DESIGN STRATEGIES FOR FILE SYSTEMS

Stuart E. Madnick

October 1970

PROJECT MAC

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Cambridge Massachusetts 02139

ACKNOWLEDGEMENTS

The author acknowledges the many 1long and often heated
discussiocns with his coclleague, Mr. Allen Moulton, fron
which many of the basic ideas for this file system design
were molded.

Many colleagues dgenerously contributed their time,
energy, and criticism to help produce this rerpcrt. In
particular, thanks are due to Prof. John J. Donovan, Prof,
David Ness, and Prof. Robert M, Graham, as well as, Sterhen
Zilles, Ben Ashton, Hoo-min Toong, Michael Mark, Jcserh
Alsop, Derek Henderscn, Norm Kohn, and Claude Hans.

The author's association with MIT Project MAC as well
as the IBM Cambridge Scientific Center provided the
environment and influenced many of the ideas formed in this
report,

This report was composed and edited, on—-line in the
CP-67/CMS Time Sharing computer system, with the aid cf the

SCRIPT manuscript processing systen.

Work reported herein was supported in part by
Project MAC, an M.l.T. research project sponsored
by the Advanced Research Projects Agency, Depart-
ment of Defense, under Office of Naval Research

Contract Nonr-4102(01).

DESIGN STRATEGIES FOR FILE SYSTEMS=*

Abstract

This thesis describes a methodology for the analysis and
synthesis of modern general purpose file systems. The two
basic concepts developed are (1) establishment of a uniform
representation of a file's structure in the form of virtual
memory or segmentation and (2) determination of a hierarchy
of logical transofrmations within a file system. These con-
cepts are used together to form a strictly hierarchical or-
ganization (after Dijkstra) such that each transformation
can be described as a function of its lower neighboring
transformation. 1In a sense, the complex file system is
built up by the composition of simple functional transfor-
mations. To illustrate the sepcifics of the design process,
a file system is synthesized for an environment including a
multi-computer network, structured file directories, and re-
movable volumes.

*This report reproduces a thesis of the same title sub-
mitted to the Alfred P. Sloan School of Management and
the Department of Electrical Engineering, Massachusetts
Institute of Technology, in partial fulfillment of the
requirements for the degree of Master of Science, June

1969.

CONT ENTS

I. INTRODUCTION 1
Evolution of File Systems 1
Scope and Purpose 10

IT. PFOTIVATION BEHIND FILE SYSTEM DESIGN 15
Uniform Representation of File Structure 15
Hierarchy of Logical Transformatioans 27

J1I1. FPILE SYSTEM DESIGN MODEL 3
Basic Concepts Used in File System Design 31
Overview of File System Design Nodel 39
Access Methods 48
Logical File Systenm 53
Basic File Systenm 57
File Organization Strategy Nodules 59
Allocation Strategy Modules 64
Device Strategy Modules 66
Input/Output Control Systenm 67

IV. MULTI-COMPUTER RETWORK ENVIRONEERT 69
Background 69
Problems Arising 74
Design of File System 80
T.ogical Pile System Design 80
Basic File System Design 87
File Organization Strategy Module Design 91
Allocation Strategy Module Design 94
Design Strategy Module Design <7
Other Considerations 98

V. CONCLUDING COMMENTS 101

REFERE FCES 103

s @® ®
D n F W Ny -

[

NoOoNRNNoN

X O NN W -

ILLUSTRATIONS

Physical Computer Configuration

Early FPile Systenms

Access Methods File Systens

Uniform FPile Representation

Logical Computer Configuration

Logical Transformations in File Systen

Hierarchical Levels

"Real" Memcry and "Virtual" File Memory
Hierarchical File Systenm

Parameters and Data Bases Used by File Systen
Mapping Virtual Memory into Physical Becords
Fixed-Length Record Access Met hods
Variable-Length Record Access Methods
Hierarchical File Directory Example

Example of Multi-Computer File System Network
Fxample of File Directory Structure (to LFS)
Procedure to Perform Logical File System Search
Example of File Directory Structure (to BFS)
Example of File Organization Strategy

17
19
21
23
26
28

33
36
41
41
45
50
51
55

71
81
86
89
92

EVOLUTION OF FILE SYSTEMS 1

CHAPTER ONE

Introduction

Evolution of File Systems

The evolution of general purpose file systems parallels
very closely the evolution of operating systems. This is nct
surprising since the concept of file systems grew cut cf the
emtryonic input-ocutput control (IOC) functions of early
operating systems and now represents the most significant
component of most modern operating systeams.,

There has been very 1little attention formally directed
to the specific problerm of analyzing operating systems. In
1967, Saul Rosen collected together material fcr a bcok,
"Programming Systems and Languages"<Rosen 67>, which vas to
be a distinctive selection of previously published and
unpublished repcrts descritking the rost impcrtant
programming lanquages and discussing many of the &most
important operating system concepts. He was forced to
concludes

"The paper on Operating Systems was prepared for

presentation at the University of Michigar

Engineering Summer Conference, June 18-29, 1962,

It has had fairly wvide <circulation as Rand Report
P-2%84, The material covered has been of vital

2 I. INTRECDUCTION

ipportance in the development of the "classical"

operating system, yet it is difficult to find an

adequate treatment outside of very long and
usually dry system manuals. George Mealy was one

of the few working experts in the field who took

the time to write down some of the basic

principles of operating systenms and alsc cof

assembly systenms,®

Mr. Rosen's observations imply that very 1little
attention has been expended in the attempt to generalize the
functions of operating systems. File systems bave alsc been
severely neglected.

In the early years of computing (roughly 1952-1962),
progragsers slowly moved away from the practice of
approaching a bare machine with card decks and sharpened
pencils, fighting with the console for more or less extended
periocds of time, and leaving triusphantly with final results
or in defeat with a ream of machine dump<Bosin 69>,
Operating systems have evolved, not so much as a blessing,
but as a practical necessity. As computers became faster and
more ccmplex, it was no longer possible for an individual
prograsrer to be an expert in every phase of the programsing
and machine usage; he nov must rely on the operating staff
and system programmers to provide the necessities of life.

These operating systems were often ill-designed and
usually specialized around a single goal. One of the first
truly successful operating systems wvas FMS (FORTRAN Monitor

System) for the IBM 709,/7090,/7094 family. Its name implies

its specialization. As a result a large number of cperating

EVOLUTION OF FILE SYSTEMS 3

systeas appeared, each with its own operating procedure and
specialization. These systems were typically very clcsely
tied to a programming language (e.g. FORTRAN, COBOL,
Assesbler).

Input Output Control Systems (I10CS) emerged as a part
of the Operating System based on the simple observation that
all programs perform some amount of input and/or output.
Therefore, rather than requiring each prograsmer to write a
new set of input/output routines for each prograam, a CCBEON
and sufficiently flexible <collection of routines vere
supplied with the Operating System. This situaticn becanme
especially critical as computer I/0 capabilities vere
extended to include high-speed, buffered, asynchronous
channels which required complex program logic to efficiently
perform input-output.

Prom the crude beginnings of I0Cs, file systess
followed a logical, though often slow, evoclution. Once all
physical input/output functions were 1localized ia the IOCS,
many generalizations becare possible. Usually, there is no
important difference among the many tape drives available at
an ipstallation, sc that any arbitrary tape unit may be used
for input or output to a program. Purthermore, later runs at
the same or different installations need not use the same
unit as long as unique correspondences can be maintained. At
first it wvas considered that the best practice in handling

the choice of input—-output units by the object program was

L I. INTECDUCTION

to include unit assignments as an assembly parameter cr tc
read in unit assignments as data and initialize the program
appropriately. This practice vworked well when it was
followed, which was seldom., WNith the advent of the
near-uni versal use of IOCS, a more fcolproof and flexible
manner of operating was to establish the correspondences as
part of the 1I0CS. The object programs dealt strictly in
symbolic unit assignments.

Since the object programs no longer interacted directly
with thke I/0 units nor were even aware of unit assignments,
additional degrees of freedom became available to the
operating system, providing a more efficient and convenient
environment. Por example, the system could determine unit
assignments automatically and dynamically, based upon
complex criteria such as availability and performance {(e.g.
I/0 interference, buffering, etc.). The actual technique of
I/0 (unbuffered, single-buffered, double-buffered, etc.)
could be removed from programmer concern.

The proliferation of I/0 device types, such as
low-speed, medium-speed, high-speed and hyper-tapes, as well
as drums and disks of all shapes and sizes, resulted in the
expansion of I0CS to include capabilities that are novw
called data management or file system facilities. The basic
notion exploited is that just as the programmer had little
concern as to what tapes were to be used, he really does not

care what device is used nor what method of I/C is enmrlcyed

EVCLUTION OF FILE SYSTEMS 5

within broad logical constraints. For example, if a
prograsmer wishes logically to treat his I,0 data as 80
column cards, the file system could physically utilize
unit-record equipment, tapes, disks, drums, data cells, or a
host of other devices in various ®manners 1logically to
simulate the effect of input-output using 80 column cards.

This trend became irreversible with the advent of
multi-tasking operating systems, since the availability of
devices was continuously and dynamically changing. In such
an environment, it beconmes impractical and probably
impossible to designate specific I/0 units statically and
arbitrarily in the program.

The importance of these data management and file
systems cannot be overly emphasized. Just as the assumpticn
that rprograms perform input-output was a basic fact, it
appears that the number and flexibility of I/0 facilities
demanded by prograes are continuously increasing.

A major factor in the rapid growth of file systems is
the introduction of 1low cost, high capacity, high-speed,
direct access devices such as disks, drums, and data cells.
A description of direct access devices would epphasize the
fact tkat they have two degrees of freedom rather tham cnly
one as with tape-like devices. Since these devices «can be
used for both sequential and direct access applications, the
total amount of usage increases. Of course, the extra

degrees of freedom necessitate more complex I/0 routines and

6 I. INTBODUCTION

further tighten the reliance on file systems tc perfornm
these functions.

Direct access devices are usually as flexible as or
more flexible than tape devices. Card-image or printer-image
fixed record data types can be handled as well as
variable-length or structured data forms. Although these
capabilities could be performed by the object prcgram, the
vast smsajority of these functions have been subsumed as
by-products of the file systesn.

The second major factor contributing to the rising
importance of file systems, as in early operating systeas,
¥as necessity. This time it was due to the M"infeorwmation
explosion”, As the number of users, uses, and sophistication
of use increased, the amount of information in the forass of
prograass and data rose correspondingly. It was nc lcnger
convenient nor wusually physically possible toc haul the
required boxes of programs and data to and froa the machine.
This information wvas converted and wmaintained in a more
compact but directly machine processible form, such as
magnetic tape or disk pack. Not only were the individual
programss and data collections large, but the total nusber of
distinct and wunique files (i.e. programs axd data
collections) was very large. It is not uancommon for a single
programmer to have to use from 10 to 100 separate pregrass
and a roughly equivalent number of data collections. This

situation became especially acute with the increased use of

EVCLUTICN OF FILE SYSTENS 7

online systems. A user at a remote teletype terminal could
not be expected to re-type and enter all his programs and
data from the terminal. They must te permanently maintairned
and stored at the central computer facility, althcugh
accessable and alterable under remote teraminal ccatrol.
Quite obviously, it would be uneconomic and unzanageable to
store each unique file on a separate tape or disk pack.
Robert Rosin highlights these developments in his recent
survey of supervisor and monitor systems<Rosin 69>:

"A file system 1is especially necessary in any

systen which purports to praovide realistic

tipe-sharing. However, the advantages of this

facility cannot be overlooked in a Bcre

conventional environment",

Thus, people were faced with the problem of using the
I/0 devices to store thousands of permanent files in
addition to the traditional use for input, output and
"scratch™ storage. Direct access devices provide the
capability of storing hundreds or thousands of unigue files
and accessing them in any order conveniently. This type of
direct access device usage results in many side effects. The
first problem, of course, involves a complex storage
organization facility to locate "erpty" space oan the device
and a directory-like mechanisa to keep track of the
individual files. Nany other facilities are usually
required, such as a security system to prevent unauthorized

access to restricted files, and procedures to recover from

hardware or software failures. Of course, each installation

8 I. INTEOLUCTION

or group develops additional elegant file systen
capatilities to meet special requirements or to provide
extensive flexibility.

For the same reasons that programmers utilize and rely
on the file systemr, the operating system uses the facilities
of thke file system. For example, user identificatiocn (e.g.
passwords, account numbers, etc.), accounting and charge
information as well as system self-measurement data must be
maintained dynamically using the facilities of the file
system, The previously menticned directories of ‘Tempty"
space on direct access devices and the symbclic file
directory and access control information are usually handled
as systen files, The operating system uses the file systen
capatilities to store the various processing prograss (e.g.
FORTRAR, COBOL, Assemblers, etc.) as well as many
infrequently used superviscor routines. Furthermore, advanced
operating systeams perform %"spooling", roll-in/roll-out, and
paging in conjunction with the file system, It is not hard
to realize that the file system 1is wusually the most
important component of an operating system in terms of the
manpower required to develop and implement, and the ascunt
of instructions and space used by the file systesn.

Whereas the early operating systems along with their
rudinentary file systems revolved around the need tc sugpgert
miscellaneous I/0 functions for programming languages,

modern file systems are at the very center of the operating

FVOLUTION OF FILE SYSTEMS 9

system., The supervisor, programming systems, and <cbject

prcgraes are totally derendent on the file systen.

