
December, 1968 Report Nos, ESL-R-356 
MAC-TR-56 

AN INTEGRATED HARDWARE-SOFTWARE SYSTEM 
FOR COMPUTER GRAPHICS IN TIME-SHARING 

by 

D. E, Thornhill 
R. H. Stotz 
D. T. Ross 
J. E. Ward 

Electronic Systems Laboratory 
Department of Electrical Engineering 

Project MAC 
545 Technology Square 

Massachusetts Institute of Technology 
Cambridge, Massachusetts 02139 



ABSTRACT 

This report describes the ESL Display Console and its associated user­
oriented software systems developed by the M. I. T. Computer-Aided 
Design Project with Project MAC. Console facilities include hardware 
projection of three-dimensional line drawings, automatic light pen track­
ing, and a flexible set of knob, switch, and push-button inputs. The 
console is attached to the Project MAC IBM 7094 Compatible Tirne­
Sharing System either directly or through a PDP-7 Computer. Programs 
of the Display Controller software provide the real-time actions essential 
to running the display, and communication with the time-sharing super­
visor. A companion graphics software system {GRAPHSYS) provides a 
convenient, high-level, and nearly display-independent interface between 
the user and the Display Controller. GRAPHSYS procedures allow the 
user to work with element "picture parts" as well as "subpictures" to 
which "names" are assigned for identification between user and Controller 
programs. Software is written mostly in the machine-independent AED-0 
Language of the Project and many of the techniques described' are appli­
cable in other contexts, 

iii 



ACKNOWLEDGEMENT 

The display hardware and software described in this document has been 
previously described at various states of development over the past four 
years in a number of informal memoranda and papers by the authors and 
by Charles A. Lang, Richard U. Bayles, and John W. Brackett. The 
present document combines this previous material into a single reference 
manual, with revision and rewriting where necessary to reflect the pres -
ent status of the hardware-software system. The contributions of Charles 
Garman, Harold D. Levin, and Michael F. Brescia, who assisted with 
parts of the implementation, are gratefully acknowledged. 

The respective roles of the two M. I. T. projects which provided support 
to the Display Group for this work from different contracts are difficult 
to delineate exactly. The C TSS computer time was entirely provided by 
Project MAC (ARPA support), whereas the AED facilities used in pro­
gramming were intimately associated with the work of the Computer­
Aided Design Group of the Electronic Systems Laboratory (U. S. Air 
Force support). Support for hardware acquisitions was about evenly 
divided between the two, as was support for personnel. This joint sup­
port and sharing of resources has created an unusual res ear ch environ­
ment which has done much to insure the success of these endeavors. It 
is in this spirit that this document is offered for joint publication. 

iv 



PREFACE 

"On-line computer graphics" and "time-sharing" are fast becoming 

more than mere catch phrases for exciting and esoteric laboratory 

curiosities. On-line computer graphics in time-sharing is now pas sing 

from the laboratory into the day-to-day production environment, bring­

ing with it new and powerful techniques for coupling men and computers 

into problem-solving teams with capabilities far exceeding those of 

either men or machines alone. This report describes the completion of 

the pioneering activities of the Computer Applications Group and the 

Display Group of the M. I. T. Electronic Systems Laboratory in the de­

velopment of the general-purpose ESL Display Console and its support­

ing user-oriented Software Systems. The work was performed as part 

of the activities of the M. I. T. Computer-Aided Design Project, spon­

sored by the Manufacturing Technology Laboratory of the United States 

Air Force, and later, Project MAC, sponsored through the Office of 

Naval Research by the Advanced Research Projects Agency. In addition 

to serving as a complete manual for the now essentially stabilized 

hardware-software system at M. I. T., this report will be useful to 

others who do not have direct access to the M. I. T. systems by provid­

ing a complete and comprehensive in-depth treatment of a successful 

overall design of a computer graphics system. 

Although the chapters of this report provide details and complete 

coverage of certain aspects, orily a small portion of the overall story is 

told here. Computer graphics is potentially much more than mere 

picture making, but in order for this potential to be realized, the sub­

jects covered in this report must be augmented by many additional 

features so that the mechanical aspects of computer graphics are sub­

sumed in the broader context of true graphical language, integrally 

incorporated into a problem-solving system. Although many of the 

features described in this report have been heavily influenced by this 

broader context, and in some places the mode of discussion provides 

hints concerning our view of these questions, this report is primarily 

concerned with providing facilities for a certain class of generalized 

interactive display facilities and inte:rfacing those facilities into the 

v 



programming environment. The broader questions of making true 

graphical languages and incorporating these display facilities into a 

problem-solving environment are not covered here. 

The chapters of this report reflect three major problem areas 

progressing from ( 1) the real world of physical display generation and 

real-time on-line control through (2) the time-sharing environment to 

(3) the' interface to the user's program environment. The material of 

the various chapter sections has appeared in internal memorandum 

form in various editions over the years of dynamic change of the total 

system, and sometimes (like the Bible) the historical diversity of the 

original sources shows in variations in manner of description. For 

example, the display console was originally directly connected to the 

Compatible Time-Sharing System on the IBM 7094 computer, with the 

Display Controller software an integral part of the time-sharing super­

visor. Later, a PDP-7 computer was interposed between the display 

console and the 7094, and many of the Display Controller features were 

transferred to the PDP-7. Since the operating characteristics of the 

programs of the Display Controller remain the same, the description 

presented in Chapter II is oriented toward the original system and does 

not go into details about the actual system presently in use. 

We have learned a great deal in the evolution of the initial system 

to its current state. Although much of this learning is reflected in 

various features of the system, a larger number of insights are of a 

more basic nature and cannot be incorporated into evolutionary changes, 

which by their nature include design features of ancient origin. There­

fore, concurrently with the final stabilization of the initial system as 

described in this report, we have been carrying out various new inves -

tigations to provide a fresh start for a still more penetrating attack on 

the fundamental requirements for a next-generation system. Various 

portions of this new research are now completed. and others are being 

written or designed. Although the flavor of the new system will be much 

the same as that of the system described in this report, the internal 

workings will be different in many fundamental respects in order to 

achieve a degree of independence of display characteristics, computer 

characteristics, time-sharing environment characteristics, and 

vi 



problem application area which is impossible within the framework of 

the original system design. Hopefully this new attack will result in a 

total system which will provide a stable interface between graphic 

language application systems and the physical devices on which such 

systems are implemented. Then heavy investments may be made in 

software developments with confidence that drastic hardware changes 

may be accommodated with only routine bootstrapping of the software. 

It is our firm opinion that the fundamentals of interfacing us er applica­

tions with physical display and computing hardware systems must have 

this degree of stability before the potential of on-line man-machine 

problem-solving with mixed verbal and graphical languages can be 

fully realized. Our experience to date indicates that although it is a 

difficult and challenging assignment, these goals are eminently realiz­

able. 

A key ingredient in both the old and the new systems in achieving 

problem-, display-, operating system-, and computer-independence is 

in the use of the AED (Automated Engineering Design or Algol Extended 

for Design) Approach and the AED Systems developed by the M. I. T. 

Computer-Aided Design Project. The generalized software develop­

ment techniques of the AED Approach and the many unique, efficient, 

and powerful features of the AED-0 Language have played a central 

role throughout these developments and will be increasingly important 

in our newer work. Although the subroutine calling conventions of AED 

are compatible with other languages, so that the display interface sys -

tem may be called from various foreign environments, AED is strong­

est in the problem-structuring areas where other languages are 

inadequate, and those areas are of great importance in successful 

graphics applications. As AED becomes available on more and more 

types of computers, these advanced graphics systems will also be 

available to a growing class of users. Although AED is completely 

general-purpose and is not restricted to graphics applications, we 

anticipate that graphics will be an important component in furthering 

wider adoption by industry of the total spectrum of AED techniques 

and facilities. 

Douglas T. Ross 

vii 



This empty page was substih1ted for a 
blank page in the original document. 



CONTENTS 

CHAPTER I OPERATING MANUAL FOR THE 
'ESL DISPLAY CONSOLE I. 1 

I. 1 

I. 1 

A 

B 

c 

D 

E 

INTRODUCTION 

SYSTEM DESCRiPTION 

1 • The Console Hardware 1. 1 
2. Mode of Operation from the Computer 1. 8 
3. Second Operator)s, Station 1. 9 

SPECIFICATIONS AND PERFORMANCE 

1. Computer Interface 
2. Internal ?pecifications 

COMMANDS 

1 • Point Plotting 
2 • Line Gene ration 
3. Rotation Matrix 
4. Alarm Clock 
5. Light ·Pen Track 
6 • End of File 
7. Sec C Control Word 
8. Set F Control Word 
9. Character Gene ration 

a. Unpack~d Mode 
b. Packed Mode 
c. Special Character Mod,e 

INPUT TO THE COMPUTER 

1 . Control Panel 
2. Crystal Ball 
3. Push Buttons 
4. Interrupts 

I. 9 

1. 9 
I. 10 

1.11 

1.11 
1. 12 
1.13 
1. 15 
I. 16 
1. 17 
1.18 
1. 20 
1. 21 

1. 22 
1. 23 
1.25 

1.26 

1. 27 
1. 29 
1. 30 
1. 31 

F INTERRUPT PROCESSING 1. 32 

G COMMAND FORMAT, BIT ASSIGNMENTS 
AND CHARACTER CODES 1 • 3 5 

CHAPTER II THE DISPLAY CONTROLLER 2. 1 

A INTRODUCTION 2. 1 

B DIRECT CONNECTION: TO. THE 7094 
TIME-SHARING SYSTEM 2. 2 

1. General Operation 2. 2 
2. Graphical Outptit - The Display File 2. 3 
3. Console Inputs 2. 3 
4. The DSCOPE Interface 2. 4 

a, Introduction 2. 4 
b, InitializationOperations ·2.5 
c ~-· Transferring Information 2. 5 
d, The Pseudo-Accumulator and 

the Control Counter 2. 6 

ix 



c 

CONTENTS {Contd.) 

e. Reading Inputs ~ 2. 6 
f. Calling Sequences 2. 6 
g. Display Operations 2. 7 
h. Detailed Description of DSCOPE 

Commands 2 • 7 
i. Transfer Commands in the 

Display File 2. 11 
j. Attention Formats 2. 12 
k. State Word Bit Assignments 2. 13 
1. Real -Time Instruction Fo ~ats 2. 14 

CONNECTION THROUGH A 
DISPLAY BUFFER COMPUTER 

1. General Operation 
2. The DSCOPE Interface 
3. The Minimal Executive in the 7094 

2. 17 

2. 17 
2.17 
2. rs 

a. General Description 2.18 
b. The MINEX Interface 2. 1 9 
c. Control Blocks from the 7094 

to the PDP-7 2. 22 
d. Control Blocks from the 

PDP-7 to the 7094 2. 23 

CHAPTER III GRAPHSYS - A PROGRAMMING SYSTEM 
FOR THE ESL DISPLAY CONSOLE 3. 1 

3. 1 

3 .4 

3.7 

3.7 
3.7 

A 

B 

c 

D 

E 

F 

G 

INTRODUCTION 

THE DISPLAY FILE, OBJECTS AND NAMES 

FORMAT AND CONVENTIONS 

1. Procedure Values 
2. Procedure Arguments 

THE DISPLAY FILE - ADDING AND 
REMOVING CONSOLE COMMANDS 

1. General Description 
2. The Plot Function 
3. Subpictures 
4. The Copy Function 
5. The Replace Function 
6. The Remove Function 

STANDARD AND NONSTANDARD OBJECTS 

1. General Description 
2. Standard Objects 
3. Nonstandard Objects 
4. Modifying Objects 

CONVER TING COMMANDS IN THE DISPLAY 
FILE FROM VISIBLE TO INVISIBLE AND 
VICE VERSA 

INITIALIZATION 

x 

3.8 

3.8 
3.9 
3. 10 
3. 12 
3. 13 
3. 13 

3. 13 

3 .13 
3.14 
3.15 
3. 16 

3. 17 

3. 18 



H 

I 

J 

K 

L 

M 

CONTENTS (Contd.) 

DISPLAY FILE INFORMATION ~ 

1. Dumping the Di splay File into B-Core 
2. Display File Parameters 

INPUTS 

1. Real -Time Inputs 
2 . Pas s iv e Input Re gi st e r s 

REAL-TIME PROGRAMS 

1. 
2. 

General Description 
The Real-Time Functions 

3. Disconnecting Real- Time Functions 
4. Synchronized Movie Camera 

PROCEDURE DESCRIPTIONS 

1. Manipulating the Di splay File 
2. Creating Objects 

a. Standard Objects 
b. Nonstandard Objects 
c. Modifying Objects 

3. Converting Display File Commands 
from Visible to Invisible 

4. Initialization 
5. Reading Di splay File Commands 

and Parameters 
6. Reading Inputs 

a. Real-Time Inputs 
b. Passive Inputs 

7. Real -Time Functions 

HOW TO USE THE GRAPHS YS 

1. Calling the Procedures 
2. Loading 
3. Free Storage 
4. Coons 1 Surfaces and Graphs 

CONSOLE SIMULATOR 

1. General Description 
2, Loading the Simulator 
3 . Ope rating the Sirr1ulator 

N PROCEDURE INDEX 

REFERENCES 

APPENDIX A THE DESIGN AND PROGRAMMING OF 
DISPLAY INTERFACE SYSTEM INTEGRATING 

3,18 

3. 18 
3. 19 

3. 19 

3. 19 
3.20 

3,22 

3.22 
3.23 
3.24 
3.24 

3.25 

3.25 
3.27 

3.27 
3.33 
3.36 

3.37 
3.37 

3.38 
3.40 

3. 40 
3. 42 

3. 43 

3. 46 

3.46 
3.47 
3.47 
3.48 

3.48 

3,48 
3.48 
3.48 

3.50 

3.52 

MULTIACCESS AND SATELLITE COMPUTERS A. 1 

I 

II 

INTRODUCTION 

SELECTION OF SYSTEM COMPONENTS 

Xl 

A. 1 

A. 1 



CONTENTS (Contd.) 

III THE DISPLAY INTERFACE SYSTEM ~ A.4 

IV SOFTWARE DESIGN CRITERIA A.5 

v AUGMENTING THE DC EXECUTIVE A. 6 

I. The Attention Routines A. 7 
2. The Program Queue A. 8 
3. Multiple Users in the DC A. 9 

IV AUGMENTING THE MC EXECUTIVE A.10 

I. DC Storage Allocation A.11 
2. Display File Building and Editing A.11 
3. Loading of DC Programs A.12 

VII DISCUSSION OF SYSTEM USAGE A.13 

VIII IMPLEMENT AT ION A.14 

REFERENCES A.15 

APPENDIX B A SAMPLE INTERACTIVE 
GRAPHICS PROGRAM B. l 

I INT ROD UC TION B. l 

II PROGRAM FUNG TIONS B. l 

III MODELING THE CIRCUIT B. 2 

IV PROGRAM OPERATIONS ON THE 
DAT A STRUCTURE B.3 

v SPECIFICATION OF THE DISPLAY B. 7 

VI AED-0 LANGUAGE FEATURES B.9 

xii 



LIST OF FIGURES 

1. 1 ESL Display Console 

1.2 

1. 3 

1.4 

1. 5 

1. 6 

1. 7 

3. 1 

3.2 

3.3 

3.4 

3.5 

3.6 

Block Diagram of Console 

Sample Packed-Character Display List 

Assignment of Bits in Special Character 

Control Panel 

Crystal Ball 

Push-Button Box 

Information Flow in Display System 

Diagrammatic View of the Display Buffer 

Communications about Items in the Di splay File 

The Combined User-and-GRAPHSYS Data Struct~re 

Defining a Subpicture - Diagrammatic View 

Format Required for Adding Console Commands to the 
Display File With PLOT or RPL 

3. 7 Rotation Matrix Buffer Format 

3. 8 Arc Computed by Procedure CIRCLE. 

3. 9 Formats of Character Pointers and Strings 

3. 10 Formats Used for Dumping the Display Buffer 

A. l General Hardware Scheme 

A. 2 User's View of the System 

A.3 Programs in the Display Computer 

A. 4 The Program Queue 

A. 5 Programs in the Multiaccess Corriput~r 

B. 1 Schematic Data Structure for Circuit 

B. 2 Communications About Items in the Di splay File 

B.3 The Combined User-and-GRAPHSYS Data Structure 

B. 4 Flow Diagrams for the Sample Program 

B. 5 Program Listing for the Sample Program 

xiii 

1. 2 

1. 3 

1.24 

1.25 

1.28 

1.29 

1. 30 

3.2 

3.3 

.3. 5 

3.6 

3 .11 

'3. 14 

3.23 

3.28 

3.30 

3.39 

A.. 3 

A.4 

A.7 

A.9 

A.10 

B. 5 

B.9 

B. 9 

B.14 

B. 18 



. ~ "'-.,' 

r··· . . )£ 

The ESL Console is a specialized.comput~r whi~h automatically 

converts three-dimensional drawing comm·a:nda into arbitrary two-

dimensional projections. Real-time rotation, translation, and scale 

change are possible even in time-sharing. Light-pen tracking is 

fully automatic, and either picture elements or character information 

may be displayed. 



CHAPTER I 

OPERATING MANUAL FOR THE ESL DISPLAY CONSOLE 

A. INTRODUCTION 

The Electronic Systems Laboratory Display Console, shown in 

Fig. 1. 1, was designed and built in 1963. The purpose of the unit is to 

provide a direct, fast, computer -controlled display plus a flexible set 

of input devices including a light pen. It was designed with special 

attention to the needs of Computer Aided Design under the restriction of 

a time -sharing system, but its flexibility makes it a useful tool for 

many other applications as well. The Console is an outgrowth of the 

Manual Intervention System which was connected to the Co-operative 

Computing Laboratory1 s IBM 709 computer for several years. 

The command format of the Display is based on a 36-bit computer 

word because of its original connection to the IBM 7094. The PDP -7 

provides the 36-bit words as two sequential 18-bit words. 

The basic interface between the Display and the Display Controller 

computer meets the specifications of the Direct Data Interface of the 

7094 as described in the IBM special features bulletin for RPQ M90976. 

When the display was connected directly to the 7094, it was via this 

Interface to the Direct Data Channel. A single, specially built channel 

for the PDP-7 matches the IBM specifications. This channel connects 

the IBM Channel to the PDP-7 and the PDP-7 to the Display. The re­

sult of this connection is that to the display the PDP-7 looks like a 7094, 

and to the 7094 it looks like the terminal side ofthe Direct Data Inter­

face. 

Because the Console is a research tool, it will be subject to 

modification and change. As these modifications are made, program­

ming details may change. Use rs of the Console are advised to ensure 

that they are up to date with the latest revisions of this manual. 

B. SYSTEM DESCRIPTION 

1. The Console Hardware 

The Display Console is shown in block diagram form in Fig. 1. 2. 

A portion of the Console is a Type 330 Incrementing Display, made by 

the Digital Equipment Corporation of Maynard, Mass. to M. I. T. 

-1 • 1 -



J 

-1. 2 -

Cl.l 

~ 
c 
0 
u 
>-
0 

a. 
"' 0 

--' .,, 
w 

Ci 
LL 



7094 
~DATA 

DEVICE I 
(CHANNEi. DI 

ORPOP-7 I 
CHAffflEL 

I 
SET 

ALARM 
CLOCKS 

cOiiiiiiio 

ALARM 
CLOCKS 

-1. 3 -

•1 RUNG 

#z RUNG l 
SPECIAL 

CMOS. CHARACTER 
FROM SINGLE 

CONTROL CHARiCTER 
PACKED 

CHARACTERS 

CHARACTER 
GENERATOR 
CONTROL 

TO INCREMENT LOGIC 
(5x7 MATRIX FOR 
SPECIAL CHARACTERS l 

STRAZA 
CHARACTER 
GENERATOR 

(64 CHAR.) 

1·fu.~I 

I v CEFLECTION tLECTROSTATIC 
DEFLECTION h DEFLECTION AMPLIFIERS 

LOAD 
CHARACTER 

,p=~~~=::l.__,~~~~_j=~~=={6)=~~=::t_~~~__j INTENSIFY 

~ MODE CONTROL !FOR INTER­
CHARACTER SPACING l 

Qg ~ 330 INCREMENTAL DISPLAY 

I I I d OUTPUT ~'----'' J I A i « I \r---"'li '1 . 
DATA LINES I II 

~ 

I 
I 
I 
I 
I 

SENSE LINES I 

COllTROL 
SIGNALS 

I 

COMMAND 
INTERPRETATION 

CONTROL 
ANO 

TIMING 

PEii TRACK 
LOGIC 

ENO Of' CYCLE 

555 KPS 

}

COMMAND 
LINES 

FROM 
PUSH8UTTONS 
(INTERRUPT! 

FROM 
LIGHT PEN 

Ill 

L_ 

SET i,j,k 

FOR Ji CMO 

SET~j,k 

r.;;; - - - :-i I !!fill! BQIAIIQ!I MATRIX I 
(ALL REGISTERS 1081TS 

I PLUS SIGN) . _I 
1h•AK 

CMO 

l~I 1h I I 
I""""'" I ,,· . 

I 
I 
I 

llV RATE 

I 
I 
I 

Ill RATE 

_J 

I 
I 
I 

1;' :--~--·~ 1; ..i I 
1~ - It., I-'-~ kv 6Z;-----<. 

~---J 
V PEN TRACK 

REGISTER ( 9 8ITSl 

-·-·- - ---1 

TO 
CONTROL 

LIGHT 
PEN 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

TO I 
CONTROL 

(INTERRUPT) I 
_l__, I 

EDGE 
DETECTION 

I 
I 

... "----~L_J 
READ 

C INPUT I @ DJll"A LINES I 36 'H' h,v CMD 'J 
1 1 ll i 1i 

~ 

ANALOG ~ 
- SIGNAL ~ ANO GATES 

~ -PULSE(Sl 

==C> -+ LEVEL(S} 

=®=~~~~~~L 

READ 
DECIMAL 

CMD 

OIGlSWITCHES 
(9a4 BITS) 

36 

READ 
.!!!!!fil'.. 
"A"CMO 

11'1f1.'1\44'1 

TOGGLE SWITCHES 
(36) 

READ 
BINARY 
~ 

11,<11!1,1,• 

TOGGLE SWITCHES 
(36) 

fig. l .2 Block Oiagcam of Console 

KNOBS 
(AID SHAFT ENCODERS l 

3-AXIS 
GL08E 

READ 
PUSHBUTTONS 

CMO 36 

PUSHBUTTONS 
(361 



This empty page was substih1ted for a 
blank page in the original document. 



-1. 5 -

specifications. This consists of the magnetic -deflection cathode-ray 

tube with housing, table, power, and deflection amplifiers; the digital­

to-analog converters; the digital registers which contain the h and 

v coordinates of the beam position; and a number of special controls. 

The scope has 1, 024 unique horizontal positions and a similar number 

of vertical positions, thus providing over one million discrete points 

that can be specified. It has an active surface 9 3 /s· inches on a side. 

A unique feature first used in the Type 330 is the ability of the 

beam position registers (called the h and v registers, for horizontal 

and vertical position) to count up and down at high speed. This permits 

lines to be drawn by introducing strings of pulses into the h and v 

registers and intensifying (unblanking) after each pulse. The current 

plotting rate in the incrementing mode is 1. 8 µsec per point. 

Another unusual feature ordered by M. I. T. in the Type 330 

scope is th;ree extra bits on the high-order end of the h and v registers 

(for a total of 13 bits). This allows h and v to be incremented off 

the edge of the screen without having the line appear coming on at the 

opposite edge (wrap around). The active (visible) scope surface is de­

scribed by 2
10 

horizontal and a similar number of vertical positions. 

This area is called the Scope Field. The three extra bits allow the con­

sole to process lines on a field with sides eight times as large as the 

Scope Field. This larger field is referred to as the Total Console Field. 

There are programmable interrupts available to alert the computer when 

the edge of the Scope Field has been crossed or when the edge of the 

large Total Console Field has been crossed. These interrupts are de­

scribed in detail in a later section. 

The center of the scope has the binary address 0 000 000 000 000 

for h and v. The right hand edge of the Scope Field has the horizontal 

value 0 000 111 111 111 (= 2 9 - 1) while the left hand edge is 

1 111 000 000 000. Similarly, the upper edge of the visible section has 

the vertical value 0 000 111 111 111 while the lower edge is the ones 

complement of this. 

The portion of the Display Console built by ESL contains the 

driving logic for the Type 330, the interface to the 7094 Direct Data 

Channel (or PDP-7 channel), a section to interpret commands from the 

Display Controller and controls to perform the function called for by the 



-1. 6 -

command. Also, a scheme for automatic picture rotation in three 

dimensions has been built into the Console. Therefore, two sets of 

coordinate axes are referred to. The first set is the axes of the scope 

itself which are identified as "horizontal (h), vertical (v), and depth (d)." 

The second set is the axes in which a line is specified by the computer, 

i.e., before it is rotated to the h, v, and d axes. Coordinates in these 

axes are referred to as "x, y, and z". 

The pre sent line generator consists of three Binary Rate Multi -

pliers (BRM), which produce three pulse trains with rates proportional 

to the Ax, Ay, and Az values of Line Generate commands. These 

pulses are processed through a rotation Matrix. Here the Ax rate 

is the input to a BRM pair which generates two new pulse trains Ax ih 

and ~x · iv. The Ay pulses produce a similar pulse train pair ~y ." jh 

and ~y j , and Az generates fl.z · k and !z · k . The 6.x · ih, .6.y · jh' 
. v n v 

and .6.z · kh pulse trains are combined in theincrement logic block to be the 

h register input pulse train, Similar logic creates the v register input 

pulse train. The values of ih' iv, jh, etc., are loaded by the computer, 

and by suitably choosing their values all the lines produced by x, y, 

and z may be transformed into a rotated axonometric projection of 

themselves. Since lines are called out incrementally, independent of 

starting point, an entire picture built up from a connected series of 

these lines is subject to whatever rotation the computer calls for. Also 

moving the starting h, v location for a picture made up of connected 

lines moves the entire picture. The rotation matrix is used to change 

the size of displays by applying a common scale factor to the ih' iv, jh' 

etc. 

Pen tracking in the Console is completely automated; that is, 

except for initiating or halting tracking, the entire ope ration of gener -

ating the cross, computing the new center, and repositioning the eras s, 

is done in the hardware. A pen-track cross is generated once every 

five milliseconds and requires about 200 microseconds to complete. 

When it is time to generate the cross, the command logic prevents ac­

ceptance of the next word from the Data Channel and swaps the con­

tents (ten least significant bits) of the h and v registers with the Pen 

Track Registers. This saves the current display location, and puts the 

old pen position in the h and v registers. A block of logic associated 



-1. 7 -

with the line generator then causes it to produce the tracking cross, 

store the information as to which points the light pen has seen (pro­

ducing error vector components), and add these components to the h 

and v registers to update the pen position. The registers then swap 

back again, and the command logic is allowed to proceed. The pen­

track logic is unaffected by the rotation matrix. The Display Con­

troller may read the Pen Track Registers at any time except during a 

tracking cycle, although reading at the end of a display frame is recom­

mended. 

Characters are generated by either of two separate systems. A 

Straza Symbol Generator, which is a sepal'ate unit, interprets six-bit 

character codes to select one of 64 stored characters which match 

those of the KSR-35 Teletype. Diodes wired on the character cards 

specify a sequence of incremental deflections for up to 16 points in a 

15 by 16 matrix. The Straza unit produces analog deflection signals 

for extra h and v high-speed "diddle plates" on the CRT. 

The Special Character Generator, constructed by ESL, allows 

programmed symbols. Special logic causes it to step the scope beam 

through a 5 by 7 raster, and the intensification of each of the 35 points 

of the raster is controlled by a corresponding bit in a word from the 

computer. Thus, a single Special Character requires a full word to 

specify it. In either character generator, four character sizes are 

available, and space between characters (which is controlled by the 

line generator), is entirely programmable in size and direction. Also, 

both character generators by-pass the rotation matrix, i.e., charac­

ters always remain upright. 

A computer controlled movie camera was added to the display in 

1965. The camera is made by D. B. Milliken Co., Arcadia, Cali­

fornia. The computer controls frame advance and shutter, but it can 

not back up the film. 

Two alarm clocks are provided for display timing. These are set 

by program to ring (i.e., cause a Channel Interrupt) at any de sired 

interval from 50 microseconds to 128 milliseconds. Other sources of 

Interrupt are: a push button press; the light pen seeing an active line, 

point, or character; and an ''edge detect" (a line crossing the edge of 

the display field or the console field). The "pen see" or "edge detect" 

interrupts can be individually inhibited by program. 



-1. 8-

Input facilities provided at each console station are a CTSS Tele -

type, a light pen, a bank of nine decimal switches (Digi-switches), 

two banks of 36 toggle switches, 36 push buttons, three 7 -bit shaft en­

coders and a 3 -dimensional rate -control joy stick (crystal ball). The 

computer can read the settings of these switches and controls whenever 

it pleases. There is no hardware relation between any of these con­

trols and any Console output function. They are entirely interpreted 

by the computer program. For example, although usually the crystal 

ball (3 -D joy stick) is most effective for controlling rotation, the com­

puter can interpret it any way the programmer desires. 

2 . Mode of Ope ration from the Computer 

The Display Console interprets parallel 36-bit words from the 

Data Channel as commands. The Prefix Field of the word (sign bit and 

bits 1 and 2) categorizes the type of command. The Tag Field (bits 18-, 

19, and20) further specifies certain commands. The Address and De­

crement Fields, and for certain commands the Tag Field, contain the 

particular parameters for the command. 

s 2 3 17 18 20 21 

I Prefix Decrement Tog Address 

Section D contains a detailed description of the action taken upon 

each command; Tables 1. 1 and 1. 2 in Section G summarize the com­

mand format. 

Commands to be transmitted to the Console are arranged in the 

computer memory in groups of consecutive locations called display 

lists. Since the Data Channel can directly access words stored in this 

manner, the only time the computer's attention is required is when a 

new list must be started (or an old list started over). Each command 

"steals" memory cycles from the computer (one cycle from the 7094 or 

two from the PDP-7). 

35 

When the Display Console accepts an output word from the Data 

Channel it responds with a Direct Data Demand (DDD) pulse, interprets 

the command and commences performing the operation called for (e.g., 

drawing a specified straight line). The DDD pulse releases the Data 



-1. 9-

Channel to fetch the next output word pair, i.e. , the next command. 

The Display Console will ignore this new command until it has com­

pleted the previous one and the Data Channel will hang up waiting for 

the DDD pulse. When one command is completed, the Console im­

mediately processes the next awaiting command, etc. Each output 

word from the Data Channel is looked upon as a new command by the 

Console except that the Packed and special character commands put the 

Console in a special mode whereby it processes successive output 

words as characters. This mode of operation, which requires an es -

cape provision, is discussed in detail in the section on Character 

Generation, (Section D. 9). 

The Console also can input to the Data Chann~l 36-bit words which 

can be the contents of an internal register, or the settings of toggle 

switches etc. There are ten Output Sense Lines provided bythe Data 

Channel which are used for selection of these inputs, and also control 

other Console functions. The Channel Interrupt Bit and the ten Input 

Sense Lines allow the Console to signal special conditions to the com­

puter. In general the Input Sense Lines identify the source of the inter­

rupt. Table 1. 3 in Section G depicts the Sense Line bit assignments. 

Their use is amplified in Section E. 

3. Second Operator's Station 

A second operator's station was added to the system in 1964. 

This unit (called the "Slave" unit) contains a duplicate set of manual 

inputs and a scope which is driven in parallel with the "Master" cathode -

ray tube, but which has a separate intensification control. Depending 

on the state of a pair of control flip-flops which are set by a control 

command, a picture being generated appears on either the Master, the 

Slave, both, or neither. Although called Master and Slave, the stations 

are in fact equivalent in capability, and two operators can work with 

different displays by time-sharing the console display generating 

system. 

c. 

1. 

SPECIFICATIONS AND PERFORMANCE 

Computer Interface 

Matches IBM Direct Data Channel 

3 6 data bits In 

1 

--~~-- -



,--- -----

-1.10-

36 data bits Out 

10 sense lines In (direct to CPU) 

10 sense lines Out (direct from CPU) 

1 Channel Interrupt (or Direct Data Interrupt) 

1 End of File Interrupt 

8 Control Signal Lines 

DEC logic levels (0 and -3 volts) out and in. Requires DEC/7094 
level conversion unit (see ESL Memo 9474-M-l), if connected to 
the 7090 Direct Data Channel. 

2. Internal Specifications 

Input Power 

Active Scope Size 

Memory 

Clock Rate 

Line Plotting 

Line Plotting Rate 

Line Length 

Random Point Plotting 

Point Plotting Rate 

Point Plotting Range 

115± lOvolts, 60 cycles, single 
phase at 2-5 amps. 

9 3/8 inches by 9 3/8 inches 
containing 1024 points by 1024 
points. 

None (operates from display lists 
stored in the computer memory, 
and accessed through the Data 
Channel Connection). 

Normal 555. 55 KC ( 1. 8 µsec 
between clocks). 

Slow 69.44 KC (14.4 µsec between 
clocks). 

a point each clock (1. 8µs). This 
point can be a step of 0, 1, 2, 4, or 
8 scope increments in ±h and in 
±v (0, 1, 2 for lines to be rotated). 

0 to 1023 increments in ±x and in 
±y without magnification. 0 - 2046 
increments by steps of 2 in ±x and 
±y with magnification. Thus, Ax 
and Ay require 10 bits plus sign 

'-­each. 

a point every 40 microseconds 

2
13

:8192 horizontal and vertical 

positions. Of this only 2
10

:1024 
will appear on the scope. h=O, 
v=O is center of screen, 



Straza Symbol Generator 

Symbol Code 

Symbol Size 

Symbol Plotting Rate 

Special Character Generator 

Symbol Code 

Symbol Size 

Symbol Plotting Rate 

Alarm Clocks 

D. COMMANDS 

1. Point Plotting 

-1.11-

6 bits to produce one of 64 
symbols matching KSR- 35 
Teletype. 

0.10, 0.14, 0.20, or 0.28 
inches high. 

a character every 12 µsec. 

Intercharacter spacing is done 
with the line generator and re -
quires an additional nine µsec. 

3 5 -bit code to produce any 
symbol on a 5 x 7 dot matrix. 

0.14, 0.28, or0.56incheshigh. 

a character every 72 µsec. 

Programmable real time inter­
rupt between 50 microseconds 
and 6. 4 milliseconds by 50 micro­
second increments (fast clock), or 
between 1 millisecond and 128 
milliseconds by 1 millisecond in­
crements (slow clock). 

Set Point ond Plot 

s 2 3 4 5 17 18 20 21 22 23 35 

011 h 000 I I I v 

L Pen 

Set Point ond No Plot 
s 2 3 4 5 17 18 20 21 22 23 35 

011 h 100 I I I v 

L_ Pen 

Individual points can be specified and plotted in a manner identical 

to the DEC PDP Type 30 Scope. This is done by setting h and v (the 

registers which directly drive the position coils on the CRT) and calling 

for plotting (IBM bit 18=0). The electron beam can be positioned without 

plotting by giving the Set Point command with IBM bit 18=1. 



