

This blank page was inserted to presenie pagination.

DYNAMIC RECONFIGURATION IN A MODULAR COMPUTER SYSTEM

Roger R. Schell

Jmw 1971

PROJECT .'1AC

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Cambridge Massachusetts 02139

2

ACKNOWLEUGEI-"illlJT

I especially express my appreciation to my thesis

supervisor, Professor Jerome H. Saltzer, for the substantial

time and effort he spent supervising this thesis, and in

particular for his helpful comments which greatly improved the

presentation of this thesis.

Thanks are also due my readers, Professors F. J. Corbat6

and R. M. Fano, for their review and comments.

Appreciation is extended to Project MAC for making the

Multics system available to the author both for conducting the

research reported in this thesis, and for composing and

reproducing this thesis document on-line.

A special note of thanks is due my wife, Lavonne for her

assistance in typing this thesis, and for her patience and

understanding throughout my years of graduate study at N.I.'.l.'.

Work reported herein was supported in part by
Project MAC, an M.I.T. research project sponsored
by the Advanced Research Projects Agency, Depart­
ment of Defense, under Office of Naval Research
Contract Nonr-4102(01}.

3

DYNAMIC RECONFIGURATION IN A MODULAR COMPUTER SYSTEM*

Abstract

This thesis presents an orderly design approach for
dynamically changing the configuration of constituent
physical units in a modular computer system. Dynamic re­
configuration contributes to high system availability by
allowing preventive maintenance, development of new operat­
ipg systems, and changes in system capacity on a non­
interference basis. The design presented includes the
operating system primitives and hardware architecture
for adding and removing any {primary or secondary)
sborage module and associated processing modules while
the system is running. Reconfiguration is externally
initiated by a simple request from a human operator
and is accomplished automatically without disruption
to users of the system. This design allows the modules
in an installation to be partitioned into separate non­
interfering systems. The viability of the design approach
has been demonstrated by employing it for a practical im­
plementation of processor and primary memory dynamic re­
configuration in the Multics system at M.I.T.

*This report reproduces a thesis of the same title submitted
to the Department of Electrical Engineering, Massachusetts
Institute of Technology, in partial fulfillment of the re­
quirements for the degree of Doctor of Philosophy, May 1971.

4

TABLE OF CONTENTS

SECTION PAGE

Table of Contents 4
Illustrations 8

1. INTRODUCTION 9

o. Modular Computer Systems 9

1. Statement of the Problem 10

1. The Environment 10

2. The Nature of the Problem 12

2. Background 15

3. Method of Presentation 20

2. SYS'l'Ell STRUCTURE 22

o. A General Model for Reconfiguration 22

1. Resource Management Hodel 22

2. Reconfiguration Model 28

3. Design Approach for Reconfiguration 34

1. Hodular Characteristics of System 37

1. Processing Modules 39

2. Memory Modules 40

2. Structure for Intermodule Communication 42

1. Intermodule Links 43

2. Module Interface Ports 44

3. Summary of System Structure for Reconfiguration 46

5

SECTION PAGE

3. CHANGING MODULE UTILIZATION 48

o. Dynamically Changing Resource Usage 48

1. Storage Resource Management Environment 50

1. Allocation With Unlimited Storage Capacity 51

2. The Storage Utilization Problem

3. The Effect of Limited Storage Capacity

4. The Storage Allocator

2. Removing a Storage Module

l. Freeing Demand Hanaged Storage

2. Freeing Wired Storage

1. Relocating Wired Information

2. Avoiding Conflict

3. Self-reference Problems

4. Implications of External I/O

3. Freeing a Storage Module Used as a Relay

4. Sununary of Storage Module Removal

3. Adding a Storage Module

4. Removing a Processing Nodule

s. Adding a Processing Module

6. Summary of Changing Module Utilization

4. CHAl~GING THE HARDWAP.E COlJFIGURl~l'ION

53

57

58

63

70

73

74

76

80

81

85

87

88

90

96

99

101

o. Dynamically Changing Physical Module Configuration 101

1. Changing Module Availability 104

6

SECTION

2. Changing Module Binding

1. Storage Module Configuration

2. Processing Module Configuration

3. Partition-system Initialization

4. Review

5. l'HE MULTICS IMPLE.MEN'rATION

o. Background

1. Removing a CPU

2. Adding a CPU

3. Removing a Memory

4. Adding a .Memory

s. Bxperience With the .Multics Implementation

6. CONCLUSIONS

o. Summary of Results

1. Implications

1. Module Interchangeability

2. Operator Participation

3. Automatic Configuration Control

4. Resource Utilization

2. Additional Research

3. Remarks

PAGE

109

116

118

123

125

127

127

133

139

143

148

150

153

153

154

155

156

156

157

158

160

13Il3LIOGRt1.PHY

Appendix I

7

Ilultics Operator Instructions

Summary of ilultics Supervisor CC1anges
For Eeconfiguration

Appendix III -- Analysis of Current 1 J.ul tics Hardware
For Reconfiguration

1\ppendix IV IIultics Hardware Design Proposal
For Reconfiguration

lGl

163

17 0

174

183

8

ILLUSTRATIONS

FIGURE

2.1 Fixed Configuration Resource Model

2. 2 Hodel of Resource Management

2.3 Usage State Transitions

2.4 Resource State Transitions for Reconfiguration

2.5 Typical Module Interconnection Network

3.1 Usage State Transitions of Logical Resources

3.2 Address Translation for Paging

3.3 Address Translation for Segmentation

3.4 Example of a Storage Map

3.5 Example of Making Storage Unavailable

3.6 Environment for Hoving Wired Storage

3.7 Environment Before Relocating Page Table

3.8 Environment After Relocating Page Table

4.1 Usage State Transitions of Physical Resources

4.2 Operator Interface Matrix

4.3 Operator Interface Matrix Schematic

4.4 Typical Intermodule Communication

4.5 Disabling Intermodule Communication

4.6 Enabling Intermodule Communication

4.7 Hodel of Processing Module Port

4.8 Hodel of Processing Module

5.1 Multics Hardware Installation

PAGE

25

27

31

32

45

49

56

62

67

68

75

82

83

103

106

108

112

113

115

117

121

128

9

CHAPTER ONE

INTRODUCTION

1.0 Modular Computer Systems

The digital computer has evolved from a single processing

unit dedicated to one sequential task at a time to the modern

computer utility simultaneously serving many users. As the

size and complexity of computers have grown, a modular

hardware design has commonly been employed. As with other

utilities {such as electrical power and telephone services),

the computer utility must be able to change its hardware

configuration without disrupting the services provided. This

thesis presents an abstract model of reconfiguration

operations, and thus provides a discipline for designing

operating systems and hardware modules for a computer utility

so that the configuration of constituent modules can be

dynamically changed. The research reported here also includes

a practical processor and memory module reconfiguration

capability for the Multics system [l] at MIT.

The complexity of a large computer has naturally led

designers to view the system as being composed of a number of

smaller modules. Not only is such a modular viewpoint

indicated for purposes of system design and analysis, but also

the practical problems of maintenance, operation and system

evolution have made it desirable to construct large systems

10

from a small number of distinct types of physical modules.

These individual types of physical modules typically reflect

the primary functions of the design memory modules,

processor modules, input/output channels and input/output

devices are common examples. The total system is formed by

interconnecting a collection of these modules in a particular

configuration, and the quantity of each type of module

determines the system capacity.

1.1 Statement of the Problem

This thesis considers basically the following design

problem for reconfiguration in the modular computer system:

provide an architecture for the modules and their interfaces

and a design for the operating system that permits a computer

operator to dynamically (viz., automatically and without

interrupting the service provided to users of the system) add

modules to and remove modules from the system. This design

must be flexible enough to apply to all modules of a given

type, and must minimize the potential for disastrous errors.

1.1.l The Environment

The ability to dynamically modify the configuration of

hardware modules in a computer system is primarily of interest

where a large data processing capacity is required and where a

high system availability is desired. Over the last few years

11

substantial work has been directed towards systems providing

multible users easy access to common information. A single,

high-capacity system is required to serve many users with

common information. To serve many users effectively, the

information (and thus the system) must be available on the

demand of the user: this type of computer system has been

referred to as a "computer utility".

As with other utilities, the computer utility must have

substantially greater resources than those required by any one

user. Furthermore, as with other utilities, the system must

be able to, without becoming unavailable, withstand the

removal of any module for maintenance. It is this need for a

large, concentrated, continuously available computational

capacity that underlies many of the more significant design

features of a computer utility such as the Multics [l] system.

In the early development of digital computers, the need

for more powerful machines was met by building faster machines

with more storage capacity; however, as technological and

economic limitations were approached, multiple units were used

to increase capacity. For example, processor speeds are

limited by the velocity of propagation and the physical

dimensions between computational logic and the instruction

storage medium; therefore, additional total capability is

sought by including multiple processors in the system.

Similarly, storage and input/output capabilities have been

increased by the use of multiple modules.

12

An interconnection of various different types of

computers can also provide an increased capacity; for example

a small computer for reading cards and driving a printer can

be connected to a larger compute% for more compute-bound

portions of a job. However, a single modular system with a

number of each of a very few distinct types of modules reduces

the complexity since there is only one operating system,

provides a higher availability since only a few modules are

required to provide a spare for every type of module, easily

expands to a larger system since modules are merely added

without removing the previous system, and is simpler to

maintain due to the commonality between similar modules.

Various commercial systems have used a modular interconnection

scheme including the Univac 1108 Multi-processor System [2],

the Burroughs D825 [3], the GE 635 [4], and the IBM 360

Model M65MP [S] •

1.1.2 The Nature of the Problem

One problem is matching the demands of the load to the

capacity of the system. The computer utility must always have

enough capacity to provide a response within a few seconds,

since people tend to stop working if they have to wait. To be

fully effective the services must be continuously available,

since the stored information must be accessible when the user

wants it. Utilization efficiency would indicate that during

13

the greatest load, a major portion of the processing capacity

(viz., essentially all the modules) would be used to meet

customer demands, while during lighter loads it is desirable

to remove unneeded modules.

Some of the objectives to be achieved by modifying the

configuration are to reduce costs associated with operating

the modules, forming an independent processing unit with some

of the modules, allowing periodic and preventive maintenance

to be performed, and reducing the amount of hardware in the

system in order to decrease the probability of hardware

failure, i.e., increase the reliability. These include the

basic reconfiguration goals that were considered important for

the Multics computer utility1 these goals have been given

elsewhere (6 ,7 ,8], but are briefly reviewed here:

1. An essential requirement is that the reconfiguration

(addition or deletion) of a module be accomplished

dynamically, i.e., rapidly and without disruption of the

service provided.

2. The reconfiguration design should treat all identical

modules in the same way -- for example, it should be possible

to add or remove any primary memory module. Maintenance

requirements can be expected to apply to every module, so no

specific physical unit should be allowed to be indispensable,

either by hardware constraint or software convention.

Continuous service can only be approached by a reconfiguration

design in which no single module is essential for continued

14

system operation.

3. It must be possible to partition the modules of the

installation

independent

into separate noninterfering

partition systems may be used

systems. These

for providing

service to users, for development of changes to the operating

system, or for maintenance testing of the hardware. This

partitioning of modules should be possible without massive

physical effort, such as changing of cable connections, which

is slow and prone to errors.

In this thesis dynamic reconfiguration is considered as a

response to a request from outside the system -- specifically

a computer operator. Therefore, an important consideration is

the human interface. In particular, an operator should be

able to initiate a reconfiguration that is completed rapidly

(within a few seconds) and automatically (without further

operator intervention), and there should be no possibility for

operator errors to cause disastrous results. This thesis will

not address the more difficult problem of spontaneous

reconfiguration (e.g., in response to an observed component

failure); however, the results presented here provide a basis

for future research in this area.

For simplicity of design and implementation

reconfiguration should be provided by applying the normal

capabilities of the system whenever possible. The operator

controlling reconfiguration should be just another user of the

system who has been given the privilege of using the required

--- ------

15

system primitives. The processing

required when reconfiguration is

minimal.

and storage overhead

not in progress should be

This thesis will explicitly consider only the modules

that make up the central data processing capacity of the

system. In particular, modules associated with input/output

to devices external to the system itself are excluded. In

addition, it has been pointed out by Dennis [9] that modular

interconnection schemes do not readily generalize to very

large numbers (e.g., hundreds) of modules. However, practical

systems for the present and foreseeable future can find a

modular design very useful, since systems can reap the major

benefits of simplicity, high availability, expandability, and

commonality with quite a small number (e.g., a few tens) of

modules clearly a few modules are enough when each module

provides a significant portion of the total capacity. This

thesis will confine itself to such contemporary modular

structures.

1.2 Background

As pointed out above, the importance of dynamic

reconfiguration was clearly appreciated in developing the

goals of Multics; however, the initial design did not include

this capability, attesting to the non trivial nature of the

problem. Although past systems have included (limited)

16

reconfiguration capabilities, a general solution has not

previously been available.

A modular hardware organization is of course not new, and

modular systems have frequently been applied to general

purpose computational tasks. The need to operate general

purpose systems with a variety of configurations has been

widely recognized in the past. The manufacturer's description

of the IBM 360 Model 67 [10] points out that the duplex

configuration of this system can be partitioned into two

isolated subsystems

capabilities are provided

unavailable for program

manual switches and processor

for making part of the system

control. Not only has the need for

partitioning been previously recognized but also the need for

uniform treatment of similar modules has been considered. The

GE 635 (4] and the IBM 360 Model 67 both include manual

switches to provide "floating addressing", i.e., any memory

module can be used for any required address interval, so that

any memory module can have maintenance performed on it without

disabling the entire system. It has also been noted that the

ability to operate with various configurations of modules

permits changing the system capacity to meet changing demands

for example, the manufacturer's description of the

Burroughs B6500 [ll] points out the expansion capability

implied by a modular structure.

Although systems have previously been developed to

operate with a variety of configurations, a significant

17

interruption of service is usually required to change the

configuration. In most cases the configuration is specified

prior to loading the system on a raw machine, and

reconfiguration is accomplished by essentially reloading with

a new configuration. This was generally the operation of the

initial Multics design. Limited reconfiguration capabilities

have been provided for general purpose computer systems, most

notably the IBM 360 Model M65MP [5]; however, without a

general design model these systems have left unsolved some of

the more difficult problems, such as removal of the memory

modules containing the "resident supervisor".

Although dynamic reconfiguration is important for general

purpose computer systems principally in the computer utility

environment, special purpose systems have in the past used

modular reconfiguration to enhance reliability. . Although

quite successful in their intended application, the design in

these systems is so permeated with the peculiarities of the

particular application and specific hardware that little

general structure is evident.

A form of reconfiguration has been

purpose systems using redundant modules.

provided in special

With this technique

identical processing and storage functions of the system are

simultaneously performed using separate physical modules -­

the reliability motivation is that if one module fails it can

be removed from the configuration, and the results of a good

duplicate module can still be used. An example of this type

18

of reconfiguration can be found in the Bell (Telephone) System

Electronic Switching System [12]. Also the American Airlines'

SABRE system [13] used duplicate (viz., on-line and standby)

IBM 7090 1 s, redundant I/O terminal interchanges, and multiple

copies of vital records on storage modules in order to achieve

the capability for rapid restart of the system with minimum

risk of information loss in case of failures. Not only is it

costly to provide duplicate hardware, but also this type of

reconfiguration does not allow the capacity of the system to

be dynamically changed.

Special purpose systems have also frequently used a

"snapshot" reconfiguration technique that is not acceptable

for the general purpose computer utility. Periodically a

"snapshot" is made of a small amount of data from which all

computations can be restarted. The system can then be stopped

(destroying the computations in progress), the configuration

changed, and the system restarted from the snapshot data.

This technique requires a detailed knowledge of the

computation being performed, and requires that it be

acceptable to destroy a portion of the computation. A related

technique takes advantage of a carefully designed cyclic

behavior for the computation by changing the configuration

only at a fixed point in the cycle where the computation can

be continued from a small amount of saved data. On the other

hand in a computer utility the user can specify computations

whose nature is unknown to the system and for which any

19

disruption may be totally unacceptable.

This "snapshot" technique has been used in various

command and control systems. The SAGE [14] air defense

system, one of the earliest (about 1958) large scale computer

systems, had an embryonic reconfiguration capability to obtain

greater reliability: its "users" were approximately 100

operators at display consoles, and its vacuum tube central

computer (logically a single "module") was duplexed so that

when there was a hardware failure, the entire spare computer

would be put on line to continue service to the "users" from a

periodically saved snapshot. A backup to this system, known

as BUIC [15], used the modular, transistorized Burrough D825

computer. BUIC used online fault detection and an automatic

modular reconfiguration capability to provide an operational

failure rate much less than the inherent hardware failure

rate.

One of the largest and most recent of these special

purpose real-time systems is the IBM 9020 developed for the

FAA air traffic control system, which gives attention to

special hardware features to facilitate reconfiguration for

increased reliability. Although these systems and others like

them serve to demonstrate the key role of dynamic

reconfiguration in approaching the goal of "continuous

operation", the observation made for the IBM 9020 system

places the specific achievements of this type of system in

perspective: "It deserves emphasis that the multiprocessing

20

system under discussion is application-oriented in the sense

that many of its functional capabilities are designed to meet

explicit requirements. It would be another matter to

formulate such capabilities for a general purpose environment"

[24] •

1.3 Method of Presentation

A substantial portion of the research effort reported

here has been directed towards the design and implementation

of a dynamic reconfiguration capability for the "Multics"

system (Multiplexed Information and Computing Service) at MIT.
~ - - -

This early engineering design gives Multics the capability to

dynamically add and remove central processing units and memory

modules with no disruption to the users. These capabilities

are regularly used in the normal operation of this system

which currently supports more than 50 simultaneous

time-sharing users. Although the author has found this

experience invaluable in gaining insight and practical

understanding of the issues involved, this thesis is not

intended to be a description of a bag of programming tricks

used to arrive at a particular initial reconfiguration

capability for Multics: the primary goal of the research has

been to develop a design approach that can be applied to the

evaluation of an existing system or the design of a new system

where dynamic reconfiguration is desired. The successful

21

application of this orderly design approach to Multics

demonstrates its viability, and specific examples are drawn

from Multics to aid in the explanation of the design approach.

In chapter two we first develop a general model of

reconfiguration -- the concept of binding is used to model the

operations of reconfiguration. We show how this model can be

interpreted in terms of contemporary modular computer systems.

Next the general model is used to develop a specific

design procedure for an operating system and hardware

architecture to provide reconfiguration. In chapter three we

identify a design for the program oriented primitives required

to dynamically change the set of modules actually being used

by the operating system. Then in chapter four we develop a

hardware oriented structure that allows dynamically changing

the set of modules actually accessible to the system this

structure is directly influenced by the need for automatic

reconfiguration, viz., without human operator participation.

Chapter five presents the experience with the

experimental Multics version of the ideas presented. Some of

the tradeoffs involved and the compromises required in the

specific Multics implementation are presented. An appendix is

also included that, based on the ideas of this thesis,

proposes a specific hardware design for an improved

reconfiguration capability for Multics.

22

CHAPTER TWO

SYSTEM STRUCTURE

~ ~ General Model for Reconfiguration

A primary task of any computer system is to transform the

capabilities of the hardware units into resources that can be

used to perform desired computation for users of the system.

The concept of binding, defined below, can be used to model

the system functions which organize the raw hardware

capabilities into a usable form. In this chapter such a model

is constructed and then augmented to provide a model of the

reconfiguration operations. The model is used to identify the

structure of computer systems for which reconfiguration as

presented in this thesis is applicable, and it is shown that

the architecture of contemporary modular computer systems is

representable by this structure. In the following chapters

the generalized model is used to develop a specific model of

the individual functions needed for reconfiguration.

2.0.l Resource Management Model

The model developed here is based on the observation by

Dijkstra [17] and others that in a sequential process only the

time succession of the various states has logical meaning, but

not the actual speed with which the sequential process is

performed. In particular to develop our model for

23

reconfiguration we use the concept of the state of a process

represented as stored information which is subjected to

functional transformations as a process proceeds. The view of

computation as asynchronous does not completely represent real

computer systems since synchronous computations also occur.

However, for purposes of reconfiguration the operation of most

computer systems is asynchronous enough that this view of a

sequential process is adequate.

In the computer utility environment there may be a number

of computations (i.e., processes) in progress at the same

time, although at any instant in time many of these may not

actually be executing on a hardware processor. However, since

all the computations are in the long term view proceeding,

each and every process can be considered as the execution of a

program on a "virtual processor" with its instructions and

data stored in a portion of a "virtual memory". These

processor and memory resources required by a process will be

termed virtual resources virtual resources ar~ used to

model demands for actual processing and memory capability. At

any point in time the set of virtual resources of all

processes in the system represents the demand for system

resources.

The actual processing and memory capability of the system

is provided by some (usually fixed) configuration of physical

resources, viz., hardware devices. Since a process can

proceed only when the physical resources are actually

24

available to it, the system must include an allocator which

assigns the available physical resources to meet the demands

of the processes. If binding is considered as an operation of

establishing a correspondence between objects, then in this

model a primitive function of the allocator is to bind some

subset of the virtual resources to physical

define these resources to be in a bound state.

resources: we

The allocator

also includes a primitive to unbind (typically on a

millisecond basis) the available resources so they can be used

to meet other demands. At any given time, a physical resource

may not actually be bound to a virtual resource due to either

the lack of demand or due to allocator transients: we define

such resources to be in a free state. Figure 2.1 illustrates

this model of resource management.

