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ABSTRACT 

This thesis is concerned with the modelling and performance analysis 
of systems which consist of concurrently acting components, an example of 
which is an asynchronous pipelined processor. The work is divided into two 
parts. 

In the first part, a suitable model is developed for describing the 
structure of asynchronous concurrent systems. In conventional automata 
theory, the finite-state machine model is used to describe the behavior 
of systems; the problem with this is that a large number of states re­
sults when practical systems are modelled. In this thesis, each system 
component is modelled as a finite-state machine, and a system is viewed 
as an ensemble of interconnected finite-state machines.This has the ad­
vantage that the size of a system model grows linearly rather than expo­
nentially with the number of system components. A subclass of Petri nets 
known as SMD (State Machine Decomposable) Petri nets is identified in 
order to formalize the notions of finite-state machines and their inter­
connection. For convenience, systems of interest are divided into two broad 
categories: 
(a) Deterministic, or decision-free. 
(b) Non-deterministic, or systems with decisions. 
SMD Petri nets are used to model both classes of systems; in addition, a 
subclass of Petri nets known as LSP Petri nets is used to model those 
deterministic systems that cannot be modelled by SMD Petri nets. 

The second part of the thesis is concerned with finding the computation 
rate of activities in real-world asynchronous concurrent systems. Practi­
cal systems are constructed from devices which have a finite speed of ope­
ration. Since Petri nets do not have time parameters as part of their 
definition, they can model the structure of systems but cannot be used to 
study their computation rate. The definition of Petri nets is augmented 
to model the speed of operation of a device in a system by assuming that 
the corresponding activity in the Petri net has a finite, non-zero time 
duration. The resulting nets are termed timed Petri nets, and methods are 
given for finding the computation rate of activities in timed SMD and LSP 
Petri nets. The results are applied to the analysis of several asynchro­
nous systems drawn from areas within and outside the dotD4lin of computer 
systems • 
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CHAPTER 1 

IN'IRODUCTION 

1.1 Background 

The philosophy of this thesis can be described very effectively by the 

following quotation from T.C. Chen (C2]: 

In the quest for performance above and beyond that deliverable 

by hardware componentry, two alternative multiprocessing ap­

proaches to computer design can be taken. One is to subdivide 

each oncoming job among many identically constructed mechanisms, 

and is connnonly referred to as parallelism. The other alternative 

is to develop a collection of specialized mechanisms capable of 

working simultaneously to form a general purpose organization; 

this is connnonly called overlap, and an extreme form of this is 

called pipelining. 

It is well known that present day machines are very wasteful in terms of 

resource utilization. One of the original arguments for time-shared 

multiprogrammed systems was the fact that they could permit better utiliza-

tion of system resources than a batch-processing system by overlapping the 

operation of the processor, primary storage and secondary storage. The 

processor in contemporary computer systems is treated as a resource unit 

which is allocated to a user job or a task within a user job. Each 

processor typically consists of smaller processing units like adders, 

nrultipliers, an instruction fetch unit and an instruction decode unit, 

all of which can potentially be operated concurrently with each other. 

If it were possible to achieve this degree of concurrency, a much greater 

processing rate could be realized as a consequence. Of course, the over-
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all throughput of the machine depends not only on the~instruction pro-

cessing rate of the processor, but also on factors like the speed of 

the main memory, its degree of interleaving, the type of secondary 

storage and finally on issues like the job mix and the scheduling strategy 

used. But by suitably reconfiguring main and secondary memory, the bene­

fits of added concurrency in the processor could be realized as added 

throughput in the overall system. In most contemporary processors, over-

lapped operation of functional units within the processor is restricted 

to concurrent fetching and decoding of instructions. Many systems can be 

run in a multi.processor configuration so that real parallelism is possible. 

However, this parallelism is between user jobs or between different tasks 

of the same user job, a situation which we term macro-parallelism. Dennis [DJJ 

has advocated a computer organization in which parallel operation is pos­

sible right down to the level of instructions in a computer program or a 

user task. We term this micro-paralleliam and it is clearly impractical 

on contemporary machines because of the overhead involved in·switching the 

processor between instruction streams. 

Jack Dennis has looked at the issues involved in designing a computer 

system to support micro-parallelism, and readers interested in his pro­

posals for a memory organization and a representation scheme for programs 

and information structures are referred to his paper ( D3 J • We quote his 

remarks about the processing hardware: 

nie organization of the processing hardware is intended to per­

mit extensive sharing of multiple specialized cells by many 

computations to ensure statistically high utilisation. It is 

envisioned that there be tens to hundreds of units of each cell 

class, operating independently and asy·nchronously using a ser­

vice on demand principle of control. 
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The control needed in such a large complex system would be too formidable 

to tackle with a centrally clocked or a synchronous organization. Dennis 

has rightly pointed out the need for asynchronous operation of such a 

system. Each "cell" in Dennis' system corresponds to a functional unit 

of a certain type, like an adder or an instruction decoder, and the opera­

tion of a cell type will be overlapped or pipelined with the operation of 

other cell types. Thus, by a combination of parallelism and overlap, a 

statistical~y high instruction throughput should result. We will refer to 

such systems as "asynchronous concurrent systems" and will have occasion 

to use this term often in the course of the thesis. Dennis and Patil [Dl, 

D2] have addressed themselves to the problem of evolving tools for the 

description and implementation of such systems. They have made much 

progress, and their efforts have resulted in a systematic technique for 

both the description of asynchronous concurrent systems together with a 

methodology for their realization using a set of elementary modules [Dl, 

D2]. In this thesis, we would like to address ourselves to the question 

of modelling such systems with a view to predicting their performance. 

The performance of an asynchronous processor such as visualized by Dennis 

will depend upon several factors, some of which are listed below: 

a) The number of functional units of each type. 

b) The speed of operation of each functional unit. 

c) Statistical properties of user jobs, e.g., their degree of 

parallelism, relative frequencies of the different instructions. 

d) Gross statistical properties of user jobs, i.e., job arrival 

rates, mean length of user jobs. 

Before we can incorporate these factors into a model for performance 

evaluation of asynchronous computer organizations, we must come up with a 
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suitable descriptive tool or model which can represent the structure of 

such systems in a manner that is both simple and accurate. In particular, 

factors like (a) and (b) should be readily incorporated into the model. 

Models for asynchronous systems as they currently stand can successful­

ly describe the structure of asynchronous systems, i.e., the structure 

and interconnection of the parts of the system. However, they do not 

have a way of incorporating information about factors like (b) and (c) 

as part of their definition. In this thesis, we have developed a model 

in which factors (a), (b), and (c) can be described in a natural and 

simple way. Thus, given a description of the structure of the system 

and the speed of operation of its parts together with statistics on the 

utilization each part, we can obtain a measure of the throughput of the 

system. If the system we are considering is an asynchronous pipelined 

processor, we can obtain a measure of its processing rate, given that we 

have information of types (a), (b) and (c) available to us. The actual 

throughput of such a processor when connected to memory units and in the 

presence of user jobs is not easy to find. We will not study issues of 

type (d) in connection with the performance of asynchronous computer 

systems, but will concern ourselves with finding an index of performance 

which we will call its information processing capacity or computation 

rate. 

Our approach will be to study an existing model for asynchronous sys­

tems and explore in depth its applications to the modelling of various 

types of concurrent systems, including pipelined organizations in which 

parallelism may be present in each stage. This model, while adequate for 

describing the structure of asynchronous systems, does not contain in­

formation regarding the speed of operation of system components or any 
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information about the statistical utilization of the parts of a system. 

We show how such information can be incorporated into the model. 'Ibe 

properties of this augmented model are studied, and a technique is given 

for analyzing the throughput rate of a large variety of asynchronous 

processing or computing systems. 'Ibe model we have developed and the 

analysis techniques for it were motivated by the desire to study perfor­

mance issues in asynchronous computer systems. However, the work can be 

applied with equal facility to analyzing ntDDerous systems outside the 

realm of computer systems; the best example is that of an assembly line, 

and we shall interchangeably talk about pipelined processing systems or 

assembly lines, because both share fundamental characteristics such as 

overlapped and parallel operation. In the next section, we pursue the 

modelling of asynchronous systems in some depth, and illustrate the 

spirit and flavor of the thesis by concrete examples. 
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1. 2 Modelling Asynchronous Systems 

Our study of various types of- asynchronous concurrent systems has led 

us to the conclusion that, by and large, we would like to distinguish 

between two broad classes of systems: 

a) deterministic 

b) non-deterministic (i.e., having decisions). 

Let us explain briefly what W& mean by this di&tinetion. 

Deterministic Systems: We will call an asynchronous system deterministic 

if during the course of operation of the system. there is never a 

situation when a decision bas to be made between alternative courses of 

action in the system. An example will exp-lain what we mean. Consider 

an autOlllObile assembly line in which only one kind of car is being manu­

factured, and each car is made from similar components using the same 

seq~ence of assembly operations. Thus, in the course of operation of 

this system every assembly operation is needed for the assembly of each 

car, there being no difference in the sequence of steps needed for the 

manufacture of the fourth or eighth car output by the assembly line. To 

give another example, consider a pipelined floating-point adder, arranged 

in, say, three stages (see Fig. 1.2.1). Each stage performs a certain 

operation on the pair of operands input to the pipeline for addition. 

Thus, each operand pair that is absorbed at the input goes through the same 

sequence of operations before being output as a result. Such a pipelined 

system is also a deterministic system because no choice has to be made 

between alternative courses of action. So far we have looked at systems 

in which the objects being assembled (or added, etc.) go through an i­

dentical sequence of operations. A mare general class of systems consists 
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of those systems in which the objects being processed do. not necessarily 

go through the same sequence of operations, but the operation of the 

system is still deterministic. An example of such a system is an assembly 

line for the manufacture of automobiles which alternately tunis out two 

kinda of autos, one fitte4 with. a 200 BP engille and the Qther with a 35-0 

HP aqine. We a.hall aaS\1119 that the car with the lllOl:e po111erful engine bas 

to be suitably braced and fitte4 with extra gadgetry, so that after the 

engine has been bolte4 to the chaaais, subaequemt a.ssembly operatiOllB pu­

fonned on the two ears are different. 'lhua, even though there is a point 

in the ayat• at which a decision has to be made, this clecision cannot, 

for eumple,. be -.de arbitrarily by an au bly line operator~ The opera­

tion of the ay•te• is,, so to speak, "preordained." i.e., there is no point 

during the operation of the system at which a choice can be exercised be­

tween alternative courses of action. 

Let us new move on to the. e:laita of sys.t811B we haYe tertMd non-determin­

is tie syst-. 

Non-Dete:rmiaiatic. S!st!l!I§: We vill loosely clefine lllOll aterministic 

systems as thoee in which there does exist a choice betae.n alternati-.e 

courses of action. An exampl& of such a system is the assembly line of 

Figure 1. 2. 2,. minus the restx'iction tgat ~ two typ!! q.f antoad>iles be 

manufactured alternately. Thus, at tlMt bay at which alternate routillg 

of the two typeJJ of partially assemJ>led aut.os was done, this routing can 

now be made random or controlled by some decision process otb@r than a 

purely deterministic one. 'l'he d&eision could, for example, be made on 

the basis of up-to-the-minute customer orders received from car dealers. 

The operation of an assembly line such as this is said to be non-determin­

istic. Let us now give a more computer-related example. Consider the 



Input 
Queue 

-14-

simplified model of a pipeline processor shown in figure 1.2.3. 

Stage 1 

Instru 
ti on 
Fetch 

of 

Processing for Type A 

Processi!J.8 for e B 

Processing for Type C 

Stage 3 Stage 4 

Output 
Queues 

Figure 1.2.3. A Simplified Model of a Pipeline Processor for a Computer 
with Three Instruction Types. 

We shall assume that the instruction set of the computer has three types 

of instructions, termed types A, B, and C. Instructions are fetched at 

Stage 1, decoded at Stage 2 and processed according to their type at 

Stages 3 and 4. The reader will notice that we have chosen the same nota-

tion for representing both the assembly line of figure 1.2.2. and the 

pipelined processor of figure 1.2.3. Both these types of systems, 
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together with a large variety of others, all have the basic characteristic 

that they consist of a set of parts together with some mechanism for coor-

dinating their operation. . In addition, the system parts could be 

arranged to exhibit overlapped operation and parallelism. Let ua ex­

plain these two terms in the context of Figure 1.2.3. Each stage of the 

system is a part, whose operation can be overlapped with that of the 

other parts. We will say tltat the parts of the pipeline processor operate 

concUTn!lltly or in an averlapped fullion. We now ccae to parallelism .. 

Suppose Stage 1 consists of two identical hardware units, each of Wich 

can independently fetch an instruction, and the two can operat.e .concur­

rently with respect to eadl other. Stage 1 will be said to llave paral­

lelism of degree 2. In general, any stage is said to have parallelisa 

of degree a if. it has n pkysical hardware units available for processing. 

Brief Statement of Thesis Problem: The problem. we have addressed in 

this thesis is to study in some depth how to model asynchrOD.OU8, concur­

rent systems such as the ones shown above. we have chosen a foT11U1lism 

known as Petri nets [Hl, H2] to express the sequencing relationships be­

tween events in asynchronous. systems. The problem. with Petri nets, as 

with other models for asynchronous systems or parallel computation that 

we could have used is that they represent only the sequencing or ncause­

and-effect" relationships between events in a system. Such a systems 

description is not adequate if we wish to study performance issues. 

For example, the assembly lines and the pipeline processors modelled in 

Figures 1.2.1. through 1.2.3. are all real world systems built from com­

ponents or devices which take a certain amount of time to operate. 'nlus, 

the production of cars or the processing of instructions in an actual sys­

tem is not instantaneous. 'nle rate at which processed objects appear at 
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the output depends upon several factors, some of which we outlined in 

section 1.1 in connection with an asynchronous pipelined processor. 

Recapitulating, the throughput rate of an asynchronous processing system 

will depend upon two kinds of factors: 

(a) factors intrinsic to the system, like its structure, the 

organization of its parts and the speed of operation of each part. 

(b} extrinsic factors, like availability of items in the input queues, 

statistics on the type of items input to the system for processing. 

The only extrinsic factor we will model will be statistics on the out­

come of decisions during the course of operation of the system. In 

connection with Figure 1.2.3, this would mean the relative probabilities 

of occurrence of each of the instruction types A, B and C during the 

operation of the pipelined processor. As the reader will note, this 

is equivalent to the relative frequency of use of the system parts which 

perform the processing of these instruction types. We will not model 

other extrinsic factors, like arrival statistics for items in the input 

queues. The throughput rate that we thus calculate for a processing 

system will represent the maximum rate possible, assuming that it is 

connected to a balanced configuration of primary and secondary memory. 

In the next section, we look at previous work in the areas of asyn­

chronous systems, parallel computation and project scheduling which is 

relevant to the research presented in this thesis. 
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1.3 Related Work 

Considerable work has been done in modelling the sequencing or control 

aspects of asynchronous systems, but few workers have actually considered 

issues of timing or speed of operation. 

The work of R. Karp and R. Hiller [Kl, K2) is concerned with the 

development of a mathematical model called parallel progran schemata 

to represent parallel algorithms. A set of uninterpreted operations is 

defined over a finite set of memory cells. With each operation is 

associated two subsets of the memory cells called the domain and range 

cells. Upon activation, called an initiation, an operation reads the 

current values in its domain cells and evaluates a function with these 

values as arguments. An unspecified time later, the results are deposited 

in the range locations, the latter action being called a termination. 

Control is conceptualized as a possibly infinite directed graph consisting 

of a set of control states (nodes) together with a transition function 

that specifies for each state initiation and termination pair the suc­

ceeding control state. A computation is a sequence of initiations and 

terminations that corresponds to a defined path in the control graph 

(emanating from a designated starting state) and that satisfy other rules. 

With this formulation, parallel activation of operations is possible, 

but their work on the whole is more concerned with control structures 

for parallel programs that properly terminate than with the issues in­

volved in being able to represent continuously operating asynchronous 

concurrent systems. 

Dijkstra [D4] considers a method by which asynchronous sequential 

processes may operate concurrently and communicate harmoniously. The 

processes are provided access to common integer values called semaphores. 
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The semaphores can be manipulated by means of two synchronizing primitives, 

the ''P" and "V" operations which decrement and increment, respectively, 

the value of a semaphore by one. The P operation can be executed only 

when the current value of a semaphore is greater than zero. Conditions 

are investigated for an ensemble of interconnected sequential processes 

to operate without being deadlocked. 

The work of Holt and· Commoner [H2, Cl] is very' rdgnificant and has form-

ed the starting point of our thesis. Their model, called Petri nets, 

is very simple to understand, and consists of two types of nodes termed 

places and transitions. A set of directed arcs connects places to 

transitions or transitions to places. Markers, called "tokens" are put 

on places, and each token that is put on a place corresponds to the 

holding of one instance of the condition corresponding to that place. 

When every input place of a transition has a token on it, it can "fire." 

A firing causes one token to be remaued from each input place, and a 

token to be added to each output place. Commoner has investigated 

conditions for a subclass of Petri nets to operate in a deadlock-free 

manner. Hack has done an extensive investigation of a subclass of 

Petri nets termed Free Choice Petri Nets [Hl]. 

So far, we have discussed models for asynchronous systems in which 

no mention was made of real time. Two bodies of work exist in which 

real time issues are entered into for asynchronous concurrent systems. 

The first is the PERT network used in project scheduling [Fl). A 

PERT network is an acyclic directed graph with an input vertex and an 

output vertex. All arcs in the system lie on paths from the input vertex 

to the output vertex. Each arc denotes an activity in a project, and a 

method is given for calculating the shortest 8Jll0unt of time that it 
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takes to complete the project (the critical path), and also the earliest 

and latest time that any given activity can initiate in order that the 

project be completed in the shortest time possible. While PERT networks 

can explicitly represent concurrent activity in a system, they do not 

have the power to represent systems which operate in a recurrent or 

repetitive fashion. Nor, for that matter, can they explicitly represent 

system components with parallelism within each component. Moat important, 

there is no provision in the structure of PEJlT networks for representing 

a choice between alternative actiOD.S in a system. This makes the model 

inadequate for modelling the complex asynchroaoua systems we would like 

to handle. 

Martin and Estrin at UCLA have studied a model of parallel computation 

called the program flowchart [Bl, Ml, M2, M3}. Progralll flowcharts are 

directed graphs consisting of nodes and arcs. Nodes represent operations 

in a computer program and arcs represent data paths between them. An 

operation can take place when some suitable logical combination (and, 

exclusive-or) of its incoming arcs have data values on them. When an 

operation takes place, it absorbs data values from. its incoming arcs and 

puts data values on some logical combination of outgoing arcs. The model 

is extremely powerful and can represent decisions explicitly. Martin and 

Estrin are concerned with modelling parallel computer programs, with a 

view to finding their mean computation time, i.e., the amount of time it 

takes to execute a computer program from s~art to finish. For this pur­

pose, they assume. each node to have a fixed (detenainistic) time duration. 

A technique is given for finding the mean execution- time of well-formed 

program flowcharts. Although the model is capable of representing 

recurrent processes, Martin and Estrin have confined themselves, in their 
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analysis, to models of processes which operate in a "one shot" fashion. 

Also, they have not developed their model to a point where it can be 

used for modelling complex pipeline processors or assembly lines. We 

will show in the course of our work the added generality that is possible 

withour approach to modelling asynchronous systems. 
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1.4 Overview of Following Chapters 

1) It is shown how asynchronous concurrent systems can be looked upon 

as an ensemble of suitably interconnected finite state machines. Petri 

nets are introduced to formalize this notion, and also as a graphical 

tool for visualizing the structure of asynchronous systems. It is shown 

what it means for an asynchronous system to be well-formed in terms of 

the corresponding notions of liveness and boundedness for Petri nets. The 

two classes of asynchronous systems, deterministic and non-deterministic, 

are formalized. Boundedness is shown to be a decidable property for 

Petri nets, and liveness in turn is shown decidable for bounded nets. 

(Chapter 2). 

2) An in-depth discussion is given of the structure of asynchronous concurrent 

systems in terms of SMD (~tate ~achine ~composable) Petri nets. The 

notion of a "current assignment" is introduced for transitions in a Petri net, 

and a consistent Petri net is defined as one which can support a consistent current 

assignment. Subclasses of Petri nets are introduced, chiefly Event 

Graphs, LSP (1ive, ~afe, !ersistent) Petri nets and SMA (~tate ~achine 

!llocatable) Petri nets. Deterministic and non-deterministic systems are 

studied in terms of these subclasses. (Chapter 3). 

3) Timed Petri nets are introduced. These are Petri nets in which a 

transition executes for a fixed non-zero time called its firing time. 

The maximum rate at which an event occurs in a system is its computation 

rate. The computation rate of a large class of deterministic systems 

is found. (Chapter 4). 

4) The general problem of finding the computation rate of non-deterministic 

systems is addressed. A bound is obtained for the computation rate of 

non-deterministic systems. Systems are identified for which this bound 
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is achievable. (Chapter 5). 

5) Applications of our work to the modelling and analysis of real-world 

systems are given. (Chapter 6). 

6) Unsolved problems are given, together with recommendations for future 

research. (Chapter 7). 



CHAPTER 2 

PETRI NETS AND VECTOR ADDITION SYSTEMS 

2.1 Informal Introduction to Petri Nets 

We will present the idea of the Petri Net model as an extension of 

the finite state machine model of conventional automata theory. The 

lat~er model is based on the assumption that we can abstract from a sys-

tem a total syst!!!! ~, and the action of the system is described by 

the set of all allowable states and a set of rules that governs the 

transition of the system from one state to another. Let us give a simple 

example here to explain what we mean. 

Consider a stage of the pipelined floating point adder shown in 

Figure 2.1.l(a). Assume that it can handle one pair of operands at a time 

and that when it is performing an operation on an operand pair, other 

operand pairs in its input queues must wait until it is through with the 

current operand pair. We can thus represent the operation of the stage 

of the pipelined adder as shown in Figure 2.1.l(a). 

Unit busy 

ady for input 
operand pair 

Figure 2.1. l(a) 
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Ready to output result 
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The stage can be in one of three states, denoted by circles in Figure 

2.1.l(a) : 

(a) Ready for input operand pair. 

(b) Unit busy (processing an operand pair). 

(c) Ready to output result. 

Figure 2.1.l(a) is drawn using the notation of finite-state automata 

theory, and a transition from one state to another is denoted by an arc. 

For reasons that will become clear soon, we will insert into each arc in 

Figure 2.1.l(a) a bar to denote the transition from one state to another. 

Also we would like to indicate what state a system is in at any given 

instant of time. We will designate this by the presence of a marker on 

the circle corresponding to that state (see Figure 2.1.l(b)). 

Unit busy 

lte.ty for input 
operand palr 

Figure 2.1.l{b) 

processing 

Ready to output 
result 

The system shown in Figure 2 • 1. 1 (b) is in the st ate : "ready for 

input operand pair". When the system absorbs an input operand pair, it 

makes a transition to the state : "unit busy". Finally, when it is done, 

with processing the operand pair, it becomes ready to output the result 

and makes a transition to the state· entitled "re8.dy to output result". 
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The system then outputs the result and becomes ready for the next input 

operand pair. This sequence of operations repeats. 

Each stage of the system can be modelled in this fashion. We now con­

sider how to model a two-stage pipelined adder, given that each stage is 

modelled in this fashion. Once again, by uaing techniques of conventional 

automata theery, we see that the two-stage system can be re,>reaented by 

a finite state machine which is the cross-product of the two machines[H4]. 

Let us attempt to carry out this construetion. We will assume that the 

states of the two machines are labelled a, b,c and a', b' ,c', respectively 

(see Figure 2.1.2). 

a 

c' 

c 

Figure 2.L2 

Figure 2.1.3 shows the resulting finite state machine. We see that it has 

nine states and a total of eighteen transitions between states. The 

problems with this representation are the following: 

(a) The number of states grows as the product of the number of states 

in the individual stages. 

(b) The identi~ of the individual stages has been lost. For all we know, 
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this could be the state diagram of a nine-state system consisting of only 

one system component (or stage). 

The nine-state finite state machine obscures the structure of our two-

stage pipelined adder. We note that if the pipeline has n stages, the 

number of states in the finite-state machine used to represent it would 

To represent a five-stage pipeline, we would need 243 states. 

