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DYNAMIC RECONFIGURATION IN A MODULAR COMPUTER SYSTEM* 

Abstract 

This thesis presents an orderly design approach for 
dynamically changing the configuration of constituent 
physical units in a modular computer system. Dynamic re­
configuration contributes to high system availability by 
allowing preventive maintenance, development of new operat­
ipg systems, and changes in system capacity on a non­
interference basis. The design presented includes the 
operating system primitives and hardware architecture 
for adding and removing any {primary or secondary) 
sborage module and associated processing modules while 
the system is running. Reconfiguration is externally 
initiated by a simple request from a human operator 
and is accomplished automatically without disruption 
to users of the system. This design allows the modules 
in an installation to be partitioned into separate non­
interfering systems. The viability of the design approach 
has been demonstrated by employing it for a practical im­
plementation of processor and primary memory dynamic re­
configuration in the Multics system at M.I.T. 

*This report reproduces a thesis of the same title submitted 
to the Department of Electrical Engineering, Massachusetts 
Institute of Technology, in partial fulfillment of the re­
quirements for the degree of Doctor of Philosophy, May 1971. 
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CHAPTER ONE 

INTRODUCTION 

1.0 Modular Computer Systems 

The digital computer has evolved from a single processing 

unit dedicated to one sequential task at a time to the modern 

computer utility simultaneously serving many users. As the 

size and complexity of computers have grown, a modular 

hardware design has commonly been employed. As with other 

utilities {such as electrical power and telephone services), 

the computer utility must be able to change its hardware 

configuration without disrupting the services provided. This 

thesis presents an abstract model of reconfiguration 

operations, and thus provides a discipline for designing 

operating systems and hardware modules for a computer utility 

so that the configuration of constituent modules can be 

dynamically changed. The research reported here also includes 

a practical processor and memory module reconfiguration 

capability for the Multics system [l] at MIT. 

The complexity of a large computer has naturally led 

designers to view the system as being composed of a number of 

smaller modules. Not only is such a modular viewpoint 

indicated for purposes of system design and analysis, but also 

the practical problems of maintenance, operation and system 

evolution have made it desirable to construct large systems 
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from a small number of distinct types of physical modules. 

These individual types of physical modules typically reflect 

the primary functions of the design memory modules, 

processor modules, input/output channels and input/output 

devices are common examples. The total system is formed by 

interconnecting a collection of these modules in a particular 

configuration, and the quantity of each type of module 

determines the system capacity. 

1.1 Statement of the Problem 

This thesis considers basically the following design 

problem for reconfiguration in the modular computer system: 

provide an architecture for the modules and their interfaces 

and a design for the operating system that permits a computer 

operator to dynamically (viz., automatically and without 

interrupting the service provided to users of the system) add 

modules to and remove modules from the system. This design 

must be flexible enough to apply to all modules of a given 

type, and must minimize the potential for disastrous errors. 

1.1.l The Environment 

The ability to dynamically modify the configuration of 

hardware modules in a computer system is primarily of interest 

where a large data processing capacity is required and where a 

high system availability is desired. Over the last few years 
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substantial work has been directed towards systems providing 

multible users easy access to common information. A single, 

high-capacity system is required to serve many users with 

common information. To serve many users effectively, the 

information (and thus the system) must be available on the 

demand of the user: this type of computer system has been 

referred to as a "computer utility". 

As with other utilities, the computer utility must have 

substantially greater resources than those required by any one 

user. Furthermore, as with other utilities, the system must 

be able to, without becoming unavailable, withstand the 

removal of any module for maintenance. It is this need for a 

large, concentrated, continuously available computational 

capacity that underlies many of the more significant design 

features of a computer utility such as the Multics [l] system. 

In the early development of digital computers, the need 

for more powerful machines was met by building faster machines 

with more storage capacity; however, as technological and 

economic limitations were approached, multiple units were used 

to increase capacity. For example, processor speeds are 

limited by the velocity of propagation and the physical 

dimensions between computational logic and the instruction 

storage medium; therefore, additional total capability is 

sought by including multiple processors in the system. 

Similarly, storage and input/output capabilities have been 

increased by the use of multiple modules. 
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An interconnection of various different types of 

computers can also provide an increased capacity; for example 

a small computer for reading cards and driving a printer can 

be connected to a larger compute% for more compute-bound 

portions of a job. However, a single modular system with a 

number of each of a very few distinct types of modules reduces 

the complexity since there is only one operating system, 

provides a higher availability since only a few modules are 

required to provide a spare for every type of module, easily 

expands to a larger system since modules are merely added 

without removing the previous system, and is simpler to 

maintain due to the commonality between similar modules. 

Various commercial systems have used a modular interconnection 

scheme including the Univac 1108 Multi-processor System [2], 

the Burroughs D825 [3], the GE 635 [4], and the IBM 360 

Model M65MP [S] • 

1.1.2 The Nature of the Problem 

One problem is matching the demands of the load to the 

capacity of the system. The computer utility must always have 

enough capacity to provide a response within a few seconds, 

since people tend to stop working if they have to wait. To be 

fully effective the services must be continuously available, 

since the stored information must be accessible when the user 

wants it. Utilization efficiency would indicate that during 
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the greatest load, a major portion of the processing capacity 

(viz., essentially all the modules) would be used to meet 

customer demands, while during lighter loads it is desirable 

to remove unneeded modules. 

Some of the objectives to be achieved by modifying the 

configuration are to reduce costs associated with operating 

the modules, forming an independent processing unit with some 

of the modules, allowing periodic and preventive maintenance 

to be performed, and reducing the amount of hardware in the 

system in order to decrease the probability of hardware 

failure, i.e., increase the reliability. These include the 

basic reconfiguration goals that were considered important for 

the Multics computer utility1 these goals have been given 

elsewhere (6 ,7 ,8], but are briefly reviewed here: 

1. An essential requirement is that the reconfiguration 

(addition or deletion) of a module be accomplished 

dynamically, i.e., rapidly and without disruption of the 

service provided. 

2. The reconfiguration design should treat all identical 

modules in the same way -- for example, it should be possible 

to add or remove any primary memory module. Maintenance 

requirements can be expected to apply to every module, so no 

specific physical unit should be allowed to be indispensable, 

either by hardware constraint or software convention. 

Continuous service can only be approached by a reconfiguration 

design in which no single module is essential for continued 
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system operation. 

3. It must be possible to partition the modules of the 

installation 

independent 

into separate noninterfering 

partition systems may be used 

systems. These 

for providing 

service to users, for development of changes to the operating 

system, or for maintenance testing of the hardware. This 

partitioning of modules should be possible without massive 

physical effort, such as changing of cable connections, which 

is slow and prone to errors. 

In this thesis dynamic reconfiguration is considered as a 

response to a request from outside the system -- specifically 

a computer operator. Therefore, an important consideration is 

the human interface. In particular, an operator should be 

able to initiate a reconfiguration that is completed rapidly 

(within a few seconds) and automatically (without further 

operator intervention), and there should be no possibility for 

operator errors to cause disastrous results. This thesis will 

not address the more difficult problem of spontaneous 

reconfiguration (e.g., in response to an observed component 

failure); however, the results presented here provide a basis 

for future research in this area. 

For simplicity of design and implementation 

reconfiguration should be provided by applying the normal 

capabilities of the system whenever possible. The operator 

controlling reconfiguration should be just another user of the 

system who has been given the privilege of using the required 

--------------------------------------------- ------
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system primitives. The processing 

required when reconfiguration is 

minimal. 

and storage overhead 

not in progress should be 

This thesis will explicitly consider only the modules 

that make up the central data processing capacity of the 

system. In particular, modules associated with input/output 

to devices external to the system itself are excluded. In 

addition, it has been pointed out by Dennis [9] that modular 

interconnection schemes do not readily generalize to very 

large numbers (e.g., hundreds) of modules. However, practical 

systems for the present and foreseeable future can find a 

modular design very useful, since systems can reap the major 

benefits of simplicity, high availability, expandability, and 

commonality with quite a small number (e.g., a few tens) of 

modules clearly a few modules are enough when each module 

provides a significant portion of the total capacity. This 

thesis will confine itself to such contemporary modular 

structures. 

1.2 Background 

As pointed out above, the importance of dynamic 

reconfiguration was clearly appreciated in developing the 

goals of Multics; however, the initial design did not include 

this capability, attesting to the non trivial nature of the 

problem. Although past systems have included (limited) 
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reconfiguration capabilities, a general solution has not 

previously been available. 

A modular hardware organization is of course not new, and 

modular systems have frequently been applied to general 

purpose computational tasks. The need to operate general 

purpose systems with a variety of configurations has been 

widely recognized in the past. The manufacturer's description 

of the IBM 360 Model 67 [10] points out that the duplex 

configuration of this system can be partitioned into two 

isolated subsystems 

capabilities are provided 

unavailable for program 

manual switches and processor 

for making part of the system 

control. Not only has the need for 

partitioning been previously recognized but also the need for 

uniform treatment of similar modules has been considered. The 

GE 635 (4] and the IBM 360 Model 67 both include manual 

switches to provide "floating addressing", i.e., any memory 

module can be used for any required address interval, so that 

any memory module can have maintenance performed on it without 

disabling the entire system. It has also been noted that the 

ability to operate with various configurations of modules 

permits changing the system capacity to meet changing demands 

for example, the manufacturer's description of the 

Burroughs B6500 [ll] points out the expansion capability 

implied by a modular structure. 

Although systems have previously been developed to 

operate with a variety of configurations, a significant 
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interruption of service is usually required to change the 

configuration. In most cases the configuration is specified 

prior to loading the system on a raw machine, and 

reconfiguration is accomplished by essentially reloading with 

a new configuration. This was generally the operation of the 

initial Multics design. Limited reconfiguration capabilities 

have been provided for general purpose computer systems, most 

notably the IBM 360 Model M65MP [5]; however, without a 

general design model these systems have left unsolved some of 

the more difficult problems, such as removal of the memory 

modules containing the "resident supervisor". 

Although dynamic reconfiguration is important for general 

purpose computer systems principally in the computer utility 

environment, special purpose systems have in the past used 

modular reconfiguration to enhance reliability. . Although 

quite successful in their intended application, the design in 

these systems is so permeated with the peculiarities of the 

particular application and specific hardware that little 

general structure is evident. 

A form of reconfiguration has been 

purpose systems using redundant modules. 

provided in special 

With this technique 

identical processing and storage functions of the system are 

simultaneously performed using separate physical modules -­

the reliability motivation is that if one module fails it can 

be removed from the configuration, and the results of a good 

duplicate module can still be used. An example of this type 
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of reconfiguration can be found in the Bell (Telephone) System 

Electronic Switching System [12]. Also the American Airlines' 

SABRE system [13] used duplicate (viz., on-line and standby) 

IBM 7090 1 s, redundant I/O terminal interchanges, and multiple 

copies of vital records on storage modules in order to achieve 

the capability for rapid restart of the system with minimum 

risk of information loss in case of failures. Not only is it 

costly to provide duplicate hardware, but also this type of 

reconfiguration does not allow the capacity of the system to 

be dynamically changed. 

Special purpose systems have also frequently used a 

"snapshot" reconfiguration technique that is not acceptable 

for the general purpose computer utility. Periodically a 

"snapshot" is made of a small amount of data from which all 

computations can be restarted. The system can then be stopped 

(destroying the computations in progress), the configuration 

changed, and the system restarted from the snapshot data. 

This technique requires a detailed knowledge of the 

computation being performed, and requires that it be 

acceptable to destroy a portion of the computation. A related 

technique takes advantage of a carefully designed cyclic 

behavior for the computation by changing the configuration 

only at a fixed point in the cycle where the computation can 

be continued from a small amount of saved data. On the other 

hand in a computer utility the user can specify computations 

whose nature is unknown to the system and for which any 
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disruption may be totally unacceptable. 

This "snapshot" technique has been used in various 

command and control systems. The SAGE [14] air defense 

system, one of the earliest (about 1958) large scale computer 

systems, had an embryonic reconfiguration capability to obtain 

greater reliability: its "users" were approximately 100 

operators at display consoles, and its vacuum tube central 

computer (logically a single "module") was duplexed so that 

when there was a hardware failure, the entire spare computer 

would be put on line to continue service to the "users" from a 

periodically saved snapshot. A backup to this system, known 

as BUIC [15], used the modular, transistorized Burrough D825 

computer. BUIC used online fault detection and an automatic 

modular reconfiguration capability to provide an operational 

failure rate much less than the inherent hardware failure 

rate. 

One of the largest and most recent of these special 

purpose real-time systems is the IBM 9020 developed for the 

FAA air traffic control system, which gives attention to 

special hardware features to facilitate reconfiguration for 

increased reliability. Although these systems and others like 

them serve to demonstrate the key role of dynamic 

reconfiguration in approaching the goal of "continuous 

operation", the observation made for the IBM 9020 system 

places the specific achievements of this type of system in 

perspective: "It deserves emphasis that the multiprocessing 
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system under discussion is application-oriented in the sense 

that many of its functional capabilities are designed to meet 

explicit requirements. It would be another matter to 

formulate such capabilities for a general purpose environment" 

[24] • 

1.3 Method of Presentation 

A substantial portion of the research effort reported 

here has been directed towards the design and implementation 

of a dynamic reconfiguration capability for the "Multics" 

system (Multiplexed Information and Computing Service) at MIT. 
~ - - -

This early engineering design gives Multics the capability to 

dynamically add and remove central processing units and memory 

modules with no disruption to the users. These capabilities 

are regularly used in the normal operation of this system 

which currently supports more than 50 simultaneous 

time-sharing users. Although the author has found this 

experience invaluable in gaining insight and practical 

understanding of the issues involved, this thesis is not 

intended to be a description of a bag of programming tricks 

used to arrive at a particular initial reconfiguration 

capability for Multics: the primary goal of the research has 

been to develop a design approach that can be applied to the 

evaluation of an existing system or the design of a new system 

where dynamic reconfiguration is desired. The successful 
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application of this orderly design approach to Multics 

demonstrates its viability, and specific examples are drawn 

from Multics to aid in the explanation of the design approach. 

In chapter two we first develop a general model of 

reconfiguration -- the concept of binding is used to model the 

operations of reconfiguration. We show how this model can be 

interpreted in terms of contemporary modular computer systems. 

Next the general model is used to develop a specific 

design procedure for an operating system and hardware 

architecture to provide reconfiguration. In chapter three we 

identify a design for the program oriented primitives required 

to dynamically change the set of modules actually being used 

by the operating system. Then in chapter four we develop a 

hardware oriented structure that allows dynamically changing 

the set of modules actually accessible to the system this 

structure is directly influenced by the need for automatic 

reconfiguration, viz., without human operator participation. 

Chapter five presents the experience with the 

experimental Multics version of the ideas presented. Some of 

the tradeoffs involved and the compromises required in the 

specific Multics implementation are presented. An appendix is 

also included that, based on the ideas of this thesis, 

proposes a specific hardware design for an improved 

reconfiguration capability for Multics. 
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CHAPTER TWO 

SYSTEM STRUCTURE 

~ ~ General Model for Reconfiguration 

A primary task of any computer system is to transform the 

capabilities of the hardware units into resources that can be 

used to perform desired computation for users of the system. 

The concept of binding, defined below, can be used to model 

the system functions which organize the raw hardware 

capabilities into a usable form. In this chapter such a model 

is constructed and then augmented to provide a model of the 

reconfiguration operations. The model is used to identify the 

structure of computer systems for which reconfiguration as 

presented in this thesis is applicable, and it is shown that 

the architecture of contemporary modular computer systems is 

representable by this structure. In the following chapters 

the generalized model is used to develop a specific model of 

the individual functions needed for reconfiguration. 

2.0.l Resource Management Model 

The model developed here is based on the observation by 

Dijkstra [17] and others that in a sequential process only the 

time succession of the various states has logical meaning, but 

not the actual speed with which the sequential process is 

performed. In particular to develop our model for 
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reconfiguration we use the concept of the state of a process 

represented as stored information which is subjected to 

functional transformations as a process proceeds. The view of 

computation as asynchronous does not completely represent real 

computer systems since synchronous computations also occur. 

However, for purposes of reconfiguration the operation of most 

computer systems is asynchronous enough that this view of a 

sequential process is adequate. 

In the computer utility environment there may be a number 

of computations (i.e., processes) in progress at the same 

time, although at any instant in time many of these may not 

actually be executing on a hardware processor. However, since 

all the computations are in the long term view proceeding, 

each and every process can be considered as the execution of a 

program on a "virtual processor" with its instructions and 

data stored in a portion of a "virtual memory". These 

processor and memory resources required by a process will be 

termed virtual resources virtual resources ar~ used to 

model demands for actual processing and memory capability. At 

any point in time the set of virtual resources of all 

processes in the system represents the demand for system 

resources. 

The actual processing and memory capability of the system 

is provided by some (usually fixed) configuration of physical 

resources, viz., hardware devices. Since a process can 

proceed only when the physical resources are actually 
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available to it, the system must include an allocator which 

assigns the available physical resources to meet the demands 

of the processes. If binding is considered as an operation of 

establishing a correspondence between objects, then in this 

model a primitive function of the allocator is to bind some 

subset of the virtual resources to physical 

define these resources to be in a bound state. 

resources: we 

The allocator 

also includes a primitive to unbind (typically on a 

millisecond basis) the available resources so they can be used 

to meet other demands. At any given time, a physical resource 

may not actually be bound to a virtual resource due to either 

the lack of demand or due to allocator transients: we define 

such resources to be in a free state. Figure 2.1 illustrates 

this model of resource management. 

In the above model we have identified processing and 

memory capability with the actual hardware units. In a real 

system a given hardware unit represents a useful resource only 

when electrically connected to other hardware units of the 

system in a known way. In studying reconfiguration of 

resources we must consider such connections in some detail; 

therefore, we explicitly distinguish between a physical 

component and the capability actually available from it. 

Furthermore, we introduce the notion of logical resources to 

represent the abstract processing and memory capacity. It is 

logical resources that are managed by the allocator. For each 

available logical resource there must be some physical 
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resource, viz., a hardware device. The binding of the logical 

resources to the physical resources represents what is 

commonly called the configuration of the system: it changes 

only through reconfiguration. With this model, hardware 

capabilities being applied to a process are represented by 

physical resources bound to logical resources which are in 

turn bound to virtual resources of the process. 

At this point a few observations can be made about 

binding as a model of the system's resource management. We 

redraw the resource allocation illustration of Figure 2.1 to 

take into account logical resources -- Figure 2.2 indicates 

the relationships that can exist between physical, logical and 

virtual resources. This shows the simplified case where each 

hardware unit contains a single unit of resource in Multics 

parlance, when each memory module can store only a single page 

of information. In this context "binding" refers to 

establishing a mapping or correspondence between the names of 

physical and logical resources and of logical and virtual 

resources. The total set of physical resources is determined 

by the physical hardware present in the installation. Each 

physical resource has a name used (for example by a human 

operator) to identify the specific hardware: a central 

processing unit is an example of a physical resource. A 

subset of the physical resources is included in any given 

configuration, i.e., is bound to logical resources. These 

physical components are electrically interconnected so that 
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their capabilities are accessible to the system. 

The total set of logical resources is determined by the 

set of permissible names. For example, an absolute address is 

a name for a logical memory resource -- the total set of 

logical memory resources in the system is determined by the 

range of absolute addresses provided in the design. The 

computation capacity available to meet the demands represented 

by virtual resources is roodeled by those logical resources 

bound to physical resources in the configuration. A subset of 

these available logical resources is actually bound to virtual 

resources and the remainder is free to be used for future 

allocation. The current set of virtual resources (i.e., 

demands for resources) changes dynamically as processes 

proceed with their computation. 

