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COOPERATION OF MUTUALLY SUSPICIOUS SUBSYSTEMS 
IN A COMPUTER UTILITY* 

by 

Michael D. Schroeder 

ABSTRACT 

This thesis describes practical protection mechanisms that 
allow mutually suspicious subsystems to cooperate in a sin­
gle computation and still be protected from one another. 
The mechanisms are based on the division of a computation 
into independent domains of access privilege, each of which 
may encapsulate a protected subsystem. The central com­
ponent of the mechanisms is a hardware processor that auto­
matically enforces the access constraints associated with 
a multidomain computation implemented as a single execution 
point in a segmented virtual memory. This processor allows 
a standard interprocedure call with arguments to change the 
domain of execution of the computation. Arguments are auto­
matically communicated on cross-domain calls -- even between 
domains that normally have no access capabilities in common. 
The processor, when supported by a suitable software system 
which is also discussed, provides the protection basis for 
a computer utility in which users may encapsulate indepen­
dently compiled programs and associated data bases as pro­
tected subsystems, and then, without compromising the pro­
tection of the individual subsystems, combine protected 
subsystems of different users to perform various computations. 

* This report reproduces a thesis of the same title submitted to 
the Department of Electrical Engineering, Massachusetts Institute 
of Technology, on September 20, 1972 in partial fulfillment of 
the requirements for the Degree of Doctor of Philosophy. 
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CHAPTER 1 

INTRODUCTION 

When considered in conjunction with computer systems, privacy and 

protection are easily confused. Privacy is a social and legal issue. 

Privacy means that the dissemination of information of or about a person 

or group is controlled by that person or group. New emphasis has been 

placed on guaranteeing rights of privacy in the face of the increased 

ability provided by large, sophisticated computer-based information 

systems to gather, catalogue, and analyze data. Protection, on the 

other hand, is a technical and economic issue. Protection means the 

mechanisms for specifying and enforcing control. Guaranteeing rights 

of privacy requires protection mechanisms, but many other issues are 

involved as well. Protection is a means and privacy an end. 

In this thesis interest is centered on protection mechanisms within 

computer systems. The viewpoint is that of a computer system designer 

who is intent upon providing efficient protection mechanisms applicable 

to a wide range of problems. Questions of privacy influence this effort 

to the extent of implying criteria which must be met before such a 

computer system can be applied to those problems where privacy is an 

issue. The thesis, however, contains little explicit consideration of 

privacy. 

To further define the scope of the thesis, consideration is limited 

to problems of hardware and software organization. While it is recog­

nized that issues such as installation security, connnunication line 
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securityJ hardware reliabilityJ and correctness of hardware and software 

implementations of algorithms must be considered in order to achieve the 

secure environment required for useful application of protection 

mechanismsJ these topics are beyond the scope of the thesis. 

Protection mechanisms are defined to be those components of a 

computer system that control access of executing programs to objects in­

side the system. This definition recognizes that executing programs 

carry out inside the system the intentions of the people outside the 

system. ThusJ executing programs are the active agents that must be 

controlled in a computer system. The definition admits a large variety 

of mechanismsJ ranging from write-permit rings on magnetic tape reels 

to sophisticated memory protection hardware and including access con­

trols implemented in software. 

All such protection mechanisms are directed toward two overall 

objectives. The first can be labeled user self-protection. People are 

not infallible. They frequently make mistakes when conceiving algo­

rithmsJ specifying algorithms as programsJ and applying programs to 

particular problems. Protection mechanisms permit a redundant specifi­

cation of intention to be made and enforced. For exampleJ the write­

permit ring mentioned above allows the intention that a tape not be 

altered in a particular situation to be enforced on the basis of speci­

fications other than those provided by the executing programs. In gen­

eralJ enforcing limits on the objects an executing program may access 

can detect certain types of errors and prevent inadvertant damage by 

incorrect access. 
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The second objective of protection mechanisms is control of user 

interaction. This objective surfaces in computer systems providing 

computation and information storage services to more than one person or 

group. The multiple users of a computer system may have different goals 

and be responsible to different authorities. A diverse connnunity will 

use the same system only if it is possible for its members to be inde­

pendent of one another. On the other hand, a great potential benefit of 

a multiple user computer system is its ability to encourage users to 

connnunicate, cooperate, and build upon one another's work. Such inter­

action is generally based on users sharing stored information. Thus, 

total user separation, while relatively easy to achieve, negates a 

potential benefit. Required to achieve this benefit is controlled user 

interaction. Controlling the ability of executing programs to access 

objects in the system is the internal manifestation of controlling user 

interaction. 

While important in any system serving multiple users, the objec­

tive of controlling user interaction is a key part of the service objec­

tives defining a computer utility. In the remainder of this thesis, 

protection mechanisms are considered in the context of a large, general­

purpose, interactive, multiplexed computer system functioning as a 

computer utility. This context provides a severe test of protection 

mechanisms, and at the same time offers a large reward for devising 

economic, natural protection mechanisms that can guarantee total user 

separation when desired, permit unrestricted user cooperation when 

desired, and provide many intermediate degrees of control. 
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Different Access for Different Situations 

The essential observation underlying all protection mechanisms is 

that executing programs need different access in different situations. 

For instance: 

The programs in different computations need different access. 
In a computer utility serving a university community, for 
example, programs executing in a computation directed by the 
registrar to manipulate academic records need different access 
to stored data than programs executing in a computation directed 
by a system administrator to generate monthly bills for computer 
usage. 

The same programs in different computations need different 
access. In the previous example, both computations may share 
the use of a program for manipulating hash-coded index tables. 

Different programs in the same computation need different access. 
A user-defined program executing in some computation may invoke 
a supervisor program to initiate I/O channel operation. Presum­
ably, the executing supervisor program has access to channel 
assignment data and to the start I/O instruction of the 
processor -- access denied the executing user program. Yet both 
executing programs are logically part of the same computation. 

The same program in the same computation needs different access 
for different circumstances. For example, a closed subroutine 
providing string comparison functions for all programs written 
in PL/I needs different access when invoked by a supervisor 
program than when invoked by a user-defined program. 

In general, the access permission that should be associated with an 

executing program depends upon the specific circumstances of its execu-

tion. 

A significant result of previous work [7,19,20] on protection 

mechanisms has been the development of a model that applies to situa-

tions where the access of executing programs needs to differ. This 

model is based on the concept of domains which are sets of access 

capabilities. The access of an executing program depends upon the 

domain of execution in which the program finds itself. An attempt by 
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by an executing program to access something in the system will succeed 

only if a capability allowing that access is an element of the domain 

of execution. (Ways of defining the capabilities in domains and of 

determining the domain of execution at any given time will be discussed 

later.) 

There is practically no limit to the types of capabilities that can 

be defined. A capability is simply an ordered pair specifying the name 

of something in the system and the operations which can be performed on 

that object. Thus, there can be capabilities to allow any well-defined 

operation on any named object in a system. Capabilities to read and 

write data items and to execute programs are obvious examples. Capa­

bilities to do I/O over a specific channel, to add capabilities to 

domains, and to change the domain of execution to a particular domain 

are less obvious examples. The different types of capabilities present 

depend upon the particular system being considered. 

The domain model provides a conceptual framework in which to con­

sider the protection mechanisms of any system. For instance, the model 

is easily related to the examples given previously. By using a distinct 

domain of execution for each computation in a system, executing programs 

automatically assume the access capabilities associated with the com­

putation of which they are part, as required in the first and second 

examples, By alternately using two domains of execution for a single 

computation, the supervisor/user distinction of the third and fourth 

examples can be dealt with. Multiple domains per computation can deal 

with more complex situations as well. 
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Cooperating, Mutually Suspicious Subsystems 

One of the most complex instances of multiple domains in a single 

computation is the case of mutually suspicious subsystems cooperating 

in the same computation. This case provides a good test of a set of 

protection mechanisms. Since protection mechanisms that can deal with 

cooperating, mutually suspicious subsystems are the central concern of 

this thesis, further discussion of this case is appropriate. 

An essential idea underlying the case of cooperating, mutually 

suspicious subsystems is that of a protected subsystem. A protected 

subsystem is a collection of programs and data bases that is encapsula­

ted so that other executing programs can invoke certain component 

programs within the protected subsystem, but are prevented from reading 

or writing component programs and data bases, and are prevented from 

disrupting the intended operation of the component programs. The 

supervisor of most computer systems is a good example of a protected 

subsystem. A few systems (notably the CAL system [15,18,26,27] and 

Multics [5,21,23]) allow normal users to define their own protected 

subsystems and, with certain restrictions, make them available to be 

invoked by the programs of other users. 

Protected subsystems are useful for implementing complex controls 

on access to data bases and for maintaining the secrecy of proprietary 

algorithms which are shared. In the first case the programs of a pro­

tected subsystem act as caretakers for the contained data bases and 

interpretively enforce arbitrarily complex controls on access to them. 

Programs outside the protected ~ubsystem are allowed to access the con­

tained data bases only by invoking the caretaker programs. The 
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algorithms manifest in these programs may judge the propriety of the 

requested access based on information provided by the system on the 

identity of the invoking program and the circumstances of invocation. 

The caretaker programs may even record each access request in one of 

the encapsulated data bases. No action by an outside program can dis­

rupt the operation of the caretaker programs in judging, performing, or 

recording requested accesses. 

In the case of maintaining the secrecy of shared, proprietary 

algorithms, the programs in a protected subsystem may be invoked by 

outside programs but not read by them. In addition, none of the tempo­

rary or permanent data associated with the programs in the protected 

subsystem may be read or written by outside programs. Thus, the pro­

grams in the protected subsystem may be used by other programs, but no 

aspect of their structure examined. 

So far the properties of a protected subsystem have been developed 

from the point of view of a program outside invoking a program inside. 

It is also conceivable that in the course of its operation a program 

inside a protected subsystem might need to invoke a program outside. 

This reverse operation is useful only if it does not compromise the 

protected subsystem. 

A case of cooperating, mutually suspicious subsystems arises when 

two or more protected subsystems are involved in the same computation. 

An example of this situation occurs if a program inside a protected sub­

system invokes a program outside that happens to be inside another pro­

tected subsystem. An example involving a less direct form of cooperation 

arises if programs in two different protected subsystems are alternately 



14 

invoked by programs outside both. Arbitrary structures involving any 

number of protected subsystems can be imagined. 

The domain model deals naturally with the notion of protected sub­

systems. Each encapsulation is just a different domain containing 

capabilities to execute the component programs and read or write the 

component data bases. The case of mutually suspicious subsystems co­

operating in a single computation corresponds to a multidomain computa­

tion in which the domains involved have few access capabilities in 

connnon. 

A computer utility which allows user-defined protected subsystems 

to cooperate in computations could be put to good use. For example, 

imagine that a consulting firm has developed and calibrated a demand 

model for interzonal traffic flow in a large metropolitan area. 

Model development, data gathering, and model calibration were done at 

great expense, and the firm wishes to sell the use of its model in order 

to profit from the investment. To this end the model is implemented in 

a computer utility. The resulting subsystem includes a set of programs 

which embody the prediction algorithms, and several data bases contain­

ing socio-economic parameters and door-to-door survey results. In order 

to vend this subsystem to other users of the computer utility, the con­

sulting firm encapsulates it as a protected subsystem. 

Now imagine that a planning board for the area is studying express­

way networks to meet future transportation needs. As part of this task 

they have constructed a model which calculates level-of-service param­

eters for an expressway network, given the physical attributes and the 

traffic volume. This model, along with a wealth of related data, is 
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* model. Also, the only way that the consulting firm subsystem can in-

fluence the operation of the planning board subsystem is with the values 

of the answers calculated by the former for the latter. 

This simple example involving two protected subsystems is represen-

tative of a large class of potential applications for a computer utility 

that supports cooperating, mutually suspicious subsystems. Such,a 

facility would permit, among other things, the packaging of knowledge in 

an active form as program complexes and the marketing of this knowledge 

in a way that preserves the proprietary interests of the seller and 

limits the possibility of harm to the customers. Of course, this 

facility cannot guarantee that a marketed program complex correctly per-

forms the functions that it is advertised to perform. Issues of program 

certification are beyond the scope of this thesis. The important point 

is that, even if a program malfunctions or behaves maliciously, the use 

of protected subsystems limits the resulting damage. 

A computer utility that supports cooperating, mutually suspicious 

subsystems would favorably impact casual progrannning users as well as 

those affiliated with expensive proprietary projects or those manipula-

ting sensitive data. An important activity of most progrannning users in 

a computer utility is sharing programs and program complexes with one 

another. The access environment in which the programs of such a user 

* In some cases it may be desirable to guarantee that a protected sub-
system invoked by another cannot remember and later divulge the values 
of input parameters. This problem appears to be very difficult to solve 
in a purely technical way and will not be considered in this thesis. A 
practical solution probably involves program certification and means for 
legal redress in cases of unauthorized release of such information. 
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also represented as a protected subsystem in the computer utility. For 

one aspect of their study the planning board will perform a series of 

network equilibrium flow analyses for various expressway configurations. 

In these calculations the planning board will use the demand model 

vended by the consulting firm. 

The resulting computation is a case of cooperating, mutually suspi­

cious subsystems. The consulting firm wishes to avoid divulging their 

expensively gathered data and expensively devised algorithms, and wishes 

to make secure records of use for later billing. The planning board 

wishes to avoid premature, uncensored release of the various routing 

and cost information for potential expressway configurations that is 

accessible to their programs for this and other phases of the study. 

The encapsulation of the consulting firm's demand model as a pro­

tected subsystem guards their proprietary interests. Access by the 

planning board subsystem is restricted to invoking a few carefully 

selected programs. The planning board subsystem cannot read the code 

or the data bases of the demand model, nor subvert its operation in any 

way. The consulting firm subsystem can make protected usage records as 

it operates from which bills can be generated later. 

Likewise, the encapsulation of the planning board programs and 

data bases protects the interests of the planning board. The consult­

ing firm subsystem cannot read or alter the sensitive data that is 

accessible to the planning board programs. The consulting firm sub­

system just has temporary access to whatever input parameters the plan­

ning board subsystem provides each time that it invokes the demand 
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normally execute on his behalf could be set up as a protected subsystem. 

Then the user could arrange for programs borrowed from other users to 

execute outside of this "home" protected subsystem. In this manner the 

borrowed programs could be invoked without giving them access to all the 

programs and data of the borrower. If the borrowed program is malicious, 

or malfunctions, the damage it can do is thereby limited. The l~nding 

user also would have the option to encapsulate the lent program or 

program complex in a protected subsystem of its own and thus insulate 

it from the programs of the borrower. The result of this pattern is an 

environment in which casual sharing of programs is encouraged by the 

ability to limit the potential damage to the participating users. 

Objectives 

The objective of the research reported here is to devise protection 

mechanisms that allow cooperating, mutually suspicious subsystems to be 

implemented efficiently and naturally in a computer utility. As has 

been suggested, this case corresponds to a multidomain computation in 

which the domains have few capabilities in connnon. The essential 

difficulty is that conunon capabilities seem to be a prerequisite to 

cooperation and connnunication among subsystems encapsulated in differ­

ent domains. Thus, in this respect, cooperating, mutually suspicious 

subsystems is a "worst case" problem. Means must be provided for pro­

grams executing in different domains to communicate even when these 

domains normally have no capabilities in common. The mechanisms 

developed in this thesis, however, do not force the sets of capabilities 

that are the domains in a computation to be disjoint. There are no 
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arbitrary restrictions on the capabilities that can be included in the 

domains. As a result, these protection mechanisms are able to enforce 

as well a large variety of protection relationships that are less re­

strictive than those associated with cooperating, mutually suspicious 

subsystems. 

The words "efficiently" and "naturally" are used to convey ~he aim 

of developing practical mechanisms which meet the functional objective 

mechanisms that people actually might build and use. This requirement 

is manifest in three specific design criteria: economy, simplicity, 

and progrannning generality. Economy, obviously related to efficiency, 

encompasses two considerations. First, the cost of building the pro­

tection mechanisms should be small enough relative to the cost of the 

entire system that the system designers are willing to include such 

mechanisms in the system despite an untested market. Second, the cost 

of using the mechanisms should be low enough that it is not an important 

consideration in determining the degree of access control to be used in 

a particular application. Cost in the first case is the per system 

fixed cost of providing the protection mechanisms. Cost in the second 

case is the marginal cost of application, and includes the subsystem 

complexity and user inconvenience that result from the use of the 

mechanisms, as well as any associated extra storage space and execution 

time. 

Simplicity often leads to economy, but is identified as a separate 

criterion for a more important reason. If a set of protection 

mechanisms is to be accepted and used, then there must be confidence 

that no way exists to circumvent it. The best way to achieve confidence 
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is to keep the mechanisms simple so that they may be completely under­

stood. In this respect standard techniques for controlling complexity, 

such as functional modularity and adherence to a few overall design 

principles, can help. 

Progrannning generality, the third criterion, is adopted as the 

specific manifestation of naturalness. First defined by Dennis [8,9,10], 

it is a property that has proven the key to encouraging users of a com­

puter utility to connnunicate, cooperate, and build upon one another's 

work. As used here, it means that independent programs may be combined 

in various ways into larger units without understanding or altering the 

internal organizations of the programs. The idea is that independently 

written and compiled programs of one or more computer utility users can 

be used as building blocks which can be combined in various ways into 

different program complexes to perform different computations. In the 

course of such activity a single program or program complex may have to 

operate in many different protection environments. If the protection 

mechanisms of a computer utility are to be consistent with the criterion 

of progrannning generality, then, it must be possible to change the 

protection environment of a program or group of programs without 

altering the internal structure of the program or group. 

The programming generality criterion generates some specific func­

tional requirements for the protection mechanisms of this thesis. These 

requirements are now developed into a more precise statement of the 

thesis objective. The initial assumption is that a call with arguments 

is an accepted method of connnunication between independent programs and 

should be supported in any general purpose computer system such as a 
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computer utility. In keeping with the criterion of programming general­

ity, many systems allow separately compiled, independent programs to 

communicate via a call that passes arguments. The only requirements for 

such communication are that the programs involved use the same calling 

conventions and that they agree on the number, kind, and order of the 

arguments. No explicit knowledge of the circumstances of execut~on need 

be embedded in the calling or the called program. A single call state­

ment in some program can invoke many different programs depending upon 

the circumstances at the time the compiled version of the statement is 

executed. 

It seems reasonable that the domain in which a program will execute 

when called not be part of the knowledge required in order to write or 

compile programs that invoke it. A natural consequence of this view is 

that the standard call used between independent programs should auto­

matically change the domain of execution if, in a given circumstance, 

the called program is supposed to execute in a different domain than the 

current domain of execution. The programmer or the compiler cannot do 

anything special for calls that cause the domain of execution to change 

(as opposed to calls that leave the domain of execution unchanged) be­

cause programming generality requires that such calls not be differen­

tiated when a program is written or compiled. 

The passing of arguments with a call needs further consideration 

in light of the requirement that a standard call between independent 

programs can change the domain of execution if necessary. An argument 

may be any data item or set of data items that the calling program can 

specify. There are two fundamental methods that can be used to pass 
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arguments with a call. One is to copy the values of the arguments into 

memory locations or registers where the called program expects to find 

them. The second is to leave most arguments in their normal memory 

locations and inform the called program of the addresses of the argu-

ments. The criterion of economy makes it imperative to support the 

second method. The copying involved in the first method would be so 

expensive that the passing of large arguments (arrays, structures, etc.) 

would be discouraged. Further, the functional effect of passing argu­

ments by value can be achieved when required with a mechanism based on 

passing arguments by address. The reverse is not true, for modification 

of an argument passed by value innnediately changes only a copy of the 

source variable, not the source variable itself. More sophisticated 

linguistic constructions for passing arguments, such as passing them by 

name, also can be implemented based on mechamisms that pass arguments 

by address. 

Passing arguments by address, however, can generate problems in the 

case of calls that happen to change the domain of execution. For such 

arguments to be referenced by the called program, the domain of execu­

tion of the called program must contain capabilities which allow access 

to the memory locations containing the arguments. The domain of the 

calling program and the domain of the called program essentially are 

required to have capabilities in connnon permitting the arguments to be 

referenced. 

There are several ways that this need for common argument capabili­

ties conceivably could be met. One approach is to allow cross-domain 

calls only if the capabilities in the calling domain form a subset of 
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the capabilities in the called domain. Thus, any argument that the 

calling program happens to pass is accessible to the called program. 

If one domain is a subset of another, however, then the two domains 

certainly cannot encapsulate mutually suspicious subsystems. Thus, 

mechanisms based on this approach do not allow direct cooperation be­

tween mutually suspicious subsystems by a call from one to the other. 

