o]

A FORMAL SYSTENM
FOR DEFIKING THE SYNTAX AND SEMANTICS
OF COMPUTER LANGUAGES

by

HENRY FRANCIS LEDGARD

- B.,8., Tufts University
(1964) ,
S.M., Massachusetts Institute of Technology
(1965) »
E.E., Massachusetts Institute of Technology
‘ (1967) _

SUBMITTED IK PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
DEGREE OF DOCTOR OF
PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF
TECHNOLOGY
February, 1969

Signature of Author

cal Engineering
February 24, 1969

T\//QJ\MWL' "o,
™

Certified by
Z; 3 ’ Thesis Bupervisor

Accepted by

TETH A TR s

Chairman, Departmentel Committee
on Graduate Students

R RTR

A FORMAL SYSTEM
FOR DEFINING THE SYNTAX AND SEMANTICS
OF COMPUTER LANGUAGES

by

Henry Francis Ledgard

Submitted to the Department of Electrical Engineering on
February 24, 1969 in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

ABSTRACT

The thesis of this dissertation is that formal definitions
of the syntax and semantics of computer languages are needed.
This dissertation investigates two candidates for formally
defining computer languages:

(1) the formalism of canonical systems for defining
the syntax of a computer language and its translation into
a target language, and

(2) the formalisms of the A-calculus and extended
Markov algorithms as & combined formalism used as the basis
of a target language for defining the semantics of a computer
language.

Formal definitions of the syntax and semantics of SNOBOL/1
and ALGOL/60 are included as examples of the approach,

Thesis Supervisor: Edward L., Glaser

Title: Associate Professor of Electrical Engineering, M.I.T.
(currently Chairman, Department of Information and
Computér Scienceées, Case Western Reserve University)

-

ACKNOWLEDGEMENT

To. Professor Edward Glaser, whose insight and imagination
have sparkéd ny epthusiaém and pronpted many major develop-
ments throughout this dissertation;

To'Préfessor John Wozencraft, vhose varm guidance and
penetrating criticismsAhave motivated & standard that this
dissertation can only approximate;

To Professor Robert Graham, whose practical understand-
ing of computer languages has helped inigiatérsnd direct
this dissertation;

To Peter Landin, who patiently devoted hours teaching me
his ideas on computer languages; |

To Professor John Donovan, for his collabqration on
canonic systems;

To Celvin Moocers, for many iively Aiscﬁssidns on key
issues;}

To Leon Groisser, for his wise and thoughtful comments on
my life as a student; ' |

And to my parents, whose lifelong support has been in-

valuable,

"Work reported herein was supported (in part) by
Project MAC, an M.I.T. research progran sponsored
by the Advanced Research Projects ‘Agency, Depart-
ment of Defense, under Office of Naval Research
Contract Number Nonr-4102(01).: Reproduction in
whole or in part is pernitted for Any -purpose of
the United States Governaent."”

A Virtuoso Typist: Mrs., Lila S.Jﬁartnann

STATEMENT QF ORIGIN

I gratefully acknowledge the following men, upon whose
work this didsertation is heavily based. In particular:

b.

The formalism of canonical systems is due to Emil
Post and Raymond Smullyan.

The application of "canonic" systems to specify the
syntax of a computer language was first made by
John Donovan. ’

The notion of a defining canonical system and its
use in formalizing derivations appeared earlier in
wvorks by Smullyan and Donovan.

The formalism of the A-calculus is due to Alonzo
Church.

The application of the A-calculus to define a por-
tion of the semantics of a computer language was
first made by Peter Landin.

The characterizations of the semantics of ALGOL/60
and of the evaluator for the target language are
based in part on similar characterizations by Landin.

The formalism of Markov algorithms is due to A. A,
Markov.

The notion of adding string variables to Markov
algorithms is due to A. Caracciolo.

The application and integration of the above work to
define the syntax and semantics of computer languages is the
principal contribution of this dissertation. In particular:

a.

The application of canonical systems to define the
translation of computer languages is due to the
author.

The application of defining canonical systems to de-
fine notational abbreviations is new.

The notation for canonical systems and the uniform
notation for defining canonical -systems are for the
most part new,

The application of the A-calculus and (extended)
Markov algorithms to define the primitive functions
in a computer language is new,

The application of (extended) Markov algorithms to
define the operation of an evaluator for the target
language for characterizing semantics is new.

The definitions of the syntax and semantics of
SNOBOL/1 and ALGOL/60 are new.

TABLE OF COBTENTS

I. INTRODUCTION . . . + ¢ & o o o o s s o

II. CANONEAL SYSTENS:

A SELF-EXTENDING FORMALISM

FOR SPECIFYING THE SYNTAX OF A COMPUTER LANGUAGE
AND ITS TRANSLATION INTO A TARGET LANGUAGE . . .

l‘

3.

III. EXTENDED MARKOV ALGORITHMS AND A -CALCULUS:

Canonical Systems. « ¢« « & « o o » o o
a. The Basic Formaliam. . . « . .« =
b. Application to Specify Syntax. .

c. Application to Specify Translation

Defining Canoniml Systems
a. The ‘Notion of a
Derining Canoni®mlSystem.

b. Applicstion to Derive Syntactically

lLegal Programs and Their Translations.

c. Application to Specify
Notational Abbreviations

Discussion . . ¢« ¢ v ¢ ¢ o @ o o o .

A COMBINED FORMALISM USED:AS THE BASIS OF
A LANGUAGE FOR DEFINING SEMANTICS. . . .

1.

The Target Language. « . .« =«
a. Extended Markov Algorithms

. The X=Calculu8 . . ¢ ¢ « =« o« « =

. The Marriage of Extended Markov

Algorithms to the A-CGalculus . . .
d. The Target Language., « . =«

An Evaluator for the Target Language .

Discussion « . « ¢ o 5¢ o o ce o o -0 10«

Iv. A SPECIFICATION OF THE SYNTAX

AND
V. A SP
AND
VI. DISC
REFERENCES
BIOGRAPHIC

SEMANTICS OF SNOBOL/1l. . . « « « « =

ECIFICATION OF THE SYNTAX
SEMANTICS OF ALGOL/60. « . .

USSION . ¢ ¢ &+ & & ¢ ¢ o o o o o o

. - L]

AL NOTE, .+ ¢ ¢ & o o o s o a s o o =

.

12
15
15
22
28
32
32
34
39
Ly

19

_51
51
60

63
T4

84
100

103

122
161
197

203

APPENDICES

1. CANONICAL SYSTEMS
1.1 Canonical System Specifying the
Syntax of & Subset of ALGOL/60.
1.2 Canonical System Specifying the Translation
of the Subset into Assembler Language . . .
1.3 A Defining Canonical System for the Subset.
1.4 Derivation of a Syntactically Legal Program
and its Translation into Assembler Language

2. THE TARGET LANGUAGE
2.1 Canonical System Specifying the Translation
of the ALGOL/60 Subset into the Target
Language. . ¢« o ¢ ¢ o &« o o o o o ¢« o s o
2.2 Definition of the Primitive
Functions in the Subset + « .+ .
2.3 Definition of an Evaluator
for the Target Language+ + « +

3. SNOBOL/1
3.1 Canonical System Specifying Syntax.
3.2 Canonicsal System Specifying
Translation into the Target Language. . . .
3.3 Definition of Primitive Functions

L., ALGOL/60
4.1 Canonical System Specifying Syntax.
4,2 Canonical System Specifying
Translation into the Target Language. . . .
4.3 Definition of Primitive Functions

5. THEORETICAL BACKGROUND OF CANONICAL SYSTEMS. . .

ILLUSTRATIONS

Cartoon Based on "Machines Should Work, People
Should Think," Slogan from IBM Television
and Magazine Advertisements & .« ¢ @

Vending Machine of the Future. . . « « ¢« « o &« o« o &

Page

168

169
170

172

173
173
174

176
177
178
180

183
185

189

204

DEFINITIONS

The following words are used like household words in
this dissertation:

Symbol:

Alphabet:
String:
Language:

Syntax:

Semantics:

Translation:

Abbreviation:

A character or any indivisible sequence of
characters.,

A set of symbols.
A sequence of symbols on an alphabet.
A set of stringé.

The set of rules specifying the strlngs in a
language.

The set of rules relating the strings in a

~language to the "behavior" or "objects" that

the strings denote. For a computer language
implemented by translatlng the strings in the
language into strings in a target language,

the behavior or othctsithat a string denotes

. is defined by ‘the corresponding target lan-

guage string, whose meaning is presumably
understood.

A function mapping one set of strlngs into
another set of strings.

A bijective function mapping one set of
strings (the unabbreviated strings) into
another set of strings’ (the abbreviated
strings). The bijectiveness of the function

-insures the unique reversibility of the map-

ping.

T o T T T TENT R e Trmmemas T T

flooo

u}
&
A

*
Machines should work, people should think.

*stogan from 1BM television and magazine advertisements

CHAPTER I

INTRODUCTION

This dissertation has a thesis: that formal defini-
tions of the syntax and semantics of computer languages are
needed. The formal system presented here was developed as
a step towards meeting this objective,

There already exist formalisms, languages, and techniques
for defining syntax and semantics. To be successful, a de-
fining mechanism (or for that matter a computer language)
should be simple, do clever things, and at the same time dis-
play fundamental principles about the objects being defined.
Most methods for defining computer languages do not satisfy
theée criteria., The objective of this dissertation was to
attempt to meet these criteria, to develop a lucid and uniform
method for defining computer languages. A formal approach to
language definition was taken in the hope that this approach
would gain a degree of precision,simplicity and theoretical
power. Although these virtues are not completely satisfied
in this dissertation, I believe the formal system presented
here excels existing methods for defining the syntax and
semantics of a computer language. The shortcomings of this
approach to language definition and recommendations for
future research in removing these shortcomings are discussed

in the conclusions of Chapters II and III and in Chapter VI.

Research generally progresses in two directions: in
the development of new theories, and in the application and
simplification of existing theories. This research is a
study in the second direction. In particular, an attempt
has been made to keep the notation and terminology of the
formal system as simple as possible, It is natural for the
author of a work to introduce notation, terminoclogy, and
conventions that became convenient for him to use, but which
often obscure the work and its contributions to others. This
author has tried to avoid this temptation.

The formal system for defining syntax and semantics will
be given in two parts. First, Chapter II presents the for-
malism of canonical systems, which will be used to define the
syntax of a computer language and its translation into an
arbitrary target language. Second, Chapter III presents the
formalisms of extended Markov algorithms and the A-calculus,
wvhich will be used as the basis for a particular target
language for defining the semantics of a computer language.
The semantics of the target language are specified, in turn,
by giving an extended Markov algorithm definition of a func~
tion for mapping a string in the target language into a
string denoting its value.

Chapters IV and V illustrate the formal system by de-
fining the syntax end semantics of the computer languages
SNOBOL/1 and ALGOL/60. 1In particular, Chapter IV describes

SKNOBOL/1 in the spirit of providing a reference manual for

10

SNOBOL/l, and is directed to the reader who wishes a detailed
knowledge of the language. Chapter V not only explicates

the formal definition of ALGOL/60 but also relates the formal
definition to other languages and other methods of language
definition., Finally, Chapter VI contains a discussion of the

utility of the formal system in defining computer languages.

11

B it T T TR TR T

CHAPTER IT

CANONIAL SYSTEMS: A SELF-EXTENDING FORMALISM
FOR SPECIFYING THE SYNTAX OF A COMPUTER LANGUAGE
AND ITS TRANSLATION INTO A TARGET LANGUAGE

This chapter presents the formalism of canoniml systems
and its application to define the syntax of a computer language
and its translation into a target language.

The mathematical underpinnings of canonical systems are due
to Emil Postl and Raymond Smullyan.2 Canomnical systems can be
used to specify any "recursively enumerable" set.2 The set
of strings comprising all syntactically legal programs in a
computer language and the set of palrs of strings comprising
all syntactically legal programs in a computer language and
their translations into a target language are Just two examples
of recursvely enumerable sets., Presumably, canonicl systems
can specify any translation or algorithm that a machine can
perform. Heuristic evidence that this statement is true is

30,31

due to the works of Turing and Kleene.32 In these works

the notion of functions computable by a Turing machine were

30

asserted to comprise every function or algorithm that is

intuitively computable by machine, and the functions comput-

31,32 to the

able by a Turing machine were shown equivalent
set of all "general recursive" sets, which are encompassed by
canonicalsystens.

The application of a logically modified variant of the

formal systems of Post,l Smullyan,2 and Trenchard More38 to

12

specify completely the syntax of a computer language was first

3.5 Donovan epplied his formal system

made by John Donovan.
to specify the set of legal programs in a computer language,
including the specification of allowable character spacing,
and more importantly, the specification of context—seﬁsitiQe
requirements on the set of legal programs, like the require-
ment that all statement labels in ; program bde different.

Donovan introduced the term "canonic systems" (in recog-
nition of Post's workl) to describe his‘tofmél system., Al-
though Donovan's formal system is not used here, many ideas
and techniques presented here have stemmed from Donovan's
vork. The name "canonical systems" {s used to distinguish
the formal system presented in this dissertation from the
formal systems of Post, Smullyan and Donovan., A discussiomn
of the theoretical background for canonic§1 systems (as pre-
sented here) is given in Appendix 5. The terminology for
cenonical systems presented here is due to both Postl and
Smullya.n.2 The notation for canonical systems presented here
is due in part to Post,1 Smullyan2 and Donov;n,3 and is in.
large part new, Many hours were spent in developing the nota-
tion presented here in the hope that the notation would be
well-suited to computer languages, Discussions with Calvin
Mocrers have had a major effect on the notation.

To illustrate by example the technigues used in specify-
ing the syntax and translation of a computer language with
canonical systems, a small and rather useless subset of subset

of ALGOL/6O28 will be taken as a source language, vhile IBM

13

System/360 assembler la.ngutv.ge“2

will be taken as a target
language. The Backus-Naur form specification of the ALGOL/60

subset is given below:

<DIGIT> ::= 1]2|3

<VAR> t:= AlB

<PRIMARY> t:= <DIGIT> | <VAR>

<ARITH EXP> ::= <PRIMARY> | <ARITH EXP> + <PRIMARY>
<STM> $:1= <VAR>:=<ARITH EXP>

<TYPE LIST> ::= A | B | A,B
<DEC> ::= INTEGER<TYPE LIST>
:= BEGIN <DEC> ; <STM> END

<PROGRAM> :

This subset allows programs containing only one declaration
and one limited type of arithmetic assignment statement.

The rules for constructing a canonical system definition
of a computer language, the rules for abbreviating a canonical
system, and the rules for deriving strings defined by a
canonical system will be presented informally in Seetion 2.1
of this chapter using the English language. 1In Section 2.2
these rules will be formally stated using the notion of a
defining canonical system. In prarticular, each underlined
expression in theknext section will be defined formally in
Section 2.2 with a defining canonicd system., I now proceed
to the informal definition of canonial systems and the appli-
cation of this formalism to specify the syntax and translation

of a computer language.

14

2.1 Canonical Systems

2.1a The Basic Formalism

A canomnkdl system consists of a collection of the follow-

ing items:

(1) An alphabet A, called the object alphabet.

(2) An alphabet P, called the predicate slphabet. Each
predicate in the predicate alphabet is assigned a
unique positive integer called its degree.

(3) An alphabet V, called the variable alphabet.

(4) Another alphabet, which consists of six punctuation
symbols, the implication sign, conjunction sign,
tuple sign, delimiter sign, left bracket sign, and
right bracket sign.

(5) A finite sequence of strings that are well-formed
productions, according to the definition given
below.

In a well-formed production, it is necessary to be able
to determine the alphabet from which each symbol is drawn.
Accordingly, I will use (a) lower case English letters (pos-
sibly subscripted or superscripted) for variable alphabet
symbols (b) strings of capital English letters, digits, and

spaces, each separated by a tuple sign, for predicate alpha-

bet symbols (c) the symbols

> implication sign

. conjunction sign

: tuple sign

H delimiter sign

< left bracket sign
> right bracket sign

for punctuation symbols, and (d) symbols not in alphabets (2),
(3) and (k) for object alphabet symbols.

A well-formed term consists of a sequence of variable

and object alphabet symbols (e.g., "a+p" and "uv"). A

15

o - T e S T ey S e S e T TR

vell-formed term tuple consists of a sequence of terms each

separated by a tuple sign and enclosed by a left and right

bracket sign (e.g., "<a+p:uv>"). A well-formed atomic formula

consists of a predicate alphabet symbol followed by a term

tuple (e.g., "ARITH EXP:VARS<a+p:uv>"). A well-formed pro-

duction consists of (a) an atomic formqla followed by the
delimiter sign (e.g;,'"ARITH 0P<+>;")‘or (b) a sequence of
atomic formulas each separated by the conjunction sign and
followed by the implication sign, another atomic formula, and
the delimiter sign (e.g., "PRIMARY : VARS<p:v>,

ARITH EXP:VARS<a:u> + ARITH EXP:VARS<a+p:uv>;"). An atomic
formula occurring before the implication sign is called a
premise. An atomic formula following the implication sign

or occurriﬁg‘alone is called a conclusion. A production con-

taining no premises is called an atomic production.

In the specification of written expressions in computer
languages, it will often be necessary to include English
letters, digits, spaces, and the punctuation symbols as mem-
bers of the object alphabet. Since predicate alphabet charac-
ters, the implication sign, conjunction sign, and delimiter
sign cannot occur within the brackets of a term tuple, I
adopt the convention that these symbols can be used in a term
tuple as object alphabet symbols; Furthermore, let the quota-

nan

tion marks and "“" be symbols not contained in the object

16

alphabet, Strings containing variable alphabet symdbols, the
tuple sign, left dbracket sign and right bracket sign can
also be used as members of the object alphabet provided that
the strings are enclosed by the quotation marks when used
within a production. For example, consider the following
productions:

VAR<A>;

VAR<“x“>3;

VAR<v> + ARITH EXP:VARS<v:v,>;

VAR<v>, ARITH:VARS<a:u> - ARITH EXP:VARS<a+v:uv,>;

Here, the symbols {A x + ,} enclosed in angle brackets are
object alphabet symbols. The synbo;s {a v u} are variable
alphabet symbols.

A derivation is a string that can be obtained from a

canoniel system using the following two rules:

(1) 1Ir c; is a production containing no premises, then
the string ¢ can be derived from the canonical sys-
tem,

(2) 1If p+c; is & production with premises p, and gq+d;
is an instance of this production with each variabdble
in the production replaced by some object string,
and each premise in ¢ has been previously derived,
then the string 4 can be derived from the canonic
system, ’

These rules can be applied to the previously given production
to derive the strings
VAR<A> VAR<x>
ARITH EXP:VARS<A:A;> ARITH EXP:VARS<A+x+A:A,x,A,>;
The strings derivable from a canonical system will be inter-

preted in the following way. A predicate will be interpreted

117

as the name of a set; the term tuple following a predicate
will be interpreted as a string that is s member of the named
set., In the above case, the set "VARY contains two members,
the strings "A" and "x". The set "ARITH EXP:VARS" contains
an infinite number of members, some of which are "A:A," and
"A+x+A:A,x,A,". Furthermore, I will follow the convention
that each string of predicate characters separated by a tuple
sign will be called a predicate part, and that predicates
of degree k will consist of either one or k predicate parts.
In the case where a predicate of degree k consists of k predi-
cate parts (eg.,"ARITH EXP:VARS"), each predicate part of the
predicate will be some mnemonic describing the intended in-
terpretation of the corresponding term in the associated term
tuple (e.g., in the atomic production "ARITH EXP:VARS
<a+p:uv>" the string "a+p" is interpreted as an arithmetic
expression and the string "uv" is interpreted as the list of
variables used in the arithmetic expression). The predicate
parts and terms occurring after the tuple sign in an atomic
production will be called "auxiliary"™ predicate parts and
"guxiliary" terms {(in the above case the term "uv" is the
auxiliary term for the auxiliary predicate part "VARS"),

For example, next consider the following canonkal system
specifying a set named "ARITH EXP:VARS", consisting of all
pairs of strings such that the first element of each pair

is an arithmetic expression in the subset of ALGOL/60, and

the second element of each pair is a list of the variables

18

occurring in the arithmetic expression:¥%

(S S
[] L]
NHWN

wwww
- . .
ErWwW N -

DIGIT<1>;
DIGIT<2>;
DIGIT<3>;
VAR<A>;
VAR;

DIGIT<d> + PRIMARY:VARS<d:A>;

VAR<v> + PRIMARY:VARS<v:iV,>;

PRIMARY :VARS<p:v> -+ ARITH EXP:VARS<p:v>;

PRIMARY :VARS<p:v>, ARITH EXP:VARS<a:u> -+ ARITH EXP:VARS
<atpruv>;

These productions can be interpreted:

3.4

member of the set named "DIGIT".
member of the set named "DIGIT".
member of the set named "DIGIT".
member of the set named "VAR".
member of the set named "VAR",

The symbol "1" is
The symbol "2" is
The symbol "3" is
The symbol "A" is
The symbol "B" is

o PP PE

If "d" represents a member of the set named "DIGIT",

then the pair of strings denoted by "d: A" is a member of the
set named "PRIMARY:VARS". ,

It "v" represents a member of the set named "VAR",

then the pair of strings denoted by "v:v," is a member of the
set named "PRIMARY:VARS".

If the pair "p:v" represents a member of the

set named "PRIMARY:VARS",

then the pair of strings denoted by "p:v" is & member of the

set named "ARITH EXP:VARS".

If the pair "p:v" represents a member of the set named
"PRIMARY:VARS",

and the pair "a:u" represents a member of the set named
"ARITH EXP:VARS",

then the pair of strings denoted by "at+pruv"

is a member of the set named
"ARITH EXP:VARS".

or more informally:

#The symbol "A" denotes the null string, i.e., if P is a
string then

PAL = P = AP

19

1. The symbols "1", "2" and "3" are digits.
2. The symbols "A" and "B" are variables.

3.1 If "qQ" is a digit,
then "d" is a primary with a null list of variables,
3.2 If "v" is a variable, '
then "v" is a primary with a list "v," of variables.
3.3 If "p" is a primary with a 1list of variables "v",
then "p" is an arithmetic expression with the same 1list of
variables "v",
3.4 If "p" is a primary with a list of variables
~ and "a" is"an arithmetic expression with a list of
- variables "u",
then "a+p" is an arithmetic expression with a list of

variables "uv",

” v"

The rules for deriving strings specified by a canonical
system can be applied to these productions to conclude that
(a) the set named "DIGIT" consists of three members, the
symbols "1", "2" and "3", (b) the set named "PRIMARY:VARS"
consists of five members, the pairs of string "1:A",

"2:A", "3:A", "A:A,", and "B:B,", and (c) the set named
"ARITH EXP:VARS" contains an infinite number of members,
some of which are "A:A,"™, "1+2:A", "A+B:A,B,", and

"A+1+2+A+B:A,A,B,".

Abbreviations to the Basic Notation:

Using only the basic notation for a canonieal system, a
specification for a computer language often becomes lengthy.
It will be convenient dAuring the course of this dissertation
to abbreviate some canonkel system constructions. Here, I
introduce four simple and useful abbreviations, the first

3,5

two of which are due to Donovan. The ability of canonicgl

20

systems to define abbreviations formelly will be discussed

in Section 2.2c¢c.

l.a

If cl, c2, cee

premises p, the productions

and cn are conclusions with identical

P>Cy5 PPC,3 -.. PYC

can be abbreviated

p+c c c_;

1°? o+ Cu

If ¢ and ¢, are conclusions with no premises,

19 Cops e
the productions

Cy3 Cp3 +ee €3

can be abbrevigted

2’ «ooe cn;

If <t >,<t,

members of the same set S, the atomic formulas

>, «.. and <tn> are term tuples denoting

S<t1>, S<t2>, e . S<tn>
can be abbreviated

S<t.>,<t,>y ael 4<t >

If Pys Pps oo and p, are premises with the same
conclusion ¢, the productions

pl-'c; pa-’c; s e e pn"c;
can be abbreviated

Py Loy | ees Ty > e

If a and b are different variables, and P and R are

predicates, the productions

21

P<a> -+ R<a>; P<a>, R -+ R<be>;
can be abbreviated

P<a> -+ R<SEQ(a)>;
Thus, the productions®

(a) DIGIT<1>; IIGIT<2>; DIGIT<3>;

(b) DIGIT<p> + CHAR<p>; LETTER<p> -+ CHAR<p>;
MARK<p> + CHAR<p>;

(¢) DIGIT<d> + DIGIT S8TR<d>; DIGIT<d>, DIGIT STR<s>
+ DIGIT STR<sd>;

can be abbreviated

DIGIT<1>,<2>,<3>;
DIGIT<p> | LETTER<p> | MARK<p> =+ CHAR<p>;
DIGIT<d> -+ DIGIT STR<SEQ(a)>;

o oP
N Nt

The abbreviated productions may informally be read:

(a) The symbols "1", "2", and "3" are digits.

(v) If p is a digit, or p is a letter, or p is a mark,
then p is a character.

(¢) If 4 is a digit, them a sequence of digits is a digit
string.

2.1b Application to Specify Syntax

I define the syntax of a language as the set of rules

the
specifying fstrings in a language. The syntax of ALGOL/60
has the requirement that the type of each variable used in

program must be declared. This requirement is not handled

by the Backus-Naur form specification of the ALGOL/60 subset

®*pProductions (b) and (c) are from the canonicel system defining
the syntax of ALGOL/60.

22

given previously. For example, the syntactically illegsal

string

BEGIN INTEGER B; A

e
1]
]

ERD

can be derived using this specification., This requirement
can readily be handled with a canoniceal system definition of

the subset by

(a) specifying with each statement an auxiliary term
specifying the 1list of variables used in the
statement, ,

(p) specifying with each declaration an auxiliary term
specifying the 1list of variadbles declared, and

(c¢c) adding a premise to the production for s legal
program specifying that each variable occurring
in the 1list in (a) must be contained in the list
in (v).

The canonicel system for the subset of ALGOL/60 is given
in Appendix 1l.la. There the second element in the term tuple
for a primary, arithmetic expression, statement, and decla-
tion specify the list of variables used or declared in the
corresponding source language string. The restricfive premise
"IN<u:v>" (production 5) insures that each of the variables
in the list "u" is contained in the list of declared variables
" uw

v'. For example, the following pairs of lists are members

of the set named "IN" (productiong6)
<A,tA,B,> <B:A,B,> <A&A,B,:A,;B,> <A B,A,B,:4,B,>

Thus the string

23

e T TR i e W S A T T

BEGIN INTEGER A; A:=1 END

is specified by this canonicel system, whereas the illegal

string
BEGIN INTEGER B; A:=1 EKND

is not specified by this canonicgl system because the pair

<A,:B,> is not a member of the set named "IR".

An Abbreviation for Specifying Syntax:

In the specification of computer languages, it will be
frequently necessary to write productions that specify auxil-
iary lists with a given source language construction, For

example, consider the productions from Appendix 1.1la

3.1 DIGIT<4> + PRIMARY:VARS<d:A>;

3.4 PRIMARY:VARS<p:v>, ARITH EXP:VARS<a:u>
+ ARITH EXP:VARS<a+p:uv>;

Here the auxiliary terms corresponding to the predicate part
"VARS" specify the list of variables used in each construction.
Productions like these, in which

(a) an auxiliary term for an auxiliary predicate part
in a conclusion is given as "A", and the auxiliary
predicate part does not occur in a premise (e.g.,
the auxiliary term "A" for the predicate part
"VARS" in production 3.1), or

(v) an auxiliary term for an suxiliary predicate part
in a premise is a variable, and the auxiliary term
for the same predicate part in a conclusion con-
tains one occurrence of the variable (e.g., the
variables "u" and "v" for the predicate part "VARS"
in production 3.4).

24

occur frequently in canonlcl systems for computer languages.
It is convenient not to have to specify explicitly the auxil-
iary terms and their predicate parts in these cases. I

therefore introduce the following abbreviation:

(a) If p is an auxiliary predicate part occurring only
in the conclusion of a production,
and the term t corresponding to p is given as null

then ":p" and ":t" can be deleted from the production.

(b) If p is an auxiliary predicate part occurring in a

premise and a conclusion,

and the term t corresponding to the occurrence of
P in the premise 1s. given as a variable,

and the term u corresponding to the occurrence of
p in the conclusion contains one occurrence
of the variable,

and the variable does not occur elsewhere in the
production,

then the occurrence of ":p" and ":t" in the premise
and the occurrence of the variable in the con-
clusion can be deleted.

Thus production 3.1 above can be abbreviated

3.1 DIGIT<d> -+ PRIMARY:VARS<d:p>;
3.1' DIGIT<d> + PRIMARY<d>; (use abr a)

and production 3.4 above can be abbreviated

3.4 PRIMARY:VARS<p:v>, ARITH EXP:VARS<a:u>
+ ARITH EXP:VARS<a+p:uv>};
3.4' PRIMARY<p>, ARITH EXP:VARS<a:u> -+ ARITH EXP:VARS<a+p:u>;
(use abdbr b)
3.4" PRIMARY<p>, ARITH EXP<a> -+ ARITH EXP:VARS<a+p:A>;
(ise abr b)
3.4 PRIMARY<p>, ARITH EXP<a> + ARITH EXP<a+p>; (use abr a)

To obtain the unabbreviated equivalent of a production

to which this abbreviation has been applied, one can

25

(a) Write down the abbreviated production.

(b) Write down the corresponding unsabbreviated predi-
cates used in the production.

(c) Specify for each predicate part occurring only in
the conclusion a corresponding null term.

(d) Specify for each predicate part occurring both in
a premise and in a conclusion a term that consists
of a variable that does not occur elsewhere in the
production.
Using rule (c), the production corresponding to

(prod 3.1') DIGIT<d> - PRIMARY<d>;
(predicates) DIGIT PRIMARY:VARS

can be unabbreviated

3.1 DIGIT<d> -+ PRIMARY:VARS<d:p>;

Using rule (d), the production corresponding to

(prod 3.4'"') PRIMARY<p>, ARITH EXP<a> - ARITH EXP<a+p>;
(predicates) PRIMARY:VARS ARITH EXP:VARS ARITH EXP:VARS

can be unabbreviated¥

PRIMARY:VARS<p:v>, ARITH EXP:VARS<a:u> - ARITH EXP:VARS<a+p:uv>;

To insure the unique reversibility of this abbreviation, the
first predicate part of each different predicate must be
different, and the order in which added variables occur within

the conclusion must be immaterial.

®*The variables "u" and "v" added to production 3.4" need not

be identical to those given in production 3.4. A production
with different variables is equivalent2 in that each defines
the same set of strings.

26

Using this and the previously given abbreviations, the
canonicsl system of Appendix l.lé has been abbreviated into the
canonicd system of Appendix 1.1b. The abbreviated canonical
system can be viewed quite differently from its unabbreviated
equivalent. For example, consider the abbreviated productions

3.2' VAR<v> + PRIMARY:VARS<v:iv,>;
3.3' PRIMARY<p> > ARITH EXP<p>;

and their unabbreviated equivalents

3.2 VAR<v> -+ PRIMARY:VARS<v:v,>;

3.3 PRIMARY:VARS<p:v> -+ ARITH EXP:VARS<p:v>3

In production 3.2, a new auxiliary term "y," is specified for
the auxiliary predicate part "VARS" and this auxiliary predi-
cate and term are specified in the abbreviated production
3.2', In production 3.3, however, the auxiliary list of
variables is carried unchanged from the premise to the con-
clusion, and this list is not specified in the abbreviated
production 3,3'.

Furthermore, consider the production

5. STM:VARS<s:u>, DEC:DEC VARS<d:v>, IN<u:v>
> PROGRAM<BEGIN d; s END>j

n..n

" v" are con-

Here the auxiliary lists of variables "u" and
strained by the premise "IN<u:v>", and hence the auxiliary
predicate parts and terms for these 1ists occur in both the

abbreviated and unabbreviated productions.

27

Bt ad Sttt et A\ St astiain aone” Santiinb nSine e et el A nafiunai LR SR R

Thus the auxiliary terms referring to the lists of vari-
ables and their associated auxiliary prediéate parts are explicitly
srecified only when a new variable is added to the 1list (produc-
tions 3.2, 3.5 and 4.2) or when the list is required to have
certain properties (production 5.). In languages like
SNOBOL/1 and ALGOL/60, where the number of auxiliary terms is
large, the abbreviation just given markedly reduced the size

of their canoniml systems specifying syntax.

2.1lc Application to Specify Translation

I define the translation of a language as the function
mapping the strings in the language into strings in sbme
other language. This function can be specified by a canonical
system specifying a set of pairs of strings, where the first
element in each pair is a legal string in the source language,
and the second element is & corresponding string in the
target language.

As in the previous section, I will illustrate this use
of canonkal systems by example. The specification of the syn-
tax of the ALGOL/60 subset has been modified to specify not
only the legal strings in the subset but also their trans-
lation into IBM System/360 assembler language. This specifi-
cation is given in Appendix 1.2a. There the term to the left
of each ".." specifies some string in the ALGOL/60 subset,
the term to the right.of each ".." épecifies the representa-

tion of the string in the target language. For example,

28

e e T R g8 T e

the following pair of strings is a member of the set named

"PROGRAM" :

BEGIN 1INTEGER A; A:=1 ERD..®ASSEMBLER LANGUAGE PROGRAM

BALR 15,0 *SET BASE REGISTER
USING *,15 #*INFORM ASSEMBLER
L 1,=F'1' #LOAD 1
ST 1,A *STORE RESULT IN A
sveC 0 *RETURN TO SUPERVISOR
*STORAGE FOR VARIABLES
A DS F ‘
END

Note that this canonkal system includes the specification of
the comment entries in the assembler statements so that (hope—
fully) the reader will not have to be familiar with the assembler

language to understand the translation.

An Abbreviation for Specifying Translation:

Except for the specification of strings in assembler
language, the canonical system defining the translati&n of the
subset is identical to the canoniml system defining the syntax
of the subset., In general, since a definition of the syntax
of a language Specifies the legal strings in a language and
a definition of the translation of a language specifies the
legal strings as well as their representation in some other
language, the definition of the translation of a language will
encompass the definition of the syntax of a language. This
similarity leads to the following abbreviation.

Let numbers be placed on the productions of the canonical

syétems for the syntax and translation so that a production

29

T AT T mREmAmmmn TR T T e T TR T
e T A SR T

specifying the translation of a string is given the same
number as the corresponding production specifying the syntax
of the string. Let Py and Py be identically numbered produc-
tions from the canonical systems specifying respectively the
syntax and translation,

(a) 1If P, and p_ are identical, then p, can be omitted.

(b) If a premise in p_ and p, are identical, then the
pPremise in p, can be omi%ted.

(¢) If an auxiliary predicate part and corresponding
term of atomic formulas with identical first predi-
cate parts in p_ and p_ are identical, then the
auxiliary prediéate part and term in p, can be
omitted.

For example consider the production from the syntax of

the ALGOL/60 subset
5. STM:VARS<s:u>, DEC:DEC VARS<d:v>, IN<u:v>

+ PROGRAM<BEGIN d; s END>;
and the corresponding production from the translation of the
subset
5.' STM:VARS<s..s':u>, DEC:DEC VARS<d,.d':v>, IN<u:v>

+ PROGRAM<BEGIN d; s END..a>;
where a represents the string that specifies the translation
of the program. Here, using rule (b), the premise "IN<u:v>"
can be omitted from the translation production, and using

rule (c) the auxiliary predicate parts and terms for the

" "

lists "u" and "v" of variables can be omitted to yield the

abbreviated production gop the translation

30

5." STM<s,.s'>, DEC<d..d'> > PROGRAM<BEGIN d4; s END..a>;

To obtain the unabbreviated equivalent‘of an abbreviated
canonical system defining translation, one must add to the
canonical system defining translation (a) the numbered pro-
ductions that occur in the canonical‘system for the syntax
but do not occur in the canonical system for translation (b)
the premises that occur in a production for syntax but do not
occur in the identically numbered productions for translation,
and (c¢) for atomic formulas with identical first predicate
parts, the asuxiliary predicate parts and correspondipg terms
that occur in a production for syntax but do not occur in the
identically numbered production for the translation,

For example, consider the abbreviated translation pro-

duction just given
5.'' STM<s..s'>, DEC<d..4'> + PROGRAM<BEGIN d; s END,.a>;
and the corresponding production for the syntax

5. STM:VARS<s:u>, DEC:DEC VARS<d:v>, IN<u:v>

-+ PROGRAM<BEGIN d; s END>;
Here, the premise "IN<u:v>" occurs in the productioﬁ for the
syntax but not in the production for the translation, and the
guxiliary predicate parts and corresponding tergs for the pre-
dicate parts "VARS" and "DEC VARS"™ occur in the”production
for the syntax but not in the production for the translation.

Adding this premise and these auxiliary predicate parts and their

31

terms to the abbreviated production 5." for the translation,
we obtain the unabbreviated production
5.' B8TM:VARB<s..s':u>, DEC:DEC VARS<d..d':v>, IN<u:v>

+ PROGRAM<BEGIN d; s END..a>;

The abbreviated canonical system specifying the transla-
tion of the ALGOL/60 subset is given in Appendix 2.1b. The
abbreviated canonical system of Appendix 2.1b can be viewed
quite differently from its unabbreviated equivalent. The
abbreviated canonical need specify only the new terms that
must be added to the canonical system specifying the syntax
in order to convert the canonical system specifying syntax
into the canonical system specifying translation. In writing
the abbreviated canonical system specifying translation, the
requirements needed to insure the gyntactic legality of a
string whose translation is being specified can be omitted.
These requirements are assumed to have been specified in
the canonical system for the syntax. 1In languages like
SNOBOL/1 and ALGOL/60, where the number of syntactic require-
ments is large, this abbreviation greatly reduced the size
of the canonical systems.defining the translations of the

languages into the target language.

2.2 Defining Canonical Systems

2.2a The Notion of & Defining Canonical System

The previous sections have been devoted to developing

32

canonical systems specifying sets of strings. The strings
represented syntactically legal programs in a subset of ALGOL/60
and their counterparts in assembler language. The rules for
forming and using the canonical systems for these sets were
described informally in the text in English., The string repre-
senting a canonical system and the rules for using the canoni-
cal system can, in turn, be specified formally by another
canonical system. In cases where a conflict would arise in
distinguishing the strings of the first canonical system in

the productions of the defining canonical system, the strings
of the first canonical system can be enclosed by the quotation
marks "*" and "“",

The productions specifying the rules for constructing
another canonical system are given in Appendix 1.3a. These
productions specify the alphabets of object symbols, predicate
symbols, and variable symbols, and the rules for constructing
wvell-formed terms, term tuples, atomic formulas, premises,
conclusions, productions, and finally, canonical systems.®

The logical notion of using a second canonical system

to formalize the rules for constructing a canonical system

#In the productions of Appendix 1.3, the guotation marks have
been omitted for matching pairs of left and right brackets

that occur as object symbols. For example, in the atomic
formula "WF TERM TUPLE<<t>>", quotation marks have been omitted
from the second and third brackets. In atomic formulas of

this type, the scope of the left bracket sign extends to the
matching right bracket sign, and all brackets thus enclosed

are considered as object symbols,

33

was first presented by Smullyan2 and later by Donavan.3 In

the works presented by Smullyan and Donavan, & notation dif-
ferent from the basic notation is used in a defining canonical
system. The advantages of using quotation marks to distinguish
symbols in the defined canonical system from éymbols in the
defining canonical system are that (a) the same notation is
used for all canonical systems, and (b) definitions and rules
formalized in one canonical system can be copied and applied

to other canonical systems independently of their position

in a series of defined and defining canonical systems (this

point will be discussed in section 2.2¢).

