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INTEGRAL CONVEX POLYHEDRA
AND

AN APPROACH TO INTEGRALIZATION*

Abstract

Many combinatorial optimization problems may be formulated as
integer linear programming problems -- that is, problems of the form:
given a convex polyhedron P contained in the non-negative orthant
of n-dimensional space, find an integer point in P which maximizes
(or minimizes) a given linear objective function. Well known
linear programming methods would suffice to solve such a problem if:

(i) P is an integral convex poclyhedron, or

(ii) P is transformed into the integral convex polyhedron
that is the convex hull of the set of integer points
in P, a process which is called integralization.

This thesis provides some theoretical results concerning integral
convex polyhedra and the process of integralization. Necessary and
sufficient conditions for a convex polyhedron P to have the integral
property are derived in terms of the system of linear inequalities
defining P. A number-theoretic method for integralizing two-dimensional
convex polyhedra is developed which makes use of a generalization of
the division theorem for integers. The method is applicable to a
restricted class of higher dimensional polyhedra as well.

*This report reproduces a thesis of the same title submitted to the
Electrical Engineering Department, Massachusetts Institute of Technology,
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy, August 1970.
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CHAPTER 1

INTRODUCT ION

It is well known that many optimization problems of a combinatorial
nature may be formulated as integer programming problems. Several authors
have written on this subject, including Balinski [1] and [2], Dantzig [5],
Hof fman [14], and Hu [17]. Outstanding examples are the problems of
constructing a maximal flow in a transport network and constructing a
maximal matching in a bipartite graph. 1In fact, these two examples lead
very naturally to integer linear programming formulations which may be
solved by standard linear programming methods. Other combinatorial
optimization problems, such as the traveling salesman problem or the
problem of properly coloring the regions of a map with a minimum number
of different colors, lead to integer linear programming formulations
which cannot be solved by standard linear programming methods. They
require different and more complex solution methods.

In 1958, Gomory [8] developed the first general algorithm for
solving integer linear programming problems. There has been considerable
interest in integer linear programming since Gomory's pioneering work,
and a variety of methods for dealing with the problem have been
developed. Balinski [1] and [2] presents an extensive survey of many

of these methods and describes some computational experience with them.




In 1965, Gomory [9] brought a new algebraic approach to bear on
the problem. He showed that when certain simplifying assumptions are
made, the integer linear programming problem can be transformed into
an optimization problem involving a finite Abelian group. The
algebraic ideas contained in his approach have been further developed
and applied by Gomory [10] and [11], Shapiro [23] and [24], Hu [16],
and others.

Although a good deal of success in dealing with integer linear
programming problems has been achieved, we believe there remains
much to be learned in this area. Motivated primarily by the
importance of integer linear programming as a tool for solving
difficult combinatorial optimization problems, this thesis seeks
to provide some relevant theoretical results which may contribute
to a better understanding of the problem.

The thesis is organized into seven chapters. In the remainder
of this first chapter we review some n-dimensional geometric concepts
and definitions related to convex polyhedra. We then give some
graphical examples to illustrate the concept of an integral convex
polyhedron and the concept of transforming a convex polyhedron into
an integral convex polyhedron — 4 process which we call integralization.
We conclude the chapter with a discussion of the relevance of integral
convex polyhedra and the process of integralization to the integer
linear programming problem, and a description of some of the related

research of others.




In Chapter 2 we derive several results concerning convex polyhedra
having the integral property. In particular, we present a necessary
and sufficient condition for a system of linear equations with integer
coefficients and integer right hand sides to have an integer solution,
We then use this to extend the results of Hoffman and Kruskal [15]
and obtain a necessary and sufficient condition for a particular
convex polyhedron to have the integral property.

In Chapter 3 we define a new kind of integral property which we
call the totally integral property. This definition is motivated by
two considerations. First, the class of totally integral polyhedra
is a proper subclass of the class of integral polyhedra. Second,
the class of linear programming polyhedra having the totally integral
property can be characterized algebraically, by applying some of the
group theoretic ideas developed by Gomory [9].

In the next three chapters we turn to the process of integralization.
We shall classify polyhedra using two parameters n and k. By an
(n,k)-polyhedron we shall mean an n-dimensional polyhedron defined
by a system of linear inequalities whose coefficient matrix has rank k,
where k < n.

In Chapter 4 we show that an (n,k)-polyhedron, where n is
arbitrary, n = k, can always be transformed into a (k,k)=-polyhedron
by a transformation which preserves integralization. This allows us to
focus on the problem of integralizing (k,k)-polyhedra without loss

of generality. As we shall see, if we know how to integralize a




(k,k)-polyhedron then we know how to integralize an (n,k)-polyhedron
for arbitrary n > k. We then discuss the simple problem of
transforming and integralizing (n,1)-polyhedra. We show that this
is accomplished by using the greatest integer function applied to
rational numbers, an application of the division theorem for integers.
In Chapters 5 and 6 we deal with integralization of (2,2)=-polyhedra.
We introduce a generalization of the division theorem for integers
which applies to ordered pairs of integers and use this, together
with an associated division process, to integralize such polyhedra.
Chapter 7 concludes the thesis with a discussion of the difficulty
we encountered in attempting to generalize the integralization process
to make it apply to (k,k)-polyhedra, for k > 3. We then offer some

suggestions for future research in this area.

1.1 Geometric Concepts and Definitions

In this section we review some n~dimensional geometric concepts
and definitions. Most of the material is well known, with the exception
of the subsection on integral convex sets, and may be found in one or
more of the following references: Benson [3], Bonnice and Klee [4],
Goldman [6], Goldman and Tucker [7], Grunbaum [12], Hadley [13],

Hoffman and Kruskal [15], Klee [19], and Weyl [26].




Let R be the real field. Let R” be the n-dimensional vector space
over R. We refer to x ¢ RF, X = (xl, Xos sees xn), as a real point

or real n-vector (column).

1.1.1 Dimension, Boundedness, and Convexity
0 1 k .
let X , X , «es, X be real n-vectors. A real n-vector x is
. . . . 0 1 k
said to be a linear combination of x , X, «e., x 1if
0 1 k
X = KO X + Xl X+ eee + Kk X

for some real numbers KO’ kl’ cea s N If the A's satisfy the

K

comstraint,

7\.0+>\.1+---+7\.k=1

. . . . . 0 .1 k
then x is said to be an affine combination of x , x™, ..., X .

If the A's satisfy the additional constraint,

Ki >0, fori=0,1,...,k

. , . . 0 1 k
then x is said to be a convex combination of x , X', .e0e, X &

A set X = {xo, xl, cees xk} is said to be linearly dependent

3 . . . . 0 1 k
if 0, the all zero n-vector, is a linear combination of x, x", ..., x

in which some Xi # 0. If, in addition,

+ e + N =0
ko + Xl k
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then X is said to be affinely dependent. If X fails to be linearly

(affinely) dependent then X is said to be linearly (affinely)

independent. We shall say that X is a dependent (independent)
set 1ff X is affinely dependent (independent). It can be
shown that X is a dependent (independent) set iff the set

0 2 0 0
[xl-x s X =X 5 eee, xk—x } is linearly dependent (independent).

. 3 . .
Example 1-1 Independent sets in R* are: a single real point,
two distinct real points, three real points not contained in a
single line, four real points not contained in a single plane. 0
n
For the following definitions we let X be any subset of R,
either a finite subset or an infinite subset.

X is k-dimensional, where O <« k < n, if X contains an independent

set of k41 real points but none of k+2 real points.
s . , - +
X is bounded if there exist two real n-vectors x and x such
- + . . .
that, for all x ¢ X, x < X < X , where < is componentwise. Otherwise
X is unbounded.
. . 1 2
X is convex if, for all x7, x ¢ X and for all real A, 0 < A < 1,
1 2 n . .
N x" 4+ (I-M) x ¢ X. In words, a convex subset X ¢ R is one which
contains the line segment joining any two of its points.,
. . n ., .
An intersection of convex subsets of R is again a convex subset

of Rn.




Example 1-2

convex set,

11

2
In R, any single real point is a O-dimensional bounded

R2

itself is a 2-dimensional unbounded convex set.

Fig. 1-1

2 . . . .
shows several subsets of R~ which have various combinations of these

properties.

>

Bounded Unbounded
A y .-
Ve N/ —\
"’/’ b
~ —
/,
L
. )
[ ]
N v
A 4
Convex
N Sy

\—-—— Non=convex ————/

Fig. 1-1

? l1-dimensional

2-dimensional
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1.1.2 Convex Hull

Given an arbitrary subset X < Rn, which may or may not be convex,
it is always possible to find a convex subset of R" which contains X.
R" itself will do the job. The convex hull or convex closure of X,
denoted by H(X), is defined to be the interscction of all convex
subsets of Rp which contains X. H(X) is unique. Intuitively, H(X)
is the smallest convex subset of R© which contains X. If X is

itself convex, then H(X) = X.

2
Example 1-3 Fig, 1-2 illustrates several subsets of R and,

immediately to the right of each, their convex hulls.

(a)
O""””/%
* (d)
(b)
. ] ()
(c)

Fig., 1-2
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0
If X is a finite subset of R, X = {(x , xl, eee, X'}, then it can

be shown (see Benson [3]) that the convex hull of X is given by,

m
Ho) = {xe® | x= ) A ¥, a 20, ) A =1} (1-1)

1=0 i=1
where KO’ Kl, cens Km are real numbers. In words, (1-1) says that
H(X) is the set of all convex combinations of X.

Another characterization of the convex hull of a subset of Rn,
similar to (1~1) but more general in that it applies to infinite
subsets as well, is given by Caratheodory's Theorem (see Bonnice

and Klee [4]). Given a subset X ¢ Rn, the theorem states that

n
H(X)={xeRn]x=.>_‘X.xi,?\izo,Eki=1,xigx} (1-2)
i=0

where XO’ Kl, cen, hn are real numbers. In words, (1-2) states that
H(X) is the set of gll convex combinations of all finite subsets of

X containing n+l or fewer points.

1.1.3 Flats

1

0
Let X = {X , X', eus, xk} be an independent set of real points

in Rp, where 0 < k < n. A k=flat  in R" is a k=dimensional convex

subset of Rn,
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k k

ﬂ={ng“|x=7>\ixi,§xi=1} 1-3)
i=0 i=0

where KO’ Xl’ ey Kk are real numbers. o+ is the set of all affine
combinations of X. X is said to generate 7t. A k-flat in R" is also

known as a k-dimensional affine subspace of Rn.

Equivalently, a k-flat p is a set,
n
m={x¢cR | Ax =b} (1-4)

where A is a fixed real (n-k) x n matrix of rank n-k, and b is a
fixed real (n-k)-vector. Both x and b are column vectors, and A x
is the matrix product of A and x. (1-3) and (1-4) are equivalent
under the assumption that A xi =b, for i =0, 1, ..., k.

An (n-1)-flat is commonly known as a hyperplane. From (1-4) we see
that a k-flat is an intersection of n-k independent hyperplanes. If k =n,
the condition A x = b in (1-4) vanishes. Thus the only n~flat is R"
itself. A O-flat is just a single real point.

Example 1-4 In R3, 0,1,2,3-flats are respectively: a single real

point, a line, a plane, and R3 itself.

A O0-flat is a bounded set. A k-flat, where 1 <k < n, is an

unbounded set.
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Given k + 1 independent real points in Rn, there is one and only

one k-flat containing these real points, and none of smaller dimension.

1.1.4 Half-flats

A half k-flat ¢ in Rn, where 1 < k < n, is a k-dimensional unbounded

convex subset of Rn,
r={x¢ R" [ Ax=b and a x < B} (1-5)

where A x = b defines a k-flat, o is a fixed real n-vector (row)
which is not in the row space of A, and B is a fixed real number.

The set
{x ¢ R" | Ax=b and 4 x = B}

is a (k-1)-flat known as the boundary (k=1)-flat of the half k-flat .

Example 1-5 In R3, half 1,2,3-flats are respectively: a half-line,

a half-plane, and a half-space. The corresponding boundary 0,1,2-flats

are respectively: a point, a line, and a plane.

O

A half n-flat,

(xeR" | o x<B) (1-6)
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where n is a fixed real n-vector (row), o # 0, and B is a fixed real
number, is commonly known as a half-space. Its boundary (n-1)-flat
is a boundary hyperplane. An intersection of a half-space (1-6) and

a half-space,
(xe R [ qx=28) (1-7)

is the boundary hyperplane common to both (1=6) and (1-7).
Let X be a subset of R. A half=space in R" which contains X, and
whose boundary hyperplane contains one or more real points in X, is

known as a supporting half-space for X. 1Its boundary hyperplane

is known as a supporting hvperplane for X.

1.1.5 Convex Polvhedra

n
A convex polvhedron P in R 1is a non-empty intersection of a

finite number of half-spaces in Rn,
n
P={xeR | Ax < b}

where A is a fixed real m y n matrix and b is a fixed real m-vector
(column). We shall say that P is an (n,k)-polyhedron if the rank
of A is k.

P may be bounded or unbounded, and may have any dimension between
0 and n inclusive. Flats and half-flats are special cases of convex

polyhedra.
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The structure of a convex polyhedron is best understood by
considering its faces. A face of a convex polyhedron P is a
non-empty intersection of P with one or more supporting hyperplanes.

Let a X < b be any one inequality in the system A x < b defining

P, The half-space
T={xeR | ax <b)

may or magy not be a supporting half-space for P, 1 is a supporting

half-space if
{(x € Pl ax =0} (1-8)

is non-empty. In this case, (1-8) is a face of P.

Let S be an arbitrary subset of {1, 2, ..., m}. Let Ay denote

the submatrix of A comprised of those rows of A whose indices appear
in S, and let bS denote the subvector of b comprised of those components

of b whose indices appear in S. A subset Pg of P,

PS ={x€P ! AS X = bs}

if non-empty, is a face of P. Furthermore, every face of P may be
obtained in this manner.

If PS is a face of P, and we let S', where S' ¢ S, identity a maximal

set of linearly independent rows of AS’ then PS' = Ps. Thus we may

generate all faces P, of P by considering only those sets of indices S

S

which identify linearly independent sets of rows of A. We refer to such

— — - . -— R —
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sets of indices as face subsets. We include the case S =1 , where g

is the empty set, so that P, which is equal to P , is a face of itself.

©

Since there are only a finite number of ways to form S, P has a

finite number of faces. The faces of P arc themselves convex polyhedra.
If a face of P has dimension k, we refer to that face as a k-face

of P. 0, 1-faces ol P, if they exist, are commonly known as vertices

and cdges of P, respectively.

If Pg and PS' are faces of P and P, < P

s g1 then PS is a subface

of P,,. Clearly, if S' = S then PS is a subface of P_,.

S! S

A minimal face of P is one which has no proper subface.

Let P be a convex (n,k)-polyhedron, where 0 « k « n. Hoffman
and Kruskal [15] show that a face Pg of P is minimal iff AS consists

of k linearly independent rows of A. Furthermore, they show that if

PS is a minimal face of P, then

That is, all minimal faces of P are (n-k)-flats.

The set of all faces of a convex (n,k)-polyhedron P is partially
ordered by <. The grecatest member of this partially ordered set is P
itself. There is no least member, in general. All faces fall into
ranks, each rank being composed of all faces of a given dimension.
The minimal faces of P, which are all (n-k)-flats, constitute the
lowest rank. The next rank consists of all (n~k+l)=-faces of P, and
so on. The highest rank consists of P alone, whose dimension lies

between n~k and n inclusive.
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Example 1-6 Fig. 1-3 shows graphical representations of several
2
convex polyhedra in R and partial ordering diaggrams displaying

the face structure of each.

The boundary of a face of a convex polyhedron P is the union

of all proper subfaces of that face. A boundary point of a face

is a real point in the boundary of that face. A minimal face of
P has no boundary; that is, its boundary is empty. The boundary

of P itself is the union of all proper faces of P.

l—~ | —~
P
\
-2 2/ 3
P
P P
P e / \ / \
P /\\ Pa; Py Py Pay Peagy Peyg
Feas Pew  Pras >< >< \ / \ /
Pag Poas Pas Pogzy Preag
(a) (b) (c) @) (e)

Fig. 1-3
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If P is a bounded convex polyhedron, then every face of P is
bounded. Since every minimal face of P is flat, and the only
bounded flat is a O-flat, it follows that every minimal face
of P is a 0-flat (or vertex), and that P is an (n,n)-polyhedron.

A bounded convex polyhedron P is equal to the convex hull
of its vertices (see Hadley [10]). Thus the vertices of P
completely specify P.

There is a similar result which applies to any convex polyhedron,
bounded or unbounded. In order to state it, we first generalize
the notion of a minimal face.

A face of a convex polyhedron P may or may not be equal to the
convex hull of its boundary. A face of P is said to be reducible
if it is equal to the convex hull of its boundary, and irreducible
if it is not. Flats and half-flats are irreducible faces.

Klee [19] shows that a face of a convex polyhedron P is
irreducible iff that face is a flat or a half-flat. He shows
further that P is equal to the convex hull of its irreducible faces.

A minimal face of P is irreducible, but an irreducible face
of P is not necessarily minimal. The converse does not hold
because a half-flat is irreducible but not minimal. The notions
of an irreducible face and a minimal face coincide in the case of
bounded convex polyhedra since no face of a bounded convex polyhedron
can be an (unbounded) half-flat.

If an irreducible face of P is a half-flat, then its boundary

is a flat which is also an irreducible face of P. A maximgl irreducible face
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of P is one which is not contained in another irreducible face of P,
Klee [19] proves the following sharper result:

A convex polyhedron P is equal to the convex hull of its maximal

irreducible faces.

