MAC TR-120

ANALYSIS OF ASYNCHRONOUS CONCURRENT SYSTEMS
BY- PETRI NETS

Chander Ramchandani

February 1974

.This research was supported in part by the
National Science Foundation under research
grant GJ 34671, and in part by the Advanced
Research Projects Agency of the Department
of Defense under ARPA Order No. 433 which
was monitored by ONR Contract No. N00014-70-
A-0362-0001.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139



This empty page was substituted for a
blank page in the original document.



ANALYSIS OF ASYNCHRONOUS CONCURRENT SYSTEMS BY TIMED PETRI NETS

by
CHANDER RAMCHANDANI

Submitted to the Department of Electrical Engineering
on July 3, 1973, in partial fulfillment of
the requirementsg for the Degree of Doctor of Philosophy

ABSTRACT

This thesis is concerned with the modelling and performance analysis
of systems which consist of concurrently acting components, an example of
which is an asynchronous pipelined processor. The work is divided into two
parts.

In the first part, a suitable model is developed for describing the
structure of asynchronous concurrent systems. In conventional automata
theory, the finite-state machine model is used to describe the behavior
of systems; the problem with this is that a large number of states re-
sults when practical systems are modelled. In this thesis, each system
component is modelled as a finite-state machine, and a system is viewed
as an ensemble of interconnected finite-state machines.This has the ad-
vantage that the size of a system model grows linearly rather than expo-
nentially with the number of system components. A subclass of Petri nets
known as SMD (State Machine Decomposable) Petri nets is identified in
order to formalize the notions of finite-state machines and their inter-
connection. For convenience, systems of interest are divided into two broad
categories:

(a) Deterministic, or decision~free.

(b) Non-deterministic, or systems with decisions.

SMD Petri nets are used to model both classes of systems; in addition, a
subclass of Petrl nets known as LSP Petri nets is used to model those
deterministic systems that cannot be modelled by SMD Petri nets.

The second part of the thesis is concerned with finding the computation
rate of activities in real-world asynchronous concurrent systems. Practi-
cal systems are constructed from devices which have a finite speed of ope-
ration. Since Petri nets do not have time parameters as part of their
definition, they can model the structure of systems but cannot be used to
study their computation rate. The definition of Petri nets is augmented
to model the speed of operation of a device in a system by assuming that
the corresponding activity in the Petri net has a finite, non-zero time
duration. The resulting nets are termed timed Petri nets, and methods are
given for finding the computation rate of activities in timed SMD and LSP
Petrl nets. The results are applied to the analysis of several asynchro-
nous systems drawn from areas within and outside the domain of computer
systems ,
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CHAPTER 1

INTRODUCTION

1.1 Background

The philosophy of this thesis can be described very effectively by the
following quotation from T.C. Chen [C2]:

In the quest for performance above and beyond that deliverable
by hardware componentry, two alternative multiprocessing ap-
proaches to computer design can be taken. One is to subdivide
each oncoming joh among many identically constructed mechanisms,
and is commonly referred to as parallelism. The other alternative
is to develop a collection of specialized mechanisms capable of
working simultaneously to form a general purpose organization;

this is commonly called overlap, and an extreme form of this is
called pipelining.

It is well known that present day machines are very wasteful in terms of
resource utilization. One of the original arguments for time-shared
multiprogrammed systems was the fact that they could permit better utiliza-
tion of system resources than a batch-processing system by overlapping the
operation of the processor, primary storage and seéondary storage. The
processor in contemporary computer systems is treated as a resource unit
which is allocated to a user job or a task within a user job. Each
processor typically consists of smaller processing units like adders,
multipliers, an instruction fetch unit and an instruction decode unit,

all of which can potentially be operated concurrently with each other.

If it were possible to achieve this degree of concurrency, a much greater

processing rate could be realized as a consequence. Of course, the over-
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all throughput of the machine depends not only on the*instruction pro-
cessing rate of the processor, but als§ on factors like the speed of

the main memory, its degree of interleaving, the type of secondary

storage and finally on issues like the job mix and the scheduling strategy
used. But by suitably reconfiguring main and secondary memory, the bene-
fits of added concurrency in the processor could be realized as added
throughput in the overall system. In most contemporary processors, over-
lapped operation of functional units within the processor is restricted

to concurrent fetching and decoding of instructions. Many systems can be
run in a multiprocessor configuration so that real parallelism is possible.
However, this parallelism is between user jobs or between different tasks
of the same user job, a situation which we term macro-parallelism. Dennis [D3]
has advocated a computer organization in which parallel operation is pos-
sible right down to the level of instructions in a computer program or a
user task, We term this micro-parallelism and it is clearly impractical
on contemporsry machines because of the overhead involved in switching the
processor between instruction streams.

Jack Dennis has looked at the issues involved in designing a computer
system to support micro-parallelism, and readers interested im his pro-
posals for a memory organization and a representation scheme for programs
and information structures are referred to his paper [D3]. We quote his
remarks about the processing hardware:

The organization of the processing hardware is intended to per-
mit extensive shéring of multiple specialized cells by many
computations to ensure statistically high utilization. It is
envisioned that there be tens to hundreds of units of each cell
class, operating independently and asynchronously using a ser-

vice on demand principle of control.



The control needed in such a large complex system would be too formidable
to tackle with a centrally clocked or a‘synchronous organization. Dennis
has rightly pointed out the need for asynchronous operation of such a
system. Each '"cell" in Dennis' system corresponds to a functional unit
of a certain type, like an adder or an instruction decoder, and the opera-
tion of a cell type will be overlapped or pipelined with the operation of
other cell types. Thus, by a combination of parallelism and overlap, a
statistically high instruction throughput should result. We will refer to
such systems as 'asynchronous concurrent systems' and will have occasion
to use this term often in the course of the thesis. Dennis and Patil [D1,
D2] have addressed themselves to the problem of evolving tools for the
description and implementation of such systems. They have made much
progress, and their efforts have resulted in a systematic technique for
both the description of asynchronous concurrent systems together with a
methodology for their realization using a set of elementary modules [DI1,
D2]. 1In this thesis, we would like to address ourselves to the question
of modelling such systems with a view to predicting their performance.
The performance of an asynchronous processor such as visualized by Dennis
will depend upon several factors, some of which are listed below:

a) The number of functional units of each type.

b) The speed of operation of each functional unit.

c) Statistical properties of user jobs, e.g., their degree of

parallelism, relative frequencies of the different instructions.
d) Gross statistical properties of user jobs, i.e., job arrival
rates, mean length of user jobs.
Before we can incorporate these factors into a model for performance

evaluation of asynchronous computer organizations, we must come up with a
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suitable descriptive tool or model which can represent the structure of
such systems in a manner that is both simple and accurate. In particular,
factors like (a) and (b) should be readily incorporated into the model.
Models for asynchronous systems as they currently stand can successful-
ly describe the structure of asynchronous systems, i.e., the structure
and interconnection of the parts of the system. However, they do not
have a way of incorporating information about factors like (b) and (c)
as part of their definition. 1In this thesis, we have developed a model
in which factors (a), (b), and (c) can be described in a natural and
gsimple way. Thus, given a description of the structure of the system
and the speed of operation of its parts together with statistics on the
utilization each part, we can obtain a measure of the throughput of the
system. If the system we are considering is an asynchronous pipelined
processor, we can obtain a measure of its processing rate, given that we
have information of types (a), (b) and (¢) available to us. The actual
throughput of such a processor when connected to memory units and in the
presence of user jobs is not easy to find. We will not study issues of
type (d) in connection with the performance of asynchronous computer
systems, but will concern ourselves with finding an index of performance

which we will call its information processing capacity or computation

rate.
Our approach will be to study an existing model for asynchronous sys-
tems and explore in depth its applications to the modelling of various
types of concurrent systems, including pipelined organizations in which
parallelism may be present in each stage. This model, while adequate for
describing the structure of asynchronous systems,.does not contain in-

formation regarding the speed of operétion of system components or any
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information about the statistical utilization of the parts of a system.
We show how such information can be incorporated into the model. The
iproperties of this augmented model are studied, and a technique is given
for analyzing the throughput rate of a large variety of asynchronous
processing or computing systems. The model we have developed and the
analysis techniques for it were motivated by the desire to study perfor-

mance issues in asynchronous computer systems. However, the work can be

applied with equal facility to analyzing numerous systems outside the
realm of computer systems; the best example is that of an assembly line,
and we shall interchangeably talk about pipelined processing systems or
assembly lines, because both share fundamental characteristics such as
overlapped and parallel operation. In the next section, we pursue the
modelling of asynchronous systems in some depth, and illustrate the

spirit and flavor of the thesis by concrete examples.
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1.2 Modelling Asynchronous Systems

Our study of various types of asynchronous concurrent systems has led
us to the conclusion that, by and large, we would like to distinguish
between two broad classes of systems:

a) deterministic
b) non-deterministic (i.e., having decisions).

Let us explain briefly what we mean by this distinction.

Deterministic Systems: We will call an asynchronous system deterministic
if during the course of operation of the system, there is never a
situation when a decision has to be made between alternative courses of
action in the system. An example will explain what we mean. Consider

an automobile assembly line in which only one.kind of car is being manu-
factured, and each car is made from similar components using the same
sequence of assembly operations. Thus, in the course of operation of
this system every assembly operation is needed for the assembly of each
car, there being no difference in the sequence of steps needed for the
manufacture of the fourth or eighth car output by the assembly line. To
give another example, consider a pipelined floating-point adder, arranged
in, say, three stages (see Fig. 1.2.1). Each stage performs a certain
operation on the pair of operands input to the pipeline for addition.
Thus, each operand pair that is absorbed at the input goes through the same
sequence of operations before being output as a result. Such a pipelined
system is also a deterministic system because no choice has to be made
between alternative courses of action. So far we have looked at systems
in which the objects being assembled (or added, etc.) go through an i-

dentical sequence of operations. A more general class of systems consists
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of those systems in which the objects being processed do not necessarily
go through the same sequence of operaﬁions, but the operation of the
system is still deterministic. An example of such a system is an assembly
line for the manufacture of automobiles which alternately turns out two
kinda of autos, one fitted with a 200 HP engine and the qther with a 350
HP engine. We shall u@ that the car with the more powerful engine has
to be suitably braced and fitted with extra gadgetry, so that after the
engine has been bolted to the chassis, subsequent assembly operatioms per~
formed on the two cars are different. Thus, even though there is & point
in the system at which a decision haa to be made, this decision camemot,
for example, be made arbitrarily by an asaembly line operator. The opera-
tion of the system is, so to speak, "preoxdained," i.e., there is no point
during the operation of the system at which a choice can be exercised be-
tween alternative courses of action.

Let us now move om to the class of systems we have termed non-determin-

istic systems.

Non-Deterministic Systems: We will loosely define mom~deterministic
systems as those in which there does exist a choice between altermative
courses of action. An example of such a system is the assembly line of

Figure 1.2.2, minns the restriction that the two types of automobiles be

manufactured alternately. Thus, at the bay at which alternste routing

of the two types of partially assembled autos was done, this routing can
now be made random or controlled by some decision process other than a
purely deterministic one. The decision could, for example, be made on
the basis of up-to-the-minute customer orders received from car dealers.

The operation of an assembly line such as this is said to be non-determin-

istic. Let us now give a more computer-related example. Consider the
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simplified model of a pipeline processor shown in figure 1.2.3.

Processing for Type A Output
Queues

~

Processing for eIB

Stage 1 Stage 2

What type
of instruction?

Processing for Type C

Stage 3 Stage 4

Figure 1.2.3. A Simplified Model of a Pipeline Processor for a Computer
with Three Instruction Types.

We shall assume that the instruction set of the computer has three types
of instructions, termed types A, B, and C. Instructions are fetched at
Stage 1, decoded at Stage 2 and processed accordihg to their type at
Stages 3 and 4. The reader will notice that we have chosen the same nota-
tion for representing both the assembly line of figure 1.2.2. and the

pipelined processor of figure 1.2.3. Both these types of systems,
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together with a large variety of others, all have the basic characteristic
that they consist of a set of parts ﬁogether with some mechanism for coor-
dinating their operatiom, In additiom, the system parts could be
arranged to exhibit overlapped operation and parallelism. Let us ex-

plain these two terms in the context of Figure 1.2.3. Each stage of the

system is a part, whose operation can be overlapped with that of the

other parts. We will say that the parts of the pipeline processor operate

concurrently or in an overlapped fashion. We now come to parallelism.

Suppose Stage 1 consists of two idemntical hardware units, each of which
can independently fetch an instruction, and the two can @er'tte,concur—

rently with respect to each other. Stage 1 will be said to have paral-

lelism of degree 2. 1In gemeral, any stage is sni‘&_ to have parallelism

of degree m if it has n physical hardware units available for processing.

Brief Statement of Thegis Problem: The problem we have addressed in

this thesis is to study in some depth how to model asynchronous, concur-
rent systems such as theomes shown above. We have chosen & formalism
known as Petri nets [H1, H2] to express the sequencing relationships be-
tween events in asynchronous systems. The problem with Petri nets, as
with other models for asynchronous systems or parallel computatiom that
we could have used is that they represent only the sequencing or "cause-
and-effect” relationships between events in a system. Such a systems
description is not adequate if we wigh to study performance issues.

For example, the assembly lines and the pipeline proﬁessors modelled in
Figures 1.2.1. through 1.2.3. are all real world systems built from com-
ponents or devices which take a certain amount _of time to operate. Thus,
the production of cars or the processing of instructions in an actual sys- -

tem is not instantaneous. The rate at which processed objects appear at
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the output depends upon several factors, some of which we outlined in

section 1.1 in connection with an asynchronous pipelined processor.
Recapitulating, the throughput rate of an asynchronous processing system
will depend upon two kinds of factors:

(a) factors intrinsic to the system, like its structure, the

organization of its parts and the speed of operation of each part.
(b) extrinsic factors, like availability of items in the input queues,
statistics on the type of items input to the system for processing.

The only extrinsic factor we will model will be statistics on the out-
come of decisions during the course of operation of the system. 1In
connection with Figure 1.2.3; this would mean the relative probabilities
of occurrence of each of the instruction types A, B and C during the
operation of the pipelined processor. As the reader will note, this
is equivalent to the relative frequency of use of the éystem parts which
perform the processing of these instruction types. We will not model
other extrinsic factors, like arrival statistics for items in the input
queues. The throughput rate that we thus calculate for a processing
system will represent the maximum rate possible, assuming that it is
connected to a balanced configuration of primary and secondary memory.

In the next section, we look at previous work in the areas of asyn-
chronous systems, parallel computation and project scheduling which is

relevant to the research presented in this thesis.
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1.3 Related Work

Considerable work has been done in modelling the sequencing or control
aspects of asynchronous systems, but few workers have actually considered
issues of timing or speed of operation.

The work of R. Karp and R. Miller [K1, K2} is concerned with the

development of a mathematical model called parallel program schemata

to represent parallel algorithms. A set of uninterpreted operations is
defined over a finite set of memory cells. lwith each operation is
associated two subsets of the memory cells called the domain and range
cells. Upon activation, called an initiation, an operation'reads the
current values in its domain cells and evaluates a function with these
values as arguments. An unspecified time later, the results are deposited
in the range locations, the latter action being called a termination.
Control is conceptu#lized as a possibly infinite directed graph comsisting
of a set of control states (nodes) together with a transition function
that specifies for éach state initiation and termination paif the suc-
ceeding control state. A computation is a sequence of initiations and
terminations that corresponds to a defined path in the control graph
(emanating from a designated starting stéte) and that satisfy other rules.
With this formulation, parallel activation of operations is possible,
but their work on the whole is more concerned with control structures
for parallel programs that properly terminate than with fhe issues in-
volved in being able to represent continuously operating asynchronous
concurrent systems.

Dijkstra [D4] considers a method by which asynchronous sequential
processes may operate concurrently and communicate harnoniéusly. The

processes are provided access to common integer values called semaphores.
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The semaphores can be manipulated by means of two synchronizing primitives,
the '"P" and "V" operations which decrement and increment, respectively,
the value of a semaphore by one. The P operation can be executed only
when the current value of a semaphore is greater than zero. Conditions
are investigated for an ensemble of interconnected sequential processes
to operate without being deadlocked.

The work of Holt and Commoner{H2,Cl] is very significant and has’ form-
ed the starting point of our thesis. Their model, called Petri nets,
is very simple to understand, and consists of two types of nodes termed
places and transitions. A set of directed arcs connects places to
transitions or tramsitions to places. Markers, called "tokens'" are put
" on places, and each token that is put on a place corresponds to the
holding of one instance of the condition corresponding to that place.
When every input place of a transition has a token on it, it can "fire.”
A firing causes one token to beremoved from each input place, and a
token to be added to each output place. Commoner has investigated
conditions for a subclass of Petri nets to operate in a deadlock-free
manner. Hack has done an extensive investigation of a subclass of
Petri nets termed Free Choice Petri Nets [H1].

So far, we have discussed models for asynchronous systems in which
no mention was made of real time. Two bodies of work exist imn which
real time issues are entered into for asynchronous eoncurrent systems.

The first is the PERT network used in project scheduling [F1]. A
PERT network is an acyclic directed graph with an input vertex and an
output vertex. All arcs in the system lie on paths from the input vertex
to the output vertex. Each arc denotes an activity in a project, and a

method is given for calculating the shortest amount of time that it
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takes to complete the project (the critical path), and also the earliest
and latest time that any given activity can initiate in order that the
project be completed in the shortest time poséible. wWhile PERT networks
can explicitly represent concurrent activity in a system, they do not
have the power to represent systems which operate in a recurrent or
repetitive fashion. Nor, for that matter, cam they explicitly represent
system components with parallelism within each component. Most important,
there is no provision in the structure of PERT networks for representing
a choice between glternative actions in a system. This makes the model
inadequate for modelling the complex asynchromous systems we would like
to handle.

Martin and Estrin at UCLA have studied a model of parallel computation
called the program flowchart [Bl, M1, M2, M3]. Program flowcharts are
directed graphs consisting of nodes and arcs. Nodes represent operations
in a computer program and arcs represent data paths between them., An
operation can take place when some suitable logical combination (and,
exclusive-or) of its incoming arcs have data values on them. When an
operation takes place, it absorbs data values from its incoming arcs and
puts data values on some logical combination of outgoing arcs. The model
is extremely powerful and can represent decisions explicitly. Martin and
Estrin are concerned with modelling parallel computer programs, with a
view to finding their mean computation time, i.e., the amount of time it
takes to execute a computer program from stert to finish, For this pur-
pose, they assume. each node to have a fixed (deterministic) time duration.
A technique is given for finding the mean execution. time of well-formed
program flowcharts. Although the model is capable of representing

recurrent processes, Martin and Estrin have confined themselves, in their
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analysis, to models of processes which operate in a '"one shot'" fashion.
Also, they have not developed their model to a point where it can be

used for modelling complex pipeline processors or assembly lines. We
will show in the course of our work the added generality that is possible

with our approach to modelling asynchronous systems.
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1.4 Overview of Following Chapters

1) It is shown how asynchronous concurrent systems can be looked upon

as an ensemble of suitably interconnected finite state machines. Petri

nets are introduced to formalize this notion, and also as a graphical

tool for visualizing the structure of asynchronous systems. It is shown

what it means for an asynchronous system to be well-formed in terms of

the corresponding notions of liveness and boundedness for Petri nets. The
two classes of asynchronous systems, deterministic and non-deterministic,

are formalized. Boundedness is shown to be a decidable property for

Petri nets, and liveness in turn is shown decidable for bounded nets.

(Chapter 2).

2)  An in-depth discussion is given of the structure of asynchronous concurrent
systems in terms of SMD (State Machine Decomposable) Petri nets. The

notion of a "current assignment' is introduced for transitions in a Petri net,
and a consistent Petri net is defined as one which can support a consistent current
assignment. Subclasses of Petri nets are introduced, chiefly Event

Graphs, LSP (Live, Safe, gérsisé;ﬁt) Petri nets and SMA (State Machine
Allocatable ) Petri nets. Deferﬁinistic and non-deterministic systems are
studied in terms of these subclasses. (Chapter 3).

3) Timed Petri nets are introduced. These are Petri nets in which a
transition executes for a fixed non-zero time called its firing time.

The maximum rate at which an event occurs in a system is its computation
rate. The computation rate of a large class of deterministic systems

is found. (Chapter 4).

4) The general problem of finding the computation rate of non-deterministic

systems is addressed. A bound is obtained for the computation rate of

non-deterministic systems. Systems are identified for which this bound
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is achievable. (Chapter 5).

5) Applications of our work to the modelling and analysis of real-world
systems are given. (Chapter 6).

6) Unsolved problems are given, together with recommendations for future

research. (Chapter 7).



CHAPTER 2

PETRI NETS AND VECTOR ADDITION SYSTEMS

2.1 Informal Introduction to Petri Nets

We will present the idea of the Petri Net model as an extension of
the finite state machine model of conventional automata theory. The
latter model is based on the assumption that we can abstract from a sys-

tem a total system state, and the action of the system ig described by

the set of all allowable states and a set of rules that governs the
transition of the system from one state to another. Let us give a simple
example here to explain what we mean.

Congsider a stage of the pipelined floating point adder shown in
F;gurg 2.1.1(a). Assume that it ca#lhandle one pair of operands at a time
and that vhen it is performing an operation on an operand pair, other
operand pairs in its input queues must wait until it is through with the

current operand pair. We can thus represent the operation of the stage

of the pipelined adder as shewn in Figure 2.1.1(a).

Unit busy

Ready to output result

ady for input
operand pair , .

Figure 2.1.1(a)
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The stage can be in one of three states, denoted by circles in Figure
2.1.1(a) :

(a) Ready for input operand pair.

(b) Unit busy (processing an operand pair).

(c) Ready to output result.

Figure 2.1.1(a) is drawn using the notation of finite-state automata
theory, and a transition from one state to another is denoted by an arc.
For reasons that will become clear soon, we will ingert into each arc in
Figure 2.1.1(a) a bar to denote the transition from one state to another.
Also we would like to indicate what state a system is in at any given
ingtant of time. We will designate this by the presence of a marker on

the circle corresponding to that state (see Figure 2.1.1(b)).

