
r 

SYMBOLIC INTEGRATION 

by 

Joel Moses 

Submitted to the Department of Mathematics on September 1, 1967 in 

partial fulfillment of the requirements for the degree of Doctor of 

Philosophy 

ABSTRACT 

SIN and SOLDIER are heuristic programs written in LISP which solve 

symbolic integration problems. SIN (Symbolic INtegrator) solves inde­

finite integration problems at the difficulty approaching those in the 

larger integral tables. SIN contains several more methods than are used 

in the previous symbolic integration program SAINT, and solves most of 

the problems attempted by SAINT in less than one second. . SOLDIER (SOLu­

tion of Ordinary Differential Equations lloutine) solves first order, 

first degree ordinary differential equations at the level of a good col-

lege sophomore and at an average of about five seconds per problem attempted, 

The differences in philosophy and operation between SAINT and SIN are 

described, and suggestions for extending the work presented are made. 
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Chapter 1 

Introduction 

In the last few years there has been a surge of activity on 

the design of algebraic manipulation systems*. Algebraic manipu-

lation systems are computer ba~ed systems which facilitate the 

handling of algebraic and analytic expressions. One of the oft 

stated capabilities desired of such systems is an ability to per-

form symbolic integration. Besides the obvious value of such a 

capability in symbolic calculations there is the possibility of em-

ploying it as an adjunct to numerical integration programs for 

functions which involve parameters. In such cases a single accur-

ate symbolic integration is likely to be preferable to numerical 

integrations taken over the range of values of the parameters. An-

other reason for the interest in symbolic integration programs is 

the fact that the ease with which such a program could be written 

in a proposed language for algebraic manipulation has become an in-

formal test of the power of that language. Yet the only previously 

announced symbolic integration program with any claim to generality 

is SAINT (Symbolic Automatic IN'legrator), written as a doctoral 

dissertation by Slagle in 1961 [.58J. Slagle described SAINT as be-

ing as powerful as a good freshman calculus student. Thus the un-

modified SAINT program does not appear powerful enough to warrant 

*For a survey of the field of algebraic manipulation see Sammet f.55). 
For a bibliography of work in the field up to 1966 see Saamet 561· 
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its use in a practical algebraic manipulation system. In 1964 a 

program which integrates rational functions was written for the 

MATHLAB project by Manove, Bloom, and Engelman of the MrrRE Corpor­

ation (36]. This program filled an important gap in the capabili­

ties of SAINT. By using such a program it appeared possible to 

write a more powerful integration program than SAINT. Furthermore 

it seemed that programs which solve ordinary differential equations 

at least as well'as sophomore college students (and a good deal 

faster than such students) could also be written. Such programs 

became the goals of our research. 

We used the rational function package of MATHLAB in writing a 

second symbolic integration program called SIN (Symbolic INtegrator). 

SIN, in turn, we used to write a program which solves first order, 

first degree ordinary differential equations. This program is· 

called SOLDIER (SOLution of Differential Equations Routine). SIN 

and SOLDIER are both written in LISP (34], (20) for the C'l'SS system 

at Project MAC (11]. These experiments in symbolic integration are 

the principal subjects of this thesis. We believe these programs to 

possess sufficient power and efficiency that they could be effectively 

used in a practical on-line algebraic manipulation system. 

In order to clarify the domain of applicability of our pro­

grams and in order to indicate the power of the present versions 

of SIN and SOLDIER, we present below two examples of problems 

solved by each program. The solutions that these programs obtain 

to the four prablems can be found in Chapters 4 and 6. 
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Problems solved by SIN and SOLDIER 

Figure 1 

Although the capabilities of SAINT are quite impressive, 

we found compelling reasons for taking, in SIN, a substantially 

different approach. The most fundamental difference between SIN 

and SAINT is in the organization of the programs. SAINT utilizes 

a tree search as its main organizational device. Slagle compares 

the behavior of SAINT to that of freshman calculus students. We 

sought an organizational model which behaved like our conception 

of the behavior of an expert human integrator. This model was sup-

posed to determine the methods needed to solve a problem quite 

quickly. A discussion of the approach taken in SIN is given in 

Chapter 2. 

SAINT utilizes a matching program for algebraic expressions 

called Elinst (ELementary INSTance). We desired a program which 

was more closely organized as an interpreter for a pattern matching 

language. This program. called SCHATCHEN, is a service routine em-

ployed throughout SIN and SOLDIER. The power of SCHATCHEN greatly 

simplified the problem of writing an algebraic simplification pro-

gram, called SCHVUOS. SCHATCHEN and SCHVUOS are described in Chap-

ter 3. 
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Chapter 4 contains a detailed description of SIN and its 

methods. A comparison between methods used in.SADT and SIN is 

made. It is noted that SIN contains several methods not included 

in SAINT. Among these is a decision procedure for a set of inte­

gration problems. Thus SIN is able to determine that Jex
2
dx and 

s~ dx are not integrable in closed form. 
x 

In Chapter 5 we introduce the Edge (IDucational GuEss) heur-

istic. The Edge heuristic is based on the Liouville theory of in-

tegration. In this theory it is shown that if a function is inte-

grable in closed form, then the form of the integral can be deduced 

up to certain coefficients. A program which employs the Edge heur-

istic, called Edge, uses a simple analysis to guess at the form of 

the integral and then it attempts to obtain the coefficients. Edge 

is a nontraditional integration method and one that we believe is 

the first in a line of very powerful methods. 

The methods and organization of SOI.Diii. are introduced in 

Chapter 6. The area of nonlinear first order differential equations 

is much more difficult than just integration. Thus we were hardly 

surprised at not being able to find a concept analogous to the Edge 

heuristic of SIN. Nonetheless the power of the current version 

Qf SOLDIER is comparable to that of a sophomore student in an or-

dinary differential equations course. 

The appendices contain results of experiments performed with 

SIN and SOLDIER and a report on some other work not directly con-

cerned with these programs. 
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Many people probably believe that the cheapest way to obtain 

an integration capability would be to design an integral table 

look-up program. While we do not espouse this course of action, 

we did experiment with such a program (calied ITALU). Appendix A 

describes this program. 

Richardson has recently obtained a recursive unsolvability re­

sult in integration wich has aroused great interest 1,52). we des­

cribe this theorem and present some of our own related results 

which involve nonlinear differential equations in Appendix B. 

SAINT was asked to solve 86 problems. Of these it solved 84 

in an average time of 2.4 minutes. SIN solved all 86 problems 

with solution times which were frequently more than two orders of 

magnitude faster than sAINT. SIN solved the other two problems 

by using integration methods not available in SAINT. The fact that 

SIN was compiled and that SAINT was run interpretively accounted 

for most of the gain in speed. Results and further interpretations 

of this experiment are given in Appendix c. 

A physicist, Harold Mcintosh, used an integral table to solve 

eleven fairly difficult integration problems. SIN, after some 

prodding, solved these problems and found some minor errors in 

Professor Mcintosh's answers. This experiment is described in Ap­

pendix D. 

In order to test the effectiveness of SOLDIER we asked it to 

solve 76 problems taken out of a differential equations text. SOL­

DIER solved 67 of these problems cleanly with an average time of 
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about five seconds. One of these solutions indicated a misprint 

in the solution given in the text. This experiment is described 

in Appendix E. 

With the exception of Chapter 7 which presents conclusions 

and suggestions for further work the following chapters are fairly 

self contained. Thus those who are only interested in algebraic 

manipulation can reasonably ignore Chapter 2. Those interested in 

AI may wish to ignore the higher numbered chapters. 



CHAPTER 2 

HOW SIN DIFFERS FROM SAINT 

Introduction 

In this chapter we discuss in broad terms the organizational dif­

ferences between SIN and SAINT. SAINT employs rather loose progress 

constraints in generating subproblems, and obtains a solution through 

a tree search. SIN relies on a much tighter analysis of the problem 

domain (i.e., integration) and strict constraints on progress in order 

to obtain a relatively straightforward solution. 

Heuristic Search 

In "The Search for Generality" [ 45 ] , Newell finds that the most 

frequent organizational structure used in Artificial Intelligence pro­

grams is one he calls heuristic search. We shall call programs which 

employ this organization as the sole or central organizational device 

HS programs. SAINT is an example of an HS program. HS programs can 

be considered to be programs which attempt to generate a path from a 

starting node A (usually the statement of the problem to be solved, 

given in the internal representation) to a terminal node B (usually the 

last link necessary to find a solution to A). The path from A to B con­

sists of one or more nodes which are (again, usually) in the same problem 

domain as A and B. Thus in a theorem proving program the nodes would 

represent statements of possible theorems and in SAINT the nodes repre­

sent expressions to be integrated. From each node the program is able 

to generate one or more successor nodes. A!!. of these successor nodes 

could be examined to determine if they lead to a solution (a "B" node), 

but it is in the nature of AI problems that if this were to occur the 

11 
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program would consume too much time and space. Hence heuristics are used 

to select a set (possibly a null set} of successor nodes for examination 

in preferance to others. The use of such heuristics leads to the "heuris­

tic" term in "heuristic search." The process of examining nodes in the 

l,W_ which is generally produced leads to the "search" term in "heuristic 

search." 

There are many strategies for guiding the search of the tree. How­

ever several stand out and deserve to be mentioned. One strategy is 

called "depth first." It usually selects the last node generated as the 

one to be examined next. This strategy has the effect of forcing an 

examination of a single path until it either leads to a solution or the 

program decides that it will not yield a solutio.n. Such a strategy is 

employed in most game playing programs. At the other extreme is a stra­

tegy called "breadth first" which selects the node which was generated 

earliest. Such a strategy was used in the Logic Theorist [44). SAJNT 

chooses the node which represents an expression which it deems to be 

one of the simplest subproblems to be integrated. 

We wish to clarify the sense in which we refer to a program as an 

BS program. The fact that a subroutine in a program uses heuristic search 

does not always imply that the program is an BS program. For example if 

SAINT's simplifier had used heuristic search in order to simplify expres­

sions, then this fact does not imply that SAJNT is an HS program (for 

example SAINT could have been just a table look-up program}. Nor is it 

t'he case that any program which performs search even if the search is 

guided by heuristics is always an HS program. We ~ish to reserve this 
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name to programs which rely on conducting a search in the same domain 

in which the problem is posed. Thus programs which search for a plan 

in a different space from the one in which the problem is posed and 

* thereafter find the solution ineediately are not HS programs. 

The Trend toward eenerality 

One of Newell 1 s other conclusions in ''The Search for Generality" 

is that Al programs have tended in the recent past to shy away from 

dealing with complex problem domains such as chess~ geometry, or inte~ 

gration, and have increasingly concerned themselves with generality. 

By programs which emphasize generality we shall mean programs which 

are concerned with an examination of mechanisms (e.g., heuristic search) 

which are useful in many problem domains. By programs which emphasize 

expertise we shall mean programs which concentrate on a particular 

(c.omplex) problem domain •. Examples of the trend toward generality are 

the advice taking programs (e.g., Black 3 ] , Slagle' s DEDU<XJM{ 59 1 , 

and even Norton's ADEPT [ 47 ]). These programs solve toy problems 

which have been posed from time to time by Mccarthy. One of the striking 

fea~ures of these programs is how little knowledge they require in order 

to obtain a solution. In fact Persson, in his recent thesis[ 49 ] which 

deals with "sequence prediction" seems to feel that placing a great 

deal of context dependant information in a program would be Ucheating. 11 

This emphasis seems to be useful when one desires to study certain 

* Our emphasis regarding the space to be searched may differ from Newell's. 
In fact our ne~d to use intuitive definitions and rely on analogies and 
examples points out the lack of a firm theoretical foundation in computa­
tion, and in Artificial Intelligence. 
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problem solving mechanisms in as pure a manner as possible. 

Slagle, too, desired to use SAINT as a vehicle for studying certain 

problem solving mechanisms such as "character-method tables" (for example, 

method A is probably useful when the problem is of type 1 or type 5--see 

Minsky [ 41 ] for a discussion of this technique) and "inherited re-

sources" (Minsky [ 41 ] ) • We, on the other hand, intended no such 

study of specific problem solving mechanisms, but mainly desired a 

powerful integFation program which behaved closely to our conception 

of expert human integrators (it should be noted that Slagle compared 

the behavior of SAINT to that of college freshman calculus students). 

Nonetheless our experiment with SIN may be used to modify or improve 

general problem solving mechanisms. 

SIN, we hope, signals a return to an examination of complex problem 

domains. Greenblatt's chess program [ 22] is another example of a 

recent program which deals with a complex problem domain which has been 

considerably neglected in the last few years. 

'fbe Emphasis on Analysis 

Our emphasis in SIN is on the analysis of the problem domain. This 

analysis is both an analysis that we performed and built into the pro-

gram, but more importantly an analysis which the program makes while 

it is solving a problem. In order to achieve high performance in sym-

bolic integration we did not require that the program make a very com-

plex analysis of the situation. Nonetheless the analysis that SIN does 

make markedly affects the performance of the program. When SIN is solving 

one of SAINT's difficult problems the most noticeable difference between 

its performance and SAINT's is not in the increased efficiency of the 
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* solution, but in how quickly SIN usually manages to decide which plan 

to follow and the straightforward manner with which it obtains the 

solution thereafter. 

As we shall see in Chapter 4 SIN's methods are quite similar to 

those used by SAINT. However SAINT does not commit itself to a parti-

cular method, but will frequently explore several paths to a solution 

until it finds some path which succeeds in obtaining the answer. Heur-

istic search is used to find this solution path. Frequently such un-

certainty is necessary in SAINT because it lacks the powerful machinery 

that SIN possesses and relies on (e.g., the rational function package 

of MATHLAB). Thus SAINT is forced to search until it finds a path 

which leads to subproblems that it can solve. For example, in Jcot4x ch 

SAINT cannot obtain a solution by using the substitution y • tan x whicl 

leads to Jya(l ~ y2) dy since it IMl.nnot integrate the rational func.tiai. 

Thus SAINT is forced to contain a further substitution y • cot x which 

SIN can easily afford to ignore. In other cases the large number of 
J 

subproblems proposed by SAINT arises when SAINT employs methods which 

do not perform a sufficient analysis or possess sufficiently tight 

rx2 + x 
progress constraints. For example in J' Ix dx, SAINT will consider 

transforming the quadratic in the numerator, though this transformation 

is not reasonable when one considers the square-root in the denominator 

In this problem SIN would note the square-root and would make a substi-

* Though SIN solves SAINT's problems about two orders of magnitude 
faster than SAINT's published figures, this statistic is deceptive. If 
SAINT were to be run under optimum conditions, SIN would only be about 
three times as fast on the average. The principal reason for this fact 
is that most of the processing time in SIN is spent in algebraic mani­
pulation (e.g., simplification), and the cost for these operations is 
fairly constant in SIN and SAINT (see Appendix C). 
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tution which would rationalize the denominator. 

We feel that SAINr is not the only HS program· in which greater 

analysis would yield improved results. In the MATER program of Simon 

and Baylor [ 2 ], heuristic search is used to find a mating combination 

in chess. When MATER considers the set of replies that Black might be 

able to make in response to a given move of White, it stores these re­

plies in a "try list." The try list is ·ordered so that moves which have 

fewest responses are considered first. The set of moves which have the 

same number of replies are normally considered in a first-in, first-out 

manner ([ 2 ], p. 435). This leads to a breadth-first search. Had 

the moves been stored in a last-in, first-out manner a depth-first 

search would have resulted. This search would mean that the prograi'.ll 

would explore a path until it became worse than some other path in con­

trast to MATER's criterion that a path is abandoned When it is no better 

than some other path. This slight change in the strategy of the program 

would lead MATBR to find solutions to some problems on which it ran out 

of space, and would not materially affect its performance otherwise. 

This analysis of MATER is due. to Henneman [ 26 ]. 

While we do not wish to suggest that a radically improved perfor­

mance can be had in all HS programs through greater analysis, we cer­

tainly want to emphasize the effect that such analysis can have on many 

HS programs. Since any nontrivial analysis requires a good deal of 

context dependent information, we also wish to emphasize the need for 

such information in problem solving programs. In .the long run, of 

course, complex analyses and strategies will have to be represented in 
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specialized languages. We would like to see this development occur in 

the Greenblatt program, for example. 

The Three Stages of SIN 

SIN is a three stage program. In this respect already the organi-

zation of SIN differs from most AI programs which are composed of a 

single stage with a heuristic search as its principal organization. 

The multiplicity of stages allows the programs to devote increasing effort 

in later stages. 

Stage 1 of SIN uses a method (Derivative-divides) which solves most 

coDDD.only occurring problems. The experiment in Appendix C indicates that 

this method solves half the problems attempted by SAINT. Some problems 

x2 2 
integrated by this method are: cos x, xe , tan x sec x, x It + x~. 

We feel that all too few AI programs employ the fact that in many 

problem domains there exist methods which solve a large number of prublems 

quickly. SAINT did employ this idea in its IMSLN (IMmediate SoLutioN) 

routine (see Chapter 4). However IMSLN is not as powerful as SIN's first 

stage. Evans' ANALOGY program (17) which is one of the few AI pro-

grams which does not rely on heuristic search also could have profited 

from a first stage method •. Evans' program deals with geometry analogies. 

Instructions given to humans taking a test based on these analogies are 

as follows: "Find the rule by which figure A has been changed to make 

figure B. 4pply the rule to Figure C. Select the resulting figure from 

figures 1-5." Evans' program performs ·as if it were following the in-

structions: "Find the rule by which figure A has been changed to make 

figure B. Also find rules which transfonn figure C to each of the fig-

ures 1-5. Select the answer figure which corresponds to a t~ansformation 
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which most closely fits a transformation from A to B.", The test makers 

are essentially suggesting that one should guess the answer figure. ~his 

scheme, we have found, is effective in almost all the problems attempted 

by~. Consider the figures A, B. C below: 

0 
A B c 

A reasonable guess of the answer using the test makers' advice is: 

0 
TRIAL ANSWER 

If such a figure is present among the answer figures then one should 

choose that answer. All that would be required for this step is that 

one test the guess for an identity with the answer figures. If this 

scheme should fail to find an answer, then one would enter a second 

stage in the program in which one would "debug" the previous guess or 

employ an analysis similar to Evans'. Yet once one is forced to enter 

a second stage, one has a piece of information that one did not previ­

ously possess--that the problem is relatively difficult. Such infor­

mation may be used to guide further processing. A further use of guessing 

will be indicated below in discussing the Edge heuristic. 

The second stage of SIN is the stage in which we spent most of the 

prograaning effort. In this stage tbe program is able to apply eleven 

highly specific methods. The principle feature of this stage is that 
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the program decides which method, if any, is applicable to a problem 

quite quickly. We shall call the manner by which this stage of SIN 

operates hypothesis fopgation. The routine at the heart of the hypo-

thesis formation mechanism in SIN is called FORM. FORM checks for 

local clues in the integrand in order to generate an hypothesis regar-

ding which method is likely to be applicable. Currently FORM can 

decide on the applicability of all but three of the eleven methods by 

using local clues. For example, if-FORM notes the subexpression sin(x), 

then FORM will call the method which handles trigonometric functions. 

The first step that any of the methods in this stage is supposed to 

make is to verify the hypothesis that it is able to perform a transfor-

mation which will either solve the problem or simplify it. Thus if the 

routine which handles trigonometric functions does not believe that it 

is applicable to the problem, as in Jain x exdx, then it will return 

the value FALSE to FORM. In that case FORM might entertain a second 

hypothesis. Otherwise the method will continue to work on the problem. 

More generally we think of hypothesis formation as a three step 

process. First one analyzes the problem in order to obtain an hypothesis 

regarding the solution m.ethod. Then the hypothesis is verified by the 

method prior to attempting a solution of any subproblems. Finally, if 

the method.appears applicable then it is used in an attempt to solve 

the problem. If the method does not appear applicable, a new hypothesis 

may be generated. 

We think of hypothesis formation as a model for a planning mechanism. 

As with any pl4Qiling device one should ·strive to incorporate into the 

planner a great deal of knowledge regarding the capabilities of the rest 
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of the program. One aspect of the understanding that FORM has of SIN's 

routines is incorporated in its ability to "make the problem fit the 

method." By this phrase we mean that FORM is able to elimina.te certain 

ambiguities in the problem. These ambiguities arise when certain subex-

pressions in the statement of the problem hinder the recognition of the 

true nature of the problem. For example, the analysis that FORM makes 

of a problem allows it to suspect that an expression is a q\Uldratic in 

x even though SCHATCHEN (see Chapter 3) did not match the expression to 

a quadratic. This occurs.when FORM is examining a square-root of a 

rational function. Let us suppose that none of the methods that FORM 

has available in this case decide that they are applicable. FORM will 

now attempt a further analysis because such a subexpression usually 

represents a block to· a solution. FORM considers two excuses for the 

fact that the methods did not seem to be applicable. Both relate to 

SCHATCHEN's matching capabilities. The first is that the rational func-

tion inside the s,uare-root was not expanded (e.g., x(l + x)); the second 

1 that the rational function was not completely rationalized (e.g., x +-). x 

FORM will therefore determine if theYe two transformations are applicable 

to the rational function. If they are, it will reanalyze the problem to 

determine if its methods are applicable. Thus FORM's analysis enables 

it to localize the difficulties in a problem, and its understanding of 

the rest of SIN allows i~ to find excuses for certain events and helps 

it to overcome the difficulties in a problem. In some of t~e cases just 

considered SAINT would have performed the same transformation (only expan-

sion, though). Yet these transformations would be applied to the whole 

integrand and not to selected portions of it. 
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The third stage of SIN is the place that we reserved for general 

methods of integration. Such methods either search a great deal or 

involve much analysis and machinery. Hence we feel that they should 

be considered as a last resort. The experiment described in Appendix C 

indicates that only two problems required a method in this stage. The 

most interesting method of stage 3 is Edge which is based on the Edge 

heuristic and is discussed in Chapter 5. Edge is a novel integration 

method since it guesses the general form of the integral. Once a guess 

has been made, a "differencing" technique similar to GPS's [ 43 ] is 

applied to obtain the answer. As will be seen in Chapter 5 the guess 

is closely related to the antiderivative of a selected subexpression in 

the integrand. 



CHAPTER 3 

SCHATCHEN - A MATCHING PROGRAM FDR ALGEBRAIC 

EXPRESSIONS 

Introduction 

Our aim in this chapter is to develop a set of requirements 

for a language in which one can describe concisely and precisely 

algorithms for the manipulation of algebraic expressions. Several 

attempts at such languages have been made in the past. We would 

like to distinguish among these attempts two distinct approaches to 

an algebraic manipulation language. One could be called the 

command-oriented language. An example of a command would be "Let 

w be the name of the expression which results from substituting the 

expression named x for that named yin expression named z." It is 

customary to abbreviate this to something like "w = subst(x, y, z)." 

The second approach can be called the pattern-directed (or 

production) approach. An example of a statement in such a language 

would be "x+x _, 2*x," which means that if the expression currently 

being examined matches (i.e., is of the form) x+x, then it is re­

placed by the expression 2*x. Such statements will be henceforth 

called rules. A rule is composed of two parts, a pattern-match part 

(antecedent) and a replacement part (consequent). 

22 
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A command-oriented language is desirable for man-machine 

interaction because the human is able to perform the desired pattern 

recognition by himself most of the time (see Martin [37), Engel-

man [15)). It is also useful in those situations in which the 

algorithms being coded are straight-forward, that is, nothing 

unusual is likely to happen. An example of such a situation is a 

program which solves a system of linear equations with variable 

coefficients (see ALPAK [ 6 ] ) . 

When the algorithms being coded become increasingly complex, 

the pattern recognition requirements of the algebraic manipulation 

language are increased. To meet these requirements, highly command­

oriented languages, such as FORMAC [5 ], include some pattern recog­

nition facilities (e.g., the PART command). However, these facilities 

are woefully inadequate for many purposes (e.g., simplification, in­

tegration) and the need for a pattern-directed subset of an al­

gebraic manipulation language has become clearly established. 

In this chapter we shall be concerned solely with the pattern­

directed approach. At first, we shall rely principally on the 

reader's intuition and understanding of algebraic expressions. Our 

discussion will become more and more precise as we proceed. 

we shall first examine the requirements of the pattern-

match. The requirements of the replacement part, which are simpler, 

are examined later. An application to simplification of the SCHATCHEN 

program which fulfills these requirements will then be discussed. The 
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chapter ends with an essay on simplification. 

Below "PLUS", "TIMES" will designate the usual arithmetic 

operations of addition and multiplication. The former will also be 

designated by 11+", and the latter by concatenation. "BXPT" will 

represent exponentiation. 

The Pattern-Match 

Let us consider the intuitive pattern for a quadratic in x --

namely, pattern Pl: 

{Pl) Ax2 + Bx + C 

All would grant that the expression Bl satisfies the pattern 

Pl with the values for 

{Bl) 2 
3x + 2x + 5 

A, B, C, being 3, 2, 5, respectively. Such an expression also 

appears to offer no difficulties to a matching program since there 

is a 1 - 1 correspondence between the elements in the expression and 

the elements in the pattern. Thus, a straight-forward left-to-right 

scan should yield the corresponding values for A, B, C and result in 

a match. Consider, however, the expression B2. B2 is also a 

quadratic in x. Yet it fails to have one of the properties that Bl 

enjoyed. A left-to-right scan of B2 will yield the 

(E2) 3x2 + 2x 

value 3 for A and 2 for B. However, we will have difficulty in 





~----------------- --------·------~---------~----------

26 

Let us consider how the match might determine that Bx-0 

implies that B-0. In Pl we implicitly introduced the convention that 

constants such as x are represented by lower case Roman letters and 

variables such as A, B, C, are represented by upper case Roman letters. 

Constants must match themselves. The values of variables are deter-

mined by the pattern-match and depend on the expression. Furthermore, 

our knowledge of multiplication indicates that if a product in-

volves a 0 factor, then its value is O. (We shalk ignore cases with 

infinite factors.) Thus, if a product is matched with 0, it is re-

guired for a factor to match O. If Bx is matched with 0, then since 

x must match itself, B must match O, otherwise the match fails. A 

complementary requirement we shall impose is that if a product is 

matched with 1, then each factor must match 1. This requirement is 

redundant since it follows from our requirement for missing arguments 

in a product. 

In the above we have built into the match an understanding of 

the arithmetic laws involving 0 and l in sums and products. Note 

though that the match assumes that the expression has been simplified 

to some extent. Thus, the pattern Ax2 will not match the expression 

4 (1/2) 2 x since the constant expression x is assumed to match only 

itself. 

However, information about 0-1 laws are insufficient as can be 

seen when we consider expression ES: 

(ES) x 
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In some cases such an expression could pass for a quadratic. In 

other cases (for example, in applying the quadratic formula) such 

an expression is not admissible as a quadratic. Note that the 

match as described above will result in the value 0 for A, 1 for B, 

and 0 for C for expression E5. We need to be able to describe to 

the match that the value 0 for A is proscribed. In fact, we would 

like a more general facility allowing one to delimit the range of 

values that the variables in the match may have. We shall require 

that the variable must be allowed to satisfy a predicate. We 

shall indicate such a facility with a slash (/) as in pattern P2. 

In P2 we require A to satisfy the predicate NONZERO.: 

(P2) A /NONZERO x
2 + Bx + C 

In examining expression E6 we see that we will need more 

predicates to limit the values of A, B, C, since E6 is certainly 

not a quadratic in x: 

(E~) 
2 

x + sin (x) x + 1 

Let us consider pattern P3 which takes care of the difficulty 

in E6. 

2 
(P3) A /NONZERO-AND-NUMBER x +B /NUMBER x-k: /NUMBEi. 

Pattern P3, however, may be a too restrictive condition. It requires 
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that A, B, C, be numbers. 

For example, P3 will reject expressions E7 and !8 

(E7) 2 
x + :rcx 

(ES) 2 
x + x + y 

slnce 1t does not appear like a number and since y is certainly 

·not a number. If we wish to accept both E7 and ES, pattern P4 

might be suitable: 

(P4) A/NONZERO-AND-FR.BBOFX x
2

+B/FRBBOFX x+c/FRBEOFX 

We shall assume that the predicate FREBOFX determines whether 

an expression contains an occurrence of x and has the value T (true) 

if it does not contain such an occurrence. 

We thus can see that the predicate facility is both a blessing 

and a headache since it forces one to consider quite carefully what 

it is that he desires to be matched. 

Further complications ar'ise when we consider the expression E9. 

We recognize E9 to be a quadratic. 

(19) 2 
x+x 

However, in doing so we made use of the fact that addition was a 

conmutative operation. This leads us to require that the match must 

take into account the commutativity of addition and multiplication. 

(Non-commutative addition and multiplication could be represented 

with different operators than PLUS and TIMBS.) As it turns out this 
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requirement increases the cost of the match greatly. It is now 

insufficient to perform a single left-to-right scan of the expression. 

We may be forced to traverse the expression several times. We shall 

assume, however, that the pattern is to be scanned once from left-to-

right. This will allow us to use the values of previously bound 

variables. For example, a pattern for determining whether an ex-

pression is a perfect square might be written as P5 

(PS) 2 
A /NONZERD-AND-FREEOFX x +B /FREEOFX x+c /FREEOFX -

2 
AND - (B -4AC • 0) 

since by the time we encounter C, the values for A and B should 

already be known or else the match has already failed. 

The predicate facility is one way in which the pattern can be 

used to direct the match. Below we shall give descriptions of 

other facilities and examples- in which they might be used. These 

facilitie~ are made available by the use of modes for the variables 

in the match. The desirability of the first of these modes is indi-

cated in expression ElO. 

(ElO) 2 
3x y + 2x + 1 

The difficulty in matching expression ElO is due to the 

2 
occurrence of more than one factor (other than x ) in the terms in-

2 volving x We would really be interested in having the variables A 

2 
and B act as coefficients of x and x, respectively. This means that 
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2 
in the term involving x , the product of all the other factors is a 

candidate for A. To show this we shall use the indicator COEFFr 

(coefficient in TIMBS) as a modifier for A as is shown in P6: 

(P6) A /COEFFr ,NONZERO-AND-FREEOFX x
2

+B /COEFFr, FRBEOFX x 

iC/COBFFP,FRBIOFX 

In P6 we used the indicator COEFFP (coefficient in PLUS) to modify C. 

This means that C will match the sum of the remaining terms in the 

expressions. The result of matching P6 with ElO is: A=Jy, B•2, C=l. 

In expression Ell we see another phenomenon which will necessi-

tate the addition of a new mode. In Ell 

(Ell) 2 - 2 2x + J2x + 3 

2 
there occur two terms involving x • If we assume that each term in 

the pattern should match exactly one term in the expression, then 

the single term Ax2 in the pattern will fail to account for the two 

terms in ElO. We need a facility for specifying to the match that 

a particular yariable in the pattern is to be considered a co-

efficient in both a product and a sum. This is done in pattern P7 

by using the indicator COEFFPT (coefficient in PLUS and TIMES) to 

modify A and B. 

(tl) A /COEFFPT ,NONZERO-AND-FRBBOFX x
2

+B /COEFFPT, FRBEOFX x-+C /COEFFP, FREF.OFX 

With the machinery we have developed we can now match pattern P7 with 
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the expression El2: 

~U) 
3 2 2 

y + 3nx y + 6x + Sy + 1 

3 The result of this match should be A=3ny + 6, B=O, C=y +Sy +l. 

In the above examples we were attempting to determine whether 

the expression was a quadratic in x. Suppose we wanted to generalize 

the problem in order to determine whether the expression was a 

quadratic in some atom, but where the atom was not fixed, but may 

itself change. More precisely, we desire a function ~UADRATIC of 

two arguments EXP and ARG. This function is expected to determine 

whether EXP was a quadratic in ARG. PB can be used as a pattern in 

QUADRATIC. 

(P8) A/COEFFPT,NONZERO-AND-FREEOFARG (VAR/EQUALARG)
2 

+ 

B/COEFFPT,FREEOFARG (VAR/EQUALARG) + 

C/COEFFP,FREEOFARG 

In P8 we introduced the predicate FREEOFARG which has the 

obvious related function to FREEOFX in pattern P7. The predicate 

E~UALARG tests the value that the match assigned to VAR for equality 

to ARG. 

Let us now conaider the problem of extracting a perfect square 

from a sum. More precisely let us consider the situation in which a 

2 
sum has three terms which are individually of the form A*VAR , B*VAR 

2 
and C, and whose relation is defined by B -4AC=0. This differs from 
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the situation described in pattern rs in that the expression may 

now have more than three terms and in that the value of VAR is 

originally unknown and depends on the expression being matched. Our 

first attempt is to describe this situation with P9: 

(P9) A /NONZBBO-ARD-llUMBIR. VAB.2+8 /NUHBBI. VAR.iC /lnJMBIR-AID- (B2 -liAC-0) 

-ff> /COIPFP 

It turns out that pattern P9 does not satisfy our requirements 

because there is some ambiguity regarding VAR. In predicate PS, 

VAR was determined uniquely by the predicate IQUALHG. In the 

current situation no such a priori predicate exists. 'l'he first 

value of VAR can be essentially anythina. To indicate thia we can 

write VAR/TRIJI instead of VAR, where TIUI is a predicate which is 

true on any input. However, th~ second occurrence of VAR in the 

pattern (i.e., in B/RUMBIR VAR) is intended to be fixed. That 

occurrence of VAR must be the same as the previous value attached 

to VAR. To make this point clear, let us consider expression 113: 

(113) 
2 ' ' 

y +2x + 1 + 5z + 2y 

Th.is expression will match pattern P9 with A•l, B•2, C•l, D•5z+2y, 

and with the first value of VAR equal to y and the second equal to x. 

To avoid this situation we could write the second occurrence of VAR 

as VARl/BCIJALVAR· This is a fairly clumsy mechanism (even though a 

similar device was used in PS). What we shall do instead is to 
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define a new mode called CONV in which the first occurrence of the 

variable {e.g., VAR) will satisfy the predicate (e.g., TRUE) and 

the latter occurrences must match the expression matched during the 

first occurrence. We thus arrive at pattern PlO. (The CONV mode is 

directly related to the PAV (pattern variable) mode of CONVER'! [ 23).) 

(PlO) 

C/NUMBIR-AND-(B2-4AC-0) +D/COBFFP 

Pattern PlO will match 113 with A•l, B-2, C•l, D•2x+5z, and VAR-y. 

Let us consider PlO with expression El4: 

(El4) y + y2 + x2 + 2x + 1 

The first attempt will be to match VAR with y. 'lhis attempt will 

fail and the match will fail even though a perfect square exists if 

VAR were to match x. What is required here is a facility for direct-

ing the match to search for further possibilities. It is assumed, 

of course, that the user of such a facility is aware that it may 

cause a profound increase in the cost of a match. We shall intro-

duce such a facility with a mode which indicates a loop over the 

expression. Such a facility may be used when there exists a set of 

variables (such as A, B, C) in ·pattern PlO which are mutually inter-

2 related (e.g., B -4AC-O). This facility will direct the match to con-

tinue making trial guesses for the variables until one set is found 

which is satisfied or until all possibilities have been exhausted. 
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In programming tenns the loop facility in the problem of pattern PlO 

will ask for a 3-level loop in which all possible values for A, B, C 

(note that VAR is detennined along with A) are examined until one set 

2 
is found which satisfies B -4AC=O. The syntax for the loop facility 

is given in pattecn Pll: 

(Pl 1) A /LOOP (A, B,C) ,NONZERO-AND-NUMBER (VAR/CONV, TRUE) 
2 + 

B/NUMBER VAR+c/NUMBER-AND-(B2-4AC=O) +D/COEFFP 

Although in the above we have concentrated entirely on 

describing patterns for quadratics, our intention has been to 

describe a set of requirements for a language which can handle a 

far richer set of tasks. To indicate the power of the machinery we 

have developed, we shall give below a pattern which tests for the 

f 
. 2 2 . occurrence o sin B +cos B in a sum. Pattern Pl2 will match ex-

pression El5 and results A=5cos
2

(y) + 1, B=2x, C=2, and D=3y+2sin
2

(x). 

(Pl2) A/COEFFPT,LOOP(A,c), NONZBROsin
2 

(B/CONV,TRUE) + 

C/COEFFPT,NONZERO cos
2

(B) + D/COEFFP 

(El5) 3y + 2sin
2

(x) + 5sin2 (2x)cos 2 (y) + 2cos2 (2x) + sin2 (2x) 

The implicit relationship between A and C in pattern Pl2 

appears fairly trivial -- that is, both A and C must be nonzero. 
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However, expression El5 shows that the loop facility helps to get us 

2 out of the trap of matching B to x in the 2sin (x) term. 

We have so far neglected a discussion of the matching require-

ments of patterns which include exponentiation. We have let in-

tuition guide us through the cases where exponentiation did occur 

in the patterns above. As before a constant expression in the pattern 

of the form AB (e.g., sin2 (x)) must match itself. B 
Otherwise, if A 

is to be matched against the expression 0, we shall assume that it is 

necessary and sufficient for A to ~atch O. (The difficulty tbat 

arises if B likewise were to match 0 is ignored.) 

If AB is matched against 1, then either B must match 0 or A 

must match 1. Note that this can lead to a difficulty if both A and 

Bare variables, since only one value will be determined. If AB is 

E2 
matched against E1 , then B must match 82 and A must match Bi or 

B must match l and A must match B1 E2 

In pattern Pl3 we are testing for an. expression of the form 

n m ) sin (x) cos (x). This pattern will match the expression sin(x 

and result in the values N•l, M-0. 

(P13) 

Pattern Pl4 is included here to indicate some of the ambiguity that 

is inherent in patterns. 

(Pl4) 
. N M/INTEGER 

~A /NONZERO-AND- FREBOFX x /INTEGER + B /FRBBOFX) . 



36 

n m Pl4 corresponds to the intuitive pattern (ax +b) • When Pl4 is 

matched against (x2+1)3 it will yield A•l, B•l, N-2, M•J. When it 

6 . 
is matched against x it will yield A•l, B-0, N•l, M•6, although 

A•l, B-0, N-2, M•J serves equally well as a set of solutions. We 

used this pattern to indicate some of the limitations of the match-

ing program we have been defining. In the case of the expression 

x6 , we obtain via pattern Pl4 the implicit relation .NM•6. This 

means that we have given the program insufficient information re-

garding the choice of values for N and M in this case. The match 

cannot be expected to do very well in this instance. 

A second difficulty with pattern Pl4 which has already been 

mentioned occurs when it is matched against 1. In this case our 

requirements for the match indicate that all that shall result is 

M•O. We could have .obtained A-0, B•l if the requirements regarding 

the matching of 1 had been reversed. Neither situation is wholly 

satisfactory. However, it is hard to foresee a com.promise solution 

which will be wholly satisfactory. 

The lesson that is learned from pattern Pl4 is that it is up 

to the user to make his patterns sufficiently restrictive so as not 

to yield ambiguous situations in those cases in which they are likely 

to be applied. 

The impression that is likely to be in the minds of some 

readers is that more machinery is yet to be described. We do not in-

tend to do this. In some strong sense the design of a good algebraic 





38 

respect to x is equivalent to 0 and if the second derivative is 

different from O. Theoretical results by Richardson (see Appendix B) 

indicate that there will be problems even with such a special purpose 

match which it could not determine correctly in finite time. Special 

purpose devices probably could be designed for each pattern that 

could be written for our match. Some of these would have to be quite 

ingenious in order to be more powerful than our match. These de-

vices might be necessary in certain situations. However, they run 

counter to our desire for a language in which one can write concise 

rules. 

We shall have more to say about the pattern match when we dis-

cuss the existing algebraic manipulation languages below. 

Replacement 

Having discussed the matching part, we shall now describe the 

process by which new expressions may be generated using the results 

of the match. This process we shall call the replacement part of the 

rule. 

Let us consider the intuitive statement of rule Rl~ 

(Rl) 
2 2 B

2 
Ax + Bx + C ..... Ay + C - 4A 

A successful match of the left-hand-side of Rl should result 

in a dictionary containing the values of A, B and C. This dictirinary 
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is then used to generate the right-hand-side expressions by re-

placing the variable names by the values which were assigned to them 

during the match. If we consider the expression x
2
+2x+l, the match 

should result in A=l, B=2, C=l and the rule should yield the ex-

2 22 
pression ly +1- t;:"1. Since this expression is unsightly we shall 

require that the replacement step should simplify the expression. 

2 Thus, Rl would result in the expression y . 

the operation of completing a square.) 

Suppose we were given rule R2: 

(Note that Rl performs 

(R2) 
n n n-2 . 2 n n-4 4 

cos (nx)-icos (x)-(
2

)cos (x)sin (x)+(
4

)cos (x)sin (x) 

R2 computes the first 3 terms in the expansion of cos(nx) in terms 

of cosx and sinx. If we had matched the expression cos(4x) with 

rule Rl, we would result in an expression involving the combina­

torial terms <i> and (~). In order to have an expression amenable 

to further computation <i> and (~) should be evaluated to yield 6 

and 1, respectively. Thus, we require a facility for evaluating 

selected portions of the expression. With this facility R2 can be 

written as R3. 

(R3) 
n n (n-2) . 2 n 

cos(nx) _,cos (x)-EVAL((
2

))cos (x)sin (x)+EVAL((
4

)) 

(n-4) 4 
cos sin (x) 
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The replacement routine will substitute for each atom which 

appears in the right-hand-side, its value in the diction4ry if there 

is such a value. If no such value exists, the atom will be replaced 

by itself, that is, it will be quoted. we will require a supple-

mentary. guoting mechaniam so that we may use right-hand..:sides in 

which names of variables appear which are not replaced. An example 

of a rule using such a facility is R4. DIFF(A,B) is assumed to 

yield the formal derivative of A with respect to B. 

(R4) 
g(y) 

f (x) 
g(y) 

~ f(x) BVAL (DIFF(g(y),(QUOTI x))) 

Although for expository purposes we used only intuitively written 

pattern matches in the rules above, it should be clear that in 

practical situations the left-hand-sides of the rules would be re-

placed by more exp licit matching forms. 
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Existing pattern-directed language• 

The requirements given above for a matching and a replacement 

program are satisfied by the SCHATCHEN* and REPLACE routines used 

in SIN. We would like to place these programs in their historical 

context. SCHATCHEN has been most influenced by ELINST (ELementary 

INSTance), a set of routines included in Slagle's SAINT for the 

purpose of matching algebraic expressions to forms. ELINST 

satisfies many of the algebraic properties of SCHATCHEN such as 

' variable arguments to PLUS and TIMES, missing operators, and 

commutative operators. It differs in that it does not give the 

user explicit control mechanisms of the scan of the expression. 

ELINST will generate .!ll possible sets of values for the 

variable and only then will it apply the side relations to 

determine those which satisfy the pattern. Besides this· weakness, 

ELINST suffers most·by being essentiallyundescribed. I suspect 

that had Slagle described ELINST in 1961, then some of the 

proposals for algebraic manipulation languages which were made 

since 1961 would have had a different character. ELINST had to 

be as general as it U because the problem that Slagle was trying 

to solve required such generality. Furthermore Slagle encountered 

grave problems in fitting his program into the memory (32K) of the 

7094 and thus chose to make use of the economy of calls to ELINST 

in many situations in which it would otherwise have been wiser to 

write special purpose matches. Thus he claimed that one half of 

the time that was spent usefully by SAINT (i~e., excluding 

*match-maker in Yiddish 
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garbage collections) was spent in pattern recognition. 

The features of the algebra-oriented.pattern-directed 

languages that were introduced in the past six years (e.g., 

AMBIT [1.Cj, FORMULA ALGOL fta], Fenichel 's FAMOUS [19) PANON-

IB [S]>* appear to have a great deal in common. PLUS and TDIES are 

restricted to at most two arguments. Operators that appear in 

the pattern must explicitly appear in the expression. Sometimes 

also PLUS and TIMES are not recognized as coD1DUtative operators. 

All these restrictions mean thac the patterns are highly. specific 

and that several rules are necessary in order to accomplish a task 

that can intuitively be stated in a single rule. The advant.age that 

such matching routines have over a more general one such as SCHATCHEN 

is that each of the rules is quite readable and relatively efficient 

to execute. However the effect of a set of rules which is equivalent 

to a single SCHATCHEN· rule is probably harder to guage than the 

SCHATCHEN rule itself. The. execution time of a set of rules is also 

probably longer tnan the execution time of a single SCHATCHEN rule. 

Here is the kind of rule set that would be required in such 

languages in order to recognize a quadratic in x: 

2 2 x ax 
2 

+bx 
2 

x ax +bx 
2 +x 2 +x 

(RS) 
x ax 

2 2 
x +bx + c ax +bx +c 

2 +x+c 
2 +bx+ c x ax 

2 + c 2 + c x ax 
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*It should be noted that these languages have a greater generality 

than a discussion of their usefulness in matching algebraic 

expressions would indicate. 

In proposing the above twelve rules we are assuming that the 

language provides for commutativity in PLUS and TIMES and for the 

ability for declaring a, b, c to be FREEOFX. In systems in which 

a minus sign is recognized as a distinct operator one might require 

even more rules. Unfortunately the rule set proposed is not as 

powerful as Pattern P7 because each term in the pattern will be 

matched with exactly one term in the expression. It appears that 

one could overcome this restriction only by a recursive or iterative 

application of the rules. In fact, the FAMOUS system relies on the 

fact that the rule set is applied repeatedly to a given expression 

although in FAMOUS' case the reason for this reliance has a deeper 

philosophical significance owing to Fenichel's strong affirmation 

of the concept of local transformation embodied in "1-theory. 

In our previous discussion we have emphasized the desirability 

of the implicit arithmetic operators PLUS, TIMES and EXPT in the 

pattern. There are, however, instances where the operator must 

explicitly be present. In the rule below which is used for 

rationalizing sums in a recent thesis by lturriaga [281 

(RS) AXC+B 
c 

the "+" operator must be present as well as the 11
/

11 operator. It 

is possible to simulate the requirement that these operators must 
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be present by requiring that A cannot be 0 and that C cannot match 

1. However such a situation is clumsy at best, and a facility for 

explicit operators should be proyided. With such a facility for 

explicit operators (present in the early versions of SCHATCHEN, 

but dropped because of lack of use), a user of the algebraic mani­

pulation system will be capable of prograuming in a wide variety 

of styles. These will range from the fairly rigid and inflexible 

rules of the rule set RS to the type of rule exemplified by pattern 

Pll. 

We shall also mention a slight controversy regarding the number 

of arithmetic operators which should be present in the internal 

structure of an algebraic manipulation system. Some people appear 

to believe that a large number of operators including unary minus, 

quotient, and difference is a good idea. Experience has shown, 

however, that such systems, expecially when combined with an 

inflexible pattern-match, require an increase in the user's awareness* 

which tends to downgrade his problem solving ability. The less a 

user must be concerned with what is actually happening, the more 

likely be is to solve hard problems. Of course, if the details 

which are hidden in the system involve exponential growth or the 

like, biding such details can be disastrous. This is not, however, 

*"Awareness" is a term used by Weizenbaum to indicate the degree 

of attention to detail which a user is required to maintain in 

a given situation. 
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the situation when arithmetic operators are translated internally 

into only three - PLUS, TIMES, and EXPT. At the input-output level, 

just the opposite effect takes place. Here we wish to let the user 

of the algebraic manipulation system have the flexibility with 

which he feels comfortable. The recent trend in input-output 

of algebraic expressions has been to have this flexibility 

( Ma . [37]) see rt in . 
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Implementation of SCHATCHEN 

SCHATCHEN is currently implemented as a set of LISP programs. 