-1.12-

The beam can be positioned to any spot in the Total Console Field, 

As seen in Table 1. 2 (Section G), h is specified by the least significant 

bits of the decrement portion and v by the least significant bits of the 

address portion of the 36-bit command, Both h and v are specified 

as one 1 s complement values. 

Bit 22 of this command gives override control on the Light Pen 

sensitivity. If bit 22 is set to a ONE, this Set Point will be insensitive 

to the Light Pen, regardless of the Pen Enable bit of the previous Set C 

command, 

2. Line Generation 

Set z 

s 2 3 4 7 8 17 18 20 21 

I 001 IL . ., I it.zi I xxx I 
Plot Line 

s 2 3 4 7 8 17 18 20 21 22 23 25 26 

000 I I I t.xl I Oxx I I I I t.yl 

Lsign t.x LL Pen 

Blank Line 
sign t:.y 

s 2 3 4 7 8 17 18 20 21 22 25 26 

000 I I I t.xl lxx IL,., I It.YI 

Lsign t.x 

The Line Generator is made of three Binary Rate Multipliers 

sharing a common counter register. It generates 6.x, 6. y, and 6.z 

pulse rates based on values set into it by the computer. The line will 

35 

35 

35 

be begun at whatever point the beam was left from the previous command, 

Lines are actually drawn by the Plot Line (or Blank Line) command. If 

the line to be drawn contains a z component, a Set z command must 

precede the Plot Line (or ;Blank Line). The second command is necessary 

even if the line has only a z component (6.x=6.y=0). Completion of the 

Plot Line (or Blank Line) command zeros the z register. 

The number of x increments desired is placed in the decrement 

field and the number of y increments in the address portion of the 

Plot Line command, Z is put into the decrement of the Set z command. 



-1.13-

All three are sign-magnitude numbers with the sign in the most signifi­

cant bit of the 15-bit field and the magnitude in the least significant 10 

bits. If the line is to be visible, bit 18 of the Plot Line command should 

be a zero. A blank line is drawn by making bit 18 a one. Blank lines 

are useful in repositioning the beam without breaking the continuity of a 

drawing. This point will be clarified in the discussion of the Rotation 

Matrix. Since the line generators contain 10 bits (plus sign), the longest 

possible line that can be drawn with normal dot spacing ( 1/100 inch steps) 

is 1023 increments (9 3/8 inches) in both x and y, the diagonal of the 

Scope Field. Dot spacing can be increased by a C Control command as 

discussed in Section D. 7. 

Lines are not restricted to the Scope Field, but can be drawn on 

any portion of the Total Console Field. A special programmable inter -

rupt is available to alert the computer when a line is drawn which 

crosses the edge of the Scope Field (the portion of the Total Console 

Field which is visible) or when it leaves the Total Console Field en­

tirely. An Edge Detection (ED) flip flop is provided which is set by 

bit 22 of the C Control command. When ED is ON (bit 22 of the last C 

Control command was a ONE), lines crossing the Scope Field edge in 

either direction will cause the interrupt. When ED is off (bit 22 of the last 

C Control command was a ZERO) the interrupt will occur only if the line 

leaves the Total Console Field. Bit 22 of the Plot Line Command gives 

override control on the Light Pen sensitivity in the same manner as it 

does for Set Point Commands. 

3 . Rotation Matrix 

Set i , j , k for h 

s 2 3 4 13 14 15 24 25 26 35 

101 I I hi I I ljh I I I I kh I 
L sign ih Lsignjh L sign kh 

Set i, j , k for v 

s 2 3 4 13 14 15 24 25 26 35 

110 I I I iv I I I ILi I I I kvl 

Lsign iv Lsign jy Lsign kv 

A three -dimensional rotation matrix has been included in the ESL 

Display Console, which works with the three-dimensional line generator. 



-1.14-

The rotation matrix units consist of three sets of 10 bit BRM pairs 

which have as inputs, the 6.x, 6.y, and lz pulse -train outputs of the 

line generator. Thus, the three line generator outputs are each 

multiplied by a corresponding pair of numbers placed in the Rotation 

Matrix registers. If these numbers are the components of the unit 

vector relating the x, y, and z co-ordinate system to the h, v system, 

rotation will occur. For example, the BRM pair driven by the flx 

output multiplies flx by the vector cosines of the horizontal and verti-
. . 

cal axes. Its outputs are flx · ih and flx · iv which are pulse trains 

whose rates are proportional to the horizontal and vertical components 

of flx. In a similar manner the BRM pair driven by the ly output of 

the line generator provides output fly. jh and 6.y · jv proportional to the 

horizontal and vertical components of fly. The third BRM pair, 

driven by the Az output of the generator, produces Az · kh and 6.z · kv 

proportional to the horizontal and vertical components of flz. 

The hardware automatically performs the summing of lx · ih, 

6.y · jh and .0.z · kh into the horizontal incremental input, and the sum­

ming of 6.x · i , 6.y · j and 6.z · k into the vertical incremental input. 
v v v 

Thus, if the proper values are stored into its six data registers (ih, iv' 

jh' jv, kh' k), the Rotation Matrix will automatically rotate whatever 

lines are specified in the x,y, and z axes into the horizontal (h) and 

vertical (v) axes of the scope. 

It should be recognized that the re is no inherent equipment limi -

tation that requires the values placed in the Rotation Matrix data regis -

ters to be the proper vector cosines. 

numbers must all be less than ONE. 

The only limitation is that the 

The close st to ONE that can be 

set into these registers is 1777
8 

which represents the number 1023/1024. 

The nature of the BRM is such that it is the 1024th pulse that will be 

lost. Since the longest line that can be drawn is 1023 increments, all 

steps will be plotted and no error will occur. It should be noted, how­

ever, that round-off errors from the BRM's do exist and picture dis­

tortions are visible as a picture is rotated. 

There is no equipment in the console to determine the correct 

values for the Rotation Matrix settings. These are set solely by the 

computer with the two commands listed in Tables 1. 1 and 1. 2 as "Set 

i,j,k for h" and "Set i,j,k for v." In addition a command "Set i,j,k 

ford" has been reserved for possible inclusion of equipment to 



-1.15-

compute the depth component of lines. The data registers each accept 

ten bits of magnitude plus a sign bit. The binary point is just to the left 

of the most significant digit (e.g., iv
9

' see Table 1. 2, Section G). 

4. Alarm Clocks 

Slow 

s 2 3 17 18 19 20 21 28 29 35 

100 Time 

l__ Clock Selected 

Fast 

s z 3 17 18 19 20 21 28 29 35 

Time 

[__Clock Selected 

Two programmable Alarm Clocks are provided to give the com -

puter a real-time interrupt source. There is provision in the order 

code for inclusion of two more Alarm Clocks as specified by bits 19 and 

20 of the command. At pre sent only 00 and 01 are active. The clocks 

are 7-bit counters which are preset by the last seven bits of the ad­

dress field of the "Set Alarm Clock'' command and are driven by either 

a 50 -microsecond or a 1 -millisecond clock oscillator. Bit 18 de -

termines which clock source is to be used. 

The 50 -microsecond clock provides delays of up to 6. 4 milli­

seconds. The I -millisecond clock provides delays up to 0.128 seconds. 

Longer delays must be programmed by a succession of shorter ones. 

Because the clock oscillators are asynchronous, it is impossible to pre -

diet the accuracy of the clock closer than one oscillator cycle. Thus, if a 

clock is set to 67 and the I -millisecond clock is specified, an interrupt 

will occur somewhere between 67 and 68 milliseconds after the command 

is accepted. A clock set to 0 milliseconds will ring in less than 1 milli­

second. 

When an alarm clock counter corn.pletes its cycle a Direct Data 

Interrupt will occur. To identify the source of the interrupt, Input Sense 

Line 8 is turned on for Alarm Clock 00 and Input Sense Line 9 is 

turned on for Alarm Clock 01. (See Table 1. 3, Section G) 

A SENSE LINE OUTPUT Re set of an Alarm Clock will turn it off 

so that no further interrupts will occur iue to the clock. If such a Reset 

--n ---



-1.16-

is given while the Alarm is ticking, an interrupt will occur, but no 

Alarm Clock flag will be set. If the Reset is given when the flag is al­

ready up, no interrupt will occur. If an Alarm Clock command is 

given . .to an already ticking Alarm, it will reset to the new time. An 

interrupt will occur at this time, but no flag will be set. 

5. LigH.t Pen Track 

Start Pen Track 

s 2 3 4 78 17 18 20 21 22 25 26 

011 I I h I 110 I I 
v 

LMaster Ls lave 

Stop Pen Track 

35 

s 2 3 4 78 17 18 20 21 22 25 26 35 

I 011 I I I h 010 I I I v 

L-sLAVE 

In its application in Computer -Aided Design Studies, the ESL 

Console is used a great deal for tracking the movements of the light 

pen. To lessen the pen tracking burden on the computer, an automatic 

tracking feature has been added to the Console, making use of the line 

generator for generating the tracking cross. There are separate pen­

track registers for tracking on the Master and Slave independently. 

A Pen Track command to start tracking on the Master (bit 3 =ONE) 

causes the Master Pen Track Register to be loaded with the horizontal 

and vertical position specified by the decrement and address fields re -

spectively. The hardware will generate a tracking cross and maintain 

its up-to-date position automatically every five milliseconds. Each Pen 

Track cross requires about 200 microseconds, thus pen tracking uses 

four percent of display time for one pen. 

The computer may read the contents of the Pen Track Registers, 

whenever it desires, in the same manner that it reads the other input 

information available, as explained in a later paragraph. An important 

restriction exists however. Reading the Pen Track Register for the 

Master causes loss of the current h, v register contents, so it is 

best read after completion of a display list. 

Pen Tracking on the slave is initiated by a Pen Track command 

with bit 21 =ONE. It operates in an identical manner to Master Pen 

---------



-1.17-

Tracking, except that reading of the Slave Pen Track Register does not 

cause loss of the h, v registers. If both Master and Slave Pen Track­

ing generation are taking place, each takes 200 microseconds out of 

five milliseconds, so only'9. 2 milliseconds out of ten is left for display 

time. 

Since pen tracking cannot occur outside the Scope Field, the Pen 

Track Registers contain only ten bits each. Thus, the highest-order 

three bits of the h and v position read in from Pen Track Registers 

are extraneous, and are liable to contain false information. In order 

to interpret the pen position correctly as being on the Scope Field, 

these bits should be masked by the program and set to match the fourth­

most significant bit. Also, since the present Pen Tracking circuits 

have a maximum resolution of two scope increments, the least signifi­

cant bits of the h and v positions read in are meaningless and should 

be ignored. 

To halt pen tracking, a Pen Track command with a ZERO in bit 

18 should be given. The tracking cross will disappear and the Pen Track 

Registers will contain the address and decrement of the Stop Tracking 

command. 

6 . End of File 

s 2 3 17 18 20 21 35 

011 011 

This command merely sets up a pulse on the End of File Interrupt 

line into the Data Channel. This is a separate interrupt line from the 

Direct Data Interrupt, as discussed in IBM Special Features Bulletin 

for the Direct Data Channel (RPQ M90976). The End of File signal stops 

the Data Channel from sending further commands. The value of the End 

of File command is that it provides a way to terminate the Display List 

processing by the Data Channel without requiring that the number of 

output words in the list be counted ahead of time. The Address and 

Decrement fields are ignored by the Console, but can be read by the 

computer following an End-of-File interrupt. The present Display Con­

troller uses this feature to provide several types of transfers useful in 

subroutining picture data. 



-1.18-

7. Set C Control Word 

s 234567 9 10 11 

011 I I I I I I 
lli L. Clock Speed 

Plot Control Enable 
Magnify 
Malter 

17 18 20 21 22 23 26 27 28 29 30 31 32 33 3435 

I L Edge Detect I I L Focus L 
L__ Slave LPOl Camera 

LP02 Contra I 

Within the Display Console there are a number of special control 

flip-flops which affect various aspects of the display. This command 

will set these flip-flops if the appropriate bits (as shown in Table 1. Z, 

Section G) are ONE' s. 

The meanirtg of each of these special controls is discussed below: 

1 . Master Bit 3. If the Plot Control Enable (Bit 6) is 
ONE, Bit 3 sets the Master Plot Control flip-flop. 
If Bit 6 is ZERO, the logical "and" of Bit 3 with the 
Master Plot Control flip-flop sets the Master flip­
flop. 

When the Master flip-flop is ONE, normal plotting 
on the Master Scope will occur: when it is ZERO, 
the Master Scope will be blank. 

Z. M 1, M0 (Magnify). Bit 4, 5. These bits control the 

size of the increment taken in the h and v registers 
for all lines (including spacing lines after characters). 

3. Plot Control Enable. Bit 6. When this bit is a ONE, 
Bits 3, Z 1, Z 7 and ZS are used to set the Master Plot 
Control flip-flop, Slave Plot Control flip-flop, Master 
Light Pen Control flip-flop and Slave Light Pen Con­
trol flip-flop respectively. When it is a ZERO, the 
logical "and" of each of the flip-fl.ops above with its 
corresponding bit in the Set C word will set the 
Master, Slave, LPOl, and LPOZ flip-fl.ops respec­
tively. 

The purpose of the Plot Control Enable is to allow 
users to produce display programs which will run on 
either the Master, the Slave, or both. In order to 
do this the user would specify that his picture should 
appear on both scopes. The Display Controller uses 
the Plot Control Enable to assure that the user's 
display affects only the scope(s) to which he is as­
signed, thus preventing interfe.rence between two 
users. A user display should never include a Set C 
word with a ONE in the Plot Control Enable bit. 



-1.19-

4. Slow Clock. Bit 10. This bit controls the setting of a 
flip-flop (SLOW) which controls whether the basic con­
sole clock operates at its normal rate (a pulse every 
1. 8 sec), or at a slower rate (a pulse every 14. 4 µsec) 
for driving remote direct view storage tubes. At one 
time several of these tubes were connected to the ESL 
Console as an experiment. These have since been re -
moved so Slow Clock serves no function now. 

5. Slave. Bit 21. This bit sets the Slave Plot Control 
flip-flop if Bit 6 is ONE, or the logical "and" ofthis 
bit with the Slave Plot Control flip-flop sets the Slave 
flip-flop if Bit 6 is ZERO. The Slave flip-flop con­
trols the slave scope as the Master flip-flop controls 
the Master scope. (See Bit 3) Both Master andSlave 
flip-flops may be on simultaneously if identical dis -
plays are desired. 

6. ED. Bit 22. This bit sets the Edge Detection flip-flop 
which determines whether to create a Direct Data 
Interrupt upon crossing the Scope Field edge (ED=ONE) 
or upon crossing the Total Console Field edge 
(ED=ZERO). 

7. r
3 

through I
0

. Bits 23 - 26. These are the Intensity 

Control flip-flops. Considering Bit 26 as the least signifi -
cant bit, larger numbers cause brighter displays. 

8. LP02. 27. If Plot Control Enable (Bit 6) is a ONE, this 
bit sets the Slave Light Pen Control flip-flop. If Bit 6 
is a ZERO, the logical "and" of Bit 27 with the Slave 
Light Pen Control flip-flop sets the LP02 flip-flop. 
When set to ONE, the LP02 flip-flop enables Light Pen 
No. 2 (Slave Pen) to respond to points and lines drawn 
on the scope. It has no effect on Pen Tracking with 
Light Pen No. 2. If set to a ZERO this control can be 
used to exclude desired parts of the display from being 
seen by the Light Pen. 

9. LPO 1. Bit 2 8. Similar to LP02, except it is for Light 
Pen No. 1 (Master Pen). 

10. F 
1

, F 2 . Bits 30, 31. These flip-flops eventually will 

affect the focusing of the beam, but are not presently con­
nected. 

11. Camera Control. Bits 34, 3 5. These bits provide sig­
nals to control the operation of a D. B. Milliken movie 
camera. The bits are decoded as shown. 



-1. 20-

34 35 Action 

0 0 No Action 

0 1 Hang up Display Console for 125 msec. 

1 

1 

0 

1 

Close shutter. Do not advance film. 

Advance film (film will stop in open shutter 
position) and hang up Display Console for 
125 msec. 

The purpose of these controls is to synchronize the 
movie camera operation to the display frames. If a 
Set C command with bits 34 and 35 both ONE is pro­
vided at the beginning of a display file, the display is 
hung up for 125 ms while the camera advances a frame 
and stops with its shutter open. When the 125 ms times 
is up the display is released to process the display file 
and expose the film. The next cycle of the display file 
will repeat the operation. To stop filming, the state of 
the Set C command should be switched to bit 34 ONE, 
bit 35 ZERO. This will cause the shutter to close with­
out advancing the film, thereby preventing overexposure 
of the last frame taken. 

If bits 34 and 35 are both ZERO no special action is 
taken, thus Set C commands can appear in the display 
file without affecting the camera. 

8. Set F Control Word 

s 2 3 

011 

11 12 13 14 15 16 17 18 20 21 22 23 

I I I I I I I 1°
1 I I I 

Uu~
I Leright or Dim L Pen 

L_Move-1 

Up or Down 

Move - v 

Right or Left 

Move - h 

28 29 30 31 32 33 3435 

I I I I 
LNo Flash L L Scale v 

Scale h 

The F control word allows access to the increment inputs to the 

h and v registers directly. In this way any sort of display generator 

can be simulated. The controls available are: 

1. Move-h. Bit 12. A ONE causes an increment to occur 
in the horizontal direction of whatever magnitude has 
been called for in the Scale h

1
,h

0 
flip-fl.ops (bits 32, 

33 of this command). 

--- -- ---------~ 



-1.21-

2. Right or Left. Bit 13. This control determines the 
direction of any horizontal step called for by move -h. 
If a ONE, the step will be taken to the left. A ZERO 
calls for the step to be to the right. 

3. Move-v. Bit 14. Similar to Move -h, but in the verti­
cal direction. Its magnitude is controlled by the 
Scale v

1
, v 0 flip-fl.ops (bits 34, 35 of this command}. 

4. Up or Down. Bit 15. This determines the direction of 
any vertical step called for by Move -v. A ONE causes 
steps to be taken downward. 

5. Move-I. Bit 16. Similar to Move-h, but it increments 
or decrements the Intensity Register. The step is 
always just one unit. 

6. Bright or Dim. Bit 17. This determines whether Move -I 
commands intensify or dim the beam. A ONE in bit 17 
causes the beam to get dimmer. 

7. Pen. Bit 22. This bit gives override control on the 
Light Pen Sensitivity in the same manner it does for 
Line and Set Point commands. 

8. No Flash. Bit 29. This controls whether the point 
called for by this command is to be plotted or not. A 
ONE inhibits plotting. 

9. Scale h
1
,h

0
,v

1
,v

0
. Bits 32-35. These flip-fl.ops de­

termine the size of the increments that are to be taken 
in h and v. The following table applies: 

Horizontal Bit 32 Bit 33 Vertical Bit 34 Bit 35 
Step Size hl ho Step Size vl VO 

1 0 0 1 0 0 

2 0 1 2 0 1 

4 1 0 4 1 0 

8 1 1 8 1 1 

Note that the present beam position can be intensified by an F 

Word command with no step taken (Move h= Move v = Move I = O} and 

plotting (bit 2 9=0} . 

9. Character Generation 

The Display Console contains two symbol generation systems: a 

Straza Symbol Generator for producing 64 standard symbols, and an 

M. I. T. constructed Special Character Generator for creating any 



-1. 22 -

pattern on a 5 x 7 matrix for display of nonstandard symbols. In ad­

dition, a flexible automatic format control (spacing between characters) 

is provided by making use of the line generator. Table 1. 6 in Section G 

lists the character code for the Straza Symbol Generator. 

There are three modes of operation of the Display Console in 

generating characters. In the first mode (Unpacked Straza Mode), a 

single 6-bit character is given with each command. In the Packed 

Straza Mode, six characters are packed into a single output word. The 

third mode is the one in which nonstandard symbols are produced using 

a full 36-bit word to specify each character. 

a. Unpacked Mode 

s 2 3 4 5 6 11 12 17 18 19 20 21 22 23 25 26 35 

010 I I Character 

Lsign t.h 

In the unpacked mode, the 6-bit code of the character is 

held in bits 6 through 11 (see Table 1. 2 in Section G). The 6.h spacing 

after the character is contained in bits 12 through 17, with the sign of 

6.h in bit 3. The 6.v spacing is held in the address portion of the word 

and is ten bits in magnitude with sign in bit 21. The character is drawn 

by the Straza Character Generator starting at the location specified by 

the h and v registers, and will appear below and to the left of the 

starting point. One of the four character sizes is selected by bits 19 and 

20which set the sl and so flip-flops. 

After the character has been plotted, the line generator is auto -

matically turned on and a blank line is drawn of whatever length specified 

in the command, This permits spacing to the correct position for the 

next character. Note that the dot spacing for the blank lines after charac­

ters is automatically set to twice that for normal lines, and is further 

affected by the setting of the Magnify (M
1

, M
0

) flip-flops. Thus, the 

largest 6.h character spacing is 63 increments of 2 each ( 1. 26 inches) 

with M
1 

and M
0 

set to ZERO, 63 increments of 4 each (2. 52 inches) 

if M
0 

is ONE and M
1 

is ZERO, or 63 increments of 8 each (5. 04 

inches) if M
1 

is ONE and M
0 

is ZERO. (Normal spacing for size 0 

characters with M 1 and M 2 ZERO is 6.h=6, 6.v=O.) 



-1. 23 -

It is al so important to note that both the character generator and 

line generator outputs bypass the rotation matrix, and thus are unaf­

fected by it. By making the character spacing not rotate it is possible 

to associate written text with the end point of a line and have the text 

follow the end point as the line is rotated around on the scope. Note 

that if a block of several lines of text is attached in this manner, the 

spacing from the end of one line of text to the start of the next should be 

done by generating a blank character with appropriate -~h, -~v to 

produce a carriage return which will not be affected by rotation. If a 

line generate command were used instead, this line would be affected 

by the rotation matrix and text line 2 would rotate about the end of text 

line 1. 

Bit 22 gives override control on Light Pen sensitivity for this 

character in the same manner it does for Set Point and Line Commands. 

b. Packed Mode 

s 2 3 4 5 78 17 18 19 20 21 22 23 25 26 

\ 010 I \o\ 
Lsign ~h 

This mode for character generation was included to allow more 

dense packing of characters for standard textual output. It is made to 

conform to the Long Word format(. BCQ.) of the AED Compiler. 

35 

The Packed Character Generater command sets the Line Generator 

to the character spacing desired and puts the Console into a special mode 

in which it processes succeeding words as blocks of six characters in 

the format shown below. The first character (bits S through 5) of the 

first word following the command specifies the number of characters to 

follow it (i.e., how many characters are contained in the Long Word). 

and whether or not this is the terminating Long Word. Bits 1 through 5 

give the number of characters (up to 30) and bit S designates whether 

to terminate the packed character processing mode (bit S = ZERO) 

after this Long Word, or to treat the succeeding word as a new Long 

word {bit S = ONE). 



-1. 24-

First Word 

s 5 6 11 12 17 18 23 24 29 30 35 

Character Character Character Character Character 
l 2 3 4 5 

Number of Characters 
Terminate Condition 

Succeedina Words 

s 5 6 11 12 17 18 23 24 29 30 35 

Charac}er Character Character Character Character Character 
n n+l n+2 n..\3 n+4 n+5 

Figure 1. 3 illustrates a sample display list for the packed charac­

ter generate mode. The Console will display the 17 characters of the 

1st 
Long 
Word 

2nd { 
Long 

::;d{ 
Long 
Word 

110001 

Character 
6 

Character 
12 

100001 

000110 

Character 
6 

PACKED CHARACTER GENERATE COMMAND 

Character Character Character Character Character 
1 2 3 4 5 

Character Character Character Character Character 
7 8 9 10 11 

Character Character Character Character Character 
13 14 15 16 17 

Character 
1 

Character Character Character Character Character 
1 2 3 4 5 

NEXT COMMAND 

Fig. 1.3 Sample Packed-Character Display List 

First Long Word, the one character of the second Long Word and the six 

characters of the third Long Word in a string, each succeeding charac­

ter spaced by the amount .6.h, .6. v as called for in the command. 

If the Scope Field Edge is crossed by the line generator during 

character spacing and the Edge Detect flip-flop (ED) is ON, an inter -

rupt is generated identical to that described under Line Generation. No 

such interrupt will occur if the character itself spills over the edge. 

Bits 19 and 20 select the size as in Unpacked Mode. 

--, -



-1.25-

Bit 22 gives override control on the Light Pen sensitivity in the 

same manner it does for Line and Set Point commands. 

c. Special Character Mode 

s 2 3 4 5 78 17 18 19 20 21 22 23 25 26 

010 I I 1 I !Ahl I 0 I I I I I !Av! 

L___sign Ah LL LPen 
. sign Av 

size 

35 

This mode of character generation permits the creation of any 

symbol desired on a matrix array of dots. A Special Character Gener­

ator command loads the Line Generator with .6.h, .6. v information for 

spacing after the array is displayed, then puts the Display Console into 

a mode in which it processes each succeeding word as 35 bits to be con­

verted into a 5 x 7 array of dots. The 36th bit {bit S) is used to de -

termine whether to terminate the mode {bit S=ZERO) or to process the 

next word as another array {bit S=ONE). The format of the array is 

shown in Fig. 1.4. 

Start-+- X 6 12 18 24 30 

25 19 13 7 1 

31 2 8 14 20 

15 9 3 32 26 

21 27 33 4 10 

5 34 28 22 16 

11 17 23 29 35 

End__.. X 

Fig. 1.4 Assignment of Bits in Special Character 

To intensify any of the points of the array the appropriate bit 

of the data word is set to a ONE. Dot spacing is normally 2 in this 

mode, but by setting the SIZ 1 flip-flop ON {Bit 19= 1), this can be ex­

panded to 4. These can be expanded again by a factor of two by setting 

the Magnify flip-flop {M0) ON. M 0 also affects the line drawn after 



-1. 26 -

the character, but the SIZ 1 flip-flop does not. Although 5 x 7 is the 

standard size in this mode, it is easy to build up larger, more compli­

cated symbols by blocking groups of these arrays together. 

These symbols bypass the rotation matrix, but not the h, v regis -

ter. Note that since h and v are altered, the beam is not repo­

sitioned to its starting point at the end of a character. As shown in 

Fig. 1.4, the starting point is one position to the left of the upper left­

hand corner of the character, and the beam will end one position below 

the lower right -hand corner. In spacing the beam for the next charac -

ter, this repositioning must be accounted for. (For size 0 characters, 

6.h= 1, 6.v=7 will provide normal spacing.) Character spacing is still 

twice normal size in this mode. The rather strange bit pattern comes 

about because of the way the matrix is generated, and, because the 

data register and shifting logic used for the special characters are the 

same as those used for the packed Straza Characters. To form the 

matrix, the line gene rat or increments across the top row from left to 

right, drops down one row, and increments from right to left, etc. 

For each increment, bits 1 through 3 5 of the data word are rotated 

left six places and bit position 1 is tested to decide whether to in­

tensify. In making up bit patterns for special characters, it is sug­

gested that a chart such as Fig. 1. 4 will be helpful. 

Bit 22 gives override control on the Light Pen sensitivity in the 

same manner it does for Line and Set Point Commands. 

E. INPUT TO THE COMPUTER 

The Di splay Controller computer is able to read into its memory 

the h and v registers of the Display Console, the Pen Track regis -

ter s, and the data from the various devices on the control panel, which 

are described in the next section. To accomplish this, the computer 

first selects the input source by presenting Sense Lines with four 

Sense Lines coded to the desired unit. Table 1.4 indicates the ex­

isting input sources and their codes for selection. Table 1. 5 indicates 

the bit positions of the input words from h, v registers, the shaft en­

coders and crystal ball, and the Pen Track registers. The push but­

tons and switches are labeled as to their bit assignments. Selecting 

an input source causes the Console to put the data on the input lines to 

the Data Channel. The computer must then read the Data Channel to 

input a single word. 



-1.27-

Read Control of the Console has been made independent of Write 

Control. It is thus possible to read information from the console into 

the computer while the console is hung in some output condition, such 

as an Edge Crossing. This permits the computer to read h, v to 

determine the exact location of the crossing and then release the Con­

sole by means of a Re set Flags to finish the display list. 

Identical facilities are provided at the master and slave stations, 

with separate selection codes for read in to the computer; thus the 

following discussions apply either to the master or the slave stations. 

1. Control Panel 

Figure 1. 5 illustrates the control panel provided for input to the 

computer. At the bottom of the panel are the three 7-bit binary Shaft 

Encoders. There is no internal relation between the position of these 

knobs and anything else in the Display Console, and their interpre -

tation is handled purely by program. There is no interrupt caused 

when these are moved, and if the program is concerned with the po­

sition of these knobs, it must sample their contents often enough to 

make sense out of the data. There is no indication of the direction that 

the knob is turning, other than whether the number presented is getting 

larger or smaller. Note that since the code is continuous (modulo 2
7

), 

the sampling must be sufficiently rapid to insure the shaft does not 
0 

rotate more than 180 between samples. Normally 30 times per second 

is a satisfactory sampling rate. 

To the right of the knobs are located two switches marked BEAM 

OFF and POWER and a button marked RESET. The BEAM OFF switch 

originally blanked the beam so the operator could protect the screen 

from being burned by an improper program (one that continuously in -

tensifies the same spot). It was found that by keeping the intensity 

level adjusted properly this switch function was not necessary so it was 

disconnected. Since then, the switch has been wired to override the no­

plot control, to allow display of all lines, blank or plotted, on screen or 

off. This has proved useful for debugging purposes. The RESET but­

ton re sets the active control flip-flops of the Console. In this state the 

Console is ready to process a new command. The computer is not 

alerted in any way when this button has been activated. The POWER 

switches on the Control Panels are disconnected. 



DECIMAL 
SWITCHES 

TOGGLE 
SWITCHES 

KNOBS 

Jboo ooo ooo ooo ooo ooo ooo ooo ooo ooo ooo ooo 
S I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 

J1oo ooo ooo ooo ooo ooo ooo ooo ooo ooo ooo ooo 
S I 2 3 4 5 i 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 

~ ~ 
BEAM OFF POWER 

0 
RESET 

Fig. 1.5 Control Panel 

I 

'"'"' . 
N 
00 
I 

1 



-1.29-

Behind the panel on the Master, a Sonalert buzzer has been wired 

to the WHO flip-flop to give the operator an active alarm. The WHOA 

flip-flop was chosen because a continuous ONE state for this flip-flop 

usually indicates a "computer hung-up11 condition. The function of this 

flip-flop is described later. 

Above the knobs are two banks of 36 toggle switches, each of 

which constitutes one input word. These switches provide arbitrary 

control functions. There is no internal relation between the position 

of these switches and anything else in the Display Console, and their 

interpretation is handled purely by program. Like the knobs, these 

switches are sampled by the computer at whatever rate is set by the 

program. 

Above the toggle switches is a bank of nine binary coded decimal 

switches. These are mechanically mounted on horizontal slides in 

such a way that they can be spaced into any grouping. Thus, th.ey can 

be interpreted as nine individual 10 -position switches or three 1000-

position inputs or whatever arrangement the user desires. The bit 

assignment of the switches is shown in Table 1.5. 

2. Crystal Ball 

The Crystal Ball or 11 Globe, 11 illustrated in Fig. 1. 6, has spring­

loaded limited rotation about three axes of rotation, and provides input 

y axis 

z axis 

FOR EACH AXIS 

CODE MEANING* 

93 92 91 go 

1 0 
X axis l 1 

0 1 

0 0 

0 0 

0 0 

0 0 

Fig. 1.6 Crystal Ball 

0 0 Highest negative rate 

0 0 Middle negative rate 

0 0 Lowest negative rate 

0 0 Reset Position. Zero rate 

1 0 Lowest positive rate 

1 1 Middle positive rate 

0 1 Highest positive rate 

* Considering clockwise 
rotation as positive 



-1.30-

codes to the computer for three positions in each direction about each 

axis. The device is intended to be used as a three-step rate control to 

provide a natural easy control over the rotation of a three -dimensional 

object viewed on the screen. The input codes are merely processed 

through the Console, however, and do not directly effect any console 

registers. Thus the Crystal Ball can be used in any way that the pro -

gramme r de sires. Figure 1. 6 shows the relation between ball po -

sition and binary input for each axis (assuming positive rates are for 

clockwise rotation). 

3. Push Buttons 

The Push Button Box (Fig. 1. 7) is a unit containing 36 push but­

tons for control of the computer program. Pushing of any button will 

080 0GG G@B 
080 GG0 00@ 

I 
888 GGG G00 
888 0@@ GGG 

,--------' ~ 

~ 
~ HAN DR EST 

Fig. 1.7 Push-Button Box 

cause a Channel Interrupt to occur. The computer should then read in 

the push buttons to determine which one was pushed. Because there is 

no buffering of the push button data, it is possible (though not likely) 

for the computer not to get around to sample the buttons before a button 

is released. It is, therefore, advisable to give some visible indication 

on the display that a push button has been recognized. Like the switches 



-1.31-

and shaft encoders, no wired control has been assigned to any buttons. 

Their interpretation is controlled strictly by the program. 

The Push Button box has been de signed for easy use without looking 

at it, so that the operator's attention is not diverted from the CRT Dis -

play. The buttons are arranged like a keyboard and they are designed 

for very light pres sure. A special hand rest is provided with spacing 

bars separating groups of buttons to aid in locating oneself without 

looking at the box. A plastic holder is also provided above the box to 

slip an identification card into, so each user can associate the buttons 

with the particular uses in his program. 

4. Interrupts 

The Channel Interrupt is used to call the Central Processor into 

play when special conditions occur in the Console. The sources of 

interrupt are as follows: 

a. Alarm Clocks. One of the alarm clocks has rung. 
Input Sense Lines 1 and 2 identify these interrupts. 

b. Light Pen. If the light pen is enabled and it sees a 
point, line or character on the scope, an interrupt 
is generated and Input Sense Line 6 is set to ONE. 
In addition, the Display Console is "hung up" in a 
manner depending on what it was doing. If it is in 
the process of generating a line, it will halt as soon 
as the pen responds, leaving part of the line un­
finished. If the pen responds to a Set Point, the 
Console will halt before accepting the next command. 
If the pen sees a Straza character, the Console will 
halt just before plotting the blank spacing line to the 
next character. Special characters work just like lines. 

The use of the light pen interrupt to identify to the 
computer a particular item of displayed information 
is an important means of man -machine communi -
cation. Set points can be used as "light buttons," 
i.e. , programmable switches. Displayed lines or 
characters can be altered, moved, or erased. The 
computer can identify lines in two ways. The exact 
point on a line seen by the pen can be obtained by 
reading in the h, v register when this interrupt 
occurs. If just identification of which line has been 
seen is enough, the computer can examine the state 
of data channel and determine the memory address 
of the next output command. Note that the only way 
to identify which of six packed characters was seen 
is to establish each character location and compare 
it to the h, v register. 