Another possibility is the a priori inclusion in a domain of the 

precise capabilities required to reference all arguments that will be 

passed with all possible incoming cross-domain calls. This method is 

not practical, however, because the binding of variable names to memory 

locations can vary dynamically as programs execute. This dynamic bind­

ing makes it impossible to include in advance the proper capabilities in 

the called domain. Even if this problem could be solved, a priori 

inclusion of capabilities for arguments would violate the criterion of 

progrannning generality as it applies to domains by requiring detailed 

knowledge of programs making incoming cross-domain calls in order to 

define a domain. 

A third possibility is the establishment by mutual agreement be­

tween a domain and each potential calling domain of a special buffer for 

transmitting arguments. Capabilities to reference the buffer would be 

connnon to the domains. The use of a buffer for arguments on all calls, 

whether they change the domain of execution or not, really means that 

arguments are passed by value, a technique discarded earlier as 

uneconomical. The use of a buffer only for cross-domain calls compro­

mises program generality. 



23 

A fourth possibility requires the program making a cross-doman call 

explicitly to add to the called domain the capabilities required to 

reference arguments. This also compromises progrannning generality, un­

less it were done as a matter of course for all calls. But the explicit 

addition of capabilities to the called domain on all calls, even when a 

call does not change the domain of execution, would be uneconomical. 

One reaches the conclusion that the only acceptable solution is 

having the system detect cross-domain calls and automatically add to the 

called domain capabilities to reference whatever arguments are being 

passed. This solution is adopted for the protection mechanism devised 

in this thesis, and will be discussed in greater detail later. 

In sunnnary, then, the criterion of progrannning generality (coupled 

with economy) leads to a pattern in which the domain of execution of a 

computation is changed by one program calling another that happens to 

require execution in a different domain. When such a cross-domain call 

occurs, capabilities to reference the associated arguments (which are 

passed by address) are automatically included in the called domain. 

(The problem of removing these argument capabilities when the subsequent 

return occurs will be considered later.) No special action by either 

the calling or the called program is required in the case of calls that 

change the domain of execution. 

A useful way to view this pattern is as an extension to the idea 

inherent in progrannning generality of using programs as building blocks, 

Many systems allow independently written and compiled programs to be 

used as building blocks and combined in different ways as various sub­

systems without recompiling the programs. The protection mechanisms 
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proposed here extend the idea so that protected subsystems may be used 

as building blocks as well. Independently defined protected subsystems 

may be combined in different ways as cooperative partners in various 

computations without either explicitly modifying the definitions of the 

protected subsystems or altering the component programs. 

Background 

The protection mechanisms developed in this thesis are strongly 

influenced by the structure of Multics. Multics is a prototype computer 

utility developed at M. I. T. 1 s Project MAC in a joint effort with Honey­

well Information Systems, Inc. and now operating at several sites. (See 

[5,21,23] for an introduction to Multics.) No claim is made that 

Multics provides the best possible environment in which to develop 

practical protection mechanisms which meet the stated objectives. 

Multics is used because it is the closest operational approximation to 

a computer utility currently existing and because it is structured to 

allow programs to be used as building blocks in the manner discussed 

earlier [10]. Because Multics is an operational system that has proven 

effective in meeting many of the objectives of a computer utility, there 

can be some confidence that protection mechanisms designed for a similar 

system environment are based on realistic assumptions. Protection 

mechanisms have a tendency to permeate a system. In this case the 

existing Multics can be used as a concrete system environment in which 

to test the protection mechanisms by tracing their full system implica­

tions. The fact that the protection mechanisms described here represent 
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the evolution and improvement of an existing, useful system lends 

strength to the contention that they are practical. 

The relationship of the protection mechanisms described in this 

thesis to Multics is made clearer by briefly reviewing certain aspects 

of the system. Multics already includes a fairly sophisticated set of 

protection mechanisms, particularly for controlling access to stored 

information. On-line storage is logically organized as a collection of 

disjoint segments of information. Segments are variable length arrays 

of bits that may contain any collection of information, e.g., symbolic 

programs, compiled programs, data files, temporary storage for on-going 

computations, or system data bases. Any segment is potentially access­

ible to any executing program. 

Multics is organized so that separately compiled programs may be 

used as building blocks. While this goal influences the organization of 

the entire system, several features are particularly important. Com­

piled programs are represented as segments of pure procedure so that 

multiple computations may simultaneously execute the same shared proce­

dure segment. Interprocedure communication is by a standardized inter­

procedure call and interprocedure linking is done dynamically the first 

time a particular call is executed in a computation. The normal execu­

tion environment includes a push-down stack for procedure activation 

records, allowing procedures to be combined in patterns that may generate 

recursive invocations. 

Machine language programs in Multics execute in a segmented virtual 

memory where segments are identified by number. The two-part address 

(~,~) identifies displacement~ in the segment numbered~· Processors [17] 
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contain logic for automatically translating two-part addresses into 

absolute memory addresses. Translation is done using the segment number 

as the index into a table of segment descriptors called the descriptor 

segment. When an executing program wishes to reference a segment stored 

on-line, the segment must first be added to the virtual memory by 

assigning it an unused descriptor segment entry, an operation automati­

cally performed by the supervisor when the first attempt to reference 

the segment is detected. (See [l] for a more detailed description of 

this virtual memory.) 

The combination of an execution point and a virtual memory is 

called a process. A process with a new virtual memory is created for 

each user when he logs in to the system. Thus, each user's process has 

its own descriptor segment. In this context it is convenient to use the 

term computation to mean the activity of the process of a user. 

The allowed access of executing programs to each segment stored 

on-line is specified by an access control list. An access control list 

entry essentially associates a domain name with some combination of 

read, write, and execute access to the segment. A domain name is the 

combination of the name of some system user with one of the integers 0 

through 7, and designates one of the eight fixed domains associated with 

the process of some user. Each access control list entry defines a 

capability in the named domain that allows the indicated access to the 

segment. Manipulation of access control lists is controlled by other 

access control lists that are part of a hierarchy of segment catalogues. 

As implied in the previous paragraph, Multics allows multiple do­

mains to be associated with a single process. The domain of execution 



27 

is changed by the standard interprocedure call. Arguments are passed by 

address. The problem of arranging for the connnon argument capabilities 

between the calling domain and the called domain is solved by forcing 

all domains associated with a single process to form a linearly nested 

collection of sets with respect to segment referencing capabilities [14]. 

Cross-domain calls are allowed only if the called domain is a superset 

of the calling domain. This linear nesting generates a total ordering 

with respect to access privilege on the domains associated with a process 

that simplifies many aspects of the system in addition to cross-domain 

calls. As pointed out earlier, however, this approach does not allow 

direct cooperation by interprocedure call of domains encapsulating 

mutually suspicious subsystems. In fact, it does not even allow mutually 

suspicious subsystems to be part of the same process. 

The protection mechanisms described in this thesis are similar in 

overall approach to those in Multics. They developed from considering 

ways to improve the efficiency of cross-domain calls for the case of 

linearly nested domains, and then considering ways to remove entirely 

the linear nesting restriction. The result of the first phase was a 

previously reported [25] hardware architecture for automatically handling 

cross-domain calls with arguments in the case of linearly nested domains. 

This design, implemented in a new processor for Multics being constructed 

by Honeywell, contains the seeds of many ideas that are expanded as the 

central part of this thesis into a hardware architecture for automati­

cally handling the unconstrained case of cross-domain calls with argu­

ments. In addition to devising hardware that automatically performs 

general cross-domain calls, the second phase included isolating those 
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software system aspects simplified by the linear nesting restriction in 

Multics and exploring the extensions required to take advantage of the 

improved hardware protection mechanism. While the research reported 

here was conducted within the specific context of Multics, the results 

presented in this thesis are quite general and applicable to a wide 

variety of system environments. 

One additional aspect of the relationship of this thesis to Multics 

should be mentioned. The primary progrannning language in Multics is 

PL/I [16]. Not only are most user programs written in PL/I, but almost 

all of the system programs are as well [6]. Certain aspects of the 

high-level languages in use in a system can influence the design of the 

protection mechanisms. For example, if a standard interprocedure call 

is to be able to change the domain of execution, then the protection 

mechanisms must accomodate all the semantic implications of a call as 

defined in the various high-level languages in use. Because PL/I has 

proven fairly well suited in Multics to the goal of allowing separately 

compiled procedures to be used as building blocks, it will be used in 

this thesis as a representative high-level language to be accomodated 

by the protection mechanisms. Because of the richness of PL/I, the 

protection mechanisms developed in this context will support equally 

well many other high-level languages in use today. 

Approach 

Almost all interesting things in a computer utility are ultimately 

manifest as stored information. Processes, I/O streams, directories, 

access control lists, domains, capabilities, data segments, and 
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procedures, to name a few examples, are all represented as stored infor­

mation. It follows that control of access to stored information is a 

basic function of protection mechanisms. This observation is reflected 

in the design of the protection mechanisms developed in this thesis. 

The hardware component of these mechanisms is a processor that 

supports a multidomain computation implemented as a single Multics-like 

process, i.e., as a single execution point in a segmented virtual 

memory. This processor automatically controls access to a primitive 

set of information objects by interpreting and enforcing capabilities 

representing both the encapsulations defined by the domains of the 

process and the arguments passed with cross-domain calls. The encapsu­

lation capabilities recognized are those allowing direct read or write 

references to segments and those allowing transfers of the execution 

point from one virtual memory location to another (including transfers 

that represent cross-domain calls). The cross-domain argument capabili­

ties recognized by the processor allow most types of data items defined 

by current, general-purpose, high-level progrannning languages to be 

passed as arguments with cross-domain calls. The processor automatically 

adds the required argument capabilities to the called domain when a 

cross-domain call occurs and removes them when the subsequent return 

occurs. 

The hardware processor provides a general foundation for a software 

second layer of the protection mechanisms. To get off the ground, one 

of the domains supported by the hardware is given capabilities allowing 

direct read/write access to the segments containing the capabilities 

that the hardware enforces. Thus, the hardware is circularly applied 
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lists, directories, and protected subsystems. Other information objects 

defined and controlled by the supervisor domain might be processes, 

I/O streams, and interprocess message queues. There is no limit to the 

complexity of the information objects and associated access controls 

users can define by creating their own protected subsystems. 

Thesis Plan 

The central material of this thesis is the development of the hard­

ware processor. Chapter 2 presents the conceptual basis for the protec­

tion mechanisms in the processor. The properties of encapsulation and 

argument capabilities are derived and the steps involved in performing 

a cross-domain call are considered. These ideas are expanded in Chap­

ter 3 into a description of a processor that fully supports a computa­

tion involving multiple independent domains and that automatically 

performs cross-domain calls with arguments -- even between domains that 

normally have no capabilities in coIIll!lon. Included in this chapter is 

a discussion of the machine code to be generated by compilers to take 

full advantage of the processor protection mechanisms and of the high­

level prograIIll!ling language extensions required to allow prograIIllllers to 

control the cross-domain call mechanisms. 

The software second layer is considered in less detail than the 

hardware first layer. In Chapter 4 a file system is described by out­

lining extensions to the Multics file system that permit it to deal with 

protected subsystems. The extensions necessary are the addition of 

protected subsystems to the objects catalogued by the file system and 

the recasting of access control lists in terms of protected subsystem 
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names rather than domain numbers. A first approximation for the remain­

ing software system required to produce a computer utility in which seg­

ments and protected subsystems can be used as building blocks is obtained 

by adopting the rest of the Multics software organization and implemen­

tation with essentially no changes. The purpose of the material in 

Chapter 4 is to demonstrate one way to harness the processor protection 

mechanisms so that users can define and control the sharing of protected 

sub sys terns. 

Chapter 5 concludes the thesis by summarizing the important ideas 

presented and indicating those areas where it appears that further 

research would be fruitful. 

Related Work 

Before beginning the body of the thesis it is appropriate to review 

the published work related to the thesis topic. The relationship of the 

research reported here to Multics has already been discussed and the 

pertinent references cited. A complete bibliography of publications on 

Multics appears in [5]. 

As indicated earlier, the concept of prograrrnning generality was 

developed by Dennis [8,9,10]. His main concern has been tracing the 

implications of this concept on language and system facilities for 

manipulating structured information. The implications of prograrrnning 

generality on protection mechanisms are not developed in his papers. 

Vanderbilt [28], building on the work of Dennis, has developed an 

abstract model of information structures for controlling sharing in a 

computer utility that is consistent with the criterion of programming 
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generality. He gives little consideration to methods of implementation, 

however, and certain characteristics of the model, such as prohibition 

on direct sharing of data among users and the inability to revoke access 

permission once given, would be unacceptable in a practical facility. 

The domain model finds its origin in the spheres of protection of 

Dennis and VanHorn [7]. Lampson [19,20] first recognized the power of 

the idea as an abstraction for understanding protection mechanisms, and 

was responsible for developing the idea into a useful conceptual tool. 

A recent paper by Graham and Denning [13] uses Lampson 1 s model to 

explain the diverse protection mechanisms in various existing systems. 

Aside from the domain model, essentially no theory of protection 

mechanisms exists. The rest of the literature in the field consists 

of descriptions of proposed or existing systems with various protection 

properties. Wilkes [29] divides the various protection schemes into 

two classes: list oriented mechanisms and ticket oriented mechanisms. 

With the first approach, control of access to an object is specified in 

lists maintained by the protected subsystem (usually the supervisor) 

that is the custodian of the object. An attempt to access an object is 

validated by matching the name of the requesting domain against a list 

of domains authorized to access the object. Multics is an example of a 

system implementing sophisticated list oriented protection mechanisms. 

With the second approach, permission to access objects in the system 

is embodied in unalterable tickets which may be distributed to the 

domains in the system. Presentation of the proper ticket is all that is 

required to gain access to an object. The CAL system [15,18,26,27] 

implements sophisticated ticket oriented protection mechanisms that 
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allow multiple domains to be associated with a single computation. In 

the CAL system the domain of execution is changed by the explicit invo­

cation of a special supervisor functionJ a method not consistent with 

the criterion of programming generality. A significant advantage of 

the ticket approach to access control is that only a fairly simple 

mechanism for manufacturing and controlling tickets need be embedded in 

the most privileged part of the supervisor. With the list approachJ 

most of the file system must be protected at this level. A significant 

disadvantage of the ticket approach is the difficulty of revoking access 

once a ticket has been given to some domain in the system. With both 

list and ticket oriented mechanisms direct sharing of objects among the 

domains in the system can be implemented. 

In addition to the two basic classes of protection schemes suggest­

ed by Wilkes there exists a third class which can be called message 

oriented mechanisms. (ActuallyJ in some ways this class is a variant 

of the list oriented mechanisms.) With this approach no direct sharing 

of objects is allowed. Instead each object is under the exclusive con­

trol of some process. All sharing is done via interprocess messages 

that are managed by the supervisor. To reference a data file belonging 

to some processJ for exampleJ another process would send a message 

specifying the requested reference. The message is tagged by the super­

visor with the identity of the sending process. The receiving process 

decides on the basis of this tag whether or not the request should be 

honored. The result of the request is communicated by a return message. 

The RC-4000 system [2] is an example of a message oriented system. While 
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the message oriented mechanisms have an appealing simplicity, in 

practice they are awkward to work with and inefficient. 

Most commercially available computer systems have fairly primitive 

protection facilities intended only to provide user separation. IBM 

and other major manufacturers have recently become concerned about cer­

tifying their systems so that this total user separation can be guaran­

teed. Aside from Multics, which is available from Honeywell as a special 

product, however, no operational or announced connnercial system can 

support user-defined protected subsystems, and very few even allow con­

trolled sharing of programs and data among users. 

Very little work has been done on hardware mechanisms for supporting 

sophisticated protection mechanisms. The protection facilities of most 

systems are implemented largely in software using hardware with fairly 

primitive protection mechanisms. The machines of the Burroughs Corpo­

ration [3] were the first to implement address mapping using segment 

descriptors, the technique that has proven to be the basis of most 

sophisticated protection hardware. Evans and LeClerc [11] were among 

the first to suggest that address mapping hardware including access 

control mechanisms could be constructed to help implement efficiently 

computations involving several domains. The hierarchic domain structure 

they propose is similar to the model developed by Vanderbilt. The Hitac 

5020 [22] was one of the first hardware processors to implement more 

than the simple supervisor/user form of multiple domain protection. The 

scheme used is patterned after the linearly nested domains of Multics. 

The Hitac processor, which closely follows the implementation suggested 

by Graham [14], is not able to change the domain of execution 
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automatically. The most sophisticated multiple domain protection hard­

ware that has actually been constructed is embodied in the new Multics 

processor [25] being built by Honeywell. Several projects are currently 

underway to construct processors with similar protection mechanisms, but 

no published material is available yet that describes these efforts. 

Fabry [12] has proposed hardware protection mechanisms specifically 

designed to support ticket oriented protection mechanisms, but which 

provides little assistance with the previously mentioned problem of 

locating already distributed tickets in order to revoke access. 



CHAPTER 2 

STATIC ACCESS, DYNAMIC ACCESS, AND CROSS-DOMAIN CALLS 

The hardware component of the protection mechanisms described in 

this thesis is a processor that supports a multidomain computation im­

plemented as a single Multics-like process. (Recall that such a process 

is a single execution point in a segmented virtual memory.) This pro­

cessor contains logic for implementing a segmented virtual memory, for 

enforcing the various virtual memory access constraints that represent 

the encapsulation of procedure and data segments in several domains, and 

for performing cross-domain calls. In this chapter some of the func­

tional characteristics of this processor are introduced. 

The major emphasis of the discussion is on the types of capabil­

ities the processor interprets and enforces, the dynamic behavior of 

these capabilities, and the steps involved in performing a cross-domain 

call. The discussion is fairly general, making little reference to 

specific implementation techniques. 

The Segmented Virtual Memory 

The segmented virtual memory of a process was introduced in 

Chapter 1 during the discussion of Multics. The structural character­

istics pertinent to the material in this chapter are briefly reviewed 

here. 

1. A segment is a variable length array of bits. 

37 
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2. Each segment in the virtual memory is identified by a unique 
non-negative integer. 

3. The two-part address (~JE) specifies the dth bit in the seg­
ment numbered s. 

4. All references to memory generated by an executing machine 
language programJ whether for indirect wordsJ instruction oper­
andsJ or the next instruction to executeJ are specified by two­
part addresses. The number of bits actually referenced by the 
address (~J~) is implied by the circumstances of the reference. 

The processor logic required to implement the segmented virtual memory 

of a process is described in the next chapter. 

As indicated in Chapter lJ in order for a procedure executing as 

part of a process to reference a segment stored on-line in the computer 

utilityJ the segment must first be added to the virtual memory of the 

process. In this chapter it is assumed that the virtual memory of a 

process somehow already contains all segments that are to be referenced. 

Multiple Domains 

Each domain associated with a process is defined by a set of capa-

bilities for referencing parts of the segmented virtual memory of the 

process in various ways. Methods for specifying which capabilities are 

included in each domain will be considered in Chapter 4. The general 

form of any capability is: 

(nameJmode) 

where the first element identifies some object in the system and the 

second element specifies the operations that the capability allows to be 

performed on that object. With respect to processor enforced control on 

access to the segmented virtual memory of a processJ the relevant ranges 

of values for names and modes are fairly restricted. All relevant names 
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may be expressed as: 

where s and d are a two-part address, and £ is the number of contiguous 

bits starting at the named location. This set of names allows the iden-

tification of any contiguous chunk of bits in any segment, i.e., any 

subsegment. The range of values for the mode is limited by the archi-

tecture of the processor. It is possible to structure the mode to 

individually control any processor distinguishable operation or set of 

operations on the contents of a segment. For example, the use of the 

subsegment named in a capability as the operand of each separate machine 

instruction could be individually controlled. 

For the purpose of encapsulating procedure and data segments in a 

domain, an even more restricted set of names and modes is adequate. 

With the exception of the gate capability introduced later, the capabil-

ities used to express encapsulation that are recognized by the processor 

name only whole segments and allow independent control of just three 

operations. The operations are executing the contents of a segment as 

* machine instructions, reading from a segment, and writing in a segment 

The encapsulation capabilities recognized by the processor, then, are 

* Actually, capabilities that included no mode information at all would 
be adequate for the purpose of encapsulating procedure and data segments 
in domains. In this case, the presence in a domain of a capability 
naming a segment would permit full read, write, and execute access to 
the segment. Providing separate control on these three operations, how­
ever, is useful for several reasons. Separate control on reading and 
writing encourages the sharing of procedure and data segments among 
several domains by making it possible to share only the ability to read 
a segment. Separate control on executing a segment allows the protec­
tion mechanisms of the processor to detect accidental attempts to 
execute segments that do not contain machine code. 
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expressed as: 

where ~ is a segment number and m is some combination of Eead, ~rite, 

and execute permission flags. Only the combinations£, !:!!'.:, ~' ~' 

and null, corresponding to segments of read only data, read/write data, 

* pure procedure, impure procedure, and to no access at all , respectivel~ 

make much sense. 

