UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA-R&D

(Security classitication of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Cotporate author) 2a. REFPORT SECURITY CLASSIFICATION
MASSACHUSETTS INSTITUTE OF TECHNOLOGY UNCLASSIFIED
2b. GROUP
PROJECT MAC NONE
3. REPORT TITLE
STORAGE HIERARCHY SYSTEMS
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)
INTERIM SCIENTIFIC REPORT
5. AUTHOR(S) (First name, middle initial, last name)
STUART E. MADNICK
6. REPORT DATE 7a8. TOTAL NO. OF PAGES 7b. NO. OF REFS
APRIL, 1973 155 90
8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBERI(S)
NO0014-70-A-0362-0006
b. PROJECT NO. MAC TR-107
c. 9b. OTHER REPORT NOI(S) (Any other numbers that may be assigned
this report)
. NONE
10. DISTRIBUTION STATEMENT
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
PH.D. THESIS, DEPT. OF
ELECTRICAL ENGINEERING, OFFICE OF NAVAL RESEARCH
MAY 15, 1972

13. ABSTRACT

The relationship between the page size, program behavior, and
page fetch frequency in storage hierarchy systems is formalized and
analyzed. It is proven that there exist cyclic program reference
patterns that can cause page fetch frequency to increase signifi-
cantly if the page size used 1s decreased (e.g., reduced by half).
Furthermore, it is proven in Theorem 3 that the limit to this
increase is a linear function of primary store size. Thus, for
example, on a typical current-day paging system with a large
primary store, the number of page fetches encountered during the
execution of a program could increase 200-fold if the page size
were reduced by half.

The concept of temporal locality versus spatial locality is
postulated to explain the relationship between page size and pro-
gram behavior in actual systems. This concept is used to develop
a technique called the "tuple-coupling" approach.

Consistent with the results above and by generalizing conven-
tional two-level storage systems, a design for a general multiple
level storage hierarchy system is presented. Particular algorithms
and implementation techngiues to be used are discussed.

FORM
DD 1 NOV 551473 (PAGE 1) UNCLASSIFIED

S/N 0102-014-6600 Security Classification

UNCLASSIFIED

Security Classification

14, LINK A LINK B LINK C
KEY WORDS

ROLE wT ROLE wT ROLE wT

Storage Hierarchy

Virtual Memory

Dynamic Storage Allocation
Operating Systems

Paging

Page Sirze

Replacement Algorithms
Computer Architecture
Multi-level Memoires

Spatial Locality

DD 72™..1473 (sac) UNCLASSIFIED

(PAGE 2) Security Classification

STORAGE HIERARCHY SYSTEMS

Stuart E. Madnick

April 1973

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139

Storage Hierarchy Systeas 2

STORASE HIERARCHY SYSTEMS

Dy
STUART ELLIOT MADNICK

Submitted to the Department of Electrical Engineering on May
15, 1372, in partial fulfillment of the requirements for the
d2gre2 of Doctor of Philosophy.

ABSTRACT

The relationship betvween page size, prograa behavior,
and page fetch frequancy in storage hierarchy systems is
formalized and analyzed. It is proven that there exist
cyclic program reference patterns that can cause page fetch
freyuzncy to increase significantly if the page size used is
lacreased (e.g., relucea by half). Furthermore, it 1is
provan in Theorem 3 that the l1limit to this increase 1is a
lin=zar function of primary store size, Thus, for example,
on a typical current-3iay paging system with a large primary
store, the number of page fetches encountered during the
eaxecution of a program could increase 200-fold if the page
s1ze were reduced by aalf.

The concept of temporal 1locality versus spatial
l>cality is postulatad to explain the relaticnship between
pige size and prograa behavior in actual systeass, This
concept is used to devalop a technique calied the
"tupl2-coupling”" approach. It is proven in Theorem 5 that
when wused in conjunction with <conventiomal hierarchical
storaje system replacement algorithas, tuple-coupling yields
the benefits of smaller page sizes without the dangers of
2xplosive page fetch activity,

Consistent w¥ith the results above and by generalizing
conventional two-leval storage systens, a design for a
jenaral mnultiple lavel storage hierarchy systenm is
presanted. Particular algorithms and implementation
tachnigques to be used are discussed,

THESIS SUPERVISOR: Joan J. Domnovan
PITLE: Associate Professor of Electrical Engineering

Storage Hierarchy Systeas 3

ACKNOWLEDGEMENT

Phis thesis describes research done at M.I.T. in
conjunction with Project MAC and the Department of
Electrical Engineering, both of whose support and
apcouragema2nt are gratefully acknowledged. During the
cours2 of this researzh, I have been fortunate to have had
tae cooperation of tae IBM Cambridge Scientific Center and

the Honeywell Information Sciences Center.

I have also bénafited greatly from conversations with
numersus colleagues, In particular, special mention must be
mail2 of Professor J. H, Saltzer, Don Hatfield, Harold
Schwenk, Paul Wood, St2ve Zilles, Leonard Goodman, and Jerry
Johnson, who proviiel receptive ears and were helpful in

uarivaling many of the important issues.,

By agreeing to ba Readers, presumably at a weak momant,
Pcotessor J., C, R. Licklider and Dr. Ugo Gagliardi were
iaflicted upon by this thesis and the associated chaos. 1
appreciate their cooperation and understanding and look
forward to their assistance in the continuation of this

rasearch.

storige Hierarchy Systems 4

I am obligated to acknowledge Professor John Donovan as
my supervisor for this thesis., But, during my studies as a
jraduate studant stud=2nt, he has been much more than just a
tnesis supervisor, He has been my teacher, advisor,
cylleague, and friend, His cooperation and assistance, not
to m=2ation his enthusiasm, have had a profound affect upon

ay research and I am truly grateful.

Most importantly, I thank my wife, Ethel, for
stragyling through and surviving the tortures of being
marri2d to a graduate student for countless years (I'm sure
tnat she has counteld them)., The same commendations are
2xtenled to my sons, Howard and Michael. Unfortunately, I
tzar that the damage to thewm might be more permanent., I
rzalized this recently when I learned that in response to a
first-grade assignment to write about what you want to be
when you grow up, Howiard had writtean: “When I grow up I want

t> be a student like ay daddy",.

Wwork reported hersin Wwas supported, in part, by Project MAC,
an M.I.T. research prdi>ject sponsored by the Advance Research
Projects Agency, Department of Defense, under Office of

Naval Research Contract Nonr-4102(C1).

Storagje Hierarchy Systenms

§

CONTENTS

ABSrR\:T LR B B B B BN BN O B B BN B B B Y I BN DY RN RE BN NN BN BN BR NN RN R BN BN NE BN BE RE B BN 2R BN R I BRI BN AN J Z

A:KNQHLEDSEMENT @0 59 52 5 5 D D HON B PO B PO SO PSS O OE BN S DS N e 3

1. INTHRODUCTION AND PLAN OF THESIS secessassessscscenas 9
1.0 INtroduction sssesescesceescsssascsnsssssessase I
1.1 Significanca of Proplen S P08 BeRORISISLILODSBEBSEEES 9
1.2 Specific Goials and Accomplishments seseeossss |1
1.3 General Structure Of TheS1lS seaesescssssessses |

2, THE STORAGE HIERARCAY PROBLEM ecescosascesosnssesssses 20
2,0 IntroduCtiOl ssesessacacncsrasssnssssssrssncss 20
2.1 Storage HiecarCﬂY Ubjectives sesevessssesases 21
2.2 Storage Hierarchy Apprcacies .sssesesesssssss 30

3., FPORMALIZATION OF STOBAGE HIERARCHIES sescesccessscss 39

3.0 Introduction oouoooooo;oanco.ooooooooouoc-ooa 39
Bajor Parameters sesecesvscssssssssasansscnsnss 39
The Storage Hierarchy Model sessscsoscosesses 4l
PerformancCe MEASULeS ecesssssavenssansasssensass U9
Related Reszarch AR E RN Y N I I I I A A S] 55

W W W W
[] [] - []
E N .

4, A STORAGE HIERARCHY SYSTEM seevsseessasccsssssssssss 02

a.o Introdu:tiou ® 5 85 60 060855 80 05 0B B PSS 0SSN PPN NN 02

4,1 Continuous HiEEarChY e sssesssasanssensesssans 02
Shadow Storage and Page Splitting sssscessess 04
Direct Transfer $ 0 009 06250 0 PLEO P PSSO B PN S OO NS 71
Reaj rhrougn [B Y B BRI BN N JNK BN BN N NN BF BN BN BN BN NE N NN AR BN BE N N I AR R R AN] 73
Store Behinl secessseovsesscosssssosssssessses 17
Automatic ﬂanagement sessssssansssensesssssse B0
Comments on Storage Hierarchy System Design . 85

&8 e s EFEE
« s 5 s o @
NO U E W

5, ANALYSIS OF PAGE SIZE ZONSIDEBATIONS .esassveensesss 86
5'0 Introdu(:tion D 80 00 25 PP OS5 5 B OO E NP SO LD NS NGER 3b
The Page SiZ2 ISSUC eeosnssnsssnassssnssnssss U6
Anomalies ©5 08 95 00 0008 00502 00 PREIREP ISR OETS 88
The page Siza2 A“Oﬂaly ssesessscasessavssssnse BY
Significanc2 of the Page Size Anomaly sesesee 99
Bounds on th2 Page Fetch Frequency Ratio 102

(SIS, WO NS]

Ul 45) v =

Storaje Hierarchy Systenms

6, SPATIAL V5., TEMPORAL LOCALITY MODEL seceeoossvnssensoae
8.0 Introduction 55 50 0000 BV BINSEVRESDIERNIENBRES
6.1 Types of Program Reference Locality eceeesssns

ooy OO ON
e o ® o @
N E&EWN

Conventional Removal Algorithms sedesssses s
Locality in Actual P[Ograms es s anBIRIIPTIBROERDS
Locality MiX©S seesesssssscsssssencscssnsnansssns
Spatial Locality AlgOrithmsS esesesveccosessae
Comments on the Page Size Anomaly secesecsssas

7. SPATIAL REMOVAL ALSIRITHMS evreevocosensosscsssssnssssns
70 IntrodUCtion esesesesssasssscssnsssasssasnsons
7.1 Tuple-Coupling ApproaCh S0 0 v e s ePNIERIE DRSS
7.2 Effectiveness of Tuple-CoUpliBg soveecesnsase

3+ DISCUSSION AND CONCLUSIONS ..
8,0 IntroduCtion eseseesoses
8.1 Suﬂﬂary sese s e vs0 e er o
8.2 Further WOILK ssssssses

REFERENCES AND BIBLIOGRAPHY .40

B[OGRAPHICAL NOTE " 0SS NS ST SN

.0 08

>0 99

L N

LR B0 BN B BE BN B BN BE BN BN NE IR BE B BR R 2 J

LI BB B B BE BN B BN BE K BN BN BN L BE B

[B IR B BN BN N BE BN BN BN BN B BN NN R BN BN 3

5 00 69 0% 020NN S0

28 080 500 085090080090 s

9 5 8 600 0D U S SS PSS

120
120
120
122
122
123
124
125

126
126
126
135
137
137
137
139
141

154

1.
e

3.

8.
9,
1.
11,
12.
13,

14,

Storage Hierarchy Systeams

ILLUSTRATIONS

Structure of a Storage Hierarchy SYStem ecscosecsosee
Pormat of Logical AddresSsS eseseesesessescsssscssssss
Exampla of Page Trice Simulatiol essesesssssosssonsas
Paje Splitting and Shadow StOrage sesssessssseessses

Read Through Structure 29 50 98 S TP AR E BN IEBOEDOEOBOEATS

‘Example Of CAS@ 1 s eessvessccssnssesssenennnenssnsoss

Exdmple Of CAS@ 2 eeevssnsssssenssssssescsessssssass
Example of Case 3 ¢ 59 B9 B PCEL IS LSO NNBTLOIIVOEOEY RS

Example of Case 3 (for LBU RemOVAl) sssvseensensress

2 L2 BN 2N B NE BE BN L 2N 20 B BE 2R BN Bk BR BN B J

Cyclic Page Trace with (M1}

3 L 2K B DR BN BF R B BE BN BE BN BE N BE BN AR BN AN J

Cyclic Page Trace with | M1
Cyclic Page Trace with FIFO REBOVALl ssesvesosansonse
Example of LRU Removal with Tuple-Coupling eseseos s

Example of FIFO R2moval with Tuple-Coupling sesssse

69

75

90

93

94

98

103

100

118

128

131

Storige Hierarchy Systenms

TABLES

1. Representative Storage HLierarChY esessssesssssssssssse 28
2., Major Parameters of Storage HierarChy seesescescesse 40

3, Marginal Increase in Page Transfer TimeS sesecesesses 60

MAJOR THEOREMS

1. Pije Size Anomaly Existence Theorem (FIFO) sevsesses 95
2. Paje Size Anomaly Existence Theorem (LBU) sseeseasses 97
3. St2ady-State Page Fatch Ratio (LRU), /r/=|Mlj+1 ..., 105
4, Stzady-State Paye P2tch Ratio (FIFO) seceoseosssnssse 119

5. "‘l‘aple-Coupling" LiRitS L t0 2 evessvssssersssssssas 132

Storaje Hierarchy Systeas 9

CHAPTER 1.

INTRODUCIION AND PLAN OF THESIS

1.0 Introduction

e

The primary goal of this thesis is to provide insight
int> and shed additional light on several key problems in
the design and analysis of general storage hierarchy

systeas,

1.1 significance o

i+

Problen

FThe importance of research in stcrage uierarchy systeas
has b2en pointed out by Prof. F. J. Corbatdé recently in the

4IT Project MAC Progr2ss Report VIII (July 1971):

"BY now, it has become accepted 1lcre in the computer
system field that wuse of automatic management
algorithas for memory systenms, constructed ot
sa2veral levels with different access times, can
provide a significant simplification of programminy
efforts, ... Unfortunately, behind the @wmask ot
azceptance hides a worrisome lack of knowledge
b2hind how to engineer a multilevel memory systen
with appropriate alyorithms which are matched to the
lbad and hardware characteristics."

On muoltiple level storage hierarchies, Prot. J. H.

Storage Hierarchy Systems 10

Saltzar was even more explicit {subject notes on

"Information Systems", MIT, 1972, p. 4-58):
"An interestiny problem arises if one has three or
more techmnologies to deal with, ... The problem of
predicting the performance of a three level,
automatically managed system 1s not at all well
understood. ... Although the need for more than one
lavel has already been arqgued, there is currently no
kaown criterion for introducing three, four, or N
lavels for a given system. ... Although there are by
no¥w many implem2ntations of two level memory
systems, the dynazic management of a three or more
l2vel memory syst2m 1s such an uncharted area that

there do not yat exist examples of practical
algorithms which one can examine.,"

1.2 Specific Goals and Accomplishments

he specific goals and acccmplishments of this thesis,

waicnh are further elaporated later, are:

» Analyze the affect of certain parameters, such as
page size, wupon the performance of a storage
systenm.

» Develop a concept of locality based upon bDoth
spatial and temporal adjacency in address
reference patterns that explains certain ancmalies
discovered in actual paging systesms.,

» Propose, formalize, and measure the performance of
nawv ®gpatial-removal® storage management
algorithms, 1u particular "tuple-coupiing",

s+ Design a practical algorithnm for eftective

Storage Hierarchy Systems 11

management of multiple level storage hierarchy
systems anl demonstrate its effectiveness under

some simulat2d system loads.

The key plan of this thesis is to investigate several
ctuctial problems and requirements of multiple level storage
hierarchy systenms, Particular areas are identified and
corrasponding theoriss developed and proven, A new and
Ja2naral design for storage hierarchy systems 1is also
presented and evaluated. Finally, empirical measurements are
presented to validate and calibrate the overall design and

specific theoretical conjectures,

I'his thesis is organizationally divided 1nto 8
chaptars. The structure can be best introduced by outlining

the content of the following chapters in the sections below.

1.3.1 Chapter 2: Motivation for Storage Hierarchy Systenms

Phis chapter presents a perspective on the stcorage
hierarchy problem and the motivation for such systeas. [t
is primarily written for the benefit of people knowledgeable
in th2 general computer field but who are not especially

experienced in storage hierarchy systems. For the expert

Storage Hierarchy Systeas 12

realer, this chapter exposes the biases and orientations of
the author and thus sets the tone for the remainder of the
thesis., This chapter also briefly reviews the history of

r2search in storage systems and cites numerous references.

1.3,2 Chapter 3: Formalization of Storage Hierarchy Systems

A description and formalization of the basic
characteristics of storage hierarchy systems is presented in
this chapter, This is followed by a summary and critical
lnalysis of research that directly relates to the specific

joals of this thesis,

1.3.3 Chapter 4: A Storage Hierarchy Systenm

In this chapter the key coacepts of the [fproposed
storage hierarchy system are presented and discussed, The

principle and novel technigques are briefly described below:

1.3.3.1 Continuous Hierarchy

'he ratio of pa2rformance between adjacent levels is
kept moderate (e.g., a factor of 1C0 or less) to minimize
discontinuities or awkward special-case algorithms. This is
ia contrast to many current systems with inter-level ratios

of 1000 or more.

Storage Hierarchy Systems 13

1.3.3.2 Shadow Storage amd Page Splitting

Information is transferred in decreasing smaller size
blocks as it is passed up from low pertormance levels of the
hieracrchy toward the "reguest generator" at the uppermost
level. Thus, the information that is finally received by the
raquast generator has left a ‘"shadow" behind in the lower
levels., The significaaze and rationale for this technique is

further elaborated in Chapter 6.

1.3.3.3 Automatic Management

In order to reduce the 1load on the <central processor
and provide for more 2fficient and parallel operations, the
storaje management function will be distributed and
incorporated into th2 storage Jlevels (e.g.,, "Yintelligent"
davic2 controllers [1], etc.,). This technigque also reduces

the complexity of the operating system software.

1.3.3.4 Direct Transfer

Storage traansfers between two adjaceant levels need not

have any effect upon nor require the assistance ot any cther

la2vels (e.g., there 1is no need to move information from

Storaje Hierarchy Systeas 14

l2vel n to level 1 and then frcm level 1 to level n-1 if
only level n to level n-1 was needed; this two step process
is often required on <contemporary systems)., Direct transfer
i3 accomplished by synchronizing non-mechanical storage
jevicas or by using "rubber-band" buffers [33] between

2lectro-mechanical storage devices.
1¢3.3.5 Read Through

Storage transfers, as noted above, are only made
batwe2n adjacent levels of the hierarchy, such as from level
n to 1level n-1. But, each level, such as level n-1, can
conne-t its input bus (from lower level n) to its output bus
(to higher level n-2) so that the data can be read through
(L.2., transferred to level n-2 while being stored in level
n-1). A similar, though specialized, techmnigue 1s already
asel in certain syste2mas, such as the IBM System/370 MNodels

155 and 165 cache systams [52].

This results 1in performance simiiar to a direct
connection from each 1level to the request generator but it
proviles much more control 1in the storage levels and a much

simpler structure,

Storage Hierarchy Systems 15

1,3.3.6 Store Behind

By wusing thes excess capacity of the inter-level
caann2ls, there is a -ontinual flow of altered data from the
higher levels to the lowest level permanent storage. Thus,
tae actual updated information is stored behind (after) the
store initiation froa the request generator. The updated
1aforaation is propagited down, level by level, Whenever

iaforaation is altered at a particular level, 1t is tayged

as altered and is schz2duled for a "store behind"™ operation.

1. 3.4 Chapter 5: Analysis of Page Size Considerations

dJne of the most 1important parameters of a storage
hierarchy system is the page size chosen as the unit of
transfer between two levels of the bierarchy. In this
caaptar, the factors influencing page size are examined from
the device characta2ristics viewpolint and the prograu

o2havior viewpoint,

Jf particular concern, it has been noticed by Hatfield

{47] and Seligman [78] and formalized in Chapter 5 that:

"There exists a page trace, P, and demand-tetch
FIFO-removal or LBRU-removal inter-level storage
systems, 5 and S', with page =sizes N and N'=N/2,
raspectively, such that the ratio, r, of fetch
frequency f' to f exceeds 2.%

Storaje Hierarchy Systems 16

'his result runs counter tc¢ the hoped for behavior of
dacreased page sizes as noted by Denning [25]:

" ,.. small pages permit a great deal of compressioun

without loss of =2fficiency. Small page sizes will

yield significant improvements in storage
utilization e.. "

In this chapter the significance of this prcblem is
i2monstrated by proving that even "well-behaved" removal
alyorithnms, such as stack algorithms [63], are not immune to
this adverse performanze behavior. Furthermore, the nature
ot this phenomenon 1is analyzed and bounds on its behavior

dare developed.

1.3.5 Chapter 6: Spatial vs. Temporal Locality Model of

Program Behavior

A primary rationale for hierarchical storage systems is
based upon the "Principle of Locality", Unfortunately, this
principle is still 1 poorly understood, or at least
controversial, phenom2non., It is difficult to determine the
original "discoverec" of this principle but it is
iataresting to note that its definition has changed in time.
For 2xample, Denning {29, p.3], 1in 1968 1loosely described

locality as:

Storige Hierarchy 3ysteas 17

"the idea that a computation will, during an
interval of time, favor a subset of the information
available to it,™
Later, in 1970, Denning [26, p,180] defined it more
precisely based upon the concepts of "working set'" and
"reference density", which for a page i at time Kk:
a(i,k) = Pr[reference r(k)=1i],
sica that R(kK) is tae ranking of all n pages based upon
a(i,k); thus:
WPRINCIPLE OF LOCALITY: The rankings R (k) are
strict and the expected ranking lifetimes long."
This is a much more restrictive definition of locality than

als earlier general concept.

In fact, many current storage management systems were
devised first, a general model was then constructed to
d2scribe the system, and finally a "formal" definiticn of
locality was developad to be consistent with the storage
managj2ment model. This is a reasonable strategy as long as
tae underlyingy concepts of "the principle of locality" are
not loast 1n the proca2ss. Unfortunately, this appears to
nav2 happened on several occasions. In particular, most
popalar definitions of locality tend to be useless for
analyzing or explaininj either the relationship of page size

upon program behavior or the impact of generalizing fronm

Storiye Hierarchy 5Systenms 18

tdo-lavel 3torage systems to @multiple level hierarchical

storaje systeas.

In this chapter 31 new view cf locality is presented {or
an old-view resurrect2d since it mos; closely resembles some
of th2 very early descriptions of locality)., In particular,
it is shown that th2 general coancept of 1locality cam be
subdivided into two separate factors, temporal localjty and
spatial locality. Th2se concepts are defined and justified

and then used to explain some peculiar phencmena

("anomalies") observel in actual two-level storage systems.

By means of address traces and storage systenm
simplifications, the t2mporal and spatial locality behavior
of actual programs i3 emperically measured. These results
are used to reinforcz and calibrate the storage hierarchy

systea design present=2d in Chapter 4.

