

Tius blank page was inserted to preserve pagination.

MAC TR-100

FURTHER RESULTS ON HIERARCHIES OF CANONIC SYSTEMS

ROBERT MANDL

MAY 1972

This research was supported by the

Advanced Research Projects Agency of

the Department of Defense under ARPA

Order No. 433, and was monitored by

ONR under Contract No. N00014-70-A-0362-0001

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

CAMBRIDGE . MASSACHUSETTS 02139

ABSTRACT

This thesis outlines a new way of presenting the theory of canonic
systems, including a distinction (for wethodic reasons) between simple
canonic systems and general canonic systems, and proves a series of re-
sults on hierarchies of canonic systems. “After a brief sumnary of Doyle's
results on a partisl hierarchy of canonic systems, a new hiersrchy is
developed (Chapter II) which relstes the general canonic systems not only
to all 4 types of formal grammars defined by Chomsky but also to eny cless
of formel grammars definable in terms of productions. It is also shown
(Chapter III) that all attempts to define a mathematical system which ex-
actly corresponds to the recursive sets are necegsarily fruitless.
Doyle's work on how to define '"noncontracting canonic systems with predi-
cates of degree 2" (NCST) is continued, arriving at a workable definition
which permits us to prove [NCST] = [Type 1] (Chepter IV), a conjecture
put forth at the IIId Princeton Conference on Information Sciences and
Systems. This results transforms Doyle's hierarchy from "the union of
two half-hierarchies and a dangling term (the NCST)" into a complete hi-
erarchy of canonic systems (all 4 types represented). However, this hi-
erarchy is heterogenoug: canonic systems corresponding to grammars of
types 3 and 2 use only predicates of degree 1, while canonic systems cor-
responding to grammars of types 1 and O use also predicates of degree 2;
moreover, for all types of grammars except for context-sensitive grammars
the canonic systems turned out to be simple. Schematically, the fomm
of this hierarchy may be summarized as ‘

o R S A B

S1 S1 ‘G2 82 (for types 3, 2, 1, 0) .
We first show (Chapter V) how to get a hierarchy of simple canonic systems
S1 S1 82 82 >

'uaing as base Doyle's hierarchy, and then transform it into

S1 s1 S2 S§1
Since this hierarchy does not seem to lend itself to further "homogeni—
zation', we shell use the hierarchy of Chapter II to obtain & hiererchy
of simple canonic systems with predicetes of degree 1:

S1 Ss1 s1 si
Several new classes of canonic systems (non-crossreferencing, non-insert-
ing, and pure canonic systems) are introduced in Chapter VI, where their
properties are explored, and a classification schema and several hiersr-
chies are developed.

T e N R T T R ST S T e S e R AR AR

ACKNOWLEDG,

I wish to take this opportunity to express my thanks to
Prof. John Donovan, who took the time from a busy schedule to
supervige this thesis and whose initfal work on canonic systems
provided the motivation for this research. -

I should like to express my apprechtibn to Amitava Bagch:l,
who contributed significantly to the syccessful completion of

this thesis by critically reading severasl successive versions of

my work on canonic systems,

I wish to thank Prof, Malcolm Jones for helping me find
the right set of gosl priorities during s very busy summer,

Finally, I am grateful to Praject MAC, which provided the
facilities and support for this thesis and a stimulating envi-
rorment for formal research. Particular thanks go to several:
individuals at Project MAC, e:pnaiauy to Jogeph Hsggerty,
Norman Kohn, and Hoo-min Toong, for their {nterest and comments
during meny discussions on the thesis subject.

Cambridge, Massachusetts Robert Mandl
August 1969 ' '

e R s A T T RR R T T

O

TABLE OF CONTENTS

Page
ABSTM@ .l..'llI.l.‘."..’.ll'..lll...'.l!.l....O.l’.l'.l'..".!'ll.2

ACKNOWLEmm l.'l‘.‘ll.lt..ll..lll'.ltitol.‘ll'.lilolottl'll-li;fnl 3

Chapter I : Simplé and general canonic systems ;.....;............. 5
Chapter II : A hierarchy of general Capdnic systems 23
Chapter III : Subrecursive classes of canonic systgﬁs seesereorsaces 35
Cﬁapter IV Canonic.ayatems for contcst-tcnsitivellets~........... 39
. Chapter V : Further hierarchies of canonic SYBtems ...ecci00000004 55

Chapter VI : Non-crossreferencing, simple, and non-inserting cenonic
~ systems. Classification of canonic systems 64

REFERENCESO'.ll..llll..l'.‘ll..'..‘...0‘.'ll'lll".“.'l.'.!'.ll.80
LISTOFDEFMTIONS -oouaan-n--cn'--.'ooclllchoc'tnancouuolnooololaoc 82
LISTOFTmm ’ll.“l.l.l.l...l.'.ll.llllllll.“'ll'..‘l"'l".ll.83

LIST OF FIG‘IRES ‘.l.C......t..l.ll.'l.'l.l.ll'..!....‘l.l.'l.‘l.‘IIII 84

e e R P B R S B A R T S R

G B R R TR R TS

CHAPTER I

SIMPLE AND GERERAL CANONRIC SYSTEMS

This chapter presents the differences between the traditional defi-
nitions and thg ones we will use, lnd-buildl th; fheory of cahonic sys-
tems according to the new specifications. if also inéiudea tﬁe motive-
tion for the reorganization of ' canonic systems, | -

- Canonic syitenn'were first defined in Donovan 1966 . The étérfiﬁé‘
point of our work was the version ptaa.nted in Donovan ‘and Doyle 1968
pp. 3-9. The reader is assumed to be acquaintad with this work and
therefore we will not repeat that‘dafiuition but rather prasent the

present only the modified definition.

A canon used to be defined as a ist of sé gggggg followed by the
= =
sign }— and then followed by a w vhoro a ltatmnt (trnd:l.tion-

ally called 'remark') 1is conpooed of a_‘_t_:‘g of same dcgroe followed by
gredicate of the same degree. A tctn of dcgree n i- an n-tuple of
arbitrary concatenations of variables nnd uordn on the given alphabet,
the words surrounding the variabloo being refertnd to as thq 9995355
of the varisbles. A particular case was aingled out the case when |
context is actually indicated, and the canonic uy'tems lntisfying this

- condition, 1i.e. canonic systems uhich contain at lealt one canon in

which there 1is an instance of variableo lﬂd synbola concatenated together
in the same term, were called cluonic lyltann ‘With ‘indiceted context

(C8wIC). [Donovun»cndgnnyle 1968, p. 28; Raggerty 1969, p. %1}, but not

3

kS

much was known abbut them beyond the observation that they appear to be
rather powerful. Most classes of canbnic&syttems encountered in the

course of research were not '"canonic systems with indicated context" in
the sense of‘the old definition mentioned above; moreover, in all cases
but one, constructive proofs for the existence of canonic systems with a
certain property yielded canonic systems which warenegsn?with indicated
context", and the same holds for Alsop's “canopic ttqn;ln;q;" [Alsop

1967] . Because of fhese, and especially in view of,Hagge:ty's recent

result [Haggerty 1969] that contextual indications can be dispensed with,

we have decided not to regard as a distinguished class the clags of cano-
_ S
nic systems which do exercise the option of indicating context, but rather

-y - -

to distinguish the class of canonic systems which have no such option

available, and call them simple canonic_systems , while the unrestricted

- e e P O 4 - -

canonic systems will sometimes be referredwgg, for gmphasis only, as.

general canonic systems or as canonic systems with indicated context .

---------------------- LR L L2 L L L L L Lo b L L 2 B Lt L L L 2]

[Therefore the new meaning of this term is that we have the option of in-
dicating contextual conditions; and nothing morg,thqn‘tbeﬂqption, in con-
trast with the old meaning, which requiréd us to.exercige”this option in

at least one canon.]

The situation is siﬁilar to thit encountered 1q aqtomnta»theory, in
coﬁnection with the definition of nondeterministiclﬁutcﬁnta; The old de-
finition of canonic systems with indicated context éorreépon@s to the
following 92295955353} definition of the concept fnopdgterminiaticiTuring
machine’ [NTM] : "A NTM is a TM in whicﬁ there israt least one state sa-
tisfying the cqnditiog that for at least one,symbol of the ;ape alphabet
there are two_or more quadruples [or quintuples, if we work with quin-

tuples] in the specification of the TM" . According to this definition,

deterministic TM were not particular cases of NTM but constituted a class

- 8 - - - - - . mwrT a o~ - L e » - e e - =

o

OLD NEW

CANONIC SYSTEMS CANONIC SYSTEMS =
= GENERAL CANONIC SYSTEMS =

= C,S. WITH INDICATED CONTEXT

Figure 1

Graphic representation of the cﬁanges in terminology

The circles represent particular examples of canonic systems.

would not be fortunate, and, in fact, this is gggrthe definition of nondeter-
ministic Turing machines, as everybody knows;‘ rather, the deterministic TMs

were bingled out (were diétinguiiﬁedf as a g§£§&;h%§g;gggs of NIMs. The new

definition of canmonic systems with indicated context and the introduction of

the simple canonic systems were necessitated in order to "normalize" the

ugage in canonic systems, to switch from . nomenclature corresponding to

the hypothetical definttfon of NTM, in qur-exawple, to s nomenclitewe
which corresponds to the true dqf:l.nit‘fl’an of l'm |

Similarly, instead of talung of clnonic lyltw v}sg insertion, 9r
of canonic systems with cronmfercncing, ctc., we would singlo Qut. tﬁe
~canonic systems without 1nnrtion, or ﬂhou; crossreferencing, etc..j‘
These classes of canonic sy-tm will bo i,atr&uepd and studied 1in
Chapter VI. L |

The way in which ve chose to "l.nplmne" thh mrgap&ntion is by
introducing potemm ("premise tom") and. tﬁair um aténg{ with -

along, imh gm. o A

poterm ‘is an n-tuple each ol vhou mlmtl 1: i "pnu" cuncatona-

Lerms and their liltl, and

tion (contaiu:lns sither axclucivoly varhbla or cxclathcly synbol-)

" ‘.,,;Ihin, !.ncidcnuuy, aho ulhinatu the rccuninn on t: , 80 x:hat

i (]

it will no longcr the case that a subatri.ng of um h, autamticnlly,

itself a term.

We are now ready to present the definition of simple canonic systems.

Definition 1. A simple canonic system (of level i) is a septuple

P o (Cy,V, M, B, ,8 ,D, ., ()
g‘: _1’1'1'1’1’1’-GH_

whiere

c is a finite set of w (rule. of inference),

v " is the nlphabct used to fon the ltring. gnnoratod by g
Mi is a finitc nt of W uud t:olltnnd fodr elmpta

Of .ﬂy 3 ‘ ; T g .:,\».f,x. e

P, 1is a finite set of prmd
The number of compohés

it8s used to uswe sets of tuples.
3 the tuples is the degree .

St A e S IR P

S. is a finite set of punctuation signs;

D; (@Pj) is a set of sentence pred1catas whose union will

be defined to be the language specified by the
canonic system.

z;i_l is the "object' canonic system.-

This definition is not complete until we say what the canons,
variables, predicates are and what we can do with them.

However, since the reader is assumed to be familiar with these
concepts, these will not be repeated here. Most of the differences
have beén outlined above, and a formal definition, using second-
level canonic systems, will now be given. The reader is urged to
compare it with the old definition of canonic systems [Donovan &nd
Doyle 1968, pp. 10-18], to get a complete and accurate image of the changes
that were introduced. In order to facilitate the comparison, our
exposition will also be given by way bf an example, and will use the
same example, a canonic system defining the set of numbers composed
of the digits 1,2 and 3. *oreover, the drawing on page 5 of the
above-mentioned work is presented below in a updated form as Figure 2
to provide a quasi-pictorial representation of some of the changes

introduced. General canonic systems are defined similarly, but

- — - ——— -

the conclusion but also in the premises.

Cl=(C1’V1’M1’p1’S1 o)
where o '—— 1 digit
‘-_Zdigit
|——3digit
x digit ‘—- X number
x digit ; y number }—- yx number
v = {1,2,2}
1
M = {x,y }
1
P = { digit, number }
1
S1 = {; ,4+— }
D1 = { number }
6, = (& & & 8, & & »

10

The following parse of the fifth canon of this system illustrates

the metalanguage used to describe canons.

R

Yariable variable

e —

&

list of r-ilu

p-tem predicntl &t&___ g icau
N/ \/

clhe

o~

number

variable or word

‘varisble or word

conc. of var. £ words

conc. of var. & words

term predicate

ltat ent
e —————

of legal canon fofnit

Figure 2

- 12

The second-level canonic system is a 7-tuple

€, = €, Vy My Py Sy 0y 6y)

where
c, = { ‘the canons listed on the following pages }
V2 = {1, 2, 3, digit, mumber, x, y, ; , }-— }
My, = {q, 7, s, t,u v, w }
P2 = { predicates as defined in the canons }
Sz ={ ;;:#,<s>’ <}
D2 = { legally defined string }
b]
‘31 is the first-level canonic system

The canons of the second level must fqrmallyidefine the
metalanguage and operations:of the first level; these canons are
présented on the following pages wifh a brief discussion of the
motivation and use of some Qf the canons. The particulgr manner
in which we have constructed the second-level‘cénons‘system
allows this system to define other canonic syétems with only
slight.modifications, which include,»mg;nly,kcanons which

define the set of canons of the system being defined.

(1.1) }-'1 symbol
(1.2) '—2 symbol
(1.3) PF-S symbol

2.1) |-; sign

(2.
(3.
(3.
(4.
(4.
(4.
(5.
(5.
(6.
(6.
(6.
6.
(6.
6.

(6.

(6.

(6.

7.

(7

(8.

(8.

8)

9)

1)

.2)
(8.

