GENERALIZED ORGANIZATION OF LARGE DATA-BASES;

A SET-THEORETIC APPROACH TO RELATIONS

Andrew Irwin Fillat
and

Leslie Alan Kraning

June, 1970

PROJECT MAC

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Cambridge Massachusetts 02139

This empty page was substituted for a
blank page in the original document.

GENERALIZED ORGANIZATION OF LARGE DATA-BASES;
A SET-THEORETIC APPROACH TO RELATIONS*

Abstract

Problems inherent in representation and manipulation
of large data-bases are discussed. Data management is
considered as the manipulation of relationships among
elements of a data-base. A detailed analogy introduces
concepts embodied in a data management system. Set theory
is used to describe a model for data-bases, and operations
suitable for manipulation of relations are defined. The
architecture chosen for an implementation of the model is
illustrated, and a representation of data-bases is suggested.
A particular implementation, the GOLD STAR system, is inves-
tigated and evaluated. The framework outlined is meant to
provide an environment in which complex data handling prob-
lems can be solved with relative ease. GOLD STAR provides
the user with tools sufficient for manipulation of arbi-
trarily complex data-bases; these provisions are presented
in the form of an extremely simple interface.

*This report reproduces a thesis of the same title
submitted to the Department of Electrical Engineering,
Massachusetts Institute of Technology, in partial
fulfillment of the requirements for the Degrees of
Bachelor of Science and Master of Science.

ACKNOWLEDGEMENT*

The authors wish to thank several individuals whose
interest and cooperation made the thesis possible:

Our energetic advisor, Professor James D. Bruce, for
his belief in the merits of our research, and for his
continuing faith in us.

Our mentor and colleague, Burton J. Smith, for his
guidance, helpful suggestions, and tutelage.

Our typist, Nancy J. Murphy, for her adroit transla-
tion of the manuscript into English.

Each other, for faithful interlocution and cooperation
throughout the research.

*This work was performed at Project MAC, an M.I.T. research
project sponsored by the Advanced Research Projects.Agency,
and was supported in part by the Office of Naval Research
under Contract N0O0O0Ol4-69-0276-0002.

TABLE OF CONTENTS

1 o 3T v o o N 2
Acknowledgmentttt ittt tea e 3
Chapter I. Introductionovuiveieiiieinennennennnns 7
Chapter II. The Structure of GOLD STAR 13
Chapter III. Set Theory of GOLD STAR

1. The Rhetoric of Sets «.vviiiiiiiiiinnn 34

2 Ordered Set TheoTy «+ev it ierennnnan 50
Chapter IV An Implementation of GOLD STAR

1. DSM Modules ceeceeeneenseeteecnseconossen . .64

2. RSM MOAULES +covevssenennsnsacosenssaseansasas 73

3. Other System Modules «:ceveon.n et 83
Chapter V. Programming GOLD STAR

1. The UseT INterface «ceecereeennesaasoonenns 88

2. Programming Considerations and Specifics -108

3. A Sample Problem :ceerevienniiiennnnn 113
AUthOT COMMENTATIes «uvierneereanesnerocansnseonnas 116
Appendix A. A Lemma on the Nesting of Projections .120
Appendix B. Alphabetic Order and Reference Numbers-121
Appendix C. A Formal Syntax for a Parser :«-«--cv-.-- 128
Appendix D. Protection on MULTICS v.vevivnnnennenn. 129
Appendix E. System Interfaces «....oeeeeenennnennn. 145
Appendix F. Current System Code «vvvvvevnnenennnnn. 149
Appendix G. The Error Handler -«-ccveveiiiannn.. 236

[0 o b]

o 1 = -+

[~1 o] [

. . . .

' . B .

. . . .

. . . .

. . . .

. . . .

B . . .

. . . .

a . . .

N . .
7

. b . .

~ s B
i

. o . a

’ - . s
-~ —

it v N .

- “ . .
e el

A « .

e . N
- -9

L - . .

= T . .

o ol . .
0y I

b g wd N .
—

e i '

s -

o

5

LIST OF FIGURES

Preliminary Draft of Directory 14
Name Console Cartridge «..v.iviiininieienennnnnn 17
Address Console Cartridgeiiieiiineninnnnens 17
Telephone Console Cartridgeivciueunn. 18
Printed DireCtory «vviit it iiieenncennnnnennnenas 18
GOLD STAR System Structurevccivennnnnns 25
Header in dsm_astring Data Area 67
Insertion of "Ezra'" in Empty Data Area 67
Insertion of '"Claude" in Data Area wes 70
Insertion of '"Milton" in Data Area 70

The Algorithm for Union, Intersection,
Difference in RSM WQ ... 78
The "Names’ Data ATEA « cc v eeeeesonnoeneeoeeens 122

Restructured "names' Data AT€a «+¢.vecvrennnnns 126

This empty page was substituted for a
blank page in the original document.

-7-
CHAPTER 1
INTRODUCTION

The M.I.T. Electrical Engineering Department, like
other large organizations, requires a powerful data manage-
ment capability to provide information for daily operation.
The department currently utilizes a software system developed
by Burton J. smithl "M yhichn operates on the M.I.T. Compatible
Time-Sharing System. Faced with the burden of manual gener-
ation of teaching and research assignments, budget reports,
mailing labels, and other documents, the department began
in 1966 to transfer these tasks to the CTSS system with a
significant saving in production time, personnel effort,
and cost. With the forthcoming demise of the 7094 CTSS
installation, an alternative computer system is needed,
and provides the motivation for this thesis.

For any integrated information system, the flexibility,
and hence the scope of its utility, depends heavily upon the

sophistication of its associated data management system.

While this term connotes the existence of various functions
to different individuals, the prime purpose of such an
entity is to provide a coherent and systematic method of
manipulating large volumes of interrelated data. Such a
purpose is laudable, but only if a user can avail himself
of the capability in a manner which makes the results, as

well as the process, meaningful to him.

-8-
Our concern in this thesis is the development of a data
management facility capable of serving a wide variety of
administrative information needs. Specifically the system

characteristics are:

1. Pre-eminence of User Perspectives and Techniques.
A data management system is most effective when a
user can express his problem to the system in terms
of his perspective and biases; to the faculty planner,
data types such as ''name'", ''salary', and 'project"

hold much more meaning than representation types like

INTEGER, DECIMAL, or BIT. For the same user, the
operation "SORT (PHONE BOOK, (TEL, NAME, ADDR))"
expresses his purpose more than the effort required
to write his own sorting routine. A good data man-
agement system will minimize the degree to which a
user alters his perception of, and approach to, his

information problems.

2. Modular Construction.
While extensive planning of a system is advisable
before development, cxperience indicates that soft-
ware systems evolve with time rather than merely
cxist. That is, pre-planning a system rarely
encompasses all features that may be desired at
some unknown point in the future. A system should

be modular in the sense that features added or

-9-
deleted in the evolution process disturb only local
portions of the system. Modularity obviates the

need for redesign and re-programming at each change.

3. Exportability
An organization may change the computer system it
utilizes for data processing, but such a change
should not disrupt the operation of the firm or
division. While few computer programs are machine

independent, a data management system can attain a

high degree of exportability or relative machine

independence, by isolating particular machine depen-
dent features in a few modules. The remaining
system modules should be written using a widely
available higher level language. Design of a data
management system with this objective in mind mini-
mizes the operational disruption occasioned by a

change in the target computer.

The goals outlined thus far apply to design philosophy;

as such they pertain to all features which a data management
system may exhibit. There are, however, more specific

requirements placed upon any particular data management

system, requirements dictated by the characteristic environ-

ment in which the system must operate. The envisioned

L 1-2]

system is best suited to a "computer utility environment,

and as such requires two further considerations:

4.

-10-~
Controlled Sharing Among Users
A computer utility provides the services of computa-
tion for a broad-based community of users. Since
some information, such as salaries and grades, is
often considered personally sensitive, it is of
prime importance that only those members of the
community who require this information be allowed
access to it. The strategy of allowing a user to
access only these relations he creates would largely
protect the integrity of sensitive information.
However, such an extreme requirement eliminates
effective communication among users whose data

purviews overlap.

On-Line Capabilities

Management of a department or office occasionally
requires instantaneous access to the data-base.

The ability to update files from a remote terminal
is extremely convenient; data may be entered by a
secretary as if she were typing a report, obviating
the need for keypunching and physical handling of
cards. llowever, the greatest need for on-line
access arises when a user searches the data-base for
specific facts, and based upon the computer's re-
sponse, asks for any of a wide range of additional

data. For example, the university bursar may ask

-11-

for student accounts showing a lapse of payment
greater than 30 days, along with the total number

of dollars receivable from students. If the total
due were mostly a result of the overdue accounts,
he could generate address labels for those students
tardy in payment and send notices using these labels.
Interaction of a user with his data-base in this
fashion is a powerful administrative tool, and thus,

a justification for on-line capabilities.

The concurrent requirements of sharing and pre-eminence
of user perceptions of relatedness present the sub-system
designer with a formidable task. Vendors of software pack-
ages offer a variety of solutions but almost all efforts
focus on representation and manipulation of data elements.
GOLD STAR (Generalized Organization of Large Data-bases; a
Set Theoretic Approach to Relations), however, focuses upon
the representation and manipulation of relations among data
elements. This focus should be the prime function of any
data management system. The functions of the GOLD STAR data
management system are: 1) to implement an arbitrary concep-
tualization of relatedness among entries in a data base,
and 2) to transform the specified operations on the data
base into sequences of instructions which will produce the
eftect of these operations. Thus the design intention of
GOLD STAR 1s to remove, as far as possible, computer con-

straints on the conceptualization of a data management

-12-
problem, while providing a direct means of mechanizing the
same.

Several methods of implementing such a system are possi-
ble; in the first effort, GOLD STAR is imbedded within the
PL/1 language as a set of function sub-programs. Imbedding
allows the user full access to GOLD STAR without the burden
of mastering some esoteric programming language; rather it
extends the power of an established programming system to
the realm of relation management. Imbedding permits imple-
mentation of a model at low cost; the model's utility and
power can be evaluated, as well as operated, without devel-
opment of a special purpose compiler or interpreter. GOLD
STAR assumes that calls to the imbedded functions are
"primitives'", i.e., a user need endure no greater complexity
than these calls. GOLD STAR is written entirely in the PL/1
programming language and its facilities are available to any

program written in PL/1.

-13-
CHAPTER I1

THE STRUCTURE OF GOLD STAR

To explain the data-management system developed in this
thesis, we shall use an example designed to illustrate and
motivate the system structure we have chosen. By introducing
additional concepts to the analogy, it will be possible to
explain all of the major issues of the GOLD STAR system.
Following the example, we will relate the user's needs to
the data-management system by both describing the general
kinds of operations he might wish to perform, and the way
in which the system conforms to the goals outlined in the
first chapter.

We assume that a small company has decided that it
should establish a name-address-telephone number directory
of its employees, although it has only eight employees.

The preliminary, hand-written draft of the directory appears
in Figure 2-lon the next page.

This preliminary draft of the directory has some very
important properties which should be noted. First, each
Iinc not only contains threc items of information (i.e., a
name, an address, and a tclephone number), but it states by
1ts physical structure that cach of these items 1is in a
scense related, i.e., they '"belong" to each other. Second,
cach item in the directory is associated, by its column,

with a heading or type. Hence, '"541-6622" (a telephone

Name

Abernathy, Fred
Barnes, John
Donnelly, Bill
Jones, Art
Jones, Sally
Manning, Pete
Manning, Pete
Parker, Irv

Sanders, Doug

Figure 2-1:

-14-

Address

22 Maple Street

13011 S. Weymouth Drive
2 Wallingham Place

53 Main Street

53 Main Street

264 Carling Avenue

264 Carling Avenue

10 S. Pannert

3 Mangrove Plaza

Telephone

783-3055
249-8112
247-7731
724-3718
724-3718
861-8366
861-4431
541-6622
443-8190

Preliminary Draft of Directory

-15-

number) would never be found in the same column as "Parker,
Irv'" (a name). Third, the directory itself is characterized
by the types it contains (in this case name-address-tele-
phone). Finally, we note that the first column is in alpha-

betical order. This makes a line easy to find when given a

name. Hence, "Jones, Sally'" is much easier to locate than
is '"861-8366", since the directory is ordered primarily by
names rather than by telephone numbers. The left-to-right
representation of the directory is usually used to imply

that the further left we look, the more order a column pos-

sesses. This is a convention adopted in most cases which

1s not innately necessary.

Now let us complicate the problem -- a printing strike
is in progress when the directory is to be published. Print-
ing costs are very high, with charges figured on a per charac-
ter basis. In assessing the alternatives, management real-
izes that the company currently possesses a microfilm storage
system for which each employee has a small console unit.

These consoles each have an array of push-buttons which are

used to display selected information on a screen.
Management decides upon the following approach to make
the directory available to the employees: the names, ad-
dresses, and tclephone numbers are placed on microfilm, and
a 1list of which button is to be pressed on the consoles to

retrieve information about which employee is readied for

-16-

printing. Thus, if you were to press the button ''name"
(this loads the ''mame" cartridge), and then the button "1",
"Abernathy, Fred" would appear on the screen. In Figure 2-2
we picture the information stored on microfilm as well as
that printed.

At this point the use of this directory is not neces-
sarily clear. However, before considering how, we should
observe a number of important concepts embodied by this

change, and which motivate the change.

1. The headings in the printed directory (Figure 2-2-d)
are still necessary in order to know which car-
tridge to load when information is requested.

Thus an item of information is associated with

both a button number and a (cartridge) type.

2. The only association between these cartridges

and this directory are through the headers (and

corresponding cartridge types). The same ''mame"
cartridge would be used as part of this company's
name-department listing. Note that a saving is
reaped for this second listing in that a new

"name" cartridge would be unnecessary.

3. Although one forms a mental picture of the
contents of a cartridge such as is illustrated
in the figure, we do not actually know how the

information is physically stored. The extent

-17-

Cartridge No. 1: Loaded by pressing ''name"

Button No. For Retrieval Information Retrieved
1 Abernathy, Fred
2 Barnes, John
3 Donnelly, Bill
4 Jones, Art
5 Jones, Sally
6 Manning, Pete
7 Parker, Irv
8 Sanders, Doug

Figure 2-2-a: Name Console Cartridge

Cartridge No. 2: Loaded by pressing ''address"

Button No. For Retrieval Information Retrieved
1 22 Maple Street
2 13011 S. Weymouth Dr.
3 2 Wallingham Place
4 53 Main Street
5 264 Carling Avenue
0 10 S. Pannert
7 3 Mangrove Plaza

Figurce 2-2-b: Address Console Cartridge

Cartridge No

-18-

3: Loaded by pressing ''telephone number"

Button No. For Retrieval

1

2

Figure 2-2-c:

The Printed Directory

Name

1

2

Address

Figure 2-2-d:

Information Retrieved

783-3055
249-8112
247-7731
724-3718
861-8366
861-4431
541-6622
443-8190

Telephone Console Cartridge

Telephone Number

Printed Directory

1

2

-19-
of our knowledge is that we can perform two func-
tions: we can press a numbered button (presumably
we have already loaded the cartridge) and have the
corresponding data item appear on our screen, OT
we can somehow type in a data item (the hardware
is irrelevant) and have its button number appear
on the screen. There is no reason to believe
that names and addresses are stored in the same
physical manner in the cartridges, despite the
fact that the console performs identically for

all corresponding requests.

Some tasks become easier. In glancing over the
directory, '"Jones, Sally" will be more easily
mistaken for "Jones, Art" than "5" will be for
"4", In addition, comparisons are easler by
mere virtue of the fact that directory entries

are now a single number rather than a multi-

character name (or address, etc.).

There is an implied order on button numbers
(numeric, of course). Hence, in the case of
"name'" numeric order on the button corresponds
to the alphabetic order on the names. However,
in the case of '"address'", where no order was
assumed in the beginning, the task of deter-

mining the button number associated with a

-20-
given data item is a hard one -- all address
entries must be checked (i.e., there is no
guarantee of any relative positioning for the

addresses).

6. In cases where duplication of items occurs,
large savings accrue from the given organi-
zatlon. For example, although Pete Manning
has two lines in the directory, all that must
be printed twice is his button number. His

name is stored only once on the "name" cartridge.

7. The directory is meaningless out of context
(i.e., with no headers). One would not know
which cartridge to load before pressing the
buttons for inquiry.

In order to consider how the system is used, we take a
name and request the associated address and telephone number.
First, the '"mame'" button 1s pressed to load that cartridge.
Then the desired name is inserted and the associated button
number 1s read off the screen. Now we look in the printed
directory for the line with that number in the name column
and rectrieve the other information by pressing the appropriate
cartridge load button and number button.

Note that we have said that the printed directory in

this numeric form retains exactly the same properties as did

the original listing with the complete text (Figure 2-1).

-21-

There are new considerations (as outlined above), but there
are no conceptual differences in the information content of
the two methods of representation.

Let us now assume that negotiations in the printer's
dispute have broken down altogether; now no printing services
are available. Management can either wait for the printer's
strike to end or seek an alternative. They decide on the
following alternative: a new set of microfilm equipment 1s
purchased, with each employee receiving a terminal (we shall
distinguish these '"terminals'" from the previously discussed

"consoles'"). This new system (the terminal system) 1is to be

employed to store the directory itself in a directory-car-

tridge, which will be named, appropriately, '"name-address-
telephone number'". The facilities of the terminals must be
more complex than the consoles in order to handle these more
complex directory-cartridges.

The terminals are capable of responding to requests such
as "display the line in name-address-telephone number con-
taining "5" in the address column.” The request itself is not
necessarily in English, but the key words corresponding to
load divectory (first "in'"), locate line (''display'), look in
a given column (second "in"), look in a given column for a
given button number ("containing'") correspond to buttons. In

addition, the terminals are equipped with the ability to read

and create magnetically inked listings of the directory car-

-22-

tridges. These listings are used to verify the entire con-
tents of a directory cartridge, or to insert a new cartridge,
or to make modifications, or other such operations. Note
that the listings produced and read are in exactly the same
format as the one in Figure 2-2-d.
Now, again, we focus on some key considerations gener-
ated by the change in our information storage arrangement.
1. We still have no idea how a directory is physically
stored on a directory-cartridge. We know only
that the terminal can perform various tasks
(which we will elaborate on later) on the
directory-cartridges such as load them, inquire
of them, and make a listing from them. The data
items stored in these directory cartridges are
the same button numbers which would have appeared
in a printed directory (Figure 2-2-dJand are to be
used on the consoles to obtain text from the
screen. Further, there is no reason to assume
that all directory cartridges have the same

physical format.

2. The logical structure used in different directory
cartridges may be different. The "relatedness"
implied by the line structure may be recorded
in ways other than lines. The only requirement

to be met by the other logical structures is

-23-
that they be capable of being translated into
a listing of the form of Figure 2-2-d. For example,
Pete Manning's two different telephone numbers
may both be associated with his name and address
in such a way that the name and address columns
need be physically present only once for his

name.

3. More than one directory-cartridge can be used

in the terminal system. One such cartridge

has no relationship to another. It is possible
to have both ''mame-address-telephone number"
and ''mame-department' cartridges, but the exis-
tence of a given name in one says nothing about
the existence of that name in the other (i.e.,
because a name possesses an address and number,
we can determine no association between this
name and any department).

Now consider the kind of operations we might want to
perform upon the directory-cartridge(s). If another company
merged with this one and it used the same information system,
we might want to merge the two ”nﬁme—address—telephone number"
directory cartridges to form one. Or, if an employee left,
we might wish to remove all lines about him from a directory-
cartridge. Or, we might wish to 'combine' the ''mame-address-

telephone number'" with '"'mame-department" to give a new ''name-

-24-

department-address-telephone number'" directory-cartridge.
These are but a few of possible operations which we might
want to perform.

It would be premature at this time to discuss the full
spectrum of operations we may wish to perform on the termi-
nals and consoles. Rather, we extend our terminology by
putting forth a general system structure for GOLD STAR and
showing how the various components of the system correspond
to our example. Then we may attempt to define at least the
classes of operations we might do with the consoles and the
terminals. The diagram of Figure 2-3, although it may seem
cryptic at first, serves to characterize the GOLD STAR data
management system.

Now let us take the various blocks of the figure and
discuss their function by referring to the example of the

microfilm system.

DSM (Data Strategy Module): These correspond to the

consoles and serve to translate between the refer-

ence numbers (the button numbers) and the data items.

DA (Data Arca): These correspond to the data cartridges

which are part of the console system. Just as a but-

ton must be pressed to load a cartridge, so must
information be given to the DSM to tell it which DA
to refer to when retrieving text or reference num-

bers (refnos). This "load button" is what 1is

PARSER OPTION m

X _PROJECTNR

DIRECT USE

INDIRECT USE

FIGURE 2-3 GOLD STAR SYSTEM STRUCTURE

-26-

referred to as a data-type name.

RSM (Relational Strategy Module): These correspond to
the terminals and serve to perform operations on
relational data just as the terminals perform oper-

ations upon the directory-cartridges.

RD (Relational Data): These are the directory-car-

tridges of GOLD STAR. Just as the directory-car-
tridge must be requested by name, so must an RD be

requested via a relation name (or rel-name).

QUART (QUAsi RelaTion): These are the listings of the
terminals. All RSM's can produce quarts or can, in
fact, convert the contents of an RD to a quart.
These are the fundamental units of the system 1in
that all modules of the system can deal in some way

with quarts.

MGR (Manager): There is no direct analogy to the mana-
ger in the microfilm system. The manager is merely
the module which has the effect of making button-
pressing operations easier. It provides an easy
language for the user to use in utilizing the avail-

able powers of the DSM's and RSM's.

CENT § PENT: Two representations (character and
pointer) of a header. The rest of the components

serve much more specific tasks and will be discussed

-27-

in later sections. To briefly review the main con-
cepts again, information text is stored only once
and a token refno assigned to it. The information
of how data items are related to one another is
stored separately and is operated upon separately.
This approach allows the savings and features men-
tioned in the discussion of the example to be
capitalized upon.

Consider briefly the classes of operations which will

be desired from our components.

{Data-String} » {refno}
DSM
(2-1)

This is the translation of text into its reference
number (refno). We have assumed that the nature of
the data string is known so that we can determine
into which data area we must inquire. We have also
assumed that each data area has one and only one
DSM which can perform the indicated translations
and that we can easily determine which DSM by

looking in the data area.

{refno} » {Data-String}
DSM

(2-2)

This is the reverse of (2-1). The same assumptions

hold true. It is worthwhile to note at this point

-28-
that each reference number is stored as part of a
quart; these quarts also contain information indi-

cating the data area to which this refno refers.

Thus, the specification of data area can be either

implicit (found from the refno's quart) or explicit.

{refno} » {refnol
DSM
(2-3)

This is the way of representing a transformation
through a DSM, such as '"get the next refno after
the one I supply'". Again, the same assumptions

as above hold, and data area can be implicity or

explicitly indicated.

{refno} » {refno}
RSM
(2-4)

This indicates a transformation performed when
information (in the form of refnos) is given to
an RSM; what 1s returned is another bundle of
information which has been found using the pro-
pertiecs of relatedness stored in a relation
(relational data area). The appropriate RD and
RSM are implicitly determined from a group of
input refno quarts.

{refno} + R

RSM
(2-5)

-29-
This is the same as (2-4) except that the result

is a complete RD containing the properties of the

transformed refno input.

R > {refnol

RSM
(2-6)
This is the reverse of (2-5).
R >R
RSM (2-7)

This is the transformation of one RD to another.

A merge is an example of such an operation.

These are the general classes of operations available
to the user. The first three are those which would be per-
formed on the console in the example. The final four would
be performed on a terminal where {refno} would be a listing

and R would be a directory-cartridge. These operation

classes are quite general, and later sections will narrow
their scope to certain well defined procedures.

But now, how can we justify this rather complex struc-
turing of the system in terms of our goals? Let us consider

the goals onec by one:

1. User Perspective
The concept of data-types, or headers, identify
cach reference number as being associated with a

given type of data. Hence, the user thinks of

-30-

his data in terms of their type, or header,
rather than in terms of its PL/1 representation.
This i1s exemplified by the fact that no matter
how data is stored on a console cartridge, the
user can handle it merely by pressing the button
corresponding to the cartridge name; i.e., the
machine handles representational considerations,
and the user is free to imagine all his different

kinds of data in terms of their type name.

Modularity

The freedom to use virtually any organization of
data or relations is guaranteed by this structure.
All that is needed is an appropriate DSM or RSM

to handle that format. The interfaces in the
system are uniform and well defined; addition of
new modules becomes little more than writing them.
This fact is not easily accounted for in our model;
we are proposing that new consoles and terminals
are easy to add when new format cartridges are to

be handled.

Exportability

Of course, the major feature of the system for
exportability is the PL/1 language (see Chapter I).
Beyond that, two important facts remain. First,

the manager can be designed to incorporate all of

-31-
the machine dependent code, leaving the RSM's,
DSM's and information free for transplantation
to any machine. Second, the interfaces are so
explicit that any additional modules needed by
a new machine could easily be interposed in a
calling sequence between two system modules.
There is no analogy to the example, except if
the entire system were adopted by another company

with different microfilm equipment.

Controlled Sharing

Clearly this system allows for sharing by mere
sharing of data areas (cartridges). The control
arises from the fact that access to relations can
be given selectively. For example, an employee
might have access to both the name and salary
cartridge (Data Areas) but by being denied access

to the name-salary relation cartridge (relational

data) he has no way of making the associations.
The advantage to this scheme is that the employee
could well be permitted to examine other relations

containing name and salary (e.g. name-address or

salary-contract) and still never be able to asso-

ciatc the two. On the other hand, circumstances
might dictate that a console cartridge (or data

arca) bce denied a user, and still allow to him

-32-
all relations involving it. For example, we

might not care if it is known from name-classi-

fication that ten people are of the same rank,
but we might want to protect just what that

rank 1s. In short, with all data and relational
data stored in modular units, we need worry in
general only about sharing these units, rather
than about sharing parts of a larger combined

medium.

5. On-Line Capabilities
This is a function of how the system's functions
are adapted for use, and does not bear on the

system design itself.

As to the unstated goal of efficiency, there are a couple
of points to consider. Appropriate design of RSM's and DSM's
can optimize operation to conform to the most frequent func-
tion that the module must perform. For example, an RSM can
be designed to optimize inversion, just as one can be de-
signed to optimize retrieval operations of a uni-directional

nature (i.e., with name-address-telephone, we are always

given a name and asked for the other two, but rarely in any
other order). Also, we achieve some saving of space by

using retfercence number tokens in relations; duplication costs
only the length of a refno, not of the data itself.

That summarizes the structures and motivations of the

-33-
GOLD STAR system. In the next chapter, we will consider the
set theory upon which these structures are founded, and how
set theory leads in logical progression to the concept of a
quart.

Chapter IV will discuss the implementation of GOLD STAR
and provide an insight into some of its current design capa-
bilities. Chapter V will present the user interface, i.e.,
the functional calls to the manager of the system. That
section also discusses the programming considerations of
note, as well as presenting an example of the use of GOLD

STAR.

-34-
CHAPTER I1I

SET THEORY OF GOLD STAR

1. The Rhetoric of Sets
Each individual perceives the "relatedness' of two
items of data based upon his particular perceptions and
biases. Visual proximity, concurrent sensations of taste
and smell, or remembered patterns of association are but a
few means by which the human mind establishes relatedness
of two items of information. Different individuals often
interpret the same collection of information in vastly
different terms of relatedness; the string "V-8'" as con-
strued by the auto enthusiast signifies something afar from
the meaning assumed by the connoisseur of vegetable juices.
At the core of GOLD STAR rests the firm belief that
data relatedness is best conceptualized apart from the com-
putational processes which implement relatedness. One con-
ceptualization method, set theory, permits this separation,
and offers several unexpected benefits:
-- Set theory is sufficiently general to encompass
the operations and associations normally subsumed
in the term ''data management'.
-- As an outgrowth of pure mathematics, set theory
offers unambiguous, albeit complex, semantics;
furthermore, set operations and their limitations

are well established.

35

-- The subdivision of a system into independent
functional modules is facilitated by a set-
theoretic framework. Set-theoretic operations
specify quite well the tasks that any single
system module must perform.

The remainder of this section discusses data-bases and
operations upon them in terms of basic set theory. The
following section treats data-bases in light of orderings
upon their members.

Data-Bases

The notations and intuitive notions used in this sec-
tion conform with common usagep'l]As an abstract model of
reality, a data-base depends upon certain concepts involving
sets, most importantly:

The set {a,b} is a collection of the objects "a"
and "b'" with neither ordering nor structure
presumed among them. The elements '"a'" and "b"
may be either atomic, i.e. not sets, or they
may themselves name sets. Thus an element of
a set can be another set.

The ordered pair <a,b> is the set {{a},{a,b}}, and

indicates in the following directed graph that
the correct sequence of endpoints 1s "a'" followed
by Hbl!'

a-———sb <a,b>

36
The tuple (a,b) is the sect i<1,a>,<2,b>}, that is
a function from {1,2)} to {a,b}. Likewise, the

tuple (n,,n,,n

. ~ye...t.)} 1s a function from the
1272273 1

. 2Ty T - 1 .
set {1,2,3,4,...1i-1,1} to {nl,nz,...nl}.

We detfine a data-base B as a tuple of order three:

B=(D,T,R) (3-1)

The set D contains data element names, and contains

within its power sct three particularly useful sects.

D=N UN UN, (3-2)

The members of ND are raw data elements, that 1s

elements apart from their relation to other elements.

For example, the elements "Jchn', "'red'", "3.5", and
"-2+3.831v-1 " could all be members of ND'

The members of N and particularly associations

D’
among 1ts members, are the motivation for the struc-
ture ot the data-base B. Of first concern in this

structurc 1s the function T, the data type function.

T takes as its domain a set of data type names, NT,

NT = D, and maps 1t into various subscts of D. More
rigorously:
T=N (D) (3-3)
From the example of Chapter IT,
Np={"namec","address"," telephone"}

T(namec)={"Abernathy, Fred","Barnes, John'", etc.}

T(address)={"22 Maple St.","53 Main St.', etc.}

-37-

T(telephone)={"783-3055","724-3718", etc.}
T(data types)={"name”,”address”,”telephone”}=NT

The last line is significant in that T(NT) =

T(data types) = N Note that this does not violate the

T
axiom of regularity (x a set - x ¢ x). NT is merely its
own image under the function T; hence NT e dom T and

Np € ran T, but Ny ¢ Np.

T is a function, but since D is finite, the range of
T cannot be the entirety of QDUn, i.e. T is not an onto
function. Furthermore, T is generally not one-to-one. Apart
from constraints of cardinality, the first condition will
usually hold because not all members of QXD) form coherent
data types in the eyes of the user. The lack of a one-to-one
condition results whenever two data type names (or more)
have the same image under T. For example, the set

S = {Babe Ruth, Bill Dickey, Tony Lazerri,
Lou Gehrig}

might be T(Murder's Row) or T(0ld Yankee Sluggers). Note,

however, that T(namel) = T(namez) does not imply that
name; = name,, as in the above example.

The final element of structure within B is the mapping
from N a sct of relation names and the set of relations

R,

existing among members of Np- Before examining the formal

definition of this mapping, we define the cartesian product

(or cross product) over various members of the function T.