10 I. INIRODUCTION

Scope and Purpose

The development of file systems has suffered from rany
of the same prcblems as that of fprogramming languages.
Probably the single mcst important proklem was the excessive
concern with efficiency. 0Of course efficiency is important,
but in most current-day programming situations other
factors, such as productivity and flexibility, are finally
receiving their long-deserved attention. The question of
efficiency can be put into proper perspective fros recent
studies of real programming groups, wvwhere it has been fcund
that the ‘VYhest™ rprogrammer was up to 15 times &nore
"efficient" than the least proficient programmer. It is not
the function of this paper to get deeply involved in
prograsming langquage controversies, but to illustrate the
trends and changing attitudes. For example, if the original
designers of FORTBRAN had not felt that 1its acceptance
depended on the utmost attention to efficiency and,
therefore, had not defined the 1language in terms cf the
hardware capabilities of a specific machine, IBM 7C4, it is
possible that the evolution of languages such as FORTRAN-IV,
COBOL, ALGOL, and PL/I and generalized compiler techniques
might have proceeded in a more organized fashion. The entire
field of generalized approaches tc programming languages and
compiler techniques has only recently emerged as a major

factor in the computing profession.

SCCPE AND PURPOSE 11

File systeass have followed a similar development. In
the name of "efficiency", each new file system was specially
tailored to the original needs and environment of its
intended use and very seldor could benefit from the
experience or techniques of preceeding systems. As the
demands on a given file system increased, new features and
facilities were added, often with a "crowbar®™. Each of these
piece-real file systems drove us further and further frcm an
organized, generalized file system structure.

Most literature in this area has appeared in one of two
forms. The typical system manuals describe the "clever®”
techniques used ¢to implement a specific file systeam, but
provide very 1little assistance for comparisons with cther
current systess or in the design of new file systess. The
other type of reference deals with discussions of desirable
characteristics for future file systems, usually emphasizing
user facilities, but adds little insight into the probleas
of designing and isplementing such a systen.

To a certain extent, generalized approaches have begun
to evolve in "time-sharing™ systems., In this paper such
systems will be called conversational resource-sharing,
since time is only one of many resources that are shared and
it is the conversational or interactive nature cf these
systems that is most easily distinquished fron
batch-oriented operating systens.

These generalized file systems for conversationmal

12 I. INTECLCUCTION

resource-sharing crerating systems developed both by design
and necessity., In order to provide all the features required
by user programs and the supervisor, a flexible design was
essential., Furthermore, owing to the complexity of the
environment and its dynamically changing aspects, it would
be impossible to devise an "optimally efficient" strategy.
The implementers were thus forced to abtandon any attenrpt to
make the systen mcre efficient and vere free tc develcr a
flexible syster with a clear conscience.

The goals of flexibility and efficiency need not be
contradictory. In any multi-tasking system, which includes
most modern, non-conversational, batch-oriented operating
systems as well as conversational systems, I/C operaticns
can be performed asynchronously by channels, and the central
processor time can Dbe utilized by executing other tasks
vhile I/0 is in progress. 1In this environment file systen
efficiency ceases to be of paramount concern. Furthermcre,
individual user attempts to optimize performance could
result in unnecessary inefficiencies due to conflicts with
other tasks, such as excessive I/0 interference from
overloading the channels. The file system, aware of the
total requirements, could provide a strategy that results in
a more harmonious arrangement, increasing system thrcughput
far more than individual user optimization could.

Even in single-task or application-criented ofperating

systenms, there is definite value to an organized,

SCCPE AND PUKRPOSE 13

generalized file system. For most large, complex user
programs as well as compilers and assemblers, the program
action including precise file system requiremerts cannct be
statically determined =since it is a dynamic functicn cf the
input data supplied. Therefore, a dynamically flexible file
system could often outperform a specialized, but inflexible,
file systen.

It is the purpose of this paper to present a general
file system design, It is extremely important to start with
a flexible but precise model although this design will
probably need to be modified and made more detailed fcr any
specific implementation., This issue was hichlighted by
Robert Rappaport in his thesis "Ieplementing Multi-Process
Primitives in a Multiplexed <Computer System"<Rapp €8> which
describes the development of the Traffic Controller for the
MIT Project MAC Multics Systen:

"after having found acceptable solutions for
the problems at hand, one asks oneself why it tcck
so long to arrive at these solutions and was there
any wvay to have done it more quickly? One might
further ask if the arrived-at solutions are in any
sense optimum?

After being involved in designing a large
system involving the work of many people, one dets
the feeling that such problems as were encountered
here are bound to crop up. The development cf any
large systern can only remain manageable if
distinct parts of the system remain modular and
independent,

Without a theory of computing systems tc fall
back on, designing such complex systems becomes an
art, rather than a science, in which it is
impossible tc¢ prcve the degree to which wvorking
solutions to problems are in any sense optimup
sclutions. In much the same way as authors write

14 I. INTBCDUCTION

books, large comfputer systems go through several
drafts before they begin to take shape. In the
absence of a theory one can only cope with the
corplexity of the situvation by proceeding in an
orderly fashion to first produce an dinitial
working model of the desired system. This part of
the work represents the major effort of the design
and implementation project. Once having arrived at
this benchmark, many of the problems may then be
seen in a <clearer 1light and revisions to the
working model are implemented such more gquickly
than were the original =modules, As to the
development of a theory, one gets the impression
that it will be a long tise in coming."™

Therefore, while we await THE general theory of
computer science, the file system nodel presented in this
paper w%ill hopefully serve the need for am "inpitial working

model® from which "problems may be seen in a clearer light".

UNIFCR¥ REPRESENTATION OF FILFE STRUCTURE 15

CHAPTER TVWO

Motivation Behind File System Design

There are two basic gocals to be satisfied by the file
system design. It is necessary to (1) establish a uniform
representation of a file's structure and (2) detersine the
hierarchy of logical transformations that occur in a file
system. W. R. Henry's recent paper on hierarchical data
managesent systems<Henry 69> discusses similar noticns cf
separating logical and physical file control, but differs
significantly from the approcaches presented in this report
in many fundamental ways. It should be a useful reference to

a reader interested in other current research in this area.

Uniform Representation of File Structure

A typical computer system is portrayed by Figure 2.1,
Such a configuration usually has a varied assortrent of
secondary storage devices in addition to the prisary
storage. Programs and data must be in primary stcrage in
order to be executed or operated upon, respectively.

It is generally +true that if primary storage size was

limitless and very inexpensive, there would be noc need for

16 II. MOTIVATION BEEIND FILE SYSTEM DESIGN

secondary storage (possible exceptions may be backuap
requirements and transfer of data). In the framework of this
report, the file system will be defined as the software
mechanism that extends the capacity o¢f primary stcrage by
handling and coordinating the transfer of informaticn tc and
from the secondary storage devices. This definiticn is
somevhat more restrictive than other common interpretations
which include as part of the file system the physical
devices or the programs that operate upon the data. 1In this
interpretation the file system merely stores and transfers

information but does not operate upon it.

UNIFORM REPRESENTATION OF FILE STBUCTURE 17

b +
+~-=->} I/0 DEVICE 1 |
| +—- —-——— -+
|
1
P ———— P —————— + 1 e ———— +
| PRIMARY |<======z==>}] CENTRAL |<{---+——->] 1I/0 DEVICE |
] STORAGE |]PROCESSOR] } | 2 i
o ————— + t————————— * i L e Tt L e +

| -

i .

1 -

{ .

| o —————— +

} | /70 |

+-——>}] DEVICE |

] n |

fm——————- +

Figure 2.1

Physical Computer Configuration

18 II. MOTIVATICN BEHIND FILE SYSTEM DESIGN

Early file systems were usually designed tc <crerate
with specific applicaticn programs, Since there are
potentially a very 1large number of different secondary
storage devices, many of which can be used in more than one
vay (e.g. sequential or random access, blocked or unblocked,
etc.) each file system limited itself specifically to those
devices and organizations that were appropriate fcr its
interded application. Figure 2.2 depicts the relaticnshigs
between the applications, the devices, and the file systenms.

This type of development produced <chaotic situations.,
It is somewhat analogous to assembly language programming
without any established standard calling sequences or
communication conventions, which makes it difficult, if not
impossible, to use arbitrary programs as sutrcutines. In
particular, it was quite common to find that data files
produced by the rpayroll programs, using their private file
system, could not be accessed by the file system used by the
perscnnel progrars, and vice versa. As a result, there was
much duplication of effort and confusion in the development

and use of these early file systenms.

UNIFCRF REPRESENTATION OF FILE STRUCTURE 19

APPLICATIONS

LOGICAI-PHYSICAL

| = e > iy -y

DEVICES AND PHYSICAL DATA ORGANIZATION

Figure 2,2
Early File Systeas

(Analogous to Assembly Language Programming)

20 IX., MOTIVATION BEHIND FILE SYSTEM PESIGN

More recently, the computer manufacturers and operating
system designers realized that it is possible to select a
small set of common logical file organizations (or access
methods) that can satisfy the needs of most application
programs., Furthermore, these access methods could be
designed in a flexible manner to operate on a variety of
different devices and device organizations. This rrcvided
the user with a logically device-independent interface with
the file system. Pigqure 2.3 illustrates this structure.

This apprcach canm be compared with the emergence cf
Probles Oriented Languages, such as COBOL for business
applications and PFORTRAN for scientific applications. The
access methods file systems suffered the same shortcoamings
as the programming languages: (1) despite claims, they vere
not really device independent, (2) occasionally it vas
necessary to resort to assembly language to overcome cCI
bypass a restriction, and ({3) it wvwas not possible to
inter-mix access methods (analogy would be ¢to interamix

FORTRAN and COBOL subrocutines).

UNIFCR¥X REPRESENTATION OF FILF STRUCTURE 21

APPLICAT IONS

“+ f

1

1
IOGICAL

H

]
-y ACCESS METHODS

A

i

]

PHYSICAL
|

|
_y o

DEVICES AND PHYSYICAL DATA ORBRGANIZATICH

Figure 2.3
Access Methods File Systenms

{Analogous tc Early Programming Languages,
Such as FORTRAN and COBGL)

22 I1I. MOTIVATIOR BEHIND FILE SYSTEM LESIGN

In order to overcome the weakness in the access methods
approach, it 1is pecessary to design a single unifcrm file
representation that can (1) be used for every application
and (2) be device independent. This idealistic goal is
analogous to the search for ™The"™ universal programming
language, for which PL/I is probably the most asmbiticus
attempt to date.

It is reasonable to expect that such a unifcre
representation will be so atormic or primitive in fcrm that
it will be desirable tc construct more powerful specialized
access methods for the convenience of the typical user.
Since the access methods are built wupon the uniform
representation, it is much easier to modify or implement new
access methods or, if necessary, operate at the atoric level
to bypass the restrictions of the access methods. This
approach pushes the logical/physical separaticn of file

system structure much further as indicated in Figure 2.4,

UNIFORM REPRESENTATION OF FILE STROUOCTURE 23

APPLICATIONS
A
|
1
|
1
]
LOGICAL ACCESS METHODS
i
|
|
5
¥y UNIPORM REPRESENTATION
A
1
]
PHYSICAL
|
|
3

DEVICES AND PHYSICAL DATA CRGANIZATION

Pigure 2.4
Uniform File Representation

{Analogous to Upiversal Programming Language,
PL/1I ?)

24

The

II. MOTIVATION BEHIND PILE SYSTEM DESIGN

rationale behind the selection of a particular

uniform representation is not trivial., For exanple, there

are three broad classes of common uniform representaticns:

1.

Stream - every file 1is treated as a centinucus
sequential stream of information. It is possible
to access only the current position in the streanm
or reposition to the beginning of the stream. This
representation can be implemented conveniently on
almost all secondary storage devices, although it
does not provide the user with very gpowerful or
efficient features for many applications.
Direct-Access - every file 1is treated as an
ordered collection of items. Each item is directly
accessable by means of a unique identifier
corresponding to its position in the ordering.
This representation, which corresponds to primary
storage organization, is more powerful than
Stream, but is very difficult to isplement on
intrinsically serial devices, such as Bmagnetic
tape.

Associative - every file 1is treated as an
uncrdered collection of itenms, each item 1is
directly accessible by means of an identifier that
has been "associated®™ with the item. This is a
very flexible representation. Unfortunately,

except for a small class of sophisticated

UNIFORM REPRESENTATION OF FILE STRUCTURE 25

secondary storage devices the implementaticn is
very copplex and inefficient,

Irregardless of the specific uniform representaticn
chosen, the important concept 1is that all files can be
viewed as being identical in structure independent of the
particular physical device on which the file is recorded.
This generalization is depicted in PFigure 2.5, which should

be compared with Pigure 2.1.

26

PRIMARY
STCRAGE

ITI. MOTIVATION REHIND FILE SYSTEM LCESIGN

*
+--=>] UNIFCEM
| | FILE 1
| o
|
|
+ o + 1 o
|<=s=====>] CENTRAL]<---+--->] UNIFCEY
|] PROCESSOR] I | FILE 2
+ e + | P ———
I .
| .
i .
] .
i
+--->] UNIFORM
| FILE m
e —————

Figure 2.5
Lcgical Computer Configuration

HIERARCHY OF LOGICAL TRANSFORMATIONS 27

Hierarchy of logical Transformations

Although a precise description of a file system will
rot ke presented until later sections, there are several
general characteristics of most file systems. In
particular, a user specifies his request, such as read or
write, by designating a file and an element within the file.
Most advanced file systems allovw considerable flexibility in
the mechanism used to specify a file, it 1is typically
described by means of a symbolic file name. Furthermore, the
element within the file is specified in terms of the logical
representation of elements in the particular file systen
whick m®may or may not correspond to a precise fphysical
specification ¢f hcw and where the element is stored. Por
example, a typical request might be of the form:

"Read item 23 from file ALPHA into location 1564."

Realizing that information must wusually be stored on
devices 1in somewhat obscure ways, there pnust be sone
sequence of transformations required to ccnvert the user's
request into its final form that physically operates cn the
secondary storage device., Quite often the transformaticn is
viewed as a single step but that is a gross
oversisplification that hides the fupdamental mechanisms in
use., In Fiqure 2.6 the conversion process is illustrated in
terms of a discrete sequence of logical transformations.