In the above model, the state of resource management for 

the system at any point in time is represented by physical 

resources bound to logical resources and logical resources 

bound to virtual resources. This model is sufficiently 

general that, with an appropriate interpretation, it can 

represent a wide variety of computer systems. Next this model 

will be used to consider the problem of reconfiguration. 

2.0.2 Reconfiguration Model 

In the typical 

(represented here as the 

computer 

binding 

system the 

of physical 

configuration 

resources to 
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logical resources) is established during the initialization of 

system operation and remains fixed until the system is 

shutdown and reinitialized with a new configuration. In 

contrast, dynamic reconfiguration is the adding and removing 

of physical resources while the system is running, and the 

model developed above allows us to view binding as the central 

issue in reconfiguration. In particular, the problem of 

removing physical resources from the configuration concerns 

the reversibility of binding, and adding physical resources to 

the configuration is an example of delayed binding. 

We have previously observed that physical and logical 

resources can be either bound or free. When reconfiguration 

is introduced we need the notion of available and the inverse, 

unavailable. We will introduce this concept in terms of the 

operations of the allocator on logical resources. In our 

model, any logical resource bound to a physical resource is 

accessible to the system; with a static configuration all 

these logical resources are available to the allocator and may 

be either bound or free. All logical resources not bound to 

physical resources are unavailable to the allocator, and they 

must be free, since clearly they cannot be used to meet 

resource demands. To add logical resources at reconfiguration 

time, an unavailable (and thus free) resource is made 

available. To remove an available logical resource (which may 

be either bound or free), it must be made both unavailable and 

free. If we attempt to insure that the resource is free 
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before making it unavailable, we can have a race condition 

with the normal allocator functions asynchronously attempting 

to bind free resources; therefore, we make the resource 

unavailable for future allocation before insuring that it is 

free. i~ow the state transitions shown in Figure 2.1 can be 

redrawn in Figure 2.3 to include the resource usage state 

transitions introduced by reconfiguration. 

These state transitions can be applied to physical as 

well as logical resources. For a physical resource the usage 

state reflects binding to a logical resource. A physical 

resource is available when the system is able to change its 

binding to logical resources. An available physical resource 

is bound when it is associated with the name of a logical 

resource. Since the state is changed only through 

reconfiguration, race conditions can occur only if there are 

simultaneously executing reconfiguration routines. For 

example, a system spontaneously adding free modules to meet a 

peak in load could race with an operator trying to remove a 

specific module; however, recall that in this thesis we are 

considering only (strictly sequential) operator initiated 

reconfiguration. Therefore, for physical resources we can 

omit the "bound and unavailable" state added in the previous 

discussion of logical resources. 

The relationship between physical resources and logical 

resources is illustrated in Figure 2. 4, whic.i1 shows all the 

resource state transitions that are involved in dynamic 
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reconfiguration. State transitions for a logical resource are 

defined only when there is an available physical resource 

bound to this logical resource, as illustrated in Figure 2.4 

by a single state for both "physical bound and available" and 

"logical free and unavailable". 

Based on the model that has been developed we can 

identify the primitive reconfiguration operations required to 

change the usage states when removing a resource from the 

system. The following sequence of steps is required: 

1. The corresponding logical resource is removed from 

the set of logical resources available to the allocator for 

future binding to virtual resources. 

2. The logical resource is made free by removing any 

existing binding to a virtual resource. 

3. 'l'he physical resource is made free by removing the 

binding to the (free) logical resource. 

4. 'l,he physical resource is made unavailable for binding 

to logical resources. 

When a physical resource is added to the configuration 

the corresponding logical resource is initially free. The 

following sequence of steps is required to add a physical 

resource: 

l. 'l'he physical resource is made available for binding 

to logical resources. 

2. The physical resource is bound to a logical resource 

not currently available to the allocator. 
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3. This logical resource is added to the set of logical 

resources available to the allocator for binding to virtual 

resources, viz., is added as a free and available logical 

resource. 

4. The system then binds the logical resource to virtual 

resources as a result of the normal operation of the 

allocator. 

We have now developed a complete model for all the 

reconfiguration operations. In chapter three and four this 

simple model will be applied in detail to, respectively, 

logical and physical resources. 

2.0.3 Design Approach for Reconfiguration 

Throughout this thesis reconfiguration is viewed as 

changes in binding. 'l'his view of reconfiguration allows us to 

recognize the general form of a design procedure for 

implementing dynamic reconfiguration. First, it is clear that 

reconfiguration is directly related to the design of the 

allocator for the resources to be reconfigured. For reasons 

other than reconfiguration, substantial research has 

previously been done in the area of allocating a computer 

system's logical resources to meet the demands of user 

processes; therefore, when applicable, currently available 

technology will be summarized rather than reinvented. 

We will now define allocator primitives to implement the 
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logical resource state transitions that have been identified. 

First, the allocator must have primitives which can be invoked 

to add and remove elements from the set of available logical 

resources being managed by the allocator. This means, of 

course, that the allocator must be able to properly manage 

changing amounts of resources, although there may be bounds on 

the allowable size of the set of resources, e.g. , a system 

with no processor will probably not work at all. Using the 

notation of the PL/I language, we introduce these allocator 

primitives as generic closed subroutines of the operating 

system: 

call Make_available (resource); 

call Make_unavailablc (resource); 

where "resource" is the name of the unit of logical resource 

affected. These primitives affect the binding of logical 

resources to virtual resources that can occur in the future, 

but they do not change the current state of resource binding. 

In addition, the allocator needs a primitive for freeing 

logical resources. For reconfiguration to be dynamic it must 

not disrupt (viz., change the outcome of) user processes, and 

the change in configuration must be completed in a period of 

time that is responsive to an operator request (viz., on the 

order of a few seconds). If the system can assure that a 

logical resource will be made free within a short period of 

time, then when removing a resource it is satisfactory to 

merely wait until the resource is free. In the more usual 
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unbinding physical resources. While computer programs provide 

the allocator functions, the availability and binding state of 

physical resources is a model for the more hardware oriented 

mechanisms that establish electrical connections between the 

physical hardware components of the system. In systems not 

using dynamic reconfiguration, an operator typically 

accomplishes such connections by switches and cable connectors 

which cannot be changed without disrupting the computations in 

progress. For dynamic reconfiguration the system invokes 

primitives that, without disrupting user computations, change 

the connections between hardware units. Chapter four will 

consider in detail the primitive functions needed to change 

the configuration of the system. 

We have identified the primitive functions necessary to 

provide a dynamic reconfiguration capability for a computer 

system. Although the model just presented did not explicitly 

distinguish between the various elements of resource, in a 

typical contemporary computer system there are clearly 

distinct classes of resources, e.g., processors and memories. 

The remainder of this chapter is primarily devoted to making 

those distinctions relevant to modular reconfiguration. 

2.1 Modular Characteristics of System 

As indicated in chapter one we are primarily concerned 

with computer systems composed of distinct physical modules. 

____ ,, ----------------------
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From the viewpoint of reconfiguration, a "module" is a subset 

of the physical resources of the system which comprise an 

identifiable hardware unit. To reconfigure a module, all the 

physical resources comprising the module are added or removed 

using the design just outlined in the preceding section. 

For convenience we assume that a module contains an 

integral number of units of physical resource. This 

is further suggested by the observation that 

approach 

nearly all 

contemporary modular computer systems are designed in this 

way, with each unit of physical resource in a single module, 

as illustrated by the store protection blocks of the IBM 360 

series [18] and the memory pages of the GE-645 [19]. 

The significance of this modular constraint is 

illustrated by an example from Hultics. Primary memory is 

allocated in blocks of 1024 words. A hardware core memory 

unit has a capacity that is a multiple of 1024 words and is 

usually considered as a module. However, in an attempt to 

reduce conflicts between multiple devices simultaneously 

referencing the same physical memory, it is possible to 

interlace two or four of these memories with interlace, 

consecutive double word addresses are located in different 

physical memories. This means that a single unit of resource 

(viz., a 1024 word block) is contained in more than one 

memory; therefore, for purposes of reconfiguration the set of 

interlaced memories must be considered as a single module, and 

these memories can be added to or removed from the 
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configuration only as a single entity. If individual memories 

are to be reconfigured when 

interlace feature should 

interlace is needed, then the 

be designed so that only locations 

within a single memory are interlaced. 

Since a module is reconfigured by individually 

reconfiguring each of its component physical resources, no 

loss of generality results from assuming that a module 

contains only a single type of resource. It is also observed 

that many contemporary systems are designed with such 

homogeneous modules -- for instance the IBM 360 Model 67 [10), 

the G.E-635 [4] and the Burroughs Hodel B6500 [11). This 

assumption allows a computer system to be viewed as an 

interconnection of processing and storage modules, which is 

convenient for considering reconfiguration. 

2.1.1 Processing Modules 

A processing 

transformations on 

module primarily performs functional 

data stored external to the module. 

Therefore, a processing module must be able to read its 

instructions and/or data from and write its results into 

external storage in the system. At any point in time a 

processing resource is executing in behalf of only one process 

the process to which the system has allocated this resource 

is moving through a time succession of states as a result of 

the transformations being performe<l. The state of this 
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process is represented by information stored in two places: 

data stored internal to the processing module (e.g., in 

registers) and data stored externally. We will assume (as is 

typical of contemporary processing hardware) that, conditional 

only on explicit locks, it is always assured that the internal 

data are of importance only to the process currently 

executing. 

This model of a processing module is easily understood as 

a representation of the typical central processing unit (CPU) 

of a computer system. However, most computer systems have 

other devices manipulating stored information that can also be 

considered as processing modules. The most common examples 

are channels used to access storage managed by the system, 

such as magnetic disks or drums used for on-line storage. In 

his discussion of traffic control Saltzer [20) has noted that 

a channel is really nothing more than a simple processor with 

a wired-in program. However, recall that channels with 

interfaces outside the direct control 

"source" and "sink" input/output) 

considered in this thesis. 

2.1.2 Memory Modules 

of the system (viz., 

are not specifically 

A memory module provides some physical medium for the 

storage of data that is used by the processing modules of the 

system, and it is required that memory modules never modify 
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stored data. A significant characteristic of a memory module 

is that it may often be referenced in parallel by multiple 

processing modules, and uncoordinated data references can 

potentially produce conflicts. The reconfiguration primitives 

must provide for avoiding any additional potential conflicts 

which they introduce. 

Primary storage contains information which must always 

be accessible to some processing module, in particular some 

instruction or command that can be referenced to control the 

next processing action. This information is corranonly termed 

the "resident supervisor" or "wired down" programs and data. 

Primary memory is usually provided by a relatively fast, 

random access storage medium such as 

memory: due to relatively high 

usually meet only a small portion of 

storage. 

core 

cost 

the 

or semiconductor 

primary 

total 

memory can 

demand for 

Potential conflicts in primary memory are of ten avoided 

by providing areas reserved for use by a single processing 

module. Since there may be no system primitives to prevent 

conflicting access to primary memory, reconfiguration 

primitives may require additional mechanisms to prevent 

conflict. For instance, when removing primary memory, 

reconfiguration primitives will be required to copy (and 

therefore access) all the information in a memory module 

including that reserved for use by other processing modules. 

The memory of the system that does not require immediate 
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access is generally known as secondary storage, and is 

typically provided by slow, high capacity devices such as 

rotating magnetic disks and drums or even magnetic tape. The 

significant implication for reconfiguration is that a system 

will typically have storage allocator primitives to move data 

to and from secondary storage without risking conflicts. 

2.2 Structure for Intermodule Communication 

Although the total computation capacity of a modular 

system is provided by a collection of processing and storage 

modules, it is clear that the system design must include an 

interconnection network to satisfy the requirements for 

communication between the modules. This network is of direct 

concern to reconfiguration since communication paths between 

modules reflect the binding between the physical resources 

contained in the module and logical resources of the system. 

Rather than dilute the discussion by considering each 

basic idea in terms of many possible structures, a general 

form for the interconnection network will be developed here 

and used throughout this thesis. This structure of 

communication links between modules, and ports to provide an 

interface between these links and the individual modules, is 

representative of contemporary modular systems. 
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2.2.1 Intermodule Links 

Intermodule links are required between modules that need 

to communicate with each other. It is clear that, for 

transfer of data, every memory module must have a link to at 

least one processing module and every processing module must 

have a link to at least one memory module. Since a memory 

module is completely passive, there is no need for 

communication between memory modules. 

is needed between processing modules. 

use of interrupts for signals from a 

processing unit, and a central 

However, communication 

Common examples are the 

channel to a central 

processing unit issuing 

commands to a channel. In addition, interrupts are often used 

to control the allocation of processing resources (viz., for 

traffic control), as examined in detail by Saltzer [20]. 

A direct link could be provided for communication between 

processing modules. However, in some systems (Multics in 

particular) a memory module is used to relay signals, using 

the processing/memory link. One motivation for such a 

structure, with links only between processing and memory 

modules, is that the total number of links is reduced. In 

addition, by using a memory module for a relay, signals can 

easily be broadcast to multiple processing modules -- say to 

permit a channel interrupt to be processed by the first CPU 

that is available, thus giving the fastest possible response 

to the interrupt signal. 
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2.2.2 Module Interface Ports 

The links between modules can be thought of as the data 

transmission paths between modules. To complete the 

interconnection network there must be a "port" which provides 

an interface between each link and the physical resources 

within the module. Figure 2.5 shows a typical modular system 

that reflects this interconnection network structure. 

As we have seen, a processing module must make references 

to external storage for instructions and data. For each 

reference, the port of the processing module uses some 

"selection logic" to map an absolute address for the desired 

type of storage (viz., a reference to a logical resource) into 

a reference through a link to a particular storage module and 

a particular location within that module (viz., a reference to 

a physical resource). In addition the processing module port 

must be able to send and receive signals for communication 

with other processing modules. In chapter four we will 

examine specific alternatives for the implementation of a 

processing module port. 

The port for each storage module will respond to 

references from processing modules. The storage module port 

will receive over a communication link commands to read/write 

and will receive the corresponding address within the module: 

data that are to be read/written will also be passed over the 

link. In addition, the port must receive commands which cause 
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signals to be relayed to processing modules (e.g., send an 

interrupt or mask an interrupt). 

Although we have developed a structure representative of 

current modular computer technology, it is pointed out that 

this structure has only lJeen applied to systems with something 

in the order of ten modules. Because of the communication 

network "crossbar" problem it is doubtful if this structure 

would l>e effective for more than a few tens of modules in a 

system, and this thesis will not attempt to develop new 

structures for a larger number of modules. 

2.3 Summary of System Structure for Reconfiguration 

We have, in this chapter, used changes in binding between 

physical, logical, and virtual resources to model 

reconfiguration. Based on this model we have identified the 

computer system structure for which this thesis ·will consider 

the problem of dynamic modular reconfiguration. We have 

considered a computer system as made up of a collection of 

physical modules {each containing an integral number of units 

of processing and storage resources) interconnected by a 

communication network of links and interface ports. This 

framework. has been developed so that the following chapters 

will have a firm conceptual foundation on which to build 

detailed solutions to the particular problems of dynamically 

adding modules to and removing modules to modules from a 
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coraputer systera. 
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CHAPTER 'l'HREE 

CHANGING MODULE UTILIZATION 

3.0 Dynamically Changing Resource Usage 

In this chapter we assume a static hardware configuration 

and make a detailed study of how to dynamically change the 

resources the system is actually using; we defer until the 

next chapter the problems of changing the hardware 

configuration. The usual operating system has an 

initialization phase during which the processing and storage 

modules used by the system are established by operator inputs 

and system conventions (e.g., assuming a zero-based contiguous 

range of absolute core addresses). We will now examine in 

detail how the system can stop using a module currently in use 

and start using an additional module without reinitializing 

the entire system. 

In terms of the model introduced in chapter two, we must 

basically develop a design for changing the usage state of 

logical resources. Figure 3.1 illustrates the operations that 

are required -- notice that this is just the specific instance 

for logical resources of the state transitions presented in 

chapter two (Figure 2.3). In this chapter we develop specific 

reconfiguration primitives for the storage resource allocator 

and processing resource manager, viz., the traffic controller. 

We first clearly identify the critical properties that, 
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regardless of reconfiguration capabilities, we expect to find. 

Tl1en the reconfiguration primitives are presented in terms of 

closed subroutines and system-wide data bases. 

3.1 Storage Resource Management Environment 

The purpose of this section is to provide a fairly 

extensive review of the technology currently available for 

storage management. This review focuses on those features 

which tend to solve storage reconfiguration problems. 

The strategy used to manage the use of storage resources 

ilas a significant impact on the feasibility of reconfiguration 

-- particularly on the ability to remove a storage module. 

Removing a storage module removes some range of absolute 

addresses (which are modeled as logical resources) from use, 

and the system must provide, in some other module, a valid 

copy of the stored information. A basic problem is insuring 

that all references to this information are directed to the 

new location. We will consider some common examples of 

(primary) memory management to illustrate the storage 

allocator characteristics important for reconfiguration. To 

identify the intrinsic problems we first assume an unbounded 

amount of available primary memory, and then we consider the 

technological problems introduced when there is a limited 
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storage capacity. 

3.1.1 Allocation With Unlimited Storage Capacity 

First we examine one of the simplest examples of storage 

management the textbook batch processing system. The 

system loads a program into a contiguous block of primary 

memory at a known absolute address, and binds all relocatable 

addresses to the absolute addresses that resulted from 

loading: typically the program is modified by inserting the 

required absolute addresses. We now consider the problem of 

removing the primary memory module containing this program, 

after this program has begun execution. 

One might naively think that the necessary steps are 

merely interrupting the execution, moving the instructions and 

data by some increment of absolute address to a new location, 

and restarting the execution. Obviously the absolute 

addresses originally generated by the binder are going to be 

incorrect; on the other hand, since the binder initially found 

where absolute addresses were needed, the system should now be 

able to go back and add to these addresses the appropriate 

address increment. However, the previous execution may also 

have stored addresses elsewhere as data (e.g., return points 

for subroutine calls) for future use. Thus we conclude that 

the system needs a method for causing the absolute address of 

all future memory references to be incremented by the amount 
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the program was moved. To do this the operating system must 

be able to locate and modify every occurrence of a stored 

absolute address that may be used in the future. 

We need not invent methods of doing this since various 

relocation techniques have already been developed for reasons 

other than reconfiguration. Multiprogrammed batch processing 

systems provide a common example. These systems are designed 

to execute one program until the process cannot proceed (e.g., 

until ti1e process must wait for some input/output operation), 

and then switch the processor to the execution of some other 

process that is able to proceed. To this end, the system 

loads more than one program into primary memory at once and 

chooses the "best" one to run. If one program waits for a 

long time (for example while an operator locates and mounts a 

magnetic tape) then for efficiency the system may unload this 

program from storage so some other program can be loaded; 

however, when ready to continue the execution the same block 

of memory may not be available, so the system must relocate 

~~e program to a different absolute address in core. One way 

to accomplish this relocation is with a relocation base 

register in the processor hardware: all addresses 

for instruction fetches and data are relative 

generated 

to this 

relocation base. The addresses appearing in the program are 

no longer absolute addresses but are virtual addresses -- the 

relocation base register provides an address mapping that 

binds virtual addresses to absolute addresses. 
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We note that the relocation base register is the only 

memory of any absolute address in the system, and therefore in 

terms of our model completely specifies the binding of virtual 

storage resources to logical storage resources (named by 

absolute addresses). The system can relocate an executing 

program by the following steps: 

1. Stop the execution of the program so that the data 

and instructions in this block of memory will not be accessed, 

viz., stop the progress of the process so its state will not 

change. 

