

ACKNOWLEDGEMENT . -

This thesis describes research done by the author as
part of the Multicas development effort at Project MAC at the
Massachusetts Institute of Teshnology. Thanks to the. mmy
members of the Projest MAC resesrch staff,: ‘partioularly
Carle Marceau and Karolyn Martin,: for théir siaggestions,
ocriticisms, and cooperation,

The author would like to express 'm.a gratitude to his
thesis advisor, Professor Jerome H, Saltzer. His instructlon,
advice, and patience are dceply np?miated.

. Finally, and perhaps most importently, the suthor
would like to thank his parents and hias wife Barbara for

their enthusiasm and oncourasaamt, but nostly ror their
’ MQM“-

‘BE.M.D,
cuhridse, Mhmtts
' - Aagast, 1968

iv

CONTENTS

ABSTRACT
ACKNOWLEDGEMENT

Chapter 1 - INTRODUCTION
1,1 Terminology
1.2 Background
1.3 Organization

Chapter 2 - FEATURES OF ABSENTEE COMPUTATIONS
2.1 Computation Modes
2,2 Features of Absentee Computations

2.3 System Features

Chapter 3 - OVERVIEW OF THE ABSENTEE MONITOR
3.1 Major Sections of the Absentee Monitor
3.1.1 Absentee Queue Control
3.1.2 Absentee Waiting Queues
3.1.3 Absentee Running Queues
3.1.4 Absentee Initiation Module
3.1.5 Absentee Shelving Module

111

iv

N & -

@

11

15
15
15
17
17
18
18

3.2 Relationships between the Absentee Monitor
and other Parts of the Multiple-Access
Computer System

3.2,1 System Control

3.2,2 Performance Measurement
3.2,3 Load Control

3.2.4 Load Control Table
3.2,5 Reserver

3.2.6 SAVE, RESUME, and QUIT

3.2,7 User Commands

Chapter 4 - PEATURES OF THE QUEUEING MECHANISH

4,1 Necessity for a Queueing Mechanisam

4,2 Queue Discipline '

4,3 Pirst-In-First-Out Disciplines -

4,4 Associating an Ordering with the Running AC's
4.5 Computation Streams o

4,6 Flow of a COuputatidn through Q‘Str.l_.

4,7 Multiple-Streanm Queueinglﬂechqﬁisn

Chapter 5 -« LOAD CONTROL

5.1 Terminology
5.2 Load Control in a Purely Interactive System
5.3 Load Trimming Strategies

5.4 Load Control in a Single-Stream
Purely Absentes System

vi

19

19

19
20
21
21
21
22

23

23
2k
25
27
28
30
32

R Ee

38
43

s.smcmugmum
Purely Adsentes Systam

5.6 Load mwent 1n 4 a mtagam

snmm n-mum
Mxmunm

6.2 mmnke

-G.SMncmmm(mmw}arn&

s.ammwnmw
s.smuxetomxc
6.6 ,zm:um tw.ﬂm*:

6.7 Mﬂ x&mq I!‘ # Iﬂ
6.8 Spesifylag the AC-IC Leat Appee
6.9 Other Commands for Atuingstuas)

vii

53

3

EEEETERE

.9

This empty page was substituted for a
blank page in the original document.

ILLUSTRATIONS

3.1 Mechanism for COntrol‘of‘ Absentee Computations
4,1 C,T.8.S., Absentee Queuneing Mechanisnm

4.2 Fifo Mechanism with Multiple Bunning AC's
4,3 Queueing Mechanism with Ordered Running AC's
4,4 A Computation Stream

4,5 Plow of a Computation through a Stream

4,6 Multiple Stresm Queueing Mechanism

5.1 Load Control in & Purely Interactive System
5.2 Load Trim-by-Poroce

' 5.3 Load Trim-by-Attrition

5.4 Load Trimming Strategiles

5.5 Load Control in a Single-Stream Purely
Absentee System '

5.6 Load Control in a Multiple-Stream
Purely Absentee Systenm ’

5.7 Load Reapportionment in a Multiple-Stream
Purely Absentee System

5.8 Queueing Mechanism for a System with Multiple
Interactive and Absentee Streanms

5.9 Summary of Load Control Parameter Definitions for a
System with Multiple Interactive and Absentes Streams

5.10 Load Control in a System with Multiple
Interactive and Absentee Computation Streaus

$.11 Load Reapportionment in a System with Multiple
Interactive and Absentee Computation.Streams

ix

16
25
26
27
29
3
33
3?7

41
42

52

66
67
69

73

This empty page was substituted for a
blank page in the original document.

CHAPTER 1
Introduétion

This thesis presents the detailed doclsn speelfications
for a mechanisn to handle absentee (or haekground) computations
in a multiple-access conputer system. The nechanisn operates
a8 a package of self-contained modules with a minimum of
dependenclea upon the environnent 1n uhich 1t resides. Thus,
it may be inserted 1nto any exlating nultiple-access computer
system which has the proper environnental features.

The work of thls thesis is ooncentrated in several areas,.
First those reatures uhich are dosirable 1n a system for
handling abaentee conputations are considered, Many of these
features exist 1n current working ayatens. but several new
features are proposed,

Second, the overall desisn for a néw tyﬁe of absentee
mechanism is consldered. The functiona of each nodule in the
mechanism are diaeussed and interfacea betuoen this mechanism
.and other parts of the multiple-access computer system are
defined.

Next, the detailed design is presented for the two major
portions of the new abgsentee handling mechanism, This design

is interesting for several reasons:

1-

IRt o e R o s

Absentee computations are supported in a system
designed for time-sharing applications.

The amount of gbsentee'usege'on the system may.

be carefully regulated to comprise anywhere from
0% to 100% of the total absentee and 1nteraet1ve
system usage, » ’ _

The portion of system ueage assignedvte ebsentee
computations may be further subdivided and assigned
to absentee'computatlaﬁs of vaiiousk“types” This
provides for ease 1in 1mp1ementation of priority

schemes for determining which computetions ‘should

‘currently be servleed by the system.

The apportionment of system usage is mede flexibdble
by the absentee handling mechanism to prevent waste
of available computing capebility. .

Computations of a particdiar "tybef aie always
guaranteed fifst cleimuto the portion of system

usage asslgned to them,

The mechenism may temporarily suspend and then

automatically resume an ebsentee-computation thus

making such interruption transparent to the computation.

la

This abllity 1s useful in providing . the .
apporticrment flexibility menticned above,
Pinally, an attempt is made to moiry. a compact
set of commands for users and administrative personnel.

The commands are designed to previde smooth intersction
with the facilities and capabilities of the proposed

absentee handling mechanism. In particular, cemmands

are provided to perform certain obvious funotions such

as oreating and terminating abesentes computations, and
certain functions unique to this application such as
converting an 1m1=-1va computation to absentee and vice

_versa, and specifying the apportiomment .of system usage -

between interactive and abssntes computations,

1.1 Terminology

A tipe-ghering cosputar system rapldly shares its
Tesources m-m users to give each user the ii’inaion R
that his computation is constantly running, --An intepsotive
user controls the operation of his computstion by iasuing
copmands (usually in the form of statements typed at a remote
teletype terminal) to the system, observing the system's
response to each command, and issuing further commands based
on previous responses. An gbgsentee user does not have to be

-1b

present at a terminal to boﬁt:ol his computation;
he sulmits a file of commanis which specify the operation
of his job, The system engusues (1.e., mainteins sn ordered
118t of) each of these desoriptor files as they sxrive,

| The concept of & computer utilily is thet of .-
providing sccessible computing capsbility to & large number
of users {referred to as the w) on a twenty-
fourshour-per-day, seven-day-per-week basis, ‘It Y normal
to expect, howsver, that mslfunstions may requirs that the
system undergo an ocosssional shubtdoes eo that the malfunction
Nay be repaired, To resums normal opeveticn, the systea
unawsoec & ghartup procedure,

hoh user of the mmmstmwm:onm

private f£iles (ususlly space on secondary storage media
reserved for this user). A pot-utm user of filed
information must identify himself to the system b fyping
a secyet m thus preventing unsuthorized peysons
from using the system, This identification.procedure is-
referred to as Jomeing in. ~Whem u user is fimished using
the .system hs Jgug out to infors the system that he no
longer needs its resources,

Unless otherwise specified, files are used to supply
input to and recelive ocutput from absentees somputations
since such computations are generally not attached to
terminals, However, the user may desire to recelive 1nput'
to his absentee computation from a private magnetic tape
in which case his computation may run only if a tape drive
is avallable, The tape drive in this example is referred
to as a dedlopted regource since it must be specifically
assligned to this user for the duration of hls computation, -
To assure that a required dedicated resource is awvalilable
when it is needed, the user places a regserwation (via the
system) to use the resource during a specific time period.

Non-time=sharing computers generally hanile jobs in

a batch progegaing forpat: the jobs are submitted in the form

of card decks or magnetic 'tapes at a central computer
installation and are processed sequentially, either one

at a time, or in the case of recent multi-processing systems,

several at a time,
The gystem lopd on a time~sharing computer system
which services both interactive snd abeentes oomputations

refers to the current demands for service to all computations

on the system, When the load decreases more computations
may be lnitigted to push the load back up to peak efficiency

Rt e e e S e b

operating levels, At any instant during .
the operation of the system, requests for service are _
enqueued on & priority basis (scheduled), and the 'requeat.-
‘at the hesd of the queues is the first to be serviced.
Priorities are generally assigned to computations
to indicate some sort of preferential ordering for service.
‘Admission priorities ave used by the system to determine
which of seweral computations attempting to log in should
actually be allowed to log in to the system. Scheduling
Priorities are used by the system to dstermine which-
of several logged in computations should be given service
by & processor when that processor becomes available.
Admigssion priorities are generally fixed whereas scheduling _
priorities are dynamically computad at execution time.

The concept of providing absentee usage facllities
in a time-sharing environment is not new, but the general
design principles have not ‘yet been disoussed, Two of

the earliést successful attempts in this area are:

1 -

The Compatible Time~Sharing System (1,15)
implemonted on the IBM 7094 by M.I.T. in 1962,
Absentee capabllities were included 1n the
original design of C.T.S.3. The ability for

an interactive user to initiate an absentee
computation | was added in 1965«1966,

Time Sharing s.vstén/360 (#,5) Aimplemented by
IBM on its 360/67, Absentee capablilities
were included in thé original design for which

~ a prototype imp].enentation became available

in 1967. Some notable features of the TSS/360
implementation include the ability for .

a user to interrupt his running interactive
computation and éonvert it to absentee, and
the abllity for a user to inltiate a wide range
of bulk input/output operations via commands

.which may be issued by intersctive or absentee

computations, These bulk input/output requests are
handled as standard absentee computations and>

are enqueued until the input/output devices

needed to service the requests become avallable,

The absentee handling mechanism dasigned in this thesis
is being implemented as an integral part of the “Multics"”
system (Multiplexed Information and. Computing Service) under
development at Project MAC at the Messdchusetts Institute
of Technology, Multios 1s being dewigned and implemented

as a gensaral purpose time-sharing opsrating system for the
computer utility. The reader interestsd in exploring Multics
further should eonsult a group of papers {5,6,7,8,9,10)
which were presented at the Fall Joint Computer Conference
in 1965, Project MAC Technical Report-30 (4} contains a
discussion of the organization of the computer utility

and a desoription of the basic design of the Multics system,

Chapter 2 discusses those féatures which are desirable
An a system whioh supports absentee computations, and the controls
that users and system administrative persomnel should have
over abssntee computations,
Chapter 3 presents a block-diagrem overview of the
absentee handling mechanism, and discusses the functions

performed by each of the modules in the mechanism,

chapter L4 develops the condept of a computation stream
and then 1llustrates how’several such streams may be combined
to form a versatiie multiple-stream queueing mechanism for
absentee computations,

Chapter 5 oconsiders the ﬁroblems of regulating the
system load in a system which supports both interactive
and absentee computations, A mechanism for performing the
' load control function is proposed which utilizes the
flexibility of absentee computations to assure that the
load remains close to its most efficient operating level,
The mechanism allows the computing capability of the system
to be allocated in any proportion between interactive
and absentee computations, and provides the ability to
quickly and smoothly adjust the system tdbt new loed
reapportionment,

Chapter 6 presents a set of comnands,fdr users and
~administrative personnel to create, control, and terminate

absentee computations,

CHAPTER 2

Features of Absentee Co-putjticns

This chapter dsfines-absentee, interactive, and batch
computations, and discusses the similarities detween absentee
and batch computations, the festures of abseiites ocvmputations, and
. the facilities of the absentes handling mechanism.