1.3.6 Chapter 7: Spatial Removal Storage Management

Algorithms

Various hierarchy storage management algoritams, such
1s tetch (e.y., demand-fetch) and temporal removal (e.g.,
first-ia first-out (FIF0), least recently used (LRU), etc.)
have been dJdeveloped, primarily for two-level hierarchies.

'hera appear to be no spatial removal algorithms described

Storage Hierarchy Systenms 19

ia th2 literature, Based upon Chapter b6, several spatial

algorithms are proposed and analyzed,

It is also shown that some cf the problems aescribed in
Chapter 5 can be solved by spatial removal algorithms. 1In
particular, Hatfield 48] noted that:

"3s yet we have been unable to prove that there i1s a
ra2placement alyorithm using only the past history ot

piage requests which cannot g¢enerate more than twice
the exceptions with half size pages."

In this chapter a new algorithm, named tuple-coupling, 1s

presentei, It is formally proven that 1t satisfies

Hatfield's requirements above,

Furthermore, the operational behavior of tuple-coupling

1s analyzed by measuriny the performance of actual prcgrams,

1.3,7 Chapter 8: Discussion and Conclusions

In addition to a gyeneral summary of the significant

aspects of the thesis, this chafpter also outlines important

areas for future research.

Storige Hieracrchy Systenms 20

CHAPTER 2.

THE STORAGE HIERARCHY PROBLEM

2.0 Introduction

rhe evolution of computer systems has been marked by a
continually ipcreasiny demand for faster, larger, and more
2conosical storage facilities., In addition to the obvious
concacn for Dbetter parformance, the organization of a
computer system's storage plays a key role 1in progranm
dzvelopment and programmer efficiency. It has often been
zlaimed that "any software design blunder can be overcome by

adding more memory",

It has become geanerally recognized that the confiicting
raquirements of high-parformance yet low-cost storage may be
bast satisfied by 1 mixture of technologies combing
zxpensive aigh=-perfdormance devices with inexpensive
lower-perforaance devices, This strategy has been given
s2v2ral names, such as "hierarchical storage systea”,
"jutomatic multilevel storage management", "virtual memory",
and the inevitable "virtual memory system for the automatic
multilevel management of a hierarchy cf storage devices",

lo this thesis the somewhat shorter term storagqge hierarchy

Storige Hierarchy Systeas 21

system will be used.

Investigations into autcmated storage hierarchy
technigues can be traced back more than a decade, It we
war2 to 1include manuil techniques, we would fiund storage
hieracrchies at the vary dawn ot the Mcomputer age".
Unfortunately, there are still wmany unsolved and poorly
understood problems. Thils situation can be partly explained
py th2 fact that th2se systems tend to Dbe (1) extremely
complax, {2) 1ill-suited to most <conventional analytical
tacaijues, and (3) deeply influenced by the rapidly evolving
computer technology which keeps ‘"changing the ground rules"
at often frightening rates. 1In spite of these challenginy
stumbling blocks, a successful storage hierarchy system is
30 lmportant to the future usefulness of computer systems

that we cannot afford to abandon the search.

2.1 Storage Hierarchy Jbjectives

Before delving 1nto details, 1t is worthwhile to
briefly consider the needs and uses fcr an effective storage

hieracchy.

Storije Hierarchy Systems 22

2.1.1 3ysten Performance and Economics

As logic tecanology and computer architecture
tacaniques have advaanced, we have found 1t possikle to
produce systems of inzredible speed. Such systems are often
rated, rather crudely, 1in terms of MIPS (milliions of
instructions per second). Experimental systea of over 100
MIPS aave Dpeen developed (e.g., ILLIAC IV and CDC STAR).
gven '"conveantional" lirge-scale systems have passed the 5 or
1) MIPS mark (e.g., CDC 7600 and IBM 370,/195). 1t has long
bz2en observed that the 1input/output (I/0) reguirements,
especially for "seconiary storage", of a conventional system
tanl to be strongly related to the processor's speed. 1In
fact, based upon severil empirical measurements, 1t has been
postulated that a computer system averages 1 bit of I/0 for
2very instruction ex2cuted (this is often referred tc as
Axdanl's Constant |[ref]). As a result, many of these
tiigh-performance systaas have been confronted with massive
bo>ttlz2neck probleas in the I/0 area, especially since these
170 demands tend to occur in bursts, An effective storage
hierarchy system <coull yo a 1long way toward reducing this

problemn,

At the other end of the spectrum we find that medium-

and low-cost processors, the latter are wusually called

computers, have mnade supstantial advances 1in recent

Storage Hierarchy Systenms 23

yaars. The term "a@aini" can be gquite misleading. Inese
proc2ssors are typically huundreds of times faster than the
early commercial compaters at a fraction of the cost (e.g.,
the UNIVAC I, circa 1951, could perform about 2000 12-digit
aiditions per seconl whereas contemporary mini-computers
operate at around 1,209,000 5-digit additions per second).
Althoigh these mini-processors may be midgets ccmpared to
the computational problzms attacked by their "big brcthers"
da2scribed above, they are more than adequate for the vast
majority of infomatioa processing prcblems which have modest
computational requicements. Due to technological advances
and economi2s Of scale resulting fron large-scale
production, some wminicomputers are available for less than
32000 with slightly slower micro-computers being offered for
as little as $66 [13]. In spite of these technoloyical
alvancas, these processors bhave not had much impact cn most
inforaation system needs due to the continuing economic
problam of produciny large capacity 1inexpensive storaye
aevices even at the modest pertormance required. A 366
processor 1s largely irrelevant if the storage costs are in
the $100,000 or mor2 range, By developing an effective
storagye hierarchy system, we can go a long way towvard
bcinging the storage costs Jdown to the level or these
lnexpansive processdrs, As a result, a tremendous number of
currently known tachnical solutions to information

processing problems will finally become economically

Storige Hierarchy Systeas 24

f2asible solutions,

2¢1.2 Simplity and Automate Programming

As noted earlizr, th2 organization of a computer's
storige system has a considerable impact upon proygranm
davelopment and prograpmer efficiency. To a large extent,
this potential increase 1in precductivity 1is obtained by
r2ducing or eliminating constraints normally imposed by the
storage system. These constraints often distract the
projrammer to the extent that he devotes a substantial
anount of his time to overcoming the system®'s limitations
rathar than solving the intrinsic prcblems, Shooman [80]
noted that:

"rhe inherent error content of some programs is
claimed to be related to the excess memory capacity
available, The theory here is that if the memory is
vary craaped, ths software writers will have to

rasort to overlays and other «coding “tricks" to
squeeze the desired functions into the allocated

B2 MOy space. It is assumed that these tricks
introduce great complexity and are the seat of many
2rLors., This effect 1s «cited by designers of

alrborne computers where the allccation of another
block of 4k of memory is a major design decision.™

For example, the proyrammer often has to worry about:

Storige Hierarchy Systems 25

2,1.2.1 Programming langyuage code efficiency.

Lf a higher-leval language compiler tends to grcduce
programs that are at all largyer than those produced by a
l>w-1la2vel language translator, it may be necessary to use
the low-level languayg2 to conserve storage, This constraint
is contrary to the gesnerally accepted fact that high-level

lanjuages enhance programming prcductivity.

2.1.2.2 Program size,

For any specitic storaye size, there are programs that
cannot be easily writtem to fit into that size constraint.

Y2t, progyrammers freguently try - with considerable eftort.,

2.1.2.3 Data structures,

The programaer is often faced with the ne¢ed to choose
bateean a data structure representaticn that 1s convenlent
to wuse and another representation that "saves storage",
Tais saving may ra2quire the use of an awxkward or

unnecaessarily complex data structure representation.

Storige Hierarchy Systems 26

2.1,2.,4 Specitic a2quipment characteristics.,

If the programa=2r must get the "most" out of his
storage system in terms of capacity and performance, he may
rasort to technijues that are peculiar to his specific
storaje system equipment, if the egquipment is changed,

there2 may be a considzarable impact ufpon his software.

We would 1like t> develop storage hierarchy technigues
that eliminate, automate, or at least minimize the

programming problems liescribed above,

2. 1.3 Integrate New Ta2chnologies and Applications

Although there has been continual evolution, the basic
storigje device techaologies in commercial use have not
changad dramatically in the past decade., As a result, tnere
has b2en a tendency, motivated by actual need, to relate
ipplications to the specific available technologies., This
has caused certain application areas to be abandoned as
"infeasible™ and many storagye management strategies to be
liscredited as "irrzlavant"™ or "inefficient", In the passage
of tise we remember the applications and tecaniques in use
but frequently forget or 1ignore the alternatives fpcssible

and tne reasons for bypassing these alternatives,

Storige Hierarchy Systeas 27

After this rather 1long "rest®, it appecars that we are
on the verge of some major "awakenings"™ in applications aud
tachnology., It is hard to gquantify the new application
n2eds other than requiring more and faster storage for less
@on2y., Section 1.,1.2 presents scome of these motivations, the
ravitalized interests in time-sharing, artificial
intelligence and automatic programming are also "fanning the

tirav,

Due to the uncertainty of advanced research in storage
davica technologies, it is difficult to +torsee accurately
which of the many 1ictive efforts will succeed (see for
2xample, Ayling [7], Best [15], Bobeck [16], Camras [17],
D211 24]), Fields [33]), Gardner {[39], Howard [50], Matick
[6Matick.], Hyers [569], Rector [74], Shahbender {79],
Thoapson (85]). Considering the technical advances clearly
demonstrated in the laboratory and the driving "protit®
motivation, it is reasonable to expect some dramatic changes
1a th2 next few years., Even 1f we don't know what or when,

#2 woild be foolhearty to totally ignore this situaticn.

Table 1 below indicates the performance and price
characteristics of typical current-day storage technologiles.
The two entries marked by questicn marks (?), Bulk Store and

Giant Store, indicate new technologies that have already

Davica

5.

D

Cache Store
(18M 3165)

Store
3369)

Main
{1314

Bulk
(aus

Store?

Large Store

(IBM 2305-2)

Mas3 Store
(I3 3339)

siint Store?

{Gcumman
MASSTAPE)

SSU[35 J)

Storayge

Hierarchy Systeas

Randonm Maximum
Accass Iransfer
Tim2 Rate Price
{seconds) (byte/sec) ($/byte)
1.6x10~-7 1x 108 8.8x100
(16) ns) (100M b/s) ($8.890)
1.43x10-8 1.6x107 5x10—1
(1.44 us) (164 b/s) (56¢#)
1, 35 10—+ 8x 106 8.8x10—2
(130 us) (8% b/s) (8.8%)
5x10—-3 1.5x1068 2, 2x10—2
(5 ms) (1.5M b/s) (2.2¢)
3.8x10-2 8x 10S 4.5x10—+
{38 ms) (800K b/s) {.045¢)
bx1d0 6x105 242X10-S
(6 sac) (600K b/s) («0022¢2)
Table 1,

Representative Storage Hierarchy

28

(£t 1)

Capacity
(bytes)

1.6x104
{16K)

5.12x10%
(512K)

2x 106
(2 8)

1.1x107
(114)

2x 108
(200H)

1.6x1010
(16B)

Storaje Hierarchy Systeas 29

paen placed in limited use., Since these two
cost/performance positions were nct part of our
"traditional" technologies, we are faced with the prcblem of
possible modifying our applications and developing new
strategies to efficiantly, effectively, and, hopefully
optimally, integrate them into our overall hierarchaical

3torage systean,

As the wentire spectrum of computer architectures, as
well as storage device technologies, undergoes reshutflings,
pboth 2volution as well as revolutions, it 1s worthwhile to
raview and reconsider our current concepts on storaye systenm
l2sign, Taple 1, although a simplified summary of current
storage technologies, illustrates the fact that there exists
4 spectrum of devices that span about 6 orders of magnitude
of price/performance (100,00C,000%) . This is yui te
sigaificant in the light of the excitement that normally
accompanies an 1liaprovament of 10-20% imn performance or a
dacrease of 10-204 1i1a price 1in current-day systems. The
participants in this "storage sweepstakes" may change 1in
time, but with such large price/performance stakes, there

will be continuing benefits to "playing the game"™ bpetter.

Storaje Hierarchy Systenms 30

2.1.4 Understanding of Program and System Behavior

As notad earlisr, the detailed operational behavior of
computer systems is often extremely complex, Thus,
i2cisions on hardwar2, sotftware, and systems design must
often be made in spit2 of insufficient knowledge. A better
andarstanding of program and system behavior is essential to

the intelligent and efficient development of future systems.

It is hoped that the research tc ke conducted as part
of this thesis will shed considerable 1light c¢cn these

matters.

2,2 Storaqg

Hieracchy Approaches

"Storage hierarchy system™ and similar terms have been
used in many contexts. Consistent with the objectives
outlined 1in the pra2vious section, certain particular

contexts are assumed 1in this research,

2+2,1 Spectrua of Approaches

'he propblems of storage hierarchy management have been

attacked by a host ot approaches. We can loosely

characterize these efftorts into three categories:

Storage Hierarchy Systeas 31
2.2.1.1 Manual Hisrarchy Management

Siven a specitic ensenble of storage device
tachnologies, after considerable thought the programmer can
2xplicitly or implicitly specify how his intormaticn (i.e.,
programs and data) should be organized and distributed
within the hierarchy and how and when his information should
be re-arranged, Having determined the distribution, he must

1lso specify his access to specity information accordingly.

When a programmer 1is directly operating upon his
information at tahe lowest level (e.g., Uusing nmachine
language, direct I/) requests, etc.), he 1is explicitly
controlling the storage hierarchy, this is explicit manual
nieracchy management. In most conventional systems, the
programmer Communicates with the system via programaing
languiges and control cards, Although this can relieve auch
of th2 tedious or intricate details of storagée manageuwent,

the overall control of the storage hierarchy 1is still

prirarily the responsibility of the fprogrammer. This 1is

Manual storage minagement can be very ecomomrical since
it usually requires nd> special hardware features nor special

system software. Furthermore, it places the control of the

Storije Hierarchy Systeas 32

storijye hierarchy in the hands of the programmer who 1is
presunably tne one most familiar with his needs, Manual
storaje managy2ment, ia its maany manifestations, is the most

common storaygye hierarchy approach in use today.

Manual sStorage management has many disadvantages,
though., The amount of detail that the programmer nmust
understand and use can add significant complexity to this
tisk, This then introduces additional areas of error and
dacreased productivity, Furthermore, the assumption that
the programmer 1s the best judge of optimal storage
organizatioan is often wrong. The complexities and dynamics
common to modern sSystems are often beyond the understanding

of most application programmers,

Multiprogramming, an almost wuniversal techmnigqgue in
current systens, necessitates strategies for global
optimization which usually differ substantially from the
iandividual local optimizations cof each progranm. For these

reasons therc has been continual search for "a better way".

2.2.,1.2 Semi-Automatic tHierarchy Management

Many toechnijuss nhave been developed to miniamize the

amount of effort reguired of the proyrammer and to provide

ftaedback to hinm, Th2 programmer still has the ultimate

Storage Hierarchy Systems 33

contr»l 1imn such a semi-automatic hierarchy manayement

systenm,

Certain of these technigues are based upou the concept
of th2 programamer providing "hints" to the system., These
hints form the basis for a partially automated, partially
manual storaye wmaniaga2ment system. Although not esgecially
widespread, this approiach has been used in several systems

(2+9., Jensen et al [53], O'Neill et al [70], etc.).

If there 1is a single application that is gquite large
and complex, techniyues have been developed to analyze the
actual performance and provide feedback to the programmer.
This approach is primarily used in specialized, dedicated,
predictable, high-performance systems, such as an airline
reservations system, Numerous attempts have been reported,

sach as Arora et al {5], kamamoorthy et al [72], etc.

The various semi-automatic hierarchy management
approaches help to r2iuce the programmer's effort and to
attiia a better 1local optimization., Although useful for
cartain applications, these strategies do not remove the
disadvantaygyes already noted with manual hierarchy management

sy steas,

Storije Hierarchy Systenas 34

2.2.1.3 Automatiz Hierarchy Management

Zertain aspects of logical information organizaticn are
inherznt in a programmer's basic alyorithm., In an automatic
hiecarchy manpagement system, all aspects of the physical
information organization and distraibution that are
irrelavant to the unierlying logical structure should be
ra2movad from the programmer's responsibility. The
prbgrammer may wish to, maybe even be encouraged to, use
ilgorithms tnat are known to perform well in <conjunction
with the automated hierarchy management., But, the central
ra2spoasibility of tha storage hierarchy management is

ramoved from the programmer,

Since this approach directly tocuses on the storage
hierarchy objectives presented earlier, it will Le the

primary approach to be pursued in this thesis,

24242 Spectrum of Analysis Efforts

Each of the storage hierarchy approaches mentioned
above, primarily semi-automatic and automatic, have bpeen
subjected to various torms of analysis. In this section we

briefly outline the principal aeficiencies of these efforts.,

Storije Hierarchy Systenms 35

2.2+.2,1 Generalized HModels

Jne popular form of analysis is to assume a generalized
#3321 for hardware, sottware, and system behavior. If one is
carerdl in choosing the characteristics of the model (e.g.,
Poisson arrival and s2rvice times, etc.), it is possible to
davelop precise analytical solutions. Unfortunately, 1t is
asually difficult to validate these models except for rather
simple solutions. Furthermore, since there are few truly
aadtomitic storage hi2rarchy systems in general use, 1t 1s
extreaely difficult to even determine realistic paranpeters

for these generalized models even'if the models were valid.

Generalized wod2ls have Leen reported 1in several
papers, such as Aho et al [2] and Denning [25] in the

Bibliography.,

2:242+.2 Constrained Models

Another variation on the generalized model scheme 1s to
inalyze a particular program and then model 1its relationship
to the rest of ths systen, There are at least two
shortcomings in this approach., Pirst, as in the yeneralized
model case, it 13 difficult to realistically model the
r2lationship between 1 program and the rest of the systen,

52cond, the analysis and measurement of the particular

Storigye Hierarchy Systeams 36

program is normally converted into scme form of probability
matrix or probabalistic reference pattern. In either case,
significant effort is reguired to accurately measure the
projram's behavior. Furthermcre, the probabalistic
cnaracteristics are usually aggregated to reflect the
overall behavior of the program and, as a result, the
dynamic nature of the program and its impact on the storage

hierarchy are often lost,

Example analyses of constrained models can be found in
references: arora and Gallo (5], Hatfield and Gerald [47],

La2wis and Yue [60], and Ramamoorthy and Chandy {72Z].

2+2+2,3 Limited Environment

A common deficiency of'most previcus research 1is that
only a limited environment was considered, im particular
aatomitic hierarchy management over cnly two levels using a
single page size, 0f course, most current-day computers have
only 2mploye2d automatic hierarchy management in either Cache
Systems (cache store - main store) or Paging Systems (main
3torsz - large . store), Unfortunately, there is definite
r2asons to believe that many of the <conclusions and
t2canigues demonstratad for a two-level hierarchy do not
na2cessarily generalizs to handle the spectrum of program

d=2ta1l and device <characteristics encountered in a truly

Storaye Hierarchy Systeas 37

multiple level storage hierarchy., Furthermore, many ot the
papers that attempted to 1investigate general storage
nieracchies assumed technigues and approaches that are

primarily based upon two-level hierarchy assumptions.

This limited wenvironment has been studied by numerous
people, such as Aho et al (2], Belady et al [10,11,12],
Coffman and Varian [1Y9,86], Conti et al (21,22}, Denning
_25], Fotheringham [33], Guertin [45], Kilburn et al [57],

Mattson et al [63], Selagman {78], Smith {81], and Wilkes

(8817,

2.2+2.4 General Hierarchy Environment

The studies of limited two-level storage hierarchies
have beemn quite suczcessful in many actual systeus. A
rzasonable strategy would be to extend these technigues to a
aore Jeneral storaye hierarchy environment, There have been
2 few attempts along these lines, but as menmticned 1in the
previosus section, most were hampered by:

(1) attempting to directly apply two-level hierarchy
technigues without carefully considering their
applicability,

(2) attempting to generalize techniques which were not

aven tully understood in a two-level environment.

Storage Hierarchy Systeas 38

The major thrust of this thesis 1s to provide insight

into and shed additional light on these problens,

Storije Hierarchy Systeas 39

CHAPTER 3.

FORMALIZATION OF STORAGE HIZRARCHIES AND RELATED RESEARCH

3.0 Iatroduction

In this chapter a formalization ot the Key
characteristics of storage nierarchies 1s presented and
performance measures are derived., The reported perfcrmance

of actual systems is reviewed,

3.1 Major Parameters of a General Storage Systen

lable 2 and Figure 1 illustrate the major parameters ot

a storage hlierarchy system. These parameters can be grcuped

into four categouries: (1 basic technoloyy, (2)

configuration, (3) aljorithm, and (4) program behavior,

3.1.1 Basic Technology

The basic technology parameters, cost/byte, ¢, and

1
i<

erage access time, T, are primarily dependent upon the
physical properties ot the storage device techmology., At any
given time the state-of-the-art offers only a limited number

of (C,T) alternatives that the system desiguer can select.,

Storiye Hierarchy Systeas 40

(£t2)

o (C cost/byte

» T average acsa2ss time

T e o - - — - —

+ L number of levels

» T iaterconnection of levels
e S s1ize (capacity)

e B transfer rate (bandwidth)

e N number of bytes 1n page (page size)

s F tetch
¢« P placenant

« R replacement

Table 2.
Ma jor Parameters of a Storage Hierarchy Systenm

Storage Hierarchy Systeas 41

(£13)

Request
Generator
(Processor)
A={al'a2,-oo}

I (§t,T1,81)

M1

Lavel 1 {(Cr,s1)
II (N2,T2,82)

h K4

Laval 2 (C2,52)

Mo
M3
La2vel 3 (C3,53)

Hit

s 4doe

HitH

Level L

Figure 1,
Structure of a Storage Hierarchy System

Storaje Hierarchy Systems 42

3,1.2 Configuration

The system designer does have flexibility in crgamizing
these storage devices, By serial andy/or parallel structuring
2f the components o0of a given level of storage device
t2canology, it 1s possible to specify, over a vide range ot
values, the size (storage capacity), S, and the maxipua

o

tcans

I

er rate (data bandwidth), B, o¢f the system. For
axample, if a particular technology provides a tasic device
with 5=s and 8=b, coannecting n c¢f these devices in parallel
produzes a storage levz2l with S=ns and B=nb. (To some extent
the machanism and cost of the organizational structure does
influence th2 overall cost/byte and average access time of a
lava2l, this effect 1s usually minimal for small values of

a)j .