2.2b Application to Derive Syntactically Legal Programs

The rules for deriving strings specified by a canonical
system can also be formalized with a defining canonical system.
These rules are given in Appendix 1.3b. By adding a production
of the form "CANONILAL SYSTEM STR<e¢>;", where ¢ is some well-
formed canonical system, these productions define the rules
for deriving strings in the canonical system c.

In particulsr, productioné 9 specify the rules for
extracting productions from the member of the set "CANONICAL-
SYSTEM STR". Production 10 specifies the rule for substitut-
ing strings in the odbject alphabetvin place of the variqbles
in the productions to obtain instances of the productions,.
Productions 11 specify the rules for deriving strings specified

by the production imnstances, !

34

Productions 10 and 11 can be viewed as a formalization
of the two logical rues of inference "substitution" and "modus
ponens" for deriving strings specified by a canonical system.
The substitution of object strings for variables in a produc-
tion occurs through the predicate "SUBST". The predicate
"gUBST" define a set of L-tuples, where the first element of
each k-tuple is a production, the second element is a variable,
the third element some.string of object alphabet symbols, and
the fourth element the production with each occurrence of the
variable replaced by the object string. TFor example, using
the canonical system of the syntax of the ALGOL/60 éubset as
a member of the set "CANONIAL SYSTEM STR", the following h-

tuple can be generated as a member of the set "SyBsT"
<DIGIT<d>+PRIMARY :VARS<d:A> : d : 1 ¢ DIGIT<1>+PRIMARY:VARS<1l:A>>

The application of modus ponens to the production instances

of a canonical system occurs in production 11.1.

11.1 DERIVATION<A>;

11.2 DERIVATION<4>, PROD INSTANCE<c;>, WF CONCLUSION<c>
+ DERIVATION<Qd c>3;

11.3 DERIVATION<d>, - PROD INSTANCE<p-c;>,
PREMS : DERIV CONT PREMS<p:d> -+ DERIVATION<d c>;

These productions can be read:

11.1 From no premises, the null string can be derived.
11.2 If the string d has been derived,
and c; is an instance of a productlon that contains no
premises,
then the string ¢ can be added to the strlng d.

35

11.3 If the string d has been derived,
and p+c; is an instance®of & production with premises p,
and the premises p are contained in the string 4,
then the string ¢ can be added to the string 4.
For example, by successively using the following production
instances
‘DIGIT<1>;

DIGIT<1> -+ PRIMARY:VARS<1l:A>;
"PRIMARY : VARS<1:A> -+ ARITH EXP:VARS<1l:A>;

!
the following member of the set "DERIVATION" can be generated
DIGIT<1> PRIMARY:VARS<1:A> ARITH EXP:VARS<1l:A>

Another example of a member of the set "DERIVATION" is
generated in the right-hand column of Appendix l.4a. By simply
asserting that the canonical system defining the syntax of the
ALGOL/60 subset is a member of the set "CANONIAL SYSTEM STR"
(i.e., by simply adding the production "CANONIOL SYSTEM STR
<*DIGIT<1>; ... IN<y:2> + IN<xy:2>;“>;" to the productions
of Appendices 1.3a and 1.3b), Appendix 1.3 defines the rules
for deriving syntactically legal programs in the ALGOL/60
subset. The derivation of Appendix 1.ka specifies that the

string BEGIN INTEGER A; A:=1 END

is a member of the set "PROGRAM".
Yet another example of a member of the set "DERIVATION"

is generated in the right-hand column of Appendix 1.4b. By

¥An instance of a production P is the production P' obtained
from P by applying substitution to all of the variables in a

Production.

36

asserting that the canonical system defining the tramnslation

of the ALGOL/60 subset is a member of tﬁe set "CANONIA SYSTEM
SBTR", Appendix 1.3 defines the rules for deriving syntacticelly
legal programs and their translation. The derivation of

Appendix 1.4b specifies that the string

BEGIN INTEGER A A:=1 END..‘ASSEMBLER LANGUAGE PROGRAM

BALR 15,0 *SET BASE REGISTER
USING *,15 ®*INFORM ASSEMBLER
L 1,=F'1' #LOAD 1
8T 1,A ®*STORE RESULT IN A
sVC 0 ®RETURN TO SUPERVISOf
*STORAGE FOR VARIABLES
A DS F
END

is a member of the set "PROGRAM",

Thus by simply adding a production‘asserting that some
well-formed canonical system is a member of the set "CANONICAL
SYSTEM STR", the productions of Appendix 1.3 can be used to

generate all strings defined by the canonical system.

Structural Description of Derived Strings:®

A derivation provides a "structural description” of a

derived string. By a structural deacriptionss

of a string,
I mean the sequence of rules (here the sequence ofproductions)
used in generating the string. The sequence of rules used in

generating a string provides information about the structure

of the string.

*This application is not used in the other sections of this
dissertation. '

37

R L T e e e A R o s R P T INIRI A e g S B Y g

For example, consider the derivation of Appendix 1l.ka.
If we consider only the first term of each derived term tuple,
the derivation provides a structural description for the string
"BEGIN INTEGER A; A:=1 END" that may be represented in the

form of a syntactic tree:

PROGRAM
BEGIN DEC . STM END
INTEGER TYPE LIST VAR = ARITH EXP
A A PRIMARY
DIGIT
1

The tree can be constructed by scanning the derivation
from bottom to top and constructing the corresponding tree
from the top down. The leaves of the tree are symbols from
the object alphabet. The nodes of the tree are the partial
predicate names occurring in derived conclusions. The branches
joining a node are determined by the basic symbols and the
previously derived conclusions used to construct the newly

derived conclusion.

38

Using a canomneal system for the translation of a language,
a derivation can be used to construct a structural description

of & target language string. The System/360 assembler language

is not a "structured" language and hence the derivation of an
assembler language program is not of concern. However, canon-
ical systems have been usedh to obtain structural descriptions
of strings in a target language where knowledge of a string's

tree-like structure is important for its analysis.®

2.2c Application to Specify Notational Abbreviations

I define an abbreviation as a bijective (one-to-one and
onto) function mapping one set of strings (the unabbreviated
strings) into ancther set of strings (the abbreviated
strings). The bijectiveness of the function insures that we
can recover the unabbreviated equivalent of each abbreviated
string. I have introduced six abbreviations to the notation
for canonical systems, four to the basic notation, one for a
canonical system specifying syntax, and another for a canoni-
cal system specifying translation. ©Each of these abbrevia-
tions can be specified by a defining canonical system speci-
fying a set of ordered pairs, where the first element of
each pair is an abbreviated canonical system, and the second

element is the corresponding unabbreviated canonicel system.

*A canonical system derivation can lead to much more compli-
cated structural descriptions than those that can be repre-
sented in tree-like form. I have not studied this issue.

39

T e T T T i N o S o T -

The productions specifying the six abbreviations intro-
duced to canonical systems are given in Appendix 1l.3c. For

example, productions 15.1 and 15,2 in

15.1 WF PROD<p-c;> =+ ABR1 P:P<p+c;:p*+c;>;
15.2 WF PROD<p+c;>, ABR1l P:P<p+s;:t> +» ABR1l P:P<p+c,sj;:p+c;t>;
15.3 WF ATOM PROD<c;> + ABR1 AP:AP<c;:c;>;

15.4 WF ATOM PROD<c3;>, ABRLl AP:AP<s;:t;>
+ ABR1 AP:AP<s,c3:tjec3>
15.5 ABR1 CS:CS<A;A>;
15.6 ABR1 CS:CS<c:d4>, ABR1 P:P<p:q> + ABR1 CS:CS<cp:dq>;
15.7 ABR1l CS:CS<c:d4>, ABR1 AP:AP<p:q> -+ ABR1l CS8:CS<cp:dq>;

specify a set of ordered pairs "ABR1 P:P", where the first

e 3" and

element is a production of the form'b+cl, Cphs wes s Co3

the second element is the corresponding unabbreviated pro-

p*c_3". Productions 15.3 and 15.4

ductions "p+c1; p+c n’

03 e
augment this set to include atomic productions, and produc-
tions 15.5 through 15.7 specify the abbreviation for an entire
canonical system.

Similarly, productions 16 through 20 specify the other

five abbreviations to canonical systems.* Productions 21 and

®*To apply abbreviation 20, the abbreviation for a canonical
system specifying syntax, a production of the form "CS PREDI-
CATES<p »eee 5 p.>" where the p l<i<n, are the unabbre-
viated re icate:mrnthe canonical system, must be added to
productions 20.

To apply abbreviation 21, the abbreviation for a canonical
system specifying translation, (a) the productions and pre-
mises occurring in the .canonical system for syntax but not in
the canonical system for translation must be added to the
canonical system for translation, and (b) atomic formulas with
identical first predicate parts from identically numbered
productions from the canonical systems for the syntax and
translation must be written together in the canonical system
for translation and separated by "//".

40

ST L e IR i L s e Ty

22 gpecify abbreviations used in defining ALGOL/60 and will
be discussed in the chapter on ALGOL/60. Finally, production
23 specifies the rule for converting some string (presumably

a well-formed abbreviated canonical system) that is asserted

to be a member of the set "ABR CANONICALSYSTEM STR" into the
corresponding member of the set “"CANONCA: SYSTEM STR" (the un-
abbreviated equivalent of ‘the abbreviated canonical system).®
For example, by asserting that the abbreviated canonical
system of Appendix 1l.1b is an abbreviated canonical system
(i.e., by adding the production asserting that the canonical
system of Appendix 1.1b is :a member of the set "ABR CANONICAL
SYSTEM STR"), the productions of Appendix 1l.3c can be used to
derive the conclusion that the canonical system of Appendix
l.1a is its corresponding unabbreviated equivalent (i.e., the
canonical system of Appendix l.le is a member of the set
"CANONIQLSYSTEMvSTR"). Similarly, by asserting that the
canonical system of Appendix 1.2b is a member of the set "ABR
CANONICL SYSTEM STR", production 24, can be used to derive the
conclusion that the canonical system of Appendix 1.2a is its

unabbreviatedequivalent.®® 1In general, by

%#The order in which abbreviations are removed from an abbre-
viated canonical system will generally depend on the abbrevia-
tions introduced. Production 23, defines one order in which
the abbreviations introduced in this dissertation can be
removed. Furthermore, any premise in production 23 that
refers to an abbreviation not used in a particular abbreviated
canonical system can be removed.

#%ps mentioned previously, an atomic production specifying the
unabbreviated predicates of an abbreviated canonical system
specifying syntax must be added to the defining canonical
system to generate the correct unabbreviated (cont. next page)

41

(a) specifying the sets of ordered pairs defining
some abbreviations, and

(b) adding a production like production 23 defining
the rule for converting an abbreviated canonical
system into its unabbreviated equivalent.

a defining canonical system can be used to generate the un-
abbreviated equivalent of any abbreviated canconical system.
Moreover, having generated the equivalent unabbreviated
canonical system, the productions of Appendix 1.3a and 1.3D
can then be used to derive strings specified by the canoni-
cal system.

The productions of Appendix 1.3 are written using only
the first two abbreviations to the basic notation., To define
Appendix 1.3 using only the basic notation, the user could
write a third canonical system, which would consist of simply
(a) a production asserting that the canonical system of Appen-
dix 1.3 is a member of the set "ABR CANONICAL SYSTEM STR",

(b) productions 15 and 16 of Appendix 1.3 (these productions
contain no abbreviations), and (c) the production "ABR CANONICAL
SYSTEM STR<a>, ABR2 CS:CS<a:b>, ABR1l CS:CS<b:ec> > CANONICAL
SYSTEM STR<ec>;". The user would then have a series of three
canonical systems. The first (abbreviated) canonical

system (e.g., Appendices 1.1b or 1.2b) would define the allow-

able strings in some source language. The

##(Cont, from p. 41) canonical system, and the productions
of the abbreviated canonical systems specifying syntax and
translation must be combined (aecording to the rules given
earlier) to generate the complete unabbreviated canonical
system specifying translation.

42

second canonical system would define the rules for forming
the first canonical system, the rules for deriving strings
specified by the first canonical system, and the rules for
converting the first canonical system into the basic notation.
The third canonical system would define the rules for convert-
ing the second canonical system into the basic notation.
Thus, the series of canonical systems would ultimately be
defined using only the basic notation. In general, a user
may write a series of canonical systems to define the rules
for constructing and using other canonical systems; in order
for the series to be definead using only the basic canonical
system notation , only the last member of the series need be
written in the basic notation.

Note that productions 15 and 16 of Appendix 1.3 could
be copied unchanged in the third canonical system. These
productions formalize rules that are applicadle to two

canonical systems independently of their relative positions

in a series of canonical systems. In fact, these productions
can be copied and applied to the canonical system in which

they themselves are given.

User-Coined Abbreviations:

Defining canonical systems provides a writer of a canoni-
cal system with a formals mechanism for introducing his own
abbreviations to the notation. TFor example, consider the prod-

uctions (from the canonical system of ALGOL/60):

43

R T e P Y e e .=
e e e ———— T Y T g %W T e g g T g T L T e
T T v

PRIMARY <p> + TERM<p>;
PRIMARY<p>, MULT OP<m>, TERM<t> -+ TERM<tmp>;

The user may wish to abbreviate these productions:
PRIMARY<p>, MULT OP<m> -+ TERM<ALTSEQ(p m)>;

Productions 21 of Appendix l.3c specify this abbreviation (as
well as other variants of this abbreviation). Thus by simply
adding new productions to the canonical system defining the
conversion of a abbreviated canonical system to unabdbreviated
form, the notation for canonical systems can be tailored to

fit a particular application.

2.3 Discussion

Canonical systems lave placed under a single framework
the complete definition of the syntax and translation of a
language. The formalism was used to specify all legal pro-
grams, their translations into assembler language, the rules
for deriving legal programs and their translations, and the
rules for removing abbreviations from the specifications;
Not once was it necessary to introduce concepts outside
canonical systems;although some complexity was added to the
formalism by introducing abbreviations to the basic notation,
even the abbreviations were ultimately defined in terms of
the basic formalism,

It is important to develop languages whose descriptions

are concise. The Backus-Naur form specification of the ALGOL/60

44

subset and the English sentence describing the context-sensi-
tive requirement providé one very concise and easily under-
standable description of the syntax of the subset. The
canonical system of Appendix 1.1 has, in fact, been modeled
after this description. Produétions 1 through 5 correspond
(excebt for the auxiliary elements generating the lists of
used and declared variables) to the Backus-Naur form produc-
tions; the premise "IN<u:v>" in production 5 and the defini-
tion of the predicate "IN" formalize the context sensitive
restriction stated in English.

The canonical system of Appendix 1.1 is not much more
lengthy than the Backus-Naur form definition of the subset
ana the associated English sentence describing the context-
sensitive restriction. Like Backus~Naur form, the language
of canonical systems is readable. On the other hand, canoni-
cal systems have the added power to characterize completely
both the syntax of a language and its translation into a
target language, without resorting to the English Language,
Moreover, the notation for canonicalsystems is not fixed.

By changing or adding productions to a defining canonical
system, -the user can alter or abbreviate the notation for a
defined canonical system to fit a particular language.

I wish to point out two additional features of the
canonical systems of Appendices 1.1 and 1.2. First, barring
any inadvertent errors, the canonical systems describe‘a set

of ALGOL/60 programs and assembler languege programs that

45

will run on a computer when translated by an ALGOL/60 compiler
or System/360 assembler. Second, the specification of the
comments entries in the assembler language statements was
provided not only to aid the reasder. The comments are meaning-
ful context-sensitive strings in the English language. The
specification of these strings was handled as easily as the
specification of the strings in assembler language. The
specification of the strings in the English language illus-
trates the use of canonical systems to specify the entire
operation of a translator, including the specification of
meaningful comments. Moreover, it suggests the capacity of
canonical systems to define string transformations in lan-
guages other than computer programming languages.

One use of canonical systems is in the development of a
generalized translator for computer languages, i.e., & trans-
lator that is independent of both source and target languages.
Canonical systems define a set by specifying rules for
generating its members. To use a canonical system as a lan-
guage for writing translators, an algorithm to recognize
strings specified by a canonical system and output associated
strings is needed. No algorithm for recognizing and construct-
ing strings specified by a canonical system is presented in
this dissertation. However, one algorithm for canonical
systems has been devised and implemented by Alsop.36

Several important issues for using canonical systems in

a generalized translator have not been studied. One critical

46

issue is the development of a restriction on canonicsal
systems to define only recursive sets rather than recursively
enumerable sets. Theoretically, an algorithm for recognizing
a string defined by a canonical system exists only if the set
of strings defined by the canonical system is recursive.
Other critical issues include speed of translation, recovery
in case of an error in a source language program, and code
optimization of target language programs. I expect that
modifications to the basic formalism presented here will be
necessary to use canonical systems in a generalized trans-
lator.

The notion of defining canonical systems unfolds several
possibilities for using canonical system as a tool for working
with computer languages. Just as a canonical system allows
a user to change a source or target language construction by
simply changing the productions specifying the construction,
a defining canonicael system allows the user to change the
definition or use of a defined canonical éystem by simply
changing productions of the defining canonical system, Al-
though only rules for removing abbreviations from a canonical
system and rules for deriving strings specified by a canoni-
cal system have been defined here, defining canonical systems
may provide a flexible mechanism for embedding many other
rules for defining and manipulating computer languages.

As mentioned earlier, the results of this chapter apply

to any recursively enumerable set. Any function or relation

47

that is recursively enumerable can be specified by a canoni-
cal system. Canonical systems can be used to express algo-
rithms and string transformations of a much different nature
from those given here. The notion of defining canonical
systems adds to the basic formalism a facility for allowing
a user to formalize his own rules for defining and manipulat-
ing strings and their canonical systems. The modifications
to the basic formalism presented here have been directed
towards the application of canonical systems to define the
syntax and translation of a language., But more importantly,
canonical systems provides & definitional facility that the
user has the freedom to tailor according to his own applica-

tion and style,

48

_CHAPTER III

EXTENDED MARKOV ALGORITHMS AND A-CALCULUS:
A COMBINED FORMALISM USED AS THE BASIS
FOR A TARGET LANGUAGE FOR DEFINING SEMANTICS

This chapter presents a formal language (henceforth
referred to as the target language) quite different from con-
ventional machine or assembler language for defining the
semantics of a computer language.

| The semantics of a language can be defined as the set of
rules relating the strings in a language to the behavior or
objects that the strings denote. The behavior or object that
a8 string denotes can be described by a string in some other
language whose meaning is presumably understood. This approach
to defining the semantics of computer languages will be taken
in this chapter, namely, the presentation of s single language
(wvhose meaning is presumably understood) for defining the
semantics of multiple other languages. The semantics of a
given source language will be specified by defining the trans-
lation of the language into the target language.

The semantics of the target language, however, will not
be left to an English language explanation in the text. The
semantics of the target language will be further explicated
in Section 3.2 by giving a formal definition of a machine®

that performs the computation indicated by a target language

#"Machine" in the sense of a set of logical rules,

49

string and produces the string denoted by the target language
string. (In defining the semantics of a computer language,
the word computation can pe considered synonymous with the
word "behavior" and all "objects" in a computer language can
be considered as strings.) Thus the appeal to understanding
the semantics of a computer language will be ultimately re-
duced to understanding the formalism in which the operation of
the target language evaluating mecﬁanism is expressed.

Generally, the semantics of different languages will be
specified by giving different translations into the target
language while leaving the definition of the target language
evaluating mechanism unchanged. On the other hand, the defini-
tion of the evaluating mechanism can be changed to define
source language constructs that appear difficult to define in
the target language.®

The target language presented here is based on the
formalism of Markov algorithns,9 an extension to Markov algo-

10,11,12

rithms due to Caracciolo, and the formalism of the

A-calculus of Alonzo Church.l7’18

Extended Markov algorithms
are used to define the primitive functions in a computer
language, the A-calculus is used to define new functions from
the primitive functions, In a sense, the target language

draws upon the best of each formalism. Markov algorithms

explicate the notion of an algorithm operating on a string

*This was done to define indirect addressing in SNOBOL/1.

50

and are especially well-suited to the definition of primitive
functions transforming strings into new strings. The Xi-
calculus explicates the notion of a function and is especially
well-suited to the definition of new functions from the primi-
tive functions.

The target language has several important properties.
The language is formally based, and theorems regarding the
completeness of the formalisms to define the set of all "com-
putable" function exist.31232 pe language is independent of
the characteristics of existing computers., The basic notation
for the target language is simple. Probably most.importantly,
the correspondence between many computer languages and the
target language is somewhat simpler than the correspondence
between computer languages and conventional machine or

assembler languages.

3.1 The Target Language

3.1la Extended Markov Algorithms

Markov Algorithms:
Let A be an alphabet of characters, called the object
alphabet, and let "+", "+«" and "A" be characters not in A.

A Markov algorithm is a finite list of substitution rules of

the form

s +(')tl
S, T(') t
s, ;(-) tn

51

where the s; and t., 1<i<n, are either "A" or strings of

i’
object alphabet characters, and "(+)" indicates the possible

occurrence of a "+" after the "+", The symbol "A" denotes
the null string.

A Markov algorithm of the above form when applied to an
object string X is taken to mean:

(a) Look down among the substitution rules for the
first rule such that s, occurs in X.

(b) 1If such a rule is found, replace the leftmost occur-
rence of 8i in X by the string t.,. If a "+" occurs
after the "+" in the substitutiofi rule, terminate
the algorithm, Otherwise repeat the application of
the algorithm to the newly formed string.

(¢) If no such rule is found, terminate the algorithm.

For example, the Markov algorithm

B » D
c » F
o -» I

transforms the string "COBBLER" into the string "FIDDLER",

~

whereas the Markov algorithm

B =~ D
C =+ T
o - I

transforms the string "COBBLER" into the string "TODDLER".
Consider the following Markov algqrithm for taking a
parenthesized string of letters from the alphabet {I,0,N,X}
and producing a string where the initial letters are reversed.
"on

(Here the character "a#" is used as a marker, and the object

alphabet consists of the characters {I O N X () #}.)

52

IIw -+ I*7
I0# > O*1
TN > N*T
IX# - X*T
OI* - I1%0
O0% - Q%0
ON = - N0
OX* - X%*0
NI - I*N
NO* > O#N
NH* - NN
NX# - XxN
XI# - T#X
XO#* > O%X
XN # - NxX
X% - X% X
(T* > I(

(o% - oX¢

(W > 17 (

(X% - X(

) - i

~—
+
b
~—

A Markov algorithm for reversing a paranthesized
string of letters {I O N X}

03

This algorithm when applied to the string "(NOXIN)"

successively transforms it into the following strings

(NOXIN) » (NOXIN#*) > (NOXN¥*I) -+ (NON®XI) - (NN*OXI)
+ (N®NOXI) -+ N(NOXI) -+ N(NOXI®) - N(NOI*X)
+ N(NI*OX) > N(I®NOX) - NI(NOX) - NI(NOX®)
+ NI(NX%0) -+ NI(X*NO) » NIX(NO) > NIX(NO®)
+ NIX{O®N) -~ NIXO(N) - NIXO(N®) > NIXON()
++ NIXON

Even quite simple algorithms like the above become exceed-
ingly lengthy when expressed in the Markov formalism., If the
alphabet above included all 26 letters in the English alphabet,
the Markov algorithm for reversing the letters in a string
would require 704 substitution rules. To alleviate this

10,11,12 in developing a Markov

growth, Caracciolo di Forino
algorithm based language called PANON introduced the notion

of a "string variable" as an extension to Markov algorithms.

Extended Markov Algorithms:

Let A and V be disjoint alphabets of characters, called
respectively the object alphabet and variable alphabet, and
let "»", "." gng "A" be characters not in A or V. Let each
variable in V represent some pre-specified (possibly infinite)
set of obJect alphabet strings. The case where different
variables can represent different sets of objJect alphabet

strings is not excluded. An extended Markov algorithm is a

finite sequence of substitution rules of the

54

sn +(.) tn

where the s, and t,, 1gic<n, are either "A" or strings of object
alphabet and variable alphabet characters such that each vari-
able in ti occurs also in s, -

A string si represents the set of object alphabet
strings computed by concatenating in order from left to right
each of the object alphabet characters in s with any object
alphabet string represented by a variable in si. The set repre-
sented by S is constrained in that each occurrence of the
same variable In s, must be set to the same object alphabet
string in computing the set of concatenatedlobject strings
that s represents. For example, if & is a string variable
representing any member of the set {V W} and m is a string
variable representing any member of the set {Y ZZ} the string
"¢AmAL" represents any member of the set {VAYAV VAZZAV WAYAW
WAZZAW}.

A string s, is said to occur within an object string X
if one or more of the strings represented by S5 occurs within
X. The "leftmost" occurrence of Sy in X is the string such
that first, (of the occurrences of S5 in X) the occurrence
begins with the leftmost objJect alphabet character, and second,
the occurrence is as short as possible,

An extended Markov salgorithm of the above form when ap-

plied to an object string X is taken to mean:

55

(a) Look down among the substitution rules for the first
rule in which s, occurs in X,

(b) If such a rule is found, replace the leftmost oc-
currence of s; in X by the string obtained from t;
by replacing each variable in t3 by the string
used in place of the variable in sj. If a "-"
occurs after the "»" in the substitution rule,
terminate the algorithm. Otherwise repeat the ap-
pPlication to the newly formed string.

(¢) If no such rule is found, terminate the algorithm.®

It will be convenient to introduce a special symbol after the
8y to mean that the string matched to 8y must extend to the
last character of the object string. I will use the symbol
"e" for this purpose.®®

For example, let s and s' be string variables represent-

ing any string of English letters. The extended Markov

algorithm
(1) sI -+ s0

transforms the string "BINGO" into the string "BONGO", the

extended Markov algorithm

(2) XsXs'X -+ ss'

*The transformation specified by a substitution rule of an
extended Markov algorithm is computable only if the string
variables represent recursive sets, This requirement is
discussed in detail by Caracciole (Chap. S5, ref. 11). 1In
this dissertation all sets defined for string variables are
recursive. '

##This convention can be viewed solely within the framework of
extended Markov algorithms by (a) replacing each "+" after
the sy by a special character not in the object alphabet (v)
replacing each corresponding t; with t; followed by the spe-
cial character (c) appending to each O%Ject string X the
special character, and (a) applying to the transformed object
string an algorithm that simply removes the special character.

56

transforms the string "XABXCDX" into the string "ABCD", the

extended Markov algorithm
(3) sXs -» X

transforms the string "QABXAB" into the string "QX", and

the extended Markov algorithm

(4) Xs. =+ A
sX +e X

transforms the string "7VWXX?XBC" into the string "7XXI".%
More precisely, an extended Markov algorithm will be
specified in three parts:

(a) A statement listing some string variables and the
names of the sets whose members the variables
represent.

(b) A formal definition of the sets named in (a).

(c) A 1ist of extended Markov algorithm substitution
rules including possible occurrences of the de-
fined string variables,

I will use statements of the form " Ial,az,...ageA | LI PPRE

bmeB | “ o |p1,p2,...pneP , where the as, bi’ «ss o 8nd pi

are variables and the A, B, ... , and P are the names of the

sets, to denote that a, represents members of the set named

1

A, 8, represents members of the set named A, etc., I will use

canonical systems to define the named sets. Using this nota-

tion the above extended Markov algorithms are more precisely

®*Note that the character "t" is not an English letter.

57

stated

| s,s' ¢ LETTER STR |

LETTER STR<A> ,, ... ,<Z>;
LETTER STR<a>, - LETTER STR<ab>;

(1) sI + 80

(2) XsXs'X -+ ss!

(3) sXs + X
() Xs. > X
sX +> X

Consider again the algorithm for reversing any parenthe-
sized string of letters from the alphabet {I 0 X N}. Using

the following variable and set definitions

| ¢,d ¢ LETTER |

LETTER<I> ,<0> ,<N>,<X>;

the extended Markov algorithm for this string transformation
can now be simply given
cds du=c
(ce » ¢
A

) > %)

Note that by simply augmenting the set named "LETTER" (and

the object alphabet) to include all the letters of the English
alphabet, the same four extended Markov algorithm substitution
rules define the algorithm for reversing a string containing
all English letters, whereas 704 substitution rules are re-

quired to define this transformation with a Markov algorithm.

58

Even with the extension to Mafkov algorithms given
above, algorithms expressed in the extended Markov formalism
often become exceedingly lengthy. One frequently occurring
source of this lengthening is a requirement to construct the
functional composition of two or more algorithms. Although
Markov's monograph defines the additional substitution rules
for taking two Markov algorithms and constructing the Markov
algorithms defining their functional composition, the number
of resulting substitution rules can be enormous. For example,
for 2 Markov algorithms over an obJect alphabet consisting of
all English letters, 1,457 substitution rules (Section 3.3,
ref. 9) must be added to the algorithms to produce the algo-
rithm representing their functional composition, Although
by using the extension to Markov algorithms the number of
additional rules could be reduced to 7, an algorithm composed
by several functional compositions would quickly require many
substitution rules and would be correspondingly difficult to
understand.

On the other hand, Church's A—calculus,l'{’18

a formalism
that makes precise the notion of a function and its properties,
is ideally suited to handle the concept of functional composi-
tion. The next section presents the formélism of the A~
calculus, and the subsequent section discusses the embedding

of the formalism of extended Markov algorithms within the

formalism of the A-calculus. This combined formalism

59

will provide the heart of this dissertation's target lan-

guage for defining semantics.

3.1b The X«Calculus®*

The A-calculus is a formalism for writing certain classes
of expressions. One interpretation (the interpretation taken
here) of the formalism is as an explication of ideas»about
the specification and application of functions. Let C and
V be disjoint sets of symbols, not including the symbols
{x . () 0}, wvhere "g" denotes a string of one or more blank
spaces. The set C will be called the set of constants. The
set.V will be called the set of variables. A well-formed
expression in the A-calculus is any string defined (recursive-
ly) by the following rules:

(a) If p is a variable, or p is a constant, then p is
8 well-formed expression.

(b) If E and F are well-formed expressions, then (E F)
is a well-formed expression.

(¢) If v is a variable and E is a well-formed expres-
sion, then Av.E is a well-formed expression,

For example, if C comprises the symbols {3 SQ} and V comprises
the symbol‘{X}, some example expressions are "3", "(sq 3)"

and "AX.(SQ X)". An expression of the form (E F) is called

a combination, and the_expressions E and F in (E F) are called
respectively the operator and operand of the combination. An

expression of the form Av.E is called 8 A-expression, and the

*The terminology in this chapter is due mostly to Church and
Landin,

60

expression E in Av.E is called the body of the A-expression.
Here, a A-expression of the form Av.E will be interpreted as
a representation of the function mapping the varisble v into
the expression E.

An occurrence of a variable in a well-formed expression
is distinguished as "free" or "bound" according to the fol-
lowing rules:

(a) If E is an expression consisting only of a variable,
the occurrence of the variable in E is free.

(b) If E and F are expressions, an occurrence of 2
variable in (E F) is free or bound according as it
is free or bound in E or F.

(¢) If v is a variable and E is an expression, all oc-
currences of v in Av,E are bound while an occurrence
of a variable different from v in Av.E is free or
bound according as it is free or bound in E.

For example, in the expression "AX.(F X)", where "F" and "X"
are variables, the occurrence of "F" is free and the occur-
rences of "X" are bound.

Church introduces rules for transforming expressions,
Using these rules, some expressions can be transformed into
a "principal normal form." The principal normal form of an
expression may be viewed as a "canonical" or standard repre-
sentation of the value of the expression. Because of the
introduction of assignment and goto expressions into the
target language to be presented later, the rules for trans-
forming a target language expression into normal form will

not always hold. Instead, the value of a target language

expression will be defined in this dissertation by an

61

extended Markov algorithm specification of a machine that
mechanically converts an expression into a canonical repre-
sentation of the value of the expression.

This machine will be defined formally in section 2 of
this chapter. The operation of this machine for evaluating
A=calculus expressions will be presented informally in this
section.

In general, the value of & constant or free variable is
the object denoted by the constant or variable. A list of
the values of the constants and free variables is called an
"environment." The value of a A-expression is called a
MmM—closure”" and consists of two parts: (a) the expression
itself, and (b) the environment in which the l-expression
occurs, i.e., the list of the values of the constants and
free variables in the expression.

The value of a combination is the object computed by
evaluating its operand, evaluating its operator (using the
values of constants and free variables given by the environ-
ment of the combination), and then applying the value of the
operator to the value of the operand. If the operator of a
combination is a A-expression, the result of applying the
A-expression to its operand is computed by (a) coupling the
bound variable of the A-expression with the value of the
operand to which the A-expression is being applied (b) add-
ing this couple to the environment of the A-expression, and
(¢) evaluating the body of the A-expression using this new
environment.

62

Some example A-calculus expression are the following:

3 AX.3 (rX.3 2)
(sq 3) AX.(8q X) (xX.(sqQ X) 3)
X AX. X (xX.x 3)

If "2", "3" and "SQ" are constants denoting respectively the

integer two, the integer three, and the function mapping an
above
integer into its square, the nine expressions/denote

the integer the function mapping X the integer
three into the integer three three

the integer the function mapping X the integer
nine (presumably one integer) nine

into its square

some object the identity function the integer
X three

3.1¢c The Marriage of Extended Markov Algorithms to the
A=Calculus.

This section combines the formalism of extended Markov
algorithms within the formalism of the A-calculus. The wedding
of these two formalisms will form the basis for the target
language that will be presented in Section 3.14d.

Let E be a set of strings representing extended Markov
algorithms, where the characters{[,],|, and "} do not occur in
E. Let L be another set of strings, called the set of
literals, where the character ' does not occur in L. Let C

be a set of basic symbols, called the set of constants, where

63

et mmn e mn s eri e ST e Sy e e

AR S e

each constant is either a string from E enclosed by the
brackets [and] or a string from L enclosed by the quotation
marks ' and '. Let V be another set of basic symbols, called
the set of variables, where each variable contains no occur-
rence of {[,], or'). (Thus the sets C and V are disjoint.)
An expression in the combined formalism will consist of any
expression M such each occurrence of a variable in M is bound
in M.

The extended Markov algorithms will be interpreted as
definitions of primitive functions, the literals will be
interpreted as representations of the obJects upon which the
primitive functions operate, and the variables will be inter-
preted as names of primitive funections, literals, or functions
of the primitive functions and literals. In the examples in
the text, the quotation marks will often be omitted from-
constants that represent integers.

Expressions in the A-calculus are strings of basic
symbols, and hence to include an extended Markov algorithm
in the A-calculus, it is necessary to have a linear repre-
sentation of an extended Markov algorithm. An extended

Markov algorithm of the form X

64

where X is the statement 1listing the string variables in the
algorithm, and D is the definition of the sets named in X,

will therefore be represented
[xD s, +(+) £ | s, +(+) %, | e | 5, () t]

For convenience, however, the statement X and the definition
D will generally be given separately from the 1list of sub-
stitution rules in the algorithm. For example, consjder the

following expression:
‘a.([B+D|C+F|0+T] a)

This expression can be used in combination with other expres-

sions to transform strings. For example the expression
(ra.([B+D|C+F|0+I] @) 'COBBLER')

successively takes on the values
([B+D|C+F|0>I] 'COBBLER')

and finally
FIDDLER

In defining the semantics of computer langusages, it
will be convenient to consider the symbols {> + A [] |} as
object alphabet symbols in an extended Markov algorithm. I

therefore adopt the conventions that any string (not includ-

”" "

ing the symbol ") enclosed by the quotation marks and

65

in an extended Markov algorithm is to be considered as an
object alphabet string. This use of quotation marks allows
us to consider extended Markov algorithms whose object
strings are themselves extended Markov algorithms., This
point will be discussed in the defipition of the primitive
function "CAT", to be presented shortly.

The basic notation for the combined formalism is not
especially suited to digestion by humans. To make the nota-
tion more psaslatable, I will introduce a series of alternate
notations for writing expressions in the combined formalism.
The alternate notations will be given for convenience and
conciseness in communicating the expressions to humans. The
alternate notations for the A-calculus, and the)-calculus
definitions for conditional expressions and recursive func-

tions are for the most part due to Landin.

Alternate Notations for Extended Markov Algorithms:

The linear representation of an extended Markov algorithm
is difficult to visualize. Accordingly, I will generally use

the notation

sn -)(‘) tn

(where the variable and set definitions for the algorithm

will be given separately) in place of the strict linear

66

representation of an extended Markov algorithm in the A-

calculus. For example, the expression
ra. ([B+D|C+>F|0O+I] a)

will be written

Ao, (" a)

cow
¥+ 4
H g

The Function CAT:

Let s be a string variable representing any string of

characters and consider the following expression

Au.([s. S u[A*.n s m]n] a)

This expression defines a function mapping the value of the
variable a into the extended Markov algorithm [A ++ al,

where "a" here denotes the value of the variable a. This
extended Markov algorithm when applied to an object string
concatenates the string value of o to the object string. The
function above will be called "CAT". For example, the expres-

sion ((CAT 'HELLO') ' THERE') successively takes on the

values:

67

T e T AT T

((ra.([s. ++ "[A+«" 8" 1"] &) 'HELLO ') 'THERE')
(([s. ++ "[A>e" g "]"] 'HELLO ') 'THERE')
({A »+ HELLO] ‘THERE!')

HELLO THERE

Similarly, the expression ((CAT ((CAT 'HOW ') 'ARE ')) 'YOU')
takes on the value "HOW ARE YOU". Note that the extended
Markov algorithm [s. ++ "[A+>«" 5 "]"] maps its object string
into another extended Markov algorithm, and thus extended
Markov algorithms have the ability to define functionals,
i.e., functions mapping an argument into a new function.

In defining the semantics of a computer language, it
will frequently be necessary to concatenate strings to pro-
duce a string that represents an extended Markov algofithm
or a string to which an extended Markov algorithm is applied.
It will be convenient not to state explicitly the concatena-
tion of strings in these cases, and I therefore introduce
the following alternate solution.

Let "éAT" be the function ae ‘défined above,

let X;' 1<i<n be expressions, and

let (%&AT...((CAT((@AT X3) X3)) X3)) ... X;) be

an expression whose value is an extended Markov

algorithm or a string to which an-extended

Markov algorithm is applied. The’xi can be

written directly in the form of the extended

Markov algorithm or the concatenated string to
wvhich an extended Markov algorithm is applied.

