
MAC TR-104

COOPERATION OF Jv1UTUALLY SUSPICIOUS SUBSYSTEMS

IN A COMPUTER UTILITY

Michael D. Schroeder

September 1972

This research was supported by the Advanced Research
Projects Agency of the Department of Defense under
ARPA Order No. 2095 which was monitored by ONR
Contract No. N00014-70-A-0362-0006.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139

This empty page was substih1ted for a
blank page in the original document.

ACKNOWLEDGEMENT

I would like to thank my thesis supervisor, Professor J. H.

Saltzer, for encouraging and guiding the research reported in this

thesis, and my readers, Professors Fo J. Corbato and J. D. Bruce,

for reviewing and commenting upon the drafts of the thesis.

I would also like to thank Muriel Webber for typing the drafts

and final version of the thesis and drawing the figures. Without her

assistance the thesis would have taken much longer to complete.

2

This empty page was substih1ted for a
blank page in the original document.

COOPERATION OF MUTUALLY SUSPICIOUS SUBSYSTEMS
IN A COMPUTER UTILITY*

by

Michael D. Schroeder

ABSTRACT

This thesis describes practical protection mechanisms that
allow mutually suspicious subsystems to cooperate in a sin­
gle computation and still be protected from one another.
The mechanisms are based on the division of a computation
into independent domains of access privilege, each of which
may encapsulate a protected subsystem. The central com­
ponent of the mechanisms is a hardware processor that auto­
matically enforces the access constraints associated with
a multidomain computation implemented as a single execution
point in a segmented virtual memory. This processor allows
a standard interprocedure call with arguments to change the
domain of execution of the computation. Arguments are auto­
matically communicated on cross-domain calls -- even between
domains that normally have no access capabilities in common.
The processor, when supported by a suitable software system
which is also discussed, provides the protection basis for
a computer utility in which users may encapsulate indepen­
dently compiled programs and associated data bases as pro­
tected subsystems, and then, without compromising the pro­
tection of the individual subsystems, combine protected
subsystems of different users to perform various computations.

* This report reproduces a thesis of the same title submitted to
the Department of Electrical Engineering, Massachusetts Institute
of Technology, on September 20, 1972 in partial fulfillment of
the requirements for the Degree of Doctor of Philosophy.

3

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

LIST OF FIGURES

Chapter

1. INTRODUCTION

Different Access for Different Situations
Cooperating, Mutually Suspicious Subsystems
Objectives
Background
Approach
Thesis Plan
Related Work

2. STATIC ACCESS, DYNAMIC ACCESS, AND CROSS-DOMAIN CALLS

The Segmented Virtual Memory
Multiple Domains
Domain of Execution
An Example of Mode Arrays
Cross-Domain Calls
Static Access and Dynamic Access
Dynamic Access Capabilities
Matching References to Capabilities
Creation of a New Activation Record
Summary

3. THE PROCESSOR DESIGN

The Virtual Memory and Static Access Capabilities
Generating Virtual Memory Addresses
Call and Return
Cross-Domain Call and Return
Dynamic Access Capabilities
Propagation of Tags
Multibit Tags
Pointers as Arguments
The Escape Hatch
Processor Response to Exceptional Conditions

4

Page

2

3

6

7

10
12
17
24
28
31
32

37

37
38
40
42
44
48
49
51
54
55

57
62
69
74
77
86
93

106
115
116

5

Chapter

3. Continued

An Associative Memory for Dynamic Access Capabilities
Entry and Label Variables
Bit Addressing
Summary

4. SOME COMMENTS ON THE SUPPORTING SOFTWARE

A Distributed Supervisor
The File System
Protected Subsystems
Permission Flags for Segments
Controlling the Gate Attribute
Examples of Access Control Lists
Other Issues
Summary

5. CONCLUSIONS

Areas for Further Research

BIBLIOGRAPHY

BIOGRAPHICAL NOTE

Page

118
12 3
132
133

136

137
138
143
144
148
149
152
154

155

160

163

166

LIST OF FIGURES

Figure Page

2-1: Example access mode arrays for three domains of a process. 43

3-1: The descriptor segment and related registers. 58

3-2: Register and storage formats for address formation. 64

3-3: Algorithm for effective pointer generation. 66

3-4: Format of the argument list for an interprocedure call. 70

3-5: Completed argument list format for an interprocedure call. 78

3-6: A dynamic access stack frame for a single cross-domain call. 80

3-7: Two consecutive cross-domain calls with one argument 94
cascaded through both.

3-8: Dynamic access stack containing frames for three unreturned 99
cross-domain calls.

3-9: Modified algorithm for effective pointer generation with 100
a multibit tag.

3-10: Format of a dynamic access capability giving read and/or 103
write access to a subsegment.

3-11: Algorithm of the SPPn instruction. 109

3-12: Three cases of the SPPn instruction. 110

3-13: Format of the associative memory for dynamic access 119
capabilities.

3-14: Specification of a single entry variable as an input
argument.

4-1: A representative directory hierarchy.

4-2: Use of the directory hierarchy to organize information
stored on-line.

4-3: Initial state of the domain table for a process.

6

U6

140

141

145

CHAPTER 1

INTRODUCTION

When considered in conjunction with computer systems, privacy and

protection are easily confused. Privacy is a social and legal issue.

Privacy means that the dissemination of information of or about a person

or group is controlled by that person or group. New emphasis has been

placed on guaranteeing rights of privacy in the face of the increased

ability provided by large, sophisticated computer-based information

systems to gather, catalogue, and analyze data. Protection, on the

other hand, is a technical and economic issue. Protection means the

mechanisms for specifying and enforcing control. Guaranteeing rights

of privacy requires protection mechanisms, but many other issues are

involved as well. Protection is a means and privacy an end.

In this thesis interest is centered on protection mechanisms within

computer systems. The viewpoint is that of a computer system designer

who is intent upon providing efficient protection mechanisms applicable

to a wide range of problems. Questions of privacy influence this effort

to the extent of implying criteria which must be met before such a

computer system can be applied to those problems where privacy is an

issue. The thesis, however, contains little explicit consideration of

privacy.

To further define the scope of the thesis, consideration is limited

to problems of hardware and software organization. While it is recog­

nized that issues such as installation security, connnunication line

7

8

securityJ hardware reliabilityJ and correctness of hardware and software

implementations of algorithms must be considered in order to achieve the

secure environment required for useful application of protection

mechanismsJ these topics are beyond the scope of the thesis.

Protection mechanisms are defined to be those components of a

computer system that control access of executing programs to objects in­

side the system. This definition recognizes that executing programs

carry out inside the system the intentions of the people outside the

system. ThusJ executing programs are the active agents that must be

controlled in a computer system. The definition admits a large variety

of mechanismsJ ranging from write-permit rings on magnetic tape reels

to sophisticated memory protection hardware and including access con­

trols implemented in software.

All such protection mechanisms are directed toward two overall

objectives. The first can be labeled user self-protection. People are

not infallible. They frequently make mistakes when conceiving algo­

rithmsJ specifying algorithms as programsJ and applying programs to

particular problems. Protection mechanisms permit a redundant specifi­

cation of intention to be made and enforced. For exampleJ the write­

permit ring mentioned above allows the intention that a tape not be

altered in a particular situation to be enforced on the basis of speci­

fications other than those provided by the executing programs. In gen­

eralJ enforcing limits on the objects an executing program may access

can detect certain types of errors and prevent inadvertant damage by

incorrect access.

9

The second objective of protection mechanisms is control of user

interaction. This objective surfaces in computer systems providing

computation and information storage services to more than one person or

group. The multiple users of a computer system may have different goals

and be responsible to different authorities. A diverse connnunity will

use the same system only if it is possible for its members to be inde­

pendent of one another. On the other hand, a great potential benefit of

a multiple user computer system is its ability to encourage users to

connnunicate, cooperate, and build upon one another's work. Such inter­

action is generally based on users sharing stored information. Thus,

total user separation, while relatively easy to achieve, negates a

potential benefit. Required to achieve this benefit is controlled user

interaction. Controlling the ability of executing programs to access

objects in the system is the internal manifestation of controlling user

interaction.

While important in any system serving multiple users, the objec­

tive of controlling user interaction is a key part of the service objec­

tives defining a computer utility. In the remainder of this thesis,

protection mechanisms are considered in the context of a large, general­

purpose, interactive, multiplexed computer system functioning as a

computer utility. This context provides a severe test of protection

mechanisms, and at the same time offers a large reward for devising

economic, natural protection mechanisms that can guarantee total user

separation when desired, permit unrestricted user cooperation when

desired, and provide many intermediate degrees of control.

10

Different Access for Different Situations

The essential observation underlying all protection mechanisms is

that executing programs need different access in different situations.

For instance:

The programs in different computations need different access.
In a computer utility serving a university community, for
example, programs executing in a computation directed by the
registrar to manipulate academic records need different access
to stored data than programs executing in a computation directed
by a system administrator to generate monthly bills for computer
usage.

The same programs in different computations need different
access. In the previous example, both computations may share
the use of a program for manipulating hash-coded index tables.

Different programs in the same computation need different access.
A user-defined program executing in some computation may invoke
a supervisor program to initiate I/O channel operation. Presum­
ably, the executing supervisor program has access to channel
assignment data and to the start I/O instruction of the
processor -- access denied the executing user program. Yet both
executing programs are logically part of the same computation.

The same program in the same computation needs different access
for different circumstances. For example, a closed subroutine
providing string comparison functions for all programs written
in PL/I needs different access when invoked by a supervisor
program than when invoked by a user-defined program.

In general, the access permission that should be associated with an

executing program depends upon the specific circumstances of its execu-

tion.

A significant result of previous work [7,19,20] on protection

mechanisms has been the development of a model that applies to situa-

tions where the access of executing programs needs to differ. This

model is based on the concept of domains which are sets of access

capabilities. The access of an executing program depends upon the

domain of execution in which the program finds itself. An attempt by

11

by an executing program to access something in the system will succeed

only if a capability allowing that access is an element of the domain

of execution. (Ways of defining the capabilities in domains and of

determining the domain of execution at any given time will be discussed

later.)

There is practically no limit to the types of capabilities that can

be defined. A capability is simply an ordered pair specifying the name

of something in the system and the operations which can be performed on

that object. Thus, there can be capabilities to allow any well-defined

operation on any named object in a system. Capabilities to read and

write data items and to execute programs are obvious examples. Capa­

bilities to do I/O over a specific channel, to add capabilities to

domains, and to change the domain of execution to a particular domain

are less obvious examples. The different types of capabilities present

depend upon the particular system being considered.

The domain model provides a conceptual framework in which to con­

sider the protection mechanisms of any system. For instance, the model

is easily related to the examples given previously. By using a distinct

domain of execution for each computation in a system, executing programs

automatically assume the access capabilities associated with the com­

putation of which they are part, as required in the first and second

examples, By alternately using two domains of execution for a single

computation, the supervisor/user distinction of the third and fourth

examples can be dealt with. Multiple domains per computation can deal

with more complex situations as well.

12

Cooperating, Mutually Suspicious Subsystems

One of the most complex instances of multiple domains in a single

computation is the case of mutually suspicious subsystems cooperating

in the same computation. This case provides a good test of a set of

protection mechanisms. Since protection mechanisms that can deal with

cooperating, mutually suspicious subsystems are the central concern of

this thesis, further discussion of this case is appropriate.

An essential idea underlying the case of cooperating, mutually

suspicious subsystems is that of a protected subsystem. A protected

subsystem is a collection of programs and data bases that is encapsula­

ted so that other executing programs can invoke certain component

programs within the protected subsystem, but are prevented from reading

or writing component programs and data bases, and are prevented from

disrupting the intended operation of the component programs. The

supervisor of most computer systems is a good example of a protected

subsystem. A few systems (notably the CAL system [15,18,26,27] and

Multics [5,21,23]) allow normal users to define their own protected

subsystems and, with certain restrictions, make them available to be

invoked by the programs of other users.

Protected subsystems are useful for implementing complex controls

on access to data bases and for maintaining the secrecy of proprietary

algorithms which are shared. In the first case the programs of a pro­

tected subsystem act as caretakers for the contained data bases and

interpretively enforce arbitrarily complex controls on access to them.

Programs outside the protected ~ubsystem are allowed to access the con­

tained data bases only by invoking the caretaker programs. The

13

algorithms manifest in these programs may judge the propriety of the

requested access based on information provided by the system on the

identity of the invoking program and the circumstances of invocation.

The caretaker programs may even record each access request in one of

the encapsulated data bases. No action by an outside program can dis­

rupt the operation of the caretaker programs in judging, performing, or

recording requested accesses.

In the case of maintaining the secrecy of shared, proprietary

algorithms, the programs in a protected subsystem may be invoked by

outside programs but not read by them. In addition, none of the tempo­

rary or permanent data associated with the programs in the protected

subsystem may be read or written by outside programs. Thus, the pro­

grams in the protected subsystem may be used by other programs, but no

aspect of their structure examined.

So far the properties of a protected subsystem have been developed

from the point of view of a program outside invoking a program inside.

It is also conceivable that in the course of its operation a program

inside a protected subsystem might need to invoke a program outside.

This reverse operation is useful only if it does not compromise the

protected subsystem.

A case of cooperating, mutually suspicious subsystems arises when

two or more protected subsystems are involved in the same computation.

An example of this situation occurs if a program inside a protected sub­

system invokes a program outside that happens to be inside another pro­

tected subsystem. An example involving a less direct form of cooperation

arises if programs in two different protected subsystems are alternately

14

invoked by programs outside both. Arbitrary structures involving any

number of protected subsystems can be imagined.

The domain model deals naturally with the notion of protected sub­

systems. Each encapsulation is just a different domain containing

capabilities to execute the component programs and read or write the

component data bases. The case of mutually suspicious subsystems co­

operating in a single computation corresponds to a multidomain computa­

tion in which the domains involved have few access capabilities in

connnon.

A computer utility which allows user-defined protected subsystems

to cooperate in computations could be put to good use. For example,

imagine that a consulting firm has developed and calibrated a demand

model for interzonal traffic flow in a large metropolitan area.

Model development, data gathering, and model calibration were done at

great expense, and the firm wishes to sell the use of its model in order

to profit from the investment. To this end the model is implemented in

a computer utility. The resulting subsystem includes a set of programs

which embody the prediction algorithms, and several data bases contain­

ing socio-economic parameters and door-to-door survey results. In order

to vend this subsystem to other users of the computer utility, the con­

sulting firm encapsulates it as a protected subsystem.

Now imagine that a planning board for the area is studying express­

way networks to meet future transportation needs. As part of this task

they have constructed a model which calculates level-of-service param­

eters for an expressway network, given the physical attributes and the

traffic volume. This model, along with a wealth of related data, is

16

* model. Also, the only way that the consulting firm subsystem can in-

fluence the operation of the planning board subsystem is with the values

of the answers calculated by the former for the latter.

This simple example involving two protected subsystems is represen-

tative of a large class of potential applications for a computer utility

that supports cooperating, mutually suspicious subsystems. Such,a

facility would permit, among other things, the packaging of knowledge in

an active form as program complexes and the marketing of this knowledge

in a way that preserves the proprietary interests of the seller and

limits the possibility of harm to the customers. Of course, this

facility cannot guarantee that a marketed program complex correctly per-

forms the functions that it is advertised to perform. Issues of program

certification are beyond the scope of this thesis. The important point

is that, even if a program malfunctions or behaves maliciously, the use

of protected subsystems limits the resulting damage.

A computer utility that supports cooperating, mutually suspicious

subsystems would favorably impact casual progrannning users as well as

those affiliated with expensive proprietary projects or those manipula-

ting sensitive data. An important activity of most progrannning users in

a computer utility is sharing programs and program complexes with one

another. The access environment in which the programs of such a user

* In some cases it may be desirable to guarantee that a protected sub-
system invoked by another cannot remember and later divulge the values
of input parameters. This problem appears to be very difficult to solve
in a purely technical way and will not be considered in this thesis. A
practical solution probably involves program certification and means for
legal redress in cases of unauthorized release of such information.

15

also represented as a protected subsystem in the computer utility. For

one aspect of their study the planning board will perform a series of

network equilibrium flow analyses for various expressway configurations.

In these calculations the planning board will use the demand model

vended by the consulting firm.

The resulting computation is a case of cooperating, mutually suspi­

cious subsystems. The consulting firm wishes to avoid divulging their

expensively gathered data and expensively devised algorithms, and wishes

to make secure records of use for later billing. The planning board

wishes to avoid premature, uncensored release of the various routing

and cost information for potential expressway configurations that is

accessible to their programs for this and other phases of the study.

The encapsulation of the consulting firm's demand model as a pro­

tected subsystem guards their proprietary interests. Access by the

planning board subsystem is restricted to invoking a few carefully

selected programs. The planning board subsystem cannot read the code

or the data bases of the demand model, nor subvert its operation in any

way. The consulting firm subsystem can make protected usage records as

it operates from which bills can be generated later.

Likewise, the encapsulation of the planning board programs and

data bases protects the interests of the planning board. The consult­

ing firm subsystem cannot read or alter the sensitive data that is

accessible to the planning board programs. The consulting firm sub­

system just has temporary access to whatever input parameters the plan­

ning board subsystem provides each time that it invokes the demand

17

normally execute on his behalf could be set up as a protected subsystem.

Then the user could arrange for programs borrowed from other users to

execute outside of this "home" protected subsystem. In this manner the

borrowed programs could be invoked without giving them access to all the

programs and data of the borrower. If the borrowed program is malicious,

or malfunctions, the damage it can do is thereby limited. The l~nding

user also would have the option to encapsulate the lent program or

program complex in a protected subsystem of its own and thus insulate

it from the programs of the borrower. The result of this pattern is an

environment in which casual sharing of programs is encouraged by the

ability to limit the potential damage to the participating users.

Objectives

The objective of the research reported here is to devise protection

mechanisms that allow cooperating, mutually suspicious subsystems to be

implemented efficiently and naturally in a computer utility. As has

been suggested, this case corresponds to a multidomain computation in

which the domains have few capabilities in connnon. The essential

difficulty is that conunon capabilities seem to be a prerequisite to

cooperation and connnunication among subsystems encapsulated in differ­

ent domains. Thus, in this respect, cooperating, mutually suspicious

subsystems is a "worst case" problem. Means must be provided for pro­

grams executing in different domains to communicate even when these

domains normally have no capabilities in common. The mechanisms

developed in this thesis, however, do not force the sets of capabilities

that are the domains in a computation to be disjoint. There are no

18

arbitrary restrictions on the capabilities that can be included in the

domains. As a result, these protection mechanisms are able to enforce

as well a large variety of protection relationships that are less re­

strictive than those associated with cooperating, mutually suspicious

subsystems.

The words "efficiently" and "naturally" are used to convey ~he aim

of developing practical mechanisms which meet the functional objective

mechanisms that people actually might build and use. This requirement

is manifest in three specific design criteria: economy, simplicity,

and progrannning generality. Economy, obviously related to efficiency,

encompasses two considerations. First, the cost of building the pro­

tection mechanisms should be small enough relative to the cost of the

entire system that the system designers are willing to include such

mechanisms in the system despite an untested market. Second, the cost

of using the mechanisms should be low enough that it is not an important

consideration in determining the degree of access control to be used in

a particular application. Cost in the first case is the per system

fixed cost of providing the protection mechanisms. Cost in the second

case is the marginal cost of application, and includes the subsystem

complexity and user inconvenience that result from the use of the

mechanisms, as well as any associated extra storage space and execution

time.

Simplicity often leads to economy, but is identified as a separate

criterion for a more important reason. If a set of protection

mechanisms is to be accepted and used, then there must be confidence

that no way exists to circumvent it. The best way to achieve confidence

19

is to keep the mechanisms simple so that they may be completely under­

stood. In this respect standard techniques for controlling complexity,

such as functional modularity and adherence to a few overall design

principles, can help.

Progrannning generality, the third criterion, is adopted as the

specific manifestation of naturalness. First defined by Dennis [8,9,10],

it is a property that has proven the key to encouraging users of a com­

puter utility to connnunicate, cooperate, and build upon one another's

work. As used here, it means that independent programs may be combined

in various ways into larger units without understanding or altering the

internal organizations of the programs. The idea is that independently

written and compiled programs of one or more computer utility users can

be used as building blocks which can be combined in various ways into

different program complexes to perform different computations. In the

course of such activity a single program or program complex may have to

operate in many different protection environments. If the protection

mechanisms of a computer utility are to be consistent with the criterion

of progrannning generality, then, it must be possible to change the

protection environment of a program or group of programs without

altering the internal structure of the program or group.

The programming generality criterion generates some specific func­

tional requirements for the protection mechanisms of this thesis. These

requirements are now developed into a more precise statement of the

thesis objective. The initial assumption is that a call with arguments

is an accepted method of connnunication between independent programs and

should be supported in any general purpose computer system such as a

20

computer utility. In keeping with the criterion of programming general­

ity, many systems allow separately compiled, independent programs to

communicate via a call that passes arguments. The only requirements for

such communication are that the programs involved use the same calling

conventions and that they agree on the number, kind, and order of the

arguments. No explicit knowledge of the circumstances of execut~on need

be embedded in the calling or the called program. A single call state­

ment in some program can invoke many different programs depending upon

the circumstances at the time the compiled version of the statement is

executed.

It seems reasonable that the domain in which a program will execute

when called not be part of the knowledge required in order to write or

compile programs that invoke it. A natural consequence of this view is

that the standard call used between independent programs should auto­

matically change the domain of execution if, in a given circumstance,

the called program is supposed to execute in a different domain than the

current domain of execution. The programmer or the compiler cannot do

anything special for calls that cause the domain of execution to change

(as opposed to calls that leave the domain of execution unchanged) be­

cause programming generality requires that such calls not be differen­

tiated when a program is written or compiled.

The passing of arguments with a call needs further consideration

in light of the requirement that a standard call between independent

programs can change the domain of execution if necessary. An argument

may be any data item or set of data items that the calling program can

specify. There are two fundamental methods that can be used to pass

21

arguments with a call. One is to copy the values of the arguments into

memory locations or registers where the called program expects to find

them. The second is to leave most arguments in their normal memory

locations and inform the called program of the addresses of the argu-

ments. The criterion of economy makes it imperative to support the

second method. The copying involved in the first method would be so

expensive that the passing of large arguments (arrays, structures, etc.)

would be discouraged. Further, the functional effect of passing argu­

ments by value can be achieved when required with a mechanism based on

passing arguments by address. The reverse is not true, for modification

of an argument passed by value innnediately changes only a copy of the

source variable, not the source variable itself. More sophisticated

linguistic constructions for passing arguments, such as passing them by

name, also can be implemented based on mechamisms that pass arguments

by address.