We clearly need a formalism which provides more economical descriptions 

of concurrent systems. 

~et us briefly discuss parallelism in a system like a pipelined adder. 

Suppose we consider a two-stage pipelined adder in which the first stage 

has five functional units in parallel, and can thereby support up to 

five concurrent computations. The second stage will be assumed to have 

eight parallel stages. We can represent parallelism of degree five in 

the first stage by placing a total of five tokens on the finite-state 

machine used to represent it. Similarly, we place eight tokens on the 

finite state machine used to represent the second stage. (See Figure 2.1.4). 

Each token is assumed to move from one state to another independently 

of all other tokens. The state of the first stage is now a vector 

( n(a), n(b), n(c) ), where each element of the vector represents the 

number of tokens on the corresponding place. Note that 

n(a) + n(b) + n(c) = 5, and 

n(a') + n(b') + n(c') = 8. 

5 
In order to model the first stage as a finite state machine, 3 states 

8 are needed. Similarly, 3 states are needed for the second stage, giving 

3
13 

states in all for the cross product machine Suppose instead of 

attempting to model the above system as a finite state machine, we use 
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Figure 2.1.3 Finite State Machine Model of Pipelined Adder 

the following artifi•e : coalesce t 3 and ti together, givi11g the d\a­

gram in Figure 2.1.5. The coalesced bar is relabelled 't'. 

The output terminal of stage 1 is thus made the input terminal of,~~age 

2. A transfer of an operand can take place when stage 1 is ready to out­

put a result and stage 2 is ready for an·input operand. In terms of the 

net in Figure 2.1.5, this is true when state c in stage 1 and state a' in 

stage 2 each have at least one marker on them. Figure 2.L6 shows a confi­

guration of the pipeline in.Which· an operand pair can be transferred between 

the stages. Figure 2.1.7 shows the configuration that results after an 
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/ 

operand pair has been transferred. 

We are now ready to introduce some nomenclature. Each circle in the 

diagram of Figure 2.1.5 is called a place , and the bars are called trans-

iti~!· The act of transferring an operand pair between stages was 

achieved by an action called the !!!!1.!.&_of transition t. 

b 

Figure 2.1.4. 

a Figure 2.1.5. 

a' 

b' t I 
2 

a' 

t I 

1 

b' 

t I 

3 

Fi__g~re 2.1.6 shows a configuration of the system in which transition t can 

be fired. When t fires, a token is removed from ea~h input place and 

added,to each output place. ('ee Figure l.1.7). In system terms, each input 
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b c b' 

a 

Before _firing transition t 

Figure 2.1.6 

b c b' 

a 

After £iring t 

Figure 2.1.7 

a 

t f 
2 

t • 
2 

c' 

c' 

t I 
3 

t ' 3 
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place to a transition represents a pre-condition that has to be satisfied 

(or hold) in order that the action corresponding to the transition may 

take place. If there are several tokens on a place, it represents several 

instances of the holding of the corresponding condition. Thus, when the 

action corresponding to t occurs, it causes one instance of each pre­

condition to cease and one instance of each output condition or post­

condition to begin holding. When the finite-state machines representing 

Stages 1 and 2 are not connected, the stages they model are said to be 

mutually independent. In Figure 2.1.5, the finite state machines are said 

to be interconnected. Many other terms can be used instead of interconnec­

ted stages, for example, cooperating or mutually synchronized stages, but 

we will continue to use the term interconnected. 

What we have done in the last few paragraphs is to introduce a way of 

modelling, in an economical way, systems of interacting parts in which 

overlapped operation and parallelism are both present. The terminology we 

have used is part of the definition of Petri !!!!!!., which are discussed more 

formally in the next Section. We have introduced the idea of Petri nets 

as a natural extension to the finite state machine model, and their advan­

tages are obvious and considerable. 

We would like to continue our informal approach in order to introduce 

some important notions that we will need in understanding the structure 

of asynchronous systems. Consider the finite-state machine in Figure 2.1.l(b). 

The state machine is strongly-connected, i.e., from every state there 

exists a directed path to every other state. The state machine in Figure 

2.1.8 is not strongly-connected and we see that there is the possibility 

that the token can appear in place p
3

, after which there is no way for the 
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token to appear in either place p
1 

or place p
2

. What this implies is that 

once the token appears in place p
3

, transitions t
1
,t

2 
and t

3 
cannot fire. 

< ,· . 

We haM seen that traaaitioaa can be used to represent: ~ators in an actual 

ayatea. In the system we are inter .. ted in, we tut.at that every operator 

always be usable. A system component tlhoee ~rat:ioa. can be represented by 

the finite state machine of Figure 2.1.8 haa certain operators (represented 

by t 1,t
2 

and t
3

) which are not used after ~ome tretetat behavior of the 

ayatem. In the steady state, traneitiona t
4 

and t
5 

fire alternately, over 

and over again. We will inaiat that each finite state machine bf!! strongly-

connected, and the reader can see tbat this is necesaary fk the composite 

systea to satisfy the requirement that every operator always be usable in 

the course of operation of the system. If it 10 hqpena that same of the 

operators can never be used (i.e. their corresponding transitions can 

never be fired) , then those operators can be t_"emoved frora the system 

without affecting its operation. Such operators are termed redundant. 
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The reader can verify that in the resulting net, transitions ts, t
6 

and 

t' are redundant. 
6 

A Petri net such as the one shown in Figure 2.l.9(b) has no redundant 

transitions and will be termed live. On the other hand, in the net shown 

in Figure 2.l.9(c), transitions ts, t
6 

and t6 are redundant, whereas all 

others can always be fired. Such a net is termed pseudo-live. In some 

Petri nets, the operation of the net may lead to a configuration in which 

no transition can be fired. Such a net is termed non-live. In Figure 

2.1.lO(b) we show the construction of such a net from the two state machines 

of Figure 2.1.lO(a). 

d 

Figure 2.1.9(a) 

t I 
5 

d' 

t ' 4 
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d 

Figure 2.l.9(b) 

Figure 2. 1. 9 ( c) 

d' 

t t 
6 

t I 

' 



-34-

In the configuration shown in Figure 2.1.lO(b), either transition t 1 or t
2 

can be fired. If t
2 

is fired, the net attains a configuration in which no 

further transitions can be fired (see Figure 2.1.lO(c)). Tile net is an 

example of a non-live net, and the configuration shown in Figure 2.1.lO(c) 

is a deadlocked configuration. 

What we have done so far is to motivate a formal study of Petri Nets, 

which we now proceed to do ~n the next section. 

e 

b 

d 

Figure 2.1.lO(a) 

Figure 2.1.lO(b) Figure 2.1.lO(c) 
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2.2 Formal Definition of Petri Nets and Relevant Concepts 

2.2.l Petri Nets 

We are now in a position to inbroduce the reader to the formal defini­

tion of Petri nets together with the related temiaoloay that we will use 

in the rest of this thesis. 

Definition 2.2.l A Petri Net 1'is a three-tuple (P,T,A) 

where P is a non-empty 1et of distinctly-labelled places {p1, P2••••Pnl• 

T is a non-empty set of distinctly-labelled transitions 

{ t 1 , t 2 , ••• tml. 

A is a relation; it corresponds to a set of .!!!.!.> where each arc 

is either from a place to a transition or from a transition to 

a place: 

AC PXT U TXP. 

Definition 2. 2. 2 A yrking M is a function such that M: P ......., il, where il 

is the set of non-negative integers. The non-negative integer associated 

with a place represents the token load of that place, or the number of 

tokens on it • 

A Petri net with a marking will be referred to as a marked Petri ~ 

(see figure 2.2.l for an exaaple). 

Notation and Terminology 

A node of a Petri net is either a place or a transition. We now intro­

duce a conveni~nt notation for the predecessor or successor nodes of any 

node in a Petri net. We will refer to it as the~ notation. 
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Figure 2.2.1. A marked Petri Net 

(p,t) s A is written p•t. 

{ylx-y} is written x•. 

f yly.x} is written ·x. 

Example: In figure 2.2.1, -t2 = {pi, p2}. 

pi•-.= {t1, t2}. 

The dot notation is also applied to designate the successor or pre­

decessor set of a set of places or transitions. Thus, 

·ft2, t4l - fp1, p2, p3}. 

{p3, p2)•= {t2, t3, t4}. 

A transition t in a PeU"i. Net 1' is said to be enabled iff every input 
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place pi E •t has at least one token on it. An enabled transition can be 

fired. When a transition fires, a token is removed from each input place 

and added to each output place p j E t • • Suppose JP is the marking that 

results when an enabled transition ta fires at marking M. We write this 

M ta• M8. 

Now suppose transition tb can be fired at marking Ma. Let Mb be the 

marking that results when transition t 0 «ires. We write 

M ~M• tb. IP. Continuing in this fashion 11 let· 

tis suppose that at e•ry new marking that results ..men a transition fires, 

at least one transition can be fired. We can wite this 

•• • ••• t;n•Jtll. 

The sequence of transition firings t 8 tbtc ••••• tn is termed a firing 

sequence. If a• t atb •••••• tn, we write 

t tb t n M a ... al( 
a n 

or M --...... ·~·--~•~M. 

Exmple. 

In :Figure 2.2.2(ai) transition t2 is enabled. Figure 2.2.2(b) shows 

the marking that results when transition t2 is fired at marking M. 'lbe 

Definition 2.2.3: A marking M~ is said to be reachable fram marking Mi 

if there exists a firing sequence a such that 

:i a j 
M -.M-'. 
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Marking H' 

(b) 

Definition 2.2.4: The forward marking class il of a marking M is the 

set of markings that is reachable from H. i.e., 

Note: T* is the set of strings on the alphabet 

T = [t1 , t 2 , •••••• tnl. 

Notation: We have defined M as a function that assigns a token load to 

every place Pi E P. M can also be looked upon as a vector, the ith element 

of which corresponds to the token load of thei~h- place Pi in the Petri net. 

Example: The marking M of the net in Fd.gure 2.2.2(a) can be written as 

M = (1, 1, 0, O) 
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The forward marking class of M is seen to be 

~ = {(1,1,0,0), (0,0,1,l}, (0,1,1,0), (1,0,0,l)}. 

Definition 2.2.5: A marking ~is live for~ transition! iff for every 
+ 

marking Ml in the forward marking class M there exists a firing sequence 

which fires t. 

Definition 2.2.6: A marking M is live for~ Petri Net "f.'iff it is live 

for every transition in the net. 

Definition 2.2.7: A marking Mis bounded for~ place£, iff there exists 

an integer N such that for every marking MlE M, Ml(p) ~ N. If N = 1, the 

marking is safe for place £· 

Definition 2.2.8: A marking M is bounded (or safe) for the Petri net ':iJ 

iff M is bounded (or safe) for every place in the net. 

In Section 2.1, we pointed out that there exist marked Petri nets in 

which a marking is reached in, which no transitions can. be fired, i.e., the 

net can reach a deadlocked configuration. Suppose this deadlocked con­

figuration is called Ml, and suppose that the net is in some configuration 

(i.e., has a marking) M. If M a •M1 , then a is said to be a killing 

seguence for the net at the given marking M. A net with a live marking 

has no killing sequence. 

There is one more important issue we would like to consider in this 

subsection. In Section 2.1, we pointed out that the only Petri nets we 

will use for modelling asynchronous concurrent systems will be nets which 

have a live marking. We would also like the marking for a Petri net to 

be bounded. This means that the only Petri nets we would like to consider 
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are strongly-connected nets. Let us see lihy. Consider a non-strongly 

connected Petri-net 1'. Then, there must exist in the net two portions of 

the net A and A1 such that all arcs between them are directed from A to 

Al• as shown in Figure 2.2.3. Each of the nodes a and c in A can either 

be a place or a transition. Suppose a is a place. 'J.'hen b must be a 

transition. Since the marking for the net is live, it means that b can 

be fired repeatedly. But each firing of transition b removes a token from 

place a. Now suppose we do not fire transition b at all. 'Ibis would mean 

that all the tokens which were previously being removed by firings of b 

can now stay on place a, which means that the number of tokens on a can 

become unbounded. 

A' 

Figure 2.2 .3 A Petri net that is not strongly-connected. 

Now suppose that a is a transition and b is a place. Since the marking 

for tJJ is live, we can fire transition a repeatedly, causing the token 

content of b to become unbounded. Thus, if P is not strongly-connected, . 
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the token content of some place in 'f> becomes unbounded. Now, since we 

are concerned only with nets which have a live, bounded marking, all 

Petri nets we will consider will be strongly-connected, unless explicit-

ly stated otherwise. 

In Section 1.2, we said that there are two broad classes of systems 

that we would like to distinguish between. We now pursue that line of 

thinking formally. 

2.2.2 Deterministic and Non-Deterministic Petri Nets 

We would like to make an important distinction between two classes of 

Petri nets, which we term deterministic and non-deterministic. First, we 

look at a structural condition of Petri nets known as conflict. 

Definition: Consider a Petri net 1> = {P, T ,A). Two or more transitions 

t1,t2, •••••• tk are said to be in conflict if there exists a place p such 

that p•t, A p•t2 •••••• Ap·tk. 
1 

Note: 'A' denotes the logical "and" operato1:r. 

·-Ffgure 2. 2. 4 
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In Figure 2 .2 .4 transitions t 1 and t
2 

are in conflict ~ place p. 

With the marking shown, a token in place p
1 

can be removed by the firing 

of either transition t
1 

or transition t
2

• ThtiS, for the given marking, 

we have a choice between firing either transition t
1 

or transition t 2 , 

and when either transition fires, the other ceases to be enabled. Before 

we can go any further, we must make a few def in it ians • 

Definition 2.2.9: A marking M is persiatent for a transition t in a 

Petri net 1'if t has the property that once it is enabled at any marllag 

1 ~ . 
M E M, it cannot cease bo be enabled by the firing of any transition 

other than itself. 

Definition 2.2.10: A marking M is persistent for a Petri net 1' iff it 

is persistent for every transition t e1'. 

'ftte net in figure 2.2.4 has the property that it has no marking which is 

persistent for transitions t 1 and t
2

• Such a net is terlillr•.1a non-deter­

ministic net, and represents a system in which there is a distinct choice 

between alternative actions (see section 1.2). In contrast, the net in 

figure 2.2.6 is a deterministic net or a net with a persistent marking. 

We now introduce some convenient ways of referring to the nets we have 

been discussing. 

A net with a Live, Bounded or a Live, Safe marking will be termed an 

LB or LS net, respectively. If a Live, Bounded marking is also Persistent 

we will call the Petri net an LBP net. A net with a Live, Safe, Persistent 

marking will be called an LSP net. The net in Figure 2.2 .. 5 is an LSP net. 

Petri nets are a graphical representation of a mathematical system 
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, F::l..gure .2 .2. 5 A Petri net wi~ _ ~ . .live, safe, J>e11!i8'ten t marking 

known as vector addition systems. In the next section, we use some results 

in vector addition systems to prove the decidability of certain issues in 

Petri nets. 
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2.3 Vector Addition Systems and their Relationship to Petri Nets 

In this section, we give a brie~ description of vector addition systems, 

but a more thorough coverage can be found in Karp and Miller [K2). 

Definition 2.3.1: An r-dimensional vector addition system V is a pair 

V = (s ,W) where 

(1) s E Nr, N = (.O,l, ••• }. 

(2) W is a finite set of r-dimens ional integer vectors 

W = (w1 , ••• ,wk} , wi E {0,±1,±2, ••• } r 

The reachabilitI set R(V) is the set of vectors given by 

R(V) = {xi lxi = S + Wil + Wi2 + 0 0 
• + Wik} were wij E w. 

a. wij E W, j = 1,2,~~·k· 

b. k = 1,2, ••• t. 

The reachability set is the set of all points that can be reached by some 

path from s using vectors from W and never leaving the first orthant. 

Example 2.3.1: As an example of a four element vector addition system, 

consider 

where s = (1,1,0,0) 

W = {w_l = (-1,0,+l,0); w2 = (-1,-1,+l,+l), w3 = (0,-1,0,+l), 

w4 = (+l,0,-1,0), w5 = (O,+l,0,-1)}. 

The reachability set R(V) of this vector addition system consists of 

four vectors ((1,1,0,0), (0,0,1,1), (0,1,1,0), (l,0,0,1)}. 

Notation 

Let us denote the vectors in the reachability set by yi, 
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i.e., R(V) = (y1, y2 , ••• ym}. 

Also, if yi is a vector, then {yi)k will denote the kth element of y1• 

We will draw a directed graph with the elements of R{V) as vertices, 

~nd an arc from vertex yi to yj if there exists a vector w1 E W such that 

y j = Yi + wl. 

Each arc will be labelled with If.ts corresponding vector '-i• above, and the 
. 1 

'resulting diag:r:~ shows at a g•lance the vectors in the ::rea:dtability set 

and·- how th~y can be reached from one another. We 1 wi'll call .t:hi.s diagram 

the reachability diagram' of the vector addition. system.v. 

As an example, we give the reachability diagram corresponding to the 

vector addition system of example 2.3.1. 

w 

(1,1,0,0) 

(l,O,O,l) 

(0,1,1,0) 

Figure 2.3.l The Reachability Diagram for the Vector Addition System of 

Example 2.3.l 
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If the reachability set of a vector addition system is finite, the reacha-

bility diagram is a finite-state machine, and it is practical to draw it as 

we did for our example. If, on the other hand, the reachability set is 

infinite, we must find an alternative representational tool. For this 

purpose, we introduce the following terminology: 

(1) We define a quantity w such that if n is an integer then n < w, and 

n + w = w. The quantity w essentially represents infinity and we discuss 

its use shortly. 

(2) A rooted tree is a directed graph such that one node (the root node) 

has no arcs directed into it, each other node has exactly one arc directed 

into it and each node lies on a directed path from the root node. If p and 

y are distinct nodes of a rooted tree and there is a directed path from P to 

y, we write p < y. If there is an arc directed from p to y, then y is a 

successor of p. A node with no successors is called a leaf. With an r-

dimensional vector addition system V = (s,W), we shall associate a rooted 

tree T(V)a Each node p E T(V) is labelled with an r-dimensional vector t(~), 

where each element of t(p) belongs to the set N fw}. A recursive procedure is 

given below for the construction of T(V). Note that the label for a node 

is assigned when the node is added to the tree. 

(1) Create a root node and label it s. 

(2) Let P be a node in the partially created tree with no successors. 

If, for some node y, y < p and t(y) = t(p), then p is a leaf in T(V). Other-

wise, for each w E W such that w + t(p) 0, add a node p and make it the 
w 

successor of p. For each p the ith coordinate of t(p ) is assigned as w w 

follows: 
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(i) If there exists y < p such that L(y) $. L(p) + w and 
w 

L(y) 1 < (t(p) + w)1 then LCPw>i • w. 

(ii) If no such y exists, then t(pw>1 = (t(J) + w)i. 

(3) Repeat step (2) until no new nodes can. 9e aicled to the tree. 

We show in Appendix I that for any vector .aditim ayatem V, the tree 

T(V) is finite. 

Example 2•3•2. As an exaaple (taken from Karp and Miller), conaider the 

following vector acldit:loa -.yatea V = (s,W). 

8 = (l,O,O,O,O) 

W = { (-1,1,0,0,0), (-1,0,0,l,O), (0,-l,2"0,0), (0,1,-1,0 .. 0), (0,0,0,.-1,2) 

(0,0,0,1.-l)}. 

'l'he rooted tree T(V) is : 10,0,w,O.O)~O,w,w,O,O) 

/
co,1,o,o,o)~o,o.2,0,o)-.(0,1,w,o,o~ co,w,w,o,o) 

(O,w.,wirO,O} 
(l,O,O,O,O) (O,o,o,o,w)-+(O,O,O,w,w) 

~o,o,o,1,o~o.o,o,o,2~0.0,0,1,~~ . 

(O,O,O,w,w~(O,O,O,w,w) 

' (O,O,O,w,11J) 
Figure_2.L2 

All our decidable results about vector addj.~ioa •yateme reduce to inspecting 

the tree T(V) and using the following theor-ea. 

Theorem 2.3.1: For any vector additioa syatem V. and any integer vector x 

of the same dimension 

(~y E R(V) such that x ~ y) = (~ p E T(V) such that x $ t(p)). 
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Proof: Given in Appendix I. 

Corollaries 

The following questions are decidable: 

Corollary 2.3.1.l 

Vy E R(V) is (y). ~ n for some finite n? 
1 

Corollary 2.3.1.2 

Vy E R(V), is a given set of elements of the vector y simultaneously 

bounded? 

Corollary 2.3.1.3 

Is R(V) a finite set? 

In addition, if the questions in Corollaries 2.3.1.1 or 2.3.1.2, are true, 

the bounds can be effectively computed. For the vector addition system 

in Example 2.3.2, we see that Vy E R(V), there are elements which be-

come unbounded, and hence R(V) is infinite. Furthermore, the elements 

that can become simultaneously unbounded are (3), (5), (2,3) or (4,5). 

Petri Nets and Vector Addition Systems 

It is easy to see that for every marked Petri net there is a correspon-

ding vector addition system. Let us explore this issue in detail. 

Let 'P be a Petri net with initial marking M. We can construct an 

equivalent vector addition system V = (s,W) as follows: 

The dimension of the vector addition system is made equal to the 

number of places in the Petri net, and the starting vector s is taken to 
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be the initial marking of the net. It now remains for us to show how 

to construct the set of vectors w. Consider a marking M' in the marking 
... 

class M, at which a transition th is enabled. Since the firing of th 

decrements the token content of each of its input places by one, and 

increments the token load of each of its output places by one, we can 

represent a firing of ~ by adding a vector wh to the-matking M' to yield 

the marking that results when transition th is fired. The elements of:the 

vector ~ are given the following values: 

+l if the correspoading place is an output place of th. 

-1 if the corresponding place is an input place of th. 

0 otherwise (we are assuming that there are no self-loops in 1' 

see figure 2.3.3). 

Figure 2.3.3. A Self•loop 

We now assert that the vector addition system V is equivalent to the 

Petri net 1> with marking M in the following sense: 
-+ 

(a) For every marking M E M, there exists a vector y E R(V) such 
q 

that y = M • 
q 

{b) A vector addition sequence v is a sequence of vector additions 
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wj + ••• +w8 such that it transforms a vector yi to vector Ys· i.e., 

where 

\J=w .••• w. 
J s 

We see that corresponding to every vector addition sequence " there 

exists a firing sequence a= tj ••• ts in the Petri net '1', and vice versa. 

We now establish some decidable results for Petri nets based on the 

decidability of the corresponding issues for Vector Addition Systems. 

Theorem 2.3.2 It is decidable if a given marking M for a Petri net 'J> 

is bounded. 

Proof: Let P be a Petri net and M its initial marking. By the construe-

tion above, we can find an equivalent vector addition system V = (s,W). 

From Corollary 2.3.1.2, we know that the following is decidable: 

Given any vector y E R(V), is a given set of elements of y simul-

taneously bounded? 

Thus, it is decidable if Mis bounded for the Petri net 1'. 
• 

We can now establish the following result: 

Theorem 2.3.3 It is decidable if a given marking for a Petri net is 

live and bounded (i.e., if a given Petri net is LB). 

Proof: Since we can decide if the given marking is bounded, we proceed 

to show that there exists a decision procedure to decide if a given 

bounded marking is live. For a bounded marking, the reachability set 

of the corresponding vector addition system V is finite. Hence, the 
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reachability diagram for V is finite. '!be marking M is live iff for 

·any marking M' E ~ there exists a firing sequence that fires every 

transition in the net. In terms of the reachability diagram, this 

means that starting at arry vertex yi and given a vector~ E W, there 

must exist a vector addition sequence that contains '\.• 

_, 
I ' 

' r w 
1Y10- ' 

k 

I 
I ' I I 

I 0 I 

0 I. .. '\. I I 
Yi I I 

r I :yn I 
~ .. '\. ' , - _, 

Figure 2.3.4 

Consider figure 2.3.4. Find the aet of vertices {y1, y2, ••• y.J in 

the reachability diagr- which haw '\. • an outgoing arc. We have to 

find if there exists a directed path froa y i to at leat one vertex in 

this set. Since the graph is finite, this can be done by exhaustion. 