Thus, for example, the expressions

68

AT.Aa AB. (((CAT((CAT((CAT((CAT '[TRUE ++') a)) ' FALSE ++'))
g)) '1') =)

Aa.AB.([TRUE/TRUE -+ TRUE TRUE/FALSE -+« FALSE |
FALSE/TRUE -+« FALSE | FALSE/FALSE ++ FALSE]

((cAT ((CAT a) '/')) B))
can be written
Am.Aa.AB.([TRUE ++ a | FALSE +« g])

Aa.AB.([TRUE/TRUE -+ TRUE TRUE/FALSE -+ FALSE
FALSE/TRUE ++ FALSE FALSE/FALSE -+» FALSE] a/8)

or further rewritten using the previously given alternate

notation

TRUE =+ o
Am.ra.AB. (| FALSE -+ B]‘II)

PRUE/TRUE ~++ TRUE
TRUE/FALSE >+ FALSE| .,
FALSE/TRUE -+« FALSE[| ©
FALSE/FALSE ++« FALSE

Aa,AB, (

The first expression defines a function®* that when successively

#Greek letters will generally not occur as object strings for
extended Markov algorithms. I will therefore use Greek
letters in an extended Markov algorithm or the string to
which it is applied to denote the symbols that are bound
variables., Thus, in writing the strict representation of
the algorithm or its obJect string in terms of A-calculus
expressions, strings not containing Greek letters are to
be quoted and the Greek letters are not to be guoted.

69

applied to three arguments produces the value of the variable
a if the value of the variable m is "TRUE" and produces the
value of the variable B if the value of the variable w is
"FALSE". The second expression defines a boolean-valued
function that when successively applied to two boolean valued
arguments produces the value "TRUE" if both arguments have
the value "TRUE" and produces the value "FALSE" if either
argument has the value "FALSE". The first expression will
later be used to define conditional expressions. The second
expression will lster be used to define the function for pro-
ducing the logical "and" of two arguments.

Note that the first expression above constructs an
extended Markov algorithm from literal strings and bound
variables. The notion of a bound variable lends itself im-
mediately to extended Markov salgorithms embedded within the
A-calculus and allows the construction of extended Markov
algorithms that depend on the values of the variables to
which the algorithms are applied., This compatibility be-
tween the married formalisms greatly simplified the defini-

tions of the primitive functions for SNOBOL/1l and ALGOL/60.

Alternate notations for the A-calculus:

The basic notation for defining and applying functions
in the A-calculus is somewhat awkward for those accustomed
to writing functions in the conventional mathematical nota-

tion., I thus introduce the following alternate notations.

70

v “ee

Let F, 5>

Vl’

vee s be expressions

E
n

B E

be variables and M, Q, 2

> Vn l!

. Expressions of the form

- .
(a) (xvl.(xvg...(xvn.M E) .. E2) El)
(b) (AF.M AV AV, .AVH.Q)
E ..
(c) (...((F l) Eg) En)
can be written
(a) LET V.,V., ve. , V. =E ,E_, ... , B
ot @ n 1’72 n
(b) LET F(V_.,V., «.. , V) =@
5 I B
(e) F(El,Ez, s En)
where if M’Q’El’Ez’ sas 5, OT En are enclosed in parentheses,

the parentheses can be

expressions

(xx.('sq" x) 3)

((AX.ay. . (('caT' X)

(ACOND.{(((COND 'TRUE') Q) 1) AW.Aa.AB.([

can be written

dropped. Thus, for example, the

Y) 'HELLO ') 'THERE')

TRUE —+a 7))
FALSE~>+8

71

LET X = 3
IN 'SQ' X

LET X,Y='HELLO ', 'THERE'
IN (('CAT' X) Y)

LET COND(%,a,B) = (JgiggE - g] m)
IN COND('TRUE',0,1

Conditional Expressions:

Consider the function COND defined previously

COND(7,a,8) = (|gater ot ;] ")

This function selects the value of a if the value of 7 is
"TRUE" and the value of B if the value of v is "FALSE", For
example, the value of COND('TRUE',0,1) is the string "O".

Next consider the following expression from ALGOL/60
IF A=0 THEN Bw#A ELSE B/A

and the (loosely written) expression in the combined formal-

ism
COND(A=0,B#A,B/A)

where COND is defined as above. This expression does not
correctly mirror the ALGOL/60 expression. In ALGOL/60 the
expression B#A is evaluated only if the value of A is equal
to zero, and the expression B/A 1s evaluated only if the

value of A is not equal to zero. This order of evaluation

72

insures that B/A 1s not evaluated if the value of A is zero.
Now consider the following (loosely written) target language

expression
(COND(A=0,Anm.BoA AT, B/A) 'A')

wvhere 17 is a dummy variable, In evaluating this expression,
the function COND will be applied t§ its arguments, one of
the A-expressions An.BaA or An.B/A, will be selected and then
the selected A-expression will be applied to the operand 'A'.
Thus only the body of the selected A-expression will be
evaluated.® The use of the dummy variable serves as a delaying
mechanism in evaluating expréssions.

Conditional expressions of the above orm will be used
repeatedly in defining the semantics of computer languages.

T therefore introduce the following alternate notation,

Let 815 Bo» tl, t2, and t3 be expressions. Expressions
of the form
tAY
(COND(sl,An.tl,Aw.ta) A')

and

]] t 1
(COND(sl,Aﬂ.tl,AH.(COND(sa,Aﬂ.te,Aﬂ.t3) A'}) tAY)

can be written

Sl : tl

ELSE => tz

®Note, in forming a A-closure, the body of the A-expression is
not evaluated.

73

and

:1 1
EfsE

UUU

3
Similarly, this alternate notation can be extended to include
an arbitrary number of nested conditional expressions.

For example, the expregsion
(COND(A=0,Ax.BuA,A%.B/A) 'A')
can be written

A=0 => B#®A
ELSE => B/A

3.1d The Target Language

The combined formalism of extended Markov algorithms and
the A-calculus presented in the previous section appears suf-
ficient to define fairly concisely many constructions in
computer languages. However, two common features of many
computer languages, that for assigning new values to variables
and that for transferring control to another statement in a
program, have evaded characterization in the combined formalism.
To handle this circumstance, the combined formalism will be
augmented with new expressions to mirror directly the assign-
ment of new values to variables and the transfer of evaluation
from one expression to another. The augmented version of the
combined formalism will comprise the target language of this

dissertation.

74

Sequences of Expressions:

Before discussing the rules for forming well-formed
expressions in the target language, let us consider a mechan-
ism for defining a sequence of expressions, wvhere each expres-

gion E_,E E_ in the sequence is to be evaluated in the

1, 2, a s
numerical order indicated by its numerical subscript. Using

n

the rule for evaluating the operand of a combination before
the operstor of a combination, the target language provides
a device for handling & sequence of expressions.

Let X,E,El,E ess o and En be expréssions, and consider

2!
the following A-expression, cealled T

ra.AB8.(8 a)

When evaluated, the combination (? E) results in first evalu-
¢ting the eéxpression E and then returwing the value of the
A=closure for AB. (B u), vhere a 1¢ coupled with the vglue of

E. Next consider the cohbination
[(T E) xx.X}

where square brackets have been used here (for convenience)
in place of parentheses.® 7Phis éombination {8 evaluated as
follows:

1. The Xl«closure for Ax.X 18 computed

-~ e

*Square bragkets will be used frequently in this section.
Strictly speaking, all sgudre bBrackets should be replaced
by perenthéses,

75

2. The combination (T E) is computed, resulting in
first evaluating E and then returning the A-closure
for AB.(B a), where a is coupled with the value of
E.

3. The value of the expression in 2 is applied to the
value of the expression in 1, resulting in applying
Ar.X to E, which returns the value of X.

In particular, if X is the expression "n", this combination

results in returning the value of E,

Next consider the expression

[(T El) an, [(T E2) arn.n]]

This combination is evaluated as follows:

1. The A-closure for An.[(T E_) An.w] is computed.
Note that the value of E2 s not computed in forming
the A-closure.

2. The combination (T E.) is computed, resulting in
first evaluating E., and then returning the A-closure
1l
for AB.(B a)

3. The value of the expression in 2 is applied to the
value of the expression in 1, resulting in return-
ing the value of [(T E,) An,m]. This evaluation
results in first compu%ing the value of E2 and then
returning the value of E2.

Thus the evaluation of this expression results in first

evaluating El’ then evaluating E and finally returning the

2’
value of E2.
Similarly, consider the expression
[(T E;) An.[(T E,) An.[{T E;) An.w]]]
N v 3 :

+ +
1 2 3

When evaluated, this expression results in successively

76

E and E_, and then returning the value of E

1° “2? 3 3°

This expression, however, has the following important property,

evaluating E

which will be used in the definition of the transfer of con-
trol to some labeled expression in a sequence of expressions.

Let C c and C, be the combinations that are given by the

1* T2 3
matching paris of square brackets indicated by the numbers

1, 2, and 3 above., The evaluation ofVCl results in succes-

sively evaluating El’ E and E_ and returning the value of

2’ 3

E the evaluation of 02 results in successively evaluating

33
E2 and E3 and returning the value of E

results in evaluating E

the evaluation of C

33 3

3 and returning the value of E3.

More generally, an expression of the form

(T) an . [(T E,) ... An.[{T E_) Av.7w]...]1]
N 1 2 n
4 , L + , . .
1 2 : B
vhen evaluated, results in sucbes;ively evaluating El’ E2,
... 5 8&nd En and returning the value of En. Moreover, the

evaluation of any combination C, beginning with the square

i
bracket denoted by the integer i results in successively

evaluating the expressions E and,En and return-

19 Eiggs ove s

ing the value of En, This later effect leads us to the notion

of a "labeled" expression.

Labels and Label References:

Let V be the set of variables (as described earlier) and

let L be the set obtained from V by affixing a ":" to each

1

ey T e e A el L e ST S At T e TS T g P % ST T

variable in V. The set L will be called the set of labels,

Consider an expression of the form
L (T E)) am2 [(T Ey) oow Amae [(T E)) P I I |

where the 2 l<i<n indicates the possible occurrences of

i’
labels, each of which must be different. An expression of
this form will be called a "sequence" of the expressions E,
E2’ «s., and En' If we ignore the labels in an evaluation,

the evaluation of any combination C, following some label

i

Li’ 1<i<n, results in successively evaluating Ei’ Ei+1’ cee o
and En and returning the value of En‘

A sequence of the above form may occur within the body
of some A-expression, which in turn may occur within a se-
quence in thé body of some encompassing A-expression, and so
on for further encompassing A-expressions. In the target
language the transfer of control to some labeled expression
will be designated by expressions of the form (GOTO. E),
vhere E is an expression referring to some label. A label
reference will be a string of the form .2 , where £: is a
label. The value of a label reference .2 will consist of
two parts: (a) the combination in the innermost encompassing
A~expression such that the combination is prefixed by the
label 2: , and (b) the environment within which the combina-
tion is to be evaluated, The evaluation of a label reference
will be called a "label-closure".

I now proceed to a presentation of the target language of
the dissertation.

78

Target Language Expressions:

An expression in the target Xanguage is defined as
follows. Let C, V, and L be sets of symdbols, called the sets
of constants, variables, and labels, as described earlier.

(a) If p is a variable or p is s comstant, then p is
an expression,

(b) If E and F are expressions, then (E F) is an
expression.

(c) If v is a variable and E is an expression, then
Av.E is an expression.

(a) If v is a variable and E is an expression, then
(v ASSIGN. E) is an expression,

(e) If s is a sequence, then 8 is an expression.

(f) It E is an expression, then (GOTO. E) is an expres-
slon.

Expressions of type {(a), (b), and (¢) are expressions in the
combined formalism as introduced previously. Expressions of
type (d), (e), and (f) are new. The evaluation of an expres-
sion of the form (v ASSIGN. E) will result in first changing
the value of the variable v to the value of the expression E
and then returning the null string :as -the value of the
expression (v ASSIGN. E). If the labels in an expression of
type (e) are ignored, the evaluation of a sequence results in
successively evaluating eaeh of the component expressions El’
Ez, and En in the sequence. and returning the value En' If E
is an expression of the form .2 , where £: is a label, the
evaluation of E will result in forming the label-closure for

.2 and the evaluation of an expression of the form (GOTO. E)

79

within some sequence will result in (a) stopping the evalua-
tion of the expression in which E occurs and (b) continuing
by evaluating the combination designated by the label-closure
for .4 within the environment specified by the label-closure,
Note that this mechanism allows transfer of control only to
expressions within the same sequence or expressions in a
sequence in some encompassing A-expression, The previously
given notation for defining a seguence of expressions is
awkward., I thus introduce the following alternate notation
in place of the strict representation of a sequence, Let E

be a sequence of the form
zl[(T El) An.£2[(T E2) ces Aw.ln[(T En) amomleea]]

where the li, 1<i<n, indicate the possible occurrences of

labels., A sequence of this form will be aslternately written

The addition of expressions of type (a), (e), and (f)
take effect when it is desired to construct a sequence of
expressions to be evaluated one after another or to interrupt
the evaluation of a sequence and to continue the evaluation
at some other labeled expression.

For example, consider the expression

LET A=5
IN (A ASSIGN. (+(A,1)));
(coTo. .P);
(A ASSIGN. 1);
P:A

80

where "+" is a free variable whose value is the function for
computing the arithmetic sum of two integers. The evaluation
of this expression is as follows:

(1) The value of the bound variable A will be set to
five and the body of the A-expression evaluated.

(2) sSince the body of the A-expression is a sequence
of expressions, each of the component expressions
will be evaluated in order,

(3) The first expression in the sequence results in
updating the value of A to six,

(4) The second expression results in transferring the
evaluation to the expression labeled P.

(5) The evaluation of the expression labeled P results

in returning the value of A, which has been set to
six,

Recursive Definitions:

Consider the following {loosely written) expression
defining the factorial function and its application to the
integer five:

LET FACT(N) = EQ(N,0) => 0

. ELSE = Na#FACT(N-1)

IN FACT(5)
where EQ is & boolean valued function for testing the equality
of two integers., The function "FACT" when applied to the argu-
ment "5" will not evaluate to five factorial. The difficulty
here arises in the definition of the function "FACT" where
the variable "FACT" itself occurs as a free variable. This

incorrect rendering of a recursive function can be corrected

81

through the notion of a "fixed-point operator."eo’z5 One
fixed-point operator for target language expressions is the
expression

Y = AP, LET am'A!

IN (n ASSIGN. (F x)); =

If M is an expression and F=E is a recursive definition of the
function F, an expression of the form

LET F = E

IR M
where E contains free occurrences of the variable F, can be
correctly written

LET F = (Y AF.E)

IN M

To avoid this somewhat awkward method for writing recursive

functions, the following alternate notatiom is introduced.

If F is a variable and E and M are expressions, an
expression of the form

LET ¥ = (Y AF.E) IN M

vhere Y is the fixed-point oberator given above, can
alternately be written

LET REC F=E IJN M
Thus the definition of the factorial function can be correctly
written
LET REC FACT(N) = EQ(N,0) = 0

ELSE =) NeFACT(N-1)
IN FACT(5) .

82

The above fixed-point operator is sufficient to handle
recursive definitions of single functions but not simultaneous
recursive definition of two or more functions. In this dis-
sertation simultaneous recursive definitions will not be
needed until the semantics of ALGOL/60 procedure declarations
is defined, and the presentation of a fixed-point operator to
handle simultaneous recursive definitions will be deferred
until the chapter on ALGOL/60. A detailed discussion of

fixed-point operators is given by WOzencraft.25

A Definition of the Semantics of the ALGOL/60 Subset:

The definition of the senanfiés of the ALGOL/60 subset in
terms of the target language is given in Appendices 2.1 and
2.2, The specification of the correspon&ing tafget ianguage
expression for a program in the subset has been broken into
two parts. .Appendix 2.1 defines the translation of a prog:am
into the target language assuming that the primitive "+" is a
free variable. Appendix 2,2 defines the primitive "+"; To
form the complete target language expression, one must take
the target language string specified in Appendix 2,1 and add
to it the primitive function definitions of Appendix 2.2 in

the form

LET CAT a={s. ++ "[A++" s "]"]q
IF LET EQ{a,B) = ... (a)

IN LET REC +(X,Y) = EQ(Y,0)=> O ELSE = SUM(SUCC X,PRED X)
IN LET &' IN s' : ’

83

where "LET 4' IN s'" is the target language string specified
by Appendix 2.1.% For example, Appendix 2.1 specifies the
following pair of strings
BEGIN INTEGER A; A:=1+2 END .. LET A = 'A'

IN (A ASSIGN. (+('1','2'))
The string "LET A = 'A' IN (A ASSIGN. (+('1','2'))" when used
in place of "LET 4' IN s'" in expression {a) above specifies

the complete target language expression for the program

"BEGIN INTEGER A; A:=1+2 END", %

3.2 An Evaluator for the Target Language

To explain the semantics of the target languege in the
previous sections; an appeal was made through the English lan-
guage. This section reduces that appeal to an appeal for

understanding only the formalism of extended Markov algorithms.

#This division of the specification of the semantics of &
computer larguage into a specification of a target language
string and a separate specification of the primitive functions
used in the target language string will be followed in the
definitions of SNOBOL/1l and ALGOL/60. Also, the definitions
of the string variables for the extended Markov algorithm
primitives are given at the beginning of Appendix 2.2. These
definitions must be added to each extended Markov algorithm
using the string variables.

®#%#7t may happen that the use of identifiers in a source language
program will conflict with the use of identifiers used to de-
fine the primitive functions in the target language. To avoid
this conflict, the identifiers for the target language primi-
tives strictly speaking should be given as identifiers that
are different from the source language identifiers. This con-
flict can be avoided by appending to each target language
identifier a symbol (e.g., the symbol "#") not allowed in
source language identifiers.

84

The "value" of a target language expression will be defined’

in this section by an extended Markov algorithm definition of
a machine that mechanically converts an expression into another
expression, the value of the initial expression. The machine
may be viewed as a hypothetical computer for the target lan-
guage, and extended Markov algorithms may be viewed as the
machine language for the computer. The definition of the
target language evaluator is based on a similar definition

20,24 and Wozencraft.25

given by Landin,
The extended Markov algorithm definition of the target

language evaluator is given in Appendix 2.3. Before applying

the algorithm to a target language expression, it is neces-

sary to provide s unique index for each ")A" and "(" in the

expression, Thus the expression
(AX.('SQ" X) '3")
will be indexed
(12%X.(5'8Q" X) '3')

The indices allow unique identification of a A-expression
or combination,

The evaluation of an expression begins with a substitu-
tion rule transforming the expression to be evaluated into
five strings: the "consrol" striﬁg, the "result" string,
the "environment" string, the "store" string, and the expres-

sion itself. Subsequent substitution rules define transforma-

85

tions on the control, result, environment, and store strings
until the value of the target language expression is computed,
The final substitution rule returns the value of the expres-
sion.

Generally, the control string is a string of the form

ak 8k_1 cue 1

wvhere each a l<i<k, is an atomic part of an expression

1
(e.g., a constant, variable, indexed lambda symbol, or indexed
left parenthesis). The control string is used to hold the
atomic parts of an expression before they are evaluated.

When the parts of the control string are evaluated, their

values are placed on the store string. The store string is a

string of the form
(111...1, rn) . (111,r3)(11.r2)(l,r1)

where each r l<i<n, is a string denoting the value of a

i®
constant, a variable, or a A-expression, and the string of
ones before each string value provides a unique pointer to
the string value, A new store component for a string T+l is
obtained by (a) obtaining the string of ones representing the
pointer p to r_and (b) prefixing the string "(lp,rn+l)" to
the left of the store string.
The result string is used to store pointers to inter-

mediate calculated values formed in the evaluation of a target

language expression. The result string is a string of the form

86

Pp o+ P2 Py

where each Py i<l<m, is a pointer to some string value jn
the store.

Let Nl’Ml’N2’M2’ .o ,Nk,Mk denote strings of ones, let
VisVos e s YV denote variables, and let PysPps - ,pg
denote pointers to the store. The environment string is a

string of the form

(Nk<-Mk vk=pk) coe (N2<-M2 v2=p2)(Nl*Ml v1=p1)
wvhere each conponent (N1+Mi vi=Pi) is a string such that Ni’

l<i<k, identifies the environment for some A-expression AJ’

v, identifies the bound variable v of A is a store

i 3 PJ

pointer to the current value v, and M1 identifies the environ-

ment of the encompassing A-expression. The environment Mi is

said to be "linked" to the environment N,. In general, the

environment components linked to N, provide pointers to the

i

current values each of the bound variables in the A-expres-

sion A, and its encompassing A-expressions. The 1list of

J
environment components linked to Ni will be called the
environment N,. For example, consider the environment "11111"

i

in the environment

l

(11111+11 X=111111)(1111«11 A=11)(111«11 B=111)(11«l Y=111)(1+«1l 2=1)

The environment components linked to "11111" provide store

pointers to the current values of the variables X,Y, and Z in

81

e T AT et i, e R T T T T T T T s LT R

the A-expression whose environment is identified by "11111".
A new component is prefixed to the environment string
each time a new A~expression is applied.v Thus each Ni at the
left of each environment component identifies an environment
for some applied A-expression, and the environment components
linked to Ni provide pointers to the values of the free vari-

ables in the body of the A-expression whose environment is

given by N Since constants in the target language are

5°
treated as literal strings whose values are the strings them-
selves, the values of the»constants in an expression are not
rlaced on the environment string. |

The set definitions for the string variables used in
the extended Markov algorithm definition of the evaluator are
given in Appendix 2.3a. The set "STR" defines the set of all
strings that might occur within a target language expression,
The sets "CONSTANT" and "VARIABLE" define the sets of con-
stants and variables. The sets "PTR" and "INDEX" define
respectively the set of pointers to the store string and the
set of indices used in marking an expression. The set "Exp"
defines the set of target language expressions, the set "EXP HD"
defines the set of strings that can occur at the head of an
expression, and the set "EXP TL" defines the set of strings
that can occur at the tail of an expression, For example, in
the expression "(112x.(3'sq' X) '3'")" the string "(1" is the

head of the expression and the string "Azx.(3'SQ' X) '3')" is

the tail of the expression, and in the expression "X" the

88

variable "X" is the head of the expression and the tail of
the expression is null.

The substitution rules for the extended Markov algorithm
definition of the target language evaluator are given in
Appendix 2.3b., Three alternate notations were used in writing

these rules:

(1) Let x, and y,, 1<i<5, be string variables repre-
senting arbi%rary strings used in an extended
Markov algorithm. Generally, each substitution
rule is of the form®*

<cy1_xzrya-x3ey3-xhsyh—x5py5> o <c'yl—x2r'y2-x3e'y3-xhs'yh-xsp'y5>

wvhere the ¢, r, e, 8, and p are string referring to
portions of the control, result, environment, store,
and expression strings and the c', r', e', s', and
p' are the transformed portions of these strings.
Since the x, and y, occur imn each substitution rule,
a substtutidn rule of the ahove form will be written
in the form

c c!
r r'
e > Je!
s s!
P r'

(2) If one of the five strings ¢, r, e, s, or p is given
as null on both sides of the substitution rule, the
symbol "_" can be used in place of the null string sym-
bol "AM,

(3) If one of the five components ¢, r, e, 8, or p occurs
unchanged in the right-hand side of the substitution
rule, the symbol "I" can be used in place of the
string in the right-hand side of the rule.

#The hyphen "-" is used to separate the control, result, en-
vironment, store, and expression strings.

89

Thus the substitution rule

y.-—x Ay -X Y."X -X h hl |
<(i 1 72772 3A 3 hAlh 5(1 t v)35>
> ' - 140
<h' h APPLY. y1‘12Ay2‘x3Ay3'thyh xs(iht h't)y5>

can be written using notation (1)

(h' h APPLY.
i A
Al » A
A A
(iht htt') (1ht h't')

and further written using notationg (2) and (3)

(i h' h APPLY.
- -+ -
(iht h't!) T

Three example evaluations of target language expressions

are given on the adjacent pages. Each of these evaluations

shows the successive transformetions on one of the initial

expressions: ¥

('sQ' '3') LET X='3' LET X='3'
I ('SQ' X) IN (X ABSIGE, 'h4');
. (eoro. .L);

(X ASSIGN. '5');
L: X ’

*The constant 'SQ' in the first two expressions represents
the primitive function for squaring an integer. Strictly
speaking, all primitive functions in the target language

must be defined by constants that are extended Markov algo-
rithns.

- I‘ -
b TRE31134¢] 2.:3.::-.“1::3- 13443 -
misirn. - - .
¢ 2t llﬂ.-....ﬂ..r Yot v 1 DL ST £ oy
143431 1 % :—“a “ h totar) Y LTRATIRTS B
t .
by (| 52«._ LY x14av e,
-
b I |
- . 1
(Tas ToTH{TTaX TeolY) — <] — ..:.:An_.““.d.llpl
. : . 2 1Y
o
1 %Y ‘staav ve, x Y| T canadv oo 3] 6]
R } €42,
ottty T A G e
) ey (ver)(ettr) - (r'n
- — . - .fu..l (1es ton)Jame— 6 (X 28,8 a8
1t e | 1t - t
T .
| *a1adv Y cxady By T cavaay B og LN
o N
(Yt TI(ECTT){Os YT {6 T1TT)
§ Qe — N Pa—
2t uul U |ty ©E
1
v 1]
- o€ o08) (Es 4b
(v rice (et Te) BEALSITERE T I (i
L s] s (tes 1e1)
et Y N} ® N
T Y cx1adv 08, Y caaaav e, e Y

‘Atdav

——

SROIZVATIVAS WIZNL NV SHOISSIUIXIT TTINVET IZWNL

91

26

Note: Iu this example, decimel digite vill be used in Place of the corresponding
strings of ones denoting store pointers and environment names.

(1"3"(3‘&{ (X ASSIGH, *4')) l‘-.l.,(.; (,oo'ro. BAY x“-.("(“f (14% ASSION. '5')) Au.m[u(l‘: X} x"-.-ln ')

1yg0-3;90: (508 a) Agy8etggb.(y8) [PCRL P R POLH

. .
(7 I, Iy 1 I‘ «L GOTO. APPLY. 1, APPLY. I, Iy g 1y

] Is b lp 1y 2,3,2,2 |* Is Iy 12 L
ey | (S22 w21)1 et 1 {5+2 w01} (be3 8u0)(3+2 ee1)(2+1 Xe2)(2e) we))

LRV 2% YUY B PP a)

.
G 1y [P PR (g A g APPLY. aPRLY. |, |, X ASSIGE. APPLY. A, APPLY. APRLY. |, |,
'O I PR (P 23,2 {*laly g5 [Pl
—b](1-1 we1) ————p (2e1 2e2)1 ——lr — | X
(1,1) (3.25¢,0(2,3)(1,0) (hadge)t (5,001
the above expressjon o4 T |1
Al!l:l. APPLY 4, APPLY. APPLY. |, |, A g APPLY. aPRLY. |, |, r"u lf ArPLY. |, |
53,50 |20l 1y 0.2 P41y 3.7 vl)
—— 1 e ¢ § 1 w——y | (302 s=l){2+1 X=2){1e1l aml)
1 (3,03 (0,0 ce 003,06,)(2,0)(2,4) (6,2, 46,01
: : ¥
'| arrLY. |, | r([aerny, |, |, |
3 cla 20t f2 hh o sl ly
s Tl u,g | 2,5.3,5.2,5.1,5,3,5.1 T la g
——t 11 sy | (3 $ub)}(3+2 asl)(2+1 Xe2}(1el wewd) >[I
(1.x‘9:3)1 b4 b 4
1 4 1

coto. APPLY Ay, APPLY. |y [y 1, |y
63,6262 P15 llaly
—_———r

1\ (8030t 5) {Tuhiguy 10643, 46, 15 M (hadge)33 0e, 1 (2,60(2,0) 19,0 40,01
L L T
:13 la 1y |a|'1||zl|x
2
21 2,3,2,5.3,5.1.3,T,3,11,7:2,5.3,5.2,5.1,5.3,5.1,7,5.3,5.1 8t ‘a2 1
9 ‘ s3s 3 0T33031,742,5.3, . . L, T, . L o [(8e7 102)(126 sn9){6o2 aea)r
(ttase rules simply result ia placing a poiater to the
1 current value of X on the result string) (u"!I'G)“o'AﬂT‘t,u"lT‘E’
1 T
11,11, 12
———

B
-

Initialization and Termination of Evaluation (rules 1 and 12)%

The evaluation of an expression begins (rule 1) by

initializing the control string with the head of the expres-

sion to be evaluated and the marker "|l", initializing the

nl n

l 1 4
ment string with the string "(1«l #=1)", initializing the

result string with the marker initializing the environ-
store string with the string "(1,A)", and initializing the
expression string with the expression to be evaluated. Since
the initiel environment will generally contain the values of
no free variables, the initial environment string contains

the dummy variable m whose value is a pointer to the null

n' "

1

and result string to denote that the head of the expression is

string in the store. The marker is placed on the control

to be evaluated within the initial environment 1. In general,

the subscript J of the leftmost in the control string de-

lJ
notes that the control string variables to the left of the
IJ are to be evaluated using the environment J, i.e., using
the environment components linked to the component

(Ni+Mi vi=pi) where Ni=J.

The evaluation terminates (rule 12) when the control

string is null. When the control string is null, the result

#Rules 1 and 12 do not exactly follow the alternate notation
for the evaluator given earlier. These rules are strictly
given as

ht i <h|1-|1-(A1+A1 7=1)-(1,A)-ht>
12
<h=p=x¥3-x) (por)y =%y > r

93

DRt SR e, Ui o e R SR SRR S - SRR A AR R & S S 8

string will contain a pointer to some string value in the
store, The string {n the store is returned as the result of
the evaluation. In general, the result of an evaluation is
either a constent or a A-closure. Strictly speaking, if

the result of the evaluation is a A-closure, the A-expression
and the values of its free variables should be returned as the
result of the evaluation. If the result of the evaluation is
8 A-closure, the J-expression and thé¢ values of its free
variables can be obtained from the environment, store, and
expressiop strings specified prior to the termination of
eysluation.

If & user vere evaluating terget language expressions
vith {nput-output facilitiesy (a) the initisl values of the
input and output strings {presumadly those given on some
device like a telétype or card reader) could be placed in
the initial store string and (b) two system veriables and
poititers to their ipitial values could be placed on the
initial environment string. The additfior or removal of
strings on the input or aitput device could then be défined
by updating the vaiues of the systém variables to Their new
values. This is the mechanisw usped tc define input-output
in SXOBOL/1 (see Chapter W)«

Evaluation of Combindtions (wale 2):
TP a left parenthesis of & combination is at the left

of the control string, the le'ft parenthesis is remove& from

94

o

the control string,* and the head of its operand and operator
are prefized to the control string and the string "APPLY." is
placed to the right of these two strings. BSubsequent rules
will evaluate the operand and operator, and then apply the
value of the operator to the value of the operand to produce

the value of the combination.

Evaluation and Application of A-expressions {rules 3, 8, and 11):

If the name), of a A-expression is at the left of the

i
control string (rule 3), the current environment J (initially
the dummy environment 1) is obtained, the string "AieJ" is
Placed in a nevw component at the left of the store string,
and a pointer to the nev store component is prefixed to the

result string. The string ”lieJ represents the A-closure

for A, in that (a) A; provides a name uniquely identifying

the A-expression A, contained in the expression string and

1
{b) the environment component) provides the (linked) 1list of
the pointers to the current values of the free variables of
the A-expression Ai'

If the string "APPLY." is at the left of the control
string, a pointer p to a A-clouure‘licJ iq at fhe left of the
result string, and k is the index of the most recently added

environment component (rule 8):

®In the discussion to follow, unless explicitly stated
otherwvise, the elements referred to at the left of the
control string are assumed to be deleted from the control
string after being evaluated.

95 . ‘)

(a) a new component (lk+«J v=p'), where v is the bound
variable of the A-expression A, and p' is a pointer
to the operand to which the A-expression A, has
been applied, is prefixed to the environmefit string.
(This action results in setting the proper environ-
ment for evaluating the body of the A-expreéssion Ai.)

(b) The head of the body of the A-expression A, and a

marker llk are prefixed to the control string, and

(¢) +the pointers p and p' to the A-closure and its
operand are deleted from the result string and the

marker 'lk is prefixed to the result string.

If a marker is at the left of the control string and

s

a pointer p and marker are gt the left of the result string,

IJ
the markers are deleted and the pointer p is left on the
result string. The pointer will point to the value of apply-

ing the A-expression to its operand.

Eveluation of Variables and Constants (rules 4 and 6):

If a variable is at the left of the control string, a
pointer to the current value of the variable is prefixed to
the result string (rule 4.1). The pointer is obtained by
(a) obtaining the index j of the current environment and

non (rule

marking the environment component jJ with the symbol
4,3), and (b) then searching (rules 4.1 and 4.2) through the
environment components linked to J for the occurrence of the
variable,

If a constant is at the left of the control string (rule

6), a new store component containing the constant is pre-

fixed to the store string, and the pointer to the new store

96

component is prefixed to the result string.®

Evaluation of Label References (rules 5):

If a label reference .% 1is at the left of the control
string (rules 5), each énvironment component linked to the
current environment component is searched for the occurrence
of a component such that the A-expression whose environment
is specified by the component contains a body that is a
sequence containing the label. If the label is found, a
nev store component hej containing the head of the expression
following the label and the index }J of the environment com-
ponent is prefixed to the store, and a pointer to the new
store component is placed on the result string. The head of
the labeled expression and the environment index J provide
a representation of the label-closure for .% in that the
head of the labeled expression uniquely identifies the labeled
combination and the index J uniquely identifies the current
environment of the sequence within which the combination

occurs.

Transfer of Control (rule 10):

If the string "GOTO, APPLY." is at the left of the con-

trol string and a pointer p to a label closure hsd, where

*In the evaluator, all constants that are extended Markov
algorithms must be enclosed - by the quotation marks ' and

97

h is the head of a labeled expression and § is the environ-
ment within which the labeled expression is to be evaluated,
is at the left of the result string

(a) all portions of the control and result strings to

the left of the markers lJ are deleted, and

(b) the head of the expression following the label is
prefixed to the control string.

This mechanism results in interrupting the evaluation of the
current expression and continuing with the evaluation at the
labeled expression using the environment J specified while

evaluating the label-closure,

Application of Constants (rules 9,1 and 9.2):

If the string "APPLY." is at the left of the control
string, and two store pointers p and p' to the strings s
and 8' are at the left of the result string, the string s
is applied to the string s! (prqsunablj s is an extended
Markov algorithm and s' is the object lfring to which the
algorithm is to be applied). The resulting string value is
Placed in & new store component, and the pointer to the new

component is prefixed to the result string.

Assignment (rules 7.1 and 7.2):

If the string "ASSIGN., APPLY." is at the left of the
control string and two store pointers p and p' are at the

left of the result string, the string value in the store

98

associated with p is changed to the string value associated

with p!'.

Addition of New Rules to the Evaluator:

It may happen that certain source language constructions
are awkward to define solely within the target language and
that these constructions can be more easily defined by adding
new expressions to the target language and new evaluator
rules to evaluate these expressions.

The rule applied to evaluate target language expressions
is specified by the numerically first rule that is applicable
to the current string values of the control, result, environ-
ment, store, and expression strings. By adding a rule to the
evaluator wvhose left part specifies a configuration of the
control, result, environment, store, and exéresaion strings
that, for fhe given cohtiguration, provides a different trans-
formation from the initial evaluator rules, the evaluator can
be extended to define new types of target language expres-
sions.

Generally, the rule applied by the evaluator is deter-
mined by the element at the left of the control string. For
example, in the definition of indirect addressing in SNOBOL/1,
it was desired to add a rule to the evaluator that would take
some string valﬁe given in store and prefix the string value

to the control string. The string value prefixed to the control

99

string would then be evaluated in subsequent transformations

as if the string value were itself a variable. By {(a) allow-

ing expressions of the form "(LOOKUP. X)", where X is a
variable, in the target language translation of SNOBOL/1l, and

(b) adding the rule

LOOKUP. APPLY. 8
P A

- + |-

(p,S) I

to the evaluator, the extended evaluator defines indirect
addressing., None of the initial evaluator fules are appli=-
cable to a configuration where the string "LOOKUP." is at the
left of the control string; hence the rule can be placed in

any numerical position within the initial sequence of rules,

3. Discussion

This chapter haes presented a formally based target lan-
guage in which the semantics of a computer language can be
defined. The semantics of the target language was, in turn,
defined in terms of the formalism of extended Markov algorithms
by giving an extended Markov algorithm definition of a machine
for evaluating target language expressions.

If used as a target language for the implementation®* of

*Extended Markov algorithms have been ihplemented in the
source language PANON--lB.llaJ2

100

& computer language, the target language allows the simple
addition of built-in machine primitives. For example, if a
computer has & bullt-in primitive for computing the sum of .
two integers, there is no need to define this primitive in
the target language. This primitive can be used as a constant
in the target language and in applying the primitive to its
arguments the machine algorithm can be used. The point of
using only extended Markov algorithms to define primitive
functions is that for implementation of the target language
the only necessary machine capability is that for implement-
ing extended Markov algorithms. The fact that a given
machine has certain built-in primitives simply relieves the
person defining the semantics of a source language of defin-
ing the semantics of the built-in primitives in terms of
extended Markov algorithms.

The target language is undesifable in one important
sense, The computer languaée constructions for defining the
aésignment of new values to variﬁbles and fbr defining the
transfer of control within a prbgrah requiredbthe addition
of hewvexpressions to the combiﬁed férmalisms of extended
Markov slgorithms and the A-calculus.~'The hew expressions
86dd to the complexity of the taféet language and place re-
strictions on the applicability-bfkany-theoréms developed for
A~=calculus expressions. This undesirabdble féatuie.of the
target language is, in part, redeemed iﬁ that the ev#luator

for the target language was completely defined within the

101

201

In the sixth century B.C. written language was continuous.
There was no concept of breaking up units of expressions with
punctuations marks. Kohmar Pehriad, a leading Macedonian
literary figure, had the insightful idea of using a small
round dot to indicate the end of & thought unit, Convinced
of the utility of his invention, he spent almoat thirty years
of his life traveling through ancient Greece, Rome, and North
Africa attempting to gain local acceptance of that small
round dot. His effort was well-rewarded. The stark sim-
plicity of his brilliant idea bdecame popular so quickly that
almost every written language used today uses the little
round dot at the end of s unit of expression.

Pehriad's efforts did not stop with the dot. Recognizing
the need for another mark to indicate pauses in the middle
of thought units, he began using a dot with a curved descend-
ing tail in &n expression to indicate a pause in the thought.
This mark is, of course, quite familiar in our own language,
and both the comma (Kohmar) and the period (Pehriad) have
been named after their distinguished inventor.