-38-
Let T = NT’ then the cartesian product of T over I is

defined as

X T(i)={f|f:I»D § (Vi) (iel-f(i) € T(i))}
iel (3-4)

Thus the cartesian product is a set of functions, each of

which is a set of ordered pairs; the following example

illustrates:

I={age,hair,eyesl} = Np

T(age)={10,20}
T(hair)={brown,blond}

T(eyes)={blue,hazel}

X T(i)={{<age,10>,<hair,brown>,<eyes,blue>},

rel {<age,10>,<hair,brown>,<eyes,hazel>},
{<age,10>,<hair,blond>,<eyes,blue>},
{<age,10>,<hair,blond>,<eyes,hazel>},
{<age,20>,<hair,brown>,<eyes,blue>},
{<age,20>,<hair,brown>,<eyes,hazel>},

{<age,20>,<hair,blond>,<eyes,blue>},

{<age,20>,<hair,blond>,<eyes,hazel>}}
If |S| denotes the number of elements in the set S, then

X T(i)

= 1l
1el 1

1el

T(1)

A relation is defined as a subset of some cartesian

product of T over a subset of N The function R maps N

T R

-39-

into the set of all possible relations among members of the

data-base. Rigorously,

R=NR+IL5JNT@(.X T (1))

iel
(3-5)

Specifically, if xeNR, and R(x) is a relation over the

cross product of T over some set I, I = NT’

R(x) = X T(i)
iel (3-6)

Note that the set I may have several relations associated
with the cross product in (3-6). For example, several

different relations could be drawn from

XT(1i)
ie{name,address,telephone}

yet all would be subsets of the same cartesian product.
This implies that the exact contents of any relation cannot
be established from knowledge only of the data type names
involved.

The model B defined constitutes one of many possible
models. However, the choice of any one model depends upon
how well it represents reality, and more importantly, how
well its behavior can be made to conform to the behavior of
the situation it represents. From our data base, we wish
to selectively retrieve certain pieces of information; hence,
we require a set of operations which allow maximum control
over model behavior. In addition to the cartesian product

operation in (3-4) five other operations on members of R

-40-
will prove useful.

Let x,y € N, and

R
R(x) = X T(i) I=donm R(x) I E.NT
iel
R(y) « X T() J=dom R(y) J = Ng
jed

Note that I=domUR(x) and J=domUR(y) are the data type names

which participate in R(x) and R(y) respectively. The oper-

ations
R(x) U R(y) union
R(x) /1 R(Yy) intersection (3-7)
R(x) - R(y) set theoretic difference

are all defined if and only if I=J. Just as it makes no
sense to add chickens to apples, the value of unioning a
phone-book and a cook-book is moot within B. As with car-
tesian product, union and intersection are commutative and
associative; set theoretic difference is neither.

Given a relation R (phone-book)

X T(i)

R(phone-book) = ie{name, address,telephone}

we may wish to retrieve only a portion of the stored infor-
mation. To isolate a particular set S of name-address-phone
elements, we need specify only those elements of R also in
S. However, if we wish to restrict a relation via data

types, we define a projection on R(x). Let X=domUR(x) and

-41-

let Y =N, be the projection set. Then I R(x) 1is the pro-

jection of R(x) on those data types contained in XAY.

Formally,

NYR(X)={flan+ND | (3g) (geR(x) & f=g)}
(3-8)

For example T R(phone book) would yield a

{name, telephone}
relation containing all names with associated phone numbers;
each name-phone number pair in the projection is a subset
of at least one name-address-telephone number tuple in
R(phone book). If |domain UR(x)|=n, then there are 20
distinct projections. Thus for R(phone book), the projec-
tion sets {}, {name}, {name,address}, {name,telephone},
{name,address,telephone}, {telephonel, {address}, and
{address,telephone} yield 23=8 possible projections. Since
f operates only on XNY, members of Y not contained in X
have no effect on the projection process. Thus while a
subset operation on R(x) yields a particular set of func-
tions on domU R(x), the projection operation takes from all
functions in R(x) those ordered pairs whose left component
is contained in the projection set Y.

Our sixth and final set-theoretic operation, that of
relation composition, is the most powerful and the most
difficult to define. Composition in GOLD STAR has two sim-
ilar forms: composition in its simple form and composition
under the auspices of a data type renaming transformation.

Assume the existence of two relations--a phone-book relation

-42-
and a name-salary relation; from these we wish to assemble
a third relation indicating salaries at various addresses.
Our algorithm follows:
1. We note that R(phone book) = T(name) x T(address)
x T(telephone) and R(name-salary) < T(name) X
T(salary); each relation involves T(name) in the
cartesian product of which each is a subset.
2. We take from each relation a member in which the
names match and proceed to form a new relation
in which members are subsets of T(name) x T(address)
x T(telephone) x T(taxes).
3. The new relation will contain that subset of the
4-ary cross product above formed by following the
rule in (2.).
Let X=types (R(x))=domUR(x), Y=types(R{y))=domUR(y), then

the composition R(x)°R(y) is defined as
R(x)°R(y)={g:XUY>N, | 3£ _R(x),3h_R(y)
((vt) (t_dom g -
(t dom frg(t)=£(t)) §
(t dom h>g(t)=h(t)))} (3-9)

Alternatively, each g=fUh. The simple composition operation
composes on all those data type names which are found in
both R(x) and R(y), and produces a new relation whose order

1s greater than or equal to the orders of the operand rela-

-43-

tions. Specifically if order (R(x))=]domUR(x)| and order

(R(y))=|domUR(y)|, then new_order=order (R(x)) + order
(R(y))-|xny|.

A capability missing within simple composition is the
ability to match data type names which are different, yet
have intersecting images under T. For example, if R(regis-
tration) = T(student) x T(subject) and R(phone book)=
T(name) x T(address) x T(telephone), the R(registration)®
R(phone book)={}=g. Such a composition may be necessary if
an instructor wishes to call all his students in a particu-
lar subject. To allow for this renaming, we define two

functions X and p which apply to R(x) and R(y) respectively:
A:X-*NT , X=types (R(x))=domUR(x) (3-10)

p:Y>N ,Y=types (R(y))=domUR(y) (3-11)

T
A and p rename certain data types as specified by a user of
the system. In the registration example, A(student)=''name"
would yield a result = T(name) x T(address) x T(telephone)

x T(subject); the dual result, (name)=student, would yield

a result =T(student) x T(address) x T(telephone) x T(subject).
In both cases the information would be the same, differing
only in the perception of involved individuals as ''names"

or "students'. Formally, we define extended composition as
R(X)(A’p)R(y)={g:(ranAUranp)+NT | Hst(x),HhER(y)

((¥t) (tedom g~

-44-

((vu) (uedomf § r(u)=t>f(u)=g(t) §

((Vv) (vedomh & p(v)=t>h(v)=g(t))))}
(3-12)
In a set thecoretic data management system, the most power-
ful operation is composition, and as one would expect, 1is
also the most complex to specify. Nonetheless, it is com-
position, simple and extended, which allows selective
merging by data types of relations.
Reconstructability
The decision of what data types are to be involved in
any relation 1s a non-trivial matter. In particular rela-
tions defined by (3-5) and (3-6) may be more '"'complex" than
necessary. Assume for example, that a company reccords for
cach employce only his name, age, hcight, weight, employee
number, salary, and years with the company. The relation

R(cmployee) might then contain the member

{<weight,243>,<age,36>,<height,5'9">, <name,J. Smith>,

<salary,$22,000>,<ycars employed,9>,<man #,6532>}.

While all this data pertains to '"J. Smith'", certain other
eclements may have no particular bearing on cach other; 1t
is not clear, for cxample, whether a $22,000 dollar salary
1s significant vis-a-vis the height 5'9". However, the
unique name J. Smith and the age "36" tell a certain fact

about J. Smith. The projecctions w R(phone book

(name address)

-45-
H(name,age}R(phone book), et cetera, have been composed with
each other without giving us additional significance among
the facts about J. Smith, except that such facts each be-
long with him; but this is known already if the functions
(name,age),etc. are within our purview.
If we consider an office directory, however, the abil-

ity to obtain the original relation by composition of its

projections may be absent. Let R(phone book)=

{{<name,Al>,<room,A-5>,<extn,317>},
{<name,Al>,<room,A-5>,<extn,318>},
{<name,Andy>,<room,A-5>,<extn, 318>},

{<name,Andy>,<room,B-2>,<extn,442>}} (3-13)

No set of projections (save the trivial case Whame roor ext@
can be composed to exactly reconstruct (3-13); spurious

members would be coded.

Given ﬂhnme,roomﬁ(phone book)={{<name,Al>,<room,A-5>1},
{<name, Andy>,<room,A-5>},
{<name ,Andy> <room,B-2>}}

and w R(phone book)={{<name,Al>,<extn,317 >},

{name,extn}

{<name,Al>,<extn,318>},
{<name,Andy>,<extn,318>1},

{<name,Andy>,<extn,442>}}

then composition would generate the spurious members

{<name,Andy>,<room,A-5>,<extn,442>}, and {<name,Andy>,

-46-
<room,B-2>,<extn,318>}. In fact, no set of projections on
(3-13), when composed, yields R(phone book). The ensuing
theorem provides a condition sufficient for relation recon-
struction. The phone book example in (3-13) is not recon-
structable from any set of its projections because we can
find no single projection which would uniquely ''tie together"
the information stored there. In the employee relation,
there exists, among others, a binary function which maps
every name to an age, i.e. there is a function from names
to ages. This fact assures us that, given a projection
containing a name, weight, etc., the composition of the
name-age function and this projection will yield a member
of the relation R(employee). The existence of such a func-
tion f gives rise to a definition of relation reconstructa-
bility:

Definition: Let P={nYR(x) | Y= domUR(x)}, i.e. the set
of all projections on R(x). R(x) is reconstructable
if and only if

3P' s P such that

proprP! =R (3-15)

With this definition in mind, we now state and prove
a theorem sufficient (unfortunately not necessary!) for

reconstructability:

Theorem.

If {Sl’SZ’SS} is a partition of dom R(x) and

-47-

3 1" 3 " 3 3
“(SZUSS)R(X) is a "function'", that is, if

NT,, 3!T3(((T26ﬂ Szn(szusS)R(x)) & (Tseﬂssﬂ(szuss)R(xD

& (TZUTS)E“(SZUSS)R(X)) (3-16)

then R(x) is reconstructable, and

R(x) = "(SﬂJSZ)R(X) ° n(SZUSS)R(x) (3-17)

Proof:

If Lemma I of Appendix A is applied, then in (3-16)

Te T R(x) =7 R(x)
S2 (SZUSS) Szn(SZUSS)

or
Te T v R(x) = mo R(x) (3-18)
S2 (SZUSS) 82

and
Te Tro 4o yR(X) = 7o R(x) (3-19)
53 (SZUSS) S3

Thus the function (3-16) can be simplified to

V1, 3tz ((1, € WSZR(X)) & (14 ¢ ﬂSSR(X)) &
(T R(x))) (3-20)
ZL)T3 £ N(SZUSS) X

We now show that 1) any member of the left side of
(3-17) is also a member of the simple composition on
the right, and 2) that converscly, any member of the

composition is also a member of R(x). These two

-48-

steps constitute the proof of (3-17).

I.

IT.

Let g € R(x). The definition of projection (3-8)

assures the existence of some f1 € n(stSZ)R(x)

and some fz € W(SZUS R(x) such that fl = g and

z)

fz < g. That is

(3 fl,fzs;g)(fl > N(Slusz)R(x) § fZ > n(szusS)R(x))

Since dom fl = SIUS2 and dom f2 = 82083

>

dom flL)dom fz = dom g = SfJSZUSS = dom UR(x).

f1 and f2 are functions; since the union of their

domains equals the domain of g, fIUf2 = g. The

union of f. and f however, is equivalent to the

1 2’
binary composition of fl and fz, since

(vt € dom g)(t € dom f1 § t € dom fz >
£1(6) = £,(t))

Thus the element fl°f2 = g for some g € R(x).

Let f1 € ﬂ(S US)R(x) and f2 € N(S US)R(x),
1772 2773
such that
f.°f

1 £, ¢ (“(slusz)R(x) ° ”(SZUSS)R(X))'

fl is g restricted to SIUS2 for some g £ R(x).

Consider an fz' which is g' restricted to 82083

-49-

, i .
for some g' € R(x). Since H(SfJSS)R(X) is a

"function" in the sense of (3-16), fz restricted

to S2 = fz' restricted to SZ’ so g = g'. Hence,

for all fl € T R(x) and for all f, ¢

(SfJSz) 2

ﬂ(SZUSS)R(x), there exists a g € R(x) such that

£, £, = f1°f2 = g. Thus all elements of the

composition of (3-17) are also members of R(x).

QlEODl

Knowledge that a relation is reconstructable can aid
in retrieval operations on the data-base B. Given the
relation

R(phone book) = X T(1)
i € {name,address,telephone}
and the necessity of telephoning someone named '"John",
then the operation

W{phone}(R(phone book) ° {{<name,John>}1})

will yield a unique phone number if John has only one
phone. The above operation for any person would yield

a unique phone number if there were a '"function'" in the
sensc of (3-16) from names to phone numbers. Note however,
that if John has two phones then the above operation will

vield a set of two elements.

-50-

Even if we have no function from names to telephone
numbers, this does not imply that retrieval of a unique
phone number is impossible. For example, if every pair
of names and addresses is '"mapped into'" a unique phone
number by the '"function'" of (3-16), then by specifying
both John and the additional information that he is cur-
rently at 10 Main Street, we can retrieve his unique phone
number. The operation

ﬂ{phone}(R(phone book) °

{{<name,John>,<address,10 Main Street>}})
will yield the unique phone number if the above condition

holds.

2. Ordered Set Theory

In considering how we might implement a relation, we
must come to terms with the most pervasive real-world
consideration to which we are bound, namely order. Order
is imposed in almost all environments; symbols and
notation will be written in a linear order, and a
representation of a set is free of order only by intention.
Most extant computers employ a sequential numerical ordering
scheme, the most common of orders. Hence, we must conform
to this constraint of order and include this notion somehow

within our framework of set-theoretic concepts.

-51-

An ordering Q is a bijection (one-to-one, onto
mapping) from an index set I to a set S, each set
containing k elements. The index set I contains

the successor of all but one of its elements.
Q:1 S where 3jeI|j* ¢l § Vi4j, iel i'el (3-21)

Paraphrased, assures us that we can step in some
well defined sequence over the index set (via successors).
Elements of S are thus associated with an ordering
procedure.

With <a,b> defined as {{al},{a,b}l}, we define a special
case of ordering, the tuple. We already have an intuitive
feel for a tuple, e.g. (a,b,c). We recognize that the
physical position of an element is as much a piece of
necessary information as 1s the element itself. The tuple
(b,b) can exist, for example, while the set {b,bl} cannot.

But a tuple can be viewed as follows:

A tuple t is an ordering fp where the index set IT
has the special properties that it is a subset of
the natural numbers and contains the element 1 if
non-empty. Formally

T:QT:IT+S where ITEIJ,3i£IT+1€IT

+ C .+
k ¢IT & \/1=k, ielp»i el (3-22)

, BksITl

-52-

That is, a tuple is the special ordering from {1,2,3,...,n}
to the n elements of the range set. In set notation, a
tuple is represented as

(tl,tz, ces ,tn) = {<1,t1>,<2,t2>, “en ,<n,tn>}

A tuple is readily represented on a real computer,
since the order of a tuple coincides with the most prac-
tical implementations of order. However, an arbitrary
ordering © may not be easily representable; therefore, at
some point, if no other assumptions are made, we must use
tuples (or whatever real-world form of ordering to which
we are bound).

As an alternative to a given environmental ordering

we define an entity called an explicit element.

An Explicit Element e is an element which is 1)
meaningful in a global sense, and 2) recognizable
independently of the context in which it is found.

[3-2] appeared only

For instance, if the word '"fremitus"
once on this page, we could locate it unambiguously,
independent of the way in which the words on the page are
scarched. We can also determine its meaning free of the

context of this page. Note that any element can become

explicit by merely restricting the context of consideration

~-53-

sufficiently; if we search only one word it must be explicit
since no duplication exists as long as the word is
meaningful. The requirement of global meaning is significant
in computers, since many words are not meaningful to a

given search request (e.g. the octal word 777777 has no
meaning when viewed as four ASCII characters.)

Often we wish to make the elements of Np and Np (see
section 1. of this chapter) explicit elements. It is
desirable that these names be recognized in a context-free
sense whenever they appear. Consider the set E of explicit
elements where ecE - eeNT. With E we define another entity

which will be reencountered later in the discussion.

An Explicit Naming Tuple is a tuple whose range
consists entirely of elements e, where eENT and
e is an explicit element.

ENT: Q.:1.. > {e

7 lp ,en} eieNT,eeE (3-23)

l,ez,

In cffect, an ENT defines an arbitrary order on the ele-
ments of I which will prove useful. Since ENT is a
function, its range is totally ordered.

The ENT function is intimately tied to the definition
of a relation. A relation R(x) assumes the form

R(x) = {{<e1,d >,<e,,d ,<e,d >},

11 229217 ni

-54-

<o ,dyp>,<ey,d)0>, s<epsd >t
{<e;,dys> <ey,dyq>, s<ep,dnz>}
{<e1,dlm>,<e2,d2m>, cen ,<en,dnm>}} (3-24)

Since R(x) is a set, the subscripts identify, but do

not order the particular elements involved. Note that

dom UR(x) = {ej,e0, ou. e} (3-25)

Consider the class of functions

ENT: {i|l<i<n}>(1 to 1, onto) dom UR(x) (3-26)
There are n! possible ENT functions for any R(x); each such
ENT will be denoted by a subscript. We take in particular

some ENT, such that

k
{<1,e

ENTk(R(x)) >,<2,e,>, ... ,<n,en>}

1
(el,ez, e ,en) (3-27)
The subscript k serves only as an identifier fox the
particular ENT chosen. An equally valid choice might be
ENTk,(R(x))=(en,en_1,en_2, “ee ,ez,el) (3-28)
ENTk(R(x)) and ENTk,(R(x)) are distinct bijections on the
same relation. Each ENT function is an arbitrary ordering
of the data type names in dom UR(x). The particular order

i

h

specified by which of the n! possible orderings 1is

chosen.

55

As defined in (3-27), an ENT is a function with respect
to a rclation. The particular k chosen depends on the organi-
zation of R(x) desired. This indicates how the ENT empiri-
cally defined in (3-24) is chosen. The explicit nature of

the elements of domUR(x) is, of course, maintained.

At this point, we introduce some additional functions
which transform R(x) into another entity. The transformations
will also exhibit the following characteristics of the rela-

tion R{x).

1. Given a data element d ND’ we can determine a type
with which it is associated. This is possible
since each member of a relation R(x) is itself a
bijection:

t: e>d | teR(x) & (Vi,j<n) dom ty=dom t; (3-29)

t™ 1, in turn, maps d onto e. Note that since t

is a bijection, we are always a unique e given

a specific d.

(g%

Given an ¢ and an R(x) we can determine all instan-
ces of d (i.e. the exact subset of ND) which corres-
pond to that e. These are merely the mappings t

over all of R.

Every element of R(x), by virtue of the fact that

921
.

56

R(x) 1is itself a set, indicates a relatedness
among its members. That is,
row: X "is related to'" y where x,yeran t,
t & R(x) (3-30)
4. Every member of R(x) includes an ordered pair
for every e. The d's in these pairs are also
related by virtue of their association with
the same type e.
column: x "is related to" y where x=ti(k),
y=tj(k) for all i,j<m and for
all k<n (3-31)
The nature of relatedness expressed in characteristics
three and four is at this point intuitive, but will
become clearer as transformations are performed upon
members of R. The names "row" and ''column' are used to
indicate that when notation such as in (3-24) is used,
relatedness exists by virtue of the physical structure
of rows and columns.
We define a function called Tuple with Explicit Naming
Tuple (TENT):
TENT: t->t' | teR(x), t' = t ° ENT (3-32)
More specifically, consider a given ENTkR(x). Then
TENTk(t) =t ° ENTk(R(x))}teR(x) (3-33)
Note that both the domain and range of TENTk are functions.

The domain is a function from e to d; the range is a tuple.

-57-

Using the notation for R(x) in (3-24), we can formally

express a typical TENT:

ENT, =(e;,e,,e) [k arbitrary] (3-34)

o

TENTk(t1)={<e1,d11>, . ,<en,dn1>}

{<1l,e,>, ... ,<n,en>}

1
={<1,d11>, e ,<n,dn>}

=(d..,d (3-35)

11° 21°? ’d

nl)
We note that the elements of the TENT are ordered in a
fashion analagous to that of the particular ENTk. If k'

from (3-28) were used instead, the TENT would appear as:

nl’dn-l,l’ ces sdgyndyg) (3-36)

It should be clear that each of the TENT's (with

TENTk,(t1)=(d

respect to 2 given relation R(x)) will each be ordered

with respect to the ENTk chosen to order the given R(x),

since
v&,j 1<i,j<m dom ti=dom tj= ran ENT (3-37)
In gencral then, for the R(x) of (3-24) the ith TENT:
TENTy (t3)=(d}4,d555d55, »dny)
NT = -38
TENT (230 = (g0 09,0902, 40 vdpg) (3-°%)

and so on for any choice of ENT.
Note that we preserve the same content between

a TENTk(ti) and its ENT. as with the element t.1 of R(x)

k
itself. This follows since all derivations are bijectional,

-58-

and it is possible to '"go back'". Thus we seek a structure
which will include all TENTk's and the ENTk. This structure
would then contain all the information found in the relation
R(x) itself.

Therefore we define a sort on the various TENT's

SORT(R(x)):{j|1<j<m}>(1-to-1, onto)
{TENT(t) |teR(x)} (3-39)
There are m! possible ways of ordering the m TENT's derived
from R(x). SORT is esentially a second arbitrary order
placed upon the relation. However, there are a few standard
SORT mappings which are used more frequently than others.

The one used in GOLD STAR is called a lexicographic sort.

We define lex ordering of TENT's as follows:
TENT, (t,)< (lex less than) TENT,(t) iff
(31) (1<izn & (V3) (GirTENTy (£) (3) =
TENT) () (5)) &
. * -
TENT) (t,) (1)< TENT (t) (1) (3-40)
where
TENTk(tC)(p)= the pth element of the
th
Z TENT
*
Note that the < operation is determined by the ENTk chosen

in the sense that the ith element of the TENT is determined

by the orderings ENTk. For example,

-59-

Let
TENT(1)=(1,2,1,3)
TENT(2)=(1,1,1,1)

TENT(3)=(2,1,3,3)

TENT(4)=(2,1,3}2) (3-41)
be determined a relation

SORT, . (the TENT's)= (TENT(2), TENT(1),
TENT (4), TENT(3))

For example, then,

TENT (4)4 TENT(3) since for i=4, j=1,2,3

TENT (4) (1) = 2 = TENT(3) (1)

H

TENT(4)(2) = 1 TENT (3) (2)

TENT(4) (3) = 3 = TENT(3)(3)

TENT(4)(4) = 2 < 3 = TENT(3) (4)
Lex ordering, then, is the intuitive order where the first
component of the TENT's is most significant, the second 1is
next most significant, etc. The importance of ENTk is in
the determination of which is the first component, which is
the second, and so on.

We now define what appears as a trivial construction,
the QUART:
QUART = (ENTk(R(x)), SORT (R(x))) (3-42)
(QUAsi RelaTion)

For a typical relation R(x) as defined in (3-24),

-60-~-

QUART (R(x)) =
((el,ez’ s o ’en),(dll,dzl’ .0 ,dnl)’

(dlz,dzz, “oe ,dnz),

(dlm’dZm’ cee 5d_)) (3-43)

The construct QUART has two noteworthy properties, over and

nm

above those possessed by R(x)) itself:
1. Two arbitrary orders are imposed upon the
relation, namely ENTk(R(x)) and SORT(R(x)).
2. The elements of ENT appear only once,
giving a '"factored" effect. This is highly
desirable since by the definition of
explicit elements, we can now consider a
QUART as a context of consideration. (See
3-23). The relation in its proper form
has redundant occurances of the explicit
elements, which limits our context. When
transformed to a QUART, we can unambiguously
identify the e's, and hence ease the search
for information.
Note that QUART(R(x)) retains all the information found in
R(x) and discussed previously. By following the various
bijections crcated in the derivations we can freely translate

one form of information to another, e.g.

-61-

1. Given a d, find an e, e.= ENTk(TENTil(j)(dij)
2. Given an e, find the d's associated with it
ar ={TENTk(j)(ENTL1) over all j's}
3. Each TENT relates all d's with it.
4. The d's defined above relate all d's of a
given data type.
The notation used in (3-43) lends itself to an even

clearer form:

°p & e &y (3-44)
dy; 4 d1
di, dys dy2
d1m d2m dnm

This form is already familiar from (2-1) and (2-2-d). As
expected this form represents a relation.

Henceforth, where a QUART is mentioned, it will be
assumed that it is in effect a relation. We refer to its
structure as follows:

CENT, or PENT: Two computer representations for
the types, or e's in our formulation.
(CENT 1is Character ENT).
(PENT is Pointer ENT).

Order: The number of elements in the ENT and each

TENT (= |dom UR(x)|= n).

-62-

Length: the number of TENT's in the QUART, which

was m in our formulation.

When we mention the term '"'relation' henceforth, we mean a
relation stored in some form other than a QUART. This section
has discussed how any representation of a relation (which
represents the abstract notion of a relation in (3-24)

can be transformed into a QUART. Other relational organiza-
tions are considered in the next chapter.

One final concept remains: that of a successor in the
context of a QUART. We have adopted the view that the successor
of a TENT is the next TENT according to the SORT function
adopted. This follows either the specified TENT, if it is
part of the QUART, or follows the place where the TENT would
have been inserted if not already included. More succinctly,
the successor operation is a least Uupper bound operation.

For example, given

a b ¢

1 1 1

1 3 1

1 3 3

2 1 2
successor[(1,3,1)] = (1,3,3)
successor({(1,2,1)] = (1,3,1)

Further examples of QUART operations are found in

L IR TN
Appendix

.

30

S
Lol

;

g

—

o

-~
1§

Joncepts of G

to examine the

a

set-theoretic

i STAR now cnunciated,
structure and

approach to

-64-

CHAPTER IV
AN TMPLEMENTATION OF GOLD STAR

This chapter discusses the rationale for one GOLD STAR
implementation. The system is not of the direct transplant
variety, since we have chosen to utilize some features
peculiar to the present target computer -- the GE/645/MULTICS.
Furthermore, the algorithms mechanized for the MULTICS sys-
tem may be less suited to environments other than ours.
Despite certain shortcomings, we feel it advantageous to

pursue the cogs and machinery of GOLD STAR/MULTICS.

1. DSM Modules
Representation of Data Elements

Every computer system faces the problem of dual repre-
sentation of data elements: one representation allowing fast
internal operation of the programs, and another suitable for
human consumption via printed or graphic input/output oper-
ations. C(Classically, i.e. in "algorithmic" languages, the

formats for user data have been dictated by ''representation

types' such as integer, floating point, logical, and fixed
point data found in FORTRAN systems. In GOLD STAR the term
""data type'" refers to classification of data according to
some attribute assigned by the user (e.g. "cities', 'last
name'), and not according to some internal code peculiar to
the computer environment. To the user, this distinction

between ''representation type" and 'data type'" is significant:

-65-

in the former casc, environment idiosyncrasies force extra
meaning on the data due to representation, while in the
latter case all scmantics depend upon the user's own class-
ification of the data.

While the user views his data elcments only in terms
of data type, there still remains the issue of efficient
internal representation. Although relatively transparent
to the usecr, the techniques utilized to increase the speed
of operation merit further scrutiny. Internally, all user
data is manipulated in the form of word-length bit string

tokens, which we refer to as reference numbers. The task

of binding strings to reference numbers is performed by a

class of GOLD STAR sub-programs called data strategy modules,

or DSM's.

The Binding of Reference Numbers to Strings
At the time a user crcates a new data type within GOLD
STAR, he usually perceives or assumes a total ordering on

the clements of a data type. The method of assigning refer-

ence numbers to strings begins with the reguirement that

fhieteotal erdering on members of any data type <

6]

completely vreserved by (i.e. i1somorphic to) the

total ordering on the assigned reference numbers.

b

We tfurther require that valid comparisons between data items
exist only 1f the comparands are numbers of the same data

tyvpe.

-66-

Binding of Reference Number Via Alphabetic Order

The module dsm_astring binds strings to reference
numbers in such a way that ascending reference numbers
preserve alphabetic order among the data elements. The
notion of alphabetic order is deeply ingrained in most
individuals, and is significant in that it is a common

ordering scheme applicable to arbitrarily large lists of

strings of any length(s). Universal usage of alphabetic

order requires a facility, i.e. dsm _astring, for its accom-
odation; dsm _astring serves this purpose.

For each data type it manages, dsm_astring maintains
a binary tree in which data elements are stored and from
which they are retrieved. Because collating sequences in
ASCII and otner codes preserve alphabetic order, dsm_astring
is able to compute order-preserving reference numbers direct-
ly from the input character strings. The exact method by
which this operation works will become clearer if we follow
the procedure invoked to perform a binding operation on the
data type "names'. (By binding we mean inserting a new item
into a DD area and associating an appropriate reference
number.)

The uscr creates the data type ''names' via a call to
mgr$new _data_type and initializes the header shown in
Figurc 4-1. (Each data type is stored in a separate segment

in the MULTICS system, and its size is controlled via the

-68-

"allocate" and '"free" statements in the PL/1 language.)

The header contains information required by GOLD STAR for
system calls, as well as pointers to the tree root, the

head of a successor chain, and counters uséd to indicate the
number of free and empty cells. The user establishes to
GOLD STAR that the DD area ''mames'" will be managed by dsm_
astring; he does so by specifying the DSM name in the call
to new_data type. Subsequent references to ''names' will
automatically invoke this DSM.

Figure 4-2 illustrates the logical changes in ''mames"
resulting from the insertion of "Ezra'". Two actions occur:
the root pointer is set to the address of "Ezra', and the
canonical root reference number is assigned. The root
reference number is defined as

_ ,n-2
refroot = 2

where n = the number of bits in a full word. The choice
of this quantity as the root reference number implies there
are as many positive reference numbers greater then refroot

as there are less than ref and facilitates the forma-

root’
tion and maintenance of a tree symmetrical about the root.
In subsequent action, the successor chain head is set to
"Ezra" and the number of cells active in ''name'" is incre-
mented by '"1'". As "Ezra'" has neither descendants nor a

successor at this point, these pointers in the data item

are null.

-60-

Figures 4-3 and 4-4 illustrate the method by which
dsm_astring computes reference numbers. In Figure 4-3
the name ''Claude" is inserted in the tree as Ezra's left
descendant, since '"'Claude'" is lexicographically less than
"Ezra'". The reference number of "Ezra" (= refroot) is the
only reference number at level 1 in the tree. Reference
numbers for descendants of an item present in the tree are
computed as follows.

A candidate data item for insertion is compared with
the root note item. If the candidate is less than the root
(according to alphabetic ordering), then one of three situ-
ations can occur. If the root item and candidate are equal,
then the candidate is already present; search stops. If
the root item's left descendant is non-null, then it becomes
in effect the root, and search begins at that point. If
the root item's left descendant is null, then a number of
words required to store an item are allocated, pointers are
chained and the new reference number is computed via the
formula

Z(d_i)

rleft_desccndant rparent

where d is the maximum depth of the tree, and i is the depth
of the tree at which the parent node appears.

