of Passive Reference Location.....;. ____ _. ...

t Found
Yes

-----Does "Cell Used" Equal "Cell Changed"?

LDoes ~is B~:ck Have More Active Reference

t Yes

No
Entries? ~----------.--1...f

Get Next Higher Active Reference Entry

'----~- Increment Latest and User List Counters

+ Add Latest and User Entries to Lists

f Yes Does Portion Used Equal Portion Changed? ~ Return
1 No
T Yes Does Total Portion Changed Equal Portion Changed? >= Return

f No
Reset Portion Used by Removing Portion Changed

f
Place Block on Temporary List""""i-----------------------'

f No
Are There Unused Entries on Temporary Lis.t? ~ Return t Yes

Get Next Temporary List Block Entry

No t
.__ ____ Does Temporary List Block Entry Have More From Entries?~More Froms

t Yes
Get Next From Table Entry

t

157

Yes Is It the Original Block of Current Passive Entryt~~~>i-- Original

t No
Yes

Ia It Already on Temporary List?)i More Froms

t No
Does New Block Have Mote Active References? Yes

t No
Add New Block to Temporary List More Froms

Get Next Higher Active Reference Entry, ...,.;-..---~--'

' No DOes "Cell Used" Equal "Cell Changed"?

+ Yes
Increment Latest and User List Counters

+ Add Latest and User Entries to Lists

t
Portion Used Equal Portion Changed? Yes>- More Froms Does

t No

Total

t
Does

Yes Portion Changed Equal Portion Changed? ---lll)a• More Froms

No

Reset Portion Used by Removing Portion Changed

t
Add New Block to Temporary List--+More Froms

158

Original~ Does OrigLnal Block

t Yes

• ? No
Have More Active Reference Entries.---:>- Hore Fro~s

Get Next Higher Active Reference Entry

+
Below

+
Is It

No
Original Passive Reference?~ More Froms

No,E:---- Does "Cell

+

Yes

Changed" Equal "Cell Used"?

Yes

Increment Latest and User List Counters

+
Add Latest and User Entries to Lists

t
Does Portion Used Equal Portion Changed?~ Nore Froms

No + Yes
Does Total Portion Changed Equal Portion Changed?~ Hore Froms

+ No
.... ro----- Reset Portion Used by Removing Portion Changed

159

PHASE FOUR

For programming purposes, Phase Four is divided into two parts

MAIN4 is the main program of the first part of Phase Four. }JAIN4

calls two subroutines which generate the functional expressions, SET41

reads the various lists and tables into memory and constructs the Latest

and User entries in the Topology Table. PERT first generates a reachable

block list and then constructs a functional expression for each active

reference. }JAINS is the main program of the second part of Phase Four.

MAINS calls two subroutines which produce the detailed output flowchart.

SET51 reads the various lists into memory and sorts the Message Pointer

List into sequential order. OUTPUT uses the Topology Table and the

ordered Message Pointer List to produce the output flowchart.

160

Figure Al. 33 - MAIM

}li\IJ\!1

+ Load The Required Tables (SET41)

t
Construct Functional Expression (PERT)

t
NAit\5

Figure Al.34 - SET41

SET41

+
Load Topology Table into Memory

+
Load To Table into Memory

t
Load From Table into Nernory

t
Load Starting Block List into Herr.cry

t
Load Active Reference Table into Memory

t
Load Passive Reference Table into Memory

t
Load Latest Reference List into Memory

t
Construct Latest Reference Table

Load User List into ~[er.10ry

+ Construct Gser Table-':;;-- l'.A10:5

161

No

REFER4

t
Get Active Symbol from Format Table Entry

+ Save on Output List

+
Get Next Active Reference Table Entry

t
Save Active Reference Information on Output List

t
Save Equal Sign Symbol on Output List

f
Is "C(" Required?

f Yes

Add "C(" Symbol to Output List

+ No
Are There Any Latest Reference Entries for Passive Reference?~--~~.._

t Yes
No

Is There Only One Latest Reference Entry? ~------~~~~~-~!Jllo-I t Yes
Get Latest Reference Entry

f No
Is Expression Pointer Flag Set?~~~-~~-~~-~~-~~-~~~

f Yes
Find Output Message

+
Find First Word After Equal Sign

t
Copy Remaining Words onto Output List

Save Passive Reference Information on Output List ..,,.,__ ______ __.