*Ax048IY UO Jxvw STY 4JoT ATureqIsd ssy ag :3UlH
{88A PRTIYad JIBWYOY OYm mouy nof o(

*uUocT183I988TP BIUYZF JO e;éqdnqo OAq 3X9U ayq @stIdmod TTITA

safenBuvyT oA} 28343 JO SOJJUBWMIE PU®B XBRUAS IY3 JO UOTLBIUIS

-sxd ayy °09/7T091IV PU® T/TOHONS UIOQ JO EITRUBWIS 3yj dUTIIP
01 quU9TOTIIne 8T #Fsenfuet 3083189 oyjz ‘pusvsy Xay3zo ays ugQ

*£A3TROFIFITID STUGF SATOSSI TTITA YoJI®IBaIX aanyng

q28yq odoy I puv surswex oPenBuer 308x®3 Syz Jo £aua;a;;ap‘

8TY) *S89TOY3ISASY °SUYITIOZT® AONJIBN POPUSLIXS JO WBITEWJIO]

CHAPTER 1V

A DEFINITION OF THE SYNTAX ARD
SEMANRTICS OF SNOBOL/1

In this chapter I attempt to demonstrate the thesis of
this dissertation, that there shouldvbe formal definitions
of the syntax and semantics of computer lanmguages. As an
example computer language, I have chogsen SNOBOL/l, as initially
defined by Farber, Griswold and Polonsky.2! SNOBOL/1 wvas
chosen as an example because (a) the language is simple
enough to describe conveniently in a single chapter §f this
dissertation and (b) the language is fairly well-known. Ko
knowledge of SNOBOL/1l will be assumed in tﬁis chapter. Rather,
it is the intent of thislchapter to define every construct
(except character spacing) in the language. The definition
of SNOBOL/1 will be in two parts: (a) an informal description
of the language and of the techniques uséd in the formal de-
finition in this chapter using the English language and (b) a
formal description of the language in Appendix 3 using the
formal systen.

This chapter and the formal description of Appendix 3
may be viewed as a reference manual for SKOBOL/1l., It is in-
tended for a user vho wishes a detailed description of the
language.

The fomal definition of BNOBOL/1l is divided into three

parts. Appendix 3.1 gives the canonial gystem defining the

103

syntax of SNOBOL/1, Appendix 3.2 gives the canorical system de-
fining the translation of SNOBOL/1l into the target language,
and Appendix 3.3 gives the definition of the primitive func-
tions used in the target language. In writing the formal
definition of the SNOBQL/l, it was necessary to resolve a
few issues that were ambiguously or incompletely defined by
the English language definition of the language given by

Farber, Griswold and Polonsky.®

Introduction to SNOBOQL/1

SNOBOL/1 is a language for defining transformations on
strings of symbols. Programs in SNOBOL/1l are comprised of
& linear sequence of rules of which there are four varieties:
"input"rules for obtaining strings of symbols from some
external input device (like a teletype or card resader),
"assignment" rules for assigning names to strings, "pattern
matching" rules for transforming strings into new strings,
and "output" rules for writing strings on some external out-
put device (like a teletype or card reader). In genersal,
the behavior defined by each rule is executed in linear

order. However, rules can be labeled with names and the

*For example, it was not clear whether the authors meant to
permit or prohibit the use of the same variable name to
denote different types of variables in a single pattern
matching rule or whether to permit or prohibit the use of
a name both as a string name and a label in the same pro-
gram. I decide to prohibit the first of these construc-
tions and to permit the second of these constructions.

104

ordinary sequence of execution interrupted and continued at

some other labeled rule.

Introduction to the Technigues Used in Describing SNOBOL/1

The parts of this chapter will each describe some con-
struct in the SNOBOL/1l, e.g., & string, an arithmetic expres-
sion, a rule, or a statement. Each of these parts will con-
sist of (a) portions of the productions from the canonical
system of the translation (Appendix 3.2) of SNOBOL/1, (b)
examples of the SNOBOL/1l constructs and their corresponding
target language translations, and (c¢) an English language
explanation of these constructs and their Bemantics-as de-
fined in the target language.

Theoretically, the (abbreviated) canomnksl system of the
translation of SNOBOL/1l must be combined with the canonical
system of the syntax of SNOﬁOL/l'to obtain the complete
canonical system defining the set of legal programs and their
target language translations. Nevertheless, except for the
context-sensitive requirements on SNOBOL/l, the sbbreviated
canoniml system of the translation of SNOBOL/1 provides a
synopsis of a context-free specification of the language and
its semantics in terms of the target language. Accordingly,
the productions from the (abbreviated) canoniml system of the
translation will be used in tﬁe text to define the syntax
and semantics of SNOBOL/1l, and the specification of the
context-sensitive requirements on syntax will be discussed at

the end of the chapter.

105

As mentioned in the previous chapter, the first term of
each term tuple in the specification of the translation of a
language is generally of the form "s..t" where "s" represents
some string in the source language and "t" represents the
corresponding target language translation. The example

SNOBOL/1 strings and their target language translations

given in the text follow this notation.

Strings

DIGIT<O> ,<1> ... ,<9>;

LETTER<A> , ,.. ,<Z>;

MARK<%>,<.>,<=>, ... ,</>;

DIGIT<p> | LETTER<p> | MARK<p> + BASIC SYMBOL<p>;
BASIC BYMBOL =+ BTRING<BEQ(2)>;

Example Strings:

ABC123% A ROSE IS A ROSE
HESSE ,KAFKA ,MANKN ALPHA

The basic symbols in SNOBOL/1l are the decimal digits,
the capital English letters, and a variety of other symbols
like "%", "." and "=", A string, the basic data type, con-

sists of any linear sequence of basic symbols.

Names

DIGIT<p> | LETTER<p> - NAME<p>;

NAME<m> ,<n> + NAME<mn> ,<m.n>;

KAME<n> + STR NAME<n..n>,<$n..(LOOKUP. n)>;
NAME<n> + VAR NAME<n>;

NAME<n> + BACK REP NAME<n>;

106

Example Names:

ALPHA 1234
ABC.EFG 12.3
$BETA $1234

A string can be assigned a neme and the name used in
place of the string. A name consists of a sequence of decimal
digits and English letters, possibly including medial periods.

Besides designating a string, a namé can be used in two
other contexts, that of a string "variable"” and fhat of a8

‘string "back reference." These three uses of names shall be
distinguished by calling a name that designates a string a

"string name," a name that designates a variable a "variable

name,"

and a name that designates a back reference a "back
reference name." A string name is treated as a variable in
the target language.

A string name can be indirectly referenced by prefixing
a string name with a dollar sign. The string value of a
string name prefixed by & dollar sign is the string whose name
is the string value of the n#me prefixed by the dollar sign.
For example, if the string value of the name "BETA" is the
string "A ROSE IS A ROSE"™ and if the string value of the name
"A" is the string "BETA", the string value of "$A" is the
string "A ROSE IS A ROSE". The primitive function "LOOKUP."
is used toc handle indirect addressing in the target language.
"LOOKUP." is defined by an extended Markov algorithm substi-

tution rule (Appendix 3.34) that must be added to the target

107

language evaluator,® When evaluated, this substitution rule
inserts the string value of a name at the left of the control
string. Thus the string is treated as if itself were a
variable to be evaluated in subsequent steps taken by the

evaluator,

¥

DIGIT<d> DIGIT STR<SEQ(d)>;

DIGIT STR<s> + INT<sg>,<=8>3

INT<i> ARITH OPERAND<*i”,.'i'>;

STR NAME<n..n'> ARITH OPERAND<n..n'>;

ARITH OPERAND<a..a'>,<b..b'> > ARITH EXP<a+b..(+(a',b'))>,
<3-b--(“(a';b'))>’
<gwb..(u{a',b'))>,
<a/b..(/(a',b'))>;

v+

Example Arith Operands: Example Arith Expressions:
%65”..165" A+B .. (+(A,B))
“_65%,,1-65" A+“657, . (+(A, '65'))
A..A Aw“-65", (w(A, '-65'))

SNOBOL/1 allows a limited type of arithmetic on strings
whose contents are integers. An integer can be used directly
as an arithmetic operand by enclosing the integer in the

[

quotation marks and ©. A name vhose string value is an

integer can also be used as an arithmetic operand. An

#As mentioned in the chapter describing the target language
evaluator, it may occasionally be convenient to define some
source language constructs by adding rules to the evaluator
rather than by defining the constructs solely within the
target language. To define indirect addressing in the target
language would require complicated additions to the canoniecgl
system of the translation of SNOBOL/1

108

1

arithmetic expression consists of an arithmetic operand
followed by one of the arithmetic operators "+", "-",6 "a",

and "/" (defined in Appendix 3.3b) followed by another arith-
metic operand. The string value of an arithmetic expression

is the string computed by epplying the arithmetic operator

to the integer value of the two operands.

String Expressions

STRING EXP<A.,‘'A'>;

STRING<s> + STRING EXP< s ..'s'>;

STR NAME<n,.n'> + BTRING EXP<n..n'>;

ARITH EXP<a..a'> STRING EXP<a,.a'>;

STRING EXP<s..s'>,<t..t'> » STRING EXP<s@t..((CAT s') ¢t')>;

¥

Example String Expressions:

A, NAME REVERSE..((CAT NAME) REVERSE)
“ABC123%™,.'ABC123% “ABC® A..({(CAT 'ABC') A)
A..A XY 2..((caT ((CAT X) Y)) 2Z)

$A..(LOOKUP. A)

A string expression in SNOBOL/1l is an expression whose
value is a string. A string can be used directly in an arith-
metic expression by enclosing the string in the gquotation
marks % and ®, A string name or arithmetic expression can
also be used in a string expression., A sequence of string
expressions each separated by one or more spaces® comprises
a complete string expression, The value of a string expres-
sion is the string computed by concatenating the string values

of each of the component string expressionmns.

*The symbol "g" denotes one or more spaceé.

109

A ot 18 TR S

Patternsg®

STRING<s> + PAT EXP<%g%, ., 's'>;
STR NAME<n..n'> + PAT EXP<n..n'>;
VAR NAME<n> + PAT EXP:SPECS<#n#,,'n' : neSTR|>;*
VAR NAME<n> + PAT EXP:SPECS<#(n)#..'n' : neBAL STR|>;
VAR NAME<n>, DIGIT STR<d> + PAT EXP:SPECS<an/de..'n' :
(n,a)eFIX LN STR|>;
BACK REF NAME<n> + PAT EXP<n..'n'>;
PAT EXP<p..p'>,<q..q'> + PAT BEXP<p q..((CAT p') q')>;
PAT EXP<p..p'> + PATTERN<p..p'>;

Example Patterns:

“ABC"™,.'ABC'

X Y..((cAT X) Y)

#NAME#..'NAME' : FNAMEeSTR |

WNAME® @@ _ ((CAT 'NAME') ',') : NAMEeSTR

#Xe “ABC™ (Y)w..((CAT((CAT 'X') 'ABC')) 'Y') : XeSTR | YeBAL STR |
#X# Y X..((CAT((CAT 'X') Y) *X') : XeSTR

A pattern in SNOBOL/)l is the basic unit through which
string transformations are accomplished. A pattern éan be
viewed as an expression representing a set of strings.

A string enclosed by quotation marks jis a pattern expres;
sion representing the set of strings containing one member,
the string itself. A string name is a pattern representing
the set of strings containing one member, the string value of
the string name, A variable name enclosed by asterisks is a
rattern expression representing the set of all strings of
basic symbols. A variable name enclosed by parentheses &and

further enclosed by asterisks is a pattern expression repre-

senting the set of all strings containing balanced pairs of

#The use of the auxiliary term for the predicate part "SPECS"
will be discussed shortly.

110

parentheses. A variable name followed by a slash and a
positive integer and enclosed by asterisks is a pattern expres-
sion representing the set of all strings whose number of basie
symbols 1is given by the integer following the slash. A name
that occurs elsewhere in a pattern as a variable name is a
pattern expression representing the same set of strings re-
presented by the variable name. A name used in this context
is called a back-referenced name,

A sequence of patterns of pattern.expressions each
separated bdy 6ne or more spaces comprises a complete pattern.
A sequence of pattern expressions represents the set of all
strings composed by concatenating representative strings from
each of the sets represented by the component pattern expres-
sions. This set is restricted in that a string used in
place of a back reference name must be identical to the
string used in place of the corresponding variable name.

A pattern is used.to scan a givén object string for the
existence of one of the strings represented by the pattern.
If more than one string represented by the pattern occurs
within the object string, the member M such that (a) each of
the strings (except the last) concatenated to form M is, from
left to right, as short as possible and (b) the last string
concatenated to form M is as long as possible is taken as the

occurrence of the pattern in the object string.

111

Pattern Matching Rules

STR NAME<n,.n'>, STR EXP<s..s'>, PATTERN:SPECS:VAR REFS
<p..p':c:v> -+ PAT MATCH RULE<n@p=s..
(MATCH_AND_ASSIGN(n',p',Am.s',%e’','(v)'>;

Exemple Pattern Metching Rules:

X %ABC"=., (MATCH_AND_ASSIGN(X, 'ABC', Aw.'A','', '()'))

X wNAMEs %=, (MATCH_AND_ASSIGN(X, ((CAT 'NAME') ',')
LJAT.'AY, 'NAMEeSTR |', '(NAME,)'))

X ALPHA = BETA..(MATCH_AND_ASSIGN(X, ALPHA, Aw.BETA,'', '()'))

A pattern matching rule consists of a string name followed
by pattern, an equal sign, and a string expression. The execu-
tion of & pattern matching rule results in the following se-
quence of actions:

(a) The string value of the string name is scanned for
the occurrence of the pattern.

(b) If the occurrence of the pattern is found

(i) each string variable in the pattern is
assigned the value of the substring used
in matching the variable to the object
string,

(ii) the string expression is evaluated (using
the new values of the string variables), and

(iii) +the occurrence of the pattern in the object
string is replaced by the string vsalue of
the string expression and the string name
is assigned the value of this newly formed
string.

(¢) If the occurrence of the pattern is not found, no
action is taken,

The pattern matching capability of SNOBOL/1 is handled

in the target language through the function "MATCH_AND_ASSIGN",

112

(see Appendix 3.3c¢c) which essentially forms an extended Markov
algorithm that reflects the same transformation defined by

the pattern., 1In the formation of the extended Markov algo-
rithm, the variable and back reference names are treated as
extended Markov algorithm string variables. Hence the trans-
lation of a variable or back reference name is given as a
constant (see definition of patterns given previously), the
variable names are specified as extended Markov algorithm
string variables representing members of one of the sets
"STR", "BAL STR", and "FIX LN STR" (see the auxiliary term

for the predicate part "SPECS" in the definition of a pattern)
defined in Appendix 3.la, and the lists of variable nemes®

and their set specifications are passed as arguments to the
function "MATCH_AND_ASSIGN". The evaluation of the function
"MATCH_AND_ASSIGN" results in the following actions:

(a) An attempt is made to match the pattern to the
oblect string.

(b) If a match is found, the values of the variables
are updated, the value of the string expression
is computed, the name to which the pattern hes
been applied is updated to its new value, and the
string "TRUE" is returnead,

(¢) If no match is found, the string "FALSE" is re-
turned.

#The 1list of variable names is given by the auxiliary term
for the auxiliary predicate part "VAR REFS" generated in the
canonicglsystem for the syntax of SNOBOL/1l. This auxiliary
term is also generated in the completev(unabbreviated)
canonicgl system of the translation of SNOBOL/1l and is used
to specify the translation of SNOBOL/1l as indicated above.

113

PATTERN:SPECS:VAR REFS<p..p':c:v>
+ INPUT RULE<SYS .READ p..(MATCH_AND_ASSIGN
(READER#,p' ,An.'A', e, (v),'v'))>:
STRING EXP<s..s'> -+ OUTPUT RULE<SYS .PRINT s..
(PRINTER# ASSIGN.((CAT PRINTER#) s'))>;

Example Input and Output Rules:

SYS .READ w#Xw ..(MATCH_AND_ASSIGN(READER#, 'X', Aw.'A',
'XeSTR |', '(X,), 'X,'))
SYS .PRINT REVERSE..(PRINTER# ASSIGN. ((CAT PRINTER#) REVERSE))

An input rule consists of the string "SYS .READ" followed
by a pattern. An output rule consists of the string
"SYS .PRINT" followed by a string expression.

The input and output of strings from some external input
device 1s defined in the garget language by assﬁming that
there are two system variables "READER#" and "PRINTER#" that
contain the initial values of the input and output strings.®
When a string is input into a program, the value of the system
variable "READER#" is changed to the string computed from the
current value by deleting the string to be read in, and the
values of the string variables in the pattern are updated.

The pattern matching and updating of variables are handled

through the function "MATCH_AND_ASSIGN" described previously.

#The initial values of these variables can be added to the
initial environment named Aq in the target language evaluator.

114

When a string is ocutput from a program, the value of the
system variable "PRINTER#" is updated by appending the string

value of the string expression.

Assignment Rules

STR NAME<n..n'>, STR EXP<s..s'> + ASSIGN RULE
<n=g..{n' ASSIGN., s8')>;

Example Assignment Statement:

REVERSE = X REVERSE..(REVERSE ASSIGK, ((CAT X) REVERSE))

An assignment rule consists of a string name followed
by an equal sign and a string expression., The execution of
an assignment rule results in assigning the string value of

the string expression to the gtring name,

Rules

PAT MATCH RULE<r..r'> | INPUT RULE<r..r'> | OUTPUT RULE<r..r'> |
ASSIGN RULE<r..r'> + UKLABELED RULE<r..r'>;

UNLABELED RULE<r..r'> + RULE<@r..r'>;

UNLABELED RULE<r..r'>, NAME<n> + RULE<aQr..0n0fr'>;

Example Rules:

NAME = NAME REVERSE..(REVERSE ASSIGN. ((CAT NAME) REVERSE)
LL NAME = NAME REVERSE.. L4; (REVERSE ASSIGN. ((CAT NAME) REVERSE)
A rule must be prefixed by & sequence of blank spaces or
a name, A name prefixing 8 rule is called a label and is
used to identify a rule when the normal order of eialuutioh

is to be interrupted and to be continued at the labeled rule.

115

Statements

NAME<n> + LABEL EXP<n.. .n>;

STR NAME<n> -+ LABEL EXP<$n..{(LOOKUP. ((CAT '.') n))>

RULE<r..r'>, LABEL EXP<L..8'>,<m..m'>

+ STM<r..r'>,<r/(2)..r';(GOTO. £')>;

<r/S8(%)..r* = (GOTO. &£') ELSE = 'A'>,
<r/F(m)..r' =» 'A' ELSE = (GOTO0. m')>,
<r/S(2)F(m)..r' = (GOTO., &') ELSE =» (GOTO., m')>,
<r/F{m)s(2)..r* = (GOTO. £') BLSE = (GOTO, m')>;

Example Statement:

L3 REVERSE = “,” NAME REVERSE /(L2) ..
L3: (REVERSE ASSIGN. ((CAT((CAT ',') NAME)) REVERSE));
(¢oTo., .L2)

A label expression in SNOBOL/I is an»expression whose
string value is a label. Ablabel can be referenced directly
by giving the name of a label or by giving a‘string name whose
value is a label and prefixing the string name by a dollar
sign.

A statement consists of one of the strings "r", "r/(2)",
"r/S(2)", "r/F(m)", "r/S(2)F(m)", or "r/F(m)sS(2)", where r is
a rule and £ and m are label expreésions. The execution of
a statement of the form "r/(%¢)" results in executing rule r
and then transferring control to the stgtement designated by
the label expression £. The execution éf a rule of the form
"r/S{(2)" results in evealuating rule r and then transferring
control to the statement designated by the label expression
£ if the rule (presumably a pattern matching fule or input

rule) succeeded in matching the pattern in the rule to its

116

object string. ©Similarly, a statement of the form r/F{m)
results in transferring control to the statement designated

by m if the execution of rule r failed to match the pattern

in the rule to its object string. Finally, statements o:

the form "r/S(2)F(m)" or "r/F(m)s(L)" result in transferring
control to one of the statements designated by £ or m if the
execution of rule r succeeded or failed in matching its pattern

to its object string.

Statement Sequences®

STM<s..s'> + STM SEQ<s..s'>;
STM SEQ<q..q'>, STM<s..s'> - STM SEQ<q¥s..q';s'>};
STM SEQ<q..q'>, STRING<s> -+ STM SEQ<q¥#s..q'>,<w#s¥q..q'>;

Example Statement Sequence:

L4 REVERSE = X REVERSE Li: (REVERSE ASSIGN.((CAT X)
- REFERSE));
8YS .PRINT REVERSE (PRINTER# ASSIGN.{(CAT

PRINTER#) REVERSE));

A statement sequence consists of a list of statements
each on a new line. The statements are executed in order
unless a statement explicitly specifies a transfer of control.
Arbitrary character strings prefixed by an asterisk can be in-
serted among statements. The character strings provide com-

ments for the programmer and are not evaluated.

#The symbol "3" denotes a new line.

117

SNOBOL/1 Programs®

STM SEQ:8TR REFS<q..q':sr>, KAME<n>, LIST:BVS:CORR NULL LIST

<s_:v,:4> +> SNOBOL PROGRAM<g END n..LET v, =% IN (GOTO0. 'n');
Example Program:
L1 8YS READ #X#
L2 X aNAMEy ¥.” = /8(L3)F(Lk)

L3 REVERSE = & v NAME REVERSE /(L2)
L4 REVERSE = X REVERSE

sYS .PRINT REVERSE
END L1

Translation:

LET X,NAME,REVERSE = 'A','A' A
IN {(goTo. .L1);
L1: (MATCH_AND_ASSIGN(READER/,'X', xn.'A' XeSTR |', '(X,)"));
L2: (MATCE_AND_ASSIGH(X, ((CAT 'NAME) ') AmL AT,
 'NANEeSTR !' ' (NAME,) })
=» (GoT0. .L3) ELSE => (GOoTOo. .Lk);
L3: (REVERSE ASSIGN. ((CAP? ((CAT ',') KAME)) REVERSE));
(GoTo. .L2);
Li: (REVERSE ASBIGN, ((CAT X) REVERSE));
(PRINTER# ASSIGN. ((CAT PRINTER#) REVERSE));

®Like the 1list of variable names, the list of string names
used in a SNOBOL/1l .is generated in the canonical system for
syntax and is used in the canonical system for the transla-
tion to form the list of bound variadles for the target
language translation of a progranm.

The predicate "LIST:BYS:CORR NULL LIST" names a set of
ordered triples, where the first element of each triple is

a liat of names (e.g., X,Y,X,ALPHA,Y,), the second element
i8 a name list containing one occurrence ¢f each name in

the firet list (e.g., X,Y,ALPHA), and the third element is

a 1list of null strings with the same number of elements as
the second list (e.g., "A","A","A"). This predicate is used
to set the 1list of string nsmes in a program to bound vari-
ables each with the initial value of a null string.

118

A SKOBOL/1l program consists of a statement sequence
folloved by a statement of the form "END n", where "END" is
a label and "n" designates the label of some statement in
the statement sequence. The execution of a program begins
by initializing the string values of the string names in the
program to null and th;n executing the statements in the pro-
gram beginning with the statement labeled by "n".

The example progran'above reads in a string from the
input device and outputs the string computed from the input
string by reversing the order of each substring separated by
a comma. For example, if the string "HESSE, KAFKA, MAKK"
is on the input device, the string "MANN, KAFKA, HESSE" is

printed on the output device,

Context-Sensitive Requirements on the Syntax of SNOBOL/1

There are a few context-sensitive requirements on the

syntax of SNOBOL/1:

(a) The variable names in a p@ttern must each be
differenty

119

(v)

(e)

The backereference names in a pattern must be
identical to the variable names and different from
the string names.

The labels in a program must each be different and
each reference to a label in a label expression
must refer to a name that actually occurs as a
label,

These requirements are specified in the canonlcdl system for

the syntax of SNOBOL/l by specifying with each construct.

(a)

(v)

the lists of names used as string names, variable
names, and back reference names (productions 3 of
Appendix 3.1),

the lists of names used as labels (production 11.3)
and names used to refer to labels (production 12.1),

and specifying

(a)

(v)

(c)

that the 1list "r_" of variable names in a pattern
must contain nameés each of which is different (the
premise "DIFF NAME LIST<rv>" in production 6.8),

that the list "r " of back reference names in a
pattern must be contained within the 1list "r_" of
variable names and that the list "r_" of string
names in a pattern must be disjJoint from the list
"y " of variable names (the premise "L1:L2:INTERSEC
<rb:rv:rb>,<rs:rv;A>" in production 6.8), and

that the list of labels in a program must contain
names each of which is different and that each
label reference must be contained in the 1list of
labels (production 14).

The addition predicates "DIFF NAME LIST" and "L1:L2:INTERSEC"

are defined at the end of Appendix 3.1.

This chapter has attempted to describe in detail the

syntax and semantics of SNOBOL/l., It is intended that a

reader, having digested this chapter, would have sufficient

120

knowledge of SNOBOL/1 and its formal definition to be able
to use the compact, formal definition to answer further

questions concerning the syntactic legality or meaning of
a given SNOBOL/1l construct. It is hoped that this chapter

has served that objective.

121

CHAPTER V

A SPECIFICATION OF THE SYNTAX AND SEMANTICS
OF ALGOL/60

This chapter exercises the formal system presented in
this dissertation to specify the syntax and semantics of
ALGOL/60, as defined in the official ALGOL/60 report edited
by Peter Naur.28 The intent of this chapter is not only to
explicate the formal specification of ALGOL/60, but also to
relate the techniques used in the formal specification of
ALGOL/60 to ofher languages and to compare the formal system
presented here to other methods of language specification.

A knowledge of ALGOL/60 is assumed in this chapter.

It is surprising that, although ALGOL/60 is the official
publication language of the Association for Computing Machinery
and is accordingly widely-publicized, the author knows of no
implementation of the complete language. Probably the most
important factor in this circumstance is the complexity of
ALGOL/60. Indeed, in writing this chapter I frequently found
myself in the difficult situation of first attempting to under-
stand ALGOL/60 and then attempting to characterize the language
with the formel system. There are many interrelated program
constructions and a complicated variety of restrictions on
programs that make the language difficult to understand and
define., Nevertheless, as an example of the formal system,

applied to a somewhat complex computer language, a specification

122

of the syntax and semantics of ALGOL/60 is presented in Appen-

dix L4.,*

Previous Work by Peter Landin:

In his pa.per21 "A Correspondence Between ALGOL/60 and
Church's Lambda Notation," Peter Landin described the semantics
of ALGOL/60 in terms of a modified form of Church's A-calculus,
called "imperative applicative expressions" or "IAEs". The
target language presented here is similar to Landin's impera-
tive applicative expressions in that the A-calculus was
augmented to directly handle assignment and transfer of
control features of ALGOL/60. The target language differs
from imperative applicative expressions in that (a) the
mechanism to handle transfer of control here is different
from that of Landin, and (b) Landin's (SECD) machine to
evaluate imperative applicative expressions is specified by
& A-calculus expression, whereas the machine to evaluate
target language expressions here is specified by an extended
Markov algorithm.

The specification of the semantics of ALGOL/60 given
here is ﬁeavily based on Landin's definition. On the other
hand, the dissertation here not only includes a specification
of the semanties of ALGOL/60, but also a specification of

syntax and a definition of the primitive funetions used in

*The specification of character spacing and of the use of
exponents in numbers is not included.

123

specifying the semantics. The primitive functions used to
specify the semantics of ALGOL/60 are defined only by example

in Landin's paper.

The Syntax of ALGOL/60

The canonical system specifying the syntax of ALGOL/60
is specified in Appendix 4.l1. The first term in each speci-
fied term tuple describes some string in ALGOL/60. If ‘the
auxiliary predicate parts and terms are deleted from this
specification, Appendix 4.1 can be viewgd as a partial (context-
free) specification of the syntax. A context-free specifica-
tion of ALGOL/60's synéax exists in the ALGOL/60 report and
the specification of Appendix 4.1 closely parallels the
specification in this report. Although it does not completely
specify the syntax of the language, the context-free specifi-
cation of ALGQL/60 is fairly straight-forward and the presen-
tation of the canonical system of ALGOL/60 will therefore

focus on the context-sensitive requirements.

Context-Sensitive Requirements on the Syntax of ALGOL/60

There are myriad context-sensitive requirements on the
syntax of ALGOL/60, Among these requirements are

(a) The type of each identifier in a program must be
declared.

(b) An identifier cannot be used in conflicting con-

texts in the same block. There are many variants
of this requirement. For example, an identifier

124

used as a real variable in a block cannot be used
as a boolean variable, an array identifier, a pro-
cedure identifier;, or a switch identifier.

(c) Any use of an array identifier must occur with a
subscript list of the same dimension as that of
the bound pair list in the array declaration.

() The bound pair list in an array declaration can
depend only on variables that are non-~local to the
block in which the array declaration is given.

(e) All statement labels in a block must be different.

(f) The uses of actual parameters in a function desig-
nator must be compatible with the uses of the cor-
responding formal parameters in the procedure
declaration. There are many, many variants of
this requirement. For example, an actual parameter
that is declared to be a real variable cannot cor-
respond to a formal parameter that is used as a
boolean variable, an actual parameter that is =&
procedure identifier must correspond to a formal
parameter that 1s used with arguments that are
consistent with the procedure declaration, and an
actual parameter that is an arithmetic expression
cannot correspond to a formal parameter that is

called by name and asasigned a value in the procedure
declaration.

The context-sensitive requirements on the syntax of
ALGOL/60 occur in many other computer languages besides
ALGOL/60. The restriction (a) that the type of each identifier
must be declared occurs in many computer languages. For
example, in PL/1 each occurrence of an identifier used to
name an object must be declared, either explicitly, contextually,
or implieitly. An explicit declaration of an identifier is
given through a DECLARE statement, whereby an identifier is
given an attribute restricting the use of the identifier to
stateﬁents operating on certalin classes of data, e.g., fixed

Point numbers, character strings, or files. A contextual

125

declaration of an identifier is given when an identifier
occurs in a context where only one ciass of data objects can
occur, e.g., in the statement "GET FILE (X) DATA" the identi-
fier “X" is contextually declared as a member of the class
file in that only a file name can occur after the string "GET
FILE" in a GET statement. An implicit declaration of an
identifier is given when an identifier is associated with
other declared identifiers (e.g., in the statement

"p = A #B" 4f "A" and "B" are declared as fixed point num-
bers, the identifier T may be implicitly declared as a fixed-
point nuﬁber). Programs not specifying a unique declaration
for each |identifier are illegal.

The festriction (b) that identifiers cannot Be used in
conflictihg contextx occurs in almost every language where dif-
ferent clesses of data objJects are distinguished. For example,
although PL/l allows some identifiers to be used in different
contexts, many contexts of declared identifiers are considered
illegal, e.g., if "X" is explicitly declared as a bit string,
the statement "GET FILE (X) DATA" is illegal since the GET
statement contextually declares "X" as a file.

1

The restriction (e) that ail statement labels in a block
must be different occurs in almogt every language allowing
statements tb be labeled and control to be passed to a labeled
statement., The labels must be different in order for the
destination of the transfer of control to be unique. For
example, in Fortran IV no two statements may be labeled with

the same statement number.

126

The restriction (f) that corresponding actual and formal
parameters must be compatible likewise occurs in many lan-
guages and can become complicated, especially in languages
allowing nested procedure definitions and applications like
ALGOL/60.

The author knows of only one major computer language
where a complete formal specification of its syntax has been
given. In particular, the simulation language GPSS has been
specified completely by Donovan,3 using canonic systems.
Otherwise, the syntax of many computer languages has been
specified either informally or has been partially formalized,
usually with a context-free grammar,

Before discussing the specification of the context-
sensitive requirements on the syntax of ALGOL/60, the‘reader
is reminded that the auxiliary predicate parts and terms in
a production generally specify the lists of identifiers,
labels, variables, etc., that are used within the source
language string specified by the first term in the production.
These lists will be referred to repeatedly in the productions

to follow.

Specification of the Requirement that the Type of Each Variable
Must be Declared:

Consider the (abbreviated) production® from the canonical

*The productions given in the text will generally be only por-
tions of the corresponding productions given in Appendix bk,
Portions of productions are given in the text to illuminate
better the particular construction under discussion. An expli-
cation of the complete canonical system for ALGOL/60 will be
given later in the chapter.

127

system of the syntax of ALGOL/60:
ID<i> -+ REAL VAR:R VARS<i:i,>;

If "i" designates a string that is an identifier, the term
tuple "<i:i,>" designates & pair where the first element is
an identifier used as real variable, and the second element
designates the addition of the identifier to the list of

identifiers used as real variables in a program. Consider

also the production
IDLIST<2> <+ TYPE DEC:DEC R VARS<REAL 2:%,>

If "2" designates a string that is a 1list of identifiers,

the term tuple ™<REAL £:2,>" designates a pair where the first
element is an ALGOL/60 declaration of a list of identifiers

as real variables, and the second element designates the addi-
tion of the 1ist of identifiers to the 1list of identifiers
declared as real variables.

Next consider the production

STM SEQ:R VARS<s:vr>, DEC SEQ:DEC R VARS<d:vrd>,
. . . IR Al
L1:L2:REL COMP<vr.vrd.vr>
+ BLOCK:R VARS<BEGIN d;s END:V;>;

Here, if
(a) "s" is a statement sequence with a 1list "vr" of
identifiers used as real variables
(b) "a"™ is a declaration sequence with a list "vrd" of

identifiers declared as real variables

128

(e¢) "v'" is the 1list computed from "v_" and "v__." by

foFming their relative conplementr(i.e., "vr - v._.")

then
(d) "BEGIN d;s END" is a block with a list "v'" of
identifiers that are used as real variableés in the

block but not declared within the dlock

Finally, consider the production
PROGRAM STR:R VARS<p:A> -+ ALGOL PROGRAM<p>;

Here, if (a) "p" is a string that is in the form of a program
and (b) the list "R VARS" of identifiers that are used in the
program as real variables but are not yet declared is given
as null, then the string "p" is specified as a bone fide legal
ALGOL program.

In this manner (a) each identifier in a program used as
a real variable is added to the list of used reéllvariables,
(b) each identifier declared as a real variable is added to
the 1ist of declaredreal variables, (c) each identifier de-
clared in a block as a real variable is removed from the list
of identifiers used as real variables, and (d) a sfring is

specified as a legal program only if the list of used (but

as yet undeclared) real variables is given as null.

Specification That Identifiers Cannot be Used in Conflicting
Contexts:

Consider the following production

129

S .~:,L,.':’:p:n_::g;4,)n- B AR T R S DT S STV i

STM SEQ:R VARS:B VARS<s:vr:vb>, DEC SEQ<ad>,

DISJ ENTRY LISTS<(vr)(Vb)> + BLOCK<BEGIN d3s END>;
where the predicate "DISJ ENTRY LISTS" specifies a set con-
sisting of one or more identifier lists each enclosed in
parentheses such that each list is disjoint from the others.
If "vr" and "vb" specify the lists of identifiers used re-
spectively as real variables and boolean variables, in a
statement sequence, the premise "DISJ ENTRY LISTS<(vr)(vb)>"
insures that the string "BEGIN d; s END" is a legal block

"

only if the lists "vr and "v. "

p Bare disjoint, i.e., not used

in conflicting contexts.

Specification That Actual and Formal Parameters Must Be
Compatible:

The requirements on the uses of actual and formal para-
meters of ALGOL/60 procedures is complicated. For example,
let "P(X,A)" be a declared procedure with two formal parameters
"X" and "A", where in the declaration of "P", "X" is used as
a real variable and "A" is used as an integer array of dimen-
sion three. The function disignator "P(3.1,Q)", where "Q"
is a declared integer array of dimension three would consti-
tute a legal activation of the procedure "P", whereas the
function designator "P{TRUE,Q)" would not be legal since the
type "REAL" of "X" and the type "BOOLEAKR" of "TRUE" are not

compatible.

130

To specify the context-sensitive requirements on proce-
dures, a number of additional predicates are defined, For
simplicity, in the discussion to follow I will assume that
ALGOL/60 has only three data types: real variables, boolean
variables, and integer arrays. Consider the following pro-
ductions:

DIMM<1>;

DIMM<m> ~+ DIMM<ml>;

SPEC<REAL> ,<BOOLEAN>;

DIMM<m> + SPEC<INTEGER ARRAY(m)>;

SPEC<s> -+ SPEC LIST<s>;

SPEC<s>, SPEC LIST<&> - SPEC LIST<2,s>;

Here the predicate "SPEC" specifies & set comprising the
strings {REAL BOOLEAN INTEGER ARRAY(1) INTEGER ARRAY(11)
INTEGER ARRAY(111) ...}, where each string specifies the use
of some formal parameter in a procedure declaration. The
predicate "SPEC LIST" specifies a set where each member is

a string of parameter specifications each separated by a
comme.

For example, if "P" is a procedure declared as above,
the specification 1list for the formal parameters of "P" would
be "REAL,INTEGER ARRAY(111)"., Similarly, if "P(3.1,Q)" and
"P(TRUE,Q)" are function designators where "Q" is declared
as an integer array of dimension three, the specification
list for "P(3.1,Q)" would be "ARITH EXP,INTEGER ARRAY(111)"
and the specification list for "P(TRUE,Q)" would be "BOOL
EXP,INTEGER ARRAY(111)". 1In the specification of the syntax

of ALGOL/60, a predicate "SPEC MATCH" is defined. The ordered

131

pair "<ARITH EXP,INTEGER ARRAY(111):REAL,INTEGER ARRAY(111)>"
is a member of this predicate, and thus, by using this predi-
cate as a premise in the canonical system for ALGOL/60, the
function designator "P(3.1,Q)" is allowed as a compatible
function designator with the above indicated declaration of
"P", On the other hand, the ordered pair "<BOOL EXP,INTEGER
ARRAY(111):REAL,INTEGER ARRAY(111)>" is not a member of this
 predicate, and thus the function designator "P(TRUE,Q)" is
not allowed as a compatible function designator for "P".

Since the number of data types in ALGOL/60 is much greater
than the number of types assumed in the examples Jjust given,
the actual specification of the context-sensitive requirements
is much more complicated than indicated in the previous para-
graphs, A detailed discussion of the complete canonical
system specification of the context-sensitive requirements

on ALGOL/60 procedures is given at the end of this chapter.

The Semantics of ALGOL/60

It seems that much less work in computer science has been
directed to formalizing semantics than in formalizing syntax.
While many methods for characterizing (at least in part) the
syntax of computer languages have been successfully developed,
fewv methods for characterizing semantics have reached a

development where entire languages have been characterized.

1

An application of the A-calculus has been used by Peter Landin2
25

and John Wozencraft to characterize respectively the seman-

132

tics of ALGOL/60 and the classroom language PAL., The charac-
terization of’semantics given in this dissertation is in
part based on these efforts.

A quite different approach to characterizing semantics
has been taken by the IBM Vienna laboratory, which has under-
taken the formidable task of characterizing the semantics of
PL/1. This group has used portions of LISP, the predicate
calculus, set theory, and other constructs of their own inyen—
tion to characterize the semantics of PL/1l. Their work has
been described in several lengthy IBM technical reports. A
Judgment of the utility of their approach awaits a more
digestible presentatidn of the formal system and the tech-
niques used within the formal systen.

The specification of the semantics of ALGOL/60 in termé
of the target language presented here is given in Appendix
4,2, Much of the semantics of ALGOL/60, e.g., arithmetic
expressions, boolean expressions, designational expressions,
conditional statements and statement sequences, are straight-
forwardly defined in the target language and in part have
been discussed in previous chapters., I will therefore focus
the discussion of this chapter on some constructs in ALGOL/60
wvhose semantics are not quite as obviously expressed in terms
of the target language.

