

Tius blank page was inserted to preserve pagination.

put

%

VEE

)i 2]

x
B

]
%

Y OBTUBRROER

4

]

Tk j :

& o

£

. MASSACHUSETTS 02139

CAMBRIDGE

2

AN EXPERIMENTAL ANALYSIS OF PROGRAM REFERENCE PATTERNS
IN THE MULTICS VIRTUAL MEMORY

by
Bernard Stewart Greenberg .

Submitted to the gepzzmu Qf qutl;ical Engineering
on Janmuary 31, in partial fulfillment of the
requirements for the Degree of Master of Science.

ABSTRACT

This thesis reports the design, conducting, and results of an experi-
~ ment intended to measure the paging rate of a virtual memory computer
system as a function of paging memory size. This experiment, conducted on
the Multics computer system at M.I.T., a large interactive computer utility
serving an academic community, sought to predict paging rates for paging
memory sizes larger than the existent memory at the time. A trace of all
secondary memory references for two days was accumilated, and simulation
techniques applicable to "stack" type paging algorithms (of which the
least-recently-used discipline used by Multics is one) were applied to it.
A technique for interfacing such an experiment to an operative com-
puter utility in such a way that adequate data can be gathered reliably
and without degrading system performance is described. Issues of dynamic
page deletion and creation are dealt with, nppcreatly for the first re-
ported time. The succeasful mfomgiq,;#ghg_ Re
viability of perfom:l.m this type of meagurement ¢
The results of the exggti;wt Are. gi.van
paging behavior.

- 3 - R T s
[P (R LT T TRETIGING)

THESIS SUPERVISOR: Jerome Howard Saltzer
TITLE: Associate Professor of Electrical Engineering

3

Acknowledgements

I wish to thank the M.I.T. Information Processing Center for the use
of their machine and time-sharing service as live subjects for my experi-
ments, and for the resources necessary to develop some of the necessary
software. ’

I wish to thank Deborah Cohen for the typing of this thesis, and
Muriel Webber for her superlative preparation of the diagrams herein, parti-
cularly the wondrous block-and-pointer -diagran in Appeéndix A. Both of them
have gone far beyond the call of duty in bringing this document to completion.

I wish to thank my fellow graduate students at Project MAC, particularly
David Clark, Jerry Stern, Lee Scheffler, and Douglas Hunt, for all nature
of help and inspiration along the way, and invaluable suggestions and in-

I wish to thank Steven H. Webber of Honeywell Information Systems,
Inc., for my apprenticeship in the skills of the Multics supervisor which
were so necessary for this experiment. :

I wish to thank Professor Michael D, Schroeder for reviewing many
early versions of this thesis, and taking an active interest in its pro-
gress.

Finally, I wish to thank my thesis supervisor, Professor Jerome H.
Saltzer, for the conception of this thesis, and the research leading up
to it, From the very begimning, he has guided this work, in a very real
sense an extension of his own, and with a keen sense of what was relevant
and what was not, shaped the finished thesis. T thank him for his personal
commitment of time and energy to this thesis, and helping me through many
problematic areas within it. Without him, this thesis would not have been
possible.

This research was supported by the Advanced Researcﬁ;Projects Agency of the
Department of Defense under ARPA Order No. 2095, amd was monitored by ONR
under Contract No. N00O14-70-A-0362-0006. : .

4
Table of Contents

. SECTION

ABSTRACT
ACKNOWLEDGEMENTS
TABLE OF CONTENTS
TABIE OF CONTENIS OF APFENDIX A
LIST OF FIGURES |

INTRODUCTION |
1. Brief Statement of the Problem
2. Summary of Result
3. Summary of tlte Work of This 'lheais
4. Structure of This Thesis "

CHAPTER I Virtual Memory Performance -
~ 1.1 Memory Performance Prediction gs a Goal
1.2 Program Reference Patterns and. l‘bdels)
1.3 The Experimental Determinatiom of hedicted Headways
1.4 Previous Work in this Area
1.5 Novelty of the Hork in This !hesis

CHAPTER II The Design of the Experiment
2.1 Stack Algorithms and the Extension Problem
2.2 The Extension Problem and Multics.
2.3 Performing an Experiment on Multics

CHAPTER III The Results of the Experiment
3.1 The Conducting of the Experiment
3.2 The Results of the Experiment

3.3 Reference Probgbility Models Suggested by
these Results

3.4 Accuracy of the Reported Results

NS WoN

W 0 &

11
12
17

22
24

26
26
31
40

46

47

55
58

A e p—— e e e T

5

3.4.1 The Effect of Lost Data

3.4.1.1 Lost Counter Accuracy

3.4.1.2 Stack Shifting Inaccuracies
3.4.2 Global Transparent ?aging Device Inaccuracies
3.4.3 Inaccuracies Resulting from:List Deletions
3.4.4 Other Inaccuracies V

3.5 Our Result and the Linear Model Measurements

CHAPTER IV Conclusions and Suggestions for Future Research
4.1 Conclusion h o ' '
4.2 The Paging Model Suggested

4.3 Unanswered Questions and Future Directions

APPENDIX A A Structured Program Description of Multics
‘ Page Control

APPENDIX B Implementation of the Hardcore Meters

Interface Details
APPENDIX C System Performance Graphs During Experiments

BIBLIOGRAPHY

59
60
61
64
67
72
74

77
78
80

83

127
131

135

139

6 .
Table of Contents of Appendix A

A Brief'Overview of Page COntroI

An Explanation of the Lnsuagc B&ed &0 Express
This Description

A Top-Level Programmatic View of Page COntrol

A Top-Level View of the Objects Used by Page Control

A Description of the Object Types Bseé 1n Page Control

The Global Variables Used by PaggAcqnt:QI;f

Undocumented Routines Referenced in This Program

The Page Control Objects for a 81n31e Page

(Illustration)

The Programs

1'

page_fault
read_page
find_core

- try_to_write page

write_page

allocate_pd

page_1is_zero
get_free_pd_record
post_page

start_rws

rws_abort

rws_done

Small Auxiliary Routines
Typical Paging I/O Routine

98
101

102

104
105
105
107
108
111
112
113
114
116
118
119
120
121
123

7

List of Figures

Figure

2,1 Behavior of Anomalies Resulting frog Deletion

3.1 Linear/Linear Plot, Exception‘Ratio‘vs Memory
Extension \

3.2 Exception Ratio vs Memory Extension, Logarithmic
Exception Ratio Axis

3.3 Lower Region of Figure 3.1, Linear/Linear Plot

3.4 Exception Ratio vs Memory Extemnsion, both
axes logarithmic ‘

3.5 MHBPF vs Memory Extension

3.6 Figure 3.1 Corrected for Worst-Case Deletion Error

A.1 The Page Control Objects for a Simgle Page

C.1 User Load During Experiments

C.2 Percent of System Idle During Experiment

C.3 - Percent of System Spent in Page Fault Overhead

During Experiment

Page

37

48

49

51

52

53

104
136

137

138

Introdiction

1. Br;eg -Statement of the Problem

In this thesis, we describe and report the results of an experiment
designed to predict the performance of wtonat:l.cally ;m'an‘ogved’:mltilevel

memory systems for a previ,ous'iy unexplored .ran‘ge of px:hury memory sizes.

2., Summary of Result

We have developed techniques for predicting memory system perfor-
mance on an operative computer ut:ll:lty, utiliz:&ng;u mmtically man-
aged multilevel virtual memory. Based upan.establighed theoretical tech-
niques, we have developed techniques -to-extract the necessaxy data from
a computer utility functioning under a live load, In doing so, we con-
sidered;problelbns of dynamic creationm and,d@leaoq of pages which appa-
rently have not Been dealt with previcusly. :The wvisbility of these tech-

niques was demonstrated by performing.geveral measupements.

Using these techniques, we have found tlietﬂ;'J;ot'i";‘flfe;;te;asored system,
the rate of accesses to data outside of primary meinory decreased drasti-
cally as primary memory size is increased above 2 x 108 bits (6 million
36-bit words, or 24 megabytes). We have found that the mean time be-
‘tween these accesses, as a function of primary memory size was best ap-
proximated by a function of at least the second order, and possibly ex-
ponential. Previous research on the system under consideration showed
a linear function to hold for primary memory size up to 1.3 x -108 bits
(4 million 36-bit words, or 16 megabytes) (S1). Although these results

do not attempt to characterize Multics, we believe that they are rea-

sonably representative of the observed class of user behavior.

3. Summary of the Work of this Thesis

By means of an experiment on the Multics computer system (B2),
running on the Honeywell 645 at M.I.T., we have arrived at measurements
of the predicted reference rates to.secondary memory for hypothetical
extensions of primary memory. These measurements were made on an actual
user load, the M.I.T. community, and not any sort of benchmark or test
- load. From these measurementé, models of program behavior in IRU*-man-
aged storage hierarchies can be derived.. We suggest here ome such model.

The essential technique for deriving these predictions from such
. measurements is known in the literature (€C%,C2) as the "extension-prob-
lem". It is based upon the properties of a class of memory management
algorithms known as ''stack algorithms" (M1l), which fnclude IRU, Using
these properties, we were able to simulate ‘the operation of the IRU al-
gorithm for larger primary memory sizes than the actual one present for
the identical user load. The input to this simulation was a history of
all references to data outside of primary memory, specifically, on disk,
during the period of measurement. It is a property of the stack al-
gorithms that one measurement and simulation can be used to predict; se-
condary memory reference rates for all primary memory sizes.

The work reported in this thesis 1is significant because it is both
the first measurement of this type on a paged, segmented, multiprogrammed

computer system which has been reported, and an extension of our range of

*LRU, for Least Recently Used - a memory management policy whereby the
least recently used data is moved to slower memory when space is needed
in faster memory.

10

knowledge of the so-called “headway" function which we have described
above. Previous measurements of this function (S1) involved other tech-
niques, and only investigated it for primary mewory sizes of up.to 1.3 x
108 bits. Our measurements explored regions approaching 4 x 10-8 ,bits‘.
Although there is no imherent limit on the range which could in primciple
be explored by our techniques, the 1imitation of our explorations is due
only to the noteworthy fact that over a-day's runming of the experiment,
no more than 4 x 108 bits of infermation were referenced more than once
by the M.I.T. community.

- The significance of the actual‘resu'kltins measurement is twofold:
First, it provides an example of typical behavior for.the measured sys-

tem. Second, it suggests more gemneral models of 'program behavior.

4. Structure of this Thesis

Chapter 1 discusses the concepts .of paging and- virtual memory. We
provide justification for the types of statistice and models we seek and.
describe how to use them in performance:predictions. We discuss previous
research in this area, and provide a more. detailed statement of the
novelty of this thesis.

Chapter 2 describes the experiment. We describe the relevant fea-
trues of the so-called "stack” algorithms (M1l), and the.extemsion prob-
lem. We discuss the problems of adapting this type of experiment to the
mltilevel memory system of Multics. We describe the difficulties in
performing this experiment on an operating computer utility, and the
solutions we adopt.

Chapter 3 gives the results of the experiment. The results are pre-

11
sented graphically, and we suggest their interpretation. We analyze
these results, and provide a detailed error analysis.

Chapter 4 is a summary of the work done. We suggest future dirkc-
tions for research, and pose some of the questions left unanswered b&
this thesis.

There are three appendices.

Appendix A is an extremely detailed description of the Multics paging
control algorithm, as it was at the time of the experiment. We desc#ibe
it on several levels, allowing comprehension by the reader on whicheﬁer
one he chooses. This background is useful for full comprehension of!cer-
tain design decisions in the planning of the experiment. It is also!the
first publication of this algorithm at this level of detail (Corbat6! (C4)
provides a less detailed discussionh). ’

Appendix B describes how the actual events of Multics memory mahage-
ment were mapped into the idealized events of theoretical interest tb the
experiment. We describe the modifications and the interface to the Mul-
tics supervisor necessary for this experiment. We assume that the réader
has some comprehension of the previous appendix.

Appendix C is a graphical preéentation of user load, idle time,?and
paging overhead on the Multics system on the days of the experiment.’
These figures were derived from routine metering performed by the ad&in—

istration of the M.I.T. Information Processing Center.

12

Chapter 1
1.1 Memory _ngom Prediction as a Goal

As digital computer systems have increased in size and complexity
since their inception almost twenty years ago, so have the memory archi-
tectures required to support -increasingly adx;ncedapplica;ions and .8ys-
tems. What is more, progress in.memory,techmplogy has created.a plethora
of memory media, ranging over a wide gamut of costs, speeds, and pro-
perties. The desire for increased throughput, and in real-time systews, -
the desire for gquick response, create a need for the gngtest.f{ngmory tech-
nology available. The fastest media, however, are. almost always the most
expensive on.a cost-per-bit basis. lhus,;ifgx;aag:l.y:eg computer system to .
achieve or approach desired goals of memory.access speed within a given.
economic constraint, it becomes useful for memory systems consisting of
varying amounts of mixed memory techmologies to be .used in one installa-
tion.

Most computers of the past twenty years have used magnetic core as
their main, or primary memory. That is to say,.the processor was capable
of fetching data and instructions. only from £OYe. MEMOTY .. - Further memory
demands were met by the use of tapes, diaks, snd other bulk media, whose
contents could be transferred in or out of selected. areas of primary
memory by explicit program request. Most of the programs and operating
systems designed for this type of architecture allocated these areas for
input/output transfers in fixed, specific regions of primary memory.
When programs could not fit in their entirety in primary memory, they

were divided into independent pieces, or overlays, which were transferred

13
in and out of primary memory essentially at their own discretion.

In the last few years, a strategy known as virtqgl memory has achieved

popularity. With this scheme, programs are allowed, effectively, to re-
ference data or instructions in primary memory or on any secondary storage
device in an identical manner, creating the impression of a very large,

or 1n some cases, conceptually infinite primary ﬁemory. References to
secondary memory cause software intervention, signalled by specialized
hardware, which results in selected code or data fragments being read into
primary memory. Clearly, this implies replacement of some.other code or
data currently in primary memory, and in order to faéilitate this task,
such systems divide all primary and secondary storage into equal-sized
areas, called blocks, or page frames. Information in the system is di-
vided into pages, which may reside in various page frames at various times.
This implementation of virtual memory is thus known as demand paging, as
paées are read in on demand, i.e., when referenced. ’The selection of
appropriate pages in primary memory for replacement is a critical issue,
and is still a basis for much further study.

A page fault, as the software-assisted fetch of a page not in pri-
mary memory is called, represents lost time. The time required to ac-
cess and transfer the copy of the page on secondary storage is time during
which the requesting program may not run. The time that a processor must
spend in page fault software, deciding on an approﬁriate page to replace,
is a system overhead, which does not contribute to the progress of usérs'
programs. Multiprogramming, a scheme almost universally used on medium
and large scale systems, allows processors to serve one user;s program

while another's is suspended, say for a page fault. But even here, most

14

systems limit the degree (number of simultaneously rummable users) of
multiprogramming, #nd page faults can lead to a situation where a pro-
cessor spendﬁ an undesirébly large fraction of its time sitting idle,
accomplishing no function at all. Purtﬁerﬁbre; the pfiméry menory spéce
occupied by all of the faulting program€is unusable{biiaﬁy program for the
duration of the transfer. Thus;7thé‘mi§imizaiibh of page faults in a
virtual memory system is extremely desirable. it 18 an important function
of the page-replacement algorithm, as the ﬁibcedure:which selects pages
for replaceﬁeht at gage-fault time is known, to atteﬁpt to minimize the-
number of’page faults in the forseeable future. These decisions are usu-
ally made with information gléaned’froé'bbéefﬁatio; ofrfage usage in the
immediate past, occasional knowledgevof{p%édiéted’page usége pafterns,

and some general models of program béhivior.