2. Make a copy of the block of instructions and data at 

a new absolute address outside the memory module being 

removed. 

3. Reset the relocation base register to reflect the 

address of the new copy. 

4. Resume the execution of the program, viz., continue 

the progress of the process from this new state which is 

equivalent to the state when it was interrupted. 

3.1.2 The Storage Utilization Problem 

So far we have seen that the intrinsic problem in 

removing a storage module is reversing the binding of a 

virtual address to an absolute address, and then binding to a 

new absolute address -- in the example, the relocation base 

register provides this ability. Although the basic issue has 
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memory the system assigns the number of storage blocks 

required. Tnese blocks may not be contiguous even though tne 

virtual addresses in the corresponding pages of the program 

are. 

The processor requires a ~ table accessed by page 

number that gives the absolute address of the corresponding 

block of storage (typically the page size is a power of two, 

so that the page number consists of some high order bits of 

each virtual address). Each ~ table word provides a 

mapping of virtual addresses in that page to absolute 

addresses in exactly the same manner that the relocation base 

register did. 1'he page table may itself be located in storage 

if the processor has a page table base register containing tne 

page table's absolute address. For each instruction fetch or 

data reference the processor consults the appropriate page 

table word to arrive at the correct absolute address. Figure 

3.2 illustrates the address translation for paging. The 

system can remove a memory module by making a copy of just the 

pages stored in it: the page table word for each page moved 

(rather than just the value of a single relocation base 

register) must be updated to the new absolute address. It is 

again emphasized that paging is not essential for 

reconfiguration; however, for simplicity we will continue to 

use paging to decouple the problem of storage utilization, 

allowing a clearer view of the basic issues of 

---~-----
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reconfiguration. 

3.1.3 The Effect of Limited Storage Capacity 

Although paging answers the technological problems of 

storage utilization, there remains the problem of limited 

storage capacity. Similar modules may not have adequate 

storage for a copy of the information in the module being 

removed. Again we note that similar problems exist and have 

been solved for reasons not related to reconfiguration. 

Recall that in our earlier discussion of multiprogrammed batch 

systems, when a program not yet in primary storage was ready 

to run, the operating system could get space for it by 

unloading some other program currently in primary storage but 

not able to continue execution. Implicit in this is the 

existence of what we have called secondary storage modules 

(typically magnetic drums or disks) which have adequate room 

for copies of the programs "in progress" whose execution has 

been interrupted. Similarly, to remove a primary memory 

module the system can either unload programs in the module or 

unload programs from other modules to make room for a copy of 

the information from the module being removed. 

Where paging is used, reconfiguration can benefit from 

the technique of demand paging. In a system with demand 

paging, an entire program is not necessarily loaded at once, 

but the storage allocator loads only selected pages. One 
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conunon design has a "fault tag" in each page table word 

without a valid absolute address (viz., the page is missing in 

primary storage). Any attempt by the processor to reference a 

"missing page" will cause a hardware fault. As a result of 

the fault, the allocator retrieves the page from secondary 

storage, places the absolute address in the page table word, 

removes the "fault tag", and then allows the execution to 

continue. If no free storage block is available, then the 

allocator copies some page currently in primary storage (for 

example the least recently used page) to secondary storage, so 

its storage block can be allocated to meet the new demand. 

Similarly when removing primary memory, demand paging provides 

a tool for pushing out excess pages so that the number of 

pages in primary memory does not exceed the storage left after 

removing the module. Thus the basic solution to the problem 

of limited primary storage capacity is moving information to 

secondary storage modules, and a storage allocator with demand 

paging can make this easier. Secondary storage must, of 

course, have enough capacity to hold the information moved 

from primary storage. 

3.1.4 The Storage Allocator 

Recall that the objective of the above discussion of 

storage allocator designs has been to identify characteristics 

that are relevant to reconfiguration. This has been motivated 
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by a desire to benefit from the existing state of the art 

rather than reinventing existing features. In addition, the 

significance of the storage allocator to reconfiguration 

should now be clearer. For simplicity the discussion so far 

has been primarily directed to primary memory -- this needs to 

be generalized to encompass any other type of storage module. 

Although the previous discussion of demand paging was 

framed in terms of primary memory, the essential concepts are 

in fact common to other types of storage modules; however, the 

usual terminology is somewhat different. File systems 

typically manage secondary disk and drum storage, for example, 

by considering each module to be composed of a number of 

independent fixed length "records" the records are directly 

analogous to the blocks of primary memory. To store the 

information contained in a "file", the required number of 

records are assigned and a "file map" is maintained to show 

ci1e address of each record of the file -- a file map is 

directly analogous to the page table for a program, and a file 

may be just a secondary storage copy of a program. Not only 

may the system copy information from primary storage to some 

device such as a drum, but also various types of storage 

modules may be arranged in a hierarchy. 'l'he file system may 

move records from one secondary storage module down to another 

secondary storage module in order to make room higher up in 

the hierarchy. For example the least recently used record may 

be kept on the type of module with the longest access time. 
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The significant observation ifi that the storage allocator 

characteristics identified as relevant to reconfiguration are 

applicable to both primary and secondary storage modules. 

Since the above discussion has identified the allocator 

characteristics important to reconfiguration, it is now 

appropriate to introduce a very specific allocator model to 

facilitate our discussion. The Multics file system will be 

used as a case study, and we will discover that it has all the 

desired characteristics. This particular design is chosen 

because it includes a practical and currently working example 

of a demand paging storage allocator whose motivation and 

details are available to the interested reader from several 

sources [l, 6, 21, 22], ancl because the research reported in 

~1is thesis includes implementation of reconfiguration 

capaoilities for this specific system. 

'i'he !-lul tics storage allocation design includes a feature 

known as segmentation: rather than considering a process in 

terms of a single program (with instructions and data), a 

Hul tics process has multiple segments. '.l'herefore, each 

virtual address has two dimensions -- a segment number and an 

offset (address) within the segment. Each segment has its own 

page table, and the two-dimensional address space of each 

process is defined by a descriptor segment, which is basically 

a table (indexed by segment number) of segment descriptor 

words giving the absolute address of the page table (in the 

same manner as a page table base register) for each segment. 



61 

The descriptor segment is itself a segment in primary memory 

and the processor has a descriptor segment base register 

containing the absolute address of the page table for the 

descriptor segment. Figure 3.3 illustrates the ad<lress 

translation for segmentation. Although segmentation itself 

does not solve any reconfiguration problems, the significant 

observation is that segmentation specifically contains the 

relocation capabilities needed for reconfiguration. 

Now an understandable reaction might be that with all 

these levels of indirection it is certainly inefficient for 

the processor to translate a logical address into a reference 

to the ultimate absolute address of interest. Multics reduces 

the number of 

indirection by 

memory references 

providing a high 

needed to complete the 

speed associative memory 

within the processor. This memory maintains the sixteen most 

recently used page table words or segment descriptor words 

[ 2 3] • 

First we note that the associative memory distorts our 

model of a processing module as a module with no memory of 

data conunon to more than one process: we will see later that 

this is a problem that has to be specifically dealt with. 

Aside from this one problem area, all absolute addresses in 

the system for the location of instructions and data are still 

in page table words as discussed for demand paging. In 

addition there are absolute addresses of page tables in 

segment descriptor words and the descriptor segment base 
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register. However, the file system maintains all absolute 

addresses and can locate and update them if required. The 

file system maintains for each type of storage module a 

storage map that allows the system, for any absolute address, 

to determine that the storage block is either in use and ti.w 

appropriate page table (or file map) entry can be found, or is 

free and can be used to meet demands for storage, or is not 

part of the available resources managed by t.nc file system. 

Although the Ilultics file system includes storage 

allocator features not directly applicable to reconfiguration, 

in this case study we have seen that Multics does provide tl1e 

relocation capability essential to reconfiguration, and demand 

paging is available to solve the technological problems of 

limited storage capacity. We will refer to the nultics file 

system as a specific model of storage allocator design when 

useful as an aid to the presentation. 

3.2 Removing a Storage Bodule 

Tne preceding discussion has established a storage 

management environment for reconfiguration. We now develop a 

design for removing a storage module from tl1e resources being 

used by the system. Basically, while the system is running, 

reconfiguration primitives move the stored information and 

then locate and update absolute addresses to reflect the neu 

location. A major goal is providing a general design which is 
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(as much as possible) independent of the kind of information 

stored in the removed module. 

We digress a moment to observe that during 

reconfiguration the system needs information about each module 

in the configuration. Therefore, we introduce the module 

configuration table as the primary reconfiguration data base, 

and we will identify the information contained in it as we 

discover ti1e need. The system creates this module 

configuration table during initialization and updates it 

during reconfiguration. From our general model we can 

anticipate that the module configuration table will reflect 

ti1e binding of physical resources to logical resources in 

the case at hand, ti1e table relates each physical storage 

module to a range of absolute addresses. 

How let us suppose that an operator requests removal of a 

specific storage module. The reconfiguration procedures of 

the operator's process must first verify that a viable 

configuration will remain. For example, after removing the 

module ti1e minimum amount of storage for this type of device 

must remain, and the module must not be essential for relaying 

signals between processing modules. Since motivations, such 

as preventive maintenance, for removing a module are 

associated with physical hardware entities, it is convenient 

for the operator to identify the module by a (usually 

arbitrary) physical name; therefore, we extend the module 

configuration table to include for each module the name used 



65 

by the operator. 

'£0 remove a storage module in response to the operator 

request, first the system makes certain that the storage is 

not available to meet any future storage demands, and then the 

system frees any storage already in use, by moving ci1e 

information to another module. In terms of the model outlined 

in chapter two and illustrated in Figure 3.1, the system 

invokes reconfiguration primitives to change the usage state 

of the logical storage resources to "free and unavailable". 

For each unit of resource in the module, the system first 

invokes the generic subroutine Hake unavailable (defined in 

chapter two), and then invokes the generic subroutine Unbind. 

(also defined in chapter two). 

From the notion of a logical resource usage state of 

"available" we may invent immediately the "available list", a 

list of all logical storage resources available to the 

allocator for use in meeting storage demands. The 

Ilake unavailable primitive prevents future allocation of 

storage by removing it from the available list. Using the 

notation of the PL/I language, we now introduce the first 

specific instance of the generic closed subroutines for 

reconfiguration: 

call Hake_unavailable (addr); 

where "addr" is the name (e.g. , the absolute address) of the 

unit of logical storage resource to be moved from the 

available list to a "removing list". 'i'hc unit of storage 

-----------
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resource must, of course, be uniquely identified: if the names 

themselves are not unique (e.g., the same absolute address may 

occur in different types of storage devices), there may in 

fact be more than one distinct Hake unavailable subroutine 

(e.g., one for each type of storage), but without loss of 

generality we will consider only one. 

For an example of the Make unavailable primitive, 

consider systems that use paging, such as Multics, where the 

potential set of logical storage resources are easily 

represented by a storage map -- a table indexed by storage 

block number (computed as the absolute address of the base of 

the block divided by the block size). As illustrated in 

Figure 3.4, each entry in the storage map either has a pointer 

to the page table word containing the storage block address, 

or has a "null" pointer indicating that the storage block is 

free. Since there may be some absolute addresses that cannot 

be referenced (i.e., are unavailable), a threaded "available 

list" is constructed from the storage map entries to reflect 

the pool of storage blocks actually available to the 

allocator. 'fhe Make unavailable subroutine simply threads the 

indicated storage block entry out of the "available list" and 

threads it into a "removing list". The usage state (viz., 

"unavailable") must be recorded; for example, when the 

allocator frees the storage block for a deleted page, an 

"unavailable" entry is not threaded onto the "available list" 

as might otherwise be the case. Figure 3.5 illustrates the 
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.iJound storage -- "demand allocated" and "wired". This class 

is recorded in each entry of the removing (or available) list. 

The techniques Unbind uses to free the storage depend on the 

class and are discussed in detail in the following two 

sections. These possible classes of bound storage are defined 

as follows: 

1. Demand allocated storage is currently used to store 

information in response to the demand of some process, but the 

allocator may without the explicit "consent" of this process 

move the information (viz., reverse the binding to storage). 

2. Hired storage has been allocated to store information 

which must at all times have a valid binding to (primary) 

storage. For example, the handlers for interrupts and missing 

page faults are typically in wired storage. 

3.2.1 Freeing Demand Managed Storage 

Although wired storage can only be in a primary storage 

module, both secondary storage modules and primary storage 

modules (such as a magnetic core or semiconductor memory) can 

contain clcmand allocated storage: typically only portions of 

the supervisor use wired storage, and all user programs are 

demand allocated. Unbind will free demand allocated storage 

by invoking the system's normal allocator fw1ctions to move 

tne information to a new location. 

For an example consider the demand paging environment, 
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such as tliat of nul tics. The previously discussed storage map 

entry is extended to indicate the state free, U.emand 

allocated, or wired of the storage block. How in t11e 

demand paging environment, we can say that Unbind merely 

"pages out" all the demand allocated primary storage on the 

removing list. First the allocator primitive (called by 

Unbind) places a "fault tag" in the corresponding page table 

word to prevent modification to the page during the copy 

operation. 'l'ilen the allocator signals a processing module 

(viz., a channel) to copy the information to a free block of 

secondary storage. It is handy to set an "out of service" 

flag for the block to show that the copy operation is in 

progress. When the channel signals tiiat the copy is completed 

the storage map is updated to indicate that bie :Ulock is free. 

It is the ability to use the fault tag as a lock to deny 

immediate access to a page that permits "paging out" and thus 

distinguishes the storage as demand allocated, as opposed to 

wired storage which always requires a valid primary storage 

address for the page. 

How recall that in a i:ul tics central processing unit a 

copy of a page table word may be maintained internally in an 

associative memory. \frlen a page table \mrd is modified the 

multiple copies that may be present in other processing units 

introduce a synchronization problem. For example, a fault tag 

in the page table word is used to prevent rnodif ication to a 

page while the page is being copied to secondary storage. 
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However, when another processor happens to be using the same 

page, then that , processor's associative memory copy of the 

page table word has no fault tag, and that processor continues 

to reference the page. Therefore, after setting the fault 

tag, the allocator must signal all processors whose 

associative memories contain this page table word, to clear 

the invalid page table word from their associative memories. 

'ri1e allocator can safely initiate the copy operation only 

after each processor signals back that its associative memory 

has been cleared. The associative memory causes the processor 

to deviate from our ideal model of a processing module, but 

this does not prevent reconfiguration. The price to be paid 

is that there must be communication between processing modules 

in order to reverse the binding to primary storage. 

For secondary storage the techniques are basically the 

same, although processing module hardware typically cannot 

directly move information from one secondary storage module to 

another secondary storage module. The system will usually 

move information from secondary storage to primary storage and 

then from primary storage to a free secondary storage 

location. In any case the intrinsic problem is relocation -­

moving the information and changing all references to the 

secondary storage location. We previously noted that one 

technique is to provide a file map giving the secondary 

storage location of each unit of virtual storage. This is 

conceptually similar to the primary storage page table in 
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terms of our general model, both represent binding between 

pages of virtual memory and blocks of storage. Since the file 

map is the only place where a secondary storage address is 

used, a given address can be searched for and updated a 

storage map can be used to aid the search. 

In the above discussion we have identified the resource 

management techniques that can be applied to "demand 

allocated" primary and secondary storage in order to leave the 

storage in a "free" state. Basically the reconfiguration 

subroutine Unbind invokes the system's normal allocator 

primitives to free demand allocated storage 

the problem of freeing wired storage. 

3.2.2 Freeing Wired Storage 

there remains 

Nearly every operating system has a minimum set of 

instructions and data that must always reside in primary 

memory. In other words, there is information that some 

process expects to always have a valid binding to primary 

storage the storage allocated to this information we have 

termed as "wired" storage. For example, wired storage is 

typically used for interrupt handlers, for the procedure tl1at 

!1andles missing page faults and, as we will see, for the 

relocation procedure itself. The intrinsic problem is, of 

course, still one of relocation; however, the unsolved 

problem is avoiding conflicts while tl1e new copy is being made 
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and the relocation mechanism is updated. 

3.2.2.l Relocating Wired Information 

First we will indentify the basic operations of Unbind, 

and then we will consider the problem of avoiding conflicts; 

we defer until later the special cases when Unbind moves 

itself or moves part of the relocation mechanism. Unbind must 

move information from one absolute location to another 

absolute location. But recall we already concluded that 

references to stored information should use virtual addresses 

instead of absolute addresses. Rather than propose an 

"absolute mode" of operation for Unbind, we will see how the 

system's normal relocation mechanism can be used. This will 

be discussed in the context of a paging environment. 

The virtual memory of the reconfiguration process has two 

pages of particular interest to Unbind: the "real" page of 

information to be moved and a "shadow" page used as a 

temporary work area. This "shadow" page will eventually 

contain the moved version of the wired "real" page. Since the 

allocator knows the location of all absolute addresses, Unbind 

can use its input argument (viz., the absolute address of the 

storage block to be removed) to determine which page of the 

virtual memory is the "real" paqe. Unbind also invokes the 

normal allocator functions to assign primary storage for a 

temporary "shadow" page. 'l'he address mappings at this point 
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(before relocation) are shown in Figure 3.6. 

Unbind now copies the information from the "real" page to 

the 11 shadow" page of the virtual memory. 'l'o complete the 

relocation, Unbind places the absolute address of the "shadow" 

page in the page table word for the "real" page: the page 

table is referenced as a normal part of the virtual memory. 

Figure 3.6 also shows the address mappings after relocation. 

Unbind then updates the allocator data bases (e.g., the 

storage map) to reflect that the desired storage block is free 

and that a new storage block has been allocated to the "real" 

page; the "shadow" page has no storage allocated to it. We 

note that Unbind is an extension of the allocator design and 

must, of course, follow the normal allocator conventions 

for example, check a lock before modifying tl1e allocator data 

bases. This completes the basic design of Unbind for wired 

storage. There remains the problem of avoiding conflict. 

3.2.2.2 Avoiding Conflict 

Since our goal is to reconfigure a system which is still 

running, Unbind introduces two types of potential conflict 

with other user processes. While the reconfiguration process 

is reading (viz., moving to a new location) information in a 

block of wired storage, some other process may modify the 

storage; therefore, the new copy may be outdated or 

inconsistant. On the other hand, while some other process is 
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reading an absolute address from a page table word (Vi Z o I 

resolving a virtual memory reference), Unbind may be modifying 

th.e address to reflect the new location. The "obvious" 

solution is to provide explicit locks for all information 

requiring wired storage. 

it requires Unbind to 

'.i.'.ilis 

keep 

solution lacks generality since 

track of all the locks. In 

addition, checking the lock involves a processing overhead for 

all functions using wired storage. Instead of explicit locks, 

our basic approach will be to "stop" potentially conflicting 

processes during the execution of Unbind. 

One possible ·way for Unbind to avoid conflict readily 

suggests itself: before starting the copy operation, Unbind 

sends a signal (viz., interrupt) to all other processing 

modules that causes them to "halt" until Unbind signals tl'lem 

that the copy operation is completed. Unbind also inhibits 

all interrupts and faults to prevent conflict with an implicit 

interrupt or fault handler process. 'I'llis synchronizing 

approach solves the intrinsic conflict problem, since it 

temporarily reduces the system to a single process. However, 

we are interested in an effective engineering solution, and 

since forcing all other processors to stop for the entire 

duration of the copy operation can be unnecessarily wasteful 

and does not scale well with more processors, we will examine 

an alternative design. 

Although some other processor has the ability to modify 

information being relocated, there may be a low probability it 
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will actually do so while Unbind is executing. In a demand 

paging environment it is useful, regardless of reconfiguration 

capabilities, to know when a page in primary memory has 

actually been modified for example, unmodified primary 

storage pages need not again be copied to secondary storage. 