I[f the candidate item is alphabetically greater than
the root item, then a procedure analagous to the above pro-

cedure for left descendants is executed, on the right, with

jm e - — — — & — & — — —
I A
I]
: ""dsm_astring" | ''names" /f ¢ 2 0110
l
Y
|
|
: " Ezra"
: 2000
| 1 null
i - g,//null
L\\k\\ 'Claude " ///
T~ 1000 Pt
1 |[~~7
nulll null
Figure 4-3: Insertion of '"Claude'" in Data Area
[T m - — — — R - - — &~ — =)
i |
l]
¢ ""dsm_astring' | '"'names"]f ¢ 3 0110
l
| /
|
|
: “"Ezra"
y 2000
| 1 AN
| A4 N
| 2 > 1 ® < K
" " e N K 1"
S Claude e ~ Milton
~~l., 1000 |7 3000
1 {~e7 1 null
nulll nul nulll null

Figure 4-4: Insertion of '"Milton" in Data Area

-71-

rright__descendant rparent

Note that the reference numbers for left and right descen-
dants will be less than and greater than, respectively,
the reference number of the parent node as long as i = d.
When 1 exceeds d, this implies that no more items may be
inserted in the tree below the current "working node'. The
exact reasons for this limitation result from the fact that
the level of the tree i occupies one bit position in the
reference number, with a left turn at level i being indica-
ted by a 0, a right turn by 1 in bit position 1 in the ref-
erence number. Thus a reference number of d bits allows at
most d levels to a binary tree. A more complete discussion
of dsm _astring and tree-overflow is found in Appendix A.
The module dsm_astring is ideally suited to the task
of binding reference numbers to alphabetically ordered
strings, since insertion and deletion of items requires no
reshuffling of data elements. The ability to delete and
insert items without restructuring is an important consid-
eration, but perhaps the greatest value of the tree search
is the fact that for a data type of n members, the average
secarch time 1s Kzogzn where the constant K is independent

of n.
Binding of Reference Numbers to Integers
Like thc ordering on alphabetic strings, an ingrained

ordering is the consecutive nature of the integers. C(Classi-

72

cal data management systems have recognized this 1mportant

ordering,

but only by providing a specific internal computer
representation. As mentioned at the beginning of this secc-
tion, GOLD STAR trecats all data types in relation only to

a perceived ordering. Thus a module dsm_integer maps data
clements representing integer ordered strings into fixed
length bit strings. (The dsm integer module uses the same
internal format for integers that a classical data manage-
ment system would. That is, strings made up of the charac-
ters 0" to "9" are transformed into internal machine binary

representation. Thus, GOLD STAR converts character strings

representing integer data, to binary numbers represcnting

integers to the target computer. However, '"'integer" 1s not a
data type; data types such as ''population', 'number of
children' ctc. arc examples of data types utilizing the

integer ordering on strings.)

The Binding ot Reference Numbers to Strings Where a Well-
Ordering of String is Inapparent f{rom the Alphabetic Order
Two other data strategy modules complete the data

representation repertoire of GOLD STAR. Very few data
tvpes of large membership ever utilize an ordering scheme
other than the two previously mentioned, simply because
humans find memorization of many ordering schemes incon-
venitent. lHowever, certain data types of small membership
s1z¢ (e.g. the months, or academic titles) follow ordering

relations not directly discernible from the data elements.

_73-

In cases where the ordering is static (i.e. no insertions
in the data type, as in the case of '"months of the year")
the module dsm table assigns indices in the table to data
elements. The data type '"months of the year'" would map
January in 1, February into 2, etc. For small data types
which are of dynamic rather than static nature, (e.g. the
collection to titles in a company) a module dsm_chain is
provided. dsm chain allows insertion and deletion of items
which are maintained in order on a single threaded list.

An inserted item assumes the reference number

1
r =5 (T + T .
2 (predecessor successor)

2. RSM Modules

Every relation in GOLD STAR is stored in its own seg-
ment, and each such segment is organized and managed by a
program known as an RSM, or relational strategy module. An
RSM operates on one particular physical organization of
relations; 1n most instances the number of relations will
far exceed the number of separate relation organizations.

The choice of which RSM is the most likely candidate
for creation and maintenance of any relation is probably
the user's greatest single problem. He must decide which
structure is most suited to operations involving the rela-
tion. If the relation is large, will 1t require simple
organization due to storage limitations? Will the relation

be modified frequently? Is there more than one frequently

-74-

used lexicographic sort of the relation?

Among these questions, there is a hint of the magni-

tude of problems involved in the choice of an RSM for any

relation. Like the DSM choice, several factors are in-

volved,

and since most CPU time will be incurred during

RSM operations, the judicious choice of an RSM is critical.

The more significant factors are:

A.

I,

The number of different lexicographic sorts
with respect to which the relation will be
accessed.

The frequency of use of the relation.

The probability distribution expressing
relative access to each item.

The number of tuples in the relation.

The envisioned dynamic nature of a relation.
If insertion and deletion of relation mem-
bers is frequent, then some RSM which chains
items together by some ordering other than
storage location 1s called for.

The basic structure of the relation itself.
A many-to-one or one-to-many relation may
have to be managed entirely differently
from a nearly one-to-one relation. For
example, a relation in which names have

several telephone numbers is many-to-one.

75

Thus far, these guidelines have been enunciated, but
very little is known (other than empirical testing) about
their measurement. Our efforts this past year have pro-
vided an RSM managing quarts, and other possible RSM struc-
tures. We decided that all RSM's, in addition to normal
operation entries, should contain entry points for convert-
ing between a quart and the particular relation structure
managed, and vice versa. This allows a user to consider
several alternative RSM's and test the operation of each;
the user enters his relation once, and can then proceed
among the desired RSM's via subsequent calls to convert_to
quart and convert to relation. Morever, this double struc-
ture format involves only a small amount of code compared
to most operations.

The following constitute the RSM repertoire in the
initial version of GOLD STAR.

A. RSM Q -- assumes operands are quarts, but

treats them as non-transient members of the
function R.
B. RSM WQ -- assumes operands are quarts, but
does not provide for keeping these quarts
beyond the life of a process. (See next section).

C. RSM TREE (under consideration)

While both RSM Q and RSM WQ manage extremely simple
rclation organizations (which are lexicographically ordered

matrices with some trimmings) they offer the least power of

70
all RSM's. Sorting, dynamic insertion, and dynamic dele-
tion all require creation of new quarts which hold the
modified relation. In cases where large relations are
involved, these operations, or other RSM operations re-
quiring these services as subfunctions (composition, union,
intersection, ctc.) may become extremely costly and time-
consuming. Morcover, in on-line operations, searching for
or modifying even a single tuple in large relations may
disallow quick real-time response. For certain relatlons,
1t may prove expeditious to use a tree structure similar
to those of TDMS or the MacAIMS project at M.I.T.
While these structures require more space to implement,
addressing an 1tem depends not upon restructuring, but
rather upon the use, manipulation, and modification, of

certain pointers at each node.

The RSM WQ

This 1s the module which performs the basic system
opcrations on guarts only. The reader is referred to
Appendix 1 for some examples of such operations. A few
interesting issues have arisen in the implementation of
the Working Quart RSM,
A. Union, Intersection, Difference

These operations all usc fundamentally the same code
(sce Tigure 4-5 for flow chart). A key issue, however,

was whether to sort the sccond input with respect to the

-77-

first before operating, or not. To solve this dilemma,

Let 2, = length of first quart
22 = length of second quart
0 = order of each quart
S = a "search", or the comparing of one quart

element with some given entity.

We know that a simple token sort of the kind used in RSM_WQ

takes a number of steps

#S(sort) = 022 log? (on the average)

Once the quarts are both sorted alike, we can recognize a
best case in operating.

When the first TENT of one quart is lexicographically
greater than the last TENT of the other, then it is possible
to determine this by only examining the first element of
each of those TENTS; we can then determine the union, inter-

section or difference. For example, given

a b ¢ a b ¢
1 2 3 10% 11 12
4% 5 6 13 14 15

since 10 is grcater than four, we know the intersection is
cmpty, the difference is the first quart, and the union 1is
the combination of all TENT's of the two.

We can also recognize a wors case (see flow chart)

where we must examine every element at least once during

"List"

0

= quart

Start at -78-
top of lisks

“

)

E(l)=element of 1list

1 under consider-

ation

Start at
left of
each tuple

E(2)=element of
list 2
under con-
sideration

Copy tuple
in 2 to rejq
Bump down 1
result

[

List 2

xhausted
(?

NO

Bump down
in list 2

Figure 4-5

Copy tuple
in 1 to refq
Bump down 1

result

uljt

List 1

exhausted
\ ?

NO |

Bump down
in list 1

Copy rest
of list 1
to result

Copy rest
of list 2
to result

A

< Done)

Un

ion, Inters

The Algorithm for

ection,

Difference in RSM_WQ

L Move right

in tuples

Copy tuple
in list 1 tp
result ;bump
down result

List 1
gxhaustegd

NO

exhausted

A

Bump down Bump down
list 2 lists 1
and 2
Bump down
Done list 1
\f
5
Figure 4-5(Continued) -- The Algorithm for Union,

Intersection, Difference in RSM_WQ

-80-

the steady progression through each quart. This yields

2 < #S(operate) < (Ql + 22

)0
Hence, to sort and operate, we get, as an average,

2

#S(sort § operate) = (&, + 22)% + 0°2,1logl

1 2 2

In assessing just how many comparisons are needed to oper-

ate in an unsorted case, we again examine a best case:
For each TENT in quart 1, we need only search the
entire length of quart 2 once (22/2 average searches)
during which we find an equal TENT; that means that
the first match found for each of the TENT elements

is the only one. An example of this would be:

quart 1: a b ¢ 2: b ¢ a
1 2z 3 2 3 1
4 5 6 10 11 12
7 8 9 5 6 4

Here, if we start searching the a column in the second
quart, we need go no further since the b and ¢ columns
will also (and always) match (presuming a match was
found at all in a). This best case requires 11(220)/2
searches.

We can also ascertain a worst case:
For cach TENT in quart 1: every column in quart 2
must be secarched (220/2 average searches) for each of

the columns in quart 1. That is to say, when a match

81
is found in column a, one is not found in b and a
must be searched for again, with the worst case
being once for the entire length of a (if all of a
1s the same). This case takes 212202/2 searches
on the average.
Let us now compare the two cases:

Sort then operate No sort
2 < < 2 <
2+0 Qzlog 5 - #S S (21+22)0+0 2210g22(21£20)/2 S #S
2
< (21220)/2

On the average

2 2
(21+£2)0/2 +2,0%1logs, 21220 /4
letting R1=22=2 approximately
2
20 + 20° logt 220%/4
dividing each by 20
1 + 0log#t 20/4
for 2=100, 0=3
1 +6 =17 75
for 2=10, 0=3
1+ 3 =4 7.5

So, for most configurations of quarts, the sort oper-
ation is well worth the tune. That is why that course of

operation was chosen.

82
B. Composition
A first consideration in composition is how to specify
it. We face a number of decisions:
1. Compose or not on columns with equal CENT's
2. How to indicate composition on columns with
unequal CENT's
3. Whether or not to keep the resulting column
The scheme adopted of binding all CENT's involved to a user
supplied vector of names has the following effects on the
decisions:
1. We compose by equality of bindings, not CENT's.
This allows a choice on columns with equal
CENT's, since they can easily be bound to
themselves.
2. By binding unequal CENT's to equal names, we
can choose this alternative.
3. This is not optimal; all columns are kept.
Projection will elimanate unwanted columns.
The equivalence vector also presents the easiest form to
deal with on a practical level; a complete equivalence
relation indicating classes of equivalence by CENT would

be very difficult to specify syntactically.

[+]

» P
IlT) is the concatenation of ENTK(A) and ENTK,(p) where

The equivalence vector for R(x)(x)R(y) (see Chapter

K and K' arc the sorts specified by the user. To

-84-
output expression)

where the input expression is a regular expression which
is "matched" to the input, and the output expression dic-
tates how to transform the bindings to an output string.

The regular expression syntax considered is as follows:

Delimiters are: blank, and parentheses
Operators are: or (|), closure (*), not ("), and

concatenation (e.g. a|b matches a or b, a* matches

any number of a's, "a matches anything but a, ab
matches ab).

Special characters are: - (matches any character),
$ (matches any number), ? (matches any upper case),
! (matches any lower case), < (matches the beginning
of a line), > (matches the end of a line).

Bindings are made by /numeric, variable/ and are
created only if the numeric expression is satisfied.
The format of the numeric is n*+ (n or more charac-
ters in the string to be bound), n- (n or less),

and combinations of these using concatention or or.

Some examples are:

RE Input Bindings
<a*|b*/5-,x/> aaamp X - mp
same aamnopqr none (will not match)

albe/x/$# bcmno231 X -+ mno

_85-

The user 1s referred to explanations of QED for fur-
ther elucidation, and to Appendix C for a formal syntax
definition.

The main drawback to implementing such a parser is the
lack of efficiency that code doing these tasks will have.

It is necessary to, in effect, compile machine code from
these regular expressions and execute that code. No attempt
has yet been made to implement this design, although it 1is

hopeful that the task is not too complex to undertake.

Protection and The Projector (See Chapter II, Figure 2-3 for
the part the projector plays in the system structure)

A situation that is sure to arise is that of having
privileged information which is not isolatable to a single
data area or relation. For instance, the relation name-
salary-contract-percentage might exist; salaries are con-
fidential while contract and percentage are not. In effect,
we are in the position of wanting to allow access to a

projection of a relation. Given the MULTICS protection

scheme (see Appendix D for a full discussion of protection

issues), a need for a "projector" arises. This projector

177

would operate in a ring higher than that of the user. The
user would then have to request (through certain stringently
defined entries) the projection he was entitled to via the
projector. By having the relation in question only permitted

to the higher ring of the projector, protection is gained by

-86-

limiting the user to accessing the relation via a well sct
forth scquence of code, the projector.

The problem arises of some users of GOLD STAR having
ring permission as high as would the projector. This brings
about a manifestation of the ring uniquencss limitation
(Appendix D) of MULTICS: that a user in your ring (here,
that of the projecctor) must be given access to a segment
on an all or nothing basis; you cannot force a gate upon
him.

Until such time as MULTICS allows gates to be imposed
on a caller in the current ring, we must content ourselves
with protecting on a projection basis only against those

users in inferior rings to the system. This is the job of

the projector.

The Common Usage Descriptor (CUD) (See Chapter II, Figure 2-3
for an indication how the CUD fits in the system structure).
The purpose of the CUD is to provide a description of
the most common usage a relation reccives. For instance,
if a telephone directory werc always to be accessed by
"given a name, find an address and telephone" (rather than
"given an address....", or "given a number....'"), the CUD
would somehow describe this and indicate that the ideal

sorting of the directory would have namc as its most ordered

column.

No design or plans have yet been made for the CUD, but

-87-

it 1s felt that as the complexity and number of RSM's pro-
liferates, a device like it will be necded for efficicncy.
The next chapter will now explain the specifics of
the implementation just described: the subroutine calls,
the programming considerations, and an example of the use

ot GOLD STAR.

-88-

CHAPTER V

PROGRAMMING GOLD STAR

1. The User Interface

In this part of the thesis we will outline in detail
the specific functional calls available from the GOLD STAR
system. A few subjects are worth noting before a complete
description is presented.

Arrays

GOLD STAR permits both pointers and arrays of pointers

as input. This is an efficiency matter considered in

a later part of this chapter, section 2.

Nesting

Since all calls in GOLD STAR are functional, calls can

be nested. This means that whenever the result of an

operation is appropriate, the function can be used as

an argument to another call. For example, with a, b,

c, d as pointers,

(a) a=mgr$union(b,c)

(b) d=mgr$union(mgr$intersect(a,b),c)

Note that all characteristics of tée result will be

determined by the left-most argument. Hence in (a)

a will be '"the same as" b (meaning if one is a quart,
the other is a quart, likewise for relations; or, that

the order of the CENT elements for a is the same as

in b); while, with (b) d will be ''the same as'" a.

-89-
One other point: since PL/1 prevents us from returning
arrays from a function, a pointer to an array is re-
turned. We denote this by (p->)A where A is an array
of pointers. This will affect nesting and assignment;
a typical array nesting would be as follows
D=mgr$union(mgr$intersect (A,B)~+E,C)~>E
A,B,C,D,E arrays of pointers, E based
Notation
1. All upper case variables denote arrays
2. All lower case variables denote scalars
3. (p->)A indicates a pointer to an array
4. {} denotes a choice of elements contained
5. [] denotes what is contained is optional
6. "option'" denotes a character string of one to
three characters which can assume the indicated
values as 1ts characters
7. Underscored variables are character variables
Semantics

1. q § Q refer to quart pointers

2]

r § R refer to relation pointers

3. All arrays in a given expression using the GOLD
STAR calls must have a lower bound of one and
and identical upper bounds

4. Meanings of options are:

F

f

delete first argument when done (RSM)

S delete second argument when done (RSM)

5.

-90-

—
]

insert item being referred to (DSM)

o
H

delete item being referred to (DSM)

(I overrides D)

1,2,....,9 = use this column of the quarts
supplied as input (see get data§successor_data)
(DSM)

E = treat first argument exactly as if it were
expand_quart(argl) -- this is an efficiency

feature (DSM)

Only one DSM or RSM can be used per operation.
This means that the RSM or DSM dictated must be
the same for all elements of the arrays which
determine the DSM or RSM to be used.
Non-existent optional arguments are the same as

if NULL were specified.

New Relations

Since an operation producing a relation (or a group

of relations) must create new segments to hold these

relations, the following procedure is followed to

handie naming:

1.

If F option is specified, the new relation is
given the name of the one to be deleted.
Otherwise, the console is queried. This policy
is changeable if the need arises for another

approach to this case.

91
Error Handling
This is handled by a system program called GS _error.
The user will receive a message of the form:

Error xxx Internal opcode was y
followed by two pointers, a name and pointer, or two
names of interest (their meaning depends on the error
code xxx) followed by an error message. Y is the
internal code for the operation in progress and 1is
indicated with each call description. Depending on
the call form to GS_error, the user may be given the
opportunity to return and continue from where the
error occurred. The nature of the results will de-
pend on the error incurred. Appendix G describes
GS error in greater detail. All error messages are

th line being

stored in GS _err messages with the k
the message for error number k.
The reader is referred to the PL/1 code listings of the
manager which include all of the PL/1 structures used by
the system (see Appendix F), and to Appendix E, which con-
tains the important PL/1 structures in an annotated form.
The operations are classed into six groups. They are:
1. Pure set theoretic -- those outlined in Chapter III,
section 1.

2. Ordered set theoretic -- those considered in Chapter

ITI, section 2.

-92-
3. Structural utilities -- for conversion to and from
quarts and relations, and to and from scalar quarts
and arrays of quarts.
4. ENT utilities -- for examination and manipulation
of the ENT's.
5. Token creation and maintenance -- the creation and
examination of reference numbers in data areas.
6. System Utilities -- for the creation, initiation
and deletion of data areas and relations.
Finally, the reader is referred to Appendix H which
describes a useful debugging aid, and to Appendix I which
contains simple examples of many of the operations per-

formed on quarts.

-93-

Pure Set Theoretic Operations
union (un=abbreviation recognized) (U=internal opcode)
q=mgr$un(q[,{}}]1[,option])
r=mgr$un(r[,{g}][,option])
(p->)Q=mgrsun(Q[,{3}1[,option])
(p->)R=mgr$un(R[,{g}][,option])
options: F,S

This is the set theoretic union of the two arguments.
A null second argument is interpreted as empty; i.e. it
produces a copy of the first argument.
intersect (in) (I)
Forms as in union
This is the set theoretic intersection of the two ar-
guments. A null second argument produces a quart identical
to the first except with no elements.
difference (di) (D)
Forms as in union
This is the set theoretic difference of the two argu-
ments. A null second argument produces a copy of the first
argument.
cart_prod (cp) (X)
Forms as in union
This produces the cartesian product of the two argu-

ments. The result contains a column for every column in

-94-

the inputs, with a tuple for every possible concatenation

of each of the input tuples. For example,

a b c d a b ¢ d

1 11 21 31 1 11 21 31
X =

2 12 22 32 1 11 22 32

2 12 21 31
2 12 22 32

A null second argument produces a copy of the first.

compose

(co) (C)

q=mgr$co(al,{]}1[,eqp] [,option])

r=mgr$co(r[, {{}]1[,eqp] [,option])

(p->)Q=mgr$co(Ql,{331[,EQP] [,option])

(p->)R=mgr§co(R[, {3}][,EQP] [,option])

options: F,S

The composition is performed in the following way:

1.

If there is an equivalence vector (pointed to by

eqp) it must be of the form

eqp -> width name(l) name(2) name(width)

where width=sum of the orders of the inputs.
Bindings are then made between the names in the
equivalence vector (neq's) and the CENT's in a

sequential fashion. For an example, take

-9§5-
input 1 + a b input 2 » ¢ d eqp * 4 w x vy z

then the bindings are a-w, b-x, c-y, d-3. An "§&"
(ampersand) in the equivalence vector causes a CENT
to be bound to itself. eqp - 4 w § y & above would
produce bindings a-w, b-b, c-y, d-d. A null pointer
for an equivalence vector has the same effect as if
the vector were all ampersands.

2. The resulting quart (or relation) will consist of
one column (conceptually, in the relation's case)

for each unique, non-blank neq. For example

eqp * 4 wXxy:z produces WXY Z
eqp * 4 w x w z produces W X Z
eqp * 4 w "" w z produces W 2z

3. A TENT in the result is produced from a TENT from
each of the inputs such that

a. All input columns with identical bindings have
an equal refno (which goes into the resulting
column headed by the binding's name).

b. When the above holds true, other columns from
the result are filled from the other input
columns bound uniquely to the result column's
name.

c. Columns bound to blank names are ignored. For

example, given

-97-

produce the two lines Jones 33 Maple 783-8001 Ford and
Jones 33 Maple 783-8001 Chevy. Had there been no listing
for Jones 33 Maple in either of the directories, the result
would not include him.
project (pr) (0)

q=mgr$pr(q,eqp[,option])

r=mgripr(r,eqp[,option])
(p->)Q-mgr$pr (Q,EQP [,option])
(p->)R=mgr$pr (R,EQP[,0option])

options: F

This projects out all columns whose name in the equiv-
alence vector is blank. The width of the vector must be
equal to the order of the input, and the values in the equiv-
alence vector replace the original CENT's in the result.

For example

a b ¢ eqp I xy " " X Y
1 11 21 1 11
1 11 22 yields 3 13
3 13 23

Note that after a column is removed, any duplications in
TENT's are deleted to a single entry. The ampersand may
be used to indicate that the CENT for that column is to

be unchanged.

-98-

Ordered Set Theoretic Operations
sort (so) (S)

Forms as in union

This sorts the first input with respect to the order
of the ENT of the second input. Both inputs must contain
the same ENT elements, unless the second input is null, in
which case the first input is sorted without change in ENT
ordering. Note that the effect of sorting according to an

equivalence vector can be had by saying

q=mgr¥so(q',mgréme(q’',eqp))

where eqp points to a vector containing the ENT elements
of q' in the desired order (see modify ent later on).

successor_relation (sr) (P)

q=mgr$sr ({1} [,q] [,option])
(p->)Q=mgr$sr({g}[,Q][,OPtion])

options. F,S

This produces the TENT in the first argument which is
immediately greater than (in the lexicographic sense) the
first TENT in the second input. If the second arg is null
or non-existent, the first TENT in the first argument is
returned. If there is no successor, a zero-length quart
is returned. For example,

given first input

[
|o*
e}

'
aroauces

i
[Sa]

'

|

-100-

Structural Utilities

convert _to q (cq) (Q)
q=mgr$cq({¥}[,option])
(p->)Q=mgr$cq({%}[,0ption])
options: F
The first argument is converted to a quart.
convert to r (cr) (R)
r=mgr$cr({2},r[,option])
(p->)R=mgr$cr ({},R[,option])
options: F
This converts the first input to a relation with

respect to the RSM used for the second input.

expand quart (eq) (T)

Q=mgr$eq(q)

This converts a quart of length n into an array of n
length 1 quarts.

squash array (sa) (T)

q=mgrisa(Q)

This converts an array of quarts (with identical ENT's)
into a single quart. Duplications in TENT's are not deleted,
but the result is sorted. Care should be exercised not to
allow duplications to hinder proper operation (the duplica-

tions can be removed by projecting without removing any

-101-

columns:

aEmersprinors-ai 0 egqpl (with appropriate equivalence

N

vector)

-102-
ENT Utilities
get ent (ge) (E)

eqp=mgrige ({1})
EQP=mgr$ge({g})

This returns an equivalence vector containing the CENT
portions of the input.

modify ent (me) (M)

gq=mgr$me (q,eqp)
r=mgr$me (r,eqp)
(p->)Q=mgréme (Q, EQP)
(p->)R=mgr$me (R,EQP)

This changes the CENT portions of the input to the
contents of the equivalence vector. The returned pointers
are the same as the input. Ampersand (§) may be used.

clear_ent (ce) (Z)

gq=mgrice(q)
r=mgr$ce(r)
(p->)Q=mgr$ce(Q)
(p->)R=mgr$ce (R)
This clears to NULL the PENT portions of the input and

returns the input pointer.

~103-
Token Operations

At this point, it is well to point out a practical
consideration which necessitates distinguishing a CENT
element from a data type. It is possible that one would
desire a relation such as employee-employer; but in this
case, the reference numbers for employees and employers
could refer to the same data type, namely personnel or
name. To allow for the case where two CENT entries must
be distinct, yet refer to the same data-type (and associated
data area), the following convention is adopted: for all
relational operations (RSM), the entire CENT is used; for
all token operations (DSM) only the first four characters
are used. Hence, we could have the relation name_employee-
name_employer with both columns refering to the same data
type ''mame'.

By way of explaining the PENT, let us first note that
when a CENT is used by a DSM to indicate a data type (by its
first four characters), this character name is associated
to the data area by a pointer variable. This pointer is
then stored in the PENT linked to the CENT in question.
Then, in future recferences to the quart in question, the
PENT's which are non-null can be used directly without
incurring the overhead of translating the first four charac-
ters of the CENT into a pointer to the data area.

A final note: 1in discussing the following operations,

q' will refer to the special case of an order one length

-104-
one quart. So, we will be talking about the CENT and the

TENT of a singleton quart.
get refno (gr) (R)

q'=mgr$gr(d,{3§§9}[,sptr][,9331[,option])
(p->)Q'=mgr$gr(D,{£§gg}[,5ptr][,gggl[,OPtion])
options: D,I

d is a pointer to a raw data item such as string or
an integer. This operation takes a data item and returns
a singleton quart with the item's reference number. The
data area used is determined by its name, type, or by a
pointer to it (which is more efficient), dp(which can be
obtained via MULTICS hcs_$make ptr routine or by the new_
data_type operation outlined in group six). The resultant
CENT is type unless ent is specified, in which case that is
put in. If an item is not in the data area, and I is not
specified, a zero-length quart is produced; if I is speci-
fied, the item is inserted, and the new reference number
returned. With D option, the refno is returned despite the
item's being deleted. sptr is an optional argument provided
for certain DSM's where the user must indicate after which
item an insertion is to be made; it is a pointer to another
data 1tem.
get data (gd) (D)

d=mgr$gd(q[,type] [,option])

-105-
(p->)D=mgr$gd(Q[,typel[,option])
options: D,E,1,2,...9
This converts a reference number to a raw data item.
The data area to be used is determined by type if specified;
otherwise it is determined as indicated in the preface of

th CENT, where n is the number option

this group from the n
specified (1 is the default). Basically the number option
permits the user to choose which column of the quart to use.

th colunn.

The refno used is then the first in the n
The E option permits an entire column to be operated

upon since

(p->)D=mgr$gd(q,"E")=mgr§gd(mgreq(q))

The E option is much more efficient, however. Finally,

even if the D option is specified, the item is returned,

but then deleted; references to non-existent items yield

a result of NULL.

successor_data (sd) (S)

q'=mgr$sd(q[,type][,ent][,option])

(p->)Q'=mgr$sd(Q[,typel[,ent][,option])

options: D,E,1,2,...9
The reference number and data area to be used are
determined exactly as in get data, using the column number
option, and CENT conversion. Waht is returned is a single-
ton quart (with ent for its CENT if specified, else type)
containing the reference number of the item which is 'next"

after the input refno. The order on the data is determined

-106-

by the DSM, but reference numbers are always assigned such
that numerical order is kept by the order on the data.

Hence, successor data returns the next greatest refno which

is included in the data area; the input refno need not be

included in the data area itself. D options causes the
deletion of the item whose successor was found, if there
was one, not the successor itself. Finally, a null input
or zero refno returns the first refno in the area, while
if no successor exists (the input is greater than or equal
to the last refno in the area), a zero-length quart is

returned.

-107-

System Utilities
initiate relation (ir) (Z)

r=mgr$ir (name)

This intiates the relation ''name'" and clears the PENT
portions of the relation (this is necessary since each new
process invalidates all stored pointers by virtue of the
new segment numbers assigned).
new_relation (nr) (N)

r=mgr$nr(name,r)

This creates a new relation by the name ''name', and
assigns to it the same RSM as the second input.
new_data type (nd) (N)

dp=mgr$nd (type,DSM)

This creates a new data type "type' (which must be a
name 4 characters in length) and assigns to it the DSM
named "DSM'". dp is a pointer to the new data area.
kill data type (kd) (K)

- q
NULL~mgr$kd({t e})

This deletes the data type '"type", if that is given,
or deletes the data type associated with the first ENT
clement of the input quart, if that is given. (See preface

to group 5.)

-108-

2. Programming Considerations and Specifics
The user is referred to Appendices E and F for the

system structures which serve as interfaces, and for the

code of currently existent modules.
Special Functions of the Manager
The manager serves to make the rigid calling sequence
enforced by PL/1 less of a problem. In the formal
language, it is not possible to omit arguments, or to
have a choice of the form (pointer, string, etc.) of a
given argument. For example, the call to kill data_
type could not be handled by the standard PL/1 facili-
ties (it takes either a pointer or string). The mana-
ger overcomes this problem using a utility which ob-
tains for the program a pointer to the arguments, but
makes no interpretation (see cu_ in Multics Manual).
The arguments are then treated, on a machine dependent
basis, by code designed to test for argument types as
well as contents. This code then permits the user to
be free with his form and receive a diagnosis of trouble
from GOLD STAR (rather than from MULTICS) which is more
specific in its messages.
The manager also serves a number of other vital needs.
It contains all of the machine dependent code (except-
ing area considerations, which are mentioned later).

Segment and name-space management are handled by the

-110-

Arrays and Calls

In MULTICS, the call and return sequence 1s relatively
expensive, often taking the same time as fifty or more
machine instructions. To minimize this overhead, GOLD
STAR is designed to deal in arrays of pointers as well
as in pointers alone. By this vehicle, the user can
achieve the effect of iterative calls by passing instead
whole arrays. The system routines then iterate within
themselves, saving the need to iterate upon the calling
sequence. Hence, the entire system is designed to
effectively minimize the number of calls. Hence we
find that the following two calling sequences are
identical in effect.

dcl (A,B,C) (n)pointer;

dcl D (n) pointer based (x);

A=mg;$un(B,C)+D;
is the same as

dcl (A,B,C) (n)pointer;

do i=1.to n;

A(1)=mgr$un(B(i),C(i));

end;

The second is less efficient due to call overhead.
Paging

Care must be taken that a minimum number of pages are

requested in a limited period of time. Otherwise,

-111-

excessive waiting for pages will ensue. Basically,
only two remedies are available: 1limit code as much
as possible to linear flow without external calls,
and localize external references to a given page.

The modular construction of GOLD STAR lends itself to
these restrictions; most modules have approximately
linear flow, and during a given task, usually only a
strategy module, a data area (or relation segment),
and the free free segment (dynamic allocations) are
needed. There is virtually no intercommunication
needed among the various system components other than
in a simple linear transfer of control.

