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COMPUTER ANALYSIS OF VISUAL PROPERTIES OF CURVED OBJECTS* 

Abstract 

A method is presented for the visual analysis of 
objects by computer. It is particularly well suited 
for opaque objects with smoothly curved surfaces. The 
method extracts information about the object's surface 
properties, including measures of its specularity, 
texture, and regularity. It also aids in determining 
the object's shape. 

The application of this method to a simple recog­
nition task -- the recognition of fruit -- is discussed. 
The results on a more complex smoothly curved object, a 
human face, are also considered. 

*This report reproduces a thesis of the same title submitted 
to the Department of Electrical Engineering, Massachusetts 
Institute of Technology, in partial fulfillment of the re­
quirements for the degree of Doctor of Philosophy, June 1970. 
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Chapter I The Problem 

Consider the problem of programming a computer to 

recognize objects with smoothly curved surfaces, such as 

the object in the photograph of f lgure 1.1. Images such 

a s t h e s e c a n be d i g i t i z e d by a n l ma g e - d I s s e c to r c a mer a , 

so th a t the p i ct u r e i s rep r es e n t e d b y a r a st er of 

intensities at closely spaced sample points, represented 

numerically in figure 1.2. We will consider a method of 

processing such input with the ultimate goal of 

recogn I zing the object In the image. 

There are numerous more or less adeouate known 

t ec h n i q u es f or c I a s s i f y in g a n i ma g e on c e s i g n i f i ca n t 

features have been extracted from It, but the problem of 

extracting such features from the basic optical data is 

less well understood. The methods which wi II be 

discussed here are "low-level", in that they manipulate 

actua I picture points and try to extract sal lent 

f ea t u r es , r a t he r t ha n w or k I n g w i t h h I g h - I e v e I 

descriptions and attempting to produce an identification. 

It must be recognized, however, that the so­

cal led high- and low-level aspects of vision cannot 

really be cleanly separated. There Is no foolproof 
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Figure 1.1: A Simple Smoothly Curved Object 



Figure 1.2: Sampled Light Intensities from the Apple 
of figure 1. 1 

The intensities in this array have been scaled to be between 
0 and 99 
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completely local way to find features, as there will 

always be ambiguities which can only be resolved through 

the use of context. For example, one must know the I ight 

Intensity (at least roughly) in order to determine 

whet h er a n o b j ec t l s w h i t e or b I a c k, a s a w h i t e obj ec t i n 

v er y d l m I i g ht can ea s i I y re f I ec t I es s I l g ht t ha n a b I a c k 

object in sun I ight. A plum cannot be eas l ly 

d i st i n g u i s he d f r om a n I so I a t ed g r a p e , u n I e s s t he s i z e I s 

known. High I ights on a smooth surface cannot be 

understood unless the form of the Illumination is known. 

The context can of course be determined partly 

from the scene itself. For example, a real scene will 

generally contain surfaces with a wide range of 

reflectivlties. This establ !shes a I lght Intensity 

frame of reference In which the I lghter objects wi 11 

appear white and the darker ones black. One cannot tell 

the size of a white sphere alone in a photograph, but if 

it Is shown next to a tennis ball, Its size is known by 

comp a r I son • ( I t I s po s s i b I e, bu t u n I i ke I y , t ha t t he 

tennis ball Is actually a scaled-up model three feet in 

diameter. This usually happens only on movie sets.) In 

a siml lar manner, the hight ight on a known object gives 

information about tne I ighting which can be used to 

Interpret the high I ights on other objects In the Image. 



So far, the use of context has been considered 

only on the level of object identification. Actually, 

context is even more necessary at the level of finding 

visual parts of objects, such as edges. A I ine-f ind ing 

I I 

program can be saved an enormous amount of work If it is 

told approximately where to look. If a program thinks it 

Is seeing an apple, It can know that a good way to ver lfy 

this hypothesis ls to look on top for a stem, 

A pr o g r a m ca n o n I y ma k e u s e o f t he se c u e s , 

however, If It can pass information resulting from a 

partial Identification back to the low-level feature­

findlng routines. This sort of system shall be referred 

to as "vertical", in the sense that control passes 

frequently between high- and low-level routines, The 

term "horizontal" refers to a system which works In 

stages, each of which produces a more abstract 

representation of the scene. Much of the previous work 

In vision has been of this sort. A typical sequence 

might be to remove noise, enhance features, extract 

features, group them, and then Identity objects. Since 

no provision ls made in a horlzonta I system for passing 

information back down this chain, the system cannot make 

use of context Information obtained from the Image 

itself. 



The methods which w 111 be presented here are 

intended to fit Into a vertical system in two ways. 

First, they can be used to start off a vertical system 

with Information good enough to get it going. Second, 

t hey ext r a c t feat u r es w hi c h a re u s e f u I f or obj ec t 

identification. These features w 111 be extracted in 

such a manner as to a I low easy advantage to be derived 

from context Information. 

12 

This work is Intended to be a step towards making 

computers see. This goa I is Interest Ing for a number of 

reasons. Computers with vision would be useful for 

applications In automation, and would be able to interact 

better with humans. Computer vision may wel I provide 

instructive models for the understanding of human vision. 

The problem is also very Interesting In Its own right, as 

an aspect of the study of Artificial Intel I igence. 
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Chapter 2 Previous Work 

Techniques have been Investigated which could be 

app I led to smooth! y curved objects as a step towards 

recognition. 

2.1 Shape from Shad Ing 

I t I s po s s i b I e to f I n d a great de a I a bout the 

shape of a smoothly curved object from a single monocular 

Image, given a knowledge of Its surface reflection 

properties and the position and nature of the I ight 

sources. Horn [10] generates curves lying on the 

surface of the object by an lterat Ive solut Ion of a set 

of dlfferentla I equations relating shape to the intensity 

of image points. Similar methods have been applied to 

the analysis of lunar topography from Lunar Orbiter 

photographs [14,5]. 

This method requires a uniform object surface. 

Its reflectance must be a smooth function of the angle 

the surface makes with the Incident and exit rays. Any 

marks on the surface wll I disrupt the solutions to the 

differential equations, although very sma II marks can be 





2.2Detection of Optical Edges 

Much research has gone into the detection and 

tracing of contrast edges in an image. These edges can 

be emphasized by differentiation preprocessing 

operations, such as the gradient or Laplacian. 

2.2.1 Plane-surfaced Objects 

Edge detection is particularly attractive for 

plane surfaced objects. Since the edges are straight 
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tines Cthe intersection of two planes), a determination 

of the position of the edges completely specif !es the 

position of the plane surface which they enclose, and an 

edge itself can be located in terms of just a few of Its 

points. 

A program by L. G. Roberts recognizes white plane 

surfaced objects on a dark background [15]. He considers 

objects which can be put together out of a set of given 

sub-shapes, such as rectangular para I le lop ipeds and 

wedges. The image is first differentiated. Lines are 

then found in the resulting picture by a multiple-step 

procedure, first fitting short I ines to local areas, 

e I I m i n at I n g t I n y I oo p s , t he n f 1 t t I n g I o n g er a n d I on g er 



lines to the shorter ones, and finally generating a 

I ea st -m ea n- square I i n e w h i ch i s ta ken to represent the 

orig i na I edge. 
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The next phase Is recognition of polygons In the 

line drawing, followed by the matching of sets of 

po I y go n s a g a i n st the po s s I b I e m ode I s. T he match i n g i s 

f I r st do n e o n a st r a i g ht to p og r a p h I ca I bas I s • T he two­

d l mens ion a I projection of a brick, for instance, 

a e n e r a II y co n t a i n s t hr ee q u a d r I I a t er a I s w I t h o n e c or n er 

point ln common. No such point exists on a wedge. 

Assuming, then, that this point corresponds to the corner 

of a brick, the program can match the other I Ines and 

points in the quadrl laterals to what must then be the 

corresponding I Ines and points of the model. A least­

mean-square error matrix procedure is then used to find 

t he be st b r i c k C I n 3 - spa c e ) w h I ch g e n er a t es the g I v en 

two-d I mens ion a I Ii ne drawl ng. If the I east-mean-square 

error ls smal I enough, the fit Is accepted as correct. 

When a set of I in es are matched by a mode I, the 

model can then be projected back onto the I ine drawing, 

but now with al I of the hidden I Ines present. The model 

ls now "removed" from the II ne draw Ing, which may enta i I 

the deletion of some I Ines, but also may ental I the 

addition of some others. The procedure Is now Iterated 



until all of the lines of the input figure have been 

accounted for. Thus objects are recognized as being 

compounded of a number of the basic building blocks. 
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Roberts depends on a high degree of prec ls ion of 

measurement of the position of the edges, since he uses 

perspective in an essential way. Unfortunately, his 

procedure Is useless for objects lacking straight I ine 

edges. One particularly Interesting aspect of Roberts' 

work is his use of a powerful Internal model of the 

potential object In the image. A slmi lar approach might 

be usefu I for scenes cons 1st Ing of regular smooth I y 

curved objects such as spheres and cylinders, but it Is 

difficult to envision successful results using more 

amorphous forms. 

A program by R. W. Gosper visually locates white 

rectangular parallelepipeds on a black table. Due to the 

high reflectance d lfference between the objects and the 

background, the outer edges are very clearly defined. 