Unit busy Done with processing

Ready to output
result

Pick up

oper i
operand pair Output result

Ready for input
operand pailr

Figure 2.1.1(b)

The system shown in Figure 2.1,.1(b) is im the state : 'ready for
input operand pair'. When the system absorbs an input operand pair, it

makes a transition to the state : "unit Susy". Finally, when it is done.

with processing the operand pair, it becomes ready to output the result

and makes a transition to the state entitled "reddy to output result".
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The system then outputs the result and becomes ready for the next input
operand pair. This sequence of operations repeats.

Each stage of the system can be modelled in this fashion. We now con-
sider how to model a two-stage pipelined adder, given that each stage is
modelled in this fashion. Once again, by using techniques of conventional
automata theery, we see that the two-stage system can be represented by
a finite state machine which is the cross-product of the two machines[H4].
Let us attempt to carry out this construction. We will assume that the
states of the two machines are labelled a,b,c and a',b',c', respectively

(see Figure 2.1.2).
hl

a

Figure 2.1.2

Figure 2.1.3 shows the resulting finite state machine. We see that it has
nine gtates and a total of eighteen transitions between states. The
problemg with this representation are the following:

(a) The number of states grows as the product of the number of states

in the individual stages.

(b) The identity of the individual stages has been lost. For all we know,
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this could be the state diagram of a nine-state system consisting of only
one system component (or stage).

The nine-state finite state.machine obscﬁres the structure of our two-
stage pipelined adder. We note that if the pipeline has n stages, the
number of states in the finite-state machine used to represent it would

be 3" !

To represent a five-stage pipeline, we would need 243 states.
We clearly need a formalism which provides more economical descriptions
of concurrent systems.

ket us briefly discuss parallelism in a system like a pipelined adder.
Suppose we consider a two-stage pipelined adder in which the first stage
has five functional units in parallel, and can thereby support up to
five concurrent computations. The second stage will be assumed to have
eight parallel stages. We can represent parallelism of degree five in
the first stage by placing a total of five tokens on the finite-state
machine used to represent it. Similarly, we place eight tokens on the
finite state machine used to represent the second stage. (See Figure 2.1.4).
Each token is assumed to move from one state to another independently
of all other tokens. The state of the first stage is now a vector
( n(a), n(b), n(c) ), where each element of the vector represents the

number of tokens on the corresponding place. Note that :

n(a) + n(b) + n(c)

5, and

n(a') + n(®") + n(c")

8.

In order to model the first stage as a finite state machine, 35 states
are needed, Similarly, 38 states are needed for the second stage, giving
)

313 states in all for the cross product machine ! Suppose instead of

attempting to model the above system as a finite state machine, we use
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|
£

Figure 2.1.3 Finite State Machine Model of Pipelined Adder

the following artifise : coalesce ty and ti together, givimg the dia-

gram in Figure 2.1.5. The coalesced bar is relabelled 't'.

The output terminal of stage 1 is thus made the input terminal of stage

2. A transfer of an operand can take place when stage 1 iprready to out-
put a result and stage 2 is ready for an input operand. In tefms of the

net in Figure 2.1.5, this is true when state ¢ in stage 1 and qtate a' in
stage 2 each have at least one marker on them. Figure 2.1.6 shows a confi-
guration of the pipeline in.which an operand pair can be transferred between

the stages. Figure 2.1.7 shows the configuration that results after an
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operand péir has been transferred.

We are now ready to introduce some nomenclature. Each circle in the
diagram of Figure 2.1.5 is called a place , and the bars are called trans-
itions. The act of transferring an operand pair between stages was

achieved by an action called the firing of tramsition t.

Figure 2.1.4,

a Figure 2.1.5. a'

Figure 2.1.6 shows a configuration of the system in which tramsition t can

be fired. When t fires, a token is removed from each input place and

added -to each output place. (gee Figure 2.1,7). In system terms, each input
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Before firing tramsition t

Figure 2.1.6

After firing t

Figure 2.1.7
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place to a transition represents a pre-condition that has to be satisfied
(or hold) in order that the action corresponding to the éransition may
take place. If there are several tokens on a place, it represents several
instances of the holding of the corresponding condition. Thus, when the
action corresponding to t occurs, it causes one instance of each pre-
condition to cease and one instance of each output condition or post-
condition to begin holding. When the finite-state machines representing
Stages 1 and 2 are not connected, the stages they model are said to be

mutually independent. In Figure 2.1.5, the finite state machines are said

to be interconnected. Many other terms can be used instead of interconnec-

ted stages, for example, cooperating or mutually synchronized stages, but

we will continue to use the term interconnected.

What we have done in the last few paragraphs is to introduce a way of
modelling, in an economical way, systems of interacting parts in which
overlapped operation and parallelism are both present. The terminology we
have used is part of the definition of Petri nets, which are discussed more
formally in the next Section. We have introduced the idea of Petri nets
as a natural extension to the finite state machine model, and their advan-
tages are obvious and comsiderable.

We would like to continue our informal approach in order to introduce
some important notions that we will need in understanding the structure
of asynchronous systems. Consider the finite-state machine in Figure 2.1.1(b).
The state machine is strongly-connected, i.e., from every state there
exists a directed path to every other state. The state machine in Figure
2.1.8 is not strongly-connected and we see that there is the possibility

that the token can appear in place Py> after which there is no way for the
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token to appear in either place P, or place P,- What this implies is that

once the token appears in place p3, transitions tl,t2 and t3 cannot fire.

Figure 2.1.8 A finite state machine that is not stzqu;ly-connccte@.

Lo 3. S =

We have seen that transitions cam be used to represent operators in an actual
system. In the systems we are interssted in, we insist that every operator
always be usable. A system component whose operation can be represented by

the finite state machine of Figure 2.1.8 has certain operators (represented

by tl’tz and t3) which are not used after some transient behavior of the
gystem. In the steady state, transitions t6 and t5 fire alternately, over

and over again. We will insist that each finite state machine be strongly-
connected, and the reader can see that this is necessary fér the‘co-posite
system to satisfy the requirement that every operator always be usable in
the courge of operation of the system. If it so happens that some of the
operators can never be used (i.e. thelr corresponding transitions can

never be fired) , then those operators can be removed from the system

without affecting its operation. Such operators are termed redundant.
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The reader can verify that in the resulting net, t?ansitions tS’ t6 and
té are redundant.,

A Petri net such as the one shown in Figure 2.1.9(b) has no redundant
transitions and will be terméd live. On the other hand, in the net shown
5 t6 and tg are redundant, whereas all

others can always be fired. Such a net is termed pseudo-live. In some

in Figure 2.1.9(c), transitions t

Petri nets, the operation of the net may lead to a configuration in which

no transition can be fired. Such a net is termed non-live. In Figure

2.1.10(b) we show the construction of such a net from the two state machines

of Figure 2.1.10(a).

Figure 2.1.9(a)
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Figure 2.1.9(c)




In the configuration shown in Figure 2.1.10(b), either transition t1 or t2

can be fired. If t, is fired, the net attains a configuration in which no

2
further transitions can be fired (see Figure 2.1.10(c¢)). The net is an
example of a non-live net, and the configuration shown in Figure 2.1.10(c)

is a deadlocked configuration.

What we have done so far is to motivate a formal study of Petri Nets,

which we now proceed to do &n the next section.

Figure 2.1.10(a)

Figure 2.1.10(b)
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2.2 Formal Definition of Petri Nets and Relevant Concepts

2.2.1 Petri Nets

We are now in a position to introduce the reader to the formal defimi-
tion of Petri nets together with the related termimology that we will use

in the rest of this thesis.

Definition 2.2.1 A Petri Net Pis a three-tuple (P,T,A)

vhere P is a non-empty set of distinctly-labelled places {p1, pps-..Pnl-
T is a non-empty set of distinctly-labelled transitions
{t;, ta, ...ty).
A is a relation; it corresponds to a set of arcs, where each arc
is either from a place to a tramsition or from a transitiom to
aAplace :

A € PXT U TXP,

Definition 2.2.2 A marking M is a function such that M: P —s 1, where 1)

is the set of non-negative integers. The non-negative integer associated
with ﬁ place represents the token load of that place, or the number of

tokens on it.

A Petri net with a marking will be referred to as a marked Petri net

(see figure 2.2.1 for an example).

Notation and Terminology

A node of a Petri net is either a place or a transition. We now intro-
duce a conveniént notation for the predecessor or successor nodes of any

node in a Petri net. We will refer to it as the dot notation.
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Figure 2.2.1. A marked Petri Net

(p,t) € A is written p-t.
{ylx-y} is written x°.

{Y|Y-x} is written °x.

Example: In figure 2.2.1, -tg = {r1, pz}-

P1*"= {tls tz}-

The dot notation is also applied to designate the successor or pre-
decessor set of a set of places or tramsitioms. Thus,
'{tZ’ tl.,} = {pls P2, P3}-

{P3: Pz}°= {tZ’ t39 t4}o

A transition t in a Petri Net P is said to be enabled iff every input
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place Pi € +t has at least one token on it. An enabled transition can be

fired. When a transition fires, a token is removed from each imput place

and added to each output place pj € t*. Suppose M2 is the marking that

results when an enabled tramgition t, fires at marking M. We write this
u E5,

Now suppose transition t can be fired at marking M®. Let MP be the

marking that results when transition ty fires. We write

M E_a’ Ma t—b-)' Mb, Continuing in this fashion, let
us - suppose that at every new marking that results when a transition fires,

at least one transition can be fired. We can write this
M tapya thyyd . ..., togm,

The sequence of transition firings t tpte ..... tp is termed a firing
sequence. If 0= tutp ......th, we write

n

tat tg
u ab.l. H

n
or M—f’;—-—-»u.

Example.

In Figure 2.2.2(a) transition tj; is enabled. Figure 2.2.2(b) shows
the marking that results when transition ty is fired at marking M. The

reader can also verify that tjt,tstity is a firing sequence for the net.

Definition 2.2.3: A marking i is said to be reachable from marking Mi

if there exists a firing sequence ¢ . such that

i Lo u?,
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Marking M ' Marking M'
(a) (b)

Figure 2.2.2.

R

Definition 2.2.4: The forward marking class M of a marking M is the

set of markings that is reachable from M. 1i.e.,
M={Ml | Zo €T anda M —p M},

Note: T* is the set of strings on the alphabet

T={t1, t2, -o-oo-tn}-

Notation: We have defined M as a function that assigns a token load to
every place pi € P. M can also be looked upon as a vector, theith element

of which corresponds to the token load of the ith- place pj in the Petri net.
Example: The marking M of the net in Figure 2.2.2(d) can be written as

M= (1, 1, 6, 0)
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The forward marking class of M is seen to be

#-={@,1,0,0), (0,0,1,1), (0,1,1,0), (1,0,0,1)}.

Definition 2.2.5: A marking M is live for a transition t iff for every

. -»>
marking M! in the forward marking class M there exists a firing sequence

which fires t.

Definition 2.2.6: A marking M is live for a Petri Net P iff it is live

for every transition in the net.

Definition 2.2.7: A marking M is bounded for a place p, iff there exists

an integer N such that for every marking mle M, Mli(p) S N. If N =1, the

marking is safe for place p.

Definition 2.2.8: A marking M is bounded (or safe) for the Petri net %

iff M is bounded (or safe) for every place in the net.

In Section 2.1, we pointed out that there exist marked Petri nets in

which a marking is reached in.which no transitions can be fired, i.e., the

net can reach a deadlocked configuration. Suppose this deadlocked con-

figuration is called Ml, and suppose that the net is in some configuration

(i.e., has a marking) M. If M——g—’M;, then o is sald to be a killing

sequence for the net at the given marking M. A net with a live marking

has no killing sequence.

There is one more important issue we would like to consider in this
subgsection. In Section 2.1, we pointed out that the only Petri nets we
will use for modelling asynchronous concurrent systems will be nets which
have a live marking. We would also like the marking for a Petri net to

be bounded. This means that the only Petri nets we would like to consider
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are strongly-connected nets. Let us see why. Consider a non-strongly

connected Petri-net P Then, there must exist in the net two portions of
the net A and A* such that all arcs between them are directed from A to
A‘, as shown in Figure 2.2.3. Each of the nodes a and ¢ in A can either
be a place or a transition. Suppose a is a place. Then b must be a
transition. Since the marking for the net is live, it means that b can

be fired repeatedly. But each firing of transition b removes a token from
place a. Now suppose we do not fire transition b at all. This would mean
that all the tokens which were previouély being removed by firings of b

can now stay on place a, which means that the number of tokens on a can

become unbounded.

Figure 2.2.3 A Petri net that is not strongly-connected.

Now suppose that a is a trangition and b i{s a place. Since the marking
for P is live, we can fire transition a repeatedly, causing the token

content of b to become unbounded. Thus, if P is not strongly-connected,
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the token content of some place in 7> becomes unbounded. Now, since we
are concerned only with nets which have a live, bounded marking, all

Petri nets we will consider will be strongly-connected, unless explicit-

ly stated otherwise.

In Section 1.2, we said that there are two broad classes of systems
that we would like to distinguish between. We now pursue that line of

thinking formally.

2.2.2 Deterministic and Non-Deterministic Petri Nets

We would like to make an important distinction between two classes of

Petri nets, which we term deterministic and non-deterministic. First, we

look at a structural condition of Petri nets known as conflict.

Definition: Consider a Petri net f>= (P,T,A). Two or more transitioms
t1,t2, ......t} are said to be in conflict if there exists a place p such
that p'ti A p‘tz-.ooo- Ap'tko

Note: 'A' denotes the logical "and" operatoo.

‘Figure 2.2.4
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In Figure 2.2.4 transitions t, and t, are in conflict at place p.

1 2
With the marking shown, a token in placéfpl can be removed by the firing

1 or transition tz. Thus, for the given marking,

we have a choice between firing either transition t1 or transition tz,

and when either transition fires, the other ceases to be enabled. Before

of either transition t

we can go any further, we must mske a few definiiiohs.

Definition 2.2.9: A marking M is Bersis;ent for a transition t in a

Petri net P 1if t has the property that once it is enabled at any markiig
M1 € ﬁ, it cannot cease to be enabled by the firing of any transition

other than itself.

Definition 2.2.10: A marking M is persistent for a Petri net 5’iff it

is persistent for every transition t € @

The net in figure 2.2.4 has the property that it has no marking which is

persistent for transitions tl and tz. Such a net ig termed.ia non-deter-

ministic net, and represents a system in which there is a distinct choice

between alternative actions (see section 1.2). 1In contrast, the net in

figure 2.2.6 is a deterministic net or a net with a persistent marking.

We now introduce some convenient ways of referring to the nets we have
been discussing.

A net with a Live, Bounded or a Live, Safe marking will be termed an
LB or LS net, respectively. If g Live, Bounded marking is also Persistent
we will call the Petri net an LBP net. A net with a iive, Safe, Persistent
marking will be called an LSP net. The net in Figure 2.2.5 is an LSP net.

Petri nets are a graphical representation of a mathematical system
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known as vector addition systems. In the next section, we use some results

in vector addition systems to prove the decidability of certain issues in -

Petri nets.
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2.3 Vector Addition Systems and their Relationship to Petri Nets

In this section, we give a brief description of vector addition systems,

but a more thorough coverage can be found in Karp and Miller [K2].

Definition 2.3.1: An r-dimensional vector addition system V is a pair

V = (s,W) where

(1) s €N, n={0,1, ...}.

(2) Wis a finitelset of r-dimensional integer vectors
W= {w,..awl, w € {041,342, ...}

The reachability set R(V) is the set of vectors given by

R(V) = {xilx1 =g +w,, +w,+ ...+ wik} where w,, € W.

i1 1]

a. wij €W, j=1,2,.,..k.

i2

b. s + Vi1 + Vio + ...+ ik ® 0, k=1,2,...t.
The reachability set is the set of all points that can be reached by some

path from s using vectors from W and never leaving the first orthant.

Example 2.3.1: As an example of a four element vector addition system,

congsider
Vi= (8,w)
where s = (1,1,0,0)
W= {wl = (—1,0,+1,0);:w2 = (-1,-1,+1,+1), Wy = (0,-1,0,+1),
w, = (+1,0,-1,0), w, = (0,+1,0,-1)}.
The reachability set R(V) of this vector addition system consists of

four vectors {(1,1,0,0), (0,0,1,1), (0,1,1,0), (1,0,0,1)}.

Notation

Let us denote the vectors in the reachability set by ¥yo
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i.e., R(V) = {yl, Yos «oe ym}.
Also, if A is a vector, then (yi)k will denote the kth element of ¥y
We will draw a directed graph with the elements of R(V) as vertices,
gnd an arc from vertex A to yj if there exists a vector Wy € W such that
yj =y + Wy
Each arc will be labelled with dts corresponding vector ﬁi above, and the
resulting diagram shows at a glance the vectors in the reachability set
and how they can be reached from one another. We'will call this diagram
the reachabiligxrdiagramiof the vector addition system V.

As an example, we give the reachability diagram corresponding to the

vector addition system of example 2.3.1.

— (0,0,1,1)

. (1,0,0,1)
(0,1,1,0)

Figure 2.3.1 The Reachability Diagram for the Vector Addition System of

Example 2.3.1
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If the reachability set of a vector addition system is finite, the reacha-
bility diagram is a finite-state machine, and it is practical to draw it as
we did for our example, If, on the other hand, the reachability set is
infinite, we must find an alternative representational tool. For this
purpose, we introduce the following terminology:

(1) We define a quantity ® such that if n is an integer then n < w, and
n +®=w, The quantity w essentially represents infinity and we discuss
its use shortly,

(2) A rooted tree is a directed graph such that one node (the Yoot node)
has no arcs directed into it, each other node has exactly one arc directed
into it and each node lies on a directed path from the root node. If § and
Y are distinct nodes of a rooted tree and there is a directed path from B to
Y, we write 8§ < y. 1If there is an arc directed from B to y, then vy is a
successor of B. A node with no successors is called a leaf. With an r-
dimensional vector addition system V = (s,W), we shall associate a rooted
tree T(V). Each node B € T(V) is labelled with an r-dimensional vector £(B),
where each element of £(B) belongs to the set N {w}. A recursive procedure is
given below for the construction of T(V). Note that the label for a node
is assigned when the node is added to the tree.

(1) Create a root node and label it s,

(2) Let B be a node in the partially created tree with no successors.

If, for some node y, Y< B and £(y) = £(B), then B is a leaf in T(V). Other-
wise, for each w € W such that w + £(B) O, add a node Bw and make it the
successor of B. For each Bw the ith coordinate of L(Bw) is assigned as

follows:
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(i) If there exists y < Bw such that £(y) < £(B) + w and
L(Y)i < (L(B) + w)i then L(Bw)i = @,
(ii) 1f no such y exists, then !.(Bv)i = (L(B) + w)i.
(3) Repeat step (2) until no new nodes can be added to the tree.
We show in Appendix I that for any vector additiom system V, the tree

T(V) is finite.

Example 2.3,2. As an example (taken from Karp and Miller), congider the

following vector addition aystem V = (g,W).

s = (1,0,0,0,0)

L

{('1,1s0:0s0)’ ("130’0;190)’ (0:'»1:2’0:0): (‘0:11‘1:0"0)3 (030903'132)
(03030’1:'1))-
The rooted tree T(V) is : /osoaw.oﬁ)’i(oama“’ovo)

(o,1,0,0,0)-»(0,052,0,0)-»(0,1,»,0,0\ (0,w,1,0,0)

(0,w,w,0,0)
(1,0,0,0,0) (0,0,0,0,0)%(0,0,0,0,w)

0,0,0,I,OH0,0,0,0,ZH0,0,0,I,w\
(0,0,0,0,0)-»(0,0,0,w,u)

(0,0,0,w,w)
Figure 2.3.2

All our decidable results about vector addition systems reduce to inspecting

the tree T(V) and using the following theorem.

Theorem 2.3.1: For any vector addition system V and any integer vector x

of the same dimension

(Iy € R(V) such that x < y) « (& B € T(V) such that x < £(B)).
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Proof: Given in Appendix I.

Corollaries

The following questions are decidable:

Corollary 2.3.1.1

Vy€R(W is (y)i < n for some finite n?

Corollary 2.3.1.2

Y y € R(V), is a given set of elements of the vector y simultaneously

bounded?

Corollary 2.3.1.3

Is R(V) a finite set?

In addition, if the questions in Corollaries 2.3.1.1 or 2.3.1.2: are true,
the bounds can be effectively computed. For the vector addition system
in Example 2.3.2, we see that V y € R(V), there are elements which be-
come unbounded, and hence R(V) is infinite. Furthermore, the elements

that can become simultaneously unbounded are (3), (5), (2,3) or (4,5).

Petri Nets and Vector Addition Systems

It is easy to see that for every marked Petri net there is a correspon-
ding vector addition system. Let us explore this issue in detail.

Let P be a Petri net with initial marking M. We can construct an
equivalent vector addition system V = (s,W) as follows:

The dimension of the vector addition system is made equal to the

number of places in the Petri net, and the starting vector s is taken to
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be the initial marking of the net. It now remains for us to show how
to construct the set of vectors W. Consider a marking M' in the marking

Y
class M, at which a transition t, is enabled. Since the firing of th

h
decrements the token content of each of its input places by one, and
increments the token load of each of its output places by one, we can
represent a firing of LN by adding a vector vy to the marking M' to yield
the marking that results when transition tﬁ\is'fired.'The'elements of :the
vector W are given the following values:

+1 if the corresponding place is am output place of th.
-1 1if the corresponding place is an input place of th.
0 othervise (we are assuming that there are no self-loops in 5’;

see figure 2.3.3).