Passing arguments by address, however, can generate problems in the

case of calls that happen to change the domain of execution. For such

arguments to be referenced by the called program, the domain of execu­

tion of the called program must contain capabilities which allow access

to the memory locations containing the arguments. The domain of the

calling program and the domain of the called program essentially are

required to have capabilities in connnon permitting the arguments to be

referenced.

There are several ways that this need for common argument capabili­

ties conceivably could be met. One approach is to allow cross-domain

calls only if the capabilities in the calling domain form a subset of

22

the capabilities in the called domain. Thus, any argument that the

calling program happens to pass is accessible to the called program.

If one domain is a subset of another, however, then the two domains

certainly cannot encapsulate mutually suspicious subsystems. Thus,

mechanisms based on this approach do not allow direct cooperation be­

tween mutually suspicious subsystems by a call from one to the other.

Another possibility is the a priori inclusion in a domain of the

precise capabilities required to reference all arguments that will be

passed with all possible incoming cross-domain calls. This method is

not practical, however, because the binding of variable names to memory

locations can vary dynamically as programs execute. This dynamic bind­

ing makes it impossible to include in advance the proper capabilities in

the called domain. Even if this problem could be solved, a priori

inclusion of capabilities for arguments would violate the criterion of

progrannning generality as it applies to domains by requiring detailed

knowledge of programs making incoming cross-domain calls in order to

define a domain.

A third possibility is the establishment by mutual agreement be­

tween a domain and each potential calling domain of a special buffer for

transmitting arguments. Capabilities to reference the buffer would be

connnon to the domains. The use of a buffer for arguments on all calls,

whether they change the domain of execution or not, really means that

arguments are passed by value, a technique discarded earlier as

uneconomical. The use of a buffer only for cross-domain calls compro­

mises program generality.

23

A fourth possibility requires the program making a cross-doman call

explicitly to add to the called domain the capabilities required to

reference arguments. This also compromises progrannning generality, un­

less it were done as a matter of course for all calls. But the explicit

addition of capabilities to the called domain on all calls, even when a

call does not change the domain of execution, would be uneconomical.

One reaches the conclusion that the only acceptable solution is

having the system detect cross-domain calls and automatically add to the

called domain capabilities to reference whatever arguments are being

passed. This solution is adopted for the protection mechanism devised

in this thesis, and will be discussed in greater detail later.

In sunnnary, then, the criterion of progrannning generality (coupled

with economy) leads to a pattern in which the domain of execution of a

computation is changed by one program calling another that happens to

require execution in a different domain. When such a cross-domain call

occurs, capabilities to reference the associated arguments (which are

passed by address) are automatically included in the called domain.

(The problem of removing these argument capabilities when the subsequent

return occurs will be considered later.) No special action by either

the calling or the called program is required in the case of calls that

change the domain of execution.

A useful way to view this pattern is as an extension to the idea

inherent in progrannning generality of using programs as building blocks,

Many systems allow independently written and compiled programs to be

used as building blocks and combined in different ways as various sub­

systems without recompiling the programs. The protection mechanisms

24

proposed here extend the idea so that protected subsystems may be used

as building blocks as well. Independently defined protected subsystems

may be combined in different ways as cooperative partners in various

computations without either explicitly modifying the definitions of the

protected subsystems or altering the component programs.

Background

The protection mechanisms developed in this thesis are strongly

influenced by the structure of Multics. Multics is a prototype computer

utility developed at M. I. T. 1 s Project MAC in a joint effort with Honey­

well Information Systems, Inc. and now operating at several sites. (See

[5,21,23] for an introduction to Multics.) No claim is made that

Multics provides the best possible environment in which to develop

practical protection mechanisms which meet the stated objectives.

Multics is used because it is the closest operational approximation to

a computer utility currently existing and because it is structured to

allow programs to be used as building blocks in the manner discussed

earlier [10]. Because Multics is an operational system that has proven

effective in meeting many of the objectives of a computer utility, there

can be some confidence that protection mechanisms designed for a similar

system environment are based on realistic assumptions. Protection

mechanisms have a tendency to permeate a system. In this case the

existing Multics can be used as a concrete system environment in which

to test the protection mechanisms by tracing their full system implica­

tions. The fact that the protection mechanisms described here represent

25

the evolution and improvement of an existing, useful system lends

strength to the contention that they are practical.

The relationship of the protection mechanisms described in this

thesis to Multics is made clearer by briefly reviewing certain aspects

of the system. Multics already includes a fairly sophisticated set of

protection mechanisms, particularly for controlling access to stored

information. On-line storage is logically organized as a collection of

disjoint segments of information. Segments are variable length arrays

of bits that may contain any collection of information, e.g., symbolic

programs, compiled programs, data files, temporary storage for on-going

computations, or system data bases. Any segment is potentially access­

ible to any executing program.

Multics is organized so that separately compiled programs may be

used as building blocks. While this goal influences the organization of

the entire system, several features are particularly important. Com­

piled programs are represented as segments of pure procedure so that

multiple computations may simultaneously execute the same shared proce­

dure segment. Interprocedure communication is by a standardized inter­

procedure call and interprocedure linking is done dynamically the first

time a particular call is executed in a computation. The normal execu­

tion environment includes a push-down stack for procedure activation

records, allowing procedures to be combined in patterns that may generate

recursive invocations.

Machine language programs in Multics execute in a segmented virtual

memory where segments are identified by number. The two-part address

(~,~) identifies displacement~ in the segment numbered~· Processors [17]

26

contain logic for automatically translating two-part addresses into

absolute memory addresses. Translation is done using the segment number

as the index into a table of segment descriptors called the descriptor

segment. When an executing program wishes to reference a segment stored

on-line, the segment must first be added to the virtual memory by

assigning it an unused descriptor segment entry, an operation automati­

cally performed by the supervisor when the first attempt to reference

the segment is detected. (See [l] for a more detailed description of

this virtual memory.)

The combination of an execution point and a virtual memory is

called a process. A process with a new virtual memory is created for

each user when he logs in to the system. Thus, each user's process has

its own descriptor segment. In this context it is convenient to use the

term computation to mean the activity of the process of a user.

The allowed access of executing programs to each segment stored

on-line is specified by an access control list. An access control list

entry essentially associates a domain name with some combination of

read, write, and execute access to the segment. A domain name is the

combination of the name of some system user with one of the integers 0

through 7, and designates one of the eight fixed domains associated with

the process of some user. Each access control list entry defines a

capability in the named domain that allows the indicated access to the

segment. Manipulation of access control lists is controlled by other

access control lists that are part of a hierarchy of segment catalogues.

As implied in the previous paragraph, Multics allows multiple do­

mains to be associated with a single process. The domain of execution

27

is changed by the standard interprocedure call. Arguments are passed by

address. The problem of arranging for the connnon argument capabilities

between the calling domain and the called domain is solved by forcing

all domains associated with a single process to form a linearly nested

collection of sets with respect to segment referencing capabilities [14].

Cross-domain calls are allowed only if the called domain is a superset

of the calling domain. This linear nesting generates a total ordering

with respect to access privilege on the domains associated with a process

that simplifies many aspects of the system in addition to cross-domain

calls. As pointed out earlier, however, this approach does not allow

direct cooperation by interprocedure call of domains encapsulating

mutually suspicious subsystems. In fact, it does not even allow mutually

suspicious subsystems to be part of the same process.

The protection mechanisms described in this thesis are similar in

overall approach to those in Multics. They developed from considering

ways to improve the efficiency of cross-domain calls for the case of

linearly nested domains, and then considering ways to remove entirely

the linear nesting restriction. The result of the first phase was a

previously reported [25] hardware architecture for automatically handling

cross-domain calls with arguments in the case of linearly nested domains.

This design, implemented in a new processor for Multics being constructed

by Honeywell, contains the seeds of many ideas that are expanded as the

central part of this thesis into a hardware architecture for automati­

cally handling the unconstrained case of cross-domain calls with argu­

ments. In addition to devising hardware that automatically performs

general cross-domain calls, the second phase included isolating those

28

software system aspects simplified by the linear nesting restriction in

Multics and exploring the extensions required to take advantage of the

improved hardware protection mechanism. While the research reported

here was conducted within the specific context of Multics, the results

presented in this thesis are quite general and applicable to a wide

variety of system environments.

One additional aspect of the relationship of this thesis to Multics

should be mentioned. The primary progrannning language in Multics is

PL/I [16]. Not only are most user programs written in PL/I, but almost

all of the system programs are as well [6]. Certain aspects of the

high-level languages in use in a system can influence the design of the

protection mechanisms. For example, if a standard interprocedure call

is to be able to change the domain of execution, then the protection

mechanisms must accomodate all the semantic implications of a call as

defined in the various high-level languages in use. Because PL/I has

proven fairly well suited in Multics to the goal of allowing separately

compiled procedures to be used as building blocks, it will be used in

this thesis as a representative high-level language to be accomodated

by the protection mechanisms. Because of the richness of PL/I, the

protection mechanisms developed in this context will support equally

well many other high-level languages in use today.

Approach

Almost all interesting things in a computer utility are ultimately

manifest as stored information. Processes, I/O streams, directories,

access control lists, domains, capabilities, data segments, and

29

procedures, to name a few examples, are all represented as stored infor­

mation. It follows that control of access to stored information is a

basic function of protection mechanisms. This observation is reflected

in the design of the protection mechanisms developed in this thesis.

The hardware component of these mechanisms is a processor that

supports a multidomain computation implemented as a single Multics-like

process, i.e., as a single execution point in a segmented virtual

memory. This processor automatically controls access to a primitive

set of information objects by interpreting and enforcing capabilities

representing both the encapsulations defined by the domains of the

process and the arguments passed with cross-domain calls. The encapsu­

lation capabilities recognized are those allowing direct read or write

references to segments and those allowing transfers of the execution

point from one virtual memory location to another (including transfers

that represent cross-domain calls). The cross-domain argument capabili­

ties recognized by the processor allow most types of data items defined

by current, general-purpose, high-level progrannning languages to be

passed as arguments with cross-domain calls. The processor automatically

adds the required argument capabilities to the called domain when a

cross-domain call occurs and removes them when the subsequent return

occurs.

The hardware processor provides a general foundation for a software

second layer of the protection mechanisms. To get off the ground, one

of the domains supported by the hardware is given capabilities allowing

direct read/write access to the segments containing the capabilities

that the hardware enforces. Thus, the hardware is circularly applied

31

lists, directories, and protected subsystems. Other information objects

defined and controlled by the supervisor domain might be processes,

I/O streams, and interprocess message queues. There is no limit to the

complexity of the information objects and associated access controls

users can define by creating their own protected subsystems.

Thesis Plan

The central material of this thesis is the development of the hard­

ware processor. Chapter 2 presents the conceptual basis for the protec­

tion mechanisms in the processor. The properties of encapsulation and

argument capabilities are derived and the steps involved in performing

a cross-domain call are considered. These ideas are expanded in Chap­

ter 3 into a description of a processor that fully supports a computa­

tion involving multiple independent domains and that automatically

performs cross-domain calls with arguments -- even between domains that

normally have no capabilities in coIIll!lon. Included in this chapter is

a discussion of the machine code to be generated by compilers to take

full advantage of the processor protection mechanisms and of the high­

level prograIIll!ling language extensions required to allow prograIIllllers to

control the cross-domain call mechanisms.

The software second layer is considered in less detail than the

hardware first layer. In Chapter 4 a file system is described by out­

lining extensions to the Multics file system that permit it to deal with

protected subsystems. The extensions necessary are the addition of

protected subsystems to the objects catalogued by the file system and

the recasting of access control lists in terms of protected subsystem

32

names rather than domain numbers. A first approximation for the remain­

ing software system required to produce a computer utility in which seg­

ments and protected subsystems can be used as building blocks is obtained

by adopting the rest of the Multics software organization and implemen­

tation with essentially no changes. The purpose of the material in

Chapter 4 is to demonstrate one way to harness the processor protection

mechanisms so that users can define and control the sharing of protected

sub sys terns.

Chapter 5 concludes the thesis by summarizing the important ideas

presented and indicating those areas where it appears that further

research would be fruitful.

Related Work

Before beginning the body of the thesis it is appropriate to review

the published work related to the thesis topic. The relationship of the

research reported here to Multics has already been discussed and the

pertinent references cited. A complete bibliography of publications on

Multics appears in [5].

As indicated earlier, the concept of prograrrnning generality was

developed by Dennis [8,9,10]. His main concern has been tracing the

implications of this concept on language and system facilities for

manipulating structured information. The implications of prograrrnning

generality on protection mechanisms are not developed in his papers.

Vanderbilt [28], building on the work of Dennis, has developed an

abstract model of information structures for controlling sharing in a

computer utility that is consistent with the criterion of programming

33

generality. He gives little consideration to methods of implementation,

however, and certain characteristics of the model, such as prohibition

on direct sharing of data among users and the inability to revoke access

permission once given, would be unacceptable in a practical facility.

The domain model finds its origin in the spheres of protection of

Dennis and VanHorn [7]. Lampson [19,20] first recognized the power of

the idea as an abstraction for understanding protection mechanisms, and

was responsible for developing the idea into a useful conceptual tool.

A recent paper by Graham and Denning [13] uses Lampson 1 s model to

explain the diverse protection mechanisms in various existing systems.

Aside from the domain model, essentially no theory of protection

mechanisms exists. The rest of the literature in the field consists

of descriptions of proposed or existing systems with various protection

properties. Wilkes [29] divides the various protection schemes into

two classes: list oriented mechanisms and ticket oriented mechanisms.

With the first approach, control of access to an object is specified in

lists maintained by the protected subsystem (usually the supervisor)

that is the custodian of the object. An attempt to access an object is

validated by matching the name of the requesting domain against a list

of domains authorized to access the object. Multics is an example of a

system implementing sophisticated list oriented protection mechanisms.

With the second approach, permission to access objects in the system

is embodied in unalterable tickets which may be distributed to the

domains in the system. Presentation of the proper ticket is all that is

required to gain access to an object. The CAL system [15,18,26,27]

implements sophisticated ticket oriented protection mechanisms that

34

allow multiple domains to be associated with a single computation. In

the CAL system the domain of execution is changed by the explicit invo­

cation of a special supervisor functionJ a method not consistent with

the criterion of programming generality. A significant advantage of

the ticket approach to access control is that only a fairly simple

mechanism for manufacturing and controlling tickets need be embedded in

the most privileged part of the supervisor. With the list approachJ

most of the file system must be protected at this level. A significant

disadvantage of the ticket approach is the difficulty of revoking access

once a ticket has been given to some domain in the system. With both

list and ticket oriented mechanisms direct sharing of objects among the

domains in the system can be implemented.

In addition to the two basic classes of protection schemes suggest­

ed by Wilkes there exists a third class which can be called message

oriented mechanisms. (ActuallyJ in some ways this class is a variant

of the list oriented mechanisms.) With this approach no direct sharing

of objects is allowed. Instead each object is under the exclusive con­

trol of some process. All sharing is done via interprocess messages

that are managed by the supervisor. To reference a data file belonging

to some processJ for exampleJ another process would send a message

specifying the requested reference. The message is tagged by the super­

visor with the identity of the sending process. The receiving process

decides on the basis of this tag whether or not the request should be

honored. The result of the request is communicated by a return message.

The RC-4000 system [2] is an example of a message oriented system. While

35

the message oriented mechanisms have an appealing simplicity, in

practice they are awkward to work with and inefficient.

Most commercially available computer systems have fairly primitive

protection facilities intended only to provide user separation. IBM

and other major manufacturers have recently become concerned about cer­

tifying their systems so that this total user separation can be guaran­

teed. Aside from Multics, which is available from Honeywell as a special

product, however, no operational or announced connnercial system can

support user-defined protected subsystems, and very few even allow con­

trolled sharing of programs and data among users.

Very little work has been done on hardware mechanisms for supporting

sophisticated protection mechanisms. The protection facilities of most

systems are implemented largely in software using hardware with fairly

primitive protection mechanisms. The machines of the Burroughs Corpo­

ration [3] were the first to implement address mapping using segment

descriptors, the technique that has proven to be the basis of most

sophisticated protection hardware. Evans and LeClerc [11] were among

the first to suggest that address mapping hardware including access

control mechanisms could be constructed to help implement efficiently

computations involving several domains. The hierarchic domain structure

they propose is similar to the model developed by Vanderbilt. The Hitac

5020 [22] was one of the first hardware processors to implement more

than the simple supervisor/user form of multiple domain protection. The

scheme used is patterned after the linearly nested domains of Multics.

The Hitac processor, which closely follows the implementation suggested

by Graham [14], is not able to change the domain of execution

36

automatically. The most sophisticated multiple domain protection hard­

ware that has actually been constructed is embodied in the new Multics

processor [25] being built by Honeywell. Several projects are currently

underway to construct processors with similar protection mechanisms, but

no published material is available yet that describes these efforts.

Fabry [12] has proposed hardware protection mechanisms specifically

designed to support ticket oriented protection mechanisms, but which

provides little assistance with the previously mentioned problem of

locating already distributed tickets in order to revoke access.

CHAPTER 2

STATIC ACCESS, DYNAMIC ACCESS, AND CROSS-DOMAIN CALLS

The hardware component of the protection mechanisms described in

this thesis is a processor that supports a multidomain computation im­

plemented as a single Multics-like process. (Recall that such a process

is a single execution point in a segmented virtual memory.) This pro­

cessor contains logic for implementing a segmented virtual memory, for

enforcing the various virtual memory access constraints that represent

the encapsulation of procedure and data segments in several domains, and

for performing cross-domain calls. In this chapter some of the func­

tional characteristics of this processor are introduced.

The major emphasis of the discussion is on the types of capabil­

ities the processor interprets and enforces, the dynamic behavior of

these capabilities, and the steps involved in performing a cross-domain

call. The discussion is fairly general, making little reference to

specific implementation techniques.

The Segmented Virtual Memory

The segmented virtual memory of a process was introduced in

Chapter 1 during the discussion of Multics. The structural character­

istics pertinent to the material in this chapter are briefly reviewed

here.

1. A segment is a variable length array of bits.

37

------- ----

38

2. Each segment in the virtual memory is identified by a unique
non-negative integer.

3. The two-part address (~JE) specifies the dth bit in the seg­
ment numbered s.

4. All references to memory generated by an executing machine
language programJ whether for indirect wordsJ instruction oper­
andsJ or the next instruction to executeJ are specified by two­
part addresses. The number of bits actually referenced by the
address (~J~) is implied by the circumstances of the reference.

The processor logic required to implement the segmented virtual memory

of a process is described in the next chapter.

As indicated in Chapter lJ in order for a procedure executing as

part of a process to reference a segment stored on-line in the computer

utilityJ the segment must first be added to the virtual memory of the

process. In this chapter it is assumed that the virtual memory of a

process somehow already contains all segments that are to be referenced.

Multiple Domains

Each domain associated with a process is defined by a set of capa-

bilities for referencing parts of the segmented virtual memory of the

process in various ways. Methods for specifying which capabilities are

included in each domain will be considered in Chapter 4. The general

form of any capability is:

(nameJmode)

where the first element identifies some object in the system and the

second element specifies the operations that the capability allows to be

performed on that object. With respect to processor enforced control on

access to the segmented virtual memory of a processJ the relevant ranges

of values for names and modes are fairly restricted. All relevant names

39

may be expressed as:

where s and d are a two-part address, and £ is the number of contiguous

bits starting at the named location. This set of names allows the iden-

tification of any contiguous chunk of bits in any segment, i.e., any

subsegment. The range of values for the mode is limited by the archi-

tecture of the processor. It is possible to structure the mode to

individually control any processor distinguishable operation or set of

operations on the contents of a segment. For example, the use of the

subsegment named in a capability as the operand of each separate machine

instruction could be individually controlled.

For the purpose of encapsulating procedure and data segments in a

domain, an even more restricted set of names and modes is adequate.

With the exception of the gate capability introduced later, the capabil-

ities used to express encapsulation that are recognized by the processor

name only whole segments and allow independent control of just three

operations. The operations are executing the contents of a segment as

* machine instructions, reading from a segment, and writing in a segment

The encapsulation capabilities recognized by the processor, then, are

* Actually, capabilities that included no mode information at all would
be adequate for the purpose of encapsulating procedure and data segments
in domains. In this case, the presence in a domain of a capability
naming a segment would permit full read, write, and execute access to
the segment. Providing separate control on these three operations, how­
ever, is useful for several reasons. Separate control on reading and
writing encourages the sharing of procedure and data segments among
several domains by making it possible to share only the ability to read
a segment. Separate control on executing a segment allows the protec­
tion mechanisms of the processor to detect accidental attempts to
execute segments that do not contain machine code.

40

expressed as:

where ~ is a segment number and m is some combination of Eead, ~rite,

and execute permission flags. Only the combinations£, !:!!'.:, ~' ~'

and null, corresponding to segments of read only data, read/write data,

* pure procedure, impure procedure, and to no access at all , respectivel~

make much sense.

The fact that the names in these capabilities are segment numbers

leads to an especially convenient representation of the domains associa-

ted with a process. Each domain is represented as an array whose ele-

ments are the modes defining the allowed access to the various segments

in the virtual memory of the process. The array is indexed by segment

number. (The usefulness of a null mode now becomes apparent.) The

processor uses the mode array corresponding to the domain of execution

of a process to control virtual memory references. An attempt by an

executing machine language program to read, write, or execute segment

number ~ is allowed by the processor only if the corresponding flag

. h th d h" appears in t e ~ mo e in t is array.

Domain of Execution

The issue of how the domain of execution of a process is determined

now must be considered. This problem is approached by defining ways to

control changing the domain of execution. An understanding of the sort

";'(

Including in a domain a capability specifying null access to a segment
is equivalent to having no capability at all for that segment in the
domain.