-1.32-

Presenting Sense Lines with the Reset Flag bit ON 
(Line 6) will release the line generator and allow an 
interrupted line to be completed. If the h, v register 
word is read in by the computer, bits 3 and 21 con­
tain flags which identify which light pen (Master or 
Slave) saw the line. Bit 3 flag is set by the Master 
Pen. Bit 21 flag is set by the Slave Pen. Both are 
re set by Re set Flags (Output Sense Line 6). 

c. Edge of Scope. This interrupt, which is identified by 
Input Sense Line 7, occurs if the Edge Detect flip-flop 
(ED) is ON and the Scope Field edge is crossed by a 
line during Line Generation or spacing for Character 
Generation. If ED is OFF, it occurs when a line is 
drawn completely off the Total Console Field. When 
this interrupt occurs, the Line Generator is hung up 
in the same way as described in the previous para­
graph. 

The same two options described for the Light Pen 
interrupt are available to the programmer after the 
Edge of Scope interrupt. Thus, the computer can 
find the exact edge co-ordinates of the line crossing, 
or just identify which line is the culprit. 

d. Push Buttons. When any of the 36 push buttons 
available on the Master Console for input to the com­
puter is pushed, an interrupt is caused and Input 
Sense Line 8 is turned ON. The computer can then 
input these buttons to determine the particular button 
pushed. The sense line flag is reset by a Reset 
Flags (Output Sense Line 6). 

The slave push buttons cause Input Sense Line 3 to 
be turned on. This flag is also reset by Reset Flags. 

F. INTERRUPT PROCESSING 

The programmer should be aware that the processing of Channel 

Interrupts is_ fraught with hazards. Some are imposed by the nature 

of the 7094 Direct Data Channel, others by the characteristics of the 

Display Console. 

Halting the Data Channel in the midst of a display list to process 

an interrupt can also cause difficulties. For example, it is necessary 

for the computer to know reliably where to re start the list. If the 

computer merely stores the channel address to preserve the list ad­

dress, and then resets the channel to start the list again, it cannot be 

sure that the Display Console did not accept the command that was 

being held on the output lines just before resetting the channel. If this 



-1.33-

occurs, an address is skipped which produces annoying jumps in the 

display. To avoid this problem the WHOA flip-flop was added to the 

Console which causes the Console to hang up before accepting the 

next command. The computer sets the WHOA flip-flop by presenting 

Sense Lines with Line 5 of the Sense Output word= ONE. By giving 

such an instruction several cycle times before storing the channel 

the computer can be sure that the Data Channel address will not be 

stored just as it is about to change state. 

If the Data Channel is stopped on a data word for packed or 

special characters, the Console is in a condition where it expects the 

next output word to be a data word, not a command. If the computer 

were to attempt to output any command at this time, it would be im­

properly interpreted. For a command to be processed correctly in 

this situation, the Console must be reset with a Panic Reset before 

the command is put out. This, however, clears the Console's memory 

that it is awaiting a character word. Restarting on the character word 

would foul up the re st of that one pass through the display. The com­

puter must either restart the display back at the beginning or it must 

be able to identify the stored channel address as being that of a Charac -

ter Word and restart at the last Set Point Command. Reading the h, v 

register can determine that this is a Character Word (Bit S = ONE). 



-1. 34-

G. COMMAND FORMAT• BIT ASSIGNMENTS AND CHARACTER 
CODES 

The following tables summarize the hardware assignments. 

Table 1. 1 

COMMAND FORMAT FOR ESL DISPLAY CONSOLE 

7094 Bits Function Option 

Prefix Tag 

s 1 2 18 19 20 4 

0 0 1 x x x Set /:::;.Z component 
of line 

0 0 0 0 x x Plot line /:::;.X, t::,.y,(t::,.Z) Visible 

1 x x 11 11 Invisible 

0 1 0 0 sl so 0 Character Generation Packed Mode 

0 x so 1 11 11 Special Symbol 
Mode 

1 s1 so 
11 11 Unpacked Mode 

0 1 1 0 0 0 Plot Set Point X, Y Visible 

1 0 0 11 11 Invisible 

0 0 1 Load Control Word C Set various con-
sole parameters 

1 0 1 Load Control Word F Incremental 
beam control 

0 1 0 Start Light Pen Track Master or Slave 

1 1 0 Stop 11 11 11 11 

0 1 1 End of File Jump Address 

1 1 1 Not Used 

1 0 0 0 11 AO Set Alarm Clock Slow 

1 Al AO 
11 II Fast 

1 0 1 x x x Set i, j, k, for h 

1 1 0 x x x Seti, j, k, for v 

1 1 1 x x x (Reserved to set 
i, j, k for depth 
coordinate, d) 

Notes: s
1 

and s
0 

specify character size (4 sizes available). 

A
1 

and A
0 

specify which of four Alarm Clocks, (only two installed). 

X indicates 11 don't care 11
• 



-1. 35-
Tobi• 1.2 

COMMAND llT ASSIGNMENTS FOR ESL DISPLAY CONSOLE 

Unpacked Packed Si.-ecial 
7094 Set Set Generate Character Character Character Set Set Set Set Light Pen Alarm 7094 
Bit. Foint . Line , Generator Generator Generator i,j,k for h i,j,kforv C Control F Control Track Clock EOF Bit• 

s 0 0 0 0 0 0 I I 0 0 0 I 0 s 
I I 0 0 I I I 0 I I I I 0 I I 

2 I I 0 0 0 0 I 0 I I I 0 I 2 

3 Sign• Sign- x Stan x Sign x Sia;nx si,n ;, Sign iv Master (1) Ma•ter (1) 3 
1--- 1------1 

4 0 I 
\9 

1
v9 Ml} Increment 4 

1------1 
5 hl2 i.a i .. a M Sise 

5 0 ,____, 
6 hu ~ i.1 •.1 Plot Control 

~ 
7 hlO c4 'i.6 '•6 1 

h9 
1------1 

8 h9 •9 X9 CJ h9 h9 'i.s '.s 8 
Char~ I--

9 ha ., XB C2 h8 h8 'i.t • ... ha i-!-
10 h7 •1 •7 cl h7 h7 'i.1 1.3 ClockJ;;;.:":;tJ.°

1 h7 10 
1---

11 h6 "6 x6 co h6 h6 'i.z 1v2 h6 II 
I---

IZ b5 •s •s h5 h5 h5 i.1 1.1 Move h hs IZ 
I---

13 h4 •4 X4 h4 h4 h4 'i.o 1.0 Right (0) Left (I) h4 ~ 
14 h3 •3 •3 h3 h3 h3 SI•" Ji. si,n J. Move v h3 14 

I---
15 "z •2 X2 hz h2 hz Ji,, jv9 Up (0) Down (I) hz 15 

I---
16 hi •1 xi hl hi hi Ji.a lva Move I hi 16 

• I---
17 ho •o XO ho ho ho 'i.1 1.1 Brilht (01 Dim (II 17 

18 [Pfot-;:'J. or 
Blank i_i ~t:r1f1~r I 0 0 

li.6 jv6 0 I °"l' Off .oi r..:-~ ~ 0 18 

19 0 

~Js1 .. ~}Sloe 
s

1 
(Siu) 

'i.s J.5 0 0 I 
Al} 

I 19 
Clock 

zo 0 so li.t lyt I I 0 AO I zo 

Zl si,ay Slsny si,n y si,n y li.1 J.3 Slave (I) 51"ve (I) 
~ 

22 Pen Pen Pen Pen Pen ~ lvz ED l!:da• Detect) Pen Z2 
I---

Z3 •u Ii.1 J.1 '] Z3 
1--

Z4 ... Ii.a lvo 'z "1tenoity ~ 
25 "10 Sisn 11. Sien kv 11 

~ 
26 ., Y9 •9 ~ •9 11.9 kv9 lo ., 26 

I--
27 .. , Ya •e •e •e 11.a kv8 LPOZ (Slave) •a Z7 

f------
28 •1 Y7 •1 •1 •1 11.1 kv7 LPOl (M.a•ter) •1 ~ 
29 .. 6 y6 .6 .6 .6 ~ kv6 No Fla•h v6 '6 ~ 
30 •s Y5 •5 •5 •5 11.s k,.5 Fl} 

•5 t5 30 
Focu• 1-----1 

)I •4 Y4 V4 v 4 •• .,,. kv4 F2 •• •• ~ 
32 VJ Y3 •3 •3 V] .,,3 ky] ~.} •3 •3 ~ Time 
33 Vz Y2 V2 Vz Vz kw kvz "i.o •z tz 

~ 
H •1 Y1 ., vi •1 11.1 kvl Camera 

S Scale 
vi '1 34 f-!! 1------1 

35 •o Yg •o •o VO .,,0 kvO Control Svo • to 35 

Note: A h1ank in anv bit positinn inrlir:<it~"' "f"lnn't r, ...... 



This empty page was substih1ted for a 
blank page in the original document. 



-1. 37 -

Table 1.3 
SENSE INPUT AND OUTPUT WORDS 

Sense 
Input Number IBM Bit Meaning 

1 8 Alarm Clock No. 1 Rung 

2 9 Alarm Clock No. 2 Rung 

3 10 Push Button 2 (Slave) 

4 11 Not Used 

5 12 Not Used 

6 13 Light Pen Seen 

7 14 Edge of Scope 

8 15 Push Button 1 (Master) 

9 16 Not Used 

10 17 Not Used 

Sense 
Output Number IBM Bit Meaning 

1 8 Reset Alarm Clock No. 1 

2 9 Res et Alarm Clock No. 2 

3 10 Not Used 

4 11 WHOA 

5 12 Panic Reset 

6 13 Reset Flags 

7 14 Select Register Bit 0.., 

8 15 Select Register Bit 1 See 
>- Table 1.4 

9 16 Select Register Bit 2 

10 17 Select Register Bit 3 _.... 

---------



-1. 38-

Table 1.4 

SENSE LINE OUTPUT BITS FOR INPUT SELECTION 

Sense Output Nmnber l 
7 8 9 10 

Device Selected 
I 

0 0 0 0 h,v Register 

0 0 0 1 Unassigned 

0 0 l 0 Push Buttons l 

0 0 l l Push Buttons 2 

0 l 0 0 Auto Pen Track Register 1 

0 1 0 1 Auto Pen Track Register 2 

0 l l 0 Switch Bank l B {lower bank) 

0 l l 1 Switch Bank 2 B (lower bank) 

1 0 0 0 Shaft Encoders and Crystal Ball l 

l 0 0 1 Shaft Encoders and Crystal Ball 2 

1 0 1 0 Switch Bank IA (upper bank) 
- --

1 0 1 1 Switch Bank 2A {upper bar.k} 
r----· 

1 1 0 0 Not Used 

1 1 0 1 Not Used I 

1 1 1 0 Decimal Switches .i I 
1 1 1 1 Decimal Switches 2 

Note: Master = 1, Slave = 2 



-1. 39-

Table 1.5 

DATA INPUT BIT ASSIGNMENTS 

7094 h, v Decimal Light Pen 1 Light Pen 2 
Bits Registers Shaft Encoders Digiswitches Register Register 

s Char. Cmd. d93 
r--

1 d92 9th 
r-- > (leftmost) 

2 d91 Dig is witch 

3 LPlS gx3 d9 0 I--- u_, 

4 gx2 Crystal d83 

> Ball I---
5 h12 gxl x axis d82 

1--- 8th 
6 hll gxO d81 

r--
7 h10 •y3) d80 

1---
8 h9 g 2 Crystal 

~') 
PTl h

9 
PTZ h

9 y Ball 
9 ha gyl y axis d72 PTl h 8 

PTZ h
8 

I--- 7th 
10 h7 gyO d71 PTl h 7 

PTZ h 7 

11 h6 
.., 

d70 PTl h6 
PTZ h 6 gz3 

I-
12 hs gzZ Crystal 

~') 
PTl h 5 

PTZ h
5 

> Ball 
13 h4 gzl z axis d62 PTl h 4 

PTZ h
4 

I- 6th 
14 h3 gzO .J' d61 PTl h

3 
PTZ h

3 
I---

15 hz e.t6 d60 PT! h
2 

PTZ h
2 1---

16 hl e.t5 d53 PT! h 1 
PTZ h 1 

f--
17 ho e.t4 d52 * * 

I--- 5th 
18 ~3 left d51 

encoder 1---

1'9 eJ.2 d50 
-- 1---

20 e .tl d43 
1---· 

21 LPZS eJ.O d42 
1---' > 4th 

22 ec6 d41 
1---

23 Vl2 ec5 d40 1---· 

24 vll ec4 

~') center 
25 vlO ec3 encoder d32 

1---· 3rd 

26 
~ ecZ d31 PTl V9 PTZ v

9 1---

27 VB eel d30 PT! vB PTZ VB 
f--

ZB v7 ecO 

~') 
PTl V7 PTZ v

7 

29 v6 er6 d22 PTl v
6 

PTZ v 6 I- 2nd 
30 vs er5 d21 PTl V5 PTZ V5 

I-
31 v4 er4 dZO PTl V4 PTZ V4 

1---

32 V3 er3 right dl3 PTl v
3 PTZ V3 

1---
33 encoder dl

2 
1st 

PTl v
2 

PTZ v2 Vz er2 (rightmost) f----
Digiswitch 34 vl erl dll PT! v 1 PTZ v

1 I-
35 VO erO dl

0 * * 
* The present Pen-tracking circuits are such that the smallest step is equal to two scope 

increments. The sc bits are reserved for PT h
0 

natl PT v 0 if the smallest tracking step 
is changed to one sc0pe increment. 



-1. 40-

TABLE 1.6 STRAZA SYMBIL GENERAT8R CIDE ASSI<J.mENT 

ICTAL CIIE SY!IBIL ICTAL CIDE SYl'BIL ICTAL CIDE S'fi-BIL 

00 0 30 H 60 <SPACE> 

01 l 31 I 61 I 

0'2 2 32* • ' 
62 s 

03 3 33 • 63 T 

04 4 34 ) 64 u 

05 5 35 • . 65 v 

06 6 36* f 66 w 

07 7 37* .. 67 x 

10 8 40 - 70 y 

u 9 41 J 71 z 

12* ...., 42 K 72* > 

13 : 43 L 73 1 

14 ' 44 M 74 ( 

15* - 45 N 75* J 

16* @ 46 II 76* [ 

17* 8c 47 p 11*. < 

20 + 50 Q 

21 A 51 R 

Z2 B 52* O/o 

23 c 53 $ 

24 D 54 * 
25 E 55* ... 

26 F 56* ? 

27 G 57* ! 

*Note: This Code differs from the BCD Code used on CTSS. 



CHAPTER II 

THE DISPLAY CONTROLLER 

A. INTRODUCTION 

Application of highly interactive computer graphics to large, com­

plex design problems imposes stringent requirements for both real­

time response and extensive computation and storage facilities. If a 

sophisticated graphics console is to provide acceptable interaction 

with a user, certain real-time actions are necessary: 

1. The picture must be maintained on the screen at all 
times by executing a display file of commands to 
the display unit sufficiently often to minimize 
flicker. 

2. There must be very fast response to interrupts 
(e.g., light pen "see", button push). 

3. Execution of real -time programs must be provided 
at regular intervals in order that certain transfor­
mations on the screen (e.g., rotation of a three -
dimensional picture) appear to be taking place con­
tinuously. 

The computation facility which provides these services will be called 

the Display Controller. 

In addition to these real-time requirements, the user also needs 

occasional extensive computation for manipulating his data structure, 

for analysis or for simulation. Finally, he needs mass storage to re -

tain his data and programs. However, it is uneconomic for a single 

on-line user to operate a computer with facilities which he needs only 

occasionally. A large time -shared computer such as the IBM 7094 at 

Project MAC meets this need for computation and storage in an eco­

nomic manner. 

In 1964 the ESL Console was attached directly to the 7094 over a 

high-speed data channel, the Display Controller actions above being 

provided by that computer as well as the time-sharing services. Ex­

perience showed that it was not reasonable for the time-shared 7094 

to provide the real-time services, so in 1967 a PDP-7 was acquired as 

a Display Buffer Computer to store the picture and to provide these 

services. These two systems and their corresponding user interfaces 

are described in this chapter. 

-2. 1 -



-2. 2-

B. DIRECT CONNECTION TO THE 7094 TIME-SHARING SYSTEM 

1. General Operation 

The time -sharing system supervisor resides permanently in 

one 32K core of the 7094 known as A-core, User programs are 

swapped into the 32K B-core according to a scheduling algorithm, 

run for a certain period of time, and swapped out again, The user's 

program, therefore, has only intermittent access to the machine; so 

it can not be guaranteed that at any given time his program will be in 

core. The Display Controller services stated above must be available 

at any time, whether the user's program is in core or not, Therefore 

these have been provided as a part of the A-core time-sharing Super­

visor, called the DSCOPE module. The three basic functions of the 

DSCOPE Display Controller are: 

1. To store the display file (a sequenced list of display 
commands)and send them to the console every 3 0 ms. 
to maintain the picture. 

2. To record all real-time events or attentions. These 
are placed in a "first-in first-out" list known as the 
attention queue, Attentions occur when a button is 
pushed or when the light pen sees a picture part. 
These attentions are available to the user whenever 
his program is in B-core. 

3. To perform a limited number of real-time functions 
which currently include rotation, translation, and 
magnification of pictures under control of the crystal 
ball or shaft encoders, and the ability to make pic­
tures follow the light pen, The specifications of 
real-time program operation de sired a:re called real­
time instructions. Ideally the user should be able 
to write his own real-time programs and pass them 
into A-core for operation, but system security and 
core space problems make thi~ impossible. 

DSCOPE provides a single memory area called the display buffer to be 

used for storing the display file, the attention queue, and the real-time 

instructions. The allocation and organization of this buffer is done by 

the user's B-core program, 

DSCOPE presently provides facilities for two independent dis -

play console users, or for one user with a display buffer twice as 

large. In the case of two users, it alternates displaying the two pic­

tures, The Display Controller assures that the picture appears on the 



-z. 3 -

appropriate console(s). All user re.ferences to the. display buffer are 

in terms of relative locations, starting at zero, so that the same user 

program may be run on either console without modification. 

Z. Graphical Output - The Display File 

The user's display file (sequence of display commands) must 

start at relative location zero in the display buffer. When he first 

logs on to the Display Console. the first word of the buffer is set to an 

"end of display file" command. The user may then build up his own 

display file by transmitting display commands into the display buffer 

starting at location zero displacing the "end of display file" command. 

In addition to the standard console commands, the display commands 

include various transfer commands which allow the user to perform 

display transfers within the display buffer, and to perform subpicture 

calls and returns. The format and description of these commands 

are given in Section 4. i. 

There are no restrictions on what da,ta may be placed in the dis -

play buffer. It is solely the user'• s responsibility to assure that his 

display file ultimately terminates with the "end-of-:display file" com­

mand, that subpictures return properly, etc. If the user wishes to 

display his picture at either console, the Set C comm.ands should al­

ways specify both consoles. The Display Controller will assure that 

the picture appears only on the console(s) to which the user is signed 

on. It will also initialize the console with normal (unity) rotation and 

scale, full intensity, light pen not enabled, and .a set point at the 

center, before starting each frame of the user's picture. The user 

should not include alarm clock, tracking cross, or "plot control 

enable" Set C commands in his display file as they will cause erratic 

behavior which cannot be controlled by the Display Controller. 

3 • Console Inputs 

There are two types of inputs available to the user, The passive 

inputs, including toggle switches, digi-switches, and analog inputs 

(globe, knobs) may be read at any time by specific calls on the Display 

Controller. The occurrence of an active input, light pen see or button 

push, causes information concerning this action to be placed in an 

attention queue~ When the user's program is brought into core, he may 



-2. 4-

request that the earliest attention in the queue be transmitted into his 

own core. A user who expects attentions must allocate space in his 

display buffer for an attention buffer in which the queue may be stored. 

For pre sent time -sharing response, a length of 100 words gene rally is 

adequate. Attentions which occur when the buffer is full are lost. In 

requesting an attention, the user may also specify that if none are 

available, his program should be put into "input wait" status until one 

is available. 

Five push-buttons have been assigned certain meaning by the Dis -

play Controller: 

Button Function 

S Is an on/off switch for light pen tracking with the 
tracking cross. 

1 Starts a "rubber band line". If the user is tracking, 
a set-point is placed at the current pen position from 
which a line will be drawn to the current pen position 
every 30 ms. Subsequent pushes of button 1 termi­
nate the pre sent line and start a new one. 

2 Ends a "rubber band line". Terminates the present 
line and detaches the tracking cross from the line. 
Each termination of a line by button 1 or 2 is ac­
companied by an appropriate attention. 

3 Turns the picture on and off. 

4 The movie camera may be attached to button 4 by a 
call to the Di splay Controller. It may be used as an 
on/off switch, or as a signal to take a specified number 
of frames. 

4. The DSCOPE Interface 

a. Introduction. The DSCOPE Interface is the means by which 

the user's program in B-core has access to the facilities of the Dis­

play Controller module in A-core. It accepts a list of commands 

sequentially stored in user core and interprets these commands to per­

form actions within itself. There are presently eight different oper­

ations, one of which contains a subset of about twenty suboperations. 

In essence, the user constructs a program which the controller will 

run interpretively. The "hardware" which the user sees consists of a 

Pseudo -Accumulator (PAC) which he may load, store, and shift at 



-2. 5 -

his will and a Control Counter (CC) which is used to specify lengths of 

blocks for transmission or allocation. Block transfer operations are 

provided which transmit data across core boundaries either into or 

out of the display buff er. The burden of maintaining a correct display 

buffer is placed on the user. Steps have been taken within the Con­

troller to insure that one user is completely separate from the other 

in order to avoid user conflict by inadequately debugged programs. 

Any error detected in the running of the display file for a user (e.g., 

protection violation) results in that display file being terminated im­

mediately. Any error in the interpretive running of the DSCOPE com­

mand list results in the display file being reset to an effectively empty 

one, for the controller cannot insure the integrity of a file so terminated. 

In the case of a command list error, there is a state word from which 

the user can determine the type of error, and the value of the DSCOPE 

call will be the number of the command in the command list which 

caused the error. 

b. Initialization Operations. The user may sign on to the Display 

Console with the LOGON operation. Its argument is the number of 

consoles desired (one or two). Signing on to two consoles means that 

the user may plot on either or both scopes, and the double size display 

buffer is available to him. LOGOFF detaches the user from the con­

sole(s), turns off his picture, and frees the console for other users. 

The user may specify the relative location of the start of attention 

buffer in the display buffer with the SAB (set attention buffer) operation, 

after first loading its length into the CC (control counter). 

Similarly, the CC and the RLT (real-time) operation specify the 

length and start of the real-time buffer which contains the real-time 

instructions specifying real-time actions desired by the user. There 

is a separate CAMERA operation which attaches the synchronized movie 

camera to push button 4 as an on/off switch, and may specify that the 

camera be run for a number of frames. CLATN clears out any waiting 

attentions in the attention buffer. CLEAR resets display file to empty, 

stops tracking, and removes any partially completed rubber band line, 

and may also call CLATN. TRACK turns the tracking cross on or off. 

c. Transferring Information. Three block transfer operations are 

available. XMTBA transfers information from B-core to A-core (the 



,.--- _,,........,.-----------

-Z. 6-

display buffer), XMTAB from A-core to B-core, and XMTAA from one 

A-core location to another. For each of these, the CC specifies the 

number of words to be moved, and the command specifies FROM and 

TO addresses. All A-core addresses are relative locations in the 

display buffer. 

d. The Pseudo-ACcumulator (PAC) and the Control Counter (CC). 

The operations LAC, DAG, SHA allow the user to load, deposit, and 

shift the pseudo-accumulator. It may be loaded from either core, and 

stored into either core. It is possible to store only the address, tag, 

or decrement of the PAC. The LCC operation loads the control counter. 

e. Reading Inputs. Tl;ie .ATTN operatiqn transmits the !irst item 

on the attention queue to the user. It allows the user to specify whether 
. . 

or.not he wants to go into input wait if no attention is available. The 

formats of attentions are given i:q. Section 4.j. 

The passive inputs may be read at any time by the operations 

DIGI, TOGA, TOGB, ANALOG, CROSS. The exact meaning of the 

values of these inputs is given in the hardware description. 

f. Calling Seguenc«r. The DSCOPE supervisor entry is called 

with the following sample sequences: 

(AED-0) 

(MAD) 

(FORTRAN) 

(FAP) 

NERR 
STATE 
SIZE 
DISPLA 

DSZ 
COMLST 

NERR = DSCOPE(COMLST, STATE) $, 

NERR = DSCOPE. (COMLST{N), STATE) 

NERR = DSCOPE(COMLST(N), !STATE) 

TSX 
TXH 
TXH 
STO 
CLA 
TMI 
BSS 
BSS 
BSS 
OCT 
OCT 
OCT 

OCT 
EQU 
OPR 

DAC 

DSCOPE, 4 
COMLST 
STATE 
NERR 
STATE 
ERROR 
1 
1 
1 

377777377777 
•-DISPLA 
1,, LOGON 

SIZE, 0, 1 

Display Commands 

End of file 

Logon with super -
visor 
Save Display space 
size 

-- -- -------~-------------------------------



LCC 
XMTBA 

OPR 

-2. 7 -

DSZ 
DISPLA,, 0 

, ,END 

Set Control Counter 
Move display to dis­
play space location 
zero 

End of command list 

where COMLST is the start of the command list (forward-stored array; 

therefore COMLST(N) for MAD· and FORTRAN} and STATE is a word 

reflecting the user·'s state at the completion of the commandlist. (See 

Section 4. k for the interpretation ·of the bits in this word.) NERR will 

be the number of the command in COMLST (starting at zero) which 

caused the error, whenever there is an error. 

g. Display Operations. The general format of the command 

words to DSCOPE is shown below. 

s 2 3 17 18 19 20 21 35 

I ~ I D I~ I A 

The three bit OP specifies one of the eight operations. The OPR 

set uses the Q field as an extension of the OP code. The IND bit 

indicates that the instruction is to be indirectly addressed. If IND is 

on when DSCOPE expects a display buffer address, the B-core location 

is used for the indirect addressing and the final result is interpreted 

as the display buffer address. The configuration bits C select options 

on several operations. 

h. Detailed Description of DSCOPE ·commands. There follows a 

detailed description of the operations. All references to locations i:ri 

user core are checked for legality (before an:d after indirect addressing) 

as are the limits of the XMT class commands. Any error in the re­

location and protection of these addresses results in an error with 

PR OTB bit set in the state word. · All display buffer (A-core) address 

references refer to relative locations in the user's display buffer 

starting at zero. Any error will return with the PROTA bit set. Where 

the symbol "(IND)" is used, it means that if the indirect bit is present, 

indirect addressing will occur. 

. I 



-2. 8-

OPR(O) - Operate 

The operate class is used to encode a number of different functions. 

These are specified by the decrement (Q) of the command. These are 

the le gal .!? codes and their functions: 

(0) - END. Signifies the end of the command list. 

(1) - LOGON. The address (IND) contains the number of consoles 

desired by this program (one or two). If the number of consoles re -

quested is not available, an error return is made with the FULL bit set 

in the state word. On a successful LOGON the user pseudo-accumulator 

(PAC) is set to the length of the display buffer. If the user is already 

logged on, he will be logged off and on again. LOGON performs the 

additional functions CLEAR and CLATN to obtain a complete reset of 

display status. 

(2) - LOGOFF. This operation logs the user off and returns his 

allocated consoles to the pool. If he is the only user, the console is 

removed from service and further interrupts are ignored. The address, 

IND, and configuration are ignored. 

(4) - SAB. The address (IND) specifies the location in the user's 

display buffer where the attention buffer will begin. The length of the 

attention buffer is set by the user's control counter (CC). If the user 

does not establish a long enough buffer for his expected rate of inter­

action, the buffer will overflow, and further attentions will be lost 

until he makes space in the buffer by calling ATTN. If the address is 

zero, the current attention buffer will be destroyed and no further 

attentions will be accepted. 

(5) - ATTN. The address (IND) specifies the B-core address of 

a forward-stored array where the earliest attention is to be returned. 

If there are no attentions present and the configuration bits are zero, 

the user will leave working status and be put into input wait. If there 

are no attentions and configuration bits are nonzero, the Display Con­

troller will return the first word as a zero indicating that the attention 

buffer was empty, and the user program will continue to run. For the 

format of the attentions see Section 4.j. 

(8) - CLEAR. This command performs the following functions: 

(1) resets the display file to nil; (2) stops tracking and wipes out any­

thing in the "rubber-band" buffer; and (3) if the address is zero, also 

resets any attentions in the attention buffer (CLATm. 



-2.9-

(9) - CLATN. This command clears out any waiting attentions 

pre sent in the attention buffer. 

(10) - REALT. This command indicates to the Display Controller 

that various real-time actions are desired. The address (IND) points 

to a starting location in the display buffer of an array which contains 

the real-time instructions. Each instruction specifies what action is 

desired on what display commands with what triggers. The length of 

this buffer is specified by the contents of the control counter (CC). The 

available functions and the formatting of real-time instructions are de -

tailed in Section 4. 1. An address of zero terminates all re al -time 

actions and frees the space occupied by the real-time buffer. 

( 11) - PICTUR. The address (IND) is used to turn the picture on 

or off. If it is nonzero the picture will be run; if zero, stopped. 

(12) - TRACK. The address (IND) will turn the tracking cross on 

if nonzero or off if zero. If the configuration bits {19 and 20) are zero 

the cross will appear in the upper right hand corner of the screen; 

otherwise the pseudo-accumulator (PAO) specifies the h coordinate 

{bits 8-17) and the v coordinate {bits 26-35) for the "light pen track" 

command. 

{13) - CAMERA. The address (IND) contains the count of frames 

to be taken each time button 4 is pushed. If the configuration bits {19 

and 20) are zero, the camera will be started on, taking the number of 

frames specified, then stopping, repeating on each push of button 4. If 

button 4 is pushed while the camera is running, it is stopped and the 

frame count is reset. A count of zero turns the camera off and dis­

connects button 4 from it. 

(14) - RDSTAT. Read display status of user. The address (IND) 

points to the beginning of a forward-stored array in B-core into which 

the display program parameters will be read as follows: 

0 Length of display buffer 

1 Relative location of start of attention buffer 

2 Length of attention buffer 

3 Relative location of start of real-time buffer 

4 Length of real-time buffer 

5 Camera frame count 

--------



-2. 10-

The CC contains the maximum number of parameters to be trans -

mitted into the array. 

(20) - DIGl. The contents of the decimal switches is read into the 

user's pseudo-accumulator (PAC). 

(21) - TOGA. The contents of the upper bank of toggle switches is 

read 'into the use~'s pseudo-accumulator {PAC) .. 

(22) - TOGB. The contents of the lower bank of toggle switches 

is read into the user's pseudo-accumulator (PAC). 

(23) - ANALOG. The contents of the globe and knobs is read into 

the user's pseudo-accumulator (PAC). 

(24) - CROSS. The position of the tracking cross is read into the 

user's pseudo-accumulator (PAC). If the user is not tracking, the 

value read in by CROSS has no meaning. 

(30) - TYPE. Reserved for typewriter. Not presently connected. 

LAC (ll - Load Accumulator. 

This operation loads the user's. pseudo-accumulator (PAC) from 

the address (IND). If .the decrement is zero, the address is inter­

preted as a display buffer location, otherwise B-core. 

DAC (2) - Deposit Accumulator 

This operation deposits the user's PAC into the address (IND). 

Core references are as in LAC. In addition, the two configuration bits 

( 19 and 20) are interpreted as follows: 

00 store whole word, 

01 store address only, 

10 store decrement only, or 

11 store tag only. 

SHA (3) - Shift Accumulator 

The PAC is shifted the number of places in the address (IND). If 

the decrement is nonzero, the shift is made to the left, otherwise to 

the right. The PAC is a logical acc~mulator: i.e., the "sign" bit is 

shifted. 

XMTAA (4) - Transmit A to A.· 

This command is a block transfer of data from one location within 

the user's display buffer to another. FROM location is specified in the 



-2. 11 -

address, TO in the decrement. IND is ignored. The number of words 

moved is specified by the control counter (CC). 

XMTAB (5) - Transmit A to B. 

This command is a block transfer from the user's display buffer 

to B-core. It is similar to XMTAA with the following exception: the 

B-core address may be indirected by IND. 

XMTBA (6} - Transmit B to A. 

Similar to XMTAB. The B-core address may be indirected by IND. 

LCC (7) - Load Control Counter 

The address (IND) is placed in the user's control counter (CC). 

i. Transfer Commands in the Display File. The console "End 

of File" command {Prefix 3, Tag 3) has been coded in address and de­

crement to provide various transfer commands. All locations are 

relative display buffer locations. These commands enable the user to 

have his display file stored other than sequentially in the display buf­

fer, to have subpictures, etc. Full responsibility rests with the user 

for employing the transfer commands correctly and for assuring that 

the display file terminates with the "end of display file" command. 

1) Unconditional transfer: 

3 D 0 

The next console command will be taken from location D. 

2) Subpicture call: 

3 D 3 A 

The next console command will be taken from A. The 
location D is placed on a push down stack. If D is 
zero, the location of the call command + 1 is pushed down. 

3) Subpicture return: 

3 0 3 0 



------ ------· ----·--~---~----~--·· ...... , 'l".:;-:.-- ~· 

-2. 12 -

The next console command will be taken from the lo­
cation specified by the top of the push down stack. If 
the stack is empty, this will be treated as an end of 
display file. 

4) End of display file: 

3 77777 3 77777 

This terminates the display file for this user. 

j. Attention Formats. The attention buffer, the location and 

length of which are specified by the SAB command, contains the at­

tentions until the user's B-core program requests them. Storage in 

the buffer is managed by a free storage system. Attentions are pro­

vided to the user, one at a time, by the ATTN command. Each at­

tention has the following format: 

~ N c A 

> N words 

IJ 

where N is the number of words used to specify this attention and A 

is the number of the attention. C is used by the supervisor and con­

tains the number of words in the attention display for this attention. 

The next N-1 words vary with the individual attention numbers. 

1) Push-button: 

~ 
N 

~ 
1 

I. PB 

PNPOS - t 

L---- - -- -- _J 

N is the count of this attention (two, or three if tracking). 
PB is the number of the button pushed and PNPOS is 
the position of the cross (if tracking). 



-2 . 13 -

2) Light-pen see: 

N 2 

LOC 

H v 

I I CALL I RETURN I 
. I I I 

~-i ~ALL_~~ RETURN~ 
',CALL I 1RETURN I 

'---L _L ____ _I 

LOC is the relative location in the display buffer of the 
display command which produced the light seen by the 
light pen. H, V are the coordinates of the light which 
interrupted the display, The next N -3 words contain 
the pushdown stack of subpicture calls which enables the 
program to analyze the sequence which caused the trap. 
CALL is the relative display space location of the sub -
picture call. RETURN is used by the supervisor to 
return from the subpicture. These are ordered outer -
most to innermost. 

3,4) Typewriter: 

Attention numbers 3 and 4 are reserved for the type -
writer which is not presently connected. 

5) Line completed: 

3 5 

3 H 4 v BAND 

0 6.X 0 6. y 

This indicates that a line has been drawn on the screen, 
via pushbuttons S, 1, and 2. BAND and BAND+ 1 
contain the setpoint and lineplot console commands 
which produced the rubber band line. 

k. State Word Bit Assignments. The STATE word indicates the 

state of the user at the completion of any particular DSCOPE call. The 

bits of the left half are error bits, and indicate on an error return 

what conditions caused the failure. These bits are cleared out on each 

separate call to DSCOPE. In case of an error, the sign bit of the state 



-2. 14-

word will be set and the accumulator upon return from DSCOPE will 

contain the relative position in the COMLST (starting at zero) of the 

command causing the error. 

