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Abstract 

An honest function is one whose size honestly reflects its computation 
time. In 1969 Meyer and Mccreight proved the "honesty theorem", which says 
that for every t, the t-computable functions are the same as the t'-compu­
table functions for some honest t'. 

Ways of constructing honest functions are considered in detail. It is 
shown that for any t there is an honest t' such that the t-computable 
functions and the t 1 -computable functions are the same, and such that t' 
is arbitrarily large on a dense set of arguments. Moreover any construction 
method satisfying certain natural criteria will (almost) have this property. 

On the other hand it is shown that by relaxing these criteria we 
can guarantee that t' ~ t on a (weak) dense set. We can also guarantee 
that t' will be bounded above by a predetermined recursive function on all 
but finitely many arguments. Finally, we show that in the case where t 
is monotone, t' can also be made monotone. 

We consider the t-computable functions, and order these classes under 
set inclusion as t varies over the recursive functions. We show that given 
any total effective operator ! and any recursive countable partial order R 

there is an r.e. sequence of machine running times T
0

, T1, ••• Tn' ••• 

such that if iRj, then the T. computable functions properly contain the 
J 

F(T.) computable functions, and if i and j are incomparable, then F(T.) > T. 
~ 1 ~ 1 J 
infinitely often and F(T.) > T. infinitely often. 
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Preface 

The three chapters of this thesis can be read independently. 

Chapters two and three are entirely self-contained; no attempt has 

been made to integrate them into a single document. Chapter two 

has been accepted for publication by the Journal of Symbolic Logic. 

It is co-authored by Albert R. Meyer. Chapter three has been 

submitted for publication to the Journal of Computer and System Sciences. 
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Chapter 1 

A Survey of Work on Subrecursive Hierarchies and Subrecursive Degrees 

The definition of the partial recursive functions is easily describable, 

involving merely the µ-operator in addition to the traditional initial 

functions and schemas for developing the primitive recursive functions. 

Moreover the Kleene normal form theorem gives an effecti'Ye syntactic 

presentation of these functions. The recursive functions, those partial 

recursive functions which are total, has no such presentation. In general 

the demonstration that a partial recursive function is total involves a non-

constructive existence proof. 

To avoid this difficulty, subrecursive hierarehias have been eon~ 
. 

structed in an attempt to effectively approximate the class of recursive 

fuu::tions. 

A subr-ecursive hierarchy is a sequence of classes of recursive fuu:tions 

P
0

, P • • • P • • • P • • • where a and a may 1..- finite or infinite l' ' a' ' f3' ' ~ ~ 

ordinals. For OI < p, PO/ 1 P
13

, and the extension of a hierarchy from 0/ 

to a+-1, or from {a } "'N to 0/ (where lim a = 0/ and a is limit ordinal) is . n n... n n 

usually carried out by some uniform effective principle. 

The method of hierarchies has also been applied to certain rich and 

interesting subclasses of the recursive functions. nie goal of such 

hierarchies is to approximate the given class from below with smaller, DK>re 

comprehensible sets of fum:tions. Hopefully such a construction will 

provide insight into the structure and complexity of the given class. 
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We begin by studying w-length hierarchies of the primitive recursive 

functions. We show that these hierarchies are quite successful in that 

they give non-trivial alternative formulations of the primitive recursive 

functions. Moreover there is considerable agreement among the various 

hierarchies, and this agreement may be interpreted to mean that v~rious 

notions of primitive recursive complexity coincide. 

Similar results are obtained for w-hierarchies of the elementary 

functions. 

Next we consider various attempts to build hierarchies of transfinite 

length which exhaust the recursive functions. We discuss at length the 

issue of names for ordinals. Ordinal names must be used to index any trans­

finite hierarchy, and we show how problems with ordinal names has essentially 

ruled out any hope of building a meaningful exhaustive hierarchy of the 

recursive functions. 

The difficulties with building exhaustive hierarchies has led investi­

gators to construct and study "short" transfinite hierarchies which exhaust 

only a portion of the recursive functions. A key issue for such construc­

tions is the selection of "nice" ordinal names to index such hierarchies, 

and this has been done with considerable success, at least for hierarchies 

of length less than or. equal to ~ 0 • 

Finally, we consider subrecursive degrees, corresponding to Turing 

degrees of full recursion theory. This recently revitalized area has begun 

to distinguish itself from the theory of Turing degrees, and has established 

some interesting structural results about subrecursive behavior. 
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Notations and Definitions 

For basic notation from recursive function theory, we follow Rogers (2 ]. 

We denote by < x,y > a 1-1 onto recursive map from N x N-+ N. Associated 

with < > are decodiDg functions TTl' TT
2

, such that z = < TT1 (z), TT2(z) >. 

Let f be any function. Define f(l) (x) = f(x), fn+-1 (x) = f(fn(x)). 

f(n) is the nth-power of i· 

If t is any total function, then the t-computable functions are the 

set of functions computable within t(x) Turing machine steps, for all but 

finitely many arguments. Our Turing machine conventions are those of 

Davis [ ] • 

If f(x0 , ••• xn).= h(g0(x0 , •••, ~), •••, s.<x0 , 

that f is defined from h, g
0

, •••, 8a by composition. 

If f(O, x1, •••, xn) = g(x1, •••, xn), 

••• 1lt)) we say 
n 

then we say that f is defined from g and h by primitive recursion. 

The class of primitive recursive functions is the smallest class of 

functions containing the zero function, the successor function, and the 

n projection functions u1(x1, 

and primitive recursion. 

••• ' x ) = x., which is closed un:ler composition 
n 1 

If g, h, and j belong to some class of functions and f satisfies the 

equations 

f(O,y) = g(Y:), 

f(x+l, y) = h(x, y, f(x,y)) 

f(x,y) C j(x,y), 
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then we say that f is defined by limited recursion from g, h, and j. 
n 

If f(n, x ••• x ) 
' n 

TI g(z, x1 , •••, ~),we say f is defined from 
z=O 

g by limited multiplication. There is a similar scheme for limited summation. 

If f(x1 , •••, xk) = g(y 1 , •••, yn), where each yi equals some 

we say that f is defined from g by explicit transformation. 

x.' 
]_ 

then 

The class of elementary functions E of Kalma~ [77] can be defined as 

the smallest class containing x+y, x•y, and xy which is closed under the 

operations of composition, explicit transformations, and limited recursion. 

We use as an abbreviation for the expression x1 , x
2

, • • • x 
' k. 

Section 1. w-hierarchies of Primitive Recursive Functions 

The primitive recursive functions have been the most widely studied 

subrecursive class, and so it is natural that much of the work on hierarchies 

of recursive functions has centered around classifying these functions. An 

w-hierarchy of primitive recursive functions is an increasing sequence of 

classes of functions P0 , P1, •••, Pk, •••, such that for each k, Pk? Pk+l 

and such that the union of these classes equals the primitive recursive 

functions. If f is primitive recursive, then the least k such that f 8 Pk 

in some sense measures the difficulty of f. As we shall see there are 

many different ways to formulate hierarchies of primitive recursive 

functions, each with its associated concept of difficulty; however, there 

is a high degree of invariance among these concepts, and this invariance 

makes the primitive recursive functions a well understood subrecursive class. 
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Primitive recursive hierarchies have been formulated in several different 

ways. One approach is to consider each class in the hierarchy as a closure 

class. · Each Pk is formed by the application of certain sub-primitive 

recursive closure rules to certain initial functions., usually differing only 

in a single "key" function fk. This is the approach of Gzregorzyk, and 

Axt. Another formulation constructs each class usil:lg some external 

syntactic criterion; for example, one might assign f to Pk if f can 'be 

defined using at most n nested instances of primitive recursion. Axt 

did the initial work in this direction. Yet another approach, proposed by 

Robert Ritchie_, Robbin, Cobham·, and Meyer and Iitchie, is complexity-

theoretic iD nature. f e: Pk in case f is (roughly) ~ computable. 

The fundamental result of this section is that all these approaches 

yield essentially the same hierarchy. 

Gzregorczyk in his 1953 paper [ 41] gives the first formulation of an 

w-hierarchy :of primitive recursive functions. Re defines a sequence of 

rapidly increasing recursive functions f , au! each f is ued to define 
n 1'l 

th 
the n class in the sequence. 

Definition: Define a sequence of functions f:n e: i.2 as follows: 

1. £
0

(x;y) = y+l 

2. f
1 

(x,y) = x+y · 

3. 

4. 

5. 

(x+1)" (y+l) f
2

(x,y) = 

£1*1 (O,y) = f. (y+l, y+l) 
n 
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He defines his sequence of classes of primitive recursive functions 

0 E 1 
E ' ' 

. . . . .. as follows . 

Definition: 
n 

Let E be the smallest class of functions containing as initial 

functions the successor function, the projection functions, and f , and 
n 

closed under the operations of composition, explicit transformation, and 

limited recursion. 

Notice that f 3 is essentially exponentiation, and so E
3 

is the elem-

entary functions. 

An essential feature of any proposed hierarchy is a hierarchy theorem, 

that is, a theorem which demonstrates that the classes of the hierarchy form 

a proper increasing chain. 

Theorem: For all n ~ 0 En J En+l. 

Gzregorczyk's proof of this theorem is complicated by his choice of 

key functions fk. The difficulty in the proof arises because fn+l is not 

defined by a simple primitive recursive scheme, and so a bounded recursion 

argument by itself will not suffice to establish the result. Gzregorczyk 

uses a fairly intricate coding argument to show that for i < n, fi e En; 

this shows that En c En+l for each n. 

The proof that each contairnnent is proper follows from the fact that 

for each n, fn+ 1(x,x) majorizes the one-variable functions of En. 

By first observing that each f is primitive recursive, it is immediate 
n 

that U Enc primitive recursive functions. The next result shows that 
n 

this contairnnent is actually an equality. 
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. n 
U E = primitive recursive functions. 
n 

To prove this Gzregorczyk uses a formulation of the primitive recur-

sive functions due to R.M. Robinson [78]. The important feature of this 

formulation is that primitive recursion is eliminated and is replaced by 

a schema for iteration. It is then not difficult to show by induction on 

the order of a function (where the order of f counts the number of opera-

tions used in the definition of f) that if f is primitive recursive and has 

k+3 order k, then f E: E . 

In an e.u-ly paper Cobham [79], drawing on work of Ritchie [66], 

k considers the Gzregorczyk hierarchy and observe·s that the classes E have 

interesting complexity-theoretic properties. 

. k . k 
Theorem: For k ~ 3 f E: E iff some program P computes f and T E: E , where 

p 

T is the run-time of P iff there is a g E: Ek such that f is g-comi>utable. 
p 

Cobham states his result for k ~ 3 to achieve machine-independence; 

in this form the theorem is true for any device or pr()gramming la~uage 

which can be arithmetized in an elementary-recursive way. 

Meyer and Ritchie [72] exploit this result to give a complexity-

theoretic formulation of the Gzregorczyk hierarchy. We'develop the Meyer-

Ritchie approach here because the ideas involved will be useful in proving 

the equivalenee of various different hierarchies. 

Definition: Given any. f, let E(f), !!!£ fun:tions elementary in .£., be the 
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smallest set containing xY, x+y, x•y, and f, which is closed under composi-

tion, explicit transformation, and limited recursion. 

k th 
Notice that for k ~ 3 E(fk) = E , where fk is the k Gzregorczyk 

function. 

The following simple theorem proves one part of Cobham's result cited 

above. 

Theorem: Let g be any function computable within t(x) steps for each 

argument x. If t E: E ( f) , then g E: E ( £) . 

The proof of this theorem rests on the fact that in any reasonable 

... 
functions 0 (e, x , y) for m ~ 1 such 

m m 
machine model there exist elementary 

that 0 (e, x , y) = the output of the 
m m 

th -
e Turing machine on arguments x , 

m 

if the machine halts within y steps, and 0 otherwise. For every f, 

0 e E(f), and so O (e , x, t(x )) = g e E(f), where e is a machine 
m m g m m g 

which computes g in time t. 

Call a function f elementary-honest if f is h-honest for some elem­

t 
entary-recursive h. The next result is a partial converse to the last 

theorem. 

Theorem: If f is elementary-honest and if g E: E(f), then there is a 

t E: E(f) such that g is t-computable. 

Sunnnarizing these last two results we have that if f is elementary 

honest, then g E: E(f) if and only if g is t-computable for some t E: E(f). 

Classes with this property are called computation-time closed classes. 

t 
See definition 1 of Chapter 2, Section 2. 
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k The size of functions in E for each k plays an important role in 

Gzregorczyk's work. The following simple bounding leema of Meyer and 

Ritchie will yield more precise infonnation on function size for 

Gzregorczyk's classes. 

Bounding lenma: If f is non-decreasing and :2:: 2x and if g e: E(f), then there 

is a constant c such that g{i:) ~ f(c)(max[x1, •••, x ]). n ~- n 

Meyer and Ritchie are now in a position to redefine the Gzregorczyk 

classes. First they note that fog is elementary honest if f and g are, and 

f is at least as large as the identity. Similarly if f is elementary honest 

and non-decreasing, then f(c) is elementary honest. Usi~ these observations 

they construct a Gzregorczyk~like sequence of elementary honest functions 

g , (based on a modification of Gzregorczyk 1s functions due to Ritchie [67]), 
n 

as follows: 

x 
83 = 2 

gn+-1 (x) = g n (x) (1). 

These simple functions can be used instead of Gzregorczyk's functions 

n n 
fk' so that for n :2:: 3~ E = E(gn). Thus for n :2:: 3 the class E is precisely 

the set of functions which are computable within time bounded by some 

fixed iterate of g • 
n 

Gzregorczyk has one other result of interest, and this result leads 

very naturally to another fonnulation of a primitive recursive hierarchy. 
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Definition: Let E be a class of functions. A function F(x,y) is a univ-

ersal function for E if for each x, ~y F(x,y) € E, and for every g e E there 

is an x such that g = ~y F(x,y). 