The table on the following pages lists several example
ALGOL/60 expressions and their translations into the farget
language. In the discussion to follow, the reader may find it
helpful to refer to these examples,

133

EXANPLE ALGOL/GO EXPRESSIONS AND THEIR TRABCLATIONS
INTO THE TARGET LANGUAGE

Systactic Type

ALGOL/60 Expression

Translatfon into the Target Lamguage

s

nun

aom

”we

¢

I_D

VAR

VAR

PCR DES
FCN DRE
ARITH EXP
ARITE EXP
DEB RXP
pES RXP
DES RXP

CONMENT 8TM

GoTD STN
ASGT STN

ASGT STN
FOR LIST EL
FOR BTR

UNCORD STH
COND STH

TYPE DEC
TYPE DXC
ARRAY DRC

ARRAY DEC

sV DEC
PROC DEC

3Loex

ALGOL PROGRAN

Al

al1,x)

P

Q(x,Y,242)

A*DeC

I? B THEN 0 ELSE)
ALPEA

009

s(x)

COMMENT THIS IS
A CONNENT

GO TO 009

Psi= X

A e 3 s X

X STEXP 1 UNTIL 5
FOR ¥=1,2 DO VimVel

ALPRA: GO TO 09

IP B=TRUL
TEZN GO TO ALPHA

REAL X,Y,2
OVN REAL X,Y,2

REAL ARRAY A[1:10
1:10

OVWN REAL ARRAY
Al1:10,1:10)

SVITCR B:=ALPEA,009

'65'

(REGATE *65')

(+{TRANS_INT *65',TRANS_FRAC *'32'))

A

(X "A'} ==if X is a formel parameter cslled by name
A

(cn_lx.([colv_'ro_ur *1v), (cowv_ro_1NT xg,‘n 1)

(r ')

(Qtav.X,an Y 0r. (e(2,2))))

(e{a,a(R,0)))

B b 0! ELSE =P 1
.ALPEA

.9

((GET_EL({CONV_TO_INT X, S)) *4A')
"0y

(GoT0. .9)

LET »={CONY_TO_INT X) IN (P& aASSIGE, +)
It P is an integer procedure {dentifier

LET «=(CONV_TO_INT X} IN LET a®B IN (2 AscIGH
LET o=A IF (a ASSIG
If A and D sre integer vars

A STEP() = X, 0w, 1" dn."5")

wa (CONV_TO_INT((V,1)))

(ror(v,DELAY_cAT(3=. 2% av.'2'] LET
1IN LET oV IN (a ASSIGH. v)

ALPEA: (gOTO. .9)

(=(B, *TRUR')}) W (GOTO. .ALPHA) ELSE =P ‘A
X a2 o VEO,OAT,TAY

X,Y,T = XF1,Y01,24)

A = Guxe_tzst(fie 1 f2 1300, "10D
J13E100 10

s = tnmser_sxertan frr o f

£ = (rmopx_L1sT('y* farrua,.d))

REAL PROCEDURE P(XYYP(X,Y) = LET P, X = *A',{UNSKARE (X 'A'))

VALUE X: P:woX+Y

BEGIN REAL X,Tj
X 1w Y = 3;
A 1= XeoY

| 1)

BEGIR REAL A,B;

IRAL FROBAIE F(X,Y);
wEE;
P = XOY/2;

A e 3

B 1o AeP(k,A)g

D

IX LET w=(CORY_TO_REAL (+(X, (Y 'A*)))
IN (P# ASSTGRT w}; PO

LET REC X,Y='1',"A'
I8 LET w=(CONY_TO_REAL *3') 1% LET =Y IN {a ASSIGA.
LET o=X IN (o ASSIGH.

LET w=(CORV_TO_REAL (s{X,¥)) IN LET a=A IN {a ASSION.

LET REC A, B, F(X,¥)="A%,"A* ,LET P#,X='L" ,(UNCHARE (X *2°))
Is

(re assTeaT «); »
IN LEY w=(CONY_TO_RNEAL '3') IN LET I8 {o.ASSION. w);
LET ve(CORV_TO_REAL (o(A,r(Ax.'3* ,5v.4))))
IN LET o=B I¥ (o ASSIGN. w)

134

CORV_TO_REAL(e (X, (/{{Y *A%),%2*))))
»

Primitive Functions Used to Define the Semantics of ALGOL/60:

Appendix 4.3 defines the primitive functions used in
defining the semantics of ALGOL/60. Appendices L4.3a and 4.3b
define miscellaneous primitives, like the function "NEQ" for
negating a boolean value, the function "HD" for computing the
head of a list, and the function "ABS" for computing the
absolute value of a number, Real numbers in ALGOL/60 are
represented in the target language by their fractional equiva-
lent. A fraction in the target language is a string of the
form "xDy", where x and y represent respectively the numerator
and denominator of the fraction. For example, the real number
"1,5" in ALGOL/60 is translated intoc the target-language
string "3D2" denoting the traction three-halves (3 Divided by
2). Appendix U4,3c defines the primitives "TRANS_INT" and
"TRANS_FRAC" for converting real numbers to their fractional
representation and the primitives "CONV_TO_ REAL" and "CONV_
TO_INT" for converting integer numbers to real numbers and
real numbers to integer numbers. Appendices L4.3d and k4.3e
define the arithmetic and boolean primitives.

Appendices 4.3f and b4.3g define the primitives used in
defining the semantics of for statements and arrays and will
be discussed later in the text,

Primitive functions similar to those given for ALGOL/60
can be used to define the semantics of many languages used
for numerical processes. For example, in FORTRAN IV, the

arithmetic and boolean primitives almost exactly parallel

135

those for ALGOL/60. Although FORTRAN IV allows the user to

(a) specify one of two precisions for real number arithmetic

and (b) specify4arithmetic for complex numbers, these facilities
can be readily specified in the target language by (a) defin-
ing a primitive that converts target language fractions to the
degsired precision as real numbers and (v) defining the arith-
metic operators for compléx numbers in terms of those given

for real numbers. ©Similarly, the FORTRAN IV facilities for
arrays and DO statements closely parallel the ALGOL/60 facili-

ties for arrays and for statements,

Assignment of Values to Variables and Procedures:

Consider the following ALGOL/60 assignment statements:

RS
Woom
SRR

=
"
=
n
]

where "X" is an integer variable, "A" is a real variable, and
"F" is a real procedure identifier. The corresponding target

language expressions for these statements are:

LET = = (CONV_TO_REAL X) IN LET o = A IN (a ASSIGN. r)

LET =

(CONV_TO_REAL X) IN (F# ASSIGN. =)

LET n = (CONV_TO_REAL X) IN (F# ASSIGN. m);

LE® g = A IN (o ASSIGN. =)

136

The expression on the right side of an assignment state-~
ment must be evaluated only once. Therefore, the translation
of the right-hand expression is evaluated once and is linked

"#" and the value of © is used in

with the dummy variable
each target language>assignment expression. The primitive
"CONV_TO_REAL" is applied to "#a" before the assignment to
convert the vaiue of "1" to a real number.

Assignments in the target language can only be made to target
language variables. The ALGOL/60 variables in the left side of the as-
signment statement are linked with the dummy target language variable
"a" to handle the case where the ALGOL/60 variable is a formal
parameter called by name and the ALGOL/60 variable must be
translated into a target language expression that is not a
variable. (This point will be discussed shortly.) By linking
the dummy variable o with the translation of expression re-
presénting the ALGOL/60 variable, an assignment to o will
also result in an assignment to the corresponding ALGOL/60
variable,

The assignment of a value to a procedure in a procedure
declaration is handled by affixing the mark "#" to the proce-
dure identifier and assigning the value of the right-hand
expression to this newly formed identifier. The "#" is affixed
to the identifier to avoid conflicts with the use of the pro-
cedure identifier in a recursive call to the procedure, 1In

the translation of the entire procedure declaration, the

137

translation of the last statement in the declaration is
followed by the statement "F#", where F is the procedure
identifier. Thus the evaluation of the procedure will return

the value currently assigned to the procedure identifier.

Parameters Called by Name and Called by Value:

Consider the following ALGOL/60 procedure declaration:

PROCEDURE F(X,Y); VALUE Y;

BEGIN
Y := Y+Y,
X 1= Y»Y;
END

In this procedure declaration the formal parameter "X" is
called by name and the formal parameter "Y" is called by
value. If "A" and "B" are real numbers whose current values

are "1" and "2", the evaluation of the procedure statement
F(4,B);

results in changing the value of "A" to "4" while leaving the
value of "B" unchanged.

Next consider the following target language translations
of the procedure declaration given above and procedure state-
ment "F(A,B)":

LET F(X,Y) = LET Y = (UNSHARE (Y 'A'))
IN LET m = (CONV_TO_REAL (+(Y,Y)))

IN LET o = Y IN (a ASSIGN. =)
LET m = (CONV_TO_REAL (#(Y,Y)))
and IN LET o = (X "A') IN (o ASSIGN. m)

F(Am.A, Am.B)

138

Here, the translations of the actual parameters "A" and "B"
are given as functions mapping the dummy variable "w" into

the variables of "A" and "B". In the evaluation of the pro-
cedure statement "F(A,B)", the function "An.B"™ will be applied
to the null string (causing the evaluation of "B") and the
function "UNSHARE" (Appendix 4.3a) will be applied to this
value (causing the formation of a new cell in the store for
the value of "B". Thus subsequent assignments to the formal
parameter "Y" will not result in changing the value of "B",

On the other hand, the function "UNSHARE" is not applied to

"X" and the assignment of a value to "X" will result in

changing the value of the corresponding actual parameter "A".

Lists in ALGOL/60:

In defining the semantics of ALGOL/60, it will be con-
venient to define primitive functions operating on lists of

strings. I will use the notation

S14 Sop ver 45,

where the S; l<i<n, are strings, to denote a list. If
Xl, X2, . o ,Xn are expressions whose values are the strings

Sps see 38, the expression

")) .. X))

(1) ((car ... ((cAT ((caT ((caT x;) ' ")) X,)) ', n

will result in forming the list

139

Sl"' 52+ e *Sn

The concatenation of expressions to form lists will occur
frequently in the formal definition of ALGOL/60. For conven-
ience, T will generally omit the explicit specification of
the.concatenation of the component expressions of a list and
write list expressions of the rorm‘(l) in the alternate nota-

tion

[x,, %, ..o ,x]

Arrays and Switches:

An array in ALGOL/60 is treated in the target language
as an indexed linear list, where the number of elements in
the list equals the number of elements in the array. For

example, an array with a bound pair 1list
[1:2,1:3]

is translated into the string

(1,1,0),(1,2,0),(2,3,0) (2,1,4),(2,2,4) (2 ,3,4)

where the symbol "A" specifies an initial null value for each
element of the array. The translation of arrays into lists is
handled through the function "MAKE_LIST" (Appendix 4,3g), which
converts the bound pair list of the array into a linear 1list

of array elements each with an initial null value. An elenment

of an array is obtained through the function "GET_EL",

140

(Appendix b4.3g), which, given a subscript 1ist and an array
identifier, obtains the appropriate array element. The
elements of an array are updated with new values through the
function "RESET_LIST", which resets the value of one of the
array elements in the array list.

Switches are also treated as linear lists. For example,
a switch with a switch list "L,M,N" is translated into the
target language string ”El,ln. .L)+(2,An. M) (3,2, .§)} The
elements of the target language list are given as dummy
variable functions so that an element of & switch list is
not evaluated unless the element is selected by a designa-
tional expression. The translation of switches into lists
is handled through the primitive function "INDEX_LIST" (Ap-
pendix 4.3g), which forms an indexedvlist of switch elements.
An element of a switch list is obtained by applying function
"GET_EL" to the switch 1ist and then applying the selected
element to the null string. This applicafion results in

forming the proper label-closure for the label.

Own Variables:

Consider the following outlined ALGOL/60 program:

BEGIN
REAL X,Y,2;
PROCEDURE F(A); BEGIN OWN X; ... END;

END

141

and its target language translation

LET X#1 = 'p°
IN LET REC X,Y,Z,F(A) = "A'","A',"A',LET X =X#1 IN ...
IN

The variable "X" in the ALGOL/60 procedure "F" is an own
variable, and hence on successive calls to the procedure "F"
the value of "X" is not re~initialized to a null value dbut
maintains the value last assigned to "X" on the previous call.
In the target language translation of the program, a new
global identifier "X#1" is created, and on each call to "PF"
the value of "X" is set to the value of "X#1". 1In this manner
an assignment to the value of "X" will also result in an
assignment to "X#1". Since "X#1" is global to the entire
target language expression, "X#1" will maintain the value

last assigned to "X" and subsequent calls to "F" will result
in resetting "X" to its last assigned value.

The mark "#" and positive integer are affixed to the
global own identifiers so that these identifiers will not
conflict with other identifiers in the target language
expression,

Own arrays are treated similarly to own variables in
that the own array identifiers are coupled with corresponding
global identifiers. The global array identifiers are ini-
tialized with null values. Upon each entry to a block with

an own array,

142

TS o TR A s e

(a) the value of the glodbal array identifier is updated
to the value computed from the current value of the
global identifier by (1) retaining the values of
the array elements whose indices, as specified by
the current value of the bound pair list, occur in
the array list for the global identifier, and (2)
setting to null the values of the array elements
whose indices do not occur in the array list for
the global identifier, and

(b) coupling the value of the own array identifier with

the value of the corresponding global array identi-
fier. N

“
Thus, upon the first entry to the block, each element of the
own array will be given as null, Since updating the value
of the local own array identifier will also result in up-
dating the value of the corresponding global array identifier,
subsequent entry to the block will result in resetting the
values of the previously given elements of the own array
identifier to their previous values and sefting the value of
each array element not included in the previous bound pair
list to null. N

Own varisbles and own arrays have generélly caused prob-
lems for those implementing languages with own variables in
that special programs and storage areas have been needed to
properly implement own variables. The above mechanism for
handling own variables in the target language is quite
straightforward and avoids the complexity generally associated

with own variables

Goto Statements:

A statement of the form "GO TO L" in ALGOL/60, where L

143

THITMT RS RS amIT AT AT SN S TN g TSI e S e s

is & label reference, will result in interrupting the normal
order of evaluation and continuing by evaluating the statement
labeled dy L in the same sequence or in the first encompassing
block containing a statement with & label L. The mechanism
for transferring control to a target language expression in
the same or an éncompassing sequence has been discussed in
the chapter III.

On the other hand, a more complicated situation for
transferring control occurs when a label is rassed as an
argument to a procedure.* For example, consider the procedure

statement
F(L)
and the procedure declaration

PROCEDURE F(X); LABEL X;
BEGIN

GO TO X;

END

Since in the target language, the Procedure statement is

translated as
F(am. .L)

where the)-closure for "Am. .L" is evaluated relative to the

*Formal parameters that are labels called by value are excluded
according to the ALGOL/60 report.

144

environment within which the grOcedure statement occurs and

the GO TO statement is translated as
(coTo. (X 'aA'))

the label-closure for X will refer to the labeled statement

in the bloek in which procedure statement occurs (or to a
labeled statement in an encompassing block) and the environ-
ment given by the label closure will refer to the environment
of the block specified at the time when the procedure state-
ment was evaluated.
Furthermore, consider the ALGOL/60 program:
BEGIN INTEGER A,Bj
PROCEDURE F(I,X); LABEL X; VALUE I
BEGIN M: B := B+l;
I := I+1;
IF B=4 THEN GO TO L1j;
IF¥F B=3 THEN GO TO X;

IF B=2 THEK F(I,X);
IF B=1 THEN F(I,M) END Fj

A := B := 03
F(A,L1);
Ll: A := AsA

END
Here F is a recursive procedure that is called three times.
On the second cell to F the local label M is passed as an
argument; the label-ciosure for M will specify an environment
within which the value of I is 1. On the third call to F the
GO TO statement "GO TO X" will result in resetting the environ-

ment within which the value of I is 1, and upon exiting from

the procedure the value of I will be 2, and not 3.

145

Recursive Definitions:

ALGOL/60 allows the declaration of variables, arrays,
switches, and procedures that can depend on each other. For
example, the following declaration sequence can occur within
& block

REAL PROCEDURE H1(X1l); IF X1=0 THEN 1

ELSE X1#H2(X1-1);
REAL PROCEDURE H2(X2); IF X2=0 TEEN 1
ELSE X2#H1(X2-1)
These declarations constitute a simultaneous recursive defini-
tion of the factorial function (e.g., the value of the function
designator "H1(4)" is "24").

If E1, E2, and S are statements, and Hl and H2 are proce-
dure identifiers that are (possibly) defined simultaneously
recursive, the ALGOL/60 block

BEGIN

REAL PROCEDURE H1(X1); El;

REAL PROCEDURE H2(Xl1); E2;

8
END

can be correctly defined by the target language translation
(1) (Ar.(AB1.(AH2.s (HD w)) (TL «)) (Y2 AH1.:E2.fX2.e2,AX1.ed]))

where el, e2, and s are the target language expressions for

the ALGOL/60 statements El, E2, and S and the fixed point

operator Y2 is

AF., LET wl,w2="At', 'A"
IN LET Z=((F nl) =2)
IN (w1l ASSIGN. HD 2);
(v2 ABSIGN. TL 2);
A

146

Extending the alternate notation for recursive definitions
given earlier, an expression of type (1) will be alternately
written

LET REC Hl,HZ=AXl,e1,AX2.e2
IN s

and further rewritten

LET REC H1(X1),H2(X2)=el,e2
IN s

More generally, if H1, H2, ... , Hk are declared variables,
arrays, switches, or procedure identifiers whose target lan-
guage translations are the expressions tl, t2, ... , tk, and s
is the target language translation of the a statement, an
expression of the form

(2) (a=.(xB1.(AH2...(Hk.s (1st %)) (2nd #)) ... (kth =))
(Y® AH1.aB2,..2Hkfk ... t2.¢t1))

where
1et # = (HD w)
2na » = (HD (TL %))
Kth 7 = (HD (TL (TL ... %)...))
Yk = AF, LET #1,%2,..,.,7ks'A? "A' ..., "A!
I8 LET 2e(.,.{((F #1) #2) ... wk)
IN (w1 ASSIGE. (BD Z));
{(v2 ASSICGK, (HD (TL 2)));
(vk ABSIGN. (HD (TL (TL .. 7)..));
z
and

if H1, 1<i<k, is & procedure definition of J variables
Xr,x2, ... , XJ

then the expression ti is given as 2X1.AX2.,.)AXk.ei, where
ef is the target language translation of the procedure
body,

147

will correctly define the (possibly simultaneous recursive)
definitions in s.

Further extending the alternate notation for k simul-
taneous recursive definitions, an expression in the target

language of form (2) will alternately be written

LET REC H1,H2,...,Hk=tl,t2,...,tk

IN s
Furthermore, if Hi, 1<i<k, is a procedure definition of]
variables X1,X2,...,XJ, then Hi and ti will be given as
Hi(X1,X2,...,XJ) and ei, where ei is the target language

translation of the procedure body.

148

For Statements:

Consider the Pollowing ALGOL/60 for statement:
(1) FOR X:=1, 2 STEP 2 UNTIL 7 DO X:=X+1

Here, since the control variable is itself updated in the
statement "X:=X+1", the statement "X:=X+1" is evaluated only
three times, for the values of the control variable "X" equal
to "1", "2" and "5". The critical point in this evaluation
is that the increment for the control variable "X" is delayed
until the statement following the "DO" is executed, possidbly

changing the current value of the control variable. Similarly,

the evaluation of a for statement of the form

(2) FOR X:=Q, U STEP V UNTIL W DO s;

where "g"

is some statement, can result in changing the
values of "X", "U", "V", or "W" before each iteration of the
statement, The delay in the evaluation of for list elements
is handled through the use of dummy variable functioms. For
example, congider the following function definitions:
REC STEP(A,B,C) = LET A',B',C' = (A '"A'),(B 'A'),(C 'A*)
IN (B'>0)A(C'<A') => 'A!

(B'<0)A(A'<C') => 'a?

ELSE A' Ax, (STEP(Arw,
= L *(+(a',3")), B,C))]

149

REC DELAY_CAT L = LET H,T = HD L, TL L
IN LET B' = (H 'A')
IN (T = 'A') = H
(B' = 'A*) => (DELAY_CAT T)
ELSE =@E',7]

REC POR(V,L,S) = LET H,T = HD L, TL L
IN (L = 1“') é TAt
ELSE =» V := H; (S 'A');
POR(V, (DELAY_CAT T),S)

and the following target language translation of the for state-

ment (2)
FOR(X,(DELAY_CAT fir.q 3x.{STEP{Ax.U,A7.V,An.W))], o) #

Here the function "DELAY_CAT", when applied to the list of
dummy variable functions in a for 1ist, produces (a) the null
string or (b) the evaluation of the next element in the for
list followed by the dummy variabdble fuﬁetions representing
the remaining elements in the for list. The function "FOR"
succeesively evaluates the statement within the for statement
for each of the successively computed elements in the for list.
The semantic constructs in ALGOL/60 are similar to those
in many other computer languages for performing numerical
calculations, e.g., FORTRAN, MAD, AZD an#é portions of PL/L.
The semantic constructs in SNOBOL/l, defined in the previous
chapter, appear im part in several languages for string
manipulation, e.g., PANON/1B, TRAC and CONVERT. The charac-

terization of certain important linguistic features, like

®5' represents the target language translation of the source
language statement s.

150

structures in PL/1 and AMBIT/G and real-time operations in
PL/1, has not yet been attempted with the target language
presented in this dissertation. I suspect that the delay
feature in evaluating target language expressions will prove
useful in defining real-time operations and that'modifications
to the target language will be needed to characterize conven-
iently operations on structured deta. Nevertheless, the
characterization of SNOBOL/1l and ALGOL/60 have provided
significant tests of the target language in defining semanties,
and it 1s expected that future research will yield modifica-
tions and extensions of the concepts presented here to define
more varied computer languages.

Since the discussion in this chapter has focused on a
simplified exposition of certain éonstructs in ALGOL/60, the
remainder of this chapter will be devoted to a detailed
explanation of the complete formal definition of ALGOL/60,

as given in Appendix k4.

Two Abbreviations for the Canonical Systems of ALGOL/60:%

Besides the abbreviations introduced earlier, two abbre-
viations have been added to the notation for canonical systems
in writing the canonical systems for ALGOL/60. The first of
these abbreviations allows the user to abbreviate construec-

tions defining an alternating sequence of two other

®*The remaining portions of this chapter are for those who wish
to study in detail the formal definition of ALGOL/60 given in
Appendix UL,

151

' which con-

constructions (for example, defining a "for list,'
sists of a sequence of for list elements each separated by a
comma). Examples of the variants of this abbreviation are
given in examples 7 in the table on the following page. The
formal definition of this abbreviation is given in productions
21 of Appendix 1.3.

The second of these abbreviations generally allows the
user to use a slash to abbreviate productions that are re-
peated for each of the constructions defining real, integer,
and boolean quantities in ALGOL/60. An example of the use
of this abbreviation is given in example 8 in the table on

the following page. The formal definition of this abbrevia-

tion is given in productions 22 of Appendix 1.3.

Notes on the Canonical System Defining the Syntax of ALGOL/60:

Predicates Needed to Specify Context-Sensitive Requirements:

To specify the context-sensitive requirements on the
syntax of ALGOL/60, a number of additional predicates (S31
through S41) are used. The predicate "TYPE" (S31.1) defines
a set of three members, the strings "REAL", "INTEGER", and
"BOOLEAN". The predicate "DIMM" defines a set consisting of
strings of ones, where the number of ones in a string gives
the dimension of an array. The predicate "SPEC" defines a
set of strings, where each string specifies the use of some

formal parameter in a procedure declaration. The predicate

152

€S1

EXAMPLES OF ABBREVIATIONS USED IN TNR CANONIC SYSTEMS OF ALAGOL/60

7e. | usaBr PRODS FOR LIBT BL<e> ~+ POR LIST<e>;
POR LIST EL<e>, FOR LIST<i> <+ POR LIST<%,0>;
ABR PRODS FOR LIST RElee> + POR LIST<ALTSEQ{e ,)>;
Tb. § UNABR PRODE PRIN<p> + TERN<p>;
PRIM<p>, NULT OP<m>, TEMN<t> =+ TERN<tmp>;
ABR PRODS PRIN<p>, MULT OP<m> + TERM<ALTSEQ(p m)>;
Te. | URABR PRODS POR LIST Bl<e..e'> + POR LIST<e..e'>;
POR LIST Rl<e..e0'>, FOR LIBT<L,,2'> + FOR LIST<L,e..%,0'>}
ABR PRODS FOR LIST ELc<e..e'> + POR LIST<ALTSRQ(s ,)..ALTSEQ(s® ,)>;
74. | usasr prODS PRIM<p..p'> - TERM<p..p®
PRIM<p..p'>, MULT OP<m>, TERMN<t,,t'> « rinu<s-p..(-(z'.p'))>;
ABR PRODE PAIM<p..p'>, NULT OP<m» > TERN<ALTEER(p m)..APPLIC(p' m)>;
Ta. | UNADR PRODS 300L 8EC<s,.0'> + BOOL PAC<w..8'>}
BOOL $XC<s..8'>, BOOL FAC<f..f'> + BOOL ?Ac<rA-..(A(f'.-'))>~
ABR PRODS BOOL SEC<s..s'> + BOOL PAC<ALTSEQ(s A)..APPLIC(s' p)>;
8. [UNABR PRODS ID<s> ~ REAL VAR:R VARBcisi >,
ID<i> -+ IHT VAR:I VARS<i:1i,>;
Ip<i> -+ BOOL VAR:B VARB<iii,>;
ABR PRODS ID<i> =+ REAL/IND/BOOL VAR:R/I/D ¥YARS<i:i,>;

"SPEC LIST" defines a set where each member is a string of
parameter specifications each separated by a comma. For
example, if "P" is a declared procedure with two formal para-
meters "X" and "A", and "X" ie used '‘as a real variable and

"A" is used as an integer array of dimension three, the speci-
fication 1ist for the occurrence of the procedure declaration
is "REAL,INTEGER ARRAY(111)".

The predicate "SPEC1:SPEC2:COMB" (S33) defines a set of
triples, where the first element is & parameter specification
designating some use of a formal parameter, the second element
is a parameter specification designating some other compatible
use of the parameter, and the third element the parameter
specification designating their combined use. For example,
if the formal parameter "X" were used in three contexts, as
a real variable in an arithmetic expression, as a real vari-
able in a subscript 1ist, and as a real variable that is
assigned a value in an assignment statement, the following

triples could be generated
<A:REAL:REAL> <REAL:REAL:REAL> <REAL:ASGNED:REAL ASGNED>

designating the combined use of "X" as a "REAL ASGNED" vari-
able., Note that if X is used both as a real and a boolean
variable, there is no way to combine the specifications "REAL"
and "BOOLEAN" to obtain the specification of the combined use
of "X". In the generation of legal programs, the use of this

predicate prevents the generation of illegal procedure

154

declarations containing such incompatible uses of formal
parameters.

The predicate "SPEC MATCH" (S34) defines a set of ordered
pairs, where the first element is the parameter specification
of an actual parameter, and the second element is a compatible
parameter specification of the corresponding formal parameter.
The predicate "SPEC LIST MATCH" augments this set to include
lists of parameter specifications. For example, if "P" is a
. procedure as defined asbove and "Q" is a declared integer
array of dimension three, the function designators "P(3.1,Q)"
and "P(TRUE,Q)" would have specification 1lists "ARITH EXP,
INTEGER ARRAY(111)" and "BOOLEAN EXP,INTEGER ARRAY(111)".

The specification 1list "REAL,INTEGER ARRAY(111)" would match
the specification 1ist "ARITH EXP,INTEGER ARRAY(111)" but
vould not match the specification 1list "BOOL EXP,INTEGER
ARRAY{(111)". Thus the use of this predicate prevents the
use of incompatible formal and actual parameters._

The predicate "USES:PARS WITH SPECS" (S35) defines a
set of ordered pairs, where the first element of each pair
contains several lists of formal parameters with each 1list fol-
lowed by a parameter specification enclosed in parentheses®

(e.g., "X,Y,2,(REAL) A(111),B(1111),(BOOLEAN ARRAY))", and

®If the formal parameter is an array identifier, the identi-
fier may be followed by the dimension of its subscript 1list;
if the formal parameter is a procedure identifier, the
identifier may be followed by the specification list for
its actual parameters.

155

the second element contains the list of formal parameters
with each formal parameter followed by its parameter specifi-
cation (e.g., "X REAL,Y REAL,A BOOLEAN ARRAY(111),B BOOLEAN
ARRAY(1111)"). The predicate "PARS:USES:SPECS" defines a

set of triples, where the first element is a list of formal
parameters (e.g., "X,Y,A,B"), the second element is a list

of the uses of the parameters (e.g., "X REAL,Y REAL,A BOOLEAN
ARRAY(111),B BOOLEAN ARRAY(1111)"), and the third element
the parameter specification list for the parameters (e.g.,
"REAL ,REAL,BOOLEAN ARRAY(111),BOOLEAN ARRAY(1111)"). This
predicate is used to generate the specification 1list for the
formal parameters in a procedure declaration.

The predicate "ENTRY" (S36) defines the set of elements
that can occur as asuxiliary lists in the canonic system for
ALGOL/60. An entry is either an identifier, or an array
identifier followed by the dimension of the subscript list
given with the array identifier, or a procedure identifier
followed by the specification list of the actual parameters
given with the procedure identifier. The predicates "DIFF
CHAR", "DIFF sTR", "DIFF ENTRY", "IN", "NOT IN", "NOT CONT",
"DIFF ENTRY LIST", "DISJ ENTRY LIST", "L1:L2:INTERSEC" and
"L1:L2:REL COMP" are similar to those given for SNOBOL/1.

One important exception in the similarity for the ALGOL/60
predicates and the SNOBOL/1l predicates occurs in the defini-
tion of the predicate "IN" (S38.1). An entry is considered

to be contained in a list of other entries only if the

156

dimension of an array identifier or the specification 1list
other identical array identifiers or the specification lists

of other identical procedure identifiers.

Specification of the Context-Sensitive Requirements:

In general, the context-sensitive requirements on the
syntax of ALGOL/60 are specified by specifying a number of
auxiliary lists with each syntactic unit and later specifying
that each of these lists has certain properties. The lists
or switch variables (S24 and S26.2), (b) the identifiers
used as real, integer, boolean, or switch variables (S8.3,
89.1 and S512.2), (c) the identifiers declared as real, integer,
or boolean arrays (825.9 and §25.10), (d) the identifiers
used as real, integer, or boolean arrays (S8.4 and 59.3)

(e) the identifiers declared as real, integer, boolesn, or
non-valued procedures (S27.12) (f) the identifiers used as
real, integer, boolean, and non-valued procedures (59.2, S9.9
and 89.10) (g) the labels® (S20.2 and 821.3) and label refer-

ences (S12.,1), (h) the procedure identifiers and variables

®*L,eading zeros in & numeric label do not effect the value of
the label. For example, the strings "00149", "0149", and
"149" each denote the label with value "149", Thus, a label
is defined (S84%) in the canonka] system by a set of ordered
pairs, where the first element is a label and the second
element is its value, The auxiliary lists of labels and
label references contain the values of each label string.

157

TASAS SR R T T o e RS TI e T ” t W, T

that are assigned a value in an assignment statement (S18.1
and 818.2), and (i) the variables used in the arithmetic
expressions in an array declarationm (825.1).

The specification of the restrictions on each of these
lists is complicated. The lists of formal parameters, para-
meters called by valﬁe, and labels in a procedure declaration
must contain identifiers each of which a different (predicate
"DIFF ENTRY LIST" in S27.12). The lists of formal parameters
used as real, integer, boolean and switch variables, the lists
of formal parameters used as real, integer, and boolean arrays,
the lists of formal parameters used as real, integer, boolean
and non-valued procedures, the lists of formal parameters
used to reference labels, and the lists of assigned procedure
identifiers must each be disjoint (predicate "DISJ ENTRY
LISTS" in 827.12). The lists of declared identifiers and
labels in a block must each contain different identifiers
(predicate "DIFF ENTRY LIST" in 829). The lists of identi-
fiers used as variables, arrays, procedures, and labels must
each be disjoint (predicate "DISJ ENTRY LIST8" in S529).

The lists of identifiers used in a procedure declaration
but not specified as formal parameters (the primed variables
in 827.12), the 1lists of identifiers used in a block but not
declared in the block (the double primed variables in S29),
and the lists of identifiers used in the bound pair list of
an array declaration (the variables with a subscript "m" in

S529) must be obtained and specified as used identifiers in

158

the procedure declaration or block. Furthermore, with each
declaration (825.4) or use (88.% and 89.3) of an array identi-
fier, the dimension m of the associated bound pair 1list or
subscript 1list is kept with the identifier in the auxiliary
lists of declared and used arrays. Similarly, with each
procedure declaration (827.12) and function designator (89.2,
89.9 and S59.10), the specification 1ist x of the formal or
actual parameters is kept with the identifier in the auxiliary
1ists of declared and used procedures, The specification 1list
for a procedure declaration is obtajined through the predicate
"PARS:USES:SPECS" discussed earlier. The restrictions that
the dimenslon of each use of an array identifiér must match
its declared dimension and that the actual and formal para-
meter lists must be compatible are specified through the
predicates "PARS:SPECS:USES", le:LZ:REL COMP" and "L1:L2
:INTERSEC" as discussed earlier.

Finally, a string is defined as a syntactically legal
program only if the 1lists of used but not declared variabdbles,
arrays, procedures, labels, label references, and assigned

procedure identifiers are each given as null (S30.3).

Notes on the Canonical System Specifying the Translation
of ALGOL/60

Three additional predicates (T42) are used in the specifi-
cation of the translation of ALGOL/60 into the target language.

The predicates "LIST:CORR NULL LIST", "LIST:CORR UNSHARE LIST",

159

and "LIST:CORR INDEXED LIST" define sets of ordered pairs
wvhere the first element of each pair is & list of identifiers
(e.g., "X,Y,Z2,") and the second element of each pair is
respectively (a) the corresponding list of null strings (e.g.,
"TATL,AY VAT ,")® (b) the corresponding list of expressions
applying the function "UNSHARE" to each identifier (e.g.,
"(UNSHARE (X 'A')),(UNSHARE (Y 'A')),(UNSHARE (2 (Y 'A'),",
and (c¢) the corresponding list of identifiers each followed

by a "#" and a positive integer (e.g., "X#1,Y#1,Z#1,").

®*In the target language these lists are used in expressions
like "LET X,Y,Z2, = 'A','AY 'A', IN ...". Strictly speak-
ing, the last comma in each list should be removed.

160

I s

CHAPTER VI

DISCUSSION

This thesis describes a formal system for defining the
rules for writing progrems in a computer language and for
defining what these programs mean. The author strove for
simplicity of the formal system, and then applied the formal
system to define two complete computer languages, ALGOL/6OF
and SNOBOL/1.

Besides simplicity, such attendant qualities like
naturalness, perspicuity, and communicativeness have been
accorded due allowance. Necessarily, I have used my personal
discretion in weighing these qualities. It is inevitable
that further research will refine the optimal balance of
these qualities. Admittedly, there existe no known metrics
for measuring these qualities precisely. They are subject
to a latitude of interpretations. This fact should not be
surprising, Indeed, almost every computer language has at
least the theoretical capability of defining any computable
algorithm. Why so many computer languages? It is more
natural or more concise to define an algorithm in one lan-
guage than sanother

Canonical systems were used here to define the syntacti-
cally legal strings ;n e computer language and the transla-
tion of the legsal strings into strings in some other language.

Not once was it necessary to step outside the formalism to

161

define the syntax or translation of a language., Although
some complexity was added to the formalism by introducing
abbreviations to the btasic notation, even the abbreviations
vere ultimately defined in terms of the basic formalism.
Extended Markov algorithms and the A=-calculus
were used as a basis for defining semantics., Prior to this
effort, work has been doéne by others in using formalisms
like recursive function theory, Markov algorithms, formal
graph theory, and the A-calculus to characterize computational
processes, However, the marriage of extended Markov algo-
rithms to the A-calculus is to my knowledge the first attempt
where two formalisms have been intimately combined to charac-
terize computational processes, Almost every construction
in SNOBOL/1l and ALGOL/60 was solely within the combined
formalism. The introduction of new expressions to the
combined formalism to mirror the assignment and transfer of
control constructions in SNOBOL/1l and ALGOL/60 appeared un-
avoidable, Nevertheless, these additions accomplished con-
Plete definitions of the semantics of both languages. More-
over, the entire target language was eventually defined by
an extended Markov algorithm defining a machine for evaluating
strings in the target language.
The extended Markov algorithm definition of the target
lariguage evaluator not only reduced the definitions of
semantics to a single formalism, but also demonstrated that

a computer possessing only the characteristics needed to

162

AT AT Tt a g T e L E I st T e N TN Gk AT g P T e AT i T gl R e 2 e el

evalusate an extended ﬁarkov algorithm is sufficient to
execute source language programs tranglated into the target
language. The conventional machine facilities existing in
most computers, like tho?e for performing arithmetic and
logical operations and those for transferring control within
a program, are not needed to evaluate target language pro-
grams, although they may be convenient. On the other hand,
such horribly detailed machine facilities, like those for
shifting bits or branching on the setting of aannik; appear
to be useless in evaluating target langusge programs. The
ability to use extended Markov algorithme as the basic
evaluating mechenism for computational processes suggests that
machine languages quite different from thqsé<co§vbitfdﬁ§11y
used might be more effective for defining computationsl
processes. However, this subject is, at least, worth adpther
doctoral dissertation,

Ope may well ask: Why was one torntiis;, canonical
systems, used to define the syntax and transiation of & lan-
guage? Why was another péir of formalisms, extended Markov
aigofiﬁhlsAdﬁ& tﬁe x<c¢alciilus, used to defime the sesantics
of a language! And why was Just edtended Markov algorithms
used to define the target langusge €évalustor? The following
are By apsvers. rirst, it appears convenieat fo défine the
syntéx an& translation of a langiage with a geserafive grammar

(¥hich canopical systems proyide) thet Frees the langusge

163

designer from the details of specifying a scanning algorithm
for determining whether & source language string is accept—
able. Second, a computer language generally specifies some
well-defined algorithm for performing a computation, and
hence it seems somevhat natural to define the semantics of
a computer language with some simpler algorithmic formalisms
(1ike extended Markov slgorithms and the A-calculus).
Third, extended Markov algorithms alone were sufticient\to
define the target language evaluator. Fourth, the considera-
tions of naturalness and perspecuity arise again, The
formalism of canonical systems seemed well-suited to define
the syntax and translation of a language, the combined forma-
lism of extended Markov algorithms and the A=calculus
readily lent themselves to defining what a 1anguége means,
anﬁ extended Markov algorithms provided the desired concise
definition for the target language evaluator. In short,
different formalisms model different processes with different
degrees of complexity.

I have attempted to separate the specification of the syntax
and semantics of a language into three parts: (1) the specification
of the legal strings in a language, (2) the specification of the transla-
tion of the legal strings into the target language, and (3) the specifica-
tion of the primitive functions used in the target language. Although
each of these specifications must depend on the others for their cor-

rectness, the specification of the primitive functions in the target -

164

language were written for the most part after the specification of the
translation of the source language into the target language and re-
sulted in few changes to the definition of translation. On the other
hand, it is unfortunate that the specifications of the syntax and transla-
tion depended heavily on each other. A change in the specification of
the syntax often required a change in the specification of the transla-
tion, and vice versa. It would certainly be valuable to develop a con-
vention that would better isolate the specification of the syntax and
translation.