The fact that the names in these capabilities are segment numbers 

leads to an especially convenient representation of the domains associa-

ted with a process. Each domain is represented as an array whose ele-

ments are the modes defining the allowed access to the various segments 

in the virtual memory of the process. The array is indexed by segment 

number. (The usefulness of a null mode now becomes apparent.) The 

processor uses the mode array corresponding to the domain of execution 

of a process to control virtual memory references. An attempt by an 

executing machine language program to read, write, or execute segment 

number ~ is allowed by the processor only if the corresponding flag 

. h th d h" appears in t e ~ mo e in t is array. 

Domain of Execution 

The issue of how the domain of execution of a process is determined 

now must be considered. This problem is approached by defining ways to 

control changing the domain of execution. An understanding of the sort 

";'( 

Including in a domain a capability specifying null access to a segment 
is equivalent to having no capability at all for that segment in the 
domain. 
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of control required can be gained by reviewing the purpose of associa­

ting multiple domains with a process. A domain provides the means to 

protect procedure and data_segments from other procedures that execute 

as part of the same process. Using domains it is possible to make cer­

tain capabilities available only when particular procedure segments are 

being executed. The code sequences in these segments therefore deter­

mine the use made of those capabilities. These code sequences implement 

the intended algorithms, however, only if execution starts at certain 

points. Thus, for domains to be meaningful, it must be possible to 

restrict the start of execution in a particular domain to certain pro­

gram locations. These locations are called gates. Ghanging the domain 

of execution can occur only as the result of a transfer to a gate loca­

tion of another domain. 

Controlling the ability to change the domain of execution, then, 

requires devising capabilities that identify certain procedure segment 

locations as gates into particular domains. The name in such a capa­

bility needs to be more precise than just a segment number. It must 

identify a particular machine instruction in a segment. The mode must 

indicate that the named location is a gate and specify the name of the 

domain for which it is a gate. Thus, the gate capability has the form: 

((~,.5!),(gate into domain D)) 

where s and d name a virtual memory location and the mode indicates per­

mission to invoke the program section beginning at the named location 

and simultaneously change the domain of execution to domain D. The 

method of naming domains is ignored for now, although it is apparent 

from the previous discussion that any domain naming scheme that allows 
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the processor to find the mode array for the new domain of execution 

will work. 

Unfortunately, the gate capability just described does not fit very 

well with the previously suggested mode array representation of domains. 

Moving ;!. from the name portion to the mode portion of the capability, 

however, solves this problem, for the name that is left is just a seg­

ment number as before. Capabilities for all the gates in a single seg­

ment that are accessible from some domain then may be represented by 

listing the displacements of these gates in the mode array element for 

that segment. Less mode information is required if all these gate loca­

tions in the same segment are required to be gates into the same domain, 

a reasonable restriction. Representing capabilities for gates, then, is 

done by adding a gate flag to the other three flags already possible in 

mode array entries. If the gate flag is present in a particular entry, 

then a list of displacements of valid gate locations within the corres­

poinding segment is also part of the mode information, along with the 

name of the domain for which these locations are gates. 

An Example of Mode Arrays 

Figure 2-1 illustrates mode arrays defining three domains associated 

with some process. Segments 0 and 1 are read/write data segments access­

ible only from domain A. Segments 2 and 3 are pure procedure segments 

executable only in domain A. A program executing in domain A can 

change the domain of execution to B by transferring control to location 

64 in segment 4, and to C through location 32 in segment 8. Domains B 

and C are similar. Note that segment 6 is pure procedure executable in 
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both domains B and C, and that segment 7 is a data segment that can be 

read and written from domain B but only read from domain C. 

Cross-Domain Calls 

As discussed in Chapter 1, the criterion of prograillliling generality 

leads to a pattern in which the domain of execution of a computation is 

changed when one program invokes another that requires execution in a 

different domain. Adoption of this pattern means that the gate capa-

bilities just described will normally correspond to program entry points 

and that a transfer of control to one of these gate locations will nor-

* mally be part of an interprocedure call . Such a call, however, in-

valves several important functions in addition to the transfer of con-

trol to an entry point, all of which must be handled properly if a 

cross-domain call is not to compromise the protection provided by either 

of the involved domains. Some of these additional functions lead to the 

need for the processor to recognize, manipulate, and enforce capabil-

ities with different dynamic properties than the encapsulation capa-

bilities just presented, if the processor is to perform automatically 

cross-domain calls. These new kinds of capabilities control the access 

* A procedure segment may actually contain a set of hierarchically nested 
procedures permanently bound together by the compiler. An interproce­
dure call is the call used to invoke an entry point into the outermost 
level of such a nested set of procedures. With the exception of one 
special circumstance discussed later, entry points into the inner layers 
of such a nest of procedures are not intended to be invoked from inde­
pendent, separately compiled procedures, and thus will not be gate loca­
tions. The calling methods used within a procedure segment to invoke 
the inner entry points are of no concern to the system or its protection 
mechanisms. 
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of programs executing in the called domain to the arguments passed with 

the call and to the return point. They must be added to the called 

domain when a cross-domain call occurs and removed when the matching 

return occurs. 

As a basis from which to develop the properties of argument and 

return capabilities, the action of an interprocedure call is considered 

in more detail. An interprocedure call and return, as defined in a 

language like PL/I, can be broken into eight steps. The call operation 

itself involves: 

1. specifying the arguments to be passed to the called procedure; 

* 2. saving the current procedure activation record so that it may 
be restored when the subsequent return occurs; 

3. specifying the program location to receive control when the 
subsequent return occurs; 

4. transferring control to the called entry point; 

5. creating a new activation record for the called procedure. 

Once invoked, the called procedure will occasionally reference the argu-

ments provided by the calling procedure. Eventually, a return of con-

trol to the calling procedure may occur. This return operation involves: 

* 

6. destroying the activation record of the called procedure; 

7. transferring control back to the return location that was 
specified by the calling procedure; 

8. restoring to use the activation record of the calling procedure. 

The activation record, normally allocated in a push-down stack, is the 
local addressing environment for a procedure invocation and provides 
storage for information associated with a single invocation of a proce­
dure. Addresses of arguments, the address of the return point, and PL/I 
"automatic" variables are examples of this kind of information. 
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The additional requirement of calls that change the domain of execution 

is that all of these steps take place without compromising the protec­

tion provided by either of the domains involved. 

A cross-domain call occurs if the virtual memory location to which 

control is transferred in step 4 happens to be defined by a capability 

in the domain of execution (call it domain A) as a gate into another 

domain (call it domain B). In this case the return point specified in 

step 3 and transferred to in step 7 is really a gate back into domain A, 

for a transfer to this location by a procedure executing in domain B 

should change the domain of execution back to A. As seen earlier, the 

ability to transfer control to a gate and change the domain of execution 

can be controlled by a capability. The capability for this return point 

cannot be a permanent part of domain B. It if were, then procedures 

executing in domain B could use it whether the corresponding call from 

domain A were outstanding or not. What is required is that the capa­

bility for the return gate be added to domain B when the call occurs, 

and removed from domain B when this capability is used to make the 

return. 

A sequence of cross-domain calls may occur in a process before any 

of them are returned. In the general case, that sequence may include 

the recursive invocation of some domains of the process. The proper 

dynamic behavior of the capabilities for return gates associated with 

such a sequence is achieved by associating with a process a push-down 

stack for return gate capabilities. Each time a cross-domain call 

occurs, the processor adds the associated return gate capability to the 

top of this stack, pushing-down whatever other return gate capabilities 
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may already be in t~e stack. At any given time, only the return gate 

capability at the top of the stack is available. When this capability 

is used to perform a cross-domain return, the processor removes it from 

the top of the stack, thereby making available the next older return 

gate capability. Thus, at any given time, the only cross-domain return 

that can be performed is defined by the address and domain name contain­

ed in the gate capability at the top of the stack. This stack, then, 

guarantees that the returns matching the sequence of outstanding cross­

domain calls in the process will occur in the correct order, and that 

each such return will transfer control to the expected location and will 

properly change the domain of execution. This guarantee is valid even 

if more than one cross-domain call into some domain is included in the 

sequence, for procedures executing in one invocation of this domain in 

the sequence are not able to use the return capabilities associated with 

other invocations. 

The capability for the return gate of a cross-domain call is really 

a special case of a capability for an argument passed with a cross-domain 

call. Capabilities to reference whatever arguments are specified in step 

1 of the call operation must be added to the called domain when the call 

occurs, and must be removed when the return transfer of control in step 

7 occurs. The stack for return gate capabilities can be expanded to 

control the availability of argument capabilities as well. Thus, when a 

cross-domain call occurs, the processor allocates a stack frame at the 

top of this stack, pushing-down whatever stack frames may already exist. 

Into this frame the processor places a capability for the return gate 

associated with the call and capabilities allowing reference to whatever 
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arguments are specified in step 1 of the call operation. Only the capa-

bilities in the top frame on the stack are available at any given time. 

The top frame is removed, and the remaining frames popped-up, when a 

cross-domain return occurs. 

Static Access and Dynamic Access 

With the addition of the stack for argument and return capabilities, 

the capabilities that define a domain of a process are represented in 

two different ways. First, there is the mode array of the domain that 

specifies the encapsulation capabilities of the domain. In addition, 

whenever a particular domain is the domain of execution of the process, 

the top frame on the capability stack specifies the argument capabilities 

(including the capability for the return gate) that are temporarily part 

of the domain. To differentiate these two sources of capabilities for a 

domain, access available from the encapsulation capabilities to proce-

dures executing in a domain is called static access, and that available 

from the argument capabilities is called dynamic access. The capability 

* stack of a process is called the dynamic access stack. Much of the 

rest of this thesis will be concerned with the difference between static 

and dynamic access, so the reader is advised to pause and be sure he 

understands the definitions of these concepts. 

* The dynamic access stack is distinct from, though related to, the stack 
of activation records for procedure invocations. 
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capabilities must be able to name arbitrary subsegments, not just whole 

segments as do static access capabilities. The mode should provide 

separate control on reading and writing the subsegment named in a 

dynamic access capability, so the intention that the value of a particu­

lar argument not be altered can be enforced. Thus, the dynamic access 

capabilities recognized and enforced by the processor have the form: 

(~J~J~J,!!!) 

where the first three elements name a subsegment and the last element is 

some combination of read and write permission flags. 

The dynamic access capabilities for return gates need to contain 

the same information as static access capabilities for entry point gates. 

The name portion of a return gate capability should specify the two-part 

address of the return location, and the mode should indicate that the 

capability is for a return gate and should specify the corresponding 

domain of execution. It is very convenient, however, if the mode also 

includes one additional piece of information the two-part address of 

the activation record that is to be restored to use when the cross­

domain return occurs. The calling procedure needs to be guaranteed that 

the correct activation record is restored to use when a cross-domain 

return occurs, as well as be assured that the return transfers control 

to the expected location and changes the domain of execution to the 

proper domain. If procedures executing in the called domain could some­

how cause a different activation record to be restored to use, then the 

calling domain could be caused to malfunction after the return occurred. 

As will be seen in Chapter 3, the activation record of an executing 

procedure is defined by the two-part address in a particular addressing 
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register of the processor. Using the extra infonnation in the return 

gate capability, the processor can verify that this register contains 

the correct value before performing a cross-domain return. Thus, the 

dynamic access capability for a return gate really gives permission to 

perfonn a very specific three-part operation: load the activation 

record definition register with a particular value, transfer control to 

a particular location, and change the domain of execution to a particu­

lar domain. As will be seen in Chapter 3, the return gate capability 

may be extended to control call and goto operations to entry points and 

labels, respectively, that are passed as arguments with cross-domain 

calls. 

Matching References to Capabilities 

A virtual memory reference is specified by a two-part address 

(~,i), an implied length J, and an operation. Validation of such a 

reference requires matching it with some capability in the domain of 

execution. 

Matching a reference to a static access capability is quite 

straightforward. The segment number ~ is used as an index into the mode 

array for the domain of execution. The read, write, execute, and gate 

permission flags in the selected entry indicate in the manner discussed 

earlier whether or not the reference is allowed, depending upon what 

operation is being attempted. 

Matching a reference to a dynamic access capability is a little 

more complicated. Since more than one dynamic access capability may 

cover a particular subsegment, an associative search of the available 
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dynamic access capabilities is needed. What is required to allow the 

reference is the existence of at least one dynamic access capability 

covering the referenced subsegment and allowing the operation being 

attempted. 

It is up to the procedure in execution to determine which of these 

two kinds of validation will be applied to each virtual memory reference. 

The processor never forces the use of one or the other validation method. 

On the other hand, it is important to maintaining the integrity of a 

domain to choose the proper method of access validation for each refer­

ence. Validation relative to the dynamic access capabilities in a 

domain should be used if the reference represents an attempt to access 

an argument provided with a cross-domain call. Otherwise, the reference 

should be validated relative to the static access capabilities in the 

domain. The reasons for this pattern of validation will be discussed in 

a moment. 

The mechanisms of the processor for forming and manipulating two­

part addresses make it natural to use the two methods of access valida­

tion in the manner just suggested. All two-part addresses that are de­

rived from the argument specifications associated with the cross-domain 

call that started execution in a domain are automatically tagged by the 

processor. A reference using such a tagged address triggers validation 

relative to the dynamic access capabilities of the domain of execution. 

References with untagged addresses are validated relative to the static 

access capabilities of the domain. Unless an executing procedure makes 

an explicit effort to alter these tags, which it can do, the processor 

always manages to identify correctly addresses which were derived from 
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cross-domain call argument specifications, and perform the proper vali-

dation on references made using such addresses. 

The reason to be careful with argument-related addresses is that 

they are derived from information provided by a procedure executing in 

another domain the domain which generated the cross-domain call. In 

general, there is no guarantee that they locate pieces of the virtual 

* memory that are accessible from the calling domain For example, the 

calling procedure could maliciously or erroneously provide an argument-

related address that in fact names some location in a critical data base 

encapsulated in the called domain -- a data base that is not accessible 

from the calling domain. If a procedure executing in the called domain 

writes through this address, it does so with the intention of changing 

the value of an output argument. If this reference were validated 

relative to the static access capabilities of the called domain, it 

would succeed, erroneously changing the critical data base. Validated 

relative to the dynamic access capabilities of the domain, however, the 

reference fails, for as seen earlier the dynamic access capabilities 

cannot give access permission that is not also available to the calling 

domain. Thus, dynamic access capabilities allow the called domain to 

protect itself against "trick" argument-related addresses provided by 

the calling procedure. 

* While it is true that some of the addresses that can be derived from 
argument specifications will have been checked by the processor when 
used to create the dynamic access capabilities corresponding to cross­
domain arguments, as discussed earlier, not all such addresses will have 
been so checked. Further, even though the capabilities cannot be alter­
ed once created, the specifications might be changed after being checked, 
and it is the specifications from which the called domain generates 
argument addresses. This matter is discussed further in Chapter 3. 
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Creation of a New Activation Record 

One function that must be performed by a cross-domain call has not 

been discussed yet -- creating a new activation record for the called 

procedure. When a call changes the domain of execution of a process, 

allocation of a new activation record for the called procedure must 

take place without any possibility of interference from the calling 

procedure. Therefore, the called procedure cannot depend upon any in-

formation provided by the calling procedure in order to find space for 

a new activation record. 

Activation records are normally allocated in a push-down stack. 

To prevent procedures executing in one domain from directly reading and 

writing the activation records (or their residues) of procedures that 

execute in other domains, this push-down stack will be spread over 

several segments one for each domain of a process. Static access 

capabilities in the various domains are usually arranged so that the 

stack segment for a particular domain can be read and written from that 

domain, but is not accessible from other domains except those encapsu-

lating portions of the supervisor. 

With this scheme, allocating a new activation record for the called 

procedure involves finding the stack segment for the domain of execution 

of the called procedure and then locating the beginning of the free area 

at the end of this segment. The processor makes this operation easy and 

safe by leaving in a particular addressing register after each call, 

cross-domain or otherwise, the two-part address of the beginning of the 

proper stack segment for the new activation record. From this address 

the called procedure can easily locate the free area at the end of this 
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segment, and allocate its own activation record, without having to de-

pend on information provided by the calling procedure. This scheme 

requires that there be embedded in the processor some algorithm for gen-

erating the segment number of the proper stack segment given the name 

of the domain of execution. 

Sunnnary 

A processor which supports a multidomain computation implemented 

as a single execution point in a segmented virtual memory, and 

automatically performs cross-domain calls, must recognize and enforce 

two distinct kinds of capabilities -- static access capabilities repre-

senting the encapsulation of subsystems in domains and dynamic access 
. 

capabilities representing cross-domain arguments. These two kinds of 

capabilities have different dynamic properties. 

All functions of an interprocedure call have protection implica-

tions when such a call is allowed to change the domain of execution. 

The static access capability for controlling access to entry point gates, 

the various dynamic access capabilities, and processor assistance in 

creating a new activation record for the called procedure are sufficient 

tools for performing these functions without compromising the protection 

provided by either domain involved in a cross-domain call. 

In the next chapter these ideas are expanded into the design of a 

processor meeting the objectives outlined in the first chapter. That 

processor design will enable many of the ideas introduced in fairly 

general terms here to be presented in specific forms which make their 

validity and usefulness more apparent. 
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THE PROCESSOR DESIGN 

This chapter describes a hardware processor that supports a multi­

domain computation implemented as a single execution point in a segmen­

ted virtual memory and that automatically performs cross-domain calls. 

This processor provides a specific context in which to explore some of 

the detailed implications of the objectives presented in Chapter 1 and 

in which to expand the ideas that were introduced in Chapter 2. 

The processor described here is a paper machine. No realization 

of this design exists. It is claimed, however, that the processor 

described here could be built economically using today's hardware tech­

nology and that, if built, it would provide a practical hardware base 

for a computer utility. This claim is based on the facts that a pro­

cessor with similar overall architecture but less sophisticated protec­

tion mechanisms is currently being built by Honeywell Information 

Systems, Inc. to serve as the primary component of a new hardware base 

for Multics [25] and that the new protection mechanisms described here 

add little to the overall complexity of that machine. 

In the case of many of the component mechanisms in this processor, 

the specific implementation described represents a choice among several 

alternative implementations that all meet the basic functional require­

ments of the component. An important criterion in making such choices 

was the functional clarity of the various alternatives. In each case 

the implementation chosen is intended to expose the intrinsic problems 

56 
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that are solved by a component of the protection mechanisms while at 

the same time illustrating that a practical, general implementation of 

that component is possible. For example, the method used to implement 

static access capabilities places a fairly small fixed upper limit on 

the number of domains that can be associated with a single process at 

any one time. This implementation is easy to understand and quite 

economic if a small number of fairly large domains are usually associated 

with a process. An alternative implementation that allows an essentially 

unlimited number of domains to be associated with a process was rejected 

because it introduced complexity that obscured the intrinsic problems 

being solved by this component of the protection mechanisms in the 

processor. The specific design presented here, then, should be consid­

ered as one example of how to organize a processor to meet the stated 

objectives. After understanding how this processor works, the inven­

tive reader should be able to devise a large number of variations on 

this design which embody the same basic techniques but which may meet 

better the specific external constraints associated with a particular 

application of such a machine. 

The Virtual Memory and Static Access Capabilities 

As in Multics, the implementation of the segmented virtual memory 

is based on a descriptor segment that is stored in memory. Figure 3-1 

illustrates the format of a descriptor segment entry (DSE). If the 

validity bit (DSE.V) is ~' then a DSE contains the absolute address of 

the beginning of a segment in memory (DSE.ADDRESS) and the length of 

of that segment (DSE.LENGTH). The descriptor segment base register (DSBR) 
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Descriptor segment base register 

DSBR !ADDRESS I LENGTHI 

Domain of execution register 

DR 

Descriptor segment (stored in memory) 

0 1 

DSEn ADDRESS LENGTH R W E G R W E G 

mode array for 
domain 1 

7 

R W E G DOMAIN GATES V 

Figure 3-1: The descriptor segment and related registers. 
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of the processor contains the base address (DSBR.ADDRESS) and length 

(DSBR.LENGTH) of the descriptor segment, allowing the address transla-

tion logic of the processor to reference DSE's by absolute address. 