41

of control required can be gained by reviewing the purpose of associa­

ting multiple domains with a process. A domain provides the means to

protect procedure and data_segments from other procedures that execute

as part of the same process. Using domains it is possible to make cer­

tain capabilities available only when particular procedure segments are

being executed. The code sequences in these segments therefore deter­

mine the use made of those capabilities. These code sequences implement

the intended algorithms, however, only if execution starts at certain

points. Thus, for domains to be meaningful, it must be possible to

restrict the start of execution in a particular domain to certain pro­

gram locations. These locations are called gates. Ghanging the domain

of execution can occur only as the result of a transfer to a gate loca­

tion of another domain.

Controlling the ability to change the domain of execution, then,

requires devising capabilities that identify certain procedure segment

locations as gates into particular domains. The name in such a capa­

bility needs to be more precise than just a segment number. It must

identify a particular machine instruction in a segment. The mode must

indicate that the named location is a gate and specify the name of the

domain for which it is a gate. Thus, the gate capability has the form:

((~,.5!),(gate into domain D))

where s and d name a virtual memory location and the mode indicates per­

mission to invoke the program section beginning at the named location

and simultaneously change the domain of execution to domain D. The

method of naming domains is ignored for now, although it is apparent

from the previous discussion that any domain naming scheme that allows

42

the processor to find the mode array for the new domain of execution

will work.

Unfortunately, the gate capability just described does not fit very

well with the previously suggested mode array representation of domains.

Moving ;!. from the name portion to the mode portion of the capability,

however, solves this problem, for the name that is left is just a seg­

ment number as before. Capabilities for all the gates in a single seg­

ment that are accessible from some domain then may be represented by

listing the displacements of these gates in the mode array element for

that segment. Less mode information is required if all these gate loca­

tions in the same segment are required to be gates into the same domain,

a reasonable restriction. Representing capabilities for gates, then, is

done by adding a gate flag to the other three flags already possible in

mode array entries. If the gate flag is present in a particular entry,

then a list of displacements of valid gate locations within the corres­

poinding segment is also part of the mode information, along with the

name of the domain for which these locations are gates.

An Example of Mode Arrays

Figure 2-1 illustrates mode arrays defining three domains associated

with some process. Segments 0 and 1 are read/write data segments access­

ible only from domain A. Segments 2 and 3 are pure procedure segments

executable only in domain A. A program executing in domain A can

change the domain of execution to B by transferring control to location

64 in segment 4, and to C through location 32 in segment 8. Domains B

and C are similar. Note that segment 6 is pure procedure executable in

mu de ~:rr'-1Y~ f u 1- lllOdE, array for mode array for
domain J\ domain B domain c

.'i

0 null null seg"' ri,\.r

1 r\\~ null null

2 re null null

J re Till 11 null

4 b. (6 ~t: E) .C'' null

5 nul l nv null

(, n.nl l ~n re

null t~•.,..' .E.

8 i,_(32:C; _g_(J2:C) re

9 nu LI null rw

Figure 2-1: l:.xampl"'. acl'•.'Ss mode arravc.; lor three domains of a process.

44

both domains B and C, and that segment 7 is a data segment that can be

read and written from domain B but only read from domain C.

Cross-Domain Calls

As discussed in Chapter 1, the criterion of prograillliling generality

leads to a pattern in which the domain of execution of a computation is

changed when one program invokes another that requires execution in a

different domain. Adoption of this pattern means that the gate capa-

bilities just described will normally correspond to program entry points

and that a transfer of control to one of these gate locations will nor-

* mally be part of an interprocedure call . Such a call, however, in-

valves several important functions in addition to the transfer of con-

trol to an entry point, all of which must be handled properly if a

cross-domain call is not to compromise the protection provided by either

of the involved domains. Some of these additional functions lead to the

need for the processor to recognize, manipulate, and enforce capabil-

ities with different dynamic properties than the encapsulation capa-

bilities just presented, if the processor is to perform automatically

cross-domain calls. These new kinds of capabilities control the access

* A procedure segment may actually contain a set of hierarchically nested
procedures permanently bound together by the compiler. An interproce­
dure call is the call used to invoke an entry point into the outermost
level of such a nested set of procedures. With the exception of one
special circumstance discussed later, entry points into the inner layers
of such a nest of procedures are not intended to be invoked from inde­
pendent, separately compiled procedures, and thus will not be gate loca­
tions. The calling methods used within a procedure segment to invoke
the inner entry points are of no concern to the system or its protection
mechanisms.

45

of programs executing in the called domain to the arguments passed with

the call and to the return point. They must be added to the called

domain when a cross-domain call occurs and removed when the matching

return occurs.

As a basis from which to develop the properties of argument and

return capabilities, the action of an interprocedure call is considered

in more detail. An interprocedure call and return, as defined in a

language like PL/I, can be broken into eight steps. The call operation

itself involves:

1. specifying the arguments to be passed to the called procedure;

* 2. saving the current procedure activation record so that it may
be restored when the subsequent return occurs;

3. specifying the program location to receive control when the
subsequent return occurs;

4. transferring control to the called entry point;

5. creating a new activation record for the called procedure.

Once invoked, the called procedure will occasionally reference the argu-

ments provided by the calling procedure. Eventually, a return of con-

trol to the calling procedure may occur. This return operation involves:

*

6. destroying the activation record of the called procedure;

7. transferring control back to the return location that was
specified by the calling procedure;

8. restoring to use the activation record of the calling procedure.

The activation record, normally allocated in a push-down stack, is the
local addressing environment for a procedure invocation and provides
storage for information associated with a single invocation of a proce­
dure. Addresses of arguments, the address of the return point, and PL/I
"automatic" variables are examples of this kind of information.

46

The additional requirement of calls that change the domain of execution

is that all of these steps take place without compromising the protec­

tion provided by either of the domains involved.

A cross-domain call occurs if the virtual memory location to which

control is transferred in step 4 happens to be defined by a capability

in the domain of execution (call it domain A) as a gate into another

domain (call it domain B). In this case the return point specified in

step 3 and transferred to in step 7 is really a gate back into domain A,

for a transfer to this location by a procedure executing in domain B

should change the domain of execution back to A. As seen earlier, the

ability to transfer control to a gate and change the domain of execution

can be controlled by a capability. The capability for this return point

cannot be a permanent part of domain B. It if were, then procedures

executing in domain B could use it whether the corresponding call from

domain A were outstanding or not. What is required is that the capa­

bility for the return gate be added to domain B when the call occurs,

and removed from domain B when this capability is used to make the

return.

A sequence of cross-domain calls may occur in a process before any

of them are returned. In the general case, that sequence may include

the recursive invocation of some domains of the process. The proper

dynamic behavior of the capabilities for return gates associated with

such a sequence is achieved by associating with a process a push-down

stack for return gate capabilities. Each time a cross-domain call

occurs, the processor adds the associated return gate capability to the

top of this stack, pushing-down whatever other return gate capabilities

47

may already be in t~e stack. At any given time, only the return gate

capability at the top of the stack is available. When this capability

is used to perform a cross-domain return, the processor removes it from

the top of the stack, thereby making available the next older return

gate capability. Thus, at any given time, the only cross-domain return

that can be performed is defined by the address and domain name contain­

ed in the gate capability at the top of the stack. This stack, then,

guarantees that the returns matching the sequence of outstanding cross­

domain calls in the process will occur in the correct order, and that

each such return will transfer control to the expected location and will

properly change the domain of execution. This guarantee is valid even

if more than one cross-domain call into some domain is included in the

sequence, for procedures executing in one invocation of this domain in

the sequence are not able to use the return capabilities associated with

other invocations.

The capability for the return gate of a cross-domain call is really

a special case of a capability for an argument passed with a cross-domain

call. Capabilities to reference whatever arguments are specified in step

1 of the call operation must be added to the called domain when the call

occurs, and must be removed when the return transfer of control in step

7 occurs. The stack for return gate capabilities can be expanded to

control the availability of argument capabilities as well. Thus, when a

cross-domain call occurs, the processor allocates a stack frame at the

top of this stack, pushing-down whatever stack frames may already exist.

Into this frame the processor places a capability for the return gate

associated with the call and capabilities allowing reference to whatever

48

arguments are specified in step 1 of the call operation. Only the capa-

bilities in the top frame on the stack are available at any given time.

The top frame is removed, and the remaining frames popped-up, when a

cross-domain return occurs.

Static Access and Dynamic Access

With the addition of the stack for argument and return capabilities,

the capabilities that define a domain of a process are represented in

two different ways. First, there is the mode array of the domain that

specifies the encapsulation capabilities of the domain. In addition,

whenever a particular domain is the domain of execution of the process,

the top frame on the capability stack specifies the argument capabilities

(including the capability for the return gate) that are temporarily part

of the domain. To differentiate these two sources of capabilities for a

domain, access available from the encapsulation capabilities to proce-

dures executing in a domain is called static access, and that available

from the argument capabilities is called dynamic access. The capability

* stack of a process is called the dynamic access stack. Much of the

rest of this thesis will be concerned with the difference between static

and dynamic access, so the reader is advised to pause and be sure he

understands the definitions of these concepts.

* The dynamic access stack is distinct from, though related to, the stack
of activation records for procedure invocations.

50

capabilities must be able to name arbitrary subsegments, not just whole

segments as do static access capabilities. The mode should provide

separate control on reading and writing the subsegment named in a

dynamic access capability, so the intention that the value of a particu­

lar argument not be altered can be enforced. Thus, the dynamic access

capabilities recognized and enforced by the processor have the form:

(~J~J~J,!!!)

where the first three elements name a subsegment and the last element is

some combination of read and write permission flags.

The dynamic access capabilities for return gates need to contain

the same information as static access capabilities for entry point gates.

The name portion of a return gate capability should specify the two-part

address of the return location, and the mode should indicate that the

capability is for a return gate and should specify the corresponding

domain of execution. It is very convenient, however, if the mode also

includes one additional piece of information the two-part address of

the activation record that is to be restored to use when the cross­

domain return occurs. The calling procedure needs to be guaranteed that

the correct activation record is restored to use when a cross-domain

return occurs, as well as be assured that the return transfers control

to the expected location and changes the domain of execution to the

proper domain. If procedures executing in the called domain could some­

how cause a different activation record to be restored to use, then the

calling domain could be caused to malfunction after the return occurred.

As will be seen in Chapter 3, the activation record of an executing

procedure is defined by the two-part address in a particular addressing

51

register of the processor. Using the extra infonnation in the return

gate capability, the processor can verify that this register contains

the correct value before performing a cross-domain return. Thus, the

dynamic access capability for a return gate really gives permission to

perfonn a very specific three-part operation: load the activation

record definition register with a particular value, transfer control to

a particular location, and change the domain of execution to a particu­

lar domain. As will be seen in Chapter 3, the return gate capability

may be extended to control call and goto operations to entry points and

labels, respectively, that are passed as arguments with cross-domain

calls.

Matching References to Capabilities

A virtual memory reference is specified by a two-part address

(~,i), an implied length J, and an operation. Validation of such a

reference requires matching it with some capability in the domain of

execution.

Matching a reference to a static access capability is quite

straightforward. The segment number ~ is used as an index into the mode

array for the domain of execution. The read, write, execute, and gate

permission flags in the selected entry indicate in the manner discussed

earlier whether or not the reference is allowed, depending upon what

operation is being attempted.

Matching a reference to a dynamic access capability is a little

more complicated. Since more than one dynamic access capability may

cover a particular subsegment, an associative search of the available

52

dynamic access capabilities is needed. What is required to allow the

reference is the existence of at least one dynamic access capability

covering the referenced subsegment and allowing the operation being

attempted.

It is up to the procedure in execution to determine which of these

two kinds of validation will be applied to each virtual memory reference.

The processor never forces the use of one or the other validation method.

On the other hand, it is important to maintaining the integrity of a

domain to choose the proper method of access validation for each refer­

ence. Validation relative to the dynamic access capabilities in a

domain should be used if the reference represents an attempt to access

an argument provided with a cross-domain call. Otherwise, the reference

should be validated relative to the static access capabilities in the

domain. The reasons for this pattern of validation will be discussed in

a moment.

The mechanisms of the processor for forming and manipulating two­

part addresses make it natural to use the two methods of access valida­

tion in the manner just suggested. All two-part addresses that are de­

rived from the argument specifications associated with the cross-domain

call that started execution in a domain are automatically tagged by the

processor. A reference using such a tagged address triggers validation

relative to the dynamic access capabilities of the domain of execution.

References with untagged addresses are validated relative to the static

access capabilities of the domain. Unless an executing procedure makes

an explicit effort to alter these tags, which it can do, the processor

always manages to identify correctly addresses which were derived from

53

cross-domain call argument specifications, and perform the proper vali-

dation on references made using such addresses.

The reason to be careful with argument-related addresses is that

they are derived from information provided by a procedure executing in

another domain the domain which generated the cross-domain call. In

general, there is no guarantee that they locate pieces of the virtual

* memory that are accessible from the calling domain For example, the

calling procedure could maliciously or erroneously provide an argument-

related address that in fact names some location in a critical data base

encapsulated in the called domain -- a data base that is not accessible

from the calling domain. If a procedure executing in the called domain

writes through this address, it does so with the intention of changing

the value of an output argument. If this reference were validated

relative to the static access capabilities of the called domain, it

would succeed, erroneously changing the critical data base. Validated

relative to the dynamic access capabilities of the domain, however, the

reference fails, for as seen earlier the dynamic access capabilities

cannot give access permission that is not also available to the calling

domain. Thus, dynamic access capabilities allow the called domain to

protect itself against "trick" argument-related addresses provided by

the calling procedure.

* While it is true that some of the addresses that can be derived from
argument specifications will have been checked by the processor when
used to create the dynamic access capabilities corresponding to cross­
domain arguments, as discussed earlier, not all such addresses will have
been so checked. Further, even though the capabilities cannot be alter­
ed once created, the specifications might be changed after being checked,
and it is the specifications from which the called domain generates
argument addresses. This matter is discussed further in Chapter 3.

54

Creation of a New Activation Record

One function that must be performed by a cross-domain call has not

been discussed yet -- creating a new activation record for the called

procedure. When a call changes the domain of execution of a process,

allocation of a new activation record for the called procedure must

take place without any possibility of interference from the calling

procedure. Therefore, the called procedure cannot depend upon any in-

formation provided by the calling procedure in order to find space for

a new activation record.

Activation records are normally allocated in a push-down stack.

To prevent procedures executing in one domain from directly reading and

writing the activation records (or their residues) of procedures that

execute in other domains, this push-down stack will be spread over

several segments one for each domain of a process. Static access

capabilities in the various domains are usually arranged so that the

stack segment for a particular domain can be read and written from that

domain, but is not accessible from other domains except those encapsu-

lating portions of the supervisor.

With this scheme, allocating a new activation record for the called

procedure involves finding the stack segment for the domain of execution

of the called procedure and then locating the beginning of the free area

at the end of this segment. The processor makes this operation easy and

safe by leaving in a particular addressing register after each call,

cross-domain or otherwise, the two-part address of the beginning of the

proper stack segment for the new activation record. From this address

the called procedure can easily locate the free area at the end of this

55

segment, and allocate its own activation record, without having to de-

pend on information provided by the calling procedure. This scheme

requires that there be embedded in the processor some algorithm for gen-

erating the segment number of the proper stack segment given the name

of the domain of execution.

Sunnnary

A processor which supports a multidomain computation implemented

as a single execution point in a segmented virtual memory, and

automatically performs cross-domain calls, must recognize and enforce

two distinct kinds of capabilities -- static access capabilities repre-

senting the encapsulation of subsystems in domains and dynamic access
.

capabilities representing cross-domain arguments. These two kinds of

capabilities have different dynamic properties.

All functions of an interprocedure call have protection implica-

tions when such a call is allowed to change the domain of execution.

The static access capability for controlling access to entry point gates,

the various dynamic access capabilities, and processor assistance in

creating a new activation record for the called procedure are sufficient

tools for performing these functions without compromising the protection

provided by either domain involved in a cross-domain call.

In the next chapter these ideas are expanded into the design of a

processor meeting the objectives outlined in the first chapter. That

processor design will enable many of the ideas introduced in fairly

general terms here to be presented in specific forms which make their

validity and usefulness more apparent.

CHAPTER 3

THE PROCESSOR DESIGN

This chapter describes a hardware processor that supports a multi­

domain computation implemented as a single execution point in a segmen­

ted virtual memory and that automatically performs cross-domain calls.

This processor provides a specific context in which to explore some of

the detailed implications of the objectives presented in Chapter 1 and

in which to expand the ideas that were introduced in Chapter 2.

The processor described here is a paper machine. No realization

of this design exists. It is claimed, however, that the processor

described here could be built economically using today's hardware tech­

nology and that, if built, it would provide a practical hardware base

for a computer utility. This claim is based on the facts that a pro­

cessor with similar overall architecture but less sophisticated protec­

tion mechanisms is currently being built by Honeywell Information

Systems, Inc. to serve as the primary component of a new hardware base

for Multics [25] and that the new protection mechanisms described here

add little to the overall complexity of that machine.

In the case of many of the component mechanisms in this processor,

the specific implementation described represents a choice among several

alternative implementations that all meet the basic functional require­

ments of the component. An important criterion in making such choices

was the functional clarity of the various alternatives. In each case

the implementation chosen is intended to expose the intrinsic problems

56

57

that are solved by a component of the protection mechanisms while at

the same time illustrating that a practical, general implementation of

that component is possible. For example, the method used to implement

static access capabilities places a fairly small fixed upper limit on

the number of domains that can be associated with a single process at

any one time. This implementation is easy to understand and quite

economic if a small number of fairly large domains are usually associated

with a process. An alternative implementation that allows an essentially

unlimited number of domains to be associated with a process was rejected

because it introduced complexity that obscured the intrinsic problems

being solved by this component of the protection mechanisms in the

processor. The specific design presented here, then, should be consid­

ered as one example of how to organize a processor to meet the stated

objectives. After understanding how this processor works, the inven­

tive reader should be able to devise a large number of variations on

this design which embody the same basic techniques but which may meet

better the specific external constraints associated with a particular

application of such a machine.

The Virtual Memory and Static Access Capabilities

As in Multics, the implementation of the segmented virtual memory

is based on a descriptor segment that is stored in memory. Figure 3-1

illustrates the format of a descriptor segment entry (DSE). If the

validity bit (DSE.V) is ~' then a DSE contains the absolute address of

the beginning of a segment in memory (DSE.ADDRESS) and the length of

of that segment (DSE.LENGTH). The descriptor segment base register (DSBR)

58

Descriptor segment base register

DSBR !ADDRESS I LENGTHI

Domain of execution register

DR

Descriptor segment (stored in memory)

0 1

DSEn ADDRESS LENGTH R W E G R W E G

mode array for
domain 1

7

R W E G DOMAIN GATES V

Figure 3-1: The descriptor segment and related registers.

59

of the processor contains the base address (DSBR.ADDRESS) and length

(DSBR.LENGTH) of the descriptor segment, allowing the address transla-

tion logic of the processor to reference DSE's by absolute address.

Automatic translation of a two-part address into the corresponding

absolute address, done by using the segment number as an index with

* which to retrieve the appropriate DSE , happens each time that the

virtual memory is referenced, i.e., each time an instruction, indirect

address, or instruction operand is referenced by the executing program.

If each process is to have its own virtual memory, as in Multics, then

each process has its own descriptor segment. If several processes are

to share a single virtual memory, then those processes have a common

descriptor segment.

As implied by this description, it is assumed that the storage

space for each segment is contiguously allocated in a one-level memory

system with enough capacity to hold all segments of interest. With most

real implementations of segmented virtual memories, storage for segments

is provided by a multilevel memory system using block allocation and

paging. If used, block allocation and paging must be taken into account

by the address translation logic of the processor. When properly imple-

mented, however, these storage management techniques are functionally

transparent from the point of view of protection mechanisms. The assump-

tion of a one-level memory system and contiguous allocation of space for

segments allows problems of storage management to be ignored.

* Including in the processor a small, fast associative memory for the
most recently used DSE's can eliminate most of the memory references for
DSE' s [24).

60

As indicated in Chapter 2, the static access capabilities included

in the domains associated with a process can be represented as mode

arrays, one per domain. Mode arrays are indexed by segment number, as

is the descriptor segment. This suggests the straightforward implemen-

tation for static access capabilities of combining the mode arrays of a

process with the descriptor segment. The DSE format in Figure 3-1

illustrates this implementation. Each DSE contains a set of read, write,

execute, and gate permission flags for each domain that can be supported

by the processor. The domain of execution register (DR) records the

number of the current domain of execution of the process. The value in

DR is used to select the proper set of permission flags with which to

validate virtual memory references.

The DSE for a segment is an ideal place in which to record the

static access capabilities controlling references to that segment.

Since the processor must examine the DSE for a segment each time that

segment is referenced anyway, little effort is added to validate an

* attempted access against static access capabilities recorded there.

With this implementation of static access capabilities, changes in the

static access of a domain can be made innnediately effective, since

access is validated each time a reference is made.

A key engineering decision is the number of domains that will be

supported automatically by the processor. The size of a DSE increases

as the number of domains to be supported increases. Based on experience

* If an associative memory for DSE's is used, the static access capa-
bilities for a segment will automatically be in the associative memory
whenever the corresponding DSE is there.

61

with Multics, the number chosen here is eight. Thus, there are 32 per-

mission flags in each DSE. This choice is based upon the assumption that

domains normally encapsulate relatively large subsystems and, therefore,

* that a few domains per process is sufficient.

th
Whenever DR contains the value g; then set of flags in the DSE's

control access to the virtual memory of the process. An attempt to read

or write segment number~ will be allowed only if DSE~.~ or DSE~.Wg is

set on, respectively. An attempt to transfer control to location (2_,~)

has three possible results. If both DSEs.En and DSEs.Gn are off, then

the transfer is not allowed. If DSEs.En is~' then the transfer is

allowed and execution continues in the same domain. If DSE~.G~ is ~'

then the segment contains gates into another domain. The displacements

of the gate locations are recorded in DSE.GATES, and the name of the

domain is recorded in DSE.DOMAIN. For ease of representation, all gate

locations in a segment are collected together at the beginning of the

segment. DSE.GATES indicates the number of such gate locations. Thus,

~ < DSE~.GATES guarantees that the transfer is to a gate location. If

this check is true, then DR is changed to the value recorded in

DSE~.DOMAIN, thus changing the domain of execution of the process, and

the transfer is allowed. Having both DSEs.En and DSEs.Gn set on is not

meaningful.

