
I. INTRODUCTION

Any interactive graphics program is more complex than

the usual "sample program" unless its only function is to plot

a simple picture. If the program also defines and manipulates

a data structure containing relational information about the

problem, the complexity of the program rapidly increases. This

example attempts to provide the "flavor" of a program which

performs a useful function, but with enough simplifying assump­

tions to make it tractable as a demonstration program.

A variety of applications suitable for treatment using

interactive graphics can be considered as a variation upon

the basic problem of building, editing and analyzing networks.

Examples of this type of problem are computer program flow­

charting, design of piping networks, construction of PERT

diagrams and the design of electrical circuits. A typical

program of this type having sufficient facilities to make it

useful to a professional in the applications field would run

well over 100 pages of listings in a high-level programming

language. In order to provide a vehicle for treating many of

the issues important in the design and implementation of

interactive graphics programs, a simple network drawing and

editing program was implemented. The program could have been

designed to deal with 'black boxes' and their interconnections.

However, in order to give the program some degree of reality,

the network components are represented by components from

electrical engineering, but the program was designed as a

-1-

-2-

teaching vehicle rather than as a useful program for circuit

design. It is therefore completely unnecessary to know anything

about electrical engineering; components may be treated as

different flavors of black boxes.

The program would have to be expanded considerably to

be useful for circuit design and analysis, both in the types

of elements it can handle and in the analysis routines pro­

vided, which are completely missing in this case. Therefore,

the sample program should be regarded as being only a fraction

of the size and complexity of a useful on-line circuit design

system; the principal limitations are summarized in Section

IX. In studying the program, one should regard the example as

a vehicle to illustrate:

1. typical manipulations upon complex data structures,

2. programming techniques used to allow a user to interact

with a program through the use of "light buttons",

3. the correlation of graphic input with the program data

structure,

4. high-level language facilities which facilitate graphics

programming.

The program allows the user to construct an electrical

circuit containing nodes, capacitors, resistors, and short

circuits, to modify the circuit, and to assign names and values

to resistors and capacitors.

-3-

In order to specify large circuits, it is desirable

to be able to define devices. A device is a circuit which

will be used as a unit in building a larger circuit; it will

be represented whenever it is used by a unique symbol. For

example, it is simpler to use a symbol to represent a tran­

sistor than to draw the circuit defining the transistor every

time a transistor is needed. It is frequently necessary to

be able to substitute the definition of a device (i.e., the

circuit specifying it) for its symbol when the properties of

the circuit are being investigated. A device in the sample

program serves much the same purpose as does a subroutine in

a programming language; if the network problem considered had

been computer program flowcharting, each subroutine would have

a unique symbol to represent a call to it. As would be

expected, a device can always be defined using previously

defined devices and the basic circuit components, nodes,

capacitors, resistors and shorts. The device definition must

specify how it can be connected when used, just as the defi­

nition of a subroutine must include the number of arguments.

The definition, usage and editing of devices is one of the

more sophisticated portions of the sample program.

-4-

II. DISPLAY EQUIPMENT USED

The sample program has been designed to operate upon a

display terminal using a storage CRT rather than the more usual

type of terminal whichcontinuously redisplays the picture.

When a storage CRT is used, the image is transmitted to the

terminal only once and is stored locally within the display

tube. The display can be partially altered only for additions;

to delete any portion of the picture, all the information on

the screen must be erased and the display regenerated with the

alterations. As the picture is drawn only once, light pens

cannot be used with storage CRT displays, but a device such as

a joystick driving a cursor can be used to point to objects;

this mechanism is handled locally at the console. Applica­

tions that involve frequent picture changes, such as animated

movies or the rotation or translation of objects, cannot be

performed using a storage CRT terminal. However, for those

applications for which it is sufficient, the cost of a commer­

cially available terminal including a keyboard and graphic

input facilities is about $10,000.

The terminal used for operating the sample program is

the Advanced Remote Display Station (ARDS) which was developed

at the M.I.T. Electronics System Laboratory as a remote display

for a time-sharing system (2,3). The main design requirement

was a graphic terminal that could operate over switched voice­

grade telephone lines using the full ASCII character set with

-5-

minimum demands on the time-sharing system. The terminal

includes a character generator and line generator. For graph­

ics the display screen is defined to contain 1081 X 1415 ad­

dressable, but not necessarily resolvable, points; the point

with x and y addresses 0,0 is in the center of the screen.

Two types of graphic input devices are available, a

joystick and a "Mouse," both of which can be used to position

a cursor on the screen. A feature of the terminal design is that

the cursor can be displayed at an intensity sufficient to make

it visible, but insufficient to cause it to store on the screen.

Buttons are provided on the graphic input devices which allow

either the cursor position, or the relative vector from the

last beam position, to be transmitted.

The sample program was written using this terminal in

order to illustrate that useful interactive programs can be

created using reasonably-priced hardware which can communicate

with computers over voice-grade telephone lines (preferably at

speeds of at least 1200 baud). In addition, the program illus­

trates how the pointing function can be illlplemented using

devices other than light pens.

-6-

III. PROGRAM FUNCTIONS

The program allows the user to perfonn the following

seven functions:

1. To begin drawing the circuit by specifying a
point on the screen where the first node is to
be defined. A node is a point of intersection
of circuit elementS and can only occur at speci­
fied grid points on the screen.

2. To draw, from the node last indicated with the
graphic input device, an element which may be:

a. a horizontal capacitor, resistor or
short circuit

b. a vertical capacitor, resistor or
short circuit.

3. To define as a device a circuit to be drawn, and
to assign a symbol and a name to a device.

4. To use the device in constructing a circuit.

s. To delete a device, a node or an element pointed
to by the graphic input device.

6. To· assign a value to a resistor or capacitor.

7. To edit a device definition in order to alter the
elements comprising the equivalent circuit for
the device.

The user operates the program by using the graphic input

device to point to a "light button" in order to indicate the

program option desired. Nodes, devices and elements of interest

are also denoted using the graphic input device. Values and

names for devices, capacitors and resistors are input via a

keyboard.

A light button is a descriptive phrase displayed on

the screen to indicate a program option. When the user points

-7-

to a phrase with the graphic input device, the program iden­

tifies the light button and associates it with information in

the program's data structure which indicates the proper action

to be taken. In this program two sets of light buttons, or

"menus," are used, one for operations upon the main circuit

and one for operations involving devices. If changing the

menu did not involve erasing the screen and rewriting all the

information on it, which may take several seconds when using

the ARDS terminal on a telephone line, more selective menus

could have been used to further reduce the user options to

include only those which the user could employ within the

present context of his work. The two menus are shown on the

next page.

This empty page was substih1ted for a
blank page in the original document.

-9-

LIGHT BUTTONS

Light Button Text Functions

DELETE

VALUE

HORIZ RESISTOR

VERT RESISTOR

HORIZ CAPACITOR

VERT CAPACITOR

HORIZ SHORT

VERT SHORT

AUTO ERASE ON

AUTO ERASE OFF

ERASE AND REDRAW

QUIT

ATTACH DEVICE

TERMINATE

DEFINE DEVICE

EDIT DEVICE

Delete a node, element or usage of
a device

Assign a value to a resistor or capa­
citor

Draw a horizontal resistor to the
right from the node previously spec­
ified

Draw a vertical resistor down from the
node last specified

Draw a horizontal capacitor

Draw a vertical capacitor

Draw a horizontal short

Draw a vertical short

Set mode to erase and redraw the display
whenever a deletion occurs

Opposite of AUTO ERASE ON (Normal
program mode)

Erase the screen and redraw the picture
immediately

Terminate program execution, returning
control to the timesharing system
command level

Replace a node previously specified
with a device to be specified

T_erminate the device definition which is
being defined or edited

Begin a device definition, saving the
present state of the main circuit for
use when the definition is terminated

Retrieve a previously defined device for
editing, saving the present state of
the main circuit until the editing is
terminated

The TERMINATE light button only occurs on menu 2 and the DEFINE DEVICE
and EDIT DEVICE buttons only occur on menu 1. All other light buttons
are on both menus.

-10-

IV. MODELING THE CIRCUIT

If the program is to deal with the circuit, it must have access

to certain information about it. For instance, one might want to know

what is the value of capacitor "C3". To answer this question, the

program must have stored the fact that there is an element named

"C3" which has a certain value. But a circuit is more than just data

of this type. Editing operations, such as. deleting a node, require a

knowledge of many relationships ; to delete a node, one must remove

all of the elements of any type attached to it. This type of information

will be called structure. Each node or element in the circuit has

certain data pertaining to it and there is a structure which interrelates

the nodes and elements.

The following data items are stored for each node:

1. A "name".

2. An X and Y position in some system of
coordinates.

3. The number of elements attached to the
nodes.

The structural information for each node specifies which elements are

attached to the node.

For a resistor or capacitor, the program stores as data:

1. The value of the resistance or capacitance.

2. A "name" so the user can refer to the
element.

The structural information for an element specifies the two nodes to

which the element is connected. For an element representing a short

circuit one need store, in this example, only the nodes between which

the short is connected. All of the data plus the structure indicating .~

-11-

relationships between the individual parts of the model is called the

model's data structure.

Many computer representations of these elements and their

interconnections can be devised. To create a sample program we

shall use the AED (Algol Extended for Design) System which ha-s been

developed by the M. I. T. Electronic Systems Laboratory Computer

Applications Group and which operates on several computers, includ­

ing the IBM 360 and 7094, and the UNIVAC 1108. The circuit will be

modeled by using a~. or block of contiguous storage, to represent

each node or element. Each bead contains a code to indicate what

type of circuit component it represents and also all the information

(both data and structure) to be stored for the component. The connec­

tion of circuit components is implemented by the use of pointers i an

element bead will contain a pointer which will allow the program to

locate the node bead corresponding to the node to which the element is

connected. Figure 1 b shows the format of the data structure beads

used in the program. In a resistor bead, for example, the code to

indicate that the bead represents a resistor is stored in the word

labelled TYPE. FROMNODE and TONODE are pointers to the node

beads representing the nodes between which the resistor is connected.

NAME is a pointer to the character string specifying a unique name

for the resistor. VALUE is the numeric value of the resistance.

Each item in a bead can be referenced symbolically by the use of the

AED components feature i an item in a bead such as FROMNODE will

be referred to in subsequent sections as a component of the bead.

Beads are obtained from a free storage system (a storage management

-12-

Rl c1
(~

2 3

I I ••
s1 s2

5 6·

7

Fig. la Schemotic Diagrara of.ia,,_ tielly C.!lf>leted Circuit

. • ... ·· ... ··~ .• •••••••
J.L- .. ~ i:-~ ff!

y

Node Bead T = l Resistor Bead Sttorl Circuit BeOd

T = 2 Capoc:iw had:

Fig. lb Dato Structure Beads used t~;Moct-1 the Circuit

-13-

system). The facilities of the AED system used in this program are

described more completely in Section VIII.

-14-

V. PROGRAM OPERATIONS ON THE DATA STRUCTURE

To perform each of the functions of the program, operations

must be performed on the data structure; the modification of the

graphical representation of the circuit is only an obvious manifesta-

tion of the alteration made to the structure. To begin to draw a

circuit the program must:

1. Obtain a block of storage, and store in it the code
to indicate that it represents a node. We will
call this block a node bead. It will contain all
the information (both cra:ta' and structure) about
the node.

2. Store in the node bead the coordinates of the node
in some coordinate system. We will use a
coordinate system in which all nodes lie on grid
positions separated by a .6.x or A.y of 200; the
center of the grid has coordinates (0, 0). The
first node is drawn at the nearest grid position to
the position of the graphic input device.

To draw an element (resistor, capacitor, or short) and attach

it to a node, the program must:

1. Obtain an element bead which will contain all the
information about fii"eelement; the type of
element is stored in the TYPE component of the
bead.

2. Find the node bead corresponding to the node the
user pointed to with the graphic input device.

3. Modify the node bead to indicate a new relation
exists, i. e. , the element just created is to be
"attached". Increase the count of the number of
leads attached to the node which is stored in the
LEADS component of the node bead.

4. Determine if a node already exists at the other
end of the element. If not, one must be created
and then the element must be "attached" to the
new node.

"Attachment" of an element can be done in many ways, depending upon

how relations are to be implemented in the computer. In this problem,

-15-

attachment means that pointers are stored in the node bead to indicate

the elements which are attacked to the node. Each element bead con-

tains pointers to the two node beads representing the two nodes to

which it is connected.

To delete an element pointed to by the graphic input device the

program must:

1. Find the element bead corresponding to the
element to which the user pointed with the graphic
input device.

2. Locate the nodes to which the element is attached,
and set the pointers to indicate that the element is
no longer connected and reduce the count of the
number of leads attached to the node. If no leads
are attached to the node, it can also be deleted.

3. Return the element bead to the list of available
storage so that it may be used again.

In addition the graphical representation of the item must be removed

from the screen.

Figure le illustrates the data structure for a partially com-

pleted circuit; the circuit is shown schematically in Fig. la. For

node beads only the up, left, right and down element connections are

shown; for resistor, capacitor and short circuit beads only the

connections to the node beads are shown. The figure also shows the

pointer chain linking all nodes, This chain, which permits the

program to follow pointers from one node to another, is useful since

the node chain is searched frequently. Figure ld shows the data

structure as modified by adding an element, R3, between node 3 and

node 6.

A more complicated program operation is deleting a node. If

a node is deleted, all elements attached to it are to be deleted. Since

Node 1 Node 2

--
EMPTY EMPTY

EMPTY
-- • 1 • 1. • 1 •

- •
Rl - cl I

,~

I I

~I ; I S1

'
~I ; 152

I . I
I I .. Node 4 I Node 5

• -I --, __ , __ -~

EMPTY
- • 1 • 1 •..... - --• , • ~

- • -
EMPTY c, I - R2

I
I

':I ; I
Node 7

I

(r EMPTY
~

EMPTY
EMPTY

EMPTY

....... ..-
Fig, 1 c Data Structure for Partially Completed Circuit

))

--~

•
1 •..... ~

....

• ~ •.....

Node 3

EMPTY -~
EMPTY

EMPTY

Node 6
...

EMPTY

-
EMPTY
EMPTY

~

"""'

J

)

-O"
I

)

Node 1

--
EMPTY

EMPTY
--

..-. ,- -
I

::1
I

;
I
I

Node 4 I

~ -....-
·-- ---- ---

EMPTY

EMPTY

Node 2 -. --
EMPTY

~ · 1 • 1- - - · 1 • 1 •..... ----
• ... • -

Rl
.-. .A

cl
~ ,- ,-
I

I I

I SI ::1 ; I S2 '.:I
I

I I
I I

I Node 5 I
I

I__..
""""

I

I - ,~

!-. 1...._

---- ~

..... · 1 • 1 - · 1 • 1 -
• ..._ • -

c, -- -- R? ,~ -
I
I

':I : I

Fig. ld Data Structure for Partially Completed Circuit with Element R
3

Added

Node 3

EMPTY ...
EMPTY

;
Node 6

.... --

EMPTY

EMPTY

.... -

~

I R3

""\

I

.......
-.]

I

Node 1 Node 2 Node 3

- -- - -
EMPTY EMPTY EMPTY

EMPlY
..... • 1

• 1 •..... 4
--

.... • 1
• 1 - --- -

- ' - • eMPlY - -
.-. -- Rl

~ -- c1 EMPlY , ... - ,- -
I I

:: I ; Isl ·:I ; I S2
I
I
I

Node 4 I Node 5
I
I
I

EMPlY
..... • 1

...
1- • EMPTY

EMPlY c, I

:I I ;
l
I
I Node 7 I
~ EMPTY , __ -.... -

EMPTY

EMPTY

EMPTY

.._ --fig. 1 e Data Structure for Partially Completed Circuit with Node 6 Deleted

)))

)))

Node l Node2 Node 3
....

loo - -- ~

EMPTY EMPTY EMPTY

EMPTY -.....• I • 1 •.....• - -....• I • 1 - --- --
-- • -- • EMPTY -- -

-- -- Rl EMPTY c1 EMPTY ,~ --
I

::1 ; I s,
I
I
I

Node 4 I

~ EMPTY
I --- -·

EMPTY

EMPTY

EMPTY

Node Chain

Up, Down Connections -- - - •

Left, Right Connections • • • • •

Fig. 1f Data Structure for Partially Cor11>leted Circuit with Node 5 Deleted

-20-

these elements are also attached to other nodes, one must update the

information about these nodes to indicate the elements have been

removed. Since the data structure implements a connection between

all node beads by means of a pointer from one node bead to the next

node bead, this connection must be altered to join together the nodes

remaining. Of course, one must also modify the display to reflect

the changes in the circuit; changing the model of the circuit in this

program has no direct effect on the graphical representation of the

circuit. All alterations to the display must be independently speci­

fied. Figure le shows the data structure in Fig. le after node 6 was

·deleted, and Fig. lf shows the effect of deleting node 5.

The most complicated program functions are the definition,

editing and usage of devices. A device must be defined before it can

be used, but the definition may be begun at any time during the defini­

tion of a circuit. If a circuit,. such as the one shown in Fig. la, is

partially complete at the time a definition is to begin, the state of the

circuit will be preserved until the device definition is complete and

then it will be restored. The program does not allow the user to

partially complete a circuit and then declare it to be a device; he

must enter the device definition mode before beginning to specify the

circuit which will represent the device.

The circuit representing a device, or its equivalent circuit,

can contain elements, nodes and occurrences of previously defined

devices. Each device has a user-supvlied name and a symbol which

indicates the number of leads the device has available for attachment.

The maximum number of leads allowed is four, since in this program

-21-

a device is used in a circuit as a substitute for a node. Before a

device definition is complete, a symbol having the correct number of

leads must be selected. The correspondence between each lead on the

symbol and the terminal nodes in the equivalent circuit for the devices

must also be established. This correspondence is required so that an

analysis program could properly substitute the equivalent circuit for

the device in order to evaluate the propertie~ of the overall circuit.

To define a device, the program must enter device definition

mode and:

l. Obtain a device definition bead which will contain
all the information about the device definition; it
will contain no information about how the device
is used.

2. Allow the user to design the equivalent circuit
after having stored the circuit being constructed
on the main circuit level. When the definition is
complete, the main circuit will be restored. The
FIRST· NODE component of the device definition
bead points to the beginning of the data structure
for the equivalent circuit.

3. Ask the user to provide a name to be given to the
device and to select a symbol to represent the
device when it is used. The style o(symbol is
given by the component BOX·STYLE in the device
definition bead. The number of leads on the sym­
bol selected is the number of terminal nodes in the
circuit. A terminal node must be a node (or
device) to which less than four elements have been
connected.

4. Establish the connection between each lead on the
symbol and a terminal node in the circuit.

5. Add the newly created device definition bead to the
device definition chain, which links all device
definitions.

The format of the device definition bead is shown in Fig. 2a; the data

structure built when two devices are defined is shown in Fig. le.

. -22-

SUBPICTURE CORRELATION WORD

CORRELATION WORDS TYPE=4

BOX STYLE LEADS

NEXT DEFINITION NEXT NODE

NAME NAME

FIRST NODE UP ELEMENT

NUMBER OF USAGES LEFT ELEMENT

TERMINAL 1 RIGHT ELEMENT

TERMINAL 2 DOWN ELEMENT

TERMINAL 3 x
TERMINAL 4 y

DEVICE DEFINITION

FIG. 2A DEVICE DEFINITION BEAD FIG. 28 DEVICE USAGE BEAD

)

BEGIN • DEFINITION • CHA

TO NODEl FOR
DEVICE

IN

,

)

DEVICE 1 .. SUBPICTURE

CORRELATION

BOX STYLE=2

NEXT. DEF. -
NAME

FltST NODE
NQ. OF .. \.6AGES

~ 'l'ERMll\l.l 1
...-1 fnMINAL 2

EMPTY

EMPTY

TO TE.,...tilAL

N=lN -.EQU A.LENT ORCI

.. ~
~ /

_..
TYPE•O
LEAD$

NEXTNOC>E
NAME

UP ELEMENT
LEFT ELEMENT

RIGHT ELEMENT
DOWN ELEMENT

x
y

FIG. 2C DEVICE DEFINITION CHAIN FOR 2 DEVICES

TEXT OF DEVICE NAME

·TO NODEl FOR DEVICE

• TO TERMINAL NODES

ODE OtAIN FOR
QUIVALENT CIRCUIT

)

I
N
w
I

-24-

To use a device in a circuit, the program must:

1. Determine that the device to be attached has been
defined.

2. Obtain a device usage bead which will contain all
the information about this usage of the device,
such as the elements to which it is attached and
whether or not certain leads can be used (i.e., if
the device had only two terminal nodes, only two
of the possible four leads can be used to attach
elements). The bead also contains a pointer to the
device definition bead so that the device definition
could be used by an analysis program (this fact is
not used in this program).

3. Delete the node at the place where the device is to
be plotted. A device can only be posi:tioned at a
point where a node already exists.

4. Display the symbol corresponding to the device,
including a name. The orientation of the device
symbol must be specified. For example, if the
user selected a syTile such as

he could insert it into the circuit in one of the four followO:rJ-O 0-
The four orientations are displayed and the user
must select the correct one with the graph~c input
device. The name is the one given when the device
was defined concatenated with a number indicating
the particular occurrence of the device.

