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ABSTRACT 

A method is developed for digital simulation of linear time­
invariant dynamic systems with lumped parameters and time delays. 
Ordinarily, such systems can be described by a linear matrix differential­
difference equation, which can be transformed to an infinite-dimensional 
difference equation whose solution is obtained in a recursive way. 

As the present method depends on the accuracy of evaluation of the 
matrix exponential, a simple comnutationlt procedure based on the 
truncation of the infinite series for e is described. 

In addition, an algorithm is given that ensures that the 
transient state of an unforced linear time-invariant dynamic system with 
zero time delay is calculated to a specified accuracy. 

Several sample problems are included. 
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CHAPTER 1 

INTRODUCTION 

1-1 Description of the problem 

This report presents a method for the simulation of linear time-

invariant dynamic systems with lumped parameters and time delays. 

In many industrial processes one often encounters a type of time 

delay called "transportation lag", This kind of delay is generated when 

process materials move from one point in a process to another point 

without any appreciable change taking place in the properties or 

characteristics of the process materials. Such delays may be caused by the 

flow of fluids through pipes, or by the motion of webs or filaments. 

Systems such as distillation columns and long heat exchangers are 

characterized by a multitude of small lags, which have an effect somewhat 

similar to that of time delays, The effects are not identical; however, 

some insight may be gained by using time delays models. The control of 

composition in a chemical reactor has been selected as a typical problem 

and this is depicted in section 5-2. 

Models having delays often arise in the study of systems with a 

mixture of lumped and distributed elements, An interesting form of 

topological representation suitable for such systems has been invented by 

Prof, H, M, Paynter at M,I,T,, and is called the bond graph, Rosenberg (17) 

* and Auslander (1) describe its use in modeling in some detail, 

Many other physical systems, such as electrical, mechanical and 

* Numbers in parenthesis refer to items in the bibliography, 
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hydraulic transmission lines, and certain types of structural problems, 

are good examples of distributed systems which can be modeled using the 

delay operator. These systems often are analyzed as two-port chains, and 

usually the equations are slightly more involved than the type treated in 

this report, It is suggested that the reader interested in these kind of 

problems consult Koepcke (9) and Vaughn (20), as well as any standard text 

treating transmission phenomena, 

1-2 Formulation of the approach 

As an extension to the use of ordinary differential equations 

which arise when the future behavior of the system depends only upon its 

present state and not upon its past history, many systems that include 

time delays can be described by a linear matrix differential-difference 

equation. That is, the system is described by 

where_! and ,!l are the state and input vectors, respectively and Ti and Tj 

are some fixed delay times, Ai are a set of n x n matrices, and Dj are a 

set of n x r matrices. Techniques such as the direct method of lyapunov or 

laplace transforms can be used in the analysis of the equation. However, 

the use of these techniques frequently requires extensive computation, and 

for that reason they are not practical for hand analysis, At this step, 

designers and analysts are forced to rely on the digital computer as a 

computing aid, 

Because matrix manipulations are so convenient to implement on a 

digital computer, many existing dynamic systems programs are based on a 
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matrix formulation of the problem, This convenience, together with the 

inherent elegance of the matrix approach, is helping to promote its 

acceptance among systems theorists, 

This report analyzes systems governed by the following differential-

difference equation, for which it is desired to have a time sampled version 

of the state response: 

_!(t) • A !(t) + B !(t - T) + D1.£(t) + DiJ:!.(t - T) 

where 

T • time delay, 

lf.(t) - (n x 1) vector, It is called the state vector, 

.!!,(t) • (r x 1) vector, It is the forcing signal or 

input vector, and it is assumed to be constant 

section 

between samples, 

A, B • (n x n) constant coefficient matrices, 

Dl' D2 • (n x r) constant driving matrices, 

Koepcke (9) shows that the equivalent difference equation 

3-1) 

_!(t + t) • l (~i(t) !(t - iNt) + ~i(t) .£(t - iNt)] 
i•O 

is 

T 
where N • 1 , and ~i and ~i are called plant transition matrices and 

control transition matrices respectively, 

(see 

The accuracy of evaluation of these sets of transition matrices 

depends upon the accuracy of evaluation of the matrix exponential, In 

section 2-3 a simple procedure based on the truncation of the infinite 

AT series of e (11,6), which guarantees a specified accuracy in the matrix 

exponential, is described, 
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Also, a procedure is developed (21) to ensure that the calculated 

transient state of unforced linear time-invariant dynamic systems with 

•ero time delay, is accurate to a specified tolerance. 

Several sample problems are presented to demonstrate the 

computation techniques, 

1-3 Application of results in dynamic simulation 

The two sets of simulators deduced throughout the development of 

this work, were tested on the time-shared IBM 7094 operated by Project MAC, 

and the entire operation, input and output, was carried out at an IBM 1050 

remote console typewriter, The algorithms will be part of the ENPORT 

Project which is being carried out at the mechanical engineering department 

under the direction of Professor Rosenberg, 

ENPORT is a digital computer program that accepts a bond graph 

description of a dynamic system and produces its time response, Work is 

being done on the theory of bond graphs, and a systematic graphical 

method has been developed for generating the state differential equations, 

ENFORT is organized in such a way that a broad class of nonlinear, active 

and passive, mixed energy-type systems can be handled, 

The wakelike nature of certain types of distributed systems make 

simulation by means of the digital computer, with its ability to exactly 

model the time delay operator, very natural, A simulation method based on 

delay-bond modeling has been developed by Auslander (1), 
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CHAPTER 2 

DYNAMIC RESPONSE OF LINEAR TIME-INVARIANT SYSTEMS 

The analysis of many systems problems encountered in scientific 

and engineering investigations can be performed by either one of two 

major approaches, The essentially block diagram approach, involves the 

determination of the tranafer characteristics of the system components 

and the overall transfer characteristics, The second approach is based 

primarily upon the characterization of a system by a nwnber of coupled 

first order differential equations which govern the behavior of the state 

variables, This technique is often implemented with the aid of a state 

variable diagram and is referred to as the state-variable approach, 

2-1 System Characterization by State Variables 

From the point of view of syatem analysis it is convenient to 

classify the variablea which characterize or are associated with any 

system into {l) input, or forcing signals, Ui, which in essence represent 

the atimuli generated by systems other than the one under inveatigation 

and which influence the ayatem behavior; (2) output, or responae, 

variable• Yi, which deacribe thoae aapecta of system behavior that are 

of interaat to the investigator; and (3) state variables Xi, which 

characterize the dynamic behavior of the system under investigation. 

One way of defining state variables is by making use of the state 

variable diagram. A state variable diagram ia made up of integrators, 

coefficient• and summing devices, It deacribea the relationships among 

the atate variables and provide phyaical interpretation• of them. The 
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outputs of the integrators denote the state variables. 

For continuous-time systems the state variable diagram is the 

same as the analog-computer simulation diagram, The state variable 

diagram may be derived from the overall transfer function of the system 

in three different ways (1) direct programming, (2) parallel programming, 

and (3) iterative programming, These methods are later ilustrated in the 

chapter corresponding to the solution to sample problems, Further 

information can be obtained from Tou (19) 1 Schwarz and Friedland (18) and 

Ogata (15), 

2-2 Digital Solution of the Matrix Differential Equation 

A linear time-invariant system or process can be described by a set 

of first order linear differential equations with constant coefficients, 

which may be expressed in matrix form as 

where 

,!(t) • A !(t) + D Jl(t) 

A is the coefficient matrlx 

D is the driving matrix 

.! is the state variable vector 

.£. is the state forcing signal vector 

By analogy to the scalar case, the solution of eq, 

!(T) • eA(T - to)_!(t
0

) + J:eA(T - •)D ..![(•) d• 

0 

with the initial conditions given by ,!(t
0
), 

For simplicity let t
0 

• 0 1 and let us define 

4>(T) • 
AT 

e 

(2,1) 

(2.1) is 

(2.2) 

(2.3) 
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as the transition matrix of the process. An equivalent name is the matrix 

exponential. 

Therefore eq. (2.2) can be reduced to 

,!(T) • t(T) ,!(O) + ~(T) J~-AT D Jl(T) dT (2. 4) 

If Tis small compared to the shortest period of interest in .£.(t), 

Jl(t) may be approximated over the region by Jl(O). 

Then eq. (2.4) becomes 

,!(T) • ~(T) ,!(O) + ~(T) ( f: e -AT dT) D .£.(0) (2.5) 

By integration of the series of e-AT 

IT -AT -1 

0
e dT •A [l - ~(-T)J (2.6) 

Thus 

,!(T) • ~(T) ,!(O) + ~(T) A-l[l - ~(-T)) D ].(O) (2. 7) 

Let us define 

(2.9) 

as the control transition matrix. 

-AT From the series definition of e , it is observed that 

-1 -AT -AT -1 A e • e A 

Tha~efore, eq. (2.9) becomes 

or 

(2.10) 
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Thus eq, (2,8) can finally be written as 

(2 .11) 

or 

,!(T) • ~(T) ,!(O) + ~(T) .£.(0) (2.12) 

In general eq, (2,12) can be expressed as 

,!(K+lT) • ~(T) !(KT) + ~(T) .£.(KT) (2 .13) 

which indicates that the state vector of the process after a particular 

interval depends upon the previous vector and also depends upon the 

forcing vector evaluated at the previous time, 

There are several methods available for computing the closed form 

AT expression for e , either as a special case of the study of the functions 

of a matrix or by a purely algebraic method based on the Laplace Transform, 

It is suggested, for those interested in these schemes, that they consult 

Ogata (15), Zadeh and Desoer (23), or Bellman (2), 

2-3 Digital Evaluation of the Matrix Exponential 

AT e is given by 

A B B B B B2 
e T • e • I + B + 2< ll) + 3< TI ) + ---- (2, 14) 

note that each term in parenthesis is equal to the previous term, This 

provides a convenient recursion scheme, 

To ensure a reasonable truncation of the series, it is necessary 

to judge the convergence of the series, The norm of a matrix A is a real, 

non-negative number denoted by llAll , that gives a measure of the size of 

the matrix elements, 

Let 
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AT where M is the truncated matrix which is an approximation of e (see 

reference 11) 

and R is the remainder matrix 

.. i 
R• l ~ 

i•K+l ii 

(2.15) 

(2.16) 

If each element in the matrix eAT is required with an accuracy 

of "d" significant digits, then 

where rij and mij are elements of matrices R and M respectively. 

and 

Let us define the norm of matrix A as: 

For this norm, we have 

II A Bll!.llAll llnll 

laijl~AI 

llAl~llsll< llAll + h II 
Then, it follows that 

if the same norm is applied to the remainder matrix R. 

Upon expansion of eq. (2.22) 

(2 .17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 
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Ir I llA~K+l 1 K+l llAIK+2 1 K+2 

ij ~ (K+l) I + (K+2) I + ----- (2.23) 

and, calling e the ratio of the second term to the first 

llAllK+2 IK+2 

• (K+2)1 • llili_ 
E IAIK+l IK+l K+2 

(2.24) 

(K+l) I 

Therefore 

llAll1 < E 
K ~ 

(2.25) 

Making the substitution of eq. (2.19) into eq.(2.23), it follows 

that 

I r ij I ~ l!<A1) K U At II + 11.lli..tJ[ II (AT) 
2 

II + 
Kl K+l Kl (K+2)(K+l) 

II (A1l 1111 (A1)
3 II ---

+ Kl (K+3)(K+2)(K+l) + ' <2 •26 ) 

or 

lrij I~ ll<A1l II ( 11.tl + lALJl~+ 
Kl K+l K+2 K+l 

+ lM_.l lli_J ~I+ ----- ) 
K+3 K+2 K+l 

(2.27) 

Thus 

lrij I~~ (AT)K I ( ~ 1 + lliJ + 
K! K+l K+2 

+ llM_JL&J + ---} ) (2.28) 
K+3 K+2 

Now, because any factor of the form II~+: II for a>2 is always less 

thane, by eq. (2.24), then 
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(2. 29) 

If E<l, eq. (2.29) takes the form 

lrijl~llcAT{l(LLJ .-1-) 
K! K+l 1- E 

(2.30) 

This equation is suggested by Everling (6) as the upper bound in 

the remainder matrix R. 

In order to initialize the procedure, a certain K has to be 

chosen, but this K cannot be arbitrary, because it may happen that E>l, 

and relation (2.30) would not hold any more. 

This situation can be solved using eq. (2.25); thus 

K> 11~11 
~ E 

In order to ensure that E~l/2, the initial condition for K should 

be 

~2llATll (2.31) 

However, it is possible that II A,11 be less than 1/2; then K would 

be less than one. So, in order to avoid this possibility, an initial value 

of K can be obtained from 

K = max [ 2 b, II, 2 ] (2.32) 

At this point, Everling (6) suggests that K be incremented by 

half of its initial value, in the course of iteration. 