<The program a I so f Inds inter lor edges of the object 

where the contrast between adjacent faces is high 

enough.) The edges are found by an algorithm which scans 

In a I lne perpend icu tar to the edge, and moves th is I lne 

along the edge from one end to the other. From the 

position of the edges In the Image, and the knowledge 
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his use of second-order perspective effects. The use of 

stereo distance determination wou Id also require such 

high precision. Gosper requires only medium precision~ 

His goal is to actually pick up the block, which only 

requires locating It to within a centimeter or so. No 

perspective, stereo, or other second-order effects are 

used, so the calculated position Is not as sensitive to 

small errors In the line position. The programs of 

Guzman and Griffith requ Ire only low precision, except In 

a few parts which make use of the para I lei Ism of two 

I Ines. 

2 • 2 • 2 Cur v ed Edges 

There has been much study of recognition of 

a I p ha nu m er I c ch a r a c t er s • B I a c k c ha r act er s on a w h i t e 

background provide high-contrast edges, and some 

character-recognition programs work by tracing around the 

character's edge. There has been little edge-oriented 

research on Images derived from three-d !mens Iona I 

objects, and the results of the two-dimensional work has 

I I t t I e r e I e v a n c e to t h I s p r ob I em • 

It Is cons Id era bl y easier to f Ind a stra lght edge 

than a curved one, since only two points determine a 
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straight line, and additional points can then be verified 

by very sensitive tests. If many tests are positive 

a long a straight I ine, the ex lstence of the edge can then 

be asserted with a high statistical confidence, as by 

Griffith's programs. These techniques can be used only 

over a short interval for a curved edge. 

2.3 The "Regions" Approach 

Instead of looking for high-contrast edges, some 

pattern recognition methods look for homogeneous areas of 

low contrast. Analysis then proceeds from the shape and 

interelations between these "regions". There are a 

number of techniques for characterizing the shape of a 

region, such as various moments [2], or more comp I teated 

shape descriptors [3]. Kirsch [II] analyzes 

photomlcrographs of eel Is by building a tree structure of 

Image regions with various levels of homogeneity. His 

methods are the close st In the I iterature to those wh !ch 

a r e d ev e I oped in th i s the s I s. 
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2. 4 Textura I lnformat ion 

The optical behavior of an object depends very 

much on the texture of Its surface. The word "texture" 

may refer to either markings or departures from a smooth 

surface, but in either case they must be sma 11 compared 

with the size of the object In order to be considered 

texture. Texure analysis may be done by a wide variety 

of methods, such as Fourier analysts or cross-

c o r r e I a t I on • T ext u r e ha s bee n u s e d t o ad v a n ta g e I n a 

range of st u d i e s, 

types [ 16] or c e I I 

In such area s as rec o g n i t Ion of terr a i n 

images [13]. Different types of 

texture will be discussed further In section 3.9. 
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Figure 3.1: The Intensity-region Tree 
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Chapter 3 Representing an Image as an Intensity-region 

Tree 

3. I The Basic Method Used 

Co n s I d er a n I ma g e, I , d e f I n e d o n a r ec tan g u I a r 

raster of points, so that ICp> is the light intensity at 

the point p. For any given 1 lght intensity threshold t, 

define a set of points S(t) = {plICp)Gt}, the set of 

points of intensity t or greater. Each of the eight 

pictures in figure 3.1 (previous page) shows such a set 

of po I n t s , f or some t h r es ho I d • F or a n y t, t he se t S C t ) 

can be partitioned into disjoint connected subsets Ri (t), 

which w 11 I henceforth be ca 11 ed "reg Ions". Thus: 

S(t) = R 1 Ct>LJR:i.<t>LJ- - -LJRhCt>, 

where RinRj= ~ if lfj, and each Rj is a connected set 

of po 1 n t s • N ot e t ha t S ( t 2 ) CS C t ·, ) i f t 2 > t 1 , so ea c h 

region at threshold t 2 must be a subset of some region at 

t 1 • The regions thus fall naturally Into a tree 

st r u ct u r e b a s ed o n th i s s u b set re I a t I on , a s s how n t n 

f i gu re 3. I • 

Another particularly graph le way of looking at 

the tree Is to visualize the intensity function plotted 



In the form z=f<x,y). SI icing this function with a 

horizontal plane at several threshold levels, the tree 

can be p i ct u red as in f i gu re 3 • 2. An Int ens it y contour 

map of the pear Is shown in figure 3.3 In order to show 

how the reg Ions are actua I I y nested. 

3.2 Quantization 

24 

Choosing a set of threshold levels {ti} Is 

equivalent to quantizing the tight Intensities in the 

Image, in terms of the Information retained In the tree. 

The more threshold levels In the set, the greater the 

depth of the tree generated using these levels. We will 

generally consider threshold sets which are evenly spaced 

tn the log of the light Intensity, although a tree could 

be generated from any arbitrary set of levels. Using the 

log of the 1 lght In tens lty generates a tree whose 

structure remains basically the same If the 11 lum lnat ion 

ls scaled up or down by a constant factor. 

3.3 Geometry of the Tree 

In the I imit of a continuous tree (ln which the 

spacing between threshold levels approaches zero>, the 
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Figure 3.2: The Region Planes Shown as Slices of the Intensity 
Function 

Light Intensity 
z = f(x,y) 
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tips of the branches represent local maxima in the image. 

Beginning at a branch tip and moving along it In the 

direct ion of I ower intensity, the reg ion expands from the 

maximum point to include other nearby points, assuming 

the intensity function Is continuous In that area. Each 

tree branch can thus be thought of as a growing region. 

A fork in the tree occurs whenever two or more of these 

regions combine, forming one new larger region. In this 

case, the branch associated with the sub-region of 

largest area shal I be considered the "main branch", and 

the other branches sha 11 be ca 11 ed "sub-branches". If 

the original image is slightly noisy, then as a region 

"expands" (moving along a tree branch from high to low 

intensity), It wi II engulf large numbers of smaller 

regions which appear ahead of its advancing edge, 

r es u I t I n g I n ma n y s ho rt s u b - bra n c hes o n the t re e • W he n 

two regions of substantial area are combined, It is not 

really important which is considered the sub-branch. 

The highest region on the tree represents the 

brightest point In the image. If the threshold ls 

lowered far enough, all of the regions will eventually 

merge into one region containing al I of the Image points. 

T h i s sh a I I be r e f erred t o a s the "r oo t " of t he tr e e • 
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3,4 Trees with Incomplete Region Information 

In the preceed ing discussion, the regions 

themselves have been considered to be the elements of the 

tree. Let us now consider an abstract tree structure in 

which the elements of the tree are not the regions 

themselves, but nodes containing information about these 

regions. Such a tree shall be called an "Image Tree". 

If each node contains a complete description of the 

region to which it corresponds (that ls, If Rj <tj> Is 

given for al I and tj>, then the tree contains enough 

data to be able to re-construct the Image exactly, to 

within the I imits imposed by the quantization. 

If each node contains only statistics of the 

corresponding region, rather than a complete description 

of the region, then the tree contains less Information 

than the original Image. These are the Interesting 

trees, despite the fact that the Image cannot be 

reconstructed from them. The problem of pattern 

recognition can be viewed as one of throwing away 

Information In a selective way. To go from a picture of 

an apple to the word "apple" represents an enormous 

reduction in Information C"a picture ls worth a thousand 

words"). 
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In general, the nodes may contain any arbitrary 

set of functions of the corresponding region. In 

particular, the ones which will be used are the position 

of the region's center of mass Cxc,Yc >, the area A of the 

region (i.e. the number of points In it), and a measure 

of the second moment about the center of mass, ca I led the 

eccentricity e. 

The eccentricity is defined by 

e = m ~ Cxp-xe>
2 

-;;r-~ 
all pts p 
In region 

e i s I • 0 f or a p e r f ec t I y c I r c u I a r r e g I on , a n d I s I a r g e r 

for a more elongated region. 

The eccentricity ls ad lmensionless quantity, 

which remains thA same If the region size is scaled up or 

down. It represents a normalized moment of Inertia about 

a I lne thru the region center of mass perpendicular to 

the region plane. It can be shown that no region can 

have an eccentricity less than 1.0, and that any shape 

other than a circle has a higher eccentricity. This is 

because a circle has the smallest moment of Inertia for a 

given area. 

For a I by f rec tang I e, the eccentr le ity is 

------~---
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, 
which ls 1.047 for a square, 1.31 for a 2 by I rectangle, 

and 2.23 for a 4 by I rectangle. For a high elongation 

f, e ~ TTf /6. 

Note that this definition of eccentricity is not 

the standard eccentricity of second order curves. The 

eccentricity of an el I !pt lea I reg ion of sem I-axes a and b 

Is 

e = l(a + b~ 
2 b aJ 

which ranges from I to oo. The normal definition of the 

ecc en tr i c It y of a n e I I i p se i s 

J' -(:)''. 
which ranges from 0 to I. 

More complex region statistics could be stored on 

the tree. If the x and y second moments are stored 

separately, then the "dominent axis" thru the region 

center of mass can be eas II y computed. This is a 1 lne in 

the plane of the region points through which the region 

has minimum moment of Inertia. Higher moments could also 

be computed, although their Interpretation In terms of 

high-level shape descriptors ls less clear. More 

complete shape descriptors, such as the results of a 

Med lal Axis Transform [41] could also be used. 