Frequent Trouble Spots

One of the most troublesome errors to encounter 1is
that that of passing around erroneous pointers. The
system takes care not to permit null pointers to be
transmitted where they are going to cause a MULTICS
error. The user must be very careful not to use
uninitialized or incorrectly set pointers, as they
can causc disaster.

GOLD STAR makes cxtensive use of allocations, and, in
fact, returns all values in based allocations. The
user should beware of filling up this free_free area;
the system cleans up where possible, but cannot do so

in some cases. For instance, when a pointer to an

-112-

array of results is returned, that array must be

freed by the user to clean up properly (single returns
are handled by the system).

Dynamic Storage

GOLD STAR is suitable for manipulation of large aggre-
gations of data. At any one time, however, only a
small portion of the collection need be accessible

to user and system programs. In addition, GOLD STAR
utilizes a certain amount of ephemeral storage in the
form of QUARTS. 1In order to reduce the amount of
storage required at any one time the free storage
facilities of PL/1 are frequently invoked. Thus QUARTS
and some character strings exist only as long as a user
deems necessary.

In addition to those instances where ephermal data is
used, data-reference number bindings are stored in a
PL/1 accessible AREA. This feature, also used by

RSM Q, allows effective management of data which is
dynamic in nature, without explicit storage management

by the user.

-115-

/* grade list contains: 'semester'", ''subject number",

"letter_grade', "student_ name" */

compose ptr=mgr§cart prod(mgr§cart_prod(
mgr$get refno(F _ptr,"letter_grade'"),
mgr$get refno(subj ptr,"subject_number)),

mgr§get refno(term ptr,"semester'));

/* this forms an order 3 quart with the CENT's '"letter_

grade', 'subject number", and '"semester" */

fi_ptr=mgr$compose (compose ptr,fi ptr);

failed ptr=mgr$project(fi ptr,addr(names));
/* now get addresses of the names already obtained x/

fi ptr=mgr$initiate relation("student directory");
fi_ptr=mgr$compose(fi_ptr,failed ptr);

call labels (fi _ptr);

return;

end;

-116-

AUTIHIOR COMMENTARY -- L. ALAN KRANING
ASPECTS OF THE MODEL

The development of any large system must presume that
certain trade-offs will be made during the implementation
phases, but there are certain pre-implementation and pre-
development considerations that have far more significant
impact than the actual generation of a working system.
First of all, the needs which motivated the design of the
system must be considered in detail. The GOLD STAR system
is suitable for administrative data management needs for a
university such as M.I.T., but it is not at all obvious
how well such a system would perform in other environments
where the decision structure were different. Second, de-
spite the generality of set theory, the GOLD STAR model
presented in Chapter II reflects my biases, the biases of
my thesis partner, and biases of those who will use the

system about the nature of relatedness. An exact defini-

tion of '"a is related to b" is difficult to produce without
using words as nebulous as ''related'". What do we mean when
we say that "John" is related to '"Dodge"? Difficulties in
this area -- especially in determining what relations are
and are not properly included within a data-base -- ultimately
determine the utility of our model.

The naturc and degree of trade-offs in GOLD STAR revolve

about some conflict between the unordered nature of sets and

-117-
the ordering of storage in computers. Retrieval of ele-
ments from sets is not well specified, but since sets and
operations on them are abstract, this is not severe.
However, in an environment where sets must be represented
as bit strings in a totally ordered memory, we must specify
an algorithm for retrieval of any item, as well as speci-
fying its representation. Large scale associative memories
would aid in representation of sets, but current technology
and economics of implementation now preclude such a situa-
tion.

The quart construction saves storage space by ''fac-
toring'" the data type names out of a relation. However,
many to one relations such as the name-friend relation
would replicate many data elements when considered as a
quart. While the quart imposes ordering implicitly by
storage address, it suffers the same malady of other data
structures: retrieval of information must somewhere take
into account an immutable order on memory. The notions of
dynamic storage management and pointer data elements allev-
iate part of this burden, but only at execution time. The
programmer must completely specify, or accept someone else's

specification, for a mapping between sets and storage cells.

-118-
AUTHOR COMMENTARY -- ANDREW FILLAT
ASPECTS OF THE IMPLEMENTATION

There is a distinct dichotomy of feelings which accom-
pany the birth and early life of GOLD STAR.

On the positive side is the most important feature of
all: the framework of the system; once truly familiar to
a user, it is one that reduces many exceedingly difficult
data problems to amazingly short and simple algorithms.

It was, in fact, hard to come up with a non-trivial example
(at least from the coding standpoint).

In addition, on the positive side, is the vast open
space that GOLD STAR can expand to. As special data hand-
ling needs arise, new strategy modules can be written to
increase efficiency, without ever redesigning the options
which use the system.

The apprehensions are attributable in great part to my
inherent skepticism. There are many nagging doubts at this
point of how marketable the entire MULTICS system really is.
GOLD STAR, though not designed for MULTICS alone, depends
upon its host for many of its nicest features and conveni-
ences. It seems a loss to create a one-of-a-kind system,
even if it becomes an integral part of the installation.

The issuc of efficiency is also a nagging one. There
is no way to my knowledge that one can test the design of

a module under heavy loads until enough of the entire system

-119-
is available to create such a load. Hence, there is little
way to elicit the performance of the system under production
conditions. Although indications to date are excellent, it
somehow sits uneasily upon me to be forced to design such a
complex entity as GOLD STAR so empirically.

My final and I think most serious doubt is the possible
"understanding gap'. After conceiving, creating, and devel-
oping GOLD STAR in collaboration with the co-author, the
system has become a perspective on my thinking. It is dis-
turbing to realize how difficult it is for a detached but
interested party to conceive of the system or his problem
in light of the system. It is my hope that the systematic
(albeit untested) approach presented through this disserta-
tion will allow a user to become familiar with our set the-
oretic conception of data.

Finally, I would hope that a wide range of users would
be willing to tackle the job of learning about GOLD STAR.

I am convinced that the entire administration of M.I.T.
could use GOLD STAR to handle virtually every part of 1its
problems and assignments. It is my hope that these other

pcople will sce the tremendous value in our system.

-120-

APPENDIX A
A LEMMA ON THE NESTING OF PROJECTIONS

Lemma 1. ﬂAﬂBR(X) = nAnBR(x) = anAR(x)

Proof:
if X = domUR(x) then by the definition of

projection in (3-8)

mgR(x) = {f:XﬂB+ND | (3g)(geR(x) & f<g)}
Thus,

maATgR(X) = {h:Aﬂ(XﬂB)+ND | (3g) (geR(x) &h =g)1}
But

AN(XNB) = XN(ANB) = XN (BNA)
So

TATgR(X) = WaqpR(X) = mpm,R(X)

Q.E.D.

-121-

APPENDIX B

ALPHABETIC ORDER AND REFERENCE NUMBERS

Data types ordered by alphabetic sequence will usually
be large in size, typically of the order of 10l or greater.
Many types will be highly active in numbers of insertions
and deletions. The large size of any data type poses no
significant barriers if the number of bits composing a
reference number is sufficiently great; the MULTICS imple-
mentation of GOLD STAR uses a 35 bit reference number,

34 01 =217.8

which limits the size of any data type to 2
billion data elements. The ability to insert and delete
items with impunity is more problematic. Insertion of an
item requires sparseness among reference numbers if well
ordering is to be maintained. Furthermore, when either
inserting or deleting an item, it is of utmost importance
that previous string-reference number bindings remain un-
affected. Alteration of any binding necessitates a sub-
sequent search and modification of all relational structures
where the binding was assumed valid; in large data bases this
process becomes prohibitively expensive if frequently per-
formed.

Onc strategy which adequately serves the needs of dy-
namic binding is the binary tree concept outlined in Chapter
4. The illustration in Figure B-1 extends the tree dis-

cussed in Chapter 4. Inside each node above the data element

N\
00100 5‘3

Figure B-1:

The "names'" Data Area

Azra
1
10000 =
4 \
A //
[0] / [1IA
Claude / Mllqoﬁ
71 /
01000, = 8 1]000/- 24\
f oy
Fo '
I
Iy (01} [QO]
1 | Doug George I
| 7 <
v 01100/= 12 10100 =29\ 11100
‘ 4 ‘\ /
¥ ‘ ! N
[{001)] ‘ [/ Sequence {101]
Andy | D ! of Entry Hiram
~ / Ezra
1 S
00110 = 6 |/ 01010 =10\ / Claude 10110 = 22
) 4% \ ! Doug
, Milton
[0100] [OIOP] Tom
Dan Donald Dave
Donald
01001 = 9 01011 = 11 George
Dan
Alan
Hiram
Andy

Level d
[=4]

Level d-1
[=3]

Level d-2

(=2]

Level 4-3

[=1]

Level d-4

[=0]

-ZZ1-

-123-

name is a bit string which, when read left to right, indi-
cates the left and right turns required to reach an item

in the tree. For example, to reach the root node, no turns
are required, and to reach '"Donald" turns to the left,
right, left and right (0101) are called for. Two problems
prevent direct usage of these "path trace' numbers as
reference numbers. First, since all reference numbers are
36 bits long, the '"path trace' numbers 00, 0, 000, and 0000
would be indistinguishable, as would be the set 101, 1010,
101000000, and 10100. Second, the bit strings serving as
path trace numbers do not preserve the well ordering among
the data elements. For example '"'George' lexicographically

precedes ''Milton'", yet path trace = 10 is greater

George

than path_trace 1. Uniqueness of reference numbers

Milton
and preservation of order will both prevail if we adopt the

following schema:

Assume that a word of storage identifies bit positions

as below:
most significant least
L bit (msb) 1 significant
[SN] bit (1Sb)
fn 210
sign bit

th

Without loss of generality, we let the i bit position

i=n-1, n-2, ...3, 2, 1 hold the flag, 0 or 1, for

left and right turns respectively to be taken once we

ith

reach the level of the tree. Note that a tree of

-124-

maximum depth n will require n bits for representation

of path trace numbers.

Assume that the first 1 bit starting from the right
indicates that all bits to its left are significant
in a path trace. Thus the path left-left-right-left-
right would result in a path trace 00101 and a refer-

ence number

path trace number

l490101190000000000000000000000000000]
]

d
signT L<«— path trace flag

Figure B-1 shows reference numbers below each node
both in binary and decial. Thus if a data item is

found at depth k of a tree, its reference number can
d .

be expressed as (& aizl) + 2kl
i=k .

i= k,k+1,...d. (2! in binary is represented as

with a; = 0 or 1 for

a 1 bit in position i, if the bits are labeled as dis-
cussed above.) To compute a reference number from a
string, we set 1 = d, and then compare the given string
with the root datum. If equal, the reference number

is 27. 1f the given string is less than the root, the
reference number 1is 0-2i + the reference number ob-
tained by 1) changing the ''search' node to the root's
left descendant, and 2) reducing i by 1. An analagous
procedure applies to the right. If the given item is

greater than the root node, then its reference number

-125-

is 1-2' + the reference number obtained by 1) changing
the "secarch" node to the right descendant, and 2) re-

ducing i by 1.
Notice that at each step of the search, reduction of

the value of i will ensure ref#(a) < ref#(b) «> a < b.

Overflow of the Binary Tree
Figure B~ 1 illustrates a tree structure resulting

from one of many possible input sequences for the data type

"names'. Although the tree is not optimal, i.e., all nodes
in which both descendants are missing lie on either level i
or i + 1, fine bits are sufficient to contain all reference
numbers. What happens, however, if we attempt to insert the
item "Cyrus"? If we descend the tree searching for an in-
sertion position, this item would logically be the left
descendant of "Dan'"; however, such an insertion cannot be
made with a five bit reference number; hence we must restruc-

[AL] algor-

ture the tree before inserting '"Cyrus'. The Ness
ithm for restructuring trees to optimum depth yields the
form in Figure B-2. The restructuring process destroys

the cntire set of old bindings; to retain the viability of
relations and quarts in which the original bindings parti-
cipated, a quart is produced, relating new and old reference
numbers for each member of the data type. At restructure

time, the user is informed of tree overflow, and the exis-

tence of the new-old-refno quart. He then performs composi-

16

A
Donald
/|
/)
S
8 // * 24
/
A | /N
Claude / |
! / i
I / Y
\ L / |
3 4 ro A12 |
N\] / \ / 1
N ! \ /
Alan A x Dave]
\ i \ / 1
N 6! 10 v
\ \ / t /
3 vy, vy
Andy_ Dan Doug
u \/
Sequence of Entry:
Donald
ﬁ}aude Quart for
Airam Restructure
D an of Relations
Eave Involving
ira "names" data
Milton type-
Andy
Dan
Doug
George
Tom

Figure B-2: Restructured

'"'names' Data Area

30
old new

4 4

6 6

8 8 ,
9 10 -
10 12 o
11 16 '
12 18

16 20

20 22

22 24

24 28

28 30

-127-
tion of this quart with the necessary relations. The tree
overflow problem will in practice arise very infrequently;
however when overflow does occur, it is mandatory that

recovery procedures by operable.

Randomizing The Input Sequence for dsm_astring

Referring to Figures B-1 and B-2 we note that the
particular organization of that tree depends to some extent
upon the sequence in which data elements are entered. In
particular, if we insert a large number of data elements
which are input in alphabetic order, then the tree will
quickly overflow. Alleviation of this problem is accom-
plished by scrambling large sets of input data prior to the

binding process.

-128-

APPENDIX C

A FORMAL SYNTAX FOR A PARSER

<Regular Expression>=::<EXP1>/<NUMERIC EXP><VARIABLE>

<EXP1>=::<EXP2>|<EXP2><0OR><EXP1>

<EXP2>=::<EXP3>|<EXP3><EXP2>

<EXP3>=::<PEXP4>|<PEXP4>*

<PLXP4>=::"<literal>"|§|?]|!].|<|>]| "<PEXP4>|

(<Regular Expression>)

<NUMERIC EXP>=::<NUMERIC EXP1>|<NUMERIC EXP1><OR>

<NUMERIC EXP>

<NUMERIC EXP1>=::<NUMERIC EXP2>|<NUMERIC EXP2><NUMERIC EXP1>

<NUMERIC EXP2>=::<NUMERIC EXP3>|<NUMERIC EXP3>+|

<NUMERIC EXP3>-

<NUMERIC EXP3>=::<digit strings>

<VARTABLE>=::<character strings>

definitions: <OR>Z|

$

?

<

>

11

It

1

any digit

any upper case character
any lower case character
anything

left anchor

right anchor

Note: any special character appearing twice in succession

is intcrpreted as one of itself.

-129-
APPENDIX D

PROTECTION ON MULTICS

1. The Basic Concepts

Each segment in MULTICS possesses an access control list
(ACL) which lists all processes which may access that segment,
and the restrictions on that access. There also exists a com-
mon access control list for each process (CACL) which can be
viewed as simply an ACL common to all of a user's segments.
The possible forms of access are read (R), write (W), execute
(E), and append (A), or no access (this appears as 21 blank in
the ACL but will be signified by either - or X). It should be
noted that by process, what is meant is a thread of control;
i.e., no matter who the segments '"belong to'", a series of calls,
returns, and execution represents the thread of control of a
process. It is important to note the ACL discriminates by this
process concept.

As well as an REWA attribute, each process listed in the
ACL possesses a ring bracket, of the form a:b:c. This ring
bracket specities the action the supervisor will take upon a
call from this listed process depending on which ring the
calling process is in. The general concept of rings is merely
an cxtension of the two state system to 64 states; operations
permissible (in this case, by operations we mean access and
calls) grow progressively more restricted as we move out from
ring 0 to ring 63. Part 3 is a discussion of how rings work,

and the following diagram should indicate how rings serve an

-130-
analogous purposc to states.

Ring bracket listed
in called segment a : b : C
for calling process

Calling process Cal _ _ _
in ring 0-(a-1) a-b (b+1)-c (c*1)-63
Effect of a call: Legal Legal Legal 1if Illegal
New Ring=a Ring call is to
Unchanged "gate"
New Ring=b

Effect of non-

call access: Illegal Legal Illegal I1llegal
This is all subject to the REWA permission listed for the
calling process. In words, the essence of this ring bracket
is as follows: if the calling segment is in the first speci-
fied range (a to b), then all forms of access are legal, and
no ring changes occur; if the calling segment is in the second
range (b+1 to c), only a call is permitted, and this generates
a ""gate crossing fault'" (the fault is analogous to the excep-
tion generated when a problem state program makes a call on
the supervisor; entry to the more privileged routine must be

at specified places, or ''gates'"); if the calling segment is

in thc low outside range (less than a), only a call is per-
mitted, and an "attempt to execute data fault" is generated
(the name is misleading as Part 3 indicates , but the
situation is analogous to a supervisor calling a problem
program-care must be taken to allow the less privileged called
program only the arguments passed to it, and not to allow any

access to the calling programs' more privileged data); if the

-131-
calling segment is in the high outside range (greater than c),

no access 1is allowed.

This gate scheme has distinct advantages over a simple
two state system. First, by using ring 0 for the supervisor,
the HCS can be fully protected from undesired access by speci-
fying a ring bracket of 0:0:1 (i any other ring) for all pro-
cesses. Yet, under this view, the HCS becomes merely a copy
of code available to everyone; system processes (usually
called daemons) can run in any ring, and still have full
access to the HCS if its process is permitted from any ring,
without allowing other users unrestricted access. The second
major advantage is almost a corollary to the first; by writing
a sub-system in ring i, any user can possess supervisor type
privileges over his system by having his users in ring i+l.
The logical consistency of this plan is clear: the HCS is to
its sub-systems as the sub-system is to its users. Since each
user can itself be a sub-system, the uniformity of this scheme
1s fantastic. The ability to assign access on a per process
basis, combined with the refined and extended system of states
-- the rings -- leads to a computer system which is virtually
tailored to the sub-system writer as well as the average,
albeit necessarily skilled, user.

There 1is one major limitation upon the flexibility of the
ring system. I shall call this the "ring uniqueness limita-
tion'". The name describes the fact that if a user has privi-

lege to some ring, then there is no way that another process

-132-

with the same ring privilege can permit access to the first
process on a subordinate basis. For example, if Jones has a
sub-system in ring 3 (his users run in ring 4), and Smith has
ring 3 permission, then Jones must make the all-or-nothing
choice of whether to give Smith unrestricted access or no
access at all. This situation is clearly one that does arise
on any large system like MULTICS, where there would be much

demand for equal and independent sub-system space.

2., Eliminating The Ring Uniqueness Limitation

Eliminating the aforementioned limitation is clearly a
useful and advantageous goal to adopt, at least from a theo-
retical aspect. What would result would be a totally control-
lable environment of sharing, where the level of privacy could
range from zero to total. There is, however, a serious ques-
tion of whether any scheme could both remove the restriction
and not cost dearly in overhead.

Three different schemes arec presented which, through
different approaches, would eliminate the MULTICS restriction.
These ideas are the creation of non-concentric rings, the use
of procedure as well as process access control, and the effect-
ing of a trap mode of access. It is not possible for the
author to make detailed analysis of the implementations or the
overheads, for simple lack of facts; however, general assess-
ments based on a knowledge of the system overview and the ring

system will be made.

) -133-
A. Non-concentric Rings

The idea of non-concentric rings is a reasonably simple
conceptual extension of the current ring system. A diagramatic

presentation would be the best introduction.

CNRRENT
MLTICS

NON- (ANCENTRIC RINGS

The non-concentric rings (NCR's) would effectively define what
might be called a '"sub-system context'". The advantageous fea-
ture of this system would be that a user might have ring 3
permission in his own sub-system context, and have only ring 5
permission in another such context. The NCR's would isolate
sub-systems into their own branch of the tree, and would even
define independent scopes of authority on the higher level
rings. The NCR's permit allotment of sufficient privilege
without the allocation of over-sufficient permission.

A major problem would certainly be the excessive space
requircd to store information about ring status. In its full
cxtension, NCR's would have a theoretically infinite number
of subrings at cvery level. A practical solution, which is
not especially costly in a theoretical sense, is to have a
binary tree structure for the ring system. There would be

one ring 0, two ring 1's, four ring 2's, and so on. Under

-134-
this plan, a process' place on the ring tree could be deter-

mined using n+l bits, where n is the number of levels in the

tree (the one extra bit would be used as a flag to mark the

end of significance in the left to right scan of the binary

bit string). The following diagram indicates the binary for-

mat employed. Note that the binary method places a restriction
on the operations staff: sub-systems must be placed on a low
enough level to permit space enough for all the co-equal systems.
In practice, ring 6, 7, or 8 would be the likely location for

the average sub-system (thus permitting 64, 128, or 256 sub-

systems).
Tree Structure of Rings
Ring level 0 11000.....
Ring level 1 11100....1A {Q}OO....IB
Ring 111100...2AA”'fib£datjj£AB 101100...2BA 100100....2BB
level 2

There is another major problem involved with the use of
the NCR's. That is, how do we determine faults? Clearly,
there are two types of faults (disregarding the distinction
between upward and downward): the standard type -- as from
2AA to 1A -- and a tree-crossing fault -- as from 2ZAA to 1B,
the dotted line. The standard upward and downward faults are
casily determined by being on connected branches -- simple up
or down movement on the tree -- and would be handled exactly

as in MULTICS. The tree-crossing fault presents a problem:

-135-
if we allow faulted access to gates across the tree, we Tun
into tremendous problems specifying what corresponds to a
ring bracket. A variable length list would be needed for each
entry in the ACL specifying from which branches of the tree a
process could call from. Another problem: how does the system
distinguish between the faults?

A possible solution to these problems might be to not
allow cross-tree access at all. Then, the system could search
for rings by simply following the branches of the tree. A
cross-tree access would be detected if the system has to change
direction in its tree search; i.e., if the tree search required
going up and then down branches. Ring brackets would remain
unchanged, and would only refer to the branches of the tree
reachable without a cross-tree fault arising. For example,

a segment would be specified with brackets 1like 1A:2:3; this
would permit access unrestricted from 1A,2AA, and 2AB, and
faulted access from rings 3AAA, 3AAB, 3ABA, and 3ABB.

But note that this solution requires one important addi-
tion to the features allowed a process: a process would have
to be able to change its current ring so as to be able to
reach all rings to which it is permitted. That is, a user
with ring 1A permission who wishes to use a system in ring 1B
must be able to change his ring to the 2BA he has been per-
mitted to by the 1B system writer. This ring changing facility
would require changes to the supervisor which would maintain

a list of permissible rings for each process (currently, this

-136-

list has only one entry). Facility for users to grant appro-
priate permissions would also have to be added, with appro-
priate safeguards, such as another list for acceptable ranges
into which permission might be granted.

The system of non-concentric rings is conceptually the
most rigorous solution to the ring uniqueness limitation of
MULTICS. In its ideal form, with cross-tree faults being
trcated analogously to regular faults by use of an expanded
ACL, the system should be easy to use, albeit difficult to
implement. In the modified form, with cross-tree reference
allowed only by a conscious change of rings, use would be more
complicated, but implementation possibly easier. In any form,
this system would be difficult to implement, and might not
prove the best way to overcome the restriction of ring unique-

ness despite 1ts conceptual advantage.

B. Procedure and Process Oriented Access Control

The principle involved with this method of overcoming the
ring uniqueness limitation 1s a very simple one. As well as
specifying what processes may access a given scgment, a user
could also specify from what procedures (segments) these pro-
cesses could issue the calls. A sample version of the current
and extended ACL's might show how such a specification would

appear.

Current Form

Multics.Jones.* RE 1:1:8

Admin.Smith REWA 1:6:63

-137-

Extended Form

Multics.Jones.* System.Andy RE 1:1:8
Admin.Smith Exec.* REWA 1:6:63

What this form of extension does is to specify from what
procedure a process must make a call to be permitted. In
the example, only if Smith of the Admin project were calling
from a segment named Exec.something would he be allowed
access.

The above scheme does circumvent the ring uniqueness
restriction by allowing a sub-system writer to specify that
his segments are callable only by other segments of his sys-
tem. This would then prohibit other users, even those with
high enough ring permission, from accessing critical segments
on their own. As long as the dispatching segments which
could be referred to by outside programs were permitted only
to execute (and not to be modified), the integrity of the
calling sequences could be maintained.

There clearly are limitations on this type of system.
Space would certainly prove some sort of factor where it was
nccessary to specify complex lists of permitted callers.
Some degree of overhead would certainly be introduced in
checking the validity of the calling procedure. This method
would go to pot if write permission were involved at any
level. But a more fundamental problem might be the mainte-

nance of the integrity of pathnames. Although pathnames are

-138-

unique, there seems to be no assurance that a clever pro-
grammer could not pass to a called program an erroneous
pathname. If the system were to completely handle identi-
fication of calling procedures, the overhead involved in
verification might prove unworkable.

Though this plan has merit as a conceptually simple
one, it would be a hard plan to carry out effectively. Safe-
guards would be required against tampering with name conven-
tions, and proper permission specifications by users would
become more crucial and difficult to keep track of. This
scheme might, however, be the easiest to implement, at least

relative to others.

C. Trap Mode

From an efficiency of operation standpoint, the effect-
ing of a trap mode of access would be the best solution to
the ring uniqucness problem. A specification of trap mode
for a calling process would automatically invoke a trap pro-
cessing program upon issuance of a call. This trap processor
could do anything, including freeing the caller from future
traps on the same segment. In the case of ring uniqueness,
a sub-system writer could assure that the caller was in a
properly low ring by specifying trap for all calls from
rings too high (low in number). The advantage of this method
is obvious: special action is taken only on invalid refer-

ence attempts; valid access will generate a zero overhead.

-139-

The problems in implementation are considerable. They
would include such items as maintaining the integrity of the
trap procedure itself (note that if the trap procedure is run
under the calling process, the caller has permission to exe-
cute, and might find it useful to run the trap procedure
independent of any real trap). Disabling the trap for a
fixed period might also be difficult to accomplish without
loss of efficiency. In fact, though the original plans for
MULTICS included provisions for a trap ﬁode of access, com-
plications in the design forced its exclusion from the cur-
rent system.

A proposal for the inclusion of trap mode is outlined
below. To the author's knowledge, this plan is feasible,

although shortcomings in the interprocess communication

facility would make a completely tight, safe system difficult.

This shortcoming will be mentioned and considered later. A
diagram would illustrate the basic operation of the system.

The name appearing above each segment indicates its owner.

HCS Trap Daemon

Trap [~ ~~~~ User Trap
) IPC Handler
Ring 0 Processor Invoker

System Generated—

Jones Smith Smith's\yTrap Handler
Ring i :
ing i ACL - ACL :
Trap
access| Jones T Daemon RE

-141-
mine who had desired its activation. Argument passing
presents a related difficulty to the system.

The only possible solution under the current system
design is to employ an array of '"mailboxes'. These would
be segments possessed by the trap daemon, and allowed on a
one per user basis to other processes. The daemon could
then determine who had issued the IPC by checking the mail-
boxes; he could be assured that the proper process has issued
the request because only one process is permitted per mail-
box. The two potential difficulties that arise are space
requirements, and the possible confusion of sequence brought
about by the asynchronous nature of the IPC requests.

An implementation of trap mode, though not allowing as
complete a flexibility as would non-concentric rings, would
certainly provide that extra leaway of freedom to expand
upon the available sub-system capabilities. The ring
uniqueness limitation would be eliminated in an indirect
way. Those programs which require special screening due
to ring permission would experience considerable overhead,
but those permitted only to low rings (high in number)
would be unaffected by the safeguards imposed through trap
mode. Trap mode is certainly not an easy concept to imple-
ment, but it might well prove a worthwhile investment in
time and effort.

Eliminating the single big restriction of the MULTICS

protecction method is to be a virtual necessity as the size

-142-

and applicability of the system increases, and more sub-
systems come under its purview. Which of the three methods
outlined is taken, or whether another method is used is not
so crucial. It is most likely that overheads, and not theo-
retical advantage, will determine the final choice. It 1is
hard to divorce oneself from the idea that a free sharing
environment is the ideal, given the ability to totally
regulate its scope. It is this idea of a full range -- from
total privacy to total sharing -- that must be the ultimate
goal of protection design.

Just as generalization brings flexibility, it also
brings overheads and time consumed where the activity might
have been foregone. It is the ultimate futures of MULTICS-
like systems which will bring at least a statistical answer

to the trade-off at hand.

3. How Rings are Implemented in MULTICS

Associated with each process is a set of descriptor
segments, one for each ring in which the process has access
defined in the ACL by ring brackets. A schematic represen-
tation would prove useful: (x=no access; i=any ring of

higher number)

Segment name DS 0 DS 1 DS 2 DS 3 DS 4 ...DS I Bracket

in ACL
aaaa R RE X X X 1:1:1
bbbb R R RE X X 2:2:1

ccece R RE RE RE X 1:3:1

-143-

The ring of current execution is determined by which des-

criptor segment (DS) the descriptor base register points

to.

The following enumeration of cases describes how the

file system uses rings.

A.

D.

cccc calls or refers to bbbb; current ring is 2
All attempts at access are legal, as governed by the

RE permission.

bbbb calls aaaa; current ring is 2

1. no access is found in the ring 2 DS; a gate crossing
fault causes the gatekeeper to obtain control (the
gatekceper is conceptually an independent overlord)

2. gatekeeper examines DS 0-1 for E access in aaaa

3. 1f access is found, first ring in (highest number)
is used; third element of bracket is checked to
assure call is from a valid ring

4. referenced entry point is validated as a gate

5. if all is OK, DBR is loaded to point to DS 1

bbbb refers to aaaa; current ring is 2
Non-call references are illegal; the effect is the
same as accessing another segment with no permission

at all.

aaaa refers to bbbb; current ring is 1
Read is permitted; WA is permitted only if the ring
bracket of bbbb includes the current ring in the

first range (a:b).

-144-

E. aaaa calls bbbb; current ring is 1
1. since there is read permission, an attempt to
execute data fault is generated, and the gatekeeper

takes control

()
.

gatekeeper checks DS 2-63 for E access

3. first ring down with E is used; no gate is checked
for

4. DBR is reloaded to DS 2; appropriate arguments are

made available to the lower ring bbbb

There is one safeguard worth noting. The system will
not allow a ring bracket to be assigned to any segment such
that any element of the bracket specifies a ring lower in
number than the ring it is being created from (the current
ring). Thus, a user in ring 2 cannot assign 1:1:3. This
guards against a user writing a lower number ring routine,
and then transferring to it, thereby giving him higher
level privilege than he should have.

One other note: a called segment will run in the same
ring as the caller is in, unless a fault is generated; in
that latter case, the new ring will be the nearest ring

numerically to the calling ring.

-145-
APPENDIX E

SYSTEM INTERFACES

1. User to System Interface

The option writer or user of GOLD STAR needs basically
the PL/1 environment and temporary storage facilities, and
a collection of segments which he wishes to use with the
system, and which were created by it. He need have no knowl-
edge of the segments except their names, and the data types
they contain if they are relations. In the case of DSM's,
the segment name is the data-type. With RSM's, it is suggested
that the segment name reflect the data-types related (e.g.,
the relation segment 'name addr" should relate data types
"name'" and ''addr".

The user deals with GOLD STAR exclusively with pointers,
segment names, and strings (see section V-1). There 1is a
very small group of items to which these pointers refer:
quarts, relations, equivalence vectors, ''data', and data areas.
The structures are described as follows:

declare 1 quart based (quart ptr)

2 ID fixed binary (35) initial (0),

2 length fixed binary (35),

o

order fixed binary (35),
2 CENT (allocation order refer (order) character (32),
2 PENT {allocation_order refer (order) pointer,

2 TENT (allocation_length refer (length),

-146-

allocation order refer (order)) fixed binary (35);
declare 1 equivalence vector based (equiv_ptr),
2 width fixed binary (35),
2 element (allocation width refer (width)) character(32);
declare 1 data item based (data ptr),
2 length fixed binary (35),
2 string character (allocation_length refer (length));
Note that the data item definition is merely a way of describing
a based varying character string. The relations and data areas
are PL/1 areas with the first allocation containing as its
first item the character (16) RSM or DSM name respectively.
All other names and character strings are assumed to be

fixed strings of whatever length is called for, if any.