Several people have suggested that one should embed it in a more 

general language. CONVERT [23] seems to be the regnant choice for 

such a language. CONVERT is a general pattern directed language with 

much machinery for the transformation of list structures. In fact, 

two modes in CONVERT which were introduced in the past year (i.e., 

BUV - bucket variable - and UNO - unordered search) were introduced 

by Guzman and Mcintosh, the designers of CONVERT, with the intention 

of such embedding. Interestingly enough, the BUV mode is sufficiently 

general that it has replaced other CONVERT modes. The advantage of 

such an embedding is that it would allow the user to employ other 

facilities of CONVERT. These facilities are quite impressive. The 

major disadvantages are due to inefficiencies in a straight-forward 

implementation. In order to discuss these inefficiencies we will have 

to describe the manner in which SCHATCHEN performs a scan. 

Suppose we have a pattern of form I, 

(I) Pl + PZ + P3 

and an expression of form II. 

(II) El + EZ + E3 + E4 

The scan proceeds by attempting to match Pl with El. If that fails 

an attempt will be made with Pl and EZ, then Pl with E3. If Pl 
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matches E3, then E3 will be deleted from II, and the scan proceeds 

by matching P2 + P3 with El + E2 + E4. This deletion is done by 

using the RPLACD subroutine of LISP. In general this is an unsafe 

method. It means that any prior references to t1r will refer to the 

expression with E3 deleted, which can be disastrous. However, great 

care is used inside SCHATCHBN to maintain pointers to the excised 

expression and to restore it to its original shape once the match 

has been performed. Furthermore, all the pointers that a pattern 

can have to intermediate results are carefully copied. The alter­

native to the deletion approach is to completely reproduce expression 

II without BJ. The alternative is quite costly especi~lly when the 

number of failures in identification is taken into account. Suppose 

patterns Pl and P2 are related via a loop, then Pl may have to be 

rematched after an original successful match. More likely is the 

case that Pl is matched with E3, but P2 finds no match at all and 

thus the match fails. The method of reproducing an expression en­

tirely following a match of a subpattern with a subexpression is 

thus seen to be quite expensive. A normal string transformation 

language or even a list transformation language such as CONVERT 

(except for the ~ mode) does not face this difficulty because the 

scan along both the expression and the pattern is left-to-right. Thus, 

if Pl matches BJ, P2 can only match subexpressions to the right of BJ, 

(i.e., E4). When one introduces commutativity into the picture, the 

situation becomes more complicated. Thus, in our example, after Pl 
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matches E3, we must start P2 with 11, P2 with E2, P2 with B4. It 

is the commutativity requirement which necessitates the rescan of 

the express ion. 

An alternative to the SCHATCHBN scan is to scan left-to-right 

along the pattern with each subexpression. Thus, if 11 does not 

match Pl, then a match is attempted between Bl and P2. With this 

scan one is forced to keep intermediate results and perform complex 

processing at the end of the scan in order to determine whether the 

variables of the match satisfy their predicates and are properly 

related. This alternative was rejected as being too unwieldy. 

Another aspect of the implementation of SCHATCHIH turns out 

to have important semantic properties. Intermediate results in 

SCHATCHEN are stored in a special list called ANS. On this list we 

·also find the excision information mentioned above as well as markers 

used to indicate levels of scope of variable bindings. A successful 

technique in using SCHATCHBN ·is to use predicates which :are them­

selves calls to SCHATCHBN and which introduce new variable bindings 

to the ABS list. Thus, a variable A may be required to be of the 

form BC, where B and C must match certain patterns. By calling 

SCHATCHEN directly as the predica·te for A, then the values of B and 

C would be lost. HoWever, if one calls a routine exactly one level 

below SCHATCHBN (namely Ml), then one can preserve the values of B 

and C in the final result as well as obtain the full power of SCHATCHBN 
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The fact that ANS is available for all to use during the match can be 

dangerous since the predicates could accidentally destroy a great 

deal of information. Nonetheless the advantage of such an implemen­

tation device far overrides this difficulty. The ANS mechanism 

represents another difference between CONVERT and SCHATCHEN. CONVERT 

does not allow direct access to its dictionary. Many of the modes in 

CONVERT, however, perform some change to this dictionary. In 

this regard it should be noted that FLIP [62], another pattern­

directed language which is similar to CONVERT in emphasizing the 

transformation of lists, concentrates on the control o·f the scan by 

the user. FLIP, however, lacks much of the recursive machinery of 

CONVERT and thus appears to be less likely a candidate for a language 

in which to embed SCHATCHEN. 

A Partial Description of SCHATCHEN 

SCHATCHEN has two arguments, an expression and a pattern. 

These will be denoted e and p, respectively. Variables in the 

pattern are written in the form (VAR name pred argl .•• argn) 

where 

name • name of variable 

pred • predicate associated with the variable 

argi are arguments 2 through (n+l) of pred. 

The first argument of pred is assumed to be the expression that the 

match assigns to the variable. 



so 

If a variable has a mode, the mode is written in prefix form. 

Thus, A/COEFFPT,NUMBERx becomes (COEFFPT (VAR A NUMBER) x), and 

A /COEFFP, E~UAL 5 becomes (COEFFP (VAR A EQUAL 5)). (Th is pat tern 

tests for the equality of the variable A with 5.) 



51 

SCHATCHEN ( e p ) 

If e equals p, the match succeeds. 

If p is of the form (VAR name pred argl, .•. , argn), 

then pred (e argl arg2, ..• , argn) is evaluated. 

(Note that argl, .•• , argn are replaced using ANS, 

SCHATCHEN's internal push down list. If they contain 

names of variables on ANS the most recent corresponding 

values are used. Otherwise, EVAL (the LISP interpreter) 

will obtain the value of the variables). If the value of 

peed is TRUE, the match succeeds and ((name • e)) is 

appended to ANS. Otherwise the match fails. 

If p is of the form (op p 1 ... pn) and op is not PLUS, 

TIMES or EXPT, then e must be of the form (op' el ..• en) 

and each pi must match ei and op must match op'. Other­

wise the match fails. 

If ~he pattern is of the form (BXPT pl p2), then 1) e is 

(EXPT el e2) and pl matches el and p2 matches e2 

or 2) e is 0 and pl matches 0 

or 3) e is 1 and a) p2 matches 0 or b) pl matches 1 

or 4) p2 matches 1 and pl matches e 

Otherwise the match fails. 
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If the pattern is of the form (op pl p2, ••• pn) and 

op •PLUS or TIMES, then if e is not of the form 

(op e 1, ... ' em), e is transfo.rmed to (op e). In this 

case an attempt is made to match each pi with some ej. The 

scan starts with pl matched with el. If that fails pl is 

matched with e2. If pi matches some ej, ej .is deleted 

(using RPI.A.CD) from e and the scan continues with pi+l 

matched with th~ first subexpression remaining in e. If 

for some pi no ej can be found to match it, then pi is 

matched with 0 if op • PLUS of l if op • TIMES.. If that 

also fails, the match fails. If all the pi have been 

matched, but some ej have not, the match likewise fails. 

Exceptions. to the treatment above are due to modes. If op •PLUS, 

and pi is of the form (COEFFPT (VAR name pred argl, ..• , arg~) pl, ..• , 

pk), then the remaining expression is traversed with the pattern 

(COEFFT (VAR name pred argl, ..• , argn)pl, ... ' pk). Each sub-

expression that is thus matched is deleted from the expression. The 

simplified sum of the results of the scan becomes the value of the 

variable and is appended to ANS. If no subexpression could thus be 

matched, then pred(O, argl, 

the match fails. 

. . . , argn) is attempted • If this too fails, 

If op= PLUS and pn is of the form (COEFFP (VAR name pred argl, ••. ,argn)) 

then if e is currently of the form (PLUS ei, ..• , en), then pred 

(e argl, ... , argn) is evaluated. If the value of pred is true 



((name. e)) is appended to ANS. If no subexpressions remain in e 

then pred (0 argl, ... , argn) is attempted. If it succeeds, 

((name. 0)) is appended to ANS. Else the match fails. 

If op = PLUS and pi is of the form 

(COEFFT (VAR name pred argl, ... , argn)pl, ... , pk), then 

(TIMES pl, ... , pk) is matched with e. If the match succeeds and 

e remains of the form (TIMES el, ... , en) then pred (e arg~ ... ,argn) 

is attempted. If it fails, the match fails. If no subexpressions 

remained in e, then pred(l argl, ... , argn) is attempted. If this 

succeeds ((name. 1) is appended to ANS. Else the match fails. 

All other matches fail. 
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An Application of SCHATCHEN 

SCHVUOS - SCHATCHEN 'S Y£RS ION OF AN !!_NASSUMING 

Q.PERATIONAL §.IMPLIFIER 

Owing to space considerations of the 7094, SIN required a 

small but powerful simplification program. Such a program, 

called SCHVUOS, was written and it gained both its power and small 

size by capitalizing on SCHATCHEN's matching capability. SAINT's 

simplifier was a LAP (the machine-language assembler for LISP) 

coded subroutine written as a Master's thesis by Goldberg in 

1959 [21]. 

SCHVUOS does not assume a standard (canonical) form of an 

expression. This means that it will be slow when the expressions 

to be simplified are large. In integration, however, it is rare to 

encounter large expressions. The speed gained by a canonical order 

can be seen in the following example. Suppose, two simplified 

expressions are to be added. If the expressions are to be canon­

ically ordered, then the addition process is basically a merge of 

the expressions witl1 a simplification occuring if two terms are 

identical except for a constant factor. If, however, the express-

ions are not ordered then we generally require a two stage process. 

Given a term in the second expression we must determine if there 

exists a term in the first expression which is identical to it ex-

cept for a constant factor. This may require a complete traversal 

along the first expression. If the number of terms in each of the 

two expressions is n, this process takes on the order of n
2 

term-to-



55 

te·rm matching steps. The canonical order scheme requires only on 

the order of n steps. However, some time must be spent in deter-

mining the canonical description and keeping its value around. 

Furthermore, the routines that generate the canonical order are 

usually very space consuming. Thus, the use of a canonical order 

is only worthwhile if the expressions are to be heavily manipu-

lated. 

As has been implied in the above, much of the program effort 

and execution time in a standard simplification program is spent 

in collecting terms in sums. Related effort is spent in collecting 

exponents in products. In SCHVUOS the collection of terms in a 

sum is handled by calling SCHATCHEN and asking it to determine the 

coefficient of the first term in the sum. 

Suppose we had the expression El8, 

(El8) 
2 2 

2x + 3x y + z + x + yx 

then SCHVUOS will strip the first term of the sum of its coefficient 

and generate the pattern Pl5: 

{Pl5) A/COEFFPT,NUMBERx + B/COEFFP 

SCHATCHEN will yield A=3, B=3x2y+z+yx2 Next the pattern Pl6 is 

generated on the expression B. Now SCHATCHEN will result in A-4, 

B•z. 

(Pl6) 
2 

A/COEFFPT,NUMBERx y + B/COEFFP 
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Note that x
2

y and yx
2 

are recognized as equivalent. Thus, the 

simplified sum is El9 

(El9) 
2 

3x + 4x y + z 

The operation of collecting exponents in a product is handled 

similarly. 

The basic simplification program requires only about two pages 

of LISP code in contrast to a typical LISP simplification program 

(such as Korsvo ld 's [ 33 ] ) which requires about 20 pages of LISP 

code and has the same power, for our purposes, as does SCHVUOS. 

SCHVUOS contains some unusual simplification rules because of 

the integration environment in which it operates. Thus, arcsin(sin x) 

simplifies to x and sin(arccos x) becomes~. Moreover, 

2 1+2 105 y + log z becomes y ze. 
e 

hand led by a ca 11 to SCHATCHEN.) 

(This transformation is also 

The simplification of an expression is done recursively. Each 

operator (e.g., PLUS) first simplifies all its arguments. The 

exception is TIMES which results in 0 if any of its arguments is O. 

It is possible to achieve an economy if expressions which have 

been simplified in the past are not simplified redundantly. This 

has led to the AUTSIM-bit in FORMAC [63] and to a similar device in 

Martin's simplification program. In SCHVUOS one can sometimes achieve 

this effect by setting a flag which means that the arguments of the 

top level operator, PLUS, say, are already simplified although their 

sum, say, need not be simplified. This is done in the differen-

tiation program used in SIN. 
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Attitudes Toward Simplification 

There seems to be a wide range of attitudes of people in the 

field of algebraic manipulation regarding the role that an alge­

braic manipulation system should play in simplification. One view, 

let me call it the conservative view (held by Fenichel, for example 

maintains that the system should not simplify expressions until 

specifically told to do so. In this point of view there is to be n 

fixed system's simplifier and no fixed canonical order of expressio 

The conservative view negates the view of those whom we shall call 

the liberals (exemplified by the PORMAC design) who believe in a 

canonical order, in a fixed simplifier and in implicit simplifi­

cation. One might even define a third viewpoint, a radical one, in 

which the system will represent expressions internally in a form 

quite different from their external form. Rational function progra 

(ALPAK [ 6), PM[l21. and MATHLAB's rational function package 136]) 

adopt this approach. A radical system is prone to use the distri­

butive law indiscriminantly and to transform trigonometric function 

into their exponential form in order to take advantage of the power 

ful simplification algorithms which are then available. 

Two considerations should guide one in designing an approach 

to simplification within a given system. The first is the general­

ity of the system, that is the range of problems which could be 

reasonably solved by it. The second is the efficiency of the systE 

in the solution of its problem. It appears to be an axiom that thE 
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While in the above examples one can reasonably hope to trans-

form one expression into another, this is not true of the example 

below. This example is intended to show that even the most obvious 

simplification rules can be harmful in some situations. Suppose 

a user generates three terms of an infinite series. We shall 

assume that he is attempting to obtain a general term. Suppose that 

the first term is 1, the second 2x+l and the third 3x
2

+3x+l. I 

2 2 
maintain that if these terms were presented as x+l-x, x +2x+l-x , 

3 2 3 
x +3x +3x+l-x , then the result would contain more information than 

before, for it would lead to a reasonable hypothesis that the general 

term is 
n n 

(x+l) -x . Yet one of the first rules of any existing 

simplifier is x-x ~o. 

One argument that can be given against the radical approach 

. . . h b 1 f . . ( +l) 1000 is given in t e pro em o integrating x . If one expands 

this expression, as a rational function package is likely to do, 

then one will use a great deal of space and time and result in an 

unsightly expression. However, the expression can be easily inte-

grated to yield 
1 

1001 ( 1) 1001 b 1 . . . . . . 1 x+ y eaving it in its origina 

form. Recent information indicates that future ALPAK systems will 

leave expressions in their factored form in order to resolve 

difficulties created by problems such as this. 

What then is the attitude that one should adopt toward simpli-

fications? A reasonable one would be to use each of these attitudes 

where they are most useful. In cases where there is a need for a 
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great deal of rational function manipulation and relatively little 

pattern recognition one should adopt a radical attitude. When the 

problem is not easily framed as a rational function problem or 

where the computational effort is light, but where the pattern 

recognition is not crucial, then you adopt a liberal attitude. 

Finally, when a standard simplifier will lead you into difficulty 

you just must restrict its effect. 

Separating the radical attitude within a program from the 

liberal one is usually easy -- there is a separate program to 

handle rational functions. Between the liberal and conservative 

modes there are too many intermediate steps. Here what appears 

to be required is a black-box simplifier with many inputs or in­

dicators. With these inputs one could control the effect of the 

simplifier. It would be interesting to see if one could formulate 

a language in which a program (or a user) could comnunicate with 

the simplifier. For example, it could check certain indicators 

before attempting any given simplification. The cost for such 

checking could be quite minimal. 

An example of the use of such a simplifier is represented as 

follows: A common simplification rule is (ab)m~ a~m. However, 

in general this rule is inaccurate (e.g., when as-1, b--1, m-i, the 

left-hand-side yields 1, the right-hand-side, -1, assuming a atandard 

interpretation of the square root). If one suspects that this rule 

will lead to difficulty then one can leave a test condition in the 
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indicator for this rule which will weed out those cases in which 

the result is erroneous. 
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CHAPTER 4 

SIN - THE !YMBOLIC J!XEGRATOR 

Introduction 

In this chapter we describe the operation of SIN. At first SIN's 

flow of control is analyzed. Then each of the methods used is described 

in detail. Finally, the performance of SIN on two examples is shown. 

Throughout this chapter the contrast between SIN's and SAINT's approach 

and methods will be made clear. 

Flow of Control and Subproblems in SIN and SAINT 

A prQblem given to SIN may be said to pass through the three stages 

of Figure 1. 

Stage 1 

Stage 2 

No 

is 
roblem'l 

Problem can be 
transformed or 
solved by spe- ....,.._~ 
cial methods? 

No 

Stage 3 

Yes 

Yes 

Problem can be 
solved by more 
eneral methods? 

i---..._ Yes 

No 

Return notice of failure 

Return integral 

Either 

1. Apply SIN to a trans­
formed problem and 
return value of SIN 

or 

2. Solve problem using 
internal mechanisms and 
return result as value. 

Return integral 

Figure 1 - The 3 Stages of SIN 

62 
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As figure 1 indicates, the first stage solve~ simple integration 

problems. In the second stage, we determine whether one of about ten 

specialized·methods is applicable to the problem. This determination is 

made by a routine called FORM and is quite fast. If a method is found 

to be applicable the problem will be either transformed and SIN will be 

asked to integrate the transformed problem, or the problem will be inte-

grated using techniques internal to the methods. If no method is found 

which is applicable, a more general method will be called in stage 3 in 

order to solve the problem. In this chapter we shall describe a third 

stage consisting of a simple Integration-by-parts routine. In Chapter 

5 we shall describe the Edge heuristic which we expect will be the basis 

of methods used in this stage in the future. 

Since most problems are expected to be solved by stages 1 and 2, 

we shall describe the :organization of these stages here. The control 

of the methods used in stage 3 is specific to these methods and will 

be described separately. 

We note that the methods of stage 2 can call SIN to solve sub-

problems. When this occurs the flow of control and subproblems is given 

by Figure 2. 

Figure 2 - Usual Flow of 
Control and Subproblems 
in SIN 

Figure 3 - Flow of Control 
and Subproblems in SIN 
When Problem is a Sum of 
Three Terms 
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If a subproblem. is a sum, then each term in the sum will be inte-

grated separately, and the flow is given by Figure 3. 

It should be noted that if a method in stage 2 can transform a 

problem, the problem is not passed to another method in stage 2 or stage 

3 1 even though the transformed problem cannot be integrated by SIN. For 

example, 

J x J.siny x sin(e )dx is transformed to y dy after substituting y-e 

f.sin y in stage 2. .. y dy cannot be integrated by SIN. Thus, SIN concludes 

that Jsin(ex)dx is not integrable by it and will not pass it to stage 3. 

In strictly enforcing such a decision we are depending upon the 

methods to employ tight progress requirements. If the progress require­

ments are made too tight, then few problems would be integrated by the 

methods of SIN's second stage. If, however, they are made too loose, 

then the methods of stage 2 would verify the hypothesis that they are 

applicable in problems in which they, in fact, are not appropriate, and 

thus SIN would fail to solve these problems. The experiments with SIN 

which are described in Appendices C, D, and E indicate the degree to 

which we succeeded in finding good progress requirements. We wish to 

point out that once such a discipline is succe·asfully imposed on the 

methods, one is in a position to relax the requirement against backtracking, 

and thereby obtain somewhat greater power. We have not yet done so in 

SIN's second stage. 

SAINT, in contrast to SIN's stages 1 and 2, will allow a problem to 

generate more than one subproblem. However, only one of the subproblems 

generated from any given problem must be solved in order to integrate the 

given problem. In general, the subproblems generated by SAINT during the 
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course of solution will form a tree structure. Figure 4 is a simplified 

description of the flow of control and subproblems in SAIN!'. 

b heur'd-ic tron3bm:JU:ri 
applicable k> ~? 

Transfarn 

Figure 4 - Simplified flow of 
control (single arrow) and sub­
problems (double arrow) in SAINT 

If a problem in SAINT generates more than one subproblem, the node 

in the tree corresponding to it is considered to be an OR node. Thus, 

only one of the subproblems must be solved. If the problem is a sum, 

a similar complication to the one in SIN; is made. The node generated 

for ·such a probl-. is called an AND node. Bach of the terms in the 

sum becomes a subproblem, and must be integrated. ARD nodes are indi-
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cated by an arc across the branches from that node. Thus, in general, 

a goal tree in SAINX has the form of Figure 5. 

Figure 5 - A Subproblem Tree in 
SAINT when sums are present among 
the subproblems 

All subproblems in SAINT are given to IMSLN. This includes the 

original problem and this fact is not shown in Figure 4. IMSLN thus 

acts like SIN's first stage. IMSLN has its own methods of solution. 

If it fails to solve the subproblem or some simple transformation of it, 

the subproblem will be put on the subproblem tree. 

The routine LOOP (see Figure 4) has access to a list of subproblems 

to be tried called PLH. This list is ordered so that the first member 

of the list represents a subproblem which has the lowest depth of nested 

operators (e.g., PLUS, TIMES, COS) in the internal representation of the 

problem. LOOP will select the first subproblem on the list. It will 
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then ask each of the methods of SAINT called the heuristic transformations 

by Slagle to determine if they can transform the subproblem. These methods 

will be guided by information about the subproblem called the character of 

the subproblem. The character contains information such as whether the 

subproblem represents a rational function, an elementary function of ex­

ponentials or trigonemetric functions, etc. This information is used to 

limit the number of heuristic transformations applicable to a problem. Yet 

even with the use of the character mechanism as many as 11 out of the 17 

heuristic transformations may be applied to a single subproblem. 

The flow of control and information in SIN is called hierarchical. 

In a hierarchical organization, subproblems which are communicated between 

one routine and a second are private to these routines and are not known 

to the rest of the program. SAINT's organization can be called~~ 

oriented. In such an organization the· goal is to transform the data base 

(i.e., the goal tree in SAINT) to a desired state. In SAINT the desired 

state is a tree which has a path from the top node (the original problem) 

to a bottom node in which each node represents a solved problem. In a 

data base oriented organization control is relinquished to routines which 

manipulate the data base. In SAINT, all the heuristic transformations 

relinquish control to the IMSLN program. 

SAINT's data base oriented approach allows and, in fact, may be said 

to encourage the program to backtrack, that is to leave one path of the 

tree and start on another. SIN's approach is to discourage backtracks 

at the first two stages. Backtracking is allowed in stage 3. However, 

in stage 3 backtracking is only of a limited nature. 
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Conyentions 

In describing SIN we shall use the usual convention that the 

variable of integration is x. SIN is actually a function of ~wo argu-

ments. The first is the expression to be integrated and the second is 

the variable of integration. 

Below when we use the phrase "is a constant" we shall mean that 

the expression contains no occurrence of the variable of integration. 

2 2 
Thus, sin x +cos x is not a constant when x is the variable of inte-

gration. 

We shall not concern ourselves here with difficulties which may 

arise due to the unsolvability of the constant or matching problem for 

the elementary functions. For a discussion of these difficulties see 

Appendix B. 

By the elementary expression• .2.f 1! we mean the set of exprE!ssions 

composed of 

1) constants, 2) x, 3) trigonometric functi ens of x (e.g., sin(x), 

cos(x)), 4) logarithmic and arctrigonoaetric functions of x (e.g., 

log x, arcsin x), and closed under the operations of addition, multi­
e 

plication, exponentiation, and substitution. 

By an elementary expression !!l~ (abbreviated elem(f(x)), we 

mean an expression obtained in the manner above, but where f(x) replaces 

x 2ex 2x 
x in the definition. Thus, for example, (e + l)e + e is an elemen-

x x tary expression of e • The expression xe , on the other hand, is an 

elementary express_ion of x, but not of ex. 

By a problem integrable J.A finite !!.Illa we mean a problem whose 

integral is representable by an elementary expression. 
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First Stage of S!N 

The first stage of SIN uses the following three methods: 

If the integrand is a sum, each tet'll is integrated separately 

by calling SIN iteratively and the results are added. 

Method II If the integrand is of the form 

[Eui(x)]n, where n is a small positive integer, expand the 

expression and apply Method I. 

Method III If the Derivative-divides routine is applicable, return its 

results. 

The first two transformations are made so that the rest of the 

program can assume that the integrand is a product (though possibly a 

x trivial product as in x or in e ). The third method in this stage is 

the method which has led us to call this stage the stage that solves 

simple problems. 

We shall now describe these .methods in some detail. 

I) Method I is an oft used method in practice. Using this method 

one avoids the difficulty of integrating dissimilar expressions such as 

sin x +ex. Integral tables, it will be noted, shun entries which are 

sums. However, this is not a safe rule.to follow, in general. For 

J. 2 2 .2 
example, let us consider (ex + 2x ex )dx. Neither of the terms in 

this sum is completely integrable in terms of elementary functions. 
x2 

However, the sum is the derivative of xe • Hence, breaking up the terms 

in the sum and integrating them separately can disguise the integrability 

of the sum. This difficulty was known throughout the course of this re­

* search, and a heuristic for overcoming it in some cases was designed. 

* The heuristic that has been considered is of the following nature. 
Suppose we have a product of terms of the form f(x)g(x)h(x). The deri­
vative is frequently of the form f'(x)g(x)h(x)+f(x)g'(x)h(x)+f(x)g(x)h'(x). 
Thus if one finds an integrand which is a sum such that two terms in the 
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However, no extension to this method has as yet been implemented. 

Slagle considered this method to be sufficiently safe so that he 

invariably followed it also. 

Example 

J(sin x + ex)dx • Jsin x dx +Jex dx 

II) The reason for method II can be seen by considering the problem 

I x 2 (x + e ) dx. SIN has no machinery which deals with this problem in its 

J 2 x 2x present form. However, if the problem is given as (x + 2xe + e )dx, 

then the problem is easily integrated. 

Example 

I x2 J 2 x 2x (x + e ) dx = (x + 2xe + e )dx 

III) The Derivative-divides method is the heart of this stage in SIN. 

As we shall see many problems are integrated by it quite quickly. The 

inclusion of this method at this place in the program has an important 

methc;>dological basis. It is presumed that in many computer pr.oblem 

solving systems there are methods of solution which solve most commonly 

occurring problems relatively quickly. If these methods are employed 

first by a problem solving system then many problems will be dispensed 

with in short order. Thus, the problem solving system will be able to 

afford to utilize expensive machinery in its later stages. 

The Derivative-divides routine checks to see if the problem is of 

the form: 

sum are related by having two factors in each of the forms f'g and fg' • 
respectively, and with the rest of the factors identical, then one can 
guess the original product easily. 
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Jc op(u(x))u'(x)dx, 

where c is a constant, u(x) is an elementary expression in x, u'(x) is 

its derivative, and QJ?. is an elementary operator. Op may be one of the 

following operators: a) identity b) sin c) cos d) tan e) cot f) sec 

g) csc h) arsin i) artan j) arsec k) log. Three more possibilities 

for .QI! involve the exponentiation operation. These presume that the ex-

ponential function has only one nonconstant argument. Thus, we get the 

cases 1) u(x)-l m) u(x)d, d ~ 1, n) du(x), where dis a constant. The 

final case is when the integrand is a constant and then u(x) is trivial. 

In that case the integral is simply ex. 

The method of solution, once the problem has been determined to 

posses the form above, is to look up ..QE. in a table and substitute u(x) 

* for each occurrence of x in the expression given in the table. In 

other words, the method performs an implicit substitution y = u(x), and 

obtains the integral Jc op(y)dy by a table look up. 

Using this method the following examples can be integrated. 

1) Jsin x cos x dx = tsin2x, op= identity, u(x) = sin(x), u'(x) = cos(x), 

2) 

3) 

* 

c = 1 

·r 2 xe x dx 

Jw11 + x2 

1 
c = 2 

2 1 
u(x) = x , u'(x) = 2x, c = 2 

op= u(x)d, u(x) = 1 + x2 , u'(x) = 

x -1 log(l + e ), op= u(x) , u(x) 

See Appendix A for a description of integral table look-up methods. 

2x, 
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5) J 3/2dx 2 5/2 
x ""'sx ' op• u(x)d. u(x) • x, u'(x) • 1, c • 1 

A few more examples will indicate certain aspects of this method. 

6) Jcos(2x + J)dx. • tsin(2x + 3), op• cos, u(x) • 2x + 3, u'(x) • 2, 

1 c•2 
The Derivative-divides method performs an implicit linear substi-

tution in this case. SAINT would have performed an explicit linear 

substitution and would have required two calls to IMSLN to solve the 

problem. 

7) J2yze2xdx = yze2x, op• du(x), u(x) • 2x, u'(x) • 2, c • yz 

This method handles constants easily. Constants can be generated 

or can be present in the integrand. SAINT would have removed the con-

stants explicitly. 

I 2x xx l: Jx 
8) cos (e )sin(e )e dx • -jeos (e ), 

c .. -1 

d op • u(x) , 

This example demonstrates that the integral may be fairly complex 

and the method will still apply. 

One of the experiments which was made with SIN was to attempt the 

86 problems attempted by SAINT (see Appendix C). Interestingly enough' 

this method of Derivative-divides was able to solve fully 45 out of 86 

problems. The average time on the 7094 was 0.6 seconds. 

It is hoped that the above examples convincingly demonstrate the 

usefulness of this method at an early stage in an integration program. 

The method is to be recOD111ended for those who desire an integration 

capability, but who are unable or unwilling to avail themselves of a 

more general program. 

As was mentioned earlier, SAINT's IMSLN routine performs some 
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functions which are similar to SIN's first stage. DfSIB employs a 

table similar to that in the Derivative-divides routine but somewhat 

larger. It also perfonns eight transformations called algorithmic 

transformations by Slagle. These transformations are attempted one at 

a time. If one of them is successful the transformed problem is used 

and the original problem is not considered again. Two of these trans­

formations are the same as method I and II in this stage of SIN. The 

others factor a constant or a negation operator from the integral; 

employ half angle identities; make a linear substitution; and perform 

certain simplifications on the integrand. As has been pointed out 

above, IMSIB also tends to the tree of subproblems and can determine 

if the original problem has been solved. IMSIB doesn't actually solve 

many problems so much as it is able to transfonn a great number of 

problems into a form which is more easily solved by the rest :of SAINT. 

It would appear that SIN's Derivative-d1vides method solves more problems 

immediately than does DfSLN. SAINT's Derivative~divides heuristic trans­

formation, which is quite powerful, is not applied to a problem until 

much later in the course of the solution. 

The Second Stage of SIN 

If a problem fails to be solved by SIN's first stage, then it is 

determined whether one of eleven additional methods is applicable to 

it. In order to determine which method is to be applied clues are ob­

tained from the expression. We have called the technique by which these 

clues are used hypothesis formation (see Chapter 2). The routine that 

obtains these clues and conducts the formation of an hypothesis is called 

FORM. Associated with most of the methods are patterns in SCBATCBEN 
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which serve to differentiate the problems which are solvable by each 

method from those solvable by other methods. It turns out that few 

problems have more than one method applicable to them. In the cases 

where a conflict does exist (e.g., in solving problems with algebraic 

integrands) the actual method chosen appears to have little effect on 

the cost of obtaining a solution. 

In this stage of SIN, a single method (Method 6) handles problems 

which involve trigonometric expressions. When FORM sees a subexpres-

sion of an integrand which is a trigonometric function of a linear 

argument in the variable of integration, this subexpression will act 

as a clue, and FORM will call Method 6 to validate the hypothesis that 

a substitution can be made for the trigonometric funcUons. If Method 6 

decides that such a substitution is not applicable (e.g., Jsin x exdx), 

then it will return the value NIL (FALSE). In such a case, FORM might 

entertain another hypothesis but since there are none for trigonometric 

functions, FORM will also return the value NIL. If Method 6 finds that 

a transformation is applicable, it will hand SIN the transformed pro-

blem. The value of SIN, with a proper substitution to account for the 

transformation that was made will be returned as the value of Method 6 

and of FORM. 

Examples of problems integrated by this stage of SIN: 

(It is probable that none of these could be integrated by SAINT.) 

1) 
r.; A2 + B2sin2x 
J dx sin x 

2) I 2 x2 
(1 + 2x )e dx 
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3) 
I 2x A: Be4x 

dx 

4) Jx rx+! dx 

5) Jxl/2(x + 1)5/2dx 

6) J4 1 _ 
1 

dx 
x 

Below we describe each of the methods used in this stage. Each 

description contains the clue which FORM uses to determine whether the 

method might be .applicable. A more extended description of the manner 

in which FORM operates will then follow. 

Method 1) Elementary function of exponentials. 

This method is applicable whenever the integrand has the form of 
bxi+ci 

an elementary function of ai , where the ai, bi, and ci are con-

stants. 

bx+c Clue - a subexpression of form a ; a, b, c are constants. 

Examples -

Ii :x 3J.x dx becomes L 1 
dx, x 

+ 3y2 y e 

J. y <iy' 
x 

A + By4 y = e J 2x 

A : Be4x dx becomes 

J.l : y dy, 
x 

and 
x+l x y = e e = ee becomes 

J/og 
elO 

dy, x y = e I xx 
10 e dx becomes 
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bxi+ci (bix+ci)log ai 
Method - ai is transformed into a1 al in order 

to convert all bases to a conmon base a
1

. Here a
1 

is the first base 

encountered in the integrand. 

bx+c c bx a1 where c ~ 0 is converted to a1a1 • This facilitates the 

transformation to be made. 

- x ~ 
The substitution y • a1 is made. Thus, each a1 is replaced by 

b 
y and the resulting expression is divided by y log al. 

e 

~ - What is controversial about this method is that in converts all 

bases to a sinale base which in not necesaarily e. This may lead to 

the introduction of unnecessarily clUID8y constants (e.g•, log53). 

SADl:r' s method in this case was somewhat different. SAINT did 

not handle different bases, nor all cases where constants (i.e., ci) 

were present in the exp~nt. It clid, thouah, find the greatest common 

k.x divisor of the bi, k, say, and made the substitution y • a1 • In SIN 

this will be handled by algorithm 2 which will make the substitution 

k x 
z • y after y • a1 is made by the current method. The method that per-

k 
foms the substitution z • y was not present in SAINT although it was 

suggested as an extension 

M@thod 2) Substitution for an integral power. 

This method is applicable whenever the integrand is of the fom 

xc Blem(xki), where c, k
1 

are integers and where 

k • gcd({c + 1, k1 , k
2

, ••• }), k ~ 1 

Clue - Instead of obtaining a clue which determines whether this 

transformation is applicable, lOBM obtains a clue which determines 

whether this transformation is not possible. POBM will note that this 

transformation is not applicable when it sees a subexpression of the 
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a+bx . 
form e or s1n(x). If none of the other methods is applicable, and 

no such clue has been found, this transformation will be called. 

Examples -

becomes 

becomes 

k 
Method - Substitute y = x 

s~ 

Jl 
4 

sin y dy, y 2 
x 

_L_. 4 
3 dy, y x 

y + 1 

~ - This method was suggested but not implemented by Slagle 

who embedded it in a larger method which was implemented in SIN in two 

separate methods (2 and 3). 

This method is currently restricted to integer exponents. It 

should be extended to handle exponents such as 3a, 2a in 

Jx3a sin(x2a)dx 

Method 3) Substitution for a rational root of a linear fraction of x. 

This method is applicable when the integrand is of the form 

( ax+ b~ (ax+ b~ 
Elem(x, ex+ dJ-L, ex+ d; 2, ••. ) 

where then. and m. are relatively prime integers with some ]m. I f 1, 
1 1 1 

and with a, b, c, d constants and ad - be f 0. 

- A subexpression of the form 

a, b, c, d constants; n, m, relatively prime integers, lml f 1 

Examples -

f cos rx dx becomes J 2y cos y dy, y = rx 
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Jx ;;-+! dx becomes 

The above two problems were attempted and not solved by SAINT. 

1/3 dx 
x 

Jhx++l 3 dx 

becomes y=x 

becomes 

Method -

Substitute y = 

Let k =least common multiple of the mi. 

(ax+ bV/k 
1

cx + d 

1/6 

~ - The restriction ad - be ; 0 assures that the substitution 

is non-trivial. ~-If ad - be = O, then dx - 0. 

Slagle suggested methods 2 and 3 as a single method. Considering 

them as two separate methods facilitated the coding. This method is 

an extension of Slagle's suggestion since it covers linear functions. 

Even this algorithm should be split into two parts. One would 

n/m 
handl~ the case restricted to (ax + b) , the other the more general 

(ax+ b'.n/m 
case \ ) ex + d 

Much of the time only the former is needed, but the machinery for 

handling the latter, which is more expensive, is employed. 

A weakness of this routine is its inability to deal with variable 

exponents. These would usually result in the generation of a reduction 

formula as opposed to an integral. The great advantage of an integral 

table over SIN currently is the presence of the reduction formulas. 

The Edge heuristic (See Chapter 5) can generate some reduction formulas, 
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but not many at present. (Or course, an instance of a variable exponent 

should result in a solution in SIN!) 

Method 4) Binomial - Chebyschev 

This method is applicable whenever the integrand is not a rational 

function and possesses the form 

Axr(c
1 

+ c 2xq)p, where A, c
1

, c
2 

are constants, p, q, rare ratio­

nal numbers and c
1

c
2

qp 1 0. 

Clue - A subexpression which is a nonintegral power of a rational 

function. This is followed in FORM by a match of the integrand and the 

form above. 

Examples 

f x4 (1 - x2)- 512dx becomes J -1 

y4(1 + y2) dy, y 

h - x2 
x 

becomes 

6 

S 
-2y 

(y2 - 1)5 dy, y 

Method - Binomial conversion to Chebyschev form (substitute y xq). 

r + 1 
Thus A~A/q, and r

2 
~ p, r

1 
~ ~-q~ -1 

Make the first applicable transformation 

a) r
1 

integer, r
2 

> 0 

Substitute z = c
1 

+ c
2 

y 

b) r
2 

integer, r
1 

a rational number with denominator d
1 

Substitute z = yl/dl 

c) 

Substitute z = 

< 0, r
2 

rational number with denominator d
2 

l/d2 (cl + c2y) 
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an integer 
l/d 

Z m (CJ ; ClY) l 

Otherwise, return notice of failure to integrate problem. 

~ - This method was also suggested but not implement.ed by Slagle. 

It has the advantage of being a decision procedure. That is, if an inte-

grand has the form given above, then either the method yields the integral 

or the problem cannot be integrated in finite terms. This was proved by 

Chebyschev (see Ritt [ 54 ], p. 27). 

The argument used is roughly as follows: If r 1 , r
2

, or r 1 + r
2 

is an 

integer, then the substitutions above result in rational functions and thus 

can be integrated. Otherwise we know from Abel's Theorem (see Chapter 5) 

that the integral, if it is expressible in finite terms, is a sum of an 

algebraic function and logarithmic terms. The residue of a Chebyschev 

function is everywhere 0. Hence the integral cannot contain logarithmic 

terms. Further analysis shows that the assumption that the integral is 

algebraic leads to a contradiction. 

In this case also the integral tables contain many entries which 

are reduction formulas for the cases when p, q, r are parameters. Some 

such capability should be present in SIN also. 

Method 5) Arctrigonometric substitutions 

This method is applicable whenever the integral is of the form 

R(x, lx2 +bx+ a) where a, b, c are constants and R is a rational 

function of its arguments. 

Clue - A subexpression of the form 

2 n/2 (ex + bx + a) , where n is an odd integer. 
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I x4 
2 5/2 dx 

(1 - x ) 

J / A2 + B2 -
2 
B2y2 

1 - y 

becomes 

dy becomes 
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Jsin\ d 
4 z, y a arcsin x 

cos z 

2 2 2 
(A + B )cos z d 

A2 + B2 2 z, 
(1 - 2 sin-Z) 

B 

First eliminate the middle term of the quadratic by completing the 

square 

b 
y - x + ~· 

yielding the integrand in the form 

R(y - ~c, lcy
2 

+ a - :: ) 

b2 
Let A ,. a -

4
c 

c - c 

If C > 0, A > 0, substitute 

If c > o, A < O, substitute 

z • arctan [f y 

z = arcsin~ y 

If C > 0, A • 0, replace the quadratic by IC y 

If C < 0, A > 0, substitute z • arcsec J'F Y 

If A and C are both numbers, then the signs are determined trivially. 

If A or C are parameters, then the user will be asked whether they are 

positive, negative, or zero through an appropriate message at the console. 

For example if the value of A is e, a message would read 

IS e POSITIVE 

An answer of "yes" is expented if e is in fact positive. However, the 

program can frequently determine whether A or C are positive. This is 
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done by assuming that all parameters are real valued and by using the 

fact that sums of squares of real numbers are positive. Thus . 

2a2 + 3e 
4 + 5 

is determined to be positive, whereas 

-d
2 

- 2(e + f) 2 

is determined to be negative. A single SCHATCHEN rule is used in making 

this determination. 

In cases where the coefficients are parameters, it is possible to 

run the program several times and answer questions differently each time. 

SAINT had two transformations which performed the function of this 

method. One method eliminated the middle term from all quadratics, another 

made the arctrigonometric substitutions in all quadratics with missing 

middle terms. The arctrigonometric substitutions are,normally made for 

roots of quadratics as we have done and not in all quadratics as SAINT 

attempted to do. SAINT also implicitly required that the coefficients 

in the quadratic be numbers. The kind of interaction between the user 

and the program which is required when one allows nonnumerical coefficients 

became practical when time-sharing systems were introduced. 

Method 6) Elementary function of trigonometric functions. 

This method is applicable when the integrand is an elementary 

function of the trigonometric functions applied to linear argument in 

the variable of integration. 

Clue - TRIG(a +bx) where TRIG 6 {sin, cos, sec, tan, cot, cse} 
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Examples 

1) Jsin
2

x dx becomes J<t - teas 2x)dx 

2) 

3) 

J / A2 +. B2sin2x 
SJ.TI X 

dx becomes J /A2 + B2(1 ; yZ) 

1 - y 

J 
1 

dx becomes 
1 + cos x 

Jay, Y 1 
tan? 

dy, y cos x 

I) In problems where the arguments of the trigonometric functions 

are not the same throughout the integrand, the following cases are 

examined. 

a) Jsin dx 
-cos{m - n} - cos {m + n}x 

m x cos n x 
2(m - n) x 

2(m + n) 

b) Jsin sin n x dx sin(m - n2x sin{m + n}x m x 
2(m - n) 2(m + n) 

c) Jcos m x n x dx 
sin(m - n}x sin{m + n)x cos = + 2(m - n) 2(m + n) 

m, n, constants m f -n 

Otherwise, the method returns notice of failure to integrate the problem. 

II) If the arguments are the same but are not identically x, a 

linear substitution y = a + bx is performed and the procedure continues 

with the revised problem. 

III) 

a) 

b) 

IV) 

If the problem is of the form 

Jsinm(y)cosn(y)dy; m, n integers 

Jl. nl 1 n-m 
m < n, transform to <2si.n 2y) (2 + zcos 2y)~-2~ dy 

S 1 n 1 1 .!!L:.....!! 
m 2 n, transform to <z-sin 2y) (z - zcos 2y) 2 dy 

All trigonometric functions are transformed into sines and 

cosines ~ (e.g., tan y ~ ) in order to test if the resulting expres-
cos y 

sion is of the form a or b. 
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J 2n+l . 2 a) sin (y)Elem(sLn (y),cos(y))dy. 

In this case substitute z = cos(y) 

J 2n+l 2 b) cos (y)Elem(cos (y),sin(y))dy 

In this case substitute z = sin(y). 

V) All trigonometric functions are transformed into secants and 

tangents in order to test whether the resulting expression is of the 

form: 

JElem(tan(y),sec2(y))dy 

In this case substitute z • tan(y). 

YI) 1 sin y Finally, the substitution z • tan-;;y
2 

• 1 is made. +cosy 

~ - In the case where the integrand is a rational function 

of trigonometric functions of x all the problems can be reduced to 

rational functions. The choice of the transformation governs the 

simplicity of the resulting rational function and the final answer. 

The transformation in step VI above which is always applicable in these 

situations frequently leads to a great deal of work and to complex 

results. Fortunately, a number of simpler transformations such as 

those of steps III, IV, and V are easily recognized and are usually 

applicable. 

SAINT included all of the transformations given &Dove, but they 

were embedded in different places in the program. I is included in 

the integral table. II is an algorithmic transformation, as is step III. 
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IV and V are three separate heuristic transformations. V is yet another 

heuristic transformation. The initial stage in steps IV and V is per-

formed by still another method. This organization of the methods appli-

cable to trigonometric functions led to the generation of extraneous 

subproblems since the heuristic transformations were disjoint and were 

not aware of each others actions, nor, in fact, of their own actions. 

For example, the method which performs the preliminary transformation 

. sin x 
in steps IV and V (e.g., tan x ~ ---) must be inhibited from performing 

cox x 

the opposite transformation later (e.g., sin~~). 
sec 

More work is necessary in this area in handling arguments to 

trigonometric functions which are linear, but different (e.g., f~!~~~~~dx). 
Some programs along this line have been designed by Edmund Berkeley, but 

they have not been fully implemented. 

Method 7) Rational function times an exponential 

This method is applicable whenever the integrand is of the form 

R(x)eP(x), where R(x) is a rational function in x and P(x) is a polynomial 

in x. 

Clue - A subexpression of the form eP(x), where P is a polynomial 

in x. If P(x) is linear in x, this method will be attempted if method 

1 is not applicable. 

Examples 

1. I x x x xe dx = xe - e 

s(x 
x 

2. 
x x =_e __ 

+ o2 e dx x + 1 

3. s (1 
2 x2 x2 

+ 2x )e dx = xe 

4. J x2 e dx: not integrable 
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x 
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Method - This method once again is a decision procedure. That 

is, the method can tell whether a problem can be integrated in finite 

terms or not. The method is an improvement of the decision procedure 

in Ritt [ 54 ](p. 48) which handled the case by solving a system of 

linear equations. The procedure is an application of the Liouville 

theory for integration about which more will be found in Chapter 5. 

This procedure is similar in flavor to Riach's [ 53] recent theoretical 

treatment of results in the Liouville theory. 

Clxml + Sl(x) 
Let R(x) • Q(x) where s1 , Qare polynomials 

sl is a polynomial of degree< ml' 

c1 is a constant, c
1 

~ O. 

We know from the Liouville theory that the integral (if any) will 

be a multiple of P(x) 
e • (See Ritt [ 54 ] , page 47.) 

Suppose the integral is represented by 

(a
1

(x) + b
1

(x))eP(x), then 

CP' )2 

and 

The numerator of P'b1 +bi is a polynomial T1(x), say, and a rational 

function remainder, u1(x), say. m2 
Let the leading term of T1(x) be c2x and 
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the rest of T1(x) be s
2
(x). Now continue the process indicated above 

until some T. (T , say) is 0. This is guaranteed to occur since the 
1 n 

degree of the Ti is decreasing. If at that time the corresponding Ui 

(i.e., U) is also 0, then the expression R(x)eP(x) is integrable and 
n 

n P(x) 
the integral is E a (x)e • If U is not O, then the problem is 

i=l i n 

not integrable in finite terms. 
n n 

Note that if U = O, then R(x) - P' E a. - E a~ = 0. 
n i=l 1 i=l 1 

n 
Let a= E a.{x); then we obtain the relation 

i=l 1 

P'a +a' = R 

I p p R p 
Pae + a'e = e 

p p 
(ae ) ' = Re 

aep = JRepdx 

For the converse, we refer to Ritt. Also, note the discussion in 

Chapter 5. 