Example 1-7 The minimal, irreducible, and maximal irreducible faces

of the convex polyhedra represented in Fig. 1-3 are tabulated below:

Maximal
Fig. | Bounded/ Minimal Irreducible
Irreducible

1-3 Unbounded Faces Faces

Faces
(a) Bounded P P P

P
) Unbounded P{S} P, P{B}

P P P P P P

(¢) | Unbounded (1) %2 (13 B2y (1)’ Pr2)

(d) Bounded P[l,Z}’ P{1’3}, P{1,2]’ P[1’3]’ P{l,Z}’ P{1,3}’

Pr2,3) Pr2,3) P(2,3)

(e) Unbound ed P{1,2}’ P(2’3} P{l}’ P{3}, P{l}’ P{B}

Pr1,2) Fr2,3)
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A class of convex polyhedra of special interest are those
arising in connection with linear programming problems. A linear

programming problem has the form:

Maximize c X
Subject to Ax < b (1-9)
x » 0 (1-10)

where ¢ is a fixed real n-vector (row), A is a fixed real m yx n matrix,
and b is a fixed real m-vector. The linear function cx is known as

an objective function. A linear programming problem may instead

involve minimizing an objective function., By simply negating c we

may change such a minimization problem into a maximization problem.

The set P of real points satisfying the inequalities (1-9) and (1-10),
P=(xecR |Axgcb and x 2 0) (1-11)

is a convex polyhedron. We shall refer to P as a linear programming
polyhedron., The condition x > 0 gives P some special characteristics

which we now examine.

Suppose the inequalities (1-9) and (1-10) are consolidated and

(1=-11) is rewritten as

P={(x¢ R% | A" % < b'}
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where A' contains as a submatrix the n x n identity matrix (negated).
The rank of A' is n, and it follows that P is an (n,n)=polyhedron,
all of whose minimal faces are O-flats.

What about the irreducible faces of P? It can be shown that

x ¢ R" [ x > 0}, known as the non-negative orthant of Rn, contains
no l-flat. It follows that the non-negative orthant of R" contains
no k-flat, for 1 <« k < n, and no half k-flat, for 2 < k < n. Since
P is wholly contained in the non-negative orthant of Rn, P contains
no k=flat, for 1 <« k <« n, and no half k-flat for 2 < k < n. Thus

the irreducible faces of P, necessarily being flats or half-flats,

must be O~flats or half 1-flats.

P is equal to the convex hull of a finite number of O-flats and/or

half 1-flats.

1.1.6 Integral Convex Sets

Let J be the ring of integers. Let J" be the n-dimensional

n 3 .
module over J. We refer to x ¢ J as an integer point or an

integer n-vector.

For any subset X ¢ Rn, we define I(X) to be the set of integer

points contained in X,

I(X) =(xed | xe X}
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n
A convex subset X ¢ R is said to be integral (or to have the

integral property) iff X is the convex hull of the set of integer

points contained in X, that is, iff X = H(I(X)). Since I(X) « X
it follows that H(I(X)) < H(X) = X. Thus X is integral iff
X ¢ H(I(X)), that is, iff every x € X is a convex combination of
integer points in X.

We are primarily interested in convex polyhedra having the
integral property or, more simply, integral convex polyhedra.
In Chapter 2 we develop necessary and sufficient conditions for
a convex polyhedron to have the integral property.

As the following example shows, not every integral convex

set is an integral convex polyhedron.

0
Example 1-8 Let X = {x , xl, xz, ... } be the infinite subset

of J2 defined inductively as follows:

0
X

(0, 0)

ot P L (e, 1).

o]
]

Fig. 1-4 shows the first few members of X and a portion of the boundary

of H(X). H(X) is an integral convex set because every x ¢ H(X) is a convex
combination of integer points in H(X). Clearly H(X) is equal to the
intersection of an infinite number of half-planes and therefore is not

a convex polyhedron.
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-

Fig. 1-4

If X is a convex subset of R then there exists a unique convex
subset X' of R™ defined by X' = H(I(X)). In words, X' is the convex
hull of the set of integer points contained in X. We point out two
extreme cases. First, if X is an integral convex set then

Xl

H(I(X)) = X. Second, if X contains no integer points then
X' = H(p) = @, where ¢ is the empty set.

The following lemma is a direct consequence of our definitions.

Lemma 1-1

Let X and X' be convex subsets of R°. Then X' = H(I(X)) iff

(i) X' is integral
and

(ii) IX') = I(X).







Example 1-9 Consider the
(a) 4x <
) 2x <
(¢) -3x <

The shaded interval of Fig.

points x which satisfy (1-12).

(Q)} (57

27

15
9

-1

Fig. 1-5

following system of linear inequalities:

1-5(i) represents the set of real

(ii)

Some of these real points are integer points and these are indicated

with dots.

of these integer points.

In Fig. 1-5(ii) the shaded interval is the convex hull

It represents the set of real points

which satisfy the following system of linear inequalities:

(1-12)
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() x < l_'lzs'_l =3

®) -x < L'3—1_l = -1

where LKJ denotes the greatest integer less than or equal to

the real number A, The shaded interval of Fig. 1-5(i) is an

example of a convex polyhedron. The shaded interval of Fig. 1-5(ii)

is an example of an integral convex polyhedron. The process of
transforming the former into the latter is an example of integralization.

a

Example 1-10 Consider the following system of linear inequalities:

(a) 2x, + 2x2 < 15

1
(1-13)

(b) -4x1 - 4x2 < ~18

The shaded region of Fig. 1-6(i) represents the set of real points

X = (xl, x2) which satisfy (1-13). It contains a countably infinite
mumber of integer points, some of which are indicated with dots., In

Fig. 1-6(ii) the shaded region is the convex hull of these integer points.
It represents the set of real points which satisfy the following system

of linear inequalities:
15 _
(a) x1+xzsl_2J_7

© oy s R s

In Fig, 1-6(i) we have an example of an unbounded convex polyhedron,
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and in Fig. 1-6(ii) an example of an unbounded integral convex polyhedron.

Again, the transformation of the former into the latter is an example

of integralization.
& O
r 3 2 ;
P\ _ . i
2 - ! 1
\/9\ | ‘
22\ ;
=T ; V&
X | o 2N IR
B N i (b) -~
| TN
0 N [x 0 LI
o ﬁ,\j,é 1 LA Y B
3( ‘ ﬁj;? b \
(i) (ii)
Fig. 1-6

Example 1-11 Consider the system

(a) Xy + 7x2 < 29
(b) 4x1 - 5x2 < 12 (1-14)

(c) -7x1 - 4x2 < =27




30

Fig. 1-7(i) 1illustrates the convex polyhedron defined by (1-14),
while Fig. 1-17(ii) illustrates the integral convex polyhedron

which is the convex hull of integer points contained in the former.

‘Xz o o S .Xz
o (“)74 )
(d) —= :;’
o | 'Cb).
i tey Raes
0 Xy o - .X,
(i) (ii)

Fig. 1-7

The integral convex polyhedron of Fig. 1-7(ii) is defined by the

system of inequalities,

(a) X2 < 3
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If we were to imagine the X, =% plane as a peg-board, with pegs

2
placed in all integer point positions, then a rubber band in tension,
made to conform with the boundary of the shaded region of Fig. 1-7(i),
would, when released, assume the form of the boundary of the shaded
region of Fig, 1=-7(ii), assuming that the rubber band remains in
tension at the completion of its contraction. In its final state,
the rubber band is supported entirely by pegs. Every vertex of
the region it encloses is an integer point. This is a physical
method for integralizing the bounded convex polyhedron of this
example.

In three dimensional space, a rubber sphere made to conform
with the boundary of a bounded convex polyhedron and enclosing
small marbles somehow fixed in integer point positions would do
the job. 1In higher dimensional space it is difficult to imagine
any physical process for accomplishing integralization. What is

nedded, of course, is a mathematical procedure for performing

the integralization transformation. 0

In the chapters to come we shall be primarily concerned with
two questions:

(i) Given a convex polyhedron, how does one tell if it is an
integral polyhedron?

(ii) Given a non-integral convex polyhedron, how does one

integralize it?
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We answer the first question in Chapter 2 and we answer the

second question for a restricted class of polyhedra in Chapters

4, 5 and 6.

1.3 Integer Linear Programming and Related Research

In this section we seek to accomplish two goals. Our first
goal is to establish the relevance of integral convex polyhedra
and the process of integralizatipn to integer linear programming.
Our second goal is to describe some of the research done by others

concerning integral convex polyhedra and integralization.

1.3.1 Integer Linear Programming

As we stated in the preceding section, a linear programming

problem has the following form:

Maximize c X

Subject to A x < b

x =0

(1-15)



33

where ¢ is a fixed real n-vector, A is a fixed real m y n matrix,
and b is a fixed real m-vector. The inequalities in (1-15) define
a convex polyhedron P.

A commonly used algorithm for solving (1-15) is the simplex
method developed by Dantzig [5]. The fundamental idea of the
method is: if an optimal solution to (1~15) exists then some
vertex of P is an optimal solution. Beginning with any vertex
of P, the simplex method generates a sequence of vertices of P
for which the objective function cx takes on non-decreasing values.
The algorithm terminates when an optimum vertex is found, or
gives an indication that no optimal solution exists.

The simplex method has proven to be an efficient algorithm
and has found many applications in operations research, management
science and economics.

An integer linear programming problem has the form:

Maximize c X

Subject to A x < b
> (1-16)
x =2 0

X an integer vector

where ¢ is a fixed integer n-vector, A is a fixed m y n matrix,
and b is a fixed integer m~vector. There are variations to (1-16),

notably the more general formulation in which all constants are
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allowed to be real. In another variation, only a fixed subsct of
the components of x are required to be integers; the remaining
components are allowed to be real. We shall take (1-16) to be
the standard integer linear programming problem.

Again, the inequality constraints of (1-16) define a convex
polyhedron P. The simplex method, when applied to (1-16), does
not work in general simply because it is no longer true that if
an optimal solution to (l-16) exists then some vertex of P is an
optimal solution. Some or all of the vertices of P may not be
integer points. Said in another way, optimal solutions to (1-16),
if they exist, may be embedded in the interior of P and not
accessible to any vertex generating algorithm,

If P happens to be an integral convex polyhedron then, as we
shall see in Chapter 2, every vertex of P is an integer point and
the simplex method will produce an optimal solution to (1-16)
for any objective function cx.

Suppose P is not an integral convex polyhedron, as is usually
the case. If we integralize P to obtain the integral convex
polyhedron P', where P' = H(I(P)), then the simplex method applied to
P' will produce an optimum solution to (1-16) for any objective
function cx. We acknowledge the fact that there is a certain amount
of naivety in this approach to integer linear programming. This
stems from the fact that P' is potentially a very complex object —

complex in terms of the number of inequalities needed to define p' -
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and it certainly seems inefficient to construct P' in order to
discover just one of its vertices.
However, we offer the following observation, made by Gomory,
in support of the idea of integralization as an important subject of
research. We quote from Gomory [11]:
"Since any algorithm for the integer programming problem, whether
related to linear programming, branch and bound, exhaustive search,
or whatever, must end up finding a vertex of P', information on
P' seems relevant to any approach to the integer programming problem.
Yet information about P' is very difficult to obtain.”
Although the last sentence of this quotation does not contribute
to our argument, we include it to avoid mis~-representation by omission.
It has been our goal to gain some insight into the structural
relationship between P' and P by focusing on the integral property
and the process of integralization for convex polyhedra in general,
not just linear programming polyhedra. We believe that such insight
can contribute to the improvement of existing integer linear

programming algorithms and the development of new ones.

1.3.2 Related Research

In this subsection we describe some of the known results related

to integral convex polyhedra and integralization.
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The major results concerning integral convex polyhedra known
to us are contained in the paper by Hoffman and Kruskal [15].
They consider convex polyhedra defined by system of linear inequalities
Ax < b in which all constants are integers, and define such a convex
polyhedron P to be integral iff every minimal face of P contains
an integer point. If the minimal faces of P are vertices then
this definition says that P is integral iff every vertex of P
is an integer point. As we shall see in Chapter 2, their definition
is equivalent to our own,

Hoffman and Kruskal obtain the following result concerning
the integral property for convex polyhedra. Let A be an integer
m y n matrix of rank k. Let S denote a subset of row indices
of A and let AS denote the submatrix comprised of rows of A identified
by S. Let ged [As] denote the greatest common divisor of all

|S|-order minors of A Then Ax < b defines an integral convex

g°

polyhedron P(b) for every integer m~vector b iff

ged [AS] =1 (1-17)

for all k-subsets S of linearly independent rows of A. We observe
that for a particular integer m=vector b, condition (1-17) is
sufficient for P(b) to be integral but not necessary.

Hoffman and Kruskal also obtain g result concerning the integral

property for linear programming polyhedra. An integer m y n matrix
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is said to have the unimodular property iff every minor (of every

order) of A has value 1, O, or ~1. Entries in a unimodular matrix
are therefore restricted to be 1, 0, or -1, They show that the
inequalities Ax < b and x > 0 define an integral convex polyhedron

Q(b) for every integer m=-vector b iff A is a unimodular matrix.

We observe that for a particular integer m-vector b, the condition
that A be unimodular is sufficient for Q(b) to be integral but
not necessary. Unimodular matrices occur in the integer linear
programming formulations of several combinatorial optimization
problems, including the network flow problem and the maximal
matching problem for bipartite graphs.

Concerning integralization, Gomory in [10] are [11] gives
a method for integralizing a corner polyhedron P - that is,
a polyhedron defined by Ax < b where A is an integer n ¥ n matrix
of rank n and b is an integer n-vector. Basically the method
involves generating a large but finite number k of auxiliary

inequalities,

etx 201, i=1,2, ...,k

i . .
where ¢, for i =1, 2, ..., k, 1is obtained as an integer solution
to an equation over a finite Abelian group derived from the matrix A.

Gomory shows that these inequalities define a polyhedron whose vertices
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correspond one-to-one to inequalities defining P', where P' = H(I(P)),
and indicates how to obtain the latter from the former. Thus the
problem of integralizing a corner polyhedron becomes one of
finding all vertices of an auxiliary polyhedron, which can be
accomplished by linear programming methods.

We mentioned previously that the end product P' of integralizing
a convex polyhedron P is potentially a very complex object. Rubin [22]
obtains an interesting quantitative result concerning this complexity.
Let @15 895 8gy eses Ay ces be the infinite sequence of integers

defined by the recurrence,

[
T
-t

<+
T
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rh
o
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8

!
This is the well known Fibonacci sequence. Rubin defines an infinite
sequence Pl’ P2, P3, ooy Pk’ «+s of bounded (2,2)-polyhedra based

on the Fibonacci sequence as follows. Pk’ for k =2 1, is defined by

the three inequalities,

2
8o X1 F Ao ¥o S 35y

X; = 0, X, = 0.

Pk’ for k » 1, has 3 vertices and 3 edges. He shows that Pi, where

Pi = H(I(Pk)), for k 2 1, has exactly k+3 vertices and k+3 edges. Thus
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for a 2-dimensional bounded polyhedron P, it may recquire
arbitrarily many inequalitics to define P' = H(I(P)), even

though P is defined by just three inequalities.
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CHAPTER 2

THE INTEGRAL PROPERTY IN CONVEX POLYHEDRA

In this chapter we develop several results concerning convex
polyhedra having the integral property. Using our definition of
an integral convex set X as one which is the convex hull of the
set I(X) of integer points in X, we derive necessary and sufficient
conditions for convex polyhedra to have the integral property.

The chapter is divided into three sections. 1In the first
we deal with integral flats, in the second with integral half-

flats, and in the third with integral convex polyhedra in general.

2.1 Integral Flats

A k-flat ¢+ in R" is generated by taking all affine combinations
of an independent set of k+1 real points. Lemma 2-1 tells us when

m 1s integral in terms of its generating set.,

Lemmag 2-1

A k~flat ¢ is integral iff m is generated by an independent set

1

k .
(X, X, eee, X } of integer points.
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Proof
We first prove necessity of the condition. Assume 7 is an integral
k-flat. Since ¢ is a k~-flat, s is generated by an independent set Y of
k+l real points. Since 1 is integral, each real point in Y is a
convex combination of integer points in I(r). The dimension of I(sx)
is at most k. If I(y) has dimension less than k, then Y has dimension
less than k, which is a contradiction. Thus I(r) has dimension k and
n contains an independent set of k+l integer points which generates m.
In order to prove sufficiency of the condition, assume 1 is

1, seas xk} of integer points.,

. 0
generated by an independent set {x , x
We shall show that every x ¢ w is a convex combination of integer
points in . It will then follow that 1 is integral.

Let x be an arbitrary real point in 11,

0 1 k
X = ho x + Kl X 4 ese + Kk b 4

where KO, Kl’ vsey N, are real numbers and

k

Ao FM F N =L

Equivalently we may write
0 2
x =x + Kl(xl-xo) + Kz(x —xo) + ees o+ Xk(xk-xo). (2-1)

Let functions hO: RaJ and hl: R 4 J be defined as follows.

Let ho(Ki) be the greatest integer less than or equal to Ki and
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let hl(Ki) be the smallest integer greater than hi. (Thus

_ .k
hl(hi) ho(Ki) = 1, for all real Xi.) let {0,1} be the set
of all binary k-tuples, a representative member of which is
denoted by b = (bl, b2, cens bk). We claim that x is a

. . k .
convex combination of the 2~ integer points,

k
xb = xo + E: hb Cki) (xi-xo), all b ¢ {0,1}k
i

i=1

. . k . R .
in . (Geometrically, these 2 integer points are vertices of a
k~dimensional cube in ¢ and we claim that x lies in this cube.)