Automatic translation of a two-part address into the corresponding 

absolute address, done by using the segment number as an index with 

* which to retrieve the appropriate DSE , happens each time that the 

virtual memory is referenced, i.e., each time an instruction, indirect 

address, or instruction operand is referenced by the executing program. 

If each process is to have its own virtual memory, as in Multics, then 

each process has its own descriptor segment. If several processes are 

to share a single virtual memory, then those processes have a common 

descriptor segment. 

As implied by this description, it is assumed that the storage 

space for each segment is contiguously allocated in a one-level memory 

system with enough capacity to hold all segments of interest. With most 

real implementations of segmented virtual memories, storage for segments 

is provided by a multilevel memory system using block allocation and 

paging. If used, block allocation and paging must be taken into account 

by the address translation logic of the processor. When properly imple-

mented, however, these storage management techniques are functionally 

transparent from the point of view of protection mechanisms. The assump-

tion of a one-level memory system and contiguous allocation of space for 

segments allows problems of storage management to be ignored. 

* Including in the processor a small, fast associative memory for the 
most recently used DSE's can eliminate most of the memory references for 
DSE' s [24). 
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As indicated in Chapter 2, the static access capabilities included 

in the domains associated with a process can be represented as mode 

arrays, one per domain. Mode arrays are indexed by segment number, as 

is the descriptor segment. This suggests the straightforward implemen-

tation for static access capabilities of combining the mode arrays of a 

process with the descriptor segment. The DSE format in Figure 3-1 

illustrates this implementation. Each DSE contains a set of read, write, 

execute, and gate permission flags for each domain that can be supported 

by the processor. The domain of execution register (DR) records the 

number of the current domain of execution of the process. The value in 

DR is used to select the proper set of permission flags with which to 

validate virtual memory references. 

The DSE for a segment is an ideal place in which to record the 

static access capabilities controlling references to that segment. 

Since the processor must examine the DSE for a segment each time that 

segment is referenced anyway, little effort is added to validate an 

* attempted access against static access capabilities recorded there. 

With this implementation of static access capabilities, changes in the 

static access of a domain can be made innnediately effective, since 

access is validated each time a reference is made. 

A key engineering decision is the number of domains that will be 

supported automatically by the processor. The size of a DSE increases 

as the number of domains to be supported increases. Based on experience 

* If an associative memory for DSE's is used, the static access capa-
bilities for a segment will automatically be in the associative memory 
whenever the corresponding DSE is there. 
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with Multics, the number chosen here is eight. Thus, there are 32 per-

mission flags in each DSE. This choice is based upon the assumption that 

domains normally encapsulate relatively large subsystems and, therefore, 

* that a few domains per process is sufficient. 

th 
Whenever DR contains the value g; then set of flags in the DSE's 

control access to the virtual memory of the process. An attempt to read 

or write segment number~ will be allowed only if DSE~.~ or DSE~.Wg is 

set on, respectively. An attempt to transfer control to location (2_,~) 

has three possible results. If both DSEs.En and DSEs.Gn are off, then 

the transfer is not allowed. If DSEs.En is~' then the transfer is 

allowed and execution continues in the same domain. If DSE~.G~ is ~' 

then the segment contains gates into another domain. The displacements 

of the gate locations are recorded in DSE.GATES, and the name of the 

domain is recorded in DSE.DOMAIN. For ease of representation, all gate 

locations in a segment are collected together at the beginning of the 

segment. DSE.GATES indicates the number of such gate locations. Thus, 

~ < DSE~.GATES guarantees that the transfer is to a gate location. If 

this check is true, then DR is changed to the value recorded in 

DSE~.DOMAIN, thus changing the domain of execution of the process, and 

the transfer is allowed. Having both DSEs.En and DSEs.Gn set on is not 

meaningful. 

* An alternative implementation of static access capabilities is to place 
the mode array for each domain in a separate segment. This implementa­
tion removes the small fixed upper limit on the number of domains that 
may be associated with a process at any one time, but complicates the 
naming of domains, the representation of gates, and the structure of 
the associative memory for DSE's. 
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By hardware and software convention, domain O is always used to 

encapsulate the most privileged portion of the supervisor. Instructions 

designated as privileged will be executed by the processor only in 

domain 0. The instruction to load DSBR is an example of an instruction 

that must be privileged in order to maintain the integrity of the pro­

tect ion mechanisms in the system. The seven remaining domain numbers 

available to a process are managed by the supervisor in much the same way 

that the larger number of available segment numbers are managed. When a 

program executing as part of a process first wants to reference some 

segment stored on-line, the segment is assigned an available segment 

number in the virtual memory of the process by the supervisor. Likewise, 

when a program first wishes to associate with the process some protected 

subsystem whose definition is stored on-line, that protected subsystem 

is assigned an available domain number by the supervisor. Thus, while 

the maximum number of protected subsystems may be associated with a 

process at one time is eight, the particular eight can change with time, 

and different sets of eight or fewer protected subsystems can be asso~ 

ciated with processes that have different virtual memories. 

Generating Virtual Memory Addresses 

In order to understand the discussion to be presented in the follow­

ing sections of this chapter, it is necessary to know something about the 

generation of two-part addresses by machine language programs. For ease 

of description, the processor presented here is primarily a word 

addressed machine. Thus, the displacement portion of a two-part address 

is a word number, where a word is enough bits to hold an indirect 



63 

address or an instruction, and the implied length of most references is 

one word. The ideas presented here, however, can also be applied easily 

to a byte or bit addressed machine. The ultimate precision of referenc-

ing memory by arbitrary bit number and arbitrary bit length can be very 

useful in controlling access to cross-domain arguments that are not word 

aligned, and will be considered in that respect later. 

A two-part address together with a protection tag is called a 

* pointer. The tag portion of a pointer is a one bit flag that indicates 

whether the static access capabilities or the dynamic access capabilities 

of the domain of execution should be used to validate references through 

the pointer. The tag will be considered in more detail in a moment. 

Figure 3-2 presents the registers and storage formats relevant to manip-

ulating pointers. The instruction pointer register (IPR) specifies the 

two-part address of the instruction being executed. Since instruction 

retrieval is always validated relative to the static access capabilities 

of the domain of execution, the pointer in IPR does not include a tag. 

Arbitrary pointers may be kept in the pointer registers (PRl, PR2, ... ) 

or stored in memory as indirect addresses (lND). Because segment 

numbers cannot be known when a procedure segment is compiled and because 

most procedure segments will be pure, instructions (JNST) specify 

operand addresses by giving an offset (JNST.OFFSET) relative to IPR or 

one of the PR's. INST.PRNUM = 0 indicates IPR-relative addressing and 

INST.PRNUM > 0 indicates PR-relative addressing. In the latter case 

* The one bit tag is a simplification used now to facilitate the descrip-
tion of the processor. The multibit tag actually required will be intro­
duced later. 
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Indirect address (stored in memory) 
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Figure 3-2: Register and storage formats for address formation. 
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the value of the field indicates which PR. Indirect addressing may be 

specified by setting the indirect flag (INST.I) £!!.· The final item in 

Figure 3-2 is the temporary pointer register (TPR). This is an internal 

processor register that is not directly program accessible. In TPR is 

formed the two-part address, called the effective pointer, of the 

operand of each instruction. 

The algorithm for generating the effective pointer, given an 

instruction, is presented in Figure 3-3. Ignoring tags in pointers for 

a moment, a couple of examples will make clear the operation of this 

algorithm. The instruction: 

PRNUM OFFSET OPCODE I 

0 200 I ADD off 

specifies that its operand is the word 200 beyond the instruction in 

the same segment. The instruction: 

[ 1 200 ADD off 

specifies that its operand is the word 200 beyond the location specified 

by the pointer in PRl. The instruction: 

1 200 I ADD I on 

causes the word 200 beyond that specified by the pointer in PRl to be 

retrieved from memory and interpreted as an indirect address which 

specifies the two-part address of the instruction's operand. The instruc-

tions from these three examples may be written as: 

ADD t200 

ADD PRl t200 

ADD PRlt200,* 

respectively. 
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start 

INST.PRNUM > 0 
no I 

(IPR-relative addressing) 
yes 

(PR-relative addressing) 

TPR. TAG ,__ off 
(E_ = INST. PRNUM) 

TPR.TAG ,__ PRn.TAG 
TPR.SEGNO ,__ PRn.SEGNO 
TPR.WORDNO ,__ PRn.WORDNO 

TPR.SEGNO ,__ IPR.SEGNO 
TPR.WORDNO ,__ IPR.WORDNO 

+INST.OFFSET 

INST. I = on 

yes 
(indirect addressing) 

Retrieve indirect address from memory 
using two-part address in TPR. Type 
of access validation to use indicated 
b TPR.TAG. 

..--~~~~~~....___~--.,-~~~~ 

TPR.TAG <-- TPR.TAG I IND.TAG 
TPR.SEGNO ,__ IND.SEGNO 
TPR.WORDNO ,__ IND.WORDNO 

~'( 

+INST.OFFSET 

done ~ TPR contains the effective pointer 
to the operand of the instruction. 

Figure 3-3: Algorithm for effective pointer generation. 

*The symbol "I" indicates the logical OR operation. 
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Obviously, for this machine really to be practical a richer collec­

tion of addressing techniques would be needed. The processor as 

described does not even have index registers! The techniques shown, 

however, are sufficient to discuss the protection issues raised in this 

thesis and to illustrate the rules that other addressing techniques must 

follow. With respect to protection mechanisms, it is straightforward to 

add other more sophisticated addressing techniques to the processor. 

Two machine instructions are representative of those used to manip­

ulate pointers. The "effective pointer to pointer register .!!" instruc­

tion (EPP!!_) causes the effective pointer generated by the instruction, 

i.e., the entire contents of TPR, to replace the contents of PRn. 

"Store pointer from pointer register .!!:." (SPF!!,) causes the entire contents 

of PRn to be stored at the specified location in the format of an in­

direct address. As an example of how these two instructions can be used, 

note that the following code sequence saves the pointer from PR4 and then 

restores it to PR4: 

SPP4 

EPP4 

PRlt367 

PRlt367,* 

The role of the tags in pointers is now discussed in more detail. 

The tag differentiates pointers related to cross-domain arguments from 

other pointers. When the tag in a pointer is off it means that a 

reference through that pointer will be validated relative to the static 

access capabilities of the domain of execution. When the tag is on the 

dynamic access capabilities of the domain of execution will be used 

instead. 
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The processor is organized so that, as a matter of course, the tag 

is on in all pointers related to cross-domain arguments. The key to 

this feature is the effective pointer generation algorithm presented in 

Figure 3-3. It is the tag in TPR that determines which type of access 

validation will be applied to each indirect address reference and each 

instruction operand reference. As can be seen from Figure 3-3, the tag 

in TPR will be on at the conclusion of effective pointer generation for 

some instruction if the operand address specification in the instruction 

indicates a PR whose tag is on or locates an indirect address whose tag 

is on or both. A reference to an indirect address, if required, will be 

validated as indicated by the value of TPR.TAG at the point in the 

algorithm where the indirect address is retrieved from memory. 

The technique described in the next section for transmitting argu­

ments on a call is to prepare a list of indirect addresses locating the 

various arguments and then to connnunicate the location of this list to 

the called procedure via a PR. In the case of a cross-domain call the 

processor automatically sets the tag in this PR on. Since the called 

procedure normally will derive the addresses of the arguments through 

this PR using the effective pointer generation algorithm just described, 

all argument-related addresses will acquire a tag that is ~ as a matter 

of course, and therefore all references to cross-domain arguments will 

be validated relative to the dynamic access capabilities of the called 

domain as is desired. Referencing cross-domain arguments will be dis­

cussed in more detail later. 
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Figure 3-4: Format of the argument list for an interprocedure call. 
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where £ indicates some PR that is temporarily free and "argument i." 

d dd "f" . 1 . h .th represents an operan a ress speci ication ocating t e ~ argument. 

The next two steps of a call are saving a pointer to the current 

activation record and specifying the return location. The beginning of 

the memory area holding the activation record in use is specified by 

another pointer register chosen by system convention (call it P~). The 

return location is always one word beyond the instruction that transfers 

control to the called procedure. The instructions: 

SPPs PRa t2 

EPPn t3 

SPPn PRatl 

where n designates some unused PRJ create the return block at locations 

1 and 2 of the argument list as shown in figure 3-4 by storing as in-

direct addresses the pointer from PRs and the pointer from IPR (suitably 

offset). 

Creating the argument list also includes storing additional argu-

ment-related information in the empty words shown in Figure 3-4. This 

extra information is used by the processor in the case of a cross-domain 

call to create the proper dynamic access capabilities. The definition 

of these remaining parts of the argument list is delayed until the next 

section. 

Once the argument list is createdJ the next step of the call is 

actually performing the transfer of control to the called entry point. 

This is done by executing the instruction: 

CALL "entry point" 

where "entry point" is an operand address specification that locates the 
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entry point being called. In addition to transferring control, the 

CALL instruction helps the called procedure create a new activation 

record for itself by leaving in a third pointer register chosen by 

system convention (call it PRE) a pointer to the zeroth word of the 

stack segment in which the called procedure should allocate its activa-

tion record. This stack segment has in its zeroth word a pointer to the 

beginning of the unused area at the end of the stack segment. The called 

procedure creates a new activation record of £words there by executing 

the instructions: 

EPPs PRbtO ·k - ' 

EPPn PRst£ 

SPPn PRbtO 

where ~ designates some PR other than one of the three reserved pointer 

registers. The first instruction loads PRs with a pointer to the be-

ginning of the new activation record. The second and third instructions 

update the pointer in the base of the stack segment to point just beyond 

this new activation record. 

Creating a new activation record completes the steps of the call 

operation. While executing, the called procedure may reference words in 

its activation record using operand address specifications of the form 

11 PRsti" in instructions, It can generate in PRn the beginning address 

0 f the i. th . h . . argument using t e instruction: 

EPPn 

When it comes time to return, the called procedure must perform the 

three steps of the return operation. First, its activation record must 

be released and added to the unused area at the end of the stack segment. 
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This is done with the single instruction: 

SPPs PRhtO 

which resets the pointer in the base of the stack segment to point at 

the beginning of the released activation record. The second and third 

steps of the return operation are transferring control back to the 

calling procedure and restoring to use the activation record of the 

calling procedure. These steps are performed in reverse order by the 

following instruction sequence: 

EPPs P~t2, * 

RETURN PR!! tl, * 

The first instruction restores to PRs the activation record pointer 

from the return block in the argument list. The second instruction* 

transfers control to the locatiqn specified by the return pointer from 

the return block. Thus, the calling procedure receives control at the 

proper return point and the proper activation record is restored to use. 

Note that the only PR which is restored by the return operation to 

the value it contained prior to the call is PRs. It is up to the call-

ing procedure to explicitly save and restore other PR's whose contents 

are valuable. Because PRs is automatically restored by the return, the 

activation record can be used by the calling procedure as a place in 

which to save the values of other PR's before the call, from which 

place they may be restored after the return. 

* Ignoring protection issues, the RETURN instruction simply transfers 
control to the location specified as its operand. As will be seen in 
the next section, however, the RETURN instruction can perform some 
protection-related operations that normal transfer instructions cannot. 
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two extra operations that are not performed if the call does n.ot change 

the domain of execution. The first is creating a new frame on the 

dynamic access stack of the process and filling this frame with the 

dynamic access capabilities which will allow procedures executing in the 

called domain to reference the arguments of the call and transfer control 

back to the return gate. The second extra operation is to set the tag 

in the argument list pointer register (PR!!,. TAG) to on so that references 

to the cross-domain arguments by procedures executing in the called 

domain will be validated with respect to these dynamic access capa-

bilities, rather than the static access capabilities of the called 

domain. After performing these two extra steps in the case of a cross-

domain call, the CALL instruction completes in the normal manner by 

loading PR£ with a pointer to the base of the stack segment in which 

the called procedure should allocate its new activation record, and 

then transferring control to the called location. The pointer in PRb 

is created the same way whether the call is cross-domann or not. The 

stack segment selection rule embedded in the processor is that the 

* stack segment for domain n is segment number n. Thus, PRb.SEGNO is 

* This stack segment selection rule is adequate only for the case that 
each process has its own virtual memory. If it is desired to allow 
multiple processes with the same virtual memory, i.e., more than one 
execution point in a virtual memory, then a more sophisticated stack 
segment selection rule is required to provide each of the processes 
sharing a virtual memory its own set of stack segments. A simple way 
to provide for multiple sets of stack segments in a virtual memory is 
to include in the processor a register that specifies the eight con­
secutively numbered segments that are the stack segments. When a 
CALL instruction is executed, then PR.£.SEGNO is calculated by adding 
the new domain number to the value in this stack segment selection 
register. The various processes sharing a virtual memory each would 
execute with a different value in this register, and thus each would 
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PR a 

argument list 

argument list header { length of argument list 0 

{ return pointer 1 
return block 

activation record pointer 2 

{ pointer to argument 0 3 
entry for argument 0 RW size 4 

{ pointer to argument 1 5 
entry for argument 1 RW size "6 

7 

{ pointer to argument n 2n+3 
entry for argument n RW size 2n+4 

Figure 3-5: Completed argument list format for an interprocedure call. 
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The dynamic access stack (DAS) of a process, in which dynamic 

access capabilities are created by the processor on a cross-domain call, 

is located in memory -- presumably in a segment that can be read and 

written directly only from domain 0. The location and state of the DAS 

is specified by the DAS definition register (DASDR) shown in Figure 3-6. 

This register, in addition to being manipulated by the CALL and RETURN 

instructions in the case of cross-domain calls and returns, can be loaded 

and stored directly by privileged instructions. DASDR.SEGNO and 

DASDR.WORDNOl specify the two-part address of the beginning of the most 

recently created DAS frame. DASDR.WORDN02 specifies the word one beyond 

the last word in this frame. If no unreturned cross-domain calls e¥ist, 

then DASDR.SEGNO and DASDR.WORDNOl will specify the beginning location 

for the DAS of the process, and DASDR.WORDN02 will equal DASDR.WORDNOl. 

As can be seen by comparing Figures 3-5 and 3-6, the creation of a 

new DAS frame by the CALL instruction in the case of a cross-domain call 

is quite straightforward. PR~ locates the argument list to be used as 

the information source and (DASDRLSEGNO,DASDR.WORDN02) is the two-part 

address for the beginning of the new frame. While creating a new DAS 

frame the processor validates all references to the argument list 

relative to the static access capabilities of the domain from which the 

* call is being made and validates all references to the DAS relative to 

the static access capabilities of domain 0. 

* According to the normal pattern of operation described earlier, an 
executing procedure has static access to its activation record and to 
any argument lists it creates for interprocedure calls. To simplify 
the processor description, the processor protection mechanisms are de­
signed to accomodate only this normal pattern of operation. The 
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The first capability in the DAS frame is the return gate capability. 

This contains the return pointer and the activation record pointer from 

words 1 and 2 of the argument list. It also contains the number of the 

domain to which the return should be made (DOMAIN), i.e., the domain of 

execution at the time the call is made. The final item in this capa-

bility (LASTFRAME) is the word number of the beginning of the previous 

DAS frame, as found in DASDR.WORDNOl. 

Following the return gate capability in the DAS frame are the 

capabilities allowing read and write access to the various arguments. 

Each two-word argument entry in the argument list generates a two-word 

capability at the matching location in the DAS frame. The capability 

gives procedures executing in the called domain access to the subsegment 

specified by the argument entry. The first word of the capability is a 

pointer to the beginning of the argument, copied from the argument entry. 

The second word contains the read and write permission flags from the 

argument entry. The END field in the second word is the word number of 

the last word of the argument, derived by adding the size from the 

argument entry to the word number in the argument pointer and subtract-

ing one. (The ending word number is easier to interpret than the size 

footnoted statement in the text above is the first of several places 
where this decision is apparent in the processor design. If some pro­
cedure chooses not to conform to these standards and instead creates an 
activation record or an argument list to which it has dynamic access, 
however, the protection mechanisms will not be circumvented. But such 
unconventional behavior is not fully supported and that procedure will 
not be able to make cross-domain calls. While it is hard to imagine 
the circumstances under which a procedure would find creating a dynam­
ically accessible activation record or argument list to be useful, the 
processor could be extended to fully support such. 
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when matching references to the dynamic access capabilities.) 