2. Internal Interface
The manager translates the rather free form of arguments
it receives into one of two structures for RSM's and DSM's.
These argument structures are the sole communication between
the system modules.
The following is an annotated version of the PL/1 struc-
tures used:
declare 1 dsm_arguments based (arg_ptr),
2 upper_bound fixed bin(1l7), This tells how many ele-
ments were in input arrays
2 column_index fixed bin(17), This is the 1, 2, ... 9

option

-147-

2 operation_code character(l), This tells which oper-
ation is to be performed

2 d or_i option character(l), This contains either
"D'" or "I" if called for

2 e _option character(l), This contains "E" if called
for

2 data_area ptr pointer, This is filled in by the
manager from the appro-
priate given information
(CENT, PENT, or given
name)

2 data_or_quart _ptr (limit refer (upper_bound))

pointer, These are the first arguments

2 return_ptr (limit refer (upper_bound)) pointer,
These are for the re-
sults. If sptr's were
provided in a get refno
operation, they are put

in here.

declare 1 rsm_arguments based (arg ptr)

1~

upper_bound fixed bin(35), This gives the upper_
bound of the input arrays
2 operation_code character(l), This tells the opera-

tion to be performed

to

quart 1 ptr (limit refer (upper bound)) pointer,

-148-

2 relation 1 ptr (limit refer (upper_bound)) pointer,

2 quart 2 ptr (limit refer (upper_bound)) pointer,

2 relation 2 ptr (limit refer (upper_bound)) pointer,
These are the inputs.
The manager determines
whether they are quarts
or relations and places
their pointer in the
appropriate slot. Non-
existent arguments are
null.

2 equivalence_vector (limit refer (upper bound))

pointer, These are the equivalence vectors for com-
pose. Other operations
needing eqv place the
pointer in quart 2 ptr.

2 return_ptr (1limit refer (upper bound)) pointer,
These are for the
results. They are null
if the result is to be
a quart, or point to a
new segment of a rela-
tion is to result. It
is the responsibility
of the RSM to initialize

the new segment properly.

-149-

APPENDIX F
CURRENT SYSTEM CODE

Preface

The following modules are included in PL/1 source form:

mgr_declare -- these are the declarations for the manager

mro -- this is the portion of the manager which handles calls
to union, intersect, difference, compose, project, cart_
prod, sort, successor_rel, convert_to_r, convert_ to g,
modify ent, get ent, and clear_ent.

oro -- this is the portion of the manager which handles calls
to new_relation, initiate relation, and squash_array.

ero -- this 1s the portion of the manager which handles calls
to expand quart.

mdo -- this is the portion of the manager which handles calls
to get_refno, get _data, and successor_data.

odo -- this is the portion of the manager which handles calls
to new_data type and kill data_ type.

GS error -- the error handler (see Appendix G).

GS _err_messages -- the error messages (see Appendix G).

gsdb -- the system utility program (see Appendix H).

dsm astring -- this is the DSM which handles alphabetic
strings to be placed in alphabetic order (see Appendix B).

dsm_integer -- this is the DSM for integers.

dsm_chain -- this is the DSM for alphabetic strings to be

placed in a non-alphabetic order.

dsm table -- this 1s the DSM for alphabetic strings which
are not 1in alphabetic order, and which arc involved
in frequent retrieval, and infrequent updating.

rsm wq -- this 1s the RSM which performs all operations
(except, ot course, convert to r) on two quarts.

rsm q -- this 1s the RSM which handles quarts to be Kkept
permanently. RSM Q calls RSM WQ to operate on the
quarts, and only handles storage and retricval of
quarts to and from auxillary segments.

tree -- this 1s the algorithm to restructure a trec of a
dsm astring data area. TREE produces an optimal tree,
and a quart of new and old reference numbers to use to

update all relations using that data type.

-151-

mgr_declare,.incl.pll 05/20/70
1116.4 edt Wed

declare 1 parameter_structure based (param_ptr),
arg_no bit(1l7) ,

filler bit(2),

display_if_8 bit(17),

desc_no bit(17),

multics_junk bit(19),

a_ptrs (100) pointer; /*pointers are compute

NNNNNKN

d by formula*/ _
/*The following is the technically correct version of the pa
rameter structure.
Note that the display pointer exists only if the di8 half
word is 8. The actual
method used is to compute an offset to use, since this is
faster than this
adjustable structure method.
declare 1 arg_structure based,
2 arg_no bit(17),
2 filler bit(2),
2 di8 bit(1ly), use of hit 14 has effect of

dividing by 8

2 filler bit(3),
2 desc_no bit(17),
2 filler bit(19),
2 arg_ptrs (arg_no) pointer,
2 display_ptr (di8) pointer,
2 desc_ptrs (desc_no) pointer;
*/
declare 1 descriptor_structure based (desc_ptr),
2 dt_code bit (15) , /*data type code - see

MULTICS implementation of PL/1%/
2 other_stuff bit(3), /*not used*/

2 string_size bit (18),

2 low_bound fixed bin(35) ,

2 top_bound fixed bin (35);

declare 1 quart based (gen_purpose_ptr),

2 ID fixed bin(35) initial(0), /*zero 1D mea
ns quarts/
qlength fixed bin(35), /*not used herex/
order fixed bin(35), /*not used herex/
cent(alloc_order refer (order)) char(32) ,
pent(alloc_order refer (order)) pointer,

tent(alloc_length refer (qlength),alloc_orde
r refer (order)) fixed bin(35);

N NN N

-152-
declare 1 arg_array_rsm based (arg_ptr),

2 upper_bound fixed bin(35) ,

2 opcode character (1),

2 ql_ptr (limit refer (upper_bound)) pointer,

2 rl_ptr (limit refer (upper_bound)) pointer,

2 q2_ptr (1imit refer (upper_bound)) pointer,

2 r2_ptr (limit refer (upper_bound)) pointer,

2 equiv_ptr (limit refer (upper_bound)) pointe
r,

2 return_arg (limit refer (upper_bound)) point
er;

declare 1 arg_array_dsm based (arg_ptr),

2 high_bound fixed bin(17),

2 column_index fixed bin(17) initial(l),

2 opcode character(l),

2 d_or_I1_option character(1),

2 e_option character(l),

2 data_data_ptr pointer,

2 d_or_q_ptr(limit refer (high_bound)) pointer

2 return_arg (limit refer (high_bound)) pointe
r;

declare fixed_plate fixed bin(35) based (zen_purp
ose_ptr); /+fixed bin template for quart.|D*/

declare oset bit(18) based (gen_purpose_ptr); /*Th
is is for the area manipulation=*/

declare label_plate char(16) hased (gen_purpose_p
tr); /*this is char(1l6) template for ID slot=*/

declare return_structure (limit) pointer based (r
eturnable_ptr); /*returned to the callerx*/

declare option character (oplength) based (op_ptr
};

o) declare hased_nam character (4) based (gen_purpos

e_ptr);

declare rel_name character (lentty) based (gen_pu
rpose_ptr);

declare based_arg character(as_len) based (gen_pur
pose_ptr);

declare p pointer based (sen_purpose_ptr);

declare indexor (kk) pointer hased (gen_purpose_p
tr); /*this acheives the kk th pointer*/

declare callname char(16) aligned;
declare nam character(4) aligned;
declare options character (3) aligned;
declare ent character (32) aligned;
declare op character(1l) aligned;
declare wdir character(168) aligned;

-153-

declare unique_chars_ entry external returns (char
acter (15));
declare (error_table_$noarg,error_table_$segknown,
error_table_$name_not_found)
fixed bin(1l7) external;
declare (xfer,other_ptr,arg_ptr,desc_ptr,gen_purpo
se_ptr,op_ptr,param_ptr,returnabhle_ptr) pointer;

declare access_code fixed binary(5) initial(01011b

)

declare (kk,kik,jj,mm,iii,limit,dlen,oplength,dose
t,lwdir) fixed bin(17);

declare (lentty,err_code,new_place,alloc_order,all
oc_length) fixed bin (17);

declare (two_arg_sw,three_arg_sw,arg_array_sw,skip
_3_sw) fixed bin(1l) initial (0b);

declare (option_sw,nam_sw,ent_sw,ptr_sw,squash_sw,
F_sw,S_sw) fixed bin(l) initial(0b);

declare (as_len,op_bump) fixed bin(17);

-154-

Wra.pll 0ns/20/70

cror procedure retwns(pointers)
%include mgr_declare;

un:union:entry returns(pointer);
op="U";
g0 to setupl;
intintersect: entry returns(pointer);
0p=ll| ll;
z0 to setupl;
dfi:di fference: entry returns{(pointer);
0p=ll[')ll;
g0 to setupl;
ep:cart prod: entry returns (pointer);
()l)'"X u;
70 to setupl;
so:sort: entry returns(pointer);
0p=llsll;
g0 to setupl;
sr:successor_rel: entry returns{pointer)
op="P";
go to setupl;
cr:convert_to_r: entry returns{(pointer);
op="R";
go to setupl;
cq:convert_to_q: entry returns{pointer);
Op="Q";
zo to setupl;
co:compose: entry returns(pointer);
Op="C",'
go to setupl;
me:modify_ent: entry returns(pointer);
Op=IIM ll'.
go to setupl;
ze:zet_ent: entry returns{pointer);
op="E";
g0 to setupl;
ce:clear_ent: entry returns{pointer);
op=|lzll;
go to setupl;
pr:project: entry returns(pointer);
op="0";
g0 to setupl;

1011.0 edt

-
’

vled

-155-

setupl: /*Here we do ar~ument processing/
call cu_Sars_list_ptri{param ptr);
if display_if_8=8 then doset=arg _no-1;
else doset=arg_no;
if arg_no<2 then call GS_error$p(12,0p,null,null);

/*Error here is a null argument call inx/
if a_ptrs(l+doset)=->dt_code=29 then don;
/*Wle have first arg is array of pointers*/
args_array_sw=1b;
limit=a_ptrs(l+doset)=->top_bound;
if a_ptrs(l+doset)->low_bound™=1 then call 0S_
error$p(l4,op,a_ptrs(1),null);
/*Error heredis non one lower boundx/
end;
else if a_ptrs(l+doset)=->dt_code=13 then do;
arg_array_sw=0b;
limit=1;
end;
else call GS_error$p(l13,0p,null,null);
/*Error here is failure to have pointer or array of pointers

for first arsumentsx/

op_bump=a_ptrs(arg_no-1l+1oset)->dt_code;
if op_bump=520)op_hump=522 then do;
call cu_sarg_ptr(arg_no-1,op_ptr,oplength,err_
code);
If index(option,"F")™=0|iIndex(option,"f'")™ =0 ¢t
hen F_sw=1b;
if index(option,"S")"=0]index(option,'s")"=0 t
hen S_sw=1b;
op_bump=1;
end;
else op_bump=0;
if op="C" then kik=0;
else kik=1;
if are_no-1-op_bump>3-kik then call GS_error$p(15,
op,a_ptrs(1)=>p,null);
/*Error herc is too many arguments#+/
1o kik=2 to ar<_no-1-op_bump;
if 1limit=1 then do;
if a_ptrs(kik+doset)~->dt_code™=13 then cal
1 GS_error$p(16,0p,a_ptrs(1)->p,
a_ptrs(2)->p);
/*Error here is inconsistant upper bound#*/
end;
else do;
other_ptr=a_ptrs(kik+doset);
if other_ptr=>dt_code™=29 then call GS_err
tor$p(17,op,a_ptrs(l)->p,null);
/*Error here is inconsistant upper bound or type#/

-156-

else if other_ptr->top_bound™=1imit then c
all GS_error$p(18,o0p,
a_ptrs(1)->p,a_ptrs(kik)=>p);
/*Error here is inconsistant upper bound#*/
else if other_ptr->low_bound™=1 then call
GS_error3p(l4,0op,a_ptrs(1)=->p,null);
/*Error here is non one lower boundsx/
end;
if kik=2 then two_arg_sw=1bh;
else three_arg_sw=lb;
end;

/*Here we compare argument structures with those permiss

ible by operations/

if two_arg_sw & (op="0Q"|op="E"|op="2") then call
GS_errors$p(19,0p,a_ptrs(1)=>p,null);
/*Error here is two arguments with cq,ge, or cex*/

if Ttwo_arg_sw & (op="M"]op="0"|op="R") then call
GS_error$p(20,0n,a_ptrs(1)=->p,null);
/;Error here is omission of mandatory second arg in cr or me
*

if F_sw & (op="E"|op="M"]|op="Z") then F_sw=0b;

i f S___SW & (op="Q"!op="R"lop="E"I0p="M"Iop="Z"I0p="
0") then S_sw=0b;

/*Here allocate argument array structure and go to work=

allocate arg_array_rsm;

setup?2: do kk=1 to limit;
if op="C" then do;
if three_arg_sw then arg_array_rsm.equiv_p

tr(kk)= .
a_ptrs(3)->indexor(kk);
else arg_array_rsm,equiv_ptr(kk)=null;
end;
if Ttwo_arg_swla_ptrs(2)~->indexor(kk)=null. the
n do;

arg_array_rsm.q2_ptr(kk),arsg_array_rsm.r2_
ptr(kk)=null;
if op="R" then go to err_20;
end;
else if a_ptrs(2)=->indexor(kk)=>fixed_plate=0|
op="M"]|op="0" then do;
arg_array_rsm.q2_ptr(kk)=a_ptrs(2)->indexo
r(kk);
arg_array_rsm.r2_ptr(kk)=null;
if op="R" then do;
err_20: free arg_array_rsm;
call GS_error$p(20,0p,a_ptrs(l)->p,a_p
trs(2)=>n);

end; -157-

end;
else do;
arg_array_rsm.r2_ptr(kk)=a_ptrs(2)->indexo
rikk);
arg_array_rsm.q2_ptr(kk)=null;
if op="P" then do;/*Error handling8$$x/
free arg_array_rsm;
call 6S_erroré$p(21,op,a_ptrs{l)=->index
or(kk),r2_ptr(kk));
end;
/*Error here is attempt to get successor of a relation#/
end;

/*First operand is examined herex/
if a_ptrs(l)->indexor(kk)=null then do;/*Error
handlingssx/
free arg_array_rsm;
call RS_errors$p(22,0p,null,null);
end;
/*Error here is a null first operand=x/
if a_ptrs(l)->indexor(kk)->fixed_plate™=0 then

do;
arg__array_rsm.ql_ptr(kk)=null;
arg_array_rsm.rl_ptr(kk)=a_ptrs(l)->indexo
r{kk);
end;
else do;
(arg_array_rsm.ql_ptr(kk)=a_ptrs(1l)->indexo
rikk);

arg_array_rsm,rl_ptr(kk)=null;
end;
end;

/*lere we process calling name for most operationsx/
Setuph: do kk=1 to limit;
if op="R" then go to must_he_seconi;
if arg_array_rsm.rl_ptr(kk)“=null then -do;
if kk=1 then callname=addrel (a_ptrs(1)->p,
a_ptrs(l)->p->oset)->label_plate;
else if addrel(a_ptrs(l)=->indexor(kk),a_pt
rs(1)->indexor{(kk)->oset)->label_plate™=
callname then do;
/*Error handling3s=/
free arg_array_rsm;
call GS_error$p(23,0p,a_ptrs(1l)->p,a_p
trs(l)->indexor(kk));
end;
/*Error here is specification of inconsistant RSM names+*/
end;
else do-

-158-
if “two_arg_swlarg_array_rsm,r2_ptr(kk)=nu
11jop=""M"}jop="0" then do;
if kk=1 then callname="rsm_wq";
else if callname™="rsm_wq" then do;
free arg_array_rsm;
call GS_errors$p(24,0p,a_ptrs(1l)=->p
,a_ptrs(l)->indexor(kk));
end;
/*Error here is inconsistant RSM names=*/
end;
else must_bhe_second:d0;
if kk=1 then calliname=addrel(a_ptrs(2)
->p,a_ptrs(2)->p->oset)=->1label_plate;
else if addrel(a_ptrs(2}=->indexor(kk),
a_ptrs(2)->indexor(kk)->oset)->label_plate~=
callname then do;
/*Error handling$$s+/
free arg_array_rsm;
call GS_error$p(25,0p,a_ptrs(2)->p
,a_ptrs(2)->indexor(kk));
end;
/*Error here is inconsistant RSM names=*/
end;
end;
end;

/*Where it is proper, space is ohtained for the new resu
1t relationx/
setupb: if op="Q"|op="E"|op="M"[op=""Z" then go to setup7;
10 kk=1 to limic;
arg_array_rsm.return_arg(kk)=null;
if arz_array_rsm.r1_ptr(kk)=nu1lvthen go to no
8 con="R"

_new_r;
call hcs_$fs_search_get_wdir(addr(wdir),lwdir)

-
’

call hcs_$make_seg(wdir,"","", access_code,arg_

array_rsm.return_arg(kk),err_code);
if err_code>0 then do;/*Error handlings*/
free arg_array_rsm;
call GS_error$p(26,0p,a_ptrsil)=->indexor(k
k),a_ptrs(2)->indexor(kk));

end;
/*Error here is fallure of make seg procedurex/

if F_sw & op~="R" then do;
F_sw=0b;
option_sw=1b;
g0 to no_name_needed;
end;
else do;

call ioa_$nni("New relation created, Op is

~la. Relation 1 is "p. fiive new namp...",

§

e

n

o] o

N

N
i
JORP,

!

Pt)
err

T_ooryr

AaroTno

o~

(_:
a
)

s
Y

B
5

hegCdelentry seol(a prrs(2Y=>
y_ran,return_ are{1imit);
Vs

->n=xfeor:

turn_structure;
il b
N struac

re(mm)=arc arvay rsm,return_

i

.

Id
=returnahle ntr:

-161-
oro.pll 05/20/70 1025.3 edt tled

% e
2

7
oro: procedure returns{(pointer);
2include mgr_declare;

nr:new_relation: entry returns(pointer);
call cu_sarg_ptr{l,gen_purpose_ptr,lentty,err_code

)
).

/*Error here is null relation namex*/

call cu_Sarg_list_ptr(param_ptr);

if displtay_if_8=8 then doset=arg_no+1l;

else doset=arg_no;

if arg_no™=3 then call AS_error$p(2,"N",null,null)

if err_code>0 then call GS_error$p(1,"N",null, null

’
/*Error here is incorrect argument specification for nrx/
if a_ntrs(2+doset)->dt_code™=13 then call 4S_error
$p(3,"N",null,null);
/*Error here is non_pointer second argumetn for nr*/
lTimit=1;
allocate arg_array_rsm;
OD=”N";
if a_ptrs(2)=->p=null then do;/*Error handling$ss=*/

free aro_array_-dsm;
call nS_error$p(4,op,null,null);
end;
/*Error here is failure to specify an r for the rsm namex/
callname=addrel(a_ptrs(2)->p,a_ptrs(2)->p->oset)->
label_plate;
call hcs_S$fs_search_get_wdir(addr(vwdir),lwdir);
call hecs_Smake_seg(wdir,rel_name,rel_name,access_c
ode,arg_array_rsm.return_arg(limit),err_code);
if err_code>0 then do;/*Error handling$$s$=/
free aro_array_rsm;
call (S_errorsc(5,0p,rel_name,null);
end;
/*Error here is failure in make segment procedurex/
g0 to setup’?;

ir:sinitiate_relation: entry returns(pointer);

: call cu_$arz_ptr(l,gen_purpose_ptr,lentty,err_code
if err_code>0 then call G6S_error$p(6,"Z",null, null

);

/*Error here is null relation namex/

1T it =1,

-162-
limit-1,
allocate arg_array_rsm;
OD="Z";
call hcs_$fs_search_get_wdir(addr(wdir),iwdir);
call hecs_Sinitiate(wdir,rel_name,rel_name,0,0,arg_
array_rsm.rl_ptr(limit),err_code);
if err_code>0 & err_codeT=error_table_S$segknown th
en do;/*Error handlingss=*/
free arg_array_rsm;
call 0S_errorsc(7,op,rel_name,null);
end;
/*Error here is failure to initiate relation specified in ir
operationx/
callname=addrel(arg_array_rsm.ri_ptr(limit),arg_ar
ray_rsm.rl_ptr(limit)->oset)->label_plate;
g0 to setup’:

sa:squash_array: entry returns(pointer);
call cu_%$arg_list_ptr(param_ptr);
if display_if_8=8 then doset=arg_no+1l;
else doset=arg_no;
if a_ptrs(l+doset)->dt_code™=29 then call GS_error
sp(8,"A",null,null);
/*Error here is non array of pointers for first arsument=*/
1imit=1;
allocate arg_array_rsm;
limit=a_ptrs(l+doset)->top_bound;
if a_ptrs(l+doset)->low_bound™=1 then do;
free arg_array_rsm;
call GS_error$p(9,"A",a_ptrs(1)=>p,null);
/*Error here is non one lowver houndx*/
end;
alloc_length=0;
alloc_order=a_ptrs(1l)=>p=>order;
do kk=1 to limit;
alloc_length=alloc_length+a_ptrs(l)->indexor(k
k)=->qglength;
do jj=1 to alloc_order while (kk>1);
if a_ptrs(l)->indexor(kk)->cent(jj) " =a_ptr
s(1)->p->cent(jj) then do;/*Error handling$ss*/
free ar~_array_rsm;
call GS_error$p(10," ",a_ptrs(1l)->p,a_
ptrs(l1)->indexor(kk));
end;
/*Error here is inconsistant cent entriesx/
end;
end;
allocate quart set (gen_purpose_ptr);
kik=1;
arg_avcray_rsm.ql_ptr(kik)=gen_purpose_ptr;
squash_sw=1b;
new_place=0;
do kk=1 to limit;

-164-

ero.pll n5/20/70 1052,2 edt Ved

% .
e

ero: procedure returns(pointer);

%include mgr_declare;

eg:expand_quart: entry returns (pointer);
call cu_%$arg_list_ptr{(param_ptr);
if display_if_8=8 then doset=arg_no+l;
else doset=arg_no;
if a_ptrs(l+doset)->dt_code™=13 then call AS_error
35p(11," ",null,null);
/*Error here is non pointer arcument=*/
limit=a_ptrs(l)=->n->alength;
allocate return_structure;
alloc_order=a_ptrs(1l)=->p=>order;
alloc_length=1;
do kk=1 to limit;
allocate quart set (return_structure(kk));
do jj=1 to alloc_order;
return_structure(kk)->cent(jj)=a_ptrs(1l)->
p->cent(j]);
return_structure(kk)->pent(jjl)=a_ptrs(1)->
p=>pent(jj);
return_structure(kk)->tent(1,jjl)=a_ptrs(1l)
=>p=>tent(kk, jj);
end;
end;
free a_ptrs(1)->p->quart:
a_ptrs(are_no)=->n=returnahle_ptr;
nnd;

-165-

tdo.pll 05/20/70 1032.0 edt Ve

0, o

4
mdo: procedure returns{pointer);
2include mer_declare;

gr:7et_refno: entry returns(pointer);
) -t .,
op="R";
g0 to setuplO;
sd:successor_cdata: entry returns(pointer);
=1 ",
op="5";
0 to setupl0;
cd:get_data: entry returns(pointer);
OD=”D”;
go to setupl0;

/*Here check the general structure of arguments#*/
setupl0: call cu_Sarg_list_ptr{param_ptr);
if display_if_8=8 then doset=arg_no+l;
else dnset=arg_no;
if aro_no<2 then zo to err_33;
if a_ptrs(l+doset)->dt_code=13 then l1imit=1;
else iIf a_ptrs(l+doset)->dt_code=29 then do;
limit=a_ptrs(l+doset)=>top_bhound;
if a_ptrs(l+doset)->low _bound™=1 then call 75_
error$p(37,o0p,null,null);
/*Error heredis non zero lower bound on input array*/
end;
else err_38: call GS_error$Sp(38,o0p,null,null);
/*Error here is non pointer first arsument*/
if aro_no>6 then call GS_error$p(39,0p,a_ptrs(l)->
p,null);
/*Error here is illegal number of argumentsx*/

/*Here do the interpretation of the arsuments*/
if op="R" then do;

if a_ptrs(2+doset)->dt_code=13 then ptr_sw=1lbh;

if arg_no<d4 then go to no_further_check;
if a_ptrs(3+doset)->dt_code=13 then do;
if limit=1 then skip_3 sw=1b;

else call NS_errorsp(40,op,a_ptrs(1l)->p,a_
ntrs(3)->p);

/*Error here is inconsistant upper bounds on optional R argu
mentx/

end;

-166-
else if a_ptrs{(3+doset)->dt_code=29 then do;
if 1limit=a_ptrs(3+doset)->top_bound then s
kip_3_sw=1b;
else call GS_error$p(40,0p,a_ptrs(1)->p,a_
ptrs(3)->p);
/*Error here is inconsistant upper bounds on optional R argu
ment*/
end;
no_further_check:if Tptr_sw then do;
call cu_s$arg_ptr(2,gen_purpose_ptr,as_len,
err_code);
if err_code>0 then call GS_error$p(4l,op,a
_ptrs(1)=>p,null);
/*Error here is incorrect format for MAM field*/
if as_len”=4 then call GS_error$c(L42,0p,ba
sed_arg,a_ptrs(1)->p);
nam=based_arg;
nam_sw=1b;

end;
end;
else do;
call cu_Sarg_ptr(2,gen_purpose_ptr,as_len,err__
code);
if err_code=error_table_Snoarg then go to no_n
ore:

else if err_code>0 then call RS_error$p(43,op,

a_ptrs(1)->p,null);
/*Error here is format error in argument 2=*/
if as_len=4 then do;

nam_sw=1b;

nam=hased_arg;
end;
else go to read_arg;
end;

iii=3;
next_one: if skip_3_sw then if iii=3 then iii=h;

call cu_Sarg_ptr(iii,gen_purpose_ptr,as_len,err_co
de);

if err_code=error_tabhle_$nocars then go to no_more;

else if err_code>0 then call GS_error$Sp(43,0p,a_pt
rs(1)->p,null);
/*¥Error here is format error in arzument iii*/
read_arg: if as_len<i4 then do;
oplength=as_len;
option_sw=1lb;
options=based_arg;
end;
else if as_len<33 then do;
ent_sw=1b;
ent=based_arg;
end;
else call GS_errors$c(hb,op,based_arg,a_ptrs(1)->p)

. -167-

/*Error here is argument of string size greater than 32x/
if iii=5 then go to no_more;
else ifi=ili+l;
70 to next_one;

/*Here allocate the proper size arpument arrayx*/
no_more: if option_sw & (index(options,"E")7=0]index(option
s,"e")"=0) then do;

squash_sw=1h;
if 1imit>1 then call GS_error$p(ll,op,a_ptrs(1
Y=>p,null);
/*Error here is feeding array to conceptual expand_quart ope
rationx/
else limit=a_ptrs(l)->p->qlength;
allocate arg_array_dsm;
limit=1;
end;
else allocate arg_array_dsm;

/*Here set opcode and options slots=*/
arg_array_dsm.opcode=op;
/* Here scan the options+/
if option_sw then do;
arg_array_dsm.d_or_i_option=" ";
if (index(options,'D")"=0|index(options,"d") "=
0) then
arg_array_dsm.d_or_i_option="D";
if op=""R" & (index(options,'"1")"=0]index(optio
ns,"i'")"=0) then

ars_array_dsm.,d_or_i_option="|";
if squash_sw then arg_array_dsm.e_option="g";
else args_array_dsm.e_option="";

do kik=1 to 3;
mm=index('"123456789",substr(options, kik,1)

if mm™=0 then do;
column_index=mm;
go to stop_col;
end;
end;
stop_col:
end;
else arg_array_rdsm.d_or_i_option,arg_array_dsm.,e_o
ption=" "'

/*Here set the return arg slot with given pointers

, if neededx/
do kk=1 to limit;

if skip_3_sw then arg_array_dsm.return_arg(kk)
=3 ptrs{(3)->indexor(kk);

-168-
else arg_array_dsm,return_arg(kk)=null;
end;

/*Here do consistancy checking on the pents or cen
ts*/ .
if “nam_sw & "ptr_sw then do;
iii=0;
do kk=1 to limit;
if a_ptrs(l)->indexor(kk)=>quart.pent(colu
mn_index)”=null then do;
if iii=0 then iii=kk;
else if a_ptrs(1l)=>indexor(kk)=->quart.
pent(column_index)"=
a_ptrs(1)->indexor(iii)->quart.pen
t(column_index) then do;
free arg_array_dsm;
call GS_error$p(45,0p,a_ptrs(1l)=>i
ndexor (kk),a_ptrs(1l)=>indexor(iii));
/*Error here is inconsistant data type by non null pents=*/
end;
end;
if substr(a_ptrs(l)=>indexor(kk)->cent(col
umn_index),1,4) =
substr(a_ptrs(1)=>p=->cent(column_index
y,1,4) then do;
free ars_array_dsm;
call GS_error$cc(u6,op,a_ptrs(1l)=->p=>c
ent (column_index),a_ptrs(1l)->indexor(kk)=->
cent(column_index));
end;
/*Error here is inconsistant data types by cent namex*/
end;
end;

/*Here fill in first arguments=*/
do kk=1 to limit;
arg_array_dsm.d_or_a_ptr(kk)=a_ptrs(1)->indexo

rikk);
end;
/*Here construct the ddptr#/
if ptr_sw then do;
arg_array_dsm.data_data_ptr=a_ptrs(2)->p;
end;
else if “nam_sw then do;
if i1i=0 then do;
iii=1;
. call hcs_$fs_search_get_wdir(addr(wdir),lw
airr);

call hcs_sSinitiate(wdir,substr(a_ptrs(1)=->
p=>quart.cent(column index).1l.4),

-169-

substr(a_ptrs(l)->p->quart.cent(column_i
ndex),1,4),0,0,a_ptrs(l)->p->quart.pent(column_index),
err_code);
if err_code=error_table_Ssegknown then do;
end;

g838*/

else if err_code>0 then do;/*Error handlin

free arsg_array_dsm;
call GS_error$c(47,0p,a_ptrs(1l)->p=->ce
nt(column_index),a_ptrs(1)=>p);
end;
/*Error here is failure in get seg ptr or initiate procedure
*/

end;
arg_array_dsm.data_data_ptr=a_ptrs(1l)->indexor
(iii)=->quart.pent(column_inrdex);
end;
else do;

call hecs_$fs_search_get_wdir(addr(wdir),lwdir)

’ call hcs_Sinitiate(wdir,substr(nam,1,4),substr
(nam, 1,4),

0,0,ars_array_sism.data_data_ptr,err_code);

if err_code=error_table_Ssegknown then do; end
else if err_code>0 then do;/*Error handlingss

free arg_array_dsm;
call 53S_error$c(u48,0op,nam,a_ptrs(1)->p);
end;
/*Error here is failure in get seg ptr or intitiate procedur
e*/
end,

/*Here set callname and issue call to dsm=*/
callname=addrel (data_data_ptr,data_data_ptr->oset)
->label_plate;
‘o) call hcs_smake_ptr("",callname,callname,xfer,err_c
ode);
if err_code>0 then do;
free arg_array_dsm;
call GS_error$c(49,0p,callname,null);
end;
call cu_S$ptr_call(xfer,arz_ptr);

/*dere do post call processing like filling in ret
urn args and entx»/
do kk=1 to limit;
if (op="S"|op="R") & ent_sw then do;
arg_array_dsm.return_arg(kk)->quart.cent(c
olumn_index)=ent;