Although the matrix series approach for the evaluation of the 

transition matrix is suitable for digital computation, the disadventage 

AT stems from the convergence requirements for the series e , so it would 

be desirable to speed the computation. 

This can be done recalling the basic relationship 
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eAT • (eAT/a)a (2.33) 

where a is chosen using the following expression 

(2.34) 

where B is the smallest integer allowed. 

AT/a The idea is to compute e , because the norm of AT/a is smaller 

than AT, and the series will converge faster. Once the addition of the 

corresponding elements in the matrix terms of the infinite series is done, 

all that is required is to raise the result to the power a. The last step 

involves very few matrix multiplications, because a is a power of 2; for 

example, if a = 32 only 5 matrix multiplications are performed at the end 

of the computation. 

The steps presented in this section are summarized in a flow 

diagram in chapter 4. 

2-4 Error bounds in the transient response 

Although the matrix eAT can be obtained within prescribed 

accuracy, the truncation error of the matrix series, and the roundoff 

error do propagate in the state vector with increasing time. 

It is desirable, therefore to derive recursion relations which 

bound the propagated error due to these sources. Whitney (21) suggests 

one method. 

The homogeneous case of eq. (2.13) is 

~(K+l T) • ~(T) ~(KT) (2.35) 

If eq. (2.15) is used in place of ~(T), the numerical calculation 
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reads 

&,.(K+l T) • M &,.(K T) (2.36) 

where &,.(K+l T) is the perturbed state vector obtained from numerical 

calculation. 

is 

or 

The propagated error at time (K+l) T due to the approximate M 

~(K+l T) = !_(K+l T) - &,. (K+l T) (2.37) 

Rewriting eq. (2.35) and substracting eq, (2.36) from it yields 

!_ (K+l T) - &,. (K+ 1 T) a [M+R ][&,. (K T) + ~ (K T)) 

- M &,.(KT) 

~(K+l T) • [M + R]~(K T) + R &,.(K T) 

From eq. (2.17) 

I r ij I~ 10-d I mij I 

We can define 

(2. 38) 

(2. 39) 

(2 .17) 

(2.40) 

where I is a matrix each of whose elements is unity. Replacing R with R* 

in (2.39), we obtain the running error bound for ~(K+l T), that is 

~(K+l T) a [M + R] ~(KT) + R* &,.(KT) (2.41) 

The computation may be initialized assuming .!'!_(0) is zero. 
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CHAPTER 3 

DYNAMIC RESPONSE OF LINEAR TIME-INVARIANT SYSTEMS 

WITH LUMPED PARAMETERS AND TIME DELAYS 

It has been found that many industrial processes in which 

transportation lags are coI11111on can be described by a system of 

differential-difference equations. The chemical process industry offers 

many examples. 

This chapter analyzes the special case of a system subject to 

one delay, and a technique suitable for digital computation is described, 

The derivation follows a criterion developed by Koepcke (9), 

3-1 Digital solution of the matrix differential-difference equation 

Consider a dynamic system which is governed by the following 

differential-difference equation 

where 

,!(t) • A !(t) + B ,!(t - T) + D1.!!,(t) + Dz.!1.(t - T) (3,1) 

_!(t) • (n x 1) vector, referred to as the state vector; 

J!.(t) • (r x l) input vector, asswned constant between samples; 

i.e, U(t) • U(tk) for t~t,::;,tK+li 

A, B • (n x n) constant coefficient matrices; and 

D1 , D2 • (n x r) constant driving matrices 

Let us consider first the homogeneous part of eq. (3.l); that is 

,!(t) • A _!(t) + B ,!(t - T) 

Taking the laplace transform of eq. (3,2), 

(3.2) 



or 

or 

S,!(S) - ,!(O) • (A+ B e-ST) !(S) 

,!(S) • [SI - (A + B e-ST]-l !(O) 

-ST Defining z;e I then 

!(S) - [SI - (A+ B Z)]-l !(O) I 

X(S) • ! [I - (A+ BZ)/S]-l _X(O) • - s 
-1 A+ BZ Let W • [I - R] 1 where R • S- ; than 

W • I + R + R
2 + R

3 + a4 + -- • 
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(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3. 7) 

Therefore, one should choose an "S" large enough to ensure that 

eq, (3.7) i• valid. 

etc. 

Thus 

2 3 
!(S) • ! [I + il,.ll + (A + BZ) + (A + BZ) + 

S S S2 SJ 

4 
+ (A+ BZ) + ---] X(O) (3.8) 

s4 -

Racall the facts that 

(A + BZ) 2 • A2 + A(BZ) + (BZ)A + (BZ) 2 

(A+ BZ) 3 • A3 + A2(BZ) + A(BZ)A + A(BZ~ + (BZ)A2 + 

+ (BZ)A(BZ) + (BZ) 2A + (BZ)J 

(A+ BZ) 4 • A4 + A3(BZ) + A2(BZ)A + A2(BZ) 2+ A(BZ)A2 + 

+ A(BZ)A(BZ) + A(BZ) 2A + A(Bz) 3 + (BZ)A3 + 

+ (BZ)A2(BZ) + (BZ)A(BZ)A + (BZ)A(BZ) 2 + 

+ (BZ) 2A2 + (BZ)2A(BZ) + (BZ) 3A + (BZ) 4 

Then, arranging by terma of equal delay, 
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where 

I A A2 A3 A4 
,!(S) • [- + - + - + - + - + --- ] ,!(O) + s s2 s3 s4 ss 

+ [~ + A(BZ) + (BZ)A + A2 (BZ) + A(BZ)A + (BZ)A
2 

+ 
s2 s3 s4 

+ A
3

(BZ) + A
2

(BZ)A + A(BZ) A
2 

+ (BZ)A
3 

+ -- ] ,!(O) + 
SS 

+[~ + A(BZ) 2 +(BZ)A(BZ) + (BZ) 2A + A2(BZ) 2 + A(BZ)A(BZ) 
s3 s4 ss 

+ A(BZ) 2A + (BZ)A2 (BZ) + (BZ)A(BZ)A + (BZ) 2A2 + 
SS 

+ -- ] ,!(O) + 

+ [~ + A(BZ) 3 + (BZ)A(BZ)
2 + (BZ)

2
A(BZ) + (BZ) 3A + 

S4 SS 

+ -- ] ,!(O) + 

+ [~ + ------------------------------------ ] ,!(O) + SS 

Now, because 

We have 

Z,!(t) • ,!(t - I) 

z.!(O) • ,!(-I) 1 

z2,!(0) R !(-2I) • 

+ -----

z3_f(O) • ,!(-3I) , and so forth. 

Therefore, ,!(S) can be arranged in the following way, 

(3.9) 

(3,10) 

,!(S) • ~o (S),!(O) + ~1 (S),!(-I) + h (S),!(-2T) + ~3 (S),f(-3I) + 

+ ~~(S}~(-4I) + -- (3, 11) 



I A A2 AJ A4 
Wo (S) • - + - + - + - + - + --------­

S s 2 sJ s 4 ss 

Wi (S) • !.... + AB + BA + A
2
B + ABA + BA

2 
+ 

s2 sJ s4 

AJB + A2BA + ABA2 + BAJ 
+ + ----s s 

w
2

(S) • B
2 

+ AB
2 

+ BAB + B
2
A + A

2
B

2
+ABAB + AB

2
A + BA

2
B + 

SJ s4 SS 

BABA+ B2A2 

+ s + ---------------s 

W3(S) • i + ABJ + BAB2 + B2AB + BJA + ----
S4 SS 

B4 
W4(S) • - + ----------------------------SS 

Rearranging terms, it follows that 

I A A2 AJ A4 
Wo (S) • - + - + - + - + - + ---------­

S s2 sJ s4 ss 

Wi (S) • !.... + AB + BA + A(AB + BA) + BA
2 

+ 
s2 sJ s4 

+ A[A(AB +BA) + BA
2

J +BAJ + ----­
SS 

Wz (S) • B
2 

+ u.2 + l(il + B.l) + A[AB
2 

+ B(AB + BA)] + 
SJ S4 SS 

+ B[A(AB + BA) + BA
2

J + ---------­
SS 

-
BJ+ ABJ + B[AB2 + B(AB +BA)] 

W3 (S) - - - - + --
s4 SS 

B4 
- -- + ------------------------------s s 

W4(S) 
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(3, 12) 

(J.lJ) 

(J,14) 

(3, lS) 

(J.16) 

(J.17) 

(J, 18) 

(J.19) 

(J,20) 

(J,21) 

Let u1 try to find a relationship among the coefficients. With 
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i I I i • • • 
~ 
b 
.... .... 

QQ 
s:: 
t1 

Figure 3,1 Array of the elements of the laplace-transformed ID 

~ 
transition matrices ..... 
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It is seen that the correlation among the elements (call any 

element by ci,j ) is 

s-1 s-2 s-3 s-4 s-s 

c co4 00 

0 cl4 

0 c24 

0 c34 

0 0 0 0 c44 

where the arrows indicate the inmediate dependance; i,e,, c12 depends on 

c
01 

and c
11

, etc. 

From a careful study of the array in fig, 3.1, it is found that 

(3.22) 

where "i" is the subindex denoting row and "j" is the subindex denoting 

column, 

The following conditions should be added, in order to initialize 

a computational procedure 

j~O ( 3. 2 3) 

C I 
o,o -

(3.24) 

i>O (3.25) 

The inverse laplace transform of eq, (3,22) yields (note: 
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(3.26) 

Therefore 

or 

(3,28) 

Changing j for j+l, eq, (3,28) takes the final form 

• [At]Ci,j + [Bt]Ci-l,j 
ci,j+l J+l (3,29) 

Actually eq. (3.29) gives all coefficients without any need to 

multiply them by Tj 
TT. 

This is because T has been associated with matrix A and B, and in 

order to compute any ci,j+l' the initial conditions given by eqs, (3,23), 

(3.24) and (3.25) have to be considered, 

The computation of the ci,j+l is done in a recursive way, as 

given by eq, (3.29), Once they are computed, they may be substituted in 

the inverse laplace transformation of eqs, (3,17), (3,18), etc,, so that 

~o(t), ~1(T), ~2(T), ••• can be generated, The last set of matrices are 

called "plant transition matrices", 

tS Returning to eq. (3,11), if e is multiplied into both sides, 

then 

(3. 30) 

or 



to be 

or 

etS,!(S) • ~0 (S),!(t) + ~1(S)_!(t - T) + ~2(S),!(t - 2T) + 

+ h(S)_!(t - 3T) + -- , 

21 

(3, 31) 

Taking the inverse laplace transform of eq, (3,31) 1 it turns out 

+ ~3{T)_!(t - 3T) + -----, 

,!(t + T) • L ~i (T)_!(t - iT) 

i•O 

This is the sampled version of the homogeneous part of the 

(3,32) 

(3,33) 

differential-difference equation, 

Now, let us consider the addition of an input vector or forcing 

signal, 

In chapter 2 1 section 2-2, it was found that the digital version 

of the time-invariant matrix differential equation adopted the form 

!(ffi T) • ~(T) _!(KT) + ti (T) ],(KT) (3, 34) 

where 

(3.35) 

and 

ti(T) • (eAT - I) A-l D (3.36) 

Although it was not demonstrated, it can be shown that 

"'~ 
6(T) • L (j+l)I TD (3. 37) 

j•O 

or 

~ ~ 1 6(T) • i jl -r;:r- TD, (3,38) 

j•O 
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l If the terms j+l and TD were absent, the series would be the well 

known matrix exponential, whose terms can be computed in a recursive way by 

c .. 
o,j 

ilU. 
j+l 

Therefore, eq, C3,38) is 

co 

6(T) • l 
j•O 

C T D 
o 1 j j+l 

C3.39) 

C3.40) 

By following the same line of reasoning, the control transition 

matrices in the case of the complete differential-difference equation can 

be written as 

co co 

6iC<) - l Ci j j:l Dl + l ci-l j j:l Dz 
j•i • j•i • 

and the complete difference equation is 

is 

where 

_!Ct+<)• l [~iC<) _!Ct - iT) + 6iC<) ,!!Ct - iT)] 
i•O 

In resume, the digital version of 

,!Ct) • A !Ct) + B !Ct - T) + D1.!!,Ct) + Dz.!!Ct - T) 

!Ct+<)• l [~.C<) XCt - iN<) + 6iC<) ,!!Ct - iN<)] 
i•O i -

N•l 
' 

co 

~i C<) • l Ci j 
j•O • 

[AT] ci.1 + [BT] ci-1,j 
ci,j+l • j+l 

C • I o,o 

C3.4l) 

C3.42) 
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CHAPTER 4 

ALGORITHMS FOR DIGITAL COMPUTATION 

This chapter presents flowcharts for the algorithms of chapters 

2 and 3, from which the computer programs were derived, They accept as 

input the coefficient matrices, the driving matrices, the initial state 

vector, and deterministic forcing vectors, As output, the computer will 

produce the state vector at the current sampling time and the set of 

transition matrices, if desired, 

Because these routines will eventually become part of Project 

ENPORT, they were designed to be used on the time-sharing system, However, 

they may be operated in the BATCH procedure without any difficulty, by 

modifying the input/output statements, 

The programs were written in the MAD language, and are listed in 

Appendix A, 



4-1-1 TRANS 

Purpose: to compute the time response of linear time-invariant 

systems, 

Inputs: order of system (M •);sampling time (T • ); final 

time (TF •);number of input signals (R • ); the 

augmented A matrix and the initial state (x(l) • ), 

Outputs: the transition matrix; the current time; and the state 

of the system, 

Remarks: main program, Subroutines called by TRANS: EXPMAT, and 

DIS TUR, 

25 
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Read from the console 

order of system (M • 

sampling time (T • 

final time (TF • 

Is there any disturbing 

signal ? 

yes 

Read from the console 

number of input signals 

(R • ) 

Read from the console 

the augmented A matrix 

A( 1, 1) 

A(M,l) 

, A(2,l) • --

Read from the console 

initial atate X(l) • --

Sava initial state 

XI (1) • X(l) 

XI (M-R) • X(M-R) 

no 

R • 0 

T TA is running time 

TRANS, Page 1 of 3 pages, 



no 1 

Execute distur. (TA) 

Xl(M-R+l) • X(M-R+l) 

Xl(M) • X(M) 

Initial error 

E(l) • O. 