The meaning of the SOURCE field in the second word of the capability 

is a little harder to explain. Recall from Chapter 2 that dynamic access 

capabilities must be constrained to give no more access than is avail­

able in the calling domain. In order to enforce this constraintJ before 

making the corresponding dynamic access capability the processor must 

verify that the argument specified by an argument entry is in fact 

accessible from the calling domain in the manner indicated. There are 

two ways for the calling procedure to have access to the argument: 

access can be allowed by virtue of a static access capability in the 

calling domain or by virtue of a dynamic access capability in the calling 

domain. The tag portion of the pointer to the beginning of the argument 

in the argument entry specifies the opinion of the calling procedure as 

to which is the case. When the tag is onJ specifying dynamic accessJ 

the calling procedure is indicating its intention of passing-on all or 

part of an argument from the earlier cross-domain call that began 

execution in the calling domain. When the tag is offJ specifying static 

accessJ the calling procedure is indicating that the argument originates 

in the calling domain. 

If the argument pointer tag is offJ then the calling domain is the 

source of the argument and the processor must verify that the subsegment 

specified in the argument entry is accessible to the calling domain by 

virtue of its static access capabilities. The obvious way to perform 

this verification is to reference the DSE for the containing segment and 

check that the appropriate read and/or write permission flags are ~· 

If the check succeeds the dynamic access capability can be created. 
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With this method the fact that the dynamic access capability exists is 

proof that the calling domain includes the required static access 

capability. A very important disadvantage of this method is that it 

makes it hard to change (or revoke) the static access from various 

domains of a process to a segment. Not only do permission bits in the 

corresponding DSE need to be changed (which is easy to do), but all 

dynamic access capabilities in the DAS giving access to pieces of the 

segment must be found and changed (which is hard to do). To get around 

this problem, no check of static access is made when the dynamic access 

capability is created. Instead, the number of the calling domain is 

simply recorded in the SOURCE field of the dynamic access capability as 

the source of the capability. The static access of the calling domain 

will be verified each time the dynamic access capability is used to 

validate a reference from the called domain. In other words, if a parti­

cular reference by a procedure executing in the called domain appears to 

be allowed because it matches the dynamic access capability, then the 

reference is also checked against the static access capabilities in the 

domain indicated by the SOURCE field. As a result, the dynamic access 

capability can give no more access than is available from the static 

access capabilities in the calling domain. 

If the argument pointer tag is .£!!, then the calling domain is not 

the source of the argument. The calling procedure is passing-on all or 

part of an argument from the earlier cross-domain call that began 

execution in the calling domain and the actual source of the argument 

is somewhere back along the chain of unreturned cross-domain calls in 

the process. In this case the processor must verify that the subsegment 
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on a cross-domain return, after verifying that PR~ contains the activa­

tion record pointer recorded in the return gate capability and that the 

return is to the return location recorded in the return gate capability, 

a check must be made to assure that the return point is in a segment 

which by static access capability is executable in the calling domain. 

After creating dynamic access capabilities for all the arguments, 

a final capability is created in the new DAS frame giving read access 

to the subsegment containing the argument list itself. (The called 

procedure needs to be able to read the argument list to find the argu­

ments.) The pointer in this capability comes from PR~ and the END field 

value is calculated from the argument list header. The source domain of 

this capability is the calling domain. 

Creation of the new DAS frame is completed by updating DASDR to 

locate the new frame, i.e., DASDR.WORDNOl is set from DASDR.WORDN02 and 

then DASDR.WORDN02 is set to indicate the word one past the end of the 

new frame. 

Destroying the DAS frame on a cross-domain return is done by 

setting DASDR.WORDN02 from DASDR.WORDNOl, and setting DASDR.WORDNOl 

from the LASTFRAME field of the return gate capability in the destroyed 

frame. 

Before leaving this discussion of dynamic access capabilities, the 

algorithm used to match a reference against the dynamic access capa­

bilities of a domain needs to be stated more precisely. Assume a read 

reference to location (~,E:) is to be validated with respect to the 

dynamic access capabilities of the domain of execution. The matching 

algorithm is to perform a linear search of the most recent DAS frame, 
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i.e.J the frame located by DASDRJ starting with word 3J looking for a 

capability that meets all of the following conditions: 

1. read permission flag in the capability is onJ 

2. segment number from the pointer in the capability is ~J 

3. word number from the pointer in the capability is less than or 
equal to ~J 

4. END field in capability is greater than or equal to ~· 

The first capability that matches stops the search. The reference is 

allowed only if it also passes the check against the static access 

capabilities of the indicated source domain. If no match occursJ or the 

static access check failsJ then the reference is not allowed, A write 

reference is handled in the analogous way. The linear search required 

can be eliminated in the case of multiple references to the same argu-

ment by the addition to the processor of a smallJ fast associative 

memory for the most recently used dynamic access capabilities. Such 

an associative memory will be described in more detail later. 

Propagation of Tags 

When a cross-domain call occurs the tag in PRa is set on. The 

purpose of this action is to cause all pointers generated in the called 

domain that are related to cross-domain arguments to have tags that are 

on. Then references through these pointers will be validated relative 

to the dynamic access capabilities added to the called domain by the 

cross-domain callJ and not relative to the static access capabilities of 

the called domain. The propagation of the tag from PR~ to other pointers 

related to cross-domain arguments is caused by the effective pointer 
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generation algorithm presented earlier. This algorithm guarantees that 

any pointer generated from a pointer whose tag is on will also have its 

tag EE.· If applied properly by procedures executing in the called 

domain, the algorithm guarantees that all pointers generated from PR!!, 

and pointers generated from these pointers, etc., will have their tags 

set EE.• 

An example will illustrate.the method of tag propagation. Imagine 

that a subsegment containing a threaded list of variable-sized blocks 

is passed as argument 0 on a cross-domain call. The argument entry 

and the corresponding dynamic access capability will contain a pointer 

to the beginning of this subsegment and specify its length. Each block 

in the subsegment contains in word 1 the size of the block and in word 0 

a pointer to the next block in the threaded list. The first block on 

the list is known to begin at word 0 of the subsegment. (It is quite 

possible to define and manipulate a data structure like this in PL/I 

using based structures.) This data structure originated in the calling 

domain, and therefore the pointer in the argument entry as well as all 

the list pointers in the data structure itself have tags that are off. 

When the cross-domain call occurs a dynamic access capability to read 

and write the subsegment is created and the tag in PRa is set on. 

Now consider the machine language implementation of some operations 

the called procedure might perform on this argument. Execution of the 

following instruction sequence by the called procedure will generate 

in PRn a pointer to the lOOth block in the list: 
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EPPn P~t3,* 

(99 times) C3'E. PR!!tO,* 

At the conclusion of this sequence the pointer in PRn to the lOOth 

block will have its tag set ~' even though all pointers in the 99 list 

blocks encountered had their tags set off. The tag from PRa is propa-

gated all through the instruction sequence in PRn. (Refer to the effec-

tive pointer generation algorithm in Figure 3-3 to see that this really 

works.) All during the instruction sequence the references to the point-

ers in the blocks as indirect addresses will be validated with respect 

to the dynamic access capabilities of the called domain, and specifi-

cally will match the capability giving access to the whole subsegment 

that is argument 0. 

Now imagine that the called procedure, after laboriously generating 

this pointer to the lOOth block in the list, wants to save it in a 

temporary storage location in the current activation record. The 

instruction: 

SPPn PR~ttemp 

does the trick. Note that this write reference to a word of the activa-

tion record will be validated with respect to the static access capa-

bilities of the called domain, since the tag in PR~ is off. However, 

the stored pointer will have its tag ~· Later, the tracing of the list 

from the lOOth block to the 150th block can be continued with the 

instruction sequence: 

EPPn PR~ttemp,* 

(50 times) G P~tO,* 

The resulting pointer in PRn will still have its tag on. 
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There is a way to break the chain of propagation of the tag from 

PRa. If the called procedure now transfers the list pointer contained 

in the 150th block to another temporary storage location in the activa-

tion record using the code sequence: 

LOAD PRntO 

STORE PR~ttemp2 

then the tag in the stored pointer will be off. The propagation of the 

tag from PR~ is broken because LOAD/STORE generates a direct copy of the 

pointer from the 150th block whose tag is also off. The alternative 

sequence: 

EPPn PR.!! to,* 

SPPn PR~ttemp2 

results in a stored pointer whose tag is .£!!:· When copying a pointer, 

EPP!!_/SPP!!, must be used rather than LOAD/STORE to make sure the relation 

of a pointer to a cross-domain argument is not lost. By violating this 

rule, however, a procedure can compromise only the integrity of its 

own domain. It cannot gain unauthorized access to information. Only 

self-protection is at stake. 

Now imagine that the called procedure wishes to load into the 

accumulator the size from word 1 of the lOOth block, the block whose 

address was stored earlier at "PR~ttemp". The instruction sequence: 

EPPn PR~ t temp, * 

LO.AD PRntl 

. . th does the trick, and validates the read reference to word 1 of the 100 

block with respect to the dynamic access capabilities of the domain, 

since the tag in PRn will be on. 
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As the final example, imagine that the called procedure in turn 

generates another cross-domain call and passes as the zeroth argument 

this lOOth block from the list. After saving the current value of PRa 

somewhere in its activation record, allocating space for the required 

new argument list, and resetting P~ to point at this new argument list 

area, the argument pointer in the zeroth argument entry would be created 

with: 

EPPn 

SPPn 

PR2_ttemp,* 

PRat3 

Note that this argument pointer will have its tag set ~' correctly 

indicating to the processor when it constructs the required new DAS 

frame that the argument comes from a previous cross-domain call. 

This is a good place to reemphasize why it is important that pro­

cedures executing in some domain be able to identify those pointers 

that are related to incoming cross-domain arguments and validate all 

references through such pointers against the dynamic access capabilities 

currently in the domain, rather than against the static access capa• 

bilities of the domain. As indicated in Chapter 2, the essential reason 

is that all pointers related to cross-domain arguments are derived from 

pointers provided by the calling domain. The pointers in PR~, in argu­

ment list entries, and in arguments themselves, e.g., as in the linked 

list example given above, are all arbitrary bit patterns set by pro­

cedures executing in the calling domain or some other domain further 

back along the chain of unreturned cross-domain calls for the process. 

When the cross-domain call occurred, the processor constructed the 

dynamic access capabilities in such a way that they are guaranteed to 
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pass-on to the called domain no more access than is dynamically or 

statically available from the calling domain. The processor even 

arranged things in such a way that if the static access capability which 

is the original source of permission in a dynamic access capability 

changes, then the change i.Imnediately propagates to the dynamic access 

capability. The processor, however, did not and could not check all of 

the pointers that can be generated starting with the pointer in PR~. 

There is no guarantee that, say, in the linked list example given above, 

the list pointer in the 99th block will not by malice or error point at 

a critical data base in the called domain that is not accessible from 

th the calling domain, rather than point at the 100 block in the subseg-

ment that is the cross-domain argument. When the called procedure makes 

a write reference via this pointer, it does so with the intention of 

writing something in the lOOth block of the argument. If the pointer 

locates a portion of the critical data base, then the called procedure 

wants the write reference to fail. The propagation of the tag that is 

~ from PR~ guarantees that the write will fail, for this tag causes 

validation relative to the dynamic access capabilities created by the 

cross-domain call, and these capabilities will not provide write access 

to the critical data base. Without the propagated tag the write would 

succeed, for the static access capabilities of the called domain do 

allow write access to the critical data base. 

Recall that a tag that is on in the effective pointer generated by 

a RETURN instruction is what triggers a cross-domain return. This tag 

propagates from the tag in PRa in the same way that the tags in argu-

ment-related pointers are propagated from the tag in P~. To see this, 
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consider the last two instructions of the standard return sequence again: 

EPPs P~t2,* 

RETURN P~tl,* 

It is clear that if the tag in PR.!:!:_ is .£!!, as it would be when the 

corresponding call is cross-domain, then the effective pointers generated 

by both instructions will have tags that are on. In the case of the 

RETURN instruction this propagated tag triggers the cross-domain return. 

In the case of the EPPs instruction it generates an interesting problem. 

The purpose of the EPPs instruction is to restore to PRs the activation 

record pointer of the calling procedure. This pointer, as it was re­

corded by the calling procedure in the return block of the argument list, 

had its tag set off. (An executing procedure always has static access 

to its activation record.) Yet the EPPs instruction restores this 

activation record pointer to PR~ with its tag set .£!!· To correct this 

problem, part of the special action of the RETURN instruction on a cross­

domain return is to set the tag in PR~ off. Thus, when the calling 

procedure receives control following the cross-domain return, PR~ 

properly contains the same activation record pointer it had before the 

cross-domain call occurred, even though the EPPs instruction restored 

the tag incorrectly. 

The problem encountered here in restoring PR~ on a cross-domain 

return foreshadows a general problem which will be considered later. 

On a cross-domain call, whenever the called procedure generates a 

pointer to be used by the calling procedure after the return occurs, care 

must be taken to set the tag properly for use by the calling procedure. 

For stored pointers a simple addition to the SPPn instruction, the 
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instruction used to create stored pointers, can detect these cases 

and automatically generate the correct tag. This algorithm will be 

presented in detail later in the chapter. The case of a pointer being 

communicated through a PR, however, cannot be detected by a similar 

algorithm added to the EPPn instruction. The only instance of this 

second case, however, is the communication of an activation record 

pointer in PR~. As seen in the previous paragraph, the tag in PRs can 

be adjusted easily when the cross-domain return occurs. 

Multibit Tags 

Exploring a little further the example of the argument that is a 

subsegment containing a linked list points out a flaw in the processor 

design as described so far. Consider the case of a cross-domain call 

from, say, domain 7 to domain 2 followed by a cross-domain call from 

domain 2 to domain 4, as illustrated in Figure 3-7. The subsegment 

containing the linked list is passed as a read/write argument on the 

first cross-domain call. The pointer in the 99th block of the list 

maliciously has been set by procedures executing in domain 7 to point 

at some data base in domain 2, a data base not accessible from domain 7. 

As seen above, procedures executing in domain 2 cannot be tricked by this 

bad pointer because the tag propagated from PRa will cause attempted 

read and write references through this bad pointer to fail. Suppose 

that instead of directly referencing this argument provided by domain 7, 

however, the called procedure in turn passes the subsegment as a 

read/write argument of the cross-domain call from domain 2 to domain 4. 

Another read/write argument of this second call happens to be that data 
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base pointed at by the bad address in the 99th block of the linked list 

in the first argument. 

Now consider the procedure called by this second cross-domain call. 

Executing in domain 4, it locates the 99th block in the linked list in 

the manner described earlier and then uses the contained pointer to make 

a write reference with the intention of writing in the lOOth block. 

Because of the bad pointer, however, the write is actually to the data 

base that happens to be the other cross-domain argument provided from 

domain 2. Of course, the tag of the pointer used to make this reference 

will be on as before, and the reference will be validated with respect 

to the dynamic access capabilities associated with the second cross­

domain call. In this case the reference will succeed because it is 

to a valid writable cross-domain argument of that call and thus a 

matching dynamic access capability will be found. 

What really has happened here? In a sense, the procedure executing 

in domain 4 has not done anything wrong. It has permission to write 

in the data base argument in which it wrote. But this procedure did 

make a mistake, writing into domain 2 1 s data base the data it was in­

tending to put in the lOOth block of the linked list in the other argu­

ment. The important thing about this mistake is that it was caused by 

procedures executing in a third domain. The problem illustrated by this 

example is particularly insidious in cases where the domain that receives 

the second cross-domain call encapsulates part of the supervisor and 

thus is trusted by the domain that made the second call. In this cir­

cumstance the procedure that made the second cross-domain call has no 

reason to check after the return has occurred that the trusted supervisor 
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has written reasonable values into the output arguments and therefore 

may not notice the mistake before it leads to a disastrous error. It 

is possible to construct many examples like this involving two or more 

cross-domain calls. 

An analysis of why in the example given a procedure executing in 

domain 7 could cause a procedure executing in domain 4 to incorrectly 

alter data encapsulated in domain 2 reveals the general flaw in the 

protection mechanisms of the processor as presented so far. The reason 

the problem occurred is that a reference through a pointer generated 

from a cross-domain argument whose source was domain 7 was allowed be­

cause it matched a dynamic access capability whose source was domain 2. 

To prevent the general class of problem represented by this example from 

occurring, the processor must be altered so that a reference through a 

pointer generated from a cross-domain argument whose source is domain 

n will be allowed only if it matches a dynamic access capability whose 

source is domain n. This change requires expanding the tag portion of 

pointers to specify the source domain of the cross-domain argument from 

which the pointer was derived, if in fact the pointer was derived from 

a cross-domain argument. 

The obvious value to record in a tag indicating dynamic access is 

the number of the source domain associated with a pointer. This number 

is then matched to the SOURCE field in dynamic access capabilities. 

There are two problems with this approach. First, when generating an 

effective pointer using the expanded tag, the processor must be able to 

determine which of two tag values indicating dynamic access corresponds 

to a cross-domain call that is further back in the chain of unreturned 
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cross-domain calls for the process. It is hard to make this determina­

tion quickly from domain numbers alone. The second problem is more im­

portant. To be consistent with programming generality it must be 

possible for the chain of unreturned cross-domain calls in a process to 

include recursive invocations of domains. When recursive invocations of 

domains occur the domain number by itself does not specify which invoca­

tion of a partic.ular domain originally passed the argument from which a 

pointer was derived, and this distinction can be important. When the 

possibility of recursive invocations of domains is considered, it becomes 

apparent that the source of a cross-domain argument or a dynamic access 

capability is not just a domain but a domain invocation. What needs to 

be recorded in dynamic access tags and in dynamic access capabilities is 

the identity of a domain invocation, not just the number of a domain. 

The dynamic access stack (DAS) of a process provides a convenient 

numbering for the domain invocations that exist at any given time. Each 

time a cross-domain call occurs a new DAS frame is created. The number 

of the frame can be used as an identifier for the domain invocation from 

which the cross-domain call came that generated the frame. It is these 

domain invocation numbers that are recorded in dynamic access capabilities 

and in tags specifying dynamic access. If the first DAS frame is given 

the number one, then the number zero can never identify a domain invoca­

tion. Thus, the tag value zero can be used to specify that reference 

through a pointer be validated with respect to static access capabilities. 

A non-zero tag specifies validation with respect to dynamic access capa­

bilities and the non-zero value ·identifies the source domain invocation. 

Certain aspects of the processor are now redescribed to incorporate 
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the expanded tag into the design. The length chosen for the tag field 

determines the maximum number of unreturned cross-domain calls that can 

exist in a process. A five bit tag, fixing this maximum at 31, is con­

sistent with the choice of eight as the number of domains per process 

that the processor will support. To provide an easy means for generating 

DAS frame numbers and domain invocation numbers, a cross-domain call 

count field is added to the DAS definition register (DASDR.XDCC) as illus­

trated in Figure 3-8. If no unreturned cross-domain calls exist, and 

thus no DAS frame exist, then DASDR.XDCC = 0. Each time a cross-domain 

call occurs and a new DAS frame is created DASDR.XDCC is incremented by 

one. (DASDR.XDCC is not allowed to overflow.) A cross-domain return 

causes it to be decremented by one. At any given time, then, DASDR.XDCC 

contains the number of the most recent DAS frame. This value is also the 

number of the domain invocation from which the cross-domain call came that 

started execution in the current domain of execution. In the state shown 

in Figure 3-8, for example, three unreturned cross-domain calls exist. 

It is clear that at any given time only tag values less than or equal to 

DASDR.XDCC mean anything. 

The modified effective pointer generation algorithm is shown in 

Figure 3-9. It looks fairly complex but has a simple effect. If only 

tags of zero are encountered during effective pointer generation, then 

the final effective pointer has a tag of zero, indicating that the refer­

ence through the pointer will be validated relative to the static access 

capabilities of the domain of execution. If only one non-zero tag is 

encountered (in the indicated PR or indirect address), then assuming the 

value of this tag is meaningful, i.e., ~ DASDR.XDCC, the final effective 
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Figure 3-9: Modified algorithm for effective pointer generation with a 
multibit tag. 
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pointer has the same non-zero tag value, indicating that the reference 

through the pointer will be validated relative to the dynamic access 

capabilities currently in the domain of execution. The non-zero tag 

value is the source domain invocation number to be used in finding a 

matching dynamic access capability. The interesting case is when both 

PR-relative and indirect addressing are indicated, and both the PR and 

the indirect address have non-zero tags. Assuming no error is generated 

because the PR tag is greater than DASDR.XDCC, the indirect address tag 

is checked to make certain it is smaller than the PR tag, and if it is 

then the indirect address tag provides the value for the tag in the final 

effective pointer. That the indirect address tag be smaller than the PR 

tag is important. A non-zero PR tag with a value t indicates that the 

indirect address located by the PR is in the argument list or is in an 

argument of the tth unreturned cross-domain call. From the vantage point 

of domain invocation ! (the domain invocation from which the tth cross­

domain call came), only tag values less than! mean anything. When the 

argument list was created, !-1 was the number of the most recent DAS frame. 