1)
2)

3)

13

A word (A is the null string)
u sygbol ;; v word | uv wopd
u yariable Pu concat, of var.
u concat. of var. ;; v yarisble = uv w.
u concat, gf Yar. ’az u p-term |

u word f=u potern

u yariable Fu concat, of var, § words

u word pu goncat. of var, § words

u concat. of v words ;; v yariable '—uv concat.
of var, § words

u concat. of var

;3 v word ‘— uv concat.

ds F u term

t poterm ;; u predicate b= tu premise

t temm ;; u MP tu statement

A list of premises

u list of ggﬂg;seg 35 V premise ‘-uv; list of prem.
A List of segtemonts

T T R T o T T e e e e T o e

14

(8.4) u ligt of stgtements ;; v statement feuv; list of
statements

For efficiency's sake, one might add

(7.0) u premise p=u statement
(8.0) u list of premises Fu list of statements

Note especially the intuitive ineaning of g-tem' : a p-term is
either a concatenation of variabies or a §ingle m (in V*). A
term is an arbitrary concatenation of words and variables. The
difference between premise and statement 15 that premise does not
allow concatenations of variables and symbols (hence it i's "context-free')
while statement allows them. One and theAsame variable may occur

several times in the hypothesis and the conclusion of a canon.

(9.1) u word {—u’cmggam:

(9.2) u predicate l—-u congtm”

(9.3) u sign = u constant

(9.4) u gconstant ;; v constant l=== uv constant
(10.1) b= <x vy > giffer

(10.2) <u (v > m\=<v<u>gg.,g_f_e_:,

The following canons define a set or ordered quadruples named
substitution. They specify the substitution of constants for
variables in canons. Thus each canon of the first-level canonic

system, if it contains any variables at all, gives rise to a class of

oA A B

15

specific instances of éanons. These instances are obtained when

any terminal string is substituted for the variables in the canon.
Substitution is defined by a 4-tuple <w v s .t >

The first element, w , is a word; the second element, v , is a

variable; the third element is the original nonempty string s ; and the

fourth element is the string t which results when the word is

substituted for each occurrence of the variable in the original

string.
(11.1) w word ;; v variable l==< w <‘v < V ¢ w?> substitution
(11.2) w word ;; s yvariable ;; v yariable ;; <v s >
differ F—< W VS s> substitution
(11.3) w word ;; v yvariable ;; s constant F=<w <V ¢Sc 5S>
substitution
(11.4) <WV eSS ceq substitution ;; <W ¢ Vv ¢ X ¢ t %‘

< WV . SX . qt > substitution

Canon 11.1 defines the substitution of a word for a variable
in a string consisting of only that variable. Canon 11.2 defines
the substitution of a word for a variable in a string which does
not include that variable; this substitution has no effect. Canon
11.3 defines the substitution of a word for a variable in a constant
string; this substitution has no effect. Canon 11.4 defines substi-
tution in general.

Candns 12.1 - 12.5 1ist the canons of the first-level canonic

system.

16

(12.1) |= b1 digit canon

(12.2) {= k2 digit canon

(12.3) = 3 digit canon

(12.4) = x digit | x mmber canon

(12.5) b= x digit ; y mmber |~ yx mmber canon

In order to make sure that indeed the canons ére of the

required format, we add:

(13.0) v ltatgggnt F== }7 v of legal canon format

(13.1) u; list of premises ;; v mﬁu v of
legal canon format | |

(13.2) u canon ;; u of legal canon format b u instance
of legal canon |

_ (Canon 13.3 defines the set of canons in which constants have

beeh substituted for some or all of the variables.)

(13.3) u instanc : ;3 v yariable ;;
woued 5i <wW.vu t> substitution fe=
t -instapce of legal canon
Canon 13.4 defines a subset of the canons; this subset is the

set of all canons which contain only cbnstgnts. Derivations will be

generated from ''canons with constants."

(13.4) - w instance of legal.csnen ;; u gonstant l==
u instance with constants

17

Canons 14, 15.1 and 15.2 define the sets named constituent of
and occurrence ; these sets are used in defining derivation. It
has been stated that a statement can be derived as the conclusion
of a canon by showing that all of the statements in the premise
have been derived; i.e., the premise occurs in the derivation.
Thus, the meaning of the "occurrence' of a statement in a list of
statements must be defined. The concept "occurrence' must be
generalized to show that all of the statements in the premise have
already occurred in the derivation; this géneralization is the

set constituent of.

(14) v statement ;; r list of statements ;; t

list of statements ‘=<v‘ TV;t> occurrence

(15.1) u 1list of statements'rd < u> constituent of
(15.2) u list of statements ;; v list of statements ;;

<u ¢v> constituent of 33 < w «v> occurrence '::

<uwe¢ Vv >constituent of

(16.1) A derivation
(16.2) t derivation ;; w list of statements ;;

u statement

;3 whu instance with constants ;;<w .t >

constituent of F tu; derivation *

The canon (16.2), which also occurs in the definition of general
canonic systems, is not itself admissible in a simple canonic system.
In other words, the higher-level canonic systems that we construct

. s s e e %
B 1 i R e

18

The final set to be defined is the set of strings derived
by derivations; each of these strings is simply the last statement

in some derivation.

(17) tu; derjvation ;; u statement }"‘

Canons 16 and 17 are of particular interest since they define
the essence of a proof (derivation) and a lgy (legally derived
string) in all mathematical systems.

This completes the construction of the canons of thé second-level
canonic system. In this example the first-level canonic system had
only predicates and terms of degree 1; modification to the second-
level system may be made to handle predicates and terms of higher
order in the first~level canonic system [Bonovan .naknoyle 1968] .

The metalanguage describing the second-level canonic system
(canon, substitution, derivation, etc.j has not been defined; a
third level system would be needed to define it formally. The form
of the third-level canonic system is almost identical to that of
the second-level system with appropriate changes in notation, i.e.
predicates are underlined three times and the punctuation signs
are ';;;4' and 'h'. We now outline briefly a formation of a
third-level canonic system for this particular second-level system.
We remark first that when we specified the second-level canonic
syStem, we set up a standard frame, independent of !:1 (canons

‘5,6,7,8,9,10.2,11,13,14,15,16,17) to which t;ledgggndcnt $8DQDS

e i b e TR - B

19

were added: 1,.2, 3, 6, 10.1, 12. The same precedure will
be followed here. The third-level ((i+1)'* -level, i22)
canonic system may be constructed{frqnuthg.second—level

(ith-level) canonic system by thé‘follpwing,algorithm:

1. To obtain the c;z-indépéndeht’(égi-independent)
canons, use the standard ffame, 5ﬁtbmake‘th§vappropriate changes
in notation, i.e. underline the predicates 6ne‘éd&itional tiﬁe and add
one more semicolon wherever the sign ';;' (;i) occurs.

2. To obtain the _‘:z~depandentv(E&rdependent) canons,
use the members of these sets listed in the definition of the second-
level (ith-level) canonic system-as the terms of the appropriate
canons of the second-level canonic systém and underline thé
predicates one additional time. -

Thus, the (i+1)th41e§é1 canonic¢ system can be constructed
from the ith-level canonic system with a ﬁinimum_of effoft. Thus,
it can be seen that all highei-levei'canbnic $ystems have the same
basic form. Since no level défine&iitéloﬁﬁ‘0pér;tidﬁ§, each level
is logically consistent. o B | |

For purposes of discussion, at some level the metalanguage of the
level must be defined informally. It appeﬁrs that the second level
would be an appropriate level to do this. Recéli‘that, fbr a
given problem, the first-level canonic system defines the problem;
the second-level canonic system defines the opération of the

first-level canonic system. All higher-level systems define the

20

operation of previous-level systems. Thus, by selecting the
second-level to informally define the metalanguage, the first
level canonic system (which defines the problem) is precisely
defined and logically consistent.

For the case when the '"object' canonic system lal is not
a simple canonic system, the following changes will have to
be made in‘the second-leQel canonic system | 62 formally

specifying "the anatomy and physiology' of c;l:

1) 6.1-6.4 7.1 8.1 8.2 are unnecessary

(6.5-6.9 7.2 8.3 8.4 alone will do in this case);

2) 13.1-13.2 should be replaced by

(13.1) up list of statements ;; v MF“"V
of legal cannggg;ggg A
(13.2) v canon ;; v of logal canon LQImat F‘
u accepted canon '
3) Obviously, all the z;l-dependent canons of ‘:2 will

be chosen so as to reflect the particular components of

8.

Suitable changes may be made to allow for pre@icates of
higher degrees. Examples of canons allowed in geﬂeral canonic systems
are:

x A '-—axﬁ_

axby A F—-xy B

xby A ‘—— xcyd B

21

X number; @x, book descriptor '——x year of copyright

(x,y €M; '(:)', 'a', 'b* , and ', ' are in V)

The sentence symbol (predicate) will be denoted by 'sentence’
instead of ' }' (D = {sentencel}).

The alert reader has undoubtedly noticed another departure from
the traditional terminology: our avoidance of the term ''terminal
alphabet”. The set V has been called just plain "alphabet*, The
reason is that this set does not necessarily correspond to the
terminal alphabet of a formal grammar; it may include auxiliary
symbols.* In this connection, see also Chapter VI.

Before we study the different hierarchies of canonic systems,
we wish to mention several results of Haggerty and to point out one

of their implications.

3 —— s

predicate has degree greater than 1 ., ['"Reduced" means that a state-
ment is provable in the second canonic system iff it is provable in
the first one.]

*
In constructing canonic systems to correspond to regular or to

context-free grammars, Doyle took the terminal alphabet of

the grammar to serve as alphabet of the canonic system, and the
nonterminal alphabet to serve as set of predicates. When, however,
he considered grammars of type O or 1, using a completely different
approach, he correctly us~d, in fact, the union of the terminal
alphabet and the nonterminal alphabet of the grammar to be the
alphabet of the resulting canonic system, but he said he included
only the terminals. If in his construction the alphabet is to
include only the terminal symbols of the grammar, then his construction
would not yield a canonic system at all, since some of the ''canons"
included are of the form |~ A nonterminal, where A is neither

a symbol nor a variable., Whenever we shall hereafter mention these
constructions, we shall assume that the appropriate correction has
been made.

PRCERC M e S T E . T éﬁﬁ—~_ R e L R r B B e b e e R o e

22
[Proof by replacing n-tuples < s .8, ... «8 > Dby terms of the fomm
313129...$sn , where $ 1is a new lynb%l, to be used as a separator.]

I%igﬁgg_gig. Any canon using indicated context may be reduced to a
canon without indicated context (in other words, any camonic system can
be reduced to a sinmple canonic system).

[Proof. Each constant word will be replaced by a variable whose value is
specified (by an additional premise) to be in an [edequately defined]
singleton set.]

eorem %-2. Any canonic system can be reduced to one in which each
canon has a 8 gle premise.

[The gsggf uses the following basic idea: a canon lii.ke
. term, gredl ; term, gred2 3 see 3 tetmn predn‘—-term pred
is replaced by :

< tem, _term, ... termm > ml,z.,....,n ‘_-term pred
where 25521,2,...,n is a new predicate wboue degree is thf sum of the
degrees of pred , and then additional canons are introduced for the
newly-creatég-;;%dicates.]

We remark that, as a consequence of Theorem H-2, Ebg_g}ggg_gf_g}gp}g
camonic systems 1is_no_less powerful than the cless of genersl canonic
systems. Knéwing this, one might wonder why bother to defined simple ca-
nonic systems if the class of sets definable by them is not different
from the class of sets defined by the mostAgeneral canonic systems.
However, the real significance of this theqrem is quite different: we
tricted class of simpler canonic systems which ltill‘iaaliscs the same
computational power. An additional argument is thet Alsop's "canonic
translator”" [Alsop 1967] uses only "simple csnons". Hbtsovcr, there is
nothing to guarantee us that if we apply a certain restriction on the
class of all canonic systems and on the class of simple canonic systems,
the resulting classes have the same computationul,pow?r; or that the

image of the first restricted class under the transformation of Theorem

H-2 is included in the second restricted class.

v RN AL T e

&‘M@‘r%ﬁ" S R e PR e RO R GRTRIE A e e o e v T S B SR e

CHAPTER II 23

A HIERARCHY OF GENERAL CANONIC SYSTEMS

Canonic systems were first used in specifying the syntax of simulation
languages [Donovan 1966], including the features which cannot be expressed
in Backus—Naur Form. Since canonic systems, while designed to be more po-
werful than BNF, were too powerful when first defined (having the full com-

_putational power of Turing machines and thus being able to define non-re-
cursive sets), it was felt that restrictions have to be applied so as to
render the resulting classes of canonic systems incapable of defining non-
recursive sets yet powerful emough to specify the nyﬁtax of any programming
language. (Experience and intuition have indicated to us that for most pro-
gramming languages the set of legal prdgtams is recursive and it is only
specialized features of languages such as those found in PL/1l which have
enabled us to prove that the set of legal PL/1 programs is not recursive

[Mandl 1969al) This was the motivation for studying hierarchies of cano-

nic systems. Doyle, in his Master's thesis, picked up»thii line of re-
search and defined a partial hierarchy of canonic a&stems; tfying to in-
clude in it correspondents for Chomsky's 4 types of formal‘graﬁmars.
Doyle's hierarchy has two distinct parts. The firlt part includes two
classes of canonic systems, one equivalent in strong generative power to
regular gremmars and the other equivalent in strong generative power to

context-free grammars:

. Jheorem D-3 ["3" for "Type 3"]. The class of right-linear canonic
systems and the class of reguliar grammars are stzengly equivelent.

;heorg% D-2. The class of normal-form two-premise canonic systems
and the class of context-free grammars are strongly equivalent.