Theorem: For n ~ 2 En+l contains a universal function for the one-variable 

functions in En. 

An important feature of any hierarchy is the method used for class 

enlargement, the "jump operation" of the hierarchy. One of the weaknesses 

of Gzregorczyk's formulation is the obscurity of his jump operation, and 

the resulting relative difficulty of his hierarchy theorem. 

Axt [13] proposes an w-hierarchy where the jump operation is based 

explicitly on universal functions. To go from class to Pk to class Pk+l 

Axt adds to the initial functions of Pk an enumerating function for Pk. 

Definition: Let S be a set of total functions. We say a function ¢ is 

E
4 

in Q if¢ belongs to the smallest class containing e and f 4 (the 

Gzregorczyk function f4), which is closed under composition, explicit 

transformation, and limited recursion. 

Axt now chooses a particular E
4 

function ef(x,y) such that ef
8

(x,y) 

is a universal function for the set of functions E
4 

in 8. 

Definition: Define e for n ~ 0 as follows: 
n 

eo(x,y) 0 

en+1 (x,y) 
e 

n 
ef (x,y) 
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Axt now defines classes E based on the enumerating functions e · E n n' n 

will be the set of functions E
4 

in e • 
n 

Theorem (Axt Hierarchy Theorem): E
0

1E1 1•••1 En. 

Notice that the proof of this theorem is innnediate, since En+l contains 

the initial functions for En' and by a trivial diagonization, en+l ¢ En. 

Axt is able to show his hierarchy is essentially the same as 

Gzregorczyk's. 

Theorem: For all n ~ 0 En+-4 = E . 
n 

This is a pleasing result. It gives us a surprising alternative for-

mulation of the Gzregorczyk hierarchy. However, Axt's result is less 

significant than one might suspect. The difficulty with his work lies 

with his choice of the universal function ef. It is not hard to show that 

there are a great many possible universal functions ef, each as natural as 

Axt's ef, and each yielding a different hierarchy when used as a jump 

procedure to construct an Axt-like hierarchy. Indeed, the significance 

of his technique is the highly non-invariant character of his jump operation. 

This phenomenon is in sharp contrast to the situation in full recursion 

theory, where the behavior of the jump o~eration ~n Turing degrees does not 

depend on the specific details of the jump definition. 

Axt formulates another w-hierarchy in [14] based on a natural syntactic 

criterion, depth of nesting of primitive recursion. He defines his classes 

K as follows. 
n 
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Definition: 

(i) if f is an initial function, that is if f is the Eero function, 

the successor function, or a projection function, then f E K
0

. 

(ii) if f is defined by composition from h, g 1, •••, gk, and h E Kio' 

g 1 E K. , • • •, gk E K. , then f E K [. \ 0 :"".: . k]. 
i 1 ik max i j J :"".: 

(iii) if f comes from g and h by primitive recursion and g 8 K and 
n ' 

It is immediate that K
0 

J K1 ••• l Kn 1 
recursive functions. 

and the lJ K 
n n 

1 

primitive 

This hierarchy uses no external machinery in its definition, and in 

this sense is perhaps the most naturally formulated hierarchy of any we 

have considered. It turns out that for n ~ 3 En+l Kt although Axt 
n ' 

was unable to show this in his original study. 

Meyer [80) was the first to show that Axt's depth of nesting hierarchy 

and the Gzregorczyk hierarchy eventually coincide. He shows that for 

n-t-1 
n ~ 9, E = K . The best published result to date is due to Schwichten-

n 
n+l 

berg [51], who proves that E = K for n ~ 3. Meyer's proof rests on 
n 

the complexity-theoretic properties of the Gzregorczyk hierarchy which we 

established earlier. 

n+l 
He begins by proving that for n ~ 3 K c E , using an inductive 

n 

argument to show that every function in one class is majorized by some 

function in the other class. This yields the result, since if f appears 

in K by an instance of primitive recursion, then g > f for some g E En-t-
1

, 
n 

tMuller has announced the result for n ~ 2 in the Recursive Function Theory 
Newsletter, No. 5, April 1973. 



-19-

and so f € En+l by an instance of limited recursion with g as bounding 

function. 

n The proof that E c K 1 for sufficiently large n is dealt with using 
n-

explicit complexity-theoretic arguments. 

recursive functions, O (e, x, y) belongs 
m m 

since the running time of f is bounded by 

Since U 
nEN 

K 
n 

exhausts the primitive 

to K for some n
0

• 
I\l-1 

Moreover, 

f . . En some unction in , and hence, 

by the above, by some function t € K , Meyer concludes that f 
no-1 

0 (ef' x, t (X)) € K , where ef is a Godel number for f. He shows that m m m n
0

_
1 

n
0 

~ 9, and thus for sufficiently large n, Kn= En+l. 

This is a rather striking result in that it relates the size f, the 

running time of f, and the syntactic form of f. The same general method 

yields Schwichtenberg's result, although the details of the construction 

of Om in K2 is much more difficult. 

Several investigators have considered syntactically formulated 

hierarchies which are quite similar to the depth of nesting hierarchy. 

Parsons [63] observes that iteration is the feature of primitive recursion 

that increases functional complexity. Using this as a guide, he defines a 

hierarchy based on nested iteration rather than nested primitive recursion. 

With this phenomenon in mind, he builds his classes £p so that functions 

defined by primitive recursion are placed in this class only when p 

p p+l 
nested iterations takes place. He shows that for p ~ 2 £ = E 

Schwichtenberg, [51) and Meyer and Ritchie [58) also build hierarchies 

similar to the depth of nesting hierarchy. 
sim 

They place f € K in case 
n 

f is defined from functions in Ksim by an instance of simultaneous recursion. 
n-1 

They show that for n ~ 2 
n 

E . 
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Meyer and Ritchie 59 ] propose yet another syntactically formulated 

hierarchy. They consider a simplified progrannning language, and they 

measure program difficulty by depth of nesting of LOOP-END pairs. Their 

language consists of five possible types of expressions, (1) Set X to x+l, 

(2) Set X to Y, (3) Set X to zero, (4) LOOP, and (5) END. A sequence of 

instructions is a Loop program when LOOP and END instructions are matched 

like left and right parentheses. LOOP-END pairs affect the normal sequ-

ential flow of the program. If P is a Loop program, and register X contains 

integer x, then "LOOP X, P, END" means that program P is to be executed x 

times before the next instruction (if any) after the END is executed. 

A program hierarchy L is constructed by placing program P in L if 
n n 

P includes LOOP-END pairs nested to depth at most n. A hierarchy of 

functions £ for n ~ 0 is now derived from the L hierarchy: f e £ in 
n n n 

case some P e L computes f. 
n 

Since loop structure and the schema of primitive recursion are very 

similar, a routine inductive argument shows that U 
n 

£ = primitive recursive 
n 

functions. Moreover, Meyer and Ritchie are able to relate their Loop 

hierarchy to Gzregorczyk's by linking the classes l directly to the modified 
n 

Gzregorczyk functions g . They define a sequence of functions h as follows: n n 

x+l if x 0 

x+2 if x ::::: 2 , 
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A routine calculation shows that for k ~ 2, ~ = gk+l" Using the functions 

~ they very elegantly prove the following bounding theorem. 

Theorem: For n ~ 2 f € £ ~ 
n 

f can be computed by some loop program whose 

running time is bounded by h(k) for 
n 

some fixed k. 

This result is almost the same as the bounding lemma which Meyer and 

Ritchie prove for the Gzregorczyk hierarchy. Indeed, it is not hard to 

show that the two results are essentially identical, establishing the 

following theorem: 

Theorem: For n ~ 2, S, = En+l. 
n 

Thus, depth of nesting of loops gives yet another reformulation of 

the Gzregorczyk hierarchy. We now know that loop structure, function size, 

running time, and depth of nesting of primitive recursions all yield 

essentially equivalent notions of complexity for the primitive recursive 

functions. 

Section 2. w-hierarchies of Elementary Functions 

Another important topic of hierarchy research has centered aroung 

W-hierarchies of the elementary functions. Ritchie's work [ 66] was the 

first investigation in this direction. He develops a hierarchy of the 

so called "predictably computable" functions, which he demonstrates to be 

precisely the elementary functions. While complexity theory, and in 

particular space considerations, are intrinsic to his hierarchy, his 

approach is much like Gzregorczyk's in spirit. 

We briefly discuss a variant of Ritchie's hierarchy, due to Herman, 

and we also consider a formulation based on register machines, due to 

Cleave. 
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As in the case of w-hierarchies of primitive recursive functions, the 

hierarchies discussed here are closely related, although in this case they 

turn out to be distinct. 

Ritchie's work yields the following characterization of the elementary 

functions: a function f(~) is elementary if and only if some Turing 

_ 2max(~) 
2'. } n 

machine computes f and uses no more than space 2 for all 

~' where n is some fixed constant which depends on f and which is indepen­

dent of ~· His work is specifically based on one-tape Turing machines with 

binary input and output. Such conventions are significant here since the 

elementary functions are intimately related to the arithmetization of various 

machine models. 
-----

Definition: Let T be any Turing machine. Let GT(x1 , x ) be the number 
n 

of tape squares used by machine T on inputs x
1

, 

these arguments, and undefined otherwise. 

, x , if T converges on 
n 

Ritchie begins by defining F
0

, the base of his hierarchy, to be the 

class of finite automaton computable functions. He shows that this class 

contains the successor function, the constant functions, and the projection 

functions, and is closed under composition and addition of functions. He 

defines his hierarchy as follows: 

Definition: The Ritchie hierarchy. 

1. F
0 

= the finite automaton computable functions. 

2. f € Fi+l in case some machine T computes f and GT < g for some 

g € F .• 
1. 
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Thus f e Fi+l is "predictable computable" in the sense that the space 

needed to compute f is bounded by some function in F .. In a moment we will 
l 

sharpen the notion of predictability by giving explicit upper bounds on the 

space needed to compute f e Fi+l· 

It is easy to prove that F
0 

c F
1 

c ••• c Fn c •••. To show that all 

the contairnnents are proper, Ritchie develops a sequence of functions f
0

, 

f 1 , •••, fk' •••which are similar to the Gzregorczyk functions, and which 

yield canonical estimates on the size of functions in F . 
f (x) k 

Theorem: Let f
0

(x) = x, and let fn+1 (x) = 2 n Then for each n, fn E: F ' n 

Easy inductions prove both claims, and since for strictly increasing g 

2g . . k f "' F maJorizes •g, n+l ~ n" This establishes the Ritchie hierarchy theorem. 

Theorem: For all n ~ 0, Fn J Fn+l" 

Ritchie next establishes that the elementary functions E c U F • He 
n n 

accomplishes this by showing that exponentiation is in F2 , and that explicit 

transformation, limited recursion, and composition do not lead out of the 

F-classes. Finally by carefully analyzing and reworking the Kleene normal 

form Theorem, Ritchie is able to sh"w that every f s U F. is elem­
i 

n 
entary. Thus his hierarchy is precisely a hierarchy of the elementary 

functions. 

In [44] Herman develops a variant of the Ritchie hierarchy, based on 

unary Turing machines. As in the Ritchie formulation, Herman places 

f E: Gi in case some machine T computes f and GT(x
1

, ••• x) < f. 
1 

(K•max(x1 ... x )). 
n i- n 
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By examining carefully the resource needed to convert between binary and 

unary notation, he proves that for all i > 0 Fi 1 Gi+l 7 Fi+l' and thus 

that U 
i 

G. = the elementary functions. 
}_ 

Cleave [81) proposes another method of building hierarchies, based on 

register machines. He fixes a set of functions T, and defines a :E-program 

to be a finite sequence of instructions I(l), 1(2), ... , I(k). Instructions 

may be of two forms: I(j) may be arithmetic, that is, of the form 

F(R1, •••, R) ~ R (For F € :E, apply F to the contents of registers R ••• R , 
m p 1 m 

and place the result in R ); or jump, that is J.(a, ~) (if R. = 1, go to p }_ }_ 

instruction I(a), and otherwise, go to I(~)). He limits his machines by 

specifying a special register J which is decremented by one each time a 

jump instruction is executed. When J = 0, the program halts. 

Definition: A function f is (h-!::) computable (that is, f € (:E)h) if some 

LI-program P computes f at each argument x, with special register J initially 

set to h(x). 

Using this notion of bounded computability, Cleave constructs his 

hierarchy. 

Definition: The Cleave hierarchy. 

1. f € :E0 ~ f € (:E)h for some constant function h 

2. f e :En+-l ~ f € (:E)g for some g €:En· 

For :E (+, x, =} Cleave shows the following: 

Theorem: :Eo r:; :El 1 · · · r:; L: n l and U :E = elementary functions. 
n n 
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In [45), Herman considers the equivalence of the Ritchie and Cleave 

hierarchies. He shows that for I:=[+,=}, U I: =elementary functions, 
n 

n 
and using an induction argument based on Ritchies functions {f } N' he 

n ne: 

Section 3. Transfinite Hierarchies 

In the first part of this chapter we discussed w-hierarchies of two 

well understood, effectively presentable subclasses of the recursive 

functions, the primitive recursive functions, and the elementary functions. 

In this section we discuss various attempts to build natural, effectively 

constructed transfinite hierarchies which are designed to exhaust the 

class of recursive fun::tions in a non-trivial way. The results we con-

sider here are almost without exception, negative. The fundamental 

difficulty with building exhaustive hierarchies is the highly non-in-

variant character of the ordinal names used to index such hierarchies. 

These "nami~" difficulties have led to the formulation of transfinite 

hierarchies with more modest goals, namely, the construction of bier-

archies indexed by apparently "natural" names for a small subset of the 

constructive ordinals, We discuss non-exhaustive hierarchies of this 

type at the end of this section. 