In the above model we have identified processing and

memory capability with the actual hardware units. In a real

system a given hardware unit represents a useful resource only

when electrically connected to other hardware units of the

system in a known way. In studying reconfiguration of

resources we must consider such connections in some detail;

therefore, we explicitly distinguish between a physical

component and the capability actually available from it.

Furthermore, we introduce the notion of logical resources to

represent the abstract processing and memory capacity. It is

logical resources that are managed by the allocator. For each

available logical resource there must be some physical

Physical
Resources

CPU B

CPU C

25

Virtual
Resources

Virtual
Processor

•

Virtual I Processor

One

virtual

processor

per

process

Lines show binding that exists
changed on millisecond basis by allocator

Example of Resource Allocation

allocator call

Jnd
____ F_RE_·_E----~ ~r~:~:e~ ~~---B_o_u_N_D __ _

resturce
allocator call

State Transitions of an Available Resource

Figure 2.1 -- Fixed Configuration Resource Model

26

resource, viz., a hardware device. The binding of the logical

resources to the physical resources represents what is

commonly called the configuration of the system: it changes

only through reconfiguration. With this model, hardware

capabilities being applied to a process are represented by

physical resources bound to logical resources which are in

turn bound to virtual resources of the process.

At this point a few observations can be made about

binding as a model of the system's resource management. We

redraw the resource allocation illustration of Figure 2.1 to

take into account logical resources -- Figure 2.2 indicates

the relationships that can exist between physical, logical and

virtual resources. This shows the simplified case where each

hardware unit contains a single unit of resource in Multics

parlance, when each memory module can store only a single page

of information. In this context "binding" refers to

establishing a mapping or correspondence between the names of

physical and logical resources and of logical and virtual

resources. The total set of physical resources is determined

by the physical hardware present in the installation. Each

physical resource has a name used (for example by a human

operator) to identify the specific hardware: a central

processing unit is an example of a physical resource. A

subset of the physical resources is included in any given

configuration, i.e., is bound to logical resources. These

physical components are electrically interconnected so that

RECONFIGURATION

Total
set of
phy~ical
hardware
in the
installation.

CHANGES --:--:-J
Physical ~,,.. ··\
Resources •

I
I
I I
I I

CPU A
I I

I I

B
CPU C

MEM A

MEM B

I I

MEH C
I I
I I
\ I _ _,,,,

Logical
Resources

Logical
Processor
#1

Logical
Processor
#2

Logical
Processor
*3

Absolute
Address
Block #1

Absolute
Address
Block #2

Absolute
Address
Block #3

I

I
I
I

\

~
CHAHGES ON MILLISECOND BASIS

,,.. Virtual
Resources

.... _,,

Virtual
Processor

•

Virtual
Processor

-,- - - - - -
I
I

I
I

I
J

Virtual
Memory
Block

•

Virtual
Memory
Block

One
virtual
processor
per
process,
extendable
as
processes
are
created
and
destroyed.

Units of
virtual
memory
-- many per
process,
possibly
shared by
processes
and
extendable
under
control of
a process.

N

"'

Figure 2. 2 -- Model of Resource Management

28

their capabilities are accessible to the system.

The total set of logical resources is determined by the

set of permissible names. For example, an absolute address is

a name for a logical memory resource -- the total set of

logical memory resources in the system is determined by the

range of absolute addresses provided in the design. The

computation capacity available to meet the demands represented

by virtual resources is roodeled by those logical resources

bound to physical resources in the configuration. A subset of

these available logical resources is actually bound to virtual

resources and the remainder is free to be used for future

allocation. The current set of virtual resources (i.e.,

demands for resources) changes dynamically as processes

proceed with their computation.

In the above model, the state of resource management for

the system at any point in time is represented by physical

resources bound to logical resources and logical resources

bound to virtual resources. This model is sufficiently

general that, with an appropriate interpretation, it can

represent a wide variety of computer systems. Next this model

will be used to consider the problem of reconfiguration.

2.0.2 Reconfiguration Model

In the typical

(represented here as the

computer

binding

system the

of physical

configuration

resources to

29

logical resources) is established during the initialization of

system operation and remains fixed until the system is

shutdown and reinitialized with a new configuration. In

contrast, dynamic reconfiguration is the adding and removing

of physical resources while the system is running, and the

model developed above allows us to view binding as the central

issue in reconfiguration. In particular, the problem of

removing physical resources from the configuration concerns

the reversibility of binding, and adding physical resources to

the configuration is an example of delayed binding.

We have previously observed that physical and logical

resources can be either bound or free. When reconfiguration

is introduced we need the notion of available and the inverse,

unavailable. We will introduce this concept in terms of the

operations of the allocator on logical resources. In our

model, any logical resource bound to a physical resource is

accessible to the system; with a static configuration all

these logical resources are available to the allocator and may

be either bound or free. All logical resources not bound to

physical resources are unavailable to the allocator, and they

must be free, since clearly they cannot be used to meet

resource demands. To add logical resources at reconfiguration

time, an unavailable (and thus free) resource is made

available. To remove an available logical resource (which may

be either bound or free), it must be made both unavailable and

free. If we attempt to insure that the resource is free

30

before making it unavailable, we can have a race condition

with the normal allocator functions asynchronously attempting

to bind free resources; therefore, we make the resource

unavailable for future allocation before insuring that it is

free. i~ow the state transitions shown in Figure 2.1 can be

redrawn in Figure 2.3 to include the resource usage state

transitions introduced by reconfiguration.

These state transitions can be applied to physical as

well as logical resources. For a physical resource the usage

state reflects binding to a logical resource. A physical

resource is available when the system is able to change its

binding to logical resources. An available physical resource

is bound when it is associated with the name of a logical

resource. Since the state is changed only through

reconfiguration, race conditions can occur only if there are

simultaneously executing reconfiguration routines. For

example, a system spontaneously adding free modules to meet a

peak in load could race with an operator trying to remove a

specific module; however, recall that in this thesis we are

considering only (strictly sequential) operator initiated

reconfiguration. Therefore, for physical resources we can

omit the "bound and unavailable" state added in the previous

discussion of logical resources.

The relationship between physical resources and logical

resources is illustrated in Figure 2. 4, whic.i1 shows all the

resource state transitions that are involved in dynamic

FREE
&

UNAVAILABLE

make
available

make
unavailable

FREE
&

AVAILABLE

bind

unbind

-------------unbind-----1

Figure 2.3 -- Usage State Transitions

BOUND
&

AVAILABLE

make
unavailable w

......

+
BOUND

&
UNAVAILABLE

PHYSICAL
FREE &

UNAVAILABLE

PHYSICAL
FREE &

AVAILABLE

PHYSICAL
BOUND &
AVAILABLE

LOGICAL
FRl:.:E &

UNAVAILABLE,.._____...

LOGICAL
FREE &

AVAILABLE

LOGICAL
BOUND &

AVAILABLE

LOGICAL
BOUND & I w

UNAVAILABLE tv

Physical Resource t• Physical Resource
~---- Free > Bound to Logical ----------------

~ I Logical resource I Logical Resource
Free ~ ~ Bound to Virtual

..... -----~--------------------------~

Figure 2.4 -- Resource State Transitions for Reconfiguration

33

reconfiguration. State transitions for a logical resource are

defined only when there is an available physical resource

bound to this logical resource, as illustrated in Figure 2.4

by a single state for both "physical bound and available" and

"logical free and unavailable".

Based on the model that has been developed we can

identify the primitive reconfiguration operations required to

change the usage states when removing a resource from the

system. The following sequence of steps is required:

1. The corresponding logical resource is removed from

the set of logical resources available to the allocator for

future binding to virtual resources.

2. The logical resource is made free by removing any

existing binding to a virtual resource.

3. 'l'he physical resource is made free by removing the

binding to the (free) logical resource.

4. 'l,he physical resource is made unavailable for binding

to logical resources.

When a physical resource is added to the configuration

the corresponding logical resource is initially free. The

following sequence of steps is required to add a physical

resource:

l. 'l'he physical resource is made available for binding

to logical resources.

2. The physical resource is bound to a logical resource

not currently available to the allocator.

34

3. This logical resource is added to the set of logical

resources available to the allocator for binding to virtual

resources, viz., is added as a free and available logical

resource.

4. The system then binds the logical resource to virtual

resources as a result of the normal operation of the

allocator.

We have now developed a complete model for all the

reconfiguration operations. In chapter three and four this

simple model will be applied in detail to, respectively,

logical and physical resources.

2.0.3 Design Approach for Reconfiguration

Throughout this thesis reconfiguration is viewed as

changes in binding. 'l'his view of reconfiguration allows us to

recognize the general form of a design procedure for

implementing dynamic reconfiguration. First, it is clear that

reconfiguration is directly related to the design of the

allocator for the resources to be reconfigured. For reasons

other than reconfiguration, substantial research has

previously been done in the area of allocating a computer

system's logical resources to meet the demands of user

processes; therefore, when applicable, currently available

technology will be summarized rather than reinvented.

We will now define allocator primitives to implement the

35

logical resource state transitions that have been identified.

First, the allocator must have primitives which can be invoked

to add and remove elements from the set of available logical

resources being managed by the allocator. This means, of

course, that the allocator must be able to properly manage

changing amounts of resources, although there may be bounds on

the allowable size of the set of resources, e.g. , a system

with no processor will probably not work at all. Using the

notation of the PL/I language, we introduce these allocator

primitives as generic closed subroutines of the operating

system:

call Make_available (resource);

call Make_unavailablc (resource);

where "resource" is the name of the unit of logical resource

affected. These primitives affect the binding of logical

resources to virtual resources that can occur in the future,

but they do not change the current state of resource binding.

In addition, the allocator needs a primitive for freeing

logical resources. For reconfiguration to be dynamic it must

not disrupt (viz., change the outcome of) user processes, and

the change in configuration must be completed in a period of

time that is responsive to an operator request (viz., on the

order of a few seconds). If the system can assure that a

logical resource will be made free within a short period of

time, then when removing a resource it is satisfactory to

merely wait until the resource is free. In the more usual

37

unbinding physical resources. While computer programs provide

the allocator functions, the availability and binding state of

physical resources is a model for the more hardware oriented

mechanisms that establish electrical connections between the

physical hardware components of the system. In systems not

using dynamic reconfiguration, an operator typically

accomplishes such connections by switches and cable connectors

which cannot be changed without disrupting the computations in

progress. For dynamic reconfiguration the system invokes

primitives that, without disrupting user computations, change

the connections between hardware units. Chapter four will

consider in detail the primitive functions needed to change

the configuration of the system.

We have identified the primitive functions necessary to

provide a dynamic reconfiguration capability for a computer

system. Although the model just presented did not explicitly

distinguish between the various elements of resource, in a

typical contemporary computer system there are clearly

distinct classes of resources, e.g., processors and memories.

The remainder of this chapter is primarily devoted to making

those distinctions relevant to modular reconfiguration.

2.1 Modular Characteristics of System

As indicated in chapter one we are primarily concerned

with computer systems composed of distinct physical modules.

____ ,, ----------------------

38

From the viewpoint of reconfiguration, a "module" is a subset

of the physical resources of the system which comprise an

identifiable hardware unit. To reconfigure a module, all the

physical resources comprising the module are added or removed

using the design just outlined in the preceding section.

For convenience we assume that a module contains an

integral number of units of physical resource. This

is further suggested by the observation that

approach

nearly all

contemporary modular computer systems are designed in this

way, with each unit of physical resource in a single module,

as illustrated by the store protection blocks of the IBM 360

series [18] and the memory pages of the GE-645 [19].

The significance of this modular constraint is

illustrated by an example from Hultics. Primary memory is

allocated in blocks of 1024 words. A hardware core memory

unit has a capacity that is a multiple of 1024 words and is

usually considered as a module. However, in an attempt to

reduce conflicts between multiple devices simultaneously

referencing the same physical memory, it is possible to

interlace two or four of these memories with interlace,

consecutive double word addresses are located in different

physical memories. This means that a single unit of resource

(viz., a 1024 word block) is contained in more than one

memory; therefore, for purposes of reconfiguration the set of

interlaced memories must be considered as a single module, and

these memories can be added to or removed from the

39

configuration only as a single entity. If individual memories

are to be reconfigured when

interlace feature should

interlace is needed, then the

be designed so that only locations

within a single memory are interlaced.

Since a module is reconfigured by individually

reconfiguring each of its component physical resources, no

loss of generality results from assuming that a module

contains only a single type of resource. It is also observed

that many contemporary systems are designed with such

homogeneous modules -- for instance the IBM 360 Model 67 [10),

the G.E-635 [4] and the Burroughs Hodel B6500 [11). This

assumption allows a computer system to be viewed as an

interconnection of processing and storage modules, which is

convenient for considering reconfiguration.

2.1.1 Processing Modules

A processing

transformations on

module primarily performs functional

data stored external to the module.

Therefore, a processing module must be able to read its

instructions and/or data from and write its results into

external storage in the system. At any point in time a

processing resource is executing in behalf of only one process

the process to which the system has allocated this resource

is moving through a time succession of states as a result of

the transformations being performe<l. The state of this

40

process is represented by information stored in two places:

data stored internal to the processing module (e.g., in

registers) and data stored externally. We will assume (as is

typical of contemporary processing hardware) that, conditional

only on explicit locks, it is always assured that the internal

data are of importance only to the process currently

executing.

This model of a processing module is easily understood as

a representation of the typical central processing unit (CPU)

of a computer system. However, most computer systems have

other devices manipulating stored information that can also be

considered as processing modules. The most common examples

are channels used to access storage managed by the system,

such as magnetic disks or drums used for on-line storage. In

his discussion of traffic control Saltzer [20) has noted that

a channel is really nothing more than a simple processor with

a wired-in program. However, recall that channels with

interfaces outside the direct control

"source" and "sink" input/output)

considered in this thesis.

2.1.2 Memory Modules

of the system (viz.,

are not specifically

A memory module provides some physical medium for the

storage of data that is used by the processing modules of the

system, and it is required that memory modules never modify

41

stored data. A significant characteristic of a memory module

is that it may often be referenced in parallel by multiple

processing modules, and uncoordinated data references can

potentially produce conflicts. The reconfiguration primitives

must provide for avoiding any additional potential conflicts

which they introduce.

Primary storage contains information which must always

be accessible to some processing module, in particular some

instruction or command that can be referenced to control the

next processing action. This information is corranonly termed

the "resident supervisor" or "wired down" programs and data.

Primary memory is usually provided by a relatively fast,

random access storage medium such as

memory: due to relatively high

usually meet only a small portion of

storage.

core

cost

the

or semiconductor

primary

total

memory can

demand for

Potential conflicts in primary memory are of ten avoided

by providing areas reserved for use by a single processing

module. Since there may be no system primitives to prevent

conflicting access to primary memory, reconfiguration

primitives may require additional mechanisms to prevent

conflict. For instance, when removing primary memory,

reconfiguration primitives will be required to copy (and

therefore access) all the information in a memory module

including that reserved for use by other processing modules.

The memory of the system that does not require immediate

42

access is generally known as secondary storage, and is

typically provided by slow, high capacity devices such as

rotating magnetic disks and drums or even magnetic tape. The

significant implication for reconfiguration is that a system

will typically have storage allocator primitives to move data

to and from secondary storage without risking conflicts.

2.2 Structure for Intermodule Communication

Although the total computation capacity of a modular

system is provided by a collection of processing and storage

modules, it is clear that the system design must include an

interconnection network to satisfy the requirements for

communication between the modules. This network is of direct

concern to reconfiguration since communication paths between

modules reflect the binding between the physical resources

contained in the module and logical resources of the system.

Rather than dilute the discussion by considering each

basic idea in terms of many possible structures, a general

form for the interconnection network will be developed here

and used throughout this thesis. This structure of

communication links between modules, and ports to provide an

interface between these links and the individual modules, is

representative of contemporary modular systems.

43

2.2.1 Intermodule Links

Intermodule links are required between modules that need

to communicate with each other. It is clear that, for

transfer of data, every memory module must have a link to at

least one processing module and every processing module must

have a link to at least one memory module. Since a memory

module is completely passive, there is no need for

communication between memory modules.

is needed between processing modules.

use of interrupts for signals from a

processing unit, and a central

However, communication

Common examples are the

channel to a central

processing unit issuing

commands to a channel. In addition, interrupts are often used

to control the allocation of processing resources (viz., for

traffic control), as examined in detail by Saltzer [20].

A direct link could be provided for communication between

processing modules. However, in some systems (Multics in

particular) a memory module is used to relay signals, using

the processing/memory link. One motivation for such a

structure, with links only between processing and memory

modules, is that the total number of links is reduced. In

addition, by using a memory module for a relay, signals can

easily be broadcast to multiple processing modules -- say to

permit a channel interrupt to be processed by the first CPU

that is available, thus giving the fastest possible response

to the interrupt signal.

44

2.2.2 Module Interface Ports

The links between modules can be thought of as the data

transmission paths between modules. To complete the

interconnection network there must be a "port" which provides

an interface between each link and the physical resources

within the module. Figure 2.5 shows a typical modular system

that reflects this interconnection network structure.

As we have seen, a processing module must make references

to external storage for instructions and data. For each

reference, the port of the processing module uses some

"selection logic" to map an absolute address for the desired

type of storage (viz., a reference to a logical resource) into

a reference through a link to a particular storage module and

a particular location within that module (viz., a reference to

a physical resource). In addition the processing module port

must be able to send and receive signals for communication

with other processing modules. In chapter four we will

examine specific alternatives for the implementation of a

processing module port.

The port for each storage module will respond to

references from processing modules. The storage module port

will receive over a communication link commands to read/write

and will receive the corresponding address within the module:

data that are to be read/written will also be passed over the

link. In addition, the port must receive commands which cause

!iemory
nodules

Interface
Ports

Processing
Nodules

MEI·1

CPU

Primary
Storage

I·lEI-1

CPU

HEH

I/O
Controller

Secon<lary
Storage

I/O
Devices

I/O
Controller

(Lines represent intermodule communication links)

Figure 2. 5 -- 'l'ypical Hodule Interconnection Network

I/O
Devices

""" lJl

46

signals to be relayed to processing modules (e.g., send an

interrupt or mask an interrupt).

Although we have developed a structure representative of

current modular computer technology, it is pointed out that

this structure has only lJeen applied to systems with something

in the order of ten modules. Because of the communication

network "crossbar" problem it is doubtful if this structure

would l>e effective for more than a few tens of modules in a

system, and this thesis will not attempt to develop new

structures for a larger number of modules.

2.3 Summary of System Structure for Reconfiguration

We have, in this chapter, used changes in binding between

physical, logical, and virtual resources to model

reconfiguration. Based on this model we have identified the

computer system structure for which this thesis ·will consider

the problem of dynamic modular reconfiguration. We have

considered a computer system as made up of a collection of

physical modules {each containing an integral number of units

of processing and storage resources) interconnected by a

communication network of links and interface ports. This

framework. has been developed so that the following chapters

will have a firm conceptual foundation on which to build

detailed solutions to the particular problems of dynamically

adding modules to and removing modules to modules from a

47

coraputer systera.

48

CHAPTER 'l'HREE

CHANGING MODULE UTILIZATION

3.0 Dynamically Changing Resource Usage

In this chapter we assume a static hardware configuration

and make a detailed study of how to dynamically change the

resources the system is actually using; we defer until the

next chapter the problems of changing the hardware

configuration. The usual operating system has an

initialization phase during which the processing and storage

modules used by the system are established by operator inputs

and system conventions (e.g., assuming a zero-based contiguous

range of absolute core addresses). We will now examine in

detail how the system can stop using a module currently in use

and start using an additional module without reinitializing

the entire system.

In terms of the model introduced in chapter two, we must

basically develop a design for changing the usage state of

logical resources. Figure 3.1 illustrates the operations that

are required -- notice that this is just the specific instance

for logical resources of the state transitions presented in

chapter two (Figure 2.3). In this chapter we develop specific

reconfiguration primitives for the storage resource allocator

and processing resource manager, viz., the traffic controller.

We first clearly identify the critical properties that,

FREE
&

UHAVAILABLE

reconfiguration
call

t

make
unavailable

l
reconfiguration

call

FllliE
&

AVAILABLE

allocator
call

allocator
call

t.
assign . ' resource

unbind
resource

BOUND
&

AVAILABLE

rec6nf iguration) make
call unavailable

•
--------------------------unbind---------i

BOUND
&

UNAVAILABLE resource

i
reconfiguration

call

Resource Bound
-4--------- Resource Free to Virtual Resource

Figure 3.1 -- Usage State Transitions of Logical Resources

""' \D

50

regardless of reconfiguration capabilities, we expect to find.

Tl1en the reconfiguration primitives are presented in terms of

closed subroutines and system-wide data bases.

3.1 Storage Resource Management Environment

The purpose of this section is to provide a fairly

extensive review of the technology currently available for

storage management. This review focuses on those features

which tend to solve storage reconfiguration problems.

The strategy used to manage the use of storage resources

ilas a significant impact on the feasibility of reconfiguration

-- particularly on the ability to remove a storage module.

Removing a storage module removes some range of absolute

addresses (which are modeled as logical resources) from use,

and the system must provide, in some other module, a valid

copy of the stored information. A basic problem is insuring

that all references to this information are directed to the

new location. We will consider some common examples of

(primary) memory management to illustrate the storage

allocator characteristics important for reconfiguration. To

identify the intrinsic problems we first assume an unbounded

amount of available primary memory, and then we consider the

technological problems introduced when there is a limited

51

storage capacity.