The hardware can provide for a "modified bit" for each storage 

block that is set on by any processing module making a 

modifying reference. The processing hardware (channels and 

central processing units) of some contemporary computer 

systems, e.g., the IBM 360 Model 67 [10], include this 

capability. 

With hardware that provides such a "modified bit", Unbind 

can use what we term the "trial copy method". The trial copy 

method has four basic steps: 

1. Unbind turns the "modified bit" off for the storage 

block being removed. 

2. Unbind copies the information to the new storage 

block. 

3. Unbind tests the "modified bit". 

4. If still off then Unbind updates the absolute address 

to reflect the new location; otherwise, return to step 1. 

Any specific implementation of this trial copy method 

must consider three design questions. First, if another 

process can modify the old storage block after step 3 but 

before step 4 is complete, we have a critical race: this 

modification is never reflected in the new copy, and so is 
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essentially 

signalling 

lost. Again we can solve the problem by 

all other processors to halt, but now they are 

stopped for a much shorter time period. 

"conditional store" instruction for 

perform both steps 3 and 4 as one 

without any explicit signalling. 

In fact, a suitable 

the processor could 

indivisible operation, 

Secondly, the references of a process are usually 

localized, so if a page has been modified while attempting to 

copy the page, the (conditional) probability b•at it will Le 

modified again is much higher. For this reason and in order 

to place an upper bound on the processor resources required by 

Unbind, it may ~e desirable to stop t.i.rn otlier proce.:>sors for 

the second try. 

Finally, if the "modified bit" is used by procedures 

other than Unbind, then the "modified bit" is part of a 

system-wide data base, and Unbind must follow system locking 

conventions to prevent other processes from explicitly 

referencing the "modified bit" being manipulated by Unbind. 

In addition, Unbind must leave the "modified bit" for the new 

storage block in the correct state: only if the information 

was modified before or during the relocation should the 

"modified bit" be on. 
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3.2.2.3 Self-reference Problems 

We have developed a design for removing wired storage 

that is generally independent of what information is stored; 

however, the design of Unbind must consider two special cases 

of wired storage required for the operation of Unbind itself. 

First, the storage being removed may contain instructions 

and data of Unbind itself. Now recall that to prevent 

conflict with implicit handler processes, Unbind cannot allow 

any interrupts or faults during its execution. This implies 

that, to avoid "missing page" faults, the instructions and 

data of Unbind must be in wired storage. Therefore, when 

moving wired storage Unbind may move itself, and in particular 

may move its internal variables. Now if, because of its 

execution, Unbind modifies an internal variable (for example, 

a loop index) it is moving, then the new copy of the variable 

will not be correct if it is modified after it has been 

copied. Again (as in conflicts with other processes) an 

outdated or inconsistant copy results when the information is 

modified (in this case by Unbind itself) while being moved. 

Unbind can avoid this conflict-like problem by modifying only 

internal registers of the processor during the copy operation. 

If using internal registers is impractical, Unbind must 

specifically check for this special case and explicitly update 

the new version after the relocation is completed. 

A second, particularly awkward special case occurs when 
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the relocation mechanism used by Unbind (when storing the new 

address in the page table word for the "real page) is part of 

the information being relocated. This special case occurs 

when Unbind moves a page table which contains the page table 

word for the page (containing the page table) being moved. 

The example of Figure 3.6 is redrawn in Figure 3.7 for this 

special case (after the copy is made but before updating 

absolute addresses). Recall that Unbind usually updates the 

absolute address in the page table word for the "real" page 

using a normal virtual memory reference. However, this 

virtual memory reference to the page table word will reference 

the old copy of the page table, leaving the old address in the 

new copy of the page table. Therefore, Unbind must explicitly 

update the page table word in the "shadow" page in order to 

complete the relocation (as shown in Figure 3.8). 

3.2.2.4 Implications of External I/O 

We have developed a design for storage removal based on 

an asynchronous model of the system. In particular, Unbind 

must be able to "stop" all processing modules referencing 

wired storage in order to avoid conflicts. Unfortunately 

external I/O channels are used for synchronous operations, and 

therefore cannot in general "stop" for an arbitrary length of 

time. However, I/O channels usually include some sort of 

"buffering" that all.ows them to stop for a bounded period of 
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time. As already noted, with the trial copy method this time 

period can be kept short (if a complete copy can be made 

without the information being modified); 

copy method implies that an I/O channel 

however, the trial 

updates "modified 

Lits" and has a convenient relocation mechanism. In fact, 

many contemporary I/O channels use absolute addresses 

directly, and make no record of storage modification. 

As already noted, a detailed consideration of external 

I/O is beyond the scope of this thesis; however, a few 

observations about the I/O impact on storage removal seem 

useful. Operating system I/O primitives often know every 

place that an absolute address is used by the channel. Even 

though there is no general relocation mechanism, this 

knowledge may allow each channel to have a special case 

primitive to aid the removal of storage used by that channel. 

'l'lle I/O channels of a system can of ten be classed as 

either "high speed" or "low speed". For "high speed" 

channels, any operation in progress is guaranteed to be 

completed soon. 'rhe reconfiguration primitive for "high 

speed" channels can insure that the future I/O operations will 

use only storage outside the module being removed for such 

things as buffers. The primitive can also signal the 

reconfiguration process when any current I/O operation is 

completed (i.e., when the channel is "stopped"); special per 

channel control words, etc., that use absolute addresses can 

be moved without conflict while the channel is stopped. 
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Although it is not practical to wait for "low speed" channels 

to complete, the data transfer rate is usually so slow that 

essentially synchronous primitives can be designed to change 

the storage used, for example by a "fast" forced stop and 

restart of the channel. Finally, for a fast channel that 

takes arbitrarily long to complete an operation, we can only 

suggest that the channel be designed with a hardware 

relocation mechanism, such as paging, and be designed to 

"stop" long enough for Unbind to complete relocation. 

In summary, the Unbind design we have developed can 

usually be applied to removing storage used by external I/O 

channels, when these channels include the same general 

relocation mechanism as other processing modules. Without an 

explicit relocation mechanism, we can only say that for many 

practical systems it seems likely that special case solutions 

to the intrinsic relocation problem can be formulated. 

3.2.3 Freeing a Storage Module Used as a Relay 

We have identified primitives to remove from use the 

units of logical storage resource in a module. However, the 

reconfiguration procedures must also insure that a storage 

module is not used as a relay for signals between processing 

modules. For purposes of reconfiguration we can view the 

storage module as also being used for a small specialized 

memory -- the information storeu is an intermodule (interrupt) 
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signal or possibly a "mask" to prevent the relaying of a 

particular signal. 

The processing module(s) to receive each signal is 

determined by the configuration of the hardware modules and is 

recorded in the module configuration table entry for each 

storage module. The system design includes a convention for 

using storage modules to address a particular signal to a 

specific processing module -- we invent the notion of a signal 

address table to reflect which storage module is used as a 

relay. Wilen a storage module is removed, the reconfiguration 

procedures make it unavailable as a relay by replacing all its 

occurrences in the signal address table with some remaining 

module. The stored signal information in the removed module 

could then be copied into its replacement, just as for other 

storage in the module. However, updating the signal address 

table prevents further writing into (i.e., sending signals to) 

this module, so it is reasonable to just wait until all the 

signals are sent to processing modules. 

Multics provides one implementation example that 

demonstrates the reconfiguration features. A single primary 

memory module is used to relay all signals to each central 

processing unit (CPU) from any CPU. The system uses an 

explicit table for addressing signals to a particular CPU, and 

this is updated by reconfiguration procedures. Since signals 

are stored in a storage module for only a si1ort time (viz., 

typically a few milliseconds), the signal information is not 
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actually copied, but the reconfiguration process just waits 

until no stored signals remain. Signals to and from I/O 

channels may use any primary storage module -- the module used 

is determined by the location of certain control data. Thus 

when storage is freed (i.e., the data is moved), it is 

implicit that the module is no longer used as a relay. 

3.2.4 Summary of Storage Module Removal 

We have considered the problems of dynamically removing a 

storage module from use by the system, and have identified a 

design approach to solve each of these problems. The basic 

problem is moving and relocating all references to information 

stored in the module, and we have seen that a demand paging 

environment can simplify the implementation. 

It is emphasized that relocation is an intrinsic problem 

that must be solved; a system design that does not consider 

dynamic reconfiguration can thwart solution of tnis problem. 

For example some systems implicitly assume and always require 

a zero-based and contiguous absolute address range, thereby 

severely restricting dynamic memory reconfiguration. In 

addition some systems include "wired-in" reserved absolute 

storage locations: examples are the location where the 

processor state is saved at the time of an interrupt and the 

place where an I/O channel expects to find its next command. 

Basically any explicit or implicit use of a fixed absolute 
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address can restrict dynamic memory reconfiguration. 

3.3 Adding a Storage Module 

A request to add a storage module is satisfied by making 

all the storage in the module available for use by the system. 

Recall that in this chapter we are assuming that a storage 

module to lJe added is idle but accessible to the system. 

Accessible means that a range of absolute addresses is 

assigned to the storage module, and each processing module has 

a communication link enabled to the storage module. In terms 

of our general model described in chapter two and illustrated 

in Figure 3.1, the logical storage resources in the module are 

initially in a "free and unavailable" state. To add the 

storage, the system must invoke the Make available primitive 

(identified in chapter two) to perform the operations 

represented by the state transition to the "free and 

available" state. 

Let us suppose that an operator requests that a specific 

physical module be added. Recall that the module 

configuration table reflects the binding of physical to 

logical resources, and thus permits the reconfiguration 

routine to determine the range of absolute addresses to be 

added. First the system verifies that the operator's request 

is acceptable. For example, the module configuration table 

must have an entry for the specified module (i.e., the module 
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must in fact be accessible to the system), and the module must 

not already be in use. For each unit of logical storage 

resource in the module the operator's process invokes the 

Hake_available primitive. 

Recall that the "available" list 

logical resources currently available 

defines the set of 

to the storage 

allocator. Therefore, we provide a specific instance of the 

generic closed subroutine Make available to add a unit of 

storage to the available list: 

call Hake_ available (addr); 

where "addr" is the name (viz., absolute address) of a unit of 

logical storage resource. Hake available merely adds the 

storage to the available list, and the usage state is recorded 

as "free". T:i.ius, when 1·1ake_available returns the storage is 

available for use by the allocator to meet future demands for 

storage. 

After all the units of storage have been added, the 

system records the module in the module configuration table as 

available. Whether or not storage modules can be used to 

relay intermodule signals is immaterial, since adding a 

storage module does nothing to require any change in the 

management of signals between processing modules. 

We have seen that adding a storage module to the 

resources being used is relatively simple and consists 

primarily of verifying the operator's request and then adding 

the logical storage resources to the available list. 
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3.4 Removing a Processing Module 

In the computer utility environment, each unit of 

processing resource (which we refer to as a "processor") is at 

any point in time allocated to execute in behalf of some 

process. To dynamically remove a processing module, the 

reconfiguration process must force the processor(s) in the 

module to stop executing for any useful process of the system. 

We now interpret the general reconfiguration design, outlined 

in chapter two and illustrated in Figure 3.1, in terms of 

logical processing resources. 

The motivation and techniques for processor allocator 

designs applicable to the computer utility are not detailed 

here, since a lucid discussion of these is available [20] to 

the interested reader. Processor reconfiguration is basically 

independent of the allocator design details; however, the 

allocator must have a primitive to force rescheduling for any 

specific processor, i.e., must be able to preempt any 

processor. 

The reconfiguration operations are modeled (see Figure 

3.1) as transitions between four logical resource usage 

states. To understand these states we must provide an 

interpretation for the conditions bound/free and 

available/unavailable in terms of logical processors. A 

logical processor is "bound" when it is executing for some 

useful (user) process in the system -- that process is said to 
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be running. A processor is "free" when not executing a user 

process. So that this idling condition is not a special case 

to the allocator, we introduce the notion of an "idle process" 

(one for each processor) to insure that the allocator always 

has some process to run on each processor. When running an 

idle process, the processor can be thought of as executing in 

a "loop" or possibly just executing a "halt until signaled" 

instruction. 

The allocator maintains in a system wide data base a list 

of all the running processes. This running list identifies 

which process is running on each logical processor. When the 

allocator wishes to run a process not now running, it searches 

the running list for a processor to which the process can be 

assigned, for example the processor currently running the 

lowest priority process. Thus the "available" processors are 

just those which occur in the running list. 

To remove a processor, the reconfiguration 

must ultimately leave a processor in the 

procedures 

"free and 

unavailable" state, which means the processor is assigned to 

its idle process and not in the running list. Removing a 

logical processor from use is followed by removing a physical 

processor from the configuration. Since at some point the 

processor must be shutdown, we introduce the further 

constraint that a logical processor in the "free and 

unavailable" state is halted, viz., will make no references to 

any storage and will neither send signals to nor receive 
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signals from any processor. 

For any acceptable request to remove a processing module 

(viz., when a viable set of modules will be left), the system 

will remove the logical processor(s). From the general model 

of chapter two we know we must again (as for removing storage) 

invoke two primitives in sequence to first make the processor 

unavailable and then to make it free. The first primitive 

must remove the processor from the running list and add it to 

a "removing list" -- the entry for this processor is updated 

to record that the processor is in an unavailable state. 

Another instance of a generic closed subroutine is identified 

to provide this primitive: 

call Make unavailable (processor_no); 

where "processor_no" is the name of the logical processor to 

be removed from the running list. 

After the call to Make unavailable for all resources in 

the module, the Unbind primitive must 

that the processor is not being 

be invoked to 

applied to any 

insure 

useful 

processing. In a direct analogy to storage resources, there 

are three ways that the unavailable processor may be assigned 

to its idle process: 

1. The processor was running the idle process when 

Make unavailable was called. 

2. A running user process invokes a normal allocator 

function in order to release the processor -- for example, in 

Multics terms [20], the process running on this processor 
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called "block". 

3. The reconfiguration process invokes a reconfiguration 

primitive to force a user process to stop running on this 

processor. 

To insure that the processor is free (by one of these 

means), the system invokes the Unbind primitive for each 

logical processor being removed. Previous research [20] has 

provided an allocator design for managing logical processors 

as members of an anonymous pool so that any running process 

can be easily "preempted". Typically a central processing 

unit would be preempted by an interrupt, but a high speed 

channel would merely wait for completion of the current 

operation. The allocator's preempt primitive causes the 

running process (which may be the process performing 

reconfiguration) to be replaced with a process selected by the 

allocator for an unavailable processor only the idle 

process is selected to run. Thus the Unbind primitive forces 

an unavailable processor to run its idle process by invoking 

the allocator's normal preempt primitive. 

Although we have seen how to free the processor from 

explicitly assigned processing, there remains the problem of 

processing implied by signals (e.g., interrupts) sent to the 

processor. There are two types of signals -- process signals 

intended for a specific process and system signals directed to 

the processor regardless of what process is running. Since 

the idle process is expendable we can completely control its 
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response to process signals without disrupting the operation 

of the system (viz., no other process expects to communicate 

with the idle process); therefore, we design the idle process 

so that it does not receive process signals (except for a 

signal to halt, as discussed below, from ci1e recofiguration 

process) when its processor is unavailable. 

System signals -- for example channel interrupts must 

be processed by some processor as determined by system 

convention, but since they are used to provide system-wide 

functions, any processor will do. We invent the notion of a 

signal target table that specifies the system convention for 

which processor(s) receives each type of system signal. To 

make the processor unavailable for processing future system 

signals, the system replaces each occurrence of the processor 

as a target in the signal target table a replacement 

processor can be selected from the available list. Any 

outstanding system signals are allowed to run out (i.e., the 

processing is completed), and then the processor is free from 

system signal processing. 

We have identified a design to insure that the processor 

is allocated to only the idle process and is not performing 

implicit (intermodule signal) processing. If the idle process 

is implemented as a loop (as opposed to being halted), recall 

that by our definition the processor is not "free and 

unavailable" until it is halted. Therefore, if necessary the 

reconfiguration process sends a process signal to the idle 
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process: in response to this signal the idle process executes 

a "halt" as its last instruction. Now we know the functions 

required of the Unbind primitive preempt the process 

running on the processor, redirect all intermodule signals to 

other processors, and signal the idle process running on the 

processor to halt. We again provide these functions with an 

instance of the generic subroutine: 

call Unbind (processor_no); 

where "processor_no" is the name of the (unavailable) logical 

processor that is to be made free. 

Finally, after invoking Make unavailable and then Unbind 

for the processor(s) in the processing module being removed, 

the system records the module as unavailable in the module 

configuration table. Recall from chapter two that a processor 

only has memory of information related to the specific process 

it is executing in this case an idle process whose 

existence is basically irmnaterial to the operation of the 

system. Thus the (halted) processor contains no information 

needed by the system, and the completely expendable idle 

process can have all its resource demands (viz., virtual 

resources) removed. For example, the system can delete all 

the storage required for per process data and all allocator 

entries for this process. The system can also release any per 

processor resources, for example, the wired storage for saving 

the processor state at interrupt time. In addition, if 

storage modules are used as a relay for signals, the system 
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can remove all occurrences of the processor in the signal 

address table as superfluous. 

We have developed a design to remove a processing module 

from use by the system. This design is predicated on the 

existence of an allocator primitive to preempt the process 

running on any processor. The basic problem is insuring that 

the processor is not in the future required by the system for 

explicit (i.e., via the allocator) or implicit (e.g., system 

interrupt) processing. We can see that the reconfiguration 

capability of a system can be restricted by designs that 

require a specific processor for any process (for example, as 

a "master" processor for controlling "slave" processors), or 

for intermodule signals (for example, to process I/O 

interrupts). 

3.5 Ad.ding~ Processing Module 

When presented with an acceptable request to add a 

physical processing module (viz., a request for a module that 

is part of the configuration but not now in use), the system 

makes the processor(s) in this module available to the 

allocator. For each unit of physical resource the name of the 

logical 

table. 

invokes 

resource is determined from the module configuration 

In terms of our model (see Figure 3.1), the system 

the Make available primitive for each logical 

processor in order to perform the operations represented by 
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the transition from the "free and unavailable" to the "free 

and available" logical resource usage state. 

The functions necessary to make a processor "free and 

available" are essentially creating its idle process, creating 

per processor data, forcing the processor to start executing 

the idle process, and finally adding the processor to the 

running list. To provide these functions we introduce the 

reconfiguration primitive as the (generic) closed subroutine: 

call Hake_available (processor_no); 

where "processor_no" is the name of the logical processor 

being added. When a call to Make available returns the 

processor is available to the allocator for use in meeting the 

explicit processing demands of any process, and is also 

available for implicit (e.g., interrupt) processing. 

Hake_available must provide an idle process for the addecl 

processor. Recall from chapter two that the set of virtual 

processors changes dynamically, viz., user processes are 

created and destroyed. Therefore, the allocator, for reasons 

other than reconfiguration, must have a primitive for creating 

a process. For reconfiguration we augment the process 

creation function so that an idle process can be created. The 

allocator primitive to create (idle) processes must provide an 

appropriate entry in the alocator's system-wide data base 

in Multics terms [20], must provide a filled in process table 

entry and must create any required per process data area 

(for example a call stack). 
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In order to control the first actions of a newly added 

processor, we want it to first execute a known, well-behaved 

process -- for convenience we use the new idle process. Now 

in general the allocator can choose any available processor to 

execute a process; however, we require the process creation 

primitive to create an idle process such that only one 

specific logical processor can be assigned to it. Thus even 

though the idle process exists it will not be selected to run 

until its processor has an entry in the running list. 'l'o 

complete the idle process the reconfiguration primitive must 

provide the instructions that comprise its "program". The 

reconfiguration primitive will also create any per processor 

data for the processor being added. 