In that circumstance a pointer with a tag value greater than or equal to 

t would not mean anything. Further, if the effective pointer generation 

algorithm accepted a tag value strictly greater than ! from the indirect 

address located by the PR, then one aspect of the previously described 

flaw would remain uncorrected. The effective pointer formed using infor­

mation provided by domain invocation t would specify in its tag a domain 

invocation number greater than t. 

Propagation of the new expanded tag is by essentially the same means 

used for the one bit tag. When a cross-domain call occurs the processor 
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sets the tag in PR!! with the incremented value of DASDR.XDCC. This is 

the number of the domain invocation from which the cross-domain call comes. 

For example, if a cross-domain call occurred when the DAS were in the state 

illustrated by Figure 3-8, then PR~.TAG would be set to four. Correct use 

of the effective pointer generation algorithm by procedures executing in 

the called domain guarantees propagation of this tag (and smaller non-zero 

tags if encountered) to all pointers derived from cross-domain arguments. 

The purpose of the expanded tags, of course, is to provide an addi­

tional parameter to use when matching a reference to the dynamic access 

capabilities currently in the domain of execution. Figure 3-10 presents 

the detailed format of a dynamic access capability giving read and/or 

write access to a subsegment. The TAG field in the first word is used to 

record the number of the domain invocation that is the source of the capa­

bility. The SOURCE field in the second word is the domain number associa­

ted with the source domain invocation. The TAG field provides the value 

to be used when matching a reference through a pointer to the dynamic 

access capabilities currently in the domain. Once the dynamic access 

capability that matches a reference has been selected, the contained 

SOURCE field specifies which domain's static access capabilities. must also 

allow the reference, as before. 

Recall that a dynamic access capability to read and/or write a sub­

segment is created for each argument entry in the argument list of a 

cross-domain call. (One is also created to allow read access to the 

argument list itself.) With the expanded tag, creation of the dynamic 

access capability for an argument entry is still done pretty much as 

described earlier for the one bit tag. There are two cases. If the tag 
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Figure 3-10: Format of n dynamic access capability giving 
read and/or write access to a subsegment. 
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As indicated, the value of the TAG field in a dynamic access capa­

bility is taken into account when matching a reference to the dynamic 

access capabilities currently in the domain of execution. While the 

only difference from the algorithm presented earlier for the case of one 

bit tags is the additional constraint that the tag from the pointer must 

match the tag in a capability, the entire algorithm for matching a 

reference to the dynamic access capabilities in a domain is presented 

again for the sake of clarity. Assume a read reference is made through 

a pointer containing the tag !, where ! > O, and the two-part address 

~,~). The reference validation algorithm is to perform a linear search 

of the most recent DAS frame, starting with word 3, looking for a capa­

bility that meets all of the following conditions: 

1. Read permission flag is.£!!· 

2. TAG field contains the value t. 

3. SEGNO field contains the value s. 

4. WORDNO field ~ d ~ END field. 

The first capability that matches stops the search. The reference is 

allowed only if it also passes the check against the static access 

capabilities of the domain indicated by the SOURCE field. Again, vali­

dation of a write reference is analogous. 

The multibit tag does not change the way the return gate capability 

in a DAS frame is matched. At any given time only one cross-domain 

return is possible in a process. The only valid non-zero tag which can 

be generated in the effective pointer of a RETURN instruction is the 

number of the most recent DAS frame. The pointer in PR~ and the loca­

tion to which the return transfer is directed must match the two pointers 
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variable is an output argument, the called procedure in another domain 

is given the ability to write an arbitrary bit pattern into this pointer 

variable. Thus, after the return has occurred, the calling procedure 

must explicitly check that a reasonable value has been stored in this 

pointer variable before it is used to make a reference if the calling 

procedure has any reason to mistrust the called domain. Normally, when 

a pointer variable output argument is passed on a cross-domain call, the 

called domain is in fact trusted, e.g., the called domain may encapsulate 

part of the supervisor. 

The interesting question about pointer variable output arguments 

for cross-domain calls is what tag value will be placed in the pointer. 

If t is the domain invocation number from which the cross-domain call 

is made, then only tag values strictly less than ! will mean anything 

to the calling procedure. Yet to the called procedure in the next higher 

numbered domain invocation, a tag value equal to! certainly.means some­

thing and such a tag value might be stored into the pointer variable 

output argument. To see this consider the following example. A proce­

dure executing in domain invocation t passes as an input argument of a 

cross-domain call some data structure and as an output argument a pointer 

variable. The called procedure is expected to locate a certain item 

within the input data structure and return a pointer to this item in the 

output pointer variable. Because pointer variables are implemented as 

stored pointers, i.e., indirect addresses, the called procedure will 

write the value into the pointer variable output argument vsing the 

SPPn instruction. The pointer in PR£ will have been generated by apply­

ing the effective pointer generation algorithm to the input data 
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structure in various ways, and thus will contain the tag value 1 propa­

gated from PR~. If the SPPn instruction simply stores the whole pointer 

from PRn as its operand, then the output argument pointer variable will 

also have a tag value of 1, a tag value that means nothing to the calling 

procedure. From the point of view of the calling procedure and the 

domain invocation in which it is executing, the correct tag is zero, 

since after the return occurs the pointer variable will be used to 

reference the data structure which is statically accessible in that 

domain. 

To solve the problem illustrated by this example, and others like 

it, the SPPE_ instruction does not always just copy PR_!!.TAG into the 

indirect address being created. It is able to detect the circumstances 

in which the indirect word tag should be set to zero, and will set it 

to zero in these cases. The algorithm is presented in Figure 3-11. When 

performing the SPPn instruction there are two tag values to consider: 

the value in TPR.TAG and the value in PRn.TAG. In the simple case that 

TPR.TAG is zero, then the operand of the instruction is not a cross­

domain argument. The indirect address should be constructed directly 

from the pointer in PRE,, tag and all. Whatever tag may have propagated 

into PRn needs to be preserved in the stored pointer. 

If the tag in TPR is non-zero, then the operand of the instruction 

is a cross-domain output argument that is a pointer variable, and the 

potential exists for the sort of problem to occur that was illustrated 

by the example given earlier. Specific examples of three general cases 

which may occur are illustrated in Figure 3-12. In all cases the SPPn 

instruction being executed is writing a pointer into a pointer variable 
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Figure 3-11: Algorithm of the SPPn instruction. 
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that is an output argument of a cross-domain call. The source of this 

argument is domain invocation 2. Thus, the tag in TPR is two. 

In case 1 the pointer in PRn was constructed from scratch or de­

rived from pointers not related to cross-domain arguments, and therefore 

has a tag of zero. For example, the domain of execution might be part 

of the supervisor, and the procedure invoked by cross-domain call 2 

might be the procedure which converts a symbolic segment name provided 

as an input argument into an output argument that is a pointer to the 

base of that segment. According to Figure 3-11, this zero tag will be 

stored in the indirect address. When control returns to domain invoca­

tion 2, the source of the pointer variable output argument, the zero 

tag will cause references through this pointer to be evaluated relative 

to the static access capabilities of that domain. This is correct since 

the pointer certainly was not derived from an argument of the cross­

domain call from domain invocation 1. 

In case 2 the pointer in PRg was derived from input argument B. 

The source of this argument is domain invocation 2, and PRg will contain 

a tag of two propagated from PRa. The SPPg instruction, however, will 

store a tag value of zero in this case, since P~.TAG = TPR.TAG. This 

is the correct tag from the viewpoint of domain invocation 2, since this 

pointer locates part of a data base that is statically accessible from 

that domain. It is also the correct tag from the point of view of the 

domain of execution. If this stored pointer is later read (using an 

EPPg instruction) by procedures executing in this domain before the 

cross-domain return to domain invocation 2 occurs, then the fact that 

the stored pointer is a cross-domain argument with domain invocation 2 
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as its source will cause a tag of two to propagate back into the re­

trieved copy of the pointer. Thus, from the point of view of the domain 

of execution, no information is lost by cancelling the tag of two when 

the pointer is stored. 

In case 3 the pointer in PRn was derived from input argument A. 

The source of this argument is domain invocation 1, and PRn will contain 

a tag of one propagated from the corresponding argument pointer in the 

argument list of cross-domain call 2. In this case the tag of one is 

stored unaltered in the pointer variable, for PRn.TAG < TPR.TAG. This 

is the correct tag from the viewpoint of domain invocation 2, since the 

pointer was derived from an argument whose source was domain invocation 

1. Use of the pointer variable by procedures executing in domain invo­

cation 2 to make a reference should be validated with respect to the 

dynamic access capabilities currently in this domain. It is also the 

correct tag from the viewpoint of the domain of execution, since it 

properly indicates the source domain invocation of the argument from 

which the pointer was derived. 

Now consider the use of pointer variables as input arguments on 

cross-domain calls. This use of pointer variables does not lead to 

further additions to the processor design, but instead creates a new 

application for the existing protection mechanisms. Again, the dis­

cussion will be presented in terms of a single pointer variable used as 

an input argument, but all ideas presented can be applied to the case 

of an input argument that is a data structure containing pointer 

variables. 
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The usual reason for passing a pointer variable as an input argu­

ment is to explicitly inform the called procedure of the location of some 

data item. The called procedure will reference the data item through 

the pointer variable. If the call is cross-domain, and the data item 

is not a formal argument of the call, then a problem can result, for no 

dynamic access capability will be created allowing procedures executing 

in the called domain invocation to reference the data item. While it 

can be argued that passing a pointer to the data item as the argument 

rather than the data item itself is bad progrannning practice, it is 

frequently done anyway. This technique allows complex PL/I structures 

to be passed as implicit arguments, avoiding the syntactically messy 

specification of the structure as a formal argument. The technique can 

also be used to pass as implicit arguments data items which are too com­

plex to be expressed as formal arguments with the syntax of the language. 

For whatever reason, pointer variables are used in input arguments 

to pass implicit arguments. It would be nice if the protection 

mechanisms of the processor could deal with this case. Fortunately they 

can. So far the argument list associated with a cross-domain call has 

been treated solely as a specification of the formal arguments of the 

call. The argument list serves a dual purpose when a call is cross­

domain: it informs the called procedure of the addresses of the argu­

ment and it tells the processor how to create dynamic access capabilities. 

The called procedure knows how many formal arguments to expect. If 

extra argument list entries were appended to the end of the argument 

list, after those for the formal arguments, it would not confuse the 

called procedure. It would, however, cause the processor to create 



114 

extra dynamic access capabilities in the case of a cross-domain call. 

This property can be used to cause the creation of dynamic access capa-

bilities allowing access to implicit arguments. 

If a compiler is to generate code which creates at the end of the 

argument list generated for a call extra argument entries for implicit 

arguments, then the compiler somehow needs to be told what extra entries 

are to be created. A variety of high-level language extensions can be 

imagined to serve this purpose. The specific extension described here 

fits well into PL/I. The extension is a built-in function named 

"window". The function has three arguments: a pointer, an integer, and 

a one bit flag. The appearance of the window function at some position 

in the argument list portion of a call statement causes an argument 

entry to be generated at the corresponding position in the argument list. 

The pointer provided becomes the pointer in the first word of the entry, 

the integer becomes the size in the second word, and the one bit flag 

controls the generation of the read and write permission flags: if off 

then only read permission is indicated, if on then both read and write 

permission are indicated. Window functions will typically appear last 

in the list of arguments for a call statement, and will define the sub-

segments containing the implicit arguments. 

Window functions can be used to create fairly complex patterns of 

access permission. In particular, one window function (or a formal 

argument) can provide read access to a large subsegment while several 

';'C 

Write only access to a window could be specified as well by expanding 
this argument to two bits. 
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other window functions provide read/write access to selected pieces of 

that subsegment. 

Window functions, then, allow input arguments that are pointer 

variables to be used to pass implicit arguments. The pointer variable 

is listed as a formal argument of the call and the implicit argument is 

defined by one or more window functions at the end of the argument list. 

It can be argued that window functions are contrary to the criterion of 

programming generality. In a sense this contention is correct. A call 

that works without window functions in cases where the domain of execu­

tion is not changed may require window functions to work cross-domain. 

The only answer is always to use window functions when implicit argu­

ments are being passed, even if the call is not expected to change the 

domain of execution. The extra specification provided by the window 

functions, while not functionally required for calls that do not change 

the domain of execution, does help to make the intention of the program 

clearer to progrannners and others who must understand the symbolic 

program. 

The Escape Hatch 

The protection mechanisms of the processor are built upon the 

philosophy that all references made by a procedure executing in some 

domain invocation through pointers derived from incoming cross-domain 

arguments should be validated relative to the dynamic access capabilities 

of that domain invocation. The mechanisms for propagating tags cause 

this kind of validation of all such references as a matter of course. 

There may arise circumstances, however, when a procedure wishes to 





117 

dynamic access capabilities in the domain of execution. The method of 

validation and the specific conditions under which a given reference 

will be allowed have been discussed in some detail. An important point 

not considered yet is the action of the processor in cases where valida­

tion indicates a reference should not be allowed. This occurrence is 

called an access violation. 

An access violation is one of several types of exceptional condi­

tions that the processor can detect. Other examples are the attempted 

execution of a privileged instruction from some domain other than domain 

OJ the detection of an error while performing a cross-domain call or 

return) an attempted reference beyond the end of a segment) and the 

attempted use of an invalid segment number. There may be many other 

processor detected exceptions as well. All) including access violations) 

cause the processor to change the domain of execution to domain 0 and 

transfer control to a fixed location. Presumably the software system 

is arranged so that this location is the beginning of the supervisor 

procedure which responds to exceptions. The processor is arranged so 

that the processor state at the time of the exception is preserved. 

The supervisor procedure can inspect this state information to determine 

the precise cause of the exception. Corrective action can be initiated 

if appropriate. A privileged instruction allows the processor state 

to be restored) so that if the cause of the exception is corrected then 

the disrupted program can be restarted at the point where the exception 

occurred. 

The transfer to domain 0 in the case of an exception) although it 

may be a cross-domain transfer) does not affect the state of the dynamic 

-----~ - -- ----
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access stack or its definition register. The segment containing this 

stack, as well as the descriptor segment, are statically accessible 

from domain 0. In addition, privileged instruction exist to load and 

store the DSBR, DR, and DASDR of the processor. Thus, the supervisor 

procedures invoked by the exception are able to make any necessary 

alterations to the protection environments provided by the various 

domains of the process. 

An Associative Memory for Dynamic Access Capabilities 

As indicated earlier, the operation of validating a reference 

against the dynamic access capabilities currently in the domain of 

execution can be made faster in the case that multiple references match 

the same capability by adding to the processor a small, fast associative 

memory which stores the most recently used dynamic access capabilities. 

In this section the design and use of such an associative memory is 

presented. Those readers generally familiar with such associative 

memories can skip this section without loss of continuity. 

The associative memory has a small number of registers (eight is 

probably more than enough), each of which can hold all fields of a 

dynamic access capability for read and/or write access to a subsegment. 

In addition, each register contains a few bits of identification and 

control information. The format of the registers is shown in Figure 

3-13. 

This associative memory (DAC-AM) has four cycles: SEARCH, WRITE, 

CLEAR-FRAME, and CLEAR-ALL. Consider the SEARCH cycle first. Whenever 

a reference is to be validated with respect to the dynamic access 
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fields from dynamic access capability 
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input parameters for search: tag, segment number, starting 
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output from search: match indicator, source domain number if 
match occurred 

Figure 3-13: Format of the associative memory for dynamic access 
capabilities. 
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capabilities currently in the domain of execution, the DAC-AM SEARCH 

cycle is invoked before a linear search of the most recent DAS frame is 

performed. The input parameters to the SEARCH cycle are listed in 

Figure 3-13. The first five define the reference being made. Both a 

starting and ending word number are provided so that double-word (and 

larger multiword) references can be validated. The last input parameter 

is the number of the current DAS frame, as recorded in DASDR.XDCC. The 

hardware performs an associative search of all DAC-AM registers, looking 

for one containing a dynamic access capability which allows the reference 

and which is from the indicated DAS frame. If a match occurs, then a 

positive match indicator is the result and the SOURCE field from the 

* matching capability is produced. In this case the linear search of 

the DAS frame in memory can be bypassed, and validation of the reference 

can proceed to the stage where the static access from the indicated 

source domain is checked. If no match is found, then a negative match 

indicator is the result, and the DAS frame in memory must be searched 

in the way previously described for a matching dynamic access capability. 

The LRUCOUNT field of DAC-AM registers is used to order the dynamic 

access capabilities contained in the DAC-AM by recency of use. Each 

time a SEARCH cycle match occurs, the LRUCOUNT of the matching register 

is set to the maximum possible value, and all other LRUCOUNT fields that 

are greater than the original LRUCOUNT value of the matching register 

7~ 

Actually, more than one DAC-AM register may contain a matching capa-
bility. Since the SOURCE fields in all capabilities that match will 
be the same, however, it does not matter which is chosen as the single 
matching DAC-AM register. 
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are decremented by one. 

If a SEARCH cycle results in no match, but the linear search of 

the DAS frame in memory does succeed, then the dynamic access capability 

found this way is entered into the DAC-AM using the WRITE cycle. The 

various fields of this capability overwrite the contents of the DAC-AM 

register whose LRUCOUNT value is zero. This is the register that has 

gone longest without producing a match. The FRAME field is set from 

DASDR.XDCC to indicate the DAS frame from which the capability came. 

The LRUCOUNT field is set to the maximum possible value and the LRUCOUNT 

fields in all other registers are decremented by one. Thus, the DAC-AM 

always contains the most recently used dynamic access capabilities for 

a process. Repeated use of a small group of dynamic access capabilities, 

as is likely, will result in most searches of the DAC-AM succeeding. 

As a result, the more time-consuming linear search of the DAS frame in 

memory will not occur each time dynamic access validation is required. 

When a cross-domain call occurs, the DAC-AM can be used in two 

ways. First, it can be applied to locating a matching dynamic access 

capability in the previous DAS frame when constructing a new dynamic 

access capability from an argument entry whose pointer has a non-zero 

tag. (This is a case where the ability of the DAC-AM to find capa­

bilities matching multiword subsegments is used.) Second, it can be 

preloaded explicitly (using the WRITE cycle) with the newly constructed 

capability allowing read references to the argument list itself, since 

the likelyhood of this capability being used in the near future is 

great. 
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* When a cross-domain return occur~ the CLEAR-FRAME cycle of the 

DAC-AM is invoked. This invalidates all registers whose FRAME field 

indicates that the contained capability is from the DAS frame being de-

strayed by the return. Invalidation is performed by setting the validity 

bit (V) off. Only registers whose validity bit is ~ can match on a 

SEARCH cycle. The LRUCOUNT fields in all registers so invalidated are 

adjusted so that these registers will be the next to be overwritten. 

The final cycle, CLEAR-ALL, is used when the process is execution 

on the processor is changed. It causes all registers to be invalidated. 

The DAC-AM will decrease the time required to validate a reference 

against dynamic access capabilities only in the case that multiple 

references are validated against the same capability. It will almost 

always be the case that the capability giving read access to a cross-

domain argument list will be used several times. Multiple references 

to individual arguments are not unconnnon -- particularly to arguments 

that are large arrays or structures. Considering the low cost of such 

an associative memory and the off-the-shelf availability of the control 

logic for performing the associative search and updating the LRU counters, 

the DAC-AM seems like a good investment. 

In addition to the DAC-AM, the processor also can contain a similar 

associative memory for the most recently used descriptor segment entries 

(DSE's). Associative memories for address translation table entries are 

* There is no reason to put return gate capabilities in the DAC-AM, since 
each is used only once. The position of the return gate capability in 
a DAS frame is always known so no search of the DAS frame is required 
to find it in any case. 
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of proven value in reducing the average time required to translate an 

address [24]. 

Entry and Label Variables 

In PL/I, entry and label variables may be passed as arguments on 

interprocedure calls. It is possible for the called procedure to per­

form a goto operation on a label variable received as an argument and 

to perform a call operation on an entry variable received as an argument. 

The processor as currently defined can handle neither of these cases 

automatically if the call which passes the entry or label variable as 

an argument is cross-domain. The techniques underlying the processor 

protection mechanisms described so far, however, can be applied to 

these cases as well. This section investigates the processor extensions 

that would be required for allowing entry and label variables to be 

used as arguments of cross-domain calls. 

Presentation of the material of this section is not meant to imply 

that the facility to pass entry and label variables on cross-domain 

calls must be included in the processor if it is to be practical. In­

deed, a good case can be made for omitting this facility considering 

the additional complexity that it introduces. The section is included 

in the thesis only to illustrate a more sophisticated application of 

the basic techniques used in the processor than has been presented so 

far in this chapter. 