E(M) • O, 

Get transition matrix 

Execute expmat, (T) 

Output to console 

Transition matrix 

EM(I,J) 

Save transition matrix 

EMP(I,J) • EH(I,J) 

lni tialization 

PE(l) • 0 

Y(I) • 0 

E(l) is error vector 

TZ is time increment 

PE is new E 

Y is new X 

TIANS, Paga 2 of 3 pages 
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Compute new state 

Y(I) • Y(I) + EMP(I,J)*X(J) 

PE(I) • PE(!) + (EMP(I,J) + RIJ)*E(J) 

+ RIJ*X(J) 
RIJ is upper bound in 

remainder terms 

no 

NORM • l IPE(I) I 
I 

ls NORM ~ 10-J ? 

yes 

T • TA 

Execute expmat,(T) 

PE(I) • 0, 

Y(I) • 0, 

Y(I) • Y(I) + EM(I,J)*XI(J) 

PE(I) • PE(I) + RIJ*XI(J) 

X(I) • Y(I) 

E(I) • PE(I) 

Output to the console 

TA, X(l) ,,, X(M-R) 

Is ? n TA • TA+TF Get new disturb, vector 
.___-~---' Execute distur. (TA) 

End of program 
y 

TRANS. Page 3 of 3 pages, 



' - ~ '- ,\.;) ,_, j i' ':. 
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Entry to expmat, 

B(I,J) • A(I,J) 

B(I,J) • B(I,J)*T 

a• 26 ~ maxlBCI,J)I 

a i• the amalleat positive 

integer 

B(I,J) • B(I,J)/a 

NORM• IBI • min{max[EIBCI,J) ll, maxCEIBCI,J)!J} 
I J J I 

Initial values of K 

K - max[2*NORM, 2] 

Increment 

IN • K/2 

IBI 
£·~ 

K is the number of 

terms of the series 

EXPMAT, Page 1 of 2 pages, 
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RIJ • II BK11rllBll_l ] 
Kl [K+l 1-E 

K • K + IN 

TERM• EM*EM 

b LL>13 7 i---n_o__,~ EM • TERM 

ye• 

Function return 

End of function 

EXPMAT. Page 2 of 2 pagu. 



·-+- ;_-

-. -~ 



----------·--1 
-i~r: d; distur~ i 

-T- _________ -.J 

_J ____ i 
>I!! '1 ~ lJ. I 

---·--·~--..I 

_J .. -------! 

-----1 
return i ___ _; 

3J 



34 

TD1DEL 

Purpose: to compute the time response of linear systems with 

lumped parameters and time delays. 

Inputs: order of system (M • ); sampling time (T • ); time 

delay (TD•); final time (TF • ); number of input 

signals (R • ); the A matrix; the B matrix; the D1 

matrix; the D2 matrix; the initial state (X(l,l) • ). 

Outputs: the plant transition matrices, the control transition 

matrices if desired; the current time; and the state 

of the system. 

Remarks: main program. Subroutines called by TIMDEI.: DELFOR, 

and PERTUR. 



no 

Raad frDlll the console 

order of syetem (M • 

eampling time (T • 

ti- delay (TD • 

final time (TF • 

Ia there any disturbing 
I-JI.II"-----. 

signal? 

yea 

Raad from the console 

number of input aignala 

(R • ) 

Raad from the conaole 

the A matrix. A(l,l) • 

A(2 1 1) • --

Raad from the console 

the B matrix. B(l,l) • 

B(2,l) • --

? 

Raad from the coneole 

the o1 matrix. 01(1,1) 

01(2,1) • -

a 

R • 0 

REL ! 1, integer 

TIMDEL. Page 1 of 3 pages. 
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Read from tha conaola 

th• o2 matrix. o2Cl,l) 