Status bits (right-half): 

Bit No. Octal 

35 1 - User has specified real-time actions (REALT). 
31 20 - User is successfully signed on. 
30 40 - User is master (0) or slave ( 1) console. 
29 100 - Master console is in use. 
28 200 - Slave console is in use. 
27 400 - User is in input wait status (Never available 

to user). 
25 2000 - User has specified an attention buffer. 
24 4000 - User has a nonempty typewriter buffer. 

(Not operative) 
23 10000 - User's attention buffer is not empty. 

Error bits (left-half): 

Bit No. Octal 

0 400000 - Error present in STATE word. 
17 1 - Protection error - display buffer. (PROT A) 
16 2 - Protection error - core B. (PROTB) 
15 4 - ESL Console appears not to be operable. 
14 10 - Number of requested consoles not available. 
13 20 - Illegal operate class instruction. (ILLOP) 
12 40 - Not at time -sharing console authorized to 

use display. 
11 100 - More than 100 Commands specified. 

1. Real-Time Instruction Formats. As outlined earlier under the 

REALT operation in the QPR class, the user specifies the starting lo­

cation and length of a real-time buffer within his display buffer. Each 

word in this buffer contains a real-time instruction, and is examined 

upon the occurrence of any ''real-time" change, i.e., a movement of 

the knobs or globe, or upon other trigger actions specified below. If 

the ''trigger" portion of the instruction matches the trigger code of the 

action which occurred, a transfer is made to the specified "function" 

which decodes the remainder of the instruction acc("'\rding to general 

specifications outlined below and takes the appropriate action. 

---------~ ------



-2. 15 -

The format of the real-time instruction word is below: 

s 3 4 5 6 16 17 20 21 24 25 3 5 

I T I ID I TMP I F I s I LOC I 
~"'---v--' ~-v--~ '---v-' "-v--'"--y--J 

4 2 11 4 4 11 

T - Four bit trigger code for this instruction 

D - The direction of the speed (0 for plus, 1 for minus). 

TMP - Starting location of temporary array (if required). 

F - Four bit function code. 

S - Four bit speed multiplier. 

LOC - The display buffer location of the affected display 
command(s). 

The following "trigger" codes are available: 

1 - Leftmost knob has changed position 

2 - Center knob has changed position 

3 - Rightmost knob has changed position 

4 Globe rotated about the x axis 

5 Globe rotated about the y axis 

6 Globe rotated about the z axis 

7 - Tracking cross has moved 

The following "function" codes are available: 

(O and 8) - No Operation 

An operation may be temporarily discontinued by zeroing the 

tag of the control word (using the store tag option of DAC). 

(1) - Rotate about Z axis. LOC in the control word points to 

a relative position in the user's display buffer which is the start of a 

pair of rotation matrix commands (Prefix 5 and 6) for the Console. 

These commands will be altered by the Display Controller as the real­

time actions are performed to give the rotation effect. TMP is a 

pointer to a ten word temporary array in the display buffer (but not 

in the real-time buffer) which is used for scratch purposes by the pro­

grams performing the rotation. In this case the first nine words of 

the ten word array contain the 3 x 3 matrix required for rotation. The 

------ii ------



-2. 16-

tenth word is the scale of the drawing for magnification purposes. Each 

of these numbers is a signed 35-bit binary fraction. Unity is repre­

sented by 377777777777(8). It is the user's responsibility to initialize 

these ten locations to their proper values for correct operation of the 

real-time rotation and magnification. The correct machine repre -

sentation of these words for a unity matrix at the beginning of real-

time operations would be: 

377777777777 

0 

0 

0 

377777777777 

0 

0 

0 

377777777777 

377777777777 

ih jh kh 

s . i j . k 
v v v 

x h 

y = v 

z d 

This calculation converts 
lines from XYZ coordi­
nates to horizontal, verti­
cal, and depth scope co­
o·rdinates. 

(Z) - Rotate about X axis. Similar to the rotation about the Z 

axis. For correct operation in the rotation about any axis for one 

object, the TMP, LOC. and the initialization of the temporaries 

should be the same. 

(3) - Rotate about Y axis. Similar to rotation.about X and Z 

axes, 

(4) - Translate up and down •. LOC points to a Set Point command 

which will be altered to provide translation of correctly structured 

pictures (i.e. , all whose lines are relative to this one Set Point Com­

mand). TMP is not used and no temporary space need be assigned. 

(5) - Translate right and left. Similar to translate up and down. 

(6) - Magnify. LOC points to a pair of rotation matrix commands 

as in the rotation operations. TMP points to the same type of 



-2. 1 7 -

temporary array as in rotation. If the user wishes to magnify be -

yond the original scale, he must include a Set C command in his dis -

play file (logically) preceding the rotation commands. A Set Creal­

time instruction must appear in his real-time buffer preceding the 

magnify instruction. The Display Controller will change the Set C 

word to specify double bit spacing and change the scale appropriately. 

This Set C code applies for all following magnification calls. The un -

used bit in the real-time instruction is used internally by the Display 

Controller to control magnification. 

(7) - Set C Control. As mentioned above, LOC points to the 

location in the user's display file of the Set C control command which 

controls the object under alteration. TMP, S, and Dare ignored. If 

LOC is zero, no larger than original magnification will take place for 

future magnifications and only scale reduction will be allowed. 

(9) - Light Pen Drag. LOC points to a Set Point Command which 

will be altered to be positioned at the location of the tracking cross when 

the user is tracking. TMP, S, and Dare ignored. This function 

should be used only with trigger code 7. 

C. CONNECTION THROUGH A DISPLAY BUFFER COMPUTER 

1. General Operation 

The de sign philosophy for the two -computer system is presented 

in "The Design and Programming of a Display Interface System Inte -

grating Multi-Access and Satellite Computers. 11 (Appendix A) For 

purposes of compatibility with old programs, it was decided that the 

first programming effort would be to provide the DSCOPE Interface 

on the PDP-7 /7094 system. After that interface was completed, work 

was begun on the new Display Interface System employing minimal 

executives. These two schemes are both described in the following 

sections. 

2. The DSCOPE Interface 

The DSCOPE module was divided into the program interpreter and 

the real-time operation section. The interpreter was kept on the 7094 

and the real-time programs were implemented on the PDP-7. The 



-2. 18 -

minimal executive (see Appendix .A) for each machine was designed and 

implemented. The main function of each executive is communication 

with the other machine. The satellite computer executive also pro­

cesses interrupts and keeps the machine and display running. As far 

as the user is concerned, the major difference is the presence of the 

PDP-7 near the console and the necessity to be sure that it is loaded 

and running properly. 

The changes to the DSCOPE interface presented in Section B are 

few. The display buffer is, of course, located in the PDP-7, so XMT 

operations deal with 7 -core rather than A-core. Error bits for the 

state word have been changed to reflect the existence of the PDP-7, as 

follows: 

4 PDP -7 appears not to be operable. 

2000 Error sending to PDP-7. Unsuccessful after five tries. 

4000 Error receiving from PDP-7. 

The DSCOPE interpreter in the 7094 has become a B-core routine 

rather than the A-core/B-core interface, so it must be called simply 

with a TSX instruction (not a TIA}. This DSCOPE then makes the 

proper calls on the minimal executive, at least part of which is in A­

core, to effect the functions required by the user's program. 

3. The Minimal Executive in the 7094 

a. General Description. The following description of the minimal 

executive is provided for completeness. It describes neither the present 

executive, nor any projected executive (hence the absence of specific 

details of how to call the MINEX routines}. This section should, how­

ever, present the essential functions of the executive and a way in 

which they could be implemented. 

As previously mentioned, the minimal executive in the 7094 has 

the function of communicating with the PDP-7. The basic items com­

municated are called control blocks and data blocks. A control block 

consists of three 3 6-bit words in each of which the left-half is the com­

plement of the right-half for error-cheeking purposes. The control 

block sent from the 7094 to the PDP-7 requests some action from the 

PDP-7 executive, such as receive data, call a routine, etc. A data 

------- -----------



-2. 1 9-

block consists simply of full 3 6-bit data words. Transmission of data 

blocks is checked by preceding them with a control block giving a 

checksum. 

The first word of the control block specifies a function in 3 bits, 

and an argument in the next 15 bits. The two other 18 -bit quantities are 

arguments. The format of the control block is: 

Fl Al Fl Al 

A2 A2 36-bit words 

A3 A3 

The function code F=O is reserved for signalling the beginning 

of data transmission to the PDP-7. In this case A
1 

is the address 

(possibly interpreted) to which the data is to be sent. A
2 

is the number 

of 36-bit words in the data block, and A
3 

is the 18-bit one's complement 

check sum of the data block. Other function codes have meanings ac -

cording to the specific version of the executive in the PDP-7. The 

function code assignments used in present systems are given in 

Section 3. c and 3. d. 

b. The MINEX Interface. There are five basic calls on the 

Minimal Executive: 

SC(PTR) - SEND CONTROL BLOCK 

The exec reads the three words from the forward-stored 

array specified by PTR, makes the left-half word be the complement of 

the right half-word, and sends the control block to the PDP-7 executive. 

It waits for an OK or a NOGOOD response from the PDP-7. In the 

case that the control block is no good because of an apparent trans -

mission error, the 7094 exec tries again up to five times. If NOGOOD 

for some other reason (the control block requests a function which 

does not exist in the PDP-7), no further attempt is made and an error 

return is immediately made to the user. 

SCD(TO, N, FROM) - SEND CONTROL AND DATA BLOCK 

A control block with 

F = 0 

A 1 = TO(l5 bits) (Destination in PDP-7 for data) 



--2.20-

A 2 = N 

A
3 

ones comp. checksum of data block ( 18 bits) 

is sent to the PDP-7 followed by the data block of length N from ad­

dress FROM in the 7094 (B-core). The exec then waits for the OK or 

NOGOOD from the PDP-7 and responds as above. Both control and 

data are sent if there is a retransmission. 

RC (PTR) - RECEIVE CONTROL BLOCK 

It is assumed that the user has sent some message to the PDP-7 

to which it should respond with a three -word control block. A control 

block is received from the PDP-7 and stored in the three -word forward 

array specified by PTR. If the left half of each word is not the comple -

ment of the right half, the exec requests the PDP-7 to send it again up 

to 5 times. If it is bad, or if the PDP-7 does not respond within a 

certain amount of time, an error return is made to the user. 

RCD (PTR, TO, NMAX) - RECEIVE CONTROL AND DAT A 

It is assumed that the PDP-7 is supposed to send a control 

block and a data block. The control block is assumed to be of the for -

mat 

F = 0 

Al don't care 

A2 = N 

A3 = checksum 

The control block is read into the three -word array starting at PTR 

and, if N is not greater than NMAX, N data words are read into an 

array starting at the address TO. The exec .verifies the checksum, 

and if it is wrong, requests retransmission from the PDP-7 up to five 

times. In the case of no mes sage, five errors in transmission, or N 

greater than NMAX an error return is made to the user. 

Note: In connection with the receive calls RC and RCD, since the 

user in the 7094 sends a message to his PDP-7 program re­

questing a transmission back, and since transmission of data 

is directly to user core, the user's program must be guaran­

teed to remain in core between the two actions. This is ac -

complished automatically by MINEX which controls the 



-2. 21-

time-sharing supervisor to allow the user to construct a com­

mand list (similar to that used by DSCOPE) which is executed 

to completion before his program is swapped out of core. 

EDI (LOC, DISMISS) - ENABLE AND DISMISS INTERRRUPT 

The final function needed is provision for messages to the user's 

7094 program generated by the PDP-7 program but not by specific 

request from the 7094. The 7094 program has no way of knowing when 

any such messages will come, so it cannot anticipate them. A call 

to EDI sets a location LOC in the user's program to which transfer 

of control will be made whenever the PDP-7 interrupts to say that it 

has a message waiting for the 7094. The next time the user's pro­

gram is run after such an interrupt, MINEX will disable itself for 

further interrupts, interrupt the user's program, and transfer con­

trol to LOC. (MINEX remembers the place from which the user was 

interrupted as UINT, for later continuation.) At LOC, the user pro­

gram may then send a control block to the PDP-7 requesting that the 

waiting message be sent to him. When he has finished processing the 

mes sage received from the PDP-7, the program at LOC should call 

EDI again to re-enable for another interrupt. MINEX's response to 

this EDI call will be to reset its status and re-enable for the next 

PDP-7 message, then to return to the previously interrupted user 

activity which it remembers as UINT. If DISMISS is zero in the EDI 

call, there will be no return to the interrupted activity. (This normally 

would be used only for the initial enable for PDP-7 messages.) If 

LOC is zero, messages from the PDP-7 will not be read. If a PDP-7 

message becomes available while MINEX is disabled (either the user 

has not yet enabled, or is currently processing a previous message), 

the new message will be saved until an EDI call re-enables. 

In an alternate scheme which eliminates EDI, MINEX simply 

places messages from the PDP-7 directly into the user's input buffer 

along with his teletype input. These mes sages would be distinguishable 

from teletype messages. Such messages would have to be of limited 

length; for long messages, a short message could be sent informing 

the user of the existence of the long message which he could then re­

quest from the PDP-7 by SC and RCD calls. 



-2. 22 -

c. Control Blocks from 7094 to PDP-7. The following function 

codes have been assigned for control blocks in the PDP-7 executives 

which have been built so far. Any of them could be changed by a user 

who is willing and able to write his own sufficiently reliable executive. 

The meanings of the three arguments for each of the function codes is 

given. 

Name Function Code 

XMTB7 (0) 

Al 

A2 

A3 

XMT7B {l) 

Al 

A2 

A3 

XMT77 (2) 

Al 

A2 

A3 

CALL? (3) 

--------- ~~---

Description and Arguments 

Send data block from 7094 B -core to 
PDP-7. 

is the "TO" address in the PDP-7 for 
the data, It is presently an absolute 
address. 

is "N", the number of 36-bit words in 
the data block. 

is the one's complement checksum of the 
2N 18-bit words in the message. 

Send data block from PDP-7 to 7094 
B -core. 

is not used, 

is ''N'' as for Code 0. 

is the "FROM" address in the PDP-7. 

Move data within PDP-7. 

is "TO" address. 

is "N" - number of 36-bit words to be 
moved, 

is "FROM" address. 

If the two locations of the block overlap, 
the move routine assures that data is 
not garbled by moving last word first if 
necessary. 

Call a subroutine in the PDP-7. 

is the address or "name" of the subroutine 
to be called, 

is the first argument (value) for the sub­
routine. 

is the second argument (value) for the 
subroutine. 

The subroutine will be called with the 
sequence 

A
2 

in the AC 

JMS Subroutine 
Pointer to A

3 



-2. 23 -

The following subroutine ''names'' 
(numbers) are defined in the present 
executive. They perform the DSCOPE 
functions of the same name and argu­
ments. 

0 Sgnoff 
1 Sgnon(N) 
2 Clear (CLATSW) 
3 Clatn 
4 Satbuf (LOC, N) 
5 Realt (LOC, N) 
6 Camera (NOT NOW, N) 

The present versions of the executive expect absolute PDP-7 

addresses but these could as well be relative addresses in the user's 

area depending on which machine performs PDP-7 storage allocation 

in CALL7 "name". 

The minimal executive is so structured that the system builder 

includes with it only such function programs as he requires. For in­

stance, if he does not need the XMT77 function, he does not need to 

load it; if he then tried to use it, a fatal error would occur. 

d. Control Blocks from the PDP-7 to the 7094. The only control 

block presently assigned precedes data blocks from the PDP-7. The 

format is 

Function Code 

(0) 

Arguments 

A
1 

is ignored by MINEX 

A
2 

is N, thenumberof36-bitwords 

A
3 

is 18-bit, one 1 s complement checksum 

The reason for specifying N is that some messages may be 

created in the PDP-7, the length of which will not be known to the 7094. 

To receive such a message, the user program in the 7094 would send 

a control block (SC) with CALL 7 function to request that one of these 

messages be sent back, then wait to receive control and data back from 

the PDP-7. 



CHAPTER III 

GRAPHSYS - A PROGRAMMING SYSTEM FOR 

THE ESL DISPLAY CONSOLE 

A. INTRODUCTION 

GRAPHSYS is a set of procedures for programming interactive 

display consoles on time -sharing systems. The system was origi -

nall y written for the ESL Display Console connected to a time -shared 

7094, but the user interface which it provides has also been used for 

programming the ARDS (~dvanced g.emote J2isplay ~tation) storage 

tube units. Details of this document concerning specific display 

facilities are based on the ESL Console; further memoranda will 

detail the differences which arise in applying GRAPHSYS to other 

display consoles. 

Throughout this chapter, the part of the time -sharing Super -

visor and the executives of any satellite computers involved in run­

ning the display units will be called the Display Controller, or Con­

troller, for short. The GRAPHSYS procedures, which provide a 

high-level language for programming the display console, re side in 

"B-core" of the time -sharing system along with the user's programs. 

They make calls on the Controller to effect the actions de sired. 

(See Fig. 3.1) 

The special problems associated with operating a display console 

in time -sharing, when the user has only intermittent access to the 

computer, have determined the division of tasks between GRAPHSYS 

and the Display Controller. The Controller performs the real-time 

functions listed in Chapter II. A. It stores the display file (an ordered 

sequence of display commands) and outputs them to the display unit 

to maintain the picture; it records attentions (re al -time events such 

as pen 11 see") as messages for the user in an attention queue; and it 

performs certain real-time functions (e.g. rotation) as requested by 

the real -time instructions created by GRAPHSYS in response to 

user calls. 

The Controller provides a single memory area called the display 

buffer for storing the display file, the attention queue, and the 

-3. 1 -



-3. 2-

real-time instructions. The allocation and organization of this buffer 

is one of the tasks performed by GRAPHSYS. The user need only 

7094 
B-Core 

(User) 

USER'S 
PROGRAM 

GRAPH SYS 

DISPLAY CONTROLLER 

7094 
A-Core 

(Supervisor) 

Display Buffer 
Computer 

Fig. 3.1 Information Flow in Display System 

specify the number of registers to be used for the attention buffer 

(which contains the attention queue) and the real-time buffer (which 

contains the real-time instructions). The remaining space stores 

the display file proper, (and rotation matrix buffers, if the real­

time rotation or magnification functions are used). (See Fig. 3. 2) 

Flexible means are provided by GRAPHSYS for creating and 

editing a display file. Procedures for adding, removing, and re -

placing console commands, as well as a "copy" function whereby 

identical sets of commands may be reproduced within the display 

file, are included in the package. An important feature is the 

ability to define subroutine pictures or subpicture s. Their defi­

nition is analogous to the way computer program subroutines are 

defined, and each time a display of a subpicture is desired, only a 

single command (the call command) is added to the display file. No 

provision is presently made for arguments to subpictures. 

~ ---



-3. 3 -

Each item added to the display file is assigned a name. All 

communication between the user and the system about items then 

DISPLAY FILE 

SPARE 

ROTATION 
MATRIX 
BUFFER 

REAL - TIME 
BUFFER 

ATTENTION 
BUFFER 

Fig. 3.2 Diagrammatic view of 
the Display Buffer 

takes place in terms of these names, the system automatically per­

forming the required transformations for communication with the 

Display Controller. The names remain invariant even though the 

commands which they represent may be moved in the display file. 

Thus GRAPHSYS provides a form of automatic storage allocation for 

the di splay file. 

A set of procedures for adding standard picture parts to the 

display file is also provided. These include arcs of circles, lines, 

points, set-points, rotation matrix commands, control commands 

(affecting picture magnification, light pen sensitivity, etc.), and 

characters. A set point differs from a point in that its position re -

mains fixed during rotations. A picture that is to be rotated consists 

of a single set point followed by a series of connected incremental 

vectors. A point is merely a unit length vector, (one scope incre­

ment in the plus direction followed by one in the negative direction 

so that the beam position is unaltered). The command which con­

trols parameters such as intensity, sensitivity to the light pen, etc., 

is called a Set C command. The control command which increments 

the beam position directly, and is unaffected by rotation is called a 

Set F command. 

The various facilities of the Di splay Controller may be called 

upon via GRAPHS YS. These include signing on and off with one or 



-3. 4-

two consoles, placing the user's program in 11 input wait 11 when an 

attention is requested and there are none, reading the current values 

of the passive inputs, and requesting ope ration of the available real -

time programs. 

The GRAPHSYS procedures are written entirely in the AED-0 

..{__ALGOL ~xtended for ~esign) language,
1 

and use the AED-0 11 Free 

Storage 11 Systerrt to allocate memory space dynamically for the B­

eare data structure. If the user employs free storage to store his 

own data structures in "plex'' form, he may call the same free 

storage procedures, which are automatically loaded with GRAPHSYS. 

B. THE DISPLAY FILE, OBJECTS, AND NAMES 

The display file is the ordered sequence of display commands 

which is sent to the display console to produce a picture. Although 

the console deq.ls only in terms of simple display commands such as 

"draw-a-point" or "draw-a-line", the user wants to deal with objects. 

An object is a group of console commands which are added to the 

display file at the same time as a unit, and are to be thought of as 

an atomic entity, e.g., an arc of a circle consisting of several short, 

straight-line segments (made by several line -generate commands). 

When an object is placed in the display file, it must be given a 

unique name if it is to be identified again. The user may wish to 

specify some object on which GRAPHSYS should perform a function 

(e.g., delete this object), or GRAPHSYS may wish to inform the 

user of some action concerning it (e.g., this object was seen by the 

light pen). The name is used to refer to an object in all communi­

cations between GRAPHSYS and the user. 

The simplest type of unique name which can be assigned to an 

object is the starting location in the display buffer of its console 

commands. Every object is, of course, uniquely specified by this 

number. These locations are chosen by GRAPHSYS, which auto­

matically performs the tedious tasks of allocating space for the 

display file and organizing it. This is a dynamic process in which, 

without altering the display sequence, commands may be moved 

around in the display buffer (e.g., when new commands are inserted 

into the middle of the display file). Display buffer locations, 



-3. 5 -

therefore, do not constitute a suitable naming scheme for the user, 

since the user could be forced to keep his own data structure con­

tinually updated as GRAPHSYS moved objects and thereby changed 

the names, 

The simplest form of invariant name that can be assigned to an 

object is an integer number. If this type of name were chosen, 

GRAPHSYS would have to build an array of length equal to the total 

number of names. The name of an object would be the index for the 

position in the array containing the actual display buffer locations. 

In addition, the user would need a similar array given the item in 

his data structure corresponding to the name. This is a lot of 

mechanism and requires the existence of large arrays. It would be 

much simpler if the user and GRAPHSYS had a mutually convenient 

single name for each object. 

The naming scheme which has been employed by GRAPHSYS 

meets these criteria of uniqueness, invariance, and convenience. 

GRAPHSYS builds its own data structure (a string of items arranged 

in display file sequence) in storage supplied by, and thereby known 

to, the user. Each item in the string constructed by GRAPHSYS re -

presents an object, and specifies its current display buffer location. 

The register supplied by the user, in which GRAPHSYS stores its in­

formation is called the display register of the object. The name of 

the object is a pointer to (i.e., the absolute address of) its display register. 

and is called the display pointer name. The user communicates with 

GRAPHSYS in terms of these names, and the system automatically 

performs the transformation to and from display buffer location for 

comrn.unication with the Display Controller. (See Fig. 3. 3) 

DISPLAY 
CONTROLLER 

communication in j 
terms of display 
buffer positions 

GRAPH SYS 
.... 

USER'S 
PROGRAM 

l communication in 
terms of displ oy 
pointer names 

Fig. 3.3 Communications about Items in the Display File 



-3. 6-

This scheme both guarantees a unique name for each object, 

since the core locations of the display registers are unique numbers, 

and also eliminates the need for large duplicate arrays, since the 

display registers can be obtained along with space for user data from 

free storage
2 

as needed. Finally, this scheme provides a mutually 

convenient name for the user and GRAPHSYS by allowing the user to 

supply the display register as a part of his own data structure. 

Figure 3.4 illustrates the combined user-and-GRAPHSYS data struc­

ture for a display file containing three objects. 

Nl 

N2 

user data for 
object 1 

N2 

DB2 N3 

user data for 
object 2 

Ni are the display pointer names of objects 

N3 

DB3 0 

user data for 
object 3 

DB. are the display buffer locations of the display commands of the objects 
I 

Fig. 3.4 The Combined User-and GRAPHSYS Data Structure 

Each display register contains the display pointer name of the 

next object in sequence in the display file. A name of zero signifies 

the end of the list. 

The contents of the display registers are maintained solely by 

GRAPHSYS; the user does not have to be concerned with the display 

register string or the display buffer locations. 

There are two types of items other than objects which have dis -

play registers and display pointer names - - subpicture definitions and 

subpicture calls. (The process of defining and using subpictures is 

detailed in Section D.3.) The display pointer for these items must 

point to the first of two consecutive display registers which are avail­

able to the system. The display registers for a subpicture call occur 

as an item in the middle of a string of displayed objects and/or other 

calls. The second register specifies the name of the subpicture called. 

The display registers of a subpicture definition start a separate 



-3. 7 -

string linking together the objects (or other calls) of which the sub­

picture is composed. The second register for the definition specifies 

the number of calls on the subpicture and forms a string of all sub -

picture definitions. Additional bits in the display register specify 

whether the register(s) was supplied by the user or by GRAPHSYS, 

whether the object is a subpicture call, or definition, or not, and 

whether or not the object is connected to a real-time program. 

C. FORMAT AND CONVENTIONS 

Sections D through J describe the various facilities provided by 

GRAPHSYS. Section K gives a detailed description of the procedures, 

including their calls, values, and operation. The AED-0
1 

calling 

conventions are used for sample calls on procedures. (The calling 

sequence in other languages is similar.) Section L presents details 

of using GRAPHSYS in CTSS and from language other than AED-0. 

Section M describes the Console Simulator. A sample interactive 

graphics program using GRAPHSYS is included as Appendix B. 

The following conventions are used throughout this manual. 

1. Procedure Values 

B Boolean value (True or False). 

CC Console Command (A command for the display hardware). 

DPN Display Pointer Name ( 15 bits). 

N Number of words. 

OB A 15-bit pointer to an object to be displayed (see Section E). 

P A Pointer. 

PI Passive Input integer value (for devices such as toggle 
switches). 

2. Procedure Arguments 

All arguments are of type pointer unless specifically stated. 

* An optional argument that may be omitted. 

>!<>:< When an optional argument is marked thus, all arguments 
so marked must either be given or omitted. 

0 (zero) The convention used for optional arguments that 
are to be ignored. 

E.g., EXAMPLE (ARGl, 0, ARG3) indicates that values 
for ARGl and ARG3 only have been given. 

# Integer argument. 



-3. 8 -

Boolean argument. (For AED-0, zero represents False, 
non-zero (specifically one) represents True.) 

+ Real argument (floating point argument). 

## Integer array argument. 

(underline) Output argument. 

(dashed underline) Input or output argument. 

D. THE DISPLAY FILE - - ADDING AND REMOVING 
CONSOLE COMMANDS 

1. General Description 

As we have seen the display file is stored in the display buffer 

provided by the Display Controller. The function of organizing the 

file and allocating console commands to specific positions in it must 

be done external to the Controller. GRAPHSYS performs this function 

automatically when any of the procedures described in this chapter 

is called. The process is a dynamic one and the stored positions of 

any particular commands are not constant, although the sequence in 

which they are sent to the display (specified by the user), remains 

unaltered. The file organization need never concern the user since 

the names as signed to items added to the file remain invariant what­

ever the position of the corre spending commands. An analogy is to 

be found in CTSS: a user is never concerned with the organization of 

the disk, since files stored in his tracks may always be referenced 

by an invariant name. 

This section considers those procedures which enable console 

commands to be added to or removed from the display file. Where -

ever "NAME" appears as an argument, it is the display pointer name 

which is being given to the item then being added to the display file. 
11 PNAME 11

, "HERE", and "THERE" are display pointer names of 

items previously added to the display file. An "OBJECT" is any 

number of console commands added to the file at the same time, 

which are to be thought of as a single atomic entity, e.g., an arc of 

a circle consisting of several short straight line segments and built 

up with line generate commands. 11 DPN 11 as the name of a procedure 

is the display pointer name of the object. It will be equal to "NAME" 

if the user supplied a name, or will be assigned by the system if not. 



-3. 9-

Provision is made for defining subroutine pictures, or sub­

picture s. A subpicture definition is represented in the display file 

by a group of any number of console commands terminated by a 

special "end" command. To cause a subpicture to be displayed, 

requires the addition of only a single word to the display file, calling 

for the subpicture to be displayed at that point in the display se­

quence. The subpicture call command causes the subpicture defi­

nition to be executed, and when the end of the definition is reached, 

the display sequence resumes following the call command. This 

facility provides a great saving in display file space for repetitive 

pictures at the expense of computer time for processing the calls and 

returns within the display file. 

"CALL" refers to a single command added to the display file 

which causes all the commands of a previously defined subpicture to 

be sent to the console. An "ITEM" is either an "OBJECT 11 or a 

"CALL". Subpicture definitions themselves may contain any number 

of items, i.e., any number of objects and/or calls. 

We now consider the procedures available for creating and 

editing a display file. 

2. The Plot Function 

DPN = PLOT(OBJECT) 

causes the one or more console commands which OBJECT describes 

to be added to consecutive positions at the end of the display file. 

The system will obtain the display register from free storage and re­

turn a pointer to this register as the DPN (which should be remembered 

if the object is to be referenced during later communications between 

the system and the user.) The user may supply the display register 

as a part of his own data structure by using the call 

DPN = PLOT(OBJECT, NAME) 

where NAME is a pointer to a single register which the system may 

use as the display register for the object. In this case, DPN is set 

equal to NAME. 

If it is desired to insert the object into the display file at some 

specific position, rather than at the end, the call 

DPN = PLOT(OBJECT, NAME, PNAME) 



-3. 10 -

should be used. It will cause the object to be inserted at a position 

immediately following the commands for item PNAME. PNAME must 

have been previously assigned by a call to one of the subroutines 

making additions to the display file (PLOT, CALL, CPY, or RPL). 

This position refers, of course, to the sequence of the display file 

and not the physical position of the commands in the display buffer. 

Thus use of the second name allows editing of the display sequence. 

To ignore one optional argument while specifying a later one in 

the calling sequence, the convention 0 (zero) is used. Hence to in­

sert an object in the display file without giving it a name, write 

DPN =PLOT (OBJECT, 0, PNAME) 

These several forms of calls on PLOT are summarized using the * 

optional argument conventions as 

DPN=PLOT(OBJECT, NAME*, PNAME*) 

3. Subpicture s 

Subpictures are defined using procedures DEFSUB and ENDSUB 

which work like BEGIN and END in AED-0, or PL/I. To start de -

fining a subpicture write 

DPN = DEFSUB(SNAME*) 

where SNAME, if supplied, is a pointer to the first of two consecutive 

display registers. DPN will be a pointer to the first of the two regis -

te rs. Subsequent additions made in sequence to the display constitute 

the definition body of the subpicture. While the subpicture is being 

defined, it is displayed on the screen. When the definition is com­

plete, the procedure call 

ENDSUB() 

causes the subpicture to be "wrapped-up" and it disappears from the 

screen, although its definition remains in the display file. The pro­

cess of defining a subpicture is illustrated in Fig. 3. 5. 

To cause the subpicture to appear on the screen, write 

DPN = CALL(SNAME, NAME*, PNAME*) 

where SNAME is the name of the subpicture (given with procedure 

DEFSUB) and NAME and PNAME have the same meaning as for PLOT. 

The display sequence may be seen in Fig. 3. S(d). Note: 



-3. 11 -

ST ~RT ·"<·".:: :'.T:··.'· ::._:.: 
IA 

IB 

IC 

ID 

1 DISPLAY I 
\ SEQUENCE WHEN START 

\ SUBPICTURE DEFINITJON 
\STARTS" SUBPICTURE 1 
/( lA- lD, lR) 

I HAS ALREADY BEEN 

FILE IS A-C, Z. 