Many page-replacement algorithmsrhgié thﬁs’béeﬁ”dedigned for virtual
memory systems with the explicit objective of minimizing page faults.
These algorithms are subject to mathemitiéal‘analysis, which is not true
of arbitrary user programs. Hence, by»éareful observation of the storage
references made by a program or muléipﬁogrhmmed collection of programs
(although the latter clearly requires some further remarks) we can ana-
lyze its interaction with any given page;feﬁiacemént ;lgdrithm running
in aﬁy given sizé:of primary memory, aﬁd asceftéinvwhich page faults
would or would not have occured had ﬁrfﬁary memory been some other size.
fhese techniques are not in general épﬁlicdble to non-virtual memory syS-
tems, for many programs have no idea of how Iérge a memory they are
running in, or how to take advantage of'it, and thus explicitly-requested

data transfers are not affected by changing memory size in any inter-

15

esting or easily analyzable way.

The ability to determine page fault rates (page faults per unit time)
for different memory sizes is a powerful tool in both performance analysis
and memory system engineering. Sekino (52) has shown the explicit depen-
dence of response time and throughput in multiprogrammed systems on the
mean headway between page faults (MHBPF). This quantity describes the
mean amount of useful work done by user programs between each two page
faults. It is most conveniently measured in total references to the vir-
tual memory. If the mean amount of system overhead associated with a
page fault is known, as well as a proper characterization of system idle
time, ‘we may compute MHBPF from the mean real time between page faults.
(MTBPF) and the processor reference rate. Hence, predictive techniques
to obtain page fault rates for contemplated memory sizes can be used to
deduce the system throughput and response time. figuresa which would result.
Hence, if one can indeed predict these figures, the economic tradeoffs
involved in acquiring improved memory systém performance by increasing
primary memory size may be evaluated more methodically.

The use of more than one type of secondary memory in a single system
results in a situation where the average time to access a data item in
any part of the storage system is a function of both the average acéess
time to a data item in each unit and the probability of accessing that
unit. In a demand paging system, the probability of accessing each unit
is the sum of the probabilities of accessing each page stored on it. If
one can associate these probabilities with given pages of such a system,
one can create a composite memory system with an optimal average access

time within any given cost constraint. Ramamoorthy and Chandy (R1) have

16

given an algorithm, whereby such a system may be constructed out of any
collection of memory types, whose speed and cost-per-bit characteristics
are known. In any case, it is clear that one should keep the pages with
the highest reference probability on the fastest storage. devices. Al-
though the identities of these pages may be determined by experimentationm,
observation, and program analysis, one cam view these probabilities and/or
identities.as functioms of time. Thus, one .can devise algoxithms which
attempt to maintain pages with gh;en .rapges -of :next~refersuce probabilities
on appropriate storage devices. It should he fairly apparxent that this
problem is identical to that of maintaining pages in primary memory with
the intent of minimizing page faults. .This wilil be discussed more later
on. Thus, the design of an optimal multilevel starage system, as such
configurations are kmown, can also be mly;ad by .the techniques of pri-
mary memory paging analysis. Again, the assumption of an appropriate .
model of. program behavior, both in genggal and.for the.particular system

at hand, is of crucial importance.

17

1.2 Proeram Reference Patterns and Models

Computer programs being among the most deterministic of all things,
any characterization of the data reference patterns of any particular pro-
gram may be obtained by the simulated running of that program and the
observation of whatever characterizations are desired. However, system
engineering requires characterizations of programs which are to be run,
which, for the most part, have not yet been written. In a given computer
system, running under a given operation system, most running programs
have many features of their memory usage patterns in common. For instance,
in an operating system where an Algol-60 or PL/I-like run-time stack is
native to the environment, the pages containing the top of the stack will
always have a higher next-reference probability then page representing
lower regions. If the supervisor itself is paged, i.e., running in a
virtual memory, the same as users' programs, the supervisor has its own
reference patterns which will be present in any run of the system. The
same is true of compilers, assemblers, system utilities, library routines,
and other service programs. Code generated by the same compiler is likely
to produce certain common features in its reference patters, particularly
on a local level. Thus, there is great value in observing typical be-
havior of programs in a large computer system, and trying to formulate
some model which is in some sense average or typical.

In a multiprogrammed system, this averaging is done for us in real
time. An experimental observation of program behavior in a multipro-
grammed computer system, made over some reasonable period of time, say a
day, will produce a characterization of typical system behavior, if one

indeed believes that such exists. This characterization takes into con-

18

sideration all of the programs rumn in that day,; and relies on the common
features of programs discussed above to have any validity at all. The
interval of a day is chosen as reasonable; for:that is the .cycle time of
many forms of human interaction with a _computer. People deal with an
interactive computer system for several days, doing the same type of work
at similar hours in the day.

The particular model of reference behavior that we seek describes
next-reference probability of pages in a virtual memory system as a funo- .
tion of pogition in a certain dynamic ordering, known as a. stack, imposed.
by the page-replacement :algorithm, The class of algorithms amenable to
this analysis are precisely those which would keep the top -n' pages of this
ordering in an n-page primary memory, werer it used to manage such. This
will be discussed more fully in section 2.1. What is impertant here is
that we can arrive at a function p(x), where p is the. probability of re-
ference to position x in this ordering. It is the object of that sub-class
of these page-replacement algorithms which,atje actually useful for memory
mansgement to make this: function monotomically decxzeesing. I1f.the al-
gorithm actually succeeds at this, it is clear that then pages which are
most likely to be referenced will probably be in ;:h,e n~page primary memory,
and thus, the page-replacement algorithm has succeeded in minimizing re-
ferences outside of thel n~page primary memoxry, or page faults. In the
case of multilevel memories, we can pick out whatever positions in the
ordering are appropriate, by Ramamoorthy and Chandy's algorithm, and as-
sign them to whatever storage unit is required. C. K. Chow (C3) has also
given an algorithm where an optimal multilevel memory system within a cost

constraint may be constructed directly from the function p(x).

19

1.3 The Experimental Determination of Predicted Headways

If we accept the function p(x) as a valid characterization of average
and typical behavior in a multiprogrammed system, we may predict page
fault headways for hypothetical memory extensions from it. Furthermore,
the function p(x) may be measured experimentally. 1In this section, we show
how to approximate and use p(x) in this way.

x is the position of a page in the algorithm-imposed ordering we have
been discussing. Assume we have constructed the necessary tools to mea-
sure r(x), where r(x) is the number of times a page in position x of the
ordering was referenced. Assuming pages which were never touched to be in
position "infinity" of the ordering, then the relative frequency of

touching a page in position x is

f&x) = r(x)
$ r(t) ' 1)

t=1
Here, the numerator is the count of references to position x, and the
denominator is the total number of references to all positions. If p(x)
is indeed a valid characterization, f(x) should approximate p(x).

We have stafed, that for the class of aigorithmsrunder consideration,
the first k positions of this ordering at any time contain precisely those
pages which would be in a primary memory of size k. Heﬁce, references to
pages in the first k positions of the ordering never cause a page fault
in 8 k-~page primary memqry, and references to péges in any position beyond
k always cause -page faults. Hence, if a program makes H references to
the virtual memory, the number of page faults it will take in the course

of those references is identically the total number of references made

20
to positions in the ordering beyond the primary memory size. Thus, the

program, running in a k-page primary memory, will produce a mean headway

MHBPF (k) = H
$ r(r) ')

t=k+ 1 |
This relation holds true for an ___1 primary memor'y size k If ‘wre have an
actual system, running in a primary manory of si.ze n, we can predict the
MHBPF which would result on this system were memory extended to size E,
E being greater than n. We assume that we can measure MHBPF (n) on the
existing system, and that a tool for measuring r(t), for t>n, is available.
Then the same program which takes H virtual memory refetences will have a
MHBPF in the E page memory of S

MHBPF (E) = H
Ere) 3)
t=E+1

We now divide equation (3) by equation (2), ‘6btai'.ning

MEBPF (E) = t = ol Z(F)

MHBPFF (n)

e Y

ot @)
Observe that this equation allows us to ?redictMHBPF from a mea-
sured MHBPF and measured refe’renvt_l:e»counts,, afactwhich will be used
later. We now rewrite equation (1) to read
r() = £(t) £ rew) | G)

usx 1

letting t be what was x and u be what was t. Substituting (5) in (4),

e

21

replacing r(t), we obtain

E £(t) ¥ r(u) § rw) ¥ £()
u=1
MHBPF(E) = t = ntl = u=1 t = ntl
MHBPF (n) © o - ©
f(t) © r(u) PN r{u) X £(t)
u= 1 u-= 1 t = +1
t = E+1
§ f£(b)
= t = nt+l
$ f(t)
t = E+1 (6)

Multiplying both sides by MHBPF(n), we obtain

by f£(t)
MHBPF(E) = MHBPF(n) t = nt+l
& £(e)
t = E+1 @)

This equation states that mean headway between page faults which would
result from a memory extension to E pages may be computed from the mea-
sured mean headway between page faults on the unextended memory, and a
factor which is a function only of the program or programs being run and

the memory sizes concerned. The work of our thesis is to compute this

factor.

Vi SRR T T T e SRR o s e Sy, T T e

22

1.4 Previous Work in this Area

Since the advent of virtual memory computer systems, the function
MHBPF(x) has been of great interest, being an easily identifiable charac-
terization of memory system performance. Investigatofs have run many pro-
grams in simulation, obtaining this mean headway as .a function of hemory
size experimentally. Almost all of these experimeﬁgé have been done on
machines which attempt to 'compress' a program into a smaller space than
that in which it was intended to run. Such systems may typically attempt
to fit five or tenm programs, each running in # 32 k virtual memory into a
core memory of 96 to 150 k. 1In such instances, the set of pages referenced
by each program is small, as is the poteﬁtiél set whiéh:it can reference.
These sets of pages are usually disjoint, aslghey represent disjoint
virtual memories. Virtual memory in thi;:ca:e is simbi;La technique to
force several programs into a primary memory too small to contain all of
them.

Such work has been-reported‘by Belady (Bl), Belady and Kuehner (B3),
and Fine et al. (Fl), among others. A large amount of this work was done
on an IBM M44/44X, a 7040 type machine at IBM Research Labs adapted. to-
demand paging. Belady and Kuehner report &n expected HBPF for single
programs running on this system of the general form e = a n2, n being
primary memory size.

Brawn and Gustavson (B4) performed some measurements of typical com-
putational programs running on the same M44/44X. These measurements were
significant as they are apparently the first reported measurements of

programs specifically written for a virtual memory. They observed the

23
running time of programs, including page fault overhead, as a function

Qf real memory size. No analytic models were suggested.

Some performance aﬁalysis done by Schwartz (S3) on a Burroughs model
6700 is also of interest hére. In this system, all data available to a
program is referenced as variable-size segments, brought in;o core on a
demand basis. Program code and certain data segments are shared, and the
amount of information potentially accessible to a program is extremely
large. He reported headway functions of the form e = exp (a.n), variables
the same as above, for missing-segment exceptions as memory size was
varied. (These were actual measurements performed on various memory con-
figurations.)

The research which directly led to this thesig‘was done by Saltzer,
and later by Saltzer, Webber, and Snyder(S1). Saltzer measured the MHBPF
on the Multics system (B2) at M.I.T., wich two differen; sizes of configured
memory. He obtained the result e = a<n, which has since been called the
'linear paging model'. Saltzer later reported the results of an experiment
designed and conducted by Webber and Snyder, in which the reorderings of the
list by which the Multics paging drum is maintained were observed. Using
the techniques described in 1.2 above, MHBPF(n) was extrapolated to a memory
size of 4000 pages (each Multics page is 1024 words by 36 bits), and was

found to be still within experimental error of the linear paging model.

24
1.5 Novelty of the Work in this Thesis

The work performed in this thesis was orfginally conceived as an
extension to Saltzer and Webber's experiment, elucidating the nature of
MHBPF(n) for n greater than 4000 pages. The limitations of the linear
model were sought, as was the nature of whatever modél held beyond that
range.

This series of experiments on the Multicd system is unique for several
reasons. The data accessible to any program in wiTtfcs is potentially
the entire storage system, and all data accessés ‘are mide vid the virtual’
memory mechanism. This is similar to the ﬁurrought scheme, but dissimilar
to the paged 'compressing' type syatemg descrihed above. Further'ug'\o’re“,
sharing is an extremely important consideration in Multics, as all pro-
gréin code, including the supervisor, is shared. This thesis is also
‘apparently ‘the first reported attempt to deal with dynsmically variable
virtual melnofies, i.e., those whose size grodé and shrinks on a second-to-
seconid basis, The issues of dynamic page creation and destruction which
result from this policy are systematically dedlt with by our experiment.

The use of virtual memory seems to be gaiming in popularity as large
general-purpose information systems hecome more comsion. Increased interest
in systematic protection schemes has resulted in many new degigns for
systems having segmented addressing features similar to those found in
Multics. Demand paging has achieved considerably more popularity and
widespread use than the Burroughs techniques as an implementation for
segmentation, and has recently beem added by IBM to their extremely popu-

lar System/370.

25

For these reasons, we feel that experiments made on a Multics-1like
system are relevant to data systems in the near future, and the reference
patterns observed may have some features which are in some sense

characteristic of programs running in segmented, paged, environments.