The format of the device usage bead is shown in Fig. 2b. It should b~

noted the bead is nearly the s.ame as a node, except that the type code

is different, the existence of leads in certain directions may be

forbidden, and the last component is a pointer to the device definition

bead for the device being used.

-25-

VI. SPECIFICATION OF THE DISPLAY

The programming system that allows the different types of

display consoles to be used with the M. I. T. time-sharing system

(CTSS) has been given the name GRAPHSYS. (1, 4) The user interface

is a set of procedure calls which allow the user to plot objects such as

lines and points to remove objects from the screen, and to determine

which object was "seen" by a graphic input device.

Although a display console deals only in terms of simple

console commands such as "draw a point" or "draw a line," the user

wants to deal with objects. An object is a group of console commands

which are added to the display file at the same time and are to be

thought of as an atomic entity, e.g., a capacitor consisting of several

short, straight-line segments (made by several line-generate

commands). The display file is the ordered sequence of console com­

mands which is sent to a display console to produce a picture.

A. Naming of Display Objects

When an object is placed in the display file, it must be given

a unique descriptor, or name, if it is to be identified again. The user

may wish to specify some object upon which GRAPHSYS should

perform a function (e.g., delete this object), or GRAPHSYS may wish

to inform the user of some action concerning it (e.g., this object was

seen by the light pen). The name is used to refer to an object in all

communications between GRAPHSYS and the user; the name must be

both unique and invariant so that an object can be uniquely identified

at any time.

-26-

The form of a unique and invariant name which appears

simplest, at least conceptually, is a subscript in an array. In order

to perform the correlation function, which transforms (via a corre-

lation map) the address of a console command causing a light pen

interrupt to the user's name for the object, GRAPHSYS would have

to build an array of length equal to the total number of names. An

element in this array would contain the initial location of the console

commands corresponding to the object whose name is the subscript

of the element in the array. In addition, the user would need a simi­

lar array giving the item in his data structure corresponding to the

name. Thus, there would be a double map, one from the user's

name to the console command locations and one relating the name to

the user's data structure. These maps correlate the data structure

for an object with its display representation. Double maps, espe-

cially in array form, are expensive in their use of core storage.

The naming scheme which has been employed by GRAPHSYS

meets the criteria of uniqueness, invariance and convenience, at

least within the context of an in-core data structure. To use the

GRAPHSYS naming convention, the user extends each bead by one or

two words, the correlation word(s) which contain the appropriate

correlation information. In this manner explicit arrays are avoided,
r~

-27-

and when the appropriate correlation word is located by the correla­

tion mechanism, the corresponding data element (bead) is found

immediately adjacent, the re by avoiding the map between the user's

name and an element in the data structure. GRAPHSYS will be respon­

sible for storing into and updating these correlation words, and per­

forming the actual correlation. In a correlation word GRAPHSYS will

store the address of the console commands for the object. The unique

"name" of the object is the address of the correlation word, which is

also the address of the user's data structure bead for the object.

Figure 3 illustrates the combined user-and-GRAPHSYS data

structure for a display file containing three objects. In our example

the correlation word(s) will occur as the first word in the entire block

of storage representing an element, node or device. Each correlation

word contains the name of the next object in the display sequence. The

GRAPHSYS display data structure is therefore a one-way list threading

through the user's data structure. A name of zero signifies the end of

the list. The contents of the correlation word are maintained solely

by GRAPHSYS; the user does not have to be concerned with the loca­

tion of the console commands. Note also that this particular thread

(list) through the beads is independent of the data associations between

beads, i.e., the other list structures which the user's programs may

have built.

B. Use of Subpictures

The data structure built by GRAPHSYS using the correlation

words becomes more complex when subpicture calls and definitions are

considered. Subpictures are defined using the procedures DEFSUB and

BEGIN • DISPLAY
• SEQUENCE (Ni

)

)
DFl l N2 DF2 l N3 DF3 l 0 ..,

TYPE =O TYPE =O TYPE =1
LEADS LEADS FROMNODE

NEXTNODE NEXTNODE INTONODE
NAME NAME NAME

UP ELEMENT UP ELEMENT VALUE
LEFT ELEMENT LEFT ELEMENT

RIGHT ELEMENT RIGHT ELEMENT
DOWN ELEMENT DOWN ELEMENT

x x
y y

Nl, N2, N3 are pointers to correlation words of
objects; they are the·GRAPHSYS "names" for the
objects.

DFl DF2, DF3 are the display file locations of
display commands corresponding to the objects.

Figure 3. GRAPHSYS Data Structure

\
)

••••••• END OF DISPLAY
SEQUENCE CODE

)

I
N
00
I

-29-

ENDSUB which work like BEGIN and END in PL/I or AED. Subpicture

definitions may include calls to other subpictures to any depth, except

that subpicture calls can not be recursive. Although subpictures may

be defined within subpictures, they may still be called from outside

those subpictures, i.e., subpictures do not possess a PL/I-type block

structure. They behave exactly as if they had all been defined in

parallel at the highest level.

A separate list is built by GRAPHSYS linking all subpicture

definitions. Each element in this list is the start of a subpicture defi-

nition and contains 3 pieces of information:

1. The number of times the subpicture is called.

2. A pointer to the first correlation word in the
subpicture definition. The list beginning with
this correlation word is of the same format as
shown in Fig. 3.

3. A pointer to the next subpicture in the subpic­
ture definition list.

A subpicture call requires two correlation words which

contain:

1. A pointer to an element in the subpicture
definition list, i.e., a pointer to the beginning
of the definition for the subpicture being called.

2. A pointer to the next correlation word, i.e.,
the next object in the display sequence follow­
ing the call.

3. The display buffer address of the subpicture
call (for refresh-type displays).

This structure is built automatically by GRAPHSYS and the user's

only responsibility is to provide the storage used for the correlation

words. Figure 4 provides a schematic view of the structure built

in the following case:

)

BEGINNING OF I I
DISPLAY FILE I I c I I c I ... 0 to----.~-
SEQUENCE I 0 • TO 01 ·: TO 02

BEGINNING OF SUBPICTURE
DEFINITION THREAD .•••••••••• ·0· ... ·EJ·· 0 = SIMPLE DISPLAY

Dl D2 : OBJECT r-------- r ; c = SUBPICTURE CALL

:' .. ·· · ~ · · I······· · · · · · · · · · · · · · · ·······I· · · · · · · · · · · .· D = SUB PICTURE DEFINITION : : L-----8-1
: I C . C C ~ gEJ-8 0 ~@
I

• I
VJ
0
I .

'@-[;9-GQ-gJ 0EJ-:. c c c :· 03
TO 05 TO 06 . TO 04 i 04 0 G . . . • • .

I .. :
.l ~-~ TO OBJECTS COMPRISING ~•TO OBJECTS
·····~ DS l_:__J COMPRISING

~•.................. : 06

----- MAIN DISPLAY FILE THREAD

• • • • · • • • • • • • • • · • SUBPICTURE DEFINITION THREAD

- - - - - THREAD LINKING OBJECTS
COMPRISING SUBPICTURE

FIG. 4 GRAPHSYS DATA STRUCTURE WITH SUBPICTURES

))

-31-

1. The main display file contains an object and 2
subpicture calls, to subpictures Dl and D2.

2. The subpicture definitions corresponding to
these calls are Dl and D2.

3. Dl contains a call to definition D3, and D2
contains a call to definition D4 and to definition
Dl.

4. D3 contains only subpicture calls, to definitions
DS, D6 and D4.

The data structure built when a subpicture is defined retains

the information about how the subpicture is built in terms of individual

display objects. However, the same pictorial representation can be

obtained by defining what is called a compound object in GRAPHSYS.

A compound object is produced by combining physically the display

commands from all the objects specified in order to create the display

code for the new compound object. The difference between compound

objects and subpictures is analogous to the difference between compil-

ing and interpreting computer programs. In a compiled program the

input statements cannot be deduced by examining the compiled code;

in an interpreted program, the structure of the statements is retriev-

able. The data structure created at the time a subpicture is defined

permits a 'pensee' to be decoded as referring to a certain object

within the subpicture; in terms of the analogy it is easy for a

language interpreter to report the source language statement corres-

ponding to an execution-time error. However, if 'pensee' occurs upon

a compound object, there is no information available about which

object of those originally used to create the object was responsible for

the pensee. Compound objects should be used when the object is the

smallest piece of the picture to which the user expects to make

-32-

reference; subpictures preserve the structure used in the definition

and therefore should be used if this structure is important.

When the user in the sample program defines a device, it is

represented internally as a subpicture since the user may wish to

modify the definition of the device in terms of nodes, devices, and

elements comprising it. In order to display the equivalent circuit for

the device, the subpicture for it is called. Devices may be defined in

terms of previously-defined devices; this hierarchy is represented

by a subpicture definition for the new device, which will contain a sub­

picture call to the definition for the previously-defined device. When

an object within a subpicture is "seen" by th~ graphic input device, the

identity of the subpicture call and the corresponding subpicture defini­

tion is available, in addition to the identity of the object upon which the

pensee occurred. If subpicture definitions are nested, the entire sub­

picture hierarchy is returned upon a pensee; it is up to the user to

decide how much of this history of formation is meaningful at that time.

C. Correlation of Graphic Input with Problem Data Structure

When a display with a light pen is being employed, the display

hardware provides, at the time a light pen interrupt occurs, the X and

Y beam coordinates and the address in the display buffer frorn which

the current display instruction was fetched. In order to report to the

user the object "seen" by the light pen, GRAPHSYS searches the data

structure shown in Fig. 3, serially via the correlation word pointers

for each bead (object), checking if the address resulting from the light

pen interrupt corresponds to any of the display buffer locations contain­

ing the display commands to draw this object. If, for example, in

-33-

Fig. 3 the address at the time of the light pen interrupt was DF2+3 and

if the object starting at DF2 had 7 display commands, the address of

the correlation word of the object seen would be found by the search to be

N2. Since the correlation word in this program is always the first

component of the data structure bead describing the object, the user

has immediate access to the data about the object.

Unfortunately, in a non-refreshed display system, such as is

used in this example, the address corresponding to the display com­

mands for the object cannot be obtained by an interrupt since only the

X-Y coordinates of the cursor are available. GRAPHSYS must decide

which object the user tried to designate with the cursor. The most

convenient terminology to describe the correlation of graphic input

with objects is by analogy with the use of a light pen. Therefore, we

will use the term ".pensee" to indicate a correlation between a graphic

input device and a displayed object and "pen sensitivity" to indicate an

object is eligible for such a correlation.

The algorithm used assumes that the area within which an

object is pen sensitive is a rectangular area associated with the object.

To make a displayed item "pen-sensitive" the user calls the procedure

PENSNS, giving the size and the relative position of the rectangle. A

special bit is set in the correlation word to indicate it is pen sensitive.

If he does not wish to specify the position of the rectangle, a program­

computed center is used. When the user indicates he wants to identify

an object being pointed to with the cursor, GRAPHSYS searches the

data structure illustrated in Fig. 4 for the first pen-sensitive object

having a rectangle within which the cursor coordinates fall. A pen-

-34-

sensitive subpicture call requires that the subpicture definition be

searched; upon a pensee, the name of object seen, the name of sub-

picture definition which includes the object, and the name of the sub-

picture call are returned to the user. If the subpicture call is within

a subpicture definition, the names of all outer subpicture calls and

definitions are also returned.

When the pen-sensitivity package is being used, the model of

the pieture maintained in the computer must correspond exactly to the

picture on the screen. If the two differ, the user could point to an

object which his program believes has been deleted, or the pen-

sensitivity program may "see" an object which has not yet been

displayed on the screen. In the program an object which has been

de.leted will be written over with a large X to indicate that it has been

removed from the problem and display file data structures, but it will

remain on the screen until the picture is redrawn.

D. GRAPHSYS Procedures

A variety of GRAPHSYS procedures are used in this example;

they can be divided into six classes:

1. Those procedures for creating standard display
objects such as lines, point, and character strings
(procedures LIN, SETPT, TEXT).

2. Those procedures for modifying display objects,
such as those procedures to make a Une invisible,
a line dotted, or to make an object pen-sensitive
(INVIS, DOTTED, PENSNS).

3. Those procedures required in order to use com­
pound objects, which are objects consisting of
several standard objects 9 for example·, an object
consisting of several lines and a string of text
(DEFOBJ, ADDOBJ, ENDOBJ, CRYOBJ).

-35-

4. Those procedures required in order to use sub­
pictures (DEFSUB, ENDSUB, CALL).

5. Those procedures which add objects to the display
file data structure and those which transmit the
display file, or a portion of it, to the terminal
(PLOT, DISPLAY).

6. Those procedures which alter the display file data
structure by removing objects or replacing objects
with other objects (RMV, RPL).

All GRAPHSYS procedures used in this program which return

a value (or in FORTRAN terms are functions rather than subroutines)

have a pointer as their value. A GRAPHSYS standard object is a group

of display console commands which are added to the display file at the

same time, and which are thought of as an atomic entity, i.e., a

string of characters. The internal representation of an object is a

block of storage containing the display commands with a header denoting

the number of machine words in the block; the object is referenced via

a pointer, which will be denoted in the procedure descriptions as PTR.

A compound object consists of several standard objects which have been

merged to form a single object, which is also referenced via a pointer.

-36-

Calling Seguences o! GRAPHSYS Procedures

1. Procedures to create standard objects·

a. Pointer Procedure LIN
Purpose: To build a standard object for a line.
Calling Sequence: PTR=UN (DELX, 'DELY)
Where: PTR is a pointer to the object created,

DELX is 'the· Ax component of the line.
DELY is the Ay component of the line.

b. Pointer Procedure SETPT
Purpose: To build a standard object for a point.
Calling Sequence: PTR=SETPT (X, Y)
Where: X is the horizontal coordinate of the point.

Y is the vertical coordinate of the point.

c. Pointer Procedure TEXT
Purpose: To build a standard object for a text string.
Calling Sequence: PTR=TEXT (. C. string)
Where: . C. string is a text string generated by the AED

. C. operator, i.e., . C. 7DELETE/ (see Sect. VIII).

Z. Procedures to modify standard objects

a. Pointer Procedure INV.IS
Purpose: To make all lines or points in an object invisible.
Calling Sequence: PTR=lNVL5 (P-TR)
Where: PTR is a pointer to an object, such as is produced

by LIN or SET PT.

b. Pointer Procedure DOTTED
Purpose: To make all lines in an object dotted.
Calling Sequence: PTR=DOTTED (PTR)

c. Pointer Procedure PENSNS
Purpose: To make an object pen-sensitive.
Calling Sequence: PTR=PENSNS (PTR)

3. Procedures for constructing and using compound objects

a. Procedure DEFOBJ
Purpose: Begin a compound object definition.
Calling Sequence : DEFOBJ ()
Arguments : None
DEFOBJ must be called before ADDOBJ can be called to add
standard objects to a compound object.

-37-

b. Procedure ADDOBJ
Purpose: To add a standard object to the compound object

currently being constructed.
Calling Sequence: ADDOBJ (PTR)

c. Procedure CPYOBJ
Purpose: To make a copy of a standard or compound object.
Calling Sequence: NEWPTR=CPYOBJ (PTR)
Where: NEWPTR is a pointer to the copy.

d. Pointer Procedure ENDOBJ
Purpose: To terminate the definition of the compound

object and to get a pointer to the definition.
Calling Sequence: PTR=ENDOBJ ()
Arguments: None

4. Procedures for constructing and using subpictures

a. Pointer Procedure DEFSUB
Purpose: To start defining a subpicture.
Calling Sequence: SUBNAME=DEFSUB {SUBNAME*)
Where: SUBNAME is the pointer to a block of two words

which are to be used as the cqrrelation words for the
subpicture definition. If SUBNAME is not provided,
DEFSUB will obtain two words from free storage and
the value of the procedure will be a pointer to the
words obtained. Upon a pensee within the subpicture
definition SUBNAME will be among the information
returned in order to designate which definition
included the object seen. A * indicates an argument
optional and need not be supplied.

b. Procedure ENDSUB
Purpose: To terminate the definition of a subpicture.
Calling Sequence: ENDSUB {)
Arguments: None

c. Pointer Procedure CALL
Purpose: To call a previously designed subpicture.
Calling Sequence: NAME=CALL {SUBNAME, NAME*)
Where: SUBNAME is the argument supplied to DEFSUB when

the subpicture to be called was defined.
NAME is a pointer to a block of two words which are
used as the correlation words for the subpicture call,
Upon a pensee within the subpicture definition, NAME
will be among the information returned in order to
designate which call of the subpicture definition
corresponds to the pensee.

-38-

5. Procedures to add, modify and transmit the display file

a. Pointer Procedure PLOT
Purpose: To add objects to the display file.
Calling Sequence: NAME=PLOT (PTR, NAME*, AFTER*)
Where: PTR is a pointer to the standard or compound object

to be added to the display file.
NAME and AFTER are optional arguments which may
be omitted. NAME is a pointer to a word of storage
to be used for the correlation word for the object. If
NAME is not provided, PLOT will obtain a word from
free storage and the value of the procedure will be a
pointer to the word obtained. AFTER is a pointer to
the correlation word of the object after which, in the
display sequence, the new object should be plotted. If
AFTER is not provided, the new object will be added
to the end of the display file.

b. Procedure DISPLAY
Purpose: To send the display file, or a portion of it, to the

terminal.
Calling Sequence: DISPLAY (HERE*, THERE*)
Where: HERE is a pointer to the correlation word of the first

object to be displayed.
THERE is a pointer to the correlation word of the last
object to be displayed. HE RE must precede THERE
in the display sequence. If no arguments are provided,
the entire display file will be output to the terminal.

c. Procedure RMV
Purpose: To remove objects from the display file.
Calling Sequence: RMV (HERE*, THERE*)
Where : All objects between HERE and THERE will be removed

from the display file. HERE and THERE have the
same meaning as for DISPLAY.

d~ Pointer Procedure RPL
Purpose: To replace an object in the display file with another.
Calling Sequence: NAME=RPL (NEW, OLD, NAME*)
Where: NEW is a pointer to the object to replace OLD.

NAME is the pointer to the correlation word of the
new object. If NAME is omitted, the system will
supply the correlation word, as is done in PLOT.

-39-

VII. INPUT PROCESSING

The sample program can receive input from both the

keyboard and graphic input devices, and it is useful to con­

sider the graphics terminal user as having an "extended key­

board" consisting of a typewriter, light pen and/or position

input devices, push buttons, etc. In the sample program all

input is handled via one input routine, GET.ITEM, which is

called with the type of input item to be read.

In the call to GET.ITEM the allowable type of item

expected by the program is indicated. In this program the

program flow is controlled by the use of "light buttons" and

only one type of input is allowable at a given time. In case

of an error GET.ITEM could indicate to the user the type of

input he was expected to provide and give him an opportunity

to correct his error.

GET.ITEM uses a special purpose AED system RWORD proces-

sor (5). The allowable input types in the program are:

1. Numeric value.

2. Character string.

3. Graphic input item containing the absolute position of

the cursor.

4. Graphic input item containing the information regarding

a 11 pensee 11 (X,Y cursor coordinates, pointer to the

correlation word of the object seen, and the stack of

subpicture calls and subpicture definitions, if any).

This item will replace an item of type 3 if the cursor

is positioned over a pen-sensitive picture element.

-40-

GET.ITEM calls upon system routines that examine the contents

of the input buffer and decide what types of input items have

been received, perfonning type conversions when necessary and

doing some processing such as the cursor correlation function.

Different versions of GET.ITEM are required for each type of

display console, due to different input message formats, but

the user's interface to GET.ITEM is independent of the type of

display upon which he is working.

The use of GET.ITEM allows the graphics programmer not

to worry about attention or interrupt handling. Input from a

display terminal is handled by the M.I.T. timesharing system

(CTSS) in much the same way as it handles input from type­

writers. When an executing program requests input from the

tenninal and none has been provided, the timesharing super­

visor places the program in "input wait" status and it is

removed from the queue of programs waiting to execute. The

ARDS transmits information on a character-by-character basis

via its telephone line connection to a small communications

computer, which assembles a line of input. When the "carriage

return" character is received, and the user's program is in

input wait status, the timesharing supervisor removes the user's

program from input wait status and queues it to run; it can

then read the input.

If, on the other hand, the user's program is executing

when input is received, the program is not interrupted and

the program must specifically request the input in

order to determine if it has arrived. The user's

-41-

program can read the line of input and act upon it in any

way. There may be a considerable time delay between the

time the user indicates an action is to be performed and any

confirmation is received from his program. All information

from the ARDS is transmitted in terms of characters; for

example, the cursor position is encoded as a sequence of

character codes. The M.I.T. timesharing system therefore

simply regards the ARDS as a "high-speed teletype", although

other techniques for handling the terminal in timesharing may

be preferable for some applications.

If the user of a display console equipped with a light

pen and function keys is working continuously, but his program

receives only intermittent service in the timesharing system,

input from the display console must be buffered in some way

so that his program does not lose any of the input intended

for it. In the M.I.T. timesharing system, the highly inter­

active consoles are connected to small computers (PDP-7 or

PDP-9) which handle all real-time interrupts. When the small

computer has some information for the user's program in the

timesharing system, it signals that it has a message which

can be read by the timesharing system at its convenience; if

the user's program is waiting for input, it will be queued

for execution. The small computer can confirm that the user's

graphic input has been received, and "package" the information

in a convenient form for transmission to the timesharing

-42-

system; in the case of a pensee the message would include the

pen coordinates, the address in the small computer memory

corresponding to the interrupt and the subpicture call stack,

which is needed in order to fully interpret a pensee. When

the user's program begins to run on the timesharing system,

the message received from the display buffer computer can be

processed.