A uger may run his computation in oiiher of twa modes,
namely mnn or ghesntee.

An W is controllod by a user
who enters commends ct & remote terminal, receives rcm-
from the gystem at that terminal, ana enters additional ‘command s
based on previous rosponns. The 1ntcmt1n mode afforda the
user precise control over his eonpntutian nnd anm the user to
make major changes of stratesy' at run time, mitﬁtor‘iétiw '
mode ig particularly useful for program debugging amd for '
implementing programs which “talk® with noneprogrammer users
(administrators, scientists, flight reservation personmmel, ete.)

An gbgentee computation (AC) does not require interaction
with the user, The user sulmits an absentee computation as
a file of commends (gbsentes source file) basiocally idantical
to the commands the user would snter 1 yunning the seme

computation interactively. The absentee mode frees the user
from having to be present to control his computation and
is partioularly useful for ruming checked~out programs and:
*production” runs. : BRI

A bateh gomputetion is basically identical to an absentee
computation except for the manner in Jd;icli the file of commands
is submitted to the systeds,: An-absentes source rils is
generally sutmitted via a Temote terminal, whersss a batch
computation: command frils 15:30:1&&1? sutmitted in the form
of & oard deck at the central oomputer installatien.

_An sbsentee computation may be initiated for & user by ome of
t_he user's interacstive computations, anecthsr of the user’s
absentes computations, or a.bdatok-voapatation skimitted by the user,
A"user*s absentes ebhputatiohs day de:teiminated: by wny of
that user's interactive or absentes computations. -
A user may specify (for his own protection) amy running time
1imit for each of his AC's. If the time limit is exceeded, the
system automatically saves the AC so that partial results are not lost.
If the user does not specify a time limit for an AC, then a default
value is assumed by the system, again for the user's protection,

. A computation (IC or AC) of a particular user may obtain
status information about any of that user's computatiens (bdoth
IC's and AC's). Detailed lnfocnttdttbmt -aach of a user's
AC's 1s always available to that ussr, regardless of whether
his AC's are maiting to De run or arse ourrently running. .

An interactive user may interrupt his IC at any point and
convert it to an AC, ' This fesaturs iwm desirable in tha case
that a user wishes to start his program intersctively to make
sure that 1t iz working properly, and thah ascavart: the prograa
to absentee so that it may continue to complation without the
user's attention, : '

An intersctive user may interrupt any one of hig AC's at
any point and convert it to his current IC., This feature 1s
useful in the asse that the user wants to monitor the progress
made by his absentee computation, or poi-hnp- make some run-time
changes in either the program or its data., In m caseg, the
user may convert a computation from abssntes to: 1M?¢ to
get 2 higher priority for the computation so that -the computation
may be completed sooner,

The system sdministrative personnel may terminate any AC:
(or IC) whish appesars tb be a “troudblemsker", =

The system administrative personnsl may spediry an
apportionment of system resources Betwesi: AC*s amd IC's

10

in order to emphasize a particular mode during certain periods
of system opsration., In effect, this apportiomsent Mtam
the system into two distinct sub-aystems, one for running AC's
and one for rumming IC's. The AC-IC apportiomment may renge
anywhere from 0%-~100% to 100%-0f%,

A user may have many running AC's (and many IC's) at one
time, but the number oan be sdministratively limited, In the case
that ‘a single user has several IC's at various terminals, emch-of
the IC's has égual ‘eontrol over any of the user's AC's,

Input to an AC is normally taken from the appropriate
absentes source file, Output from sn AC normally goes to a
user-specified gbpentee output fils. The user may altertatively
specify dedicatel resourses {in plase of fites) for AC.tuput/output,

A user requiritg dedicated resourcss for wee Dy any of his
AC's shdotld place an advance reservation for the resources.

£a3 System Festurce

The system sngquehés user requests to initiate new AC's
80 that these AC's may be initiated in the future at a time
which the systea feels is opportufie, ‘

The system may temporarily M service to a number of
AC's s0 that an :lncrnndlﬂlo‘nd of IC's may be more effectively
serviced, Similarly, the system may "bump" a number of IC's
80 that an inoreased load of AC's may be serviced. Bumping an IC

11

T T T T

involves saving the IC 1A its current state and automatically
logzing out the user., To continue & va the ussr must
log: in again and specify that the bumped IC- be resumed. After
a user has been bumped, he will often find that he osmnot log in
a.saiin immediately. This occurs hecause the most troqupnt
Teason for bumping a user iz to decraass the system load and
 malntain the ld3ad at its lower level. ;

'rhe systsp may automatically resume service to suspended
/AC's when the IC load decreases, (Note the asymmetry here. A
suspended AC is always iutmtioal.ly resumed by the system
while a bumped IC can only be resumed by the interastive user
himself. This property 1s oritisal to the process of dynamic
losd balanoing disoussed in Chapter 5.)

Jobs may be sutmitted to the system in a batch~prooessing
format a8 a deck of cards. Such jobs, efter undergoing a
procedure to walidate the identity of their originators, are
handled by the absentee mechanism in the same zanner as AC's
requested by IC's or other AC's,

The gystem makes shutdomn transparsnt ta Ac'l by mpcncung
any AC's running at shutdown and automatlioally resuming the
suspended AC's at startup time., Any AC's which are sitting in
the queues walting to be run at shutdown, remain snqueusd during
shutdown and may be initiated by the system arfter startup.

12

' The apportiomment of résouruag*~ m\-w's and IC's is

normally done for various long periods of .system operation

called ghifts. Howsever, the demands made by AC's and IC‘s

upon the system over the short term may vary significantly . -
and freguently. The systeam caters to short texm variations

in demand by making modifications to the Tescuroce apportiomment
over short periods called intesrstion periods. The Load
Control meshanism (ses Chapter 5). compares the current demands
upon the system with the current: shift's rescuree apporticment,
and makes necessary adjustmente in the AC-and IC loads to insure
that good quality service is provided %o all ruming computations
resarcneoé of any ‘short-tern surges in demand, -For example, if
the AC-IC spporticnment is 25%.75% und the AC desands decrease

to only 20%, then Load COatroi ‘allows énough new IC's to be
initigted to bring the IC usage up to 80%, When the ghort«term
variations are of gmterrmttude;“io‘d Control may elect

not to matsh a desrease in ons mode of usage-with an equal
inorease ir the othwr, Instead, it may matoh a 20X deorease with
only a 10% inorease, This ptcv:.dgn--rdmptn&&fteet which helps
to prevent the current usage of system resourcss from wvarying too
significantly from the desired shift resource apportiomept.

See chapter 5 for a more precise discussion of the load
balancing operations perfornod by Load Control,

13

The system keeps track of all AC%s: requiring dedicated
resources to be initiated., Whenever a ressrvation made for
a particular AC becomes due, the system automatioslly initiates
that AC. |

In a systen in which many computations are simultensously
competing for service, it is desirable te mmmt of
priority mechanism to allow a uaser to express the relative
importance of his computation., The user is providad with a
ocholce of priority stresms in whioh he may request-his AC bde run.
High priority stresms provide service at higher cost, while
low priority stresms may provide slower service Wt at reduwced cost,
If the user dces not specify in which priority stresm he wents '
‘his computation to run, the system autamatically insexrts the .
computation into the giandard stresm. Sinoce -ahsentes
computations do not necessarily have -to.be initiated immediately,
a series of waiting queues is fwwtdd.ﬂ ons for .epch. priority
stream. When Load Control decides that more absentes camputations
may run in a particular stresm, it informs the mechanism which
- handles the absentee queues to initiate an appropriate number
of abssntee computations from the-waiting queue for that streanm,

14

CHAPTER 3 ,
Overview of the Absentee Monltor

The Abgentee Monjtor éonsists of a group of related modules
and a series of qu which together are respohsiBle for the
engueueing, initiation, eelnt’z;ol. md tmimuon of absentee
computations. This ohnpﬁor discusses the u.ﬁr cgctions of the
Absentee Monitor and the 1hterrc1atioiid11p i”utnon‘the Ab;entee
Monitor and other pufti of the multiple-access computer sjcten.
Figure 3,1 illustrates the structure of the overall mechanism
for handling absentee computations, Chapters 4, 5, 6, amd 7
desoribe the parts of the mechanism in greater detail,

3.1 Mador Seotions of the Absentes Mopitor

' The Absentee Monitor consists of three modules and two
sets of gqueues, one gqueus in each set being assigned to service
each priority stresm. Chapter 4 dissusses the queueing mechanism
An detall. |

J.la) Abpentee Quous Control

A3 new requests to initiate absentese computations are

entered by users into the systesm,. the names of the corresponding

15

91

Absentee

Walting
Queues

Absentee
Running

Queues

Absentee

Mechanism for Control of

'Absentee,Computations

Initiation
Module
Absentee'
Queue Load System
Control Control Control
Absentee T
Shelving ,
Module Performanc
easurement
Reserver L‘
Figure 3.1

L A L - S R i A T T U T |

e T v
g,

absentee source files and absentee output files (and other
additional useful inforsation) are placed into queues where
they remain until such time as the system decides to initiate

additional sbsentee computations. . Abggnies QGusus. Cont
system module responsidle for making Wﬁt CRM“ 1n the
queues, retrieving entries when they are nseded Ly other perts
of the abssntee mechanism, and deleting sntries which. are no.
longer needed,

5o 48 the

d.1,2 Absentes Valtibg Quoues
mowwmunnuotqma, ne
per priority stress, which contain the per mmsnn iaromtion
for absentse oomputations waiting to be .initiated, A usex
request to initiate & new absentse ogmputation osuses Absentee
Queue Control to make an entry for this camputation in the
appropriate Absentee Waiting Queus.. |

The.Absentes NUMADE CUSUSS aTe & Series Of UAMNAR, OB
per priority streem, which centain the par ccwputation inforwation
for oqoh_mmanc absentee computation. . Vhen an m computation
is initiated, Absentee Queue Control deletes the eorresponding
entry from the appropriste Absentes Waiting Queue,and inserts
an entry in the approprnh Absentee Ruming Queue,

17

2u1,% Abgentes Initistion Module
" Vheonever more absentee computations may bYe initimtdd, Load
Control (uo Chapter S and seotion 3.2.3 Délow) informs the °

ke of the mumber of AC°E to tuitiate.
~The Absefitee: Inttistion Nodule decides Wmoh AC's $0 initiate
and meakes ‘the: appropriste calls to imitiate them. The Absentee
Initiation Nodule ocalls Absenitass Quene Control to meke the
appropriate insertions (deletions) in the Absentes Rumning (Valting)

Queues,

" 'Her<after, the short-term suspension of absentee computations
referred to in Chapter 2 1s bermed “ghiglving” ‘the sdsentee
somputations, The distinotion betweds a shelved computation
and & cowputetiom which has merely Desi sived is Whet a shelved
computation is only sdved teporsrily wntil msush time i the
system decides to contimue it, whersas a saved computation can
only be continued if thé user logs 4N AnNsrestively and orders
such sotidn: “Unghelving” ie the prenaws of Yemming & shelved
‘computation and 1s performed sutomaticully by the Absentes Moni tor,
maem.smnmtommmor
‘rurming AC's, Losd Conmtrol mfonn ‘he ;
of how many AC's to shelve. The Absetives Shelving Roaule decides

18

which AC's to shelve and makes the necesssry calls to shelve them,

Absentee Queus Control 1s called to make the appropriate
insertions (deletions) in the Abgentes Naiting (Bumning)
Queues, MNote that shelving an AC Anvelves plaeing an .ugx-y
for it back into the a pp:opriatc Absentee Walting Queue so that
the AC again becomes a oandldntp for initiation by m Ayepntee
Initiation Module, |

Bty of the WOtirle-Aocess Conputer BYs
This section discusses the environment of the absentee
noehanin; ‘Load Control 1- ducuuod here inltud of in

section 3.1 only because its rumt:.onz tro rclatod to both
IC's and AC*s, However, Load Control 1is a oritiocal portion
of the absentee mechsnism and is discussed in detail in Chapter 5.