02(2,1) • -

©1-----~ ... 
~~~~~L-~~------. 

Computa aat of tranaition 

matricaa 

Execute dalfor. (T) 

Do you wiah to have th• _ _;;n;.;:o'-----1 
tranaition matric•• 

yea 

Output to the conaola 

plant tranaition 111atricea 

EM(L), control tranaition 

aatricea OELF(L) 

Raad f roa tha conaola 

initial atata X(l,l) • --

W i• tha n11111bar of 

tranaition matricaa 

computed 

X b (M x W) 

0)--;=======;:;:::;=~==:'.__~~----, 
w-1 

!CTA+T) • L EH(I+l) ,!(TA - I*REL*T) 
I•O 

0 7 

Execute partur. (TA) 

,!(TA+T) • !(TA+T) + L OELF(I+l) ,.!!(TA - I*REL*T) 
I•O 

TA• TA+ T 

Output to the conaole 
f----~6 TA, ,!(TA+T) 

TIMDEL. Page 2 of 3 pagea. 
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Entry to delfor 

A(I,J) • A(I,J)*T 

B(I 1 J) • B(I,J)*T 

no 
Is 

yes 

D1(I,J) • D1 (I 1 J)*T 

NORM• II All •Min max[EIA(I,J) 11, max[EIA(I,J) ll 
I J J I 

Initial value of K 

K • max[2*NORM, 21 

Increment 

IN • K/2 

C(-1,J) • O, J::,,O 

C(O,O) • I 

G(2,-l) • 0 

C(I,O) • O, I>O 

a 

K ia the number of terms 

of the aeries •AT 

DELFOR, Paga 1 of 2 pages, 
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L • L+l 

K • K+IN 

no 

C(I,J+l) • [A]C(I.J) + [B]C(I-l.J) 
J+l 

no 

K 
EM(I+l) • l C(I 1 J) 

J•O 

1 

G(L,I) C(I .J) "'T"'DL 
J+l 

yes 

DELF(I+l) • G(l,I) + G(2,I-l) 

yea 

no 

RIJ -II ~~II[~~~ l:E ] 

Ia RIJ.::. l0- 71EM(I) I 
yea 

RIJ is upper bound in 

remainder terms of •AT 

Ia II EM(I+l)ll .::. 10-7? 1----- I • I+l no 

yea 

Function return 

End of function 

DELFOR, Page 2 of 2 pages, 
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4-L- _1 

::):11p:..;te Ult torcin.~ signal .;r.:ctur at trte c-...:rrent 

, .:i.~·.;:. !.ne pro:.:: ram rias to ~<.cep track cf the past. 

,,_e;-:-·.ark.s 
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CHAPTER 5 

SOLUTION TO SAMPLE PROBLEMS 

This chapter describes a set of sample problems which were 

selected because they represent typical applications of the two simulators, 

They are intended to show the use of the state variable diagram, and also 

to show the accuracy of the methods, 

5-1 Test problem for the simulation of dynamic systems without delay 

Example 5-1, Although this example may represent a great number 

of physical processes, it was selected purely from the mathematical point 

of view, The same problem was run by Liou (11), 

Given 

,;i(t) 0 

1 

: J!.(t) 
-3 

(5.1) 

-2. 75 

and 

!.(0) • f -2~51 l 3,75 

(5,2) 

Obtain ,2£(nT) using T • 0,1 Min, 

The reported solution by Liou and the one obtained by the 

simulator are 





45 

Joadgo trans expmat distur 
I~ 1010. 4 
EXE CUT I ON. 
GIVE ORDER OF SYSTEM CM = ) . 
SAMPLING TIME CT = ) , FINAL TIME CTF ,Y(t) • A ,Y(t) 
m=3,t=.1,tf=2.• 

r(l)J IS THERE ANY DISTURBING SIGNAL ,Y(t) • X(2) 
no X(3) 

GIVE THE A MATRIX {A(l,ll=--,AC2,ll=--) 
aCl,ll=0.,1.,0.• 

[ 0 1 ~3] a(2,1l=0.,0.,1.• A• 0 0 
a(3, ll=-. 75,-2. 75,-3.• -,75 -2.75 

GIVE INITIAL STATE (X{ll=--) 
- [-2~51 x(ll=2.,-2.5,3. 75• ,Y(O) 

3,75 
TERMS OF THE MATRIX EXPONENTIAL 

EM{ 1, l) .999884E 00 
EMC 1, 2) • 995717E-Ol 
EMC 1, 3) .452513E-02 
EMC 2, 1) -.339385E-02 
EM( 2, 2) .987440E 00 
EMC 2, 3) .859963E-Ol 
EM( 3, 1) -.644972E-Ol 
EMC 3, 2) -.239884E 00 
EM( 3, 3) • 7294 SlE 00 

TIME X( 1) XC2l X(3) 

.10 .176781E 01 -.215290E 01 .320616E 01 

.20 .156774E 01 -.185614E 01 • 274116E 01 

.30 .139515E 01 -.160242E 01 .234368E 01 

.40 .124603E 01 -.138548E 01 • 200401E 01 

.so .111700E 01 -.119997E 01 .171382E 01 

.60 .100515E 01 -.104131E 01 .146596E 01 

.70 .907978E 00 -.905571E 00 .125431E 01 
• 80 • 823379E 00 -. 789413E 00 .107362E 01 
.90 .749538E 00 -.689964E 00 .919418E 00 

1. 00 .684911E 00 -.604775E 00 • 787838E 00 
1.10 .628178E 00 -. 531753E 00 .675590E 00 
1. 20 .578215E 00 -.469107E 00 .579853E 00 
1. 30 .534062E 00 -.415312E 00 .498212E 00 
1. 40 .494901E 00 -. 369064E 00 .428602E 00 
1. 50 .460034E 00 -.329250E 00 .369257E 00 
1. 60 .428868E 00 -. 294921E 00 .318666E 00 
1. 70 .400894E 00 -.265268E 00 • 275537E 00 
1. 80 • 375681E 00 -.239602E 00 .238768E 00 
1. 90 .352861E 00 -.217334E 00 .207415E 00 
2.00 • 332118E 00 -.197965E 00 .180676E 00 
2. 10 • 313185E 00 -.181068E 00 .157862E 00 

END OF EXECUTION 
TO CONTINUE, GO TO THE TOP OF A NEl'I PAGE 
AND PRINT AN ASTERISK 

Figure 5,1 Console transaction for example 5,1 



3.6 

3.2 

2,8 

2,4 

2,0 

1.6 

1,2 

0,8 

0,4 

o.o 

-0.4 

-0,8 

-1.2 

-1,6 

-2.0 

-2.4 

-2.8 

X(l), X(2), X(3) 

x3(0) ~(O) x1(0) 

~ 
~3) 

~~ 
~ 
~ ~ ----==--

1,0 1.1 1.2 1,3 1.4 1.5 2.·~bl~~-hl.l-2:1. 

------- t (min) ---
.1 .4 .8 .9 ,5 .6 .2 .J .7 

---.....--
/ 

// X(2) 

/ 
/ 

/ 
/ 

,/ Figure 5,2 Rasponaa curve• of ayatem for example 5,1 

• "' 



A liquid stream enters tan.k 1 (figure S.3) at a volumetric flow 

rate F cfm and contains reactant A at a concentration of C moles A/ft
3

• 
0 

47 

Reactant A decomposes in the tanks according to the irreversible chemical 

reaction, 

where 

A-B 

The reaction is first order and proceeds at a rate 

r •moles A decomposing/(ft3)(time) 

3 c • concentration of A, moles A/ft 

k • velocity constant, a function of temperature 

The reaction is to be carried out in a series of two stirred 

tanks. The tanks are maintained at different temperatures, The temperature 

in tank 2 is to be greater than the temperature in tank 1, with the result 

that k2 , the velocity constant in tan.k 2, is greater than in tank 1, k1 , 

Changes 1n physical properties due to chemical reaction are neglected, 

The purpose of the control system is to maintain c2 , the 

concentration of A leaving tank 2, at some desired value in spite of 

variation in inlet concentration c
0

, This will be accomplished by adding a 

stream of pure A to tank 1 through a control valve, 

Further assumptions are that the control valve and the measuring 

element have no dynamics, and that the controller exert proportional action 

on the process, 

A portion of the liquid leaving tank 2 is continuously withdrawn 

through a sample line, The measuring element is remotely located from the 

process, because rigid ambient conditions must be maintained for accurate 

concentration measurements, The sample line can be represented by a 
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transportation lag, 

ontroll•r 
pure A 

F 

co ----i • 
=-::. - --=:. pr iluct 
- -- •tream 

composition 
-aauring 

lament 
:===:::::::::::::•:=::::::::::1-

aaapl• 
at ream 

heating coila 

Figura 5,3 

Control of a stirred-tank chemical reactor 

lbe following data ia aaaUIMld to apply to th• ayat .. 

Molecular weight of A • 100 lb/lb mole 

p& • 0,8 lb mola/ft3 

COB - 0,1 lb mole A/ft
3 

F • 100 cfm 

m
8 

• 1,0 lb mole/min 

k
1 

• 1/6 min-l 

k
2 

• 2/3 min-l 

v - 300 ft 3 

Valve aenaitivity kv • 1/6 cfm/pai 

Measuring device aenaitivity 

k • 100 in, pen travel/(lb mole/ft3) 
m 

Ti- delay in sample line • T 

lbe overall block diagram which th• author• propose ia 



l 
s + l 

-TS • 

Figure 5,4 

Block diagram for a chemical reactor 

control ayatem 
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l 
2S + l 

It i• aaaumed that the inlet concentration c
0 

doe• not change 

with ti-. 

Aa waa diacuaaed in chapter 2, the atate variable diagram can 

be obtained in three waya, Direct programning will be uaad in thi• caae, 

l With thia purpoaa, lat it be called cA the input to the lag term s+i' 

and CB it• output in figure 5,4, than 

or 

where 

s..... _.!_ 
2S+l 

•5 l+.5 s l 

Eq, (5,4) can be written aa 

Tranapoaing 

(5. 3) 

(5,4) 

(5.5) 

(5.6) 

(5. 7) 
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or 

•1 a aillilar procedure 

Traapoai11.1 

E • • 

(5.B) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

'l'ba •tat• ••riable di .. r .. foll0118 fr011 eqa. (5.5), (5.7) and 

eqa. (5.10), (5.12), mid 1e ahowa in fisure 5.5. 
~(O) 

u 

r::Lsur• s.s 
State •ariabl• di .. raa for a c:batd.cal reactor 

'l'ba notation in figure 5.5 haa been changed •lightly. 'nlia ia in 

order to follow th• •- ayllboli•• 1iftn in the preyioua chaptera. 

In figure 5.5 the atata variabl .. are x
1 

and 12• 'nla differential-
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difference equations for the state variables are readly obtained by 

inspection of the diagram, That is 1 

(5,13) 

(5, 14) 

Therefore the matrix differential-difference equation is 

• - l-o.
5 

,!(t) .5] [ 0 ,!(t) + 
-1 -K 

:J ,!(t - T) + r:J U(t) (5,15) 

where 

Jrom this equation, it is seen that the coefficient matrices and 

driving matrices are 

,SJ 
-1 

(5.16) 

B • [ :K :J (5,17) 

D • 1 [:J (5,18) 

02 - [:] (5, 19) 

Five numerical examples were run using this system, These are 

&Ullllll8rized as follows. 

Example 5,2,1, Overall forward gain K• 5,24. We assume a time delay 
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equal to zero. A unit step is the input and all initial conditions are 

zero. The matrix differential equation is 

.5 

y(t) - -1 (5.20) 

0 

where 

r

x1 (t)1 