O—1

Figure 2.3.3. A Self-loop

We now assert that the vector addition system V is equivalent to the
Petri net ?wit:h marking M in the following sense:
>
(a) For every marking M.q € M, there exists a vector y € R(V) such
that y = M .
¥ q

(b) A vector addition sequence V $s a sequence of véctor additions




-50-

Wy + ... +wg such that it transforms a vector vy to vector ys. i.e.,
. y v
Yi —> Y, where
V=W, ce.W .
j 8
We see that corresponding to every vector addition sequence v there
exists a firing sequence 0 = tj ...ts in the Petri net'fi and vice versa.
We now establish some decidable results for Petri nets based on the

decidability of the corresponding issues for Vector Addition Systems.

Theorem 2.3.2 It is decidable if a given marking M for a Petri net P

is bounded.

Proof: Let ? be a Petri net and M its initial marking. By the construc-
tion above, we can find an equivalent vector addition system V = (s,W).
From Corollary 2.3.1.2, we know that the following is decidable:

Given any vector y € R(V), is a given set of elements of y simul-
taneously bounded?

Thus, it 1s decidable if M is bounded for the Petri net P.
We can now establish the following result:

Theorem 2.3.3 It is decidable if a given marking for a Petri net is

live and bounded (i.e., if a given Petri net is LB).

Proof: Since we can decide if the given marking is bounded, we proceed
to show that there exists a decision procedure to decide if a given
bounded marking is live. For a bounded marking, the reachability set

of the corresponding vector addition system V is finite. Hence, the
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reachability diagram for V is finite. The marking M is live iff for

- -+
any marking M' € M there exists a firing sequence that fires every
transition in the net. In terms of the reachability diagram, this

means that starting at any vertex s and given a vector v € W, there

must exist a vector addition sequence that contains .

-
l -
y t
] 1 '
] v ]
! ]
O 1§ c,) I} > %
¥y / ’
s !
'y /
t z )l %
'“../,
’ Figure 2.3.4

Consider figure 2.3.4. Find the set of vertices {yl, Vs ...y-} in
the reachability diagram which have v as an outgoing arc. We have to
find if there exisf:s a directed path from y; to at least ome vertex in
this set. Since the graph is finite, this can be done by exhaustion.
The procedure is repeated for every vector w € W, starting at the
vertex y,. We now choose all the vertices in turn and carry out this
test. The total number of tests involved is ‘W‘ X IR(V)! ‘'where

Wl = the number of vecoors in the set W.

IRew |

number of vectors in the reachability set of V.
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Since both quantities are finite, the algorithm must terminate. This
" proves the required result. .

We now prove another theorem for a Petri net with a bounded marking.

Theorem 2.3.4 It is decidable if a bounded marking M for a Petri net P

is persistent.

Proof: To check if a bounded marking is persistent, perform the following

test for every marking in the marking class:

.a’
Let M' be a marking in the marking class M, and let {t!, ti, ...t;} be
the set of enabled transitions. Let the firing of a transition
t'
Kk

tl'c € {e!, "'tr't} lead to the marking Ml;, i.e., M' ——> Ml;
For the firing of each transition t!, we check to see if all other
enabled transitions ti ¥ tﬂ are still enabled. If not, the marking M'
is not persistent. If the marking M' is persistent for all of its
enabled transitions then we check the next marking in the marking class,
and so on until all markings M' EE;? have been exhausted. The marking
M is persistent iff all markings M' € ﬁ are persistent for their enabled
transitions. Since the total number of tests to be performed is finite
and bounded, the algorithm must terminate. a
This concludes our discussion of decidable issues in Petri nets.
We have so far looked at Petri nets in terms of their markings and their
marking class. In the next chapter, we look at Petri nets in terms of

their structure.



CHAPTER 3

RELEVANT RESULTS FROM PETRI NET THEORY

3.1 State Machine Decowposable Petri nets

In Section 2.1, we saw how an asynchronous concurrent system can be
viewed as an ensemble of interacting‘coupmnts, where each component is
structurally similar to the finite-gstate machine of Autonata theory. Each
component has a finite wer of allowable statesg; since we are concerned
wii:h systems which have no redundant operators (see Section 2.1), the
Petri nets of interest are LB. We will use a restricted class of Petri
nets known as LB SMD (State Machine Decomposable) Petri nets to model
aaynchronm'concurrent systems. In this Section, we formally define tﬁe

notions of state machine and SMD Petri nets.

Definition 3.1.1 A closed subnet ' of a Petri net P is a strongly-
connected Petri net (P!, T', A") where '

P' S P is a set of places,

T'* ST is a set of transiti;;s,

A' < A is a set of arcs, such that

-p' = P*- = T', and

A' = [(P' X T') U (T* x P*)] N A.

The Petri net N in Figure 3.1.1 has five closed subnets Nl, Nz, N3, Nt.
and NS. Clearly, evéry strongly-connecj:ed Petri net is a closed subnet
of itself, because the relation ‘P = P° = T is trivially satisfied.
We are interested in identifying components or parts of a system that

can be represented by a Petri net, and for this reason we would like to

define a minimal structure which is part of a Petri net and is still a

-53-
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Figure 3.1.1
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(c)

Figure 3.1.2
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closed subnet.

" Definition 3.1.2 A closed subnet is a minimal closed subnet 1if and

only if no closed subnet can be obtained by deleting any portion of it.

Example 3.1.1 N is not a minimal closed subnet because by deleting

appropriate places and/or transitions, the four closed subnets Nl, NZ’
N3 and N4 are obtained. However, the clogsed subnets Nl’ Nz, N3 and N4
are minimal closed subnets, as the reader can easily verify.

7

Example 3.1.2 Consider the Petri net model of a pipeline processor

shown in Figure 3.1.2(a). The closed subnets representing each indivi-
dual stage are minimal closed subnets (see Figure 3.1.2(b) ).On the other
hand, the closed subnet in Figure 3.1.2(c) is not minimal. All the Petri
nets considered so far have the property that their minimal closed sub-
net; have disjoint places. Lest the reader be under the impression that
this is a requirement on minimal closed subnets, we would like to empha-
size that this is not so. Consider the net inm Figure 3.1.3(a). It has

the minimal closed subnets S

S, and S, shown in Figure 3.1.3(b). We

1° "2 3
will now formally define the notion of state-machine based on a suitable

structural restriction on Petri nets.

Definition 3.1.3 A Petri net P is a state-machine if and only if every

trangition has exactly one input place and exactly one output place.

Example 3.1.3 For an example of a state-machine, see Figure 3.1.4.

Definition 3.1.4 A Petri netjp is said to be covered by a set of closed

subnets { o, o M.} if and only if

2,0-.

P a (Lijpi,tg'ri,tiui).

Example 3.1.4 The Petri net in Figure 3.1.2(a) is covered by the set
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(a)

Figure 3.1;3
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Figure 3.1.4 A State Machine

of closed subnets {Sl, Sz, 33}. Similarly, the get in Figure 3.1.3(a)

is covered by the subnets of Figure 3.1,3(b).

Definition 3.1.3 A Petri net P is SMD (State Machine Decomposable) iff
every minimal closed subnet is. a state machine .and thére exists a set of

state machines {Sl,...Sk} which covers the net.
Example 3.1.5 The Petri nets in Figures 3.1.2(a) and 3.1.3(b) are SMD.

On the other hand, the net in Figure 3.1.1(a) is not SMD, because the

3 and N4 are not state machines.

Definition 3.1.6 The token content of a Petri net (P, T, A) with a

minimal closed subnets Nl’ N

marking M is the number of tokens on all places in the net, and is given

Y oNE = Tup)
piE P

Lemma 3.1.1 The token content of a marked state machine is invariant

under transition firings.

Proof Suppose we consider a state machine P = {p, T, A) with mar-
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king M. The only way in which the token content N(p) of the state machine
can change is by the firing of a transition. However, the firing of a
transition removes exactly one token from the net and adds exactly one
token to the net. Thus, the firing of a transition does not change the

number of tokens on the net.
"

Theorem 3.1.1 Every marking for an SMD Petri net is bounded.

Proof An SMD Petri net has a finite number of state machine components.
Let these components be SI,...Sk. Also, by Lemma 3.1.1, the token content
of each state machine is invariant. Let the token content of the nth state
machine be N(Pn). Now, recall the definition of a bounded marking for a
Petri net. We have to show that for each place p in the net, there exists
an integer Z(p) such that M(p) < Z(p) for each M in :(

Let spl""spn be the set of state machines which contain place p.
Then, if N(Spl),...N(Spn) are their respective token contents, we see
that Z(p) < wmin| N(spl)”"n(spm)]' If 2Z(p) were greater than
min [ N(Spl),...N(Sp-)], it would imply that there egists a state machi-
ne Sk such that Z(p) > N(Sk), which is impossible. Hence, for each
place p in the net, we can find an integer Z(p) which bounds its token

content. This proves the Theorem.
=

Corollary 3.1.1.1 It is decidable if any given marking M for an SMD

Petri net P is live.
Proof By Theorem 2.3.3, it is decidable if a bounded marking M for
Petri net P1is live. Algso, since any given marking for P is bounded,

the desired result follows immediately.
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Figure 3.1.5 SMD Petri net model of a pipeline processor with decisions

-09—



S4

S

3
S¢ 8,
‘ e,
A 9

‘Figure 3.1.6 State Machine components of net in Figure 3.1.5

-'[9-



-62-

This result is useful because it tells us that we can decide if a given
" ﬁarking M for a Petri net ﬂP is live, but it does not give us an effec-
tive procedure for constructing a live marking for P. wWe will look at
this issue in Sections 3.3 and 3.5. Before we proceed to the next Sec-
tion, we give the reader an example which illustrates the descriptive
power of SMD Petri nets. The example of the pipeline processor we gave
in Figure 3.1.2(a) was that of a deterministic system. In Figure 3.1.5,
we give an SMD Petri net model of the pipeline processor for the compu-
ter system with three imstruction types which we digcussed in Section
1.2 (see Figure 1.2.3). Figure 3.1.6 shows the net in Figure 3.1.5
split up into its state machine components, which are labelled S1 throu-

gh S The reader will note that the decision about processing an ingtr-

9.
uction after it has been decoded can be made in the state machine 33.

Place p in state machine S. has three’output aréo, one for each instruc-

3
tion type. We said in Section 1.2 that.in order to estimaté‘ﬁhe‘pro-
cessing rate of such a pipelined processor, we must know the relative
frequency of occurrence of each of the instruction types A, B and C. In
other words, we must know the relative freﬁuéncy‘of occurrence (or the
probability) of each of the output transitioms 6f‘p1ace p. Thus, on the
average, the rates at which each instruction type oeccurs will be reflec-
ted in the number of times each of the trgnsitioﬁs Fﬁ’ t and t. fires
in the long run. We continue this trainm of thought 1n=€he next Section,
vwhere we present the important notion of consisteicy. In the meantime,
the reader should explore the'éescriptivé'ppwgt of SMD Petri nets by

constructing examples of his owm.
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3.2 Consistent Petri Mets

In this Section, we will look at the number of times any transition
in an LB Petri net can fire relative to the other transitions in the
net. We will first need some definitions.

Definition 3.2.1 A current assigmment for a Petri net Pa (P,T,A) 18

a function & that assigns to each t:ransi.t::l.on‘l:i € T a positive rational
number P called its current. A current assigmment for a Petri net
must satisfy the following two constraints:

(1) Bvery arc carries a current equal to that associated with the transi-
tion it is connected to.

(2) At every place, the sum of the currents on the imput arcs must equal

the sum of the currents on the output arcs (i.e., Kirchoff's current law).

-

Definition 3.2.2 A Petri net is consistent iff it has a cur_:rent assign-

ment § with 9, > 0 for each t, €T.

Checking the Congistency of a Petrxi net

Figure 3.2.1



Consider the Petri net shown in Figure 3.2.1. Let each transition ti in
the net be assigned a current P For each place, we can write an equa-

tion that specifies a constraint on the input and output currents.

Pyt -9 -9, $9, =0 ... (D
Pyt + 9, - P, = 0 ... (2)
2% + 9, - ¥y = 0 ... (3)
Pyt + P, -9, = 0 ... (&)

From Equations (2), (3) and (4) we get,

P = P = 9 = 9, ® (say).

This violates Equation (1), which requires that
P T Pt = 2.
We conclude that the net in Figure 3.2.1 is not consistent, or is

inconsistent. A slight modification of this net leads to the consistent

net of Figure 3.2.2.

Figure 3.2.2
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The reader will note that all we have done is to feed another current of

magnitude ¢ into the place pl. The equations become

PP - 6 -0, +9, + ¢4, =0
P, : + ¢ - d>3 = 0
Py ¢ + ¢2 - ¢3 = 0
P, ¢ + ¢3 + ¢, = 0
P, ¢ o4y T

These equations are, indeed, consistent and we get the following consis-
tent current assignment:
¢1 = ¢2 = ¢3 = ¢4 = ¢5 = ¢ , where ¢ is any
non-zero real number.
Consider a consistent current assignment for a Petri net P. Multi-
ply all currents by the least common multiple of their denominators, and
divide each resulting current by their greatest common divisor. The

resulting currents are said to form a minimal integer consistent current

assignment for P . The reader will note that consistency is a purely
structural property of a Petri net. The following Theorem and discussion
explain the relationship between the notion of consistency and the
structure of LB Petri nets. The ideas in the following material have been

partly inspired by Baker [B4].

Definition 3.2.3 Let P be a Petri net with marking M. A cyclic firing

sequence is a firing sequence ¢ which fires evefy transition of Pat

least once and brings the marking of the net back to M.
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.Definition 3.2.4 The firing count of a transition ti in a firing se-

quence o0 is the number of occurrences of ti in 0 . The firing vector Y

of a firing sequence ¢ is a vector whose ith element ¢(1) is the firing

count of transition ti.

Theorem 3.2.1 A Petri net P is consistent if and only if there exists

an initial marking M for which there exists a cyclic firing sequence.

Proof: Necessity

Consider the minimal integer.consisternt.current . assignment derived from
the given current assignment. Let this durrent- asgignment be ¢ . We will
show how to construct a finite firing sequence o whose firing vector ¥

is such that ¢(1) is the current through tramsition t We comstruct

i.
the marking M as follows: M(p,) must be big enough so that firing its

output transitions ty € pi Y{i) times does not drive the token load of

Py negative, 1.e., M(pk) = zw(i) .

£4® Pk
¢
Under this marking, a cyclic firing sequence o is given by
v() ¥{(n)
= t eee €
1 n

where tl...tn are the transitions in the Petri net 7. Since ¢ is a !
consistent current assignment, the firing sequence o is such that for any
place pk, the number of tokens removed by ¢ is equal to the number of
tokens added by ¢ to Py - The marking M' after o has occurred is the

same as the marking M before the occurrence of ¢ , so that ¢ 1is a cyclic

firing sequence.
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Sufficiency Let 0 be a cyclic firing sequence for the net, and let

Y be the firing vector of ¢ . With each tramsition t,, associate an

i’
integer valued current equal to §(i). By definition of current, each

input and output arc of t, has a current ¥(i) associated with it. Under

i
this assignment, every transition has been assigned a non-zero integer
current, and each transition has been assigned a unique current. Now
consider any place pj. By the definition of a cyclic firing sequence, pj
has the same number of tokens before and after the cyclic firing sequence
has occurred. This implies that the sum of the tokens entering place p

3
is the same as the sum of the tokens leaving p_ , i.e., the sum of the

h |
input currents equals the sum of the output currents for every place pj.
This is the definition of a consistent current assignment.
]
We have pointed out in Chapter 2 that LB Petri nets are the only ones

of interest to us. We now establish the conmnection between consistency

and LB Petri nets.

Theorem 3.2.2 A Petri net 7 which has a live, bounded marking M is

consistent.

Proof We have to show the existence of a cyclic firing sequence which

fires every transition at least once. Since the marking M is bounded, its
reachability diagram is a finite-state machine. Also, since M is live,
there must exist a strongly-connected portion of the reachability diagram
that contains every transition name at 1eastvence.vLet.M? be some node

(marking) in the strongly-connected portion of the reachability diagram.



-68~-

(a)

()

Figure 3.2.3
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We know that in a strongly-connected graph, there exists a chain (i.e.,
a sequence of -directed arcs, all arcs directed in the same sense) that
starts and ends at M' and which goes through every arc once. This chain
can be used to describe a cyclic firing sequence, and since P has a
live marking, every transition name must be included at least once in

this firing sequence.

As a Corollary to Theorems 3.2.1 and 3.2.2, we have the following:

Corollary 3.2.1 If a Petri net Pis LB, then there exists an initial

marking M for which there exists a cyclic firing sequence.

Proof Follows by combining Theorems 3.2.1 and 3.2.2.

For completeness, we mention that the converse of Theorem 3.2.2 is not
true. The net in Figure 3.2,3 provides the necessary counter-example. The
reader can verify that any initial marking'of the net can lead to a mar-
king like the one shown in Figure 3.2.3(b), at which no transition is -
enabled.

We would 1ike to consider the connection between comsistency and the
gstructure of LB SMD Petri nets, because that is the class of Petri nets
we will use for modelling asynchronous systems. We will look at the
concepts of cyclic firing sequence and consistency for SMD Petri nets
in some depth in Section 3.5. Before we can do this, we look at a det-
erministic subclass of Petri nets known as event graphs. We do this in
Section 3.3, In Section 3.4, we complete our study of those aspects of

Petri net theory which are relevant to this thésis.
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3.3 Event Graphs

Event graphs are what Commoner and Holt have called Marked Graphs[Cl].
We have chosen to call them event graphs because we would like to pre-
serve the distinction between the structure and marking of a Petri net.
In this Section, we would like to define event graphs and to state
some results that we will need in Chapter 4, where we look at the idea
of timing relationships between activities in deterministic systems.

Definition 3.3.1 An event graph is an SMD Petri net in which every

place has exactly one input transition and exactly one output transition.

Example of an event graph

Figure 3.3.1 An event graph

Recall the definition of conflict given in Section 2.2, It should be
noted that no transitions in the net are in confliet. Every marking for
an event graph is persistent, and every event graph is a deterministic

Petri net. The structure of event graphs enables us to define them in
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the following convenient fashion:

Definition 3.3.2 An event graph is a strongl_y-connected directed graph

¢ = (v,a)
vhere V = {vl,...vm} is the set of transitioms
A = {aij} C VXV 1isg the set of arcs, where arc aij conne-~

cts transition vi to vj.

A marking of an event graph is a function that assigns to every arc ai:1
in the net a non-negative integer called the token load of the arc. Note
that in this definition of event graphs, an arc corresponds to a place
together with its incoméng and outgoing arc in Definition 3.3.1 (see

Figure 3.3.2).

— =0

An arc in Definition 3.3.2 Corresponding structure in
Definition 3.3.1.

Figure 3.3.2

Figure 3.3.3 gives an event graph corresponding to the one in Figure
3’3.1.
Event graphs are seen to be conflict-free SMD Petri nets in which

each simple circuit is a state-machine component.

Theorem 3.3.1 (due to Commoner and Genrich)

A marking for an event graph G is live if and only if the token content
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Figure 3,33
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of every simple circuit is non-zero.

Proof

Necegsity If the token content of some simple circuit is zero, no tran-
sition in this circuit can be fired; since the token content does not
change if other vertices are fired (lemma 3.1.1), no vertex on this cir-
cuit can be enabled through tramnsition firings.

Sufficiency Assume that the token content of every simple circuit is
nan-zero. Let vy be any transition in the net. Consider the ummarked

arcs entering V.

Figure 3.3.4

If there are none, the vertex is enabled. If not, consider the vertices
from which these arcs emanate. If each of these is enabled, then clearly
vi will become enabled after all of them are fired. If some are not,
congider the unmarked arcs entering them, etc. As we continue this
back-tracking, we are selecting a subgraph of G which consists of Vs the
vertices from which these arcs emanate, the ummarked arcs entering them,

etc. This process must terminate, since G is finite. Now this subgraph
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must be circuit-free (i.e., a tree, as shown in Figure 3.2.4), since
there are no token-free simple circuits. Thus, the subgraph must have at
least one transition that has no incoming arcs which belong to the sub-
graph., This vertex can be fired at the present marking of G. After firing
it, the subgraph of token-free back-tracking from A ig reduced by one

transition. By repeating this process, we can enable vy
]

There is one more result we will need in connection with event graphs,
the proof of which is given in [C1].

Theorem 3.3.2 A live marking for an event graph is safe if and only if

every arc is contained in some simple circuit containing exactly one

token.

Example Figure 3.2.5 gives an example of an event graph with a live,
safe marking. Note that every circuit has at least one token on it, and

that every arc is contained in some one-token circuit.

Figure 3.3.5
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It is easy to see that event graphs have a live, safe marking that is
persistent, and are thus deterministic nets. However, event graphs are
not the only Petri nets with this property. In the next Section, we

study a larger class of deterministic Petri nets.
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3.4 LSP Petri nets (Petri nets with a live, safe and persistent marking)

The class of Petri nets is a large one, but we will confine our atten-
tion to LSP Petri nets because their behavior can be represented by Petri
nets whose structure is very similar to that of event graphs. The mark-
ed Petri net in Figure 3.4.1 is a good example of a Petri net which has
a live, safe and persistent marking but which is not an event graph. The
reader can verify that this net is LSP by drawing its reachability dia-
gram, which we give in Figure 3,4.2. It is seen that in no marking in the
forward marking class can there be more than one token on any place. Fur-
thermore, at each marking exactly one transition is seen to be enabled.
This verifies our claim that the net is LSP. In general, one can determine
if a marked Petri net is LSP by using the results of Section 2.3. As we
have pointed out before, the reachability diagram of a marked Petri net
obscures the concurrency that is inherent in the system it represents, and
this is precisely what happened when we drew the reachability diagram for
the net in Figure 3.4.1. We now present an alternative means of represen-
ting the operation of LSP Petri nets. We will do this by constructing for
LSP Petri nets a graph known as a behavior graph, and shall explain its

construction by means of an example,

Representing the Behavior of LSP Petri nets: Consider the LSP Petri net

? ghown in Figure 3.4.3(a). We begin by drawing and labelling the set

Pl € P of marked places in # ,(in this case {pl, pz, p6} ). Let

T1 = {tl’té} be the set of enabled transitions corresponding to Pl, and

note that P1 corresponds to the initial marking of P, Let P2 be the set

of markeéd:places that results when all transitions in T1 are fired. Draw



]7=

Figure 3.4.1

(1.0,1,0 ‘ (0,1,0,1)

(0’0’1’1)

Figure 3.4.2
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all ares P X Tl that are contained in PXx T, Draw the places Pi = Ti..
1

Draw all the arcs Tl x Pi which are contained in T X P.