...__ __ _____. DEFSUB ( NAME 2 ) 2 

~::; .. -....... -,..-.. r,.:-:;.:·~: .. : '-.. 
I A .._, 

IB \ 
IC I\ 
I D I \ 

I I 

r 
DEFINED. MAIN DISPLAY 

h--.-.~~..,........,i ST ART _______ _, 

\ I 
I I 
I I 

~~~u..LJ 

® 

DISPLAY 
SEQUENCE WHILE THE 
SECOND SUBPICTURE IS 
BEING DEFINED ( 2A-2D). 
IT CALLS SUBPICTURE 1 
(AT 2C ). 
THE PARTIALLY COMPLETED 
DEFINITION BEHAVES AS IF 
IT WERE THE END PART OF 
THE MAIN DISPLAY FILE. 
THE SYSTEM HAS NOTED 
WHERE THE DEFINITION 
STARTS. 

I::- ·>":I Transfer Command /111111111111 Subpicture Call Command 

™-l End of Display File Command ~ Subpicture Return Command 

Fig. 3,5 Defining a Subpicture - Diagrammatic View 



-3. 12 -

1) Subpictures may be defined within subpictures, to an 

arbitrary depth (in principle--up to 10, in fact!) They may 

still be called from outside those subpicture s, however. 

They behave exactly as if they had all been defined in 

parallel at the highest level. 

2) Subpicture definitions may include calls to other sub­

picture s and may be edited by using the optional third argu­

ment in PLOT, etc., for controlled insertion. A sub­

picture may not, however, call itself; i.e., subpictures 

are not recursive. 

3) After a call to ENDSUB the program returns to the 

state it was in before the previous call to DEFSUB. 

(Fig. 3. 5c). In other words the current end of the display 

file is effectively the same as it was before that last sub­

picture was defined. The subpicture definition is "trans -

parent" to the display sequence. 

4) Set points should not be included in the definitions of 

subpictures, so that they may be called for display at any 

part of the screen. (Including a setpoint command in a 

subpicture and calling it many times just makes a very 

bright picture!) 

4. The Copy Function 

If an identical copy of the console commands which re pre sent 

some object is required in the display file, then procedure CPY should 

be used. 

DPN = CPY (THIS, NAME*, PNAME*) 

will cause an identical set of console commands which describe the 

object whose name is "THIS" to be placed in the display file. 11 THIS 11 

must previously have been added to the display file. NAME and 

PNAME have the same meanings as for PLOT. Note that "THIS" may 

either be a part of the main display file or part of a subpicture defi­

nition. 

-- -----,,--



-3. 13 -

5. The Replace Function 

DPN = RPL(NEW, INAME, NAME*) 

replaces one object in the display file with another. The objects 

can be in any position and need not be represented by the same num­

ber of console commands. 

The item IN AME (previously given with RPL, PLOT, CALL, CPY) 

is replaced by NEW. NEW may have the same meaning as OBJECT in 

procedure PLOT, or it may be the name of a subpicture (same as 

SNAME in procedure CALL) in which case a call will be generated. 

If NAME is omitted then the NEW item will be given the name INAME, 

otherwise it will be named NAME. 

6. The Remove Function 

RMV(HERE*, THERE*) 

causes all objects and calls to subpicture s from HERE to THERE in -

elusive to be removed permanently from the display file. If THERE is 

omitted, then only the single atomic object or call corre spending to 

HERE is removed. 

If HERE is a subpicture name, then that whole subpicture defi -

nition will be removed. If THERE is given it is ignored in this case. 

It is an error to attempt to remove a subpicture to which calls still 

exist. If no arguments are given, the whole display file and all sub -

picture definitions are removed. 

E. STANDARD AND NONSTANDARD OBJECTS 

1. General Description 

In Section B an OBJECT was described as any number of console 

commands added to the di splay at the same time, which are to be 

thought of as a single atomic entity. Objects are added to the display 

file with PLOT or RPL which require the console commands to be 

arranged in the format shown in Fig. 3. 6 

A single name is assigned to an object, to be used for communi -

cations about that object between the user's program and GRAPHSYS. 

There is no way to refer to individual commands within the object, 

since they have no individual name. If they need to have a name, they 

must be added to the display file separately with their own name. 



-3.14-

If the return code bit (see Fig.3. 6) is nonzero, then after the com­

mands have been added to the di splay file, PLOT (or RPL) returns 

,r- Bit 20 Return Code Bit 
,.--~~~~...;...-~~~~ 

N 

N Console 
Commands 

Fig. 3.6 Format required for adding console commands 
to the display file with PLOT or RPL 

the element that contained them to free storage in B-core. 

2. Standard Objects 

Several pointer procedures are provided for building the most 

common or "standard" objects. These may be used as the first ar gu­

ment of PLOT or RPL, since the value of each of them is a pointer to 

an element with the format shown in Fig. 3. 6. For example, to add 

a line to the display file, use LIN and write: 

PLOT (LIN(DELX#, DEL Y #, DEL Z#>:<), NAME':', PNAME*) 

The names of these procedures is given below. (See Section K for the 

detailed descriptions.) 

On calling the procedure SGNON to sign on to the di splay unit, 

a condition is set whereby all the procedures building standard objects 

insert the return code bit. This situation may be reversed or re -

stored again by calling R TNCOD{ONOFF:f). 

SETPT A set point. 

LIN 

PNT 

CIRCLE 

CIRC3D 

ROT 

SETC 

A line in any plane. 

A point. 

An arc in the XY plane made up from short 
straight-line segments. 

An arc in any plane. 

A pair of rotation matrix commands. (Must precede 
objects which are to be rotated.) 

A Set C command. (To indicate control information 
to the display.) 



SETF 

SINGLE 

SPECIAL 

PACKED 

TEXT 

Examples of Use: 

-3. 15 -

A Set F command. (To indicate control information 
to the display.) 

A single character of the "unpacked" type. 

A ''special" character designed by the user to be 
plotted incrementally by the character generator. 

"Packed" characters from a • BCQ. string. 

"Packed" characters from a . C. string. 

PLOT (PNT( ) , NAMEX) adds a point to the file. 

RPL (NEVIS(LIN(6 X, 6 Y)), NAMEX) replaces that point with a 
permanently invisible line, (See 
Section E.4 for NEVIS.) 

Note: Before any of the character plotting procedures are used, a 

call should first be made to procedure LAYOUT. Four sizes of 

characters are available, and the hardware plots a blank line after 

it plots each character for spacing. The procedure 

LAYOUT(6H#, 6V#, SIZE#) 

adds nothing to the display file, but merely defines the parameters of 

the spacing line, andthe size of the characters. 6H, 6V, and SIZE 

remain constant for all calls to PACKED, SINGLE, and SPECIAL 

until LAYOUT is called again. Characters and their following blank 

lines are not affected by the rotation matrix multiplication, and there -

fore, may not be rotated. If LAYOUT is not called, the assumption 

6H = 6, 6V = 0, SIZE = 0 is made for packed and single characters, 

and 6H = 1, 6V = 7, SIZE = 0 for special characters. 

The procedure LINEQ is provided for reading in a string of 

characters from the teletype and putting it. into the . BCQ. format so 

that it can be used with the procedure PACKED. LINEQ prints 

"TYPE." when it is expecting input. 

PLOT(PACKED(LINEQ( ))) will read a line of text from the tele -

type and plot it at the current beam position. 

3. Nonstandard Objects 

Any object may be added to the display file with PLOT or RPL as 

long as the console commands are arranged in the format of Fig. 3. 6. 

Occasionally the user may wish to build up such an element himself 

in order to create an entity that will have a single "name". The 



-3. 16-

following integer procedures are provided for building console com­

mands to help with this task. (See Section K for the detailed de­

scriptions.) 

MASE POI 

MALIGEC 

MAZWD 

MAR OH 

MAROV 

MASGLE 

Make a set point command 

Make a line generate command 

Make a Z word 

Make a ROH command 

Make a ROV command 

Make a single (unpacked) character command 

MASPEC Make a special character command 

MAPACK Make a packed character command 

Suppose we wish to add a square of side 100 to the display file as 

an object, which will always be treated as a single entity. If we make 

the Return Code bit (Fig. 3. 6) zero, then the register containing the 

commands will not be returned to free storage by PLOT or RPL, and 

so we may add the same object to the file several times. E.g., 

INTEGER ARRAY A(4) $,(a forward stored array) 

SQUARE = LOC A $, (makes SQUARE a pointer to the 0th 
register of the array A) 

A = 4 $, (the system return code bit is set to 0, 
the object is 4 words long) 

A(l) = MALIGEC(lOO, 0) $, 

A(2) = MALIGEC(O, -100) $, 

A(3) =MALIGEC(-100,0) $, 

A(4) = MALIGEC(O, 100) $, 

PLOT(SQUARE, NAME) $,(causes a square to be plotted at the 
current beam position) 

For users who plan to include rotation in their programs, a further 

procedure ROTMUL is included, This provides a facility for com­

puting any rotation matrix which may then be used as input to the pro­

cedures MAROH, MAROV and ROT which build rotation matrix com­

mands. ROTMUL may be used to produce an identity matrix, to 

multiply two matrices, or to produce a matrix corresponding to a 

rotation of some angle about one of the three axes. 

4. Modifying Objects 

Two procedures are provided for making objects invisible before 

they are added to the display file. When INVIS is used, the object 



-3. 17 -

may later be made visible using VIS; when NEVIS_ is used, the object 

is permanently invisible. These procedures only affect the line and 

set-point commands in the object. They are "transparent" to their 

object argument, so they may be nested in calls. 

OB = INVIS(OB) Allows invisible picture parts to be added to the 
display file. Used in conjunction with CIRCLE, 
LIN, SET PT. E.g., PLOT(INVIS(LIN(AX, A Y))). 
After addition to the file they may be converted 
back to the visible type with procedure VIS 
(Section F). 

OB = NEVIS(OB) Same as INVIS except that the picture parts are 
converted permanently to the invisible type, i.e., 
VIS has no effect. 

The procedure INSEN is provided for ma.king objects insensitive 

to the light pen, i.e., they cannot be "seen" by the pen. It affects 

only lines, setpoint, and character commands. 

OB = INSEN(OB) Allows pen insensitive picture parts to be added 
to the display file. Used in conjunction with 
CIRCLE, LIN, PNT, SETP, SINGLE, SPECIAL, 
PACKED, TEXT. 
E.g., PLOT(INSEN(LIN(AX, A Y))). 

F. CONVER TING COMMANDS IN THE DISPLAY FILE FROM 
VISIBLE TO INVISIBLE AND VICE VERSA 

Procedures INV and VIS convert line generate and set-point com­

mands already added to the display file from visible to invisible, and 

from invisible to visible respectively. 

These are both "here to there" type functions and work in the same 

way. 

For example, INV(HERE, THERE*) 

causes all line generate and set-point commands in the display file 

between HERE and THERE inclusive to be converted to the invisible 

type. If THERE is omitted then only HERE is affected. If HERE is a 

subpicture name, then all such commands within that subpicture defi­

nition are converted and THERE is ignored 

VIS(HERE, THERE*) reverses the above call. 

Only lines and set-points which are not permanently invisible will 

be affected. 

-----------~------------------- ----------,--------



-3. 18-

G. INITIALIZATION 

The preceding sections have described procedures for controlling 

the display file. We have considered how to create and edit the display 

file, the method for defining and calling subpictures, the naming 

scheme for items in the display, and the building of standard and non­

standard objects that are to be added to the display file. 
' 

This chapter concerns initialization functions to be performed at 

the beginning of a display program. The procedure SGNON(NCON #) 

must be called at the start of the user's program before any communi -

cation can take place with the display console. NCON is the number of 

consoles on which output should appear ( 1 or 2). 

SGNON sets a condition whereby it is put into "input wait" status 

if an attention, such as a light pen "see", is asked for and there are 

none. When an attention arrives, the former status is restored. 

SGNON also sets the condition whereby the Return Code bit is inserted 

in standard objects (see Section E). 

The program may be switched out of the "input wait" condition (so 

that it remains in "working" status) with procedure IW(ONOFF=#:), and 

the Return Code condition may be controlled with procedure 

R TNCOD(ONOFF=#:). 

If attentions are to be recorded, then procedure SATBUF(N#) must 

be called to set up an attention bu!fer of size N. (See Section I. 1). 

The SATBUF call also causes a Set C word which enables the light 

pen to be placed at the beginning of the picture. 

A call to procedure SGNOFF( ) or a CTSS "logout" signs the user 

off as a console user. The picture disappears, and the console is then 

available for another user. A second user already using the other 

console is unaffected. 

H. DISPLAY FILE INFORMATION 

1. Dumping the Display File into B-Core 

DMP(HERE*, THERE*) 

Procedure DMP may be used to dump either the complete buffer 

or selected sections of the display file into a block of free storage in 

B-core. All objects and subpicture! calls from HERE to THERE 



-3. 19-

inclusive will be dumped. If THERE is omitted, only the single 

object or call corresponding to HERE is dumped. If HERE is a sub­

picture name, then the whole subpicture definition will be dumped. 

If no arguments are given, the whole displ.ay file and all subpicture 

definitions are dumped. 

2. Display File Parameters 

Procedure ABUF gives the overall size of the display buffer and 

procedure VAC gives the number of vacant words in it at the time 

the call is executed. These may be used at any time. These pro­

cedures have no arguments, e.g., N=ABUF(). 

I. INPUTS 

For any type of interaction with the user, the Display Console 

must be capable of inputting information to the user's program, as 

well as acting as an output device displaying a picture. In this section 

we consider the two distinct types of input available -- real-time 

inputs and passive inputs. The real-time inputs include "pen sees" 

and button pushes; the passive inputs include toggle switch settings, 

and the position of the "globe" or "crystal ball". 

1. Real-Time Inputs 

ATTN(ATAR##) 

Pushing any of the 36 push buttons or the light pen seeing a 

picture part on the screen are real-time events that are known as 

attentions. The way these attentions are serviced is a function of 

operating the display in time -sharing. They cannot have a real­

time effect on the user's program, since it may not be running in the 

time-sharing system at the time of the interrupt. Rather, they must 

be stored by the Display Controller and made available to the user 

the next time his program is in core. Of course, the faster the re -

sponse of the time -sharing system, the nearei- they appear to have a 

real-time effect. Such a system does enable the user to continue 

operating the display even though his program is not in core. 

The attentions are stored in a section of the display buffer main­

tained by the display controller in a "first"'.'in first-out" list called 



-3. 20 -

the attention queue. When an attention is added to the queue, a charac -

ter is displayed on the screen at the current position of the light pen. 

The addition of the character to the display reassures the user that 

his attention has been recorded, even though the associated action 

must await the next time his program is run by the time -sharing 

system. 

When the user's program cycles into active status, each time a 

call to procedure ATTN is made, the top item on the attention queue 

is read and the corresponding character is removed from the screen. 

ATTN interprets the data from the queue, and stores it into the 

attention array AT AR supplied by the user. No attention information 

is available to the user unless he calls ATTN, even though some 

exists in the queue. A dimension of 10 for the array AT AR will be 

adequate unless the user has subpicture calls nested more than three 

deep, in which case an additional 2 registers will be required for 

each extra level of call. 

It is up to the user to set the siz~ of the attention buffer. This 

should be done immediately after signing on by making a call to pro­

cedure SATBUF (Section G). The larger this buffer, the less room 

there is for the display file, since they are both located in the same 

display buffer. On the other hand, if the attention buffer is too small 

it is easily filled while the user's program is out of core, so causing 

further attentions to be lost, This forces the user to wait until his 

program comes back into core, to process the waiting attentions be -

fore he may continue. A fair balance with present time -sharing 

characteristics seems to be 100 registers for the attention buffer. 

2. Passive Input Registers 

In addition to the push buttons and "light pen sees" which cause 

interrupts, the console hardware provides an assortment of passive 

inputs. These are highly important to the concept of "man/machine 

interaction", as they provide natural and convenient means for inter -

acting with, and so controlling, the display. They are described in 

detail in Chapter I, and include 9 decimal or "digi" -switches, two 

rows of 36 toggle switches, three 7-bit shaft encoders, and a joy­

stick device known as the "globe" or the "crystal ball", which has 



-3. 21 -

7 discrete positions about each of its three axes. Finally, the light pen may 

also be a passive input since its position may be read at any time by the com­

puter. They are referred to as "passive inputs", since their values are read 

only by specific request from the computer, contrasting with the' 'active in­

puts", such as button pushes or "light pen sees" which cause interrupts. 

It must be emphasized that none of these passive devices affects 

the display directly. Rather, they are a comprehensive set of dif­

ferent kinds of input, whose functions are as signed entirely by pro -

gram. 

The "crystal ball 11 is designed principally for use as a rate con­

trol. Its main use is for rotation of three-dimensional pictures, 

although other functions could equally well be assigned to it by pro­

gram. Similarly, the three shaft encoders are convenient for con­

trolling horizontal and vertical translation, and magnification of 

pictures, but may be used for other purposes as well. 

Several procedures are provided to read the values of these in -

puts. ANALOG and DIG! both provide the user with a "raw" word, 

read straight from the hardware which requires decoding to extract 

the derived information. 

The remaining procedures provide the value of the particular input 

in a convenient form. 

Inputs are read only at the time when the procedure is actually 

being run. There is no relationship whatsoever between these inputs 

and the attention array (Section I. 1). Care should be taken to ensure 

that an input has been read before it is changed. 

As an example, suppose we want to control whether lines plotted 

are invisible or visible by setting digi -switch number 9. We will 

assume that the line is to have parameters, DELX, DEL Y and DEL Z, 

and that it is to be invisible whenever the switch is set to 1. 

REDIGI(LEFT, RIGHT*) decodes any consecutive set of digi-switches 

into a right-justified integer value. The AED-0 statement: 

IF REDIGI(9) EQL 1 

THEN PLOT(INVIS(LIN(DELX, DELY, DELZ))) 

ELSE PLOT(LIN(DELX, DELY, DELZ)) $, 

performs the required function. 



-3. 22 -

J. REAL-TIME PROGRAMS 

I. General Description 

Since the display console is operating in time -sharing, any 

real -time pro grams must be included in the Display Controller. A 

limited number of real-time programs have been provided in the 

present Controller. These perform rotation, scaling, translation, 

and dragging of pictures under the control of the light pen, and may be 

initiated by calls to GRAPHSYS procedures. They are initiated or 

terminated by a call to procedure RLT. Several pictures may be 

simultaneously rotated, scaled, or translated at varying rates under 

control of an input device (axis of the crystal ball or a shaft encoder) 

of the user's choosing. The only limit to the number of pictures is 

the size of the di splay buffer. 

As we have already discussed, the display buffer is used to store 

the display file, and the attention buffer. We come now to its final 

use, namely storage of the Real-Time Buffer and the Rotation Matrix 

Buffers. 

When a real-time program is initiated, GRAPHSYS enters a 

single word instruction into the re al -time buffer. Each of these 

real-time instructions tells the display controller which program is 

required, which input device controls the program (shaft encoder, 

crystal ball), the speed and direction of change required, and finally 

which word(s) in the display file (Rotation, Set Point, or Set C com­

mands) are to be adjusted. Before outputting each frame of the display 

to the console, the display controller inspects all the real -time in­

structions in the buffer and makes an incremental change to the ap­

propriate commands. 

These incremental changes are sufficiently small for the rotation, 

translation, etc., to appear quite smooth and continuous on the screen. 

The size of the real-time buffer may be set by the user after 

SGNON with procedure SRLBUF( ) . If SRLBUF ( ) is not called, its 

length is automatically set to 25. The length of the buffer may not 

be changed dynamically. 



-3. 23 -

2 . The Re al -Time Functions 

Let us now consider the real-time functions available: 

RLT(FCN#, NAME, SPEED#, DIRN #, CONTROL# , CNAME*) 

Suffice it to say here that FCN indicates which real-time function is 

required, and NAME is the name of the object in the display file 

whose display commands are to be affected. Each of the available 

functions is discussed below. 

Rotation. Rotation may be requested about the x, y and z axes. 

The user must specify the name of a pair of rotation matrix commands 

which are to be changed in real-time. For each new pair of commands 

affected by rotation (or scaling, see below), the system sets up real­

time rotation in the display buffer a 10 word Rotation Matrix Buffer 

required by the program. It contains at any time the 9 current 

values of the rotation matrix plus a scale factor (see Fig. 3. 7) which 

ih 

jh 

kh 

i 
v 

L 
SCALE i 

v 

k 
v 

id 

jd 

kd 

SCALE 

Fig. 3,7 Rotation Matrix Buffer format 

are used to modify the line generator output to create the illusion of 

rotation. They are stored as 3 5 bit sign magnitude fractions, i.e., 

the largest number, and nearest to 1 is 377777777777(8). 

This buffer is automatically built when required, and deleted 

when no longer needed. There is a separate buffer for each pair of 



-3.24-

rotation commands upon which a real-time program is operating. The 

user may inspect or change the contents of this buffer by using 

RWROT(NAME, MATRIX, RW). NAME refers to the rotation commands 

in question, MATRIX is a 10-word forward-stored array in B-core 

(format of Fig. 3. 7), and RW tells whether the buffer is to be read 

into MATRIX, or whether MATRIX is to be written into the buffer. 

Scaling. Reduction in size is performed by i=:caling a rotation 

matrix whose terms have a maximum value of 1. Hence when scaling 

is initiated, the name of a pair of rotation matrix commands must be 

given. Magnification is effected by altering the "M bits 11 (they affect 

the "bit spacing" of the display) in a Set C word which immediately 

precedes the rotation commands in display sequence. (N. B. It is 

up to the user to ensure the Set C word is in the right place.) If 

scaling greater than the original size is required the optional argu­

ment CNAME must be used. The real-time program automatically 

adjusts the "M bits 11 when the input device is changed to give a 

scaling greater than original. 

Translation. Translation may be requested up and down or right 

and left. The name of a set point command must be given. 

Dragging with the Light Pen. Pictures may be made to follow 

the light pen. The name of a set point command must be given, and 

the effect of this function is for that set point to remain coincident 

with the center of the tracking cross. 

3. Disconnecting Real-Time Functions 

The procedure 

RLTRMV(NAME*, FCN #*) 

removes from real-time everything if there are no arguments, all 

functions operating on NAME for one argument, or the specified FCN 

operating on NAME if both arguments are given. 

4. Synchronized Movie Camera 

The display console includes hardware to trigger a movie camera 

to take one frame of film for each frame of picture displayed. The 

camera may be controlled totally from the user's program which 

would specify the number of frames to be taken, or it may be attached 



-3. 2 5-

to push button 4 and controlled by the operator. The push button may 

be used either as a signal to take a specified number of frames, or, 

by setting the number of frames very large, as an on/off switch for 

the camera. The call 

CAMERA (N #, NO TN OW#*) 

attaches the camera to button 4 and takes N frames unless NOTNOW 

is present and nonzero. 

K. PROCEDURE DESCRIPTIONS 

This section details the various GRAPHSYS procedures as a 

ready reference. 

1 • Manipulating the Display File 

The valu~ of several of the procedures is a display pointer name 

(DPN). Its value is identical to the optional argument NAME. When 

NAME is omitted, its value is the display pointer name assigned by 

the system. RPL is an exception; when NAME is omitted, its value 

is the display pointer name corresponding to INAME. 

DPN = PLOT( OBJECT, NAME*, PNAME*) 

Use: 

OBJECT 

NAME* 

PNAME* 

Note: 

To add console commands to the display file. 

Any of the integer procedures described in the 
following section, CIRCLE, INVlS, LIN, NEVIS, 
PACKED, PNT, ROT, SETC, SETPT, SINGLE, 
SETF, SPECIAL, or a pointer to an array of the 
form shown in Fig. 3. 6. If the return code bit 
(bit 20) is a 1, PLOT returns the N+ I words to 
free storage. (See Fig. 3,6) 

The name assigned by the user to this item. It is 
a pointer to a single register which the user makes 
available to GRAPHSYS for storage of display in­
formation concerning OBJECT. 

The name of the object or subpicture call after 
which OBJECT is to be inserted. If PNAME is 
omitted, then OBJECT will be added to the end 
of the display file. 

Insertions cannot be made at the be ginning of the 
display file, or at the beginning of a subpicture 
definition. The same effect can be achieved, how­
ever, by starting the display file or definition with 
a blank command. 



-3.26-

DPN = DEFSUB(NAME*) 

Use: 

NAME* 

ENDSUB() 

Use: 

To start de fining a subpicture. 

As for PLOT except that it must point to the first 
of two consecutive registers which the user makes 
available to GRAPHSYS. 

To end the definition of a subpicture. 

DPN = CALL{SNAME, NAME*, PNAME*) 

Use: 

SN AME 

NAME* 

PNAME* 

To call a previously defined subpicture. 

The name of a previously defined subpicture. 

As for PLOT except that it must point to the first 
of two consecutive registers which the user makes 
available to GRAPHSYS. 

As for PLOT. 

DPN = CPY{THIS, NAME*, PNAME*) 

Use: 

THIS 

NAME* } 
PNAME* 

To make a duplicate copy in the di splay file of 
objects which are already in the file. Subpicture s 
or subpicture calls may not be copied. 

The name of some object previously added to the 
display file with PLOT, RPL, or CPY itself. 

As for PLOT. 

RMV(HERE>:<, THERE*) 

Use: 

THERE* 

Note: 

To remove console commands ·permanently from 
the display file. 

(a) The name of any object of subpicture call 
added to the display file with CALL, CPY, PLOT, 
or RPL. 

(b) A subpicture name. In this case the function 
is applied to the complete subpicture definition 
and THERE is ignored. 

The name of any item added to the display file with 
CALL, CPY, PLOT, or RPL. When this optional 
argument is given the function is applied to all 
commands in the file, in display sequence from 
HERE to THERE inclusive. HERE and THERE must 
both be either within the main di splay or both within 
a single subpicture definition 

When both arguments are omitted the whole of the 
display file and all subpicture definitions are re -
moved permanently. 



-3. 2 7 -

DPN = RPL(NEW, INAME, NAME*) 

Use: 

NEW 

IN AME 

NAME* 

Note: 

To replace an item in the display file with another. 
This is not an overlay function, so the old and new 
items need not be represented by the same number 
of console commands. 

Either (a) as OBJECT in PLOT 
or (b) as SN AME in CALL. 

(In case (b) a subpicture call will be generated.) 

The name of the item which is to be replaced. It 
may be either an object previously added to the 
display file with PLOT, CPY, or RPL, or the 
name of a subpicture call generated with CALL or 
RPL. 

The name of the new object, or call. If omitted 
the new itemwill automatically be named INAME. 

If NEW is an SNAME and NAME is not given, INAME 
must point to the first of two consecutive display 
registers, even if the INAME being replaced is an 
object rather than a call. 

2. Creating Objects 

a. Standard Objects 

OB = SETPT(H#, V#) 

Use: 

H# 

V# 

Note: 

Used in conjunction with PLOT or RPL to add a 
set point to the display file. 

Horizontal coordinate of set point. 

Vertical coordinate ·of set point. 

Arguments are taken modulo 2
12

. 

OB = LIN(DELX#, DELY#, DELZ#*) 

Use: 

DELX# 

DELY# 

DELZ#* 

Note: 

Used in conjunction with PLOT or RPL to add a 
line to the display file, e.g., PLOT(LIN(lOO, 200, 300)). 

AX component of line. 

A Y component of line. 

A Z component of line. 

This component allows three -dimensional objects 
to be easily specified in a form that can be rotated. 

10 
Arguments are taken modulo 2 . 



-3. 2 8 -

OB= LLIN(DELX#, DELY #, DELZ#>:<) 

Use: 

OB= PNT() 

Use: 

Note: 

Used in conjunction with PLOT or RPL to add a 
long line (longer than can be drawn by the hard­
ware with a single line command) to the display 
file. Arguments are the same as for LIN except 
that they are taken modulo z 13 

Used in conjunction with PLOT or RPL to add a 
point to the display file. 

This is not a set point. It consists of two short 
vectors of unit length, one positive and the other 
negative such that the beam position is unchanged. 

OB= CIRCLE(XC#, YC#,Xl#, Yl#,X2#, Y2#,CLOCK=F,XE#*>:<, YE#*>:') 

Use: 

XC#,YC# 

Xl#, Yl# 

X2#,Y2# 

CLOCK:! 

Used in conjunction with PLOT or RPL to add an 
arc in the XY plane to the display file. 

Coordinates of circle center in scope units. 

Coordinates of start point of arc in scope units. 

Coordinates of any point on the radius vector 
which intersects the end of the arc. 

If TRUE, a clockwise arc is produced from (X 1, Y 1), 
to the radius vector. If FALSE an anticlockwise arc 
is produced from (Xl, Yl) to the radius vector. 

XE#>!<>:<, YE#':":< Optional output ar gum en ts. The cal cul ate d end 
points of the arc. (See Fig. 3. 8) 

Xl,Yl 

I 
I 
I 
I 

XC,YC ~ 
\ 

\ 
\ 

\ 

Fig. 3.8 Arc computed by procedure CIRCLE 



Note: 

-3.29-

The arc is made up of short straight-line seginents. 
The number of seginents is proportional to the 
radius, which has no limits on size. The distance 
of (X2, Y2) from the cent~r may be less than, 
equal to, or greater than the radius. If (Xl,Yl) 
coincides with (X2, Y2) a complete circle will be 
displayed, and (XE, YE) is the same point, Note 
also that the parameters define only SIZE, 
orientation, and extent of arc. Its· absolute location 
when plotted will depend on "current beam position". 

0B=CIRC3D(XC#, YC#, ZC#,Xl#, Yl#, z1#,x2#, Y2#, Z2#,CLOCK¢, 
XE#**, YE#**, ZE#**) 

Use: 

Note: 

Used in conjunction with PLOT or RPL to add an 
arc in any arbitrary plane to the display file. Argu­
ments are the same as for CIRCLE, except that 
they are three -dimensional. 

If the three points given are colinear, CIRC3D will 
not be able to determine a plane in which to draw 
the circle. It will print a comment and allow the 
user to type in another point which determines the 
plane. 

OB = SINGLE(CHARACTER #) 

Use: 

SINGLE 

Note: 

Used in conjunction with PLOT or RPL to add an 
"unpacked" character to the display file, E.g., 
to display a 11 D 11 write PLOT(SINGLE(24C)) $. 

Code number of desired character (See Table 1. 6). 

LAYOUT should be called before using SINGLE. 

OB = SPECIAL(POINTER) 

Use: 

POINTER 

Note: 

Used in conjunction with PLOT or RPL to add 
special characters to the display file. 

A pointer to an array containing N in the 0th 
position, and N special character words in 
positions 1 through N. This permits the user to 
design any special characters (such as Greek 
letters) to be displayed by the character generator, 

LAYOUT should be c.alled before using SPECIAL. 

OB= PACKED(STRING) 

Use: 

STRING 

Used in conjunction with PLOT or RPL to add 
packed characters to the display file. 

A pointer to an array containing the characters in 
"long word" form as shown in Fig. 3. 9a. The de­
crement of STRING must contain the number W 
of words in the array, The format required by 
STRING is automatically built by the procedure 
LINEQ and by the AED-0 operator. BCQ. for the 



-3.30-

BCQ POINTER 

STRING W 

STRING 

s 5 

• • • 
• • • 

long 
word 

N long 
word 

(a) .BCQ. String 

Format of element pointed to by 'STRING' in 
procedure PACKED. W is the total number 
of computer words. In each "long word", N is 
the total number of characters and I is 0 if 
this is last "long word" or 1 if more "long words" 
follow. 

C POINTER 

6 N 0 0 

W computer 
words 

....__~~~~~~~~~~-' IN characters packed 
6 to a word 

( b) .C. String 

Format of element pointed t9 by 'STRING' in 
procedure TEXT. N is the total number of 
characters. Each word contains six characters. 

Fig. 3. 9 Formats of Character Pointers and Strings 



Notes: 

-3. 31 -

characters in the standard BCD set. E.g., 

PLOT(PACKED(LINEQ( ))) $, ... A line from the 
teletype will be plotted on the screen // 

PLOT(PACKED(. BCQ. /THESE WORDS WILL 
APPEAR ON THE SCREEN/))$, 

1. LAYOUT should be called before using PACKED. 

2. The code expected in the . BCQ. string is not 
BCD, but the console symbol generator code 
in Table 1. 6 (different for special characters). 
The AED operator .BCQN. may be used to 
produce these special characters. 

OB = TEXT(STRING) 

Use: 

STRING 

Notes: 

Same as packed. 

A pointer to an array containing characters in the 
. C. format as shown in Fig. 3. 9b. The AED-0 
operator .C. provides the proper format 
for characters in the standard BCD set. 
E.g., 

PLOT(TEXT(. C, /THESE WILL TOO/)) 

1. LAYOUT should be called before using TEXT. 

2. The console hardware uses the . BCQ. format 