In order to exhibit this convex combination we define functions

8o* R R and g1° R « R as follows:

go®;) = hy O)h,

g, ) ki-ho O~i) .

We then define function gyt Rk -+ R as follows:

k
™) = ™).
5 ® || &, 0

We claim that

b
I
™~1

gbO») X
b ¢ 0,1}F

(2-2)
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where
k
0<g M) sl for all b ¢ {0,1}
and
Y g O = L.
b e (0,1}

In (2-2), N = Ckl, kz, caey Xk) is the real k-tuple of coefficients
appearing in (2-1).

In order to prove this claim we first observe that (2-3) holds
since 0 « gOCKi) <1 and O < gl(hi) <« 1 for all real numbers ki.

Next we prove (2-4) by induction on k. For k = 1 we have
go(ﬂl) + gl(Kl) = hl(Kl)-ho(Kl) = 1.

Assume (2-4) is true for some k, 1 < k < n. Then

k+1

Z [1{; gbio‘i) ]

b e (0,1)

k
[goo‘kﬂ) + glo‘k+1)] " b %mnk [ IE gbio‘iﬂ

= 8gPyyp) + 80 yy)
) = 1.

hy Ay pp) “hy M1

(2-3)

(2-4)



44

Finally we prove that (2-2) is valid. We have

k
S 2,0 | % + s [ 0]

iS

—

K
- <04 E ]: ) g, ) hbiO\.i)T’ xt-x2).

b~ {O,l}k

The expression within brackets may be expanded as

3 £, () 0 )
i
b ¢ {O,I}k
k
) Z ] TT gb.o\j)] by, Oy
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K
[ goPy) ho(hy) + gy () hlo‘i)] ) '21' Z [ —[T gbj O‘j)]

b e (0,13F 371
J#i

= go(;) hy(r) + g O\) hy )

(B O )=2;) Bo(h) + Oy =h D) By ()

A (@) = b))

= A,
i
Thus k
E gb(?\.) xb = x0 + z Ki (xi-xo)
b ¢ {O,I}k i=1

and we have expressed an arbitrary x ¢ 7 as a convex combination of

integer points in r. It follows that  is integral. 0
Let A be an integer (n~k) y m matrix of rank n-k and let b

be an integer n-vector. Our next objective is to determine what

conditions must be imposed on A and b in order for Ax = b to

define an integral k-flat. The preceding lemma allows us to

rephrase the question as: What conditions must be imposed

on A and b in order for the solution space of Ax = b to contain

an independent set of k+1 integer points.
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We first introduce the following notation. If B is an integer
r ¥ s matrix of rank r, where 1 < r < s, then we define gcd [B]
to be the greatest common divisor of all (i) r™P-order minors
of B, where (i) is a binomial coefficient. Notice that if r = s
then B is a square matrix and gcd [B] = |det B], while if r =1
then B is a row vector and gecd [B] is the greatest common divisor

of all components of B.

Theorem 2~1

Let A be an integer (n-k) x n matrix of rank n-k and let b

be an integer (n~k)-vector. Then

Ax =D

defines an integral k-flat ¢ iff

gcd [A] = ged [A iDb].

Proof

Assume that A x = b defines an integral k-flat r7. By Lemma 2-1,
m is generated by an independent set of k+l integer points. Let
x0 be an integer point in 1. Then A'xo =b. Let S denote an
arbitrary (n-k-1)-subset of column indices of A and let AS be the
(n=k) yx (n=k=-1) submatrix of A comprised of those columns of A

identified by S. Since
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det [AS ' b] = det [AS ; AxO]

S, t
it follows that det [A ib] is an integer combination of (n-k) h-order

minors of A. Thus

S1pl.

ged [A] | det [A
Since this holds for any S, we conclude that
ged [A] = ged [AiD].
Now we assume that

ged [A] = ged [AiD]

and prove that Ax =b defines an integral k-flat m.
According to Jacobson [18], there exists an integer (n-k) x (n-k)
matrix R with det R = + 1 and an integer n x n matrix C with det C = * 1

such that

where A is an integer (n-k) y n diagonal matrix,

[]
- e wmw e e e e ma—
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Furthermore, Jacobson [18] proves that

ged [A] = ged [A].
It ig easily seen that
ged [A] = a; a, tal e
We may write A x = Db as
RACx =b
oY as
Ay =b
where
vy = (C X
Tary

|
|

c 0
c' = i

-—-.__._.—+—-._

0 11

i
we see that det C' =det C =+ 1 and



49

Again, it follows from Jacobson [18] that

ged [A1bh] = ged [A :
We now have
gcd [A] = ged [A D]
i i
gcd | A gcd [A iﬁ]
from which we conclude that
a !
1 _ 0 |
a
gcd 2 | 0 =
0 - I
n=-k i
Thus
a; a, . Ak l by
0 R T I ]
apa, Ao |y
and
a b
&1 l ’1
a2 l bz

ocd




50

The k-flat ; defined by A y = b contains the following independent

set of k+l integer points,

- 9 - - - - - -
bl/a1 bl/a1 b1/a1 bl/a1
b2/a2 b2/a2 bz/a2 b2/a2

bn-k/an-k bn-k/an-k bn-k/an-k oo n~k’ "n~k

0 1 0 0
0 0 1 0
0 0 0 1
= — . — b - s J

Therefore ; is generated by these k+l integer points and, by
Lemma 2-1, ﬁ is integral. Since the k-flat 7w defined by A x = b
is the image of ; under the integer transformation C-l, o is
also an integral k-flat, which is what we set out to prove.

O

Corollary 2-1

A x = b defines an integral k-flat iff A x = b has an

integer solution.
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Proof
The necessity of the condition follows from Lemma 2-1.

To prove sufficiency, assume A x = b has an integer solution

0
x . Then, as in the necessity part of the proof of Theorem 2~1,

ged [A] = ged [A ibl.

Thus, by Theorem 2-1, A X

b defines an integral k~flat.
H

Suppose that we have a system A x = b of n-k linear equations
which defines an integral k-flat. The following corollary shows
that any (n-k')=-subset, k < k' « n, of these linear equations
defines an integral k'-flat, Let S be an arbitrary (n-k')-subset
of {1,2,..., n-k}, where k < k' « n. Let Ag denote the submatrix
of A comprised of those rows of A whose indices appear in S and
let bS denote the subvector of b comprised of those components

of b whose indices appear in S.

Corollary 2-2

If A x = b defines an integral k-flat then AS X = bS defines

an integral k'-flat.

Proof

Suppose A x = b defines an integral k-flat. BY Corollary 2-1,

. . 0 0 . .
A x = b has an integer solution x . But x 1is also an integer
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solution to AS X =b Thus, again by Corollary 2-1, AS x =b

s*® S

defines an integral k'-~flat.

2.2 Integral Half-flats

We now consider the conditions under which a half-flat is

integral. Let r be a half k-flat in R",
r={xeR" | Ax =b and o x g B}

and let ¢ be its boundary (k-1)-flat. Again, we consider all

constants to be integers.

Theorem 2-2

A half k~flat - is integral iff its boundary (k-1)-flat  is

integral.

Proof

Assume t is integral. Since T is not empty, I(r) is not empty.
If 7 contains an integer point then, by Corollary 2-1, y is integral.

Otherwise

n X< B for all x € I(7)
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or

a X < B-1 for all x ¢ I(y).

Thus A x = b and o x < B-1 define a new half k~flat ' such that
' c ¢ and I(¢") = I(y). But this contradicts our assumption
that ¢ is integral. Thus ¢ contains an integer point and ¢ is
integral.

Now assume that ¢ is integral. We shall argue that + is
the convex hull of a countably infinite number of integral
(k-1)-flats, and thus 1 is itself integral.

Let

A= ged |__ _

and let uf be the (k-1)-flat defined by

a B-ia

It can be shown that 1 is the convex hull of the set of (k-1)-flats
{no, ™y Tips ee+}. We shall show that each (k-1)-flat 5 in the

set is integral.
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First of all, 0 is integral by assumption. We then have from

Theorem 2-1 that

which includes the right hand column differs from the corresponding

minor of

by a multiple of A. It follows that
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and by Theorem 2-1, ut is integral. Then, since each x ¢ ¢ is a
convex combination of real points in ﬁo, T ﬂz, «ees 5 8ach of
which is a convex combination of integer points in ¢, it follows
that each x ¢ v is a convex combination of integer points in r.

Thus + is integral.

2.3 Integral Convex Polyhedra

We are now prepared to derive some conditions under which a
convex polyhedra has the integral property. Let P be a convex

polyhedron in Rp,
n
P={xeR ! Ax <b}l.

As before, we assume all elements of A and b to be integers.

Theorem 2=-3

P is integral iff every face of P is integral.

Proof
Suppose every face of P is integral. Since P is the convex hull

of its irreducible faces all of which are integral, P is itself integral.
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Conversely, assume P is integral. If P is a flat then its
only face is P itself which is integral by assumption. Otherwise

P has one or more proper faces. Let PS be any proper face of P,

Py = {x e P| Ay x = bs]

where S specifies a subset of the inequalities defining P.
Let x ¢ PS' Since x ¢ P, x is a convex combination of integer

2
points xl, X 4y eoey xm € P,

We claim that xl, xz, ceny X ¢ P,, that is

S
i .
AS X = bs, for 1 =1,2,..., m.
Otherwise
A i b f i
g ¥ < bg or some i
and
m m
_ i_ i
ASx—AS ZCix ZCiASx <bS
i=1 i=1

which contradicts the fact that x ¢ PS. Thus x is a convex combination

is integral.

S O

of integer points in PS, and P
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The following corollary gives a necessary and sufficient
condition on the system of inequalities A x < b defining P for

P to be integral.

Corollary 2-3

P is integral iff

ged [AS] = ged [AS ;bS]

for all face subsets S.

Proof

Assume P is integral. By Theorem 2-3 every face PS of P is

integral. Let g be the flat defined by AS x =b Since PS S g

s°

Mg must contain an integer point, and by Corollary 2-1 and Theorem 2-1,
ged [AS] = ged [AS ;bS].
Now assume that
ged [AS] = ged [A.S ;bs]

for all face subsets S of P. Consider the irreducible faces of P.

An irreducible face PS of P is either a flat or a half=-flat. 1If PS

is a flat then PS is integral by Theorem 2-1. 1If PS is a half-flat

then its boundary flat is an irreducible face of P which is integral
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by Theorem 2-1. Then, by Theorem 2-2, P_ is integral. Since P

S
is the convex hull of its irreducible faces, all of which are

integral, P is integral. 0

We may further restrict the condition of the preceding corollary.

This is done in the following.

Corollary 2-4

P is integral 1iff

ged [Ag] = ged [A b ]

S S

for all minimal-face subsets S.

Proof

Necessity follows directly from Corollary 2-3. 1In order to prove

that the condition is sufficient, assume that
ged [Ag} = ged [Aq ibgl]

for all minimal=-face subsets S. Consider the irreducible faces of P.

An irreducible face PS of P is either: (i) a flat which is a minimal

face of P, or (ii) a half-flat whose boundary flat is a minimal face

of P, In the first case, P, is integral by Theorem 2-1. In the second

S

case, the boundary flat of PS is integral by Theorem 2-1, and thus PS
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is integral by Theorem 2-2, Since P is the convex hull of its

irreducible faces, all of which are integral, P is integral.

Corollary 2-4 tells us that P is integral if all of its
minimal faces are integral., If P is an (n,k)-polyhedron then
the rank of A in A X < b is k and the minimal faces of P are all
(n=k)-flats. If k = n then the minimal faces of P are all
vertices. For example, this is the case for all linear programming
polyhedra since the non-negative condition x » O insures a rank n
coefficient matrix. In such cases, Corollary 2-4 asserts that P

is integral iff every vertex of P is an integer point.
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CHAPTER 3

THE TOTALLY INTEGRAL PROPERTY FOR CONVEX POLYHEDRA

In this chapter we define a new property which we call the totally
integral property. We show that the class of totally integral polyhedra
is a proper subclass of the class of integral polyhedra. We then
consider the class of linear programming polyhedra having the totally
integral property and show that this class can be characterized
algebraically using some of the group theoretic ideas developed by

Gomory [9].

3.1 Totally Integral Convex Polyhedra

We begin by defining the totally integral property. Let P be
a convex polyhedron defined by the system of inequalities A x < b,
where, as usual, all elements of A and b are integers. Let S be
a subset of row indices identifying a linearly independent set

of rows of A, Then the system of equations A, x = bS defines a flat

S
which we denote by Tge We shall say that g is a flat of P and that

S is a flat subset Notice that a face subset is always a flat subset,
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but that a flat subset need not be a face subset. It T is a flat

of P then it is possible that PS’ where

is empty and thus not a face of P.

A convex polyhedron P is said to be totally integral iff

every flat g of P is integral.

Example 3-~1 Fig. 3-1(a) illustrates a totally integral convex

polyhedron. Fig. 3-1(b) illustrates an integral convex polyhedron

which is not totally integral. 0
Xz X xl yYs4. '
N i,
/ : i
VU
PRV L/ wrearac /A
L~ et s
/ 47;/2§/' - / XA
)
V47 A
% 4P " Now|- \wrearAL
4 ELA
o) X, [~} X,
(a) (b)

Fig, 3-1
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The following lemma gives us a necessary and sufficient
condition for P to be totally integral, expressed in terms of

A and b,

Lemma 3-1

P is totally integral iff

ged [AS] = ged [AS ;bS]

for all flat subsets S.

Proof

The lemma follows directly from the definition of the totally

integral property and Theorem 2-1,

O

Suppose matrix A has rank n-k, where 0 < k « n. We shall say that
a flat U of P is minimal 1ff S identifies n-k linearly independent
rows of A. Thus a minimal flat of P is a k-flat. We may restrict

the condition of the preceding lemma as follows.
Lemma 3-2
P is totally integral iff
ged [A] = ged [Ag ibg]

for all minimal-flat subsets S.
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Proof

Necessity follows directly from Lemma 3~1. To prove sufficiency,

assume

'b 1

ged [AS] = ged [AS i bg

for all minimal-flat subsets S. Let R be any flat subset. We may
augment R with additional rows of A, if necessary, to obtain a

minimgl-flat subset S such that R ¢ S. By assumption,

ged [Ag] = ged [Ag ib]

S

and by Corollary 2-2 and Theorem 2-1,

ged [A ] = ged [A, ib.].

It follows from Lemma 3-1 that P is totally integral. 0
We see immediately that a totally integral convex polyhedron P
is always integral. Every minimal face of P is a minimal flat of
P, If P is totally integral then every minimal face of P is integral
and, by Corollary 2-4, P is integral.
The converse is not true — an integral convex polyhedron P
need not be totally integral. It is possible that every minimal
face of P is integral, but that one or more minimal flats of P

which are not faces do not have the integral property.
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Suppose we have an integer m y n matrix A and we let T(A) be
the set of integer m~vectors b such that A x < b defines a totally
integral convex polyhderon. We show that T(A) forms a group under
vector addition.

We first observe that T(A) always contains the all zero m-vector.

Applying Lemma 3-1 with b = 0, since
ged [Ag] = ged [Aqg i0]

for all flat subsets S, it follows that O ¢ T(A). Furthermore, T(A)
is closed under vector addition. For if b1 and b2 are two integer

m-vectors in T(A) then

- 11
gcd [AS] = ged [AS,bS]
and
ged [A.] = ged [A :b2]
S S'’S

for all flat subsets S, and it follows that

1

ged [A s

S] = ged [AS ‘b

2
+ bS]

for all flat subsets S. Thus b1 + b2 € T(A). Moreover, T(A) contains

inverses for each of its members. If b ¢ T(A) then

ged [Ag]l = ged [Ag b, ]

'"S

and

ged [AS] ged [AS 1 =b,]

! S

for all flat subsets S. Thus =b ¢ T(A).
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In the following section we completely characterize the group

T(A) for linear programming polyhedra.

3.2 Totally Integral Linear Programming Polvhedra

We now focus our attention on those convex polyhedra contained in
the non-negative orthant of R® — that is, convex polyhedra P defined
by

Ax<b

(3-1)
x>0

where again A is an integer m y n matrix and b is an integer m-vector.
Given matrix A, let T(A) denote the set of integer m=vectors b for
which (3-1) defines a totally integral convex polyhedron. In the
following, we obtain a complete characterization of T(A), using
group theoretic methods originally developed by Gomory [9].
Specifically, we show that T(A) may be characterized implicitly as
the set of integer solutions to a single equation expressed over

a finite Abelian group.
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Writing the constraints (3-1) defining P as

A
-] X < |-
-I 0

where I is an n x n identity matrix, we see that the coefficient matrix

[Eé] has rank n. It follows that all minimal flats of P are O-flats

-1

(or points), as are all minimal faces of P, From Lemma 3-2, P is
totally integral iff all minimal flats of P are integer points.
Also, from Corollary 2-4, P is integral iff all minimal faces of P
are integer points.

We reformulate the constraints (3-1) defining P in the following

airl |X] =» (3-2)
- )

x>0, z20 (3-3)

equivalent form,

where I is an m y m identity matrix and z is an m~vector of slack
variables. A basic solution to (3-2) is one which is described
as follows. Let B be any basis of [A!I], i.e. a non-singular

m y m submatrix of [A} I], and let x_ be the corresponding

B
m-subvector of |X.| . Let N be the remaining m x n submatrix
z

of [A}I] and let Xy be the corresponding n-subvector of {f] .
z

We may write (3-«2) as,




67

The unique solution to (3-4) given by

xN=0
is a basic solution to (3-2). If Xp 2 0 then the basic solution
ji— is a basic feasible solution to (3-2), and B is a feasible
basis for (3-2). Notice that whether or not a basis B of [A}TI] is
feasible depends upon the particular right hand side vector b in
(3=2).