There was a clear correspondence between the two fbrmal‘lystems, to each

i~ T e L St A

24

production in the grammar corresponding a canon in the canonic system, and
vice-versa. All the predicates occurring in the canonic system were of
degree 1 (sets of strings), and the canonic systems turned out to be,

in our temminology, simple canonic systems. 'In the second part of his
hierarchy, Doyle allows predicates of degree 2 to occur (sets of pairs
of strings) but no predicates of higher degrees, and obtains a class of
canonic systems equipotent to Turing machines: for any grammar of Type O
there is a canonic system which generates the same language. In other
words,

Theorem D-0. The class of canonic systems with predicates of degree

2 is weakly equivalent to the class of Thue semisystems (grammars of

Type 0).

From the proof of this theorem we also have:

Theorem D-0s. The class of simple canonic systems with predicates

of degree 2 1is weakly equivalent to the class of Thue semisystems.

Doyle also mentions '"noncontracting canonic systems with predicates
of degree 2", and states that these canonic systems generate only recur-
sive sets and that for any given context-sensitive grammar one can find
a "noncontracting canonic system with predicates of degree 2" weakly
equivalent to it. We have not listed this as a theorem since the defi-
nition of '"noncontracting'" is entirely inadequate, especially when pre-
dicates of degrees 2 (and higher) are included, and therefore the
above-mentioned class cannot be considered to be defined., In this con-

nection, see also Chapter V.

This completes the second part of the hierarchy. The one-to-one

BT PRA B RR

25
correspondence between the productions of the formal grammars and the

canons of the corresponding canonic systems, while present in the first
part of the hierarchy, could not be established in the second part, |
owing to the inherent difference between canons of thes? élislo: of |
canonic systems and the productions of Tl or TO{gramm!rs. If we direct
our attention to canonic systems which do tqke‘¢§étg#§ into consideration
(canonic systems with indicated context ﬁhicﬁ aré ﬁére.callcd'general
canonic aystema'), a natural solution prelents itaelf which not only
fills in the above-mentioned gaps but actually briugs about strong equi-
valences with all 4 types of formal gremmars con.idered by Chomsky and

with any type of grammar definable in terms of productions, thus eubeddi_g

- wavim -

ewommmsaweoboansoe - -g- - WD U g YD B IS W 4 P W Y =B O B

the theory of formal grammars into that of canonic gxstggg,_This simulation
of formal grammars by appropriately restricted canonic systems with indi-

cated context 1is the object of the present chapter.
The following definitions are analogous to Chomsky's:

Definition 2. A canopic system is called camonic lzatem of ng____

if each of its canons, except for five of them, ia of one of tha forms

(@) x?Ayy derivable '-- : :’w!’y)fyAggrivgbLe
(2) . A nonterningl o |
3 a terminal

where

(a) ? \y w deaote partieular ntrinss, ponibly mty;
(b) A 1is a nontemiaal (i.e. there is @ cqrrumdiag caaoa of
the form (2)); and

(c) for every symbol from the alphabet there is either & canon of

e e N e T Y DB I T Ty e et

26
form (2), or a canon of form (3) (but not both) ,

the five other canons being

(4) - 3 derivable (% €v)

(5) F— A terminal string

(6) x terminal }—-x terminal string (x,yeM) *
¢ X terminall; | y terminal string }_.xy terminal string
(85 x derivable ; x terminal atriﬁg f—- x gentence .

We may dispense with the predicate 'nonterminal’ eltogether, and

replace the present requirement (c) with a new one, (c'):

(c') Any symbol in the position of A in a canon of form (1) **

-must not appear in & canon of form (3) .

Since this modification will simplify the proof of the main equivalence

theorem, we shall adopt it.

* The effect of applying Canon (6) in a derivation can be achieved
by applying Canons (5) and (7). Canon (6) was retained in order to pre-
serve the correctness of future references by formula number:

** There are two ways in which a canon like
XABCy derivable xABACy derivable
may be interpreted as a canon of form (1):
1) 90- A; §y= C; w=BA; the expanded letter is B
2) $0= AB ;i'l= N w = AC ; the expanded letter is C .

(Of course, this is just one canon, not two, and the two interpretations
have no influence on the use of this cenon in derivetions.) :In guch a
case, only one of the symbols that may be considered as being "the expanded
letter" is Trequied to be a nonterminal (i.e. to be missing from the canons
of form (3)).

R e R S S e e P T R AR

27

- " on D e e . s e mn e e e e G -

system of type 0 satisfying the additional condition that in all its

canons of the form (1) the string w is non-null.

or context-free canonic system (CFCS) if it is a CSCS satisfying the addi-
tional condition that in all its canons of form (1) the strings @,V are null.

Definition S. A canonic system is called a canonic system of Type 3

or regular_canonic_system if it is a CFCS satisffing the additional coﬁdition
that in all its canons of form (1) the string w contains just two |
symbols, oné terminal and one nonterminalv(one’for which there exists a

cénon of the form (3) and one for which tﬁere is no such canon), always in
the same‘order. If the order is "nontermiﬁal - terminal’, the regular |

canonic system is also called a left-linear canonic system.

- - - - - -
- e - - -

is_a Type i_grammar which generates the same language, and conversely. In

other _words, the _class of Type_ i_grammars is_equivalent to_the class
We shall show how one can pasé from grammars to canonic systems and
from canonic systems to grammars. Let there be given a grammar G = N, T, P, I)

of Type i (i =0, 1, 2, 3). The associated canonic system has the canons (4),

R B T T T T e T e e T R e e e

28

(5), (6), (7), (8), one canon of the form (3) for each element of T, and for
each production (@AY -+ Ppuw v one canon of the form 1. Tﬁe resulting
canonic system is, by construction, a canonic systém of Type“i Gi=0,1, 2,
3); the strings (p, ¥ may be empty. Suppose now a canonic system of Type
i is given; the corresponding grammar’isbdéfined in,the following manner.
The set T includes all symbols for which thefe‘is a canon of type (3);

N will include all other symbdls and for each production‘there will

be a canon of form (1). It is obvious that the resulting graﬁmar is

by construction of the same typé as the canonic system.froﬁ whiﬁh it was
derived. |

Before we show how derivations are simulated, we should clarify

what is meant by a derivation in fo;mal grammars. Twoldefinigions are in
use in the theory of formal grammars, and our construction below works

with either of them. According to the first definition, any sequence of

at the last application; a string is gccepted iff:

a) it has a derivation; |
b) it contains only terminal symbols.

According to the second definition, a sequence of applications of productions
possible. The grammar is usually requiréd tb have for each nonterminal
symbol, at least one pfoduction expanding it, iﬁ which caséré derivation
produces automatically a string of terminals (if there Qeré a nonterminal

in the string, the sequence coﬁld be conti;ued‘and fhereforg AOes not
constitute a de;ivafionj; a string is accepteq iff it has a deiivation.
We shall use the first definition, but/we’rémark that if the gr;mmar

is required to have for each nonterminal symbol at least one production

29

expanding it, a derivation in theifirst sense (according to the first
definition) is also a derivation in the secénd sen;é (i.e. cannot be
continued) iff its last string contains only terminal syhbols, and‘so
the two concepts of acceptance coincide.

Let us consider a derivation in the canonic system. We shall
simulate the derivation in the canonic system, in a step-by-step manner, by
a derivation in the formal grammar. Without loss gf generality, we may assume
that the derivation in the canonic systen_stgrts with the canon (4). The
derivation in the formal grammar simulating it will start with the one-
character string I . Any canon of the form (1) will be simulated by means
of the corresponding production; canons of?othexwfo;ng will be disregarded
for the moment. We have thus obtained a derivation in the formal grammar simu-
lating step-by-step the given derivation in the canonic system. If, the
last string obtained is not only derivsb;ekbu: alsq a sentence, then this
string has bgen obtained by applications of cgnqps:(S), (6), (7), with a
final application of canon (8). Thgapplicability of canon (8) proves
that the second condition for acceptance in formal grammars (condition 'b)'
of the first definition of derivation)_is fulfilled,nand therefoxe the
string is accepted by the formal grammar.

Therefore we have shown that for every derivation in the canonic
system there is a derivation in the grammar. The converse result is proved
similarly. This completes the proof. It is easily seen that what we have
proved amounts to strong equivalence. We can therefore assert:

Theoren I' The class of Type t grammars iy stromgly equivalent to the

class of Type I canonic systems, for + = Q, 1,2, 3. " The clagses of linear

9geasjded‘linea;; mntdlthOt:;’seﬂgﬁyiiil,‘atc.'ggiiilrs*iré strongly equivalent,

L L2 2 22 2 1

Tespectively, to the classes'ef linear, onewsiddd 1finéar, metalinesl..

I W B | I S . N S

30

- e e

system (1CSCS) if it is context-sensitive and in all its canons of type (1)
the right context (the string y) is empty. [Aﬁd similarly for rCSCS.]
These definitions are the natural counterparts of the definitions for left-
,cohtext-sensitive.[rightﬁcontext-sensitivd grammars. One-sided context-
sensitive grammars have been studied but with no significant results to date.
About all that is known is that they can generate non-CF languages (and cannot
generate non-context-sensitive languages). It is conjectured that they
cannot generate all context-sensitive languages.

Another type of formal languages.(leftdtontext-senéitivé have
been defimed in Mandl 1968 and shown to be weakly equivalent in generativev
power to context-sensitive grammars. This gives rise to a new type of
~ canonic systemsstrongly equivalent to leftdcontext-sensitive grammars.
These grammars seem to be new and interesting and therefore we will
discuss these further here.

The definition below was suggestéd by Booth's definition of

context-sensitive grammars [Booth 1967] as a phrase-structure grammar all .
of whose productions of any of the following three forms:
9 z, AL, >3, T, w

10) ¢, AL, »uw I L,

1) z; AL, +4; o L,
He further remarks that productions of the forms (9) andv(lo) are not really
necessary (since_they can be obtained byﬁaddingig few rules of,the form (11)
and by adding a few ﬁew'nonterminal symbols) buf they maké his exposition
easier to follow. Suppose now that the right coﬁ;exts a:é‘null in all

these rules (and similarly for left contexts). .Then the rules have the form

el e . e SR R S e e e S SR e o

31
cl A + Cl w
&g, A 7 w ¢

where the first and the third are left-pontext-sensitdi rules and the
second is not. This second form of production will be the only form

allowed in the grammars we are going to defime.

Befinitidn 8. A left-fcontext-sensitive grammar is a phrase-structure
grammar all of whose productions except perhaps for a rule I + A s
are noncontracting productions of the form

(12) @A - Pv A € N, pe Ve = (NUJT)*, w # A
[Similarly for right-*context-sensitive grammars] It may be remarked
that this type of production is ngt a particular case of the general
production ¢A Y > ?w ¥y as the left-,context-sensii:ive' rules were.
Likewise, the corresponding type of canon is not a particular case of
(1), and so we cannot (&et) define left-*context-sensitive, systems as
a special case of Tl (or Type 0, for that matter) canonic systems (see

footnote). We shall use instead a definition which is similar to

Definition 11.

Definition 9. A left-* context-sensitive, caronic system is a

cenonic system which includes the particular cemons (4), (5), (6). (7),

(8), a finite number of canons of the form
(14) quAy derivable F—— xw1py derivable

and one canon of form (3) for each symbql A occurring in some canon

(14). [Similarly for right-*, context-sensitive, canonic systems; (14)

is replaced by (15) xAyy der‘iv-g- le l-- xtywy derivagble .1

32

Theorem 2. For any given context-sensitive grammar, there exists_ a

left-*context-sensitive, grammar (a right-ﬁcontext-sensisive“.:)_gggeratigg

----------------- - D A D P BB S R D W WS DT ¥ T Py ekt - ow o

the same language and obtainable from the og}ginai one by a uniformly

effective procedure. _(The converse result_is_trivial.)

Proof. The proof will make use of certain reductions { Kuroda 1964}
but it will be evident how to Start the proof should one wish not to use
the reductions. Dgfinition [Kurodal A context-sensitive grammar is
of order n if there appears no string of length greater fhan n in any
rule of the grammar. Lemma 1 [Kuroda] For ahy context-sensitive grammar
of order n (n > 3) there exists a context-sen#itive grammar ef
order n-1 generating the same language.

(By repeated use of Lemma 1:)
Lemma 2. -[Kuroda] For any context-sensitive grammar there is a grammar
of order 2 equivalent to it.

Let G be the given grammar. By introducing new terminal symbols,
we can convert it to an equivalent grammar in which terminal symbols appear
only in rules of the form A + a ("terminal.rules").k
Remark. [Kuroda] The original grammar might have been given in an
apparently more general form* in which there might be a production which
rewrites more than one symﬁol:

(16) Cw |w, | < wl

w, & (TUN)* . N(TUN)*

L J

*We can thus define two new types of canonic systems ('"Types 1' and i) "y,
with canons (4), (5), (6), (7), (8), canons of the form (3) (and (2)) and
canons of the form o ‘

17) X, y derivable f——- Xw,y derivable

where w; includes at least one nonterminal, with or without the restriction
IwII < |w,|". Using Kuroda's remark and our general equivalence theorem, we
can conclude that these types of canonic systems are weakly equivalent,
respectively, to Tl and TO canonic systems. At this stage we could redefine
left-*context-sensitive canonic systems as a certain special case of

T1' (context-sensitive)-canonic systems,

33

EL R Sl R e Ty SR e R e T P R R L L T L Ty X
L e e o e R e L L L L L L R) TR P R R N Pt A i e T T R Y R T 2)
L i R e R e e R R PRy S P P L Y

Iggg;gm_gg. For_any given context-sensitive grammar gcanonic

system) there is a left-*gontext-sensitive canonic system (grammar) which

..... W S e D R N N A S AR D S R G W W A AP T R W G e R e iy W e W w o o oo o T e oo ww----

generates the same language, and conversely. The class of context-

colfoscacenernerwcwcunecechocorascwoerenascsrwcacecaeee oo

cearoarcenweioacseesserdevcaecerewrnhesssebhoacnvencersonhondovrmrvnernssnccsremnonamacoewse

D - D . - € w - GR ED m n y e w a on o e s - - - -

Similar theorems hold for right-*context-sensitive, canonic

systems and grammars. ‘A further application of the general equivalence

theorem yields:

Theorem 4. For any given context-sensitive canonic system there is

o e e o R e Ll kR e e e e N R T L T)

strongly
L e
onmanmmannme, CONTEXT~SENSITIVE

CONTEXT-SENSITIVE GRAMMAR A CANONIC SYSTEM

e,
» % L] H
~ 2 1‘}'. \ -
Y . >
- 3 ol
= - e
P
L] i
i & 4
$ - &
e gt 3y o~ | &
LEFT-*CS GRAMMAR oo e~ LEFT-*CS CANONIC SYSTEM

strongly
[Th. 3a,] Th. 1

Figure 3

Most of the equivalence theorems of this chapter are summarized
in Figure 3. For completeness' sake, we also included several trivial

results.