Now the crux of the problem is how to cause the idle 

process to actually start running. Recall that by our 

definition of the "free and unavailable" state, the processor 

is initially halted. Clearly a signal to the processor is 

needed to cause the processor to do anything other than stay 

halted. If storage modules are used to relay signals, then 

entries are added to the signal address table so that signals 

can be sent to the processor. If (as is common for channels) 

the program for the idle process is just a (wired-in) halt, we 

can now say that the idle process is actually running. On the 

other hand, for an idle process that has a "loop" program 

stored in memory, we must cause the processor to begin 

executing this program. A signal must be sent to the 
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processor, but where a processor will begin executing in 

response to a signal depends on the physical hardware 

configuration the issues involved in having a processor 

respond in a controlled manner will be ~xamined in detail in 

the next chapter. For the moment we assume there exists some 

signal to start the processor executing the "program" of the 

idle process. Once the processor starts executing the idle 

process, it is added to the running list, making it available 

to the allocator. 

We have examined a design for adding a processor. The 

operations required are more complex than those for the 

analogous adding of storage due to intermodule signals and the 

more involved interpretation of the "free" state for a logical 

processor. After making the processor(s) in the module 

available to the allocator, the system updates the module 

configuration table to reflect that the module is now 

available for use by the system. 

3.6 Summary of Changing Module Utilization 

In this chapter we have developed in detail specific 

designs for adding and removing storage and processing modules 

from the set of modules the system is actually using. 'l'hese 

designs have demonstrated that the operations of 

reconfiguration can be conveniently modeled by resource usage 

state transitions as postulated in chapter two. The crucial 
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elements of each design have been presented as a 

of closed subroutines and system-wide data 

combination 

bases. The 

subroutines directly represent the state transitions of the 

general model (Figure 3 .1). The primary system-wide data base 

introduced for reconfiguration is the module configuration 

talJle which reflects the hardware configuration and the 

utilization of each module. In addition we identified data 

bases of the system resource allocators which are significant 

to reconfiguration -- these include the "available list" for 

storage, the "signal address table" (when storage modules act 

as relays), the "running list" for processors, and the "signal 

target table". 

Although we have constructed solutions to the problems of 

changing the modules being used by the system, these program 

oriented solutions are really useful only when coupled with 

some method of actually changing the hardware configuration of 

physical modules that comprise the system. In the next 

chapter we extend our investigation to consider in detail the 

hardware oriented problems of changing the configuration of 

modules in the system. 
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CHAPTER FOUR 

CHANGING THE HARDWARE CONFIGURATION 

4.0 Dynamically Changing Physical Module Configuration 

Tlle hardware modules in a computer installation can be 

used for any one of several applications, such as providing 

services to users or running diagnostic programs to aid the 

repair of a faulty module. To provide a high availability for 

a computer utility, it must be possible to partition the 

installation's modules into independent operating units (which 

we term "partition-systems") that can be simultaneously used 

for different applications. 

Since there can be more than one totally independent 

partition-system in a single installation, an operator must 

intervene to specify which of the installation's modules are 

available for use by each partition-system. Tllis chapter 

develops a hardware architecture that decouples this simple 

manual selection operation, from the complex operations that 

control the configuration of the modules available to each 

partition-system. This architecture allows each 

partition-system to automatically control the configuration of 

its own modules, for example, control the addresses assigned 

to its memory modules. When combined with the operating 

system primitives of chapter three, this architecture provides 

a complete dynamic reconfiguration capability. 
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Recall that in chapter two we modeled the configuration 

of a partition-system in terms of a binding between physical 

resources and logical resources. This chapter considers in 

detail the operations required to change the configuration. 

These operations are modeled in terms of changes in the usage 

state of the physical resources, as illustrated in Figure 4.1 

-- this model is basically a specific instance of the general 

model of state transitions presented in chapter two (see 

Figure 2. 3). The relationship between the operations on 

physical resources considered in this chapter and the 

operations on logical resources considered in the last chapter 

was previously discussed in chapter two and illustrated in 

Figure 2.4. 

How we need to interpret this model in terms of hardware 

modules. Basically the available/unavailable states are a 

model of whether or not an operator has specified the hardware 

module as part of the partition-system. The bound/free states 

model whether or not the partition-system has electrically 

connected the (available) module as an operable part of the 

configuration. From this model we see that there are two 

basic design problems we must solve in this chapter: 

1. The operator needs a mechanism for specifying which 

modules of the installation are to be in which 

partition-system. 

interface at a 

installation. As 

We 

single 

the 

will provide a convenient operator 

location for all modules in the 

first step in adding any module, the 
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operator makes the module "available" to the partition-system. 

As the last step in removing a module, the operator makes the 

module "unavailable" to the partition-system. 

2. Each module needs mechanisms so that the 

partition-system can control the configuration (i.e., binding 

and unbinding) of the modules made available to it by the 

operator. Basically 

interconnection of 

these mechanisms control the electrical 

the modules available to the 

partition-system. We conceive the functions for accessing a 

module's configuration control mechanisms as generic 

"instructions" executable by some type of processing module: 

Set_config module data 

Read_config module data 

where "module" specifies the particular physical module and 

"data" is the configuration control information. (Read_config 

is needed primarily for partition-system initialization as 

discussed later, rather than for reconfiguration as such.) 

Later sections of this chapter examine in detail the specific 

configuration control mechanisms needed in the hardware 

modules. 

4.1 Changing Module Availability 

Now recall that an operator selects which independent 

partition-system each module is to be in: this means 

specifically that he specifies which modules are available for 
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access with tl1e Set_config instruction (for convenience in 

monitoring operator actions, we allow the "harmless 11 

Read_config instruction to access all modules). We introduce 

an installation-wide operator interface matrix as the 

mechanism for operator selection. r:xternally this matrix is a 

set of operator activated "switch buttons" that selects a 

specific partition-system for each module in the installation, 

as illustrated in Figure 4.2 (there are, of course, interlocks 

to prevent making a module available to more than one 

partition-system). Internally this matrix is a switching 

network that controls the flow of Set_config signals from a 

partition-system to any module, as also illustrated in Figure 

4.2. 

The operator interface matrix must also insure that the 

Set _config signals from a processing module can only go to the 

partition-system which contains that module. Each 

partition-system must explicitly control which of its 

processing module(s) can actually send the Set conf ig signals -
-- in particular, a processing module just made available to a 

partition-system must not change the configuration of modules 

already in use, until the partition-system makes sure that the 

new module is "well-behaved" • 

Therefore, for each possible partition-system in the 

installation, the operator interface matrix has a program 

accessible send register (viz., an electronic "gate") for each 

processing module that can execute Set_config: a processor 
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can send Set_config signals for a partitular partition-system 

only if this send register is ON. The schematic diagram of 

Figure 4.2 is redrawn in Figure 4.3 to reflect this design. 

This design implies that instances of the generic Set_config 

and Read_config instructions reference the send register, 

possibly as part of the configuration control mechanism of the 

processing module -- for convenience in monitoring operator 

actions, we also allow Read_config to read all the operator 

activated switches on the operator interface matrix. The 

operator interface matrix enforces the following constraints 

on the send register: 

1. A module's send register can be ON for a 

partition-system only if the module is available to that 

partition-system. In other words, 

processing modules can never send 

another partition-system. 

one partition-system's 

Set_config signals to 

2. Whenever an operator selects a processing module for 

a different partition-system, the matrix initializes that 

module's send registers as OFF for all partition-systems. 

In conclusion we ol.>serve that the number of independent 

partition-systems provided is determined JJy the operational 

goals of the installation, but each useful partition-system 

must include at least one processing module capable of 

executing the Set_config instruction. We defer to a later 

section the problem of intializing the operator interface 

matrix when starting the partition-system on a "bare machine". 
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In terms of our model (Figure 4.1), the operator interface 

matrix essentially defines which modules are "available" for a 

partition-system. We next examine in detail the configuration 

control mechanisms needed in each module to implement the 

"bind" and "unbind" usage state transitions of our model. 

4.2 Changing Module Binding 

Recall that chapter two characterized a modular computer 

installation as a collection of processing and storage modules 

with an interconnection network consisting of interface ports 

and memoryless links (see Figure 2.5). Although the network 

itself is fixed, the effective electrical connections are 

determined by configuration control mechanisms in each module. 

Binding and unbinding of physical is a model for the changes 

in these electrical connections. First we will examine the 

mechanisms needed for all modules, and then we will examine 

the particular requirements for storage 

modules. 

and processing 

We digress a bit to note that a crucial feature of the 

modular structure is that the interconnection network is never 

dynamically changed. Since ti1e topology of this network must 

be known for reconfiguration, we augment the module 

configuration table to reflect the "wiring diagram" of exactly 

how each link in the entire installation is connected to each 

port: this information is provided at partition-system 
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initialization time. 

Now for a partition-system to use (viz., have bound) a 

physical module, it must have an effective electrical 

connection with all other modules in the configuration we 

say that its links to other modules are enabled. Our model of 

an installation as consisting of independent partition-systems 

immediately points to a problem in enabling links: although a 

module belongs to a single partition-system, a link (viz., 

between modules in different partition-systems) does not. In 

particular, we cannot simply use a single "on/off switch" in 

each link to enable/disable the link, because to add and 

remove a module, each partition-system must be able to 

manipulate the "switch" in each of the links to its modules. 

However, this ability to manipulate all its module's 

"switches" means that one partition-system can enable a link 

from one of its modules to a module being used by another 

partition-system, and thus cause damage -- for example, write 

in the memory of the other partition-system. Clearly each 

partition-system needs a way to guarantee its isolation from 

any other partition-system, regardless of the mistakes (e.g., 

errors by a technician repairing an off-line module or program 

bugs in the supervisor, viz., those unrelated to 

reconfiguration itself) that occur. 

The required protection is provided by an "on/off switch" 

in the port of each module (instead of in the link). An 

"on/off switch" is of course just a form of binary memory, so 
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we will model this capability with a port enable register for 

each interfacing module. The port enable registers in each 

module are accessible by specific instances of the generic 

Set_config and Read_config instructions. A link is enabled if 

and only if the port enable registers at both ends of the link 

are enabled (viz., ON). Figure 4.4 illustrates this design. 

Now a partition-system can completely protect itself by 

disabling its own modules' port enable registers (and thus 

disable the links) for all modules not part of the 

configuration. 

To remove a module from the configuration, the 

partition-systems uses the Set_config instruction to disable, 

in the remaining modules, the port enable register for the 

module being removed. Figure 4.5 illustrates the Set_config 

signals used to disable links to a module. 

We digress a bit to recall from chapter three that when a 

processor is added to the configuration it is defined to be 

initialized in a "halt until signaled" state, since it is 

clearly dangerous to add a processor that is running in some 

unknown way. Therefore, for the processor(s) in a processing 

module we introduce a binary initialize register that is ON 

only if the processor is in a "halt until signaled" state. 

Not only does the initialize register reflect the current 

state, but also a partition-system can force a processor to 

halt (viz., become "initialized") by using Set_config to turn 

the initialize register ON. Once the processor is 
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initialized, the send register, if any, for the processor (in 

the operator interface matrix) can safely be set OH: this 

allows the partition-system to use this processor to execute 

Set_config. Similarly, each storage module used as a relay 

for signals between processing modules includes an initialize 

register; when Set_config turns it ON, the storage module 

clears any outstanding signals. 

How to add any (available) processing or storage module 

to the configuration, the partition-system first uses the 

Set_config instruction to enable port enable registers in the 

new module for just those links to modules already in the 

configuration. 'l'he partition-system next uses Set_config to 

set the initialize register ON (and to set ON the send 

register, if any). Then the partition-system executes 

Set_config for the modules already in the configuration to 

enable the port enable registers for the links to the new 

module. Figure 4.6 illustrates the Set_config signals to port 

enable registers needed to enable links to a module. 

In summary, port enable registers in the port of each 

module primarily determine the effective interconnection of 

modules. These registers control all conununication over the 

intermodule links (Figure 4.4). The only intermodule signals 

not controlled by port enable registers are the Set_config and 

Read_config signals; these signals are controlled by the 

operator interface matrix on an installation-wide basis, 

rather than on an individual partition-system basis. We now 
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examine in detail the additional operations required to 

bind/unbind a storage or processing module. 

4.2.l Storage Hodule Configuration 

A physical storage module can only be used by the 

partition-system if it is "bound" to logical resources 

viz., a range of absolute addresses. We now need a mechanism 

for controlling this binding. Recall tnat the modular 

structure developed in chapter two requires "port selection 

logic" in each processing module to map an absolute address 

into a reference through a link to the proper storage module 

and a particular location within that module. To specify the 

absolute address range assigned to each storage module, we 

introduce (within the port of each processing module) an 

address interval register for every link. The address 

interval registers are accessible with specific instances of 

the generic Set_config and Read_config instructions. Figure 

4.7 illustrates our model of a processing module port. The 

address interval register is typically implemented with only a 

small amount of memory in the port for example a "oase 

address" and the "size" for the storage module. 

The partition-system makes a physical storage module 

(being added to the configuration) "bound" by assigning to it 

logical resources (viz., an absolute address interval) not 

already assigned to another storage module. As noted in 
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chapter three, the module configuration table records the 

addresses already assigned to each storage module. The 

partition-system executes Set_config, for each interfacing 

processing module in the configuration, to set the address 

interval register for the processing module's link to the new 

storage module. The module configuration table is, of course, 

updated to reflect this binding. 

'l'o "unbind" a storage module (being removed), the 

partition-system updates the module configuration table to 

show that the module's address interval is unassigned. The 

value left in the address interval registers for links to the 

module being removed is basically unimportant, since the 

module can only be made unavailable or bound to a new address 

interval (see Figure 4.1). 

In summary, the configuration of storage modules in a 

partition-system is determined by address interval registers 

in the interface ports of the partition-system's processing 

modules. Tlle module configuration table is used to manage the 

binding of physical to logical resources, e.g., to prevent the 

partition-system from using two storage modules with the same 

absolute address range. 

4.2.2 Processing Hodule Configuration 

To be used by the partition-system, a physical processor 

must be bound to a logical processor. In addition, the 
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"instruction counter" for implicit processing (e.g., 

responding to interrupt signals) must be bound to an execution 

point. We now develop a design for these binding operations. 

The logical processor number (i.e., the name of a unit of 

logical processing resource) may not seem as intuitively 

motivated as an absolute address (i.e., the name of a unit of 

logical storage resource); however, a unique processor number 

for identification is needed by the processing resource 

allocator. This binding of physical to logical processors is 

recorded in the module configuration table. We will view the 

the processing 

Set_config and 

register as processor number 

module; this 

Read_config. 

register is 

As contrasted 

contained 

accessible 

to the 

in 

tl1ru 

contiguous absolute 

addresses in a storage module, the processor numbers for 

processors in the same module may bear no relationship to each 

other, except for uniqueness; if so, the module must have an 

explicit processor number register for each processor in the 

module. For example, channels often have individually 

assigned "channel numbers". 

Although the processor number is used for managing the 

explicit processing, recall from the last chapter that a 

processor also performs implicit processing in response to 

signals. Now we digress a bit to observe that the intrinsic 

problem for a processor responding to any signal (e.g., an 

interrupt) is determining the single location where it can 

find its next instruction to execute. ·we will view this 
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location as being specified by a signal address register, 

which is accessible thru Set_config and Read_config. Figure 

4.7 is now augmented in Figure 4.8 to illustrate our complete 

model of a processing module. 

In a simple case (e.g., a highly specialized channel) 

this next instruction may implicitly be a wired-in program1 

however, usually an explicit signal address register specifies 

the location in primary memory of an instruction to be 

executed. The instructions at the specified location will 

typically save the state of the processor (so it can be 

restarted where interrupted) and transfer to a "handler" for 

the signal. The interpretation of this single absolute 

address will depend on the particular hardware design for 

example, in a processor with segmentation hardware the signal 

address register may in fact be the "descriptor base register" 

(refer to Figure 3.4), and the next instruction is found in a 

reserved segment. In any case, the signal address register 

must be included in the relocation mechanisms updated when 

removing a primary memory module, as already detailed in 

chapter three. 

We now have all the mechanisms needed to control the 

binding of physical processing modules. The partition-system 

makes a processing module (being added to the configuration) 

"bound" by assigning a processor number and signal address to 

each processor contained in the new module. In addition, the 

partition-system sets the address interval registers in the 
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new module's port to reflect the addresses assigned to the 

memory modules. With the internal registers set to desired 

values and the processor in a "halt until signaled state" the 

logical processor can be considered as "free and unavailable". 

The Make available primitive of chapter three can then start 

the processor in a standard and controlled way by placing the 

desired instructions at the location specified by the signal 

address register and sending a signal. 

To "unbind" a processing module (being removed} the 

partition-system updates the module configuration table to 

show that each physical processor is "free", i.e., that its 

processor number is unassigned. (By the conventions of 

chapter three, the processors are already halted.} The values 

in the various configuration control registers, of the module 

being removed, can be left unchanged. 

In summary, the configuration for processing modules is 

primarily determined by a processor number and a signal 

address register within each processor. Although typical 

processing modules contain some form of the various 

configuration control registers (Figure 4.8}, the crucial 

characteristic for dynamic reconfiguration is that the 

partition-system can insure suitable contents in these 

registers before a processor begins to execute as part of the 

configuration. 
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4.3 Partition-system Initialization 

The design for reconfiguration must be compatible with 

ti1e need to initiate partitio11-system operation on a bare 

machine. We now demonstrate how the above design can be used 

with a partition-system initialization strategy frequently 

found in modular hardware, such as that used by Multics. We 

view initialization in terms of a sequence of operating 

configurations {within the collection of available modules), 

each providing more capability than the preceding one: 

l. We view the kernel of a partition-system as a 

self-sufficient "bootstrapper" {with wired-in instructions, 

data, and processing logic) contained in a single module. 

This bootstrapper first executes a wired in program that 

establishes a viable minimum configuration of modules. The 

bootstrapper then copies a "bootstrap program" from its 

wired-in data into a storage module. 

2. This bootstrap program in turn executes on the 

minimum configuration and loads an operating system. 

3. '.i'he newly loaded operating system expands tl1e minimum 

configuration to include all the modules made available to tile 

partition-system by the operator interface matrix. 

4. Finally, the operating system begins its normal 

execution, using the full configuration of the 

partition-system. 

To start the partition-system the operator activates the 
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wired-in "bootstrapper" with a manual switch; we augment the 

operator interface matrix to include a bootstrap switch for 

each partition-system. Typically the bootstrapper is 

contained in a normal processing module so it can use the same 

processing hardware; for convenience, we say that each 

processing module capable of executing the Set config 

instruction also contains a bootstrapper. When an operator 

activates a partition-system's bootstrap switch, the operator 

interface matrix makes a (basically arbitrary) selection of a 

bootstrap (processing) module from those modules available to 

that partition-system. The matrix first initializes the 

bootstrap module's send register ON and all other send 

registers for that partition-system OFF, so only the bootstrap 

module can change the configuration. 

Then the operator interface matrix starts the 

JJootstrapper. Using its wired-in program, the bootstrapper 

executes Read_config to determine the modules assigned to this 

partition-system, and from these modules selects a minimum 

configuration which includes the bootstrap module -- typically 

one central processing unit, one primary memory and one I/O 

channel are required. The modules in this minimum 

configuration are then "uound", using Set_config -- typically 

the logical resources used (for example, the absolute address 

interval) are determined by constants wired into the 

bootstrapper. This results in a useable, initialized (viz., 

non-running) configuration. 
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Next the bootstrapper loads (from its wired-in data) a 

small, fixed bootstrap program into primary memory at the 

location specified by a processor's signal address register. 