Although the semantics of a source language was formally
defined here by the target language, and although canonical
systems specify only the syntax of a language, a large portion
of the senaﬁtics of the source language was somewhat impercep-
tively defined in the canonical system defining only the syntax .
of the language. By using descriptive predicate names like
"ARITH EXP", "COND STM", and "LABEL", a correspondence with
the English language was made to aid the reader's understand-
ing of what was being talked about, i.e., the semantics of
the constructions being defined., A similar use of the
English language occurs in a Backus-Naur form specification
of a computer language. The use of metalinquistic varisables,
like "ARITH EXP", "DIGIT", and "PRIMARY" in productions like
"<ARITH EXP> :: = <DIGIT> | <PRIMARY>", does convey some ides
of what the specified strings mean, although strictly speaking

the productions define only certain legal strings in a

165

T I M T Y S o PYLETIRNCRI

lenguage., In this way both canonical systems and Backus-Naur
form make good uses of one of the most popular meta-~languages,
the English language.

There are several immediate uses of the formal system
presented here, First, when developing a language, it would
be desirable to have a formal definition specifying precisely
vhat strings are allowed in the language and what the strings
mean. Such a formal definition could be given to others for
their analysis and would sharpen the debate over whether the
convenience of each construction in the language would be
worth the difficulty in éxplaining or implementing the con-
struction, Second, after the designers agreed upon the con-
structions in the language, the formal definition would be
valuable to those impiementing the language or those prepar-

ing the language manualg in that théy would know unambiguously

what wage intended By the language designer.

The formal system presented here opens several avénues
for future research. As previously mentioned, since canonicsl
systemg can défine precisely both the syntax and translation
of & language, cancnical systeme might de used as the basis
for axatomatic transleatien betvween computer largusges. If an
efficfent algorithkm eemld be developed to recognize striugs
specified by a cgnonical system and generste their translation,
a canonical eystem definition of a lamguage could be imme-
diately ueed to translate legal prosrdn: in the language into

agother lenguage. Anothey use of the formal system might be

166

in the implementation of "extensible" computer languages.

By simply adding or changing the productions dgfining the
syntax and semantics of a language, the‘new productions could
be given to the algorithm for tr;nslating strings specified
by a canonical systém, thereby implementing the extended
language.

The author has attempted to integrate and adapt three
known formalisms to define computer languages. These formalisms
have been blended into a formal system for defining computer
languages rigorously and somevhat concisely., The most signifi-
cant portions of the attempt here are the application of
canonical systems, the marriage of extended Markov algorithms
with the A-calculus, and the application of extended
Markov algorithms to define an evaluator for the target lan-
guage., It is hoped that this work is a progressive step in
achieving the thesis of this dissertation, to meet the need

for formal methods for completely defining computer languages.

167

Appendix 1.1 CANORICAL SYSYTEN lPlqujlﬂ IUE_SYBRTAX OF A SUBSET OF ALGOL/60

{a)} Basic notation only

1.1 |praze PIGIT<1>;

1.2 BIGIT<2>;

1.3 DIGIT<3>;

2.1 [VAR VAR<A> ;

2.2 VAR<D>;

3.1 | PRIMARY DIGIT<a> <+ PRINARY:VARS<d:A>;

3.2 R VAR<w> + PRIMART:VARB<viv,>; . .

3.3 [ARITH RXP | PRINARY : VARB<p:v> + ARITE BXP:VARB<p:v>;
3.4 PRIMARY: VARS<p:v>, ARITH EXP:VARS<a:u> -+ ARITH EXP:VARS<aép:iuv>;
3.5 s ARITE EXP:VARB<atu>, VAR<y> =+ STN:VARS<visa : v,u>;

A1 | TYPE LISY | TYPR LIST<A>;

b2 TYPE LIST<D>;

N3 TYPR LIST<A,B>; .

k. k |DRC TYPR LIBT<t> -+ DEC:DEC VARS<INTEGER t:t,>}

S. PROGRAN. S8TH:1VARS<m:u>, DRC:DEC VARS<d:v>, IN<u:iv> + PROGRAM<BROIE d;s R¥D>;
6.1 [Im IN<A, A>3

6.2 IN<B,:B,>3

6.3 IN<A,:A4,8,>3

6.4 IN<D,:A,B,>}

6.5 INexst>, IRecy:t> + INcxy:t>g

(b) with abbreviations

1, |DI1ary DIATITCL> <2> ,<3>;

2, VAR VAR<A> ,;

3.1 | PRIMARY | DIGIT<d»; .+ PRINART<d>; _

3.2 VaR<v> + PRINARY:VARB<vViv,>;

3.3 F ARITE EXP | PRINARY<p> < ARITE BXP<p>;

3.h PRINARY<p>, ARITE EXP<u> <+ ARITE BXP<a¢p>;

3.5 jsmm ANITE BXP<ar, VARCy> <+ STN:VARSCY = aiv,>3

k.1 | TYPR LIST | TYPE LIST<A>, <A, B>;

h,2 | DEC TYPFE LIST<L> -+ DEC:DRC VARS<INTEORR £:1,.,>;

- PROGRAN SBTN:VARS<s:u>, DEC:DEC VARS<&:v>, IN<u:vy> + PROGRAN<BEGIE d4; s END>
6.1 1M IE<A,tA,>, <A,:A B,>, <3,:B,>, <B,14,8,>;

6.2 INcxIf> <y18> « IN<xy:i>}

168

Appentix 1.2 CABONIGAL SXSTEN SPESAFIING TBE TRANSIATION oF

I5E_CUDERT INTC ARSNNRLAR LARNSANE®
(s} Basie netatios only
. DreIT DIOIT<1>;
. DIGIT<P>;
. | {2y 13 1Y
. VAR VAR<A»;
. VAR<E> 3

PRINARY DIGITed> <+ PRINARY:VARS<d..oP'8%:14>;
VAR<y> +> PREMARY :VARS<v,.V1V >}
ARITH EXP | PRINARY (VARS<p..p'1v> <+ ARITSH llll'lll'p.. L 1,
ﬂlﬂﬂa".ﬂ.."n’. ARTTE BXPtVANS<¢s,.a'1u>
+ ARITH EXP:VARS<atp..2" A 1,p° ADD piuvr;

o

v Wwww (X T
M W e

.3 | ARITE BXP:1VARG<a..a'tw>, VAR<y>
. * STMVARS<Y 1% g,..0" 87 1,y ®PTORE RESULY IN viv,w>g

3.1 | TYPE LIST |TTPE LIST<A..A B8 | 4}

b2 TYIPR LINT<R..B B P>;

h.3 TIPR LISWe«p D..A e M) | Rl

A0 Jame TYPE LIST<R,..A'> <+ DECIDEC VARS<IBTRORR 2..2':18,>}

S. PROGRAN STM1VANS<s, ,0* e, .ﬂnﬂ-;AI:ﬂ.;"sw. IR<uzv>
- PROGRANCDOGIR &y &
OSEY BASE NSUISYERS USING ©,15 SINPORN AemNSLENie$
SABTUME 70 SYEAVISLRIYSTORASS FOR VARIASLES &% ey

6.1 [1m IWeA, 14,53

6.2 TheD,t8,>3

6.3 I8<h id B0

6.5 TN, 1A,8,5 4

6.3 IBcg1s>, INeysa> <+ IBexybrg

(v). with adbrevissions

3.1 |PATIARY 2162 T<d> *» PRINARY <. .oP%Q%>3
3.2 Vakewrr . + PRINARYcY.. v L 2.9t

-3 [ARITE RXP [PREMARY<p..»'> < ARITH REP<p.. “
;.: PRIMANY ’..:'> ARTYE EEP<a..a'> - ARTIE BEP<otp, .08 A1
3.5 fotn m:i«..-‘». YAR<wr> + §Tlcv 1o &..09 .

MEBVLY 1IN v,

(Y LIST [TY98 338%<A..A BE P> B..D Pych,B..A 28 T3 P8 P>,
h.2 . TYIPE LIPR<h, .0 o nc«nnl- T A 1

3. [rROSRAN SPce,. .00, BBEcA..A°> < PROGRANCINGIE 4; o 'BED.S

o2he syadel "I demetes & nev linme.

169

ERC 3PS

opesai 13 SISNICKL NPT SPRCITIINS 100 M

(a) Productions definiag the rules for t --.l-‘ . eal system

1. [oss aLema OB ALPHACO> ,€1>, o0 p€92 <A €8P, <00 €B2 <1 (3>, o0 €,3f
2.1 [PRED CEAR PRED CEANCO» ,<1>, ...,<9>, <A> I ETIT: d ‘
2,2 | PRED PART PRED CRAR<o> PRED PART<a>; '
2.3 PRED CHAR<a>, PRED PART<p> -+ PAED PART<pa>}

2.0 | PRED ALPEA PRED PANT<p> + PRED ALPRA<p>}

2.% PRED PART<p>, WP PRED<q> + PRED ALPRA<p*:“q>;

3.2 | VAR ALPEA VAR ALPEA< a”> ,< B>, ..,¢ 8%}

3.2 U OR mmcnn«o».u»,. ...‘.<,> <‘a,<'>. coent Fett>y

3.3 VAR ALPEA<v>, BSUS OR SUPERSCRIPRep> <« YAR ALPHA«<ver}

k.1 jWr TERN TERN<A> v

h.2 37 ALPHA<a> < WP TERN<a>}

A3 AR ALPRA<a> + Wy TERM<a>

[39 Y TERN<t> <> + WP TERMN<tr>;

k.5 | WFr TERN PUPLR TERN<L> + WP TERM TUPLRc<t>>;

.6 TERN<t>, WP 'IIII TUPLE<<r>> + WF TERN PUPLR<<r*:“t>>;

S. | VWP ATON PORM ED ALPRA<p>, WP TERM TUPLE<t> + WP ATOM m,;»;

6.1 | wr PRENISE ATON PROD<p> + WP PREMIBE<p>;)

6,2 wr COICLU!!OI‘ m PROD<p> - WP C‘O.c’mlbl<p>;

7.1 | VP ATON PROD COBCLUBXOR<e> « WP ATON PROD<e;>}

T.2 [WP PROD ATON PROD<p> -+ WP PROD<p>;

T.3 PRENISR<p>, WP CONCLUBION<c> <+ WP PROD<pec;>; ‘
T.h ¥ PROD<gwci>, WF PRENISE<p> < VWP PROD<s,pee;>} f
1 CANON ICAL SYSTEM PROD<p> « WP CARONICAL "lm*r’;

.2 PROD<p>, VWP CANONICAL SYSTRNM<c> ~+ WP CANONIGAL mu'!nlqp;l

{b) Productions defining the rules for deriviag strings specified by & ssmonicel system
Plob ONICAL SYSTENM STR<s>, VP CARONICAL SYSTEN<g> ~» umxea.i. SYSEEM«s>;
ICAL SYSTRM<spt>, WP PROD<p> <+ PROD<p>;
. . |

0. *PIOD IBSTANCEK ROD<p>, SUBST<pivis:q>, STR VITE HO VARS<q> + PROD lumﬁ;

i

1,1 {DERIVATION ERIVATION<A> 3 ..) |

L2 IRIVATION<$>, PROD IENSTABOB<¢;>, WP CONCLUBION<e> . ;

+ DERIVATION<Z o>
1.3 ERIVATIONC<4> , ; INSTANCE<prci>, PRENS:DERIV OONY M:C’
- Dl!!vlﬂoltl ery

2.1jo85 sTR BJ ALPRA<a> - O 8TR<q>;

2.2 BJ ALPHA<a>, ON 8TR<g> + OB iﬂ‘!l>;

2.3 [STR \TTW NO VARS WITE NO Vﬂl‘.’ 134 > ">y

2.4 KiPEA<s>) m '!'ﬂ 20 VARB<a>}

3 - ALPEAL e’ STR WITR 3O YARS<e>;

2.6 WITH B0 VARSIw> <> 'o STR VITR ﬁﬂﬁmn

2,7 LVAI!I’XP' VAR n.cmxun VAR cm«-:» yEBTEY, ..., YR of 1 oSgla®s ey

<timey

28 AR M.mcnv <sdy>, “Al CEAR:DIFP VAR CEAR<c:8>

< VAR:DIFP 'Al'lexuvn

3.1| sums? AR ALPEA<y>, OBJ STR<s> - BUBSY<vis:ivis>;

3.2 VAR ALPEA<v>, OB BTR<a>, BTR VWITE O VARS<t> <« SUBBT<widiti¢s;
13.3 AR ALPRA<v>, OBJ BTR<s>, VARIDIPF VARcviw>» » SUBSYT<visivIw>}
13.4 UBNST<visinty> ,cvisix'1y'> - SUBST<visizx'iyy'>;

b.1] PRENS:DENIV Am PORE«p> . ;ﬁ;”!‘ CONT PREMB<pi1p>;
1h.2 CORT PRENS A PORNi<p>, PREMEIDERIV CONT PREMS<sit> 1 BERIV CONT PRENS<eo:t D>,

<s pit p>,

170

H
\

(e) Productions defining the rules for sonvertisg as sdbrevisted

isto
fors. (The fonovhg unemonics are used here: P = Produystisa, AP l;nh Preducties,

C8 = Canoniesl System.

Lot sl adeded
MIARAR VA W e

LY
FUR M MFWNE WM EFWR N WA rW R

L PP

Bt g Bt G Bt e OO e
oRm & NSNS

e e

~
»
-

19.2

22.9

BRL C8:CB

ABR2 CB:C8

ABR3 CB:C8

RBRL CS:C8

[ABRS CS:CB

hBR6 CB:C8

ABRT C8:C3

han8 cs:c3

23.

k.2
242
2k.3
ak.y
as.s
2s.6
2.7
24,8
24,9

ANONICAL
STEN BTR

AR
TR

IFF STR

ONT
0T CONT

24,1008 IRLINITER
24.11]AUT PRED

1TERMS

WP PROD<p+a;> + ABR1 PiPCprg peeiry

WP PROD<p+oi>, ABRL P:P<peg;:t;> + ADR1 PiP<pre.sytpeeit;ry
VP AZON PROD<ey> +> AMR] AP1APCagie ;>

WP ATOM PROD<ey>, ADRL AP1AP<sjity> -+ ABRY APIAP<s,ej1tici>y
ABAL CB:1CB<A1A>; :

ABRY CB:CS<c:d>, ABR1 P:P<piq> + ABR1 C8:lS<epidq>y

ABR1 CB:CB<e:d>, ABRL AP1AP<piq> -+ ABRY C8:CB<¢pidq>;

€8 DELINITER<,>;

€3 DELIWITER<w>}

€8 DELIMITER<;>;

WP ATOR PROD<pet>> + ADR2 STRIBTR<p<t>ipct>>y

WP ATOR PROD<p<t>>, ABR2 STR:i8TR<p<r>1s> + ADR2 STRISTR<pers> <t>1s,pct>>g
ABR2 CB:C8<cAtA>y

ABRZ C8:C8<c:d>, ABR2 BYR:BTR<ait>, C8 DELINITER<E> « ABR2 C8:CScesmidtwr}

WP ATOM PROD<p> ,<e> « ABDR) PiPcpeciipeag>y

WP ATOM PROD<p>, ABR3 P:Pcsecyt> + ABR3 PiPcp|avojpeest>y

ABRY CB:CB<A:A>;

ABR3 CS3;C8<cid>, ABR3 PiP<piy> < ADR3 C3:C8<cpide>;
ABR3 C8:C8<c:d>, WP PROD<p>, NOT IE<]ip> <« ABRY CS:CB<epidgr;

PRED PART<p>,<q>, YAR ALP1A<w> ,, DIPP STR<aibds>
+ ABRbL P:Pcpcar+qe82Q{a)>; : P<8>4q<8>} Pcd>, qebreqead> >3
[ABRM CB:CB<AtA>;
JADRM CB:CB<c1d>, ABRM PiPepiy> <+ ABRhM CB:CB<eopide>;
[ABRL C8:CB<c:d>, WP PROD<p>, WOT CONT<S8EQ(:p> + ADRE CB:CB<opidq>;

PRED PART<x>,<p>, WP 'rlnl«;, AUX P!ln:ﬂllﬂp‘:txb.(pan!’.
STR<a> <« ADRS P"""*’x’z“l'x"g"] l*xpl‘:‘pp_a(t‘tl‘l’llz’vl
PRED PARY<x>,<y>, WP TERN<t >,ct >, AUX PRED:TERMB<pit>,<q,:r
(‘2"2,"'1”1’"’2“2, STR<z>,<s'>, VAN ALPRAcv>, NOT CONT
. .
<Vise "x‘yrlrztl‘a’ -+ ABAS P:P<s "x“z“y'1'a" ‘nl”a“:‘ltgz"
- o L
1) y|1u2<t‘r1 tivr,>e '“1”8“:‘1‘“2"’5
ABRS P:P<piq>,<qir> =+ ABRY PiP<pir>;
ABR3 CB:1CB<AtA»;
ABRS C8:C8<c:d>, WP PROD<p>, PREDICATES NATCH<P> ~ADRS CS:CB<cp:dp>;
ABRS CB:C8<c:d>, WF PROD«p>, ABRS P:P<p:q>, PREDICATES MATCR<q> -+ ABRS CB:CS<cp:dq>;

i

PRED PART<p> WP TERM<w»>,<t> + AP BYN:AP TRICOMBepegbipct>pctr>y

AP SYR:AP T OMB<p<a>:qct>ir<u>>, AUX PRED:TERNB<dim»

= AP SYN:AP TR:COMB<pd<am?1qé<tm> ipd<wm>>} .

AP BYN:AP TR:COMB<pes>iqet>ircm>>, AUX PRED:TERNB<d:m>, WOT CONT<d:p>

+ AP BYNIAP TR:1CONB<pd<sw>i1q<t>ird<ums>}

AP STN(AP TR:COMBe<p<e>2qct>ir<ur>, AUX PRNXD:TERNG<d:my, NOT CONT<dip>

+ AP BYNtAP TR1CONB<p<s>:qd<tm>:rd<um>>}

ABRG CB:C8<A:dA>;

ABR6 €8:CS<c:d>, WF ATON PROD<p>, CB DELINITER«m» + ABR6 CB:CB<cpmilpn>;
ABRG CB:CB<c1d>, AP SYN:AP TR:COMB<s:t:b>, C8 DELINITER<m> < ABRE CS:CScen//tmtddar;

PRED PART<p>,<q>,<r*, VAR ALPEACU> P> ,<w> ,<u'> ,<¥i> cw'>, OM
ALPHA<s> DIFF STR<VIu>,<Wiv>,<o1u'> <wiv's <uiv's aulsur ewtrvr,
<w'iu'>,cwlivi> + ABRT PiP<pcu> = q<ALTEBQ(u 8)>; : peursqeuripew>,
QEV> - qEVIUP 3> ,<PCW> , FeWr +q<ALDPEEQ(u ¥)> ;3 1 pewrrqeusipiu>, yewr,
QEY>+QEVWU> 1> (¢p<u, Ju'>+q<ALTEEQ{u u)}..ALTSEQ{u' #)>; :<pcu,.u’>
*0%U. U IPCUL TP eV, ¥ 20qe Ty U3 §> <peu. JMI>oqALTIRG(w &)
«-APPLIC(y* 3 1 peu. . uTrqeu, <. ut>,qev,.vt>
sqevsu, . ({or')u')> > <peu..ut>, rev. . v roq<ALTEEQ{N w)..APPLIC
(u' w')>; 1 peu..u'>vqeuc ut>jpeu..ut> ,rev. vl qev, V">
+qevwn,, ((v' v*)ut)>i>;
ABRT C8:CB<A:A>;
ADRT (8:C8<ctd>, ABRT P:P<piq> - m" C8:108<cpidg>)
ABAT C8:C8<c:d>, WP PROD<p>, NOT CONT<ALTSEQ:p> - -ABRY CS:Ch<eop:dp>;

A

JABRE P:P1:REST<A:AsA>;

IABRS P:P1:REST<p:q:r>, STR<s>, NOT Col!flxq>

ABRS P:P1:REST<p:air>, IDSTR<i>, BSTR«i/3>, NOT CORT<Dis>
ABDRS P:P1:REST<p:iq:r> . t
ABRS P:PE:REST<p:q:r>, CONT</:r>, ABRS P:PS:REST«<r:q':r'> ABRS P:PSI1REST<piqqir*>)
ADRD P:PS:REST<p:qir>, WOT COBYT</:r> ABDRS PiP<piqr>

ABRO CS:CB<A:A>;

ABRS €8:C8<c:4>, WF PROD<p>, NOT COBT</:p> + ABRS 08:CBeepidp>;

JADRE CB:CB<c:d>, WF PROD<p>, CONT</:p>, ABRT P:P<piq> + ABRD C8:CB<epidq>;

+ ADRS PiP1:REST<paiqsire>}

+ ABRS Pi1P1:REST<pl/azqitre>;
+ ABRS P:PS:REIT<piq
-
-

ABR CABONICAL SYSTEM STR<a>, ABR6 C8:C8<a3ib>, ABRS CBiCB<bic>,
ABRT CB:CB<eid>, ABDRM C8:C8<Qie>, ADRY CB:Cf<e:f>, ABRS C8:C8<f:g>,
ABRZ CB:CS<g:b>, ABRL CB:CB<h:{> < CANONICAL BYSTEN BYR<i>;

CHARCA> (y 000y €22, ¢ B2, B >y 0 < 872, €02 ,€10>, ..., €P> ¢ > ¢0>, ., ,Co>}
BITR<A> 5

STR<3>, CHAR<e> + BSTRege>r;

DIPF CHAR<A:B> <A:C>, ... ratf>}

BTR<ans>,<ayt>, DIPP CHMAR- x:y> <+ DIPF S8TRcaxs>,<ayt>]}
CHAR<e>, BTR<get> -+ CONTccisct>;

STR<s> + WOT CONT<e:h>g

¥OT CONTcsx:it>, DIFP CHARcx1y> + FOT CONT<exity>;

NOT CONT<exaity>, DIPF CHAR<x:y> -+ BKOT CONT<smastya>;
C8 DELINITER<,>,<+>,<{>}

AUX PRED:TERNS<A:A>;

AUX PRED:TERMS8<p:it>, PRED PART<q>, WP TERN<r> <+ AUX PRED:TERNS<p* 1°qit :°r*}
PREDICATES MATCH<A>

PREDICATES MATCH<c>, WF ATOM PROD<pcts>, (8 DELINITER«m>,

C5_PREDICATEScq>, CONT<p,ig> + PREDICATES MATCHcepctrwr}

171

¢

A mE—————
e e e e g e B T L T T A T T

Appendix 1.5 DERIVATION QF A LEGAL RROGRAN AND
T 108

Rule 1: DERIVATION<A>;
Rule 2: DERIVATION<d>, PROD INSTANCE<c;>, WF CONCLUSION<e> + DERIVATION<E o>}
Rule 3: DERIVATION<d>, PROD INSTANCE<p=c;>, PRENS:DERIY CONT PREMB<p:8> - DERIVATION<a o>}

(a) Derivation of s syntactically legal program

Production
Premises froa Comeclusion added to derivatiocn

APP. l.ls

Y 1.1 DIGIT<)>

C2 2.1 VAR<A>

C3 C2 3.1 PRINARY : YARB<1:A>

Ci C3 3.3 ARITH EXP:YARS<1:A>

Cs cl.ch 3.5 STM:YARS<A:®) 1 A,>

06 k.1 TYPR LIST<A>

cT c6 1%} DEC:DEC VARS<INTEGER A:A,>

Cq 6.1 IB<A,:A,>

€ 1€40Cq0Cq 5. PROGRAN<DEGIN INTRGER A; A:=1 END»

(b) Derivation of a syntactically legal program and its transletioa iato
assembler language.

Production)
Premises from Conclusion addéd to derivation
App. 2.la
01 1.1 DIQIT<1>
cg 2.1 VAR<A>
03 Cz 3.1 PRINARY : VARS<1l, .=P'1':4>
cl C3 3.3 ARITH BXP:VARS<1,, L 1,sP'1"' ®LOAD 1:4>
c’ Cl.cb 3.5 STM:YARS<A:al,, L 1,=P')" SLOAD)
8T 1,4 SSTORE RESULT IN A:A,>
e‘ (91 TYPE LIST<A..A DS P>
01 c6 L3R Y DRC:DEC YARS<INTEQER A..A D8 P:A,>
Cq 6.1 IN<A,:A,>
09 05.07.C° 5. PROGRAN<BEGIE INTROER A; A=l END..
SASSENBLER LANGUAGE PROGRAN
BALR 15,0 SSRT BASE REGISTER
UsSIEG *.15 *IEPORN
L 1,29'1' OLOAD 1
T C1,A SSTORE RESULT IS A
sYC (] SRETURN TO SUPERVISOA
SSTORAGE POR VARIADLES
A DS r
ZED>

172

Appendix 2.1 CANONIC SYST! 2 ECIFYL 2! T]08 or

TEE ALGOL/60 SUBSET INTO TNE TARGET LANQUACE
3.1} PRINARY DIGIT<d>» + PRINARY<4, M'>;
3.2 YARev> <+ PRIMARY<v, . v>}
3.3} ARITR EXIP | PRINARY<p..p'> * ARITE BXP<p..p'>}
138 PRINARY<p..p'>, ARITR EXP<a..a'>+ ARITE EXP<atpt{+{a’,p’'))>;
3.5] stx ARITR EXP<a..s'>, VAR<Y> + STH<vioa.. (v ASSIGN. a')>;

8.1]TYPE LIST |TYPE LIST<A..'A'>,<B,.'A'>,<A,B..'A%,'A%>}
b 2] TYPE LIST<t..2°> <+ DEC<INTROER t..twt'>;

5. IPIOGRAI 8TN<s..s'>, DEC<d,.d'> + PROGRAN<BIEGIN 4;s IND,.LET &' 1N s'>3

Appendix 2.2 DEFINITION OF PRINITIVE FUNCTIONS POR SUBSET

Set definjitions for strimg variable | r,8 ¢ 878 |

CHAR DIGITO><1>,
LETTER 4>, ,
MARK <> '<l>' P 14
DICIT@> | LETTERp > | MARK<p> » CEAR<p>;

STR 8TR< A
STR<a>, CEAR<c> +» 8TR<se>}

Definition of imitive pctions

CAT a = [= - (aemetln] e
T T+

] -

comte,en) - [1,

-/tolr. ++ slr
/el/r. <« s2r
SUCC & = /e/

/38/r. +« 9r
/e9/r. + [s/Or
flr. .+« 1r

[0/, +- 0]
ol Yo
s0/r. »] r
PRED & = /sl/r. <+ Or 1 7%/
/s2/r., = slp
./I,IP. 1. 28y J
REC +(X,Y) = BQ(Y,'0') WX
ELSE =) syN(sUCC X, PRED Y)

173

Appendix 2.3 DEFINITION OF AN RV,

(a) Bet definitions for string varisdles: I r’r'"""’1"1"""3"5 ¢ 8TR |
£,v, VARIADLE | p,p’ ¢« PTR | 1,5,k ¢ INDEX | n,h' & BXP ED | t,t' ¢ B3P 7L |
b, ¢ 8%Q WD | t, e 8N TL | 9.4 © LADEL 8TR |

DpIGIT DIGITCO> ,€1>, ... -4<9>}

LETTER Llﬂll<v,<l>. ce 9<E> <a> , ,<u>}

MARE MARK<S> ,<4>, ... ,%)>}

CNAR DIOIT<p> | LETYER<p> | MABK<p> + CRAR<p>;

STR CHAR<e> <+ BTR CEAR<e> ,<A>,<.> «(> ,<)> >, < :">;
S8TR<A>;

8TR<s>, B8TR CNAR<e> -+ STA CHAR<sa>;

CONSTANT STR<s> =+ CONSTAN®<'s'>;
VARIABLE CHAR<e> + VARIABLE<8EQ(c)>;
PR PTRc1>;

PYR<p> + PTR<1p>;
INDEX DIGIT<a> -+ INDEX<8BQ(d)>;
LABEL STR LABRL STR<A>;

LADEL STR<s>, VARIABLE<t> -+ LABEL STR<st\5;

zXP CONSTART<p> | VARIABLE<p> + BXPep>;
BXP<e> ,<f>, INDEX<i> - Exp<{je £)>;
VARIABLE<v>, EXP<e>, INDEX<i> + EREP<)iv.e>;
VARIABLE<v>, BEXP<e>, INDEXsi> -+ BEXP<(jv ASSIGN. e)>;
8EQ<s> . + EXP<s>,
EXP<e>, IENDEX<i> - m<(,mo. o)
8EQ INDBX<i> ,<J> ,<k> + T<i 8. l.(a)>3
EXP<e>, Tets, IEDEX<i>,<§>,<k> O Tt Tt T A reedrs
SBQcs>, VARIADLE<E> - lncdti
SEQ<s>, T<t>, EXP<e>, TEDEX<i>,<)> <k> + 8EQ<((,t o) aym.a)>y
EXP ED CORSTART<c>, VARIABLE<y>, INDRX<i> + EXP ED«<c>,<v> <{¢> <l
v Assian.:,<doto.b;’
3Xr TL RXP<ht>, EXF ED<h> + EXP TL<t>;

SEQ WD, 83Q TL]| VARIABLE<i>, EXP<e>, ln<h.fﬁl" - BBQ lD‘I.’. s ﬂ‘!‘>;

174

(b} Substi

tution rules

n |

1. ll
ht {1~
Tuit
ser 1,

ht

vs |41 1

J

~ [variavie

®Control
®Result

1

1 v=1)
} *Store
*Expression

*Environment

k.3
st ip] § ©
Evaluate

5.3

1 J L]
Evaluate |
Ladel Ref

'r'w A

6. P
e =
Evaluste
Constapt |(2P+F)

i Ill
1k
(1key vep')

(p.litl)
l’v.qhtJ

GOTO. APPLY. r|J

» oy 10,

APPly
(D-htJ) soto |1

h' h APPLY

(l
2, -
- ———-——-—,-
Evaluste}
Comd
(FLUR A
v)
A
()%«1 vup) |
-
.[
[1p
1%+x ok

(pordulp’yiyey)
A‘v.hiql:q'ht z.-

asston. areLy.]
PR

4

arpLy.)
e

(porialp',r") Apply

Constant

1

1
- ooyl =

e

(p,r')alpir’)

I

(1p,r APPLY r'}1

A "
i T IJ {'|J
L ES »r
Fvaluat
STLIE il (EP VNN
- -
'- v
R) owe I
3%+1 r fex Pyt r 19k
o %0, try
*Zt eny

ABSIGN. APPLY.
PP

Apply

(p'yr)elp,r) hoetgn

APPLY,]
P

(p*or! dalp,r) fAPPLY

Constant

{1p,r APPLY r')1

- |———r

rom A-exp

[teturn
Value

175

e

Appendix 3.1

CANONICAL SYSTEN SPECIFY ¥ 1

FErrErr wwwww
v e e o 0w s v e
VMEWNH WVMEWNN WEWN -

RSP

mp:‘hc\mmmm MEAA WA
N “ s e ee

@~ R KW N -

-

- @

10.
11.1

1.2
11.3

12.1
12,2
12.3

13.1
13.2
13.3

1k,

15.1
15.2

16.1
16.2
16.3

17.1
17.2
17.3
7.4

18.1
18.2

19.1
19.2

20.1
20.2
20.3

DIGIT

LETTER

MARK

BASIC SYMPOL
STRING

NANE

STR NAKE

VAR NANME

BACK REFT NAME
DIGIT STR

T
ARITE EXP

STRING EXP

PATTERN

ASSIGN RULE

PAT MATCH RULE
INPUT RULE

OUTPUT RULE
RULE

LABEL EXP
3TR
STM SEQ

SROBOL
PROGRAN

NANE LIAT

DIFF CHAR
DIFF STR
DIFF NANME

ROT IN
NOT CONT
DIPF NAME LIST

L1:L2:INTERSEC

DIGIT<O0> ,<1>, .,. ,<9>}

LETTERCA> ,, ... ,<2>}
MARK< %> (<.> <=> . ,,, <[>}
DIGIT<p> | LETTER<p> | NARK<p> -+ BABIC SYNBOL<p>;
BASIC SYMBOL<bd> ~+ STRING<SEQ(b)>;
DIOIT<p> | LETTER<p> -~ NAME<p>;
NAME<m> ,<n> < NAME<ma> ,<m,0>}
NANE<n> + STR WAME:STR REPScm:n,>,<$n:in,>;
RANE<n> + VAR NANE:VAR REP8<am:n,>;
BAME<n> + BACK REF WANE1BACK REFS<n:n,>;
'DIGIT<4> + DIGIT STR<SEQ{d)>}
DIGIT STR<s> + IAT<8> <=}
INT<i> + ARITH OPERAED<™{™>
STR NAME<n> ~ ARITH 0?!!Aln<n>.<xn>

-

ARITR OPERAND<a>, ARITN EXP<casd> <aed> ,<a®b> ,<a/d>

STRING EXP<A>;

STRING<s> * STRING EXP<*g%>;

STR NAME<n> + ESTRING EXP<n>;

ARITK EXP<a> + BSTRIRG EXP<a>;

STRING EXP<s>,<t> - STRING EXP<st>;

STRING<s> + PAT REXP<Mg™>;

8TR RAME<n> < PAT BXP«n>y (
YAR NAME<n> + PAT ZXPcin®), t
VAR NAME<n> + PAT EXt<®(n)®>

VAR BAME<n>, DIGIT STR<d> =+ PAT EFr<®n/d9s,

BACK REF RAME«<n> < PAT IXP<n>}

PAT EXP<p> ,cq> ~ PAT RXP<pln>;

PAT BXP:8TR REPS:VAR REFS:BACK l!PS«pxr.:r tir,>, DIPPF NAME LIST<r >,
Ll:LZ:!lTElBEc<rb:r':rb>,<r.:r':A’ - PXTT}RI:S?I REFS: VAR l!rslplr.r':r";

STR ¥AME<n>, STRING EXP<s> < ASSIGN RULB<n=s>;

STR RAME<n>, STRING EXP<s>, PATTEANc<p>+ PAT MATCN 'Uthpﬂp-l>;

PATTERN<p> + TINPUT RULE<BYS .READ p>;

STRING EXP<s> + OQUTPUT RULE<SYS .PRIRT o>;

ASSIGN RULE<r> | PAT MATCN RULE<r> | INPUT RULE<r> |
OUTPUT RULE<r> <+ UNLABELED RULE<r>;

UNLABELED RULE<r> - RULE<Qr>;

UNLABELED RULE<r>, NANE<n> <+ RULE:LABELB<aQr:n,>;

KANE<n> + LABEL EXP:LADEL RKPS<n:a,>}
STR NAME<n> + LABEL EXP<¥n>
RULE<r>, LABEL EXP<i>,<m> + $THer> <p/{1)>,<r/8(8)>,<r/S(L)P(n)> ,cr/P(m)> ,<r/P(a)S{1)>;

8TH<cs> -
STN 8EQ<q>, STM<s> -
STH 5BQ<q>, STRING«s>

STM 8EQ<s>}
BTN SKQeqis>;
STV SEQ<q3®s> ,<%edg>3

ST 52Q:LABELS:LABEL REPBcq:t:t >, RANE<a>, DIFP WANE LEST<EWD,t>;
L1:L2: INTERSEC<END,t:m 8 _:BND,1> + SHODOL PPOGRAN<QMEED >3

NARE LIST<A>;
NANE LIST«t>, NAME<n> -~ NAME LI8T<n,i>}

DIPF CHAR<A:B> <A:C>, ... ,<%1e>;

DIPF CHAR<x:y>», CHNAR STR<axs >ocayso> n1ry l?l<.lllxnylz’x
NAME<n> ,<w>, DIPF BTR<n:m> i DIFF NANE<n1m>;

NAME<n> + IR<an,>;
IN<n:t>, NAMB<@> -+ 1IN<n:@,L>,<n:tm,>}
RARE<n> + NROT IN<a:d>y

NOT IB<n:t>, DIFPF EANE<nin> ~+ NOT IN<aim,i>;
CNAR<c> -

NOT CONT<esA>y
NOT CONT<c:s}, DIPP CHAR<c:d> =

BOT CORT<cred>

DIFPY NANE LIST<A>;

DIPF NAME LIST<t>, NAME<n>, NOT IN<n:tl> < DIFF NAME LIST<n,t>;
NAME LIST<L> =
L1:L2:INTERSEC<t, tL 11>,

LI:LE:IITIIBIC<11:12:1>.

L1:L2:INTERSEC<Azi:hA>;
NAME<n>, IN<nii, >

+ L1:L2:INTEROEC <u,t._:t :;.(>;
BANE<n>, WOT IN€nii,

- Ll;L?lll!llll!*I;llfl!xl>‘

176

Appendix 3.2 CANONICAL SYSTEN grggl:;xig TRE TRANGLATION

QF_SNOBOL/1 INTO TEE TARGET LANGUAGE

PRI

@ A RRORRRNR Vuuww

10.

11.1

11.2
11.3

12.1

2.2
12.3

13.1
13.2
13.3

1k,

22.1
22.2

22.3

STR NANE
ARITR EXP

STPIRG. EXP

PATTERE

ASSION RULE

PAT MATCE RULE

INPUT RULE

OUTPUT RULE

RULE

LABEL EXP
ST

STM BEQ

SNOBOL PROGPAN

LIST:BVS:CORR
BULL LIST

RAMB<n> '+ STR NANE<n..p>,<$n..{LOOKUP. n)>;

INT<i> + ARITE OPERAND<®1", ¢1'>;

STR NAME<n..n'> + APITH OPRRAND<n..n'>;

ARITH OPERAND<s.,8'>,<d,.b'> + ARITH EXP<atb..{+¢(a*,b'))>,
<a=d..(=(a',®'))>,<a%,.(*(a*,b'))>,<a/b..(/(a',b'))>;

STRING EXP<A..'A'>;

ETRING<s> + BTRING BXP<*%™, tg'>

STR NAME«n,.n'> - STPING EXP<n..n'>;

ARITH EXP<a..a'> + STRING EXP<a..a'>;

STRING EXP<s..&'>,<t,.t'> = STRING EXP<a0t..({CAT o) '),

STRING<s> PAT EXP<™, 19%>;

STR NAME<n,.n'> PAT EXP<n..n'>;

VAR RAME<n> PAT EXP:SPECS<®*n®,,'n' ;: neS8TR |>;

VAR NAME<n> PAT EXP:SPECS<®*(n)®..'n* : neBAL BTR |>}

PAT RXPISPECS<®n/4%,.'s’ : (m,8)cPIX LK 8TR |>;
PAT EXP<n..'n'>;

PAT EXP<o0q..{(CAT p*') 4')>;

PATTERN<p,.p'>; *

VAR NAME<n>, DIGIT STR<a>
BACX REF BAME<n>

PAT EXP<p,.p'>,<q..q'>

PAT EXP<p..p'>

LI I R A

STR BAME<n..n'>, B8TR EXP<s..s'> - ASSIGN RULE<a=s..(n ASSIGN, 's'})>;
STR NAME<n..n'>, STR EXP<s..s'>, PATTERN:SPECS:YAR REPS<p..p':c:y>
<+ PAT MATCH RULE<alln=s..(MATCH_AND_ASSIGN(n', p', Ax.s', ‘c', *(¥)')>}

PATTERN:SPECB: VAR REPS<p..p':c:v> .
+ INPUT RULE<SYS .READ p..(MATCH_ARD_ASSIGN(READER#, p', v,'A', 'e’, '(v)')>;

STRING EXP<s..s'> + OUTPUT RULE(SYS .PRINT s..(PRINTERS Ass1nN, ((CAT PRINTERS) s')):;

ASSIGN RULE<r..r'> | PAT MATCH RULE<r..r'> | INPUT RULE<r..r':
| OUTPUT RULE<r..r'> < UNLABELED RULE<r..r'>;

UNLABELED RULE<r..r'> + RULE<Qr..r's>; .