163

Is ")"Required? + Yes

Ko

Add ")" to Output List

+
Construct Message Pointer List

t
Process Latest Reference and User Entries (LAT and USER)

+
More Passives

Ll\T

t
;:..... Are There More Latest Reference Entries for the P2ssive Reference?

+ Is Expression Pointer Flag Set?

Yes
No

+ Yes

Find O+tput Message Location

Construct Nessage Pointer List Entry

Set Expression Kot Found Flag in Latest Reference Entry~

164

Ho)- USE

USER

+ No
Are There Hore User Table Entries for the Active Reference?---»>- Hore Passives

t Yes

Get Next User Table Entry for the Active Reference

+ Find Its Latest Reference Pair

No + Is Expression Not Found Flag Set?

t Yes

Reset Expression Not Found Flag

t
Find Location of Current Active Reference Output List Entry

t
Construct Message Pointer List Entry

t
Find Location of Current Active Reference Output List Entry

--~~-~-Store Expression Pointer in Latest Reference Entry

165

figure Al. 36 - No\IN5

NArnS

t
Load The Required Tables (SETSl)

t
Print Output Flowchart (OUTPUT)

Figure Al.37 - SETSl

SETSl

t
Load Topology Table into Memory

t
Load To Table into Memory

t
Load From Table into Memory

t
Load Starting Block List into Memory

t
Load Message Pointer List into Memory

t
Sort Nessage Pointer List into Sequential Order

t
Load Output Message File into Memory

f
Load Symbol Table into Memory

t
Sort Symbol Table into Sequential Order

+ Load Constant Value List into Memory

+
Load Data List into Memory

t
Lood Storage List into 1-lemory-)- NA.INS

166

Figure Al.38 - OUTPUT

OUTPUT

+ --,..Read Next Input Program Line

+ Find Its Location

No +
"---Does Its Location Equal Location of First Instruction?

t Yes
No More Blocks~Are There More Topology Entries?-~~>-- Analysis Finished

t Yes
Save Block Number in Block Number Line

t
Print Block Number Line

f
Print Top Asterisk Line

t
Save "START" in Starting Location Line

t No
,__....,._Does Block Have More From Entries? ---------------. t Yes

Get Next From Table Entry

Yes t
...,....__Does From Table Entry Equal Previous Block?

t No
No

Does From Table Entry Have Any Special Flags?----~

+ Yes
Add Special Prefix Characters

+, __ Save From Entry in Starting Location Line _____ _.