~ - SAINT was able to solve the first two of the examples 

above. Both were solved using the Integration-by-parts method of 

SAINT. 

SAINT was unable to integrate Jex
2
dx because it found that no trans-

formations were applicable to the problem after approximately one minute 

of computation. 

The fact that SAINT was unable to integrate this problem does not 

necessarily mean that the problem is not integrable in finite terms. This 

statement is also true of SIN, in general. This is due to the fail-safe 

nature of the programs. When a fail-safe integration program results in 



88 

an integral then we know that the problem is integrable. When such a 

program does not yield an integral then one still does not know whether 

the problem can be integrated or not. A semi-decision procedure for 

integration would, in finite time, result in an integral or in the state­

ment that the problem cannot be integrated in finite terms. Richardson's 

result (see Appendix B) shows that for the integration problem as he 

defines it, no decision procedure exists. Yet decision procedures exist 

for many interesting subcases and especially when one avoids considering 

the matching problems that Richardson shows are inherent in his charac­

terization of the elementary functions. SIN embodies some decision pro­

cedures. Future programs are likely to contain more (see Chapter 5). 

One must be quite careful about the computational methods involved in 

order to avoid the explosion which is apparently inherent in many decision 

procedures in algebraic manipulation (see Moses[ 42 ]). We would prefer 

to see expensive decision methods to be attempt~d as a last resort, such 

as stage 3 in SIN. A final consideration regarding methods for integration 

is that they should not be too radical or else the result will become less 

meaningful to the human user. 

This method was implemented using the rational function package of 

MATHLAB [36 ). SIN co111DUnicates with the rational function package by 

a process called chaining. More will be said about chaining when we dis­

cuss the integration of rational functions. 

Method 8) Rational functions 

This method is applicable whenever the integrand is a rational function. 

Clue - FORM generates no local clue for rational functions. The 

applicability of this method is determined separately. Sometimes this 
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method is called directly by other methods (e.g., methods 2 and 4). 

Examples 

1. 
1 1 2 1 (2x - 1) 

dx ., -3loge (x + 1) + (;loge (x - x + 1) + 73 arctan , :; 3 , 

1 1 2 
(x + 1) + 6loge (x + 1) +uloge (x - x + 1) -2. 

1 2 1 (2x:+ 1) - 12lo&e (x + x + 1) - 273 arctan 73 

3. 

Method - This method was progranmed for the MATBLAB system by Manove 

and Bloom under the direction of Engelman of the MITRE Corporation. The 

integration procedure which is used is described in Hardy [ 25 ]. The 

polynomial factorization routine used in this program essentially follows 

Kronecker's method as described in Van der Waerden [ 65 ], p. 77-78. This 

program is also written in LISP and is itself described in "Rational Fune-

tions in MATllLAB," by Manove , Bloom and Engelman [ 36 ] • 

Notes - The power of this method makes the coding of the rest of 

SIN a great deal simpler. SAINT did not have a powerful rational function 

integration program (it could integrate polynomials and ratios of poly-

nomials with linear and quadratic factors) and it suffered thereby; much 

of the trial and error in some problems for SAINT can be attributed to 

its inability to integrate certain rational functions which arose as 

subproblems. Some of the extensions which were made to SAINT (e.g., 

methods 2 and 4) could not have been made unless a rational function 

program was present. Thus, the second stage of SIN lets this routine 

clean up the details such as rationalization of denominators which could 

be ignored in making the transfoxmations. 
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Slagle realized that the unavailability of a rational function 

integration program was a basic defect in SAINT. However his proposal 

for the manner in which such a routine should be written was not the 

best. He proposed solving linear equations to obtain a partial faction 

expansion of the rational function. The method in MATBLAB is superior 

computationally. 

As was mentioned earlier the experimental work (e.g., debugging 

and testing) was done using Project MAC' s time sharing system CTSS. One 

valuable feature of this system is the power to use programs written by 

others. In our case it was valuable to have access to the rational func-

tion package of the MATHLAB system. To be sure, in conventional "batch" 

processing one can employ large packages designed by others by using 

intermediate tapes. In CTSS one can conveniently make use of a program 

concurrently under development by another group, providing one is pre­

* pared to spend some time for the process involved. 

The rational function program which SIN uses is available in CTSS 

as FUIMAN SAVED. It is a separate core image from SIN and is called 

using the chaining process given below. 

a) SIN writes the problem to be integrated on file MANOVE LISP. 

b) SIN saves itself as MOSES SAVED. 

* The widespread availability of time sharing consoles has allowed SIN 
to be used by several people other than the author. "Bugs" in the pro­
gram.have been pointed out by Michael Levin of Information International, 
Inc., Carl Hewitt and Peter Samson of Project ·MAc, 8ld Russel Kirsch of 
the National Bureau of Standards. We would hereby like to express our 
appreciation of their efforts. 
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c) SIN directs CTSS to execute FUUfAN SAVED. 

d) FUIMAN reads MANOVE LISP. 

e) FUIMAN generates a solution to the problem. 

f) FULMAN writes the solution on file MANOVE ANS. 

g) FUIMAN directs CTSS to resume MOSES SAVED. 

h) HOSES (i.e., SIN) reads MANOVE ANS. 

Experilnentally the minimum time for this process has been determined 

to be about 4.5 seconds of machine time. Host of the time is spent in 

steps.£. and.& in which 32k programs are loaded into core. 

There are, at present, certain differences in the internal repre-

sentation used in SIN and FUIMAN. These differences are eliminated, 

whenever possible, by two interface routines present in SIN. The dif-

ferences consist of the following: 

a) log has two arguments in SIN, one in FUIMAN. 

b) PLUS, TIMES have variable number or arguments in SIN and only 

two in FUIMAN. 

c) No floating point numbers are allowed in FUUfAN. Whenever 

possible these are converted to rational numbers (i.e., (a•b) where a,b 

are integers). Otherwise an error indication is given in SIN. 

Method 9) Rational function tiJDes a log or arctrigonometric function 

with a rational argument. 

This method is applicable whenever the integrand is of the form 

R(x)F(S(x)) where F is log, arcsin, or arctan 

R(x) and S(x) are rational functions 

and where Ja(x)dx is also rational. 
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Clue - F(S(x)) where F is log, arcsin or arctan and S(x) is a 

rational function. 

Examples 

1) Jx log x dx becomes x2

2 
log x - J~2 dx 

e e 3 

J 2 x
3 J x dx 

2) x arcsin x dx becomes "j"""arcsin x - 3 ll _ x2 

1 · 2 _:.L 2 I -1 c2x +2> 3) 2 log(x + 2x) becomes + 1 log(x + 2x) - ---+i' 2 dx 
x+2x+l x x x+2x 

Method - Let T(x) = Ja(x)dx 

a) F • log 

Solution is T(x)log(S(x) - JT(x) f ~:} dx 

b) F • arctan 

r . SC~ Solution is T(x)arctanS(x)- JT(x) 1 + ~(x) dx 

c) F • arcsin 

Solution is T(x)arcsinS(x)- JT(x) s•(x). 
./1 - s2(x) 

dx 

~ - This routine handles three special cases of the method of 

Integration-by-parts. The utility of these special cases is that they 

direct the solution process quite clearly, whereas the more general sol-

ution methods may make false starts or require more extended analysis. 

SAINT would have attempted to solve most of the problems that fall 

under this category with its Integration-by-parts method. If we presume 

that SIN had only the rational functicn capability of SAIN'X, then this 

method would allow SIN to be more powerful on these problcs to which 

this method applies. This is due to the fact that SAINT could not tell 

how much effort it could reasonably expend on its Integration-by-parts 

method and it chose to spend less effort of it than would be required to 

integrate the third problem avove, for example. 
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Method 10) Rational function times an elementary function of 

loge (2 . .1 + bx) • 

This method is applicable whenever the integrand is of the form 

R(x)Elem(logc(a +bx)) where R(x) is a rational function and a, b, c, 

are constants. 

Clue A subexpression of the form log (a+ bx). This method is 
c 

attempted if method 9 fails to be applicable. 

1) 

2) 

3) 

Examples 

J. 
log x J. 

-(-l-og--x~e~+--1-)-z dx becomes (y +yl)2 eydy, y = 
e 

J1 1 
dx becomes J1 

1 
dy, log x 

1 + 1og2x + y2 y 
x e 

e 

f 10! x dx becomes JleYdy, x y = e 
e y 

Method - Substitute y log (a + bx) 
c 

results in 

log x 
e 

Notes - This method is used to reduce the problem to the exponen-

tial case where the powerful method 7 might be applicable. If method 7 

is not applicable, the transformed problem stands as much a chance of 

being integrated by SIN's current methods as did the original problem 

in the logarithmic form. 

Method 11) Expansion of the integrand. 

This method is applicable whenever the integrand can be expanded 

by distributing sums over products. 

Clue - This method is used whenever all of the previous methods 

have failed to be applicable. No clue fJr the applicability of this 

method is found by FORM. 
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Examples 

J x(cos x + sin x)dx becomes J (x sin x + x cos x)dx 

J x +ex becomes J -x dx (xe + l)dx x e 

J x(l + ex)2dx becomes J x 2x (x + 2xe + xe )dx 

Notes - SAINT had two heuristic transformations which together per-

formed the job of this method. The first distributed nonconstant sums in 

products, the second expanded positive integer powers of nonconstant sums. 

In both cases, where Slagle considered the methods inappropriate, SIN 

would have already applied one of the previous methods and solved the 

problem. As a matter of fact, that is also true of the two problems 

for which he considered the methods to be appropriate. 

The Third Stage of SIN 

This stage, the last stage of SIN, is the appropriate place for 

methods of a rather general nature. 

Two methods which properly belong in this stage have been prograumed. 

The first is the Integration-by-parts method. This method is used in 

the experiment in Appendix C in which SIN was asked to solve the 86 problems 

attempted by SAINT. Only two of those problems (i.e., Jx cos x dx and 

Jcos Ii dx) required this method. The second method is based on the Edge 

heuristic described in Chapter 5. A third method, a powerful Derivative-

divides method, has not been implemented, but will be discussed here. 

In the long run it is expected that only one of these methods will 

be used here--that is the method based on the Edge heuristic or some vari-
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ant of it. 

The Integration-by-Parts Method 

ExamEles -

1) Jx cos x dx becomes x sin x - Jsin x dx 

Jx 
2 2 

Jx 2) dx becomes 
x 2 

log x dx log x -log x -
e 2 2 e 

Method Let Maxparts be twice the maximum of the value of a 

constant exponent of any nonconstant factor in the integrand. Thus 

2 
Maxparts is 2 for x cos(x) and 4 for x cos x. 

Consider any partition of the integrand into a product of nonconstant 

factors g and h, where H(x) =sh dx can be obtained by SIN without calling 

the Integration-by-parts method. 

Now consider Jg'Hdx. We require that this integral be found by 

SIN by calling the Integration-by-parts method fewer than Maxparts times. 

If both integrals are obtained, the solution is 

Jgh dx = gH - Jg'H dx. 

~ - The crucial aspect of this method is embodied in the phrase 

"consider any partition." This method is thus willing to attempt several 

partitions of the integrand. It is thus searching for a solution, and 

searching very blindly indeed. 

In order to avoid searching too large a space, we require that H(x) 

must be found without using this method. SAINT, which also had an Inte-

gration-by-parts method required that H(x) be found by IMSLN, which is 

a stronger restriction. Likewise the Maxparts device avoids an infinite 

search for the second integral. SAINT, which did not use such a device 
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appears vulnerable to difficulties such as in the problem f sip x dx • 
. · x 

Consider h = sin x, g .1. Thus Jh dx • -cos x and Jg 1H dx • 

Jcos
2
x dx. 

x 

x Jcos x One subproblem generated by --2- dx 
x 

is j.sin3x dx. 
x 

This process 

can continue indefinitely unless measures are taken to curtail it. 

J.sin x (Actually -- dx is not integrable in finite terms.) x 

The Deriyative-Diyides Method 

The method of Integration-by-parts and the Derivative-divides method 

are the two general methods that a freshman calculus student is likely to 

learn. Let us recall that SIN's first stage employed a Derivative-divides 

method. However, that method is not as general as it might be. The 

Derivative-divides method attempts to determine whether the integrand can 

be put into the form g(u(x))u'(x). If this is the case then the substi­

tution y = u(x) transforms the problem into Jg(y)dy. In stage 1, g was 

required to be a single operator. However, in a more general method g 

would not be so limited and the following problems would be transformed 

by this method. (Let us note again that this method is not ayailable in 

SIN at present.) 

1) Jcos x(l + sin
3
x)dx becomes J (1 + y3)dy, y =sin x 

I1 1 becomes J 1 
1 

2) ~ i+ lolx dx + y2 dy, y • logey 
1 e . 

1 
3) J /1 d" becomes f 1 

1 y • arcsin x - x2 1 + arcsinZX x + y2 dy, 

The first two of these problems can be solved by SIN's second stage 

(in particular by methods 6 and 10). The third problem is one of the 

simplest examples of a problem which cannot be solved by SIN's first two 
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stages along with the Integration-by-parts method. However, the Edge 

heuristic will correctly guess the integral arctan(arcsin x). 

SAINT had a Derivative•divides method which was more powerful than 

SIN's. However, it suggested many bad transformations in some cases. 

The method essentially performed a search for a subexpression such that 

the number of factors in the quotient of the expression and the deriva-

tive of the subexpression was smaller than the number of factors in the 

original integrand. This is too strong a res~riction sometimes. 

A Derivative-divides method was designed but was never implemented 

in SIN. 

The kind of analysis we considered was as follows: Suppose the 

integrand is f(x) and a nonlinear subexpression of 'it is u(x), then if 

~( ) can be represented as g(u(x)), the method would propose substituting 
u x ~ 

y • u(x) and attempting jg(y)dy. We should, though, restrict the kind of 

functions g that we would allow. For example, in sin x +cos x we might 

wish to disallow the substitution y • cos x since it introduces the alge­

braic term ./1 - ? into the denominator. If we make the conditions on 

the g's sufficiently restrictive (e.g., rational, algebraic) then the num­

ber of Aubstitutions per problem that this method would propose would be 

small, and more significantly, each of the substitutions would be quite 

reasonable. 

Further Discussion of FORM 

We would like now to discuss some of the aspects related to the 

FORM routine in greater detail. We note that of the eleven methods 

available in stage 2 of SIN, eight possess local clues which immediately 

identify them to FORM. Method 2, substitution for an integer power, 
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possesses clues which allow FOBM to reject the method in some cases. 

Methods 8 (Rational) and 11 (Expansion) do not currently possess.local 

clues in FOBM and are attempted whenever FOBM fails to find an applicable 

method. 

As may be recalled from Chapter 2, one of the advantages of hypo-

thesis formation is that one can attempt to fit the problem to the method 

at hand. Since FOBM is quite aware of the methods which are available to 

it, some such "fitting" could be attempt_ed. This was done in the case of 

algebraic integrands. If an expression is of the form /R(x), where R is 

rational in x, then FOBM will attempt to see if methods 3, 4, or 5 are 

applicable. If they are not, then this problem is going to cause some 

difficulty since it would appear that nothing else except stage 3 methods 

will be available to solve the problem. On the other hand it is possible 

that Methods 3, 4, or 5 are applicable, but that SCBATCHEN was unable to 

make the match. Two excuses can be made for SCBATCHEN in this event. One 

is that SCBATCBEN failed because the rational function R(x) was not ex­

panded (e.g., /1 + x(l - x)), or that the rational function was not com-

.fx x+l pletely rationalized (e.g., + -- ) • x FOBM will thus determine if 

these two transformations are applicable to R {not the whole integrand). 

If they are, the problem is transformed to account for these changes and 

an attempt will be made to consider Methods 3, 4, and 5 again. Hypothesis 

formation is thus shown to be able to localize the difficulty in a problem. 

An Example of SIN's Performance 

We saall now consider in some detail how SIN performs on the problem 
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This problem stretches the capabilities of SIN a good deal. Thus 

it can be used to indicate some of the strengths and particularly the 

weaknesses in the program as it now stands. Our description will con-

centrate on the role that FORM plays in obtaining a solution. 

This problem is not a simple one. So it will pass to stage 2, where 

FORM will examine it. It turns out that FORM will arrive at the same 

hypothesis regardless of whether it examines the numerator or denominator 

first, but it will be more instructive to see how it operates on the numer-

ator. First, FORM will note the square-root (more precisely, the exponent 

1 of 2>· Since the base is not rational, which would indicate that Methods 

3, 4, or 5 might be applicable, the root is ignored and attention is 

focused on the base A2 + B2sin2x. In this sum, the constant term A
2 

is 

encountered, and it yields no clue. The factor B
2 is likewise a constant 

and yields no clue. This leaves the factor sin2x. The exponent of 2 is 

not interesting. However, the base sin(x) does yield a clue since it is 

a trigonometric function with a linear argument. FORM will, therefore, 

call Method 6 in order to test the hpyothesis that the expression is an 

elementary function of trigonometric functions of x. Method 6 determines 

that the hypothesis is valid and will call SIN after making the substitution 

y = cos x. The subproblem thus generated for SIN is 

C./A2 + BZ(l - yZ) 
J- 1 - y2 dy 

As before, this is not a simple problem and again FORM is called in 

order to generate an hypothesis. Interest will quickly focus on the square-
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root in the numerator. Though the base is a rational function, none of 

the clues in FORM appear to apply. As described in the discussion above, 

FORM will attempt to determine whether an expansion of the base is possible. 

2 2 2 2 Expansion is, of course, possible and yields the base A + B - B y which 

matches the pattern used as a clue for Method S. Method S is now called 

in order to determine whether an arctrigonometric substitution is possible 

in the revised problem which is 

J-./AZ + BZ ; Bzyz dz • 
1 - y 

'Method 5 first validates the hypothesis. In order to determine which 

2 2 substitution is appropriate, the routine decides that A + B is positive 

and that -B2 is negative in the manner described in the discussion of 

this method above. Method S will now make the substitution 
By 

z • arcsin ./AZ + BZ 

which is followed by a call to SIN with the subproblem 

it. 

(1 -

J
_! (A2 + B2)c2s2z 
B A2 + B 2 dz • 

1 - B2 sin z 

Once again the subproblem is not simple and FORM is asked to examine 

In the integrand 

A2 + B2 2 -1 
B2 sin z) • 

2 only two factors are interesting, cos z and 

Whichever FORM will be asked to examine first, 

the conclusion will be the same--a hypothesis that the integrand is an 

elementary function of trigonometric functions. 

Method 6 will verify the hypothesis that only trigonometric functions 

are present and will make the substitution w • tan(z). This will result 

in yet another call to SIN with the subproblem 

J 
1 A2 + B2 

-- 2 2 
B (1 + w2)2 (1 A Bt B 

w2 dw 
1 + ;z> 
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This is a rational ~tion and J'OBM will find no clue in this case. 

Since FORM alao did not find any clue to reject the poeeibility that 

Method 2 (•ub•titution for an integer power) is applicable, that method 

is called next. Method 2 cannot make a substitution, but will call 

Method 8 (rational) to solve this problem. 

The rational function package will obtain this subproblem through 

the chaining process described above under Method 8. First, it will 

transform it by rationalization into a problem of the form given below 

Then factorization and partial fraction decomposition will result in 

Jf. B 1 1 1 1 J l- l + w2 + 2AAw - B - 2*Aw + B . dw 

Straight forward integration will now yield the integral 

1 1 
-B arctan w +2A loge(Aw - B) - i' loge(Aw + B) 

This result will be sent back to SIN for the arduous backward sub-

stitution: The first substitution is w •tan z,.which yields 

-Bz + lA log (A tan z - B) - -
2
11l log (A tan z + B) 

2 e B e 

The second substitution is z • arcsin ./AZ + 1 2 y. This results in 

B 
- B arcsin -::::;;::::=::::;;::::­

./ A2 + Bz 

1 - -A log 2 e 
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c 
Note that tan arcsin C is transformed into /l ._ c2 

The final substitution is y • cos x; this in turn yields 

( B 
-B arcsin /A2 + az 

~ 
B cos x ) 

A ./AZ 2 
log + B + B 

e Bi 2 ~- A2 + Bzcos x 

This is the result that SIN returns for the original problem. SIN 

does not simplify its results by rationalizing them or by combining log-

arithmic terms. This is certainly a drawback in this problem. Such 

simplifying transformations would result in the answer 

B i -:::;:::::B::::::- cos x _ !A l (A cos x + ./ A2 + B2 sinZx ) 
- arcs n ./ A2 + B2 2 °8e ·A cos x - ./AZ + B2 sinlx 

This result is to be compared with the answer in the table (Petit 

Bois, p. 138). That result is 
B 

B arccos ( I A2 + B2 
OS X) 

- A log (A cot x + /A'l csc2x + B) 
e 

In more familiar terms, the table's answer is 

( B ) (A cos x + I Al + B2 sinZx } 
-B arcsin /AZ + BZ cos x - A loge sin x 

This answer differs by a constant from the answer derived by SIN. 

Although we can only guess at the method that the table's compiler 

used, we can arrive at some conclusions regarding weaknesses in SIN's 

method of solution. 

Let us consider the first subproblem after the modification made to 

it by FORM. 
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The transformation made above is a standard one in dealing with 

algebraic integrands. The integral above, after division, becomes 

J~2- A2 2 ) 1 dy 
( 1 - y J ./""jlA;:;2;:::+=B::;2;;::::::_=B::;2;;:y:;;2;-

Multiplying through we obtain two subproblems which together are 

simpler to solve than the combined problem. SIN, by not bringing the 

square-root to the denominator, unnecessarily complicates the work of 

the rational function package. This is certainly one of its weaknesses 

in dealing with algebraic integrands. 

SAINT and SIN solutions of the same• problem 

As a fµrther comparison of SAINT and SIN, we shall indicate how 

both operate on the problem 

J 4 
x '· dx (1 - x2) /2 

This problem was chosen because it is discussed extensively in Slagle's 

thesis. 

In SIN, after determining that the problem is not simple, the factor 

(1 - x2)-(5/ 2) acts as a clue in FORM and generates a call to Method 5 

which validates the hypothesis that an arctrigonometric substitution is 

possible. This method generates the subproblem 

I 4 
sin d 
cos.4; Y 

after making the substitution y = arcsin x. 

Again, this is not a simple problem and this time sin(y) will act 
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as a clue for the hypothesis that only trigonometric functions are present. 

Method 6 validates this hypothesis and generates the subproblem 

Jl ~
4

z2 dx 

after making the substitution z • tan y. 

This subproblem is rational and FOIM finds no local clue. Method· 2 

is called and is ineffective. Method 8 (rational) is called and the rational 

function package returns the expression 

3 
; - z + arctan z 

as the integral. 

Backward substitution yields 

3 
ta; Y - tan y + y 

and finally we obtain the integral 

1(1 - x2)-'J/2 (1 - x2')-l/2 3 2 - 2 + arcsin x 
x x 

In SAINT, the solution of 

J(l ~4x2)572 dx 

proceeds roughly as follows. 

In this problem y = arcsin x is substituted yielding 

Jsin
4

yd 
I) cos4y Y 

as in SIN. 

Subproblem I is transformed into 

II) Jtan
4

y dy 

and into 

III) Jcot
4

y dy 

both of which will now be added to the subproblem tree. 1 Finally, z = tan p 
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transforms subproblem I into 

IV) J32 (l + z2)~1 _ zZ)4 dz 

which is transformed by IMSIB into 

V) 32 J(l + zZ)C; _ z2)4 dz 

No more transformations are possible on subproblem I, so transfor-

mation will be attempted on subproblems II, III, and V. 

Subproblem II is transformed by z • tan y into 

VI} J1 ~
4

z2 dz 

IMSIB then performs the polynomial division and obtains 

VII) Jc-1 + z
2 

+ 1 ! z2) dz 

From VII we obtain 

VIII) J-dz, 

IX) f z2dz, and 

X) J1 ! z2 dz 

Subproblems VIII and IX are solved by the table look up in IMSIB. 

This leaves II, III, V and X. 

III can be transformed by z •cot y, into 

XI) Jz4(l-~ zZ) dz 

and IMSLN will convert it to 

XII) -Jz4(l ! z2) dz 

By now only subproblems V, X, and XII remain to be considered. The 

transformation w • arctan z on subproblem X yields 

XIII) Jdw 
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which lMSIB solves by the table look up. Now IMSIB realizes that sub-

problem VII has been completely solved and by backward substit.ution can 

obtain the final result 

~an3arcsin x - tan arcsin x + arcsin x 

We should note in the solution methods how SAIN? keeps several 

options to the particular path to be followed in obtaining the answer. 

This is particularly noticeable in subproblem I which generates II, III, 

and IV. Only one of those three subproblems need be solved. SIN will 

generate only one subproblem, and will c01111¢.t itself to using it.· Of 

these subproblems only IV can truly be faulted. The tan t x tran1tormation 
,. . 

is generally to be eschewed if any other transformation is poss;ble. How­

ever, the lack of communication between SAINT' s heuristics make· such a 

principle difficult to implement. 

Furthermore, it appears that subproblem XIII should logically follow 

x. However, the cost of obtaining the character of subproblem X in SAINT 

forced the particular order of events to be followed. A mechanism like 

FOBM would have simplified this situation tremendously. 
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Given that we have decided on an outstanding factor in the 

integrand, we can frequently make an educated guess regarding the 

form of the integral, assuming, of course, that the integral can be 

expressed in finite terms. 

Suppose the integral f (x) has an outstanding factor of the 

form eg(x), say, f(x) • h(x)eg(x) then we can guess that 

J f(x)dx is of the form 

a(x)eg(x) + b(x) • J f(x)dx • J h(x)eg(x)dx 

where a (x), b(x) are 1.Uldetermined functions of x, and where 

a(x) will not involve eg(x). 

Certainly Jf(x)dx must c~ntain eg(x) since one cannot other­

wise obtain such a function through differentiation. If Jf(x)dx 

has a nonlinear occurrence of eg(x) then so will its derivative, 

but this nonlinear occurrence will not cancel in f(x). 

Given the above choice for Jf (x)dx, then by differentiation 

we obtain 

a(x)eg(x)g'(x) + a'(x)eg(x) + b'(x) • f(x) • eg(x)h(x) 

A simple choice for the value of a(x) can be obtained by requiring 

that the first coefficient of eg(x) on the left be equal to the 

coefficient of eg(x) in f. 

a(x) • f (x) 
eg(x)g'~ 

Using this choice we obtain 

• h(x) 
g• (JI:) 
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The value of b(x) is obtained in a subproblem. 

b(x) • J-a'(x)eg(x)dx 

Hopefully, the choice of a(x) made above will yield a simpler 

integration problem for the determination of b{x) than the original 

problem. Let us consider a simple e~mple using this guessing 

procedure. 

f(x) x • xe 

a (x)ex + b (x) • J f (x)dx 

a(x)ex + a 1 (x)ex + b'(x) 

a(x) 
x xe 

-~·x 
e 

a 1 (x) "" 1 

x • xe 

The subproblem for b(x) is certainly simpler than the original 

problem. It will be instructive to consider how the method out-

lined above will handle such a problem. Below we shall usually 

ignore the functional characterization of a(x) and b(x). 

x 
'"' -e 



b' 
1 

b 

Finally, 

a I Q 
1 

J f (x)dx 

x 
-e 
-x 
e 

x 
xe 
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-1 

Jo dx constant 

x 
-e + constant 

x 
e + constant 

Let us now consider another example using this procedure. 

f (x) 
2 sin x2 

x cos x e 

The outstanding factor in f(x) 

sin x2 
ae + b = Jf(x)dx 

sin x
2 

is e 

sin 
ae 

X
2 . 2 

cos x2 2x + a'esin x + b' 
2 

2 sin x 
x cos x e 

a = ;h 
2 

a' = 0 

b I 0, b 

J f (x) dx 

constant 

+ constant 
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The first of the two problems above is usually solved by In-

tegration-by-parts. However, that method requires an integration 

step (i.e., Jexdx) which we did not perform. Furthermore, the 

integration by parts method is inapplicable in the second problem 

above. The latter problem is handled by the Derivative-divides 

method such as is used in SIN's first stage. So the analysis per-

formed by the Edge heuristic and in particular the analysis of 

Edge that we have been presenting is different from either of these 

two general methods of integration. 

An analysis which is similar, but more complex than the one 

made by Edge is employed by Method 7 of SIN's second stage. Let 

us consider the manner in which the method proceeds in light of the 

discussion above. 

We recall that Method 7 deals with integrands of the form 

R(x)eP(x) where R is rational and P is a polynomial in x. 

An example solved by this method is 

2 x2 
f (x) = (2x +l)e 

Edge would in this case guess 

x2 
a(x)e +b{x) = Jf(x)dx 

and 
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Method 7 is superior in this case in that it considers the 

R(x) factor term by term. Thus, it would guess 

2x2 
a(x) =(xZ)' 

2x2 
2x = x 

It turns out that this is the correct value for a(x) since 
2 

the integral is exactly xex . 

On a more complex problem such as 

2x6 + 5x
4 

+ x3 + 4x
2 

+ 1 

(x2+1)2 

2 
x 

e 

Method 7 would proceed by first letting 

a (x) 