Since the specifics of these transforpations may not be

28

LIPS

BFS

FOSHM

DSk

I0CS

ITI. MOTIVATION BEHIND

FILE SYSTEM
READ ITEM 23 FRONM
FIIE ALPHA INTO
LOCATION 1564,

SYMBOLIC
FILE NAME
|

|
v

NUMERIC
FILE IDENTIFIER
1

}
v

FILE DESCRIPTOR
1

s]

v
LOGICAL
I/C COMMARDS
]

!
v

PHYSICAL
I,/0 COMMANDS
i

i
v

1,0 DEVICE

Figure 2,6

— gy oy . i NN s Ty Sy D By Ty Ny T s T i T g Sy D iy, D, uat

ANALOGY
SEND LETTER TO
JOHN DOE'S
HOME ADDRESS.

JOHN DOE
]
]

]
v

030-34-1234
{

1

|

v
Birth date
Office Address
Home address

etc.

1

|
v

EXTRACT
HONE ADDRESS
|

|
v

SEND TO
POST OFFICE
]

!
v

POSTMAN DELIVERY

Logical Transformations in Pile Systen

FILE SYSTEM DESIGR

HIERARCHY OF LOGICAL TRANSFORMATIORS 29

obvious until the more detailed sections later, a simple
analogy is presented in Figure 2.6 that loosely parallels
the file systeer transformations. The analogy is only
intended to provide some insight into the rationale behind
each stage cf the transforgation.

The process starts from the user's request to ‘"read
item 23 from the file ALPHA into location 1564"., The first
step is to convert the symbolic file name into a ©wunique
numeric file identifier. In the analogy, this ccrresgonds to
looking up John Dce's identifier which is a social security
in this illustration. The purpose for using an identifier is
basically the same in both cases, It 1is usually more
convenient to store information, m®manually or automatically,
by means of a unique numeric "key" rather than a symbolic
name which may, under certain circumstances, not even be
unigque (i.e. there may be more than one John Doe in which
case other factors must be considered in order to unigquely
identify the person under comsideration).

The file identifier can then be used to conveniently
access all the informaticn knoun about a file, this
information collectively is known as the file's descriptor.
In the analogy, this would correspond to requesting all
information in the social security records of 030-34-1234,

Now that everything is known about the file, it is
necessary to consider the specific operaticn tc be

performed., Using the file descriptor, a sequence cf lcgical

30 IT. MOTIVATION BEBIND FILE SYSTEM DESIGN

I1/0 commands can be produced. These are called logical I/0
commands because they do not consider the physical
characteristics of the secondary storage device to be used.
This is analogous to putting an address on a letter which is
usually done without considering the physical destination
nor the route to be taken,

In order to complete the transformation, the logical
I/0 commands must be converted into the appropriate sequence
of physical I/0 commands. This conversion may be trivial or
complex depending upon the peculiarities of the device and
I/0 interfaces tc the devices. In the analogy this process
is performed at the post office where the address is used to
determine the physical routing needed to get the letter to
its destination.

The final step in the process is the physical transfer
of information. This is usually performed by means of
sof tware /hardvare interactions to activate the apprcgriate
device and confirm the successful completion of the regquest,
Of course, in the analogy this transfer is acccaglished by
the postman {"neither rain nor snov nor dark cf night...")

assisted by trucks, planes, trains and other automaticn.

BASIC CONCEPTS kN

CHAPTER THREE

File Systenm Design Model

Basic Concepts Used In File Syster Design

Two concepts are basic to the general file systea model
to be introduced. These concepts have been described by the
terms Phierarchical modularity" and *"virtuval memory"%, They

¥ill be discussed briefly below.

Hierarchical Modularity

The term "modularity"™ means many different things to
different people. 1In the context of this paper we will be
concerned with an organization similar to that propcsed by
Dijkstra<bPijks 67><Dijks 68> and Randell<Rand 68>, The
important aspect of this organization is that all activities
are divided 1into segquential processes, A hierarchical
structure of these sequential prccesses results in a level
or ring organization wherein each level only communicates
with its immediately superior and inferior levels.

The notions of "levels of abstraction” or "hierarchical
modularity” can best be presented briefly by an example.

Consider an aeronautical engineer using a matrix inversion

32 IIY. FILE SYSTEM DESIGN MCDEL

package to solve srpace flight problems. At his level <cf
abstraction, the compunter is viewed as a matrix inverter
that accepts the matrix and control information as input and
provides the inverted matrix as output. The application
programmer who wrote the matrix inversion package need not
have had any knowledge of 1its intended usage ({superior
levels of abstraction). He might view the computer as a
"FORTRAN machine", for example, at his level of abstraction.
He need not have any specific knowledge of the internal
operation of the FORTRAN system ({inferior level cf
abstraction), but only of the way in which he can interact
wvith it. Finally, the PFORTRAN compiler implementer operates
at a different (lover) level of abstraction. In the above
example the interaction between the 3 levels of abstraction
is static since after the w®matrix inversion program is
completed, the engineer need not interact, even indirectly,
vith the applications programmer or compiler irplementer. In
the form of hierarchical modularity used in the file systen
design model, the sulti-level interaction is <ccntinual and
basic to the file system operation,

There are several advantages to such an modular
crganization. Possibly the most important is the logical
completeness of each 1level, It 1is easier for the systenm
designers and implementers to understand the functions and
interactions of each level and thus the entire systea. This

is cften a very difficult prcblem in very coamrlex file

BASIC CONCEPTS

v
+ —————————————
| LEVEL K+1
+ —————————————
!
v
+ —————————————
I LEVEL K
+ —————————————
|
v
+ —————————————
} IEVEL K-1
g U VU
|
v
Figure 3.1

Hierarchical levels

33

34 IIT. PILE SYSTEM DESIGN MODEL

systems with tens or hundreds of thousands of instructions
and hundreds of inter-dependent routines.

Another by-product of this structure is "debugging®
assistance. For example, when an error occurs it can usually
be localized at a level and identified easily. The coxplete
verification (reliability checkout) of a file system |is
usually an impossible task since it would regquire tests
using all possible data input and system regquests occuring
in each potential "system state"., In order to construct a
finite set of relevant tests, it is necessary toc ccnsider
the internal structure of the mechanisa to be tested.
Therefore, an important goal is to design the internal
structure so that at each level, the number of test cases is
sufficiently small that they can all be tried without
overlooking an impcrtant situation. In theory, level 0 would
be checked-out and verified, then level 1, level 2, etc.,
each 1level Dbeing more powerful, but because of the
abstractions introduced, the number of "special cases"

remains within bounds.

Virtual Nemory

There are four very important and difficult file system
objectives: (1) a flexible and versatile format, {2) as much
of the mechanism as possible should be iavisible, (3) a
degree of machine and device independence, and (#) dynanmic

and automatic allocation of secondary storage. There have

BASIC CONCEPTS 35

been several techniques developed to satisfy these
objectives in an organized manner; the concept exploited in
this generalized file systen has been called
"segmentation"<Denn 65> or "named virtual memory®<Daley 68>.
Under this system each file is treated as an crdered
sequence of addressable elements, where each element is
normally the same size unit as the main storage, a byte or
word., Therefore, each individual file has the form of a
"yirtual™ core memory, from vhence the name of the technique
came. The size of each file is allowed to be arbitrary and
can dynamically grow and shrink. There is no explicit data
format associated with the file; the basic operations of
the file system move a specified numker of elesents between
designated addresses in "real" memory and the ‘Tvirtual”
memory of the file systen.

There are several reasons for choosing such a file
concept. In scme systems the similarity between files and
main storage is used tc establish a single mechanism that
serves as both a file system for static data and program
storage and a paging systez<lLett 68><Daley 68><Denan 68D><Salt
68> for dynamic storage management. "Virtual memory"
provides a very flexible and versatile format. ¥hen
specific formatting is desired, it can be accomglished by
the cutermost file systesm level or by the user prcgras. For
example, if a file is to be treated as a collection of

card-image records, it is merely necessary to establish a

III. FILE SYSTEN DESIGK MODEL

] {

{ |

| !
}====-1 Write =1 | 1
{ { into i | | !
l | File A | | i 1
l 1 1 |]
1 l File 2 1 1
i ! 1 |
-1 {i—-1
| | { i
| | <= - -—= 1 I
1 i Read from File B i 1
I-—-1 j———=1
L1 |
Main Storage i 1

L___1

File B

Figure 3.2
"Real" Memory and "Virtual" File Memory

BASIC CONCEPTS 37

routine to access 80 characters at a time starting at byte
locations 0, 80, 160, Almost all other possible
formats can be realized by similar procedures.

Except for the formatting modules, the entire file
syster mechanism, inclading allocations, buffering, and
physical location, is completely hidden and invisible tc the
user. This relates closely to the objective of device
independence, In many file systems the ©user pust specify
which device should be used, 1its record size (if it is a
hardware formatable device), blocking and buffering factors,
and sometimes even the physical addresses. Although the
parameters and algorithss chosen might, 1in soame sense, bhe
optimal, many changes might be necessary if the grogram is
required to run with a different configuration or
environment., This strategy does not prevent the user fronm
providing additiopal information, such as how often the file
will be used and in what panner, The important factor is
that this information is not necessary and its significance
is determined by the file system rather than the user.

There are very serious questions of efficiency raised
by this file system strategqgy. Most of these fears can be
eased by the following considerations. FPirst, if a file is
to be wused very seldon (as 1in program developrent),
efficiency is not of paramount importance; if, on the cther
hand, it is for long—-term use (as in a commercial prcducticen

prograr), the device-independence and flexibility for change

38 Y11, PILE SYSTEN DESIGN MODEL

and upkeep will be very important. Second, by relieving the
programmer of the complexities of the formats, devices, and
allocations, he |is able to wuatilize his energy more
constructively and creatively to develop clever algorithas
relating to the logical structuring of his probles rather
than clever "tricks" to overcome the shortcomings or
peculiarities of the file system. Third, in view of the
complexity of current direct-access devices, it is quite
possible that the file system will be better able to
coordinate the files than the average user atteapting to

specify critical parameters.

OVERVIEW OF FILE SYSTEM DESIGKN MODEL 39

Overviev Of Pile System Design Hodel

— — e —

The file system design model to be presented in this
paper can be viewed as a hierarchy of seven levels. In a
specific implementation certain 1levels may be further
sub~divided or combined as required. A recent study of
several modern file systems, which will be published in a
separate rTeport, attempts to analyze the systems in the
framevork of this basic model. In general all of the systeas
studied fit into the model, although certain 1levels in the
model are occasicnally reduced to trivial form or are
incorporated into other parts of the operating systen,

The seven hierarchical levels are:

1. Input/Cutput Control System {IOCS)

2. Device Strategy Modules (DSM)

3. Allocation Strategy Modules {ASN)

4, File Organization Strategy Mcdules (FOSHM)
5. Basic File System (BFS)

6. Logical File System (LFS)

7. Access Methods and User Interface

The hierarchical organization can be described from the
"top" down or from the "bottom™ up. The file systenm wculd
ordinarily be implemented by starting at the 1lowest level,
the Input/Output Control System, and working up. It apgears
more pmeaningful, however, to present the file systen

organization starting at the most abstract level, the access

40 III. PILE SYSTEN DESIGN MODEL

routines, and removing the abstractions as the levels are
"peeled away".

In the followvwing presentation the teres "file pame",
"file identifier”, and "file descriptor™ will be introduced.
Detailed explanations cannot be provided until later
sections, the following analogy may be used for the reader's
assistance. A perscon's name (file name), due to the somewhat
haphazard process of assignment, is not necessarily unique
or manageable for computer processing., A unique identifier
{file identifier) is usually assigned to each person, such
as a Social Security number. This identifier can thesn be
used to locate efficiently the information (file descriptor)

knovn about that person.

Access Methods (AN)

This level consists of the set of routines that
superimpose a format on the file. In general there will
probably be routines to simulate sequential fixed-length
record files, sequential variable—-length record files, and
direct-access fixed-length record files, for exaample. Many
more elaborate and specialized format routines, also called
access methods or data management, can be supplied as part
of the file system. Obviously, a user may vwrite his own

access methods to augment this level,

OVERVIEW OF FILE SYSTEN DESIGN MODEL

[|
| User Progran 1
1 1
l | 1
v)'A v
level 7: | ! |] | |
Access Methods (AM) 1 AN |} 1 AM | | AM }
User Interfaces L4111 1 42)1 I_(3)1
1 1 1l
1
—y__
Level 6: 1 H
Logical File Systen | LFS|
(LFS) i S|
]
_—
level 5:])
Basic File Systes | BFS|
(BFS) 11
i
] }]
. v Y
Level 4:]]] | 1]
File Organization |FOSHM| 1 FOS M| JFOS M|
Strategy Modules (FOSM) 1_ {11 1_42) 1 1.1
11 11 I
|] i | i
Py __ 1 __X__ 1
level 3: 11 | I
Allocation Strategy { | ASM! | | AsSH})
Modules (ASN) P41 1 1421 |
I 1 L 1 1
! |
—_ N
Level 23] | | !
Device Strategy } DSHM| § DSHM]
Modules (DSHM) 1V 1_(2)1
4 1
|
—_—y
level 1: | }
Input/Cutput JI0CS|
Control System {(IOCS) 1
1 -
l I i }
Devices
Figure 3.3

Hierarchical File Systenm

41

42

FARAFMETEERS

| FIIF NAME

| FILE ADDRESS
| COFE ADDEESS
| LENGTH

| _FUNCTION

——— — e

| FIIFE IDENTIFIFER i
| FILF ADDRESS)
| COFE ADDEESS I
{ LENGTH |
| _FUMTTON I

| FIIF DESCRIPTCER
| FILE ADDRTSS]
| CORE ADDRESS |
| LENGTH |
| _FUMTION I

{ CFVICF IDENTIFIER |
| LOGICAL I,0 LIST I
| COEF ADDFESS LIST |
| _FUNCTION]

| TEVICE ADDRESS i
1_I/0 COMMAND LIST _|

I11. FILE SYSTEM LCESIGK NMCDEL

USER OR | DATA BASES
ACCESS |
METHODS |
————————— +
I
|
]
]
v
————————— +
L FS |<===> NAME-->IDENTIFIER
————————— +
}
!
|
|
v
————————— +
B FS |<===> IDENTIFIER-->
————————— + DESCEIPTOR
]
]
]
}
v

FOS M |<===> ADDRESS-->LOGICAL
————————— + /¢

v
————————— +
D s M | <===> LCGICAL-->PHYSICAL
————————— + I1/0 1/0
I
l
v
--------- +
I ¢CC s |
————————— +
|
v
————————— +
CEVICE |

Figure 3.4

Parameters and Tata Pases Used bty File Systen

OVERVIEW OF FILE SYSTEN PDESIGN MODEL 43

Logical Pile System (LFS)

Routines above this level of abstraction associate a
symbolic name with a file., It is the function of the Legical
File System to use the symbolic £file name to f£ind the
corresponding unique "file identifier®, Below this level the

symbolic file name abstraction is eliminated.