* An alternative implementation of static access capabilities is to place
the mode array for each domain in a separate segment. This implementa­
tion removes the small fixed upper limit on the number of domains that
may be associated with a process at any one time, but complicates the
naming of domains, the representation of gates, and the structure of
the associative memory for DSE's.

62

By hardware and software convention, domain O is always used to

encapsulate the most privileged portion of the supervisor. Instructions

designated as privileged will be executed by the processor only in

domain 0. The instruction to load DSBR is an example of an instruction

that must be privileged in order to maintain the integrity of the pro­

tect ion mechanisms in the system. The seven remaining domain numbers

available to a process are managed by the supervisor in much the same way

that the larger number of available segment numbers are managed. When a

program executing as part of a process first wants to reference some

segment stored on-line, the segment is assigned an available segment

number in the virtual memory of the process by the supervisor. Likewise,

when a program first wishes to associate with the process some protected

subsystem whose definition is stored on-line, that protected subsystem

is assigned an available domain number by the supervisor. Thus, while

the maximum number of protected subsystems may be associated with a

process at one time is eight, the particular eight can change with time,

and different sets of eight or fewer protected subsystems can be asso~

ciated with processes that have different virtual memories.

Generating Virtual Memory Addresses

In order to understand the discussion to be presented in the follow­

ing sections of this chapter, it is necessary to know something about the

generation of two-part addresses by machine language programs. For ease

of description, the processor presented here is primarily a word

addressed machine. Thus, the displacement portion of a two-part address

is a word number, where a word is enough bits to hold an indirect

63

address or an instruction, and the implied length of most references is

one word. The ideas presented here, however, can also be applied easily

to a byte or bit addressed machine. The ultimate precision of referenc-

ing memory by arbitrary bit number and arbitrary bit length can be very

useful in controlling access to cross-domain arguments that are not word

aligned, and will be considered in that respect later.

A two-part address together with a protection tag is called a

* pointer. The tag portion of a pointer is a one bit flag that indicates

whether the static access capabilities or the dynamic access capabilities

of the domain of execution should be used to validate references through

the pointer. The tag will be considered in more detail in a moment.

Figure 3-2 presents the registers and storage formats relevant to manip-

ulating pointers. The instruction pointer register (IPR) specifies the

two-part address of the instruction being executed. Since instruction

retrieval is always validated relative to the static access capabilities

of the domain of execution, the pointer in IPR does not include a tag.

Arbitrary pointers may be kept in the pointer registers (PRl, PR2, ...)

or stored in memory as indirect addresses (lND). Because segment

numbers cannot be known when a procedure segment is compiled and because

most procedure segments will be pure, instructions (JNST) specify

operand addresses by giving an offset (JNST.OFFSET) relative to IPR or

one of the PR's. INST.PRNUM = 0 indicates IPR-relative addressing and

INST.PRNUM > 0 indicates PR-relative addressing. In the latter case

* The one bit tag is a simplification used now to facilitate the descrip-
tion of the processor. The multibit tag actually required will be intro­
duced later.

Instruction pointer register

IPR SEGNO

Pointer registers

PRl

PR2

TAG

~

SEGNO

64

WORDNO

WORDNO

Indirect address (stored in memory)

IND ~IT_A_c_..l _____ sE_GN __ o ____ ___ w_o_RD_N_O~~-'

Instruction (stored in memory)

INST I PRNUM I OFFSET OPCODE I I I

Temporary pointer register

TPR l_T_A_c_,_l _____ sE_G_N_o ____ _._ ___ w_o_RD_N_o~~~

Figure 3-2: Register and storage formats for address formation.

65

the value of the field indicates which PR. Indirect addressing may be

specified by setting the indirect flag (INST.I) £!!.· The final item in

Figure 3-2 is the temporary pointer register (TPR). This is an internal

processor register that is not directly program accessible. In TPR is

formed the two-part address, called the effective pointer, of the

operand of each instruction.

The algorithm for generating the effective pointer, given an

instruction, is presented in Figure 3-3. Ignoring tags in pointers for

a moment, a couple of examples will make clear the operation of this

algorithm. The instruction:

PRNUM OFFSET OPCODE I

0 200 I ADD off

specifies that its operand is the word 200 beyond the instruction in

the same segment. The instruction:

[1 200 ADD off

specifies that its operand is the word 200 beyond the location specified

by the pointer in PRl. The instruction:

1 200 I ADD I on

causes the word 200 beyond that specified by the pointer in PRl to be

retrieved from memory and interpreted as an indirect address which

specifies the two-part address of the instruction's operand. The instruc-

tions from these three examples may be written as:

ADD t200

ADD PRl t200

ADD PRlt200,*

respectively.

66

start

INST.PRNUM > 0
no I

(IPR-relative addressing)
yes

(PR-relative addressing)

TPR. TAG ,__ off
(E_ = INST. PRNUM)

TPR.TAG ,__ PRn.TAG
TPR.SEGNO ,__ PRn.SEGNO
TPR.WORDNO ,__ PRn.WORDNO

TPR.SEGNO ,__ IPR.SEGNO
TPR.WORDNO ,__ IPR.WORDNO

+INST.OFFSET

INST. I = on

yes
(indirect addressing)

Retrieve indirect address from memory
using two-part address in TPR. Type
of access validation to use indicated
b TPR.TAG.

..--~~~~~~....___~--.,-~~~~

TPR.TAG <-- TPR.TAG I IND.TAG
TPR.SEGNO ,__ IND.SEGNO
TPR.WORDNO ,__ IND.WORDNO

~'(

+INST.OFFSET

done ~ TPR contains the effective pointer
to the operand of the instruction.

Figure 3-3: Algorithm for effective pointer generation.

*The symbol "I" indicates the logical OR operation.

67

Obviously, for this machine really to be practical a richer collec­

tion of addressing techniques would be needed. The processor as

described does not even have index registers! The techniques shown,

however, are sufficient to discuss the protection issues raised in this

thesis and to illustrate the rules that other addressing techniques must

follow. With respect to protection mechanisms, it is straightforward to

add other more sophisticated addressing techniques to the processor.

Two machine instructions are representative of those used to manip­

ulate pointers. The "effective pointer to pointer register .!!" instruc­

tion (EPP!!_) causes the effective pointer generated by the instruction,

i.e., the entire contents of TPR, to replace the contents of PRn.

"Store pointer from pointer register .!!:." (SPF!!,) causes the entire contents

of PRn to be stored at the specified location in the format of an in­

direct address. As an example of how these two instructions can be used,

note that the following code sequence saves the pointer from PR4 and then

restores it to PR4:

SPP4

EPP4

PRlt367

PRlt367,*

The role of the tags in pointers is now discussed in more detail.

The tag differentiates pointers related to cross-domain arguments from

other pointers. When the tag in a pointer is off it means that a

reference through that pointer will be validated relative to the static

access capabilities of the domain of execution. When the tag is on the

dynamic access capabilities of the domain of execution will be used

instead.

68

The processor is organized so that, as a matter of course, the tag

is on in all pointers related to cross-domain arguments. The key to

this feature is the effective pointer generation algorithm presented in

Figure 3-3. It is the tag in TPR that determines which type of access

validation will be applied to each indirect address reference and each

instruction operand reference. As can be seen from Figure 3-3, the tag

in TPR will be on at the conclusion of effective pointer generation for

some instruction if the operand address specification in the instruction

indicates a PR whose tag is on or locates an indirect address whose tag

is on or both. A reference to an indirect address, if required, will be

validated as indicated by the value of TPR.TAG at the point in the

algorithm where the indirect address is retrieved from memory.

The technique described in the next section for transmitting argu­

ments on a call is to prepare a list of indirect addresses locating the

various arguments and then to connnunicate the location of this list to

the called procedure via a PR. In the case of a cross-domain call the

processor automatically sets the tag in this PR on. Since the called

procedure normally will derive the addresses of the arguments through

this PR using the effective pointer generation algorithm just described,

all argument-related addresses will acquire a tag that is ~ as a matter

of course, and therefore all references to cross-domain arguments will

be validated relative to the dynamic access capabilities of the called

domain as is desired. Referencing cross-domain arguments will be dis­

cussed in more detail later.

PRa

argument list

>

70

__,

return pointer

activation record pointer

pointer to argument 0

pointer to argument 1

>

pointer to argument n

0

1

2

3

4

5

6

2n+3

2n+4

Figure 3-4: Format of the argument list for an interprocedure call.

71

where £ indicates some PR that is temporarily free and "argument i."

d dd "f" . 1 . h .th represents an operan a ress speci ication ocating t e ~ argument.

The next two steps of a call are saving a pointer to the current

activation record and specifying the return location. The beginning of

the memory area holding the activation record in use is specified by

another pointer register chosen by system convention (call it P~). The

return location is always one word beyond the instruction that transfers

control to the called procedure. The instructions:

SPPs PRa t2

EPPn t3

SPPn PRatl

where n designates some unused PRJ create the return block at locations

1 and 2 of the argument list as shown in figure 3-4 by storing as in-

direct addresses the pointer from PRs and the pointer from IPR (suitably

offset).

Creating the argument list also includes storing additional argu-

ment-related information in the empty words shown in Figure 3-4. This

extra information is used by the processor in the case of a cross-domain

call to create the proper dynamic access capabilities. The definition

of these remaining parts of the argument list is delayed until the next

section.

Once the argument list is createdJ the next step of the call is

actually performing the transfer of control to the called entry point.

This is done by executing the instruction:

CALL "entry point"

where "entry point" is an operand address specification that locates the

72

entry point being called. In addition to transferring control, the

CALL instruction helps the called procedure create a new activation

record for itself by leaving in a third pointer register chosen by

system convention (call it PRE) a pointer to the zeroth word of the

stack segment in which the called procedure should allocate its activa-

tion record. This stack segment has in its zeroth word a pointer to the

beginning of the unused area at the end of the stack segment. The called

procedure creates a new activation record of £words there by executing

the instructions:

EPPs PRbtO ·k - '

EPPn PRst£

SPPn PRbtO

where ~ designates some PR other than one of the three reserved pointer

registers. The first instruction loads PRs with a pointer to the be-

ginning of the new activation record. The second and third instructions

update the pointer in the base of the stack segment to point just beyond

this new activation record.

Creating a new activation record completes the steps of the call

operation. While executing, the called procedure may reference words in

its activation record using operand address specifications of the form

11 PRsti" in instructions, It can generate in PRn the beginning address

0 f the i. th . h . . argument using t e instruction:

EPPn

When it comes time to return, the called procedure must perform the

three steps of the return operation. First, its activation record must

be released and added to the unused area at the end of the stack segment.

73

This is done with the single instruction:

SPPs PRhtO

which resets the pointer in the base of the stack segment to point at

the beginning of the released activation record. The second and third

steps of the return operation are transferring control back to the

calling procedure and restoring to use the activation record of the

calling procedure. These steps are performed in reverse order by the

following instruction sequence:

EPPs P~t2, *

RETURN PR!! tl, *

The first instruction restores to PRs the activation record pointer

from the return block in the argument list. The second instruction*

transfers control to the locatiqn specified by the return pointer from

the return block. Thus, the calling procedure receives control at the

proper return point and the proper activation record is restored to use.

Note that the only PR which is restored by the return operation to

the value it contained prior to the call is PRs. It is up to the call-

ing procedure to explicitly save and restore other PR's whose contents

are valuable. Because PRs is automatically restored by the return, the

activation record can be used by the calling procedure as a place in

which to save the values of other PR's before the call, from which

place they may be restored after the return.

* Ignoring protection issues, the RETURN instruction simply transfers
control to the location specified as its operand. As will be seen in
the next section, however, the RETURN instruction can perform some
protection-related operations that normal transfer instructions cannot.

75

two extra operations that are not performed if the call does n.ot change

the domain of execution. The first is creating a new frame on the

dynamic access stack of the process and filling this frame with the

dynamic access capabilities which will allow procedures executing in the

called domain to reference the arguments of the call and transfer control

back to the return gate. The second extra operation is to set the tag

in the argument list pointer register (PR!!,. TAG) to on so that references

to the cross-domain arguments by procedures executing in the called

domain will be validated with respect to these dynamic access capa-

bilities, rather than the static access capabilities of the called

domain. After performing these two extra steps in the case of a cross-

domain call, the CALL instruction completes in the normal manner by

loading PR£ with a pointer to the base of the stack segment in which

the called procedure should allocate its new activation record, and

then transferring control to the called location. The pointer in PRb

is created the same way whether the call is cross-domann or not. The

stack segment selection rule embedded in the processor is that the

* stack segment for domain n is segment number n. Thus, PRb.SEGNO is

* This stack segment selection rule is adequate only for the case that
each process has its own virtual memory. If it is desired to allow
multiple processes with the same virtual memory, i.e., more than one
execution point in a virtual memory, then a more sophisticated stack
segment selection rule is required to provide each of the processes
sharing a virtual memory its own set of stack segments. A simple way
to provide for multiple sets of stack segments in a virtual memory is
to include in the processor a register that specifies the eight con­
secutively numbered segments that are the stack segments. When a
CALL instruction is executed, then PR.£.SEGNO is calculated by adding
the new domain number to the value in this stack segment selection
register. The various processes sharing a virtual memory each would
execute with a different value in this register, and thus each would

78

PR a

argument list

argument list header { length of argument list 0

{ return pointer 1
return block

activation record pointer 2

{ pointer to argument 0 3
entry for argument 0 RW size 4

{ pointer to argument 1 5
entry for argument 1 RW size "6

7

{ pointer to argument n 2n+3
entry for argument n RW size 2n+4

Figure 3-5: Completed argument list format for an interprocedure call.

79

The dynamic access stack (DAS) of a process, in which dynamic

access capabilities are created by the processor on a cross-domain call,

is located in memory -- presumably in a segment that can be read and

written directly only from domain 0. The location and state of the DAS

is specified by the DAS definition register (DASDR) shown in Figure 3-6.

This register, in addition to being manipulated by the CALL and RETURN

instructions in the case of cross-domain calls and returns, can be loaded

and stored directly by privileged instructions. DASDR.SEGNO and

DASDR.WORDNOl specify the two-part address of the beginning of the most

recently created DAS frame. DASDR.WORDN02 specifies the word one beyond

the last word in this frame. If no unreturned cross-domain calls e¥ist,

then DASDR.SEGNO and DASDR.WORDNOl will specify the beginning location

for the DAS of the process, and DASDR.WORDN02 will equal DASDR.WORDNOl.

As can be seen by comparing Figures 3-5 and 3-6, the creation of a

new DAS frame by the CALL instruction in the case of a cross-domain call

is quite straightforward. PR~ locates the argument list to be used as

the information source and (DASDRLSEGNO,DASDR.WORDN02) is the two-part

address for the beginning of the new frame. While creating a new DAS

frame the processor validates all references to the argument list

relative to the static access capabilities of the domain from which the

* call is being made and validates all references to the DAS relative to

the static access capabilities of domain 0.

* According to the normal pattern of operation described earlier, an
executing procedure has static access to its activation record and to
any argument lists it creates for interprocedure calls. To simplify
the processor description, the processor protection mechanisms are de­
signed to accomodate only this normal pattern of operation. The

81

The first capability in the DAS frame is the return gate capability.

This contains the return pointer and the activation record pointer from

words 1 and 2 of the argument list. It also contains the number of the

domain to which the return should be made (DOMAIN), i.e., the domain of

execution at the time the call is made. The final item in this capa-

bility (LASTFRAME) is the word number of the beginning of the previous

DAS frame, as found in DASDR.WORDNOl.

Following the return gate capability in the DAS frame are the

capabilities allowing read and write access to the various arguments.

Each two-word argument entry in the argument list generates a two-word

capability at the matching location in the DAS frame. The capability

gives procedures executing in the called domain access to the subsegment

specified by the argument entry. The first word of the capability is a

pointer to the beginning of the argument, copied from the argument entry.

The second word contains the read and write permission flags from the

argument entry. The END field in the second word is the word number of

the last word of the argument, derived by adding the size from the

argument entry to the word number in the argument pointer and subtract-

ing one. (The ending word number is easier to interpret than the size

footnoted statement in the text above is the first of several places
where this decision is apparent in the processor design. If some pro­
cedure chooses not to conform to these standards and instead creates an
activation record or an argument list to which it has dynamic access,
however, the protection mechanisms will not be circumvented. But such
unconventional behavior is not fully supported and that procedure will
not be able to make cross-domain calls. While it is hard to imagine
the circumstances under which a procedure would find creating a dynam­
ically accessible activation record or argument list to be useful, the
processor could be extended to fully support such.

82

when matching references to the dynamic access capabilities.)

The meaning of the SOURCE field in the second word of the capability

is a little harder to explain. Recall from Chapter 2 that dynamic access

capabilities must be constrained to give no more access than is avail­

able in the calling domain. In order to enforce this constraintJ before

making the corresponding dynamic access capability the processor must

verify that the argument specified by an argument entry is in fact

accessible from the calling domain in the manner indicated. There are

two ways for the calling procedure to have access to the argument:

access can be allowed by virtue of a static access capability in the

calling domain or by virtue of a dynamic access capability in the calling

domain. The tag portion of the pointer to the beginning of the argument

in the argument entry specifies the opinion of the calling procedure as

to which is the case. When the tag is onJ specifying dynamic accessJ

the calling procedure is indicating its intention of passing-on all or

part of an argument from the earlier cross-domain call that began

execution in the calling domain. When the tag is offJ specifying static

accessJ the calling procedure is indicating that the argument originates

in the calling domain.

If the argument pointer tag is offJ then the calling domain is the

source of the argument and the processor must verify that the subsegment

specified in the argument entry is accessible to the calling domain by

virtue of its static access capabilities. The obvious way to perform

this verification is to reference the DSE for the containing segment and

check that the appropriate read and/or write permission flags are ~·

If the check succeeds the dynamic access capability can be created.

83

With this method the fact that the dynamic access capability exists is

proof that the calling domain includes the required static access

capability. A very important disadvantage of this method is that it

makes it hard to change (or revoke) the static access from various

domains of a process to a segment. Not only do permission bits in the

corresponding DSE need to be changed (which is easy to do), but all

dynamic access capabilities in the DAS giving access to pieces of the

segment must be found and changed (which is hard to do). To get around

this problem, no check of static access is made when the dynamic access

capability is created. Instead, the number of the calling domain is

simply recorded in the SOURCE field of the dynamic access capability as

the source of the capability. The static access of the calling domain

will be verified each time the dynamic access capability is used to

validate a reference from the called domain. In other words, if a parti­

cular reference by a procedure executing in the called domain appears to

be allowed because it matches the dynamic access capability, then the

reference is also checked against the static access capabilities in the

domain indicated by the SOURCE field. As a result, the dynamic access

capability can give no more access than is available from the static

access capabilities in the calling domain.

If the argument pointer tag is .£!!, then the calling domain is not

the source of the argument. The calling procedure is passing-on all or

part of an argument from the earlier cross-domain call that began

execution in the calling domain and the actual source of the argument

is somewhere back along the chain of unreturned cross-domain calls in

the process. In this case the processor must verify that the subsegment

85

on a cross-domain return, after verifying that PR~ contains the activa­

tion record pointer recorded in the return gate capability and that the

return is to the return location recorded in the return gate capability,

a check must be made to assure that the return point is in a segment

which by static access capability is executable in the calling domain.

After creating dynamic access capabilities for all the arguments,

a final capability is created in the new DAS frame giving read access

to the subsegment containing the argument list itself. (The called

procedure needs to be able to read the argument list to find the argu­

ments.) The pointer in this capability comes from PR~ and the END field

value is calculated from the argument list header. The source domain of

this capability is the calling domain.

Creation of the new DAS frame is completed by updating DASDR to

locate the new frame, i.e., DASDR.WORDNOl is set from DASDR.WORDN02 and

then DASDR.WORDN02 is set to indicate the word one past the end of the

new frame.

Destroying the DAS frame on a cross-domain return is done by

setting DASDR.WORDN02 from DASDR.WORDNOl, and setting DASDR.WORDNOl

from the LASTFRAME field of the return gate capability in the destroyed

frame.

Before leaving this discussion of dynamic access capabilities, the

algorithm used to match a reference against the dynamic access capa­

bilities of a domain needs to be stated more precisely. Assume a read

reference to location (~,E:) is to be validated with respect to the

dynamic access capabilities of the domain of execution. The matching

algorithm is to perform a linear search of the most recent DAS frame,

86

i.e.J the frame located by DASDRJ starting with word 3J looking for a

capability that meets all of the following conditions:

1. read permission flag in the capability is onJ

2. segment number from the pointer in the capability is ~J

3. word number from the pointer in the capability is less than or
equal to ~J

4. END field in capability is greater than or equal to ~·

The first capability that matches stops the search. The reference is

allowed only if it also passes the check against the static access

capabilities of the indicated source domain. If no match occursJ or the

static access check failsJ then the reference is not allowed, A write

reference is handled in the analogous way. The linear search required

can be eliminated in the case of multiple references to the same argu-

ment by the addition to the processor of a smallJ fast associative

memory for the most recently used dynamic access capabilities. Such

an associative memory will be described in more detail later.

Propagation of Tags

When a cross-domain call occurs the tag in PRa is set on. The

purpose of this action is to cause all pointers generated in the called

domain that are related to cross-domain arguments to have tags that are

on. Then references through these pointers will be validated relative

to the dynamic access capabilities added to the called domain by the

cross-domain callJ and not relative to the static access capabilities of

the called domain. The propagation of the tag from PR~ to other pointers

related to cross-domain arguments is caused by the effective pointer

87

generation algorithm presented earlier. This algorithm guarantees that

any pointer generated from a pointer whose tag is on will also have its

tag EE.· If applied properly by procedures executing in the called

domain, the algorithm guarantees that all pointers generated from PR!!,

and pointers generated from these pointers, etc., will have their tags

set EE.•

An example will illustrate.the method of tag propagation. Imagine

that a subsegment containing a threaded list of variable-sized blocks

is passed as argument 0 on a cross-domain call. The argument entry

and the corresponding dynamic access capability will contain a pointer

to the beginning of this subsegment and specify its length. Each block

in the subsegment contains in word 1 the size of the block and in word 0

a pointer to the next block in the threaded list. The first block on

the list is known to begin at word 0 of the subsegment. (It is quite

possible to define and manipulate a data structure like this in PL/I

using based structures.) This data structure originated in the calling

domain, and therefore the pointer in the argument entry as well as all

the list pointers in the data structure itself have tags that are off.