W is the module which processes oa-nnd requests
from the cylhl ‘adainistrative por.omol In pa.rticulnr. Sy-tn
‘Control cotiveys the AC-IC apportionment information from
the System Administrator to Losd conem;' and the dedicated

resource apportionment information to ‘the Reserver.

3a2,2 Performance Measurement

Periodic determination of the current amcunts of intermctive

19

and absentee usage being supported by the system is essential
to the operation of the load-balansing wechanmism. Pexforgsnce
Noagurement obtains these usage statistics by observing various
system parameters ani comveys the information to Losd Control,

da2,3 Load Gontrol
The main functions of the Logd Control module are:

1 - to see that the apportiomment of rescurces between
~ Antersctive and sbsentee ‘computations: Temains close
. to that spocifiod by the Bystn Mninlltrntor A
2 « to cater to -hort-tm urhtioul m tha dmnda
upon the antc-'s resources by dynamioally nryins
the current Tesource .pmtlmnt
3 = to see that the systea is mithor un'.lor- notr over-
loaded,
Load Control compares the apportiomcnt infomtion 11: receivea
from the System Mainutrator with the curront unso atutictics
tuppnod by Pexrformance nouument, Ir any nmr;mt discrepancies
exist between these sets of figures, th.n Load control may modify
the system 1oad by any of the follmne neans:
1 - call the Absontu Init&.ltion Hodule to initiate
more AC*s
2 = oall the Absentee Sholving Module to ﬂnlu some AC's
3 = inorease tho natinum mmber of IC's -uom
4 - decrease tho maximum mmber of IC's allowed
5 « automatically log out some IC's

20

3:2,4 Load Control Table
In this tadle, Load Control maintains a list of all logged-in

IC's and certain additional information such as the total number
of logged-in IC's and the maximum mmber of IC*s which the

system currently allows. During the losd~balancing operations,
Load Control obtains information about AC's from the Absentes
Waiting Queues and the Absentes Rwming Queuss ard about IC's
from the Load Control Tahle,

312,35 Beserver

The RBessrver is responsible for scheduling the usage of
dedicated resources (for both IC's and AC's)., If & user's |
AC requires dedicated resources, the user must place an adwvance
reservation for the resources, The system automatically
initiates the AC when the reservation becomes Que.

3:2.6 SAVE, RESUME, and QUIT |

These mechanisms are provided in the multiple-access computer
system to facilitate certain manipulations of computations useful
to both AC's and IC*'s., QUIT is oalled to stop the execution
of a computation and place the computation into a state in which
it may be easily preserved, lost, or continued, BAVE is used to
preserve the. computation is its ‘sutpent -state so that the computation
may be sontinued in the future, RESUME is used to continue
a SAVE4d computation,

21

Shelving an AC involves first QUITtimg the AC, then SAVEing
it, deleting the Absentee Burming Quesue entrxy for it, oreating
an absentes source file containing a RESUME command, and placing
an entry: for this file in the appropriate Absentee Waiting Queue,
Unshelying an AC 1= done by the Absentes Initiation Module in the
sane t'.ihi.en as initiating & new AC, However, since the absentee
source file for this AC oonsists of merely a BESUNE command to
resume a SAVEA file, tﬁe saved AC is restarted. |

12,7 User Commands

Users are provided with a detailed set of commends with which
to control the initiation, operation, and termination of absentee
computations (see Chapter %). . Thess commands osuse ocalls to
entries in the Absentee Monitor and status informetion is retwrned
to the user in sach case to indicate if the calls are

successful,

22

e R D M e

CHAPTER &4 -
Features of the Queueing Mechaniem

The Gueusing Nechanism oonsists of the Absentes Weiting
Queues, Absasntee Rumning Queuss, and the Abssiites Queus. Control
module. This chapter desoribes the stxuotures of the various
queues and the operation of Absentes Queus Control.

During the operation of the system, user requests to
initiate new AC's may-arrive-faster Shan the-new: AC's -
can be initiated, One reason for this is.that the maximus
number of AC's which may run ilnultmouly_ nay be limited, thus
necessitating the placement of waiting roqm into a walting
line or gysus. Actually, a queusing mechanims oan be avoidad:
if 3t ia el by the systea designers that if there ouwyrently is
no room for more AC*s, tlun the user shoulfd retry his "Mnut"
at & later time. This, 1n effect, is the method used .in the
case of new intsractive users., If the new IC cannot de initiated
the:user must wait until a lster time and then reattempt to log in,
The'reapohr for this: cheloe is obvioms. Suppese, for exampls, that
an interactive user tries to log in and that the system cannot
handle any more interactive users now. Suppose that the system

23

then proceéds to enqueue this user's request in a walting

line with other requests for IC's. C(Clearly, thero is no way
to tell how long it will be befors the new request may be
deMcd. Thus, the user might sit faithfully et his console
for several minutes or perhaps several hours before his request
may be serviced, From the humah fasteors standpoint - whiech is
so. 8¥itical in tha design considerstions for a multiple-access
computer system, such sn ooourrence 1s not toleratie,

~ However, since a user does not have to be prewent to run
his absentes computation, 1t is clear that requests for AC’s
may be engueued for future initiation without any inconvenience
for the user. As a matter of fact, in this way the user is
assured that his AC will be initiated &t the earliest pozsible
time. As will become clear in Chapter 5, this feature of

absentee c‘d-put.tlm is most ‘critical to the design and opsration

of the losd-balancing mechanisn,

4,2 Queve Plgcipline

The order ni which requasts to initiate new AC*'s are serviced

nesed not - nesessarily bs the same as the order in which these

requests arrive, The method of choosing the next AC to be initiated
from the queues is referred to as the gyeys digoipline., Among the
more common gqueue disciplines are first=in-rirste-out (rfifo) which
selects ‘entMes on a first-come-rirst-served tasis, ugl last-ln-rirst-
ont (11fo) whioh selects emtries on a most+surrent-first-served basis,

24

The queue disoipline chosen for the Absentee Waiting Queues
and Absentee. Running Queues utilizes both fifo and 1lifo disciplines
in a 5lightly modified fashion.

L t-0yt | |

_ The C.T.S.S. system uses s fifo discipline in which at
most one absentee computation may run at & time. Once an AC
has begun to run it must be run to completion or until it is
sutomatically logged out. No provision is made to allow the
running computation to be temporarily suspended and then resumed,
Absentee usage is never too significant a port-innof tom '
system usage since there is ususlly a single running absentee
computation and as many as 30 running interactive oo-putationl.
Hence, the suspension of the single abassntes oa.putatlon is not
really a versatile tool 1n terms of -allowing more 1atomt1n
usage to ocour, Pigure 4.1 illustrates tho c. '1' 8. 8. qnauoing

mechm— for absentee conputationl.

z «— new entriesadded at bdack of queue
WAITING

ABSENTEE
COMPUTATIONS

Eﬂ::] < next antry to be initiated

ABSENTEE '

COMPUTATION L — 1 — only one AC may run at a time
Pigure 4.1 '
C.T.8,3. Absentee Queueing Mechanism

25

An otwious extension to the C,T.5.8. gqueuneing mechanism

' 18 to allow many AC's to run at one time, This introduces some
interesting loed considerations since it ‘wight resallt in a system
with a poor interactive response if the number of running AC':
becomes large. This problem is discussed in detail 4n Chapter 5.
‘Pigure 4,2 1llustrates a qusucins mechaniss which allows for
nany rumning AC's at one tue.

new entries added at.
. baock of qudue ‘

WAITING
CONPUTATYONS
[_""_L_'j «—— next entry to be initiated
ABsgwTER S—
‘rumni AC's
COMPUTATIONS E:::' e precise n::bor of
' ’ : Ac'a 1imited- vy the
[:: system's losd control
_ nechanion)
Pigure 4,2

Fifo Hoohmiu with Multipls Running AC's

26

Note that the structure of the mechanism of Figure &.3 -
allows ardltrary criteria to be used in deciding thé ordering
of the entrises in the runting queus, The 11!0‘di;s’cip1'in’e is
particularly useful for the extension made to this structure
in the next section. R '

Now let us consider the idea of shelving an absentee
computation, BSinSe a uset is generally not present to control
his absentee somputation, the user doss not suffer any
inconvenience if his computation 1s temporarily suspended
and automsticaYly résumad, As has been montioned previously,

‘this property of AC's facilitates the design of the load
balancing mechanism presented in Chapter S, In this section,
the mechanism of Figure 4,3 is extended to allow the removal
of an entry from the running queue and .pi.oenent of this
entry back into the waiting queue. .

Pigure 4.4 illustrates this new mechanism which 1is
referred to as a gogputation stress. The stresm consists of a
first-in-firet-oit queue of waiting AC's and a last-in-first-out
queue whose entries point to the various running AC*s. User
requests for new AC's cause entries to 'bo Placed at the beck
of ‘the waiting queus, The entry at the front of the waiting
queue 1s next to be initiated, The entry at the front (last-in)

28

. QUEUE .

.ABSENTEE
WAITING

— bottom of fifo walting queue

top of fifb walting queue

@ ‘when the AC at the top of
_the running queue isg
‘ansived, i'b 8 rlaced at
the t:g.of the walting quae
L at the top
ot the waiting queue 1s
inltiated, 1t 18 aud on

| vtoptg? P EPRANIRI " B3

Of
O ""‘: ’\-{ . l""——"_ I " “bottos of 1ife running queue

pointers to
running AC's

Figure 4.4

A Cmputgtlon _Stream

29

of the running queue is the first to be lhoivod when any AC*s
are to be shelved, nlo this entry, when .holnd. is plased
back onto the front or the nltins qum and hcnoo it beoomes
the first entry to be initiated again when more AC'c m to be
initiated. The entry at the back of the running queue (firet-in)
is the last entry to be shelved whenever AC's are to be shelved.
This stream mechanism gives us the abllity to imsreass
and doerouo ths: ubnntu loed a'ucnm by ths load

. balaneing m-. while .t the seme: time auurn}c aatomatic
jonplotion of all AC's regardless of uhothr thoy ars ever

shelved for any reason,

4,6. utat _

Pigure 4.5 11lustrates. the flow of an AC through a
computation. stream. Since an AC may de shelved and unghelved
many times as it runs, the entry for the AC may pass back and
forth through the waiting and running queues until it eventually
reaches completion while residing in the running queue, ‘ll.ote
that 1t 1s possible for an AC to leave the streem while it 1s
in the waiting queue, This happens, for example, if the user
decides to terminate the AC., Chapter 6 discusses user control
of AC's in detall, |

30

ABSENTEE

WAITING |

QUEUE
{FPIFO)

RUNNING
QUEUE
(LIPO)

(1)t

|
r—|

(1) AC enters the stream

2Ye(3) front of the waiting
_queue as othort AC's
before it ave -
inttiated

) AC moves toward the

)} rear of the waiting
queue as some
running AC's are

il)a AC moves toward the
]

shelved
() (3)e(8) Ac is initiated
_ | o (or unlhelv:d)
(s—— (4)9(3) AC 18 shglved
W

T
P —

Pigure 4.5

ug) AC moves towards the
rear of the running
qusue as other AC':
inltut.d before it
are co-plotod

(6;0(3) ‘AC moves towards the
(5)a(H) frqnt of the running
gueus ag other AC's
initiated after it

(&) An AC may be completed

(2 ‘regardless ofits

(8) position in the rumning
queuné, The AC's entry is
deleted and all other
AC entries maintain their
ssme relative positions
in the runing queue,

Flow of a Computation through a Streea

X3

It is apparent from the discussion of section 4,5 that

a stream-type queueing mechaniam coupled w:.th a load control
meckanien which orders the shelving and unshelving of AC's

ls & useful means of controlling the smount of absentos usage
supported by’-. the system. An oven;gpgater--d-cr‘eo of -controln

over the:a,bnnt.:ee usage' ie made avalilabls *ﬁ"y)"utinzmg 'y
multiple stream queueing mechanism, Thus, it may be advantageous
to- axrrmtuﬁibetnm various types of absentee computations
(such as might be done in the implementation of a priority scheme)
and-such a differentiation could be made by associating AC's of
each type with a distinot stresm. Thenm, the load ocentrel
| nochnnisnﬁleou].d oontrol the usage in each stream 1ndiv1dmiy.
‘These operations are dsscribed in detail ‘in Chapter 5,

Figure 4,6 1llustrates a mutiple stream queusing mechanism.