It is easily seen that O-flats of P correspond to basic solutions
of (3-2) andthat O-=faces (or vertices) of P correspond to basic
feasible solutions to (3-2). Thus, P is totally integral iff every
basic solution to (3-2) is an integer point, and P is integral iff
every basic feasible solution to (3-2) is an integer point.

We now take a slightly different point of view in expressing
the condition for P to be totally integral. Let B be a basis
and let M(B) denote the set of all integer combinations of columns

X

of B. Then the basic solution B is an integer point iff the
0

(3-4)
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solution XB to BxB = b is an integer point or, equivalently, iff

(n + m)

o bases of [A {I], which

b € M(B). There are at most
we denote by Bl’ Bys eeey Bk' It follows that P is totally

integral iff
b ¢ M(Bi) for i = 1,2, ..., k
or, equivalently, iff

k
be N M(Bi)'
-1

L

Recalling our defining of T(A) as the set of integer m=-vectors
b for which P = defined by (3=2) and (3~3) with A fixed =

is totally integral, we see that

T(A) =

iy

X M(Bi).
We note that M(Bi)’ for i = 1,2, ..., k, forms an Abelian group
under vector addition. Moreover, this group is a subgroup of
the Abelign group M(I) under vector addition, where I is the

m y m identity matrix. It follows that T(A), as an intersection
of subgroups of M(I), is also a subgroup of M(I). We summarize

these results in the following.
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Lemma 3-3

Given a fixed integer m y n matrix A, the set T(A) of all

integer m~vectors b for which the constraints

define a totally integral convex polyhedron is a subgroup of M(I).
Moreover

k
T = N M(B,)
i=1

where B> for i = 1,2, ..., k, are all the bases of [A} I]. ]
Before proceeding with our characterization of T(A), we should

point out that a similar development is not possible for the integral

property. The fundamental difficulty with the integral property

is its connection with feasible bases. Which bases of [A | I] are

feasible depends on the particular choice of b as a right hand side

vector. Given an integer m yn matrix A, suppose we let Q(A) be

the set of integer m=vectors b for which (3-2) and (3-3) define

an integral convex polyhedron. Then, if b1 and b2 are in Q(A),

., s . 2
it is not true in general that b1 + b is in Q(A). This is due
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to the fact that the feasible bases associated with b1 may not be
the same as those associated with bz. Thus Q(A) is not closed
under vector addition.

The real advantage of dealing with the totally integral property,
and our motivation in defining it, is that it involves all bases
of [A}I] for every choice of right hand side vector b. As a result
it leads to an interesting algebraic characterization of T(A).

We begin by considering a single basis B of [A i I] and showing
how M(B) is characterized as the set of integer solutions to an
equation expressed over a finite Abelian group whose structure

1

is completely known. An integer m-vector b is in M(B) iff B b

is an integer m-vector. If we let
A = |det B|
then Bnlb is an integer m-vector iff
AB-lb = 0 mod A (3-5)

where the columns of AB-1 are integer m~vectors, 0 is the all zero
m=-vector, and the congruence applies componentwise. Consider the
group MQAB-l). If we introduce the congruence relation on M(AB-l)
which relates two integer m-vectors iff they are congruent modulo A

componentwise, then the quotient group with respect to this congruence
)
MATL)

relation is » where I is the m x m identity matrix. Moreover,
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if we let Bl, Bz, cens Bm denote respectively the congruence
classes containing each of the columns of AB-l, and if we
now let O denote the congruence class containing the all

zero m=vector, then (3-5) may be expressed as the following

M(p3 1)

equation over the group G = M(AD)

m
2 b, B, = 0.
i=1

Thus an integer m~vector b is in M(B) iff b satisfies the group
equation (3-6) over G.

We next show that (3-6) can be replaced by an equation over
a new group which is isomorphic to G, whose size and structure
is more easily revegled. First we note that if H is any
group isomorphic to G, with isomorphism ¢: G 4 H, then the
equation (3-6) over G is satisfied by some integer m-vector

b iff the following equation over H

~18

b, o(B;) = ©(0)

i=1
is satisfied by b. 1
M(AB )
We claim that the group G = is isomorphic to the
M(pI)
group G' = M) The non-singular linear transformation L B is

“ M(B) ° A

an isomorphism from M(AB-l) to M(I) and from M(pI) to M(B). It

(3-6)
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follows that i B takes congruence classes in G into congruence

classes in G' and that this mapping from G to G' is an isomorphism.
We now take the isomorphism one step further. Smith [25] has

shown that by performing certain elementary row and column operations

on matrix B one obtains a diagonal matrix B,

— —
€ 0
€
B = )
0 €n

where €15 Fgs eees € are positive integers, 61'62' e € T A

and £l for i = 1,2, ..., m=1, Matrix B may be expressed

i+l

in terms of matrix B as follows,

B=RBC
where R-and C are integer m x m matrices with [det R| = |det C| = 1.
We show that the group G' = %%%%, is isomorphic to the group
G"==§ﬁ%%‘. Since |det R' =1, R is an isomorphism from M(I) to M(I).

Moreover, R is an isomorphism from M(B) to M(RB). But M(RB) = M(ﬁ),
which can be shown as follows. Let y ¢ M(B). Then y = RBCx = RB(Cx),
for some integer m=vector x. Thus y ¢ M(RB) and M(B) < M(RB). Next
let y ¢ M(RB), Then y = RBx = RBC(C—lx) = ﬁ(C-lx), for some integer
m-vector x. Since |det C| =1, C-lx is an integer m=-vector and

therefore y ¢ M(B). Thus M(RB) c M(B), and M(RB) = M(B). It follows
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that R is an isomorphism from M(B) to M(E). Furthermore it follows
that R takes congruence classes in G' into congruence classes in G",

and this mapping from G' to G" is an isomorphism.

M(I)
M(B)

the group of integers {0, 1, 2, ..., k=1} under addition modulo

The structure of G" = is apparent. If we let J,_ denote

k
k, then it is readily seen that G" is isomorphic to a direct product

group H, where

The isomorphism from G'" to H maps a congruence class in G" into the
integer m-tuple obtained by taking any representative member of
the class and reducing its ith component modulo €5 for i =1, 2, «v., m.

The order of H is €1°€° eoe € = A- Although we have expressed

m
H as an m-fold direct product, in many cases several of the gi's have
value 1, in which case the corresponding components of the direct
product contribute nothing to the structure of H and can be

omitted,

The following diagram summarizes the sequence of isomorphic

groups we have been discussing.

reduction
modulo (gl, Fgs oves Gm)

B> |=
o
xd

1
l
|

-1
HAB D)L omm o MO oy ; ]
M(pI) M(B) M(E) e X ey XU XTe
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We began with the equation (3-=6) over the group G as a means
of characterizing the members of M(B). We may now replace that
equation with an equation over the group H. Letting w denote

the isomorphism from G to H, we replace equation (3-6) with

m
Y b oh =0 (3-7)
s 1
i=1
where ~ ]
1
1 -1 €
= = - A
|
_Glj
€2
= R. mod .
L .
S

(The subscript i on a matrix denotes the ith column of that matrix.)
Equation (3-7) is the desired characterization of M(B). An integer
m=vector b is in M(B) iff b satisfies equation (3-7).

Now we are ready to characterize T(A), the group of all m-vectors
b for which the constraints (3~2) and (3-3), with matrix A fixed,
define a totally integral convex polyhedron. We recall from Lemma 3-3

that

k
TA) = N M)

i=1
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where B,, for i = 1, 2, .o, k, are all the bases of [aiIl.
For each basis Bi we have seen that M(Bi) may be characterized

as the set of integer solutions to an equation
m
b, h,, =0
EZ j ij
j=1

over a finite Abelian group Hi of order Ay = |det Bil' It follows
that T(A) may be characterized as the set of integer solutions to

k simultaneous equations,

m
Ea bj hij =0, for i =1, 2, ¢ae, k
=1

over the finite Abelian groups Hl’ HZ’ ooy Hk. Equivalently,
T(A) may be characterized as the set of integer solutions to a

single equation,

over a finite Abelian group K, where

K =H; x Hy x «oo x H

and

The order of K.is AI.AZ * cee -Ak.
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We summarize these results in the following theorem.

Theorem 3~1

Given a fixed integer m x n matrix A, the set T(A) of all

integer m~vectors b for which the constraints

atrl |X| =»
zZ

x 20, z 20

define a totally integral convex polyhedron is equal to the set of

integer m~vectors b which satisfy an equation

over a finite Abelian group K derived from all bases Bl’ B2, ey Bk

of [A!I]. The order of K is A sbpt eeo A, where

Ay = ’det Bi[.

One conclusion we may draw from Theorem 3~1 is that T(A) never
consists of just the all zero m=vector. If we let o(kj) denote the

order of kj in the group K, and if we let @ be the diagonal m x m matrix,
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we see that

M(@) < T(A).

Thus T(A) contains a countably infinite number of m-vectors.

In terms of convex polyhedra having the totally integral property,
these results are somewhat surprising. They tell us that for any
matrix A there exist a countably infinite number of right hand

side vectors b which give rise to totally integral polyhedra.
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CHAPTER 4

TRANSFORMATION OF (n,k)=POLYHEDRA INTO (k,k)-POLYHEDRA

The general problem of integralizing convex (n,k)=-polyhedra
may be approached inductively with respect to one of the parameters
n or k. Recall that an (n,k)-polyhedron is defined by Ax ¢ b, where
A is an m ¥ n matrix of rank k, 1 « k ¢« n. 1In this chapter we show
that the class of (n,k)-polyhedra for fixed k and arbitrary n,

n » k, have a great deal in common with respect to integralization.
In particular we show that an (n,k)-polyhedron P_, where n = k, may

be transformed into a (k,k)=polyhedron P, by a linear transformation

k

n k
T: R o R which preserves integralization.

In order to explain what we mean when we say that T preserves

integralization, we refer to the diagram below. If we let ' denote
T
D G
Pn Pk
1 1

Y Y
pP' — — » P
n
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the operation of integralization, then this diagram expresses the

fact that
' _ 1
T(Pn) = T(Pn) .

Thus in order to integralize Pn to obtain P&, we may instead integralize
Pk to obtain Pﬁ and then use the inverse transformation T-'1 to obtain
P;. (A word of explanation concerning T-1 is in order. As we shall see,
T is a many-to-one transformation. Thus it does not make sense to talk
about T-l(y), y e Rk, as being a single real point x € Rn. Rather, by

T-l(y) we shall mean
T = (x e & | TG =yl

With this interpretation of Tm1 we may say that T-l(Pé) = P;;)
Thus the purpose of this chapter is to show that the general
problem of integralizing (n,k)=-polyhedra reduces (somewhat) to the
problem of integralizing (k,k)=polyhedra. In the first section of
this chapter we show how to obtain a suitable transformation T for
a particular (n,k)=-polyhedron Pnn In the second section we show
that such a transformation preserves integralization. And in the
third section we begin our inductive approach to integralization

by examining the simple case, k =1,
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4.1 Existence of a Suitable Transformation

Let Pn be an (n,k)-polyhedron defined by Ax < b, where A is an
integer m ¢ n matrix of rank k, and b is an integer m~vector. Any
integer k xn matrix T of rank k whose rows span the row space of A,
when viewed as a linear transformation from R to Rk, transforms
P into a (k,k)=-polyhedron Pk defined by Cy < b, where y = Tx and
C is an m x k matrix (not necessarily integer) of rank k defined

by the matrix equation A = CT. However, we require a matrix T

having two additional properties:
(1) ged [T] =1

(ii) every row of A is an integer combination

or rows of T.

In the following section we show that a matrix T having these
properties preserves integralization. 1In this section we are
concerned with the existence of such a matrix T.

The conditions we have imposed on T are dependent only on
the matrix A and are independent of the vector b, The following

lemma assures us that a matrix T exists having the required properties.
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Lemma 4-1

If A is an integer m y n matrix of rank k then there exists an
integer k x n matrix T of rank k such that (i) ged [T] =1 and

(ii) every row of A is an integer combination of rows of T.

Proof

Let U be any k y n submatrix of A having rank k. According

to Jacobson [18], U may be written as

U=RUGCGC

where R is an integer k y k matrix with det R = + 1, C is an integer

n y n matrix with det C = 4+ 1, and

U= [u'!}0]

where U' is a diagonal k y k matrix and 0 is the k yx (n-k) zero matrix.

Let T = [I i 0], where I is the k y k identity matrix and let
T=RTGC. (4-1)

It is clear that ged [T] = 1. Jacobson [18] shows that ged [Tl = ged [T] = 1.
We now show that every row of A is an integer combination of rows

of T. Let a be any row of A. Since A has rank k and U is a k y n submatrix

of A having rank k, the rows of U span the row space of A. The row a

may be written uniquely as a linear combination of the rows of U,
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a =cU

where ¢ is a rational k=vector (row). Then we may write

a = cU = c(RUC) = cR(U'T)C = c(RU'R™Y) (RTC)
=c'T
where c¢' is a rational k vector (row) given by c' = c(RU'R-l).

We show that c' must be an integer k-vector.

We may write ¢' = |c¢'] + <c's where |c'] denotes
the greatest integer function applied componentwise to c¢' and
<c's 1is the vector of fractional parts of c'. Each component
of «c's is a non-negative rational number less than 1.
Now, since a =¢'T = |c¢'] T+ «'>Tand |[c¢'] T is an
integer n-vector, we see that <c's T is also an integer n-vector.
We shall deduce from this that «c's = 0.

We represent «c's uniquely by
' 1
<C > = d (el’ e2, csey ek)

where d is a positive integer, €15 €55 ees, € are non-negative

k
integers, 0 < e, < d, and ged (el, €y ey €5 d) = 1. Let S

be a subset of k column indices of T such that the k y k submatrix
TS comprised of the columns identified by S has non=-zero

determinant. Since <c'»ST is an integer m~vector we see that

S . .
<c'>ST" is an integer k vector, say a'. Solving the system

4=2)
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of equations a' = <c's TS for «c'> we find that <c'> has the form

1

3 are integers.
|[det T l

(fl’ f2, cea, fk), where fl, f2, cees fk

Comparing this with (4=2) we conclude that d | det TS. Similarly,

we may show that d divides all k x k minors of T. Thus d [ ged [T] =

and d = 1. It follows that e =€ = .e. =g = 0 and «<c's =0,

4,2 The Transformation Preserves Integralization

The transformation T whose existence is guaranteed by Lemma
4-1 transforms the (n,k)=-polyhedron Pn defined by Ax < b into the

(k,k)=polyhedron Pk defined by Cy < b, where y = Tx and A = CT.

Property (ii) of T insures that C is an integer matrix. We shall

write P, = T(Pn) and Pn = T-l(Pk). In general, for a subset

k
k .~1 . .
Yc R, T (Y) will have the meaning

Ty = (x e R® | = ¢ ¥).

We argue next that T takes faces of Pn into faces of Pk'
Let (Pn)s be an arbitrary face of Pn’

(B)g ={xeP | Agx = bS]

1,

O
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and let (Pk)s be the face
(®)g ={yeP | Cy-= bgl.

Since A = CT we see that AS = CST. It follows that T((Pn)s) = (P

-1
It also follows that T ((Pk)s) = (Pn)s.

k)S'
The minimal faces of Pn
are (n-k)=flats in R". Their images under T are minimal faces of
Pk’ 0-flats in Rk.

Let ' denote the operation of integralization. Suppose we
have computed Pi, an integral (k,k)=polyhedron defined by C'y < b',
where C' is an integer m' y k matrix of rank k and b' is an integer
m'=vector. Then T-l(Pﬂ) is an (n,k)=polyhedron defined by A'x ¢ b',

where A' is an integer m'y n matrix given by A' = C'T., The following

lemma asserts that the transformation T preserves integralization.

Lemma 4-2

Proof

We show that T-l(Pﬁ) is integral and I(T-l(Pé)) = I(P ). It will
follow from Lemma 1-1 that T_l(Pé) = P;.

We first show that T-l(Pﬂ) is integral. Every minimal face of
T-l(Pﬂ) is the image of a minimal face of P! under T-1 and conversely.

k

Minimal faces of P! are vertices. Since P!

X K is integral, its vertices
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0
are integer points in Rk. Let vy be any vertex of P'. Then

k
-1, 0y . . -1, , -1, 0, ,
T "(y%) is a minimal face of T (Pk)' T “"(y ) is the (n=k)-flat

defined by,

T—1<yo) = (x e R | Tx = yo}-

Here we make use of property (i) of T, namely gecd [T] = 1.

It follows that
. 0
ged [T] = ged [Ty |

and, by Theorem 2-1, T-l(yo) is an integral flat. It follows that

every minimal face of T-l(Pﬁ) is integral, and by Corollary 2-4,

T-l(Pé) is integral.

We now show that I(T-l(Pé)) = I(Pn). Since Pﬁ c Pk and

k) = Pn we have T-l(Pé) c Pn and I(Tul(Pﬁ)) c I(Pn).

Consider the set difference I(Pn) - I(T-l(Pﬁ)). Assume there

is an integer point x in this set difference. Since x ¢ I(Pn),

Tx = vy is an integer point in Pk’ hence in Pﬁ. But then

X I(T-l(Pé)) which contradicts our assumption. We conclude

that L(P ) - I(Tul(Pi)) is empty. Thus I(Tnl(Pé)) = 1(e ).
Having shown that T-l(Pé) is integral and that I(T-l(Pé)) =

1(p), it follows from Lemma 1-1 that T '(P)) = P!. -

Summarizing these results, we have seen that given a system

of linear inequalities Ax <« b defining an (n,k)~polyhedron P,
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there exists a transformation T which transforms Pn into the

(k,k)-polyhedron P, defined by Cy < b, where y = Tx and A = CT.

k

Furthermore, if we integralize P to obtain Pé defined by
C'vy < b', then T_l(Pé) defined by A'x < b', where A' = C'T,
is equal to P&. Thus, without loss of generality, we may
restrict ourselves to the problem of integralizing
(k,k)~polyhedra.