One natural and attractive approach to the problem of constructing 

exhaustive transfinite hierarchies is through ordinal recursion. One 

might formulate such a hierarchy informally as follows: place a function 

f e: Fa for a< w1 (the first non-constructive ordinal), if f can be 
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defined by ordinal recursion over some well ordering ~ $ a involving 

functions in F~ for ~ $ a. By unnested recursion over a well-ordering R of N 

we mean the following: 

Definition: Let R be a well-ordering. Define R to be 

xRa { 
0 otherwise; 

x if xRa, 

Then a function f is defined by ordinal recursion over R (or unnested 

R-recursion), from given functions g
1

, •••, gk if 

f (O) n 

f(a+l) h(a), 

where h(a) has the form p(a, f(q(a) ~ a+l)), and p, q are built up from 

g 1, •••, gk by composition. 

Definition: Let U(R), the unnested R-recursive functions, be the smallest 

class containing + and closed under composition, explicit transformation, 

and ordinal recursion over R. 

The next theorem shows that the proposed hierarchy outlined above 

collapses at the earliest possible stage. The character of the proof 

hints at the close link between the "strength" of a transfinite hierarchy 

and the ordinal names used to index the hierarchy. 

Theorem: Myhill, Routledge [6Q], [SQ], [31] and [32]. Let f be any 

recursive function. Then there exists a recursive well-ordering R 

can be shown to be elementary) of order type w such that f 8 U(R). 
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One proof of this theorem proceeds by constructing R from the running 

time function P for some Turing machine T which computes f. R is built 

with an encoding of P(O), P(l), ••• embedded in it in an R-ordinal 

recursive way. P can be extracted from R in an ordinal recursive way, and, 

using the Kleene T-predicate and P, one shows that f s U(R). 

This is certainly a provacative result; it indicates that if there 

is to be any hope of a successful transfinite hierarchy of the recursive 

functions, then the issue of ordinal names must be treated with considerable 

care. 

With this in mind Kleene [27], proposed a subrecursive hierarchy in 

which classes of functions are attached to the nodes of 0, the Church­

Kleene system of ordinal notations. We assume the reader is familiar 

with O; a readable account of 0 and its properties may be found in 

[ 2' pp. 205-213]. 

Hoping to avoid the difficulties which arise from the Myhill-Roetledge 

result, Kleene restricts 0 by allowing only primitive recursive funda­

mental sequences. He shows in fact that under this restriction 0 still 

names all the ordinals < w
1

• In what follows, we assume 0 is restricted 

in this way. 

Loosely speaking, Kleene's hierarchy starts with the primitive 

recursive functions at the base level, and is built up at successor levels 

by taking an enumerating function for the previous class and forming its 

primitive recursive closure. At limit notations Kleene assigns the 

primitive recursive closure of a function which encodes the enumerating 

functions of the classes named by the fundamental sequence. 
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Definition: The Kleene subrecursive hierarchy. f Let pr (a,b) enumerate 

the functions primitive recursive in f. The enumeration procedure pr 

is uniform in f. Associate a function h with each x € 0 as follows: 
x 

(i) if x 

(ii) if x 

(iii) if x 

1, let h (b,a) = 0 
x 

y hy 
2 , let hx(b,a) = p (b,a) 

r 

z 
3•5 let h (b,a) ~ 

x 

To each x € 0 assign the class of functions P , where P 
x x 

recursive closure of h . 
x 

the primitive 

Let us consider the issues Kleene's hierarchy raises. To be completely 

successful, his (or any similarly formulated) hierarchy should satisfy 

the following properties: 

(i) (uniqueness) For each a< w1, if x, y € 0 and JxJ
0 

= Jyl
0 

(ii) 

(iii) 

a (i.e. if x and y are notations for a) then P = P ; 
x y 

(proper expansion) For each a < w
1

, 
functions; 

(completeness) u 
x€0 

P = ~; and 
x 

ul PX 1- ~' ~he recursive 
Ix o<a 

(iv) The mapping x ~ P should be reasonably constructive, e.g., 
x 

P is uniformly r.e. in x. 
x 

Such a hierarchy would provide considerable information about the 

class of total recursive functions. It would imply (subject to the 

restriction to primitive recursive fundamental sequences) that sub-

recursive hierarchies are ordinal invariant: no matter what choice of 
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names we select, we always generate the same sequence of classes of 

recursive functions. Moreover a hierarchy satisfying the properties 

listed above would provide us with a useful classification technique 

for measuring the complexity of recursive functions. We could identify 

the complexity of a function f with the least ordinal a such that 

lxl
0 

= a and f € P~. This would be a significant measure of function 

complexity, since uniqueness would guarantee that no function f could 

appear at an artificially early level. 

Unfortunately the Kleene hierarchy, and indeed ~ reasonably con-

structive hierarchy built in 0 must fail to satisfy the first three 

criteria. This breakdown means that any transfinite hierarchy of 

recursive functions must depend critically on the choice of ordinal names 

used to index the hierarchy. These negative results have made the aims 

of subrecursive hierarchy theory much more modest, and as we shall see 

much of the recent work on hierarchies is concerned with finding "nice" 

names for sequences of ordinals, and building non-exhaustive hierarchies 

along these paths. 

Axt [12) is the first to consider Kleene's hierarchy. He shows that 

2 
indeed the Kleene hierarchy is unique for a< w • However, he also shows 

non-uniqueness at w
2

: there exist x, y € 0 such that lxl
0 

= IYl
0 

= w2 

but P f P . 
x y 

Feferman [38] considers Kleene's hierarchy in a more general setting, 

and his work reveals a great deal about difficulties involved in building 

successful hierarchies in 0. Feferman proves his results for any 

"primitive recursively expanding hierarchy", that is any hierarchy 
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satisfying five (rather complicated) abstract properties, the most re-

strictive of which specifies that classes at limit notations must contain 

a function which diagonalizes across the classes named by the fundamental 

sequence. 

His first result shows that in a primitively recursively expanding 

hierarchy, and in the Kleene hierarchy in particular, every recursive 

function occurs at a low level. 

Theorem: Let (Pd) de:O be the Kleene subrecursive hierarchy. For any 

f €~ there is a d € o, \dl 0 
2 

w ' such that f e: pd. Moreover for any 

b € 0 there is a d € 0, b <o d and ldl 0 = \bl
0 

+ w
2 

such that f e: Pd. 

Feferman proves his theorem by showing how to encode any recursive 

2 
function into a notation for w • This result shows that for a large class 

of hierarchies, uniqueness must fail. 

In [62), Parikh strengthens Feferman's non-uniqueness result. 

Definition: (Parikh) A recursive transfinite progression of sets of 

functions over 0 (or any suitable subset of O, for example, 0 restricted 

to primitive recursive fundamental sequences) is an r.e. predicate 

C(p, q, a, b) such that 

(i) x e: 0 implies that for any a, (< p,q > I C(p,q,a,x)} is a function 

(ii) 

f • a-., x. l-1 -+ N; and 

If x, y e: o and x <
0 

y, then ex c:j CY, 

and C = (f I ~a(f = f )}. Y a,y 

-------~ 

where C = {f I ~a (f = f )} 
x a,x 
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For such recursive transfinite progressions, of which Kleene's hierarchy 

is certainly an example, Parikh proves the following theorem. 

Theorem: Every recursive transfinite progression of sets of functions is 

w
2
+t non-unique; that is, there exist x, y € O, lxl 0 = 2 

w + 1 such that 

c =I c . 
x y 

Parikh's theorem is proved by methods similar to but simpler than 

those used to prove Feferman's result. The generality of his theorem is 

convincing evidence that transfinite subrecursive hierarchies are highly 

ordinal-name dependent. 

Feferman 'has two other results, which, taken together, give concrete 

information on how dependent the strength of a hierarchy may be on the 

indexing ordinals for the hierarchy. By a path Z in 0 we mean a subset 

of 0 well-ordered by <0 and containing, with any d € Z, all the predecessors 

of d. Let lz! denote the order type of Z. 

Theorem: Let K be any ordinal ~ w1• 

lzl = K + w
3 

for K < w1, andlZ'I = w1 

u 
x€Z 1 

p = it. 
x 

Then there exists paths z, Z' c O, 

for K = Wi, such that U P 
x€Z x 

= 

To prove the theorem with K < w
1

, Feferman enumerates the recursive 

functions (a highly non-constructive procedure), and then, using +0 he 

iterates the techniques of his earlier theorem to obtain all the functions 

b 
.3 

yK+w. For K = w
1

, he enumerates 0 and the recursive functions, and 

he builds Z by alternately obtaining a new function, and then adding (+0) 

the next element in the 0-listing. This result establishes the existence 

3 of "complete" paths of length as short as w , and as long as w1• This 
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is certainly a striking instance of ordinal non-invariance. It also shows 

that proper expansion is an impossiblity, at least for hierarchies of 

the Kleene type. The next result sharpens this phenomenon even further 

by showing that there are "incomplete" paths of length w1• 

Theorem: These exist incomplete paths in 0 of length w
1

• That is, there 

exists a path Z e O, lzl = w
1

, and an f e ~ such that for all d e Z, 

f ¢ Pd. 

This is one of the deepest results in the theory of subrecursive 

hierarchies. The proof of the theorem builds on work done by Feferman 

* and Spector in [ 39), in which a "non-standard" version of O, 0 is 

* studied. 0 is defined inductively as the intersection of all hyper-

arithmetic sets X satisfyil'@ 

(i) 1 8 x 
d d 

if d e X, then 2 e X and d "b* 2 (ii) 

(iii) if cp (n) e X for all n and qJ (n) < * cp (n+l) for all n, 
e e o e 

e * then 3•5 e 0 • 

Interested readers unfamiliar with hyperarithmetic sets and their 

properties should consult [2, pp. 381-402). 

Using this inductive definition, one can construct subrecursive 

hierarchies in O* exactly as one constructs them in O. Moreover, 

* 0 1 0 and for d e O, the class of functions Pd attached to the d-node 

* in 0 is exactly the same as the class Pd in 0 • Feferman and Spector 

show that for any d 8 o* - 0, z = C'(d) n O,(where C'(d) = {x Ix <o* d}) 

is a n; path through 0 of order type w
1

• (For background material 

on rri-sets, the interested reader should consult [ 2, 397-403)). 
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1 * Pi:cking such a TT -path Z in 0, we knmr··there is: a d: e: 0. such· that 
1 

* . .. 
d "sits on top af" Z. Since· the 0 -hierarchy overlay&' the O•hierarchy and 

agrees with the a-hierarchy on a, we kncnF 'that: pd must properly contain 

U P • Renee U P must omit some recursive· fumct:ion,. am the· following 
xe:Z x xez x 
theorem:,. which apPlies to !Bl.'. subrecursiva: hi:erarcliy in a, is therefore 

established: 

Theorem: Let Z be a rri·path through 0 such that· Z =ct (d) n 0 for d e: o*. 

Then there exists f e: IRi such that f /; U' P • 
xE:Z x 

Combining the last two results, we sea. that the exhausti.ve· power of 

a subrec:ursi.ve hierarehy, at least of the KI~ is intimately 

tied·to the ordinal notations used iu. the~ hi~. In shor.t::, these 

results s.ay that there are short (w
3

) complete ht.erar.cMu~ am long (w1) 

incomp_lete· hierarcliies. 

An~ unpublished result of· Mochov.akis (82 l pr:enr:bies stilL. mGre infor• 

mationon the behavior of hierarchies inO;. 

Theorem':· For a e: 0 (or any suitable venion. of O, for· exampl·e;, Kleene' s 

o restrlc'ted to primitive recursive funclanentat s.8quenc:ea.), let A ' -~ N. a 

Then one of the· ·follmri:ng 1'11Ust fail:· 

1. 

2. 

A: = U A is hyperari thmetic; or 
ae:O a 

. 1 . 
P(x,a) =·[a e: 0 and x e: Aa] e: rr

1
; or 

3. For each constructive ordinal ot, U A c; A. 
lxlo< ot x r 
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Properly interpreted, this theorem says that for any hierarchy on 0 

built up in any manner which could possibly be considered constructive, 

if the recursive functions are exhausted at all, they are exhausted by 

some bounded level in 0. 

1 . 
Mochovakis proves his result by considering the n 1-predicate 

Q(x,a) = [[x t A and a = l] or [x E: A and (P(x,a))]J. The uniformization 

theorm [2, p.430] says that there must be a hyperarithmetic function g 

such that Vx Q(x, g(x)); but then the range of g is an unbounded hyper-

arithmetic subset of 0, a contradiction. 

In the case of the Kleene hierarchy, if we set A = [e I Q E: P}, 
a e a 

then (1) and (2) are true, and so (3) must fail. Indeed, we saw for 

2 
Kleene's hierarchy that this failure occurred at w Thus, even if one 

gives up the goal of uniqueness for hierarchies in 0, one must still 

contend with the problem that either the hierarchy will collapse by some 

bounded level, or it will omit some function. 

By what we have just seen, hierarchies in 0 are extremely badly 

behaved. Such hierarchies can still be of use, however, for proving 

theorems about the various methods used in constructing hierarchies. As 

an example of this we consider the Bass-Young hierarchy [70]. This work 

has inspired many of the results in Chapter 2 of this thesis. In what 

follows, the reader is assumed to be familiar with Section 2 of Chapter 2. 

Bass and Young build their hierarchy by starting with some complexity 

class ~(t 1 ), where t
1 

is some sufficiently large recursive function. 
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At successor stages they assign to notation 2x the class :1(t2x), where 

t 2x is obtained from tx by an application of the honesty theorems followed 

by an application of the compression theorem. At limits they apply the 

union theorem of Meyer and Mccreight [~3], [84]. The resulting hierarchy 

is a recursive progression of sets of functions in the sense of Parikh, 

nd . . . 2 1 a so is non-unique at w + . However, Feferman's results do not apply: 

the union theorem insures that a limit class is precisely the union of 

the classes named by the fundamental sequence. In particular, the function 

which diagonalizes across the classes determined by the fundamental 

sequence does not appear in the li111it claas. Indeed, an appeal to the 

speed-up theorem of Blum [ 1 ] and the well-foUndedness of 0 shows that 

no functitm With h-speed-up can appear an;ywhere in the hierarchy. Here 

h E: ~2 , the compression function u&ed to build the hierarchy, is assU:med 

to be momtone in its second argument. Usillg these techniques Bass ·atd 

Young are able to construct a hierarchy on the full g in which every 

4 
function is in the Gzregorczyk class E • 

Bass and Young use Parikh's non-uniqueness result to establish 

several results about inherent irregularities of honesty procedures. 