-170-

v
Jom YT X
truct

~

-171-

odo.pll 05/20/70 1044.,3 edt Wed

0, o
0

odo: procedure returns (pointer);

%include mgr_declare;

nd:new_data_type: entry returns{(pointer);
call cu_s$arg_list_ptr(param_ptr);
if display_if_8=8 then doset=arg_no+l;

else doset=arg_no;
call cu_$arg_ptr(Q,gen_purpose_ptr,lentty,err*code

if err_code>0 then call GS_errors$p(28,"N",null, nul
1),
else callname=rel_name;
/*Error here is non label second argx/
Timit=1;
allocate arg_array_dsm;
do;
call cu_sarg_ptr(l,gen_purpose_ptr,dlen,err_co
de);
if err_code>0 then do;/*Error handlingss*/
free arg_array_dsm;
call GS_error$p(29,'"N",null,null);
end;
/*Error here is incorrect first argumentx/
if dlenT™=4 then do;/*Error handling$$s$=*/
free arg_array_dsm;
call GS_error3c(30,"N",based_nam,null);
end;
/*Error here is incorrect length for data type namex/
call hecs_$fs_search_get_wdir(addr(wdir),lwdir)
call hcs_$make_seg(wdir,based_nam,based_nam, ac
cess_code,arg_array_dsm,data_data_ptr,err_code);
if err_code>0 then do;/*Error handling$$s$*/
free arg_array_-dsm;
call GS_error$c(31,"N",based_nam,null);
end;
/*Error here is failure in make seg procedurex/

arg_array_dsm.opcode="N";
end; A Y- P ‘ <u3-o.fm*-ém.é..or-i-o(ﬁn,

-3 a M W,
arg_array_dsm.high_bound=1imit; **¥8ON-Sn. e oghen=™ ",

call hes_3$make_ptr("",callname,callname,xfer,err_c
ode);
if err_code>0 then do;
free arg_array_dsm;
call GS error$c(49,arg_array_dsm.opcode,callna

-172-

me,null);
/*Error here is illegal callnamex/

end;

call cu_S$ptr_call(xfer,arg_ptr);
a_ntra(ar~_no)=>p=data_data_ptr;
return;

kd:kill_data_type: entry returns{pointer);
limit=1;
call cu_Sarg_list_ptr(param_ptr);
if display_if_8=8 then doset=arg_no+1;
else doset=arg_no;
if a_ptrs(l+doset)->dt_code=5201a_ptrs(l+doset)->"
t_code=522 then do;
call cu_S$arg_ptr(1,gen_purpose_ptr,lentty,err_
code);
if err_code=error_table_%$noarg then call GS_er
ror$p(32,"K",null,null);
else if err_code=0 then do;
if lentty™=4 then call GS_errors$c(33,"K",r
el_name,null);
call hcs_Sfs_search_get_wdir(addr(wdir),lw
dir);
call hcs_%delentry_file(wdir,based_nam,err
_code);
if err_code>0 then call GS_error$c(34,"K",
based_nam,null);
/*Error here is failure in initiate or in mget seg ptr=/
end;
end;
else if a_ptrs(l+doset)->dt_code=13 then do;
if a_ptrs(l)->p->quart.pent(limit)=null then d
(o
call hcs_5fs_search_zet_wdir(addr{wdir),lw
dir);
call hcs_Sinitiate(wdir,substr(a_ptrs(1)->
p->quart.cent(limit),1,4),
substr(a_ptrs(l)->p=>quart.cent(limit)
,1,4),0,0,gen_purpose_ptr,err_code);
if err_code=error_table_¢segknown then do;
end;
else if err_code>0 then call GS_error$c(35
LK"Y, a_ptrs(l)=>p=>cent(limit),a_ptrs(1)->p);
/*Error here is failure in initiate or in get seg ptr+/
end;
else gen_purpose_ptr=a_ptrs(1l)->p=->quart.pent(
Timit);
) call hcs_%delentry_seg(gen_purpose_ptr,err_cod
€J;
if err_code>0 then call GS_error$p(36,"K",gen_
purpose_ptr,null);
/*Error here is failure in delete seg procedurex/
end;

-174-

<s>GS_error.pll 05/20/70 1059.4 edt
Wed

GS_error: procedure;
declare (p,pr) entry (fixed bin(17),char(l),pointe

r,pointer);
declare (c,cr) entry (fixed hin(17),char(1l),char(=*
),pointer);
declare (cc,ccr) entry (fixed bin(17),char(1l),char
{(x),char(*));
declare code fixed bin(17);
decliare op char(l);
declare (pl,p2) pointer;
declare (cl,c2) char(*);
declare err_code fixed bhin(17);
declare puse pointer;
declare pi_label label static;
declare S_error$pi entry external;
declare buffer char(120) initial("™ ");
declare num_items fixed bin(35) initial(120);
declare ascode char(12);
declare (cond_flag,p_sw,r_sw,c_sw,cc_sw) fixed bin
(1) initial{(0bh);
decliare 1 quart hased {(quart_ptr),
ID fixed bin(35),
qlength fixed bin(35),
order fixed bin(35),
cent(l refer (order)) char(32),
pent(l refer (order)) pointer,
tent(1l refer (glength),l refer (order)) fixe

NN NN N

d bin(35);

pr: entry (code,op,pl,p2);
r_sw=1lb;

p: entry (code,op,pl,p?);
p_sw=1b;
g0 to message;

cr: entry (code,op,cl,pl);
r_sw=1b;

c: entry(code,op,cl,pl);
c_sw=1h;
0 to message;

ccr: entry (code,op,cl,c2);
r_sw=1h;

cc: entry(code,op,cl,c2);
cc_sw=1h;

message: call ioa_("GS: Error T5d Internal opcode "a", code,

op);

- -y

if cc_sw then call joa_(" Name 1: "a Name 2:
a",cl,c?);
else if c_sw then do;
call ioa_s$nnl (" Mame 1: "a ",cl);
if plT=null then call ioa_(" Pointer 1: ~p",pl

-

-175-
)i

else call ioa_(" ");
end;
if p_sw then do;
if pl7=null then call ioa_$nnl(" Pointer 1:
“p ", pl);
if p2T=null then call ioa_snni (" Pointer 2:
“p ",p2);
if pl7=null|p2”=null then call ioca_(" ");
end;
call cv_hin_{(code,ascode, 10);
call ioa_snnl (" ");
call print("GS_err_messages',ascode,ascode);
new_try: if r_sw then call ioa_S$nni(" Type procedure na
me, return, or quit...");
else call ioa_snni(" Type procedure name, or qu
it.e..");

call ios_$read_ptr(addr(buffer),num_items, kk);

if r_sw & substr(buffer,1,kk=-1)="return' then retu
rn;

if substr(buffer,1,kk=1)="quit" then call signal_(
"GOLD_STAR");

call hcs_$make_ptr("",substr(buffer,1,kk=-1),substr
(buffer,1,kk=1),puse,err_code);

if err_code>0 then call ioa_(" No such procedur
e can be found!'");

else call cu_9$ptr_call(puse);

g0 to new_try:

end;

(o2} WS w N

= \O

11
12

13
14
15
16
17

18
19
20
21

22
23

24
25
26
27
28
29
30
31
32

33
34

-176-

{(s>GS_err_messages 05/20/70 1128.L edt
Wed

Argument for nr operation not found.

nr operation does not have two argcuments plus return argumen
t{non_functional invocation is illegal).

Second arsument of nr operation is not a pointer.

Second argument of nr operation is a null pointer.

ake segment procedure in nr operation failed - name provide
d is attempted relation name,.

Argzument not found for ir operation.

Initiate procedure failed for ir operation - name provided i
s attempted name.

Argument for sa operation is not an array of pointers.

Low bound of argument(pointer 1) is not one,.

CENT inconsistancy found hetween elements of array of pointe
rs in sa operation(pointer 1 and 2).

Argument in eq operation must be pointer.

Too few arguments-must be at least one plus return for funct
ional invocation,

First argument must be pointer or array of pointers.

Low bound of first arsument(pointer 1) must be one.

Too many argunents(pointer 1 is first one).

A1l arguments must bhe pointers if first one is(pointer 1).
A1l arguments must be arrays of pointers if first one is(poi
nter 1).

Upper hound of input argument arrays(pointers 1 and 2) are n
ot the same.

Operation cannot have more than one argument(pointer 1).
Operation must have more than one argument(pointer 1).
Successor cannot have relation as second argument(arg l=poin
ter 1, ars 2=pointer 2).

First operand cannot be null,

First argument is array of relation pointers calling for inc
onsistant RSM(pointers 1 and 2),

Second argument is an illegal array of quart and relation po
inters(pointers 1 and 2).

Second argument is array of relation pointers calling for in
consistant RSM{(pointers 1 and 2).

lake segment procedure failed - arzuments one and two are po
inters 1 and 2.

Change name procedure has failed on segment of pointer 1.
I1legal second argument for nd operation.

I1legal first arsument for nd operation,

Data type name (Name 1) in nd operation is not four characte
rs.

'take segment procedure has failed during nd operation(name a
ttempted was iame 1),

*lo argument given for kd operation.

Type(Name 1) indicated in kd operation not four characters.
Celete segment procedure failed during kd operation(name att

-178-

78
79
80
31
572
83
3k
35
86
al

o}
O

89
90
91
92
93
94
95
96
97
98
99
1000vertanping C2NT in ¢cp operation between Pointer 1 and 2. Re
turn veilds rnull pointer.
1010rders of quarts (pointers 1 and 2) are not equal. Veturn vye
ilds null result,
1020ENMT of quarts (pointers 1 and 2) do not overlap. Peturn vyei
1ds null result,
103lidth of equivalence vector(Pointer ?) rmust be equal to orde
r of quart(Pointer 1).
104
105

Wed

asdb:

bin(35);

35));

procedu

declare 1 dsm hased
dtop fixed bin(17),
cindex fixed bin(17),
dop char(l),

A

NN NN NN NN

{s>gsdb

re;

i char(l),

-179-

.pll

eopt char(l),
ddptr pointer,
dgptr (1 refer (dtop)) pointer,

dretptr (1 refer (dtop)) pointer;

05/20/70

(inptr),

declare 1 rsm based (inptr),

a
r

q
r
e
r
declare
|
q

q
c

NNNNNNDDNDN

PPN N NN

t

declare

refer
refer
refer
2 (1 refer
p (1 refer

1 (1
1 (1
2 (1

rtop fixed bin(35),
rop char(1l),

(rtop))
(rtop))
{(rtop))
(rtop))
(rtop))

pointer,
pointer,
pointer,
pointer,
pointer,

1053.3 erlt

retptr (1 refer (rtop)) pointer;
1 quart hased (inptr),

D fixed bin(35),

len fixed bin(35),

order fixed bin(35),

ent (1 refer (qorder)) char(32),

pent (1 refer (qorder)) pointer,

ent (1 refer (aqlen),1 refer (qorder) fixed

1 entvector hased (inptr),

2 width fixed bin(35),

2 e
Jdeclare
declare
declare
declare
declare
declare
declare

declare

declare
declare
declare
declare

call io

nts (1 refer (width)) char(32):
gsdhs$pi entry external;
(d,r,a,e) entry (pointer) external;

call_sw fixed bin(l) initial(0b);

pi_tabel label static;

op char(4) initial(" ")

buffer char(132);

(haseptr,addrel ,min,substr, index) builtin;
cv_oct__ entry external returns (fixed bin(
woffset fixed hin(35) initial(0);

wptr pointer initial (null);

(inptr,aptr) pointer;
(mm,kk,i7,orpltace,endplace) fixed bin(17);
a_("ASK!I"™);

call_sw=1lb;

pi_tabe

l=read;

read:

o;

start_no:

)
offset_onl

end_found:

no_offset:

labset:

output:

-180-
call ios_S$read_ptr(addr(buffer),132,kk);
op=substr(buffer,1,1);
if op="." then return;
if op™="d" & op”="r" & op~="q" & opT="e" then do;
call ioa_("2");
=0 to read;
end;
do mm=2 to kk-1;
if substr(buffer,mm,1)”=" " then go to start_n

end;
go to no_offset;
orplace=index(buffer,"|");

if orplace=0 then do;

orplace=mm=-1;

go to offset_only;
end;
wptr=baseptr{cv_oct_(substr{(buffer,mm,orplace-mm))

y: do ii=orplace+l to kk-1;
if substr(buffer,ii,1)=" " then do;
endplace=iti;
go to end_found;
end;
end;
endplace=kk-1;
mm=endplace+l-orplace;
if mm=0 then go to no_offset;
woffset=cv_oct_(substr(buffer,orplace+1,mm));
inptr=addrel (wptr,woffset);
g0 to output;

entry(aptr);

Op="d";

g0 to lahset;

entry(aptr);

op="r";

go to labhset;

entry(aptr);

op="q";

go to labset;

entry(aptr);

op="e";

pi_label=back;

inptr=aptr;

if inptr=null then do;
call ioa_("NULL!");
g0 to done;

end;

call condition_("program_interrupt",gsdb$pi);

call ioa_("AT “p",inptr);

if op="'q" then do;

-181-

do ii=1 to qorder;
call ioa_(""16a ~p",cent(ii),pent(ii));
end;
do ii=1 to qlen;
do mm=1 to qorder;
call ioa_snni(""8d ", tent(ii,mm));
end;
call ioa_(" ");
end;
end;
else if op="r" then do;
call ioa_("Bound ~3d Op ~1la",rtop,rop);
call ioa_("N1 R1 02 R2
EP RET"Y");
do ii=1 to rtop;
call ioa_(""p p ~p ~p ~p "p",ql(ii),r1(ii
y,q2Cii), r2¢ii),epCii), rretptr(ii));
end;
end;
else if op="d" then do;
call ioa_("Bound ~3d Op ~la D! option “la
E option ~la C option ~1d DDptr ~p",
dtop,dop,di,eopt,cindex,ddptr);
call ioca_("D or Q2 RETURN");
do ii=1 to dtop;
call ioa_(""p ~p",daptr(ii),dretptr(ii));
end;
end;
else do ii=1 to width;
call ioa_(""16a",ents(ii));

end;

done: if call_sw then go to read;
else

back: return;

pi: entry;

go to pi_label;
end;

Hon

-182-

dsm_astrine,nll n5/01/7¢

dsm_astring: procedure (dsm_arrs_ntr);

acl

dcl

el

del

dcl

dota_seg area (arca_sizr) bhased (se~_ptr);

1

quart based (quart_ptr),
id fixed Hinary (35),
length fixnd bHin (35),
order fixed hin (35),

cent char (32),
pent ptr,
tent fixed “in (35);

P PO MO RO N

quart_proper bhased (uart_ptr),

aicd fixed hin (35),

alensth fixed Hin (325),

aorder fixed hin (35),

arent (qorder. char (32),

gpent (qorder) ntr,

atent (glern~th,qorder) fixnd hin (35);
mt_quart static,

mtid fixed »in (35) initial (0),
mtlength fixed hin (35) initlal (0),
mtorder fixed “in (35) initial (1),
mtcent char (32),

mtpent ntr;

RO RORN

NN

dsm_arss hased (dsm_arms_ptr),
upper_bound fixed hinary (17),
ci fixed hin (17),

op char (1),

di char (1),

¢ char (1),

ddptr otr,

d_or_qg_ntr (upper_bound) ptr,
returr_ptr (upper_hound) ptr;

PRraOMIrOINN PN

type basea (type_ptr),

dsm_name char (16),

data_type char (32),

num_free_cells fixn' »in (35),
num_entries fixed hin (35),

max_length fixerd hin (35),

first_entry offset (dota_ser),
successor_chain_head offset (data_ser);

NN MFN

del 1 item hased (iptr), -183-

Iptr offset (data_se<),

rptr offsat (data_se-),

succ offset (data_sen~),

flag fixed Hinary (3%),

refno fixed Hin (35),
strins_structure,

3 string_lencth fixed Sincry (35),
3 string character (max_leneth™);

PP P PO NI PO -

del 1 areca_scg Sased (sem_ptr),
2 first_off nffset (data_se~),
2 curr_len offsct (data_scr),
2 next_off offset (data_ser);

del 1 pseudo_string_array hasnd (str_ptr),
2 pseudo_lenrsth fixed Sinary (35),
2 input_or_return_string ctar (mlen_int);

acl (ptr,new_ptr,succ_ptr, typr_ptr,necw_sen_ptr,
quart_ptr,seg_ptr,iptr,str_ptr) ptr static;

del dsm_arss_ptr ntr;
el (area_size,i,il,fourd,mlen_int,diff,diffor, turn,nreasen
ted_loop_refno, stored_loop_refno,

iii,ik,l,erech) fixn! "inary (35) static;

del (max_depth_of_trere initial (34),.1aft initial (10),rich
t initial (20) fixed hinary (3%) static;

del return_label lahel (insert_return,datum_return,refno_r

eturn,successor_rnturn,
dnlota_by refno_return,dalete_by_d

atum_return,r_,d_,s_,i_,rd, dd);
del dbd_label (=-1:1) lahel (he~in_dsm _astrinc) static;
acl dbr_label (-1:1) la“el (herin_ds~_astrine) static;
dacl succ_label (-1:1) lahel (herin_dsm_astrinc) static;

decl insert_tabel (1:1) label (bexin_dsm_astrine) static;

dcl ins_comp_label (=1:0) lahel (barin_dsm_astring) static

dcl enane char (32), dirname char (162) stotic;

del (presented_lcop_strine,stored_lomn_strin~) character (
1638) varying static:

acl (exp,cdori,opcode) char (1) varyine static;

-184-

acl
(arera_Sreadef,area_) entry
’
gcl (null,nullo, substr,dividn,a
¢cl (off,curr,next,code) fixe!
del (glich,last_left,last_ri~ht
del (dbd_Tab_swv, dbr_Tab_sw, ins_
in (35) static initial (0);

/********************************
I EE RS EE RS ERESEEREETEREEIESEEREEREE X XS

enin_dsm_astring:

cxp=dsm_arrs.e;
cori=dsr_aras.di;
opcode=dsm_arcs, on;
sco_ptr=dsm_areas.,ddptr;

type_ptr=first_off;
if opcode="D" then /* innut

if cori=" " then
else if dori="D" ther «o

else g0 to op_error;

0o tn Tet_

tree_restructure entry (pointer,nainter,nointer),

(fixe! winary (17),pointer)

Adreal,min,ad4'r) huilting

hinary (35) static;
) offsrt (data_se~) stotic;
lah_sw, suce_lah_sw) fixed h

hkkdhkhkhkhkkhkrhhkhkkhhkkkkhdkhk *x K
Ak hkkkhkkx kkkhkkkx* [/

is refnos */
daturm;
to delete_bhy_refno;

else if opcode=""" then /* dato strin~s are input */
if dori=" " than ~o to ~rt_refno;
else if dori ='"0" then co tn Aelnate_by_datum;
else if dori="1" thern ro to ins~rt;
else 70 to op_error;
else if oncode="S" then
if dori =" " then =0 tn successor;
¢lse go to op_orror;
else if opcode=t"t'" then
if (dori=" " = exp=" ") then ro to new_data_type;

else go to op_crror;

else g0 to op_error;

/***************************7\-********/

-185-

rev_cdata_type:
do 11 = 1 to upner_bound;
call area_(1024,s50c _ptr);
call hes_S%fs_nant_patt_namn(sa~r_ptr,dirname, ~rrch
, cnare , code) ;
allocate type sct (tyne_ptr) in (data_see);
num_entries=0;
num_free_cells=0;
call foo_("what is max leneth for charanter stri
ngs for Ta>Ta ?27/",substr(dirnann, 1, zrech) , ename);
call read_list_(grech);
max_lensth=prech;
successor_chain_head=nullo;
data_type=crame;
dsm_name=""dsm_astrin~";
first_entry=nulln;
end;
return;

/************************************/

got_datum:
do ii = 1 to upper_boun;
return_labhel=datun_return;
50 to refna_prelocuc;
datum_return:
if found=1l ® ntr=>flor=1 theon ro;
return_lahel=d_;
g0 to string_allnc;
d_:
pseuro_lencth=ptr->strin~_lan~t";
input_or_roturn_strin~=suhstr{ptr=->strine, 1, ntr-
>string_lensth) ;
end;
else do;
dsm_arss.,return_ptr(ii)=addr(mt_quart);
mteent=data_tynn;
mtpent=ser_ptr;
end;
end;
return;

/************************************/

-186-

cet_refno:
do ii =1 to upper_bhoun-;
returr_lahel=refnn_reoturn;
go to datur_prolncurn;
refro_return:
if found=l % ntr->flar=1 tten Ado;
return_label=r_;
g0 to quart_allnc;
r_:
tent=ptr=>refno;
end;
else o
dsm_ar~s,return_ptr(ii)=addr(mt_quart);
ntecent=data_tyvre;
mtpent=sesr_ptr;
enc;
end;
return;

/*******************************'k****/

successor:
if succ_lab_sw=3 then do;
succ_lah_sw=1;
succ_lahel (-1)=sunc_1t_9
succ_label (9) =succ_era_0
succ_lahel (1)=sucr_gt_G;
end;
do i1 = 1 to upner_houn-i;
returr_label=s_;
go to quart_allnc;
s_:
succ_ptr=quart_ptr;
returt _label=sunacrssnr_return;
mo to refno_prolo~un;
successor_return:
7o to succ_lahel(four-t);

-
’

.
’

succ_cq_0:
if turn=ieft thapr Ae;
i7T last_richt=nulln then Ao;
ptr=sucnessor_ctain_hra!;
if ntr->flar=1 trten -lo;
succ_ptr->tent=ptr=>refneo;
zo Lo surcessor_end;
end;
else go to sucec_nt_0;
end;
else ptr=last_risht;
end;

-187-

5UCC_~t_s:
i otr=aurc=nallo Lt ern
3 - " -
SsUuce Tl _ut Lo;
N . - PR N A - Ly o- A
returs _str{iing = r{mt_quort);
P - L .
toetii=ras tn_.t‘_v ey
tnertEsor_purg
oL suncnsgor_ontt;
oy
;
.7 . o . .
rloe 17 atr=bguen=Yfloe=l thap g
N . N g e o - N e N [l
yrc_ntr=o ot Eptr=2saa-orrTnng

mov P suacessor_nnd;

1 it ant = sers
’)tr:r ‘}rr-i\;

e Lo sunec_mt_ D,
onrt;

-
.

SUCCESSOr_Qrnic s »
roeturne;

SR KR KA KK KX KR Ak AN K XAk F A XA KA KK KK KKk Nk khok [

SOrls
il ins_loh_ .= o iy
ins lab_o.o=1;
insert_1=hcl (="3=irs 1t 73,
irsert_lahel (%) =ins_ro_G;
insert_lahnl(l)=ins_~t_7;
irs_comp_lebel (=7)=ins_con_14_75;
ins_comp_labhel(N)=ins_cnn_rc_0;
arc
v i1 = 1 to unper_bour;
return_lobel=sirsart_retirn;
~o to datun_oroln~ye;
insert_returrs
return labhel=i_;
mooto arori_olinegg
{*.
SO0 to irsort _1ohe (Feun ')
ins_ Tt ¢ irs_nn T:
allocate ite 50t (inir) in (date_s~~);
if intr=null ther o

call arca_Srodef (ursohrc(substr{bitlunsaecnext_of)
L15),1,18)+1C027 , ser_ntr);
SO0 to irs_tt_ 3

ro
1

Pl

ond:.

-188-
Iptr=nulio;
rptr=nullo;
flag=1;
string_lencth=nseudo_leorcth;
string=suhstr(input_or_return_strin~,1,min(max_lrreth,

nseudo_lenrth));
70 to ins_comp_lahel (found);

ins_comp_1t_0:

succ=nullo;
refno=17179369138N0;
Ltent=1717986°1204;
first_entry=iptr;
successor_chain_hea-d=intr;
o to ins_incr;

ns_comp_eqa_0:

diff=max_depth_nf_trer=-iii;

differ=1;

do ilk=1 to diff;
differ=2*differ;
end;

if turn=richt then ‘lo;
otr=>rptr=iptr;
intr=->succ=ptr=->suce;
ptr=>succ=intr;
iptr=>refnosptr=->refrno+differ;
tent=iptr->refno;
gzo to ins_incr;
end;

else do;
iptr=>succ=ptr;
ptr=>lptr=intr;
iptr=>rafno=ptr->refno--"iffer;

tent=intr=>refno; .
if last_riesht=nullo then suacnssor_chain_head=intr;

else last_right=>sucr=intr;
mro to ins_incr;
end;

ins_at_0:

tent=ntr=->refnn;

if ntr=>flag=) then do;
ptr=->flar=1;
nurm_free_cells=nur_free_cnlls-1;
end;

else go to insnrti_end;

ins_incr:

num_entries=num_entrics+1;

insert_end: end;
return;

-189-

/***********************************/

delete_by_refro:

if dbr_labh_sw=0 then do;
dhr_lahel(=1)=dbr_1t_97;
é¢br_label (D) =dhr_eq_0;
¢hr_lahel (1) =dbr_gt_9;
dhr_lab_sw=1;
end;

do il = 1 to unper_hound;
return_lahel=deleta_by_refrno_return;
o to refno_nrelomur;

delete_by_rvrefrno_retirn:
c0 to dhr_lahel (foun-);

dbr_1t_0: dYr_ea_D0:
dsmi_ares.roaturn_ptr(ii)=atdr{mt_auart);
mtcent=dato_tyne;

mtpent=snr~ _pir;

~o to delete_by_refnn_end;

chr_zt_5:

if ptr=>flaz=0 thor ro to dhr_ec D,
clse;

ptr=>flag=3;
num_entrics=nu~_entriers=-1;
num_free_cells=nun_Ffrre_cnllis+l;
returr_label=rd;

=0 to strine_alloc;
rc:
pseudo_Tlength=ptr=>strins_len~th;
input_or_returr_strina=sutstr(ptr->strine, 1, nseudo_1

rnoth);

delﬂtﬂ_hy_r(’fno_enﬂ: Gn".;

if 2*¥purm_free_cells > nur_entries then 7n to trer_rehy
i1d;

roturn;

/************************************/

-190-

tdelate_by_datum:
if dhd_lab_sw=1 then n;
dhd_lab_sw=1;
dbd_Tahel (=1)=dbd_1t_5;
dbd_lahel (0)=dbd_en_G;
dhd_Yabel (1) =dhd_gmt_0;
ond;

do ii = 1 to upper_bound;
roturn_label=delcte_hy_datum_return;
ro to datum_pnrolocun;
delete_by_datum_return:
o to dbd_label (four-);

dbd_1t_0: dhd_ca_3:
dsm_ar~s.reoturn_ntr(ii)=ad r(nt_aquart);
mtecent=data_tync;

mtpent=se~_ptr;

ro to delete_by_datun_end;

Ahd_~t_0:
if ptr=>flag=3 then =0 tn "h4d_eo_92;
else;
ntr=>flae=0;
num_ertries=nu~_erptriecs=1;
nur_free_cells=nur_free_crlls+l;
return_label=dd;

co to quart_alloc;

dd:

tent=ptr->refno;

delete_by_datur_end: end;
if 2*num_frec_cells > num_entries th2n ~o tn trer_rebu
ila;

return;

‘/*************************'k**'k*******/

-191-

rofno_prolo~ue:

i exp="f" then aquort_ntr=d_or_q_ntr(1);
lse quert_otr=d_or_a »tr(ii);

]

[
als
en_int=max_lencth;

al

search_hy_refnn;:
turrn, found=7;
if first_centrv=nullo thon dn;
found==-1;
"D to reoturn_lahel;
onaG;
clse ptr=first_entry;
i exp="T" thrn nresented _loon_refno=quart_pronar,
stent(il,ci);
else presentnd_loon_re no=quart.tent;
ast_left,last_risht=nullo;
iti=1 to max_deptt_of_trece;
torcd_toon_rcfnesptr->iten,relinn;
if presented_loop_refno < stored_loop_refnn ther

do;
if ptr=>1ptrT=nullo thran do;
last_left=ntr;
clich=ptr->1rtr;
ntr=~lich;
~0 to secarc-_by_refno_ent;
and;
nlse ro;
turn=inft;
7o to roturen_labal;
onel;
enrl;
if presente_lono_refna > stored_loop_refnn ther
do;
’ i7 »tr=>rntrT=nullo then “n;
Tast_ri~ht=ntr;
~lich=ntr=->rntr;
ptr=aglich;
<o tn srarch_by _refno_ent;
ond;
else do;
turn=richt;
o to return_latrl;
ondd;
enrd;
it prosented_lron_refno = storad_loon_refno then
[SRC

foun-d=1;
mo to return_lahel;
end;
search_bhy_refno_erd: end;
o0 to tree_rehuilds

/************************************/

-192-
datum_prologue:
str_ptr=dsm_ares,.d_or_a_ptr{ii);
mlen_int=nax_len~th;

search_hy_datur:
found, turn=9;
if first_erntry=nulln than Ado;
found==~1;
70 to return_lahel;
end;
else ntr=Ffirst_entry;
presented_lonon_strine=substr{innut_or_return_strin
w,1l,pseudo_length);
last_left,loast_richt=nullo;
do iii=1 to max_depth_of_trre;
stored_loop_strinag=ssubstr{ptr=->itam.strinc,1,ntr
->string_length); '
if presentnd_loop_strine { stored_loop_strin~ th
an
less_than: do;
if ntr=>IntrT=nullo thren dn;
last_left=ntr;
glich=ptr=->Intr;
ntr=glich;
noto search_hv_datum_end;
nnd;
else Ao
turn=left;
ro to return_lohel;
and;
end;
else if oresante’_lonp_strin~ > stored_loon_stri
ne then
greater_thaon: rdn;
if ptr=>rntrT=nulln then n;
last_ri~ht=nt

ptr=glich;

g0 to search_by_datum_er;
end;

else do;

turn=risght;

%o to return_lahel;

ont;
end:

else if presentnd_lonn_strine

storcd_loop_stri

ng then do;
found=l;
g0 to return_lah~l;
cnd;
search_by_daturn_on':

:oend;
70 to tree_rehuildd;

et

(e
A
i

.

x ok okk ok vk ow ok owok 4 P A
o~ . + Y . -
4J"‘rk_ B
1 - o i - fPa P TR
b - B - — 7oy
' . - . - e e f5 TN e e ¥ e
S0 LrT o [S O O AR PN SRR S I S
Ve T
o ;
ot
e
i
- v
Strir _avino:
1 Tt : -
Lo i [t M
-0 = o + NS
T o B ; ST A5 T
. PPN . . . I
! BRI S i iy
B RN S :
L ! L : p
; . . ¢
LR R I D B O I T ~ s R e I LSS e S S e
.
- L . .
. , - = ~
: - - e | H.
G B v
. T S N R ;
Ly e b e - [P
* - v ,
IR
N e e s
v T
s by T - : o P N 4
Lree_vreral : . [ARATINE Sk DEER N RO
ey e [
R S S .
Pt (SRR G ;

-194-

dsm_integer,pll n6/01/7¢C
“on

dsm_integer: proc (dsm_args_ptr);
del data_seg area (1024) baserd (seo_ptr);
dcl first_off offset (data_seg) bhased (sec_ptr);

dcl 1 dsm_args based (dsm_ares_bptr),
upper_bound fixed hin (17),
ci fixed »in (17),

op char (1),

d¢i char (1),

e char (1),

ddptr ptr,

d_or_q_otr (upper_hound) ntr,
return_ptr (unper_bound) ptr;

raMN O NN NN

dcl 1 type based (type_ptr),
2 dsm_pname char (32),
2 data_type char (16);

dcl 1 quart based (quart_ptr),

id fixed hin (35) initial (0),
Tenesth fixed hin (35) initial (1),
order fixed »in (35) initial (1),
cent char (32),

pent ptr,

tent fixed bin (35);