3.1.1 Allocation With Unlimited Storage Capacity

First we examine one of the simplest examples of storage

management the textbook batch processing system. The

system loads a program into a contiguous block of primary

memory at a known absolute address, and binds all relocatable

addresses to the absolute addresses that resulted from

loading: typically the program is modified by inserting the

required absolute addresses. We now consider the problem of

removing the primary memory module containing this program,

after this program has begun execution.

One might naively think that the necessary steps are

merely interrupting the execution, moving the instructions and

data by some increment of absolute address to a new location,

and restarting the execution. Obviously the absolute

addresses originally generated by the binder are going to be

incorrect; on the other hand, since the binder initially found

where absolute addresses were needed, the system should now be

able to go back and add to these addresses the appropriate

address increment. However, the previous execution may also

have stored addresses elsewhere as data (e.g., return points

for subroutine calls) for future use. Thus we conclude that

the system needs a method for causing the absolute address of

all future memory references to be incremented by the amount

52

the program was moved. To do this the operating system must

be able to locate and modify every occurrence of a stored

absolute address that may be used in the future.

We need not invent methods of doing this since various

relocation techniques have already been developed for reasons

other than reconfiguration. Multiprogrammed batch processing

systems provide a common example. These systems are designed

to execute one program until the process cannot proceed (e.g.,

until ti1e process must wait for some input/output operation),

and then switch the processor to the execution of some other

process that is able to proceed. To this end, the system

loads more than one program into primary memory at once and

chooses the "best" one to run. If one program waits for a

long time (for example while an operator locates and mounts a

magnetic tape) then for efficiency the system may unload this

program from storage so some other program can be loaded;

however, when ready to continue the execution the same block

of memory may not be available, so the system must relocate

~~e program to a different absolute address in core. One way

to accomplish this relocation is with a relocation base

register in the processor hardware: all addresses

for instruction fetches and data are relative

generated

to this

relocation base. The addresses appearing in the program are

no longer absolute addresses but are virtual addresses -- the

relocation base register provides an address mapping that

binds virtual addresses to absolute addresses.

53

We note that the relocation base register is the only

memory of any absolute address in the system, and therefore in

terms of our model completely specifies the binding of virtual

storage resources to logical storage resources (named by

absolute addresses). The system can relocate an executing

program by the following steps:

1. Stop the execution of the program so that the data

and instructions in this block of memory will not be accessed,

viz., stop the progress of the process so its state will not

change.

2. Make a copy of the block of instructions and data at

a new absolute address outside the memory module being

removed.

3. Reset the relocation base register to reflect the

address of the new copy.

4. Resume the execution of the program, viz., continue

the progress of the process from this new state which is

equivalent to the state when it was interrupted.

3.1.2 The Storage Utilization Problem

So far we have seen that the intrinsic problem in

removing a storage module is reversing the binding of a

virtual address to an absolute address, and then binding to a

new absolute address -- in the example, the relocation base

register provides this ability. Although the basic issue has

55

memory the system assigns the number of storage blocks

required. Tnese blocks may not be contiguous even though tne

virtual addresses in the corresponding pages of the program

are.

The processor requires a ~ table accessed by page

number that gives the absolute address of the corresponding

block of storage (typically the page size is a power of two,

so that the page number consists of some high order bits of

each virtual address). Each ~ table word provides a

mapping of virtual addresses in that page to absolute

addresses in exactly the same manner that the relocation base

register did. 1'he page table may itself be located in storage

if the processor has a page table base register containing tne

page table's absolute address. For each instruction fetch or

data reference the processor consults the appropriate page

table word to arrive at the correct absolute address. Figure

3.2 illustrates the address translation for paging. The

system can remove a memory module by making a copy of just the

pages stored in it: the page table word for each page moved

(rather than just the value of a single relocation base

register) must be updated to the new absolute address. It is

again emphasized that paging is not essential for

reconfiguration; however, for simplicity we will continue to

use paging to decouple the problem of storage utilization,

allowing a clearer view of the basic issues of

---~-----

Page Table
Base Re ister

(In Processor)

Page 'l'able Word
for page p

56

Page Table
(In Storage)

...._..__. -----I T
• p

• 1

STORAGE

•
•
•

Storage { Block n Page p

T
n

j_

Figure 3.2 -- Address Translation for Paging

57

reconfiguration.

3.1.3 The Effect of Limited Storage Capacity

Although paging answers the technological problems of

storage utilization, there remains the problem of limited

storage capacity. Similar modules may not have adequate

storage for a copy of the information in the module being

removed. Again we note that similar problems exist and have

been solved for reasons not related to reconfiguration.

Recall that in our earlier discussion of multiprogrammed batch

systems, when a program not yet in primary storage was ready

to run, the operating system could get space for it by

unloading some other program currently in primary storage but

not able to continue execution. Implicit in this is the

existence of what we have called secondary storage modules

(typically magnetic drums or disks) which have adequate room

for copies of the programs "in progress" whose execution has

been interrupted. Similarly, to remove a primary memory

module the system can either unload programs in the module or

unload programs from other modules to make room for a copy of

the information from the module being removed.

Where paging is used, reconfiguration can benefit from

the technique of demand paging. In a system with demand

paging, an entire program is not necessarily loaded at once,

but the storage allocator loads only selected pages. One

58

conunon design has a "fault tag" in each page table word

without a valid absolute address (viz., the page is missing in

primary storage). Any attempt by the processor to reference a

"missing page" will cause a hardware fault. As a result of

the fault, the allocator retrieves the page from secondary

storage, places the absolute address in the page table word,

removes the "fault tag", and then allows the execution to

continue. If no free storage block is available, then the

allocator copies some page currently in primary storage (for

example the least recently used page) to secondary storage, so

its storage block can be allocated to meet the new demand.

Similarly when removing primary memory, demand paging provides

a tool for pushing out excess pages so that the number of

pages in primary memory does not exceed the storage left after

removing the module. Thus the basic solution to the problem

of limited primary storage capacity is moving information to

secondary storage modules, and a storage allocator with demand

paging can make this easier. Secondary storage must, of

course, have enough capacity to hold the information moved

from primary storage.

3.1.4 The Storage Allocator

Recall that the objective of the above discussion of

storage allocator designs has been to identify characteristics

that are relevant to reconfiguration. This has been motivated

59

by a desire to benefit from the existing state of the art

rather than reinventing existing features. In addition, the

significance of the storage allocator to reconfiguration

should now be clearer. For simplicity the discussion so far

has been primarily directed to primary memory -- this needs to

be generalized to encompass any other type of storage module.

Although the previous discussion of demand paging was

framed in terms of primary memory, the essential concepts are

in fact common to other types of storage modules; however, the

usual terminology is somewhat different. File systems

typically manage secondary disk and drum storage, for example,

by considering each module to be composed of a number of

independent fixed length "records" the records are directly

analogous to the blocks of primary memory. To store the

information contained in a "file", the required number of

records are assigned and a "file map" is maintained to show

ci1e address of each record of the file -- a file map is

directly analogous to the page table for a program, and a file

may be just a secondary storage copy of a program. Not only

may the system copy information from primary storage to some

device such as a drum, but also various types of storage

modules may be arranged in a hierarchy. 'l'he file system may

move records from one secondary storage module down to another

secondary storage module in order to make room higher up in

the hierarchy. For example the least recently used record may

be kept on the type of module with the longest access time.

60

The significant observation ifi that the storage allocator

characteristics identified as relevant to reconfiguration are

applicable to both primary and secondary storage modules.

Since the above discussion has identified the allocator

characteristics important to reconfiguration, it is now

appropriate to introduce a very specific allocator model to

facilitate our discussion. The Multics file system will be

used as a case study, and we will discover that it has all the

desired characteristics. This particular design is chosen

because it includes a practical and currently working example

of a demand paging storage allocator whose motivation and

details are available to the interested reader from several

sources [l, 6, 21, 22], ancl because the research reported in

~1is thesis includes implementation of reconfiguration

capaoilities for this specific system.

'i'he !-lul tics storage allocation design includes a feature

known as segmentation: rather than considering a process in

terms of a single program (with instructions and data), a

Hul tics process has multiple segments. '.l'herefore, each

virtual address has two dimensions -- a segment number and an

offset (address) within the segment. Each segment has its own

page table, and the two-dimensional address space of each

process is defined by a descriptor segment, which is basically

a table (indexed by segment number) of segment descriptor

words giving the absolute address of the page table (in the

same manner as a page table base register) for each segment.

61

The descriptor segment is itself a segment in primary memory

and the processor has a descriptor segment base register

containing the absolute address of the page table for the

descriptor segment. Figure 3.3 illustrates the ad<lress

translation for segmentation. Although segmentation itself

does not solve any reconfiguration problems, the significant

observation is that segmentation specifically contains the

relocation capabilities needed for reconfiguration.

Now an understandable reaction might be that with all

these levels of indirection it is certainly inefficient for

the processor to translate a logical address into a reference

to the ultimate absolute address of interest. Multics reduces

the number of

indirection by

memory references

providing a high

needed to complete the

speed associative memory

within the processor. This memory maintains the sixteen most

recently used page table words or segment descriptor words

[2 3] •

First we note that the associative memory distorts our

model of a processing module as a module with no memory of

data conunon to more than one process: we will see later that

this is a problem that has to be specifically dealt with.

Aside from this one problem area, all absolute addresses in

the system for the location of instructions and data are still

in page table words as discussed for demand paging. In

addition there are absolute addresses of page tables in

segment descriptor words and the descriptor segment base

Descriptor Segment
Base Re ister

(In Processor)

Page of
Descriptor Segment

(In Storage)

•
•
•

62

Page Table for
Descriptor Segment

(In Storage)

•
•

Segment
Descriptor Word

Page Table Word
for page

Page Table
for Segment
(In Storage)

•
•

STORAGE

•
•
•

Page
of

Segment

Figure 3.3 -- Address Translation for Segmentation

63

register. However, the file system maintains all absolute

addresses and can locate and update them if required. The

file system maintains for each type of storage module a

storage map that allows the system, for any absolute address,

to determine that the storage block is either in use and ti.w

appropriate page table (or file map) entry can be found, or is

free and can be used to meet demands for storage, or is not

part of the available resources managed by t.nc file system.

Although the Ilultics file system includes storage

allocator features not directly applicable to reconfiguration,

in this case study we have seen that Multics does provide tl1e

relocation capability essential to reconfiguration, and demand

paging is available to solve the technological problems of

limited storage capacity. We will refer to the nultics file

system as a specific model of storage allocator design when

useful as an aid to the presentation.

3.2 Removing a Storage Bodule

Tne preceding discussion has established a storage

management environment for reconfiguration. We now develop a

design for removing a storage module from tl1e resources being

used by the system. Basically, while the system is running,

reconfiguration primitives move the stored information and

then locate and update absolute addresses to reflect the neu

location. A major goal is providing a general design which is

64

(as much as possible) independent of the kind of information

stored in the removed module.

We digress a moment to observe that during

reconfiguration the system needs information about each module

in the configuration. Therefore, we introduce the module

configuration table as the primary reconfiguration data base,

and we will identify the information contained in it as we

discover ti1e need. The system creates this module

configuration table during initialization and updates it

during reconfiguration. From our general model we can

anticipate that the module configuration table will reflect

ti1e binding of physical resources to logical resources in

the case at hand, ti1e table relates each physical storage

module to a range of absolute addresses.

How let us suppose that an operator requests removal of a

specific storage module. The reconfiguration procedures of

the operator's process must first verify that a viable

configuration will remain. For example, after removing the

module ti1e minimum amount of storage for this type of device

must remain, and the module must not be essential for relaying

signals between processing modules. Since motivations, such

as preventive maintenance, for removing a module are

associated with physical hardware entities, it is convenient

for the operator to identify the module by a (usually

arbitrary) physical name; therefore, we extend the module

configuration table to include for each module the name used

65

by the operator.

'£0 remove a storage module in response to the operator

request, first the system makes certain that the storage is

not available to meet any future storage demands, and then the

system frees any storage already in use, by moving ci1e

information to another module. In terms of the model outlined

in chapter two and illustrated in Figure 3.1, the system

invokes reconfiguration primitives to change the usage state

of the logical storage resources to "free and unavailable".

For each unit of resource in the module, the system first

invokes the generic subroutine Hake unavailable (defined in

chapter two), and then invokes the generic subroutine Unbind.

(also defined in chapter two).

From the notion of a logical resource usage state of

"available" we may invent immediately the "available list", a

list of all logical storage resources available to the

allocator for use in meeting storage demands. The

Ilake unavailable primitive prevents future allocation of

storage by removing it from the available list. Using the

notation of the PL/I language, we now introduce the first

specific instance of the generic closed subroutines for

reconfiguration:

call Hake_unavailable (addr);

where "addr" is the name (e.g. , the absolute address) of the

unit of logical storage resource to be moved from the

available list to a "removing list". 'i'hc unit of storage

66

resource must, of course, be uniquely identified: if the names

themselves are not unique (e.g., the same absolute address may

occur in different types of storage devices), there may in

fact be more than one distinct Hake unavailable subroutine

(e.g., one for each type of storage), but without loss of

generality we will consider only one.

For an example of the Make unavailable primitive,

consider systems that use paging, such as Multics, where the

potential set of logical storage resources are easily

represented by a storage map -- a table indexed by storage

block number (computed as the absolute address of the base of

the block divided by the block size). As illustrated in

Figure 3.4, each entry in the storage map either has a pointer

to the page table word containing the storage block address,

or has a "null" pointer indicating that the storage block is

free. Since there may be some absolute addresses that cannot

be referenced (i.e., are unavailable), a threaded "available

list" is constructed from the storage map entries to reflect

the pool of storage blocks actually available to the

allocator. 'fhe Make unavailable subroutine simply threads the

indicated storage block entry out of the "available list" and

threads it into a "removing list". The usage state (viz.,

"unavailable") must be recorded; for example, when the

allocator frees the storage block for a deleted page, an

"unavailable" entry is not threaded onto the "available list"

as might otherwise be the case. Figure 3.5 illustrates the

Page •rable
Base Register

(In Processor)

67

STORl\.GE Jvl.AP

Page Table Usage
Word Ptr State

•
•
•

Entry for AVAILABLE

S'l'ORi1.GE

•

Available
List

•

Storage Block n t-~~~~~~~~~~~~~~~~~~---i

Figure 3.4 -- Example of a Storage llap

T
n

j_

T
n

1

Entry for Block
Being Removed

68

"Available
...,n.....---List" Pointers

Before Call to Bake unavailable

Entry for Block
Being Removed

STORAGE MAP

PTW Usage
tr State List
• • •
• •
• • •

AVAILABLE

UNl\VAILABLE

AV.7\ILABLE

After Call to Make unavailable

"Removing
List" Pointers

"Available
List" Pointers

Figure 3. 5 -- Example of ilak.ing Storage Unavailable

70

.iJound storage -- "demand allocated" and "wired". This class

is recorded in each entry of the removing (or available) list.

The techniques Unbind uses to free the storage depend on the

class and are discussed in detail in the following two

sections. These possible classes of bound storage are defined

as follows:

1. Demand allocated storage is currently used to store

information in response to the demand of some process, but the

allocator may without the explicit "consent" of this process

move the information (viz., reverse the binding to storage).

2. Hired storage has been allocated to store information

which must at all times have a valid binding to (primary)

storage. For example, the handlers for interrupts and missing

page faults are typically in wired storage.

3.2.1 Freeing Demand Managed Storage

Although wired storage can only be in a primary storage

module, both secondary storage modules and primary storage

modules (such as a magnetic core or semiconductor memory) can

contain clcmand allocated storage: typically only portions of

the supervisor use wired storage, and all user programs are

demand allocated. Unbind will free demand allocated storage

by invoking the system's normal allocator fw1ctions to move

tne information to a new location.

For an example consider the demand paging environment,

71

such as tliat of nul tics. The previously discussed storage map

entry is extended to indicate the state free, U.emand

allocated, or wired of the storage block. How in t11e

demand paging environment, we can say that Unbind merely

"pages out" all the demand allocated primary storage on the

removing list. First the allocator primitive (called by

Unbind) places a "fault tag" in the corresponding page table

word to prevent modification to the page during the copy

operation. 'l'ilen the allocator signals a processing module

(viz., a channel) to copy the information to a free block of

secondary storage. It is handy to set an "out of service"

flag for the block to show that the copy operation is in

progress. When the channel signals tiiat the copy is completed

the storage map is updated to indicate that bie :Ulock is free.

It is the ability to use the fault tag as a lock to deny

immediate access to a page that permits "paging out" and thus

distinguishes the storage as demand allocated, as opposed to

wired storage which always requires a valid primary storage

address for the page.

How recall that in a i:ul tics central processing unit a

copy of a page table word may be maintained internally in an

associative memory. \frlen a page table \mrd is modified the

multiple copies that may be present in other processing units

introduce a synchronization problem. For example, a fault tag

in the page table word is used to prevent rnodif ication to a

page while the page is being copied to secondary storage.

72

However, when another processor happens to be using the same

page, then that , processor's associative memory copy of the

page table word has no fault tag, and that processor continues

to reference the page. Therefore, after setting the fault

tag, the allocator must signal all processors whose

associative memories contain this page table word, to clear

the invalid page table word from their associative memories.

'ri1e allocator can safely initiate the copy operation only

after each processor signals back that its associative memory

has been cleared. The associative memory causes the processor

to deviate from our ideal model of a processing module, but

this does not prevent reconfiguration. The price to be paid

is that there must be communication between processing modules

in order to reverse the binding to primary storage.

For secondary storage the techniques are basically the

same, although processing module hardware typically cannot

directly move information from one secondary storage module to

another secondary storage module. The system will usually

move information from secondary storage to primary storage and

then from primary storage to a free secondary storage

location. In any case the intrinsic problem is relocation -­

moving the information and changing all references to the

secondary storage location. We previously noted that one

technique is to provide a file map giving the secondary

storage location of each unit of virtual storage. This is

conceptually similar to the primary storage page table in

73

terms of our general model, both represent binding between

pages of virtual memory and blocks of storage. Since the file

map is the only place where a secondary storage address is

used, a given address can be searched for and updated a

storage map can be used to aid the search.

In the above discussion we have identified the resource

management techniques that can be applied to "demand

allocated" primary and secondary storage in order to leave the

storage in a "free" state. Basically the reconfiguration

subroutine Unbind invokes the system's normal allocator

primitives to free demand allocated storage

the problem of freeing wired storage.

3.2.2 Freeing Wired Storage

there remains

Nearly every operating system has a minimum set of

instructions and data that must always reside in primary

memory. In other words, there is information that some

process expects to always have a valid binding to primary

storage the storage allocated to this information we have

termed as "wired" storage. For example, wired storage is

typically used for interrupt handlers, for the procedure tl1at

!1andles missing page faults and, as we will see, for the

relocation procedure itself. The intrinsic problem is, of

course, still one of relocation; however, the unsolved

problem is avoiding conflicts while tl1e new copy is being made

74

and the relocation mechanism is updated.

3.2.2.l Relocating Wired Information

First we will indentify the basic operations of Unbind,

and then we will consider the problem of avoiding conflicts;

we defer until later the special cases when Unbind moves

itself or moves part of the relocation mechanism. Unbind must

move information from one absolute location to another

absolute location. But recall we already concluded that

references to stored information should use virtual addresses

instead of absolute addresses. Rather than propose an

"absolute mode" of operation for Unbind, we will see how the

system's normal relocation mechanism can be used. This will

be discussed in the context of a paging environment.

The virtual memory of the reconfiguration process has two

pages of particular interest to Unbind: the "real" page of

information to be moved and a "shadow" page used as a

temporary work area. This "shadow" page will eventually

contain the moved version of the wired "real" page. Since the

allocator knows the location of all absolute addresses, Unbind

can use its input argument (viz., the absolute address of the

storage block to be removed) to determine which page of the

virtual memory is the "real" paqe. Unbind also invokes the

normal allocator functions to assign primary storage for a

temporary "shadow" page. 'l'he address mappings at this point

Page '£able
Base Register

(In Processor)

75

Page Table
(In Storage)

Page Table Word
for "Shadow" page

r-- -

~(Be fore Move)

Page Table Word
for "Real" page

(Before
/

Move)~_../

x
\
\

"

--- (After .---
/

Storage Hodule
Being Removed

•
•
•

""-.1----------1

"Real"
page

Storage
Block
Being
Removed

r
\

-
•

/
/ Remaining

/ Storage Module

•
•

"Shadow"
page

"' \
\
I

I

Figure 3.6 -- Environment for Moving Wired Storage

76

(before relocation) are shown in Figure 3.6.

Unbind now copies the information from the "real" page to

the 11 shadow" page of the virtual memory. 'l'o complete the

relocation, Unbind places the absolute address of the "shadow"

page in the page table word for the "real" page: the page

table is referenced as a normal part of the virtual memory.

Figure 3.6 also shows the address mappings after relocation.

Unbind then updates the allocator data bases (e.g., the

storage map) to reflect that the desired storage block is free

and that a new storage block has been allocated to the "real"

page; the "shadow" page has no storage allocated to it. We

note that Unbind is an extension of the allocator design and

must, of course, follow the normal allocator conventions

for example, check a lock before modifying tl1e allocator data

bases. This completes the basic design of Unbind for wired

storage. There remains the problem of avoiding conflict.