We examine the case k=1 in the following section to

illustrate the transformation and integralization of

(n~=1)-polyhedra.

4.3 Transformation and Integralization of (n,1)Polvhedra

Let Pn be an (n,l)-polyhedron defined by Ax < b, where A

is an integer m y n matrix of rank 1, and b is an integer m-vector.

Let T = L a., where aj is any non=zero row of A and Aj = ged [aj].
J
Then ged [T] = 1. Moreover, every row a; of A, i =1, 2, ..., m,

is an integer multiple of T, a; = ¢, T, where s is an integer equal
to + ged [ai]. Thus T satisfies the conditions for an integralization
preserving transformation.

T(Pn) is the (1,1l)-polyhedron P, defined by Cy < b, where

1

y = Tx and C is the integer m y 1 matrix defined by A = CT.

According to Lemma 4=~2, T-l(Pi) = PA.
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The problem of integralizing P1 is easily solved. Consider
a single half-line T4 defined by c;¥ < bi’ c; # 0. We integralize

Ty a8 follows. Let ;i be the half-line defined by

b,
_i .
Y < c. if ci >0
—ld
b,
- -+ ifc, <0
YS _ci i L4

The boundary point of ;i is an integer so that, by Theorem 2-2,

;i is integral. Furthermore, I(;i) = I(Ti). It follows from
- - = 1 -

Lemma 1-1 that Ty =Ty H(I(Ti)).

Among all those inequalities c;¥ < b, for which c; > 0, if

b

L is
i

smallest. Similarly, among all those inequalities c;¥y < bi for

i
any, let the jth inequality be one for which the ratio

which c; < 0, if any, let the kth inequality be one for which

b,
the ratio ;El is smallest. Let P1 be defined by the following
i

system of at least one and at most two inequalities,

=y < = |
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b b.
We see that I(P,) = I(P,). If =~ —k > —d then
1 1 =cp cj

I(ﬁl) = I(Pl) = ¢, where ¢ denotes the empty set. Thus

El = Pi = . Otherwise, by Corollary 2-4, P. is integral.

1

It follows from Lemma 1-1 that ?i = Pi.

T-l(Pi) is an (n,l)-polyhedron defined by the following

system of at least one and at most two inequalities,

Ei
ms Cc,
—J-
b
-Tx < —k .
=c,
-

- =1 vy _ po
By Lemma 4-2, T (Pl) = Pn'

Example 4-1 Let P, be the (3,1)=-polyhedron defined by

3
-8 4 12 x1 13
12 -6 ~18 Xy < 7
-4 2 6 x 9
e e —3— L -
Let T = % [-8 4 12] = [=2 1 3]. Then P1 = T(P3) is the
(1,1)=-polyhedron defined by,
- - .
4 13

-6 vy < 7 .
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We integralize P, and obtain the (1,l1)-polyhedron P defined by,

1 1

-1 1

M
-2 1 3 ! 3
X <
2 -1 3 2 1
%3
L "







for i =1, 2. Since I(Ti) = I(Ti) we have
= = ' '
I(®) = I(r; N Ty = LT, N T,

so that P may be replaced by Ti N Té.

In the following we assume that this first integralization step
has been performed on P, That is, we assume that P is defined by

Ax < b where

and
gcd(all, a12) =1
gcd(a21, a22) = 1.

Let A = det A. We assume that the order of the two inequalities
AXx < b is such that A » O.
Our goal is to generate the system of inequalities A'x < b'
defining P', We accomplish this by generating all normal vectors
and vertices of I(P). In the following we define the notion of
a normal vector of I(P) and a vertex of I(P). We then introduce
a transformation of co-ordinates which makes the properties of
normal vectors more accessible. In particular, it allows us to identity

images of normal vectors as being atoms of a certain partially ordered set.
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We then develop a two-dimensional generalization of the division
theorem for integers and show how it is used to generate the
finite set of these atoms. We then describe a second level
two~dimensional division process involving these atoms which,
together with the inverse transformation, generates all normal
vectors and vertices of I(P). These lead directly to the system

A'x < b' defining P',

5.1 Normal Vectors and Vertices

Let x0 =

0
*1
£0 be an integer point in I(P). We shall say

2

0
that x is a boundary point of I(P) iff there exists a non-zero

c
integer vector g = ( 1> such that
02

0-(x-x0) < 0 for all x ¢ I(P)

where . denotes vector inner product. We shall say that g

is a support vector of I(P) at xO. The inequality 6.(x-x0) < 0

defines a supporting half-plane for I(P).

We shall say that a boundary point of I(P) is a vertex of I(P)

iff there exist two linearly independent support vectors of I(P)

0
at x .
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It is a straightforward matter to compute some of the boundary
points of I(P). To do so we make use of some basic results in number
theory.

!

Let m be an integral line defined by a+x = b, where a = (a )

2
is an integer vector, b is an integer, and gecd (al, a2) = 1.

An integer solution x0 to a*x = b may be determined as follows.

The Euclidean algorithm is used to compute a (non-unique) integer

r
0
vector r = <r ) such that a-r = 1. Then x = br is an integer
2

solution to a*x = b, and a.x = b may be written as a-(x-xo) = 0,
The following lemma is stated without proof. (For a proof
see, for example, Niven and Zuckerman [21].) For convenience

in stating it, we let

Lemma 5-1

If « is a line defined by a-(x-xo) = 0 where gcd (al, az) =1,
then I(m) is the set of integer points expressible as xo + kTa,
where k is an integer.

a

Consider the integral boundary lines ™ and ™, of the integral

half-planes Ty and T2 defining P. ut and m, are defined by al.x = b1
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2 . i /%1
and a °x = b2 respectively, where =

= :1
a \312/ and ged (ail, aiZ) s

1
for i = 1,2, The Euclidean algorithm gives two integer points x  and

2,
X 1in T, and T

1

5 respectively, The defining equation for T may then

be writFen as ai-(x-xi) =0, for i = 1,2, Lemma 5-1 tells us that
I(ﬂi) is the set of integer points expressible as xi + kiTai, where
ki is an integer.

Certain integer points in I(nl) satisfy az-x < b2 and thus are
integer points in I(P). It is easy to show that I(ﬂl) n L(P) is

is

Tal, where kl

. . . 1
the set of integer points expressible as x -k

b -az-xl
K < 2
1[ AJ.

Similarly, I(ﬁz) N T(P) is the set of integer points expressible

1

an integer and

2 2 . .
as x + k,Ta , where kz is an integer and

2
N
K B S

Both ICnl) n I(P) and I(v2) n I(P) are sets of boundary points of I(P).
0
If x is a boundary point of I(P) then we shall say that a non-zero

. . 0 .
integer vector 5 1is a normal vector of T(P) at x 1iff:
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R 0
(i) o-(x-x") < O for all x ¢ I(P)

0
(i1) x + Io

T

f—
~
=J
S
—~

(5-1)

(iii) ged (Gl, 02) = 1.

0
The inequality Oe(x=x ) < 0 defines a half-plane T which is a supporting

half-plane for I(P). The boundary line T defined by c.(x-xo) =0

is a supporting line for I(P). ™ contains at least two integer

. 0 . 0 . . .
points, x and cither x + Tg or x - Tg, in I(P). The condition
ged (01, 02) = 1 1Is included to provide a canonical form for o.

If this condition were not imposed, then every positive integer
scalar multiple kg of a normal vector ~ would also be a normal
vector, and as we shall see, this would be inconvenient for our
purposes.

Two normal vectors of I(P) are evident. For every boundary

point x1 in I(wl) ~n I(P), al is a normal vector of I(P) at xl.

Similarly, for every boundary point x2 in I(vz) n I(P), a2 is
a normal vector of I(P) at x2.

Since normal vectors are support vectors, we see that a boundary
point xo of I(P) is a vertex of I(P) if there exist two linearly
independent normal vectors of I(P) at XO.

In the remainder of this chapter we develop a method for

generating the system of inequalities defining H(I(P)). The method
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involves generating all normal vectors and vertices of I(P).
Clearly, if xo is a vertex of I(P) and g 1is a normal vector
of I(P) at xo, then the inequality c.(x-xo) < 0 defines a
half=plane whose boundary line contains an edge of H(I(P)).
It follows that the system of all inequalities of the form
Gm(x-xo) < 0, where xo is a vertex of I(P) and ¢ is a normal
vector of I(P) at xo, defines H(I(P)).

We begin by introducing a transformation of co-ordinates

which makes the properties of normal vectors more accessible.

5.2 A Hull-Formation Preserving Transformation

Let us regard the matrix A of the system Ax < b defining
P as a linear transformation A: R o R2. For all x ¢ Rz,
A: X 4y wherey = Ax. Since A # 0, A is a non-singular
linear transformation. Thus the inverse transformation A-1

exists. A 1 is given by

A~ is not an integer matrix in general.
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We shall denote the image A(X) of a subset X ¢ R2 under A by X"

so that

e
i
e
N
0
o]
]

Ax, x £ X}.

Since

) 2
P=IxcR | A¢X < b}
it follows that
ko 2
P ={yzR | v«hbl.

Letting M(A) denote the set of all inteser tembinations of columns

of A we see that

1" = (y £ M@A) | v < bl

We claim that the transformation A preserves the operation
of forming the convex hull of I(P). This is illustrated in the

following diagram.

I(P) = I(P)

b

A kS
H(I(P)) —— H(I(P) )
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This diagram expresscs the fact that
H(I(P)) ™ = H(I(P)")

which we prove in the following lemma.

Lomma 5-~2

HOTE)) = 1T

Proof
We first show that H(I(P)) < H(I(P) ). Let y € H(I(P)) .

Then

v o= A( A XO + A x1 + A x2)
S 0 1 2

+ A+ kz = 1, and xo, xl x2 € I(P).

where A, A KZ » 0, kO L

0> 1

]

We then have

0 1 2

, .0 2
=AY F lel + Xzy

) L

0 1 2 L% ) *
where v , v , v & L[{(P) . Thus y < H(I(P) ).

We next show that M(I(P)“) - H(I(P))“. Let y € H(I(P)").

Then
.0 1 2
Yo=Y + Kly + Xzy
o o X 0 1 2 %
where Xg, Py My oz o, Ay T + Kz =l,and y , v, v e I(P) .
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We then have

0 1 2
KoAx + Xle + XzAx

<
It

0 1 2
ACKOX + klx + sz )

where xo, xl, x2 € I(P). Thus y ¢ H(I(P))*.

We should point out that unless A = + 1, A does not preserve
the operation of integralization. That is, (P')* # (P*)', where
' denotes the operation of integralization. In order to see this,
consider P*. P* is a (2,2)~=corner polyhedron defined by y < b.
Since the vertex y =b of P* is an integer point, P* is integral.
That is, P* = (P*)'. However, if A # + 1, then it is not true
in general that the vertex x = Ahlb of P is an integer point,

in which case P is not integral. That is P' # P, It follows

* * *
that (P') #P = (P )",
Example 5-1 Let P be the (2,2)=corner polyhedron defined by

23

-3 1 =5

Fig. 5-1(a) represents portions of P, I(P) and H(I(P)). Fig. 5-1(b)

* * *
represents portions of P , I(P) and H(I(P) ).

O
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It can be shown that the linear transformation A preserves
the face structure of H(I(P)). The image of a face of H(I(P))
is a face of H(I(P)*) and conversely.

Let xo be a boundary point of I(P) and let o be a normal
vector of I(P) at xo. Then c~(x-x0) < 0 for all x ¢ I(P). In

%*
terms of I(P) we have

oA y=y" < 0 (5-2)

% 0 0 %
for all y € I(P) , where y = Ax is a boundary point of I(P) .

Multiplying (5-2) by A ~ 0 to clear fractions we obtain
o (0™ (5=y") < 0

or in terms of matrix multiplication only,
GT(AAnl)(Y‘YO) < 0.

Letting

vI = oTa™h (5-3)

we have

0
Y-y ) <0

% *
for all y ¢ I(P) . We shall refer to y as a normal vector of I(P)’

0
at y .
%
Since normal vectors of I(P) play a key role in our development

we shall examine their properties in some detail., First of all,
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we see that a normal vector y of I(P)A is related to the corresponding
normal vector ¢ of T(P) by equation (5-3), or equivalently, taking

the transposc of each side, by
-1, T
v = (AA ) o
. - -1.T
Letting A = (AA 7)) we have

v = Ac. (5-4)

Letting M(R) denote the group of all integer combinations of columns
of A under vector addition, we see from equation (5=4) that y € M(Z).
The defining conditions (i), (ii), and (iii) in (5-1) for a

normal vector ~ of I(P) at xO may be recast as defining conditions
for a normal vector y of I(P)* at yo as follows. 1If yo is a boundary
point of I(P)* then a non-zero vector y € M(A) is a normal vector

1

% 0
of I(P) at y iff:
N 0 kS
(i) vel(y=y') <O for all y € I(P)
.. 0 *
(i1) vy~ + Ty ¢ 1T(P) (5=5)

(1i1) Ny ¢ M(A) for all real A, 0 <A < L. J
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We have already seen that condition (5-5)(i) follows from

(5-1)(1). Condition (5~1)(ii) tells us that
*
v+ ATo € 1(®)". (5-6)

Now AT = TK, as 1s easy to verify. Thus ATo = TAG = Ty and (5-6)
becomes condition (5=5)(ii). Finally (5-1)(iii) implies that AC
is not an integer vector for all real A, 0 < A < 1. Condition
(5=5) (iii) follows. Thus, if g is an integer vector which
satisfies (5-1), then y = Ag is an integer vector which

satisfies (5-5). The converse argument can also be made.

Example 5-2 Let P be the (2,2)-convex polyhedron defined in
Example 5=1. Vertices and associated normal vectors of I(P)

*
and I(P) are tabulated below.

vertices | (2 G @
1(P)

s | (DD DO | O,

vereices | (1 ey |
1(@)”

s | (), G ] G, & ] &, ()
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%
Notice that tabulated normal vectors of I(P) are images of the

1
corresponding tabulated normal vectors of I(P) under A =
-3

5.3 Normal Vectors as Atoms

*
In this section we show that normal vectors of I(P) are
necessarily atoms of a certain partially ordered subset of

M(K). We begin with the following lemma.

Lemma 5-3

*
If v is a normal vector of I(P) at y0 then vy 2 0.
Proof
According to (5~5)(i),

0 *
Ye(y=y ) <O for all y ¢ I(P) .

Recall that I(P)* is defined by
%
I(®) ={y €M(A) | y <b}.

*
Since yO € I(P) , ¥y € M(A) and v < b. Consider yl = yO - (g)-

Since Af1<g> is an integer vector, (é) e M(A). Thus y1 c M(A).

(5-7)
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*
Also, since yo <b and A >0, y1 < b. Therefore yl € 1P .

Setting y = y1 in (5=7) we obtain Yy A< Oor
Yy = 0.
- s 1 0 0
A similar argument using y =y = A reveals that

v, 2 0.

A normal vector y is, by definition, a member of M(A).

If we let M(K)+ be defined by
-+ -
M(A) ={z € M(A) | z 2 0}

then Lemma 5=3 tells us that y is a member of M(Z)+. As we see next,
a much stronger statement about y can be made,

Consider the partially ordered set (M(E)+, <). The ordering
relation < is, as usual, taken componentwise., The element O € M(Z)+
is the least element or universal lower bound.

An atom of (M(K)+, <) is an element a € M(A) such that a #0

and

for all z € M(K)+.

Theorem 5-=1
If vy is a normal vector of I(P)x at yo then y is an atom of

M@, <).
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Proof
Let y be a normal vector of I(P)x at yo. By definition,
- -+

Yy € M(A) and v # 0. By Lemma 5-3 vy € M(4) .

Assume there is a z € M(A)+ distinct from 0 and vy such

s
that z < y. According to (5=5)(ii), yo + Ty € I(P)*0 We show
that yO + Tz and yO + T(y-z) are also members of I(P)* and use
(5=5) (1) to conclude that v.(+Tz) = 0., It will follow that

z= ANy, for some real N, 0 « AN < 1, which contradicts (5=5)(iii).

We first show that yo + Tz ¢ I(P)*. Since z ¢ M(A)
and TA = AT, it follows that Tz £ M(A). Since yO € M(A),
yo + Tz ¢ M(A). Now since y0 + Ty & I(P)* we have yo + Ty < b.
Then since 0 < z <y we have yo 4+ Tz < b. Thus yO + Tz € I(P)+.

We next show that yo + T(y=z) ¢ I(P)*. Since (y=z) « M(A)
and TA = AT, it follows that T(y=-z) ¢ M(A). Since yo € M(A) we
have yo + T(y=z) ¢ M(A). Again yo + Ty <« b, Since 0 < (y=2) < Y
we have'yQtT(y—z) < b. Thus yo + T(y-z) ¢ I(P)*.

Now we argue that y.(4Tz) = 0., Setting y = yO + Tz in (5=5) (1)
we obtain y.({tTz) < 0. Setting v = yO + T(y=z) in (5=5) (i) we
obtain ye.({T(y=2z)) < 0. Since y.(+Ty) = 0, this gives -y.(+Tz) < O.
Thus y-(4+Tz) = O.