-43-

VIII. AED LANGUAGE FEATURES

In order to study the sample program, one must be

familiar with some of the features of the AED language in which

it is written. AED is an extension of ALGOL and includes many

features especially suited for building large systems and for

manipulating complex data structures. (6,7) A knowledge of

ALGOL sufficient to understand the sample program in detail

can be obtained from any ALGOL primer, such as the one written

by McCracken (8).

The most important AED features used in this program

which are not included in ALGOL are the free storage system,

the representation of character strings, pointer variables,

and components. In our previous discussion we have used the

term "bead" to describe a block of storage used for some par­

ticular purpose, such as to represent all the information

about a resistor. To create a new bead by obtaining it from

a list of available storage, the system procedure FREE is

called as follows:

PTR = FREE (N) $, (the $, is the AED statement delimiter)

The result of executing this statement will be that the pointer

variable PTR will point to a block of contiguous storage N-words

long. A pointer in AED on the IBM 360 or 7094 has as its

value an absolute core location; the value of PTR is the address

of the first word of the block of storage allocated by FREE.

The bead can be returned to the list of available storage by

calling procedure FRET.

-44-

If such blocks are to be useful, the programmer should

have a way to refer to individual items within a block; for

example, in working with a resistor bead, he would want to

refer individually to the name and value of the resistor and

also to each of the two connections to the nodes. The ability

to name items within a bead is provided by the AED "component"

declaration statement and the $=$ assignment operator. Assume

that a bead representing a resistor is to have the following

format:

PTR Word 0 ·p; GRAPHSYS Correlation Word

Word 1 TYPE

Word 2 "From" Node

Word 3 "To" Node

Word 4 Resistor Value

To indicate that each bead would have this layout, one would

first have to decide to use mnemonics such as TYPE, FROM, INTO

and VAL for words 1-4 of the bead. These names would then be

used in the declaration statements:

INTEGER COMPONENT TYPE $,

REAL COMPONENT VAL $,

POINTER COMPONENT FROM, INTO $,

-45-

Note that unlike arrays, each component of a bead can have a

different type.

In order to use a component one must indicate in which

bead the component is to be found, since there will be many

similar beads all representing resistors. The pointer re­

turned by the call to FREE uniquely identifies the bead in

which a component is located; the AED notation to assign a

value to VAL in the bead whose pointer is P would be

VAL (p) = 7. 2 $I

(This is read "Val of P equals 7.2".)

Obviously the system must know which word in the bead

pointed to by P the user considers to be VAL; this assignment

is carried out by the $=$ operator which is evaluated at compile

time. To set VAL to be the 4th word in all resistor blocks, one

would insert the statement

VAL $=$ 4 $,

in the program following the statement where VAL was declared

to be a component. At execution time the expression VAL (P) =

7.2 $, is evaluated as "take the location given by the pointer

P, add 4 to it and store 7.2 in that location."

Character strings are manipulated in AED by the use of

the .c. operator and pointers. For example, the statement

PTR = .C. /MESSAGE/ $,

will result in PTR being a pointer to a bead containing the

number of characters and the text in the following format:

-46-

NCHARS (Number of Characters)

PTR M E s s ,..

A G E

PTR can therefore be stored in a data structure which has been

designed without considering the maximum number of characters

in the text string.

A powerful feature of the AED language is the use of

phrase substitution, which permits substituting for a variable

any construct whose value agrees in type with the variable.

For example, suppose a programmer wants to set P to be the

square root of A and transfer to statement label SOLVE if the

square root is positive. In AED he could write this in one of

two forms

p = SQRT (A) $,

IF P GRT o. THEN GOTO SOLVE $,

or by using phrase substitution

IF {P=SQRT (A)) GRT 0. THEN GOTO SOLVE $,

The latter case allows the compiler to generate slightly more

efficient code. A statement involving phrase substitution can

always be simplified by writing out each step in turn, starting

with the innermost set of parentheses.

Nested AED procedure calls are used frequently in the

sample program; for example, to plot an invisible line of

-47-

length ~x = 50, ~y = -50 one writes

PLOT (INVIS (LINE (50,-50))) $,

which corresponds to

PTR = LINE (50,-50) $,

where PTR is a pointer to the object representing the desired

line, followed by

PTR = INVIS (PTR) $,

PLOT (PTR) $,

INVIS modifies the line command rather than making a new copy.

All of the procedures in GRAPHSYS which manipulate display

objects and which are valued procedures have a pointer as their

value.

Other features of AED which are likely to be confusing

have been commented upon in the program listing. It is hoped

that the following set of flow diagrams and the comments in

the program will make the program meaningful to anyone seriously

interested in the details of its operation.

REDRA

-48-

MAIN PROGRAM LOOP

INITIALIZE GRAPHSYS AND ARDS J

GET POSITION OF FIRST NODE AND PLOT J

DISPLAY FIRST LIGHT BUTTON MENU J

W$ IS PICTURE TO BE ERASED AND REDRAWN?

YES NO
,~

[ERASE SCREEN

_i
IS A DEVICE BEING DEFINED l
OR EDITED? J

YES NO
1~ ~~

PROGR AM
TION INITIALIZA

PICTUR E
ANCE MAI NT EN

DI SPLAY DEVICE AND LIGHT DISPLAY MAIN CIRCUIT
BUTTONS FOR DEVICE AND LIGHT BUTTONS FOR
DEFINITION OR EDITING MAIN CIRCUIT

,~ ,~

G ET• PENSEE $
GET A PENSEE FROM USER --

GOTO
LIGHT~ BUTTON

(BUTION NUMBER)

~~

WAS A LIGHT BUTTON SEEN?

YES NO
,~

...... ~~ GRA PHIC
UT

DUNG
INP

HAN

RECORD NAME, POSITION
,~ OF OBJECT SEEN

'------~

PROCESS BUTTON
~

Create Horizontal
HORES resistor bead

HORIZ $

ALL$

VERES
I Create vertical

l re sis tor bead

l

-49-

Process Buttons
HORES, HOCAP, HOSHT

Create horizontal
OCAP capacitor bead

Find nearest node to last
pen see

Find or define node at next
horizontal grid position

Connect element to nodes
and nodes to element

Increase count of leads
fr om both nodes

Get name and value for
resistor or capacitor

Plot picture of element at
proper x, y position

Goto GET. PEN SEE

VE CAP
Create vertical
capacitor bead

---- ----'Remainder of flow I
I diagram same as I
I for buttons I
I above, except, replace I

11 horizontaltt by
I tt verticaltt in 2nd I
l!_o..e_ b~·- _ -=-__ _J

Create horizontal
OSHT short bead

VESHT

Create vertical
short bead

l

GETNODE{XX, YY)

Find or create Node bead at {XX, YY)

AGAIN$

Sta rt searching Node chain at Node 1

1 Is this end of the chain? 1 Yes
1

No

Is this node ~t (XX, YY) 1 I Yes I
No

Step to next node on chain

Create node bead

Append it to node chain

Set its coordinates
to XX, YY

Initialize node
to have no attached
elements

Get a Name for it

(a device may be
found re placing
a node on the chain)

Return pointer to node ~ 1

Add picture of node
at (XX, YY) to
display file

I

U1
0
I

-51-

PROCESS DELETE BUTTON

DELET $ [WHAT TYPE OF ITEM WAS SEEN? l
ELEMENT NODE OR DEVICE ,, ,,

CALL DELETE TO DELETE FOR EACH A TT ACHED ELEMENT
ELEMENT PERFORM OPERATIONS

• FOR DELETING ELEMENTS
-

NUMBER OF LEADS ON
~

"FROM" NODE=O? ,,
CALL RMVNOD TO DELETE

YES NO THE NODE OR DEVICE ,,
CALL RMVNOD TO
DELETE NODE
OR DEVICE

.• ,
NUMBER OF LEADS ON --.. "TO" NODE=O?

CALL RMVNOD TO YES NO

DELETE THE NODE ... --OR DEVICE
J :t 1

,...-I GOTO REDRAW$ f~

-52-

DELETE (ELEMENT, FROMNODE, TON09E~

Delete an eleme,nt connected between FROMN.ODE a,nd TONODE

Does element 'to he deleted exist?:1-----..a
------~~--~~--~~--~~~~-"',NQ

'Yes
j

Find the Node or device at eadh :end of element•

Remove picture of element from display file

If pictu ,re is not 'tO ~e
redrawn, plot an X
ov.er deleted ele:rnent

, Return element bea:.d to free stora.ge

Disconnect elem1ertt f~Oftl ,node.g

Reduce count :df leards f:or :nodes

:Return

-53-

Procedure RMVNODE (NODE)

Delete a node from the data structure and display file

Is node first one in node chain
(i.e., NODEl)?

Yes

Return

No

--~~~~---..... ~-----~--
Find node (or device
usage) bead on node
chain

Delete 11.ode bead from
data structure

Remove node {or dev.ic e)
from display file

Plot anX over element
on s creep if picture·
is not to be redrawn

Return node bead
to free storage

Return

not
found error

return

-54-

Process Button DEF. DEVICE

DEF. DEVICE $ Set Flag for definition mode,
Create device definition bead for device

Be gin subpicture definition for device

Add bead to device definition list

Erase screen, store away main circuit NODE! pointer

EDIT. DEVICE $

Get position for NODE! for device,
call GETNODE

Display light button menu for
Device Definition mode

Make device definition bead point
to NODE!

GOTO GET. PENSEE

Process Button EDIT. DEVICE

Request name of device to be edited

Search device definition list for
name typed by user

Yes...-----...
Found?

No

Display the device
(call the subpicture)

Output error message

Set flag to indicate
device editing mode

Set NODE 1 to be first
node for device

Display light buttons
for device editing mode

t----.. GOTO GET. PENSEE

-55-

Process Button TERM. DEVICE

TERM. DEVICE $ Is device being defined or edited 1

defined

Reset device definition
mode flag

Request name for device

Allow user to select
symbol style to represent
the device

Request relationship
between terminal nodes in
device and leads on symbol

Terminate s ubpicture

edited

Re set device editing
mode flag

Remove call to subpicture
for device from display file

Generate light buttons for .., ________ __.
operations on main circuit

Display light buttons and main
circuit at point it was prior
to beginning of device editing

or definition

-56-

Process Button USE. DEVICE

USE . DEVICE $ Request name for device to be used]

I
Search device definition list for name]

Yesj I LNo
.--------------tl Found? Jt-------------------

Allow user to select lGenerate error messagej
box style with correct
rotational orientation

Does box style have
leads at all places N
where elements are t---

0
...,.{Generate error messagej

already attached to
the node?

Yes

Change node bead to a
device usage bead by
altering TYPE and
storing pointer to
device definition
bead

Add box representing
device to display
file at node position

[GOTO REWRITE }•~t---------.....,.j• .. ~1----------

-57-

IX. PRINCIPAL LIMITATIONS OF THE SAMPLE PROGRAM

The limitations inherent in the sample program are

probably obvious to anyone familiar with circuit design.

Several restrictions are basic to the program design:

1. The circuit must be laid out on a fixed rectangular

grid, and circuit elements may be attached only between

neighboring grid positions. An arbitrary layout of

elements is desirable; in the program components may

not be arbitrarily located, rotated or scaled on the

grid.

2. Circuits larger than those that can be displayed on

the screen at one time cannot be constructed; a

"windowing" capability is required.

3. The data structure used by the problem cannot use

secondary storage, thereby also restricting the size

of the circuit that can be designed.

4. The technique for performing correlation assumes that

any of the data which might correspond to a pensee is

in core.

5. The treatment of devices is very crude in several

respects:

a. Devices should be able to have an arbitrary,

user-designed symbol used as their circuit re­

presentation.

b. A device should have an arbitrary number of leads

by which it can be connected, not the maximum of

four imposed by the grid layout.

c. The leads of a device should be identified, and

the user asked to indicate how each lead should

be connected. When the device is being placed

-58-

upon a rectangular grid, the present program

assumes certain attachments when others are

specified. The selection of the proper orien­

tation of an arbitrary symbol for a device,

including reflections, translations and rotation,

is difficult.

6. The program contains no analysis programs nor does it

store more than a trivial amount of numeric data of

the type needed by analysis programs.

If all of these restrictions were removed, the program list­

ing would probably triple in size, at least. A more useful

system is AEDNET, a large subsystem for analyzing non-linear

networks, which is described in references 9 and 10. It was

written using AED and GRAPHSYS and has restrictions 1,2,3,5

and 6 removed.

-59-

Case Study Bibliography

1. Thornhill, Stotz, Ross, Ward, "An Integrated Hardware­
Software System for Computer Graphics in Time-sharing,"
Project MAC Technical Report S6, Project MAC, Mass.
Institute of Technology, Dec. 1968.

2. Stotz, R. H., Cheek, T. B., "A Low-Cost Graphical Display
for a Computer Time-Sharing Console," Proc. 8th National
Symposium on Information Display (1967), p. 91-97.

3. Ward, J. E., "Graphic Output Performance of the ARDS
Terminal," Project MAC Memorandum MAC-M-368, Project
MAC, Mass. Institute of Technology, March 1968.

4. Thornhill, D. E., "GRAPHSYS for ARDS," M.I.T. Electronic
Systems Laboratory Memorandum 7142S-M-318, Mass. Inst. of
Technology, Jan. 1969.

s. Johnson, Porter, Ackley, Ross, "Automatic
Efficient Lexical Processors Using Finite
Comm. ACM, Vol. 11, No. 12, Dec. 1968, p.

Generation of
State Techniques,"
SOS-813.

6. Ross, D. T., "The AED Approach to Generalized Computer­
Aided Design," Proc. ACM 22nd. Nat. Conf., 1967, p. 367-38S.

7. Ross, D. T.,
Vol. 10, No.

"The AED Free Storage Package," Comm. ACM,
8, Aug. 1967, p. 481-492.

8. McCracken, D. D., "A Guide to ALGOL Programming," (John
Wiley, 1964).

9.

For a discussion of a complete circuit analysis system
built using the AED language, see

Katzenelson, J., "AEDNET: A Simulator for Nonlinear
Networks," Proc. IEEE, Vol. S4, p. 1S36-1SS2, Nov. 1966.

10. Evans, D. S., Katzenelson, J .• "Data Structure and Man­
Machine Communication for Network Problems," Proc. IEEE,
Vol. SS, p. 1135-1144, July, 1967. (An excellent paper
to supplement the case study.)

This paper is a summary of the work in:
Evans, D. S., "Man-Machine Communication for the Simula­
tion of Non-linear Circuits," M.S. thesis, M.I.T.
Department of Electrical Engineering, 1966 (available
from M.I.T. Engineering Library).

-60 ...

LISTING INDEX
Page Contents

62-64

65

66-67

68

69-71

74

75

75-76

76

77-78

79

80

81

82

83

84

85

86

Declaration statements for first compilation

Compile time declarations

Procedure MAK.EPICS

Program init;ial.ization

Procedure definitions

INITBUT (p.67)

GET. ITEM (p. 68-69)

ERROR (p.69)

GETNODE (p.70)

BUTTONS (p. 71)

Picture maintenance (ERASE AND REDRAW light
button); graphic input processing

DELETE light button

Procedure DELETE

Procedure RMVNOD

CHANGE VALUE, HORIZONTAL RESISTOR light buttons

VERTICAL RESISTOR, HORIZONTAL and VERTICAL
CAPACITOR, HORIZONTAL AND VERTICAL SHORT
light buttons. AUTO ERASE ON/OFF light
buttons.

DEFINE DEVICE light button

TERMINATE DEVICE light button

USE DEVICE light button

EDIT DEVICE light button

Procedure FIXEND, NEARNODE, INITARDS

Procedure NAMEELEM,NAMENODE

Declaratiore for second compilation

87-94

-61-

Procedures BOXES (p.87), CHOICE(p88-90),
TRMNLS (p.91), SAMPLE.BOX (p.92),
MAKEBOX(p.93-94)

BEGIN

COMMENT All STATEMENTS BEGINNING WITH 'COMMENT' ARE COMMENTS. IN LINE REMARKS MAY ALSO BE INSERTED AT ANY POINT
IN THE LISTING BY PRECEEDING THEM WITH 3 PERIODS AND FOLLOWING THEM BY 2 SLASHES OR THE USUAL STATEMENT
DELIMETER, A $ FOLLOWED BY A COM~A.$,

COMMENT DECLARATIONS OF All INTEGER VARIABLES, EXCEPT COMPONENTS $ 0

INTEGER BUTTON.PUSH,BUT.TYPE,BUT.SIZE,CAPACITOR,CAPSZ,DEFINITION.SIZE,DEVICE.TYPE,END.OF.SUBPIC.DEF,GRIDSP,I,
MENU1,MENU2,N,NBUT,NEED.ABPOS,NEED.CHARS,NEEO.PENSEE,NEED.VALUE,NOOE,NODESZ,NOTBUT,PENSEE,RESISTOR 1 RESSZ,SHORT,
SHTSZ,XSEEN,YSEEN $,

INTEGER ARRAY NUMBER.OF.OCCURRENCES!21 $,

COMMENT DECLARATIONS OF BOOLEAN AND REAL VARIABLES $ 0

BOOLEAN DEFINITION.MODE,EDITING.DEFINITION,ELEMENT.DELETED,ILLEGAL.ATTACHMENT,NODE.CREATED,REORAW.MODE $,
REAL RVAL $,

COMMENT DECLARATION OF ALL POINTER VARIABLES, EXCEPT COMPONENTS $,
POINTER ADDED.ELEMENT,BEGJN.DEVICE.CHAIN,BOKSl,BOKS2,BOKS3,BOKS4,BOXl,BOX2,BOX3,BOX4,BOX5,BOX6,BOX7,BOX8,BOX9,

BOXlO,BOXll,BOX.STYLE,BT.EDIT,BT.DEFINE,BT.TERM,CREATED.NODE,DEFINITION.POINTER,DEVICE,ELEM.PIC,EMPTY,
END.DF.DISPLAY.FILE,EX,FBUT,FORBIDDEN.LEAO,FROMNODE,HCAP,HRES,HSHT,INPUT.ITEM,ITEH,LASTDEF,LASTSEE,LBUT,
MAIN.FILE,NDDEl,NODE.PIC,NODEPT,OBSN,P,Pl,P2,P3,P4,PREV,PTR,PT.EDIT,PT.DEFINE,PT.TERM,RBOX,STORE.NODE,SUB,
THIS,TONODE,USAGE,VCAP,VRES,VSHT $,

COMMENT DECLARATION OF ALL NON-VALUED PROCEDURES !SUBROUTINES) WRITTEN AS PART OF CASE STUDY AND DEFINED IN SUBSEQUENT
PAGES OF THE NOTES. $,

PROCEDURE BOXES,BUTTONS,DELETE,DELET.ELEMENT,ERROR,FIXEND,GET.ITEM,INITARDS,INITBUT,MAKEPICS,RMVNOD,TRMNLS $,

COMMENT DECLARATIONS OF All VALUED PROCEDURES IFUNCTIO~ WRITTEN FOR CASE STUDY. S,
COMMENT AN INTEGER PROCEDURE HAS AN INTEGER AS ITS VALUE !I.E., IS AN INTEGER FUNCTION) $,

INTEGER PROCEDURE ISBUTT $,
POINTER PROCEDURE CHOICE,GETNODE,NAMEELEM,NAMENODE,NEARNODE $,

COMMENT DECLARATION OF All PROCEDURES FROM GRAPHSYS LIBRARY $,
PROCEDURE ADDOBJ,DEFDBJ,DISPLAY,ERASER,PENCHK,PENDLT,SGNON,RMV $,
POINTER PROCEDURE CALL,CPYOBJ,DEFSUB,OOTTED,ENDOBJ,ENDSUB,INVIS,LASTOBJ,LIN,PENSNS,PLOT,RPL,SETPT,TEXT s,

COMMENT SYSTEM SUPPORT PROCEDURES $,
PROCEDURE FRET,GOUT,CHNCOM,COMPAR S,
POINTER PROCEDURE COPYC,FREE,NUMTOC $,

COMMENT FOLLOWING PORTION OF PROGRAM IS DECLARATION OF COMPONENTS FOR All BEADS s,

COMMENT COMPONENTS COMMON TO SEVERAL BEADS S,
INTEGER COMPONENT TYPE $,
TYPE $=$ l
POINTER COMPONENT NAME $,
NAME $=$ 4 $,

TYPE ALWAYS IS ONE WORD FROM THE TOP OF A BEAD S,

NAME ALWAYS IS 4 WORDS FROM THE TOP OF A BEAD s,

(j\

N

COMMENT DECLARATIONS FOR NODE AND
DEVICE USAGE BEAD. TYPE

INTEGER COMPONENT LEADS
LEADS $=$ 2 S,
POINTER COMPONENT NEXT
NEXT $=$ 3 $,

COMMENT NAME IS 4TH COMPONENT $,
POINTER COMPONENT U
u $:$ 5 $,
POINTER COMPONENT L
L $=$ 6 $,
POINTER COMPONENT R
R $=$ 1 $,
POINTER COMPONENT 0
0 $=$ 8 $,
INTEGER COMPONENT X

x $=$ 9 $,
INTEGER COMPONENT Y
y $=$ 10 $,
POINTER COMPONENT DEF.PTR

OEF.PTR $=$ 11 $ 1

)