Basic File System (BFS)

The Basic File System must convert the file identifier
into a file descriptor. 1Im an abstract sense, the file
descriptor provides all information ©peeded to physically
locate the file, such as the ™length" and "locaticn" of the
file. The file descriptor is also used to verify access
rights (read-omnly, write-only, etc.), check read/write
interlocks, and set up system—vide data bases. The Basic
File System perforss many of the functions ordinarily
associated with "copening® or "closing® a file. Finally,
based upon the file descriptor, the appropriate FPOSHM for the

file is selected.

File Organization Strateqy Modules (FOSHN)

Direct-access devices rphysically do not resemble a
virtuval memory. A file must be split into many separate
physical records. Bach record has a unpique address
associated with it. The File Organization Strategy Mcdule

maps a logical virtual memory address into the correspconding

44 11I. PILE SYSTEM DESIGN NODEL

physical record address and offset within the record.

To read or write a portion of a file, it is necessary
for the FOSM to translate the logically contiguous virtual
memory area into the correct collection of physical reccrds
or pcrtion thereof. If necessary, new records are allocated
by the ASM. The list of records to be physically processed
is passed on to the appropriate DSH.

Although not necessary, the FOSM is often designed to
allocate "hidden" file buffers in order to minimize
redundant or unnecessary I/0. If the requested portion of
virtual memory is contained in a currently buffered reccrd,
the data can be transferred to the designated user main
storage area withouot intervening 1/0. Conversely output to
the file may be buffered., If a sufficiently large number of
buffer areas are allocated toa file, it is possible that
all read and vwrite regquests can be performed by merely
moving data in and out of the buffers., ¥When a file is
“closed"™, the buffers are eaptied by updating the ghysical
records on the secondary storage device and released fcr use
by other files. Buffers are only allocated to files that are

actively in use (i.e. "open").

Allocation Strategy Modules (ASH)
The Allocation Strategy Modules keep track co¢f the
available records on a device., They are responsible for

allocating records for a file that is being created or

OVERVIEY OF FILE SYSTEM DESIGN MODEL

! | | 1

] | === > | Record &
to—m—t 1 __ 1 ————
1 1 1 |
1 | oo > 1 1
+———-3 e I |
| | | 1

1 | €=====>] | Record 14
oot i __1 ——
1 ! 1 J
l] < >] |
11 1

File virtual Memory Physical Records
Figure 3.5

Reccord 7

Becord 2

Mapping Virtual Memory Into Physical Records

45

46 IIT. FILE SYSTEM DESIGN MCDEL

expanded, and deallccating records for a file that is being
erased or truncated. The FOSM requests that a record be
allocated when needed, the ASM actually selects the record.
Quite frequently, the ASM functions are 1incorporated
into either the PFOSM or DSM. In this paper these functions
will be kept as separate as possible by explicitly

recognizing the separate ASM level,.

Device Strategy Mcdules (DSHM)

When a large porticon of a file 1is to be read or
written, many records must be processed. The Device Strategy
Module considers the device <characteristics such as latency
and access time to produce an optimal I/0 sequence frce the

FOSM and ASM requests.

Input/Output Ccntrocl System (IOCS)

The Input/Output Control System coordinates all
physical I/0 on the computer. Status of all outstanding I/0
in process is maintained, new I1/0 requests are issued
directly if the device and channel are availakble, ctheruise
the request 1is queued and automatically issued as sccn as
possible., Autcmatic error recgovery is attenpted when
possible. Interrurts from devices and unrecoverable error
conditions are directed to the approrriate routine. Almost

all rodern operating systems have an IOCS.

OVERVIFEY OF FILE SYSTEM DESIGN MODEL 47

File Systems versus Data Management Systems

In the literature there 1is often confusion between
systems as described above, which this paper calls "file
systems"” and systems which will te called "data management
systems", such as DM-1<Dixon 67>, GIM-1<Nel 67>, and
TDMS<Blei 67>, The confusion is to te expected since bcth
types of systems contain all of +the functional 1levels
described above. The systens differ primarily <n the
emphasis placed on certain levels.

In general £file systems, the file is ccnsidered the
most important itewx and emprhasis 1s placed on the directory
organization (Lcgical File Systenm) and the lower
hierarchical levels, It is expected that specialized access
metheds will be written by users or supplied with the systenm
as needed.

In most data management systems, the individual data
items are considered the nmost important aspect, therefcre
emphasis is placed on elaborate access methods with minpimal
emphasis on the lower levels of abstraction. Because of the
heavy emphasis c¢n a single 1level, data management systems
tend tc appear less hierarchical than file systems since the

lower levels are often absorbed into the access methods,

Le I1I, FILE SYSTEM DESIGN MODEL

Access Methods

The virtual wmemory interface provided by the Logical
File System allows for very flexible user applications and
access methods. In a PL/1-1like notation, <calls to the
Logical Pile System are of the form:

ILPS_PRead/Write (Pilename, Addr1, Addr2, Number);
where Addr! is the main storage address, ARddr2 is the file
virtual memory address, and Number is the number of elements
to be noved.

In this paper elements will be assumed to be 8-bit
bytes. For example, a request to read 100 bytes fronm
location 200 within the file named ALPHA into main storage
location 1234 could be expressed:

LFS_Read {*ALPHA', 1234, 200, 100);

Sequential fixed-length records, sequential
variable-length records, and direct-access fixed-length
records are common access methods. All cf these
organizations and many more can be realized using a file's
virtual memory. Note that the records processed by the
access methods are "software" records and have no relation
to the physical/logical records processed by the FOSM and

DSH.

ACCESS METHODS MODEL 49

Sequential and Direct-Access Fixed-Length Record Access
Methods

To simulate these access methods, the filef's virtual
memory is treated as a sequence of records of the desired
length, 1.

To access these records sequentially, a fpositicn
counter, PC, 1is set aside that starts at { and is
incremented by 1 after each read or write., The position
counter therefore finds the location of the next sequential
record. The routine could be written as:

LPS_Read (Filenare, Location, PC, 1);
PC = PC + L;

To access these records by direct—-access there is no
need for a positicn counter since the desired record, r, can
be found at 1location (r-1)*L in the file's virtual measory.
This rcutine could be written as:

LFS_Read(Filename, Location, {r-1)*1L, 1);

Sequential Variable-Length Record Access Method

The Sequential Variable-Length Record Access Method
treats the file as an ordered sequence of records, each
record may be a different length, This method can be
izplemented by preceeding each record with a *"hidden" length
field.

These records can be accessed using a variation cf the

Sequential Fixed-Length s=cheme. For example:

III, FILE SYSTEM DESIGN MODEL

! 10
} Record 1}

| Record 4]

) Y T
41

Figure 3.6
Layout of Virtual Memory For Fixed-Length
Record Access Methods

ACCESS METHODS MODEL

] L1 | 0O

b —————— +_

] 1 4

] Record 1]
prm—————— +

| L2] L1+4
bm———————— +_

]] L1+8

] Record 2}

e —————— +__

! L3] L1+12+8
e ——— +_

|] L1+412+12
| Record 3|

)|]

L1+412+4134+12

Figure 3.7
Layout of Virtual Memory for Variable-Length
Record Access Method

51

52 IIT, FILE SYSTEM DESIGN MODEL

LPS_Read (Filename, L, PC, 4); /% Get 4 hyte
length */
LFS_Read (Filename, Location, PC+4, 1); /* Get
data */

PC = PC + L + U4; /* Update position counter */

Other Access Methods

The above examples were presented to illustrate the
ease with which ccnventional access methods can be supported
under this file system design., The real importance of the
virtual memory ccncept is not its ability to provide
traditional access methods, but the ease and flexibility
with which problem-oriented access methods can be developed.
The programmer is able to design access methods based cn the
needs of his problem rather than forcing his problenm
solution to be ccnstrained by a small set of limited access
methods., Por example, Nelson<Nel 65> discusses some flexible
and complex file structures that can be used Mas an adjunct
to creativity".

The pover of a computer reaches its peak when it is
capable of amplifying the creativity of the programmer, 2
system that restricts the programmer's ability to express

his ideas provides him questionable service.

LOGICAI PILE SYSTEN MODEL 53

A user's program references each file by means of a
unique symbolic name. It is the function of the logical File
System to convert the symbolic name reference into its
corresponding unique file identifier. The Llogical File
System perforas the mapping using a nfile directory
organization®,

In the simplest case the file directory is entirely
stored in main storage as a two-entry table. The two entries
are the symbolic file name and its corresponding file
identifier. A look-up routine is all that is needed to serve
the function of the Logical PFile System. This approach is
used by several file systems because of its simplicity and
efficiency. Unfortunately, the number of files that are
allowed in the file system is restricted by the anmcunt of
main storage available for the file directory.

To remove the above limitation, many file systeas keep
the file directory on secondary storage. The file directory
can te treated as a standard file if its file descriptor is
always known. This allows the file directory to be
processed, expanded, and truncated using the normal file
system mechanisms. The Logical File System mapping still
involves a table look—-up, only this time the table is
contained in a file's virtual memory rather thar main

storage. The calls to the Basic File System are essentially

5S4 I11. FILE SYSTEM DESIGN MODEL

the same as the calls to the Logical File System, only a
file identifier is specified rather than a symbolic file
nanme,

A few of the advanced file systemas have intrcduced the
concept of the hierarchical file directory. Prom a simple
point of view, a file directory hierarchy reseables and
serves a similar purpose to a PL/1 data structure. 1In
practice, certain files are classified as ™directories" in
addition to their normal attributes. The earlier model of
the Logical File System implied that there vwas only one
directory file. This file contained the file identifiers for
all the other files, called *data files", This has been
extended to allow the base directory, often called the "root
directory", to contain file identifers for directory files
as vell as data files. BRach subsequent directory file can
contain file identifers for cther directory files as well as
data files,

Figure 3.8 illustrates a file directory hierarchy. The
files A, B, C, and D are directory files, all the others are
data files, The data files, as well as directory files, do
not necessarily have unique symbolic names., There are 3 data
files in Figure 3.8 named "XI", as in PL/1 this ambiguity is
solved by using qualified names such as "A.X", "A.B.D.X",
and "A.C.IN,

The file directory hierarchy serves many purgoses in

additicn to providing flexible and versatile facilities for

55

LOGICAI FILE SYSTENM MODEL

_’llnll-

,,,i-ug

-) o =
] O ||

|-— |- —d

- "7 4°° -~
e]
| @
_;,Lnuu e
bw = p—

Figure 3.8
Hierarchical Pile Directory Example

56 11X. FILE SYSTEM DESIGN MODEL

prograemer usage. "File sharing™ and "controlled access"
among users are very closely tied to the hierarchical
directories, Certain of these features are discussed in the
paper by Daley and Neumann<Daley 65>, 1A nmore detailed
treatment of this topic will be presented in a subseguent
paper by this author,

The implementation of the Logical File Systex for a
file directory hierarchy is a simple extension of the single
directory technique. After finding the correct file
identifier in the root directory, it is either the data file
desired or, if a secondary directory file, is used in
exactly the same manner as the root Airectory identifier to

advance one more level in the hierarchy.

BASIC FILE SYSTEM MODEL 57

As explained in the Overview section, a file 1is
physically located on secondary storage as an ordered
collection of distinct records. The information that
describes a file's size, access rights, device address or
addresses, and the mapping algorithm must be maintained by
the file systen,

In a simple file system this information can be
incorporated intc the file directory as long as there is a
unique one-to-one mapping of file name onto file. In a
sophisticated file system with features such as (1)
hierarchical file directory, (2) aliases that allow a single
file to be referenced by different rnpames, (3) 1links that
allow a file to be referenced from various directcries in
the file hierarchy or fronm different users, and (4)
removable or detachable ™volumes"™ or devices, the umnique
mapping cannot be guaranteed,

To produce an unambiguous file systea, the file
directory information is divided into three parts, the file
name, identifier and the descriptor. The file name
directories are the mappings between a syerbolic file nase
and the corresponding identifer. The precise 1locaticns of
the file descrigtors can differ for different
implementations, but uniquely defined by the identifer. 1In

fact, since the file descriptors wusuvally need not be

58 I1Y. FI1E SYSTEM DESIGN MODEL

searched, they gpeed not be contigquous. Usually they are
collected in either (1) a special system wide file, (2) a
collection of files, each located on a separate device or
volupe, or (3) hidden within the symbolic file nanme
directories.

Although it is wusually not possible to keep the
symbolic file directories in main storage, the number of
files actively in use 1is sufficiently small that the
correspond ing file descriptors can be placed in a
core-resident table called the Active File Directory or Open
Pile Directory.

It is the function of the Basic File System to use the
unique file identifier tc locate the file descriptor and
place it in the Active File Directory unless it has already
been "opened”. The Basic File System also checks that the
action requested upon the file such as read, write, cr
delete does not violate the restrictions specified in the
file descriptor.

After verifying 1legal access to the file, the Basic
File Systen passes control to the appropriate File
Organization Strategy Module as specified in the file

descriptor entry.