Finally v.(+Tz) = 0 implies that z = Ay for some real number A,

Furthermore 0 < z < v, z # 0 and z # vy, imply that O « A « 1. But

z =Ny, 0« N 1, contradicts (5=5)(iii),

a
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Theorem 5=1 tells us that normal vectors of I(P)* are necessarily
atoms of (M(K)+, <. As we shall see, there are at most A + 1 such
atoms. In the remaining sections we show how to generate these
atoms and then show how they are used to compute H(I(P)*), and

thus H(I(P)).

5.4 A Two-Dimensional Divigion Theorem

*
Having shown that normal vectors of I(P) are atoms of (M(A)+, <),
our next objective is to generate these atoms. To this end we present
the following theorem, which may be viewed as a generalization of

the division theorem for integers. It applies to integer 2=vectors.

a1
notation (
2

Th

o

> b
) < (b1> means a; > bl and a, < b,. All quantities
2

are integers,

Theorem 5-2
u

u
Given ( 1) and ( 2
V1 V2

<ul> > (u2> >0
0 < Vl < vy

) such that

u
there exist unique q and <v3> such that
3
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and
<u2> > <u3> = 0
0 < W,/ < \vg,
Proof
3
We first show that q and <v ) exist.
Let g and uy be determined by the division theorem applied to Uy
and Uy s
u; = qu, -t oug, u, > Uy = 0.
Since u; > Uy > 0, it follows that q > 1.
Then Vq is given by
Vg T q UV, -V,
and since q > 1 and 0 < Vi < Vg it follows that 0 « Vy < Vge
3
We next show that q and <v > are unique.
3
Assume
/“1> 3 (“2\ 3 <“3>
v 9 \v,/ v

(5-8)
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and
u u u!
[ A 2» < 3
;= q - T (5"9)
\vl/ \Vz, Vg
where
U, > u.. >0 u.. > ,ull =0
T e (T
< Wyl < AV, < \Wy/ < \vg .
Subtracting (5~9) from (5-8) gives
u u u!
2 3 /73
(@ -a" ( > = < > - ‘>- (5-11)
Yy Vg \v3
Now from (5-10),
Uy > U,z 0 (5-12)
and
0 2 -ué > "U, . (5=13)

Adding (5-12) and (5-13) gives

- i -
Uy > Uy Uy > -u,
which, together with the following equation from (5-11) ,

- = - !
(@ - q") uy =uy=u,

implies
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This, together with (5-11) implies

(- ().

O
Uy u,
Given two ordered pairs of integers <v ) and (v ) such that
1 2
ul > <u2 > 0
0 < <v1> < v2> successive application of Theorem 5-2 yields
a sequence of ordered pairs
(“1) > (“2) > (“3) > (“k-z > (u'k-l > <“k> =0
0 < v/ < \Wy/ < \vy/ < < \Wplp/ <\ 4/ <\
(5-14)

The sequence (5-14) terminates when v = 0, which occurs for some
finite k since Ugs Ugs sees Uy is a monotonically decreasing sequence
and uy is a positive integer.
There is some symmetry in the statement of Theorem 5-2 which
allows us to apply the theorem in the reverse direction. If we
) Y3
display the ordering relations among the components of (v ) and (v )

2 3
as follows,

(V3\ > <V2> - 0
0 < ugy’ < \u,

we find that we have two ordered pairs to which Theorem 5-2 may be

v
applied producing unique q and &5 such that
1
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() -e (- )

/v2\>(1
0<u )

Y1 U2
Example 5-3 Let ( > = ( > s ( ) = ( ). Successive application
vy 3 v, 8

of Theorem 5~2 gives the sequence
(3) (@) (@) () (@) (o)
3 8/ \21/ \34/ \47) \107/*

Applying Theorem 5-2 in the reverse direction, we may extend this

sequence to the following one:

(N () (5) G () () (@) Gen)

The sequence of first components in (5-14)

u1>u2>...>uk=

is one which would be produced by the Euclidean algorithm applied to
uy and U, The set of common divisors of uy and u, is equal to

the set of common divisors of u, and u for i =1, 2, ca., k=1,

i+1?

In particular, if uy and u, are relatively prime, then so are u, and

ui+1, for i = 1’ 2, ceey k=-1.
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The sequence of second components in (5=14)
vk>vk_1>°°'>v120

is one which would be produced by the Euclidean algorithm applied

to Vi and vk-l' Similar remarks about the set of common divisors

of v, and Vil for i =1, 2, ..., k=1 apply here.

Any three consecutive ordered pairs in the sequence (5-14)

are related by an equation,

for i =1, 2, .ee, k=2, These equations may be used to express any
ordered pair in the sequence (5-14) as an integer combination of

any two consecutive ordered pairs in the sequence.

Example 5-4 In the previous example, <¥f> may be expressed as an

integer combination of (;1) and <4g> as follows,

16\ _ 3 < 1
(3)"7(%> 3 4»'
Similarly, <§2> may be expressed as an integer combination of

(41> and (16> as follows,

<§2> = <€3> + 13 (%f)‘
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5.5 Generation of Atoms

In this section we show how to generate the set of atoms of
(M(Z)+, <). Before doing so, we establish some preliminary results
concerning M(A).

Recall that A is given by

22 )]

=a

12 11

where ng(all’ a12) = 1 and gcd(a21, a22) =1, For simplicity

in our notation, we let

where qyy = @555 Gy = "8y Qgy = "2yy and ay, = ay;. Thus

ng(Ctlla 0(.12) = 1 and ged (@21’ dzz) = 1.

Let al = (le> and az = (221>- The Euclidean algorithm may
12 22

r r
be used to compute an r1 = ( 11> and an r2 = ( 21> such that al-r1 =1
t12 T22

2
and ¢ -r2 = 1, They are not unique. Let 81 be an integer such that
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1 2
glsa-r mOdA, 0$g1<A
and let g9 be an integer such that
2 1
gy = Q °T mod A, O < By < A

where A = det A = det As O,

Integers 8y and g, are uniquely defined even though vectors
r1 and r2 are not. To see that g, is uniquely defined, let r2
and (r2)' be any two vector solutions x to the equation a2°x =1,
We may write az-x =1 as azo(x-rz) = 0. From Lemma 5-1,

2

(rz)' =r + knxz for some integer k. It follows that

alo(rz)' = alorz mod A. Thus g; 1s uniquely defined by (5-15).

A similar argument reveals that 89y is uniquely defined by (5-16).

Lemma 5-4

1 mod A

g1 &

Proof

2 2
gl gz = (al'l' ) ((1 'rl) mod A

[@'rh 6™ - @) @herr®) ] mod o

[ 1 =) (rlcTrz)] mod A

1 mod A

(5-15)

(5-16)




115

2
Now, let (rl)' and (r")' be any two vector solutions to the

2
equations al.x =1 and q °x = 1 respectively. Let

. leal
where
2
a '(rl)'-gz
k, = ———————
1 A
and let
r2 = (rz)' + szaz
where
1 2
81‘"a '(r )'
k2 = A .

Then al-rl =1, az-rz =1, al-rz =8 and az-rl = 8,- We define

Aoz To1 11 Ao
¢, = C, = .
oy T22 T12 %11
We observe that det C1 = 1 and det C2 = 1., Let G1 = ch and
G, = Kcz. Then
A g 1 0
G1 = and G2 = .

(5-17)
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Lemma 5=-5

M(A) = M(Gl) = M(Gz)

Proof

;Xx for

We prove that M(E) = M(Gl). Let z ¢ M(Z). Then =z

some integer vector x. It follows that z = Z(Cl Cl-l)x = Kcl(cl-lx),

1= 1, and C1 x is an

integer vector. Thus z ¢ M(KCl) = M(Gl) and we have shown that

-1 . . .
where C1 is an integer matrix because det C

M(A) < M(G)).

Now let z ¢ M(Gl). Then z = Glx = (ZCl)x = A(Clx) for some
integer vector x. Since Clx is an integer vector, z ¢ M(Z).
Thus M(Gl) c M(K), and we have shown that M(A) = M(Gl).

A similar argument gives M(A) = M(Gz)-

Lemma 5=-6

ged (A, gl) =1 and gecd (A, g2) = 1.

Proof

We prove that gcd (A, gl) = 1. From (5-17) we see that

(;’) c M(GZ)' By Lemma 5-5, M(GZ) = M(Gl)’ so that (1

) g2> € M(Gl).

Thus (;’) = Glx for some integer vector x. This says that
2
1=X1A+X2g1
from which we conclude that gecd (A, gl)[ 1. It follows that

ged (A, gl) = 1.
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A similar proof shows that gcd (A, gz) =1,
O
We are now ready to generate the set of atoms of the partially
ordered set (M(A)+, <). Suppose we apply our two-dimensional

division theorem successively to the columns of G That is,

1.

suppose we let

u A u g
-k -G

(v ) 0) v, 1>

and apply Theorem 5-2 successively to obtain the finite sequence

()T T 0 T () 2 (8

V-2 V-1 K’

where k » 2. We shall show that the set of integer vectors

appearing in this sequence is precisely the set of atoms of
-+

(M(A) ’ S)-

For convenience we let W be the 2 y k matrix,

U Uy Upaz  Ykat “k]
k=2 k-1 VK

. u,
whose columns w~ = <Vl>, i=1,2, ..., k, are the integer vectors
i
appearing in the sequence (5~18). Thus

u
w=lg | 3 Yk-2  Yk-1 “k] .
-t 1v3 k-2 k-1 Yk

(5-18)
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We first argue that every column w:'L of W is a member of
M(Z)+. As we noted in the previous section, the equations
used to derive the columns of W allow us to express every
column wi as an integer combination of the columms of Gl.
Thus wi € M(Gl). From Lemma 5=5, W € M(A). Furthermore,

since u, > 0 and v, 2 0, W € M(Z)+.

We next show that

1 0

A] )

We begin by showing that w.q = 1. From Lemma 5-6, ged (ul, u2) =1,

k-1 %k
r - vk] - [ g

V-1 2

Furthermore, as previously noted, ged (ui, ui+1) = ged (ul, u2),
for i =1, 2, +u., k=1, Thus gcd (uk-l’ uk) = 1. Since w = 0
and w1 > 0, it follows that Y. = 1,

We now show that v = A by expressing wk as an integer

combination of the columns of G,. The equations used to derive

1
W are as follows:
1 2
W= qqw - W
2 3 4
w = qoW - W
. (5-19)
k=3 - Wk-Z _ k-1
w 9y -3 w
k=2 k~1 k
W —

= Qv -w .

From the last of these equations we have




Since o = 0 and g T 1, we see that Gpmn = Yoo We then

write (5-20) as

ko k-1 _ k=2
[ Yk-1" -

Then using (5-21) and equations (5-19) we have

Ko ( k=2 | k=3y k=2
Yem2 Vpag¥ v Y1

= ( u. - u )Wk-z - wk-3
dg-3"%-2 k=1 Y-2
_ k=2 k=3
= Uk_ 3W Uk_z
ko_ Al i

voT Yy Ui+l
N 3 2
= L12W U3W
= U1 u2W s

From the last of these equations we see that

v = u,V, = u,v

12 2°1

Ael = g1°0 .

Thus Vi Ae

(5-20)

(5-21)

(5-22)
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Finally we argue that v

k=1 = Bo° Since wk-1 € M(Gl) we may

A+ g%,

X
write Wk ! = Glx for some integer vector x. Thus wk-l = < 1 %
2
from which we conclude that
W1 = 81V mod A.
Multiplying both sides by g, we obtain
8ol 1 = 8189Vpn1 mod A.
Using Lemma 5-=4 and the fact that g = 1, we have
Vi-1 = & mod A
and this, together with 0 < Va1 < A, implies Vi1 = 8y
Thus we may write matrix W as
1 Y3 Ug=2 |
w: [Gl : se e ; GZJ.
V3 V=2

W may also be generated from right to left by starting with the

columns of G2 and successively applying Theorem 5-2 in the

reverse direction.

Example 5=5 Let

103 ~46

~27 61

).
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Then A = det A = (103)(61) - (=27)(~46) = 5041, The Euclidean

algorithm gives

21(103) + 47(=-46) = 1

9(=27) + 4(61) =1

Then
g, = 9(103) + 4(=46) mod 5041
= 743 mod 5041
and
8, = 21(=27) + 47(61) mod 5041
= 2300 mod 5041.
Thus
5040 743 1 0
G = G =
1 0 1 2 2300 5041

Matrix W is generated using either G1 or G2 and Theorem 5-2,

5041 743 160 57 11 9 7 5 3

7 34 95 536 977 1418 1859 2300 5041

We require two additional lemmas before we prove that the set

of columns of W is the set of atoms of (M(Z)+, <)
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Lemma 5-7
Let Gi’ i=1, 2, «oey k=1, be the 2 x 2 submatrix of W
given by,
1 Ui+l
G, = .
* v v
i i+1

Proof

The equations used to generate the columns of W allow us to
express the columns of Gi as integer combinations of the columns
of Gl' Thus M(Gi) c M(Gl). The same equations allow us to

express the columns of G, as integer combinations of the columns

1
of Gi' Thus M(Gl) c M(Gi)’ and we have shown that M(Gi) = M(Gl)'

By Lemma 5-5, M(G;) = M(A).

Furthermore, from equation (5-22) we see that

Ve T %V T Yi41Yi

and since Vi T A, we have det Gi = A,

We define Mf(w) to be the set of all non-negative integer

combinations of columns of W,

M+(W) ={z ¢ J2 | z = wx, x € Jk, x > 0}.
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Lemma 5-8

M = u@*

Proof

Since each column of W is a member of M(K)+, it follows that
every non-negative integer combination of columns of W is a member
of MA). Thus M) < M@,

-+ 4+ -+

We now argue that M(A) M (W). Let z ¢ M(A) . If z =0 then
clearly z € M+(W). Therefore we can assume that z # 0, that is
z > 0 or z, > 0 or both.

Consider the quantities

for i =1, 2, ..., ke For i = 1 we have

z; Uy z1 A
= ' =-22A50
0
z, vy z,
and for i = k we have
z, W z1 0
= =zlA20.

(5-23)

(5-24)
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We claim that

1 i 1 Y+
< (5=25)
v,
2 i 2 i+l

for 1 =1, 2, ..., k=1. To prove this we observe that

0.
0 <cv, < vi+1 and ui S u, =

i i+l

(5-25) follows from this and our assumption that z, > 0 or Zy > 0 or both.

1
Now, from (5-23), (5=24) and (5-25) we conclude that either:

(1) for some i, 1l < i <« k

1 i 1 i+l
<0 and ~ 0

i+l
or

(ii) for some i, 1l < i <k

- -+
We consider case (i). By Lemma 5-7, M(Gi) = M(A). Since z ¢ M(A)
it follows that z ¢ M(Gi) and z = Gix for some integer vector x. We show

that X1 > 0 and x, > 0. From Lemma 5-7, det G, = A. Applying Cramer's
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rule, we solve z = Gix for x:

21 Y41
_1
x, = A >0
2y Vinl
ui Zl Zl ui
-1 __ 1
2 7 A T >0
Vi 22 Zz Vi

Thus z is a non-negative integer combination of columns of Gi'
Ui
In case (ii), similar reasoning gives z = Xy (v > where Xy
i
is a positive integer.
+ =+ L+
Thus we have shown that z € M (W). It follows that M(A) < M (W).
+ -+
We conclude that M (W) = M(A) .

O

We are now ready to prove the main result of this section.

Theorem 5-=3

-+
The set of columns of W is the set of atoms of (M(A) , <).

Proof
i -+
We first show that every column w of W is an atom of (M(A) y <)o

. . -t
We know that w- € M(A)+ and w- # 0. Assume that there is a z € M(A)
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distinct from O and w such that z <w. By Lemma 5-8, z may be

expressed as
k
z = EE c i
g v
i=1

where ey is a non=-negative integer, for i =1, 2, ..., k. If ¢y = 0,

for i =1, 2, ..., ky then z = 0 contrary to assumption. Thus

cj > 0 for gsome j, 1 <« j < k, and it follows that w < z. Since
j i, wj i . s .
w <z and z < w it follows that < W , which implies that

S

i
w , because

ul ~> u2 >...>u'k
V] < VY, <t vk.

wl. We conclude that z = w1 which

Now we have wj <z < wi and wj
again contradicts our assumption. Therefore no such z exists and
wi is an atom of (M(K)+, <)

We next show that every atom of (M(KY+, <) is a column of W.

Let a be an atom of (M(Z)+, <). Then a # 0 and

z<a = 2=0 orz=a (5-27)
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where s is a non-negative integer, for i =1, 2, ..., k. Since
a # 0, there is some cj >0, 1< j <k, in this expression.
It follows that w’ < a. According to (5-27), wl =0 or w = a.

We know that w- # 0. Thus a = WJ.

Matrix W has at most A + 1 columns., This follows from the

strict ordering,
A = ul > uz > v > uk = O
O =v, €« V, « e« < Vk = A

1 2

Theorem 5-3 tells us that (M(Z)+, <) has at most A + 1 atoms.

5.6 Generation of Normal Vectors and Vertices

We have seen that a normgl vector vy of I(P)* at a vertex y
is an atom of the partially ordered set (M(A)+, <), where A is
the cofactor matrix of A and AXx < b defines P. We have developed
a method for generating the matrix W whose columns are the atoms
of (M(A)+, <). 1In this section we complete our development of an

integralization method for (2,2)=cormer polyhedra by showing how
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all normal vectors and vertices of I(P)*, hence of I(P), are generated.
Our final product will be a system of inequalities A'x < b' which
defines P' = H(I(P)). ‘
We begin by considering the following question. Given a
boundary point yi of I(P)*, how do we tell which columns of W
are normal vectors of I(P)* at yi?
Let yi be a boundary point of I(P)*. Since yi € I(P)* we have
yi £ b, Let zi = b-yi. Then zi > 0. zi measures the "slack"
of yi.
Recall that a normal vector y at yi satisfies the following

conditions:
. i *
1) vye(y-y) <O for all v € I(P)
i %*
(i) vy + Ty e I(®) .