UNLABELED RULE<r..r'>, NAME<a> - PRULE<nOr.. n :r'>;

BAFE<n> + LABEL EXP<m.. +B>;
STR FAME<n..n'> + LADEL EXP<$n., (LOOKUP. ((CaT? *.’) n));

RULE<r,,.r'>, LABEL EXP<i,.A'>,<m..m'> = BTM<r, .r'> <r/(L),.p';
<r/s{t)..r*® (00T0. t') ELSE @ 'A'> ,<r/s{1)r(a)..r* =>{00%0.

= (g0TO0.

cr/Flm)..r* ™ 4" XLSE » (G0T0, 1')>,<r/Fim)s(n1)..r’ =p(goTO.
=(coro.

- STN BEQ<s,..8'>;
§TM<s..9'> + STN SEQ<q}
STRING<s> =+ STM SPQ<qd

8TH<s..s8'>
STH 8EQ<q..q’>,
STH SEQ<q..1'>,

BTM SZQiSTR REPS8<q..q’':s_>, NANE<n>, LIST:BVE:CORR WULL L181<or

+ SROBOL PROGRAM<qdEND n..LET v et IN (GOTO. °'n'); o'>;

NAME<n> < LIST:BVS:CORR NULL LIST<mimn:'A’>;
LIST:BY8:CORR NULL LIST<i:b:ix>, NAME«<n>, IN<n:t>
+ LIST:BVS:CORR NULL LIST<t,nib:x>}
LIST:BVS:CORR WULL LIST<f:b:x>, NWAME<n>,

+ LIST:BVS:CORR NULL LIST<t,n:b:x,'A'>;

WOT IN<n:t>

t') RLSE
n')>,
t') BLSK
a');

:v.:l»

177

Appendix 3.3 DEFINITION OF PRINITIVE FUNCTIONS FOR SWOROL/L

Set derinit t varfables: | r,s STR | v, AL 8TR |

CRAR DIGIT«O> ,<1>, ... <9}

LETTER<A> ,, .,. .<z>;

MARK<+> €=, ,,, ,<?

DIGXT<D> | LETTER<p> t MARK<p> <+ CRAR<)>;

Lun 8TR<A>;

8TR<s>, CHAR<c> -+ BSTR<se>;
BAL BTR 8TR<e>, NOT CONT<(:8>,<):s> <+ DAL STR<s>
BAL STR<g> ,<t> « BAL sn<(.;>.<-t>;

FIX LN STR | FIX LN 8TR<A:0>;
PIX LF STR<s:n>, BUCCem:n>, CRAR<e> -+ PIX LN 8TR<scin>;

BOT CONT DIFP CRAR<A:B> ,<A:C>, ... ,<1:®>,;
CHAR<c> + HOT CONT<eth>}
NOT CONT<cis>, DIFF CEARc<e:d> -+ NOT? CONT<oisd>;

succ STR OF NINRS:ZEROS<9:0>;
STR OF NINES:IEROS<n:y> -+ STR OF NINES:SEROS<n9:y0>;
8Th<s> + 8UCCL<s01nl> ,<pl:s2>, ,.. ,<88:89>;

8TR<s>, STR OF NINES:IEROS<miy> + BUCC<nily>,<sOnisly>,<sints2y>, ... <s8n:a9y>;

(s) Miscellspeoys Pesic primitives

CAT a = [. RO St 'l'] *

2(a,B) = [:5: PO] /3

nEQ(a,B) = [:;: - ;:un:'] o/

COND(%,a,B) = ;:2:. POR] *
TRUB/TRUE . ++ TRUB

AND(a,B) = ;:::47;::: OG-+] .e/3
PALSE/PALEE -+« FALSE

o R I -

TLe-= [-0] .

(v) thyet yes

ARS8 o [u ORI] .

NEGATE o = [o PO] ¢

15_PoS o = [s o omer] ¢

I8_NEG o = [" T i] *

/80/r. ++ wlr
/el/r. - 82r

8UCC a = H la/

/e8/r. ++ 89r

/e9/r. + /s/Or
/e, +e 1r

/0/. b 4

/97 » 9r
/e0/r. + /u/9r
PRED o = /s1l/r. -+ 80r /a/

/e2/r. +e 8lr

/89/r. <+« abr J

178

REC 2(X,Y) = (Y, '0'} = x
ELSE S :(eRED X, PRED Y)

REC SUM(X,Y) = BQ(Y,'0') = x

ELSE = syn(succ X, PasD X)
lAi
[
[N

"3

8IGN(X,Y) = ABD(IS_POB X, 18_POS Y)
AED(IS_POS X, 18_NEG Y)
AWD{18_NEG_X, IS_POB Y)
BLSE

U84

LESS(X,Y) = mpo(=(Y, x). 'ot)

DIFF(X,Y) = LESS(X Y ¥EoATR(2(Y,X))
n(x, 13 Q!
L8R 2(x,Y)

sUM(X, PROD (X, PRED X))

190

ab
=
o
REC PROD(X,Y) = XQ{(Y,'0') =* 1p¢
BLSE =»
=

REC QUOT(X,Y) » LESS(X,Y)
BLSE

» sun{*1', quor ((x,Y), Y))

+(X,Y) » AND(I8_POS X, IS_POS Y) =b SUN(X,Y)

AND(I8"POS X, IS_FEG Y) = DIFF(X, Au 3]

ARD(IS_¥EG X, Is_POS Y) x> DIPF(Y x)

ELEE 2 Srosralsmi(ans X, APS 1))
-(x,Y) = +(X, NEGATE Y)
°(x,Y) = LET 8=SIGN(X,Y) IN CAT(S, PROD (ABS X, ABS Y))
1(X,Y) = LET 8=8ICF(X,Y) IN CAT(S, QUOT (ABS X, ABS Y))

(¢) Basic patters patchiax functiop

REC ASGN_LIST(L,M) = LET N,T = NDL,TL L
I orin,car) = At
ELSE = LE? +1=(LOOKUP. H) IN {») ASBIGE. (D M)):
AsgE_LIST(?, (TL W)
MATCH_AND_ASSIGE(BAME, PAT, STR_EXP,SET_SPECS,VARS)

| sxz_srEcs
LET s s (|o PAT ¢, - (uu.(o) (t),) | manx)
8. ->e

IN BQ (v,'A') = 'FALSE'
ILSE = LET %1,92,+3 « KD v, BD (7L ¢), BD (TL (7L 1))
IR ABGN_LIST(VARS,w1);
STR BXP » (SYR_RXP 'A')
w (ni: ABSION, T(cu((cu »2) OTR_BXP)) v3);

(4) Definition of LOOKUP. to be sdded to syaluator

LOOKUP. APPLY.

(pos)

179

Avpendis h.1 CANONICAL STSTEM SPECIZYING THE SINFAL OF ALOOL/GO

S e e ae s e woamew

..

4 e ee weaw
FENE RN AR FWNE FwN~

.

el RARR VMV FErr Ww RORNRONR e
N TR WK

o e s me e ewomow e
L L X

o e me

fed L Y S R

s

PL N
13.
16,
i1,

DISIT<O» ,<1>,

LETIER<A> (B>, ,,.,
BARE<e> jcan | o4, ¢
DIAITep> | LETTRR<p>

9y

PP o<t a3 e 0%, L, <872y
N .

| 'usxep> + cuanes;
- Dis STR<EEG(4)>;

+ LXY sTR<SRQ(2)>;

+ 1D 2TR<t>,

< ID BTRein>

+ ID BTR<td>;

+ 8TR<8EQ(e)>;

PAR DBLIN<,»;
LET STR<t> <+ PAR DRLIN<)a“:*(>;

ID 8TR<s> <+ LABELIVAL<n:ia>;

LABBLIVALCY 12> <2123, .., ,<919%;
LABEL:VAL<L:v>, DIGIT<d> -
LABEL:VAL<R:v>, DIGIT BTR<L>

-

blo sTA
LT SR
1D TR

DIGIT<q>

LETPRR«8>
LETTER<1>
IDes> LETTER«A>
IDet>, DIGIT<d>

TR
CRAR<e>

TR
PAR DELIN

LADELIYAL

LABRYL : VAL<Rd1vd>}
LABBL:VAL<OL1v>

ADD OF
NULT OP
nEL OP

ADD OPce> <>y
WULT OPsx? ,c*/*> <>y
REL OP<" <> g5 <m> 2> < >%> af>}

use1eE INT
USsICN EUN
Ine

BIGIT 8TR<e>
DISIT STR<u>,<t>
UNSIGN INT«q>

UNBIGR INT<a>;
UNSIGEN WUMN<s> < t>,<o,t>3
INTCL> co1> <uiry

-
-
-
-

N UNSIGN BUN<n> AUNCn> ,con> can>]
10
IDLIS?

ID BTA<1>
IDSTR<1>

-~
-

Ipeis;
IDLIST<ALTSRQ(L ,)>3

VAR ARITE EXPca>
ARITH EXP<q>,
1D<i>
IDei>,

SUBSORIPY LIST:DIMNc<asl>)
SUBSCRIPT LIST:DINN<L a:ml>;
REAL/INT/BOOL VAR:R/1/D YARS<i:i
REAL/INT/BOOL VAR:R/I/B ARPAYS<{

ACT PAR:SPECS:8 VARS<{1;SVWITCH, 15,73

SUBSCRIPT LIBT:DIMNN<iL:n>

LR N S

>
SUBSCRIPT LIST:DIMNM<t:m> lliu 1{m),>3

FCB D28 ID«i>
ID<i>, SPEC LISTsx>
ID<i>, DINMMma-

REAL/INT/BOOL: VARN v
ANITE RIP<

-
.
+ ACT PAR:SPECS:R/I/B ARRAYS<11RBAL/INTRGER/DOOLEAR AI‘A!(I).I](I).'[
~ ACT PAR:SPECB<v:NEAL,/IRTEORR,/DOOLEAN,>; .
ACT PARISPECB<a:ARITH BRP,.>;
wra AT PAR:SPRCE<H1BOOL EXP.>;
. BEPe g2 * ACT PARISPRCS<4:1LABEL,>;

IACT PAR<p>, PAR BELIN<SF « ACT PAR Palveatessa(y d)>;
:ID<4> + REBAL/INT/DOOL/NONVAL PCE BBS:R/1/B IN PROCB<$:1(),>;

'ID<1>, ACT PAR PART:SPECS«<pix,> + REAL/INT/BOOL/NONYAL FCH DES:R/I/R IR PROCB<i(p)ii(z),>;
REAL PCH DES<f> | INT PCS DRS<f> | BOOL PCN DES<f> | NONVAL PCN DES<f> + PCS DAS<f>;

-
-

ABCTS BEP JUNSION BUN<p> | REAL VAR<y* | INT VAR<p» | REAL FCE DES<p> | INT PCH DES<y> + PRINANY<p>;
ARITE BEP<a> + PRINARY<(a)>; .

PRINARY<p>, MULT OP<m> + TRRN<ALTSEG(p m)*;

TERN<t>, ADD OP<p> - TERM SBOQALTSNQ(t 8)>;

ERN SBA<s>] + SINPLE ARITR REP<s>,<eap,<m83;

OINPLE ARITE RXP<o> ~ ARITH EXP<s>;

BOOL RXP<h>, BINPLE ARITE RXP<g>, ARITH EXPea> + ARITR EXP<I? ¥ THEW o ELSL o>;

BOOL PRINCPRUR> ,<FALAE>}

SINPLE ARITE EXPea>, <h>, REL OP<p> + AELATION<arys;
RELATION<p> | BOOL VaR<p> | BOOL PCE DES<pr <+ DOOL PRIN<p>;
BOOL RXP<b + BOOL PRAIN<(d)>;

BOOL PRINcp> BOOL BEC<p> < p>»g

5001 SECes> BOOL PAC<ALTSEQ(s A)>;

BOOL PAC<f> BOOL TERM<ALTSEQ(T v)»>;

B0OL TERM<y> BOOL INP<ALTEEQ(t 2)>;

BOOL INP<i> SINPLE BOOL<ALTSBQ{1 3)>;

SINPLE BOOL<s> BOOL BEPes>;

BOOL EXPtar,, SINPLE BOOL<s> < DOOL EXP<IF o THEN b ELSE »>;

LADBL:VAL<R;v> < SINPLE DES RXP:LABEL REPS<tiv,>;

ID<i>, ARITE XXP<a> + SINPLE DES RXP:8 VARS<i[an]:1,>;

DBS KXP<d> + SINPLE DES RXP<(d)>;

SINPLE DES EXP<a> <+ DES BIP<a>;

BOOL BEP<V>, SINPLE DRS EKXP<s>, DES EXP<d> + DES RIP<IF b TRRN ¢ RLSE &>

booL BXP

CRE I O

BES RXP

[§.] ARITY EXP<o> | DOOL EXP<o> | DES EXPce> <+ RXP<o>;

DUNMNY STN | DUNNY STH<A>;
comset Iqlflil>. BOT CONT< 1s> < COMMENT STH<CONNENT s>
QoT0 STH DES RXPed>

PROC STN FCE DRS«<f>»

-

0070 BTN<GO 10 #>;

-

PROC BTN«

180

ACT PAR:SPRCS:R/I/B/8 PROCS<1(REAL/INYRGER/BDOOLEAN/BONYAL PROCEDURE(L), 11(x),>;

180
18,2
18.3
16. 0!

18,6
19.1
19.2
19.3
19.4
19.5!
20,1
20.2
21.1
21.2
21.3
[ea.
22.2
22,3
j23.

TTY8Y
25,2

25.1

27.1)
27.12

ASGT 3TN

POR STN

UNCOND STN
conp s
ST

STH SEQ

CONPOURD STX
TYPE DEC

ARRAY DEC

sV pIC

PORMAL PAR
PART

VALUS PART
SPECIFIER
PART

PROC DBC

DEC
DEC 3BQ

BLOCK

1

!

1D8TR< 1> - 8/1/8 Lare PAIQ|AICIII 7ot l“‘l!l.’;
REAL/INT/BOOL VAR<i>, K IDSTR<i> + B/1/3 LEPY PARTIASGERD YARS<1:1,>;
RBAL/INT/BOOL 'Aldh]’ + R/1/B LEPT PAI?‘![IIH

R/1/B LEPT PART<R>, ARITE/ARITE/BOOL EXP<e> + R/I/D ABGYT STei;

R/1/3 LEPT PAII‘*D. R/I/D ASOGT STH<s> - R/1/D ASQT mﬂ-l L] |

R/I/D ASGT STH<s> -+ ASGT STH<e>;

ARITE EXP<a> + FOR LIST BL<a>y

ARI?E BXP<a>,<¥> <> « POR LIST KlL<s STEP & Ulﬂl. ery

ARITH BXP<a>, ml m¢b-~ FOR LIST EL<s VEILE »

FOR LIST EL<er * POR LIST<ALTSEQ(e .)-

NEAL IST VAR<vy>, POR LIST<¢>, STH:LABELS:LASEL REPB<s;L:t », L1:L2:REL cﬂl?‘l |l.ll"o
DIFF RETRY LI'!‘I’ - POR lﬂ:ulll.llwu AEPS<POR vist DO l(lll'>|

DUMMY STN<o> | COMNENT STH<s> | GOTO STh<e> | PROC BTMce> | ASGT STM<s- | POR S$TH<s> |
BLOCK<s> | COMPOUND $TN<e> -+ UNCOND STM«<e>;
UBCOND £TH<e>, LABEL:VAL<tiv> <« UNCOND STN:LABELS«L 1 uiv,>;

300L EXP, UNCOND STM<u> |+ COND STM<IF b THEN w;
BOOL EXP, UNCOED $TH<u>, STH<s> - COBD STH<IF b TEKE u ELSZ s>;
COSD STH<a>, LADRL:VAL<L:iv> + COND BYN1LADELS<L;’81v,>;

UECOED STM<s> | COND STM<a> « STM<s>}
STH<s> » BTN SEQ<s>}
$TH<s>, STN 8EQ<q> - BYH 8EQeq;8>;

S8TN SEQ<s>, STRe<c>, NOT CORT<;:0> ,<ENDic><ELSE:c> = CONPOUND STN<BEGIN s END c>§

IDLIST<k> « TYPE DEC:DEC R/I/B VARB<REAL/INTEGER/BOOLEAN 8:4,5;
IDLIST<t> « TYPE DEC:DEC R/I/B VARS<OVE llll.lll"“llmiunl t18,24

ARITE EXP:R VARS:I VARS:D VARS:S VARS:R ARBAYS:I ARRAYS:S Aluu-n nom:x PROCS:D PROCS:S PROCS
OV IV IVUIV O TA TR 18, TP 1P 1P 1D 0 Ty !"l';t'.!' u u x" lp »
BOUED PAIR:DIN R VARS;DIN I YARS:DIN B VARS:DIN 8 vnsxnu L3 nnunml 1 ARBAYS
ARRAYS:DIN R PROCS:DIN I PROCS:DIN B PROCS:1BIN § -PROCS
l:v'v;:v‘v;nv.v‘w.n;u. YL "",u‘piu.p;n.!;’t
SOUED PAIR<p> - BPLIST:DINM<p11s;
BOURD PAIR<p>,. BPLIST:iDIMN<Rsm> + BPLISTIDINNCL pinl
SPLISTIDINN<S 10>, IDOTR<1> ARRAY 1 ARRAY vmultluh).’;
ARRAY<q cl ARBAY $BG<i{t}>
ARRAY<i{t]>, ARDAY 8EG<s([2)* ARRAY $EG<i slt]>;
ARDAY $8G<s> ARBAY LISTen>;
ARRAY S$EG<e>, ABRAY LIST<A> ARRAY LISY<t, s>}
ARRAY LIST:ARRAY VARScRuv> ~ ARRAY DEC:DEC R/I/R/A ARRATS<RBAL/IBTEGER/BOOLEAN/A ARBAY é:iv>y
ARRAY LIBT:ARBAY VARS<Giv> ~ ARRAY DECIDEC B/I/B/A ARRAYS<OWN REAL/IBTREGER/BOOLEAN/A ARRAY Liv>}

R N

s IXP<a> + SV LIST<ALTERQ(4 ,)>;
IDSTR<1>, BW LIST<2> < SW DEC:DEC 8 'A"‘CIITCI ftetst >3

IDSTR« {> * PORNAL PARtPARB<i11,%}

FORRAL PAR<p>, PAR DELIN<4> + FOANAL PAR l.ul'ul.un(. d)';
FORMAL PAR PART<A>;

PORMAL PAR LINT<2> <« FORMAL PAR PART<(t)>;
VALUR PART<A>;

IDLIST<A> + VALUE PART:PARBCVALUR &; : 8>}
TYPE<RERAL> SIRTRORR> , <BOOLRARY 3

TIPR<t> + SPECIVIRR<LASEL>, qnfclr -v <ABRAY> , <t ARRAY>, <P et
IDLIST<1>, SPECIPIER<s> <~ srEcIPIER LX!!:PAII‘-I; s t{e),>g

SPECIFIEE PART<A>;

BPECIPIRR LIST<i> + SPECIFIER PART<aRQ(2)>;

IDSTR<1>, PORMAL PAR PART:PARS<f:f >, VALUR PART:PARS<utu >,

SPECIFIRR PMQP”“!!.”. STH:R vm.x YARS:D VARS:8 YARS:R

ARRAYS:1I ARRAYS:D ARRAYS:R PROCS:I PROCS:S PROCE:1N PROCS:LABELS
tLABRL REPS: ASGEED YARS:ASGNED PROC llvquvrn‘u :y u'u‘ublp’xpl:p' p uu'xl" ip“’.
L1:L2:INTERSEC:REL COMP<v lf’l"'t"' <":f’u" v{'.t' tf.xv.ru‘ v :fpsv'f . .
<n':f’u "r"“l" u“t%’ <l.lf u'fu%
xfplp"x);nt":f :p“llx’ﬁb‘lf,li‘f""o‘Pn’f'H’.rlP;"
if n."nl > <l'u uxl » d o 11 (18 q»’“ll.xtu'.-

DIPF BEYRY LIST<L >,<u > ‘n' L
erppe———— ‘T ST TR T IR T SR T TR T LR T TR T LR T TR TP TS S P
PARS 1 USRS 1SPECS <2 ,.,-"(lux.)v”(xnxon)v o (BOOLEAR)v_ (8VITCH)a_ (AEAL uln)- (nuon ARPAY)
o {BOOLEAR ARRAY)p, (REAL nocnuu)p‘ '(unon PWCIWII)’“,(IOOLIII PROCKDURE)
Pop (NONVAL PROCEDURE) _ (LABEL)u (VALUR)L , (ASONRD) :x-

<+ PROC DEC:DEC N/I/B/N PROCS:R VARS:I VARS:B VARS:S VARS:R lll“lll ARRAYS:B ARRAYS:P PPROCS
11 PROCS:B PROCS:1% PROCS:LABELS:LABEL REFS:ASGNED VARS:ASGNED PROC 1D8
<REAL/INTEGER/BOOLEAS/A PROCEDURE if;uce l(l)l"lle"t"t‘ u'a-.:

p;xpixp‘:p' xlll;t l;.li;..'[

TYPE DRC<@> | ARRAY DEC<d> | BV DEC<d> | PROC DEC<d» ~ DEC«d>;
DRC<d> + DEC 3BQ<d>;
DEC<d>, DEC BEQ<s> =« DEC SRQss;d>;

STH STQ:R VARS:I VARB:B VARS:85 VARS:R ARRAYS:I ARRAYS:B ARPAYS:R PROCS
31 PROCS:B PROCS:N PROCS:LABELS:LABEL llrsu:r’xv’xv.n.u'ul:n.lv’tp‘sp.w-liltr‘-

DEC SEQ:R VARS:I VARS:3 VARS:S VARS:N ARRAYS:I ARRAYS:D ARRAYS:N PROCS

+I PROCS:3 PROCE:N PROCS:DEC B VARS:DEC 1 VARB:DEC B VARZ:DEC & VARS

tDEC R ARNAYSIDEC 1 ARRAYS:DEC B ARRAYS:DEC R PROCS:BEC I PROCS:DEC B PROCS

1D8C B PROCSIDIN R VARS:DIN T VARS:DIN B YARCIDIN 5 VARE:DIN B ARRAYZSDIN 1 ARRAYS
1DIN B ARRAYS:DIN R PROCS:DIN I PROCS:DIN B PROCS:DIN N PROCS:LABIL REFS
¢lx":';lv‘|v':u' ;:u;x.;:.i:.;xp;:vr‘xvl‘xv.‘sv.‘:u’.xn“xt“:'r‘tp‘.xp“in..
AL

r

Yia'"bn'Ysn'tra'*in' "2a'?ra’ P12 Poa‘Paa
l‘l'l« e>, NOT CONT<;te> ,<EBD:c> ,<RL8Bse>,

181

3C.1
0.2
30.3

3.1
31.2
3i.3

3z.1
32.2
3z.3
32.4
3.5

33.1
33.2

33.3

34,1
34,2
34,3

3h. b
3.5

35.1
35.2

35.3
35.4
35.%

35.6
35.7
35.8

36.1
36.2
36.3

37.1
37,2
37.3

38.1

38.6

3%.1
39,2
39.3

401
ky.2
4o, 3
LI
42.5
Lo.6
40,7
Lo,8

k1.1
b1.2
41,3
Lk1l,b
k1.5
41,6

ALaOL
PROGRAN

SPEC LIST

SPECL:SPECZ
:COMB

SPEC MATCH

SPEC LIST
NATCH

USES:PARS
WITH SPECS

PARS:USES
:SPECS

ENTRY
ENTRY LIST

DIFF CHAR
DIFF STA
DIFF ENTRY

1

ROT IN

WOT CONT

DIFF ENTRY
LIST

DISJ EKTRY
LISTS

Li:L2
:INTERSEC

Ll:L2
sREL COMP

L) v ae®
L1:L2:REL COIP<v v 'rd" > o Y,V "14"1’ <vb b“b"' <v'v;xv.d.v.>,
“r‘r ra"r’-"t 17%4¢ ba*%5>r
<PpPriPpaiPRY et P,n;=p£,=p;’.‘php;=v;¢=p;>.<nlp;:v.¢xv:>.
(lrl;:l:l;>.

>, <a,

DIFF ENTRY LIST<Y, 4% 4¥pd"sa%ra1a%0aPraP10PbaPaal” " R
DISJ ENTRY LISAS<(V,)(vi)(vh)(vl)(-r)(a‘)(-b](pr)(p‘)(ph)(pn)(l)(l,)'.
v (g Mowg vy Moy (v Ha e e 2 Moy) (0 ,)
(Pr-)(prd)(’l-)(pxa)(Ph-)(’bq)(Pn-)(Fn¢)>
«»BLOCK:R VARS:I VARS:B VARS:S VARS:R ARRAYS:1 ARRAYS:B ARRAYS:R PROCS
I PROCS:B ?ROCS:I.PROCS:LABILS:LAD!L REFS
. N cp® o™ ry® ca® e eam
<BEGII ﬂ:l z,D.c"r':."1'1-;'h'b.".'--"r‘r-'.i‘il"b‘b-
P rPra‘PiP{miPyPraiPpPoai N i

BLOCK<p»> COMPOUXD STM<p> + PROGRAM STR<p>;

PROGRAM STR<s>, LABEL:VAL<i:v> -+ PROGRAM STR<i :“s>}

PROGRAM STR:R VARS:I VARS:B VARS:S YARS:R ARRAYS:I ARRA!S B ARRAYS:R PROCS
(3¢ PROCS B PROCS N PROCS: LABELS LABEL REFS:ASGNED PROC IDS

LiAsAzArhe

- ALGOL PlOGRAN‘I"

TYPE<REAL§<INTEGER> ,<BOOLEAN>,
DIMM<1>;
DIMM<m> + DINM<ml-;

SPEC<A>,<LABEL3<SWITCH> ,<ARITH EXP>,<BOOL EXP>,<ASGEED> ,<VALUE>;

TYPE<t> ~ SPEC<t>,<VALUE t>,<ASGEED t>,<ASGEED VALUE t>;
TYPE<t>, DIMM<m> + SPEC<ARRAY>,<t ARRAY>, <t ARRAY(m)>,<VALUE t ARRAY{m)>;
TYP!*t). EPEC LIST<s> = SPEC<PROCEDUHI> <t P o<t P (2)>,<NONVAL PROCEDURE(s)>;

SPEC<s> <+ SPEC LIST<ALTSEQ{s ,)>;

SPEC<s> + SPEC1:SPEC2:COMB<A:is:s>,<s:m:83;

TYPE<t>, DIMM<m> < SPEC1:SPEC2:COMB<ARRAY;REAL ARRAY(m):REAL ARRAY(m})>,
<t ARRAT:t ARRAY(m)it ARRAY(R)>;<t:VALUE:VALUE £>,<t :ASGNED:ASGNED t>,
<VALUE t:ASGNED VALUE t>,<t Annn!(-)xVALuz VALUE ¢ ARRAY(m)>;

TYPE<t>, SPEC LIST<a> - $PECL:SPEC2: COMB<PRO sNONVAL P {s):MONVAL PROCEDURE(s)>,
<t PROCEDURE:t PROCEDURE(s PROCEDURE(a)>;

EXP SPEC<A> ,<VALUE> ,<ASGNED VALUE>;
SPEC1:SPEC2:COMB<g:t:c> + SPEC MATCH<s:t>;

EXP SPEC<s> =+ SPEC MATCH<ARITH EXP:s REAL3<ABITH EXP:s INTEGER>,
<BOOL EXP:s BOOLEAR>;
SPEC MATCH<s:t> =+ SPEC LIST MATCH<s:t>;

SPEC MATCH<s:t>, SPEC LIST MATCH<s':;t'> -+ SPEC LIST MATCH<s',s:t',t>;

IDLIST<t> + USES:PARS WITH SPECS<A:t,>;

IDSTR<1>, SPEC1:SPEC2:COND<s:tic>, USES:PARS WITE SPECS<u:xis,y>
<+ USES:PARS WITN SPECS<ui(t):xzi e,y>;

IDSTR<i>, SPECL:SPEC2: COMB<s -¢>, USES:PARS WITH SPECS<u(t):xis,y>
~ USES:PARS VITH SPECS<u,i(t):xi >3)

ENTRY<i(p)>, SPEC1:SPEC2:COMB«s: z(p).e> USES:PARS WITH SPECS<u:xis,y>
<+ USES:PARS WITH SPECS<ui(p)(t):x ic,y>;

ENTRY<{{p)>, SPEC1:SPEC2:COMB<e:t(p):c>, USES:PAAS WITH SPECS<ul{t)iais,y>
+ USES:PARS WITN BPECS<u,i{p}{t):zi c,y>;

PARS :USES:SPEC8<A:A:A>;

USES:PARS WITH SPECB<u:x> - PARS:USES:SPECS<A:u:x>;

IDSTR<1>, PARS;UBES:SPECS<p:u:xi,y> -~ PARS:USES:SPECS<pi,:u:xy>;

ID<i>, SPEC LIST<s>, DIMMN<m> -~ ENTRY<i>,<i(a)>,<i{(m)>;
ENTRY LIST<A>;
ENTRY LIST«1>, ENTRY<e> + ENTRY LIST<e,t>;

BIFF CHAR<A:B>,<A:C>, ... ,<[t]>}
CHAR STR OR IULL<-xl> <lyt> DIFY CHAR<xz:y> + DIPF STR<axs:ayt>;
ID STRe{>,<§>, DIFF STR<i:)>, SPEC LIST<s>,<t> + DIPF ENTRY<1:3>, <i(8)1)> <1130t <1l8)eg(e)>;

ID STR<i>, SPEC LIST lATcl(l:t> DIMM<m> + ENTRY MATCH<1:1>,<i(g):4(t)>,<i(m):i(a)>;
ENTRY MATCH<ese'> ne

IN<e:t>, ENTRY MATCH<e:e'> - IN<
IN<ert>, DIFF ENTRY<e
ENTRY<e> - BOT INcerd>;
NOT IN<e:i>, DIPF ENTRY<gie's ~ NOT IN<ese! i>;

CHAR STR OR NULL<s> « NOT CONT<s: >;
NOT CONT<sx:t>, DIFF CHAR<x:y> + ¥OT CONT<s Y
uoT COIT‘Ill:ly’ DIFF CHAR<x:y> - NOT CONT<sxm:tya>;

DIPF ENTRY LIST<A>;
DIPF ENTRY LIST<i>, ENTRY<e>, BOT IN<e:t> = DIFF ENTRY LIST<e,t>;
ENTRY LIST<1> - LIST OF LISTS:UNION<(i}:2>;
LIST OF LISTS:UNIOM<2:u>, ENTRY LIST<i'> -+ LIST OF LISTS:UNIOR<(2),(2'
ENTRY LIST<2> » DISJ PAIR OF LISIS<i:h>;
DISJ PAIR OF LISTS<i:2'>, ENTRY<e>, BOT IN<e:1> - DISJ PAIR OF LIS1S<ise,s’>;
ENTRY LIST<i> -+ DISJ ENTRY LISTS<(2)>;
DISJ EBTRY LISTS<i>, LIST OF LISTS:UNION<i:u>, DISJ PAIR OF LISTS<y:i'>

~ DISS ENTRY LISTS<t{L')>;

ERTRY LIST<2> + L1:L2:INTERSEC:<t:A:A», L1:L2:REL COMP<R:A:A>;

L1:L2:INTERSEC<E:%':1i>, ENTRY<e>, IN<e:t> = L1:L2: IIT!RSIC‘1~0.1' e,i>;

L1:L2:YBTERSEC<2:2°:1>, ENTRY<e>, NOT IN<e:s> =+ L1:L2:INTERSEC«i:e,

L1:L2:REL CONP<2:4':7r>, ENTRY<e>, IN<e:l> + L1:L2:REL COMP<i:e,

L1:L2:REL COMP<i:i':r>, ENTRY<e>, NOT IN<e:i> =+ L1:L2:REL COMP<i:e,i
-

ars
L1:L2:IUTERSEC<t:2":4>, L1:L2:REL COMP<i:i':r> L1:L2:INTERSEC:REL CONP‘;.!'-(:P‘&

182

Appendix k.2

CANO| BYSTE, 2 RAN. T1
OF ALGOL/60 INTO THE TARGET LASGUAGE

.2 |URSIGN NUN | DIGIT 8TH<a>,<t> -+ UNSIGHN RUMcs..'s'>,<.t..(TRANS_FRAC 't')>,
<s. t..(‘('l‘llls INT *s', TRANS_FRAC 'z'))
6.3 |1m7 URSTCN INT<i> = INT<i,,'8'> <ei..?i%> ,<ai..tai'>}
6.0 |BUN UNSIGN BUM<n,..n'> « NUN<n..a'>, <0n..n'> <—n..(llaATt n*)>;
7.1 {10 IDSTRei> = ln:nuz PORMALS :OWN VARS<i..itA:A> e, (1 *A*)si,zh>,
“i, dzA2
7.2 1IDLIST IDSTR<i> = !nusrqm‘sn(x I
8.1 jVAR ARITE EXP<a..a8'> _» SUBSCRIPT LIST<a..({CONV_TO_INT u')>;
8.2 ARITH EXP<w,.a'>, SUBSCRIPT LIST<i,.r'> = SUBSCRIPT LIST<t, + Tcolv_to_1at o' P
8.3 ID<i..1'> + REAL/INT/BOOL VAR<i..17>;
8.4 ID<i..1'>, SUBSCRIPT LIST<t..t*> -+ REAL/INT/BOOL vuq[a]..(cn EL (i',1°))>;
9,1 |rcm pEs ID<1..1%> + ACT PAR<i..)iw.i'>;
9.2 ID<1..1%> ~ ACT PAR<$..iw.1i'>;
9.3 1IDed, . 1> + ACT PAR<§..A%,1'>;
9.4 REAL/I8T/BOOL VAR<v..v'> + ACT PAR<v. vt
9.5 ARITH EXP<a,.a' + ACT PAR<a..A%.a’>;
9.6 BOOL EXP<b. b'- <+ ACT PAR<bH..22,b'>;
9.7 DES EXP<d..d'> <~ ACT PAR<d,.iv.d'>;
9.8 ACT PAR<p..p'>, PAR DELIM<d> +ACT PAR PART<ALTSEQ(p d4)..ALTSEQ(p®
9.9 ID<d. 4> +~REAL/INT/BOOL/NONVAL PCE DES<i,.(1® 'A')>
9.10 ID<1..4'>, ACT PAR PART<p..p">+REAL/INT/BOOL/NONVAL FCK DES<i(p)..(1'(p*',)})>
9.11 REAL PCN DES<f..f'> | INT PCE DES<r..f'> | BOOL PCH DES<f..f'>
| WONVAL FCN DES<f..f'> =+ FCN DES<f..f'>;
10.2 {ARITH EXP URSIGN NUM<p..p’> | REAL VAR<p,.p'> | INT VAR<p..p'> | REAL PCE DES<p..p*>
| INT PCE DES<p..p'> =+ PRIN<p,.p’
10,2 ARITH EXP<a..a'> + PRIM<(n)..a'>;
10.3 PRIN<p..p', NULT OP<m> ~ TERN<ALTSEQ(p =)..COMB(p' m)>;
10. 4 TERM<t..t'>, ADD OP<a> = TERM SEQ<ALTSEQ(t a)..CONB(t®' a)>;
10.5 TERM SEQ<s..s'> + SIMPLE ARITH EXP<I 8% <op..8'> <=5, (KEGATE ')>;
10.6 SINPLE ARITH EXP<s + ARITH EXP<s..s'>;
10,7 BOOL ZXP<b..b’>, SINPLE ARITH EXP<s,.s'>, ARITH EXP<s..a'>
+ ARITH EXP<I¥ b THER s ELSE a'..b" = s* ELSEw a'>;
11.1 }»oor Exe BOOL PRIM<TRUE..'TRUE'>,<PALSE,,'FALSE'>;
11.2 SINPLE ARITH EXIP<a..a'>,<b,.b'>, REL OP<r> - RELATION<arbd..(r{a%,b'))>;
1.3 RELATION<p..p'> | BOOL VAR<p..p'> | BOOL FZN DES<p..p'> + BOOL PRIM<p..p'>;
11.b BOOL EXP<b..b'> + BOOL PRIN<(B}..b'»>;
11.5 BOOL PRIM<p..p'> =~ BOOL SEC<p..p'>,< p..{ p*')>;
11.6 BOOL SEC<s..s'> + BQOL PAC<ALTSEQ(s A)..COMB(s' A)>;
1.7 BOOL PAC<E,.f'> < BOOL TERM<ALTSEQ(f V)..COMB(f® V)>;
11.8 BOOL TERM<t,.t'> -~ BOOL INP<ALTSEQ{t 2)..COMB{t* 3)>;
11.9 BOOL IMP<i,.i'> + SIMPLE BOOL<ALTSEQ(i £)..COMB{(1' =)>;
11.10 SINPLE BOOL s'> - BOOL EXP<s,.s'>;
11,11 BOOL EXP<b..b'>,<¢..c’>, SINPLE BOOL<s..s's = LOOL EXP<IF b THEN s ELSE c..b’ B s' ELSE Bc'>;
12,1 |bES 2IP LABEL:VAL<t:v> + SIMPLE DES EXP<k.. %.
12.2 Ip<i..1'>, ARITH EXP<a..a'> ~ SIMPLE DES !lP(l[n]..((GiT EL(CONV_TO _TAT a’,1%)) "4%)+;
12.3 DES EXP<d..d’> <~ SIMPLE DES EXP<(d)..3'>;
12.h. SINPLE DES EXP<s,.s'> - DES EXP<s..n's;
2.5 BOOL EXP<b..b'>, SIMPLE DES EXP<s,.s'>, DES EXP<d..4'> - DES EXP
) <IF b TEEN s ELSE d..b° s> s' ELSE 9 4'>;
13, 1344 ARITH EXP<e,.«'> | BOOL EXP<e..e'> | DES EXP<e,.e'> + EXP<e..e'>
1k, |pummy stw DUNMY STM<A..'A'>;
15. |CONMENT STX { STR<s> - COMMENT STH COMMENT<s..'A'>;
16, [6oT0 STM DES EXP<d..d'> - GOTO STM<GO TO 4..(COTO. 4')>;
17. |PROC STN FCN DES<f,.f'> » PROC STM<f..f'>;
18.1 |ASGT STH IDSTR<1> + B/I/B LEPT PART<i..(1# ASSIGN. *)>;
18.2 REAL/INT/BOOL VAR<i..1'>, IDBTR<{> + R/I/B LEPT PART<{, LET a=i' IR
(s ASSIGR, v)>;
18.3 REAL/INT/BGOL VAR<1{t)..(GET_EL(i*,1°)> - R/1/B LEPT PART<1[i])..LET u=i® IN
12 ASSIGN. (RESET_EBL{t',i',w)}-;
18,4 R/1/B LEFT PART<L..i'>, ARITH/ARITH/BOOL EXP<e..e’> = R/I/B ASAT STM:c:we,
LET --(conv k) REAL/COIV TO_INT/ILEN m e') IR «'-;
18.5 R/1/B LEPT PART<i..t's, R/1/B ASGT STM<s..s'> + R/I/B ASST STH Li=s,. o' ;1'%
18.6 B/1/B ASGT STM<s..s'> <+ ASGT STM¢s..s'>;
§ s ~ POR LIST EL<a.,A7.8's;
1322 FoR &m ::;:; >,<b. B>, e, et + FOR LIST EL<a STEP b UNTL c..Aw,(BTEP(An.a',Av.b7,2v.c"))>;
19.3 ARITH >, BOOL EXP<b..b'> <+ FOR LIST EL<s WHILE b,.:Aw. (vnu(u.-' v,
19.4 FOR LIST El<e..c'> + POR LIST<ALTSEQ{e,)..ALTSEQ{e' ,)>;
19.% REAL/INT VAR<v..v'>, POR LIST<t..t'>, STM<s..s'> + FOR STM<POR v:et DO s..(FOR(¥’, “oriay_cat fRe))>s

183

20.1
20,2
2.
n.2
21.3
22.1
22.3

25.10

26.1
26.2

27.22|

28.1
20.2
28.3

29.

k2.3
h2.2
2.3

L2.5
k>

UNCOND STN

COND STN

s
STN 8BQ

coNrouUsp 3TH
TIPE DEC

ARRAY D3C

av DEC

PPIC DEC

DEC
DEC 3EQ

ALOCE

ALGOL
PROGRAN

L1ST:CORR

BULL 5187
LIST:CORP

SHARE LIS
LIST:CORR I

DEXED LIS

> | COMMINT STM<s..0°> | QUTO STW<o.,s'> | PROC STH< e
4 BLOCK<s..s'> | COMPOUND STN<s..s'> <+ USCOND STN<o.