Define P_ = - .
efine ) (P1 Tl) X T1

This process of constructing the marked places that results when

Pk+l
all enabled transitions for Pk are fired is called extending the behavior

k+1
graph can be extended indefinitely. Figure 3.4.3(b) shows the behavior -

graph from Pk to P . Since #? has a live marking, its behavior

graph of . We now make some definitionms.

Definition 3.4.1 A chain in a behavior graph is any directed path in

it.

B.
Example pltlp3t3p5t4... is a chain in

Definition 3.4.2 A slice of a behavior graph Bis a set of places

that forms a cut-set of 8.
Note In a cut-set, no two elements of the set can belong to the same

chain.

Example P = {pl, Py> p6} is a slice of B,

Each slice of a behavior graph corresponds to a marking of the LSP Petri

net.

Lemma 3.4.1 Each place in a behavior graph for an LSP Petri net must
have exactly one input transition and exactly one output transitiom.
Proof Suppose some place p in the behavior graph B has more than one input

transition. Then, there must exist a marking M' 1in the marking class of
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LSP Petri net .’P .

(a)

Behavior Gfaph 8.

(b)

Figure 3.4.3



Cyclic Frustrum of B. Steady-state equivalent net &

(c) (@)

Figure 3.4.3
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the net P in which more than one token is placed on Py» implying that P
has a marking that is not safe. Hence, every place in B has exactly one
input tramsition.

Also, suppose some place p in # has more than one output transition.
This implies that there exists a marking M' in the forward marking class
for ? at which more than one output tramsition is emabled. This violates
the assumption that Phas a persistent marking. Hence, each place in ?

has exactly one input and exactly one ocutput tramsition.

Lesma 3.4.2 There exists a slice in the behavior graph B of an LSP
Petri net P that occurs repeatedly.

Proof Each slice of # corresponds to a marking of # . Since P has a
safe marking, the number of distinct markings in the marking class for
the net is finite. Thereforé s 8ince the behavior graph is infinite,

there must exist a slice in B that occurs repeatedly.

The reader is now asked to refer to Figure 3.4.3. The slice Pl repre-
sents the initial marking of P. Pl does not occur again in B . A
behavior graph that has slices which do not repeat is said to have a
transient, and such slices are termed transient slices. In terms of the
Petri net P, a transient siice represents a merking that canmnot be rea-
‘ched after an initial occurrence. The slice P3 (shown dotted) is a slice
which has repeated occurrences in B.aA cyclic frustrum of 313 the por-
tion of B between two consecutive occurrences of some repeated slice. In
Figure 3.4.3(c), we show a cyclic frustrum of B bounded by consecutive
occurrences of the slice {pl, P, ps} in B . Since B is derived from

a persistent marking of P , only one way is possible of extending this
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to {p3, p4, p6§ . In general, for any slice Pk of the behavior graph,
there exists a unique extension Pk+1‘ Thus, every cyclic frustrum bounded
at each end by the slice {pl, Py p6} is identical to every other cyclic
frustrum bounded at each end by this slice. Hence, instead of drawing an
infinite behavior graph B , we will choose some cyclic frustrum of 3 and
then coalesce corresponding slices together in the initial and terminal
slice of the cyclic frustrum. The net so obtained is termed the steady-

state equivalent net of #, and is shown in Figure 3.4.3(d). The marking

M for the steady-state equivalent net J 1is obtained by putting one
token on each place in the initial slice. The construction of this net
is such that the set of firing sequences of 4 is identical to that of
the net 7 . Also, the reachability diagram of £ is contained in that
for 5’, there possibly being some extra states in f)corresponding to the
transient. The reader can see this from the graph B, and it is not
necessary to construct the reachability diagram of P.

We have shown that in 43, and hence in 4 , each place has exactly
one Input transition and exactly one output transition.zf thus has the
structure of an event graph, with the difference that certain place and
transition names occur more than once in it. Transition t3 and places
p., and p4 occur twice, for example. Such an event graph is termed a

3
multiply-labelled event graph. We will not define multiply-labelled event

graphs formally, but will merely say that they are event graphs in which

certain places and transitions have repeated occurrences (or instances).
The LSP Petri net 7 has the property that it is possible to add tokens

to certain places and still have a marking that is live and bounded, but

no longer safe. Tokens can be added to all places except p6 and p7, such
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(b)

Figure 3.4.4
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that the resulting marking is live, bounded and persistent. The steady
state equivalent net for P with this new marking is simply the net zf;
the marking for £ is conmstructed by adding the same number of tokens to
a place in 4 as were added to the corresponding place in P . 1f there are
multiple instances of a place in J', then tokens can be added to any of
those instances, provided the sum of the tokens added to all instances
of a place equals the number of tokens added to the corresponding place
in P. Figure 3.4.4(a) shows a live, bounded, persistent marking for
and Figure 3.4.4(b) its corresponding steady-state equivalent net d .

We should mention that there exist Petri nets which have a live,
bounded marking but no live, safe marking. Figure 3.4.5 shows such a
Petri net. Thus, the preceding technique cannot be used to comstruct a

steady-state equivalent net.

Figure 3.4.5
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3.5 The Structure and Consistency of SMD Petri pets

3.5.1 Existence of a live marking for an SMD Petri net

In Section 3.3, we saw that for event graphs a necessary and sufficient
condition for a marking to be live is that there be at least one token on
each simple circuit. Since a simple circuit in an event graph corresponds
to a state machine in an SMD Petri net, thé reader may be tempted to ask
if we can get a live marking for .an SMD net;by‘kdding at least one token
on each state machine component. The nets given in Figure 2.1.9(c) and
2.1.10(c) are counter—examples to this comnjecture. In Figure 2.1.9(c), a
subset of the transitions in the net can never be fired, whereas in
Figure 2.1.10(c), no transition can be fired. Both are eiamples of Petri
nets which do not have a live marking. We now give a necessary condition

for a marking M for an SMD Petri net ? to be live.

Theorem 3.5.1 A marking M for an SMD Petri net P 1s 1ive only if the

token content of every state machine is non-zero.

Proof We will show that if the token contemt of some state machine is

zero, then no transitiom in it can bé fired. Without loss of generality,
let ~S1 be a state machine component of # and »iet t, be a transition in

i
it, i.e., 1f § = <p A > them t, € T . By hypothesis, the imput

1 L L i1
place pj of tramsition ti in state machine S1 must be unmarked. Also, by
Lemma 3:1,1, it must stay unmarked. This implies that there is no marking
M' € ﬁ at which transition ti can be fired. Hence, the marking M is not
+
live. Note that no transition in S1 can be fired at any marking M' ¢ M.
| ]
Hack[H5] has shown that a subclass of SMD Petri nets called SMA ( state

machine allocatable) Petri nets are similar to marked graphs in that any
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Reduced net No, 1

Reduced net No. 2

(b)

Figure 3.5.1
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marking that puts at least one token on every state machine is live. We
proceed to describe the structure of these nets in what follows. The ma-

terial in Subsection 3.5.2 is taken from Hack[H1l, HS].

3.5.2 State Machine Allocatable Petri nets

Definition 3.5.1 A state machine allocation over a Petri net {P,T,A)

is a function B: T —»P such that

¥yte T B(t) € ‘t.

Informally, this means that for each transition in the net, we pick
one of its input places and ignore the others. Given such a state machine
allocation, we perform a reduction by deleting certain places and transi-
tions in the following manner:
Step 1 Delete all places for which at least one output arc has been
deleted.
Step 2 Delete all transitions that have all output places already deleted.
Repeat Steps 1 and 2 until neither is applicable anymore. What is left
over is the reduced net. Each step eliminates some nodes and arcs that are

not part of the reduced net, until no more nodes and arcs can be deleted.

A Petri net is said to be state-machine allocatable iff every state
machine allocation gives a reduced net that is either a strongly-connected
state machine or a set of strongly-connected state machines. We will
abbreviate the last remark by using the contraction "SSM" to denote "a
strongly-connected state machine or a set of strongly—connected state

machines"., In Figure 3.5.1(a) we give an example of a Petri net which is

state-machine allocatable. In Figure 3.1.5(b), we show two allocation
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Figure 3.5.2(a)
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SMA Reduced net No. 3
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An SMD Petri net that is not SMA

Figure 3.5.3(a)
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Figure 3.5.3(c) Non-SMA Petri net with a live

marking
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reduced SSM's. Reduced net No. 1 results from allocating t4 to P, and
reduced net No. 2 results from allocating t4 to pg. Since each of the two
allocation reduced nets is an SSM, the net is SMA.

Let us give another example. Consider the Petri net in Figure 3.5.2.
Since each of the state machine allocation reductions is an SSM, the net
is SMA.

We now give an example of a Petri net which is SMD but not SMA. Such a
net is given in Figure 3.5.3. We see that two of the SMA reductions are
SSM's and the other two are null; the net is not SMA. 1In case the reader
is a little confused, we would like to point out that the property of a
Petri net being SMA is a structural property of the net, and he will note
that no mention has been made of markings so far.

The reason we have introduced SMA Petri nets is that they form the
largest subclass of SMD Petri nets we know of that has the property that
any marking which puts at least one token on each state-machine component
is live. This is the result presented in the next Theorem. We present
this Theorem without proof and readers interested in the details are refe-

rred to Hack[H1,H5].

Theorem 3.5.2 ( The SMA Petri net liveness Theorem) A marking M for

an SMA Petri net P is live iff it puts at least one token on each state-

machine component of the net.

This Theorem is of interest because it tells us how to construct a live
marking for any SMA Petri net- simply put one or more tokens on each state
machine component of the net. The non-SMA Petri net shown in Figure
3.5.3(a) also has the property that any marking that puts at least one

token on every state machine is live, as the reader can easily verify.
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Figure 3.5.3(c) shows the Petri net of Figure 3.5.3(c) with a live mar-
king. We present the following as an open problem: °

What is the largest class of SMD Petri nets which has the property
that any marking that puts at least one token on every state machine
component is live?

We now turn to examining the issue of consistency for SMD Petri nets.

3.5.3 Consistency of SMD Petri nets which have a live marking

Recall Corollary 3.2.1, which we repeat here for convenience:

Corollary 3.2.1 1If a Petri net % is LB, then there exists an initial

marking M for which there exists a cyclic firing sequence.

In Section 3.4, we established the connection between a cyclic firing
sequence and the steady-state equivalent net for event graphs and LSP
Petri nets. We now introduce a concept similar to the steady-state equi-
valent net in connection with live SMD Petri nets. A firing sequence, as
we have pointed out in Section 3.4,»exprésses an ordering relation on tra-
nsition firings in a fashion which obscures the concurrency that is in-
herent in the Petri net. To preserve this inherent concurrency, we intro-
duced the behavior graph for LSP Petri nets. We will now introduce a more
general concept to study the behavior of SMD Petri nets- the occurrence
graph. This notion is not a new one, having been studied extensively by
Holt[H6]. As we did for behavior graphs, we shall illustrate the cons-
truction of an occurrence for an LS SMD Petri net by means of an example.

We begin with a live, safe marking for an SMD Petri net(see Figure 3.5.4).

Construction of Occurrence Graph Begin by drawing every marked place
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Figure 3.5.4
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Occurrence Graph No. 1 ;

Occurrence Graph No. 2

Figure 3.5.5
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in the net together with a token on each place (i.e., places p2 and p5).
Now, since a place may have more than one output transition, we may have
several enabled ttansitions connected to the same place. In event graphs
and LSP Petri nets we saw that every plnce=has at most one transition
enabled at any marking. This is not aecessarily irue for SMD Petri nets.
As an example, consider the marked Petri net of Fig;te 3.5.4. Both the
output transitions t_ and t_ of place p5 are. ecdn to be enabled; since we

5 6
can fire only one of these transitiona, ve must make a:choice between ‘them

N

and fire the one we choose. We will 555521 a 2ngg in an occurrence graph
by drawing the output transition chosen for. girthg. firing that transition
and then drawing the new marked place(s) that result. A glice of an occu-
rrence graph is a set of places that forms a cut-set of the graph. We can
talk about extending a slice in the same way as we did for behavior graphs,
the difference being that a choice nayhﬁaﬁe fgifi:ﬁiée’Eééﬁ%&%*iﬁibled tra-
nsitions. In the construction of a bshavior graph’ there hever occurs a slice
for which a choice has to be made between output transitions. VTb“B' there is
only one behavior graph for an event graph or an LSP Petri net, and this
graéh is unique. On the other hand, several occurrence graphs may be possi-
ble for LS SMD Petri nets. In FigureIB.S.Swaepehow two possible occurr-
ence graphs for the net in Figure 3.5.4. fhe eeader will realize that an
infinite numBet of occurrence graphs is possible for this net, or, for that
matter, in any LB net with a non-persistent marking.

Now let us apply Corollary 3.2.1 to the occurrence graph for an LS
SMD Petri net. An occurrence graph is a concurrent representation of a
firing sequence for a Petri net, and each slice represents a marking

of the net. A repeated slice thus represents the repeated occurrence of




-99.

Consistent current assignment

Figure 3.5.6
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Figure 3.5.7 Cyclic Frustrum
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Figuré 3.5.8 c-equivalent net




-102-

some marking. The portion of an occurrence graph between two consecutive
occurrences af a slice is termed a cyclic frustrum, and corresponds to a
cyclic firing sequence for the marked net. Theorem 3.2.1 tells us that
for any consistent current assignment for an LB Petri net, we can find

a cyclic frustrum in the occurrence graph of the net. Tﬁe number of
occurrences of any transition in the cyclic frqufﬁ;%hqnals its current

“’».

in a consistent current assignment.

Example 3.5.1  Consider the SMD Pegri net of ng.;m A 5 4. In Figure

S

3.5.6, we show this Petri net with a ﬁinimal 1np.gqr consistant current
assignment. We draw the occurrence graph as_ﬂiiigssed earlier; and Figure

g

3.5.7 shows a cyclic frustrum of this ocgurrence graph,gin‘which the multi-
licity of each transition equals iﬁﬁ :ssociated current in the consistent
current assignment exhibited 1n Figura 3.5.6. We now coalesce correspon-
ding places in the repcatgd slice 1n;h wmanner similar to what we did for
behavior graphs. The resultlng strongiy-connectcd net is termed a consis-
tency -equivalent net for the SMD Petri net, abbreviated to ‘'c-equiva-

»

lent net" . The c-equivalent net for’ fhe cycIIt ‘frugtris’ of'Figure 3.5.7
is shown in Figure 3.5.8. ' ,

Let us now note some facts about the relationghip betueen an SMD Petri
net and its c-equivalent Petri net. Let us begin by slyin%9thatfueﬂwill
consider only minimal integer consistent current assignments. Note that
the c-equivalent net of ‘an-8MD Retri.met P.is:npt unique, Figure 3.5.9(a)
shows an.SMD Petri net P with a minimal integer consistent current assi-

gnment., The net ? has several c-equivalent nets, two of which are

shown. We observe that in the construction of a c-equivalent net for an
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‘93 = 9 4= cp7 = 2
CP5 = ‘96 = 2

Figure 3.5.9(a) SMD Petri net P.
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SMD Petri net # with a minimal integer consistent current assignment
each state-machine in P corresponds to a circuit :kx ‘the c-equivalent net,

We formalize this in the following Lemma.

Lemma 3.5.1 Let # be an LS SMD Petri net with a mimimal integer consis-
tent current aséignment ’V, and let ¢ be a c~equivalent net for . Then,
every state machine component in # corresponds to a simple circ\’xit in 6.
Proof Let ?Bé the cyclic frustrum corrcspondihg to d . Appiﬁng
Theorem 3.5.1, w§ see that the initial slice of ? must contain at least
one place from each state-machine in P . vNow consi_dei;””a chain in ¥ boun-
ded at its extrenetiepfby two consecutive 1nstanc§s of some pléce pi. In
¢f » this chain corresponds to a siqple circuit.‘By‘fhe construction -
procedure for Océurrence' graphs, it is obvious that ;hgh sutef‘ machine in

corresponds to a chain in ¥ . This proves the Lemma. ('

Exagple Consider the LS SMD Petri net of Figure 3.5.6. Each of the two
state mchinéu corresponds to a circuit in .the c-gqxfi%ialent éet shown in -
Figure 3.5.8. Note that there are two circuits in tﬁé'c-cqumalent net

which do not correspond to any state-machine' in tﬁeSlm Petri net. An .

example of such a circuit is pzt4p5t5p6t4p3t3p2t2p1t1p‘2; .

. S ¢
Since the c-equivalent net corresponds to a cyclic firin;--"shguence for an
LB SMD Petri net, we see by applying Theorem 3.2.1 that the multiplicity
of a transition in the c~equivalent net must Qqual' itg current in a mini-

mal integer consistent current assignment,

To recapitulate the main results of this Section, we have the following:

(1) We have introduced the subclass of SMD Petri nets known as SMA Petri
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nets, which have the property that a marking“is live 1if and only if each
state machine contains at least one token. This‘is the largest class of
SMD Petri nets known to date that has this property.

(2) We have introduced the c—equivalent net of a Petri net which has a
live, bounded marking. For SMﬁ Petri nets, we h.ve seen that every atate-

machine corresponds to a circuit in a c—equivalent net The converse is

not true in general.

We now turn to the issue of applying Petri net theory to the analysis

of asynchronous concurrent oystens.'




CHAPTER &

TIMED PETRI NETS

4.1 Timigg_;n Petri Nets

In our discussions so far, Qe have not entered into any timing con-
siderations in connection with Petri nets. Thus, while SHD Petri nets
can model the gtructure of asynchronous concurrent systems, they do not
contain enough information to be used for a study of issues of perfor-
mance of the type discussed in Chqpter 1. In defining Petri nets, we
made no assumptions about the length of time it takea for a transition
to fire. 1In real-world systems, activities do not take place instan-
taneously. Every activity in a system has a time duration which is
different from zero, and in all the systems we will model, we will
make the added assumption that all activities complete in a finite
amount of time. In the Petri nets that we use to model these systems,
we will assume that every transition takes a bounded, non-zero amount

of time to fire. The resulting model of asynchronous, concurrent systems

is termed Timed Petri nets, and is formalized below.

Definition 4.1.1 A Timed Petri Net is a pair (2,0) vwhere ? is a

Petri net {(P,T,A) and Q 1s a function that assigns a real, non-

negative number T to each transition ti in the net.

i

Q Tt R {R 1s the set of non-negative real
numbers }.

This non-negative real number T, = Q(ti) is termed the firing time

of transition ti.
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The operation of the net can now be assumed to take place in real time.
At any instant T of real time, the net has a ugking M(T), with the
understanding that we may view M both as a vector. and a fuuct;ion. We
denote the initial marking as M(O) We write M(‘r,p) fm' H(T)(P). i.e.,

the numbeg of tokena Ollplace p at time T. A ttansitiou ti is said to

be enabled at time T if and only if every inmput place of transition t {

has at least one token on it, i;e.,

When tranaitionvti is enabled, a firing can be initiated. When a firing

is initiated, a token is removed from each input place of t 1 and
transition ti is said to be executing. This execution phase lasts

for T, seconds, where T, is the firing timé¢ of transition t.. At the

i
end of this time duration, the firing of transition. . m. and
a token is placed on each output place p 3 € t,c. This coupletgq the
f:lring;olf transition t:lf ‘ o . | »
The three phgses of a transition firing cam be{ visua.lizedby,, imagining
every tramnsition as consisting of two ;rmit}mﬂ an_ intermediate
place as shown in Figures 4.1.1. The firing time of the tramnsition t,
can nov be associated with the place 7, in the follguing fashica:
When transition t, initiates, t, ' fires 1mtmtm%sly, a token’
18 removed from each i.nyu.t Place of. £ £ ’ md 8 tgg,cn is depoa:lted on
place x.. This token is held by place . . for a duration egqgl to T,
the fi.ring time of t,. At the end of l:hj.a :I.ntervn,l. trgnsition ti"
fires, corteaponding to the temination of t T LU
'Ihe 1nit1at£ons and teminatiom of trmitim in a Petri net mat
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(a) : ' (b)

Fig.;re 4.1.1

satisfy the following balance equation:

Notation
Let p be a place in a Petri net ? . Let til""t:ln! ‘be the input
" trangitions and t‘jl,'...éjm the output transitiohs of p.

Let I(T,t) denote the number of initiations of transition t up to
and including time T, i
and T(T,t) denote fi\é number of terminations of transition t up to
and incliiding time T.

Then, if M(0,p) is the number of tokens on piac‘e‘ p at time zero, and
M(T,p) that at ‘time "r, the following must be satisfied: |

M(0,p) + T(r,t ,)+...+ T(r,t, ) = CMeP,p) + I("r;‘t"sl') Hoot TTLE)
We will refer to this as the mmim,mdwill ’njlakev use
of it in later seéfibni. A word now about the choice of a firing time

for a transition in g Petri net.
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We have defined T, to be a non-negative vaal ‘oumbex, thereby assu-
ming that the duration of each:activity is fixed. This may nokt.be a very
accurate picture of real-world systems, for , im practice; the execution

- time of an operator depends upon the data it 1s called upon to handle.
In a floating -point adder, for exsmple, the add time will depend upon
the arguments and their -exponénts. Thus, 1t may e wore reasonable to
agssume that a transitfon firing time is a random variable whose distri-
bution can be represented by a rectangular distribution of tive form

shown 1in Pigure 4.1.2,

- Probability
density
Fars L Assamedsdigtribution -
4
HECI P BTy B g
PRI P ’_' More realistié
H i assumption
L ' ( !
20 W; . q{s,.,‘i"@" 1
AR " Firing time
Ti o 1’1 'ri«l-(o ring t

Figure 4.1.2 -« .