Jn a more global basis, the designer must determine the

numbar £t levels, L, 1in the storage systen, the

10

iatecconnections ot the levels, I, and the size, N, of a

e i e - s T ——— —— ——— e e

page (the unit of information moved between levels).,

3.1.3 Proyram Behavior

T'he processor, under progran control, produces a

saguentlal series of ra2ferences to the storage system. I[hese

processor refereaces are in the form of logical address

Storaje Hierarchy Systeas 43

2ferences which serv2 to uniquely identity each individual
unit of stored informatation {e.g., an d-bit Lyte)
independent of its locaticn (i.e., M1, M2, M3, .,..). The

time sequence of logical address references, A, 1s called an

s s s s g o o

unigu2 program and its 1input data will result in a different
processor address trace, For purposes of analyzing the
effectiveness of the storage hierarchy, the address trace 1s
the primary characterization of a program that is needed
(2.3., we don't care what the program's purpose 1is or what
language it is written in, etc.,, we cnly care about its
aldress trace), Thus, the address trace describes the
pctogram's behavior as observed by the storage hierarchy.

J. 1.4 Algorithm

There are three basic decision algorithms that must be
2mployed by an automitic storage mahagement system, Fetch,
P, decides when and which information should be moved up a
lavel (e.g., from H¥2 to M!'), Elacement, P, decides wnere
inforzation should be placed 1in a level, Removal or
replacement, R, decides when and which informaticn shculd be

transferred down a level (e.4., from M! to HMNZ),.

Storije Hierarchy Systenms 4y

4 completely gen2ral storage hierarchy algqgorithm, H,
muist consider all the parameters described above:
d = f {(<Technoiogy>,<Configuraticn>,<Program>,<Algorithmd)

H = f(<c,T?>, <L, I, S, B, N>, <A>, <F, P, R>)
Clearly, attempting to optimize a systew with sc many
parama2ters is diftficult. Fortumnately, it 1is possible to
elininate from concarn or at least simplify certain

parameters as explainesd below,

3. 2.1 Configuration

Zonsistent with the title of this thesis, we shall
consider only hierarchical 1interconnections of levels as
illustrated 1im Figure 1, where T1<T72<T73< etc., and NI<N2<KN3L
atc, fhe ratiomale for this decision is elaborated in the

thesis,

There are thre2 basic strategies for information
movamant sizes: (1) select a single page size value, N,
which 1s always wusa2d throughcut the hierarchy - this
approach is wused on most contemfporary automatic multilevel
storaje systeas (e.g., Hultics), (2) allow an arbitrary
range of values for N to be used - this approach is

primarily used on manually managed storage systems, and (3)

Storage Hierarchy Systems 45

s2lect L values of N, a specific unit of transfer is used
between any two lavels of the hierarchy - this approach will

b2 pursued and justified in this thesis,
3.2.2 Program Behavior

Each logical address can be represented as a bits as
shown in Pigure 2(a), If the payge sizes, N, are chosen to
b2 powers of 2, the s2t of 2%*a possible addresses can be
partitioned into 2%**p pages of N=2*%*n consecutive logical
aildresses each as shown in Figure 2(b). [Note: the notation
"2%%a" peans 2 raised to the power a)., Since the information
movem2nt between storage levels is accomplished by
transferring pages, w2 can analyze this interlevel movement
by merely considering the time segquence of logical pages
references, Ap, called a page trace.

Since we allow the page size to be dirfferent between
@ach level and requests are only passed doWwn to a yiven
lavel if they cannot b2 satisfied by any higher level, each
level will usually experience a different page trace though
all are algorithmically derivable from the same address
tracz2, In fact, if all address references were broadcast to
ill storage levels, the page traces can be determined by a
simpla mapping from 1lojical addresses into logical pages:

paye aadress = integer(logical address/N)

Storage Hierarchy Systens

4o

(t2)

| € a bits

ADDRESS

(a) Logical Address

| € a bits

PAGE | DISPLACEMENT

e

j€—— p bits == |¢&——— 1 bits —>|

(a=p+n)

{(b) Logical Address

{bivided into Page Address and Displaceaent)

Figure 2.
Format of Logical Address

Storagje Hierarchy s5ysteas 47

where N is the page size for that level,

3.2,3 Algorithn

Phe placement decision, P, is usually unconstrained or
minimally constraineld and, as a result, has relatively

littls impact upon performaace,

A demand fetch policy will be used. Assume that at time
t a reguest for 1logical address a (or, egquivalently,
pt=integer (a/N1)) arrives at level M1, At that instant the
information may currently reside in M!, otherwise 1t must be
tound in a lower level, Under d<mand fetch, if p! is in M1,
the raference proceeds, the infcrmation is passed back to
the processor, and no other page movement accurs 14 the
nieracchy. If pt is not in M, a regquest for
pz=integer (a/N2) is s2nt from M! to M2, If p2 is in M2, the
page 1is transferred to #4! and processing continues as
d2scribed above, otherwise a request for p3=imteger (a/i3) is
sa2nt from M2 to M3, 2tc. Note that under the demand fetch
policy, iaformation i1s only wmoved up in the hierarchy when
and if it is explicitly demanded (i.e., requested) by the

processor.,

Although demand ftetch 1is only one fpossible tetch
algorithm, 1t can b2 shown {[63] that for hbierarchically

structured storage systems:

Storage Hierarchy Systems 48

"..» glven any trac2 and replacement algorithm (not
n2cessarily using demand paging) ancther replacemnent
algoritnm exist that uses demand paging and causes
the same or fewar total number of pages to be
transferred ..."
In other words, as you might intuitively suspect, moving
pijJes only when necessary results in the minimal aumber ot
pige movements., Of course, if page mcvement is required and
the higher level that 1is to receive the page is already

full, the removal algjorithm must be employed to provide

space for the new page,

3. 2,4 Revised Storage Hierarchy Model

Based upon the discussion akcve, we <can slightly
simplify the vparametacrs remaining fcr consideration in the
storaje hierarchy algorithm, H, so that it need consider
oanly:

H = f({Tecanology>,<lonfiquration>,<Program>,<Algoritha>)
H = f(KC,T>, <L,S,B,8>, <A>, <k>)
In this thesis all of thase parameters will be considered
and 1nvestigated, S5pecial emphasis will be placed on
analyzing and understanding the relationship between the
piges sizes, N, and the removal algoritam, R, required for

afficient operatiou of the storage hierarchy.

Storaje Hierarchy Systeas 49

3.3 Pacformance Heasures

There are various performance measures that we could
consider. For an overall point of view, system measures,
such as job throughput, job turn-arcund time, and processor
utilization, are quits significant. Unfortumnately, 1t is
extremely difficult to directly relate these measures to the
parformance of the storage system, even an approximation
¥4ould require consideration of wmany more parameters. Thus,
w2 will only consider measures that relate to the effective

performance of the storage hierarchy.

3.3.1 Performance Measurement Notation

Due to the strict hierarchical structure of our storage
system and the demanl fetch pclicy, we «can analyze the
performance of the system by separately considering tne
levels of the hierarchy starting with M1, Since a given
lavel only receives a page fetch request ir the information
has not been found it a higher 1level, each level usually

s2es a different page trace, Ap!, Ap2, Ap3, etc.

There are several important properties of page traces,
If P is a particular page trace (e.g., Ap!) of a progyram, we
define:

* |P| length of the page trace sequence

Storige Hierarchy Systems 50

. Q set of distinct pages referenced im P
. 1Q1 number of pages in Q

For e@xample, 1n the page trace
p =a, b, a, ¢, b, a

w2 observe that

P} =06
Q = {a, b, c}
1 = 3

(Lower case letters will be used to represeat loyical page

aldresses instead ot page numbers).

For a specific storage hierarchy, we define |[M] to be
the size of M in units of pages receivable from the next

lower level. For example, |MLj=Sl/N2, {(M2|=S52/N3, etc,

For a specific page trace, P, storage level, M, and
removal algoritha, R, we define the result page trace or
fa2tch paqge trace, P', as the time sequenced page references
of P that were not found in N, We shall call page
rafara2nces that are found 1in M successes. The success

e e — ————

function, Sf, is the number of references satisfied by M and
can be computed as jP|-{2'}. By amalogy to the success
function, the number of reierences not satisfied by M, |P'},
is called the failure function, Ff. In general, we wish to

maximize the success function or, equivalently, minimize the

failure function. It is convenient to normalize the failure

Storige Hierarchy Systenms 51

function by defining the failure frequency function, £,

£t = (P'j/IP|

The success frequency function, s, can be easily computed as

1-f; it is often called the hit rate on a two-level storage

systea. We also d2fine the systes failure freguency

function, £°, of a level to be:
t® = |P'|/|A]|

where A is the address trace gemnerated by the processor and

A} is the length of tne address trace (it is also true that

14} always equals JP1}, thus they may be used

interchangeably) . The system success frequency functicn is

correspondingly defined as s9=1-f9,

If we apply th2 definitions above to the processor
generated page trace, P11, received by M!, we note that the
result page trace, P', is essentially the page trace, P2,
rac2ived by M2, There is a ﬁinor relabeling required to
1ijust for the diffarence in page size used by M2,
p2=pP' (Ni/N2), By repeating this process recursively, we can
da2veldop the effective page traces, failure and success
functions, and failure and success frequency functions for
2ach level of the hierarchy. Since we assume that all
referanced information exists im the storagye hierarchy, the

sum of the system succa2ss frequency functious must be 1.

Jdne general measure of a storage hierarchy's

Storige Hierarchy Systeas 52

parformance is its effective access time, T', and effective

cost, C', which are defined as fcllows:

H

T Tls914+4p25024T3593+,,,
Cr' = (C1S1+723524(C353+,,,)/(S51+452+453+,,.,)

' and C* can be view2d as characterizing the entire storage
hierarchy according to a corresponding one-level systen,
From a cost/performance point of view, o¢ne should be
indifferent between a singyle-level single-technology storage
device with average access time, T!', and average cost/byte,
2*, and a storaye hilerarchy systen with performance
parameters (I'',C'), In particular, if the system designer
nzeds a storage performance {T,C) and no such basic

t2canoloyy wexists, h2 must attempt to develop a stcrage

hierarchy such that (r',C*) = (T,C).

3. 3.2 Page Trace Simulation

Jne way to determire the success frequency function and
the result page trace for a specific page trace is to
simulate the storage management algorithms and note the
contents of M at each step of the page trace. Clearly,
these results depenl wupon numerous parameters (€.9G.,
specific trace, r2movil algorithm, size of M, etc.,). Figure
3 illustrates this stap by step simulation assuming demand
piging, FIFU (first-ian first-out) removal, and |B|] = 2

pigyes. For simplicity, the fpage trace, P, has been

Storaje Hierarchy Systeams 53

(£3)

Paramaters

. P = a, b, b, ¢, b, a, d, ¢, a, a

. je| = 10

b 2 = {a, b, ¢, d}

* Q1 =4

[} | M} = 2

e FIFO Bemoval
Simulation
Pige Irace,P } a | b| b | ¢c | b} a] d] c} a} a |
------------- e T R O o ek Tl Tl P P
Fatch 1 * 1 * | I * | | * | * | x| * | i
------------- e e e R R Tl bl bt BT P PPy
M Contents { a} bl bjlcjtpcaldl]clal at <~"new"
(after each | { aj aj{bibjc}jal}ldi}citc i <~U"old"
reference) | H | | | | I)] | |
------------- R R L T R P R R R S Y P et ot Ty
Page lPrace,P'y a § b | 1 ¢ |] a j} d}| ¢ | a i
Besults

e Pf = |P'| =1

o Sf = ({P|-{P'| = 3

s £ = T70%

s s = 30%

e P* = a, b, ¢, a, d, ¢, a

Figure 3.
Example of Page Trace Simulation

Storije Hierarchy Systens 54

ndrmalized to be expr2ssed 1n units of receivable pages. 1In
particular, if 8 1is ¥!', then |M|=S!/N2 and p=integer (a/\N?2)
wherzs a is a loyical address reference and £ 1is
corresponding paqge refarence, 1he pages in M are shown as
ordered to indicate the FiFO ordering, the top page 1s the
"last" ("latest") pajye fetched into #, whereas the botton
page 1s the "first" ("oldest") page in M and is the gpage
sa2lected for repldacemant when necessary. The asterisk (x)
indicates that a tetch was reyguired frcm a lower level of
the hierarchy, the pige reference is thus noted as part of

the re2sult page trace, P°%.

It is normally assumed that all levels, except level L,
ire eapty 1initially, thus there 1is a transient stage during
wnich pages are 1loalad into M without any replacements
nz2edel, Since there are so few fpages in M duriang this
start-up staye, thers are many fetches required. We will
find 1t usetul to separate out this transient phencmenon,
T'nis transient consists of the page trace up to the first
|%{ unigjue page reterances, in the example ot Figure 3 this
15 the first 2 page references (i.e., a, b). Consider the
cise 1f |Q4SIM|, there would be no further ftetches into this
lavel after the 1nitial traunsient that loads the |Q| fgages

into M. In this case, {P'"=10] exactly, independent of (P},

and s tends toward 1 as |?P| increases,

Storage Hierarchy Systenms 55

In the particuiar example illustrated in Figure 3, we
note that there were 3 'hits' and 7 'misses' out or 10 page
rzfarances, so that s=30a. Thus, P! cnly consists of 7 paye

r2ferances to the lower levels.

3.4 Ralated Research

As noted above, we wish to develop a storage hierarchy
with attractive cost/performance, (C*',T'), characteristics,
It is clear that we >an arbitrarily decrease the cost/byte
Dy maxKking the size of each level, 3, increasinygly larger as
we go Lrom the high-performance high-cost to the
low-parformance 1low-Zost levels ki.e., Ci>C2>C3>,,., and
51<52<53<,,.). In fact, this approach 1is the basic

motivation for storaye hierarchies,

Unfortunately, 1f the processor generated address
rafarences that wer2 wuniformly distributed in time and
aidress, each byte wpuld be equally likely to pe reterenced
at any instant, This probability would be:

Pr{ refera2nce aj = 1/(S1452+53+,,.)
Taus, the expectad system success function, s9, for each
lavel is proportional to the size of the level, For examplé,
SO01 = S1,/(S1+52453+,.,.).,

dut, since we have assumed that S1<52<Ss3¥¢,..,, we find that

5torige Hierarchy Systems 56

5%1<502¢g%3<,,, Thus, the system success function for the
Lth lavel dominates (i.e.,, 1s aprroximately 1) since ve nave
assumed that it is the largest level. Referrinyg back to our
d2finition of effective access time, we find that T' would
p2 approximately egual to the lowest performance level
{Level L) since all the other terms wculd be negligible. If
tals analysis were tru=, our stcrage hierarchy would result
10 a performance Just slightly better than our 1lowest
parformance level at a moderate 1increase 1ih price - Lot an
espacially exciting result. Fortunately, actual storage
literarchies do not pehave this way., We will braefly review

some related research ou this subject,

3e4.1 Locality

It has Dbeen empirically observed that actual prograams
cluster their references so that, during any interval ot
tim2, only a subset of the information available is actually
usel, A detailed discussion of this phenomenon will be

preseated in the thesis,

It 1s important to note taat due to our basic rankings
of paje 3izes and actcess times 1n the storage hierarchy,
2ach level "sees" a diftferent view of the program. <The high
lavels of the hierarchy nwmust fcllow the micrcscopic

instruction by instruction reference pattern whereas the

Storaye Hierarchy Systems 57

middle levels follow a more gross subroutine by subroutine
pattern. The very low levels are primarily concerned about
the processor's referz2nces as it moves from subsystem to
Subsysten, de do not have any a priori guarantee that
ldcality of referenc2 holds egually true for all of these
views, but we do hav2 some repcrted evideuce to encourage
us. Most of these studies have been basea upon twcec-level
storaje systems or restricted focrms of three-level

nlerarchies.

3.4,2 Paging Systenms

The earliest automatic storage systems were based upon
tdo-lavel core-drum hierarchies (devices 2 and 4 of Table
1. This technique vas 1introduced in the Atlas systesn
{38,57] duringy the early 1960*'s. It has since been used on

many contemporary systams,

I'he performance of paging systems has been studied by
various researchers, such as Be=lady [12], Coffman and Varian
[19,86], Hatfield [48], and Sayre [77]. In Cotfiman's
rasults, for exampls, it was noted that even thouyh
SL/(54+52)=9),25, s otten exceeded 95%. Hatfield studied
the parformance of system programs that had been carefully
d2sigaed and found that for S'/(S51+S2) ratios as low as

Je25, 1t was possible tor s! to ctten exceed 99.99a.

5toraje Hierarchy Systeas 58

3.4.,3 Cache Systcas

Zache systems 1ire based upon two-level cache-main
hierarchies (devices 1 and 2 of Table 1). Although they have
b2en proposed as early as 1965 {see Wilkes [881]), the major
commercial wuse of <cache systems did not occur until the
introduction of the IBM system/360 Model 65 (21,61]. More
racently, tnis tecanigue has been used in several
contemporary systems, such as the IEM System/370 HModel 155

ind Model 165 {52],

In these cache systems, IBM found that it was possible
td drastically reduce 31/ (51+52) to as low as 1% and still
K2ep the hit ratio, st, above 90%. Similar findings were
1lso report2d by 8Bell aand Casasent [13], Mattson |64], Meade

"35], and Seligman [78].
Jel4s4 Three-level Systenms

'hner2 have bean a few three-level systems reported 1in
the literature, unfortunately they have all been somewhat ad
a2¢ 1n design and the results are far from coanclusive.

There have been at 1l2ast three types of such hierarchies

studiad,

Storije Hierarchy Systems 59

3.4.4.,1 Main-Bulk-Mass Store Hierarchy

I'her2 have been several systems devised based upon
dsvices 2, 3, and 5 of Table 1, The Bulk 3Store actually
usei, called Large Core Store (LCS), had a much lcwer access
time (around 8 us) anl a much higher fprice (about 25¢/byte).
In order to compensite for peculiarties 1in the hardware
structure and out of considerable concern for the extreme
cost of LCS, these systems tended to become much more
mankally managed hi2rarchies than automatically managed.
Although they were found to be effective, it is difficult to
g2neralize the results. The wmost ambitious attempt reported
wis undertaken by Carn=23ie-Mellon University [36]. Results
have 3lso Dbeen reported by Durae [31], Williams {89])], and

ot hers.

3.4.4,2 dain-Large-Mass Store Hierarchy

There does not ippear to be any automatically managed
systems of this type published 1n the general literature,
The MNultics systen at MIT Froject MAC has recently
introduced a "page-multilevel" strategy based upon devices
2, 4, and 5 of Taple 1, There has only been limited finding
raported to date but it has been stated in the Mairch 1972

issu2 of the MIT Information Processing Services Bulletin

v —— o —

StorajJe Hierarchy Systens 60

(pe 11) that it

", .. does pay off since it meets fluctuating demands

on the system, reluces the wcrkload for the disks tc

an efficient level, is 1inexrensive, and keeps pages

on the drum for an acceptable length of time,"
As an indication of its effect, the new strategy is reputed
to> have increased the success frequency function, s2, of the
icam from 29% to more than 90k (i.e., "reduced from cne page
r2ad from the disk for every four re€ads tfrom the drum, to

one page r=2ad from the disk for every ten to twenty fages

from the drum").

3.4,4,3 Main-Large-Giant Stcre Hierarchy

The work of Considine and Weilis [20] is difficult to
caitz2gyorize., It is based upon a three-level hierarchy where
the first level corresponds to device 2 (main store) of
Tabl=2 1, the second level <corresponds to a combination of
davices i (drums) and 5 (disks), and the thirda level
zonsists of removable disks which can best be approximated
oy device 6 ot Tabls 1, It is imfpossible tc conpute any
success freyuency functions from their data, but it apgears
that for 32/(s2+53)=0.5, s2 is very high. They note
(p.44J), 1in particular, "amost of the data moved to the

archival storage (i.,e., 43) have stayed there,"

3. 4.5 Need for

Although
2ancoucraging,
miltiple-level
This thesis 1is

area,

Storage Hierarchy Systems 61

Additional RHesearch

the results of research described above is
the design and performance of general
storage hierarchies are still inconclusive,

intendel to provide specific results in this

Storage Hierarchy Systeas 62

CHAPTER 4,

A STORAGE HIERKARCHY SYSTEM

4.0 Introduction

In this chapter a design for a general multiple level
storaje hlerarchy systew, in particular with tnree or more
la2vels, is presented. This design 1is based upon an crderly
and uniform treatment of the 1logical structure of the
storaje levels and their interccnnections, In additiocn to
proviiing a solution to <convenient stcrage management fcor
the user, this design 1is intended to produce good
pertormance for the storagye hierarchy as measured by 1ts
atfective access tim2, T', and effective cost, C'. The
principle and novel techniques to be used are described

separately 1in the sections below,

e e e e T e v =

As noted wearlier, automatic storage hierarchy systeas
are still 1in the minority. Amongst those systems that do
provile automatic storage hierarchy management, the majority
limit their scope to two levels with a few rare three level

systz2as., As a result of these limitations, the user 1is

Storiye iHierarchy Systems 03

still forced to rely on manual or semi-automatlC storayge
management technijues to deal with the storage levels tnat

are not automatically managed. Thus, an automatic storaye

management system should consist of a continuous hierarchy

that 2ncompasses the full range of storage levels,

4. 1.1 Cost/Performance of Ad jacent Levels

A major obstacle to (generalizing storage manaygeaent
algorithms, ia particular in two-level paginy sSystems, 1s
the tremendous contrast, often over 3 crders of magnitude,
in cost/performance between M! and M2, As illustrated in
Table 1 (page 28), a representative Main Store, M!, has an
access time of 1,44 us compared to a Large Store, 82, with
an access time of 5 @ms. In such a two-level system, the
af fective access time, ', is

LY = T1501 ¢ 7T2g02

T! 1.44590 + 5(Q00s92

and since s%1+s502=1, g2 can substitute s91=1-392 to get
T' = 1.““ - 1.‘4‘4802 + SOOOSOZ

1.44 + 4996,56s02

T!
In orier to attain an effective access time, T', that is
comparable to the Main Store access time, T1, we must keep
tae systea success tfaquency tunction, s°2, very close to 0
or, correspondingly, «xeep s®! very clcse to 1. Even with

s°1 at Y9.8%, an 1improvement to 99,94 would cut the

Storije Hierarchy Systenms o4

af fective access time, T', in half. With such pressure to
attain very high s9! values, the systems designer 1s often
torc2d to seek out vary specialized technigues 1in contrast

to our goals of orderly and uniform algorithams,
4. 1,2 Moderate Cost/Pariormance Ratics

In order to wmaka2 the storage hierarchy design robust
and flexible, the <cost/performance characteristics should
differ by less than two orders of magnitude between adjacent
lavels, Thus, success frequency functions 1in the range 90%
td> 39&F are adeguate to insure reasonable performance, If
the differencas are much greater, it will be difficult to
tinl sufficiently efficient general algorithms. Since minor
chang2s in production technigques and technology evclution
can rasult in a variation of a factor of two or three ia the
cost/performance for a yiven technology, it is not desirable
t> decrease much oelow one order of magnitude difterence

b2twean adjacent storage levels,
4.2 Shadow Storage and Page Splitting

The time, Tm, required tc move a page between two
lavels of the hierarchy usually consists of summing two
components: (1) the average access time, T, and (2) the

transcer time, BxN.