3.2.2.2 Avoiding Conflict

Since our goal is to reconfigure a system which is still

running, Unbind introduces two types of potential conflict

with other user processes. While the reconfiguration process

is reading (viz., moving to a new location) information in a

block of wired storage, some other process may modify the

storage; therefore, the new copy may be outdated or

inconsistant. On the other hand, while some other process is

77

reading an absolute address from a page table word (Vi Z o I

resolving a virtual memory reference), Unbind may be modifying

th.e address to reflect the new location. The "obvious"

solution is to provide explicit locks for all information

requiring wired storage.

it requires Unbind to

'.i.'.ilis

keep

solution lacks generality since

track of all the locks. In

addition, checking the lock involves a processing overhead for

all functions using wired storage. Instead of explicit locks,

our basic approach will be to "stop" potentially conflicting

processes during the execution of Unbind.

One possible ·way for Unbind to avoid conflict readily

suggests itself: before starting the copy operation, Unbind

sends a signal (viz., interrupt) to all other processing

modules that causes them to "halt" until Unbind signals tl'lem

that the copy operation is completed. Unbind also inhibits

all interrupts and faults to prevent conflict with an implicit

interrupt or fault handler process. 'I'llis synchronizing

approach solves the intrinsic conflict problem, since it

temporarily reduces the system to a single process. However,

we are interested in an effective engineering solution, and

since forcing all other processors to stop for the entire

duration of the copy operation can be unnecessarily wasteful

and does not scale well with more processors, we will examine

an alternative design.

Although some other processor has the ability to modify

information being relocated, there may be a low probability it

78

will actually do so while Unbind is executing. In a demand

paging environment it is useful, regardless of reconfiguration

capabilities, to know when a page in primary memory has

actually been modified for example, unmodified primary

storage pages need not again be copied to secondary storage.

The hardware can provide for a "modified bit" for each storage

block that is set on by any processing module making a

modifying reference. The processing hardware (channels and

central processing units) of some contemporary computer

systems, e.g., the IBM 360 Model 67 [10], include this

capability.

With hardware that provides such a "modified bit", Unbind

can use what we term the "trial copy method". The trial copy

method has four basic steps:

1. Unbind turns the "modified bit" off for the storage

block being removed.

2. Unbind copies the information to the new storage

block.

3. Unbind tests the "modified bit".

4. If still off then Unbind updates the absolute address

to reflect the new location; otherwise, return to step 1.

Any specific implementation of this trial copy method

must consider three design questions. First, if another

process can modify the old storage block after step 3 but

before step 4 is complete, we have a critical race: this

modification is never reflected in the new copy, and so is

79

essentially

signalling

lost. Again we can solve the problem by

all other processors to halt, but now they are

stopped for a much shorter time period.

"conditional store" instruction for

perform both steps 3 and 4 as one

without any explicit signalling.

In fact, a suitable

the processor could

indivisible operation,

Secondly, the references of a process are usually

localized, so if a page has been modified while attempting to

copy the page, the (conditional) probability b•at it will Le

modified again is much higher. For this reason and in order

to place an upper bound on the processor resources required by

Unbind, it may ~e desirable to stop t.i.rn otlier proce.:>sors for

the second try.

Finally, if the "modified bit" is used by procedures

other than Unbind, then the "modified bit" is part of a

system-wide data base, and Unbind must follow system locking

conventions to prevent other processes from explicitly

referencing the "modified bit" being manipulated by Unbind.

In addition, Unbind must leave the "modified bit" for the new

storage block in the correct state: only if the information

was modified before or during the relocation should the

"modified bit" be on.

80

3.2.2.3 Self-reference Problems

We have developed a design for removing wired storage

that is generally independent of what information is stored;

however, the design of Unbind must consider two special cases

of wired storage required for the operation of Unbind itself.

First, the storage being removed may contain instructions

and data of Unbind itself. Now recall that to prevent

conflict with implicit handler processes, Unbind cannot allow

any interrupts or faults during its execution. This implies

that, to avoid "missing page" faults, the instructions and

data of Unbind must be in wired storage. Therefore, when

moving wired storage Unbind may move itself, and in particular

may move its internal variables. Now if, because of its

execution, Unbind modifies an internal variable (for example,

a loop index) it is moving, then the new copy of the variable

will not be correct if it is modified after it has been

copied. Again (as in conflicts with other processes) an

outdated or inconsistant copy results when the information is

modified (in this case by Unbind itself) while being moved.

Unbind can avoid this conflict-like problem by modifying only

internal registers of the processor during the copy operation.

If using internal registers is impractical, Unbind must

specifically check for this special case and explicitly update

the new version after the relocation is completed.

A second, particularly awkward special case occurs when

81

the relocation mechanism used by Unbind (when storing the new

address in the page table word for the "real page) is part of

the information being relocated. This special case occurs

when Unbind moves a page table which contains the page table

word for the page (containing the page table) being moved.

The example of Figure 3.6 is redrawn in Figure 3.7 for this

special case (after the copy is made but before updating

absolute addresses). Recall that Unbind usually updates the

absolute address in the page table word for the "real" page

using a normal virtual memory reference. However, this

virtual memory reference to the page table word will reference

the old copy of the page table, leaving the old address in the

new copy of the page table. Therefore, Unbind must explicitly

update the page table word in the "shadow" page in order to

complete the relocation (as shown in Figure 3.8).

3.2.2.4 Implications of External I/O

We have developed a design for storage removal based on

an asynchronous model of the system. In particular, Unbind

must be able to "stop" all processing modules referencing

wired storage in order to avoid conflicts. Unfortunately

external I/O channels are used for synchronous operations, and

therefore cannot in general "stop" for an arbitrary length of

time. However, I/O channels usually include some sort of

"buffering" that all.ows them to stop for a bounded period of

"Real"
Page
'fable

Page Table
Base Register

82

Remaining Storage 11odule
Bein Removed St .M d le ora_..sie 0 u

•
•

______ _,

•
•

•
•

(After
/l/copy)

~-!

" "' / ,/
/\

I ""
I
\
\

" --
(After/

copy)

.
•
•

.
•

-- .
•

-
. .

_.

"Shadow"
Page
Table

Figure 3.7 Environment Before Relocating Page Table

"Real"
Page
Table

Page Table
Base Re ister

(In Processor)

Storage Module
Being Removed

•
•
•

83

~

.
•

/

/ -
• .

\

I
I

/

/ 1fl
//

/ I
I {

II \
J \

Remaining
Storage Module

•
•

•

•

/ -- / x I-----·----I
•
• •

•

......

"Shadow"
Page
Table

Figure 3.8 Environment After Relocating Page Table

84

time. As already noted, with the trial copy method this time

period can be kept short (if a complete copy can be made

without the information being modified);

copy method implies that an I/O channel

however, the trial

updates "modified

Lits" and has a convenient relocation mechanism. In fact,

many contemporary I/O channels use absolute addresses

directly, and make no record of storage modification.

As already noted, a detailed consideration of external

I/O is beyond the scope of this thesis; however, a few

observations about the I/O impact on storage removal seem

useful. Operating system I/O primitives often know every

place that an absolute address is used by the channel. Even

though there is no general relocation mechanism, this

knowledge may allow each channel to have a special case

primitive to aid the removal of storage used by that channel.

'l'lle I/O channels of a system can of ten be classed as

either "high speed" or "low speed". For "high speed"

channels, any operation in progress is guaranteed to be

completed soon. 'rhe reconfiguration primitive for "high

speed" channels can insure that the future I/O operations will

use only storage outside the module being removed for such

things as buffers. The primitive can also signal the

reconfiguration process when any current I/O operation is

completed (i.e., when the channel is "stopped"); special per

channel control words, etc., that use absolute addresses can

be moved without conflict while the channel is stopped.

85

Although it is not practical to wait for "low speed" channels

to complete, the data transfer rate is usually so slow that

essentially synchronous primitives can be designed to change

the storage used, for example by a "fast" forced stop and

restart of the channel. Finally, for a fast channel that

takes arbitrarily long to complete an operation, we can only

suggest that the channel be designed with a hardware

relocation mechanism, such as paging, and be designed to

"stop" long enough for Unbind to complete relocation.

In summary, the Unbind design we have developed can

usually be applied to removing storage used by external I/O

channels, when these channels include the same general

relocation mechanism as other processing modules. Without an

explicit relocation mechanism, we can only say that for many

practical systems it seems likely that special case solutions

to the intrinsic relocation problem can be formulated.

3.2.3 Freeing a Storage Module Used as a Relay

We have identified primitives to remove from use the

units of logical storage resource in a module. However, the

reconfiguration procedures must also insure that a storage

module is not used as a relay for signals between processing

modules. For purposes of reconfiguration we can view the

storage module as also being used for a small specialized

memory -- the information storeu is an intermodule (interrupt)

86

signal or possibly a "mask" to prevent the relaying of a

particular signal.

The processing module(s) to receive each signal is

determined by the configuration of the hardware modules and is

recorded in the module configuration table entry for each

storage module. The system design includes a convention for

using storage modules to address a particular signal to a

specific processing module -- we invent the notion of a signal

address table to reflect which storage module is used as a

relay. Wilen a storage module is removed, the reconfiguration

procedures make it unavailable as a relay by replacing all its

occurrences in the signal address table with some remaining

module. The stored signal information in the removed module

could then be copied into its replacement, just as for other

storage in the module. However, updating the signal address

table prevents further writing into (i.e., sending signals to)

this module, so it is reasonable to just wait until all the

signals are sent to processing modules.

Multics provides one implementation example that

demonstrates the reconfiguration features. A single primary

memory module is used to relay all signals to each central

processing unit (CPU) from any CPU. The system uses an

explicit table for addressing signals to a particular CPU, and

this is updated by reconfiguration procedures. Since signals

are stored in a storage module for only a si1ort time (viz.,

typically a few milliseconds), the signal information is not

87

actually copied, but the reconfiguration process just waits

until no stored signals remain. Signals to and from I/O

channels may use any primary storage module -- the module used

is determined by the location of certain control data. Thus

when storage is freed (i.e., the data is moved), it is

implicit that the module is no longer used as a relay.

3.2.4 Summary of Storage Module Removal

We have considered the problems of dynamically removing a

storage module from use by the system, and have identified a

design approach to solve each of these problems. The basic

problem is moving and relocating all references to information

stored in the module, and we have seen that a demand paging

environment can simplify the implementation.

It is emphasized that relocation is an intrinsic problem

that must be solved; a system design that does not consider

dynamic reconfiguration can thwart solution of tnis problem.

For example some systems implicitly assume and always require

a zero-based and contiguous absolute address range, thereby

severely restricting dynamic memory reconfiguration. In

addition some systems include "wired-in" reserved absolute

storage locations: examples are the location where the

processor state is saved at the time of an interrupt and the

place where an I/O channel expects to find its next command.

Basically any explicit or implicit use of a fixed absolute

88

address can restrict dynamic memory reconfiguration.

3.3 Adding a Storage Module

A request to add a storage module is satisfied by making

all the storage in the module available for use by the system.

Recall that in this chapter we are assuming that a storage

module to lJe added is idle but accessible to the system.

Accessible means that a range of absolute addresses is

assigned to the storage module, and each processing module has

a communication link enabled to the storage module. In terms

of our general model described in chapter two and illustrated

in Figure 3.1, the logical storage resources in the module are

initially in a "free and unavailable" state. To add the

storage, the system must invoke the Make available primitive

(identified in chapter two) to perform the operations

represented by the state transition to the "free and

available" state.

Let us suppose that an operator requests that a specific

physical module be added. Recall that the module

configuration table reflects the binding of physical to

logical resources, and thus permits the reconfiguration

routine to determine the range of absolute addresses to be

added. First the system verifies that the operator's request

is acceptable. For example, the module configuration table

must have an entry for the specified module (i.e., the module

89

must in fact be accessible to the system), and the module must

not already be in use. For each unit of logical storage

resource in the module the operator's process invokes the

Hake_available primitive.

Recall that the "available" list

logical resources currently available

defines the set of

to the storage

allocator. Therefore, we provide a specific instance of the

generic closed subroutine Make available to add a unit of

storage to the available list:

call Hake_ available (addr);

where "addr" is the name (viz., absolute address) of a unit of

logical storage resource. Hake available merely adds the

storage to the available list, and the usage state is recorded

as "free". T:i.ius, when 1·1ake_available returns the storage is

available for use by the allocator to meet future demands for

storage.

After all the units of storage have been added, the

system records the module in the module configuration table as

available. Whether or not storage modules can be used to

relay intermodule signals is immaterial, since adding a

storage module does nothing to require any change in the

management of signals between processing modules.

We have seen that adding a storage module to the

resources being used is relatively simple and consists

primarily of verifying the operator's request and then adding

the logical storage resources to the available list.

90

3.4 Removing a Processing Module

In the computer utility environment, each unit of

processing resource (which we refer to as a "processor") is at

any point in time allocated to execute in behalf of some

process. To dynamically remove a processing module, the

reconfiguration process must force the processor(s) in the

module to stop executing for any useful process of the system.

We now interpret the general reconfiguration design, outlined

in chapter two and illustrated in Figure 3.1, in terms of

logical processing resources.

The motivation and techniques for processor allocator

designs applicable to the computer utility are not detailed

here, since a lucid discussion of these is available [20] to

the interested reader. Processor reconfiguration is basically

independent of the allocator design details; however, the

allocator must have a primitive to force rescheduling for any

specific processor, i.e., must be able to preempt any

processor.

The reconfiguration operations are modeled (see Figure

3.1) as transitions between four logical resource usage

states. To understand these states we must provide an

interpretation for the conditions bound/free and

available/unavailable in terms of logical processors. A

logical processor is "bound" when it is executing for some

useful (user) process in the system -- that process is said to

91

be running. A processor is "free" when not executing a user

process. So that this idling condition is not a special case

to the allocator, we introduce the notion of an "idle process"

(one for each processor) to insure that the allocator always

has some process to run on each processor. When running an

idle process, the processor can be thought of as executing in

a "loop" or possibly just executing a "halt until signaled"

instruction.

The allocator maintains in a system wide data base a list

of all the running processes. This running list identifies

which process is running on each logical processor. When the

allocator wishes to run a process not now running, it searches

the running list for a processor to which the process can be

assigned, for example the processor currently running the

lowest priority process. Thus the "available" processors are

just those which occur in the running list.

To remove a processor, the reconfiguration

must ultimately leave a processor in the

procedures

"free and

unavailable" state, which means the processor is assigned to

its idle process and not in the running list. Removing a

logical processor from use is followed by removing a physical

processor from the configuration. Since at some point the

processor must be shutdown, we introduce the further

constraint that a logical processor in the "free and

unavailable" state is halted, viz., will make no references to

any storage and will neither send signals to nor receive

92

signals from any processor.

For any acceptable request to remove a processing module

(viz., when a viable set of modules will be left), the system

will remove the logical processor(s). From the general model

of chapter two we know we must again (as for removing storage)

invoke two primitives in sequence to first make the processor

unavailable and then to make it free. The first primitive

must remove the processor from the running list and add it to

a "removing list" -- the entry for this processor is updated

to record that the processor is in an unavailable state.

Another instance of a generic closed subroutine is identified

to provide this primitive:

call Make unavailable (processor_no);

where "processor_no" is the name of the logical processor to

be removed from the running list.

After the call to Make unavailable for all resources in

the module, the Unbind primitive must

that the processor is not being

be invoked to

applied to any

insure

useful

processing. In a direct analogy to storage resources, there

are three ways that the unavailable processor may be assigned

to its idle process:

1. The processor was running the idle process when

Make unavailable was called.

2. A running user process invokes a normal allocator

function in order to release the processor -- for example, in

Multics terms [20], the process running on this processor

93

called "block".

3. The reconfiguration process invokes a reconfiguration

primitive to force a user process to stop running on this

processor.

To insure that the processor is free (by one of these

means), the system invokes the Unbind primitive for each

logical processor being removed. Previous research [20] has

provided an allocator design for managing logical processors

as members of an anonymous pool so that any running process

can be easily "preempted". Typically a central processing

unit would be preempted by an interrupt, but a high speed

channel would merely wait for completion of the current

operation. The allocator's preempt primitive causes the

running process (which may be the process performing

reconfiguration) to be replaced with a process selected by the

allocator for an unavailable processor only the idle

process is selected to run. Thus the Unbind primitive forces

an unavailable processor to run its idle process by invoking

the allocator's normal preempt primitive.

Although we have seen how to free the processor from

explicitly assigned processing, there remains the problem of

processing implied by signals (e.g., interrupts) sent to the

processor. There are two types of signals -- process signals

intended for a specific process and system signals directed to

the processor regardless of what process is running. Since

the idle process is expendable we can completely control its

94

response to process signals without disrupting the operation

of the system (viz., no other process expects to communicate

with the idle process); therefore, we design the idle process

so that it does not receive process signals (except for a

signal to halt, as discussed below, from ci1e recofiguration

process) when its processor is unavailable.

System signals -- for example channel interrupts must

be processed by some processor as determined by system

convention, but since they are used to provide system-wide

functions, any processor will do. We invent the notion of a

signal target table that specifies the system convention for

which processor(s) receives each type of system signal. To

make the processor unavailable for processing future system

signals, the system replaces each occurrence of the processor

as a target in the signal target table a replacement

processor can be selected from the available list. Any

outstanding system signals are allowed to run out (i.e., the

processing is completed), and then the processor is free from

system signal processing.

We have identified a design to insure that the processor

is allocated to only the idle process and is not performing

implicit (intermodule signal) processing. If the idle process

is implemented as a loop (as opposed to being halted), recall

that by our definition the processor is not "free and

unavailable" until it is halted. Therefore, if necessary the

reconfiguration process sends a process signal to the idle

95

process: in response to this signal the idle process executes

a "halt" as its last instruction. Now we know the functions

required of the Unbind primitive preempt the process

running on the processor, redirect all intermodule signals to

other processors, and signal the idle process running on the

processor to halt. We again provide these functions with an

instance of the generic subroutine:

call Unbind (processor_no);

where "processor_no" is the name of the (unavailable) logical

processor that is to be made free.

Finally, after invoking Make unavailable and then Unbind

for the processor(s) in the processing module being removed,

the system records the module as unavailable in the module

configuration table. Recall from chapter two that a processor

only has memory of information related to the specific process

it is executing in this case an idle process whose

existence is basically irmnaterial to the operation of the

system. Thus the (halted) processor contains no information

needed by the system, and the completely expendable idle

process can have all its resource demands (viz., virtual

resources) removed. For example, the system can delete all

the storage required for per process data and all allocator

entries for this process. The system can also release any per

processor resources, for example, the wired storage for saving

the processor state at interrupt time. In addition, if

storage modules are used as a relay for signals, the system

96

can remove all occurrences of the processor in the signal

address table as superfluous.

We have developed a design to remove a processing module

from use by the system. This design is predicated on the

existence of an allocator primitive to preempt the process

running on any processor. The basic problem is insuring that

the processor is not in the future required by the system for

explicit (i.e., via the allocator) or implicit (e.g., system

interrupt) processing. We can see that the reconfiguration

capability of a system can be restricted by designs that

require a specific processor for any process (for example, as

a "master" processor for controlling "slave" processors), or

for intermodule signals (for example, to process I/O

interrupts).

3.5 Ad.ding~ Processing Module

When presented with an acceptable request to add a

physical processing module (viz., a request for a module that

is part of the configuration but not now in use), the system

makes the processor(s) in this module available to the

allocator. For each unit of physical resource the name of the

logical

table.

invokes

resource is determined from the module configuration

In terms of our model (see Figure 3.1), the system

the Make available primitive for each logical

processor in order to perform the operations represented by

97

the transition from the "free and unavailable" to the "free

and available" logical resource usage state.

The functions necessary to make a processor "free and

available" are essentially creating its idle process, creating

per processor data, forcing the processor to start executing

the idle process, and finally adding the processor to the

running list. To provide these functions we introduce the

reconfiguration primitive as the (generic) closed subroutine:

call Hake_available (processor_no);

where "processor_no" is the name of the logical processor

being added. When a call to Make available returns the

processor is available to the allocator for use in meeting the

explicit processing demands of any process, and is also

available for implicit (e.g., interrupt) processing.

Hake_available must provide an idle process for the addecl

processor. Recall from chapter two that the set of virtual

processors changes dynamically, viz., user processes are

created and destroyed. Therefore, the allocator, for reasons

other than reconfiguration, must have a primitive for creating

a process. For reconfiguration we augment the process

creation function so that an idle process can be created. The

allocator primitive to create (idle) processes must provide an

appropriate entry in the alocator's system-wide data base

in Multics terms [20], must provide a filled in process table

entry and must create any required per process data area

(for example a call stack).

98

In order to control the first actions of a newly added

processor, we want it to first execute a known, well-behaved

process -- for convenience we use the new idle process. Now

in general the allocator can choose any available processor to

execute a process; however, we require the process creation

primitive to create an idle process such that only one

specific logical processor can be assigned to it. Thus even

though the idle process exists it will not be selected to run

until its processor has an entry in the running list. 'l'o

complete the idle process the reconfiguration primitive must

provide the instructions that comprise its "program". The

reconfiguration primitive will also create any per processor

data for the processor being added.