Print ~arting Location Line

167

t
~~~.......;~ Print BCD Source Instruction 

Yes 

+ Message Pointer List Contain Functional Expression for Line? 

t Yes 
Find Functional Expression on Output Message File 

~ 
Convert Functional Expression into BCD Words 

f 
Print· Functional Expression 

t No 
Message Pointer List Contain Cross Reference Expression for Line?~~~~ 

f Yes 
Reference Expression on Qutput Message File Find C+oss 

Convert Cross Reference Expression into BCD Words 

t 
Read Next Input Program Line 

t 
Find Its Location 

t 
Is It in Current Block? 

+ 
No 

168 



---~Does Block Have More To Entries? No 

t Yes 

Get Next To Table Entry 

+ No Does To Table Entry Equal Next Block? 

f Yes 

Set Connect Switch 

No Does To Table Entry Have any Special Flags? 

t Yes 

Add Spec'ial P·refix Characters 

f 
Save To Entry in Ending Location Line 

Save "END" in Ending Location Line....,. ....... ______ _, 

t 
Print Ending Location Line 

t 
Print Bottom Asterisk Line 

+ Is Connect Switch Set? 
No 

t Yes 

Print Block Connecting Lines 

i 
Reset Connect Switch---~~ ..... More Blocks 

Print Blank Lines~---.....,'>='--More Blocks 

169 

-- - ---- --------------------------



APPENDIX TWO 

FLOWCHARTS OF ACTUAL PRO@AMS 

One standard question has been, "Can the Analysis Program analyze 

its elf?" The purpose of this appendix is to display flowcharts of 

analysis subroutines produced automatically by the analysis program. 

In general, the Topological Flm~charts are accurate, ~~1ile the Detailed 

Flowcharts are incomplete' due to unprogrammed functional generation 

subroutines. 

170 



Figure A2. la shm.'s the listlng of a subroutine 11hich converts 

the binary numlccr contnined in the logic<Jl AC into a BCD number with 

leading blanks. ¥lgure A2.lb displays the Topological Flowchart of 

the conversion program 1-.'11ile Figure A2. le displ nys the Detailed Flowclvirt. 

171 



Figure A2.la - A Binary to BCD Conversion Subroutine 

* 
* 
* 
RCD 

* 

SJ 

S? 
S3 
S4 

* 
y Lt 

* 

S>'./\ 
xr 1 
rw1_ 

t\XT 
SH', 
Zf',r 
l r, L 
rr•z 
TIX 
CAL 
TflA 
r/\ L 
1.nn. 
A.LS 
LGI 
TIX 

M'.T 
T p /\. 

PZI 
RC! 
Rr: ! 
Ft!n 

x 11, 11 

'.Jl. 

s I /~ 

sr 10 

3 
S/ 
Sl,11,! 
l 
X4 
f\ 
St'll. 
3 
3 
S 11, 4 I 1 

* °} ... ~ ~ 

J I lf 

0 
1 - , 
1 .. I 

(\ 

s1·r.r.nur1r·r rr rnr'.vrrn THf 1.nr,1rtd. r.r 
TO f\ P,("f! 11111.•r.H' rn.rw fl.ti Or'T/'L f 1lJ'TFr 

1· 11 r 11 1 r r-r1 1 ~ • r. r . 

t_Ff'T ,!\ISTIJ=V Tf!r FJl/r n1r1r t 1t11•r.r-r1 

r11Err rr·r• nF r111r n1r.1T<: 
st11r THE r:-r~·r·1r1npi nr: T1 1 r. t 1i11 1 rrr 
l T\IF ,II(" 

GFT H'F t'FYT nrT/\{ n1r1T 
1 F t • N• - z , ''"°' n n ! r. l T T n F ~ 111 n r 11 r 
IW p "· s s I. r: /'. n I ' 'r 7. s 