R R e e i e it s

35

CHAPTER 111

Both these hierarchies of canonic systems, as well as the hierarchy
of formal grammars, have no class of system to correspbnd to the class of
recursive sets. ("Noncontracting canonic systemswith predicates of
degree 2" were claimed to be situated somewhere between éontext—
sensitive sets and recursive sets, both inclﬁsions'béing'in the weak
sense.)

We state here in what sense(s) would a class of canonic systems
(formal'grammars, etc.) correspond to recursive sets And‘elucidate -
why no class of system has been found equivalent to recursive sets. -

"It is well-known that there can be no procedﬁre for deciding
whether an arbitrary recursively enumerable set is a member of a
given non-empty collection of recursively enumerable sets, except
in the trivial case when all the fecursiveiy enumerable sets are
members of the collection. This is Rice's theorem; see, e.g.,
Rogers [1967 , p. 324 (Th. 14-XIV (a))].:Consequently, it is clear
that we cannot hope to find a class of canonic systems which (a) defines
all recursive sets, and only recursive Sets; and‘(B) thé class includes

all the canonic systems which define recursive sets.

" [Mardl 1969b]

s e eSS IR e

T T L T T L - g

. 36

We might hope that there exists a '"small" class of canonic
systems which define all and only recursive sets however realizing
that the class cannot include all canonic systems which define
recursive sets. Or, stated in another way, it might be the case
that a certain class of canonic systems (characterized by a finite
set of properties, and such that is is decidable whether a given
canonic system meets those properties), would corssspond to the
recursive sets in the sense that |
:only recursive sets are generated by csnonic systems of

that class (the class is "subrecursive")

(a} T

rfor every recursive set, there is among the cangnic systems
of that class at least one canonic system defining the

given recursive set (and there may be such canonic systems outside

Lthe considered class).

We shall prove that such a class cannot exist, i;e. if a class

of canonic systems defines only fecursive sets, then it cannot define all
recursive sets, even if it does not have a monopoly in defining recursi?e
sets. This result can be restated succintfly as: "Subrecursive classes

of canonic systems are strictly subrecursive.'

L2 2 B2 2 2]

Theorsn.2 - Mss of _cavopic. sxs:m-(gr_ of A _fj,nj,_te_],y_ -speci _e_d

formal systems, for that matter) can correspond exactly (in the sense of

-----—-----------------.---q---------nnﬂqﬂhj -.ﬂ--.-p..un--.--..----—-.--

(a) above) to the class of recursive sets. In pnrticular INCST] g.

D D D D D R D S P S ORGP O D P G &b B GBS G5 48 &N W W ap W . - - D D ED W D P -

[Recursive.sets?) L

*The reader may have noticed a similar statement, without proof, in Donovan
and Doyle, 1968, p. 46 "Thas, a noncontracting canonic system can only define
a recursive set. However, it cannot define all recursive sets; some '
recursive sets can be generated only to & TO grammar.%, An earlier work
claimed to have proved this by exhibiting a concrete example, but the

proof was eliminated when the emample turned out to be a context-sensitive set.

37

Proof (based on an idea of Hopcroft and Ullman (1969 , §8.31).

Since canonic systems are finitely specified, we can canonically
enumerate all canonic systems, the canonical index encoding the

whole description of the canonic system ("GBdelization" of - canonic
systems,) Likewise, we can canonic;lly number (encode) all the words
over the denumerably infinite list of potential symbols; let

wy be the kth'work in this numbering. Since it is assumed decidable
whether a certain canonic system is of this type or ﬁot, we can strike
out all the canonic systems not.of-tbis.type. the:gby effectively

enumerating all the canonic systems of the type considered:

C 1’ c 2? G > vee . By the hypothegis, all these ganonic

3
systems define recursive languages Zl, tz, ‘e:; . Consider
the set

e gL, }
It is different from all ’Z:i’ i=1,2, ... ; yet it is recursive.

Therefore no type of canonic systems can define all and only recursive sets.
Remark. A recursion-theoretic argument yields Theorem 7 as an immediate
consequence of the known theorem that the class (set) of all recursive

sets [while recursively enumerable as a class of r.e. sets [Blum 1965;
Suzuki 1959])is not characteristically enumerablé. Proof_of_the_reduction.
For all subrecursive classes of canonic systems the proof of the subrecursive-
ness has been done by exhibiting a decision procedure. In other words,

if we have a finite description of a canonic system, we can interpret

it not only as giving a procedure for enumerating a set but also as giving

38

a procedure for computing the characteristic function of the set, i.e.
that we can find not only an r.e. index of the generated set but also
canopic_system_belonging_to_a_subrecursive_class_is_akio_to_a_cbaracteristic.

inégn_c_fqr_tbg_zgguniyg-§§§_d§fin§c_1-bx-tha§_sangnig-sy:mmf '

*The elucidation of this point owes much to a discussion with Professor
Patrick Fischer and Professor Juris Hartmanis at the Third Princeton

Conference on Information Sciences and Systems in March 1969.

39

CHAPTER IV

CANONIC SYSTEMS FOR CONTEXT-SENSITIVE SETS

In Chapter II we mentioned Doyle's work on a hierarchy of canonic sys-
tems, where, inter alia,’ it was stated that the NCST were situated some-
where between context-sensitive sets and recursive sets. Let us now take
a closer look at the definition of NCST. It reads ('"Definition 2.13"):

""A noncontracting canonic system (NCCS) is a canonic sys-
tem in which each application of a canon results in the length-
ening of the string denoted by the predicate defined in the
canon. That is, if AP and we€A and to prove weA it
was first necessary to prove B &B , then [w|® [B| . That is,
in a derivation, if we have

cee 3 BB .. 3 wA G L.,
then [w|>Bl. (B may denote the same predicate as A)

A noncontracting canonic system with predicates of degree
two (NCST) can be constructed to describe the language gener-
ated by a Tl grammar; this canonic system has the same basic
structure as the canonic system equivalent ot a TO grammar
with the additiomal length restriction.”

Objections to the definition

1. "the string denoted by the predicate defined in the canon" . The

conclusion of a canon has only one gstatement , and therefore it involves
R ——

exactly one predicate. However, this predicate is not necessarily of
degree 1 , so we cannot refer to "the string".

2. "lengthening" . That unspecified string is longer than something.
Longer than what? The hypothesis of a canon may include many strings and
many n-tuples (tuples) of strings.

fined. TIf they are strings, then something has to be said about tuples,

or at leastabout pairs, since predicates of degree 2 have to be allowed

in order for Doyle's proof of [Type 1]& [NCST] to work.

frroce P apes seonet

R S o T A O ™ - 4 e e
PEREERARINL T e G T R L R e R N R B TR TR T

N
e A o

- 40

4, [Concerning the derivation] Although on p. 18 of that paper it
was said "In this paper, a derivaf.i.on will consist of a sequence of canons
instead of the sequence of conclusions of these canons', here we have to
revert to the original definition of derivation (as sequence of conclu-
sions). When we do so, we see that an axiom may appear snywhere in this
sequence, and it is not necessarily longer than all its predecessors (or
shorter than other strings that may follow). Moreover, not only strings
appear in a derivetion but also tuples.

5. "(B may denote the same predicate as A)" . B does not denmote
a predicate; rather, it is a predicate. Formally, predicates are and
remain elements of P ; and when we write P = ‘A ,;_B_} we;also mean that
A and B are different elements of P . We could have introduced meta-
variables ranging on predicates, 1" , 1}.) ee ? in much the same way in
which we vtacitly introduced B , w , ? » Y to stand for particular
strings, and _in that case we could have written |

...;Bq $ oeee 3 mm; .es

and said that the meta-variables ‘U; and Vz may depote either two
distinct predicates A , B or one and the same predicste A . Since we
have not introduced such "predicate-variables", and since A , by defini-

tion, is not the gsame as B , one should have said

B
B

", ... 1if we have '
or we have

then [ml;lﬂl "

P ees 3 W

S eee 3 W

>l
1>l

wes we

We therefore see that, at this stage, there is no such thing as non-

- contracting canonic systems with predicates of dagree 2 . Correspondingly,

------------------------------ L DX L Y T 21

this chapter will be devoted not to proving something about the [undefined]

51_'19 will be such that

1] Doyle's claims will hold for it ([Type 1]G [new class] & [Rec]);

RS R SR g

41
As it very often happens in such cases, the real problem is not to

prove but to "guess" what to prove (and to "improve a bad guess" by trial

and error).

We cannot define 'noncontracting' [nc] as '"such that\the sum of the
lengths of all strings in the hypothgsi; (whethei appearing 1sol;ted or as
elements of tuples) is at most as 1argeba; the sum of the lengths of all
the strings in thelconclusion" s s8ince then a canon like

x A; x B x C
would not be noncontracting, which is not only counter-intuitive but also
does not allow us to salvage the proof for "[Type 1] & [NCST] ". For
the éarticular case when no predicate of degrée | 2 asppear in the conclu-
sions of the canons, one could try | ’

"the string in the conclusion is ﬁo shorter than any of the
strings appearing in the hypothesis, whethéfithey conatitute
terms of degree 1 or are elements of higher-degree terms™ ;

We shall reconsider this suggestion later on (ip a modified form); at
the moment we have to abandon it because we plan tovuse as much as pos-
sible of the existiﬁg proof [DonoQan & Doyle 1968, pp. 43-44], and the

canonic systems constructed in this proéf are, as wéfqotedyin Chaptef II,

-------------- L X R b B L X LT 2 1 2 3 2

general canonic systems with predicates of‘degsgg_g {also in the conclu-

sions of the canons).

Since the real problem here was the finding of of a good definition,
we think it would be more imstructive for the student of canonic systems

if we try to present how the definitiom wuc_g;f}ggg;gs, instead of just

------- P e L L

exhibiting it and showing that it works.
~ Doyle's proof of the recursiveness used s multitape Turing machiﬁe;

the idea was to show that this machine always halts, thus deciding mem-

bership in L(c) . We intend to prove more, viz. that the set L(z)

) 42
defined by the canonic system is context-sensitive, For this, it will

be enough to show that the multitape Turing maéhine which decides whether
w € L(C) never uses more than 'w' squares on any of its tapes. |
As our first step, we modify Doyle's Turing machine to have, in
addition to one tape for each predicate of deéree 1, also k tapes
for each predicate 'of degree k , for k =2, 3, ... (all the tapes afe
distinct).A In Doyle's construction, the Turing machine exhaustively ge-
nerated all strings of length ‘; 'w' in the language defined by the ca-
nonic system.and checked for the occurrence df W .on the tape assigned
to the sentence predicate. Naturally, all strings, on all tapes, had to
be placed one beside the other (separated by specisl characters), and so

the storage space for far from being linear. One could achieve lihearity

instead of being appended (with a separator) to the current end of the
tape. However, each string has to stay available indefinitely, for later

use in derivations (Fig. 4%).

axiom axiom axiom | Faxiom | | sxiom} §axiom
y A
’
‘ \ /
/ G
! /// i

? M

! ’

' -"® T

] - 4 ‘/’/’f’;‘l//;t»

v /7
il /

/;’/5; e
, 7

L} e

\ 1” { i y
(-J"‘;“I G Ve
R ‘

A,
[Other com-
putations] éﬂiA‘ ce.

Figure 4

: 43
More exactly, it has to stay indefinitely available in all cases EXCEPT

when each canon has at most one premise (if 0 premises, the canon is an

[[t
//—\. o
\ — —_—
/ - r |
- \ e e
— ~/= : ———d
v—J T 277

/7
L ,
L__1 200
o8 ~\
@ sentence _——

Figure 5

each statement on a computation path is used once immediately after being
obtainmed and never needed agsin. This will be the main idea of our proof.

In order to achieve thie situation we have to reduce our given cano-
nic system ‘ ("of Typé X'") to ome Q' in which canons have at most one
premise and which is also'of Type X" . Forgetting for the moment of the .
"Type X" restriction, we notice that such a reduction is always possible:
this is one of Haggerty's results (Theorem H-3, here). There are exactly
3 ways in which the canons of cn are congtructed: |

1) they may be inherited from {§ , Lf they have at most ome premise;

44
2) they may have been included in Guto replace some canon

t1 Ered1 HEPI tn pred *.. to pred

of c; ; general form:

< t < t2 € "¢ tn> predlpred2 .. .predu "‘to pred s

where the degree of the newly introduced predicate is the sum of the de-

grees of the n predicates in the hypothesis of the old canon;
3) they may have been required by canons already in t;;‘ :
if GL has canons
Kty e ot > R l._. €, R
£ t! ¢”"tr'1> S ‘—— tc')_S_'_ , and R'S' is already in G“
then it will also have the canon

<t]eoer & o

1]] I’l
e - et!> B l‘—‘tocto> R'S ,
where deg(RS) = deg(R) + deg(S) , deg(R'S') = deg(R') + deg(S') .