This transfer of data (viz., the bootstrap program) to memory 

is the first use of the normal intermodule links. •rhe 

bootstrapper then signals a processor to start executing the 

l..>ootstrap program: the bootstrapper then stops itself. 

The bootstrap program in turn reads additional programs 

from a fixed I/O device (the particular device used is a 

"constant" in the bootstrap program), and then executes these 

programs. The programs read from the I/O device are an 

initialization portion of the operating system. The operating 

system adds the remaining modules assigned to this 

partition-system, initializes data bases (e.g., the module 

configuration table), and l..>egins its normal operation. 

4. 4 Review 

In this chapter we have presented a specific architecture 

that permits a partition-system to dynamically and 

automatically change its configuration of hardware modules, 

under the direction of an operator. We have used changes in 

binding as a model of the reconfiguration operations, and we 

have introduced hardware "registers" to provide the mechanisms 

for changing the configuration. Our strategy has been to 

identify as explicit, program accessible registers those 
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(often implicit or operator controlled) configuration 

dependent portions of contemporary modular architecture. We 

have also explicitly identified a simple operator interface to 

support the design. 

The reconfiguration primitives of the last chapter taken 

together with the hardware architecture presented in this 

chapter provide a complete design for dynamic reconfiguration. 

This design assumes strictly serial, operator initiated 

requests to dynamically add and remove specific physical 

modules. To enforce this serial discipline we can view 

reconfiguration as being subject to a single software 

reconfiguration lock. This lock prevents conflicts over the 

use of 

table 

reconfiguration data such as the module configuration 

and prevents races when accessing the hardware 

registers. 
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CHAPTER FIVE 

THE MULTICS IMPLEMENTATION 

5.0 Background 

The usefulness of the general design presented in the 

preceding chapters has been demonstrated by employing it to 

provide a practical dynamic reconfiguration capability for the 

primary time-sharing service at M.I.T. The ~iplexed 

Information and Computing .e.ervice {Multics) system has been 

developed to serve as a public utility, initially for the 

M.I.T. community. The general organization of Multics was 

described in 1965 and is available to the interested reader in 

the literature [l ,6 ,7 ,8]. The basic .Multics objectives are 

controlled sharing of information among users and highly 

available computational services to meet a wide spectrum of 

user needs. The M. I. T. implementation was developed as a 

research project, but has been generally available to users in 

the M.I.T. community since October, 1969. Since that time the 

system has attracted about 700 registered users and now (May, 

1971) typically serves more than 50 users simultaneously when 

running the full equipment configuration. 

The Hultics system was implemented on the modular GE-645 

[l] computer, and the principal modules in the H.I.T. 

installation are shown in Figure 5.1. Although Multics is 

available to a wide range of users, about one-third of the 
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system resources are currently consumed by the staff engaged 

in continuing Nultics research. As a result of this 

continuing research, a major new version of the Multics 

supervisor is installed about twice a week. Since the initial 

implementation did not include dynamic reconfiguration, one 

central processing unit {CPU) and one memory module were 

dedicated to a "development system" partition for developing 

new versions of the supervisor and for maintenance. Each 

morning {ai>out 5:00 a.m.) when there are few if any users, the 

"service system" partition was shutdown and reinitialized 

the physical memory and CPU modules were rotated between the 

service and development partitions to permit maintenance to be 

done on each module while it was part of the development 

system. 

Within a few months after the initial offering of the 

Multics service, the demand during prime time exceeded the 

capacity of the one CPU and two memory service system, while 

the development system was often idle. Since in Multics all 

user files are maintained on-line in secondary storage the 

demands for secondary storage change slowly; therefore, a 

fixed partition of secondary storage between the service and 

development systems 

was clear that the CPU 

was entirely satisfactory. 

and/or memory from the 

However, it 

development 

system was needed to increase the capacity of the service 

system during part of the day, while on the other hand it was 

essential to have a development system during other portions 
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of the day. The change in configuration was needed at a time 

when there were many users logged in, and therefore it was 

totally unacceptable to shutdown u1e system and restart with a 

new configuration. Clearly a dynamic reconfiguration 

capability for CPU's and memories would be very useful. 

As part of the research reported in this thesis the 

Multics supervisor was augmented to provide an early 

engineering design for dynamic reconfiguration. First 

reconfiguration was provided for only CPU's, but since a two 

CPU and two memory configuration turned out to be "memory 

limited", the CPU reconfiguration capability was not used on a 

regular basis. However, CPU reconfiguration was occasionally 

used when the service system CPU developed intermittent 

hardware failures. To avoid shutting down the system, the 

operator adds the development CPU and removes the faulty CPU 

for repair. 

The memory reconfiguration capability was then added, 

although due to awkward but not intrinsic hardware limitations 

(as explained later) a choice was made to have one memory that 

cannot be removed. Once both CPU and memory reconfiguration 

were available, a daily schedule was established for adding 

the development CPU and memory to the service system during 

the time of peak demand (approximately 2:00 p.m. to 5:00 p.m. 

on weekdays), and whenever the development system was idle. 

All reconfiguration is initiated by a computer operator 

who is logged into the system as a normal user. Only selected 
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are, of course, administratively 

reconfiguration entry points. The 

operator types reconfiguration requests at an interactive 

terminal in the same way that any other request is made. In 

response he may receive instructions for operator actions 

(viz., manipulating switches), and ultimately he is advised 

that the requested reconfiguration is completed. Appendix I 

is a copy of the instructions currently provided the fiultics 

computer operators for performing reconfiguration. 

The Multics implementation is based on the general design 

of the previous chapters; however, since reconfiguration was 

added to an already operational system, the hardware design in 

general could not be changed, although there were a few minor 

corrections. On the other hand, the author had essentially 

complete design freedom to propose changes to the Multics 

operating system as needed for reconfiguration (within the 

limits of his ability to design, implement, ancl install these 

changes in a system used as a service facility). 

the !lultics implementation we hope to gain 

By examining 

a clearer 

understanding of how the general design can be interpreted and 

applied to a specific syste~, even when some of the desired 

(hardware) features are not available. We will relate the 

elements of the Hultics implementation to the general design 

primitives, data bases, and hardware registers introduced in 

chapters three and four. We will separately consider the 

design for each of the individual reconfiguration requests to 
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add or remove a CPU or memory module. First we will point out 

features of the GE-645 hardware used for Multics that are 

significant to reconfiguration: 

1. The memory modules are usecl to relay signals between 

processing modules. However, a memory module can relay 

(interrupt) signals to only one CPU, instead of broadcasting 

to all CPU's, under control of the system, as in our general 

model of a modular system. The single CPU that receives 

interrupts is determined by a manual "control processor" 

switch on the memory module. This means that there must be at 

least one memory module for every CPU in the configuration. 

2. Each processing module -- CPU, drum controller, and 

general I/O controller has a set of manual "base address" 

switches (instead of a program accessible "signal address 

register", as defined in chapter four), which specifies the 

absolute address of the instruction (or command) executed in 

response to an interrupt (or ch.annel connect) signal. This 

serves as the "signal address register" we defined in chapter 

four. 

3. The "port enable registers" in processing modules, 

which are used to control all intermodule communication witi1 

memory modules, are set by switches (instead of being program 

accessible, as proposed in chapter four) and cannot be changed 

while a processor is running. 

-- --------------------------------------------------
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5.1 Removing a CPU 

In the idealized design we presented, any module can be 

removed by an operator issuing a single request to the system. 

To remove a CPU in Hultics the operator must in addition 

change at least one manual switch and give at least two 

responses at his console. '£he Multics design for removing a 

processor is essentially the same as the general design 

developed in the preceding chapters, but contains the 

terminology of !lultics; this design consists of the following 

specific steps: 

1. The system locks the reconfiguration data base and 

checks the operator request for validity. 

2. The system makes the CPU unavailable for allocation by 

forcing only the idle process to run on it. 

3. For all memory modules relaying (interrupt) signals to 

the CPU, the operator changes the "control processor" switch 

so that interrupts are directed to some other CPU in the 

configuration. 

4. The reconfiguration process signals the idle process 

for the CPU being removed that it will receive no more 

interrupts. The idle process returns a signal that it is 

about to halt, and then halts the CPU. 

s. After receiving a signal of the irraninent halt, the 

operator's process destroys the idle process and associated 

data bases for the removed CPU. 
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6. The system updates the reconfiguration data base, and 

makes all memory modules inaccessible to the removed CPU. 

7. The system unlocks the reconfiguration data base and 

advises the operator that the CPU has been removed. 

The I1ultics configuration is recorded in a system-wide 

data base that implements the "module configuration table". 

This data base is used to verify the validity of the operator 

request, e.g., that tl1ere will be at least one CPU left and 

that tile CPU to ue removed is actually part of tl1e current 

configuration. This data Lase has an explicit lock that 

allows only one reconfiguration at a time. 

The current implementation of the Multics traffic 

controller [20] uses scheduling priorities in conjunction with 

the "running list" to establish the "available" CPU's. When 

the traffic controller is entered a CPU is always passed (like 

a baton in a relay race) from tl1e currently running process to 

the ready process with highest scheduling priority. A 

processor is available just as long as it can be passed to 

another (user) process. 'rl1e l1ake_unavailable primitive is 

implemented by permanently giving the idle process for the 

specified processor the highest priority; then that processor 

will only be passed to the idle process, and thus is not 

available to be allocated to otl1er user processes. 

To stop any user process currently running on the 

processor, the Unbind primitive sends a normal traffic 

controller preempt interrupt to tl1e processor. Since a 
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preempted processor is always assigned to the highest priority 

process, its idle process is run. The reconfiguration process 

executing Unbind is careful to unmask preempt interrupts, 

since the reconfiguration process may itself be running on the 

processor to be removed. Once the idle process begins to run 

on the processor being removed it will continue to run, since 

it has highest priority. 

Hext the implementation of the Unbind primitive frees the 

processor from interrupt processing. (Recall from chapter 

three that there are two types of interrupts "process 

interrupts" intended for a specific process, and "system 

interrupts" directed to the processor regardless of what 

process is running.) This implementation is made difficult by 

the hardware design which allows a memory module to relay 

interrupts to only the one processor specified by the manual 

"control processor" switch. This leads to the nultics 

implementation of the 11 signal address table 11 wi tll the 

convention that each processor module has one memory module as 

its primary source of process interrupts. (In fact, with the 

exception of the real time clock interrupts directly from the 

clock module, all interrupts to a CPU come from a single 

memory module.) Furthermore, a portion of the "signal target 

table" is implicit in the hardware design 5incc the system 

interrupts from the drum controller and general I/O controller 

are always directed to the memory module specified uy their 

respective "base address" switches -- to simplify interrupt 
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masking it is required that such a memory module be the 

primary process interrupt source for some CPU. 

For each memory module which can generate interrupts for 

the CPU to be removed, the manual control processor switch 

must i.)e redirected to another CPU; however, the hardware 

design is such that to avoid undefined (and possi.uly 

disastrous) results, interrupts must be masked from leaving 

the memory module while the control processor switch is Deing 

moved. To prevent races and lost interrupts, Multics has the 

software convention that the primary interrupt source can be 

masked only by the CPU that it interrupts. 

'l'here are two cases; in the first case, to change the 

control processor switch on 

primary interrupt source, the 

memory modules not used as the 

reconfiguration process first 

masks interrupts, then the operator is instructed to move the 

switch, and finally the system unmasks interrupts after the 

operator responds to indicate that the control processor 

switch has been moved. In the second case, to change the 

control processor switch of the primary interrupt source, the 

reconfiguration process signals the idle process to do the 

masking, and the idle process returns a signal wnen interrupts 

are masked. (For convenience, all "signalling" to and from 

idle processes is done via changes in a system wide variable.) 

'l'ne operator then moves the switch, and responds to indicate 

that the switch has been moved. If this memory module 

generates only process interrupts (viz., cannot generate 
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system interrupts), it is then unmasked 1.Jy the reconfiguration 

process. On the other hand, a memory module that generates 

system interrupts is treated as a special case, as described 

below. 

An awkward problem arises in Multics, because system 

interrupts (which includes all I/O interrupts) are redirected 

to another CPU by the very slow operator manipulated control 

processor switch, rather than by a rapid change of ti:1e 11 signal 

target table" as in the general model. For a memory module 

which relays system interrupts, :;;evere difficulties (for 

example, overflowing of I/O .iJuffers) could result from delayed 

interrupts while the operator is moving the switch. As part 

of the design to cope with this problem, llultics ignores 

"extra" interrupts, and while waiting for the operator, a 

stream of artificial, CPU-generated interrupts is sent by the 

idle process to another processor so that events signaled by 

the true, masked interrupts will not go unnoticed. After the 

operator moves the control processor switch to a remaining 

CPU, the reconfiguration process forces its idle process to 

also run by giving it high priority and sending a preempt 

interrupt (again the reconfiguration process is unmasked, 

since it may be running on the preempted processor). 'l'he idle 

process of the remaining CPU changes tile remaining CPU's 

primary interrupt source to ue the memory tnat was associated 

with the CPU being removed -- this idle process updates the 

"signal address table", unmasks the module to allow system 
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interrupts, and signals the idle process for the processor 

oeing removed that interrupts are unmasked. Then tnis idle 

process for a remaining processor restores itself to normal 

priority. Hote that forcing an idle process to change the 

interrupt source ties up a remaining processor for only a 

short time and therefore does not disrupt service to users. 

After receiving a signal that system interrupts are unmasked, 

the idle process for the processor being removed stops sending 

the artificial system interrupts. 

After all the control processor switches are moved, the 

idle process for the processor being removed is signaled. 

'l'i.1is signifies that no more interrupts will be received by the 

processor, so the idle process returns a signal tilat it is 

about to halt, and halts. Note that al tl1ough tne idle process 

is given exclusive use of its processor for a long time, this 

processor is about to be removed anyway, so this causes no 

unexpected disruption. On the other hand tne reconfiguration 

process is given no special scheduling consideration, and 

therefore in no way disrupts the other users of the system. 

After the processor is halted, the idle process is 

destroyed, and the call stack and descriptor segment for the 

process are deleted. The processor's data base (used to save 

the processor state at interrupt time) is also deleted. The 

physical processor module is made "free" by updating the 

reconfiguration data base. 'rhe GE-645 memory modules include 

program controlled port enable registers, so the system 
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disables all its links to memory modules. Finally the 

reconfiguration data base is unlocked, and the operator is 

informed that the CPU has been removed. Before using this CPU 

he must manually disable its "port enable register" for the 

service system clock module(s); otherwise, the removed CPU 

can access and stop a service system clock, because links to 

clocks cannot be disabled at the port on the clock (since the 

clock modules have no port enable registers of any sort). 

In sununary we can say that the Multics implementation for 

removing a CPU is made quite cumbersome by a hardware design 

that uses a manual switch to determine the CPU receiving 

interrupts from a memory module, and by the clock port 

organization. The Multics reconfiguration implementation 

takes advantage of the Multics convention that an idle process 

can only run on a specific processor: in order to remove a 

CPU the idle process is augmented with procedures to perform 

tasks that must be executed on a specific processor. 

5.2 Adding a CPU 

With the idealized reconfiguration design a processor can 

be added by an operator making the module "available" (using 

the "operator interface matrix", which Multics does not have), 

and a single operator request to the system. With the Multics 

implementation, processor module initialization usually 

requires moving five "address interval" switches; the 
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the CPU (see Appendix I for an example). 

With a manual switch the operator initializes the CPU in 

a halted state, since Multics does not have a program 

controlled "initialize register" (as defined in chapter four) 

that can be used to intialize a processor. Instead of a 

program controlled "signal address register", as defined in 

chapter four, each processing module (whether in the service 

or development system) has a "permanent" switch-assigned "base 

address" which the hardware design restricts to a limited 

range of absolute addresses. Since this fixed base address 

requires a specific absolute address range in every 

configuration, the "address interval registers" cannot have 

fixed values but are set (in manual switches) by the operator 

when initializing the processor. Since the hardware design 

does not allow these address interval switches to be changed 

while the CPU is running, address intervals must be assigned 

to, and ports enabled for, all memories in the installation. 

A "processor number" is by Multics convention permanently 

assigned to each physical CPU module. After completing all 

this manual initialization of the CPU, the operator responds 

to the system to indicate that the CPU is initialized. 

The system then enables "port enable registers" for the 

processor in each primary memory module of the service system 

to enable all links to the physical processor. The memory 

module selected as the primary interrupt source is masked. 

Then the operator is instructed to direct the "control 
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processor" switch to the CPU being added, and he responds when 

done. The "signal address table" is updated to reflect that 

the physical processor is now accessible for processing 

interrupts. The reconfiguration data is updated to reflect 

that the physical processor is now accessible to the system. 

The Multics implementation of the Make available 

primitive creates a processor data segment for the processor, 

and creates an idle process with its call stack and descriptor 

segment. The idle process is created with the normal (lowest) 

priority but is in a "ready" state (rather than a "running" 

state) so there will be no attempt to preempt it. Next the 

processor is forced to start executing the idle process. 

Since Multics uses segmentation, the descriptor base register 

(refer to Figure 3.4 for illustration) must be loaded with the 

absolute address of the idle process descriptor segment. 

However, in response to any interrupt, Multics executes an 

interrupt vector in "absolute mode", at an absolute address 

determined from the processor "base address". The interrupt 

vector for the reconfiguration interrupt is constructed so it 

will save the processor state, load the descriptor base 

register, then leave absolute mode, and transfer to the 

procedure for the idle processes. 

The reconfiguration interrupt is sent, and the newly 

executing idle procedure first checks for errors if the 

operator assigned the wrong processor number the processor 

halts, or if the operator directed the "control processor" 
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switch to the wrong processor the saved machine conditions are 

restored. If no error is detected, the idle process sets 

itself to the "running" state, Wlmasks the primary interrupt 

source, and sends itself a preempt interrupt so the traffic 

controller will give the processor to the highest priority 

process. Finally, the operator is informed that the processor 

has been added, and the reconfiguration data base is unlocked; 

if there is an error, part of the sequence for removing a 

processor is followed to reverse the processing already done. 

The Multics implementation to add a CPU is also made 

cumbersome by the manual "control processor" switch. In 

addition, the lack of a permanent address intervals for each 

xoomory module makes it tedious for an operator to initialize 

the CPU, and there is no practical way to initialize the port 

enable registers to reflect the configuration. However, the 

more easily made operator errors can be detected the 

operator is told of his error and can repeat his attempt to 

add a CPU. 

5.3 Removing a Memory 

The implementation to remove a memory from Multics 

approaches the ideal operator interface for the usual 

configuration the operator merely issues the request to remove 

a specific physical memory module, and the system 

automatically removes the memory and informs the operator it 
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has been done. However, the GE-645 hardware design leads to 

the restriction that in any Multics configuration there is 

always one memory module that cannot be removed. The major 

events in the sequence to remove a memory module are as 

follows: 

1. The system locks the reconfiguration data base and 

checks the operator request for validity. 

2. If this memory is used as a primary interrupt source, 

a remaining memory module assumes this role. 

3. All information in the module is either copied to 

another memory module or paged out of primary memory. 

4. The system updates the reconfiguration data to show 

that the module is not being used, and makes the memory module 

inaccessible to the system. 

5. The system unlocks the reconfiguration data base and 

advises the operator that the memory has been removed. 