_y(t) a x

2
(t) 

U(t) 

(5. 21) 

Example 5.2,2, Overall forward gain K • 5,24, and time delay • 

.5 Min •• Same conditions of the state were taken, The matrix differential-

difference equation is 

!(t) - .5] !(t) +[ o 
-1 -5.24 

OJ ,!(t - ,5) + [ O Ju(t) + 
0 5,24 

(5,22) 

Example 5,2,3, Overall forward gain K • 1,85, Time delay is zero, 

The remaining conditions are the same, The state equation is 

r-.5 
,5 1] XC'l y(t) - -1~ 85 -1 (5. 23) 

0 

Example 5,2,4, Overall forward gain K • l. 85, Time delay • ,5 min, 

Unit step and zero initial conditions are assumed, The state equation is 
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- [-~5 ,5] [_1~85 :J +~ 
0 

]u(t) !(t) !(t) + !(t - ,5) + 
-1 1,85 

+ [:J U(t - ,5) (5,24) 

Example 5,2,5, This is the same as example 5,2,4 1 with the 

exception of the time delay, which is taken equal to 1 min,, The state 

equation is 

• 
[
-0.5 

!(t) 
,5] 

,!(t) + 
-1 

+ l:J U(t - 1) (5. 25) 

All five examples with the input/output information and the 

response curves, are shown in figures 5,6 to 5,15, 

The interested reader should compare the responses of the three 

cases with delay with those given by Coughanowr and Koppel on page 467 of 

reference (4), 

5-3 Test problem for the simulation of dynamic systems with delays 

The eighth example was run in order to check the accuracy of 

evaluation of the set of transition matrices, This example is discussed by 

Koepcke (9), 

The problem is described as an unstable process which is governed 

by 
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GIVE ORDER OF SYSTEM CM= ) 
SAMPLING TIME (T = ), FINAL TIME (TF )1 

rn=2, t=. 5, .tf=ll. * 

IS THERE ANY DISTURBING SIGNAL 
yes 

GIVE NUMBER OF INPUT SIGNALS (R = l 
r=l* 

GIVE THE A MATRIX (A(l,ll=--,A(2,ll=--l 
a(l, ll=-.5, .5,0.* 
aC2,lJ=-5.24,-1.,5.24• 
a(3, ll=0.,0.,0.• 

GIVE INITIAL STATE (X(ll=--l 
x(ll=O.,O.* 

TERMS OF THE MATRIX EXPONENTIAL 
EM( 1, 1) .556076E 00 
EM( 1, 2) .154089E 00 
EM( 1, 3) .243387E 00 
EM( 2, 1) -.161485E 01 
EM( 2, 2) .401987E 00 
rn< 2, 3) .185824E 01 
EMC 3, 1) . OOOOOOE 00 
EMC 3, 2) .OOOOOOE 00 
EM( 3, 3) 1. OOOOOOE 00 

TIME X( 1J x ( 2) 

.so .243387E 00 .185824E 
1. 00 .oti5063E 00 .221219E 
1. 50 .954087E 00 .167353E 
2. 00 .103181E 01 .9'.l02G~E 

2. 50 .9G9739E 00 .590102E 
3. 00 .873563E 00 .52'.l4G8E' 
3. 50 • 810740E 00 .6G0403E 
4. 00 . 795981E 00 .814488E 
4. 50 • 811516E 00 .900262E 
5. 00 .833372E 00 • 909654E 
5. 50 .846973E 00 .87813tiE 
6.00 . 849679E 00 .843503E 
6. 50 .845848E 00 .825210E 
7. 00 .840898E 00 .824044E 
7. 50 .837966E 00 .831568E 
8. OD .837495E DO .839327E 
8. 50 .838429E 00 ,8432DGE 
9. 00 . 839546E DO .843258E 
9. 50 .840175E 00 .841475E 

10. 00 .840250E 00 .839743E 
10. 50 .840025E 00 .838325E 
11. 00 .83'J774E 00 . 833960E 

END OF EXECUTION 
TO CONTINUE, GO TO THE TOP OF A NE~~ PAGE 
AND PRINT AN ASTERISK 

Figure 5,6 Console transaction 

_y(t) • A _y(t) 

rl)J .Y(t) • X(2) 
U(l) 

[-,5 
,5 

5~24] A• -5(/4 -1 
0 

1£(0) - [g] 

01 
01 
01 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
DO 
00 
00 
DO 
00 
00 

for example 5,2,l 



X(l), 

X(2) 

2.2 + /'"" U: wiit step 

I \ 
2.0 + I \ ~---/\ ~ _/\ I~ x2 r::t_ .-!\ I,'\. xl 

1.8 + I \ 
\ 

1.6 t I \ I 
1.4 t I \ 
1.2 t I \<2) 

1.0 + I 
I ( \ ----------- - - -0.8 + I \ 

_,./~--'---
/ 

o.6 + / \ / 
\._....... / 

I 
o.4 +I ::: v I I I I 
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Figure 5.7 Response curves of system for example 5.Z.l ..,, ..,, 
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loadgo timdel delfor pertur 
II 10 3 9. 4 
EXE CUT I ON. 
GIVE ORDER OF SYSTEM CM = ) 
DESIRED SAMPLING TIME CT= ) 
TIME DE LAY (TD = ) , F I NA L TIME 
m=2, t=. 5, td=. 5, tf=15. * 

IS THERE ANY DISTURBING SIGNAL 
yes 

NUMBER OF INPUT SIGNALS ( R = ) 
r=l* 

CTF 

!_(t) • A !_(t) + B X(t - ,5) 

+ D1U(t) + D2U(t - ,5) 

GIVE THE A MATRIX (A(l,1)=--,AC2,1)=--) 
a( 1, ll=-. 5,. 5* 
a(2,l}=O.,-l.* [-0.s ,SJ 

I A - -1 

GIVE THE B MATRIX (B(l,1)=--,8(2,1)=--) 
b(l,lJ:oO.,O.* 
b(2,1}=-S.24,0.* 

GIVE THE Dl MATRIX (Dl(l,l)=--,Dl(2,l):o--) 
dlCl,ll=O.* 
dlC 2, 1) "'5. 24* 

GIVE THE D2 MATRIX (D2Cl,1)=--,D2(2,ll=--) 
d2Cl,ll=O.* 
d2(2,ll=O.* 
DO YOU WISH TO HAVE THE TRANSITIUN MATRICES 
yes 

TRANSFER flATR IX PH I ( 0) 

EM( 1, 1) . 778801E 00 
EM( 1, 2) = .172270E 00 
EMC 2' 1J = .OOOOOOE 00 
EMC 2, 2) = .606531E 00 
TRANSFER MATRIX PH I ( 1) 

EM( 1, 1) -.235067E 00 
EMC 1, 2) = -.187866E-Ol 
EM( 2, 1) = -.180539E 01 
EM( 2, 2) = -.216281E 00 
TRANSFER MATRIX PH I ( 2) 
EMC 1, 1) .126127E-Ol 
E~I ( 1, 2) = .614986E-03 
EM ( 2, 1) = .196883E 00 
EM( 2, 2) = • ll'.l377E-Ol 
TRANSFER MATRIX PH I ( 3) 
EMC 1, 1) -.273338E-03 
EMC 1, 2) = -.958848E-05 
EM( 2, 1) = -.644506E-02 
EM( 2, 2) = -. 263750E-03 
TRANSFER MATRIX PH I ( 4) 
EMC 1, 1) .318384E-05 
EMC 1, 2) = .872148E-07 
EMC 2, 1) = .10048 7E-03 
EM( 2, 2) = .309662E-OS 
TRANSFER MATRIX PH I ( 5) 
EMC 1, 1) -.231099E-07 
EM( 1, 2) - . 519268E-09 
EM( 2, 1) - . g 1401 lE-06 
EM( 2, 2) -.225906E-07 

D • 
1 

D • 
2 

TRANSFER 
DEL( 1, 

DEL( 2, 

MATRIX DELTA( 0) 
1) .256388E 00 

1) = .206178E 01 

TRANSFER MATRIX DELTA( 1) 

DEL( 1, 1) -.132818[-01 

DEL( 2, 1) = -.210165E 00 

TRANSFFR MATRIX DELTA( 2) 
DEL( 1, 1) .283552E-03 

DEL( 2, 1) = .672861E-02 

TRANSFER MATRIX DELTA( 3) 
DEL( 1, 1) -.327556E-05 

DE LC 2, 1) = -.103763E-03 

TRANSFER MATRIX DELTA( 4) 
DE LC 1, 1J .23651SE-07 

DE LC 2, 1) = .937b52E-06 

TRANSFER MATRIX DELTA( 5) 
DEL ( 1, 1) -.116723E-09 

DEL( 2' 1) = -.555865E-08 



TRANSFER 
EM( 1, 
EM( 1, 
EM( 2, 
EM( 2, 

MATRIX 
1) 
2) 
1) 
2) 

PH I ( 5) 
.114453E-09 
. 218008E-11 
.544192E-08 
.112283E-09 

GIVE THE INITIAL STATE (X(l,l)=---) 
x(l,ll=O.,O.• 

TIME X(l) XC2) 

.50 .2554E 00 
1. 00 . 7980E 00 
1.50 .1300E 01 
2.00 .1502E 01 
2.50 .1332E 01 
3. 00 . 9204E 00 
3. 50 . 5132E 00 
4. 00 • 3245E 00 
4.50 .4295E 00 
5.00 .7391E 00 
5.50 .1057E 01 
5.00 .1237E 01 
5.50 .1179E 01 
7.00 .9475E 00 
7.50 .5857E 00 
8.00 .5349E 00 
8.50 .5522E 00 
9.00 .7330E 00 
9. 50 .9408E 00 

10.00 .1072E 01 
10. 50 .10b5E 01 
11.00 .9404E 00 
11.50 .7755E 00 
12.00 .5645E 00 
12.50 .6579E 00 
13.00 .7480E 00 
13.50 .8763E 00 
14.00 .9708E 00 
14.50 .9854E 00 
15.00 .9214E 00 

END OF EXECUTION 

.2062E 01 

. 3102E 01 

. 2831E 01 

.1539E 01 

.2405E-Ol 
-.8884E 00 
-.7847E 00 

.1653E 00 

.1364E 01 

.2150E 01 

.2155E 01 

.1455E 01 

.5227E 00 
-.1450E 00 
-.2169E 00 

.2774EOO 

.1013E 01 

.1573E 01 

.1683E 01 

.1335E 01 

.7646E 00 

.2988E 00 

.1715E 00 

.4115E 00 

. 8505E 00 

.1234E 01 

.1366E 01 

.1205E 01 

.8592E 00 

.5560E 00 

TO CONTINUE, GO TO THE 
AND PRINT AN ASTERISK 

TOP OF A NEW PAGE 
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TRANSFER MATRIX DELTA( 5) 
DEL( 1, 1) .418403E-12 

DEL( 2, 1) = .232557E-10 

Figure 5.8 Console transaction for example 5,2,2 
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* GIVE ORDER OF SYSTEM (M = ) 
SAMPLING TIME CT= ), FINAL TIME CTF 
1n=2, t=. 5, tf=ll. * 

IS THERE ANY DISTURBING SIGNAL 
yes 

GIVE NUMBER OF INPUT SIGNALS (R = l 
r=l• 

>I 
I 

.Y.(t) • A .Y.(t) 

~
X(l)] 

.Y.(t) • X(2) 
U(l) 

59 

GIVE THE A MATRIX (A(l,l)=--,A(2,ll=--l 
a(l,ll=-.5, .5,0.* 
a(2,ll=-l.85,-l.,l.85• 
a(3,ll=O.,O.,O.* A• t~~~5 ~~ l.~5] 
GIVE INITIAL STATE (X(l)=--l 
x(ll=O.,O.* ]i(O) • [ ~ J 

TERMS OF THE MATRIX EXPONENTIAL 
EM( 1, ll • 69 7370E 00 
EM( 1, 2) .165714E 00 
EM( 1, 3) .888757E-Ol 
EM( 2, ll -. 613141E 00 
EM( 2, 2) . 531656E 00 
EM( 2, 3) • 702016E 00 
EM( 3, ll .OOOOOOE 00 
EM( 3, 2) .OOOOOOE DO 
EMC 3, 3) 1. OODOOOE DO 

Tl ME x ( 1) 

.50 .888757E-Ol 
l.OD .257189E 00 
1.50 .444358E 00 
2.00 .577874E DO 
2.50 .658281E OD 
3.00 .694D33E DD 
3.5D .699993E DD 
4.00 .590429E DD 
4.50 .575860E 00 
5.0D .662472E 00 
5.5D .552899E DD 
6.0D .547458E 00 
6.50 .645293E 00 
7.00 .645202E OD 
7.50 .646113E 00 
8.00 .647276E 00 
8.50 .648274E 00 
9.00 .648953E 00 
9.5D .649314E 00 

lD.00 .649438E 00 
10.5D .649420E 00 
11.00 .649339E DO 

END OF EXECUTION 
TO CONTINUE, GO TO THE TOP 
AND PRINT AN ASTERISK 

Figure 5.10 

XC2l 

.702016E DO 

.102075E Dl 

.108088E 01 

.100422E Dl 

.881598E 00 

.767104E 00 

.684312E DO 

.636641E 00 

.61716DE 00 

.615736E 00 

.623187E 00 

.633D19E 00 

.641581E 00 
• 64 7461E 00 
.650643E DO 
.651776E 00 
.651666E DO 
,650995E 00 
.650222E 00 
.649590E 00 
.649178E DO 
.648970E 00 

OF A NEW PAGE 

Console transaction for example 5.2.3 
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* 
GIVE ORDER OF SYSTEM (M = ) 
DESIRED SAMPLING TIME CT= ) 
TIME DELAY (TD=), FINAL TIME 
m=2, t=. 5, td=. 5, tf=l5. * 

IS THERE ANY DISTURBING SIGNAL 
yes 

NUMBER OF INPUT SIGNALS (R = ) 
r=l• 

(TF 

GIVE THE A MATRIX (A(l,ll=--,A(2,l)=--) 
a(l,ll=-.5,.5* 
a(2,ll=O.,-l.* 

GIVE THE B MATRIX (B(l,ll=--,B(2,ll=--) 
b(l,11=0.,0.* 
b(2, ll=-1.85,0.* 

GIVE THE Dl MATRIX (Dl(l,ll=--,Dl(2,ll=--l 
dl(l,11=0.• 
dl(2,ll=l.85* 

GIVE THE 02 MATRIX (02(1,l)=--,02(2,1)=--) 1 

d2(1,ll=O.* II 
d2(2,ll=O.* 