The choice of more complex shape descriptors 

depends on the particular recognition tasks being 

per formed • T he s I mp I e st a t i st i c s of a r ea , c en t er o f 
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ma s s, and ec c e n tr i c i t y ca n y I e I d mu c h u se f u I In f or mat Ion, 

however, and attention will be focused on them. It will 

be seen that they are quite usefu I for the analysis of 

s u r f a c e pr op e rt i e s a n d s Imp I e s ha p es • 

3. 5 Sub-programs of the Image Tree System 

Programs have been written to obtain the image 

tree of a given scene. Measurements from a laboratory 

scene are read into an array by an lmage-d issector 

camera, and a I !st-structure tree ls generated. The tree 

can be printed out, showing the parameters associated 

w Ith ea c h node. Programs a I so ca n graph a ga Inst the 

threshold any region statistic stored on the nodes, along 

some path on the tree from a branch tip to the root. The 

original Image can be displayed, and any arbitrary region 

can be shown superimposed upon It. For more detail about 

these programs, see the append Ix. 
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3.6 The Tree of a Matte Sphere 

Let us consider the tree resulting from an image 

of a sphere with a matte surface. A matte surface 

exhibits a reflectance which ls fairly uniform In all 

directions regardless of the angle of the incident light. 

The image of a sphere is a circle. If we assume the 

r e f I ec ta n c e t o be com p I et e I y u n i f or m , a n d c on s I d er a 

sphere I it from the camera position, then the intensity 

as a function of radius rover this circle ls 

2 I /2 
I ( r ) = [ I - ( r /R) ] , 

where R is the radius of the projected circle, and the 

Intensity is normalized to I at the centra I point. This 

formula simply expresses the fact that the projection of 

a surface seen by a viewer ls proport Iona I to the cosine 

of the angle of the viewer from the normal to the surface 

(see figure 3.4>. Thus, assuming uniform scattering, the 

Intensity of the light Is proportional to the cosine of 

the incident (and viewing) angle. The Intensity value 

actually read from the vidisector is t = C + 32Log<I>, 

where C Is the reading at the central point, is the 

Intensity, and the Log is l:'tase 2. Solving for the region 

area as a function of the threshold t, we get 



Fit',urc 3.1~: Furnula for thE: Rcf]ccta11cc of a Sphere 

The c,phcrc i~' lit from thE' camcrci position. 

8 

I(r) 
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<t-C)/16 
A = B[ I - 2 ] , 

where B is the area of the fu II c ire I e. Its Image tree 

s h o u I d ha v e o n I y a s i n g I e st r a i g ht bra n c h , w ho s e t i p 

corresponds to the central point, Each of the nodes on 

th is branch represents a circular region centered about 

this point. 

A picture of a white sphere on a black background 

was actua I ly read Into the computer from the vid I sector, 

and a tree was generated by the procedure previously 

described. The tree had essentially one main branch, 

a I though there were a few very short sub-branches 

representing regions of very sma II area, which were 

neg I ected. The measured region area and the theoretical 

curve are plotted together In figure 3. 5. 

Note that the measured curve rises considerably 

above the theoretica I curve in the central region. This 

I m p I i e s t h at th e i n t e n s I t y i s no t I i n ea r I n co s i n e o f t he 

Incident angle, but is somewhat convex,. as in figure 3.6. 

The sphere used for these studies had an extremely matte 

surface, and hence a neg I igible high I ight. The sudden 

rise at the end of the curve is due to the threshold 

lowering to below the intensity of points in the black 

bac kgr ou nd. 



Figure 3.5: Region Growth for a Sphere 
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Figure 3. 6: 1\ct uill anJ Assumed Surface H.eflectance 
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3.7 Effect of the Specular Component 

As was discussed in chapter 2, the reflectance of 

a surface can be considered to be a superposition of a 

specular and a matte component. Am lrrored sphere wou Id 

g i v e r i s e to a p u r e spec u I a r re f I ec t i on , w h I c h wo u I d 

clearly be an image of the light source, plus a 

reflection of anything else in the room. If the surface 

is not highly mirrored, this specular component wl II be 

greatly attenuated, so that it can be neglected, except 

for the image of the bright I ight source, which wi 11 be 

significant despite the attenuation. This reflection of 

the I ight source is ca I led a "highlight", and wi 11 

generally be considerably brighter than the surrounding 

points. The magnitude of this hi ghl lght relative to the 

matte component ls a measure of the specularity of the 

surface. 

Consider the effect of this highlight on the 

Image tree, assuming the 1 lght to come from a sma 11 

(nearly point) source. This will produce a small, bright 

spot on top of the loca I maximum In the matte component. 

A s a re s u I t , a I o n g s e ct I o n o f t he t I p of t he tr ee w i I I 

represent a smal I region of fairly constant area. This 

Is a result of the "spike" in the 1 lght intensity 
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function resulting from the smal I, bright highl lght. 

Consider the set of spheres shown in fjgure 3.7. 

They were a 11 painted with a matte white paint, and then 

coated with zero through seven coats of c I ear enamel, 

giving them varying degrees of specularity. A graph of 

the region area vs. threshold Cf igure 3.8) shows the 

smal I flat section of the curve representing the 

highlight, for one of the spheres. Figure 3.9 gives this 

highlight depth has a function of the number of coats of 

laquer, 11 lustrating how the surface specu larlty can be 

measured In a simple manner. The Irregularities In this 

curvE: are probably due to the difficulty In applying the 

coats of laquer uniformly. 

3.8 The Surface Convolution 

Locally, consider a curved surface to be a part 

of a sphere of the same radius of curvature. According 

to classical optics, a spherica I mirror has a foca I 

length of one half Its radius R, and wt II form a virtual 

Image of the light source as shown Inf lgure 3.10. If a 

light of diameter d and distance L from the object is not 

too far off the camera-object axis, then the diameter of 

I ts I ma g e I s a bout 
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Figure 3.7: Specularity Test Spheres 

Coats of laquer: 

0 1 2 3 

4 5 6 7 



Figure 3.8: lllu;;Lraliun (1f Highliglil Depth 

Graph is for sphere 7 of figure 3.7 
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Fi~uH' J.CJ: Hi light Depth vs. Nur.11wr of Laquer Conts 
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Figure 3.10: 1 Image Made by a Spherical Mirror 
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d' = d( I ) 
I + 2 L/R 

<As R-oo, d'- d, as is Indeed the case for a flat 

mirror.) Thus if the size of the I ight source and the 

approximated istance of the object from the camera are 

known, the curvature of the surface can be determined 

near a highlight. Even if the size of the I lght source 

Is not known, this method gives the relative curvatures 

if there are several different hlghl ights In the scene. 

A good way to determine the size of the source ls to take 

advantage of vert ica I ity by know Ing the approximate 

curvature of some object in the Image. 

Many surfaces wi I "smear out" the Image of the 

I lght, resulting in a broader highlight than would be 

gotten from a mirrored surface of equivalent curvature. 

The highlight seen can be considered to be the 

convolution of the Image of the I ight source and the 

"impulse response" of the surface reflectance. If the 

light source is a sufficiently small point, then its 

image can be considered to be an impulse, and the surface 

"smear" function can be read directly from the region 

area vs. threshold curve. 
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3. 9 Tex tu re 

"T ext u re " re f er s t o v a r i at i on s i n th e I i g ht 

intensity which are very small In size compared to the 

objects being recognized. It has two basic causes. 

"V i s u a I t ex tu r e " i s d u e to v a r I at I on s I n the r e f I ec ta n c e 

of the surface, and "tactile texture" is due to minute 

protrusions or depressions superimposed upon a basica I ly 

~mooth surface (the sort of texture one can feel with a 

finger). If the size of the texture Is smaller than the 

resolution with which the Image has been sampled, the 

Intensity variations wil I average out, and the texture 

will have little effect on the tree, aside from affecting 

the surface "smear" function. If the texture Is large 

enough to be d lscer.nabl e, however, It wl 11 produce a 

d I st I nc t Iv e e f f ec t on t he tr ee • 

Texture Is a multl-d lmenslonal feature, and there 

are a correspond inly large number of textural properties 

which could be measured. We are not concerned here with 

producing a complete description of texture, but rather 

with detecting features which might be usefu I in making 

a n o b j ec t I d en t i f I ca t I on • A I t h o u g h s u c h f eat u r e s c a n 

help d iscrlminate between objects, they do not give 

enough information to re-construct the texture exactly. 



45 

3 • 9. I V i su a I Texture 

Consider the two spheres shown in figure 3.11. 

The spheres were painted with a matte white paint, then 

marked with red ink to produce vlsua I texture. The same 

two spheres are shown In red, white, and green I ight. 

Since the red Ink ls highly reflective In the red, and 

very absorpt Ive in the green, these I i~ht Ing conditions 

produce I ight, medium, and heavy texture contrast 

respectively, with al I other factors bein9 held constant. 

Th er e a r e two k i nd s o f text u re, w i th respect to 

effect on the image tree. The right sphere shows sma 11 

d I sc o n n ec t ed I i g ht pat c h e s o n a co n n ec t ed d a r k 

background, and the I eft sphere shows disconnected dark 

speckles on a connected I lght background. A 1 lght spot, 

being a local maximum in the I ight Intensity, wit I 

produce a tree branch. The nodes on thl s branch wt 11 

represent regions the size of the spot, and so wi 11 have 

very s ma I I a r ea • T he I en gt h of the bra n ch w I I I de pend o n 

the rel at Ive brightness of the spot compared to Its 

neighbors, since when the threshold reaches the Intensity 

of the neighbors, the region corresponding to the spot 

wl 11 be swa I lowed up by the larger region surround Ing it. 