‘Note that no reference has been made so far to a means of
ordering interactive computations or differentiating between
variocus types of IC*s. This has been so because our primary
concern has been considerations related to absentee computations.
Thée dlscussion of 'Chapter 5 indludes sevéeral such considerations
.of IC's,

32

CHAPTER 5
Load Control

When both interactive and absentee computntions may
run together in a multiple access computer system, it becones.
necessary to apporﬂon system resources and computing capability
between the two modes, This chapter discusses how such an
apportionment is made, sdhered to, and dynamically edjusted
by the system to maintain itself at efficlent operating levels,

1 Termin

The sum total of the demands made upon the system's
_ computing capabilities by all computations on the system is
 referred to as the gystem load. Depending upon the capabllities
of the particular computer system in question, the system
may operate efficiently over a wide range of kload situations,
Generally, on a large-scale time-sharing system many
computat:ions may run simultaneously, btut there is a 1imit

34

tothe mukber of ‘combutations: wiiol the. aystes bah support
#tthout beceming. over loaded. |

As a measure of system loed we uss the numder of mmning
computations, The gtresm logd in a emhtiu strean 1s the
number of runhing computations in that stream.’ The piregs backup
in a eomputation stream 18 the mumbey of compuatations in the -
waiting queue for that tiron. : Stpoaik backap 1s a medsure of
potential stresm load, The systes’s lopd confisgtution 1s a
summary of the stresii load and streis daokup for essch of the
systen's computation stresms., : ' '

For any particular multiple access sempater systém, the
most efficient load cqnﬂshrauoa (1.e., the load configuration
which results in the most useful computation) is Aifficult to
prediot while the system is under dswelopaemt. . After the
systen Mo mﬂoml ., however, effisient lomd configurations
readily beotae apparest; A SHISiJ06 SsOeNs:COAPUtEr syEtem 18
said - to:be Jrengrly-logded if 1t'is operating medr its most
efficient loid configuration, gyereiofed IT there is less
useful computation being perforeed theh whem the ystea is in
its wost efficient load configuration, and wpfep<losded if the
 addition of more oouputatiohs would result 1i‘an inoreased
swount of ubeful eempitation, Thess termé may slwo be used to
describe the load in a pomputation stress. In particular, s
strean whiek mormilly services woveh somplitations-1s over-loaded

35

Af nine ocamputations are currently rumning in thet. streem,
under-losded with five running computations, snd properly-losded
with seven: m qeupuht&m.

m.wmuautomammtuu
& properly-lemded state, -If.n System:ie cpersping in
an under-losded state, the.losd control-prekles is to inoreass
the number. of 'm,ounms,m.« -If s system 18 wﬁu
in en over-losded stats,. - the-load oomtrol. protlem 1s to.
docr-m the nupber. of runping computations. . If a system. is .
oponting in a proporly—lodod stee,. the losd. eamtyol . mu-

18 to maintain thia state,

.Comsidar the l1cad contyel . problmm-An: s Aysten dedioated: .
to servising smiy- imtarastive. mmn- The ayeten load, L,
1s egual to the number of running IC'm... The: sys ‘
are avallabls: to the various IC's, - uum w $0.
1limit the mmber of IC’s to some m;dln«%mt the. .
system from beooming over-loeded (N I0‘s. thepefove:Sorrssponds
to a propsriy-loaded. state). mwgymmmmwniu
an initial velue of Jy at startup time.sph-mey-alser Ny at.eny
~ time during system opersation.
Figure 5.1 shows & ﬂapln 1ond mtml mechanism for.a

36

APPORTIONMENT s

REAPPORTIONMENT:

. R

Airioteat administrator sets
strator new value of M, during
:ts My :t “’() system operatisn

‘g artup time ,

NEW _IC ATTEMPTS TO LOG IN: log out

T O

>
yes
‘Ic may not
Ci=Ci+1 log in now

IC may y
[log in now

RUNNING IC LOGS OUT:

‘ M; = maximum number of

IC's allowed
c1=Cy-1 =)

Cy = current number of
running IC*'s

Figure 5,1 Load Control in a
Purely Interactive
System

37

purely 1ntamtive system, When a new IC attempts ito log in
Load Gentrol thcks- to see 1f the number of IC's, c,.
currently on ehe system 18 less than the allowed maximum,

If Cy is less than My,the IC 1s sllowsd to log 1n ana

Cy 1is incremented by one, If C, is greater than or equal to
M, .then the IC may not:log ih now: a new attempt to log in

must be i.dc at a later time, When a rumning IC logs out
Cy iav'deur-mld; by dne,

The System Adminigtrator may reset Ni whild the system
is in operatim'. Load Control checks to see ir ll1 iz less
than C;, If not, then no ad justments in the curresnt IC
load are needed, However, if My is less than Cy the system
automatically assumes an over-loaded state and Cy«My
running IC's must be logged out to brimng the IC 105&«401‘1& toa
properly-losded state. Decreasing the mumber of running
computations is referrod to as load trimminx.

-

Sad Load Trimming Strategies
The most direct way to trim the IC load is to immediately

log out the necessary number of IC's, (Note that it is therefore
desirable to assoclate some ordering with the IC's ln order to
have a criterion for choosing which IC's to log out first, See
sestion 5,9 for a discussion of interactive computation streams.)
Such a strategy 1s referred to as a trim-hy-forge and is
1llustrated in Figure 5.2, '

38

In this example, the load is to be trimmed to P IC's,.
Ir Cy is less than or equal to P then no adjustments in the
load are needed, However.; ir c1 18 greater than P, then
IC's are automatically logged out one-by-one until c1 equals P,

From the system's viewpoint, the load trim-by-force 1s
a quick amd sui'e neans of decreasing the 1C load, However,
the trim-by-force results in inconvenience to the IC's which
are logged out, since they cannot run to completion now, and
they may have to wait quite a while 'ﬁfon thej may log in
again to continue their wor_k. From the human factotbs
standpoint it might be reasonable to adopt a continuous
service policy towards IC's, This policy would then require
‘a more flexible load trimming strategy which is referred to
as loed trip-ty-gttrition and is illustrated in Figure 5.3.

In this exsmple, the load is to be trimed-by—ittrition
to P IC*s, 1If C, 1is already less than or equal to P, then no
ad,justmgnta in the losd are necessary, However, if C; is
greater than P, then the load 1s decreased to P as Cy-P IC's
voluntarily log out, This is a gradual process, vslnce the
load decreases at the ssme rate as voluntary IC logouts, The
IC's on the system at the time the losd trimming bei;ins do not
undergo any inconvenience; they may run to conj)ietibn and log
out when they are done., However, once an IC logs out, it may
‘not log in again until C4 becomes less ﬂun P, The

40

i e G R

LOAD TRIM-BY~ATTRITION TO P IC's:

no

wait for next IC
to voluntarily log
out

‘ a running IC

. / voluntarily
. logs out

Cy = Cy -1

Figure 5,3 Load Trim-by-Attrition

41

1 = Trineby<Force et time Tp
;uoh “a:mtiodly
o ons at Tp to

m’muum

LOAD

2 = Trimcby-Attrition starting
at timg T, end finishing
m amch

tations have
mumu lmod out

o S N - B | 5. ""},ﬁ'““

3 - ,'rru-bydtmum starting
with tho

P T TN T

Pigure 5.4 Load Trimming Strateglies

42

trim=-by-attrition strategy does havs che significant drawback,

If the IC's on the system do not log out in a short time, they
can remain on the system as long as they would like to and thus
prevent the losd from being trimmed., In such a case it might
be reasonable to impose some time 1imit on the voluntary |
logouts, and if the load has not been trimmed to P IC's by
that time, then a trim-by=force could be used to complete the
load trimeing, If it is required that the IC lomd be trimmed
to P by a. certain time, then the load trimming could be
initiated in sdvance of this time. Pigure 5.# 11lustrates

the various load tnuung strategies discussed in this section.

Now consider the load control problem in a system dedicated
to servicing only absentees computations, The system losd, L,
i3 equal to the number of rumning AC's, The System Administrator
specifies the maximum number of ruming AC's, ’.‘a' at startup
time and may alter My at any time during system operation.

Pigure 5.5 shows & load control mechaniim. for a purely
absentes system utilizing the computation stresm conoept
discusgsed in Chapter 4, When a user enters a request for an
AC, Load Control checks to see if thle number of running AC's, C,.,

43

¥

at startup

NEW

'initiate the

place entry

running queno'

Car = Cap = 1

adminlistrator
sets Mg at)

for AC in -—,O

*, ‘ N, = maximum number of
elete entry raunning AC's allowed
for this : e S
AC from shelve Cqr = current number of
running - Car running AC*'s
queue M .
c“ = current number of
5 ‘walting AC's
<
) Figure 5.5 Load Control in a Single=3tream
. Purely Absentee System

A

s P T

18 less than the allowed maximum., If C, . is not less than M,
then the AC cannot be initiated now and must wait in the
computation stream's walting queus. The number of AC's
‘waiting to be initlated, C,,
If Cop. 18 less than M, then the AC can be initiatsd immediately,

, 18 incremented by one,

C,. 1 incremented by one and an entry for this AC is placed
into the computation stream's running gueue.

When a running AC logs out C,,. 1s decremented by one
and the running queue entry for the AC is d@leted. If this
causes Cqy to fall below My then more AC's may be initiated.
Load Control checks to see if any AC's are waiting to be initiated
and if o initlates emough AC's to bring the AC load back
up to H.. ‘ 7 ‘

The System Administrator may increase or decrease na while
the system is in operation. If M, 1s deoreased so that 1t
becomes less than Cgy then Load Control orders Cqp-Ma AC's
shelved, If M, is increased to.a vﬂue gruter"‘thap car then
Load Control orders Ha-'cu. AC’s unshelved, Note that if the
AC load has to be decreased (1.e,, M, 1s set to a value less
than Cqy) then it is reasonable to immediately shelve the
necessary number of AC's. The method of load trim-by-attrition
need not be used since the shelvéd AC's do not undergo any
inconvenience in the sense that a bumped IC does, Thus the
AC load is only trimmed by a load trimby-force.

45

Now let us extend the ulmdcn of mtzm 5.3 to
include the load control problem in.a multipleestream purely.
abgentee system. In particular, consider ¢ aystem oomprised
of n absentes streams. The ronm defrinitions will be
useful in the discussion:

X Baximum number of Ac’- which: run. 1n atresan
a(1) © 1 at one time b

) = onrront ‘number of AC's nmins in :tro- i

current number of AC's uutmg t.o be run in
stream 1 _

n-? a(1) * nximmblrotAC'gduchmmnon
‘the ontire system at one time

R -Ec (1) = ourrent number of AC': rm&ng on tho
ar entire system . ..

| w .kc“(“ - curmtﬂ;m:nbor of AC's walting tc be.