.26
Chapter 2

2.1 Stack Algorithms and the Extension Problem

The substance of the exper:lnent perforued was to recomstruct the en-
tire history of a day's LRU-maintenance of the Multics storage hierarchy,
and attempt to predict page-fault headways for hypothetical memory com-
figurations from this history. |

The basic strategy of memory simulation used was that proposed by
Mattson et al. (Ml1). This technique, known as stack simulation, relies
on the fact that a large mmber of useful paging algorithms, including
IRU, have the property that after any fixed number of addresses in an ad-
dress trace have been processed by the algorithm, ‘the pages which are left
in primary memory are always a subset of what they would have been at the
same point in the trace had primary memory been larger. This feature,
known as the "inclusion property", thus defines the class of '"stack
algorithms". From this property, at any given point in the processing of
an address trace an ordering can be constructed. The first page in this
ordering would be that page which would then be in primary memory were it
of single-page capacity, the second would be that page which would also
be in primary memory were it of two-page size, the third that which would
be added were memory of three-page.size, and so forth. The history of
the processing of an address trace can be viewed as a series of these
orderiﬁgs, which are known as "stacks", the single page corresponding to
unit-size memory normally being considered the "top". As each new re-
ference is processed, the algorithm causes the stack to be reordered,

possibly corresponding to page motion for some size memory. The top n

27

pages on the stack being the pages which would be in a memory of n-page
capacity, any ﬁotion of a page into the top n-pages implies a physical
reading of a page into primary memory. ¥For a demand stack algorithm, this
movement can occur only as the result of a page fault. Thus, we may infer
the behavior of an n-page primary memory by observing the number of times
that reference is made to position ntl or. beyond in such a stack. As we
have defined this stack and the class of algorithms processing it as main-
taining the first n pages in this stack in an n-page memory, no reference
to position n or below can ever cause a page fault. Mattson's technique
consists of faking a recorded or proposed address trace, running it
through a program which constructs the sequence of stacks~just described,
‘and actumulates the total number.of referentes.to each position therein.
When' the processing of the trace begins, the stack 1s void, cpfresponding
toan empty primary memory. At least until a given page is fetched- into
primary memory the first timé, it will not have been in the stack at all,
and its first fetch may be considered to have been made from position
“"infinity". “As the trace progresses, and repeated references to pages

are made, we accumulate counts for each position in the stack of how many
times a page in that position was moved upward by the algorithm. It can
be shown that for a demand stack algorithm, the only condition on which

a page may move upward in the stack is that it is that page which has

just been referenced., Simply, were this not the case, a page in position
n would move into an n-1 page primary memory without having been refer-
enced, and the algorithm would not be a demand paging algorithm. As the
completion of the address trace, &e can, for any n, sum the reference

counts for positions n¥l to the tobtal final length of the stack, plus the

28
count for position "infinity', and this will be the mmber of page faults
which would have transpired had that address trace been managed by thé_
-algorithm used in an"n;-page primary memory. Note that a single processing
~ of the trace can be used to produce. a result which can then be used to
analyze any hypgghétical memory size. }

. This.technique allows us to.ascertain- the page. fault count for the.
interval under consideration for any contemplated memory size. By;simgly
dividing the total system headway during-the actual. trace by this page;-
fault count, we may thus ascertain the ;:)redict_egl meagn time betvieen\ page
faults (MHBPF) for that storage system, Furthermore, Hg;.qa;n plo,ﬁ the re-
ference counts at. each. posij:ipn, _nqu;al‘;‘z‘edjg-zj,;h gggggét’;:_tg the total
n_umber,xofﬁ. reference counts, versus. the posi!fion:nggl?er;,, aggggbpﬁin= a graph
whichv’dvescribe}s whatv_wg sltx,alltcallﬁa‘_;gesgn ;Ereqt;gnc.iesf With tt_;is“v _,we,. ;:an
apa;yge .the behavipr of yn;ltilgve_l memory gystems éx:;)éessing tllli.,s; trace;
and obtain an- optimal such systén within cost copgtraints as described in
Chapter 1. The shape of this graph also tells.us much about thg relative
success of the particular algorithm in managing that particular address
. trace, without regard to any: single memory configuyration. We will con-
sider the-particular graph in.the case of our resulfg in greater detail
in the next chapter, and in so doing further comsider such gpa_ph,s i.,f_l
generagl. | |

Our experiment sought to learn the shape.and ﬁaa;pr,e of this graph gt
positions corresponding. to memory s,izes,of many thousands of pages. In
order to record a reference to position n in a stqck,, as rdes(,’:rib_e_‘d,’ ﬂ_‘?,“
must clearly be n-1 items above it. This implies that at least n dis-

tinct items have been referenced by the time a referemce to the nth posi-

29

tion occurs. It can be seen that the extent of the address trace required
to produce meaningful statistics at the ten-thousandth page position would
require a prodigious address trace. At this point advantage may be taken
of another remarkable property of stack algorithms. It is possible to con-
struct the portion of the stack from position nt+l to the end without a full
address trace -- we use information extracted from a running algorithm
managing an n-page primary memory at times when page faults occur. This
is known as the 'extension problem'" (Cl1,C2). The technique is as follows:
we maintain the stack (the "extension stack") for positions m+l and be-
yond. When a page fault occurs, we know that the page faulted on cannot
be in the first n positions of the stack -- if so, it would not have been
faulted on. We locate the page in the extension stack; if not there, we
may consider it as having been at position "infinity". The counter cor-
responding to the position from which the page was fetched is incremented.
We remove the page in question from the extension stack: it is now in the
top position of the real stack, which we are not maintaining. We now use
whatever information is necessary, from that normally obtainable to the
running algorithm, plus that we are maintaining, to reorder the extension
stack according to the policy of the running algorithm. This reordering
will usually include placing some page removed from primary memory by

the running algorithm at some point in the extension stack. In the case
where the replacement algorithm is IRU, the page removed from primary
memory is placed on top of the extension stack, and all pages previously
in the extension stack move down one location. Note that pages which

were below the fetched page in the extension stack stay in place during

the entire transaction.

30

|

The advantages of using a trace of a rumning -algorithm in a large sys-
tem measured over an extended period of time, ‘as opposed to a trace ob-
tained by simulation of a given program over ‘@« necessarily much shorter
period of time are straightforward. We are interested in:sysm perfor-
mance on an hour-to-hour, not second-to-second,- basis, and day-long mea~-
surements of a live system correspond to both the time :scale and load mix
of interest. As long as the accuracy of the messursment can be maintained,
this day-long extension measurement is much more useful than the simulated
running of a progrem.

As a demonstration of the power of this extension-technique, we may
consider the Multics system: 400,000 referemnces to t'hc wyirtual memory oc-
cur every secomd. Approximately 100 page faults occur each second. Re-
cording 2 data items for each page feult, we have rstuced the amount
of data which must be recorded by a factor -of two:thoueand.

It should be clear that the results of. this experiment, although simu-
lating hypothetical memory systan»perfoma‘nce;vld‘o‘g ‘not: represent simulated
results. The measurements made correspond 0o ‘an uncountrolled user popu-
lation during normsl working days, using erbitrsry programs under 6~-way
multiprogranming. The results thus show hbiow a hypothetical memiory sys+ -

tem would have behaved under this real user-load.

31

2.2 The Extension Problem and Multics

The Multics system has a physical memory consisting of 256K (1 K =
1024 36-bit words = 3.7 x 104 bits) to 384 K words (1.2 x 107 bits) of
core, a 2000 to 4000 K word (1.5 x 108 bits) drum, and apéroximately
90,000 K words (3.3 x 109 bits) of disk, both moving and fixed head. The
variabilities stated above are dependent.upon the time-of day and the. user
load, governed by administrative policy. The entire storage system is
divided into 1024-word pages, and is managed by the demand paging mechanism
(with the exception of several thousand words of nénfpageable code and
data, such as the code for the paging mechanism itself, which must be
non-pageable in any case, and are thus not really of interest in memory
performance prediction). The algorithm used to manage replacement of
pages in the core memory is essentiallj IRU. The variation from IRU is
explained in det;il in Appendix A. Essentially, within the constraints
of operating system overhead and the precision of measurement of recency
of use provided by the hardware, it tries to implement LRU as closely as
possible. Also, a non-demand prepage/postpurge policy was in effect
during these measurements, which caused some: pages: to move in and out of
core outside of the control of the ILRU algorithm. '

The 4000-page paging drum was at this time being ugsed in a mode
which attempted to overcome rotational latency by making multiple copies
(S4), in this case two, and hence was of 2000 page capacity during these.
experiments. Since January, 1972, the drum has been used as part of a
hierarchically managed storage system, as a buffer between core and the
disk storage subsystem:. 1In such systems, one attempts to keep pages

with the highest access frequencies on the fastest devices, in order to

32

minimize the system's mean access time. In an automatically managed sys-
tem, the identity of those pages is constantly changing. As the stack
access frequency graph discussed above can be used to associate access
frequency with stack position, page replacement algoritims identical to
those used to manage primary memory are frequemtly used to manage other
devices in a hierarchical memory system to achieve :this end. In the Mul-
tics system, anether near-IRU algorithm is used .to manage the drum, which
is described as well in the Appendix. The drum menagement algorithm at-
tempts to maintain copies of the top 2000:'pages of the theoretical stack
corresponding to the LRU algorithm on the:drum. The model of program be-
havior implied by the IRU algorithm, and verified by the results of this
experiment, implies that these pages are the most likely to be refereanced,
and at the time they are on the drum, thus have the highest access fre-
quencies. |

As currently implemented, a page which has been faulted on, and is
not on the drum, is read into core from the disk. ~It will not be written
to the drum until the core management algoritim decides to oust it from
core. This implies that the pages corvesponding to that portion of the
IRU stack representing core are not completely a subset. of those on.the
drum. Hence the drum will contain pages representing .a 2000~page con-
tiguous portion of the stack, whose topmost extreme is anywhere between
the top of the stack and the size of core below it. Of the 256 to 384K,
about 100K is not used for paging, leaving 150 to 280K for paging, thus .
this variability represents about 7 to 157 of the size of the drum.

The stack-reordering procedure of the IRU algorithm is one of the

simplest possible: the referenced page moves to the:-top position of the

33

stack, as is mnecessary in any demand stack algorithm. The pages between
the top page and the old position of the referenced page all move down one
position. Thus, to use the extension technique described above for the
LRU algorithm, the only reordering information one need record is the
identity of the page thrown out of position p (p being the size of the non-
extended memory, in pages), which will then occupy position p+l, at each
page fault, in addition to the identity of the page faulted on. The
""pushed" page becomes the top of the extension stack, the page previously
there becomes #2, etcetera, all the way down to the former position of the
faulted-on page. This is what we have done with the Multics core-drum
combination, considering it as a 2000+X page buffer, where X is some frac-
tion of the size of core, itself at most fifteen percent of the drum, to
account for the top-of-drum variability described. As positions p+l and
on, in our case, correspond to the disk subsystems, we need only record
disk reads instead of page faults. (It is instructive to note that within
the entire operation of a Multics system, not a single direct-access I/0
transfer is done outside the paging mechanism, pre-paging being included
in this consideration.) As disk reads are two to five per second, we

have thus reduced our data-gathering chore by at least 95%. The experi-
ment of Saltzer, Webber, and Snyder, which was similar in intent to this
experiment, but more limited in scope, has already produced results (S1)
for primary memory sizes up to the maximum size of the drum. For this
reason, we did not consider it worthwhile to attempt to gather data for
that portion of the stack corresponding to regions in the drum. Hence,
the application of the extension technique to this core~drum combination

was adequate. All else that was needed was the recording of information

34

provided by the drum management algorithm as to the identity of pages
thrown off the drum. It can be seen that these are the pages thrown out
of the core-drum combination, given that no page is ever thrown out of
core without having been writteﬁ to the drum.

In order to determine the validity of this techmique, the necessary
programs were written and tested on a stand-along Multics machine. This
machine had 131,072 words: of core and a 256~page -drum. -Hence, most.of the.
range of the regular Multics drum was in the extension region of this ex-
periment. The mean headway curve resulting was very well approximated by
a straight line, suggesting the linear paging medel. This provided a
good deal of cornfidence in both the techmique and the software.

Hence, we sée two . types of motion between core-drum and disk. The
reading of a page constitutes motion from disk intoe core-drum., The
writing of a page, however, does not constitute outward motion. 1In gene-
ral, writing is performed only when a copy of a page on disk is different
from a drum or core copy. The outward motion corresponding to a read is
really the claiming of the core or drum frame previously occupied by the
page of interest. We call this phenomenom an "ousting'.

Unfortunately, a problem arises with ewven this simple model. Certain
pages of the storage system, 3 in all, corresponding to the system's top-
level directory, are special-cased by the paging and drum-mansgement al-
gorithms such that they may never go on the drum. This is due to certain
integrity issues involving the reliability of the drum and the extreme.
difficulty in reconstructing the contents of this directory. Hence,
these pages are néver written to the drum, and leave the "core" portion

of the increasingly less theoretical IRU stack directly for the disk por-.

35

tion. (In this case, writing never takes place unless the concerned page
has actually been modified (see Appendix A)). More unfortunately, these
are among the most popular pages on the disk, as by the dictates of the
LRU algorithm, they should have by all means been on the drum. Thus, we
must check for pages being ousted directly from core to disk, and we thus
have two varieties (core and drum) of ousting to be recorded. The inter-
pretation of the data resulting from movement of these pages will be de-
ferred until Chapter 3.

Thus, we need record upward stack movement into the core-drum com-
bination, meaning disk reads, and downward movement, meaning oustings.
Another event of interest is the creation and deletion of pages. 1In the
currént implémentation of Multics, logical pages are created out of the
void when a never before referenced page is referenced. By definition,
all such pages contain zeros, and hence never involve disk reading. Fur-
thermore, these page faults will occur regardless of what size primary
memory is, and are thus not of interest in memory performance prediction.
This last statement is somewhat subject to current design and user beha-
vior. Were there a tremendous amount of fast, cheap primary memory, it
is altogether possible that users would rarely delete programs or data,
but simply rewrite or modify them, thus making page creation a much rarer
event. We choose to ignore this possibility.

In the following discussion, "n'' represents the size of "primary
memory", in pages, in terms of the extension problem. In terms of the
specific experiment on Multics, n is the size of the core-drum subsystem
in pages. As was explained earlier, this is the size of the drum (2000

pages) plus a fraction of the size of core.

36

Page faults which cause creation of pages involve neither disk traffic,
idle time, nor multiprogramming, and are thus not of interest in MTBPF cal-
culations. Since all new pages are created/ in this way, we find them natu-
rally falling past position n of the complete IRU stack, into the extension
stack after sufficiently long disuse. Page deletion, on the other hand,
can occur at any time in the life of a page. If a page is destroyed. so
- 'soon after its creation that it has never passed position n in the stack,
we are oblivious to its entire existence. If, however, it is destroyed.
at such time that it is beyond. position n, its destruction must be accom-
panied by its excision from the extension stack. .-When a page is destroyed
in core or on the drum, the next page to be faulted -on replaces it without
any page being pushed down the LRU stack. However, the- 'msggiox_i in the
stack of the destroyed page is assumed by the page .directly under it. The
page fault following a page destruction creates only upward stack motion --
nothing is pushed dowm.

Consider, in our theoretical n-page primary memory system, a page in
position n of the LRU stack. This page is now destreyed. A page in posi-
tion mim is now faulted on. In an actual memory system, this page will
now be read into primary memory without any page being replaced,. the des-
troyed page having created an empty page frame; but.the newly faulted-on
page will be at the top of the IRU stack. The- formerly first i;o n-1lst
pages now become the second to nth pages in the stack. The nmilst (first
page not in core) to mim-lst pages retain their origimal stack position.
(See figure 2.1). The mim'th position in the new stack is in a situa-
tion akin to tﬁat of the nth position after the deletion of the page

there: the page in the miwilst position camnot come up to £ill the void --

37

Top of Stack

deletion

anomaly

Position
1 Pl
2 P2
3 P3
4
|
| !
n-2 P4
n-1 P5
n__ P6
n+l P7
n+2 P8
P9
n+m-1 P10
n-+m ~ P11
n+mt1 P12
LRU stack
before
deletion

Pl

P2

Pll

P3

Pl

P2

P4

P4

P5

T,

P7

P8

P8

P9

P9

P10

P10

New position

P11

.of anomaly
re

P12

Y,

After deletion

of page P6

After faul
on page Pl
after dele

ting
1
tion

Figure 2.1 -- Behavior of anomalies resulting from deletion.