The procedure is repeated for every vector 1\ E W, starting at the 

vertex y i. We now choose all the 'Vertices in turn and carry out: this 

test. '!be total n\mlber of tests involved is lwl X f 1t(V) l where 

lwl = the number of vectH>rs in the set w. 
!R(V)f =number of vectors in the reachability set of V. 
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Since both quantities are finite, the algorithm must terminate. Tilis 

proves the required result. • 

We now prove another theorem for a Petri net with a bounded marking. 

Titeorem 2.3.4 It is decidable if a bounded marking M for a Petri net 1' 

is persistent. 

Proof: To check if a bounded marking is persistent, perform the following 

test for every marking in the marking class: 

.... 
Let M' be a marking in the marking class M, and let {ti, t2, ••• t~) be 

the set of enabled transitions. Let the firing of a transition 
tk 

tk, E £ti, ••• t~) lead to the marking Mk• i.e., M' ., Mk· 
For the firing of each transition tk, we check to see if all other 

enabled transitions ti 4 tk are still enabled. If not, the marking M' 

is not persistent. If the marking M' is persistent for all of its 

enabled transitions then we check the next marking in the marking class, 

.... 
and so on until all markings M' E M have been exhausted. Tite marking 

.... 
M is persistent iff all markings M' E M are persistent for their enabled 

transitions. Since the total number of tests to be performed is finite 

and bounded, the algorithm must terminate. • 
Titis concludes our discussion of decidable issues in Petri nets. 

We have so far looked at Petri nets in terms of their markings and their 

marking class. In the next chapter, we look at Petri nets in terms of 

their structure. 
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alAPTER 3 

RELEVANT RESULTS FROM PETRI NET 'DIEORY 

3.1 State Machine DecO!!posable Petri nets 

In Section 2.1, we saw how an asynchronous concurrent system can be 

viewed aa an ensemble of interacting cmaponents, 11ilere each component is 

structurally similar to the finite-state machine of automata theory. Each 

component has a finite number of allowable states; since we are concerned 

with system& which have no redundant operators (see Section 2.1), the 

Petri nets of int:erest are LB. we will uae a restricted class of Petri 

nets known as LB SMD (State Machine Dec0llp08able) Petri nets t:o model 

asynchronoua concurrent: systems. In this Section, we fonaally define the 

notiaaa of state aacbine and Siii> Petri nets. 

Definition 3.1. l A closed subnet n I of a Petri net p ia a strongly-

coanectecf PetTi net (P 1 , T' ,. A') where 

P' c P is a set of places, 
• 

T' c T is a set of transitions, 

A' c A is a set of .!!£!, such that 

·P' • P'· = T', and 

A' = [{P' X T') U (T' X P')l n A. 

The Petri net N in Figure 3.1.1 has five closed subnets N1, N2, N3, N4 

and N5• Clearly, every strongly-connected Petri net is a closed subnet 

of itself, because the relation •p = p• = T is trivially satisfied. 

We are interested in identifying components or parts of a system that 

can be represented by a Petri net, and for this reason we would like to 

define a minimal structure which is part of a Petri net and is still a 

-53-
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N 

Figure 3.1.1 
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Stage 1 Stage 2 St.age 3 

(a) 

Figure 3. 1. 2 
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closed subnet. 

Definition J.1.2 A closed subnet is a minimal closed subnet if and 

only if no closed subnet can be obtained by deleting any portion of it. 

Example J.1.1 N is~ a minimal closed subnet because by deleting 

appropriate places and/or transitions, the four closed subnets N1, N2, 

NJ and N4 are obtained. However,, the closed subnets N1, N2, NJ and N4 
are minimal closed subnets, as the reader can easily verify. 

Example J.1.2 Consider the Petri net model of a pipeline processor 

shown in Figure J.l.2(a). The closed subnets representing each indivi-

dual stage are minimal closed subnets (see Figure 3.l.2(b) ).On the other 

hand, the closed subnet in Figure 3.l.2(c) ia not minimal. All the Petri 

nets considered so far have the property that their minimal closed sub-

nets have disjoint places. Lest the reader be under the impression that 

this is a requirement OD minimal closed subnets, we would like to empha-

size that this is not so. Consider the net in Figure 3.1.3(a). It has 

the minimal closed subnets s
1

, s
2 

and s
3 

shown in Figure 3.l.3(b). We 

will now formally define the notion of state~machine based OD a suitable 

structural restriction on Petri nets. 

Defin!tion J.1.3 A Petri net 1> is a state-machine if and only if every 

transition has exactly one input place and exactly one output place. 

Example J.1.3 For an example of a state~macbine, see Figure 3.1.4. 

Definition 3.1.4 A Petri net 'J' is said to be covered by a set of closed 

subnets { nl' n2, •.• nk} if and only if 

'j) -

Example 3.1.4 The Petri net in Figure 3.l.2(a) is covered by the set 
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(a) 

(b) 

Figure 3. 1. 3 
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Figure 3.1.4 A State Machine 

of closed subnets (s1 , s2, s
3
}. Similarly, the ~t in Figure 3.l.3(a) 

is covered by the subnets of Figure 3.l.3{b). 

Definition 3.1.S A Petri net 1> is §MD (State Machine Decomposable) iff 

every minimal closed ·Subnet is. a state machine.and there exists a· set of 

state machines (s
1

, •.• sk} which covers the net. 

Example 3.1.5 The Petri nets in Figures 3.l.2(a) and 3.l.3(b) are SMD. 

On the other hand, the net in Figure 3.1.l(a) is not SMD; because the 

minimal closed subnets N1 , N3 and N
4 

are not state machines. 

Definition 3.1.6 The token content of a Petri net (P, T, A} with a 

marking M is the number of tokens on all places in the net, and is given 

by 
N(P) = ~M(pi) 

piE P 

Lemma 3.1.1 Tile token content of a marked state machine is invariant 

under transition firings. 

Proof Suppose we consider a state machine 'i' = (P, T, A} with mar-
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king M. The only way in which the token content N(p) of the state machine 

can change is by the firing of a transition. However, the firing of a 

transition removes exactly one token from the net and adds exactly one 

token to the net. Thua, the firing of a transit ion .toes not change the 

number of tokens on the net. 
• 

Theorem 3.1.1 Every marking for an SMD Petri net is bounded. 

Proof An SMD Petri net has a finite number of state machine components. 

Let these components be Sp ••• 8it. Also, by Lema 3 .1.1, the token content 

of each state machine is invariant. Let the token content of the nth state 

machine be H(P ). How, recall the definition of a bounded marking for a 
n 

Petri net. We have to show that for each place p in the net, there exists 
... 

an integer Z(p) such that M(p) ~ Z(p) for each III in M. 

Let S 1 , ••• s be the set of state machine& wlaich contain place p. 
p pm 

Then, if H(S 1), ••• N(S ) are their respective token contents, we see 
p pm 

that Z{p) ~ min[ N{S 1), ••• H{S )). If Z(p) were greater than 
p pm 

min [ H(S 1), ••• N(S )), it would imply that there exists a state aachi-
p pm 

ne ~ such that Z(p) > H(8it), which is impossible. Hence, for each 

place p in the net, we can find an integer Z(p) which bounds its token 

content. This proves the Theorem.. 

• 
Corollary 3.1.1.1 It is decidable if an}' given marking M for an SMD 

Petri net IJ> is live. 

Proof By Theorem 2.3.3, it is decidable if a bounded marking M for 

Petri net 'Pis live. Also, since any given marking for~ is bounded, 

the desired result follows iumediately. 

• 
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This result is useful because it tells us that we can decide if a given 

marking M for a Petri net P is live, but it· does not give us an effec­

tive procedure for constructing a live marking for 1'. We will look at 

this issue in Sections 3.3 and 3.5. Before we pt:oce~d t:o the next Sec-

tion, we give the reader an example which illustrates.the descriptive 

power of SMD Petri nets. The example of .the pipelii:ae processor we gave 

in Figure 3.l.2(a) was that of a deterministic syatemw In Figure 3.1.5, 

we give an SMD Petri net model of the pipeline prC>Cessor for the compu-

ter system with three instruction type. which we di,cqaa,d in Section 

1.2 (see Figure 1.2.3). Figure 3.1.6 shows the ne.t in Figure 3.1.5 

split up into its state machine components, which are labelled s1 throu­

gh s9• The reader will note that the decisJQn about processing an instr­

uction after it has been decoded can be made in the state machine s3• 

Place p in state machine s
3 

has three'output area, one for each instruc­

tion type. We said in Section 1.2 that in ~rder to estimate the pro-

ceasing rate of such a pipelined procea11or, we mwtt know the relative 

frequency of occurrence of each of the instruction types A, B and C. In 

otaer words, we must know the relative frequency of occurrence (or the 

probability) of each of the output transitions of.place p. Thus, on the 

average, the rates at which each ins~ruction type oC;curs will be reflec-

ted in the nUlllber of times each of the transitions t· , tb and t fires a c 

in the long nan. We continue this train of thought in•the next Section, 

where we prese11t the important notion of consistency. In the meantime, 

the reader shoul& explore the eescriptive power of SMD Petri nets by 

constructing examples of his own. 
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3.2 Consistent Petri Jlets 

In this Section, we will look at the number of times any transition 

in an LB Petri net can fire relative to the other transitions in rile 

net. We will first need some definitions. 

Definition 3.2.l A current assigiment for a Petri net ~ • (P,T,A) is 

a function t that assigns to each transition ti E T a positive rational 

number ~i called its current. A current assigmaent for a Petri net 

must satisfy the following two constraints: 

(1) Every arc carries a current equal to that associated with the transi­

tion it is connected to. 

(2) At every place, the sum of the currents on the input arcs must equal 

the sum of the currents on the output arcs (i.e., Kf:rchoff 's current law). 

Definition 3.2.2 A Petri net is consistent iff it has a current assign­

ment t with ~i > 0 for each ti E T. 

Olecking the Coa!itte~y of a Petri Mt 

Figure 3.2.l 
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Consider the Petri net shown in Figure 3.2.1. Let each transition ti in 

the net be assigned a current cpi. For each place, we can write an equa-

tion that specifies a constraint on the input and output currents. 

pl: - cp - cp + cp = 0 (1) 
1 2 4 

p2: + cpl - cp = 0 (2) 
3 

P3: + cp2 - cp3 = 0 ... (3) 

P4: + cp3 - <P4 = 0 (4) 

From Equations (2), (3) and (4) we get, 

cpl = cp2 = cp3 = cp4 = cp (say). 

This violates Equation (1)' which requires that 

cp4 = cpl + <P2 = 2cp. 

We conclude that the net in Figure 3.2.1 is not consistent, or is 

inconsistent. A slight modification of this net leads to the consistent 

net Qf FiguTe 3.2.2. 

Figure 3.2.2 
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The reader will note that all we have done is to feed another current of 

magnitude ' into the place p
1

• The equations become 

P1 : '1 - ' 2 + ,4 + 's = 0 

Pz + '1 ,3 = 0 

P3 + ' ' 0 
2 3 

P4 + ~3 + ,4 = 0 

PS + ,3 's = 0 

These equations are, indeed, consistent and we get the following consis­

tent current assignment: 

= - = = = where is any 

non-zero real number. 

Consider a consistent current assignment for a Petri net f>. Multi­

ply all currents by the least comnon multiple of their denominators, and 

divide each resulting current by their greatest coum.on divisor. The 

resulting currents are said to form a minimal integer consistent current 

assignment for IJJ. The reader will note that consistency is a purely 

structural property of a Petri net. The following Theorem and discussion 

explain the relationship between the notion of consistency and the 

structure of LB Petri nets. The ideas in the following material have been 

partly inspired by Baker [B4]. 

Definition 3.2.3 Let °'.Pbe a Petri net with marking M. A cyclic firing 

sequence is a firing sequence cr which fires every transition of 1-'at 

least once and brings the marking of the net back to M. 
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. Definition 3.2.4 The firing count of a transition t in a firing se­
i 

quence cr is the number of occurrences of ti in cr • The firing vector ~ 

of a firing sequence cr is a vector whose ith element •Ci) is the firing 

count of transition t • 
i 

Theorem 3.2.1 A Petri net Pis consistent if and only if there exists 

an initial marking M for which there exists a cyclic firing sequence. 

Proof: Necessity 

Consider the minimal integer _consist811.t,,current .aaaignment derived from 

the given current assignment. LetthiS C:urrenl:-asaigmilent be t . We will 

show how to construct a finite firing seque?M:e a whose firing vector V 

is such that w(i) is the current through transition t
1

• We construct 

the marking M as follows: M(pk) must be big enough so that firing its 

output transitions ti £ pk •(i) times does not drive the token load of 

pk negative, i.e., M(pk) • L ~(i) 
ti£ Pk 

Under this marking, a cyclic firing sequence a is given by 

- tll(n) 
t 
n 

where t ••• t are the transitions in the Petri net 1'. Since ~ is a 
1 n 

consistent current assignment, the firing sequence a is such that for any 

place p , the number of tokens removed by a is equal to the number of 
k 

tokens added by a to pk. The marking M' after a has occurred is the 

same as the marking M before the occurrence of a , so that a is a cyclic 

firing sequence. 

' 
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Sufficiency Let a be a cyclic firing sequence for the net, and let 

! be the firing vector of a • With each transition ti, associate an 

integer valued current equal to f{i). By definition. of current, each 

input and output arc of ti has a current tCi) associated with it. Under 

this assignment, every transition has been assigned a non-zero integer 

current, and each transition has been assigned a unique current. Row 

consider any place pj. By the definition of a cyclic firing sequence, pj 

has the same number of tokens before and after the cyclic firing sequence 

has occurred. This implies that the sua of the tokens eateriag place pj 

is the same as the sua of the tokens leaving p j • i.e., the sua of the 

input currents equals the sua of the ~tput currents for every place p • 
j 

This is the definition of a consistent current assignment. 

• 
We have pointed out in Chapter 2 that LB Petri nets are the only ones 

of interest to us. We now establish the connection between consistency 

and LB Petri nets. 

Theorem 3.2.2 A Petri net 1'whi.ch has a live, bounded marking Mis 

consistent. 

Proof We have to show the existence of a cyclic firing sequence which 

fires every transition. at least once. Since the marking M is bounded, its 

reachability diagram is a finite-state machine. Also, since M is live, 

there must exist a strongly-connected portion of the reachability diagram 

that contains every transition name at least cmce. Let. M' be smae node 

(marking) in the strongly-connected portion of .the re&ehability diagram. 
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{a) 

{b) 

Figure 3.2.3 



-69-

We know that in a strongly-connected graph, there exists a chain (i.e., 

a sequence of ·directed arcs, all arcs directed in the same sense) that 

starts and ends at M' and which goes through every arc once. This chain 

can be used to describe a cyclic firing sequence, and since 1> has a 

live marking, every transition name must be included at least once in 

this firing sequence. 

As a Corollary to Theorems 3.2.1 and 3.2.2, we have the following: 

Corollary 3.2.1 If a Petri net 1'.'is LB, then there exists an initial 

marking M for which there exists a cyclic firing sequence. 

Proof Follows by combining Theorems 3.2.1 and 3.2.2. 

For completeness, we mention that the converse of Theorem·3.2.2 is not 

true. The net in Figure 3.2.3 provides the necessary counter-example. The 

reader can verify that any initial maTking of the net can lead to a mar­

king like the one shown in Figure 3.2.3(b), at which no transition is 

enabled. 

We would like to consider the connection between consistency and the 

structure of LB SMD Petri nets, because that is the class of Petri nets 

we will use for modelling asynchronous systems. We will look at the 

concepts of cyclic firing sequence and consistency for SMD Petri nets 

in some depth in Section 3.5. Before we can do this, we look at a det­

erministic subclass of Petri nets known as event graphs. We do this in 

Section 3.3. In Section 3.4, we complete our study of those aspects of 

Petri net theory which are relevant to this thesis. 
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3.3 Event Graphs 

Event graphs are what eonnnoner and Holt have called Marke~ Graphs[Cl]. 

We have chosen to call them event graphs because we would like to pre­

serve the distinction between the structure and marking of a Petri net. 

In this Section, we would like to define event graphs and to state 

some results that we will need in Chapter 4, where we look at the idea 

of timing relationships between activities in deterministic systems. 

Definition 3.3.l An event graph is an SMD Petri net in which every 

place has exactly one input transition and exactly one output transition. 

Example of an event graph 

Figure 3.3.l An event graph 

Recall the definition of conflict given in Section 2.2. It should be 

noted that no transitions in the net are in conflist. Every marking for 

an event graph is persistent, and every event graph is a deterministic 

Petri net. The structure of event graphs enables us to define them in 
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the following convenient fashion: 

Definition 3.3.2 An event graph is a strongly-connected directed graph 

G = {V,A) 

where V = {v1, ••• vm1 is the set of transitions 

A = {a1j} ~ V X V is the set of .!!:£!_, 'Where arc aij conne­

cts transition vi to vj" 

A marking of an event graph is a function that assigns to every arc aij 

in the net a non-negative integer called the token load of the arc. Note 

that in this definition of event graphs, an arc corresponds to a place 

together with its incOllling and outgoing arc in Definition 3.3.l (see 

Figure 3.3.2). 

·------.... • 

An arc in Definition 3.3.2 

Figure 3.3.2 

.-----1 ---{)--------.., 

Corresponding structure in 
Definition 3.3.1. 

Figure 3.3.3 gives an event graph corresponding to the one in Figure 

3.3.1. 

Event graphs are seen to be conflict-free SMD Petri nets in which 

each simple circuit is a state-machine component. 

Theorem 3.3.1 (due to Comnoner and Genrich) 

A marking for an event graph G is live if and only if the token content 
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Figure 3.3.3 



-73-

of every simple circuit is non-zero. 

Proof 

Necessity If the token content of some simple circuit is zero, no tran-

sition in this circuit can be fired; since the token content does not 

change if other vertices are fired (lamaa 3.1.1), no vertex on this cir-

cuit can be enabled through transition firings. 

Sufficiency Assume that the token content of every simple circuit is 

non-zero. Let vi be any transition in the net. Consider the waarked 

arcs entering vi. 

v 

Figure 3.3.4 

If there are none, the vertex is enabled. If not, cODSider the vertices 

fram lihich these arcs emanate. If each of these is enabled, then clearly 

vi will become enabled after all of them are fired. If some are not, 

consider the umaarked arcs entering them, etc. AB we continue this 

back-tracking, we are selecting a subgraplJ of G which cODSists of vi, the 

vertices from which these arcs emanate, the unmarked arcs entering them, 

etc. This process must terminate, since G is finite. Now this subgraph 
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must be circuit-free (i.e., a tree, as shown in Figure 3.2.4), since 

there are no token-free simple circuits. Thus, the subgraph must have at 

least one transition that has no incoming arcs which belong to the sub­

graph. This vertex can be fired at the present marking of G. After firing 

it, the subgraph of token-free back-tracking from vi is reduced by one 

transition. By repeating this process, we can enable vi. 

• 
There is one more result we will need in connection with event graphs, 

the proof of which is given in [Cl]. 

Theorem 3.3.2 A live marking for an event graph is safe if and only if 

every arc is contained in some simple circuit containing exactly one 

token. 

Example Figure 3.2.5 gives an example of an event graph with a live, 

safe marking. Note that every circuit has at least one token on it, and 

that every arc is contained in some one-token circuit. 

Figure 3.3.5 
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It is easy to see that event graphs have a live, safe marking that is 

persistent, and are thus deterministic nets. However, event graphs are 

not the only Petri nets with this property. In the next Section, we 

study a larger class of deterministic Petri nets. 
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3.4 LSP Petri nets (Petri nets with a live, safe and persistent marking) 

The class of Petri nets is a large one, but we will confine our atten-

tion to LSP Petri nets because their behavior can be represented by Petri 

nets whose structure is very similar to that of event graphs. The mark-

ed Petri net in Figure 3.4.1 is a good example of a Petri net which has 

a live, safe and persistent marking but which is not an event graph. The 

reader can verify that this net is LSP by drawing its reachability dia-

gram, which we give in Figure 3.4.2. It is seen that in no marking in the 

forward marking class can there be more than one token on any place. Fur-

thermore, at each marking exactly one transition is seen to be enabled. 

This verifies our claim that the net is LSP. In general, one can determine 

if a marked Petri net is LSP by using the results of Section 2.3. As we 

have pointed out before, the reachability diagram of a marked Petri net 

obscures the concurrency that is inherent in the system it represents, and 

this is precisely what happened when we drew the reachability diagram for 

the net in Figure 3.4.1. We now present an alternative means of represen-

ting the operation of LSP Petri nets. We will do this by constructing for 

LSP Petri nets a graph known as a behavior graph, and shall explain its 

construction by means of an example. 

Representing the Behavior of LSP Petri nets: Consider the LSP Petri net 

r; shown in Figure 3.4.3(a). We begin by drawing and labelling the set 

p c: p of marked places in 9 , (in this case { p , p , p J ). Let 
1 1 2 

T = {tl' t2t be the set of enabled transitions corresponding to p ' and 
1 1 

note that P corresponds to the initial marking of ;> • Let P 
2 

be the set 
1 

of marked,:places that results when all transitions in T
1 

are fired. Draw 
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tl 

Pigure 3.4.1 

(0,1,0,1) 

(0,0,1,1) 

Figure 3.4.2 
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1 1 
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that are contained in P x T. Draw the places P' = T' 
1 1 

Draw all the arcs T
1 

x Pi which are contained in TX P. 

This process of constructing the marked places Pk+l that results when 

all enabled transitions for Pk are fired is called extending the behavior 

graph from Pk to Pk+l • Since f> has a live marking, its behavior 

graph can be extended indefinitely. Figure 3.4.3(b) shows the behavior 

graph of 'P . We now make some definitions. 

Definition 3.4.1 A chain in a behavior graph is any directed path in 

it. 

Example is a chain in 13 • 

Definition 3.4.2 A slice of a behavior graph ~is a set of places 

that forms a cut-set of ~ • 

Note In a cut-set, no two elements of the set can belong to the same 

chain. 

Example is a slice of £. 

Each slice of a behavior graph corresponds to a marking of the LSP Petri 

net. 

Lennna 3.4.1 Each place in a behavior graph for an LSP Petri net must 

have exactly one input transition and exactly one output transition. 

Proof Suppose some place p in the behavior graph 1J has more than one input 

transition. Then, there must exist a marking M' in the marking class of 
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LSP Petri net !f . 

(a) 

• 
• 
• 

Behavio"J: Graph i:J. 

(b) 

Figure 3.4.3 



Cyclic Frustrum of 1J • 

(e) 
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Figure 3.4.3 

Steady-state equivalent net"'· 

(d) 
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the net P in which more than one token is placed on p
1

, implying that J> 
has a marking that is not safe. Bence, every place in fl has exactly one 

input transition. 

Also, suppose some place p in P has more than one output transition. 

This implies that there exists a marking M' in the forward marking c1ass 

for Pat which more than one output transition is enabled. This violates 

the assumption that ~baa a. persistent marking. Bence, each place in 'j> 

has exactly one input and exactly one output transition. 

Lema.a 3. 4. 2 There exists a slice in the behavior graph ~ of an LSP 

Petri net 9 that occurs repeatedly. 

Proof Each slice of S corresponds to a marking of 9 . Since 'P has a 

safe marking, the number of ~tinct 11arld.ngs in the marking class for 

the net is finite. Therefore, since the behavior graph is infinite, 

there ~t exist a slice in !It that oc:cura repeatedly. 

The reader is now asked to refer to Figure 3.4.3. The slice P repre-
1 

sen ts the initial warking of 1>. P 1 does not occur again in ~ • A 

behavior graph that bas slices which do not repeat is snd to have a 

transient, and such slices are termed transient slices. In terms of the 

Petri net 'P , a transient slice represents a -rking that cannot be rea-

ched after an initial occurrence. The slice P
3 

(shown dotted) is a slice 

which has repeated occurrences in 21 • A cyclic frustrum of 13 is the por­

tion of 13 between bro consecutiv~ occurrences of some repeated slice. In 

Figure 3.4.3(c), we show a cyclic frustrum. af 13 bounded by consecutive 

occurrences of the slice \ p 
1

, p 
4

, p 
6 

\ in 1J • Since 1J is derived from 

a persistent marking of .P, only one way is possible of extending this 
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to In general, for any slice Pk of the behavior graph, 

there exists a unique extension P • Thus, every cyclic frustrum bounded 
k+l 

at each end by the slice ip
1

, p
4

, p
6
l is identical to every other cyclic 

frustrum bounded at each end by this slice. Hence, instead of drawing an 

infinite behavior graph ~ , we will choose some cyclic frustrum of 13 and 

then coalesce corresponding slices together in the initial and terminal 

slice of the cyclic frustrum. The net so obtained is termed the steady-

state equivalent net of fJ, and is shown in Figure 3.4.3(d). The marking 

M for the steady-state equivalent net J is obtained by putting one 

token on each place in the initial slice. The construction of this net 

is such that the set of firing sequences of J is identical to that of 

the net .P . Also, the reachability diagram of J is contained in that 

for 9, there possibly being some extra states in 1'corresponding to the 

transient. The reader can see this from the graph 1J, and it is not 

necessary to construct the reachability diagram of 1>. 