The subproblem it generates is 

4x
4 

+ x
3 

+ 5 -
4 

2 
x +l 

~~~~~~~~~~~~~ e 
(x+1)2 

Now it lets 

2x3 

2 
x 

5 x 

etc. 



Finally, the result is 

or 

5 3 , 2 l 
x + 2x + -zx + x + 2 

(x2 +1)2 

x 
e 

2 
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x2 e 

Thus, we see that although the heuristic of guessing the form 

of the integral is correct in the two examples above, the particu-

lar mechanism for guessing the values of the undetermined coefficients 

which is employed in Edge is not sufficiently powerful. We shall 

now indicate two other difficulties with the analysis of Edge 

described above. 

Let us recall that Method 1 of SIN's second stage handles inte­

grands of the form Elem(ex). This method substitutes y=ex. In 

the case of rational functions of exponentials this substitution yields 

a rational function. Thus, for example, 

x 2x 
f(x) = (e +l)e 

becomes 

(y+l)y 

after making the substitution. The rational function package will 

expand this integrand and integrate the resulting quadratic in y. 

Edge would guess the form of the integral without making a corres-

ponding expansion. This leads to an incorrect guess of the form 
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since the two factors in f (x) are closely related. Had Edge ex-

panded the integrand and integrated the terms separately, it 

would have easily obtained the integral of f(x). 

Another difficulty with the manner in which Edge guesses the 

form of an integral is shown in 

f(x) 
1 -x 

e 

Method 1 of SIN's second stage would yield a rational function 

which would be factored and expanded in partial fractions by the 

rational function package. Here again the two factors f(x) are 

closely related and thus the guess of the form of the integral 

made by Edge and the resulting guesses of the coefficients will 

fail to yield the integral. A partial fraction expansion is re-

quired if the integrand is a rational function of related terms. 

While keeping these weaknesses of Edge in mind, we shall con-

tinue to consider how the guessing heuristic operates on outstanding 

factors of different forms. 

Let us suppose that 

f(x) h(x) log(g(x)) 

and that the logarithmic factor is the outstanding factor in f(x). 

A good guess of the form Jf(x)dx, if it exists, is 

2 
clog (g(x)) + a(x)log(g(x)) + b(x) = Jf(x)dx 

where c is a constant and a(x) does not involve log(g(x)). 
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2 The log term is necessary (e.g., f (x) = l/x logx), but its 

coefficient is only a constant. Otherwise the derivative of the 

2 from above would contain a log term which would not cancel in 

f(x). 

Differentiating we obtain 

Lhl Lhl 2c g(x) log g(x) +a g(x) +a' log g(x) + b' • h(x)log g(x) 

or 

Lhl a&:.hl + b 1 (2c g(x) + a')log g(x) + g(x) • h(x) log g(x) 

In the above we grouped the terms involving the outstanding 

factor log g(x). We note two differences from the exponential case. 

First there is the constant c which did not arise before. Then 

the coefficient of the log term is a' instead of a. We can solve 

for a(x) by using the relationship 

LM a' .. h(x) - 2c g(x) 

a • Jh(x)dx - 2c log g (x) 

We now use the fact that a(x) is independent of log g(x) in 

order to ob ta in a value for c. That is, if J h(x)dx has a term in­

volving ~og g(x), the c is chosen so as to cancel that term. 

Otherwise, we chose c-0. The value of b 1 is determined by the 

relationship. 
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a I f~) 
-a~ 

g (x) 

Let us consider an example. 

f(x) = (x + l/x)log g(x) 
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2 
c log x +a log x + b = J (x+l/x)log x dx 

(2 c/x + a')log x + a/x + b' (x + l/x) log x 

a = J<x + l/x)dx - 2c log x = 
2 

1/2 x + log x - 2 c log x 

2c 1, c 

b' -a/x 

2 
b = -1/4 x 

J<x + l/x)log x ex 

1/2, a 1/2 x
2 

-1/2 x 

2 2 2 
l/2log x + 1/2 x log x - 1/4 x 

It should be noted that J<x + l/x)dx can, of course, also be 

obtained by a guess of the integral. 

The guess for the logarithmic case generalizes when f(x) is 

of the form 

f (x) 
n 

h(x) log g(x), n > 0 

In this case we can guess 

n+l n J n c log g(x) +a log g(x) + b ~ h(x)log g(x)dx 

with a,b,c determined using the same method as above. 
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Let us consider how we can capitalize on our experience of the 

types of outstanding factors dealt with above. Suppose f(x) is of 

the form 

f(x) = h(x) l · 
2 , where 1 + g!(x) is the outstanding 

1 + g (x) 
factor. 

The argument now proceeds as follows: One could arrive at a 

1 factor 2 by two routes which do not involve complex con~ 

stants: 

a) 

b) 

1 + g (x) 

2 log(l + g (x)) 

arctan g(x). 

In either case the coefficients must be constants since if they were 

not the derivatives would contain terms more complex than found in 

the integrand. Thus the guess is 

c log(l + g2(x)) + d arctan g(x) • rf(x)dx 

2cgg' 

1 + g2 

+ dg' 
1 + g2 - h(x) 

1 + g2 

(2 gc + d) g' • h(x) where c, dare constants. 

x Consider f(x) • --'"'-
1 + x4 

2 
(2x c + d)2x =.x 

2x2c+ d • ! 
2 

c .. O,d•! 

J 1 2 
f(x)dx • :28rctan x 

5 
We should note that our guess fails in such cases as _x __ _ 

l + x4 
of in which division must be. attempted first, or in the case 

1 2 
2 which is equivalent to cos x. 

l +tan x 
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In order to contrast the Edge heuristic approach with that used 

in Stage 2 of SIN, let us consider functions of the form 

h(x) 
f(x) = ---2 ....... ..__-n..,/-2 , n a positive integer 

(1 - g (x)) 

An educated guess for the form of the integral of f(x) is 

2a n/2 _ 1 + b • Jf(x)dx, unless n = +l 
(1 - g (x)) ' 

If n = +l, then we shall also consider the possibility of a 

c arcsin(g(x)) term, where c is a constant. 

An example we considered in Chapter 4 is 

4 x 
f(x) = (l _ x2)5/2 

a J x4 
---2=--3-/ .... 2 + b "" 2 5/2 dx 
(1 - x ) (1 - x ) 

I 4 
a + b' • x 

(l _ x2)3/2 (l _ x2)5/2 

a' = x 2 

2 
b' -x 

• (l _ x2)3/2 

Now we shall generate a subproblem. 

aJ + b 
(l _ x2)1/2 1 

r -x2 
= J dx <1 _ x2>J/2 

a' = -1 1 
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1 b I = -----'::..-~-
1 (l _ x2)1/2 

In this case we shall guess 

2 1/2 a2{1 - x ) + c arcsin x 

-xa2 + c = 1 

c = 1 

a = 0 
2 

The final result is 

J. 
4 3 

(1 - :2)5/2 dx = ~ (1 - x2)-3/2 - x(l - x2)-l/2 + arcsin x 

We should like to mention how Edge handles trigonometric functions. 

For outstanding factors of the form sin(g(x)) it guesses cos(g(x)) and 

it guesses cos(g(x)) for outstanding factors of the form sin(g(x)). 

However, this manner of dealing with trigonometric functions is not 

necessarily the best one. Edge should in some cases consider the com-

plex exponential form of the trigonometric functions. In this way ,. 
Jsinnx dx can be found easily for integral values of n after expanding 

the complex exponential form of the integrand. By keeping the trigo-

nometric form Edge is forced to deal with methods such as "solution by 

transposition" which occurs in Jsin x exdx when one of the subproblems 

is J-sin x exdx. 

We have indicated above some examples in which Edge fails to 
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make a good guess for the form of the integral or the values of the 

undetermined coefficients in the form. Thus, it is necessary to 

determine whether Edge is progressing toward a solution. If the 

outstanding term involves an exponent and the absolute value of the 

exponent is decreasing, the routine thinks that it is making progress. 

The same ls true if another factor in the integrand is exponentiated 

and its exponent is decreasing while the outstanding factor remains 

the same. The program is certainly not progressing if it obtains 

a subproblem which is exactly the same as some previous subproblem, 

though a solution by transposition is attempted if a subproblem is 

a constant multiple other than one of some previous subproblem. 

In the above we have indicated some cased' in which the form has co-

efficients which were constrained to be constants. The current 

version of Edge handles these cases by attempting a guess which ig­

nores a term (usually the one with a constant multiple). If that 

guess fails to yield the integral 1,1sing the progress .information 

outlined above, the program backs up and introduces a new term in 

the form while eliminating another term. In this manner Edge per­

forms a depth first search. 

Below we would like to indicate the theoretical results which 

underlie the Edge heuristic. 

Historically, the quest for results regarding the form of an 

integral goes back to the early nineteenth.century. Laplace con­

jectured that the integral of an algebraic function (y is algebraic 
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in x if P(x, y) = 0 where P is a polynomial with constant coefficients) 

need contain only those algebraic functions which are present in the 

integrand. This conjecture was proved by Abel. Liouville examined the 

form of the integral of an elementary function in a series of papers in 

the 1830's. Before we present the statement of Liouville's main theorem, 

we shall need some preliminary considerations. An important feature of 

Liouville's theory of integration is a hierarchy of elementary functions. 

In level 0 of this hierarchy are the algebraic functions. The monomial 

of level 0 is x. A monomial of level i + l is a function represented by 

ey or log y, where y is a function of level i and where the monomial has 

no representation which is of lower level than i + 1. Level i + l also 

contains all functions which are algebraic combinations of monomials of 

level i + 1 with functions of lower levels provided again that those 
2 x functions have no representation of lower level. Thus, xe is of level 

X eX 2 
1 and e e + log(l - ix ) is of level 2. We should note that this 

hierarchy includes all trigonometric and arctrigonometric functions by 

using their complex exponential and logarithmic forms in order to clas-

sify them. 

Given a representation of an elementary function one can list 

the monomials. and algebraic functions of these monomials which were 

combined to form the function. Among the monomials and the algebraic 

functions there will be some which are of the highest level. Choose 

one such function and call it the principal function. Thus, the 
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original function is a rational combination of the principal 

functions with functions of equal or lower level. The principal 

x2 x2 
function in xe is e and the principal function in 

is ex. It is the concept of a principal function which we 

were striving for when we defined the concept of an outstanding 

factor in an integrand. We noted above some of the difficulties 

that one encounters in making an educated guess for the form of the 

integral when using only the notion of an outstanding factor. The 

principal function concept surmounts these difficulties. 

We are now in a position to ask whether there are any more 

monomials and algebraic functions in the integral of a function 

than in the function itself. The answer provided by Liouville's 

general theorem is that except for logarithmic extensions there are 

none. Liouville's theorem states that 

J f (x)dx v (x) + 
0 

n 
I: 

i=l 
c. log v. 

l_ l_ 

where the ci's are complex constants and the v. are rational 
l_ 

functions in the monomials and algebraic functions of these which 

appear in f [54]. 

Liouville's theorem itself gives a strong rationale to the Edge 

heuristic since it makes strong restrictions on the possible forms 
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of the integral. Recently, and independently of our work on Edge, 

Risch [ 53] has strengthened the Liouville theorem by showing that 

the constants c. need only be algebraic over the field of constants 
1 

generated by the constants in f(x) with the ground field of the 

rational numbers. Risch has also given a decision procedure for 

those functions obtained without using any algebraic operations 

other than rational operations. His method is similar to the 

one employed in Edge in that it relies on knowing the possible form 

of the integral. However, it is superior to Edge in the manner in 

which it obtains the undetermined coefficients and in its use of 

partial fraction decomposition with respect to the principal 

function in the integrand. When algebraic operations are allowed 

in the integral, Risch believes that the integration problem may 

in general be recursively unsolvable. (See Appendix B where the 

integration problem is shown to be unsolvable using a different 

formulation than Risch's.) However, he is optimistic about integrands 

which are algebraic functions of level 0 in our hierarchy. 

We believe that methods which rely on guessing the form of 

the integral such as Edge or ones based on Risch's algorithm will in 

the near future provide us with very powerful integration programs. 

However, the amount of machinery that they call into play and their 

use of radical transformations such as the complex exponential form 

of the trigonometric functions indicate that those methods are not 

to be applied when more specific and presumably more efficient 

methods are available. 



Chapter 6 

SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS 

As a first approximation one might attempt to treat the pro-

blem of solving ordinary differential equations by using a similar 

strategy to the one used in SIN for integration problems. Let us 

recall that SIN used a three stage approach. First it attempted 

to solve the problem using simple methods. Next the FORM routine 

attempted to use local clues to determine which one of a specific 

set of methods was applicable to the problem. Finally the Edge 

routine employed a more general method of solution. In this 

chapter we shall consider how such a strategy would fare in the 

problem domain of first order, first degree ordinary differential 

equations (i.e. P(x,y)y'-+Q(x,y)•O). We shall indicate the approach 

that was finally taken and describe the methods of solution which 

were prograumed. 

There appears to be general agreement in the texts of ordin-

ary differential equations regarding the elementary forms of dif-

ferential equations. Linear, exact and separable equations seem 

to constitute the universal choice as elementary forms. They are, 

respectively, of the form f(x)y 1+g(x)y+h(x)ro, P(x,y)dx~(x,y)dy•O, 

where ~P~Q, and A(x)B(y)dx+c(x)D(y)dy-0. These forms are relative­
y x 

ly easy to recognize, and inmediately reduce to integration problems. 

We shall adopt the usual convention that a reduction of a differ-

ential equation to one or more integration problems constitutes a 

solution of the equation even i.f the expr.essions to be integrated 

cannot be integrated in finite terms. Functions which can be ex-

124 
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pressed in terms of elementary functions and integrals of elemen­

tary function are called Liouville functions. Due to the above­

stated properties of linear, exact, and separable equations, the 

set of methods which determine whether the equation matches one 

of the forms constitute a reasonable analogue to SIN's first stage. 

When we consider finding an analogue to th.e FORM routine of 

SIN, we i11111ediately arrive at difficulities. It is rare that one 

can make a slight change to a differential equation and still be 

abl.e to use the same method of solution, let alone obtain a sim­

ilar solution. Let us consider how the method.of solution changes 

as we modify the five equations below. The methods of solution 

used (i.e., linear, exact, homogeneous, Bernoulli, and linear co­

efficients) will be described later. 

1) 2xy' + y+x+l•O 

linear 

2) 2xy'+y(y+x+l)•O 

Bernoulli 

3) (2x+y)y'+y+x+l•O 

linear coefficients 

4) x(x+y)y'+y(y+2x)m0 

homogeneous 

5) x(x+2y)y'+y(y+2x)+l-0 

exact 

It should be noted that none of the methods mentioned above 

is applicable to any of the other four problems. The situation is 
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7) 

- ~--· - .. 
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even more serious when we note that equation 6 is not integrable 

in terms of Liouville functions, but equation 7, which varies 

from equation 6 by only the addition of the constant 1, does 

possess a Liouville solution (see Ritt [54) P• 73). 

2 2 2 
x y'+x (y -1)-2=0 

2 2 2 
x y'+x (y -1)-1•0 

Since the equations above appear quite similar, any test based 

on local clues only is going to fare quite badly. Thus the pas-

sibility of implementing an analogue to SIN'• FOBM routine does 

not appear very promising. One could of course, use global clues 

(such as the number of occurrences of x and y in the coefficient 

of y') to conclude that certain methods are inapplicable (for ex-

ample, the linear method is inapplicable if there are any occur-

rences of y in the coefficient of y'). However, this approach is 

not likely to give us a great increase in efficiency. 

On the basis of the difficulty just noted, one would suppose 

that a practical general method for solving first order, ftrst 

degree ordinary differential equations is not likely to exist. 

Surprisingly, a general method does exist. It is known as the 

multiplier method. It can be shown that if a Liouvtlle solution 

exists, then there also exists a Liouville function u(x,y), which 

can be used to multiply both sides of the equation' and obtain an 

exact differential equation and thus an immediate solution. That 

is, given P(x,y)dx-+Q(x,y)dy•O, then uPdx+uQdy-0 satisfies ..2._(uP)=~(uQ). 
~ ~ 

There is, however, a slight catch in the multiplier method - it is 

very hard to find an appropriate multiplier except in special 
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cases. In fact, several texts caution their readers against trying 

to consider finding multipliers to differential equations. The 

Liouville theory (see Chapter 5) yields a form that an elementary 

solution to a first order differential equation must satisfy. How­

ever it does not appear likely that one could write a method like 

Edge which would exploit this information, except in special cases. 

Negative results such as those in Appendix B appear to dampen the 

hope that one could find a general method for solving differential 

equations. 

We thus conclude that finding an analogue to SIN's strategy 

in the domain of differential equations is quite difficult if not 

impossible. We can, however, decrease our expectations and follow 

the traditional technique given in texts on differential equations. 

That is we can determine if the problem is solvable by one of a 

set of special methods by examining the applicability of the methods 

one at a time. It is this approach which ~as implemented. We were 

reduced to a search for a method because of our inability to either 

localize the problem or to find a simple model for it. The cru­

cial role of constants in determining a solution frustrates even 

the most primitive simplifying considerations. '!here is one con­

solation in the approach taken, and that is that once we find a 

method which is applicable it is either immediately reducible to 

integration problems or reduces to simple problems (i.e., linear, 

exact, or separable) in one or at most two steps. Furthermore, 

these steps are known in advance in most cases. 

Eight methods of solution for first order, first degree 

differential equations were coded. These include most of the 
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methods for solving first order equations taught in an introductory 

course on ordinary differential equations. As stated above, the 

methods are examined in turn in order to determine if they are 

applicable. The simple methods are attempted first. These will 

all call SIR whenever they apply in order to solve some integra­

tion problems. The five other methods will generate subproblems 

which are usually either linear, exact or separable. 

The conventions for stating the problem to the machine are 

the ones used in the text books or the tables. When the dependent 

variable is x, and the independent variable is y, the problem may 

be stated in either form I or II: 

I P(x,y)y'-tQ(x,y) 

11 P(x,y)dz+Q(x,y)dy 

It is assumed that the expression given is to be equated to 

O. The result, if found, will be stated in the form 

f(x,y)=Co , 

where Co is a constant of integration. As will be seen, no atte~t 

is currently made to solve for y or to perform other simplifications 

such as eliminating logs in the resulting expression. 

Top level control resides in a routine called SOLDIER (SOLution 

of Differential Equation Routine). SOLDIER will translate the pro­

blem statanent into the form (either I or 11) desired by the par­

ticular method. It will be noted that books tend to state a problem 

applicable to a given method in only one of the two forms (e.g., 

linear equations are usually in form I, and exact in form II). 

No attempt was made to use this fact as a clue to a solution. 

We now shall proceed in describing the methods. 
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Me tbod 1 LINEAR 

lQ!g! f(x)y'+g(x)y+h(x)=O 

Procedure 

....l.W. Let P(x)- f(x) , ...hl!l. Q(x)-f(x) 

The solution is 

}Pdx 
[

e f P(x)dx ] 
dx =Co ye 

Notes 

The recognition of this form is done by a SCHA'tSHEN pattern. 

Since equations of the form f(x)y'+g(x)[h(x)y-+k(x)}=O will not be 

recognized as linear by SCHAT~HEN using the pattern given above, 

expansion is attempted as a heuristic aid to recognizing forms. 

Expansion is, however, attempted only when a single occurrence of 

y appears in the equation. Thus f(x)y'+g(x)y+h(x) [y+k(x) J•O is not 

expanded and is not recognized as a linear differential equation. 

Examples 

1) 

2) 

y'+y+JC::O 

becomes 

x r x 
ye +Jxe dx"'Co 

Thus solution is 

x x x 
ye +xe -e =Co 

xy'+x,.+1=0 

results in ye'X.+ Jex dx = Co 
x 

Method 2 SEPARABLE 

~ A(x)B(y)dx+c(x)D(y)dy=O 
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Procedure The solution is 

! !!& dx +j.!!lll dy = Co 
C(x) B(y) 

No attempt is made to recognize this form except through 

SCHATCHEN's matching techniques. Thus no factorization of the 

equations is atte~ted. That is the factorization must be explicit 

although several factors may involve just y or just x. 

Examples 

1) 
2 2 

x(y - l)dx - y (x - l)dy:O 

becomes 

dx +f"=-f- dy:Co 
) y -1 

Thus the solution is 

2 2 
1/2 log (x -1) - 1/2 log (y - l)=Co 

This answer is normally simplified on tables to become 

2 2 2 
x -1 =Co or (x - l)=Co(y -1). As stated above no attempt is 
-2-
y -1 

currently made to perform such simplifications. 

2) ~ • I e s iny y +xcosy= 0 

becomes 

or 
f sinydy 1xe ·x d:x:=Co 

. cosy 

-x -x 
- log cosy - xe -e =Co 

The transformation of this problem to the dx, dy form is 

performed by SOLDIER. 

Method 3) Exact - Multipliers 

.EQ!!H P(x,y)dx + Q(x,y)dy:O 
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The method is applicable whenever 

The answer is 

I j Pdx + /[Q • dy:=Co 

Since this method is closely related in form requirements 

and solution method to certain special cases of the multiplier 

method, these cases are considered here. 

a) If qP - _Qg 
qy qX = h(x), i.e., the quotient is just a function of 

Q fh(x)dx 
x, then the multiplier is e 

Procedure Let P (x,y)= P(x,y)*multiplier, Q(x,y)= Q(x,y)*multiplier 

- -
P and Q are guaranteed to satisfy 

~=.a§ 
oY ox 

The solution is obtained using the procedure 0f equation I 

above with P,Q replaced by P and Q, respectively. 

then 

b) If~ _.:a!'. , that is the quotient is a function of y only, 

gx oY = k(y) 
p 

j k(y)dy . 
e is a multiplier. Proceed as in step a). 

c ) If .:a!'. = - _ag 
OY QX 

and .:a!'. = _ag ox oY 
1 

then the multiplier is --z--z . Proceed as in step a) 
p +Q 

SCHATCHEN is used to perform the matching required in testing 

to determine if .a! equals ~· Clearly ·or l!U1tcl:ring · program such as 
(JX OY 

Martin's P7J would be preferable in this case since no pattern 

matching is necessary, but only a match for equivalence. 
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The division steps employ only SCHVUOS's limited simpli-

fication methods for quotients. Thus no factorization is 

attempted. At present there exists no simplification program 

which can simplify quotients well. For example 

x is not simplified to e +l by any reported si~lification program. 

Another approach to determintng the applicability of the first 

three multiplier cases is to differentiate the quotient with respect 

to y in the first case and with respect to ~ in the second case. 

This reduces the recognition problem to a match for equivalence to 

O. In this manner we avoid placing constraints on the simplifica-

tion program for determining the applicability of the method. How-

ever this technique does not yield the desired value of the quotients. 

There exist many other special cases for the multiplier. In 

fact the origin of Lie Groups was motivated by considerations 

regarding the families of differential equations which are solved 

by particular multipliers. 

Examples 

1) 
3 22 2 22 3 . 

(4x y-12x y +5x +3x)y'+6x y -8xy +10xy+3y=O 

Solution is 

3 2 2 3 2 
2x y -4x y +5x y+3xy=Co 

2) (2xy+5xH)y' +y
2=o 

Solution is 

2 -5/y + J -5/y xy e e dy = Co 

Method 4 Bernoulli 
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a subcase of method 8, but is given special treatment here because 

of the frequency and ease of recognition of this form. 

The factorization of xn from the equation must, in general, 

be performed in order to have the result recognized as separable. 

The recognition of homogeneity and factorization are performed by 

SCHATCHEN and SCHVUOS and thus are not unusually powerful. For 

2 example..!.:±!! y'+y.:::O is not recognized as homogeneous. 
x 

Examples 

1) 
2 2 2 

3x y' - 7y - 3xy-;g =0 

solution is 

log x 3 - ~ e - - arctant/7 =Co r-r x 

2) 
3 2 3 2 

2x(y +5x ) y'+y -x y =9 

solution i.s 

2 
log x + 10 log ~ - ~ loge(3+y- ) = Co 

e 9 ex 9 , 
x 

Method 6 Almost Linear 

FORM f(x)g(y) y' + h(x,y) = 0 

where 

h(x,y) = k(x)l(y)-+m(x) 

and 

l' (y) = g(y) 

Procedure 

Substitute u(x) = l(y) resulting in the linear equation 

f(x)u' + k(x) u+m(x)=O 

This is a method which is rarely indicated in the texts. 



Examples 

1) xyy' + 2xl+i-o 
2 

substitution is u(x)=y 

yielding 

lxu• + 2xu+1=0 
2 ! 

2) x2cosy y' + siny + ex = 0 

substitution u = siny 

yields 
! 

Method 7 Linear coefficients. 

FORM y
1
+F (:~r.-~c ~ = 0 

Procedure 

Substitute 

ll5 

where a,b,c,a',b',c' 
are constants and 
ab' - a'b :/. 0 

b 1c - be' ac' - a'c 
x* = x - a' b - ab' , Y* = Y 

1 
- a' b - ab 1 

and obtain a homogeneous problem (method 5). 

Recognition is based on matching 

A(ax+by+c)n (a'x+b'y+c') -n repeatedly 

in F(x,y), where a,b,c,a',b',c' are assumed to remain fixed in 

f(x,y). 

Examples 

1) (4y+llx-ll)y'-25y-8x+62=0 

answer is 

1 1 ~ (y-22)U log (x - - ) - - log 1+2 -e 9 2 e 9 
-l-
x9 

(- -2~ )_ 
+ 3/2 loSe (4 + :.; j Co 
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answer is 

1 ( 2 ) + /2 f2 Cy -~6 ) oge lri- 3 2 arctan 2 _ 
:d- ~ 

2 3 

+ 1/2 log8 0 {'j)J Co 

3 
n Method 8 Substitution for x y 

!2!!J y'+L(x,y)-0 

where L(x,y)= :L H (xny), 
x 

Here H is a function of a single argument, 

and n is a constant to be determined. 

Procedure Substitute u(x)= xny resulting in the sep~able equation 

du = ~ 
u(n-H(u)) x 

The method employed to recognize this form uses the implicit 

function theorem to yield an equation in n. 

Consider 

G(x,y) = ~ L(x,y) 
y 

We wish to determine if G(x,y) = H(xny) = H(u(x,y)). 

The implicit function theorem states that this relation will hold 

if and only if 

Note that this equation represents the Jacobian in the two 

variable case. n 
Since u(x,y)=x y, we obtain the following 

relationships: 
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If n is known, we can determine whether the above relationships 

holds. However we can also use this relationship to generate a 

value for n. If the right hand side of the last equation is a 

constant than a substitution with n as that value is possible. If 

it is not a constant, the method is inapplicable. 

Notes 

This method is a generalization of the homogeneous case 

(Method 5). The method is rarely described although it accounts 

for many of the substitutions in the first 367 equations in 

Kamke [30J. In some of these cases Kamke prefers to give other 

methods of solution. For example, in (I 293)x(y
2
-3x)y'+2y

3-5xy=O, 

b 
27 16 

Kamke suggests dividing y x y instead of substituting 
- 1/2 

u(x,y) = x y. 

In this method we resorted to a special purpose matching 

rule instead of using SCHATCHEN. The use of the implicit function 

theorem was suggested by Engelman. In this case the theorem 

fits the situation beautifully. However one will probably have 

to make some assumptions to recognize forms such as 

by 

( c) ( , ) ab(, ) f x y bxy - a = x y xy + cy 

In order to perform the integration, y in G(x,y) is replaced 

u 

n 
x 

It is then hoped that SCHVUOS can rid the resulting 
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expression of all occurrences of x. 

Examples 

1) 

(see appendix E for further discussion of these examples) 

2 
(x-x y) y'-y = 0 

becomes 

~ 
\ 1-uj 

1 dx = o 
x 

2) xy' + y log ex - y logeY - y = 0 

becomes 

du = dx 
x 

In Appendix E we describe an experiment in which SOLDIER was 

asked to solve 76 6ifferential equations selected from a college 

text. SOLDIER was able to completely solve 67 of these problems 

with an average time on the order of 5 records. An analysis of 

the problems it failed to solve and steps taken to improve SOLDIER's 

performance on some of these problems is also given in Appendix E. 

We would also like to mention the existence of a program 

which solves linear differential equations of any order with con-

stant coefficients (see Engelman [36)). It was written by Ernst 

for the MATHLAB system. It utilizes the Laplace Transform method 

for solving such equations. The program makes use of the rational 

flDlction package of the MATHLAB System. 

Some methods which were not described above should be pointed 

out. There are '!D&ny special cases of integrating factors which 

can be considered. In particular, one method guesses the form 

of the ab 
integrating factor to be x y , substitutes that form 
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into the equation and solves the linear equations in the parameters 

that result after setting up the conditions for exactness (i.e., 

iL (µM) = ..a_ (µN)). If the system of equations can be satisfied, oY ax 
then Method 3 (Exact) is applied. If the differential equation con-

tains a subexpression which is irrational in both a and y (e.g., 

sin (x
2 

+ y
2
)), then it might be useful to substitute for some part 

2 2 
of this subexpression (e.g., u = x +y ). One can also attempt to 

switch the independent and dependent variables. Such a change would 

be useful in 

since it leads to the Bernoulli differential equation 

ey x' + xy + x2 
= 0 

There is a large body of knowledge regarding llCatti and Abelian 

2 3 2 
equations (i.e., y' =f(x)y + g(x)y+ h(x), and y'-=f(x)y +g(x)y + 

h(x)y+k(y)). These methods, however, frequently rely on knowing 

one or more particular solutions to the differential equation. 

Information regarding methods applicable to Ricatti and Abelian 

equations and to more general differential equations can be found 

in Kamke. Kamke also contains a table of about 1250 equations 

whose solution is frequently given in some detail. 

As is pointed out in AppendixA, a great deal of the informa-

tion about differential equations could be stored in tables and 

searched by computers. If we presume that a continual effort 

will be made to generate a library of programs and tables for 

differential equations, then programs will become a formidable 

tools for solving these problems. 



CHAPTER 7 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

The Performance of SIN 

We believe that SIN is capable of solving integration problems as 

difficult as ones found in the largest tables. The principal weakness 

of SIN in relation to these tables is in cases of integrands which con-

tain variable exponents and which usually result in solutions which are 

iterated integrals. Edge can solve some of theBe integrals (e.g., 

Jxncos x dx) since it contains special checks for variable exponents. 

However none of SIN's methods in stage 2 are able to obtain such iterated 

integrals. The experiment reported in Appendix D also showed SIN's 

weakness in handling certain algebraic integrands. On the other hand 

the power of MATHLAB's rational function package means that SIN is able 

to integrate many problems not present in the tables. Decision proce-

dures for cases such as the Chebyschev integrals give SIN a capability 

which is not present in most tables. 

SIN appears to us to be faster and more powerful than SAINT. The 

added power of SIN is principally due to the additional methods that SIN 

possesses. The additional speed is gained by the change in the organi-

zation of SAINT and by the use of tighter progress requirements. In 

Appendix C we pointed out that though SIN can solve problems solved by 

SAINT two orders and frequently three orders of magnitude faster than 

SAINT, that this figure is deceptive. It is probable that under optimal 

conditions for SAINT and SIN these figures will reduce dramatically so 

that the gain in speed will average to about a factor of three. In 

140 
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cases where the Derivative-divides routine is successful in solving a 

problem (about half the time), the ratio should be much higher. The 

average will be lowered by the increased effort spent on algebraic mani-

pulation on the other problems. SIN's simplifier SCHVUOS, is probably 

a good deal slower (but more powerful) than SAINT's hand-coded simpli-

fier. This factor affects the cost of most of the other processes such 

as differentiation and matching. 

Qn the Organization of SIN 

Instead of describing the organization of SIN at this point, we 

would like to indicate certain aspects of this organization which arise 

out of the discussion in Chapter 4. The reader is referred back to 

Chapter 2 for an outline of SIN's organization. 

One of the difficulties that AI prog~ams will increasingly face 

involves coamunication (see Newell [ 46 )). If a subroutine performs 

an analysis of a problem then its analysis must be coanunicated to its 

parent routine in such a manner that the parent routine can easily 

understand the information. If two subroutines are working in parallel, 

one may need to know what the other one is doing in order to perform 

efficiently. An example of the usefulness· of the latter type of commu-

nication was pointed out in Chapter 4 in the section in which we described 

SAINT's solution of J(l _ ::)372 dx. Here it was noted that in one of 

the subproblems SAlNT should not have performed the substitution 

1 y • ta~ since another trigonometric substitution on the problem had 

already been made which was undoubtedly superior. In this case SAINT 

did not seek out the necessary information. A similar difficulty arose 
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when ~NT's methods could have performed transformations which were 

the inverse of previous transformations. This occurs in the method 

sin x which substitutes ~ for tame, since this method may later substi­cos x 
tan x 

tute ~ for sin x. In this case SAINT did communicate the existence sec x 

of the previous transformation. While we do not wish to minimize the 

need for explicit coumunication in complex problem solving programs, 

we do want to point out .the usefulness of highly implicit communication 

in certain situations. If a parent routine knows enough about the oper-

ation of its subroutines, then it is not necessary to communicate a 

great deal of information, the parent routine can determine what has 

probably occurred with just a few key works of exchange. We think that 

such implicit comnunication occurs when PORK finds excuses for the 

failure of its methods to solve certain problems. In fact in these cases 

the methods are not aware of the situation as much as FORM is. SIN will 

1 not attempt the tanrc transformation if another trigonometric transfor-

mation is possible since this choice was built into the program. Similar 

remarks hold for the trigonometric identity transformation. What these 

examples appear to point out is that when one is able to centralize con-

trol in a routine which has sufficient understanding of a task, then the 

communication requirements in the program are markedly reduced. 

We noted in the discussion in Chapters 2 and 4 that SIN employs 

tighter progress constraints than does SAINT. This implies that there 

may be some problems which SIN will not attempt to handle though it has 

sufficient machinery for solving them. (On the other hand, we believe 

rurt x that SAINT will attempt to solve J~ dx until it runs out of time or x 

space.) We are not particularly worried by, such occurrences. It appears 
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to us that it is more important at present that a program have a good 

understanding of what it is able to do rather than that it have a medi­

ocre understanding and be able to solve more problems. If one desired 

to increase the power of SIN we would wish that he spend the effort on 

improving the analysis done by FORM rather than that he spend it on in­