Figure 3.11: Texture Test Spheres 

High contrast 
(green light) 

Medium contrast 
(white light) 

Low contrast 
(red light) 
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Light speckles wi II thus produce a large number of sub­

branches whose length represents the Intensity of the 

speckle, and whose "size" (the size of the corresponding 

regions) represents the size of the speckles. The tree 

correspond Ing to the I ight-speckl ed sphere photographed 

In the green I ight (deepest texture) Is shown in 

figure 3. 12. Note the many branches produced by the 

speck I es. 

The number and length of the sub-branches 

provides a measure of the degree of contrast of the 

texture. These quantities are shown In figure 3.13 for 

the 1 lght-speckled sphere under the three I ight Ing 

conditions. Note how these quantlt ies thus provide an 

Index of texture contrast, just as the highlight depth 

and surface smear function provide an Index of 

specularity. Information about the details of the 

texture can also be obtained, up to the limits Imposed by 

the particular shape descriptors used on the nodes of the 

tree. Round speckles wi 11 produce regions of low 

eccentricity, whereas streaks will produce regions of 

very high eccentricity. If the direction of the domlnent 

axis of the region were recorded (correspond Ing to 

record Ing the second moments In the x and y directions 

separately), the dominent axis of the streaked texture 



Figure 3.12: Tree of the Light-speckled Texture Test Sphere 
(green light) 

All sub-branch nodes represent regions of small area. 

-

48 



49 

Figure 3. 13: Nu:nber and .\veraze Depth of Sub-branches for the 
Light-spccklco Texture Tesl Spheres 

Number 
of 

sub-branches 

so 

40 -

30 -

20 

10-

Red light 

Green light 
(high contrast) 

White light 
(medium contrast) 

(low contrast) 

O -+---,-------..---~--~-~------,---1-16---t>- Average depth 
2 4 6 10 12 14 

of 
sub-branches 



50 

c o u I d be d et er m i n ed as we I I • 

D a r k s p e c k I e s w i I I ha v e a d i f f ere n t e f f ec t , 

however. Since they are local minima In the Intensity 

fu net ion, rather than I oca I max Ima, they wi 11 not produce 

branches on the tree, but rather wl 11 produce holes In 

regions. This is shown by the tree of the dark-speckled 

sphere, shown Inf igure 3.14. The only effect of these 

smal I holes is to raise the eccentricity of the growing 

re g i o n , a s s how n i n f i g u r e 3 • I 5, w h I c h s ho w s the ma I n 

branch eccentricity vs. region area for the dark-speckled 

sphere In the three different colored I ights. Since the 

eccentricity change is so smal I, these three curves can 

be com p a r ed t n th I s w a y on I y be ca u s e a II f a c to r s ex c e pt 

the degree of texture were held absoluTely constant - the 

same sphere was viewed from exact Iv the same camera 

position and with exactly The same light source. Nothing 

was moved; only the filter over the llght was changed. 

The difference between the trees for the dark 

speckled and the right speckled spheres (figures 3.12 and 

3.14) exposes a basic asymmetry In the Image tree with 

respect to I ight and dark. This asymmetry ts not just 

conf lned to texture, of course. Loca 11 y br t ght areas 

wl 11 always produce regions and hence tree nodes, while 

locally dark areas wilt always produce holes In regions, 
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Figure 3.15: Eccentricity vs. Region Area for the 
Dark-speckled Texture T-es-t Spher~s 
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altering the statistics of nodes that would otherwise 

ex I st anyway. 

53 

The tree cou Id east ly be extended to find dark 

speckles by generating an "inverted" tree for the area 

Inside each region. An Inverted tree Is a tree In which 

the regions represent image areas less than threshold, 

Instead of greater than or equa I to. This wt I I be 

further discussed in section 5.4.2. 

3 • 9 • 2 Ta ct i I e T ext u re 

Sma 11 bumps on the surface of an object 

essentially produce many tiny "micro-objects" with the 

same surface properties. If the size of these Is below 

the resolution of the Image sampling, the effect wll I be 

only on the surface smear function. If the texture ls 

larger than that, and the surface ls fairly specular, the 

resu It wt II be many tiny hlghl lghts, producing the 

equivalent of a light-speckled visual texture. 

3. 10 Shape 

ways: 

The Image tree carries shape In format ion In two 

in Its form, and In the behavior of the region 
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statistics stored a long its branches. The Interpretation 

in terms of object shape of the simple region sratlstics 

discussed so far depends upon the object being simply 

shaped, since the eccentricity does not give enough 

information to distinguish between different complex-

shaped regions. Nevertheless, much useful shape 

i n f or ma t I o n ca n b e ob ta I n ed ev e n w i t h v er y s I mp I e 

statistics, particularly In a recognition-oriented 

appl !cation in which there can be restrictions on the 

s ha p es c on s Id e r ed • 

3. 10. I The Ma In Branch 

Consider the object shown In figure 3.16. Its 

tr ee I s a s I n g I e ma i n b r a n c h , ju s t a s l n t h e ca s e of a 

sphere Ca crude contour map Is shown In f lgure 3.17>. 

The slmp lest Ind lcator of its shape Is the eccentric lty 

of the entire object, which Is about I .4, c I early 

Indicating it to be quite elongated. The entire curve of 

eccentric tty vs. thresho Id is shown In figure 3. 18. The 

flatness of this curve Ind lcates that the region probably 

doesn't change Its shape very much as It grows, and that 

It has a smooth surface with no significant 

irregularities. This Is not a unique interpretation of 
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Figure 3.16: A Matte-white Painted Squash 



Figure 3.17: Contour Map of the Squash 
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Figure 3.18: Eccentricity Curve of the Squash 
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the curve, but is a reasonable inference given the 

assumption that the object is not highly irregular. The 

bump in the eccentricity curve at the bright end is 

t y p i ca I of a sm a II n e w I y d e v e I o p i n g reg I o,., • S i n c e t he 

s Io p e of the I i g h + i n t en s i t y f u n ct i on I s v er y sm a I I n ea r 

a local maximum, a smal I region about that point will 

tend to have jagged edges, and hence a high eccentricity. 

As the region expands, the Intensity gradient at the edge 

;ncreases. so the edge becomes stra lghter, and the 

eccentricity Is reduced. 

Consider the plot of added region area, shown In 

f i g u r o 3 • I 9. T h i s qua n t i t y shows t he ex c e s s a r ea add e d 

to a reg ion above the sum of the areas of its sub-

regions. Since the intensity measured is a monotonic 

function of the angle of the surface to the camera, the 

added reg Ion area is the projected area ot that part of 

the surface on the object with a particular slope. A 

bump in this curve represents a large area of relatively 

low curvature. The only one In this case is near the 

high I i g ht. 

Figure 3.20 shows what the area added to a region 

looks I Ike - it is the area of a region minus the area of 

al I its sub-regions. Note that the statistics used are 

such that from the statistics of a region A and those of 



Figure 3.19: Added Region Area Curve of the Squash 
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Figure 3.2D: Illustration of an Added Area Region 

Shaded area is region A-B 
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a sub-region B, the stat ist !cs of the d lfference A-8 can 

be computed. CTo compute the eccentricity of region A-B, 

the eccentricity, region area, and center of mass 

position of regions A and B must all be known.) 

Computing information about the shape of such a 

difference region gives information about bulges 

developing in a region, d frection of motion of the center 

of mass, and other properties of all those points on the 

surface within some gi~en range of Inclination to the 

cam era. 

The added area curve would have two peaks for the 

hypothetical object shown In figure 3.21, due to the low 

curvature of the annular reg ion Ind teated. In this case 

the eccentric lty wou Id be constant at 1.0 and the center 

of mass posit Ion wou Id be statfonary, since the regions 

wou Id al I be concentric circles due to the rotatfona I 

symmetry. For the pear-I Ike object In figure 3.22, the 

protrusion wou Id also Increase the added area curve, but 

In this case, the eccentricity would increase as well, 

and the center of mass would shift. 



62 

Figure 3.21: A Symmetrical Object with Two Added Area Peaks 
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Figure 3.22: A Contour l1ap of a llypothcticnl Object with a 
Protrusion 

"Protrusion" 
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3.10.2 Sub-branches 

Protrusions of the sort 11 lustrated in 

figure 3.22 will often produce significant sub-branches 

on the tree. The meaning of a sub-branch must be 

interpreted in conjunction with the Information stored on 

it, and on the ma in branch to which it attaches.. The 

attachment of a protrusion region, for example, wi II 

generally produce a rise in the eccentricity of the main 

region, and a shift in its center of mass. The possible 

interpretations of a sub-branch depend very heav i I y on 

the particular identification for which the tree is being 

used. A discussion of the Interpretation of shape 

information for a particular set of test objects wi I I be 

given in section 4.2. 

3~10.3 Non-interference of Texture with Shape 

Figure 3.23 shows graphs of the region area for 

the speckled spheres of figure 3.11, norma I ized to the 

I ight intensity. These graphs i I lustrate that the basic 

shape-describing parameters are not affected by object 

texture In a significant way. This Is basically due to 

the averaging nature of the region descriptors used. 