For example, they prove the following theorem. 

Theorem: For sufficiently large h e: R2 there exist honest functions t 1, 

t 2 such that :1(t1) = :1(t2), but :1(h(x, t 1(x)»+ ~(h(x, t
2
(x))). 

This result and others like it in their paper led directly to our 

work in Chapter 2 on the honesty phenomenon. 
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By what we have just seen, the non-invariant character of ordinal 

notations makes the construction of a meaningful exhaustive hierarchy of 

the recursive functions extremely unlikely. The construction therefore of 

"short" hierarchies which classify only a portion of the recursive functions 

seems to be a more legitmate if more modest goal. 

We survey several approaches to this problem. Hierarchies can be 

built up by unnested and nested ordinal recursion over particularly natural 

well orderings. By restricting attention to such well-orderings one can 

avoid the difficulties inherent in the Myhill-Routledge result. Another 

approach extends existing w-length hierarchies into the transfinite. We 

discuss invariance between these hierarchies. A linearly-ordered Kleene 

hierarchy can be constructed by selecting a nice path in 0 and examining 

the Kleene hierarchy restricted to this set. The results of these investi­

gations show that if one chooses ordinal names with care, then one can 

indeed build interesting and singificant hierarchies of portions of the 

recursive functions. 

We begin by discussing work by Tait [52) relating unnested and nested 

ordinal recursion over a well ordering R of N. Recall that for R a well­

ordering, the function x~y is equal to x if xRy and 0 otherwise. 

Definition: A function f is defined by nested R-recursion over R from 

functions g
1

, • • •, gk if f satisfies 

f(O) n, 

f (a+l) h(a), 
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where h(a) is built up from g
1

, •••, gk and f by composition, but where 

every application off has the form f(~ a+l). 

Definition: The R-nested (ordinal) recursive functions, N(R), is the 

smallest set containing + and closed under the operations of composition, 

explicit transformation, primitive recursion, and nested R-recursion. 

Tait points out that, in the case of unnested R-recursion, computation 

of f(a+l) proceeds in a linear way down a well-ordering until f(O) is reached 

and evaluated. For nested R-recursion, the computation of f(a+l) may lead 

to a computation tre~ and the value of f (a+l) cannot be determined until 

the computations on each path of the tree have been reduced to known functions 

or constants. The comparison o~ th~se two types of recursion lies in the 

analysis of these two fonns of c©mputation. 

·k 
Definition: Let R be a well-ordering. Define R to be the limit of all 

Q'. Q'2 Q' 

polynomials in of the form 
1. + + + n for :::;; w w •al w •a ... w •a ' 

Q' 
2 n n 

* type ) Rj . Q' ~ ... ~ Q'l < R, and al' 
. .. a integers. R has order n-1 ' n 

If R is a recursive well-ordering of N we can assign integers to 
-;, 

polynomials in w of the above form. This assigmnent induces an R ordering 

of N, and it is not hard to show that this ordering is primitive recursive 

in R. 

Definition: Define <
1 

Thus, j< ! 
n 

n 
w 

w 

Q are recursive well-orderings on N. 
n 

Moreover, for each n < and 
n 

'"k 
<. 

n 
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Using tree analysis of nested computaions as a guide, Tait shows 

that for the well-orderings < , nested recursion on < 
1 

is reducible to 
n n+ 

unnested recursion on Q . 
n 

Theorem: For n ~ 0, if f ~ N(< 1) then f s U(Q ). 
n+ n 

Robbin [68) proves the converse of Tait's theorem and puts these 

results in a more hierarchy theoretic framework. He obtains significant 

results about various short hierarchies and their relationship to one 

another. In particular he relates these results to the multiply-recursive 

functions of Peter [10). 

Peter invented the multiply recursive functions after Ackermann 

had shown that nested double recursion (Ackermann's function) leads out 

of the class of nested single recursion definable functions, the primitive 

recursive functions. The function w defined by the equations 

w (o, n) n+l 

wCm+l, O) 

w(m+1, n+l) 

W (m, 1) 

w(m, w(m+l, n)) 

is an example of a "2-recursive" function: the inductive definition is 

done over two arguments, and the computation of w is nested in the sense 

that to compute w(m+l, n+l), one must first evaluate* at other arguments. 

Peter generalizes this to k variables for k ~ 2 and obtains the "k-recursive" 

functions for each k > 0. She considers the k-recursive functions with k 

as a parameter, the so called multiply-recursive functions, and shows by a 

diagonal argument that for each k, the k+l-recursive functions properly 

contain the k-recursive functions. We denote the k-recursive functions by Nk. 
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Robbin's first main theorem relates nested and unnested ordinal 

recursion to the Peter hierarchy. 

Theorem: U(Q ). 
n 

Robbin relates these results to an extended version of the Gzregorczyk 

hierarchy and a linearly ordered portion of the Kleene hierarchy. He deals 

with the problem of ordinal notations by specifying very carefully how 

limit ordinals are to be approached. 

Definition: 
w k+l 

For O! a limit ordinal <W, let O! = w (~+l). Define ~nO!(n) 

such that lim ry(n) 
n 

k+l k 
~to be O!(n) = w ·~+w •n. 

Using this definition Robbin defines a sequence of Gzregorczyk-like 

functions W which are quite similar to the modified Gzregorczyk functions 
O! 

g later introduced by Meyer and Ritchie. 
n 

w 
Definition: For O! < w , define w as follows: 

O! 

1. 

2. 

W 
0 

(x) 

W a+l (x) W (x) ( 1) 
O! 

3. W (x) 
O! 

= W O!(x) (x) for O! a limit ordinal. 

Thew 's provide a natural way to extend the Gzregorczyk hierarchy. 
O! 

w 
Definition: For each O! < w 

the functions elementary in W. 
O! 

define EO! to be E(W ) , that is E O! 
O! 

It is easy to see that a proper hierarchy is established. Robbin 

is able to show that his extended Gzregorczyk hierarchy refines the hier-

archy of multiply recursive functions, and hence also the nested and 

unnested ordinal recursion hierarchies. 
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For a< ~' EQ' 1 E~; moreover, for each k ~ = ~ 
Cl'<W 

E . 
Q' 

Rbbbin1 ~ proof uses ideas which were employed later in the Meyer-

Ritchie account of the Gzregorczyk hierarchy. He proves a bounding lemma 

relating the size of the lil 's to the multiply-recursive functions, and a 
Q' 

key step in his proof is an appeal to the honesty of the functions W 
Q' 

We remarked earlier that the 1-recursive functions of Peter are the 

primitive recursive functions. If f(x) = g(x)(l), we say that f is obtained 

from g by 1-fold iteration, and we can generate the primitive recursive 

functions by using this iteration scheme instead of the schema for primitive 

recursion. Robbin extends this equivalence, showing that the k-recursive 

functions can be obtained by replacing the schema for k-recursion with a 

schema for k-fold iteration, a generalization of 1-fold iteration. 

Using k-fold iteration, Robbin gives an analysis of a Kleene-type 

w 
w -hierarchy in terms of the multiply-recursive functions. He defines his 

hierarchy as Kleene does, but he chooses a single path through 0 out to 

w 
w , the path determined by his a(n) fundamental sequences. 

w 
Theorem: Let p ' Q' < w be the Kleene subrecursive hierarchy restricted 

Q' 

to the 0-path determined by the a(n) fundamental sequences. Then for 

n ~ 1, N u 1 p • n n- ct 
ot<W 

Robbin's work is an excellent example of how short hierarchies can 

yield information about various notions of difficulty for subclasses of 

the recursive functions. His results relate nested and unnested ordinal 

recursion to the multiply-recursive functions, an~ through the extended 

Gzregorczyk hierarchy, to the actual size of functions. 
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Earlier we discussed a construction of Cleave' s which yielded an 

w-hierarchy of the elementary functions. In the same paper Cleave extends 

2 
his hierarchy to w , aDi shows that the resulting hierarchy exhausts the 

primitive recursive functiomi. 

, Definition: 
2 

The w -Cleave hierarchy. 

(i) f E: !b ~ f E: (~h for some constant function h 

(ii) for k > o, f E: It, •r-+k ~ f E: (~h for h e: !ti. r+(k-1) 
ex> 

(iii) for r > o, f e: lti.r ~ f e: k~O !ti. (r-1)-+k 

Cleave's work is of interest for several reasons. First, the con-

2 
struction of a proper w length hierarchy of the primitive recursive 

functions indicates that ordinal length, even for hierarchies which only 

exhaust a portion of the recursive functions, can be a miSleading measure 

of hierarchy strength. (Of 'course, the subsequent construction by Bass 

and Young of a proper hierarchy in the full 0 which fails to exhaust E
4 

is a more spectacular example of this phenomenon.) Second, Cleave's con-

struction brings out some of the difficulties involved in the construction 

of hierarchies by machine theoretic means. Indeed, Cleave points out that 

his hierarchy must die out at 2 w, He argues as follows: since each program 

is of fixed length, P = I(l), I(2), •••, I(k), if f e: :r; 2 then all the 
w 

functions used to define f must appear in Iti.k for some k. Hence, extension 

of the chain beyond ci yields nothing new, since any f € :r; 2 , say, must 
w +1 

already appear in some :r; k' m• 

This inherent limitation of Cleave's approach is by-passed by Constable 
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[18), who uses RASP machines to.extend the Cleave hierarchy· to e0, the limit 
w w w 

of the sequence w, w , w . , ••• • A RASP maehine is perhaps the closest 

to real computers of all theoretically proposed machines. Its fundamental 

characteristic for our purposes is its ability to monitor and modify itself 

in the course of a computation. This ls ·a fundamental -difference _-b_e~een 

RASPs and register machines, _and this difference accounts for Constable's 

successful extension .to eo. 

For ordinals a < e
0 

Constable carefully handles the problem qf finding 

nice fundamental sequences. He 'puts a in (unique) Cantor normal form, 

a al . 
a= w •a + 

1 
. ·.·. + w n~an ·for a

1 
<!: •• • ~ il'n' 

a
1

, • • • a '·integers 
' n ' 

and then he defines his fundamental sequenc:es: 

Definit_ion: . Let a <ti 0 ~-~-.a. lj..~_it ~rdinal, i.~ Gantor normal form ,aE! apove. 

If an is $uccessor ordinal, define 

a a -1 1 · · n 
a(x) - w •al+••• + w •x; 

if a is a limit _ordinal, define 
n 

ex 
a(x) = w 

1
·a1'· + • •·• 

<l'o (x) 
+w 

, ,· 

Using this formulation of fundamental sequences, Constable ext;ends ' " ' . 'l: . ~ -: . . ·. f ·~ ·, 

the Cleave_ hierarchy u~b~ RASP ~c~i'D.e$, am_ he also :e;ittend~. the_ Gzregorczyk 
.· w 

classes (already extended to w by Robbin) to 'e
0

. H~s 

is a direct generalization of Robbin's extension: for 

Gzregorczyk e]t~e1'Sion . - . ' ' . 

°' a< e0, E = E(w<l'), 

where W (x) = w 
1

(x) if a is a limit ordinal, and W (x) a a- · a 
= w (x) if f a 

a(x) 

is a limit ordinal. His RASP hierarchy of length 
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8
0 

is proper because his RASP programs modify themselves in the course of 

their execution, thus avoiding the problems of the register machine 

approach. Constable establishes the following result: 

Theorem: 
~l lli 

For a< s0 E = RASP(l+a)+l' where RASP~ is the ~ RASP 

hierarchy class. 

Thus Constable is able to extend to s
0 

the growing body of results 

relating various generation methods for short hierarchies. 

In [71), Schwichtenberg also considers the equivalence problem for 

various 8
0
-length hierarchies. He shows that the modified Kleene hierarchy, 

the generalized Gzregorczyk hierarchy, and a standardized unnested recursion 

hierarchy all coincide up to s
0

. He defines standard fundamental sequences 

exactly as Constable does, and his version of the extended Gzregorczyk 

hierarchy is the same as Constable's. Moreover, he extends, with minor 

modifications, Robbins version of the Kleene hierarchy to 8o· His un-

nested ordinal recursion classes, R , are defined in a rather unusual way, 
a 

and the analysis of these classes is the most original part of the paper. 
s 

Definition: Define well-ordering S 
n 

of N as follows: s = 
1 

S - n w, I?fl - w . 

A standard well-ordering of type a < s
0 

is a well-ordering of the natural 

numbers which is elementary-recursive isomorphic to an initial segment 

of sn+l for Sn < a ~ sn+l' 

Schwichten~erg considers only standard well-orderings < s0 ; functions 

defined by instances of unnested ~-recursion for standard well-orderings 

~ < s
0 

are said to be defined by elementary ~-recursion. The s0-recursive 

functions, then, are the set of functions which can be defined by elementary-
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A-recursion, A < ea, from given ea-recursive functions and elementary 

functions in an elementary way. 

Schwichtenberg assigns ordinals < ea to ea-recursive functions, and he 

uses this assignment to define his ordinal recursion classes. If f is 

defined explicitly from g
1

, •••, gk in an elementary way, then f is 

assigned the ordinal ~(a1 , •••, ak)' where the ai's are the ordinals 

assigned to the g. 's. If f is defined lll.'s,ing an w• a-elementary recursion 
:L 

from g1 , •••, gk, then f is assigned the ordinal max(a
1

, •••, ak) +a. 

Definition: R is the set of recursive functions which are assigned 
a 

ordinals ::;; a. 

This rather curious definition is the key to Schwictenberg's results: 

by allowing R to contain functions defined by w•a recursions, he gives 
a 

himself enough slack to prove his main result. 