creasing the search in FORM. We understand, of course, that it is not 

always possible to take this approach. The domain of nonlinear differ­

ential equations is a good example of such a situation. 

On the Organization of SOLDIER 

We noted in the Introduction that we did not expect to find a con­

cept as powerful as the Edge heuristic in the domain of first-order, 

first-degree ordinary differential equations. Thus we were not surprised 

to fail to find a practical method similar to Edge. In fact the most 

notable aspect of SIN's organization that we carried over was the reli­

ance on tight progress constraints. It seems to us that human analysis 

of this problem domain also employs tight progress constraints in the 

solution methods. 

Let us recall from Chapter 6 that SOLDIER employs eight solution 

methods. These methods are attempted one at a time. If a method decides 

that it is able to make a simplifying transformation (i.e., a direct re­

duction to integration or a reduction to a known and simpler differential 

equation form), then it will attempt it, and the result of the transfor­

mation will be the value of SOLDIER. Otherwise the next method will be 

considered. 

In Appendix E we tested SOLDIER on some problems given in a differ­

ential equations text. SOLDIER was able to solve 67 out of 76 of these 

problems. We do not believe that one should conclude from this perfor-
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mance that SOLDIER is far removed from being as. powerful a differential 

equation solver as expert humans are. We think that if the improvements 

and extensions to SOLDIER that we suggest in Chapter 6 and below are made 

then SOLDIER will be a powerful program indeed. We were disappointed 

when we recognized this to be the case. The reason for it is that mathe­

maticians have not made great advances in this problem domain over the 

past three hundred years. 

On the Applications of LISP 

Unfortunately, and mainly wrongly, LISP has acquired the reputation 

of being a language with very low execution speed. One factor leading 

to this reputation is the slow speed of arithmetic in most LISP imple­

mentations. (The Hawkinson-Yates system for the 7090 is an exception.) 

Yet when one declares variables to be fixed or floating it is possible 

for LISP to execute arithmetic statements as well as any other processor. 

It is the convenience of mixed data types (during execution) which forces 

the slow, interpretive execution speed of arithmetic operations in LISP. 

Another factor leading to this reputation is that old and famous programs 

such as SAINT ran interpretively. Compilation usually results in approx­

imately a twenty fold gain in speed. However the largest factor leading 

to this reputation is due to the attitude of the LISP programmers. LISP 

programs were usually developed in research projects where speed was only 

a minor consideration. (It is safe to say that many impressive programs 

such as Bobrow's STUDENT [ 4 ] , Evans' ANALOGY and Slagle' s SAINT could 

not have been written as doctoral dissertations except in LISP.) The 

trend in the recent past has been toward using LISP as a practical language 
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for projects with real time constraints on response. For example the 

MATHLAB system of Engelman and the robot projects at MIT and STANFORD 

have such real time constraints. It is thus important to recognize 

that LISP programs can be written which are relatively fast provided 

that one takes speed into consideration in designing the programs. It 

is our hope that SIN can serve as a model for this lesson and remove 

some of the stigma attached to LISP. It is far too easy to write LISP 

programs which execute slowly if one becomes beguiled by the ease of 

using LISP's recursive mechanisms. SAINT's pattern matching program 

Elinst was far too recursive to run efficiently. However it was a much 

smaller program thereby and this factor was crucial in the implementation 

of SAINT. The rational function package used in SIN runs slowly when 

parameters are introduced into a rational function. While such a de-

crease in speed is inherent in the task, it is also due to the extensive 

utilization of the recursive nature of the LISP list structure in the 

representation of rational functions. A special purpose representation 

of rational functions such as used in Brown's ALPAK [ 6] or Collins' 

PM system [ 12] should increase the speed of the rational function pack-

age by one to two orders of magnitude. 

On the Teaching of Integral Calculus 

We would like to see the introduction into first year calculus 

courses of the concepts underlying the Edge heuristic and the Liouville 

Theory. Besides giving the student a very powerful integration method, 

such a study might acquaint him with practical applications of notions 

derived from modern logic such as Godel numbering or decidable problem 

domains. Such a course might also indicate why Jex
2

dx is not an ele-
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mentary function rather than leave such a statement without proof. The 

relationship of the Edge heuristic and the problem solving technique of 

guessing could reasonably be emphasized in courses aimed at a more prac-

tical foundation. 

Improvements and Extensions to SIN and SOLDIER 

All the programs discussed in this thesis would profit by being 

rewritten for t~e LISP system of the MAC PDP-6. The PDP-6 LISP system 
• 

executes about three times as fast as the 7094 LISP system on compiled 

function and even faster on interpreted ones. This is due to the im-

proved instruction set of the PDP-6 and to improved system's prograD111ing 

rather than an increase in the machine speed. The MAC PDP-6 also has 

256 K of memory which would mean that all the routines could certainly 

be loaded at one time. This would allow greater interchange between 

SIN and SOLDIER and the rational function package. It would allow 

SIN and SOLDIER to be used as subroutines to the MATHLAB system of Engel-

man. The excellent scope output routines of Martin [ 37 ] are available 

on the PDP-6 as are teletype output routines written by Millen for the 

MATHLAB System [ 40]. Routines which accept FORTRAN-like (i.e., infix) 

notation for algebraic expressions are available and should be used in-

stead of the LISP (i.e., prefix) notation which is now used in inputs to 

SIN and SOLDIER. Anderson of Harvard University is currently working on 

a program which permits hand written input of algebraic expressions from 

a Rand Tablet [ 1 ]. Such a program could be used in the future as well. 

SCHATCHEN should be rewritten so that new modes can be defined by 

the user without reprograuuning relevant sections of SCHATCHEN. The 

simplifier SCHVUOS served us well while we required a small simplifier. 

However a new, more powerful and efficient simplifier written along the 
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lines indicated in Chapter 3 should be used. As is clear from Chapter 6 

and Appendix E this simplifier should have factoring and division capabi­

lities not currently available in general purpose simplifiers. The task 

of matching expressions for identity should be performed by a program such 

as Martin's matching program rather than by SCHATCHEN [ 37). 

SIN's second stage would profit from a better handling of algebraic 

integrands. This is clear from Appendix D. Another lesson learned in 

that appendix is the usefulness of a capability whereby the user can com­

municate with FORM and some of the methods used in SIN in order to intro­

duce new functions such as the error function. A table of integrals invol­

ving the error function which contains 145 entries was computed by Maurer 

in 1958 [ 38 ]. Such a table should be computable by SIN as well. 

It is clear that much more work needs to be done on the Edge heuris­

tic both as a method for solving integration problems and as a possible 

tool for teaching freshman calculus students. We understand that Risch 

is currently programming his method of integration using the rational 

function package. Such a program could be included in SIN's third stage 

as well. 

In discussing SOLDIER in Chapter 6 we noted that a great number of 

methods are known which have not yet been programmed. An interesting 

project is involved in finding particular solutions to differential equa­

tions. Such solutions can be used to find general solutions to Ricatti 

differential equations. In Appendix E we noted that the output of SOLDIER 

rarely conforms with the form of the text books' output. Another project 

would be to devise a routine which translates SOLDIER's output to conform 

with the implicit conventions used in text books. 
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We believe that if work is continued on the implementation of new 

methods for SOLDIER, then this program will become a truly formidable. 

tool in solving ordinary differential equations. In fact a program such 

as SOLDIER can become an active competitoT with text books or journal 

articles as a medium for the permanent storage of knowledge about methods 

of solution. 

On a Mathematical Laboratory 

In a forthcoming monograph by Martin and Moses the concept of a math-

ematical laboratory· will be introduced. In a mathematical laboratory a 

uaeT will be able to solve symbolic problems in mathematics. A mathema-

tical laboratory is envisioned to consist of tWo major components, a 

general purpose system and a set of specialized programs. The general 

purpose system will deal with input and output and will provide a 

command-oriented language with many capabilities. The specialized 

programs will deal with tasks which are sufficiently complex to require 

a separate organization. SIN and SOLDIER are prototypes of such special-

ized programs. Specialized programs will in the future employ a set of 

rather general routines such as a pattern directed language similar to 

SCBATCHEN or a simplifier such as~SCHVUOS. These frequently used routines 

will form a data base from which new specialized programs will be more 

easily written in the future. Work is proceeding in this country on all 

aspects of such a mathematical laboratory, but we shall concentrate our 

discussion on the specialized programs. In a recent thesis [ 28 ], Itur-

riaga has written a program in FORMULA ALGOL for finding limits of expres-

sions and for determining whether one expression is greater in value than 

another over some domain. This work represents an extension of work on 
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limits perfonned by Fenichel [ 19 ]. No work has been done to our know­

ledge, on finding sums of infinite series. Jolley provides a table of 

such series [ 29 ]. Nor has any significant work been done on definite 

integration. Bierens de Haan's monumental work on this area can be 

consulted [ 24 ]. In both of these cases one might at first utilize a 

table look up as described in Appendix A. 

Leaving aside the area of analysis we note that Maurer [ 39 ] and 

Mcintosh [ 57 ] reported on systems which deal with finite groups. Some 

routines have also been written for solving specialized tasks in topology. 

In fact a new theorem in topology was proved as a result of experiments 

performed by such programs [ 50 ]. Likewise specialized programs in com­

binatorics have been written [ 16 ]. Such programs should be expanded 

upon, systematized, and made available as part of a larger symbolic mani­

pulation system in pure mathematics. 

Along with the need for practical work in algebraic manipulation 

there is a need for parallel work on theoretical results. Collins' study 

of the Greatest Common Divisor algorithm led to a major imporvement of 

the Euclidean GCD method [ 13 ]. Similar studies are needed of methods 

for factoring polynomials, especially over extensions of the ring of in­

tegers. We need a study of the degree of growth of the results of certain 

algebraic transformations. We should have examples of very bad problems. 

In [ 42 ] we present such a problem in the domain of polynomial equations. 

Recursively unsolvable results such as those in Appendix B point out cer­

tain difficulties in algebraic manipulation. Proofs of the decidability 

of certain subcases such as in Richardson [ 52], Caviness [ 9 ], Brown [7], 

Risch [ 53], and Tobey [ 63] are useful also and these may in turn lead to 
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programs which implement the decision procedures used. 

On Artificial Intelligence 

In the area of Artificial Intelligence we would applaud all projects 

which required and utilized a large base of specialized knowledge. Robot 

projects are examples of such projects. On a less ambitious level we 

would like to note that it might be useful to develop a program .which 

solves word problems in the calculus. Such a program would counter, (if 

only temporarily!) the objections of those who claim that the semantic 

approach of Bobrow cannot be extended. One approach toward this problem 

would be to construct several methods of solution (e.g., "rate" problems 

of several types). Then the program would use local clues (probably key 

word analysis as in Weizenbaum's Eliza [ 66) will do) to determine which 

solution method is appropriate. Then the method-chosen should guide the 

program in extracting the information from the problem statement necessary 

for a complete solution. 

It would also be interesting to have some work leading toward a 

program which solves multiple choice questions on the level of the MAA 

high school prize examinations. Let us consider a typical problem. 

"At what time between 4 and 5 PM are the hands of the clock exactly 

opposite each other?" 

If the program knows that the answer involves the denominator of 11 

and one such answer is presented, then it should guess that answer. If 

only one answer involves a denominator of 11 and is moreover between 4:50 

and 4:55 PM, the program should guess it. These guesses would be made at 

stage 1 of the program. 
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If stage 1 is not effective but if the program knows the method of 

solution (a linear equation), then it should solve the equation. This 

would be done at stage 2 of the program. 

If neither of these stages is appropriate, then the program must 

obtain an analysis of this situation. Such an analysis is presently 

beyond the capabilities of AI programs, but not grossly beyond these 

capabilities. 

Presumably one of the methods available to this program is a rate 

problem solver. The statement of the problem does not immediately imply 

a rate problem but the knowledge that the minute hand and the hour hand 

travel at different rates could lend weight to such an hypothesis. Let 

x be the time in minutes past 4 o'clock at which the event occurs. Then 

the minute hand travelled x minutes between 4 o'clock and the occurrence 

of the event. x The hour hand travelled 12 minutes during that time. How-

ever the hour hand started with a 20 minute advantage and ended thirty 

minutes (one half a revolution) behind. Thus 

x 
x = 20 + 30 + 12 

= 600 = 54~ minutes x 11 11 

The solution above required the use of information about clocks 

and the relationship between clocks and circles. It also required a 

sophisticated word problem solver that was able to utilize this infor-

mation to set up the linear equation. Another method of solving this 

problem relies somewhat more heavily on making inferences about diagrams. 

In either case it appears that a good deal of machinery is required for 

the analysis of this problem. Besides the word problem solver a program 

which makes inferences based on diagrams of plane figures is also useful. 

While such programs may not be sufficient in order to perform the analy-
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sis of this problem, they certainly go a long way in that direction. 



APPENDIX A 

ITALU - AN INTEGRAL TABLE LOOK - UP 

This appendix describes some experi111ents which were performed 

with an integral table look-up. Although a table look-up is 

probably inferior in the long run to an integration program with 

regard to power or speed, the techniques employed in this routine 

could be found useful in other areas of symbolic mathematics such 

as exact definite integration, summation of series, or differential 

equations. 

There are several ways in which one could search a table of 

integrals. There is the brute force approach. In this· case each 

entry in the table is matched for equivalence with the expression 

to be integrated. This scheme is used in SIN'• Derivative-divides 

routine. Such a scheme takes a long time when the table is large, 

of course. A better approach is to sort the entries in the table 

by the factors which appear in them (e.g., all entries with sin x 

as a factor are in one subtable). Thus when presented with 

x sinxe , one checks all subtables for the one which contains sinx. 

In that subtable one checks for another part of the table which 

contains sinxex and there one presumably finds the entry desired. 

This approach would require that there be n! entries for an 

integrand with n factors (unless the expressions are canonically 

ordered). A table look-up along these lines was discussed in 

Klerer and May £321 
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Besides being relatively slow these approaches are not sensitive 

to the fact that an integral table usually presents generalized forms 

of integrands (e.g.~ .J8x2+bx+c) and not just particular integrands. 

(e.g., ~). This is due to the presence of undetermined constants 

in the integrand. These constants are used as coefficients as in 

I sin(ax+b)dx or exponents as in J:xndx or r n . x sinxdx. The example 

I n x sinxdx points out a further feature of the integral table, that 

is, the presence of iterated integrals in the table. A good integral 

table look-up should be required to llUlke use of all of these features 

of the tables. 

An integral table look-up, called ITALU, was prograomed to 

account for the features of the table just mentioned. It had the 

additional property of being relatively fast by making use of the 

technique of hash-coding. 

By carefully hash-coding the expression to be integrated one 

can expect to obtain a number which would correspond to relatively 

few expressions in the table. Furthermore the hash-code can be 

designed to account for the distinctive features of the table. The 

hash-coding scheme which was implemented ignored constants in sums 

and products. Thus sin (ax+b) coded the same as sin(2K), sin(x+2), 

sinx, and sin(31t x+Sy+z}. The hash-code, moreover, was a floating-

point number and the code of a sum was the sum of the codes of the 

terms in the sum, with a similar rule for products. Thus the code 

maintained the algebraic identities for sums and products. Hence 

sinxex coded like ex sinx. In this manner we avoid the need for 
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a canonical form of an expression. One further feature of this 

coding scheme was that terms in a sum which had codes identical 

with those of previous terms were ignored. Thus sin (x+yx) 

2 2 coded like sinx and x +2xy+3x coded like (2y+3) x + x and 

ax2+bx+c. 

The coding scheme was obtained recursively. The variable of 

integration had a fixed code of 0.95532. Any trigonometric, 

arctrigonometric or logarithmic function had associated with it 

a fixed floating-point constant which generally was exponentiated 

by the code of its argument in order to obtain the code of the 

expression. Sums and products were treated as described above. 

Exponentiation was a relatively complex operator for the coding 

scheme. This is due to the frequent occurrence of exponents 

1 1 
-2, -1, °"2' 2' 2 in the tables. When these exponents occurred the 

code for the base was raised to the exponent and the result was the 

code of the expression. Any other constant exponent was coded as 

1.43762 and the value of the subsequent exponentiation became the 

code. Thus xn is coded like x3 or xa or x- 4 . 5 Fixed bases were 

all coded alike. Thus ex coded like 2x or yx. 

An advantage of this coding scheme was that SCHATCHEN patterns 

could be coded easily as if they were expressions. This was due to 

the fact that the variables in the pattern were considered constants 

with respect to the variable of integration (assumed to be x 

throughout the table), and hence were ignored in sums and products 

and had a fixed value in exponents. Entries in the tables had 
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integrands which were SCHATCHEN patterns (e.g., sin (A/COEFFPT, 

NONZERO-AND-FREEOFX x+B/COEFFP, FREEOFX). Thus the full matching 

capability of SCHATCHEN could be employed in order to obtain the 

values of the constants in the integral table entry. 

ITALU had an internal table of code numbers for the expressions 

in the table. This internal table was searched using a binary 

search (i.e., the codes were linearly ordered by their numerical 

values). Corresponding to each code in this table was the location 

on the disk where the integral table entry resided. Once a code was 

assigned to an expression, it was determined if an entry in the 

table had an identical code, and the file on the disk containing 

that entry (if any) was read. In order to conserve disk space 

several entries were on the same file, but these entries were 

associated with their codes so that the search of the file was 

linear but rapid. For each expression having the desired code 

(several are possible), SCHATCHEN was used to determine if there 

was a match between the pattern which represented the integrand in 

the table and the original expression. If no match was found, the 

next expression was examined, and so on until all the expressions 

with the appropriate code were examined. If a match was obtained, 

the integral was evaluated after making appropriate substitution for 

the result of the match. Thus the integral contained the values 

of the constants in the integrand. The device of evaluating the 

the integral allowed the integral to be a LISP function. In this 
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manner iterated integrals could be obtained. Hence the ITALU 

program satisfied the requirements of an integral table look-up 

that we considered above. 

The implementation of ITALU was carried through up to the 

point where all of the steps above had been implemented and the 

program was tested on several problems. The largest number of 

entries in the table was only ten at any given time, and thus 

the properties of the coding could not be fully assessed (e.g., 

one could not tell how frequently unrelated entries yielded the 

same code number). The execution time of a call to ITALU was 

generally about 1 second. Most of this time was spent accessing 

and reading the disk. A set of routines were written for 

facilitating the addition of new entries to the table. However 

the description of each entry as a SCHATCHEN pattern with a 

corresponding integral was a fairly tedious job. A compact 

representation of the expressions in the table was obviously 

desirable, but was not implemented. 

Modifications to the hash code of ITALU were considered. 

Under the current coding scheme .Jx
2

+1 codes like x. One 

possibility is to ignore the value of constants in sums and 

products, but recognize their existence. Such a scheme would be 

useful in handling algebraic expressions. 

We also considered using a hash-coding scheme, such as 

Martin's ~71. Martin's hash codes are elements of finite 

fields rather than floating point numbers. Finite field 
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arithmetic is preferable when there is a risk of a floating-point 

overflow or a round-off error during the computation of the hash 

code. We felt that these difficulties could be ignored or easily 

overcome in the coding of expressions to be integrated. In order 

to account for round-off errors, we thus allowed for a variance 

of 1 xl0- 6 between the code of an expression and one in the table. 

In the domain of symbolic integration, a table look-up is 

probably not the best solution. Programs can now compete 

effectively in many cases with the tables with regard to speed 

and completeness. The situation in the future can only improve 

the relative position of the integration programs. Tables such 

as Petit Bois' 5l] with its 2500 entries contain many errors, 

some of which are serious (e.g., J1og cosxdx • 
1 

, [51] p. 150). cosx 

However table look-up devices appear to have current 

usefulness in other areas of symbolic mathematics. Very little 

work is being done at present on sulllll8tion of series and exact 

definite integration. Tables in these areas exist - Jolley's ~9] 

in suomation and Bierens de Haan's [~] monumental work on definite 

integration. For differential equations we reported solutions 

methods.in Chapter 6. However much still remains to be done, and 

tables could be used as long as programs have not caught up with 

the full power of.tables such as Kamke's 
(,30] 

Tables could be 

extended to include a great deal of information besides exact 

solutions. For example, tables could be employed to obtain good 

numerical techniques for solution or references to papers on 
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particular cases. We should point out that some entries in a 

table would be hard to look-up in any reasonable way. For 

n 
example, the entry xy'=yH(x y) properly deserves a special 

purpose program as was done in Chapter 6. Information about 

chemical compounds is currently being stored in tables which 

are searched by specialized techniques. Similar methods could 

be used in mathematics. The exact methods of ITALU are clearly 

not extendable to the other problem domains - special purpose 

programs should be used in each case. However the hash-coding 

technique coupled with the use of a matching program for 

increased power seem relevant to each of the areas considered. 



APPENDIX B 

RECURSIVELY UNSOLVABLE RESULTS IN INTEGRATION 

A recent theorem by Richardson [52] showed that the matching 

problem for a class of functions we shall call R-elementary is 

recursively unsolvable. Til.is result is easily applied to show that 

the question of determining whether integrals of R-elementary functions 

possess R-elementary solutions (or elementary solutions in the sense 

of Liouville (Chapter 5)) is likewise recursively unsolvable. 

Richardson's result, announced January 1966, is probably the first 

theorem about recursively unsolvable problems in analysis and has 

ar.oused great interest in the field of algebraic manipulation. Refer­

ences to it are made in Brown f 7] , Caviness f 9 J, Feniche 1 f 19] , 

Moses {42], and Tobey {63]. 

Til.ere is, however, a feeling among some (e.g., Risch {53)) that 

Richardson's unsolvability result may be due to the fact that the 

integration problem he showed unsolvable is not well-posed. In this 

appendix we shall sketch Richardson's um1olvability proof and indicate 

points in the proof where some of this contention has aris~n. We 

shall then present results of a similar nature to Richardson's which 

avoid these difficulties in the proof by extending the domain of the 

problem to nonlinear differential equations. ni.ese results are proved 

using similar techniques to Richardson's and were originally proved, 

interestingly enough, over a year before Richardson announced his proof. 
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In order to proceed we shall require the following definitions •. 

The R-eleeentary functions are obtained by the op~rations of 

addition, multiplication, division and substitution upon real variables, 

xl' x2 , .•• , xn using the constants rt, the rational numbers, loge2, 

and the functions ex, sin x, cos x, and logjx~ 

The constant problem is to decide, given an R-elementary 

function f(x), whether f(0)-0. 

The identity(matching)problem is to decide, given an R­

elementary function f(x), whether f(x)&O. 

The integration problem is to decide, given an R-elementary 

function f(x), whether there exists an R-elementary function g(x), 

such that g 1 (x)llf(x). 

Richardson first showed that the identity problem reduced to 

solving the constant problem. Thus, if one restricts the R-

elementary function to a domain where the constant problem is pre-

sumably solvable (e.g., by allowing only the rational operations), then 

the matching problem is likewise solvable. 

He then showed that the matching and integration problems for 

the R-elementary functions is recursively unsolvable. In order to 

proceed with our sketch of that proof, we shall require the following 

definitions. 

Hilbert's 10th Problem (The Diophantine Problem) 

Does there exist a procedure for determining whether the 
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equation P (x1, x2 , ..• , xn)=O, where P is any polynomial with 

integer coefficients, has a solution where each xi is an integer? 

Exponential Diophantine Problem 

Does there exist a procedure for determining whether the 

equation P(x1, x2 , ••• , xn, xn+l)=O, where Pis any polynomial with 

integer coefficients and where x 
1 

is replaced by 2x1, (i.e., 
n+ 

P(x
1

, ... , xn' 2x1)-0) has a solution with each xi, i•l, ••• , n an 

integer? 

Theorem (Davis, Putnam, Robinson) [14] 

The exponential diophantine problem is recursively unsolvable. 

The version of the Davis-Putnam-Robinson result that Richard-

son used is as follows: 

Theorem A There exists a polynomial Q(y, x 1, ••. , xn' 2x1) such 

that the problem of determining whether for each integer value of y 

there exist integer solutions x
1

, ..• , x
0 

to the equation 

Q(y, x 1, •.• , xn' 2xl)=O, is recursively unsolvable. 

Hilbert's 10th problem has not yet been decided although it is 

suspected that the problem is recursively unsolvable as well. 

Let us now proceed with Richardson's argument. 

Consider the polynomial Q of Theorem 1. Let the xi be real 

numbers. Then, if the equa~ion I 

(I) ~ . 2 2 ( 
~ sin nxi + Q y, x1 , 

i=l 
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possesses real-valued solutions for an integer value of y, then the 

x. must be integers, and if Q possesses integer solutions, equation I 
i 

certainly has real solutions. 

Note that since each term in I is real-valued, the 'sum of the 

squares" device forces each term to be zero. 

is an integer, the x. must all be integers. 
i 

Since sinn x. = 0 - x. 
i i 

This illustrates a con-

cept we shall call forcing. Forcing will be frequently used in this 

appendix. 
n 

The term L. . 2 sin n x. 
i 

forces Q to possess integer solu-
i=l 

tions. The use of n and sin x in this manner was foreshadowed by 

Tarski [ 61]. 

The next step is to show that there exists and R-elementary 

function f(y, x
1

, ... , xn) such that f(y, x 1 , 

integer y and for some real x. if and only if 
i 

... , x )< 1 for a given 
n 

xy 
Q(y, xy, x~, ... , 2 )=O 

for some integer values of the x~, and for the same integer value of y. 
i 

Richardson shows that we can take f(y, x
1

, ... , xn) to be of 

the form 

A(n{ n 
L. 

i=l 

. 2 
sin nx. 

i 

4 
K. (y, 

i 
xl' ... ' 

2 
x ) + Q (y, 

n xl' ... ' x ' n 

where A is a large R-elementary function of n and each K. is a 
i 

suitably chosen large R-elementary function of its arguments. In this 

form f is an R-elementary function. The proof that f has the desired 
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property utilizes an argument based on the consideration that if f 

is sufficiently close to 0 in value, let us suppose that 

f(y, il' i2' .. ., xn) :s; 1, 

xt, say, then Q(y, x1 , x2 , 

and let each xi be close to the integer, 

i1 1 
• ·.; xn' 2 ) < A(n). What is desired is 

to force ~ to have the value 0 at the xt• Since ~ is continuous in 

its variables (it is a polynomial in them) and moreover has integer 

values for integer arguments (the coefficients are integers), what 

is necessary is that the derivative of ~ is sufficiently small so 

that Q does not materially change its value on the interval between 

ii and xt· For this purpose the Ki which are based on the partial 

derivatives of Q are forced to be small as well. This is done by 

2 1 
requiring sin 1t xi Ki :s; A(n). 

Now Richardson shows that one can obtain a coding which re-

duces the problem for the n variables xi of Q to a single variable 

x. He obtains a function G(y, x) such that G(y, x) < 1 for real 

x .. (V s>O) (G(y, x) < e) .. 3 real xi 

The coding is 

x1 "" h (x), x2 • h (g (x)), x3 • h(g(g(x))), •.. 

where h(x) = xsinx, g(x) = xsinx3 . 

Richardson now uses the loglxlfunction to obtain a decision. 

Consider the following equations: 
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Ix!= e log Ix J thus the absolute value function is R-elementary. 

x!y .. x-y+I x-yl , this subtraction has value 0 if y-x. 
2 

Min(y,x) • y!(y!x), the minimum function restricted to non-

negative values. 

Now if G(y,x) ~ 1 for some real x and integer y, then 

G(y,x) < i for some real x by the e case above, and for this x, 

2.:.2G(y,x) > 1 • Thus, min(l, 2.:.2G(y,x)) • 1 for some real x. If 

G(y,x) > 1 for all real x, then for all real x,min(l,2~2G(y,x)) • O. 

By the continuity of G which is preserved either min(l, 2.:.2G(y,x))sl 

for some interval of values on the real axis for x and for a 

fixed integer value of y, or min(l, 2&2G(y,x)) = 0 for all real x. 

Now if we let M(y,x) = min(l, 2.:.2G(y,x)), then the question of 

deciding whether M(y,x) is identically 0 is equivalent to deciding 

whether Q(y, x1, .•. , xn' 2xl) • 0 has integer solutions and is thus 

recursively unsolvable. M(y,x), we note, is R·elementary. 

The above is a sket~h of the proof of the recursive unsolvability 

of the matching problem. The recursive unsolvability of the integra-

tion problem is obtained as follows: 

Consider 

. 2 J M(y,x)ex dx 

If M = 0 for some integer value of y, then the integrand is 0 

and possesses a solution (e.g., O). If M • 1, on some interval then 
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the integrand is equivalent to ex2 which possesses no elementary 

solution on any interval, as is well-known. Hence, the integration 

problem for R-elementary functions is unsolvable since one cannot 

tell whether M = O. 

This completes the sketch of Richardson's proof. As was seen, 

the decision step in the matching problem necessitated the use of 

the absolute value function. Caviness argues that either the abso-

lute value function or the constant :n: (used in sin :n: x and needed 

to assure a zero value on integer arguments) are the culprits in 

allowing Richardson's results to hold. The constant :n: should not 

be too surprising in the context since there are many problems re-

lated to the constants e and :n: which are not yet solved (note 

i:n:x -i:n:x 
sin :n: x e - e 

2i 
) . For example, it is not known whether 

e+1t is a rational number. 

We should note that the absolute value function arose when we 

considered only one of the infinite number of inverses to the log 

function. For example we can obtain the absolute value function by 

considering ,J;l to possess only one solution. If we were to 

evaluate each of the values of an R-elementary function and were to 

consider f(x) to be equivalent to 0 if it were 0 for each of its 

values, then one might obtain a more tractable problem. One would 

still be left with ticklish problems regarding the constants e and :n:. 

These one might suppose are not very interesting from a practical 
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complex coefficients) if and only if p is an integer. 

Theorem 1 

The exponential diophantine problem (Theorem A) is equivalent 

to the problem of determining whether, for integer values of y, the 

system of differential equation S has particular solutions which 

are rational function in x. 

(Hence, the latter problem is recursively unsolvable~ 

a) 
dpi 

- 0, i•l, dx • •• , n 

dyi 
+ y2 - 1 

p. (pi+l) 
(S) b} + 1 i•l, dx x2 

, ••• ' n 

2 
Pn• 2Pl) 

dz + z2 
~ (y, Pl, .•. ' 

c) - 1 -dx x 

~· Suppose S has such a set of solutions for a given integer 

value of y. 

By a) each pi is a constant. 

By b) and Theorem B each p
1 

is an integer. 

~(y, P1• ... ' Pl 
p , 2 ) • 0 by c) for y an integer. 

n 

This is so since by a) and b) Q is a constant. Thus, for z to 

2 have a particular solution which is a rational function, -Q -q(q+l) 

for some integer q. 2 But q (q+l) ~ 0 for integers q and •Q ~ 0 since 

Q is integer valued. 
Pl Thus, ~(y, p

1
, ••• , p , 2 ) • 0 for integer n . 
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values of p
1

, ... , pn. 

Suppose~ did possess integer solutions c. for some integer 
i 

value of y, then by fixing each pi to be the corresponding ci, we 

obtain a set of rational solutions for S. 

Theorem B has a corollary which states that the differential 

equation II has a general solution which is a Liouville function if p 

is an integer. 

Theorem 1 can, therefore, be extended to show that the problem 

of determining whether systems of differential equations of the 

form S have solutions which are Liouville functions is recursively 

unsolvable. 

Let us consider the diophantine analogue of the system S (i.e., 

no exponentiation in Q). We now have a system of polynomial equa-

tions with integer coefficients. The solutions of such systems of 

equations is in the domain of differential algebra (see Kaplansky [31]). 

Theorem 1 leads to the result that Hilbert's 10th Problem reduces 

to a decision problem in differential algebra. 