GIT '" prn Frn 

l''ITlllLl7r {\(' f'.S r.t_n 1 f'C' 
P. F s Tor> F ,_. n F n p r I p s T '"('I: - z n I r I T 
r I r1~ l 1P TllRf'F l RI TS 
Plr'K \IP ~ll='XT n1r-1r 
[) r: r: fl r: )\ s F [1 I r I T r r 1111 T 

r<rsTr•rr- r.r.11 1 f"' rn,nrirss 
f'FTlTt' 

172 



Figure• A2.lb - The Topological Flm-1ch~rt for Figure A2.L1 

7 

3 

c; 

* 
* 
* 
* 

* 
* 

( * 

* 
* 
* 

* 
* 
* 
*) •••• 

..• ) * 

7 

* 
* 
* 

* ( .. 
* 
* 
~ ) ..... . 

* ( .. 
* 
* 
*) • 

* 
* 
* 
* 

173 



Figure /\2. le - The Detailed Fl D\Jchart for Figure A2. la 
l 

(l? r, l,IJ 

r, 3 
(1l1 

n '1 

OG Sl 
07 
,_ 0 
J1 

l? 

Jr; c:: I 
lG s 3 

s v f, 

;: r '-
fir'!_ 

UT 

STn. 
u,r. 
1r-1 
n17 

TIX 

x 11, /1 

? J. 
:;, 

SI' 0, 

3 
S2 

s J., r,, J. 

7 
Y It 

R 
s" () 

? 

r; 

G 

11. 

l '.l 

n 

l It 

J'i 

1 fi 

****************~******* 

* * 
* fl I Yl•" I Yi' '/.• 

-· * 
* * 
* 1 v 1· = t'- 1 7 7 1-_ n n It n n n n '; * 
-)- * 

? 
************************ 
* * ( . 
* s•1n~~·n * 
* * 
* * 
* * 
* *) 
************************ 

3 
*************"********** 
* 
* 
* 

* 
* 
*) • 

*******************"***~ 

+ * 
* "-r.=r;risnrnr.or:nrin * 
* * 
* *) .• 

************************ 

* * ( .. 
* flf:=Gn5nr;nr;%nr.n * 
* ~'n =r'.n * 
* * 
************************ 

174 

13 

!. ? 

7 

! 

r; S"l1. =f'.n 



F 
**********************~* 

17 * * ( ... 
17 S!1 A!S 3 * * 
20 l. r; L 3 * * 
21 Tl .X s 4 I [j / J * * 

11 * *) ..• I G 
************************ 

7 
************************ 

21 * *( •• 4 
22 .Xl1 /\XT **I [j * I .X!1=/l/ I "!l1 * 2 fl/Yl1= I Y!1 
13 n'" 1, 4 * * 

?. 3 * *) . I q 
************************ 

******************+.***** 
2 !1 * * 

24 S1'0 rn 0 * * 
2 5 z Rf! 1, 0 * * 
2f R f\C I J. I * * 

2G * * 
************************ 

175 



First, 

Second, the pro;c'rilm calls a binary sort routine, DSF'fH'., to perform the 

sort. Third, the pro~;rom returns the aclclrcsscs ancl tags to their 

orir;in;-i1 pcYitic)])s. figure A2.2h displays tJ~ic Topo]Of',ical Flowcl1'.1rt 

of the prugr;w. 

176 



Figure A2.2a - An Address and Tag Sort Subroutine 

* 
* SRTT/\<1 

* 

* 

* .Al 

•A?. 
.A3 

* 
•/\I~ 
.A5 
1: 

.A6 

.A7 

.AS 

* 
• IX l 
• IX 2 
• I X4 

* 
COlHH 

EMT RY 

SXf\. 
SXA 
SXf\. 

CAL 
STA 
CAL 

·sTA 

CAL* 
STA 
STA 
STA 
STA 

.STA 
STA 
CAL* 
STA 
P/\X 

CAL 
PAX 
u::R 
PX/\ 
Lf.i L 
STT 
STA 
TIX 

TSY, 
PZE 
P7. E 

ZAC 
XCL 
LX/\ 
CAL 
ALS 
STT 
POX 
PXI\ 
STA 
TIX 

AXT 
/\XT 
/\YT 
TRJ\ 

PZF 
EMO 

• IX1,l 
• IX?.,?. 
• IX4,4 

1,4 
.A4 
'-I I\ 
.AS 

1,4 
.Al 
.A2 
.A3 
• Af! 
.A7 
.AR 
2,4 
r.ouMT 
,l 

**,1 
, ?. 
l8 
,2 
3 

**I'· 
**,1 
.11.1,J,? 

SlJRROUTlt!F TO srrn ON /lnnnrss, 
THEN I NTF.Pt'Alt v ON T/ln 

GF.T AnORFSS OF TOP ftOORF.SS 