FILE ORGANRIZATION STRATEGY MODULES MODEL 59

The primary function of the File Organization Strategy
Module is to map a file's virtual memory address ontc a
corresponding physical record number, There are at least
three common physical file organization strategies:

sequential, linked, and indexed,

Segquential File Organizaticn Strategy

The Sequential Pile Organization Strategy is used by
most of the older, simpler, and non-dynamic file systems.
Under this technique 1logically consecutive records are
physically consecutive. Por example, if each reccrd is 1000
bytes long, wvirtual address 3214 would be located in the
fourth logical record. If the first logical record ({i.e.,
the one containing virtual address 0) 1is physical record
120, the record containing virtual address 3214 would be
physical record 123,

There are two notable advantages claimed for this
technigque, Firstly, the mapping is very simple and
efficient. The only information needed is the fixed record
size and the address of the first record. Secondly, if the
file 1is to be ©processed in a sequential manner, the
consecutive organization allows for minimizing device
latency and access tirmre,

Although the first point is indisputable, the second

60 ITY. PILE SYSTEM DESIGN NMODEL

claimed advantage is opemn to question. If there is more
than one file on the same device that is actively in use, as
is common in a multi-tasking ervironment, themn the device
read/vrite positioring will be switching rapidly among the
active files, defeating the assumed sequential accessing.

The major disadvantage of this sequential organization
is that the maximum size of the file must be assumed
statically before creating the file, By specifying too
small a size, the task will ke forced to terminate if more
space is needed. If too large a size is assumed, as is
common, there is much wasted space and fragmentaticn.

This technique may be reccmmended for single-tasking
systems with few permanent files and very few files
simultaneously in use, It aight be useful for a 1large
information utility system vhich is based on a large number
of independent, low cost, low usage, high capacity devices
such as data cells where wasted space is not a significant

problen,

Linked Pile Organization Strategy

The Linked and 1Indexed Pile Organization Strategies
allow for files to dynamically grov and shrink. The linked
technique was probably developed first since it is sispler
and emphasizes sequential characteristics which were
primarily used in early file systess.

The linked organization requires each record of a file

FILE ORGANIZATION STRAT RGY MODULES NMODEL 61

to specify the 1location of the next logical record,
analogous to the "links"™ on a chain. The file descriptor
specifies only the location of the first record. It tells
nothing about the locations of the other records. As the
file grows, new records are dynamically allocated and linked
onto the file,

For sequentially processed files, the linked techmigque
provides a very simple and efficient mechanism. A few bytes
are used in each record to record the link, and since record
sizes are usually in the range of 1000 bytes the overhead is
minimsal. Unfortunately, random or direct-access file usage
poses serious problems, If, for example, the 1last access
was to a data area in logical record 5, a reference to an
area in logical record 15 will require 9 intermediate I/0
accesses to find the 1links before reaching the desired
record, The Linked File Organization Strategy has been used
satisfactorily on systems where the vast majority of files

are accessed sequentially.

Indexed FPile Organization Strategy

The Indexed File Organization Strategy is a
significant variation to the 1linked technique., Records are
dynamically allocated as needed, but rather than
distributing the record addresses throughout the file as
links, they are collected together as a table. The logical

record number is used as an "index" in the table to find the

62 III. FILE SYSTEM DESIGN MCDEL

corresponding physical record numker.

If files are limited tc small or medium sizes, the
index table can be stored as part of the file descriptor.
If files are allowed to be arbitrarily 1large, the index
table must itself be treated as a file and is broken into
separate records. In the former case, sequential and randonm
access processing proceed easily and efficiently. In the
latter case, sequential processing is very efficient, except
for intermittent accesses for the next portion of the index
table. Random prccessing may ke very efficient if localized
to a sieple index table block; in any case it will never
exceed a small nurber of intermediate accesses, usually one
or two, for totally random processing.

The Indexed File Organization Strategy has the
advantage of allowing the concept of a "sparsely filled"”
file. TIf we assume that each physical record is 1000 bytes
and each index (record number) is U4 bytes, then the index
table for a file that is 250,000 bytes long would require
250 indexes or 1000 bytes. By designating a special ccde,
such as 0, to indicate an index for a non—allocated reccrd,
a file can be created with specific contents at lccations
10,000, 40,000, and 247,000 but with unspecified contents
elsevhere. By convention, unspecified contents are usually
initialized as zero by the file system. The above sparse
file would only require four physical records, three records

for the specified portions of the file and one record for

FILE OBGANIZATION STRATEGY MODULES MNODEL 63

the index table, As more information is written intc a
sparse file, more physical records will be allocated as
needed,

The indexed organization provides a simple and
efficient vay to use programming techniques, such as "hash
coding® or "random entry" tables, that require a large
though sparse virtual memory.

Many of the most recent file systems have adocpted

techniques similar to the Indexed Pile Organizaticn.

64 III. FILE SYSTEM DESIGN HMODEL

When the FOSM maps a valid write request onto a logical
record for which a physical record has not been allocated,
the ASH is called to find an available record for use. There
are two comrmon techniques used +to keep track of available
records. The first technique 1links all available reccrds
together., This method is often wused in conjuncticn with a
Linked File Organization Strategy Nod ule. The second
technique uses a "bit map” for each device. A bit map is a
function which operates on a bit string and describes the
relationship betvween a bit position and a physical record on
the device. Por example a convenient bit map might be: bit
0 corresponds to physical record 0, bit 1 to physical record
1, etc. If a bit is set to 0, the corresponding record is
available for allocation, otherwise it has already been
allocated to a file, The bit nmap provides a very ccapact
representation cf the allocation informaticn. The
allocation states cf a device with a capacity of 8,0((,000
bytes divided into 8000 1000-byte records can be stored in a
1000 byte bit map. In a file system with a large number of
high-capacity direct-access devices, it may be impossible to
keep all the bit maps in main storage., The bit smafg may be
subdivided into sections, such as a separate bit map for
each group of 800 records. Only one section of the bit map

for a device is kept in main storage at a time, the

ALLOCATION STRATEGY NMODULES 65

remaining sections are left stored on the device.

Since sequential processing is a very common file
usage, the ASM may atteampt to alloccate records tc take
advantage of this fact. Of course, any specific File
Organization Strategy Module and Device Strategy Module
group are expected to be cooperative with the Allccation
Strategqy Modules to optimize overall perforsmance, The
precise nature <¢f @meaningful cooperation +would be too

detailed to discuss in this paper.

66 IIT. PILE SYSTEM DESIGN RCDEL

Device Strateqy Mcdules

In addition to the obvious ‘"read" and Mwrite®
functions, direct access devices often require additional
I/0 commands, such as "seek" and "search", for proper
positioning. The FOSM and ASHM deal only with the logical act
of of reading and writing. They transfer a set cf regquests
to the DSM of the form: f*“read record 24 intc lccaticn 5400,
read record 49 into location 6400, and write reccrd 27 fronm
location 9324", The DSM must translate these requests into
the obscure I/0 1list format required for the particular
device.

Furthermore, due to the device characteristics such as
latency and access time, the order in vhich the requests are
performed affects the total amount of time that the device
is kept "busy". For example, if records 24 and 27 are
"closer®™, in some sense, to each other than record 49, it
might be more efficient to read record 24, write record 27,

and then position to read record 49,

INPUT/0UTPUT CONTROL SYSTEM MODEL 67

Input/Cutput Control Systesm

The Input/Output Control System coordinates all the
physical I/0 on the computer. On most modern computers there
are complex interdependencies among the physically
independent I/0 devices. Usually this dependency occurs due
to the dedicated nature of "selector"” channels and device
control units that can switch to any device but can cnly
service one device at a time. For very high-speed devices,
such as drums, the pain storage access time can be an
important factor. If toc many simultaneous memory reguests
occur, "overrun™ can occur resulting in erroneous data
transmission. The IOCS keeps track of the status of all
devices, control units, and channels. When an I/C operation
is requested, the IOCS checks to imsure a clear path tc the
device through the channels and control units and that no
I/0 capacity limits will be exceeded. If it is not possible
to issue the requested I/0 operation, the IOCS stores the
request on a queue. The I/0 will be issued at a later time
when all conditions are satisfied. Since the I/,0
interdependencies may exist armong all devices, every I/0
operation whether for the file system or dedicated special
purpose device must be funnelled through the IOCS.

Althongh most modern I/0 devices are very reliable,
spurious errors do occur. Usually the retry cr reccvery

procedure is very simple, in such a case the IOCS will

68 I11. FILE SYSTEM DESIGN MODEL

attempt corrective measures.,

The caller tc the IOCS is informed of the status of his
I/0 request, for example (1) successful completion, (2)
unrecoverable error condition, or 3) asynchronous
interrupt.

The sophistication and scope of the I0CS degpends upon
the devices to be handled and the goals of the file systena

and operating systea.

BACKGRCUND 69

CHAPTER FOUR

Bulti-Computer Network Environment

Background

A general file system design model must, of course, be
modified and elaborated to satisfy the needs of any specific
desired file systea environment, To illustrate the
refinement process, a unique file system design will be
presented for a multi-computer network.

Multi-computer networks are becoming an increasingly
important area of computer technology<Mad 68>. There are
several significant reasons behind the growth of
multi-computer networks:

1. To increase the power of a computer installation

in a modular manner, especially if {a) it is not
possible to acquire a larger processor, (b)
reliability is important, or (o) there are
real-time or time~-sharing constraints.

2. To serve the co-ordination requirements of a

network of regional computer centers.

3. To support the accessibility to a nation-wide data

base.

70 IV, MULTI-COMPUTER NETWCRK ENVIRCNMERT

An example of the environment to be considered for this
paper can be illustrated in Figure 4.1. This type of
rulti-computer network has been in limited use for several
years in many configurations. The IBM 7094,/7044
Direct-Coupled System<Rosen 69> was protably cne cf the
earliest practical examples of such an inter-connected
arrangement,

There are several implicit constraints imposed upcn the
mult i-computer system illustrated in Figure 4.1:

1. Independence of Central Processors.

Each of the central processors operate independently
such that there are no direct processor-to-processor
data transfer nor signaling, and furtherscre there
is no "master" processor.

2. Mon-shared MNemory.

Each central prccessor has its own pain storage
unit, These units are not shared with nor accessed
by another central processor.

3. Inter-locked Device Ccntrollers.

The device controllers act as "traffic cops"™ to the
actual I/0 direct access devices. They control the
traffic Dbetween a computer's I/C channel and a
selected I/0 device. A single device centrcller will
only accept requests from one channel at a time and
vill only select one I/0 device (among ¢those under

its control) at a time., Once a device <controller

BACEKGROUND 71

tmrm——————— + $rm———————— + $mmmm +
1 CPU]] CrU | 1] CpuU {
o —m o + P ————— + o - +
1 MENORY |}] MEMORY |} | MEMORY |
pmm e ——— + $mmm e ———— + o ———— +
| CHARNELS | { CHANNELS } } CHANNELS |
o —————— + $m—m————— tmmm——————— +
i ! 1
| } 1
P ——— e tmm—————— jm—————— + 1
1 | | 1]
|] +- + —_— |t ————— j———-- +
| 1| 11 1 |
t] 1| #-=mmmmeemme I to——— j-+
! | I I 111 11
1 11 1 i 11 (I
$mm—————————— 3 e ——— + o+ - + femmmmm—————— +
] DEVICE i i DEVICE = |{] DEVICE] i DEVICE !
] CONTROLLER { { CONTROLLER] j CONTECOLLER | { CCNTEBCLLER |}
e ————— ¥ femmmeeena———a + - + mmmmcmeeen—— +
I 1 H] | i §
{ i ! l i l l
e ———— g] #4-—m————p] dmmmm———— +] $=—————--%
| DISKS | ! | DISKS | | | DISKS | ! | DISKS |
et 4] temm————— +] t———————1+] Am———— +
1 | i
om—————p Fm————— + o ——— *
I DRUMS] } DRURES | { DEUNS |
tom—————t pm—————— + m——————p
Pigure 4.1

Example of Multi-computer File System Network

72 IV. MULTI-COMPUTER NETWORK ENVIRCNMENT

connects a channel with a device, the cconnection
repmains intact until the channel releases the device
or an I/0 error ocCCHurS,

The environment described abowve, although well within
the boundaries of current technology, has not been the
subject of much investigation., Such ccnfigurations are
presently very expensive and, therefore, chosen conly for
very specialized situations. Even then there are only twe or
three processors and very specialized software and
operational factors, A discussion of the CP-67/CHS Time
Sharing System <IBM 68a><{Sea 68> will serve to establish the
relevance of the multi-computer metvwork eanvironment.

The CP-67/CHS Time Sharing System uses the special
hard vare features of a single IBM System/360 =model 67
processor augmented by software to produce an apparant
environment corresponding to the multi-computer network
illustrated in Figure 4,1, with many independent central
processors, device controllers, and direct access I/0
devices. In practice a typical single processor 360/67
configuration would produce the affect of about 30 active
processors {("virtual" System/360 model 65 processors each
vith a 256,000 byte memory) and 50 active device
controllers, MNore detailed descriptions of the CP-67/CHMS
System can be found in the References. In the traditional
sense of time-sharing, each user of the CP-67/CHS Systenm is

provided with a ®"virtual" computer operated fros a simulated

BACKX GRCUND 73

operatcr console (actually an augmented remote terminal).
Most importantly, weach Yvirtual"® computer (i.e. user)
operates logically independently of all other "virtual"
computers except for the specified inter-connected I/C

devices and device ccntrcllers,

74 IV, MULTI-CCNPUTER NETWORK ENVIRONMENT

Problems Arising In Multi-Computer Netwuorks

There are sany problerms associated with the
multi-computer file system network. Some of these problems
are unique to this environment. Other problems have been
solved in traditional file systems<Corb 62><Salt 65><Scie
68>, but the solutions require major revisions due tc the
peculiarities of the environment. The most significant
probklens are listed briefly below.