Storige Hierarchy Systenas 05

If all page sizes were set to provide exactly the
amount of information, N!, requested by the processor, the
pige movemant time would be

Tm = T + BxN?
where T and B woull depend wupon the particular storage
levels, By examininj the representative devices shown 1iu
Fable 1 (page 28), we see that access time varies auch mnore
than transfer rate (i.e., access time spans 6 crders of
magnitude whereas transfer rate varies by only 3 orders of

magnitude).,

4. 2.1 Marginal Increase in Page Transfer Time and Reference

Probability

Let us assume that N! is quite small, such as d bytes.
W2 can ask the gquestion: What is the marginal increase in Tu
it we transfer the adjacent N! bytes in addition to tae N1
bytes requested by th2 processor? Table 3 on the next page
ansWers this guestion, Notice that the marginal increase 1n
I'a decreases from a4 high of 5.5% (level 2 to level 1) to a
low of .002% (level ©6 to 1level 95). This fact 15 only
interesting if we als> consider the concept of locality (see
chaptars 5 and o for additional discussion) and the

Juestion: What 1s th2 probability, ©Pr, that the processor

Storaje Hierarchy Systeas 66

(£t 3)
Lavel I'm Tm Marginal Increase
fransfer (1 unit) (2 unitsj) in Tm
2 to 1 (*) 1.44 us 1.52 us 5.5%
3 to 2 131 us 132 us «8%
4 to 3 5006 us 5011 us » 1%
5 to 4 38010 us 38020 us +03%
6 to 5 500013 us 600327 us »002% !
Table 3,

Marginal Increase in Page Transfer Times

* Tha figures for ccess time and transfer rate for the
Main Store listed in Table 1 are approximations that are
only meaningful for very large page sizes. For the page
sizes under consideration in this «chapter, the figures used
ia th2 table above are more apprcpriate,

Storigye Hierarchy Systems 67

will reference the adjacent N! bytes with a shcrt i1anterval
of time, such as Tm seconds? Due tc locality of prcgranm
reference, we would expect Pr to be much larger than merely
the reciprocal of the 1logical address space size,
Farthermore, Pr shoull increase as Tu& increases. Thus, for
a given level, if Pr is larger than the marginal 1ncrease 1n
I's, it is beneficial to transfer the additional N! bytes and
tneraby avoid the n2cessity of expending Tm seconds to

transfer these N! bytas later separately.,

'hese same arguments can be applied to the questicn of
transferring the adjacent nxN? bytes, etc, Since the
@marginal increase 1in Tnm decreases monotonically as a
function or storage lavel, the number of N! byte packets to
bz transferred as a single page should increase
monotonically, This confirms ocur earlier decision that
NIKN2<N3IC etc,

-

4,2.2 Choice of Paye Size

In order to simpliriy the implementation of the systenm
and to be consistent with the mapping from logical address
to paje address illustrated in Figure 2 (paye U46), we will
raquice that all page sizes be a power of two, Thus, each
page size (2.9., N3) 1s some pcwer of two larger than the

page size of the a=2xt higher level (€ege, NI=N2%xx1),

Storiye Hierarchy Systems 68

Clearly, the specitic values of Pr and thus the choice for
2ach page size depenis upon the characteristics of the
programs to be run and the eftectiveness of the c¢verall
3toraje systea, Preliminary measurements 1indicate that a
ratio of 4:1 between levels 1is reasonable, Meade [65] has
rz2ported similar findings. Other important factors

it fect ing page size are discussed in Chapters 5 and 6.

4, 2.3 Page Splitting

Now let us comsidar the actual movement of information
in the storage hierarchy. At time t, the processor
jenerites a referencz for logical address a, Assume that
tne corresponding i1nformation is not currently stored in M1
or M2 but is found in M3, For simplicity, assume that paye
slzas are doubled as we go down the hierarchy (e.g., N2=2N1,
N3 =2N2=4N1, etc.; s22 Figure 4), The page of size N3
contalining a 1s copiad frow M3 to M2, M? pow contains the
nz2eded intormation, s> we repeat the process. The page oL
51ze N2 containing a is copied frcm M2 to M!, Now, finally,
the page of size N! containing a is copied from M! and
torwarded to the processor. In this process the page of
information is split (i.e., page splitting) repeatedly as it

moves up the hierarchy.

Bl

M2

M3

Storaye Hierarchy Systems

Processor

<Nt>

* o ¥

A
E ~

3

A4

*

\ 4

A
@

®
J
*

— ¥

Fligure 4,
Page Splitting and Shadow Storaye

Storagyje Hierarchy Systenms 70

4, 2.4 Shadow Storage

As a result of this splitting, the page of size N! that
is received by the processor has letft a "shadow" consisting
of itself and its adjacent pages behind in all the liower
la2vels (i.e., shadow storage). Presumably, if the program
exhibits locality ot reference, many of these shadow fpages
will b2 referenced shortly afterward and be moved further up

1n the hierarcay also.

4, 2.5 Copyiny of Pages

In the strateyy presented, [ages are actually ccofpied as
they move up the hierarchy; a page at level n has cne copy
of itself in each of the lower levels, Since processor
"fetch™ ra=24u2sts substantially outnumber %store"™ requests

2.9., Dy more tnan 5:1 in some measured programs), the
contents of pages are seldom changed. Thus, 1f a page has
ndt b2en changyed and is selected to be removed frcm one
l2v2l to a lower level, 1t need not be actually transtferred
since a valid copy already exists in the lower level, The
contents of any level of the hierarchy is always a subset of
the iaformation contained in the next lower level. Thus,
tae total intormation capacity of the system is equal tc the
size of the level L store rather than the suwm cf the

capacities of all the levels, Since the capacity orf level L

Storije Hierarchy Systenms 71

is assumed to be much largyer than the capacity of L-1, etc.,
the difference 1in total system capacity due to shadow

storagJe 1s minimal,

4,3 Direct Transfer

In the description above it is implied that information
actually moves betwea2n adjacent levels, This approach,
called direct tramnsfer, is indeed intended, By ccmparison,

taough, many proposed and experimental multiple level

storaje systems are Dpased upon an indirect transier (€«g.,

the Maultics ‘"page multilevel"™ =system mentioned 1in Chapter
2)« In these systems, all infcrmation 15 routed through
lavel 1., For example, to move a paye from level n tc level
n-1, the page is moved from level n tc leveli 1 and then rfron
L2vel 1 to level n-1, Clearly, this indirect approach 1is
and2sirable since it requires extra page movement and
consumes a portion of the limited M! <capacity 1in the

process,

There nave been twWwo major obstacles to direct trausfer
in previous systems: (1) interccnnection structure and (2)

synchroanization,

Storige Hierarchy Systeams 72

4, 3.1 Interconnection Structure

For many reasons, some technical and some historical,
mdst contemporary systems are physically structured in a
radial mann=2r, That 1is, there is a central element to the
system, eitner the processor itself o¢r the [frimary store,
and all other storage devices and/or processors are directly
connec-ted to this central element, Except for some pcssible
contrbol signals, thare are no direct data transfer
connactions between the non-central elements, This
structure is, of zcourse, guite consistent with a
non-aierarchical storage management systen. A logical
storaje hierarchy system should be based upon a physically

nierarchical interconn2ction structure,

4, 3.2 Synchronization

As indicat=ad 1in Table 1, storage devices often have
dirrerent timing and transfer rate characteristics. In crder
to accomplis a direac data transfer betveen levels,
synchronization 1s necessary. It may be obvious that a
storage device can not transfer data faster than its rated
parformance, but for many storagye devices, especlally
electromechanical devices, it is not possible to transfer

data slower than its rated speed.,

Storage Hierarchy Systems 13

Based on current technology, this problem cau be
s01lvel, Many of the storage devices are now
non-elactromechanical (i.e., strictly electricai), suca as
tne Cache, Main, and Bulk Stores of Table 1, It 1is guite
f2asible to provide lirect transfer between any of these
devices and any other storage device; this is one reason tor
the radial 1interconnections described above where the Main
Store actad as the common means of providing
synchronization. Using a similar approach, we can allow
direct transfer between electromechanical devices 1f this
transfer is routed through a small and reasonably
inexpansive electrical storage buffer. Femling £L33]

discusses such a device, which he calls a rubber-band mepory

presumably because it "stretches" to aatch the

characteristics of th2 source and destination devices.

In the description above, it is implied that a transfer
up the hierarchy from lavel 2 to the processor (level 0)
consists of two segueatial steps: (1) transfer paye of size
N2 from level 2 to 1level 1, and then (2) extract the
appropriate pdage subset of size N' and transfer it frou
level 1 to the processor (level 0). In general, a transter

from level n to the processor would consist of a series of n

Storije Hierarchy Systems 74

steps. Thus the system page transfer time wculd equal the

SUm of n inter-level page transfer times (€eg ey
Tm12+I'm23+Tpiz+ cue) e Furthermore, for many
clectromechanical storagyge devices, the second access,

reaquirad to forward the page =subset, may experience the
"paxiaum"™ access delay rather tham the "average" (i.e.,
aftar storing the information into the 1level, a comglete
m2chanical revolution may be required to reposition to read

the same information and forward it to the next level).

This inefficiency can te avoided by allowing
information to ba stored into all upper levels
simultaneously. Figure 5 illustrates this mechanism, If
information is to be transferred from M3 to the processor,
43 turns on its output data gate, G3out, whenm 1t is ready to
start and transfers N3 bytes and their corresgcnding lcgical
addresses up the data bus., M2 turns on its input data gate,
s2in, to receive these N3 Dbytes; furthermore, when the
ippropriate N2 bytes needed by M! are detected by &2, it
turns on its output data gate, G2out, and these N2 bytes are

forwarded to ¥4t while being stored in M2, etc,

For example, assume a reference tc lcyical address a is
yenerated by the processor and the corresponding information
153 current stored at level n (and all lower levels, of

course). At the instant that the N1 bytes «containing a are

Storage Hierarchy Systems

Processor
———————————— 1 3

.

Gl) Mt
——
e

Ge M2
—_—

)
[

G3 M3
—_—

Figure 5.
Read Through Structure

75

{£15)

Storage Hierarchy Systenms 76

pla;ai on the data bus by level n, these N! bytes will be
stored into all levals from level n-1 to level 0 (the
processor) siinultaneously. Likewise, the N2 bytes
containing a are simultaneously stored 1into all levels fron
lavel n-1 to level 1, This strategy thus makes 1t appear
that the N! byte paje regquested by the processor is read
through directly to the processor without any delays.

4,4,1 Page Transfer Time

Jsing the read throuyh strategqgy, the page transfer time
to th2 processor i1s actually less than the page transfer
time to the adjacent storage level. For example, if the
raquested information 1is stored in M3, the page traasfer
tim2 to the processor, via read through, is

@39 = T3 3+ NlBJ
wher2as, the page transfer time frcm M3 to M2 is
Im32 = T3 + N3IB3,

Sinc2 Ni<KN3, then Tm39<Tm32,

4.4,2 Availability and Servicability

The read through mechanism descrited above ofters some
iaportant advantages to the availability and serviceability
of th2 storage systeasm, Note that all storage 1levels are

connected to the gatel data bus not directly to each other.,

Storage Hierarchy Systeams 77

If a storage 1level must be removed from the system for
servicing, it is merely necessary tc manually set both Gin
and 3out "on", In this rcase, the intformation is really
"read through"™ this level as if it didn't exist., No other
caanges are needed to any of the other storage levels or the
storije management algorithms although we would e€xpect the

performance to decrease.

4¢5 3tore Behind

Under normal steaiy-state ofperation, all the levels of
the storage hierarchy will be full (except fossibly level
L). Thus, whenever a page is tc be moved into a level, it
15 necessary to remove a current page. If the page selected
for removal has not been changed by means of a processor
Wstora", the new page can be immediately stored 1into the
l2v21l since a copy of the removed page already exists in the
n2xt lower level oif tne naierarchy. If the processor
Ja2nerates a "store" raquest, all 1levels that contain a copy
of th2 information beinyg wmodified must be updated. This can
p2 accomplished in three basic ways: (1) store through, (2)

stor2 replacement, or (3) store behind.

Storage Hierarchy Systenms 718

4,5.,1 Store Through

Under a store through policy, all levels are
simultaneously updated whenever the pfocessor generates a
"store" request. This is the obvious inverse of the read
tarough policy. But, there is a crucial distinction. Under
r2al through, only storage levels 1 through n are used,
wher2 n 1s the high2st level «containing the regquested
information, Store through must wupdate the contents of
levels n through L. [aus, read through speed 1is limited by
1ts slowest level aifacted, level n; store through is always
limitad by the spesd on level L, the slowest level of then
all, If 20% of all processor requests are "stores", the

tea success freguancy function ct level L will be at

Ui

SY
l=ast 20%. Due to its large average access time, level L
will Dbe the dominate portion of the system's effective

access time, T?'.

Store through can be used efficiently only if the
access time of level L is comparable to the access time of
l2avel 1, such as in 31 two-level cache system, In fact, it
is used 1in some cache systems, such as the IBM Systew/370

Mod21s 155 and 165 [52].

Storaje Hierarchy Systeas 79

4.5.2 Store Repldacement

Under a store replacement policy, the processor only
stores into M1, Ir a changyed page 1is later selected tor
r2moval, it 1s then moved to the next 1lower level, M2,
itamediately prior to b2ing replaced. This process aoccurs at
2very level and, eveatually, level L will be updated but
only 3fter the pagye has been selected for removal trom all
the higher levels., Due to the extra delays caused by
apdating changed pages Dbperfore replacement, the effective
1zc2s53 time for fetches is increased., Various versions of
store replacement are used in mcst two-level fpaging systenms
sinca it offers substantially better performance than store

through for slow second level storage devices (€e4., drunms

and disks).,

4.5.3 Store Behind

Store Behind is 1 compromise strateqgy that bridges the
jap between store through and store replacement and ofters
substantially better performance, 1In both strategies above,
the storage system was required tc perform the update
operation at sone spe:ific time (e.g., at the instant of the
"stora® request for store through or at the instant of

ramoval for store replacement). Once the information to be

storel has been accepted by the storage management systen,

Storage Hierarchy Systenms 80

the processor doesn't really care hcw or when the copies in
the storage hierarchy are updated, Store behind takes
alvantage of this da2jree of freedon, Due to the large
iisparity between average access time and transfer rate for
most levels, the maximum data transfer capacity 1s rareily
rzachesd (i.e., at any instant of time, a storage level may
udt have any outstanding requests for service or it may be
waiting for proper positioning to service a pending
raquast)., During these "idle" periods, data can be
transferred down to the next level of the storage hierarchy
without affecting or delayiny any fetch operation. Since
thes2 "jdle" periods are usually very frequent under most
actual circuamstances, thers <c¢an be a continual flow of

cnaanyjad information down through the hierarchy towards level

Although an effective storage management systew should
ittempt to minimize page movement and 1ts asscciated
"housekeeping", there will still be a substantial amcunt of
work required to wmanige the hierarchy. It 1is desirable to
ramov2 as much as possible of the storage manayement ftrom
tne concern of the processor and the programs rubning on the
procassor, including the operating system, There are two

primacry motivations for this cbjective: (1) the stcrage

Storaje hierarchy systeas 51

hieracrchy snould function as an independent component of the
system to elimindat2 any added complexity to the processor or
progjrams, and (2) W2 want to conserve the processor's
computational powers for solving the user's problems ratner
tnan tor "system overhead", In actuality, of course, the
storagje hieracrchy can not be divorced entirely from the rest
of the system, but th2 rewmaining interdependencies should be

minimal,

4,6,1 Distributed Control

In the hierarchical storage system described above, all
storaje management oparations can be determined local to a
single level or, at most, 1in consideration of information
rcoa aeighboriny levels., Thus, it i1s possible toc distribute
tane control of the nierarchy into the levels, this also
facilitates parallel and asynchroncus operation 1in the

hierarchy.

In a comprehensive nmultiple level storage hierarchy, as
illustrated in Tabla2 1, this autcmatic and distributed
control can be accomplisned by usipny two mechanlisms: (1)

processor functions, anl {2) "intelligent" controllers,

Storage Hierarchy Systeams 82

4.6,1.1 Processor Functions

The management of the first storage level must cperate
at speeds comparable to the processor., As a result, it 1s
usuilly necessary to incorporate the first level store and
its associated manajement operations 1into the processor
hardware 1itself, This approach 1s used 1in the 1IBM

System/370 cache systeas [52].

It is often desirable to incorporate the management of
the second storagye 1level also 1into the processor, This
l2vel requires substantial performance to handle the demands
for service from the first storage level, Since 1its
raqyuirements ire not Juite as demanding as the first level,
1t is an 1ideal candidate for ifirmware control, assuming that
the processor 1is microprogrammed. This approach has not been
usel in any current commercial systems, although the
integyrated (i.e., ®icroprogrammed) channels of <certain
pnodels of the IBM System/370 are based wupon similar
concapts, There have been a few experimental systems, Such
as the VENUS System at MITRE, which provides processor
tunctions to essentually manage the payging system via

gicroprograaming.

Storaje Hierarchy Systems 83

4,6,1.2 "Intellijent" Controllers

For the third storage 1level and beyond, the storage
managyement performanc2 requirements are much more wodest
since most of the storage activity should occur at the first
and s2cond levels, For these lower levels, it is possible
to levelop independent storage management ccntrol facilities
for each level, This can be accomplished by extending the
tunctionality of <conventional device <controllers, Some
racant sophisticated iavice controllers are microprogrammed
and are already capable of performing the storage manayement

function [1].

4.6,2 Multiprogramminjg

Jp to now we have tacitly assumed that the grccessor
b2com2s idle whensver it is necessary to fetch information
trom the storage hierarchy. This may be a reasonable policy
for tWo-level cache systems since the processor 1s aever
idle for more than one or two microseconds at a time., Bur,
for paying systems and general multiple level storage
hierarchies, the processor may be 1dled for periods of
nundrads or thousands of microseconds at a time. It 1s
wortnwhile to try to rind useful work for the processor
while the storage hierarchy 1is retrieving the reguested

information,

S5torage Hierarchy Systems sS4

In most <conventional computer systems, processor idle
time is atilized by multiprogramming., This reguires that
trere be multiple progjrams available to be run. Whenever
one program must be dazlayed due to a time-consuming storage
raquest, the processor 1s sWitched to another proyranm,
Under reasonable circuamstances (e.g., Dany programs ready
for 2xecution and moderate load on the storage system), it
1s possible to keep the processcr ccntinually busy. Thus,
tne =2ffectiva system storage access time, T', will very

closely approximate T1,

Unfortunately, the process cf switching executicn froam
one program to anoth2r can result in a considerable amount
of processor overhead, For example, an early version of tne
dultics operating system was reported to require 10
Rilliseconds to switcan programs; typical operating systens
raguicre up to 1 millisecond. The time required to
accomplish this multiprogram switch can be drastically
reduced if the multiprogramming management 1is also
incorporated into th2 processor along with the rirst and
second storaye level management. Although the particular
purposes were different, hardvware supported multiprogramming
nis b2en available on several cowputing systems, such as the

tioneysaell 827 series [46] and nore recently in the Singer

Storaje lilerarchy Systeams 85

System Ten [30]. The less frequently executed operatiny
system functions, such as Jjob scheduling and time-sharing
management alygorithuws, can be supported by the software
operating system as on conventioal systems without adversely

atfecting performance,

4.7 Comments on the Storage Hierarchy System Design

This <chapter has presented the key «concepts of a
ganeral multiple level storagye hierarchy system. Many of
the particular details of the system will reguire
consilerable investigation and experimentation to determine
an optimal implementation. Three important factors are
2xtansively studied in the following chapters: (1) other
pige size considerations, (2) removal alyorithms, and (J)

r212vant models for proyram r2ference behavior.

Storage Hierarchy Systenms 8o

CAAPTER 5,

ANALYSIS OF PAGE SIZE CONSIDERATIONS

5.0 Introduction

Jne of the most important parameters of a storage
anieracrchy system is the page size, the unit of information
transter betwesn two levels ot the hierarchy. In this
chapter, the factors influencing page size are examined from
the device characta2ristics viewpoint and the progran

pshavior viewpoint,

Jdu contemporary two-leveli paging systeas (based upon
two davices similar to devices 2 and 4 of Table 1), the page
sizz 15 usually quite large (typically 403096 bytes for paging
systems) to take advantage of M2's large transter rate to
compensate for its slow access time. Such a large page size
is justified by reliance on the Principle of Locality.
considering the devicas of Table 1 for example, a single
byt2 can be accessed and trausferred Letween H! and M2 1in
about 5 milliseconds whereas 4096 contiguous bytes «can be

tatch2d in 7.8 millis2conds, only 56% more time,

S5torige dierarchy Systems 87

5, 1.1 Page Size Iavestigations

Although payiny systems have Leen used successfully,
tae 2ffect of page slize has become the subject ot increasing
investigation., This interest has been aroused due to several
considerations:

1. It has be2n noted by Denning {[26] that the
utilization of M! is maximized and "page breakage" minimized
by using rather smill pages, such as 200 bytes. 1In
particular, he emphasizes:

"These results are significant ... small pages
permit a great d=2al of compression without 1loss of
efficiency. Small page sizes will yiela significant
improvements in storage utilization ..."

2. The success of cache systems indicates that the

Principle of Locality applies on the micrcscopic scale as

vall as the macroscopic scale c¢f <conventional paginy
systeas.
3. The recent introduction of several new device

tachnologies, such as the "semiccnductor drum" [35] with an
averige access time orf about 100 microseconds, drastically
reduces the benefits ot very large fpage sizes in a paging
systenm,

4, Although most current multilevel systems enploy

only two lavels, this thesis is ccncerned with multiple

Storagje Hierarchy Systeams 88

lavel storage hierarchies (1.e., three c¢f more levels). In
fact, storage systems with six or more levels are gquite
plausible, A deep uniarstanding of the effects of various

paige sizes 1is essential to the development of such systens,

Thus, although there are many reasons fcr consideriag
new page sizes, there is not a ccmplete understanding ot the
impact of such a change. Denning {[26] sums up our current
knowledge as follows:
"T’wo factors primarily influence the choice of page
size: fragmentation and etfficiency of page-transgcrt
operation,"

In this <chapter some other factors of potentially crucial

importance will be discussed.