From here we get the final hint as to how to choose "Property X" :
if we are to use the method of proof sketched above, "Property X" has to
be invariated by '2Y,'3)' . '3)' suggests the following:

PROPERTY X1 . In each canon of the ¢anonic system:
If the predicate in the conclusion is of degree %k , then in each premise,
separately, the tuplg can be decomposed * into k parts (possibly empty),
which are contiguous, mutually disjoint, and collectively exhaustive; and
there is a permutation of these k parts such that, for every i ,{€i€k ,
each element in the ith part *%* always represents a string which is

no longer than that represented by the ith element of the term [of order

k 1 in the conclusion of the canon.

* It is understood that no element of any tuple is to be cut in the

middle by the decomposition.

% The part which became the i fter the application of the per-

Examples:’ Cxy>A }'.‘62 «Y3?

2 &

As a particular case, we have:

PROPERTY X, . [Same as X

2 ° 1°
conclusion is compared with those in the hypothesis: there is ‘an integer m

mg k , such that the ot element of the conclusion ‘always represents a

but only one of the elements in the

string ionger than those represented by any éiini@f”{n“dny'termtin the

hypothesis.]
Example: . <x‘ y>» A ‘-_‘xy - 5) B

We shall now clarify what we mean by the empression 'always repre-
sents a shorter string' . When a canon is used in a detivation it does
not appear in its general form but as a particular cangg__:l_.l_usance, in
which all the variables are re.placed by pu‘ticular strings. What Pro-
perties xi (1i=1,2) require is that for each 'c;moﬁ there be a
decomposition of the kind specified above and such that:k for all the
instances of that canon slzes-see-sems-ée-észixss&ees-!9-5139-5.1.299

canonic system * the above-mentioned decomposition yield particular

s’trings which satisfy the length reIatlSniﬁiﬁs specified in the defini-

tion.

* For example, if a canonic aystem contains only the canons

x digit ,; y nmber '-— Xy E
then '535 digit .-535 nmber' is a lagitimate instance of one of the

above canons, but can never appear in a derivnti.on. We shall be ‘concerned

here with cenons like

<X, y> grester 1nlen£_,vw}-xw

which are so decomnosable. because anv [annarant Tul afforddma Fimet om e

EURL g A oo s A7 SN S e e
R e L L N I S Pl

Thus in order té ascertain whether s ceru‘in;} c.:afhis Property Xi we
have to make sure not only that the canons havg certain forms but also that
an infinity of canon instances satisfy cerbain restrictions. ;lhen we talk
of classes of canonic systems we usually require that membership in the
class be determined on the basis of s finite set of canons, ﬁot on the basis
of an infinite set of canon instances; therefore we now p:oce?d to define

properties similar to Properties X, but such that they involve the cenons

i
themselves rather than an 1n£:|.nity of canon instances.

Let us consider first a term of degree 1 , e.g. xaby , where a , b
are symbols and x , y are vadables. Whatever the strings represented by
X , y may be, the resulting string is always longer tham the string repre-
sented by xxyabb . We shall write:

yx ‘ xaby & xxyabb

Other examples:

_We have to make one more preparatory digression before we fbrmally define
the relation 4 . Since we want to use Doyle's conatruc‘t.ion of a8 c.s. for
a given context-gensitive grammar, let us have a clou“r_ look_ st that cons-
tiuction. (We want to ma:ke sure that the definition of ‘ will be chosen in

such a way that the c.s. constructed will have Ptopeffy Xl) Its "most im-

<abc odefg> greater :Ln 1engt ; defg w '—nbc verx long string

while legitimate as an :lnltance, can never nm:r in a dérivution in a c.s.

which defines 'ex _ y» grester in lanm' to mean " x 1is longer than y ".

* "c,g." = "canonic system" .

47
portant canon'", and the only one which 1s likely to cause problems, is

(1) wxz derived string ; ex 7> production ; €y (xygreater in length *—-
' wys derived strin .

The problem is that we need wxz‘éwy: s where x , y are not comparable
(being two distinct variables). All we want is that always the astring re-
presented by y be at least as long as that represented by x , and this

is ensured by the premise «Qy x> greater in lenth (lylmixl). The defi-

nition will include also this case, thus "legalizing' canon (i) . The pre-

dicate greater in length used above 1is defined thus:

(2) x terminal ‘-— x symbol
(3) X nonterminal '- x symbol

(4) f<n 1> length
‘(5) <x_y> length ; z gymbol |—-<xz < Y1> length

(6) <x_y> length ; <z yl> length |=— <z x> grester in lemgth *
(7) <x .y> greater in length ;¢y z> greater in length ‘.—-«< z> grea-

' ter in length
(8) <x . y> length ; <z _y> length }—-(x, z> greater in length"

Canonic systems which include the canons (2)...(8) will be called
nons satisfy themselves the requirements placed upon canons of csnonic sys-
tems satisfying Properties Xl, X2 (1i.e. they are decomposable in the pre-

scribed manner).

* It is Becduse of this canon that the c.s. which include canons (2)...
(8) are not simple. The second element of a pair in . length represents

“the length of the first element expressed in l-iry.notation: 0='1', 3='1111', etc.

S TR R O

48
Definition 10. (Definition of & (with respect to a particular canon

in a particular canonic system))

.la. For any words o« , B
AKO (A 1is the empty word)
axp . |aslsl
.1b. If x 1is a variable, then
A% x
X K X
.lc. If a premise of the form <v_ u> gfeater»in length 1s
included in the canon, whefe u, v are variables, then

ugv (in that canon)

If t1 , t2 R t3 . t4 represent concatenations of varisbles and words,
.2a. [Transitivity] ¢t €t, . t,€t; . =iy £, <ty
.2b. [Side-by-side concatenation of inequalities]
b ft, -ty L F oLt

.3. No relationship ty £t

a finite number of instances of .la. , .1b. , .lc. by means of a finite

is valid unless it is deduced from

number of applications of .2a. , .2b.

With the help of the relation &£ we are now in a position to define

PROPERTIES Y for length-monitoring canonic systems.These properties

1,Y2’
aie defined in a similar manner to that in which we defined Properties Xl s
X2 , but:

1) the expression 'element tl always represents a string which is

no longer than that represented by t, ! is replaced by ' t, Rt '3

2) the canons (2)...(8) , present in any length-monitoring c.s.,

i SRR R A R

T T R T SR A e e B

L
R R I T O s R T R e

: 49
are not required to be "decompasable” . [Notice the formal change in the

concept of "decomposability".] [We shdll'lqtér consider other types of length-
monitoring c.s., in which case '2)' will refer to the canons there used for
monitoring length.] - :

We note that Property Y, implies Property X, (i=1, 2), and that

one can immediately tell, by”inspectipn, whether a c;s;‘haa Proﬁerty Y,

(i=1, 2) or not (this was not the ca§e f6r“Pro§urtkai » Property X,).

‘This latter fact justifies.thé following definition:

pectively Y2) 1f it has the Property Yi (respectively Y2) . [The name

"type' is reserved for properties detectable by inspection.]

Theorem 6.

a) Given any context-sensitive grammar, one can uniformly effectively

construct a_length-monitoring camonic_system of Type ¥, (¥,) defining

the same‘langg!gg;

b) For_sny lemgth-monitoring canmonic system of Type Y, (¥,) , the

-------------------- D o - - i - - - -y -

language defined by it is_context-sensitive (and a syitable grammar_can_be

--------- - . L2 L X 1] - e W O ap e WD Sy YR W W A e - - e D G e e

constructed in & ug}form1, effective manner

----------- T r-r-ry - um - -----.--------.-.--2;

Proof. Since Type Y, implies Type ¥, , it is enough to prove 'a)'

-

L} 1 .
for Y2 and 'b)' for Y1 :

[Type 1] @ [Type Y,] &= [Type Yllﬂi'l‘ype 1]
a b o

["the class of languages for which there is grammar of Type 1 is included.

in the class of languges defined by c.s. of Type Y, , which ..!, etc.] ,

a) All we have to show is that the length-monitoring c.s. constructed

in Donovan & Doyle 1968 pp. 43-44 always satisfies Property Y, , and this

is ensured by the manner in which we chose our definitions.

[Remarks. There is no need to first reduce the grammar to one of order 2;
- the alphabet of the c.s. includes not only the terming}s but also
the nonterminals, and L 1is inqludod smong the latter;
- there is no need fgr_sgg_geggg}g_§2!555_i&gs}f_gg_ggfine the con-
cept 'string’', since this concept is part of the definition

of canonic systems in general;

- for formal reasons, the canon

[v string ;] <€ y> production ; <y > greater in length

b v derived string
is replaced by the two canons |}—Z initial string and

x initial string ; <x (> production ; <y x> grester in
length !.—- y derived string ,

where initial string is a new, linglcton predicate. 1

b) Applying Theorem H=3 *7, we reduce the given c.s. of Type Yl to
one in which no canon has more than one premise. Since the original c.s.

had Property X. , and since this property is invariated by the construction

1
in Theorem H-3 , the resulting c.s. also has Property X. . We shall now

1
construct (in a uniformly effective way) a nondeterministic multitspe LBA
which recognizes the language defined by the reduced c.8. {which is the same
‘as that defined by the original one). For each predicate of degree k (k=
1,2, ...), the LBA will have k tapes. Since each hygotpglis has only
one canon, the derivations have a certain '"Markovian" chafacter (see Fig. 5).

Each statement obtained in the derivation 1s used in the fmmedisgtely following

step and never needed again, and therefore can allow durselves to overwrite

* I am grateful to Amitava Bagchi for the suggestion to use Theorem

'H-3 in this proof.

e

: 51
the tapes corresponding to a predicate when this predicate reappears in a de-

rivation. The LBA will siﬁulate nondeterministically the derivation and will
halt when a sentence is derived; if a string w is 2 sentence then there
is a computation path of the LBA which halts with w disﬁla&ed on the

sentence tape, and converéely. The 1ast atép in the derivation of w 1is

of the form

we

<a‘ﬂ' ooo‘u> ABO!CM F W gentﬁﬂce

by Property Xl we have

lol 3 la
ol 3 gl
lo] 3 lul .

Tracing back our derivation, we see that, in view of the Property X;
‘w is at least as long as any string in the derivation, and therefore |w|
is an upper bound, on each tape separastely, on the amount of space necessary
for recognition.
The proof will now be concludaa'by replacing the multitape LBA by a

["multitrack'] one-tape LBA and noting that each step in the chain of éons-

tructions
c.s. of c.s. with : multi;ape context-
" Type ¥, = one-premise ==y LBA ==) LBA @ sensitive
canons . grammar

is uniformly effective.

As an illustration to this proof, we now show how the multitape LBA
would handle the canonic system which wss chosen by Haggerty to illustrate

his procedure.

< c aabbB > CD

< x _v z> ABC
<y ,_,z> B
<=z _¥> AB
< x z>> AC
x A
y B
z C
<x . y> B
x B
y c
T * . V> A
x A
y £
. Derivation for 'aabbbcaabbb'

|- <ax by c2> amc
<o Lty oey e
L_ Cax, by . ¢ é!g
f“<(ax . b . cz > ABC
- <ax (b o ¢ > ABC
-<a _by.c» ARC
P——<:a . b o cz? ABC
‘—'<xb<yc>B_c
b <xb . > B
'_'<b¢yc>§-c.
L__ <b _ ¢ > BC
‘——<xa,yo=>_A_§
“"‘534'1. c P AC
<o vem s
}-— <a _ c> AC

bB; <a bb>AB;

; aabbbcaabbdb E ;

< aa

bbb > AB ;

The multitape LBA has 16 tapes (=5°1+4°2+1-3) . The following figure
(Figure 6) shows the contents of these tapes at successive stages of the

simulated deriv

ation.

Original canonic system:

= o4

— b3

- c¢

A | axa

B | bxB

XC p— ex

xA 5 yB |~ xyD
£ ; y2 |- wyE

Derivation for 'aabbbcaabbb'

aabbb D ; aabbbcaabbb E ;

Transformed canonic szg_t_:gt_n:

--------------- o o -

v o
o o i»

X

X

o lu I
o
]

o lw >

X

<x_ y>AB |~ xy
<x _¥y>CD |-yxy

I o

; aA; bbB; aa A ; bbb B ;

(The decompositions are shown by

stﬂitablq underl ivn ing)

<:§<y> AB ,__<ax‘by>«i3_
x A freex b > AB
yB fr<ca _ by> AB
pr<a b > AB
1]
. .
< X _ y¢5z> ABC "—(c.z <« Xy> CD
X :
@ ' @ O 4

P
- £ T

'y
i
i
it
e
i
.
4
Fl
3

T

54

[The arrows mean 'longer than' .]

| aabbb

ABC

Iz 18

(not used)

(not used) A_l6etape LBA simulates a_de

Figure 6

rivation in a cangn}c system

7 uqbbécaqbbb

i

ELRR . iic o S R R S o bt L S o s st

<"'><:-‘(‘_»‘1:$‘>“’v'§,'xl-r“4 T L R T

55

CHAPTER V

FURTHER HIERARCHIES OF CANONIC SYSTEMS

The purpose of this chapter is to apply the main result of Chapter IV
toward the development of 1mprd§ed hierarchies of canonic systems.

Let us consider Doyle's hierarchy again. This hierarchy hss two se-
parate parts, one part comprising classes of canonic systems strongly
equivalent to the class of regular grammars and the class of context-
free grammars, and the other part comprising a class of cenonic systems
weakly equivalent to the class of unrestricted rewriting systems (Thue
semisystems). The hierarchy was claimed to include another class of ca-
nonic systems, situated somewhere between context-sensitive grammars and
recursive sets, but we have seen in Chapter IV thatﬁthis class was not
completely defined. In the same chapter, two classes of canonic systems,
the length-monitoring camonic systems of Type Y, _(Y;) , were proved to
be weakly equivalent to the class of context-sensitive linguages. There-
fore 1f we add any of them to the two parts of Doyle's hierarchy we obtain
a complete hierarchy of canonic systems, where by "complete” we mean only
that all 4 types of grammars are represented. (The hierarchy presented in
Chapter IT had correspondents not only for the 4 classic types of formal
grammars but also for any class definable in terms of productions.)