.C‘r(i
caw(i)' -

The System Adniniltritor apportions. rolouroos by

- specifying M a(1) for each stream. . The. m of these, M,
therefore represents what the Aninigtyator considers to be |
the maximum mumber of AC's which mey Iwn at one time and still

_keep: the system opohting in a properly~loaded. state. - In effect
the Administrator specifies that .M. glofs are.avellatle for

use by AC's, At any time a partiocular slot is elther

empty or in use, Since M running AC's repressnts a properly-
loaded system, the load control problem is to maintain the
system so that either M or fewer slots are ih use; If more
than M AC!a are rumning ‘Loud‘. Control must trim the lo-d-' to

M, If less than M AC's are ruming Load Control msust

check to see if any AC's are waiting and if so initiate

enough AC*'s to get the load back up to M. The funotions to

be performed seem clear, but the fast that more than one
stream is involved introduces some complications, PFor example,

1t is possible that one streas could be properiy-losded and -

all the obht: stresms could be empty. If there are AC's
waiting to be run in the properly-losded stresm, they must

wait until rumning AC's in that stream log out before they

may be initiated, This is obviously a waste of system rescurces

-since the "computing power” is an.n‘ablo.to hantle more AC's

and it 1s not being used. One solution to this problem might

be to allow the waiting AC's to run in other stresms. This

is satisfactory until such time as new AC's sxrrive and requast

to be inftiated into streams whioh might be full of AC's from
other streams, Should these new AC's also be placed into streams
in which they too do not belomg? In this section & strategy

47

is developed to prevent this sort af 'ohaoay while at the same
time assuring that system oonputips power does not go to waste
if there are walting AC*'s which could use that power,

Recalling some definitions given in Section 5.1 a
‘particular stream ls properly-loaded if caru).n a(1)" -under-
loaded if Cu(i)(xau).’and over-loaded if Cg .y PM cyye The
load in a particular stream is sald to be bglanoéd if Ythe
stream 1s properly-loaded, or if the stream is under-loaded
and no AC's are walting to be run in that streanm.

One aolutton to the load. ocontrel. problam in a multiple«
stream system might be to balance the load in each ,stpean
independently of any considerations involving the other streanms,
This would result. in a system in which

c”(i)éna(” for 1 m 1, 2, seey 1
and hence it would always be true that

. n :

Ru gi °ar(1_) £n
The ideal situation 1s R « M, However, the above gomponent-
¥ise-balanced system may have R < M.even while there are scme
waiting AC's (i.e,, the situation presented in the beginning
of this section), _ .

‘To see how the situation in which R<M and W40 can be

48

BTSN T R ST e SR

avolded, let us trace the. bulldup of the load on a
multiple~-stream system starting with no running or waiting
AC*s, As requests to initlate new AC's arrive, Load Control
observes: that the current load in sach. stream is less than
the allowed maximum and therefore allows the AC's to be ‘
initiated, After a while, however, one of the streams will
eventually become properly-loaded. Suppose that another
AC requests to be placed into the properly-loaded stream;
Load Control checks the load in this stream and discovers
that the stream is full. Load Control cen then check the
loads in the other streams to see 1f there are any available
slots. If there is an avallable slot, Load Control allows
ihis new AC to be mitiatéd. This, of course, causes
a properly-losded etream to begoué, over-loaded, However, the
system as a whole 1s not over-loaded and therefore by initlating
this new AC into an alreédy properly-loaded stressm we are
préventing usable resources from going to waste, |
Load Control may continue to allqn new AC's to be
initiated until R becomes equal to M, . Onoce this ococurs the
addition of another running AC would cause a genuine over-loaded
situation, Now Load Control must first check to. see if the
hew AC wishes to be initiated into a stream which is either
properly-loaded or over-loaded, If this is the case then the

49

new AC is placed into the waiting gueus for that streem to avold
over-loading the system, If, however, the stresm into
which this AC wishes to be placed is under-losded, then

some other stresa must bde over-loaded omusing all slots to
be in use. The only reasoh that this other stream was allowed
to use more than its maximum nusber of slots was to mt
available resources from being wasted, ' Now, however, there
15 legitimate demand for these rescurces amd they should de
siven back to the AC which is spesifically requesting them.
This poses no real problem to Load Contrel. It is merely
necessary to shelve one AC from the over-loaded stream so that
the needed slot becomes availsble in which to initiate the
new AC, This prooedure is followed as sdditional AC's Yequest
to be initiated until finally the system reaches a load '
configuration in which every stresm 13 properly-loaded and
there may or may not be'AC'i“mtim to Be yini‘l-:sdtd in any
of the streams, This .-_xmuoav 1s reforred 0:ms.the - .
Adesl losd configuration for obvious reasoms.

‘How consider the losd contrel functions which must be
performed when a ruming AC logs eut, 8ince we Imow that
R was always kept less than or equal to M as the loed was
building up, it must be trus that a slot is made available
(1.0,, it cmn not be the case that the systes went from

50

one over-loaded state to ‘a less over-loaded state). Load
Control must now deoide which waiting AC (if there is any)
to initiate into the newly avallable slot. First preference

for the slot goes of course to any AC's waiting in that
particular stream, Note that if the .stheme. propesed in this
section for initiating new AC's 1s used, then it is not possible
for an AC to be walting in a stream which 1s under-losded,
Therefore if no AC is waiting in the stream in uhieh an

AC just logged out, then Load Control mt hutl.to one ‘of the
AC's walting in any of the properly-losded or ovor-lodd
streans, '

Thus we have arrived at a: scheme: to;' initiating nnd
shelving’ Ac'a shich assutes that avallable slats never go to
waste if there is demand for them, while at the same time
we have developed a n;chaniu which guarantees an AC first
priority in élaiming slots allocated to the streem in which
that AC wishes to run, Figure 5.6 illustrates the load
control operations discussed in this section, The respportiomment
function is treated separately in the next section because |
of its co-plexﬁ;y in a multiple-strean system,

51

APPORTJONMENT,
4

administrator

speclfies ._.O

Ha(i)...ll.(n)

place entry
for this AC in ¢ c
for ngsreg.:.‘;. 1 Car(1) ar(1 4

[}

shelve one AC
from one of the

over-loaded
streams
place entry for
this AC in the unshelve the
waliting queue - AC
for stream i) j‘ ;
: place sn
* for th!stz
1]
Can(1)Can(1)*? A panaine
stream 1
A R S QUT OF 1
ar(1)=Car(1

) N1
this AC from
running qusue
[for stream 1

Figure 5,6 Load Control in a Multiple-Stream
Purely Absentee System

52

TR SR

T et T R et o

~ In Sestion 5.5 requests for new AC*s and logouts of .
r\mning AC's were handlad 1n an. ordor].y ralhion to prevent
the overall system from beoonng overlo.da_d. ' The scheme
presented never 'requiru the system te beoome temporarily
overloaded while in the p'roce_.s’lt of adjusting to 1ts new
load configuration, When the system losd is reapportioned
bj the System Adminiatntor.‘hoﬁver. each stream as well as
the entire sy‘steu might become overloaded and thus Vitr is
necegsary to provide a mechanism for quickly adjusting the
overall system to a properly-loaded state, :Besides the: load
trimoing which may be hetessary, it 1s also possible that
the load balance \dthin the strem m becone severely
distorted by & reapportionment. In this section a strategy
is promtod for quickly amd aoothly read justing the gysten
load eom'lguntion after a reapportiongent. The load control
operauem neenury for: mpporubmant are illanmtnd in
Flgure 5.7, , . .

To effect the reapportionment, - the ?Syﬂ:eﬁ Administrator
specifiés néw values of Ma(” through M a(n)* Load Control
first checks to see if the overall aystam has assumed an
overloaded state (R)>M). - If it has then R-M AC's are

53

PORTIO] s

Administrator " Ishelve R-M AC T

resets values | .lfron the : BALANCE

of : [lowest priori THE LOAD —‘DO
M1y Fa(n) over-loades

initiate all
of the proper-
denand
Jwaliting AC's
initiate all | of the properd !-(R-..w other
waiting AC's 1 demand- mtm; ' A&c*s rhom the
AC's rrom the highest
highest priority
iority st i at. .

é |

Mcz ~»()

: THE LOAD
shelve one AC initiate one
from the : AC into the
lowest priorltq—.ﬂumu priority
over-loaded under-loaded .
stream strean
Wp - 'P -1

Figure 5.7 Load Reapportionment in a Multiple-
Stream Purely Absentee System

54

immediately shelved from some of the overwloaded streanms.
Then Losd Control proceeds to balance the remainder of the
1load; an ¢peration which is discussed ';I.ot_qr in, this section,
The question arises here as to bow:to shbose AC's to be
'shelved, Several oriteria are useful i making this decision,
but perhaps the most significant is to samme that there

is some ordering among the various &tmn (1.0,, assume

each stresm corresponds to 'y dm'mt mluﬁx in a priorlty
.schems), Thus the firat AC to be shelved is one of the

AC's in tbo over-loaded stream of lowest mxtz.. ‘S§milarly, -
'Y atr_utoq to un.fdr nlocung AC's to be injitiated might

be to initiate an AC walting in the sress of highest prierity.
!*lof.g that within the stresm itself theve xq:mér_w smbiguity
as to whioh AC should be selested for shelving or initiation,
The entry at the front of the waiting queus 1s always the

‘next to be initiated; the entry last-in to the running queue
is next to be shelved,

Ir the mmrtiomont causes tho ovoruu -ystu to
beco-a properly-loaded (BaM) then it is still possible that
some adjustments have to be ;nade undr the balanoing mechanism
is inwvoked, - |

If reapportionment causes the overall ‘systen tobocoic
under-loaded (R<M) then the situation becames moYe complex .

55

depending upon how many AC's are walting to be initiated

and whether or not these AC's are walting in under-loaded
streams, If the total mmber of waiting AC's in all streams

18 less than or equal to the under-load (M-R) then all the
waiting AC's may be initiated and the reapportionment .
operaticns are complete, If the muber of walting AC's is
greater than the under-loed then we must consider just how
many of these waiting AC's are really enti_'ucd' to be yun in -
their respective streams. More specifiocally, ws are interested
in the number of AC's which are Mting.to be Tun in
under-loaded ntrnas. and of these we are only 1nterestod in the
TYIrat-M o) *Cap(1)WaltingAC's 1n each stresm (since

itnitiating more- than' this: amount would cause the stream to
become over-loaded). We refer to the number of AC's satisfying
these conditions as the proper-demand, and define

proper-denam = H'p .z ‘Eunimum(n‘(“ - ca.r(i) ' caw(i)ﬂ B
under~loaded
atreanq :
If the proper-demand is less than the under-load Load Control
immediately initiates all of the proper-demsnd waiting AC's.

Now R is still less than ¥, but every one of the AC's entitled

56

to be runming is running, Load Control mow initiates
M- (n+v) ﬁditiomm'stohnmthelmwptol
the reappmioment is euplete. Ir Hp, is- m than
the under-losd Losd COntrel immediately initiates N«R of
the proper-demand waiting AC's, ‘but-the rwtieuent s
not yet complete since more W AC's aTe atild
walting, smi hence the losd balancing mechanism must
be imoﬁed. . | :

Prom:the preceding discussion'st is clea thab:the
load balancing mechanism 1s cslled upon whenever Loed Control
has ascertained that RuM, but there may still be some
proper-demand waiting AC's ¥hieh wust replace AC's running
in over-losded streans, The balemoing mbn?eh,eeke to
see if there are indeed any proper-demand 'm,jm'e. Ir
not. the reapportiomment is complets; If thers are then
Losd Control ‘shelves ons AC from the lowsst pricrity over-
losded stresm and initlates one AC inte the highest-priority
underlosded stream. This proseduve continues wntil there
are no sdditional proper-Gemsnd waiting AC‘s. |

To Mze sections 5.5 and 5.6, & sechanism has been
presented to perrm etﬂctently the loed m e)erat.tonl
required in a multiple~stream purely sbeentee system, The

57

mechanism has the following sigmificant characteristios:

1-

The System Administrator can control the amount

- of abnnteor usage in each computation stream by

specifying the maximum number of AC's which may

 run in that stream at one time.