5.2 Anomalies

Jne of the more intriguing and frustrating aspects of
comnplax systems, such as paging systems, 1s the occurrence
of anomalies (i.e., phenomena that are contrary to "ccamon
s=2nsa"). For example, Belady [10] has shown that certain
storaje manaygement r2aoval algorithms, in particular FIFO
(tirst-in first-out), may actually cause performance to
dacrease as the capacity of M! is increased. This result 1is
contrary to the general belief that "more main memory maxkes

things work out batterv, Thus, one pust exercise

Storage Hierarchy Systeams 89

considerable care when considering “tinkering" With the
param2ters, such as page size, of a multilevel stcraye

system.

'he objective of this chapter is to present and analyze
some anomalies encountered when the page size parameter is

changad in a payging systew,

5.3 The Page sSize Anomaly

For simplicity, let us start by consiaerinyg the efrect
of decreasing the paje size used in a two-level system, S,
from N to N' where ¥' = N/2 1in this new system, S', In
particular, we wish to investigate the e¢ffects upcn the
failure frequencies which are £ and f', respectively. VWe
define the ratio f*'/f to be r, The possible results can be
partitionad into three interesting regions:

1. r < 1.

5.3.1 Case 1: r <1 (£t < f).

This would be a highly desirable result since the
number of page fetch2s is actually decreased. Furthermore,
the time reguired to access and transfer a page of size N!

would be expected to be less than that required fcr the

Parampaters

As sesn by S:

P
1P|
2
Q1
141
FIFO

® & & & o &

As sez2n by s!

. P

* P}
° Q

e il
[|Hl|
s FIFO

Simulation

?1g2 Trace:
Fatch:

M1 Contents:
SO

Fatch:

%Y Contents:

g2sults
F =
F' =
» r =

Storije Hierarchy Systems

o
LY
(=
-
{
-

ta, o, C

oo

Removal

at, bt*, c
6
{ a*, b+,
3

[L TR [1

=]
[
B &
Q
<
Y
s

at bQ- c+ a*l-

x X % %

a b ¢ a
a b cC

* K %

at bt ct ct
at b+ b+

at at

6

3

3/6 = 0.5

a,

}

+*
’

ct+

bt

ct
b+
at

gxa

at, b%, c+

}

ct

o0

ct
bt
at

Figure 6.
mple cf Case 1

90

(£4)

Storaje Hierarchy Systems 91

larger page size N, Figure 6 illustrates am instance of this
cas2. In converting an address trace to a page trace for N,
the logical page addrasses pt and p— are used to represent
the two halves of the page p of size N, Note that when using
a page size of N/2 instead of N, M! actually holds twice 4as

@any paygyes thouyh eacn paygye 1s only half as large.

In the example of Pigure 6, r = 0.5, «hich means that
the number of page tetches was <cut in half by using the
smallar page size N!', This type of result might be expected
from a program that exhibited a rather sparse and
aon-ldocalized reference behavior., Recall that in typical
two-lavel paging systems, a page of size 4096 bytes 1is
fetched even thouyh 1 single reference uses only a few
bytes, Unless the program impediately makes many nore
r2fer2nces to this page, much of it will have been fetched
but not used, lUnder these circumstances, M! might bpe better
utilized by nolding a larger and more diversifled collection

of pajes, even if each payge were smaller,

5.3.2 Case 2: 1 £ < 2 { £ < f* £ 2€f)

his 1is a transitional region, For r = 1, S*' will
perform better than S since the nuwmber of page fetches 1is
the same and the tiwe required foer each fetch 1s less., For r
= 2, 5' will require twice as many page tfetches., This will

usually swamp any paye transfer benefit derived from the

Storije lLierarchy Systenms 92

smallar page size, thus S would perform better., The specitic
point of tramsition, «r', depends largely upon the tinme
raquired to access and transfer a page, T and T

raspectively in S and 3', such That rt' = T/T?.

FPigure 7 illustrites an extreme example of Case 2 wnere
r = 2.0. This means that the number of page fetches was
ioublad by using tne smaller page size N'. This type of
r2salt might be expected from a program that exhibited a

d2nse, localized, and saquential reference behavior.

Intuitively, the r = 2,0 result 1is the ‘"worst" case
51nc2 we ar= being forced to always 1load both the p* apnd p—
nalves of each original page p, thereby 1losing all the
panefits of the smallsar N' page size and incurring twice as
many actual page fiults., This 1intuitive observation 1is

ftalse; r = 2.0 is not the "worst" case,

5. 3.3 Case 3: r > 2 (£ > 2f)

I'his thircd ra2jyion, besides being intuitively
inpossible, 1s clearly undesirable, Since the aumber ot page
fetchas required would be more than dcubled, the perfcrmance
of S' would be undoubtedly worse than S. Depending ujpon the
actual value of r, the periormance cculd be much worse,
Figur2 8 1llustrates 1 reference pattern that produces a

rasult of r = 2,75, This region of operation will be the

Storage lHierarchy systems

Pirameters

» p = a, a4, b, b, c, C
[} } P = 8
* 9 = {a, b, c}
e j2I =3
™ jHry = 2
* FIFO Reamoval
As sea2n by S*':
. p = a¥, a-, b%+, b-, c*, c—
e IP] =6
b ¥ = {a*, a-, b*, b=, c¥, c™ }
e oI =0
[}]Mll =
e FIFO Removal

Simulation

Page Irace: at*t a- b* b~ c+* c—

F2tch: ¥ * *

M¥ Contents: 3 a b b Cc C
a a b b

S'

Fatch: * ¥ x % x ¥

Mt Zoantents: at a- b* b~ ct+ c¢—
at a- b* p— ct

a¥t a- bt b-

at a— bt

R2sults
F = 3
F' = %
r = 6/3 = 2.0

Figqure 7.
Example of Case 2

Storage Hierarchy Systems

b+

ct
b—

at
b+

ct

a,

a~

bt
c~

. p a, b, 1, b, c,
. P} = 11
he Q = {a, b, ¢}
. | Q21 = 3
) Iﬂ‘l = 2
 FIFU Removal
As seen by 5':
. P = a+*, b*, a—-, b—,
. {P1 = 11
4 2 = { a%*, 3=, b*, b-, ct, c~
b 1l = b
. |Ml' = 4
« PFPIFO Removal
Simulation
Paga Trace: at* bt a- b- ct c-
S
Fatch: * % *
41 Contents: a b b b ¢c <cC
a a a b b
Sl
Fatchs x &k &k x k%
4! Contents: a* bt a—- p- c+ c—-
at b+t a— b—- ct
at b+t a- b-
a+ b+ a-
Results
F o= 4
P 11
r = 114 = 2,75

Figure 8.
Example of Case 3

a,

ct

at
bt

c, C

94

(to)

Storaje dierarchy Systems 95

subject of discussion for the remainder of this chapter., we

tormalize this situation by the following existence thecrenm.

THEOREM 1:
There exists a page trace, B, and demand-fetch
FIFO-removal two-level storage systems, S and S', with
page sizes N anl N*'=N/2, respectively, such that the
ratio, r, of tetch fregquency f' to f exceeds 2.
Proof:
By example (Figur=2 a).

G A S e R R mm W S e S e > e W WR 4 N e e R D P R MR TS M S D e M i e S M Wn e . = e TS - .

3,3.4 Other Removal Algorithams

Theorem 1 states the anomaly that decreasing page size
py a factor of two <can cause the page fetch ftreguency to
increase by more than a factecr of two. The two-lievel
de2mand~fetch conditions of Theorem 1 are typical cf most
contzamporary paginy systeuws, But, to put this situaticn into
parspactive, other removal algoritams must be considered.
Due to its simplicity, ine FIFO removal alyorithm was used
in many of the early paging systems. In recent times it has
bzen found that FIF) has certain disturbing pecularities
(e.g., the system's success frequency, s, is not a monotonic
function of primary store size, |M1} [10])., Furtherumore,

other removal algoritanms have been fcund to be empirically

Storige Hierarchy Systems 96

closer approximations to the “optimal" removal algorithnm,
MIN [11], MIN itself is not physically realizable since it
raquires future knowledge, but it can be used as a basis for

parformance comparison with practical algorithams.

Various forms of the "least recently used"® (LRU)
removal alygorithm hive become pogpular in contemporary
5ystenas. Under LRU, thes page selected tor removal from the
primary store 1is the one that bhas nct been referenced for
the longest time (i.e., the least recently used page).
Sapirically, LRU has been found to closely approximate the
partormance of the MoptimalY algorithm for many actuyal
projrams. Furthermore, Mattson et al {63] have studied LRU
and found that it is a member of a general class of removal
algoritams «called "stack algorithms", The class of stack
ilgorithms, as noted by Denning {25], "contains all the
'‘reasonable' algorithas"™, In particular, stack algcrithas
all satisfy an inclusion property that results in well
p2havad characteristics. For example, it has been proven
that all stack algorithms, including LRU, have a success
treju2ncy that is a monotonic function cf primary store size
and 1amune to the FIFO peculariarity observed by BHelady.
Thus, one might be ta2mpted to assume that the page size
anomaly is also a phenomenom unigque to FLFO removal and
would not occur if a "well b=2haved™ removal algorithm, such

15 LRJ, were used. This expectation can be rapidly destroyed

Storije Hierarchy Systeas 97

by observiny Figure 9, wnich is the same system as Figure 38
put with an LRU removil algorithm, In this exdwple, the page
fetch frequency ratio, r, is 2.2 which still exceeds 2., This
r2sult leads us to Theorem 2 and Corollary 2a.
THEJRENM 2:
There exists a page trace, P, and demand-fetch
LiU-removal two-level storage systems, S and S', with
page sizes N ani N'=N/2, respectively, such that the
ratio, r, of fetch frequency f!' to f exceeds <,
Proof:

By example (Figure 9).,

CIROLLARY Za:
3iven a page trace, P, and demand-fetch two-level
storage systems, S and S', with page sizes N and
N'*=N/2, respectively, the use of a "stack" rewmoval
ilgorithn (i.es, an algorithm with the "inclusion
proparty") is not sufficient to guarantee that the

tatio, £, of fetch frequency f* to f will be bounded by

e Em e S M A WD D R L AD M AR R e e D M e e A W D G S D A D e TV W AN S e . S S M -

Storage Hierarchy Systems

Paramz2ters
As sea2n by S:
. p = a, b, 3, b, ¢, ¢,
e P} =11
. Q = {a, b, Cc}
» IQ = 3
N M1y = 2
. LRU Removal
As sean by 3':
. p = at+, bt, a—-, b—, ct
e |P] =11
* 2 = {a*, a-, b%, b,
. 121 = b
[’Mll = i
¢ LRU Removal
simalation
Page Prace: a* bt a- b- ct+ c¢c- bt
EéE:n: * % *
4t Contents: a b a b ¢ ¢ b
a b a b b c
Sl
Fetchs * % %k ok ok ¥k %
4t Contents: at b* a—- b- ct+ c— bt
a¥t bt a- b— ct c-
at bt a— b— ¢t
i+ b+ a- b-
g2suits
F =95
e F' = 11
o ¢t = 11/5 = 2,2

b,

a,

r C7o

ct,

at

at
b+

ct

Figure 9,
Bxample ot Case 3
(for LRU Removal)

c—

a~—
at
b+
c—

a,

.b+'

}

ct

Q

ct
a—
at
b+

c, €

at,

o

c-
Cc*

at

a=,

ct,

98

(t7)

o

Storage dierarchy Systeuas 99

— e e e e e S e . o > — o S e

Phe previous thesorems prove that there exist pagyge
traces that result 1a significantly 1increased paye tetch
frequancies if the pige size is decreased. It is necessary
to consider the 1likelihood of encounteriny such page trace
patterns in actual proyrams. For example, it can be proven
that, as you are reading this sentence, all the molecules of
air 1in the room may suddenly move towards the opposite
corner and cause you to suffocate., If you survived the last
santeace, you have probably deduced that the likelihccd ot

that 2vent is extremely swall, fortunately,.

5.4.1 Simulation Studies

Hatfield [43] and Seligeman [78] have pertormed
experiments that indicate that the page size anomaly 1is very
common, if not inevitable, in actual programs. In boti cases
actual programs were ponitored and their corresgondiny page
tracz2 reference strings were recorded, usuaily on magnetic
tape, Then simulators vere developed that mimickea the
software and hardware of the two-level storage systems then
in us2 or being consiiesred, By supplying the monitored page
traces as inputs to the simulators, the performance cf such
a system can be accurately measured. These simulators were

scrupulously accurate, not just apprcximations. The validity

Storage Hierarchy Systems 100

of these results have been confirmed 1n some cases oy

rinniay the real projrams under a real two-level storage

5.4,2 Hatfield Studies

Hatfield [48] performed studies 1in the hardware
environment of the IBM System/360 Model 67 with programs
ranning under the CP-67/CMS Operating System. The simulated
parformance was measured for various page sizes, N, and
various primary store sizes, |M'}y. In summary, it was
confirmed that certain programs, which were viewed as
axamples of low-density storaygye use, resulted in decreased
paye retch frequency when page size was decreased. But, it
vas observed that tor programs with much greater
localization of heavily used storag=a:

"not only does th2 smaller page size otften dgenerate
n2arly twice as miny page <fetches as the large page
siLze, it often resulted in more than twice the page
tatchas, contrary to our intuiticns."
In particular, the substantially increased page fetch
trequancy appears to be2:
"a characteristic of proyrams which have a high
locality and therefore perform well on systems usinyg
r2location hardware for address translaticn and is

characteristic of those programs in the region of
low paging rate,"®

Storige Hierarchy Systenms 101

In other words, the anomaly 1is most prevalent 1n programs
"sptimized" tfor performance in a two-level stourage systenm

when running under nearly "optimal" conditions!
3, 4.3 Seligman Studies

Whereas Hatfield was concerned with a paging systen
with page sizes in the range from 2048 to 16384 bytes,
Sa2ligman (78] analyzed a proposed cache system with much
smaller page sizes in the range of 8 to 256 bytes., He
obsarved that:

"interestingly, the missing page probability (for
this data) is minimized for a y[page size which
increases slowly with total memory size., Note that
the associative m2mory orgamization, waere page size
2juals one word, is not optimum; tc borrow a phrase
from economics, the marginal wutility of the extra
words fetched in a page is higher than that of those
displaced",

Thus, continual decreising of page size appears to have an

inevitable adverse effa2ct upon system performance.
5.4,4 Other Questions Raised

Now that it aas been shown that the page size ancmaly
is th2oretically possible and likely to occur in practice,
there are several othsr questions of interest, Since it has

b2en proven that the page fetch frequency ratio 1is not

Storaje Hierarchy Systenms 102

bounded by r = 2, what bounds, if any, do exist? Hatfield
iaplicitly raised another questicn by the statement:
"as yet wWwe have b22n unable to prove that there is a
ra2placement algorithm using cnly the past history of

page requests waich cannot generate more than twice
the exceptions with half size pages.”

'ne 3inswers to thes2 questions are the subjects of the

follovwing sections and chapters,

5.5 Bounds on the Page Fetch Freguency katio

It has bpeen shown that the page fetch frejuency ratio
can exceed r = 2, but just now bad can it get? 0Ot egqual
Laportance, what faztors 1influence this bound? These

Juestions will be discussed in this section.,

5.5.1 Cyclic Page Traces

Figures 10 and 11 represent page trace simulaticns for
tdso 3ets of demand-fetch LRU-removal two-level storage
systems with primary store sizes |M1{=2 and M1 })=3,
raspectively., In both crases, it can Le observed that the
pige trace simulated is cyclic with a repeated patterm, Pc.
Ia Figure 10, the page trace consists of the repeated

pattern:

Storije Hierarchy Systenms 103

(£38)
Parameters

. . — a—— -—

As se2n by S:

. P = a, b, 2, ¢, b, a, a, b, ¢, ¢, b, a
° {2}y = 12

. 2 = {a, b, c}

. il =3

'Y ‘Hll = 2

e LRU Renmoval

4s s=22n by S51':

. P = at, b%t, ct, ¢c-, b-, a-, at, b+, ¢c*t, ¢, b—, a-
s |P}] = 12

* 2 = [a*v a-, bfl DT, C" c= }

* QI =6

. |H1‘ = i

e LRU Removal

Simulation
transient steady—state
j == cylle ———=>|€&——= CyCle === |
Page T'race: at b+ c*+ c—- b~ a~ a+ b+ ct c- b~ a-

~

Pa2tch: * kX * * *

4t Contents; a b ¢ ¢ b a a b ¢ ¢ b a
a b b ¢ b b a b b ¢ b

Sl

EEEEh: *x % % kx % ¥k *k &k % k %k x

Mt Zontents: at bt ct z- p— a—- at* bt ¢+t ¢c— b a—
at bt ct+ ¢c— b~ a- at b+t ct c— b

at bt ct c- b— a- at bt ct+t c-

at pt ct ¢c— b- a— at bt c+

Results
For the steady-state cycle:
» F =06 o F =2
PY = 12 . F'* = 6
. r = 12/6 = 2.9 s /r/ = 6/2 = 3.0

Figure 10,
Cyclic Page Trace with M| = 2

Storage Hierarchy Systeas 104

whereas Figure 11 repeats the similar pattern:

Pc = a+ bH+ ¢+ d* 4d- ¢ b—- a—

5.5.,2 5teady State (y>-lic Paygye Traces

Let us consider Figure 10 first, The page fetch ratio,
r, is 2.9 in this casa2, AS noted earlier, the page trace can
b2 supdivided into an initial transient stage, Pt, with a
high page fetcn freguency followed by a steady-state stage,
Ps, with usually a lower page fetch frequency. In Figure 10,
the first Pc cycle contains the entire start-up transient
stage and completely fills all the available space 1in M1,
Thus, the second Pc cycle regresents the start of the
steady-state stage. Furthermore, since the content and page
ordaring of M! 1s exactly the same at the end of the second
cycle as they were at the beginning of that cycle for both S
and S?', the page trace cycle, Pc, can be repeated
continuously with exactly the same results each time for
page fetch reguests and 4! contents. If /r/ is defined to be
the pigye tatch frequency ratio for the first steady-state
pa2riodi, Pc, of a cyclic paye trace, (Pc)*, /r/ 1is also the
page fetch freyuency ratio for the entire steady-state
portion of the page trace defined by the regular expression:

P = PtepPs = EPtes (Pc)*

As the length of the page trace, |P|, Dbecomes large in

Zomparison with the length of the transient stage, |Pt}, the

Storage Hierarchy Systems 105

overall page fetcn frequency ratio, r, asymptotically
approaches the value of the steady-state cycle page tetch
frequency ratio, /r/., 1In Figure 10, ,r/ = 3.0, thus r will
iacrease from 2,0 towards 3.0 as the page trace is
lanjythened by continually repeating the pattern Pc. 1lhus,
the page fetch trequency ratia, r, fcr the page trace

P = (‘a’ bt ¢c* ¢~ pb- a—)%

is bounded by 3.0 when |MY| = 2,

A similar situation is illustrated in Figure 11. In
this example, r = 2.28 and /r/ = 4.0, Thus, the page tetch
trejuancy ratio, r, for the page trace

P = (a*t b* ¢+ dt d- c¢c— b~ a-)=
1s bounded by 4.0 wha2n M| = 3, By generaliziny these

2xaaples, we arrive at Theorem 3 and Corollary 3a.

A —— " ———— ———— — ——— i —— O — —— —— — - ——— 7o e e s e

(th3)

THEORE® 3:

For any two demand-fetch LRU-removal two-level storaye
systems, S5 and 3', with page sizes N and N*=N/2 and
primary store sizes | M| and |MY1|*=2|M!|, respectively,
there exists a cyclic page trace, F = (Pc)*, where |PcC]|
= 2(iMv]|+1), such that the steady-state page fetcn
frequency ratio, /r/, equals |M1|+1,

Proof:

(See below).

Paramaters

As seen by 5:

Storige Hierarchy Systems

106

(£9)

sa~g,at,b*t,ct,d* 44— ,c~,b—,a"

steady—state

cycle —>|

d—- c— b— a—
x
d ¢ b a
c d4d ¢ b
b b d c
L T S
d— ¢~ b~ a—
d+ d—- ¢~ b-
ct d+ 4d- c—-
bt c+ 4+ d-
at bt ct d+
a— at pt ct

— 1

. p = a,b,c,i,d,c,b,a,a,b,c,d,d,c,b,a
e P} =16
e Q = {a, by ¢, d }
° ‘Q' = 4
™ 'ﬂl' = 3
* LRU Removal
As seen by S':
. P = a¥,b+,c+,d%,d-,c~,b"
e |JP] = 16
. Q = { a¥, a-, b%, b-, c¥, c-, 4+, 4™ }
* Q] =8
® |M] = 6
e LRU Removal
simuiation
transient
| € cycle > | €
Pige I'race: at b*t ct d+t d— c— b— a— a+ bt ct 4+
Fatch: x * x % * *
At Contents: a b ¢ 4 d ¢ b a a b c¢ d
a b ¢ ¢ d ¢ b b a b ¢
a b b b 4 ¢ ¢ ¢ a b
S!
¥atoh: ¥ % % %x x %x % % * x % %
Mt Contents: at* b¥ c+ 1t d- ¢~ b— a- at*t b+ ct+ J+
a¥ pt ct+ 4+ d—- ¢c- b— a— at bt ¢t
a¥t b+t c+ 4% d—- ¢c- b~ a— at+ p+
at bt c* d%* d- ¢— b— a- at
a*+ bt ct+ d* 4~ ¢c- b- a-
at b+ ¢+ 4+ d— c— b—
t———————— same
R2sults
For the steady-state cycle:
F =17] F =2
Pt = 16 . F* = 8
r = te/7 = 2,28 « /r/ = 8/2 = 4,0
Figure 11,
Cyclic Page Trace with |[M'] = 3

Storage Hierarchy Systeuas 107

COROLLARY 3a:
For any two demand-fetch LRU-removal two-level storage
systems, S and S', with page sizes & and N'=N/2 and
primary store sizes |M!} and |M}|'=2|M!]|, respectively,
there exists a cyciic page trace, F = (Pc)*, where |Pc|
= 2(IML|+1), such that the overall page fetch frequency
ratio, r, asymptotically approaches the bound |H1{+1 as

|P}] approaches infinity.

. S N S D D G D R s R D T N L e B G W - Y D e i — T - ———— . j——————— -

5.5.3 Proof of Theorea 3

5.5.3.1 Notation and Properties
Assum2 a fixed page size N and primary stcre cf size S1, let
n = tne number of pajes in N1 (ie@sy I = |MY] = S1/N}). It
has b2en shown by Mattson et al ([€3] that 4 demand-ietcn
LRU-removal algorithm has the following properties:
P1, If MY is initially empty, it tills with the first
n distinct pages referenced by the trace,
P2, At any tim=2 t, ®41 contains the n ®most recently
referenced distinct pageé.