Figure 3.23: Region Area Curves for the Light-speckled 
Texture Test Spheres 
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lhis insor;sitivity -:-c tc7+~irai interference is a r;rGat 

i:~,orovcmcn+ over T'.'OSt previous r:icthods used on curved 

o b j o c -:- s , s u c h C1 s i-' c r r ' ':", c! r. a I y t i c c methcc, which is 

corrp !0tel y usc!css in the presence of texture, Edge-

f i n d i n g rn et h cc s 2 r o u I s c co n f u s e d by s ha r o t c x t u re • This 

advantage is very ir·rcr-:ant in the rcconn it ion of real 

objects, cs wi I! oe soen in tho next chaDter, 
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Chapter 4 Use on Real Objects 

4.1 Pruning 

Regions generated by smooth objects with smooth 

surfaces shou Id In theory always have smooth boundaries. 

In an actual Image, however, minute surface fluctuations 

and noise wt 11 cause the edge of the region to be highly 

irregular. If the lrregu rarities are great enough, smal I 

sections of the region wll I be detached; that is, they 

wlll actually form separate small regions. Since the 

area separating these smal I regions from the edge of the 

nearby large reg ion is only slightly d lmmer than the 

region points, these smal I regions wll I join the mafn 

region at a threshold only st fghtly lower than that at 

which they started. They wl 11 thus produce very short 

branches on the image tree, whose regions are of smal I 

area. These regions are essentlally artifacts of the 

partic\Jlar levels at which the threshold is placed, and 

thus have no particular significance. In order to avoid 

the waste of sp.ace and time neeped to store and analyze 

these branches, they can be "pruned" away as the tree Is 

genera t ed • T h I s I s d on e s l mp I y b y rem o v i n g b r·a n ch es 

·'"': 
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Figure 4.1: Apple 





Figure 4.2: Region Area of the Apple 
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Figure 4. 3: Region Ce:1Lcr of Mass of the Apple 
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Figure 4.4: Eccentricity of the Apple 
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Figure 4.5: Tree of the Apple 

Threshold 
23 7 - 3122 

* 
2 44 - 30 91 

* 
251 - 303 6 

******** 
25 8 - 2986 1 

* * 
2 65 - 2918 1 

* * 
27 2 - 2851 1 

* * 
279 - 2755 1 

* * 286 - 2 62 6 1 
******** 

293 - 81 24 00 
* * 

3 00 - 63 2216 II( Numbers give 
Sub-branch * * region area 
representing 307 - 49 2078 in points 
stem hollow * * 

314 - 30 1918 

* * 
3 21 - 3 1715 

* 328 - 1491 

* 
335 - 1140 

* 
3 42 - 720 

* 
3 49 - 331 

* 
35 6 - 86 

* 
3 63 - 25 

* 370 - 12 

* 377 - 8 

* 
3 84 - 2 



level recognition rout Ines cou Id take advantage of th is 

f act to he I p f i n d st em a r ea s • 

Now consider the pear shown Jn figure 4.6. Its 
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tree, shown in figure 4.7, Is topologically similar to 

the tree of the apple, including a small sub-branch with 

s i g n I f i c a n t a r ea • T he g r a p h s of t he v a r I o u s pa r am et er s , 

however, shown In figures 4.8, 4.9, and 4. 10, revea I that 

th is sub-branch has a different Interpretation than in 

the ca s e of t he a pp I e. F I r st , I t s c e n t er o f ma s s s ho w s 

It to be positioned to the left of the main region, 

rather than directly above It. Second, at the point at 

which the two branches join, there is a rise In the 

eccentricity In the case of the pear, whereas there Is 

not In the case of the apple. Finally, the eccentricity 

of the apple just before breakthrough into the background 

was near 1.0, whereas the eccentricity of the pear Is 

about 1.2, which Is significantly higher. Information Is 

also available concerning the surface properties of the 

pear. The pear's highlight shows a w Ider "impu I se 

response", which ind lcates that Its surface, a I though 

somewhat shiny, is not as highly specular as the apple. 
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Figure 4.6: Pear 
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Figure 4.7: Tree of Pear 
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Figure 4.8: Cent~r of Mass of the Pear 
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Figure 4.9: Eccentricity of the Pear 
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Figure 4.10: Re c;n Area of the PC'ar 
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4.3 Usefu I Features for Fru It Recognition 

We wi 11 now attempt to I ist some features which 

can be easily extracted from the Image tree, so that the 

classification of fruit may be systematized. This list 

Is not Intended to be exhaustive. In fact, qu lte to the 

contrary; It is Intended to show that recognition of 

fruit Is possible with only a few very simple features. 

4.3.1 A Sample Set of Fruit 

In the course of studying the Image tree method, 

a large number of fruit were processed to study the 

e f f ec t s on r ea I I ma g e s • In addition, a large number of 

fruit were given ldenti.:al processing under Identical 

conditions one day in order to gather some statistics on 

the various features which can be extracted. Photographs 

of the fruit in this sample set are shown In figure 4.11. 

The fruit used were Bartlett pears, Macintosh apples, 

sweet pears, and oranges. The test I ma ge s Inc I ude f Ive 

v I ews each of the Ba rt I ett pea rs for a tota I of 2 5' two 

views each of the app I es (tot a I I 0) , three of the sweet 

pears (tot a I I 5) I and one each of the oranges. Three 

taped Images of peaches are also Included In the samp I e 

-- -·- - --- --·------



Figure 4.11: The Fruit in the Sample Set 
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set, although they were recorded under d lfferent 

circumstances. Peaches were unavailable at the time the 

sample set was run. 

4 • 3 • 2 S p ec u I a r i t y 

As was discussed in Section 3.7, the "impulse 

response" of the surface can be approximately obtained 

from the region area vs. ·;·hreshold curve at a branch tip. 

We would I ike to characterize this curve In order to 

extract some sign if leant features that are usefu I for 

recognition purposes. One way to do this Is shown in 

figure 4.12. At the branch tip, the second derivative of 

the region area curve is positive due to the specular 

component, but negative due to the matte component. A 

straight I ine fitted to the curve at the Inflect ion point 

Is shown, extended to Intersect the axis. The 

lntersectio-n point Is cal led the "matte intercept". The 

value of the curve above this intercept is used as a 

measure of the width of the surface function. as shown on 

the figure. ft is cal led s, for the hlghl ight "smear" 

width. 

Another measure of the surface function ls the 

amp I i tu d e of t he h i g h I I g ht , a l so ma r ke d I n t he f I g u r e. 



Figure 4.12: Characterizing the Region Area Curve 
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Th is can be measured i n var i ou s ways, but is here 

measured as the amp I itude of the highlight above the 

matte intercept. 

A scatter diagram of the smear widths vs. the 
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highlight amplitude h ls shown in figure 4.13. Note that 

the peaches, apples, and orange are separated very well 

by their high I ight properties, but that the two types of 

pears not only have similar properties, but also show a 

very high degree of variation in these parameters. This 

is partly because their surfaces are ra~her lumpy and 

uneven, which disrupts the hlghl lght region. As wi 11 be 

seen later, this unevenness can be used to help Identify 

them. 

4.3.3 Simple Global Properties 

Two very simple properties of a fruit are its 

brightness and its size. These are both properties which 

are useful only relative to some additional Information 

not contained in the Image alone; specifically, the light 

intensity and the object's d I stance from the camera. If 

this information Is available, these two features can 

contribute recognition Information. These quantities can 

be obtained, in many cases, from other known objects in 



Figure 4.13: Smear \·hdth vs. Highlight Amplil:ude 
for the Sample Set 
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the image. In the experiment described next, the sample 

fruit were al I viewed with the same I ight intensity and 

a t the same d i stance f r om the camera , so that the i r 

intensity and size are comparable. 

The brightness of an object is taken to be the 

intercept of the straight line approximation to the matte 

component with the I ine of zero region area, thus 

estimating the brightness of the surface if there were no 

high I ight. The overa! I area ls estimated by scanning up 

from the root of the tree until the first loca I minimum 

in the slope of the region area curve is found. The 

region area of this node is taken as the object's 

projected area <see ffgure 4.12). 

A scatter d lagram of these two quantities is 

shown in figure 4. 14 for the sample fru It. They are 

clearly not very usefu I ford lstinguishlng between the 

fruit in the sample set. They would be very helpful if 

very large objects such as watermelons were Included, 

however. 

Another optical feature which could be used is 

color, which would be very powerful for fruit. This 

feature was not stud i·ed In our ex per lments, because the 

processing of different color images of the same object 

would have added comp lexitles and delays without much 
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Figure 4.14: Brightness vs. Overall Area for the Sample Set 
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added understanding of the Image tree. 

4.3.4 Overal I Shape 

Our simplest shape descriptor Is just the 

eccentricity of the entire fruit outl lne region, which ls 

shown plotted with the hlghl lght depth In figure 4.15. 

This parameter alone will Identify a banana, which has 

not been Included in the sample set. Note that oranges 

and apples are extremely round. 

4.3.5 Sub-branch Types 

So far, we have used only Information extracted 

from the main branch. Many properties of an object 

produce sub-branches. In understand Ing an image we must 

f tgure out what these sub-branches represent. Some types 

of sub-branches wl 11 now bed lscussed, and a simple sub­

branch classlficatlon algorithm presented. 