We will return to a consideration of staéﬁhcal firing times in Section

4.5'
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_In Chapters.2 and 3, we introduced the ideas of firimg sequence and
-behavior graph to characterise the action of. Petri nets. For timed Petri
nets, we have postulgted the existence of .a !ML’W axis. against wvhich
the firing of tramsitions can be neted. At time zexo, the net has a
marking M(0). Transitions are allowed £o .fize, .and the time at which
the firing of a tramsitiom takes place is xecordad ;in.a table known as
a fiziog schedule.

A firing schedule for a timed Petri net is a get 'of sequences of imi-
tiation and termination times for the transitions of a net. The firing
of a trangsition is feasible if the transition was mblé'giat‘thé’ insgtant
the firing was initiated. " If every firing in a firing séhedhi’e‘ fs fea-
sible, the firing schedule is feasible. A firing lchedul.:e is infeasible
(or not feasible) if it calls for the initiation or terﬁ?.nation of an
activity eaxlier than. allowed by the termination of other activities.
Figure 4.2.1 18 an equle of a timed Petri net and l"i.g;.\re 4,2.2 gives

a feasible firing schedule for {it.

2 =
1'23

Figure 4.2.1 A Timed Petri net
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1 2 3 4 5
t (0, 5) (12, 17) 24, 29) | -cemmmeee | cmmmmeeee
t, (7, 10) (19, 22) (31, 34) commmmeme | cmmeaees
t3 G, D (10, 12) (22, 24) (29,-31) | ~-==ee---

Figure 4.2.2 Feasible Firing Schedule for Tisied Petri Wet it Figure 4.2.1.
. S

1 2 3 4 5

21 (0, 5) az, 17) (24, 29) cemcmcace | cocmcaan.
: R i 3 : : ‘ :

t, (7, 100 | (9, 22) | (30, 33) | ----- SRR [ —
ty (5, 7) (10, 12) a7, 19) (22, 24) (29, 31)

Figure 4.2.3 Infeasible Pirfng Schedule for Tiited Petri Net in Pigure 4.2,1.
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Figure 4.2.3 gives an infeasible firing schedule for the same net. The
starred entry implies that the:third initiation of trangition t, takes
place at 7 = 30; this is impossible, because the th;rd initiatiaon of
t, camnot take plaece before the termination of tHe fifth firingsbf_t;ﬁﬂ
which ‘happens at T = 31 units.

Readers will note that in the feasible firingfschedule of Figure

4.2.2, the initiations of transitions t'l, t, and t 'take place at regu’-

3
lar intervals. For, example, consecutine 1n1tiat£ons of transitions t,
and t, occur at intervals of 12 time units. Tranrition t3 behaves in

a slightly different fashion. We notice that the : first third,fifth,...
transition.initiations occur every 12 time units, i. e., alternate
initiations occur ewery 12 time units. . . .

A firing schedule with this property is termed a periodic firing

schedule. If all transitions in the net can have consecutive initia-

tions at regular intervala, we wquld term this a trggglx ng_ggg__

firiqg schedule. The gggutatiog rnte of a tran.ition 18 the mmerage fo

number of firings of that trnnaieion in unit time. We can see that

transitions t. and t, have a couputation rate of once every lz time -

1 2

units, or 1/12, Trapsition t, has a couputation rate of twice every

3
12 tiwe units, or 1/6. These co-putation?ritea are the naximum rates
possible for the transitions.

The Petri net 1n Figure 4.2.1 18 seen to be an LSP net, so that it
represents a deterministic system, and its steady-state equivalent net
is  the multiply-labelled event-graph. showm ig Figure 4.2.4., The _
3 is 2, while that of both ty and t2 is 1.

A consistent current assignment for the net P = P, = 1, Py = 2.

multiplicity of transition t
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Figure 4.2.4 Steady-stste equivelent-net for the Petri
‘ ‘ net in Figure 4.2.1

We note that the couputation rates of transitions tl, t2 and t3 are in

the ratio of their currents in a consistent current assignnent Before
J v
we can justify this, we look infornally it the conputation rate of

ey

transitions in an event graph° successive generslizstions of the ideas

presented below will leed us to a11 results of interest in this thesis,

including the computation rate of transitions in tined SHD Petri nets.

; Consider the simyle circuit shown in !igure 4, 2 5, in which each
tramsition t has an associated firing time Ts ge will begin by assu-
.e—..—. ming that the circuit has one token on it, and “illlﬁh?P extend the ana-

~1lysis to .n tokens. With one token on the circuit, each transition can fire
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in turn over and over again. Suppose that the circuit is denoted by
pltlpztz...pjtj , and suppose (without loss of generality) that initially
the token is on place p,. Let x = T, + T, +..r+‘Tj'.‘Then, the token
fires every transition in the circuit ;nwggtn and reippears on p, every
nt seconds, assuming that no time is eilowedkto elapse ﬁetween a tran-
gition being enabled and being ini‘ti.ated. Undet ths nssomption, every
transition initiates at intervals of = seconds. and 7 is ﬁhe period of
the firing schedule for the circuit that realizes*the maxinum computation
rate. The computation rate is easily seen to be;pﬁe 1/x=. ﬁoy suppose that
the circuit has n tokens on it instead of 1. For the comnined action of
the n tokens, the firing rate»heconos; iii; or _g_,f‘;gEvery trangition
R A
in the circuit has a maximum computation rnte given by this expression.
Let us now consider trannitione tn a timnd event gr-ph. We know
from Theorem 3.2.1 thnt in an event graph with a live marking, the token
content of every simple circuit is non-gzero. Thus, let the token content
of a circuit Ck be 0, wherenk ¥ 0, Alno, let x; denote the sum of the
firing times of trensitions in C#. If every circuit were by itself, the

" S .A ey

transitions in circuit G would have a computation rate of nk /=

o L

t,!

However, in a strongly-connected event graph, the circuits are inter-
connected and intuitively it is clear thnt they will affect each others
natural computation rate ({.e., the computation ‘rat'é ‘the trensitions in
a circuit would have if the circuit were isélated"from ‘the other cir-
cuits). “
Now, without loss of generality, let ¢, be ‘the circuit with the sma-

llest natural computation rate nn/ul. Clearly, all transitions tn,...t11
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Figure 4,2.5,
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€ C1 have a computation rate that cannot exceed nllx1 (see Figure

4.2.6).

Figure 4.2.6

Extending this arguﬁégt, we see that if there exists a directed path
between any two transiéions in the event g;aph, they must have the same
computation rate. Since ewery transition is on some directed path from
transitions tll’ t12’ "'tli’ we conclude that all transitions in the
event graph must have the same computation rate, which cannot exceed
n,/n,. What this means is that in any timed event graph (G,0), all

transitions have the same computation rate, which cannot exceed
min { nllxl,... nk/nk}
where Cl""ck are the gsimple circuits of the graph,

n, is the token content of circuit Ci, and

i

n, 1is the sum of the firing times of transitions in circuit Ci'

i
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We have been able to obtain,informally, a bound on the computation rate
of transitions in a timed event graph. 1In the next Section, we will

show that this bound can actually be realized.



-119-

4 d nt :_hs

In the previous section, we saw informally how we could obtain a
bound on the steady state computation rate of a timed event graph.
Here, we will show that the bound we have obtained i{s actually
realizable; furthermore, we will ihov that there exists a gtrongly
periodic firing schedule for which the transitions have a computation
rate equal to the bound.

We will use the notation for event graphs given in Definition 3.3.2.
To recapitulate, let &be a timed event graph (G,N) where

G is a strongly-connected event graph (V,A).
Recall that V = {vl,vz,...vm] is the set of transitions.
A= [aij} € VxVis the set of arcs.
a:lj is an arc that connects transition vy to transition v,.

3

(1 18 a function that assigns to each transition v, a firing time Ti»

i
i.e., N: V = R (vhere R is the set of non-negative real numbers).
We write Ty for Q(vi).

Let M(0) be the initial marking of the net. Recall that M is used
interchangeably as a vector and a function. For event graphs,

M(T’aij) will denote the number of tokens on arc a,, at time r.

1]
Arcs in event graphs will be treated in the same way as places in un-

restricted Petri nets.

We now proceed to formalize the definition of a feasible firing

schedule for timed event graphs.
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Definition: A firing schedule S for a timed event gi'aph ’ is a pair ;

1

(SI, ST) such that
Sy :Mx V—>R
ST :nxv—.*’ n=[1,2ao¢]
and ST(n,vi) = SI(n,vi) + Ty-
. i.
S,r(n,vi) is the nth termination time of mns:ltiﬁoq‘ v

S;(n,v,) is the nth initiation time of _t;t"a_'nspitidn v

10

A firing schedule for a timed Petri nét may not be realizable because
some transitions are specified to fire when théy are not enabled. A
feasible firing schedule is one that does not violate this requirement.
We now show how to determine “ the marking M(r) at any instant of time Tt
for a timed event yaph,#uhich‘ha&q feasible firing schedule S.
Notation: At any instant of time 7 in a £n'f.ng schedule 8 for timed

event graph g,

Is(T’vi) denotes the number of initiations of transitiom v, up to and

including time T.
Ts ('r,vi) denotes the number of terminations of transition v, up to and
including time T.

g

Let a:'_j = (vi,vj) be an arc in the event graph G.

By token bnl;nce '

M(T"i.j) = “(0"11) + TB(T,Vi) - Is('r,vj).

Now congider the engbled transition v P shown i Figure 4.3.1. If an

initiation of vy takes place at the instant T, then immediately prior
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to instant T, there must have been at least one token on every input

arc of v,. We will use the notation 7~ to denote an instant Qr 6) where

]
€ —» 0. 7~ will, for all practical purposes, denote the instant T

itself.

Definition: A firing schedule S for a timed event: graphiis feasible

iff for any transition v and for k = 1,2 3..., we heve'

3

Va, € vy H(SI[k,v

’ ‘1j)2 1

j]
where SI[k’vj]- denotes the instant just prior to Sr[k,Vj]'

#

Input arcs of
transition j

Figure 4.3.1 An 1nstggf when tfgégition v, can inifiégg.
3 Sa—

Suppose we now consider a run of the eQent gfaph"; Consider an

src a,, that initially had M(0,a,) tokens on it; 'Sdppode trandttion

]
has fired n times up to and including an instent-oftfme~r. It is -~
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obvious that in the same interval of time, ,t:rén'sg.;ieﬁ"v j‘cQuld have

fired at most M(O,aij) +n -1 times without driving the token content
of arc a3 negative. The (M(O,aij) + n)th initiation of tramsition vy

must await the nth termination of transition viif ‘Wé’will show in the

next Theorem that this is a necessary and sufficient condition for a

firing schedule to be feasible.

a

Theorem 4.3,1: A firing schedule S for a timed event graph ’ = (G,Q) |

is feasible iff for each arc a,, in the graph G, and for n = 1, 2 3...

1)

ST(n,vi) < SI(n + M(0,a,.), vj).

ij

Th:l.s can be stated equivalently as

S (nvi)+1-1$S (n+M(Oaj),v)

3

Proof:
Necessity: We prove ‘this ‘by contradiction. Sup};oie there exists
a feasible firing schedule such that foramen‘an& ‘gome a, j

ST(n,vi) > SI (n + M(O,aij), v,), i.e.,

3

SI(n,vi) +T,> SI(n + H(O,aij), vj).

Let T = SI(n + M(O,aij), v,) and therefore

]

Is('r,vj) =qn + H(O,aij).

Since 't < S.(n,v,), we ‘have T V) <n.

1 ey

Using token balance,
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H('r,a”) = M(O,nﬁ)& Tglr,vy) - Is('r, ,v-‘j)‘
- M©O,a,,) + Tg(T,vi) - - ”(°s‘135’
= Tser,vi) -n

i.e., M(T’aij) <0

This is the desired contradiction of feasibilit&yof S.

Sufficiency: Suppose S is a feasible Béhédule, ané‘considsr*tny'inétant

of time 7 > 0 such that

We wish to show that for the instant 1-,juat prior to an initigtion of vj

H(r-,aij) 2 1.
Now, at time 77,
H(T-sai,j). = M(0<'aij) + TS(T-’vi) - (n + H‘(o’aij) - 1)
-Ts(r',vi) -n+1l
but
TS(T-’vi) Zzn,
Hence,

Mér',aij) 21 | oy

We have introduced the idea of a strongly periodic firing schedule in
Section 4.2. We now give a formal definition of a stfongly periodic

firing schedule for a timed event graph.
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Definition: A feasible firing schedule S for a timed event sraph*‘g ‘
is strongly periodic with period %> 0 iff there exist real ‘humbers

xi 2 0 such that

SI(n,vi) =x, + (n-1)% . - n=1,2,,..
i: -~ ..1 '2”—,&- ‘-ﬂ,.
The real numbers Xyse..X are the displacements of ’!t;he firing times of

transitions from the instants 0, %, 2=x,...

Corollary 4.3.1.1: Let aij be an arc in a timed ‘event graphi. ‘Then 9
has a strongly pericdic firing schedufe ‘Withi“period x> 0 and with

displacements Xqs-- .i:m 1ff V‘ij € °G, ‘we ‘have

Proof: Theorem 4.3.1 states that YV "&13 €' Gand for n-=1,2,...
SI(n,vi) + Ty < SI(n + M(O,aij), vj)...[4.1].

By the definition of a strongly periodic firing schedule we have

5;(m,v,) = x, + (1 - Dn

and SI(n + M(O,aij), vJ) = xj + (n + “(0"13) -1).
Substituting into finequality 4.1, we have

x,+ (-1 +71, < x, + n + H(O,a“) s 1)

or x, +T1y S ,xj + M(0,a

11) - ‘ L EAE

The inequalities of Cérollary 4.3.1.1 cin be'tewritten '~

Xy - X z 1-1 - “(0"11) B A a’is""’E ‘G. ‘
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The quantity Ty - nM(Q,aij) is a constant for each arc a,,.
Let us write

- MM(0,a,.) = ¢

Ty i3 13
Corollary 4.3.1.1 can be rewritten as follows: ' ..
A timed event graph.’ has a strongly periodic firing schedule for

displacements~xl,...xm 1ff

Va,,€G wehave x, -x, 2 ¢,,...[4.2]

13 3 i 13

where cij =Ty - n™(0,a

130 |

We would now like to investigate under what cond@;iqgg gyg Qet of
inequalities [4,2] is true. In order to do this, we make a brief
excursion into the theory of potentials fq;‘dirocgga?grgphq, .The
development given here follows very closolyrthc materi#l in 3erge and

Ghouila-Houri, pages 144-145 and pages 155-157 [B3]. .

4.3.2 Existence of Potential Differences for event graphs

fry, T

Suppose with each arc a,, of an event graph G we qssgciuteAa real

i}
number 613 which satisfies the gondition that for every cycle & € G,
Zeu - Z°15 = 0.
5 € gt e g

where E* denote the arcs of the cycle‘oriehéed ina ﬁiveh sense, and &~

the arcs oriented in the opposite sense (see Figure 4.3.2). Then, we
will say each 913 rgg;ggegts‘a‘ggggggigl_gégggasagg_qsspssvits corresponding

arc a Readers familiar with circuif theory will notice the similarity

ij°




-126-

. e ) +
8,50 2 53 8y, €8

8, €8

Figure 4.3.2 A Cycle

of this notion of potential difference to that used for electrical
networks. In networks we can choose -any arbitrary éde to be a
reference node and assign it a potential of :iro.; ‘The potential of any
node in the network is then equal to the potential difference between

it and the refeténce node. We :will 'now show that 1f:theares of an
event graph can be given a potential difference assignment, then it is
equivalent to u‘y"ing“-\that-ﬂueh”tru’mit:lhvi“"mtmesaniiimd a.potential
x

such that the potential difference 61 "‘i*t:r“xi»‘:m:‘lc have: iuad,:x—{ .

i 3
to denote the petential asseciated with'transition Vis and have used x

earlier to-denote the-digplacéement umiatdffﬂth-‘fviw* ~This has. been

i

done intentionally. %

Theorem 4.3.2: A functiop @: A —»R. which asgigns 8 real mumber eu‘; ;

to each arc a, j is a potential difference assigmment :l.ff_: there exists

a function X: V —+R which associates with each vertex vy in the event
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graph a real number x, such that for every arc a,, we have

i i}

0,, =x

15 = %3 " %4

Sufficiency: If o,, is defined as gtb&n,then consider-a cycle

1}
g = Cvl,vz,...zk,vl).

Define § = 41 if a,, is directed in one sense
a; i} :

g - Qi*tf a,, is directed {h_the opposite sense.
8y 13 jG 2

Then, 5‘12 012 =X, - X

Summing, we get

z e:l.j -fZG“. = 0.

Thus, the assignment @ is a potential: difference aasigmment.

Necessity: If @ is:a potentisl difference assigmment, let us define . .
the ?otentialcﬁxiéitep by step. ERTUE 33 I SO S T ST
Take an arbitrary vnztciawl Qndwaal;;nigbp¢gpctgiggqq@¢xl,s 0 to {t..
If v, has been labelled, andévj blsngotﬁxgggbggggiuyg;lqggragdnif.113
is an arc in A, then we write
xj =x; + eij'
stmtlarly, if & s an‘are 1n A, theh we write

X, =x, + 0

i J ij
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or x, =x, - @

3 -5

13"

Since the event graphs we are interested in are strongly connected,

the potential of every vertex can be asaigﬁéd”thti way.

The potential assigned to a vertex vy

otherwise there would exist two chains Ql and,gzgloing from v

13;gﬁ$§u¢1y defined; for
1t

vy such that they form a cycle around which the potential differences
do not sum to zero (see Figure 4.3.3). This would violate the

definition of potential difference.

Figure 4.3.3

We now examine the conditions under which a potential difference
assignment exists for directed graphs.’ The fgllq;ins Theorem holds

for all connected graphs (i.e., not just atfongly@eonnacted graphs).

Theorem 4,3.3: Let G = (V,A) be a connected graph, and let us associate

with each arc a, € A an interval [k A

], vhere kyy <1,

i3’ lij

A i 3
necessary and sufficient condition for the -xist.ﬁcc of a potential

difference assigmment:
--such that -

kij < 913 < 1ij
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is that for every simple cycle E,

]
Zlij_ 2 ZK’-:‘*" . :
cURLI VLA (R
aij € 5* '13 € g-
4

Proof:  (Suggested by Jack Demnis; we disagree with the proof in B3).
Necessity: The condition is necessary;;for,:subﬁé;i:iuch a potential

difference assignment @ exists. Then, we have, for a cycle &,

fPu - 2911 -0

‘ij € E* 'ij € ;'

If we use the lower bound of kij for each arc in the first term and the

upper bound lij for each arc in the second, we have

Zﬁj - Zlij =0

e

ay € gt a, € g-
i.e.,
Zlij = Z‘&j
- L g
255 €5 84 €5

By doing the converse, we get the second inequality.”

Sufficiency: Here, we shall use the concept that each interval represents
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a set of points on the real line. We will write
L [kij, 1ij] = (xlxzkfij,xslij}. '
We will use the concept of the interval sum of two intervals A &nd B,
defined as
A+B={a+b| acAandbe€B}. |
Also, the interval difference of two gnééfﬁuls A and B iaaécfinedvas
A-B=(a-b|a€Ag§_b€B].- | |

‘The conditions of the- Theorem- can be writtien as - -

2y €8 ay€s
and SR ' ‘ s SRR B
Zx“ - *Zlu‘ EXIR Y
aij €¢g" .13 € ;+ L i B A
Now consider the interval " = = oy E o
TR TS R TR S S I

From [4.3] and ’['4.4],
0€J ... [4.5].

¥

But J can be rewritten as

3 -[ Zku J 211_1 ] - [Z“ij > {1‘11 *]

8,4 €8 a5 €E 89 €5
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S Wy Wy e 6]

8, €8 sy, €8

From [4.5] and [4.6],

0€ z}fﬁ T ‘ZYéjP;"' [4.7]“
ij

Thus, the conditions of the Theorem cam be written as in [4.7]. We shall
show by induction that [4.7] implies the existence of a potential difference
assigmment @ such that k< ails 1,. Thie ia ‘true for a greph with one

arc; we shall suppose that it is true for ever9 3reyh with Gm - 1)

arcs and show that it holds for a graph G with m arcs (labelled 1,...m)
with the intervals Y,,...Y subject tO’conditién [4.7]. Let é; be a

graph with.(m - 1) arcs that is obtained by deleting arc h I-”('vi‘,vj)

from G, and let O be the potential difference egpiggpen;;foc,é. Let.

6, be the potential difference across the vertices vi,vj in the graph c

h
under the potentiel difference eecignment 0. It 6 € Y, , then by adding

arc h to G end elcigning it a potentiel differencebéh»- bh’ we have

P T T S, PR

constructed for the graph Ga potentiel difference eeeignment 7
e = (91,-a.,9m_1, h)e

If S, does not lie within the limits [kh,lh], then there are two
‘ S g, .

h
possibilities:

Either (a) Gh‘< kh
or () 6h > lh.

We will assume without loss of generality that for all simple cycles
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f

Figure 4.3.4.

€ € G which contain the arc“h, h€E. In ?; these cycles correspond to

simple paths from v, to vj. Thus, for each simple path § from v, to v

i ]
have ]
0 € EIPQ ) Zqu + Gh
a q g apq €L
h ’ o
24 ¥ oz
or bh € B szq + szq
- +
apq €E apq €Eg
h
‘pq o

We will refer to the set of simple paths f“"'”f ‘to ivj:.u- -the - hmmwsock -,

# = {s|s is a simple path from v, f
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Case (a) 6h < kh We will show that 'it must be possible to reassign
potential differences to arcs ip.t:he hamockﬂ' so that 6 2 ke We do

this by finding a cut set C, of the hmm gig&e 4.3.5).

’ \ \\
,I ,/ ) \ N
{ ’, ’. ’.\\ \\ \‘
1 ll \\ ‘\ [}
Uy Ny :
N |
\ |,’ v/
\y
vi vj

Figure 4.3.5. Hammock #.