A e e A L PR R

38

that would not be demand paging. Until some reference is made to a further
position, say ntmbk, this will be the case. At the time tﬁe itk refer-
ence is made, position nimtk now becomes anomalous. Hencea, we create an
anomaly when a page is deleted, which propagates down the stack as any re-
ference is made beyond it. |

The strategy_that we have chosen to deal with this, in the simulation,
is simply to excise a page from the stack when 1£ is deleted. Thus, any
reference to a position beyond the excision will be tallied as a reference
to position x instead of x+1l. Note, however, that the position of the
excision has then moved to x. All references in front of excisions are
tallied correctly. The analysis of the inaccuracies resulting from this
treatment is quite involved, and is covgred'in detailAipféectionh3.4.3.‘

Thus, the data items which must be recorded in a trace are those re-
presenting 1) réading of pages into memory, by demand or pfepaging, from
disk, 2) claiming of pages by ousting pages from drum to disk or from
core to disk, and 3) the deletion of pages from the storage system. Of
these events, types 1 and 3 represent excision of a page from the exten-
sion stack, while type 2 represents the pushing of a page on to the top
of the extension stack. Events (1) also cause the noting of the stack
position of the page read, and the incrementing of a counﬁer corresponding
to that position. There are actually some other events which must be re-
corded in the case of the Multics system, but these are due to the parti-
cular implementation of the core and drum management algorithms, and are
discussed in Appendix B._

The handling of page reads of pages whicﬂaéannot be found in the

stack, i.e., their first reference, requires some thought as to inter-

39

pretation., Were this experiment run for a sufficiently long time, the
appearance of such pages would cease. Pages which are created come down
on the top of the stack, and any existent page which has not been refer-
enced since the experiment began enters the core-drum extension-stack com-
bination once and never leaves, until it is destroyed. These first refer-
enceé, as discussed, are counted in the "infinity" position of the stack.
These fetches of pages not in the stack accounted for roughly a tenth
(7881/74530) of all disk page fetches. These references do not affect the
relative number of fetches to any two extension'stack positions, as they
would not be in a core-drum memory of any size until the first time they
were referenced. Thus, when one considers disk accesses, one should con-
sider these reads to be disk references in a core-~drum system of any size.
However, the longer the experiment runs, the fewer will these references
become. Thus, since we are interested in steady-state behavior, we have
chosen to consider these reads a start-up transient, and not count them
in any calculation. They tell only of the length of the experiment, not

of what is being measured.

40

2.3 Performing an Experiment on Multics:

Having developed the theoretical bases of the extension problem, and.
adapted it to Multics, the next step was to:proceed.to:construct the
necessary software to develop the extension address trace, collect it,
and perform the LRU stack simulation with it. .

A privileged-access facility was set up in the Multics hardcore super-
visor specifically for this experiment. When enabled, a trace of all of
the events mentioned above was accumulated in a cirecular 1008-word buffer.
Each trace item included the physical device address of some page being
read, ousted from core-drum, or deleted, infermation as to which of these
events is represented, and a flag indicating, for statistical purposes,
whether or not it was one of the previously memtioned pages. which are not
allowed to go on the drum. Also recorded uas»igfornntionvgllowing;the
program which inspects this buffer to symchronize itself with it cor-
rectly. A program was developed which inspected this buffer regularly --
from the Multics standpoint, a privileged operation.: This program as-
sembled the buffer images into a continuous trace; which could be as. long
as necessary, suitable for further, repeated processing.

This strategy was decided upon because of the extensive time required
to search an LRU stack for a given page, and the large amount of space re~
quired to store this stack. This ruled out the possibility of having a
special-purpose module of the Multics supervisor perform the experiment
in real time. The performance degradation necessitated by the time re-
quired to search and the space, which would have had to béen non-pageable,
to store the LRU stack would have been wholly unacceptable. Furthermore,

the accumulating of the trace data for further processing allows many pro-

41

grams and versions of programs to be run on this data, increasing both its
usefulness and the accuracy of the results obtained from it.

One disadvantage of the data collection strategy described is the pos-
sibility of the data collecting program losing synchronism with the circu-
lar trace buffer, i.e., data being overwritten by new data be-
fore it has been duly noted. This situation can come about when the data
collecting program has made a decision about how often the buffer should
be sampled, and an intense unexpected burst of activity causes the buffer
to be written into significantly faster than before. The data-gathering
program samples the buffer again, and notices that data has been lost,
but anticipating further loss reschedules itself. Another way that data
can be lost from buffer mis-synchronization is the data-gathering pro-
cess falling behind in the multiprogramming queue due to Multics sched-
uling policies and heavy user load. The implementation of the data-
gathering program tried to compensate for this by being written as a multi-
process program, i.e., a program running in a coordinated way in many pro-
cesses at once. Not only did this give it a scheduling advantage, but in-
creased the reliability of the data-gathering operation as a whole.

Unfortunately, data losses of the types described were common, espe-
cially in initial, developmental runs of this software. The greatest
losses would typically occur at midnight, when a large number of user pro-
grams scheduled to run then would, creating heavy paging activity refer-
encing pages neither in drum nor core, and only one or two processes would
be supporting the data-gathering operation. The extents and analysis of
these losses are considered in the next chapter.

A danger of running a large complex data-gathering system in many pro-

£ St S BN et el TR T e T2 Y ol

42

cesges is that of creating a great deal of activity which would bias the
result of the measurements by measuring itself. The sharing.features of

. the Multics system helped counterbalance this effect: :all of the data
bases and procedures of the data-gathering system were fully shared, having
only one copy. Only the per-process work areas were ‘not shared. : The
actual data-gathering system, in order to handle the comtrol of multiple .
processes, possibly multiple terminals, and dynsmic scheduling was, in
fact, quite complex, requiring six ‘separsate procedures. : The shared data -
bases and procedures totalled tem pages. Approximatély two pages of work
area per process were needed.

The data gathered was stored in data segments in the Multics virtual
memory. The stack stmulation was subsequeéntly performed, using this data
as the extension address trace, exactly as described above. The procedures
which performed this reduction ran in an unrestricted Moltics envirommernt,

- and hence had practically .no restriction on time or space. The LRU stack
was represSented as a list, in which each nmode represented a stack posi-
tion. A push of a page onto the top of the stack:required the allocation
of a newinode, and the redéfinition of this node :as the top of the stack.
This node was then made to point to:the former stack top. The excision of
a page from the stack required locating the node corresponding to this page
(each node contained a physical page address), the reallocation of this
node, and the recomnécting of the list around it.' For trace data repre-.
senting disk reads, however, it was necessary to: ascertain the position in
the list of the relevant page. This required a search of the entire list.
In order to reduce the work of discovering that a page was not in the list

at all, a bit table was construeted, describing, for each possible physical

43

disk address, whether or not it was in the list at all. This saved the
necessity of walking the entire list.

The above list-maintenance algorithm spends a great deal of time
searching the list to determine the position of pages in it. Several al-
gorithms were considered to avoid the seemingly crude strategy of linear
search, but most of these algorithms caused the list to grow increasingly
disorganized, requiring periodic time consuming re-organizations, or re-
quired large amounts of data movement, a poor approach in a paged system.
Because of the availability of a stand-alone machine which could easily
provide the computer time necessary to perform this processing, the develop-
ment of a better list-maintenance algorithm was not pursued further.

The result of the stack simulation was a table, describing for each
position in the extension stack, how many times a page in that position
had been referenced. The sum of all of these counts, plus those at posi-

"infinity", represented the total number of all page fetches from

tion
disk during the period of the measurement. Although a graphical display
of this information is of some interest, the calculation of MHBPF was the
immediate objective. Thus, a table was created displaying, versus exten-
sion stack position, the total number of fetches observed divided by the
sum of the counts for all of the positions further down the stack. For

a given position N, the interpretation of this number, x, is as follows:
had memory @ore/drum) been extended N pages above its actual size, we
would make one disk reference under that circumstance for every x refer-
ences we make now. We thus refer to x as 'references per exception'.

Note that we have not included the "infinity" fetches in the 'total re-

ference' count in the actual results shown here, for the reasons dis-

cussed in section 2.2.

One may choose to interpret x as the "relative increase in mean head-
way', which is to say, the factor by which mean headway will increase over
its current value if the extension of N pages is made to core-drum. For
instance, ift"ref.er;eme.sﬂfpem exception’ were 5 at N = 4000 pages, the in-
terpretati.on would be: If we added anothexr 4000 pages to the drum, we
would fault to the disk ome-fifth as often.as we do mow.. This consti-

tutes, in one sense, the raw data result.of .the experiment. .Now,

References observed . x Mean time between measured references..
References beyond position N

= References observed ~___ . Time duration of experiment
References beyond position N References observed

Iime duration of experiment .
References byond position N

Mean time between references beyond positi.on N

i

Expected mean time between references were memory extended by N

Multiplying this mumber by the measured system headway in virtual
memory references dur:i.ng: the experi.ment, and dividing b;r“:the ‘time dura-
tion of the experiment, we obtain the expected mean headway between page
faults were memory extended by N. M

We have displayed both references per exceiition; versus memory exten-
sion size, and predicted inter-reference headia;,: ﬁee a function of memory
size. | |

Note that in all of this discussionm, mean time coﬁputedkfrdm an ex-

45

periment taking many hours must be taken;gyite literally. The averaging
effect over a day of usage varying between a heavy user load and solely
the data-gathering program¥* produces a result which is really applicable
to neither, but only a theoretical load somewhere in between. For this
reason, we feel that references per exception is a more useful inter-

REE S

pretation of the results of this experiment than mean time between ex-
ceptions . Attempting to tune a system to the theoretical point described
by such measurements will not help the system when it needs the most help.
The reference counts and references»per excep;ion were.subsequently
displayed in printed tabular form, and the refetences per exception ver-
sus stack position plotted on a Stromberg-Carlson 4020 Microfilm Recorder.

Some of these results are reproduced and discussed in detail in the next

chapter.

*Some more precise descriptions of the exact user load during the experi-
ment are provided in Appendix C.

ad ‘:w' azmmi m 3&@&53 mamhqg ‘

vizioe bos Bscl usau yvs: e ’ &Y. 8 Py i@ %&iy 5 19vo :r:mi

Bﬁi:ts@:}saﬂsjg& mﬁj _

’sﬂ ~$m£ (ad3lsa oF

x

srixul heol

47

3.2 The Results of the Experiment

The form that we have chosen to display is that of an "exception
ratio", or MHBPF (E)/MHBPF (n), where n is the adjusted 'primary' memory

size (core-drum) as explained in section 2.2, and E is & hypothetical

memory, both in pages. This exception ratio is the quantity expressed by

equation 1.6. We plot this ratio versus primary memory extension in
figure 3.1. We express theyabsc;ssa of“b@f gfash as- 'memory extension',
which is the hypothetical’inérease of corg-drum ingtead of absolute memory
size because of the-ﬁariability of the siée of core-drum as discussed in
Chapter 2. The size of core-drum is not the sum of sizes of core and
drum, because of duplicationms, created pages in core which have not been
copied out to drum, and possibly even different configured sizes éf core.
The extension size to core-drum is meaningful however, because thé'éata
and results derived from the measured data represent the behawior’of a

hypothetical extension of the given size, oblivious to all of the abo#e

considerations. If a figure for the size of core-drum is needed, 2100

péges is reasonable. The shape of this graph suggests an exponential be-
havior. Thus, we next plot this ratio on a logarithmic vertical axis; to

better view this behavior. This is figure 3.2. The plot almost traverses

‘the graph diagonally, suggesting the straight line which would correspond
to an exponential. We have drawn a straight-line approximation, which

" corresponds to

(E-n)/ (7.00 x 10’ bits)

MHBPF (E)/MHBPF (n) = 3.42e 1)

The surprising closeness of the dtm 21 and dtm 23 plots gives some con-

fidence in this result, A similarity to the unpublished Burroughs re-

Figure 3.1 Linear/Linear Plot,
Exception Exception Ratio vs
Ratio Memory Extension
3504
300}
2501
200+
150
1001
501
Memory Size above the Drum, in pages
0

8%

0 1000 2000 3000 4000 5000 6000 2000 23000

100

56

32

18

10

5.6

1.8 -

3 Figure 3.2 Exception Ratio vs Memory Extension
Exception Logarithmic Exception
Ratio Ratio Axis

’“
+ Exponential

Approximation
Exception
Ratio =

3 42e(E-n)/7 X 107 bits

Memory size above the Drum, in pages

s - — :

4 +

1000 2000 3000 4000 5000 6000 7000 8000

9000

6%

50

sult (S3) mentioned in Chapter 1 may be noted, subject to the limitations
discugssed there. This similarity goes only as far as that Schwartz no-
ticed an exponential mean-headway function for missing data in pri.ury :
V'my as memory size was increased.

It can be .seen that the low regions, i.e., below 2000 pages above the
_drum, fall short of the expmem:ial approximation suggested. Thus, we pro-
vide figure 3.3, in which we display the low region of figure 3.1. This
~ plot shows a decidedly less than exponential bebavior. From-oune view- -
ﬁéint, thisg :la> comforting, as the experiment of Saltzer, Webber, and Sny-

- der (81) measured this function in this tnge.. and obtained a linear func- |
‘tios. However, owr plot seems to grow coniiadu'nbly faster than linuzly o
in this region. This can be seen as a noticeélg different chaage ,in be- . -
htvtor. E ;}i; :

. An attempt to resolve these contruuctm «‘.I.Q‘- provided by figure 3.4,?_,‘ ’
An which both memory extension and uce;nu m axe yior.:.d 1og.ur.1n-
:lcally. It is seen that the higher regioms of thu plot approach quad- -
'tatic slope, and the increasing slope lends mg confi.dence to the ex-
ponmtial suggested sbove. However, no m&ﬁ quadratic curve suggeits
itself.
| The most that can be said is” that MABPF(E)/MEBP¥(n) is a function of
at least second order, as E-n uéeeds 3000 pages.

Ve also provide figure 3.5, in which we plot MEBPF(E) directly as a
function of -a-m-y ‘extension, by multiplying the ordinate of figure 3.1 by
the measured MHBPF on. bo:hm -Rote-that- mmmu
does not cme.pont to the saie MEBPF on both wd, as different

mean headways were observed. This is due to the variability of the system

104

Exception
Ratio

Figure 3.3 Lower Region of Figure 3.1
Linear/Linear Plot

Memory Size above Drum, in pages

b

dtm 23

dtm 21

v\

200

400

+

600 800 1000 1200

1400

1600

1800

2000

159

100

50

20

Exception
Ratio

52

Figure 3.4 Exception Ratio vs
-Memory Extension,

both axes logarithmic

Memory Size above the Drum, in page

100

200

500

1000

2000

5000

8000

6x10" +

5%x10° T

4x10° T

3x10° ¢

7 4

2x%10

1x10" 7]

MHBPF
Virtual
Memory

[References

Figure 3.5 MHBPF vs Memory Extension

Memory Size above Drum, in pages

> +

1000

2000

t + -

3000 4000 5000 6000 7000 8000, 9000

139

54

load on these days. The difference, however, is not very significant.

,f;:i write pix) m £

57

the polynomial headway function MHBPF (x) = axk giving in general

knk

P (x) = kL (12)

which subsumes (8), (10), and (11). The exponential model (9) is the only
one of these probability distributions which is characterized by an inde-
pendent parameter, y. Letting A = 1l/y, we rewrite (9) as

- (x-n)/X (13)

X has the dimensions of pages. It in some sense characterizes a 'radius
of locality of reference' of the programs running. It is the mean fetch

depth into the extension stack.