The mechanism prevents waste of available slots
by allowing properly-loaded streams to become
over-losded as long as there 1s no demend for these

‘slots from AC's in the streams to which the slots

belong,

The mechanism guarantees an AC first olaim’ to

slots in its own stream, If &ll slota on the

system are in uss when an AC requests one of its
rightful slots then an AC is shelyed from one of

the over-loaded stresms.. _

The System Administrator is provided with the ability

. to reapportion the loads in the variocus stresus at

any time during system operation, _
mo'tebhaniuaris:cuas'm&ed 1n suoch a way as to
comply quickly and efficiciently with reapportionment
requests from the System Administrator, If &

‘Teapportionment causes the system to assume an over-

loaded state, the over=load 18 correoted quickly

58

80 that the iystem operates wl.thanmr—lo.d for
the shortest possible time, and then any balansing
‘which must be done to assure AC's first olaim to their
own stream’s slots is done on'w 'mmm&inttﬁtmni'
basis to keep the syastem operating with all slots in

- UBG,

Now consider a system devoted to cuviciag only .
interactive computations. Ohe improvement whieh nsht be
made to the scheme in Section 5.2 is to consider that there

is some ordering associated with the running IC's which indiocates

the next IC to be logged out in the event that sush action
is indeed necessary. By analogy to the.oase of sheentee
computations we defime here the notion ef an interactive
computation stream, Furthering the analogy we assums that it
is desirable for some reason {such as a priority scheme) to
differentiate between wvaricus types of IC's., Thus we arrive
at & multiple-strean mechanism for handling intersotive -
computations similar to the absentee mechanism deseribed in
Sections 5.5 and 5.6, In this seotion we consider the

59

modifications which must be made to adapt the: absentee
mechanism to the handling of interastive computations.

Note immediately that there. m no walting queues in
the interactive streams, This is the case beocause a user
is only present for as long as it takes for his logging in
attempt, Thus it 1s not meaningful to consider intersotive
demand at this level. : »

Next consider the protlem of attempting to fill all
intersotive slots if the demand for them exists. If the
system 'loul opontu-vat ‘a level sudh: that no -;tron’ ever
becomes properiy~loaded then the load sontrol operations
aTe identical to thoss in the absentes meshanimw, However,

.cuppo-e that one stream d.ou become” mporly-londcd uhne
some other streams remain under-loaded, If a nhew IC shonld
request to be initiated into the properly-loadedd- ltraw. ‘Load
Corityol has only two choices. Eithsr 1t ean initiate the

IC and over-losd the stream, or it sah refuss to initiate -
the IC {i.e,; the IC canmt be plased into a watting queue
for an indefinite period until a slot becocmes available),
Ir 1n1t1atien is rcrund theu waste ocours m an mnable
slot goes unused, If the IC is initiated then this ustovu
prevented, but another problem arises, What happens when

the overall system becomes prop'orly-,loaded'_(l.e.,. no more

60

available interactive slots), and a user attempts to log

into an under-loaded stresn? In the case of the sbsentee
mechanise it was possible to make a slot availadle 1ﬁedlntel’y
by shelving one AC from an over-loaded stream. In the
interactive oase, however, making a slot availlatle would
necessitate logging out an IC from an over-loaded. aer_eu'.

T_h:l.s is contrary to the contin.uoul‘ soﬁle’e*pouey discussed
in Section 5.2. Several alternatives are avallable here, but
unfortunately none of them is uA neat as tho shelving of an
AC: | 4

1 - Do not allow any streams to become over-loaded,
Control the load in each stream independently of
the load in any other stream. This results in a
componeht—wlse-balmqed syﬁtm. The obvious
dissivantage 1s that slots availatle in underloaded
streams oan never be used by IC’s from overslodded
streams thus causing waste of avallabdle slots,

2 = Allow overflow in all stresams, Imitiate new IC's
into. whichever streanm -tl_:e’y request as long as slots
are available in any of the stream, Once all slots
are in use allow no additional IC’s until slots
sgain become aveilable. This method assures that

61

available alots never go to uiato. ut has the
dissdvantege that IC's do not get first claim to
slots in the streams in which the IC's specify they
would like to run,

3 - Allow overflow in all streams, Guarantee completion
to all IC's once initiated, If a new IC requests to
be initiated into an under-loaded streem thon
initiste the IC into that streem end trim the load
in an overloaded stresm by attrition., This method
prevents waste of available slots and assures IC's
first claim to slots in the stresms in which the IC's
specifly they would like to run, The disadvantage
1s that the trim~by-attrition might result in a slow
trim and hence the overall system might be forced
to operate in an overloaded state for some time,

Rach of these methods has 1ts adventages smd disadvanteges,
but none of them is a “perfect"” solution., Our mbuity to
arrive at such a solution here is attributable to the fact
that there is no action which may be perfermed on IC's to
correspond to the shelving of AC's. Thus:a particular
Load Control implementation might choose one of these schemes
(or perhaps others) depending upon the particular problems
at that installation, If we assume that the most desirable

PRSI R A Y

properties are prmnti_ng waste of anuublo_ slots and

guaranteeing IC's first claim to the slots in the streams
in which these IC's wish to run, then we arrive at another
scheme (which is st1ll, inctdentally, not npe!'!'oet golution)
which £s similar to the third scheme above, but prevents
the overall system from becon.ms cnrloaﬂ.edi
4 - Alow overfiow in all streams, howcver. Af an IC
is ’1n1_t1'atod into a proporlyulﬁqlod‘- or overv-lomded
stream then the IC iz given mca&-clm status and
18 warned that his computation is Iikely to be
‘logged out if the overall system booo-tc properly-
loaded and an IC denanh a slot m an m.r-lo.dod
stresm., This rmethod do.c not assure: IC*s eontmucut
service, biat sti1ll allo\y_s .an IC to get on and use
a slot for as long as th‘évslot 1is not in demend,
Sinbe the IC 1s& warned of 1ts second<gYass status
"1t knows that 1t 1s 1ikely to be loggeuout and hence
it can take advantage of being logged in bo get &
small job donme, Of course, as other IC's log out
of thie over-loaded stresam, the IC we are considering
may eventually be able to be removed from the over-load
portion or;the stream, At this tiu the nyqteﬁ- could
inform the IC that it is zio longer of second-olus_' status,

63

We will assume that this last method is used for the purpose .
of any further discussions. in this thesis, ' Again, other
methods might be more desirable in particular installations.
Now consider the reapportionment problem in a ‘
multiple-gtream purely interactive system., ' Since we are
allowing streams to become over-loaded as long as the overall
system does not become over-loadad, reapportionment can
be handled rether straightforwardly, If the total mumber
of running IC's 18 less than or equal to the maximum allowed,
then no action need be taken (note that there are no walting
IC's to be considered as in the absentee case)., If the
total number of running IC's is greater than the allowed
maximum then Losd Control logs out IC's from the lowest
priority over=loaded atro.mvun_,tirl the number of rumning IC's
is equal to the naxiimn allowed, To ald the IC's whioch’'
arée to -be logged out Load Control might warn them a few
minutes in advance to allow them to "clean up" any details
before being foroed off the system,

0
e

d Control in & Hybrid Sygtem wi
In this section we combine the mechanisms developed

f£60* handling multiple-stream absentee systems and multiple-

stream interactive systems to form a mechanism for handling

- mixed 1nteract1fe/ubsento§ systeng.(;5; Pléurgs 5.10 and 5.11).
 Figure 5.8 illustrates a multiple-stream qt}eue:ins'

mechanism for handling a mixed 1nt_onc_t1vo/qbn§tu system,

For the purposes of this discussion we assume that there

are n absentee streams and m 1njtemtive streans. ‘Note that

there are no walting queues for Ié's'. This is c’on.lstbnt

with our provious discussion of 1ntemzivo ltrous.

, Figure 5.9 summarizes the pameterc used by Lo.d cOntrol
in making its variocus load bulmcang docuiom. The . redaat
fs-urged to: rm1&u1:o~_<-h1§sclf i'.tth thb dwmttﬁu ‘of these
parameters beTors: ..pmmmmm the cnitmng ‘41 soudston.

Previously, we have eonsiderod aystm whish 'upportod
either IC*s or AC*s: but ‘hot both, . In ﬂuse mm the
apportionment made by the Systen Adninistrator wu sald to
‘divide the system into a certain mmber of slotn uoh off
which was onpable of handling one rumung oouputatlon. It
is worthwhlle to note here that we have: '“gﬁ.&"aia ‘thiadsvision
that each slot is, in some sense, of equal size. l‘!ma we have also
assimed. that regapdless of the charabdtertstios: bf the -
computations ueing the slots, ‘the actuml &—an_da placod. upon
the system by fhese computations is dimtly__mp&rtlmi to

65

- an - e v - - - “ ,----Q-—P—‘-qF‘~--—q -———— e

ek
N "

stream stream . .. itrea’n stream strean AP

1 A T :.
Alilchldal |
B

nym

_ n nel M2
\ g) i ‘
n absentee streans n intersctive stresns
(INTERACTI
ABSENTEE RUMNING
RUNNING QUEUES
QUEUES ‘

" Pigure’ 5.8 Queueing Mechanism for a sntn with
Multiple Interactive and Absentee Streams

66

£ S R E)

=

the number of slots in use, This is obviously a simplifying
assumption which can be avoided by providing a moduls capable
of deciding just how “big" the slot need be to sffectively

service a particular computation, With uth a wolule available
we could procesd to define an dtomic-slot as the wmtt of .
computation size neaqﬁré-ont; - Computation streams could
then be envisioned to consist of atonié-slots; and each
computation requesting to be run in & particular stream would
be granted ‘en apprcpﬁate number of atomic-slots in that
stream. A stresm would then be considered properly-loadsd
Af 411 of 1ts atomie-elots were ln'use; ' '

This proble,ﬁ was dlscussed here becsuse we must asdn
make a sihpliry;ng assumption, namely that sbsentse slots
are the same "size" as interactive slots, From the discussion
above we can envision n;s. of gvoidirfs this assumption, too, |

The System Administrator apportions system eong‘uting
power by specifying the maximum number of eoﬁputatio@é 'ihidh!
may run in each of the absentee and m.mtm»m‘ '
Re;ppoétth ‘may ‘also be done and is digcussed later
in this section, SR

When an IC attempts to log in to stream J (n+l<fensam) Losd Contrdl
checks,to see if the tqtal nunber of rumming computations
on the system ﬁ less than the uxim number allowed. Ir

68

APPORTIONMENT,

A J

Administrator
specifies

a(1)+*+Ha(n)
1(n41)** ° "U{nemd)

place AC in
walting queue
for stream)

initiate the.
new IC into
‘atream }

i)

lnif:iate
the AC into
stream)

one IC

. shelve one
AC v

).

Flgure 5.10 Load Control in a System with Multiple
' Interactive and Absentee Computation Streans

warn user of
his second-
class status

shelve one AC | 1

| initiate
one AC

3

69

Ry Is indeed less than N, then the IC 1s initiated
immediately. Note that Load Control procesds to check - ,
Whether stream } is now over-losded, and if 1t }s over-loaded
the user is warned that there is a possibility hig IC . .
may be logged out (nm tho slot taken by ‘his xc really
belongs to another stress). "It the system s now full (i.e.,
By is aqual to M) thenl-ead Control ohecks 1f.the' umzve

“portion” of the aystea is m:l.. If not then ﬂm sone
absentes streem is om-lodod N mm -holmu one
computatioh from the lowest pnmey over-loaded mmn ant
initlates the IC into’stresm m.tn checking 1 31

over-losdet apd warning the user if 1t is, If the intoi'ictin
portton ar tho mm 1- run. Load emm‘.l 10.3:43 m .‘l
to no Af it is rnn. If streem 3 1% not full then ulmly _
ono‘ of the interastive qtﬂm is over-loaded sand Loed Genml
logs out oms IC from the lowest priority overciceded interastive
stresm and initiates the new Ic 1uto ltro- J. ff ltrou .1
urunmx.uconmx mfcrllmmthtthomaot

log in gt this time, Note that .ome Mﬂ'kcr gltpmeln As
still available to Load Control fbr gttmnc to mzuﬁ
this IC now, . Lo.dcmtrol ooﬂdohck&;mrg&mﬂth
lower priority than stresm § is overlosded and if so cogld
then log one Ic'ont of this stream -t mtutqtmm IC.