DO YOU WISH TO HAVE THE TRANSITION MATRICES 
no 

GIVE THE INITIAL STATE (X(l,ll=---l 
x(l,ll=O.,O.* 

TIME X(l) X(2) 

.50 .9052E-Ol • 7279E 
1. 00 .2848E 00 .1143E 
1. 50 .4952E 00 .1282E 
2.00 .6644E 00 .1214E 
2. 50 .7664E 00 .1034E 
3. 00 .8015E 00 .8266E 
3. 50 .7862E 00 .6539E 
4. 00 . 7431E 00 .5448E 
4. 50 .6932E 00 • 50 2 lE 
5. 00 .6512E 00 • 5 114 E 

00 
01 
01 
01 
01 
00 
00 
00 
00 
00 

61 

. 
,!(t) • A ,!(t) + B ,!(t - ,5) 

+ Dl U(t) + D2U(t - ,S) 

A• [-cis ,SJ -1 

B • [-1~85 g J 

D • 1 [1.~s] 

D • 2 [ g J 

Figure 5,12 

5.50 .6245E 00 • 5 50 8 E 00 Console transaction for example 6. 00 .6138E 00 .5995E 00 
6.50 .6158E 00 .6421E 00 5.2,4 
7. 00 .6251E 00 • 6 70 4 E 00 
7.50 .6369E 00 .6829E 00 
8. 00 .6472E 00 .6825E 00 
8.50 .6541E 00 .6740E 00 
9. 00 .6572E 00 .6627E 00 
9. 50 .6572E 00 .6523E 00 

10. 00 .6552E 00 .6450E 00 
10. 50 .6525E 00 • 6 414 E 00 
11. 00 . 6499E 00 .6411E 00 
11. 50 .6482E 00 .6429E 00 
12. 00 .6473E 00 .6455E 00 
12. 50 .6472E 00 .6480E 00 
13. 00 .6476E 00 .6499E 00 
13. 50 .6482E 00 .6508E 00 
14. 00 .6488E 00 .6510E 00 
14. 50 .6493E 00 .6507E 00 
15. 00 .6495E 00 .6501E 00 
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loadgo timdel delfor pertur 
1• 1250. l 
EXECUTION. 
GIVE O~DER OF SYSTEM CM = I 
DESIRED SAMPLING TIME CT = I 
TIME DELAY (TD = I, FINAL TIME 
m=2, t=. 5, td=l., tf=l5. * 

IS THERE ANY DISTURBING SIGNAL 
yes 

NUMBER OF INPUT SIGNALS (R = 
r=l* 

(TF 

GIVE THE A MATRIX (All,ll=--,A(2,ll=--) 
a( l, 11=-. 5,. 5• 
a(2,ll=O.,-l.* 

GIVE THE B MATRIX (B(l,ll=--,B(2,ll=--l 
b(l,ll=O.,O.• 
b(2, ll=-1.85,0.• 

GIVE THE Dl MATRIX (Dl(l,ll=--,Dl(2,ll=--) 
dl(l,ll=O.• 
dl( 2, ll =1. 85• 

GIVE THE D2 MATRIX 
d2 ( 1, 11 =O. • 

(D2(1,l)=--,D2(2,l)=--) 1 
I 

! d2(2,ll=O.• 
DO YOU WISH TO HAVE THE TRANSITION MATRICES 
yes 

TRANSFER MATRIX PH I ( o I 
EM( 1, 11 • 773801E 00 
EM( 1, 2) = .172270E 00 
EM( 2, 11 = .OOOOOOE 00 
EM( 2, 2) = .606531E 00 
TRANSFER MATRIX PH I ( 11 
EMC 1, 11 -.829913E-Ol 
EMC 1, 2) = -.663267E-02 
EMC 2, 11 = -.637399E 00 
EM( 2, 2) = -. 763586E-Ol 
TRANSFER MATRIX PH I ( 2) 
EMC 1, 11 .157213E-02 
EM( 1, 2 I = .766560E-04 
EM( 2, 11 = .245409E-Ol 
EMC 2, 2 I = .149548E-02 
TRANSFER MATRIX PH I ( 3 I 
EMC 1, 11 -.120288E-04 
EM( 1, 2 I = -.421960E-06 
EMC 2, 11 = - . 283627E-03 
EM( 2, 2 I = -.116058E-04 
TRANSFER MATRIX PH I ( 4 I 
EMC 1, 11 .494666E-07 
EM( 1, 2 I = .135504E-08 
EMC 2, 11 = .156125E-05 
EM( 2, 2) = • 481116E-07 
TRANSFER MATRIX PH I ( 5) 
EMC 1, 11 -.126765E-09 
EMC 1, 2 I -.284835E-ll 
EM( 2, 11 -.501365E-08 
EM( 2, 2 I -.123917E-09 

_!(t) • A ,!(t) + B X(t - 1) 

+ D1U(t) + D2U(t - 1) 

B • [-1~85 

.sl 
-lj 

TRANSFER MATRIX DELTA( OJ 

63 

DEL( 1, 11 • 905188E-Ol 

DEL( 2, 11 = • 727918E 00 

TRANSFER MATRIX DELTA( 11 
DEL( 1, 11 -.165553E-02 

DEL( 2, 1) = -.261964E-Ol 

TRANSFER MATRIX DELTA( 2) 
DEL( 1, 11 .124 783E-04 

DEL( 2, 11 = .296106E-03 

TRANSFER MATRIX DELTA( 3) 
DEL( 1, 11 -.508918E-07 

DEL( 2, 11 = -.161214E-05 

TRANSFER MATRIX DELTA( 41 
DEL( 1, 11 .129736E-09 

DEL( 2, ll = .514338E-08 

TRANSFER MATRIX DELTA( 51 
DEL( 1, 11 -. 226048E-12 

DEL( 2, ll = -.107649E-10 



64 

GlVE THE INITIAL STATE 
x 1,ll=O.,O.* 

(X(l,ll=---) 

TIME XC 1) x ( 2) 

• so .90S2E-Ol .7279E 00 
1. 00 .2864E 00 • 1169 E 01 
1. so .S134E 00 .1411E 01 
2.00 .7194E 00 .1444E 01 
2.SO .8664E 00 .1306E 01 
3.00 .9369E 00 .1063E 01 
3.SO .9328E 00 .7864E 00 
4.00 .8712E 00 .5417E 00 
4.50 . 7771E 00 . 3 720E 00 
5.00 .6770E 00 .2960E 00 
5.50 ,5928E 00 .3093E 00 
6.00 .5384E 00 ,3897E 00 
6.50 .5185E 00 ,5062E 00 
7. 00 .5299E 00 ,6269E 00 
7.50 ,5634E 00 . 7262E 00 
8.00 .6073E 00 • 788 lE 00 
8.50 .6503E 00 • 8080E 00 
9.00 .6838E 00 • 7909E 00 
9.50 • 7029E 00 .7482E 00 

10.00 .7068E 00 .6944E 00 
10.50 .6980E 00 ,6429E 00 
11. 00 .6810E 00 ,6038E 00 
11. 50 .fi611E 00 ,5825E 00 
12.00 .6430E 00 . 5 79 5 E 00 
12.50 .6301E 00 ,5915E 00 
13.00 .6239E 00 ,6128E 00 
13.50 ,6243E 00 . 6 3 70 E 00 
14.00 .6296E 00 .6584E 00 
14.50 .6379E 00 .6733E 00 
15.00 .6466E 00 .6800E 00 

END OF EXECUTION 
TO CONTINUE, GO TO THE TOP OF A NEW PAGE 
AND PRINT AN ASTERISK 

Figure 5,14 Console transaction for example 5,2,5 
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. [o ,!(t) • 
-1 

lJ f·2 o .!Ct> + lo OJ ,!(t - T) + [
0
] U(t - T) (5,26) 

-.1 1 

It b usumed the sampling time equal to the time delay, That is, 

(5,27) 

Koep eke reported the following results of the plant transition 

matrices and the control transition matrices1 

[ • 7071068 .707106J [ .00000 ] 
to . Ao . 

-. 7071068 • 7071068 .00000 

[ .l338340 .0277680J [ ,2928932J 

•1 . A1 . 
-.0277680 -.0782980 • 7071068 

[ .0109582 ,002252J [ ,0075873] 

•1 . A2 . 
-.0022524 ,0026278 -.0308106 

[ ,0005903 ,0000742] [ ,0004532] ., . Aa . 
-,0000742 -,0000854 ,0007349 

[ ,0000236 ,0000026] [ ,0000119] ... . A~ . 
-,0000026 ,0000013 -,0000165 

[ .0000008 "'""''] 
• [ ,0000003] 

ts 
• -.0000001 -.0000000 

As 
.0000002 

The ti.JM respollSe of the system wu obtained assuming a step 

input and zero initial conditions for the integrators. 

The solution b depicted in figures 5.18 and 5.19, 
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In a si.Jnilar way, this s81118 exaD1ple was tested assuming no lags 

in the systeM, that is 

(5,28) 

where 

!(t) • r:: ~::] 
l~(t) 

(5.29) 

The evaluation of the state is shown in figures 5,16 and 5,17, 

It is interesting to coMpare the transient response in both cases, 

Aa it can be seen in the plots (figures 5,17 and 5,19) 1 the case with 

delay is soMething less unstable than the linear one with delay equal to 

zero. 
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* 
GIVE ORDER OF SYSTEM CM = l 
SAMPLING TIME (T = ), FINAL TIME (TF 
m=2,t=.5,tf=15.• 

IS THERE ANY DISTURBING SIGNAL 
yes 

GIVE NUMBER OF INPUT SIGNALS CR = l 
r=l* 

GIVE THE A MATRIX (A(l,ll=--,A(2,l)=--l 
a(l, ll=.2, 1.,0.• 
a( 2, ll =-1., - .1, 1. * 
a(3,ll=O.,O.,O.• 

GIVE INITIAL STATE (X(ll=--l 
x(ll=O.,O.* 

TERMS OF THE MATRIX EXPONENTIAL 
EM( 1, 1) .976370E 00 
EMC 1, 2) .492031E 00 
EMC 1, 3) .124527E 00 
EM( 2, 1) -.492031E 00 
EM( 2, 2) • 828 760E 00 
EM( 2, 3) . 46 7126E 00 
EM( 3, 1) .OOOOOOE 00 
EM ( 3, 2) .OOOOOOE 00 
EM( 3, 3) 1. OOOOOOE 00 

TIME X( ll X(2) 

. 50 .124527E 00 .467126E 
1. 00 .475952E 00 .792990E 
1. 50 .979407E 00 . 890141E 
2.00 .151877E 01 • 722940E 
2. 50 .196311E 01 .318989E 
3.00 .219820E 01 -.234422E 
3.50 .215544E 01 -.808739E 
4.00 .183111E 01 -.126367E 
4.50 .129060E 01 -.148112E 
5.00 .655877E 00 -.139538E 
5.50 • 783336E-Ol -.101203E 
6.00 -.296938E 00 -.410143E 
6.50 -. 367197E 00 .273318E 
7.00 -.995124E-Ol .874313E 
7. 5 0 .457555E 00 .124068E 
8.00 .118173E 01 . 127022E 
8.50 .190332E 01 .938392E 
9.00 .244459E 01 .308336E 
9.50 .266306E 01 -.480150E 

10.00 . 248841E 01 -.124111E 
10.50 .194347E 01 -.178583E 
11. 00 .114338E 01 -.196915E 
11. 50 . 272011E 00 -.172740E 
12.00 -.459826E 00 -.109832E 

. 
,Y(t) • A ,Y(t) 

[ 
X(l)J 

.:!,(t) • X(2) 
U(l) 

[ 

,2 

A• ~1 
1 

-.1 
0 

!(O) • [ ~ J 

00 
00 
00 
00 
00 
00 
00 
01 
01 
01 
01 
00 
00 
00 
01 
01 
00 
00 
00 
01 
01 
01 
01 
01 
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Figure 5,17 Response curves of system for example 5.3 when time delay = 0 
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* 
GIVE ORDER OF SYSTEM (M = I 
DESIRED SAMPLING TIME IT = I 
TIME DELAY (TO = I, FINAL TIME ITF 
m=2, t=. 7853982, td=. 7853982, tf=20 .* 

IS THERE ANY DISTURBING SIGNAL 
yes 

NUMBER OF INPUT SIGNALS CR = I 
r=l• 

GIVE THE A MATRIX (A(l,ll=--,Al2,l)=--l 
a(l,ll=O.,l.* 
al2, ll=-1.,0.• 

GIVE THE B MATRIX (B(l,ll=--,B(2,ll=--) 
b(l,l)=.2,0.• 
bC2,ll=O.,-.l• 

I 
I 
I 

: 
I 
I 
I .. 
p.~.(t) • A _!i(t) + B ~(t - f> 
I 
I 
I 

+ D1U(t) + D U(t - 2!:) 2 4 
I 
I 
I 
I 
I 
I 
I 
I A • : 
I 

I 
I 
I 
i B • 
I 
I 

[ -~ ;J 
[ ·~ -~1] 
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GIVE THE Dl MATRIX 
dlll,ll=O,* 
dl(2,1)=0.• 

(D 11 1, 11 =- - , D 11 2, 1 I= - - I l 
I UJ i Dl = : 

GIVE THE 02 
d2(1,ll=O.• 
d2(2,ll=l.* 
DO YOU _,ISH 
yes 

MATRIX (D2(1,ll=--,ll2(2,ll=--) l 
I 

J Dz = 
TO HAVE THE TRANSITION MATRICES 

[n 
TRANSFER MATRIX PH I ( 0) TRANSFER MATRIX DELTA( 0) 
EMC 1, 11 .707107E 00 Dtll 1, 11 .OOOOOOE 00 
EM( 1, 2) = . 707107E 00 
EM ( 2, 11 = -,707107E 00 DE LI 2, 11 = .OOOOOOE 00 
EMC 2, 2) = • 707107E 00 
TRANSFER MATRIX PH I ( 11 TRANSFER ~IA TR IX DELTA( 11 
EM( 1, 11 .133834E 00 DEL( 1, 11 • 292893E 00 
EM( 1, 2) = • 2776ROE-Ol 
EMC ~' 11 = -.277680E-Dl DE LI 2, 11 = .707107E 00 
Er.1( 2, 2) = -. 782380E-Ol 
TRANSFER MATRIX PH IC 2) TRANSFER MATRIX DELTA( 2) 
EM( 1, 11 .109582E-Ol DEL( 1, 11 • 758732E-02 
EMC 1, 2) = .225237E-02 
EMC 2, 11 = -.225237E-02 DEL( 2, 1) = - • 308106E-O 1 
EM( 2, 2) = ,262783E-02 
TRANSFER MATRIX PH I ( 3) TRANSFER r·IATRIX DELTA( 3) 
EM( 1, 11 ,590343E-03 DEL( 1, 1) .453237E-03 
EM( 1, 2) = • 741765E-04 
EMC 2, 11 = -. 741765E-04 DELI 2, 11 = • 734907E-03 
EM( 2, 2) = -.853680E-04 
TRANSFER MATRIX PH I ( 4) TRANSFER MATRIX DELTA( 4) 