58

3.4 Accuracy of the Reported Results

The question of accuracy of the results of a supposedly deterministic
simulation seems at first to be unnecessary. However, this simulation was
based upon a measurement. Thus, the techniques used to interface this ex-
periment to the Multics system (see Appendix B) became a source of inac-
curacy. Furthermore, the behavior of anomalous pages (the so-called '"glo-
bal transparent paging device" pages) caused significant deviation from
the assumed LRU model. The deletion of pages in LRU list created prob-
lems, as an inordinate amount of effort would have been required to handle
these correctly (see Chapter 2).

Thus, we will consider three sources of inaccuracy: lost data, glo-

bal transparent paging device pages, and list deletions.

59
3.4.1 The Effect of Lost Data

The loss of data was due to failure to retrieve it from the Multics
supervisor before it was overwritten. This was a consequence of the cir-
cular buffer strategy chosen to solve the problem of real-time storage of
this data. These strategies were discussed in detail in section 2.3.

The effect of these losses are twofold: some counters for stack posi-
tions were not incremented for lost data, and the ordering of the stack

was affected by this lost data. We consider these problems separately.

60

3.4.1.1 Lost Counter Accuracy

In order to deal with either of these problems, we assume that lost
data has no correlation to page reference patterns. We thus deduce that
it shares the same distribution over stack position as the successfully
accumulated data, and the shape of the resulting histogram is not se-
verely affected by this loss. For the measurement '"dtm 23", the most suc-
cessful and accurate of thos made, 435 trace items were lost out of a
total of about 200,000 successfully recorded items. This represents a
total inaccuracy in counting of less than one quarter of a percent. For
the slightly less accurate "dtm 21", 1200 items were lost at various times.
Measured against the 150,000 items successfully collected here, this is

still less than one percent.

61

3.4.1.2 Stack Shifting Inaccuracie

This type of inaccuracy, resulting from inaccurate reconstruction of
the LRU extension stack, is considerably more subtle, and damaging in its
effect, Failure to notice certain movement into and out of the extension
stack causes the stack to stray progressively farther from a realistic re-
construction. Items remain in the sﬁnulated_extensicn stack which were
in fact removed by lost data,‘and items which should have been pushed on
its top are not so pushed. The result of items not being removed cor-
rectly is twofold: first the item will appear twice in the stack when it
is pushed out legitimately onto the tcp of the extension stack in the fu-
ture, and items further down the stack than‘the4false appearance will have
their stack position incorrectly recorded. The double appearance is only
a problem because of the latter effect. The stackrmanaging algorithm of
the simulation program used a bit table to record the known presence of
every storage system page in the extension stack. Thus, the legitimate
pushing (the second time) of such a page has no effect, and the later
fetching of that page from the extension stack fetches the correct in-
stance, and the bit table indicates the Page as no longer being in the
stackf

The result'of items not being pushed because of failure to record
their pushing is similar. Their absence at the top of the extension stack
causes all items below them, which is the entire stack to have their posi-
tions incorrectly recorded These items appear one.position higher than
they should be, for each missing item. Thus, until the missing item is
.later requested from the stack, by virtue of a recorded fetch all items

4

which were on the stack before the failure to place the missing item will

R o e S e T s e O

62

have their positions incorrectly tallied:: ' Also, a later reference to the
unpushed page will be recorded as a transient, not—in-stsck psge fetch, as
discussed in section 2.2, 'l‘he effect of not sccounting this fetch to sny
stack position was slready discussed. -‘

Note that the effect of pushing and then fetching s.ny single pase has
no effect on the extension stack orderings before the pushing snd after the
fetching. That is to say, if the pushing end fetehing were not recorded
at all, only the stack orderings between the two wuld be incorrect. 'nms,
if at any one time a dsta retrievsl frm the hsrdcore supervisor not:lces’
that x data items vere lost, sll such push-fetch psirs within the X lost
data items have no stsck-reordering ineccurscy sssocisted vith then and
only the lost-counter insccuracy occurs. A reference-push pair, on the
other hand, causes both types of inaccurscy. Although it ‘seems: evident, by
‘ locality of reference, thst any strim of contiguous Iost dats itens must
contain a lsrge number of push-fetch psirs, i e., a ps.ge recently pushed
out of core-drum is one of the nost likely to be fetched bsck in soon, s
’more careful methenatical snslysis shows this to be fslse. “Based upon i
parsneters derived fron the data sccurately recorded in "dtm 23" 100 page
fetches within a string of contiguous lost: dsts items vill ststistically
:I.nclude only 4 fetches of pages pushed within the lost dsta items
| We mst thus assume the worst case. that every lost data iteu was in
fact a push or a fetch not properly utched vithin the lost dsts. Bence,
for the 435 lost trace items in' “dtn 23", the effect “of losing this data
could not have been worse than the pushing of 635 never-referenced-agsin

pages on the top of ‘the extension steck or the excision of 435 random

points from the stack. In the first case, the result il that lster

63
fetches are accounted to lower-mmhered P‘gs&;i!onsthan;heyshould have -
been, and in the second case, some later _£gtchés are acecounted to.positions
of higher mumber than they should have been. In either case, the total ef-
fect is.that of an uncertainty of either +435 or -433 on the stack posi-
tion axis of any derive& graph. In reality, the lost data must contain an
almost equal number of pushes and fetches. (By conservation of pages, the
difference must be exactly the vd;ﬁfgmmte,be;;gpeg pages created and des-
troyed in core-drum.) As a result, a typical misplaced page in the ex-

tension stack will suffer an average displacement of 435/2, due to the

lost fetches. Hence, the total uncertainty in the stack position axis of

any derived graph is not greater than plus ox minys .ong-half the number of

lost data items. . For "dtm 23", this is 218 pgsitiens. Most of our graphé

are plotted to a resolution of 500 stack pastions. .Lompared to the

8000 or so positions of interest, this inaccuracy i,s not very significant.
Summarizing, the effect of lost tnm .data is seen both as lost accu-

racy in counting, and uncertainty in the sl:aek—-gosé.tion axis of derived -

graphs. Both uncertainties are proportional to the amount of lost data.

“ This type of inaccuracy results from the special hand¥ing of the sys-
tem's top level diréctory pages, three fii-all. ““thesé pages are ousted from
the core-drum combinatfon presaturaly, as d&t&tﬁ by & system reltability
policy which attempted to tnme ‘the’ im:ogtlty ‘of thiese piges by keeping
them off of the drum. As a result, theyWer# fn fact uséd“more ‘often than
the ‘pages Iegitimately at the top levels 'of ‘the extetsion stack, snd thus,
had no right to be in this sfac‘k ¢t 311 ’I'hat 1’! to sy, they would have

been on the drum at almost-all times hid th ’mt hﬁn , mspeci&ldcase& od,

The anomalous’ effect of these mu“w% ‘sesii ein'ly 4n' the work
ﬁxe‘ :f;ﬁﬂ.ﬂ.cance- of
e m—hﬂ wlf wnd one-£1fth of

of this thesis. An expériment desighi

this effect revealed that o aone ‘days,
all Multics disk traEfic was ‘a reéstlt of these w&cased pages.
Thus, our experiment was modified tomm%ttit‘tmhtuwben such
pages were being fetched or ousté& from ’cm-ﬁﬁh ’ﬁte ok :

this information was transuftted was somewhst
in M;}A. ST L T ,,jf“w
The predominant inaccuracy caused by these pages is a 'diétortion of
the very low end of the £(x) and r(x) curves (see section 1.3). The stack-
reordering inaccuracy created by thése pages cmt be more than plus or
minus three positions (as there are only three of these pages)' at any
point in time or stack, and is thus totally insignificant. As these
pages rightfully belong on the drum, they are usually fetched very soon »
after they are ousted, and thus, never migrate very far down the stack.
Thus, many ieference counts at low-mmbered stack positim are at-

tributable to these paées. If the core-d:ﬁ conb‘ination vere extended by

* T

65

any finite amount, and managed as currently done (i.e., at the time of the
experiment), the anomalous references would still appear outside of core-
drum. One should thus consider these references to be to stack .position
"infinity", meaning that they would be disk referencés no matter how far
core-drum were extended, or simply "highly anomalous', and not considering
them at all. The latter course, which we have chosen here, is equivalent
to ignoring the effect of these pages on the extension stack ordering, and
considering them to be outside the domain of the extension stack, that is,
in core-drum. The effect of removing references to such pages on MHBPF(n)
is easily calculated. Starting from equation 3.4, we multiply both sides

by MHBPF (n), and obtain

r(t)
ntl

MHBPF (E) = MHBPF (n)—

n M8iH ™8

¢ = g+1F®)

If E is greater than the deepest position in the extension stack to which
any of the anomalous pages ever migrates, the only place in this equation
where anomalous pages are counted is MHBPF(n). The effect of removing the
anomalous fetches from this quantity is simply to scale it proportionately
to the number of page fetches to be not considered. That is, if T page
fetches (other than the “startup transient" fetches of section 2.2) were

observed, A of them to the anomalous pages,

MHBEF) agjusted _ MPBFFE)ogiusred T - A
HHBPF () _, | MHBPF (B)_ T

This ratio was observed to be between .92 and .96 for the measure-

ments "dtm 23" and "dtm 21" displayed here.

66

Summarizing, the anomalous drum-abhorring pages create an inaccuracy
of about 4 to 8 percent in the headways and headway ratios calculated from

ﬁhe measured data.

67

3.4.3 Inaccuracies Resulting from List Deletions

These inaccuracies result from a design'decieion tovinplement a simple,
fast list-maintenance algorithm, as correct treatment of these deletions
would require a fairly time-consuming technique. Hence, we proceed to ana-
lyze the extent of the inaccuracies resulting from this inaccurate treat-
ment of deletions. | o N |

Recall from Chapter 2.2 that the deletion of'pagesrin core-drum does
not affect the ordering of the extension stack. Such a deletion implies

that a fetch into core-drum will occur with no corresponding ousting. -As

this is in fact what happens, there is no inaccuracy involved with core-

drum (or "out of list") deletions. N

The deletion of a page from the extension stack creates a moving
anomaly , as discussed in section 2.2, All references to pages in posi-
tions in front of the anomaly (which occupies the position of the deleted

page in the extension stack) are tallied correctly. The first reference

to a page behind the anomaly is tallied incorrectly, because we chose not

Lwis miE .:—Ju~-v 3
to record the anomaly. 1t is recorded as being one page closer to the top -

i
of the extension stack than it should have been. Houever, the anomaly ‘now
{ -,;‘:,.‘ LR BT : ‘
moves down to the position of that fetch The situation is now the same
as had the page just referenced been deleted. References in front of that

position are tallied correctly, and exactly one refbrence behind it is
N L RS - B .
tallied incorrectly, and the anomaly moves down
We proceed to analyze ‘the motion of such an anomaly down the extension

,,,,,,

stack. In the worst case, the page deleted was at the vefy top of the ex-

d

tension stack, and thus, the next reference is guaranteed"to be tallied

incorrectly. Probabilistically, this reference wifl“be to that extension

el e et i St S

68

stack position which is the mean of the distribution f(x), the measured

reference frequency distribution. There is a probability of q that this

rrrrr

reference will be as far down the IRU stack that a fraction q of the‘
weight of the diatribution f(x) is below it.‘ Now for the measurement "dtm
23", there were about 2000 1n-list deletions per 50 000 in-list reads.

This means that there was one deletion per 25 reads. In order to calcu-
late the probability that a deletion anonaly is past a certain depth in

the extension stack by 25 reads, we consider the experinent, tried 25 times,
of encountering a read at least that far down the stack The probability
of success of one read being in that portion of the atack where a fraction
q of the weight of f(x) 1is left is eaactly g. The probability of a
failure is (l-q) The probability of 25 failures is (l-q) ; The pro-

bability of at least one success in 25 triea is one ninua the probability

of exactly 25 failures, or (1-(1-q)) For q —'.1 i e., the ninety per-

LR

centile point of f(x), it is .93 For q = .05, it is .72 Henee, by the

time the next deletion is recorded, it ia quite likely that the anomaly
E ’S _-i 2 Eeodln 3% e,;' 4
generated by the previoua deletion ia quite far down the extension stack.
. LEGTRY "’_{ —3.~ ,’,‘:*}. -

Hence, for the upper portion of the extension ltack the effect of dele-

[

tions do not cumulate. nence. each deletion generated an inaccuracy of

TEaE ot lang o

T2 aiE? B8 -

one stack poaition for each read behind it, but the correaponding anomaly

} ERLE e
moves sufficiently rapidly down the extenaion ataek that the effect of
15 ,'«;..r) - B o
later deletions are independent. Thns, for the upper portion of the
Ceammiiy xad o hos ,vitoan
staek the result of theae deletiona il a total uneertainty of one atack

S RnYRENE L as

.position, a negligible anount.»ﬂ

N

The above reaaoning correctly inplies that the anonalies resulting ,

from deletions accululate at the lower reaches of the extension stack

},; L& E.

69

and that fetches from these regions have a large cumulative error. In
order to analyze this effect, we construct a queueing theoretical model of
list deletions. A deletion anomaly causes the first fetch to a position
behind it to be off by ome position. Several deletion anomalies in the
extension stack cause the first Ffetch behind them to be off by that many
positions (the number of deletion anomalies). ‘However, once this first
fetch has occured, the next fetch from this position will be off by one
less position, and so on, until all of the deletion anomalies have moved
behind the position in question, and fetches from this position are-tallied
correctly. Thus, we may construct the following interpretation: The dele-
tion anomalies in front of position p form & queue. Eaeh fetch behind
position p “services" one request. i.e., removes oneé item from the queue,
The rate of arrivals to this queue, in the worst case (all deletions from
the very top of the extension stack) is the rate of deéletions. The rate
of service is the rate of references to s;gckkgositions behind position p.
The length of the queue is the number of éﬁtétandingiénomalies in front of
position p, which is the total error in*ﬁt;bk position by which fetches
from position p will be tallied. Assuming e#ponentially distributed arri-
vals and services, with réspective means A anﬂ [TH thé ;verage

queue length at position p is known to Be L= 1/(1-X/ﬁ) from dﬁeueiﬂg
theory. A/u, the ratio of arrival rate to service rate, is the total
number of deletions (assuming‘the worst case) dividé&‘ﬂi tﬁe mumber of re-
ferehces past position p, both immediately obtainable from the measured
data. As there were 2000 total deleﬁionsﬁ queueuléﬁétﬂwépptbaches infin-
ity at the point in the extension stack where 2000 references were counted

below that point. This point is at 3650 pages depth. At 500 positions

*In measurement "'dtm 23",

T AR L T T T L LT T R e e B gt

70 -

before this, queue length is .down to 4. At only 100 positions before it,
queue length is 20. Hence, up to 3000 pages, the effect is pegligible..
At positions below that point where there .axe 2000 page fetches recorded.
below, the queue grows -faster than it is sexrwiced. At the time the experi-
ment is stopped, the number of delption snomalies remaining. in queve in
front~qf position p', where p' ia,bgy@gdfgkabgooo‘;efg:ggge point in the
extension stack is the total number qﬁxdelggjﬁm; gin;;heganrst>¢a;g)_minns .
the number of references beyond position p‘.,,A;ngthkofvthese quantities
presumsbly grov et a constant rate, the average error in etack position of
a recorded reference to positiom p' 13»ohg-hg;f:;hig.qggugulgpgth. This
allows us to recomstruct an apprﬂxtmation\éixgha ¢q;;ggtvt(x) and £(x),

and then all of the resulting curves, by recreatipg a better, more accu-.
rate r(x), r'(x) as |

r'&) = r(x) for x < 2000 pages

' (x + 299952552-= r(x) for > 2000 pages

vhere t(x) = 3 r(y)

This implies that at the very tail of the distrihution, there is a stack
position inaccuracy of 2000/2 = 1000 positions At a stack depth of 5000

positions, there is an inaccuracy of 500 positions. This does not seri-

ously affect the shape of the exception ratio and HBBPT curves in the

region of interest as ome can see fron figure 3 6 Ve have re-plotted

here figure 3.1 and corrected as above.