4.3.5.1 Tact I le Texture 

The oranges In the sample set supply good 

examples of tact lie texture. A close examinat Ion shows 



Figure 4.15: OhjPct Eccentricity vs. Highlight Depth 
fur the Sample Set 
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the Ir surface to be covered by sma 11 bumps and va 11 eys, 

Since the surface ls also highly specular, this 
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grain Jness produces myriad sma 11 highlights, as d lscussed 

in section 3,9,2. These produce smal I short branches on 

the tree. Textural branches represent regions of smal I 

area, and are near the tip end of the tree, The number 

of sub-branches on a tree Identified as textural by the 

classification algorithm shal I be denoted by the 

variable T. 

4. 3. 5 • 2 St ems 

The Bart I ett pears show large, long, I ight-

col ored stems. The branches produced by these stems are 

easily identified by their small size and large 

eccentricity. 

by s. 

The number of stem branches ls denoted 

4.3.5.3 Protrusions 

A pear Is baslcal ly a spherical shape with a 

protruding bump. These protrusions wt II frequently 

produce a major sub-branch on the tree, as In the case of 

the pear d lscussed In section 4.2. Such protrusions 



generally have a large area, and usually produce a 

sign iflcant jump In the eccentricity of the main branch 

at the point where they join It. The number o-f 

p rot r u s Ions w i I I be d en o t ed b y the I et t er P C u s u a I I y 

0 or I). 

4 • 3 • 5 • 4 St em Ho I I ow s 
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An apple has a somewhat con ica I depression on top 

in the spot the stem is attached. The stem Itself is 

smaller and darker than In the case of the pear. This 

stem ho I low wi II often produce a separate branch on the 

tree, as the light reflected from the back of the hollow 

I s s u r r o u n d e d b y d a r ke r po I n t s on the r I m of the ho I I o w • 

Furthermore, the dark stem wlll often bisect this region, 

produc Ing two sub-branches. Thus a s lgn If leant sub-

branch which causes a drop In the main branch 

eccentricity when It joins Is llkely to be a stem hollow, 

and this Is reinforced If there Is another siml far region 

nearby. The number of stem hollow regions Is denoted by 

the letter H (usually O, I or 2). 



4.3.5.5 Surface Irregularities 

There are frequently a number of branches which 

do not fal I into any of the above catagorles. These 

often are due to irregularities In the surface of the 

object. These irregularities are larger than what ls 

called tactile texture, but smaller than those large 

enough to be called protrusions. The number of such 

branches sha I I be denoted by the I etter I. 

4 • 3 • 6 Su b - b r an c h C I a s s i f i c a t i o n 

A very simple algorithm was written to classify 
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sub-branches, It Is shown In flow chart form In figure 

4.16, The parameter A represents the area of the sub­

branch just before it joins the main branch. The 

parameter .1e Is the change In the eccentricity of the 

main branch at the point where the sub-branch joins. /:J,,e 

is positive if the sub-branch produces an Increase In the 

eccentr le ity, and negat Ive if it produces a decrease. 

The parameter j tells where on the main branch the sub­

branch Is attached, on a scale from o.o (matte Intercept> 

to 1.0 Cfu 11 object>. If the sub-branch joins the ma in 

branch In the hlghl lght region (above the matte 



Figure 4.16: Sub-branch Classification Algorithm 

A = sub-branch area 
~e = main branch eccentricity 

change at join 
j = point of join as a fraction 

between 0.0 (matt intercept) 
and 1.0 (full object) 

0 Classi­
fication onecision 

~15 

~o. s 

enter 

p protrusion H = stem hollow T = texture 

94 

~.10 

<10 

I = irregularity 





96 

Figure 4.17: Object Identification Algorithm 
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having lots of texture branches and being very round. 

A pp I e s s ho w st em ho I I o w s a n d a r e v er y r o u n d • A s t em a r ea 

identifies a Bartlett pear lmmedlately. The two types of 

pears are sorted out on the basts of their eccentricity, 

the number of protrus Ion branches, and the number of 

irregularities. Round objects with essentlally no 

h I g h I I g ht s are pea c he s. 

The flow-chart shown correctly I dent if led a 11 of 

the fruit with the exception of one Bartlett pear (BPI I) 

which was identified as a sweet pear. The pertlnant data 

f or ea ch o f the s amp I e f r u t t a r e s ho w n I n f i g u r e 4 • I 8 • 

Our cone lusion ts that recogn It Ion of Images of 

single fruits is relatively easy, using the Image tree. 

The image tree a I lows the easy extract ion of enough 

Information about surface properties, shape 

Irregularities, and general shape, as well as helping to 

spot specific characteristics such as stem hollows and 

stems, and the procedures which extract this Information 

are reasonably simple. More complex routines which take 

the trouble to look more closely at the tree's statistics 

shou Id be even more re I iabl e. 

The recognition procedures described wou Id be 

d lsrupted (as wou Id many others) by occlusions, shadows, 

missing stems, and object positions which hide 



Figure 4.18: Eccentricity and Sub-branch Types for the 
Sample Set 
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s i g n i f i c a n t f ea tu r e s • M a n y o f the s e p r ob I em s c o u I d b e 

ea s e d by a s u i ta b I e v er t I ca I s y st em , w h i c h c o u I d u s e 

other knowledge to explain and correct changes In the 

image tree. Other problems can be solved without higher­

level aid, simply by making the recognition routines more 

clever. For example, occlusions can generally be 

detected by the way in which two regions connect. Once 

an object is known to be part la I ly occluded, correct ions 

can be made to its region statistics which give an idea 

of Its form, under the assumption that the visible and 

the hidden parts are similar. 

Even In the presence of severe occ I us ion 

problems, the tree stil I gives valuable local information 

about highlights and texture. Although the stems gave 

sign if leant aid in identifying Bartlett pears, the stems 

were not seen In ten of the test cases, yet nine of these 

were correctly Identified. 

4.4 Faces 

This sect Ion illustrates the behavior of the 

image tree produced from a more complex smoothly curved 

object: a human face. It is Included to show another 

example of a real recognition task for which the Image 
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tree is potentially useful. A tree was generated from an 

image of a face, seen fu 11 face and I it trom the front. 

Th is tree Is shown in figure 4. 19. Branches of the tree 

have been labeled with the local maxima on the face to 

w h i c h t he y co r re s p o n d , a n d t h e s ha p es a n d po s I t l on s o f 

these regions Is shown In figure 4.20. These regions 

might be useful for face recognition, at least for the 

simple angle of view and I ightlng considered here. 

Contour maps at a single level of the tree are 

showh In fjgure 4.21, for each of two levels (marked In 

figure 4.19). At level 313, most of the major regions 

seen In the photo appear, with the exception of the lower 

I Ip highlight, which is considerably dimmer. The contour 

map at level 268 Is rather Interesting. Consider not the 

region Included within the contour, but the area 

excluded. This includes most of the mouth, the eyebrows, 

the eye I ids (the eyes are closed), the nostri Is, and a 

shadow area on either side of the nose. These are 

locally dark areas In the Image. These could be Isolated 

by making an Inverted tree - that ls, by making a tree 

with the Image negated. These locally dark areas are 

probably better places to begin face location, since 

there are fewer of them than there are loca I ly br lght 

areas, and they are more prominent. Indeed., there are 



Figure 4.19: Tree of a Face 
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Figure 4.20: Some of the Regions of the Face Tree 

Regions corresponding to boxed nodes 

Face alone Regions superimposed on face 
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Figure 4.21: Slices of the Tree at Two Thresholds 
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experiments which Indicate that as bab I es I earn to see 

faces, they first fixate on the pair of eyes [I, 6]. Once 

a face Is rough I y located, h lg her I eve I rout in es can make 

sense of the locally bright areas with less dlff iculty. 

Figure 4.22 shows a contour map with both levels 

superimposed, with the darK regions shaded. 

N o t e t ha t t he I ma g e t re e qrn ea s I I y b e u s ed to 

Isolate facial features and determine their approx lmate 

position. In order to better characterize their shapes, 

more complex shape descriptors would probably be needed 

than those which have been used so far. The Image tree 

can be used to characterize the shapes of objects, such 

as noses, which have no "hard edge" boundary. This wl I I 

be further d Tscussed In section 5.2.4. 
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Figure 4.22: The Two Contour Maps Superimposed 
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Cha pt er 5 D i sc us s i on 

5.1 Comparison with Previous Work 

The Image tree can now be sl tuated among the 

pattern recognition methods discussed In chapter 2. It 

i s a " r e g i o n s " me t hod , r a th er th a n a n ed g e d e t ec t i o n 

sc heme, a n d does no d i f f ere n t I a t i on or o t her pre -

processing of the image. It extracts Information about 

both the surface properties of an object and about its 

shape. It does not requ Ire any high degree of precision 

of measurement with regard to the exact location of 

spec if ic points In the image, and does nut make any 

essential use of perspective rnformatlon. It does not 

attack prob I ems of the "pars Ing" of an image into Its 

component parts directly, although It may aid this 

process by the way it organ I zes the Image In format ion. 

5.2 Advantages 

The Image tree has a number of advantages for 

pattern recognition over many previously used methods. 
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wi 11 represent the entire scene, and various sub-branches 

w i I I r e p r e se n t s u b - pa r t s , a n d t he n s u b -pa r t s o f th e s u b -

parts. The tree can thus be thought of as prov Id ing a 

range of measurements of d lffering degrees of acu tty. 