Let us now consider the problem of determining whether a 

differential equation f(x, z, z', ... , z(n)) = 0 has a solution z(x) 

where z and all its indicated derivatives are real-valued functions 

of x. 

More precisely consider 



= 0 

g(y, x, z', ... , z(n)) 

z(n)2 + Q2(y, wl' w2' ... , 

170 

w ' n 

Ing, y is an integer, x is the independent variable and is 

real, z is the dependent variable and thew. are defined as follows: 
l. 

z 
(n-1) 

wn (n-1)! 

(n-2) (n-1) 
z - xz 

wn-1 (n-2)! 

z - xz' 
2 , , ( l) (n-1) (n-1) x z n- x z 

+ _2_!_ + · · · + (-l) (n-1) ! 

Theorem 2 The problem of deciding whether 

g(y, x, z, z', ... , z(n)) = o has a real-valued solution which 

possesses n real-valued derivatives is recursively unsolvable as 

y varies over the integers. 

Proof. Let y be fixed. 

Suppose g has such a real-valued solution z(x). Since we are 

dealing only with real-valued functions the term (z(n»2 forces 

z 
(n) = 0 and thus z must be a polynomial of degree (n-1) at most. 

Each so chosen that if 
n-1 

+ ao, then Since w
1 

was z = a n-lx w. = ai+l • l. 
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1 

Q(y, wl' 
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= 0, a. is forced to be an integer. Moreover, since 
1 

w1 
w

2
, ... , 2 ) = 0, Q must possess a set of integer solu-

Suppose Q(y, x
1

, ... , 
xl 

x , 2 ) 
n 

0 has solutions x.= a., 
1 1 

a. integers. 
1 

n-1 
Then z(x) = an-lx + ... + a

0 
is a solution to g=O. 

The statement of Theorem 2 is too general to make it a 

satisfying decision problem since the set of all real-valued 

functions with real derivatives is not computable. The theorem 

would hold for any computable superset of functions of the set of 

polynomials of degree n with integer coefficients. 

Theorem 2 seems to indicate the concept of a real-valued 

solution to a differential equation is quite elusive. 



APPENDIX C 

SIN'S PEBPORMANCE OH SAINT'S PBOBLBMS 

As an experiment for testing SIN's performance, we attempted the 

86 problems attempted by SAINT and reported ·in Slagle's thesis. SAINT 

integrated 84 our of these 86 problems and announced failure to integrate 

x fl+i and cos .fi. Slagle reports that SAOO solved the 84 problems 

with an average time of 2.4 S!'inutes (144 seconds). SIM solved all 86 

problems with an average time of 2.4 seconds. this average. becomes 1.3 

seconds when one discounts the cost of chaining. Chaining occurred on 

22 our of the 86 problems. Chaining is. considered to take 4.5 seconds 

in this accounting. that time appears .to be a minimum bound for the 

operation. In order to determine the time required by SIN to solve a 

problem, we used the execution time reported by crss. The swap time in 

ctSS is ignored here. 

Over half of the 86 problems (more precisely 45) were c~letely 

,solved by SIN's first stage. These problems were solved with an average 

time of 0.6 seconds.· Of the remaining problems only two required the 

Integration-by-parts routine (i.e., x cos x and cos ./x - the latter gene-
,. 

rates the subproblemJ2y cosy dy). Two routines were added to SIN in 

order to solve the definite and double integrals among the 86 problems. 

These routines call SIN to perform the integrations indicated and make 

appropriate substitutions at the upper and lower bounds. 

Below we list problems for which SAINT results are available and 

the comparative· results for SIN. 
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SAINT time SIN time discount 

Problem in seconds in second• for chain Hot es 

2 

Ii dx 1.8 0.20 Fastest problem 
lX solved by SAINT, 

integrated by table 
look up in IMSIB 

s s~s:2t dt 
1080 9.18 4.6 Longest solution 2 

1 + sec t - 3 tan t time in SAINT. 
9 subgoals in 
SAINT, 1 in SIN 

J _s_ 126 0.87 7 subgoals in 2 sec x SAINT, 3 in SIN 

I .,.2 + 1 
dx 102 5.87 1.3 3 subgoals SAINT 

.fx 1 SIN 

J /xz +x2x + 5 
dx 960 9.68 5.2 14 subgoals SAINT 

1 SIB 

J 2 sin x cos x dx 120 0.33 

J 2 2 (sin x + 1) cos x dx 228 2.48 

J exdx 
102 0.28 2 subgoals SAINT 1 + eX 

0 SIN 

I 2x e 222 6.23 1.7 1 + eX dx 

I 1 
d l - cos x x 120 9.78 5.3 

.! f 3 2 otan x sec x dx 144 0.47 
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SAINT time SIN time discount 

Problem in seconds in seconds for chain Notes 

1 

I x log x dx 132 0.70 
0 e 

1{ 

J ~in x cos x dx 156 0.30 Largest speed 
0 ratio between 

SIN and SAINT 

J x + 1 dx 576 10.l 5.6 Longest solution 
/2x • x2 in SIN. 

13 subgoals SAINT 
1 SIN 

I 2ex 
dx 360 8.25 3.7 4 subgoals SAINT 

2 + 3e2x 1 SIN 

I c1 "' x 660 8.77 4.3 13 subgoals SA1Nr x2)5/2 dx 
2 SIN 

J 6x e dx 510 7.92 3.5 10 subgoals SAINT 
e4x + 1 1 SIN 

s 2 390 7.20 2.7 10 subgoals SAINT log (2 + 3x )dx e 1 SIN 

The last 3 problems were solved by SAINT in 540, 318 and 210 seconds 

respectively after an entry was added to SAINT's table which was used in 

the solution of these problems. 
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In order to fully account for the effect of garbage collection the 

problems were run in large batches. Thus garbage collection time was 

distributed over the set of problems. Garbage collection time probably 

accounts for less than 2rff, of the total time in SIN. 

We should note some of the reasons for the time difference in the 

results of SAINT and SIN. SAINT was run on the 7090 and SIN on the 7094. 

This accounts for about 4rd> of the gain (2.18 vs. 2.00 microseconds in 

the cycle time and overlapped instruction execution in the 7094). The 

single major difference in the time is due to the fact that SAINT ran 

mostly interpreted (a major exception being the simplifier), and SIN was 

run mostly compiled. Compilation is usually considered to gain a factor 

of 20-30 in the speed of the program. We tested some problems with SIN 

being executed completely interpretively. We noted an average speed loss 

of a factor of 15. However none of the problems ·which were run inter­

pretively included problems which required chaining. Thus we were unable 

to run some of the more complex problems in the set interpretively. 

By taking these factors into account we note that SIN would only 

run about three times faster than SAINT on the average when both are 

executed under optimal conditions. The reason for the relatively small 

ratio in SIN's favor we believe is because most of the time spent in SIN 

in solving the harder problems in the set is spent in algebraic manipu­

lations (e.g., simplifications). Algebraic manipulation in SIN is not 

materially faster than it is in SAINT. Though the analysis performed in 

SIN yields a very direct solution, the total time spent to obtain the 

solution is still significant. Hence the contrast with SAINT in regard 

to total solution time is not very great. 



APPENDIX D 

Solution of P;9ble11JS I>rc;>.PPSed by Mcintosh 

Professor Mcintosh (National Poleytechnic Institute of Mexico) 

required the solution of eleven nontrivial, integration problems for 

a physics paper that he was writing b51. ,ffe found the solution to 

these problems in Petit Boi$ 1 table. He also asked us to solve 

these problems using SIN. The problems involved variable coefficients 

in a square root of a quadratic which the version of SIN current at 

that time was not equipped to handle. Although we had intended to 

add the variable coefficient capability to Method 5, it wa~ not 

needed for the SAINT experiment described in Appendix C. We rewrote 

Method 5 to account for variable coefficients. Interestingly enough 

this was not sufficient for a satisfactory solution of the problems 

since Professor Mcintosh required that the output be in terms of 

the arcsin function. In some cases the transformations proposed 

by Method 5 yielded an answer in terms of the log function. To 

force the arcsin result a further method was added. Thus if the 

integral was of the form 

J-- dx 

x./ax2-HJx+c 

1 the substitution y= - was made. x This substitution rids the 

denominator of the factor x. With these modifications SIN was able 

to solve all eleven problems. In the solutions obtained by Mcintosh 
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we noted some discrepancies from solutions obtained by SIN. It 

should be noted, however, that Mcintosh was only interested in 

the coefficient of the arcsin terms and not in the argument. All 

the errors were minor and occurred only in the arguments of the 

arcsin function. 

Important lessons are to be obtained from this experiment. 

It is quite likely that other users of SIN will have similar 

requirements regarding the form of the output. SIN should there­

fore be modified so that FORM can accept simple descriptions of new 

substitutions written, say, as a SCHATCHEN and REPLACE rule. 

An examination of the eleven problems will indicate that a 

great deal of SIN's machinery was involved in solving these 

problems. Thus it would appear that a program such as SIN is more 

useful than a special purpose integration rou~ine written for 

solving just this set of problems. Such a special purpose program 

will require so much machinery as to make it uneconomical. 

Finally we should note that this experiment points out the need 

for further work on methods which transform algebraic integrands. 

The method we introduced to force the arcsin result also decreased 

the labor involved in the solution and should be normally available 

in SIN. 
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Mcintosh Problems 

Problem Constraints 

J dr 

l) r /2Hr2 - a.2 H>O 

J dr 
2) 

rJ2Hr
2 

- a.2 -
H>O 

€2 

3) 
f. dr 

"'r/2Hr
2 

- a.2 - 'JJ.r4 
H2 > 2clx 

4) 
J dr 

r j2He
2 

- (} - €2 - 'JJ.r4 

H2 > 2(a.2 + e2) K 

5) J dr 
r JzHr2 - Cf - 2Kr 

K2 + 2Ht:i > 0 

6) J dr 

r /2Hr
2 

- Cf - e2 
- 2Kr 

r dr 

7) J )2Er2 - a.2 

8) J r dr 

/2Er2 - (.} - €2 

Answer equivalent to 

1 ~ -a arcsin /2ii r 

-1 Ja.1- + e:2 -;=;r==m;r- arcsin ... _-.......---._ JJ + e:2 /iii r 

1 Hr
2 

- a.2 
2ci arcsin 2 J 2 'B.J. 

r H -

1 Hr
2 

- eel + e:
2

) 
arcsin 2J 2 2 2 

r H - 2(cr+e: )K 2 j(} + e2 

1 Kr - c} 
- arcsin J 2 Jk} 
a. rK+2 

1 -Kr - eel- + e:2) 
-,lllliF=i===-;~ arcsin -~=:=::;::::::::;;:::-
Jcl- + e: 2 r Ji,2 + 2(Cl+e:2)H 

1 J2Er2 - (a.2 + e:2) 
2E 
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Problems Constraints Answer equivalent to 

9) J r dr 
~J~2E==rz;:;::==~=a~2;=::==2=K=r~4= 

2 1 . 2Kr-E 
~ arcs1n J 2 

E2 - 2Ka 

10) J r dr 

1 
2 . 2Kr - E 

arcs1n j 2 2 2 
E - 2K(a + E: ) 

11) 
r dr 

- a2 - 2Kr 
E < 0 

J2Er 2 - a2 - 2Kr 
2E + 2HE /-2E 

2Er + K 
arcsin J 2 2 

K - 2Ea 
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APPENDIX E 

AN EXPERIMENT WITH SOI.DIER 

As an experiment for testing the effectiveness of the 

differential equations routines we attempted to solve the review 

problems appearing in pages 54-56 of "Applied Differential Equations" 

by Spiegel [601· This text was chosen for sentimental reasons since 

it was the book through which we first learned methods for so~ing 

ordinary differential equations. The methods described in Chapter 6 

were mostly influenced by Ince's "Integration of Ordinary Differential 

Equations" [ 27], and Kamke' s "Differentialgleichungen" [30]. As 

it turns out the methods in Spiegel were quite similar, which is not 

a surprising fact. However, there were some differences and these 

will be pointed out below. 

Briefly, the results of the experiment were as follows: Of the 

80 problems in pages 54-56 of the book, 4 involved second and higher 

order equations (i.e., y", y'''). These problems were not attempted 

since SOLDIER had no machinery to deal with them. Thus the number of 

problems actually attempted was 76. Of the 76, SOLDIER satisfactorily 

solved 67 problems with an average time of 6.6 seconds. Discounting 

the cost incurred by chaining (chaining occurred on 26 of these 66 

problems), the average time was 4.3 seconds. Two problems were com­

pletely reduced to integration problems, but were not integrated by 
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problems were not solved at all. An examination of the result re­

ported by SOLDIER for one of the problems (i.e., 51) indicated a 

misprint in the book. As before, our timing information is based 

on the report by CTSS of the execution time of the program. 

The system on which this experiment was carried out had the 

following characteristics: SCHATCHEN, SCHWOS, FORM, RBPIACE, SOI.DIER, 

and ap the solution methods for differential equation.- were com-­

piled. A few integration methods, especially the Derivative-divides 

method, were also compiled. The rest of the integration methods were 

run interpretively. 'lllis accounted for a noticeable increase in 

solution time when one of the integration subproblems required a 

solution method in stage 2 or 3 of SIN. As was the case in the ex­

periment reported in Appendix C, the 76 problems were attempted in 

large batches (about 15 at a time) so that the •ffects due to garbage 

collection were fully considered. 

Below we shall describe on the performance o~ SOLDIER on some 

of the more interesting fully solved problems. We shall then describe 

each of the 9 problems which it failed to solve fully. 
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Representative Solved Problems 

The largest number of integrations needed to solve one of the 

67 problems was 3. This was achieved by problem 69 among others. 

(69) (ey +x+3)y 1 1 or (eY+x+3)dy - dx 0 

This problem is solved by one of the multiplier methods (Chap-

ter 6, Method 3) 

a (ey +x+3) 1 
ax 

a (- 1) 0 
Cly 

1 
(1-0) - 1, and - 1 is function of y. 

1 
a 

Thus the first integral is 

s -1 dy -y 

The multiplier is e-y resulting in the exact equation 

(l+xe -y +3e -y )dy - e -y dx 0 

The second integral is 
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and the final integral is 

J (l+Je -y)dy y-Je-y 

The solution reported by SOLDIER is thus 

The solution in Spiegel is 

y y 
x = ye -3+ce . 

This solution is equivalent to the one obtained by SOLDIER. 

This problem was solved in 5.2 seconds. 

The most complex solution was obtained as a result to prob-

lem 7 3. 

(7 3) 

This homogeneous problem required the solution of 

" du 

j u-™ 
l-3u 

The final solution given by SOLDIER was 
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2 
log x +~log (1+3~ + 2Y.) - J2 arc tan (-;J. + ..Jz ) Co 

e e x x .,;2 J2x 

The solution in Spiegel was 

2 2 
log (x +2xy+3y ) 

e 2J2 arc tan (~~Y) + c 

This problem was solved in 15.3 seconds and required a chain 

to the rational function package. 

The problem in which we discovered a misprint in the book's 

solution was problem 51. 

(51) y' 3x+2y or y'-3x-2y 0 

The problem is linear (Chapter b, Method 1) and the first 

integral required is 

J -2dx -2x 

The next integral is 

S 
-2x 

-3x e dx 

The final answer given by SOLDIER was 

-2x (3 3 \ -2x 
Co ye + 4 + 2 x)e 



The book's solution was 

-2x 
y = c e 
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This solution differed from SOLDIER's in that the sign of 

-2x 
the exponent of e is wrong. 

The answer was obtained in 9.0 seconds and required a chain 

to solve the second integral. 

(5) 

The fastest solution time was obtained for problem 5. 

(3-y)dx + 2xdy 0, y(l) 

This problem is also linear. 

The first integral is 

1 
lov- x 

2 °e 

1 

1 ( f . l'f . -1/2 log x 1) The next integra a ter simp i ying e e =,r;- is 

dx 
3 

-Jx 

The final result is 

Co = ...;Lx - 3 Jx ,,;x 
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The book's solution is 

(3-y)
2 

4x 

which is equivalent ot SOLDIER's except that the constant of 

integration was determined by using the initial condition. 

This problem was solved in 0.8 seconds. 
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The Nine Unsolved Problems 

Problems 48 and 75 were not solved primarily because SOLDIER 

had no machinery for factoring them. In these two 

(48) 

(7 5) 

2 2 
~ = ~ eP -q 
dp q 

a+b problems what is needed is to recognize that e a b 
e e . A 

powerful factoring routine would have yielded the result that both 

of these problems are separable. 

Problem 50 is also recognized to be separable 

(50) (x+xcosy)dy - (y+ sin y)dx = 0 

if one factors x+xcosy. When SOLDIER solved this problem it utilized 

one of the multiplier methods. 

The difficulties due to the lack of a general factoring or 

division routine which was pointed out in Chapter 6 is one of the 

outstanding problems which must be solved in order to achieve a 

powerful routine for solving differential equations. The rational 

function package which is not directly utilized by SOLDIER can 

factor polynomials and some more general expressions (e.g., x+xcosy 
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could be factored by it), however, it must be extended in order to 

recognize factorizations involving exponentials and logs. 

A similar difficulty to factoring faced the program in 

problem 65. 

(65) xy' + ylog x = ylog y + y 
e e 

This problem is easily solved by the homogeneous method if it 

is first transformed into 

xy' - ylog "!.. • y e x 

SOLDIER does not possess enough machinery to realize that this 

transformation can be effected. Method 8 of Chapter 6 which normally 

would have solved problem 65 without the log transformation failed 

because SCHVUOS could not simplify a quotient which arose in the 

course of the solution. 

Problems 47 and 64 were not solved because SOIDIER lacked a 

method given in Spiegel. 

(47) 

(64) 

2 
xdy - ydx • x ydy 

2 2 
xdy - ydx • 2x y dy 

Spiegel suggested that one should watch out for frequently 

occurring combinations such as xdy+ydx or xdy-ydx. He gave a method 

which deals with some of these cases. In 47 he points out that by 
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dividing by x2 one obtains the derivative of f on the left hand 

side and ydy on the right hand side. In 64 one obtains 2y2dy on the 

right hand side and once again the derivative of I. on the left x 

hand side. SOLDIER lacked this particular method and was unable to 

solve these problems. Once again Method 8 of Chapter 6 was applicable 

and did not find a solution due to problems in division. 

Another method lacking in the program is pointed out by prob~ 

lem 57. 

(57) 
ds 
dt -

_!___ 
s+t+l 

Her~ the linear substitution u(t) • s+t+l would have left a 

separable equation. Also a reversal of the independent variable 

followed by multiplying out the denominator would have left the 

equation 

!!! • s+t+l 
ds 

which is linear. The method of multiplying out the denominator is 

also useful in problem 17. 

(17) 
4 

I 2xy-y 
y - - -

3x2 

SOLDIER solved 17 by dividing through the denominator and using the 

Bernoulli method. By multiplying out the denominator, the multiplier 
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method would solve the problem. 

Problem 22 was not solved by SOLDIER because the almost-

linear method is not powerful enough. 

(22) 2 2 (tan y - tan y cos x)dx - xsec y dy = 0 

The substitution u(x)•tan(y) results in the equation 

2 
(u-u cos x)dx - x du = 0 

which is Bernoulli. However, the almost-linear method checks only 

for the possibility that the resulting equation is linear and com-

pletely misses the possibility that it is Bernoulli. 

Finally, two problems, 56 and 74, were not completely solved 

because SIN did not have powerful enough machinery. 

(56) 

{l4) 

dI + 3I = lOsin t 
dt 

y 1cos x = y - sin2x 

In 56 the linear method generates the subproblem 

J -10e3tsin t dt 

Without the Edge heuristic, SIN cannot integrate this problem. 

There was not enough room in the system to include the Edge heuristic 

(only 1500 words were left in free storage), so SIN failed to 
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integrate this problem. 

SIN failed to handle the integration problems needed in 74 

because it does not currently possess enough machinery for dealing 

with sin(2x) and cos(x) in the same integrand. As has been indi­

cated in Chapter 4 some machinery for just this situation was 

designed but not fully implemented. 
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Modifications to SOLDIER 

Following the experiment reported above we made two changes 

to the methods employed by SOLDIER. First we added a simple factori-

zation routine to Method 8 of Chapter 6. With this routine Method 8 

was able to solve problems 47, 64, and 65, as expected. 

In addition we added an indicator to SCHVUOS. When this 

a+b a b indicator was on, SCHVUOS executed the rule e .... e e • This 

indicator was turned on in running Method 2 of Chapter 6 (Separable). 

Thus, problems 48 and 75 were solved as well. The use of indicators 

illustrates the approach toward simplification programs we had out­

lined in Chapter 3. In that chapter we said that simplifiers should 

be considered as black boxes with strings attached. When a decision 

has to be made inside the simplification program, it can check to 

see whether it had been given an instruction regarding the choice to 

be made. 

These changes must be considered as stop-gap measures and not 

as solutions to the factoring problems which still remain in SOLDIER. 



APPENDIX. F 

LISTINGS 

The listings of SIN and SOLDIER given below were produced by a LISP 

program written by Diffie of the MATHLAB project and modified by us. 

Listings of LISP programs are frequently printed by using the internal 

representation of the program. The listings of programs written in most 

other languages usually bear a close correspondence to the input form of 

the program. This need not be the case for LISP programs. The routine 

Edge which was not listed using Diffie's program is presented last. The 

listing of this routine may be used to guage the effect of Diffie's pro­

gram. 

The listings of two recent LISP programs (i.e., Martin [ 37 ] , Nor-

ton 47 ]) are also available. One can use these listings to compare 

different styles of LISP programming. Norton accentuates the use of the 

PROG feature and his programs thus have a FORTRAN-like appearance. Mar­

tin's style is richer and leans toward greater use of "pure" LISP. Our 

style is intermediate to these two styles. 
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DEFINE 
lllSCHATCME~ M2l 

SCHATCHEN 

194 

IM2 ILAMBD~ IE P SPLISTI 
IPRO~ IANSI 

!RETURN ICOND llNULL IMl E Pll NILi 
I INULL ANSI Tl 
IT ANSI Jilli 

IMl (LAMBDA IE Pl 

DEFINE 

ICONO CIEQUAL E Pl Tl 
llATOM Pl NIU 
I IATOM ICAR Pl l 

ICONO I IOR CEQ ICAR Pl I QUOTE PLUS 11 
(EQ (CAR Pl (QUOTE TIMES II 

( LOOPP E Pl I 
ICEQ (CAR Pl IQUOTE EXPTll CZEPOW E Pll 
( CEQ ICU El lCAR Pl I ( EACHP E P 11 
I (OP (CAR Pl l NILi 
lCEQ (CAR Pl (QUOTE COEFFTll 
CCO~FFPORT E P (QUOTE (TIMES 1 Till I 

ICEQ (CAR Pl (QUOTE COEFFPTll lCOEFFPT E P Tll 
I CEQ (CAR Pt (QUOTE COEFFP l l 

ICOEFFPORT E P (QUOTE (PLUS 0 Till l 
((EQ (CAR Pl (QUOTE COEFFTTll 

lCOEFFTT E (CADR Pl T (QUOTE TIMESll 
I lEQ (CAR Pl (QUOTE COEFFPPI l 

lCOEFFTT E lCADR Pl T (QUOTE PLUSll I 
llEQ (CAR Pf (QUOTE OVCOEll lOVCOE E P Tll 
((EQ (CAR Pl (QUOTE ZEPOWll lZEPOW E Pll 
((AND CSETQ ANS ICONS NIL ANSll !TESTA PE NILll 

lRESTOREl I I 
IT (RES TORE l I I I 

((ATOM ICAAR Pll 
lCOND ((ATOM El NILi 

((PROG2 lSETQ ANS (CONS NIL ANSI! 
!TESTA ICAR Pl ICAR El El I 

ICONO ICOR CEQ (CAR El IQUOTE PLUSll 
IEQ (CAR El IQUOTE TIMESll 

ICOND ll LOOPP E 
ICONS CCAR El 

C COR Pl 11 
IRESTOREll I 

IT IRESTOREll II 
CIANO ISETQ P (CONS ICAR El ICOR Piii 

IEACHP E Pl I 
IRESTOREll I 

IT (RESTORE I I )) 
(T IRESTOREll II 

(T Nill 11111 

lllLOOPP ILAMSOA IE Pl 
(PROG IX Z EEi 

lSETQ EE 
(COHO llNOT IEQ (CAR El (CAR Pill 

I LIST ICAR Pl El l 



LOOP 

LS 

L8 

L2 

Ll7 

Ll9 

L18 

LlO 

Lll 

Ll2 

L13 

Ll4 

LlS 

Ll6 

L47 
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CT E> » 
CSETQ Z Pl 
ISETQ ANS (CONS NIL ANSll 

CSETQ Z CCDR ZI I 
CCOND C CNULL ZI 

CRETURN ICOND (INULL CCDR EEll CRESTOREll) 
IT C RES TORE 11 I > I I 

ISETQ X EEi 

ICOND llNULL ICDR X)) IGO Ll7>1 
( COPl IC.UR Z) > IGO UOJ I 
ICEQ CCAAR Z) (QUOTE EXPTll IGO L1411 
ICMl CCADRXI CCARZ>J IGOL2JI I 

ISETQ X CCDR XI) 
CGO LS) 

ISETQ ANS ICONS ICONS X CCDR X» ANS» 
IRPLACD X CCODR X)I 
IGO LOOPI 

ICOND ((NOT CEQ CCAR P) (QUOTE PLUS))) CGO ll8H 
CCMl 0 ICAR Z>> CGO LOOP)) I 

!RETURN CRESTOREI) 

ICOND llAND CEQ CCAR P) (QUOTE TIMESI> 
(Ml 1 I CAR Z f) I 

ICOND 

CGO LOOPI I 
CT CRETURN IRESTORElll I 

ICEQ ICAAR ZI (QUOTE COEFFTll IGO llll' 
I IEQ IC.UR ZI I QUOTE COEFFPJ I IGO L121 j 
((EQ CCAAR ZI (QUOTE COEFFPTH CGO LUU 
llEQ CCAAR zj CQUOTE COEFFTT» CGO L16>1 
llEQ CCAAR ZI (QUOTE COEFFPP)I IGO l4711 
CCEQ ICAAR U !QUOTE ZEPOWIJ IGO L1411 
CCEQ CCAAR ZI (QUOTE DVCOEll IGO l4311 
IT IGO llSl I I 

ICOND CCCOEFFPORT EE ICAR Zl (QUOTE (TIMES 1 NILlll 
IGO LOOPI I 

CT CRETURN CRESTOREll) 

CCOND llCOEFFPORT EE ICAR Z> (QUOTE (PLUS 0 Nill >I 
IGO LOOP> l 

IT !RETURN !RESTORE))) 

ICOND ICCOEFFPT EE tCAR Z) NI(> IGO LOOP)) 
IT !RETURN !RESTORE))) ) 

CCOND ((ZEPOW ICADR X> ICAR zn (GO L21> CT (GO LBI)) 

ICOND llLOOP EE CCDAR Z>> IGO LOOP)) 
IT C RETURN I RESTORE)) I I 

ICOND ICCOEFFTT EE ICADAR ZI NIL (QUOTE TIMES)! 
IGO LOOP> > 

IT (RETURN CRESTOREl)l 
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CCOND CCCOEFFTT EE CCAOAR ZI NIL CQUOTE PLUSll 
CGO LOOPI J 

CT CRETURN CRE·STOREJI I l 

CCOND CCDVCOE CCADR XI CCAR Z1 NILi CGO LOOPJ> 
CT CGO l8Jt ltlllf 

DEFINE 
CCICOEFFPORT 

CUMBDA 
IE P INOJ 
CPROG IX Z EEi 

L32 

L31 

L30 

L35 

LZ 

LOOPl 

L6 

L5 

Ll7 

Ll6 

L7 

ISETQ ANS CCONS NIL ANSJI 
I SETQ EE EI . 
CCOND 

C IEQ CCAR INDI CQUOTE PLUSH CGO L30)J 
CCEQ CCAR El (QUOTE PLUSll CGO L31tl 
CIEQ CCAR El CQUOTE TIMESJI CGO L32JJ I 

CSETQ EE CLIST CQUOTE TIMES! EJJ 
IGO L2J 

CCOND CICAODR INDJ CGO LZJJ CT CGO Ll))J 

ICOND 
ICNOT CtADDR INDIJ CGO LlJJ 
CI NULL CCDDR E J) CGO LZ 1 J 
CT (GO L2011 J 

CCOND CCEQ CCAR EJ (QUOTE PLl1SJJ CGO l35111 
ISETQ EE (LIST (QUOTE PLUS) Ell 
CGO L21 

CCOND 
CCNUll ICDDR E)) CGO L2J) 
( CEQ CCAR IND> I QUOTE PLUSI I (GO L2J t 
C CCADDR INol IGO l2J J 
CT CGO LUJ J 

CCOND CC EQUAL E OJ CGO L7J) J 
CSETQ Z CCOR PJI 

C SETQ Z CCDR ZJ J 
CCOND ((NULL ZJ CGO l7111 
I SETQ X EE 1 

CCOND 
( CNULL CCDR XJ J CGO llOl J 
CCEQ CCAAR ZJ CQUOTE COEFFTTJJ CGO Ll611 
CCEQ CCAAR ZJ CQUOTE COEFFPPJJ CGO.L17JJ 
CCMl CCADR XI CCAR ZJI CGO L511 t 

C SETQ X CCOR XJJ . 
IGO L61 

CSETQ ANS CCONS CCONS X CCDR XH ANSJJ. 
IRPLACD X CtDDR XIJ 
I GO LOOPll 

CCOND ICCOEFFTT EE CCADAR ZJ NIL CQUOTE PLUSJJ CGO LOOPllJI 
CGO L71 

CCOND CCCOEFFTT EE CCADAR ZI NIL (QUOTE TIMESll CGO LOOPllll 
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LlO 

L20 

Ll 

L3 

Ll2 

L4 

DEFINE 
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ICONO 
I INULL ICDR EEi) 

(RETURN ICONO llTESTA ICADR Pl ICADR IND) Nil) 
ICOND ((CADDR IND) IRESTORElll IT IRESTORE2))) ) 

IT !RESTORE)) ))) 
llNULL ICDDR EEll 

IRETURN ICOND 1 ITESTA ICAOR Pl ICAOR EEi NIU 
IPROG2 (SETQ ANS 

ICONS ICONS EE ICOR EEll ANS) ) 
IPROG2 CRPlACO EE (COOR EEll 

CCONO llCADOR IND) 
( RESTOREl) ) 

IT IRESTORE21) 1111 
IT IRESTOREll 1111 

ISETQ X ICOPYl EEll 
ICO~D llNULL !TESTA ICADR Pl X NILi) CRETURN IRESTORElll 

ICCADDR lNOI CRETURN IRESTOREU I I I 
ICONO CIANO ICDOREI IEQ CCAR INOI (QUOTE PLUSlll 

IPROG2 ISETQ ANS ICONS ICONS EE CCDR EEll ANSll IRPLACD EE NILi) II 
!RETURN IRESTDRE211 

ICONO llNULL IMl CCADR INOI CCAR Ziii IRETURN IRESTOREllll 
IGO LOOPU 

!RETURN IRESTOREll 

ISETQ X EEi 

ICONO ICNULL CCOR XI I CGO L41 I 
llCOEFFPORT ICADR XI P ILIST ICAR IND) ICAOR IND) Tit IGO Ll21l I 

I SETQ X ICOR XII 
IGO l31 

ISETQ ANS ICONS ICONS X ICDR XII ANSll 
IRPLACO X ICOOR Xll 
IRETURN IRESTORE211 

ICOND ((NULL IMl ICADR INOI Pll !RETURN IRESTOREJIJ) 
!RETURN IRESTORE211 111)1 

lllCOEFFPT !LAMBDA IE P IND) 
IPROG I Z ZU 

Ll9 

L22 

L20 

L21 

I SETQ Z 
ICONO llEQ CCAR El CQUOTE PLUS)) El 

IT HI ST I QUOTE PLUS) U) ) ) 
ISETQ ANS ICONS Nil ANS)) 
ISETQ ZZ· ICONS I QUOTE COEFFTI ICOR Pl)) 

ICOND llNULL CCDR Zll CGO l2lll 
1 INUll I Ml CCADR l) ZU) IGO l20)) 

ISETQ ANS (CONS ICONS Z CCDR Z)I ANSll 
IRPLACO Z CCOOR Zll 
IGO Ll91 

C SETQ Z ICOR U) 
CGO ll91 

C SETQ Z 
CFINDIT CCOND I IEQ CCAADR Pl I QUOTE VAR•) I 
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{COND I INULL Zl 

I CAR I COOAOR Pl l l 
IT ICAAOR Pll ))) 

!RETURN ICONO llNULL !TESTA ICAOR Pl 
0 
NIL l I 

!RESTORE> I 
llND IRESTOREl)) 
IT IPROG2 IRESTORE21 Oil ))) 

llNULL ICOR Zll 
!RETURN ICONO llNULL !TESTA ICAOR Pl 

ICAR Z l 
NIL 11 

IRESTOREI I 
!IND IRESTORElll 
IT IPROG2 IRESTORE2l 

I CAR Z I l )) )) l 
ISETQ Z ISIMPPLUS Zll 
ICONO llNULL (TESTA ICADR Pl Z !QUOTE COEFFPTlll 

(RETURN I RESTORE I I I 
I I NO I RETURN I RESTOREl 11 l I 

(RETURN IPROG2 IRESTORE21 Zll Ill 
IEACHP ILAHBDA IE Pl 

IPROG NIL 
ICONO ((NOT {EQUAL ILENGTH El !LENGTH Piii 

IRETURN NILi l l 
ISETQ AHS ICONS NIL ANSI! 

EACH Pl 
ISETQ E ICOR El I 
ICONO llNULL El (RETURN IRESTOREllll 

I INUll IMl ICAR El ICAOR Pl) l 
!RETURN IRESTOREll II 

I SETQ P ICOR Pl I 
IGO EACHPLI l l l 

IZEPOW ILAMBOA IE Pl 
IPROG NIL 

LS 

l9 

LlO 

L8 

L7 

L6 

ISETQ ANS ICONS Nil ANSll 
ICOND llATOM El IGO l6))1 

ICOND llNOT IEQ ICAR El !QUOTE EXPT>ll IGO l8tl 
((NOT (Ml ICAOR El ICAOR Ptll IGO l8tl 
llNOT (Ml ICAOOR El ICADOR Piii 

!RETURN IRESTOREll II 

IRETURN IRESTORElll 

ICOND llANO !NOT !Ml 0 ICADOR Piii 
!NOT !Ml 1 ICADR Piii I 

I RETURN I RESTORE I l 11 
IGO l91 

ICONO llNOT !Ml E ICAOR Pill !RETURN IRESTORElll 
((NOT IHl 1 ICAOOR Pill !RETURN IRESTOREI)) 

IGO l91 

ICONO llNOT !Ml 0 ICAOR Pl 11 I RETURN I RESTORE II)) 
IGO l9l 

ICONO llEQP Ell IGO llOll 
I IEQP E 01 (GO l7l l 
IT IGO L8ll llll 
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!LOOP !LAMBDA IE LPl 

DEFINE 

!PROG IZ Y XI 

LS 

L6 

LlO 

L8 

!SETQ ANS ICONS !QUOTE •LOOPI ICONS NIL ANSlll 
I SETQ X LPl 

ISETQ Z El 

ICONO [!NULL (Ml ICADR Zl !CAR XIII !GO LlOlll 
CSETQ Y ICONS !LIST X Z ICDR Zll Yll 
CSETQ ANS ICONS ICONS Z !CDR Zll ANS)) 
IRPLACD Z !COOR Zll 
I SETQ X !CDR XI l 
ICOND l[l''lULL XI !RETURN !RESTORE21lll 
ISETQ ANS ICONS !QUOTE •LOOP! ANSll 
!GO LSI 

I SETQ Z !CDR ZI l 
ICOND !!NOT !NULL !COR Zill !GO L6ll 

!!EQUAL X LPI !RETURN IRESTORElll 

( SETQ X ICAAR YI I 
!RPLACD !CADAR YI ICADDAR YI l 
I SETQ Z !CADDAR YI I 
( SETQ Y !CDR Yl I 
!SETO ANS !CDR ANSll 
IRESTORE3l 
!GO L61 11111 

ll!RESTORE3 !LAMBDA NIL 
(PROG NIL 
Ll 

!RESTORE !LAMBDA Nil 

!COND ((NULL ANSI !ERROR !QUOTE RESTDRE31 ll 
((NULL !CAR ANSll !ERROR [QUOTE RESTORE311l 
llEO ICAR ANSI (QUOTE •LOOP)} !RETURN NILll 
(!NOT !ATOM ICAAR ANS ll I 

I RPLACD I CAAR ANS I I COAR ANS 11 I I 
!SETQ ANS !CDR ANSI! 
!GO L1 I 111 

IPROG I YI 

Ll 

!RESTORE! !LAMBDA NIL 

I SETO Y ANSI 

ICONO ((NULL YI !RETURN NILll 
( (EQ !CAR Yl (QUOTE •LOOP) I 

IPROG2 !RPLACA Y !CADR Yll 
( RPLACO Y I COOR Y l I l l 

!!NULL !CAR Yll 
IRETURN IPROG2 !SETO ANS ICDR VII Nllll l 

(!NOT !ATOM ICAAR YI l I 
IRPLACD ICAAR YI !COAR Yll ll 

ISETQ Y ICDR Yll 
!GOLlllll 

IPROG IYJ 
L2 

Ll 

I SETQ Y ANSI 
CCOND [(NULL ANSI !RETURN Tll 

((NULL !CAR ANSll 
!RETURN IPROG2 ISETQ ANS ICDR ANSI! Tll l 

!!NOT !ATOM ICAAR ANSlll !GO L31l I 
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(COND ICNULL ICOR Yn IRETURN Tt1 
llNULL ICADR Y11 

IRETURN IPR062 IRPLACD Y ICDDR YI) Tl1 
llNOT CATON ICAADR Y111 

I PROG2 I RPLACD ICAADR Y > I CDADR Y 11 
IRPLACD Y fCOOR Yll >I 

IT ISETQ Y ICDR YtJ1 I 
IGO Ll 1 

CRPLACD 'ICAAR ANSt CCDAR ANSl) 
ISETQ ANS ICDR ANSll 
IGO L21 )) J 

IRESTORE2 ILAMBDA Nil 
IPROG IYJ 

ll 

I SETQ Y ANSI 
ICOND ICNULL ANSI I RETURN Tl I 

llNULL ICAR ANSll 
(RETURN CPROG2 ISETQ ANS ICDR ANS)) T>J II 

ICOND llNULL ICDR YJI IRETURN Tll 
I tEQ CCADR YI I QUOTE •LOOP 1 J 

IRPLACD Y iCDDR YI) t 
llNULL fCAbR YJ1 

!RETURN' (PROG2 IRPLACD Y ICODR YI I T1 I )) 
ISETQ Y ICDR YtJ · 
IGO LU 111 

ITESTA• (LAMBDA IALA EXP LOC1 
ICOND ((COND llEQ ICADR ALA) (QUOTE FREEi) IFREE EXPll 

I IEQ ICADR ALA) I QUOTE NUMBERPI 1 
INUMBERP EXP1 1 

I IEQ ICADR ALAI I QUOTE TRUEii T 1 
IT (APPLY CCADR ALA) 

1FINDTHEM ICDOR ALA)I 
IAUSTt 11) 

ICOND llNOT (MEMBER ICAR ALAJ SPLISTH 
( PROG2 I SETQ ANS 

T II 
CT n 11 

ITNIL) )11 

. ICONS ICONS (CAR ALAI EXP I 
ANS 1J 

IFllNDTHEM !LAMBDA IARGSI IFINDTl ARGS ANS ICONS EXP Nlltl11 
IFINOTl !LAMBDA IX Y Zt 

DEFINE 

ICOND ((NULL XI ZI 
((NULL YI 

IFINOTl ICOR XI 
ANS 
lNCONC Z ILIST IEVAL ICAR XI IALISTt I II 11 

I IEQ ICAA~ YJ ICAR · X1 I 
·IFINDTl ICDR X1 ANS INCONC Z ICONS ICDAR YI NILlll 
IT IFINDTl X ICDR Y) Ztl JjJll 

lllOP !LAMBDA IFNI 
!MEMBER FN 

(QUOTE (PLUS TIMES 
EXPT 
SIN 
cos 
TAN 
LOG 
SEC 
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INTEGRAL 
ARCS IN 
ARC COS 
ARCTAN ))))) 

(COPYl (LAMBDA (Al lCOND ((NULL Al NILi IT (CONS (CAR A) lCOPYl ltDR A)I))))) 
lflNOIT !LAMBDA (Al 

(PROG (Y ZI 

Ll 

IFREE (LAMBDA CAI. 

(SETQ Y (CONS Nil ANSll 

lCOND ((NULL lCOR Yll lRETURN Zll 
( INULL lCADR YI) I RETURN ZI) 
(IEQ lCAADR YI Al 

(PROG2 (SETQ Z (NCONC Z (LIST ICDADR YI))) 
CRPLA,,CD Y (COOR YJ) ) ) 

tT lSETQ Y (CDR Y)J) ) 
CGO LU J II 

lCONO ( CATOM A·) INOT IEQ A VAR)) I 
IT CANO IFREE (CAR All (FREE (COR Allll Ill 

(OPl (LAMBDA IA) 
(MEMBER A 

(QUOTE lCOEFFPT COEFFP 
COEFFT 
ZEPOW 
COEFFPP 
COE Ff' TT 
LOOP )J))J 

(COEFFTT !LAMBDA (EXP PAT IND OPINOI 
IPROG (RES ZI 

ll 

L2 

L3 

L4 

CSETQ ANS (CONS Nl"L ANS)) 
ICOND ((ANO IND INOT lEQ ICAR.EXP) OPINOlll 

ISETQ EXP CLIST OPINO EXP)) ) I 
lSETQ Z EXP) 
lSETQ SPLIST (CONS (CAR PAT) SPLISTJ) 

(CONO ((NULL lCDR Z)) CGO l311 
(CTESTA PAT CCAOR ZI NILi CGO L21) 

( SETQ Z CCDR Z)) 
(GO Ll I 

(SETQ ANS ICONS ICONS Z CCDR ZI) ANSll 
CSETQ RES ICONS CCADR ZI RESll 
CRPLACO Z CCODR Zll 
CGO LU 

lSETQ SPLIST CCOR SPLIST)) 
CCOND IRES CGO l41 I 

C(NOT CTESTA PAT 
CCOND llEQ OPINO 

C QUOTE· PLUS I 
0 I 

IT 11 > 
Nil II 

I RETURN CRESTOREJI I J 
ICOND (IND CRETURN (RESTOREllll 

CT (RETURN CRESTORE2111 I 

I SETQ RES 
CCONO ((COR RESI (CONS OPIND RESll 

IT CCAR RESll IJ 
lSETQ ANS ICONS CCONS ICAR PATI ISIMP RESll ANSI) 
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ICOND llND !RETURN IRESTOREl))) 
IT !RETURN IRESTORE2tlt lilt 

!TESTA 
!LAMBDA IALA EXP Bl 

IPROG CY Z FUNC VALi 

LOOP 

ICOND I INOT IEQ ICAR ALAI I QUOTE VAR•J 11 
!RETURN ITESTA• ALA EXP NILll I~ 

ISETQ Z ICADR ALAll 
ISETQ ALA ICDDR ALAll 

ICOND I INULL ZI 
!RETURN IPROG2 ISETQ Y 

ICOND (VAL IMl EXP VII 
IT !TESTA• ALA 

EXP 
NIL 1111 

ICOND llNULL YI NILi 
IFUNC ISET ICAR ALA) EXP)) 
IT Y) )))) 

llEQ !CAR ZI IQUOTE SETll ISETQ FUNC Tl) 
..( IEQ ICAR Z) I QUOTE UVARI) 

ICOND I ISETQ Y 
ICDR ISASSOC ICAR ALA) 

ANS 

ISETQ VAL T) ) 
IT NI LI ) ) 

!QUOTE Nill) ))I 

llAND IEQ B IQUOTE COEFFPT)I 
tEQ ICAAR ZI (QUOTE COEFFPTll 

ISETQ ALA ICADAR ZI I 11 
ISETQ Z ICDR ZI) 
IGO LOOPI I 11 II 

SCHYUOS, REPLACE, DIFF 

DEFINE 
lllSIMPPLUS 

I LA.MBDA 
I EXP I 
IPROG IV IND l W ANS A B All 

I SETQ A 0) 
B 

BB 

c 

AA 

ICOND I INULL EXP) IGO AAI)) 
ISETQ Y (SIMP !CAR EXPlll 
ICOND 

I IEQ ICAR VJ IQUOTE PLUSI I IGO Cl t 
llNUMBERP YI ISETQ A (PLUS Y Allt 
IT ISETQ Z ICONS Y Zllt t 

I SETQ EXP ICDR EXPI I 
IGO Bl 

ICOND 
I INUMBERP ICADR YI I 

IPROG2 ISETQ Z IAPPEND ICDDR YI Zll ISETQ A IPLUS ICADR Vt AHi 
IT ISETQ l !APPEND ICDR YI UJI I 

IGO BBi 

ICOND 
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!!NULL Zl luO Elli 
!!NULL !CDR Zll !GO EEll 
!!EQ !CAAR Zl !QUOTE TIMESll !GO Ell I 

I SETQ Al ll 
! SETQ IND T) 

!SETQ B !CAR Zll 
IGO FFl 

!COND !!NOT !NUMBERP (CADAR Zill !GO Pill 
ISETQ Al !CADAR Zll 
ICOND !!NULL ICDDDAR Zll !GO Glll 
l SE TQ B I CDDAR Z 11 
ISETQ IND Nill 
(GO FFI 

ISETQ Al 11 
!SETQ B (COAR Zll 
( SETQ IND Nill 
(GO FF I 

( SETQ B !CADDAR ZI I 
( SETQ IND Tl 

I SETQ Z !CONS (QUOTE PLUSI !CDR Zl l l 
( SETQ Y 

!COND 
!!'JD !COEFFPT Z !LIST NIL (QUOTE IC NUMBERPll Bl NILll 
(T !COEFFPT Z !CONS NIL !CONS !QUOTE IC NUMBERPll Bl I Nill I I I 

ISETQ Y (PLUS Al Yll 
!COND 

((Zi:ROP YI Tl 
! !ONEP Yl 

ISETQ W (:;ONS !COND !IND Bl IT ICONS !QUOTE TIMES! Bill Wll I 
!IND ISETQ W !CONS !LIST (QUOTE TIMESI Y Bl Will 
IT !SETQ W !CONS !CONS (QUOTE TIMES! ICONS Y Bil Wiil l 

!SETQ Z !CDR Zll 
I GO AA I 

( SETQ W !CONS !CAR Zl WI I 

ISEHl W !COND ((ZEROP Al Wl IT ICONS A Wllll 
(RESTORE I 
!COND 

!!NULL WI !RETURN 01 l 
((NULL !CDR Wll !RETURN !CAR Wlll 
IT (RETURN !CONS (QUOTE PLUS! Wlll 111111 

DEFINE 
(((SIMPTIMES 

( LAMl:lDA 
(EXP I 
(PROG CY DIV Z WA Al B ZZJ 

I SE TQ A 1 l 
tl 

CCOND C!t'~ULL EXPI CGO STARTlll 
!SETQ Y ISIMP (CAR EXP))) 
!COl\ID !CEO !CAR Yl !QUOTE TIMES~! 

ICO'lD I (NUMBERP CCADR Yl l 
tPROG2 !SETQ A !TiMES !CADR Yl All 

!SETQ Z !APPEND !COOR Yl Zll ll 
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IT C SETQ Z !APPEND lCDR YI ZI I I I) 
C CANO CNUMBERP Y) CZEROP YI) (RETURN 0) I 
CCNUMBERP YI CSETQ A (TIMES Y All) 
CT CSETQ Z CCONS Y Zlll) 

( SETQ EXP CCDR EXP) I 
(GO BI 

CCOND ((AND CEQ CCAAR ZI (QUOTE PLUSll 
(NULL CCDR Zll 
(NULL WI 
(NOT CONEP Al) ) 

(RETURN CPROG23 CCSETQ SIMPIND Tl 
ITIMESLOOP A CCDAR Zt) 
CCSETQ SIMPIND NILi I))) 

CCONO ((NULL Z) CGO El)I 
C (NULL CCD~ U I (GO EE> I 
CEXPTSUM IRETURN (CONS (QUOTE TIMESI ICONS AZ)))) 
CCEQ CCAAR Z) (QUOTE EXPTll IGO Gii ) 

CSETQ Al 11 
( SETQ B (CAR ZI I 
IGO FF) 

CSETQ B CCADAR Zll 
CSETQ Al 

ICOND CCNUMBERP CCADDAR Zll CCADDAR Zll 
CT (CONS CCADDAR U NI LM I I 

( SETQ ZZ ZI 

CCOND ((EQ ICAAOR ZZI (QUOTE EXPTI I CGO Hll 
CCMZ CCADR ZZI B NILi CGO Ill I 

CCOND (CANO QUOTINO 
I EQ ICAR BI I QUOTE PLUS I I 
IEQ ICAAOR UI (QUOTE PLUSl I 
CSETQ V (MATCHSUMl B CCAOR ZZ))I 

tliO DI Yll I I . 

C SEHi ZZ CCDR ZZI I 
J 

H 

JJ 

L 

fCOND C(COR ZZI CGO Kiii 
IGO 10 

ICOND ((M2 (CADADR ZZI B NILi (GO LI)) 
I COND I CANO QUOTI ND 

CEQ CCAR Bl (QUOTE PLUS)) 
IEQ CCAR ICADADR ZZ)) (QUOTE PLUSn 
CSETQ Y IMATCHSUMl B CCADAOR ZZll) I 

I GO DI VZ I 11 
IGO JKI 

CRPLACD ZZ (COOR ZZll 
IGO JI 

( SETQ Al ICONO llNUMBERP All CADDl Al> I CT I CONS l Al )l)) 
IGQ JJI 

I SETQ Al 