4007

350¢

300¢

2507

2001

1501

Exception
ratio

,

Figure 3.6

Figure 3.1, Corrected for Worst-Case Deletion Error

+ -+ 4 +- e

¢ corrected dtm 23

/ /+corrected
/ dtm 21

Memory size above the Drum, pages

)y

1000

+

2000 3000 4000 5000 6000 70

t

00 8000 9000

R i C el e

72

3.4.4 Other Inaccuracies

Another possible source of inaccuracy was the forced oustings of
péges to disk directly from core, not due tb ‘global transparency to the

paging device. A close inspection of "try ¢ *to vrite _page" in Appendix A

reveals that pages which should be ousted frs'- core to the paging device

(the drum) are occasionall—‘y ousted -£0 disk.,- because there is no room on

44444

t:he'paging device. ‘!his act;:l.on avoids reeureivn :Ln the process of. find:lng

- & free core frame, as the Iat;ner process would oQorwixe possibly involve

ousting pages from drm, which could require f:l.ndins a free core frme

Although we dof not have data on the frequency of this occurrence ern the
days of the gxperiment, we have observed Multics at other times, and the '
. percentage bf disk writes caused by such mtimn is less than a ¢enth of

af percent, ,af all disk writes. It is true of Multics that the ratg,o of

reads to writes remains fairly constant. Each read coriesponds to ome

~ page fetch, and each fetch must be accompanied by an ousting at some

time./ Hence, 'forced' oustings must be a similarly small percent;}ége of

all oustings, and not a significant effect.

73

3.5 Correlation between dtm 21 and dtm 23

Observing figure 3.2, the correlation between the two plots is fairly
remarkable. Within any reasonable accuracy for what is meant to be used
in engineering approximations, these curves represent a measurement of

the same quantity.

74

3.6 Our Result and the Linear Model Meggurements .- -

- Our mean headway curve Afigures 3.1, 3.3) show& d\"eﬁﬁ;iﬂctj,éi,f_f&unces
from the C“Wes given in 81 .for .the, mean ham Sunction of the Multics
system. We can .attempt fo rationalize these df . by understanding. ;-

the nature of the user load during the two different experiments. . ..

B

The measured mean headway between disk page faults, in terms of vir-
tual memory references per disk fault, was between two and three times the
figure meésured in S1. What isb more, the slope of the two curves differs,
ours starting out at almost 8ix times the slqpe of the curve S1. We attri-
bute this to differing values of A in equa.tioﬁlii.m‘, in terms of.the model
proposed in this experiment. More specifically, theA 'tightﬁess' of
working sets was greater for our _experi‘nen;, and the mmmber of distinct
users was: fe’wei:, causing even greater tightness of the system's "combined
working set" at any time. The measure-snts given in s1 were‘mde during
a day of very heav:} system usage, in August 1972. User load at this time
consisted primarily of systems progrﬂ—etg engaged in program development,
an activity which references vast extents of ii&gx‘ies, tools, ‘and spe-
cialized procedure and data. These users were als§ ‘operating without
economic restriction, and thus had little incentive to minimize the re-
sources used by their activities. Our expgrine_nts were conducted at a
time vhen some of the Multics user load had shifted to the Honeywell 6180
Multics system, in a state of development at that time. All of the sys-
tems programmers had moved to the new machine »at‘-, the time of our experi-
ments, and the remaining user load was quite light, consisting of the
M.I.T. academic commmnity. The lightness of user ‘load also implies a

smaller number of distinct users.

75

The mean headway curves which can be extrapolated from our measure-
ments may be viewed as a function of user load / system working set
tightness, giving rise to the family of graphs of figure 3.7. From this,
it can be seen that a linear region on a curve cdrresponding to a large
system working set can correspond to a non-linear region on a graph cor-
responding to a smaller system working set, and the latter will rise
faster than the former. If one draws the line C C' corresponding to :ﬁg
core-drum to disk boundary, both the differences on measured headway and
slope differences can be more readily understood.

Another factor which gives rise to the family ofrgraphs in figure 3.7

is the transient response of the experiment. As the length of the LRU ex-

~ tension stack grows, so does the observed value of A. Especially when

user load is light (smaller number of disk references per hour), it takes
longer to develop curves of low A than high A, and this was the case in
our measurements. Hence, it is possible thatMQJmore extensive measurement

could have allowed a curve of higher apparemt A to ré;ult.‘

Mean
Headway
Between
Page
Faults

76

Figure 3.7

+ High A
-
| Memory Size/ LRU Stack Depth
H
C

Family of Headway Curves of Differing A

77

Chapter &

Conclusions and Suggestions for Future Résggrch

4.1 Concius ion

The most general and useful conslusion that can be drawn from this
thesis is that increased primary memory size dleéi-;as:s.\;sage fault overhead
in virtual memory systems very sharply as ie"grows, “the 'decrease being
much greater than proportiocnal to the increase iz memory size.

We hypothesize that the reference patterns oha‘méd, and the headway
functions derived are characteristic of a large~scale computer utility
being used by an academic community through /in’ﬁer;lceivé conseles: . The data
being referenced on Multics was sccessed through a 'virtual memory mechanism:
were it accessed via explicit disk requufim some other type of computer
utility, we expect to see the same patterns- sod hesdway functions.

The most specific and concrete result which we-have arrived at is a
measurement of the mean heﬁwq funétion for -Multics, showlng how page

fault overhead decreases as primary memory size approaches 4 x 108 bits.

78

4.2 The Paging Model Suggested
The mean headway ﬁmction mrr(x), whete x is primry memory size in

pages, may be upressed as a polynouial :I.n x,
M(x) = 2 "0-31 .oo+o-o R) (1)

Saltzer s neunrenents suggest that |

e - %* TS R >
is an adequate charactertzation of thc«pmm of Maltice in the
surements we made, that the quadratic tminﬂ-)ms»qtsniﬁcmc at
" x'= approxiustely 1.0x10° bits.. The trends iudicated by figures 3.1 and
3.4 suggest that higher terms become sigeificast as.x is increased fur-

ther. This would be consistent uithﬁh&oilm«ltm !ﬂdew arbi-

trary increase in primary memory size %immﬁl“t@ made
above. ‘. Belady and Kuehner (B3) assert - MEBERE (x) :0 approximate “’:z’;‘]f for
‘real 1ife programs'. In msamaemmxwm and vSystem
360/67 machines, they found k to take values 'in thqminityoff- i
'This model also can be desc;ribed by the vge‘neral répa:’eséntation of equa-
tion (1) above. These observations also suggest, as does figure 3.2,

that

Ex

MHBPF (x) = (3,B) + Be © | @)

is in some cases a valuable approximation. The constant term becomes in-

significant for sufficiently large x, and we may write
& x

MHBPF (x) = Be B :)

79 -

a very simple model which is very appealing. As was shown in Chapter 3,
this model corresponds to a reference probabi]iity"‘diéffil;di:ién '

Px) = A | G)

where x is LRU stack depth and p(x) is the prob_ab:lllitl:ynof reference Mto
that position. This simple mpdel of program behav:;’lgr’:_i'g gai'tiqu]:arly ap-
pealing, as it characterizes "program sizef' as a distggbtfgiqn:‘ Denni.ng
(P1) has given the }concept of 'working se‘t'_,as a measure of program size,
within a given time interval. Efqug’tioyn_(sy) is or a ;‘°¥;¢ specific c_lgasg

of program characterizations, expressing the 'size' of the program as a

distribution. The parameter A may be viewed as a ';jgdiuq of ‘locq,lity' of

the programs running, expressing in some senge their ’t;ghmessf or 'to-

getherness'. 1In this sense, A is akin to the concept of working set.

80

4.3 Umms_!e;; ed @estions and Future Directiona

The most obvious ext:ension of t:he ms presented here 1s to extend
upward the range of pr:l.mary memoxry sizes for vtlich the nature of HBBPF(x) ’
is known. Although the techniques used in this thesis are conpletely ex-
tensible in this regerd, it 13 not clear whether or not there is any vaiue
in such research beycnd some po:lnt. 1t a certain aount of pr:hluj nenory
reduces secondary nenory accesses ‘to ‘once an hour, for i.nstance, the issue

of secondary menOry access time versus cost qu:lckiy takes precedence over

SECU ANV

pr:lmry menory coat versus secondary reference overhead. " For in-

TR T

stance, our neesutenents predict Ehat: anothcr seven nﬁiion }vords ‘of core-
drum would reduce disk references to once every ‘two nimtes. At this rate,

the economic v:lab:lli.ty of a fast disk ia a grenter “fasue than ‘the per- .

formance improvenent resulting fron mote coteidrim. l’or instance, a large

(10'2

bit) slow (1 sec access time) store might oe quite acceptable as a
backing store. | | |

Another area of' research is to fully understand the program behgvior
patterns which are responsible for nodels of prrogtq bahavior such as
Saltzer's linear model and the model proposed nbove Vle ‘understand the
working set model because we know that program loops, subroutin’es, etc.,
cause repeated reference to certain data itm; nnd this behavior is some-
vhat extensible to larger views of programs. We do not know what "causes"
the linear model, or other such models in this sense. We can understand
"distribution” type models by the same considerations of 'spatial lo-
cality' and 'temporal locality' (M2) on which the working set model and
the IRU replacement algorithm are based, but we have no insight int:o the

basis for any particular distribution in program behavior.

81

A very major unknown limitation on the work of this thesis is the ap-
plicability of its result. ' No attempt has been made.to determine pre-
cisely what aspects of Multics user behavior were responsible for the ef-
fects noticed. It is not even clear how specific the results of this the-
sis are to the LRU algorithm.

An interesting direction of research would be to perform a similar ex-
periment on some LRU-managed system which does not utilize virtual memory.
A large data management system utilizing an LRU-managed buffer pool might
be such a system. The common aspects of user behavior accessing a large
on-line data base might show through here, as it is the referencing pat-
terns, not referencing methods which are interesting.

Systems such as IBM's 0S/VS2 and VM/370, involving paged virtual
memories and multiple address spaces provide a fruitful ground for compari-
son. In these systems, features of sharing and data addressing are quite
different than Multics, but the amount of data to be addressed and the pri-
mary memory usage strategy are not altogether dissimilar.

An important direction to be pursued is that of repeating this ex-
periment on Multics, reliably, many times, and determine day-to-day and
hour-to-hour variations in the behavior of MHBPF(n). The thrust of this
thesis was to develop .and apply the techniques stated herein, and others
must use these tools to correlate MHBPF (n) to whatever factors appear
as influential.

An interesting issue is to relate the parameters)\ and ay in all of
these models of program behavior to other observable parameters of pro-
gram behavior and system configuration, This would constitute a long step

toward theoretical understanding of the behavior which underlies these

82

models.

Sekino (S2) shows the significance of MHBPF (x) in system performance

calculations, particularly throughput and response time. Although our re-

sults may be used in these calculations, we have not pursued this course

here.

83
éggendix A

N [

A Structured Program Déécéipti&ﬂ!ggfﬁhltggéVggggACoﬁtfol

PR S P S BT

This appendix describes the functioning of the fault and interrupt
driven mechanisms within the Multics virtual memory management algorithm as
it existed in May, 1973, at the time of the experiment. Only the paths
within the so-called 'Page Control' subsystem relevant to this thesis have
been shown. This excludes some fairly complex mechanisms relating to error
handling and the allocation of page tables. Within the paths shown here,
however, this results in only a few small omissions.

The aim of this appendix is to familiarize the reader with the inter-
nal operation of page control to whatever depth is necessary for compre-
hension of the rest of this thesis, particularly Chapter 2 and Appendix B.
To this end, we have provided a description on several levels.

The most detailed description of page control given here is an approxi-
mately "structured" program, in which we have functionally modularized
page control into 14 small routines. We have taken the liberty of creating
a new language in which to write-thig program, which we explain within.

We feel that this language conveys the general class of manipulation des-
cribed herein with a maximum of clarity and succinctness. .

We have liberally renamed‘objects, substituting names which we feel
are more mnemonic than the actual names used in Multics. We have also
made minor modifications to control floé, and subroutinized routines which
were not originally subroutines where we felt that clarity would be
aided. In any case, the algorithm as given is essentially identical to

the actual assembler-code algorithm at the time of the experiment, with

84

respect to state, sequencing, and side effects.
The plus sign (+) in the left-hand margin denotes references to routines

explained in detail within.

85

A Brief Overview:

Multics manages both core and drum (the latter known as the ' paging
device'", or "pd") by approximations to the least-recently-used algorithm.

Two lists, the core used list and the gggigg device used list are main-

tained for this purpose, the top of each list designating the least recently
used page (which is the best choice for replacement), and the bottom of
each list designating the most recently used page (which 1is the worst
choice for replacement) on the respective denices. How these lists are
maintained can best be learmned by reading the program that we have pro-
vided. The core used list contains logical descriptions of core frames, in
cluding pointers to descriptions of 1ogica1 pages and/or paging device re-
cords when such entities may be associated with the core frame. Similarly,
the paging device used list contains logical descriptions of paging device
records, including pointers to descriptions of logical pages and core
frames, when such entities may be associated with the paging device record.

Multics tries to maintain copies of the most recently used P pages
(where P is the size of the paging device, in records) of the storage
system on the paging device. The most recently used C pages (where C is
the size of core memory in page frames) are to be in core, as well, (iE;
is assumed that C is less thang?.) ‘

Thus, pages being ousted from core may he writtenvto the paging de-
vice, even if a good copy exists on disk. This fact should be kept
strongly in mind when reading "try_to write_page"A Encept for the case
where the paging device has no copy, pages which were identical to pages

in secondary storage are never written out. Pages of zeros are never

B O e s R Eriie S it S

86

written out, but their logical deseription ié?’? modified thatAthey are
created in core when faulted. on.