These notions of pattern recognition as a sort of 

"measuring" prob I em are due to Kirsch. 

5.2.4 Objects Without Boundaries 

The Image tree Is easy to apply to the 

recognition of objects without real edges or well-defined 

boundaries, such as a nose, or an object I it so that one 

side fades off gradually Into shadow. Assuming the 

object produces a separate tree branch, It can be 

analyzed from the data at the tip of the branch, working 

down towards the base unt 11 the parameters ind lcate that 

the region Is taking in too much extraneous area to be 

usefu I. Thus some lnformat lon about a nose can be 

extracted even though it has no we I I-def lned upper 

boundary, because it has well-defined lower and side 

bou ndar ie s. This simple task can be rather comp I icated 

for edge-oriented procedures, or for programs which are 

regions oriented but which do not make a series of 

related measurements at d lfferent levels, as In the tree. 
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By the same arguments, the tree wll I contain lnformat Ion 

about a smoothly curved object even If It Is partially 

obscured, provided it contains a loca I br lgtitness 

maximum. The procedures which analyze the tree must be 

a b I e to d et ec t t h e oc c I u s I o n a n d to tr y to c om p e n s a t e f or 

It. 

5.3 Problems 

The separation of coarse and f lne Information Is 

not alw.ays maintained by the tree, unfortunately. When 

branches representing two different objects merge, 

Information about those parts of the object not yet 

fflled out by the region may be lost. If a small 

hlghl lght area is swallowed up by a larger region before 

achieving much depth In Its own right, the Information 

that wou Id have been obtained about the local surface 

properties of that area are swamped out. When a region 

representing some object In a scene joins with a larger 

region representing the background, the Information about 

the smaller object Is lost. One case In which this can 

occur Is when a dark object Is on a llght background, or 

near a I lghter object. Or, alternatively, a region may 

extend beyond the boundaries of an object on one side 
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before reaching the boundary on the other side, possibly 

due to an over a 11 gradient In the I ight lntens lty. This 

sha 11 be referred to as a "breakthrough". Although It 

c a n u s u a I I y b e ea s I I y de t ec t ed b y I t s e f f e ct on th e 

region parameters (sharp rise In the region area and 

eccentricity, and sudden shift In the center of mass>, It 

stl 11 means a loss of in format Ion about the s Ide of the 

o b j e ct w h I c h the reg I on ha s not "t I I I ed ". 

5.4 Further Considerations 

5.4.1 Other Statistics 

So far region shape has been characterized by the 

region area, eccentricity, and center of mass position. 

There are many other region statistics which cou Id be 

used to characterize the regions, depend Ing upon the 

particular recognition task at hand. 

One very simple add It Ion which could be made 

would be to compute the x and y second moments 

separately, so that the major axis of the region could be 

found. This is the ax Is about which the region has a 

minimal moment of Inertia. This would allow the tree 
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predicate, there ls always the possibility that a high 

eccentricity may be due to a perfectly round region, but 

with a large hole In the middle. 

In general, any sort of shape-descriptor 

algorithm can be appl led to the regions, such as the Blum 

algorithm (Medial Axis Transform) [3]. bel leve, 

however, that one of the strengths of the Image tree as a 

method is to al low easy recognition with relatively 

simple region shape descriptors. Using very comp I icated 

descriptors not on I y wl 11 consume a great dea I of 

computer time, but w 111 a I so complicate the ana I ysl s 

required of the higher-level programs. A more detailed 

shape analysis should probably be reserved for cases in 

which problems arise In the simpler procedures. 

5. 4. 2 R eg I on - ho I e Du a I i t y 

Tbe tree procedures are not symmetric with 

respect to 1 lght and dark, as has been pointed out 

earl ler. Thus a black spot on a I lght object ls not 

pe r c e I v ed a s a n o b J ec t , bu t a s a ho I e I n a re g I o n • 

Furthermore, these holes are not detected by the 

programs, and lnsuff le lent In format Ion Is stored on the 

tree to tel I that they are there. Thus the effect of a 
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hole Is to decrease the region area, and Increase the 

region eccentricity, but it Is not detected as a hole per 

s e • I n t he d et ec t i on of text u re , b I a c k s p ec k I e s have a 

completely different effect than white speckles. An 

object is harder to recognize on a white background than 

on a dark one. 

Th•is is not a deslreable situation. An object 

should be easy to recognize on any highly contrasting 

background, regardless of whether It Is darker or I lghter 

than the object. A possible solution would be to make 

two trees, one with the Image negated. Thus one wou td be 

the tree already discussed in detail, and the other would 

be a tree of dark regions on I ighter backgrounds, In 

which the tips of the branches would represent locally 

dark areas, rather than locally I lght ones. For the face 

c on s I d ere d i n sec t I on 4 • 4 , t he s e d a r k b r a n c h es wo u I d 

represent significant locally dark areas, such as the eye 

sockets, the nostrfls, and the dark areas a tong the side 

of the nose. The eye sockets and the nostr I ls, In 

pa r t i cu I a r , a re pr ob a b I y v er y I m po rt a n t I n o r i e n t i n g 

visually with respect to a face. 

lhere is no reason why this procedure should not 

be carr led to more than one I eve I. Whenever a region Is 

Isolated, the contiguity scan routines could be called 



again, but scanning only inside the region, and with 

the Ir sense inverted, so that they wou Id find holes. 

I 14 

Sm a I I ho I es co u I d th en b e e I i m I n a t ed , b u t i f t he re we r e 

a n y I a r g e on es, the y w o u I d be not ed o n th e tree • 

Furthermore, the sense cou Id then be Inverted once more, 

and the contiguity scan tried once again to find 

additional light regions Inside the dark holes. 

T h i s pr oc e du re wo u I d s u cc e e d i n f I n d i n g a d a r k 

apple on a light background. The apple could be isolated 

by a n i n v er t ed r u n o f the t re e pr oc ed u re s, a n d the n the 

normal procedure could be carried out on the region thus 

I so I at ed. 

5.4.3 Complex Lighting 

In the above discussion, It was assumed that the 

lllumlnatlon was coming from a single point source. 

Changing the source of the Illumination will change the 

propert !es of the h igh1 lg ht region, but wl 11 not alter 

the basic properties of the tree. If the Illumination Is 

f r om a d i ff u s e sou r c e , s p e c u I a r I t y i n f or m at I on i s I o st • 

Light from several point sources wl II produce multiple 

hlghl ights. If the high level parsing routines know 

about the I ight source, they can compensate for these 
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effects. By making hypotheses about the objects in the 

image, these routines could equally well find out about 

the I i g ht I n g f r om t he i m a g e • 

5.4.4 Isolations of Regions 

A by-product of the Image tree Is the !so lat ion 

of regions which can be used as data for other feature 

extract Ion programs. One might, for ex~mple, take a 

fairly large region around the highlight, subtract out 

the small region containing the highlight Itself, and 

hand this d lfference region to a textural ana ly5ls 

program. This program cou Id use this region to extract 

texture Information In various ways, such as performing a 

Fourier transform, autoconvolution, or slmi lar 

processing, obtaining Information about surface speckles 

not av a II a b I e d i r ec t I y f r om t he tr e e • U s I n g a re g i o n 

generated from one of the tree nodes helps assure that 

the portion of the Image upon which the analysis ts 

performed Is a su !tab le one. 
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5.5 Summary and Conclusions 

A pr oc ed u r e ha s b e e n o u t I I n e d f or pr oc es s i n g 

images of three-d lmenslona I objects with smoothly curved 

surfaces. The method Is able to extract some information 

about the surface properties of the objects, such as the 

texture, specularity, and surface lrregu lar tty. 

Information about shape Is also extracted. The 

procedures are lns~nsltlve to noise and distort Ion, and 

can be used to perform real recognition tasks. It Is 

hoped that th is work wi 11 prov Ide a stepping-stone In the 

challenging study of computer vision. 



Append ix: Descr ipt Ion of Al gor lthms 

This appendix contains an outline of the 

algorlthl'Tls used in the tree generating program. 

I 17 

T he I ma g e t re e I s g e n e r a t e d o n e th re s ho I d I ev e I 

at a time, starting at the highest level (branch tips>. 

At each level, the image ls scanned, and the points above 

t he t h re s ho I d a re ma r ke d I n a s c r at c h a r r a y • T h i s 

scratch array is then scanned for marked points. When one 

ls found, a contiguity routine Is cal led, which visits 

a II marked points which can be reached from the start via 

a connected path. The marks are erased by this routine 

a s i t go es , a n d st a t I st i c s a re ke pt o n the r e g I o n t h u s 

generated, such as the sums of the x and y coord lnates of 

the points, and the sum of the squares of the x and y 

coordinates (used to compute the center of mass and the 

eccentricity). A tree node ls then made up for the 

region, and the scan for marked points continues. A 

s p ec i a I ma r k I s I e ft I n t he sc r a t c h a r r a y f or ea c h 

region. When this mark ls encountered during the scan 

at the next level, it is looked up on an association 

I 1st. This establ !shes the I ink between a region and 

the regions wt"ltch are a subset of it at the previous 
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level - i.e. between a node and Its sub-nodes. 

The contiguity scan Is the most complex program. 