When the cross-domain call occurs a dynamic access capability to read

and write the subsegment is created and the tag in PRa is set on.

Now consider the machine language implementation of some operations

the called procedure might perform on this argument. Execution of the

following instruction sequence by the called procedure will generate

in PRn a pointer to the lOOth block in the list:

88

EPPn P~t3,*

(99 times) C3'E. PR!!tO,*

At the conclusion of this sequence the pointer in PRn to the lOOth

block will have its tag set ~' even though all pointers in the 99 list

blocks encountered had their tags set off. The tag from PRa is propa-

gated all through the instruction sequence in PRn. (Refer to the effec-

tive pointer generation algorithm in Figure 3-3 to see that this really

works.) All during the instruction sequence the references to the point-

ers in the blocks as indirect addresses will be validated with respect

to the dynamic access capabilities of the called domain, and specifi-

cally will match the capability giving access to the whole subsegment

that is argument 0.

Now imagine that the called procedure, after laboriously generating

this pointer to the lOOth block in the list, wants to save it in a

temporary storage location in the current activation record. The

instruction:

SPPn PR~ttemp

does the trick. Note that this write reference to a word of the activa-

tion record will be validated with respect to the static access capa-

bilities of the called domain, since the tag in PR~ is off. However,

the stored pointer will have its tag ~· Later, the tracing of the list

from the lOOth block to the 150th block can be continued with the

instruction sequence:

EPPn PR~ttemp,*

(50 times) G P~tO,*

The resulting pointer in PRn will still have its tag on.

89

There is a way to break the chain of propagation of the tag from

PRa. If the called procedure now transfers the list pointer contained

in the 150th block to another temporary storage location in the activa-

tion record using the code sequence:

LOAD PRntO

STORE PR~ttemp2

then the tag in the stored pointer will be off. The propagation of the

tag from PR~ is broken because LOAD/STORE generates a direct copy of the

pointer from the 150th block whose tag is also off. The alternative

sequence:

EPPn PR.!! to,*

SPPn PR~ttemp2

results in a stored pointer whose tag is .£!!:· When copying a pointer,

EPP!!_/SPP!!, must be used rather than LOAD/STORE to make sure the relation

of a pointer to a cross-domain argument is not lost. By violating this

rule, however, a procedure can compromise only the integrity of its

own domain. It cannot gain unauthorized access to information. Only

self-protection is at stake.

Now imagine that the called procedure wishes to load into the

accumulator the size from word 1 of the lOOth block, the block whose

address was stored earlier at "PR~ttemp". The instruction sequence:

EPPn PR~ t temp, *

LO.AD PRntl

. . th does the trick, and validates the read reference to word 1 of the 100

block with respect to the dynamic access capabilities of the domain,

since the tag in PRn will be on.

90

As the final example, imagine that the called procedure in turn

generates another cross-domain call and passes as the zeroth argument

this lOOth block from the list. After saving the current value of PRa

somewhere in its activation record, allocating space for the required

new argument list, and resetting P~ to point at this new argument list

area, the argument pointer in the zeroth argument entry would be created

with:

EPPn

SPPn

PR2_ttemp,*

PRat3

Note that this argument pointer will have its tag set ~' correctly

indicating to the processor when it constructs the required new DAS

frame that the argument comes from a previous cross-domain call.

This is a good place to reemphasize why it is important that pro­

cedures executing in some domain be able to identify those pointers

that are related to incoming cross-domain arguments and validate all

references through such pointers against the dynamic access capabilities

currently in the domain, rather than against the static access capa•

bilities of the domain. As indicated in Chapter 2, the essential reason

is that all pointers related to cross-domain arguments are derived from

pointers provided by the calling domain. The pointers in PR~, in argu­

ment list entries, and in arguments themselves, e.g., as in the linked

list example given above, are all arbitrary bit patterns set by pro­

cedures executing in the calling domain or some other domain further

back along the chain of unreturned cross-domain calls for the process.

When the cross-domain call occurred, the processor constructed the

dynamic access capabilities in such a way that they are guaranteed to

91

pass-on to the called domain no more access than is dynamically or

statically available from the calling domain. The processor even

arranged things in such a way that if the static access capability which

is the original source of permission in a dynamic access capability

changes, then the change i.Imnediately propagates to the dynamic access

capability. The processor, however, did not and could not check all of

the pointers that can be generated starting with the pointer in PR~.

There is no guarantee that, say, in the linked list example given above,

the list pointer in the 99th block will not by malice or error point at

a critical data base in the called domain that is not accessible from

th the calling domain, rather than point at the 100 block in the subseg-

ment that is the cross-domain argument. When the called procedure makes

a write reference via this pointer, it does so with the intention of

writing something in the lOOth block of the argument. If the pointer

locates a portion of the critical data base, then the called procedure

wants the write reference to fail. The propagation of the tag that is

~ from PR~ guarantees that the write will fail, for this tag causes

validation relative to the dynamic access capabilities created by the

cross-domain call, and these capabilities will not provide write access

to the critical data base. Without the propagated tag the write would

succeed, for the static access capabilities of the called domain do

allow write access to the critical data base.

Recall that a tag that is on in the effective pointer generated by

a RETURN instruction is what triggers a cross-domain return. This tag

propagates from the tag in PRa in the same way that the tags in argu-

ment-related pointers are propagated from the tag in P~. To see this,

92

consider the last two instructions of the standard return sequence again:

EPPs P~t2,*

RETURN P~tl,*

It is clear that if the tag in PR.!:!:_ is .£!!, as it would be when the

corresponding call is cross-domain, then the effective pointers generated

by both instructions will have tags that are on. In the case of the

RETURN instruction this propagated tag triggers the cross-domain return.

In the case of the EPPs instruction it generates an interesting problem.

The purpose of the EPPs instruction is to restore to PRs the activation

record pointer of the calling procedure. This pointer, as it was re­

corded by the calling procedure in the return block of the argument list,

had its tag set off. (An executing procedure always has static access

to its activation record.) Yet the EPPs instruction restores this

activation record pointer to PR~ with its tag set .£!!· To correct this

problem, part of the special action of the RETURN instruction on a cross­

domain return is to set the tag in PR~ off. Thus, when the calling

procedure receives control following the cross-domain return, PR~

properly contains the same activation record pointer it had before the

cross-domain call occurred, even though the EPPs instruction restored

the tag incorrectly.

The problem encountered here in restoring PR~ on a cross-domain

return foreshadows a general problem which will be considered later.

On a cross-domain call, whenever the called procedure generates a

pointer to be used by the calling procedure after the return occurs, care

must be taken to set the tag properly for use by the calling procedure.

For stored pointers a simple addition to the SPPn instruction, the

/
data base }--4
argument \

\
\

94

domain 7 ~

cross-domain
call 1

I

I

(,_.--Y
x· domain 2

I

cross-domain
Cd 1J 2

I

~domain 4
...... ____ ____

/

\
cb-- {linked list

I argument

)
/

Figure 3-7: Two consecutive cross-dmnain calls with one argument
cascaded through both.

93

instruction used to create stored pointers, can detect these cases

and automatically generate the correct tag. This algorithm will be

presented in detail later in the chapter. The case of a pointer being

communicated through a PR, however, cannot be detected by a similar

algorithm added to the EPPn instruction. The only instance of this

second case, however, is the communication of an activation record

pointer in PR~. As seen in the previous paragraph, the tag in PRs can

be adjusted easily when the cross-domain return occurs.

Multibit Tags

Exploring a little further the example of the argument that is a

subsegment containing a linked list points out a flaw in the processor

design as described so far. Consider the case of a cross-domain call

from, say, domain 7 to domain 2 followed by a cross-domain call from

domain 2 to domain 4, as illustrated in Figure 3-7. The subsegment

containing the linked list is passed as a read/write argument on the

first cross-domain call. The pointer in the 99th block of the list

maliciously has been set by procedures executing in domain 7 to point

at some data base in domain 2, a data base not accessible from domain 7.

As seen above, procedures executing in domain 2 cannot be tricked by this

bad pointer because the tag propagated from PRa will cause attempted

read and write references through this bad pointer to fail. Suppose

that instead of directly referencing this argument provided by domain 7,

however, the called procedure in turn passes the subsegment as a

read/write argument of the cross-domain call from domain 2 to domain 4.

Another read/write argument of this second call happens to be that data

95

base pointed at by the bad address in the 99th block of the linked list

in the first argument.

Now consider the procedure called by this second cross-domain call.

Executing in domain 4, it locates the 99th block in the linked list in

the manner described earlier and then uses the contained pointer to make

a write reference with the intention of writing in the lOOth block.

Because of the bad pointer, however, the write is actually to the data

base that happens to be the other cross-domain argument provided from

domain 2. Of course, the tag of the pointer used to make this reference

will be on as before, and the reference will be validated with respect

to the dynamic access capabilities associated with the second cross­

domain call. In this case the reference will succeed because it is

to a valid writable cross-domain argument of that call and thus a

matching dynamic access capability will be found.

What really has happened here? In a sense, the procedure executing

in domain 4 has not done anything wrong. It has permission to write

in the data base argument in which it wrote. But this procedure did

make a mistake, writing into domain 2 1 s data base the data it was in­

tending to put in the lOOth block of the linked list in the other argu­

ment. The important thing about this mistake is that it was caused by

procedures executing in a third domain. The problem illustrated by this

example is particularly insidious in cases where the domain that receives

the second cross-domain call encapsulates part of the supervisor and

thus is trusted by the domain that made the second call. In this cir­

cumstance the procedure that made the second cross-domain call has no

reason to check after the return has occurred that the trusted supervisor

96

has written reasonable values into the output arguments and therefore

may not notice the mistake before it leads to a disastrous error. It

is possible to construct many examples like this involving two or more

cross-domain calls.

An analysis of why in the example given a procedure executing in

domain 7 could cause a procedure executing in domain 4 to incorrectly

alter data encapsulated in domain 2 reveals the general flaw in the

protection mechanisms of the processor as presented so far. The reason

the problem occurred is that a reference through a pointer generated

from a cross-domain argument whose source was domain 7 was allowed be­

cause it matched a dynamic access capability whose source was domain 2.

To prevent the general class of problem represented by this example from

occurring, the processor must be altered so that a reference through a

pointer generated from a cross-domain argument whose source is domain

n will be allowed only if it matches a dynamic access capability whose

source is domain n. This change requires expanding the tag portion of

pointers to specify the source domain of the cross-domain argument from

which the pointer was derived, if in fact the pointer was derived from

a cross-domain argument.

The obvious value to record in a tag indicating dynamic access is

the number of the source domain associated with a pointer. This number

is then matched to the SOURCE field in dynamic access capabilities.

There are two problems with this approach. First, when generating an

effective pointer using the expanded tag, the processor must be able to

determine which of two tag values indicating dynamic access corresponds

to a cross-domain call that is further back in the chain of unreturned

97

cross-domain calls for the process. It is hard to make this determina­

tion quickly from domain numbers alone. The second problem is more im­

portant. To be consistent with programming generality it must be

possible for the chain of unreturned cross-domain calls in a process to

include recursive invocations of domains. When recursive invocations of

domains occur the domain number by itself does not specify which invoca­

tion of a partic.ular domain originally passed the argument from which a

pointer was derived, and this distinction can be important. When the

possibility of recursive invocations of domains is considered, it becomes

apparent that the source of a cross-domain argument or a dynamic access

capability is not just a domain but a domain invocation. What needs to

be recorded in dynamic access tags and in dynamic access capabilities is

the identity of a domain invocation, not just the number of a domain.

The dynamic access stack (DAS) of a process provides a convenient

numbering for the domain invocations that exist at any given time. Each

time a cross-domain call occurs a new DAS frame is created. The number

of the frame can be used as an identifier for the domain invocation from

which the cross-domain call came that generated the frame. It is these

domain invocation numbers that are recorded in dynamic access capabilities

and in tags specifying dynamic access. If the first DAS frame is given

the number one, then the number zero can never identify a domain invoca­

tion. Thus, the tag value zero can be used to specify that reference

through a pointer be validated with respect to static access capabilities.

A non-zero tag specifies validation with respect to dynamic access capa­

bilities and the non-zero value ·identifies the source domain invocation.

Certain aspects of the processor are now redescribed to incorporate

98

the expanded tag into the design. The length chosen for the tag field

determines the maximum number of unreturned cross-domain calls that can

exist in a process. A five bit tag, fixing this maximum at 31, is con­

sistent with the choice of eight as the number of domains per process

that the processor will support. To provide an easy means for generating

DAS frame numbers and domain invocation numbers, a cross-domain call

count field is added to the DAS definition register (DASDR.XDCC) as illus­

trated in Figure 3-8. If no unreturned cross-domain calls exist, and

thus no DAS frame exist, then DASDR.XDCC = 0. Each time a cross-domain

call occurs and a new DAS frame is created DASDR.XDCC is incremented by

one. (DASDR.XDCC is not allowed to overflow.) A cross-domain return

causes it to be decremented by one. At any given time, then, DASDR.XDCC

contains the number of the most recent DAS frame. This value is also the

number of the domain invocation from which the cross-domain call came that

started execution in the current domain of execution. In the state shown

in Figure 3-8, for example, three unreturned cross-domain calls exist.

It is clear that at any given time only tag values less than or equal to

DASDR.XDCC mean anything.

The modified effective pointer generation algorithm is shown in

Figure 3-9. It looks fairly complex but has a simple effect. If only

tags of zero are encountered during effective pointer generation, then

the final effective pointer has a tag of zero, indicating that the refer­

ence through the pointer will be validated relative to the static access

capabilities of the domain of execution. If only one non-zero tag is

encountered (in the indicated PR or indirect address), then assuming the

value of this tag is meaningful, i.e., ~ DASDR.XDCC, the final effective

SEGNO WORDNOl

DAS DR

Dynamic

frame for
cross-domain call
number 1

frame for
cross-domain call
number 2

frame for
cross-domain call
number 3

place to start
frame for
cross-domain call
number 4

(DAS)

{

99

WORDN02 XDCC

3

Figure 3-8: Dynamic access stack containing frames for three
unreturned cross-domain calls.

100

start

INST.PRNUM > 0 -----no----------~

yes
(PR-relative addressing)

I
(IPR-relative addressing)

(n = INST.PRNUM)

<PRn. ~AG < ;ASDR. xnc<i>-- no--i
yes ERROR

TPR. TAG ,_ 0 TPR.TAG - PRn.TAG
TPR.SEGNO <-PRn.SEGNO
TPR.WORDNO - PRn.WORDNO

TPR.SEGNO - IPR.SEGNO
TPR.WORDNO ,_ IPR.WORDNO

+ INST.OFFSET +INST .OFFSET

yes
(indirect addressing)

Retrieve indirect address from memory
using two-part address in TPR. Type
of access validation to use indicated
by TPR.TAG.

IND.TAG 0

yes
no~

(TPRjAG = 0)-no

Y"' <rnn. TAG ~TPR. TAG ! yes tno-< IND. TAG :-:;: DASDR.XDCC)

ERROR yes

TPR. TAG ,_ IND. TAG

TPR. SEGNO ,_IND. SEGNO
TPR. WORDNO ,_IND. WORDNO

TPR contains the effective pointer
to the operand of the instruction

)-not
ERROR

Figure 3-9: Modified algorithm for effective pointer generation with a
multibit tag.

101

pointer has the same non-zero tag value, indicating that the reference

through the pointer will be validated relative to the dynamic access

capabilities currently in the domain of execution. The non-zero tag

value is the source domain invocation number to be used in finding a

matching dynamic access capability. The interesting case is when both

PR-relative and indirect addressing are indicated, and both the PR and

the indirect address have non-zero tags. Assuming no error is generated

because the PR tag is greater than DASDR.XDCC, the indirect address tag

is checked to make certain it is smaller than the PR tag, and if it is

then the indirect address tag provides the value for the tag in the final

effective pointer. That the indirect address tag be smaller than the PR

tag is important. A non-zero PR tag with a value t indicates that the

indirect address located by the PR is in the argument list or is in an

argument of the tth unreturned cross-domain call. From the vantage point

of domain invocation ! (the domain invocation from which the tth cross­

domain call came), only tag values less than! mean anything. When the

argument list was created, !-1 was the number of the most recent DAS frame.

In that circumstance a pointer with a tag value greater than or equal to

t would not mean anything. Further, if the effective pointer generation

algorithm accepted a tag value strictly greater than ! from the indirect

address located by the PR, then one aspect of the previously described

flaw would remain uncorrected. The effective pointer formed using infor­

mation provided by domain invocation t would specify in its tag a domain

invocation number greater than t.

Propagation of the new expanded tag is by essentially the same means

used for the one bit tag. When a cross-domain call occurs the processor

102

sets the tag in PR!! with the incremented value of DASDR.XDCC. This is

the number of the domain invocation from which the cross-domain call comes.

For example, if a cross-domain call occurred when the DAS were in the state

illustrated by Figure 3-8, then PR~.TAG would be set to four. Correct use

of the effective pointer generation algorithm by procedures executing in

the called domain guarantees propagation of this tag (and smaller non-zero

tags if encountered) to all pointers derived from cross-domain arguments.

The purpose of the expanded tags, of course, is to provide an addi­

tional parameter to use when matching a reference to the dynamic access

capabilities currently in the domain of execution. Figure 3-10 presents

the detailed format of a dynamic access capability giving read and/or

write access to a subsegment. The TAG field in the first word is used to

record the number of the domain invocation that is the source of the capa­

bility. The SOURCE field in the second word is the domain number associa­

ted with the source domain invocation. The TAG field provides the value

to be used when matching a reference through a pointer to the dynamic

access capabilities currently in the domain. Once the dynamic access

capability that matches a reference has been selected, the contained

SOURCE field specifies which domain's static access capabilities. must also

allow the reference, as before.

Recall that a dynamic access capability to read and/or write a sub­

segment is created for each argument entry in the argument list of a

cross-domain call. (One is also created to allow read access to the

argument list itself.) With the expanded tag, creation of the dynamic

access capability for an argument entry is still done pretty much as

described earlier for the one bit tag. There are two cases. If the tag

R W

103

two-part address of beginning
of subsegment

r--

SOURCE END

Figure 3-10: Format of n dynamic access capability giving
read and/or write access to a subsegment.

105

As indicated, the value of the TAG field in a dynamic access capa­

bility is taken into account when matching a reference to the dynamic

access capabilities currently in the domain of execution. While the

only difference from the algorithm presented earlier for the case of one

bit tags is the additional constraint that the tag from the pointer must

match the tag in a capability, the entire algorithm for matching a

reference to the dynamic access capabilities in a domain is presented

again for the sake of clarity. Assume a read reference is made through

a pointer containing the tag !, where ! > O, and the two-part address

~,~). The reference validation algorithm is to perform a linear search

of the most recent DAS frame, starting with word 3, looking for a capa­

bility that meets all of the following conditions:

1. Read permission flag is.£!!·

2. TAG field contains the value t.

3. SEGNO field contains the value s.

4. WORDNO field ~ d ~ END field.

The first capability that matches stops the search. The reference is

allowed only if it also passes the check against the static access

capabilities of the domain indicated by the SOURCE field. Again, vali­

dation of a write reference is analogous.

The multibit tag does not change the way the return gate capability

in a DAS frame is matched. At any given time only one cross-domain

return is possible in a process. The only valid non-zero tag which can

be generated in the effective pointer of a RETURN instruction is the

number of the most recent DAS frame. The pointer in PR~ and the loca­

tion to which the return transfer is directed must match the two pointers

107

variable is an output argument, the called procedure in another domain

is given the ability to write an arbitrary bit pattern into this pointer

variable. Thus, after the return has occurred, the calling procedure

must explicitly check that a reasonable value has been stored in this

pointer variable before it is used to make a reference if the calling

procedure has any reason to mistrust the called domain. Normally, when

a pointer variable output argument is passed on a cross-domain call, the

called domain is in fact trusted, e.g., the called domain may encapsulate

part of the supervisor.

The interesting question about pointer variable output arguments

for cross-domain calls is what tag value will be placed in the pointer.

If t is the domain invocation number from which the cross-domain call

is made, then only tag values strictly less than ! will mean anything

to the calling procedure. Yet to the called procedure in the next higher

numbered domain invocation, a tag value equal to! certainly.means some­

thing and such a tag value might be stored into the pointer variable

output argument. To see this consider the following example. A proce­

dure executing in domain invocation t passes as an input argument of a

cross-domain call some data structure and as an output argument a pointer

variable. The called procedure is expected to locate a certain item

within the input data structure and return a pointer to this item in the

output pointer variable. Because pointer variables are implemented as

stored pointers, i.e., indirect addresses, the called procedure will

write the value into the pointer variable output argument vsing the

SPPn instruction. The pointer in PR£ will have been generated by apply­

ing the effective pointer generation algorithm to the input data

108

structure in various ways, and thus will contain the tag value 1 propa­

gated from PR~. If the SPPn instruction simply stores the whole pointer

from PRn as its operand, then the output argument pointer variable will

also have a tag value of 1, a tag value that means nothing to the calling

procedure. From the point of view of the calling procedure and the

domain invocation in which it is executing, the correct tag is zero,

since after the return occurs the pointer variable will be used to

reference the data structure which is statically accessible in that

domain.

To solve the problem illustrated by this example, and others like

it, the SPPE_ instruction does not always just copy PR_!!.TAG into the

indirect address being created. It is able to detect the circumstances

in which the indirect word tag should be set to zero, and will set it

to zero in these cases. The algorithm is presented in Figure 3-11. When

performing the SPPn instruction there are two tag values to consider:

the value in TPR.TAG and the value in PRn.TAG. In the simple case that

TPR.TAG is zero, then the operand of the instruction is not a cross­

domain argument. The indirect address should be constructed directly

from the pointer in PRE,, tag and all. Whatever tag may have propagated

into PRn needs to be preserved in the stored pointer.