We have shown that in ~' and hence in J , each place has exactly 

one input transition and exactly one output transition. ,J thus has the 

structure of an event graph, with the difference that certain place and 

transition names occur more than once in it. Transition t and places 
3 

p and p occur twice, for example. Such an event graph is termed a 
3 4 

multiply-labelled event graph. We will not define multiply-labelled event 

graphs formally, but will merely say that they are event graphs in which 

certain places and transitions have repeated occurrences (or instances). 

The LSP Petri net 1'has the property that it is possible to add tokens 

to certain places and still have a marking that is live and bounded, but 

no longer safe. Tokens can be added to all places except p
6 

and p
7

, such 
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(a) 

Figure 3.4.4 
(b) 
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that the resulting marking is live, bounded and persistent. The steady 

state equivalent net for :P with this new marking is simply the net .J ; 

the marking for ,,S is constructed by adding the same number of tokens to 

a place in J as were added to the corresponding place in fJ . If there are 

multiple instances of a place in I , then tokens can be added to any of 

those instances, provided the sum of the tokens added to all instances 

of a place equals the number of tokens added to the corresponding place 

in P. Figure 3.4.4(a) shows a live, bounded, persistent marking for 

and Figure 3.4.4(b) its corresponding steady-state equivalent net ,,/. 

We should mention that there exist Petri nets which have a live, 

bounded marking but no live, safe marking. Figure 3.4.5 shows such a 

Petri net. Thus, the preceding technique cannot be used to construct a 

steady-state equivalent net. 

Figure 3.4.5 
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3.5 The Structure and CODSistency of SHI> Petri;pata 

3.5.1 Existence of a live marking for an SMD Petri net 

In Section 3.3, we saw that for event graphs a necessary and sufficient 

condition for a marking to be live is that there be at least one token on 

each simple circuit. Since a simple circuit in an event graph corresponds 

to a state machine in an SMD Petri net, the reader may be tempted to ask 

if we can get a live marking for _ an SMD net by adding at least one token 

on each state machine component. The nets given in Figure 2.l.9(c) and 

2.1.lO(c) are counter-examples to this conjecture. In Figure 2.l.9(c), a 

subset of the transitions in the net can never be fired, whereas in 

Figure 2.1.lO(c), no transition can be fired. Both are examples of Petri 

nets which do not have a live marking. We now give a necessary condition 

for a marking M for an SMD Petri net IP to be live. 

Theorem 3.5.1 A marking M for an SMD Petri net IJ> is live only if the 

token content of every state machine is non-zero. 

Proof We will show tha~ if the token content of some state machine is 

zero, then no transition in it can be fired. Without loss of generality, 

let s
1 

be a state machine coaponent of P and let t
1 

be a transition in 

it, i.e., if s
1 

= <P
1

, T1 , A
1

> then ti£ T
1

• By hypothesis, the input 

place pj of transition ti in state machine s1 aust be unmarked. Also, by 

Lemma 3-~l.l, it must stay unmarked. This implies that there is no marking 
..... 

M' e: M at which transition ti can be fired. Hence, the marking M is not 
..... 

live. Note that no transition in s
1 

can be fired at any marking M' e: M • 

• 
Hack[H5] has shown that a subclass of SMD Petri nets called SMA ( state 

machine allocatable) Petri nets are similar to marked graphs in that any 
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(a) 

Reduced net No. 1 

Reduced net No. 2 

(b) 

Figure 3.5.1 
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marking that puts at least one token on every state machine is live. We 

proceed to describe the structure of these nets in what follows. The ma­

terial in Subsection 3.5.2 is taken from Hack[Hl, HS]. 

3.5.2 State Machine Allocatable Petri nets 

Definition 3.5.1 

is a function B: 

.>f t 49- T B(t) 

A state machine allocation over a Petri net ( P, T ,A) 

T ___.. P such that 

"t • 

Informally, this means that for each transition in the net, we pick 

one of its input places and ignore the others. Given such a state machine 

allocation, we perform a reduction by deleting certain places and transi­

tions in the following manner: 

Step 1 Delete all places for which at least one output arc has been 

deleted. 

Step 2 Delete all transitions that have all output places already deleted. 

Repeat Steps 1 and 2 until neither is applicable anymore. What is left 

over is the reduced net. Each step eliminates some nodes and arcs that are 

not part of the reduced net, until no more nodes and arcs can be deleted. 

A Petri net is said to be state-machine allocatable iff every state 

machine allocation gives a reduced net that is either a strongly-connected 

state machine or a set of strongly-connected state machines. We will 

abbreviate the last remark by using the contraction "SSM" to denote "a 

strongly-connected state machine or a set of strongly-connected state 

machines". In Figure 3.5.l(a) we give an example of a Petri net which is 

state-machine allocatable. In Figure 3.1.S(b), we show two allocation 



-88-

Figure 3.5.2(a) 
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An SMD Petri net that is not SMA 

Figure 3.5.3(a) 
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Figure 3.5.3(c) Non-SMA Petri net with a live 

marking 



-94-

reduced SSM's. Reduced net No. 1 results from allocating t to p and 
4 2 

reduced net No. 2 results from allocating t
4 

to p5 • Since each of the two 

allocation reduced nets is an SSM, the net is SMA. 

Let us give another example. Consider the Petri net in Figure 3.5.2. 

Since each of the state machine allocation reductions is an SSM, the net 

is SMA. 

We now give an example of a Petri net which is SMD but not SMA. Such a 

net is given in Figure 3.5.3. We see that two of the SMA reductions are 

SSM's and the other two are null; the net is not SMA. In case the reader 

is a little confused, we would like to point out that the property of a 

Petri net being SMA is a structural property of the net, and he will note 

t~at no mention has been made of markings so far. 

The reason we have introduced SMA Petri nets is that they form the 

largest subclass of SMD Petri nets we know of that has the property that 

any marking which puts at least one token on each state-machine component 

is live. This is the result presented in the next Theorem. We present 

this Theorem without proof and readers interested in the details are refe-

rred to Hack[Hl,H5]. 

Theorem 3.5.2 ( The SMA Petri net liveness Theorem) A marking M for 

an SMA Petri net ~ is live iff it puts at least one token on each state-

machine component of the net. 

This Theorem is of interest because it tells us how to construe~ a live 

marking for any SMA Petri net- simply put one or more tokens on each state 

machine component of the net. The non-SMA Petri net shown in Figure 

3.5.3(a) also has the property that any marking that puts at least one 

token on every state machine is live, as the reader can easily verify. 
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Figure 3.5.3(c) shows the Petri net of Figure 3.5.3(c) with a live mar­

king. We present the following as an open problem: · 

What is the largest class of SMD Petri nets which has the property 

that any marking that puts at least one token on every state machine 

component is live? 

We now turn to examining the issue of consistency for SMD Petri nets. 

3.5.3 Consistency of SMD Petri nets which have a live aarking 

Recall Corollary 3.2.1, which we repeat here for convenience: 

Corollary 3.2.1 If a Petri net 1> is LB, then there exists an initial 

marking M for which there exists a cyclic firing sequence. 

In Section 3.4, we established the connection between a cyclic firing 

sequence and the steady-state equivalent net for event graphs and LSP 

Petri nets. We now introduce a concept similar to the steady-state equi­

valent net in connection with live SMD Petri nets. A firing sequence, as 

we have pointed out in Section 3.4, lQ[presses an ordering relation on tra­

nsition firings in a fashion which obscures the concurrency that is in­

herent in the Petri net. To preserve this inherent concurrency, we intro­

duced the behavior graph for LSP Petri nets. We will now introduce a more 

general concept to study the behavior of SMD Petri nets- the occurrence 

graph. This notion is not a new one, having been studied extensively by 

Holt[H6). As we did for behavior graphs, we shall illustrate the cons­

truction of an occurrence for an LS SMD Petri net by means of an example. 

We begin with a live, safe marking for an SMD Petri net(see Figure 3.5.4). 

Construction of Occurrence Graph Begin by drawing every marked place 
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Figure 3.5.4 
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Occurrence Graph No. 1 

Occurrence Graph No. 2 

Figure 3.5.5 



-98-

in the net together with a token on each place (i.e., places p
2 

and p5). 

Now, since a place may have more than one output transition, we may have 

several enabled transitions connected to tne same place. In event graphs 
·i.. ... 

and LSP Petri nets, w~ saw that every 'lace~il.as at moat one transition 

enabled at any marking. Thia is not l\t!cessarily be for SMD Petri nets. 
'\ 

As an example, consider themarked Petri.net of Figure 3.5.4. Both the 
--....,. ---~ .. -

output transitions t
5 

and t
6 

of place p a.te H4llll to be enabled; since we 5 .. 

can fire only one of these transitions, we 11U8t·make a choice between ·them 

and fire the one we choose. We will extend AP1ace 1.11 ari occurrence gtaph 
.J -.,, -1 -

by drawing the output transition chosen fbr.~d:llg, firing that.transition . . 

' 
and then drawing the new marked place(s) that result. A slice of an occu-

rrence graph is a set of places that forms a cut-set of the graph. We can 

talk about e!tending .!. slice in the same way as we did for behavior graphs, 
-,' , > '.' " ", - \' ., .~t l." ~~ ' .... k 

the difference being that a choice may have to·oi' iiiActe 1Jetvee1r enabled tra-

nsitions. In the constll\i~tion of a bahavior graijf~ therie ue~r occurs· a slice 

for which a choice has to be made between output transitions. '!bus, there is 

only one behavior graph for an event graph or an LSP Petri net, and this 

graph is unique. On the other hand, several occurrence graphs aay be poasi-

ble for LS SMD Petri nets. In Figure 3.5.5, we show two possible occurr-
, ) ; . r 

ence graphs for the net in Figure 3.5.4. The reader will realize that an 

infinite number of occurrence araphs is possible for this net, or, for tnat 

matter, in any LB net with a non-persistent .. rkina. 

Now let ua apply Corollary 3.2.1 to the occurrence graph for an LS 

SMD Petri net •. An occurrence graph is a concurrent representation of a 

firing sequence for a Petri net, and each slice repr .. ents a marking 

of the net. A repeated slice thus represents the repeated occurrence of 
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Consistent current assignment 

cp ::: 1 
2 

cp ::: 2 
3 

cp ::: 2 
4 

q:i ::: 3 
6 

Figure 3.5.6 



-100-

P5 

p6 

" • ts t6 • • 
P5 

P4 

t7 

p6 

t6 

P5 

Figure 3.5.7 Cyclic Frustrum 
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Ps 

P2 
p6 

ts t6 

Ps 

t2 
t7 

P3 

.ts 
t6 

P2 P4 
P5 

P5 
t 

·1 7 

Figure 3.S.8 c-equivalent net 
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some marking. The portion of an occurrence graph between two consecutive 

occurrences af a slice is termed a cyclic frustrum, and corresponds to a 

cyclic firing sequence for the marked net. Theorem 3.2.1 tells us that 

for any consistent current assignment for an LB Petri net, we can find 
.. , 

a cyclic frustrum in the occurrence graph of the Det. The number of 

occurrences of any tranaition in the cyclic frua~'r'Ui.a'~'-aquala ita current 
\ 

in a consistent current assignment. 

Example 3.5.1 Consider the SMD P~rt.net of Fi~~;~;a..5.4. In Figure 
,-,--~l+'·~'l._:,,. ,,I ... ~--........ , {.""jF '"""". .. "' 

3.5.6, we show this Petri net w.ith a minimal, in~a'r conaiatlpt current 
"' ' -'t~ jj?r~ ~--~ 

assignment. We draw the occur~ce graph as ):ih~saed earlier i and Figure 
; ., 

-, 
.. ~7 

3.5.7 shows a cyclic frustrum e>f this oc:porrence arl&pa.,(i.n<,\rhich the multi-
'('. 

plicity of each transition equals 1.1&.aasociated current in the consistent 
·, 

current assignment exhibited in Figur~ 3.5.6. We now coalesce correapon-

ding places in the rep~t'd slice in}l manner si11ilar to what we did for 
' ' ' ·' 

behavior graphs. The resuiting'str~natiy-connected net is termed a conais-

tency -e,uivalent net for the SMD Petri net, abbreviated to "c-equiva-
}'"! 

lent net" • The c-equivalent net fo~ -ibe: cyilr~{ frutrib..:~i·Hgirre 3.5. 7 

is shown in Figure 3.5.8. 

Let us now note some facts about the relatio~ip betw.eam an SMQ tetri 

net and its c-equivalent Petri net. Let us be&in bY, sayin% ~at· we .#ill 

consider only minimal integer consistent current aasianments. Note that 

the c-equivalent net of'·an,,.SMJ> :eetd.~t 1'ri,'l('.~tA~i.qve~ Figure 3.5.9(a) 
- - ,_.JI'~ 

shows an SMD Petri net 1' with a minimal integer consistent current assi­

gnment. The net IP baa several c-equivalent nets, two of which are 

shown. We observe that in the construction of a c-equivalent net for.an 
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Minimal integer consistent current assignment 

cpl = cp2 = 1 

cp3 = cp = cp7 = 2 
4 

cp 5 = cp 6 = 2 

Figure 3.5.9(a) SMD Petri net 'P. 
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lPigun 3.5.9 (b)' 
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SMD Petri net .1' with a minimal integer consistent current assignment, 
.. :_ 

each state-machine inf' corr .. ponds to a circuit ::Ln'~he c-equivalent net. 

We formalize this in tJu! following Le1111111. 

Lemma 3.5.1 Let 9 be an:LS SMD Petri net with a miaimal integer consis­

tent current assignment I , and let C be a c-equivaltnt net for P . Then, 

every state machine component in P corresponds to a simple cireuit in ~ • 

Proof Let 1 be the cyclic f rusttum corresponding t~ .I . Applting 

Theorem 3.5.1, we see that the initial slice of 7 JlllSt contain at least 

one place from each etate-machine ind'. Now consi,de..f'a chain in 7 boun-

ded at its extremeties by two consecutive instances 'f some place p • In 
i 

,/ , this chain correspoads to a si1111>le circuit. By Che const?11ction · 

' 
procedure for occurrence· graph·s, it is obvioue ~at ea~ s.tatei machine in 

correspond• to a chain in g. • This proves tka Leaaa. 

EX!!JPle Consider the LS SMD Petri net of Figure 3'.S ~-6. Each of the two 

stat• machines corresponds to a circuit in.the c-equlvalent •et shown in 

Figtire 3.5.8. Note that there are two circuits in th~ c-equiNalent net 

which do not correspond to any state-machine', in de· SMo Petri net. An . 

;·.(" 

Since the c-equivalent net corresponds to a cyclic firinJ··~uence for an 

LB SMD Petri net, we see by applying Theorem 3.2.1 that the multiplicity 

of a transition in the c-equivalent net -..t· t\flUAl 1~.~rent in a mini-

mal integer consistent current assignment. 

To recapitulate the main results of this Section, we have the following: 

(1) We have introduced the subclass of SMD Petri nets known as SMA Petri 
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nets, which have the property that a marking.is live if and only if each 

state machine contains at least one- tokeft-.; Tht•'la the largest class of 

SMD Petri nets known to date that has this property. 

(2) We have introduced the c-equivalent net of a Petri net which has a 
'· 

live, bounded marking. For sMn Petri ~ts, we have seen that every sta~e-

machine corresponds to a circuit in a c-equiv&lat'-net: The converse is 

not true in general. 

We now turn to the issue of applyin·a· Petri net ':t:heo'ey to the analysiS 
.. 

of asynchronous concurrent aystems. 

.. ~. 

' ' 

-----~-----------



CJIAPTER 4 

TIMED PETRI NETS 

4.1 Timing in Petri Nets 

In our discussions so far, we have not entered into any timing con-

siderations in connection with Petri nets. Thus, 11hile SMD Petri nets 

can model the structure of asynchronous concurrent systems, they do not 

contain enough information to be used for a study of issues of perfor-

mance of the type discussed in Chqter 1. In defining Petri nets, we 
r .·, 

made no assumptions about the length of time it takes for a tranaition 

to fire. In real-world systems, activities do not take place instan-

taneously. Every activity in a system has a time duration which is 

different from zero, and in all the systems we will model, we will 

make the added assumption that all activities complete in a finite 

amount of time. In the Petri nets that we use to model these systems, 

we will assume that every transition takes a bounded, non-zero amount 

of time to fire. The resulting model of asynchronous, concurrent systems 

is termed Timed Petri .!!:!£!., and is formalized below. 

Definition 4.1.1 A Timed Petri ~ is a pair ( 1> ,O) 11here .P is a 

Petri net (P,T,A) and Cl is a function that assigD;S a real, non-

negative number Ti to each transition ti in the net. 

n : T--.......;~- {a is the set of non-negative real 

numbers } • 

This non-negative real number Ti • O(ti) is termed the firing time 

of transition ti. 
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The operation of the net can now be assumed to take place in real time. 

At any instant f' of real time, the net has a '4!~~na M(T), with th' ) .. 

W:iderstanding that we may vtew M both as a vecto!iand a function. We ... ,,. .. ~ 

denote the initial marking as M(O). We write Jf(T ,p) 'IOr.,X(1")(p), i.e., 
J• ~~ ' •• ··~ .. ~~::'. ·' 

the numbet of tokens ~place pat time T •. A.tranaiti~~t1 is said t·o 

be ena\>1ed at time f' if and· ()Illy if every input pla~,- of tran&ition ti 

has at least one token on it, i.e., 

M(f' ,pk) ~ 1 fw: all pk E ·"ti. 

When transition ti is enabled, a firina can be initia!td. When a firing 

is initiated, a token is removed from each input place of ti and 

transition ti is said to be execut11!3. This execution phue lasts 

for f' i seconds, where f' i is the firi91 !I!!!··~ transition ti" At the 

end of this time duration, the f~ri~ ~!, ~r~,i~i"!;.~d_· f•f!!!ft~f~ ~ 

a token is placed on each output place pj E ti•. 'l'his completes the 

firiog.of tr~ltion t 1 • 

The three pheaee of a, tranaS.tion fjr~ c.• be, ~if~i.~ed ~r~~~ning 

every traiu.s+t~pn q conai•tinJ of .~lf9,j:f."'8~~f~ ... ~ •~ ~ermediate 

place as shown in Figure• 4.1.1. ~ JiJ"i~ t~.,;of the transition ti 

cu now be ~J!~a.l:ed vi.th ~e place ~t ~p t~ ,~PcJ~~'-'1• f.-lii~: 

When transition ti initiates, t 1 ' f~~~· ~·~M.-t.~.~ly, a token' 

U removed fJ:~ e~ll i,QPut place. o~. 1tt:'• .~ .~ t~,ia depoeited on 

place "t: This t~ is ,held by_ pl~'· "t. f.~r a du~~~~ e~ual to T ,,, 

the firing time o.t t 1. ,At t~,~Dd of tl\le 1•.•~-1, ~rpaitio,n ti" 

·' 
fires, corresponding to t~e tenainat~on of ... t

1 
.... 

~· "" ... ~ ' 

'l'he initiatiqaa ~ terainatif!'llla of transitioaa,in a Petri net must 
'•7 ' ' _. '" ~ ,. .~. :: ~J, : A 

-- ----,,- ----·----
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j2 

(a) (b) 

satisfy the following balance equation: 

Notation 

Let p be a place in a Petri net 'P. Let ti1, ••• tin be the input 

transitions and tj1 , ••• tjm the output transitiobS ot'p. 

Let l(T',t) denote the number of inttlatiOlls'of tr&naition t up to 

and including time T'' 
. } 

and T(T', t) denote the nUmber of terminations of 'tt'alisltion t up to 

and includihg time T'. 

Then, if M(O,p) is the number of tokens on place p at tlme zero, and 

M(T',p) that at time T', the following auat be satisfied: 

i ' ,. ~ ,. •{ 

We will refer to this as the tgken balepcc egyatlop, and will make use 

of it in later sections. A word now'· ~h~t t"he ch~:l~e of a firing time 

for a transition in a Petri net. 
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We have defined Ti to be a noa.~negatte 'fta.li_~, theX'.•bY eisu-. 

ming that the duration of each' activi"lf 18 find. 'l'his may-noc -be a very 

accurate picture of real-wOrld 8Y*teml;, t'tlr , i•~tice, tbe execution 

time of an operator depends upon the data it· is -called'~• to handle. 

In a floatiug •point adder, for enllifle/ the alkt 'tim. will depend upon 

the argument a and theiT 0~8 ~ '!hue, t:t ..,. '1ie .,.. seasonable to 

assume that a 'trailliiM~'-'ffTing t'i..S ia a r.MGat ·'Nriable "1ose distri­

bution can be represented by a rectangular diatributiQli d :C(le tosm, 

shown in l'igure 4.11!. 

Probabili 

density 

.L 
2W 

r-----

,,. ..(il ' 
i 

Ff.pre 4.1.2 ·1-' 

More realistic ------, 
1 uaumption 

' ' I 
Firing time 

We will return to a consideration of atatietical firing times in Section 

4.5. 
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4. 2 ·· ;AYMWt•· BehayJ.11 . .e! .. JJ••ir fEr> ltt5• 

In Oi•ere , 2 8114 3 • _, ill!trGCluced, ~~, 1•• ~. r(ii;ing sequence and 

. behavior graph to ..-act~r~ tbe ,.c;t~ q{,~~~~ rw.,ta,.,, J;or timed Pe~ri 

nets, we have. potttul~ed th,a ~teoce .~.,a -{~ ... --~ •ia .. apinst :.ich 

the firiaa of tuaait.i"8 c.i b•, ~· .#. t:~.-~119: •. ~e ut baa • , 

marking M(O)-. 'k ... Uiaaa are ellqwe4 Nl~, ~d•.f: tµ._~ 'Which 

the firing of a.·tr_.i~Loa t:.Ue_;p~ ~' ·~1~, ... ~ tabii. kn~ q 

A firing achedule for a timed Petri net ia a 11•~1q( a,~aces ~ ini­

tiation. and teraf.natioa times for the transitioas of a net. 'J.'he firing 

of a tr!Dfition. is f•!!ible if t~e transition waa enabl4'f 1at th~ iuatant 

the firing was initiated. · If ewry firing in a firing llfhed'ute fa fea-, 
i 

sible, the firing achedule ia fe!!ible. A firing achedui, i• infeasible 

(or not feasible) if it calla for the initiation or tenijlnation. of an 

actf.vtty.eul.:lier taa.allowd by the tend.nation of otbe]r activities. 

Figure 4.2.l is an ex ... le of a timed Petri net aDd Fi&Ure 4.2.2 gives 

a feasible firing schedule for it. 

t 
".'!' J 

2 'T •3 
2 

Figure 4.2.1 A Timed Petri net 
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~ 1 2 3 4 5 
~ ~ 

tl (0, 5) (12, 17) (24, 29) --------- --------

t2 (7, 10) (19, 22) (31, 34) --------- ---------" ,_ 

' ,; 

. ' •' 

t3 (5, 7) (10, 12) (22, 24) (29, -U) --------
' 't ·'"•"!. -- --

Figure 4.2.2 Feasible Firing Schedule fer·'Ti.ti*d: Petr:£ lfet ill :rt.gure 4.2'.l. 

1 2 j 4 5 
.. 