EMC 1, 11 ,235559E-04 DELI 1, 11 • l 18773E-04 
EM( 1, 2) = .259254E-DS 
EMC 2, 11 = -.259254E-05 DE LC 2, 1) = -.164710E-04 
EM( 2' 2) = , 13029n-os 
TRANSFER MATRIX PH I ( 5) TRANSFER MATRIX DELTA( 5) 
EMC 1, 11 • 748663E-06 DE LC l, 1) • 344llOE-06 
EM( 1, 2) ,651465E-07 
EM( 2, 1) -.651465E-07 DEL( 2, 11 = . 217079E-06 
EMC 2, 2) -.290989E-07 
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TRANSFER 
EM( 1, 
EM( 1, 
EM ( 2, 
EM ( 2, 

MATRIX 
1) 
2 ) 
1) 

2) 

PH I ( 6) 
.197624E-07 
.150533E-08 

-.150533E-08 
.218458E-09 

GIVE THE INITIAL STATE (X(l,ll=---) 
x(l,ll=O.,O.• 

TIME X(l) X(2) 

,79 .OOOOE 00 
1.57 .2929E 00 
2, 36 .1008E 01 
3.14 .1758E 01 
3.93 .2125E 01 
4. 71 .1889E 01 
5. 50 .1158E 01 
6.28 .3207E 00 
7.07 -.1582E 00 
7.85 .3256E-02 
8.64 .7401E 00 
9.42 .1663E 01 

10.21 .2253c 01 
11.00 .21nE 01 
11. 78 .1462E 01 
12.57 ,4567E 00 
13.35 -.2735E 00 
14.14 -.3088E 00 
14.92 .3980E 00 
15.71 .1481E 01 
lG. 49 . 2349E 01 
17.28 .250JE 01 
18. 06 .1842E 01 
18. 85 . 6889E 00 
19.63 -.3244E 00 
20.42 -.6256E OD 

ENO OF EXECUTION 

.OOOOE 00 
• 7071E 00 
.J692E 00 
.5864E 00 

-.2538E 00 
-. llOOE 01 
-.1478E 01 
-.1159E 01 
-.2928E 00 

.6571E 00 

.1163E 01 

.'32411''. JO 
,4467E-Ol 

-.1009E 01 
-.1654E 01 
-.1514E 01 
-.6351E 00 

.5194E 00 

.1315E 01 

.1292E 01 

.4317E 00 
-.8138E 00 
-.1775E 01 
-.1890E 01 
-.1067E 01 

.2718E 00 

TU CONTINUE, GO TU THE TOP OF A NEW PAGE 
ANO PRINT AN ASTERISK 

TRANSFER MATRIX DELTA( 6) 
DEL( 1, ll • 73gQ99E-08 

DEL( 2' 1) = -.367553E-08 

Figure 5,18 Console transaction for example 5,3 

Tr 
when time delay • 4 min 
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CHAPTER 6 

COMMENTS AND SUGGESTIONS FOR FUTURE RESEARCH 

In obtaining eAT by the use of a digital computer the virtues of 

the series expansion technique are its simplicity and ease in programming, 

It is not necessary to find the eigenvalues of A. There is, however, some 

computational disadvantage to the series expansion method, This comes from 

the convergence requirements for the series, In general, it is reasonable 

to compute eAT by the power series when T is small, The running time for 

the matrix exponential simulation will be among the longest of various 

schemes, Use of the Jordan Canonical form, for example, requires 

considerably more programming, but will run in a fraction of time needed 

for the series solution, 

Some suggestions concerning the bound on the error in the 

evaluation of the matrix exponential when the matrix A is known with some 

error are given by Levis (10), 

The simulation technique for linear time-invariant dynamic 

systems has been tested, and it was found that the use of the augmented A 

matrix (,!(t) •A !,(t) + D .!1,(t) can be expressed as .Y,(t) • (~ ~),Y:(t), where 

,Y(t) ·[]) ) greatly improved the procedure, The reason is that the actual 

reduction of the elements of the augmented matrix times T to values less 

than one can be performed successfully. However, this method cannot be 

used for calculating the digital version of the control transition matrix, 

Another scheme that can be used to check the error bound in the 

state is to divide the time region of interest in two or three parts. 

Preferably these times should be powers of two times the sampling time, 

Next, compute the matrix exponential at the desired sampling time, 
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Recursively multiply it until the matrix exponential is found for the other 

selected times, Tile state at those times can be found and saved, Now, 

using the recursive process of state evaluation at the sampling time, 

compare the state with the selected ones, If the error is unacceptable, 

the state with less error can be used as a new initial condition, and the 

procedure may be continued, 

It was found in chapter 3 that the elements ci,j form an array 

of infinite order, Til.e first row is of main importance because its elements 

are the terms of eA•, Therefore, the truncation technique already discussed 

can be used, 

In a similar fashion, the elements ci,i are actually the terms of 

the infinite series eBt, It is reasonable to expect smaller values of these 

norms as "i" grows, Therefore, intuitively the number of terms used to 

truncate the first row can be used to truncate ~1(t) 1 ~z(t), etc, It would 

be interesting to make a study about how the truncation terms should be 

taken in each row in order to save computation time while maintaining 

accuracy, 
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TRANS 

Purpose: to compute the time response of linear time-invariant 

systems. 

Inputs: order of system (M •);sampling time (Tm); final 

time (TF •);number of input signals (R • ); the 

augmented A matrix and the initial state (X(l) • ). 

Outputs: the transition matrix; the current time; and the state 

of the system. 

Remarks: main program, Subroutine called by TRANS: EXPMAT, and 

DIS TUR, 



MAGDA 

UJP E 

ALIC I A 

JULIA 

AL"1A 

Fl\NNY 

MARTA 

OLGA 

PROGRA"1 COMMON A, EM1 M1 RJJ, R, X 
D IMF N 5 I 0 N X ( 2 ,; ) 1 Y ( 2 u ) 1 E ( 2 ~ ) 1 Pf ( 2 :J l 1 XI ( 2 il l 
DIMENSION FMP(40P1Hl1A(40~1Hl1EM(4001Hl 

INTEGER I 1J1M1R1WISH 
FORMAT VARIARLF FM 
VECTOR VALUES H=21l10 
PRINT COMMENT $GIVE ORDER OF SYSTEM (M = )$ 

PRINT COMMENT $SAMPLING TIME IT= ), FINAL TIME (TF 
RFAD DAT/> 
PRINT COMMENT $ $ 

FM='1 
PRINT COMMENT SIS THERE ANY DISTUR~ING SIGNAL$ 
RFAD FORMAT S31WISH 
VECTOR VALUFS 53 = I C3*1 
WHFNEVER WISH.F,$YES$ 
PRINT COMMENT $ I 
PRINT COMMENT $GIVE NUMBFR OF INPUT SIGNALS (R )5 

READ DATA 
M=M+R 
OTHER'!/ I SE 
R=~ 

E~D OF CONDITIONAL 
H (?) =M 
PRINT COMME~T S $ 

)$ 

PRINT COMMENT iGIVE THE A MATRIX IA(l1ll=--1Al21ll=--l$ 
THROUGH LUPE, FOR l=ltl.J,G,M 
READ DATA 
PRINT COMMENT S $ 
PRINT COMMENT IGIVE INITIAL ~TATE IXlll=--)$ 
READ DATA 
THROUGH ALICIA1 FOR I=l1J,J,G,(M-RI 
XI I I) =X ( I l 
TA=T 
'<IHE'JfVFR R,"JFov 
EXECUTF DISTUR. I TA l 
J=t-<-R+l 
THROUGH JIJLIA1 FOR l=Jtlt!oG.M 
X!IJl=X(JI 
CONTINUF 
END OF CONDITIONAL 
THROUGH ALMA1 FOR l=l1l1l,G,IMI 
F: (I l =O, 
TZ=T 
EXECUTF FXPMAT,ITI 
THROUGH FANNY1 FOR l=l1l1!0GoM 
THROUGH FANNY1 FOR J=l1l1JoGoM 
PRINT FORMAT CUATR01!1J1fM( l1Jl 
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VECTOR VALUES CUATRO = IJH 1S8'3HEMl.J4,JH,,J4o3HI =1El4o6*5 
CONT!NUF 
THROUGH MARTA1 FOR !=l1l1loGolM-Rl 
THROUGH MARTA• FOR J=l1l1JoGoM 
EMP( l1Jl=E,M( I ,JI 
WHENEVER (M-Rl,L,6 
PRINT COMMFNT $ $ 
PRINT FORMAT 511 (J=l1l1J,G,(M-Rl1!l 
VECTOR VALUES 51 = $ 1S6,4HTIME1S81 1 FM 1 (2HX(t!lolHl1SlZl/*$ 
END OF rONDITIONAL 
TRANSFER TO TERESA 
TA=TA+TZ 
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TFRFSA 

'·11\R I,\ 
f'LFNA 

RCISA 

F.STHFR 
ROSANA 

Sl\RA 

CARMEN 

I.I LI A 

WHF·'ffVFR R.~:F.O 

EXF(llT> D!STURo (TAI 
FND OF rONDITIONAL 
THROUGH ELENA, FOR I=l1l,J0Go(M-RI 
PE ( l I =D • 
Y (I I =0. 
THROUGH MARIA• FOR J=l1l1JoGoM 
Y( J l=Y( J l+FMP( I ,Jl*X(JI 
PF ( I I = ( f' ~· P ( l , J I + R I J I * f ( J I + R I J * X ( J I + P '= ( I I 
co~:TI~!U~ 

co~n 1 ~:LJF 
f:: N 0 R ~~ = :1 • 

THROUGH ROSA1 FOR l=l1l1I.G.(M-RI 
ENOR'1=F'WR~'+. ARS • (PF (I I I 
',-JHENEVFR '=NOR'·1.GF. (IO •• P.-071 
T=TA 
EXFCUTE FXPMAT.(TI 
THROUGH ROSANA1 FOR l=l1l1!0GolM-RI 
PE ( I I =:J. 
y ( I I =G • 
THROUGH ESTHER• FOR J=l1l1J.G.M 
Y ( I I= Y ( I I +EM ( I 1 JI *XI ( J I 
P '= ( I I= PF ( I I +RI J* XI ( JI 
rnrH Jf\ilJ" 
CONTINUF 
OTHERW !SE 
TRANSFFR TO SARA 
"ND OF CONDITIONAL 
THROUGH CARMEN1 FOR I=l1l1!0GolM-RI 
XI I I =Y (I I 
F ( I I =PF I I I 
J=M-R+l 
THROUGH LILIA• FOR l=Jd.J.G.M 
i:: ( j I= 0. 
'WHFNFVFP (M-Rl.L.6 
PRINT FORMAT S21TA,X(l l ••• XIM-RI 
VFCTOR VALUFS SZ = $ 1541F602•'FM'(531El4o61*i 
OTHER'tJ!SF 
PRINT RFSULTS TA 
PRINT i<FSULTS X(lloo•X(M-Rl 
END OF CONDITIONAL 
WH~NFVER TA 0L.TF1 TRANSFER TO OLGA 
PRINT COMMENT $fND OF EXErUTJON$ 
PRINT COMMENT iTO CONTl~UE, GO TO THE TOP OF A NEW PAGE$ 
PRINT COMMENT $AND PRINT AN ASTERISK$ 
RFAD DATA 
TRANSFER TO MAGDA 
1=-~1D OF PROGRAM 
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EXP MAT 

compute tne matrl.x exponential. 

Kemarks- '-':.::>routine called by TRANS. 
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ELENA 

DIANA 

OLGA 

SAR A 

ALMA 
ESTHER 

YOLIS 

GLORIA 

ROSANA 

MARIA 

EXTERNAL FUNCTION (Tl 
PROGRA'~ COW-'ON A• E'h ~~. RIJ, R, X 
DIMENSION A(4UU,HJ,EM(4UU,Hl•TFRM(4UJ,Hl,NTERM(400•HI 
DIMENSION X(2uJ,8(4uO,HI 
VECTOR VALUES H=2•1•0 
INTEGER K,J,J•L•M•LL•Y•Q 
ENTRY TO EXPMAT. 
H ( 2 l ='-' 
THROUGH ELENA• FOR I=l•l1!.GoM 
THROUGH ELENA, FOR J=l1ltJ.G.M 
B(I,Jl=A(J,Jl 
R(J,Jl=R(J,Jl*T 
AMIN=f1(1.JI 
THROUGH DIANA, FOR I=2•1,J.G.v 
WHENEVER f1(I,Il.L,AMIN• A'-'IN=R( I1II 
CONTINUF 
FAC=EXP.(AMINI 
THROUGH OLGA• FOR I=l•l1I.G.M 
R( I, I 1=8( I .r I-AMIN 
Y=.ABS.9(111 I 
THROUGH SARA, FOR I=l.J.I.G.v 
THROUGH SARA• FOR J=l•l•JoGoM 
WHENFVER .A8S.(8(J1Ji1.G.(Y+D.1, Y=.ABS.(8(I,Jll 
CONTll\IUF 
TAP= lo 
YE=Y+O. 
THROUGH ALMA, FOR Q=l•l,Q.G.10 
TAP=2o*TAP 
WHENEVER TAP.GE.YE, TRANSFER TO ESTHER 
CONTINU~ 

Y=TAP 