Theorem: For all a < ea the extended Gzregorczyk hierarchy class Ea 

R P , the modified Kleene class. 
a a 

The critical part of the theorem is the proof that R ~ E . Here a a 

Schwichtenbe~introduces a formal reduction system for the ea-recursive 

functions, and he develops a step-counting function sf for each f e Ra 

which keeps track of the reductions necessary to evaluate f. He shows 

Moreover, he shows that each function in R 
a 

can be defined from elementary functions alone by a single W•a recursion. 

Using this he establishes his claim by proving that each function in R a 

is majorized by W (g(x)), where g is some elementary function. 
a 
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Sc;:·hwichtenberg also notes that the s
0
-recursive functions are equal 

to the so-called "provable recursive functions 11
• A recursive function 

f is provably recursive if for some index e for f Vx ~y T(e,x,y) is 

provable in elementary number theory, where T is the Kleene T-predicate. 

For a thorough account of the provably recursive functions, see Fischer [40]. 

Schwichtenberg's very elegant paper is one of the best examples of 

a successful hierarchy construction of constructive ordinal length. His 

w 
work is a natural extension of Robbin's work from w to s

0
. 

In a sense the Schwichtenberg result may be one of the last investi-

gations in short hierarchy theory. While work in the Schwichtenberg frame-

work obviously could be extended beyond s
0

, it is not clear what sort of 

insight such an investigation would provide. 

We turn therefore to a different method of classifying the recursive 

functions, the method of subrecursive degrees. 

Sectiop 4. Subrecursive Degrees 

As we have seen, subrecursive hierarchies constitute an important and 

extensively studied approach to the problem of classifying the recursive 

functions. A fundamental problem with the hierarchy approach is the 

difficulties inherent in attempts to exhaust the recursive functions in 

any meaningful way. An innnediate attraction of the degree approach, which 

we turn to now, is inclusiveness: every total recursive function belongs 

to some primitive recursive (or elementary recursive) degree. 
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The degree approach was initiated by Kleene [27). He directly 

applied the concepts and notations of Turing degrees of unsolvability to 

the subrecursive case to obtain primitive recursion degrees. 

Definition: Let f and g be total functions. We say f is primitive 

recursive in g, f s: g, if f is definable in a primitive recursive way using 
p 

g as an additional initial function. 

g s: f} . 
p 

The degree of f, d(f) = (g I f s: g an! 
p 

Following the development of Turing degrees closely, he defines d(f)U 

d(g) (the join off and g), and d(f)' (the jump off). d(f) U d(g) = 

d(2f • 3g), and d(f)' equals d(h), where his an enumerating function for 

the functions primitive recursive in f which is generated in a uniform, 

primitive recursive way. 

Kleene ends his work here, and Axt [12) continues Kleenes investigation 

of the basic properties of primitive recursive degrees. His main result is 

the analogue of the celebrated Friedberg-Muchnik Theorem, · 

Theorem: For each n there exists n pairwise incomparable primitive 

recursive degrees contained in the recursive Turing degree. 

We emphasize that primitive recursiveness is not the only notion 

which can be analyzed by a degree approach. Indeed, we could just as 

easily study elementary degrees or multiply-recursive degrees and achieve 

basically the same results. In fact, with few exceptions, theorems proved 

for one such concept carry over to the others with little effort. 

We can also consider studying subrecursive classes of functions, 

rather than degrees. 

----r 
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Definition: Pr(f), the primitive recursive class of f, is the set of 

furetions primitive recursive in f. 

It is not hard to show that there is an order preserving isomorphism 

between the primitive recursive degrees and the primitive recursive classes 

(or, for that matter, between elementary degrees and elementary classes). 

Indeed, the mat> which sends d(f) -+ Pr(f) is the desired isomorphism. 

Much of the work to date on the structure of subrecursive degrees has 

actually centered around subrecursive classes rather than degrees, and 

we consider these investigations now. 

Early work on the structure of subrecursive cla'Sses was done by 

Meyer and Ritchie [72]. They consider elementary honest classes, as 

outlined in Section 1 of this chapter, and they show that between any two 

Gzregorczyk classes En and En+l for n ~ 3, there are dense chains of 

elementary honest classes. They prove their result by interpolating 

bet:Ween the iterates of g , where E(g ) = En .&nd E(gn+l) == E(Ax g<~~l) = 
n n n 

En+l. 

They also prove the existence of denumerable incomparable families 

3 4 of elementary honest classes between E and E . 

Feferman [38] also has a density result: he shows the existence of 

* dense chains in O , and hence that there are d~ chains of primitive 

recursive degrees. 

Similar results by other investigators are discussed at the end 

of Chapter 3. 
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In a series of three papers [8 ], [85], and [86], Machtey develops 

an extremely elegant structure theory for elementary and primitive recursive 

classes. 

Definition: Let £(f) denote the subrecursive class generated by the 

recursive function f. If the class under consideration is the set of 

functions elementary in f, then C ( f) = { C. ( f) I i s N} , where C. ( f) is the 
"-'1 "-'1. 

th 
i function elementary in f. 

Central to Machtey's approach is his complexity-theoretic point of 

view. He picks as a measure of computation Turing machine space (see 

Section 2 of Chapter 2 for definitions). He then makes a fundamental 

distinction: a class £(f) is an honest class if _f (f) =_£(Si) for some 

space function (measure function) S.; otherwise C(f) is said to be a 
]_ ,.._, 

dishonest class. The fundamental property of honest subrecursive classes 

is that they are complexity classes, that is, they equal the t-computable 

functions for some recursive function t. Machtey establishes a great many 

structure results in these papers, and we consider some of them. 

Theorem: Every countable partial order can be embedded in the dishonest 

subrecursive classes. 

Machtey proves this result using techniques developed by Sacks to 

analyze the structure of the r.e. Turing degrees. 

Definition: Two sequences of honest functions f
0

, f
1

, ••• and g 0 , g
1

, ... 
determine a~ if, for all i, C(f.) ~ C(f.+1), C(g.+l) C: C(g.), and 

,.._,]_'f,.._,]_ ,.._,]_ .,,,....,]_ 

C(f.) <:i C(g.). An effective gap is a gap for which there is a set 
,......, 1 .,. ,..._, 1. 

(i
0

, i
1

, •••,} which is recursive in O' (the complete r.e. Turing degree) 

such that for all i f. =co. and g. = cp. 
J ]_2j J ]_2j+l 
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Theorem: Afliy countable partial order can be embedded i:n the honest 

subrecursive classes bet-ween any effective gap. 

This ratner complicated result has two important corollaries. 

Corollary: The honest. subrecursi.ve classes are dens:e; that is, if f. and 

g determin~ honeat claases £(f) Cf C(f)-, then there exists an h such that 

£(h) is honest, and_£(£) Cf £(h) Cf _£(g). 

Corollary: No r.e. properly increasing sequence of honest subrecursive 

classes has a le.ast upper bound in the hanest subrecursive claeses. 

Machtey also proves the following result, wb.ich is rather unexpected 

given that the corresponding result fails for tke· r • .e. Turi.Dg degrees. 

Theorem: The partial ordering of the honest subrecursive classes is a 

distributive lattice. 

The ·novel element of Machtey' s work is his distinction between honest 

a.nd disho.nest, s,ubrecuraive classes. This is .a dieti.Dction which allows 

the elegant methods of complexity theory to play a role, and lead·s to·his 

more interesting results, for example, his lattice result for honest 

degre.ea. 

Ip [92.), tAdner examines the structure of subrecursive classes am 

obtalns results similar to Machtey's. 

Theorem: The aubr.ecunive degrees are denae, aw:l are not a la.ttice. · 

He •lsQ considers the problem of mi.ni.mal degrees. 

Theorem: There exist minimal pairs of elementaey degrees. That is, there 

exist recursive functions f and g such that if h .s f and h s g, then h is 
e e 

elementary (here h ~ f means h is elementary in£) . 
• 
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Ladner is particularly interested in considering the range of his 

(or Machtey's) results. His methods certainly apply to primitive recursive 

or multiply-recursive degrees, etc., as do Machtey's. However, he also 

discusses abstract notations of reducibilities which, hopefully, will shed 

some light on concrete problems in theoretical computer science. We 

discuss one such notion here. 

Definition: A set S of unary functions is a space class if it is r.e., 

contains the identity, and for all f and g in S and constants c
1 

and c
2 

there exists an h s S such that 

( i) 

(ii) 

(iii) 

(iv) 

h is increasing 

h(n) ~ c
1
•f(n) + c 2 

h(n) ~ f(x(n)), 

h(n) ~ max[f(n), g(n)]. 

The class of linear functions, and the class of polynomial functions 

are examples of space classes. 

Ladner considers 0-1 valued functions, that is "decision problems", 

for his notion of reducibility. If p(x) and g(x) are 0-1 valued, he 

defines p to be ~-space reducible to g if some oracle Turing machine with 

oracle g computes p in space bounded by some function in S. 

He then concludes that for the degree structure induced by S-space 

reducibility, the two theorems of his paper quoted above are true. 
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Chapter 2 

Honest Bounds for Complexity CCl~'~sP.s, of Recursive Functions 

1. Introduction 

Let ~(t) be the set of recursive functions computable by machines 

using t(x) computation steps on argument x, for all but finitely many 

inputs x. We call t a name for the complexity class ~(t) Suppose we 

allow our machines to run longer, say h(x,t(x)) steps on argument x, 

where h is some fixed recursive function. One might expect that for 

large enough h, permitting our machines to run longer by an amount h 

will always allow us to compute new functions, i.e. ~(t) is a proper 

subset of ~ (h (x, t (x)) . This turns out not to be the case: the "gap 

theore~' [2), f3] implies that for every recursive h there exists a 

recursive t such that ~(t) = ~(h(x,t(x))). However, if we restrict our 

attention to names from a certain subclass of the recursive functions, 

then we can indeed uniformly increase the size of our ~-classes. 

Informally, we call a recursive function t "honest" if some machine 

computes t(x) in roughly t(x) steps for each argument x. (A precise 

definition is given in Definition 1 below.) Then according to the 
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"compression theorem" [3], there exists a single recursive function 

h such that for every honest t, :'r(t) is a proper subset of :1(h(x,t(x))). 

Thus the phenomenon of the gap theorem is avoided by restricting attention 

to honest functions. It is a surprising consequence of the "honesty 

theorem" of McCreight and Meyer [4], [5] that there is no loss of 

generality in this restriction. Namely, for any recursive function t 

there is an honest recµrsive function t' such that :'r(t) = ~(t'). 

In this paper we present a new simpli£ied proof of the honesty 

theorem, and then we analyze the possible behaviors of precedures for 

constructing honest names equivalent to arbitrarily given names. Part 

of the motivation for this analysis springs from the construction of 

hierarchies of recursive functions based on computational complexity. 

Bass and Young [7] have observed that applicati.on of the honesty theorem 

followed by the compression theorem to a function t yields a reasonable 

natural ujump" to a larger complexity class. The behavior of this jump 

operation and the resulting hierarchy of course depend critically on the 

honesty procedure being used. 

Section 2 describes our notation and the axioms of Blum [l] which 

provide a machine-independent characterizat:lon of running time; Blums 

measured sets [l] and classes of honest functions are shown to be essentially 

equivalent. Section 3 consists of our new proof of the honesty theorem. 

In section 4 we,consider honesty procedures which work on partial functions 
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as well as total functions, and we show that such procedures must generate 

arbitrarily large names for any complexity class. As a corollary we 

obtain another "gap"-like theorem which shows that every complexity class 

has honest names which are arbitrarily large on all but a vanishing 

fraction of arguments, thereby strengthening a result of [8]. In section 

5 we show that honesty procedures restricted to total functions need not 

yield arbitrarily large names for classes, and can preserve monotonicity, 

thereby settling questions raised in [7 J' r4 J. 

2. Preliminaries 

For notation from recursive function theory we follow Rogers [9]. 

For each n 8 M', IP stands for the partial recursive functions of 
n 

n variables. R stands for the total recursive functions of n variables. 
n 

We use "(a.e.)" to denote "almost everywhere", which for our purposes 

stands for "all but finitely many". Similarly "(i.o.)" stands for 

"infinitely often". 

If ~ and Q are partial functions and Q is undefined at argument x 

we adopt the convention that w(x) ~co(x). 

Suppose [co
0

, cp 
1

, ... } is a Godel numbering of IP 
1

. A measure on 

computation [l] ~ = [~ 0 , ~l' ... / is a sequence of functions in IP
1 

satisfying 

1) Vi E 4-'rdom (co.) 
]_ 

dom (~.)] 
]_ 
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2) A,j_ x y[~i (x) = yJ is a recursive predicate. 

If we think of our Godel numbering in the usual one-tape Turing machine 

formalism, then 

t. (x) = "the number of steps in the computation of the i th Turing 
1 

machine on argument x" is a measure on computation. 

Henceforth let t be some fixed measure on computation. Then we 

define for any total function t 

F(t) = (i E IN I tl>i E ~land t 1 s: t (a.e.)}, 

and 

:'l(t) = ("Pi I i E F(t)}. 

That is, F(t) is the set of (indices of) total machines or programs which 

run in time t, and :'l(t) is th.e set of total functions computable within 

time t. Similarly we define for any partial function 1jl 

and 

:1 (ljr) = (tl>i I i E F ('fr)}. 
p p 

A sequem:e of partial functions 'i' = (1jl
0

, "t
1

, .•. } is said to be an 

r.e. sequence of partial functions if ~i x[1jli(x)] E P2 • 
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Definition 1. (Mccreight-Meyer r4]) A function W E ~\ is g-honest for 

g E R
2 

if there is an i such that cµ i w and iii . s: /l.xg ( x, \[r ( x) ) (a . e. ) . 
1. 

Definition 2. (Blum [l]) An r.e. sequence of partial functions 

•k 
o/ = (w

0
, 1lr 1 , ... 1 is said to be a measured set if 

/l.ixy[w.(x) = y] is a recursive predicate. 
1. 