If the tag in TPR is non-zero, then the operand of the instruction

is a cross-domain output argument that is a pointer variable, and the

potential exists for the sort of problem to occur that was illustrated

by the example given earlier. Specific examples of three general cases

which may occur are illustrated in Figure 3-12. In all cases the SPPn

instruction being executed is writing a pointer into a pointer variable

start

Generate effective pointer
to operand in TPR. (See
Figure 3-9)

TPR.TAG = 0

yes

109

t+--------no----~P~.TAG ~ TPR.TAG

Store contents of PRn as
indirect address at loca­
tion specified by two-part
address in TPR. TPR.TAG
indicates type of access
validation to use for this
operand reference.

done

yes

Store SEGNO and WORDNO from
PR!! and TAG of zero as in­
direct address at location
specified by two-part
address in TPR. TPR.TAG
indicates type of access
alidation to use for this

operand reference.

Figure 3-11: Algorithm of the SPPn instruction.

input
argument

A

D------
input

argument
B

D------

I
I
I

llO

ross-domain
call 1

I
I

I
I

cross-domain
call 2

I
I
I

PRn: TAG SEGNO WORDNO

case 1 0 addressT derived
internally

2
addressiderived

from B
case 2

1 address: derived
fro.fl A

case 3

output argument
(pointer variable)

TAG SEGNO WORDNO

TPR 2

Resulting TAG value
in output argument

case 1 0

case 2 0

case 3 1

Figure 3-12: Three cases of the SPPn instruction.

111

that is an output argument of a cross-domain call. The source of this

argument is domain invocation 2. Thus, the tag in TPR is two.

In case 1 the pointer in PRn was constructed from scratch or de­

rived from pointers not related to cross-domain arguments, and therefore

has a tag of zero. For example, the domain of execution might be part

of the supervisor, and the procedure invoked by cross-domain call 2

might be the procedure which converts a symbolic segment name provided

as an input argument into an output argument that is a pointer to the

base of that segment. According to Figure 3-11, this zero tag will be

stored in the indirect address. When control returns to domain invoca­

tion 2, the source of the pointer variable output argument, the zero

tag will cause references through this pointer to be evaluated relative

to the static access capabilities of that domain. This is correct since

the pointer certainly was not derived from an argument of the cross­

domain call from domain invocation 1.

In case 2 the pointer in PRg was derived from input argument B.

The source of this argument is domain invocation 2, and PRg will contain

a tag of two propagated from PRa. The SPPg instruction, however, will

store a tag value of zero in this case, since P~.TAG = TPR.TAG. This

is the correct tag from the viewpoint of domain invocation 2, since this

pointer locates part of a data base that is statically accessible from

that domain. It is also the correct tag from the point of view of the

domain of execution. If this stored pointer is later read (using an

EPPg instruction) by procedures executing in this domain before the

cross-domain return to domain invocation 2 occurs, then the fact that

the stored pointer is a cross-domain argument with domain invocation 2

112

as its source will cause a tag of two to propagate back into the re­

trieved copy of the pointer. Thus, from the point of view of the domain

of execution, no information is lost by cancelling the tag of two when

the pointer is stored.

In case 3 the pointer in PRn was derived from input argument A.

The source of this argument is domain invocation 1, and PRn will contain

a tag of one propagated from the corresponding argument pointer in the

argument list of cross-domain call 2. In this case the tag of one is

stored unaltered in the pointer variable, for PRn.TAG < TPR.TAG. This

is the correct tag from the viewpoint of domain invocation 2, since the

pointer was derived from an argument whose source was domain invocation

1. Use of the pointer variable by procedures executing in domain invo­

cation 2 to make a reference should be validated with respect to the

dynamic access capabilities currently in this domain. It is also the

correct tag from the viewpoint of the domain of execution, since it

properly indicates the source domain invocation of the argument from

which the pointer was derived.

Now consider the use of pointer variables as input arguments on

cross-domain calls. This use of pointer variables does not lead to

further additions to the processor design, but instead creates a new

application for the existing protection mechanisms. Again, the dis­

cussion will be presented in terms of a single pointer variable used as

an input argument, but all ideas presented can be applied to the case

of an input argument that is a data structure containing pointer

variables.

113

The usual reason for passing a pointer variable as an input argu­

ment is to explicitly inform the called procedure of the location of some

data item. The called procedure will reference the data item through

the pointer variable. If the call is cross-domain, and the data item

is not a formal argument of the call, then a problem can result, for no

dynamic access capability will be created allowing procedures executing

in the called domain invocation to reference the data item. While it

can be argued that passing a pointer to the data item as the argument

rather than the data item itself is bad progrannning practice, it is

frequently done anyway. This technique allows complex PL/I structures

to be passed as implicit arguments, avoiding the syntactically messy

specification of the structure as a formal argument. The technique can

also be used to pass as implicit arguments data items which are too com­

plex to be expressed as formal arguments with the syntax of the language.

For whatever reason, pointer variables are used in input arguments

to pass implicit arguments. It would be nice if the protection

mechanisms of the processor could deal with this case. Fortunately they

can. So far the argument list associated with a cross-domain call has

been treated solely as a specification of the formal arguments of the

call. The argument list serves a dual purpose when a call is cross­

domain: it informs the called procedure of the addresses of the argu­

ment and it tells the processor how to create dynamic access capabilities.

The called procedure knows how many formal arguments to expect. If

extra argument list entries were appended to the end of the argument

list, after those for the formal arguments, it would not confuse the

called procedure. It would, however, cause the processor to create

114

extra dynamic access capabilities in the case of a cross-domain call.

This property can be used to cause the creation of dynamic access capa-

bilities allowing access to implicit arguments.

If a compiler is to generate code which creates at the end of the

argument list generated for a call extra argument entries for implicit

arguments, then the compiler somehow needs to be told what extra entries

are to be created. A variety of high-level language extensions can be

imagined to serve this purpose. The specific extension described here

fits well into PL/I. The extension is a built-in function named

"window". The function has three arguments: a pointer, an integer, and

a one bit flag. The appearance of the window function at some position

in the argument list portion of a call statement causes an argument

entry to be generated at the corresponding position in the argument list.

The pointer provided becomes the pointer in the first word of the entry,

the integer becomes the size in the second word, and the one bit flag

controls the generation of the read and write permission flags: if off

then only read permission is indicated, if on then both read and write

permission are indicated. Window functions will typically appear last

in the list of arguments for a call statement, and will define the sub-

segments containing the implicit arguments.

Window functions can be used to create fairly complex patterns of

access permission. In particular, one window function (or a formal

argument) can provide read access to a large subsegment while several

';'C

Write only access to a window could be specified as well by expanding
this argument to two bits.

115

other window functions provide read/write access to selected pieces of

that subsegment.

Window functions, then, allow input arguments that are pointer

variables to be used to pass implicit arguments. The pointer variable

is listed as a formal argument of the call and the implicit argument is

defined by one or more window functions at the end of the argument list.

It can be argued that window functions are contrary to the criterion of

programming generality. In a sense this contention is correct. A call

that works without window functions in cases where the domain of execu­

tion is not changed may require window functions to work cross-domain.

The only answer is always to use window functions when implicit argu­

ments are being passed, even if the call is not expected to change the

domain of execution. The extra specification provided by the window

functions, while not functionally required for calls that do not change

the domain of execution, does help to make the intention of the program

clearer to progrannners and others who must understand the symbolic

program.

The Escape Hatch

The protection mechanisms of the processor are built upon the

philosophy that all references made by a procedure executing in some

domain invocation through pointers derived from incoming cross-domain

arguments should be validated relative to the dynamic access capabilities

of that domain invocation. The mechanisms for propagating tags cause

this kind of validation of all such references as a matter of course.

There may arise circumstances, however, when a procedure wishes to

117

dynamic access capabilities in the domain of execution. The method of

validation and the specific conditions under which a given reference

will be allowed have been discussed in some detail. An important point

not considered yet is the action of the processor in cases where valida­

tion indicates a reference should not be allowed. This occurrence is

called an access violation.

An access violation is one of several types of exceptional condi­

tions that the processor can detect. Other examples are the attempted

execution of a privileged instruction from some domain other than domain

OJ the detection of an error while performing a cross-domain call or

return) an attempted reference beyond the end of a segment) and the

attempted use of an invalid segment number. There may be many other

processor detected exceptions as well. All) including access violations)

cause the processor to change the domain of execution to domain 0 and

transfer control to a fixed location. Presumably the software system

is arranged so that this location is the beginning of the supervisor

procedure which responds to exceptions. The processor is arranged so

that the processor state at the time of the exception is preserved.

The supervisor procedure can inspect this state information to determine

the precise cause of the exception. Corrective action can be initiated

if appropriate. A privileged instruction allows the processor state

to be restored) so that if the cause of the exception is corrected then

the disrupted program can be restarted at the point where the exception

occurred.

The transfer to domain 0 in the case of an exception) although it

may be a cross-domain transfer) does not affect the state of the dynamic

-----~ - -- ----

118

access stack or its definition register. The segment containing this

stack, as well as the descriptor segment, are statically accessible

from domain 0. In addition, privileged instruction exist to load and

store the DSBR, DR, and DASDR of the processor. Thus, the supervisor

procedures invoked by the exception are able to make any necessary

alterations to the protection environments provided by the various

domains of the process.

An Associative Memory for Dynamic Access Capabilities

As indicated earlier, the operation of validating a reference

against the dynamic access capabilities currently in the domain of

execution can be made faster in the case that multiple references match

the same capability by adding to the processor a small, fast associative

memory which stores the most recently used dynamic access capabilities.

In this section the design and use of such an associative memory is

presented. Those readers generally familiar with such associative

memories can skip this section without loss of continuity.

The associative memory has a small number of registers (eight is

probably more than enough), each of which can hold all fields of a

dynamic access capability for read and/or write access to a subsegment.

In addition, each register contains a few bits of identification and

control information. The format of the registers is shown in Figure

3-13.

This associative memory (DAC-AM) has four cycles: SEARCH, WRITE,

CLEAR-FRAME, and CLEAR-ALL. Consider the SEARCH cycle first. Whenever

a reference is to be validated with respect to the dynamic access

119

fields from dynamic access capability

TAG SEGNO WORDNO END R W SOURCE

•
• .

DAS
frame control

number information

~~
FRAME LRUCOUNT V

'

input parameters for search: tag, segment number, starting
word number, ending word number, type of reference
(read or write), current DAS frame number (DASDR.XDCC)

output from search: match indicator, source domain number if
match occurred

Figure 3-13: Format of the associative memory for dynamic access
capabilities.

120

capabilities currently in the domain of execution, the DAC-AM SEARCH

cycle is invoked before a linear search of the most recent DAS frame is

performed. The input parameters to the SEARCH cycle are listed in

Figure 3-13. The first five define the reference being made. Both a

starting and ending word number are provided so that double-word (and

larger multiword) references can be validated. The last input parameter

is the number of the current DAS frame, as recorded in DASDR.XDCC. The

hardware performs an associative search of all DAC-AM registers, looking

for one containing a dynamic access capability which allows the reference

and which is from the indicated DAS frame. If a match occurs, then a

positive match indicator is the result and the SOURCE field from the

* matching capability is produced. In this case the linear search of

the DAS frame in memory can be bypassed, and validation of the reference

can proceed to the stage where the static access from the indicated

source domain is checked. If no match is found, then a negative match

indicator is the result, and the DAS frame in memory must be searched

in the way previously described for a matching dynamic access capability.

The LRUCOUNT field of DAC-AM registers is used to order the dynamic

access capabilities contained in the DAC-AM by recency of use. Each

time a SEARCH cycle match occurs, the LRUCOUNT of the matching register

is set to the maximum possible value, and all other LRUCOUNT fields that

are greater than the original LRUCOUNT value of the matching register

7~

Actually, more than one DAC-AM register may contain a matching capa-
bility. Since the SOURCE fields in all capabilities that match will
be the same, however, it does not matter which is chosen as the single
matching DAC-AM register.

121

are decremented by one.

If a SEARCH cycle results in no match, but the linear search of

the DAS frame in memory does succeed, then the dynamic access capability

found this way is entered into the DAC-AM using the WRITE cycle. The

various fields of this capability overwrite the contents of the DAC-AM

register whose LRUCOUNT value is zero. This is the register that has

gone longest without producing a match. The FRAME field is set from

DASDR.XDCC to indicate the DAS frame from which the capability came.

The LRUCOUNT field is set to the maximum possible value and the LRUCOUNT

fields in all other registers are decremented by one. Thus, the DAC-AM

always contains the most recently used dynamic access capabilities for

a process. Repeated use of a small group of dynamic access capabilities,

as is likely, will result in most searches of the DAC-AM succeeding.

As a result, the more time-consuming linear search of the DAS frame in

memory will not occur each time dynamic access validation is required.

When a cross-domain call occurs, the DAC-AM can be used in two

ways. First, it can be applied to locating a matching dynamic access

capability in the previous DAS frame when constructing a new dynamic

access capability from an argument entry whose pointer has a non-zero

tag. (This is a case where the ability of the DAC-AM to find capa­

bilities matching multiword subsegments is used.) Second, it can be

preloaded explicitly (using the WRITE cycle) with the newly constructed

capability allowing read references to the argument list itself, since

the likelyhood of this capability being used in the near future is

great.

122

* When a cross-domain return occur~ the CLEAR-FRAME cycle of the

DAC-AM is invoked. This invalidates all registers whose FRAME field

indicates that the contained capability is from the DAS frame being de-

strayed by the return. Invalidation is performed by setting the validity

bit (V) off. Only registers whose validity bit is ~ can match on a

SEARCH cycle. The LRUCOUNT fields in all registers so invalidated are

adjusted so that these registers will be the next to be overwritten.

The final cycle, CLEAR-ALL, is used when the process is execution

on the processor is changed. It causes all registers to be invalidated.

The DAC-AM will decrease the time required to validate a reference

against dynamic access capabilities only in the case that multiple

references are validated against the same capability. It will almost

always be the case that the capability giving read access to a cross-

domain argument list will be used several times. Multiple references

to individual arguments are not unconnnon -- particularly to arguments

that are large arrays or structures. Considering the low cost of such

an associative memory and the off-the-shelf availability of the control

logic for performing the associative search and updating the LRU counters,

the DAC-AM seems like a good investment.

In addition to the DAC-AM, the processor also can contain a similar

associative memory for the most recently used descriptor segment entries

(DSE's). Associative memories for address translation table entries are

* There is no reason to put return gate capabilities in the DAC-AM, since
each is used only once. The position of the return gate capability in
a DAS frame is always known so no search of the DAS frame is required
to find it in any case.

123

of proven value in reducing the average time required to translate an

address [24].

Entry and Label Variables

In PL/I, entry and label variables may be passed as arguments on

interprocedure calls. It is possible for the called procedure to per­

form a goto operation on a label variable received as an argument and

to perform a call operation on an entry variable received as an argument.

The processor as currently defined can handle neither of these cases

automatically if the call which passes the entry or label variable as

an argument is cross-domain. The techniques underlying the processor

protection mechanisms described so far, however, can be applied to

these cases as well. This section investigates the processor extensions

that would be required for allowing entry and label variables to be

used as arguments of cross-domain calls.

Presentation of the material of this section is not meant to imply

that the facility to pass entry and label variables on cross-domain

calls must be included in the processor if it is to be practical. In­

deed, a good case can be made for omitting this facility considering

the additional complexity that it introduces. The section is included

in the thesis only to illustrate a more sophisticated application of

the basic techniques used in the processor than has been presented so

far in this chapter.

First consider entry variables. As usually implemented an entry

variable is a pair of pointers. The first locates an entry point while

the second locates an activation record. If the entry variable locates

124

an entry point into the outermost level of a nested set of PL/I proce­

dures, i.e., an external entry point, then the second pointer means

nothing. If the entry variable locates an entry point into one of the

inner layers, i.e., an internal entry point, then the second pointer

locates an already existing activation record that corresponds to some

unreturned invocation of the containing procedure. When a call through

an entry variable to an internal entry point occurs, this activation

record pointer must be made available to the called procedure to define

part of its addressing environment.

A standard implementation of a call through an entry variable

needs to be defined, just as a standard interprocedure call was defined

earlier. The implementation chosen is substantially the same as that

for a normal interprocedure call. The only difference is that the two

instructions:

EPPs

CALL

"entry variable" n, *

"entry variable" to,*

where "entry variable" represents the address of the entry variable,

are used in place of the single CALL instruction of the standard inter­

procedure call. The first instruction loads PRs with the second pointer

from the entry variable. The second instruction is the previously de­

fined CALL instruction with an operand address specification that

locates the entry point specified by the first pointer in the entry

variable. As a result of a call through an entry variable, the called

procedure can expect to find PRa containing a pointer to the argument

list, PRb containing a pointer to the base of the stack segment in which

a new activation record should be created, and PR~ containing the second

125

pointer from the entry variable. If the called entry point is externalJ

then the called procedure will ignore pointer in PR~. If it is internalJ

then the pointer in P~ will be used by the called procedure to locate

variables belonging to the appropriate outstanding invocation of the

enclosing procedure block. That a call is through an entry variable is

apparent to the compilerJ so it can choose properly whether to generate

the code for a standard interprocedure call or the code for a call

through an entry variable.

There are a variety of ways to use entry variables as arguments.

They may appear singlyJ in arraysJ or as elements of non-homogeneous

data structures. Consideration of the simple case of a single entry

variable passed as an individual argumentJ howeverJ demonstrates the

problems generated by the use of entry variable arguments on cross-domain

calls. Imagine that procedure A passes an entry variable as an input

argument on a call to procedure B with the intention that B (or a

descendant procedure) perform a call through this entry variable. With

the protection mechanisms defined so farJ an argument list like that

illustrated in Figure 3-14 would be generated by A. An argument list

entry specifies read access to the two word entry variable. If the

A to B call is cross-domainJ a dynamic access capability will be gener­

ated which allows procedures executing in the called domain read access

to the entry variable.

When time comes for B to make the call through the entry variable

a temporary pointer to the entry variable will be generated in PRn

with the instruction:

EPPn

PRa

argument
list entry

126

T
m

l

---~...-nointer to entr point }entry
· · · vari"able pointer to activation

1---~~~r_e~c~o~r~d~~~~~-1

Figure 3-14: Specification of a single entry variable as an input
argument.

127

where m is the offset of the argument list entry for the entry variable.

Then an argument list will be created and PRa set with a pointer to it.

Finally, the call through the entry variable will be made by procedure

B with the instructions:

EPPs

CALL

PR.£ tl, *

PR,gtO,*

Because the entry variable itself is a cross-domain argument, the tempo­

rary pointer to it generated in PR.£ will have a non-zero tag. This tag

causes the indirect word read reference to the entry variable generated

by the EPPs instruction to be validated relative to the dynamic access

capabilities in B's domain invocation. This reference will succeed

by matching the capability allowing read access to the entry variable;

likewise for the indirect word read reference caused by the CALL

instruction. The final effective pointer generated by the CALL instruc­

tion also will have a non-zero tag -- indicating that the call is to be

validated with respect to dynamic access capabilities in B's domain of

execution. It is here where the protection mechanisms defined in the

previous section are inadequate. No matching dynamic access capability

can be found because dynamic access capabilities allowing call access

to an entry point have not been defined. The protection mechanisms dis­

cussed so far only can handle the case of a CALL instruction which

generates a tag of zero in its effective pointer. The extension required

to allow the use of entry variables as cross-domain arguments is the

introduction of a new dynamic access capability type for call access

to an entry point. The call access capability must contain both

pointers from the entry variable so that both the location to which the

128

call is directed and the activation record pointer loaded into PRs can

be verified.

One way to implement call access capabilities is to add an entry

variable identification flag to the read and write permission flags

that may already appear in argument list entries. If this entry

variable identification flag is set .£!!, then the subsegment located by

the argument list entry is specified to be an entry variable (or an

array of entry variables if the indicated size is greater than two words)

for which a dynamic access capability allowing call access should be

constructed when a cross-domain call occurs. If an input argument is

an entry variable (or an array of entry variables), then the correspond-

ing argument list entry has both the read permission flag and the entry

-1<
variable identification flag set on If the call is cross-domain, then

because of the read permission flag the processor will generate a dynamic

access capability allowing read access to the subsegment containing the

entry variable as before, and because of the entry variable identifica-

tion flag the processor will generate a capability allowing call access

to the entry point located by the entry variable. (In the case of an

array of entry variables a call access capability must be generated for

each element in the array.) The call access capability contains the

* It seems a safe assumption that, when an entry variable is passed as an
input argument, the calling procedure intends for the called procedure
to call through the entry variable. Thus, the compiler can always
generate code to set the entry variable identification flag .£!! for input
arguments that are entry variables. For entry variables that are output
arguments the read and write permission flags should be set on, but the
entry variable identification flag should be left off.

129

segment and word number portions from both the entry point pointer and

the activation record pointer in the entry variable. It also contains

a TAG and a SOURCE field like read/write dynamic access capabilities.

The TAG field identifies the domain invocation that is the original

source of the capability while the SOURCE field contains the number of

* that domain.

With the addition of call access capabilities, then, CALL instruc-

tions which generate an effective pointer with a non-zero tag can be

handled. When this case is encountered, the most recent DAS frame is

searched for a call access capability allowing the intended call. In

order for the call to be allowed, a call access capability must be found

whose TAG field matches the tag from the effective pointer, whose entry

point pointer segment and word number match the segment and word number

in the effective pointer, and whose activation record pointer segment

and word number match the segment and word number in P~. The call

must also be allowed by the static access capabilities of the SOURCE

domain indicated by the matching call access capability. If the call

* When determining the source domain invocation for a call access capa-
bility both the tag of the pointer in the argument list entry and the
tag of the entry point pointer in the entry variable must be taken into
consideration. If the source is the domain invocation from which the
cross-domain call is coming, then both tags will be zero. In this case
the TAG field of the capability is set to the number of the domain
invocation from which the call is coming and the SOURCE field is set to
match. If the source is an earlier domain invocation, however, then
the tag from either pointer may indicate this fact. In this case the
smallest non-zero tag of the two indicates the source domain invocation
number to be recorded in the TAG field of the capability. The previous
DAS frame must be searched for a matching call access capability and
the SOURCE field value from the matching capability copied into the
new capability.