f.iFT AOORESS OF COUNT AnORFSS 

riET TOP Af"'nRFSS 

GF.T THF r.ourrT 

GET Mf XT ':10 R'1 
Sf.VF Af10f'F.SS 
~fl.VF TAG 
G~T AN>r.r-:ss 
PI Ct'.l.'P TA.n 
SA.VF LAST lR BITS 

,~,rr= THFP.F W>RF' \·ropns 

$0SRT18,L1 SORT OM Ll\ST lR RITS 
** 
*"' 

COlH1T,, J. 
**,l 
15 
**,1 
, ?. 
,2 
* *, ,_ 
./\f..,l,? 

**,1 
**,2 
**If! 
3, l! 

0 

GJ:T TµE r.nur-iT 
GFT NFXT \'!0Pn 

St.vr: flLO T/lf.i 

s.fl. vr- 01.n !\nnrn=s~ 

/\RE T!~F.RF. ''C'f:F. '·!()l(nS 

177 



Figure A2.2b - The Topological Flowchart for Figure A2.2a 

1 

* 
* 
* 
* 

'.I 
* ( . . . 
* 
* 
*) . . . . 

3 
* 
.,,. 

* 
*) ••••• ·• • II .................... I ••••••••••••••••••••••• F 5 

11 

* 
* 
* 
* 

5 
* ( ..................................................... E3 
* 

* 
+. 

h 

7 

* 
* 

* 
*) ..................... , , .............................. 1 P. 

10 

* 
* 
* 
* 

178 



Figure A2 .3a sho\,'S the listing of the DSRT18 program which performs 

a binary sort using only the risht-}1anc1 eighteen bits. Figure A2.3b 

displays the Topolo1;ical Flm.;chart of the sort program. While the 

DSRT18 subroutine ,,1:1s being analyzed, t11e CO~.JEC'f subroutine found that 

there was an instruction just above location SORT31 in DSRT18 which 

could not be reached. This unreachable instruction turned out to be 

extraneous and must have been inserted \1hile the program \vas being 

prepared for input to the computer. After the extra instruction was 

removed, the analysis program ran to completion. 

179 



Figure A2.3a - A Binary Sort Subroutine 

* 
* 
* 
* 
* 
OSP.T18 

SORTl 

SOP.T12 

SORTl 1 

SORT13 

SORT3 

ENTRY 

SXA 
SXA 
SXA 
CLA* 
sun 
PAC 
TXI 
SXA 
CLS* 
TZF. 
ADM* 
SllB 
PAC 
SXA 
AXT 
LXA 
CLA 
PAX 
CAI. 
TXI 
sxo 
TXH 
LOI 
Tl F 
TX! 
LOQ 
STI 
STQ 
l.OQ 
LOI 
STQ 
STI 
sxo 
TXL 
LO I 
TIO 
TXI 
TXI 
TXI 
TXI 
PXA 
ST/\ 

OSRT18 

I Xl, 1 
I Y.?. I 2 
SRTt',li 
l,4 
A02 
, 1 
•+1, 1,?. 
SORTA, J. 
2 I (i 
SRn! 
1, Ii 
An?. 
, 2 
SORTP.,2 
18, 1 

SUR ROUT I MF. TO SflRT fl. LI ST OF ~ 1 UMRF.PS 
THF: S~~AUEST ~11.W!'lfP IS /\T tm·/ OCT.l\L 
THE EAi.LiNA SEQUF:NC~ 

nx ~sninu, 4 
PZf 1.nc OF H' r,q orrr..t + 1 f\f)llRF.SS 
P7F. COUNT AOORF.SS 

SAVE I Y1 
Sf.VF IX?. 
S/.IVf THE RFTl!RN /\f'l"lRFSS 
AFT HIGH nrTAL +l f\f)[)qfSS 
FORM Hl~H OCT/IL Af'ORFSS 
FORM 2 1 S COMP (HIAY OCT/\!.) 
FORM 2 1 S C0MP (lq r-H OCTAi ) + 1 
STORF 11,1 S0RTI\ 
GF.T -COUNT 
IF COUt!T zrno, Rf:Tlln.t.I 
FORM HIAH OCT/II. +1 -cnUtJT 
FORI.' HI (';H flrT/I L - CNINT 
Fom· 2 1 S C0f·'.P (HIGI~ fH~T/\L-rnu~1T) 
STORE l t·! SORTP. 

SORTR,4 INITIALIZF. SEPARATION ROUTINFSfT IXh=TOP OF 
SORT/\+J.8, 1 
,2 SfT IX2=nOTTON OF STRI. 
SORTBT+18,l PICKUP RIT TO RF SORTFn n~ 

SORTll,?.,-2 
*+1,4 SCAN UP FOR ZFRO-~IT 