Now the crux of the problem is how to cause the idle

process to actually start running. Recall that by our

definition of the "free and unavailable" state, the processor

is initially halted. Clearly a signal to the processor is

needed to cause the processor to do anything other than stay

halted. If storage modules are used to relay signals, then

entries are added to the signal address table so that signals

can be sent to the processor. If (as is common for channels)

the program for the idle process is just a (wired-in) halt, we

can now say that the idle process is actually running. On the

other hand, for an idle process that has a "loop" program

stored in memory, we must cause the processor to begin

executing this program. A signal must be sent to the

99

processor, but where a processor will begin executing in

response to a signal depends on the physical hardware

configuration the issues involved in having a processor

respond in a controlled manner will be ~xamined in detail in

the next chapter. For the moment we assume there exists some

signal to start the processor executing the "program" of the

idle process. Once the processor starts executing the idle

process, it is added to the running list, making it available

to the allocator.

We have examined a design for adding a processor. The

operations required are more complex than those for the

analogous adding of storage due to intermodule signals and the

more involved interpretation of the "free" state for a logical

processor. After making the processor(s) in the module

available to the allocator, the system updates the module

configuration table to reflect that the module is now

available for use by the system.

3.6 Summary of Changing Module Utilization

In this chapter we have developed in detail specific

designs for adding and removing storage and processing modules

from the set of modules the system is actually using. 'l'hese

designs have demonstrated that the operations of

reconfiguration can be conveniently modeled by resource usage

state transitions as postulated in chapter two. The crucial

100

elements of each design have been presented as a

of closed subroutines and system-wide data

combination

bases. The

subroutines directly represent the state transitions of the

general model (Figure 3 .1). The primary system-wide data base

introduced for reconfiguration is the module configuration

talJle which reflects the hardware configuration and the

utilization of each module. In addition we identified data

bases of the system resource allocators which are significant

to reconfiguration -- these include the "available list" for

storage, the "signal address table" (when storage modules act

as relays), the "running list" for processors, and the "signal

target table".

Although we have constructed solutions to the problems of

changing the modules being used by the system, these program

oriented solutions are really useful only when coupled with

some method of actually changing the hardware configuration of

physical modules that comprise the system. In the next

chapter we extend our investigation to consider in detail the

hardware oriented problems of changing the configuration of

modules in the system.

101

CHAPTER FOUR

CHANGING THE HARDWARE CONFIGURATION

4.0 Dynamically Changing Physical Module Configuration

Tlle hardware modules in a computer installation can be

used for any one of several applications, such as providing

services to users or running diagnostic programs to aid the

repair of a faulty module. To provide a high availability for

a computer utility, it must be possible to partition the

installation's modules into independent operating units (which

we term "partition-systems") that can be simultaneously used

for different applications.

Since there can be more than one totally independent

partition-system in a single installation, an operator must

intervene to specify which of the installation's modules are

available for use by each partition-system. Tllis chapter

develops a hardware architecture that decouples this simple

manual selection operation, from the complex operations that

control the configuration of the modules available to each

partition-system. This architecture allows each

partition-system to automatically control the configuration of

its own modules, for example, control the addresses assigned

to its memory modules. When combined with the operating

system primitives of chapter three, this architecture provides

a complete dynamic reconfiguration capability.

102

Recall that in chapter two we modeled the configuration

of a partition-system in terms of a binding between physical

resources and logical resources. This chapter considers in

detail the operations required to change the configuration.

These operations are modeled in terms of changes in the usage

state of the physical resources, as illustrated in Figure 4.1

-- this model is basically a specific instance of the general

model of state transitions presented in chapter two (see

Figure 2. 3). The relationship between the operations on

physical resources considered in this chapter and the

operations on logical resources considered in the last chapter

was previously discussed in chapter two and illustrated in

Figure 2.4.

How we need to interpret this model in terms of hardware

modules. Basically the available/unavailable states are a

model of whether or not an operator has specified the hardware

module as part of the partition-system. The bound/free states

model whether or not the partition-system has electrically

connected the (available) module as an operable part of the

configuration. From this model we see that there are two

basic design problems we must solve in this chapter:

1. The operator needs a mechanism for specifying which

modules of the installation are to be in which

partition-system.

interface at a

installation. As

We

single

the

will provide a convenient operator

location for all modules in the

first step in adding any module, the

FREE
&

UNAVAILAl3LE

~

Enable
Conununication

To Module

i
make

available

make
unavailable

. i
Disable

Conununication
To Module

FREE
&

AVAILABLE

Bind Logical
Name

To Physical

bJd

unbind

t
Unbind Logical

l~ame

From Physical

Resource Bound

BOUND
&

AVAILABLE

I-'
0
w

Resource Free 'I'o Logical Resource ______,

Figure 4.1 -- Usage State Transitions of Physical Resources

104

operator makes the module "available" to the partition-system.

As the last step in removing a module, the operator makes the

module "unavailable" to the partition-system.

2. Each module needs mechanisms so that the

partition-system can control the configuration (i.e., binding

and unbinding) of the modules made available to it by the

operator. Basically

interconnection of

these mechanisms control the electrical

the modules available to the

partition-system. We conceive the functions for accessing a

module's configuration control mechanisms as generic

"instructions" executable by some type of processing module:

Set_config module data

Read_config module data

where "module" specifies the particular physical module and

"data" is the configuration control information. (Read_config

is needed primarily for partition-system initialization as

discussed later, rather than for reconfiguration as such.)

Later sections of this chapter examine in detail the specific

configuration control mechanisms needed in the hardware

modules.

4.1 Changing Module Availability

Now recall that an operator selects which independent

partition-system each module is to be in: this means

specifically that he specifies which modules are available for

105

access with tl1e Set_config instruction (for convenience in

monitoring operator actions, we allow the "harmless 11

Read_config instruction to access all modules). We introduce

an installation-wide operator interface matrix as the

mechanism for operator selection. r:xternally this matrix is a

set of operator activated "switch buttons" that selects a

specific partition-system for each module in the installation,

as illustrated in Figure 4.2 (there are, of course, interlocks

to prevent making a module available to more than one

partition-system). Internally this matrix is a switching

network that controls the flow of Set_config signals from a

partition-system to any module, as also illustrated in Figure

4.2.

The operator interface matrix must also insure that the

Set _config signals from a processing module can only go to the

partition-system which contains that module. Each

partition-system must explicitly control which of its

processing module(s) can actually send the Set conf ig signals -
-- in particular, a processing module just made available to a

partition-system must not change the configuration of modules

already in use, until the partition-system makes sure that the

new module is "well-behaved" •

Therefore, for each possible partition-system in the

installation, the operator interface matrix has a program

accessible send register (viz., an electronic "gate") for each

processing module that can execute Set_config: a processor

106

CPU A CPU B CPU C l'lEil A MEII B MEM C ~ SYSTEM ~----------------------------1

u EB 0 0 0 0 EB
nOOOOOO
'
13 O EB E9 EB 0 0

From
System #1

From
System #2

From
System #3

Typical External Layout

'l'o
CPU A

'I'o
CPU B

'i'o
CPU C

To
HEH A

To
HEH B

To
IlEM C

E9 Indicates closed switch contact

Simplified Schematic Diagram

Figure 4. 2 -- Operator Interface Ilatrix

107

can send Set_config signals for a partitular partition-system

only if this send register is ON. The schematic diagram of

Figure 4.2 is redrawn in Figure 4.3 to reflect this design.

This design implies that instances of the generic Set_config

and Read_config instructions reference the send register,

possibly as part of the configuration control mechanism of the

processing module -- for convenience in monitoring operator

actions, we also allow Read_config to read all the operator

activated switches on the operator interface matrix. The

operator interface matrix enforces the following constraints

on the send register:

1. A module's send register can be ON for a

partition-system only if the module is available to that

partition-system. In other words,

processing modules can never send

another partition-system.

one partition-system's

Set_config signals to

2. Whenever an operator selects a processing module for

a different partition-system, the matrix initializes that

module's send registers as OFF for all partition-systems.

In conclusion we ol.>serve that the number of independent

partition-systems provided is determined JJy the operational

goals of the installation, but each useful partition-system

must include at least one processing module capable of

executing the Set_config instruction. We defer to a later

section the problem of intializing the operator interface

matrix when starting the partition-system on a "bare machine".

System
#1

System
#2

System
#3

From
CPU A

To
CPU A

From
CPU B

To
CPU B

From
CPU C

To
CPU C

E9
83

Indicates closed
Switch contact

Indicates "send register"
Switch is ON

To
HEH A

To
MEM B

'l'o
MEH C

Figure 4.3 -- Operator Interface Matrix Schematic

I-'
0
co

109

In terms of our model (Figure 4.1), the operator interface

matrix essentially defines which modules are "available" for a

partition-system. We next examine in detail the configuration

control mechanisms needed in each module to implement the

"bind" and "unbind" usage state transitions of our model.

4.2 Changing Module Binding

Recall that chapter two characterized a modular computer

installation as a collection of processing and storage modules

with an interconnection network consisting of interface ports

and memoryless links (see Figure 2.5). Although the network

itself is fixed, the effective electrical connections are

determined by configuration control mechanisms in each module.

Binding and unbinding of physical is a model for the changes

in these electrical connections. First we will examine the

mechanisms needed for all modules, and then we will examine

the particular requirements for storage

modules.

and processing

We digress a bit to note that a crucial feature of the

modular structure is that the interconnection network is never

dynamically changed. Since ti1e topology of this network must

be known for reconfiguration, we augment the module

configuration table to reflect the "wiring diagram" of exactly

how each link in the entire installation is connected to each

port: this information is provided at partition-system

110

initialization time.

Now for a partition-system to use (viz., have bound) a

physical module, it must have an effective electrical

connection with all other modules in the configuration we

say that its links to other modules are enabled. Our model of

an installation as consisting of independent partition-systems

immediately points to a problem in enabling links: although a

module belongs to a single partition-system, a link (viz.,

between modules in different partition-systems) does not. In

particular, we cannot simply use a single "on/off switch" in

each link to enable/disable the link, because to add and

remove a module, each partition-system must be able to

manipulate the "switch" in each of the links to its modules.

However, this ability to manipulate all its module's

"switches" means that one partition-system can enable a link

from one of its modules to a module being used by another

partition-system, and thus cause damage -- for example, write

in the memory of the other partition-system. Clearly each

partition-system needs a way to guarantee its isolation from

any other partition-system, regardless of the mistakes (e.g.,

errors by a technician repairing an off-line module or program

bugs in the supervisor, viz., those unrelated to

reconfiguration itself) that occur.

The required protection is provided by an "on/off switch"

in the port of each module (instead of in the link). An

"on/off switch" is of course just a form of binary memory, so

111

we will model this capability with a port enable register for

each interfacing module. The port enable registers in each

module are accessible by specific instances of the generic

Set_config and Read_config instructions. A link is enabled if

and only if the port enable registers at both ends of the link

are enabled (viz., ON). Figure 4.4 illustrates this design.

Now a partition-system can completely protect itself by

disabling its own modules' port enable registers (and thus

disable the links) for all modules not part of the

configuration.

To remove a module from the configuration, the

partition-systems uses the Set_config instruction to disable,

in the remaining modules, the port enable register for the

module being removed. Figure 4.5 illustrates the Set_config

signals used to disable links to a module.

We digress a bit to recall from chapter three that when a

processor is added to the configuration it is defined to be

initialized in a "halt until signaled" state, since it is

clearly dangerous to add a processor that is running in some

unknown way. Therefore, for the processor(s) in a processing

module we introduce a binary initialize register that is ON

only if the processor is in a "halt until signaled" state.

Not only does the initialize register reflect the current

state, but also a partition-system can force a processor to

halt (viz., become "initialized") by using Set_config to turn

the initialize register ON. Once the processor is

I

I

Processing
Unit

"Port Enable
Register"

Storage
Nodule

Interface
Port

Operator
Interface

Matrix

Set/Read conf ig
signals

112

Interface
Port

Processing
Module

"?ort Enable
~, ... : (~;_ s ter 11

intermodule
communication
link

Storage
Unit

I
I

Figure 4.4 -- Typical Intermodule Communication

[8]

Operator
Interface

Matrix

MEMORY A

CPU A

!IEMORY B

(Arrows show Set_config signals)

Indicates Disabling of
"Port Enable Register"

CPU B

MEMORY C

Hade
Inaccessible

Figure 4.5 -- Disabling Intermodule Communication

.....
w

114

initialized, the send register, if any, for the processor (in

the operator interface matrix) can safely be set OH: this

allows the partition-system to use this processor to execute

Set_config. Similarly, each storage module used as a relay

for signals between processing modules includes an initialize

register; when Set_config turns it ON, the storage module

clears any outstanding signals.

How to add any (available) processing or storage module

to the configuration, the partition-system first uses the

Set_config instruction to enable port enable registers in the

new module for just those links to modules already in the

configuration. 'l'he partition-system next uses Set_config to

set the initialize register ON (and to set ON the send

register, if any). Then the partition-system executes

Set_config for the modules already in the configuration to

enable the port enable registers for the links to the new

module. Figure 4.6 illustrates the Set_config signals to port

enable registers needed to enable links to a module.

In summary, port enable registers in the port of each

module primarily determine the effective interconnection of

modules. These registers control all conununication over the

intermodule links (Figure 4.4). The only intermodule signals

not controlled by port enable registers are the Set_config and

Read_config signals; these signals are controlled by the

operator interface matrix on an installation-wide basis,

rather than on an individual partition-system basis. We now

[I]

Operator
Interface

Matrix

MEMORY A

CPU A

MEMORY B

(Arrows show Set_config signals)

Indicates Enabling of
"Port Enable Register"

CPU B

MEMORY C

Made
Accessible

Figure 4.6 -- Enabling Intermodule Communication

I-'
I-'
V1

116

examine in detail the additional operations required to

bind/unbind a storage or processing module.

4.2.l Storage Hodule Configuration

A physical storage module can only be used by the

partition-system if it is "bound" to logical resources

viz., a range of absolute addresses. We now need a mechanism

for controlling this binding. Recall tnat the modular

structure developed in chapter two requires "port selection

logic" in each processing module to map an absolute address

into a reference through a link to the proper storage module

and a particular location within that module. To specify the

absolute address range assigned to each storage module, we

introduce (within the port of each processing module) an

address interval register for every link. The address

interval registers are accessible with specific instances of

the generic Set_config and Read_config instructions. Figure

4.7 illustrates our model of a processing module port. The

address interval register is typically implemented with only a

small amount of memory in the port for example a "oase

address" and the "size" for the storage module.

The partition-system makes a physical storage module

(being added to the configuration) "bound" by assigning to it

logical resources (viz., an absolute address interval) not

already assigned to another storage module. As noted in

relative address
(within storage
module)------z._.--r-

I

I

Operator
Interface

Matrix

~Set/Read config
signals

117

Processing
, Unit /
~-~....,,,.--~

absolute
~ address

(Address
Interval

Registers)

(Port
Enable

Registers)

Link to~
storage module

\
\

Port
Selection
Logic

Figure 4.7 -- Model of Processing Module Port

118

chapter three, the module configuration table records the

addresses already assigned to each storage module. The

partition-system executes Set_config, for each interfacing

processing module in the configuration, to set the address

interval register for the processing module's link to the new

storage module. The module configuration table is, of course,

updated to reflect this binding.

'l'o "unbind" a storage module (being removed), the

partition-system updates the module configuration table to

show that the module's address interval is unassigned. The

value left in the address interval registers for links to the

module being removed is basically unimportant, since the

module can only be made unavailable or bound to a new address

interval (see Figure 4.1).

In summary, the configuration of storage modules in a

partition-system is determined by address interval registers

in the interface ports of the partition-system's processing

modules. Tlle module configuration table is used to manage the

binding of physical to logical resources, e.g., to prevent the

partition-system from using two storage modules with the same

absolute address range.

4.2.2 Processing Hodule Configuration

To be used by the partition-system, a physical processor

must be bound to a logical processor. In addition, the

119

"instruction counter" for implicit processing (e.g.,

responding to interrupt signals) must be bound to an execution

point. We now develop a design for these binding operations.

The logical processor number (i.e., the name of a unit of

logical processing resource) may not seem as intuitively

motivated as an absolute address (i.e., the name of a unit of

logical storage resource); however, a unique processor number

for identification is needed by the processing resource

allocator. This binding of physical to logical processors is

recorded in the module configuration table. We will view the

the processing

Set_config and

register as processor number

module; this

Read_config.

register is

As contrasted

contained

accessible

to the

in

tl1ru

contiguous absolute

addresses in a storage module, the processor numbers for

processors in the same module may bear no relationship to each

other, except for uniqueness; if so, the module must have an

explicit processor number register for each processor in the

module. For example, channels often have individually

assigned "channel numbers".

Although the processor number is used for managing the

explicit processing, recall from the last chapter that a

processor also performs implicit processing in response to

signals. Now we digress a bit to observe that the intrinsic

problem for a processor responding to any signal (e.g., an

interrupt) is determining the single location where it can

find its next instruction to execute. ·we will view this

120

location as being specified by a signal address register,

which is accessible thru Set_config and Read_config. Figure

4.7 is now augmented in Figure 4.8 to illustrate our complete

model of a processing module.

In a simple case (e.g., a highly specialized channel)

this next instruction may implicitly be a wired-in program1

however, usually an explicit signal address register specifies

the location in primary memory of an instruction to be

executed. The instructions at the specified location will

typically save the state of the processor (so it can be

restarted where interrupted) and transfer to a "handler" for

the signal. The interpretation of this single absolute

address will depend on the particular hardware design for

example, in a processor with segmentation hardware the signal

address register may in fact be the "descriptor base register"

(refer to Figure 3.4), and the next instruction is found in a

reserved segment. In any case, the signal address register

must be included in the relocation mechanisms updated when

removing a primary memory module, as already detailed in

chapter three.

We now have all the mechanisms needed to control the

binding of physical processing modules. The partition-system

makes a processing module (being added to the configuration)

"bound" by assigning a processor number and signal address to

each processor contained in the new module. In addition, the

partition-system sets the address interval registers in the

(Signal Address
Register

(Processor No.
Register)

relative address
(within storage
module)~~~-~7 _ _..,,~,

Operator
Interface

Matrix I
I

Set/Read conf ig
signals

121

Processing Unit -­
One for each

• • • unit of resource
(i.e., "processor")
contained in
the module

absolute
address

(Address
Interval

Registers)

(Port
Enable

Registers)

Link to~
storage module \

\

Interface
Port -­
One per
module

Figure 4.8 -- Model of Processing Module

122

new module's port to reflect the addresses assigned to the

memory modules. With the internal registers set to desired

values and the processor in a "halt until signaled state" the

logical processor can be considered as "free and unavailable".

The Make available primitive of chapter three can then start

the processor in a standard and controlled way by placing the

desired instructions at the location specified by the signal

address register and sending a signal.

To "unbind" a processing module (being removed} the

partition-system updates the module configuration table to

show that each physical processor is "free", i.e., that its

processor number is unassigned. (By the conventions of

chapter three, the processors are already halted.} The values

in the various configuration control registers, of the module

being removed, can be left unchanged.

In summary, the configuration for processing modules is

primarily determined by a processor number and a signal

address register within each processor. Although typical

processing modules contain some form of the various

configuration control registers (Figure 4.8}, the crucial

characteristic for dynamic reconfiguration is that the

partition-system can insure suitable contents in these

registers before a processor begins to execute as part of the

configuration.

123

4.3 Partition-system Initialization

The design for reconfiguration must be compatible with

ti1e need to initiate partitio11-system operation on a bare

machine. We now demonstrate how the above design can be used

with a partition-system initialization strategy frequently

found in modular hardware, such as that used by Multics. We

view initialization in terms of a sequence of operating

configurations {within the collection of available modules),

each providing more capability than the preceding one:

l. We view the kernel of a partition-system as a

self-sufficient "bootstrapper" {with wired-in instructions,

data, and processing logic) contained in a single module.

This bootstrapper first executes a wired in program that

establishes a viable minimum configuration of modules. The

bootstrapper then copies a "bootstrap program" from its

wired-in data into a storage module.

2. This bootstrap program in turn executes on the

minimum configuration and loads an operating system.

3. '.i'he newly loaded operating system expands tl1e minimum

configuration to include all the modules made available to tile

partition-system by the operator interface matrix.

4. Finally, the operating system begins its normal

execution, using the full configuration of the

partition-system.

To start the partition-system the operator activates the

124

wired-in "bootstrapper" with a manual switch; we augment the

operator interface matrix to include a bootstrap switch for

each partition-system. Typically the bootstrapper is

contained in a normal processing module so it can use the same

processing hardware; for convenience, we say that each

processing module capable of executing the Set config

instruction also contains a bootstrapper. When an operator

activates a partition-system's bootstrap switch, the operator

interface matrix makes a (basically arbitrary) selection of a

bootstrap (processing) module from those modules available to

that partition-system. The matrix first initializes the

bootstrap module's send register ON and all other send

registers for that partition-system OFF, so only the bootstrap

module can change the configuration.

Then the operator interface matrix starts the

JJootstrapper. Using its wired-in program, the bootstrapper

executes Read_config to determine the modules assigned to this

partition-system, and from these modules selects a minimum

configuration which includes the bootstrap module -- typically

one central processing unit, one primary memory and one I/O

channel are required. The modules in this minimum

configuration are then "uound", using Set_config -- typically

the logical resources used (for example, the absolute address

interval) are determined by constants wired into the

bootstrapper. This results in a useable, initialized (viz.,

non-running) configuration.

125

Next the bootstrapper loads (from its wired-in data) a

small, fixed bootstrap program into primary memory at the

location specified by a processor's signal address register.