130

is allowed, then the CALL instruction completes in the manner discussed

earlier. The value of PRs.TAG is forced to zero as the transfer occurs.

(The called procedure, if the call is to an internal entry point, always

wants static access to the activation record of the containing proce-

<lure block, and the tag in PRs may be set erroneously to a non-zero

value for the same reason that the tag in the pointer restored to PRs

before a cross-domain return erroneously is non-zero.)

Notice that a call through a cross-domain argument that is an entry

variable may not be a cross-domain call, even though it is validated

by matching a dynamic access capability. If the call is to an internal

entry point then it may be an internal entry point of a procedure invo-

cation executing in an earlier outstanding invocation of the calling

domain. If the call is to an external entry point then it may be a

gate entry point back into the calling domain, which gate is statically

accessible from the source domain of the dynamic access capability that

* allows the call.

* The processor described in this chapter does not allow procedures
executing in some domain to use the dynamic access capabilities of an
earlier outstanding invocation of the same domain. This restriction
is required to prevent a cross-domain return from jumping several
outstanding domain invocations without giving procedures that execute
in these domain invocations a chance to place the encapsulated sub­
systems in a consistent state. A cross-domain call through an entry
variable, however, can generate a legitimate need for a procedure
executing in some domain to use the dynamic access capabilities (other
than the return gate capability) of an earlier outstanding invocation
of the same domain. It is straightforward to extend the processor to
handle this case properly. The extension requires expanding the tags
in pointers and dynamic access capabilities to contain one bit for each
domain invocation which can exist at one time. The expanded tags allow
the specification to be made that a reference be validated with respect
to the dynamic access capabilities of an earlier invocation of the
domain that is the domain of execution.

131

Label variables are very similar to entry variables, and also are

normally implemented as a pair of pointers. The first pointer locates

the start of the machine code corresponding to some labeled statement of

a program and the second is an activation record pointer which identi­

fies the procedure invocation which goes with that label. The goto

operation on a label variable involves destroying all stacked activation

records between the activation record for the procedure which performs

the goto and the activation record indicated in the label variable.

Along the way, the appropriate condition handlers defined in the acti­

vation records being destroyed will be invoked. When the stack is

properly unwound, then a transfer to the indicated procedure segment

location occurs. Because of its complexity, this non-local goto opera­

tion through a label variable is normally implemented by compiler

generated code which calls upon a system-provided stack unwinding pro­

gram. In the case of the processor design described here, the same

approach can be used. This unwinding program is easiest to construct

if it executes in domain 0 where it will have access to all activation

record stack segments and the DAS. The processor, however, can be ex­

panded a little to make the job of the unwinding program a little easier.

If a label variable is passed as an input argument on a cross-domain

call then a goto operation on that label by a procedure executing in the

called domain will unwind the activation record stack and the DAS back

through unreturned cross-domain calls. The transfer of control to the

label may change the domain of execution. By adding a label variable

identification flag to argument list entries, and extending the processor

to create goto access capabilities for label variables on cross-domain

132

calls, the processor can help the unwinding procedure to determine that

an attempted cross-domain goto is allowed. The unwinding procedure

merely need look in the most recent DAS frame for a matching goto access

capability to determine if the attempted cross-domain goto should be

performed. The goto access capability is analogous to the call access

capability in the way it is constructed and the information it must

contain.

Bit Addressing

For simplicity of explanation, the processor presented in this

chapter is word addressed. This allows the problem of associating an

explicit length with each reference to be ignored, for all references

have an implied length of one or two words. When passing arguments

with cross-domain calls and referencing arguments of cross-domain calls,

however, the ultimate precision of specifying references by bit address

and bit length can be very useful.

To see the usefulness of full bit addressing, consider passing

a bit string of length 7 as an input argument on a cross-domain call.

With the word addressed machine the corresponding argument list entry

and dynamic access capability will specify the one or two word sub­

segment necessary to cover the bit string. Additional information may

have to be communicated to the called procedure, either in the argument

list or another argument, to specify the location of the bit string

within the larger subsegment. Procedures executing in the called domain

will have read access to the entire subsegment, although only a bit

string of length 7 is the argument. If the string is embedded in

133

other information which the calling procedure wants to be certain does

not become accessible to the called procedureJ then the bit string must

be copied into a word that contains no other valuable information before

the call is madeJ and the copy passed as the argument. With a bit

addressed machine the exact seven bits holding the string could be

specified as an argumentJ and a dynamic access capability created giving

read access to that subsegment of seven bits. No copy would have to be

made to avoid giving the called procedure access to adjacent bits.

The protection techniques presented in this chapter apply equally

well to a bit addressed machine. The essential changes required are

extending the length of the displacement portion of a pointer to hold a

bit number rather than a word numberJ and devising means to associate

the proper length with all references. Working through the hardware

mechanisms required to generate the proper length information for each

reference appears to be the most difficult problem encountered when

applying the techniques presented in this chapter to a bit addressed

machine.

Sunnnary

This chapter described a hardware processor that supports a multi­

domain computation implemented as a single execution point in a seg­

mented virtual memory and that automatically performs cross-domain calls.

The processor recognizes static access capabilities allowing readJ

writeJ and/or execute access to segments and allowing procedures execut­

ing in one domain to call gate entry points into another domain. Dynamic

access capabilities allowing read and/or write access to subsegments

135

and "neutralize" are all that the programmer needs to direct the cross­

domain call mechanisms and properly control access to arguments.

The processor develLJped in this chapter provides a hardware basis

for a computer utility in which users may encapsulate independently

compiled programs and associated data bases as protected subsystems,

and then, without cc'mpr0mising the protection of the individual sub­

systems. combine protected subsystems of different users to perform

various computations. The software system required to produce such a

facility based on this processor is discussed in the next chapter.

CHAPTER 4

SOME COMMENTS ON THE SUPPORTING SOFTWARE

In this chapter a software second layer for the processor protec­

tion mechanisms developed in Chapters 2 and 3 is briefly discussed. The

purpose of the material in this chapter is not to provide a detailed

development of the complex issues involved in providing a proper user

interface for controlling sharing in a computer utility. Rather, it

is simply to demonstrate one way of harnessing the processor protection

mechanisms so that users can define and control the sharing of protected

subsystems.

As stated in Chapter 1, the goal of the research reported in this

thesis is to develop a computer utility in which mutually suspicious

subsystems can cooperate in a single computation in an efficient and

natural way. A specific objective derived from this goal is that a

prograilll!ling environment be provided in which procedure segments, data

segments, and protected subsystems of all users can be treated as

building blocks and combined in a controlled way into different compu­

tations. The starting point of the research was Multics, which to a

large extent already provides the building block facility with respect

to procedure and data segments, but which allows protected subsystems

to be defined and manipulated only in restricted ways. The primary

obstacle to providing a general facility for manipulating protected sub­

systems in Multics is the restriction that the domains of a process be

totally ordered with respect to contained access capabilities. The

136

137

processor discussed in Chapters 2 and 3 removes this restriction.

With the primary obstacle out of the way, only a few aspects

of the Multics software system need to be extended to produce a first

approximation to a software system which can effectively apply the hard-

ware protection mechanisms to generate an environment in which protected

subsystems may be manipulated in a natural way by all users. The most

significant changes required are the expansion of the file system to

catalogue protected subsystems as well as segments and the recasting of

control lists in terms of protected subsystem names rather than domain

numbers. These extensions are outlined in this chapter.

Because this chapter is intended only to provide an example of how

the processor protection mechanisms can be harnessed by a software

system, little justification or detail is provided for those aspects of

the software that are derived directly from Multics. The reader is

referred to the book by Organick [34] for a detailed discussion of the

Multics facilities outlined here.

A Distributed Supervisor

The distributed supervisor organization used in Multics is easily

implemented on the new processor. When a user logs in to the system a

process with a new virtual memory is created for him. Initially two

domains of the process are occupied. Domain 0 encapsulates the super-

'1(
visor. Thus, the supervisor is a protected subsystem that is part of

* Domain 0 is chosen because of the special treatment afforded it by the
processor. In Multics, the supervisor is encapsulated in the largest of
the linearly nested domains of a process.

138

every process. Another domain encapsulates a "home" protected sub-

system for the user. When the user first gains control of the process

it is executing in this home domain in some procedure which interprets

as connnands characters input from his terminal.

Because the supervisor is a protected subsystem that is part of the

process, the supervisor can be invoked by standard interprocedure calls

to the gate entry points into domain 0 to perform various services for

the process. (It may also be invoked by generating an exception, for

an exception forces control into domain 0.) Among the services of

interest here are adding various segments stored on-line to the virtual

memory of the process and associating various protected subsystems

whose definitions are stored on-line with unoccupied domains of the

process.

The File System

In Multics all segments stored on-line are catalogued by a file

system which is implemented as a set of procedure and data segments in

the supervisor. The single, system wide catalogue is arranged as a

tree-structured directory hierarchy. Each directory contains entries

giving the attributes of all directly inferior directories and segments.

The attributes in each entry include a name, a length, a beginning

-;,
absolute address, and an access control list. The name in a directory

entry uniquely identifies the entry in that directory. Each directory

-:k
Directories are implemented as data segments which can be read and

written only from the supervisor domain.

139

or segment can be uniquely located in the tree-structured directory

hierarchy by a multicomponent tree name consisting of an ordered list

of directory entry names defining a path from the base of the tree -­

the "root" directory -- to the item of interest. Figure 4-1 illustrates

a directory hierarchy and gives the tree names of the items shown. The

symbol ">" is used as a separator for the components of a tree name.

The directory hierarchy allows a content-related organization to be

imposed on all information stored on-line in the system. The structure

of the initial layers of the hierarchy usually will be quite static and

will be known by most system users. Figure 4-2 illustrates a structure

similar to that used in Multics to organize on-line storage. This

structure reflects the fact that the people who use the system are

grouped for administrative purposes into various projects. (A user name

in this case is the concatenation of a project name and a person name.)

Each user has a home directory in which to create an arbitrary substruc­

ture of segments and directories. Each existing process has a directory

in which to place all its temporary data segments such as its descriptor

segment, stack segments, etc. Other areas of the hierarchy catalogue

library and system segments.

There are a variety of operations which may be performed on the

directory hierarchy by calling the appropriate supervisor gate entry

point. Examples are creating or deleting an object in some directory,

changing the attributes of an existing object, listing the entry names

in a directory, and adding a segment to the virtual memory of the

root

w attributes

x attributes

Key:

~
0

root>w

y attributes

root>x

z attributes

= directory

= segment

140

root>w>y

c attributes

d attributes

root>x>z

-0

root>x>a

a attributes

b attributes

Figure 4-1: A representative directory hierarchy.

root>w>y>d

root>x>a>a

I
I

\...... . ../ -----v
system data and
procedure segments,
and corresponding
symbolic program
segments

library procedure
segments and
corresponding
symbolic program
segments

root

......__ """"'"
process
directory
for each
process in
the system

~

Co

Jones
._ ___ y ,/

"-.project
directory
for each
project in
the system

home directory for
each person in a
project

Figure 4-2: Use of the directory hierarchy to organize information
stored on-line.

I-'
.p..
I-'

142

* process. Whether or not a particular requested operation on some

object will be performed is controlled by the access control list (ACL)

of the object. The supervisor compares the name of the user associated

with the process being executed and the number of the domain from which

the request is made with the ACL of the object. If some ACL element

containing a matching name and number is found, then the various per-

mission flags set in that element determine whether or not the requested

operation will be performed. If no matching element is found then the

requested operation will not be performed. Each ACL entry essentially

defines some capabilities included in the specified domain of a process

of the specified user. The permission flags present determine the

particular kinds of access allowed by the capabilities. The flags that

may appear in an element of a directory ACL provide independent control

on operations like listing the entries in that directory, creating new

objects in that directory, and changing certain attributes recorded in

entries in that directory. The last case includes changing the ACL's

in these entries. The permission flags that may appear in an element

of a segment ACL can indicate read, write, execute, and gate access

to that segment.

The flaw in this access specification scheme used by Multics, when

applied to controlling the sharing of protected subsystems with the new

processor, is that actual domain numbers appear in ACL elements. The

implication of this fact is that a particular domain of a process of a

* In Multics this last operation is normally caused by a dynamic linking
exception rather than an explicit call to the supervisor.

144

The first component identifies an instance of use of a particular pro­

tected subsystem in a process of a particular user. The second com­

ponent is some set of permission flags appropriate for the object type.

By means to be discussed in a moment it is possible to associate

a protected subsystem with one of the numbered domains of a process,

thereby generating a protected subsystem instance. The supervisor

maintains for each process a table of associations of domain numbers and

protected subsystem tree names. This domain table can also record the

name of the user associated with the process. When a process is first

created, the domain table might appear as illustrated in Figure 4-3.

Domain 0 is occupied by an instance of the supervisor protected sub­

system and domain 1 is occupied by the home protected subsystem instance

for the user. (A directory hierarchy similar to that shown in Figure

4-2 is assumed.)

When a procedure executing in some domain of a process calls a

gate entry point into the file system, the requested operation is vali­

dated by comparing the protected subsystem name associated with the re­

questing domain and the user name associated with the process against

the appropriate ACL. The mode in the first matching ACL element deter­

mines if the request will be performed. If no ACL element matches,

then the request is not performed.

Permission Flags for Segments

To understand how a protected subsystem can become associated with

a domain of a process, it is necessary to investigate in more detail the

use of the modes which may be specified in an element of an ACL for a

145

domain occupied protected subsystem
number tree name

0 yes root>system>supervisor

1 yes root>projects>CompSys>Jones>home

2 no -

3 no -

4 no -

5 no -

6 no -

7 no -

User name is "CompSys.Jones"
'

Figure 4-3: Initial state of the domain table for a process.

146

segment. As indicated earlier, these modes may specify read, write,

execute, and gate permission. When a procedure executing in some domain

explicitly or implicitly requests of the file system that a segment be

made accessible from that domain, the matching ACL element determines

which permission bits in the corresponding descriptor segment entry

(DSE) will be set on. For example, if the segment is or was previously

assigned segment number s in the virtual memory of the process, if the re­

quest is from domain ,g, and if the permission flags in the matching ACL

element indicate read and execute access, then DSEs.Rn and DSEs.En are

set .2.!!. by the supervisor, and DSEs.Wn and DSE~.G,g are set off.

The case when the matching ACL entry indicates gate permission is

a little more complex. Continuing with the previous example, in this

case only DSE~.G,g is set .2.!!. by the supervisor. However, DSE~.GATES and

DSEs.DOMAIN must also be filled in. Recall that these fields indicate

the number of gate entry points in the segment and the number of the

domain for which they are gates, respectively. As the information

source for these fields, two new attributes for a segment are introduced.

The first attribute, which may or may not apply to a given segment,

says: "this segment is a gate into protected subsystem <protected

subsystem tree name>", and is called the gate attribute. The second

attribute, which is only meaningful when the first is applied, says:

"there are~ gate entry points in this segment". How these attritubes

are used is obvious. If gate permission applies, then the supervisor

determines if the protected subsystem named by the gate attribute is

already associated with some domain of the process. If so, then the

corresponding domain number derived from the domain table for the

147

process is used to set DSEs.DOMAIN. If not, then that protected sub­

system is assigned an unoccupied domain of the process, and the number

of this domain is used to set DSEs .DOMAIN. DSE~.GATES is set directly

from the second attribute. Thus, a protected subsystem is associated

with a domain of a process when the first attempt is made to get at a

segment containing gates into that protected subsystem.

If all eight of the domains of a process are occupied at the time

when a new protected subsystem is to be associated with the process,

then it is necessary to free an occupied domain to make room. The

choice of which domain to free, i.e., which protected subsystem instance

to remove from the process, is best made by the user associated with the

process or a program provided by him. With the reasonable restriction

that the domain to be freed have no outstanding invocations, the desig­

nated domain is easily freed by turning off all the permission bits in

the corresponding column of the descriptor segment, turning off all

gate permission bits in other columns that correspond to gates into the

freed domain, and appropriately updating various supervisor data bases.

The execution environment of the freed domain must also be returned to

the unused state. Reusing domains is much easier than reusing DSE's.

The reason is that segment numbers diffuse into non-supervisor-controlled

data segments as part of stored pointers, making it very difficult to

locate all instances of pointers referring to the segment previously

associated with a reused DSE. Domain numbers are not part of stored

pointers, however, and appear only in supervisor-controlled data segments.

148

Controlling the Gate Attribute

In generalJ given that a particular protected subsystem instance

has permission to modify the ACL of an object at allJ there need be no

finer control on the particular modification. Any element may be deleted

from the ACL and any element may be added. There need be no constraint

on the protected subsystem instance named or the mode specified in an

added element. (To keep things consistent the supervisor might enforce

the rule that the specification of gate permission in an ACL element

for a segment can be made only if the gate attribute is present for the

segment.) The ability to set the gate attribute for a segment, howeverJ

needs to be carefully controlled. In particularJ if a procedure execut­

ing in a protected subsystem instance which has proper permission to

change the attributes of some segment could specify a gate attribute

for that segment naming an arbitrary protected subsystemJ then no pro­

tected subsystem would be secure. Any user could createJ say from his

home protected subsystem instanceJ a gate into any other protected sub­

system and thereby cause a procedure he constructed to execute in any

other protected subsystem. The ability to create gates into a protected

subsystem needs to be restricted to those responsible for the protected

subsystem (or their designates). The ACL on a protected subsystem pro­

vides this control.

There need be only one kind of permission flag that can appear in

an ACL element of a protected subsystem: the "define gates" permission

flag. In order for some protected subsystem instance to set the gate

attribute for some segment to specify that the segment contains gates

into a protected subsystem with tree name 1J a matching element on the

149

ACL of T must give the requesting protected subsystem instance "define

gates" permission. Thus, in addition to providing a tree name for a

protected subsystem, a protected subsystem object in the directory

hierarchy controls the creation of gates into the protected subsystem.

Examples of Access Control Lists

A few examples will help to sharpen the meaning and use of ACL 1 s

on protected subsystems and segments. To start with, imagine that each

system user has a two-part project/person name, that a home directory

with the tree name "root>projects>PROJECT_NAME>PERSON_NAME" is provided

for each user, and that a home protected subsystem with the name

"root>projects>PROJECT_NAME>PERSON_NAME>home" is provided for each user.

Only the home protected subsystem instance of the user and the home pro­

tected subsystem instance of his project administrator have permission

to perform operations on the user's home directory, including modifying

the ACL's of directly inferior segments, directories, and protected

subsystems.

The most frequently used ACL elements by a user will be those

giving access to his home protected subsystem instance. Following the

assumptions just outlined, such ACL elements for the user "CompSys.Jones"

would be expressed as:

root>projects>CompSys>Jones>home:CompSys.Jones <mode>

This specification will be so frequently used (even in the examples in

this section) and is so awkward that a shorthand notation is adopted to

express the home protected subsystem instance of a user. It is just

the user's name preceeded by a colon. Thus, the ACL element:

150

:CompSys.Jones <mode>

is equivalent to the previous expression.* A data segment that this

user creates for his own use, then, would bear the ACL element:

:CompSys.Jones read, write

while a procedure segment created for his own use would bear the ACL

element:

:CompSys.Jones read, execute

This procedure segment could be shared with his friend "Smith" in the

same project by adding to its ACL the element:

: CompSys .Smith read, execute

Now imagine that user "CompSys.Jones" wishes to create a protected

subsystem that encapsulates one procedure segment containing gate entry

points and one data segment. He will name this protected subsystem

"ex_ps" and put it in his home directory. Thus, its tree name is

"root>projects>CompSys>Jones>ex_ps". The ACL of this protected subsys-

tern is set with the single entry:

:CompSys.Jones define gates

which gives user "CompSys .Jones" permission to define gates for the pro-

tected subsystem when executing in his home protected subsystem instance.

The procedure segment is then given a gate attribute for the protected

subsystem "root>projects>CompSys>Jones>ex_ps". Initially, the ACL of

the procedure segment has two elements. They are:

"'k
In a real implementation conventions also would be required to shorten

the expression of other commonly used protected subsystem instances in
ACL elements. No further conventions will be introduced here, however.

151

:CompSys.Jones read, execute

root>projects>CompSys>Jones>ex_ps :'I>. i> read, execute

These elements allow execution of the procedure segment in his home pro­

* tected subsystem instance and in any instance of the "ex_ps" protected

subsystem. Likewise, the data segment gets the ACL:

:CompSys.Jones read, write

root>projects>CompSys>Jones>ex_ps:*.* read, write

allowing read/write access to the segment from the home protected subsys-

tern instance of the user and from any instance of the "ex_ps" protected

subsystem. So far, no user can borrow this protected subsystem.

Suppose now that user "CompSys.Smith" wants to borrow this protected

subsystem. User "CompSys.Jones" can permit this by adding the element:

: Comp Sys. Smith gate

to the ACL of the procedure segment containing gates into the protected

subsystem. This gives user "CompSys.Smith" permission to call these

gate entry points from his home protected subsystem instance and estab-

lish an instance of the protected subsystem "ex_ps" in his process.

This simple example illustrates the general pattern for defining

and controlling the sharing of a protected subsystem. All the procedure

and data segments of the protected subsystem are made directly accessible

in appropriate ways from any instance of the subsystem. The sharing

of the protected subsystem is then controlled by giving other protected

subsystem instances gate access to the gate segments.

-;'(

The user name "~~. ~~" means any project and any user.
character such as "'''" is very useful for constructing
which match a group of protected subsystem instances.

A match anything
ACL elements

152

The pattern for controlling the sharing of protected subsystems

allows the access of one protected subsystem instance to another to be

revoked in a particularly smooth way by removing the ACL entries giving

the former gate access to the gate segments of the latter. If the

latter happens to be executing at the time this gate access is revoked,

execution is not stopped instantaneously. Rather, execution continues

until the cross-domain return terminates the activities of the protected

subsystem instance in an orderly fashion. Thus, the protected subsystem

instance is not stopped executing at an awkward moment leaving component

data bases in an inconsistent state. Because of the revoked gate access,

however, further cross-domain calls back into the protected subsystem

instance by the former will not be allowed.