ICOND llANO fNUMBERP All CNUMBERP CCAOOAR CCDR ZZll)) 

CPLUS Al CCADDAR CCDR ZZ))) ) 
IT ICONS ICAODAR CCDR ZZll 

ICOND ((ATOM Al) (LIST Al)) IT Alll 1>11 
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I GO JJ l 

!SETQ Al !COND !!NUMBERP All All IT !SIMPPLUS Alllll 
I SE TQ W 

ICOND !INUMBERP All 
!CONO I ( ZEROP All Wl 

I !ONEP All ICONS B Wl l 
IT ICONS !LIST (QUOTE EXPTl B All Wll ll 

IT !CONS !LIST !QUOTE EXPTl B All Wll ll 
!SETQ Z !COR Zll 
!GO START! 

I SETQ W !CONS !CAR ZI Wl l 

I SE TQ A 
!COND ({NULL Wl Al 

(!NULL ICOR Wl l 
(CONO ( IONEP Al !CAR Wl l 

IT !LIST (QUOTE TIMES I A !CAR Wll l ll 
( IONEP Al !CONS (QUOTE TIMES! Wl l 
IT !CONS (QUOTE TIMESI ICONS A Will ll 

!COND ((NULL DIV! !RETURN All 
IT !RETURN !SIMPTIMES !LIST ICONS (QUOTE TIMES) DIVl Allll J 

ICONO ((AND INUMf:JERP Yl !SETQ A !TIMES A Ylll IGO Ill 
!ISETQ DIV ICONS Y O!Vll !GO Ill l 

!SETO DIV [CONS ISIMPEXPT !LIST Y !CAR ICDDADR ZZllll DIV)) 
(GO L l Ill l l 

DEF !NE 
(((SIMPEXPT 

ILAMtlDA 
!EXP) 
!PR.OG IA Bl 

!SETQ B (SIMP (CADR EXPlll 
I SETiJ A I SIMP !CAR EXP) l) 
!COND 

!(EQP A Ol !RETURN Oll 
I I AND 

!Ei.l !CAR Al (QUOTE EXPTI I 
!SETQ B !SIMPTIMES !LIST B !CAODR Allll 
!SETQ A !CADR All 
NIL I 

,11 IL I 
( !EQP B Ol !RETURN lJ l 
( !EQP B ll !RETURN Atl 
I !EQP A ll !RETURN lll 
I !AND (l~UMBERP Al (NUMBERP Bl) 

!RETUR.N !COND 
{("JOT EXPTINDl !EXPT A Bl l 
((AND (FIXP Bl IGREATERP B -111 !EXPT A Bll 
IT !LIST (QUOTE EXPTl A Bil lll 

!!EQ !CAR Al !QUOTE TIMESll 
!RETURN ICONS !QUOTE TIMESI !EXPTLOOP ICOR Allll 

I !AND EXPTSUM !EQ !CAR Bl (QUOTE PLUSl l l 
{Re TURN 

!CO"JS 
IWUOTE TIMES! 
I MAPLI ST ICDR Bl 

!FUNCTION (LAMBDA !Cl !SIMPEXPT !LIST A !CAR Clllll llll 
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! !NOT !ATOM Bl I 
!RETURN 

!PROG IWI 
IRE TURN 

ICOND 
((NOT ISETQ W 

IM2 
6 
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!QUOTE !PLUS ICOEFFT IC TRUEll 
!LOG lBl TRUEI IA TRUE! I 

ICOEFFP IE TRUEii II 
NIL 111 

!LIST !QUOTE EXPTI A Bl I 
llNOT [EQUAL A ISUBLIS W (QUOTE Blllll 

ILIST (QUOTE EXPTI A Bl I 
IT 
ISIMPTl~ES (LIST 

ISIMPEXPT !LIST lSUBLIS W !QUOTE All 
ISUBLIS W (QUOTE Cll II 

ISIMPEXPT !LIST A ISUBLIS W !QUOTE Ellll 111111111 
I RETURN (LIST tQUOTE EXPTI A B) l l l l 

IEXPTLOOP 
!LAMBDA 

(Al 
IPROG23 

ICSETQ SIMPINO Tl 
IMAPLIST A !FUNCTION !LAMBDA !Cl ISIMPEXPT (LIST !CAR Cl Blllll 
ICSETU SIMPINO NILi Ill 

ISIMP 
ILAMBOA 

IEXPI 
IPROG Ill 

ATTRlti 

I RETURN 
ICONO 

I !ATOM EXPl EXPl 
I SIMPINO EXP) 
llNULL ISETQ Z IGET ICAR EXP) !QUOTE SIMPllll 

ICONS (CAR EXP) 
IMAPLIST ICOR EXPI !FUNCTION (LAMBDA !Cl ISIMP !CAR C>llll II 

llEU Z !QUOTE SIMPTIMESll ISIMPlJMES ICDR EXPlll 
llECJ Z !QUOTE SIMPPLUSI l ISIMPPLUS ICOR EXP))) 
llEQ Z !QUOTE SIMPEXPTll ISIMPEXPT ICOR EXPlll 
IT !APPLY Z !LIST ICDR EXPll IALISTlll llllJll 

!PLUS ISIMP SIMPPLUSll 

ATTR Ia 
!TIMES ISIMP SIMPTIMESll 

ATTR IB 
I .:Xt>T I SIMP SIMPEXPTI l 

DcF !NE 
lllSIMPLOG 

I LAMBDA 
I A I 
ll'ROG !Bl 

ISEHl 13 !SIMI' ICADR Alli 
ISETCJ A ISIMP ICAR Alli 
ICONO I I EQUAL A Bl (RETURN 111 



llfQP B 11 !RETURN 011 
llEQ ICAR Bl (QUOTE EXPTll 
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ICOND llEQUAL A ICADR Bil !RETURN ICADDR Bill 
IT !RETURN ILIST (QUOTE TIMES) 

ICAODR Bl 
ILIST (QUOTE LOGI A ICADR Bii 11111 

IT !RETURN ILIST !QUOTE i:OGJ A .Biii tlllll 

ATTRIB 
ILOG ISIMP SIMPLOGll 

DEFINE 
lllSIMPTRIG 

I LAMBDA 
IA 8 C DI 
IPROG IYI 

!RETURN ICOND 
I !EQUAL D Bl Cl 
llATOM DI ILIST A Oil 
II SETQ Y 

ICOR lSASSOC ICAR DI 
IGET A (.QUOTE SIMPTRIGI I 
I QUOTE NILLI II> 

ISIMP ISUBST ICADR DI !QUOTE XI VII 
IT !LIST A Oil 11111 

ISIMPTRIGl !LAMBDA IAI ISIMPTRIG !QUOTE SINI 0 0 ISIMP ICAR Alllll II 

ATTRIB 
ISIN ISIMP SIMPTRIGlll 

ATTRIB 
ICOS ISIMP SIMPTRIG211 

DEFINE 
lllSIMPTRIG2 !LAMBDA IAI ISIMPTRIG (QUOTE COSI 0 1 ISIMP ICAR Alllllll 

DEFINE 
11 ITIMESLOOP 

I LAMBDA 
IA Bl 
ICONS 

(QUOTE PLUSI 
IMAPLIST B 

!FUNCTION !LAMBDA ICI 
ISIMPTIMES IPROG23 ICSETQ SlMPIND Tl ILIST A ICAR Cll ICSETQ SIMPJND NILll 1111111 

I EXPAND 
I LAMBDA 

IA Bl 
ISIMPPLUS IMAPLIST B !FUNCTION !LAMBDA ICI ITIMESLOOP !CAR Cl Alllll II· 

IPROG23 (LAMBDA IA B Cl Bii II 

DEFINE 
lllSIMPTAN !LAMBDA IAI 

ICOND llEQ ICAAR Al !QUOTE ARCTANll ISIMP ICAOAR Atll 
IT ISIMPTRIG !QUOTE TANI 0 0 ISIMP ICAR Allll Ill 

ISIMPARCTAN (LAMBDA IAI 
ICONO llEQ ICAAR Al !QUOTE TANil ISIMP ICAOAR Alli 

IT ISIMPTRIG !QUOTE ARCTANI 0 0 ISIMP !CAR Allll 11111 

ATTRl.B 
ITAN ISIMP SIMPTANll 
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ATTRIB 
IARCTAN ISIHP SIHPARCTAN)I 

DEFHIE 
lllSIHPDIFFERENCE ILAMBDA IAI 

ISIMPPLUS !LIST (CAR Al 
ISIM?TlMES ILIST -1 ICADR All) 1111 

ISIMPQUOTIENT ILAHBOA IAI 
ISIMPTIHES ILIST ICAR A) 

ISIMPEXPT !LIST ICADR A) -1)1 till 
ISIHPMI1'4US ILAHBDA CAI ISIMPTIMES ILIST -1 ICAR Alllll Ii 

ATTRIB 
!DIFFERENCE ISIHP SIHPDIFFERENCEll 

ATTRIB 
!QUOTIENT ISIMP SIHPQUOTIENTll 

ATTRIB 
IMINUS ISIHP SIMPMINUSll 

ATTRIB 
ISIN ISIMPTRIG llARCSIN. XI 

IARCtOS EXPT !DIFFERENCE 1 IEXPT X 211 0.5EOI 
IAKCTAN QUOTIENT X CEXPT IPLUS 1 CEXPT X 211 0.5EOll I)) 

ATTIUIS 
ICOS ISIMPTRIG ICARCSIN EXPT !DIFFERENCE 1 IEXPT X 211 0.5EOI 

IARCCOS • XI 
IARCTAN EXPT (PLUS 1 IEXPT X 211 -0.SEOI >II 

ATTRIB 
ITAN ISIMPTRIG llARCSIN QUOTIENT X IEXPT !DIFFERENCE 1 IEXPT X 211 0.5EOll 

IARCCOS QUOTIENT IEXPT !DIFFERENCE 1 IEXPT X 211 0.5EOI XI 
IARCTAN XI Ill 

ATTR IB 
IARCSIN ISIMPTRIG llSIN. XI ICOS PLUS X !QUOTIENT PI 211111 

ATTRIB 
IARCCOS ISIMPTRIG llSIN DIFFERENCE X !QUOTIENT Pl,21) ICOS • X)))) 

ATTRIB 
IARCTAli ISIHPTRIG'llTAN. Xllll 

DEFINE 
lllNILL ILAHBOA NIL (QUOTE INILllH)I 

DEFINE 
lllSIMPARCSIN !LAMBDA IAI ISIHPTRIG IQUOTE ARCSINI 0 0 ISIHP ICAR A))lll 

ISIMPARCCOS 
!LAMBDA IAI 

ISIMPDIFFERENCE ILIST ISIMPQUOTIENT !LIST (QUOTE PII 211 
ISIHPARCSIN !LIST All 1111 

ISIMPARCCOT 
ILAHBOA IAI 

ISIHPDIFFERENCE ILIST ISIHPQUOTIENT ILIST !QUOTE Pl) 211 
ISIMPARCTAN ILIST AJI llllJI 
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ATTRIB 
IARCSIN ISIMP SIHPARCSINI I 

ATTRIB 
IARCCOS I SIP'IP SIMPARCCOSI l 

ATTRIB 
IARCCOT ISIHP SIMPARCCOTI I 

DEFINE 
lllMATCHSUMl !LAMBDA IASUH BSUMI 

DEFINE 

IPROG IZ W LENGTH MINLENGTH QUOT HINQUOTI 

LOOP 

A 

OUT 

ICOND llNOT !EQUAL !LENGTH AS\,IMI !LENGTH BSUMlll 
!RETURN NILi l I 

ISETQ Z ICADR ASUHll 
ISETQ W ICDR BSUMll 
ISETQ MINLENGTH lDOOl 

ISETQ QUOT ISIMPQUOTJENT. ILIST ICAR WI Z 111 
ISETQ LENGTH 

!LENGTH ICONO CIEQ ICAR QUOT! 
I QUOTE TIMES I 

ICDR QUOT! I 
IT I QUOTE UHLl 11 111 

ICOND llGREATERP LENGTH HINLENGTHI IGO Alli 
ISETQ MINLENGTH LENGTHI 
ISETQ MINQUOT QUOTI 

ICOND ((EQUAL HINLENGTH 11 IGO OUTlll 
JSETQ W ICOR WI I 
ICOND IW IGO LCOPlll 

I COND I I M2 BSUM 
ITIMESLOOP MINQUOT ICOR ASUM 11 
Nil l 

!RETURN HINQUOTI 11 
!RETURN NILi 11111 

lllSIMPCOT !LAMBDA IXI (LIST !QUOTE EXPTI ISIMPTAN XI -111111 

ATTRIB 
!CUT ISIMP SIHPCOTll 

DEFINE 
((!REPLACE !LAMBDA IDICT EXPll 

IPROG23 ICSETQ SIMPIND Tl IREPLAC EXPll ICSETQ SIMPINO NILi i 11 
I REPLAC 

I LAMBDA 
I EXP ll 
IPROG IZll 

I RETURN 
ICOND 

((NULL EXPll Nill 
((NOT IA TOM EXPlJ l 

ICOND 
II EQ !CAR EXPll I QUOTE EVALl l 

IPROG2 . 
ISETQ Zl IEVAL IREPLAC ICADR EXPlll IALISTlll 
IPROG23 

ICSETQ SIMPIND NILi 
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!'.:.IMP Zll 
ICSETQ SIMPIND Tl lll 

!IEQ !CAK EXPll !QUOTE QUOTE*ll ICADR EXPlll 
CT !PROG !Zl IHI 

!SETQ Zl !REPLAC !CAR EXPllll 
!SETQ lil !REPLAC !CDR EXPllll 
11"'1:'TURN !COND l!AND !EQ Zl !CAR EXPlll (EQ Wl ICOR EXPllll 

E XPl I 
CT !SIMPl ICONS Zl Wllll llllll 

! ! NUM3ERP EX Pl l E XPll 
((SETQ Zl ISASSOC EXPl DICT !FUNCTION !LAMBDA NIL NILllll 

!CDR Zll J 
! T EXP 11 l l l l l 

ISIMPl !LAMBDA IEXPll 
ICONO 

! ! A TOM EXP 1 l EXP l l 
((NOT (GET !CAR EXPll (QUOTE SIMPlll EXPll 
llEQ !CAR EXPll (QUOTE TIMESll (SIMPTIMES ICDR EXPllll 
((EQ (CAR EXPll !QUOTE PLUSll (SIMPPLUS ICOR EXPllll 
l!EQ (CAR EXPll (QUOTE EXPTll ISIMPEXPT ICDR EXPllll 
IT !APPLY (GET (CAR EXPll !QUOTE SIMPll (LIST !CDR EXPlll IALISTlll lllll 

Off !Nt 
! (I DVCOE 

!LAMBDA IE P !NOi 
!PROG !X Y Zl 

LOOP 

ISETQ ANS ICONS NIL ANSll 
(CUND (UWT !EQ !CAR El (QUOTE TIMESlll 

ISETQ E !LIST (QUOTE TIMESl Ell ll 
(SETQ Z !CDR Pll 

!SETQ l !COR Zll 
!COND ! !NULL Zl 

(COND ((TESTA !CADR Pl !SIMP !COPYl Ell NIL I 
!RETURN !COND !IND !RESTOREll l 

IT IRESTORE2l l Ill 
(T !RETURN IRESTORElll ))) 

! SE TQ X E I 
!GO LOOP2l 

LOOPl 
!SETO X (CDR Xll 

LOOP2 

L2 

Ll 

L7 

(COND !!NULL !COR Xll !GO L6lll 
!COND ( (EQ ICAAOR XI !QUOTE EXPTI l !GO Lll I 

!(Ml (CADR Xl !CAR Zll !GO L2ll l 
!GO LOOPll 

!SETO ANS !CONS !CONS X !CDR Xll ANSJI 
(KPLACO X !COOR Xl l 
!GO LOOP) 

!COi~D ( !EQ !CAAR Zl (QUOTE EXPT) l !GO L3J l 
!!NOT !Ml ICAOADR Xl !CAR Zill !GO LOOPlll 

! SE TQ Y -1 l 

I SE TQ ANS !CONS !CONS X ICDR Xl l ANS l l 
!KPLACD X 

!CONS ISIMP !LIST ICAADR Xl 
!CADADR Xl 
!LIST !QUOTE PLUS) 

!CAR !CCOADR Xl l 



L3 

L5 

L6 

Dl'F INE 
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y ) ll 
!COOR Xl ) ) 

!GU LUOP) 

ICOND ((Ml !CAOADR X) (CAOAR Z)l !GO LS))) 
!GO LOOPll 

ICOND !(Ml !CAR (CDOAOR Xll !CADDAR Zl) !GO L2ll) 
ISETQ Y !SIMPMINUS !LIST !CADDAR l)))) 

(GO L 7) 

!CONC !!Ml 1 !CAR Zll !GO LOOPlll 
I SE TQ E 

!CONS !CAR E) 
!CONS !SIMPEXPT !LIST !CAR Zl -lll !COR El> )l 

!GO LOOP) ) ) l)) 

lllDIFFl (LAMBDA !EXP VARI (PROG23 !CSET SIMPINO Tl IDIFF EXP) (CSET SIMPINO Nill)) l 
IDIFF 

(LAMBDA 
(EXP l 
!CO'JD 

((ATllM EXPI (COND !!EQ EXP VAR) ll (T Olll 
(!EQ !CAR EXP! l(JU!JTE EXPTll 

!COND 
!(FREE ICAODR EXPll 

( SIMPTIMES (LI ST 
(Cl\DOR EXP) 
(S!MPEXPT (LIST ICADR EXP! !Slr'PPLUS (LIST (CADDR EXP) -lllll 
(OJFF ICADR CXPll lll 

((FREE ICADR EXPll 
( SIMPTIMES (LI ST 

EXP 
!SIMPLOG !LIST (QUOTE El (CADR EXPl>l 
!DIFF (CADDR EXP)} ))) 

( T 
(SIMPTIMES 
(LI ST 

EXP 
( SIMPPLUS (LI ST 

( SIMPTIMES (LI ST 
(CADuR EXP) 
IDIFF ICADR EXP! I 
!SIMPEXPT !LIST !CADR EXP) -lll ll 

(SIMPTIMES !LIST !SIMPLOG !LIST (QUOTE El !CADR EXP))) 
!DIFF !CADDR EXP)) ))lllllll 

((EQ !CAR EXP! (QUOTE TIM~Sll 

!SIMP;>LUS 
(MAPLIST 

(CDR EXP) 
!FUNCTION (LAMtlDA (Y) 

!SlMPTIMtS ICONS (OJFF !CAR Yll (CHOICE !CAR Yl (COR EXPllll Jilli 
I ( EQ (CAR EXP I (QUOTE PLUS! l 

ISIMPPLUS l..,APLIST ICDR EXP! (FUNCTION ILAMBOA (Y) IDIFF !CAR Yllllll l 
(T (APPLY !GET !:AR EXP) (QUOTE DIFFll !LIST ICDR EXPll IALISTJ)l ))) 

I CHO I C E ( LAMBDA ( A B l 
!Cll'JD llEQ A !CAR Bll ICDR Bll IT ICONS !CAR Bl !CHOICE A (COR 8))))) )))) 

DEFINE 
(((BIGDIFF (LAM~DA (A Bl 
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(SIMPTIMES <LIST (DIFF (CAR AJI 
(SUBST (CAR Al (QUOTE XI BJ )))))) 

DEFINE 
ll(OIFLOG !LAMBDA !Al 

IPROG NIL ISETQ A ICDR All !RETURN IBIGDIFF A (QUOTE (EXPT X -ll)J)) >I 
IDIFSIN !LAMBDA (Al (BIGDIFF A (QUOTE (COS Xlllll 
IDIFCOS <LAMBDA (Al IBIGDIFF A (QUOTE <TIMES -1 ISIN xttllll 
IDIFTAN ILAl"IBDA (Al ll:llGDIFF A !QUOTE IE.XPT ISEC XI 2)11)) 
IDIFSEC !LAMBDA IAI IBIGDIFF A (QUOTE <TIMES (SEC XI CTAN Xllllll 
(OIFARCTAN !LAMBDA IAI IBIGDIFF A !QUOTE (EXPT (PLUS l IEXPT X 211 -111))1 
IDIFARCSIN ILAMbDA IAI 

IBIGOIFF A (QUOTE IEXPT (PLUS l ITIMES -1 IEXPT X 21>1 -O.SEOlll >t 
IDIFCSC !LAMBDA (Al IBIGDIFF l (QUOTE (TIMES -1 ICOT X) ICSC Xllllll 
IOIFCOT !LAMBDA (Al (BIGDIFF A (QUOTE ITIMES -1 IEXPT (CSC X) 21JJJll 
IDIFARCCOS ILAl"IBOA (Al !MINUS IDIFARCSIN Allll 
IDIFARCSEC 

(LAMBDA (Al 
IBIGDIFF A 

(QUOTE (EXPT <TIMES X 
IEXPT !DIFFERENCE IEXPT X 21 11 

o.sEo 11 
-1 l l)) I 

IDIFARCCSC (LAMBDA (Al (SIMPMINUS (LIST IOIFARCSEC AllJll 
IDIFINTEGRAL (LAMBDA IXI 

ICONO C IEQ ICADR XI VARI (CAR XI I 
IT ISIMP ILIST (QUOTE INTE:GRALI IDIFF (CAR XII ICADR XJ>)I Hiil 

ATTRIB 
ll~TEGRAL IDIFF DlflNTEGRALJI 

ATTRIB 
(SIN IDIFF DlfSINll 

ATTR IB 
ICOS IDIFF DIFCOSll 

ATTRIB 
lTAN (DIFF DIFTANI l 

ATTRIB 
(SEC IDIFF OIFSECll 

ATTiUB 
IARCTAN IDIFF DIFARCTANJI 

ATTRIB 
IARCSIN IOIFF OIFARCSINll 

ATTR IB 
ILOG IOlff DIFLOGll 

ATTRIB 
ICSC IDIFF DIFCSCll 

ATTRIB 
ICOT (DIFF DIFCOTll 

ATTRIB 
IARCCOS IDIFF DIFARCCOSll 
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ATTR ll:l 
!ARCStC (O!FF OIFARCStCll 

ATTR!El 
!ARCCSC <DIFF O!FARCCSCll 

DEFINE 
(((EXPAN02 !LAMBDA !EXP) !PROG23 !CSET SIMPIND Tl !EXPANDl EXP) (CSET SIMPIND Nill)) 
) 

( EXPA'JDl 
!LAMBDA 

( "XP) 
ICJ'JD 

((ATOM EXP) tXPl 
((AND !EQ ((AK EXP) (QUOTE EXPT)) 

!NOT (ATOM ICADR EXP))) 
( INTEGERP ICADOR EXP)) 
( EQ (CAA DR t XP l (QUOTE PLUS)) 
(GREATERP !CADDR EXP) 01 
!LESSP !CADDR EXP) 6) ) 

( cXPANDC:XPT ICADR EXf') ((ADDR EXPI) 
( ( EQ ( C~R EXP I (QUOTE TIMES! l 

ICOND «COOR EXP) 
IPRODEXPAND IEXPANDl (CADR EXP) l 

(EXPAi'JDl ICONS (QUOTE TIMES! !COOR EXP))) )) 
(((OR tXPl !EXPAND! ICADR EXP) I l 
( T NI Ll ) l 

(T !SIMPl (MAPLIST EXP !FUNCTION (LAMBDA (Cl IEXPANDl (CAR Cl)))))) ))) 
!PRUDEXPAND (LAMl:lDA (A l:l) 

I C':l'ID 
!!NOT !OR !EQ !CAR Al !QUOTE PLUS)) !EQ !CAR Bl !QUOTE PLUS)))) 

ISIMPTIMES !LIST A 8)) ) 

!!'JOf (EQ !CAR Al !QUOTE PLUS))) !TIMESLCOP A (COR Bill 
(!NOf (EQ (CAK. l:ll !QUOTE PLUSlll ITIMESLOOP B (CDR Alll 
<T !EXPA'JD !CDR Al !COR Bill ))))) 

Di:FlNE 
( { (RAT IOl'-JAL I ZE 

!LAMBDA 
(EXP) 
( PROG I W) 

(RE TURN 
(en ND 

((NOT IEQ ICAR EXP) (QUOTE PLUS))) Nill 
I I SE TQ 

w 
IM 2 

EXP 
I QUCITE 

(PLUS 
( 1 I Mt S 

ICOEFFTT 
IC 

!FUNCTION 
!LAMBDA 

IC l 
(Ml 
c 
IGUOH 

(EXP T 
!AA !FUNCTION (LAMBDA !AA) 



DEFINE 
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(ANO (NOT (EQUAL AA 111 
INOT <EQUAL AA 011 I I 11 

IN (FUNCTION (LAMBDA (Nt 
(ANO INUHBERP NI ILESSP N 011 llllllllll 

ICOEFFTT (8 TRUEI I I 
ICOEFFPT (A TRUEii II 

NIL 11 
1 REPLACE W (OUOTE ITI HES (PLUS (QUOTIENT A CI BI C 111 I 

(T NILi 1111111 

FORM,SIN,OERIVATIVE-DIVIDES 

(((TRUEl ILAMBOA IAI (OR (~OT lNUMBERP All INOT (ZEROP AJllll 
( INTEGEKPl (LAMBDA <Al I INTEGER? ISIMPlIMES ILIST 2 Al I I 11 
IVARP (LAMBDA (A) (EQUAL A VARlll 
IFREEl !LAMBDA (Al !ANO !FREE Al (OR INOT lNUMBERP All (NOT IZEROP Al))lll 
IFIXPl (LAMBDA IAI UNO INUMBERP Al IFIXP All)) 
(MASTER (LAMBDA IAI 

(PROG NIL 

DEFINE 
( (!FORM 

IFILEWRITE (IJUOTE MAlllOVEI (QUOTE LISPI (QUOTE MASTERl1 
(FILEAPNO 

(QUOTE MANOVEI 
(QUOTE LI SP I 
!LIST ICONS ICAR Al !TRANSL ISIHP lCOR Alllll I 

(CHAIN (QUOTE CISAVE MOSES Tl CR FULMAN MANOVEllll 
(FILESEEK (QUOTE MANOVEI (QUOTE ANSI! 
(RETURN CSIMP (Ur-!TR lREAD>lll 11111 

I LAMBDA 
IEXPRESI 
lCONO 

llFREE EXPRESI Nill 
((ATOM EXPRESI NILi 
(!MEMBER ICAR EXPRESI (QUOTE !PLUS TIMESlll 

I I LAMBDA (LI 
IPROG IYI 
LOOP 

ICONO 
llSETQ Y !FORM !CAR LI)) !RETURN VII 
I INOT ( SETQ L ICOR LI I I (RETURN NIU I 
IT (GO LOOPll Ill 

ICDR EXPRESI II 
I I MEMBER <CAR EXPRESI (QUOTE ILOG ARCTAN ARCSINI 11 

ICONO 
(I SE'fQ ARG 

IM2 
EXP 
ILIST 

(QUOTE TIMES! 
!QUOTE lCOEFFTT (C RATBPRIHElll 
ICONS ICAR EXPRESI 

lCONO (IEQ (CAR EXPRESI (QUOTE LOGll 
<CONS (CAOR EXPRESI (QUOTE ((8 RATBllll 

IT (QUOTE llB RATBllll Ill 
NIL 11 
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IRATLOG EXP VAR ICONS ICONS {QUOTE Al EXPRESl ARGl l l 
{ T 

!PROG (Y Zl 
ICOND 

I I SE TQ Y 
(FORM ICOND llEQ !CAR EXPRESl !QUOTE LOGll ICADDR EXPRESll 

IT ICADR EXPRESll lll 
!RETURN Yl l 

llAND 
IEQ !CAR EXPRESl [QUOTE LOGll 
ISETQ l IM2 [CADDR EXPRESl C Nllll 
{FREE ICADR EXPRESl l 
I SE TQ Y 

IM2 
EXP 
!QUOTE !TIMES ICOEFFTT IC RAT8ll ICOEFFTT ID ELEMlll l 
NIL l I l 

IR CT URN 
I I LAMBDA 

IA B C D BASEi 
I SUBS T 

EXPRES 
VAR 
(INTEGRATE 

ISIMPTIMES ILIST 
ISUBST 

I LI ST 
!QUOTE QUOTIENT! 
I LI ST 

!QUOTE DIFFERENCE! 
!LIST {QUOTE EXPTI BASE VAR) 
A l 

B l 
VAR 
c ) 

I LI ST 
(QUOTE QUOTIENTl 
!LIST {QUOTE EXPTJ BASE VARI 
B I 

I SUBST VAR EXPRES DI 11 
VAR l I l 

ICDR ISASSOC !QUOTE Al Zl I 
ICOR ISASSOC I QUOTE Bl Zl l 
ICDR (SASSOC (QUOTE Cl YI I 
ICDR (SAS SOC (QUOTE DJ Yl I 
ICADR EXPRESl )) I 

( T ( RETURN NI Ll I l l l ll 
I I OP TRIG CCAR EXPRESI I 

ICOND 
llNOT ISETQ W (M2 ICADR EXPRESl C Nill)) !FORM CCADR EXPRESlll 
IT IPROG2 {SETQ POWERLIST Tl (MONSTERTRIG EXP VAR ICADR EXPRESllll ll 

[{FIXPl ICADDR EXPRESll !FORM ICADR EXPRESlll 
((FREE ICADR EXPRESll 

ICOND 
( ISETQ W 

( M2 
EXP 
(QUOTE (TIMES ICOEFFTT (R RAT8JI IEXPT {BASE FREEJ IP POLYPlll 
NIL l l 

ICALLALGORT ISUBLIS W (QUOTE (RP BASElll VARJ J 
((M2 ICADDR EXPRESJ C Nill (SUPEREXPT EXP VAR ICADR EXPRESlll 
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CT IFORH ICADDR EXPRESlll II 
I INOT CRAT8 ICADR EXPRESI 11 IFORH ICADR EX PRES 111 
CIANO ISETQ W IM2 ICADR EXPRESI RATROOTFORH NILll 

IOENOHFINO ICADDR EXPRESll I 
CPROG2 ISETQ POWERLIST Tl IRATROOT EXP VAR ICAOR EXPRESI Wll I 

C INOT I INTEGERPl ICAOOR EXPRESI l'I 
ICONO llM2 EXP CHEBYFORM NILi ICHEBY EXP VARll 

IT (FORM ICAOR EXPRESl>I II 
llSETQ W CM2 ICAOR EXPRES> D NILll 

ICONO 
I I SETQ ARG 

IH2 
EXP 
I QUOTE I TIMES 

CEXPT IVAR VARPI -11 
ICOEFFTT CAA FREEi) 
IEXPT ISQ Ml 0) -O.SEO) It 

NIL 11 
ISIMP 

I SUB ST 
ILIST (QUOTE EXPTI VAR -1) 
VAR 
IALGE82 

ILIST 
!QUOTE TIMESI 
-1 
!REPLACE ARG !QUOTE AA)) 
ILIST 

(QUOTE EXPTI 
I SETQ Y 

!REPLACE ARG 
(QUOTE IPLUS !TIMES A IEXPT VAR 211 ITIMES 8 VARI Cl ))I 

-0.SEO II 
VAR 
y 
I REPLACE ARli 

!QUOTE lllQUOTE• Cl. Al ((QUOTE• 81. Bl llQUOTE• Al. Cll 111111 
IT IALGEB2 EXP VAR ICAOR EXPRESI Wll I~ 

llSETQ W CH2 ICADR EXPRESI E NILll 
IPROG2 CSETQ POWERLIST Tl IROOTLINPROD EXP VAR ICAOR EVPRESI Wll 

llM2 EXP CHEBYFORM NILi ICHEBY EXP VARll 
llNOT IM2 ISETQ W IEXPAND2 ICAOR EXPRESHI ICAOR EXPRESI NILll 

IPROG2 
I SETQ EXP I SIMP I SUB ST W ICADR EXPRESI EXPI I I 
IFORM ISIMP (LIST (QUOTE EXPTI W ICAOOR EXPRESllll II 

llSETQ W !RATIONALIZE ICAOR EXPREStll 
IPROG2 

I SETQ EXP I SIMP I SUB ST W ICADR EXPRESI EXPI II 
!FORM ISIMP !LIST (QUOTE EXPTI W ICAOOR EXPRESllll II 

IT NILi 1111 I 

DEFINE 
(((INTEGRATE 

I LAMBDA 
!EXP VARI 
(PROG IY ARG POWERLIST 8 W C D E RATROOTFORM CHEBYFORMJ 

ICONO llFREE EXPI (RETURN CSIMPTIMES !LIST EXP VARlllll 
ICONO 

I !NOT IEQ ICAR EXPI IQUOTE PLUSI I) IGO 011 
IT 

I RETURN 
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LOOP 

SKIP 
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ISIMPPLUS IMAPLIST ICDR EXP) 
IFUNCTlOlll !LAMBDA !Cl llNTEGRATEl !CAR CllJI 11111 

ICOND llSETQ Y IOIFFOIV EXP VARll !RETURN VIII 
I SETQ Y 

ICOND I IEQ !CAR EXPI I QUOTE TIMES I I ICOR EXPI I IT !LIST EXPJ I I I 
ISETQ C 

(QUOTE !PLUS tCOEFFPT IB FREEi IX VARPll ICOEFFPT IA FREEllll I 
ISETQ RATROOTFORM 

!QUOTE !TIMES 
ICOEFFTT IE FREEi) 
(PLUS ICDEFFPT IA FREEi !VAR VARPI l ICOEFFPT IB FREEi l l 
IEXPT !PLUS ICOEFFPT IC FREEi !VAR VARPll ICOEFFPT ID FREElll 
-1 1111 

I SETQ 
CHEBYFOKM 
I QUOTE I TIMES 

IEXPT !VAR VARPI IRl NUMBERPll 
tEXPT IPLUS !TIMES ICOEFFTT IC2 FREEll IEXPT !VAR VARPI IQ FREEllll 

ICOEFFP ICl FREEi I I 
IR2 NUMBERP) I 

ICOEFFTT IA FREEi I l l I 
I SE TQ 0 

I QUOTE I PLUS 
ICOEFFPT IC FREEi IEXPT IX VARPl 2ll 
ICOEFFPT IB FREEi IX VARPI I 
ICOEFFPT IA FREEi} II I 

I SETQ E 
{QUOTE I TIMES IPLUS ICOEFFPT IA FREEi !VAR VARPI I ICOEFFPT 18 FREEH l 

{PLUS ICOEFFPT IC FREEi IVAR VARPI I ICOEFFPT I 0 FREE} 11 I} I 

ICONO 
llRATB !CAR VII !GO SKIPll 
llSETQ W !FORM !CAR Ylll !RETURN WJI 
IT IGO SPEC I ALI I I 

I SETQ Y ICDR YI I 
ICONO I !NULL YI 

!RETURN ICOlllD llSETQ Y IPOWERLIST EXP VARI) YI 
IT !MASTER ICONS VAR EXPlll 1111 

IGO LOOP I 
SPECIAL 

DEFINE 

!RETURN ICONO 
llNOT IM2 EXP ISETQ Y IEXPAN02 EXPll NILll I INTEGRATE Y VARI) 
llANO INOT POWERLISTI ISETQ Y IPOWERLIST EXP VARlll YI 
llSETQ Y IPARTS EXP VARI) YI 
IT !LIST (QUOTE INTEGRAL! EXP VARI! 1111111 

lllRATB ILAMdOA IEXPI 
ICOND I IFREE EXP) Tl 

I IATOM EXPI Tl 
II MEMBER ICAR EXP) !QUOTE IPLUS TIMES} II 

(ANO IRAT8 ICADR EXPll 
ICONO I ICODR EXP I 

IRAT8 ICONS ICAR EXPI ICDDR EXPlll I 
ITTI Ill 

I INOT IEQ !CAR EXPI I QUOTE EXPTI I I Nill 
llFIXPl ICAODR EXPll IRAT8 ICADR EXPl}I 
IT NILi llltl 
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DEFINE 
lllINTEGRATEl ILAMBDA IA) (INTEGRATE A VAR)l))I 

DEFINE 
lllPOLYP ILAMBOA IEXPI 

ICOND 
11 FREE EXP l Tl 
I I A TOH EXP I Tl 
I IMEHBE-R ICAR EXPI (QUOTE IPLUS TIMES I I I 

IAND (POLYP (CADR EXPI) 
(QR (NULL ICOOR EXPJ) IPOLYP ICONS ICAR EXP) ICDOR EXP>.IJ) )) 

II EQ ICAR EXP I I QUOTE EXPTJ I 
IANO 

INUMBERP ICAOOll. EXPll 
IINTEGERP ICAODR EXPll 
IGREATERP ICAODR EXPI 0) 
IPOLYP ICAOR EXP)) I) 

IT NILi )I I 
I CALLALGORT 

I LAMBDA 
IA VARI 
IPROG NIL 

IFILENRITE IQUOTE MANOVEI (QUOTE LISPI IQUOTE SUPERALGORTll 
IFILEAPNO 

I QUOTE MANO VE) 
IQUOTE LISPI 
(LIST 

ITRANSL ICAR Al) 
ITRANSl ISIHPTIMES ILIST ICAOR Al ISIMPL(lG ILIST (QUOTE El ICAOOR A)))) ll 
VAR I) 

tcHAIN IQUOTE llSAVE MOSES Tl IR FULMAN MANOVE)J)I 
I FILE SEEK IQUOTE MANOVE) I QUOTE ANSI) 
(RETURN ISIMP IUNTR IREADJlll ))Ill 

DEFINE 
lflSIN ILAMBDA IEXP VAR) !INTEGRATE ISIMP EXP) VAR>)) 

IDPTRIG ILAMBDA IAI !MEMBER A !QUOTE ISIN COS SEC TAN CSC COTllll.) 
IELEM 

I LAMBDA 
IAI 
ICOND 

llFREE Al Tl 
I !ATOM A) NILi 
llM2 A EXPRES NILi Tl 
IT IEVAL ICONS IQUOTE ANO) 

IMAPLIST ICOR A) !FUNCTION I LAMBDA IC) IELEM (CAR Cl)) ll ) 
NIL ) ) ) 11) I 

DEFINE 
lllFREE (LAMBDA IA) 

ICOND llATOM Al (NOT IEQ A VARI)) 
It UNO IFREE ICAR A)) !FREE ICDR Al))) ))I 

IVARP !LAMBDA IAI IEQ A VAR))I )) 

DEFINE 
lllDEFINITEINTEGRAL 

(LAMBDA IEXP VAR LONER UPPERI 
IPROG IY) 

I SETQ Y I PRINT !INTEGRATE EXP VAR) I l 
!RETURN ISIMPDIFFERENCE ILIST CSUBST UPPER VAR YI 

ISUBST lOWER VAR YI I )I)) I 



I DOUBLEINTEGRAL 
!LAMBDA IEXP Ll 

!PROG IYl 
I SE TQ Y 
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IDEFINITEINTEGRAL EXP 
ICAAR LI 
(CAD AR Ll 
(CAR ICDDAR LI I I I 

(RETURN IDEFINITEINTEGRAL Y 

DEFINE 
( ( ( INTEGRALLOOKUP 

(LAMBDA 
(EXP I 
(COND 

llEQ ICAR EXPl (QUOTE LOGll 
( SIMP (SUB ST 

ICADDR EXPl 
(QUOTE XI 

I CAA DR LI 
ICADADR LI 
(CAR ICDDADR LI l II I II II 

(QUOTE (PLUS (TIMES X ILOG E XII (TIMES -1 Xlll Ill 
((EQ (CAR EXP) (QUOTE PLUS)) ISIMPTIMES (LIST o.sEO EXP EXPlll 
((EQ (CAR EXP) (QUOTE EXPTll 

ICOND 
((FREE ICADK EXPll 

ISIMPTIMES ISUBST 
EXP 
(QUOTE Al 
ISUBST ICADR. EXPI !QUOTE Bl (QUOTE IA IEXPT (LOGE Bl -11111 Ill 

( (EQP ICADDR EXPI -11 
ISIMP fSUBST ICADR EXP! (QUOTE Xl (QUOTE ILOG E Xllll I 

(T ISIMP ISUBST 
( SIMPPLUS Ill ST (CADDR EXP) l I) 
(QUOTE NI 
I SUB ST 

(CADR EXP) 
(QUOTE X) 
(QUOTE ( TIME:S (EXPT N -11 IEXPT X NII l ) II l)) 

(T (SUBST 
(CADR EXP) 
(QUOTE Xl 
I CDR ( SAS SOC 

ICAR EXPl 
{QUOTE (!SIN TIMES -1 ICOS XII 

ICOS SIN XI 
ITAN LOGE (SEC Xll 
ISEC LOGE !PLUS ISEC XI (TAN XIII 
(COT LO.; E I SIN XII 
ICSC LOG E (PLUS ISEC XI ITAN XI I I I I 

(QUOTE NILL) lllllll 
(DIFFDIV 

(LAMBDA 
(EXP VARI 
(PROG (Y A X V D Z W RI 

( SE TQ X 
(M2 

EXP 
(QUOTE !TIMES ICOEFFTT (A FREEi) ICOEFFTT (8 TRUEllJI 
"l IL I l 
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( SETQ A ICDR I SASSOC I QUOTE A> XI 11 
ISETQ EXP ICDR (SASSOC (QUOTE 81 XIII 
ICOND 

I CANO 
(EQ ICAR EXPI !QUOTE EXPTI I 
IEQ ICAADR EXPI IQUOTE PLUSll 
IINTEGERP ICADDR EXPll 
ILESSP ICADDR EXPI 61 
IGREATERP ICADOR EXPI Ol I 

!RETURN (SIMPTIMES lllST A 
CINTEGRATE IEXPANDEXPT ICADR EXPI ICADDR EXPll VARI Jilli 

I SETQ EXP 
ICOND llEQ ICAR EXPI (QUOTE TIMESIJ EXPI 
IT (LIST (QUOTE TIMESI EXPI> }} 

ISETQ Z (CDR EXPIJ 

I SETQ Y (CAR Zll 
( SETQ R 

ILIST (QUOTE PLUSI 
ICONS I QUOTE COE FF PT> 

ICONS (QUOTE IC FREEU} (CHOICE Y ICDR EXP} I} 11 > 
ICOND 

((SETQ W IM2 IDIFFl Y VAR> R NILJI 
I RETURN 

ISIMPTIMES 
(LIST 

y 

ICOND 

A 
y 

ISIMPEXPT ILIST (SIMPTIMES (LIST 2 ICOR ISASSOC IQUOTE Cl WIJI} 
-1 1)))))1 

((MEMBER ICAR YJ (QUOTE IEXPT LOGI I> 
ICOND 

((FREE ICADR Y}} ISETQ W ICADDR VIII 
((FREE ICADOR VII ISETQ W ICADR VJ II 
IT I SETQ W OJ I II 

((MEMBER ICAR YI (QUOTE (PLUS TIMES}}) ISETQ w vn. 
IT ISETQ W ICAOR YI)) } 

ICONO 
(( SETQ 

w 
ICOND 

I IAND 
IEQ ICAR ISETQ X IDIFFl W VARlll !QUOTE PLUSll 
IEQ 

ICAR ISETQ V ICAR ISETQ 0 !CHOICE Y ICOR EXPJlllll 
!QUOTE PLUS} I 

INOT ICOR 01 I I 
ICOND ((SETQ 0 (MATCHSUM ICDR XI ICOR VIII 

ILIST ICONS I QUOTE Cl DI I I 
IT NILi II 

IT (M2 X R NILll II 
(RETURN 

ICONO 
llNULL ISETQ X IINTEGRALLCOKUP VIII NILi 
IT 

I SIHPTIMES 
ILIST 
x 
A 
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ICOND 
C I EQ It TI 11 
IT ISIHPEXPT CLIST CCDR CSASSOC !QUOTE Cl Wll -lJI> lllll))I 

I SETQ Z CCDR Zll 
CCOND llNULL ZI !RETURN NlLlll 
IGO Al 11111 

ICITRUE ILAHBDA CAI Tllll 

DEFINE 
11 CHATCHSUM 

CLAHBOA 
IALIST BUSTI 
IPROG CR S C DI 

C SETQ S 

DEFINE 

CH2 
CCAR All STI 
(QUOTE ITIHES ICOEFFTT IA FREEll ICOEFFTT CC TRUEllll 
NIL I I 

ISETQ C ICDR ISASSOC !QUOTE Cl Sill 
ICOlllO 

C INOT I SETQ R 
IM2 

ICONS !QUOTE PLUSl BLISTl 
!LIST 

C QUOTE PLUS l 
ICONS (QUOTE TIMESl 

ICONS 
!QUOTE ICOEFFTT IB FREEllll 
ICOND I IEQ ICAR Cl I QUOTE TIMES I I ICDR Cl I 

fT !LIST Cll >II 
!QUOTE ID TRUE> I I 

NIL Ill 
!RETURN NIU 11 

ISETQ D 
ISIMP ILIST 

!QUOTE TIMESI 
ISUBLIS S !QUOTE All 
!LIST l~UOTE EXPTI ISUBLIS R !QUOTE 811 -11 Ill 

ICONO llM2 ICONS !QUOTE PLUSI ALISTI ITIMESLOOP 0 BLISTI NILi 
!RETURN DI I 

IT !RETURN Nllll 111111 

lllEXPANDEXPT ILAMBOA IA NI 
IPROG CYI 

LOOP 
ISETQ Y Al 

ISETQ N ISUBl NII 
ICONO I IZEROP NI I RETURN YI> I 
ISETQ Y 

!EXPAND ICDR Al 
I COND II EQ I CAR YI 

IGO LOOPI II I II 

I QUOTE PLUS l 
ICDR YI I 

IT !LIST Yll II I 

METHODS l-9 OF SIN•S SECOND STAGE 



DEFINE 
(llSUPEREXPT 

!LAMBDA 
!EXP VAR BASEi 
(PKOG IEXPTFLAG Y Wl 

ISETQ Y (ELEMXPT EXPll 

222 

(COND (EXPTFLAG I RETURN NIL) l l 
(RETURN 

(i::LEMXPT 
ILAMf>DA 

I cXP) 
ICOND 

( SIMP 
!SUBST 

IL I ST I QUOTE E XPTl BASE VARI 
VAR 
(INTEGRATE 

I SIMPQUOTIENT 
!LIST Y 

ISIMPTIMES !LIST VAR ISIMPLOG !LIST (QUOTE El BASEllll II 
VAR.. ) l 11) 11 

!!FREE EXP) EXPI 
!!ATOM EXP) ISETQ EXPTFLAG T)) 

lll~OT IEQ !CAR EXPI (QUOTE EXPTlll 
ICONS !CAR EXPJ 

IMAPLIST ICDR EXP) !FUNCTION (LAMBDA !CJ (ELEMXPT !CAR Clllll II 
((NOT !FREE ICADR EXPI I I 

!LIST !QUOTE EXPTI !ELEMXPT (CADR EXP)I IELEMXPT !C<'IDDR EXPJJI 
llNOT IEQ !CADR EXPI BASE)) 

IELEMXPT (LIST 
!CUOTE EXPTI 
BASE 
ISIMP !LIST 

(QUOTE TIMESI 
(LIST !QUOTE LOGI BASE ICADR EXPI l 
(CADDR EXPI I Ill) 

llNOT ISETQ W 
(M2 

ICADDR EXP! 
!QUOTE (PLUS ICOEFFPT IA FREE) (VAR VARPll !COEFFPT (B FREEllJI 
NIL Ill 

!LIST (CAR EXPI BASE IELEMXPT ICADDR EXP) 11 I 
IT ISIMP ISUBST 

BASE 
!QUOTE BASCI 
ISUBLIS W (QUOTE !TIMES IEXPT BASE Bl IEXPT VAR Allll IJJllJ)) 

DEFINE 
lllSUBSTlO 

I LAMBDA { EXi') 
ICOND 

I (A TOl-1 EXP I EXP) 
!!AND IEQ !CAR E.<PI (QUOTE EXPTll IEQ ICADR EXP) VARI! 

!LIST !CAR EXP) VAR IINTEGERP (QUOTIENT ICADDR EXP) Dill I 
IT IMAPL!ST EXP !FUNCTION (LAMBDA IC) !SUBSTlO !CAR Cllllll ))) 

IPOWERLIST 
ILAr-4BDA 

lcXP VAR) 





DEFINE 
CCCl~TEGERP (LAMBDA CA) 

IPROG CYI 
lSETQ Y 11 
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ICOND ((NOT INUMBERP Al I (RETURN NILi) 

c 

A 

( CNOT CFLOATP Al I (RETURN A)) I 

lCOND 
( CEQP Y A) (RETURN YI) 
I CLESSP Y A) IGO Al) 
CINOT IGREATERP COIFFERENCE Y Al 0.98999999E0)) (RETURN NIL)) ) 

(SETQ Y (SU81 VII 
(GO CI 

CCOND CINOT CGREATERP !DIFFERENCE A YI 0.98999999E0)) CRETURN NILIJ I 
I SETQ Y IADDl YI I 
IGO Cl ))I 

CFIXPl (LAMBDA CAI (ANO INUMBERP Al CFIXP Allll 
CRAT3 (LAMBDA CEXP IND) 

CCOND 
( (FREE EXP I Tl 
( ( A TOM EXP I I NO I 
((MEMBER CCAR EXPI IQUOTE ITIMES PLUSlll 

IANO IRAT3 ICADR EXPI IND) 
IOR INUll ICDOR EXP) l CRAT3 ICONS ICAR EXP) CCDDR EXP) I INDI) I) 

CCNOT IEQ CCAR EXPI IQUOTE EXPTlll 
CCOND ((EQ (CAR EXP> IQUOTE LOGll IRAT3 CCODR EXP) Tit 

CT CRAT3 ICADR EXPI Tl I I) 
CCFREE tCADR EXPll IRAT3 CCADOR EXPI Tll 
llFIXPl CCAOOR EXPll IRAT3 ICADR EXP) INDll 
C CANO CM2 ICADR EXP) RATROOT NILi IDENDMFIND CCAODR EXP)) I 

ISETQ ROOTLIST ICONS CDENOMFINO CCADDR EXPll ROOTLISTll I 
CT CRAT3 ICAOR EXP) NILi) 111 

CSUBST4 !LAMBDA CEXPI 
ICOND 

llFREE EXPI EXPI 
I I A TOM EXP I A I 
CINOT IEQ ICAR EXPI !QUOTE EXPTtll 

IMAPLIST EXP !FUNCTION (LAMBDA CCI CSUBST4 CCAR C)llll I 
llM2 CCAOR EXPI RATROOT NIL) 

(LIST CCAR EXPI B llNTEGERP {TIMES K CCAOOR EXPllll ) 
CT (LIST CCAR EXPI lSUBST4 ICADR EXPll CSUBST4 CCADDR EXPllll ))) 

IFINDINGK ILAM80A (LISTI 
IPROG IK I 

A 
I SETQ K 11 

ICOND CCNULL LISTI (RETURN Kl)I 
ISETQ K !QUOTIENT !TIMES K CCAR llSTtl IGCO K CCAR LISTl)I) 
ISETQ LIST CCDR LISTll 
IGO Al I)) 

COENOMFIND CLAMBOA CKI 
CPROG C YI 

A 

CCONO CCNOT CNUMBERP K>J IRETURN NILlll 
I SETQ Y 11 

CCOND CC INTEGERP C TIMES K Y)) CRETURN VII> 
ISETQ Y CADDl VII 
CCOND C CLESSP Y 251 IGO A) I> 
(RETURN NILi II I 

IGCD CLAM8DA CA Bl . 
CPROG NIL 



A 

IRATROOT 
I LAMBDA 
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ICONO llZEROP Al !RETURN !ABSOLUTE Billi 
ISETQ B !REMAINDER B All 
ICO~O llZEROP BJ !RETURN !ABSOLUTE All)) 
ISETQ A IREMAINOER A Bil 
IGO AJ Ill 

IEXP VAR RATROOT WI 
IPROG IROOTLIST K Y Wll 

DEFINE 

ICONO llSETQ Y ICHEBY EXP VARll !RETURN VIII 
ICONO llNOT IRAT3 EXP Tll !RETURN Nlllll 
ISETQ K IFINDINGK ROOTLISTll 
I SETQ Wl ICONS ICONS I QUOTE Kl Kl liil I 
I SETQ 

y 
I SUBST41 

EXP 
ISIMP ISUBLIS Wl 

IOUOTE !QUOTIENT 
!DIFFERENCE B iTIMES D CEXPT VAR Kiii 
!DIFFERENCE ITIMES C IEXPT VAR Kil Al 1111 

VAR 11 
I SETQ 

y 

I INTEGRATE 
I SIMP 

ILIST 
!QUOTE TIMESI 
y 
I SUB LIS 

Wl 
IQUOTE !QUOTIENT 

ITIMES E 
I DIFFERENCE 

(TIMES A 0 K CEXPT VAR IPLUS -1 K))l 
ITIMES BC K CEXPT VAR CPU.IS -1 Kil) II 

IEXPT (DIFFERENCE lTIMES C CEXPT VAR K)) A) 21 llJIJ 
VAR JI 

IRETURN ISIMP CSUBST 
ISIMP ILIST IQUOTE EXPTJ RATROOT CLIST (QUOTE EXPTl K -11)) 
VAR 
y )1111111 

ll~SUBST41 ILAMBD~ IEXP A BJ ISUBST4 EXP))))) 

DEFINE 
lllCHEBY 

I LAMBDA 
(EXP VAR) 
CPROG IRl RZ 01 02 Nl N2 W Q) 

ICOND 
( INOT 

C SETQ 
w 
IMZ 

EXP 
I QUOTE i TIMES 

IEXPT IVAR VARP) CRl NUf4BERPI) 
CEXPT IPLUS ITIMES ICOEFFTT CCZ FREEll 
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(EXPT IVAR VARP) IQ FREEll) ) 
(COEFFP ICl FREE)) ) 

IR2 NUHBERP) ) 
ICOEFFTT IA FREEi) 11 

NIL ) ) ) 
(RETURN NIU ) ) 

(SETQ Q CCOR ISASSOC !QUOTE QI Wl)) 
C SETQ 
w 
CCONS 

I CONS C QUOTE A) 
ISIMPQUOTIENT (LIST ICDR CSASSOC (QUOTE Al Wll Q)I I 

ICONS 
ICONS 

(QUOTE Rll 
ISIMPQUOTIENT (LIST ISIHPPLUS CLIST 

1 
(SIMPMINUS ILIST Q)I 
ICOR CSASSOC IQUOTE Rll W)I II 

Q ) I I 
W I >I 

ISETQ Rl ICOR ISASSOC (QUOTE Rll Will 
(SETQ R2 ICOR ISASSOC IQUOTE R21 Will 
ISETQ W !REVERSE Wll 
ICONO 

I INOT IANO 
ISETQ 01 IDENOMFINO Rlll 
ISETQ 02 IOENOMFIND R211 
ISETQ Nl llNTEGERP ITIMES Rl 01111 
ISETQ N2 llNTEGERP ITIMES R2 0211) 
I SETQ W 

ICONS ICONS IQUOTE 01) Dll 
ICONS ICONS (QUOTE 021 021 

ICONS ICONS IQUOTE Nll Nl) 
ICONS ICONS !QUOTE N21 N21 WI 1111 l l 

!RETURN NIU I 
((AND llNTEGERP Rll IGREATERP Rl Oil 

I RETURN 
ISIMP 

I SUB ST 
lSU8LIS W (QUOTE (PLUS Cl ITIHES C2 IEXPT VAR QIJIJl 
VAR 
I INTEGRATE 

I EXPAND 
I SUBLIS W 

(QUOTE I ITtMES 
A 
IEXPT VAR R2) 
IEXPT C2 !MINUS IPLUS Rl llll J)ll 

ICOR IEXPANOEXPT ISUBLIS W (QUOTE !PLUS VAR ITIHES -1 CllJJ) 
Rl ) J) 

VAR ))Ill 
lllNTEGERP R21 

I RE TURN 
I SIMP 

I SUB ST 
ISUBLIS W (QUOTE IEXPT VAR (QUOTIENT C: DllllJ 
VAR 
I MASTER 

ICONS 
VAR 



DEFINE 

ISIMP 
ISUBLIS W 

(QUOTE (TIMES 
01 
A 

·-~·-· ... 
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IEXPT VAR !PLUS Nl 01 -111 
IEXPT !PLUS !TIMES C2 IEXPT VAR 0111 Cll RZJ IJllllllll 

CIANO IINTEGERP Rll ILESSP Rl Oii 
I RETURN 
ISIMP 

I SU8ST 
ISUBLIS W 

I QUOTE IEXPT !PLUS Cl I TIMES C2 I EXPT VAR QI I I 
!QUOTIENT 1 021 Ill 

VAR 
I MASTER 

ICONS 
VAR 
I SIMP I SUB US W 

!QUOTE !TIMES 
A 
01 
IEXPT C2 !MINUS IPLUS Rl ll JI 
IEXPT VAR !PLUS Nl 01 -111 
IEXPT !DIFFERENCE .IEXPT VAR 011 Cll Rll 1111111111 

llINTEGERP ISIMPPLUS ILIST Rl R2111 
I RETURN 

ISIMP 
ISUBST 

ISUBLIS W 
(QUOTE IEXPT !QUOTIENT !PLUS Cl ITIMES CZ lEXPT VAR Qlll 

IEXPT VAR QI I 
!QUOTIENT 1 011 II I 

VAR 
I MASTER 

ICONS 
VAR 
ISIMP ISUBLIS W 

!QUOTE !TIMES 
-1 
A 
01 
IEXPT Cl !PLUS Rl R2 111 
IEXPT VAR IPLUS N2 Dl -111 
IEXPT (DIFFERENCE IEXPT VAR 011 C21 

!TIMES -1 IPLUS Rl R2 211 lllllllllll 
IT !RETURN NILll 111111 

lllALGEB !LAMBDA IA BC DI CALGEB2 ABC ICONS Nil Dllllll 

DEFINE 
ICIALGEB2 

I LAMBDA 
CEXP VAR SQUARE WI 
IPROG IA Y B C Fl Al Yl Xl E D H GI 

ISETQ A ICDR ISASSOC (QUOTE Al Wiii 
ISETQ B ICDR ISASSOC !QUOTE BJ Wiii 
ISETQ C ICDR CSASSOC !QUOTE Cl Wiii 
ICOND llNOT IRAT6 EXPll !RETURN NILIJ) 
I SETQ Yl 



ll 

L2 

lit 

L3 

LS 

(SIMP (LIST 
(QUOTE PLUS) 
VAR 
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(LIST I QUOTE QUOTIENT) B (LIST (QUOTE TIMES I 2 tit )I I 
C SETQ Xl 

C SIMP CLI ST 
(QUOTE DIFFERENCE) 
VAR 
(LIST IQUOTE QUOTIENTI B (LIST lQUOTE TIMESI 2 ti) tll 

C SETQ Al 
ISIMP (LIST 

(QUOTE DIFFERENtEI 
A 
CLIST 

(QUOTE QUOTIENT) 
CLIST (QUOTE EXPTI 8 21 
(LIST lQUOTE TIMES) 4 ti JI)) 

CtOND 
llAND 4NUMBERP Ct lGREATERP t on lGO Ll)) 
llAND INUMBERP tt lLESSP C 011 CGO L2t1 
(( ASKPOS CJ CGO Ll It 
I CASKNEG CJ CGO L2J I , 
CCASKIT t lQUOTE POSITIVEI) CGO Lltl 
C lASKIT t CQUOTE NEGATIYEt t CGO L2t I 
H lREl'URN ULGEB EXP VAR SQUARE ·WI ti 

CtDND 
C !AND CNUMBERP All CGREATERP Al Olt IGO L3) l 

1
' (CANO INUMBERP Al I ILESSP Al 01 l lGO L5) l 

llAND INUMBERP All IZEROP All l CGO L4) l 
I IASKPOS Al I CGO L3 I I . 
llASKNEG All (GO L5)1 
llASKIT Al (QUOTE POSITIVE)) CGO L3J) 
llASKIT Al (QUOTE NEGATIVE)) IGO L5)1 
I (ASK ZERO Al I IGO L41 J 
IT lRETURN IALGEB EXP VAR SQUARE Wiii 

ltOND 
I !AND CNUMBERP Al) IGREATERP Al 01 I CGO L6) I 
llAND INUMBERP All CLESSP Al 01 I 

(RETURN CALG.eB EXP VAR SQUARE W)I ) 
CCASKPOS All CGO L6JI 
CCASKIT Al IQUOTE POSITIVE)) tGO L61l 
CT !RETURN CALGEB EXP VAR SQUARE WI)) 

CSETQ C ISIKPEXPT CLIST C 0.5EOIJI 
CSETQ Y CSUBST6 EXP Xl ISIMP CLIST (QUOTE TIMESI C VARIJll 

. I SETQ Y CINTEGRATE CSIMP YI VAR)I 
CRETURN lSIMP CSUBST Yl VAR VIII 

CSETQ H CQUOTE CARCTAN XIII 
ISETQ E (QUOTE ITAN X)ll 
I SETQ Fl I QUOTE I SEC X)I l 
I SETQ G I QUOTE IEXPT CSEC Xl 2l l) 
lGO GETOUTI 

I SETQ H I QUOTE I ARC SEC XI I I 
CSETQ E (QUOTE CSEt Xlll 
ISETQ Al ISIMPMINUS (LIST Allll 
I SETQ Fl (QUOTE C TAN X-J 11 
ISETQ G !QUOTE CTIMES CTAN XI CSEt XII)) 
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(COND 
((NUMBERP (CADDR Cll (INTEGERP !QUOTIENT !CACDR Cl Zill 
I !ATOM !CADR Cl l !GET (CADR Cl [QUOTE POSITIVE Ill 
IT NIL l l l 

(T NILi lllll 

DEFINE 
({(PFCTSQ (LAMBDA (X) 

(PROG (Y) 
!SETQ Y 1l 

A 
(COND ( !EQP I TIMES Y YI XI !RETURN YI) 

!!GREATERP !TIMES Y YI XI [RETURN N!Ul 
!SETQ Y !ADDl Y)l 
I GO Al ) ) l 

!RAT6 !LAMBDA !EXP) 
(COND 

!!FREE EXP) Tl 
I (A TOM EXP) Tl 
{ !MEMBC:R !CAR EXP) !QUOTE !PLUS TIMES) l l 

(AND !RAT6 ICADR EXPl l 
!OR !r'WLL !COOR EXPll !RAT6 !CONS !CAR EXP) !COOR EXPllll ll 

!!NOT IEQ !CAR EXP) !QUOTE EXPTlll NIU 
llFIXPl !CADDR EXPll !RAT6 ICADR CXPlll 
(!NOT IINTEGERP ISIMPTIMES !LIST Z ICADDR EXPlllll NIL) 
IT !MZ !CADR EXP) SQUARE NIUl Ill 

!SUBST6 
!LAMBDA 

!EXP A Bl 
ccmw ((FREE EXP) EXP) 

I !ATOM EXPl Al 
!!MEMBER !CAR EXP) !QUOTE !PLUS TIMESlll 

ICONS !CAR EXPl 
!MAPLIST !CDR EXP) 

!FUNCTION !LAMBDA !Cl !SUBST6 !CAR Cl A Bill Ill 
!(NOT IEQ ICAR EXPl !QUOTE EXPTlll !ERRORll 
!!FIXPl !CADDR EXPll 

!LIST !CAR EXP) !SUBST6 !CADR EXP) A Bl !CADDR EXPll l 
IT !LIST !CAR EXPl B !INTEGERP !TIMES Z !CACDR EXPll ))) l )) 

!TRIGSQRT 
[LAMBDA 

!EXP VAR SQUARC: W) 
!PROG (Y A B C D E Fl G Hl 

!SETQ A !CDR !SASSOC !QUOTE Al Will 
I SETQ B ICDR I SASSOC !QUOTE Bl WI l l 
!COND !!OR !NOT INUMBERPAll !NOT !NUMBERP bill 

!RETURN !ALGEB EXP VAR SQUARE Wll ) 
!!NOT !RAT6 EXPll !RETURN NIUl l 

(COND ((GREATERP A Ol 
!COND I !GREATERP B Ol 

!AND !SETQ H !QUOTE IARCTAN Xlll 
ISETQ E (QUOTE !TAN Xlll 
ISETQ Fl !QUOTE !SEC XI l l 
ISETQ G !QUOTE IEXPT !SEC X) Zill ll 

IT (AND !SETQ E !QUOTE !SIN Xlll 
I SE TQ G (QUOTE I COS X J l l 
!SETQ B !MINUS Bil 
!SETQ Fl !QUOTE (COS Xlll 
!SETQ H (QUOTE I ARCS IN XI ll l Ill 

IT !AND !SETQ E !QUOTE !SEC Xlll 
!SETQ A !MINUS All 



DEFINE 
(((ALGEB 

(LAMBDA 

(COND 

( SETQ 

((NOT 
( (NOT 
y 

I SE TQ 
!SETQ 
(SETO 

(SE TQ C 
(SE TQ D 
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Fl (QUOTE !TAN XIII 
G (QUOTE !TIMES !TAN XI !SEC Xllll 
H (QUOTE IARCSEC XII I ll I 
(PFCTSQ (QUOTIENT A Billi (RETURN 
(PFCTSQ Alli (RETURN NILll I 

(SUBST6 EXP 
ISIMP (LIST (QUOTE TIMES! 

c 
(SUBST VAR (QUOTE XI El II 

(SIMP (LIST (QUOTE TIMESI 
0 

NIL I I 

!SUBST VAR (QUOTE XI Fll 1111 
(SETQ Y 
( SE TQ Y 
(RE TURN 

(SIMP (LIST (QUOTE TIMESI C (SUBST VAR (QUOTE XI Gl Ylll 
ITRIGINT Y VARll 
(SIMP ISUBST (SUBST !LIST (QUOTE TIMESI 

!LIST (QUOTE EXPTI C -11 
VAR I 

(QUOTE XI 
H I 

VAR 
y llllllll 

(EXP VAR SQUARE WI 
!PROG (A B C Al Cl Y PROBLI 

A 

!St=TQ A ICDR (SASSOC (QUOTE Al Wiii 
( SETQ B !CDR I SAS SOC (QUOTE Bl Wll I 
!SETQ C !CDR ISASSOC (QUOTE Cl W))j 
CCOND ((NOT CRAT6 EXPll (RETURN NILlll 
ICOND 

(CANO CNOT INUMBERP CJ I (ASK Cl I 
(SETQ Cl !SIMPEXPT (LIST C 0.5EOlll 

((NOT (NUMBERP Cl I (GO Al I 
CCNOT (GREATERP C Oii (GO All 
(T !SETbi Cl (SIMPSQRT Clll I 

( SETQ Y 
(SUBST6 

EXP 
(SUBSTL (AB Cl VARI 

(QUOTIENT !DIFFERENCE (EXPT VAR 21 Al 
!PLUS B CTI MES 2 !TIMES VAR Cll I I II 

CSUBSTL (AB VAR Cll 
(QUOTIENT !PLUS (TIMES !EXPT VAR 21 Cll !TIMES B VARI !TIMES A Cll I 

!PLUS B CTI MES 2 !TIMES VAR Cll II I Ill 
( SETQ 

PRO BL 
I LI ST 

(QLIOTE TIMESI 
y 

( SUBSTL CA B Cl VARI 
(TIMES 2 

!TIMES !PLUS !TIMES 8 VARI !TIMES (EXPT VAR 21 Cll (TIMES A Clll 
(EXPT !PLUS B !TIMES 2 (TIMES VAR Cl Ill -21 I II II 

( SE TQ Y 
(SUtlSTL CVAR Cl SQUAREI 

!PLUS !TIMES VAR Cll (EXPT SQUARE !QUOTIENT l 2111 ll 
(GO Bl 



B 

DEFLIST 
CC I SUBS TL 
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ICOND 
((AND (NOT (NUMBERP AJJ tASK AJJ 

lSETQ Al lSIMPEXPT (LIST A 0.5EOJIJ 
(INOT lNUMBERP AJJ (ERROR (QUOTE (NOT YETIJJJ 
((LESSP A 01 (ERROR (QUOTE (NOT YETJIJI 
(T lSETQ Al lSIMPSQRT AIJJ I 

( SETQ Y 
I SU8ST6 

EXP 
(SUBSTL CB C Al VARJ 

(QUOTIENT !DIFFERENCE (TIMES Z (TIMES VAR Alll Bl 
(DIFFERENCE C (EXPT VAR Zll II 

ISUBSTL (8 C Al VARI 
(QUOTIENT IPLUS 

(TIMES Al CEXPT VAR Zll 
(TIMES -1 (TIMES· 8 VAR) I 
I Tl MES Al CI J 

(DIFFERENCE C IEXPT VAR ZJ) ))JI 
I SETQ 

PROBL 
(LIST 

(QUOTE TIMESI 
y 
ISUBSTL CB C Al VARI 

ITIMES 
(TIMES Z 

(PLUS 
CTIMES Al (EXPT VAR 2)1 
(TIMES -1 !TIMES B VARll 
I Tl MES Al C I J I 

lEXPT CDIFFERENCE C CEXPT VAR 211 -21 lllJ 
CSETQ Y 

CSUBSTL (VAR Al SQUAREI 
(QUOTIENT !DIFFERENCE IEXPT SQUARE !QUOTIENT 1 Zll All VARJ IJ 

!RETURN ISIMP CUNTR CSUBST Y VAR (MASTER ICONS VAR PROBLJ)JJJJ JJIJI 

ILAMBDA CA ALISTI 
lSUBLIS CMAPLIST CCAR Al 

(FUNCTION !LAMBDA CBI 
ICONS CCAR BJ 

IEYAL (CAR Bl ALISTJ )))) 
ICADR Al )) )) 

FEXPR J 

DEFINE 
llCSIMPSQRT (LAMBDA IXJ 

IPROG I YI 

A 
ISETQ Y 11 