With each arc m = 2 in the cut set C,» We associate a slack o defined by
= - +

9 k -6, ifmeg.

9 ==6m--1m ifmeEg-.

= min [3,,... ,Br]

l,...r € Cn

We increase the potential difference em of each arc m € g* by 3" and
decrease ‘the potential difference #_.of -dmch arc m€ 7 by 3%
Thus 5h has been increased by ;an_ 5 § 3 ;15ﬁ:~.+ an >f_kh;; ‘w8 are done.

Otherwise, repeat the above procedure for some other cut set, and so on.
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If no more cut sets aré found for which ‘this potential difference reas-
signment can be done, then there must be some p&th # in which the -
“following is true:
+
o, = km Vmeg

g, =1 Vmeg.

For as long as t:here 13 no auch path there mﬂ: exist a cut set whose

B¢ 5 e Tim

arcs do not have potcntial differcncu cqual to either limit:.

Now consider the cycle consisting of the path s and arc k.

§, = Zlm z‘.cm < kh

me€g  meg

R . o PR A

Recalling that k was defined to be in €”, we see that

P TR B S
B, - B <o

m€ gt meeg e me

which contradicts the first condition of the Theorem, namely that
Zlij = 2“13
- ¢

Similarly, we show that for Cue (b), 1 e., S > 1, it must: be pouible
to reassign tha potcntula 1n the hnmock #so that 8, < lh If not
we can show by a method similar to that for case (a) that there must

exist ‘a path ‘for which : oo : S T AT

Zij < Xku = e
TR a  €E
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which contradicts the second condition of the Theorem.. .

This proves the Theorem.

Corollary 4.3.3.1

A potential difference assignment @ such that 91 3 z ki j (for all

2,5 €6) exists if and only if, for every circuit &,

Yeyy <0
‘1365

Proof: Set lij = + o for every aij'

(a) circuits, i.e., cycles in which all arcs are oriented in the same

T'hete are two types of cycles:

direction.
(b) cycles which are not circuits.

For every circuit E, we see that

Etij < 0;

aij €Eg,

For cycles which are not circuits, we see that

E‘i j < ° " ‘which is vacuously true if all ky j's are finite.
: o < S T R :

We are now in a position to show that the bound we qbtained on the .
computation rate of transitions in a timed event graph is actually

attainable. This forms the subject of our next ﬁﬁorem
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Theorem 4.3.4: Let & = (G,Q) be a timed: event graph.\.' ’ ‘has a strongly

periodic firing schedule with period m > 0 iff

T
A
i €C

T2 max i

VEk ZM(O’aij)
%13 €S T

where (Cl,cz,...ck} is the set of all circuits in G.

Proof: From Corollary 4.3.1.1 we have the result that a timed event
graph‘} has a strongly periodic firing schedule with displacements
KyseeoXy and period w 1iff

Vaijec,vehavexj-xizcij'

vhere ¢ - M(0,a [4.2]

1377t 137" S e

Now with each arc 8,y we asgociate Gij = 11 T ¥y |

By Theorem 4.3.2, a function that assigns such:'_;n:-;e .to each arc a

13 ij
must be a potential difference assignment. The set of inequalities [4.2]
now becomes

83y Ve

By Corollary 4.3.3.1, this system of inequalities has a solution 1ff,

€6  [4.8])

1)

%

for every circuit € € G,

Zcij <0
€Eg (4.9]

[4.9] now becomes
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VEEG, Zhg‘ " HO,a, ) <0
¢

or 2"1 - m ZM(O,au) <0 Ve _V€ G,
v, € g ‘1_1 €E R
or T2 Ei
Vi €5 YEEG
211(0,:“)
‘1_1 €Eg

This is true iff

r A
X
n = nax v e g i ey L [4 lo]s
£ed-t } - : '
L zn(o"ij) J ’
‘ijeg ) 5
.
Comments on Theorem 4.3.4: We note that w a stééngly"p.eriodic

firing ‘schedule with period

.
T = max 2-1
E € c{ v €68
ZH(O’.:U)

\aijeg
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The computation rate p of transitions in G is given by p -Tl;' .

Hence, - N ’ 1

p< p'= min ZM(O a&j)
gec]il—>

}:n ,‘ /-

v1€§

[4.11]

It is cleaf from the’inequglityﬁﬂ.i]thaf“theré exists a strongly
periodic fifiéxg schedule which realizas ;a“‘{éo‘uiﬁtatmn rate
) =g , . .
Thus, the timed event graph can be allowed to “run" at airy V'speed’ less
than or equal to ";".; In Section 4.2, we ‘srguéd that the computation

rate of transitions in a timed event graph could not exceed that of

transitions in the circuit with the minimm ratio of -

ZH(O',ni j)
a ij' €E"
X

vieg'

but our argument:s were non-rigorous.‘ In this section we have sub-

EF s ot

stant:iated our claim in a ri.gorous fashion. The circuit with ‘the

'minimum ratlo of coken content to sum of trannit:l.on firing times 19

L

4

termed the griti g;; 1 and as we havo ucn: this is the one
which det:etnines t:he mnximum computation rate of 111 transitions 1n

the net.
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Section 4.4 Timed LSP Nets

We now proceed to apply the result obtained in the previous Section .
to determining the maximum computation rate of transitions in a timed
LSP Petri net. Our starting point will be to deeide if a given marked
Petri net is indeéd LSP. This can be dome by q:plyiig;the results deve-
loped in Section 2.3, |

Consider a timed LSP Petri met £ = f—’,»f’)-f The timed Petri net
in Figure 4.2.1 18 an LSP net, and we eqy‘thnt;ge were able to constr-
uct a feasible periodic schedule for it. We now show that every,LSP
Petri net has .a feasible periodic firing ,eheeuie,kgnd4ee7ehow_how‘to
find the period and the computation rate of every trangition in the
net. .

Recall from Section 3.4 that the steady state behaxiot?vgf an LSP
net  can be represented by the steady-state equivalent net 4.
Furthermore, recall that J has the structure of a mltiply-labellad
event graph. The only difference between event-graphs and nultiply-
labelled event-graphs is that that the latter may have mltiple ins“-
tances” of certain transitions. We will begin by assuming that all
transitions in a multiply-labelled event graph have distinct labels,
and the steady-state equivalent net l can be regardedues ’:!; :event graph.
Each transition is assigned the firing tilte oé the trnnsition it cortee-
ponds to before the relabelling was done The coaput;:ion rute of trans-;"
itions in the resulting event graph can be foumi by q)plying the -~..
result of [4.11]. | A (

We showed in Chapter 3 that the steady state equivalent net of a L

consistent LSP Petri net must have a number of occurrences of each
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transition equal to its current in a consistent current assignment. We
now show that the computation rate of transitions in a timed LSP Petri
net must be proportional to their currents in a consistent current

assignment. To show this, let us consider the steady-state equivalent

Lo %
. P

net 4 . We have seen that we can find the computatibn rate of tran-

e ?
sitions in the relabelled net by mating it as an event graph. We

o

will call this the funduental couputat:lon rate o{}iﬁ,&‘ﬂ’ net, “and will

e P
denote it by p. If the mult.ipltcﬂ:y of any trm,ttion vi is u(vi), it

means that in unit ”i:iné u:gggition v, in the' tﬂ,yd LsP yt: £ fﬂres

i
u(v ) X p times, because each f:lring of n-d.n.tunéx,,o& fﬁnaition of

33‘

transition v, in J is also a firing of ttmﬁion v tn P. Hence,

i
we can find the cauputation rate of any transitiomn vi by si;ply multi-

ply:lng p by the nultiplicity of that «tmij‘“ 1nl o
Summarizing, the following steps are are involved in finding the
computation rate of transitions in a timd LSP Petri net « :

Step 1 Find the steady state equ:lxﬂent net 4 o{r’ﬁge underlying LSP

Step 2 Treating 4 as an event graply, Mtu finim cmutation
rate p by applying {lo 11]. 'nu.é, gim Dgo mim fundnental

Petri net ?

computation rate oﬂ the timed !:8? Petri mt re
4 .
Step 3 If Py is the -axidm conputati.@ rlﬂfrot‘?:r;ﬂition v; Aw £,

and u(v ) is its wltiplicity 1n d . th«ai pi = p X u(vi)

i
. ‘“ff“ ' X,},:
We illustrate this method by an’ oxllpte ek ‘»3 o

i g .

Exgmple: -Gonsider the timed LSP Petri st of Figure 4.2.1 (reproduced

in Figure 4.4.1). In order to make our ;;qle as general as possible,
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Figure 4.4.1 Timed LSP Petri net & = (# ,Q) with a live, bounded
\ hrkm Mo l ' - i 4:5" s ‘ e ’

Figure 4.4.2 Steady state Equivalent net A for LSP Petri net P with
marking M.
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the net has a marking M that is not safe, but which is live, bounded
and persistent. In Figure 4.4.2, we show the steady state equivalent
4 of the net P with marking M. 4 can be decomposed into four circui-
ts :
R R oS LA LS R LA S
Cpf  PatyPytyPy
C3: Pyt PotoP,E4P
C,t P3tyPLtaP t,Py
The fundamental computetidn rate p 1s'seen to beWW
p = min[ 2/12, 1/8, 2/10, 1/10] | |
or p = 1;10. |
Now, u(tl) = ]
u(tz) =1
u(ty) = 2 | |
Thus the computation faxef of transitions tl,tz»dhd t3 are as follows:
py = 1/10 -
pz/- 1/10

Py = 2/10.

A note on the Structure of LSP Petri nets

Although it is true that the LSP Petri nets that arise in the course

of modelling practical systems will all be SMD there do exist Petri nets

wvhich are LSP but not SMD. The net in Figure 4.4.3 is an LSP Petri net,

but it is not SMD as the reader can easily verify. The method we have
given for finding the computation rate for timed LSP Petri nets holds

for all LBP Petri nets which have a live, safe marking.
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Figure 4.4.3 An LSP Petri net that is not SMD
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The assumption of deterministic firing times for Petri nets has given
us a great deal of insight into the action of practical asynchronous sys—

S

tems, We have been able to find the computation rate of transitions in
timed event graphs and LSP Petri nets, and in each c;;e’we have been able
to identify system components that limit the fundlnental compuootion rate
of the net (i.e., the critical circuit). The critical circuit represents
a bottleneck in the system being modelled, and readers familiar with

PERT networks will see the correspondence between critical circuits in
timed event graphs and critical paths in PERT networks.

The assumption of deterministic firing times may not be sufficiently
accurate for practical systems. In practice, an action in an asynchronous
system like an addition will be a random variable , and in a large number
of cases this can be approximated by either a rectangular or a Gausoian
distribution (see Figures 4.5.1 and 4.5.2 respectively). A Gaussian
distribution has the problem that it has a "tail" which extends for nega-
tive values of time. Since we cannot visualize an action taking less than
zero time to occur, we would prefer to use the rectangular distribution
shown in Figure 4.5.1.

It is possible to find out the mean computation rate of a timed event
graph when all firing times are given by a distribution like the rectan-
gular distribution. However, the process is very tedious, and we will
work with the means of each of the firing times. By doing this, we get
a timed event graph whose computation rate can be found by applying Equa-
tion [4.11]. It can be shown by using the results of Clark[C3] that the
computation rate so obtained is an upper bound on the true computation

rate of the timed event graph whose firing times are random variables.
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The deviation of the true mean computation rate from this bound depends

upon on the standard deviations of the random variables, but there does

not appear to be any simple expression that relates these quantities.
We now turn to Chapter 5, where we find a bound on the computation

rate of timed SMD Petri nets.



CHAPTER 5

COMPUTATION RATE OF ASYNCHRONOUS SYSTEMS WITH DECISIONS

5.1 Timed SMD Petri Nets

In Chapter 3, we illustrated thepower of SMD Pet::‘riz’_r nets in model-
ling asynchronous systems with '3;;1319“. We alsp established two
important results about SMD Petfi nets: “ T

(a) It is decidable if any given gtgk;itng for: an SMD:Petri net is

.

live. 4 ‘ ;

(b) For SMA Petri nets, 'q:iy».nark:lng which pt;ts at least one token

| on every state machine il live. , | 5
Thus, usipg the results presented in xil;apter 3, ;Amgggnﬁdesign asyn-
chronous processing systems for p'ésiﬂile i.nplemgt:tfionm by the tech-
niques developed by Dennis and Patil ‘[DVI ,: b2} . ‘e ;ow show how we can
estimate the computation rate of this md:e,gd;oggg class of systems.
Recall that in Chapter 4 we developed a t;ltﬁﬁiqﬁ"":foﬁifinding the
maximum cuxputation rate of a large clas&.bﬁ detern:lnistic systems.
In this clg;pter, we look at non-detemi.?'i:ti‘qt systems and see if we can
obtain a bound on their computation rate. We*do this by finding a
bound on the computation rate of traﬁj.tions iﬁ a timed SMD Petri net.

We have defined timed Petri nets in Section 4;.1 (see definition 4.1.1).
Thus, a tined SMD Petri net is an SMD ﬂgt in Mch ewry transition has
a fixed, non-zero firing time. For detaiis qf the firing mechanism
and notation for the ingtantaneous narking of tti-ed SMD net, the
reader is urged to re-read Section 4.1. A

v
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Let us now consider a timed SMD Petri net and examine its be-
havior. We do this by constructing a firing acbedule for 11:, and
interpreting the notion of com;utation rate of a transition in con-
nection with the firing schedule.

As a simple example to motivate this chapter, conaider th,e SMD
Petri net model of an assembly line with decisions of the type dis-
cussed in Section 1.2. Figure 5. 1 1 is such a Petri«};ﬂ: model Let
transitions a, b and c represent ugembly opemlms, and let’p be a
place which represents a bay at which a decision is made_;p.bout which
engine should be attached to a chaasis. Tbe engines are ‘available in
the input queues ¢onnected to transittoni b and c, and c?mpletely as-
sembled autos are output into t:he queues 'narkpd "outpub queues. " Each

of the assembly operations represeﬂted by t"’he trnnsitions a, b and ¢

have associated time durations T , 'r and T. rgpeotively. A partially

Ty
assembled auto that sppears at plac‘e P can be rquted;one of two ways,
by firing either transf:tion d or ?tmition By | We é‘:id in Section 1.2
that this routing can be done in several way,, and the exact mechanism
of making this routing decisi‘on does not coqcern us 'here'. We have
pointed out some of the ways in whinh this decision i:an be made for a
practical assembly line. From a perfomance atandpo:l.nt«, we must know
the relative numbers of each type of nﬁto‘obile \lhu:h are produced by
the assembly line. Let us see why. Suppoie 1}1&1& proportion of
all cars produced by the assembly line are 20(! ;14 qars, and suppose
that the final assembly process for attaohing a 200 HP engine to a

chassis is extremely slow (i.e., transition f has a long firing time).

This assembly stage will not be able to handle the load imposed by it,
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Figure 5.1.2 Occurrence Graph for Petri Net in Figure 5,1.1.
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and will slow down the operation of the whole line by choking off the
absorption of subassemblies from the input queues., It is intuitively
obvious, therefore, that this assembly line can be balanced by matching
the speed of operation of an assembiy station to its expected frequency
of use. It can also be seen that there is a tradeoff between the num-
ber of physical processing units at an assembly station and the speed
of each processing unit - a number of slow processing units can be

used instead of a few fast ones, and vice versa. Our question in
connection with this assembly line is - how do we estimate the rate at
which it produces assembled autos?

Let us examine our model carefully and see what information is needed
to specify the system in a way which is complete for our purpose. We
have shown input queues connected to some of the transitions in the net
in Figure 5.1.1. We pointed out in Section 1.2 that we will assume
that there is always at least one item in each input queue, so that it
is not necessary to indicate the queues, but we have shown the queues
for completeness. Let us now see how to incorporate the relative fre-
quency of use of the two alternative assembly gtations into out model.

The action of the Petri met in Figure 5.1.1 can be represented by
means of an occurrence graph (see Section 3.5.3). In the occurrence
graph shown in Figure 5.1.2, the probability or the relative frequency
of occurrence of each of the outcomes of the decision made at place P,
will be reflected in the number of occurrences of the corresponding
transition in a long frustrum of the occurrence graph. For example, if
2

the probabilities of occurrence of transitions d and e are % and 3

respectively, then, in a long frustrum of the occurrence graph there
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will on an average, be twice as many occurrences of transition e as of
transition d. This means that in a consistent current assigmment for

the Petri net, the current assigned to transition e will be twice that
assigned to transitiom d. Our problem is to find the maximm computation
rates of transitions tg and ts in the net. In general, we would like

to find the waximm computation rate of any transition in a timed

SMD net, for which a comsistent current assignment is given. We wish

to find a computation rate assignment such that the computation rate

of each transition is proportional to its current in the given con-
sistent current assig!nent .

The problem can be tackled by simulation. In such a method the
computation rate of any tramsition can be found by letting the net "rumn"
for a long time, and then dividing the momber of times that tramsitiom
has fired by the total amount of time that has ¢lapsed since time zero.
The method is extremely time consuming and we would like an analytical
technique vhich enables us to find a good bound on the computation rate
of transitions in the timed net.

Consider a timed SMD net X = (7, 1), having a minimal integer con-
sistent current assigmment 3. We know from Section 3.5 that several
c-equivalent nets are, in general, possible for ¥ with comsistent current
assigmment ¥, 1In Figure 5.1.3(a) we reproduce the net showm in Figure
3.5.4. For the given minimal consistent current assignment, several
c-equivalent nets are possible, and we give two of them (see Figures
5.1.3(b) and 5.1.3(c). Each timed c-equivalent net defines a periodic
schedule. We compute their fundamental computation rates, and get

the following:
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The SMD net ¥X.

Minimal integer consistent current assignment:

Qp1=CP2=]_ QPS=QP6=2
Py = 9, = 9y = 2

Firing time assignment:

T, =2,7T,=3,T,=4, T

) =1,7,=3,T,=5,7,

3 4

Figure 5.1.3(a)



-153-

Figure 5.1.3(b)
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Figure 5.1.3(c)
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are 5.1.3 (b)

Applying the results of Sectiom 4.4,

Pentmenta Comutecion sate 3¢ < win[B3, %, 4 B]-3,

restasent a1 computation tate o' = mte|hy L. L 1] L.

Thus, the maxisosi Féndamental Computation’ Rates of the two c-equivalent
nets are different. Im order to find a Boond on the mmcimsn fundewental

computation rate of the timed net %X, wé o timed p-equivalent

net wieich has the largest computséion rs‘e‘e.‘

The maximos findasental computation rate of a c-equivalent net for
the timed net X represents the maximum: fundasiental computation rate of
transitions in the net X for the behavior specified by that c-equivalent

net. Tis leads to the following definitiow:

Definition 5.1.1 The maxiswms fundamental cowputatiom rate of transitionms

in a timed SMD net %X = (#Q1) for a minimal integer consistent current
assignmwent ¥ is given by the fundamental computation rate of the c-

equivalent net which has the largest fundamental computation rate.

Definition 5.1.2 The maximum computation rgte of a transition t, be-
longing to a timed SMD Petri net X = (7,Q) with a minimal integer
congsistent current assignment & is given by

Py =9 xp

where Py is the current assigned to t, by $and p is the maximum funda-

i
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Figure 5.1.4
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mental computation rate of ¥%.

We see that to obtain an exact value of the maximum fundamental compu-

._nets for ¥ and

a very tedious process, and we would ltke to find a simple wethod

which gives a bound on the fundgmental maximum computatiom rate of X.
Congider the timed SMP Petri net % = (#0) in which the underlying

Petri net P has a live marking M. Let §,, 8,,. .w.s‘ be the state

machine companents of #. Let the tragsitions of anyr atate machine

component Si be tn, tiz" - 'tik,,’ their firing times be fﬂ, 112, . "Tik

and their currents be Py °P12"""’m respectively. Also, let

Pyy» PygoecePyy be the places belonging to the state machine S,. Let n,

denote the number of tokens on state machine S,.

Congider the occurrence graph associated with one of the tokens on

the state machine S, (see Figure 5.1.4).

Since there are n, tokens omn the state machine Si’ the maximum natural

ig thug n,¥,, or n The

11 £ 11 Pty
quantity Y. is termed the maximum natyral fundamental computation rate
of the state machine, and to obtain the maximum ngtural computation

computation rate of transitiomn t

rate of transition kil’ we multiply ‘fi by Pygy- The term maximum

natural computation rate of a transitiom t,., refers to the computation

il
rate it would have if the state machine Si were isolated from the other

components of the SMD Petri net 7. However, as we saw in the case of

timed event graphs, the components of a timed net affect each other's
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fundamental computation rate. We now show that if two state machines

Si and S, have some transition t in common, then the fundamental
computation rate of both state machines is min [Yi,Yj]. Let ¢ be

the current associated with transition t in a consistent current
assignment. Then, it is clear that the computation rate of t cannot
exceed ® X min [Yi, Yj]. For suppose without loss of generality that
Yi< Yj. Then, the computation rate of t cannot be greater than ¢ x Yi.
If it could be greater than ¢ x Yi’ it would violate the definition of
the fundamental computation rate of Si' Thus, the computation rate of t

cannot exceed ¢® x min [Yi,Y 1. Also, by consistency, the computation

i

rate of any transition ty € §; must equal

?i1 X ¢ X min [¥,¥.0 =0

X min [¥,,Y.].
i
P J

il

Similarly, the computation rate of any transition tjm in Sj equals

P : 1 =
_45 X © X min {Yi,Yj] = @

- g X min [Yi,Yj].

3

We conclude that if two state machine components Si and Sj in a timed
SMD Petri net have a trangition in common, each state machine acquires

a fundamental computation rate = min [Yi,ﬁj].

Let p = min [Yl,Y Ym]. Without loss of generality, let p =Y,.

2,...

We now construct sets Kl’ Kz""Kr of state machines as follows:

If Xp is a set of state machines, then define A to be the set

P+l

Xp U {Spl, sz,...Spr}vwhere Spl’ sz,...Spr are state machines which

have at least one transition in common with the state machines in hp.