P3., a) LRU satisfies the inclusicn property

ML(1) C M2(2) C +os C M1 (m)
where Mt (1) means the contents of Mt 1f n=1,

atc,

Storage Hierarchy Systenms 108

b) At any time t after M! has become filled, there
is a strict removal ordering referred to as the
LRU stack

S = { s(1), 5(2)s eses S(n) }
where

S({(i) = M1 (1) - M1 {i-1) for i = 1, 2, ese, N

and s(n) is the page tc be removed next,

5.5.,3.2 Definition 3-a:

For any integer n, let us consider a page trace, P9,
consisting of the repeated pattern, Pc®, of length {Pc®| =
2(n+1)

P® = PcO[n]*
where
PcP’n} = { PcO2(1), P292(2), see, PcO(20+1), PcO(2n+2) }.

'he P29 (i)s are defined as follows:

t

2(1—1) for i = 1, R} nt+1
Pco (1)

D"'Z, ..oy 2!1*2

i}

Gn+5-21 for i

1]
[39]
|
t

Thus, for n
Pco{2}= (0, 2, 4, 5, 3, 1}

and

Pef 2] { 9¢ ¢, 4, 5, 3, 1, 0, 2, 4, 5, 3, 1, ees }

M'ne cyclic page trace pattern, Pc®°[n], 1is used to define

Storijge Hierarchy Systeas 109

correspondiny cyclic page trace patterns, Pc{n] and Pc'(n],

for S and S*', respectively, These are defined as tollcws =—--

For a given value of n and i = 1, 2, ese, 20¢2
Pc(i) = integer[Pc9(i) /2]
{integer{Pc? (i)/2]h * if rem{ Pc® (i) /2]1=0
Pct {1) = §
{(integer{Pc® {(i)/2])~ if rem{ Pc® (1) /2 =1

Thus, for n 2 -
p(2]1 = (0, 1, 2, 2, 1, 0, O, 1, 2, 2, 1, Y, ees }
P 2] = (0%, 1%+, 2%, 2=, 1—, O0—, 0%, 1%, 2¢, 2—, 1—, 0,
see }
W2 can see that these page traces are idemtical to the page

traces of Figure 8 with appropriate relabeliny (i.e., a=0,

b=1, c=2).

5+5.3.3 Lemma 3-b:
The page references of the set
{ Pc(1), see, Pc(ntl) }
are distinct,
Proof:
Based upon the definitions cf Pc9 n] and Pc[n], we see
that

For i = 1, ees, D+1

Pc(i) integer| PcO (i) /2]

integer(2(i-1) /2]

1]

integer(i-1]

Storage Hierarchy Systeams 110

= i-1,
Thus, each value of Pc(i) for »r =1, ..., n+1 is distinct.

Q.E.DO

5.5.3.4 Lemma 3-c:
The page references oif the set
[Po(n+2), ve., Pc{2n+2) }

are distinct,
Proof:

Based upon the definitions cf Pc°(n] and Pc[n], we see
that

Por i = n+2, ese, 20+2

integer[PcO (i) /2]

it

Pc(i)
= integer[(4+n+5-21) /2]
= jinteger[2n+2+ (1/2)-1i)
= 2n+2-1
Thus, each value of Pc(i) for 1 = D%, esee, 2n+2 1is
distiact,

eEeDs

5,5.3.5 Lemma 3-1:
At the end of each cycle, Pc{n], of the page trace,
P(n), 4! contains the pages, in LRU stack order,

350 = [s%9(1), see, 59(n) }

Storaye Hierarchy Systeuas 111

vhere
s?(j) = J-1 for 7 = 1, sss, 0
Proof:

Since each cycls, Pc{n], c¢f P[n] is of leugth 2n+.
walch is greater that n, the S9 LRU stack consists or tae
last n page references of Pc{n] in reverse order by property
P2, P3, and Lemma 3-c. Thus,

s%{j) = Pc(2n+3-3j)
such that
sO(1) = Pc(2a+2), s9(2) = Pc(2n+1), .ee, S°(n) = Pc(nt+td).
dhen j takes on values { 1, ..., D }, 2n+3-73 takes on values
{ 2n+2, .., n+t+3 }, Thus, for j = 1, e«es», n and based upon

L2ama 3-c:

59 (J) PC (2n+3-j)
= 2n+2- (20+3-7)
= 3_1 .

UeEaDo

5¢45.3.6 Lemma 3-2:

Siven a demand-fetch LRU-removal two-level storage
system, S, with page size N, primary store size 5!
containing n=35'/N pages, the page fetch fuuction, F,
resulting from @2ach steady-state cycle, Pc[n], of the
page trace P uas the value 2 (i.e., F|Pc{n]]=2 during

steady state),

Storage Hierarchy Systems

Proof:
Let us
2n+2,
Reyion 1:
Ragion 23
Region 3:
Region 4:

and compute the

subdivid2 the Pc[n]

number of page fetches in

cycle, which is o©f length

into four regions as follows:

Pcl = { Pc(1), «ees Pc(n) }

Pc2 = { Pc{n+1) }

pPc3 = { Pc(nt2), ees, Pc(2n+1) }
Pc* = { Pc(2n+2) }.»

each region, F1,

F2, F3, F¢, respectively. Since the page trace reqioans are
concat=nated, the paje fetches are cumulative, SO Wwe Know
that
F = F1 + F2 + F3 + P+,
f2yion 1: Pcl = { Pc({1) s 222, Pc(n) }
From Lemma 3-b, we know that

Pc{i) = i-1 i =1, ¢ss, D+l
and ifirom Lemma 3-d, w2 know that at the beginning of each
cycle

s°(3) = j-1 3 =1, «os,y Do
The page references { Pc(1), +.¢4 Pc{n) } are actually the
sa2quance { 9, +.e, n-1 } which is identical to the contents
2f£ M! at the start of the cycle, 5°. Therefore, no pagye

transfers

occur. (F1=0).

Pce =

ih
Lo

R2gion 23

Paga raference Pz (n+1)

1a §°

are reguirel

nor loaded during

although LRU stack reordering may

{ ec(n+l) }
is page n which is nct contained
(in fact, no

region 1 pages were

Storije Hierarchy Systeams 113

fetchad during region 1) ; thus, a page transfer is required
(F2=1) . Using similar techniques as in lemma 3-d, since each
referance of Pc! 1is distinct, the LRU removal stdacx at this
paint is
S = { 8(1), see, s(n) }

vhere

s(j) = pc(n+i1-3) 3= 1, ses, Ds
Page s{n) is selactei ror removal, this is actually page
Pz (n+1-n)=Pc (1) =0, Th2 new LRU stack ordering becones

S(J) = PC(n*Z-j) J = 1' see,y INe

gagion 3: Pc3 = | Pc(n+2), eaes Pc(2n+1) }

Phe page references { Pc(n+2), ..., Pc(2n+1) } are
actually the sequence { n, «s., 1} as shown in the pgroof of
Lamma 3-b, The LRU stack ordering immediately prior to
referance Pc(n+2) is

SO0 = { S(1), ssey S(n) }
which is actually
{ Dy, sae, 1}
since it has been shown earlier that at reference Pc (nt+2)
s(j) = Pc(n+2-3) 3 = 1, sess Do

Thus, as in region 1, every page referenced is already
contained in M! and there are no page transfers required
(E3=0) .
Ra2gion 4: Pc* = { Pc(2n+2) }

Page reference Pz (2n+2) 1is actually page 0. This page

was not contained 1in 599, thus a page transfer is required

Storage Hierarchy Systeas 114

lherefore, we can conclude

H

P[Pc[n]] = P1{Pcl] + F2[Pc2] + F3[{Pc3] + F4[Pc*]

0+ 1+ 0 + 1

2,

Q.E.D,

5.5.3.7 Lemama 3-f:
siven a demand-fetch LikU-removal two-level storage
system, S', with page size N'=N/2, primary store size
_M'] containinyg 2n=[M} J/ (N/2) pages, the page fetch
function, FY', resulting from each steady-state cycle,
Pc'{n], of the page trace P' has the value 2n+2 (i.e.,
F'[Pc'(n]]}=2n+2 Juring steady state).
Proot:
The proof follows directly from the definition of P°*',
the LRU properties, and the previous Lemmas.,
. Each page refer2nce in the cyclic pattern Pc?{n] is
distinct., (This can b2 easily seen from the definition or

proven in a similar manner to Lemmas 3-b and 3-¢).

. Bach cycle is 2Zn+2 references lcng.
. At any time t, paye reference PY(t) = P!'(t-2n-2).
. The primary store, M!, can hold 2n pages in S' siace

NY*=N/2.

Storaige Hlerarchy Systenms 115

] Since the cyclic pattern only repeats after 2n+2 steps
and M* is only 2n pages large, M! always holds the last 2n
page references (since they are distinct).

* Thus, at any time t, page reference P'{t) will not
correspond to any paje currently in M! (i.e., #! nolds
raferences { P'(t-1), +.., P'(t-2n) } and P* (t)=p' (t-2n-2)
is not in that set). As a3 result, a page fetch 1s reguirea
for every paye reference,

] Since there are 2n+2 page referencas per cycle, there
are 2n+2 page fetches required per cycle. Thus, F'=2n+2.

QeEeDo

5+5.3.,8 Theorem 3:
For any two demandi-fetch LRU-removal two-level storage
systems, S and S', witih page sizes N and N'=N/2 and
primary store sizes |[Ml})'=2|jM}}, respectively, there
axists a cyclic page trace, P=(Pc) *, where
|Pci=2(iM2])+1), such that the steady-state paye retch
frequency ratio, /r/, egquals |M1|+1,
Proof:
rhis proof follows trivially from Lemmas 3-e and 3-t.
W2 kaow that for each steady-state <cycle of 5, F=2 (Lemna
3-e)., Also, for each steady-state cycle of S', F=2n+. (Leama
J-f). Since the payge fotch trequency ratio, r, is defined as

£/t or (F'/|P|)/(F/|P|) which equals F'/F, we tind that in

3torije Hierarchy Systenms 110

steady-state
/r/ = F'/F = (2n+42)/2 = n+1l,

CeLobs

5.5.4 Comments on Theorem 3

'he above results expose another facet of the page size
inomaly. As the size >f the primary store, K!, 1s 1ncreased,
the overall page fatch frequency ratio as stated 1in
Corollary 34 also incr2ases. This w@means that thne larger the
primary store that you have, the more "dangerous" the page
siz2 anomaly becomes, For examfgle, in a two-level paging
system based on devizzs 2 and 4 frcm Table 1, (MY} = 128
piges and N = 4096 bytes, if the page size 1is decreased by
half to 2048 bytes, it 1s possible that thne page fetch
tregquancy would incrszase 129-told (a 12,800% increase 1in
paging activity!). Of course, on€ would assume, or at least
nope, that such pathological page trace patterns would be
vary vrare, but we «know that they can exist., It 1is
tatarasting to note that th2 pathclogical pattern shown
i1bove (e+ge., a%* DY ct - b~ a-) corresponds to the expected
referances of nested subroutine calls (i.e., subroutine a
cills subroutine b which calls subroutine ¢, etc., and each
sabroatine, of course, returns tc its caller). This is also
. true of other stack-like program ccnstructs, Such highly

modular program design 1s guite typical and, furthermcre, is

Storaje Hierarchy Systems 117

oft2n explicitly encouraged., In view of Hatfield's finding
where the overall r exceeded 2.0 in m®many programs, 1t 1s
reasonable to assume that there were probably regions 1in
which r was gquite small, possibly below 1.0, which were
countarbalanced by regions with very high values of r. At
present we do not have this particular information
available, but if it were true, performance could be greatly
iaproved by eliminating the high 1« value regions. This

problam will be discussed in the next section.

5.5.5 Bounds for PIFO Removal Algorithm

Theorem 3 applies to LRU removal algorithms and many
other removal algorithms, although these other <cases will
not b2 explicitly proven in this thesis. It 1s interestiny
to consider whether the result of Theorem 3 applies to the
FIFD removal algorithm, Unfortunately, due to the
paculiarities of FIF0O, a simple generalizable cyclic page
trace pattern has not been found, But, isolated examples
have peen found, as illusfrated in Figqure 1.2, that show that
it is possible for r to exceed }M1|+1, This result is stated
in Tha2orem 4, Based upon other examples, it is conjectured

that the r, when FIF) removal is used, may be as high as

Storage Hierarchy Systens 1138

(£10)

faramaters
As seen by 5:

e P =a,c,a,b,b,c,c,a,a,b,b,c,c,a,a,b,b,c,c

e |Pt =19

e 0 =[a, b, ¢}

* |21 =3

. lﬂll:z

» PIPO Removal
As sezn by S':

s P =a%*,c-,a-,b%t,b-,ct,c",at,a",bt,b~,ct,c,at,a",b*,b-,ct,c”
e |P| =19

e 2 ={ at%, a=-, b*, b=, c*, c~ }

* 121 =6

™ 'ﬂl':u

e FIFO Removal

simulation
steady-state
| €——— transient > | <€ cycle —>
Irace: a*+ ¢~ a—~ b* b— c* ¢c— at a— b* b— ¢+ ¢c— at a— b#* b~ ct ¢c—

Fatch: * * * * * *
Mi: a ¢ ¢ b b b b a a a a ¢ ¢ ¢ ¢ b b b b
a a € ¢ © ¢ b b b b a a a a ¢ ¢ ¢ ¢
S|
Fatch:s * % % *x x &% *x x *x *x *x * % % X % %X *x X
“1: at c— a~ b¥ b- c* - a%¥ a— bt b— ¢t c- at a- b+ b~ ct+ c-
at ¢c— a~ b* b— ¢c* ¢c- a* a= b* b— ¢+ ¢c- at a— b+t b— ct
at ¢c- a— b* b- ct c¢c—- a*+ a— bt pb— ct ¢c— at a- bt b—
a¥t ¢c— a~- b¥ b~ c¢c* ¢c—- at a— b+ b—- ¢t ¢c— at a- bH+
I sanpe I
Rasults

—— e

For the steady-state cycle:

F =0 . F =3

F* = 19 . Ft = 12

r = 19/6 = 3,16 » /r/ = 12/3 = 4,0
Figure 12,

Cyclic Pay2 Trace with FIFO Removal

Storije dierarchy Systeas 11y

THEDREM 4:

For any two demand-fetch FIPO-remcval two-level stcorage
systems, S and S', witn page sizes N and N'=N/2 and
certain primary store sizes |[M!| and (MY j'=2jM1|,
respectively, th2re exists a cyclic page trace, P =
Pte (PC)* where |Pc] = 2(iM2+1) (IM2y), such that the
page fetch frequancy ratio, r, exceeds |Mi|+1,

Proof:

By example (Figure 12).

. W D um eGP - D R G D A W A - D . . —— - -

Storage Hierarchy Systens 120

CHAPTER 6,

SPATIAL VS, TEMPORAL LOCALITY MODEL COF PROGRAM BEHAVIOR
6.0 Introduction

Early 1in this thesis it was explained that a major
rationale for multileval stotagé systems is based wupon the
Principle of Locality. Unfortunately, 1locality 1is still a
poorly understood, or at least controversial, phenomenos. In
this chapter some nov2l viewpoints and 1nsights willi be

presented,
6.1 Lypes of Program Reference Lccality

Let us coansider two extreme forms of program reference

l>cality which will be called temporal locality and spatial

5.1.1 Temporal Locality
If the logical addresses { al, a2, ... } are referenced
luring the time interval t-T to t, there 1is a high
probability that these same logical addresses will be
referencad duringy the time interval t to t+T,

lhis behavior can be rationalized by program counstructs

Storage hierarchy Systenms 121

Such as: loops, +trequently used variables, and

frequently used subroutines.

6. 1.2 Spatial Locality
If the logical address a 1s referenced at time t, there
1s a4 high probability that a logical address 1in the
range a-A to a+A will pe referenced at time t+1,
This behavior can be ratiomalized by program constructs
such as: sequential instruction segquencinyg, and linear

jata structures (e.g., arrays).

b. 1.3 General Locality

'he definitions of temporal and spatial locality anove
are Juite extreme, Usually we consider only the general
spatiotemporal properties and define locality as:

Locality

If the logical addresses { at, a2, ,.. } are referenced

during the time interval t-T to t, there 1is a higa

probability that the loygical addresses in the ranges
al-p to at+dA, a2-a to a2+i, ..., will be referenced

Juring thne tiuwe interval t to t+T,

It 1is important to recognize that temporal locality and
spatial locality are indeed the underlying phenomenon and
that the "general locality" is merely a simplifying merging

and blurring of these basic concepts.

Storije Hierarchy Systems 122

de cau begin to understand the factors causing the page
siz2 anomaly by stidying how the various conventional
removal algorithms handle temporal and spatial locality. In
particular, we see, that whereas temporal locality policies
are given =2xplicit attantion, spatial locality policies are
asually handled impiicitly and subtlely. The "least recently
useld", LRU, removal algorithm, for example, 1is very much
concerned about. the temporal aspects of the prcgramts
reference pattern. The spatial aspects are handled as a
by-product of the ract that the demand fetch algorithm must
12ad an entire page (i.e., a spatial region) at a time and
LRU r2moval decisions are based upon these pages. With these
thoughts in mind, w2 can see that decreasing page size
ciusas the conventionail storage management algorithms to
increase thelr sensitivity to temporal locality and decrease
thelr sensitivity to spatial locality. Increasinyg page size,

of course, results in the reverse effect,

6.3 Locality in Actual Programs

Many of the tachniques for improving the locality

bahavior of programs, suca as the method ot automatic

Storige lierarchy Systeas 123

program restructuringy by sSectcr (subroutine) reordering
dascribed by Hatfield and Gerald [47], result 1n both
iacreased temporal and spatial lccality. But, it sSeems that
the r2ordering technijue does, 1in tact, significantly favor
spatial locality since it was noted [47] that:
"the better ocderings not only concentrate
appropriate sectors into pages, but these pages also
niturally cluster into larger units that satisty
nearness requirem2nts on the page level - and
cluster better than do the pages of the other

orderings ... clustering sectors into pages also
clusters pages into larger units,"

An eftective aultilevel storage management system must
tak2 poth temporal and spatial locality into consideration.
As w2 have seen from both Hatfield's and Seligman's results,
n2glecting spatial 1locality can have disasterous results.
Any gjiven program, or portion of a fprogyram's operation, can

nave its reference locality characterized by the two-by-two

matrix:
TEMPORAL
S Low High
P
A Low 1 2
T
I dign 3 4
A
L

Jaadrant 1, low-temporal and low-spatial locality, 1is

Storige Hierarchy Systems 124

lafinitely undesirable for operation in a multilevel storage
system, There have b22n numerous algorithms and programmer
training techniques developed, as mentioned above, to
minimize the number of programs with these poor locality
characteristics., Quadrant 4, high-temporal and high-spatial
i>cality, has traditionaly been the regicn of Dbest
pertormance and is usually the objective of good program
d2siga. Unfortunately, it 1is not always possiklie or
convenient to design programs which attain both high
t2mporal and high spatial 1locality; thus, we find many

projrims operating in quadrants 2 or 3.

Storage management techniques are needed which prcevide
tar more flexibility and robustness for balancing the
systea's sensitivity to temporal and spatial locality. These
algorithms must explicitly consider the spatial localiity of
i program. The tupla?coupling apprcach, described in the
n2xt chapter, is one such technique, It takes advantaye ot
the tamporal 1locality and compactness possible with small
pages characterized by quadrant 2 behavior, yet it adjusts
t> tae spatial locality and clustering characterized by
Juadrant 3 Dbehavior by simulating the removal [policies

associated with large pages.

Storage liierarchy Systeas 125

6.6 Comment on the Paje Size Ancmaly

With this insight, we can now see that the page size
anomaly is not really =ven a function strictly of page size!
Iastead, 1t 1s an 1issue of 1locality, temporal versus

spatial.

Storaje Hierarchy Systeas 126

CHAPTER 7.

SPATIAL REMOVAL STORAGE MANAGEMENT ALGORITHMS

7.0 Iatroduction

As stated earlier in this thesis and noted by Hatfield,
a removal algoritham that would limit the page fetch
frequancy ratio, r, to 2 would be very desirable., In this
section a technique, called the “tuple-coupling approach®,
1s iescribed which, when used in conjunction with
conventional removal algorithms, such as LRU or FIFO,

juarantees that r will not exceed 2,

Ihe basic concept behind the tuple-coupling approach is
extremely simple. First, the two pcrtions, p* and p—, of
2ach original larger page, p, Bust be identifiable (i.e.,
the set of pages of 5' are viewed as a collection of
2-tuples). Second, the removal ordering policies must be
applied to both elem2nts of a tuple (i.e., the tuples are
couplad in reyard to orderinyg decisions) such that a page pt
or p~ of 3' is never ra2moved unless the corresponding page p

of 5 would also have been removed from M', The particular

Storige Hierarchy Systeas 127

implementation of this approach may vary slightly dependinyg
upon the removal alyorithm, e.g., LRU, FIFO, etc., that 1is
to be used., Any removai algecritam to which the
tuple-coupling approach can be incorporated 1is said to be

"tupla-couple-able®,
7.1.1 An Example of LRU Tuple—Coupling

Figure 13 illustrates the application ot the
tuple-coupling approaach to the LRU removal example
previously shown 1in Figure Y. It shculd be noted that, 1in
this -ase, r has indeed been limited to 2 although it had a
vailue of 2,2 when normal LRU removal was used, The reader
shouli carefully compire Figqures 7 and 11 to understand how
the tuple-coupling approach affects the removal algorithm,
The MY contents are identical, of course, for S in both
gexamples, but there are subtle differences in M! contents
tor s*, Each state of M! contents is marked, 1 to 11, in
Figure 13 for referance purposes, Notice that 1in this
implementation of tuple-coupling whenever both halves of a
paye, p* and p—, are in M!, they are always adjacent in the

Ml orlering; compare this with Figure 9.