The relationship between honest functions and measured sets is 

explained by the following theorem of Meyer-McCreight r4J. Since the 

proof appears only in McCreight's unpublished thesis rsJ, we reproduce 

it here. 

Theorem 1. [4], rsJ. Every measured set o/ is made up of g-honest functions 

for some g E R
2

; furthermore the set of g-honest functions form a measured 

set. 

Proof. Leto/= (w
0

, ~l' ···l be a measured set. By Definition 2 and 

elementary recursion theory there is an s E R1 such that ~i = cos(i). 

g(x,y) max( iii s ( i) ( j) I i, j ::;; x and ~ i ( j) s: y} . 

Then for x > i we have iiis(i)(x)::;; g(x, cos(i)(x)), and so for each i 

CDs (i) = ~i is g-honest. 

"'k 
Measured sequence would be more accurate, but we conform to the 
terminology of Blum r1J. 

Define 
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To prove the seconci,,statement.co1JS.ide:r tN!,pa~tial recursive function 

QJcr(i,j,k) for .er E ~3 , which, roughly, imitat:es(l'.)i(x) whenq:i 1 (x) appears to 

beg-honest· from arguments j to x. More.pr.~iJJely 

qli (x) 

QJcr(i,f,k) (x) = 

if((x s: j and t 1 ~x) s: k fil:. (x > j ~ 

t
1 

(x) s: g(x, <+>i (x))) J 

and{(Vy s: j)[t
1

(y) > k:::) t
1

(y) > x]] 

and((Vy)(j < y s: x)[ti,(y) < x:::) ti(y) 

s: g(r, ('pi (y)) 11 

otherwise. 

It- follows fr:om the definition of. meaaure on computation that :\i, j, .. '. . . . ' 

k, x, zfq,cr(i;j-,k) (x) = zJ ts a reeur~ive-.pEedicate• Hence 

S = {i:ocr(i,j,k) J i~j,k ~ OJ is a meas8rf!d set. 

We claim s· equals the g•honeat functions. Indeed if for fixed i, j, k 

ti (x) s: g(x, °'i (x)) for all x> j and 

thenqlcr(i,j;k) =QJ1 aud'Pcr(i,j,k) is g-honest. 

If however the preceeding condition is not me_t, the_n('Ocr(i,j,k) diverges 

(a.e.), but such functions are also (by convention) g-honest. So S is 

a subset of the g-honest functions. 
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Furthermore,· if y is any g-honetfr· function, ·then y "= coi for some i 

such that ti(x) s: g(x, q:>i(x)) for all x :> l for some j. Let k= · 

max[ti(y) I y s; j and ti(y) convergent]. Then y .... cp ·. · and we 
O'(i,j ,k) 

conclude that S equals the g-honest functions. 

We state, for completenes~, the following gener41ized compression 

* 

0 

theorem of Blum [l]. The compression theorem says" that an r.e. sequence 

of partial recursive functions is a measured set precisely when a u~iform 

procedure exists for constructing, for each function in the sequence, a 

0-1 valued partial recursive function whose complexity is only a little 

bit above the designated function. 

Proposition. Let 1' .,. f'to' t
1

, ••• J be an i".e. sequeflce of patti~f ··recursive 

functions. Then 'f is a measured s·et if atld only if there i1;1 a p E R, 3 and 

an r E ~l such that (1) cpr(:l) is 0-1 valued, (2) domain (cpr(i)~ =;;domain (wi), 

(3) tr(i) s; A.x[p(i,x, ti(x)], and (4) ifcpe =cor(i)' then te >ti (a.e.). 

. . ~ . . 
It is an immediate corollary of the compression theorem that if we restrict 

attention to recursive functions t from a measured set 1', then we can 

uniformly enlarge :'i(t) by compoS:ing t with a fixed recursive .function h 

independent of t. 

Corollary. Let 'Y be a measured set. Then there exists an h E ~ 
2 

· such 

that if t E 'f, t ER
1

, then:'i.(t) ~:'i(A.x[h(x, t(x))J). 

* . . 
We remark that Blum's theorem in [l] p. 333 is incorrectly stated; 
the correct statement is given above. 
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max [p(e,x,z)], where pis the recursive function of 
e:S:x 

Definition 3. Let s E R1 . s is an honesty procedure£!! ~l if A.e,x,y[cps(e) (x) 

y] is a recursive predicate, and if for every e ':J (CD ) = '!f (r:o ( ) ) . 
p e p s e 

Definition 4. Let s E ~ 1 . s is an honesty procedure on ~l if A.e,x,x[cos(e) (x) 

y] is a recursive predicate, and if for every total coe' cos(e) is total and 

':f (co ) 
e 

Notice that not every honesty procedure on P
1 

need be an honesty procedure 

on R 1 : an honesty procedure on Ii.\ need not map total functions to total 

functions. However, suppose s is an honesty procedure on P
1 

which also 

preserves F-classes. That is, suppose that for every e, F (r:o) = F (r:o ( )). p e p s e 

Then a minor modification of s yields an honesty procedure on P
1 

and on 

R1. Indeed, it is easy to show thats' E R
1 

defined by 

r:o , ( ) (x) = min[r:o ( ) (x), (CD (x) + qi (x))] s e ~- s e e e 

in such a procedure. 

Constable has observed that no honesty procedure on ~l can be a 

total effective operator. We prove a corresponding result for honesty 

procedures on P1 and effective operators (see [9] for definitions). 

Proposition. No honesty procedure on P
1 

can be an effective operator. 

Proof. Let s be any honesty procedure on P1 , and let t = r:oj be any recursive 

function. Define using the recursion theorem: 

CD (x) 
e 

CO. (x) 
J 

ro 

if 3:z[cos(j) (z) # cps(e) (z)] 

otherwise. 
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The computation of coe(x) is effective since cos(e) and cos(j) are in a 

measured set. Clearly co is either total or empty. If cp is empty, it 
e e 

follows that s cannot be an honesty procedure on P1 , for then ~p(cos(e)) 

"F P (co s ( j » = ~ P (CD j ) l ~\ = "F P (co e) . 

and CD s ( e) 1 CD s ( j ) . 

3. The Honesty Theorem 

So qi must be total. Then co '"" cp. 
e e J 

The honesty theorem says that given any function we can effectively 

find an honest; function which names the same class. Our proof explicity 

exhibits an honesty procedure on P
1

. Recall from section two, however, that 

with a minor modification we can obtain a procedure on R
1 

as well. 

Theorem 2. There exists an honesty procedure on P
1

. Moreover, s preserves 

F classes, namely for every e, F (cp ) = F (c:p ( ) ) • 
p p e p s e 

Proof. A function o/' such that F (o/) = F (o/') 
p p 

Let e be an index for o/. 

is defined in stages beginning with stage 0. At stage n the integers 

from 0 ton will be ordered in a sequence or queue= q
0

, q
1

, ... , qn' which 

is updated from stage to stage. Also a zero-one valued function "pop" on 

the integers from 0 to n is defined and updated from stage to stage. Let 

< x,y > be a one-one onto pairing function with projection functions n 1 

and n 2 . As a technical convenience we use the fact that the pairing function 

< x,y > is strictly increasing in its second argument, so that stage < x,y > 

always precedes stage < x, y+l >. 
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We outline the idea of the construction. Dovetail the. computa.tions 

of v, t , t
1

, ... , t ... at all arguments. Whenever it is discovered 
0 n 

that v(x) < ti(x) set pop(i) = 1, and try to define v'(z) < ti(z) for 

some argument z. When pop(j) = 0, try to keep v'(z) ~ t.(z). 
J 

The pop 

conditions on i and j may be inconsistent, and- the queue assigns priorities 

to the integers (programs) to resolve the conflict. The dovetail nature 

of the construction guarantees that v' will be honest. 

Stage n. 

A) Put non the bottom of the queue (i.e. set q = n). 
n 

pop(n) = 1. Let n 1 (n) = x, rr2(n) = y. 

Set 

B) If t e (x) == y, then for 0 s; i s: n, if ti (x) > t (x) set pop(i) = 1. 

C) If 1.j.r'(x) has already been defined at some previous stage, go to 

stage n+l. 

D) Find the least i s n (if any) such that 

1) 

2) 

3) 

pop(qi) = 1 

t (x) > y 
qi 

(Vj < i) [pop(qj) 

If i exists, define v'(x) = y, set pop(qi) = O, and put qi on the bottom 

of the queue. Go to stage n+l. If no such i exists, go to stage n+l. 0 
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For any cp = o/ and any n ::<: 0, stage n in the computation of o/' is 
e 

effective and will terminate. Condition (C) guarantees that if o/' (x) is 

defined, it is defined at only one stage, and sow' is well defined. 

Furthermore since our procedure is uniform in e, o/' = cps(e) for some 

s E ~ 1 . Condition (D) guarantees that if o/'(x) is defined, it is 

defined at stage n = < x, o/' (x) >;hence the predicate ~ex YrQs(e)(x) = Yl 

is recursive (we need only run our procedure until stage< x,y,>), and so 

ro 
(cps(e)}e=O is a measured set. This implies by Theorem 1 that o/' will be 

g-honest for some g E ~ 2 independent of W· 

We now show that for each i, ~. s W (a.e.) ~ ~. s w'(a.e.). This 
1 1 

irmnediately implies F Cw) 
p 

F (o/ I). 
p 

The proof divides into cases depending on the final positions of the 

integer i on the queue. If i reaches a final location on the queue we 

shall say that i is stable; otherwise we say i is unstable. 

Case l· i is unstable. 

If i does not stabilize it must be moved to the bottom of the queue 

by step (D) at stage < x,y > for infinitely many x. Step (D) defines 

o/'(x) = y < ~.(x), and hence~-> o/'(i.o.). Moreover step (D) moves i 
1 1 

to the bottom of the queue only if pop(i) = 1, at which time pop(i) is 

reset to 0. In order for step (D) to apply again to i, pop(i) must be 

reset to 1 by step (B) at some later stage. But condition (B) sets pop(i) 

to 1 only at stages< x, ~ (x) >such that ~.(x) > o/(x). Thus~.> o/ (i.o.). 
e 1 1 
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Case 2: i is stable. 

If i reaches a stable position on the queue, then pop(i) must also 

stabilize since it is set to 0 only by a step (D) execution, at which 

time i is moved to the bottom of the queue. 

Case 2a: pop(i) stable at O. 

Pop(i) can be set to 1 by step (B) at only finitely many arguments, 

hence~- s w (a.e.). Elements above ion the queue can only be moved 
l_ 

finitely often by step (D), for otherwise i would be unstable. So for 

almost all arguments x in the domain of 1JJ', •jr' (x) is defined via step 

(D) for some j below i on the queue with pop(j) 1. But then condition 

(2) of step (D) guarantees that ~.(x) ~ w'(x). Hence~. s W'(a.e.). 
l_ l_ 

Case 2b: pov(i) stable at 1. 

Consider any x such that i, the elements above i on the queue, and 

their pops· have stabilized at stage < x,O > and all later stages. By 

case 2a we may assume xis sufficiently large that ~.(x) s min(·'·(x), w'(x)) J _'!' 

for those (finitely many) j which are above i on the queue with pop(j) = O. Let 

m = max[~j(x) I j is above ion queue and pop(j) O}. 

We observe that ms min[o/(x), o/' (x)), and thus if mis infinite, both 

o/(x), o/'(x) are undefined, implying by convention that ~.(x) s o/(x), 
l_ 

~.(x) s o/'(x). So suppose mis finite. Since the pairing function is 
l_ 

monotone in its second argument, < x,m > is the earliest stage at which 

o/'(x) could be defined without violating condition (3) of step (D) and our 

assumption that the queue above i has stabilized. But i has stabilized as 

well, and so i must fail to satisfy condition (2) of step (D) at stage 

< x,m >. That is, ~.(x) s m, and we therefore have ~.(x) s m ~ min(o/(x), w'(x)). 
l_ l_ 
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Combining cases we have ~.(x) ~ *(x) (a.e.) ~ i is stable~ 
1 

~.(x) ::s: *'(x) (a.e.). 
1 

Corollary. There exists an honesty procedure on R
1

. 

Proof. Innnediate from section two and the fact that the procedure of 

Theorem 2 preserves F-classes as well as ~-classes. 

4. Large Honest Bounds on Computation 

Given a recursive function t we can think of t as a name for the 

class of functions ~(t). Now in a sense we have understood a complexity 

class if we know how to compute its name, t. It follows that more easily 

computed functions (i.e. functions which can be computed rapidly) are 

more satisfactory names for a given class than long-running functions. 

Honest functions seem to be good candidates for names, then, because they 

are only as hard to compute as they are large. We now show that in general 

honest functions are not necessarily satisfactory names in the sense 

described above. Indeed we exhibit an honesty procedure on R1 which takes 

any recursive class name to an honest recursive name for the same class which 

is arbitrarily large (and therefore arbitrarily long-running) on all but 

a rapidly vanishing percentage of arguments. Furthermore we prove that any 

honesty procedure on P1 must (almost) have this property. We remark that 

this phenomenon is closely related to the gap theorem mentioned in the 

introduction; in both cases we pass from a recursive function t to a much 

larger recursive function t' while preserving class size. 
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Theorem 3. There is an honesty procedure s, .on r->
1

, such that for every e 

lim 
x-.ta:> 

I (y s x I y E domain r,.,., )} I 
'4' s (e) 

x 
_,. o. 

Proof o·f the Theorem. The procedure of the theorem is only a slight 

variant of the procedure of Theorem 2. As before t' is defined in stages 

beginning with stage O. A function "pop" from integers to integers is 

defined .-.:1. updated during successive stages. Clause (D) has the added 

restriction that when pop(i) is larger than x, i is excluded from the 

priority scheme of the queue at arguments s x. The pop ful1Cti""n is sufficiently 

fast-growing to insure that only a small fraction o.f the entries on the 

queue can be used to define· v' at arguments s x. Hence at ''most" arguments 

s x, v' will be undefined. 