LThe processor’hardwnre maintainseus;ge infornation about a logical
pege in a hardware descriptor. Specifically, the occurence of usage and/or
modification is noted in the descriptor. . :

A page fault is resolved by finding a page of core into which to bring
the page, and bringing it in. Finding a page of core consists of reor-
ganizing the core used list to reflect the lstest usage information, ‘and
finding the least recently used page frane, and using it. Pages which
have been marked as modified cannot be clnined in this way, but are writ-
ten out. When the writing is complete, at some future time, the page will
be in the same state as a page which has not been recently used or modi-
fied, and will be claimed in the handling of some future page fault. ‘Note
that this writing consists of initiating the phyaical operation, but not
waliting for it to complete. It is at this writing tine thst secondary sto-
rage is allocated and pages containing zeros ‘are noted. it is at the time
that zero pages are noted and thst secondary storsge is deallocated

At the beginning of page fault handling, housekeeping is performed
on the paging device, which consists of trying to insure that at least |
ten records are either free or in the process of being freed This is
done by removing as many of the leest recently used pages on the paging
device as necessary When a page is so moved it is checked (via soft-
ware-maintained switches) to see if it is identical to a copy on disk.
1f 80, it may simply be dealloceted “from the paging device. If not, a
sequence known as a read-write sggggnce (rws) mnst be performed This se-

quence consists of allocating a page of core to be used as a buffer,

87

reading the page into it from the paging device, writing it to disk, and
deallocating the paging device copy. The core buffer is then freed.

A page fault which occurs on a page for which a read-write sequence
is in progress causes an event known as an rws abort to occur. The freeing
of the buffer page and the paging device page are inhibited, and the buf-

fer page is used as the core copy of the page, and the fault is resolved.

T R R e e R L T P IR DT I et g Sl i S o O, I

The language which we have used to déscribe Page Control is a bas-
tardization of PL/I, with new primitives for some basic dperations (en-
queue, maske‘d ptocedures, etc.) and an Alsol “68-11ke formalism for repre-'
senting relations!ﬁps among strictured entities. .

Underlined words are language keyvprds. Lower-case identifiers re-
present nsmes of subroutines, functioms, v.ox:‘ 1abels.‘ Identifiers beginning
with an upﬁer-case character represent rreferencés to cells, which will be
described below. Statement syntax is essentially the same as P'L/I, but
":=" ig used for assigmment, and "=" is uéed t.d test equality. ‘There is
no lexical nesting of procedure or begin blocks. |

A program consists of begin blocks, entered from the outside world
in some unspecified way, procedures and fuahgi.om, and declarations.
declare (dcl) declarations may appear attywhefe; includiﬁg outside of blocks,
and are giobal in scope. They define the class and gmbf variables,
and the types of Objects used by the progrsn. ‘local decl&ationé appear
within blocks, and define a local scope of variablés. identical to that
produced when a variable is used as a formal parameter in a procedure or
function.

The point of this language is to associate cells with values. The
domain of values is the space of Objects. Objects are unique. Two cells
have equal values if and only if their values are ﬁhe same Object.

There are three classes of Objects: primitive Objects, structured

Objects, and set Objects. Within each class, there are different types

s -

89

of Objects. .Objects have no names. Only primitive Objects can be referred
to explicitly, i.e., other than by reference to a cell having the desired
Object as a value, or a function returning the. desired Object. .

Primitive Objects can be of three types. ' The first is boolesn.
There are exactly two boolean Objects One can be. referred to explicitly
as true, the other false. The second is grithmetic. There is.a first-
order infinity of these objects, which are actually the integers. They -
can be referrred to ‘explicitly as. 75.%,-.:1&7‘7;9216%, +283, etc,y - The third is
literal. They are simply arbitrary primitive Objectsn, whose oply useful
property is their uniqueness. They can be referred to explicitly as 'foo",
"bar", "mo stuff", etc. They are pot character &m in any sense, but
simply unique primitive.Objects of type litersl. -

Structured Objects consist of a finite mmber eaf cells. :Any.cell
can have as a value only one type of Object {implied is one class, as
well). These cells are called componanty of the Object, . These cells do
have names, and they -are specified in » declavation sixich describes the
concerned type of structurxed Object. = i = 5.«

Set Objects consist of an ordered.set of Ohjects: of the same type
and class. - -All references mmmmmmm copsider
the set Object as unordered. One can add:-io or.ephuese to a set Object, .
remove from or degueue from it, ask if a given.Object is 2 member of it,
or cause a cell to be assigned succesaive.valwes, esch.value being a dif-.-

ferent Object in the sab Object, -in no
- Variables are the other type:ef celld. . Awerisble.can hald enly one. .
class and type of Object, just like the other type of celd, the struc-

tured Object component.

90

- Assignment (performed by '":="' operation in do statéments &hd assign-.

ment statements) consists of replacing the walue of & cell with another .-

value, i.e., changing the velue of the cell. The Object which was the pre-'

vious value is neither changed nor destroyed in any way. '~

Binding consists of saving the vaiue' of 4 varisble when a procedure,
function, - or b_es_i;g block is entered, and- restoring it when it is e‘xited.;
The latter operation is called umbinding. All: assignments: and bindings - -

made between the time a varisble is bound and: the' corkgsponding unbinding

have a transparent effect: when the block. perforwming the binding is exited@

A local declaration of 'a variable in'a blogck'causes:such 2 binding to take -

place for that variable when tl're‘bl.‘pck i§-,enmed¥,f' and the corresponding
unbinding. Binding also takes place for v&iﬁiu tsed as formal pa‘ramedsm
to procedureg and functions. In this case, after the old value is: a;vad,
the value of the corresponding formal ‘argument is:assigned to .the variable.
Hence, all calls may be seen aé¢ "call by walue". -

To refer to an &ﬁct, one can ‘either vefer ts a~:me1vac§utaining-‘ ity
or, if it is primitive, one can refer to it :explicitly.: To wefer to a
variable, simple state its name. To refer 'to & compoment of ‘a structured
Object, state its component name, anmmw*fmfemce to the
structured Object, and a close 'parenthesis.

An assignment is a reference to ‘a cel¥, ":=" “and & refdrence to an
Object of the same type and class declared for that cell

Variables need not be declared. ‘The default claws of any cell is
structured, with ‘a type the sime as its nsme. The ‘syntak ﬁw & structured

Object type declaration is as follows:

91

[degi?re structured Foo (compdcl-1, compdcl-2,...compdcl-n);
[1- optional { 1= select one

The comodcls, or component declarations, are of the same syntax as variable
declarations, except that the name is the name of the component, and the
optional keyword variable is illegal

The syntax for a variable or structured Object component declaration

is as follows'

{degi;re} [variable] Foo [typel{objtyp]

where objtyp is either boolean, literal, arithmetic, any structured Object

type named in a structured Object type declaration, or get objtyp, where
objtyp is, recursively enough, any possibility named -in this sentence.

local declarations only name their varisble, although they can declare
its type as well.

do statements differ from PL/I in that any cell can be used to the
left of the ":=", not necessarily variables. The particular form “'do
Foo: = range Bar" means that the value of Bar is a ‘Bet object, and the
do is to iterate over each Object therein, in no special order.

The special constructor function congtruct is used to create new
structured objects. The syntax of a reference to it is

construct Foo (compname-l:object-1l,compname-2:object-2...),
whose value is the new Object.

The unique Object "null" can be used as a value of any cell. It has
all types and classes.

The predicate void takes as an argument a reference to a set Object,

and returns true or false (boolean Objects), depending on whether or not

92

it is empty. ’me operators '=" and 'P' may be used to test i.f two refer-

e

ences are equal, i.e., refer to the same Object. An appropriate boolean

Object 1is returned as a value. 'l‘he operatpra "or" "and" and not“

R S

operate on hooleen Objects 1n the obvioua way. 'me conventional arithmetic

: operators operate upon arithmetic Objects, returning an _a_r_iL_l'me_;_t_i;g Object

with the expected value. ~

if statements have as their predicate a reference to boolean Object.

A

A call- statement consists of the word ¢gll followed by either a pro-

x: function: -referenee

cedure name and an optional argument rux or- a comy ,
and an argument list. An argment liat ia a. p;repthesized ust of (pos-'
sibly zero) references to Objects ,sepgreteggby commas. A complex f!pnct:i‘oe
reference is a function reference to apme outslde-of-the-language function
which will return as a value a proceduge, which one depends on the argu-
ments to the function, which will be called by the call st;atemenrt,y with
the arguments to the call.)

The evaluation of arguments in gy sod 4pd s conditional, as in
Lisp 1.5 (M3) and proceeds from left to right.

R,

93

A Program to Find the Man Who - . ;
and Have Him and His Father Switch Houses

declare structured Person

(Father type Pérson,

House);

declare structured House

(Color literal,

Owner type Person);

declare Son Person, Housez House;

declare Brooklyn set House; [*assumed tobe 19_:!.\tia\lil.zed*/)

switch_houses: gg

do House = _g_a_ggg Brooklyn, | / Isearch the set "Brook-
Color(nwﬂe) = "blaek" them do; . . llmnd him
House2 := Bouse(Father(Owner(House))), //£find the other house
Son := Owner(ﬁouse), e R B ﬁrmﬁbet who is the |
House (Son) := House2; L [/San nQw: owns ; Housez

Owner (House2) := Son;
~ House (Father _(Son)) := House; : /{Father qwhs house
Owner (House := Father (Son);

return;

SR R Ty, T

A page fault causes the follow_ing_ : ‘ | (page_falllt:)
The paging device is housekept. ' R B
Transient conditions such as i/o in progress or an rws on
the faulted page are noticed and handled. g

A free page is claimed, and the faulted page is read or created’
into it.

1f i/o was started, the page is waited for.

s B

Finding a free page consists of the following:
The core used list is searched for a §90d gand] R BT
Recently used pages are not 3ood candidates. B:Sy {gre ski.pped, and B

re-judged as not-so—recently used for next time., o
Pages which have been modified (stored i.nto) cannot be claimed now.
They are written out, and re-judged as not to hmm haegn m(liafied.
A A page which has not beéen modifi.ed, and has been used approudnntely
o less recentl,y ‘than any other page, is pre-alpteﬁ ﬁ"ﬁn its core -
frame, and this core frame is the wew':ffee me?!m :

: (write _page)
'me page s conmtsxare eheched, and if ali zeros, the page is
flagged ‘a8 not -neading to be read or written - No writing' takeq
place, and disk and paging device spagg‘f,grl_l:gcgm‘,dam:the page
are freed. .
The page is g:l#en a residence on d:l.sk, 1if it docs uot already have

R I A Ja

one.

The page is given a residence on the paging device, if it does not
already have one, and one is availsble,

The page is written out to its residence on the pag:lng device, 1f it
has one, otherwise to disk. The co-pletion of 1/o is not waibed

for.

95

Housekeeping the , deyice consists of the fol : (get_free pd_record)
An attempt is made to insure that there are ten paging device re-
“cords free or being freed, which is done as follows:
The pd used list is searched for a good candidate to pre-empt.
The search is made starting at the least-recently used pd record.
Records which contain pages in core are recently used. They are re-
judged as such and skipped.
Records containing pages identical to pages om disk are acceétable.
The pages in them are pre-empted, and the record is now free.
Other records have to be written back to disk, which is done by
performing a read-write sequence (rws) on them.

ite sequence on .congi of the followi
(start_rws,rws_done)

d-

Per formi

A free page of core is obtained.

The page is read into it from the pagingdevice.

When the read is completed, the page is written out to the disk.

When the write is completed, the page of core and the paging device
record are freed. | A -

A page fault on the page involved in the sequence at any point
during it cawses the sequence to be aborted at the next cemplete
operation in the sequence, and the core page is used as'the'

page's home in core.

T LA (MRt T

A Page Object

A Descriptox Object,

A Coreadd Object

A PDrec Object

A Devadd Object

An Io-status Object

An Jo-program Object

is the'logi¢al description of some page of the
storage system, as‘opposed ‘to ‘a page frame on
some device. ’ o

in actuality a "pagé ‘table word"; is the physical
des¢riptor by which ‘s Preecasér accesses a page.

It contsfns a Gore address; ugage bits, and a bit

which causes a’ !iﬁ!t*ﬂhﬁn uff.~

describes a physical cofe block. It describes
the ststus of this Kloek; ineludling; fmplicitly, -
its position in the core used list.

‘describes -4 paging' device record; or -frame. It
describes the status 6f this frame; -fncluding; im-

plicitly, its positfan‘finﬂig ‘Paging-device used
listo ' . . v'?:.%a,, EE I A

repreésents ;*phyi!éiiﬁdiiilét%é?umfaddrcssy and
its contents. ‘Includdd if this-ebjeet 1o an iden-
tification of the device:da whkichithis page frame

resides.

is a hardware-generated object, which describes an
input-output operation which has completed.

is a sequence of commands for the system i/o con-
troller to give to an i/o device. It specifies
the type of opération required, the record within
the device concermed, and a core address con-
cerned.

T e s LT

97

A Trace-Datum Object is a recorded datum of information about traffic
between disk and core-drum, for the purpose of

the thesis experiment.

/*

Recall that

gol atructured Paxe

{Descriptor,
Devadd,

Coreadd,

PDreg¢,
Event llteral,

lo_in_progress hoplean,
On_pd

Wired
Gtpd b :

del structured Nescriptor

(Phys_Coreadd arithmetic,

Addressable honlgan,
Usaze hoalean,
Modifled boolean);

dﬂi Atcuctured Coreadd

(Page,

Phys_Coreadd];ﬁ#hmg;lgb
Next type Corea

Previous type Coreadd,
to_read_or_write llteral,

Rws_in_frame boglean,

Description of the structured Object types used by Page Control.

the default type of a structured Object component IS
the same as Its name. ¢/

Represents a page of sone sexment of Multlics, as opposed to
a page of core or some device.
The hardware descriptor by which processors access the contents of Page.
The physical disk or pd address from which Page should be
read or written to. If On_pd is true, is a pd address. Otherwise,
1t Is a disk address, A Devadd of "null“ however, represents a
page full of zeros.
The core frame assoclated with th!s parge. Valld only when
Addressable (NDescriptor (Page)) Is true.
If On_pd 1s true, this Is the pd record used by Pare.
Some llteral quantity unlque for each page. Used to identify the
occurence of events assoclated with this paze In Interprocess signaling.
Truth indicates 1/0 In progress, or at least not known to have
completed, on Page.
Specifies that Page has an allocated PD record, namely POrec (P.uc).
indicates that Page must always remaln addressable.
Indicates that Page ls forbldden to gzo on the pd, for rellabt!ltv reasons.

ol
@

fepresents a pare table word (ptw), the ohyslca! descriptor by
which processors access a page.
The physical core address occupled by the paxe to which this Doscrlptof
helongs, Valld If and only If Addressable s true. o
Truth allows Phys_| COreodd to be used hy the processor, Falslty ,
causes the procedure Ypage_fauit" to be executed.
Set by the hardware whenever thls Descriptor §s used,
or more atcurately, fetched into the assoclatlve memory.
Set by the hardware whenever a store-type cperation is
performed using this descriptor, or an associative memory
copy thereof,

Represents a core nare frame, . :
"aull" represents unallocated page fr Otherwise, th

Papre cOnta? 3 in tg?s ?rame. ?hls ?s on'"'for Ro:ma D‘RQ‘:oldlng
use, not rws's

Tre physical core address represented by this frame.

The next more recently used core frame.

The next least recently used core frame.

If lo.In progress({Pare(Corcadd)) Is true, or Rws_Iin_frame,
tells which direction of 1/0 Is being performed,

Signiflies an rws In progress In this frame,

PDrec);

dcl structured Devadd

del

(Nevice
Phys_Deva)

Diskaddr Lype Devadd
Devadd, :
Coreadd,

Next_nd type PDrec,
Prevlous_ﬁﬁ_lxgg Phrec,
Event llteral,

in_use boplean,
Rws_In_nrorress hoalcan,
Incore hoglsan.