It works by leaving directional pointers In the scratch 

array. These are three-bit codes denoting one of the 

eight possible neighboring points. The contiguity scan 

Is always started at a point which is on the bottom edge 

of the region. It traces along this edge to the right by 

moving from one marked point to the next, but always 

keeping an un-marked point to the right side, As It 

goes, it erases the marks, so that for a region with 

smooth boundaries. it will fol low a spiral path to 1·he 

center, "eating up" the marks as It goes, I Ike a lathe 

with the tool continually advancing into the work. 

As the contiguity routine scans, ft lays down 

back pointers in the scratch array which enable It to 

retrace its path back to the start. If a dead e-nd Is 

reached (no more marked neighbors), it traces back along 

th i s pa t h , I oo k I n g f o r ma r ke d po I n t s to th e r i g ht • T h er e 

c a n be no ma r ke d po I n t s on t he I e ft s I d e w h I I e 

b a c kt r a c k i n g , s I n c e t h I s wa s the r I g ht s l d e on the way 

out, and the outgoing scan stayed as far to the right as 

possible. If a marked point Is found on the backtrace, 

It Is rep laced with a po Inter to the adjacent path 

a I r e ad y tr a c ed o u t , a n d th e n a n e w pat h I s t r a c ed a s I f 
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th is were a new starting point. When the backtrace 

reaches the original starting point, the contiguity scan 

is completed. The effect of this algorithm Is to 

construct a tree of pointers In the scratch array, with 

the starting point at the root. All points which can be 

reached via a connected path from the starting point wi II 

be a part of this tree, an example of which is shown In 

f i gu re A I • 

An algorithm developed by S. Bryan [4] could 

speed the contlgu ity scan considerably. It enta 11 s 

coding the scratch array I lne by I lne as str lps, as in 

figure A2. Each strip is specified by its y coord lnate, 

and the x coordinates of Its left and right end. The 

contiguity of these strips Is then checked, rather than 

operating on th~ Individual points. This algorithm not 

only avoids scanning the entire scratch array, most of 

which Is blank, but also requires fewer operations to 

find all of the contiguous points, since they are 

gathered Into groups. It thus takes advantage of the 

fact that regions produced by rea I Images, as opposed to 

random noise, wi 11 tend to have the points clustered into 

bunches. 

A number of other programs were written In the 

course of thl s research. In order to make It convenient 



Figure Al: The Tree of Pointers Layed Down by the Contiguity 
Scan Algorithm 

(Shown for an arbitrary region) 

• =marked point, included in region 

\ = pointer in direction of root 
(arrowhead not shown due to small size) 

~RDot of tree 

120 
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Figure A2: A Region Coded as Strips 

The same region is used as in figure Al 

...... 

...... .... 
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to study a large number of trees, programs were written 

to print out the trees on the I ine-printer, with the 

significant parameters associated with each node. 

Furthermore, a program was produced to plot any parameter 

;vs. threshold a long any set of branches of the tree. 

This program was used to produce the graphs In this 

pa per. 

Programs were also written to display an 

intensity modulated picture of the image, using the seven 

Intensity levels of a DEC 340 display. Since our 340 has 

no fast raster mode, a display compiler was written which 

generates ad !splay I ist In Increment mode, allowing 

fairly large images to be shown virtually flicker-free. 

Other routines enable any arbitrary region in the image 

to be shown superimposed on this picture. The pointer 

method used In the cont igu tty scan was actually written 

for these display routines, which werE' developed first. 

The existence of this program made the writing of the 

contigu lty scan very simple, which Is one reason why 

faster algorithms such as the Bryan algorithm were not 

sought. 

A large amount of code was required to back up 

the programs mentioned above. This Includes a dynamic 

storage al locator for manipulating a large number of 
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arrays of changing size, display and plotter routines and 

other 1/0 routines, routines for manipulating list 

st r u ct u r e, and rout in es w h i ch ma p a r b i tr a r y I oc a I 

procedures over an array. The programs comprise over 

5200 words of PDP-10 MIDAS assembly language code, not 

including about 1700 words of fixed buffer and tables, 

and not including the dynamica 1 ly a I located array and 

I ist structure area, which can grow to an arbitrary size. 

Also used was the CNTOUR program [ 12], which 

draws int ens lty contour maps of an Image, and whl ch was 

written early in the course of this research, before the 

exact area of study had been decided upon. 



124 

B I b I i og r a p h y 

I. Ahrens, R., "Beitr§ge zur Entwlcklung des 
Physiognomie - und Mimikerkennis", z. f. Exp. u. 
angew. Psychol., 1954, 2,412-454,599-633. 

2. Alt, F. L., "D igltal Pattern Recognition by Moments, 
Journal of the Assoc iatlon for Computing 
Machinery 9, 2 (Apr i I 1962), (pages 240-258). 

3. Blum, H., "A Transformation for Extracting New 
Descriptors of Shape", Mode Is for the Percept Ion 
of Speech and Visual Form, W. Wathen-Dunn CEd.), 
MIT Press, Cambbidge, Mass., 1967, (pages 362-
3 80). 

4. Bryan, Sam, The Strip Slobber: A Scene Analysis 
A Igor lthm, Nat Iona I Bureau of Standards, 
Washington, D.C. 

5. van Diggelen, J., "A Photometric Investigation of 
the Slopes and the Heights of the Ranges of HI I ls 
In the Maria of the Moon", Bui let In of the 
Astronom lea I Inst ltutes of the Nether lands, 
Vol. II, 423 (July 26, 1951). 

6. Gibson, Eleanor J., Principles of Perceptual 
Learn Ing and Development, Appleton-Century 
Crofts, 1969, New York. 

7. Gray, S. B., Local Properties of Binary Images In 
Two and Three Dimensions, Information 
International, Report, 1/21/70. 

8. Griffith, Arnold K., Computer Recogn It ion of 
Pr i s ma t i c So I id s, M • I • T • Ph. D • The s I s ( EE ) , Ju n e 
1970. 

9. Guzman-Arena, Adolfo, Computer Recognition of Three-
Dlmensional Objects In a Visual Scene, MAC-TR-59 
<Thesis), Project MAC, December 1968, 

10. Horn, Berthold Klaus Paul, Shape from Shad Ing: A 
Method for the Dedermlnatton of the Shape of a 
Smooth Op a q u e 0 b j ec t fr om 0 n e V I e w, M • I • T • 
Ph.D. Thesis, Electrical Engineering, June 1970 



11. Kirsch, Russel I A., Computer Determination of the 
Constituent Structure of Biological Images, 
National Bureau of Standards Report 10173 

12. Krakauer, Lawrence J ., CNTOUR, A. I. Memo I 13A, 
January 1968. 

I 3 • Pre w i t t, J • M • S • , and M end e I so h n , M • L _. , The 

12 5 

An a I y s i s of Ce I I Im a ge s, A n n a I s of t he N e w Yo r k 
Academy of Sc lenc e 128 (January I 966), 
(pages 1035-1053). 

14. Rlndflelsch, T., Photometric Method for Lunar 
Topography, Jet Propulsion Laboratory Technica I 
Report 32-786, September 15, 1965. 

15, Roberts, L. G., "Machine Perception of Three-
d imensional Solids", Optical and Electro-optical 
Information Processing, James J. Tippe~t et al 
(ed.>, The MIT Press, Cambridge, Mass. ( 1965), 
(page 159) • 

• 
16. Rosenfeld, A., "Automatic Recognition of Basic 

Terrain Types from Aerial Photographs", 
Photogram. Eng. 28 <March 1962), (pages 115-132). 



UNCLASSIFIED 
Security Classification 

DOCUMENT CONTROL DATA - R&D 
(Security c/aaaitlcation of title, body of ab•tract and lndexinll annotation muat be entered when the overall report i• classified) 

1. ORIGINATING ACTIVITY (Corporate author) 2a. REPORT SECURITY CLASSIFICATION 

Massachusetts Institute of Technology 
UNCLASSIFIED 

Project MAC 
Zb. GROUP None 

3. REPORT TITLE 

Computer Analysis of Visual Properties of Curved Objects 

4. DESCRIPTIVE NOTES (Typa of report and lnc!ualve dalea) 

Ph.D. Thesis, Department of Electrical Engineering, June 1970 
~- AUTHOR(S) (Last name, first name, initial) 

Krakauer, Lawrence J. 

5. REPORT DATE 7•. TOTAL NO. OF PAGES I 7b. N0.1~ REFS 

May 1971 126 
ea. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(SI 
Nonr 4102(02) 
b, PROJECT NO. MAC TR-82 (THESIS) 

9b. OTHER REPORT NO!S) (Any other number• that may be 
c. 

•••iQnad thla report) 

d. 

10. AV AILABI LI TY I LIMITATION NOTICES 

Distribution of this document is unlimited. 

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY 

None 
Advanced Research Projects Agency 
3D-200 Pentagon 
Washington, D.C. 20301 

13. ABSTRACT 

A method is presented for the visual analysis of objects by computer. It 
is particularly well suited for opaque objects with smoothly curved surfaces. 
The method extracts information about the object's surface properties, including 
measures of its specularity, texture, and regularity. It also aids in determining 
the object 1 s shape. 

The application of this method to a simple recognition task -- the recogn i ti on 
of fruit -- is discussed. The results on a more complex smoothly curved object, 
a human face, are also considered. 

14. KEY WORDS 

Computer Intel] igence Thinking Machines Computer Vision 

J 
Pattern Recognition Machine Vision 

DD FORM 
1 NOY H 1473 (M.l.T.) UNCLASSIFIED 

Security Classification 