SORT13,2,** STOP /\T rrP OR OM [<\ST SOPTFf'l SVt'.fl().I. 
2 I,-
* + 2 TPA ON FIRST ZERO PIT 
*-3,2,?. 
fl, 4 
0, Ii 
2,2 
1, 4 
3,2 
3,2 
J. I 11 
Hl, 2 sr..l\N nrn'F. Fflr ONF:~R 1 T 
Sf\RT13, ti,** C::TOP !\T f\OTT011 flR ON 1./IST S0!HF:fl SY}' 
2 I 11 
*+?. 
*-3,4,-2 
•+1,4,-2 
SORTl?.,2,2 
•+1,2,2 
0,?. 
SORTA+19,1 

TPA OM FIRST 5y11p,0L t!/ PPOPFR RIT 

S/\VF Lnc. OF L/\ST snRTFr SYMBOL 

180 



CAS SORT~ cr..s 111 TOP OR W/ PP.EVIOUS LOC. 
TRA SORT31 IF r.PEATFR Plf:K !IP F.llRLIFR LOC. 
TR/I SORT4 IF EQUllL, Si:"E IF OONF. 

SORT32 TIX SORTl, 1, 1 IF LFSS, Go on TO NFXT P.IT 
SORT87 /IXT l,l 

CLA SORTA+18 
SUB AQ2 
ST/\ SORTB 
CLA SORT/l.+17 
STA SORTA+18 
CAS SORTA 
STA SORTP. 
TRA SORT7 
TR/I. SORT87 

SORT31 CLA SORTA+lR,l IF R2 IS AP.OVF (SOPTR), 
TRA SORT3 SF.T IT TO ROTTN1 OF BLOCK 

SORT4 SUR AQ2 
STA SOR TR BRtNn SORTB UP TO O~TF. 
lOQ SORTA+18,l LOOK /IT U\ST 1.oc. FXr.Hf..'-tnrn 
STQ SORTA+19,1 rmvr IT UP 
TLQ SOP.T3?. CJ\S W/SORTB 

SORT7 TXH Sl'lTM,1,17 
LOQ SORTJ\+J.7,1 SF.ARrH f\ACK J!P THROlrnH THE T/l.f1LF. 
STQ SORTll+l!l, 1 
Tl:.Q *+2 CAS TO SORTP Ar,AIM 
TXI SORT7, J., 1 cm AROUNO MAIM 
SUR Af12 
STA SORTS UPOATF. SORTP. Mfl.·ff'J 
TLQ SORTl r,o RA.CK FOR AMOTMFR PASS 
TXI SORT7,J.,l I NCRFl-IFNT IXl TO SF.ARCH TARLF 

SRTN AXT **·, 4 
IXl AXT **, 1. RFSTORF I Xl 
IX2 /IXT **,?. RFSTORF IX?. 

TRA 3,4 
SORT77 P7.E 
SORTA PZF. 
SORTA DUP 1,19 

PZE 
AQ2 PZF 2 
SORTBT OCT 400000,200000,100000 

OCT 40000,2~000,10000,4000,2000,1000 
OCT 400i200,100,40,20~10,4,2,1 
nm 

181 



1 

3 

[1 

r; 

r, 

7 

1 () 

J 1 

* 
* 
* 
* 

*) •• 

) 

( 

* 
* 
* 
* 

.Y: 

~' 
;, 

;, 

* 
* 
* 
* 

) .,. 

* .,, 

* 

* 
+ 
, .. 

( " 

* _, 

" ( ;\ 

) •' 

] f. I. 

( 

( 

) 



) 3 

} It 

1 r; 

1 7 

'..Jl 

) * 

) ,, 
* 

( •· 

* 

* 
( ,, 

* 
* 
;_ 

( "" 

* 

* 

* ,. 

l ·• 

( ' \ 



? r; 

* 
* 
* 
;-) .... 

* ( . 

* 

. ) . ( ...... . 
* 
* 

* 

. ( ·') .. 

* 

* 

. ) * 

* .... ( ,, 

* 
.. (. 

7,? 

.;· 

.... ' ( ;, 

.. ) ; 

.., .. 

") .. 



31! 

....• ) * 
* 
* 
*) •••••••••••••••••••••• 

3 r, 

* 
* 
* 

........ ( * 

3 fi 

* 
* 
* 

... ( * 

37 
........ ) * 

+ 

*) •.•••••.••.••.•. 

!1(1 

.. 

.. 
* 

.. ( * 

I;] 

* ( ..... 
* 
* 
*) .... 

* 
;· 

* 
* 

l f:5 



BIBLIOGRAPHY 

1. Berge, C., The Theory of Graphs and Its Application, Translated by 
Alison Doig, John Wiley and Sons, New York, 1962. 

2. The Compatible Time-Sharing System, A Programmer's Guide, M.I.T. 
Press, Cambridge, Massachusetts, 1966. 

3. Haibt, L. M., "A Program to Draw Multilevel Flow Charts," Proceedings 
of the Western Joint Computer Conference, pp. 131-137, (1959). 

4. Hain, G. and K. Hain, "Automatic Flow Chart Design," Proceedings of 