At page trace step 3 we <can see the first difterence
batse2n Figures 7 and 11, Page a— is reterenced and must be

tatch2d in Pigure 9, it is then placed at the top of the M1

Parameters

P
{P
Q

lQl
inty

s & ® ¢ o O

se2n by s!
P
1P|
Q
1Q]
iMt|

Simalation

Pige TIrace:
3

Fatch:

M1 Contents:
S]

Fatch:

11 Contents:

Results

Example of LRU Removal with Tuple—Cougling

Storagje Hierarchy Systems

T 2
a¥ bt
* %
a b
a
x %
at bt
af
5
10
10/5

b

LRU Removal

’

b,

a-

bt

2

i,

o

r} a

b-
b+
a-
q+

.0

b, ¢, ¢, b,
}

—I b-l C’, C
b+, b, c*,

s e 7 8
ct c- bt a+
* *
c ¢ b a
b b ¢ b
*x % *
c*¥ c bt at
b— ¢+ b- b+
b+t b~ c—- b—
a— bt ct+ c—

Figure 13,

a,

T

c—

LRU Removal with Tuple-Ccupling

a—
at
b+
b~

a,

b+,

}

10
ct

Q

ct
a—

bt

c, C

at,

11

c-
ct

at

(see Fijure 9 for comparison)

a~,

ct,

128

(E11)

c—

Storage Hierarchy Systeas 129

ordering walch becom2s a—-,bt,at., 0On the other nand, in
Figura 13 at step 3, it is noticed that at was already in
M, Thus, when a~ is placed at the top of the M ordering,
at 1s coupled to it resulting in the ordering a—,a+,bt, At
page trace step 7 of Figure 13 we see another interesting
axample of tne tuple-coupling approach. At the previous step
the ordering was

c— ct b~ bt
when the reference to bt+ is made, there 1is nc need to
initiate a fetch sinc2 b* 1s already in M1, The M! ordering
then becomes

b+ b— c— ct
since LRU requires tnat the most recent rererence move to
tae top, Under this tuple-coupling scheme, b— is alsoc moved
toward the top of the ordering tc continue to be adjacent to

bt,

7.1.,2 Implementation of the Tuple-Coupling Approach

It is 1important to note that there are often various
wiys to implement tuple~-coupling. In particular, in the LRU
tuple-coupling alyorithm described above, the 2-tuples,
“nenever both portions were in M1, were arranged to be
aljacant in the M! renoval ordering., The requirement that

n2ithar portion, p* or p—, of a tugle in S' be removed

Storaje Hierarchy Systeas 130

unless the corresponding page of S would have been removed
can be accomplished 1in other ways. For exaaple, the LRU
r2movil stack can be left in its normal ordering, as in
Figur2 9. 1In this case, when 1t 1is necessary to remove a
page Erom S' the bottom page 1is not necessarily the correct
choic2 to satisfy tuple-coupling., There 1is an algorithm
which can scan the LRU stack and select the correct page for
ramoval (in fact, 1t will select, of ccurse, the same page

32lected by the algorithm illustrated in Figure 13).

7.1,3 An Example of FIFO Tuple-Coupling

It is 1interesting to consider the effect of
tuple-coupling upon FIFO removal. Figure 14 illustrates the
application of the tuple-coupling approach to the FIFO
r2moval example previously shown in Figure 6, Once again,
the page fetch frequency ratio, r, which originally was 2.75
his 1ndeed been limitad to 2. The example of Figure 14 does
n>t fully illustrat2 ali the interesting aspects of
taple-coupling upon FIFO removal. In particular, if page pt,
£>r axample, 1is refer=2nced in a page trace and it was not
already in M*, it must be fetched, The M! contents are
reordared as follows:

1. If p— is not currently M, p* is placed at the top

of the FIFO ordering,.

2. If p~ is currently in M1, g+ is placed immediately

Storage Hierarchy Systeams 131

(£12)

As seen by S:

» P = a, b, a, b, ¢, ¢, b, a, a, ¢, ¢
e | P = 11

i 9 = {a, b, c}

* {Qf =3

) ‘MII:Z

s FIFO Removal

As seen by 5¢':

] P = a*, b+, a-, b, c*, ¢c—, b*, at, a-, ct, c~
e |P} = 11

. = { a%¥, a-, b¥, b-, c+, c™ }

* Q) =6

. |42 = 4

o FIFO Removal with Tuple—Coupling

Simalation

Page Prace: at* b+ a- b- ct+ ¢~ bt at a— ct c—

Fatch: x % % *
Mt Contents: a

o
o
(=2
Q
Q
Q
Y
o
oY
[+

b* a—= b- c* ¢~ ¢~ at a— a- a-
at at bt b— ct ct+ ¢c— at at at
b+t a— b* b~ b—- c* ¢c- ¢~ c—

at a— bt bt b~ ct ct+ ct

[+ Y]
+

41 Contents:

Results
[} F = 4
F* = 8
s T = 8/4 = 2,3

Figure 14,
Example of FIFJ Removal with Tuple—Coupling
(see Figure 8 for comparison)

Storage Hierarchy Systems 132

before p- in the logical FIFO crdering
p~'s relative ordering remains unchanged.
lne r=2ason for the second part of this rule can be seen from
the normal FIFO ordering rule which places a page p at the
top only if it were not already in M2, If it were imn K1, it
ramains at its previous crdering position. Under
tuple-coupling, this rule aprplies jointly to the (p*,p)
tiple as stated above, The reader is encouraged to work
taroujh the example of Figure 10 using the tuple-ccupling
approach to illustrate this FIFO ordering phenomenom., The
2ffect of the tupl2-coupling approach 1is summarized 1in

Theorem 5,

(th5)
THEOREM 53

For any two demand-fetch two-level storage systems, S
and S', Wwith pag2 sizes N and N'=N/2, respectively, the
use of the “tuple-coupling" approach tor S* in
conjunction with a remcval algorithm that is
"tuple-couple-abla" is sufficient to guarantee that the
page fetch frequ2ncy ratio, r, cannot exceed the value
2 for all possible page traces, P.

Proof:

{See below),

- R e WY - - W e WD A . —————] - — — - —— - — —— -

Storaje dierarchy Systeams 133

7. 1.4 Proof otf Theorem 5

As described earlier, when an adress trace, A, 1is
appliad to storaye systems S (with page size N) and S' (with
pige size N'=N/2), it can be represented as page traces P
and P!, respectively. At time t!, let us consider a sgecitic
aldress reference, a, whose corresgcnding page references
are p (in S) and p*+ (im S'). In processing this reference
there are four possiblas fetch actions in S and S' depending

upon the current coantent state of primary store, M1l:

‘State‘ page p (S) I page p+ (S')Il F I F* ‘ F'-F l effect

1 in M? in M! v 9 9 r => 1
2 in #41 not in M1t ¢ 1 1 r => >1
3 not in M1 in Mt 1 0 -1 r => <1
4 not in #? not in M1 1 1 0 r => 1

Becall that the page fetch fregquency ratio, r, equals
F'/F. In states 1 and 4 the same action (i.e., no page tetch
ia 1 and a page fetch 1in 4) occurs in both S and S', the
occurrence of these states cause r to tend towards 1. In
state 3, a page fetch 1s required in S but not in S', this
situation, if frequent, will cause r to decrease toward
zero., This is usually the intended result of reducing page
size. Only state 2, in which S' alone requires a page retch,
contributes to an increase in r. Thus, we will concentrate

our amalysis on this particular situation.

Storije Hierarchy Systeams 134

Since state 2 rejuires that page p be in M! at time t1,
if we scan the address trace backwards, there aust be some
previous reference tiame t2 that caused page p (in S) to be
tetchad into Mt (this may have been the only previous
refarance to p or the page p may have been fetched and
rzmovad wmany times), At time t2, there nmust alsoc be a
corresponding referenca to either p— and p+ of S', These two

casas will be considered separately:

Casa2 1: P T 4se P ees P
2' = LN N 4 p— * 8 0 p"
t = * e tz LN BN] tl

This <case merely 1illustrates the fact that it can
ra2gulire two page fetches (for p* and p~) in S!' to tfetch the
same amount of storage as page p in S, If this were the only

case for state 2, r would never exceed 2.

Case 2: g = > 8 @ p L2 B) p
g' = see p" R p+
t = ... t2 .., t1t

In this <case we see that subsequent to reference tz
page p of S and page p* on S' nmust be in M!, Yet at time t1
pige p of S 1s still im M! but page p%* of S' is not,., OUnder
tnese circumstances r can certainly exceed 2, merely making
p- the next referenze will account for 3 fetches in S!?
compared to 1 fetch in S, Furthermore, it is possible that

the references betw2en t2 and tt could be repeated to

Storaige Hierarchy Systems

continually cause fetches for pt in S¢ wi

corcespondinygy fetches required in S, Thus, we see

is precisely the situation that ailows r to exceed

Under <closer analysis, we see that this

ragquires that in S' p* be removed frcm M?! between

~

wher2as in S p remains in M!, In other words, th

situation can only occur if at some time t, p* o

is selected for removal from M! and the correspond

of S 1is not also removed from M!, But, the tupl

algorithm (sees page 125) is "such that a fage p* o

15 naver removed unless the corresponding page p

also have bDbeen remova2d from HIW

Thus,

2liminates the possibility of case 2 and

guaraantees that r cannot exceed 2.

Clearly, the tuple-coupling approach has an

apon tne overall e2tffectiveness of the

algorithm being used and the benefits of the sa

siz2, It 13 obvious that there are certain

patterns (with r less than 2) for which tupl

iacreaises the value of r., On the other hand,

shown, as a simple exercise for the reader, that t

basic

135

thout a4ny
that this

2,

situation
t2 and t!
is general
r p- of §!
ing payge p
e-coupling

r g~ of St

of S would

the tuple-cougpling

therefore

QeEe Do

influence
removal
aller pagye
reference
e-coupling
it can be

he example

Storage Hierarchy Systems 136

of Fijure o retains its low page fetch frequeuncy ratio ot
3.5 even when tuple-coupling is used. In tact,
tuple-coupling may oftan result in the "best of both worlds"
by placing a bound on the page fetch frequency ratio, r, for
high r regions without interfering with the performance of

orijinmally low r regions,

4 program's reference behavior im S*', during a short
intarval of 1its operation, may be <characterized by three
regyioas based wupon ths value of the page fetch freyguency
ratio, r, when tuple-coupling is not used:

1. Sparse reference - small r (e.g., less than 1).

2, Moderate refarence - moderate r (e.9.,, between 1
and 2) .

3. Da2nse reference — high r 2.9., greater than 2).

In ta2 sparse reference region, it is unlikely that both
portions, pt and p-, of a page, p, will be in M}
simultaneously; thus, the tuple-coupling will have minimal
af fect upon performanc2. In the dense reference region, we
have already seen that tuple-coupling prevents extreme
vilues of r. Based upon some recent, though limited,
m2asurcaments, 1t app2ars that in the moderate reference
rzjion tuple-coupling performs about as well as the

non-tuple-coupled algorithums,

Storaje Hierarchy Systeas 137

CHAPTER 8,

DISCUSSION AND CONCLUSIONS

8.0 Lntroduction

Efficient and effective storage management is 1important
to the development of future computer systems. It has been
2s5timated that the storage subsystems account for over 70
of the cost of most contemporary installations and, based
apon present trends, this percentage 1is expected to

increase.

Much more research will ke needed before all the
problsms of automatic storage management are understood aad
the obstacles to effective operation eliminated. This
thesis has solved several open problems and has provided
insight that should lead to the =solution of many amore

problanms,

A detailed discussion of the many tracets ot stcrayge
management 1s present2d in Chapter 2. It also contains a

g2naral discussion of the requirements which a system must

Storage Hierarchy Systems 138

satisty to be effective for the user,

In Chapters 3 and 4 a wmodel for storaygye hierarchy
systess is formalized and an implementation is proposea. The
syst2a's design 1is based upon an crderly and unirors
treatment of the storage levels, Specific techniques to
iaprove performance, sSuch as continuous hierarchy, shadow
storaje, direct trdnsfer, read through, store behind, and
astomitic management, are explained.

In Chapter 5 the "page size ancmaly"™ 1s presented (see
also Hatfield [48]):

"The assumption about virtual memcry systems that as
overhead (time for access and software page
management) decreises page size should be reduced is
not always a yood one, Recent experiments indicate
that larger sizes can provide better performance for
programs that mak2 highly 1localized use of memory
space, "
'nis phenomnenon 1s formalized and a bound on the perfcrmance

1s proven.

In Chapters 6 anil 7 the concept of spatial locality is
introduced and serves as the basis fcr a new storage removal
ilgorithm called "tuple-coupling"™, These concepts are used
td explain the occurrence of the "page size anomaly" 1in
actual systenas, It 1is provem that the tuple-coupling

approach is a sufficiszaut strategy to avoid the occurrence of

Storage Hierarchy Systeams 139

the "page size anomaly" and it cifers potential perfocrmance

improvements for the storage hierarchy systeu,

'he technigques 1ind theorems presented 1n this thesis
provile a much more scientifically sound basis for examininyg
and designingy storaje aierarchy systems than most current ad
hoc approaches., Although there is still a lomg way to go,
development of these formalisms 1s essentlal toc the

aivancing of the "scieance"™ in Computer Scieuce,

8.2 Further dork

There are many ireas touched on by this worK 1n which
guestions remain, One of the most siyniticant 13 1ua the
development and study of other fpossible ‘"spatial locality"
r2moval alygorithnmns in additicn tc the tuple-cougpling
approach studied in this thesis, This is an entirely wide

open 1irea.

Although tuple-coupling is studied extensively in this
thesis, there are still many unanswered guestions, Hcw does
tuple-coupling compare with the class of "stack"™ algorithms
studiad by Mattson 2t al [©3], in particular under what
circumstances, if any, i1s tuple-coupling a stack algorithm?
Likawise, how does tuple-coupling compare with the

theoretically optimal replacement algorithm, called OPT [63]

Storage Hierarchy Systeas 140

or MIN [12])? On a mor2 practical side, how efticiently can a
tuple-coupling algorithm, or other spatial repoval

alyorithms, be implema2nted?

In ordar to ascertain specific procf of the utility and
afficiency of generil storage hierarchies, it will be
n2cessary to actually construct and measure the performance
of such a system or, at least, pertorm more extensive
simulation analysis. Purthermore, we nmust develcp overall
projramming technijues and execution environments that are
aven more amenable to efficient operation in a storage

hierarchy systen.

Many of these questions are currently under
lavestigation, the results will be published later in a NIT

Project MAC Technical Report.

Storije Hierarchy Systems 141

REFERENCES AND BIBLICGRAPHY

Abbreviations used in the references:

CACH

FJCC

IEEE~

IEEE~

JACH

SJC<

(2]

Communications of the ACHM
Fall Joint Cowmputer Conference

Ic IEEE Transactions on Ccmputers

I'EC IELE Transactions on Electronic Computers
Journal of the ACH

Spring Joint Computer Conference

Ahearn, G, R., Y, Dishon, and. R. N. Snively, "Design
Innovations of the IBM 3830 and 2835 Storage Ccntrol
Units", IBM Journal of Research and Development 18, 1
(January 1972), 11-18,

An interestiny article illustrating the wuse of
BiCroprocessors to produce sophisticated and
flexible mass storage control units,

Aho, Alfred V,, Pater J. Denning, and Jeffrey Ullman,
“Principles of Optimal Page Replacement", JACM 13, 1
{January 1971), 80-93,

Presents a model of program behavior based upon
l-order non-stationary Markov processes where
p(xe,u,t) 1is the probability that a reterence to
page x is Jenerated at time t given that P 1is
currently in state u and JU})=1¢1, They are only
able to carry throuyh the analysis for "almost"
stationary O-order Markov models. They dc note
that although "we are able to give only approximate
extensions to the general O-order case ... we
believe that the simplest program model is. a good

Storage Hierarchy Systeams 142

startingy point for the formal 1investigation ot
pajing algorithm behavior." Unfortunately, they do
not provide any justification or empirical evidence
to even substantiate this choice of a model.

i3} Awmdahl, 5. M#,, 3nd L. D. Amdahl, "Fourth-Generatioa"
Hardware", Datamation, (January 1967).,

i{4] Anpacker, W, and >, P, Wong, "Performance Evaluation of
Computer Systeas With Memory Hierarchies", IEEE-IEC
EC-16, b6 (December 1967), 765-773.

(3] Arora, S. R. ahd A, Gallo, "Optimal Sizing, Loading and
Re-loading in a Multi-level Menory Hierarchy System",
SJcc 38, (1974, 337-344,

(6]} Austin, 8. J., "A Dynamic Disc Allocation Algorithm
Designed to Reduce Fragmentation During File
Reloading®, Th2 British Compputer Journal 14, 4
(1971), 378-381,

Presents an 1linteresting file allocation technique
that minimizes the need fcr "page maps" (file maps)
by periodically dumping and reloading all files, in
general daily. The statistics on file usage are
gquite relevant, Of the 5000 files on the systen,
almnost 53s% of the (files were 1 page or less 1in
length (1 page = 512 3é-bit wcrds = 2K bytes). Un
the other hand, these 1 page files consumed only
10% of the spice used. In tfact, file allocation was
rather evenly distributed amcngst files from 1 to
1030 pages in length (i.e,, files of page sizes =
1, 2-3, 4-7, 8-15, ..., 511-1023, consumed about
10» in each range).,

17} Ayling, J. K., "Monolithic Main Memory is Taking Ori",
1971 IEEE Iaternational Convention Digest, (march
1971, 70-71,

(3] B8ard, Y., "Performance Criteria and Measurement for a
Time-Shariny System"™, IBM Systems Jourmal 10, 3
(1971), 193-216,

{9] Batsou, Alan, Say-ming Ju, and David C. Wood,

Storaje Hierarchy Systems 143

"Measurements of Segment Size", CACHM
19706) , 155-159,

13, 3 (March

{10} Belady, L. A., R. A, Nelscn, and G, S. Shedler, "An
Anomaly in Space-Time <Characteristics of Certain
Progyrams Running in a Paging Machine", CACHM 12, ©
(June 1969), 349-353,

11] Belady, L. A. and C, J. Kuehner, "Dynamic Space-Sharing

(12] Belady, L. A.,, "A Study of Replacement Algorithms tor a
Virtual Storage Computer™, IBM Systems Journal 5, <
(1966), 78-101. ‘

t13]) Bell, Gorden T, and David Casasent, "Implementation of
a Buffer Memory 1in Minicceputers"™, Computer Design,
(November 1971), 83-89.

{14] Bensoussan, A.,, C. T, Clingen, and BR. C. Daley, "The
Multics Virtual Memory", Proceedings of the ACM
Second Symposium on Operating System Principles,

Princeton University, (October 20-22, 1969), 30-u42,

.15] Best, Donald T., "The Present and Future of Moviug
Media Memories"™, 1971 IEEE 1International Convention

— - o R e o e s

Digest, (March 1571), 270-271.

[16] Bobeck, Andrew H. and H. E. D. Scovil, "Magnetic
Bubbles", Scientific Americam 224, 6 (June 1971),
78-90.

(1<%}

.17] Camras, Marvin, YInforwation Storage Density", IEE
Spectrum, (July 1965), 98-105.

(18] cashman, M. W., "Technology: 1971" (editorial wuote),
Datamation, (January 13972), 47,

Brief review of significant technical developments

of 1971, Items wentioned include the Texas

Instruments 960A @minicomputer priced at $2850

{$1350 for processor plus $1500 for 4K memory) and

(191

. 20]

L21]

.22]

(23]

Leu]

£ 25]

.26]

(27]

L 28]

Storige Hierarchy Systeams 144

the Intel MCS-4 "cpu on a chip" priced at $66 {(in
quantities of 100 - 999).

Coffman, BE. 6., and L. C. Varian, "Further Experimental
Data on the Behavior «cf Prcgraes in a Pagihg
Enviconament", CACM 11, 5 (July 1968), 471-474,.

considine, James P. and Allan H., Weis, “Establishment
and Maintenanc2 of a Storage Hierarchy for an On-line
Data Base Under TSS/360", FJCC 35, (1969), 433-440,

conti, <., J., D+ H. Gibson, and S. H., Pitkowsky,
"Structural Aspects of the System/360 Model 85: I.
General Organization", IBM Systems Journal 7, 1
(1968), 2-14,

conti, C,
Computer G

J., "Concepts for Buffer Storage", IEEE
roup News, (March 1969), 6-13,

Zook, robert W. 3ind Michael J. Flynn, "System Design ot
a Dynamic Microprocessor%, IEEE-TC C-19, 3 (March
1979) , 213-222.

Dell, darold R.,, M"Design of a High Density Optical Mass
Memory System", Computer Design, (August 1971),
“9"53'

Denninyg, Peter J., "The Working Set Model for Program
Behavior™, CACHNM 11, 5 (May 1968), 323-333.

denniny, Peter J., "Virtual HMemory", Computiang Surveys
2, 3 (September 1970), 153-189,

Jenning, Peter J., "Third Generation Computer Systeas",
Computing Surveys 3, 4 (December 1971), 175-216.

Denninyg, Peter J., "Thrashing: Its Causes and
Prevention", PFJCC 33, (1968), 915-322,

Discusses thrashing and points out interdependency

between processor scCheduling and memory management.

Storije Hierarchy Systenms 145

Jf particular interest, he discusses the affect of
page traverse time T on the efficiency (busyness)
of the ©procassor, He notes that "Reducing T by a
factor of 10 could reduce the memory requiremeunt by
as much as 10, the number cf busy processors beiny
held constant ... or increase by 10 the number or
busy processodcs, the amount of memory being held
constant." He states that the 300,67 at
Carnegie-dellon University repcrted by Fikes et al
{30] confiras these prcjections. [Unfortunately,
the situations are not really analayous, 1n ract,
for the simple <case implied by Denning, F[lkes
comments thit strictly replacing the drum by a
smaller but faster LCS (large core storage)
"yielded only a modest improvement", Major changes
to the system were required to improve performaace,
these <changes may even have improved the drun
version; thus, a scientific comparison can not be
established]. At the end, Denning briefly
speculates on reducing T Lky using a three-level
memory system and possibly using small page sizes
(since access delay is assumed to be minimal for
the 2nd level store), He does not pursue this point
very far in tais paper,

{29] Denning, Peter J,, "Resource Allocation in Multiprocess
Computer Systems", MIT Project MAC Report MAC-TR-50,
Massachusetts Institute of Technology, Cambriage,
Mass., (May 1963).

({30] dickinson, R, V. and W. K. Orr, "System Ten - A New

Approach to Multiprogramming", kagcc 37, (1970),
181-186.

(31]) Durae, Melvia J., Jr., "Pinding Happiness 1in Extended
Core", Datamation, (August 15, 1971), 32-34.

[32] Parr, #illiam W. and +#illiam E. Peisel, "Au Optimum
Disc OJrganization for a Virtual Memory Systea®,
Computer Design, (June 1971), 49-54,

(33] Femling, Don, “Rubber-band Memory", Electronic Design
13, (June 24, 14971), 64-68,

.34} Fetch, G+ C., "Meumory Organization and Hlierarchies of

-

Storage Hierarchy Systems 146

Storage Workshop", Computer Group Neus, (January
1969) , 24-25,

{35] Fields, Stephen, "Silicon Disk Memories Beat Druams",
Electromics, (#ay 24, 1971), 85-86.

[36] Fikes, Richard E£., Hugh C. Lauer, and Albin L. Vareha,
Jr., "Steps Toward a General-Purpose Time-Sharing
System Using Large Capacity Core Storage and
TSs/360", ©Prozczedings of the 23rd ACM |Natigpal

Conference, (1968), 7-18.

737] Finch, Tudor R., "Semiconductcr Memory", 13’1 IEEE
International Conveation Digest, (March 1971),
272-213,

[38] Fotheringham, John, "Dynamic Storage Allocation in the
Atlas Computer Including an Automatic Use of a
Backing Store", CACM 4, 10 (October 1961), 435-436.