First consider entry variables. As usually implemented an entry 

variable is a pair of pointers. The first locates an entry point while 

the second locates an activation record. If the entry variable locates 
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an entry point into the outermost level of a nested set of PL/I proce­

dures, i.e., an external entry point, then the second pointer means 

nothing. If the entry variable locates an entry point into one of the 

inner layers, i.e., an internal entry point, then the second pointer 

locates an already existing activation record that corresponds to some 

unreturned invocation of the containing procedure. When a call through 

an entry variable to an internal entry point occurs, this activation 

record pointer must be made available to the called procedure to define 

part of its addressing environment. 

A standard implementation of a call through an entry variable 

needs to be defined, just as a standard interprocedure call was defined 

earlier. The implementation chosen is substantially the same as that 

for a normal interprocedure call. The only difference is that the two 

instructions: 

EPPs 

CALL 

"entry variable" n, * 

"entry variable" to,* 

where "entry variable" represents the address of the entry variable, 

are used in place of the single CALL instruction of the standard inter­

procedure call. The first instruction loads PRs with the second pointer 

from the entry variable. The second instruction is the previously de­

fined CALL instruction with an operand address specification that 

locates the entry point specified by the first pointer in the entry 

variable. As a result of a call through an entry variable, the called 

procedure can expect to find PRa containing a pointer to the argument 

list, PRb containing a pointer to the base of the stack segment in which 

a new activation record should be created, and PR~ containing the second 
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pointer from the entry variable. If the called entry point is externalJ 

then the called procedure will ignore pointer in PR~. If it is internalJ 

then the pointer in P~ will be used by the called procedure to locate 

variables belonging to the appropriate outstanding invocation of the 

enclosing procedure block. That a call is through an entry variable is 

apparent to the compilerJ so it can choose properly whether to generate 

the code for a standard interprocedure call or the code for a call 

through an entry variable. 

There are a variety of ways to use entry variables as arguments. 

They may appear singlyJ in arraysJ or as elements of non-homogeneous 

data structures. Consideration of the simple case of a single entry 

variable passed as an individual argumentJ howeverJ demonstrates the 

problems generated by the use of entry variable arguments on cross-domain 

calls. Imagine that procedure A passes an entry variable as an input 

argument on a call to procedure B with the intention that B (or a 

descendant procedure) perform a call through this entry variable. With 

the protection mechanisms defined so farJ an argument list like that 

illustrated in Figure 3-14 would be generated by A. An argument list 

entry specifies read access to the two word entry variable. If the 

A to B call is cross-domainJ a dynamic access capability will be gener­

ated which allows procedures executing in the called domain read access 

to the entry variable. 

When time comes for B to make the call through the entry variable 

a temporary pointer to the entry variable will be generated in PRn 

with the instruction: 

EPPn 



PRa 

argument 
list entry 
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---~...-nointer to entr point }entry 
· · · vari"able pointer to activation 

1---~~~r_e~c~o~r~d~~~~~-1 

Figure 3-14: Specification of a single entry variable as an input 
argument. 
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where m is the offset of the argument list entry for the entry variable. 

Then an argument list will be created and PRa set with a pointer to it. 

Finally, the call through the entry variable will be made by procedure 

B with the instructions: 

EPPs 

CALL 

PR.£ tl, * 

PR,gtO,* 

Because the entry variable itself is a cross-domain argument, the tempo­

rary pointer to it generated in PR.£ will have a non-zero tag. This tag 

causes the indirect word read reference to the entry variable generated 

by the EPPs instruction to be validated relative to the dynamic access 

capabilities in B's domain invocation. This reference will succeed 

by matching the capability allowing read access to the entry variable; 

likewise for the indirect word read reference caused by the CALL 

instruction. The final effective pointer generated by the CALL instruc­

tion also will have a non-zero tag -- indicating that the call is to be 

validated with respect to dynamic access capabilities in B's domain of 

execution. It is here where the protection mechanisms defined in the 

previous section are inadequate. No matching dynamic access capability 

can be found because dynamic access capabilities allowing call access 

to an entry point have not been defined. The protection mechanisms dis­

cussed so far only can handle the case of a CALL instruction which 

generates a tag of zero in its effective pointer. The extension required 

to allow the use of entry variables as cross-domain arguments is the 

introduction of a new dynamic access capability type for call access 

to an entry point. The call access capability must contain both 

pointers from the entry variable so that both the location to which the 
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call is directed and the activation record pointer loaded into PRs can 

be verified. 

One way to implement call access capabilities is to add an entry 

variable identification flag to the read and write permission flags 

that may already appear in argument list entries. If this entry 

variable identification flag is set .£!!, then the subsegment located by 

the argument list entry is specified to be an entry variable (or an 

array of entry variables if the indicated size is greater than two words) 

for which a dynamic access capability allowing call access should be 

constructed when a cross-domain call occurs. If an input argument is 

an entry variable (or an array of entry variables), then the correspond-

ing argument list entry has both the read permission flag and the entry 

-1< 
variable identification flag set on If the call is cross-domain, then 

because of the read permission flag the processor will generate a dynamic 

access capability allowing read access to the subsegment containing the 

entry variable as before, and because of the entry variable identifica-

tion flag the processor will generate a capability allowing call access 

to the entry point located by the entry variable. (In the case of an 

array of entry variables a call access capability must be generated for 

each element in the array.) The call access capability contains the 

* It seems a safe assumption that, when an entry variable is passed as an 
input argument, the calling procedure intends for the called procedure 
to call through the entry variable. Thus, the compiler can always 
generate code to set the entry variable identification flag .£!! for input 
arguments that are entry variables. For entry variables that are output 
arguments the read and write permission flags should be set on, but the 
entry variable identification flag should be left off. 
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segment and word number portions from both the entry point pointer and 

the activation record pointer in the entry variable. It also contains 

a TAG and a SOURCE field like read/write dynamic access capabilities. 

The TAG field identifies the domain invocation that is the original 

source of the capability while the SOURCE field contains the number of 

* that domain. 

With the addition of call access capabilities, then, CALL instruc-

tions which generate an effective pointer with a non-zero tag can be 

handled. When this case is encountered, the most recent DAS frame is 

searched for a call access capability allowing the intended call. In 

order for the call to be allowed, a call access capability must be found 

whose TAG field matches the tag from the effective pointer, whose entry 

point pointer segment and word number match the segment and word number 

in the effective pointer, and whose activation record pointer segment 

and word number match the segment and word number in P~. The call 

must also be allowed by the static access capabilities of the SOURCE 

domain indicated by the matching call access capability. If the call 

* When determining the source domain invocation for a call access capa-
bility both the tag of the pointer in the argument list entry and the 
tag of the entry point pointer in the entry variable must be taken into 
consideration. If the source is the domain invocation from which the 
cross-domain call is coming, then both tags will be zero. In this case 
the TAG field of the capability is set to the number of the domain 
invocation from which the call is coming and the SOURCE field is set to 
match. If the source is an earlier domain invocation, however, then 
the tag from either pointer may indicate this fact. In this case the 
smallest non-zero tag of the two indicates the source domain invocation 
number to be recorded in the TAG field of the capability. The previous 
DAS frame must be searched for a matching call access capability and 
the SOURCE field value from the matching capability copied into the 
new capability. 
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is allowed, then the CALL instruction completes in the manner discussed 

earlier. The value of PRs.TAG is forced to zero as the transfer occurs. 

(The called procedure, if the call is to an internal entry point, always 

wants static access to the activation record of the containing proce-

<lure block, and the tag in PRs may be set erroneously to a non-zero 

value for the same reason that the tag in the pointer restored to PRs 

before a cross-domain return erroneously is non-zero.) 

Notice that a call through a cross-domain argument that is an entry 

variable may not be a cross-domain call, even though it is validated 

by matching a dynamic access capability. If the call is to an internal 

entry point then it may be an internal entry point of a procedure invo-

cation executing in an earlier outstanding invocation of the calling 

domain. If the call is to an external entry point then it may be a 

gate entry point back into the calling domain, which gate is statically 

accessible from the source domain of the dynamic access capability that 

* allows the call. 

* The processor described in this chapter does not allow procedures 
executing in some domain to use the dynamic access capabilities of an 
earlier outstanding invocation of the same domain. This restriction 
is required to prevent a cross-domain return from jumping several 
outstanding domain invocations without giving procedures that execute 
in these domain invocations a chance to place the encapsulated sub­
systems in a consistent state. A cross-domain call through an entry 
variable, however, can generate a legitimate need for a procedure 
executing in some domain to use the dynamic access capabilities (other 
than the return gate capability) of an earlier outstanding invocation 
of the same domain. It is straightforward to extend the processor to 
handle this case properly. The extension requires expanding the tags 
in pointers and dynamic access capabilities to contain one bit for each 
domain invocation which can exist at one time. The expanded tags allow 
the specification to be made that a reference be validated with respect 
to the dynamic access capabilities of an earlier invocation of the 
domain that is the domain of execution. 
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Label variables are very similar to entry variables, and also are 

normally implemented as a pair of pointers. The first pointer locates 

the start of the machine code corresponding to some labeled statement of 

a program and the second is an activation record pointer which identi­

fies the procedure invocation which goes with that label. The goto 

operation on a label variable involves destroying all stacked activation 

records between the activation record for the procedure which performs 

the goto and the activation record indicated in the label variable. 

Along the way, the appropriate condition handlers defined in the acti­

vation records being destroyed will be invoked. When the stack is 

properly unwound, then a transfer to the indicated procedure segment 

location occurs. Because of its complexity, this non-local goto opera­

tion through a label variable is normally implemented by compiler 

generated code which calls upon a system-provided stack unwinding pro­

gram. In the case of the processor design described here, the same 

approach can be used. This unwinding program is easiest to construct 

if it executes in domain 0 where it will have access to all activation 

record stack segments and the DAS. The processor, however, can be ex­

panded a little to make the job of the unwinding program a little easier. 

If a label variable is passed as an input argument on a cross-domain 

call then a goto operation on that label by a procedure executing in the 

called domain will unwind the activation record stack and the DAS back 

through unreturned cross-domain calls. The transfer of control to the 

label may change the domain of execution. By adding a label variable 

identification flag to argument list entries, and extending the processor 

to create goto access capabilities for label variables on cross-domain 
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calls, the processor can help the unwinding procedure to determine that 

an attempted cross-domain goto is allowed. The unwinding procedure 

merely need look in the most recent DAS frame for a matching goto access 

capability to determine if the attempted cross-domain goto should be 

performed. The goto access capability is analogous to the call access 

capability in the way it is constructed and the information it must 

contain. 

Bit Addressing 

For simplicity of explanation, the processor presented in this 

chapter is word addressed. This allows the problem of associating an 

explicit length with each reference to be ignored, for all references 

have an implied length of one or two words. When passing arguments 

with cross-domain calls and referencing arguments of cross-domain calls, 

however, the ultimate precision of specifying references by bit address 

and bit length can be very useful. 

To see the usefulness of full bit addressing, consider passing 

a bit string of length 7 as an input argument on a cross-domain call. 

With the word addressed machine the corresponding argument list entry 

and dynamic access capability will specify the one or two word sub­

segment necessary to cover the bit string. Additional information may 

have to be communicated to the called procedure, either in the argument 

list or another argument, to specify the location of the bit string 

within the larger subsegment. Procedures executing in the called domain 

will have read access to the entire subsegment, although only a bit 

string of length 7 is the argument. If the string is embedded in 
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other information which the calling procedure wants to be certain does 

not become accessible to the called procedureJ then the bit string must 

be copied into a word that contains no other valuable information before 

the call is madeJ and the copy passed as the argument. With a bit 

addressed machine the exact seven bits holding the string could be 

specified as an argumentJ and a dynamic access capability created giving 

read access to that subsegment of seven bits. No copy would have to be 

made to avoid giving the called procedure access to adjacent bits. 

The protection techniques presented in this chapter apply equally 

well to a bit addressed machine. The essential changes required are 

extending the length of the displacement portion of a pointer to hold a 

bit number rather than a word numberJ and devising means to associate 

the proper length with all references. Working through the hardware 

mechanisms required to generate the proper length information for each 

reference appears to be the most difficult problem encountered when 

applying the techniques presented in this chapter to a bit addressed 

machine. 

Sunnnary 

This chapter described a hardware processor that supports a multi­

domain computation implemented as a single execution point in a seg­

mented virtual memory and that automatically performs cross-domain calls. 

The processor recognizes static access capabilities allowing readJ 

writeJ and/or execute access to segments and allowing procedures execut­

ing in one domain to call gate entry points into another domain. Dynamic 

access capabilities allowing read and/or write access to subsegments 
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and "neutralize" are all that the programmer needs to direct the cross­

domain call mechanisms and properly control access to arguments. 

The processor develLJped in this chapter provides a hardware basis 

for a computer utility in which users may encapsulate independently 

compiled programs and associated data bases as protected subsystems, 

and then, without cc'mpr0mising the protection of the individual sub­

systems. combine protected subsystems of different users to perform 

various computations. The software system required to produce such a 

facility based on this processor is discussed in the next chapter. 



CHAPTER 4 

SOME COMMENTS ON THE SUPPORTING SOFTWARE 

In this chapter a software second layer for the processor protec­

tion mechanisms developed in Chapters 2 and 3 is briefly discussed. The 

purpose of the material in this chapter is not to provide a detailed 

development of the complex issues involved in providing a proper user 

interface for controlling sharing in a computer utility. Rather, it 

is simply to demonstrate one way of harnessing the processor protection 

mechanisms so that users can define and control the sharing of protected 

subsystems. 

As stated in Chapter 1, the goal of the research reported in this 

thesis is to develop a computer utility in which mutually suspicious 

subsystems can cooperate in a single computation in an efficient and 

natural way. A specific objective derived from this goal is that a 

prograilll!ling environment be provided in which procedure segments, data 

segments, and protected subsystems of all users can be treated as 

building blocks and combined in a controlled way into different compu­

tations. The starting point of the research was Multics, which to a 

large extent already provides the building block facility with respect 

to procedure and data segments, but which allows protected subsystems 

to be defined and manipulated only in restricted ways. The primary 

obstacle to providing a general facility for manipulating protected sub­

systems in Multics is the restriction that the domains of a process be 

totally ordered with respect to contained access capabilities. The 

136 



137 

processor discussed in Chapters 2 and 3 removes this restriction. 

With the primary obstacle out of the way, only a few aspects 

of the Multics software system need to be extended to produce a first 

approximation to a software system which can effectively apply the hard-

ware protection mechanisms to generate an environment in which protected 

subsystems may be manipulated in a natural way by all users. The most 

significant changes required are the expansion of the file system to 

catalogue protected subsystems as well as segments and the recasting of 

control lists in terms of protected subsystem names rather than domain 

numbers. These extensions are outlined in this chapter. 

Because this chapter is intended only to provide an example of how 

the processor protection mechanisms can be harnessed by a software 

system, little justification or detail is provided for those aspects of 

the software that are derived directly from Multics. The reader is 

referred to the book by Organick [34] for a detailed discussion of the 

Multics facilities outlined here. 

A Distributed Supervisor 

The distributed supervisor organization used in Multics is easily 

implemented on the new processor. When a user logs in to the system a 

process with a new virtual memory is created for him. Initially two 

domains of the process are occupied. Domain 0 encapsulates the super-

'1( 
visor. Thus, the supervisor is a protected subsystem that is part of 

* Domain 0 is chosen because of the special treatment afforded it by the 
processor. In Multics, the supervisor is encapsulated in the largest of 
the linearly nested domains of a process. 
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every process. Another domain encapsulates a "home" protected sub-

system for the user. When the user first gains control of the process 

it is executing in this home domain in some procedure which interprets 

as connnands characters input from his terminal. 

Because the supervisor is a protected subsystem that is part of the 

process, the supervisor can be invoked by standard interprocedure calls 

to the gate entry points into domain 0 to perform various services for 

the process. (It may also be invoked by generating an exception, for 

an exception forces control into domain 0.) Among the services of 

interest here are adding various segments stored on-line to the virtual 

memory of the process and associating various protected subsystems 

whose definitions are stored on-line with unoccupied domains of the 

process. 

The File System 

In Multics all segments stored on-line are catalogued by a file 

system which is implemented as a set of procedure and data segments in 

the supervisor. The single, system wide catalogue is arranged as a 

tree-structured directory hierarchy. Each directory contains entries 

giving the attributes of all directly inferior directories and segments. 

The attributes in each entry include a name, a length, a beginning 

-;, 
absolute address, and an access control list. The name in a directory 

entry uniquely identifies the entry in that directory. Each directory 

-:k 
Directories are implemented as data segments which can be read and 

written only from the supervisor domain. 
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or segment can be uniquely located in the tree-structured directory 

hierarchy by a multicomponent tree name consisting of an ordered list 

of directory entry names defining a path from the base of the tree -­

the "root" directory -- to the item of interest. Figure 4-1 illustrates 

a directory hierarchy and gives the tree names of the items shown. The 

symbol ">" is used as a separator for the components of a tree name. 

The directory hierarchy allows a content-related organization to be 

imposed on all information stored on-line in the system. The structure 

of the initial layers of the hierarchy usually will be quite static and 

will be known by most system users. Figure 4-2 illustrates a structure 

similar to that used in Multics to organize on-line storage. This 

structure reflects the fact that the people who use the system are 

grouped for administrative purposes into various projects. (A user name 

in this case is the concatenation of a project name and a person name.) 

Each user has a home directory in which to create an arbitrary substruc­

ture of segments and directories. Each existing process has a directory 

in which to place all its temporary data segments such as its descriptor 

segment, stack segments, etc. Other areas of the hierarchy catalogue 

library and system segments. 

There are a variety of operations which may be performed on the 

directory hierarchy by calling the appropriate supervisor gate entry 

point. Examples are creating or deleting an object in some directory, 

changing the attributes of an existing object, listing the entry names 

in a directory, and adding a segment to the virtual memory of the 
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Figure 4-1: A representative directory hierarchy. 
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* process. Whether or not a particular requested operation on some 

object will be performed is controlled by the access control list (ACL) 

of the object. The supervisor compares the name of the user associated 

with the process being executed and the number of the domain from which 

the request is made with the ACL of the object. If some ACL element 

containing a matching name and number is found, then the various per-

mission flags set in that element determine whether or not the requested 

operation will be performed. If no matching element is found then the 

requested operation will not be performed. Each ACL entry essentially 

defines some capabilities included in the specified domain of a process 

of the specified user. The permission flags present determine the 

particular kinds of access allowed by the capabilities. The flags that 

may appear in an element of a directory ACL provide independent control 

on operations like listing the entries in that directory, creating new 

objects in that directory, and changing certain attributes recorded in 

entries in that directory. The last case includes changing the ACL's 

in these entries. The permission flags that may appear in an element 

of a segment ACL can indicate read, write, execute, and gate access 

to that segment. 

The flaw in this access specification scheme used by Multics, when 

applied to controlling the sharing of protected subsystems with the new 

processor, is that actual domain numbers appear in ACL elements. The 

implication of this fact is that a particular domain of a process of a 

* In Multics this last operation is normally caused by a dynamic linking 
exception rather than an explicit call to the supervisor. 





144 

The first component identifies an instance of use of a particular pro­

tected subsystem in a process of a particular user. The second com­

ponent is some set of permission flags appropriate for the object type. 

By means to be discussed in a moment it is possible to associate 

a protected subsystem with one of the numbered domains of a process, 

thereby generating a protected subsystem instance. The supervisor 

maintains for each process a table of associations of domain numbers and 

protected subsystem tree names. This domain table can also record the 

name of the user associated with the process. When a process is first 

created, the domain table might appear as illustrated in Figure 4-3. 

Domain 0 is occupied by an instance of the supervisor protected sub­

system and domain 1 is occupied by the home protected subsystem instance 

for the user. (A directory hierarchy similar to that shown in Figure 

4-2 is assumed.) 

When a procedure executing in some domain of a process calls a 

gate entry point into the file system, the requested operation is vali­

dated by comparing the protected subsystem name associated with the re­

questing domain and the user name associated with the process against 

the appropriate ACL. The mode in the first matching ACL element deter­

mines if the request will be performed. If no ACL element matches, 

then the request is not performed. 