Using the slack vector zl, we label two columns of W as shown

below:
A= uy =0
0=v =4

vp is the largest element in the lower row of W which is less than or

equal to zi. uq is the largest element in the upper row of W which is

less than or equal to z;.
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Theorem 5-4

p q

i *
If yl is a boundary point of I(P) then the columns w* and w

i i+l . * 0
of W are normal vectors, y and vy respectively, of I(P) at y .

Proof

*
According to Theorems 5~1 and 5-3, normal vectors of I(P) at yl

are columns of W.
, . i+l i
We first observe that there exists a normal vector y at y
i i+l * .
such that y= = Ty € I(P) . We shall consider all columns w of W
i * . i+1
such that y~ - Tw ¢ I(P) to be candidates for y and show that
: *
all but w@ fail to satisfy the condition w.(y-yl) < 0 for all y € I(P) .

It will follow by elimination that yl+1 = wl,

For all columns w of W, y- + Tw ¢ M(A). This follows from the

following argument. Since w € M(E)+, w = Ax for some integer vector x.

Then Tw = TAx = ATx, so that Tw ¢ M(A). Since y" ¢ M(A), y + Tw € M(A).

i * i
Thus y° + Tw ¢ I(P) iff y° + Tw < b.

J

Now, for all columns w?, where j < q, v - £ b because

y; + uj > b2. For all columns WJ, where q < j < k, yl - T) < b

i i i j *
because vy - vj < b, and Yy + uj < b,. Thus y - Tw~ ¢ I(P)

1 2

for j =4q, q+1, ..., k. However, for all column WJ, j =q+tl, q+2, ..., k,

Wj . ((yi - qu) -yi) = wj.(-qu) = ~ 0




130

because uq > uj > 0 and vj ~> vq 2 0. Thus all of these columns

2 *
fail to satisfy the condition wJ-(y—yi) < 0 for all y ¢ I(P) .

Therefore, by elimination, y1+1 = wi.

i i
We next observe that there exists a normal vector y at y

i-1 * .
€ I(P) . A proof similar to the one above

establishes that Yl-l =w. O

In Theorem 5-4, the columns w and wl need not be distinct.

such that y1 + Ty

. * .
If they are distinct, then y1 is a vertex of I(P) . Otherwise y1
*
is merely a boundary point of I(P) .
i *
If yl is a vertex of I(P) then Theorem 5-4 gives us two

inequalities

ci-l.(x-xi) < 0
(5-28)

ci+1- (x~x") < 0

in the system A'x < b' defining H(I(P)). In (5-28),c;-i"il = (Z)’1 Yril

and x- = A-l yl.

i *
We now consider the following question: given a vertex yl of I(P) ,
how do we generate neighboring vertices, if any, of yl?
. % R
Let y1 be a vertex of I(P) . We assume that z- = b-yi has been

used to label two columns of W as before. We show how to generate
+2

i
slack vectors z

i-2 i+2 N
y and y respectively.

= b'Yl-Z and z'* = b-yi+2 of neighboring vertices
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We refer to the previous labeling of W, If vp > 0 (that is,

p > 1) then let
. . z
z" 2 . zh - [il_J ™, (5-29)

Otherwise, disregard 21-2' If Uy > 0 (that is, q <« k) then let

u

. . z,1
R K [LJ Twd, (5-30)
q

and z1+2, we label two

Otherwise, disregard z1+2. Using z"

additional columns of W as shown below:

]
o

|
>

v, is the largest element in the lower row of W which is less than

i~2

or equal to zi . US is the largest element in the upper row of W

which is less than or equal to z;+2.

Lemma 5-9

. . "
yl 2 and y1+2 are vertices of I(P) .
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Proof

i+2 | * . q
We prove that y is a vertex of I(P) by showing that w

S .. * i+2
and w are two distinct normal vectors of I(P) at y . We have

‘{42 . z, 1
y1+ _ 4t - L 2 J ol
uq

‘40 . *
Clearly yl+ < b, so that y1+2 c I(P) . Since wlew? = 0, it follows

. . %
that wq-(y-yl+2) = Wq-(y-yl) < 0 for all y ¢ I(P) . Also, since

z
~N). * *
[—2—J =21, Y1+2 + Twl e I(P) . Thus wl is a normal vector of

u
q
% ? *
I(P) at yl+2. By Theorem 5-4, w° is a normal vector of I(P) at
i+2 i+2 i+2
yl . Since 221+ < uq we have W # wl. Therefore yl+ is a

*
vertex of I(P) .
. i-2 *

A similar argument reveals that y is a vertex of I(P) .

O

What we have described may be viewed as a second level
two~dimensional division process in which the slack vectors
of known vertices are the dividends, atoms of (M(Z)+, <) are
divisors, and slack vectors of new vertices are the remainders.

In order to initiate the process we must have an initial
vertex. This is easily obtained. 1In Section 5.1 we saw that
I(ﬂl) N I(P) and I(ﬁz) N I(P) ave sets of boundary points of
are boundary lines of half-planes defining P.

I(P), where 7, and r

1 2
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Furthermore we saw that I(nl) N I(P) is the set of integer points
expressible as xi-leal, where xl is an integer point in I(wl)

computed using the Euclidean algorithm and k, is an integer such

1
that,

b -az.xl
kl < [_-_ZA__J .

We obtained a similar characterization of I(nz) n 1(P).

1. 1 by-a .x 1
If we take x -lea , where k1 = ————Z———J , as being x°,

then we claim that x1 is a vertex of I(P). Consider y1 = Axl.

If we compute z1 = b-y1 we find that z} = 0 and z; < A

p q

It follows from Theorem 5-4 that w and w' are normal vectors
%
of I(P) at yl, where p = 1 and q > 1. Thus y1 is a vertex
%*
of I(P) .
Similarly, we can find an initial vertex drawn from
I(my) n I(P).
. 1 e s 1 *
Using the slack vector z~ of the initial vertex y~ of I(P) ,
we label two columns of the matrix W as we did for Theorem 5-4.
The circled slack vector z1 then points to the normal vectors
0 2 *
vy and vy of I(P) at yl. The division indicated by equation
(5-30) is then performed on the labeled matrix W to obtain slack
vector 23, which in turn is used to label a third column of W.
The circled slack vector z3 then points to the normal vectors

Y and y4 == and so on. The diagram below illustrates the labeled

matrix W.
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Example 5=6 Suppose W is given by

73 56 39 22 5 3 1 O
0o 1 2 3 4 17 30 73

0

>. Then the labeled matrix W is shown below.
70

-
and suppose z= =

Sample divisions are:

(1) = (o) + 56] (56)
@ =) +[5] (%)

Notice that Equation (5-29) enables wus to check our division by

working back from right to left.

O
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. 2n-1 |
The process terminates when a vertex y is found such that

2n~-1

z, = 0, which must occur after at most k-1 divisions have been

performed, where k is the number of columns of W. If the division

process is executed from right to left, beginning with a slack

-2n+1
i

-1 .
vector z ~, then the process terminates when a vertex y s

-2n+1 -

1 .

found such that z
In the final labeled matrix W, each circled slack vector

*
1 of 1(P)

i , i-1 i+
z~ points to the two normal vectors y and vy
i i, .
at vertex y . FEach normal vector y 1is pointed to by the one
*
or two circled slack vectors representing vertices of I(P)

. i,
at which vy is a normal vector.

The final result of all this is an alternating sequence

*
of normal vectors and vertices of I(P) , which may be transformed

into the alternating sequence

of normal vectors and vertices of I(P), where oki1=(z)‘lvii1 and

x = A-lyl, for i =1, 3, ..., 2n~1. We then write the following

system of inequalities,




136

co-(x-xl) <0
ozo(x-xl) <0

04-(x-x3) <0

o_2n'(x_'x2n-l) < 0.
. 1 2n~-1 .
Since zy = 0 and z, = 0, it follows from Theorem 5-4 that
0 2 0 -
Y = <é> and vy no_ <A>. Thus c;o = (A) 1 YO = al and

0.1 1 0.1 1

o .x = Yy o=y = bl’ so that the first inequality
in (5-31) is al-x < bl- Similarly ozn = ('A)-1 Y2n = a2 and
GZn.XZn-l = % Y2n.y2n-1 = ygn-l = b2’ so that the last

inequality in (5-31) is a2~x < b2. These two inequalities
are the two which define P.

If we let Q denote the polyhedron defined by the inequalties
(5-31), then it is easy to see that Q = H(I(P)). Since each of
the half-planes whose intersection is Q contains I(P), it follows
that I(P) ¢ I(Q). Since the two half-planes whose intersection is
P are included, it follows that I(Q) < I(P). Thus I(Q) = I(P).
Furthermore, by construction, every vertex of Q is an integer point.
Thus Q is integral, Frem Lemma 1-1, Q = H(I(P)).

The following lemma gives an upper bound on the number of

vertices of H(I(P)).

(5-31)
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Lemma 5-10

H(I(P)) has at most A vertices.

Proof
We have previously argued that matrix W has at most A + 1
colums, Therefore, in labeling the columns of W, at most A

vertices are generated.

We conclude this chapter with two examples illustrating

the integralization of (2,2)=corner polyhedra.

Example 5-7 Let P be defined by

5 3] [ﬁﬂ <[]

Then
A= 5 3
31 18
&l !_o 1
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An initial vertex xo of I(P) is given by,

where
- -2
2'(35)'72<1)
Kk = L] = -31
31
Thus x° = ) d 29 = >w1 labeled as follows
us X = 10 and z 27 S lapele as o wS 2

The resulting system of inequalities defining H(I(P)) is:

() - (-(20)) = 0

D e())=o ;

72
41
11
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Example 5=8 Let P be defined by

488 216 279

X1
<

46 103 =317

*2
Using the Euclidean algorithm we find that ged (488, 216) = 8 and
ged (46, 103) = 1. Since 87279 the first inequality does not

define an integral half-plane. The second one does. We replace

the first by 61 X + 27 Xy < L%%gj and obtain a new polyhedron

P, defined by

1
61 27 Xy 34
<
46 103 X, =317
Then
_ 103 =46
A= .
=27 61

Matrix W has been computed in Example 5-5. An initial vertex xo

of I(Pl) is given by,

0 _ 4N 27
x =34 (-9) k <-61>

where
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Thus xo = <f§;) and z0 = (4;gl>' W is labeled as follows:

5041 /743 /160 57 11 9

7 34 95 36 977 1418 1859

The resulting system of inequalities defining H(I(Pl) is:

G7) - (=(2) = 0

() ) = A I
B (el so |2 o
() - =) =0 S I
(48) - () < 0 - -
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CHAPTER 6

INTEGRALIZATION OF (2,2)=-POLYHEDRA

Let P be a (2,2)-polyhedron defined by Ax < b, where A is an
integer m x 2 matrix of rank 2, and b is an integer m-vector.
In this chapter we apply the integralization method of Chapter 5
to the problem of integralizing P.

We begin by reducing P to an intersection of integral halfe-planes

. X b,
by replacing each inequality alex < bi in Ax ¢ b by % atex < ELJ
i i

where di = gcd (ail’ aiz). If we let TS denote the half-plane

defined by a +x < b, and 7 denote the half-plane defined by

. b,
é%'al-x < LE%J , then I(Ti) = I(Ti) for i =1, 2, ..., m. Since
i i
m
I(Ti), P may be replaced by M Ti without
1 i=1

e
o8

I(P) = I(Ti) =

1 i

i
changing I(P).
In the following we assume that this first integralization step
has already been performed on P. That is, we assume that each row

[a.1 aiZ] of A has the property gecd (ail’ a,)) =1.

i i2
Our plan is to integralize P by generating all vertices and

normal vectors of I(P). Boundary points, vertices and normal vectors
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of I(P) are defined just as they were for (2,2)=-corner polyhedra
in the previous chapter. We accomplish this by generating
boundary points and normal vectors for a sequence of (2,2)-corner
polyhedra which we shall call supporting corners of I(P).

A (2,2)-corner polyhedron Q is a supporting corner of I(P)

iff I(P) ¢ I(Q) and I(Q) and I(P) have one or more vertices
in common,

In the following we show how an initial supporting cormer
of I(P) is found. We then show how supporting corners of I(P)
are used to generate vertices, normal vectors and other supporting
corners of I(P). We conclude by showing that the process terminates
after a finite number of steps, resulting in a system of inequalities

A'x < b' defining P'.

6.1 Finding an Initigl Supporting Corner

Well~known methods associated with linear programming (see, for
example, Dantzig [5]) may be used to find a vertex v of P. Associated
with vertex v is a two-inequality subsystem Cx < d of the system
AX < b defining P, where v = C-ld. Cx < d defines a (2,2)=-corner

polyhedron Q such that I(P) c I(Q).
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Applying the methods of Chapter 5 to Q, we obtain the sequence

0] 2 4 2n
@) ol (e} .o [0}

1 3 2n=1
. X

of normal vectors and vertices of I(Q). Suppose xt € I(P) for some i,
. . i+l i

where 1 =1, 3, ..., 2n-1. Since o= .{x-x") < 0 for all x € 1(Q),

. i+1 i

it follows from the fact that I(P) < I(Q) that ¢ — .(x=x") < 0 for

all x € I(P). Thus x" is a common vertex of both I(Q) and I(P), and Q

is a supporting corner of I(P).
Now suppose x" ¢ I(P) for i =1, 3, «.v, 2n=-1. In this case,

P either does or does not intersect the boundary of Q' = H(I(Q)).
Suppose P does not intersect the boundary of Q'. Then since

the vertex v is in P and P is convex, it follows that P lies

wholly within Q-Q' and thus I(P) = and P' =, where o denotes

the empty set.

Suppose on the other hand that P does intersect the boundary

of Q'. Let el, for i =1, 3, ..., 2n=3, denote the edge

) ) . .
x e R2 | x = xF + TPy, 0 en 2 1)

of Q'. We argue that the intersection of P with the boundary
of Q' is containing in exactly one edge el of Q', as illustrated

in Fig. 6-1.



Fig. 6~-1

First, we see that neither the half-line edge

{x € r? | x ! +7»(x1-v), A= 0}

nor the half-line edge

2n=-1 2n
X

(x €R | x A o), h 2 0)

of Q' contains any points in P. Otherwise, since v € P, the convexity

of P implies that x1 € I(P) or x2n-1

€ I(P), contrary to assumption.
Next we see that if two edges ey and ej of Q', where i « j , both
contain points in P, then since v € P, the convexity of P implies that
xi+2, xi+4, cees xj € I(P), again contrary to assumption. Thus the
intersection of P with the boundary of Q' is contained in exactly

i 1
one edge e’ of Q'. We form a new (2,2)~polyhedron P by adding

the inequality cl+1.(x-xl) < 0 to the system Ax < b and deleting
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the subsystem Cx g d. Since P--P1 lies wholly within Q~Q' and thus
contains no integer points, we see that I(Pl) = I(P). Thus we
have reduced the number of inequalities defining P by one,
without changing I(P).

Computationally, these observations are implemented as follows.
For each vertex xi of I(Q), i =1, 3, ..., 2n=1, we compute the
slack vector zi = b-Axi. If zi 2> 0 for some i, then xi € I(P) and,
as we have seen, xi is a common vertex of both I(Q) and I(P). Thus
Q is a supporting corner of I(P).

Otherwise zi # 0 and xi ¢ I(P) for i =1, 3, «u., 2n-1,
In this case, for each i, i =1, 3, ..., 2n=3, we form the following

system of m + 2 inequalities in A, given below in vector form as,

zt + K(zl+2-zl) >0

0 <A< 1.

(6-1) has a solution N iff P intersects the boundary of Q' at edge
ei. As we have seen, two cases are possible. In the first, (6-1)
has no solution A, for i =1, 3, ..., 2n-3. In this case I(P) = @.
In the second case, (6-1) has a solution A for exactly one i among
1, 3, ..., 2n=3. We then form a new (2,2)=-polyhedron P1 by adding
the inequality ci+1-(x-xi) < 0 to Ax <« b and deleting the subsystem
Cx < d.
If we have not found a supporting corner of I(P) or learned

that I(P) = 9P, we may apply the entire procedure described above

(6-1)
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to Pl. In general, during the kth application of this procedure
we either: (a) discover a supporting corner of I(P), or (b) find
that I(P) =, or (c) obtain a (2,2)-polyhedron Pk defined by
m-k inequalities such that I(Pk) = I(P).

We terminate this procedure when either (a) or (b) results
from a given pass. If neither (a) nor (b) have resulted from
the first m-2 passes, then we are left with a (2,2)-corner
polyhedron ]?m—2 such that I(Pm—z) = I(P). By definition, Pm“2
is a supporting corner of I(P).

We assume now and for the remainder of this chagpter that
T(P) # . Thus a supporting corner of I(P) is found on the kth
pass, where 1 < k ¢ m=2. In the following, for convenience, we

refer to the resulting (2,2)=-polyhedron Pk_1 as P and to its

defining system of inequalities as Ax <« b.

6.2 Generation of Normal Vectors and Vertices

Let Qk be a supporting corner of I(P) and let xi be a common
vertex of both I(Qk) and I(P). We refer to the pair (Qk, xi) as a
state of the integralization process. Qk is defined by two
inequalities Ckx < dk. We assume they are ordered such that

det Ck > 0. We shall refer to the inequality toward whose boundary
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line we are moving as the objective inequality. The objective

. . . . k .
inequality associated with Q 1is drawn from the system Ax < b

defining P. We shall denote the objective inequality associated
. k jk th
with Q by a .x < b, , the j

inequality in Ax < b.
Jy k

We proceed from state to state by means of a basic iterative

step. A state which results from one application of this iterative

K .
step to (Q , Xl), where the second (first) inequality of Ckx < dk

. . . . . . i

is the objective inequality, is A + (=) successor state of (Qk, X ).
K .