required by PACKED, so when using AED-0, 
it is the more efficient form. TEXT is pro­
vided for compatibility and ease of use from 
other languages. 

3. See Note 2 for PACKED. Use .CN. for 
special characters. 

LAYOUT(DELH#, DELV#, SIZE#) 

Use: 

DELH# 

DELV# 

SIZE# 

Notes: 

To specify the spacing between characters and 
their size. 

AH spac~ng after characters. DELH is taken 
10 modulo 2 for SINGLE characters and modulo 2 

for PACKED AND SPECIAL characters. 

AV spacing after character. 
modulo zlO. 

DELV is taken 

Size of character (0 through 3). Only sizes 1 
and 3 are available for special characters. 

1. LAYOUT should be called before PACKED, 
SINGLE or SPECIAL are used. If it is not 
called, the assumption will be AH = 6, 
AV = 0, SIZE = 0 for packed and single, 
AH= 1, AV= 7, SIZE= 1 for special 
characters. 



-3. 32 -

2. The parameters specified with LAYOUT re -
main constant for all subsequent characters 
that are plotted until LAYOUT is called again. 

3. The start and end point of a character plotted 
with integer procedures SINGLE or PACKED 
is at its top right corner. 

4. The sizes of characters displayed on the scope, 
are approximately as given below. These 
measurements were based on the letter M. 

Start anv 
Size H inches V inches end point 

0 .07 . 10 Mrv 1 . 10 . 14 
2 .14 . 20 
3 ,20 .28 

5. Character commands built with PACKED, 
SINGLE or SPECIAL and not yet added to the 
display file are not affected by a new call to 
LAYOUT with new values of DELH, DELV, 
and SIZE. 

STRING = LINEQ( ) 

Use: 

Notes: 

To take a line of text typed onto the teletype and 
pack it into the correct format (. BCQ.) for ad­
dition to the display file as "packed" characters. 

1. The procedure prints "TYPE." when it is ex­
pecting input. 

2. A line up to 84 characters long will be accepted. 

3. LINEQ should be used in conjunction with 
PACKED and PLOT. The call 

PLOT(PACKED(LINEQ( ))) $, 

gives the facility to display the typed text. Its 
position on the screen will start at the current 
beam location. 

OB = ROT(MATRlX##*) 

Use: Used in conjunction with PLOT or RPL to add a 
pair of rotation matrix commands to the display 
file. 

MATRIX##* The name of a ten-word integer array containing 
members of the rotation matrix, plus a scale 
factor. The format of the words is the s arne as 
for the Rotation Matrix Buffers. (See Section J. 2, 
and Fig. 3. 7) 

Notes: 1. If MATRIX is omitted the rotation matrix com-
mands correspond to the identity matrix. 

2. See also Procedure ROTMUL, Section K. 2. b • 



-3.33-

0B:SETC(MASTER#**, SLAVE#**• MAG~*. INTEN#**, LP!#**· LP2#**) 

.Use: Used in conjunction with PLOT or RPL to add a 
set C command to the· display file. (See Chapter I. D. 7) 

MASTER#** 1 for Master sco.pe, otherwise O. 

SLAVEIJ** 

MAG#** 

INTEN#** 

LPl#** 

LP2#** 

Note: 

1 for Slave scope, otherwise O. 

0 < MAG< 3 Magnifies bit spacing by a factor 

of zMAG. 

Intensity level 0 < INTEN < 15 . 

1 for light pen 1 sensitive, otherwise 0. 

1 for light pen 2 sensitive, otherwise 0. 

If SETC is called with no arguments then a 
standard Set C word is built, equivalent to 

SET C ( 1 , 1 , 0, 1 5, 1, 1) 

If the user is only logged into one console, then 
the MASTER/SLAVE and LP1/LP2 bits will be 
automatically adjusted by the Display Controller 
to refer only to his console. 

OB = SETF(MOVH #, SCALH #, MOVV#, SCALV#, MOVI #, NOPLOT #) 

Use: 

MOVH# 

SCALH# 

MOVV# 

SCALV# 

NO PLOT# 

Used in conjunction with PLOT or RPL to add a 
Set F command to the display file. (See Chapter I. D. 8) 

0 =No movement. 

1 = Move left. 

2 = Move right. 

0 < SCALH < 3 - -
As for MOVH but in.vertical direction (1 =down,·2=up) 

0 < SCALV ~ 3. 

0 = No movement. 

1 = Decrease intensity 1 unit. 

2 = Increase intensity 1 unit. 

0 = Plot. 

1 = Blank. 

b. Nonstandard Objects 

All the procedures below except ROTMUL build a single con­

sole command CC. 

CC= MASEPOI(H#, V#, TYPE#*) 

Use: To make a set point command. (See Chapter I. D. 1) 



H# 

V# 

TYPE#>:' 

Note: 

-3. 34-

12 
Horizontal coordinate of set point (taken modulo 2 ) 

Vertical coordinate of set point (taken modulo 212) 

The type of point. The following types are available: 

0 Visible, Pen Sensitive (may be seen by light pen). 

1 Visible, Pen Insensitive (cannot be seen by 
light pen). 

2 Invisible, Pen Sensitive (See Procedures VIS, 
INV, Section K.3). 

3 Invisible, Pen Insensitive. 

If TYPE is not given, type 0 is assumed. 

CC = MALIGEC(DELX#, DELY#, TYPE#~~) 

Use: 

DELX# 

DELY# 

TYPE#* 

To make a line generate command. (See Chapter I. D. 2) 
10 

D..X component of line (taken modulo 2 ) . 
10 

D. Y component of line (taken modulo 2 ) . 

As for MASEPOI. 

CC = MAZWD(DELZ#) 

Use: 

DELZ# 

To make a Z-word for plotting lines in three­
dimensional space. In making an object, the console 
command produced by MAZWD must immediately 
precede the command produced by MALIGEC, 
which specifies the X and Y components. (See 
Chapter I. D. 2) 

10 
D. Z component of line (taken modulo 2 ) . 

CC= MAPACK(TYPE#*) 

Use: 

TYPE#* 

Note: 

To make a packed character command. (See 
Chapter I. D. 9. b) 

As for MALIGEC, except that only types 0 and 
2 are available. 

The value of 6.H, D. V and SIZE in this command are 
equal to those specified by the last call to LAYOUT. 

CC = MASGLE(CHARACTER#, TYPE#*) 

Use: To make a single (unpacked) character command. 
(See Chapter I. D. 9. a) 

CHARACTER#The code of the desired character (see Table 1.6) 

TYPE#~.c 

Note: 

As for MAPACK. 

As for MAPACK. 



-3. 3 5-

CC = MASPEC (TYPE#*) 

Use: 

TYPE#* 

Note: 

To make a special character command. 
(See Chapter I. D. 9. c) 

As for MAPACK. 

As for MAPACK. 

CC= MAROH(MATRIX##*) 

Use: To build an "ROH" rotation matrix command 
(first line of matrix). (See Chapter I. D. 3) 

MATRIX##* The name of 10 word integer array containing a 
rotation matrix and scale factor in standard format. 
(See Fig. 3. 7) MAROH uses only the first three 
words and scale factor. 

When MATRIX is omitted an identity matrix is 
assumed. 

CC= MAROV(MATRIX##*) 

Use: To build an "ROV" rotation matrix command 
(second line of matrix) (See Chapter I. D. 3) 

MATRIX##* As for 'MAROH' except that MAROV uses the 
second three words plus the scale factor. 

CC=MASETC(MASTER#**, SLAVE#**, MAG#**, IN TEN#**, 
LPl#**· LP2#**) 

Use: To make a Set C Control command. (See Chapter I. D. 7) 

Arguments: As for Set C, Section K. 2. a. 

CC = MASETF(MOVH#, SCALH#, MOVV#, SCALY#, MOVl#, NOPLOT I/!) 

Use: To make a set F command (See Chapter I. D. 8) 

Arguments: As for SETF, Section K. 2. a. 

ROTMUL(OUTPUT##, INPUT##*,AXIS#*, ANGLE+*) 

Use: To compute rotation matrices in standard format 
(see Fig. 3. 7) for use as input to procedures MAROH, 
MAROV, and ROT. 

OUTPUT## Name of 10 -word integer array where output is 
to be stored. 

INPUT##* Name of 10 -word integer array containing an 
input rotation matrix. When INPUT is omitted, 
OUTPUT will be an identity matrix with unit scale 
factor. 

AXIS#* (a) When ANGLE is omitted AXIS is the name of a 
10 -word integer array containing a rotation matrix. 
It is multiplied by that in INPUT, and the result 
stored in OUTPUT. 



ANGLE+* 

-3.36-

(b) When ANGLE is included, AXIS is a single 
integer indicating an axis. 

I = Horizontal. 

2 = Vertical. 

3 = Depth. 

ANGLE and AXIS together specify the matrix to be 
multiplied by INPUT to form the OUTPUT matrix. 

Real value in radians of angle by which rotation is 
desired about the specified axis. Positive values 
give anticlockwise rotation. 

c. Modifying Objects 

OB = INVIS(OB) 

Use: 

OB 

Notes: 

OB = NEVIS(OB) 

Use: 

OB 

Notes: 

OB = INSEN(OB) 

Use: 

OB 

To convert all lines and set points of OB to be of 
the invisible type. 

Any of the integer procedures, CIRCLE, LIN, 
PNT, SETPT or a pointer to an array of the form 
specified by OB (See Fig. 3. 6). Console commands 
in such an array which are not line or set point 
commands are affected. 

I. INVIS may be used as the first argument of 
PLOT or RPL. E.g., PLOT(INVIS(LIN(200, 200))). 

2. Lines and set points made invisible with INVIS 
and added to the display file , may be converted 
back to visible type with procedure VIS. 

3. The value of INVIS is identical to its argument. 

To convert all lines and set points of OBJECT to 
be permanently of the invisible type. 

As for INVIS. 

I. As for INVIS. 

2. Lines and set points made invisible with 
NEVIS and added to the display file will be un­
affected by procedure VIS. 

3. The value of NEVIS is identical to its argument, 

To convert all lines, setpoints, and characters of 
OB to be of the pen insensitive type. 

Similar to INVIS. Include also procedures SINGLE, 
SPECIAL, PACKED, and TEXT. Only setpoint, 
line, and character commands are affected. 



-3. 3 7 -

Notes: 1. As for INVIS. 

2. The value of INSEN is identical to its argument. 

3. Converting Display File Commands from Visible to Invisible 

INV(HERE*, THERE*) 

Use: 

HERE*} 
THERE* 

To convert visible type lines and setpoints within 
the display file to invisible type. 

As for RMV, Section K. 1. 

VIS(HERE*, THERE*) 

Use: 

HERE*} 
THERE* 

Note: 

4. Initialization 

SGNON(NCON #) 

Use: 

NCON# 

Notes: 

SGNOFF() 

Use: 

To convert invisible type lines and setpoints within 
the display file to visible type. 

As for RMV, Section K. 1. 

Lines and setpoints made permanently invisible with 
NEVIS (Section K. 2. c) are not affected. 

To sign on as a console user. 

Number of consoles required, 1 or 2. 

1. SGNON must be called before any communi­
cation can take place with the console. 

2. It sets a condition whereby the user is put into 
"input wait" if he asks for an attention and 
there are none. 

3. If the user is already signed on, the display file 
is cleared, the attention buffer set to zero, the 
attention display (rubber band lines, etc.) is 
cleared and tracking is stopped. A second call 
to SGNON does not, however, accomplish a 
RMV( ) ; i.e., GRAPHSYS data structure beads 
are not returned to free storage. 

4. The condition is set whereby the Return Code 
bit is inserted when standard objects are built 
(see Section G). 

5. If two consoles are requested and only one is 
available, the user is signed on with that one, 
and is informed via the state word and the 
teletype. 

To sign off. 



IW(ONOFF=t:) 

Use: 

ONOFF=t: 

-3. 3 8 -

To control whether the user's program is put into 
"input wait" or remains in "working" status when 
an attention is asked for and there are none. 

If TRUE "input wait", while if FALSE "working" 
condition is set up. 

R TNCOD(ONOFF=t:) 

Use: 

ONOFF=t: 

To control whether blocks containing display file 
commands are returned to free storage by PLOT or 
RPL. 

If FALSE system procedures building standard 
objects (Section E. 2) will not insert the Return 
Code bit and the element containing the console 
commands will not be returned to free storage. 
If TRUE the Return Code bit is inserted. 

N = SATBUF(N#*) 

Use: 

N#>:• 

Notes: 

To set up the size of the attention buffer in the 
display buffer and to enable the light pen (via. a 
Set C word). 

Number of registers to be used for the buffer. 

1. This procedure may only be called once with 
an argument, and that must be before any at­
tentions are generated. The recommended 
time is immediately after SGNON. All 
attentions that occur before it is called will be 
lost. A reasonable value for N is 100. 
(See also procedure ATTN, Section K. 6. a) 

2. N is identh:al to N#>:•. If called without the 
argument, N equals the size to which the 
attention buffer has been previously set. 

5. Reading Display File Commands and Parameters 

P = DMP(HERE*, THERE*) 

Use: 

HERE* L 
THERE*J 

Notes: 

To dump the whole display buffer, or selected 
parts of the display file into B-core. 

As for RMV, Section K. 1. 

1. When neither argument is given the whole dis -
play buffer is dumped into contiguous registers 
as shown in Fig. 3. lOa. 

2. When argument( s) are given the required display 
file commands are dumped into contiguous 
registers as shown in Fig. 3. lOb. LOCi is a 
pointer to the position which the following com­
mands occupied in the display buffer. The first 
position in the display buffer has location O. 



'-..' 

p N 

(a) Dump of whole display 
buffer in B -core 

The N words 
of the buffer 

p 

DISPLAY 
SEQUENC 

r-1 

I 
I 
I 

N 

7I LOCl 171 Nl 

} Nl words 

71 LOC2 T7I N2 

1~ words 

1' 
1J 
I 

7 LOCx 171 Nx 

N > x 
words 

(b) Dump of selected portion 
of Display file in B-core 

Fig. 3.10 Formats Used for Dumping the Display Buffer 

N 
words 

I 
w . 
w 
...i;, 

I 

-i 

~ 



N = ABUF() 

Use: 

N = VAC( )' 

Use: 

-3. 40-

3. The buffer p~inted to by P is obtained from 
free storage and it is the user's responsibility 
to return it when it is no longer needed. Its 
size may be determined by adding 1 to the 
contents of the first word of the buffer. 

To obtain the size of the display buffer. 

To obtain the number of vacant words remaining 
in the display buffer. 

6. Reading Inputs 

a. Real-Time Inputs 

ATTN(ATAR#~ 

Use: 

ATAR## 

Provides details of real-time events that have 
occurred. 

The name of the array (not a pointer) to be used as 
the attention array. The number of words in the 
array which will be filled depends upon the type of 
attention, and is given in the zeroth word of the 
array. The first word contains a code number 
specifying the type of attention. The three types 
of attention, (plus "no attentions") and their codes 
are listed below. The contents of the attention 
array are summarized in Table 3. 1. This array 
is stored in the form appropriate to AED-0 and 
F AP programs, i.e., forward in core. (Programs 
written in MAD must recognize this fact.) A di­
mension of 10 for ATAR will be adequate unless 
the user expects pen sees on items nested more 
than three levels deep in subpicture calls. 

1. Button Pushed, Codes 0 through 35 - (Charac­
ter B on screen.) Any of the buttons numbered 
4 through 35 give an attention, hence their 
function may be assigned by the user. Buttons 
S and 1 through 3 have preassigned functions 
and do not give a "button pushed" attention. 
Button S turns the tracking cross on and off. 
Button 3 is used to turn the picture on and off. 
See 4, for buttons 1 and 2. Button 4 does not 
give an attention if the camera is attached to it. 

2. No Attention. Code 36 - If a request is made for 
an attention and there are none, either (a) the 
user is informed of the fact in the attention 
array, or (b) his program is put into "input 
wait" status, where it remains until another 



FUNCTION ATAR(O) 

Button N 
Pushed 

No 
Attention 1 

Picture 
Part Seen N 
by Pen 

Line 5 
Completed 

Table 3. 1 

AT AR - Attention Array 

AT AR(l) ATAR(Z) ATAR(3) ATAR(4) ATAR(5) AT AR(6) 

0 - 35 H v 
(pre sent if tracking) 

36 

Part Seen Outermost Sub_£icture 
38 HB VB 

Display Display Display 
Pointer Pointer of Pointer of 

Subpicture Subpicture 
Called. Call. 

41 H v ~x ~y 

of start of start of line. of line. 
of line. of line. 

H - Horizontal coordinate of pen position. 

HB - Horizontal coordinate of beam position at time of interrupt. 

N - Number of words required to specify this attention. 

V - Vertical coordinate of pen position. 

VB - Vertical coordinate of beam position at time of interrupt. 

........ 

etc. 

Subpictures 
and Calls 
in pairs to 
innermost. 

I 
VJ 

.;:.. -I 



Notes: 

-3. 42 -

attention occurs. When signing on, (b) is auto­
matically set. However, the user may change 
to (a), or swap between them both by calling 
procedure IW(ONOFF:t). (TRUE for ON.) 

3. Object Seen by Light Pen. Code 38- (Character 
P on screen). When the light pen has seen an 
object, the display pointer name of that object 
is put into the attention array. If the object 
seen is a part of a subpicture, then the display 
pointer name of that subpicture and of that par -
ticular call of the subpicture are made avail­
able, see Table 3. 1. The subpicture names 
and call names continue for as many levels as 
the particular call of the object seen was 
nested. They are ordered outermost (first 
called) to innermost (last called). The array 
ATAR must be dimensioned at least 4+2*n 
registers long, where n is the maximum sub­
picture depth. 

4. Rubber Band Line Completed. Code 41 - (Line 
and character L on screen.) The first push 
of button 1 causes a rubber band line to 
start at the current pen position. Subsequent 
pushes fix the rubber band line, and start a 
new one. Pushing button 2 also fixes the line, 
but releases the cross without starting a new 
line. For each line completed its D.X and 
D. Y are available in the attention array. This 
allows figures consisting of straight-line seg­
ments to be drawn easily. 

1. Each time ATTN is called, the topmost attention 
on the queue is read, interpreted, and the in­
formation is stored in the attention array. 

2. The size of the attention buffer in the display 
buffer must be specified by the user after 
SGNON with procedure SATBUF. Each call to 
ATTN specifies ATAR which may be the same 
or different for each call. 

b. Passive Inputs 

Notes: Every procedure in this section is an integer pro­
cedure. 

All values are right justified. 

PI = ANALOG( ) Value is the "raw" analog word: 

Bits S - 2 No meaning 
Bits 3 - 6 Crystal Ball Horizontal Axis 
Bits 7 - 10 Crystal Ball Vertical Axis 
Bits 11 - 14 Crystal Ball Depth Axis 



PI = CR YSTD() 

PI = CR YSTH() 

PI= CR YSTV() 

PI = DIGI( ) 

PI = PENH() 

PI = PENV() 

-3.43-

Bits 15 - 21 Left Shaft Encoder 
Bits 22 - 2 8 Center Shaft Encoder 
Bits 29 - 3 5 Right Shaft Encoder 

Value is the crystal ball depth axis ( 4 bits) 

Value lS the crystal ball horizontal axis (4 bits) 

Value is the crystal ball vertical axis 

Value lS the raw "digi-switch" word 

Bits S - 3 1st (leftmost) digi-switch 
Bits 4 - 7 2nd digi-switch 
Bits 8 - 11 3rd digi-switch 
Bits 12 - 15 4th digi-switch 
Bits 16 - 19 5th digi-switch 
Bits 20 - 23 6th digi-switch 
Bits 2 4 - 2 7 7th di gi - switch 
Bits 28 - 31 8th digi -switch 

(4 bits) 

Bits 32 - 35 9th (rightmost) digi-switch 

See also REDIG! below. 

Value is the horizontal coordinate of the pen 
position, in sign/magnitude form. If the pen is not 
tracking, the value is meaningless. 

As for PENH, but the vertical coordinate. 

PI = REDIGI (LEFT#, RIGHT#*) Value is a right justified integer 
equal to the setting of any consecutive set of digi­
switche s. Its use may be more easily understood 
by an example: Suppose the digi -switches had the 
setting 

PI = SHENC( ) 

PI= SHENL() 

PI= SHENR() 

PI= TOGA() 

PI= TOGE() 

Then 

Value 

Value 

Value 

Value 

Value 

t ' 3 0 6 5 2 
t 

9 1 3 2 

REDIGI (3, 8) = 6 52 913 

REDIGI ( 5) = 2 

is the center shaft encoder (7 bits) 

is the left shaft encoder (7 bits) 

lS the right shaft encoder (7 bits) 

lS the upper row of toggle switches (36 bits) 

lS the lower row of toggle switches (36 bits) 

7. Real Time Functions 

RLT(FCN#, NAME, SPEED#, DIRN#, CONTROL#, CNAME*) 

Use: 

FCN# 

To initiate or terminate operation of a real-time 
program. 

The function to be performed. Values of FCN have 
the following meanings: 



NAME 

SPEED# 

DIRN# 

-3.44-

1. Rotation about z-axis 

2. Rotation about x-axis 

3. Rotation about y-axis 

4. Translate up and down 

5. Translate right and left 

6. Scale - -see description of CNAME below 

9. Drag with the light pen 

16. Standardized rotation about x, y and z-axe s 
under control of the crystal ball. 

When FCN is 16, SPEED, DIRN and CONTROL 
are ignored, and may be omitted. In this case, 
SPEED is set to 10, DIRN to O. 

The name of a pair of rotation matrix commands if 
FCN refers to rotation or scaling (FCN=l, 2, 3, 6, 16) 
or the name of a set point command if FCN refers 
to translation or dragging with the light pen. 
(FCN=4, 5, 9). 

RLT checks to ensure that NAME refers to the cor­
rect type of command for FCN. If not, the user is 
informed via the teletype, and the real-time pro­
gram. is not initiated. 

A speed multiplier where 0 <SPEED~ 15. This de­
termines the rate at which rotation, translation, or 
scaling occurs. (Ignored for function 9 .. ) 

Determines the direction in which the function changes 
when CONTROL is changed - - 0 or 1 • Use 0 for 
clockwise rotation, positive x, y translation, or in­
creasing scaling (magnification) when the control is 
turned clockwise. (Ignored for function 9.) 

CONTROL# An integer indicating the input control for the function 

1. Left shaft encoder 

CNAME* 

2 . Center shaft encoder 

3. Right shaft encoder 

4. x-axis of crystal ball 

5. y-axis of crystal ball 

6. z -axis of crystal ball 

7. light pen 

An optional argument that may be used when scaling 
is requested (FCN = 6). Normally scaling produces 

----- ------



-3. 45-

only a reduction in size. If magnification is re -
quired, CNAME should be the name of a Set C 
Command which immediately precedes, in display 
sequence, the rotation matrix commands to which 
the scaling is being requested. Magnification is 
effected by altering the "M bits" in this Set C word. 
If it does not immediately precede the rotation com­
mands, then that part of the display represented 
by commands in the display file between them will 
be affected also. 

RLTRMV (NAME*, FCN#>:<) 

Use: 

NAME 

SRLBUF(N#>:<) 

Use: 

N#* 

Note: 

To terminate operation of real-time programs. 

The name of the object to be removed from real­
time. If NAME is not given, all real-time 
operation is terminated. 

The particular function associated with NAME 
which is to be terminated. If FCN is not given, all 
real-time operation associated with NAME is termi­
nated. 

To set the size of the real -time buffer. 

The size of buffer required. 

This procedure may be called only once, and must 
be called before any calls to RLT. If it is not 
called at all, and RLT is called, N is set auto­
matically to 25. 

R WROT(NAME, M_b.1'Bl~_fi.JI, RW #) 

Use: 

NAME 

M_b.1'Bl~## 

RW# 

Example 

To read and write a rotation matrix buffer. 

The name of a pair of rotation commands on which 
rotation or magnification is currently being applied. 

The name of a 10-word array in B-core (see Fig.3. 7). 

If R W = 1 the 10 -word rotation matrix buffer in the 
display buffer is read into MATRIX. If RW = 0 
the contents of MATRIX is written into the buffer, 
and the rotation matrix commands are altered to 
have the same values as contained in the new matrix. 

Suppose we have a set point with name SP, a Set C 
command word with name SC, and immediately fol­
lowing it in display sequence a pair of rotation 
matrix commands R. 

(a) To initiate pen drag 

RLT(9, SP, SPEED, DIRN, 7) $, 

Note: SPEED and DIRN are ignored in this case. 



-3. 46-

(b) To initiate scaling with magnification greater 
than actual size, under control of the right 
shaft encoder: 

RLT(6,R, SPEED, DIRN, 3, SC) $, 

(c) To initiate the standardized rotation, under 
control of the crystal ball: 

RLT (16, R) 

(d) To terminate all the above: 

RLTRMV (SP, 9) $, 

RLTRMV (R) $, 

CAMERA (N#, NOTNOW#*) 

Use: To control the synchronized movie camera. The 
camera will be started immediately (unless 
NOTNOW is specified) and will be started again 
each time button 4 is pushed. 

N# The number of frames to be taken each time the 
camera is started. If N is 0, the camera is dis -
connected from button 4. Maximum value of N is 
32767. 

NOTNOW#* If this argument is present and nonzero the camera 
will not be turned on until button 4 is pushed. 
Otherwise it will be turned on immediately for N 
frames and again for N frames on each occurrence 
of button 4. 

Note: If button 4 is pushed while the camera is running, 
it is stopped immediately. The next push of button 
4 resets the count to N and starts the camera 
again. If CAMERA is called while the camera is 
running, the count is reset and the camera con­
tinues running (unless NOTNOW is set). 

L. HOW TO USE GRAPHSYS 

The GRAPHSYS procedures are in the CTSS as a library file 

called KLULIB BSS and are packaged either singly or in small inter­

related groups. Hence, as far as possible, only those required by a 

user's program will be loaded. 

1. Calling the Procedures 

An example is given below of the method of calling a procedure 

from each of the main languages. Suppose the GRAPHSYS procedure 

is EXAMPLE (ARGl, ARG2, ARG3) 

(i) AED-0 EXAMPLE(ARGl, ARG2, ARG3) $, 
(ii) MAD EXAMPL. (ARGl, ARG2, ARG3) 



-3. 4 7 -

Integer or pointer valued procedures should be declared to 
be type INTEGER, and boolean valued procedures to be 
type BOOLEAN, e.g., 

INTEGER PLOT., LIN., DPN, DELX, DELY, DELZ 

DPN = PLOT. (LIN. (DELX, DELY, DELZ)) 

When a pointer is required, the GRAPHSYS procedure 
P=PTR. (X) may be used. P is a 15-bit pointer to X. 
Remember that all arrays are forward stored in GRAPHSYS. 
MAD calls should therefore give the Nth element of an 
array as an argument wherever an array name is required. 

INTEGER A 

DIMENSION A( 10) 

ATTN. (A(lO)) 

Now A(lO-I) in MAD corresponds to A(I) in AED. 

(iii) F AP TSX 
TXH 
TXH 
TXH 

$EXAMPL, 4 
ARGl 
ARGZ 
ARG3 

Note that except for AED-0, only the first six letters of the 
procedure name may be used. 

2. Loading 

To load with user program PROG write: 

LOAD PROG (SYS) KLULIB 

or, since KLULIB is properly ordered, the more effcient (SRCH) 

function of the LAED loader lTI,il.y be used: 

LINK KLULIB BSS Ml416 CMFL04 

LAED PROG (SRCH) KL ULIB 

3. Free Storage 

2 
GRAPHSYS uses the AED-0 free storage system for dynamically 

allocating memory space for its data structure. AED programmers 

requiring free storage for their own programs should note which of 

the free -storage procedures are automatically loaded with GRAPHSYS. 

They are FRED, FREE, FREC, FRET, and FRE Z, as well as the 

associated procedures that these use internally. These procedures 

should not be loaded again with the user's program. The GRAPHSYS 

always takes memory locations from, and returns them to, the 

"open free storage zone 11
• 



-3 .48-

4. Coons' Surfaces and Graphs 

KLULIB contains routines for plotting Coons' surfaces and for 

plotting graphs. These facilities are described in MAC memoranda 

MAC-M-252 and MAC-M-224 respectively. 

M. CONSOLE SIMULA TOR 

1. General Description 

A simulator allows checkout of programs without using the con­

sole itself. No changes at all are needed in the user's program. The 

simulator replaces all communications between GRAPHSYS and the 

Display Controller, and requests the user to type in information that 

under normal operation would come from the Controller. This in­

cludes the attention array, the rotation matrix buffers, and all of the 

passive inputs described in Section I. 2. The display buffer size is 

arbitrarily set to 2000(8), which is approximately the size available 

in practice when one user occupies both console stations. 

2. Loading the Simulator 

The simulator, KLUSIM BSS, may be linked to in Ml416 

CMFL04. It contains procedures that simulate those with identical 

calls in the console library KLULIB. Hence KLUSIM must be loaded 

before the KLULIB routines: 

LAED FROG (SRCH) KLUSIM (SRCH) KLULIB 

3. Ope rating the Simulator 

The simulator expects only numbers as input. A number fol­

lowed by the letter "C" is taken as octal, otherwise decimal. Num­

bers may be separated by spaces, commas, or carriage returns. 

(i) ATTN (ATAR##) 

The user must type in the complete contents of the attention 
array ATAR. For example, suppose we want to simulate 
the pushing of button 6, when the pen is tracking at position 
(100(8), 200(8)). On calling ATTN the simulator types: 

Sim: TYPE ATTN ARRAY 

User: 3 6 IOOC 200C 

The first number N is the zeroth register of the attention 
array. Hence the total number of items typed is always 
N+l. ·(See ATTN, Section K. 6. a). The special number 
77 777C re sets the ATTN simulator and allows the user to 
retype an uncompleted attention. 



-3.49-

(ii) RWROT (NAME, MATRIX##, RW#, ERRLBL*) 

When RWROT is called for reading, the simulator types: 

TYPE 0 FOR IDENTITY MATRIX, 1 FOR 10 LINES 

If the user types: 

0 

then the following matrix is set automatically: 

377777777777C 
ooooooooooooc 
ooooooooooooc 
ooooooooooooc 
377777777777C 
ooooooooooooc 
ooooooooooooc 
ooooooooooooc 
377777777777C 
377777777777C 

If the user types: 

1 

Then he should type the ten numbers for the matrix setting. 
(Remember that numbers must be followed by the letter 
"C".) Note that input is required only when RW=l, i.e., 
when reading from the rotation matrix buffer is being simu­
lated. When RW=O (writing into the buffer) there is no 
action. (See RWROT, Section K. 7) 

(iii) Passive Inputs 

All the procedures of Section K. 6. b may be simulated, and 
all work similarly. For example on calling TOGA() the 
simulator types: 

TYPE TOGA: 

The user replies with the desired setting of the upper bank 
of toggle switches, an input string of digits in decimal. The 
number must be followed by a "C" if it is octal. 



-3.50-

N. PROCEDURE INDEX 

The first number gives the page where the procedure is discussed, 

the second that of its detailed description. 

Page No. 

N = ABUF( ) 3. I 9 3.40 

PI = ANALOG() 3.2I 3.42 

ATTN (ATAR ##) 3.I9 3.40 

DPN = CALL(SNAME, NAME*, PNAME*) 3.9 3.26 

CAMERA (N#, NOTNOW#*) 3.25 3.46 

OB = CIRCLE(XC#, YC#,XI#, YI#,X2#,CLOCK:f, 
XE#**• YE#**) 3. I4 3.28 

OB = CIRC3D(XC#, YC#, ZC#, XI#, YI#, Z I#, X2#, Y2#, 
Z2#, CLOCK;f:, XE#**• YE#**· ZE#**) 3. I4 3.29 

DPN = CPY(THIS, NAME*, PNAME*) 3.I2 3.26 

PI = CRYSTD() 3.2I 3.43 

PI = CRYSTH( ) 3.2I 3.43 

PI = CRYSTV() 3.2I 3.43 

DPN = DEFSUB(NAME*) 3. 9 3.26 

PI = DIG!( ) 3.2I 3.43 

p = DMP(HERE*, THERE*) 3. I8 3.38 

ENDSUB() 3.9 3.26 

OB = INSEN(OB) 3. I 7 3.36 

INV(HERE*, THERE*) 3. I 7 3.37 

OB = INVIS(OB) 3. I7 3.36 

IW(ONOFP,l=) 3. I8 3.38 

LAYOUT (DELH#, DELV #,SIZE#) 3. I5 3.3I 

OB = LIN(DELX#, DELY#, DELZ#*) 3. I4 3.27 

STRING = LINEQ( ) 3. I5 3.32 

OB = LLIN(DELX#, DELY#, DELZ#*) 3. I4 3.28 

cc = MALIGEC(DELX#, DELY#, TYPE#*) 3. I6 3.34 

cc = MAPACK(TYPE#*) 3.I6 3.34 

cc = MAROH(MA TRIX##*) 3.I6 3.35 

cc = MAROV (MA TRIX##*) 3.I6 3.35 

cc = MASETC(MASTER#**, SLAVE#**, MAG#**, 
INTEN#**• LPI#**• LP2#**) 3. I6 3.35 

cc = MASETF(MOVH#, SCALH#, MOVV#, SCALV#, 
MOVI#,NOPLOT#) 3. I6 3.35 



-3.51-

cc = MASEPOI (H#, V#, TYPE#*) 3. 16 3.33 

cc = MASGLE(CHARACTER#, TYPE#>:') 3. 16 3.34 

cc = MASPEC (TYPE#*) 3. 16 3.35 

cc = MAZWD(DELZ#) 3. 16 3.34 

OB = NEVIS(OB) 3. 17 3.36 

OB = PACKED(STRING) 3. 15 3.29 

PI = PENH() 3.21 3.43 

PI = PENV() 3.21 3.43 

DPN = PLOT(OBJECT, NAME>:', PNAME>:') 3.9 3. 25 

OB = PNT() 3. 14 3.28 

PI = REDIGI(LEFT#, RIGHT#*) 3.21 3.43 

OB = ROT(MATRIX##>:') 3. 14 3.32 

ROTMUL(O'UTPUT##, INPUT##*, AXIS#*, 
ANGLE+*) 3. 16 3.35 

RMV(HERE~~, THERE*) 3. 13 3.26 

DPN = RPL(NEW, !NAME, NAME•:<) 3. 13 3.27 

RLT(FCN#, NAME,SPEED#, DIRN#, 
CONTROL#, CNAME*) 3.22 3.43 

RLTRMV(NAME*, FCN#*) 3.24 3.45 

B = R TNCOD(ONOFF -/=) 3. 18 3.38 

RWROT(NAME, "!::'.1.!--.J'.BJ:.X##, RW#) 3.24 3.45 

N = SA TBUF(N#*) 3. 18 3.38 

OB = SETC(MASTER#'l:*,SLA VE#*>:', MAG#*>:', 
INTEN#>:<>:c, LPl#':C*, LP 2#>:<>:') 3. 14 3.33 

OB = SETF(MOVH# ,SCALH#, MOVV# ,SCALY#, 
MOVI#, NOPLOT#) 3. 15 3.33 

OB = SETPT(H#, V#) 3. 14 3.27 

SGNOFF( ) 3. 18 3.37 

SGNON(NCON#) 3. 18 3.37 

PI = SHENG( ) 3.21 3.43 

PI = SHENL( ) 3.21 3.43 

PI = SHENR( ) 3.21 3.43 

OB = SINGLE(CHARACTER#) 3. 15 3.29 

OB = SPECIAL(POINTER) 3. 15 3.29 

SRLBUF(N#*) 3.22 3.45 

OB = TEXT (STRING) 3. 15 3. 31 

------- -- ~-----



-3. 52-

PI = TOGA() 3.21 3.43 

PI = TOGB() 3.21 3 .43 

N= VAC() 3 .19 3.40 

VIS(HERE*, THERE*) 3.17 3.37 

REFERENCES 

1. Ross, D. T., AED -0 Programming Manual - Preliminary lle­
leases Nos. 1-4, October - December, 1964. 

2. Ross, D. T., New Free Storage Package, Elect.ronic Systems 
Laboratory Memorandum 9442-M-173/MAC-M-318, July 1966. 
Also The AED Free Storage Packa~,e· Comm~nications of the 
ACM, Vol. io, No. 8, August, 19 7, pp. 481-492. 



APPENDIX A 

THE DESIGN AND PROGRAMMING OF A DISPLAY INTERFACE SYSTEM 
INTEGRATING MULTIACCESS AND SATELLITE COMPUTERS 

by 

D. T. Ross, R. H. Stotz, D. E. Thornhill 

and 

C. A. Lang 
University Mathematical Laboratory 

Cambridge, England 

This paper was presented at the ACM/SHARE Fourth Annual Design 
Automation Workshop held in Los Angeles, California, June 26-2 8, 196 7. 



ABSTRACT 

Application of highly interactive computer graphics to large, com­
plex problems imposes stringent requirements for both real-time re -
sponse and massive computation. The needed computation can be 
supplied most economically by a large multiaccess computer, but the 
necessary real-time service must be provided by a satellite display 
computer, which is directly connected to one or more display termi -
nals. This paper describes a Display Interface System which allows 
the user to employ these facilities in a manner which is independent 
not only of his particular problem, but also of the computer, communi­
cation link, display hardware, and the multiaccess operating system. 

The major design criteria are that maximum real-time capability 
(both computation and storage) be made available to the user, with 
minimum overhead on the multiaccess system. These criteria are 
met by employing minimal executive programs in both the multiaccess 
and display computers. These minimal executives may be augmented 
from libraries of standard executive routines and utility routines to 
form a particular user's operating system. 

The work reported in this document has been made possible through 
support and sponsorship extended to the M. I. T. Electronic Systems 
Laboratory by the Manufacturing Techn'ology Laboratory, R TD, 
Wright-Patterson Air Force Base under Contract F33615-67-C-1530. 
Project DSR 70429. 

The work reported herein was supported (in part) by Project MAC, 
an M. I. T. Research Program sponsored by the Advanced Research 
Projects Agency, Department of Defense, under Office of Naval Re -
search Contract NOnr-4102(01). 



I. INTRODUCTION 

This paper describes a system for providing mixed graphical and 

verbal communications with a multiaccess computer via a satellite com­

puter with a display. We assume that such an arrangement is neces­

sary to satisfy an on-line user's large - scale computation and storage 

requirements economically, and to provide graphical facilities at re -

mote terminals. The general-purpose Display Interface System, parts 

of which reside in each machine, acts as an interface between the 

user's programs and the display terminal. It provides means for com­

munication as well as system functions required in each machine. 

Since it is general purpose, and no user will require all the features 

it provides, the software exists in the form of system libraries from 

which a user may select an appropriate subset for his particular appli­

cation. The user's interface with this system in each machine is in­

tended to be hardware independent. 

II. SELECTION OF SYSTEM COMPONENTS 

Application of highly interactive computer graphics to large, 