DEVICE USAGE BEADS. THE 2 BEADS ARE THE SAME EXCEPT FOR THE EXTRA COMPONENT IN THE
0 FOR NOOE BEAD, TYPE = 4 FOR DEVICE USAGE BEAD. $,

NUMBER OF LEADS ATTACHED $ 1

POINTER TO NEXT NODE BEAD $,

POINTER TO UP ELEMENT BEAD $,

POINTER TO LEFT ELEMENT BEAD $,

POINTER TO RIGHT ELEMENT BEAD $ 1

POINTER TO DOWN ELEMENT BEAD $,

X COORDINATE ON SCREEN OF NODE OR SYMBOL REPRESENTING DEVICE
USAGE $,

••• CORRESPONDING Y COORDINATE $,

••• THIS COMPONENT, WHICH EXISTS ONLY FOR DEVICE USAGE BEADS, IS
A POINTER TO THE DEVICE DEFINITION BEING USED $,

I

COMMENT DECLARATIONS FOR
POINTER COMPONENT
FROM $=$ 2 $,
POINTER COMPONENT
INTO $=$ 3 $,

RESISTOR, CAPACITOR AND SHORT BEADS, TYPE = l FOR RESISTOR, = 2 FOR CAPACITOR, = 3 FOR SHORT. $,
FROM ••• POINTER TO NOOE FROM WHICH ELEMENT IS ATTACHED $,

INTO

COMMENT RESISTOR AND CAPACITOR BEADS ALSO HAVE NAME
REAL COMPONENT VAL
VAL $•$ 5

••• POINTER TO NODE TO WHICH ELEMENT IS ATTACHED $,

ANO VALUE COMPONENTS S,
••• VALUE OF RESISTANCE OR CAPACITANCE St
••• THIS COMPONENT IN A USEFUL SYSTEM MIGHT BE A POINTER TO A

PROPERTY LIST CONTAINING A VARIETY OF INFORMATION REQUIRED BY
ANALYSIS PROGRAMS S,

COMMENT DECLARATIONS FOR DEVICE DEFINITION BEADS. THE FIRST 2 WORDS ARE RESERVED FOR THE GRAPHSYS CORRELATION WORDS.
IN NOOE, RESISTOR, CAPACITOR AND SHORT BEADS, ONLY A SINGLE WORD IS REQUIRED AS THESE OBJECTS DO NOT INVOLVE A
SUBPICTURE DEFINITION OR CALL $ 1

INTEGER COMPONENT STYLE ••• CODE FOR STYLE OF SYMBOL TO BE USED TO REPRESENT THE DEVICE S,
STYLE S•S 2 S,

COMMENT THIRD COMPONENT, NEXT, POINTS TO NEXT DEVICE ON CHAIN IN SAME WAY NEXT POINTS TO NEXT NODE ON NODE CHAIN.
FOURTH COMPONENT IS DEVICE NAME $,

POINTER COMPONENT FSTNODE ••• POINTER TO FIRST NODE IN EQUIVALENT CIRCUIT FOR DEVICE $,
FSTNOOE $=$ 5 $,
INTEGER COMPONENT NUM ••• NUMBER OF USAGES OF THE DEVICE. IT IS USED TO CREATE A UNI~UE

NUM $:$ 6 S,
POINTER COMPONENT TRMNLl

TRMNLl $"'$ 1 $,
POINTER COMPONENT TRMNL2,TRMNL3 0 TRMNL4
TRMNL2 $•$ 8 So
TRMNL3 $=$ 9 $,
TRMNL4 $=$ 10 $ 1

NAME FOR EACH USAGE BY CONCATENATING THE NAME WITH NUM. Sr

••• POINTER TO FIRST TERMINAL NODE BEAD IN DATA STRUCTURE FOR
EQUIVALENT CIRCUIT $,

••• POINTERS TO OTHER TERMINAL NODE BEADS S,

°' w

COMMENT DECLARATION OF BEADS RETURNED BY GET.ITEM FOR GRAPHIC INPUT ITEMS $,
INTEGER COMPONENT XX ••• X POSITION OF CURSOR $,
xx $•$ 0 $,
INTEGER COMPONENT VY
yy $•$ 1 $,
POINTER COMPONENT OBJECT.NAME

OBJECT.NAME $•$ 2

••• Y POSITION OF CURSOR $,

••• POINTER TO CORRELATION WORD, IF A 1 PENSEE 1 WAS DETECTED.
USER MUST HAVE RECORDED CORRESPONDENCE BETWEEN THIS POINTER AND
AN OBJECT IN HIS DATA STRUCTURE. IN THIS PROGRAM THE
CORRESPONDENCE IS IMPLEMENTED BY HAVING THE USER'S DATA BEAD BEGIN
WITH THE CORRELATION WORD $,

••• IF THE OBJECT RECEIVING A 1 PENSEE 1 WAS IN A SUBPICTUREt THE
NEXT 2N POINTER COMPONENTS Will CONTAIN POINTERS TO THE
CORRELATION WORDS FOR THE N SUBPICTURE CALLS AND THE N
SUBPICTURE DEFINITIONS, WHERE N IS THE DEPTH OF SUBPICTURE
NESTING s,

COMMENT COMPONENT DECLARATIONS FOR BEADS CREATED FOR LIGHT BUTTONS $,
COMMENT LIGHT BUTTON BEAD ALSO HAS TYPE CODE IN THE SECOND WORD, THE

FIRST WORD IS THE GRAPHSYS CORRELATION WORD $,
INTEGER COMPONENT NUMBER $,
NUMBER $•$ 2 ••• NUMBER ASSIGNED TO BUTTON IS IN THIRD WORD $,

)))

"' ""

)

PRESET
BEGIN
ELEMENT.DELETED = OB

REDRAW.MODE = OB
DEFINITION.MODE = OB
EDITING.DEFINITION = OB
END.OF.SUBPIC.DEF = 0

MAIN.FILE = 0

NOTBUT = 0

FORBIDDEN.LEAD = -1

NUMBER.OF.OCCURRENCES

GRIDSP = 200
NODEl = 0
BEGIN.DEVICE.CHAIN = 0
EMPTY = 0

o,o,o

COMMENT PRESET TYPE NUMBERS TO INDICATE BEAD TYPE $1
NOOE = 0 $,
RESISTOR = l $,
CAPACITOR = 2 s,
SHORT = 3 $,
DEVICE.TYPE = 4 $,

COMMENT PRESET BEAD SIZES $,
SHTSZ = 4
RESSZ = CAPSZ = 6
NOOESZ = 12
DEFINITION.SIZE = 11
MENUl = l
MENU2 = 2

BUT.TYPE= 5
BUT.SIZE = 3
NEED.PENSEE = l
NEED.ABPUS = 2
NEED.CHARS = 3
NEED.VALUE = 4
END s,

)

••• INITIALIZE CONSTANT VALUES AT COMPILE TIME //

••• INDICATES AN ELEMENT WAS DELETED IN ORDER TO PLACE
A NEW ELEMENT IN ITS POSITION. OB IS EQUIVALENT TO FALSE. $,

INDICATES PICTURE IS TO BE REDRAWN AT NEXT OPPORTUNITY $,
••• INDICATES IF A DEVICE IS BEING DEFINED $,
••• INDICATES IF A DEVICE IS BEING EDITED $,
••• CODE TO PROCEDURE DISPLAY TO INDICATE THE END OF A PARTIALLY

COMPLETED SUBPICTURE $,
••• CODE TO INDICATE THE PROGRAM IS WORKING IN THE MAIN DISPLAY

FILE, RATHER THAN WITHIN A SUBPICTURE $,
••• CODE TO INDICATE THAT THE MOST RECENT 'PEN SEE' WAS ON AN

OBJECT OTHER THAN A LIGHT BUTTON $,
••• CODE TO INDICATE THIS DIRECTION ON A DEVICE HAS NO LEAD

AVAILABLE $,
••• ARRAY USED TO STORE NUMBER OF OCCURRENCES OF NODES,

RESISTORS, AND CAPACITORS. USED TO GENERATE A UNIQUE NAME FDR
EACH OCCURRENCE BY CONCATENATION OF N1R OR C WITH THE NUMBER OF
OCCURRENCES FOR THE CIRCUIT ELEMENT $,

DISTANCE BETWEEN GRID POINTS AT WHICH NODES CAN EXIST $,
CODE TO INDICATE FI~ST NODE IS NOT YET DEFINED $,
CODE TO INDICATE NO DEVICES HAVE BEEN DEFINED s,
END OF CHAIN CODE -- NULL POINTER $,

SHORT CIRCUT BEAD SIZE $,
SIZE FDR CAPACITOR AND RESISTOR BEADS $,
SIZE FOR NODE AND DEVICE USAGE BEADS $,
SIZE FOR DEVICE DEFINITION BEADS $,
CODE TO INDICATE FIRST SET OF LIGHT BUTTONS SHOULD BE USED $,
CODE FDR SECOND SET OF LIGHT BUTTONS -- USED ONLY WITH DEVICE

DEFINITIONS $,
CODE FOR A LIGHT BUTTON BEAD $1
LENGTH OF A LIGHT BUTTON BEAD $ 1
CODE TO INDICATE INPUT ITEM MUST BE A PENSEE $,
CODE TO INDICATE CURSOR ABSOLUTE COORDINATES REQUIRED $,
CODE TO INDICATE CHARACTER STRING REQUIRED $ 1
CODE TO INDICATE REAL NUMERIC VALUE REQUIRED s,

SWITCH LIGHT.BUTTON = DELET,NEWVAL,HORES,VERES1HOCAP 1VECAP1HOSHT1VESHT1ERSDN1ERSOFF1REWRITE,EXIT1USE.OEVICE,
TERM.DEVICE,DEF.DEVICE,EDIT.DEVICE ••• DECLARE ARRAY OF STATEMENT LABELS CORRESPONDING TO PRINCIPAL

FUNCTIONS OF THE PROGRAM. 'SWITCH• DECLARES LIGHT.BUTTON TO BE A
A STATEMENT LABEL ARRAY OF 16 ELEMENTS S,

"' lJ1

')

COMMENT DEFINITION OF PROCEDURE MAKEPICS. PROCEDURES CAN BE DEFINED AT ANY POINT IN AN AED PROGRAM, BUT THEY WILL NOT
BE EXECUTED UNTIL THEY ARE CALLEO. MAKEPICS IS USED IN THE INITIALIZATION PHASE OF THE PROGRAM TO BUILD THE
PICTORIAL REPRESENTATION OF NODES, RESISTORS, CAPACITORS, ANO SHORTS $,

DEFINE PROCEDURE MAKEPICSIEX,NODEPT,HRES,VRES,HCAP,VCAP,VSHT,HSHTl WHERE POINTER EX,NODEPT,HRES,VRES,HCAPoVCAP,
VSHT,HSHT TOBE

BEGIN

••• MAKEPICS DEFINES THE COMPOUND DISPLAY OBJECTS REQUIRED TO
PLOT ALL THE ELEMENTS TO BE DISPLAYED //

••• FIRST DISPLAY OBJECT IS AN X TO BE DISPLAYED OVER DELETED
ELEMENTS //

DEF OBJ 11 ••• BEGIN OBJECT DEFINITION. DEFOBJ HAS NO ARGUMENTS BUT 11 INDICATES
THAT IT IS A PROCEDURE CALL. $,

ADDOBJIINVISILINl-40,40111
ADDOBJIDOTTEDILINIS0,-80111
ADDOBJIINVISILINl-80,0111 S,
ADDOBJIDOTTEDILINIS0,80111 s,
ADDOBJIINVISILINl-40,-40111 S,
ex = ENDOBJ (I
DEFOBJll S,
AODOBJIINVISILIN15,5111 S,
ADDOBJILINI0,-1011
ADOOBJILINl-10,011 s,
ADDOBJILINI0,1011 S,
ADDOBJILINllO,Oll S,
ADDOBJIINVISILIN(-7,20111 S,
NOOEPT = ENDOBJll
DEFOBJ I I S,
ADDOBJILINl60,0IJ S,
ADDOBJILINllOrlOll S,
AODOBJILINl20,-20ll s,
ADDOBJILINl20,20ll s,
ADOOBJILINl20,-2011 S,
AODOBJILINllOolOll S,
AOOOBJILINl60,0ll s,
AOOOBJllNVISILINl-100 040111 S,
HRES = ENDOBJll
DEFOBJll S,
AODOBJILINI0,-6011 S,
AOOOBJILINll0,-1011 $,
AODOBJILINl-20 9 -2011 S,
AOOOBJILINl20,-2011 s,
ADDOBJILIN(-200-2011 St
ADDOBJILINllO,-lOll s,
ADDOBJILINI0,-6011 S,
ADDOBJllNVISILINl40,1001Jl $,
VRES = ENDOBJ!l
DEFOBJ I I S,
ADOOBJILIN190,0ll $,
ADDOBJllNVISILINI0,20111 s,
AODOBJILINI0,-4011 $,
ADDOBJIINVISILIN120,0lll S,
ADDOBJ~LIN(0,4011 S, _
ADDOBJIINVISILINI0,-20111 $,
ADDOBJILIN(90,0ll St
ADDOBJllNVISILINJ-100,40111 s,
HCAP = ENDO BJ I I
DEFOBJll s,
ADDOBJILINI0,-9011 S,
ADDOBJllNVISILIN120,0lll S,
ADOOBJILINl-40,011 S,
ADDOBJIINVISILINI0,-20111 S,

INVISIBLE LINE WITH X INCREMENT = -40,Y INCREMENT = 40 $ 0
••• DOTTED LINE WITH X INCREMENT = 80, Y INCREMENT = -80 $,

ENO DISPLAY OBJECT OEFINITION,NAME IS ex s,

VISIBLE LINE WITH X INCREMENT = o, Y INCREMENT -10 s,

••• DISPLAY OBJECT FOR A NODE,NAME NODEPT s,

••• DISPLAY OBJECT FOR A HORIZONTAL RESISTOR,NAME = HRES s,

••• DISPLAY OBJECT FOR A VERTICAL RESISTOR,NAME = VRES s,

••• DISPLAY OBJECT FOR A HORIZONTAL CAPACITOR,NAME IS HCAP s,

))

"' "'

ADDOBJILINl40,0l l $,
ADDOBJllNVISILINl-20,0l)) $,
ADDDBJILINI0,-90ll $,
AODOBJllNVISILIN(40,100) l l $,
VCAP = ENDOBJ ()
HSHT = LINl200,0l
VSHT = LIN(0,-200)
END $,

DISPLAY OBJECT FOR A VCRTICAL CAPA~ITOR, NA~E=VCAP ~.

DISPLAY OBJECT FOR HORllUNTAL SHORT ,NAMF = HSHT $,
DISPLAY OBJECT FOR A VlRTICAL SHURT 1 NAME = VSHT $,

COMMENT END TERMINATES THE DEFINITION OF PROCEDURE MAKEPICS. S,

O'
-.J

COMMENT THE EXECUTABLE PART OF THE PROGRAM BEGINS HERE. THE FOLLOWING SECTION OF THE PROGRAM PERFORMS A VARIETY OF
INITIALIZATION TASKS $,

INITAROSll ••• INITIALIZE GRAPHSYS AND ARDS TO RECEIVE GRAPHIC INPUT $,
MAKEPICSIEX,NODEPT,HRES 1 VRES,HCAP,VCAP,VSHT,HSHTI ••• CALL PROCEDURE MAKEPJCS, WHICH IS DEFINED ABOVE, TD MAKE THE

DISPLAY OBJECTS REPRESENTING ELEMENTS AND NODES. ARGUMENTS ARE
POINTERS TO THE DISPLAY OBJECTS GENERATED. THESE OBJECTS CAN
LATER BE ADDED TO THE DISPLAY FILE USING PROCEDURE PLOT $,

INJTBUTIFBUT,LBUTI ••• CALL TO JNJTBUT, WHICH IS DEFINED BELOW, TO GENERATE DISPLAY
OBJECTS FOR ALL LIGHT BUTTONS TO BE USED ON BOTH LIGHT BUTTON
MENUS. POINTER TO THE CORRELATION WORD FOR THE FIRST BUTTON IS
FBUT AND FOR THE LAST BUTTON IS LBUT. LBUT IS NOW THE LAST ITEM
IN THE DISPLAY FILE • S,

END.OF.DISPLAY.FILE = LBUT ••• USED TO RECORD WHAT IS THE LAST OBJECT IN THE DISPLAY FILE SO
OBJECTS CAN ALWAYS BE ADDED AT THE END OF THE DISPLAY

FILE RATHER THAN WITHIN IT. s,
GET.ITEMl.C. /INDICATE POSITION OF INITIAL NOOE OF MAIN CIRCUIT/,INPUT.ITEM,NEED.ABPOSI ••• CALL PROCEDURE

GET.ITEM, WHICH IS DEFINED BELOW, TO GET POSITION WHERE FIRST
NODE IS TO BE DRAWN BY READING THE CURSOR COORDINATES.
INPUT.ITEM POINTS TO A BEAD WHICH WILL RECEIVE THE X,Y CURSOR
COORDINATES $,

LASTSEE = NOOEl = GETNOOEIXXIINPUT.ITEMl,YYllNPUT.ITEMll ••• GETNODE FINDS THE NEAREST GRID POSITION TO THE
CURSOR AND RETURNS A POINTER TO THE NOOE BEAD BUILT $,

BLTTONSIMENUll ••• SETUP FIRST SET OF LIGHT BUTTONS BY REMOVING FROM THE DISPLAY
FILE THOSE BUTTONS THAT ARE RELEVANT ONLY WHEN DEVICES ARE BEING
DEFINED. $,

DISPLAY(! ••• DISPLAY THE LIGHT BUTTONS AND THE FIRST NODE. S,

COMMFNT PROCEDURE INITBUT,GET.ITEM,GETNODE, AND BUTTONS USED ABOVE ARE DEFINED IN THE NEXT SECTION OF THE
LISTING. FOLLOWING THE PROCEDURE DEFINITIONS, THE MAIN PROGRAM IS CONTINUED. s,

GOTO GET.PENSEE ••• TRANSFER TO PORTION OF PROGRAM HANDLING GRAPHIC INPUT. St

)))

"' 00

))

DEFINE PROCEDURE INITBUTIFBUT 1 LBUTJ WHERE POINTER FBUT,LBUT TOBE
BEGIN ••• INITBUT BUILDS THE LIGHT BUTTON DATA STRUCTURE AND ADDS THE

LIGHT BUTTONS TO THE DISPLAY FILE //

DEFINE POINTER PROCEDURE MAKEBUTINAME,NBUTJ WHERE INTEGER NBUT 5,
POINTER NAME TOBE

••• MAKEBUT CREATES A BEAD FOR A LIGHT BUTTON AND ADDS THE TEXT FOR

)

IT TO THE DISPLAY FILE. MAKEBUT IS AN INTERNAL PROCEDURE OF INITBUT //
BEGIN

POINTER P $ 1

P = FREEIBUT.SIZEJ
TYPEIPJ = BUT.TYPE
NUMBERIPI = NBUT

MAKEBUT = PENSNSIPLOTITEXTINAMEJ,Pll

END $,

••• GET BUTTON BEAD FROM FREE STORAGE $,
••• PUT BUTTON TYPE INTO BEAD $,
••• BUTTON NUMBER TO BE RETURNED AS CODE WHEN A PENSEE OCCURS ON

THE BUTTON $,
••• ADO TEXT OF LIGHT BUTTON TO DISPLAY FILE AS PEN SENSITIVE
WITH NAME P, THE POINTER TO THE CORRELATION WORD FOR THE BUTTON
ANO ALSO THE POINTER TO THE BUTTON BEAD. $,

FBUT = PLOTISETPTl250,500ll ••• POINT AT Xa250t Y=500 WHERE BUTTON TEXT WILL BEGIN$,
MAKEBUTl.C. /DELETE/,ll ••• WRITE BUTTON HAVING TEXT 10ELETE 1 ANO A BUTTON CODE OF l $,
PLOTISETPT1250,440ll $ 1

MAKEBUTC.C. /CHANGE VALUE/,21 $,
PLOTISETPT1250,3801l s,
MAKEBUTl.C. /HORIZ RESISTOR/ 131 $,
PLOTISETPT1250,3201l $,
MAKEBUTl.C. /VERT RESISTOR/,41 $,
PLOTISETPT1250r260ll $,
MAKEBUTl.C. /HORIZ CAPACITOR/,5) $,
PLOTISETPTl250,200ll $,
MAKEBUTl.C. /VERT CAPACITOR/,61 $,
PLOTISETPT1250rl40ll s,
MAKEBUTl.C. /HORIZ SHORT/,71 $,
PLOTISETPT1250,BOll S,
MAKEBUTl.C. /VERT SHORT/,81 $,
PLOTISETPT1250r20ll S,
MAKEBUTl.C. /AUTO ERASE ON/ 19) $,
PLOTISETPT1250,-40ll $,
MAKEBUTl.C. /AUTO ERASE OFF/ 1 10) Sr
PLOTISETPTl250,-100ll $,
MAKEBUTl.C. /ERASE AND REDRAW/,lll $ 1