1. No shared zemory.

Usually file systems co-ordinate the status of the
files and devices by using main storage accessable
tables and data areas that describe file status,
access rights, interlocks, and allocation., There is
no such common communication area in main stcrage
that can be accessed by all the independent
Frocessors.,

2. No inter-ccmputer coammunication.

Multi-computer configurations wusually provide a
mechanism for sending signals or data transfers
between the separate Processors. With this
capability the non-shared memory problem cculd be
solved by either {(a) electing one processor toc be
the "master" processor that coordinates the cther
processors, or (b) supply all the processors with

enough irfcrmation svuch that each processor knows

PROBLEMS ARISING IN MULTI-CONPUTER NETHWCRK 75

4.

vhat all the other processors are doing. The concerpt
of a "paster®™ processor opposes the intended
horogeneous, independent processor assumption. The
possibility of supplying status information to all
other processors, although reasonable for a three or
four processor configuration, was not considered a
feasible solution for a system with hupdreds of
processors and devices and thousands of files. Por
these reasons, inter-coamputer cospunication,
although an available capability, was not included
as a required capability of the smulti-computer
environmnent described above.

No pre-arranged allocations,

For small specialized multi-computer file networks,
each processor can be "assigned® a specific area of
a device or set of devices that can be used tc urite
new files, all cther processors can only read fros
this area by coamvention. This prevents the danger of
tvo indeperdent processors writing files at the same
place. Such an ™arrangement®" is not practical for a
large, flexible nmulti-computer file network since
the static assignment of secondary storage srace
does not take account of the dynanmic and
unpredictable requirements of the independent
processors,

Bxtendable device and file allocation,

76

5.

IV. MULTI-CCMPUTER NETWCRK ENVIBCONMENT

The number of devices and sizes of devices as well
as the nusber and sizes of files are, within reason,
unlirited. For example, a specific amount of
secondary storage equivalent to 100,000 card images
could be used to hold 10 files of 10,000 card each
or 1,000 files of 100 cards each. This consideration
discourages techniques that result in a strong
efficiency or main storage capacity dependency on
the "size and shape"™ of the file system. Cf ccurse,
the magnitude of the file system size will affect
the operation, but arbitrary restrictions such as
“"no more than 64 files on a device” would be
discouraged unless essential.

Removable volumes,

It has become comson to differentiate between the
I/0 mechanism used to record or read information,
called a "device"™, and the physical medius on which
the information is stored, called a "volure"., For
most drums and many disk units, the device and
volume are inseparable. But, for magnetic tape units
and wmany of the smaller disk units the vclume,
magnetic tape reel and disk pack respectively, are
removable, It is intended that the file systenm
include files that are on unemounted volumes
{disconnected from an I/C device) as well as mounted

volumes. Therefore, a configuration that consists of

PROBIEPFS ABISING IN MULTI-COMPUTER NETWOCRK 77

ten disk units may have a file systemr that
encompasses hundreds of volumes, only tem of which
may be actively in use at a time. Since removing and
mounting a volure takes several minutes of manual
effort, it will be assumed that the "working set" of
volumes (volumes that contain files that are
actively in use) remains static for reascnable
periods of time and 1is less than or egual tc the
number of devices available, The fact that voluomes
are removable and interchangeable (i.e. Bmay be
mounted o¢n different devices at different times)
does affect the organization of the file system. For
example, a scheme that involved 1linking files
together by means of pointers (chained addressing)
could require mounting volumes Jjust to continue the
path of the chain even though little or nc "lcgical"
information was requested from files on that volume,
In the vorst case, it might be necessary to mount
and unmount all the volumes of the file system to
locate a desired file. Such a situation should
definitely be avoided if not totally eliminated by
the file system.

Structured file directories and file sharing.

In a traditional file =system, the papping between
the syabolic file name and the corresponding file

wvas accoeplished by means of a single Master File

78

IV. MULTI-COMPUTER NETWORK ENVIRONMENT

Directory. Por modern file systems with thousands of
files scattered over hundreds of volumes, it became
desirable, if not necessary, to form grcugings of
files by means of Secondary File Directcries<Daley
65>. These groupings are often used by the systens to
associate users vwith files they own (User File
Directories). This capability is also available to
the user to arrange his files into further
sub-groups (libraries) or into separate
project-related groupings. Occasicnally it Dbecomes
necessary for a file to ke included in twc cr more
groupings (e.g. accessible by more than cne User
File Directory) with potentially different access
privileges {protection) associated ¥with each
grouping. Many of these features that are relatively
easy to implement in a traditional file system are
complicated by the introduction of 1inderpendent
processors and removable volunmes.

Fail-safe operation.,

Reliable operaticn 1is a very impcrtant requiresent
of a general purpose file system. There are gwmany
known techniques for I/0 error and systematic backup
and salvage procedures that are applicable to this
environment. The important problem associated with
the multi-computer network is that potential error

conditions exist that are not normally fcund in

PROBLERMS ARISING IN NULTI-COMPUTER NETWORK 79

traditioral single computer file systems. For a
single computer system, a processor error {including
unexpected processor disconnection, i.e. Yturning
off") 1is a rare occurrence, Such a situaticn is
remedied by repairing whatever physical hardware is
necessary and then running a special "salvager"
program tc bring the file system into a well-defined
operational state. 1In the environment of a
pulti-computer network, processors may be connected
or disconnected at any time without any awareness by
the other processors. To prevent any inccnsistent
file system operation by the other processors and
eliminate the need for usually time-ccnsureing
salvage techniques, it is necessary to keep the file
syster in a well-defined consistent state at all

times,

80 IV, MULTI-COMPUTER NETWORK ENVIRONMENT

4 File System Design

The purpose of the remainder of this paper is tc arply
the crganization presented in the File System Design Mcdel
section to sclve the rrchblems associated with a
mult i-computer file system network. Discussion of the Access
Methods and Input/Output Comtrol System will be omitted.
This is necessitated for brevity and consideration of the
facts that the Access Me thods are highly application
oriented, as discussed 1in a previous section, and that the
Input/Cutput Control System is usually a basic and ccsmcn
component of all oOperating Systenms, The principal
contribution of this model lies in the structure of the five

other levels.

To present the goals and reguirements of the lLogical
File System in a brief and demonstrative manner, an example
will be used. The reader should refer to Figure 4.2 for the
following discussion. It is important that the peculiarities
of the example, such as the <choice c¢f file pames {e.dg.
WFILE6"™ and "DIR4Y™), not be confused with the general
characteristics of the Logical File Systen.

In PFigure 4,2, there are 12 files 1illustrated.
Associated with each file is an identifier of the form

"YOL1(3)". The wusage of this identifier will not be

LOGICAL FILE SYSTEM DESIGN 8

VOLUME "yQL1"® VOLUME "VQOL2" VOLUME ®VCL3"
(User 1)
pm—m—————— +
IZXCIUIH./I
————————— +———-——-—-_—_-_,—--_.———_—-—-—-.—-——————
] FILE3)-——+ (Ucer 2)
= m———— + mmem——————
] DIR2 jm———— >|(VOL21§1/;<~——+ (User 3)
e —————— T | #=—mm———- +
$—--—=-=-]) FILE2 1 1 DIR3]-—-—+—>11_013J_1/]
| 4 ———— + pm————————— + | demm—m—————
] +—---]| FILEYU | #4=--=-—1] PILES | +~—1 DIRY ;
] [o +] o ———— + F o e e - L 4
1 | #-] FILE1 { | +——1 FILEG6 | +--] DIR3 i
1 1] #———————— +]] #emmmmee—— + | === +
t 11 11 ! | FILES j--+
111 11] - +]
117 - 11 A + i 1
1 1 +=>1/5CL1(2) /1 | +->|/¥0L2{4)/] I |
11 !/////////1 | Y/7/7777771] - +]
I I [e R e g V4 () = 16 W
1 1 l o |
1 1 1 +-=-——==—=] FILEG6 | |
1 1 $rmmmm + | pm———————— +] pm——————— +]
] +~==>1/V0L1({6) /] #--—>|/VOL2{2)/1] #—-——--] FILE2 i 1
i l/////////l !/////////ll] tommmm - + |
[S stttk S Sttt +} | #-} FILE? |
| 111 - +
1 1 11 l
I e + Ui |
oo >IZ_OL1J“1/1 1 1 4= +]
l/////////l I | +=>]/¥0L3(4) /1<-4<
-------- 11 l/////////l
| I I it
(I |
tom———————t 11
1ZVCL1(5) /|K~—=mmmmmm e + | t—m————— +
1/////////1 +-—=>1/3¥0L3{3)/1
"""""" I/////////l
L]

Figure 4,2
Example of Pile Directory Structure (to LFS)

1

u—-—.—.e——-—n—-—-——-—-a—ﬁu'——-u._.-_.——__a—__ £

82 IV. MULTI-COMPUTER NETWORK ENVIRONMENT

discussed until later, in the meanwvhile notice that each
file*'s identifier is unique. The 12 files are divided into 2
types, directory files (i.e. VOL1(3), VOl2(3), VC134{2), and
VOL3(5)) , and data files (i.e. VOL1(2), VOL1(6), VOL1(4),
VOL1(5), VOI2(4), VOL2(2), VOL3{4), and VOL3(3)). The
distinction between directory files and data files is only a
rmatter of usage, the Access Methods may operate upcn a
directory file in the sapse @panner as a data file,
furthermore, all lcwer levels {e.g. Basic File System) treat
all files as data files. This factor will be elaborated
shortly.

It is the stated function of the Logical File System to
map a file name reference into a unique file identifier.
This mapping is a function of the requested file nanme
(symbolic file name path) and a starting pecint (base
directory) in the file directory structure. In Pigure 4,2,
three exasple base directories are illustrated by
associating VOL1(3) with user 1, Vv0l2(3) with user 2, and
VOL3(2) with user 3. Therefore, user 1 references to the
file name FILE2 yields the file VOL1{4).

A pmore complex example can be illustrated by
considering the file VOL3(4). User 3 can refer to this file
under the name FILES8. Alternatively, it can be referenced by
the name DIR3,FILE7. The file DIR3, which is associated vwith
VOL3(5) from user 3's base directory, is interpreted as a

lower level directcry. Then from file VOL3(5), the file name

LCGICAL FILE SYSTEM DESIGN 83

FILE7 is mapped into VOL3(4) as intended. The file VOL3(4)
can be referenced from user 2's base directory as DIR3.FILES
or DIR3,DIR3,FPILE7, for example. From user 1*'s base
directory, the file VOL3({4) can be referenced as PFILE3,
DIR2 ,DIR3,FILES, DIR2.DIR3.DIR3.FILE7, or even
DIR2.,DIR3.DIR4.DIR3,DIR3,.FILE7,

Two important side affects of the base file directory
and file name path facilities are that (1) a specific file
may be referenced by many different names, and {2) the same
name may be used to reference many different files.,

The headings VOLUME *VOL1", VOLUME "VOL2¥, and VOLUME
"Y0L3" are intended to indicate that the 12 files are
scattered over 3 separately detachable volumes: VOL1
{containing VOL1{2), VOL1(3), VYOL1(W), VoL 1(%5), and
VOL1{6)), VOL2 (containing VvO012(2), v012(3), and VCL2(4)),
and VOL3 {containing VOL3(2), voi3(3), VvoL3(4), and
VOL3(5)) . If volume VOL2 were detached from the system, user
1 could still reference VOL1(4) as FILE4 and VOL3{U4) as
FILE3, but could not reference VOL3{4) as DIE2,DIE3, FILES
nor VCL1{5 as DIR2.DIR3.LIR3.FILE6 since the path wculd
logically require passing through volume VOL2. Furtherscre,
user 3 is allowed +to erase {i.e., renmove from file systenm
structure) the file VOL3(4) under the name FILES, assuring
appropriate protecticn rpriviledges, whether or not volume
VOL1 is mounted in spite of user 1's reference to file

VCL3(4) under the name FILE3,

84 IV. MULTI-COMPUTER NETWORBK ENVIRONMENT

The Logical File System could be extremely ccaplex if
it had to specifically consider the physical addresses of
volumes, the device characteristics, and the location of
file directories cn volumes, in addition to its obvious
requirement of searching file directories. These problenms
are eliminated by introducing the file identifier and the
interface with the Basic File Systen,

The Basic Pile System processes requests that specify a
file inp terms of a file identifier conmsisting of a vclume
name and index, such as (YOL3,4), rather than a file name. A
sample call fros the Logical Pile System to the Basic File
System, in PL/I-1like notation, is:

CALL BFS_READ (VOLUME,INDEX,CORE_ADDR,FILE_ADDR,CCUNT) ;
vhere VOLUME is the name of the volume containing the file,
INDEX is the corresponding unique index of the file,
CORE_ADDR is the main storage address into which data is to
be read, FILE_ADDRE is the file virtual memory address fros
which the data is to be read, and COONT is the number cof
bytes to be transmitted. Using these features, the heart of
the logical File System (ignoring opening and closing files,
file access protection, illegal file names, etc.) reduces to
the FL/I-like code presented in Figure 4.3. It is assumed
that the file name has been broken down intc an array of
path element nases {e.g. if name is DIR2.DIR3.FILES, then
PATH {(1)='DIR2?, PATH {2)='DIR3Y, PATH({3) ='FILES?, and

PATH_LENGTH=3), that BASE_VOLUME and BASE_INDEX initially

LOGICAL FILE SYSTEM DESIGK 85

specify the (VOLUME,INDEX) identifier of the base directcry,
and that each entry in a file directory is N bytes lcng and
formatted as indicated in the FILE_ENTRY declaration.

Por efficiency, the names of all files that are
actively in use (usually a small fraction of all files in
the system) are kept in main storage in an Active Nanme
Directory (AND). The AND is searched before accessing the
file directories c¢n secondary storage. Entries are deleted
from the AND wher the corresponding file is "closed" or
"deleted"n,

0f course, the handling of access (protection) rights,
errors, and other responsibilities will make the Logical
Pile System much more coaplex, but it is important tc note
that the design and implementation of the Logical File
System escapes all physical file organization and device

characteristic considerations and complexities.