--
<'~ . ~- . ' '· 

tl (O, 5) (12, 17) (24, 29) --------- --------
' 

' 

~ ;. 
4111' 

t2 (7, 10) (19, 22) (30, 33) --------- --------
; ; ·1 

. . . 
t3 (5, 7) (10, 12) (17, 19) (22, 24) (29, 31 ) 

-

Figure 4.2.3 Infeasible Firing Schedule for Ttaed !etri Bet in Figure 4.2.1. 
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Figure 4.2.3 gives an infeasible firing schedule for the same net. Tile 

starred entry implies that the' third initiation of transition t 2 takes 
• 

place at T = 30; this is impossible, becau3e the third initiation of 

t
2 

cannot take place before the termination of ttte fifth firing, ·Qf t'
3
,, 

which ·happens at 1' • 31 units. 

Readers will note that in the feasible firing·schedule of Flgure 

4.2.2, the initiat~ona of transit~ona t 1 , t 2 and t 3 ~ake place at res,u­

lar intervals. For, example, consecuti¥e initiat~ons of transitions t 1 .. 
and t 2 occur at in~ervals of 12 time. units. _TranaitiOu. t 3 behaves in 

a sli,htly different fuhion. We notice that the ·first, third,fifth, ••• 
( 

transition. initiations occur every 12 time units, i.e., alternate 

initiat:LOQ. occur e;wry 12 time mµ.u. c' 

A firing schedule with this property is termed a periodic firing 

schedule. If all transitions in the net can have consecutive initia• 

tions at regular intervals, we wquld term this a; 1tr091l1-per!piic _ .. 
~ . 

' ' 

firi!I s_chedule. ?-11• Cfl!!Utatiog rate of a tr~,_it1.C)ll is the i~vetage 

number of firings pf that transit#ion in unit ti.-. We can see lthat 
' ' 

~ . 
transitions tl and t2. have a computat~~ .. ra_~~-- of: once every l~ time 

units, or 1/12. Trapaition t 3 h~ a COlllPUtation: rat~ of twice every 
;, ~· ! ) 

12 tble units, or 1/6. l'hese c011putation rates are.the maximum rates 

possible for the t~ansitions. 

The Petri net in Figure 4.2.1. is seen to be aii LsP net, so .that it 

represents a deteraiaiatic system, 8Gd its steady-state equivalent net 

h the multiply~labelh4 ewnt~sraph; 1hovn 1'. r~av..-• ~~~2 .. 4. The 

multiplicity of transition t
3 

is 2, while that of both t 1 and t
2 

is 1. 

A consistent current assigmaent for the net cp
1 

• cp
2 

• 1, cp
3 

• 2. 



Figure 4.2.4 

-114-

Steady-state equivalent net for the Petri 
net: in Filbw 4;..2.,1 

We note that the computation rates of tranaitlona-t1 , t
2 

and t 3 are in 

the ratio of their currents in a conaiatent current aaaigmaent. Before 
,'(: Jr ~, ·' 

we can justify this, we look informally 't the COlllllPUtation rate of 
;• 

transitions ~n an event graph; successive generalizationa of the ideas 
rr _,j.'-V(~f 

presented below will lead us to all results of interest in this thesis, 

including the computation rate of tranaitiona in timed SMD Petri nets. 
i I ', •>-

. ·····- -- - - COD8 t~~r the -lttipie circQit ail~ in-Fi.Ur! 4;2~ .5 ,- tD which each . 

transition .ti bas an usociated firing ~'-me T 1 ; •. Ve .w~ll. begin by 88;su­

..mi.Da that t..~e ci,r9µit h.,.. one token on i~, ~ will ~~en ext_end the ana-

------·---·rr 
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in turn over and over again. Suppose that the circuit is denoted by 

p1t 1p2t 2 ••• pjtj , and suppose (without loss of gen•ral4ty) that initially 

the token is on place pi. Let tt • 'T' 
1 

+ 'T' 2 + ••• + 'T' j • 'lben, the token 

fires every transition in the circuit ~ ~rn apd req~ars on pi every 

tt seconds, assuming that no time is allowed.to elapse l:letween a tran­

sition being enabled and being initiated. U~e~ ehis assilmption, every 

transition initiates at intervals of tt seconds,; and tt is ~e period of 
·t 

the firing schedule for the circui~ that realizes'the maxi•um computation 
. . 

rate. The coaiPutation r~te is easily. seen to be 'P. ,,. l/'IC. 1'0w suppose that 

the circuit has n tokens on it instead of 1. For the comqtnect action of 

the n tokens, the firing rate becCDH/ n/,'IC;· or 
,. 

n ~· Every transition 
~ 

t;i 

in the circuit has a maximum computation rate given by this expression. 
' ' .- :» ... ' 

Let us now consider tramitiona'.c.tD a timed event graph. We know 

from. Theorem 3.2.1 that in an event graph with a live marking, the token 

content of every simple circuit is non-zero. '!bus, let the token content 

of a circuit ~ be ~· where ~ ~ O. Also, let "it denote the sum of the 

firing times of transitions in ~· If every circuit were by itself, the 
.!! _:::. ,i·... '".; .. ,i .... 

transitions in circuit ~ ~ld have a ~amputation rate of, ~ I ttk. 
. ; ' .I ..... :;J ; t.,: y 

However, in a strongly-connected event graph, the circuits are inter-
,. ,' • .i -" l ;.~ • .J. 

connected and intuitively it is clear that they will affect each others 

natural computation r4te (1.·e., the camputatf.on 'r«'• ·the trabaitlons in 

a circuit w00ld have lf the circuit were Ud1ated''frm 'fhe other cir-

cuits). 

Now, without lou of generality, let c1 be'the circuit with the sma­

llest natural computation rate nn/u1 • Clearly, all transitions t 11 , ••• t 1i 
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Figure 4.2.5. 

t. 
l. 

I 

I 
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E c1 have a computation rate that cannot exceed n1 t~1 (see Figure 

4.2.6). 

t2a 

Figure 4.2.6 

.t 

Extending this arguaeat, we see tllttt if there exists a directed path 

between any two transitions in the event graph, they must have the same 

computation rate. Since ~ry transition is on some directed path from 

transitions t 11 , t 12 , ••• tli' we conclude that all transitions in the 

event graph must have the same c8mputa•1oo •ate, which cannot exceed 

n1/Jt1• What this means is that in any timed event graph (G,0), all 

transitions have the same computation rate, which cannot exceed 

min { n1 /n1, • • • n1/nk} 

where c1 , ••• <1t are the simple circuits of the graph, 

ni is the token content of circuit Ci' and 

Jti is the sum of the firing times of transitions in circuit Ci. 
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We have been able to obtain,informally, a bound on the computation rate 

of transitions in a timed event graph. In the next Section, we will 

show that this bound can actually be realized. 
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4,~ Jimed t;vent Gr&phs 

In the previous section, we saw infotmally how we could obtain a 

bound on the steady state c~tati~ r~te of'a ttmec!·event graph. 

Here, we will show that the bound we have obtained is actually 

realizable; furthermore, we will show that there exists a strongly 

periodic firing schedule for which the transition• have a computation 

rate equal to the bound. 

We will use the notation for event graphs given in Definition 3.3.2. 

To recapitulate, let .,. be a timed event graph (G,O) where 

G is a strongly-connected event graph (V,A). 

Recall that V • (v1,v2, ••• vm} is the set of transitions. 

A • {aij} ~ V x V is the set of arcs. 

aij is an arc that connects transition vi to transition vj. 

O is a function that assigns to each transition vi a firing time Ti' 

i.e., 0: V ..., • (where 1l is the set of non-negative real numbers). 

We· write Ti for O(vi). 

Let M(O) be the initial marking of the net. Recall that M is used 

interchangeably as a vector and a function. For event graphs, 

M(T ,aij) will denote the number of tokens on arc aij at time T. 

Arcs in event graphs will be treated in the same way as places in un-

restricted Petri nets. 

We now proceed to formalize the definition of a feasible firing 

schedule for timed event graphs. 
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Definition: A firing schedule. S for a timed event P:aph ~ is a pair 

(SI' ST) such that 

SI 'f\ x V ... 

'T\ - (1,2 ••• ) 

... 

SI(n,vi) is the nth initiation time of ~ansition v1 • 

ST(n,vi) is the nth termination ti.me of ~~i:~~ vi. 

A firing schedule £~ a 'Hmed :ttet:rt ne't',.Y: not be' reaU.zable because 

some transitions are specified to fire when they are not enabled. A 

feasible firing schedule is one that does not violate this requirement. 

We now show how to determine the marking M(T) at any instant of time T 

for a timed event graph.l--11hich h&L.4 feasible firing scbedul• S • 

.. · ~,. 

Notation: At any instant of time T in a ft.rl.na scliedute S far timed 

event graph J, ., 
Is(T,vi) denotes the number of initiations of tranaitiOn vi up to and 

including time T· 

Ts(T,vi) denotes the number of terminations of tcansition vi up to and 

including time T· 

Let aij • (vi'~J) be an a~c in the event graph ~·r 

By token balance 

M(T,aij) • M(O,aij) + Ts(T,vi) - I
8

(T,vj). 
·. . 

Now con1t;~•r t'f;\e ~led tr"'1,Si_t,ion vj ab.ova i• ~i&JU:e 4.3.1. If an 

initiation of v j t;aw place. at the .µi,_~~ T., ·then iJmnediatt.,ly p,ri9r 
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to instant T, there must have been at least one token on every input 
. . . ~ . ~ ~-:~s;, . , ; :J , 

arc of vj. We will use the notation T- to denote an instant (T-E) where 

E __. O. T- will, for all practical purposes, denote. the instant T 

itself. 

~ 

Definition: A firing schedule S for a timed event graph f is feasible 

iff for any transition vj and for k • 1,2,3 ••• , we have 

Y aij E "vj, M(S1 [k,vj]-, aij) ~ 1 

Input arcs of 
tr.-iticm j 

J:z·. l '·. 

Figure 4.3.l An instant when traneition vj can initiate. 

Suppose we now consider a run of the event araph~. Consider an 

arc aij that initially had M(O,aij) token.i '& it; "'~ie aiiiuf:ttion 

has fired ii tildes up to and including an instan~-of'»tflle'1". · It is 
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obvious that in the same'. inte~l of ti.mi, .trana~~ien ,,. j cQUl1i have 

fired at most M(O,aij) + ~ - 1 ~imes with~t.dt;ivi,~. t:h~ token content 
. · .. ·' 

of arc aij negative. The (M(O,aij) + n)th initiation of transition vj 

must await the nth termination of transition vi~· Wi-'1ff.ll show in the 

next 'lbeorem that this is a necessary and sufficient ~o~dition for a 

firing schedule to be fe•sible. 
: (' , f. 

is feasible iff for !!!Ch .!:!£ aij in the graph G,:l ~f:~ 

ST(n,vi) ~ s1 (n + M(O,aij), vj). 

This can be stated equivalently as 

for n • 1, 2, 3 .• •• 
~ 

'' .. . ' ...... \., '•-' _.{j1 

s1 (n,v1) +Ti~ s1 (n + M(O,aij), vj). 

Proof: 

Necessity: We pi:O"lre "this by cont:radlc~'ian. SuPP<>ae ~ exiats 

a feasible firing schedule such that forsQDe'-n'lnuf:.- aij 

i.e., 

Let T • s1 (n + M(O,aij)' vj) and therefore 

18 (T,vj) • n + M(O,aij). 

Using token balance, 
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i.e., M(T,aij) < 0 

This is the desired contradiction of feasibilitY of S. 

Sufficiency: Suppose S is a feasible schedule, ancr consider- any 'inittant 

of time T' > 0 such that 

We wish to show that for the instant.,.- just prior to an initiation of vj 

M(T' - ,aij) ~ 1. 

Now, at time .,.- , 

but 

M(T'- ,ai:j) • M(01 aij) + T8 (.,.- ,v1) - (n + M(O,a1j) - 1) 

•T8 (,.- 1 v 1) - n + 1 

Hence, 

• 
We have introduced the idea of a st,Qnsly ~iodic fi~ina schedule in 

' ,: ·~' ,.,. ' ~ . 

Section 4.2. We now give a formal definition of a strongly periodic 

firing schedule for a timed event graph. 
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Definition: A feasible -firing schedule s- for ',a ;timed event graph' f 
is strongly periodic with period 2( > 0 iff there exist real nutnbers 

xi :<!! 0 such that 

s
1

(n,vi) ... xi+ (n-l)7C. 

'nle real numbers x1 , ... xm are the dilplac!p!!ntt !Qf ~e f,irina times of 

transitions from the inst&1.1,ts. _O, 2t, 21f~ ••• 

Corollary 4.3.1.1: Let aij be an arc in a timed 'event graph~. 'nlen t 
has a strongly periodic firing' schec!ute' -'W:tttPP.riOd 1C > o and with 

displacements xl' ... x:m iff Yaij E 'G,.:'w 'have 

xi+ Ti~ xj + M(O,aij). 
.., 

Proof: 'nleorem 4.3.1 states that Y ·aij e' G,&l\d f0r·-rt·•· 1,2, ••• 

S1(n,vi) +Ti~ S1(n + M(O,aij)' vj) ••• (4.1]. 

By the definition of a strongly periodic firing schedule we have 

' 

and s1 (n + M(O,aij), vj) • xj + (n + M(O,aij) - 1). 

Substituting into inequality 4.1, we have 

or 

xi+ (n - 1) +Ti~ xj + (n + M(O,aij) • 1) 

xi·+ Ti· ~ xj +_ ~(O,aij;_). 

1 ' :.~ ' 

The inequalitie• of ebro-llary' 4.3.1.1 cin"'-be·'tifrirtttep.· i ·· 

xj - xi ::2: T' i; ~- M(O,aij) T a1~j'~ -(;-. 

..•. ,,_, 

• 
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The quantity 'f i - TTM(O,a1j) .;la a constant for each arc ,,ij. 

Let us write 

Corollary 4.3.1.1 can be rewritten as follows: . ,. .1 

A timed event graph 1 baa a strongly periodic firing schedule for 

displacements x 1, ••• xm iff 

V aij E G, we have xj - xi :ii!: c1j ..• [4.2] 

We would now like to investigate under 1'hat condi~iQ~ ~~e set of 

inequalities [4.2] is true. In order to do. ~ls, •• make a _br~ef 

excursion into the theory of potentials f~ direct,ed gtphs. c'l'he 
. ~ ' ' ' ' 

development given here follows very closely the material in Berge and 

Ghouila-Houri,. pages 144-145 and page~ ~s-qi [B~]. , 

4.3.2 Existence of Potential Differences for event graphs 

Suppose with each arc aij of an event graph G w. associate a real 

number eij which satisfies the ~ondition that for every cycle ~ E G, 
,, 

l'. ~ ' • 

- o. 

where ~~ denote the arcs of the cycle· oriented in a 'given sense, and ~-

the arcs oriented in the opposite sense (see Figure 4.3.2). Then, we 

will say each e1 j rep,f.,.el\ts a ppttn..tifl di~SI affp_ss its corre$ponding 

arc aij. Readers familiar with circuti: theory will notice the similarity 
·~ . . 
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, "J.4 e ~-

Figure 4.3.2 A qycle 

of this notion of potential difference to that used for electrical 
I 

networks. In networks we can choose -any arbitrary ~de to be a 

reference !!2!!!, and aaaign it a potential of aft'o. , ,'lhe poterttial of, any 

node in the network is then equal to the potential difference between 

event graph can be given a potential difference assignment, then it is 

equivalet'lt to e.Yi•i that-eaeh · tranaiti&kF•f.'CM\'"8ca••i1Md a. potent!-a1 

xi such that the potential difference 9ij ••·*3-·s1>J:.iVe lurveuaecl:ai , ·. 

to denote the potetul aaaecia~e4'wttllfttrauhl•·v1, aad :bave uaed xi 

earlier to" denote thet,4itiplac•nt aseooiat:ed·~ritla;'Vi .,:1 this baa been 

done intentionally. 

Theorem 4.3,2: A functi~ t: A~·· !bi,~ .. tf..sP..• ~ r .. 1 numbeJ;" 9ij. 

to each arc a1j is a potential difference assipaent iff tfler• exists 

a function X: V _..'It which asaociates with each vertex vi in the event 
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graph a real number xi auch that for every arc aij we have 

eij - xj - xi. 

Sufficiency: If eij i8 defined u J1Ven,then conaidel>·-a~cycle 

C • (v1,v2, •• -~k'v1 ). 

Define • +1 if aij i• directect in one aeue 

• -l'if a1j i• directed {ft the oppo!;i.te•enae. 

?hen, 812 • ~ - xl 

c.23 :823 ~ X3 ; ~ 
C .8t1 .:, xl - ~· 
8t1 

Summing, we get 

- o. 

' :: 

Take au ubltraxy v•HS:·Yt Pd:•N•i&a;:~N,;~Qeffj.J4•~:Xi,· • 0 tq it .. 

If v1 ha• beea labelled, and.±vj ha• IJOt. •~')"4p1u~Jl~18'J.cl.:lf •s.3 
is an arc in A, then we write 

xj - xi+ eij" 

Similarly, if a is" 'n" art in A, tleh ·v. vrlte 
ji 

xi = xj + eij 
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Since the event graphs we are int•rested in ~re strong.J.y connected, 

the potential of every vertex can. be aaaigned tJata way. 

nte potential assigned to a vertex vi is ~iquely clefined; for 

otherwise there would exist two chains C
1 

alad.-<:
2 

_90ing from v1 · to 

v2 such that they form a cycle around which the potential differences 

do not sum to ze~o (1ee Figure 4.3.3). 

definition of potential difference. 
'. "t;. 

This would violate the 

Figure 4.3.3 

. ,c, 

We now examine the conditions under which a potential difference 

assignment exists for directed graphs.' 'J.'he f9ll-.ing Theorem holds 

for all connected graphs (i.e., not just 1ttonaly1-aonnected graphs). 

'nleorem 4.3.3: Let G .. (V,A) be a connected graph, and let us aaaociate 

A with each arc aij E A an interval [kij' li,], where kij ~ lij' 

necessary and sufficient condition for the ~istence of a potential 

difference assignment 

I• ((aij'eij>laij EA} 

auch that 

• 

----~-------~---------~ 
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is that for every simple cycle i;, 

l 1ij 
aij E i;· 

l,1ij 

aij E ~· 

2 ltc1j 
•1j E ~+ 

2 ·lktj 

~ij E i;· 

Proof: (Suggested by Jack Dennis; we dbagree with tbe'pr0of in BJ). 

Necessity: The condition is necessary;·~ for,·. suppose· such a potential 

difference usigmaent 8 exis ta. 

If ve use the lower bound of kij for each arc in the first term and the 

upper bound lij for each arc in the second, we have 

:SO 0 

i.e., 

By doing the converse, we get the second inequalit:Y• 

Sufficiency: Here, we shall use the concept that each interval represents 
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a set of points on the real line. We will write 

We will use the concept of the interval sum of' two intervals A An4 B, 

defined as 

A+ B s (a +bl a E A .!!!2_ b E B). 

Also, the interval difference of two ~nterwls A and B U d.tined as 

A - B = (a - b 1 a E A and b E B). 

aitd 

ll1j 
a e ~· . 1J . 

...... \... > • ,. 

From [4.3) and (4.4), 

O E J • • • [4.5). 
> ~ .; ~ • -~ ~ J 

But J can be rewritten as c,., 

•'• ".' 

~ 0 ..... !4.4) 

. l 

-, ' 

' 
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••• [4.6) 

From [4.S] and [4.6), 

0 E 

Thus, the conditions of the l'beorem can l,)e ,written. ae in {4.7] • We shall 

show by induction that [4.7] implies the eziatence of a potential difference 

assignment 8 auch that k
1 
~ e1 · =' li. This 1' ·~e for a graph with one 

arc; we ahall suppoae that it is true for ever-Y~lraph with (m - 1) 

arcs and show that it holds for a graph G with m area (labelled l, ••• m) 

with the intervals Yl' ••• Ym aubject to condtt~~ [4. 7). Let W be a 

graph with . (m - 1) area that ia obtained b,- deleting arc h • (vi, v j) 

from G, and let I be the potential difference N•"""'1n; fOJ: .. G- Let 

6h be the potential difference a~roas the verticea v1,vj in the graph G 

uiuler the pe>tential difference a•aignment i . 1,j 6h E Yb' then ~y ~dding 
- ... ~ - ... - - - . - - -- - - - .. . .. - -·· - - - -

arc h to G and aasigning it a pdtential differenee 8ti • 6~, we have 
- - ----- - - . . . . - - -___ .......... -,~:...... .__ -

constructed for the graph G a potential difference aaaignment 

9 - cil' ... ,im-1' 6h). 

If Sh does not lie within the limits [~,1nl, ,th~!1 ;~~e ar~. two 

possibilities: 

or (b) 6h > ~· 

We will assume without loss of generality that for all simple cycles 
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' -, ~ 

I- p~ 

.~·-._.;._-"I 

\ arc h 
v • - ... - - - - - - - _.,._ 

i . , 

• • 

~igure 4.3.4. 

~ E G which contain the arch, h E ~-. In G these cycles correspond to 

simple paths from vi to vj. 'l11us, for each simple path S from vi to vj 

have 

O E 

+ 
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Case (a) 6h < 11i· We will show _tha~ .... ~.t ~~ .. ,~e possible to reassign 

potential differences to arcs iJI the 1uma>91t'M- ao tha~ 6h ::t: 11i· we do 

this by finding a cut set C ~ the h~kM(eea FigUre 4.3.S). n .. . "'" .. ·+,."'· 

Figure 4.3.5. 

With each arc m = apq in the cut set ,, ~.,associate a •1ask a. defined by 

a • k - em if m E ~+. m m 

a • 9 - 1 if m E ~-. m m m 

1, ••• r E C n 

+- n We increase the potential difference 9 of each arc m E ~ by a and m 

deer-.. ,.~ poteat~al di~:hnnce ; •• ;Gf ~ <ar.c m 'E ~:fl:!~ on. 

Thus 6h has been increased by an .. ~1f :&fi + on ">•'kn; - are done. 

Otherwise, repeat the above procedure for some other cut set, and so on. 
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If no more cut sets are found for wh:tCh '.lhb ·pOIHRtti'al differen<:e reaa-

signment can be done, then there must be saa. ~··:in Whi'Gh -the ·:. 

"following is true: 

9 • k Y m E ~+ m m 

9 • 1 V m E ~-. m m 

For as long as there is no such path, there 'lll8t exist a cut set whose 
••• i·~ ~.. , . .,.;1:::~ ;· ... ..: • :' r t.'.. ., . ": ~ ·:; !· ! 

area do not have potential differences equal to either limit. 

Now consider. the cycle consisting of the path s and arct: k. 

6k - 1:1. lkm <~ 

m E ~· m E ~-
,.,r"' i.,) m,. k 

) . ., 

,. "€." 

Recalling that k vaa defined to be in ~-, we see that 

~). Ek. ,.;;.,. ~: .J lf 

'"' 
~ .• . , -

< 0 

m E ~· m E ~- " f.; ,,. '" 

which contradicts the first condition of the Theorem, namely that 

Similar~, we show tha~ •. for case (b)~.,_~,·~q ,~,Ji,>~~ it ~~- be possible 

to reaHign the pOtentiala in the han8>ck #so that 6h ~ 1ii· If net, 

ve can show by a method similar to that for case (a) that there DJSt 

< 

---------~ ----- -------
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which contradicts the aece>Qd condition of t:he 'lbeor-•. 

. ·'·' 

Corollary 4.3.3.l 

A potential difference assignment • such that e1 j ~ kij (for all 
'~ . ' "\"' . ....., , 

aij E G) exists if and only if, for every circuit ~. 

Proof: Set lij .. + • for every aij. Th41!re are tvo types of c,'Cles : 

(a) circuits, i.e., cycles in which all area are oriented in the ame 

direction. 

(b) cycles which are not circuit•. 

For every circuit ~. ve see that 

Eij ~ 0 • 

aij E ~. . " 

For cycles which are not circuits, we see that 

'I> , ~ ~- I • f" .: •ti 

which is vacuously true if all k1j•s are finite. 
r .. ;., ., ''; 

• 
,. 

We are now in a position to show that the bound 'i!6,~t;.a,£.ned on the 

computation rate of transitions in a timed event graph is actually 

attainable. This forms the subject of our nexc ~orem. 

• 
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,. 
Theorem 4.3. 4: Let ~ = (G,O) be a timed- event graph. J ha• a strongly 

periodic firing schedule with period n > 0 iff 

n :<!: max 
y k 

where (c1,c2 , ••• '1t} is the set of all circuits in G. 