» LABELIVAL :v UNCOED STR : s..v t 8° 3
BO0L EXP<V.. %>, UBCOND $TN<y..u'> - v‘m‘"“'l e, > ¢l ’ + CORD STH:LADELS<IP t THEXR u.
V' WP (8070 v, } ELSE b (G0TO. .v,) FEPEN Tt M
lool..leﬁ..l'* heon STH<s,.n - .nl.h By u n - COND BTW:LADKLE<IF 4 TIEN .,
v ab (6070, .) BLIK wp (8070, oyt 0. > Yob, e ;3 i v’v ,.v,.-c

COND STH<s..a's, hlnxvu.-uv»

UBCOND STh<s..s'> | COND STH<g..8'> =
ST ">

SIN

fl’l. s..v" 1763

> STN 5EQ<q..3’'> -
STH SEQ<a>, STN<qg> < CONPDUND STINDROIN & ERD e..s'>;

IDLIST<:>, LIST:CORR BULL LIST<i:t > + TIPE BEC<REAL/INTEGER/BOOLEAN 1..t=t
IDLIST<L>, LISTICORR INDEIED l.!l?*‘xl > + TYPE DEC:iDRC OVE VARS<OWN IllL/l"lﬂ'lllOOLlAl Lootet et g

ARITH EXP<a..a'>, «\..b" - BOVER PAIR<a‘:’h..a'[b'>;

BOUND PAIR<p..a | - BPLISTep. .slb»;

SOUED PAIR<p..e » DPLIST<t,.x]y> - nuuu oo By &

IPL!!!!A..:1]>, TD8TRe1> . H 'ioq l)..s-uun__l.u? [FTPEN
DPLIET<i..=z|y>, IDSTR<1>, LIST:CONR IEDEXED LIST<i,:),* = Amh zu [e].. (1= (mnSRT_LIOTLY ¥
Anuq[;..1-:» - ARRAY. SBG<d{L]. . fvx>)

ARBAY<i{2]. . isx>, ARPAY_SRG<s{t)..peq> - ARBAY SBE <1 pis)il Py, 2

ARPAY SEQ<s o ARBAY LISTs..puq>}

ARRAY 3RG<s.. -p ARRAY LIST<R. . usy> - ADBAY, LIST<L 0. PP, >

13
114> + ABMAY DECSRRAL/INTESER/DOGLBAR ARRAY t..8°g
thil> < ABRAT DEC:DEC ONB ABRAYS<«OUWN REAL/INTRGER/BOOLRAS AHRAY ¢..i':1>;

ARRAT LIESTiARRAY xuxm IDE<s. . 8"
ARRAY LIST:ARRAY IDS:OWE ID@<t..1°

RS BXP<d..4°> ~ B¥ LIST<ALTSRQ(d ,)..ALTSEQ()s i

IDETR<>, SV LIST<i..t'> + SV DRC<SWITCE fiet, . i=(1RDEX uu('!',n')-;

IDSTR<i>, PORMAL PAR PART:PARE<f:f >, VALVE nl':nnnn,». SPRCIFIER PAPT«c>,
STH:RANK PORMALS<a,.s':0>, Rl:L2:REL COMP<f ti t8_>,<a:n _:a°>;
L1:L2:INTERSEC<azu :A>, LIST:CORR UNSNARE LIST<uw :i > + PROC umlm FORNALS
<REAL/IITESER/BOOLEAN/A PROCEDURE 1 fiusc.. x(f.)-uf 14 i’-'l'.l‘

B s &F 'y

TYPE DEC<d..4"> | ARBAY BECed..d'> | M BEC<d..d'> | PROC DRC<d..d"> + DEC<d..&'>

DEC<d. .Ray> + DEC BIG<d..ABC awy>;
DEC<d..xny>, DEC RXQ<s..REC x’ey'> + DEC $EQeaid..REC 2' guyt . y>;

STX SEQIOVN VARS:ONR ARRAYS<s,.s' Vi8>, DRC SEQ:OVE VARG:OVF ARRATSE:DEC QUN YANS
1DEC OWN AllA!tq..d'l‘veuan“ 0e”* leu:n"M¢"vasvu:v=:.
gy 5!!0‘!!". 8TR<e> -+ DBLOCK:OWS VARS:OUE ARBAYS:GLOSAL VARFIGLODAL ARRATS

<Il¢ll 430 BED o, LET 4 1IN o':vg1agave, iV, >3

BLOCX<p..p'> | COMPOVED STNsp..p’> + PROGRAN STR<p..p*>;

PROGRAM STR<s..0'>, LABBLiVAL<liv> < PROURAN STReL':“B..v':%a'>

PROGRAN STR:SLOBAL’ 'A”x‘ulll- ARRATS :0UN VARS:1OUR ARRAYS :RANE ALS
‘l..l't'.ln.!ﬁl th> DIV RETRY LIST<v a >, LIST:CORR WULL LIST«v_:: >,t.‘:l.>

<+ ALOOL PROGRAMcs..LEY vt Lty ety

LIST:CONR BULL LIST<A
LIST:CORP NULL LIST<i:m>, IDSTR<i> + LIST:CORR-BULL LIST<{ L:°A’ .0>;

LIST:CORP URSNARE LIST<i:’>

LIST:COPR UNSHARE LIST<i:m>, IDSTR<{> -+ LIST:CORR UNSHARE LIST<i,2:(UNSRARE (i "A')),m>;
LISTICORR INDREED LIST<A:lA>; *

LIST:CORR INDEERD LIST<tim>, IDSTR<i>, UNSION INT<)> < LIST:CORM INDEXED LTST<i,t:18).8>;

184

Appenasx b.3 REVINAXIOE OF DAXMGRLIYE FRNCRIQRRZOR-AMMQAMLEQ
223 detipitiens for strias ysrishissr | eDI61% | roejeceme |

prare DIBITO» ,«2>, ..o <P}

CEAR LEPEBRCA» ,, ..o <8P 4 "0, %072, . <82y
MARE<H> <o, 0o 9%o>
DICIT<p> | LETTRR<)> '.nx‘» . CEARC)>;

st STR<A»
STR<s>, CRARSe> < BTR¢se?}

car o o { . . et s 1")
nen = [-
male,8) [N na])
00ND(%,0,8) -[it -] *

PALBR/TRUR <+ 1

[3

'

mus/Tavg +- TRUR
AED(s,B) = TeUB/PALSR .- PAles «/3
‘| razemsrarse -+ rvAISR

502 e [Lo DOg-—of .
) I [",';7/ . : la/
e [y = %)
UNSEARE a = [[-»e s J'

(v) Sasis sxitheetis sad heclass Rrinitives

s o (= = 1.
NEGATE & = [':: - _:] .
I5_P08 & @ [- = :g:] .

18 580 s ® [-:: :: ;I&] -
lIIII-- [. .] -

oIS & = [o s] .
18_I0% « » [™. e ;::n] o
MAKB_REAL(s,$) = (-I;. »e 1.1] /8

185

&) Arithmetic comnveratom primitives (see arithmetic primitives for definitioms of
an

TRANS_INT o =

TRAES_PRAC a =

CONV_TO_REAL a =

RETIRR X »

CONV_TO_INT X =

/0de/ - /4s/

[Is/ - sD1] 1o/
/8407 » /na/
/sa/sdr. » /e/dtDOr

//rde, ++ thir sal
/s/ - /e/D

[aDt, L sht]
., > Dl a

LET A,B = NUN X,DX¥ X

X /(a,n)

ENTIER(+ (X, *1D2'))

(a) Arithmetic primitives
[~ 1
/s0/r, - slr
/e)/r. b s2r
8UCC a = H laf
/s8/r. +¢ a9p ¢
/e99/r. =+ JefOr
L /= +e 1r J
[10/, - o]
/1/9e. > 9r
/sofr. + [s/9r
PRED a = /sl/r. .o a0r /la/
/e2/r. ++ alr
1a9/r. lBrJ

REC =(X,Y) =
REC S8UM(X,Y) =

188 (x,Y) =
REC PROD(X,Y) =

pIFF (X,Y) =

REC QUOT(X,Y) =

PRI_SUM(X,Y) =

PRI_DIFF(X,Y) =

PRI_PROD(X,Y) =

PRI_QUOT(X,Y) =

2q(Y, '0') w x
ELSE = 1 (PRED X, PRED Y)

(Y, '0') => x
ELSE => 8uM (sUCC X, PRED Y)

g (2(v,x), '0’)

n('.ool) =p vor
ELSE = syN (X, PROD(X, PRED Y))

LEBB(X,Y) => NEGATE{:(Y, X))
lQ(X.!; = g
| $4:3 > 2(x,Y)

LESS(X,Y) = *0'
ELSE = suM(‘*1',Quor(=(x,Y), T))

AND(IS_INT X, IS INT Y) => SUR(Z.Y)
ELSE = LET W1,01,82,D2 » NUR X, PEN X, NUN Y, DEN Y
IN LET X = DIPF(PROD(N1,D2), PROD(N2,D1))
Ix Lzt D= PRopiDl, D2}
i MAKE_REAL(¥,D)

AND(IS_INT X, IS_INT Y) = DIFF(X,Y)
ELSE = LBT ¥1,D1,02,D2 = NUR X, DEN X, BUM Y, DEN Y
IN LET ¥ = DIFF(PROD(N1,D2),PROD(N2,D1))
bé | LET D = PROD(D1,D2)
IN MAKE_REAL(S,D}

AND(I8_INT X, IS_INT Y) =p PROD(X,Y)
ELSE = LT ¥1,D1,82,D2 = BUN X, DEN X, UM Y, DEN Y
IN LET ¥ = PROD(N1,N2)
w LET D = PROD(D1,D2)
IN MAKE_REAL(N,D)

AND(I8_INT X, IS_INT Y) = QUOT(X,Y))
ELSE = LRT N1,92,82,D2 = NUN X, DEB X, WUN Y, DRN Y
IN LET N = PROD(N1,D2)
I LET D = PROD(N2,D1)
I MAKR_REAL(N,D)

186

SIGN(X,Y) = ARD(1IS_POS X, IS_POS Y) => ‘A’
AND(1S_POS X, IS “NEG Y) = ‘ot
AND(ISNEG X, IS_POS Y) = '-*
ELSE . = 'A*

*(X,Y) = AND(1S_POS X, IS_POS Y) => PRI_SUM(X,Y)
AID(IS POS X, IS llG Y) = PRI nlrr(x. APS Y) -
AND(I8NEG X, IS_POS Y) =b PRI_DIPF(Y, ABS X

x)
nscn:(nx ‘SUM{ABS X, ABS T))

ELSE =2
wix,Y) = LET § = SIGN(X,Y) .

IN CAT(S, PRI_PROD{ABS X, ABS Y})
/(X,Y) = LET § = SIGK(X,Y)

IN CAT(S, PRI_QUOT(ABS X, ABS Y))
-(X,Y) = + (X, NEGATE Y)
1H{X,Y) = LET 5 = SIGN(X,

Y)
IN CAT(S, ENTIER(ABS (/(X,Y)))

(e¢) Boalean primitives

WX = NOT X

Alx,Y) = AND (X,Y)

ViX,Y) = NOT{AND{NOT X, BOT Y))
3(x,Y) = NOT (AND(X, ROT Y))
(X,Y) = EQ(X,Y)

PRI_LESS(X,Y) = LET ¥1,D1,§2,D2 = NUM X, DEN X, NUN Y, DEN Y
IR Lzss(non(n p2), PROD(IZ Dl))

«(X,Y) = AND(IS_] POS X, IS_POS Y) => PRI_LESS(X,Y)
AND(IS_POS X, IS_NEG Y) = FALEE
AKD(IS_NEG X, IS_POS Y) = TRUE
ELSE = PRI_LESS(ABS Y, ABS X)
=(X,Y) = EQ(X,Y)
#(X,Y) = NEQ(X,Y)
&(x,Y) = V(i<(Xx,Y), = (X,Y})
2(x,Y) = XOT(<(X,Y))
>(X,Y) = NOT{<(X,Y))

(f) Tror statement primitives

REC STEP(A,B,C) = LBT ALBLCY = (A "a"), (B "A*),(C *A')
un(:s POS B! x.zss(c'.\')) = "a*
AND(IS_NEG B} LESS(AlC')) =% "a"
ELSE 20" e (5T G, (+(a1330),3,0)])

REC WHILE(A,B) = LET A}B' = (A "A*),(B 'A")
IN HOT B' = 'A"
ELSE [v Av. (VEILE (A,3))]

REC DELAY CAT L = LET H,T7= ED L, TL L
- IN LET H' = (K 'A*)
I EQ(T, 'A') D H'-
EQ(H} 'A') = (DELAY_CAT T)
ELSE d DR |

REC FOR(V,L,S) » LET H,T = HDL, TL L
I8 EQ(L, A") = At
ELSE = (IS_INT W) % (v ASSIGN. (CONY_TO_INT H)) ELSE -
Vo ASSIGH, (CONV_TO_REAL X)T;
(S *'AY;
YOR (¥, (DELAY_CAT T), S}

187

(g) _Array and list itives

GET_EL{(I,L) = { r(1,8)t. =+ [lL
RESET_EL(I,L,X) = [e(I,8)t. =+ r(I,X)t] L
REC INDEX_LIST(I,L) = LET H,T = RD L, TL L

IN NULL T = (I,H)
ELsE ={(I1,H), INDEX_LIST(+(1,1), T)]

REC LAST L = LET H,T = HD L, TL L
IN BULL T =D
ELSE =D LAST T

REC TRUNC L = LET H,T = HD L, TL L
IN NULL(TL T) =PHD T
ELSE =>[, Trusc 3

BEC ADDL(SUBSLIST,LB,UB) = LET §),5,,5;,T),T,,T, = LAST SUBSLIST,LAST LB,LAST UB,TRUNCLB,TRUNC UB
I NEQ(S,,S) =>f,, (+(s5,, 1))]

ELSE :b@nm('rl,rz,%)‘ s;]
REC MAKE_LIST(I,LB,UB) = EQ(I,UB) = (I, 'A')
ELSE = [{1, 'A') , MAKE_LIST((ADD1(I,LB,UB}), LB,UBH
REC RESET_LIST . EQ(J,UB) = (J, GET_EL(J, ARRAY))
(ARRAY,J,LB,UB) ELSE :[(J, GET_EL(J, ARRAY))+ RESBT_LIST((Anm(J,LB,UB)),LB.UB)]

188

Appendix 5. THEORETICAL BACKGROURD
FOR _CANONTCAL SYSTEMS

The intent of this appendix is (a) to descridbe and
relate the formalisms of Post's formal systemsl and
Smullyan's "elementary formal" syatems,2 (b) to show that
the formalism of "canonicel" systems presented in this
dissertation is equivalent (except for changes in notation)
to Smullyan's elementary formal system, and {(¢) to show that
the terminology and interpretation of canonical systems
given here relate to the terminology and interpretation of
the formal systems of Post and Smullyan.

A formal system will be described by giving
(a) A set A of primitive symbols: For example, this set may

be the symbols {0 1 ... 9} or the set of characters in
a computer language.

(b) A set C of auxiliary symbols:* For example, this set
may include the symbols {SQ + =}.
(¢c) A set 8 of initial statements composed from the primitive

and auxiliary symbols: The set S will be composed of
strings from AUC,®#®

(a) A set E of well-formed expressions: The set of well-
formed expressions will generally incorporate symbols
from AUC and other symbols.

(e) A series of rules for using the well-formed expressions:
The rules will be used to derive new statements contain-
ing the primitive symbols from the set S of initial
statements.

#A11 sets of symbols in the systems of Post and Smullyan are
assumed to be disjoint from each other.

##The symbol "y" denotes the binary operation of set union,

189

(f) An interpretation of the formal system: Strictly speak-
ing, an interpretation is not part of a formal system.
An interpretation is placed on a formal system by a user,
who wishes to draw conclusions about the objects that
the symbols of the system represent.

POST'S SYSTEMS

(a) Primitive Symbols
Let A be a finite set of symbols {Al Ay o Ai}.

(b) Auxiliary Symbols
Let C be a finite set of symbols {Cl C

EEE CJ}'

Let L be the set AUC, the union of the sets A and C. Post
calls the set L the set of "primitive letters" and does not
distinguish the sets A or C. The sets A and C are distin-
guished here to clarify the distinction between a Post system
and a Smullyan elementary formal system.

(¢) Initial Statements
The initial statements S are a set {8, S, ... Sk}, where
each Si’ 1<i<k, is a string of letters from L.

(d) Well-formed Expressions

Let V be a finite set of symbols {V1 Vo e Vz} called
variables.

A premise is a string of symbols from LUV.

A conclusion is a string of symbols from LUV.

A well-formed expression is a string of the form
"Ql,Qz, cee 5Q ~producey, (" where the Q;» 12ifm,
are premises and C is a conclusion such that each
variable in C also occurs in at least one Q,. A
well-formed expression is called a production.

A set E is a system in canonical form if E is & finite set
{Pl | S Pn}, where each P,, 1<i<n, is a production.

(e) Rules for Using-Formed Expressions

Rule 1: A string X is called an instance® of a production P,
if X can be obtained from P, by substituting for
each variable in P, some st¥ing (possibly null) of
letters from L. The string substituted for each
occurrence of the same variable must be the same.

®*The word "instance" is not used by Post.

190

Rule

(£)

2: If each premise in an instance of & production has
been derived, then the conclusion of the production
can be derived.

The statements derivable from a Post system are

(a) The initial statements

(b) The statements that can be derived from the
productions by first applying Rule 1 to obtain
an instance of the production and then applying
Rule 2 to the production instance,

Interpretation

A production can be viewed as a rewriting rule for obtain-
ing new statements from previously derived statements.

The interpretation of the derived statements are subject
to the interpretation of the initial letters.

Example 1: A Post System Defining the Set of Squares of

(a)
(v)
L =
(c)
(a)

(e)
(£)

Positive Integers

Primitive Symbols A= {1}

{sq}

Auxiliary Symbols c

{1 8q}

Initial Statements s = {18Q1}

{u v}
{usqQv+ulsSQuuvl}

Well-formed Expressions v
E

Derived Statements {1SQ1 11SQ1111 111SQ111111111 ...}

Interpretation '

The string of ones occurring to the left of "SQ" repre-
sents the positive integer denoted by the number of
ones,

The string of ones occurring to the right of "SQ" repre-
sents the positive integer that is the numerical
square of the integer to the left of "SQ".

Example 2: Another Post System Defining the Set of Squares

Note:

of the Positive Integers.

The intent of this example is to illustrate that the
"canonical systems" given in this dissertation fit
the definition of a system in canonicel form given by
Post.

191

(a) Primitive Symbols A = {1}

(b) Auxiliary Symbole c

{K:8Q < > :}

L = AVC = {1 N:BQ < > 1}
(¢) Initial Statements S = {N:8Q<1>}
(d) Well-formed Expressions V= {u v}
E = {N:8Q<u:v>+N:SQ<ul:uuvl>}

{e) Derived Statements :
{N:8Q<1:1> N:5Q<11:1111> N:8<111:111111111> ...}

(f) Interpretation
The string "N:SQ" is the name of a set.

The string "<x:y>", where x and y are strings of ones,
are members of the set "N:SQ".

The string of ones before the ":" represents a positive
integer; the string of ones to the right of the ":"
represents the square of the positive integer to the
left of the ":",

SMULLYAN'S "ELEMENTARY FORMAL" SYSTEMS2
Smullyan's elementary formalsystems are a descendant of Post's
formal systems.

(a) Primitive Symbols
Let A be a finite set of symbols {A A

Ai} called
the object alphabet.

2 “ e

(b) Auxiliary Symbols
Let P be a set of symbols {P P, +es} called the predi-
cate alphabet. With each prédicate alphabet symbol we
associate a unique positive integer called its degree.
Let Z be the set {,-} . The symbol "+" is called the
"implication sign and the symbol "," is called the
"punectuation" sign.
The set C of auxiliary symbols is the set PUZ.

(¢} Initial Statements - None
Smullyan includes the initial statements as members of
the set of well-formed expressions.

(d) Well-formed expressions
Let V be a set of symbols {V v, «es} called the set of

variesbles.
A term is a string from VUA.

192

-193-~

A well-formed atomic formule is a string of the form
TPt L.t s oo ,téwiwhere ti’ l<i<k, are terms and P is
a p}ed?cate of 5egree k.

A well-formed expression is either an atomic formula or
an expression of the form X, > X, ... + X (assuming
association to the right; evg., “"X. + X ™ X_" is to
be read "X, implies (X, implies X)l") where X;»
1<i<m are itomic formufas.*® A well-formed expréssion
is called a well-formed formula.

A set E is an elementary formal system if E is a finite
set {F. F, ... F_} where the F_, 1<i<n, are well-
formead formulas,ncalled axioms?

(e) Rules for Using Well-formed Expressions

Rule 1: (Substitution) A formula F' can be derived from a
formula F by substitution if F' can be obtained from
F by substituting a string in A for each occurrence
of some variable in F, %%

Rule 2: (Modus Ponens) A formula F' can be derived from a
formula F by modus ponens if F is the form X » F'
and X is some previously derived atomic formula.
More generally, a formula X can be derived from a
formula of the form X, - X"+ ... + X 1 + X if each
X,, 1<i<n, is an atomtc fofmula and BTx., 2., L%
h%ve each been previously derived. I% thgs case,
ve refer to the X,, X,, «.. , and xn_l as premises,
X as a conclusion, and say that the conclusion X_is
d8rivable from the conjunction of the premises
xl, 12, ess o and xn-l‘

The "provable strings" of an elementary formal system E are
(1) the axioms of E
(11) the strings that can be derived from the axioms by
& finite number of applications of rules 1 and 2.

n-1

#*Note that no restriction is placed on the use of a variable
occurring in xm but not in xi, 1<i<m-1.

®#7n an elementary formal system, it is not necessary to
substitute object strings for each variable in formule to
derive strings from the well-formed formulas. Thus we can
derive strings containing variables in an elementary formal
system. In a Post system, we must substitute objJect strings
for each variable in a production before we can derive strings.

#%#%T7f each variable is replaced by an objJect string, this
generalization of modus ponens is identical to rule 2 for
deriving strings given by Post.

193

An instance of a well-formed formule F is a string obtained
from F by applying rule 1 (substitution) to all variables in
F. A formula so obtained is called a sentence.

The "provable sentences" of an elementary formal system E are
the provable strings containing no variables.

(f) Interpretation
Let P be a predicate of degree k in an elementary formal
system E, and let Y be a set of k-tuples of strings from
A. We say that the predicate P represents the set Y if
the following condition holds: le,xg, ess X, 1is a
provable sentence in E if and only if the k-tugle
(Xl, Xe, . ,xk) is contalned in Y.

Thus an elementary formal system can be viewed as a set of
axioms used to enumerate the members of sets whose names are
denoted by the predicates.

Example 3: An Elementary Formal System Defining the Set of
Squares of the Positive Integers

(a) Primitive Symbols A= {1}

(b) Auxiliary Symbols P = {R} zZ={, »}

(a) Well-formed Expressions V = {u v}
E= {R1, Ru,v *Rul,uuvl}

(e) Derived_Statements
{R1,1 RI11,1111 R111,111111111 ...}
The derived statements given above are (in the Smullyan
sense) the atomic sentences derived from E.

(£) Interpretation
If R is the name of a set, the ordered pairs
{(1,1) (11,12111) (111,111111111) ...} are the members of
R. We interpret the set R as containing all ordered pairs
such that the string to the left of the "," represents a
positive integer and the string to the right of the ","
represents the positive integer that is the square of the
integer represented by the string of ones to the left of
the “’".

194

CANONICAL SYSTEMS (as presented in this dissertation)

The formalism called "canonical systems", as presented in
this dissertation, is equivalent (except for changes in nota-
tion) to Smullyan's elementary formal systems,

(a)

(v)

(a)

(e)

(f)

Primitive Symbols In this dissertation the primitive
or "object" alphabet is the set of characters used in
some computer language,

. Auxilisry Symbols The predicate alphabet P here is a
string of English letters or digits each separated by
the tuple sign ":". ZEach string of English letters of
digits is called a predicate part, and the number of
predicate parts in a predicate is usually identical to
the number of terms in a term tuple following the predi-
cate. The separation of predicates into parts is made
(a) to give some mnemonic describing the role of each
term in a term tuple following the predicate, and (b) to
provide a convenient notation for abbreviating a canoni-
cal system.

The set Z is given as {: »} rather than {, »} since
the comma "," is a character occurring frequently in
computer languages.

Well-formed Expressions A well-formed formulsa
"X, > X, > ... v X + X" is written here as
" 1 2 n=1 " % .
X7, X s X + X o connote the meaning that

s e
anis gerivablenf%om a canonical system if and only if
each of the instances of the premises X,, X,, ... ’Xn—l
are derivable, This alternate formulatlon Is in the
spirit of Post.

The delimiter ";" is introduced here to separate the
well-formed formulas of a canonical system. The well-
formed formulas in a Smullyan system are separated by
the use of appropriate spacing of formulas in a page of
text.

Furthermore, the string of terms following a predicate
is enclosed by the angle brackets "<" and ">" so that the
characters "," , ";" and "+" can be used in the terms as
object symbols without the use of quotation marks.

Rules for Using Well-Formed Expressions The rules for

using well-formed productions of a canonical system are
identical to the rules used by Smullyan.

Interpretation The interpretation given to a canonical

system here is a hybrid of the interpretation of the
systems of Post and Smullyan

195

(i)

The productions of a canonical system are
as rewriting rules {Post).

The derived strings of a canonical system
viewed as statements about the membership
tuples of strings in sets whose names are
by the predicates (Smullyan).

196

viewed

are
of n-
given

REFERENCES

The following works describe the theoretical foundations of
canonical systems:

1. Emil L. Post
Formal Reductions of the General Combinatorial
Decision Problem
American Journal of Mathematics, Volume 65, pp. 197-
215, 1943,

2. Raymond M. Smullyan
Theory of Formal Systems
Annals of Mathematical Studies, Number 47, Princeton
University Press, Princeton, New Jersey, 1961,

The following references describe work on applications of
canonic systems to computer languages:

3. John J. Donovan

Investigations in Simulation and S8imulation Languages,
Ph.D. dissertation, Yale University, New Haven,
Connecticut, 1966.

This reference adapts Smullyan's system to specify
the syntax of computer languages, and introduces
the term "canonic systems"™ to describe the re-
sulting variant.

4., Henry F. Ledgard
A Scheme for the Translation of Computer Languages,
Ph.D. dissertation proposal, M.I.T., Cambridge,
Massachusetts, 1967.
This reference applies canonic systems to define
both the syntax of a computer language and its
translation into a target language.

5. John J. Donovan and Henry F. Ledgard

A Formal System for the Specification of the Syntax
and Translation of Computer Languages

AFIPS, Proceedings of the 1967 Fall Joint Computer
Conference, Volume 31, Thompson Books, Washington,
D.C., 1967.

This reference also considers the use of canonic
systems to define the syntax and trenslation of a
computer language.

197

T T AT T T T T T T e e A T BT A e T

6. Joseph W. Alsop
A Canonic Translator
MAC-TR-46, ProlJect MAC, M,I.T., 1967
This reference describes an algorithm that uses a

canonie system specification of a language as a
data base to recognize strings specified by the
canonic system and generate their translation.

T. James T. Doyle :
Issues of Undecidadbility in Cenonic Systems, S.M.
dissertation, M.I.T., Cambridge, Massachusetts,
1968, ¢

8. Joseph P, Haggerty
Complexity Measures for Language Recognition by
Canonic Systems, S.M. dissertation, M.I.T., Cambridge,
Massachusetts, 1969, ' :

The following is the basic reference for Markov algorithms:

9. Andrei A. Markov
Theory of Algorithms
Acadamy of Sciences of the USSR, Moscow, 1954, English
Translation by Israel Program for Scientific Trans-

lations.

The following describe the extension of Markov algorithms
used in this dissertation.

10. A. Caracciolo di Forino
Generalized Markov Algorithms and Automata
Lecture delivered at the International Summer School
of Physics Course on Automata Theory, Ravello,
Italy, 196k,

1ll. A. Caracciolo di Forino and N. Wolkenstein
On a Class of Programming Languages for Symbol
Manipulation based on Extended Markov Algorithms,
Centro Sudi Calcolatrici Electroniche del C.N.R.,
Pisa Italy, 1963.

12, A. Carscciolo di Forino
String processes and generalized Markov algorithm
in Symbol Manipulation Languages and Techniques,
North-Holland Publishing Company, Amsterdam, 1968.

198

The following are other references on Markov algorithms:

13. Anton P. Zeleznikar
Some Algorithm Theory and its Applicability
American Mathematical Society Translations, Series
2, Volume 18, pp. 141-158, 1963. This reference
describes a 2 dimensional varlant of Markov algo-

rithms.

14, V. XK. Detlovs
The Equivalence of Normal Algorithms and Recursive
Functions
American Mathematical Society Translations, Series
2, Volume 23, pp. 15-82, 1963.

15, V. 8. Cernjavskii :
On a Class of Normal Markov Algorithms
American Mathematical Society Translations, Series
2, Volume 48, pp. 1=35, 1965.

16. L. A. Kaluzhnin
Algorithmization of Mathematic Problems
Problems of Cybernetics, Volume 2, pp. 371-391, 1961.
This reference analyzes the advantages and short-
comings of Markov algorithms.

The following are the basic references on the A-calculus:

17. Alonzo Church
The Calculi of Lambda-Conversion
Annals of Mathematical Studies, Number 6, Princeton
University Press, Princeton, New Jersey, 19Ll.

18. Haskell B. Curry and Robert Feys
Combinatory Logic, Volume I, North-Holland Publishing
Company, Amsterdam, 1958,

The following references describe the theory and application
of the A-calculus:

19. Peter J. Landin
A Formal Description of ALGOL. 60
Formal Language Description Languages for Computer
Programming, North-Holland Publishing Company,
Amsterdam, 1966

20. Peter J. Landin
The A-Calculus Approach
Advances in Programming and Non-Numerical Computation,
Permagon Press, New York, 1966,

189

e R Lt o L I S R S ta Al b e o W g el Sl - . 3 P I Bk -4

21, Peter J. Landin)
A Correspondence Between ALGOL 60 and Church's Lambda-
Notation
Communications of the ACM, Volume 8, Numbers 2 and
3, February 1965.

22, Christopher Strachey
Towards a Formal Semantics

" Programming, North-~Holland Publishing Company,
Amsterdam, 1966.

23. C. Bohm
The CICH as a Formal and Description Language
Formal Language Description Languages for Computer
Programming, North-Holland Publishing Company,
Amsterdan, 1966.

2h. Arthur Evans, Jr.
Class notes for Linguistiec Structures, Subject 6.688,
M.I.T., Fall Term, 1966.
These notes are based on class lectures given by
Peter Landin,

25. John M, Wozencraft
Class notes for "Programming Linguistics," Subject
6.231, M.I.T., Spring Term, 1968.

26, James H. Morris
Lamda Calculus Models of Programmin Languages, Ph.D,
dissertation, M. I.T T., December 19

The following references describe the computer languages
SNOBOL/1 and ALGOL/60.

27. David J. Farber, Ralph E, Griswold, and I. P, Polonsky
SNOBOL, A String Manipulating Language
Journal of the ACM, Volume 11, Number 2, pp. 21-30,
1964,

28. Peter Naur (Editor)
Revised Report on the Algorithmic Language ALGOL
60
Communications of the ACM, Volume 6, Kumber 1, pp.
1-23, 1963.

200

The following references have also been used:

29.

30.

31.

32.

33.

3k,

35.

36.

37.

Peter E. Lauer

The Formal Explicates of the Notion of An Algorithm,
Technical Report 25. .072, IBM Laboratory Vienna,
February, 1967.

This reference explains and relates formalisms (in-
cluding Post's systems, Markov algorithms, and
the A-calculus) related to the theory of comput-
ability.

A. M. Turing
On Computable Numbers with an Application to the
Entscheidungsproblem
Proceedings of the London Mathematical Society,
Volume 42, pp. 230-265, 1936.

A, M. Turing
Computability and Lambda-Definability
Journal of Symbolic Logic, Volume 4, pp. 153-160,
1937.

Stephen C. Kleene
Lambda-Definability and Recursiveness
Duke Mathematical Journal, Volume 2, pp. 340-353,
1936.

E., V. Detlovs
The Equivalence of Normal Algorithns and Recursive
Functions
American Mathematical Society Translations, Series
2, Volume 23, pp. 15=81, 1963,

Marvin L, Minsky
Computation: Finite and Infinite Machines, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1967.

Nogm Chomsky
On Certain Formal Properties of Grammars
Information and Control, Volume 2, Number U4, pp.
393-395, 1959.

Alfred B, Manaster
Class notes for "Introduction to Mathematical Logic,
Subject 18.886, M.I.T., Spring Term, 1967.

"

Thomas B. Steel, Jr. (Editor)
Formal Language Description Languages for Computer
Programming, North-Holland Publishing Company,
Amsterdam, 1966,

201

38.

39.

Lo,

hl.

L2,

h3l

Trenchard More .
Relations Between Simplicational Calculi, Ph.D.
dissertations, M.I.T., Cambridge, Massachusetts,
1962, '

Calvin N. Mooers
How Some Fundamental Problens are Treated in the
Design of the TRAC Langusage
Symbol Manipulation Languages Techniques, North-
Holland Publishing Company, Amsterdam, 1968.

Joseph Weizenbaum
ELIZA - A Computer Program for the Study of Natural
Language Communication between Man and Machine
Communications of the ACM, Volume 9, Number 1, pp.
36-)‘5 [19660

Jerome A. Feldman
A Formel Semantics for Computer Languages and its
Application to a Compiler-Compiler
Communications of the ACM, Volume 9, Number 1, 1966,

A Programmer's Introduction to the IBM System 1360
Architecture, Instructious, and Assembler Language,
International Business Machines Corporation, White
Plains, New York, 1965,

Francis J. Russo
A Heuristic Approach to Alternate Routing in a Job
Shop :
MAC-TR-19, Project MAC M.I.T., 1965.

202

BIOGRAPHICAL NOTE

Henry Francis Ledgard greeted Lowell, Massachusetts, on
February 22, 1943, He graduated from Keith Academy of Lowell
in 1960 and received a Bachelor of Science degree (magna
cum laude) from Tufts University in 1964. While at Tufts,
he was elected president of the Tufts Tau Beta Pi chapter,
which received the "Outstanding Chapter of the Year Award"
in 1963. Homors during his matriculation included the "Amos
E. Dolbear Award for Excellence in Electrical Engineering"
and the "Award for Outstanding Service to the Tufts Community."

After graduating from Tufts, the author began studies in
computer science at Massachusetts Institute of Technology,
where he received the degree of Master of Science in 1965
and the degree of Electrical Engineer in 1967. While at
M.I.T. the author was associated with Bell Laboratories and
Massachusetts General Hospital. In 1965 he became & member
of the staff of the Electrical Engineering Department, first
as a teaching assistant, and later as a research assistant
in which capacity he undertook the research presented in this
dissertation.

The author likes northwest days, snow, music, cats,

Monhegan Island, politiecs, working hard, and playing hard.

203

VENDING MACHINE OF THE FUTURE

Rasivary

204

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D

(Socurity classification of title, body of abatract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author) 2a. REPORT SECURITY CLASSIFICATION
Massachusetts Institute of Technology UNCLASSIFIED
Project MAC 2b. GROUP
None

3. REPORT TITLE

A Formal System for Defining the Syntax and Semantics of Computer Languages

4. DESCRIPTIVE NOTES (Type of report and inclusivs dates)
Ph.D. Thesis, Department of Electrical Engineering, February 1969

5. AUTHORIS) (Last name, first name, initial)

Ledgard, Henry F.

6. REPORT DATE 7a. TOTAL NO. OF PAGES |7b. NO. OF REFS
April 1969 . 204 43

Ba. CONTRACT OR GRANT NO. 9a. ORIGINATOR’S REPORT NUMBERI(S)
Office of Naval Research, Nonr-4102 (01)

b. PROJECT NO. MAC-TR-60 (THESIS)

. NR-048-189 9b. OTHER REPORT: NO(S) (Any other numbers that may be

aszigned this report)

RR 003-09-01

d

10. AVAILABILITY/LIMITATION NOTICES

This document has been approved for public release and sale;
its distribution is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
Advanced Research Projects Agency
3D-200 Pentagon

None Washington, D.C. 20301

13. ABSTRACT

The thesis of this dissertation is that formal definitions of the syntax
and semantics of computer languages are needed. This dissertation investigates
two candidates for formally defining computer languages:

(1) the formalism of canonical systems for defining the syntax of a
computer language and its translation into a target language, and

(2) the formalisms of the A-calculus and extended Markov algorithms as a
combined formalism used as the basis of a target language for defining the
semantics of a computer language.

Formal definitions of the syntax and semantics of SNOBOL/1l and ALGOL/60
are included as examples of the approach.

14. KEY WORDS

Computers Multiple-access computers Syntax and semantics
Computer languages On-line computer Time-sharing
Machine-aided cognition Real-time computers Time-shared computers

DD .23, 1473 (M.LT.) UNCLASSIFIED

Security Classification