This transfer of data (viz., the bootstrap program) to memory

is the first use of the normal intermodule links. •rhe

bootstrapper then signals a processor to start executing the

l..>ootstrap program: the bootstrapper then stops itself.

The bootstrap program in turn reads additional programs

from a fixed I/O device (the particular device used is a

"constant" in the bootstrap program), and then executes these

programs. The programs read from the I/O device are an

initialization portion of the operating system. The operating

system adds the remaining modules assigned to this

partition-system, initializes data bases (e.g., the module

configuration table), and l..>egins its normal operation.

4. 4 Review

In this chapter we have presented a specific architecture

that permits a partition-system to dynamically and

automatically change its configuration of hardware modules,

under the direction of an operator. We have used changes in

binding as a model of the reconfiguration operations, and we

have introduced hardware "registers" to provide the mechanisms

for changing the configuration. Our strategy has been to

identify as explicit, program accessible registers those

126

(often implicit or operator controlled) configuration

dependent portions of contemporary modular architecture. We

have also explicitly identified a simple operator interface to

support the design.

The reconfiguration primitives of the last chapter taken

together with the hardware architecture presented in this

chapter provide a complete design for dynamic reconfiguration.

This design assumes strictly serial, operator initiated

requests to dynamically add and remove specific physical

modules. To enforce this serial discipline we can view

reconfiguration as being subject to a single software

reconfiguration lock. This lock prevents conflicts over the

use of

table

reconfiguration data such as the module configuration

and prevents races when accessing the hardware

registers.

127

CHAPTER FIVE

THE MULTICS IMPLEMENTATION

5.0 Background

The usefulness of the general design presented in the

preceding chapters has been demonstrated by employing it to

provide a practical dynamic reconfiguration capability for the

primary time-sharing service at M.I.T. The ~iplexed

Information and Computing .e.ervice {Multics) system has been

developed to serve as a public utility, initially for the

M.I.T. community. The general organization of Multics was

described in 1965 and is available to the interested reader in

the literature [l ,6 ,7 ,8]. The basic .Multics objectives are

controlled sharing of information among users and highly

available computational services to meet a wide spectrum of

user needs. The M. I. T. implementation was developed as a

research project, but has been generally available to users in

the M.I.T. community since October, 1969. Since that time the

system has attracted about 700 registered users and now (May,

1971) typically serves more than 50 users simultaneously when

running the full equipment configuration.

The Hultics system was implemented on the modular GE-645

[l] computer, and the principal modules in the H.I.T.

installation are shown in Figure 5.1. Although Multics is

available to a wide range of users, about one-third of the

Typical Service System »I~

CLOCK A

GIOC A

EXTERNAL
I/O

DEVICES

MEMORY C
(128K)

SECOIJDARY
DISK

STORAGE

CPU A

.MENORY D
(12 BK)

DRUM
CONTROLLER

A

SECONDARY
DRUM

STORAGE

I

Typical Development System~~~~--

MENORY E
(12 8K)

GIOC B

EX'l'EH.Nl\L
I/O

DEVICES

CPU B

CLOCK B

DRUM
CONTROLLER

B

SECONDARY
DRUM

STORAGE

......
tv
co

Figure 5.1 -- Multics Hardware Installation

129

system resources are currently consumed by the staff engaged

in continuing Nultics research. As a result of this

continuing research, a major new version of the Multics

supervisor is installed about twice a week. Since the initial

implementation did not include dynamic reconfiguration, one

central processing unit {CPU) and one memory module were

dedicated to a "development system" partition for developing

new versions of the supervisor and for maintenance. Each

morning {ai>out 5:00 a.m.) when there are few if any users, the

"service system" partition was shutdown and reinitialized

the physical memory and CPU modules were rotated between the

service and development partitions to permit maintenance to be

done on each module while it was part of the development

system.

Within a few months after the initial offering of the

Multics service, the demand during prime time exceeded the

capacity of the one CPU and two memory service system, while

the development system was often idle. Since in Multics all

user files are maintained on-line in secondary storage the

demands for secondary storage change slowly; therefore, a

fixed partition of secondary storage between the service and

development systems

was clear that the CPU

was entirely satisfactory.

and/or memory from the

However, it

development

system was needed to increase the capacity of the service

system during part of the day, while on the other hand it was

essential to have a development system during other portions

130

of the day. The change in configuration was needed at a time

when there were many users logged in, and therefore it was

totally unacceptable to shutdown u1e system and restart with a

new configuration. Clearly a dynamic reconfiguration

capability for CPU's and memories would be very useful.

As part of the research reported in this thesis the

Multics supervisor was augmented to provide an early

engineering design for dynamic reconfiguration. First

reconfiguration was provided for only CPU's, but since a two

CPU and two memory configuration turned out to be "memory

limited", the CPU reconfiguration capability was not used on a

regular basis. However, CPU reconfiguration was occasionally

used when the service system CPU developed intermittent

hardware failures. To avoid shutting down the system, the

operator adds the development CPU and removes the faulty CPU

for repair.

The memory reconfiguration capability was then added,

although due to awkward but not intrinsic hardware limitations

(as explained later) a choice was made to have one memory that

cannot be removed. Once both CPU and memory reconfiguration

were available, a daily schedule was established for adding

the development CPU and memory to the service system during

the time of peak demand (approximately 2:00 p.m. to 5:00 p.m.

on weekdays), and whenever the development system was idle.

All reconfiguration is initiated by a computer operator

who is logged into the system as a normal user. Only selected

users (viz.,

granted access

operators)

to the

131

are, of course, administratively

reconfiguration entry points. The

operator types reconfiguration requests at an interactive

terminal in the same way that any other request is made. In

response he may receive instructions for operator actions

(viz., manipulating switches), and ultimately he is advised

that the requested reconfiguration is completed. Appendix I

is a copy of the instructions currently provided the fiultics

computer operators for performing reconfiguration.

The Multics implementation is based on the general design

of the previous chapters; however, since reconfiguration was

added to an already operational system, the hardware design in

general could not be changed, although there were a few minor

corrections. On the other hand, the author had essentially

complete design freedom to propose changes to the Multics

operating system as needed for reconfiguration (within the

limits of his ability to design, implement, ancl install these

changes in a system used as a service facility).

the !lultics implementation we hope to gain

By examining

a clearer

understanding of how the general design can be interpreted and

applied to a specific syste~, even when some of the desired

(hardware) features are not available. We will relate the

elements of the Hultics implementation to the general design

primitives, data bases, and hardware registers introduced in

chapters three and four. We will separately consider the

design for each of the individual reconfiguration requests to

132

add or remove a CPU or memory module. First we will point out

features of the GE-645 hardware used for Multics that are

significant to reconfiguration:

1. The memory modules are usecl to relay signals between

processing modules. However, a memory module can relay

(interrupt) signals to only one CPU, instead of broadcasting

to all CPU's, under control of the system, as in our general

model of a modular system. The single CPU that receives

interrupts is determined by a manual "control processor"

switch on the memory module. This means that there must be at

least one memory module for every CPU in the configuration.

2. Each processing module -- CPU, drum controller, and

general I/O controller has a set of manual "base address"

switches (instead of a program accessible "signal address

register", as defined in chapter four), which specifies the

absolute address of the instruction (or command) executed in

response to an interrupt (or ch.annel connect) signal. This

serves as the "signal address register" we defined in chapter

four.

3. The "port enable registers" in processing modules,

which are used to control all intermodule communication witi1

memory modules, are set by switches (instead of being program

accessible, as proposed in chapter four) and cannot be changed

while a processor is running.

-- --

133

5.1 Removing a CPU

In the idealized design we presented, any module can be

removed by an operator issuing a single request to the system.

To remove a CPU in Hultics the operator must in addition

change at least one manual switch and give at least two

responses at his console. '£he Multics design for removing a

processor is essentially the same as the general design

developed in the preceding chapters, but contains the

terminology of !lultics; this design consists of the following

specific steps:

1. The system locks the reconfiguration data base and

checks the operator request for validity.

2. The system makes the CPU unavailable for allocation by

forcing only the idle process to run on it.

3. For all memory modules relaying (interrupt) signals to

the CPU, the operator changes the "control processor" switch

so that interrupts are directed to some other CPU in the

configuration.

4. The reconfiguration process signals the idle process

for the CPU being removed that it will receive no more

interrupts. The idle process returns a signal that it is

about to halt, and then halts the CPU.

s. After receiving a signal of the irraninent halt, the

operator's process destroys the idle process and associated

data bases for the removed CPU.

134

6. The system updates the reconfiguration data base, and

makes all memory modules inaccessible to the removed CPU.

7. The system unlocks the reconfiguration data base and

advises the operator that the CPU has been removed.

The I1ultics configuration is recorded in a system-wide

data base that implements the "module configuration table".

This data base is used to verify the validity of the operator

request, e.g., that tl1ere will be at least one CPU left and

that tile CPU to ue removed is actually part of tl1e current

configuration. This data Lase has an explicit lock that

allows only one reconfiguration at a time.

The current implementation of the Multics traffic

controller [20] uses scheduling priorities in conjunction with

the "running list" to establish the "available" CPU's. When

the traffic controller is entered a CPU is always passed (like

a baton in a relay race) from tl1e currently running process to

the ready process with highest scheduling priority. A

processor is available just as long as it can be passed to

another (user) process. 'rl1e l1ake_unavailable primitive is

implemented by permanently giving the idle process for the

specified processor the highest priority; then that processor

will only be passed to the idle process, and thus is not

available to be allocated to otl1er user processes.

To stop any user process currently running on the

processor, the Unbind primitive sends a normal traffic

controller preempt interrupt to tl1e processor. Since a

135

preempted processor is always assigned to the highest priority

process, its idle process is run. The reconfiguration process

executing Unbind is careful to unmask preempt interrupts,

since the reconfiguration process may itself be running on the

processor to be removed. Once the idle process begins to run

on the processor being removed it will continue to run, since

it has highest priority.

Hext the implementation of the Unbind primitive frees the

processor from interrupt processing. (Recall from chapter

three that there are two types of interrupts "process

interrupts" intended for a specific process, and "system

interrupts" directed to the processor regardless of what

process is running.) This implementation is made difficult by

the hardware design which allows a memory module to relay

interrupts to only the one processor specified by the manual

"control processor" switch. This leads to the nultics

implementation of the 11 signal address table 11 wi tll the

convention that each processor module has one memory module as

its primary source of process interrupts. (In fact, with the

exception of the real time clock interrupts directly from the

clock module, all interrupts to a CPU come from a single

memory module.) Furthermore, a portion of the "signal target

table" is implicit in the hardware design 5incc the system

interrupts from the drum controller and general I/O controller

are always directed to the memory module specified uy their

respective "base address" switches -- to simplify interrupt

136

masking it is required that such a memory module be the

primary process interrupt source for some CPU.

For each memory module which can generate interrupts for

the CPU to be removed, the manual control processor switch

must i.)e redirected to another CPU; however, the hardware

design is such that to avoid undefined (and possi.uly

disastrous) results, interrupts must be masked from leaving

the memory module while the control processor switch is Deing

moved. To prevent races and lost interrupts, Multics has the

software convention that the primary interrupt source can be

masked only by the CPU that it interrupts.

'l'here are two cases; in the first case, to change the

control processor switch on

primary interrupt source, the

memory modules not used as the

reconfiguration process first

masks interrupts, then the operator is instructed to move the

switch, and finally the system unmasks interrupts after the

operator responds to indicate that the control processor

switch has been moved. In the second case, to change the

control processor switch of the primary interrupt source, the

reconfiguration process signals the idle process to do the

masking, and the idle process returns a signal wnen interrupts

are masked. (For convenience, all "signalling" to and from

idle processes is done via changes in a system wide variable.)

'l'ne operator then moves the switch, and responds to indicate

that the switch has been moved. If this memory module

generates only process interrupts (viz., cannot generate

137

system interrupts), it is then unmasked 1.Jy the reconfiguration

process. On the other hand, a memory module that generates

system interrupts is treated as a special case, as described

below.

An awkward problem arises in Multics, because system

interrupts (which includes all I/O interrupts) are redirected

to another CPU by the very slow operator manipulated control

processor switch, rather than by a rapid change of ti:1e 11 signal

target table" as in the general model. For a memory module

which relays system interrupts, :;;evere difficulties (for

example, overflowing of I/O .iJuffers) could result from delayed

interrupts while the operator is moving the switch. As part

of the design to cope with this problem, llultics ignores

"extra" interrupts, and while waiting for the operator, a

stream of artificial, CPU-generated interrupts is sent by the

idle process to another processor so that events signaled by

the true, masked interrupts will not go unnoticed. After the

operator moves the control processor switch to a remaining

CPU, the reconfiguration process forces its idle process to

also run by giving it high priority and sending a preempt

interrupt (again the reconfiguration process is unmasked,

since it may be running on the preempted processor). 'l'he idle

process of the remaining CPU changes tile remaining CPU's

primary interrupt source to ue the memory tnat was associated

with the CPU being removed -- this idle process updates the

"signal address table", unmasks the module to allow system

138

interrupts, and signals the idle process for the processor

oeing removed that interrupts are unmasked. Then tnis idle

process for a remaining processor restores itself to normal

priority. Hote that forcing an idle process to change the

interrupt source ties up a remaining processor for only a

short time and therefore does not disrupt service to users.

After receiving a signal that system interrupts are unmasked,

the idle process for the processor being removed stops sending

the artificial system interrupts.

After all the control processor switches are moved, the

idle process for the processor being removed is signaled.

'l'i.1is signifies that no more interrupts will be received by the

processor, so the idle process returns a signal tilat it is

about to halt, and halts. Note that al tl1ough tne idle process

is given exclusive use of its processor for a long time, this

processor is about to be removed anyway, so this causes no

unexpected disruption. On the other hand tne reconfiguration

process is given no special scheduling consideration, and

therefore in no way disrupts the other users of the system.

After the processor is halted, the idle process is

destroyed, and the call stack and descriptor segment for the

process are deleted. The processor's data base (used to save

the processor state at interrupt time) is also deleted. The

physical processor module is made "free" by updating the

reconfiguration data base. 'rhe GE-645 memory modules include

program controlled port enable registers, so the system

139

disables all its links to memory modules. Finally the

reconfiguration data base is unlocked, and the operator is

informed that the CPU has been removed. Before using this CPU

he must manually disable its "port enable register" for the

service system clock module(s); otherwise, the removed CPU

can access and stop a service system clock, because links to

clocks cannot be disabled at the port on the clock (since the

clock modules have no port enable registers of any sort).

In sununary we can say that the Multics implementation for

removing a CPU is made quite cumbersome by a hardware design

that uses a manual switch to determine the CPU receiving

interrupts from a memory module, and by the clock port

organization. The Multics reconfiguration implementation

takes advantage of the Multics convention that an idle process

can only run on a specific processor: in order to remove a

CPU the idle process is augmented with procedures to perform

tasks that must be executed on a specific processor.

5.2 Adding a CPU

With the idealized reconfiguration design a processor can

be added by an operator making the module "available" (using

the "operator interface matrix", which Multics does not have),

and a single operator request to the system. With the Multics

implementation, processor module initialization usually

requires moving five "address interval" switches; the

141

the CPU (see Appendix I for an example).

With a manual switch the operator initializes the CPU in

a halted state, since Multics does not have a program

controlled "initialize register" (as defined in chapter four)

that can be used to intialize a processor. Instead of a

program controlled "signal address register", as defined in

chapter four, each processing module (whether in the service

or development system) has a "permanent" switch-assigned "base

address" which the hardware design restricts to a limited

range of absolute addresses. Since this fixed base address

requires a specific absolute address range in every

configuration, the "address interval registers" cannot have

fixed values but are set (in manual switches) by the operator

when initializing the processor. Since the hardware design

does not allow these address interval switches to be changed

while the CPU is running, address intervals must be assigned

to, and ports enabled for, all memories in the installation.

A "processor number" is by Multics convention permanently

assigned to each physical CPU module. After completing all

this manual initialization of the CPU, the operator responds

to the system to indicate that the CPU is initialized.

The system then enables "port enable registers" for the

processor in each primary memory module of the service system

to enable all links to the physical processor. The memory

module selected as the primary interrupt source is masked.

Then the operator is instructed to direct the "control

142

processor" switch to the CPU being added, and he responds when

done. The "signal address table" is updated to reflect that

the physical processor is now accessible for processing

interrupts. The reconfiguration data is updated to reflect

that the physical processor is now accessible to the system.

The Multics implementation of the Make available

primitive creates a processor data segment for the processor,

and creates an idle process with its call stack and descriptor

segment. The idle process is created with the normal (lowest)

priority but is in a "ready" state (rather than a "running"

state) so there will be no attempt to preempt it. Next the

processor is forced to start executing the idle process.

Since Multics uses segmentation, the descriptor base register

(refer to Figure 3.4 for illustration) must be loaded with the

absolute address of the idle process descriptor segment.

However, in response to any interrupt, Multics executes an

interrupt vector in "absolute mode", at an absolute address

determined from the processor "base address". The interrupt

vector for the reconfiguration interrupt is constructed so it

will save the processor state, load the descriptor base

register, then leave absolute mode, and transfer to the

procedure for the idle processes.

The reconfiguration interrupt is sent, and the newly

executing idle procedure first checks for errors if the

operator assigned the wrong processor number the processor

halts, or if the operator directed the "control processor"

143

switch to the wrong processor the saved machine conditions are

restored. If no error is detected, the idle process sets

itself to the "running" state, Wlmasks the primary interrupt

source, and sends itself a preempt interrupt so the traffic

controller will give the processor to the highest priority

process. Finally, the operator is informed that the processor

has been added, and the reconfiguration data base is unlocked;

if there is an error, part of the sequence for removing a

processor is followed to reverse the processing already done.

The Multics implementation to add a CPU is also made

cumbersome by the manual "control processor" switch. In

addition, the lack of a permanent address intervals for each

xoomory module makes it tedious for an operator to initialize

the CPU, and there is no practical way to initialize the port

enable registers to reflect the configuration. However, the

more easily made operator errors can be detected the

operator is told of his error and can repeat his attempt to

add a CPU.

5.3 Removing a Memory

The implementation to remove a memory from Multics

approaches the ideal operator interface for the usual

configuration the operator merely issues the request to remove

a specific physical memory module, and the system

automatically removes the memory and informs the operator it

144

has been done. However, the GE-645 hardware design leads to

the restriction that in any Multics configuration there is

always one memory module that cannot be removed. The major

events in the sequence to remove a memory module are as

follows:

1. The system locks the reconfiguration data base and

checks the operator request for validity.

2. If this memory is used as a primary interrupt source,

a remaining memory module assumes this role.

3. All information in the module is either copied to

another memory module or paged out of primary memory.

4. The system updates the reconfiguration data to show

that the module is not being used, and makes the memory module

inaccessible to the system.

5. The system unlocks the reconfiguration data base and

advises the operator that the memory has been removed.

After locking the reconfiguration data base, the system

verifies that the operator request is valid -- not only must

the memory be in the current configuration but also there must

remain at least one memory module for each processor to act as

its relay point for interrupts. If a memory module to be

removed is interlaced, then all the interlaced modules are

removed as if they were one larger module. Recall that every

processing module has permanently set "base address" switches

specifying the address of the instruction (or channel command)

executed in response to an interrupt (or channel connect)

145

signal by Multics convention all base addresses are in a

single module called the bootload memory. The "base address"

switches can only be changed while the processing modules are

stopped, which means service to users must be interrupted

while an operator changes the switches on all processing

modules. Because of this service interruption and the

likelihood of operator errors, the choice was made not to

implement the (less than dynamic) bootload memory removal.

If the memory module to be removed serves as the primary

interrupt source for some CPU, then the system selects some

remaining memory as a replacement. If no other memory in the

configuration directs interrupts to that CPU, then an operator

changes a "control processor" switch using the same sequence

as for CPU reconfiguration. Using the same techniques as when

removing a CPU, the CPU's idle process is forced to run and

change the "signal address table" to reflect the new primary

interrupt source.

The crux of memory removal is moving the information

stored in the module. First an implementation of the

Make unavailable primitive threads the storage blocks in the

module out of the "available list" and onto a "removing list".

Then an implementation of the Unbind primitive invokes the

normal paging mechanism to "page out" (i.e., move to secondary

storage) all the demand paged information. Unbind copies the

wired down storage to another memory using the "trial copy"

method -- copy, and then if modified stop all other CPU's and

146

copy again. It is noted that the Multics implementation is

simplified by taking advantage of fact that the "bootload

memory" module cannot be removed: the problem of moving page

tables and the similar problem of moving unpaged information

are avoided by placing this information in the bootload

memory. All external input/output is done using buffers in

the bootload memory only: this avoids the difficult

relocation problems resulting from the fact that the general

I/O controller uses absolute addresses rather than paging for

all memory references. These implementation short cuts

introduce no additional restrictions since all this stationary

information easily fits into the boatload memory module.

After the memory is no longer storing information for the

system, the reconfiguration data is updated to show the module

is not being used. Since the port enable registers in

processor modules cannot be changed while the system is

running, the system tries to make the memory inaccessible to

the system by disabling the port enable register in the memory

module being removed. Then the reconfiguration data base is

unlocked, and the operator is advised that the memory has been

removed.