Permission Flags for Segments 

To understand how a protected subsystem can become associated with 

a domain of a process, it is necessary to investigate in more detail the 

use of the modes which may be specified in an element of an ACL for a 
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domain occupied protected subsystem 
number tree name 

0 yes root>system>supervisor 

1 yes root>projects>CompSys>Jones>home 

2 no -

3 no -

4 no -

5 no -

6 no -

7 no -

User name is "CompSys.Jones" 
' 

Figure 4-3: Initial state of the domain table for a process. 
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segment. As indicated earlier, these modes may specify read, write, 

execute, and gate permission. When a procedure executing in some domain 

explicitly or implicitly requests of the file system that a segment be 

made accessible from that domain, the matching ACL element determines 

which permission bits in the corresponding descriptor segment entry 

(DSE) will be set on. For example, if the segment is or was previously 

assigned segment number s in the virtual memory of the process, if the re­

quest is from domain ,g, and if the permission flags in the matching ACL 

element indicate read and execute access, then DSEs.Rn and DSEs.En are 

set .2.!!. by the supervisor, and DSEs.Wn and DSE~.G,g are set off. 

The case when the matching ACL entry indicates gate permission is 

a little more complex. Continuing with the previous example, in this 

case only DSE~.G,g is set .2.!!. by the supervisor. However, DSE~.GATES and 

DSEs.DOMAIN must also be filled in. Recall that these fields indicate 

the number of gate entry points in the segment and the number of the 

domain for which they are gates, respectively. As the information 

source for these fields, two new attributes for a segment are introduced. 

The first attribute, which may or may not apply to a given segment, 

says: "this segment is a gate into protected subsystem <protected 

subsystem tree name>", and is called the gate attribute. The second 

attribute, which is only meaningful when the first is applied, says: 

"there are~ gate entry points in this segment". How these attritubes 

are used is obvious. If gate permission applies, then the supervisor 

determines if the protected subsystem named by the gate attribute is 

already associated with some domain of the process. If so, then the 

corresponding domain number derived from the domain table for the 
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process is used to set DSEs.DOMAIN. If not, then that protected sub­

system is assigned an unoccupied domain of the process, and the number 

of this domain is used to set DSEs .DOMAIN. DSE~.GATES is set directly 

from the second attribute. Thus, a protected subsystem is associated 

with a domain of a process when the first attempt is made to get at a 

segment containing gates into that protected subsystem. 

If all eight of the domains of a process are occupied at the time 

when a new protected subsystem is to be associated with the process, 

then it is necessary to free an occupied domain to make room. The 

choice of which domain to free, i.e., which protected subsystem instance 

to remove from the process, is best made by the user associated with the 

process or a program provided by him. With the reasonable restriction 

that the domain to be freed have no outstanding invocations, the desig­

nated domain is easily freed by turning off all the permission bits in 

the corresponding column of the descriptor segment, turning off all 

gate permission bits in other columns that correspond to gates into the 

freed domain, and appropriately updating various supervisor data bases. 

The execution environment of the freed domain must also be returned to 

the unused state. Reusing domains is much easier than reusing DSE's. 

The reason is that segment numbers diffuse into non-supervisor-controlled 

data segments as part of stored pointers, making it very difficult to 

locate all instances of pointers referring to the segment previously 

associated with a reused DSE. Domain numbers are not part of stored 

pointers, however, and appear only in supervisor-controlled data segments. 
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Controlling the Gate Attribute 

In generalJ given that a particular protected subsystem instance 

has permission to modify the ACL of an object at allJ there need be no 

finer control on the particular modification. Any element may be deleted 

from the ACL and any element may be added. There need be no constraint 

on the protected subsystem instance named or the mode specified in an 

added element. (To keep things consistent the supervisor might enforce 

the rule that the specification of gate permission in an ACL element 

for a segment can be made only if the gate attribute is present for the 

segment.) The ability to set the gate attribute for a segment, howeverJ 

needs to be carefully controlled. In particularJ if a procedure execut­

ing in a protected subsystem instance which has proper permission to 

change the attributes of some segment could specify a gate attribute 

for that segment naming an arbitrary protected subsystemJ then no pro­

tected subsystem would be secure. Any user could createJ say from his 

home protected subsystem instanceJ a gate into any other protected sub­

system and thereby cause a procedure he constructed to execute in any 

other protected subsystem. The ability to create gates into a protected 

subsystem needs to be restricted to those responsible for the protected 

subsystem (or their designates). The ACL on a protected subsystem pro­

vides this control. 

There need be only one kind of permission flag that can appear in 

an ACL element of a protected subsystem: the "define gates" permission 

flag. In order for some protected subsystem instance to set the gate 

attribute for some segment to specify that the segment contains gates 

into a protected subsystem with tree name 1J a matching element on the 
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ACL of T must give the requesting protected subsystem instance "define 

gates" permission. Thus, in addition to providing a tree name for a 

protected subsystem, a protected subsystem object in the directory 

hierarchy controls the creation of gates into the protected subsystem. 

Examples of Access Control Lists 

A few examples will help to sharpen the meaning and use of ACL 1 s 

on protected subsystems and segments. To start with, imagine that each 

system user has a two-part project/person name, that a home directory 

with the tree name "root>projects>PROJECT_NAME>PERSON_NAME" is provided 

for each user, and that a home protected subsystem with the name 

"root>projects>PROJECT_NAME>PERSON_NAME>home" is provided for each user. 

Only the home protected subsystem instance of the user and the home pro­

tected subsystem instance of his project administrator have permission 

to perform operations on the user's home directory, including modifying 

the ACL's of directly inferior segments, directories, and protected 

subsystems. 

The most frequently used ACL elements by a user will be those 

giving access to his home protected subsystem instance. Following the 

assumptions just outlined, such ACL elements for the user "CompSys.Jones" 

would be expressed as: 

root>projects>CompSys>Jones>home:CompSys.Jones <mode> 

This specification will be so frequently used (even in the examples in 

this section) and is so awkward that a shorthand notation is adopted to 

express the home protected subsystem instance of a user. It is just 

the user's name preceeded by a colon. Thus, the ACL element: 
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:CompSys.Jones <mode> 

is equivalent to the previous expression.* A data segment that this 

user creates for his own use, then, would bear the ACL element: 

:CompSys.Jones read, write 

while a procedure segment created for his own use would bear the ACL 

element: 

:CompSys.Jones read, execute 

This procedure segment could be shared with his friend "Smith" in the 

same project by adding to its ACL the element: 

: CompSys .Smith read, execute 

Now imagine that user "CompSys.Jones" wishes to create a protected 

subsystem that encapsulates one procedure segment containing gate entry 

points and one data segment. He will name this protected subsystem 

"ex_ps" and put it in his home directory. Thus, its tree name is 

"root>projects>CompSys>Jones>ex_ps". The ACL of this protected subsys-

tern is set with the single entry: 

:CompSys.Jones define gates 

which gives user "CompSys .Jones" permission to define gates for the pro-

tected subsystem when executing in his home protected subsystem instance. 

The procedure segment is then given a gate attribute for the protected 

subsystem "root>projects>CompSys>Jones>ex_ps". Initially, the ACL of 

the procedure segment has two elements. They are: 

"'k 
In a real implementation conventions also would be required to shorten 

the expression of other commonly used protected subsystem instances in 
ACL elements. No further conventions will be introduced here, however. 
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:CompSys.Jones read, execute 

root>projects>CompSys>Jones>ex_ps :'I>. i> read, execute 

These elements allow execution of the procedure segment in his home pro­

* tected subsystem instance and in any instance of the "ex_ps" protected 

subsystem. Likewise, the data segment gets the ACL: 

:CompSys.Jones read, write 

root>projects>CompSys>Jones>ex_ps:*.* read, write 

allowing read/write access to the segment from the home protected subsys-

tern instance of the user and from any instance of the "ex_ps" protected 

subsystem. So far, no user can borrow this protected subsystem. 

Suppose now that user "CompSys.Smith" wants to borrow this protected 

subsystem. User "CompSys.Jones" can permit this by adding the element: 

: Comp Sys. Smith gate 

to the ACL of the procedure segment containing gates into the protected 

subsystem. This gives user "CompSys.Smith" permission to call these 

gate entry points from his home protected subsystem instance and estab-

lish an instance of the protected subsystem "ex_ps" in his process. 

This simple example illustrates the general pattern for defining 

and controlling the sharing of a protected subsystem. All the procedure 

and data segments of the protected subsystem are made directly accessible 

in appropriate ways from any instance of the subsystem. The sharing 

of the protected subsystem is then controlled by giving other protected 

subsystem instances gate access to the gate segments. 

-;'( 

The user name "~~. ~~" means any project and any user. 
character such as "'''" is very useful for constructing 
which match a group of protected subsystem instances. 

A match anything 
ACL elements 
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The pattern for controlling the sharing of protected subsystems 

allows the access of one protected subsystem instance to another to be 

revoked in a particularly smooth way by removing the ACL entries giving 

the former gate access to the gate segments of the latter. If the 

latter happens to be executing at the time this gate access is revoked, 

execution is not stopped instantaneously. Rather, execution continues 

until the cross-domain return terminates the activities of the protected 

subsystem instance in an orderly fashion. Thus, the protected subsystem 

instance is not stopped executing at an awkward moment leaving component 

data bases in an inconsistent state. Because of the revoked gate access, 

however, further cross-domain calls back into the protected subsystem 

instance by the former will not be allowed. 

Other Issues 

The decision to provide general support for user-defined protected 

subsystems in a computer utility impacts other areas of the software 

system besides the file system. One of the most important is the execu­

tion environment provided by the system for procedures. A procedure 

segment that can be used as a building block is of necessity pure and 

may contain ambiguous unresolved references to other procedure and data 

segments. In order to execute, the procedure segment must be provided 

with an impure appendage in which to store linkage information and 

static variables, a stack segment in which to allocate activation records, 

and information such as search rules [4] with which to resolve the 

ambiguous references to other procedure and data segments. It is 
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essential that all these aspects of the execution environment which 

can affect the operation of a procedure be provided by the system on a 

per domain basis, and that a standard initial execution environment be 

defined which is guaranteed by the supervisor to exist in any domain 

of a process. Thus, when a protected subsystem instance is associated 

with a domain of some process, the procedures of that protected sub­

system can know what execution environment will be provided initially 

and therefore can be constructed to operate correctly in that 

environment. 

Multics already meets this requirement. I/0 stream name defini­

tions and attachments, reference name definitions, and search rule 

definitions are limited in scope to a single domain of a process and 

always given a system-defined initial state. A stack segment and a 

segment for linkage information are provided for each domain of a pro­

cess and are given system-defined initial states. 

Other system functions which affect the secure operation of a 

multidomain computation include error detection and handling (for 

example, the PL/I condition mechanisms), process interruption via the 

attention key of the user's terminal, input/output, and accounting. 

The mechanisms in Multics for performing these and other functions, 

with minor revisions, appear to be adequate for supporting multidomain 

computations. 

Finally, in order for the procedures of a protected subsystem to 

make meaningful decisions on whether or not to fulfill requests received 

in the form of cross-domain calls, it must be possible for these proce­

dures to determine the identity of the protected subsystem instance 
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making the request. For this purpose a supervisor gate should be 

provided which allows a procedure executing in some domain to determine 

the tree name of the protected subsystem instance from which the last 

incoming cross-domain call was made. It may be appropriate to provide 

a supervisor gate which essentially makes the contents of the domain 

table of a process available to procedures executing in any domain of 

a process. 

Summary 

This chapter has presented a brief description of a software second 

layer for the processor protection mechanisms described in Chapters 2 

and 3. The purpose of this material is to demonstrate one way to har­

ness the processor protection mechanisms so that users can define and 

control the sharing of protected subsystems. There are many degrees of 

freedom in constructing a software system to harness the hardware pro­

tection mechanisms. Further research may produce a software system 

organization that provides a more simple, natural, and flexible user 

interface for controlling sharing in a computer utility than the inter­

face developed in this chapter. The software system outlined here, 

however, demonstrates that a practical protection facility meeting the 

objectives presented in Chapter 1 can be constructed based on the hard­

ware protection mechanisms developed in this thesis. 
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In the first example, by encapsulating various data bases in a pro­

tected subsystem with programs that he provides, a user can force all 

references to the data bases attempted by programs outside the protected 

subsystem to be made by invoking these caretaker programs. The user can 

specify arbitrarily complex controls on access to the encapsulated data 

bases since he writes the programs that judge, perform, and record re­

quested references. Providing users with the ability to write programs 

for controlling access to data bases has an important impact on the 

structure of the computer utility. It means that the system need not 

provide protection mechanisms that directly implement complex, content­

dependent controls on access to stored information. Rather, the system 

only need implement the general mechanisms required for users to define 

the encapsulation of programs and data bases in protected subsystems and 

for users to control the sharing of protected subsystems. More complex 

controls on access to stored information than are directly provided by 

the system can be implemented by the users themselves by encapsulating 

caretaker programs with data bases in protected subsystems. The result 

is that arbitrarily complex control on access to stored programs and 

data can be implemented based on a general, fixed, fairly simple set of 

system-provided protection mechanisms. 

The second example use for protected subsystems, sharing proprietary 

algorithms without divulging the structure of the algorithms, takes ad­

vantage of the fact that programs in a protected subsystem may be invoked 

by outside programs but not read by them. In addition, none of the ~em­

porary or permanent data associated with the programs in the protected 

subsystem may be read or written by outside programs. Thus, the programs 
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in a protected subsystem may be used by other programs, but no aspect of 

their structure examined. 

The third example use for protected subsystems, limiting the damage 

that borrowed programs can do to the programs and data of the borrower, 

is based on the fact that programs inside a protected subsystem can in­

voke programs outside without compromising the protected subsystem. 

Thus, a borrower only need arrange that his programs and data form a 

protected subsystem and that a borrowed program not be part of that pro­

tected subsystem. Then, if by malice or error the borrowed program be­

haves in an unexpected way, it will not be able to damage the programs 

and data of the borrower. 

The protection mechanisms described in this thesis for supporting 

user-defined protected subsystems allow multiple, independent protected 

subsystems to be combined in a single computation without compromising 

the protection of the individual subsystems. The mechanisms are based 

on the division of a computation into independent domains of access priv­

ilege, each of which may encapsulate a protected subsystem. The central 

component of these mechanisms is a hardware processor that fully supports 

a multidomain computation implemented as a single process whose address 

space is a segmented virtual memory. This processor allows a standard 

interprocedure call with arguments to change the domain of execution of 

the process. All the semantic implications of an interprocedure call 

as defined in a high-level programming language like PL/I are accomodated 

on a cross-domain call without compromising the protection of the sub­

systems encapsulated by either of the domains involved. The processor 

design represents the first time that hardware mechanisms for fully 
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automating cross-domain calls between independent domains of a compu­

tation have been described. 

The processor recognizes and enforces two kinds of access capabil­

ities: static and dynamic. Static access capabilities represent the 

encapsulation of segments of procedure and data in protected subsystems 

and control the ability of procedures executing in one protected sub~ 

system to invoke procedures of another via a cross-domain call. Dynamic 

access capabilities correspond to the arguments of cross-domain calls. 

The processor automatically adds to the called domain dynamic access 

capabilities to reference whatever arguments accompany a cross-domain 

call and automatically removes these capabilities whenever the subse­

quent return occurs. The distinction between static and dynamic access 

capabilities corresponds to an apparently fundamental division of the 

access privilege associated with a process that executes in a multi­

domain environment into the capabilities associated with the address 

space component of the process (a segmented virtual memory in this case) 

and the capabilities associated with the execution point component of 

the process. 

The processor is the key to both the efficiency and the naturalness 

of the protection mechanisms. Because the processor automatically vali­

dates each reference made by an executing program against the static or 

dynamic access capabilities in the domain of execution and automatically 

performs cross-domain calls, little intervention by supervisor software 

is required for the enforcement of the access constraints associated 

with a multidomain computation as that computation executes. Because 

on a cross-domain call the processor is able to interpret the standard 
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argument list and create in the called domain dynamic access capabilities 

that exactly correspond to the arguments, the user has the natural inter­

face to the cross-domain call mechanism of the call and return statements 

in a high-level programming language. 

In addition to the hardware processor, supporting software was dis­

cussed. This software, when used in conjunction with the hardware pro­

tection mechanisms, provides an environment in which users of the com­

puter utility can construct and share procedure segments, data segments, 

and protected subsystems. This protection facility extends the idea 

inherent in programming generality of using programs as building blocks 

to allow protected subsystems to be used as building blocks as well. 

Independently written and compiled procedure segments may be combined 

in different ways along with the associated data segments to form pro­

tected subsystems without recompiling the procedure segments. Independ­

ently defined protected subsystems may be combined in different ways as 

cooperative partners in various computations without either modifying 

the protected subsystems or altering the component procedure segments. 

The ease with which procedure segments, data segments, and protected sub­

systems provided by different users can be combined to perform different 

computations will encourage the users of the computer utility to commun­

icate, cooperate, and build upon one another's work. 

Taken together, the hardware and software mechanisms described in 

this thesis constitute an existence proof of the feasibility of building 

protection mechanisms for a computer utility that allow multiple user­

defined protected subsystems, mutually suspicious of one another, to 

cooperate in a single computation in an efficient and natural way. 
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Areas for Further Research 

The topic of protection mechanisms for computer systems is by no 

means exhausted as a viable research topic. In this final section of 

the thesis two of the many areas for further research are discussed 

briefly. The first is the user interface for controlling sharing in a 

computer utility. As indicated in Chapter 4, further research may pro-

duce a software system organization that provides a more simple, flex-

ible, and natural user interface for controlling sharing in a computer 

utility than that described in this thesis. Making the user interface 

as simple and natural as possible without sacrificing needed flexibility 

is very important. Experience with Multics suggests that users not 

accustomed to dealing with sophisticated protection mechanisms frequent-

ly make errors when specifying to the system the access to be allowed to 

some object. Even after some skill is developed in applying the protec-

tion mechanisms, users find it hard to be sure that specifications given 

to the system to control the access to some object result in the intended 

pattern of access being allowed. For example, it is very hard to detect 

the accidental granting of too much access to some object, because no 

obvious errors result from too much access being granted. When dealing 

with user-defined protected subsystems the problem probably becomes 

worse, for access specifications become embedded in programs that users 

construct. 

To make more progress on this important problem of human engineering, 

it may be necessary to employ an actual system with a creative user 

community as a tool. Only by applying a set of protection mechanisms to 

the protection needs of real users can it be seen where user mistakes 
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commonly are made, and can it be seen what aspects of the flexibility 

provided are really needed and what aspects complicate the mechanisms 

with unneeded flexibility. It would be feasible to construct a proto­

type of the system proposed in this thesis to use as such a tool. Be­

cause of the close relationship of the overall architecture of the pro­

cessor described here to the architecture of the new Multics processor, 

only a few of the major functional modules of that processor would have 

to be altered to produce a processor that implements most of the protec­

t ion mechanisms described in Chapter 3. Only a few changes are required 

to the existing Multics software to produce the software system described 

in Chapter 4. In addition to testing user reaction to the protection 

facilities provided, this prototype system would provide an environment 

in which to test improved interfaces and to develop tools that allow 

users to debug the access specifications embodied in protected subsys­

tems or given to the system-provided protection mechanisms. 

The second area for further research is that of certification. 

Certification means guaranteeing that the protection mechanisms in a 

system actually implement the intended protection facility, i.e., that 

no mistakes were made during the design or construction of system pro­

tection mechanisms that allow these mechanisms to be circumvented. The 

essential problem is that there exist no methodical techniques for de­

signing or constructing systems so that this guarantee can be made. In 

addition, the protection mechanisms devised to date, especially their 

software components, are much too complex to certify by inspection once 

constructed. 
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Protection hardware for supporting multidomain computations, such 

as that described in this thesis, offers some help in attacking the prob­

lem of certifying the software components of the protection mechanisms 

in a system. The hardware can be applied to isolate by encapsulation in 

protected subsystems those software components that are critical to the 

correct function of the protection mechanisms. The key to success, and 

the area where further research is required, is making small and simple 

those software components which, if improperly designed or implemented, 

or if violated, would compromise the protection mechanisms of the system. 

Once made small and simple, and their correct operation certified, the 

hardware can provide enforced isolation for these components, thus insu­

lating them from errors introduced into the system by modifying other, 

less critical components of the software. 

The two areas for further research mentioned above are only a small 

sample of the work that remains to be done on the topic of protection 

mechanisms for computer systems. One of the basic problems to be over­

come is that there exists such a lack of formal knowledge on the topic 

that it is difficult to see the problems that remain unsolved. As com­

puter systems play larger and more important roles in society, protection 

mechanisms will become increasingly important as the guardians of priva­

cy. The design and implementation of protection mechanisms must become 

so well understood and methodical that, as a matter of course, conunerical­

ly available computer-based information systems contain protection mecha­

nisms which prevent unauthorized access to the information stored in them 

while at the same time make it easy for users to communicate when appropri­

ate by sharing information. We have a long way to go to reach this goal. 
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