Proof: From Corollary 4.3.1.l we have the re•ult that a timed event 

graphl has a strongly periodic firing schedule with displacements 

x 1 , ••• xm and period n iff 

Y a 1j E G, we have xj - xi ~ c1j 

[4.2) 

Now with each arc aij' we asaociate elj • :sj "'.' .•i· 
By 'lbeorem 4.3.2, a function that &Hips such~:• ;9U "to each arc aij 

must be a potential difference assignment. The set of inequalities [4.2] 

now becomes 

~ij :<!: cij Y a~j E G [4.8) 

By Corollary 4.3.3.1, this system of inequali~u ~~ 4 .solutipn iff., 

for every circuit ~ E G, 

[4. 9) 

[ 4 • 9) now becomes 
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V ~ E c. l~t -1T M(O,aij>) ~ 0 

•1j E ~ 
.: t 

" 

or h-1 1T LM(O,a1j) s 0 T ~ E G. 

v 1 E ~ •1j E ~ 

or 1T ~ E1 
vi E ~ Y g E G 

~(O,a1j) 
•1j E ~ . ! 

'!his i• true if f 

~ 
Vt E ~ 

~ E G•--------- (4. lOj' ' 

LKfe.•1j) 

• 
Comenta on 'lbeorp 4.3.4: We note that there sifq a attongly .periodic 

firing·aehedule vf:th'period , ti 

1T - max e1 
~ E G v 1 E ~ p 

~(o,a1j) 
aij E ~ 
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The computation rate p of transitions in G is gi~ by p • l 
'TT 

Hence,-

[4.11) 

It is clear from the inequ~lity [4. 7] that there exists a strongly 

periodic firing schedule whi~h realiz'•'a ·~1!coil.PUtati<>n rate 

p =p' 
·:· -

,. 
Thus, the timed event graph can be allowed t:o "run"" at any , .. 'speed" less 

than or equal t~ p'. In S-ection 4~2, ··~w 'that the computation 

rate of transitions in a timed event graph could not exceed that of 

transitions in the circuit wi'th the miniDDD ratio of . 

rK(6,..af.j) 

ai1 E ~. 

but our arguments were non-rigorous. In this section we have sub-

stantiated our claim in a rigorous fashion. The circuit with the 

minimum ratio of token content to S\Dll of transition firing times is 

termed the cri~ical circuit, and as we have seen, this is the one 
' J ' 

which determines the maxiDDD computation rate of all transitions in 

the net. 

-------- ---- ---------------- ----- ---- --
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Section 4.4 Timed L§P Beta 

We now proceed to apply the result obtained in the previous Section 

to determining the maximum computation rate of tr.._.U:i.,.. in a,.timed 

LSP Petri net. Our starting point will be to decide lf a gtven marked 
, I 

Petri net is indeed LSP. This can be done by applylag.the results deve-

loped in Section 2.3. 

Consider a timed LSP Petri ~t ~ ~ (1' ,O}., 'Dle timed Petri net 

in Figure 4.2.1 is an LSP net., and .~ ·~ that, we wei:;e able to ,~onst~­

uct a feasible periodic schedule for it. We now ahow that every LSP 

Petri net h41l, • feasible periodic firfp.g acbedu~t!• and we. ~ow. how to -. " '. ~ ' ' . ' 

net. 

Recall from SectiOD. 3.4 that tl\e steady atate beh~yior,_of an LSP 
~· . ~ 

net 1' can be represented by the steady-state equivalent ~ ~ • 

Furthermore, recall that J has the atructure of a a1ltiply-la~~l•d 

event graph. 'l'he only difference between event-grapha and aulttply-

labelled event-graphs ia that that the latter may have multiple ins•' 

tancea- of' certain transitions. We will begin by aaauaing that all 

transitions in a multiply-labelled event graph have diatinct labels, 
;1 -. ·'' ' .J. - - ·' 'w··· ~~ j r ; ~ ~ 

and the steady-state equivalent net J can be regarded aa an eve~t graph. 
' t ; ; • ' ! ' 

Each transition is asaigned the firing time of the transition it corres-

ponds to before the relabelling was done. The computation rate of trans-
1:. f '; :,,. . i "''- . . ~ ' ,. -

itions in the resulting event graph can be found,_ by ·.,p1j:i:ng the 

result of [4.11]. 

We showed in Oiapter 3 that the steady state equivalent net of a 

consistent LSP Petri net must have a number of occurrences of each 
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transition equal to its current in a consistent current assignment. We 

now show that the computation rate of transitions in a timed LSP Petri 

net must be proportional to their currents in a consistent current 

assignment. To show this, let us conaider the steady-state equivalent 
, .. 

net ,,/ • We have seen that we can find the c,g!!Rut~'?? rate of tr~-
.~~"'· ..... -,.,. i. ' ... ._ 

sitions in the relabelled net by 1;»e'ati;. it as an event g~ARh. We 
-~ ~ 

will call this the fundame:Dt&l-~omputation r_~t!. ~~ net·, and will 
.. -- '' ' .-~ ... - ' ,·' ""' ' 

denote it by ~.. ;~, ~e. !9lt.i.plU"f.l:y of any tr~,tl:ion ·!J. is if(~), it 
' ..... ~"' ~~.... '_,...._ :· ; 

means that in unif""fta..·1--~~tion vi in tlut ~d LSP~c.:~ .. \ti'res 

µ(vi) x p times, because each fi;l •. ·c;c···.J.u~·~ ~ition of 
·1,,,.,c,-.--~. ~~"'¥ ' 

transition vi in J is also a firing of tram~ .,;i flt f>. Bence, 

we can find the computation rate ~f my tr8118itioa vi by a1'1Ply multi-
• ··JJ·, ~ -· "·-: t-::· .~ > ;~ · ,.. ~.-::·r'l J. . . ~; t\ .".'.£': "' •• r·:! 

plying p by the multiplicity of that ,.e:~!nfm ln 'Z. 
Suamarizing, the following stepe are are involved in finding the 

computation rate of transitioae in a ti•d LSP Petri net L : 
·~f 

Step 1 Find the steady state equ~ent net .I oi(~~ underlying LSP 
~""'-~,-,.·- ,..1-l ,_,, •... ,·,. 

Petri net 1' . 
/ 

Treating "' u an evel)t graftl·~ .::.,1 4ta r*X~ c,~tation 
I '\., ' . . 

rate p by applying ,{4.11). 'fhlaj givu ·~- uxi~ 1¥nd~ntal 
\ ; '''" ' 

computation rate o~ the tl--11...., Petri a,rt L. 

Step 2 

, , r,; j ' 

If pi is the 118Ximpul computatl~ ra'-cot-f'r'*ition •J"~• .t 
and µ(vi) is its .ltiplicity iJ- J, t~/pi_ • p x _l'Cv1). 

. . ...... l i ' 

Step 3 

, 
We illustrate thia •thod by a· exmpte._J 

- ,,..~ "~~ ... 
... 

in Figure 4.4.1). In order to make our ex-.le as general as possible, 
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Figure 4.4.1 Timed LSP Petri net ,;/ • (I' ,n) with a live, bounded 
aarktng M. ', · .1 

Figure ·4.4.2 Steady state Equfval~ net .J:for LSP Pdri'Mt Pwtth 
marking M. 
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the net has a marking M that is not safe, but which is live, bounded 

and persistent. In Figure 4.4.2, we show the steady state equivalent 

J of the net 1 with marking M. J can be decomposed into four circui-

ts 

Cl: pltlp4t3plt2p4t3pl 

C2: P3t1p2t2P3 

CJ: pltlp2t2p4t3pl 

c4: P3t1P4t3P1t2P3 

The fundapiental computation rate p is seen to be 

p = min[ 2/12, 1/8; -2/10, 1/10] 

or p = 1/10. 

Now, µ(t
1

) • 1 

µ(t2) • 1 

µ(t3) - 2 

... 

Thus the computation rate~ of transitions t 1 ,t
2 

.41nd t
3 

are as follows: 

p - 1/10 1 

p - 1/10 2 

p3 • 2/10. 

A note on the Structure of 1.SP Petrf'IW•• 

Although it is true that the LSP Petri nets that arise in the course 

of modelling practical systems will all be SMD there do exist Petri nets 

which are LSP but not SMD. The net in Figure 4.4.3 is an LSP Petri net, 

but it is ~ SMD as the reader can easily verify. 'l.'he method we have 

given for finding the computation rate for timed LSP Petri nets holds 

for all LBP Petri nets which have a live, safe marking. 
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Figure 4.4.3 An LSP Petri net that is not SMD 
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4.5 Timed fe£~i,p~js,with r!'°'dom firin. times 
. \, .c -':., 

The ~swnp~ion of determini$tic firing times for Petri nets has given 
~-, ~ 

, ~ .. , .. , . 

us a 1reat deal of ~n&i$ht into the a~tion of pr•~f ical asynchronous sys­

tems. We have been able to find the computation rate of transitions in 
~ - . ~ 

timed event graphs and LSP Petri nets, and in each case we have been able 

to identify system components that limit the fundamental computation rate 

of the net (i.e., the critical circuit). The critical circuit represents 

a bottleneck in the system being modelled, and readers familiar with 

PERT networks will see the correspondence between critical circuits in 

timed event graphs and critical paths in PERT networks •. 

The assumption of deterministic firing tillea may not be sufficiently 

accurate for practical systems. In practice, an action in an asynchronous 

system like an addition will be a random variable , and in a large number 

of cases this can be approximated by either a rectangular or a Gaussian 

distribution (see Figures 4.5.1 and 4.5.2 reapectively). A Gaussian 

distribution has the problem that it has a "tail" which extends for nega-

tive values of time. Since we cannot visualize an action taking less than 

zero time to occur, we would prefer to use the rectangular distribution 

shown in Figure 4.5.1. 

It is possible to find out the mean computation rate of a timed event 

graph when all firing times are given by a distribution like the rectan-

gular distribution. However, the process is very tedious, and we will 

work with the means of each of the firing ti.mas. By doing this, we get 

a timed event graph whose computation rate can be found by applying Equa-

tion (4.11]. It can be shown by using the r .. ults of Clark[C3] that the 

computation rate so obtained is an upper bound on the true computation 

rate of the timed event graph whose firing times are random variables. 
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The deviation of the true mean computation rate from this bound depends 

upon on the standard deviations of the random variables, but there does 

not appear to be any simple expression that relates these quantities. 

We now turn to Chapter 5, where we find a bound on the computation 

rate of timed SMD Petri nets. 



OIAPTER 5 

cnmJTATION RATE OF ASYNatRONOUS SYSTEMS WI'DI DECISIONS 

5.1 Timed SMD Petri Nets 

In Chapter 3, we illustrated the power of SMD Petri nets in model-
1 , 

ling asynchronous systems with i~isi~. We alap eat.lished two 

important results aboet SMD Petri nets\: 

(a) It is decidable if a11y·Ji'Ven ~king !o~ an SMD Petri net is 

live. 

(b) For SMA Petri nets, any .markiq which puts ~t.,,.l~ast one token 

on every state machine ii live. 

Thus, usipg the results presented ln .Q)apter 3, J'"5.~~ design asyn-. -: " ~ 

chrqnous processing systems for pO.alble illlplemeqitat;'ton by the tech-
. i 

niques developed by Dennis and Patil [l>l, 1>2] •.. We now show how we can 
' ', 

estimate the computation rate of this mo~e "'nera¥-ctasa of systems. 
". ~ 

Recall that in Chapter 4 we developed a t~i,aa··'foi;_: finding the 

maximum ca11putation rate of 

In this cJ!apter, we look at 

a large claaL.b.I deterministic systems. 
J ~. 

non-determi..S.at io._ ayat._ and see if we 
' ' 

can 

obtain a b_ound on their computation r"!e· We,~ ;~his by finding a 

bound on t~e computation rate of tr..l.ttiona il a timed SMD Petri net. 

We hav•: defined timed Petri nets i~ Sectionill+.l (see definition 4.1.1). 
\ 

Thus, a timed SMD Petri net is an SMD "'t in 11bkti ewry transition has 
, ·-.. .. ,,_. .;,;/ ... ._, 

a fixed, non-zero firing time. For det~i\a of the firing mechanism 
~:,_--

" and notation for the inatantaneous marking ,of l, timed SMD net, the 

reader is urged to re-read Section 4.1. 
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Let us now consider a timed SMD Petri net and ex811line its be-

havior. We do, this by constructing i firing e~e"le for it,· ·and 

interpreting the notion of computation rate of &\_transition ~con­

' nection with the firing schedul•. 

As a simple example to motivate this chapter, co0.ider th@ SMD 
-. ' 

Petri net model of an assembly line with decisiona of ·the the dJs-
! '.._, '· 

cussed in Section 1.2. Figure 5.1.l is such a Petr.iJ,.tt: ~odel. Let 

transitions a, b and c represent asfembly ope$1'~, and le~'p be a 

place which represents a bay at which a decisi0n is made ~out which 
' '•'-

engine should be attached to a chassia. 
f -

The engines are ·~ailable in 

the input queues eonnected to transitloml ~;and c, and ~letely as­

sembled autos are output into the q~ues .~r~d "output~_ que_ues." Each 
,,.( ' . -.. , . 

of the assembly op~rations represetited by t"' transitiCJl18 a, b and c 

have associated time durations T .~ Tb' and Tc ~pe~ive~y. A partially 

assembled auto that appears at place p can be rq(lted~one of two ways, 
;::·.~. 

by firing either transb:ion d .or Jranaiticm -~~ We a.:t.d: in Section 1.2 

that this routing can be d.one iu· __ aeveral way,, and tte exact mechanism 

of making this routing decisioO does not cO,Cem ua ~re. We have 

pointed out acme of the ways in whlah this aecision ~an be made for a 
/• ;~c 

practical asaembly line. From a perfoi:.aa.ce standi)Qint-," we must know 

the relative numbers of each type of .,btQ11pbile whtth are produced by 

the assembly line. Let ua see why. -·suppOfe'"-..J.a•e prpPortion of 
\j!>,,.,~ ... >'-!< • •, ' 

all cars produced by the assembly line are 2~,llP 'ars, and suppose 
' ! \ .. 

that the final assembly process for attaohlnS~ 2o'o-HP engine to a 

chassis is extremely slow (i.e., transition f haa a long firing time). 

This assembly stage will not be able to handle the load imposed by it, 

------------- -- -----
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a 

Figure 5.1.2 Occurrence Graph for Petri Net in Figure 5.1.1. 
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and will slow down the operation of the whole line by choking off the 

absorption of subassemblies from the input queues. It is intuitively 

obvious, therefore, that this assembly line can be balanced by matching 

the speed of operation of an assembly station to its expected frequency 

of use. It can also be seen that there is a tradeoff between the num-

her of physical processing units at an assembly station and the speed 

of each processing unit - a number of slow processing units can be 

used instead of a few fast ones, and vice versa. Our question in 

connection with this assembly line is - how do we estimate the rate at 

which it produces assembled autos? 

Let us examine our model carefully and see what information is needed 

to specify the system in a way which is complete for our purpose. We 

have shown input queues connected to some of the transitions in the net 

in Figure 5.1.1. We pointed out in Section 1.2 that we will assume 

that there is always at least one item in each input queue, so that it 

is not necessary to indicate the queues, but we have shown the queues 

for completeness. Let us now see how to incorporate the relative fre-

quency of use of the two alternative assembly stations into out model. 

The action of the Petri net in Figure 5.1.1 can be represented by 

means of an occurrence graph (see Section 3.5.3). In the occurrence 

graph shown in Figure 5.1.2, the probability or the relative frequency 

of occurrence of each of the outcomes of the decision made at place p
4 

will be reflected in the number of occurrences of the corresponding 

transition in a long frustrum of the occurrence graph. For example, if 

1 2 the probabilities of occurrence of transitions d and e are 3 and 3 

respectively, then, in a long frustrum of the occurrence graph there 
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will on an a'ftrage, be twice as many occurrences of transition e as of 

transition d. '!'his means that in a consistent current assignment fOT 

the Petri net, the current aasisned to transition e will be twice that 

assigned to transition d. Our problea is to find the maxfmm computation 

rates of tr8l8itioaa t
5 

and t
6 

in the llK. In ge~ra.1, we would like 

to find the man- ccnputatlon rate of any transition in a timed 

SMD net, for which a coasiatent current: aasignwmt= is given. We wish 

to find a cOlll(llUtation rate assiggi"' ... mtt such t~ the cmiputation rate 

of each transition. is proportion.al to its current in the given ccm.­

sistent current usigwa.t. 

'!'he problem e• be tackled by siatlation.. In such a Mthod the 

computation rate of llJIY transition can be found by letting the net "run" 

for a long title, md then di.vldiag the number of times that tranaiticm 

has fired by the t-otal amount of time that has elapsed since time zero. 

The .ethod is extremely tilE conauai.ng and we would like an analytical 

technique which enables us to find a good bound on the c0111put:ation rat:e 

of transitioaa in the timed net. 

Consider a timed SHI> net X • (1>, 0), having a ~nimal i.nteger con­

sistent current assigwnt I. Ve know frail Section J.5 that several 

c-equivalent nets are, in general, possible fer 'X with consistent current 

assignment: I. In Figure 5.1.J(a) we reproduce the net: shown in Figure 

3.5.4. For the given minimal consistent current assignment:, several 

c-equivalent nets are possible, and we gi~ two of them (see Figures 

5.l.3(b) and 5.1.J(c). Each timed c-equivalent net defines a pel."iodic 

schedule. We compute their fundamental computation rates, and get 

the following: 
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The SMD net x. 

Minimal integer consistent current assignment: 

qi =qi =1 
1 2 

qi3 = CtJ4 = CtJ7 = ~ 

Firing time assignment: 

Figure 5.l.3(a) 
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Figure 5 .1. 3 (b) 
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Figure 5 .1. 3 (c) 
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Ftpre 5.1.3 (1') 

A'pplying the ti'ftult• of sectioa 4'",4' 

:runtt•1ntal Collputatioil ._e p' ., 11r.t•(iJ~ 1'1 j, !2-] • i.9. 

Thus, the IU!lriilbli 11iDdaillelrtal ~aiOllt h** of the tw· c-equivalent 

nets are diffe~. Itt ord'er to fh\d a ,..... oa the ,..i811k :fuml~al 

computatioa rate of the ts..H net! "'• • lf!IS. fjpd tll,e ti!ljpd p=:equt•aieat: 

.!f! w&tdi· h•· the tarse~ ca.pdtdion rat;e. 

The mmtia:llll fUacl....Cal c~utaticm rat:e of a c-equf:9'atent net for 

the timed net X reprea..ea t!he IMllff.1!ilUltl fencJl!lile!ltal emiptteation rate of 

cranritiou in the net x f<ir the be'hnior 8ftiicifi..:ed by t'Hat c-equh·aleat 

net. 'ltita lead• to the following definitiatt; 

DefillttiO# 5.l.1 The MXf,p fundaental. COl!JlUtatiOD r1Ce of transitions 

in a timed SMD, net! X -d <':o} for g •iniul inteser coneistent: current 

aattigaMent f is given by the fundamental computation rate of the c-

equi"V'alent mt wflieh has t!he largeat fundameiltal computation rate. 

Definition 5.1.2 The m.-1.lma cOl!!l!utaticm _!It! of a transition ti be­

longing to a timed SMD Petri net X = (~,O} with a minimal integer 

consistent carrent assignment t is given by 

pi = cpi x P 

where cpi is the current assigned to ti by land p is the maximum funda-
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Figure 5. 1. 4 
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• 

mental C<JlllP\ltation rate of X· 

We see that to olttain aa q4Kt value of the --~ f••adMWl\tal compu-

tatioa i-•e of x., we wt f:f,Ad a11 tl\I f=-1"'tl!IS l\U• for X .i 

find thtl ~ "With tta. laqut ftaid ... M c~aU.on. :fate. 'Ais ia 

a very tedious procue. 8-1 we WPUld M,ke to fiad a atwple •thod 

which g:lvea a bauad °"the fuad4111ata~ ---~ cQlllNt.ioa r•te of X. 

~ider the tilled SND Petri ut ~ • (f>,O) in lildell the underlying 

Petri tWt lj) ho a live markin& K. Let s1 , s2 , • • • 1
11 

be tlte at.te 

JQaChine c091poaeata of /J. Let the tr..-iti~ of aay atate aw.clliM 

component Si be t 11 , t 12 , .... ti~' ta.ir; firiag tilriee be T'il' T i 2 ' • ... T ik 

aad their cun:ents be cp11 , cp12, ••• cpik reape,ctively. Also, let 

Pu, p12 , ••• pik be the pla.cea bel<>Qging to the st.Ce qchine s1 • Let n1 

denote the number of tolte• oa state 111aehiae Si. 

Consider the occurrenee gr4Jlh uaociated with one of the tokens on 

the state machine Si (see Figure 5.1.4). 

Si"QCe there are n11 tokens on the state machine Si, the maximum natural 

comeutation .!!!.! of transition til is thus n!f il or QicpilY i. The 

quantity 1!' i is teaed ·~h' !!!!i!l,!I':; ~·t1r1l· fuadm1t1l cQP-..tation ~ 

of the state machine, and to obtain the DW1Xiiaua !!!!:Ural CO!!pUtation 

rate of transition k11, we multiply ! i by cp11• '!'he te~ lll&KillUal 

natural computation rate of a transition til refers to the computation 

rate it would have if the state machine Si were isolated from the other 

components of the SMD Petri net 'P. However, as we saw in the case of 

timed event graphs, the components of a timed net affect each other's 
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fundamental computation rate. We now show that if two state machines 

S. and S. have some transition t in common, then the fundamental 
1 J 

computation rate of both state machines is min ['i'.,'i'j]. Let~ be 
~-- 1 

the current associated with transition t in a consistent current 

assignment. Then, it is clear that the computation rate of t cannot 

exceed ~ X min ['i'., 'i' . ] • For suppose without loss of generality that 
1 J 

'i'.< 'i' .• Then, the computation rate oft cannot be greater than~ x 'i' •• 
1 J 1 

If it could be greater than~ x 'i'., it would violate the definition of 
1 

the fundamental computation rate of Si. Thus, the computation rate oft 

cannot exceed~ x min [Yi,'i'j]. Also, by consistency, the computation 

rate of any transition t. 1 E S. must equal 
1 1 

Similarly, the computation rate of any transition t. in Sj equals 
Jm 

We conclude that if two state machine components S. and S. in a timed 
1 J 

SMD Petri net have a transition in coumon, each state machine acquires 

a fundamental computation rate= min [~i'~j]. 

Let p =min ['i'1 ,'i' 2 , ••• 'i'm]. Without loss of generality, let p = '¥ 1 • 

We now construct sets ~l' ~2 , ••• ~r of state machines as follows: 

If ~ is a set of state p 

~ u (s 1 , s 
2

, ••• s 1 
P p p pr 

machines, then define ~p+l to be the set 

where Spl' sp2, ••• Spr are state machines which 

have at least one transition in coamon with the state machines in ~ • 
p 

Also, ~r = (s1 , s 2 , ••• sm), i.e., all the state machine components of 1'. 
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Cobatruet "°p+l fna ~, until Xp+l • A.P. '!'hen AP 1lltlSt include all 

the state maetlitau becaue I> ta atnnglY-eataMrted. 

The reader can new see that if the maximum fundamental computation 

rat:e of s1 = ! 1 , then the lliaXiilua fund..atal cmputuion rate of all 

state machines in A2 ia also t 1 , and so on until we have eXhauated ail 

state machines in the net I>. 'fhue, all state aaehines in x must have a 

maxima fund-ntal cGlll!pUtation rate p • t 1 • ld.n ff1,t2, ••• t.J where 

s1 , s2, ••• s. are all the sfat:e maehiae cdltpcments of I>. 

'l'he 118Xi11Nm eallputation rate of any tt"ansition ti in the net is tltua 

tpi X P• 

we have thus established the following re•ult: 

In a timed SMD Petri net 'X = (IJ> ;ti}, the matimdm computation rate p1 of 

arry transition ti is ai'v•n hy 

Pt s; <pi x pt 

where ! 1 ,t 2 , ••• 'fm are the maximum fund.ental cOlilpUtation rates of 

S1 , S2 , ••• S
8

• The tlhlXilllum funcl-ntal COilput:ation ritte !It: of state 

machine 8tt is given by 

t <Pkj 'fkj 

j•l 

where °tc = number of tokens on state machine 8tt. tkl, tk2 , ••• tkr are 

the transitions of state machine Sk. 'icj' Tkj are, respectively, the 

current in a consistent current assignment for 1' and firing time of 
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transition tkj E sk. 