Also, Kr = {Sl, Sz,...Smp, i.e., all the state machine components of P.
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Construct X from A uwatil X = X , Then A\ wust include all
ptl P p+l P P

the state machines because P fs strongly-comnected.

The reader can now see that if the maximum fundamental computation
rate of 5, = ¥,, then the maximm fundamental computation rate of all

state machines in A\, is also ‘!‘1, and so on until we have exhausted all

2
state machines in the net . Thus, all state machines in x must have a
maximum fundamental computation rate p = !1 = min [‘1’1,!’2,...?‘] where
Sl’ 82,...8‘ are all the state machine cosmponerits of P,

The maxiwum computation rate of any transition t 4 in the net is thus

‘?i X P
We have thus established the following result:
In a timed SMD Petri net y = (% ,{1), the maximum computation rate py of

any tramsition t, is given by

i
Py = (Pi x P'

. [ - ] "
where p min [YI,YZ,...Y’I

where YI,Y Ym are the maximm fundamental computation rates of

2,-.0
sl’ SZ""sn' The maximum fundamental coaputation rate Yk of state

machine Sk ig given by

nk

k- g
i k3 Tis

i=1

Y

vhere n = number of tokens on state machine sk te12tor - -tyr are
the transitions of state machine Sk. q’kj’ Tkj are, respectively, the

current in a consistent current assigmment for P and firing time of
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transition tkj € Sk'

The bound we have obtained here is based on the assumption that
when a token appears at a place with conflict, then its further
routing (i.e., which output transition to fire) is done statistically,
using an a-priori probability measure proportional to the currents
associated with the respective transitions. 1In the next section,

we derive this bound by considering the c-equivalent nets for X.
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5.2 Rigorous Derivation of Bound om Fundamental Computation Rate for
1

s

In the previcus section, we gsaw ; Ve cam mmwrwm

the maximum fundamentsl camputstion of a timed S Petri met % with

a minimal integer comsistent currestWisignment. This imwolved

drawing all the timed c-equivalent ni!:n for X and fiwding the ana with

the largest maximum fundsmental enéifat'im rate. As we peinted out,

thia 13 a tedious process. The fallu;ﬁng Theorem gives an upper bound
the maximom fundamental cemputation: rate of a timed aﬁ Petri net

in terme of its structure, marking,  winiwmal integer comaistent

current assigmment and firing time asaigmment.

Theorem 5.2.1 In a timed SMD Petri net x = (#,0) with a winimal integer
consisteit current sssignment ¥, the manimum fundamental @mtﬁtim
rate is givem by p'= min E‘!l,..,‘!’gl. YI.Q.Y‘ are the fundamental
computation rates of the state wmachine compomants of X. The fundamental

computation vate ¥, of state machime 8, 1a given by

2, B

g |
where n= number of tokens on state machine Sk.
tkl"”tkr are the transitions of state machine sk

ija Tkj are the current and firing time respectively of transitiom -

tkj € sk.,
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33

Proof: Consider the c-equivalent net € of the SMD net 2 for the ¥
consistent current assignment ®. We showed in Section 3.5 that

for every state machine component Sk
circuit CkG © with the following property:

in P, there exists a corresponding
i

Every transition t, in Ck has a multiplicity u(t i) equal to the
current cpi assigned to transition ti in P by the minimal consistent

current assignment $. Now let C .»C ,

1,.- 'm Cm-l-l’.'.cr be the Simple Cir-

cuits in @, where Cl""Cm correspond to state machines of P and

Cm+1,...Cr are simple circuits in & that do not correspond to state

machines of P. Let Yl, .o .Ym, Ym+1, ey 'Yr be their respective fundamental

computation rates. For amy circuit C; € {Cl,...('ln}
n,

= 1

Vie,. €C

1§ - Vi

¥y

Now, the fundamental computation rate p of the timed net y is given by

' ]
p min [Yl,...Yr]
= min [‘yl’...wm’ Ym—'—l’...’wr]
or p' < min [‘i’l,...\l’m]
(]
Note:
There may exist some 'q,s € {Ym-l-l seee ,‘{’r} such that
<
¥o < min {‘i’l, . .Ym].

Thus, while o' = min [‘Yl,...‘{’m] is certainly a bound, this bound may not

be achievable. The computation rate Py of any transition ti is defined
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o
to be

Py = X 9.
Once again, thig value of pi is a bound, but this bmmd way not be achie-
vable. Theorem 5.2.1 enables us to find a bound on the computation rate
of any transitiom im a timed SMP Petri net by finding for each state
machine compon .nt 81' the corresponding f@mal om:atian rate ¥ i
This is simpler than finding the waximum: fundemental camputatiocn rate of
all the c-equivalent nets for the SMD Petri net.
Exapp _llg: Let us apply this result to the timed SMD Petri net of Figure
5.1.3, Theoream 5.2.1 gives a bound on the maxiwwm fundamental emtatioé
rate equal ta '

win [ 1/15, 1/22} = 1/22. _

By drawing all the c-equivalent nets for the SMP net, the resder cam
verify that the net of Pigure -5.1.3(’e} has the hmgt laxin fundgmen-
tal computation rate of 1/24. The bmmd of Theorem 5.2.1 camt actua-
11y be realized in any comsiatent behavior of the 5D net, but we see
that it ig certainly a reasonable bouué The rmou that the bound is
not achievable is that there is no state machine cm in P that
correspends to the wmultiply-labelled cireuit ‘étéé}giipfﬁgfi"’t??k'
Thig circuit has a weximum natural fundsmental computation rate of 1/24.
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5.3 Achievability of Bound on Computation Rate for timed SMD Petri nets

The bound on the computation rate of transitions in a timed SMD Petri
net that we have presented in the previous two Sections has been shown
to be an upper bound on the computation rate for a given SMD Petri net
with a minimal integer consistent current assignment. We have also shown
that this bound may not be achievable, and in this Section we look at the
issue of achievability.

When the reader examines the expression for the bound, he will notice
that it is always achievable for event graphs. Since the multiplicity
of every transition in an event graph is one, this means that there exists
a minimal integer consistent current assignment in which the current assi-
gned to each transition is unity. Also, since a simple circuit in an
event graph corresponds to a state machine componemt if we view the event
graph as an SMD Petri net, we can rewrite Theorem 5.2.1 for event graphs
to read as follows:
‘ In a timed event graph 9« = (G,0?), the computation rate of all tran-
gitions in the net is the same and is given by

P < min Wl,...wm],

where Cl,...Cm are all simple circuits of the event graph and

Z M(0, aij)

Y aijrevck
k
Z k1
¥ tq € Cy

This is the same bound as the one we obtained in Expression [4.11]

in Section 4.3. We also showed in Section 4.3 that this bound is achie-
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vable. Thus, the result in Theorem 5.2.1 represents an achievable bound
if the SMD Petri nets we consider are restricted to being event graphs.
Our question 18 « how good a bound is it for more general SMD Petri nets?
The largest class of SMD Pettri nets we have been able to preve achieva-

bility for is the class we term -SMD Petri nets.

Definition 5.3.1 An O-minimal integer consistent current assignment is

one in which all transitions withimore than one imput place are assigned
unit current.

Definition 5.3.2 An SMA Petri net is o-SMA iff there exists an o-mini-

mal integer consistent current assigmment for it.

Lemma 5.3,1 let € be the c-equivalent net of an -SMA Petri net ? for
the o-minimal integer consistent current assignment §. Then, every
circuit Ck in @ corresponds to a state machine component Sk in ® and

vice versa.
Progf &=

Consider a state machine component 8, in P. Let # be a eyclic frus-
trum for & . We know that the initial slice of F must contain at least
one place from every state machine component ( follows from Theorem
3.5.1). Choose some place Py € Sy from the places in the initial
slice of # . When two consecutive instances of this place in a cyclic
frustrum for the given current assignment are considered, every state
machine containing Py must unfold into a chain that begins and ends at

Pyi+ In the c-equivalent net constructed from the cyclic fruetruo, each

chain corresponds to a circuit,
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=, Consider the cyclic frustrum for the given c-equivalent net,
Since Pis SMA, every closed simple directed path is an SSM. Also,
since every transition which has multiple input places has unit
current, there is exactly one instance of each such transition in

a cyclic frustrum. Every allocation reduction on the c-equivalent
net results in exactly one SSM (a multiply-labelled ciréuit) for each
SsM in 2.

Suppose some closed directed simple path does not correspond to any
SSM. Then it must correspond to some closed structure in which there
exists a transition t with multiple input places. The only way in
which such a closed structure could map into a circuit is for there to
be more than one instance of it in a cyclic frustum, which is the de-

sired contradiction (see Figure 5.3.1).

Il

Multiple Instances of t2

Figure 5.3.1

-

As a consequence of Lemma 5.3.1, we have the following theorem:
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Theorem 5.3.1: The bound on the computation rate of transitions

attained in Theorem 5.2.1 holds for every timed @ - SMD Petri net -

X = (P,Q)

Proof: By Lemma 5.3.1, the c-equivalent net € for an - SMD Petri net P
is a multiply labelled event graph in which every simple circuit
corresponds to a state machine component of 2 and vice versa. By
attaching firing times to each transition in P, the desired result

follows.

Example: Figure 5.3.2(a) gives an example of a timed o - SMA net,

shown with a consistent current assignment. Figure 5,3.2(b) gives

a c-equivalent net which realizes the computation rate given by

the expression of Theorem 5.2.1. The reader will note that each state
machine in the o - SMD Petri net of Figure 5.3.2(a) maps into a multiply
labelled circuit in Figure 5.3.2(b) and vice versa.

In Figure 5.3.3(a) the timed SMD Petri net of Figure 5.3.2(a) is shown
with a minimal integer consistent current assignmént in which transition
t, has a current equal to 2. This net i{s no longer o =~ SMA, and the
bound of Theorem 5.2.1 can no longer be achieved, as can be verified
. by examining its c-equivalent net which has the largest maximum

fundamental computation rate.

Bound from Theqrgm 3.2.1
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3

Current Assignment Firing Time Assignment
cp1=2 T, =3
wz = 2 T2 =5

=]_ =
¢3 73 4

= = 2
?, 1 T,

= T=
¢5 4 5 7

= T =
@6 4 6 8

= T =
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Figure 5.3.2(a)
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t
3
t6
Figure 5.3.3(a).

Current Assignment Firing Time Assignment
9, =1 =3
QP2=1 1-2=5
(93_2 T3=4
¢4 = 2 Q'= 2
?;=2 T =7
P = 1 Te™ 8
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Figure 5.3.3.(b)
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Bound for c-equivalent net of Figure 5.3.3(b)

.zmin[l_,L,l_,l_ -1
e 20 25 26 19 26°

Thus, the bound from Theorem 5.2.1 is not achievable by any c-equivalent

net for the given timed SMD Petri net.
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Section 5.4 Review of Results Obtained

In this Section we will put our work in perspective and will point
out its relationship to PERT networks [Fl] and the program flowcharts
of Martin and Estrin [M1, M2, M3].

In Chapter 2 we have argued that practical systems can be viewed
as an ensemble of interacting components and that each system component
can be viewed as a state machine. Subsequently, we investigated the
modelling of such systems using Petri nets. We introduced SMD Petri
nets as being the class of Petri nets which can model practical systems.
The type of systems we wish to model do not have any redundant functional
operators, and are free of deadlock. This translates to the problem of
choosing only those SMD Petri nets which have a live marking. We have
pointed out that we still do not understand how the state machine
components of an SMD Petri net should be interconnected to ensure that
the net has a live marking. Currently, the largest subclass of SMD
Petri nets we know of with this property is the class of SMA Petri nets.

Since any live marking for an SMD Petri net P is bounded, a consistent
current assignment can be made to the trangitions in P. By multiplying all
currents in a consistent current by the least common multiple of their
denominators and dividing them by the greatest common divisor of their
numerators, we get the minimal integer consistent current assignment.
The current associated with a transition in a minimal integer consistent
current assignment is the multiplicity of the transition in a c-equivalent
net of the SMD Petri net for the given current assignment.

We have also looked at the entire class of LSP Petri Nets (i.e.,

Petri nets which have a Live, Safe,Pergistent .marking). Even though
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the LSP Petri nets of interest are likely to be SMD, there do exist
LSP Petri nets that are not SMD. A steady state equivalent net exists
for any LSP Pétri net. Furthermore, the steady state equivalent net of
an LSP Petri net is unique, and corresponds to the c-equivalent net
for an LB SMD Petri net with a minimal integer consistent current as-
signment.

Figures 5.4.1 and 5.4.2 are Venn diagrams which exhibit the relation-
ship between the various subclasses of Petri nets that have beeh con~

sidered in this thesis.

SMA Petri nets

State
Machines

Figure 5.4.1
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LA}
Petri nets

Shaded areas represent LSP Petri nets.

(a)

Figure 5.4.2

We have introduced timed Petri nets in order to model the finite
speed of operation of practical systems and have shown how to £ind the
computation.rate of transitions in LB SMD Petri nets and LSP Petri nets.
For both kinds of timed Petri nets, the maximum computation rate of a
transition is the fundamental computation rate of the timed c-equivalent
net for the timed Petri net multiplied by the multiplicity of the
trangsition in the c-equivalent net.

In order to find the maximum fundamental computation rate of a timed

c-equivalent net (or a steady-state equivalent net for an LSP Petri nat),

- — e e R s T © e e e e st e e 5L SRR TSR
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TIMED LSP
NET

Maximum compu~
 rate of transition N TIMED SMD PETRI Maximum compu-
i puta NET tation rate of tran-

gsition t, = maximum

of timed c-equivalent net

with largest computation
rate. Use Theorem 5.2.1 to

obtain a bound.

computation rate of
timed steady-state equi-

valent net.

TIMED STEADY-STATE

SggIVALENT ery steady-state equ-
ivalent net is a

'multiply-labelled

event graph.

Every c-equivalen
net is a multiply
labelled event
graph.

TIMED C-EQUIVA-
LENT NET

Maximum Computation
rate of transition ti

= u(ty) x r'

TIMED MULTIPLY-
LABELLED EVENT

GRAPH

To £ind P’
TH%gAPEXENT Find f' by applying
Equation [4.11].
)

Figure 5.4.3
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we assume that all transitions are dictinctly labelled, and we find the
maximum computation rate of the resulting timed event graph. The maximum
computation rate of a timed event graph can be found by applying
Equation [4.11}.

We illustrate the various terms used and the relationship between
the computation rates of timed event graphs, multiply-labelled event
graphs, LSP Petri nets and SMD Petri nets by means of Figure 5.4.3.
The diagram is self-explanatory and shows that the bound of Equation
[4.11] forms the cornerstone of our work, the fundamental computation
rate of timed SMD and LSP Petri nets being obtained by finding the funda-
mental computation rate of an equivalent multiply-labelled event graph.

We are now in a position to point out how our work relates to the
following models of parallel processing and parallel computation:

(a) PERT networks

(b) Martin and Estrin Flowcharts.
Let us begin with PERT networks [Fl]. A PERT network consists of an
acyclic directed graph with an input vertex and an output vertex. All
arcs in the network lie on paths from the input vertex to the output
vertex. Each arc denotes an activity in the project being modelled
by the network, and each activity takes a certain gmount of time to
occur. We can model a PERT network as a timed acyclic event graph by
replacing each arc with its two end vertices by the structure shown in
Figure 5.4.4. The time associated with the activity ab is now associated
with the timed transition tab introduced into the arc ab., Transitions a
and b are assumed to have zero firing time. In Figure 5.4.5 we show

this transformation carried out on an example PERT network.
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ab tab

ab

Figure 5.4.4.

(a) A PERT Network.
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(b) Equivalent Timed Acyclic Event Graph.

Figure 5.4.5
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Suppose we draw an arc from £ to a in Figure 5.4.5. The resulting
graph is a strongly-connected event graph, whose critical circuit
corresponds to the critical path of the PERT network. In Chapter 6
we will see how strongly-connected timed event graphs can be applied
to many practical situations where PERT networks are inadequate.

We now turn to the program flowcharts of Martin and Estrin [M1, M2,
M3]. These are directed graphs consisting of arcs and nodes. Nodes
represent operations in a computer program and arcs represent data
paths between them. The presence of a data value on a data path is
represented by a marker. Each node has logical conditions (and,

exclusive-or) on data values on the input arcs that must be satisfied

before the node can act, The action of a node consists of removing a
data value from the specified logical combination of input arcs, per-
forming a computation amd them depositing data values on the specified
logical combination of output arcs. The action of a node is éSSumed to
take some finite amount of time. In Figure 5.4.6 we show how to model
these timed nodes by means timed acyclic Petri net structures. A Martin
and Estrin flowchart models program constructs like decisions and
iteration together with aspects of parallel programs, like the fork and
join operations [D6]. A test is performed to check if the operation of
the flowchart can proceed in a deadlock-free manner; if an arc is drawn
from the output node to the input node, this test turns out to be similar
to the one for deciding if an SMD Petri net is SMA. Our work can be
viewed as modelling cyclic or recurrently acting systems, while the

work of Martin and Estrin is concerned with finding the mean execution

time of parallel programs. The two pieces of work taken éhould provide
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« good bag of tools for the analysis and design of asynchronous

cumputer systems.
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CHAPTER 6

APPLICATIONS OF TIMED PETRI NETS TO THE MODELLING OF ASYNCHRONOUS

CONCURRENT SYSTEMS

Deterministic Systems

We will now consider applications fer our work drawn from diverse dis-
ciplines such as cemputer systems modelling and operations research. Through-
out this discussion, we will keep in mind the distinction we have made bet-
ween deterministic and non-deterministic systems. We begin by presenting
several types of deterministic systems. The simplest system we wish to con-
sider is a set of adder units whose action can be represented by the timed

event graph shown in Figure 6.1.1.

nerform addition

1 Tj Output result
Operand 2 Pick up
tperand pair

Figure 6.1.1

Each token on the circuit represents a physical hardware adder unit which
can be in one of three states shown (i.e., "ready to pick up operand pair',
"ready to perform addition'" and "ready to output result"). We will make

the assumption that there is always an operand pair available in the
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input queues, so that a hardware adder unit never has to be idle for want
of operands, i.e.. the enviromment does not introduce delays into the

operation of the system. Applying Equation [4.11], the maximum rate at- which

regults appear in the output queue ia given by n/ ( LTt 1'3)
wvhere n is the number of physical hardware adder units,
Ty 72 and -r3 are the times required to perform the actions

modelled by transitions ':1"‘2 and t3.
Let us asswme soms values for the abowe parsmeters.
let n = 4,

T = 500 nsee.

1
= 2 v s
T2 '
1-3 = 500 nsec.

The maximum throughput rate of the adder is then 4/3 % 1.33 million
addétions per second.

A more interesting example is the timed Petri Net model of a three-stage

pipelined floating point adder showm im Figure 6.1.2.

Figure 6.1.2
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This pipelined  adder has omly one hardware unit per stage, so that there is
overlapped operation of the stages without any parallelism in each stage.
The maximum throughput rate of the system is seen to be

cmin [ 1/7 , 1/7, /7 1.
Let us examine the above expression. Suppose 1/'\'a zis'the»sm;ilest'othhe
three quantities in parenthesis. Then stage A has the slowest hardware
unit, and the natural computation rate of this stage determines the through-
put rate of the sgystem. This means that having hardware units in stages B
and C that are faster than the hardware unit of stage A is wasteful, since
their added speed does not result in any extra system throughput. We will

say that a determénistic system is balanced if the natural computation rate

of all system parts is equal. In the context of the pipeline adder in Eigure
6.1.2. this meang that T =T = T.,
a b c
A more complex pipelined adder would be one in which there are multi-
ple hardware units in each stage. Such a pipelined adder is shown in Figure

6.1.3.

nb tokens

Stage A Stage B Stage C

Figure 6.1.3
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Stages A,B and C have n, A and nc hardware functional units, respectively.
In this case, the throughput of the system is given by

min [ na/Ta’ %I'rb , nc/'rc}.
For the system to be balanced, we see that na/"‘a = n /T = n /7.
Thie implies the following:

If a stage congists of slow hardware functional units, a proportionately
larger number of umits should be present in the stage to ensure that the
system is balanced. Absence of system balence implies that there are parts of '
the system with excess capacity that cammot be used. Our results cam thus
be used to test for system balance in determiniatic gpystems, snd they serve
to formalize the intuitive notions of bhalence that a herdware designer,
would, no doubt, use in the design of pipelined aystems.

PERT Retworks and Project Scheduling

PERT charts are used im Project scheduling to determine the shortest time
that it takes for an ensemble of comcurrent activities to complete, given
the precedence relationships between the activities and the time duratiom of
each activity. We examined the relatiomship between PERT charts and timed
Event Graphs in Section 5.6. We now see that by using timed event graphs,
we can model aspects of project schediling and assembly lines that are not
within the power of PERT charts. The two main a&vantag;s of timed event
graphs over PERT charts is their ability to:

(a) model systems that act recurrently.

(b) model physical resource units explicitly.

Suppose we consider the project represented by the PERT chart in Figure
6.1.4. The project comsists of activities "a" through “g" with the prece-
dence constraints expressed by the PERT chart. We begin by drawing the

equivalent acyclic event graph for this PERT chart , using the method given
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in Section 5.6. This acyclic event graph is shown in Figure 6.1.5.

Figure 6.1.4 A PERT Chart.

Now suppose we want the PERT chart in Figure 6.1.4 to represent a manufac-

turing process, where ti represents the start of the process, and to the

end. We assume that each activity in the system requires the use of a

unit of resource, like a lathe, a milling machine, etc. Ve wish to express

s . e - e s s n e e e L




T e AT AT T T

~-186-

the fact that there are only a finite number of unité of each resource type.
Also, some resource units may be very expensive and may have to be shared
among several activities (e.g. a high precision lathe). How are we to ex-
press such system constraints using a PERT chart? The answer is that there
is no way of doing this without augménting the structure of PERT charts. Let
us see what added descriptive power can be had by using timed event graﬁhs.
Around each of the transitions t; through tg, we draw a loop. Each loop is
marked with a number of tokens equal to the number of physical processing
units available for the corresponding activity. The resulting event graph

is shown in Figure 6.1.6.