complex design problems imposes stringent requirements for both real -

time response and extensive computation and storage facilities. If a 

sophisticated graphics console is to provide acceptable interaction with 

a user, certain real-time actions are necessary: 

1. The picture must be maintained on the screen at 
all times by executing a display file of commands 
to the display unit sufficiently often to minimize 
flicker, 

2. There must be very fast response to interrupts, 
(e.g., light pen "see", button push), and 

3. Exe cut ion of real-time programs must be pro -
vided at regular intervals in order that certain 
transformations on the screen (e.g., rotation of 
a three -dimensional picture) appear to be taking 
place continuous! y. 

In addition to these real -time requirements, the user also needs oc -

casional extensive computation for manipulating his data structure, for 

analysis, or for simulation. Finally, he needs mass storage to retain 

his data and programs. 

-A. 1-



-A. 2-

It is uneconomic for a single on-line user to operate a computer 

with facilities which he needs only occasionally. Multiacce s s and multi­

programming techniques reduce the costs by sharing the computer fa­

cilities among several use rs. The high data-rates and real-time inter­

action requirements of displays, however, are incompatible with the 

standard time -sharing and core -swapping techniques of such systems. 

If a display is attached directly to a multiaccess computer, then core 

must be permanently assigned to store the real-time programs and the 

display file mentioned above. Sufficiently fast response can not be 

given if these have to be retrieved from backing store when they are 

required. Further, many display-oriented actions would have to be 

given highest priority at all times over other users' programs. Such 

a system might be workable for a single display user within the multi­

access system, but if several displays were required, serious con­

flicts of storage and time would occur. These conflicts have been ex­

perienced at M. I. T. where the Electronic Systems Laboratory dis -

play console has been connected directly to the IBM 7094 time -sharing 

system since 1964 .
1 

A possible solution might be to provide the display with its own 

buffer store for the display file. Not only would this remove the nece s -

sity to store the display file in the multiacce s s computer, but it would 

allow the display to be maintained remotely, connected to the multi­

acce s s computer by means of a communications link. Such a simple 

buffering scheme is inadequate, however, for the real-time program 

requirements can only be satisfied if the bandwidth of the link is suf­

ficiently high, and still the display priorities would disrupt normal 

time-sharing scheduling. The only complete solution is to provide 

remotely at the display some computational power which may be dedi -

cate d to the requirements of the display without affecting other pro -

grams inthe multiaccess computer. 

Figure A.1 shows the system design which has resulted. A large, 

general-purpose, multiaccess computer (MC) is coupled with a dedi­

cated general-purpose display computer (DC) to drive a number of 

teletypewriter and display terminal stations. A large number of users 

have access from remotely-located keyboard consoles such as tele -

typewrite rs to the MC. The MC contains mass storage, a file retrieval 



-A. 3 -

mechanism, editing programs, compilers for numerous languages, 

and other similar programming aids. User programs are run inter-

MASS 
STORAGE MUL Tl-ACCESS COMPUTER (MC) DISPLAY COMPUTER (DC) 

,...._ _ __., (PROGRAMS 
r---___..., and DAT A ) 

LINK 

USERS SUPERVISOR 1<!:===:::::::>1 
(CONTROL 
and DATA) 

EXEC. USERS 

DISPLAY 
INTERRUPTS 

STATION 

Fig. A. l General Hardware Scheme 

DISPLAY 
CHANNEL 

(DISPLAY 
COMMANDS) 

DISPLAY 
GENERATOR 

STATION 

mittently in accordance with the time -sharing scheduling algorithm and 

any individual user program is operated only aperiodically for short 

bursts of time. For users at keyboard consoles, the effects of this 

swapping are essentially unnoticeable if the system is well designed and 

is not overloaded. 

Connected to the MC by a communications link is the satellite 

display computer (DC} which stores the display file and meets the 

real-time requirements of the display station users. The DC may be 

large, medium, or small, depending upon the requirements of the 

users, the characteristics of the communications link, and other 

factors. Directly coupled to the DC are the graphic consoles which pro­

vide graphical displays, light pens, knobs, push-buttons, etc. (Tele -

typewriters associated with the graphic consoles may be connected to 

the DC instead of the MC as shown in Fig. A. 1.) 

The generalized system design of Fig. A. 1 can be made to satisfy 

a wide range of requirements coupling dynamic displays with a time -

shared environment. The principal problem to be faced is how to 

achieve a complementary general software system design, so that a 



-A.4-

single programming philosophy can be applied to the full range of 

system configurations. This paper presents such a display interface 

system design which not only is applicable to many choices of hard­

ware, but which also allows maximum flexibility to the user for any 

particular hardware selection. 

III. THE DISPLAY INTERFACE SYSTE:tvl• 3 ' 
4 

Figure A. 2 shows the user's view of the system. His problem is 

represented by programs and data structure which are coupled to a 

DATA DATA 

STRUCTURE STRUCTURE 

~ 

U.SER DISPLAY DISPLAY .... .... INTERFACE i..... ... ....- ~ 

PROGRAMS STANDARD SYSTEM DISPLAY CONSOLE 
CALLS COMMANDS 

Fig. A.2 User's View of the System 

display console station through a Display Interface System (DIS). It is 

very important to realize that the user program does not affect the dis -

play directly, but only through the standardized calls for actions to be 

performed by the intermediary interface system. Only by such a 

scheme can the user programs remain constant as display and hardware 

configurations change. All of the device - and system-dependent charac -

teristics are absorbed into the inner workings of the DIS. 

As far as the user is concerned, the standard DIS is a set of 

system -provided procedures which allow him to employ the facilities 

of the display system without a detailed knowledge of how it works. 

The DIS allows the user to create pictures, perform real-time compu -

tation, interpret display console actions, allocate DC resources, etc. 

The DIS does not retain any information relevant to the user's problem. 

For example, the user may create a picture, giving to each picture 

part (e.g., point, line, or subroutine picture) a name which will then 

be used for all communications between the DIS and the user's pro­

gram. The user might say, "Plot a point at position (x, y) andname it 

-- --------



r--- ---- ~~--- 'T -

-A. 5-

Nl," or "Delete the object named N2," or the system might inform the 

user, "Picture part N3 has been seen by the light pen." The interface 

system builds the necessary display commands and inserts them into 

the display file for the picture being displayed. The DIS maintains in­

formation about the correspondence between those commands and the 

user-given names, but any geometric or structural information about 

the picture is contained in the user's own program and data structure. 

With the general hardware configuration and user's view es­

tablished, we now may turn to the design of the Display Interface System 

itself. For this discussion, it is useful to make a distinction between 

the ™of the system (as described above) and_ a system programmer 

(who may be the same individual) who adapts the various features of the 

DIS to a particular hardware configuration and set of usage char~c -

teristics. In other words, the generalized DIS design can be adjusted 

to account for frequency-of-use and real-time requirements, etc. , 

needed to satisfy a given style of use, as well as hardware characteristics. 

These adjustments are performed by the programmer so that the user 

need not be concerned with the workings of the DIS. The alternatives 

available to the programmer are the subject of the remainder of this 

paper. 

IV. SOFTWARE DESIGN CRITERIA 

The DC, however large, has limited capacity. Therefore the 

primary goal is to achieve a software system design in which the maxi­

mum amount of DC capacity (storage Cl:nd execution time) is made avail­

able for assignment as best meets the needs of the individual user. To 

put the matter another way, a minimum of fixed system overhead 

should be compulsory, but there should be a maximum of optional 

system assistance which the programmer can make available to the 

user. The basic system design must reflect only those aspects which 

have their basis in the physical nature of the hardware configuration 

and the fundamental nature of communication, and are therefore re­

quired by all users. Then each type of usage can be handled by suitably 

augmenting the hard core of the system. 

The minimum DIS structure which is dictated by hardware con­

figuration is concerned with controlling the communication link between 



-A. 6-

the MC and the DC, and providing a skeleton executive structure to 

which augmenting features may be attached. We refer to this basic 

core as the minimal executive and it resides partially in the MC and 

partially in the DC. In both the MC and the DC there is a communi­

cations package which is able to transmit and receive "mes sages" con­

sisting of programs, display file commands, data structure, or any 

other form of data, and also of control information requesting or de -

mantling that the recipient take some action by executing a program. 

In the MC, the minimal executive is imbedded in the multi-

acce s s system supervisor and coupled with the standardized calling 

mechanism of the DIS. In the DC, however, the minimal executive 

contains two more almost trivial parts, an interrupt receiver and a 

program cycle. Their purpose is solely to satisfy hardware needs and 

to provide tie points for augmenting the minimal executive for par -

ticular styles of usage. The minimal interrupt receiver dispatches 

interrupts from the link to the communications package for proce s -

sing, but ignores all other interrupts. The program cycle merely 

keeps the DC running. Thus the DC minimal executive does nothing 

but await augmenting instructions. 

The overall DIS design provides many features for the user, and 

in principle almost all of these features can be carried out by programs 

and data structures residing in either the MC or the DC or partially in 

both. The design is predicated on the assumption that there will be a 

library of system routines (residing on the backing store of the MC or 

DC or both) which may be loaded and linked into the appropriate 

places in the minimal executives. We will assume that the DIS in -

eludes the capability for this system assembly, and will not concern 

ourselves here with the methods whereby the system programmer as­

sembles a particular arrangement for a particular user. It is worth­

while, however, to consider in more detail the various major forms 

of augmentation and how they can satisfy the criteria for flexibility 

and efficiency stated earlier. 

V. AUGMENTING THE DC EXECUTIVE 

Certain augmentations must take place exclusively in the DC. 

The simplest of these is the Interrupt Dispatcher whereby the user may 

attach a program of his choice to any individual interrupt of the DC 



-A. 7 -

(excepting those concerned with the communication link which must be 

handled rigidly by the system itself). In addition, there are the at­

tention and program gueue mechanisms, as well as provision for multi­

station time -sharing of the DC itself, which merit elaboration. Fig. A. 3 

INTERRUPT IGNORE AND 
ENTRY RETURN TO 

INTERRUPTED MINIMAL 
ACTIVITY 

LINK 
EXECUTIVE 

COMMUNICATIONS PROGRAM 
TO 
MC PACKAGE CYCLE 

INTERRUPT INTERRUPT --·-
FROM MC RECEIVER 

-- -- ---- -- ---- -- -- -- -- -- -- --
SEND 

INTERRUPT 

DISPATCHER 

QUERY PROGRAM AUGMENTED 

ATTENTION 

ROUTINES INSERT 

ATTENTION ATTENTION 

LIST DISPLAY 

INTERRUPT 

ROUTINES 

MAIN DISPLAY DATA 

FILE STRUCTURE 

Fig. A.3 Programs in the Display Computer 

QUEUE 

INSERT 

OTHER 

PROGRAMS 

OTHER 

DATA 

EXECUTIVE 

USER 

shows the complete contents of the satellite display computer. It 

should be kept in mind that only the minimal executive is essential, so 

that any of the other items may not be pre sent for a particular user's 

application. Figure A. 3 shows how these parts are interconnected 

when all are pre sent. 

1. The Attention Routines 

The attention routines allow the DC to initiate an information 

transfer to the MC. These routines queue blocks of data (called~­

tentions} which are to be sent to the MC in a first in-first out attention 

list. As soon as the link is free after the creation of such a block, 

the user's MC program is interrupted and informed that an attention 



-A. 8-

is waiting. The user may then read this top attention from the DC, 

process it, and return to the state in which he is again prepared to be 

interrupted. Only when the top attention has been read is the infor­

mation about the next attention (if there is a next one) available to the 

MC. The attention may contain arbitrary information including re -

quests to the user's MC program to read or write further data to the 

DC. 

The attention mechanism has two important properties. First, 

by having the ability to interrupt the MC program it allows the user's 

DC and MC programs to work asynchronously if desired. Needless to 

say this in no way prevents them from being operated synchronously. 

Secondly, it enables the user to work continuously on the DC even 

though his MC program is only running intermittently. For example, 

whenever a light pen or push button action requires interpretation by 

an MC program, an appropriate attention is added to the queue in· real 

time, and the user may continue immediately. Only when a desired 

action depends upon some displayed result of an earlier action inter­

preted by an MC program will the user be dependent upon MC time­

sharing response. 

A useful option is the attention display, whereby a mnemonic 

display is automatically maintained on the screen for each attention as 

long as it is in the queue. As soon as an attention is read by the MC 

its display is deleted. This serves to leave a history on the screen of 

actions taken by the user, and to provide feedback about actions taken 

but not yet processed by the MC. In many cases the attention display 

can be treated as a token for some future result from an MC program, 

so that time -sharing delays are further alleviated. 

2. The Program Queue 

The program gueue is actually a queue of queues, headed by a 

stack, as shown in Fig. A. 4. All manipulations of this mechanism are 

handled on a priority interrupt basis, where the manipulations are as 

minimal as possible. Each mark below the line in Fig. A. 4 represents 

a complete call (function name and argument values) for some action to 

be performed. Insertions may be made at various places, depending 

upon the nature of the action and the status of the action currently being 



-A. 9-

performed. If in Fig. A. 4 the inserted program is to be left to the cur -

rent interrupted program and there is a bar above the line between 

STACK 
INTERRUPT 
LOWER LEVEL 
PROGRAM - I I 

PROGRAMS - I I 

H~H f 

I I 
I I 

/ 
LOW 

PRIORITY 

PRIMARY QUEUE SECONDARY QUEUE 

I I I I I 

' / HIGH LOW H~H l Lfw 

PRIORITY PRIORITY 

EXECUTION ALWAYS PROCEEDS LEFT TO RIGHT -

Fig. A.4 The Program Queue 

them, then the inserted program is begun and is run to completion be -

fore the interrupted program is resumed. This may happen repeatedly, 

and whenever a program is completed, the leftmost program is respmed 

or begun. 

This rather elaborate scheme is made necessary by the real -time 

requirements of dynamic displays and the de sire to maintain flicker -free 

pictures in spite of speed limitations of the DC, as much as possible. 

Calls to place actions on the queue may be imbedded throughout the dis -

play file, coupled to interrupts, tied to real-time clocks, etc., so that 

the user (or his system programmer) may have full control of the way 

in which conflicting time requirements are met. 

Another feature of the program queue conventions is that in many 

cases the results of actions also are queued and are made active only 

at specific times by other actions. Thus, for example, if a series 

of actions compute new values for variables which affect the appearance 

of the display, the display continues to cycle based upon the old values 

until all of the new values can be made available at the same time. 

This technique prevents the breaking up of the picture which otherwise 

would result. 

3. Multiple Users in the DC 

When the DC is to be time-shared between several graphic termi­

nal users, the augmented executive must include routines for scheduling 

processor time and display channel time among the users and for pro­

tecting them from each other. This requires more elaborate attention 



-A. 10 -

queue, program queue, and interrupt processor routines. Separate at -

tention queues must be maintained for each user, and the interrupt 

dispatcher must be able to decide to which user an interrupt belongs 

and to call his routine. The display cycling routines and the proces­

sing of interrupts directly involved in cycling the display must now be -

come a part of the augmented executive. Memory protection hardware 

in the DC is probably necessary to ensure the users do not damage 

each other's program or the executive. 

VI. AUGMENTING THE MC EXECUTIVE 

As was mentioned above, the remaining features of the Display 

Interface System may be mechanized in the MC or DC or both. Since 

it is most likely that the DC will be a small computer so that the cri­

terion that the maximum capability be available to the user becomes 

paramount, we will describe the remaining features primarily from the 

viewpoint of implementation in the MC, with occasional indications of 

how portions can be carried out in the DC. In the following discussion, 

as is indicated in Fig. 5, only the communications package is imbedded 

MASS 
STORAGE 

LOADER 
for 

DC 

MULTI-ACCESS SUPERVISOR 

DATA 
STRUCTURE 

(names) 

USER ROUTINES 

DATA STRUCTURE 

and OTHER DATA 

DISPLAY 

FI LE 

BUILDING 
and 

EDITING 

Fig. A.5 Programs in the Multiaccess Computer 

OTHER 

ROUTINES 

from DC 

EXECUTIVE 

LINK 

to DC 

AUGMENTED 

EXECUTIVE 

USER 



-A. 11-

in the Multiaccess Supervisor of the MC. All other augmenting of the 

MC executive takes place in space allocated to the user by the super -

visor. 

1. DC Storage Allocation
5 

If the DC is small, the task of allocating storage in DC memory 

will almost always be split between the MC and the DC. Every feature 

of the DIS requires some form of storage in the DC for programs, data 

structure, or display file. If the DC memory is not large enough to 

contain the type of elaborate free storage allocation mechanism re -

quired for all purposes, then the elaborate allocations may be per -

formed in the MC in non-real-time. Almost always, however, the DC 

will need at least a basic free storage allocation system for the at­

tention queue, attention displays, etc,, since these requirements must 

be met in real time. As Fig. 5 indicates, when some of this function 

is performed in the MC, the MC maintains a storage map of DC memory 

usage, including those segments turned over to the management of the 

DC free -storage system. 

2. Display File Building and Editinl' 
4 

Routines to build and edit display files 1n response to calls on 

the standard DIS interface usually reside in the MC so that the maxi­

mum DC memory is available for display files. Basic routines to 

build standard picture parts, such as points, lines, characters, 

circles, etc., and to control display parameters such as intensity, and 

sensitivity to the light pen are provided. When one of these routines is 

called, it builds the appropriate display file commands, obtains space 

for them from the storage allocation routines, transmits them to the 

DC, and inserts them into the display file. More complicated picture 

parts may be built consisting of any combination of the standard picture 

parts above. These are built up in the MC and then inserted into the 

display file as a single part. They behave rather like a macro, for 

once they have been built in the MC, any number of copies may be 

transmitted. A further facility allows a subroutine picture to be added 

once to the display, and any number of calls may be made to it from 

the display file. This is useful for repetitive pictures. 



-A.12-

A more important provision of these routines is a feature whereby 

the user may assign a~ to any picture part, or subroutine picture 

definition into the display file. This name may then be used for communi­

cation between the user and the routines. The routines provide editing 

facilities for the display file, and the names are used, for example, to 

specify which item to delete, or where in the display file to insert a 

new item. When a light pen interrupt occurs the routines tell the user 

the name of the item seen. If this name is a pointer to that part of 

his data structure describing the item seen, it gives very quick access 

to all the relevant data about the object seen. 

In order to carry out the above functions, these routines main­

tain in the MC a map of the display file, and the relation between the 

names and the corresponding display commands in the DC. No geo­

metric or structural information about the picture is maintained, how­

ever, for that is a function of the user's problem.
6

• 7 

3. Loading of DC Programs 

Just as display file generation will usually take place in the MC, 

the complexities of DC program loading and linking also require MC 

action and large libraries of DC programs require the MC mass 

storage facilities. The DC space for loading programs is obtained 

from the storage allocation mechanism, and the structure of the DC 

executive, the program queue mechanism, and the display file itself 

provide the tie points to which programs may be attached. If the pro­

grams are stored in relocatable form, any necessary relocation is 

performed in the MC and the resulting relocated programs are trans -

mitted to the DC. This takes place both for the initial loading of the 

DC with the augmented executive and user routines and for dynamic 

loading to make maximum use of DC storage. The exact mechanism 

depends on the paging and relocation hardware of the DC (if any}. 

Most DC programs will be selected from fail-safe library 

routines stored in the MC mass memory, but special user-written 

programs may also be compiled or assembled on the MC for trans -

mission to the DC. The compiler or assembler must contain special 

provisions to guarantee that new programs cannot damage the system 

if they malfunction. Memory protection hardware for the DC would be 



1--~-~- ------ ·--·-····--·--·· --~ 

-A. 13-

helpful in this regard. Finally, it is worth noting at this point that it 

is certainly possible for the DC to have its own loader and a backing 

store on which the library of system routines are kept. This alter­

native may be particularly attractive if the link between the two com­

puters is of low bandwidth or if dynamic swapping of DC storage areas 

is desired. The DC could then manage all its own storage allocation 

and loading. 

VII. DISCUSSION OF SYSTEM USAGE 

Now that the program-building, loading, and sending routines 

have been introduced, the needs of the user who requires the full flexi­

bility of the system can be considered. The programmer has at his 

disposal not only such of the standard system routines for each com­

puter as he desires to employ, but also facility for writing his own ad­

ditional (or substitute) routines for each machine·. Factors which must 

be considered include the storage and computation facilities of the two 

machines, the relative cost of storage and computation in the two ma­

chines, the bandwidth of the link, and the type of response that is re­

quired at the display for the problem which the program is designed to 

solve. One can visualize the two extremes under which the inter­

connected system could operate. At one extreme the MC might be used 

only to transfer data between its backing store and the DC, while at 

the other extreme extensive computation might be done in the MC, with 

the DC being used only to output results on the display for direct viewing 

or photographing. In between there are many levels where the pro­

grams in each machine will want to communicate. For example, one 

might design a casting on-line at the DC using the display, light pen, 

and other input/output devices and then press a button which causes a 

description of the geometry of the casting to be transmitted to the MC 

where an analysis is carried out to com.pute the weight of metal in the 

casting. The results are then transmitted back to the satellite and dis­

played. 

Put more generally the spectrum of uses covers those who re­

quire pictures, perhaps very elaborate, with little or no dynamic action 

to those who require pictures, perhaps quite simple, with a great deal 

of real-time computation. Our aim therefore has been to provide 



-A. 14-

general -purpose communication software between the machines in­

dependent of the bandwidth of the link and of the hardware as far as 

possible, along with a library of routines for performing system 

functions in each machine in a compatible way. 

VIII. IMPLEMENTATION 

Systems based on the above philosophy are being implemented at 

the Mathematical Laboratory, Cambridge University, where a PDP-7 / 
8 340 is connected to an Atlas II computer, and at M. I. T. where a 

PDP-7 driving the Electronic Systems Laboratory Display is connected 

to an IBM 7094.
2 

When the M. I. T. PDP-7 and display are connected. to 

the GE 645 which is due to replace the 7094, only the communications 

portion of the minimal executive must be reprogrammed. The other 

7094 routines, which are written in the machine -independent AED 

language, and the PDP-7 routines can still be used. 



REFERENCES 

1. Ross, D. T., et al., "A-Core/B-Core Display Interface for 
Time -Sharing," in Interim Engineering Progress Report, ESL­
IR-221 for 1 December 1963 through 30 May 1964, M. I. T. 
Electronic Systems Laboratory, pp. 35-37. 

2. Ross, D. T., "The Display Interface System," ESL Memo­
randun,i 9442-M-170/MAC-M-312, June 1966, pp. 20-28. Also 
appears in Interim Engineering Progress Report, ESL-IR-278 
for 1 June 1965 through 31 May 1966, M. I. T. Electronic Sys­
tems Laboratory, PP• 43 -54. 

3. Lang, C. A., "New B-Core System for Programming the ESL 
Display Console," ESL Memorandum 9442-M-122/MAC-M-216, 
M. I. T. Electronic Systems Laboratory, April 1965. 

4. Mozley, A. N., "A Display Interface System," University Mathe­
matical Laboratory, Cambridge. To be published. 

5. McCallum, K., "Titan Routines for Controlling PDP Free Stor­
age," University Mathematical Laboratory, Cambridge, February 
1967. 

6. Gray, J. C., Lang, C. A., "ASP - An Associative Data Structur­
ing Package," University Mathematical Laboratory, Cambridge. 
To be published. 

7. Newman, W., "The ASP-7 Ring Structure Processor," Imperial 
College, London, January 1967. 

8. Lang, C. A., "The PDP-Titan Link," University Mathematical 
Laboratory, Cambridge, November 1966. 

-A. 15-



APPENDIX B 

A SAMPLE INTERACTIVE GRAPHICS PROGRAM 

by 

.Daniel E. Thornhill, 
John W. Brackett, and 
Jorge E. Rodriguez 

This program was prepared as a classroom example for a course on 
Computer Graphics presented by the Special Interest Committee on 
Time -Sharing of the Greater Boston Chapter of the Association for 
Computing Machinery on February 10, 1968 at M.I.T. 



I. INTRODUCTION 

Any interactive graphics progr~ is more complex than the usual 

one page "sample program" unless it is only to plot a simple picture. 

If the program also defines and manipulates, a data structure containing 

relational information about the problem, the complexity of the program 

rapidly increases. This example attempts to provide the "flavor" of a 

program which performs a useful function. but with enough simplifying 

assumptions to make it tractable as a demonstration program. , 

The problem chosen is drawing, and editing a simple electrical 

circuit. The program allows the user to construct a circuit containing 

nodes, capacitors, resistors, and short circuits, to modify the circuit, 

and to assign names and values to resistors and capacitors. Ob­

viously, such a program would have to be expanded considerably to 

be useful for circuit design and analysis, both in the types of elements 

it can handle and in analysis routines, which are completely missing 

in this case. Therefore, the sample program should be regarded as 

being only a small fraction of the size and complexity of a useful on­

line circuit design system. 

Il. PROGRAM FUNCTIONS 

The program allows the user to perform the following five functions: 

1. To begin drawing the circuit at a fixed point on the 
screen where the first node is always defined. A 
node is a point of inte.rsection of circuit elements. 

2. To draw, from the node last pointed to with the 
light pen, an elemep.t which may be: 

a. a horizontal or vertical resistor, 
b. a horizontal or vertical capacitor, 
c. a horizontal or vertical short circuit. 

3. To delete a node or an element pointed to by the 
light pen. 

4. To give a name, which will appear on the screen, 
to a resistor or capacitor. 

5. To assign a value to a resistor or capacitor. 

The user operates the program by using a light pen to indicate 

the node or element of interest and a box of push buttons to indicate 

the function to be performed on the object to which he has already 

pointed with the light pen. Values and names for the capacitors and 

resistors are input on the teletype. 

-B. 1-



-B. Z-

III. MODELING THE CIRCUIT 

If the program is to deal with the circuit, it must have access to 

certain information about it. For instance, one might want to know 

what is the value of capacitor "C3". To answer this question, the pro­

gram must have stored the fact that there is an element named "C3" 

which has a certain value. But a circuit is more than just data of this 

type. Editing ope rations, such .as deleting a node, require a knowledge 

of many relationships; to delete a node, one must remove all of the 

elements of any type attached to it. This type of information will be 

cal.led structure. Each node or element in the circuit has certain data 

pertaining to it and there is a structure which interrelates the nodes 

and elements. 

The following data items are stored for each node: 

1. A "name". 

Z. An X and Y position in some system of co -
ordinates. 

3. The number of elements attached to the nodes. 

The structural. information for each node specifies which elements are 

attached to the node. 

For a resistor or capacitor, the program storeli as data: 

1. The value of the r·e sistance or capacitance. 

z. A "name" so the user can refer to the element. 

The structural. information for an element specifies the two nodes to 

which the element is connected. For an element representing a short 

circuit one need store, in this example, only the nodes between which the 

short is connected. All of the data plus the structure indicating re­

lationships between the individual parts of the model is called data 

structure. 

One way to store all this information would be to use four 

Fortran-type arrays, one for· nodes and one for each of the other three 

types of elements. For nodes, each node could be a row of a matrix, 

with the number of columns being the number of values needed to re -

pre sent the information about the node. 

There are several disadvantages to this scheme. If arrays inust 

be dimensioned at compile time, the person who writes the program 

----------------------~ 



-B. 3-

must decide upon the maximum number of nodes and of each element 

the user can define. Since the user is to be allowed to edit the circuit 

on-line, the program must also be able to keep track of what rows in 

the matrices correspond to deleted nodes and to reuse these rows if 

the total number of nodes defined at any time begins to approach the 

dimension of the array. For programming convenience, it would be 

useful to denote that the fourth element in each row of the node matrix 

is to have the name 11XCOORD 11 to indicate the X coordinate of the 

node. This cannot be done directly in FORTRAN, since it would 

violate the assumption that all elements of an array are similar 

entities, but can be done indirectly by the clever use of "EQUIV A­

LENCE'' statements. 

Many computer representations of these elements and their inter­

connections can be devised. We shall use the AED (~lgol ~xtended for 

Design) System which has been designed by the M. I. T. Electronic 

Systems Laboratory Computer Application Group and which operate!f' on 

the M. I. T. time-sharing system. The circuit will be modeled by·using 

a bead or block of words to re pre sent each node or element. Beads are 

obtained from a free storage system (a storage management system). 

The AED components feature will allow us to refer symbolically to each 

property of an item to be stored in the bead. Pointers will be used to 

interconnect beads. These techniques will be discussed in a later 

section. 

IV. PROGRAM OPERATIONS ON THE DATA STRUCTURE 

To perform each of the functions of the program, operations 

must be performed on the data structure; the modification of the 

graphical representation of the circuit is only an obvious manifestation 

of the alteration made to the structure. To begin to draw a circuit the 

program must: 

1. Obtain a block of storage, and indicate that it re­
presents a node. We will call this block a node 
bead. It will contain all the information (both data 
and structure) about the node. 

2. Store in the node bead the coordinates of the node in 
some coordinate system. (We will use a coordinate 
system in which all nodes lie on grid positions sepa­
rated by a ~x or ~y of 200, and the first node is de -
fined to be at x=-400, y=400.) 



-B,4-

To draw an element (resistor, capacitor, or short) and attach it 

to a node, the program must: 

1. Obtain an element bead which will contain all the 
information about the element; the type of ele -
ment is stored in the bead. 

2. Find the node bead corresponding to the node the 
user pointed to with the 1i ght pen. 

3. Modify the node bead to indicate a new relation 