A) Put n on the bottom of the queue, (Le. &et qn = n); set 

po.p(n) = 2n. Set x = '!Tl (n), y = n
2 

(n). 

B) If ~ (x) = y, then for each i, 0 s i s n, if [pop(i) = 0 and 
e 

~i(x) > t(x)] set pop(i) = 2n. 

C) If t' (x) has been defined previously go to stag·e n+l. 

D) Find the least i s n (if any) such that 

1) 

2) 

3) 

0 < pop(i) < x 

~ (x) > y, and 
q. , 

1 

(Vj < i)(pop(j) 
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If such an i exists, set pop(q.) = 0 and move q. to 
1 1 

the bottom of the queue. Go to stage n+l. If no such 

i exists, go to stage n+l. n 

We omit the proof that our procedure is indeed an honesty procedure 

on P1 ; the proof here is virtually identical with that given in Theorem 2. 

We prove the limit condition of the lenuna. Given any x, step (A) 

guarantees that at any stage n = < y,z >where y s x, at most log2 (x) 

indices on the queue can have pops which might be used in step (D) 

condition (1) to define w'(y). Furthermore, if i is such an index and if 

i is used again at stage n = < y 7 z >, y s x, to define o/' (y), then if it 

is to be used again at some later stage to define o/' (w) for some other 

n+l w s x, its pop will be at least 2 • Hence i can be used to define at 

most r1og2(x)-i](the greatest integer in (log2(x)-i)) arguments y s x. 

Thus W'(x) can be defined on at most 

arguments s x. So 

[log
2

(x)] 

I fy s x y E domain(W)} I 
.~ [log 2(x)-j] 

x x 

but the right hand expression goes to 0 in the limit, proving the 

theorem. D 
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Theorem 3 leads naturally to the following result about honesty 

procedures on R-
1

. 

* Theorem 4. There is an honesty procedure onR such that given any 
1 

t E R.
1 

and any b E R.
1

, there exists an e, qi e = t, such that 

lim lfY ~ x I qis(e)(y) < b(y)} I 
-+ 0. 

x 

Proof. Let s be the honesty procedure on P1 described in Theorem 3. 

Recall that we can make s into an honesty procedure on R- 1 by defining 

qis'(e)(x) = min[qis(e)(x), (qie(x) + te(x))]. Lett be any recursive 

function. Blum [l] shows that every recursive function has arbitrarily 

bad (i.e. arbitrarily long running) programs. That is, we can choose 

qi = t such that t (x) > b(x) for all x. Hence given t and b, choose 
e e 

such an e, qie = t, and thenqis'(e) satisfied the theorem. D 

The following theorem describes the behavior of any honesty procedure 

on Ii\· 

Theorem 5. Let s be any honesty procedure on p
1 

and let t and b be 

any recursive functions. Then there is a qi = t such that 
e 

* 

lfy~x l<Ps(e)(y) <b(y)JI 
lim inf -+ O. x 

Bass and Young [7] prove a somewhat weaker form of this theorem: they show 
that an e can be found such that qis(e) will be larger than b with 
recursive frequency. 
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Proof. Define using the recursion theorem a program co such that 
e 

t(x) 

Q (x) 
e 

ro 

if f (x = 0) or (x > 0 and cp (x-1) - -- e 

convergent)] and az > x such that 

!CY:::;; z I Qs(e)(y) < b(y)JI < 
z 

otherwise. 

1 
x+l 

Clearly, if Q is total, then Q = t. Suppose i:o is not total, and let 
e e e 

x be the least y such that co (y) diverges. ThenQ (z) diverges for all 
e e 

z ~ x, but since cp (x-1) converges, the first clause in the definition 
e 

of cp (x) implies that for all z > x 
e 

I (y:::;; z I cps(e) (y) < b(y)} I > 
z 

1 
x+l" 

In particular, domain (cps(e)) must be infinite. However, it is easy 

to show that if ~ E P1 has infinite domain, then ~p(~) I P1. Hence 

~ (~ ( )) I P1 = ~ (cp ), contradicting the fact thats is an honesty 
p s e p e 

procedure on P
1

• Therefore, cp 
e 

t. 

Now for each x let z be the least z > x for which the second conjunct 
x 

in the definition of cp holds. 
e 

integers for which 

ro 
Then (z } is a subsequence of the 

xi=O 

lim 
x.....,,, 

cps(e) (y) < b(y)} ! 
-+ 0 z 

x 

and the theorem is proved. 0 
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We remark that the "lim inf" appearing ip Theorem 5 cannot be 

replaced by "lim". We sketch breifly why this is so. Let s be the 

honesty procedure on ~\ of Theorem 2, and let t be any g-P,onest recursive 

function. We construct an honesty procedure st on P1 in the following 

manner. Given index e, begin constructing.~ ( ) as prescribed in the . s e 

theorem. If at some stage nit is discovered that{'t) has converged on 
e 

a new initial segment, see if qi = t on that initial segment. If so 
e 

find the least x such that stage < x,O > has not yet been reached am 

define~ 8 (e)(z) = t(z) for x ~ z ~ 2x. It is not hard to show that st 
t 

is a legitimate honesty procedure on P
1

, and furthermore for any qi e = t 

!{Y ~ x I qis (e)(y) < t(y)} I 
t lim sup 

x-tm 
x 

In particular not all honesty procedures on P1 sa·tisfy Theorem 3. 

5. Good Honest Names for Complexity Classes 

In this section we consider honesty procedures that, work for total 

functions only. We show that by relaxing .the requiremeuts on.:honeaty 

procedures in this way, we can indeed build well-behaved honest bounds 

for complexity classes which often significantly improve on the original 

bound for the class. We first build an honesty procedure yielding 

honest bounds which are no larger than the original class.bound on a 

significant percentage of arguments. Next we show how to keep honest 
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bounds for ~(t) bounded (a.e.) in a manner independent of the program 

we choose for t. Lastly we exhibit an honesty procedure on ~l which 

preserves monotonicity. 

Implicit in the work of Constable [11] is the observation that there 

are complexity classes all of whose honest names are much larger (i.o.) 

than some dishonest name. Indeed any class ~(t) where t is obtained 

via the gap theorem has this property. Theorem 6 shows that this result 

is false if we replace "(i.o.)" with "(a.e.)". 

Theorem 6. There is an honesty procedure on R1, s , such that if Qe 

is total, then 

lim inf 
n-+:o 

lfx s: n I Qs(e)(x) >rpe(x)} I 
0. 

n 

Proof of the Theorem. The proof follows the general outline of Theorem 2. 

In the course of the procedure we define a "percentage" function P(n) 

which monitors the frequency with which rps(e) is small. 

pop function in this proof is 0-1-2 valued. Here pop(i) 

In addition the 

2 means that 

Qs(e) has been defined to be less than ~i' but movement of i to the bottom 

of the qneue has been delayed. 

Stage n: 

Let n 1(n) = x, n 2(n) = y. 

A) Set q = n, and set pop(n) 1. 
n 
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B) If ~e(x) = y, then for 0 ~ i ~ n, if ~i (x) > cpe(x) and pop(i) = 0, 

set pop (i) = 1. 

C) If t' (x) has been defined at some previous stag.e, go to stage n+l. 

D) Find least i :S; n, if any, such that 

* 

1) 

2) 

3) 

pop(qi) = l or 2 

t (x) > y 
qi 

(Vj < i)[pop(qi) = 0 ~ t (x) ~ y] 
qj 

If such an i exists, set t'(x) = y, and set pop(q.) 2. 
1 

E ) See if ~w :S; n such that w > P(n) and 

lfz :S; w I cps(e)(z) ~cpe(z) and ~s(e)(z), te(z) ~ n}I ·~ 1 - l 

w P(n) 

If such aw exists, set all 2's on queue to 0, and move them to 

the bottom of the queue. Set P(n+l) = P(n) + 1. Go to next stage. 

If no such w exists, set P(n+l) = P(n), and go to next stage. 0 

As in the proof of theorem 2, there is an r E ~l such that the procedure 

yields, for ever e, a function cpr(e) = v'. Fur.thet'mm'e,· (o:>r(e)}eE.lr ia 

a meaaured set. Define 

then. (cps(e)}eE!Rt is a measured set, ·ands is the d'e&ired procedure. 

* C1ause $) involves an impU.cit use of the recursion theorem. 
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To prove the limit condition of the theorem, we need to show that 

Clause (E) is executed infinitely often for recursive t = m 
e 

Suppose 

therefore that (E) is executed only finitely often, and let < x,O > be 

a stage after which there are no Clause (E) executions. We can assume 

without loss of generality that by stage < x,O > all pop 0 entries on the 

queue which are ever set to 1 have been set to 1, and furthermore < x,O > 

is large enough that an index for the empty function appears on the queue 

(its pop at stage< x,O > must be 1 or 2). Then for all z ~ x and all 

i such that pop(i) = 0, ~.(z) ~ t(z), and so clause (D) and the presence 
1 

of an index for the empty function on the queue guarantees that ~'(z) will 

be defined and ~'(z) ~ t(z). Therefore the percentage of arguments where 

1 
~'(z) ~ t(z) will eventually move above 1- P(< x,O >) , and at that time, 

clause (E) will get executed. 

To show that ~(Q'.)e) = :'.F(Qs(e,> in the case where cpe E R 1, notice that 

if i stabilizes on the queue, its pop cannot be 2. Using this observation 

it is easy to show that the classes are the same by using the techniques 

developed in theorem 2, and we omit the proof. 

Our next theorem illustrates the striking difference between honesty 

procedures on R1 and honesty procedures on P
1

. Theorem 5 says that given 

any t E R1, every procedure on P1 must map some program for t to an 

arbitrarily large honest name for ~(t). We now construct a procedure on 

R1 which produces uniformly bounded honest names for ~(t) independent 

of the program chosen for t. The procedure of Theorem 7 is an example of 

an honesty procedure on R
1 

which cannot be extended to an honesty procedure 



-79.-

Theorem 7 • There is an holles ty procedure on ~ 
1

, s, with the property 

that for every recursive .t, there is a b E ~l such that if cp = t, 
e 

thencps(e) :s: b (a.e.). 

Proof. Let s' be any honesty procedure on ~l with the property that if 

, n 
Say that cp = cp , if after n steps 

e e 

of the dovetailed computation of cp am cp , , cp and cp , have not differed 
e e e e 

on any argument. Define 

are measured. Furthermore F(cp ( ) ) = F(cp ) • s e e 
Suppose I. s: QJ (a.e.). 

1 e 
Then 

for sufficiently large x those e' :s: e ·which Compute functions which differ 

from e will be omitted from the expression ~)for cps(e)" · From then on if 

co , (y) c.onverges for any e' s: e, cp , (y) will equal tl> · (y). Therefore since 
e e e 

t. s: cp '( )(a.e.), t. :s: cp ( )(a.e.). If on the other hand ti >cp (Lo.), 
1 s e 1 s e · · e 

then ti >cps'(e)(i.o.), and sinceco
8

,(e) :<!cpa(e) everywhere, ti >cps(e)(i.o.). 

Let e' be the least index for co e E ~ 
1

. 

cp (.) :s: cp ' + ~ ' • (a. e.). s 1 . e e 

Then for every cp • = eo 
· 1 · e' 

Our last theorem shows that every class with a a:>notcme name has a 

monotone honest name,. settling a question raised in [4). 

Theorem 8. Ther.e is a g E R
2 

such that for every mo.not:one recursive 

0 

t ~ A.x[x] there is .a g-honest :mono.tone recuraive t' such that :'f(t) = :'f(t'). 
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Proof. Our construction will again follow the lines of Theorem 2. However, 

t' will be total and monotone whenever t is total, and so ~(t) may differ 

from ~(t') in the case where t is not monotone. Define CD (.)(x) = maxfiii.(z),x]. . cr i i 
z:S:x 

[© } is a measured set. Moreover for monotone t ~ ~xfx] we have that 
cr(i) iEfN 

iiii :s: t (a.e.) ~cpcr(i) ::;: t (a.e.). 

Stage n. Let n
1

(n) 

A) Set q = n; set pop(q ) = 1 
n n 

Let t = cp . 
e 

B) If iiie(x) = y, then for 0::;: i::;: n ifcocr(i)(x) > t(x), set pop(i) 

C) If t'(x) has already been defined at some previous stage, go to 

1. 

stage n+l; if 4z < x such that t'(z) > y, go to stage n+l; if x :s: y, 

go to stage n+l. 

D) Find least i :s: n (if any) such that 

1) 

2) 

3) 

pop(q.) = 1 
l_ 

CD ( ) (x) > y 
cr qi 

(lfj < i) [pop(q.) 
J 

If i exists, set 

= 0 -+CD ( ) (x) :s: y] cr q. 
J 

t'(x) = y, set pop(q.) 
l_ 

the bottom of the queue. 

O, and move qi to 

E) If (D), find greatest z < x such that t' (z) has already been defined; 

set t'(w) = y for z < w < x. Go to stage n+l. 0 

The procedure yields, for each e, a partial functionws(e). Moreover 

[© s ( e)} eE INis a measured set: to test cps ( e) (x) y, merely run the pro-

cedure through the first< x,y >stages and check to see if cps(e)(x) is 

defined to bey at one of these stages. Clause (C) guarantees that Qs(e)(x) 

can never be set equal to y after stage < y,y >. 
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If t is total, then t' will be total and monotone by clause (C) and 

the fact that Clause (D) must be executed infinitely often. If t ~ Ax[x], 

then pop stability analysis and the fact that each Q<J(i) is monotone shows 

that for every i, Q<J(i) :-:;; t (a.e.) ~CD<J(i) «'.: t' (a.e.). But then for 

monotone t we have 

s: t a.e. ~ Q<J(i) s: t' (a.e.) 

~ iJi. s: t' (a.e.). 
1 

Corollary. There is an honesty procedure on R
1

, s , such that for every 

recursive monotone t ~ Ax[x], if CD = t then CD ·k( ) is monotone. 
e s e 

Proof. Let s be the procedure of Theorem 7, and let s' be any honesty 

procedure on R
1

• 
··k 

Define s as follows: 

cps'(e)(x) 

CDs(e) (x) 

if, within x steps it is discovered 

that CD is not monotone, or within x 
e 

steps it is discovered that cp «'.: Ax[x]; e . 

otherwise. 