the ACM 20th National Conference, pp. 513-521, (August 1965). 

S. IBM 7094 Data Processing System Reference Manual, IBM Corporation, 
Poughkeepsie, New York. 

6. IBM 7090/7094 Programming Systems FORTRAN II Assembly Program (FAP) 
Reference Manual, IBM Corporation, Poughkeepsie, New York. 

7. Iverson, K. E., A Progcagming Language, John Wiley and Sons, New York, 
1962. 

8. Krider, L., "A Flow Analysis Algorithm," Journal of the Asgociation 
for Computing Machinery, Vol. 11, No. 4, pp. 429-436, (October 1964). 

9. Needleman, M. R. and c. A. IJVine, Pathfinder. A Source Code Analysis 
Program for the Multiprocessor Environment, Western Data Processing 
Center, University of California, Los Angeles, California, (1966). 

10. Nievergelt, J., "On the Automatic Simplification of Computer Programs," 
Communications of the ACM, Vo1. 8, No. 6, pp. 366-370, (June 1965). 

11. Prosser, R. T., Applications of Boolean Matrices to Analysis of Flow 
Diagrams, Technical Report No. 217, Lincoln Laboratory, Lexington, 
Massachusetts, (January 1960). 

186 



12. Ramamoorthy, c. V., "Connectivity Consideration of Graphs Representing 
Discrete Sequential Systems," IEEE Transactions on Electronic Computers, 
Vol. EC-14, No. 5, pp. 724-727, (October 1965). 

13. Rising, H.K., On an Automated Method of Symbolically Analyzing Times 
of Computer Programs, Technical Report No. 154, MITRE Corporation, 
Bedford, Massachusetts, (March 1966). 

14. Ross, D. T., "A Generalized Technique for Symbol Manipulation and 
Numerical Calculation," Communications of the ACM, Vol. 4, No. 3, 
pp. 147-150, (March 1961). 

15 Sutherland, I. E., Sketchpad: A Man-Machine Graphical Communication 
System, Techni.cal Report No. 296, Lincoln Laboratory, Lexington, 
Massachusetts, (January 1963). 

187 



BIOGRAPHY 

Daniel U. Wilde was born on December 27, 1937 in Wilmington, 

Ohio. He attended high school at the Evanston Township High School, Evanston, 

Illinois, from which he was graduated in June, 1956. He was an under­

graduate at the University of Illinois where he received the degree of 

Bachelor of Science from the Department of Electrical Engineering in 

February, 1961. Since then he has been a graduate student at the Massachu­

setts Institute of Technology where he received the degree of Master of 

Science from the Department of Electrical Engineering in September, 1962. 

Mr. Wilde is a member of Tau Beta Pi, Eta Kappa Nu, and Sigma Xi. Since 

1962 he has been a member of the staff of the Electrical Engineering 

Department, first as a teaching assistant and then as a research assistant 

with Project MAC. Since 1964 he has been a Research Instructor of Medicine 

at the Boston University Medical School, He is married to the former 