exists, i.e., the element just created is to be 
"attached". Increase the count of the number of 
leads attached to the node. 

4. Determine if a node already exists at the other 
end of the element. If not, one must be created 
and then the element must be "attached" to the 
new node. 

"Attachment" of an element can be done in many ways, depending upon 

how relations are to be implemented in the computer. In this problem, 

attachment means that pointers are stored in the node bead to indicate 

the elements which are attached to the node. Each element bead con -

tains pointers to the two nodes which it connects. 

The data structure used to re pre sent a simple circuit is shown in 

Fig. B. l. In addition to the information indicated previously to be 

stored for each element, there is a pointer chain connecting all nodes 

together. This chain, which permits the program to follow pointers 

from one node to another, is necessary since it is possible for a node 

to exist with no elements attached to it. 

To delete an element pointed to by the light pen the program must: 

1 . Find the element bead corre spending to the element 
the user pointed to with the light pen. 

2. Locate the nodes to which the element is attached, 
and set the pointers to indicate that the element is 
no longer connected and reduce the count of the 
number of leads attached to the node. 

3. Return the element bead to the list of available 
storage so that it may be used again. 

In addition the graphical representation of the item must be removed 

from the screen. 

Figure B. 1 illustrates the data structure for a partially 

completed circuit. For node beads only the up, left, right and down 

----,-- - --- - --T--



- --~ - ,--'-·- ·-

1 

s1 

4 

Fig. B. la 

TYPE= 0 
LEADS 

NEXT NODE 
NAME 

UP ELEMENT 
LEFT ELEMENT 
RIGHT ELEMENT 
DOWN ELEMENT 

x 
y 

Node Bead 

-B. 5-

Rl 2 c1 3 -.... 
sz 

-
cz 5 Rz 6 

s3 

• 7 

Schematic Diagram of a Partially Completed Circuit 

TYPE= T 
FROM NOOE 
INTO NOOE 

NAME 
VALUE 

T=l Resistor Bead 

T=2 Capacitor Bead 

TYPE= 3 
FROM NODE 
INTO NODE 

Short Circuit Bead 

Fig. B. lb Data Structure Beads used to Model the Circuit 



Node 1 Node 2 Node 3 
.... i,._....i ~ 

EMPTY EMPTY EMPTY 

EMPTY . . . . . · 1 • 1 ...... - .... · 1 • 1 ...... - -~ ~ 

• - • EMPTY 

- Rl - - cl EMPTY ,-- ~ ,~ ~ 

I I 

::1 
I 

; 1 sl ::1 ; I S2 

I I 
I I 
I Node 4 I Node 5 Node 6 

~ 
I_.. - _... .... 
I -

""' ·- - , __ - EMPTY ~ ~ ~ ~ 

EMPTY ~ ..... • 1 • 1 ...... ~ .... · 1 • 1 ... : .. - • • EMPTY -
I 

01 

"' 
EMPTY c, -- - R2 EMPTY ,~ ~ 

I 
J 

I 

':I ; I 
Node 7 

[ EMPTY 

EMPTY 

EMPTY 

.._____.... 
Fig. B. l c Data Structure for Partially Completed Circuit 



-B. 7-

element connections are shown; for re sis tor, capacitor and short 

circuit beads only the connections to the node beads are shown. 

The most complicated program operation is deleting anode. If 

a node is deleted, all elements attached to it are to be deleted. Since 

these elements are also attached to other nodes, one must update these 

nodes to indicate the elements have been removed. Since the data 

structure implements a connection between all node beads by means of 

a pointer from one node bead to the next node bead, this connection 

must be altered to join together the nodes remaining. Of course, one 

would also want to modify the display to reflect the changes in the 

circuit; changing the model of the circuit in this program has no di­

rect effect on the graphical representation of the circuit. All alter­

ations to the display must be independently specified. 

V. SPECIFICATION OF THE DISPLAY 

The programming system that allows the display console to be 

used with the M. I. T. time -sharing system has been given the name 

GRAPHSYS. The user interface is a set of procedure calls which allow 

the user to plot objects such as lines and points, to remove objectF 

from the screen, and to determine which object was "seen" by the light 

pen. The way in which GRAPHSYS organizes its data is similar in 

some ways to the organization of the model of the circuit in the pro­

gram; therefore, we will discuss the job of generating the graphical 

representation of the circuit before treating the program in more detail. 

The display file is the ordered sequence of console commands 

which is sent to the display console to produce a picture. Although the 

console deals only in terms of simple console commands such as "draw 

a point" or "draw a line", the user wants to deal with objects. An 

object is a group of console commands which are added to the display 

file at the same time and are to be thought of as an atomic entity, e.g., 

a capacitor consisting of several short, straight-line segments (made 

by several line -generate commands). 

When a object is placed in the display file, it must be given a 

unique name if it is to be identified again. The user may wish to specify 

some object on which GRAPHSYS should perform a function (e.g., de -

lete this object), or GRAPHSYS may wish to inform the user of some 



-B. 8-

action concerning it (e.g., this object was seen by light pen}. The 

name is used to refer to an object in all communications between 

GRAPHSYS and the user. 

The simplest type of unique name which can be assigned to an 

object is the starting location in the display buffer (the area of memory 

in which the display file re sides) of its console commands. Every 

object is, of course, uniquely specified by this number. These lo­

cations are chosen by GRAPHSYS which automatically performs the 

tedious tasks of allocating space for the display file and organizing it. 

This is a dynamic process in which, without altering the display se­

quence, commands may be moved around in the display buffer, (e.g., 

when new commands are inserted into the middle of the display file). 

Display buffer locations, therefore, do not constitute a suitable naming 

scheme for the user, since the user would be forced to keep his own 

data structure continually updated as GRAPHSYS moved objects and 

thereby changed the names. 

The simplest form of invariant name that can be assigned to an 

object is an integer number. If this type of name were chosen, 

GRAPHSYS would have to build an array of length equal to the total 

number of names. The name of an object would be the index for the 

position in the array containing the actual display buffer locations. In 

addition, the user would need a similar array giving the item in his 

data structure corresponding to the name. This is a lot of mechanism 

and requires the existence of large arrays. It would be much simpler 

if the user and GRAPHSYS had a mutually convenient single name for 

each object. 

The naming scheme which has been employed by GRAPHSYS 

meets these criteria of uniqueness, invariance, and convenience. 

GRAPHSYS builds its own data structure which is a string of items ar -

ranged in display file sequence. Each item in the string represents an 

object and specifies its current display buffer location. The register 

in which the system stores its information is called the display register 

of the object. The~ of the object is a pointer to (the core location 

of} its display register and is called the display pointer name . The 

user communicates with GRAPHSYS in terms of these names, and the 

system performs the transformation to and from display buffer positions 

for communications with the Display Controller.(See Fig. B.2) 



-B.9-

This scheme so far guarantees a unique name for each object 

since the core locations of the display registers are unique numbers and 

DISPLAY 
CONTROLLER 

.] 
communicohon in 

terms of display 
buffer positions 

GRAPH SYS 

l 
USER'S 

PROGRAM 

communication in 

terms of display 
painter names 

fig. B.2 Communications about Items in the Display file 

eliminates the need for large arrays since the display registers can 

be obtained one at a time from a free storage list as needed. Finally, 

it provides a mutually convenient name for the user and GRAPHSYS 

by allowing the user to supply the display register as a part of his own 

data structure. 

Figure B.3illustrates the combined User-and-GRAPHSYS data 

structure for a display file containing three objects. In our example 

Nl 

N2 

user data for 
object l 

N2 

DB2 

user data for 
object 2 

N. are the display painter names of objects 
I 

DB3 0 

user data for 
object 3 

DB; are the display buffer locations of the display commands of the objects 

fig. B.3 The Combined User-and-GRAPHSYS Data Structure 

the display register will be the first word in the bead, the block of 

registers representing a node or an element. 

Each display register contains the display pointer name of the 

next object in sequence in the display file. A name of zero signifies 

the end of the list. The contents of the display registers are maintained 



-B.10-

solely by GRAPHSYS; the user does not have to be concerned with the 

display register string or the display buffer locations. 

Only a small subset of the GRAPHSYS procedures are used in 

this example; in particular the facilities to define and call subpictures 

and to perform real-time operations, such as rotation, are not illus­

trated. 

In order to build an object to be plotted, such as the represen­

tation of a resistor, a series of line generate commands must be 

stored in an array. In this example the display code for plotting an 

element such as a resistor consists of a point command to move the 

beam to the x and y coordinates where the resistor is to be drawn 

followed by the A:x:, Ay increments for lines to draw the element. 

These commands are stored in an array, the zeroth element of which 

is the number of display commands to follow; this array is called a 

display object. The point command is generated in the program by the 

procedure MASEPOI. The procedure MALIGEC will generate the 

correct line generate commands from the arguments giving the incre­

ments in the le and y beam positions and whether the line should be 

visible or not. Individual characters can be plotted by using the pro­

cedure MASGLE; more elaborate procedures are also available in 

GRAPHSYS for dealing with strings of characters. 

When the display object representing a resistor has been created, 

it must be added to the display file before the display can interpret the 

newly-created commands. The procedure PLOT will insert the 'desig­

nated object in the display file and will use the pointer provided as the 

GRAPHSYS display pointer name. An object may be removed from the 

display file by calling the procedure RMV and indicating the object to 

be removed by giving the display pointer name. 

Pushing any of the 36 push buttons or the light pen seeing a 

picture part on. the screen are real-time events that are known as at­

tentions. The way these attentions are serviced is a function of 

operating the display in time-sharing. They cannot have a real-time 

effect on the user's program as it may not be running in the time­

sharing system. at the time of the interrupt. Rather, they must be 

stored by the time -sharing supervisor and made available to the user 

the next time he is in core. Of course, the faster the responf!!e of the 



-B. 11-

time-sharing system, the nearer they appear to have a real-time effect. 

Such a system does enable the user to continue operating the display 

even though his program is not in core. 

The attentions are stored in the attention buffer maintained by 

the time-sharing system in a "first-in-first-out" list called the 

attention~· When an attention is added to the list, a character is 

displayed on the screen at the position of the light pen. The addition 

of the character to the display reassures the user that his attention has 

been recorded even though the associated action must wait the next 

time his program is run by the time -sharing system. 

It is up to the user to set the size of the attention buffer. This 

should be done immediately after signing on by making a call to pro­

cedure SATBUF. A fair balance with present time-sharing charac­

teristics seems to be 100 registers for the attention buffer. 

When the user's program cycles into active status, each time a 

call to procedure ATTN is made, the top item on the attention list is 

read and the corresponding character removed from the screen. ATTN 

interprets the data from the attention list, and stores it into the 

attention array specified as an argument to ATTN, where it is avail­

able to the user. No attention information is available to the user un­

less he calls ATTN, even though some exists in the buffer. If the 

user's program is in fact running when an attention arrives, it is not 

interrupted. 

The contents of the attention array indicate the origin of the at­

tention, e.g., a light pen see occurred or button 7 was pushed. For a 

light pen see, also available are the x and y position of the beam and 

the display pointer name of the object seen, i.e., the pointer to the dis -

play register. Since this display register is a part of the user's bead, 

he has direct access to his information about the mode or element seen. 

VI. AED-0 LANGUAGE FEATURES 

In order to study the sample program closely, one must be 

familiar with some of the features of the AED-0 language in which it is 

written. AED-0 is an extension of ALGOL and includes many features 

especially suited for building large systems and for manipulating com­

plex data structures. A knowledge of ALGOL sufficient to understand 



-B.12-

this problem can be obtained from any ALGOL primer, such as the one 

written by McCracken, (D. McCracken, AGuide to ALGOL Programming, 

Wiley). 

The most important AED-0 features used in this program which 

are not included in ALGOL are the free storage system, pointer vari­

ables, and components. In our previous discussion we have used the 

term "bead" to describe a block of storage used for some particular 

purpose, such as to represent all the information about a resistor; the 

term "bead" is used rather than "array" because a "bead" is not di­

mensioned at the time the program is compiled. 

To create a new bead, the system procedure FREE is called 

as follows: 

PTR = FREE (N) $, 

The result of executing this statement will be that the pointer variable 

PTR will point to a fresh block of contiguous storage N-words long. 

The pointer in AED-0 on the 7094 has as its value the absolute core 

location of the first word of the block of storage allocated by FREE. If 

such blocks are to be useful, the programmer should have a way to re -

fer to individual items within a block; for example in working with a 

resistor bead, he would want to individually refer to the name and 

value of the resistor and also be each of the two connections to the nodes. 

The ability to name items within a bead is provided by the AED-0 

"component" declaration statement and the $=$ assignment operator. 

Assume that a bead representing a resistor is to have the following for -

mat. 

Word 0 

Word 1 

Word 2 

Word 3 

Word 4 

GRAPHSYS Display Register 

"From" Node 

"To" Node 

Resistor Name 

Resistor Value 

To indicate that' each bead would have this layout, one would first have 

to decide to use mnemonics such as FROM, INTO, NAME and VAL for 

words 1-4 of the bead. These names would then be put in the declaration 

statements 



-B.13-

INTEGER COMPONENT NAME $, 

REAL COMPONENTVAL $, 

POINTER COMPONENT FROM, INTO $, 

Note that unlike arrays, each component of a bead can have a different 

type. 

In order to use a component one must indicate in which bead the 

component is to be found, since there will be many beads representing 

resistors. The pointer returned by the call to FREE uniquely identifies 

the bead in which a component is located; the AED-0 notation to assign 

a value to VAL in the bead whose pointer is P would be 

VAL { P) = 7 . 2 $, 

{This is read "Val of P equals 7. 2".) 

Obviously the system must know which word in the bead pointed 

to by P the user considers to be VAL; this assignment is carried out 

by the $= $ operator which is evaluated at compile time. To set VAL 

to be the 4th word in all re sis tor blocks, one would insert the state -

ment 

VAL $=$ 4 $, 

in the program following the statement where VAL was declared to be a 

component. At execution time the expression VAL {P) = 7. 2 $, is 

evaluated on the 7094 as "take the location given by the pointer P, 

add to it 4 and store 7. 2 in that location." 

Output in AED is done by the "Assemble Package" which provides 

a general facility for converting numbers and building lines of output. 

The calls to the procedures ASMDEC and ASMBCD from the package are 

used in the program to print decimal numbers and character infor -

mation; CARET adds a carriage return. The procedure READIN 

prints a mes sage on the console and accepts format -free input of nu -

merical or character information. 

The following figures provide the flow diagrams for the sample 

program; the listing of the program has been heavily commented in 

the hope that anyone seriously interested in the workings of the program 

will be able to study it. (See Figs. B.4 and B.5.) 



1¥4£42JUMU,A·J t404Lf.¥P .. +;.;:;;::;;. &. UM!Mi¥AJ!!iiiL.Jt!ZW4tZJI UCJL4 .. Q$,,i##SQJ!l$&MJtalQl!UJill!ll.ltWB .L.k .. JJ ;.¢1 

WAIT$ 

-B .14-

Main Program I:,,oop 

MAKE OBJECTS for plotting 

Create first node and plot it in 
upper left corner .of scr~en 

Get an A TTEN'nON from uaer 

------....i what type? 

Light Pen See Button Push Other 

Record name 
and position of 

object seen 

What button > 11 Print comment 
number? \IIGNORE" 

GOTO B(l) 

where I is number 

Process 
Button 

Fig. B.4 Flow Diagrams for the Sample Program 

j 



BUTTON 

4 

5 

6 

7 

8 

9 

10 

11 

B4 $ 

-B.15-

BUTTON FUNCTION 

DELETE NODE OR ELEMENT LAST SEEN BY LIGHT PEN 

GIVE VALUE OF ELEMENT LAST SEEN, ALLOW CHANGE 

DRAW HORIZONTAL RESISTOR FROM NODE LAST SEEN 

DRAW VERTICAL RESISTOR FROM NODE LAST SEEN 

DRAW HORIZONTAL CAPACITOR FROM NODE LAST SEEN 

DRAW VERTICAL CAPACITOR FROM NODE LAST SEEN 

DRAW HORIZONTAL SHORT CIRCUIT FROM NODE LAST SEEN 

DRAW VERTICAL SHORT CIRCUIT FROM NODE LAST SEEN 

Process Buttons 4-5 

Delete item seen 

What type item was seen? 

element node 

Delete the element Delete any elements 
attached to the node 

B5 $ 

Goto WAIT 

Allow change of value for item seen 

Remove the node 
from the node chain 

Remove picture of 
node from screen 

Return node bead to 
free storage 

Goto WAIT 

--------"Was item a resistor or capacitor?~-----. Yes 
No 

Goto WAIT 
Print name and 
value 

[
Ask user to type 
value or 0 

value f O 

= O Set new value 

Goto WAIT 



B 6 $ Create Horizontal 
resistor bead 

HORIZ $ 

ALL$ 

B7 $ Create vertical 
resistor bead 

-B. 16 -

PROCESS BUTTONS 6-11 

B8 $ Create horizontal 
capaeitor bead 

Find nearest node to last 
pensee 

Find or define node at next 
horizontal grid position 

Connect element to nodes 
and nodes to element 

Increase count of leads 
fr om both nodes 

Get name and value for 
resistor or capacitor 

Plot picture of element at 
proper x, y position 

Goto WAIT 

B9 $ Create vertical 
capacitor bead 

'Remainder oTflow- - I 
I diagram same as I 
I for B6, B8, and Bl 0 I 
I above, except, replace I 

11 horizontal" by 
I 11 vertical'' in 2nd I 
l_!o..e.....b~·-·_ .=-__ _J 

Bl 0$ Create horizontal 
short bead 

Bll $ Create vertical 
short bead 



-B.17-

Procedures 

NEARNODE { 

Find node nearest to item last seen. 

What type item was seen? 
element 

node which node at end of 
element is nearest? 

From 

Return this node as value. ~------

GETNODE(XX, YY) 

Find or create Node bead at (XX, YY) 

Start searching Node chain at Node 

AGAIN$ Is this end of the chain? 
Yes 

No 
..--------...._-----~ Yes 
Is this node at {XX, YY)? 

No 

Step to next node on chain 

Return pointer to node 

DELETE (ELEMENT) 

Return 

To 

Is Element Empty?----------~ 
Yes ..._ ___ __. 

No 

Remove picture of element from screen 

Find Nodes at ends of element 

Disconnect element from nodes 

Reduce count of leads for nodes 

Return element bead to free storage 

Return 

Create node bead 

Append it to node chain 

Set its coordinates 
to XX, YY 

Get a Name for it 

Plot picture of node 
at (XX, YY) on screen 



BEGIN 
COMMENT DECLARATIONS S, 

SYMONYMS INTEGER = POINTER S, 

INTEGER XSEEN,YSEEN,N,V,I S, 
INTEGER NOOE,RESISTOR,CAPACITOR,SHORT $, 
INTEGER NUOESL,RESSZ,CAPSZ,SHTSL,GRIOSP s, 
INTEGER ARRAY AILOl $, 
INTE~ER ARRAY NODILD),HRll2l,VRl12l,HCl121,vc1121,HSl41,VSl4l $, 

POINTER THIS,JTEM,OLD,FROMNODE,TONODE,PREV,NODEl,P,LASTSEE s, 
POINTER EMPTY,NODEPT,HRES,VRES,HCA~,VCAP,HSHT,VSHT $, 

POINTER PROCEDURE FREL,PLOT,NEARNODE,GETNODE $, 
INTEGER PROCEDURE MALIGECoMASEPOl,MASGLE s, 
PROCEDURE FRtT S, 
PROCEDURE SGNON,SATBUF,ATTN,RMV s, 
PROCEDURE NAMENODE,NAMEELEM,DELETE,HAKEPICS s, 
PROCEDURE READIN,ASMBCO,ASMDEC,CAREf $ 0 

INTEGER COMPONENT TYPE,NAME,x,Y,LEADS,VAL,WHOLE '· 
INTEGER COMPONENT SETPOS,CHARleCHAR2eCHAR3 S, 
POINTER COMPONENT U,L,R,D,NEXT,FROM,INTO $, 

DEFINE COMPONENT POSITIONS IN BEADS II 
WHOLE $=$ 0 $, 
TYPE $=$ SETPOS $=$ l S, 
LEADS $=$ FROM $=$ 2 S, 
NEXT S•S INTO $=$ 3 s, 
NAME S•S 4 $, 
U $•$ VAL $=$ 5 S, 
L $•$ 6 s. 
R $=$ 7 '9 
D $•$ B ,, 
x $&$ 9 s, 
y $•$ 10 s. 

DISPLAY REGISTER DISPLAY REGISTER 
TYPE • 0 TYPE • T 

LEADS FROMNODE 
NEXT NOOE INTONOOE 

UP 
LEFT 

RIGHT 
DOWN 

NAME NAME 
ELEMENT VALUE 
ELEMENT 
ELEMENT 
ELEMENT 
x 
y 

DISPLAY REGISTER 
TYPE • 3 
FROMNODE 
INTONOOE 

II 
II 
II 
II 
II 
II 
II 
ii 
II 
II 
II 

NODE BEAD T•l RESISTOR BEAD SHORT CIRCUIT BEAD II 

CHARl $•$ 10 s, 
CHAR2 $•$ 11 $, 
CHAR3 $=$ 12 $, 

PRESET 
BEGIN 
NOOE SL • 11 $, 
RESSL • CAPSL = 6 s, 
SHTSZ a 4 S, 
NOOE a 0 s, 
RESISTOR • L $, 
CAPACITOR = 2 $, 
SHOR f = 3 S, 
GRIOSP • 200 $, 
NOOEl = 0 s, 
EMPTY • 0 s, 
END s, 

DEFINE POSITIONS FOR 
T•l CAPAC I TOR BEAD 11 

PACKING CHARACTERS INTO OBJECTS TO BE PLOTTED II 

SET CONSTANT VALUES AT COMPILE TIME II 

PRESET BEAD SILES II 

••• PRESET TYPE NUMBERS II 

GRID SPACING FOR DISPLAY II 
FIRST NOOE NOT YET DEFINED II 
END OF STRING OR NULL POINTER II 

SWITCH BUTTON • 8,B,B,84,85,B6,87,BB,89,Bl0,811 '• ••• ARRAY OF STATEMENT LABELS II 

I 

°' -00 



COMMENT MA IN PAtH JF PRIJ~RAM $, 

STAl<T $ 

WA I l • 

SG1\iO<! l) >, 
SATBIJF! 100) >, 
MAKEP!CS! l $, 

NJDEl = GET'lODE(-400,400) $, 

ATT~t Al •• IF A ( 1) EIJL 38 THt'< 1JDTO PE 'l'.>H: $' 

CONNECf TU DISPLAY JN!T II 
SET UP ATTCNTlUN BUFFER II 
CKEATE OBJFCfS FUR PLOTTING II 
SET INITIAL NOOE AT X=-400 1 Y=400 II 

WAIT FOK AN ATTENTION ro BE READ [NfO ARRAY A// 
ATTENTION CUD[ 38 IS A ?ENSEE II 

IF A ( l l LE(J 11 THE:N GUTU RUTTUN!A(l)) $' ATTCNTIGN CODF IS RJTTU~ 1-11 II 
B $ ASMHCDI O, .BCLJ. II V'lUt<F /) $. 

CARlT I ) .. 
GDTO rlA IT s' 

PENSEE t LASTSEE = Al4l $, 
XSEf\I = A{2) •• 

Y'.>EE-. = A(3) $, 

GOTO •Alf S, 

84 s 
IF TYPEILASTSEE) '<EJ \iUllE 
THEl'i BEGlN 

DELFTE(LASTSEEl >, 
GOTll wAIT $, 

tNLJ >, . 
lF L~ADS!LASTSEE) N~~ 0 
THE'< BEGL'l 

DEL~TEIU(L\STSEE)) •• 
DELtTE!O!LA'.>TSFEJ) $, 

DELcTE!LILASTSEE)) $, 

DELlTEIKILAST'.>tl)l $, 

urn •· 

IGNORE ALL LITHER ATTENTIONS II 
PRINT COMMENT ANO CARRIAGE RETU~N II 

'NAME' UF UBJECT SEEN II 
PEN POSITION AT PENSEE II 

••• DELETE NODE UK ELEMENT II 

••• DELETE ELEMENT POINTED ru gy PEN II 

IF ANY ELEMENTS AfTACHEO TU NODE, DELETE THFM II 

DELETE CHECKS TU SEE IF POINTER IS EMPTY BEFORE OELETIN~ II 

IF LASTSEE ~~L NUDE! THEN Guru hAIT •• 
P = NODEl $, 

DON'T DELETE NOOEl II 

HE'<t $ 

IJ5 $ 

PKEV = P ;, 
P = ~EXTIPRlVl i, 
IF ~ NEU LASfSEl !HEN GOTO HEl<E $, 

NEXTIPREV) = NEXTIP) $, 
RMV(P) $, 

Ft<ETINOLJESZ,P) $, 

GUTO wAIT S, 

FIND PREVIOUS NOCE HY SEAl<CHtNG NODE SfR!N~ II 
STEP ONE ELEMENT ALLING STRING II 
IS fHIS THE NODE SEEN II 
YES, REMOVE THIS NUDE FROM NODE ST~ING II 
KEMUVE PICTURE OF THIS NUDE fRllM DISPLAY II 
RETUR~ NUDE BEAD TU FREE STORAGE II 

IF TYPEILASTSEE) EQL t<ESISTUK OR 
THE\! BEG(;; 

••• GIVE VALUE, ALLOW CHANGE II 
TYPc(LASTSEEl EUL CAPACITOR 

A S"llo CD I 3, NA ME (LAST Si' El , • BC 0. 
ASMDEC!U,VAL!LA'.>TSEE)) $, 

CAKE!()$, 
READINl.llCI. /TYPE,,[,; v'ALUE 
IF v 'Jbi 0 THE.'< VAL l LAS TSEE) 
El;D $, 

GOTC WAil ~. 

••• IF !TE~ SEEN WAS l<ESISTJR UR CAPACITOR II 
I= I) $, ••• PRI~T IT'.> ~AME II 

A~D VALUE II 

UR O/,V) ~ •••• PRl~T MESSAGE, ACCEPT NEW VALUE II 
= V $, ••• STORE NEW VALUE IN ELEMENT DEAD // 

I 

to 
....... 
~ 



bo s 

HORIZ $ 

ALL $ 

B7 S 

VERT S 

BS $ 

B9 s 

BlO S 

811 $ 

THIS = FREZlRESSZI ~. 
TYPElTHISl = RESISTO~ $, 
ITEM = HRES s, 

HORIZONTAL RESISTOR // 
GET RESISTOR BEAD FROM FREE STORAGE // 
ANO SET TYPE COMPONENT // 
ITEM TU BE PLOTTED IS PICTURE OF HORIZONTAL RESISTOR // 
PROCESS HORIZONTAL ELEMENTS // 

FROMlTHISl = FROMNOOE = NEARNOOEIJ S, •••GET POINTER TU NEAREST NOOE TO PENSEE II 
INTU(THISJ = TONOOE = GETNOOElXlFROMNOOEl+GRIOSP,YlFROMNOOEll $, •••FIND OR CREATE NODE AT ENO OF ELEMENT// 
IF (OLD= R(FROMNODEll NEQ EMPTY ••• GET POINTER TO ELEMENT TO RIGHT OF FROMNOOE II 
THEN DELETElOLDl $, ••• DELETE OLD ELEMENT IF UNE IS THERE // 
RlFROMNODEl = THIS ~. • •• MAKE NOOE BEADS POINT TO NEW ELEMENT // 
LlTONODEl =THIS s, 

••• COME HERE FOR ALL ELEMENTS // 
LEADS(FROMNODEl = LEAOS(FROMNOUE)+l s, ••• INCREASE ELEMENT COUNT IN NODES JI 
LEADSlTONOOEl = LEAOS(TONOOEl+l $, 
If TYPElTHISl NEQ SHDRT ••• IF THIS IS RESISTOR OR CAPACITOR II 
THEN NAMEELEMlITEM,THISI $, ••• GEJ NAME ANO VALUE II 
SETPOSlITEM) = MASEPOilXlfROMNOOEJ,YlFROMNODEl,11 $, ••• STORE SET POINT IN DISPLAY COMMANDS II 
PLOTllTEM, THISI S, ••• PLOT PICTURE, 'NAME' IS THIS. NOTE THAT DISPLAY 'NAME' IS NOT 

GOTO WAIT S, 

TYPE( rHIS = FREllRESSZl l = RESISTOR h 
ITEM = VRES $, 

FROMlTHl~l = FROMNODE = NEARNODEll s, 

USER'S NAME,BUT A POINTER TO THE BEAD DESCRIBING THE ELEMENT // 

VERTICAL RESISTOR // 

••• PROCESS VERJICAL ELEMENTS // 

INTOlTHIS) = TONODE = GETNODEIXIFROMNOOEl,YlFROMNODEl-GRIDSP) $, 
If (OLD= OIFRDMNODE)) NEQ EMPTY THEN DELETEIOLOl $, 

O(FROMNODEl = THIS '' 
UlTO~ODEl =THIS$, 
GOTO ALL S, 

TYPE(THIS = FKEZICAPSZ)l 
ITEM = HCAP $, 
GOTO HORIZ S, 

TYPE(THIS = FREZlCAPSZ)) 
ITEM = VCAP $ 1 

GOTO VERT $, 

TYPE(THI~ = FKEZISHTSZll 
ITEM = HSHT $, 
GOTO HORIZ $, 

TYPFlTHI~ = FREZlSHTSZll 
ITEM= VSHT S, 
GOTO VERT S, 

••• HORIZONTAL CAPACITOR // 
CAPAC I TOK $, 

••• VERTICAL CAPACITOR II 
CAPAC I TOR $, 

••• HORIZONTAL SHORT II 
SHORT $, 

••• VEKTICAL SHORT II 
SHORT s, 

I 

b::l 
N 
0 



COMMENT PROCEUURE DEFINITIONS S, 

DEFINE POINTER PROCEOURE NEARNODE TOBE 
8EGIN 

COMMENT NEARl\IOOE GIVES A POINTER TO THE NODE NEAREST TO IXSEEN,YSEENI S, 
IF TYPEILASTSEEI EQL NODE 
THEN NEARNOOE = LASTSEE ••• ITEM SEEN WAS A NOOE // 
ELSE BEGIN ••• ITEM SEEN WAS ELEMENT // 

FROMNOOE = FROMILASTSEEI S, 
TONOOE = INTOILASTSEEI $, 
IF .(XSEEN-XIFROMNODEl+YIFROMNODEl-YSEENI LES IXlTONOOEl-XSEEN+YSEEN-YITONOOEll 
THEN NEARNOOE = FRUMNOOE 
ELSE NEARNOOE = TUNOOE s, 
ENO Se 

ENO s, 

DEFINE POINTER PROCEDURE GETNOOEIXX,YYI WHERE INTEGER XX,YY TOBE 
BEGIN 

COMMENT GETNOUE GIVES A POINTER TU NOOE AT 
P = PREV " NOOEl s, 

IXX,YYI, CREATING NODE IF NECESSARY $ 1 

START SEARCH AT NOOEl II 
AGAIN $ IF P EQL EMPTY THEN GOTU GET S, 

IF XIPI EQL XX ANO YIP) EQL YY 
IF END OF STRING IS REACHED, NOOE IS NOT YET DEFINED II 

GET $ 

THEN BEGIN 
GETNOOE ,. P S. 
GOTO RETURN s, 
ENO $, 

PREV "' P $, 
P " NEXTIPREVI s, 
GOTO AGAIN s, 
GETNOOE = P = FREZINOOESZI s, 
TYPEIPI = NOOE s, 
NEXTIPREVI = P s, 
NEXTIPI * EMPTY S, 
XIPI * XX St 
YIPI ,. YY s, 
NAMtNODEIPI $, 
SETPOSINODEPTI = MASEPOllXX,YY,11 s, 
PLOTINODEPT,PI s, 
END St 

NODE ALREADY EXISTS AT IXX,YYI II 

RETURN FROM PROCEDURE II 

REMEMBER THIS NODE II 
MOVE ONE NODE ALONG STRING // 
AND KEEP CHECKING II 
GET NOOE BEAD II 
SET TYPE COMPONENT II 
ADD NODE INTO STRING OF ALL NODES // 
THIS NODE ENDS THE STRING II 
SET COORDINATES IN NOOE BEAD // 

GET A NAME FOR THE NODE II 
Fill IN SETPOINT IN DISPLAY COMMANDS // 
AND PLOT PICTURE II 

DEFINE PROCEDURE NAMENODEINPTRI WHERE POINTER NPTR TOBE 
BEGIN 

COMMENT NAMENOOE GIVES A UNIQUE NAME TO EACH NOOE AND ADDS THE NAME TO THE PICTURE OF THE NODE. NAME IS 'N' 
FOLLOWED ~y TWO DIGIT INTEGER. s, 

INTEGER NUM,TENS,ONES $, 
PRESET NUM = 0 S, 
NUM = NUM+l $, 
TENS " NUM/10 $, 
ONES a NUM-lO•TENS s, 
NOOl91 "MASGLEITENSI s, ••• STORE NAME INTO PICTURE II 
NUDllOI = MASGLEIONESI $, 
NAMEINPTRI = .BCD. /NOOOOO/ .v. ITENS .LS. 2~1 .v. CONES .LS. 18) $, ••• PACK NAME INTO NODE BEAD II 
END s, 

I 

b:l 
N -I 

-1 
I 

i 
1 
1 

1 
I 
I 
' 

l 
j 

1 



DEFINE PROCEDURE NAMEELEMCIPTR,EPTRI WHERE POINTER IPTR,EPTR TOBE 
BEGIN 

COMMENT NAMEELEM GETS A NAME AND A VALUE FUR AN ELEMENT, ADDS THESE TO ITS BEAD, AND ADDS THE NAME TO THE PICTURE. S, 
READINC.BCI. /TYPE NAME,VALUE/,N,vl $, ••• PRINT COMMENT, READ NAME ANO VALUE // 
NAMcCEPTRI = N s, 
VALIEPTRI = Y s, 
CHARl(IPTRl = MASGLECN .RS. 30 .A. 77Cl S, ••• ~ENERATE DISPLAY COMMANDS TO PLOT USER NAME // 
CHAR2CIPTRl = MASGLEIN .KS. 24 .A. 77CI S, 
CHAR3llPTRl = MASGLEIN .RS. lB .A. 77CI S, 
END $, 

DEFINE PROCEDURE DELETEIELEMENTI WHERE POINTER ELEMENT TOBE 
BEGIN 

COMMENT DELETE DELETES THE ELEMENT GIVEN, UPDATING DATA STRUCTURE $, 
IF tLEMENT EQL EMPTY THEN GOTO RETURN $, ••• IF POINTER IS EMPTY, DO NOTHING II 
RMVIELEMENT) $, ••• REMOVE PICTURE FROM DISPLAY FILE // 
FROMNODE = FROMCELEMENTI s, 
TONODE = INTO(ELEMENTI $, 
I = IF TYPECELEMENTl EQL SHORT ••• SET PROPER BEAD SILE II 

THEN SHTSZ ELSE RESSZ $, 
FRET(l,ELEMENTI $, ••• RETURN BEAD TO FREE STORAGE// 
IF R(fROMNOOE) EQL ELEMENT ••• UPDATE THE NODE BEADS // 
THEN BEGIN 

R(FROMNODEl = EMPTY $, ••• ELEMENT WENT RIGHT FROM NOOE // 
LCTONODEl =EMPTY$, 
END 

ELSE BEGIN 
D(FROMNODEl = EMPTY $, ••• ELEMENT WENT DOWN FROM NOOE II 
UCTONOUE) =EMPTY$, 
END $, 

LEADSIFROMNOOE) = LEADSIFROMNODEl-1 s, ••• REDUCE ELEMENT COUNT ON NODES II 
LEAOSITONODEI = LEADSITONODEl-1 $, 
END St 

DEFINE PKOCEDURE MAKEPICS TOBE 
BEGIN 

COMMENT MAKEPICS GENERATES THE DISPLAY CONSOLE COMMANDS FOR OBJECTS TO BE PLOTTED $, 

NODE PT 
NODIOI 
NOD( 11 
NODl21 
NODC3) 
NOD(4l 
NODC51 
NOO(bl 
NOD( 7l 
NODCBl 
N00(9) 

LDC NOD $, 
10 $, 
0 $, 
MALIGECl5,5,ll $, 
MALIGECI0,-10) s, 
MALIGECl-10,0l s, 
MAL IGEC 10, lOl $, 
M 4L I GE C I l 0, 0 I $, 
MALIGFCl-7,20, ll S, 
MASGLc(.BCD. /OOOOON/l S, 
NOD( 101 = 0 $, 

GET POINTER TO ARRAY NOD II 
10 CONSOLE COMMANDS II 
SET POINT (X,Yl COMMAND WILL BE INSERTED HERE II 
LINE GENERATE COMMANDS II 
ND THIRD ARGUMENT OF MALIGEC FOR VISIBLE LINES II 
THIRD AKGUMENT IS l FOR INVISIBLE LINE // 

DISPLAY CHARACTER 'N' // 
TWO DIGIT NUDE NUMBER Will BE FILLED IN // 

I 

tJ1 
N 
N 



HRES = LOC HR s, 
HRIOl = 12 S, 
HR Ill = 0 S, 
HRl21 = MALIGECl60,0,21 s, 
HRl3l = MALIGECll0,10) •• 
HR(4) = MALIGECl20,-20l S, 
HRl5) = MALIGECl20,201 s, 
HR(6) = MALIGEC(20,-20) S, 
HRl7l = MALIGECllO,lOl s, 
HRIBl = MALIGECl60,0,21 S, 
HRl91 = MALIGECl-100140111 S, 
HRllOI = HR(lll = HRl121 = 0 S. 

VRES = 
VRIOl 
VRl21 
VR13l 
VR(41 
VR(51 
VR(61 
VRI 7) 

VRIBJ 
VR ( 9) 

LOC VR $, 
12 $, 
MALIGECI0,-60,21 $, 
MALIGEC(l0,-101 $, 
MALIGECl-20,-201 $, 
MALIGECl20,-201 $, 
MALIGECl-20,-201 s, 
MALIGECll0,-101 $, 
MALIGECI0,-60,21 S, 
MALIGEC(40,100oll S, 

HCAP = LOC HC s, 
HCIOl = 12 S, 
HCl21 = MALIGECl90,0,21 $, 
HCl31 = MALIGECI0,20,ll s, 
HCl41 = MALIGECI0,-401 s, 
HCl51 = MALIGECl20,0,ll $ 1 
HC(6) = MALIGEC(0,401 s, 
HCl71 = MALIGECI0,-20,11 S, 
HCIBI = MALIGECl90,0,2l $, 
HC(9) = MALIGECl-100,40,ll St 

VCAP = LUC VC s, 
VCIO) = 12 $, 
VCl2l = MALIGECI0,-90,21 $, 
VCl31 = MALIGECl20,0,ll s, 
VCl41 = MALIGECl-40,0I $ 0 

VCl~I = MALIGECI0,-20,ll $, 
VCl61 = MALIGECl40,0I s, 
VCl7l = MALIGECl-20,0,ll s, 
VCIBI = MALIGECI0,-90,21 s, 
VC(9) = MALIGECl40,lOO,ll $, 

HSH f = 
HS( 0) 
HSI 2 I 
HSl31 
HSl41 

LUC "iS s, 
4 $, 
MALIGE:l50,0,21 s, 
MALIGECllOO,OI s, 
MALIGECl50,0,21 $, 

vSHI = LDC VS $, 
VSIOI = 4 $, 
VS(21 = MALIGEC(0,-50,21 s, 
VSl31 = MALIGECI0,-1001 s, 
VSl41 = MALIGECI0,-~0,21 s, 

ENJ ~. 

ENO FHH 

DEFINE HORIZONTAL RESISTOR // 
TWELVE CONSOLE COMMANDS II 
SET POINT WILL BE INSERTED II 
THIRD ARGUMENT 2 FOR PEN INSENSITIVE II 

SPACE FOR 3 CHARACTER NAME II 

DEFINE VERTICAL RESISTOR II 

••• HORIZONTAL CAPACITOR II 

••• VERTICAL CAPACITOR // 

••• HORIZONTAL SHORT II 

••• VERTICAL SHORT II 

I 

tc 
N 
w 

~ 

'~ -'-~ 



UNCLASSIFIED 
Security Classification 

DOCUMENT CONTROL DATA - R&D 
(Security cleaalflcetlon of title, body of eb•trect end lndexlnQ annotation muat be entered when the overall report ia cle•silied) 

I. ORIGINATING ACTIVITY (Corporate author) 2•. REPORT SECURITY CLASSIFICATION 

Massachusetts Institute of Technology UNCLASSIFIED 
Electronic Systems Laboratory and Project MAC 2b. GROUP 

None 
3. REPORT TITLE 

An Integrated Hardware-Software System for Computer Graphics in Time-Sharing 

4. DESCRIPTIVE NOTES (Type of report end lnclualve date•) 

Technical Re_.E>_orti Se_.E>_tember 1962 to March 1968 
~- AUTHOR(Sl (Leal name, flral name, Initial) 

Thornhill, Daniel E., R. H. Stotz, D. T. Ross, and J. E. Ward 

6. REPORT DATE 7e. TOTAL NO. OF PAGES 
rb. 

NO. OF REFS 

November 1968 168 10 
a •. CONTRACT OR GRANT NO. !la. ORIGINATOR'S REPORT NUMB ER(S) 

Air Force Contract F33615-67-C-1530 ESL-R-356 
and Office of Naval Research Contract MAC-TR-56 
Nonr-4102 (01) !lb. OTHER REPORT NO(S) (Any other numbers that may be 

aaalQned thl a report) 

10. AVAILABILITY/LIMITATION NOTICES 

Distribution of this document is unlimited 

11. SUPPLEMENTARY NOTES u. SPONSORING MILITARY ACTIVITY 12. SPONSORING MILITARY ACTIVITY 

Air Force Manufacturing Advanced Research Projects Agency 
None Laboratory, RTD 3D-200 Pentagon 

Wright Patterson AFB Washington, D.C. 20301 
13. ABSTRACT This report descrioes the ESL Display Console and its associated user-
oriented software systems developed by the M.I. T. Computer-Aided Design Project with 
Project MAC. Console facilities include hardware projection of three-dimensional line 
drawings, automatic light pen tracking, and a flexible set of knob, switch, and push-
button inputs. The console is attached to the Project MAC IBM 7094 Compatible Time-
Sharing System either directly or through a PDP-7 Computer. Programs of the Display 
Controller software provide the real-time actions essential to running the display, and 
communication with the time-sharing supervisor. A companion gr'fhics software system 
(GRAPHSYS) provides a convenient, high-level, and nearly display-independent interface 
between the user and the Display Controller. GRAPHSYS procedures allow the user to work 
!with element "picture parts" as well as "subpictures" to which "names" are assigned for 
identification between user and Controller programs. Software is written mostly in the 
!machine-independent AED-0 Language of the Project and many of the techniques described 
are applicable in other contexts. 

14. KEY WORDS 

AED software 
Computer graphics 
Display software 

DD FORM 
I NOY H 1473 

Computer-aided design 
Machine-aided cognition 

systems Multiple-access computers 

{M.l.T.) 

On-line computers 
Time-sharing 
Time-shared computers 

UNCLASSIFIED 
Security Classification 