ICOND CCEQP !TIMES Y YI XJ (RETURN VII 
ICGREATERP ITIMES Y VJ XI 

IRETURN CLIST (QUOTE EXPTJ 

CSETQ Y IADDl YJI 
I GO A J I J IJ J 

.x 
(QUOTE I QUOTIENT 1 2 I I J J I I 
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B 

I SUB VAR 
I SUB LIS 

y 
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(QUOTE IA (DIFFERENCE 
!QUOTIENT 

ISIN !TIMES (DIFFERENCE M NI XII 
!TIMES 2 !DIFFERENCE M NII I 

!QUOTIENT ISIN !TIMES (PLUS M NI XII 
!TIMES 2 (PLUS M NII 111111111 

llAND IEQ B !QUOTE COSll IEQ D (QUOTE COSlll 
I RETURN 

I SIHPTIMES 
(SUB VAR 

I SUBllS 
y 

!QUOTE IA !PLUS 
I QUOTIENT 

ISIN !TIMES !DIFFERENCE HNI XII 
!TIMES 2 (DIFFERENCE MN)) ) 

!QUOTIENT ISIN !TIMES IPLUS M NI XII 
, !TIMES 2 CPLUS M NII 111111111 

I !OR !AND 
(EQ B !QUOTE COSll 
I SETQ W ICDR I SASSOC I QUOTE Ml YI II 
CRPLACO I SASSOC (QUOTE Ml YI ICDR CSASSOC IQl,IOTE NJ Y)) I 
IRPLACD tSASSOC (QUOTE NI Yl WI I 

T I 
!RETURN 

I SIMPTIMES 
I SUB VAR 

(COND 

I SUBLIS 
y 
(QUOTE 1-1 A 

IPLUS 
!QUOTIENT 

ICOS !TIMES !DIFFERENCE M NJ XII 
!TIMES 2 I DIFFERENCE M NI I I 

!QUOTIENT (COS !TIMES (PLUS M NI XII 
ITIMES 2 (PLUS M NII 1111111111 

I INOT 
ISETQ 

y 

IPROG2 
ISETQ TRIGARG VAR) 
IM2 
EXP 
(QUOTE !TIMES 

lCOEFFTT lA FREEll 
llB TRIGll !TIMES IX VARPI lCOEFFTT (N INTEGERP)))) 
ICOEFFTT (C SUPERTRIGll II 

NIL II)) 
I RETURN Nill I I 

I RETURN 
I INTEGRATE 

IEXPAND2 
(LIST 

!QUOTE TIMES> 
(REPLACE Y (QUOTE Cll 
lCONO 
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llEQ ISETQ B !REPLACE Y !QUOTE Bill ICiUOTE COS)) 
(SUBS T 

VAR 
(QUOTE XI 
(SUPERCOS"lX !REPLACE Y !QUOTE Nl)) ll 

IT ISUBST VAR !QUOTE Xl (SUPERSINX !REPLACE Y !QUOTE Nllll llll 

A 
VAR ) ) 

ISETC W ISUBST2 EXP TRIGARGll 
I SE TIJ B 

ICDR (SASSOC (:;)UOTE Bl 
IM2 

TRIGARG 
llJUOTE (PLUS ICUCFFPT IB FREE) IX VARPI) ICUEFFPT IA FREE))) l 
'JI L ) J l l 

(R~TURN (SUtlST TRIGARG VAR <TRIGINT ISIMPQUOTIENT !LIST W Bll VAR)) llll 
ITRIG2 (LAMBDA IA) (MEMBtR A (QUOTE !SIN COS TA'! CCT SEC CSClllll )) 

O~F I 1NE 
l!ISUPERSINX !LAMBDA IN) 

l!LAMbDA Ill 
IEXPAND2 (LIST TIMES) 

!COND ( ILESSP N 0) -1) 

("l) 

I QUOTE 
I 
ISINNX 
IT l l) 

IT IMES I '' ll l) l 
) ) ) 

ISUPERCOSNX (LAMbDA 
llLAMBDA Ill IEXPAND2 !CGSNX !TIMES 

ICO"lD llLESSP N Ol -1) IT 11 l l )) 
ISINNX !LAMBDA IN) 

ICO'm llEWUAL N ll !QUOTE !SDI Xlll 
IT !LIST (QUOTE PLUS) 

!LIST (QUOTE TIMES) 
(QUOTE (SIN Xll 
(CGSNX (SUBJ Nl l 

!LIST (QUOTE TIMES) 
!QUOTE !COS Xll 

I N l ll l 

(SJNNX !SUBJ Nll llllll 
ICOSNX !LAMBDA I'll 

ICONO !!EQUAL N Jl (QUGTE !COS Xlll 
IT !LIST (QUOTE PLUS) 

Dt:FINE 

!LIST (QUOTE TIMESl 
!QUOTE (COS Xl l 
ICCSNX (SUBJ Nl l 

!LIST (QUOTE TIMESl 
-1 
!QUOTE !SIN Xl) 
(S!NNX (SUBl Nll llllllll 

lllPOSEVE'J (LAMBDA IA) !AND (EVEN Al IGREATERP A -1)))) 
ITRIGFREE !LAMBDA (Al 

ICOND 
{(ATOM Al l'JOf (MoMBoR A (QUUTE (SIN• COS• SEC• TAN•))))) 
(T !ANO ITRIGFREE !CAR All ITRIGFREE ICDR Al))) Ill 

IUNTR ILA"1BDA !EXP) 
ICUNO 

(!ATOM EXP) EXP) 
!IEW !CAR UP) !QUOTE LOG)) 

ICOND !!NULL ICDDR EXP)) 
(LIST !CAR EXPl !QUOTE El (UNTR !CADR EXP))) l 

IT !LIST !CAR EXP) ICADR EXPl IUNTR ICADDR EXPllll ll 
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ICEQ ICAR EXPl CQUOTE MlNUSll CllST CQUOTE TIMESI -1 IUNTR ICADR EXPllJI 
ICEQ ICAR EXPI CQUOTE SQRTll 

C LI ST C QUOTE EXPTI C UNTR CCADR EXPI I O. 5EO I I 
CCEQ ICAR EXPI (QUOTE lNTEGRALll !LIST ICAR UPI CCADR EXPI VARll 
CCEQ ICAR EXPI (QUOTE DlFFERENCEll 

CLIST CQUOTE PLUSI 
CUNTR ICADR EXPll 
CLIST (QUOTE TIMESI -1 IUNTR tCADOR EXPlll II 

ICEQ ICAR EXPI CQUOTE QUOTIENTll 
CLIST CQUOTE TIMES! 

CUNTR CCAOR EXPll 
CLIST I QUOTE EXPTI IUNTR ICADDR EXPI I -11 I l 

CT CMAPLIST EXP IFUNCTICN !LAMBDA IAI CUNTR CCAR Aflllll 11111 

DEFINE 
( 11 TRANSL 

ClAMBDA 
IEXPI 
CCOND 
(I NUMBERP EXP I 

C PROG CTEMP l 
CRETUR"f CCOllfD 

llFIXP EXPI EXPI 
CISETQ TEMP IINTEGERP EXPll TEMPI 
llSETQ TEMP 

0

IDENOMFIND EXPfl 
ILIST IQUOTE QUOTIENT! llNTEGERP ITIMES TEMP EXPll TEMPI I 

IT IERROR !QUOTE TRANSLlll 1111 
1 IATOM EXPI EXPI 
llAND !MEMBER CCAR EXPI (QUOTE !PLUS TIMES~ll 

IGREATERP !LENGTH CCDR EXPI I 21 I 
ILIST 

!CAR EXPl 
ITRAHSL CCADR EXPll 
(TRANSL CCQNS CCAR EXPI ICDDR EXPI l l 11 

llAND IEQ ICAR EXPI (QUOTE LOGJl CCDDR EXPH 
CCOND l CEQ CCADR EXPI (QUOTE El I lCOlllS ICAR EXPJ ICDOR EXP) I l 

IT ILIST 
C QUOTE QUOTIENT! 
CLIST !QUOTE LOGI !TRANSL lCAOOR EXPlll 
!LIST !QUOTE LOGI .CCADR EXPll 1111 

IT tMAPLIST EXP !FUNCTION ILAMBOA IAI CTRANSt. ICAR Al I I I )I ti I 
IRATl (LAMBDA CEXPI 

CPROG CBl NOTSAMEI 

(RAT 
(LAMBDA 

ICONO lCANO CNUMBERP EXPI IZEROP EXPll (RETURN NILlll 
CSETQ Bl ISUliST 8 (QUOTE Bl (QUOTE IEXPT BIN EVENlllll 
(RETURN IPROG2 ISETQ YY IRAT EXPll ICONO llNOT NOTSAMEI YYI IT l'IILIJI 1111 

C EXP I 
CPROG (Yl 

I RETURN 
CCONO 

l!EQ EXP Al IQOOTE XII 
I !ATOM EXPI 

ICONO llMEMBER EXP IQUOTE ISIN• CijS• SEC• TAN•lll 
I SETQ NOT SAME Tl I 

CT EXPI I I 
llSETQ V IM2 EXP Bl NILi I IF3 YI I 
IT ICONS ICAR EXPI 

IMAPLIST ICOR EXPI !FUNCTION (LAMBDA IGI lRAT ICAR Glllll 1111111 
I F3 I LAMBDA I VJ 



ISUBST 
c 
(QUOTE Cl 
ISUBST 
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!QUOTIENT ICDR ISASSOC (QUOTE NI Y NILll 21 
!QUOTE NI 
IQUOTE IEXPT (PLUS 1 ITUOIES C· IEXPT X 2111 NII 1111 

IODDl 
I LAMBDA 

(ill) 

ICOND llNOT IZEROP !REMAINDER N 2111 
I SETQ YZ 

I SUB ST 
c 
IQUOTE Cl 
!LIST 

(QUOTE EXPTI 
IQUOTE IPLUS 1 !TIMES C IEXPT X 21111 
!QUOTIENT ISUBl NI 21 1111 

IT NILi Ill 
(EVEN I LAMBDA IAI IANO 11\!UMBERP Al llNTEGERP (QUOTIENT A 211111 
ISUBVAR (LAMBDA IBI (SUBST VAR (QUOTE XI Bill 
ITRIGINT 

I LAMBDA 
(EXP VARI 
IPROb IY REPL Yl Y2 YY Z M N C YZ A Bl 

I SETQ Y2 
ISUBLIS ISUBVAR IQUOTE lllSIN XI • SIN•I 

llCOS XI • COS•I 
1 ITAN XI • TAN•I 
llCOT XI EXPT TAN• -11 
I ISEC XI • SEC•I 
I ICSC XI EXPT SEC• -11 111 

EXP 11 
ISETQ Yl 

I SETQ Y 
ISIMP ISUBLIS IQUOTE llTAN• TIMES SIN• IEXPT COS• -111 ISEC• EXPT COS• -1111 

Y2 111 I 
ICOND llNULL lSETQ Z 

IM2 
y 
fQUOTE !TIMES 

CCOEFFTT IB TRIGFREEll 
IEXPT SIN• IM POSEVENll 
IEXPT COS• IN POSEVENll II 

NIL I II 
IGO Lll II 

ISETQ M ICDR ISASSOC !QUOTE HI Zill 
ISETQ N ICDR ISASSOC !QUOTE NI Zlll 
I SE TQ A 

llNTEGERP !TIMES 
0.5EO 

ICONO llLESSP M NI 11 IT -111 
IPLUS N ITIMES -1 Hll Ill 

I SETQ Z ICONS ICONS IOUOTE Al Al Zl I 
I RETURN 

I SIMP 
!LIST 

(QUOTE TIMESI 
ICDR ISASSOC !QUOTE Bl Zll 
o.seo 



Ll 

GET3 

GE Tl 

!SUBST 
(LIST (QUOTE TIMESl 2 VARl 
! c;uo TE xi 
!INTEGRATE 

( SIMP 
!CONO 

((LESSPMNl 
( SUB LI S l 

(QUOTE !TIMES 
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( E Xi' T ( TI MES 0. 5 E 0 (SI,~ X l ) Ml 
(cXPT (PLUS o.5EO !TIMES 0.5EO (COS Xlll Al )))) 

( T I SUB LI S l 
l(JUOTE !TIMES 

!l::XPT !TIMES 0.5EO !SIN Xll Nl 
(cXPT (PLUS u.5EO ITl~ES -0.SEO !COS Xlll Al llllll 

! Q UU r t X I l l l l l 

I SE TQ C - l I 
(StTQ A IQUClff SIN*ll 
!SET\./ 6 !(JUOTE COS*ll 
((;ONO !!AND 

(:~2 Y (QUUTE: (CUC'FFPT !C RATll IEXPT COS• IN ODOlllll Nill 
( SETC Kt:rL Ill ST IC:Uf1TE SIN) VARl l l 

(GQ GETOUTl l l 
(SETQ A Bl 
(SET~ 8 (QUUTc SIN•ll 
!COND ((AND 

(M2 Y (QUOTE !COEFFPT IC RATll IEXPT SIN• (N ODDlllll Nill 
( SETQ RcPL (LI ST !QUOTE COSl VARl l l 

I GO GE T3 l l l 
tSETQ Y 

ISIMP !SU8LIS (QUOTE !(SIN• TIMES TAr-;* (EXPT SEC• -lll (COS* EXPT SEC• -llll 
Y2 l l l 

(SEhl C ll 
( SET Q A ( c; UO TE TAN• l l 
( SET(I B l(JUOTE StC*l l 
!COND ((AND IRATl YI ISCTQ REPL !LIST (QUOTE TANl VARlll (GO GETlll l 
( SEhl A tJ l 
( SETC: B !QUOTE TAN•l l 
(COND (!AND 

(M2 Y (QUOTE ICOEFFPT !C RATll (EXPT TAN• IN ODDlllll Nill 
tSETQ REPL !LIST !QUOTE SECl VAf<ll l 

!GO GETOUTl ll 
(SE TQ Y 

(SIMP (SUBLJS !QUOTE ((SIN• TIMES 2 X (EXPT !PLUS l IEXPT X Zll -lll 
I COS• 

TIMES 
(PLUS 1 (TIMES -1 IEXPT X 2))) 
!EXPT (PLUS 1 IEXPT X Zll -ll lll 

Yl ) ) ) 
(SE TQ Y 

(LIST 
(QUOTE TIMES) 
y 
(QUOTE !TIMES 2 IEXPT (PLUS l IEXPT X 21) -llll ll 

ISETl.i REPL ISUBVAR (QUOTE (QUOTIENT <SIN Xl (PLUS l !COS Xllllll 
(GO GET2l 

!SETQ Y !LIST (QUOTE TIMC:Sl -1 YY YZll 
!GO GET2l 
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(SE TQ Y 
!LIST {QUOTE TIMES! (QUOTE !EXPT (PLUS 1 !EXPT X 2ll -111 YY) I 

(GO GETZ) 
GE TOUT 

GET2 

DEFINE 
(( (ALGORT 

!LAMBDA 

(SETQ Y (LIST {QUOTE TIMES! YY Yl)) 

(SETQ Y (SIMP Yll 
!RETURN (SIMP !SUBST REPL (QUOTE XI (INTEGRATE Y (QUOTE X))))) lllll 

(Rl Pl VARll 
(PRUG (R OLDSl OLDREST P VAR PD Q S Sl S2 ANS Al A2 A3 NUM A M B REST) 

( CSETQ VAR LI ST (LI ST VARl I) 

LOOP 

B 

(r-.IEWVAR RU 
(NEWVAR Pl) 
!SETQ R !REP Rl)) 
( SETQ P (REP Pl)) 
( SETQ VAR !REP VARl)) 
!SETQ PD !PFDERIVATIVE P)) 
!SETQ Q !DENOMINATORF RI) 
!SETQ Sl (NUMERATORF RI) 

!COr-.!D ((NOT (POLP Slll (GO All) 
!SETQ B (LIST !CAR Sl))) 
(SETQ S !SIMPOL !CDR Slll) 
!SETQ M !SUBl !LENGTH Sl))) 

(SETQ ANS (PLUSF A ANSI! 
(SETQ DLDSl Sll 
!SETQ OLDREST REST! 
!SEHJ A (QUOTIENTF !TIMESF B (POLEXPT VAR Mil (TIMESF PDQ))) 
!SETQ A3 (TIMESF A (PFDERIVATIVE Q))) 

CSETQ A2 
(QUOTIENTF CMINUSF !TIMESF B (POLDERIVATIVE !POLEXPT VAR Milli 

PD I) 
!SETQ Al 

(QUOTIENTF !TIMESF !TIMESF B (POLEXPT VAR Mll (PFDERIVATIVE PD)) 
CPULEXPT PD 2) ) I 

(SETQ S2 !SEP (PLUSF (PLUSF S RESTI (PLUSF Al !PLUSF A2 A3))))) 
! SETQ Sl !CAR S2) I 
CSETQ REST CCDR S2ll 
CCOND !Sl !GO LOOP!)) 
!SETO REST (SIMPSIMP !TRANS RESTI I I 
( COND C (AND ( NUMBERP RESTI ( ZEROP REST I l 

(RETURN !SIMPSIMP !LIST 
(QUOTE TIMES) 
!TRANS (PLUSF A ANS)! 
CLIST (QUOTE EXPTI [QUOTE El Pll ))))) 

!RETURN 
(PLUSSIMP 
(LI ST 

(QUOTE PLUS! 
(SI MPS I MP (LIST 

(QUO TE TI MES) 
(TRANS ANS) 
!LIST (QUOTE EXPTI (QUOTE El Pl!)) 

(LI ST 
(QUOTE I NTEGRAU 
(LI ST 
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DEFINE 
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<RETURN (SIMP (LIST (QUOTE DIFFERENCE) !LIST (QUOTE TIMES) Y DI Z)) I 

lCOND 
I (NOT 

(SETO 
Iii 
IM2 

D 
(QUOTE 

(PLUS 
lCOEFFPT 

(C TRUEll 
IEXPT 

lCC !LAMBDA <CCI 
(Ml CC 

IQUOTE !PLUS ICOEFFPT (B FREEi (EXPT IX VARP) 211 
ICOEFFP IA FREE)) ))))I 

lN INTEGERPll 1111111 
IGO Cl 11 

ISETQ CC ICDR lSASSOC (QUOTE CCI Wiii 
(SEHi Z ITRIGSQRT lllST (QtJOTE TIMES) Y 01 VAR CC Wll 
ICONO llNULL ZI (RETURN NILi)) 
(GO Al 11111 

(I IFINDl I LAMBDA (Y Al 
ICOND 

I I EQ Y A I Tl 
( ( A TOM Y I NI LI 
(T (OR lFINDl !CAR YI Al IFINDl ICDR YI Alll )II 

CMAXPARTS 
(LAMBDA 

fAI 
( PROG (YI 

LOOP 
I SETQ Y l I 

I SETQ Y 
(MAX Y 

( COND ( ( EQ (CAR YI (QUOTE EXPTI I 
CCOND (CNUMBERP lCADOAR VII 

ICUND ( <LESSP ICADDAR YI 01 (MINOS lCAOOAR YI 11 
IT ICADDAR VII II 

IT 11 I I 
(T 11 ))I 

C SETQ A ICDR Al I 
ICOND CINULL Al !RETURN VII) 
!GO LUOPI 111 

INTEGRATION-BY-PARTS 

I PARTS 
!LAMBDA 

!EXP VARI 
IPROG IA 8 Y Z W G TOPPARTI 

(CONO INOPARTS !RETURN NILlll 
ICONO (!NOT !GET (QUOTE TOPI (QUOTE APVALHI 

ICSETQ TOP <SETQ TOPPART IGENSYMI) I 11 
I SETIJ Y 

IM2 



B 

LOOP 

A 
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EXP 
(QUOTE !TIMES ICOEFFTT IA FREEll ICOEFFTT IB TRUEii)) 
NIL )) 

ISETQ A ICDR ISASSOC (QUOTE Al VIII 
ISETQ 8 ICDR ISASSOC (QUOTE B) YI)) 
ICOND llNOT IEQ ICAR Bl I QUOTE TIMES> II I RETURN NIL> II 
ICOND 

I (NOT IGET I QUOTE MAXPARTSI I QUOTE APVAL> 11 
IAND ICSETQ MAXPARTS !TIMES 2 (MAXPARTS Bill 
ICSET~ NUMPARTS 11 II 

llAND ICSETQ NUMPARTS IADDl NUMPARTSll 
IGREATERP NUMPARTS MAXPARTSI l 

!RETURN NIL> I I 

ISETQ Y ICDR Bii 

ICSETQ NOPARTS Tl 
ISETQ Z !INTEGRATE ICAR Yl VARI! 
ICSETQ NOPARTS NILi 
ICOND llFINDl Z (QUOTE INTEGRAL)) (GO Alli 
ISETQ G !CHOICE ICAR YI Bll 
ISETQ W !INTEGRATE ISIMPTIMES ILIST IDIFFl G VARI Zll VAR>I 
ICOND I IFINDl W !QUOTE INTEGRAL I) IGO All l 
I SETQ 

y 
ISIMPTIMES ILIST A ISIMPDIFFERENCE ILIST ISIMPTIMES !LIST G ZI> 10)) ll 

!RETURN ICOND llEQ TOPPART TOP) 
IPROG23 

IREMPROP I QUOTE TOPI !QUOTE APVALI) 
y 
IREMPROP I QUOTE MAXJ>ARTSI I QUOTE APVAL)) ) ) 

"T Yl ll 

ISETQ Y ICOR Y)) 
ICOND llNULL Yl !RETURN NILlll 
ICOND llNOT IEQ TOP TOPPARTll IGO LOOPlll 
ICSETQ MAXPARTS !TIMES 2 IMAXPARTS Biil 
ICSETQ NUMPARTS 11 
IGOLOOPI 11111 

CSET 
INUMPARTS 11 

CSET 
INOPARTS NILi 

DEFINE 
I 11 SOL 

I LAMBDA 

SOLDIER 

(EXP INDVAR DEPVARI 
I SUB ST 

INDVAR 
(QUOTE XI 
ISUBST 

DEPVAR 
(QUOTE YI 



I SOLDIER 
I SUB ST 

!QUOTE Xl 
IND VAR 
ISUBST 

!QUOTE YI 
DEPVAR 
I SUB ST 

!QUOTE DXI 
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!INTERN IMKNAM lu ... CLEARBUFFI IPACK (QUOTE Dll IPACK INDVARlll I 
ISUBST 

!QUOTE DYi 
(INTERN IMKNAM IOR ICLEARBUFFl IPACI<. (QUOTE Oii (PACK DEPVARl.11 I 
I SUB ST 

(QUOTE YPRl 
!INTERN IMKNAM IOR 

IC LEARB UFF I 
(PACK DEPVARI 
IPACK (QUOTE Pl l 
(PACK (QUOTE Rll Ill 

EXP I l l l l I I l I I 
ISOLCON 

I LAMBDA 
IEXP INDVAR DEPVAR X YI 
( I LAMBDA I Z I 

llLAMBDA IWl 
ICONO llNULL WI NILi 

IT ILIST 
I QUOTE EQUAL I 
ISIMP ISUBST Y DEPVAR ISUBST X INDVAR Will 
w ) 111 

ICOND 
llNULL ZI r.llll 
I I EQ ICADR ZI (QUOTE COi i ICAOOR. ZI I 
IT ICADR Zll 111 

!SOL EXP INDVAR OEPVARI Ill 
I SOLDIER 

I LAMBDA 
IEXPI 
IPROG IW EXPl EXP21 

ICONO 

B 

I I SETQ W 
IM2 

EXP 
!QUOTE IPLUS ICOEFFPT IA TRUEI DYi ICC!EFFPT IB TRUEI DXlll 
NIL ll 

IGO Al I 
I I SETQ W 

IM2 
EXP 
!QUOTE IPLUS ICOEFFPT IATRUEI YPRl ICOEFFPT IBTRUEllll 
NIL ll 

NIL l 
IT !RETURN Nill! l 

ISETQ EXPl IREPLACE W (QUOTE !PLUS ITIHES A DYi !TIMES B DXlllll 
I SEHl EXP2 EXP) 
CGO Bl 

ISETQ EXP2 !REPLACE W (QUOTE !PLUS !TIMES A YPRI Billi 
CSETQ EXPl EXPI 
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(CO"JD {(ll{YSULD (QUUTE {LINEAK 
SEP 
EXACT 
HOMCJGTYPE 
BER'JOULL I 
L INEARCOEFF 
ALMOSTL!r>.JEAR 
REVEi< SE VAR 
XNYl ) ) 

{QUO Tc {EXPl EXPl EXPl EXPl EXP2 EXP2 EXPl EXPl EXP2l l l 
{RETURN Wl ) 

CT !RtTUR!'J NIUI )))) 
(TRYSOLC {LAMBDA {A Bl 

lCOND 
{(NULL A) 'JIL) 
{{SETC W llCAi< Al !COND ((fQ (CAR. Bl {QUOTE EXPlll EXPll {T EXPZl)ll WI 
{T {TRYSOLD !CDR Al !CDR B))) ))))) 

DcFINE 
l { { f'AC TORXY 

!Ll\MBDA 
{ EXf') 
{ CCl"JD 

l {NOT {c(., !CAk EXP) !QUOTE TIMES))) EXP) 
{ T 

{SIMPTIMES 
!MAPLIST 

{([JR EXP) 
{fU:'JCTIUN !LAMIJDA {EXPI 

{ CONI) 
{!EC !CAAR EXPl {QUOTE PLUS)) {FACTORXY2 !CAR EXPlll 
{!AND {tC {CAAR EXP) {QUOTE EXPTl) 

!EQ lCAADAR EXP) {QUOTE PLUS)) ) 
{SIMPEXPT (LIST {FACTORXY2 !CADAR EXPll !CAOOAR EXPlll l 

( T { c AK c xr I ) ) ) I ) ) I ) ) I 
(f-ACTCRXY2 

{LAMBDA 
{EXP I 
{ P? 0 G { Z I :-JD R t: S W I 

LlJUf' 

(SET(., Z ICDR EXP) I 
l SCTQ IND {(JUOTE XI I 

{COND 
( { N'.JT 

{ SETQ 
w 
{ M2 

{ Ci\R Z> 
{QUOTE 

{CUEFFT 
l B TR Ut I 
( t: XPT 

(.\ Ml INDl 
{N {FUNCTION {LAMBDA (N) 

(AND {NUMtlERP NJ {GREATtRP N 0.98999999E0l) llllll 
NIL l I l 

{GO NO) )) 
l SEHJ RES 

!CO'JS {K.EPLACE W (QUOTE !TIMES B (EXPT A {PLUS N -11)))) RESJ l 
!CO"JO {{NOT !SETQ l !CDK Zlll 

{RETURN {SIMPTIMES {LIST !'JD !SIMP~LUS RESl Ill l l 
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(GO LOOP! 
''10 

!COND !!C:Q J,~Q !QUOTE Yll !RETURN EXP))) 
!SETQ !"JD (QUOTE Yll 
ISETQ l !CDR EXP)) 
(SETQ RES Nill 
!GO LOOP) ) ) ) ) ) 

DEF INC: 
(((SIMPEXPT 

!LAM8DA 
(EXP) 
!PROS (A Bl 

(SCTW tJ !SIMP !CADR cXPlll 
!StTQ A !SIMP !CAR EXPlll 
I COND 

((EQP A Ol (RETURN 0)) 
( (AND 

!EC, CCAR Al !QUOTE EXPTl l 
CSETQ B !S!MPTIMES !UST B !CADOR Al))) 
IS!::TQ A CCADR All 
I~ IL l 

'II IL l 
( (EQP B Ol !RETURN ll) 
!IEWP B ll !RETURN All 
!!EQP A ll !RETURN lTl 
((AND !NUM6t:RP Al (:'\IUMBERP Bll 

IRcTURN !CUND 
((NOT EXPTI'JD) li:XPT A Bll 
((AND IFIXP Bl !GREATERP B -lll !EXPT A Bl) 
IT (LIST (QUOTE E:XPTl A Bll ))) 

I !i:Q !CAR Al (QUOTE T!Mt:Sl l 
IR.ETURN !CO"JS (QUOTE TIMES) !EXPTLOOP (CDR All) l 

CCA"JD :CXPTSUM CEQ !CAR Bl !QUCTE PLUSlll 
I Re TURN 

ICONS 
(QUOTE TIMESJ 
!MAPLIST !CDR Bl 

!FUNCTION (LAMBDA !Cl !SIMPEXPT !LIST A CCAR Clllll llll 
I (NUT (A TUM B) ) 

(RE TURN 
(PROG (W) 

(RE TUR~< 
ICUND 

I !NOT I SETO W 
!MZ 

8 
(CiUOTE (PLUS (CCEFFT (C TRUEll 

(LOG !Bl TRUE) IA TRUE) l ) 
!COE:FFP IE TRUEil )) 

NIL l l l 
(LIST !C.:·UOTE EXPTl A Ell) 

I !NOT (EQUAL A !SUBLIS W (QUOTE Bl l l l l 
!LIST (QUOTE EXPTl A Bl ) 

IT 
!SIMPTIMES (LIST 

ISIMPEXPT (LIST !SUBLIS W !QUOTE All 
!SUBLIS W !QUOTE Cll )) 

ISIMPEXPT !LIST A ISUBLIS W (QUOTE Ell)) ) )))))))) 
!RETURN !LIST (QUOTE EXPTl A fl)) ) ) ) 

( EXPTLOOP 



(LAMBDA 
(A J 
(PROG23 
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CCSETQ SIMPIND Tl 
CMAPLIST A CFU"JCTIOr~ (LAMBDA CC) CSIMPEXPT (LIST CCAR CJ B)JJJJ 
lCSETQ SIMPillJD Nill llJ)) 

DEF !NE 
(((LU'ltAR 

(LAMBDA 
(EXP) 
(PRf1G CY l W) 

(RE TURN 
CCOND 
( ( :-rn T 

C SEHi 
w 
CM2 

EXP 
(QUOTE 

(PLUS 
(COEFFPT CF FREEX (QUOTE VJ) DYl 
(COEFFPT (A Ml 

(QUOTE (PLUS !COEFFPT (G FKEEX !QUOTE VJ J VJ 
(COEFFPT (H FREEX (QUOTE Yl l) l J l 

DX ) ) J 
NIL )) > 

CCOND ((AND CTHEREXNY EXP ll 
!NOT (M2 EXP !SETQ W CEXPANDZ EXP)) Nill) J 

(LINEAR WJ ) 
CTNILJ)) 

( T 
(LIST 

(QUOTE EQUAL) 
(QUOTE C 0) 

( SIMPPLUS 
(LI ST 

(LI ST 
(QUOTE TI ME SJ 
(QUOTE YJ 
CSE TQ 
z 
CSIMPEXPT 

(LI ST 
(QUOTE E) 

!SIN 

(SIN !SIMPQUOTIENT (LIST !REPLACE W (QUOTE Gl 
(REPLACE W (QUOTE Fll >I 

( Q UO TE X l J l l ) > 

(SI MP TI MES (LIST Z 
CSIMPQUOTIENT !LIST !REPLACE W (QUOTE Hll 

!REPLACE w I QUOTE Fl I I I I J 
( QUOTE X l I l l l I J l l ) I 

( THERtxNY (LAMBDA !EXP NI I EQUAL N !COUNTY EXP) JI I 
(COUNTY (LAMBDA (EXP) 

!COND ((ATOM EXP) CCOND !IEQ EXP !QUOTE Yll ll lT 0))) 
CT (PLUS (COUNTY !CAR EXP)) !COUNTY ICDR EXPlllJ ))))) 

DEF IllJE 
( ( (SEP 

(LAMBDA 
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{ <::XP l 
!PkOG !wl 

!RETURN 
( CU1~D 

{(SETQW 
(M2 

(PRuG23 ICSCTG EXPTSUM Tl (SIMP EXPl !CSETQ EXPTSUM NILll 
(QUOTE (PLUS 

(TI MES 
DX 
!COEFFTT { M 
{COE FF TT ( R 

! TI MES 
DY 
( COEFF TT { N 
!COEFFTT { s 

NIL ) ) 

(LI ST 
(QUOTE EQUAL l 
!SIMPPLUS (LIST 

FREEX (QUOTE XI l l 
FREEX {QUOTE YI) l 

FREE X (QUCTE XI I l 
FREEX (QUOTE YI)) ) ) ) 

!SIN !SUBLIS w (QUOTE (QUOTIENT R Slll (QUOTE Xll 
!SIN {'.:>UBLIS \.i (QUOTE !QUOTIENT N Mlll (QUOTE Yll ll 

I Q UU TE C 0 l l l 
{T Nill Ill)) 

!FREEX (LAMBDA !A VAR) 
(COND (!ATOM Al {NOT !EQ A VAR) l I 

(T (AND !t=REEX !CAR Al VAR) (FREEX !CDR Al VAR))) lllll 

DEFINE 
{ { (EXACT 

(LAMBDA 
(EXP l 
(PqUG (~PU DPDY DQOX Y Fl) 

!COND {(NOT !SETQ w 

OUT 

A 

! M2 
EXP 
(QUOTE (PLUS !CiJEFFPT (P TRUE) DX) (COEFFPT (Q TRUE) DYil l 
NIL l II 

(RETURN Nlll ) ) 
!SETQ P !SUBLIS r. !QUOTE Plll 
!SETU Q !SUBLIS W {QUOTE Qll l 
!SEHl DPDY !DIFFl P (QUOTE Y)ll 
!SETQ D~DX !DIFFl Q (c;UOTE Xlll 
!COND ((NOT (M2 DPDY DQDX N!Lll (GO Alll 

!SETQ Y (Sl~J P (QUOTE Xlll 
!RETURN 

! LI ST 
( QUUTE EQUAL l 
( CUOTE C Ol 
!S!MPPLUS 

(LIST 
y 

(SIN 

!COND 

CEXPAND2 !SIMPDIFFERENCE !LIST Q !DIFFl Y !QUOTE Ylllll 
! QUO TE Y l l l l l I 

! CNOT 
! FREEX 

( SET\J Fl 
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c 

DEFINE 
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ISIHPQUOTIENT ILIST ISIHPOIFFERENCE ILIST OPOY OQOXll Qll I 
IQUOTE YI II 

IGO Bl I I 
ISETQ Y ISIHPEXPT ILIST IQUOTE El ISIN Fl ICUOTE Xlllll 
ISETQ P ISIHPTIHES ILIST Y Piii 
ISETQ Q ISIMPTIHES ILIST Y Qlll 
IGO OUTI 

ICOND 
I INOT 

I FREE X 
I SETI.I Fl 

ISIHPQUOTIENT (LIST ISIHPOIFFERENCE ILIST DCIDX DPDYll Pll I 
I QUOTE XI ) I 

IGO CI I I 
ISEHI Y ISIHPEXPT (LIST !QUOTE El (SIN Fl ICUOTE Ylllll 
ISETQ P ISIHPTIHES ILIST Y Piii 
ISETQ Q ISIHPTIMES ILIST Y Qlll 
(GO OUTI 

ICONO llNOT IANO IH2 DPOY ISIMPMINUS ILl~T DQDXll NILi 
IH2 IDIFFl P (QUOTE XII IDIFFl Q (QUOTE VII NILi II 

IRE TURN NIL I I I 
I SEN Y 

ISIHPPLUS ILIST ISIHPTl .. ES ILIST PP)) tSIMPTIMES ILIST Q Qllll I 
ISETQ P ISIMPQUOTIENT ILIST P VIII 
ISETQ Q ISIMPQUOTIENT ILIST Q Ylll 
IGO uUTI 11111 

I ( I BE~NOULL I 
I LAMBDA 

(cXPI 
IPROG I WI 

I RETURN 
ICO"IO 

I INOT 
I SETO 

;; 
IH2 

EXP 
I QUOTE 

IPLUS 
ICOEFFPT IB TRUE) VPRI 
ICOEFFPT IP FREEX (QUOTE VII YI 
ICOEFFPT 

IQ FREEX (QUOTE VII 
IEXPT V 

IN I Ll\HBOA IAI 
IANO INUMBERP Al INOT IZEROP Alli 111111 

NIL ))I 
ICOND CIANO ITHEREXNY EXP 21 

INOT IM2 EXP ISETQ W IEXPAN02 EXPll NILi) 
I BERNOULLI WI I 

ITNILI II 
I IFREEX !REPLACE W (QUOTE 811 I QUOTE YI I 

I I LAHSOA 
IP l.l NII 
I SUS ST 

ISIHPEXPT ILIST (QUOTE YI Nlll 
IQUOTE YI 



DEFINE 
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(LINEAR fSIMPPLUS (UST CQUOTE DY) 
(LIST 

CQUOTE TIMESt 
(QUOTE DX) 
fLI ST 

(QUOTE PLUS) 
(LIST (QUOTE TIMES) Nl P (QUOTE VII 
(LIST (QUOTE TIMES) Nl Q) )))1111 

(REPLACE W (QUOTE (QUOTIENT P BJll 
CREPLACE W (QUOTE (QUOTIENT Q Bil) 
lSIMPDIFFERENCE ILIST l CSUBLIS W CQUOTE NJ))) Jllllllll 

( (I HOMOG T'tPE 
(LAMBDA 

(EXP I 
f PROG 1 Y Z WI 

lCOND 
( lNOT l SETO W 

IM2 
EXP 
(QUOTE (PLUS CCOEFFPT CP TRUEI DlO CCOEFFPT IQ TRUEI DYil I 
Nil Ill 

(RETURN NILi I 
( INOT IAND 

ISETQ Z IHOMOG (SUBLIS W (QUOTE Pllll 
lSETQ Y IHOMOG (SUBLIS W lQUOTE 01111 
I EQP Y ZI I I 

(RETURN l'U LI I 
(T 

(RETURN 
!LIST 

!QUOTE EQUAL) 
ILIST 

(QUOTE PLUS) 
(QUOTE (LOG E XI I 
ISIMP 

f SUB ST 
(QUOTE (QUOTIENT Y XII 
(QUOTE YI 
ISIN 

( SIMPQUOTIENT 
(LIST 

ISETQ Y 
l SIMP ISUBST l (QUOTE XI lSUBLIS W tQUOTE Q>I I )) 

I SIMPPLUS CLIST 
ISllW 'ISUBST 1 (QUOTE 10 lSUBLIS W (QUOTE Pl I I I 
lSIMPTIMES ILIST (QUOTE YI YI) )I)) 

I QUOTE YI )) I I 
(QUOTE COi 111)111 

IHOMOG (LAMBDA !EXP) 
lPROG lNOTHOM Y) 

C SETQ Y (HOMOGEN EXP) I 
lCOND INOTHOM (RETURN Nill) IT (RETURN YI)) ))) 

I HOMOGEN 
I LAMBDA 

l EXP I 
ICOND 

lCATOM EXPI ICOND ((EQ EXP (QUOTE YI> 11 llEQ EXP (QUOTE XI) l> lT 0>11 
I I EQ (CAR EXP I (QUOTE TIMESI I 

IEVAL ICONS (QUOTE PLUSI 
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(MAPLIST ICDR EXP) (FUNCTION I LAMBDA (Cl IHOMOGEN !CAR C> 11 l l I 
IALISTI I I 

llEQ !CAR EXPI !QUOTE PLUS)) 
( (LAMBDA (YI 

(PROG IZI 

LOOP 
I SETQ Z IHOMOGEN (CAR vt 1.1 

( SETQ Y ICDR YI I 
ICOND 

( INULL YI !RETURN ZI I 
((NOT !EQUAL Z IHOMOGEN ICAR VIII) 

!RETURN IPROG2 ISETQ NOTHOM Tl -1000)1 
I T I GO LOOP 11 I I l 

I CDR EXP I ) I 
I I EQ !CAR EXPI I QUOTE EXPTI I 

ICONO 
llNUM8ERP ICADDR EXP)) !TIMES IHOMOGEN ICADR EXP)) ICAODR EXP})) 
llANO IZEROP IHOMOGEN ICAOR EXP))) IZEROP IHOMOGEN ICAOOR EXP)))) 01 
IT IPROG2 ISETQ NOTHOM Tl -1000)1 II 

llEQ ICAR EXPI (QUOTE LOG)) 
ICONO llZEROP tHOMOGEN ICADDR EXPlll 0) 

IT IPROG2 ISETQ NOTHOM Tl -1000)) II 
llZEROP IHOMOGEN ICADR EXP)ll 0) 
IT IPROG2 ISETQ NOTHOM TJ -10001) 1111) 

DEFINE 
I I I AU40STL I NEAR 

I LAMBDA 
IEXPI 
IPROG CW D DDDYI 

I RETURN 
ICONO 

I !NULL 
I SETQ 
w 
IM2 

EXP 
I QUOTE 

(PLUS 
!TIMES DY ICOEFFTT IA TRUEil) 
I TIMES 

DX 
!PLUS 

!TIMES 
ICOEFFTT IC FREE>< !QUOTE Ylll 
(COEFFTT 

ID !FUNCTION (LAMBDA <Al !NOT !FREE>< A (QUOTE Villi 1111 
ICOEFFPP IE FREEX IQUOTE VIII 1111 

NIL >II 
NIL I 

I I EQUAL 0 
I SETQ DODY 

IDIFFl ISETQ D !REPLACE W (QUOTE Dill !QUOTE VII I) 
Nil I 

llNOT !EQUAL 0 IDIFFl DODY !QUOTE Xllll Nill 
IT 

I SUB ST 
0 
!QUOTE YI 
!LINEAR 

!REPLACE 
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ICONS ICO~S (QUOTE Bl 
ISIMPQUOTIENT ILIST !REPLACE W (QUOTE All OOOY)I t 

w I 
I QUOTE 

!PLUS 
I TIMES 8 DYi 
!TIMES OX 

IPLUS 
E 
I TIMES C YI 
!TIMES -1 B IEVAL IOIFFl (QUOTE DI (QUOTE XII)) ))l))llltllllll 

llllEROPl !LAMBDA IAI !AND INUMBERP Al IZEROP Atilt 
IFREEXY !LAMBDA IAI IAND IFREEX A (QUOTE XII IFREEX A (QUOTE Ylllll 
ILINEARCOEFF 

(LAMBDA 
I EXP I 
IPROG 11~0 WA B APR BPRI 

I RETURN 

I ELEML IN 

ICOND 
llNOT IELEMLIN EXPI) NILi 
llOR 

IAND 
IZEROPl ISETQ A ISUBLIS W (QUOTE Allll 
IZEROPl ISETQ B ISUBLIS W (QUOTE 81111 

IAND 
IZEROPl ISETQ APR ISUBLIS W !QUOTE APRllll 
IZEROPl ISETQ BPR ISUBLIS W (QUOTE BPRllll I 

IZEROPl ISIMPDIFFERENCE (LIST ISIMPTIMES !LIST A BPRll 
ISIMPTIMES !LIST APR Bii 1111 

!RETURN Nill I 
IT 

I REPLACE 
I REPLACE 
NIL 
(QUOTE 

II X 
EVAL 
I QUOTE• 

I REPLACE 
w 
I QUOTE I PLUS X 

IV 
EVAL 

IMINUS (QUOTIENT 
!DIFFERENCE (TIMES BPR Cl 

!TIMES B CPR) I 
IOIFFERENCE (TIMES APR Bl 

(TIMES A BPRI 11111111 

I QUOTE• 
I REPLACE 
w 
(QUOTE IPLUS Y 

IMINUS !QUOTIENT 
!DIFFERENCE !TIMES A CPR) 

ITIMES APR Cl I 
(DIFFERENCE (TIMES APR Bl 

ITIMES A BPRI 11111111111 
IHOMOGTYPE ISUBSTLIN EXPll 1111111 



I LAMBDA 
I E><P I 
((LAMBDA I YI 

ICOND llNULL YI Nill 
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IT IELEMLINl !REPLACE Y !QUOTE !QUOTIENT A Blllll II 
IM2 EXP !QUOTE (PLUS ICOEFFPT 18 TRUEI YPRI ICOEFFPT IA TRUEllll NIU Ill 

I SUBSTLIN 
I LAMBDA 

I EXP I 
!LIST 

!QUOTE PLUSI 
!QUOTE DYi 
I SIMPTIHES 

ILIST 
!QUOTE DXI 
ISUBSTLINl !REPLACE IM2 

EXP 
!QUOTE (PLUS ICOEFFPT 18 TRUEI YPRI ICOEFFPT IA TRUEllll 
Nil I 

(QUOTE !QUOTIENT A 811 1111111 
I ELEMLINl 

!LAMBDA 
!EXP I 
ICOND 

((FREEXY EXPI Tl 
I I SETQ 

w 
IM2 

EXP 
ICOND 

!IND INDI 
IT 

(QUOTE I TIMES 
ICOEFFTT !AA FREEXYll 
IEXPT IPLUS 

ICOEFFPT IA FREEXYI XI 
ICOEFFPT IB FREEXYI YI 
IC FREEXYI I 

IN NUHBERP I I 
IEXPT 

!PLUS 
ICOEFFPT !APR FREEXYI XI 
ICOEFFPT IBPR FREEXYI YI 
!CPR FREEXYI I 

IH I FUNCTION !LAMBDA IM NI I EQUAL M !MINUS NI 111 NI 1111 I 
Nil I I 

ICOND llND IND) IT ISETQ IND EXPlll I 
llATOM EXPI NILi 
IT IAND IELEMLINl ICAR EXPI I IELEMLINl ICDR EXPI 111 I I I 

I SUBSTLINl 
I LAMBDA 

IEXPI 
ICOND 

llFREEXY EXPI Tl 
I IH2 EXP INDI 

I SIMP I SUBLIS W 
I QUOTE I TIMES 

AA 
IEXPT (PLUS !TIMES A XI !TIMES B VII NI 
IEXPT (PLUS (TIMES APR XI (TIMES BPR Y)) !MINUS NII 11111 

IT IMAPLIST EXP !FUNCTION !LAMBDA ICI ISUBSTLINl !CAR Ctl>lll 11111 



DEFINE 
(((XNYl 

(LAMBDA 
IEXP) 
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(PROG CW C H FX S A B N) 
CCOND CCNOT CSETQ W 

IH2 
EXP 
!QUOTE (PLUS ICOEFFPT CA TRUEI YP1U lCOEFFPT (B TRUEllll 
NIL 111 

!RETURN NILi 11 
CSETQ C !REPLACE W lQUOTE lQUOTIENT (MINUS Bl Allll 
ISETQ 
H 
ICONO 

llEQ ICAR Cl IQUOTE PLUSll 
I SIMPPLUS 

CMAPLI ST 
CCOR Cl 
lFUNCTION (LAMBDA IGI 

ISIMPTIMES (LIST !QUOTE XI lQUOTE (EXPT Y -Ill (CAR Gii 111111 
IT lSIHPTIMES !LIST !QUOTE XI (QUOTE tEXPT Y -111 Clll II 

ISETQ FX !QUOTE !TIMES IEXPT X NI Ylll 
I SETQ H CFACTORXY HI I 
I SETQ 
s 
IEXPAN02 

CSIMPOIFFERENCE (LIST 
ISIMPTIMES ILIST tOIFFl H (QUOTE XII CDIFFl FX (QUOTE Yllll 
ISIHPTIMES (LIST tOiFFl H (QUOTE VII (Olffl FX (QUOTE Xl>JJ J'lll 

ICOND ((NOT (SETQ ~ 
(M2 
s 
(QUOTE (PLUS ICOEFFPT CA TRUE) NI tCOEFFP 18 TRUEllll 
NIL Ill 

!RETURN NILi 11 
(SETI.I A tCOR ISASSOC (QUOTE Al Wiii 
ISETQ B tCOR ISASSOC (QUOTE Bl Wiii 
tCOND ttOR IZEROPl Al tZEROPl Bii (RETURN NILlll 
( SETQ N 

ICOND 
llANO IEQ lCAR Al (QUOTE PLUSll (EQ (CAR Bl (QUOTE PLUSlll 

(MATCHSUM lCDR (SIHPMINUS CLIST 81 I I tCDR Al I I 
(T lSIMPQUOTIENT (LIST CSIMPMINUS (LIST Bii Alll II 

ICONO l !NOT INUMBERP NI I (RETURN NIU I) 
I RETURN 

(LIST 
(QUOTE EQUALI 
(QUOTE COi 
( SIMPQUOTI ENT 

( l.I ST 
I SIMPEXPT 

(LIST 
(QUOTE EI 
(REPLACE 

(LIST ICONS 
(QUOTE UI 
(SIMPTIMES (LIST !QUOTE YI (SIHPEXPT !LIST (QUOTE XI Niii Ill 

(SIN 
!LIST 



(QUOTE QUOTIENT! 
l 
I LI ST 

{QUOTE TIMES! 
{QUOTE Ul 
Ill ST 

{(JUOTE PLUS! 
N 
I REPLACE 
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(LIST ICONS (QUOTE Yl 
ISIMP (LIST 

(QUOTE QUOTIENT! 
I QUOTE Ul 
(LIST {QUOTE EXPTl (QUOTE XI Nl llll 

H l)) l 
!QUOTE Ul llll 

!QUOTE Xl lllllllll 

ADDITIONAL METHODS 

DEFINE 
(I (R.EVERSEVAR 

!LAMtlDA 
(EXP l 
IPROG CY! 

(RETURN CCOND CCSETQ Y 
(Lll\IEAR ISUBLIS (QUOTE ((X. Yl (Y. XI (OX. DYl !DY. DXlll 

EXP l)) 
CSUBLIS (QUOTE CCX. Yl !Y. Xlll Yl l 

( T N Ill l) l l l l l 

DEFINE 
((I XAYB 

!LAMBDA 
(EXP l 
!PROG !W 

M 
N 
XYDMDY 
XYDNDX 
XM 
YN 
COEXM 
COEYN 
XAYB 
A 
B 
FOR.M 
XYDIFF 
Al 
AZ 
Bl 
BZ 
cl 
CZ 
DET 
FACT l 

!COND !!NOT !SETQ ~ 
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EXP 
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(QUUTE (PLUS (CUEFFPT (M TRUE) OX) (COEFFPT IN TRUE) DYll l 
NIL ) ) l 

(RETURN NILl ll 
!SET~ M (REPLACE W (QUOTE Mlll 
(SETQ N !REPLACE W (QUOTE Nl)) 
(SE TQ XYOMOY 

!EXPANOZ !SIMPTIMES !LIST (QUOTE Xl (QUOTE Yl !DIFFl M (QUOTE Y)))) )) 
( SETQ XYD'JOX 

!EXPANDZ !SIMPTIMES (LIST (QUOTE Xl (QUOTE Yl IDIFFl N (QUOTE Xllll )) 
!SETQ XM !EXPA'JD2 !SIMPTIMES !LIST (QUOTE Xl Mllll 
ISET<J YN !EXPANDZ !SIMPTIMES !UST -1 (QUOTE Yl Nllll 
!SETQ XYDIFF !SIMPDIFFERE'JCE !LIST XYDNDX XYDMDYlll 
(SE: Hl W 

!M2 
!CUl~D ((EQ !CARYN) (QUOTE PLUSll !CADR YN)) IT YN)) 
!QUOTE !TIMES ICDEFFTT !B FREEXYll !COEFFTT IC TRUE)))) 
NIL J) 

!SETQ Bl !REPLACE r. (QUOTE Blll 
!SETQ FACT !REPLACE W (QUOTE Clll 
I SETQ YN 

(COND !!EQ !CAR YNl !QUOTE PLUS)) ICONS !C:UOTE PLUS) !COOR YN))) 
( T 0 l ) ) 

!SETQ FORM 
I LIST 

(QUOTE PLUS) 
ICONS (QUOTE COEFFPTJ 

!CONS !QUOTE !B FREEXY) l 
!CO"J(; !!EQ !CAR FACT) (QUOTE TIMES)) (COR FACTJJ 

IT !LIST FACT)) ))) 
(QUOTE !COEFFPP ID TRUtlll ll 

!SETW W !MZ XM FORM NILll 
!SETQ .~l !REPLACE W (QUOTE Blll 
!SETQ XM !REPLACE r. (QUOTE Olll 
!SETO W !M2 XYOIFF FORM NILll 
!SETI,) Cl (Ri:PLACE I\ !QUOTE Blll 
!SETQ XYDIFF !REPLACE W !QUOTE Olll 
!COND !!M2 YN 0 NIU !GO 82ZER0)}) 
I SETO W 

!M2 
!COND !!EQ !CAR YNl !QUOTE PLUSll !CAOR YN)) IT YNll 
(QUOTE !TIMES !COEFFTT !B FREEXYll !COEFFTT IC TRUE)))) 
NIL l) 

!SETw 82 (REPLACE W (QUOTE Blll 
!SETQ FACT (KEPLACE W (QUOTE Cll) 
( SE TQ FORI' 

(LIST 
( Q UO TE P L US ) 
( C 0 N S ( QUOTE C 0 E FF P Tl 

!CONS (QUUTE (8 FREEXYll 
!COND ((EQ !CAR FACT) !QUOTE TIMES)) (COR FACT)) 

IT !LIST FACT)) lll 
!QUOTE !COEFFPP (D TRUE))) l) 

!SETQ W !MZ XM FORM .Nllll 
!SETQ AZ (REPLACE W (QUOTE 8)11 

B2BACK 
ISETQ W !M2 XYDIFF FORM NIU) 
(SETQ CZ !REPLACE W !QUOTE Bl)) 
I SEHi DET 

!SIMP !LIST 
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!QUOTE DIFFERENCEt 
!LIST (QUOTE TIMES! 82 All 
!LIST !QUOTE TIMESt 8.1 A21 111 

ICOND I IM2 DET 0 Nill !RETURN Nill It 
I SETQ 8 

ISIMP ILIST 
!QUOTE QUOTIENT) 
!LIST 

!QUOTE DIFFERENCE! 
ILIST (QUOTE TIMES! 82 Cll 
!LIST (QUOTE TIMESt Bl C2J 

DET t)) 
I SETQ A 

I SIMP I LI ST 
!QUOTE QUOTIENT! 
!LIST 

!QUOTE DIFFERENCE! 
ILIST IQUOTE TIMES) Al C21 
ILIST !QUOTE TIMESt A2 Cll 

DET Ill 
I SETQ XAYB 

ISIMPTIMES !LIST !LIST (QUOTE EXPTI !QUOTE XI At 
ILIST (QUOTE EXPTI (QUOTE YI Bl Ill 

!RETURN !EXACT ILIST 
!QUOTE PLUS) 
ILIST 

(QUOTE TIMES) 
(QUOTE DXI 
IEXPAND2 ISIMPTIMES (LIST M XAYBtlt t 

ILIST 
IQUOTE TIMES) 
IQUOTE DYi 
IEXPAN02 ISIMPTIMES !LIST N XAYBtll tlJJ 

82ZERO 

DEFINE 

ISETQ B2 Ot 
I SETQ W 

IM2 
ICOND llEQ ICAR XMt (QUOTE PLUS)) ICADR XMtl IT XMlt 
(QUOTE ITIMES ICOEFFTT CB FREEXYIJ CCOEFFTT IC TRUEtttl 
Nil l) 

ISETQ A2 !REPLACE W IQUOTE Btll 
ISETQ FACT !REPLACE W (QUOTE Cjtt 
ISETQ FORM 

ILIST 
!QUOTE PLUS) 
ICONS IQUOTE COEFFPTl 

ICONS (QUOTE IB FREEXYJI 
ICOND llEQ ICAR FACT! (QUOTE TIMEStl ICOR FACTlt 

IT !LIST FACTlt Ill 
!QUOTE ICOEFFPP CD TRUEttl Jt 

CGO B2BACKt tltlt 

I I IKAMKE329 
ILAM80A 

I EXP I 
IPROG IW DET AA BBi 

ICONO 
I INOT 

I SETQ 
w 



DEFINECI 

IM2 
IEXPAND2 EXPI 
I QUOTE 

IPLUS 
ICOEFFPT IC Ml 
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(QUOTE IPLUS ICOEFFPT IALPHA FREEXYI XI 
ICOEFFPT 

IA FREEXYI 
IEXPT X IP FREEXY)) 
IEXPT Y IQ FREEXY)) 11)) 

YPR I 
ICOEFFPT IBETA FREEXYI YI 
ICOEFFPT 

(B FREEXYI 
IEXPT X IR FREEXYI) 
IEXPT Y CS FREEXVll I)) 

Nil 111 
!RETURN Nill I 

I INOT CANO 
IM2 l !REPLACE W (QUOTE CDIFFERENCE PR))) Nill 
IM2 l (REPLACE W !QUOTE !DIFFERENCES Qlll Nill II 

C RETURN NI lJ I 
UM2 

0 
I SETQ OET 

!REPLACE W 
(QUOTE (DIFFERENCE !TIMES A BETA) (TJlllES B ALPHA I 11 11 

Nil I 
IRETURNNIU II 

I SETQ AA 
IREPLAC-E w 

!QUOTE (QUOTIENT !DIFFERENCE !TIMES Q BETAI !TIMES R ALPHA)) 
IEVAL DET) 11>1 

I SETQ BB 
I REPLACE W-

I QUOTE I QUOTIENT !DIFFERENCE (TIMES Q Bl !TIMES R Al) I EVAL DETI I I)) 
I RETURN 

I REPLACE 
w 
(QUOTE 

I EQUAL CO 
IPLUS 

!QUOTIENT ITIMES IEXPT Y ITIMES A IEVAL AAllt 
IEXPT X ITIMES B CEYAL AAI) I ) 

IEVAL AA) ) 
!QUOTIENT IHMES IEXPT Y ITIMES ALPHA IEVAL BBlll 

IEXPT X ITIMES BETA IEVAL BBi 11 ) 
CEVAL BBi )))11111111 

EDGE 

IFREEILAMBDACAllCONDllATOM AllNOTIEQ A VARI)) 
ITIANDIFREEICAR AlllFREE ICOR Alllllll )) 
DEFINEIC ' 
tEDGEILAMBOAIEXP VARllPROG 
IPROBL ARCLOG POSEXPT OLOPROBL ONEHORE NONRAT NEW8' G W CONST NONCON 
B ANSW ~ FF AORA' H A 



NINTXP A' 8 1 LDERIV HI 
ISETQ B' ITRIGSUBST EXPll 
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ISETQ NINTXPIH2 8 1 (QUOTECTIHES(88 Hl(QUOTEIEXPT(A IQUOTElLAHSOACXl(NOT 
( FREE X I I I I I< N 

(QUOTE(LAMBDA(XICNOTCNUHBERP Xllll 1111 
(COEFFTTCC TRUEllllNILll 

ci;o BEGI 

LOUP1COND((RAT8 B'llGO FINISHEDlll 

(CONDl(EQCCAR NONCONllQUOTE TIHESll(GO AAlll 
I SETQ FF NONCON I 
(GO GUESSI 
AACSETQ LDERIVlCONS(QUOTE PLUSI (HAPLIST (COR NONCONI 

IFUNCTIONCLAHBOA(CllDIFfl(CAR CIVARllllll 
ISETQ HCCOR NONCONll 
(SETQ L(COR LOERIVll 
LOOP21CONOllRAT81CAR Hll(GO SKIPll) 
lCONDCCNOT(H2 (CHOICE (CAR LI LDERlVI 

(LIST(QUOTE PLUSl(LIST(QUOTE TIHESl(CAR Ml 
(QUOTE(COEFFTT(A TRUEllJI 

IQUOTE(B TRUEii) NILll (GO ENOPlll 
SKIPlSETQ NONRATlCAR Hll 
( SETQ HlCDR HJ I 
( SETQ Ll CDR LI I 
(~ONDIHIGO LOOP2111 
CSETQ FF NONRATI 
!GO GUESSI 
E~DPlSETQ FFlCAR Mii 

GUESS(SETQ ARCLOG NILi 
ISETQ POSEXPT NILi 
ISETQ GICOND 
ICEQCCAR FFllQUOTE COSll(PROG2lSETQ AORA 1 TllLISTCQUOTE SINllCAOR FFtlJI 
((EQ(CAR FFJCQUOTE SINlllPROG2lSET~ AORA' TJ(LIST(QUOTE COSllCAOR FFllll 
llEQlCAR FFHQUOTE LOGI llPROG2-(SETQ AORA' NlLIFFll 
((EQlCAR Ffl(QUOTE ARCSINll(PROG2lSETQ AORA' NlLtFFll 
((EQCCAR Ffl(QUOTE ARCTANtllPROG2lSETQ AORA' NILIFFIJ 
((EQ(CAR Ffl(QUOTE EXPTlllCONO 
((FREE ( CADR FF ii ( PROt;2 ( SETQ oAORA 1 . HFF I I 
((NOTlNUMBERPICADDR FftlllPROG23lSETQ AORA' TlllISTlQUOTE EXPTllCADR ff) 

CSIHPPLUSlLISTlCAOOR fflllll 
lSETQ POSEXPT T)ll 

llGREATERPlCADDR FFJOl(PROG231SETQ AORA 1 TllLIST(QUOTE EXPTllCADR Fft 
(SIMPPLUS(LISTICADDR Fflllll 
lSETQ POSEXPT Ttll 

((LESSPICADDR FFl-llCPROGHSETQ AORA 1 TllLISTIQUOTE EXPTI 
ICADR Ffl(SIHPPLUS(LISTICAOOR Fflllllll 

llANDIEQUAL(CADOR FFl-0.5llSETQ WIH2lCADR FFI 
IQUOTElPLUSlCOEFFPlA FREEOI I lCOEFFT(C M2CQUOTECEXPTCO TRUEl<N EVENl l JNIU 

IB FREEllJINILJll 
IPROG231SETQ AORA 1 Tl(REPLACE W 
IQUOTEIARCSINlEXPTlQUOTIENTlTIMESCHINUS BJCJAI0.5llll(SETQ ARCLOG Ttll 

((EQUAL(CADDR FFJ-ll(CONDllSETQ W(M2(CADR Ffl 
IQUOTE(PLUSCCOEFFPCA FREEOJHCOEFFTCC M2.CQUOTElEXPTIO TRUEUN EVENJtlNILJ 

(B FREElJJINILll 
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IPROG231SETQ AORA' TllREPLACE WIQUOTEIARCTAN(EXPT(QUOTIENTCTIMES B CIAJ0.51111 
ISETQ ARCLOG Tl II 
ITIPROG231SETQ AORA' TJILISTIQUOTE LOGllQUOTE EllCAOR FFlllSETC ARCLOG Tiii)) 

ITIERRORIQUOTEINOT YET ACCOUNTED FDRllllll 
ITIERRORIQUOTEIGUESS NOT YET FINISHEDIJllll 

GOGOICONO!!NOT AORA'llGO A'SETlll 
!SETQ AISIMPQUOTIENT!LIST NONCONIDIFFl G VARllll 
ISETQ AICONDICAND ARCLOGISETQ WIMZ AIQUOTE 

!TIMES!B MZIQUOTEIEXPTCPLUSICOEFFPIBl FREEOll 
ICOEFFT!82 TRUEll83 FREElll-lllNILI 

IC M21QUOTEIPLUSICOEFFPCC1 FREEOll 
ICOEFFTIC2 TRUE111C3 FREEllllNILllCOEFFTTID TRUEllllNILlll 
!CONOl!SETQ MIMATCHSUMICOAORIREPLACE WIQUOTE 8lll 

ICORIREPLACE WIQUOTE Clllll 
ISIMPQUOTIENTILISTIREPLACE WIQUOTE DllHlll 

IT All I 
IT All I 

!SETQ A'!DIFFl A VARll 
!SETQ NEWB'!CONO((NOTIEQICAR A1 J(QUOTE PLUSJlllSIMPMINUSILIST 

ISIMPTIMESILIST G A'lllll 
ITITIMESLOOPISIMPMINUSILIST GlllCDR Alllll 

I GO LOOP 51 
A'SETISETQ A'ISIMPQUOTIENTILIST NONCON Gill 
ICONDllFINDllSETQ Al INTEGRATE A' VARll !QUOTE INTEGRALlllGO KILLJ)I 
ISETQ NEWB'ICONDllEQICAR AllQUOTE PLUSll ITIMESLOOPISIMPMINUS 

ILISTIDIFFl G VARllllCOR Alli 
ITISIMPTIMESILIST -llOIFFl G VARIAlllll 

LOOP51SETQ PR08LICONSILIST 8 1 CONST NONCON G FF A A' ARCLOG POSEXPTJPR08Lll 
I CONDI I ANO ARCLOGINOTIFREE Alli ISETQ ARCLOG 1111 
I CONDI I ANO POSEXPTINOT!FREE Alli ISETQ POSEXPT 1111 
!PRINT NEWB'I 
ISETQ B' NEW8'1 
BEG ISETQ WIMZ 8'1QUOTE!TIMESICOEFFTTIA FREElllCOEFFTTIB TRUEllllNILll 
!SETQ CONSTIREPLACE WIQUOTE Alli 
!SETQ NONCONIREPLACE WIQUOTE Bill 
I SETQ L PR08L I 
LOOP3(CONDllNULL LllGO PROGRESSll 
!!M21CADOAR LINONCON NILllGO Alli 
I SETQ LI CDR LI I 
(GO LOOP31 
Al SETQ M PROBLI 
I SETQ W CONST! 
A21SETQ WISIMPTIMESILIST W ICAOAR Milli 
ICONDllEQ M LllGO Alli) 
ISETQ MICDR Mil 
IGO AZI 
AllCONDllMZ WICADAR LINILllGO KILLlll 

IRPLACAICDAR LI 
ISIMPQUOTIENTILISTICADAR LI ISIMPDIFFERENCEILISTICAOAR LIWlllll 

ISETQ ANSW 01 
SKIPZISETQ L PROBLl 
LOOP4!CONDllNULL LllRETURN ANSWlll 
ISETQ ANSWISIMPTIMESILISTICADAR LI 
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<SIHPPLUSILISTISIMPTIHESILISTICAOORICOODAR LlllCARICDOOAR LllllANSWllJll 
I SETQ LI CDR L1 I 
IGO LOOP41 
FINISHEOISETQ ANSWllNTEGRATE 8 1 VARll 
I liO SKIP21 

PROGRESSICOND(IRAT8 8 1 1(GO FINISHEDll 
(ONEMOREIRETURNIQUOTEINO PROGRESSllll 
(!EQUAL POSEXPT lllSETQ ONEMORE Tll 
I IEQUAL ARCLOG lllSETQ ONEMORE Tiii 
ICONO(INOT NINTXPllGO LOOPlll 
lSETQ W(M2 B'IQUOTElTIMESIEXPTIA EQUALIREPLACE NINTXPIQUOTE Alli 

IH TRUEll llCOEFFTTlO TRUEI 111 NILi I 
ICONOI INULL WllERRORCQUOTE NINTXPI 111 
ISETQ HISIMPDIFFERENCEILISTCREPLACE NINTXPIQUOTE NII 

!REPLACE WIQUOTE Hlllll 
ICONOllNOTINUMBERP MlllERRORILISTIQUOTE NINTXPJMlll 
llZEROP MllGO LOOPll 
llGREATERP H OllGO Nlll 
IONEHOREIRETUR~IQUOTEfNO PROGRESS NINTXPlllll 
lSETQ ONEMORE T! 
(GO LOOPI 
Nl<SETQ ANSWCLISTl~UOTE INTEGRAL) NIL lLlSTlQUOTE QUOTEIB'J lLIST(QUOTE QUOTE J 

VAR I I I 
lGO SKIP21 

KlLLl <SETQ PROBLlCDR PROBLll 
KILL2lCONDll~LL PROBLllGO MAYBEONEMORElll 
lSETQ LICAR PROBLll 
ICONDl<CARICOOOOR(CODDDR Llll(GO POSEXPTlll 
(COND(lNOTlCADDOR ICDOOOR LllllGO KILLlll 
llEQlCARCCADDOR LltlQUOTE LOGl>IGO Kllllll 
I 
ISETQ FFICADOORICDR Lill 
ISETQ B'<CAR Lil 
ISETQ CONSTICADR Lil 
ISETQ NONCONICAOOR Lil 
I SETQ AORA • Tl 
I SETQ GICOND( IEQICARICADDOR U I (QUOTE ARCS I NI I 

ILIST(QUOTE EXPT~tCAOR FFllSIHPPLUSILISTICADDR ffllJlll 
ITILISTIQUOTE LOGllQUOTE EllCADR Fflllll 

I SETQ PROBLICDR PROBLI I 
ISETQ ONEMORE NILi 
IGO GOGOi 
KlLLISETQ OLDPROBL PROBLI 
IGO KILL21 

HAYBEONEMOREICONDIONEMOREIRETURNIQUOTEII GIVEUPlllll 
(PRINTILISTIQUOTE ONEMOREIOLDPROBLll 
ISETQ PROBL OLOPROBLI 
ISETQ ONEMORE Tl 
IGO LOOP) 

POSEXPTICONDllEQUALICARICDDOORICDOODR LllllllGO KILlllJI 
ISETQ FflCAOOORICDR Lill 
(SETQ POSEXPT 11 
I SETQ AORA' TI 
I SETQ 8 1 I CAR LI I 
IPRINT(LIST(QUOTE POSEXPTIB'll 
ISETQ CONSTICAD~ Lil 
ISETQ NONCONICADDR Lii 

--



!SETQ G FFI 
I Si:TQ PKOBL!CDR PROBLJ l 
(GO GOGO I 
) II II 

DEFINE!! 
ITRIGSUBST!LAMBDAIEXPI 
!COND 
!!ATOM EXP)EXP) 
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!l~OT!MEMBER!CAR EXP) (QUOTE I TAN COT SEC CSCl l l l 
!SIMP!MAPLIST EXP!FUNCTION!LAMBDAICl (TRIGSUBST!CAR Cl I l 11 l I 

l!EQICAR EXPl!QUOTE TANll!SIMPQUOTIENT!LISTILIST!QUOTE SINl!CAOR EXP)) 
!LIST!QUOTE COSllCADR EXPlllll 

llEQICAR EXPl!QUOTE CD Tl) !SIMPQUOTIENTILIST!LIST!QUOTE COSllCADR EXP!) 
!LIST!QUOTE SINllCADR EXP)J lll 

!!EQ!CAR EXPllQUOTE SEC)) !SIMPQUOTIENTILIST llLIST!QUOTE COSllCADR EXPlllll 
)))) ) 
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