86 IV. MULTI-COMPUTER N ETWORK ENVIRONMENT

DECLARE 1 FILE_ENTEY,
2 FILENAME CHARACTER (8),
2 VOLUME CHARACTER (8),

2 INDEX FIXED BINARY,

DO I = 1 TO PATH_LENGTH;
DO J = 0 BY N WHILE (FILE_ENTRY.FILENAME ~= PATH(I));
CALL BFS_READ (BASE_VOLUME ,BASE_INDEX,FILE_ENTERY,J*N,N);
END;
BASE_VOLUME = FILE_ENTRY.VOLUME;
BASE_INDEX = FILE_ENTRY.INDEX;

END;

Figure 4.3

Example Procedure to Perform Logical File System Search

BASIC FILE SYSTEM LESIGN 87

Basic File Systen

The Basic Pile System must convert the file identifier
supplied from the Logical File System into a file descriptor
than can be processed by the File Organizaticn Strategy
Module. A file descriptor contains information such as the
volume name, physical location of the file on the vclusme,
and the 1length c¢f the file. Every file =must have an
associated file descriptor, but since the nurber of passive
files (i.e. not actively in use) might be very 1large, the
file descriptors are maintained on secondary storage until
needed (i.e. file is "opened"). 1In organizing the secondary
storage maintenance of the file descriptors there are
several important considerations:

1. There must be a unique file descriptor fcr each
file regqardless o¢f how often the file appgears in
file directories or what symbolic names are used.
This is reguired to maintain consistent
interpretation of a file's status.

2. The file descriptor information for a file must
reside on the same volume as the file. This |is
reasonable since if either the file or its
descriptor is not accessable at some time by the
system (i.e. unmounted) the file cannct be used,

this possibility is minimized by placing them cn the

same voluze.

88 IV. MULTI-COMPUTER NETWORK ENVIRONMENT

3. In the same manner that the logical File Systenm
was simplified by using the facilities of the lower
hierarchical level, the file descriptors should be
maintained in a manner that allows the File
Organizaticn Strategy Module to process thea as
normal files,

These problens are solved by the use of the Volume File
Descriptor Directory (VFDD). There is a single VFDD for each
volume, it contains the file descriptors for all files
residing on the volume. The file descriptors are c¢f fized
length and are located within the VFDD pesiticrnally
according to the corresponding file identifier's index, In
order to exploit the facilities provided by the File
Organization Strategy Module, the VFDD can be prccessed by
the lower levels as a normal file, It is assigned an unigue
file identifier consisting of the volume name and an index
of 1, in fact the file descriptor for a VFDD is stored {when
not in wuse) as its own first entry. Pigure 4.4 gfpresents
diagrammatically the 1logical file structure cf Figure 4,2
with the added detail of the Volume File Descrifptor
Directories and Pile Directory formats,

For efficiency, the descriptor's of all files that are
actively 1in use are stored in ar Active FPile Directory
(AFD). The APD is searched before accessing the Volume File

Descriptor Directcry.

BASIC FILE SYSTEM TESIGN

P ———————————— +
1 o +] e
+-->|4_0L1(VAR +->14 0L1(_l/]
--------- + |1 l/////////l
v0L1(1)| SIOODD> ==t | Ammmmmme e
pmm————— + l
VOL1 (2)] >>>>>>> j——-+#
e ———— +
VCL1(3) | dOPO>D> |-—=mmmmmmmomm e
P +
VOL 1(4) | DOO>PD> |-—m——mmmmm e m e
pm————————— +
VOL 1(5) | >D>>>>>> J==——-+ #—————=—-n +
d————————— + +->1/V¥0OL1(5}/1
VOL1(6) | >>>>>>> |--+ l/////////l
e L T T S B St
VFDD for "VOL1"™ |
i tm———————— +
+--=>|/V0L1(6) /1
17777777771
b ————
G e +
i e et S fommm————— ¢
o> 1230120 /) 1 +=>140L243) /!
-------- VY W77
voz¢(1): >>>3>>> 1--+ I
o + !
VOLZ(2)] >>O355> |-——-+
$m——————— *
VOLZ(3) | DOPOO>>> |-=m=mmmmmmmmmmm e
FPm———————— +
VOLZ(U) | DOO>PD> |====-#¢ t4=mmm—emem +
. + o +->1/¥012(1) /|
VFDD for "voI2" \/77//7/7/771)
tm———————p
P m——— e ————— +
| o —————— +]
*-~>l£!0__1_1/l | 4=
-------- + 1]
VOL3(1)] DOOO5D> | -=+ |
$————————— +]
VOL3 (2)] >>O>>> j-——-+
P ——————— + mm——————
VOL3 (3) | >>>>>>> j-=-—--- >|£3g__1_1/[
Prmmmeo e + l/////////l
VOLI(4) | DOOODD> |-——-# 4——e————ee
e C + [
VOL 3(5) | >OOO>>> ==+ |
pomm + 11
VFDD for "VOL3" T +

+->] /VOL3 (4) /1
V772777771

-t e e s e e e

Fiqure 4.4

|
|
!
| Fm——————— +
I
|
+

89

$m e ——————————— —— +
>} Z¥CL1(3)/ 1
1 e —————————— +
1 | PILE3] VOL3{4) 1|
} pm——————— b ————— +
] | DIR2(D) | VOL2{3) |
] #=——————— omm——————— +
+ } FILE2] VOL1{4) |

P e e e e P ————— +
+ | PILEY4 | VGL1(6) |
] #———————— tm——————— +
| | FILEM | VOL1(2) 1|
] #m—mmmmmmepm————————¢
I
|
]

] t——————— +
+->1£Y0L1(4)/]

l/////////l

P

o ——— +
+=>] ZV¥OL2(3)/ I
] #—mmmemm e +
} 1 DIR3 (D) | YOL3(2) |
] = m——— - +
] | FILES] VOL2(2) 1
] f———————— +
+# | FILE6 | VOL2(4) |

Fm———————— p————————— +

e, — e ——— +

-—=> Z¥CL312)/ !

P e = e +

] DIR4U(D) | VOL2(3) |

$——————— P —— +

| DIR3(D) | VOL3(5) |

tm————————-— pmm———m——— +

}] FILES | VOL3(4) |

o ————— P —————— +

e +
+->| Z¥CL3{5) s 1
] e +
| | FILES6 | YOL1(5) |
i R e pomm e —— +
] | FPILE2 | VOL3(3) |
] tmm——————— P ——— +
] } FILE? | VOL3(4) 1

fomm—— e ——— e —————— +

Example of File Directory Structure (to BFS)

90 IV. MULTI-COMPUTER NETWORK ENVIRONMENT

The File Organization Strategy BModule processes
requests that specify a file jin terms of a file descriptor
{the entry extracted from the VFDD) rather than a file rame
or file identifier. A sample call from the Basic File Systen
to the File Organization Strategy Module, in PL/I-like
notaticn, is:

CALL FOSM_READ{CESCRIPTOR,CORE_ALDR, FILE_ADDR,COUNT) ;
wvhere CORE_ADDR, FILE_ADDR, and COUNT have the sanme
interpretation as discussed above.

The primary function of the Basic File System reduces
to the single request:

CALL FOSM_READ(VFDD_DESCRIPIOR,DESCRIPTOR,M* {INDEX-1),M);
where VFDD_DESCRIPTCR is the descriptcr of the VFDD
associated with the volume name supplied by the Laogical File
System as part of the file identifier, INDEX is frcm the
specified file 1identifier, M 1is the standard length of a
VFDD entry, and DESCRIPTOR is the desired file descriptor.

The Basic File Syster performs several other tasks,
such as protection validation and maintenance of the
core-resident Active File Directory that enables efficient
association between a file's identifier and descriptor for
files that are in use {(i.e. "Yopen"), But, as in the Locgical
File System, the domain of the Basic PFile System is
sufficiently small and narrov that it remains a conceptually

simple level in the hierarchy.

FILE ORGANIZATION STRATEGY MODULE DESIGR 91

Pile Organization Strategqy Modules

The Llogical FPile System and Basic FPile System are, to a
great extent, application and device independent. The File
Organization Strategy Modules are wusually the most critical
area of the file system in terms of overall perfcrmance, for
this reason it is expected that wore than one strategy may
be used in a 1large systes. Only one strategy will be
discussed in this section, the reader may refer to the
papers listed in the References<Corb 62><Mad 68b><Salt
65><Scie 68> for other possible alternatives.

The FOSM must map the logical file address ontc a
physical record address co¢r hidden buffer based upcn the
supplied file descriptor information. In the simplest case,
the mapping could be performed by including a two-part table
in the file descriptor. The first part of each entry would
indicate a contiguous range of virtual file addresses, the
second part of each entry would designate the corresponding
physical record address., It has been assumed, however, that
all file descriptors have a specific 1length, whereas the
mapping table is a function of the file's 1leagth and is
potentially gquite large. Therefore, it is not feasible to
include the entire mapping table as part of the file
descriptor. One of the most poverful file organizaticn
strategies utilizes file maps, Figure 4.5 illustrates such

an arrangement,

92 IV. MULTI-CONPUTER NETWORK ENVIRCNMENT
P + b +
i I 25551 -~-=->] |
1 S A | o +
! l | . 1
Fommmm ¢ I . |
Descriptor i . 1
o +
999§]
e ST S
0
pmm——— + R e bt + P ——— +
] 19330 ===2>] IIIIPD |-=m—mmmmm)]]
1 == tm——————— + prm——————— +
1 I 1 . { 499,000 | . {
tommemem——t i - | $omm—m———— + ! . |
Descriptor | .] #=>]] | .]
e ——————— +] te—me————— + L *
1 2235555 1=+ | . { 999)]
Fm———————— + 1 -) bm—————— +
R e S 3
499,999} 1
b +
o —————— + D . . m——————— +
] IDOOD1===>] IIIPPD> |- D1 OOOO>>> |--+
1 +——— 2 + pm————————— +]
1 i | . 1 tommm———— + ! . |
PO] . I #=>] >>>>>>> |} 1 . 1 1
Descriptor 1 .]) 42 | . |
o + 1 1 . | tommmem - + 1
§ OOOOO>> |-+ | . 1 1 O3> 1 |
S + i o } e —— + |
P ———— i
1 OOOO55> |-+ 1
A | |
} i
+ - -~ + }
] |
| e TR S +
] 249,999,000 | O
] t———————— +] tmmmme——— +
+=>] | +-2] |
o + $————————ey
1 . | ! . 1
1 . | i . |
e + pmm——————— *
249,999,999}] 999) !
P ———— + e —r————}
Figure 4.5

Example of File Organization Strategy

FILE ORGANIZATION STRATEGY MODULE DESIGN 93

In this example it is assumed that each file is divided
into 1000 byte physical records. A file can be in c¢ne of
several states depending upon its current 1length. If the
file*s 1length is 1in the range 1 to 999 bytes, the file
descriptor contains the address of the corresgcnding
physical record. 1If the file is between 1000 and 499,999
bytes long, the file descriptor specifies the address cof a
file map 1located on secondary storage. Each entry of the
file map (assumed to 7rTequire 2 bytes) designates the
physical address of a block of the file (blocks are ordered
by wvirtual file addresses: 0-999, 1000-1999, 2000-2999,
etc.). Furthermore, for files greater than 500,000 bytes,
but less than 250,000,000 bytes, there are 2 levels cf file
maps as illustrated,

This strategy has several advantages. Under the wcrst
conditions of random access file processing only frca one to
three 1I1I/0 operations need to be performed. By utilizing
several hidden buffers for blocks of the file as well as
file maps, the number of I/0 operations required for file

accesses can be drastically reduced.

94 IV. MULTI-COMPUTER NETWORK ENVIRONMENT

Allocation Strategy Modules

The function of allocation and deallocation of blocks
involves several separate factors. Before describing the
implementation of the mechanisms, it is wise to review the
desired characteristics:

1. A file is allowed to grow in size, the FOSM will
request additional blocks £from the ASM for the
data portions of a file or its index tables, as
needed.

2. Common direct access devices contain from 8000 to
32000 separately allocatable blocks, thus it is
not feasible to store all allocaticn infcrmation
in main storage,

3. Since twc independent processors may be writing
new files on the same volume at the same time, it
is necessary to provide interlocks such that they
do not accidently allocate the same block to more
than one file, yet not require one frccesscr to
wait until the other processor finishes.

These problems can be solved by use of a special Volume
Allocation Table (VAT) on each volume. In this scheme, a
volume must be subdivided into arbitrary contiguous areas.
For direct access devices with movable read/write heads,
each discrete position (kncwn as a "cylinder") covers an

area of about 40 toc 160 blocks. A cylinder is a reasonable

ALLOCATION STRATEGY MODULE DESIGR 95

unit of subdivision., Por each <cylinder on the vclume, there
is a corresponding entry in the VAT. Each entry containms a
"bit map" that indicates vhich blocks on that cylinder have
not teen allocated. PFor example, if a cylinder consists of
40 blocks, the bit map in the corresponding VAT entry would
be 40 bits long. If the first bit is a "0", the first block
has not been allocated; if the bit is a "1", the block has
already been allocated. Likewise for the second, third, and
remaining bits.

When the FOSM first requests allccation of a blcck cn a
volume, the ASM selects a cylinder and requests that the DSH
read the corresponding VAT entry into main storage. An
availatle block, indicated by a "O" bit, is located and then
marked as allocated. As long as the volume remains in use,
the VAT entry will be kept in main storage and blocks will
be allocated on that cylinder., When all the blocks on that
cylinder have been allocated, the updated VAT entry is
written out and a new cylinder selected. With this technigue
the amount of main storage required for allccaticn
information is kept +to a minimum (about 40 to 160 bits per
volume), at the same time the numlter of extra I/0 cfperaticns
is minimized (abcut cne per 40 to 160 blocks of allccaticn).