An early paper that briefly describes the Atlas
system, Thoujh short, it presents the basic 1ideas
rather clearly. See the paper by Kilburn et al [57]
for a more extensive presentation,

[339] sardner, ¥. Divid, “"Debate Gives Peek at IB#'s
Directioa", Datamation 18, 1 {(January 1972), 58-60.

o —— ———

.40} sentile, Richard B, and Jcseph R. Lucas, Jr., "The
TABLON Mass Storage Network”, sJcc 38, (1971),
345-356.,

{41} 5entile, Richard B. and Robert W. Grove, "Mass Storage
Utility: Considerations for Shared Storage
Applications", LEEE Iransactions oun Magnetics MAG-7,
4 (December 1971), 848-852.

{42] Gertz, Jeffrey Lee, “Hierarchical Associative Memories
for Parallel Computation®, MIT Project MAC Report
MAC-TR-69, Massachusetts Institute of Technology,
Cambridge, Mass,, (June 1970).

(43]

L44]

[45]

L46]

[47]

(48]

Storige Hierarchy Systems 147

5oldbery, Robert P., "“Virtual Machine Systems", MIT
Lincoln Laboritory Technical Memorandun Number
28L-3036, (August 1969),

sreenes, R. A., A. N, Pappalardo, C, W. Marble, G, Q.
Barnett, ™"A System for Clinical Data Managyemeat®,
FJCcc 35, (1969), 297-305,

Suertin, R. L., "Programming in a Paging Environment",
Datamation 18, 2 (February 1972), 48-55,
Discusses projramnming techniques "which reduce the
working set of a progyram or reduce the probability
of reguirinjy page swaps". Primarily discusses
techniques rz2lated to array processing in FOhRTHAN,.

Hatch, Theodors F., Jr., and James B. Geyer,
"Hardware/Software Interaction on the Honeywell Model
8200m", FJCC 33, (19638), 891-9C1.

Describes tas H82J)0 which 1incorporates hardware
controlled multiprogramming of up 8 Job piccesses
plus an axecutive process, The hardware
multiprogramming 1is accomplished by interleaved
instruction execution of the (up to 9) active
processes; there is a separate set of processor
registers for each of the 9 processes. It 1s
claimed that the "horizontal mnultiprogramming",
besides eliminatinyg conventional wmultiprogramming

software ovarhead, also prcvides greater IL/0
throughput, Referenca2 [3C] should be examined tor
an implemantation cf hardware "yerticai

multiprogramming",

datfield, D, J. and J. Gerald, "Program Restructuring
for Virtual Memory", IBM Systems Journal 10, 3
(1971), 168-192.

Hatfield, D. J., "Some Experiments on the Relationship
Between Page Size and Program Access Patteran", IBM
Journal of Research and Development 16, 1 (Jauuary

—— e Y —— - " . . e ey g e

Presents the results of many experiments with page
size and access patterns. Provides much ot the
empirical evidence behind tne "paye size" ancmaly

(49]

Storage Hierarchy Systenms 148

(i.e., decreising paye size by halt can result in a
drastically increased fpaging I/0 rate - sometimes
more than double). These results were based upon
instruction traces of real IBM System/360 programs.

dobbs, L. C., "Preseant and Future State-of-the-Art in
Computer Memories"™, IEEE-TIEC EC-15, 4 (August 1966),
534-550.

Howard, darry, "M2mories: Modern Day 'Musical Chairs'",
EDN/EEE, (August 15, 1971), 23-31,

IBM, "IBM System/360 Time Sharing System, System Logic
Summary, Projranm Logic Manual, Form Number
GY28-2009-2, (June 1970), 17-22,

IBM, "A Guide t> the IBM System/370 Model 165", Fornm
Nuaber GC20-173)3, (June 1970), 19-25.

Jensen, J.,, P, #ondrup, and P. Naur, "A Storage
Allocation Schame for Algcl 60", CACM 4, 10 (October
1961), 4u41-445,

Presents a design whereby the compiler, witn its
run-time support, handle multilevel management oOf
the backiny store with the aid of "hints" from the
programmer., This is an example of one of the many
semi-automatic techniques for storage management
that have be2n used,

Johnson, R. R., "Needed: A Measure for Measure®,
Datamation, {Da2cember 15, 1970), 22-30,

-

Katzan, Harry, Jr., ™Operatingy Systews Architecture",
sJcc 36, (1970), 109-118.

——— e

Katzan, darry Jr., "Storage Hierarchy Systems", SJCC
38, (1971%1), 325-336,

£ilburn, T., D. B, G. Edwards, M., J. Lanigyan, and F. i,
Sumn=2r, "One-level Storage Systems", IEEE-TEC Ec-11,
2 (April 19v2), 223-235,

"60]

(61]

. 03]

[64]

Storage Hierarchy Systeas 149

Lehman, Meir 4, and Jack L. Rosenfeld, "pPerfcrmance of
a Simulated Multiprogramming Systen', FJcc 33,
(1968), 1431-1442,

Lew, Art, "on Optimal Pagination of Prcygraas",
University of Hawaili Information Sciences Report,
Honolulu, Hawaii, ({May 1970C).

Lewis, P, A. W, and P, C, Yue, "Statistical Analysis of
Program Reference Patterns in a Paging Enviroument",
Proceedings of the 1971 1EEE International Computer
Soci2ty Conference, (September 1971), 133-134,

Liptay, J. S., "Structural Aspects ot the System/300
Model 85: II. The Cache", IBM Systems Journal 7, 1
(1968), 15-21,

Martinson, J. R., "Utilization of Virtual Memcry in
Time Sharing System/360", IBM TR53.0001, I3M Systens
Developmrent Division, Yorktown Heights, Ne Y.,

(October 28, 1968).

Mattson, Re. ke, J. Gecsei, D. R. Slutz, and I. L.
Traiger, "Evaluation Techniques for Storage
Hierarchies", IBM Systems Journal 3, < (1970),
78-117,

Mattson, Richard L., "Evaluation of Multilevel
Memories", Memorandum, IBM Research Laboratory, san
Jose, California, 1971.

Presents adiress trace analysis technigues for
two-level m2mory hierarchies (which wuse ™stack"
replacement algorithmes, e.,g., LRU) that are up to
1000 times faster than conventional simulation {see
also reference [63])., He considers multiple classes
(i.e., set-associative constraint), various primary
m2mory sizes and page sizes, and other factors,
such as cost and speed of technologies, A sample
analysis is illustrated, Although it is a powerful
technique, Mattson's analysis described in this
paper and reference (63] is not immediately
applicable to muitiple level memories (i.e.,

(65]

[5¢6]

Storije Hierarchy Systems 150

three-levels or more) if the page size varies and
is subsettad between the levels or if an
“"pnon-stack" replacement algorithm is used, such as
"tuple-coupling®,

Yeade, Robert M., "On Memory Systea Design"™, FJCC 37,
(1979), 33-43. ,

This 1is a very extensive survey of storage
hierarchy systems. Meade presents varicus diagraas
indicating trade-offs between block size, butfer
store size, transfer rates, processor utilization,
etc, His data also illustrates the '"page size
anomaly" although he doespn't explicitly cosmaent
upon 1it., H2 1investigated three level stcrage
hierarchies based upon extending cache systems and
stated that: "By anmalysis 1like that above, the
block size for a third-level should be from one to
eight second-level blocks., Preliminary results
indicate that a 4:1 ratio (256 bytes at the third
level) is best,®

Meade, Robert M4,, "How a Cache Memory Enhances a
Computer's Performance", Electronics, {(January 17,
1972), 58-63,

Yeyer, K. A, anl L. H, Seawright, "A Virtual MNachine
Time-Sharing System", IEM Systeds Jdournal 9, 3
(1970), 199-213.

Morenotf, Edward and John B. Mclean, "Applicatioan of
Level Changing to a Multilevel Storage Orgamization®,
CACM 10, 3 (#arch 1967), 149-154,

Myers, Edith, "de Dreams the Impossible Dream ... OC
Does He?", patamation, (July 1, 1971), 52-53,

O'Neill, Robert W, and Burnett H, Sams, "Preplanned vs.
Dynamic Storaga Allocation Technigques"™, CACM 4, 10
(October 1961), 416-413,

An early discussion that compares and contrasts the
techniques of preplanned and dynamic storage
allocation., Preplanned techniques are based upon
information 2ither provided by the programmer or

(71}

£72]

213]

L74]

(75]

L76]

(77]

(78]

Storaje dierarchy Systems 151

the compiler, Dynamic techniques assume that the
storage allocation is handled primarily at run-tiae
by the operatingy system., More recent debates on
this subject can be found in Denning {26] and Sayre
[(771.

Penny, Samuel Je, Robert Fink, and Margaret
Alston-Garnjost, "Designm of a Very Large Storage
System", FJCC 37, (19703), 45-51.

Ramamoorthy, C, V. and K. 8. Chandy, "Optimizaticn of
Memory Hierarchies in Multiprogrammed Systems", JACHM
17, 3 (July 1970), 426-uu5,

kandell, B, ani C, J. Kuehner, "“Dynamic Stcrage
Allocation Systems", CACM 11, 5 (May 1968), 297-306.
Rector, Robert #., and C. J. Walter, ®"The Fcurth -

Another Generation Gap?", Modern Data, (March 1369),
42‘“80

Presents the problems of designing the next
generation of machines, Briefly discusses the
importance of a memory hierarchy and speculates on
the technolojies that will be available.

Rice, Rex and William R. Smith, ®SYMBOL - A major
Departure Prom Classic Software Dcminated vcon Neumann
Computing Systams", SJCC 38, (1971), 575-587.

Rosin, Robert F., “Ccntempcrary Ccncegts of
Microprogramming and Emulation", Computing Surveys 1,
4 (December 1969), 197-212.

Programs
12, 12

Sayre, D., "Is Automatic *Foldingt' of
Efficient Enoujh to Displace Manual?%", CACH
{December 1969), 656-660.

Seligman, Lawrenc2, "Experimental Data for the Working
Set Model"™, HMIT Project MAC Computation Structures
Group Memo Number 39, Massachusetts Institute of
Technology, Cambrilge, Mass., (March 1968).

Storage Hierarchy Systeas 152

~79] Shahbender, R., "Magnetic Memories - Present Status and
Future Trends", 1971 1IEEE International Convention
Digest, (March 1971), 274-275.

—~md oo o

{30} Shooman, Martin L., "Notes on Computer Hardware,
Software, and 3ystems Keliability®", MIT IAP Seminar:
Computer Architecture, Department of Electrical
Engineering, Cambridge, Mass., (January 7, 1972).

These are ndtes on various asfpects of reliability
that were used as part of an MIT seminar on
computer architecture. In particular, there is a
section on software reliability and the "nature of
bugs", A& few storage systemr related prcblems are
mentioned,

{31] Smith, John L., "Multiprogramming Under a Page on
Demand Strategy", CACM 19, 10 (October 1967),
636-646.,

[32] 5mith, William R. et al, "SYMBOL - A Large Experimental
System Exploring Major Hardware Replacement of
Software", SJCZ 38, (1971), 601-616,

.83] s5olomon, Martin B., Jr., "Economics of Scale and the
IBM System/360", CACM 9, 6 (June 1966), 435-44C,

{84] Sumner, F. H.,, "Iperand Accessing in the MU5 Computer",
Proceedings of the 1371 International Computer
Society Conferance, (September 1971), 119-120,

[35] I'hompson, Steve, Jack A. Morton, and Andrew Bobkeck,
"Memories: Future Storage Techniques", The Electronic
Engineer, (August 1971), 33-39,

.86} varian, L. C. ani B. G. Coffman, "An Empirical Study of
the Behavior of Programs in a Paging Environment",

[37] Aalter, Cloy J., Arline Bohl Walter, and Marilyan Jean
Bohl, "Impact of Fourth Generation Software on
Hardware Desiyn", I1EEE Computer Group News, (July
1968), 1-12,

Storage Hierarchy Systeas 153

{38] W#ilkes, M, V., "Slave Menmories and Dynamic Storage
Allocation®™, IEEE-TEC 14, 2 (april 1965), 270-271.

.39] dilliams, John G., "Large-Core Storaye in Perspective",
Computer Desiga 11, 1 (January 1972), 45-49,

[33] Woolf, Ashby Morefield, "Analysis and Optimizaticn ot
Multiprohrammed Computer Systeas Using Stgorage
Hierarchies", University of Michigan, Ann Arbor,
Michigan, Systems Engineering Laboratory, SEL
Technical Report Number 53, (April 1971).

Storije Hierarchy Systenms 154

83I0GRAPHICAL NOTE

Stuart Elliot Madnick was born in Norcester,
Missachusetts, on July 10, 1944, He attended public schools
there, graduating from Classical High School in HMay, 1962.
H2 =2ntered the Massichusetts Institute of Technolcgy 1in
September, 1962, where he studied Electrical Engineering,
r2ceiving the degree of S.B. {June, 1966), In Deceamber,
1364, he married the former Elthel J. Westerman of Malden,
11sS. They have two children, Howard Jon and Michael
Andrew.

In Septeaber, 1967, he entered the #,I.T. Alfred P.
5loan School of Manajement, where he studied Management
Sciences and Computer Science in conjunction with the M.I.T.
D2partment of Electrical Engineering, receiving the degrees
of S.%., Management, and S.M., Electrical Engineering (June,
1963),

Mr. Madnick join2d the staff of the M.I.T. Electrical
fagin2ering department in September, 1966, as a teaching
iassistant; in July, 1371 he became an Instructor, He has
taught several computer science courses in additionm to
4,1.T.'s principal systems programming course (6.251). 1In
1369 he was a recipient of the Carlton E. Tucker Award for
Excz2llence in Teachinj.

At M.I.T.,, Mr. Madnick has been engaged in various
computer-related projscts for the Student Aid Center, Civil
gnginzering Department, Mechanical Engineering Departaent,
and the Computation Center., In June, 1968, he becane
associated with M.I.T, Project MAC, where his research in
operating system design, computer architecture, programming
languages, and software engineering formed the basis of his
doctoral dissertation,

Mr., Madnick his been a consultant to the 1BM
Zorporation since 1956, He assisted in the development of
the IBM 360/40 and 360/67 Cpy/CHMS Virtual Machine
Time-Sharing projects., During the summer of 1967, he was an
Associate Engineer it the Lockheed Palo Alto Research
Laboratory, where ae designed and implemented the control
@odul2:s for the Lockheed/NASA DIALOG information retrieval
systean,

Storaje Hierarchy Systeas 155

ir. Madnick has consulted to the IBM Cambridge
Scientific Center, the Lock heed Palo Alto Research
Laboratory, the Honeywell Programming Systems Division and
Honeywell Advanced Systems and Technology Organization,
Martin-Marietta Co., Naval Underwater Systems Center, and
INTERCOMP, Inc., on the design of multi-terminal multi-access
computing systeas,

Mr. Madnick is 1 member of Sigma Xi, the Institute of
Electrical and Electronics Engineers (1EEE), and the
Association for Computing Machinery (ACM)., He has been a
raviavwer for the ACM Computing Reviews since 1969.

Publications

. "String Processing Techniygues",
of the ACH, Vol. 10, No. 7, July 1967,

Madnick, S.E., and Moulton, G.A., M"SCEKIPT, An GOnline
Manuscript Processiag System®, 1EEE Transactions on

Engingering Writing and Speech, Vol. EWS-11, No. 2, August
1968,

Madaick, S.E., "Multi-Processor Software Lockout",
Proceadings of the 1968 ACM |Natiomal Conference, August

1968,

Madnick, S.E., "Time-Sharing Systems: Virtual Machines
Concept vs., Conventional Approach", Modern Data Systeas,
vol. Z’ No. 3' HaCCh 1969.

Madnick, S.E., and Alsop, J.W,, "A Modular Apprcach to File
System Design", Progceedings of the 1969 3Spring Joint
computer Conference, Vol. 34, May 1969.

Madnick, S.5., "“MIS - Problems Plus A Solution", Computer
Eorum Report, Vol, 1, No. 4, July 1969.

Madnick, S.E., "Design Strategies fcr File Systems: A
Working Model", File Organization - Selected Papers Fronm

FILE-68, IFIP Administrative Data Processing Groug (14G),
Pablization No. 3, 1Y989Y.

Madnick, S.E., and Alsop, J.W., "A Modular Approach to File
System Design", IAG Quarterly, IFIP Amsterdam, Vol., ¢, No,.
3, 1969,

Madnick, S.£., "What is Microprcgramming?", Proceedings of
the IEEE Computer Conference, September 1971,

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the ML.I.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

CS-TR Scanning Project . _
Document Control Form Date: A/ 1S 1 9€

Report # L<5-TR-{077

Each of the following should be identified by a checkmark:
Originating Department:

[Artificial Intellegence Laboratory (Al)
X Laboratory for Computer Science (LCS)

Document Type:

XTechnical Report (TR) (O Technical Memo (TM)
O other:

Document Information Number of pages: [S6(163-imncEs)

Not to inciude DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
(J Single-sided or [0 Single-sided or
X Double-sided)2[Double-sided
Print type:

[Typewriter [] offsetPress [] Laser Print
(] InkJet Printer KUnknovm [] Other:

Check each if included with document:

¥ pob Form (JQ [J Funding Agent Form [J cCover Page
O spine (0 Printers Notes (] Photo negatives
(J Other:

Page Data:

Blank Pagesey page numben:

Photographs/Tonal Material ey page numbes:

Other (note description/page number).
Description : Page Number:

ImAGE MAQR ! (1156) unit'eo TiTLE 4G J- |55,
UNIED BLANK PACE .
65'7' /éz) S<r/cp TR L) Do D (J\)JTRG\T)S[B)

Scanning Agent Signoff: '
Date Received: _&/ /S IE Date Scanned: _Z 1/ 19¢ Date Returned: i / _f’_ IE

Scanning Agent Signature:; %/‘/\ P/'/</M /]/%/ xéﬂ“/A‘ Rev 6164 DSILCS Document Control Form cstrform ved

MM AR

° . L T S T Y T

SLI 117 1 [IIIHSIHHVI HLY 1

1EA)

il

10 N
|
LT

\\\\\\\“””/////////// \1\\\;:% “m % ”m %
§§§§§& 44”‘ ki £ 2.2
%%//// %‘if\\ii\\\\\\s llie

JlLe

o=

NMA MICROFONT QJKLPYZ

PQRYSDEGUVETOFGBSTHIUNOWXABYZ s

3KLMI2¢ 3
200

ABCDEFGHIJKLMNOPQRSTUVW 10

XYZabcdefghijklmnopgrst]Zi

uvwxyz0123456789 O0OCR-B
0

ABCDEFGHIJKLMNOPQRSTUV "~
WXYZabcdefghi jklmopqr *~
stuvwxyz1234567890PICA s

ABCDEFGHIJKLMNOPQRSTUVWXY?Z
abcdefghijklmnopgrstuvwxyz *°-

(S

1234567890 Elite

aaaaaaaaaaaaaaaaaaaaaaaaaa
abedefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgrstuvwxyz
1234567890 Sportan Medium 8 pt

ABCDEFGHIJKLMNOPQRSTUVWXYZ

IEEE Std 167A-1987

abedefghijkimnopgrstuvwxyz \\\\ //\\ //\;\x
1234567890 Spartan Medium 10 pf FACSIMILE TEST CHART P Jo
tee and printed by AN A
ABCDEFGHIKLMNOPQRSTUVWXYZ [Tk Campany. Cat i accordance win IEFE Sed 167 &> W&
obcdefghiiklmnopq I’SfUVWXyZ [I‘?()ﬁ{ :I‘chl'l l’;o;gidutrc 1‘(l)r Pglcsimilc. Copyright 1987, Institute of //C;\\\
<lectrical an cleetronics b meers
\l 234567890 Spartan Medium 12 pt e)

il

Ninnnnnnnnnnnnnanninmn

nil

123456

[- T TNRYNNY

123456

MESH

65

85

100

110

133

150

HALFTONE WEDGES
I i I I

[SIL IS ENC)

AlIM SCANNER TEST CHART #2
Spectra

ABCDEFGHIJKLMNOPOQRSTUVWXY Zabcdefghijkimnoparstuvwxyz:: ", /280123456789
ABCDEFGHIJKLMNOPQRSTUVWXY Zabcdefghijkimnopgrstuvwxyz;:*,./ 260123456789

ABCDEFGHIJKLMNOPQRSTUVWXY Zabcdefghijkimnopgrstuvwxyz;:**,./?$0123456789
ABCDEFGHIJKLMNOPQRSTUVWXY Zabcdefghijklmnopgrstuvwxyz;:",./?$0123456789

Times Roman
ABCDEFOCHIIKLMNOPQRSTUYWX Y Zabedefghijkbmnopgrstuvwxyz: ", /S0123456 784

ABCDEFGHIUKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz;:™,./?50123456789
ABCDEFGHIJKLMNOPQRSTUVWXY Zabcdefghijklmnopgrstuvwxyz;:™,./?$0123456789

ABCDEFGHIUKLMNOPQRSTUVWXY Zabcedefghijklmnopqrstuvwxyz;:™,./7$0123456789
Century Schoolbook Bold

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijkimnopgrstuywxyzi:",. 280123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijkimnopgrstuvwxyz;:,./?$0123456789

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz;:,./?$0123456789
ABCDEFGHIJ KLMNOPQRSTUVWXYZabcdefghl_]klmnopqrstuvwxyz,. %,./280123456789

News Gothic Bold Reversed

IABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijkimnopgrstuvwxyz;:*../7$0123456789)

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijkimnopqrstuvwxyz;:",./?$0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijkimnopqgrstuvwxyz;:,./?7$0123456789

Bodoni Ttalic

CRCDEFCHIJAIMNOPQRSTU S W XY fubedefghijkinn R0123 106 (Y

ABCDEFGHIJKIMNOPQRSTUVIWX sr/rlbrfitfghljl Imnopgrstuvwxye: " /780123156789
ABCDEFCHIJKLMNOPQRSTUVW X YZabe d(’fghljl. lmnopgrstuvwxyz;:”,. /280123456 789

ABCDEFGHIJKLMNOPQRSTUYV WX YZabedefghijklmnopgrstuvwyeyz;:",. /280 143456789
Greek and Math Symbols

ABTAEEBHIKAMNOIIGPITY OX¥ZaBybebbnuhuvordporyeail ™ I T et =
ABTAEZ GHIKAMNOl[<1>P)ZTY(‘LX\PZaﬁySeéf)nLk)\pvmrd)p(rrumxug F B LT b=

ABTAEZ eHlKAMNoncpPzTYQxWZa,eysegomkmvumpmuwqu+" JEAAATS <P
ABTAEZOHIKAMNOII®PITY QXVZaBydetdnukipvorbporyloxbl=TF"",. /§+ > <P

White

Isolated Characters

e m 1 2 3
4 5 6 7 [}
8 9 o] h I

6543211

A4 Page 6543210

[SENNRINET. Y

Ad Page 6543210

[PENRISENTTY

6513210