While completeness is certainly a very desirable property, we cannot

consider ourselves satisfied with it and ignore the fact that this com-

bined hierarchy is quite heterogenous: for Types 3 and 2 it provides

e o

IR e T

56

simple canonic systems with predicates of degree 1 ; for Type 0 -
simple canonic systems with predica;es of degree 2 ; and for Type 1
the canonic systems are not even simple. The form of the hierarchy may
be schematically summarized as
ST Ss1 G2 Ss2
(for Types: 32 1 0)
Qur first step toward '"homogenization" will be to reduce the third
class from G2 to 82 . C(Clearly, we can always reduce a general c.s.
to a simple one by using Theorem H-2 , but webneed a class of simple
c.s., weakly equivalent to context-sensitive grammars, and the property
'obtainable from class JQ by eliminating contextual referencés" is not
a good criterion for class membership, since a criterion should refer to
the form of the new system,.irrespective of how the c.s. was obtained.
We have seen that the length-monitoring c.s. cannot be simple, by defi-

nition, since they all include the offending canon

<X _¥> length ;<z‘yl> length l-—(z < X> greater in length .

If we modify 1IV.(2)...(8) by replacing this canon by the canons

<x . y> length ; «z _yup length; u unit ‘—-oz_ x» greater in length

(1
}- 1 unit [singleton predicate]

and call the canonic systems which include (1) and IV.(2)...(5),(7)...

(8) s-length-monitorins canonic systems, we can build for them a theory

Definition_12. A simple s-monitoring canonic system is of ?!ES--XI

(respectively Y2) if it has Property Y1 (Y2). Property Y1 (Y2)

T PR S A s it

R TN 1o

57

for s-length-monitoring canonic systems is defined in 2 similar menner as

for length-monitoring canonic systems, but the condition '2)' in that de-

canons used here for monitoring length.

Theorem 7.

a) Given anz_contgxt-sen;itive grammar, one can uniformlz_gffgcgively

-------------- e mmm o oo e i L e P Y T Y X ¥ Ty

comstruct a_simple s-length-monitoring camonic system of Type Y, (Y,)

b) For_any simple s-length-monitoring cenonic system of Type

..... e_s-length-monitoring canonic system of Type Y,

Y
S--z-
uniformly effectively find a grammar for_!gz:

2_3_Ebg_}ggggegg_defincd_yz_gt is cohtéxs:sensitivg;sggg one can

- - - e u o - - ES e ub e @ - - et e ae on o m

Proof. a) The ohly contextual referencing in the canonic systems of
Theorem 6a was in Canon IV.(6) . If we replace that canon by (1) we
get a canonic system which is aimple, s-length-monitoring, of Type Y2

(and therefore also Y1) , and defines the same language.
/ b) Completely similar to the pfoof of Theorem 6b ., [Theorem 7b is

not a particuler case of Theorem 6b since s-length-monitoring c.s. are,

formally, not the same as length-monitoring c.s.]

We havé thus obtained a hierarchy of the fom
81 S1 82 82 s

.i.e, a hierarchy of g}gg}g canonic systems (of which the last class
contains all the simple c.s. with oredicates of degree 2), and we shall

try to reduce it to the form

S1 s1 s1 si L.

, 58
The last class can easily be so reduced. For any r.e. set there is

a simple c.s. with predicates of degree 2 which defines the given set,
and this c.s. may be reduced to one with predicates of degree .1 (by The-
orem H-1) while remaining simple; and the converse result is certainly
true, since sets defined by canonic systems are always recursively enu-
merable.

The hierarchy has now the form
s1 sl s2 s1 .

iUnfortunately, Theorem H-1 appears to be of no further use in reducing ‘the
form of the hierarchy, since none of the 4 clasaes mentioned in this
chapter as being weakly equivalentto context-sensitive grammarn .
(length~-monitoring canonic systems of Type Yl ‘ﬁv of Type Y2 :;
simple s-length-monitoring c.s. of Type Y, ; of Type ¥,)

is invariant under the trsnsformation involved.in the proof of Theorem
H-1.

Having thus arrived at an apparent 'dead end" im our endeavors to
develop and simplify Doyle's hierarchy, we nechopgigex the other basic
hierarchy, the hierarchy of general c.s. with predicates of degree 1
(of the form ¢k 6 6 e L)
which was introduced in Chapter II, and apply to it Theorem H-2.

It is easily seen that we obtain indeed 4 types of caponic systems,
i.e. valid criteria can be stated (deéending pnly on the form of the
transformed canonic system) for memberahiﬁ of‘a ¢.8. in a type. These
types of c.s. may also be introduced indeﬁeﬁ&entiywﬁlkhe‘fbllowlng de-

finitions are analogous to Definitions 2...5 .

S PR

T L i " I . . e " P N o S S T B SR e,

59
Definition 13. A simple canonic system is of Type 0(') if each

of its canons, except for 4 of them, is of one of the forms

(2) xuy derivable ; uU ; vV ‘-—xvy derivable

(3) l._ LM (x, y, u, v are variables)
(4) |- a temminal

where

(a) p (a meta-variable) stands for a particular string;

(b) for any predicate appearing in a canon of form (2) , except
for the canon derivable , there is exactly one canon of form (3) ,
ie. U,V , M are !}9323599 predicates;

U,V (in this order) are two singleton predicates appear-

(c) 1if
ing in a canon of form (2) , and 1f u , y are the corresponding strings,

~then pu and V can jointly be put in the form

p=PAy
v=Qu

where ? s W » W are [meta-variables standing for] particular strings,

possibly empty, and A does not appear in a canon of form (4) s

the 4 other canons being:

() X derivable
(6) b~ A temminal string
'(7) X terminal ; y terminal striﬁg ’- Xy terminal string

(8) x derivable ; x terminal ltriﬂg‘ '...x sentence .

60

of Type O(B) and satisfies the additional condition that for each canon

of form (2) the corresponding string w (defined in (¢)) 1s non-null.

Definition 15. A simple canonic system is of Type 2(3) if it is

of Type 1(8) and satisfies the additional condition that for each canon
of form (2) the corresponding strings v, ’ (defined in (¢)) are

null.

of Type 2®) and satisfies the additional condition that for each camon
of form (2) the corresponding string contains just two symbols,
one terminal and one nonterminal (one for which there is a canon of form

(4) and one for which there is no such canon), always in the same order.

left- context-sensitive,, etc., grammars may be similarly imitated, and

=S2ZaconCexzosens Y smmall

80 we may speak (ng}g}g}on 17) of lihear, one-sided linear, metalinear,

Theorem 8 [Analogous to Theorem 1] . For any simple canonic system

gf_gypg__g(s) (i1=0,1, 2, 3) there is a gréﬁﬁhttéfﬂgzée i which

Proof. Similar to that of Theorem 1.

The second part of Theorem 8 (the converse result) can be proved

'

N R R R B T g R e e et IR e e e e T M R o R R e e

61
more easily 1f we use Theorem 1 and the following obvious Lemma:

Lemma. The result of applying the procedure of Theorem H-2 upon
a canonic system of Type 1 (1 =0, 1, 2, 3) is a simple canonic sys-

tem of Type 1(8) .

Theorem 8 provides us with a hierarchy of simple canonic systems

with predicates of degree 1, that is a hierarchy of the form
S1 81 81 s1 ’

and the goal of the present chapter is thereby completely achieved.
Before concluding this chpter, however, we should likg to point out an
interesting fact which provides a link between the two bﬁ!éf hierarchies
developed in this chapter (the one of the form S1 S1 G2 82
-= based on Doyle's -- and the other of the form G1 G Gl Gl |,
introduced in Chapter II). When we wanted to reduce the first basic
hierarchy to one composed exclusively of gimple canonic systems and‘no-
ticed that its third class, the length-monitoring c.s. of Type Y1 , failed
to be simple only because one of the canons ‘used in monitoring string
lengths included contextual referencing, we just replaced the offending
canon. But there is absolutely no need for a canonic system to monitor
itself ‘the 1engths of the strings. A contex;-ensitive grammar does not
monitor the lengths of its strings, and it is no less noncontracting be-
cause of this; strings grow in length not because the grammar monitors
'their lengths (which it does not) but just because the productions -are
noncontracting. When we examine the grammar '"from the outside' (by
using 4 metaststemo we. can prove that the strings are bound to grow;

but there is no need to duplicate this proof inside the object system (the

i

62
grammar - or the: canonic sysi:em). We therefore eliminate .the canons

IV.(2)...(8); and the canonic system becomes now simple. It still con-

tains canons of the fomm ; .

l—- £ ?A\r < q,mqp) production

(one for each production 'va ; Donovan & Doyle 1968, p. 43),

and we just know that in each such canon’ 'w,)l . This, however, does
not yet solve our problem. We have to redefi‘fﬁe. the concept ‘c.s. of Type
Yl' , or, more exactly, to redefine the relation ‘ ; and this relation

has to hold, sometimes, between two different variables, as fpr example,

in

(9) wxz derived string ;<x > production; <y s»greater in length '-wyznde-

where we ought to be able to prove that x4y . - For length-monitoring

‘c.8. we could say that x4y because the premise <« y‘xb':,gxeater;in‘ length

is present (Definition 10.lc), but we do not have the predicate greater

in length any more, and we are still under the obligation to ascertain,

need to ever compare (in length) two distinct varisbles. Them « would be-
come an absolute relation, not derendent ok the canonic system, and defined
by .la.lb.2a.2b.3. of Definition 10 (i.e. without .lec.).. To achieve.
this end we have to replace canon (9) by ss many canons as .there are pro-
ductions, each new canon being the: result of "plugging in" a particular

production in the canon (9) :

(10) Aw,AQz derived string |-_ ﬁvmyi derived string ‘

63

The class of canonic systems of Type Y (from the first basic hierar-

1
chy) 1is thereby transformed into a class which is, essentially, no
different from the class of canonic systems of Type 1 (from the second

basic hierarchy; Definition 3), and from here the whole second basic

hierarchy is just one small step away.

CHAPTER VI

NON-CROSSREFERENCING, SIMPLE, AND NON

; CLASSIFICATION OF CANONIC SYSTEMS

In this chapter we.pursue an idea mentioned in Chapter I -- that
one should not distinguish (and name) the subclass of canonic systems
with contextual referencing, with insertions, with crossreferencing,

but one should rather consider the subclasses of canonic systems without

- oo o

the respective options. Canonic systems Qithout contextual referencing
(simple c.s.) were extensively studied in Chapters I and V; we shall now
formaily introduce the other two classes and investigate their”computa-
tional power.

Crossreferencing was defined [Doﬁovan & Doyle 1968, p. 27] as con-
sisting of the use of one and the same variable more than once in the
term of the conclusion or the use of one and the same variable in more
‘than one premise in the hypothesis. The éossibility of a variable being
used in exactly one premise of the hypothesis but occurfing several times
in that premisé is nof included in this definition. On the other hand,
there is a fundamental difference between multiple occurrences in the
hypothesis part of the canon and multiple occurrences in the conclusion.
The app}icability of a canon in a particular situation has to be esta-
blished before the cqnonlcould be used, and the applicability depends

only on the hypothesis of the canon; if the hypothesis contains two

occurrences of a variable, we have to check that the strings matched by

R TR v

65

the two occurrences are identical"string_s '(lubatrinjl); and this. checking
is not an elementary action. Multiple occurrehcéi ih the conéluaion,
however, have no influence on thé applicnbility of the canon. This argu-
ment suggests that we should specif;caily exclude from the definition of

crossreferencing multiple occurrences in the cénclusion, and include

The same point of view is taken by Turing {in connection with Turing
machines) and by Minsky (in connection with Post's canonical systems) .

Quoting from Turing 1936 [p. 137 in Davis's colleétion]:

"If, on the other hand, [the squares] are marked by a se-
quence of symbols, we cannot regard th& process of recognition
as a simple process. This is a fundamental point and should
be illustrated. In most methemstical-papers the equstions and
theorems are numbered. ... But if the psper was very long, we
might reach Theovem 157767733443477; thém, further on 1in the
paper, we might find '... hence (upplying Theorem 1577677334~

3477) we have ...' . In order to mika ju¥e which was the re-
levant theorem we should have to compare the two numbers figure
by figure, possibly ticking the figures off in- pencil to ‘make
sure of their not being counted twice." .

Minsky [1967, p. 231] remarks that he could have allowed multiple occur-

rences of variables within any premise, but chose not to:

""Post's most general formulation allowed eaeh production to
have several antecedents. ... Also in Poat's most general for-
mulation, he alloWwed"two of the $'s in the antecédent te be the
same. This meant that the rule of inference would apply only
to a string (theorem) in which there wis-i#n exact repetition
of some (variable) substring in two places in the antecedent.
We prefer to prohibit antecedents of this form, not because we
want to restrict the generality of the systems, but because it
would run counter to our intuitive picture of what ought to be 3
permitted as elementary, unitary operations.",

'With this motivation (and backing) we change the definition of 'crossrefe-

rencing' to read:

66

ng}g}g}gn_}§ A canon is said to cggga}n-gsgggsgggfegging if at least
one of the variables involved in it occurs more than once in the hypothesis
of the canon, whether these occurrences are within one premise or are in

different premises.

Definition 19. A canonic system is non-crossreferencing if none of

its canons contains crossreferencing.