THROUGH YOLJS, FOR I=l•l•loG.M 
THROUGH YOLJS, FOR J=l•l•J.G.M 
8( I,Jl=R( ItJl/(Y+Ool 
TERM (I ,JI =B (I 1J I 
LL=O 
MAXH=O. 
MAXV=O. 
THROUGH MARIA• FOR I=l•l•l•GoM 
SUMH=O. 
SUMV=Oo 
THROUGH ROSANA• FOR J=l•l,J.G.M 
SUMH=SUMH+.ABS.TERM( I1JI 
SUMV=SUMV+.ABS.TERM(J,I l 
CONTINUE 
WHENEVER SUMH.G.MAXH,MAXH=SUMH 
WHENFVER SUMVoGoMAXV,MAXV=SUMV 
CONTINUF 
NORM=MAXH 
WHENEVER MAxv.L.NORM,NORM=MAXV 
WHENEVER LLoNEoD• TRANSFER TO DELIA 
SOLO=NORM 
K=2o*NORM 
WHENEVER KoLo2• K=2 
IN=K/2 
VcCTOR VALUES CINCO= $1H 12HK=,I4*i 
THROUGH SUSANA, FOR I=l•l,I.GoM 
THROUGH SUSANA• FOR J=l1l1J.G.M 
UNIT=O. 



SUSANA / 
ISABEL 

EVA 

I.I LI A 

AURORA 

DELIA 

JULIA 

MAGUf 
MARTA 

OU VI A 
ALI CIA 

CARMEN 

WHENEVER J.E.!• UNIT=lo 
EM< I .Jl=UNIT+B( I ,J) 
CONTINUE 
WHENEVER LL.GE.K, TRANSFER TO GLORIA 
LL=LL+l 
THROUGH LILIA• FOR L=l•l•LoGoM 
THROUGH LILIA• FOR I=l•l•loGoM 
NTERM<L• I l=Oo 
THROUGH EVA, FOR J=l•l•JoGoM 
NTERMCLtll=NTERMCLtll+B<L,Jl*TERM(J,J l 
CONTINUF 
EM< L, I l =EMIL, I l +NTE RM IL• I l I ILL+ 1. l 
CONTINUE 
THROUGH AURORA• FOR l=l•l,JoGoM 
THROUGH AURORA, FOR J=l•l•J.G.M 
TERM!I.Jl=NTERM<I.Jl/(LL+lol 
TRANSFER TO ISABEL 
EPS=SOLO/!K+2ol 
RIJ=NORM*SOLO/!(K+lol*<lo-EPSl l 
THROUGH JULIA• FOR !=l•l•loGoM 
THROUGH JULIA• FOR J=l•l•J.GoM 
WW=.ABS.<EM<J,Jl*lOooPo-7) 
WHENEVER RIJoGoWW 
K=K+IN 
TRANSFER TO ISABEL 
OTHERWISE 
TRANSFER TO JULIA 
END OF CONDITIONAL 
CONTINUE 
THROUGH ALICIA, FOR LL=ltltLLoGoQ 
THROUGH MARTA• FOR L=l•l•LoGoM 
THROUGH MARTA• FOR i=l•l•l•GoM 
TERM<Lt! l=O. 
THROUGH MAGUF• FOR J=l•l•JoGoM 
TERM(L,ll=TERM<L,Jl+EM(L,Jl*EM(J,Il 
CONTINUF 
CONTINUF 
THROUGH OLIVIA• FOR !=1,1,1.G.M 
THROUGH OLIVIA, FOR J=1,1,J.G.M 
EM<I.Jl=TERMCJ,Jl 
CONTINUE 
PRINT COMMENT $ $ 
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PRINT COMMENT $ TERMS OF THE MATRIX EXPONENTIAL$ 
THROUGH CARMEN• FOR !=1,1,1.G.M 
THROUGH CARMEN• FOR J=l•l,JoGoM 
EMCl•Jl=FAC*EMCI.Jl 
FUNCTION RETURN 
END OF FUNCTION 
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TlMDEL 

Purpose: to compute the time response of linear systems with 

lumped parameters and time delays. 

Inputs: order of system (M • ); sampling time (T • ); time 

delay (TD•); final time (TF •);number of input 

signals (R • ); the A matrix; the B matrix; the D1 

matrix; the D2 matrix; the initial state (X(l,l) • ). 

Outputs: the plant transition matrices, the control transition 

matrices if desired; the current time; and the state 

of the system. 

Remarks: main program. Subroutines called by TIMDEL: DELFOR, 

and PERTUR. 



MAGDA 

1-'f'LA 

MALFNA 

AL'IA 

BC-RTA 
JIJL l A 

PROGRAM COMMON EM,DELF•M•R•W•A•B•Dl1D21U 
Dll'FNSION F'\14000,H) .nFLFl4C00,H) .x14001Gl 1Al400.G) 
rl!MENS!ON Fll4UO,Gl1f"Jll4CJ01Gl•D21400,Gl1Ul4LiO,El 
INTEGER I,J1K1L1M1N1LL1Z1W1R,REL,MM1WISH1JJ 
FORMAT VARIABLE FM 
VECTOR VALUFS G=21l•O 
VECTOR VALUES E=2•1•0 
VECTOR VALUES H=1.11010 
PRINT COt'MENT $GIVE ORDER OF SYSTFM IM = )$ 
PRINT CO'IMENT $DESIRED SAMPLING TIME IT = )$ 
PRINT COMMENT $TIME DELAY ITrl = l1 FINAL TIMF ITF 
RFAD rlATA 
FM=M 
PRINT COMMENT $ $ 

PRINT CO'IMENT SIS THERE ANY DISTURBING SIGNAL$ 
READ FORMAT S31WISH 
VECTOR VALJFS Sl = $ C3*$ 
WHENFVER WISH.E.IYES$ 
PRINT COMMENT $ $ 
PRINT COMMENT $NUMBER OF INPUT SIGNALS IR )$ 

RFAD DATA 
OTHF:R 1~ I SF 
R=0 
FND OF (ONDITIONAL 
REL=TD/T+0.2 
GI 2 l ='I 
HI ?l =M 
HI 3 l ='1 
PRINT COMMENT $ I 

1$ 

PRINT COMMENT $GIVE THE A MATRIX IAll1ll=--1Al2•ll=--l$ 
THROUGH MELA• FOR !=l1l•IoGoM 
Rf'AD DAT/> 
PRINT COMMENT ! $ 
PRINT COMMENT $GIVE THE B MATRIX IBll•ll=--1Bl2,ll=--l$ 
THROUGH '1ALFNA1 FOR 1=111,J.G.M 
RFArl DATA 
WHENFVER R,f,O,TRANSFER TO JULIA 
PRINT COM'IENT $ $ 
PRINT COMMENT $GIVE THE Dl MATRIX 1Dlll•ll=--,Dll21ll=--I$ 
THROUGH ALMA, FOR l=l•l1!.Go'1 
READ DATA 
PRINT COM'IENT $ $ 
PRINT COMMENT $GIVE THE D? MATRIX ID211,ll=--1D212•ll=--1$ 
THROUGH BERTA, FOR I=l1l1J.G.M 
RFAD DATA 
EXECUTE DFLFOR, IT l 
PRINT COMMFNT $1)0 YOU WISH TO HAVF THE TRANSITION MATRICES$ 
RFAD FORMAT Sl1WISH 
WHENEVFR WISHoFo$YFS$ 
THROUGH DULCE1 FOR L=l1l1LoGoW 
LL=L-1 
WHENrVFR R,E,0 
PRINT FOR~AT OCH01LL 
VECTOR VALUES OCHO $lH 1S8115HTRANSFER MATRIX1S21 

l 4HP HI I d 4 1 IHI*$ 
OTHERWISE 
PRINT FORMAT SEIS,LL•LL 
VECTOR VALUES SEIS= $lH 1S8115HTRANSFER MATRIX1S21 

14HPHJl,J4,1Hl1S8122HTRANSFER MATRIX DELTAl1!4•1Hl*$ 
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CFL I /1. 

GLORIA 

ALIC I A 

MARTA 

SIL·; IA 

CONTINUF 
WHENEVER ZoEol• L=L-1 
THROUGrl ALICIA. FOR K=l•ltKoGoW*REL 
THROUGH ALICIA, FOR I=ltlt!oGoM 
BCKtll=XCK+1tll 
WHENEVER KoEoWt TRANSFER TO ALICIA 
ACK• I l =U ( K+lt I l 
CONTINUE 
THROUGH MARTAt FOR K=ltltKoGoW*REL 
THROUGH ~ARTA, FOR I=l•ltioGo~ 
XCK,Il=ACK.Jl 
WHENEVER K.E.w, TRANSFER TO MAF-· 
UCK,I l=ACKtI > 
CONTINUE 
TRANSFER TO SONIA 
PRINT COMMENT $END OF EXECUTION$ 
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PRINT COMMENT $TO CONTINUE, GO TO THE TOP OF A NEW PAGE$ 
PRINT COMMENT $AND PRINT AN ASTERISK$ 
READ DATA 
TRANSFER TO MAGDA 
END OF PROGRAM 
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DELFOR 

Purpose: to compute the plant transition matrices and the 

control transition matrices. 

Remarks: subroutine called by TIMDEL. 



DELIA 

YOLIS 

,_,AGUE 

ROSANA 

MARIA 

SALOME 
ISABEi.. 
FANNY 

EXTERNAL FUNCTION <Tl 
PROGRAM COMMON EMtDELF•M•RtWtA•B•Dl•D2tU 
DIMFNSION Clll000,H),A14001GltBl400tGltEMl40001HI ·XX!4001Gl 
DIMENSION TERMl400tGltNTERM!400,Gl•UU1400•Gl•Dll400tGl 
DIMENSION DELF!4000,Hl•D21400,G),U!400,El 
INTEGER J,J,KtL1M,NtY•Q,R,W 
VECTOR VALUES H=3.1.o.o 
VECTOR VALUES G=2tl10 
VECTOR VALUES E=2,110 
ENTRY TO DELFOR. 
G!2l=M 
Hl2l=M 
HI '.3 l =M 
LINDA=O• 
ROSA=-1 • 
THROUGH YOLIS1 FOR l=l•lt!oGoM 
THROUGH YOL!St FOR J=l•l•J.G.M 
WHENEVER J.G.R• TRANSFER TO DELIA 
Dl!ltJl=Dl(J,Jl*T 
D2< I •Jl=D2! J ,Jl*T 
Al J,Jl=A< !tJ l*T 
TERM! I , J l =A ( I ,J l 
B< I 1Jl=B I I ,J l*T 
N=O 
MAXH=O. 
MAXV=Oo 
THROUGH MARIA• FOR I=l•l1!0GoM 
SUMH=O• 
SUMV=O• 
THROUGH ROSANA• FOR J=l•l1J.G.M 
SUMH=SUMH+.ABS.TERM(l,Jl 
SUMV=SUMV+,ABSoTERM(J,Il 
CONTINUE 
WHENEVER SUMHoGoMAXHtMAXH=SUMH 
WHENEVER SUMVoGoMAXVtMAXV=SUMV 
CONTINUE 
NORM=MAXH 
WHENEVER MAXVoLoNORM,NORM=MAXV 
WHENEVER LINDA.Nf,O,, TRANSFER TO CARMEN 
WHENEVER N.NE.O, TRANSFER TO CHELA 
SOLO=NORM 
Kz2o*NORM 
WHENEVER KoL•2• K=2 
W=l 
IN=K/2 
THROUGH SALOME• FOR !=1,1,1.G.M 
THROUGH SALOME• FOR J=l•l•J.GoM 
C!l.Z,Jl=O• 
WHENEVER J.E.I1CfltltJl=l• 
EM(W,J,Jl=C<l•l•Jl 
XX(J,Jl=EM(W,J,Jl 
UUI I .J l =0 • 
TERM!! tJ l=CI l .I ,Jl 
N=O 
WHENEVER NoGEoK.ANDoLINDA.E.O.,TRANSFER TO MAGUE 
WHENEVER N.GE.K.AND•LINDA.NE.o.,TRANSFER TO ELENA 
N=N+l 
THROUGH HILDA• FOR L=l•l•L•G.M 
THROUGH HILDA• FOR I=l•l•l•G•M 
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LI LI A 

HILDA 

JULIA 

CHE LA 

EVA 
FLENA 

AURORA 
MARTA 

IRMA 
PATY 

SONIA 

CARMEN 

JOSEFA 
YOCO 

ELI SA 

NTERMCL. I l=O• 
THROUGH LILIA• FOR J=l•l•J.G.M 
WHENEVER LINDA.f.O.,ClN+l.J,J)=O. 
NTERM(L, I )=NTERMlL•I )+AlL,Jl*TERMCJ•I l+BlL,Jl*ClN+lo.Jtl l 
CONTINUE 
EMCW•L•l>=EMlW•L•ll+NTERMlL,Jl/lN+LINDAl 
WHENEVER R.E.0• TRANSFER TO HILDA 
XX l L, I> =XX l L, I l +NTERMl L, I l /l l N+LINDA l * l N+LI NDA+le l l 
CONTINUE 
THROUGH JULIA• FOR l=l•l•leGeM 
THROUGH JULIA• FOR J=l•l•JeGeM 
ClN+l,J.Jl=NTERMl!,Jl/lN+LINDAl 
TERMl!.Jl=CCN+l•l•J> 
TRANSFER TO FANNY 
EPS=SOLO/ l K+2 • l 
RIJ=NORM*SOLO/llK+lel*ll.-EPSll 
THROUGH EVA, FOR I=ltl•l•G•M 
THROUGH EVA, FOR J=l•l•JeGeM 
WW=eABS.!EMtw,J,Jl*lOe•Pe-07> 
WHENEVER RJJ.G.WW 
K=K+IN 
TRANSFER TO FANNY 
OTHERWISE 
TRANSFER TO EVA 
END OF CONDITIONAL 
CONTINUF 
LINDA=LINDA+l. 
ROSA=ROSA+le 
WHENEVFR ReEeO, TRANSFER TO PATY 
THROUGH MARTA• FOR L=l•l•L.GeM 
THROUGH MARTA• FOR !=l•l•l•GeR 
TERMlL.J l=O• 
THROUGH AURORA• FOR J=l•l•JeGeM 
TERMIL•I )=TERMlL•I )+XXlL.Jl*Dl(J,J l+UU(L,Jl*D2(J,J l 
CONTINUE 
CONTINUE 
THROUGH IRMA, FOR I=l•l•leGeM 
THROUGH IRMA• FOR J=l•ltJ.G.R 
DFLFlW.J •Jl=TERM! l.Jl 
THROUGH SONIA• FOR I=l•l•loGeM 
THROUGH SONJA, FOR J=l•l•JoGeM 
TERM l I .J l =EM l W •I ,j) 

ULl!l.J)=XX(l.Jl 
TRANSFER TO MAGUE 
WHENEVER NORM.LE.10 •• P.-07.TRANSFER TO DIANA 
THROUGH YOCO• FOR L=l•l•L~G.M 
THROUGH YOCO• FOR l=l•l•l.GeM 
NTERMlL.I l=O• 
THROUGH JOSFfA, FOR J=ltl,JeGeM 
NTERM!L.ll=NTERM!L.Il+BCL.Jl*C11,Jtll 
CONTINUF 
W=W+l 
THROUGH ELISA• FOR I=l•ltleGeM 
THROUGH ELISA• FOR J=l•l•JeGeM 
Cl\•l•J>=NTERMll•Jl/!ROSA+l.l 
XX U •J l =C ( 1 d .J l I ( ROSA+2 • l 
EM ( W .J , J l =Cl 1 ' h J l 
TERMl!.Jl=CCl•l•Jl 
TRANSFER TO ISABEL 
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PERTUR 

Purpose: to compute the forcing signal vector at the current 

time, The program keeps track of the past, 

Remarks: subroutine called by TIMDEL, 



EXTERNAL FUNCTION <TAtLLI 
PROGRAM COMMON EMtDELFtMtRtWtAtBtDltD2tU 
DIMENSION EM(4000tHltDELFl4000tHltA1400tGltBl400tGI 
DIMENSION Dl 1400tGI tD21400tGI tUl400tE

0

I 
INTEGER 1tLLtRtWtM 
VECTOR VALUES G=2tlt0 
VECTOR VALUES E=2tlt0 
VECTOR VALU~S H=3tlt0t0 
ENTRY TO PERTURe 
Gl2l=M 
Hl21=M 
El21=W 
H<31=M 
U!LLtll=----
U<LLt21=----

U<LLtRl=---­
FUNCTION RETURN 
END OF FUNCTION 
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