PLOTISETPT1250 1 -160ll 5,
MAKEBUTl.C. /QUIT/112) $,
PLOTISETPT1250,-220ll s,
MAKEBUTl.C. /ATTACH DEVICE/,131 $1

PT.TERM= PLOTISETPT1250,-2BOll S,
BT.TERM = MAKEBUTl.C. /TERMINATE/,14) $,
PT.DEFINE= PLOTISETPT1250,-340ll $,
BT.DEFINE = MAKEBUTl.C. /DEFINE DEVICE/,151 $,
PT.EDIT = PLOTISETPTl250,-4001l S,
BT.EDIT = MAKEBUTC.C. /EDIT DEVICE/,161 s,
LBUT = PLOTISETPTl250,-460ll ••• ALL BUTTONS ARE IN THE DISPLAY FILE BETWEEN OBJECTS FBUT AND

LBUT 5,
END S,

C'\
ID

START $

)

DEFINE PROCEDURE GET.ITEMIMSG,ITEM,CODEI WHERE POINTER MSG 1 ITEM $,
INTEGER CODE TOBE

BEGIN
BOOLEAN FIRST.TIME $,
POINTER RBUFF $ 1

••• GET.ITEM WILL PRINT THE MESSAGE POINTED TO BY MSG AND Will
LOOK FOR AN INPUT ITEM OF THE TYPE GIVEN BY CODE. IF ONE IS
FOUND, ITEM WILL BE THE POINTER TO IT UNLESS IT IS A NUMERIC
VALUE~ IN WHICH CASE ITEM WILL CONTAIN THE VALUE. THE ACTUAL
INPUT IS HANDLED BY THE GRAPHSYS SYSTEM ROUTINE GETITM. JI

INTEGER INPUT.TYPE,STRING,REAL.VAL 1 ABPOS,PENSEE,BUTTON.PUSH s,
POINTER PROCEDURE ITMBUF $ 1

PROCEDURE ERROR,ITMERR $,
INTEGER PROCEDURE GETITM $,
PRESET

BEGIN
FIRST.TIME = TRUE $,

REAL.VAL • 2 St
STRING = 3 $,
BUTTON.PUSH = 64 $,
ABPOS • 65 S,
PENSEE " 67 s,
ENO $,

IF FIRST. TIME
THEN BEGIN

RBUFF = ITMBUFll0,51 $,

FIRST.TIME •FALSE $ 9

END $,

••• PRESET CODES FOR ALLOWABLE INPUT ITEMS II

••• ITMBUF OBTAINS AN INPUT BUFFER FROM FREE STORAGE OF A SIZE
SUFFICIENT TO HANDLE ITEMS OF UP TO 10 MACHINE WORDS AND PENSEES
INVOLVING SUBPICTURES TO A DEPTH OF 5 CALLS. RBUFF IS A POINTER
TO THE BUFFER II

IF CODE EQL NEEO.PENSEE ••• CALLING PROGRAM WANTS A PENSEE II
THEN BEGIN

INPUT.TYPE• GETITMIMSG,ltEM,RBUFF,ITMERRl $, ••• CALL THE GRAPHSYS INPUT ROUTINE TO PRINT THE
MESSAGE ANO TO READ THE NEXT INPUT ITEM. ITMERR IS A PROCEDURE
CALLED If AN ILLEGAL ITEM IS FOUND. THE USER CAN PROVIDE HIS OwN
VERSION OR use, AS THIS PROGRAM DOES, A STANDARD SYSTEM VERSION.
ITMERR COULD PERFORM ANY DESIRED ACTION,, INCLUDING CALLl~G At'l
EDIT-OR 'l0 EDIT THE BUFFER' CONTENTS. INPUT. TYPE WI LL BE -SET TO
CODE RETURNED BY GETITM TO SPECIFY WHAT IT FOUND II

IF INPUT.TYPE EQL BUTTON.PUSH ••• ONE OF THE BUTTONS ON THE GRAPHIC INPUT DEVICE WAS PUSHED,
INDICATING A GRAPHIC INPUT ITEM IS TO FOLLOW II

THEN BEGIN
INPUT.TYPE • GETITMI01ITEM,RBUFF1ITMERRI •• ~ 0 AS flRST ARGUMENT MEANS NO MESSAGE IS TO BE

PRINTED TO PROMPT USER II - -
IF INPUT.TYPE EQL PENSEE

THEN GOTO RETURN $ 1 ••• EXIT FROM PROCEDURE II
END'S,

GOTO &AD.INPUT $, ••• EXPECTED TYPE Of INPUT WAS NOT SUPPLIED //
END s,

lF CODE EQL NEED.ABPOS ••• CALL'ING PROGRAM WANTS A CURSOR POSITION II
THEN BEGIN

INPUT.TYPE = GETITMIMSG,ITEM,RBUFF,ITMERRI S,
If INPUT.TYPE EQL BUTTON.PUSH
THEN BEGIN

INPUT.TYPE = GETITMIO,ITEM,RBUFF,ITMERRI $,
IF INPUT.TYPE EQL ABPOS
THEN GOTO RETURN $,
ENO St

GOTO BAO.INPUT St
ENO S,

))

..,,,
a

))

IF CODE EQL NEED.CHARS ••• CALLING PROGRAM WANTS A CHARACTER STRING //
THEN BEGIN

INPUT.TYPE = GETITMIMSG,ITEM,RBUFF,ITMERRI s,
IF INPUT.TYPE EQL STRING
THEN GOTO RElURN
ELSE GOTO BAD.INPUT $ 1

END $,
IF CODE EQL NEED.VALUE ••• CALLING PROGRAM WANTS A NUMERIC VALUE //
THEN BEGIN

INPUT.TYPE = GETITMIMSG,ITEM,RBUFF,ITMERRI $,
IF INPUT.TYPE EQL REAL.VAL
THEN GOTO RETURN
ELSE GOTO BAO.INPUT s,
END

ELSE BEGIN ••• PROCEDURE DOES NOT RECOGNIZE CODE PROVIDED BY CALLING
PROGRAM. SET OUTPUT ITEM POINTER TO BE EMPTY //

BAO. INPUT $

ITEM = 0 S,
GOTO RETURN S,
END $ 1

ERRORlltl $, ••• GIVE THE USER AN ERROR MESSAGE AND ALLOW HIM TO TRY AGAIN.

GOTO START S,
END S,

THIS SECTION SHOULD BE EXPANDED IN A USEFUL SYSTEM TO GIVE THE
USER A BETTER IDEA OF WHAT THE PROGRAM EXPECTS ANO WHAT HE DID
WRONG. II

DEFINE PROCEDURE ERRORIPARI WHERE INTEGER PAR TOBE
BEGIN
POINTER MSG $,
PROCEDURE GOUT $ 1

IF PAR EQL 1
THEN MSG = .C. /ATTEMPT MADE TO ATTACH ELEMENT TO NONEXISTENT LEAD OF A DEVICE ••• REQUEST IGNORED/ s,
IF PAR EQl 2
THEN MSG = .C. /REFERENCE MADE TO UNDEFINED DEVICE ••• REQUEST IGNORED/ S,
IF PAR EQL 3
THEN MSG = .C. /NO DEVICE ORIENTATION SPECIFIED ••• TRY AGAIN/ $,
IF PAR EQL It
THEN MSG = .C. /BAD INPUT TYPE ••• TRY AGAIN/ $,
GOUTIMSGI $,
GOTO RETURN $,
END s,

)

....,
I-'

COMMENT DEFINITION OF PROCEDURE GETNOOE, WHICH IS USED ABOVE $,

DEFINE POINTER PROCEDURE GETNODE(XXX,YYY) WHERE INTEGER xxx.YYY TOBE
BEGIN

COMMENT GETNOOE RETURNS A POINTER TO NOOE OR DEVICE USAGE BEAD AT IXXX,YYYI , CREATING A NODE IF NECESSARY. A DEVICE USAGE
BEAD IS CREATED ONLY BY REPLACING A PREVIOUSLY DEFINED NOOE S,

P = PREV = NODEl ••• START SEARCHING NOOE CHAIN AT FIRST NOOE, NODEl. PREV RECORDS
PREVIOUS NOOE ON CHAIN $,

AGAIN $ IF P EQL EMPTY ••• IS THIS END OF CHAIN. IF SO, NODE DOES NOT EXIST AT THIS GRID

GET S

)

THEN GOTO GET $,
IF XIPI EQL XXX AND YIPI EQL YYY

THEN BEGIN
GETNODE = P

NODE.CREATED = FALSE
GOTO RETURN $ 1
ENO $,

PllEV • ¥
P • NEXTIPREVI $ 1

GOTO AGAIN $ 1

GETNODE • P = FREEINODESZI
NOOE.CREATED = TRUE $,
TYPE(PJ • NODE
NEXTIPREVI = P
NEXT(P) • EMPTY $,
XIPI = XXX
Y(PI = YYY S,
U IP I • 0 (PI "' LIP I • R (PI • EMPTY
LEAOSIPI = 0
NAMEIPI = NAMENOOEll
DEFOBJI I

ADDOBJISETPTIXXX,YYYll S,
ADDOBJICPYOBJINODEPTll s,
ADDOBJITEXTINAME(Plll $,
NOOE.PIC • ENOOBJI I $,

COORDINATE, SO HUST CREATE ON THERE //

••• SEE IF THERE IS ALREADY A NODE LOCATED AT THE GRID POSITION
WHERE NODE IS NEEDED //

••• If NOOE OR DEVICE IS FOUND, GETNODE HAS AS ITS VALUE A
POINTER TO THE NODE BEAD OR DEVICE USAGE BEAD S,

SET FLAG TO INDICATE BEAD WAS FOUND ON NODE/DEVICE CHAIN. S,

HOVE TO NEXT BEAD ON CHAIN, UPDATE P AND PREV $,

GET A NOOE &EAD FROM FREE STORAGE $,

••• SET TYPE COMPONENT TO VALUE FOR NODE $,
PUT NEW NODE AT END OF NOOE CHAIN. S,

STORE AWAY NODE COO~DINATES s,

••• INDICATE NEW NOOE HAS NO ATTACHMENTS s,
INITIALIZE NUMBER OF LEADS $,
GET A NAME FOR THE NODE St
DEFINE A DISPLAY OBJECT FOR THE NODE, USING THE NODE SYMBOL

P•EYIOUSLY DEFINED AS NODEPT, ANO HAVING THE USER'S NAME, WHICH
WAS JUST CREATED St

ENO.OF.DISPLAY.FILE= CREATED.NODE= PENSNSIPLOTINOOE.PIC,P,ENO.OF.DISPLAY.FILEll ••• PLOT THE OBJECT
REPRESENTING THE .NOOE AS PEN SENS IT I VE AT THE ENO OF THE DISPLAY
FllEt WlTH NA~E P S,

ENO $,

))

-.J

"'

))

DEFINE PROCEDURE BUTTONSCMENUI WHERE INTEGER MENU TOBE
BEGIN ••• THIS PROCEDURE MODIFIES THE GRAPHSYS DATA STRUCTURE TO ADD DR

BOOLEAN FIRST.TIME $,
PRESET FIRST.TIME • TRUE $,

DELETE LIGHT BUTTONS DEPENDING UPON WHAT THE USER IS DOING//

COMMENT INITIALIZE VARIABLE TO INDICATE THIS IS THE FIRST TIME THE PROCEDURE WAS CALLED SO THAT THE
INITIAL MENU, WHICH IS CORRECT, WILL NOT BE ALTERED. $,

IF MENU EQL MENUl ••• SET OF LIGHT BUTTONS WHEN THE USER IS WORKING AT THE MAIN

THEN BEGIN
RMVIBT.TERHI

IF FIRST.TIME
THEN BEGIN

FIRST.TIME • FALSE $,
GOTO RETURN $,
ENO $,

DISPLAY FILE LEVEL //

••• REMOVE TERMINATE BUTTON, AS OPTION IS MEANINGFUL ONLY WHEN A
DEVICE IS BEING DEFINED s,

PENSNSIPLOTITEXTl.C. /DEFINE DEVICE/l,BT.DEFIN£~PT.OEFINEll ••• ADO TO DISPLAY FILE THE TEXT FOR THE

PENSNSIPLOTITEXTl.C.
GOTO RE TURN $,
END s,

/EDIT

BUTTON REMOVED WHEN USER ENTERED DEVICE DEFINITION MODE. AT THAT
TJME THESE OPTlriNS WERE NO LONGER.RELEVANT. TEXT MUST BE PLOTTED
IN THE DISPLAY FILE AFTER THE OBJECT WITH NAME PT.DEFINE, THE
SET POINT FOR THE BUTTON. tHE BU~TON HAS THE NAME BT.DEFINE $,

DEVICE/l,BT.6PIT,PJ.eDJTll $,

)

IF.MENU EQL MENU2
THEN BEGIN

PENSNSIPLOTITEXTC.C.
RMVIBT.OEFINEI

••• SET OF LIGHT BUTTONS USED WHEN DEFINING OR EDITING A DEVICE. II

/TERMINATE/l,BT.TERM,PT.TERMll $,

RMVIBT .EDITI $,
END St

ENO $,

••• THESE BUTTONS ARE N:JT RELEVANT AT TH,IS TIME AS DEVICES CAN
NOT ee DEFINED WHILE EDITING O.R DEFINING A DEV.ICE $,

-.J

COMMENT MAIN EXECUTABLE PORTION OF PROGRAM FOLLOWS. THE FOLLOWING SECTION IS THE BASIC LOOP OF THE PROGRAM WHICH
ALTERS THE SCREEN DISPLAY AND WHICH RECIEVES GRAPHICAL INPUT S,

REDRAW $ IF REDRAW.MODE
THEN BEGIN

REWRITE $ ERASER()
IF EDITING.DEFINITION OR DEFINITION.MOOE

THEN BEGIN
IF EDITING.DEFINITION
THEN DISPLAYIDEVICEI

REGENERATE PICTURE If NECESSARY //

ERASE SCREEN, LIGHT BUTTON TO ERASE AND REDRAW TRANSFERS HERE. $,
If EDITING OR DEFINING A DEVICE, SUBPICTURE DEFINITION IS

BEING ALTERED AND ONLY REMAINDER OF DEFINITION SHOULD BE
DISPLAYED, NOT THE ENTIRE DISPLAY FILE //

••• PREVIOUSLY COMPLETED DEFINITION IS BEING EDITED, SO CALL THE
SUBPICTURE FOR THE DEVICE. DEVICE IS THE NAME OF A SUBPICTURE
CALL //

ELSE DISPLAYIDEVICE,ENO.OF.SUBPIC.DEF) ••• SUBPICTURE HAS N3T BEEN TERMINATED IF IN DEFINITION MODE

DISPLAYIFBUT,LBUTI

END
ELSE DISPLAY()

END s,

GET.PENSEE $ GET.ITEM(Q,INPUT.ITEM,NEED.PENSEEl

NBUT = ISBUTTIINPUT.ITEMI

IF NBUT EQL NOTBUT
THEN BEGIN

XSEEN = XXllNPUT.ITEMI

YSEEN = YYIINPUT.ITEMI $,
LASTSEE = OBJECT.NAMEllNPUT.ITEMl

GOTO GET. PEN SEE

END
ELSE GOTO LIGHT.BUTTONINBUTI

DEFINE INTEGER PROCEDURE ISBUTTIPTRI WHERE
BEGIN

POINTER OBSN $,
OBSN = OBJECT.NAME(PTRI $,
IF TYPElOBSNl EQL BUT.TYPE
THEN ISBUTT = NUMBERIOBSNI
ELSE ISBUTT = NOTBUT
END $,

SO DEVICE IS THE NAME OF THE FIRST OBJECT IN THE
SUBPICTURE DEFINITION. THE DISPLAY FILE BETWEEN THIS
THE CURRENT ENO OF THE SUBPICTURE DEFINITION WILL BE

••• All THE LIGHT BUTTO~S IN THE DISPLAY FILE BETWEEN
WITH NAME FBUT AND THE OBJECT WITH NAME LBUT Will BE

OBJECT AND
DISPLAYED. '.!.,
THE OBJECT
DISPLAYED. i,,

DISPLAY WITH NO ARGUMENTS WILL CAUSE THE WHOLE DISPLAY FILE
TO BE OUTPUT $,

THE FOLLOWING LOOP CONTINUOUSLY
ANALYZES ANO PROCESSES USER INPUT $,

••• ISBUTT DETERMINES IF A LIGHT BUTTON HAS BEEN POINTED TO WITH
THE GRAPHIC INPUT DEVICE. IF IT HAS, AN INTEGER 'BUTTON NUMBER'
IS RETURNED. IF NOT, A CODE OF 0 IS RETURNED TO INDICATE SOME
OTHER TYPE OF OBJECT WAS SEEN. ISBUTT IS DEFINED BELOW S,

••• GET FROM BEAD BUILT BY GET.ITEM THE X POSITION OF THE GRAPHIC
INPUT DEVICE $,

••• LASTSEE IS SET TO THE NAME OF INPUT.ITEM SEEN, J.E., THE
FIRST ITEM IN THE DISPLAY FILE HAVING A PEN-SENSITIVE AREA
WITHIN WHICH THE CURSOR COORDINATES LIE • THE NAME IS A POINTER
TO THE CORRELATION WORD OF THE INPUT.ITEM SEEN, WHICH Will BE
THE FIRST WORD IN SOME DATA STRUCTURE BEAD, PERHAPS REPRESENTING
A NODE, RESISTOR, ETC. $,

••• GO BACK AND GET A PENSEE ON A BUTTON IN ORDER TO DETERMINE
WHICH OPERATION TO PERFORM ON THE OBJECT TO WHICH THE USER JUST
POINTED $,

GO TO STATEMENT LABEL CORRESPONDING TO BUTTON NUMBER, WHICH
IS AN INDEX IN LIGHT.BUTTON, THE ARRAY OF STATEMENT LABELS s,

POINTER PTR TOBE
••• THE PROCEDURE CHECKS IF THE OBJECT CORRELATED WITH THE PENSEE

IS A LIGHT BUTTON. ARGUMENT IS A POINTER TO A BEAD CONTAINING
THE PENSEE INFORMATION //

IS TYPE CODE THAT F3R A LIGHT BUTTON //
RETURN BUTTON NUMBER STORED IN LIGHT BUTTON BEAD //
CODE INDICATES PENSEE WAS NOT ON A LIGHT BUTTON $,

--.) ..