The + successor of (Q, xl) takes one of the three forms illustrated

in the diagram below.

@*, xM
1 ‘f/:/ l i\\\\\\\\\\\x
(Q}\J XliL\) (ij—_l, Xli?_) (Qkil’ Xl)

k i
The + successor of (Q , x ) is characterized by a new vertex,

a new supporting corner, or both.

Example 6-1 Fig. 6=2(a) and (b) illustratec a succession of states:

. ‘1 . .
(Qk, Xl) . (Qk, X1+ Y 4 (Qk+1, X1+2) . (Qk+l’ xl+4). -

0 0
A state (Q , x ) used to start the process is an initial state,

0, . . 0
Q 1is defined by two inequalities C'x < d0 both drawn from Ax « b.
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Thus either inequality may be designated as the objective inequality
j0
a X < bj . We saw how to find an initial state in the previous
0

section,

oBIECTWE

OBJIECTIVE /
INEBQUALITY

INEQUALLITY

(a) (b)

Fig' 6-2

A state which has no + successor or no - successor is a terminal

state.

We now describe the basic iterative step for determining the

.r

k i . .
+ successor of (Q, x7), if one exists.

* For + successor, all instances of +(+) should be read as +(-). The

opposite interpretation holds for - successor.
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(1) Using the (2,2)-corner polyhedron integralization method

+1

of Chapter 5, we compute the normal vector o of I(Qk) at x.

(2) We let sxt = lTolil. We compute

Syl = A 8%

and compare Syl with the slack vector zl, where
z~ = b=Ax" = b-yl.

(3) If all components of Syl are non~positive then x* +n 6x1 € I(P)
. i+l . i
for all integers n » 0. o — is a normal vector of I(P) at x~ . We
adjoin the inequality clil.(x-xl) < 0 to an evolving system of inequalities
defining P'. The state (Qk, xl) is a terminal state and has no +

SuUCCessor.

(4) If one or more components of 6y1 are positive then we compute

the non-negative rational numbers

&
(2N
]

for all subscripts j such that syjl > 0, and among these we identify

a subscript jk+1 such that

Mg s M




150

for all j such that 5yjl > O.T We distinquish three possible cases

corresponding to the three possible forms of the + successor of

k i c s : i - j i
Q°, x): (a) Jepr = die (b) Ika1 # ], and KJkil 21, (e) I Ll

and 0 < Xjk+1 < 1.

(5a) In this case Kjk > 1. Since x= + 6x- € I(P),

(Jk:,:1 = 3)
i+1 . i . . . .
o — 1is a normal vector of I(P) at x~. We adjoin the inequality
iy .
ck'l. (x-xl) < 0 to an evolving system of inequalities defining P'.

We let

xli'2 =x + L}j J 5.
k
xliz is a vertex of both I(Qk) and I(P). We take (Qk, xli?) as the

+ successor of (Qk, xl).

(5b) # j, and Xjk+1 > 1) In this case, since

g * 3k
x* + le e I(P), glil is a normal vector of I(P) at x . We adjoin
the inequality clil-(x-xl) < 0 to an evolving system of inequalities

defining P'. We let

+2 i . i
X =x + L?Jki%J 8x

The following somewhat arbitrary rule insures the determinism of

this step: If there is more than one subscript j such that Aj

is smallest, then choose jk if it is included — otherwise choose
the smallest subscript. (Recall that jk identifies the objective

inequality associated with Qk.)
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In addition, we let Qk'il be the (2,2)~=corner polyhedron defined by

) . i
clil-(x-xl) < 0 and the new objective inequality a kil.x < bjk+1

i+2
drawn from Ax < b. We see that I(P) ¢ I(Qkil) and that xli
is a vertex of both I(Qkil) and I(P). Thus Qki1 is a supporting
corner of I(P). We take (Qkil, xliz) as the + successor of

o, =H).

(5¢) (jkil # Iy and 0 < xJkil < 1) 1In this case, since
i i _ ) K+l
x + 6x & IL(P), no new vertex is obtained. We let Q be

the (2,2)~corner polyhedron defined by ciil-(x-xl) < 0 and

]

the new objective inequality a k'i]'-x < bjk+1 drawvn from Ax < b.

We see that I(P) ¢ I(Qkil) and that x* is a vertex of both

I(Qkil) and I(P). We take (Qkila x") as the & successor of

k i
@Q, x7).
This completes our description of the iterative step.

The integralization process proceeds as follows. Starting
. . es 0 0 +
with an initial state (Q , x ), a sequence S of + successors

. . k 2n, ., .
is generated until a state (Q , x ) is obtained such that:

(a) n»2 and x2n = x0

or

2
() (Qk, p'q n) is a terminal state.

k 2n, . . . PR
If (Q, x ) is a terminal state then starting with the initial state
0 0 - .
(Q', x), a sequence S of = successors is generated until a terminal

- -2 "
state (Q k , X n ) is obtained.
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In case (a), the sequence st of states identifies n distinct
vertices xo, xz, coey xzn-2 of I(P) and returns to the initial
vertex xo. If n > 2 then the generated inequalities oi+1.(x-xi) <0,
for i = 0, 2, ..., 2n-2, define a bounded (2,2)~polyhedron P having
n vertices. P is contained in P so that 1(P) ¢ I1(P). Also, since
each of these inequalities is satisfied for all x € I(P), we have
I(P) ¢ 1(5). Furthermore, each vertex of P is an integer point,
so that P is integral. By Lemma 1-1, P = P'. If n = 2 then P'
is the line segment having xo and x2 as endpoints. Only two
inequalities are generated. They define the line containing P'.

In case (b), the sequence S+ of states identifies n+l distinct
vertices xo, x2, cos, x2n of I(P). Beyond vertex x2n we discover
an infinite number of boundary points of I(P). It follows that

P is unbounded. The sequence S~ of states then identifies n'+l

- -on'
distinct vertices xo, X 2, eeey X T of I(P). Beyond vertex

-~2n!

b4 we discover an infinite number of boundary points of I(P).
The generated inequalities, ci+1-(x-xi) <0 fori=0,2, ..., 2n
and ci-lo(x-xi) <0 fori=0, ~2, ..., =2n', define an unbounded
(2,2)=polyhedron P having n + n' + 1 vertices. An argument
similar to the one given for case (a) establishes that P = P',

In the following we show that the integralization process
terminates after a finite number of states have been generated.

Consider the sequence st of + successors of an initial state

(QO, xo). We divide ST into subsequences SO+’ Sl+’ SZ+’ .+, where
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Sk+’ for k =0, 1, 2, ..., consists of the consecutive block

of states having the same supporting corner Qk as first component.
Each supporting corner Qk is defined by a system of two inequalities

Ckx < dk. According to Lemma 5-10, (Qk)' has at most 4, = l det Ckl

+

vertices. It follows that the subsequence Sk contains at most

tes.
Ak states

+ _+

Now consider the subsequences S S1 5 Sg 5 eee Associated

+
0 ’
with each subsequence is a supporting corner Qk. Associated with
corner Qk is an objective inequality drawn from the system of m
inequalities Ax < b defining P. This inequality is identified by
the subscript jk' Consider the sequence jO’ jl’ j2, ess .« There

are two cases to consider:

(i) The sequence contains a j, such that j, = j, for some i < k.
1 k k

i
More simply, the sequence contains a repeat. We assume that jk is

the first repeat in the sequence., In this case, it can be shown

that xo is a vertex of I(Qk). It follows that, for some state

(Qk, x2n) in Sk+’ x2n = xo. If n = 0 then we have the degenerate

case in which I(P) consists of the single integer point xo. Otherwise,

n > 2 (the case n = 1 is not possible since x2 is necessarily distinct
from xo) and we have a state, as in case (a) above, at which S+ terminates.
Thus Sk+ is the final subsequence of S+. Since each member of the

sequence jo, jl’ jz, esey jk has one of m possible values and jk is the

first repeat, it follows that k < m,
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(ii) The sequence Jg» dqs dgs eee contains a j, which
identifies an objective inequality drawn from Ax < b whose boundary
line contains a half-line edge of P, In this case, some state

k 2n, ., + . . ,
Q, x ) in Sk is a terminal state, as in case (b) above.
+ . . . . .
Thus Sk is the final subsequence of S+. The sequence Jg> 3p5 eeen i
contains no repeats, otherwise case (i) would apply. It follows
that k < m.
i th + L+ gt
In either case, the number of subsequences S0 s S1 > eees 5
+

in S is at most m + 1. Thus S+ is a finite sequence of states.
A similar argument can be made for a sequence S” of - successors.
It follows that the integralization process terminates after a finite
number of states have been generated.

We conclude this chapter with an example illustrating the

integralization process for a (2,2)-polyhedron.

Example 6-2 Let P be defined by

-1 0 x1 0
<
0 -1 X, 0
~-18 8 21
-9 12 56
4 5 45
8 3 68
N _ |
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We reduce P to the following intersection of integral half=-planes,

- 0 " o]
1 Xl 0
<
0 -1 X, 0
-9 4 10
-3 4 18
4 5 45
8 3 68
" J R

We generate a sequence of + successors of (QO, x ). The steps
involved are displayed by giving a tabulation of the resulting

zi and 5yi vectors, followed by the sequence of supporting corners
and labeled W matrices. In the tabulation, we circle the component
of zi for which Kj is smallest. TInequalities defining P' are

enclosed in boxes as they are generated.
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0 0o 2 2 4 4 L6 6 8 8
z by =z 8y =z 8y 2 8y =z 8y 2z 8y
-1 0 ol -1 |s| o 8! 1 |8l 17| 1 |5] 5
0 -1 0 o ol -1 |1]-3 | 1| -2 ]3|-1 |51 -4
-9 4| |10] -9 |82 & |78| 21 |78 17 {61] 13 | 35| 61
-3 4| |18] -3 |42 4 |38| 15 38| 11 [27| 7 (:) 31
4 5| |45 4 |13) s 11 6 @ 1 o] o
8 3 8 3 1| 1 |1 -2 1|3} -5 |13|-28
|8 3 ®
8 8 10 10 12 12 12 .12 14 14 16
z 8y =z vz y oz 8y z° 8y z
51 2 | 3] 1] 2] & (:) 1 ol oo
50 -1 | 6] o | 6] 3 |6] 2 (:) 1] o
351 22 (13| o9 (:) 26 | 4] 1 | 2] -4 |10
@) 10 (3 3 |o| o |of -5 10| -4 (18
ol =3 | 3} -4 | 7/-31 | 7|-14 |35| -5 |45
13| =13 {26| -8 |3&|-41 |34|-14 |62| -3 |68
' o 1 1 0
Y fo 8X
-1 0 x 0 ol [0l o] [1
0 1 -x, <0
Q: < 2
0 -1 x, 0 ol | 1] [-1] | o
_ .
.1 0] -1 0
- _—
A= (A) =
0 -1 0 -1
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B P PO sd
T4 5] %, 45 57 [10] [17 [-2]
< Xy + 2x2 < 15
-3 4| |x, 18 stlsl 2] |1
L. - e - L. J -
10 11 11 10
X fod 8§X
4 3] 4 -3 3] 3] ol [-1
’(K)"l = '3'1T xz < 6
-5 4 5 4 6| |4] (1] [o]
12 13 13 12
8x
2] [o] [-3] [-&
6| [31] |4 -3
1213 13 12
3 4 %) 18 211l |-2| {-1
< -2x1 + X, < 2
-9 4 x, 10 6l |s| 1] {-2
4 9 -3 =9
i L@ =
i -3 L4
0
24




16
X

159

14 15 15
(o}
- 2 -
2 1 xl 0 0 1
<
-1 0 X, 0 2 1 0
16
-2 -1 0
1 0 0

. 5
The sequence of + successors terminates with (Q7, x

0
=X .

Fig. 6-3 illustrates P and H(I(P)).

Xz, h"'l liT | P
AN % L Haey
YD ]
N
N
0 N
D70,
% xZ %,

<

14
§X
0
-X
-1
16) since
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contained in the non-negative orthant). Extending this algebraic
characterization to include all totally integral polyhedra would
be an interesting problem for future study.

We have answered the second of the two questions above for
all (n,k)-polyhedra, where k <« 2. We began in Chapter 4 by showing
that an arbitrary (n,k)~polyhedron can be transformed into a
(k,k)=polyhedron by a transformation which preserves integralization.
This enables us to focus on the problem of integralizing (k,k)-polyhedra
without loss of generality. We then described the solution to the
simple case in which k = 1,

In Chapter 5 we developed our main integralization results for
the case k = 2, We considered the problem of integralizing a (2,2)=corner
polyhedron. Using a transformation which preserves the hull-forming
operation, we showed that vectors normal to the surface of the sought
after integral polyhedron are necessarily atoms of a certain partially
ordered set. We introduced a two-dimensional generalization of
the division theorem for integers, and showed how this is used
to generate the finite set of all such atoms. We then described
a second level division process involving these atoms which
generates all vertices and normal vectors of the integral polyhdron,
and thus its defining system of inequalities.

In Chapter 6 we considered the integralization problem for

(2,2)=polyhedra in general. We showed how a sequence of supporting
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(2,2)~corner polyhedra is generated and how the integralization
method of Chapter 5 is applied to each, thereby producing all
vertices and normal vectors of the sought after integral
polyhedron, and its defining system of inequalities.

The integralization process developed in Chapters 5 and 6 is
number theoretic in nature. It makes use of simple arithmetic
operations without recourse to exhaustive enumerative methods
or search procedures.

It had been our goal to generalize this integralization
method to make it apply to (k,k)~-polyhedra, where k is arbitrary.
However, we encountered some difficulty in attempting to generalize
to k = 3 which we now describe.

Let P be a (3,3)=corner polyhedron defined by Ax < b, where
A is an integer 3 y 3 matrix with non-zero determinant and b is
an integer 3-vector. We may integralize each of the three
(3,1)=polyhedra (half-spaces) forming P. This gives us a
(3,3)=corner polyhedron P1 defined by a system Alx < b1 of

three inequalities for which

U

1 1.1
ged [Ag] = ged [Ag bl
for all face l-subsets S. We may then integralize each of the three

(3,2)=polyhedra defined by two inequalities drawn from Alx < bl.

Thus gives us a (3,3)-polyhedron P2 defined by the system Azx < b2

of three or more inequalities for which
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2.,
ged [Ag] = ged [AS ;bé]

for all face 2-subsets S. Thus far we have used one and two-dimensional
integralization methods to obtain P2. The remaining integralization
step is three~dimensional in nature and this is where the difficulty
arises.

To illustrate the difficulty in its simplest form, suppose P

is a (3,3)-corner polyhedron defined by Ax < b, where

ged [AS] = ged [AS ‘b1

S

for all face l-subsets and 2-subsets S, Then P = Pl = P2. We regard

A as a non-singular linear transformation, and let I(P)* be the image
of I(P) under A. Normal vectors and vertices of I(P)* are defined
using obvious generalizations of definitions of their two-dimensional
counterparts, We let A be the cofactor matrix of A. As before

it can be shown that normal vectors of I(P)* are necessarily members
of‘M(K)+l However, it is unfortumnately no longer true that normal
vectors of I(P)* are necessarily atoms of the partially ordered set

(M(K)+, <)« The following example serves as a counter-example.

Example 7-1 Let P be defined by

F:4 i 1 X r-3
1
3 -5 4 X, < 3 .
3 -3 2 X 3
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It is easy to verify that
gcd [AS] = ged [AS ;bs]

for all l=-subsets and 2~subsets S.

2 6 6
A = -5 "11 -9 .
9 19 17

*
Fig. 7-1 below illustrates H(I(P) ), determined by actual

The cofactor matrix

A 1is given by

construction.
NoRrMAL
VECTOR
(0,3,3) {2,33) (4,22)
////////////’ ‘é%ar’ l =
' VERTICES
R
/e - : /
‘(3 (3 3
l- 13)
Y2, ////// /o (3,3,-3)

1

Fig. 7_1
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The vector y = (4,2,2) is a normal vector of I(P)* at vertices

3,1,3), (3,3,1) and (2,3,3). It is easily verified that

Y g'M(K)+: However it is also easily verified that (4,0,0) and

(0,2,2) are members of'M(Z)+l Thus the normal vector y is not

an atom of (M( Z)+; <).

O
Since normal vectors are not necessarily atoms, our

two-dimensional integralization method does not generalize

directly. 1In order to generalize the method it would first

be necessary to identify some finite subset of M(Z\)+ which

contains all possible normal vectors of I(P)*. Then a method

for generating this finite subset of'M(K)+.wou1d be required,

along with a process for using this finite subset to generate

all normal vectors and vertices of I(P)*. In the two=dimensional

case, it was the finite set of atoms of (M(K f+, <) that satisfied

our first prerequisite. In the three-dimensional case, the

appropriate finite subset of M( Z)+ may possibly be those members

of M( Z)+ which occupy the first two ranks of the partially ordered

set (M( Z)+, <). This is merely a conjecture which seems to be

a reasongble inductive inference to make from the two~dimensional

case, once the set of atoms of (M(K y+, <) are found to be insufficient.
Our two-dimensional integralization method gives us reason to

believe that there exist number-theoretic methods for integralizing
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(k,k)=polyhedra for arbitrary k. Our experience in seeking a
generalization leads us to believe that inventing these methods
is apt to be difficult. The problem remains a fascinating one
for us, and one whose solution we believe would be of great value

in the field of combinatorial optimization.
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