Let us consider now the phenomenon of }EEEEEEQE’ whose definition is
implicit in the traditional definition of cangg}g~§zstems y}gh_}nggggggg
as canonic systems in which terminal symbols are inserted betweenvthe
variables of one string to form & new string. Since we are interested in
canonic systems without insertions, we tentatively defiﬁe canoﬁs without
ingertion as canons in whose conclusion no symbolsitppelr, i.e. whose

conclusions contain coacgtenasiogs of vaxiabéeo tathor than concatenations

of variables and words. The formal modifications required in the defining

second~level canonic system are not difficult to figure out, but the defi-
nition would be forbiddingly restrictive: the axioms would be totally

useless. In fact, we never defined exioms forimally, but just referred by

this name to any canon whose list of premigses was empty, and therefore any

restriction on the canons is autoﬁatically a restriction on the axioms.

This suggests the following definitioﬁ:

Dgfig}g}gg_gg A canonic system is nog:}gggsségg it it has the pro-
perty that in all its canons, except for the sxioms, the term in the
conclusion of-the canon has only '"pure" elements, i.e. each element is

either a concatenation of,variablés or a concatenation of symbols.

The following canonic systems will be used as examples:

67

1. Language: set of balanced (well-formed) strings of
parentheses -
\' '={(’) } [Minsky p. 230]

’—— () theorem

x theorem F—-(x) theorem R -
‘ one- predicate (Post)

X theorem 'F— xx" theorem : non=crossreferencing

x()y theorem F—-xy theorem

1'. Same language, same alphabet. [Hinsky p. 230]
}.» () thewrem B - gimple

one-predicate
xy theorem f——x()y ‘theorem non-crossreferencing

2. Language: palindromes over a , b , ¢ . {Minsly p. 228]

e
b A
F— c A
F.- aa A gimple
— bb A : .. ong-predicate
' - ‘non<crossreferencing
F—- cc A .
A l——-axa_A_
x A l.—cxcg_
.2'. . Same language. [Minsky p. 228]
F— = &
v oA
— < a
x A |— axa 4 simple
» one~-predicate
x 4. f” bxb A non-crossreferencing’
'x A |— cxc A
x A F—— xx A

e T o e

. 68
3. Language: all true statements sbout adding l-ary positive integers

[Minsky p. 229] ' (3="111"' , etc.)

v-{1,+,-}

F141=1 add
xty=z add ‘-x1+y-:1 add one-predicate :
x+y=2z add f—rl-yl-zl add ‘non~crossreferencing
[or: xty=z add f—ytx=z add] |

inserting
not simple

4. Language: all true statements about multiplying l-ary positive

integers [Minsky p. 229]

v-{i.-. -

l_ 1-1=1 mult | one-predicate
x-y=2z mult ‘fxl-y-zy mult non-crossreferencing
X.y=z mult |—-y-x-z mult | inserting
' not simple

5. Language: {.mbn.nbn ‘ m, >n natural nunbers}

-a A
b A

simple
x A }-— ax A - non-erossreferencing
x B |bxB
x A;y Q'-'xny sentence inserting
5'. Same language.

e 4

Fb B simple
Ay A ny_._A_ . , non-inssrting
B;y B l»—xy B non~crossreferencing
A;vy B

|- xyxy sentence

6. Language: squares in l-ary.

Alphabet = {1, *§

- 1 a -
= non-crossreferencing
x*y A | xll*yx A ,
, not simple
x*y A |- vy square " finserting

6'. Same language.
[Mentioned here for completeness; will be introduced later.]

5''. Language: same as 5 .

simple
b non-inserting
x A; yAxyA
xB;y p_'—xy B
crossreferencing
A; v B z‘l_s.l-—xyxz ABA
A; v A B |~ xzyz BAB
x ABA ; x BAB (——— x sentence
5'", - Sgme language.
s a
x A - axa
" b B simple
x B f— bxB
ABA as above inserting
BAB crossreferencing

x ABA ; x BAB ‘—- X sentence

el A

5", Language: a™ 1pn mpD
The first 6 canons of 5".
Last canon replaced by °

ax ABA ; x BAB x sentence

\'

5. Same language.

The first 4 canons of 5' .

Last canon replaced by

X A y B Xyxy ABAB
ax ABAB X sentence

m

n

70

natural numbers

non-inserting

~ not simple

crossreferencing

non-inserting
non-crossreferencing

not simple

71

0f the classes of canonic systemg»;qnsidered until now, only the

two classes which correspond, in the firgtbbasic hierarchy, to regular
grammars and to context-free gramm?rs a;e nonocrossreferencing. Since
they are also simple and non—insertiﬁg, this imflies that non-inserting
¢.s., non-crossreferencing c.s., and simple non-cross t:‘e;ferénc-ing non- insert~
ing c.s. are all powerful eﬁough to define any'contex£$free language.

The following figure shows the new class&ifaf'ctnénic ;§stems (the numbers

refer to our examples):

Classification of canonic sys

'1»-:{5%2@*-%&%@?&@ T L T R T T D T A R A T SIS
. - : B e R e e Sl S i o iy S L SRR i L e

Introducing the abbreviations . _ 72
Q = non-crossreferencing C-8.
R = non-inserting c.s.

S = gsimple c.s.

QR = QAR
Q¥ = Q\R etc.
¥ = (QNEB)\s
we_have
[QRs] @ [cCF]. (since (5'). dcfin‘u a non-,context-
free, language)
| { (oerl p (cr) o
= [Qs] ; fcr] As before, {class of c.s.] = class of

languages definable by the chucof '
(B8] » [finite intetsectimms of 'CF languages]
(since they cam be obtained by cross-

referamncing; We note that the lan-
guage of (5’)?i“=4nc1udtd in this

- ¢lass)
(A P fcrl
[RlI = [finite intezsections of CF] [Result improved
(8] == {r.e.] Sl)

Since a c.s. in QRS can be trivially modified so as tb belong to
Grs or QES or QRE, we also have ’

[QeE] = [cF]
[oEs) &= [cF]

Similarly,

finite _ :
[3e5) o [intersections of CF

73

[QRS] 3@ [CF]

We shall now show that the non-inserting c.s. are powerful enough
to define any r.e. set: [R] = [r.e.] . As for the non-crossreferen-
cing c.s., we have not been able to improve the result stated above
([q] ;[CF]). It is knowﬁ_ that non-croisrefetenc:‘in‘g' ¢.8. w:lth gh_e
predicate of order 1 cannot define the set of squares in l-ary (see
[Minsky 1967, p. 235]).

Theorem 9 [analogous to Theorem H-2 (of Haggerty)l. ‘égz_g;g:_ggg

be reduced to a non-inserting canonic s ;tén.

e - oG D G S S e S o e e e ------~---z-----

Proof. Any word (sequence of symbols) in the conclusion is replaced
by a variable whose value is specified (by an additional ptemise) to be
in an (adeQuntely defined) singleton pi@dicite. fhia‘implies that the

- desired reduction is possible.

Remark. This procedure invariates the class of non—crossreferehcing

We shall now develop a cowplate‘hierarehy of non-inserting c.s..
Since the first two classes JIl.om the first basié:hierarchy (of fhe form
S1 S1 G2 S2) are already non-inserﬁihg;*ﬁé’thill regain them and
. adapt the last two to ourvpurposea. - | :
The most general non-inserting c.s. obvioﬁélyvgenétgtes an r.e. sef;

fining it (by Theorem 9). This gives us a class cofresponding to Type O.

o T T B R e R R D T T T L R T R TR

74
As for Type 1 , we have a result completelj similar to Theorem 7 (Ch. V)

Before stating it, we need a few definitions. We would like to talk
about non-inserting length-monitoring c.s.; but all length-monitoring

c.8. (a8 previously defined) include the [inserting] canon

IV.(5) <x_ y»length ; =z symbol f—-‘«xz‘ﬂ, length .

[A similar situation was encountered just before Definition 12.] By re-

- placing this canon by

<x,y»length ; z symbol ; u unit ‘—uz ‘yd> length
‘-—- 1 unit [singleton predicate]

In the definition of 'length-monitoring' we arrive at the definition

of r-length monitorin g:g_‘: (similar to s-length-monitoring c.s.).
Similarly, if we perform this replacement in the definition of

!g~-length-monitoring' , we arrive at the definition of rs-length-monitoring

sseeaés.eze.ﬂ*

Theores 10-

a) Given any cont:ext-lensitive graumar, one can uniformly effectively

- P en we - L YT Y L T T T - e G P S S G G G S D SR G D GV T AN M e G G - -

construct_a non-inserting r-length-monitoring c.s. of nge' (Y,) *

----------------- -------QOQDG ".------- L T Y T L wa - 2 Y

defining the same languge.

b) For any non-inserting r-length-monitoring c.s. of Type Y. (Y2)

LLL L L L L L LS LI LA L L St L L Dl Ll L Ll LI LIS DL L L L L L L L L Lt L ol i

the language dafined by 1t is context-sensitive (and one can uniformly

- . . S 6P D e D D R O D G > G5 D R T SO Y TS O PR S AR P - - -

g_fgggg._wglz find a greumar for itz_.

-l aw o o0 00 0 an @ B 0p @ 100 0 2 2 0w = 9 - - -

% Definition similar to Def. 12,

15

We have thus obtained a hierarchy of non-inserting canonic systems.

The form of this hierarchy may be GQ:cribed as

Rl Rl R2

R2
&
R

(More exactly, RS1 RS1 RG2 RSl .)

We shall npw define pure canonic systems.

and non-inserting. ["pure" since all concatenations contain either

exclusively symbols or exclusively variables.]

A complete hierarchy of pure c.s. , of the fom

mowawenbheooonhwosoawes

RS1 RS1 RS2 RS2

RS1 ’

can be easily obtained, in a mammer entirely siuilarv to that in which
the hierarchy of non-inserting c.s. was obtained. However, we prefer‘to
preseﬁt anothér hierarchy, based on the second basic hierarchy (form:
Gl Gl Gl Gl). At the end of Chapter IV, we found a hierarchy of
simple c.s. with predicates of degree 1 : S1I S1 S1 sl .

(Cf. Def. 13, 14, 15, 16 and Theorem 8.5 By inspecting the definitioms
of the classes of simple c.s. involved, it 1is easily seen that these

canonic systems are also non-inserting. Therefore we have obtained:

zggegggggl;. The gierarchy

76
s1 st s1 s1

e et L X T P RY P P PRSP T L T PP P - W P i on 3D o -

of Theorem 8 is, actually,_a hierarchz gf ure canonig systems,

i

RS1 RSl RSl BSl _ L

The next logical step would be to look for a hierarchy of the form
QRS1 QRS1 QRS1 QRS1 . We suspect thatviuch a result i1s impossible to
obtain, and, more preciéely, that the non-crossrefereficing c.s. are not
sufficiently powerful to define any language of Type 0 or 1 . We shall
now introduce a modificatiom in their dqfipit;gg,,gpdi@iqagion-which will
enable us to obtain a complete hierirchy; Fo;;ggipg}uinsky'é_[1967, p.
235] definition for Pbst systems, we shall call capenic system with auxi-

o v i - - - -

liary slphabet a formal system similar to ordinary

- mem

Definition 22.

- .- o - - - -

‘ c.s. but in which a subset T of the alphabet V is

defines is R
* .
T U g, A)
A€d
rather than | JL(E , A) . The get VNT is called guxiliary alphabet.

Systems with T = V may be identified with o:§iné§y canonic systems. .

The difference between canor’: systems with auxiliary alphabet and
ordinary canonic systems becomes signifiggpt only in.the case of
non-crossreferencing canonic systems. For all other canonic systems we

could défine a predicate terminal string and then achieve the desired

effect by adding a canon like

P S T O S e e S S i b e MR s R R A R T R T e

. 77
x sentential form ; x terminal strig_g '—— x sentence .

Example. The set of squares in l-ary.

6'. ve{1,*}

- non-crossreferencing
T- {1} one-predicate
' WITH AUXIL. ALPHABET
Canons: '- 1* A) ’
‘ not simple
x*y 4 l- x1l*yx A inserting

Xy Afy A

Examples 6 and 6' show that a get may> be undefinable by Post
systems (canonic systems with one predicate of deéréé 1 and no auxili-
ary alphabet) but become definable if we either allow one more predi-
cate or allow an auxiliary symbol. This "trade-offf'.';betwee:n additional
predicates and additional (auxiliary) symbols is, in fact, an instence

of a general result:

Post systems

i

more than one predicate (A) one predicate of degree 1 ;

[(w.l.0.8.) of degree 1] @ auxilisry symbols

CANONIC SYSTEMS
. ©
(8)

one predicate of
higher degree

(A): Trivial.

(B)(C) : [Haggerty 1969, p. 44] *

% Theorem 3. However, the statement of this theorem, "Any canonic

system can be simulated by a Post system.", must be supplemented by the

78

(B) may also be proved by using Theorem B-3 and tbé proof of Theorem 6b.
[The number of the predicates will be the numbar of tapes of the LBA.]

(C): Proved by introducing separators acting as auxiliary symbols.

A result similar to (B)(C) has been announced by N. Kohn [1969]; it in-
volves variables which range on all but one of the symbols in the alphabet.

Having defined and exemplified canonic systems ﬂith auxiliary alpha-
bet, we are now ready to derive a hierarchy of noﬂ-crossreferencing ca~

nonic systems with auxiliary alphabet.

.-22522-&.2. *

a) Non-crossreferencing canonic systems with auxiliary alphabet

are gowerful enough to define any r.e. set,

macnbopoconeneeewelorrreseaspansnneecboveeneasaeen

b) A_complete hierarchy of such canonic systems may be obtained from

the_second basic hierarch

.
----- _---,----.--,._x. i

Proof. Obviously, it is sufficient to prove 'b)' .

The only canon with crossreferencing in the canoni¢ gystems from the

above-mentioned hierarchy (Chapter II) is

x dexivable ; x terminal string =}.. x sentence .