10

This alterhative is avolded here mostly because of our

efforts to provide continuous. service {if at all possible)
to running IC's, ‘

When a new AC requests to be run in stream J (1sjen)
Load Control checks to see if the system is full.and, if not,
initiates the AC immediately. Note that no warning need .
be given to an AC if stream j is overlosded, If the -
system 1.»-_rﬁn Load Control checks if the absentee portien
of the system isas full.: If not, then clearly some
interactive stresm 1s over-loaded and Load Control 1os¢i-out
an IC from the lowest priority over-lceded interactive stream
snd initiates the AC into stream j. .If the absentes portion
»of the system 1s full Load Control ohecks 1if stream J 18
full. If not, then clearly some other absantee stresm is
over-loaded and Load Cohtrql shelves .one AC from the lowest
priority over-loeded stream and initiates the mew AC into
stream j. If stream) is full, then the AC may not be
initiated now and Load Control places the AC in the waiting .
queue fdr strean J.

Note that this disoussion and the diagrems of Figure 5.10
have been simplified by the oni.u:l.cnj'vofr' some of the queue
manipulation detalls prevalent in previous discussions, Thus
when a computation is said to bs initiated or shelved in
this discussion 1t is meant to be fmplicit here that these
manipulations saxe .performed when appropriate,

71

Wheh an IC logs out of stream § Load -Control checks if
any AC's are walting, If there ere none then no operations
are performed, If there are ‘AC's waiting then Load Control
initiates one AC, | |

When an AC logs out of stream J Load Control ehecks if
any AC's are walting in stream j., If- there are. then Load
Control initiates one. AC into stream j, <If no. AC's arve
waiting in stream j Load Control cheoks if AC's are walting
An any other mbsentee streams. If thers ars then one AC is
initiated, ‘ _ |

~ Note that in a system in which the loed builde up
under the control of the above mechanism. the -oﬁrail. system

never becomes over=losded and ‘no AC:4is ever placsd into a walting

queue if ‘slots are available in the stresm in which the

AC wishes -{:o run, Reépportionnent; howevey,. ¢can oayed bbth
of -these conditions. to:dcour-and the ‘methods of alleviating
these problems will now be discussed,

Figure 5,11 111uatrates ‘the operations which nmst be

performed by Load Control to smoothly efrect a 1oad
reapportionment ordered by the System Administrator. The

72

of
ml)o . 'H‘(n)
X B

resets values

>

shelve ’
By = My AC's 7

>

z

-

initiate all

walting AC's:

inttiate My e ALANCE
: E,:, por deagmd L-{mm
|wmiting AC's ,

" 3.11 Load Reapportionment in s System with Multiple

Interactive and Abssntee Computation Streams

73

”r

mechani sm is designed to provide continuous serviae to those
oo-pufations which are entitled to continue rumming under the
hew apporticmnment, while, at the same time, quickly |
eliminating (i.e., shelving AC's and logging out.IC'a)}those'
computations which should mo longer bs allowed to run. The
strategy employed 1nirolver rirst: tncreajmg--x o'r. decreasing

the current losd untll the proper number of -_alth'm in use,
This results in the system becoming pwgpg:ly—londed uﬂaar
the new mpporticnment. Then Load Control proceeds to lovate
any AC's which should be running, -If ‘the overmll system is
stil] under-loadsd when this procedurs begina then Losd -
Control initlates enough of these AC's to bring the system
up to & properly-losded state. Onse the system is properly-
loaded if: any mbre waiting AC's should really be running then
clearly some streams are over-loaded. Lotd‘ccmtxéi. '
eliminates one computation from an over-loaded stream and
initiates one of these AC's. This procedure contimues wntil

‘no noro_ot:the waiting AC's 'h¢94d:h’wf““”4”3!_ The

rollowins disoussion considers these operations in more
detaill. o

The Administrator effects s reapportiomment by
respecifiying the maximum mumber of computaticns which may

- 74

run in each stream in the system, Load Contrcl first checks

if the total number of running computations is greater than
the maximum allowed under the m apportionment., If BT is
greater than My then Load Control must eliminate computations
from over-loaded stresms to get the load dewn te My, I .the
nomber of running AC's, R,, is Ifoc'aw-;or‘;qm:toxm
matimus number of AC's allowed, M , then the total over-load

'is made of IC's, Load Camtrol logs out B oMy of the IC's in

over-loaded interactive streams (beginning with ‘the lowest
Priority stresms), . Onss these IC's have been lomged out the
system 1s properly-loadsd, However, it is still pessitle that
the reapportiomment caused some of the waiting AC*s to become
proper-demant waiting AC's and hence Load Control invokes

‘the belancing mechanism to initiate all proper-demand waiting

AC's and log out snough Over-lowd:sctwputafisns:te keep:the-
syeten from becoming, over-losded.

If B, is greater than M, then some AC's must be shelved,
In particular, if the'absentoe' over=lodd is @nter than j:ha.
total system mr—lo-d then RT-HT AC's are shelved, If ths
abgsentes over-load 1s not greater than the total system
over-load then all over-load AC’s are shelved and then
enough over-load IC's are logged out to bring the total
system 10ad down to M;. In each of the above two cases
the load-balancing méchanism 18 invoked after the eliminations.

75

Up to this point we have been considering cases in- =
which the overall .system ummm If after the
reapporﬁimt the overall Mﬂl becomes ‘propsrly loeded
(Rp=i,) ‘then it is still possible that some: #AC's have

become m-opdr-demd mting AC's and henoe the ch

balanolns m:n is hwokd ,

Ir mwﬂzmmcmnmta- |
becone under-londed thun Loed cmtrol R first Wring the
system up tcammlond&smtt thmilww
demand. If the mumber of waiting AC's is less than or
 equal to ﬂu systen wider-load; thonmmmw'qm
initisted and we are done; If there are mare walting AC's
many of these AC's are Proper-demend weiting AC*'s, If the
number of proper-demand walting AC's ig grester tham the
under-load then Losd Control initiates encugh of thess to get
thom-nptoamporlg-lodeﬁ MIBMIMB
the load MMM“&O imitiate a1l of mmmu
' prqpor-deuud walting AC's, If the mmler of propur-demand
walting AC's is less than or equ&l to the W then
Load Control initiates all of the proper~demand waiting AC's
and then muatu nanugh of the remaining AC'- to- Mm the
overall srcton up to a- mmly-loma ntch and we.are done,

76

AT e G LT

The load balancing mechanlism is only invoked whon ,
the overall system load 1s equal to the maximum losd allowed
under the new apportiomment, The mechanism checks if thé;e
are any proper~demand waiting AC's. If not then we are
done, If there are proper-demand waiting AC's then clearly
some stream is over-loaded., We know at this point that
all slots are in use, Thus it ust be trus that either
AC's: are using-all AC:slots and'Id's are usﬁ:g all Ié'slbts.
or one of the modes 1s using more than’lfc allocated number

of slots. If both modes are using their allocated slots and

there' are proper-demand waiting AC's then clearly some
AC's :are running’in over-loeded streams, Load Control

‘shelves one of these over-load AC’s and initiates one proper-

demand walting AC and repeats this process until all proper-
demand walting AC's have been initiated. If AC's are using
more than their allocated number of slots then the balencing
procedure 1s the same as Af both modes o.re using thqir_anooated
slots. However, if IC's are ﬁs:.ng more than their allocated
slots then Load Control logs out one overeload IC and initiates
one proper-demand walting AC, This process continues until
either the number of mnning IC's is eqnai to the mimm”
number of IC's allowed or all proper-demand waiting AC's are
inltiated. If the first condition 1s satisfied first then

77

there may still be some proper-demand walting AC's, Load
Control handles this by shelving one over-load AC and
initiating one proper-demand walting AC and continuing
this process until all proper-demand walting AC's have

been initiated.

78

e R PR S A

CHAPTER 6 .
Commands for -use'with Absentee Computations

Users of the computer system communicate with the
system by issuing commands (usually in:the form of
typewritten statements) at réno_te terminals. This chapter
discusses a éet_of commands used by system usérs and
administrative _pergonnel to c'rea.tev. ‘lnom.tor. and terminate
absentee computations, The dlﬁéussion here is less d:etailed
than in Chapters 4 and 5; 1t 1s ineluded to illustrate
what funétions might. use_m:-.y b'e-pbntioiled a4t the command

level,
6.1 Creating an AC

Creating an AC involves two functions, First, the
identification of the user must be validated to prevent
unauthorized access to the system, Second, the user must
inform the system of the absentee source file which is to
be used for input to the computation, and the absentee output
file which is to receive output from the computation,
Additional parameters are supplied to lmify in which
stream the user wishes his AC to be run, the time limit
to be placed on the running AC to prevent waste if the AC

79

deveiops problems while the user 1s not present, and
_perhaps the user may wish to give a date and time before
which his AC should not be run (useful if it 1s known that
data needed by the AC will not be available until that time).
The CREATE-ABS command is provided for users to create
AC's, CREATE-ABS may be used by an IC or an AC belonging to
the user ~creo§t1n§ the new AC, 'S.'mc.e tho.:‘ computation st
already be logged in there 1s no tdentity validation necessarye
CREATE-ABS results in a call to Load. Contivl which either
initiates the computation immedistely or places it into the
walting queue for the specifié_d stream depending upon the

current system load.

6,2 Te t C

Every computation, upon completion must undergo an
orderly logging out procedure to rendie the computation
‘from the syéten and take care of certain "ocleanup® problems,
In addition, it is sometimes desirable to be able to bring
a oomputation to an early end (such-as when the user discovers
he has left an AC Mns with bed input data). -

The TERM-ABS command 1s provided to perform both
the normal-end and early-end fumtiom'foi' AC's8., The user
specifies the pmwtéﬁion-identificstion of the AC to be

80

terminated, Load Control is oaslled upon to search the .
quetueing mechanism to see if the AC is walting to be run,

running, or no longer on the system (either it is done or
the commtation:-1dent1f1ution‘ was incorrect). If the
AC 1s walting to be run then the entry t‘or the AC in the
waiting queus 1a deletod. If the Ac is currently r\mins
then it 1is stopped 1med1ately and 1osged wt. If the
AC is not on the system then the user is so 1ntormed.

6,3 C the Stream (P: 9 c

_ When the system 1s heavily loaded the user may find
that his AC's take longer to run td sdmpletion., To speed
up the processing the user may wish to plaece the AC into
a higher priority stream {for which he may be charged more
but will get better servioe). ' ‘

The CHANGE-STREAM command is provided to remove an

" AC from one stream and place it into aﬁother. The us'er‘
specifies the co@m'tatlon-idehtif‘icatidn' of his IC, the
stream it 1s currenfly in, and the ;tzr'e'am'into whioch :th is
to be placed. Note that the CI-IANGE-S‘I'BEA! omam is also
useful for switchipng IC's from one interactive stream to

another.

81

.4 Converting en IC to an AC

A user may xuh-:;o run a large computation as absentee
but in order to be sure that he has set the computation up .
properly he may want to run it interactively for a while,
Once the computation gets going lﬁcoégﬁfullﬁ (perhaps thvo_
user notes that the proper output is belnslgoﬁgr#tod) then the
user may convert this running oonput.éion o ib-énﬁo.,

The CONVERT command 1s provid;d:'tlog omble & usger to
switch a rumning IC to an AC, The user first presses the
QUIT" button at his temiﬁal to sto§ the computation so
that the CONVERT command may be typed,

6,5 Con AC to an IC

The user may wish to monitor the progress of one
of his AC's for a while to make Bure that it i1s running
smoothly, or perhaps to user would like to meke scme changes
in the absentee source flle or other data gup_plidd to the
AC. | _

The ‘CAPTURE command 1s pr‘ovldéd to allow the user to
capture ocontrol of one of his AC's so that 1t can be controlled
from the user's terminal, Note that the user may \;1811 to -
finish. the"“c’éhpiutatlon interactively or he may wish to issue
a CONVERT command to allow the computation to finish as absentee,

82

Note that by using CAPTURE and CONVERT the user may
actually control several computations at one time from a
single terminal, This is particularly convenient for
computations which may need only minor intervemtion,

6,6 Obtaining Status Information for a User's Computations
A-~user may have many computations: rumning -at one time

and may have many absentee tomputatiens in the waiting queues
waiting to be run. The user may want to monitor the progfess
of these computations and find out 1f it might be necessary
to intervene (via CAPTURE and CONVERT) with some of them

to corresct any error conditions which might exist, Also

the user may find that some computations are runhing too
slowly and thus it may be desirable to issue a CHANGE-STREAM
‘command, .