The hardware design of the port enable registers imposes

some significant restrictions. Not only can a program in the

development partition enable a removed memory to allow access

from service system processors, but also initializing the

development system will enable all memory module port enable

147

registers and then initialize (viz., halt) all processors on

the enabled links; this problem results from the fact that

the initialize signals ignore the program accessible port

enable registers in the memory modules. Another design

problem is that even though a port is disabled at the memory

module, the module will still relay (interrupt) signals

through that port as indicated by the "control processor"

switch -- the target CPU will "hang up" trying to reference

the inaccessible memory to determine exactly what type of

signal was sent. To alleviate these problems, after removing

a memory an operator must redirect the "control processor"

switch to the development partition, and he must use manual

switches on the memory module to disable links to the service

system processor modules.

In sununary, the Multics reconfiguration implementation is

restricted in that the "boatload memory" module cannot be

removed because of the fixed absolute address contained in the

manual "base address" switches

Memory removal has a convenient

usually just types one corranand.

of each processor module.

operator interface he

On the other hand, before the

removed module can be used in another partition, the operator

must typically set about five manual switches: this is

because processor modules have no program accessible port

enable registers and because the

memory modules are not completely

disable interrupt signals.

port enable registers in

effective, viz., do not

148

2.:_! Adding ~ Memory

To initialize a primary memory module for adding to

Multics the operator must manipulate about eleven switches

eight port enable register switches, two initialize switches,

and the "control processor" switch. The primary events in the

sequence to add a memory module are:

1. The system locks the reconfiguration data base and

checY.s the operator request for validity.

2. The operator initializes the memory the system

gives detailed instructions to the operator.

3. The system updates the reconfiguration data.

4. The system makes the storage in the module available

for demand paging.

5. The system unlocks the reconfiguration data and

informs the operator that the memory module has been added.

With the reconfiguration data base locked, the operator

request is checked to make certain that the memory is part of

the installation but not already in the configuration. Again

interlaced memory modules are treated as a single "module".

In response to a valid request the operator is given detailed

instructions for initializing the module (see Appendix I for

an example). The operator manually disables all port enable

registers (primarily so no interrupt signals can be received).

Then he initializes the module in order to remove all pending

interrupts and enable all program accessible port enable

149

registers. The operator directs the "control processor"

switch to a CPU in the configuration this is safe since

there are no interrupt signals pending. The program

accessible (and now enabled) port enable registers are by

manual switches allowed to control the links to all processor

modules in the configuration since the ports in the

processor module are always enabled for all memories, the

physical memory module is "available" and "bound" to an

address interval at this point.

The reconfiguration data base is updated to reflect that

the physical memory module is now accessible to the system.

Then the program accessible port enable registers are enabled

for just those processor modules in the configuration (this

has no immediate effect since links to processor modules not

in the configuration are still disabled by the manual switch).

Finally an implementation of the Make available primitive

makes the storage in the module available for demand paging by

threading the storage blocks into the "available list". Then

the reconfiguration data is unlocked and the operator is

informed that the memory has been added. The operator can

then manually change the switch that allows all links to the

added module to be controlled by the program accessible port

enable registers.

The lack of program accessible port enable registers in

processor modules (for links to memory module) results in an

intricate operator sequence to initialize the memory module to

150

be added. In addition the operator must manually initialize

the port enable registers in the memory module to reflect the

configuration.

5.5 Experience ~~Multics Implementation

The Multics dynamic reconfiguration capability is used on

a daily basis for the operation of the Multics system at

M.I.T. The primary motivation is to increase the system

capacity during hours of peak usage, and otherwise partition

the equipment into independent "service" and "development"

systems. Occasionally dynamic reconfiguration is also used to

remove for repair a CPU with intermittent faults or a memory

modules with parity errors. The author considered it a

significant achievement that reconfiguration is always

invisible to users of the system: regardless of what a user

is doing he has absolutely no disruption when reconfiguration

occurs, not even a noticeable variation in response time.

Since dynamic reconfiguration was one of the initial

goals of Multics, the initial operating system was designed

with a generality that made it relatively easy to add this

capability. Still for the implementation of dynamic

reconfiguration, the author added to Multics more than 3000

lines of PL/l source code and 700 lines of assembly code that

give rise to more than 12,000 words of instructions and data.

The scope of this programming is indicated in Appendix II

151

which lists the Multics modules modified or added for

reconfiguration. In addition to the reconfiguration

programming identified in Appendix II, the author expended

substantial effort fixing previously undetected multiple

processor software bugs in the initial Multics operating

system.

The Hultics implementation was developed for hardware not

designed with dynamic reconfiguration as a primary goal.

However, useful dynamic reconfiguration is still possible,

because the hardware was designed for operation with a wide

variety of configurations. Although no changes in the basic

design were made, the reconfiguration development stimulated

corrections to minor hardware design errors that prevented

operation with more than two memory modules and a design error

that allowed system initialization signals thru disabled

ports.

The limitations of the hardware design have two

significant results: there is always one memory module in the

configuration that cannot be removed, and there are numerous

opportunities for an operator to make fatal errors when

manipulating manual switches. A fatal error currently

interrupts service to users for approximately 20 minutes while

a "salvager" makes secondary storage self-consistent and while

the system is reinitialized. In an effort to reduce operator

errors, detailed instructions have been prepared (Appendix I),

sUminary checklists are provided the operators, system

152

programmers provide training, the system prints explicit

operator instructions for each reconfiguration request, and

the system asks the operator for his personal initials in

order to encourage a sense of responsibility. The current

experience at M.I.T. is that an operator makes a fatal error

in about one of every 100 reconfiguration requests, that is,

about twice a month, but the need for operator accuracy is

very high.

The basic architecture of the GE-645 is maintained in the

newly announced and upward compatible Honeywell 6000 series

computers Appendix III is an analysis of the deficiencies

of this architecture and Appendix IV is a case study of how

this architecture could be improved to provide a complete and

convenient dynamic reconfiguration capability for Multics.

6.0 Sununary of Results

153

CHAPTER SIX

CONCLUSIONS

We have developed an orderly design approach for

dynamically changing the configuration of constituent physical

units in a modular computer system. This design allows the

modules in an installation to be partitioned into separate,

noninterfering partition-systems in order to permit preventive

maintenance, allow development of new operating systems, and

change system capacity in response to fluctuations in the

computational load. This design included the operating system

primitives and hardware architecture to allow any primary or

secondary storage module and any processing module to be added

and removed while the system is running. We have considered

reconfiguration as externally initiated by a human operator

and accomplished automatically without disruption to any users

of the system.

This thesis has developed reconfiguration as basically an

extension of resource management. To make the reconfiguration

operations clear, we have introduced three distinct views of

resources:

1. Physical resources represent the actual hardware

devices.

2. Logical resources represent the abstract processing

154

and memory capacity derived from the hardware devices.

3. Virtual resources represent the apparent processing

and memory capacity of a process; virtual resources thus

represent demands for logical resources.

This thesis uses the concept of binding to model the

functions that manage a system's resources.

hardware capabilities being applied

represented by physical resources bound to

With this model,

to a process are

logical resources

which are in turn bound to virtual resources of the process.

The problem of removing physical resources from the

configuration concerns the reversibility of binding, and

adding physical resources to the configuration is an example

of delayed binding. This reconfiguration model is developed

in terms of a modular structure with an interconnection of

processing and storage modules, such as is common in large

contemporary computer systems.

6.1 Implications

Reconfiguration is viewed as changes in binding. From

this model ground rules which permit reconfiguration have been

identified, and we will now review their major implications.

The basic ground rules are summarized below:

l. Each physical module must be interchangeable with any

other similar module.

2. A human operator must select the particular modules

155

available for use by a system.

3. The system must be able to automatically change the

configuration (viz., binding to logical resources) of its

physical modules.

4. The system must be able to dynamically change the set

of logical resources it is using.

These rules are intended to provide a basis for the

orderly design of future systems that require dynamic

reconfiguration: these

architecture, operating

system. The usefulness

rules

system,

of these

influence the hardware

and operation of a computer

rules has already been

demonstrated by using them to provide a practical dynamic

reconfiguration capability for the Multics system at M.I.T.,

where reconfiguration has had a significant impact on the

daily operation of the computer installation.

6.1.1 Module Interchangeability

To be effective, dynamic reconfiguration must be equally

applicable to all individual modules of a given type (e.g.,

all central processing units). This implies that the hardware

design avoids any implicit or explicit relationship between

individual modules (for example, a processor module must not

require the use of some specific memory module). That is, the

hardware design allows each module to be used interchangeably

with any other module of the same type.

156

6.1.2 Operator Participation

The dynamic nature of reconfiguration implies that

operator participation in reconfiguration operations should be

limited. This implication is primarily motivated by the need

for reconfiguration operations to be reliably performed:

program controlled operations require human perfection only

once (when the reconfiguration program is implemented), but

operator controlled operations require perfection for every

reconfiguration. Still, having coexistent, independent

partition-systems within a single installation implies that an

operator must intervene to specify the modules to be included

in each partition-system. This is a simple selection

operation (completely decoupled from the complex operations

that control the configuration of the modules), and it should

be implemented with a simple human interface.

6.1.3 Automatic Configuration Control

Although nearly all contemporary computer systems

manually determine the configuration of modules (for example,

tl1e assignment of addresses to memory modules), dynamic

reconfiguration implies that the configuration should be

controlled automatically. There are two techniques that can

be used: a particular configuration control mechanism either

has a permanently assigned value or else is under the explicit

(program) control of the operating system.

157

6.1.4 Resource Utilization

Dynamic reconfiguration implies that the system must be

able to change the (logical) resources it is using to meet any

(virtual) resource demands. The operations that make those

changes require the speed and accuracy of a computer program

in particular, the operation must be fast enough that the

system can still meet its response time constraints, and thus

can be considered to be "continuously operating".

For processing modules, the primary implications are that

no particular processor must be indispensable to the continued

progress of any process, and it must be possible to "preempt"

the execution of any specific processor.

For storage modules, the primary implication is that it

must be possible to relocate any information, including such

things as the "resident supervisor". The intrinsic problem is

being able to locate and update all absolute addresses: by

using the hardware mechanisms of paging, the relocation

operations are basically independent of the information being

relocated. An obvious corollary of this implication is that

the system must in no way require the use of any fixed

absolute address.

158

6.2 Additional Research

The research reported in this thesis provides a basis for

additional investigation in three areas spontaneously

initiated reconfiguration, reconfiguration of modules involved

in external input/output, and reconfiguration of very large

capacity secondary storage modules.

As computer systems try to approach the goal of

continuous availability, one obvious approach is spontaneous

error detection and error recovery. A dynamic reconfiguration

capability for replacing faulty hardware modules is an

essential element of such ultra-reliable computation

capabilities. One approach indicated by our general model is

to consider all the modules of the installation as part of one

"super system" and have this "super system" spontaneously

perform the (manual) functions of the operator interface

matrix (of chapter four). The reconfiguration design is

complicated by the need to interface with

retry the failed operation, attempt to

portions of the computation, and identify the

procedures which

salvage damaged

source of the

errors. Automatic error recovery, of course, introduces the

additional problem that errors may be present in the system

performing the reconfiguration.

External input/output, including such synchronous

applications as real time processing, does not directly fit

into our generally asynchronous model. One difficulty is that

159

during processor reconfiguration we must "preempt" the

processor to stop the execution of the currently running

process; however, it is not in general acceptable to stop the

I/O channel running an external "I/O process". What seems to

be needed is a way to move the "I/O process" from one channel

to another without any interruption. In terms of our binding

model, external I/O seems to imply that the virtual channel

resource must always have a valid binding to some logical

channel. The problem is somewhat analogous to the problem of

"wired" information which must always have a valid binding to

some (logical) storage resource.

Although our reconfiguration ground rules apply equally

well to primary and secondary storage, very large modules are

somewhat intractable. Our approach to removing a storage

module is basically to copy the stored information to a new

location. However, with a very large capacity module, such a

copy operation requires a large amount of processing.

Additional research might consider such alternatives as

maintaining duplicate copies of information, providing direct

transfer of data from one secondary storage module to another

secondary storage module, or using a movable storage medium

(e.g., moving a "disk pack." from one drive to another).

160

6.3 Remarks

We have seen that it is possible to, in an orderly

fashion, design a modular computer system with the ability to

dynamically change the configuration of constituent modules.

One final point is emphasized: although the system designer

can (by careful attention to the ground rules given in this

thesis) provide dynamic reconfiguration, he can also (by

ignoring these ground rules) make it difficult, if not

impossible, to later include dynamic reconfiguration as part

of the operating system. Hopefully the reconfiguration ground

rules developed in this thesis are a significant contribution

towards a systematic engineering approach for building a large

computer system for use as a computer utility.

161

BIBLIOGRAPHY

[l] Corbatb, F. J. and Vyssotsky, v. A. Introduction and
Overview of the Multics System. Proc AFIPS 1965 Fall Joint
Computer Conference., Vol 27, Part 1. Spartan Books, New
York, pp 185-197.

(2) Stanga, D. c. Univac 1108 Multiprocessor System. Proc
AFIPS 1967 Spring Joint Computer Conference, Vol. 30, Thompson
Books, Washington D. c., pp 67-74.

[3] Thompson, R.N. and Wilkinson, J .A., 'l'he D825 Automatic
Operating and Scheduling Program, Proc AFii?'S""l9b'rSpring Joint
Computer Conference, Vol 23, Spartan Books, Washington D.C.,
pp 41-49.

[4] GE-635 System Manual, CPB-371A, General Electric
Company, Phoenix, Arizona, July 1964.

[SJ Witt, Bernard I., M65MP: an
Multiprocessing, Proceedings of 23rd
ACM Publication P-68, Brandon/Systems
N.J., 1968, pp 691-703.

Experiment in OS/360
ACM National-Conference,
Press, Inc., Princeton,

[6) Glaser, E. L., Couleur, J. G., and Oliver, G. A.,
Design of ~Computer for Time Sharing Applications.
AFIPS 1965 Fall Joint Computer Conference, Vol. 27,
Spartan Books, New York, pp 197-202.

System
Proc

Part 1

[7] Vyssotsky, v. A., Corbat6, F. J.
Structure of the Multics Supervisor,
Joint Computer Conference, Vol. 27, Part
York, pp 203-212.

and Graham, R. M. ,
Proc AFIPS 1965, Fall
l, Spartan Books, New

[8] Ossanna, J. P., Mikus, L. .E., Dunten, s. D.,
Communications and Input/Output Switching in a Multiplexed
ComEuting System; Proc AFIPS 1965 Fall Joint Computer
Conference, Vol. 27, Part l, Spartan Books, New York, pp
231-241.

[9] Dennis, Jack B., Programming Generality, Parallelism and
Computer Architecture, Computation Structures Group Memo No.
32 1 Project MAC, MIT, Cambridge, Mass., 1968.

[10] IBM System/360 Model 67 Functional Characteristics,
GA27-2719-l, International Business Machines Corporation,
Kingston, N.Y., January 1970.

162

[11] Burroughs B6500 Information Processing Systems
Reference Manual, Burroughs Corporation, Detroit, Mich., 1969.

[12] Harr, J. A., Taylor, F. F.,
Organization of No. l ESS Central Processor,
Technical JournaI"; -volume XLIII, NUrilber 5,
1964.

and Ulrich, w.,
The Bell System
Part 1, September

[13] R. w. Parker, The Sabre System, Datamation,
1965, pp 49-52.

September

[14] Sackman, Harold, Computers, System Science, and
Evolving Society, John Wiley & Sons, N.Y., 1967, pp 91-167.~-

[15] Pokorney, Joseph L. and Mitchell, Wallace E., A S*stems
Approach to Computer Proframs, ESD-TR-67-205, Tee nical
RequirementS-and Standards Of ice, ESD, L. G. Hanscom Field,
Bedford, Mass, February 1967.

(16] Keely, J. F., et al., ~ Alplication-oriented
Multiprocessing System, IBM Systems Journa , Vol. 6, No. 2,
1967.

(17] Dijkstra, Edsger w., The Structure of the "TliE"
Multiprogramminf System, Communications of the ACM, Vol. -YY,
No. 5 (May l968 , pp 341-346.

(18] IBM Ststem/360 Princi~les
Internationa Busriiess Machines
N.Y., January 1967.

of Operation, A22-6821-6,
corporation, Poughkeepsie,

[19] Andrews, J., et al., GE-645 Processor Reference Manual,
G0098, General Electric Company;-cariibridge Information Systems
Laboratory, Cambridge, Mass., August 1970.

(20] Saltzer, Jerome H., Traffic Control in a Multiplexed
Computer System, MAC-TR-30 (Sc.D. Thesis), Project MAC, MI'r,
Cambridge, Mass., July 1966.

(21] Bensousan, A., et al., The Multics Virtual
Second ACM Symposium on Operating System Principles
1969), Princeton University, pp 30-42.

Memory,
(October

[22] Daley, Robert c., and Dennis, Jack B., Virtual Memory,
Processes, and Sharinf In Multics, Communications of the ACM,
Vol. II, No:--5", (May 9b'S'), pp 306-312.

(23] Schroeder, Michael D., Performance of the GE-645
Associative Memory While Multics is ~ Operatioii; Procee<Ii~gs
of the ACM SIGOPS Workshop on System Performance Evaluation
(April 1971), Harvard University, pp 227-245.

163

APPEIWIX I

MULTICS OPERATOR INSTRUCTIONS

'l'his appendix is a copy of the dynamic reconfiguration

instructions available to the Multics computer operators.

'i'hese instructions refer to "HBOS configuration cards": this

is a reference to a set of operator supplied punched cards

specifying the initial hardware configuration. These cards

are interpreted by the Multics Bootload Operating System

(MBOS), and during system intitialization HBOS places in core

memory a copy of the configuration information for use uy

Hultics itself.

TO:

FROM:

DATE:

SUBJEC'.L':

1. Multics

164

Distribution

Roger R. Schell

October 23, 1970

Use of Dynamic Reconfiguration in Multics

now has a full capability for dynamic

reconfiguration of processors and memories. This will make it

possible for operations to add or remove any processor and any

memory except the bootload (i.e., the low order) memory while

the system is running.

one processor, and

'l'here must, of course, be a minimum of

one

reconfiguration commands

memory for each processor. 'l'he

can be issued from the initializer

console or any daemon process at Multics command level (or in

11 admin 11 mode) •

2. The following is a sample console output for adding a

processor (underlined portions are typed by the operator):

165

addcpu b 5

Check that the following has been done (if not, do it in the
following order):

cpu b must be initialized (depress INITIALIZE switch on
processor)

All memories: PORT ENABLE (port 5) set to MASK
cpu b must have the following switch setting:

clock a: Port Block 5 Interlace OFF
memory c: Port Block O Interlace ON
memory d: Port Block l Interlace ON
memory e: Port Block 2 Interlace OFF
CPU NO: 2

Have all the above been done?(yes/no and initials): yes rrs

You will change CONTROL PROCESSOR switch on memory d to port
(cpu b).

5

Wait until instructed to change it. Are you ready? (yes/no):
yes
Change switch now. Type 'yes' when done: yes

cpu b is now running.

The arguments to the addcpu command are the processor name

(e.g., 11 b 11
) and the processor port (e.g. , 11 5 11

) as on the MBOS

configuration card. An additional argument can optionally be

provided to specify that a particular memory controller (e.g.,

"b 11
) is to be given the added CPU as its "control processor".

Be certain that when the new CPU is being readied, the various

switches are set in the order listed: check very carefully,

as wrong switches can crash the system.

166

3. The command for removing a processor is of the form

delcpu b. The sequence of instructions (as for adding a CPU)

for changing the control processor switch will be given for

each controller assigned to the CPU being removed.

4. The following is a sample console output for adding a

memory:

addmem e

Perform the following (in the order given) on memory
controller e.

PORT ENABLE set to OFF for all ports.
Initialize controller at its maintenance panel.
Change CONTROL PROCESSOR switch to port 4 (cpu a).
PORT ENABLE set to MASK for ports O, 3 and 4.

Have all the above been done?(yes/no and initials): yes rrs

You have added memory controller e.

'i'he argument to the addmem command is the memory name (e.g. ,

c) as on the l1BOS configuration card. An additional argument

can optionally be provided to specify a particular cpu (e.g.,

a) as the control processor for the memory being added. Be

certain that when the new memory is being readied, the various

switches are set in the order listed. In order to initialize

the controller at its maintenance panel, the controller must

167

be in the test mode using the test switch. While in the test

mode, press the initialize button. Then set the controller

from the test mode to the operate mode.

5. The corrunand for removing a memory is of the form delmem e.

If this is the only memory whose control processor switch is

directed to some processor, then the operator will be given

the sequence of instructions (as for adding a processor) for

changing the c'ontrol processor switch on some other memory to

this processor.

6. When the reconfiguration commands request the operator to

give a "yes/no" answer, then any answer other than yes will

properly terminate the reconfiguration. When the operator is

asked for a "yes" answer, he must do as directed and answer

"yes" or risk crashing the system. If the error message

"program error--notify programmer" ever occurs, DO NOT try to

use ANY reconfiguration command again until cleared by a

programmer, or until ~~e next bootload of the system.

7. Note that when the configuration is changed dynamically,

the MBOS cards for processors and memories may no longer

reflect the true configuration. Therefore, before the next

bootload or salvage, the hardware configuration and the HBOS

configuration deck must be made consistent with each other.

8. Only memories that are defined by MBOS cards at bootload

time can be added. The configuration card for a memory has a

169

9. The PORT ENABLE switches for all memory controllers

running on the service system should be set in the "MASK",

i.e., "IN LINE", position for all ports at all times. For the

development system, all ports should be "ON" or "OFF" to

reflect the running configuration. Note that after adding a

memory, unused ports are left in the "OFF" position. 'I'he

operator has the option of either leaving them "OFF" or

putting them in the "MASK" position after the adding of the

memory is completed.