COMMENT REMAINDER OF MAIN PROGRAM PROCESSES LIGHT
DELET $ IF TYPEILASTSEEI EQL NODE OR TYPEILASTSEE)

THEN BEGIN

DELET.ELEMENT(UILASTSEEll
DELET.ELEMENTIDILASTSEEll S,
OELET.ELEMENTILILASTSEEll S,
DELET.ELEMENT(R(LASTSEEll

END
ELSE DELET.ELEMENTILASTSEE)

BUTTONS S,
EQL DEVICE.TYPE ••• PROCESS LIGHT BUTTON TO DELETE NODE,

DEVICE OR ELEMENT //
••• DELETE A NODE BY DELETING ALL ITS ATTACHED ELEMENTS FIRST,

AND CHECKING THEIR INTERFACING NODES IN TURN. //
DELET.ELEMENT CHECKS IF POINTER IS EMPTY BEFORE DELETING. s,

NODE TO BE DELETED WILL BE DELETED THIS TIME, AT LEAST, SINCE
ALL ATTACHED ELEMENTS Will HAVE PREVIOUSLY BEEN DELETED. S,

••• DELETE AN ELEMENT POINTED TO BY THE GRAPHIC INPUT DEVICE S,

DEFINE PROCEDURE DELET.ELEMENTIELEMENTI WHERE POINTER ELEMENT TOBE
IF ELEMENT ECL EMPTY DR ELEMENT EOL FORBIDDEN.LEAD ••• SEE IF ELEMENT IS VALID //
THEN GOTO RETURN
ELSE BEGIN

DELETEIELEMENT,FROMNCDE,TONODEI ••• DELETE THE ELEMENT. FROMNODE AND TONODE ARE RETURNED BY DELETE,
INDICATING THE NODES BETWEEN WHICH THE ELEMENT WAS ATTACHED.
DELETE ALSO UPDATES THOSE ADJACENT NODE BEADS BY

UPDATING THE NUMBER OF LEADS AND UPDATING
THE POINTERS TO THE DELETED ELEMENT TO BE EMPTY. $,

IF LEADSIFROMNODEI EQL 0 ••• SEE IF NODE FROM WHICH ELEMENT WAS ATTACHED HAS NO LEADS NOW //
THEN RMVNODIFROMNODEl ••• IF SO, REMOVE IT s,
IF LEADSITONODEI EQL 0
THEN RMVNOD(TONODEI s,
END $,

COMMENT DEFINITION OF PROCEDURE DELETE, WHICH IS CALLED ABOVE s,

DEFINE PROCEDURE DELETEIELEMENT,FROMNODE,TONODEI WHERE POINTER ELEMENT,FROMNODE,TONODE TOBE
BEGIN

COMMENT DELETE DELETES THE ELEMENT GIVEN,
FROMNODE = FROMIELEMENT) $,
TONOOE = INTOIELEMENTI $,
RMVIELEMENTI

UPDATING DATA STRUCTURE $,

IF NOT REDRAW.MODE

THEN BEGIN
XSEEN = (XIFROMNODEl+XITONODE)l/2

YSEEN = IYIFROMNOOEl+YITONODEll/2

DEF OBJ 11

ADDOBJISETPT(XSEEN,YSEENI)

AODOBJICPYOBJIEXll

P = ENOOBJ(I

DISPLAYIPTR=PLOTIP)) $ 1

RMVIPTRI

••• REMOVE THE REPRESENTATION OF THE ELEMENT FROM THE DISPLAY
FILE~ ELEMENT STILL POINTS TO THE BEAD S,

••• IS USER IN AUTO ERASE MODE. IF SO, PICTURE MUST BE REDRAWN
AFTER DELETION //

••• THE OBJECT EX 1 WHICH IS A BIG X, WILL BE PLOTTED CENTERED
OVER THE ELEMENT DELETED IF PICTURE IS NOT TO BE REDRAWN. $,

••• XSEEN AND YSEEN ARE AT THE MIDDLE OF THE ELEMENT SEEN, THE
PLACE WHERE THE X IS TO BE PLOTTED $,

••• DEFOBJ IS A PROCEDURE WHICH BEGINS THE DEFINITION OF A
COMPOUND DISPLAY OBJECT S,

••• ADD TD THE OBJECT BEING DEFINED A POINT, GENERATED BY
PROCEDURE SETPT, AT X=XSEEN, Y=YSEEN $,

••• ADD TO THE OBJECT A COPY OF THE STANDARD 'X' USED TO DENOTE
DELETIONS. S,

ENDOBJ TERMINATES THE COMPOUND OBJECT AND RETURNS A POINTER
TO THE OBJECT WHICH WAS JUST BUILT. S,

••• REMOVE THE X FROM THE DISPLAY FILE AS IT SHOULD NOT APPEAR
WHEN THE PICTURE IS REGENERATED WITH THE ELEMENT REMOVED $,

_,
lJl

END $,
I = IF TYPEIELEMENTI EQL SHORT THEN SHTSZ ELSE RESSZ ••• DETERMINE SIZE OF ELEMENT

IF RIFRDMNODEI EQL ELEMENT
THEN BEGIN

FREE STORAGE $,
ELEMENT IS HORIZONTALLY CONNECTED //

RETURN ELEMENT TD FREE STORAGE $,

BEAD TO BE RETURNED TD

FRET I I, ELEMENT!
RIFROMNODEI = EMPTY FIX NODE BEADS TO WHICH ELEMENT WAS ATTACHED TO INDICATE

ELEMENT HAS BEEN DELETED $ 1

LITONODEI = EMPTY $,
END

ELSE BEGIN

FRETll,ELEMENTI S,
DIFROMNODEI = EMPTY $,
UITONODEI = EMPTY $,
END $,

LEADSIFROMNODEI = LEADSIFROMNODEl-1
LEADSITONODEI = LEADSITONOOEl-1 $,
FI XEND I I
END $,

••• ELEMENT IS VERTICALLY CONNECTED. SINCE ELEMENTS ARE DEFINED
ONLY TO THE RIGHT OR BELOW THEIR FROMNDOE, WE NEED CHECK ONLY
THESE TWO POSSIBILITIES //

REDUCE COUNT OF NUMBER OF ELEMENTS ATTACHED TO NODE $ 1

SYSTEM KLUDGE $,

DEFINE PROCEDURE RMVNOOINODEI WHERE POINTER NOOE TOBE
BEGIN

COMMENT RMVNOD REMOVES A NODE FROM THE DATA STRUCTURE AND THE DISPLAY FILE $,
IF NODE EQL NODEl
THEN GOTO RETURN $ 1

P = NODE l $,
HERE $ PREV = P ••• SEARCH NODE CHAIN FDR NODE $,

P = NEXTIPREVI S,
IF P EQL EMPTY
THEN BEGIN

GOUT l.C. /NODE SPECIFIED NOT ON NODE CHAIN /I $,
GOTO GET.PENSEE $,
ENO

ELSE IF P NEQ NODE
THEN GOTO HERE $ 1

NEXTIPREVI = NEXTIPI ••• REMOVE NODE FROM NODE CHAIN $,
RMVIPI ••• REMOVE NODE FROM THE DISPLAY FILE $,
XSEEN = XIPI $,
YSEEN : Y(PI $,
FRETINDDESZ,PI ••• RETURN NODE BEAD TO FREE STORAGE $,
FI XENO I I $,
IF NOT REDRAW.MOOE
THEN BEGIN

DEF OBJ I I $,
ADDOBJISETPTIXSEEN,YSEENll •••PLOT A LARGE X OVER THE NODE BEING DELETED s,
AODOBJICPYOBJIEXll s,
P = ENDOBJI I $,
DISPLAYIPTR = PLOTIPll S,
RMVIPTRI S,
END $,

END s,

.._,

"'

)

COMMENT ALLOW VALUE TO BE CHANGED IF ITEM SEEN WAS RESISTOR OR CAPACITOR $ 1

NEWVAL $ IF TYPEILASTSEEI EQL RESISTOR OR TYPEILASTSEEI EQL CAPACITOR
THEN BEGIN

GET.ITEM(.C. /TYPE NEW VALUE/,RVAL,NEED.VALUEI ••• PROMPT USER A~D GET A NEW VALUE $,
VALILASTSEEI = RVAL ••• STORE NEW VALUE IN ELEMENT BEAD $ 1

END $,
GOTO GET.PENSEE $,

COMMENT DEFINE HORIZONTAL ELEMENTS $,
HORES $ THIS = FREEIRESSZI $, ••• ADO HORIZONTAL RESISTOR. START BY GETTING RESISTOR BEAD FROM

FREE STORAGE S,
TYPEITHISl = RESISTCR ••• ANO SET TYPE COMPONENT S,
ITEM = HRES ••• ITEM TO BE PLOTTED IS PICTURE OF HORIZONTAL RESISTOR. HRES IS

A POINTER TO THE DISPLAY OBJECT REPRESENTING THE RESISTOR S,
HORIZ $ FROMITHISl = FROMNOOE = NEARNODEILASTSEE,XSEEN,YSEENI ••• PROCESS HORIZONTAL ELEMENTS. START BY GETTING POINTER TO

NEAREST NOOE OR DEVICE TO CURSOR AT XSEEN,YSEEN USING NEARNOOE,
WHICH IS EXPLAINED BELOW. THE 'FROM' COMPONENT OF THE ELEMENT BEAD
IS SET TO POINT TO THE NOOE OR DEVICE RETURNED. $,

ALL $

INTOITHISI = TONOOE = GETNOOEIXIFROMNOOEl+GRIOSP,YIFROMNODEll ••• FIND NODE OR DEVICE AT ENO OF ELEMENT OR
CREATE A NOOE THERE $,

IF RIFROMNOOEl EQL FORBIDDEN.LEAD OR LITONOOEI EQL FORBIDDEN.LEAD ••• CHECK IF ELEMENT REQUIRES A CONNECTION TO
A FORBIDDEN LEAD OF A DEVICE. //

THEN BEGIN
ERROR Ill

IF TYPEITHISl EQl SHORT

THEN FRETISHTSZ,THISI
ELSE FRETIRESSZ,THISI
IF NOOE.CREATED

THEN BEGIN
RMVICREATEO.NOOEI
FRETINOOESZ,CREATEO.NOOEI
FIXENOl 1 $,
ENO S,

GOTO GET.PENSEE $,
ENO s,

IF RIFROMNOOEI NEQ EMPTY

THEN BEGIN
DELETE IRIFROMNOOEloFROHNOOE,TONOOEI $ 1

ELEMENT.DELETED = TRUE $,
ENO $1

••• USE ERROR OUTPUT ROUTINE DEFINED ABOVE TO PRINT ERROR MESSAGE
CORRESPONDING TO CODE OF l $,

••• START OVER BY GETTING ANOTHER PENSEE ON A LIGHT BUTTON, BUT
FIRST RETURN TO FREE STORAGE BEADS CREATED BUT WHICH COULD NOT
BE ATTACHED //

••• RESISTORS AND CAPACITORS ARE THE SAME SIZE $,
••• CHECK IF A NOOE WAS CREATED AT THE RIGHT-HANO ENO OF THE

NEW ELEMENT. SINCE ELEMENT CAN NOT BE ATTACHED
THE NOOE WILL HAVE NO LEADS AND SHOULD BE OELEfEo.
NOOE.CREATED IS SET WITHIN PROCEDURE NEARNOOE. St

REMOVE FROM DISPLAY FILE $,
••• ANO FROM DATA STRUCTURE s,

IF SOMETHING IS ALREADY IN POSITION WHERE NEW ELEMENT IS TO
BE ATTACHED, DELETE IT AND SET FLAG SO PICTURE WILL BE REDRAWN
If IN AUTO ERASE MODE. //

RIFROMNOOEI = THIS ••• HAKE NODE OR DEVICE BEADS POINT TO NEW ELEMENT $,
LITONOOEI = THIS $,
LEAOSIFROMNOOEI = LEADSIFROHNODEl+l ••• COME HERE FOR ALL ELEMENTS AND INCREASE ELEMENT COUNT ON

LEAOSITONOOEI = LEAOStTONOOEl+l $ 1

IF TYPEITHISI NEQ SHORT

THEN BEGIN
VALITHISI = 0
NAMEITHISI = NAMEELEMITYPEITHISll $,
ENO $,

OEFOBJ I l

NODES OR DEVICES S,

••• If 'THIS' POINTS TO A RESISTOR OR CAPACITOR BEAD , GET A NAME
FOR IT BY CALLING PROCEDURE NAHEELEH //

SET VALUE TO BE 0 INITIALLY S,

BEGIN OBJECT DEFINITION. OBJECT WILL INCLUDE A POINT COMMAND
TO DRAW THE ELEMENT AT THE CORRECT POSITION, THE PICTURE OF THE

.....

.....

)

ADOOBJISETPT(XIFROMNODEl,YIFROMNODElll
ADDOBJ(CPYOBJllTEMll S,
If TYPE(THISI NEQ SHORT
THEN ADOOBJITEXTINAMEITHISlll
ELEM.Pit • ENDOBJll

ENO.OF.OISPLAY~FILE • ADDED.ELEMENT •

IF REDRAW.MOOE ANO ELEMENT.DELETED

THEN BEGIN
ELEMENT.DELETED • FALSE $ 1

GOTO REWRITE S,
END

ElSE BEGIN

IF NOOE.CREATED

ELEMENT ANO THE TEXT OF THE USER'S NAHE,IF ANY. s,
ADO A SET POINT ANO THEN THE PICTURE Of THE ELEMENT S,

ADO USER'S NAME FOR ELEMENT $,
TERMINATE THE OBJECT DEFINITION • ELEM.Pit IS POINTER TO

OBJECT S,
PENSNSIPLOTIELEM.PIC,THIS,ENO.OF.OISPLAY.FILEll ••• PLOT OBJECT, 'NAME'

IS THIS. NAME IS POINTER TO CORRELATION WORD. NOTE THAT
DISPLAY 'NAME' IS NOT USER'S NAME, BUT A POINTER TO THE BEAD
DESCRIBING THE ELEMENT • OBJECT IS PLOTTED AT THE END OF THE
DISPLAY FILE $,

••• If IN AUTOERASE HOOE, ANO AN ELEMENT WAS DELETED WHILE
ADDING A NEW ELEMENT, PICTURE MUST BE REDRAWN //

THEN OISPLAYICREATEO.NOOE,AOOEO.ELEMENTI ••• DISPLAY NOOE AND ELEMENT JUST CREATED. NOTE THAT PROCEDURE
PLOT DOES NOT TRANSMIT DISPLAY COMMANDS TO THE TERMINAL , BUT
ONLY ADOS OBJECTS TO THE GRAPHSYS DATA STRUCTURE. PROCEDURE
DISPLAY MUST BE CALLED TO SEND COMMANDS II

ELSE DISPLAYtADDED.ElEMENTt St
GOTO GET.PENSEE S,
END S,

) ')

-.J
(X)

)

COMMENT DEFINE VERTICAL ELEMENTS. COMMENTS ARE MUCH THE SAME AS FOR HORIZONTAL ELEMENTS IN THE PRECEEOING SECTION $,
VE~ES $ TYPEITHIS = FREEIRESSZJJ =RESISTOR •••NOTE USE OF PHRASE SUBSTITUTIONS,

ITEM = VRES $,
VERT $ FROMITHISJ = FROMNOOE = NEARNOOEILASTSEE,XSEEN,YSEENJ $1

!NTOITHISJ = TONOOE = GETNOOEIXIFROMNOOEJ,YIFROMNOOEJ-GRIOSPI $,
IF O{FROMNOOEJ EQL FORBIDDEN.LEAD OR UITONODEJ EQL FORBIDDEN.LEAD
THEN BEGIN

ERRORlll $,
IF TYPEITHISJ EQL SHORT
THEN FRETISHTSZ,THISJ
ELSE FRETIRESSZ,THISl S,
IF NODE.CREATED
THEN BEGIN

RMVICREATEO.NODEl $,
FRETINODESZ,CREATEO.NODEl $,
FIXENDI l $,
END $,

GOTO GET.PENSEE $ 1
END S,

IF DIFROMNODEJ NEQ EMPTY
THEN BEGIN

ELEMENT.DELETED = TRUE $,
DELETEIDIFROMNOOEl1FROMNODE,TONOOEJ $,
ENO $,

DIFROMNODEl = THIS St
UITONODEl = THIS $,
GOTO ALL $,

HOCAP $ TYPEITHJS = FREEICAPSZll =CAPACITOR •••HORIZONTAL CAPACITOR$,
ITEM = HCAP $,
GOTO HORIZ $1

VECAP $ TYPEITHIS = FREEICAPSZJJ =CAPACITOR •••VERTICAL CAPACITOR $ 1
ITEM = VCAP $,
GOTO VERT S,

HOSHT $ TYPEITHIS = FREEISHTSZll =SHORT •••HORIZONTAL SHORTS,
ITEM = HSHT $,
GOTO HORIZ $,

VESHT $ TYPEITHIS = FREEISHTSZll =SHORT •••VERTICAL SHORTS,
ITEM = VSHT $,
GOTO VERT $,

ERSON $ REDRAW.MODE = TRUE ••• SET AUTO ERASE MODE SWITCH SO PICTURE Will BE RETRANSMITTED

GOTO GET.PENSEE S,
ERSOFF $ REDRAW.MODE = FALSE $ 1

GOTO GET.PENSEE $,
EXIT $ CHNCOMIOl

AFTER EVERY DELETION $,

••• EXIT FROM PROGRAM TD TIMESHARING SYSTEM COMMAND LEVEL $,

COMMENT REMAINDER OF MAIN PROGRAM PROCESSES DEVICE DEFINITIONS, THE EDITING OF DEVICES AND THE USAGE OF DEVICES $,

-..J

'°

COMMENT PROCESS LIGHT BUTTON TO DEFINE A DEVICE S,
DEF.DEVICE $ DEFINITION.MODE = TRUE $,

DEVICE = DEFINITION.POINTER = FREEIDEFINITION.SIZEI ••• GET A DEVICE DEFINITION BEAD s,
DEFSUBIDEVICEI ••• BEGIN SUBPICTURE DEFINITION. NAME OF SUBPICTURE IS 'DEVICE•. S,
END.OF.DISPLAY.FILE = DEVICE S,

COMMENT THE DISPLAY OBJECT TO REPRESENT A DEVICE DEFINITION IS A SUBPICUTURE. UNTIL A SUBPICTURE IS TERMINATED
BY A CALL TO PROCEDURE ENDSUBt THE SUBPICTURE CAN NOT BE DISPLAYED AS A FINISHED ENTITY BY
A CALL TO DISPLAY WITH THE NAME OF THE SUBPICTURE, I.E. DISPLAYIDEVICEI. THEREFORE WHILE DEFINING A DEVICE THE
PROGRAM MUST EXPLICITLY KNOW WHAT INFORMATION IN THE DISPLAY FILE IS TO REDISPLAYED WHEN
THE SCREEN IS ERASED ANO THE PICTURE IS TO BE REDRAWN. IN ADDITION OBJECTS MUST ALWAYS BE ADDED TO
THE SET OF OBJECTS COMPRISING THE SUBPICTURE DEFINITION RATHER THAN TO THE CIRCUIT WHICH WAS BEING
DEFINED BEFORE THE USER ENTERED DEVICE DEFINITION MOOE. THEREFORE DEVICE IS A POINTER TO THE

CORRELATION WORD OF THE FIRST OBJECT IN THE SECTION OF THE DISPLAY FILE FOR THE SUBPICTURE DEFINITION.
ENO.OF.DISPLAY.FILE POINTS TO THE CORRELATION WORD OF THE LAST OBJECT ADDED TO THE
SUBPICTURE DEFINITION. $,

STORE.NODE = NODEl
ERASERll $ 1

••• PUT AWAY POINTER TO BEGINNING OF MAIN CIRCUIT DATA STRUCTURE. $,

GET.ITEMl.C. /INDICATE POSITION OF INITIAL NODE FOR DEVICE/,INPUT.ITEM,NEED.ABPOSI $,
NODEl = GETNODEIXXllNPUT.ITEMl,YYllNPUT.ITEMll ••• NOOEl NOW POINTS TO THE BEGINNING OF THE DEVICE DATA

BUTTONSIMENU21
DISPLAYIFBUT,LBUTI S,
DISPLAYINODEll S,
IF BEGIN.DEVICE.CHAIN EQL EMPTY
THEN BEGIN.DEVICE.CHAIN = DEFINITION.POINTER

ELSE NEXTILASTDEFI =DEFINITION.POINTER
NEXTIDEFINITION.POINTERI = EMPTY $,
NUMIDEFINITION.POINTERI = 0
FSTNODEIDEFINITION.POINTERI = NODEl

GOTO GET.PENSEE

STRUCTURE. $,
••• GENERATE LIGHT BUTTONS FOR USE DURING DEVICE DEFINITION $,

••• IF THIS IS THE FIRST DEVICE TO BE DEFINED, PUT IT AS FIRST
DEVICE ON CHAIN OF DEVICE DEFINITIONS //

PUT NEW DEVICE DEFI~ITION BEAD INTO LIST OF DEFINITIONS $,

••• SET NUMBER OF USAGES TO BE 0 $,
••• SET DEVICE DEFINITION BEAD TO POINT TO DATA STRUCTURE FOR

EQUIVALENT CIRCUIT $,
PROGRAM IS NOW SETUP TO OPERATE WHILE DEFINING A DEVICE AS IF

IT WAS ON THE MAIN CIRCUIT LEVEL $,

OJ
0

)

COMMENT PROCESS LIGHT BUTTON TO TERMINATE DEVICE EDITING OR DEFINITION $,
TERM.DEVICE $ NODEl = STORE.NOOE ••• RESET NODEl, THE POINTER TO THE CIRCUIT DATA STRUCTURE, TO BE

IF EDITING.DEFINITICN
THEN BEGIN

EDITING.DEFINITION = FALSE $ 1

THAT FOR THE MAIN CIRCUIT $,

RMVIDEVICEl ••• REMOVE SUBPICTURE CALL FOR DEVICE FROM DISPLAY FILE $ 1

END
ELSE BEGIN ••• DEFINITION IS BEING TERMINATED //

DEFINITION.MOOE = FALSE $,
GET.ITEMl.C. /SPECIFY DEVICE NAME/,INPUT.ITEM,NEEO.CHARSl $ 1

NAMEIDEFINITION.POINTERl = COPYCIO,O,INPUT.ITEMI •••MAKE A COPY OF THE TEXT OF THE NAME $ 1

BOXESIDEFINITION.POINTERJ ••• PROCEDURE BOXES REQUESTS USER TO SPECIFY THE NUMBER OF
TERMINAL LEADS AND THEIR ORIENTATION $ 1

TRMNLSIDEFINITION.POINTERI ••• PROCEDURE TRMNLS REQUESTS USER TO INDICATE WHICH LEADS IN THE
DEVICE DEFINITION ARE THE TERMINAL LEADS. THIS IS REQUIRED IN
ORDER FDR AN ANALYSIS PROGRAM TO SUBSTITUTE THE EQUIVALENT
CIRCUIT FOR THE DEVICE REPRESENTATION. $ 1

LASTDEF = DEFINITION.POINTER ••• SET LAST DEFINITION ON THE LIST OF DEFINITIONS TO BE THIS
DEFINITION $,

ENDSUBIJ ••• TERMINATE SUBPICTURE DEFINITION $ 1

END $,
END.OF.DISPLAY.FILE = LASTOBJIMAIN.FILEI $,

COMMENT SET THE ENO OF THE DISPLAY FILE TO BE THAT FOR THE MAIN DISPLAY FILE BY CALLING PROCEDURE LASTOBJ,
WHICH FINDS THE LAST OBJECT IN THE MAIN DISPLAY FILE, OR IN A SUBPICTURE DEFINITION. $,

BUTTONSIMENUll ••• REGNERATE LIGHT BUTTONS FOR WORKING AT MAIN CIRCUIT LEVEL s,
GOTO REWRITE $,

co
I-'