[aS IS I SO RSO TN o6 3N £6)

del 1 quart_proper hased (quart_ptr),
gid fixed Hin (35),
alength fixed hin (35),
gorder fixed hin (35),
aqcent (qorder) chkar (32),
grent (qor-der) ptr,

ro N NN RN

del 1 mt_qguart static,

id fixed bin (35) initial (0),
mtlength fixed bin (35) initial (92),
mtorder fixed hin (35) initial (1),
mtcent char (32},

mtpent ptr;

[RCT SO 3 0O B SO T 6]

dcl 1 pseudo_strine_array based (str_ptr),
2 pseudo_leneth fixed bHin (35),

atent (glength,aorder) fixed bin (35);

1211,1 eadt

2 input_or_return_strina ckar (mlen_int);

-195-

dcl (Jj,V1,mlen_int, temp,simn,sloc,i,ii) fixnt Hin (3%);

del 11 (12) erar (1) uraliened,
cl12 char (12) defined ¢12(1) unaliere’;

dcl (quart_ntr,str_ptr,succ_nir,dsm_ar~s_ntr, cor_ntr,s~~_ntr
,type_ptr) nointer;

declarc exp char(1) varyina;

decl opcode char (1) varyins;

dcl dir char (168), ename char (32), ecrech fixed hin (35), ¢
acde fixed bhin (17);

adcl (divide,substr,null,addr) bhuilting

dcl rem fixed bin (35) hesed (con_ptr),

false char (4) bosed (con_ptr);

acl pot (0:11) fixed bin (35) initial (1,19,1030,1023,177°73,1
G0GCO,1000000,10695000,

—
(]
.
-]
D
D
)
(]
-
-~
ot
]
(@]
(]
[
-
w2
3
2
-
~

106000003800,1G600630607%100%) strtic;

/***

IEEEEEEEE SN

oncode=dsm_args.op;
seo_ptr=ddptr;
type_ptr=first_off;

if opcode="R" then ~o to cot_refnn;

else If opcode="0" then ro to ~et_datum;
else if opcode="S" then co to surcerssor;
else if opcode="N" then oo to new_data_tyone;
elsc ii=0;

loop_2:
PT=i+1;
dsm_arncs,reoturn_ptr(ii)=addr{mt_quart);
ser_ptr=ddptr;
type_ptr=first_off;
mtpent=secr_ptr;
mtcent=data_type;
if ii<upper_bound then go to loon_2;
return;

/***

IEE RS R RS RS N

successor:

loop_3:

i,ci);

-196-

it=0;

Pi=1i+l;

allocate quart sct (succ_ptr);
succ_ptr=>cent=data_tynn;

succ_ptr=>pent=ser_ntr;

return_ptr{ii)ssuce_ptr;

if exp="E" then Auart_ptr=d_or_q_ptr(l);

alse quart_ptr=d_or_q_ntr(ii);
succ_ptr=>cent=quart_ptr->cent;
succ_bptr=>pent=quart_ntr->pent;

if exp="F" then succ_ptr=>tent=l+quart_ptr->tent(i

else succ_ntr=>tent=l+quart_ptr=->tent;
if ii<upper_bhound then <o to lonp_3;
return;

/***

kkkkkkhkdkkk [

get_datum:

i
loop_7:

on fixedoverflow bercin;
dsm_arss.return_ptr{ii)=addr(mt_quart);
mtpentssaor_ptr;
mteent=dato_type;
end;

i=0;

ii=ii+1;

if exp=""f" then quart_ptr=d_or_a_ptr(l);
else quart_ptr=d_or_q_ptr(ii);

mlen_int=12;

allocate false sat (con_ptr);

allocate psnrudo_strine_array sot (str_ptr);
return_ptr{ii)=str_ntr;

if exp="r" then tennp=qtent(ii,ci);

else temp=quart_ptr->tant;

if temp ¢ 0 then fo;

sirn==-1;
temp==temp;
end;
else sion=1;
i=12;
comp:

rem=toemp;

temp=divide(tenp, 17,35,0);
rem=rem-10*temp;

rem=rem+4 &; /* I5C11 conversior */
cll(i)=substr(false,l,bl);

-197-

end;
pseudo_length=12-17;
input_or_return_string=substr(cl12,i+]1,nscu-n_lere
th);
if ii<upper_bound then mo to loop_7;
revert fixedoverflowu;
return;

/***"******
**********/

set_refno:
ii=0;

loop_3J:
ii=ii+l;
str_ptr=d_or_qg_ptr(ii);
2llocate quart set (quart_ptr);
cent=data_typne;
pent=srpr_nptr;
allocate rem set (con_ptr);
return_ptr(ii)=quart_ptr;
clll=substr(innut_or_return_strin~,1,ns2ulo_len=th

sloc=2;

sian=l;
end;

else do;
sloc=1;
sirn=l;
eni;

tenp=0;

rem=0;

i=sloc-1;

loop:
i=i+1;

substr(false,4,1)=c11(i);

if (rem<48lerm>57) then do:
dsm_ares,return_ptr(ii)=aldr(mt_quart);
mtpent=ddntr;
free quart_ptr->quart;
o to enr_of_gar;
end;

-198-

temp=temp+(rem=48)*pot{pserudo_lrneoth=i);
end_of_gr:

if i<pseudo_lengsth then 7o to lonn;

tent=temprsiaon;

if i1 < upper_bouns then «o to loon_0;

return;

[REKRE KT Ik kh R Ak h bk kakhhhhhhhkhkhhh b xh ke khhhhhkk kb hhhhrd ¥
kkkkkkkkkk/

—
il

I4
s_$fs_smet_patk_nama(ser_ptr,dir,srech,enarme
, code);

call areca_(1024,se~_ptr);

allocate type set (tvpe_ptr) in (datc_se=);

data_type=enane;

dsm_name="dsm_intager";

if ii<unper_bound then 7o tn 1111o00n;

return;

JAAZE R R LA RS A Ry S R R R R X R AR R RIS RS RS R A AL A S SR
kkkkhkhxx [

end dsm_interer;

-199-

dsm_chain.pll DR/01/7C 1283%30,2 eAdt
Mon

dsm_chain: proc (dsm_ares_ptr);

/***

kkkkkhkxkk [
decl data_seg area (1024) based (ser_ptr);

dcl 1 dsm_args based (dsm_arns_ptr),
upper_bound fixed Sin (17),
ci fixed bin (17),

on char (1),

di char (1),

e char (1),

ddptr ptr,

d_or_a_ntr (upper_bound) ntr,
return_ptr (upper_bound) ptr;

PRI TN NN NN

dcl 1 quart based (quart_ntr),

id fixed Hin (35) tnitital (0),
length fixed »in (35) initial (1),
order fixed hin (35) initial (1),
cent char (32) initial (data_tynr),
nent ptr initial (see_ptr),

tent fixed +in (35);

PN

N R

decl 1 quart_nroper based (quart_ptr),

qid fixed Hin (35),

alength fixed hin (35),

qgorder fixed “in (35%5),

gcent (qorder) char (32),

apent (gqorder) ptr,

qtent (gqlength,qorder) fixed hin (35);

NI SIS Y S NIRY |

del 1 pseudo_string_array hased (str_ptr),
2 pscudo_lengthk fixed bhin (35),
2 input_or_return_string char (mlen_int);

dcl 1 type based (type_ptr),

dsm_name char (16) initial ("dsm_chain),
data_type char (32),

num_entries fixerd hin (35),
successor_chain_hecad offset (data_ser),
max_length fixed bhin (35),

first_refno fixed hin (35);

[AS ISR SN S O)

-201-

benin_dsm_chain:

CXP=UsSi_arns.e;
dori=dsm_arss,.di;
opcode=dsm_arcs.op;
sce_ptr=ddptr;
type_ptr=Ffirst_off;

if opcode="D" then /* innut is refnos x/
if dori=" " then g0 to net_datum;
else if dori="D" then ro to Aerletr_by_refno;
else 0 to op_error;

else if opcode=""A" then /* data strin~s are input */

if dori="" then gzo to cet_refnn;
else if Adori ='"D" then «o to delete_by_datum;
else if dori="1" thnan ~o to incert;

else go to op_error;

else if opcode="S" thnn
if dori =" " then ro tn successor;

else go to op_error;

else if opcode="t"" thean
if (dori=" " & oxp=" ") then =o t» new_data_tyne;

ii = 1 to uppcr_bound;
return_ptr(ii)=addr(mt_quart);
mtcent=data_tvpr;
mtpent=sece_ptr;

end;
return;

op_error: do

/***

********/

new_cata_type:
do ii = 1 to upnrer_boun;

call areca_(102h,s0~_ptr);

call hes_Sfs_eet_path_name(ser_ptr,dirrame,orech
, cname, code) ;
allocate tyre snt (tynan_ptr)

num_entries=0;

call foa_("what is max lenrtk for character stri
ngs for Ta>Ta ?27/",substr(dirname,1,agrech),ename);

call read_list_(grech);

in (data_ser);

-203-
end;
return;

/***

**********/

successor:
do ii =1 to upper_bound;

return_lahel=suncessor_return;

g0 to refno_prolorue;
successor_return:

return_labhel=s_;

go to quart_alloc;
s_:
Tif found=-1 t*ren leneth=0;

else 1f ntr=null then tent=suc

cessor_chain_head->refno;
else if ntr=>succ=nu

11lo then lensth=0;
else tent=ptr~>succ->refno;
end;

return;

/***

**********/

dclecte_by_refno:
do ii 1 to upper_boun-;
return_lahel=delate_by_refno_return;
zo to refno_prolocue:;
delete_by_refno_return:
if found™=1 then do;
return_ptr(ii)=addr{mt_quart);

mteent=datao_type;
mtnent=ser_ntr;
end;
else do;
return_lahel=rd;
o to strine_alloc;
rd:
pscudo_lenmth=ptr->strin~_lene

th;
input_or_return_strina=substr(

ptr->string,1,ntr=>string_lencth);
if pred=null thken successor_ch

ain_hecad=ptr=->succ;
else pred=>succ=ptr=->succ;

free ptre>itery

num_entries=num_entries-1;

-206-

intr=>strinz=substr(
input_or_return_string,1,pscude_leneath);

iptr=>strine_lernth=
pseudo_length;

end;

en-!;
iend: end;
return;

R E L R R L T L)
*Kkkkkkkkk %/

quart_alloc:
allocate quart sot (quart_pt+);
return_ptr(ii)=aquart_ptr;
pent=sag_ntr;
cent=data_type;
g0 to return_lahel;

string_alloc:
mlen_int=max_lenn~th;
allocate pseudo_strin~_array set (str_ntr);
return_ntr(ii)=str_ptr;
50 to returr_lahel;

VAR AR R R R R RS S R R R R
**********/

refno_prolosue:
if exp="f" then quart_ptr=d_or_a_ntr(l);
else quart_ptr=d_or_q_ptr(ii);

search_by_recfno:
found=0;
if successor_chain_heral=nullo then Ado;
fourd==1;
mo to rcturn_lahel;
en-t;
ptr=successor_chain_hca-l;
pred=nyll;
if exc="T" thap presentrnd_refno=qtent(ii,ci);
else presanted_refnostent;
refno_lnonr:
if presented_refnodptr=>refne trten =o to refno_fut

if preserted_refno < ptr->refno then do;
ptr=pred;
co to return_lahel;
end;

n

d
~e

found

-207-

50 1O return_favnel;
refno_futz:

pred=ptr;

glich=ptr->succ;

if glich=nullo then -o;
o to return_label;
end;

ptr=glich;

go to refno_loop;

/***************************'k*******************************

**********/

datuni_prolosue:
str_ptr=d_or_a_ptr(ii);

scarch_by datunms
founi=7;
if successor_chain_hea'=nulln then Ao,
found==1;
o Lo raturn_lahel;
end;
ptrssuccessor_chain_head;
pred=null;
presentecd_string=substr(innut_or_returr_string,1,p
scudo_length);
datun_loon:
if presented_strin<"=substr(ptr->strine,l,ntr->str
length) then ro to datur_futz;
found=1;
g0 to return_lahel;
datum_futz:
pred=ptr;
glich=ptr->succ;
if glich=nullo trten -o;
co to return_laherl;
end;

ing

ptr=rlich;
go to datur_loop;

AR RS RS R A Ry T Ry Y T Y T T T T XS
kxkkkkxkkkk [

end dsm_chain;
EQF

Mon

dsm_tahle: pr

-208-

dsm_table,nll 06/01/7C 1758.3%

oc (dsm_arss_ptr);

et

/***

*********/

dcl data_ser

cdel 1 dsm_arr
2
2

NN RN RNM

del 1 quart b

Nro NN

decl 1 quart

NN

del 1 pseudo_
"

2

dcl 1 type ba

NN NN

dcl 1 table (
2

area (arca_size) based (ses_ptr);

s based (dsm_arrs_ptr),
upner_bound fixed Hin (17),
ci fixed hin (17),

op char (1),

di char (1),

e char (1),

ddptr ptr,

d_or_ag_ptr (upper_bound) ptr,
return_ptr (upper_bound) ptr;

ased (quart_ptr),

id fixed »in (3%) initial (0),
length fixed hin (35) Initial (1),
order fixed hin (35) Initial (1),
cent char (32) initial (data_typne),
pent ptr initial (ser_ptr),

tent fixed Hin (35);

_proner hased (quart_ptr),

aid fixed Hin (35),

glength fixed bhin (35),

qorder fixed hin (35),

aqcent (qorder) char (32),

gpent (qorder) ptr,

atent (alensth,aorder) fixad kin (35);
string_array hased (str_otr),
pseudo_lenath fixed Hin (35),
input_or_return_strine char (max_leneth);

sed (type_ptr),

dsm_name char (16),
data_type char (32),
tab_off offset (data_ses),

num_entries fixed hin (35) initial (in_len),

max_length fixed hin (35) initial (in_max);

in_len) based (tah_off),
string_lencth fixed bin (35),

2 string char (max_lenecthk);

-209-

dcl 1 mt_quart static,

mtic fixed Hin (35) initial (0),
mtlength fixed bin (35) initial (0),
mtorder fixed hin (35) initial (1),

mtcent char (32),
mtpent ptr;

MR O

del presented_string char (160) varyine static;
declare exp char{1) varying;
dcl (dirname char (168), enome char (32), rrech fixed hin (3

5)) static;

decl (seg_ptr,type_ptr,str_ptr,auart_ptr) ptr static;
decl code fixed bin (17);

acl (addr,divide, substr,max) builtin;

dcl dsm_args_ptr ptr;

dcl first_off offset (data_ses) based (seec_ptr);

dgcl (,ii,tab_len,in_len,in_max,ji,area_size,char_len) fixed
bin (35) static;

dcl return_label label (r_,s_,d_);

AR AR LS R R R I S R Y R R AL R R E
**********/

begin_dsm_table:

seg_ptr=ddptr;

type_ptr=first_off;

if substr(op,1,1)="D" then no to set_datum~; /* input i
s refnos =*/

else if substr(on,1,1)="N" thean ~o to ~et_refno; /*
data strines are input */

else if suhstr(on,1,1)="S" than ~n tn succrssor:;

else if substr(op,1,1)="1"" then =0 tn new_data_tyne;
else do ii = 1 to upper_hound;
return_ptr(ii)=ad-dr(mt_quart);
mtcent="";
mtpent=ddptr;
end;
return;

Jrrhkkh ke hhkhhkh hdh ARk A kA rhhk Ak kA hhkhhhhhhkrhhhr sk kb rhd Ak kX k kK
********/

-210-

new_data_tyne:
do ii = 1 to unper_hound;
call hes_Sfs_get_patb_namnr(se~_ptr, irname, rreck

, ename, code); . . .
call ioa_("what is tre numher of table ontries in

date type "a>Ta ?27/",substr{dirnane,l,arecct),enemn);
call recad_list_(in_len);
call Toa_("what is max len~th for character strin~
s in "a>"a ? T/",substr(dirname,1,creeck),ename);
call read_list_(in_max);
areca_size=max(102L,1k+in_lenx (J+divide(in_max, i, 35
,00+1));
caly areca_(areca_size,sco_ptr); ‘
allocate type# set (tvne_ptr) in (date_ser);
allocate tahler snt (tah_off) in (dato_ser);
nun_entries=0;
data_type=ename;
dsm_name="dsri_tab1le'';
end;
return;

/***

************/

get__datum:

do 1 to upper_bound;

il =
if exp="E" then n=d_or_a_ptr(l)=>qgtent(ii,ci):
else m=d_or_q_ptr(ii)=->tent;
if ((m<=num_entries) & (tahle(m),.strine_lenatk™=-1
)} then do;
return_label=d_;
go to string_alloc;
d_:
pseudo_lensth=tablr(m).strine_leneth;
input_or_return_strins=substr(tahle(m).strine, 1,
pseudo_length) ;
if di="n" then table(m),strinc_lenath=-1;
end;
else do;
dsm_arrs,.return_ptr(ii)=addr({mt_quart);
mtcent=data_typre;
mtpent=seg_ptr;
end;
end;
return;

/************************************/

-211-

ret_refno:
do ii = 1 to upper_bountd;
str_ptr=d_or_a_ptr(ii);
presentes_string=subhstr{innut_or_return_
string,1,pseudo_length);
do jj =1 to nurm_entries;
if tahle(jj).string_lenathT==1
then
if nresented_strine=
substr(table(jj).string,1,table(jj).strins_length) then eco t
o grq;

end;
if di="1" then =0 to insert;
else -do;
dsm_ares,.return_ptr(ii)=addr(m
t_quart);
mteert=data_tyne;
mtpent=se~_ptr;
go to i_end;
end;
insert:

num_entries=num_entries+1;
tahle(num_entries),strine_len~
th=pseudo_length; :
table(nun_entries),strine=suhs
tr(input_or_return_string, 1,nseudo_lennrth);
jj=num_entries;
rq:
return_Jlabel=r_;
70 to quart_alloc;
r_:
tent=jj;
if di="D" then tohle(ji).strine_lensth=-

i_end: end;
return;

VAR R R R R R R R R R e SRR E)
Akkkrkkkkkx [

successor:
do ii =1 to upper_hound;
if exp="F" then m=d_or_q_ptr(l)->gtent(i
i,ci);
else m=c_or_qg_ptr(ii)=>tent;
return_lahel=s_;
go to quart_alloc;
s_:
if mdnum_entries | m<0 then do;
return_ptr(ii)=addr(mt_quart);

-212-

free quart_ptr->quart;
mtcent=data_tynpe;
mtpent=ser_ptr;
g0 to succ_end;
end;
sloop:
m=m+1;
if m>nur_entries then length=0;
if tahle(m).strinrc_lensth==1 then ~o t»
sloop;
tent=m;
succ_end: end;
return;

/***

*hkkkkkkkkx [

guart_alloc:
aliocate quart s~t (quart_ptr);

pent=ser_ntr;
cent=data_type;
return_ptr(ii)=quart_pntr;
go to return_lahel;

string_alloc:
allocate pseudo_strine_array set (str_ptr);

return_ptr(ii)=str_ptr;
g0 to return_label;

/***

kkkdkhkxkks [

end dsm_table;

-213-

rsm_viaq.nll 06/03/7. 1014.,5 edt
Wed

rsm_wa: procedurelarg_ptr);
declare 1 args bhased (arg_ptr),
2 upper_bound fixed hin(35),
2 op character(1),
2 gl_ptr (limit refer (upper_hound)) pointer,
2 rl_ptr (limit refer (upper_bound)) pointer,
/*Mot used herex/
2 q2_ptr (limit refer (upper_bound)) pointer,
2 r2_ptr (limit refer (upper_bound)) pointer,
/*Not used herex/
2 equiv_ptr (limit refer (upper_hound)) pointe
r, /*Not used herex/
2 return_arg (limit refer (upper_bound)) point
er;
declare 1 quart based (lptr),
ID fixed bin(35) initial(0),
length fixed bin(35),
order fixed bin(35),
cent(alloc_order refer (order)) char(32)
nent(alloc_order refer (order)) pointer,
tent(alloc_length refer (length),alloc_order
refer (order)) fixed bin (35);
declare 1 ent_vector hased (rptr),
2 width fixed bin(35},
2 names(alloc_order refer (width)) char(32);
declare 1 int_sort_quart,
2 sid fixed bin(35) initial(0),
2 slength fixed bin(35) initial(0),
2 sorder fixed bin (35) initial(20),
2 scent(sorder) char(32);
declare 1 feht based (eq_ptr),
2 num fixed bin(35),
2 newcent (1 refer (num)) char(32);
declare return_place label (major_loop,in_UID_op,i
n_P_op,in_C_op_1,in_C_op_2);
declare op_label label (UID_operate,S_operate,P_op
erate, X_operate, Z_operate,}_operate,
E_operate,N_operate,O_oper

IR N NN

ate,C_operate);
declare g_alloc_r label (q_alloc_1,a_alloc_2,q_all
oc_3,qa_alloc_kL,q_alloc_5,q_alloc_€E,q_alloc_7,q_alloc_8);

declare (gen_purpose_pntr,new_otr,free_ptr,eq_ptr,t
ptr,cptr) pointer;

declare (lIptr,rptr,temp_ptr,temp2_ptr,temp_lIptr,te
mp_rptr) pointer;

declare (null,max) builtin;

-214-

declare corres(slength) fixed hin(35) based (gen_»p
urpose_ptr);

declare token(slength) fixed bin(35) based (ren_pu
rpose_ntr);

declare int_cent(20) char(32);

declare alloc_cent(20) char(32);

declare cent_flag(20) fixed initial((20) 0);

declare temp fixed bhin(35);

declare (n_sw,no_sort_sw) fixed bin (1);

declare (step_sw) fixed bin(1l) initial(0b);

declare (1place,rplace,oplace, tplace,alloc_or-er,a
1loc_length,entrv_count) fixed bin(17);

declare (slength,rrow,rcol,lrow,lcol,nc,nr,cl,lt,r
t,free_len,free_ord) fixed bin(17);

decltare (ii,jj,kk,11,mm,i,j,1imit,ocount,place,chu
nk) fixed hin(17);

declare (llenpgth,rlength,lorder,rorder,1_new_order

y fixed bin(17);

if args.op="U"largs.op="1"]args.op="D" then op_labh
el=UlD_operate;
if args.op="P" then op_label=P_operate;
if arrs.op="S" then op_label=S_operate;
if args.op="'"X" then op_label=X_operate;
if args.op="0" then op_label=0_operate;
it args.op='"C" then op_label=C_operate;
if args.op="E" then op_lahel=f_operate;
if args.op="M" then op_label=M_operate;
if argcs.op="Z" then op_label=7_operate;
if args.op="0N" then op_label=0_operate;

do kk=1 to args.upper_bound;

if aregs.op=""""}args.op="1"]args.op="D" then go to
no_set_ptrs;

Iptr=args(kk).ql_pntr;

rptr=args(kk).q2_ptr;
no_set_ptrs:

return_place=major_loop;

g0 to op_label;

quart_alloc: allocate quart set (temp_ptr);
go to q_alloc_r;

E_operate: alloc_order=order;
allocate ent_vector set(args(kk).return_arg);
do i=1 to alloc_order;
args(kk).return_arg~>names(i)=cent(i);

-215-

ond;
o0 ton return_place;

I _operate: arps{kk).return_are=1iptr;
Ao i=1 te order;
pent(id=null;
endt;

g0 to return_nlace;

i« _operate: args(kk).return_arg=Iptr;
if widthT=arder then do;
call 0S _errorSpr(103,"™" Intr,rotr);
args.return_arg(kk)=null;
o to return_place;

end;
do i=1 to order;

if names(1)7="8" then cent{i)=names(i);
end;

70 to return_nlace;

O_operate: if widthT=arder then dn;
call 0S_error$pr(103,"0",Iptr,rptr);
null_answver; args.return_arg(kk)=null;
fo to return_place;
end;
slength=order;
alloc _order=sltength;
allocate ent_vector set(cptr);
Allocate token set(tptr);
1j=1;
dJo =1l to order;
iT names (rm)="%" then cptr->n*fames (i) =cent{mm)

else cptr=>names (mm)=names (mm);
if onames(mm)”"=""" then do;
tptr=->token{(jj)=rm;
Ji=jirl;
end;

end;

if jj>1 then alloc_order=jj-1;

else go to null_answer;

alloc_length=length;

a_alloc_r=0_alloc_7;

go to auart_alloc;
a_alloc_7:tplace=1;

do mm=1 to alloc_order;

temp_ptr=>cent{mm)=cptr->nanes(tptr=->token(mn)

temp_ntr=>pent{(mm)=null;
end;
do jj=1 to lencth;

roosve=0%

-218-
if tent(lplace,oplace)>rptr->tentirpiace,opiac
e) then do;
if arcs.op=""U" then do;
do ocount=1 to alloc_order;
temp_ptr=>tent(tplace,ocount)=rptr
->tent{rplace,ocount);
end;
tplace=tplace+];
end;
if rptr->lengthd>rplace then do;
rplace=rplace+l;
g0 to neworder;
end;
~ else finish_left: do place=Iplace to lengt
h while(args.op="U"]args.op='"D");
do ocount=1 to alloc_order;
temp_ptr->tent(tplace,ocount)=tent
(1place,ocount);
end;
tplace=tplace+l;
end;
g0 to stop_action;
end;
else do;
if args.op="U"]args.op="D" then do;
do ocount=1 to alloc_order;
temp_ptr->tent(tplace,ocount)=tent
(I1place,ocount);
end;
tplace=tplace+1;
end;
if length>1place then don;
Iplace=lplace+];
go to neworder;
end;
else finish_right: do place=rplace to rptr
->length while(args.op="U");
do ocount=1 to alloc_order;
temp_ptr->tent(tplace,ocount)=rptr
->tent(rplace,ocount);
end;
tplace=tplace+l;
end;
70 to stop_action;
end;
end;
else do;
if order>oplace then do;
oplace=oplace+1;
o to check;
end;
if ares.on="D" then go to nocopy_right;
do ocount=1 to alloc_order;
temp_ptr->tent(tplace,ocount)=tent(1place,
ocount);

-219-
end;
tplace=tplace+1l;
nocopy_right: if length™>1place then do;
if rptr=>length>rplace then do;
rplace=rplace+]l;
zo to finish_right;
end;
else go to stop_action;
end;
else do;
Iplace=lplace+];
if rptr->length™>rplace then go to finish_
left;
rplace=rplace+]l;
0 to neworder;
end;
end;
stop_action: oplace=alloc_length;
alloc_length=tplace-1;
if alloc_length=oplace then go to no_new_copy;
temp?2_ntr=tenp_ntr;
g_allec_r=q_alloc_2;
go to quart_alloc;
g_alloc_2: 1o jj=1 to alloc_order;
tenp_ptr=>cent(jjl=cent(jj);
tenp_ptr=->pent(jjl=pent(jj);
Ao mm=1 to alloc_length;
temp_ptr->tent(mnm, jj)=temp2_ptr->tent(nm,]

end;
end;
alloc_length=oplace;
free temp2_ptr->quart;
no_new_copy:args(kk).return_arg=temp_ptr;
go to return_place;

P_operate: if rptr=null then go to pet_first_element;
if rptr=->length=0 then go to get_first_element;
alloc_order=order;
slength=alloc_order;
if rptr->order™=a3lloc_order then do;
args.return_arg(kk)=null;
call GS_errors$pr(101,0p,1ptr,rptr);
zn to return_place;
end;
allocate corres set (cptr):
do ii=1 to alloc_order;
do jj=1 to alloc_order;
if rptr->cent(jjl)=cent(ii) then do;
cptr=>corres(ii)=rptr->tent(1,]jj);
g0 to next_step_on;
end;
end;

-221-

C_operate:

eq_ptr=equiv_ptr(kk);
1length=Iptr->lensth;
riength=rptr->length;

rorder=rptr->order;

lorder=lptr=>or-der;

if (lorder+rorder)™=feht.num then

call GS_error$p(105,"C",eq_ptr,null);

/* 1. put new hindings in int_cent =/

do0 I = 1 to lorder;
if newcent(i)="a" then int_cent(i)=lIptr->cent(
i);
else int_cent(i)=newcent(i);
end;
do j = 1 to rorder;

if newcent(lorder+j)="&" then int_cent(lorder+
j)=rptr->cent(j);

else int_cent(lorder+]j)=newcent(lorder+j);
end;

/* 2. sort left quart on cents in domain of lamhda (see thes
is) %/

Isort: k=1;
sorder=lor-der;
Ao i=1 to lorder;
if cent_flag(i)=1}int_cent(i)=" " then go to 1

nofill;
do m=lorder+1 to lorder+rorder;
if int_cent{m)=int_cent(i) then do;
cent_flag(i)=1;
scent(k)=iptr=->cent(i);
k=k+1;
g0 to jtest;
end;
end;
0 to lnofill;
jtest: do j=i+l to lorder;

if int_cent(i)=int_cent(j) then do;
cent_flag(j)=1;
scent(k)=1ptr->cent(]j);
k=k+1;
end;
end;
Inofill: end;

contin: do i = 1 to (lorder-1);

-222-

if cent_flag(i) = 1lint_cent(i)=" " then go to
liend;
cent_flag(i)=1;
scent(k)=1ptr=>cent(i);
k=k+1;
do j = (i+1) to lorder;
if int_cent(i)=int_cent(j) then do;
cent_ftag(j)=1;
scent(k)=1ptr->cent(j);
k=k+1;
end;
liend: end;
do i=1 to lorder;
if cent_flag(i)=0 then do;
cent_flag(id)=1;
scent(k)=1ptr->cent(i);
k=k+1;
end;
end;
rptr=addr(int_sort_quart);
return_place=in_C_op_1;
go to S_operate;
in_C_op_1l: temp_ptr=return_arg(kk);
temp_lptr=temp_ptr;
rptr=a2_ptr(kk);
do i = 1 to lorder;
d0 j = 1 to lorder;
if temp_ptr->cent(i)=Iptr->cent(j) then
temp_ptr=>cent(i)=int_cent(i);
end;
end;

/* 3. check right quart for need to sort */

rsort:
k=1;
sorder=rorler;
rptr=q2_ptr(kk);
do i = lorder+1 to lorder+ror-er;
if cent_flag(i)=1]int_cent(i)=" " then go to r
nofill;

10 j=1 to lorder;
if int_cent(i)=int_cent(j) then do;
cent_flag(i)=1;
scent(k)=rptr->cent(i-lorder);
k=Kk+1;
go to mtest;
end;
end;
go to rnofill;

mtest:

rnofill:

jend;

riend:

in_C_op_2:

then

o aliend;

10 m=1+1 to FAATEr+1orier;
if int_cent(i)=int_cent(m) then do;
cent_flag(m)=1;
scent(k)=rptr->cent(m-lorder);

k=k+1;
end;
end;
end;
do i = (lorder+l) to (lorder+rordar);
if cent_flag(i)=1]int_cent(i)=" " then go to r

cent_flag(i)=1;
scent(k)=rptr->cent(i-lorder);
k=k+1;
Ao m=i+1 to lorder+rorder;
if int_cent(m)=int_cent(i) then do;
cent_flag(m)=1;
scent(k)=rptr->cent(m-lorder);
k=k+1;
end;
end;
end;
40 i=1+lorder to lorder+ror-ier;
if cent_flag(i)=0 then do;
cent_flag(i)=1;
scent(k)=rptr=>cent(i-lorder);
k=k+1;
end;
end;
Iptr=rptr;

rptr=addr(int_sort_quart);
return_place=in_C_op_2;
go to S_operate;
temp_ptr=return_arg(kk);
rptr=q2_ptr(kk);
Iptr=temp_1lptr;
d0 | = | to roraer;

do j = (lorder+1) to (lorder+rorder);

if temp_ptr->cent(i)=rptr->cent(j-lorder)

rptr=>cent(j-lorder) = int_cent(j);
end;
end;

alloc_order=1;
do i = 1 to (lorder=-1);
if lptr=>cent(i)=lptr->cent(i+l) then go t

else if lIptr=>cent(i)™=" " then do;
alloc_cent(alloc_order)=1lptr=->cent(i);
alloc_order=alloc_order+1;

en

o ariend;

o ariend;

en

q_alloc_8:

begin_compose:

-224-
end;
aliend: end;
if Iptr->cent(lorder-1)"=1ptr->cent(lorder) th

if Intr=->cent{lorder)™=" " then do;
alloc_cent(alloc_order)=1ptr->cent(lorder)

alloc_order=alloc_order+1;
end;
1_new_order=alloc_order-1;

to (rorder~1);
= 1 to 1_new_order;
alloc_cent(j)=rptr=->cent(i) then go t

do i =1
do j
if

end;
if rptr=>cent{(i)=rptr->cent(i+l) then go t

else if rptr=>cent(i)™=" " then do;
alloc_cent(alloc_order)=rptr->cent(i);
alloc_order=alloc_order+1;
end;
ariend: end;
if rptr->cent(rorder) =rptr->cent(rorder-1) th

if rptr=>cent(rorder)™=" " then do;
alloc_cent(alloc_order)=rptr->cent(rorder)

alloc_order=alloc_order+1;
end;
alloc_order=alloc_order-1;
alloc_length=rlength*1length;
temp_rptr=temp_ptr;
q_alloc_r=qg_alloc_8;
o to quart_alloc;
new_ptr=temp_ptr;

do i = 1 to alloc_order;
new_ptr=>cent(i)=alloc_cent(i);
end;

fo i =1 to lorder;

if rptr=->cent(1l)=Iptr->cent(i) then cl =i;

end;

lrow,rrow,nr=1;

row_incr:
if lrow>llength]|rrowdrlength then do;
nr=nr=1;
70 to return_sequence;
end;
if 1ptr->tent(lrow,cl)<rptr=->tent(rrow,1) then do;

-225-

lrow=lrow+l;
70 to row_incr;
end;
if Iptr->tent(lrow,cl)>rptr->tent{(rrow,1) then do;

rrow=srrow+l;
g0 to row_incr;
end;

one_compose:
lcol,rcol, nc=1;
lr_comp:
if 1ptr->cent(lcol) =rptr=>cent(rcol)}intr->cent(l
col)="" then do;
lcol_incr_90:
lcol=lcnl+1;
if lcol>lorder then do;
new_ptr->tent(nr,nc)=1ptr->tent(lrow,lcol-

1);
nc=nc+1l;
zo to right_finish;
end;
else if Iptr=>cent(lcol)=" " then go to lcol_i
ncr_0;
else if Iptr->cent(lcol)=lptr->cent(lcol-1) th
en

if Iptr=>tent(lrow,lcol)=1ptr=->tent(lrow,]
col-1) then
go to lcol_incr_9;
else do;
lrow=lrow+1;
Z0 to row_incr;
end;
else do;
new_ptr->tent(nr,ncl)=1ntr=->tent{(lrow,lcol-
1);
nc=nc+1;
0 to lr_comp;
end;
end;
else if lcol>=lorder then do;
lcol=lcol+l;
if Iptr=>tent{(lrow,lcol=1)"=rptr->tent(rrow,rc
ol) then go to right_finish;
else Ado;
new_ptr->tent(nr,nc)=Iptr=->tent(lrow,lcol~
1);
nc=nc+1;
g0 to right_finish;
end;
end;

-226-
else if Iptr=->cent(lcol)=lIptr=->cent(lcol+1l) then
if 1ptr=>tent(lirow,1col) =Iptr->tent(lrow,lcol
+1) then do;
lrow=)lrow+1;
g0 to row_incr;
end;
else do;
lcol=lcol+l;
go to lr_comp;
end;
else if rcold>=rorder then do;
rcol=rcol+1;
if 1ptr->tent(lrow,lcol)"=rptr->tent(rrow,rcol
-1) then go to left_finish;
else do;
new_ptr=>tent(nr, nc)=rptr->tent(rrow,rcol-
1);
nc=nc+1l;
so to left_finish;
end;
end;
else if Iptr=->tent(lrow,lcol) =rptr->tent(rrow,rco
1) then do;
if Ilptr->tent(irow,cl) < rptr->tent(rrow,1) th
en rrow=rrow+1;
else lrow=lrow+1;
70 to row_incr;
end;
else Ado;
new_ptr->tent(nr,nc)=1ptr=->tent(irow,lcol);
lcol=lcol+l;
rcol=rcol+1;
nc=nc+1;
go to lr_comp;
end;

right_finish:
if rcol>rorder then do;
nr=nr+l;
if 1ptr->tent(lrow,cl) < rptr->tent(rrow,1) th
en rrow=rrow+l]l;
else lrow=lrow+l;
o to row_incr;
end;
else if rptr=->cent(rcol)=" " then do;
rcol=rcol+l;
0 to right_finish;
end;
else if rptr->cent(rcol)=rptr=->cent(rcol+1) then
if rptr=>tent(rrow,rcol)=rptr->tent(rrow,rcol+
1) then do;
rcol=rcol+1l;
go to right_finish;

-227-
end; 7

else do;
if Iptr->tent(lrow,cl) < rptr=->tent(rrow,1
) then rrow=rrow+l;
else lrow=lrow+l;
go to row_incr;
end;
else do;
new_ptr->tent(nr,nc)=rptr=->tent(rrow,rcol);
nc=nc+1;
rcol=rcol+l;
a0 to right_finish;
end;

left_finish:
if lcol>lorder then do;
nr=nr+1;
if Iptr=->tent(lrow,cl) < rptr=>tent(rrow,1) th
en rrow=rrow+l;
else lrow=lrow+l;
zo0 to row_incr;
end;
else if Iptr=>cent(lcol)=" " then do;
lcol=lcol+]l;
g0 to left_finish;
end;
else if 1ptr->cent(lcol)=Iptr->cent(lcol+1l) then
if Iptr=>tent(lrow,lcol)=Iptr=->tent(lrow,lcol+

1) then do;

lcol=lcol+1;
go to left_finish;
end;

else do;
lrow=lrow+1l;
g0 to row_incr;
end;

else do;
new_ptr=>tent(nr,nc)=1ptr->tent(lrow,lcol);
nc=nc+1;

lcol=lcol+l;
o to left_finish;
~end;

tplace=nr-1;

free temp_lptr=->quart;
free temp_rptr=>quart;
return_place=major_loop;
g0 to stop_action;

-228-

S_operate: slength=length;
if rptr=null then go to skip_1;
if orderT=rptr=->order then do;
args(kk),return_arg=null;
call GS_errors$pr(101,o0p,1Iptr,rotr);
z0 to return_place;
end;
/*Error here is unequal orders in sortx/
skip_1: alloc_length=length;
alloc_order=order;
no_sort_sw=1b;
allocate token set (tptr);
allocate corres set (cptr);
if rptr=null then do;
4o ii=1 to alloc_order;
corres(ii)=ii;
end;
20 to skip_2;
end;
do ii=1 to alloc_order;
do jj=1 to alloc_order;
if rptr->cent(ii)=cent(jj) then do;
cptr=>corres(ii)=jj;
if iiT™=]j then no_sort_sw=0b;
g0 to one_corres_-down;
end;
end;
args(kk).return_arg=null;
free cptr->corres;
free tptr->token;
call nS_errors$pr(102,o0p,1ptr,rptr);
0 to return_place;
/*Error here is inconsistant entries in the two cent tuples+*
/
one_corres_down: end;
/*Set up the tptr->tokensx*/
skip_2: do ii=1 to alloc_length;
tptr=->token(ii)=ii;
end:
/*Main sort*/
if no_sort_sw then go to sort_done;
do ii=1 to alloc_length;
do jj=1 to (alloc_length-1);
n_sw=0;
do mm=1 to alloc_order;
if tent(tptr->token(jj),cptr->corres(m
m))>=tent(tptr->token(jj+1l),cptr=->corres(mm)) then do;
temp=tptr->token(jj+1);
tptr->token(jj+1)=tptr->token(jj);

tptr->token(jj)=temp;
n_sw=1;
go to pop_extra_loop;

-229-

end;
end;
pop_extra_loop: end;
if n_sw=0 then go to sort_done;
end;
sort_Jone: q_alloc_r=q_alloc_kL;
Zo0 to quart_alloc;
g_alloc_u: do ii=1 to alloc_order;
temp_ptr=->cent(ii)=cent(cptr->corres(ii));
temp_ptr->pent(ii)=pent(cptr->corres(ii));
do jj=1 to alloc_length;
temp_ptr->tent(jj,ii)=tent(tptr->token(jj)
,cptr=>corres(ii));
end;
end;
free tptr->token;
free cptr->corres;
args(kk).return_arg=temp_ptr;
go to return_place;

major_loop: end;
return;

error: end;
(ol Y =

Tue

rsn_gq:

-230-
<w>rsrm_q.pll 06/02/706 2035,7 edt

procedurc(arrptr);

declare 1 arss bhased (ar~ntr),

bound fixed Sin(35),

op char(1),

alptr (lirit refer (houn-d)) pointer,
riptr (lirit rofer (bourd)) pointer,
g2ptr (limit refer (bound)) pointer,
r2ptr (1irit refer (bound)) pointer,

eptr (lirmit refer (boun)) pointer,
retptr (1irit refer (bound)) pointer;
declare mgr$ca nntry external returns{pointer);
declare 1 quart hased (quart_ptr),

1D fFixed Hin(35) initial(0),

length fixed “in(35%),

orcder fixed hin(35),

cent(alloc_order rafer (order)) char(32),
pent{alloc_ordar refer (orrfer)) nointer,
tent(alloc_lenath refer (lenath),alloc_or er

N RN RN MDD

D NP NI

refer (order)) fixed bhin(35);

) ;
)
¥);

declare oset Hit(1?2) hased (gen_purnnse_ptr);
declare new_area arca (arra_size) basnd (retptr(klk

declare old_area arca (arecn_size) based (rintr(kk)
declare old_area?2 area (area_size) based (r2ptr(kk

declare 1 header hasad (hdr_ptr),
2 rsm_name char(135),
2 name_r char(32),

2 quart_location offset (old_area); .
declare (alToc_length,allon_order,area_size,jj,lY,

Timit,mm)fixed Hin(17);

declare (argptr,cen_purpose_ptr,bdr_ptr,now_ares_n

tr,quart_ptr,usc) pointer;

if op="N" then 70 to no_call;
l1imi t=hound;
allocate arrs set (new_arecs_ptr);
new_args_ptr->on=op;
if op=""R" then rlo;
do kk=1 to lirmit;
if qlptr(kk)™=null then new_arecs_ptr=>rotp

tr{kk)=qlptr(kk);

else if addrel(riptr(kl),rintr(kk)->0osnrt)-

>rsm_name”="rsm_q" then do;

W));

now_arecs_ptr=>rrtntr(kl)=masréce(rintr(

end,’ '231"

else nov_arrs_ptr=>rertntr(kl)=addrel(riptr
(kk),rlptr(kk)=>oset)~>quart_location;
cnd;
go to no_call;
end;
do kk=1 to lirmit;
if glptr(kk)7=null then do;
new_args_ntr=->glptr(kk)=qlptr(ki);
end;
if q2ptr(ki)T=null then -lo;
nevi_ares_ptr->qg2ntr(kk)=q2otr(kk);
end;
it riptr(kk)T=null ther do;
new_ares_ptr=>qlntr{ki)=nointer(addrel(rlp
tr{kk),riptr(kk)=>oset)->quart_locatinn,ol”_area);
end;
if r2ptr(kl)"=null tlten Ao,
if addrel(r2ptr{kl), r2ntr(kl)=>osrt)=>rsrm_
name”="rsm_q" then
new_ares_ptr=>aq2ntr(kk)=mertca(r2ntr(k
k)Y
else new_ares_ptr=->q2ntr(k¥)=pointer(adire
1(r2ptr(kK), r2ptr(kk) ->oset)=>quart_locatior,old_area’);
end;
new_arss_ptr=>riptr(k®),new_arss_ptr=->rintr(kk
), new_arss_ptr=>retptr{kk)=null;
new_ares_ptr=>eptr(kk)=eptr(kk);
end;
call rsm_wa(new_arrs_ptr);
no_call: do kk=1 to lirit;
quart_ptr=nov_arecs_ptr=>retntrkk);
area_size=divide(quart_ptr=>lanath*quart_ptr->
order+1050C,1024,17,0)%1C24;
call area_(arca_size, retptr(kk));
allocate header in (new_arra);
rsm_name="rsm_q";
if op=""M" then go to skinit;
alloc_length=quart_ptr=>len~th;
21loc_order=quart_ptr=>or-inr;
2llocate quart set (use) in (new_area);
addrel(retptr(kl), retptr(kk)=>oset) =d>quart_Jl1nc
ation=offset(use,new_area);
do jj=1 to allor_or-er;
use=>cent(jj)=quort_ptr=->cent(jj);
use=>pent(jj)=auart_ptr=>pent(jji);
do ma=1 to alloc_lenrth;
use=>tent(rm, ji)=quart_ptr->tent(mr,jj

end;
end;
if opT="R" then free quart_ptr=>quart;
end;
free new_argss_ptr=>ares;
skipit: end;

Tue

trece_restructure:

acl

del

del

del

del

<

-232-

s>tree.pll 0C/02/70 1244.0 edt

PRELIMINARY VERSION

procedure (dsr_arms_ptr);

data_seg orea (area_sizc) based (ses_ptr);

1

quart hased (quart_ptr) ,

PN P2 PO NN MO

id fixed bi

nary (3%5) initial(0),

length fixed Hin (3%),

order fixed
cent (2) ¢
pent (2) p

hin (35) initial(2),
har (32) ,
tr,

tent (alloc_leneth rafer (lencth),2) fixed *in (35

dsm_arts bhased (dsm_aras_ptr) ,

"
b
"
“
2
&
2
“
2
9
“
2

upper_bountl
op char (1)
di char (1)
e char (1)
d_or_qg_ptr
ddptr ptr,
return_ptr

fixed winary (35) initial(l),
initinl ("v'),

initial ("™,

initial (™™,

ptr,

ptr;

type based (type_ptr) ,

ISE R XY SN

RN P PIRD P ==

2 dsm_name

data_type ¢
num_free_ce
nus_entries
max_length

first_entry
successor_c

tem based (i
Intr offset
rptr of fset
succ offset
flag fixnd
rofgo fixed
string_stru
3 string_le
3 string ch

char(16),
har (4),

11s fixed bin (35),

fixed hin (35),

fixed bhin (35),

offset (data_sce),
hain_head offsnt (data_ser);

ntr) ,
(data_serr),
(data_ser),
(data_se"),
hinary (3%),
hin (35),
cture,
neth fixed hinary (35),
aracter (max_lenecth);

area_fake based (fakn_ptr),

RN NN

first_off

tprewq_fake
curr_len b
qeceudm_fake
next_offset

hit (1€) unalisned,
it (18) unaliecned,

it (18) unalirned,
it (18) unaliepred,
hit (18) unalirned;

-233-

declare (new_ptr, «xfer,necw_hdr) pointer;
declare (next,temp_offset) offsnt (date_sern);
declare (new_item_offsnet,last_new_item_offsnrt) off

set (new_dd_area);
declare (left_save,enswer) (35) offset (dato_sec);

declare (off_hdr,alloc_len~th,asize,aplace,level,c
uni,nn,expo) fixed hin(17);

declare (stem,number) (35) fixed Hin(35);

declare new_dd_areca area (arca_size) based (new_dAd
_ptr);

declare back (35) lahel (ton_of_trer,ccil_recur, fl
oor_recur);

declare new_q_area area (area_sizr) based (new_q_p
tr);

declare (wdir, input_plaee) crar(16%);

declare err_code fixed bin(17);

allocate dsm_arss srt{nev_ptr);
call hcs_S$fs_search_get_wdir(addriwdir),jji);
call hes_Smake_sers(wdir,data_typel |"_0S_new',data_
typel |"_GS_new", 1011b,new_dd_ptr,ecrr_code);
if err_code>0 then -o;
call ioa_("Frror has occured in 2llocating new
segment for data type “ha.File error code= ~6o.",
data_type,err_co-de);
call ioa_("When you wish to continue, type any
thing and hit return.");
call fos_Sread_ptr(addr(input_place),1,jji);

end;
call hes_S$rake_sea(wdir,data_type| |" _conversion_qu
art",cata_typel|"_conversion_quart',1011%,

new_aq_ptr,err_code) ;
if err_code>0 then don;
call ioa_("Trror has occured in allocatine necw

segment for conversion quart.'): .
call ioa_("Nata tyne is "hka. File error code |

s “bko.'data_tvpe,err_code);
call joa_("t/hen you wis®™ to ~antinue, tvpe any
thing and hit return.');
call Tos_Sread_ptr{addr(input_place),1,jiji);
end;
type_ptr=addrel(ddntyr, ddptr->first_off);
nevwi_hdr=addrel (nev_dd_ptr,nev_dd_ptr->first_off);
alloc_length=nun_erntries;
gsjze=2*alloc_ler~th+1024+2°5;
cs'zo=divianasizn,102u,17,o5*1nzu;
call area_(qasize,nev_q_ptr);
allocate auart set(quart_ptr) in (new_qg_arera);
pent(1),pent(2)=null;
cent(l)=data_tvype;
cent(2)=data_typel| |"_GS_nnu';
roturn ntr=auart ntr:

-234-

call hes_Smeke_ptr("",dsm_narn~,dsm_name,xfer,err_c
odc);
if err_code>0 then do;
call ioa_("I1leeal call t~ tree rostructurn~ =D
3M for old version of data tyne rars net exist,'");
call GS_errorscr(92,"T",ds™_name,null);
end;
call cu_S$ntr_call(xfer,rev_ptr);

new_tree: nunbher(l)=alloc_leon~th;
next=successor_chain_kea;
stem(1)=1010092930710214507917929777172735090%9990N0;
back(1)=ton_of_trre;
aploce=1;
level=1;
70 o optim;

optim: /*procedure (nuaber,strn) roturns answore/
if number(level)=0 thar (o;
ansuor(level)=nullo;
~o to hack{lnvnl);
end;

if numberf@evel)=1 then (o; .
allocate item in (new_dd_arera) set (nev_item_o

fiset);
new_iten_offset=>flar=1;
lTast_new_item_offset=->surc=ne_iter_offsrt;
lTast_nev_ite_nffset=ncw_item_offsot;
answer(level)=next;
new_item_offset=>1ntr, nev_item_offset=>rntr=nu
1lo;

new_item_affsct=>rnfro=strn(linvel);

tent{aplace, 1) =next=->refno;

tent(aplace,2)=new_item offset=->refne;

aplace=qplacn+l;

if aplace=1 tten nev_hdr-d>sucarssar_chain_head
=new_item_offset:;

temp_offset=next->sucac;

next=temp_offsct;

o to back(laval);

end;

Tevel=level+];

nunmber (level)=divida(number(level-=1)+1,2,17,1)

floater=divide(nurtar(lovel=-1)+1,2,17,1M);

if floater>float(number{level),17) then numher(lay
el)=number(level)+1;

expo=max_depth=level;

e

-235-

cum=1;
de rn=1 tn expo;
cum=cum*2;
~nd;
stemylevel)=sten(lavel=1)=-cur;
back(level)=ceil_recur;
o to optinsg;
ceil_recur: left_save(level)=answer(lievel);
answer(level-1)=next;
temp_offset=naxt->sunc;
next=temp_offset;
number (level)=dividn(nurther(level-1)+1,2,17,0);
rxpo=nax_lensth=-level;
cum=1;
do nn=1 to expn;
cum=cum*2;
and;
sten(lavel)=stem(lervel=1)+cum;
back(level)=Ffloor_reccur;
7c to optiry
floor_recur: allocate item in (nevw_dd_areca) set (new_item_of
fset);
new_1iten_offset->flag=1;
nevw_item_offset=>1ntr=left_savr(lcovel);
new_item_offset=->rntr=arswuer(level);
new_item_offsot=->refnosstom(level-1);
last_new_item_offsect=>succ=ney_item_offset;
last_new_item_offset=new_item_offsrt;
tent{agplace, 1) =ansurnr{levnl-1)->rafno;
tent{aplace, 2)=ncvu_iter_offsnt->refno;
gplace=ygprlace+];
if gplace=1 then neu_hdr=>successnr_chain_heari=new
_item_offset;
level=level-1;
o to hack(level);
top_of_tree: last_nev_itern_offs~t=nulln;
new_hdr=>first_entryv=answer(l);
new_hdr=>max_length=max_lercth;
new_hdr=->num_entries=nur_entries;
new_hdr=>nu~n_free_cells=0;
return;
end;

-236-
APPENDIX G

THE ERROR HANDLER

The error handler, GS error, is called via one of six

entries, each of the basic form:

call GS error$entry (error_number, one character_error_

code, argl, arg2)

The error number is printed out and also refers to the line
in the file of error messages (GS_err messages) which is to
be printed out (e.g., error 51 prints out the 51st line).
The one character code is the internal opcode to indicate to
the user what operation was in progress. argl and arg2

depend upon the entry:

p, pr. argl, arg2 are pointers
¢, cr: argl is character, arg2 is a pointer

cc, ccr: argl, arg2 are character

Null pointers are not printed out; i.e., their absence indi-
cates they were null.

If one of the entries ending in "r" is used, the user is
given the option to return from GS error. The action taken
then depends solely upon the invoker of GS error. In any
case, the user is given the options of ''quit" and transfer

to a procedurc. This is done via the request:

"Type proccdure name, or quit....'" or with return allowed

"Typ

The

-237-

e procedure name, return, or quit...."

procedures most frequently invoked will be db and

gsdb (see Appendix H). Two typical error cases are given:

gives

gives

call

GS:

call

GS:

GS_error$p (121, "U", 1lptr, rptr)

Error 121 Internal Opcode U
Pointer 1: 161|232 Pointer 2: 161420
Input quarts (pointers 1 § 2) disagree on choice

of RSM. Type procedure name or quit....

GS_error$ccr(221, "G", ent, cent(jj))

Error 221 Internal Opcode G

Name 1: address Name 2: address
Discrepancy between ent (name 1) and cent (name 2).
Return yields null result.

Type procedure name, return, or quit....

One final note: typing '"quit' causes signalling of the

condition "GOLD STAR", so if the user should desire further

processing of error conditions, he need only claim this con-

dition.

When a procedure name is typed, and that procedure

returned from, GS crror reissues the request for a procedure

name or quit (or return, if called for).

-238-
APPENDIX H
GOLD STAR DEBUG (gsdb)

The utility program gsdb is used to provide a tool with
which to debug programs written for GOLD STAR. It may be
invoked as a command, or as a subroutine, and will dump to
the console four types of items: equivalence vectors,
quarts, RSM argument structures, and DSM argument structures.
The latter two are produced by the manager for the RSM's and

DSM's and are useful to examine when a bug occurs within an

RSM or DSM.
From command level, the user types 'gsdb". The program
responds with "ASK!'". All requests are of the form:
X seg|offset
X can be e, q, r, a, or .. The first four correspond to

equivalence vector, quart, RSM array, and DSM array; period
indicates quit (see Appendix E for these structures).

When invoked as a subroutine, it is done on a per
request basis; i.e., it is called gsdb$X (ptr) where X is
as above.

The quit button can be hit to interrupt unwanted output;

the command "pi'" will resume gsdb at the request point.

-230-
APPENDIX 1

SOME STMPLE QUART LEXAMPLES

This appendix 1s intended to give the reader a few

examples of cach of the basic operations as performed on

quarts.
a b ¢ a b ¢ a b ¢
1 2 3 7 8 9 1 2 3
(1) g 5§ union 44 47 g3 = 4 5 6
7 8 9 13 14 15 7 8 9
10 11 12
13 14 15
a b ¢ a b ¢ a b ¢
{(2) union =
4 5 6 1 2 3 1 2 3
4 5 6
a b b ¢ a-~mote thea b ¢
sort
1 2 3 2 3 1 1 2 3
(3) 4 5 o 78 9) S 7 8
10 11 12 12 10 11
(Sce also sort examples to clarify -- the second quart 1is
sorted before union is done to the order a-b-c.)
a b ¢ a b ¢ a b ¢
1 2 5 7 8 9 7 8 9
(g s e TP 1)

7 S 9 13 14 15

o

(O]

KNy
!
=
il
. —~
i .
.
Rey 7

&) 1S)
o o i}

| o oy L
o =
o) (e8] -

1
11

SR I [e
— r——
]
-
—
¥
o
o
.
. ,
~ . —t .
Z

g
S

a3

-ditrerence

«,

o~

v
I

[“ v

o e

;

a3 re
-
<
L
e
)
¢
e
,w.(»
T
b
.

!

4

H
r—t
e)
3
~
|
od
[
1
s
T
i
4

§

-1

O

H

-241-

a b ¢ b a ¢ b a ¢

1 2 3 sort 100 101 102 2 1 3

(11D 4 5 6 (with respect to) = g 4 6

7 8 9 8 7 9

a b ¢ ¢ b a a b ¢

1 2 3 100 101 102 3 2 1

(12) 4 5 6 sort (w.r.t.) = 6 5 4

7 8 9 9 8 7

a b ¢ a b ¢ a b ¢

(13) 1 2 3 successor 7 8 9 = 10 11 12

4 5 6

(14) 7 8 9 successor a b ¢ a b ¢

10 11 12 3 1 7 = 4 5 6

(15) successor a2 b C a b ¢
10 11 15 =

(16) successor a b ¢ a b ¢

1 1 1 = 1 2 3

Note: The following operations will dutomatically sort the
second argument with respect to the first in order to per-
form the operation (see example 3): wunion, intersect,

difference, successor relation.

(17)

|

b ¢

get ent 1 2 3 = (3) a b c¢ (equivalence vector)

(18)

(19)

(20)

(21)

|

-

—t

o]

e

I

{o

trl

ﬁ:

modify

modify

cent

ent

clear ent

project

¢}
@}

project

project

(3)

10

(3) x vy z
(3) x § &
a b
= 1 2
X (B} [} Z
& triy Tt
X a teo1t
x Y
2 1
5 4
7 10
10 15

Xy z
= 1 2 3
x b ¢
= 1 2 3

e

5 where all
PENT's = null

x oz

= 1 3
1 4
1 5

= a
1

= X b
1 2
1 3
1 4

composition using

cquivalence vectors

(24) null vector

(26) (6) m

(27) (6) ¢

(28) (6) m

W

1

G

ptr = a

&

P

Other operations do

usage.

|o
o
e

9 10 3 7

9 = m & o 9
1 3 2 1
W = a W C X

10 10 8 9

15 15 11 10

not lend themselves

10

to simple quart

1-2

-244-

REFERENCES

Smith, Burton Jordan, SPLP: A Special Purpose List

Processor, Unpublished S.M. Thesis, M.I.T. Depart-
ment of Electrical Engineering, Cambridge, Massa-

chusetts, June 1968.

Fano, Robert M., '"The Computer Utility and the Com-

munity', IEEE Convention Record, Part 12, 1967.

Rubin, Jean E., Set Theory for the Mathematician,

Holden-Day, San Francisco, 1967.

Webster's Third New International Dictionary, G. § C.

Merriam Company, Springfield, Massachusetts, 1967.

Vonhaus, A. H. and Wills, R. D., "The Time-Shared
Data Management Systems: A New Approach to
Data Management'", SDC Report Sp-2747, Santa

Monica, February 13, 1967.

Goldstein, R. C., Data Base Design Considerations,

M.TL.T. Project MAC, MacAIMS Multics Memo B.1,

Cambridge, Massachusetts, February 12, 1970.

Martin, W. A. and Ness, D. N., Optimizing Binary

Trees Grown With a Sorting Algorithm, M,T.T.

Alfred P. Sloan School of Management Working

Paper 421-69, Cambridge, Massachusetts, 1969.

-245-

BIBLITOGRAPIY

The MULTICS Programmers' Manual, M.I.T. Project MAC,

Cambridge, Massachusetts, 1970.

Organick, E. I., A Guide to MULTICS for Subsystem

Writers, M.I.T. Project MAC, Cambridge, Massachu-

setts, 1967,

Hays, David G., Introduction to Computational Linguistics,

Elsevier, New York, New York, 1967.

Freyberghouse, R. A. et al, MULTICS PL/1 Language

Specification, G. E. Cambridge Information Systems

Laboratory, Cambridge, Massachusetts, 1969.

Freyberghouse, R. A, et al, A User's Guide to the MULTICS

PL/1 Implementation, G. E. Cambridge Information

Systems Laboratory, Cambridge, Massachusetts, 1969.

The MULTICS Systems Programmer's Manual, M.I.T. Project

MAC, Cambridge, Massachusetts, 1970.

The CTSS User's Guide, Section AH 3.09, Ken Thompson,

M.I.T., Information Processing Center, Cambridge,

Massachusetts, 1966.

Thompson, Ken, Regular Expression Search Algorithm,

-246-
CACM, Volume 11, No. 6, June 1968.

9. Daley, Robert and Dennis, Jack, Virtual Memory, Processes,

and Sharing in MULTICS, CACM, Vol. 11, No. 5, May 1968.

10. Graham, Robert, Protection in an Information Processing

Utility, CACM, Vol. 11, No. 5. May 1968.

11. Bensoussan, A, Clingen, C. T., and Daley, R. C., The

Multics Virtual Memory, Project MAC Memo MO1ll.

Security Classification

DOCUMENT CONTROL DATA - R&D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)
1. ORIGINATING ACTIVITY (C t th 2a. REP C I TY CLASSIFICATION
(Comeate st ONCERSSTHTED
Massachusetts Institute of Technology 2b. GROUP
Project MAC None

3, REPORT TITLE

Generalized Organization of Large Data-Bases; A Set-Theoretic Approach
to Relations

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

B.S. and M.S. Thesis, Dept. of Electrical Engineering, M.I.T.

5. AUTHORIS) (Last name, first name, initial)

Fillat, Andrew I. and

Kraning, Leslie A.

6. REPORT DATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS

June, 1970

8a. CONTRACT OR GRAN 9a. ORIGINATOR'S REPORT NUMBERI(S)

ONR, NOOO14-6920276-0002

b PROJECT NO- MAC TR-70 (THESIS)
96. OTHER REPORT NO(S) (Any other numbers that may be
i assigned this report)

d.
10. AVAILABILITY/LIMITATION NOTICES

Distribution of this document is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
Advanced Research Projects Agency
None BD-200 Pentagon
ashington, D.C. 20301

13. ABSTRACT Problems inherent in representation and manipulation of large

of relationships among elements of a data-base. A detailed analogy intro-
fluces concepts embodied in a data management system. Set theory is used
ro describe a model for data-bases, and operations suitable for manipulati
¢f relations are defined. The architecture chosen for an implementation o
rhe model is illustrated, and a representation of data-bases is suggested.
A particular implementation, the GOLD STAR system, is investigated and
pvaluated. The framework outlined is meant to provide an environment in
vhich complex data handling problems can be solved with relative ease.
GOLD STAR provides the user with tools sufficient for manipulation of arbi
frarily complex data-bases; these provisions are presented in the form of
hn extremely simple interface.

Hata-bases are discussed. Data management is considered as the manipulatipn

on

14. KEY WORDS

data bank, data base, data structure, data management, relations

DD .73, 1473 (M.LT.) UNCLASSIFIED

Security Classification