10. When moving the processor and memory from the development

to the service system, the changing of switches by the

operator can be minimized by using the following sequence. If

the development system has a processor P with port X and a

memory M, then to move these to the service system give the

following commands in this order:

addmem M
addcpu P X M

When removing a processor and memory from the service system

to form a development system, changing of switches is

minimized by removing the non-bootload processor and the high

order memory using the following commands in this order:

delcpu P
delmem M

Module Source

APPENDIX II

SUMMARY OF MUL'£ICS SUPERVISOR CHAUGES
FOR RECONFIGURATION

Name Language Reason For Addition or Change

add_memory PL/I

bootstrap! alm(l)

bootstrap2 alm

cl dcm PL/I

emergency_shutdown alm

fault init alm

f reecore PL/I

hphcs_ alm

{T)

Set up memory controller for
interrupts and interrupt masks

Determine initial configuration

Save hardware provided data

Make call to keep I/O buffers at
fixed absolute address

Remove multiple-cpu conflict

Provide for multiple-cpu clear
associative memory

Primitive to add core to
pool for paging

Highly priviledged gate for
reconfiguration conunands

11 alm 11 is the assembly language for Multics.

Number of Lines
(changed or added)
Source Object

100 460

10 10

2 2
~
0

4 40

4 4

8 8

50 245

9 9

ii

init_processor

init sst

initialize faults

make f v code

make sdw

master mode init

master mode ut

master_pxss_page

mini _gim _ ini t

page

pc

pc_abs

alm

alm

PL/I

PL/I

alm

PL/I

alm

alm

alm

PL/I

alm

PL/I

PL/I

System stop/restart for
multiple processors

Start execution of a halted
processor

Initialize a map of core usage

Set up fault and interrupt
vector for reconfiguration

Create code for loading DBR of
stopped cpu

Set up processor data base so that
processor can be removed

Experiment to determine if memory
controllers are interlaced

Clear associative memory1
move wired-down pages

Recognize multiple cpu error condition

Provide for error messages for
wrong configurations

Add primitives for using absolute
core address

Prevent use of pages being removed

Primitive to remove pages from
paging pool

130

260

60

200

20

5

40

120

10

1

40

10

530

130

260

180

925

20

25

40

120

10

10

40

60

1680

I-'
-.J
......

pc_wired

prds

prds_init

pxss

reconf ig

reconfigure

seas init

scs

scs init

shutdown

signal_O

start_cpu

stop_cpu

sys err

system_control_

PL/I

alm

PL/I

alm

PL/I

PL/I

PL/I

alm

PL/I

PL/I

PL/I

PL/I

PL/I

PL/I

PL/I

Primitive to wire down pages

Per processor reconfiguration
data

Set up per processor
reconfiguration data

Create idle process for processor
to be added

Maintain reconfiguration data base

Commands for reconfiguration

Initialize reconfiguration data
for memory

Reconfiguration data base

Set up reconfiguration data

Allow varying number of processors

Allow varying number of processors

Set up traffic controller data for
new processor

Clean up traffic controller data for
removed processor

Allow error message for wrong
configuration

Provide command for operator

50

5

5

20

940

620

175

50

50

3

3

200

180

4

15

150

5

35

20

2488

2185

954

50

250

20

15

810

650

20

40

.....
-...J

""

system_meter alm Allow varying number of processors 5 5

tc init PL/I Allow varying number of processors 4 20

update_sstyll PL/I Update map of core usage 20 100

wire_proc PL/I Primitive to temporarily wire down 150 600
reconfiguration procedures

wired f im alm Stop processor while updating 15 15
address for moved wired page

SUMMARY OF CHANGES ANLJ ADDI'l'IONS

......

......
w

alm PL/I Total

Number of modules modified 16 16 32

Number of new modules added l 8 9

Total lines of source changed or added 748 3379 4127

Total lines of object changed or added 748 11962 12710

Total lines of object in Multics supervisor 9000 171000 180000
before reconfiguration added (approximate)

174

APPENDIX III

ANALYSIS 01'., CURRENT HULTICS HARDWARE FOR REC.:OHFIGURA'l'ION

INTRODUCTION

The discussion of the Multics reconfiguration

capabilities in chapter five pointed out a number of problems

resulting from the hardware design. This appendix points out

the features of our general design approach not included in

the current Multics hardware, and shows how these omissions

lead to the observed operational restrictions.

'rhe primary hardware design ground rules presented in the

body of this thesis are sununarized below:

1. Processing modules require relocation hardware so

that the operating system can locate and update all absolute

storage addresses during reconfiguration.

2. The intermodule connection network is required to

treat modules of like type homogeneously.

3. It should be convenient to permit an operator to

partition the modules into independent partition-systems.

4. The operating system should be able to automatically

(viz., without operator intervention) control the

configuration of its hardware modules.

Since these ground rules are really design constraints on

basic system capabilities, we can readily make a comparison

between these features and the existing Multics design. We

175

will now separately consider each of these four design areas.

STORAGE RELOCATION HARDWARE

Storage reconfiguration primitives of chapter three require

that only selected supervisor routines explicitly use absolute

addresses for storage references; all other programs use only

relocatable virtual addresses. The system must be able to

dynamically update any absolute addresses it doos use.

Multics comes very close to the desired design in that a

(primary or secondary) storage absolute address is never

explicitly used, except

central processing unit

drum controller all have

by the

(CPU) ,

a "base

supervisor. However, the

general I/O controller, and

address" set by manual

switches: this "base address 11 implements the concept of a

"signal address register" introduced in chapter four. The

problem is that the system cannot update this (switch

controlled) absolute address, except by stopping the system

and having an operator change the switches. The operational

effect is that any memory module containing one of these "base

addresses" cannot be dynamically removed.

In addition the Multics I/O controllers have no general

relocation mechanism, but rather directly use absolute

addresses for all memory references. However, since only the

supervisor does I/O, it is possible (although not included in

the current Multics) to locate and update all absolute

-- - ~-- --~--~
- -- -----~--

176

addresses; any relocation design must essentially make a

special case for each place where an absolute address may be

used. The practical result is that an unduly complex design

would be needed in order to relocate primary storage used for

I/O.

UNIFORM INTERMODULE COMMUNICATION

A basic ground rule in our reconfiguration design (as

introduced in chapter two) is that the hardware allows each

module of a given type (e.g., each CPU) to be used

interchangeably with any other module of that type. This rule

means that the hardware must permit the same types of signals

over all links from a module to a given type of module; the

operating system will determine which signals are actually

used.

The Multics hardware generally provides a uniform

treatment of similar modules, with one notable exception. Of

all the links from a memory module to CPU's, only one link can

be used for relaying interrupt signals to a CPU. This

"control processor" is specified by a manual switch. To

change the CPU receiving interrupts, all interrupts from the

memory must be stopped while an operator moves the switch.

The operational result is that, when adding and removing CPU's

or memories, the

processor" switch to

operator must frequently move the "control

make certain that every CPU is the

177

"control processor" for at least one memory module. l'Jot only

is there opportunity for operator error, but also the related

design is complicated by such things as artificially

generating interrupts in place of those interrupts stopped

while the switch is moved.

An additional communications network deficiency is that

the current clock module (treated by Multics as a special

"memory" module) can only have interface links to a maximum of

two CPU's, although a Multics installation could include up to

about five CPU's• l'he operational

CPU's

impact

must

is that

restrict

any

the installation with more than two

possible CPU/clock combinations.

the number of clocks required

These restrictions increase

and reduce the system

availability.

Finally, the "base address" of each processing module is

restricted to addresses less than 256K words (viz., an 18 bit

address), although the system in general uses 24 bit absolute

addresses. Operationally this means that every configuration

must include a memory module with absolute addresses in the

range 0-256K words.

OPERATOR SELECTION OF CONSTITUENT MODULES

Totally independent

installation is a major

partition-systems are truly

partition-systems within one

goal of reconfiguration. If such

independent, an operator must

178

intervene to add or remove a module from a partition-system.

Chapter four introduced the concept of an "operator interface

matrix" to emphasize that this simple operator selection is a

function distinct from the much more complex operations needed

to control the configuration of the modules in a

partition-system.

The Multics hardware has no explicit mechanism to

implement the operator's selection functions provided by the

operator interface matrix. Rather, tne partitioning of

modules is merely implicit in various manual configurations

control mechanisms. These mechanisms require tedious and

precise operator switch manipulations in order for an operator

to assign a module to a different partition-system. The

primary operational result is frequent operator errors.

Errors that are made usually result in a major interruption of

service, since the operator must manipulate switches on

modules being actively used by the partition-system.

AUTOMATIC CONFIGURATION CON'l'ROL

A crucial hardware feature for dynamic reconfiguration is

that only the system (not an operator) controls the mechanisms

that determine configuration of the modules assigned to a

system. With this automatic control, configuration changes

are made accurately and rapidly: to be automatic,

configuration control mechanisms must either be permanently

179

set, or else program accessible. In chapter four we

explicitly identified the configuration control features

needed for a modular computer system. These are listed below:

1. "Port enable registers" in every module.

2. "Initialize registers" in every module.

3. "Address interval registers" in processing modules.

4. "Processor number registers" in processing modules.

s. "Signal address registers" in processing modules.

We ·will now evaluate how the Hul tics hardware implements

each of these configuration control functions.

Port Enable Registers

Port enable registers are needed to control all

intermodule communication, except tl1at required for accessing

the configuration control mechanisms themselves. In Multics a

module's port enable features are primarily under the control

of manual switches which must be changed by an operator

whenever a module is added to or removed from a system. This

aspect of the current Multics design has the greatest adverse

impact on system operation. Listed below are some of the more

significant operational problems that have actually been

experienced:

1. The clock module of the current Multics hardware has

no mechanism for disabling a link to a processor; therefore,

references to the clock by a processor not in the

configuration can stop the clock, and without a working clock

181

inconvenience, and errors can lead to adding a "dangerous"

module (e.g.,

interrupts).

a memory module with pending undefined

Address Interval Registers

Address interval registers are needed in processing

modules, in order to assign address ranges to memory modules.

Hultics uses manual, multiple-position switches (awkwardly

located behind closed panels) to control address assignment.

For some positions the switch cannot be moved without

momentarily "crossing" the address range assigned to another

memory: this momentary assignment of the same address range

to two different memory module leads to undefined behavior.

The impact is that before starting the system the operator

must carefully (at each processing module) assign addresses to

all the memories that might ever be dynamically added.

Processor Number Registers

A processor number register is used to uniquely identify

each physical processor. In a Multics CPU this is implemented

as a manual switch (behind a closed panel), and I/O channels

have channel numbers assigned by pluggable circuit boards.

Since Hultics uses a processor number as a serial number, this

implementation creates little difficulty, because it is seldom

changed. However, one problem is that test and diagnostic

programs require specific CPU and channel numbers, and a

182

maintenance technician may leave the same number assigned to

more than one CPU or leave an invalid channel number.

Signal Address Register

A signal address register is needed to specify the

location of the instructions executed when a processor

receives signals from other processors. Multics implements

this function with manual "~ase address" switches. The

inability to automatically change this address restricts

memory reconfiguration, as already discussed above in the

"Storage Relocation Hardware" section.

CONCLUSIONS

The current Multics hardware design not only limits the

reconfiguration capability, but also introduces many

opportunities for serious operator errors. 'l'he primary cause

of these problems is the use of manual switcnes to perform

functions requiring the speed and accuracy of program

accessible registers. Although many of the problems of

operator errors are present when starting a system on a static

configuration, the impact of a few minutes delay while

repeating an unsuccessful attempt to start the system is

dramatically less than the impact of "crashing" the system

during dynamic reconfiguration while 50 users are in the midst

of interactive sessions.

183

APPENDIX IV

MULTICS HARDWARE DESIGN PROPOSAL FOR RECONFIGURATION

INTRODUCTION

The body of this thesis provides general ground rules for

designing hardware and operating systems in order to provide

dynamic reconfiguration. These ground rules have been applied

to the Multics operating system (as described in chapter five)

to implement a dynamic reconfiguration capability. However,

the current hardware design limits this initial

reconfiguration implementation, as discussed in Appendix III.

Since major hardware changes were not permitted as part of the

initial reconfiguration implementation, this appendix is

included to propose a hardware design that would allow an

unrestricted dynamic reconfiguration capability.

This appendix will concentrate on the features essential

to reconfiguration, although a few "nice to have" improvements

are also noted. It is noted in passing that Project .MAC at

M.I.T. is currently considering a "follow-on" Multics

implementation on an upward compatible Honeywell 6000 series

computer in

technology.

order to benefit

Cases where this

already includes adequate

problems will be pointed out.

from more advanced circuit

proposed "follow-on" design

solutions to reconfiguration

As noted in Appendix III, there are four major hardware

185

3. The current address assignment switches in processing

modules are replaced by "address interval registers". For any

link with the port disabled, the address assigned is

immaterial--for example, the same address may be assigned to

IOOre than one memory module as long as only one memory has an

enabled link.

4. The current CPU number switch and channel number plug

boards are replaced by "processor number registers".

(Permanently assigned manual settings would be an equally

satisfactory alternate design approach.)

s. The current base address switches of each processing

module are replaced by "signal address registers". The signal

address register specifies a full 24 bit address: any

operations (such as the CPU "absolute mode") restricted to 18

bit addresses will append the high-order 6 bits of the signal

address register to all absolute addresses generated.

The above configuration control registers are normally

only set and read by a special "configuration channel"

contained in each

"maintenance mode"

switch-controlled).

general I/O controller (although a

may allow the registers to be

Each module is individually accessed by

this configuration channel, and difficulties (e.g. power not

on) are reflected in the status returned by the channel.

The current bootstrap channel in the general I/O

controller is modified to use the configuration control

registers during system initialization, as described in

186

chapter four. The configuration channel is used to perform

the functions of the current "system initialization signals".

OPERATOR SELECTION OF CONSTITUENT MODULES

To prevent one independent partition-system's

configuration channel from interfering with another

partition-system,

in chapter four)

an

is

"operator interface matrix" (as defined

used to control which configuration

control registers eaci1 partition-system can set. If a

configuration channel attempts to set registers in another

partition-system, a distinctive status is returned so that the

operating system knows that no registers were actually set.

The configuration channel can also read ti1e operator interface

matrix information for each module. Each general I/O

controller module has a "send register" in the matrix itself,

which can of course be set (as described in chapter four) to

control which configuration channels a partition-system can

use.

It would be convenient if the operator interface matrix

were part of a general purpose operator's console that

included an interactive terminal (one for each potential

partition-system) for issuing reconfiguration requests and

other partition-system control requests. To minimize down

time, there should be two copies of the operator interface

matrix, each with a simple on/off-line switch for specifying

187

the matrix to be used -- changing from one matrix to the other

should not disrupt any partition-system (it should be quite

easy to avoid disruption, since the operator interface matrix

affects the operation of a partition-system only during

reconfiguration and initialization).

matrix were itself included as just

operator interface matrices.

It would be nice if each

another module on the

For each matrix, the

configuration channel would then be able to read the setting

of the on/off-line switch and all other operator switches -- a

partition-system could then guide and monitor an operator's

actions, for example when changing the on-line matrix.

Errors using the operator interface matrix can usually be

detected before harm results; however, a convenient safeguard

is an alarm (and manual "override" for ignoring the alarm)

when attempting to make unavailable a module currently being

"used" by a system-partition. To implement such an alarm,

program accessible registers are included in the matrix, so

that a partition-system can indicate which modules it is

using.

A primary emphasis in designing the operator interface

matrix should be making it convenient for the operator, since

this is the only place where the operator manipulates switches

during reconfiguration.

188

UNIFORM INTERMODULE COMMUNICATION

The currently contemplated Multics follow-on hardware

design solves the remaining problems related to uniform

treatment of similar modules. Clock modules interface with

all CPU's in the installation. Furthermore, a memory module

can send interrupts to any of its interfacing CPU's. The

system can control the interrupts by using a separated mask

for each CPU.

STORAGE RELOCATION HARDWARE

The troublesome "base address" switches should be

replaced with a register, as discussed above. However,

although not essential to reconfiguration, it is proposed, for

design simplicity, that a CPU have no "absolute mode" of

operation. By reserving a fixed segment number for the fault

vector, the Descriptor Base Register (DBR) serves as the "base

address" for the processor. This implies of course, that the

configuration channel can read and set the DBR.

Finally, we note that the memory reconfiguration design

is made complex if I/O channels explicitly use absolute

addresses. It would be nice if I/O modules used an appending

mechanism (viz., segmentation and paging with "used" and

"modified" bits) for all control and data references. For

example, one approach is to have t.."le base address register

become a Descriptor Base Register, and have the "mailbox" of

189

the current Multics design become a Descriptor Segment with

fixed segment numbers for the control and data references for

each channel. Since absolute addresses would not be used

directly, information could easily be relocated using the same

techniques Multics uses for CPU information. If copies of

absolute addresses are (for efficiency) maintained internally

by a channel, then there must be a controlled way to clear

these addresses (just as for the associative memory of a CPU)

during reconfiguration.

CONCLUSION

The Multics hardware can support a substantially improved

reconfiguration capability if the configuration control

mechanism are manipulated by program rather than by an

operator: such a design has been proposed.

essentially eliminate system failures

reconfiguration.

This design would

attributable to

CS-TR Scanning Project
Document Control Form

Report# le S -IR -1?6

Date : _!_1 J3 1.:K
•

Each of the following should be identified by a checkmark:
Originating Department:

D Artificial lntellegence Laboratory (Al)
~Laboratory for Computer Science (LCS)

Document Type:

~Technical Report (TR) D Technical Memo (TM)

D Other: ----------
Document Information Number of pages: 190 (19G-;rn,.,~s)

- Not to Include DOD fonM, prlnW ~.etc ... ortghll pages only.

Originals are:

D Single-sided or

~ Double-sided

Print type:
D Typewrbr D Offset p,...

Intended to be printed as :

D Single-sided or

.X. Double-sided

D LaMrPrH

D Ink.Jet Printer ~Unknown D Other:.~-~--~-
Check each if included with document:

~ DODFonn

D Spine

D Funding Agent Form ~Cover Page

D Printers Notes 0 Photo negatives

D Other: -----------
Page Data:

Blank Pages(by,.........,: foU.01H;; l.As): f>Ac;~ (1'81)

Photographs/Tonal Material (by,.........,: _______ _

Other ""* dw::iipliua,....,:

Description : Page Number:

-xoA.GT(mA.f ~ (t- fqo) <A1V1+1.ro T;/1.£' fA6~1J.-189JUrJil?tto
BLAIJk.

Scanning Agent Signoff:

Date Received: j_/_Jl_/t b Date Scanned: _/_/ J. 'I- / 9' Date Returned: J_1 J.S /~-6

Scanning Agent Signature: _ __...~---·--.:.......;;.;;...i:"~:, _.Vv...___J Gttl=.¥..ac=--

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DAT A - R&D
(Security claaa/flcation of title, body of abatr•ct and lndexinJ2 annotation mu•t be entered when the overall report i• claas/fled)

1. ORIGINATING ACTIVITY (Corporate author) ze. REPORT SECURITY CLASSIFICATION

Massachusetts Institute of Technology UNCLASSIFIED
Project MAC Zb. GROUP

None
3. REPORT TITLE

Dynamic Reconfiguration in a Modular Computer System

4. DESCRIPTIVE NOTES (Type of report and lnclu•lva d•tea)

Ph.D. Thesis, Department of Electrical Engineering, May 1971
5. AU THOR(SI (Last name, first name, initial)

Schell, Roger R.

6. REPORT DATE 7a. TOTAL NO. OF PAGES
rb.

NO. OF REFS

June 1971 190 23

8a. CONTRACT OR GRANT NO. 9a. ORI GINA TOR'S REPORT NUMBER(SI

Nonr-4102(01)
MAC TR-86 (THESIS) b. PROJECT NO.

9b. OTHER REPORT NO(SI (Any other numbers that may be
Co

aaslJ2ned this report)

d.

to. AV Al L ABILITY I LIMITATION NOTICES

Distribution of this document is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

None Advanced Research Projects
3D-200 Pentagon

Agency

Washington, D.C. 20301
13. ABSTRACT

This thesis presents an orderly design approach for dynamically changing the configura-
tion of constituent physical units in a modular computer system. Dynamic reconfigura-
ti on contributes to high system availability by allowing preventive maintenance,
development of new operating systems, and changes in system capacity on a non-
interference basis. The design presented includes the operating system primitives
and hardware architecture for adding and removing any (primary or secondary) storage
module and associated processing modules while the system is running. Reconfiguration
is externally initiated by a simple request from a human operator and is accomplished
automatically without disruption to users of the system. This design allows the
modules in an installation to be partitioned into separate noninterfering systems.
The viability of the design approach has been demonstrated by employing it for a
practical implementation of processor and primary memory dynamic reconfiguration
in the Multics system at M.I.T.

14. KEY WORDS

Modular Computer Systems Computer Utility Multics Multiplexed Computers
Dynamic Reconfiguration Operating Systems

DD FORM
1 NOV H 1473 (M.l.T.) UNCLASSIFIED

Security Classification

Scanning Agent Identification· Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I. T
Libraries. Technical support for this project was
also provided by the M.I. T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 91')4