Marylin R. Corbett of Billings, Montana. 

188 



UNCLASSIFIED 

Security Classification 

DOCUMENT CONTROL DAT A - R&D 
(Security claaalllc•tlon of title, body ol •b•tr•ct and 'ndednQ SJnotatJon muat be entered when the overall report 18 c/aaaH/ed) 

I. ORIGINATING ACTIVITY (Corporate author) 2•. REPORT SECURITY CLASSIFICATION 

Massachusetts Institute of Technology UNCLASSIFIED 

Project MAC 2b. GROUP 

None 
3. REPORT TITL.E 

Program Analysis by Digital Computer 

.. DESCRIPTIVE NOTES (Type of report and Jnclualve date•) 

PhD. Thesis, Electrical Engineering, June 1966 
~. AU THOl:t(S) (L••I name, tint nmne, Jnltl•I) 

Wilde, Daniel u. 

.. REPORT DATE 7•. TOTAL NO. OF PAGES 

lb 
NO. OF REFS 

August 1967 192 15 ... CONTRACT OR GRANT NO. ... ORIGINATOR'S REPORT NUMBER($) 

Office of Naval Research, Nonr-4102(01) MAC-TR-43 (THESIS) b. PROJECT NO. 

NR 048-189 
Ob. OTHER REPORT NO(S) (Any other numbeu that may be 

c. 
RR 003-09-01 eaaiQnod thh report) 

d. 

10. AVAIL.AB! L.I TY IL.IMITATION NOTICES 

Distribution of this document is unlimited. 

II. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY 

Advanced Research Projects Agency 
None 3D-200 Pentagon 

Washin_g_ton D. c. 20301 
13. ABSTRACT Comparing properties of non- and self-modifying programs leads to the 
definition of independent and dependent instructions. Non-modifying programs contain 
only independent instructions, and such programs can be analyzed by a straight-forward, 
two-step analysis procedure. First, program control flow is detected; second, that 
control flow is used to determine program data flow or data processing. However, self-
modifying programs can also contain dependent instructions, and then program control 
flows and data flows exhibit cyclic interaction. This cyclic interaction suggests 
using an iterative or relaxation analysis technique. Initially, the relaxation pro-
cedure determines a first approximation to control flow; the second step, to data flow. 
These two steps are repeated until steady-state condition is reached. 

Algorithms for implementing the first iteration are presented. These algorithms 
are capable of analyzing programs which modify their control and processing instruct-
ions while executing. Also described are data structures which permit constructing 
functional expressions for data flow or information processing. Finally, actual 
output flowcharts of self-modifying programs are displayed. 

... KEY WORDS 

Automatic flowcharting Multiple-access computers Real-time computers 
Computers On-line computers Time-sharing 
Ma chine- a id ed cognition Program 

DD FORM ,_ .. 1473 (M.l.T.) 

analysis T'ime-sha red computers 

UNCLASSIFIED 
Security Classification 