The STATUS command is provided to give the user
information about his various computationé on the system.
STATUS may be used either to. f£ind out about a spooif;e
comﬁutation, a group of computations, or about all of this
‘user's computations, Information is returned to the ﬁser
indicating how much time each Qomputatidn'has’used. what
dedicated resources are being used by each computafion, when
each computation was initiated, etc,

83

6,7 Reguesting Intervention by an IC

‘Normally, if an AC develops problems while 1t is
running 1t 'cannot'be ‘run to completion because it needs
information which 1s unavailable to .1t in the absence
of 1ts owner, However, if a user who submits an AC happens
to also be rumning interactively when such trouble occurs
then it is possible that the user will be able to supply
the necessary information (or corrections) to the AC so
that it may run to. conplﬁtion. , ,

The INTERVENE command 1s- proviéed to ald an interactive
user in specifying that he 1s available to aid his AC's if
trouble develops, Sometimes_the hature of t!;.az, u'ztemtivev
user's.work would make it undesirable to be mtgrrﬁp;ed by
a oall for help by an AC.and in such a case INTERmE would
not be issued by the IC., An 1nteraotive.use'1§.\-us'es CAPTURE
and CONVERT to effect an intervention,

6,8 Spec)fying the AC-IC Load Apportionpent

The System Admiﬁistrator must specify the apportionment
‘of system computing power between the warious computation
streams on the :system'.'

The LOAD-SPEC command is provided to allow the

System Administrator to make & load appdbrtionment or
Teapportionment, The initial load apportionment is

perforned' éti system astartup t1n§ and reappoftiomnts

may be done uhomm.-moossafy;.A' If for a particular
application the appoftiomonts should 'bo "the same for

oermn regular periods (shifta) than the Sysm Administrator
may specify apportionnents for each of these shifts and

Load Control 1111 keep these available. whonmr the

time for a new shift arises then Load Ccmtrol will dynamioally
reapportion the system. 1n the manner diacussod in

Chapter 5.

Adninistrativa personnel w nm the MATUS and
TERM-ABS couands useful, STATUS m be uaed to obtain
status mromtion for any conwtatlon on tha euz:.re aystem_
and TERM-ABS m be used to ternimte an AC \lh.tch
appears to be causlng problems (suoh as tylng up ocertain

:pesouroes) .

85

CHAPTER 7

The work desoribed in this thesis was consentrated in
two areas; & general discussion ubeﬁtnthetchnrnctcrtktiea
6f absentee qonputatiohs.aand'thp;detlgnGOfua:iobhlnlgm“tor

" handling dbsentee'cdmputﬁtioﬁslln a multiple-access computer

system,

Perhaps the most significant contributions of the
thesis are the concepts of shelving and unshelving absentee
computations, the concepts of absentee and 1ntoradtite
computation streams, the design br'the multiplé;:treAn“
queueing mechanism, and the design'ot the losd control

- mechanism for hybrid multiple-stream interactive/absentee

systems, _ .
The design of the combined queueing and losd control
mechanisms has the following significent characteristics:

1 - The System Administrator may apportion the computing
capability of the system bétween interactive and |
absentee computatiochs in any proportion whatever.
This allows the system to be 100£ interactive,

86

100% absentee, or any intermediate combination

of the two mbdes.

The eomputation‘Stfean~comcept allows computations
of different "types® to run in different streams.
One such difrerenﬁxatsanfnight'bu'atpriorxty scheme
in which each strésm: contdins all the computations
of a perticular priority. -

Absentee streams have the property that running

computations may be teémporarily suspended and

restarted (shelved and unshelved) several times

as they flow through the stream. This property

1s one of the keys to the suecess of the load control

mechanism,

The multiple~gstrean meoh@nlsn has the property that
the 1oad in each stresm is individually contrelled.
The multiple-stream mechanism maintains a precise
ordering among all conputlﬁions whether they be
interactive or absentee and waiting or running,

For exsmple, in a priority':ﬁﬁeno the computation
streams are ordered by their respective priorities,
Within each computation stream walting computations
are ordered by virtue of their position within the
waiting queue (first-in-first-out discipline 1s
used in this work for choosing the next entry), and

87

running computations ‘are. ordered by virtue
of their position within the running queue (last-in-
first-out-disoipline is.used in this work),

_Thus, AT at. ahy time. the load control mechanism
‘wishes to eliminate or initiate a computation, the

cholce of which computation to eliminate or which
to initiate is detemlﬁpd:by the ordering described
above, Thus.the losd control mechenism 1s made
nor‘c'offioientv'thm-'lt_.wauldﬂ.bg A thg abbve cholice
was not always predetermined. |

- The load control mechanism prevents waste of avallable

computation slots by allowing streams to become
overloaded 4f slots in oth‘_er_ntmg;u?e' unused,
At the same time, the mechanism assures computations
in & partioular :strean*flratuo;gi to slots which
have been specifically allocated to that stream,
Thus: stream i ¢ah becomé -pvo;'f}oadad_ by using
available slots in stream J. N'VHAopte_v__ez". if the
demand builds up again in j, then the over-load
stream 1 computation sust relinguish the usurped
slot and is either shelved if it 1s absentee or is
logged out if it is interactive,

7 = Finally, the load control mechanism

effects load reapportionments quickly

and smoothly, If a computation rubning

before the reapportiomment 'thaﬁld also

run after the reapportionment, losd control

carefully avoids ‘either shalving of logging

out the computation, Initiation of walting

computations and elimination of running

ocomputations is done gquickly because the ordering
. described 1in (5) above makes the selection

such computations trivial,

It is worthwhile to note here that there .are. two -obvious
levels at which load conttol desisions can bé mads, némely
the admission level and the scheduling level. At the admission
level decisions are made regarding which AC's and IC's shall
be allowed to log in to the systems At the scheduling level
deciaioni are made regarding which of the logged in AC's and
IC'e shall be the next to be given a processor when one
becomes available. The mechanism designed in this work
operates at the admission level ohly. Once this load
control mechanism allows a computation to log into the
system, the computation must then fend for itself in the

89

competition for processors. At this higher level deciéiqns'
must be made on the basis of less specific information and
must be intended to be enforced over longer periods of time.
The apportionment we spesk of. would probably be in force
for at least several hours at a time, and the load control
mechanism we propose might be'rou:onaﬁiy'eertain to assure
that actual usage closely approximates the'appo:flonment'
in the average over such a long period.

Recalling the simplifying assumptions made in Chapter
5, namely that each slot is the same size regardless of the
particular tralts of the computntibn’using the slot, we see
that perhaps it would be useful to have our load control
mechanism receive information Trom the scheduling level. Such
information combined with an atomic-slot mechanism as
discussed in Chapter 5 would help to provide much more
precise control over the system load than the mechanism
proposed in this work. The detignforaiuch-awnechanisn is
suggested for those interested in pursuing research in

this area,

90

gy o

REFERENCES

Abbreviations used in the references:

AFIPS American Federation of Information Processing Socleties

FJCC Fall Joint Computer Conference

8JCC Spring Joint Computer Conferencs

ACM Association for Computing Machinery

References:

(1)

(2)

(3)

(4)

(5)

(6)

et TSR e,

S, seation AE.1,03.

IBM System/360 Time Sharing System, "‘Conoopta and
Pacllities,” IEM. Systems Refsrence Library, S/360-20,
€28-.2003-0, 1966, '

IEM System/360 Time Sharing System, “Commsnd Language
User's Guide,” IBM Systems Reference Library, S/360-36,
€28-2001-0, 1966, .

Saltzer, J,H.,, "Traffic Control in a Multiplexed
Computer System,” MAC~TR-30, Project MAC, 545 Technology
Square, Cambridge, Massachusetts, 1966,

Corbato, F.J., and Vyssotsky, V.A., "Introduction

and Overview of the Multiocs System,"” AFIPS Conf,

Proc. 27 (1965 FJCC), Spartan Books, Washington, D.C.,
1965, pp. 185-196, -

Glaser, E,L., et al., "System Design of a Computer
for Time Sharing Application,” AFIPS Conf. Proc, 27
(1965 PJCC), Spartan Books, Washington, D.C., 1965,
PP 192-202, »

91

(7)

(8)

(9)

(10)

(11)

Vyssotsky, V.A., et al., "Structure of the Multics
Superv¥isor,” AFIPS Conf. Proc, 27 (1965 FJCC), Spartan
Books, Washingtonm, D.C., 1965, pp. 203=212,

Daley, R.C., and Neumann, P.G., "“A General-Purpose
File System for Secondary 3torage,” AFIPS Conf, Proc,
22 gi?gzg.rcm. Spartan Books, Washington,D.C., 1965.
PP, - .

Ossana, J,F,, et al., "Communications snd Input/Output
Switching in a Multiplex Co-pugj.ox Systen,” AFIPS Conf,
Proc, gz (1965 FJCC). swt‘n 8, wmmtm D.c"
1965, pp. 231-241,

David, E.E., Jr,, and Fano. R.M.. "Some Thoughts
About the Social Implicatiom of Accessible Computing,”
AFIPS Conf, Proc. 27 (1965 PJCC), Spertan Booka.
Washington, D.C., 1565, pp. 243-247.

corb‘to. P.J, » Qt_ al-‘ » "An Exmi Tinﬂ'mins

System,” APFIPS Conf, Proc, 2 (1962 8ycc) ﬁntional
Press, Palo Alto, Calif., 1962, pp. 335-s.

92

UNCLASSTIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D

(Security classification of title, body of ab and indexing ion muat be entered when the overall report is classified)
t. ORIGINATING ACTIVITY (Corporate author) 28. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

Massachusgetts Institute of Technology 25 GROUF
Project MAC) None

3. REPORT TITLE

Absentee Computations in a Multiple-Access Computer System

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)
Masters Thesis, Department of Electrical Engineering, August 1968

5. AUTHORI(S) (Last name, firat name, initial)

Deitel, Harvey M.

6. REPORT DATE 78. TOTAL NO. OF PAGES 7b. NO. OF REFS
August 1968 104 11

8a. CONTRACT OR‘GRANT NO. 98. ORIGINATOR'S REPORT NUMBER(S)

v Sff"i;icngBaval Research, Nonr-4102(01) MAC-TR-52
§R 048-189 95. OTHER REPORT NO(S) (Any other numbera thet may be
RR 003_09_01 asaigned this report)
d

10. AVAILABILITY/LIMITATION NOTICES

Distribution of this document is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
Advanced Research Projects Agency
None 3D-200 Pentagon
Washington, D.C. 20301

13. ABSTRACT
In multiple-access computer systems, emphasis is placed upon servicing

several interactive users simultaneously. However, many computations do not
require user interaction, and the user may therefore want to run these computations
"absentee" (or, user not present). A mechanism is presented which provides for the
handling of absentee computations in a multiple-access computer system. The design
is intended to be implementation-independent. Some novel features of the system's
design are: a user can switch computations from interactive to absentee (and vice
versa), the system can temporarily suspend and then continue absentee computations
to aid in maintaining an efficient absentee-interactive workload on the system,
system administrative personnel can apportion system resources between interactive
and absentee computations in order to place emphasis upon a particular mode during
certain periods of operation, and the system's multiple-computation-stream facility
allows the user to attach priorities to his absentee computations by placing the
computations in either low-, standard-, or high-priority streams.

14, KEY WORDS

Absentee computations Machine-aided cognition Real-time computers
Computers Multiple-access computers Time-sharing
Interactive computations On-line computer systems Time-shared computers

DD .:24 1473 (M.LT.) __UNCLASSTFIED

Security Classification