COMMENT PROCESS LIGHT BUTTON TO USE DEVICE $ 1

USE.DEVICE $ GET.ITEMl.C. /SPECIFY DEVICE NAME/ 1 INPUT.ITEM 0 NEED.CHARSI $ 0
IF IP = BEGIN.DEVICE.CHAIN! ECL EMPTY
THEN GOTO NOT.FOUND ••• START AT BEGINNING OF DEVICE CHAIN AND SEARCH FOR DEVICE

SPECIFIED II
ELSE GOTO START $,

REPEAT$ IF IP= NEXTIPll ECL EMPTY
THEN BEGIN

NOT.FOUND $ ERRORt21 $ 1

GOTO GET.PENSEE $,
END $,

STARTS COMPARINAMEIPl,INPUT.ITEM,REPEAToFOUND,REPEATI •••PROCEDURE COMPAR TRANSFERS TO LABEL 1 FOUND' IF THE NAME OF A
DEVICE MATCHES THE INPUT NAME. OTHERWISE IT GOES TO THE LABEL
'REPEAT' So

FOUND $ USAGE = LASTSEE $,
BOX.STYLE = CHOICEISTYLEtPloUSAGE,ILLEGAL.ATTACHMENTI ••• PROCEDURE CHOICE PRESENTS THE USER WITH THE

IF ILLEGAL.ATTACHMENT
THEN BEGIN

ERROR 11 I $ 0

GOTO GET.PENSEE $ 0

ENO
ELSE BEGIN

ROTATIONAL CONFIGURATIONS OF THE SYMBOL USED TO REPRESENT THE
DEVICE DEFINITION TO WHICH P POINTS. USAGE IS A POINTER TO NODE TO
BE REPLACED BY THE DEVICE. THE SYMBOL SELECTED BY THE USER
WITHIN CHOICE MUST HAVE LEADS IN THE DIRECTIONS WHERE THE
NOOE PRESENTLY HAS ATTACHMENTS--IF NOT, ILLEGAL.ATTACHMENT IS SET
TO BE TRUE SO THE SUBSTITUTION OF THE DEVICE CAN NOT OCCUR.
BOX.STYLE IS A POINTER TO THE DISPLAY OBJECT FOR THE SYMBOL
TO REPRESENT THE DEVICE S,

COMMENT ALTER THE NODE BEAD TO MAKE IT l DEVICE USAGE BEAD BY RESETTING SEVERAL COMPONENTS $ 0

TYPEIUSAGEI = DEVICE.TYPE S,

)

NUMIPI = NUMIPl+l ••• NUM IS THE NUMBER OF USAGES OF THE DEVICE $,
NAMEIUSAGEI = COPYtco,o,NAMEIP),NUMTOCINUMIPlll ••• PROCEDURE COPYC CONCATENATES TWO CHARACTER STRINGS,THE

NAME OF DEVICE AS GIVEN WHEN IT WAS DEFINED AND THE NUMBER OF
USAGES• PROCEDURE NUMTOC CONVERTS A NUMBER TO A CHARACTER STRING. Sr

DEF.PTRlUSAGEI "' P ••• SET POINTER TO [)£VICE DEFINITION SO THAT AN ANALYSIS PROGRAM,
IF ONE EXISTED, COULD SUBSTITUTE THE EQUIVALENT CIRCUIT FOR THE
DEVICE IN CALCULATING THE PROPERTIES OF THE CIRCUIT $,

DEFOBJ() ••• DEFINE A DISPLAY OBJECT FOR TME DEVICE CONSISTING OF A

ADDOBJISETPTIXIUSAGEJ,YIUSAGElll So
ADDOBJt BOX.STYLE)

AODOBJITEXTINAMEIUSAGElll
BOX.STYLE = ENDOBJll So
PENSNSl~PLIBOX.STYLE,USAGEJI

GOTO REWRITE
ENO $,

POINT TO PLOT THE DEVICE AT THE NODE POSITION So

••• AND THE DISPLAY OBJECT FOR THE BOX WITH THE NUMBER OF LEADS
SPECIFIED BY THE DEVICE STYLE $,

••• ANO THE NAME OF THIS USAGE OF THE DEVICE s,

••• REPLACE THE DISPLAY OBJECT FOR THE NOOE, WHICH HAS THE NAME
USAGE, BY THE DEVICE DISPLAY OBJECT, BOX.STYLE, AND MAKE IT PEN
SENSITIVE. $,

••• PICTURE Will BE REDRAWN TO SHOW DEVICE s,

))

to
l\J

)

COMMENT PROCESS LIGHT BUTTON TO EDIT DEVICE S,
EDIT.DEVICE S GET.ITEMl.C. /SPECIFY DEVICE NAME/1INPUT.ITEM,NEED.CHARSI $ 1

IF IP a BEGIN.DEVICE.CHAINI EQL EMPTY
THEN GOTO NOT.FOUND ••• LOOK FOR DEVICE ON DEVICE DEFINITION CHAIN //
ELSE GOTO TEST $ 1

Rl $ IF IP= NEXTIPll EQL EMPTY
THEN ERRORl21
ELSE BEGIN

TEST S SUB=P
COMPARINAMEIPl 1 INPUT.ITEM 1 Rl,Fl 1 Rll $ 1

Fl S DEVICE = CALLIPI ••• GENERATE A DISPLAY OBJECT WHICH IS A SUBPICTURE CALL FOR THE

ERASERll s,
DISPLAYIDEVICEl S,
BUTTONSIMENU2l $,
EDITING.DEFINITION = TRUE $,
ENO.OF.DISPLAY.FILE = LASTOBJISUBI S,

DEVICE DEFINITION S,

COMMENT SET ENO.OF.DISPLAY.FILE TO BE A POINTER TO THE CORRELATION WORD OF THE LAST OBJECT IN THE SUBPICTURE
DEFINITION SO OBJECTS CAN BE ADDED TO THE ENO OF THE SUBPICTURE DEFINITION. FIRST 2 WORDS OF THE DEFINITION
BEAD POINTED TO BY P ARE THE SUBPICTURE CORRELATION WORDS. S,

STORE.NODE = NODEl $ 1
NODEl = FSTNODEIPI ••• SET DATA STRUCTURE UPON WHICH THE PROGRAM IS TO OPERATE TO BE

DISPLAYIFBUT1LBUTI $,
END $,

GOTO GET.PENSEE $,

THE CIRCUIT CORRESPONDING TO THE DEVICE DEFINITION s,

co
w

COMMENT THE FOLLOWING PROCEDURES ARE A GROUP OF SMALL SERVICE ROUTINES. $ 1

DEFINE PROCEDURE FIXEND TOBE
COMMENT FIXEND UPDATES THE POINTER TO THE END OF THE DISPLAY FILE TO AVOID A PROBLEM WHEN THE LAST OBJECT

IN THE DISPLAY FILE IS DELETED. PROCEDURE LASTOBJ RETURNS A POINTE~ TO THE LAST OBJECT
IN EITHER A SUBPICTURE DEFINITION OR THE MAIN DISPLAY FILE. IF A SUBPICTURE IS BEING EDITED, SUB POINTS TO
THE DEVICE DEFINITION BEAD, WHICH BEGINS WITH THE SUBPICTURE CORRELATION WORD. $,

BEGIN
ENO.OF.DISPLAY.FILE = LASTCBJllF EDITING.DEFINITION THEN SUB ELSE MAIN.FILE! $,
END S,

DEFINE POINTER PROCEDURE NEARNODEILASTSEE,XSEEN,YSEENI WHERE POINTER LASTSEE, INTEGER XSEEN,YSEEN TOBE
BEGIN

COMMENT NEARNODE GIVES A POINTER TO THE NODE NEAREST TO XSEEN,YSEEN S,
IF TYPEILASTSEE) EQL NODE OR TYPEILASTSEE) EQL DEVICE.TYPE
THEN NEARNCDE = LASTSEE

)

ELSE BEGIN
FROMNODE = FROM(LASTSEEI $,
TONODE = INTOILASTSEEI s,
IF (XSEEN-XIFROMNODEl+Y(FROMNODEl-YSEENI LES IXITONODEl-XSEEN+YSEEN-YITONODEI I ••• WORKS ONLY WHEN

NODES ARE LAID OUT ON A GRID II
THEN NEARNODE = FROMNODE
ELSE NEARNODE = TONODE $,
END $,

ENO $,

DEFINE PROCEDURE INITARDS TOBE
BEGIN
SGNONlll
ERASER!! s,
PENCHKITRUEl

PENDLTl50,50l

END $,

CONNECT TO DISPLAY UNIT AND INITIALIZE GRAPHSYS ROUTINES. $,

PENCHK TELLS GRAPHSYS TO CHECK EACH GRAPHICAL POSITION TO SEE
IF IT IS IN THE PEN-SENSITIVE AREA OF AN OBJECT $,

PENDLT SETS THE SIZE OF AREA WITHIN WHICH OBJECTS ARE
PEN-SENSITIVE. ALL OBJECTS ARE SENSITIVE WITHIN A SQUARE OF
HALF WIDTH 50 CENTERED AT THE CALCULATED CENTER OF THE OBJECT $,

) \

)

CXl ...

))

DEFINE POINTER PROCEDURE NAMEELEMITYPE) WHERE INTEGER TYPE TOBE
BEGIN

COMMENT NAMEELEM GETS A NAME FOR AN ELEMENT AND ADDS IT TO THE BEAD FOR THE ELEMENT $ 1
IF TYPE EQL CAPACITOR
THEN BEGIN

NUMBER.OF.OCCURRENCESlll = NUMBER.OF.OCCURRENCESlll+l St
NAMEELEM = COPYCCo,o,.c. /C/,NUMTOCINUMBER.OF.OCCURRENCES(l))) ••• COPYC CONCATENATES c WITH

CAPACITOR NUMBER TO GIVE A NAME SUCH AS CS $ 1
ENO

ELSE BEGIN
COMMENT OTHERWISE THE ELEMENT MUST BE A RESISTOR St

NUMBER.Of.OCCURRENCESl21 = NUMBER.OF.OCCURRENCESl21+1 S,
NAMEELEM z COPYCto,o •• c. /R/,NUMTOCINUMBER.OF.OCCURRENCESl2))) s,
END s,

END $,

DEFINE POINTER PROCEDURE NAMENOOE TOBE
BEGIN

COMMENT NAMENODE GIVES A UNIQUE NAME TO EACH NODE. NAME IS 'N' FOLLOWED BY AN INTEGER $ 1

NUMBER.OF.OCCURRENCESIOl=NUMBER.OF.OCCURRENCESCO)+l S,
NAMENODE = COPYCCO,o,.c. /N/,NUMTOCINUMBER.OF.OCCURRENCESIO))) s,
END St

COMMENT END OF THIS COMPILATION. PROCEDURES BOXES, CHOICE AND TRMNLS ARE IN THE FOLLOWING COMPILATION. S,
END FINI

)

co
U1

BEGIN

COMMENT SEPARATE COMPILATION INCLUDING PROCEDURES FOR DEFINING AND USING DEVICES. PROCEDURES ARE BOXES,
CHOICE,TRMNLSrSAMPLE.BOXrMAKEBOX $,

INTEGER NEED.PENSEE $,
POINTER RBOX 1Pl,P2,P3 1P4,BOX11BOX2,BOX31BOX41BOX51BOX61BOX7180X81BOX9rBOX10r80XllrBOKSlrBOKS2 1 BOKS3 1 80KS4,SBOXl,

SBOX2rSBOX3,SBOX4 1 SBOX5 1 SBOX6,SBOX7rSBOX8,SBOX9,SBOXlO,SBOX111ITEM,MESSAGE1EMPTYrFORBIDDEN.LEAO $,
PROCEDURE ERASERrERROR,AOOOBJoOEFOBJ,OlSPLAY,GET.ITEM $,
POINTER PROCEDURE PENSNS,PLOT1EN008J,RMV1CPYOBJ $,

COMMENT THE FOLLOWING DECLARATIONS ARE FOR COMPONENTS IN NOOE ANO DEVICE USAGE BEADS AND ARE THE SAHE AS IN THE
MAIN PROGRAM $,

INTEGER COMPONENT STYLE $ 0

POINTER COMPONENT u,o,R,L,TRMNLl1TRMNL2,TRMNL3,TRMNL4 $,
STYLE $=$ 2 ••• THIS IS THE STYLE COMPONENT OF A DEVICE DEFINITION BEAD --

SEE FIG 2 $,
U $=$ 5 ••• THESE ARE THE CONNECTION COMPONENTS OF A NOOE BEAD -- SEE FIG

L $:$ 6 s,
R $=$ 7 $,
D $=$ 8 $,
TRMNll $=$ 1

TRMNL2 S=S 8 $,
TRMNL3 $=$ 9 $,
TRMNL4 $=$ 10 $,

l s,

••• THESE ARE THE COMPONENTS IN A DEVICE DEFINITION BEAD
INDICATING HOW THE TERMINAL NODES ARE LOCATED IN THE EQUIVALENT
CIRCUIT. s,

COMMENT DECLARATION OF 'PENSEE' BEAD AS RETURNED BY GET.ITEM. MORE COMPLETE BEAD DECLARATION IS IN MAIN PROGRAM $,
POINTER COMPONENT OBJECT.NAME $,

)

OBJECT.NAME $=$ 2 ••• THE POINTER TO THE CORRELATION WORD -- THE OBJECT NAME-- IS

PRESET
BEGIN
EMPTY = 0
FORBIDDEN.LEAD • -1

NEED.PENSEE = l
END $,

RETURNED IN THE THIRD WORD OF A PENSEE ITEM $,

••• CODE FOR A NULL POINTER $,
••• COD£ TO INDICATE THIS DIRECTION ON A DEVICE CAN NOT HAVE A

CONNECl10N s,
••• CODE TO INDICATE NEXT INPUT ITEM MUST BE A PENSEE $,

))

CXl

"'

))

DEFINE PROCEDURE BOXESIDEFINITION.PTRI WHERE POINTER DEFINITION.PTR TOBE
BEGIN ••• BOXES DISPLAYS THE FOUR BASIC BOX STYLES AND ALLOWS THE USER

BOOLEAN FIRST.TIME $,
PROCEDURE SAMPLE.BOX,MAKEBOX $,
PRESET FIRST.TIME = TRUE $,

TO CHOOSE THE ONE APPROPRIATE TO HIS DEVICE //

IF FIRST.TIME ••• SEE IF THIS IS THE FIRST TIME THIS ROUTINE WAS CALLED //
THEN BEGIN

MAKEBOXIBOXl,BOX2,BOX3,BOX4,BOXS,BOX6,BOX7,BOX8,BOX9,BOXlO,BJXlll S, ••• CREATE THE BOX SYMBOLS TO BE
USED WHEN DEVICES ARE PLOTTED. THERE ARE 4 BASIC BOX STYLES, AND
ll CONFIGURATIONS WHEN ROTATION IS CONSIDERED //

SAMPLE.BOXISBOXl,SBOX2,SBOX3,SBOX4,S80XS,SBOX6,SBOX7,SBOX8,SBOX9,SBOXlO,SBOXlll ••• GET DISPLAY
OBJECTS FOR THE BOXES USED TO REPRESENT DEVICES. THEY INCLUDE A
POINT TO POSITION THE BOX IN THE SELECTION AREA AT THE BOTTOM
OF THE SCREEN $,

FIRST.TIME = FALSE Sr
END $,

PENSNS(Pl = PLOTISBOXlll

PENSNSlP2 = PLOTISBOX311 $,
PENSNSlP3 = PLOTISBOX7ll $,

PENSNS (P4 = PLOT I SBOXll II $,
DISPLAYIP1,P4l

ADD A PEN SENSITIVE 2 LEAD BOX TO THE DISPLAY FILE WITH NAME
Pl $,

••• SEND DISPLAY FILE BETWEEN OBJECTS Pl AND P4 TO THE TERMINAL
$,

GET.ITEMl.C. /POINT TO DEVICE STYLE/,ITEM,NEED.PENSEEI ••• GET PE~SEE TO INDICATE WHAT STYLE IS DESIRED.
ITEM IS A POINTER TO THE BEAD DESCRIBING THE PENSEE $,

IF OBJECT.NAMEllTEMI EQL Pl ••• SEE IF NAME OF OBJECT SEEN IS FIRST BOX STYLE. Pl IS A
POINTER TO THE CORRELATION WORD FOR THE FIRST BOX STYLE--SEE IF
IT IS THE SAME AS THE CORRELATION WORD POINTER RETURNED AFTER
THE PENSEE //

THEN STYLEIDEFINITION.PTRI = l ••• STORE THE CODE FOR THE DEVICE STYLE CHOSEN IN THE DEVICE

IF OBJECT.NAMEllTEMI EQL P2
THEN STYLEIDEFINITION.PTRI = 2 $,
IF OBJECT.NAMEllTEMI EQL P3
THEN STYLEIDEFINITION.PTRJ = 3 Sr
IF OBJECT.NAMEllTEMI EQL P4
THEN STYLEIDEFINITION.PTRI = 4 s,
RMV(Pl 1 P41
GOTO RETURN $,
END $,

DEFINITION BEAD s,

••• REMOVE OBJECTS Pl THROUGH P4 FROM THE DISPLAY FILE $,

CXl
-.J

DEFINE POINTER PROCEDURE CHOICEIBOX.STYLErUSAGE,ILLEGAL.ATTACHMENTI WHERE INTEGER BOX.STYLE$,
POINTER USAGE $,
BOOLEAN ILLEGAL.ATTACHMENT TOBE

BEGIN ••• CHOICE DETERMINES THE ROTATIONAL CONFIGURATION OF THE BASIC
BOX STYLE TO BE USED AT A GIVEN PLACE IN THE CIRCUT. BOX.STYLE
WAS DETERMINED WHEN THE DEVICE WAS DEFINED BY USING THE
PROCEDURE BOXES. USAGE IS THE POINTER TO THE NODE BEAD BEING
REPLACED BY THE DEVICE. DEVICES WITH LESS THAN 4 LEADS HAVE A
CERTAIN SIDE TO WHICH ELEMENTS CAN NOT BE ATTACHED. IF THE NODE
BEING REPLACED HAS CONNECTIONS IN THOSE DIRECTIONS,
ILLEGAL.ATTACHMENT IS SET TO BE TRUE TO INDICATE THE USER HAS
TRIED TO INCORRECTLY CONNECT THE DEVICE. THE ILLEGAL DIRECTIONS
ARE SET TO THE CODE FORBIDDEN.LEAD SO NO CONNECTIONS WILL LATER
BE MADE IN THOSE DIRECTIONS //

MESSAGE = .c. /POINT TO DEVICE STYLE WITH PROPER ORIENTATION/ $,
ILLEGAL.ATTACHMENT = FALSE $,

START $ IF BOX.STYLE EQL 1 ••• BOX HAS 2 LEADS ON OPPOSITE SIDES //
THEN BEGIN ••• COMMENTS ON THE FOLLOWING SEQUENCE FOR GETTING THE USER TO

INDICATE WHICH ROTATIONAL ORIENTATION IS CORRECT ARE MUCH LIKE THOSE FOR
THE SEQUENCE GIVEN IN PROCEDURE BOXES ABOVE //

PENSNS(BOKSl = PLOTISBOXlll •••ORIENTATION WITH LEADS AT 3 AND 9 O'CLOCK$,
PENSNSlBOKS4 = PLOT(SBOX2ll ••• ORIENTATION WITH LEADS AT b AND 12 O'CLOCK$,
DISPLAY(BOKSlrBOKS41 $,
GET.ITEMlMESSAGE,ITEM,NEED.PENSEEI $,
IF OBJECT.NAMEIITEMI EQL BOKSl
THEN BEGIN

IF U(USAGEl NEQ EMPTY OR DIUSAGEI NEQ EMPTY ••• CHECK IF DIRECTIONS IN WHICH BOX HAS NO LEADS
HAVE BEEN ALREADY USED IN NODE BEAD BEING REPLACED //

THEN GOTO ERR $,
CHOICE= CPYOBJlBOXll ••• DEVICE IS BEING USED CORRECTLY. SET VALUE OF THE PROCEDURE TO

BE A POINTER TO A COPY OF THE OBJECT TO BE DISPLAYED TO
REPRESENT THE BOX $,

UIUSAGEI = D(USAGEl = FORBIDDEN.LEAD ••• OTHER DIRECTIONS CAN NEVER BE USED FOR THIS 2 LEAD
DEVICE. SET THE UP ANO DOWN COMPONENTS OF THE DEVICE USAGE BEAD
TO A CODE INDICATING NO CONNECTIONS CAN BE MADE TO THEM s,

ENO
ELSE IF OBJECT.NAMEllTEMI EQL BOKS4

THEN BEGIN
IF RIUSAGEI NEQ EMPTY OR L(USAGEI NEQ EMPTY
THEN GOTO ERR $,
CHOICE = CPYOBJIBOX2l $,
R(USAGEI = LlUSAGEI = FORBIDDEN.LEAD $,
ENO