·"}:: 

The first clause on the right is obviously recursive, and so s E R
1

. 

If CD ~ Ax[x] and is monotone, then cp ., ... ( ) = cp ( ) • e s' e s e 

cos'(e) (a.e.). Hence s is the desired honesty procedure on R
1

• 

We remark that the lower bound Ax[x] of the theorem and the corollary 

may be replaced by any slow-growing unbounded function. Borodin r2J shows 

that some lower bound is necessary, and thus our result is best possible. 
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Chapter 3 

An Operator Embedding Theorem for Complexity Classes of Recursive 
Functions 

1. INTRODUCTION 

Let ~(t) be the set of functions computable by some machine using 

no more than t(x) machine steps on all but finitely many arguments x. 

If we order the ~-classes under set inclusion as t varies over the 

recursive functions, then it is natural to ask how rich a structure 

is obtained. We show that this structure is very rich indeed. If R 

is any countable partial order and I is any total effective operator, 

then we show that there is a recursively enumerable sequence of 

recursive machine running times [~s(k)}kEN 

~(f(~s(j))) c;j ~(~s(k))' and if j and k are 

such that if jRk, then 

incomparable, then F(~ (')) < 
~ s J 

~s(k) on infinitely many arguments, and £'.(~s(k)) < ~s(j) on infinitely 

many arguments. 

An interesting feature of our proof is that we avoid appealing 

explicitly to the continuity of total effective operators; indeed our 

proof follows directly from a single appeal to the recursion theorem. 

Several investigators have considered this and related problems, and 

in Section 4 we briefly summarize these investigations and compare them 

to our own. 
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2. PRELIMINARIES 

For notation from recursive function theory we follow Rogers [ 2 ]. 

For each n E N, P stands for the partial recursive functions of 
n 

n-variables, and ~ stands for the total recursive functions of n 
n 

variables. 

We use (a.e.) to denote nalmost everywhere", which for our 

purposes stands for "all but finitely many". Similarly (Lo.) stands 

for "infinitely often". 

Suppose {o:> 0 ,cp 1 ,.~.} is a Godel numbering of 6\· A measure£!! 

Computation [l] I= (f0 ,t 1 ,~ •. J is a sequence of functions in D-\ 
satisfying 

1. 

2. 

Vi E N [dom(epi) 

;\ixy[li (x)° = y] 

'= dom(t·. )] 
1 

is a recursive predicate. 

.. 
If we think of our Godel numbering in the usual one-tape Turing machine 

formalism, then 

.. ( ) II h b f i h i f . h i th T . ~i x = t e num er o steps n t e computat on o t e ur1ng 

machine on argument x" is a measure on computation. 

Henceforth let I be some fixed measure on computation. Then we 

define for any total function t 

F(t)=(iEN!o:> Eri,andf s:t(a.e.)J, 
i - i 

and 

:1(t) = (cp. Ii E F(t)J. 
1 
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That is, F(t) is the set of (indices of ) total machines which run 

in time t, and ~(t) is the set of total functions computable within 

time t. ~(t) is called a complexity class. 

A sequence of partial functions 'f = (~ 0 ,Jj! 1 , .. • 1 is said to be 

an r.e. sequence of partial functions if ~ixfwi(x)] E P
2

• 

The following theorem of Blum [ 1 ] shows that we can uniformly 

enlarge complexity classes ~(t) if t is a sufficiently well-behaved 

function. 

Theorem. (Compression Theorem) There is a g E ~ 2 such that for every 

q;i E ~l' ~(qii) '1- ~(~xg(x,qii(x)). g is called a compression function 

for qi. 

An operator is a map which takes functions to functions; we 

write !(f)(x) to mean the value of the operator E applied to the 

function f, evaluated at x. An operator E= D ~ P 1 ~ P
1 

is called an 

effective operator if there is ans E ~l such that F(~ )(x) = ~ ( )(x). 
~ e s e 

An effective operator E is total effective if for every f E R1, 

E(f) is defined and !_(f) E ot
1

• 

3. THE EMBEDDI~ 'TIIEOREM 

Theorem. Let! be any total effective operator, and let R be any recursive 

countable partial order on N. Then there exists an r.e. sequence of 

recursive functions p0 , p1 , ... pn .•• such that if jRk, then£(pj) < 

pk (a.e.), and if j and k are incomparable, then !(pj) < pk(i.o.), and 

pk < F ( p . ) ( i. o • ) . 
~ J 
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Proof. We ass'l.Ulle without loss of generality that R orders N-{O} 

rather than N, and in addition that R contains kRO for each k > 0. 

Let .a
0 

= < i 0 , k
0 

>, a 1 = < i 1 , kl > , •.• lan = < in' kn >, •.• be. a 

recursive listing of all incomparable pairs in R such that if x and 

y are incomparable, then< x, y > and < yi x >both ,appear infinitely 

often in the list. As a technical convience we define~[©] = 0. 

1 
Let s E R2 be the s 1 function of the s-m-n theorem defined by the 

equation 

Define t E P
2 

as follows: 

0 if x < k or :H:n < k such that ~ (< 0, n >) > x, (1) 
e 

t(e, <k,x >) 

max [ co ( • ) (x) + F(cp ( j) )(x)]) 
j:!1:x s e, J ,.., s et 

+ 

jRk 

[cp ( . ) (x) + F (co ( • ) ) (x) ] , s e,i "' s e,i n n 

where n = µm ~ x [ ((m = 0) and (x = k
0

)) .Q!. 

[(m > 0) and (k =km) and [(Vi (0 ~ i ~ m)) 

(~zi ~ x) such that (z0 = k0) and 

(zi+l = zi + ~s(e,ki)(zi)) and (zm = x)]]], if 

such an n exists and (1) is not true, and 

(2)(1) 

(2) (ii) 

max [co ( ') (x) + F(eo ( .)) (x)] otherwise. (3) 
j:Sx. s e,J "' s e,J 

'Rk .1 



~ E P
2 

since all the test computations in clauses (1) and (2) are 

recursive by the second measure on computation axiom. By the recursion 

theorem there is an e such that ~(e, <'.k,x >) = m (<k,x>); we apply the 
e 

s-1-1 version of the s-m-n theorem to obtain w(e, <k,x>) =ws(e,k)(x). 

To simplify our notation we now suppress mention of e and write pk(x) = 

Qs(e,k)(x). 

now becomes 

Similarly we write~ (x) for~ k)(x). 
pk s(e, 

Our definition 

0 if x < k or ~n < k such that ~ (n) < x, 
Po 

~[p. (x) + F(p .) (x))) 
j$';X J ~ J 

+ 

.iRk [p., (x) + F(p. )(x)], 
1 ~ 1 

n n 

where n = µm ~ x[((m = 0) and (x ~ k
0

)) or 

( 1) 

(2)(i) 

(2) (ii) 

1-"k (x) 
[(m > 0) and (k = k ) and [(Vi(O $'; i ~ m))(~z. $'; x) 

-- m 1 

such that (z
0 

= k
0

) and (z.+l = z. + ~ (z.)) and 
-- 1 1 rek. 1 

1 

(z = x)]]], if 
m 

such an n exists and (1) is not 

max 
j '.5:x 

jRk 

true, and 

[p . (x) + F (p . ) (x) ] 
J ~ J 

otherwise. 

We first establish that at most finitely many of the functions 

[,k}kEN can be non-total. Suppose ?k(x) diverges. Since Po is defined 

by (3) at all arguments, p
0

(x) must diverge, and so by (1) pj(x) = 0 

for all j > x. 

(3) 
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We now prove that for all k pk is total. 

Say that an is serviced at x if pk (x) is defined by (2), and if 
n 

n is the least m ~ x satisfying the body of (2) in the definition of 

pk (x). We allow the possibility that Pk. (x) may diverge. 
n n ~l 

serviced at x~ (2) guarantees that x = z = 1: 
n i=l 

If a 
n 

is 

a is serviced at no other argument. Moreover, if a is serviced at x 
n n 

and Pk (x) diverges, then for n' >n 
n 

a , will never be serviced, since 
n 

a I n 
is serviced at y only when y bounds the computation oft~ (x). 

k 
n 

Let k be an R-minimal element in the finite set {k' j 'k' non-total}. 

Then if pk(x) diverges, it must do so because of (2)(ii). 

is serviced at x for some n, and f- i 1BW1t be non-total. 

That is, a 
n 

n 

But suppose pi (y) diverges by an instance of (2) (ii) for some y. 
n 

This means that in = kj for some j and aj is serviced at y. If j < n, 

then y must ~ual zj, but since an is serviced x, tpk (zj) < x and hence 

j 

Pk ( z j) must converge. 
j 

If j > n, then since a is serviced at x and 
n 

Pk(x) is assumed to diverge, aj is never serviced. Moreover j cannot 

equal n, for then i would equal k • Hence pi muat be non-total because 
n n -:ii 

of (2)(i) er (3), atld so same funet:ion pL, such th&t: i ':1i1i- is 1.1Dn-to11al. 
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Let i be R minimal among (i' I i'R i and i' non-total}. Then 
n 

~i must be non-total by an instance of (2)(ii), say at argument y. 

Hence i k. for some j, and a. must be serviced at y = 
J J 

]. - 1 
:0 

111=0 
~+ 

~ (z ) . 
]Dk m 

If j < n, pk (y) must converge since an is serviced at x 
j 

by assumption; and if j = n, then i and k are comparable, a contra-
n n 

diction. Furthermore if j > n, then a. will never be serviced. Hence 
J 

pi is total, and we conclude that for every k pk E ~ 1 • 

If jRk, then F(p.)(z) 
~ J 

~ pk(z) for all z ~ m
0 

= max[k,j,~ (O), - Po 
~ (1), .•• ~ (k-1)]. 

Po Po 
If j and k are incomparable, then< j,k > - a 

- 'n ' 
0 

an ' .•. 
q 

for some infinite sequence n
0 

< n
1 

< n
2 

••• nq . . . . 
For arguments z ~ m

0 
pk(z) is defined by (2) or (3). Since the 

sequence of z 's is strictly increasing, there is an i
0 

such that for 
i 

i > i 0 ,zi ~ m0 . At those arguments zi for i > i
0

, i = nq, pk(zi) will 

be defined by clause (2) and pk(z.) > F(~.)(z.). A synnnetric argument 
1 J 1 

shows that pj > F(pk)(i.o.), and the theorem is proved. 

Corollary. Let F be any total effective operator, and let R be any 

countable partial order on N. Then there exists an r.e. sequence of 

recursive measure functions ~r(O)' ~r(l)' ••. such that if jRk, then 

!(qir(j)) < q;r(k) (a.e.) and S'(_~(~r(j)~? S'(~r(k)), and if j and k are 

incomparable, then F(~r(j)) < ~r(k)(i.o.), and !(~r(k)) < ~r(j)(i.o.). 



Proof. Mostowski [ 3] has shown that there is a countable partial 

* order R into which any countable partial order may be embedded. 

* Moreover, Sacks [ 4 ] has shown that R is recursive. 

We assume without loss of generality that F is at least as large -
as the identity operator, and that the compression function for t, g, 

is strictly increasing in its second argument. Blum [ 1] has shown 

that there is an h E ~2 such that for all i ~i(x) ~ h(x, ti(x))(a.e.). We 

assume that h is strictly increasing in its second argument. To prove 

* the corollary, apply the theorem to R , rewrite clause (2) as 

nwt [p.(x)f-h(x,.g(x,F(ip )(x)))] +[pi (x) +h(:x:,g(x,F(t )(x)))], 
T:"lt ] ,.., p ,.., p 1· 
JSX j n n 
_1Rk 

and we rewrite clause (3) as 

~[pj·(x) + h(:x:,g(x,!(f )(x))) ]. 
j~ pj 
jRk 

It is easy to see that the theorem goes through as before, and the 

monotonicity restrictions on g and h guarantee that the functions 

{t }kEN satisfy the corollary. 
pk '. 
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4. REI.ATION TO OTHER WORK, AND OPEN PROBLEMS 

Mccreight [5] is the first investigator to prove an embedding 

theorem for subrecursive classes. He shows that any countable partial 

order can be embedded in the complexity classes ordered under set 

inclusion. However, his theorem is weaker than our results in that 

the functions of his partial order are "separated" by composition 

with a fixed recursive function, whereas our functions are separated 

by a total effective operator. In [6] Enderton also proves a universal 

embedding theorem for subrecursive classes. His notion of a sub­

recursive class is quite weak, however, and his result is an innnediate 

corollary of McCreight's theorem. 

Early work on the structure of subrecursive classes was done by 

Feferman [12), Meyer and Ritchie [7], and Basu [8]. Feferman shows 

that dense chains exist for various notions of subrecursive classes. 

Meyer and Ritchie define what they call elementary honest classes, and 

they show the existence of dense chains and infinite anti-chains for 

such classes. Moreover, they are able to exhibit certain functions f 

such that dense chains of classes will exist between f and the iterate 

off, \x[f(x)(x)]. Basu builds dense chains of subrecursive classes, where 

these classes are closed under the application of a fixed recursive operator. 

Machtey [11] has announced universal embedding theorems for both 

the "honest" primitive recursive degrees and the "dishonest" primitive 

recursive degrees. Both of these theorems follow innnediately from our 

results. 



We also note that Al ton [ 9 '] has independently announced our 

embedding theorem. 

We leave open the question of the sf.ae o.f the fu.n:: tions in our 

embedding dieorem. That is, given F, what is a reasonable upper bound ,.., 

on the size of p
0 

in terms of !(recall that p
0 

bounds all the functions 

(pk)kEN on all arguments). 

The author wishes to acknowledge the generous assistance of Professor 

Albert R. Meyer in the conception and preparation of th.is paper. 
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