'By eliminating it from a given c.s. (togetker with thehc;noﬁs-whiqh define

the predicate terminal string) and by replaging the axioms of the fomm

*—- a ferminnl

qualification "...which is a canonical extension [in Minsky's sense] of
the given canonic system.", since there are formulas which are theorems
in the Post system without being theorems in the given camonic system,
and all such formilas contain auxiliary symbols not.in the alphsbet of
the given canonic system. The canonic systems 6 and 6' above are
examples of systems which can not be simulated unlews we allow canonical
extensions. ' : R

79
by & declaration
T={a, ... } ,
we obtain a canonic system equivalent to the given one. The theorem

now follows.

OPEN PROBLEMS:

1. "[QRS].= ? " Find the computationsl power of the class of
simple, non-nroaareferencing,Vngncintérting csnonic systems (no suxi-

li;fy alphabet, any number of predicatcs); [EQRs]PICF]]

2. "[Ql = 7" Find the computational power of the class of
non~-crossreferencing canonic systems (no suxiliary alphabet, any number

of predicates). [Includes all finite intersections of context-free

sets.]

3. " [QI] = ? " Find the computational power of [unextended]
Post systems (non-crossreferencing, no auxilisry elphabet, one predicate

(necessarily of degree 1)).

FERENCES
Alsop, Joseph W, 1967 A canonic translator , Project MAC Techni~

Blum, E. K. 1965
Booth, Taylor L. 1967
Davis, Martin [Ed.] 1965
Donovan, John J. 1966
Donovan, John J., and 1968

Doyle, James T.

Donovan, John J., and1967
lLedgard, Henry F.

Doylé, James T. 1968
Doyle, James T.
Haggerty, Joseph P. 1969

Hopecroft, John E., and

Ullman, Jeffrey D. 969
Kohn, Norman 1969
Kuroda, Sige-Yuki 1964

Ledgard, Henry F.

‘Hierarchies of canonic systems .

cal Report MAC-TR-46, M.I.T., Cembridge, Mass.,
June 1967,

Enumeration of recursive sets by Turing ma-

chine , Zeitschrift fir mathematische Logik
und Grundlagen der Mathematik 11, 197-201.

Sequential machines nnd autonnta theory ,
Wiley, New York. ‘

The undecidable - Qgg%g_ggpcrsvon undecidable
unsolvable grobfeal, gnd compu=-
: 3 ! -2 ’w h“" mhtt; R.Y.

Investigations in simulation and simulation
languages , Doctoral Dissertation, Yale U-
niversity. ;

Reissued in
August 1969 as Project MAC Memorandum MAC-M-
417 *

A formal system for the specification of syn-
tax and translation of computer languages |,
Proceed. F.J.C.C., 1967, pp. 553-569.

Issues of undecidability in canonic systems ,
SIMO Theﬂiﬂ, M.IoTa’ Clmb!‘idge, M."c’ J.n"
uary 1968.

- see also Donovan, John J.

Complexity measures for language recognition

by canonic systems , S.M. Thesis, M.I.T.,
Cambridge, Mass., January 1969, :

Formal langggge: and their relations to au-
tomata , Addison-Wesley.

The relationship between canonic systems
and Post systems . Unpublished.

Classes of languages and linear-bounded au-
tomata , Inform. and Control 7, 207-223.

- see Donovan, John J.

81

Mandl, Robert 1968 Topics in the theory of automata and formal
languages . Term-paper for Mathematical Mo-
. dels in Linguistics (M.I.T. 23.772), May 1968.

Mandl, Robert 1969a The place of PL/1 in the hierarchy of formel
languages , Project MAC Memorandum MAC-M-
419, January 1969. ' '

Mandl, Robert 1969b Canonic systems and recursive sets , Pro-
ceed. of the Third Annual Princeton Conference
on Information Sciences and Systems, p.363.

Minsky, Marvin 1967 Computation - finite and infinite machines |,
: Prentice~Hall. S : :

Rogers, Hartley, Jr. 1967 Theory of recutiive“functiona'ind ;ffective
. computability, McGCraw<Rill,

Suzuki, Y. 1959 Enumeration of recursive sets , J. of Sym-
” bolic Logic 24, 311. :

Turing, Alan M. 1936 On computable numbers, with an application to
: the Entscheidungeproblem , Proc. London
Math. Soc. (2) 42 (1936-7), 230-65. Correc-
tion, ibid. 43 (1937), 544-6. Reprinted in
Davis's collection, pp. 116-51 and 152-4,

Ullman, Jeffrey D. - see Hopcroft, John E.

R o e R AP SRR

Def.

W O ~N & U &~ WwW N

10

11
12
13
14
15
16
17
18
19
20

NN RO S R e o Sy S BT S0 e SO SR S S T e R R N A

LIST OF DEFINITIONS

82

Page Chapter

SiIIQle Canonic .yatm ® 9 00 0P 0P PPOIPREOLOISIPLIEONOIOIOIEOITIPRISTS 8

Canonic systems of Type Occccvvvvvvvccncennee 25
1" " " 1

e 0000 P PO PP P ORI RP ORISR RNSIYS 27

" " " 2

, 90 0009 0000000000000 0000s0 27

" W 3 ttveevcecssssososcesceess 27
Linear, sequential, etc., canonic systems27
Left-cs canonic Bystemc.oco000a0n00s00s00e00 30
Left-¥CS GISEERRT «..vvvevencerrecanaossacassnnssnss 31
Left-*CS canonic Bystemccccvevvesvrvrcossscee 31
Property X1 , Xz sessesesararsesesesscsccncnssssss bl

Length-monitoring canonic systemcoccv00000047.

LA R U I A IR 2 A BB B A Y 2K 2K BB B BE BN AU N E K R B N 20 BN AU B0 BN BK BN I 20 2% B BN B I N AN] 48
Pl‘opertieﬂ Yl » Y2 0P P POPPOIOIIOIERPIOIOCEOIEPPEPIPOIPTROEOLQIOEPNPOSEOSITSTDS 48
Types Y, , ¥, for length-monitoring can. syst. ... 49

" " for 'mle 8-" " " esso 0 56

Simple canonic system of Type 0(')
" TR " " 1(’)

o0 s ve0 000008800 59

LRI R B BB A B IC B Y NS 60

]]] " 2(')

s e o000 eves0se o 60

" " " " 3(3)'

s 00000 s ss0PP R w

Linear, sequential, etc., simple can. syst. 60
Crossreferencing (61‘)66
Non-crossreferencing canonic systemcccc0vc00:, 66
Non-ingerting canonic systemccecevcevesanoees 66
Q, R, S and their combinations ...o.eeceveesovsosss 72
Pure canonic BYStem ...covvvvvcoscrreccvorsroscessss 19

Canonic system with auxiliary alphabet 76
[a generalized canonic system, not a subclass
of the ordinary canonic systems]

1
I1

IV

Vi

T SRR

Th,

LIST OF THEQREMS

83

Page Chapter

1 Equivalence theorem for Types 0, 1, 2, 3. 27
GL Gl Gl Gl vevuuveessnnsonoeivncoseasnsssnioses2l,58
1' General equivalence theorem (strong) ...cc.coceecvees 29
2 Left-*CS & context-sensitivecccocvcvvvnevccas 32
3a) Equivalence between P X |
3b context-sensitive and left-*CS I &
graomars and canonic systems 33
Subrecursive classes are strictly subrecursive 36 -
6 [Type Yil = [TYpe 1] tveceveccooorsnscoressanonsses 4}9
Sl 81 G2 S2 .ievvecoscoccscocosecsscsvsesccocesse 56
[Simple of Type Y0 = [Type 1] ceeenniniiiiinnns 57
8 Equivalence theorem for simple canonic systems
of Types 0(') 3(')
SL S1 82 52 sevveesavoorsocnsivesesccesoavonssoe 57
S1 S1 S2 8l suuuueerevnnresossnsoscosssnsoseeees 58
S1 S1 S1 Sl tuvvvvevrerresnrcocosconcsocncsseees 61
Connection between the two basic hierarchies 61
9 Any c.s. can be reduced to a non-inserting c.s. ... 73
10 [non-inserting ... Type Yi] = [Type 1] ceveeeeeeee. 74
RI Rl B2 R2 ...cvccceceescccsescrsascoscosscscece 75
RIL RI R2 Rl ...ccocvceacrececetsssssancsasccocess 75
RS1 RS1 Rs2 Rs2 .(PieT: of pure c.8.) 75
RSL RS1 RS2 RS1vevvececcnnsscsoscsscsocncecccs 75
11 RSL RS1 RSL BSL euuvennvenneennnenneennnsncenneees 76

124 non?crdliréfaienéing c.s. with guxil. alphabet

L] es e QGG s OOROIRIOLLIOGRLOIIOILIQGPIBSOES 60

can define any r.e. set trecesscevenscvecssacane 78
12b hierarchy of non-crossreferencing c.s. with
auxiliary alphabetccveveccoceoncccceces 78

Theorem_s H-]-’ H.Z’ H-3 [nggerty] 900000 sessvsseevsssss 21
Theom mS’ mz’ mo [myle] 0 OO SO OOPOSIOIOSOOITOOISOISNTIOS 23

II

III

II

84
LIST OF FIGURES

Page Chapter

Fig. 1 Simple and general canonic systems ceeeen R I

2 Parsing of a canonveen it iinin e e e 11

3 Relationships between left-*CS and CS grammar

and c¢.s. ... 33 1T

4 Derivations in general C.8. ... vcviivirrnrinoioanan 42 v

5 Derivations in c¢.s. in which canons have most

one premise 43

6 Multitape LBA simulating a derivation in a c.s. ... 54

7 Classification of canonic systems vereeees 71 VI

CS-TR Scanning Project o
Document Control Form Date : 0t /9\3 / U

Report # -5 -TR~|00

Each of the following should be identified by a checkmark:
Originating Department:

O Artificial Intellegence Laboratory (Al)
Laboratory for Computer Science (LCS)

Document Type:

)ZLTechnical Report MR) [Technical Memo (TM)
O other:

Document Information Number of pages: g?‘(cﬂ)/Y)NGES)

“ Not to include DOD forms, pmtefhtstrucﬁons etc... original pages only.

Originals are: Intended to be printed as :
O Single-sided or O Single-sided or
XL Double-sided)Zf Double-sided
Print type:
[0 Typewriter [] OffsetPress [] Laser Print
[InkJet Printer Unknown [0 other

Check each if included with document:

ﬂ DOD Form (L) O Funding Agent Form KCover Page
O spine O Printers Notes Photo negatives
U Other:

Page Data:

Blank Pagespy page numben:

Photographs/Tonal Material y pege numben:

Other (ot descriponivage numben;
Description : Page Number:
/_Em.&ESJMAP/[I ~ LY ’)MK‘UTIM PAGEJ &L/
(-2 1 SeoncorThol CoUsR DDD(QJ
" TRGTS (3)
DocomswT IK /5 73/9 10%})

Scanning Agent Signoff:
Date Received: /33 /%€ Date Scanned: 3/ ¥/9¢ Date Retumed: 3 / /24 7€

Scanning Agent Signature: W 7\/ Q—(\L

Rev 9/94 DSA.CS Document Control Form cstrform.ved

DOCUMENT CONTROL DATA - R & D 1

(Security classification of title, body of abstract and Indexing sanctation must be d when the overall report is classified)
1. ORIGINATING ACTIVITY (Cotporats author) 28, REPORT SECURITY CLASSIFICATION
Project MAC Unclassified
Massachusetts Institute of Technology 26. GROUP
None

3. REPORT TITLE

K- R

FUﬁTHER RESULTS ON HIERARCHIES OF CANONIC SYSTEMS

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

5. AUTHORI(S) (First name, middie initial, iast name)

Robert Mandl

[} REPO!T DATE 7a8. TOTAL NO. OF PAlGES 7b. NO. OF REFS
June 1972
li. CONTRACT OR GRANT NO. . fa, ORIGINATOR'S REPORT NUMBERI{S)
N0O0014-70-A-0362~-0001
». PRoJECT No. N/A MAC TR-100
¢. N/A : 95. OTHER REPORT NO(S) (Any other numbers that may be assigned
this report)
¢ N/A

10.°DISTRIBUTION STATEMENT '
Distribution of this document is unlimited.

11. SUPPLEMENTARY NOTES. 12. SPONSORING MILITARY ACTIVITY

None Office of Naval Research

J7% ABSTRACT Phis thesis outlines a new way o presenting the theory of canonic systems,
including a distinction (for methodic reasons) between simple canonic systems and
ggneral cancnic systems, and proves a series of results on hierarchies of canonic
:.stteaq, After a brief summary of Doyle's results on a partial hierarchy of canonic
systems, a new hierarchy is developed (Chapter II) which relates the general canonic
systems not only to all 4 types of formal grammars defined by Chomsky but also to
any class of formal grammars definable in terms of productions. It is also shown
(Chapter III) that all attempts to define a mathematical system which exactly
corresponds to the recursive sets are necessarily fruitless. Doyle's work on how to
define "noncontracting canonic systems with predicates of degree 2" (NCST) is continued
arriving at a workable definition which permits us to prove [NCST] = [Type 1] (Chpt.4),
a conjecture put forth at the 3rd Princeton Conference on Information Sciences and
Systems. This result transforms Doyle's hierarchy from "the union of two half-
hierarchies and a dangling term (the NCST)" into a complete hierarchy of canonic
systems (all 4 types represented). However, this hierarchy is heterogenous: canonic
systems corresponding to grammars of types 3 and 2 use only predicates of degree 1,
while canonic systems corresponding to grammars of types 1 and 0 use also predicates
of degree 2; moreover, not all of them are simple canonic systems. A [homogenous]
hierarchy of simple canonic systems with predicates of degree 1 is presented in Chpt.4.
Several new classes of canonic systems (non-crossreferencing, non-inserting, and pure
canonic systems) are introduced in Chapter 6, where their properties are explored,
and a classification schema and several hierarchies are developed.

D ,.'.2,“3‘.,1473 (PAGE 1)

alphabet
context sensitive

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the MLL.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