The bound we have obtained here is based on the assumption that 

when a token appears at a place with conflict, then its further 

routing (i.e., which output transition to fire) is done statistically, 

using an a-priori probability measure proportional to the currents 

associated with the respective transitions. In the next section, 

we derive this bound by considering the c-equivalent nets for X. 
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• 
• 
\ 

WH•· -ta~l-4 

drawJ.na all die tt.M e ..... n.i.- ~t• fta' X _. ...,.... .. da4\ ana wtt.a 
'• 

the larpat _.t.,a ,__.al e~atie ~•e. #,.. f4d•ed out, 

thia ta a tedio\w proe••· 'JM fo].taiiltag '.ft\e.Gl: .. gi-.e• an ~I'~ 

t the .. i.. hM. _.t._i ~...-at. i•i 't'4'$e .t • ti_. .,i Jte~rt aet 

teme of ita aiructu1•th •dd._, aiaiMl 1-•r Q_.t.a•ent 

eunent a.atgwat and ttn..,_ ttm& wta ... @'llt:. 

'l'h4ltD1 ~.2,1 In at~ SIG> ..,tl"i net. x • <f'.n) witb • .Uiaal int-.•r 

c.a:i.ateQt eur"1¢ ••iplqt t. t1- --~ f\lM....-al •---•t• 
rate ta atw. lly , ... aia "1···~'.1. 'i-··'· ...... ,.._...1 

e0111fUt-1:1oa ratea of the •tot• ••Id• cnq nrnata d. x. Tbe ful'4_.,.i 

C0191Mlt:atiaa :tde ')I. of etate .._ht._ 811 18 .f..U hy 

where 1\ • nu.her of t<*ena on state machine \. 

tk1, ••• tkr are the traasitioaa of state machiae 8k· 
~j' Tkj are the current and firing time respectively of tranaition " 

tkj E \· 
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Proof: Consider the c-equivalent net ~ of the SMD net J> for the~~ 

consistent current assignment ~. We showed in Section 3.5 that 

for every state machine component Sk in1'
1 

there exists a corresponding 

circuit ~E 'with the following property: 

Every transition ti in~ has a multiplicity µ(ti) equal to the 

current ~. assigned to transition t. in IJ> by the minimal consistent 
1 1 

current assignment ~. Now let c1, •.• ,cm' cm+1, ••• cr be the simple cir­

cuits in~' where c1 , .•• Cm correspond to state machines of 1>and 

cm+1 , ••• cr are simple circuits in~ that do not correspond to state 

machines oflf>. Let '±'1 , ... '±'m' '±'m+l''''' 'fr he their respective fundamental 

computation rates. For any circuit Ci E {c
1

, ••• <fu} 

n. 
1 

'fi = ------

E qiil ij 

Y· tij E Ci 

Now, the fundamental computation rate p of the timed net x is given by 

p' = min ('l' l' • . •'fr] 

= min ['fl, ••• 'fm' 'fm+l'"""''l'r) 

or p' :s: min ['f 1' • • • '¥ m J 

Note: 

There may exist some Ws E ('fm+1 , ••• ,'l'r} such that 

w s < min {'l' 1 , ••• 'fm]. 

Thus, lihile p =min ['¥1 , ••• 'l'm] is certainly a bound, this bound may not 

be achievable. The computation rate pi of any transition ti is defined 

• 
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• to be 

• P1 • p x «pi• 

Once agaia. thi• value of p1 ia a bounct. 'but thia ~ NY not be achie­

vable. 'l'heor• 5.2.l eaabl .. ._ to fiad ab~ oa the coaputation rate 

of any tramitioa la a t1-cl • Petri net by·· fia4"8_ for e._h state 

ma,chio.e cOllllpOQ .-at s1 the corHepcilBdi .. £~..-al ~atioa rate • 1 • 

'ibis ia simpler tllaa fiaclbg ahe •1d . .-, fuad--al cQ9Put•tioa rate of 

all the c-eq~twleat .ca '"· tlae H '-'ri aet;,. -

Let WI anly tbia l'eeult to t'he tt.84· - 'Petri Mt of Pip»e 

5.1.3. !heorq 5.2.1 giV-94 a lt8Ul1d oa tM ... ..._ t;aad..-atal e~tatiqa 

-r:at• 4'q\lal t• 

.ta ( l/lS. l/22) • 1/i2. 

By d1:awiag all t'he c...._ui-.aleat •ta fQr t'be lllD •t, the ~-'8r ca 

verify that tu net of Pigu.,e 5.1.l(c} 1'• the l~•t .a ... f~.-ea­
tal COQIPutati• rate of 1/24. ~ ~ ot ~ 5.2.1 c.-.ot ~tl.l&­

lly be reali:se4 in aJ couiat..a 'Mbai• oft~• aet, h\\t 1il8 aee 

that it is certainly a re_..-1. ~. ... 1'4Ml8oa t~ t'be 'bouad ie 

not ~1\inable u ~.....,. tiler• ia .- •'"• lltMll'- c J .. ..._ la ~•hat 

carrea'*a tc,J tile wultiply-labe.lled ct~~it 1t4t4,,,t~t41t,t, .• .._t7r4• 

'!bit ct~cu:lt ..._ a ._t_. 1'Qural flmd•••at'1. c....-at:i• rate of 1/14. 
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5.3 Achievability of Bound on Computation Rate for timed SMD Petri nets 

The bound on the computation rate of transitions in a timed SMD Petri 

net that we have presented in the previous two Sections has been shown 

to be an upper bound on the computation rate for a given SMD Petri net 

with a minimal integer consistent current assignment. We have also shown 

that this bound may not be achievable, and in this Section we look at the 

issue of achievability. 

When the reader examines the expression for the bound, he will notice 

that it is always achievable for event graphs. Since the multiplicity 

of every transition in an event graph is one, this means that there exists 

a minimal integer consistent current assignment in which the current assi-

gned to each transition is unity. Also, since a simple circuit in an 

event graph corresponds to a state machine componeat if we view the event 

graph as an SMD Petri net, we can rewrite Theorem 5.2.l for event graphs 

to read as follows: 

In a timed event graph ~ = (G,O), the computation rate of all tran­

sitions in the net is the same and is given by 

p 

= 

are all simple circuits 

L M(O, aij) 
aiJ E ·<1c 

of the event graph and 

This is the same bound as the one we obtained in Expression [4.11) 

in Section 4.3. We also showed in Section 4.3 that this bound is achie-
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vable. 'thus, the result in Theorem 5.2.1 represents an achievable bound 

if the stm Petri nets we conaider are restricted to being ewttt gr,q,ha. 

Our queetion is • how good a bound is it for ll\Ore general SMt> ltetri ttets? 

The largest tlaaa of SMI> Petri nets we have been able tC) preve aehieva• 

billty for 1111 the claaa we tet'lll CX*SMD tetrl net•. 

Definition 5.3.1 An a-tdn1.a1 integer consistent current aasigument ia 

one in •tch all traM1tiona vtt:hr..e than one 1afUt place are uaiped 

unit cureat. 

I>efblitiQQ .5.3.2 An SMA Petri Mt is ci•MIA ttt there ex:lat:a an a ... 1111-

Mal inteaer conaiatent current aaata11111ettt for it. 

Le191 5.3.l Let e be the c•equivalent net of an a-SMA !etri net 1' for 

the a-minimal integer consistent current assianaent f. 'then, every 

circuit ~ in CS corresponds to a state machine component 8tt in f> and 

vice versa. 

Consider a state machine ccmponent 9tt in '/'. Let 1 be a cyclic frua­

trum for « . We know that the ia:lti.al diee of -,_ 11Nat contain at least 

one place from every state machine c011ponent ( fo11owa :from theorem 

3.5.1). Choose some place Pitt E ~ from the plaees in the initial 

slice of # . When two consecutive instances of thia place in a cyclic 

frustrum for the given current assigDDient are conaidered, every state 

machine containing Ptd 11lll8t unfold into a chain that be.ins and ends at 

pki. In the c .. equi'\ralettt net constructed from the cyclic fruet·rtmi, each 

chain corresponds to a ~ircuit. 
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~ Consider the cyclic frustrum for the given c-equivalent net. 

Since :Pis SMA, every closed simple directed path is an SSM. Also, 

since every transition which has multiple input places has unit 

current, there is exactly one instance of each such transition in 

a cyclic frustrum. Every allocation reduction on the c-equivalent 

net results in exactly one SSM (a multiply-labelled circuit) for each 

SSM in 1>. 

Suppose some closed directed simple path does not correspond to any 

SSM. Then it must correspond to some closed structure in which there 

exists a transition t with multiple input places. The only way in 

which such a closed structure could map into a circuit is for there to 

be more than one instance of it in a cyclic frustum, which is the de­

sired contradiction (see Figure 5.3.1). 

tl 

P2 

t2 

P5 --
t3 

t3 
P4 

t2 

P3 

Multiple Instances of t 2 

Figure 5.3.1 
• 

As a consequence of Lemma 5.3.1, we have the following theorem: 
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Theorem 5.3.1: The bound on the computation rate of trailllitiona 

attained in Theorem S.2.1 holds for every timed a - SM1> Petri net 

X • (~,O) 

Proof: By Luma S .3 .1. the c•equivalent net t for an a ... Sim Petri rtet P 
is a multiply labelled event araph in which every ai.mp1e circuit 

corresponds to a atate machine component of'/> and Vice vet'ea. By 

attaching- ftrlna ti•H to each tran1ltion. iri 1', the de1ired retult 

follOVI. 

• 
!x!!!!Rle: Figure S.3.2(a) gives an example of a timed a - SMA net, 

shmni. with a consistent current a111amnent. Figure 5.3.2{b) gives 

a c-equivalent net which realize• the computation rate given by 

the expression of Theorem S.2.1. The reader will note that each 1tate 

machine in the a - SMD Petri net of Figure S.3.2(a) maps into a multiply 

labelled circuit in Figure S.3.2(b) and vice versa. 

In Figure 5.3.3(a) the timed SMD Petri net of Fiaure S.3.2(a) is shown 

with a minimal inteaer con1i1tent current assignment in which transition 

t4 has a current equal to 2. This net i• no longer a • SKA; and the 

bound of Theorem S.2.1 can no longer be achieved, aa can be verified 

by examining it• c-equivalent net which has the largeat maxtmusn 

fundamental computation rate. 

Boupd from Theorem s • 2. 1 

P' •min (t>. !;] • 1;-
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Current Assignment Firing Time Assignment 

cpl = 2 T = 3 1 

cp2 = 2 T2 = 5 

cp3 = 1 T3 = 4 

cp 4 = 1 T = 2 
4 

cp 5 = 4 T = 7 
5 

cp 6 = 4 T6 = 8 

cp7 = 1 T = 3 
7 

Figure S.3.2(a) 
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J.l'igur:e S.3.2(b) 
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Figure S.3.3(a). 

Current Assigrunent Firing Time Ass igrunent 

q.i = 1 
1 Tl = 3 

q.i = 1 
2 T2 = 5 

q.i = 
3 

2 T. = 3 
4 

q.i = 2 
4 14 = 2 

q.i7 = 2 '1"·5 = 7 

q.is = 1 T = 8 6 

q.i6 = 1 T·7 = 3 
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Figure 5.3.3.(b) 



-172-

Bound for c-eguivalent net of Figure 5.3.3(b) 

. (L, L , l_, LJ - L 
p' min 20 25 26 19 - 26" 

Thus, the bound from Theorem 5.2.1 is not achievable by any c-equivalent 

net for the given timed SMD Petri net. 
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Section 5.4 Review of Results Obtained 

In this Section we will put our work in perspective and will point 

out its relationship to PERT networks [Fl] and the program flowcharts 

of Martin and Estrin [Ml, M2, M3]. 

In Chapter 2 we have argued that practical systems can be viewed 

as an ensemble of interacting components and that each system component 

can be viewed as a state machine. Subsequently, we investigated the 

modelling of such systems using Petri nets. We introduced SMD Petri 

nets as being the class of Petri nets which can model practical systems. 

The type of systems we wish to model do not have any redundant functional 

operators, and are free of deadlock. This translates to the problem of 

choosing only those SMD Petri nets which have a live marking. We have 

pointed out that we still do not understand how the state machine 

components of an SMD Petri net should be interconnected to ensure that 

the net has a live marking. Currently, the largest subclass of SMD 

Petri nets we know of with this property is the class of SMA Petri nets. 

Since any live marking for an SMD Petri net!> is bounded, a consistent 

current assignment can be made to the transitions in ~. By multiplying all 

currents in a consistent current by the least conmon multiple of their 

denominators and dividing them by the greatest conman divisor of their 

ntnnerators, we get the minimal integer consistent current assignment. 

The current associated with a transition in a minimal integer consistent 

current assignment is the multiplicity of the transition in a c-equivalent 

net of the SMD Petri net for the given current assignment. 

We have also looked at the entire class of LSP Petri Nets (i.e., 

Petri nets which have a Live, Safe,Persistent marking). Even though 



-174-

the LSP Petri nets of interest are likely to be SMD, there do exist 

LSP Petri nets that are not SMD. A steady state equivalent net exists 

for any LSP Petri net. Furthermore, the steady state equivalent net of 

an LSP Petri net is unique, and corresponds to the c-equivalent net 

for an LB SMD Petri net with a minimal integer consistent current as­

sigrunent. 

Figures 5.4.1 and 5.4.2 are Venn diagrams which exhibit the relation­

ship between the various subclasses of Petri nets that have been con­

sidered in this thesis. 

Figure 5.4.1 
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Shaded areas represe8' LBP Petri aets. 

(a) 

~e S.4.2 

We have introd~ced timed Petri netq in order to mQllfel the finite 

speed of operation of practical systems and have Ulown hQlf to find the 

computation. rate of tranaU;ions in LB SMD ~tJ:'i neta and LSP Petri nets. 

For both kinds of timed Petri nets, the maxi.Jlma ~tation rate of a 

transition is the fundaaental ccaputation rate of the timed c-equivalent 

net for the timed Petri net multiplied by the -.ultiplicity of the­

transition in the c-equivalent net. 

In order to find the ..xtpaua fundall8ntal c-OlllpUtation rate of a timed 

c-equivalent net (or a steady-atate equivalent net for an I.SP Petri ~t) 1 



Maximum compu­
rate of transition 

t.= maximum computatio 
of

1
timed c-equivalent net 

with largest computation 
rate. Use Theorem 5.2.l to 
obtain a bound • 

Every c-equivalen 
net is a multiply 
labelled event 
graph. 

TIMED MULTIPLY­
LABELLED EVENT 
GRAPH 

TIMED EVENT 
GRAPH 
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Maximum compu­
tation rate of tran­

sition ti = maximum 
computation rate of 
timed steady-state 

valent net. 

TIMED STEADY-~S=TA~T~E~t.------.., 
EQUIVALENT 
NET 

TIMED c-EQUIVA­
LENT NET 

Maximum Computation 
of transit~on ti 
= µ(ti) xr 

ery steady-state equ­
ivalent net is a 
multiply-labelled 

. event graph. 

I 

To find f 

I 

Find f by applying 
Equation [4.11]. 

Figure 5.4.3 
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we assume that all transitions are dictinctly labelled, and we find the 

maximum computation rate of the resulting timed event graph. The maximum 

computation rate of a timed event graph can be found by applying 

Equation [4.11). 

We illustrate the various terms used and the relationship between 

the computation rates of timed event graphs, multiply-labelled event 

graphs, LSP Petri nets and SMD Petri nets by means of Figure 5.4.3. 

The diagram is self-explanatory and shows that the bound of Equation 

[4.11) forms the cornerstone of our work, the fundamental computation 

rate of timed SMD and LSP Petri nets being obtained by finding the funda­

mental computation rate of an equivalent multiply-labelled event graph. 

We are now in a position to point out how our work relates to the 

following models of parallel processing and parallel computation: 

{a) PERT networks 

{b) Martin and Estrin Flowcharts. 

Let us begin with PERT networks [Fl]. A PERT network consists of an 

acyclic directed graph with an input vertex and an output vertex. All 

arcs in the network lie on paths from the input vertex to the output 

vertex. Each arc denotes an activity in the project being modelled 

by the network, and each activity takes a certain amount of time to 

occur. We can model a PERT network as a timed acyclic event graph by 

replacing each arc with its two end vertices by the structure shown in 

Figure 5.4.4. The time associated with the activity ab is now associated 

with the timed transition tab introduced into the arc ab. Transitions a 

and b are assumed to have zero firing time. In Figure 5.4.5 we show 

this transformation carried out on an example PERT network. 
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Tab 

·-------
a b ··-----!·~·---~ a 

Tab 
b 

Figure 5.4.4. 

b The c 

a~ ··~ T f 

~·~ . • . Yf T de 
d 
. 

e 

(a) A PERT Network. 

f 

(b) Equivalent Timed Acyclic Event Graph. 

Figure S.4.5 
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--

--

---

Figure 5.4.6. 

Timed 
tranaiti 



-179-

Suppose we draw an arc from f to a in Figure 5.4. 5. The resulting 

graph is a strongly-connected event graph, whose critical circuit 

corresponds to the critical path of the PERT network. In Chapter 6 

we will see how strongly-connected timed event graphs can be applied 

to many practical situations where PERT networks are inadequate. 

We now turn to the program flowcharts of Martin and Estrin [Ml, M2, 

M3]. These are directed graphs consisting of arcs and nodes. Nodes 

represent operations in a computer program and arcs represent data 

paths between them. The presence of a data value on a data path is 

represented by a marker. Each node has logical conditions (and, 

exclusive-or) on data values on the input arcs that must be satisfied 

before the node can act. The action of a node consists of removing a 

data value from the specified logical combination of input arcs, per­

forming a computation,amd then qepositing data values on the specified· 

logical combination of output arcs. The action of a node is assumed to 

take some finite amount of time. In Figure 5.4.6 we show how to model 

these timed nodes by means timed acyclic Petri net structures. A Martin 

and Estrin flowchart models program constructs like decisions and 

iteration together with aspects of parallel programs, like the fork and 

join operations [D6]. A test is performed to check if the operation of 

the flowchart can proceed in a deadlock-free manner; if an arc is drawn 

from the output node to the input node, this test turns out to be similar 

to the Qtle for deciding if an SMD Petri net is SMA.. Our work can be 

viewed as modelling cyclic or recurrently acting systems, while the 

work of Martin and Estrin is concerned with finding the mean execution 

time of parallel programs. The two pieces of work taken should provide 
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" gsod bag of tools for the analysis aTld design of asynchronous 

c.0111pu ter sys terns. 
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CHAPTER 6 

APPLICATIONS OF TIMED PETRI NETS TO THE MODELLING OF ASYNCHRONOUS 

CONCURRENT SYSTEMS 

Deterministic Systems 

We will now consider applications fer our work drawn from diverse dis-

ciplines such as cemputer systems modelling and operations research. Through-

out this discussion, we will keep in mind the distinction we have made bet-

ween deterministic and non-deterministic systems. We begin by presenting 

several types of deterministic systems. The simplest system we wish to con-

sider is a set of adder units whose action can be represented by the timed 

event graph shown in Figure 6.1.1. 

Operand 1 

Operand 2 
T' 1 

Pick up 
Bperand pair 

Figure 6. 1. 1 

T' 3 Output result 

Each token on the circuit represents a physical hardware adder unit which 

can be in one of three states shown (i.e., "ready to pick up operand pair", 

"ready to perform addition" and "ready to output result"). We will make 

the assumption that there is always an operand pair available in the 
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input queues, so that a hardware adder unit never has to be idle for want 

of operands, i.e •. the enviroamaat doea not introduce delays into the 

operation of the ayet•. ~yt.ng BquatiOQ [4.111, t;:he ~rate •t- which 

results appear in the output queue is g1'ten by 

where n is the number of phyaical hai:dware adder units, 

,. 
1

, ,. 
2 

and T 
3 

are the ti•• required to .-~foria t:hct 40:tioaw 

lllOdelled by tr.,.itlODlt t 1,t2 ..i t
3

• 

l.e~ ue •••• ~ valuee for th& abtwe· paa11*:ea. 

Let ll • 4. 

Tl • 500 .... 

T2 • 2 µHe • 

T3 • 500 aaec • 

'!'be maximum throughput rate of the adder ta thea 4/3 ,. l._33 aUlion 

add6tiona per second. 

A mor~ tntereating ...-.1e is tlM timed'. Pet.ri. Net lllOdel of a three•atage 

pipelined floating po~ adder ahowr:l iu l'igure 6.1.2. 

Pt.gun 6.1.2 
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This pipelined·adder has only one hardware unit per stage, ao that there is 

overlapped operation of the stages without any parallelism in each stage. 

The maximum throughput rate of the system is seen to be 

. min [ l/Ta, l/Tb, l/T,c]. 

Let us examine the above expression. Suppose l/T .is the .smallest of ·the 
a 

three quantities in parenthesis. Then stage A has the slowest hardware 

unit, and the natural computation rate of this stage determines the through-

put rate of the system.. This means that aaviug hardware units in stages B 

and C that are faster than the hardware unit of stage A h wasteful, since 

their added speed does not: result in any extra systea throughput. We will 

say that a determ•nbtic system is balanced if the natural COlll>utation rate 

of all system parts is·equal. In the context of the pi .. lin9. adder in Bigure 

6.1.2, this means that Ta= Tb= Tc. 

A more complex pipelined adder"would be one in which there are multi-

ple hardware units in each stage. Such a pipelined adder is shown in Figure 

6.1.3. 

n tokens a 

Stage A 

~tokens 

Stage B 

Figure 6. 1. 3 

n tokens 
c 

Stage C 

queue 
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Stages A,B and C have n
4

, ~ and nc hardware functii>Bal units, respectively. 

In this case, the throuflhput of the eyat:ea ia given by 

min [ n /T , n. /Tb , n /T }. 
a a b c c 

For the syetem to be balanced, we see that na/T a ... i;,/Tb • nc/T c • 

Thie f.apli .. the following: 

If a stage conaiet• of alow hardware fvactiooal UDi.ta, a proporticmately 

larger ..._I' of unita abould be present in the et- to ... _. that the 

1yat• ta balanced. Aheenee of ayat .. balance t.pUea that there are pets of 

the syet• v.lth excese c-.acity that c.-K .be uect. 9'tr reaulb ca thus 

be used to teat for ayete. l>alaace in deteratnt•tc .,at-, -4 they aerve 

to formalize the intuiti-.e n«ioas of ba1-ce ~ a 1Mmtw&l:e deeigaer, 

would, no dauk, uae i• the cleeiga of ptpeltnecl ayet.41a8. 

PDT Networb and Pro Jeet Scheduli!J 

PDT chart• are used in PTojeet ec1-lulina to cletenine the shortest time 

that it takes for an ... ellble of c'9:ar1'91lt activltiea to camplete. aiven 

the precedence relatiouhipa between the activitiu and the time duration of 

each activity. We ex-ined the relatiomthip between ~ charts and timed 

Event Graphs in Section 5.6. We now see that by ueing timed event graphs, 

ve can model aapecte of project schealtng ancl aeseml>ly lb.ee that are not 

within the power of PERT charts. The two main 8"vantages of timed event 

graphs over PERT charts is their ability to: 

(a) lllOdel syst8918 that act recurrently. 

(b) lllOdel physical resource units explicitly. 

Suppose we consider the·. project represented by the PERT chart in' Figure 

6.1.4. The project conaists of activities •a" through "a" with the prece-

dence constraints expressed by the PERT chart. We begin by drawing the 

equivalent acyclic event graph for this PERT chart -~ wsing the method given 
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in Section 5.6. 'Ibis acyclic event graph is shown in Figure 6.1.5. 

Figure 6.1.4 A PERT Chart. 

Figure 6.1. 5 JEqubralett EveM Graph. 

Now suppose we want the PERT chart in Figure 6.1.4 to represent a manufac-

turing process, where ti represents the start of the process, and t
0 

the 

end. We assume that each activity in the system requires the uae of a 

unit of resource, like a lathe, a milling machine, etc. We wish to eX}'ress 
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the fact that there are only a finite number of units of each resource type. 