Other Issues

The decision to provide general support for user-defined protected

subsystems in a computer utility impacts other areas of the software

system besides the file system. One of the most important is the execu­

tion environment provided by the system for procedures. A procedure

segment that can be used as a building block is of necessity pure and

may contain ambiguous unresolved references to other procedure and data

segments. In order to execute, the procedure segment must be provided

with an impure appendage in which to store linkage information and

static variables, a stack segment in which to allocate activation records,

and information such as search rules [4] with which to resolve the

ambiguous references to other procedure and data segments. It is

153

essential that all these aspects of the execution environment which

can affect the operation of a procedure be provided by the system on a

per domain basis, and that a standard initial execution environment be

defined which is guaranteed by the supervisor to exist in any domain

of a process. Thus, when a protected subsystem instance is associated

with a domain of some process, the procedures of that protected sub­

system can know what execution environment will be provided initially

and therefore can be constructed to operate correctly in that

environment.

Multics already meets this requirement. I/0 stream name defini­

tions and attachments, reference name definitions, and search rule

definitions are limited in scope to a single domain of a process and

always given a system-defined initial state. A stack segment and a

segment for linkage information are provided for each domain of a pro­

cess and are given system-defined initial states.

Other system functions which affect the secure operation of a

multidomain computation include error detection and handling (for

example, the PL/I condition mechanisms), process interruption via the

attention key of the user's terminal, input/output, and accounting.

The mechanisms in Multics for performing these and other functions,

with minor revisions, appear to be adequate for supporting multidomain

computations.

Finally, in order for the procedures of a protected subsystem to

make meaningful decisions on whether or not to fulfill requests received

in the form of cross-domain calls, it must be possible for these proce­

dures to determine the identity of the protected subsystem instance

154

making the request. For this purpose a supervisor gate should be

provided which allows a procedure executing in some domain to determine

the tree name of the protected subsystem instance from which the last

incoming cross-domain call was made. It may be appropriate to provide

a supervisor gate which essentially makes the contents of the domain

table of a process available to procedures executing in any domain of

a process.

Summary

This chapter has presented a brief description of a software second

layer for the processor protection mechanisms described in Chapters 2

and 3. The purpose of this material is to demonstrate one way to har­

ness the processor protection mechanisms so that users can define and

control the sharing of protected subsystems. There are many degrees of

freedom in constructing a software system to harness the hardware pro­

tection mechanisms. Further research may produce a software system

organization that provides a more simple, natural, and flexible user

interface for controlling sharing in a computer utility than the inter­

face developed in this chapter. The software system outlined here,

however, demonstrates that a practical protection facility meeting the

objectives presented in Chapter 1 can be constructed based on the hard­

ware protection mechanisms developed in this thesis.

156

In the first example, by encapsulating various data bases in a pro­

tected subsystem with programs that he provides, a user can force all

references to the data bases attempted by programs outside the protected

subsystem to be made by invoking these caretaker programs. The user can

specify arbitrarily complex controls on access to the encapsulated data

bases since he writes the programs that judge, perform, and record re­

quested references. Providing users with the ability to write programs

for controlling access to data bases has an important impact on the

structure of the computer utility. It means that the system need not

provide protection mechanisms that directly implement complex, content­

dependent controls on access to stored information. Rather, the system

only need implement the general mechanisms required for users to define

the encapsulation of programs and data bases in protected subsystems and

for users to control the sharing of protected subsystems. More complex

controls on access to stored information than are directly provided by

the system can be implemented by the users themselves by encapsulating

caretaker programs with data bases in protected subsystems. The result

is that arbitrarily complex control on access to stored programs and

data can be implemented based on a general, fixed, fairly simple set of

system-provided protection mechanisms.

The second example use for protected subsystems, sharing proprietary

algorithms without divulging the structure of the algorithms, takes ad­

vantage of the fact that programs in a protected subsystem may be invoked

by outside programs but not read by them. In addition, none of the ~em­

porary or permanent data associated with the programs in the protected

subsystem may be read or written by outside programs. Thus, the programs

157

in a protected subsystem may be used by other programs, but no aspect of

their structure examined.

The third example use for protected subsystems, limiting the damage

that borrowed programs can do to the programs and data of the borrower,

is based on the fact that programs inside a protected subsystem can in­

voke programs outside without compromising the protected subsystem.

Thus, a borrower only need arrange that his programs and data form a

protected subsystem and that a borrowed program not be part of that pro­

tected subsystem. Then, if by malice or error the borrowed program be­

haves in an unexpected way, it will not be able to damage the programs

and data of the borrower.

The protection mechanisms described in this thesis for supporting

user-defined protected subsystems allow multiple, independent protected

subsystems to be combined in a single computation without compromising

the protection of the individual subsystems. The mechanisms are based

on the division of a computation into independent domains of access priv­

ilege, each of which may encapsulate a protected subsystem. The central

component of these mechanisms is a hardware processor that fully supports

a multidomain computation implemented as a single process whose address

space is a segmented virtual memory. This processor allows a standard

interprocedure call with arguments to change the domain of execution of

the process. All the semantic implications of an interprocedure call

as defined in a high-level programming language like PL/I are accomodated

on a cross-domain call without compromising the protection of the sub­

systems encapsulated by either of the domains involved. The processor

design represents the first time that hardware mechanisms for fully

158

automating cross-domain calls between independent domains of a compu­

tation have been described.

The processor recognizes and enforces two kinds of access capabil­

ities: static and dynamic. Static access capabilities represent the

encapsulation of segments of procedure and data in protected subsystems

and control the ability of procedures executing in one protected sub~

system to invoke procedures of another via a cross-domain call. Dynamic

access capabilities correspond to the arguments of cross-domain calls.

The processor automatically adds to the called domain dynamic access

capabilities to reference whatever arguments accompany a cross-domain

call and automatically removes these capabilities whenever the subse­

quent return occurs. The distinction between static and dynamic access

capabilities corresponds to an apparently fundamental division of the

access privilege associated with a process that executes in a multi­

domain environment into the capabilities associated with the address

space component of the process (a segmented virtual memory in this case)

and the capabilities associated with the execution point component of

the process.

The processor is the key to both the efficiency and the naturalness

of the protection mechanisms. Because the processor automatically vali­

dates each reference made by an executing program against the static or

dynamic access capabilities in the domain of execution and automatically

performs cross-domain calls, little intervention by supervisor software

is required for the enforcement of the access constraints associated

with a multidomain computation as that computation executes. Because

on a cross-domain call the processor is able to interpret the standard

159

argument list and create in the called domain dynamic access capabilities

that exactly correspond to the arguments, the user has the natural inter­

face to the cross-domain call mechanism of the call and return statements

in a high-level programming language.

In addition to the hardware processor, supporting software was dis­

cussed. This software, when used in conjunction with the hardware pro­

tection mechanisms, provides an environment in which users of the com­

puter utility can construct and share procedure segments, data segments,

and protected subsystems. This protection facility extends the idea

inherent in programming generality of using programs as building blocks

to allow protected subsystems to be used as building blocks as well.

Independently written and compiled procedure segments may be combined

in different ways along with the associated data segments to form pro­

tected subsystems without recompiling the procedure segments. Independ­

ently defined protected subsystems may be combined in different ways as

cooperative partners in various computations without either modifying

the protected subsystems or altering the component procedure segments.

The ease with which procedure segments, data segments, and protected sub­

systems provided by different users can be combined to perform different

computations will encourage the users of the computer utility to commun­

icate, cooperate, and build upon one another's work.

Taken together, the hardware and software mechanisms described in

this thesis constitute an existence proof of the feasibility of building

protection mechanisms for a computer utility that allow multiple user­

defined protected subsystems, mutually suspicious of one another, to

cooperate in a single computation in an efficient and natural way.

160

Areas for Further Research

The topic of protection mechanisms for computer systems is by no

means exhausted as a viable research topic. In this final section of

the thesis two of the many areas for further research are discussed

briefly. The first is the user interface for controlling sharing in a

computer utility. As indicated in Chapter 4, further research may pro-

duce a software system organization that provides a more simple, flex-

ible, and natural user interface for controlling sharing in a computer

utility than that described in this thesis. Making the user interface

as simple and natural as possible without sacrificing needed flexibility

is very important. Experience with Multics suggests that users not

accustomed to dealing with sophisticated protection mechanisms frequent-

ly make errors when specifying to the system the access to be allowed to

some object. Even after some skill is developed in applying the protec-

tion mechanisms, users find it hard to be sure that specifications given

to the system to control the access to some object result in the intended

pattern of access being allowed. For example, it is very hard to detect

the accidental granting of too much access to some object, because no

obvious errors result from too much access being granted. When dealing

with user-defined protected subsystems the problem probably becomes

worse, for access specifications become embedded in programs that users

construct.

To make more progress on this important problem of human engineering,

it may be necessary to employ an actual system with a creative user

community as a tool. Only by applying a set of protection mechanisms to

the protection needs of real users can it be seen where user mistakes

161

commonly are made, and can it be seen what aspects of the flexibility

provided are really needed and what aspects complicate the mechanisms

with unneeded flexibility. It would be feasible to construct a proto­

type of the system proposed in this thesis to use as such a tool. Be­

cause of the close relationship of the overall architecture of the pro­

cessor described here to the architecture of the new Multics processor,

only a few of the major functional modules of that processor would have

to be altered to produce a processor that implements most of the protec­

t ion mechanisms described in Chapter 3. Only a few changes are required

to the existing Multics software to produce the software system described

in Chapter 4. In addition to testing user reaction to the protection

facilities provided, this prototype system would provide an environment

in which to test improved interfaces and to develop tools that allow

users to debug the access specifications embodied in protected subsys­

tems or given to the system-provided protection mechanisms.

The second area for further research is that of certification.

Certification means guaranteeing that the protection mechanisms in a

system actually implement the intended protection facility, i.e., that

no mistakes were made during the design or construction of system pro­

tection mechanisms that allow these mechanisms to be circumvented. The

essential problem is that there exist no methodical techniques for de­

signing or constructing systems so that this guarantee can be made. In

addition, the protection mechanisms devised to date, especially their

software components, are much too complex to certify by inspection once

constructed.

162

Protection hardware for supporting multidomain computations, such

as that described in this thesis, offers some help in attacking the prob­

lem of certifying the software components of the protection mechanisms

in a system. The hardware can be applied to isolate by encapsulation in

protected subsystems those software components that are critical to the

correct function of the protection mechanisms. The key to success, and

the area where further research is required, is making small and simple

those software components which, if improperly designed or implemented,

or if violated, would compromise the protection mechanisms of the system.

Once made small and simple, and their correct operation certified, the

hardware can provide enforced isolation for these components, thus insu­

lating them from errors introduced into the system by modifying other,

less critical components of the software.

The two areas for further research mentioned above are only a small

sample of the work that remains to be done on the topic of protection

mechanisms for computer systems. One of the basic problems to be over­

come is that there exists such a lack of formal knowledge on the topic

that it is difficult to see the problems that remain unsolved. As com­

puter systems play larger and more important roles in society, protection

mechanisms will become increasingly important as the guardians of priva­

cy. The design and implementation of protection mechanisms must become

so well understood and methodical that, as a matter of course, conunerical­

ly available computer-based information systems contain protection mecha­

nisms which prevent unauthorized access to the information stored in them

while at the same time make it easy for users to communicate when appropri­

ate by sharing information. We have a long way to go to reach this goal.

BIBLIOGRAPHY

References, in alphabetic order:

[l] Bensoussan, A., Clingen, C.T., and Daley, R.C., "The Multics
Virtual Memory: Concepts and Design", Comm. ACM _!2, 5 (May 1972),
308-318.

[2] Brinch-Hansen, P., "RC-4000 Software Multiprogramming System",
A/S Regnecentralen, Copenhagen, April 1969.

[3] Burroughs Corporation, "The Descriptor - a definition of the B5000
Information Processing System", Detroit, Mich., February 1961.

[4] Clingen, C.T., "Program Naming Problems in a Shared Tree-Structured
Hierarchy", In working papers distributed at NATO Science Comm.
Conf. on Techniques in Software Eng., Rome, Italy, October 1969.

[5] Corbato, F.J., Clingen, C.T., and Saltzer, J.H., "Multics: The
First Seven Years", Proc. AFIPS 1972 SJCC, Vol. 40, AFIPS Press,
Montvale, N.J., 571-583.

[6) Corbato, F.J., "PL/I as a Tool for System Programming", Datamation
_!2, 6 (May 1969), 68-76.

[7] Dennis, J.B., and Van Horn, E.C., "Programming Semantics for Multi­
programmed Computations", Comm. ACM 2, 3 (March 1966), 143-155.

[8] Dennis, J.B., "Programming Generality, Parallelism, and Computer
Architecture", Information Processing 68, North-Holland Publish­
ing Co., Amsterdam, 1969, 484-492.

[9] Dennis, J.B., "Future Trends in Time-Sharing Systems", Time-Sharing
Innovation for Operations Research and Decision Making, Washington
Operations Research Council, Rockville, Maryland, 1969, 229-235.

[10] Dennis, J.B., "Modularity", Computation Structures Group Memo 70,
M.I.T. Project MAC, June 1972.

[ll] Evans, D.C., and Leclerc, J.Y., "Address Mapping and the Control
of Access in an Interactive Computer", Proc. AFIPS 1967 SJCC,
Vol. 30, AFIPS Press, Montvale, N.J., 23-30.

[12] Fabry, R.S., "Preliminary Description of a Supervisor for a Com­
puter Organized around Capabilities", Quarterly Progress Rep. No.
18, Institute of Comp. Research, Univ. of Chicago, I-B 1-97.

163

164

[13] Graham, G.S., and Denning, P.J., "Protection - Principles and
Practice", Proc. AFIPS 1972 SJCC, Vol. 40, AFIPS Press, Montvale,
N.J., 417-429.

[14] Graham, R.M., "Protection in an Information Processing Utility",
Comm. ACM 11., 5 (May 1968), 365-369.

[15] Gray, J., et al, "The Control Structure of an Operating System",
to be published.

[16] Honeywell Information Systems, Inc., "The Multics PL/I Language",
Waltham, Mass., July 1972.

[17] Honeywell Information Systems, Inc., ''Model 645 Processor
Reference Manual", Cambridge Information Systems Laboratory,
Cambridge, Mass., April 1971.

[18] Lampson, B.W., "On Reliable and Extendable Operating Systems",
Techniques in Software Engineering, NATO Science Committee Work­
shop Material, Vol. II, September 1969.

[19] Lampson, B.W., "Dynamic Protection Structures", Proc. AFIPS 1969
FJCC, Vol. 35, AFIPS Press, Montvale, N.J., 27-38.

[20] Lampson, B.W., "Protection", Proc. Fifth Annual Princeton Conf. on
Information Sciences and Systems, Dept. of Elec. Eng., Princeton
Univ., Princeton, N.J., March 1971, 437-443.

[21] M.I.T. Project MAC, ''Multics Programmers' Manual", 1969.

[22] Motobayashi, S., Masuda, T., and Takahashi, N., "The Hitac 5020
Time-Sharing System", Proc. ACM 24th Nat. Conf., ACM, New York,
1969, 419-429.

[23] Organick, E.I., The Multics System: An Examination of its
Structure, M.I.T. Press, Cambridge, Mass., 1972.

[24] Schroeder, M.D., "Performance of the GE-645 Associative Memory
while Multics is in Operation", ACM Workshop on System Perfor­
mance Evaluation, ACM, New York, April 1971, 227-245.

[25] Schroeder, M.D., and Saltzer, J .H., "A Hardware Architecture for
Implementing Protection Rings", Comm. ACM£, 3 (March 1972),
157-170.

[26] Univ. of California, "CAL-TSS Internals Manual", Computation
Center, Berkeley, Calif., November 1969.

[27] Univ. of California, "CAL Time-Sharing System Users Guide",
Computation Center, Berkeley, Calif., November 1969.

[2 SJ Vanderhi;.
Util1ly'',

l%b.

n. ~-· , ''.!'l 11'' E'd 1'1]1Jr11':;t 111n Sharing in a Computer
~· 1i\i_ , · ,-. C - 'I J.Z- ,,, - ; 9 6 9 .

BIOGRAPHICAL NafE

Michael David Schroeder was born in Richland, Washington on Jan-

uary 5, 1945. He attended public school there, graduating from Colum-

bia High School in June, 1963. He entered Washington State University

in September, 1963 where he studied Mathematics and Computer Science,

receiving the degree of B.A. with highest honors (February, 1967).

In September, 1967 he entered the Massachusetts Institute of Technology

where he studied Computer Science, receiving the degrees of S.M. (Feb-

ruary, 1969) and E.E. (June, 1969).

Mr. Schroeder joined the staff of the M.I.T. Electrical Engineer-

ing Department in June, 1968 as a Teaching Assistant; in June, 1970 he

became an Instructor. He has been involved in developing and teaching

a course on the structure of computer-based information systems. In

July, 1967 he became associated with Project MAC where he has been

involved in the Multics development effort. Research conducted at

Project MAC in protection mechanisms for computer systems was the

subject of his doctoral dissertation.

Mr. Schroeder is a member of Phi Beta Kappa, Phi Sigma Phi, Sigma

Xi, the IEEE, and the ACM.

Publications

"The Classroom Information and Computing Service", Project MAC Technical
Report MAC-TR-80, January, 1971 (with D.D. Clark, R.M. Graham, and J.H.
Saltzer) .

166

"Performance ol !he (;E- ,·,ssc'Ci(ltivc· Memorv while Multics is in Oper-
ation", ACM Wor:\shup l'l·: ;.., stc=rn Pc'rfl;nnancP Evaiuation, ACM, Nc:w York,
April 1971, 227-2~~.

"A Hardware Arct1iteccurc f,:r 1nrn1err1L'nling Prolc,ction Rings", Communi-
cations of_ Lh<c ACM~ 0·1z1:c), 1'!7 1 l"i-1 ()(\vi.th J.H. Silltzer).

This empty page was substih1ted for a
blank page in the original document.

CS-TR Scanning Project
Document Control Form

Report #_ L<..s ~\ R- I 0 l\

Date : j__ I I) t l'

Each of the following should be identified by a checkmark:
Originating Department:

D Artificial lntellegence Laboratory {Al)
~ Laboratory for Computer Science {LCS)

Document Type:

.:R(, Technical Report (TR)

D Other:

D Technical Memo (TM)

-~~---~~~~-----

<"

Document Information Number of pages: Jlo l t"JG-iM"c-,:~)
Not to include DOD forms, printer~. etc ... original pages only.

Originals are:

D Single-sided or

~ Double-sided

Print type:
0 Typewriter 0 Offset Press 0 Laser Print

Intended to be printed as :
D Single-sided or

£s:. Double-sided

0 InkJet Printer~ Unknown 0 Other:, ______ _

Check each if included with document:

~DOD Form (0-)D Funding Agent Form D Cover Page

D Spine D Printers Notes D Photo negatives

D Other:
--~-------------~

Page Data:

Blank Pages(by.-uenumber): J:'oLL..ow Ti'TUJ tAJ LJO-sl PAC:-'i'5

Photographsff onal Material (byi-eenumbell: ________ _

Scanning Agent Signoff:

Date Received:)_ 1_!_I_1 'l { Date Scanned: ~ 1..!J._1 Cf.(; Date Returned: J_ ~116

Scanning Agent Signature: __ ~_· _ ___,4 ifv_,_~__.=----
R"" 919"4 DSILCS Document Conlrol Fonn cstrtonn.vsd

··--- ----

UNCLASSIFIED
s ecuri!.Y_ Classi ication

DOCUMENT CONTROL DAT A - R & D
(Security classification of title, body of abstract and indexin~ annotation must be entered when t!Je overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author) 2aa REPORT SECURITY CLASSIFICATION

MASSACHUSETTS INSTITUTE OF TECHNOLOGY UNCLASSIFIED
2b. GROUP

PROJECT MAC NONE
3. REPORT TITLE

COOPERATION OF MUTUALLY SUSPICIOUS SUBSYSTEMS IN A COMPUTER UTILITY

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

INTERIM SCIENTIFIC REPORT
5. AU THOR(SI (First name, middle initial, last name)

MICHAEL D. SCHROEDER

6. RE?ORT OATE 78. TOTAL NO. OF ?AGES Tb. NO~;F REFS

SEPTEMBER 1972 167
Ba. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S RE?ORT NUMBER(SI

N00014-70-A-0362-0006
MAC TR-104

b. ?ROJECT NO.

c. 9b. OTHER RE?ORT NO(S) (Any other numbers that may be assigned
this report)

d.
NONE

10. OISTRIBUTION STATEMENT

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

11. SUPPLEMENTARY NOTES 12. S?ONSORING MILITARY ACTIVITY

PH.D. THESIS, DEPT. OF ELECTRICAL
ENGINEERING, SEPTEMBER 1972 OFFICE OF NAVAL RESEARCH

13. ABSTRACT

This thesis describes practical protection mechanisms that allow mutually
suspicious subsystems to cooperate in a single computation and still be pro-
tected from one another. The mechanisms are based on the division of a compu-
tat ion into independent domains of access privilege, each of which may
encapsulate a protected subsystem. The central component of the mechanisms is
a hardware processor that automatically enforces the access constraints associated
with a multidomain computation implemented as a single execution point in a
segmented virtual memory. This processor allows a standard interprocedure call
with arguments to change the domain of execution of the computation. Arguments
are automatically connnunicated on cross-domain calls -- even between domains
that normally have no access capabilities in connnon. The processor, when
supported by a suitable software system which is also discussed, provides the
protection basis for a computer utility in which users may encapsulate
independently compiled programs and associated data bases as protected subsystems,
and then, without compromising the protection of the individual subsystems,
combine protected subsystems of different users to perform various computations.

(PAGE 1)
UNCLASSIFIED

SIN 0102-014-6600 Security Classification

UNCLASSIFIED
Security Claaaification

'"'· LINK A LINK B • LINK C
KEY WORDS Yi\.

ROLE WT ROLE ROLE WT

Multics

Protection Mechanisms

Computer Utility

Protection Domains

Hardware Protection Mechanisms

Controlled Information Sharing

Time-Shared Computer Systems

Virtual Memory

Segmentation

Access Control

DD .".!'o"!' .. 14 73 (BACK) UNCLASSIFIED
(PAGE 2) Security Classification

Scanning Agent Identification· Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I.T
Libraries. Technical support for this project was
also provided by the M.I. T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