The problem cf interlocking the independent processors
still remains. As 1long as the processors are allocating
blocks on different cylinders wusing separate VAT entries,

they may both proceed uninterrupted. This condition can be

96 IV. PMOLTI-COMPUTER NETWCRK ENVIBCNMENT

acconplished by utilizing a hardware feature kncwn as "keyed
records" available on several computers including the IBHM
System/360. Pach o¢f the VAT entries is a separate record
consisting of a physical key area and a data area. The data
area contains the allocaticn information described above.
The key area is divided into two parts: the identification
number of the processor currently allocating blocks on that
cylinder and an indication if all blocks on that cylinder
have been allocated. A VAT entry with a key of all zerces
would identify a cylinder that was not currently in use and
had blocks available for allocation.

There are I/0 instructions that can be used by the DSH
that vill automatically search for a record with a specified
key, such as zerc. Since the device controller will not
switch processors in the midst of a continuous stream of I/0
operations from a fprocessor {(i.e. "chained I/C commands"),
it is possible to generate an uninterruptible seguence of
1/0 commands that will (1) find an available cylinder by
searching the VAT for a entry with a key of zero and (2)
change the key to indicate the cylinder is in use., This thus

solves the multi-processor allocation interlock prchblem.

DEVICE STRATEGY MCDULE DESIGN 97

Device Strategy Mcdules

The Device Strategy Modules convert ‘“logical I/0
requests” from the File Organization Strategy Modules and
Allocation Strategy Modules into actual computer I/C command
sequences that are forwarded to the Input/Output Control
System for execution.

When a request to transfer a large portion cf a file
{10,000 bytes for example) is issved, it is unlikely that a
significant amount c¢f the needed blocks are in hidden
buffers. It will, therefore, be necessary to request I/0
transfer for several blocks (e.g. about 10 blocks if each
block 1000 bytes 1long). The FOSM will generate logical 1/0
requests of the form: "read block 227 into location 12930,
read block 211 1into location 13930, etc." The DSN must
consiéer the physical characteristics of the device such as
rotational delay and “seek™ position for movable heads. It
then decides upon an optimal sequence to read the blecks and
generate the necessary physical I/0 command sequence
including positicning commands. The Input/Output Ccntrel
System actually issues the physical I/0 request, error
retry, and cther housekeeping as discussed earlier. The
detailed strateqgy for choosing the optimal I/C sequence is,
of course, very device dependent and will not be elaborated

here.

98 IV. MULTI-COMPUTER NETWORK ENVIRONMENT

Cther Considerations

The preceeding sections have highlighted the frameverk
of a file system. There are, of course, many other important
decisions to be made in such a system, such as the format
and organization of tables, error conditions<Lock 68>,
measurement and accounting mecharisams, etc. Cne of the
subtle points will be discussed in this section.

The Basic File System is intended to deal with files
represented by unique identifiers. 1In the specific systenm
presented, the identifier is designated as the tugple,
<volume, index in VFDD>. This representation resulted in a
very efficient mechanism for accessing a file's descrigtor
that avoided much of the time-consuming talkle lock-up.
Unfortunately, this representation is not temporally unique.
Jt has teen assured that when a file is deleted, the VFDD
index position used for that file's descriptor is available
for use by nev files that may be created. This would not bhe
a problem if all instances of the deleted file's identifier
vere removed from the system at the same time, but there may
be more than one path to the £file due to links frcm cther
symbolic file directcries. The strategy used by the Basic
File System did nct provide any convenient mnmeans tc lccate
all references {i.e. links) to a specific file. furthermore,
even if such a mechanism existed, it would not solve the

probler since the reference may exist in a file directory

OTHER CONSIDERATIONS 99

that is located on a volume that is not physically mcunted
or accessable by the system at the time of deleticn.
Therefore, in such an envircnment, it is possible to have
links in directories that identify files that have been
deleted. The danger exists that the following sequence of
events may occur: (1) a file is <created and assigned
identifier, <ALPHA,5>, (2) a link is made to that file, (3)
the file is deleted by its <creator, {§) a new file |is
created and coincidently assigned the identifier <ALPHA,5>,
and (5) the link previously created is used not realizing
that the intended file has been deleted and replaced by scme
other arbitrary file!

Fortunately, this dilemna is not irrevocable, there is
a multitude of solutions. Tvwo simple variations would be (1)
never reuse VFDD entries but allow the file tc ccntinually
grow but become "sparse™ or (2) maintain ccunt of the nusmber
of links to a file and reuse the VFDD entry only when all
links bhave been reroved. A better solution can be fcrmulated
by attacking the original goal of generating truly unigque
file identifiers, The Multics Operating System has similar
requirements, it forms unique identifiers by concatenating
the central rrocessor's vunique serial number with the
chronolog clock time with accuracy in the range of
micreseconds. A much simpler scheme can be incorporated into
the file system by associating a separate counter with each

volurpe, VWhenever a new file 1is created on a vclume and

100 IV. MULTI-COMPUTER NETWORK ENVIRONMENT

assigned a VFDD entry, the value of the corresponding
counter is incremented by one. For the purpose cf the file
system, the tuple, <volume, counter value>, is a unique
identification of a file.

The counter value, which nmonotonically increases,
cannot be efficiertly used as a direct index intc a finite
size file descriptor directory. 2 nminor modification to the
Basic File Systesm design can incorporate the ideas of the
above discussion. The file identifier can be constructed
from the +triple, <volume, VFDD index, ccunter value>, 1In
this context the counter value will be called a "key", since
its sole purpose 1is to verify that the accessed VFDD entry
is correct by attempting to T"unlock™ the entry (i.e.
comparing the key from the VPDD entry with the key from the
symbolic file directory which was copied from the VFDD when
the link was initially established).

The above problems are typical of the factors that must
be considered by file system designers. The general file
system model will very seldom be a complete description of a
specific implementation and it certainly will nct reglace
the peed for systems analysts, but it can save rmany scnths

of the initial design!

101

CONCLUDING COMMENTS

Tc a large extent file systems are currently developed
and implemented in much the same manner as early "horse-less
carriages™, that is, each totally unique and "hand-made"
rather than "mass produced™. Compilers, such as FORTRAN,
vere once developed in this primative manner; but due to
careful analysis of operation (e.g., lexical, syntax, and
semantic analysis, etc.), compilers are sufficiently well
understood that certain software coampanies actually cffer
"do-it-yourself PFORTRAN kits"™. Since mnmodern file systess
often cutweigh all cther operating systes components such as
compilers, loaders, and supervisors, 1in terms of programmer
effort and number of instroctions, it is important that a
generally applicable methodology be found for file system
development.

This paper presents a modular approack to the design of
general purpose file systems. Its scope is broad encugh to
encompass most present file systems of advanced design and
file systems presently planned, yet basic enough to be
applicable tc more modest file systenms,

The file system strategy presented is intended to serve
twvo purposes: (1) to assist im the design of new file
systems and {2) to provide a structure by which existing

file systems may be analyzed and compared.

This empty page was substituted for a
blank page in the original document.

Bar 67

Blei 67

Corb 62

Daley 68

Daley 65

Denn 6%

Dijks 67

Dijks 68

103

REFERENCES

Barrow, D.W., PFraser, A.G., Hartley, D.F.,
Landy, B., and Needham, R.M,, File Handling
at Cambridge University, Proceedings Spring
Joint Copputer Conference, pp. 163-167,
1967,

Bleier, R. E., Treating hierarchical data
structures in the SDC time-shared data
management system (TDMS) , ACH Naticnal
Conference Proceedings, 1967.

Corbato, F. J., et al, The Compatible
Time-Sharing System, PFIT Press, Cambridge,
1962,

paley, R. €., and Dennis, J. B.,, Virtual
memory, processes and sharing in Multics,
Communications of the ACH, May 1968,

Daley, R. ¢C., and HNeumann, P. G., 3 <general
purpose file system for secondary storage,
Proceedings Fall Joint Computer Conference,
1965,

Dennis, J. B., Segmentation and the design of
multi-programmed computer systems, Journal
of the ACHM, October 1865,

Dijkstra, E. ¥., The structure of the *THE?
multiprogramming systeam, ACM Symrcsius on
Operating Systems Principles, Gatlinburg
Tennessee, October 1967.

Dijkstra, E. W., Complexity contzrclled by
hierarchical ordering of function and
variability, Working Paper for the NATO
Ccnference on Computer Sof tware Engineeriag,
Garmisch Germany, Octolker 7-11 19€8.

104

Dixon €7

Henry 69

IBM 68Ba

IBM €8b

Lett 68

Lock 68

Mad €8a

Mad 68b

Mad €9

Nel 65

REFERENCES

DiXOD, P. J.. a.nd Sable' D. J. ’ DH-1 - A
generalized data management systen,
Proceedings Spring Joint Ccaputer

Conference, 1967.

Henry, W.R., Hierarchical structure fcor data
management, IBM Systems Journal, Volume 8,
Ne. 1, 1968,

IBM Cambridge Scientific Center, CP-67/CHS
Program Logic Manual, Cambridge
Massachusetts, April 1968,

IBM Corporation, IBM System/360 Time Sharing
System Access Methods, Form Y28-2016-1
1968,

r

Lett, Alexander S., and Konigsford, William L.,
TSS/360: a time-shared operating systenm,
Proceedings Fall Joint Computer Conference,
1968,

Lockemann, Peter C., and Knutsen, W. Dale,
Recovery of disk contents after systenm
failure, Coppunications of the ACN, 1968.

Madnick, Stuart E., Multi-processor softvware
lockout, ACH National Conference

— e . e S -ttt S s

Proceedings, August 1968.

Madnick, Stuart E., Design strategies for file
systems: a working model, FILE/68
International Seminar on Pile COrganization,
Helsing#gr Denmark, November 1968.

Madnick, Stuart ¥., Modular apprcach to file
system design, Proceedings Spring Joint

Computer Conferemce, 1969.

Nelscn, T.H., A file structure for the cocrglex,
the changing and the indeterminate, ACHM
National Conference Proceedings, August
1965,

REPERENCES

Nel €7

O'N 67

Rand 68

Rapp 6&

Rosen 67

Rosen 69

Rosin €9

Salt 65

Salt 68

Scher 65

105

Nelson, D. B., Pick, R. A., and Andrews, K. E.,
GIM-1 -~ A generalized informaticn marpagenment
language and computer system, Prcceedings
Spring Joint Computer Conference, 1967.

O'Neill, R.W., Experience using a time-shared
multi-programming systen with dynamic
address relocation hardware, Froceedings
Spring Joint Computer Conference, 1967.

Randell, B.,, Towards a methodclogy c¢f cceputer
system design, Working Paper for the NATO
Conference on Computer Software Engineering,
Garmrisch Germany, October 7-11 1968.

Rappaport, R. L., Implementing multi-process
primitives in a multiplexed computer systes,
S.M. Thesis, MIT Department of Electrical
Engineering, August 1968,

Rosen, Saul, Programming Systems and Languages,
McGraw—-Hill, New York, 1967.

Rosen, Saul, Electronic computers: a histcerical
survey, ACM Computing Surveys, Volume 1, No.
1, £. 24, March 1969,

Rosin, Robert F., Supervisory and monitor
systems, ACM Computing Surveys, Vclume 1,
No. 1, pp. 37-54, March 19€9.

Saltzer, J. H., CTSS technical nctes, MIT
Project MAC Report MAC-TR-16, August 1965.

Saltzer, J. H., Traffic control in a
multiplexed computer system, Sc.D Thesis,
MIT Department of Electrical Engineering,
August 1968,

Scherr, A. L., An analysis of time-shared
ccmruter systems, MIT Project MAC BEReport
MAC-tr-18, June 1965,

106

Schw 64

Schw 67

Scien €8

Sea 68

Wilk 69

REFERENCES

Schwvartz, Jules Y,, Coffman, Edward G., and
Weissman, Clark, A general-gurgcse
time—-sharing system, Proceedings Spring
Joint Computer Conference, 1964.

Schwartz, Jules I., and Weissman, Clark, The
SPC time-sharing system revisited, ACH
Rational Conference Proceedings, 1967.

System Technical Manual, Santa
California, August 1968,

Scientific Data Systems, SDS 940 Time-Sharing
N

Seawright, L. B., and Kelch, J. A., An
introduction to CP-67/CMS, 11BN Cambridge
Scientific Center Report 320-2(032, Cambridge
Massachusetts, September 1968,

Wilkes, M.V., Time-Sharing Computer Systeas,
FF. 75-90, American Elsevier ©Publishing
Company, Inc,.,, New York, 1968,

LUNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D

(Security claasification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author) 2a. REPORT SECURITY CLASSIFICATION
Massachusetts Institute of Technology UNCLASSIFIED
Project MAC 2b. GROUP

None

3. REPORT TITLE

Design Strategies for File Systems

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

M.S. Thesis, Alfred P. Sloan Scho

5. AUTHORIS) (Last name, first name, initial)

Madnick, Stuart E.

6. REPORT DATE 7a. TOTAL NO. OF PAGES |7b. NO. OF REFS
October 1970 114 33

8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBERI(S)
Nonr-4102(01)

b. PROJECT NO. MAC TR-78 (THESIS)

9b. OTHER REPORT NO(S) (Any other numbers that may be

° asgigned this report)

d.

10. AVAILABILITY/LIMITATION NOTICES

Distribution of this document is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

None Advanced Research Projects Agency
3D-200 Pentagon
Washington, D.C. 2030]

13. ABSTRACT
This thesis describes a methodology for the analysis and synthesis of modern general
purpose file systems. The two basic concepts developed are (1) establishment of a
uniform representation of a file's structure in the form of virtual memory or segmen-
tation and (2) determination of a hierarchy of logical transformations within a file
system. These concepts are used together to form a strictly hierarchical organization
(after Dijkstra) such that each transformation can be described as a function of its
lower neighboring transformation. In a sense, the complex file system is built up by
the composition of simple functional transformations. To illustrate the specifics of
the design process, a file system is synthesized for an environment including a multi-
computer network, structured file directories, and removable volumes.

14. KEY WORDS

File Systems Operating Systems Modularity Virtual Memory
Data Management Programming

DD .;3%, 1473 (M.LT.) UNCLASSIFIED

Security Classification

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt. wpw Rev. 9/94