After locking the reconfiguration data base, the system 

verifies that the operator request is valid -- not only must 

the memory be in the current configuration but also there must 

remain at least one memory module for each processor to act as 

its relay point for interrupts. If a memory module to be 

removed is interlaced, then all the interlaced modules are 

removed as if they were one larger module. Recall that every 

processing module has permanently set "base address" switches 

specifying the address of the instruction (or channel command) 

executed in response to an interrupt (or channel connect) 
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signal by Multics convention all base addresses are in a 

single module called the bootload memory. The "base address" 

switches can only be changed while the processing modules are 

stopped, which means service to users must be interrupted 

while an operator changes the switches on all processing 

modules. Because of this service interruption and the 

likelihood of operator errors, the choice was made not to 

implement the (less than dynamic) bootload memory removal. 

If the memory module to be removed serves as the primary 

interrupt source for some CPU, then the system selects some 

remaining memory as a replacement. If no other memory in the 

configuration directs interrupts to that CPU, then an operator 

changes a "control processor" switch using the same sequence 

as for CPU reconfiguration. Using the same techniques as when 

removing a CPU, the CPU's idle process is forced to run and 

change the "signal address table" to reflect the new primary 

interrupt source. 

The crux of memory removal is moving the information 

stored in the module. First an implementation of the 

Make unavailable primitive threads the storage blocks in the 

module out of the "available list" and onto a "removing list". 

Then an implementation of the Unbind primitive invokes the 

normal paging mechanism to "page out" (i.e., move to secondary 

storage) all the demand paged information. Unbind copies the 

wired down storage to another memory using the "trial copy" 

method -- copy, and then if modified stop all other CPU's and 
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copy again. It is noted that the Multics implementation is 

simplified by taking advantage of fact that the "bootload 

memory" module cannot be removed: the problem of moving page 

tables and the similar problem of moving unpaged information 

are avoided by placing this information in the bootload 

memory. All external input/output is done using buffers in 

the bootload memory only: this avoids the difficult 

relocation problems resulting from the fact that the general 

I/O controller uses absolute addresses rather than paging for 

all memory references. These implementation short cuts 

introduce no additional restrictions since all this stationary 

information easily fits into the boatload memory module. 

After the memory is no longer storing information for the 

system, the reconfiguration data is updated to show the module 

is not being used. Since the port enable registers in 

processor modules cannot be changed while the system is 

running, the system tries to make the memory inaccessible to 

the system by disabling the port enable register in the memory 

module being removed. Then the reconfiguration data base is 

unlocked, and the operator is advised that the memory has been 

removed. 

The hardware design of the port enable registers imposes 

some significant restrictions. Not only can a program in the 

development partition enable a removed memory to allow access 

from service system processors, but also initializing the 

development system will enable all memory module port enable 
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registers and then initialize (viz., halt) all processors on 

the enabled links; this problem results from the fact that 

the initialize signals ignore the program accessible port 

enable registers in the memory modules. Another design 

problem is that even though a port is disabled at the memory 

module, the module will still relay (interrupt) signals 

through that port as indicated by the "control processor" 

switch -- the target CPU will "hang up" trying to reference 

the inaccessible memory to determine exactly what type of 

signal was sent. To alleviate these problems, after removing 

a memory an operator must redirect the "control processor" 

switch to the development partition, and he must use manual 

switches on the memory module to disable links to the service 

system processor modules. 

In sununary, the Multics reconfiguration implementation is 

restricted in that the "boatload memory" module cannot be 

removed because of the fixed absolute address contained in the 

manual "base address" switches 

Memory removal has a convenient 

usually just types one corranand. 

of each processor module. 

operator interface he 

On the other hand, before the 

removed module can be used in another partition, the operator 

must typically set about five manual switches: this is 

because processor modules have no program accessible port 

enable registers and because the 

memory modules are not completely 

disable interrupt signals. 

port enable registers in 

effective, viz., do not 
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2.:_! Adding ~ Memory 

To initialize a primary memory module for adding to 

Multics the operator must manipulate about eleven switches 

eight port enable register switches, two initialize switches, 

and the "control processor" switch. The primary events in the 

sequence to add a memory module are: 

1. The system locks the reconfiguration data base and 

checY.s the operator request for validity. 

2. The operator initializes the memory the system 

gives detailed instructions to the operator. 

3. The system updates the reconfiguration data. 

4. The system makes the storage in the module available 

for demand paging. 

5. The system unlocks the reconfiguration data and 

informs the operator that the memory module has been added. 

With the reconfiguration data base locked, the operator 

request is checked to make certain that the memory is part of 

the installation but not already in the configuration. Again 

interlaced memory modules are treated as a single "module". 

In response to a valid request the operator is given detailed 

instructions for initializing the module (see Appendix I for 

an example). The operator manually disables all port enable 

registers (primarily so no interrupt signals can be received). 

Then he initializes the module in order to remove all pending 

interrupts and enable all program accessible port enable 
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registers. The operator directs the "control processor" 

switch to a CPU in the configuration this is safe since 

there are no interrupt signals pending. The program 

accessible (and now enabled) port enable registers are by 

manual switches allowed to control the links to all processor 

modules in the configuration since the ports in the 

processor module are always enabled for all memories, the 

physical memory module is "available" and "bound" to an 

address interval at this point. 

The reconfiguration data base is updated to reflect that 

the physical memory module is now accessible to the system. 

Then the program accessible port enable registers are enabled 

for just those processor modules in the configuration (this 

has no immediate effect since links to processor modules not 

in the configuration are still disabled by the manual switch). 

Finally an implementation of the Make available primitive 

makes the storage in the module available for demand paging by 

threading the storage blocks into the "available list". Then 

the reconfiguration data is unlocked and the operator is 

informed that the memory has been added. The operator can 

then manually change the switch that allows all links to the 

added module to be controlled by the program accessible port 

enable registers. 

The lack of program accessible port enable registers in 

processor modules (for links to memory module) results in an 

intricate operator sequence to initialize the memory module to 
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be added. In addition the operator must manually initialize 

the port enable registers in the memory module to reflect the 

configuration. 

5.5 Experience ~~Multics Implementation 

The Multics dynamic reconfiguration capability is used on 

a daily basis for the operation of the Multics system at 

M.I.T. The primary motivation is to increase the system 

capacity during hours of peak usage, and otherwise partition 

the equipment into independent "service" and "development" 

systems. Occasionally dynamic reconfiguration is also used to 

remove for repair a CPU with intermittent faults or a memory 

modules with parity errors. The author considered it a 

significant achievement that reconfiguration is always 

invisible to users of the system: regardless of what a user 

is doing he has absolutely no disruption when reconfiguration 

occurs, not even a noticeable variation in response time. 

Since dynamic reconfiguration was one of the initial 

goals of Multics, the initial operating system was designed 

with a generality that made it relatively easy to add this 

capability. Still for the implementation of dynamic 

reconfiguration, the author added to Multics more than 3000 

lines of PL/l source code and 700 lines of assembly code that 

give rise to more than 12,000 words of instructions and data. 

The scope of this programming is indicated in Appendix II 
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which lists the Multics modules modified or added for 

reconfiguration. In addition to the reconfiguration 

programming identified in Appendix II, the author expended 

substantial effort fixing previously undetected multiple 

processor software bugs in the initial Multics operating 

system. 

The Hultics implementation was developed for hardware not 

designed with dynamic reconfiguration as a primary goal. 

However, useful dynamic reconfiguration is still possible, 

because the hardware was designed for operation with a wide 

variety of configurations. Although no changes in the basic 

design were made, the reconfiguration development stimulated 

corrections to minor hardware design errors that prevented 

operation with more than two memory modules and a design error 

that allowed system initialization signals thru disabled 

ports. 

The limitations of the hardware design have two 

significant results: there is always one memory module in the 

configuration that cannot be removed, and there are numerous 

opportunities for an operator to make fatal errors when 

manipulating manual switches. A fatal error currently 

interrupts service to users for approximately 20 minutes while 

a "salvager" makes secondary storage self-consistent and while 

the system is reinitialized. In an effort to reduce operator 

errors, detailed instructions have been prepared (Appendix I), 

sUminary checklists are provided the operators, system 
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programmers provide training, the system prints explicit 

operator instructions for each reconfiguration request, and 

the system asks the operator for his personal initials in 

order to encourage a sense of responsibility. The current 

experience at M.I.T. is that an operator makes a fatal error 

in about one of every 100 reconfiguration requests, that is, 

about twice a month, but the need for operator accuracy is 

very high. 

The basic architecture of the GE-645 is maintained in the 

newly announced and upward compatible Honeywell 6000 series 

computers Appendix III is an analysis of the deficiencies 

of this architecture and Appendix IV is a case study of how 

this architecture could be improved to provide a complete and 

convenient dynamic reconfiguration capability for Multics. 
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CHAPTER SIX 

CONCLUSIONS 

We have developed an orderly design approach for 

dynamically changing the configuration of constituent physical 

units in a modular computer system. This design allows the 

modules in an installation to be partitioned into separate, 

noninterfering partition-systems in order to permit preventive 

maintenance, allow development of new operating systems, and 

change system capacity in response to fluctuations in the 

computational load. This design included the operating system 

primitives and hardware architecture to allow any primary or 

secondary storage module and any processing module to be added 

and removed while the system is running. We have considered 

reconfiguration as externally initiated by a human operator 

and accomplished automatically without disruption to any users 

of the system. 

This thesis has developed reconfiguration as basically an 

extension of resource management. To make the reconfiguration 

operations clear, we have introduced three distinct views of 

resources: 

1. Physical resources represent the actual hardware 

devices. 

2. Logical resources represent the abstract processing 
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and memory capacity derived from the hardware devices. 

3. Virtual resources represent the apparent processing 

and memory capacity of a process; virtual resources thus 

represent demands for logical resources. 

This thesis uses the concept of binding to model the 

functions that manage a system's resources. 

hardware capabilities being applied 

represented by physical resources bound to 

With this model, 

to a process are 

logical resources 

which are in turn bound to virtual resources of the process. 

The problem of removing physical resources from the 

configuration concerns the reversibility of binding, and 

adding physical resources to the configuration is an example 

of delayed binding. This reconfiguration model is developed 

in terms of a modular structure with an interconnection of 

processing and storage modules, such as is common in large 

contemporary computer systems. 

6.1 Implications 

Reconfiguration is viewed as changes in binding. From 

this model ground rules which permit reconfiguration have been 

identified, and we will now review their major implications. 

The basic ground rules are summarized below: 

l. Each physical module must be interchangeable with any 

other similar module. 

2. A human operator must select the particular modules 
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available for use by a system. 

3. The system must be able to automatically change the 

configuration (viz., binding to logical resources) of its 

physical modules. 

4. The system must be able to dynamically change the set 

of logical resources it is using. 

These rules are intended to provide a basis for the 

orderly design of future systems that require dynamic 

reconfiguration: these 

architecture, operating 

system. The usefulness 

rules 

system, 

of these 

influence the hardware 

and operation of a computer 

rules has already been 

demonstrated by using them to provide a practical dynamic 

reconfiguration capability for the Multics system at M.I.T., 

where reconfiguration has had a significant impact on the 

daily operation of the computer installation. 

6.1.1 Module Interchangeability 

To be effective, dynamic reconfiguration must be equally 

applicable to all individual modules of a given type (e.g., 

all central processing units). This implies that the hardware 

design avoids any implicit or explicit relationship between 

individual modules (for example, a processor module must not 

require the use of some specific memory module). That is, the 

hardware design allows each module to be used interchangeably 

with any other module of the same type. 
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6.1.2 Operator Participation 

The dynamic nature of reconfiguration implies that 

operator participation in reconfiguration operations should be 

limited. This implication is primarily motivated by the need 

for reconfiguration operations to be reliably performed: 

program controlled operations require human perfection only 

once (when the reconfiguration program is implemented), but 

operator controlled operations require perfection for every 

reconfiguration. Still, having coexistent, independent 

partition-systems within a single installation implies that an 

operator must intervene to specify the modules to be included 

in each partition-system. This is a simple selection 

operation (completely decoupled from the complex operations 

that control the configuration of the modules), and it should 

be implemented with a simple human interface. 

6.1.3 Automatic Configuration Control 

Although nearly all contemporary computer systems 

manually determine the configuration of modules (for example, 

tl1e assignment of addresses to memory modules), dynamic 

reconfiguration implies that the configuration should be 

controlled automatically. There are two techniques that can 

be used: a particular configuration control mechanism either 

has a permanently assigned value or else is under the explicit 

(program) control of the operating system. 
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6.1.4 Resource Utilization 

Dynamic reconfiguration implies that the system must be 

able to change the (logical) resources it is using to meet any 

(virtual) resource demands. The operations that make those 

changes require the speed and accuracy of a computer program 

in particular, the operation must be fast enough that the 

system can still meet its response time constraints, and thus 

can be considered to be "continuously operating". 

For processing modules, the primary implications are that 

no particular processor must be indispensable to the continued 

progress of any process, and it must be possible to "preempt" 

the execution of any specific processor. 

For storage modules, the primary implication is that it 

must be possible to relocate any information, including such 

things as the "resident supervisor". The intrinsic problem is 

being able to locate and update all absolute addresses: by 

using the hardware mechanisms of paging, the relocation 

operations are basically independent of the information being 

relocated. An obvious corollary of this implication is that 

the system must in no way require the use of any fixed 

absolute address. 
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6.2 Additional Research 

The research reported in this thesis provides a basis for 

additional investigation in three areas spontaneously 

initiated reconfiguration, reconfiguration of modules involved 

in external input/output, and reconfiguration of very large 

capacity secondary storage modules. 

As computer systems try to approach the goal of 

continuous availability, one obvious approach is spontaneous 

error detection and error recovery. A dynamic reconfiguration 

capability for replacing faulty hardware modules is an 

essential element of such ultra-reliable computation 

capabilities. One approach indicated by our general model is 

to consider all the modules of the installation as part of one 

"super system" and have this "super system" spontaneously 

perform the (manual) functions of the operator interface 

matrix (of chapter four). The reconfiguration design is 

complicated by the need to interface with 

retry the failed operation, attempt to 

portions of the computation, and identify the 

procedures which 

salvage damaged 

source of the 

errors. Automatic error recovery, of course, introduces the 

additional problem that errors may be present in the system 

performing the reconfiguration. 

External input/output, including such synchronous 

applications as real time processing, does not directly fit 

into our generally asynchronous model. One difficulty is that 
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during processor reconfiguration we must "preempt" the 

processor to stop the execution of the currently running 

process; however, it is not in general acceptable to stop the 

I/O channel running an external "I/O process". What seems to 

be needed is a way to move the "I/O process" from one channel 

to another without any interruption. In terms of our binding 

model, external I/O seems to imply that the virtual channel 

resource must always have a valid binding to some logical 

channel. The problem is somewhat analogous to the problem of 

"wired" information which must always have a valid binding to 

some (logical) storage resource. 

Although our reconfiguration ground rules apply equally 

well to primary and secondary storage, very large modules are 

somewhat intractable. Our approach to removing a storage 

module is basically to copy the stored information to a new 

location. However, with a very large capacity module, such a 

copy operation requires a large amount of processing. 

Additional research might consider such alternatives as 

maintaining duplicate copies of information, providing direct 

transfer of data from one secondary storage module to another 

secondary storage module, or using a movable storage medium 

(e.g., moving a "disk pack." from one drive to another). 
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6.3 Remarks 

We have seen that it is possible to, in an orderly 

fashion, design a modular computer system with the ability to 

dynamically change the configuration of constituent modules. 

One final point is emphasized: although the system designer 

can (by careful attention to the ground rules given in this 

thesis) provide dynamic reconfiguration, he can also (by 

ignoring these ground rules) make it difficult, if not 

impossible, to later include dynamic reconfiguration as part 

of the operating system. Hopefully the reconfiguration ground 

rules developed in this thesis are a significant contribution 

towards a systematic engineering approach for building a large 

computer system for use as a computer utility. 
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APPEIWIX I 

MULTICS OPERATOR INSTRUCTIONS 

'l'his appendix is a copy of the dynamic reconfiguration 

instructions available to the Multics computer operators. 

'i'hese instructions refer to "HBOS configuration cards": this 

is a reference to a set of operator supplied punched cards 

specifying the initial hardware configuration. These cards 

are interpreted by the Multics Bootload Operating System 

(MBOS), and during system intitialization HBOS places in core 

memory a copy of the configuration information for use uy 

Hultics itself. 
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Distribution 

Roger R. Schell 

October 23, 1970 

Use of Dynamic Reconfiguration in Multics 

now has a full capability for dynamic 

reconfiguration of processors and memories. This will make it 

possible for operations to add or remove any processor and any 

memory except the bootload (i.e., the low order) memory while 

the system is running. 

one processor, and 

'l'here must, of course, be a minimum of 

one 

reconfiguration commands 

memory for each processor. 'l'he 

can be issued from the initializer 

console or any daemon process at Multics command level (or in 

11 admin 11 mode) • 

2. The following is a sample console output for adding a 

processor (underlined portions are typed by the operator): 
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addcpu b 5 

Check that the following has been done (if not, do it in the 
following order): 

cpu b must be initialized (depress INITIALIZE switch on 
processor) 

All memories: PORT ENABLE (port 5) set to MASK 
cpu b must have the following switch setting: 

clock a: Port Block 5 Interlace OFF 
memory c: Port Block O Interlace ON 
memory d: Port Block l Interlace ON 
memory e: Port Block 2 Interlace OFF 
CPU NO: 2 

Have all the above been done?(yes/no and initials): yes rrs 

You will change CONTROL PROCESSOR switch on memory d to port 
(cpu b). 

5 

Wait until instructed to change it. Are you ready? (yes/no): 
yes 
Change switch now. Type 'yes' when done: yes 

cpu b is now running. 

--------------------------------

The arguments to the addcpu command are the processor name 

(e.g., 11 b 11
) and the processor port (e.g. , 11 5 11

) as on the MBOS 

configuration card. An additional argument can optionally be 

provided to specify that a particular memory controller (e.g., 

"b 11
) is to be given the added CPU as its "control processor". 

Be certain that when the new CPU is being readied, the various 

switches are set in the order listed: check very carefully, 

as wrong switches can crash the system. 
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3. The command for removing a processor is of the form 

delcpu b. The sequence of instructions (as for adding a CPU) 

for changing the control processor switch will be given for 

each controller assigned to the CPU being removed. 

4. The following is a sample console output for adding a 

memory: 

addmem e 

Perform the following (in the order given) on memory 
controller e. 

PORT ENABLE set to OFF for all ports. 
Initialize controller at its maintenance panel. 
Change CONTROL PROCESSOR switch to port 4 (cpu a). 
PORT ENABLE set to MASK for ports O, 3 and 4. 

Have all the above been done?(yes/no and initials): yes rrs 

You have added memory controller e. 

'i'he argument to the addmem command is the memory name (e.g. , 

c) as on the l1BOS configuration card. An additional argument 

can optionally be provided to specify a particular cpu (e.g., 

a) as the control processor for the memory being added. Be 

certain that when the new memory is being readied, the various 

switches are set in the order listed. In order to initialize 

the controller at its maintenance panel, the controller must 
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be in the test mode using the test switch. While in the test 

mode, press the initialize button. Then set the controller 

from the test mode to the operate mode. 

5. The corrunand for removing a memory is of the form delmem e. 

If this is the only memory whose control processor switch is 

directed to some processor, then the operator will be given 

the sequence of instructions (as for adding a processor) for 

changing the c'ontrol processor switch on some other memory to 

this processor. 

6. When the reconfiguration commands request the operator to 

give a "yes/no" answer, then any answer other than yes will 

properly terminate the reconfiguration. When the operator is 

asked for a "yes" answer, he must do as directed and answer 

"yes" or risk crashing the system. If the error message 

"program error--notify programmer" ever occurs, DO NOT try to 

use ANY reconfiguration command again until cleared by a 

programmer, or until ~~e next bootload of the system. 