Also, some resource unit• may be very expensive and may have to be shared 

among several activities (e.g. a high prec,iaioa lathe). How are we to ex-

press such system.constraints using a PERT chart? The answer is that there 

is no way Of doing this without augmenring the structure of PERT charts. Let 

us see what added descriptive power can be had by using timed event graphs. 

Around each of the tranaitione t through t , we draw a loop. Each loop is 
a g 

marked with a number of tokena equal to the number of physical processing 

units available for the corresponding activity. The resulting event graph 

is shown in Figure 6.1.6. 

Figure 6.1.6 EYent ,IJ:'apt\ 1lhich models limited resources available 
for each activity in PERT chart. 

In addition to the transition representing an activity, each loop consists 

of a second transition, which we will interpret as the act of allocating 

a resource unit to the activity. Since we wish to model a recurrently acting 

production facility, we complete the loop between t
0 

and ti and add a large 

number of tokens to p~ace p as shown in Figure 6.1. 7. One of the self-loops 
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Figure 6.1. 7 

(i.e., loops around each of the transitions t ••• t now becoaaes the criti­
a g 

cal circu~t~ --~!_El!stem can be balanced °I?}' _assuming that the natu-

ral computation rate of each of these circuits is the same, i.e. 

n /(T l+T 2) a a a = = n /(T l+ 'r: 2) g g g 

, _ The n's denote the number of tokens on the corresponding circuits. If all 

the n's are infinite, then the processing capacity of the production facility 

becomes infinite. This is the situation represented by Figure 6.1.5. Since 

any prodµction facility in real life has only finite · resources available 

to it, these resources can be explicitly t:epresented as we did in Figure 

6.1.6. 

! . . h 1 f d A word now about adding an infinite number of~ tot e oop orme 
"....:.. ---- --- - -· - -·· 

by joining t
0 

to ti through place p. Each token repreaenta the possibility 
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of a set of subassemblies being input to the production facility for process-

ing. Our assumption that we can add an infinite number of tokens to place p 

is equivalent to saying that there is an unbounded amount of buffer capacity 

between the activities t ••• t • In practice ~he amount of buffer space 
a g 

(in the form of storage bays) between work stations in a production process 

is bounded, and this would place a limit on the number of tokens we can put 

on place p. In that case, we would have to consider the natural computation 

rate of.!!! circuits in Figure 6.1.7 including circuits like 

etc. 

Let us give an example of how the buffer capacity of the system may affect 

the maximum throughput rate of the system. We do this lay considering 

some actual values for system parameters. 

Let 'T'a2 - :0:: Tg2 = o. 

,.al - 3 n - 2. a 

Tbl • 2 I\ - 1. 

Tel • 4 n - 2. c 

'l'dl - 6 nd • 3. 

Tel = 5 n .. 2. e 

'('fl .. 8 nf - 3. 

'l'gl - 3 n - 2. g 

Case (i) We assume that M(p) (i.e., the number of tokens on place p) • 6. 

The throughput rate of the system • min[ 2/3 1/2, 2/4, 3/6, 2/5, 3/8, 

2/3, 6/9, 6/11, 6/17] - 6/17. 

limits the throughput rate of the system. 

Case (ii) Now let M(p) = 100 (i.e. ,"very large"). 
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'!be throughput rate of the system becomes min r 2/3, 1/2, 2/4, 3/6, 2/5, 

3/8, 2/3, 100/9, 100/11. 100/17] = 3/8. 

'!be loop around transition tf now becomes the bottleneck in the system. 

'!be production facility we have considered so far was arranged in such a 

way that each activity has its own set of resource units available to it. We 

now consider the issue of resource sharing. 

Resource Sharing 

Figure 6.1.8 

Consider the production process shown in Figure 6.1.8. Once again, 

letting n , ••• n denote the number of tokens on the loops around transi­
a e 

tions t ••• t respectively, we assume the following values for the parame-
a e 

ters of the system: 

T = 
a2 

T 
el 

= 

= 

= 

= 

= 

= 

6 

2 

5 

10 

4.5 

n 
a 

n 
c 

n 
e 

= ,. 
e2 

= 

= 

= 

= 

= o. 

1. 

1. 

1. 

2. 

1. 
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We make the assumption that the same type of resource is 9sed by both 

activities ta and tb. In Figure 6.1.8 , each activity has its own resource 

unit. In this configuration, the system throughput is 

min [ 1/6, 1/2, 1/5, 2/10, 1/4.5 ] • 1/6. 

We see that activity t is the bottleneck in the system. Since activities 
a 

ta and tb use the same type of resource, it is possible to pool their 

resource units together • Now whenever resources are pooled together, some 

resource allocation strategy must be adopted to ensure fair resource allo-

cation to the contending resource users. Since event graphs can model only 

deterministia systems, we will use a simple strategy in which each resour-

ce unit is allocated ~ternately to the two activities. The resulting 

system is shown in Figure 6.1.9 • 
.,. a2 

Figure 6. 1. 9 

We assume that all parameters of the system are the same as before; this 

time the throughput of the system is 

min [ 2/8, 1/5, 2/10, 1/4.5 ] 1/5. 



-191-

Thus, the activity t is no longer the bottleneck in the system. It 
a 

should be noted that other resource allocation strategies are possible, 

but they result in non-deterministic nets. 

So far, the system models we have considered have all been timed 

event graphs. We now give an example of a system which is modelled by 

an LSP Petri net. 

Figure 6.1.10 is a timed LSP Petri net model of the assembly line 

that alternately outputs two types of automobiles, which we discussed 

in Sect ion 1. 2. 

The maximum computation rates of transitions t
5 

and t
6 

are of interest 

because they tell us the maximum rate at which automobiles are output 

by this assembly line. These computation rates can be found from the 

timed steady state equivalent net of Figure 6.1.lO(b). 

We now suppose that there is parallelism within some of the assembly 

stages, but that automobiles are still manufactured alternately. This 

can be modelled by adding tokens to places in the net of Figure 6.1.lO(a) 

other than p8 and p9 , and we get an LBP Petri net of the type shown in 

Figure 6.1.lO(c). 

The reader will recall from Section 3.4 that in order to draw the 

steady state equivalent net of an LBP net that is also LSP, tokens are 

removed until a life, safe marking results and then drawing the steady 

state equivalent net for it. The marking is constructed by the technique 

given in Section 3.4. We get the steady state equivalent net of Figure 

6.1.lO(d). Once again, the maximum computation rate of transitions k5 and 

k6 can be found. 

The system models we have considered so far have all been determinis-
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Figure 6.1.lO(b) Steady State Equivalent Net 
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Figure 6.1.lO(d). Steady State Equivalent Net of the LBP Petri 

Net of Figure 6.1.lO(c) 
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tic Petri nets. We. now mm our att.~ioa to tbe IBOC!lellfng of non-

model is the p.•lfad proc-er with decki-. o£ ti. ~ diacuued 

ia Sedic:m 1.2:. .& t::.lmed .. ~rl Did' ..... 1 far~ :la gi'ftll ta 

Fipre &.l.11. 

t 
e 

t6 'IJpe: .& 

t: 
th 

a 
OlJtput 

t7 
Queue• 

Input St:ce 3 
Queue Stage 1 SC...2 'type B 

Stage 5 

'T =T =T ""'T 1tT =T =T =0 1 z 3 4 5 6 1 

Fi.pre 6.1.11 

'l"bis net: has fi.ve state whine CU1f aaents,. aa the re.ter can easily 

verify {indtCat.ed as St.age 1, ••• ,Staae 5). 'l"1IO t~ of iB8t:ructions 

can he processed, Type A a1ld Type B.. Let. us auppoee that the relative 

frequency of these two iDStruct:ioa typea is in the ratio of 2.:3 (this 

can he found by statistical analysis of progr811l traces). Thia leads to 
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the following minimal integer consistent current assignment: 

cpl cp a = cp2 = cpb = cp = 5 3 
cp = cp 4 = cp = cp = 2 c e b 

cpd = cps cpf = cp7 = 3. 

The computation rate p1 of transition t 1 gives the maximum rate at 

which instructions are absorbed from the input queue. Similarly, the 

computation rates p
6 

and p7 give the maximum rates at which results 

are placed in the output queues. To calculate these quantities, we 

first find P '. From Theorem 5.2.1, 

where each of the terms represents the fundamental computation rate of 

the corresponding stage in the system. System balance requires that 

w = w = $ = w = 1 2 3 4 

Let T. be the firing time of transition t. where i = a, ••• ,f. Then, we 
1 1 

have 
1 

p' = min[ etc •••• ] 
cp T 

a a 

min 1 = 51" 
a 

1 1 1 --- ' ' 5Tb 2T + 3Td 2T c a 

Suppose we choose 'T" 
a Tb = 'T" = 'T" = 'T" = 'T" = c d e f 

then p' = 1/5 and the system is not balanced. 

A balanced and more economical system results when 

= 1.67 µsec., the other parameters being the same. 

firing time assignment, 

1 
3Tf 

1 µsec., 

'1' = 2. 5 µ sec., 
e 

Under this new 



p' =l s 
therefore, 

P1 = 5 x 

p6 = 2 x 

P7 
.. 3X 

p' 

2 )( 105 

2 x 105 
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= 2 x 105 instructions/sec. 

= 106 instructions/sec. 

= 4 X 105 instructions/sec. 

• 6 X 10
5 iutructiona/aec. 

The reader can construct further examples baaed on processors in which 

there are multiple hardware units within each s-tage, and can work out 

a method for an·opti .. 1 design based on certain objectiw and cost 

functions. We shall not attempt to do this here. 

The SMD Petri nets we have exhibited so far have mainly been models 

of pipelined processors or assembly processes. Let us now look at 

models for interacting cyclic processes in COlllputer systems. We begin 

with a model for two processes that interact with each other through 

mailboxes. Figure 6.1.12 gives a schematic or a flat11Chart: model for 

such a pair of processes. One of the processes is deterministic (or 

decisionless) and the other one has two decisions in it. '11le processes 

coamunicate by passing messages to each other through mailboxes, and 

the reader can convince himself that they can operate concurrently 

without deadlocking. This can be verified formally when the Petri net 

model for this system shown in Figure 6.1.13 is ex•ined. The net is 

seen to be SMA, and in Figure 6.1.14 we indicate its state machine com-

ponents. Since the marking shown puts at least: one (in this case 

exactly one) token on each state machine, the marking is clearly live. 

This, as the reader will recall from Chapters 2 and 3, means that the 

system of processes has no redundant operators, and furthermore, that 

the processes can operate without being deadlocked. 
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op 1 
true false 

Mailbox 1 

op 11 

op 3 

(union) 

"op" = "operator" 

Figure 6.1.12 
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op 5 

op 9 op 11 

op 19 

op 10 

Figure 6 .1. 14 (a) Figure 6.1.14(b) 
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op 9 op 11 

op 19 

op 2 

op 
op 1% 

Figure 6.1.14(c) 
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op 

op 17 

op 19 
op 18 

op 14 

Figure 6.1.14(d) 

Having thus established that the Petri net in Figure 6.1.13 has a 

live marking, we can now suppose that the transition labelled "op 19u 

represents an operation which outputs a result every time the transition 

fires. Our problem now is to find out the maximum rate at which op 19 

outputs results, given the usual parameters like the firing times of the 

transitions and a minimal integer consistent current ~ignment. The 

places marked "op 8" and "op 16" represent decisions, each decision 

having two outcomes. The relative frequency of the _outcomes of each 

decision can be found by statistical means. Let the probabilities of 

op 11 and op 9 be p11 and p9 respectively, where p11 + p9 = 1. 

Similarly, let p18 and p17 be the probabilities of op 18 and op 17 

respectively, such that p17 + p18 = 1. We can now obtain a minimal 



-204-

integer consistent current assignment for the net. where each current is 

denoted as usual by cp. and 

•11 - P11 (6.1} 

~ P9 

!!! - P13 (6.2) 
Cll1 Pt-7 

As an example, let p11 • 1/3 P9 - 2/3 

P13 - 3/4 1\1 - 1/4 

Then,, the following is a. conaistent C'FftDt aaaianment: 

~ = 1 5 

'97 ... 1 

cp6 -

•10 

"12 

•1s -

1 

-
-

1! 
4 

•1 .. 1 

cpl = 

1 • 
3 

•11 - ! 4 

CJ>i4 ... 1 ~19 - 1 

•2 cpl •4 2 - - - 3 • 

• .. 1 
18 

From this consistent current asaigament • we can derive the following 

minimal integer cooaistent current assitPment: 

cp -5 
12 . , -12 •1 . 12 •14 ... 12 •19 - 12 

•9 ... 
•10 - •1 'l>2 - cpl - cp ,. 

4 

Cfi1 - "12 - 4 

•1 .. 12 •15 = 15 ' •11 = 3- •1s - 12 

8 
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The maximum computation rate P19 = P1 X ~19 = 12p', where p' can be 

determined by applying Theorem 5.2.1. 

The example we have worked out clearly shows the utility of 

Theorem 5.2.1. As we have pointed out in Section 5.2, an achievable 

bound can be found for P19 by drawing the timed c-equivalent nets for 

the Petri net in 6.1.13, and finding the c-equivalent net with the 

minimum value of fundamental computation rate. This method is not 

easy and Theorem 5.2.l gives a far more tractable method, although the 

bound so computed may be overly optimistic, since the Petri net is not 

a - SMA. 

The timed event graph of Figure 6.1.9 models a production facility 

in which a deterministic resource sharing strategy was used to share 

resource units between activities Tal and Tbl" We pointed out that in 

order to model non-deterministic resource allocation strategies, we 

need SMD Petri nets. We show such a system in Figure 6.1.15. 

A minimal integer consistent current assignment is one which assigns 

unit current to each transition. i.e., 

~a2 = ~b2 = ~al = ~bl= ····~el= ~e2 = 1. 

By decomposing the net into its state machine components, we see that 

only one state machine component has changed, namely the one containing 

the resource pool and the transitions tal' ta2, tbl and tb2• The maximum 

2 fundamental computation rate of this state machine is 
Tal+ ~2+Tbl+Tb2 

which is the same as that of the simple circuit ta2 tal tb2 tbl in Figure 

6.1.9. Thus, the non-deterministic strategy does not change the compu-

tation rate of the system. This can be seen to be true for deterministic 

production facilities, as they have a fixed minimal integer consistent 
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Beaource pool 

Figure __ 6 .1.15 '1'he Production Facilitx of 6 .1. 9 w.t.th a !foo.-Deteraiaistic 

Reaource Allocatiaa- Rrat.ep:. 

current assigiaent. 'l'he reader is invited to conatruct further examples 

for himself. 

We conclude this chapter with an.elCMl(>le of an enatemble of sequential 

processes mich contend for shared resource units in a resource pool. 

Figure 6.1.16(a) ia a Siii> Pet:ri net madel of &' 878t:em of: three sequen­

tial processes contending for two pooled reeourea unita. '1'he minimal 

integer consistent: cuTrent assigwnt models the fact thee: the relative 

frequencies with which Processes 1,2 and 3 are allocat:ed resource uni.ts 
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Process 2 

2 

~ =2 
8 

Figure 6.l.16(a) 

Process 3 

are in the ratio of 1:2:3 (this is a coincidence). The net is SMA, 

and the four state machine components designated s1 , ••• ,s
4 

are shown 

in Figure 6.l.16(b). 

By applying Theorem 5.2.1, the reader can easily find the computation 

rate of any transitions of interest. 

It is hoped that the material presented in this chapter has given the 

reader a good overview of the applications of the work presented in the 

earlier chapters. The reader should reinforce his understanding of this 

material by constructing further examples of his own. 
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Figure 6.1.16(b) 

Process 2 Process 3 
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CHAPTER 7 

This thesis has answered several questions but has opened up many 

others. Basically, we have laid to rest the issues we raised in Chapter 

1. We have shown how to model asynchronous concurrent systems in an eco­

nomical fashion, and, by augmenting our model with timing information, we 

have shown how to find bounds on the ccxnputation rate of a large class of 

systems. 

Our approach in establishing the validity of the SMD Petri net model 

for asynchronous systems has been heavily dependent on example and 

intuition. This may seem rather unsatisfying to some of us, and we pose 

the following problem to our readers: can we come up with a set of axioms 

that specifies the structure and behavior of asynchronous systems, and then 

show that these axioms lead to SMD Petri nets? 

SMD Petri nets have turned out to be a very rich class of structures 

for representing asynchronous concurrent systems. However, we do not have 

any necessary and sufficient structural conditions for an SMD Petri net 

to have a live marking, and we pose this as another problem to our rea­

ders. 

The other major question that remains to be examined is to assume 

firing times to be random variables in order to model real-world systems 

more accurately than is possible with the model of Chapter 4. Good bounds 

are needed for the mean computation rate of such timed nets. Another issue 

that seems to merit some attention is to assume that input queues to 

an asynchronous concurrent processing systems are fed by items whose 

arrival rates are random (e.g., Poisson). This will lead to a statis-
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Lical fluctuation in the processing rate of the system, and the effect 

of buffers in smoothing out these fluctu&tions can be examined. A general 

performance analysis theory can thPn be h'Orked out for asynchronous 

cc0c1 1rrent systems. We think rh,·L our thE.sis is a st(:p in that direc-
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APPENDIX I 

In this appendix, we show that the rooted tree T(V) for any vector 

addition system Vis finite, and the proof of Theorem 2.3.l is given. 

The results and techniques in this appendix are taken from Karp and 

Mi Iler [K2] . 

Finiteness of the Tree T(V) 

To prove that T(V) is finite for any V requires two lemmas. The 

term subsequence used here does not refer necessarily to successive 

elements of a sequence. Thus 1, 3, 4, 15, 79, ••• is a subsequence of 

1,2,3, ... 

Lemma I.l; Let s 0,s1 , ••• sn, .•• be an infinite sequence of elements 

from (N U (w})r for some positive integer r. Then there exists an 

infinite subsequence s. ,s. , ... ,s. , ... such that s. 
11 

s. . .. 
il 12 in 

Proof: In s 0 ,s1 , ... sn•··· there exists an infinite subsequence that is 

non-decreasing in the first element. In this sequence in turn, there 

1 
n 

exists infinite subsequence that is non-decreasing in the second element, 

etc. 

Lemma I.2: (Konig Infinity Lemma [K3]. Let T be a rooted tree in which 

each vertex has only a finite number of successors and in which there is 

no infinite path directed away from the root node. Then T is finite. 
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Theorem I.l: For any vector addition system V, the tree T(V) is 

finite. 

Proof: Assume otherwise and let sl's2, ••• sn' ••• be a sequence of 

nodes in an infinite path directed away from the root node. By Leoma 

I. l there must exist an infinite subsequence si , si , ... s1 , ••• of this 
1 2 n 

sequence such that l(si) s L(s1 ) ••• s .t(si) s ••• Since none of 
1 2 n 

these nodes is an end, it can never happen that L(s1 ) = t(si ). If 
n n+l 

this were not true, then the path would be finite by condition 2(a) in 

the definition of T(V). 

From condition 2(b) in the definition of T(V), .t(si ) must have at 
n+l 

least one more element equal to w than t(si ) does. Since the number of 
n 

elements is finite, we have a contradiction. and, therefore, no such 

infinite path can exist. From Lemma I.2 it lllUSt be the case that T(V) 

is finite. 

Proof of Theorem 2.3.1: For any vector addition system V and any integer 

vector x of the same dimension 

Ci[y E R(V) such that x s y) ~ ( :K p E T(V) such that x s .t@) ). 

Proof: We first show that the right hand side implies the left hand 

side. The idea of the proof is that, if fJ is a node in T(V), then there 

are vectors in R(V) which agree with L(P) in its finite elements, and 

can be made arbitrarily large in the elements equal to w by repetition of 

the sequence of vectors which led to the occurrence of w. The details of 

the construction involve some calculation. 
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Suppose x ~ l(P). Let the path from s to ~ have the successive 

nodes n0 ,n1 , .•• nk' wheres= n0 and~=~· For j = 1,2, ••• k, let 

vj be the vector associated with the arc directed into nj; i.e., 

n. = <n. 1) · Assume without loss of generality that the first h J ]- v. 
- J 

components of !(~) are equal to w, and that the other components are 

less than w. Assume further that, in the path from s to ~. w's are 

introduced in the order 1,2, ••• h. Then, for each i, 1 ~ i ~ h 

there exists a consecutive subsequence ti= vc{i)' vc(i) +l'"""vd(i) 

such that the vector ui = vc(i) + vc(i)+l•··· + vd(i) is positive in 

the i-th element and nonnegative in the i+l st through nth elements. 

Note that ti is the subsequence that "accounts for" the i-th w. 

Let -~be a lower bound on all the (negative) elements of u1 , ••• ,~. 

Also let (n1 , ••• ,°b} be any set of non-negative integers satisfying: 

n1 ~ (x-s) 1 + ~(h + L + n2 + n3 + •.• + °h) 

(1) 

n ::2: 
2 

~i ::2: (x-s) 1 + ~(h + 2 - i + ni+l + ••• ~) 
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Such a set must exist because of the triangular form of the inequali-

ties. 

Choose s1,s2, ••• ,sh+l such that for 1 ~ i ~ h, s1s 2 .•• s 1 is the 

prefix of v1v2 .•• vk up to the first occurrence of win the i-th 

element, and s 1s 2 ••• sh+l = v1v2 ••• vk. Then the sequence 

n n2 n 
l h -8 2t2 •••8bth 8h+1 u1u2···uf baa the following 

propert iea: 

{a) s + u1 + u2 ••• uf ~ x 

{b) each partial sum a+ u1 + ••• u1 is non-negative. 

We omit the detailed derivaltion of (a) and (h) fran·dle system of 

inequalities (1). To show ~flat the left hand s:We i111plies the right 

:hand side, suppose that the fol<l-owing ai-e cruer s + u1 + u2 ••• uf E R(V), 

x ~ s + u1 + ... uf, and ~ + u1 + .•. + u
111 
~ 0, m. = 1,2, ••• f, 'Where the 

{u J are elements of w. Apply the following operati0n to the sequence • 
s, s + u1 , s + u1 + u2, ••• s + u1 + .•• + uf as 1l8llY ttaes aa possible: 

Find the first member of the sequence {call it u') such that, for 

s<me earlier member u'', u'' ~ u 1
• 

(a) If u'' = u', then delete all members following u'; 

(b) otherwise, for each i such that (u'')i < (u')1, replace the i-th 

element of u' and of each vector beyond u' in the sequence by w. 

It should be clear that the sequeuc~-obtained at the conclusion of 

this process is the sequence of labels in some path directed from 

the root of T(V), and that the final label in this sequence is a vector 

greater than or equal to s + u1 + ••• + uf. Hence, the left hand side 

implies the right hand side, and the proof is complete. 
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To illustrate the construction of the sequence 5 given in the 

first part of the proof, the following example, due to Karp and 

Miller, is provided: 

Suppose s = (1,1,1,4) and W = ((0,0,0,-1); (2,-1,0,0), (-1,1,0,0), 

(-1,-3,4,0)}. Consider the following path in T(V): 

(1,1,1,4) O,O,O,-lp- (1,1,1,3) 

\ 2, -1,0,0 

(3,0,1,3) -l,l,O,O• (w,1,1,3) 

\-1,1,0,0 

(w,w,.1,3) -l,-3 ,4 ,o~ (w,w,w,J) 

s 1 = (0,0,0,-1), (2,-1,0,0), (-1,1,0,0) t
1 

= (2,-1,0,0), (-1,1,0,0) 

82 = (-1,1,0,0) t2 = (-1,1,0,0) 

SJ = (-1, -3,4,0) t3 = (-1,-3,4,0) 

Take x = (22,16,9,3) ~ (w,w,w,J) and let • = 3. The system of 

inequalities (1) for this case is: 

n1 :1!:: 21 + 3(4 + ~ + a
3

) 

n2 :1!:: 15 + 3(3 + n
3

) 

113~8+3.2 

A solution is: n3 = 14, n2 = 66, n1 = 273, giving the sequence 

273 5 = (O,O,O, -1), (2,-1,0,0). (-1, 1,0,0), ({2,-1,0,0), (-l, 1,0,0)) , 

(-1,1,0,0), (-l,l,0,0)66, (-1,-3,4,0), (-1,-3,4,0)14, which 

establishes that the point (193,23,61,3) ~ x is in R(V). 
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