Figure 6.1.6 Event graph vhich models limited resources available
for each activity in PERT chart.

In addition to the transition representing an actiwity, each loop consists
of a second transition, which we will interpret as the act of allocating
a resource unit to the activity. Since we wish to modelya recurrently acting

production facility, we complete the loop between t, and t, and add a large

number of tokens to place p as shown in Figure 6.1.7. One of the self-loops
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-n Gp‘v YEE nuiber o tokens

Figure 6.1.7

(i.e., loops around each of the transitions‘ta...tg‘now becomes the criti-

- cal circu@t:W*Egg_gzqtemrcan be balanced by assuming that the natu-

ral computation rate of each of these circuits is the same, i.e.

R/ (Tg1*aa) = /(T Typ) = ST o)

:~ The n's denote the number of tokens on the corresponding circuits. If all

the n's arerinfinite, then the processing capacity of the production facility

becomes infinite, This is the situation represented by Figure 6.1.5. Since
any production facility in real life has only finite  resources available

to it, these resources can be explicitly represented as we did in Figure

6.1.6.

‘ 7 T T
A word now about adding an infipite number of jtokens to the loop formed

by joining to to ti through place p. Each token represents the possibility
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of a set of subassemblies being input to the production facility for process-
ing. Our assumption that we can add an infinite number of tokens to place p
is equivalent to saying that there is an unbounded amount of buffer capacity
between the activities ta ...tg. In practice the amount of buffer space

(in the form of storage bays) between work stations in a production process
is bounded, and this would place a limit on the number of tokens we can put
on place p. In that case, we would have to consider the ngtural computation
rate of all circuits in Figure 6.1.7 including circuits like

t,tt t,etttt etc.
a o

i"a’d : idfgoi’
Let us give an example of how the buffer capacity of the system may affect

ttt
co

the maximum throughput rate of the system. We do this by considering

some actual values for system parameters.

TLet T = ..., = T = 0,

a? g2
Tal = 3 n, = 2.
Tbl s 2 n, = 1.
Tl = 4 n, = 2.
T = 6 n, = 3.
Tel = 5 n, = 2.
L 8 n, = 3.
Tgl = 3 n8 = 2,

Case (1) We assume that M(p) (i.e., the number of tokens on place p) = 6.
The throughput rate of the system = minl 2/3 1/2, 2/4, 3/6, 2/5, 3/8,
2/3, 6/9, 6/11, 6/17] = 6/17.

We see that circuit t t_ t_t tot limits the throughput rate of the system.

idfgoli

Case (ii) Now let M(p) = 100 (i.e.,"very large").
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The throughput rate of the system becomes min [ 2/3, 1/2, 2/4, 3/6, 2/5,
. 3/8, 2/3, 100/9, 100/11, 100/17] = 3/8.
The loop around transition tf now becomes the bottleneck in the system.
The production facility we have considered so far was arranged in such a
way that each activity has its owm set of resource units available to it. We

now congider the issue of resource sharing.

Regource Sharing

Figure 6.1.8

Consider the production process shown ifi Figure 6.1.8. Once again,
letting n 5.y denote the number of tokens. on the loops around transi-
tions ta oo te respectively, we assume the following values for the parame-

ters of the system:

Taz = sz =, ., = Tez = 0,
Tal = b n, =, 1,

Tbl = 2 n, = 1.

Tél = 5 n, = 1.

le = 10 n, = 2.

T = 4.5 n =

el e 1.
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We make the assumption that the same type of resource is wsed by both
activities t; and tb. In Figure 6.1.8 , each activity has its own resource
unit. In this configuration, the system throughput is

min [ 1/6, 1/2, 1/5, 2/10, 1/4.5 1 = 1/6.
We gee that activity t:a is the bottleneck in the system. Since activities
ta and tb ugse the same type of resource, it is possible to pool their
regource units together . Now whenever resources are pooled together, some
resource allocation strategy must be adopted to ensure fair resource allo-
cation to the contending resource users. Since event graphs can model only
deterministie systems, we will use a simple“strategy in wvhich each resour-

ce unit is allocated alternately to the two activities. The resulting

system is shown in Figure 6.1.9,

Figure 6.1.9

We assume that all parameters of the system are the same as before; this
time the throughput of the system is

min [ 2/8. 1/5, 2/10, 1/4.5 1

1/5.
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Thus, the activity ta is no longer the bottlenmeck in the system. Tt
should be noted that other resource gllocation strategies are possible,
but they result in non-deterministic nets.

So far, the system models we have considered have all been timed
event graphs. We now give an example of a system which is modelled by
an LSP Petri net.

Figure 6.1.10 is a timed LSP Petri net model of the assembly line
that alternately outputs two types of automobiles, which we discussed
in Section 1.2.

The maximum computation rates of transitions ts.and t6 are of interest
because they tell us the maximum rate at which automobiles are output
by this assembly line. These computation rates can be found from the
timed steady state equivalent net of Figure 6.1.10(b).

We now suppose that there is parallelism within some of the assembly
stages, but that automobiles are still manufactured alternately. This
can be modelled by adding tokens to places in the net of Figure 6.1.10(a)
other than Pg and Pg> and we get an LBP Petri net of the type shown in
Figure 6.1.10(c).

The reader will recall from Section 3.4 that in order to draw the
steady state equivalent net of an LBP net that is also LSP, tokens are
removed until a life, safe marking results and then drawing the steady
state equivalent net for it. The marking is constructed by the technique
given in Section 3.4. We get the steady state equivalent net of Figure
6.1.10(d). Once again, the maximum computation rate of transitions kS and
k6 can be found,

The system models we have considered so far have all been determinis-
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Figure 6.1.10(a)

Output queues
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Figure 6.1.10(b) Steady State Equivalent Net
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' P
P3 e P4 9 Pg o P13 11 o

Figure 6,1,10(d). Steady State Equivalent Net of the LBP Petri
Net of Figure 6.1.10(c)
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tic Petri nets. We now turn our attention to the modelling of non-
deterministie systems.

The simplest example of a non-determiniatic system that we wish to
model is the pipelimed processor with decisions of the type discuased
in Sectiom I.2. A timed SMD Petri net wodel for thisg is given in
Figure 6.1.11.

T. =T, *T_ =7, =T, =G

=
L]
-
0

1 2 3 4 5 & 7

Figure 6.1.11

This net has five state machine compoments, as the reader can easily
verify (indicated as Stage 1,...,Stage 5). Two types of imstructions
can be processed, Type A and Type B. Let us guppose that the relative
frequency of these two instructiom types is in the ratio of 2:3 (this

can be found by statistical analysis of program traces). Thig leads to
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the following minimal integer consistent current assignment:

It
-6
It
W

(pl=(P =(92=Qpb 3

]
]
-
[}
©
[}
6
It
N

Pqg = 95 = P =% =3
The computation rate pl of transition ty gives the maximum rate at
which instructions are absorbed from the input queue. Similarly, the
computation rates 96 and o give the maximum rates at which results
are placed in the output queues. To calculate these quantities, we
first find p'. From Theorem 5.2.1,

Pl = min [ ¥, 4,5 Vs s U]
where each of the terms represents the fundamental computation rate of
the corresponding stage in the system. System balance requires that

b= ¥y b= b= b

Let Ti be the firing time of transition ti where 1 = a,...,f. Then, we

have
1
p' = min[ —— , etc....]
waTa
= min 1 1 1 1 1
- ’ ’ ) s ’
STa 5Tb 2'rc + 3'rd 2T 3'1'f
= T = T = T = T = T -
Suppose we choose Ta b c d o £ 1 psec.,
then p' = 1/5 and the system is not balanced.

A balanced and more economical system results when Te = 2,5 u sec.,

Tf = 1.67 p sec., the other parameters being the same. Under this new

firing time assignment,
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p* =%~ =2x 105 instructions/sec.
therefore, )
P = 5 X p! ' = 106 instructions/sec.
Pg = 2% 2X 10° = 4 X 10° instructions/sec.
5 5

p; =3X 2x 10 6 X 10”7 instructions/sec.
The reader can construct further examples based om processors in which
there are multiple hardware units within each stage, and can work out
a method for an-optimal design based on certain objective and cost
functions. We shall not attempt to do this here.

The SMD Petri nets we have exhihited so far have mainly been models
of pipelined processors or assembly processes. Let us now look at
models for interacting cyclic processes in computer systems. We begin

with a model for two processes that interact with each other through

mailboxes. Figure 6.1.12 gives a schematic or a flowchart model for

such a pair of processes. One of the processes is deterministic (or
decisionless) and the other one has two decisioms in it. The processes
communicate by passing messages to each other through mailboxes, and
the reader can convince himself that they can operate concurrently
without deadlocking. This can be verified formally when the Petri net
model for this system shown in Figure 6.1.13 is examined. The net is
seen to be SMA, and in Figure 6.1.14 we indicate its state machine com-
ponents. Since the marking shown puts at least ome (in this case
exactly one) token on each state machine, the marking is clearly live.
This, as the reader will recall from Chapters 2 and 3, means that the
system of processes has no redundant operators, and furthermore, that

the processes can operate without being deadlocked.
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op 5 |(fork)

tput queue

op" = "operator"

Figure 6.1.12




Figure 6.1.13.




op 1l

op 2

op 3 ¥

op 4

Figure 6.1.14(a)

op 10
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Figure 6.1.14(b)

op 19
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op 5
()
% 6
op 8 ‘.2
op 9 4 . op 11
J
op 27 ’
op 3.1 op 10» - op 12
(o0 13
o A
op 14
op 4
s3

Figure 6.1.14(c)
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Figure 6.1.14(d)

Having thus establighed that the Petri net in Figure 6.1.13 has a
live marking, we can now suppose that the transitioﬁ labelled "op 19"
repregents an operation which outputs a result évefi time the tramsition
fires, Our problem now is to find out the maximum rate at which op 19
outputs results, given ﬁhe usual parameters iike the firing times of the
transitions and a minimal integer comnsistent current assignment., The
places marked "op 8" and "op 16" represent decisions, each decision
having two outcomes. The relative frequency of the outcomes of each
decision can be found by statistical means. Let the probabilities of
op 11 and op 9 be P11 and Py respectively,:where P11 + Py = 1.

Similarly, let Pig and Py7 be the probabilities of op 18 and op 17

respectively, such that P17 + Pyg = 1. We can now obtain a minimal
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integer consistent current assignment for the net, where each current is

denoted as usual by @, and

u - M | [6.1]
Pg Pe |

he L Pis [6.21
P17 Pi7

As an example, 1let | 1/ Pg - 2/3

Pg = A Byt R

Then, the following is a consistent cyrrent assignment:

P5=1 @=1 ‘97"71 %=1 ®g=1

% T % T H = % .g% - 9 - 3.
P11 - ¥f12 T % )

91 %5t} =3 Y= 1

From this consistent current assignment, we can derive the following

minimal integer consistent current assigmment:

o =12 @g=12 @ =12 =12 P =12
% %10 ¥ ®, 3 s = 8

=3 ?18-12
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The maximum computation rate P;g = p' X ®19 © 12p', where p' can be
determined by applying Theorem 5.2.1.

The example we have worked out clearly shows the utility of
Theorem 5.2.1. As we have pointed out in Section 5.2, an achievable
bound can be found for P;q by drawing the timed c-equivalent nets for
the Petri net in 6.1.13, and finding the c-equivalent net with the
minimum value of fundamental computation rate. This method is not
easy and Theorem 5.2.1 gives a far more tractable method, although the
bound so computed may be overly optimistic, since the Petri net is not
Q - SMA.

The timed event graph of Figure 6.1.9 models a production facility
in which a deterministic resource sharing strategy was used to share
We pointed out that in

resource units between activities Ta and T

1 bl°®

order to model non-deterministic resource allocation strategies, we
need SMD Petri nets. We show such a system in Figure 6.1.15.

A minimal integer consistent current assignment is one which assigns
unit current to each transition. 1i.e.,

Pa2 = P T Pa1 T Py T eree Py TPy = L.

By decomposing the net into its state machine components, we see that
only one state machine component has changed, namely the one containing
and t,,. The maximum

al’ a2 tp1 b2
2

fundamental computation rate of this state machine is T+ T 4T T
al a2 bl b2

the resource pool and the transitions t

which is the same as that of the simple circuit t in Figure

a2 tal tb2 th1
6.1.9. Thus, the non-deterministic strategy does not change the compu-
tation rate of the system. This can be seen to be true for deterministic

production facilities, as they have a fixed minimal integer consistent
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Figure 6.1.15 The Production Facility of 6.1.9 with a Non-Determimistic

Resource Allocatiom Strategy.

current assigmment. The reader is invited to construct further examples
for himsgelf.

We conclude this chapter with an example of an ensemble of sequential
processes which contend for shared resource units in a resource pool.
Figure 6.1.16(a) is an SMD Petri net model of a system of three sequen-
tial processes contending for two pooled resource units. The minimal
integer consistent current assignment models the fact thet the relative

frequencies with which Processes 1,2 and 3 are allocated resource units
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3 - t7
o 1 %57 P7™ Y2
_ t P=3
. tg P19 3 9 9
QPS =2 .
t
Py = 1LE ; =3
. ‘10 | %107
CPG_
9, =1 )
t, tg 95~ t1 9,173
Process 1 Process 2 : Process 3

Figure 6.1.16(a)

are in the ratio of 1:2:3 (this is a coincidence). The net is SMA,

S, are showm

and the four state machine components designated Sl""’ 4

in Figure 6.1.16(b).

By applying Theorem 5.2.1, the reader can easily find the computation
rate of any transitions of interest.

It is hoped that the material presented in this chapter has given the
reader a good overview of the applications of the work presented in the
earlier chapters. The reader should reinforce his understanding of this

material by constructing further examples of his own.
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Figure 6.1.16(b)

4
s, s,
tg ty X
Q
te t:10_¥__
s 1

Process 2 Process 3
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CHAPTER 7

This thesis has answered several questions but has opened up many
others. Basically, we have laid to rest the issues we raised in Chapter
1. We have shown how to model asynchronous concurrent systems in an eco-
nomical fashion, and, by augmenting our model with timing information, we
have shown how to find bounds on the computation rate of a large class of
systems.

Our approach in establishing the validity of the SMD Petri net model
for asynchronous systems has been heavily dependent on example and
intuition. This may seem rather unsatisfying to some of us, and we pose
the following problem to our readers: can we come up with a set of axioms
that specifies the structure and behavior of asynchronous systems, and then
show that these axioms lead to SMD Petri nets?

SMD Petri nets have turned out to be a very rich class of structures
for representing asynchronous concurrent systems. However, we do not have
any necessary and sufficient structural conditions for an SMD Petri net
to have a live marking, and we pose this as another problem to our rea-
ders,

The other major question that remains to be examined is to assume
firing times to be random variables in order to model real-world systems
more accurately than is possible with the model of Chapter 4. Good bounds
are needed for the mean computation rate of such timed nets. Another issue
that seems to merit some attention is to assume that input queues to
an asynchronous concurrent processing systems are fed by items whose

arrival rates are random (e.g., Poisson). This will lead to a statis-
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tical fluctuation in the processing rate of the system, and the effect

of buffers in smoothing out these fluctustions can be examined. A general
performance analysis theory can ther be worked out for asynchronous
concurrent systems. We think thit our thesis is a step in that direc-

tron,
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APPENDIX I

In this appendix, we show that the rooted tree T(V) for any vector
addition system V is finite, and the proof of Theorem 2.3.1 is given.
The results and techniques in this appendix are taken from Karp and

Miller [K2].

Finiteness of the Tree T(V)

To prove that T(V) is finite for any V requires two lemmas. The
term subsequence used here does not refer necessarily to successive
elements of a sequence, Thus 1, 3, 4, 15, 79,... is a subsequence of
1,2,3,...

Lenma I.1: Let s 12 Spseee be an infinite sequence of elements

05

from (N U {w})r for some positive integer r. Then there exists an

infinite subsequence s, ,s, ,...,8, ,... such that s, <s, < ... <s, .
i ?*7i i i i

1 2 n 1 2 n

Proof: In s ,++. there exists an infinite subsequence that is

0°512° 5y
non-decreasing in the first element. 1In this sequence in turn, there

exists infinite subsequence that is non-decreasing in the second element,

etc.

Lemma I.2: (Konig Infinity Lemma [K3]. Let T be a rooted tree in which
each vertex has only a finite number of successors and in which there is

no infinite path directed away from the root node. Then T is finite.
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Theorem I.l: For any vector addition system V, the tree T(V) is

finite.

Proof: Assume otherwise and let 815895028 5000 be a sequence of
nodes in an infinite path directed away from the root node. By Lemma
I.1 there must exist an infinite subsequence 311, siz,...sin,... of this
sequence such that z(sil) < L(siz)... < £(sin) < ... Since none of
these nodes is an end, it can never happen that L(sin) = L(sin+1). if
this were not true, then the path would be finite by condition 2(a) in

the definition of T(V).

From condition 2(b) in the definition of T(V), ,e(si ) must have at
ntl

i ) does. Since the number of

n

elements is finite, we have a contradiction, and, therefore, no such

least one more element equal to @ than £(s

infinite path can exist. From Lemma I.2 it must be the case that T(V)

is finite.

Proof of Theorem 2.3.1: For any vector addition system V and any integer
vector x of the same dimension

(@y € R(V) such that x < y) e (4 8 € T(V) such that x < £(B) ).

.

Proof: We first show that the right hand side implies the left hand

side. The idea of the proof is that, if B is a node in T(V), then there
are vectors in R(V) which agree with £(B) in its finite elements, and

can be made arbitrarily large in the elements equal to W by repetition of
the sequence of vectors which Ie& to the occurrence of W, The details of

the construction involve some calculatiom.
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Suppose x < 4(B). Let the path from s to B have the successive
nodes no,ﬂl,...ﬂk, where s = ﬂo and B = ﬂk. For j = 1,2,...k, let
vj be the vector associated with the arc directed into ﬂj; i.e.,

ﬂj = (nj~1)v,‘ Assume without loss of generality that the first h
components o; 4(B) are equal to w, and that the other components are
less than w. Assume further that, in the path from s to B, w's are
introduced in the order 1,2,...h. Then, for each i, 1 £ i <h

there exists a consecutive subsequence ti = Vc(i)’ vc(i) +1""vd(i)
such that the vector u, = vc(i) + Vc(i)+1"" + Vd(i) is positive in
the i-th element and nonnegative in the i+l st through nth elements.
Note that t; is the subsequence that "accounts for" the i-th w.

Let -n be a lower bound on all the (negative) elements of Upseseslye

Also let {nl,...,nh} be any set of non-negative integers satisfying:

v

ny (x-s)1 + nth +L + n, + n, + ...t nh)

n, 2 (x-s)2 + n(h +n

9 + n +"'+“h)

3 4

(1)

n. = (x-s)i +xth +2 -1+ n,+ ...+nh)

ﬂh = (x-s)h + 2=
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Such a set must exist because of the triangular form of the inequali-
ties.
<
Choose 31,82,...,sh+1 such that for 1 i<h, slgz...si is the
prefix of ViVpeo oV UP to the first occurrence of w in the i-th

element, and 8185+ *8p 11 = ViVoe oo Vy. Then the sequencg

)+ n

2 n
6 = 8t 132t2 ooty hsh+1 = ujly.. g has the following
properties:
2
(a) s + u Fu,...ug 2 x

(b) each partial sum s + Uy +eeoug is non-negative.
We omit the detailed derivation of (a) and (b) from the system of
inequalities (1). To show that the left hand side implies the right

hand side, suppose that the following are true: s + uy + Uye.elg € R(V),

X<s+u, +...u and s + u, +...+u_ 20, m= 1,2,...f, where the
1 : m

£ 1
{un}are elements of W. Apply the following operation to the sequence

s, s + Uy, 8 + uy + Uyseee8 + uy +... + u_as many times as possible:

£

Find the first member of the sequence (call it u') such that, for
some earlier member u'', u'' < u°',

(a) If u'' = u', then delete all members following u';

(b) otherwise, for each i such that (u")i < (u')i, replace the i-th
element of u' and of each vector beyond u' in the sequence by W,

It should be clear that the sequence-obtained at the comnclusion of
this process 1s the sequence of labels in some path directed from
the root of T(V), and that the final label in this sequence is a vector
greater than or equal to s + uy +... + u_. Hence, the left hand side

f
implies the right hand side, and the proof is complete.
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To illustrate the construction of the sequence 8§ given in the
first part of the proof, the following example, due to Karp and
Miller, is provided:

Suppose s = (1,1,1,4) and W = {(0,0,0,-1), (2,-1,0,0), (-1,1,0,0),

(-1,-3,4,0)}. Consider the following path in T(V):

(1,1,1,42%%1_ ;4.3

2,-1,0,0

(3,0,1,3)—22120.05 ¢ 51 3y

-1,1,0,0

(©,0,1,3)—2223:50 (o 0, 3)

(0’0)0"1)3 (2:-130,0)3 ('1’1’0,0) t (2"1’0’0)3 ('1)1’030)

s; = 1
8y = (-1,1,0,0) tz = (-1,1,0,0)
33 = ('1:'3)4’0) ' t3 = ('1"3s4:0)

Take x = (22,16,9,3) < (v,0,w,3) and let ®x = 3. The system of

inequalities (1) for this case is:

n1221+3(4+n2+n3)

n, = 15 4+ 3(3 +‘n3)

n, =28+3.2
A solution is: n, = 14, n, = 66, n, = 273, giving the sequence
8 = (0,0,0,-1), (2,-1,0,0), (-1,1,9,0), ((2,-1,0,0), (-1,1,0,0))273,

(-1,1,0,0), (—1,1,0,0)65, (-1,-3,4,0), (-1,-3,4,0)1&, which

establishes that the point (193,23,61,3) = x is in R(V).
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