ELSE GOTO BAOSEE $,
RMVIBOKS1,BOKS4l ••• REMOVE OBJECTS BOKSl TO BOKS4 FROM THE DISPLAY FILE $,
GOTO RETURN $,
END $,

IF BOX.STYLE EQL 2

THEN BEGIN
PENSNSIBOKSl = PLOTISBOX3ll $,
PENSNSIBOKS2 = PLOTISBOX4)) $,
PENSNSlBOKS3 = PLOT(SBOX511 $,
PENSNSlBOKS4 = PLOTlSBOXbll $,
OISPLAYlBOKSl,BOKS4l s,
GET.ITEMIMESSAGE,ITEM,NEED.PENSEEI $,
IF OBJECT.NAMEllTEMl EQL BOKSl
THEN BEGIN

RBOX = BOX3 s,

BASIC CONFIGURATION HAS 2 LEADS AT 12 ANO 3 O'CLOCK AND 4
POSSIBLE ROTATIONAL CONFIGURATIONS, ASSUMING BOTH LEADS ARE
EQUIVALENT //

IF LIUSAGEI NEQ EMPTY OR DIUSAGEI NEQ EMPTY

CXl
CXl

THEN GOTO ERR $,
llUSAGEl = DIUSAGEI = FORBIDDEN.LEAD $,
GOTO ALL BOX $,
END $,

IF OBJECT.NAMEllTEMI EQL BOKS2
THEN BEGIN

RBOX = BOX4 $ 1

)

IF RIUSAGEI NEQ EMPTY OR D!USAGEI NEQ EMPTY
THEN GOTO ERR $,
RIUSAGEI = DIUSAGEI = FORBIDDEN.LEAD $,
GOTO ALLBOX S,
END $ 1

IF OBJECT.NAMEIITEM) EQL BOKS3
THEN BEGIN

RBOX = BOX5 $ 1

IF RIUSAGEI NEQ EMPTY OR UIUSAGEI NEQ EMPTY
THEN GOTO ERR $,
RIUSAGEI = UIUSAGEI = FORBIDDEN.LEAD $,
GOTO AllBOX S,
END $ 1

IF OBJECT.NAMEllTEMI EQL BOKS4
THEN BEGIN

RBOX = BOX6 $ 1

IF UIUSAGEI NEQ EMPTY OR LIUSAGE) NEQ EMPTY
THEN GOTO ERR $ 1

UIUSAGEI = llUSAGEI = FORBIDDEN.LEAD s,
GOTO ALLBOX $ 1

END s,
GOTO BADSEE S,
END s,

IF BOX.STYLE EQL 3 ••• BOX HAS 3 LEADS AT 3,9 AND 12 O'CLOCK AND 4 ROTATIONAL

THEN BEGIN
PENSNSIBOKSl = PLOTISBOX711 s,
PENSNSIBOKS2 = PLOTISBOXB)I S,
PENSNSIBOKS3 = PLOTISBOX9ll S,
PENSNSIBOKS4 = PLOTISBOXlOll St
DISPLAYIBOKS1,BOKS41 s,
GET.ITEMIMESSAGE,JTEM,NEED.PENSEEI $,
IF OBJECT.NAMEllTEMI EQL BOKSl
THEN BEGIN

RBOX = BOX7 S,
IF DIUSAGEl NEQ EMPTY
THEN GOTO ERR S,
DIUSAGEI = FORBIDDEN.LEAD s,
GOTO ALLBOX $,
END s,

IF OBJECT.NAMEllTEMI EQL BOKS2
THEN BEGIN

RBOX = BOX8 $ 1

IF RIUSAGEI NEQ EMPTY
THEN GOTO ERR S,
RIUSAGEI = FORBIDDEN.LEAD S,
GOTO 'ALLBOX $,
END s,

IF OBJECT.NAMEIITEMI EQL BOKS3
THEN BEGIN

RBOX = BOX9 $,
IF UIUSAGEI NEQ EMPTY
THEN GOTO ERR $,
UIUSAGEI = FORBIDDEN.LEAD $,

CONFIGURATIONS, ASSUMING All LEADS ARE EQUAL //

)

CD

"'

B~OSEE $

ALLBOX $

ERR $

)

GOTO ALLBOX s,
END S,

IF OBJECT.NAME(ITEMI EQL BOKS4
THEN BEGIN

RBOX = BOXlO S,
IF LIUSAGEI NEQ EMPTY
THEN GOTO ERR S,
LIUSAGEI = FORBIDDEN.LEAD $,
GOTO ALLBOX s,
END $,

GOTO BADSEE $1
ENO $,

IF BOX.STYLE EQL 4

THEN BEGIN
CHOICE = CPYOBJIBOXlll
GOTO RETURN $,
ENO S1

ERROR 131
GOTO ;START $,
CHOICE • CPYOBJ(RBOXI s,
RMVl80KSl1BOKS41 $,
GOTO RETURN s,
ILLEGAL.ATTACHMENT = TRUE $,
RMV(BOKS1 1BOKS41 s,
GOTO RETURN $,
END $,

s,

••• BOX HAS 4 LEADS, AND ONLY-ONE CONFIGURATION, ASSUMING ALL
LEADS ARE EQUIVALENT. TO SIMPLIFY THE PROGRAMMING THE PROGRAM
ASSUMES ANY LEAD CAN BE EQUALLY WELL ATTACHED IN A GIVEN
DIRECTION, I.E., THERE IS ONLY l ORIENTATION FOR A DEVICE WITH 4
LEADS. THIS IS OBVIOUSLY UNREALISTIC, BUT IT REDUCES THE NUMBER
OF ORIENTATIONS TO BE CHECKED WHEN A DEVICE IS BEING USED. IN A
USEFUL SYSTEM EACH LEAD WOULD HAVE A DESIGNATION AND THIS WOULD BE
USED IN SPECIFYING THE DESIRED ORIENTATION. //

••• USER POINTED TO SOMETHING OTHER THAN THE SAMPLE BOXES S,

))

"' 0

)

DEFINE PROCEDURE TRMNLSIDEFINITION.POINTERI
BEGIN

TRMNLllDEFINITION.POINTERI = EMPTY
TRMNL21DEFINITION.POINTERI 2 EMPTY s,
TRMNL31DEFINITION.POINTERI = EMPTY $,
TRMNL41DEFINITICN.POINTERI = EMPTY $,

)

WHERE POINTER DEFINITION.P~INTER TOBE
••• TRMNLS DETERMINES WHICH NODES IN THE EQUIVALENT CIRCUIT FOR A

DEVICE ARE TERMINAL NODES AND STORES THIS INFORMATION IN THE
DEVICE DEF}NITION BEAD. THE NUMBER OF NODES IS DETERMINED BY THE
BOX STYLE(WHICH WILL HAVE BEEN SET BY A PRIOR CALL TO PROCEDURE
BOXES. //

••• SET EACH TERMINAL LEAD POINTER TO BE EMPTY s,

GET.ITEMl.C. /POINT TO FIRST TERMINAL OF DEVICE/,ITEM,NEED.PENSEEI $,
TRMNLllDEFINITION.POINTERI a OBJECT.NAMEllTEMI ••• STORE POINTER TO TERMINAL NODE SEEN INTO THE DEVICE

DEFINITION BEAD $,
GET.ITEMl.C. /POINT TO SECOND TERMINAL OF DEVICE/,ITEM,NEED.PENSEEI $,
TRMNL21DEFINITION.POINTERI = OBJECT.NAMEIITEMI $ 0

If STYLEIDEFINITION.POINTERI GRT 2
THEN BEGIN

GET.ITEMl.C. /POINT TO THIRD TERMINAL OF DEVICE/,ITEM,NEED.PENSEEI s,
TRMNL3COEFINITION.POINTERI = OBJECT.NAMEllTEMI s,
IF STYLEIDEFINITION.POINTERI GRT 3
THEN BEGIN

GET.ITEMl.C. /POINT TO FOURTH TERMINAL OF DEVICE/,ITEM,NEED.PENSEEI $,
TRMNL41DEFINITION.POINTERI = OBJECT.NAME! ITEMI $,
ENO s,

END $,
GOTO RETURN $,
END S,

)

"' ~

DEFINE PROCEDURE SAMPLE.BOXISBOXl,SBOX2,SBOX3,SBOX4,SBOX5,SBOX6,SBOX7,SBOX8,SBOX9,SBOX10,SBOXlll WHERE POINTER
SBOX1,SBOX2,SBOX3,SBOX4,SBOX5,S80X6,S80X7 0 SBOX8,SBOX9,S80Xl0,S80Xll TOBE

END FINI

BEGIN ••• SAMPLE.BOX CREATES THE DISPLAY OBJECTS USED IN PROCEDURE

POINTER PROCEDURE SETPT S,
DEFOBJll S,
AODOBJCSETPTC-410,-52011
ADOOBJICPYOBJIBOXlll
SBOXl = ENDOBJll

DEFOBJll S,
ADDOBJ I SET PT 1-340,-5201 I s,
ADDOBJCCPYOBJIBOX21 I $,
SBOXZ = ENDOBJI I s,
DEFOBJCI $,
ADDOBJCSETPTC-250,-52011 S,
ADDOBJCCPYOBJIBOX311 $,
SBOX3 = ENDOBJll Sr
DEFOBJI I $,
ADDOBJISETPTl-180,-52011 S,
ADDOBJCCPYOBJIBOX411 $,
SBOX4 = ENDOBJI I Sr
DEFOBJll s,
ADOOBJISETPTl-110,-52011 S,
ADOOBJCCPYOBJIBOX51 I $,
SBOX5 = ENDOBJI I $,
DEF OBJ I I S,
ADDOBJISETPTl-4C,-52011 $,
ADDOBJCCPYOBJIBOX611 S,
SBOX6 = ENDOBJC I $,
DEFOBJ I I $,
ADDOBJCSETPT150,-5201 I S,
ADDOBJ(CPYOBJIBOX711 Sr
SBOX7 = ENDOBJll $,
DEFOBJ(I $,
AODOBJCSETPT1120,-520ll S,
ADOOBJICPYOBJIBOX811 Sr
SBOXB = ENDOBJll S,
DEF08Jll S.
ADDOBJISETPTl190,-52011 S,
ADOOBJICPYOBJ IBOX91 I Sr
SBOX9 = ENDOBJI I $,
DEFOBJll S,
AODOBJISETPTC260,-52011 $,
AODOBJCCPYOBJ(BOXlOll S,
SBOXlO = ENOOBJ() $,
DEFOBJC I $,
ADDOBJCSETPTC350,-5201 I S,
ADDOBJICPYOBJIBOXllll $,
SBOXll = ENDOBJCI $,
END s,

CHOICE. EACH OBJECT IS A BOX ANO A POINT TO POSITION THE BOX
IN THE CORRECT PLACE WITHIN THE SELECTION AREA AT THE BOTTOM OF
THE SCREEN //

••• ADD A POINT AT X = -410, Y = -520 Sr
••• ADD A COPY OF THE BOX TO THE OBJECT BEING CREATED S,
••• TERMINATE THE OBJECT DEFINITION. SBOXl IS A POINTER TO THE

OBJECT, WHICH CAN BE ADDED TO THE DISPLAY FILE BY CALLING
PROCEDURE PLOT. Sr

'° N

/))

DEFINE PROCEDURE MAKEBOXIBOX1,BOX2,BOX3,BOX4,BOX5,BOX6,BOX7,BOX8,BOX9,BOXlO,BOXlll WHERE POINTER BOX1,BOX2,BOX3
,BOX4,BOX5,BOX6,BOX7,BOX8 1BOX9,BOXl0 1BOXll TOBE

BEGIN
POINTER BOX $,
POINTER PROCEDURE LIN 11NVIS S,
DEFOBJll S,
ADDOBJllNVISILINll0,10111 S,
ADDOBJILINI0,-2011 S,
ADDOBJILINl-20,011 S,
ADDOBJILINI0,201) $,
ADOOBJILINl20o011 s,
BOX = ENOOBJ 11
OEFOBJI I
AODOBJICPYOBJIBOXll $,
AOOOBJllNVISILINI0,-10111 s,
AOOOBJILINl20,0) I s,
ADOOBJllNVISILINl-40,011 l s,
AOOOBJILINf-20,011 $,
AOOOBJllNVISILINl30,30lll s,

BOXl • ENOOBJll S,
OEFOBJI I
AOOOBJICPYOBJIBOXll $,
AOOQBJllNVISILINl-10,0111 S1
ADOOBJILINI0,2011 $,
A000BJIINVISILINI0 1-40111 s,
~ODOBJILINI0,-2011 s,
AODOBJIINVISllINl0 1601 I I s,
BOX2 • ENDOBJCI s,
DEfOBJll
AOC>OBJICPYOBJIBOXll s,
A0008JCINVlSILINl20,-lOlll S,
ADOOBJCllNC,;.zo,011 s,
AODOBJ I INVI SC LI Nl-10, 10 I JI S1
A0008JCLINIG12011 s,
AOOOBJI INVt"sc LINC-30,301 JI s,
80X3 = ENOOSJI I s,
DEFOBJCI
AODOBJICPYOBJCBOXll S1
AOOOBJIINVISILINl-20,-lOJJI S,
AOOOBJlllNl-20101 J S,
AODOBJC INVISILIN1301lOl I I s,
A0008JCLINC0,201 I s,
80X4 "' ENP08J 11 St
DEF08JC I
A0008JCCPY08JIBOXI I s,
AOOOBJllNVISILINC-20,-lOlll s,
ADDOBJlllNC-201011 s,
AOOOBJCINVISILINl30,-lOI I I S,
ADDOBJILINI0,-2011 S,
ADOOBJllNVISlllNI0,60111 s,
BOX5 • ENOOBJll S,
DEFOBJll
AODOBJICPYOBJIBOXll s,
AOOOBJllNVISILINI0,-101 I I s,
A000$JILINt20,0)) s,
AOOOBJ.llNVIStllNl-30 9 -101 I I S,
AODOBJILINI0,-2011 s,
AOOOBJll"NVISILINI0,60111 s,

••• HAKEBDX DEFINES THE DISPLAY OBJECTS TO PLOT ALL OF THE
SYMBOLS USED TD REPRESENT DEVICES //

DISPLAY OBJECT WITHOUT LEAOS,NAHE = BOX S,
BOX WITH 2 LEADS AT POSITIONS DENOTED AS 3 ANO 9 O'CLOCK s,
ADD A COPY OF BOX TO COMPOSE A NEW OBJECT WITH LEADS s,

••• REPOSITION BEAM INVISIBLY TO GIVEN POSITION RELATIVE TO THE
BEAM POSITION AT THE BEGINNING OF THE OBJECT //

••• BOX WITH 2 LEADS AT 12 AND 6 O'CLOCK s,

••• BOX WITH 2 LEADS AT 12 ANO 3 O'CLOCK S,

••• BOX WITH 2 LEADS AT 12 AND 9 O'CLOCK S,

••• BOX WITH 2 LEADS AT 6 AND 9 O'CLOCK S,

••• BOX WITH 2 LEADS AT 6 AND 3 O'CLOCK S,

)

"' w

~.

END FINI

)

80X6 • ENDOBJCI $,
DEFOBJI >
ADDOBJICPYOBJIBOXll s,
ADDOBJllNVISlllNC0,-10111 $,
AOODBJlllN120,0)1 S,
ADDDBJ<tNVISILINC-40,01)1 S,
ADDDBJIL1Nt-20t0ll $,
ADDOBJllNVISlllNl30,101ll $,
ADDOBJILINI0,201> S,
BOX7 • ENDOBJll s,
DEFOBJI >
A~J~CPYOBJIBOXIJ $,
AOPQ!l~.' INVISCLINl-10 1 0})} $,
AOO~CLINI0,2011 S,

-4.Q,Dc!f'JllNVISflINI0,-40111 $,
ADD08JILINI0,-20JI $,
AODOBJf INVISILINl-10,301} I s,
ADDOBJILINl-20,011 $ 9

ADD08JltNVIStllNt30,30lll $,
80X8 • ENOOBJll $,
DEFOBJll
AD008JICPY08J(80X)) $,
AOD08JI INVISllJNI0,-10111 $,
ADD08J(LINl20,0ll $ 1

ADDOBJllNVISILINl-40,0111 s,
ADDOBJILINl-20,011 $,
AOD08JtlNVISILINl30,-lOlll $,
ADDOBJILINt0,-2011 $,
ADDDBJllNVISILINI0 1 60111 $,
80X9 = ENDOBJ(I $,
DEF08JI I
AOOOBJICPYD8Jt80Xll $,
ADOOBJ(JNVIStllNl-10,0lll $,
ADDOBJILINt0,2011 S,
AODOBJllNVISILJNI0,-40111 $,
AODOBJILtNI0,-2011 St
AODOBJllNVISILINU0,30))1 $,
ADD.OBJ I LIN 120,0 II s,
ADDOBJllNVISllINl-30,30111 s,
BOXlO = ENDOBJll $,
DEFOBJI l
ADOOBJICPYOBJ(BOXll s,
ADOOBJIJNVIStllNl-10,01)) $,
AD008J I LIN 10 t20J I $,
ADDOBJI INVISIUNC0,-40) I I s,
ADoOBJILINC0,-2011 s,
AOOOBJllNVISlLIN(l0,30111 s,
ADDOBJILINl20,0ll $,
ADDOBJllNVISILINl-40,0111 St
ADDOBJILINl-20,0)1 St
ADDOBJIINVISILINl30,30111 $,
BOXll = ENDOBJll $,
END s,

••• BOX WITH 3 LEADS AT 3,9 AND 12 0 1 CLOCK's,

••• BOX WITH 3 LEADS AT 6,9 AND 12 O'CLOCK St

••• BOX WITH 3 LEADS AT 3,9 ANO 6 O'CLOCK $ 1

••• BOX WITH 3 LEADS AT 3t6 ANO 12 O'CLOCK St

••• BOX WITH 4 LEADS St

))

IO
.co.

~
'

i
1

., .. ,
1

CS-TR Scanning Project
Document Control Form

Report # k. 5 .:ria.. -C.3

Date: J....1 J- J<t°C

Each of the following should be identified by a checkmark:
Originating Department:

D Artificial lntellegence Laboratory (Al)
~Laboratory for Computer Science (LCS)

Document Type:

~echnical Report (TR)

D Other:

0 Technical Memo (TM)

Document Information Number of pages: ~9- i rn1~cFS)

Not to Include DOD forms, printer~. etc ... original pages only.

Originals are:

D Single-sided or

}?(Double-sided

Print type:
0 Typewriter D Offset Press

Intended to be printed as :

D Single-sided or

')!..Double-sided

D Laser Print

D InkJet Printer ~ Unknown D other:.~------
Check each if included with document:

';)2(._000Fonn

D Spine

D Funding Agent Form D CoverPage

D Printers Notes D Photo negatives

D Other:
~-----------

Page Data:

Blank Pages(byi-uenumber): Fl!> LLbwS fAC:S:f-#7

Photographs/Tonal Material (byi-ue num11er1: ________ _

Scanning Agent Signoff:

Date Received: d---1 d-1 9 l Date Scanned: _Jj Jl:::j q £ Date Returned: J-../.1_/_j§_

Scanning Agent Signature: ___ ~....._.-
1

~.....;.:..;;+-1}--'\..._J w&..;:::s;.L· .1,1..f---
ReY 111114 DSILCS ~ Conlrol Form calrfomusd

Proiect MAC - Technical Report Abstract
1. ORIGINATING ACTIVITY 2B. REPORT SECURITY CLASSIFICATION

Massachusetts Institute of Technology
Project MAC UNCLASSIFIED

3. REPORT TITLE

Case Study in Interactive Graphics Programming: A Circuit Drawing and
Editing Program for use with a Storage-Tube Display Terminal

4. DESCRIPTIVE NOTES

Technical Report
5. AUTHOR(S)

•
John W. Brackett, Michael Hammer, Daniel E. Thornhill

6. REPORT DATE 7a. TOTAL NO. OF PAGES rb. NO. OF REFS

October 1969 94 10

8B. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER

Office of Naval Research, Nonr-4102 (01) MAC TR-63
b. PROJECT NO.

NR-048-189 9b. OTHER REPORT NO.
c. AD 699-930 RR 003-09-01

10. AV Al LABI LI TY I LIMITATION NOTICES Defense Contractors may obtain from: Defense Documentation
Center, Document Service Center, Cameron Station, Alexandria, VA 22314

Others from: Clearinghouse for Federal Scientific and Technical Information (CFSTI)
Sills Building, 5285 Port Royal Road, Springfield, VA 22151

I I. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency
None }D-200 Pentagon

Washin_g_ton,_ D. c. 20301
13. ABSTRACT

The concepts involved in building and manipulating a data structure
through graphical interaction are presented, using the drawing and editing of
electrical circuits as a vehicle. The circuit dr'awing program was designed
to operate on an ARDS storage-tube display terminal attached to the M. I. T.
Project MAC IBM 7094 Compatible Time-Sharing System. The graphics software
system (GRAPHSYS) developed by the M. I.T. Computer-Aided Design Project was
used for dealing with all graphical input and output, and 'the AED Language of
the Project was used in programming. AED System packages for building and
manipulating complex data structures are described and their use is illustrated '
in det:ail. The report includes flow diagrams and complete listings of the
sample circuit drawing and editing system.

14. KEY WORDS

Computer Graphics Graphic Terminals Display Software System

On-Line Computers Computer-Aided Design

Time-Shared Computers AED Software

Scanning Agent Identification· Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I. T
Libraries. Technical support for this project was
also provided by the M.I. T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 91'J4