7. Note that when the configuration is changed dynamically, 

the MBOS cards for processors and memories may no longer 

reflect the true configuration. Therefore, before the next 

bootload or salvage, the hardware configuration and the HBOS 

configuration deck must be made consistent with each other. 

8. Only memories that are defined by MBOS cards at bootload 

time can be added. The configuration card for a memory has a 
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9. The PORT ENABLE switches for all memory controllers 

running on the service system should be set in the "MASK", 

i.e., "IN LINE", position for all ports at all times. For the 

development system, all ports should be "ON" or "OFF" to 

reflect the running configuration. Note that after adding a 

memory, unused ports are left in the "OFF" position. 'I'he 

operator has the option of either leaving them "OFF" or 

putting them in the "MASK" position after the adding of the 

memory is completed. 

10. When moving the processor and memory from the development 

to the service system, the changing of switches by the 

operator can be minimized by using the following sequence. If 

the development system has a processor P with port X and a 

memory M, then to move these to the service system give the 

following commands in this order: 

addmem M 
addcpu P X M 

When removing a processor and memory from the service system 

to form a development system, changing of switches is 

minimized by removing the non-bootload processor and the high 

order memory using the following commands in this order: 

delcpu P 
delmem M 
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APPENDIX II 

SUMMARY OF MUL'£ICS SUPERVISOR CHAUGES 
FOR RECONFIGURATION 

Name Language Reason For Addition or Change 

add_memory PL/I 

bootstrap! alm(l) 

bootstrap2 alm 

cl dcm PL/I 

emergency_shutdown alm 

fault init alm 

f reecore PL/I 

hphcs_ alm 

{T) 

Set up memory controller for 
interrupts and interrupt masks 

Determine initial configuration 

Save hardware provided data 

Make call to keep I/O buffers at 
fixed absolute address 

Remove multiple-cpu conflict 

Provide for multiple-cpu clear 
associative memory 

Primitive to add core to 
pool for paging 

Highly priviledged gate for 
reconfiguration conunands 

11 alm 11 is the assembly language for Multics. 

Number of Lines 
(changed or added) 
Source Object 

100 460 

10 10 

2 2 ...... 
~ 
0 

4 40 

4 4 

8 8 

50 245 

9 9 



ii 

init_processor 

init sst 

initialize faults 

make f v code 

make sdw 

master mode init 

master mode ut 

master_pxss_page 

mini _gim _ ini t 

page 

pc 

pc_abs 

alm 

alm 

PL/I 

PL/I 

alm 

PL/I 

alm 

alm 

alm 

PL/I 

alm 

PL/I 

PL/I 

System stop/restart for 
multiple processors 

Start execution of a halted 
processor 

Initialize a map of core usage 

Set up fault and interrupt 
vector for reconfiguration 

Create code for loading DBR of 
stopped cpu 

Set up processor data base so that 
processor can be removed 

Experiment to determine if memory 
controllers are interlaced 

Clear associative memory1 
move wired-down pages 

Recognize multiple cpu error condition 

Provide for error messages for 
wrong configurations 

Add primitives for using absolute 
core address 

Prevent use of pages being removed 

Primitive to remove pages from 
paging pool 

130 

260 

60 

200 

20 

5 

40 

120 

10 

1 

40 

10 

530 

130 

260 

180 

925 

20 

25 

40 

120 

10 

10 

40 

60 

1680 

I-' 
-.J 
...... 



pc_wired 

prds 

prds_init 

pxss 

reconf ig 

reconfigure 

seas init 

scs 

scs init 

shutdown 

signal_O 

start_cpu 

stop_cpu 

sys err 

system_control_ 

PL/I 

alm 

PL/I 

alm 

PL/I 

PL/I 

PL/I 

alm 

PL/I 

PL/I 

PL/I 

PL/I 

PL/I 

PL/I 

PL/I 

Primitive to wire down pages 

Per processor reconfiguration 
data 

Set up per processor 
reconfiguration data 

Create idle process for processor 
to be added 

Maintain reconfiguration data base 

Commands for reconfiguration 

Initialize reconfiguration data 
for memory 

Reconfiguration data base 

Set up reconfiguration data 

Allow varying number of processors 

Allow varying number of processors 

Set up traffic controller data for 
new processor 

Clean up traffic controller data for 
removed processor 

Allow error message for wrong 
configuration 

Provide command for operator 

50 

5 

5 

20 

940 

620 

175 

50 

50 

3 

3 

200 

180 

4 

15 

150 

5 

35 

20 

2488 

2185 

954 

50 

250 

20 

15 

810 

650 

20 

40 

..... 
-...J 

"" 



system_meter alm Allow varying number of processors 5 5 

tc init PL/I Allow varying number of processors 4 20 

update_sstyll PL/I Update map of core usage 20 100 

wire_proc PL/I Primitive to temporarily wire down 150 600 
reconfiguration procedures 

wired f im alm Stop processor while updating 15 15 
address for moved wired page 

SUMMARY OF CHANGES ANLJ ADDI'l'IONS 

...... 

...... 
w 

alm PL/I Total 

Number of modules modified 16 16 32 

Number of new modules added l 8 9 

Total lines of source changed or added 748 3379 4127 

Total lines of object changed or added 748 11962 12710 

Total lines of object in Multics supervisor 9000 171000 180000 
before reconfiguration added (approximate) 
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APPENDIX III 

ANALYSIS 01'., CURRENT HULTICS HARDWARE FOR REC.:OHFIGURA'l'ION 

INTRODUCTION 

The discussion of the Multics reconfiguration 

capabilities in chapter five pointed out a number of problems 

resulting from the hardware design. This appendix points out 

the features of our general design approach not included in 

the current Multics hardware, and shows how these omissions 

lead to the observed operational restrictions. 

'rhe primary hardware design ground rules presented in the 

body of this thesis are sununarized below: 

1. Processing modules require relocation hardware so 

that the operating system can locate and update all absolute 

storage addresses during reconfiguration. 

2. The intermodule connection network is required to 

treat modules of like type homogeneously. 

3. It should be convenient to permit an operator to 

partition the modules into independent partition-systems. 

4. The operating system should be able to automatically 

(viz., without operator intervention) control the 

configuration of its hardware modules. 

Since these ground rules are really design constraints on 

basic system capabilities, we can readily make a comparison 

between these features and the existing Multics design. We 
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will now separately consider each of these four design areas. 

STORAGE RELOCATION HARDWARE 

Storage reconfiguration primitives of chapter three require 

that only selected supervisor routines explicitly use absolute 

addresses for storage references; all other programs use only 

relocatable virtual addresses. The system must be able to 

dynamically update any absolute addresses it doos use. 

Multics comes very close to the desired design in that a 

(primary or secondary) storage absolute address is never 

explicitly used, except 

central processing unit 

drum controller all have 

by the 

(CPU) , 

a "base 

supervisor. However, the 

general I/O controller, and 

address" set by manual 

switches: this "base address 11 implements the concept of a 

"signal address register" introduced in chapter four. The 

problem is that the system cannot update this (switch 

controlled) absolute address, except by stopping the system 

and having an operator change the switches. The operational 

effect is that any memory module containing one of these "base 

addresses" cannot be dynamically removed. 

In addition the Multics I/O controllers have no general 

relocation mechanism, but rather directly use absolute 

addresses for all memory references. However, since only the 

supervisor does I/O, it is possible (although not included in 

the current Multics) to locate and update all absolute 



-- - ~-- --~--~ 
- -- -----~--

176 

addresses; any relocation design must essentially make a 

special case for each place where an absolute address may be 

used. The practical result is that an unduly complex design 

would be needed in order to relocate primary storage used for 

I/O. 

UNIFORM INTERMODULE COMMUNICATION 

A basic ground rule in our reconfiguration design (as 

introduced in chapter two) is that the hardware allows each 

module of a given type (e.g., each CPU) to be used 

interchangeably with any other module of that type. This rule 

means that the hardware must permit the same types of signals 

over all links from a module to a given type of module; the 

operating system will determine which signals are actually 

used. 

The Multics hardware generally provides a uniform 

treatment of similar modules, with one notable exception. Of 

all the links from a memory module to CPU's, only one link can 

be used for relaying interrupt signals to a CPU. This 

"control processor" is specified by a manual switch. To 

change the CPU receiving interrupts, all interrupts from the 

memory must be stopped while an operator moves the switch. 

The operational result is that, when adding and removing CPU's 

or memories, the 

processor" switch to 

operator must frequently move the "control 

make certain that every CPU is the 
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"control processor" for at least one memory module. l'Jot only 

is there opportunity for operator error, but also the related 

design is complicated by such things as artificially 

generating interrupts in place of those interrupts stopped 

while the switch is moved. 

An additional communications network deficiency is that 

the current clock module (treated by Multics as a special 

"memory" module) can only have interface links to a maximum of 

two CPU's, although a Multics installation could include up to 

about five CPU's• l'he operational 

CPU's 

impact 

must 

is that 

restrict 

any 

the installation with more than two 

possible CPU/clock combinations. 

the number of clocks required 

These restrictions increase 

and reduce the system 

availability. 

Finally, the "base address" of each processing module is 

restricted to addresses less than 256K words (viz., an 18 bit 

address), although the system in general uses 24 bit absolute 

addresses. Operationally this means that every configuration 

must include a memory module with absolute addresses in the 

range 0-256K words. 

OPERATOR SELECTION OF CONSTITUENT MODULES 

Totally independent 

installation is a major 

partition-systems are truly 

partition-systems within one 

goal of reconfiguration. If such 

independent, an operator must 
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intervene to add or remove a module from a partition-system. 

Chapter four introduced the concept of an "operator interface 

matrix" to emphasize that this simple operator selection is a 

function distinct from the much more complex operations needed 

to control the configuration of the modules in a 

partition-system. 

The Multics hardware has no explicit mechanism to 

implement the operator's selection functions provided by the 

operator interface matrix. Rather, tne partitioning of 

modules is merely implicit in various manual configurations 

control mechanisms. These mechanisms require tedious and 

precise operator switch manipulations in order for an operator 

to assign a module to a different partition-system. The 

primary operational result is frequent operator errors. 

Errors that are made usually result in a major interruption of 

service, since the operator must manipulate switches on 

modules being actively used by the partition-system. 

AUTOMATIC CONFIGURATION CON'l'ROL 

A crucial hardware feature for dynamic reconfiguration is 

that only the system (not an operator) controls the mechanisms 

that determine configuration of the modules assigned to a 

system. With this automatic control, configuration changes 

are made accurately and rapidly: to be automatic, 

configuration control mechanisms must either be permanently 
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set, or else program accessible. In chapter four we 

explicitly identified the configuration control features 

needed for a modular computer system. These are listed below: 

1. "Port enable registers" in every module. 

2. "Initialize registers" in every module. 

3. "Address interval registers" in processing modules. 

4. "Processor number registers" in processing modules. 

s. "Signal address registers" in processing modules. 

We ·will now evaluate how the Hul tics hardware implements 

each of these configuration control functions. 

Port Enable Registers 

Port enable registers are needed to control all 

intermodule communication, except tl1at required for accessing 

the configuration control mechanisms themselves. In Multics a 

module's port enable features are primarily under the control 

of manual switches which must be changed by an operator 

whenever a module is added to or removed from a system. This 

aspect of the current Multics design has the greatest adverse 

impact on system operation. Listed below are some of the more 

significant operational problems that have actually been 

experienced: 

1. The clock module of the current Multics hardware has 

no mechanism for disabling a link to a processor; therefore, 

references to the clock by a processor not in the 

configuration can stop the clock, and without a working clock 
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inconvenience, and errors can lead to adding a "dangerous" 

module (e.g., 

interrupts). 

a memory module with pending undefined 

Address Interval Registers 

Address interval registers are needed in processing 

modules, in order to assign address ranges to memory modules. 

Hultics uses manual, multiple-position switches (awkwardly 

located behind closed panels) to control address assignment. 

For some positions the switch cannot be moved without 

momentarily "crossing" the address range assigned to another 

memory: this momentary assignment of the same address range 

to two different memory module leads to undefined behavior. 

The impact is that before starting the system the operator 

must carefully (at each processing module) assign addresses to 

all the memories that might ever be dynamically added. 

Processor Number Registers 

A processor number register is used to uniquely identify 

each physical processor. In a Multics CPU this is implemented 

as a manual switch (behind a closed panel), and I/O channels 

have channel numbers assigned by pluggable circuit boards. 

Since Hultics uses a processor number as a serial number, this 

implementation creates little difficulty, because it is seldom 

changed. However, one problem is that test and diagnostic 

programs require specific CPU and channel numbers, and a 
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maintenance technician may leave the same number assigned to 

more than one CPU or leave an invalid channel number. 

Signal Address Register 

A signal address register is needed to specify the 

location of the instructions executed when a processor 

receives signals from other processors. Multics implements 

this function with manual "~ase address" switches. The 

inability to automatically change this address restricts 

memory reconfiguration, as already discussed above in the 

"Storage Relocation Hardware" section. 

CONCLUSIONS 

The current Multics hardware design not only limits the 

reconfiguration capability, but also introduces many 

opportunities for serious operator errors. 'l'he primary cause 

of these problems is the use of manual switcnes to perform 

functions requiring the speed and accuracy of program 

accessible registers. Although many of the problems of 

operator errors are present when starting a system on a static 

configuration, the impact of a few minutes delay while 

repeating an unsuccessful attempt to start the system is 

dramatically less than the impact of "crashing" the system 

during dynamic reconfiguration while 50 users are in the midst 

of interactive sessions. 
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APPENDIX IV 

MULTICS HARDWARE DESIGN PROPOSAL FOR RECONFIGURATION 

INTRODUCTION 

The body of this thesis provides general ground rules for 

designing hardware and operating systems in order to provide 

dynamic reconfiguration. These ground rules have been applied 

to the Multics operating system (as described in chapter five) 

to implement a dynamic reconfiguration capability. However, 

the current hardware design limits this initial 

reconfiguration implementation, as discussed in Appendix III. 

Since major hardware changes were not permitted as part of the 

initial reconfiguration implementation, this appendix is 

included to propose a hardware design that would allow an 

unrestricted dynamic reconfiguration capability. 

This appendix will concentrate on the features essential 

to reconfiguration, although a few "nice to have" improvements 

are also noted. It is noted in passing that Project .MAC at 

M.I.T. is currently considering a "follow-on" Multics 

implementation on an upward compatible Honeywell 6000 series 

computer in 

technology. 

order to benefit 

Cases where this 

already includes adequate 

problems will be pointed out. 

from more advanced circuit 

proposed "follow-on" design 

solutions to reconfiguration 

As noted in Appendix III, there are four major hardware 
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3. The current address assignment switches in processing 

modules are replaced by "address interval registers". For any 

link with the port disabled, the address assigned is 

immaterial--for example, the same address may be assigned to 

IOOre than one memory module as long as only one memory has an 

enabled link. 

4. The current CPU number switch and channel number plug 

boards are replaced by "processor number registers". 

(Permanently assigned manual settings would be an equally 

satisfactory alternate design approach.) 

s. The current base address switches of each processing 

module are replaced by "signal address registers". The signal 

address register specifies a full 24 bit address: any 

operations (such as the CPU "absolute mode") restricted to 18 

bit addresses will append the high-order 6 bits of the signal 

address register to all absolute addresses generated. 

The above configuration control registers are normally 

only set and read by a special "configuration channel" 

contained in each 

"maintenance mode" 

switch-controlled). 

general I/O controller (although a 

may allow the registers to be 

Each module is individually accessed by 

this configuration channel, and difficulties (e.g. power not 

on) are reflected in the status returned by the channel. 

The current bootstrap channel in the general I/O 

controller is modified to use the configuration control 

registers during system initialization, as described in 
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chapter four. The configuration channel is used to perform 

the functions of the current "system initialization signals". 

OPERATOR SELECTION OF CONSTITUENT MODULES 

To prevent one independent partition-system's 

configuration channel from interfering with another 

partition-system, 

in chapter four) 

an 

is 

"operator interface matrix" (as defined 

used to control which configuration 

control registers eaci1 partition-system can set. If a 

configuration channel attempts to set registers in another 

partition-system, a distinctive status is returned so that the 

operating system knows that no registers were actually set. 

The configuration channel can also read ti1e operator interface 

matrix information for each module. Each general I/O 

controller module has a "send register" in the matrix itself, 

which can of course be set (as described in chapter four) to 

control which configuration channels a partition-system can 

use. 

It would be convenient if the operator interface matrix 

were part of a general purpose operator's console that 

included an interactive terminal (one for each potential 

partition-system) for issuing reconfiguration requests and 

other partition-system control requests. To minimize down 

time, there should be two copies of the operator interface 

matrix, each with a simple on/off-line switch for specifying 
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the matrix to be used -- changing from one matrix to the other 

should not disrupt any partition-system (it should be quite 

easy to avoid disruption, since the operator interface matrix 

affects the operation of a partition-system only during 

reconfiguration and initialization). 

matrix were itself included as just 

operator interface matrices. 

It would be nice if each 

another module on the 

For each matrix, the 

configuration channel would then be able to read the setting 

of the on/off-line switch and all other operator switches -- a 

partition-system could then guide and monitor an operator's 

actions, for example when changing the on-line matrix. 

Errors using the operator interface matrix can usually be 

detected before harm results; however, a convenient safeguard 

is an alarm (and manual "override" for ignoring the alarm) 

when attempting to make unavailable a module currently being 

"used" by a system-partition. To implement such an alarm, 

program accessible registers are included in the matrix, so 

that a partition-system can indicate which modules it is 

using. 

A primary emphasis in designing the operator interface 

matrix should be making it convenient for the operator, since 

this is the only place where the operator manipulates switches 

during reconfiguration. 
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UNIFORM INTERMODULE COMMUNICATION 

The currently contemplated Multics follow-on hardware 

design solves the remaining problems related to uniform 

treatment of similar modules. Clock modules interface with 

all CPU's in the installation. Furthermore, a memory module 

can send interrupts to any of its interfacing CPU's. The 

system can control the interrupts by using a separated mask 

for each CPU. 

STORAGE RELOCATION HARDWARE 

The troublesome "base address" switches should be 

replaced with a register, as discussed above. However, 

although not essential to reconfiguration, it is proposed, for 

design simplicity, that a CPU have no "absolute mode" of 

operation. By reserving a fixed segment number for the fault 

vector, the Descriptor Base Register (DBR) serves as the "base 

address" for the processor. This implies of course, that the 

configuration channel can read and set the DBR. 

Finally, we note that the memory reconfiguration design 

is made complex if I/O channels explicitly use absolute 

addresses. It would be nice if I/O modules used an appending 

mechanism (viz., segmentation and paging with "used" and 

"modified" bits) for all control and data references. For 

example, one approach is to have t.."le base address register 

become a Descriptor Base Register, and have the "mailbox" of 
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the current Multics design become a Descriptor Segment with 

fixed segment numbers for the control and data references for 

each channel. Since absolute addresses would not be used 

directly, information could easily be relocated using the same 

techniques Multics uses for CPU information. If copies of 

absolute addresses are (for efficiency) maintained internally 

by a channel, then there must be a controlled way to clear 

these addresses (just as for the associative memory of a CPU) 

during reconfiguration. 

CONCLUSION 

The Multics hardware can support a substantially improved 

reconfiguration capability if the configuration control 

mechanism are manipulated by program rather than by an 

operator: such a design has been proposed. 

essentially eliminate system failures 

reconfiguration. 

This design would 

attributable to 
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