Modifled_ from_disk hoolean,

Abort_flax boolean,
Atort_complete hgoalean):

el ARHUSSAERd, Lorronien

Phys_Devadd arithmetic,

Phy: Coreadd
Next type lo%

4cl asructured lo_status

dal

(Phys_Devadd Y
Phys_| —Coreadd

lo_program,
Coreadd);

Trace_datum
evadd,

Tyoe llitaral); "

)

. 'rf

U
//
II

Used only If Rws_Iin_frame 1s true. Specifles Phrec having an rws.

Represents a physical device address,

ldentifles a secondary storage device.
identifles a physical record number on some device.

Represents a paring device (pd) record,
1f In_use Is true, cescribes the Pare on this record.
If In_use Is true, describas the disk address occupled by our pege.
The physlical device address of this record.
When Rws_in_nrorress Is true, describes the core frame
belng used as an rws huffer.
Describes the next more recently used pd record.
Describes the next least recently used pd record.
A unlque llreral assoclated with this pd record. Used to identlfy the
latter In internrocess siznatling.
Tells If this pd record Is In use or free.
Signifles that an rws or rws abort Is In prorress In this pd record.
Sienifles that the paze In this pd record 1s In core right now.
Used for malntalngk the LRU ordering of the pd used list.,
Truth Indlicates that the pd copy of page Is different
than the disk copy.
Turned on to start an rws abort by some process faulting on an rws'ing
""'
Sienifles that post_oare (q.v.) has aborted an rws, and a clesnup
by rws_stort (a.v.) Ts expected.

A portlion of a channel program,
Indicates read or write.

Physical device address Involved,
Physical core address lnvolved.
Next proxram In channe) aueve.

Represents a completed /o operation to an
/0 control routine.

Identifles the nhysical device address involved,
Identifles the physical core address involved.

zzh!p*gépv yz k;qt g;h lnlttlud the operation
? S% ? 4 §§toclag"3 w !hgﬁhys Coreadd. Although
not actually present here, the one~to-one mapping between

Coreadd's and valld Phys_Coreadd's lets us use this here for
clarlty.

An ltem of trace data for the experiment.
The disk address concerned.
‘The direction and description of logical motion.

“read" -~ 2 pare fault to 4isk or an rws abort
/17 “write”
“virtual®™ - an ousting from core to disk

- an rws Initlation

66

e

100

"94ed B O UO|IILIP IYI - 93| 3P,

AS|p 03 pa ¥y3

WoJdj dujIsno ue - ,lenlJdjaTpd,

/7
//

101

The Global Variables Used by Page Control

dcl

Page_table_lock literal, A quantity used to insure that only ome pro-
cessor at a time is in page control. A pro-
cess desiring to "hold" this lock loops con-
tinuously until it is unlocked, and then
locks it.

CoreTop type Coreadd, The least recenktly used Coreadd Object.

Writes_outstanding arithmetic,
The. mmber of write operations started which

have not yet baea Imown to complete. Used
as a heuri.stic to call post_any_io.

Rws_active count arithmetic, y, number of read-write sequences which have
been initiated and not yet known to be com-
pleted.

Number_of free_pd_records arithmetic,

The number of paging device records free or
in the process (rws) of being freed.

Top_of pd used_list type Pdrec,
'I‘he least recently used PDrec Ob ject.

Channel_Queue type Io _ptogram,
ThHe executable qdeue of i/o programs for a

digsk or drum.

Experiment_active booléan, ~Tells if meter tig ‘experiment is in progress.

Trace_queue set Trace_datum, The total of all trace data accumulated by the

experiment.

102

Undocumented Routines Referenced in this Program

page_wait (literal) Suspends the calling process until a call to
ﬁotify is made with the identical literal.
page_wait alst:unlocks the pape’ table lock om:e
the traffic control data bases are locked.

notify (Iiteral) ~ Causes any process which called page_wait
with the identftal literal to be resumed.

clear associative memory - Causes all proceséors to clegaxr thelr associa~
" tive memories. This routine does not return
until all processoq;s bave ITndicated that: they
;have doné so. Used to force access turnoffs
n;and mod:lfied bi.t turnoffs to take effect.
allocate_disk_reéord() Returns an unallocated Devadd Object. MArks
. . 4t @ ‘11 od. I S

relinquish_disk_space (Phys_] Devadd) R
Marks a Devadd Object as unallocated to allo-

cate_disk_tjgg:q;q}, e
start_io(Io_program) Starts a chamél éxecuting an i/o program.
thread_to_top (Coreadd) Changes core used 1tst sud value &f CoreTop

* such that Corendd 18 moved to the top of t:he
Core used list (lust recently used)

thread_to_bottom(Coreadd) Changes core used list and value of CoreTop
18 qyg& o t:he bottom of

- ‘Q-*-—-’c.e

the core used l:l.st (most recently used)
Next (Coreadd) now = CoreTop.. -

mwm%@ LU gBM 1% . qsM 3
o {83asld0 28109} (8ins}ldld bhaaral)

- grew ﬁmg,w.wm&m : . Am“gm%w ;wmmw
apakdt NE R T B

ﬁ_w

N Esil’:\n
..k!&z%;zw ﬁ._u. uﬂﬁvﬁ

B {:

,m, I wgwww immoﬁ, 3 , m@wu bag.l #7100 £
iy ' ﬂ,. ' .
- Bowt 49 lwzwuw:ws - , ww:?,.«, ..w.&:«mm‘\

“TFq_ 861 o

“gm:w m@%ﬂdinﬁ« _ .”
. - " WS eI—— \ n
~ AR T .

i e e b

d
Core :hdg b‘ PD Map Page Tables
Cor Objects -~ . -
(¢ :) (PDrec Objects) (Page Objects) Page table words
CoreTo - o (Descriptozj Objects)
Core Used List op._0 Used Lis , . o
| i R ' S A
B : Delcriptgpr Md =
T Goreadal | ¥ Uod
Next o b e N
_Page evious_pd |~ VJPD‘:;:‘ g . . a
~ ~Z>1Cer HANY /o :
d B i =
ol fom/ T ° 2
only ad W PD i .
Next during ' X “ ‘nt N : ‘ Y, o ‘ Ve
Fee [PTeEadd [Wextod (| /) L T
' ‘ 1 HIF o 5
TLAGS \ i TG :
In*“.‘ : (R ’* 5_‘] =
Bws_in_progress - L ' Io_in progress
Incore ‘ o , onpd
Modified from disk oo e . Wited
1 Next mrt—fl‘l ‘ 1f|' f“ ~ i th&? D LD D
: \ Abort Complete ROL M’ 4 4 4
\ \ - onl PD - g#Disk Record:
FLAGS ' s A ' g S—P=-P—
To_read_or_write (" pruM | ="/ Y Y
v % - _ 3
Rws_in_frame PD Record & D—&- &
A' Pa&e

The Page Control Objects for a Single Page ‘Figwre A.1

page_fault

Scu_data Virtual_reference;
Virtual_reference (Page, Segment);

page_fault: begin masked;
. lpcal Page;

set_lock Page_table_lock:
Page := Page (Scu_data);
do while Number_of_free_pd_records < 10;

i ¢all get_free_pd_record;
satly:

o

Lt Addressadble (Descrlpgor(Page))
then unlock Page_table_tlock;

£lsg If lo_In_progress (éﬁfﬁf
;hgn call nsm..m{,g (&v&p&(hn) PR

s Ty

g

else if On_pd

if (Page) and Rws_in_progress
then do; ; g PR

call rws_abort (Page);

VBV 1Sk 14 el

1 11 suspgaslon .ef -the calling processcustl}

41 danlce, 1t 1s

This procedure Is transferred to when the
hardware determines that a reference has been
made through a Nescriptor whose Addressable bit
is false. Return from this procedure causes

a second attempt to make that reference.

This procedure is entered in such a way

that all external (l,e., 1/0, etc) Interruptions

are disabled when It Is entered. They are reenabled
when It Is exlted. Thls |s because such

interruptions might try to lock the page-table lock.

Prohlbit‘access to page control by other
faulting processors,

// Determine from processor state at fault time which
// page was faulted on, e
/] Housekeep the paging device = try to have some free &
/! pd records for the flind_core calls which will
/7 surely follow,

. N ST A TRIEE RS A BT R SIS TP P AR 5 4 oA
/7 1t 1§ possible that we took a pase fault while the
/1 page table was leghed, and the process holding the
,;ella“‘kﬂﬂtﬁbeUQQtv,ﬁhQ page -in, :Exit i€ ehig:ts true. "
17, Ik bs.mogsihlethat we took a paze fault on a page

qtess has stirted drParing tH,
L BRIV S R R ST 2

i¢ayses the-

‘wal t ;foﬁﬁd& LI A A L Y o
%QT?!,iviiﬁ;?'°U$lﬂ!unaug_nal;

1w

// some.gther mrocess calls the:reutine notify
1/ with the ldentical Event with which pare_wait

// was called. Pameswait also unlocks the
1/ omxe table-lock once he has locked:hls dsta bases.

(Phrec(Rage))

AL I S
, ol EE thispage ks‘on the paging
1poss |ble that s reddewrite
// ‘sequence may be In progress for It.
// It must be aborted,
// Abort the rws, or posslibly clean up an
// slready complete abort. Unless we are

/! cleaning up, we will wait for it.

return

end page_fault;

.
’

1f Rws_in_progress(PDrec(Page)) // 1f we have cleaned up, we are
// flnished. !f we started an abort or
// noticed one In propress, we must walt,
then call page_walt (Event(Phrec(Page))); // Walt for the abort to
// Complete.

// Normal case - we must bring Page In,
call read_page (Page); /7 Start read-In of Page. If pare is empty
// (211 zeros), or was on a fast device, we ray be done.

If lo_in_proprress{Page) // If real i/o was started, and not flinished,
then call page_walt(Event (Page)); // we must walt for post_page
// to post Page.
else unlock Page_table_lock; // Pase was all zeros or on fast device.

// A1l done,

/7 Restore machlne state at time of fault. PRetry
// faulting reference.

901

read_page

read_page: procedure(Page); IR ! ' 11 Thls procedure ls resconsible for

Jacal Coreadd;.

/! caysing a faulted page to appear In core,
/7.1 1]o s necessary, it is Initlated. If not,
// a puo of zeros Is created.

1f on (Paxe) - e Agthmmh tbh check-is made !n PERE fault.
Sh;gd'f Rws_in_progress (PDrec. (Page)) 17 it ls congentually. important that: it be made. here,
Eﬁuu Elilﬁv‘ } e 1/ for r?ad“um ‘may be:calied by othér system
Eamal - /7 functions. If an rws Is In progress on Page,

ERIR

Couuda

/] we gonngt read. it, .gnd. our caller must either
e o 1/ giyssup or inigltate sbort proéeedings.
flﬁ&,p;cdu‘(h N /7 . Allecate a:page-of care for the page.

Pag égzdug -- 93‘5 /! Indlgate ;ithat this psge belddas hére:
60 age s null?® /1 A null devadd Indicates that a page is defined
. /! to contaln zeros.
reew é&g’h&w “ﬁ*{;mﬁ €102% words) = 00000.... ;// Hake it all zeros.
! [n 1/ indicate that thls frame belongs to Page.
s ga!l make_acce: slblc Pue)z /! Reset fault bit In the Nescriptor, allowing
s ¢ a i TrT // processors to reference Page.
1?3'&. i b Lok DULERGE Y LILPELE
; : Paxe) Ilw M mugb‘dolut:hﬁ?ﬁt{ 2 azu kL T
O_IN_progress agel) := IIIII "Pade Nag ¥, e) :
to, re'i’pd_or write(Coreadd) :» “read”; mg ;Jnguuhh: ve dene befer are 14 ‘f 5 s .
} & (90 Tt ghe ‘4o rooehm can reset these
& fast deviowfinlehes earfy.
] device_read (Devadd(Page), Phys_| Coreadd(a‘dlu llﬁmt the ready
n_pd (Page) %z“pd mmnmnt \mou tlnt tMs om
m: (PDrec(Page)) : h } { tt sed)
o core(PDrec(Page as a n oorc racan u o
Y c?n nd_th"ld..go bottom %nc ‘a Re))s 77‘%!: tine I3 not. f. the actual : eod:
1/ Mt .sbsence constitutes s bug which was found
N // later. 1t helps maintain the LRU ordering -
%' T /] of the PD used 1ist. «/
and;
and;

end read_page;

L01

find_core

find_core: functlon();

dcl CoreTop Coreadd; S ¥

ﬂ Freme type Conadd;
Pauc; L

Ta . .
i

lacal Q.ﬁltln.:guntw

Lléiakva_soync.r e 0

2.30
tgg: éoﬁh or +
Laoa_sountcr < 131012 3
Wrltes outstandlnz > 303
PoR-pax.les

. Lo L;s.-:.";.v lo_sklp_mntcr 1= 0;

Page (CoreTop) ? "aull®
Hmnm: ,

S:ro Q;.:so‘org"corcTop)

return Frame;

ands ,
1f to in‘proxress (Page (CoreTop))

f ’f xa.

This function (mplements the Multlcs core

age ‘replacement akgorithm, 1t is called to
;[ousokeep core. .and return one ;ret Coreadd Object.

* Ite.baslc data Lase Is the core used 1ist, which

/l 1s the ord;rlnx of Coreadd Objects defined by the
/1 spauence; of Next componests of Coresdd fects.
II; uyrlabla CoreTop has . as » value the least

g'&,‘.t&‘: ratopite and 35 on, sre torendd

having seen. lncreasdntdv fetent use, The core

: st is clreul Ne. r 1 d
” F’::&:* untmo.;ﬁc'gtn: thin h '“M y use
td. v

]

801

/1 initialize check for excessive 1odoing.

‘Ye .search the ysed. 3ist as. Iong 23 necessary,
ullu L is:to gresh Pulticsli
Q.uqy;grggucnwa,fr¢e o.te. orrdlue
o [
SRuEd n&ly uflté!, see If

75 aéi Nis. soutingshes. o
Vi f M ’ '1 J‘ﬂnu e started: loeping. -

»\II 'p.uhgrr hotciatprgupﬁo are magked)

Tateiot heck.
14 Jpinitia) 3&.‘5".5« s "to

FONTRE PRS- R X

I L isf kot g o’wﬂv nu ent]y.used page to
' ; éf't f ifui? gf’. aaxzisclfttonf?orfdszrpsznt::c it.

Q ‘g}k ggu:b:sgt!: 2?.récently used, and the '

u§ have just done what
0; :

/I next least recently used the least. Notice that
ration 1s treivisl only because of the
/I clrcuiarl ’. go core used 'fst. y v

Return thts core frame as useable,

1/ tf, In the next line, we are going to skip this

// frame because of 1[/o, other than an rws going on,
// meter the times that we have done so.
then lo_skip_counter := lo_skip_counter + 1;

1f to_In_progress (Page {CoreTop)) /! See If we must skip this frame due to 1/o

ar Rws In_frame (CoreTopn) // In progress there,
then |f To sklo counter <100 /l/ If we have skipped a large number of pages due to
then do; // to 1/o in them, see If any /o has since completed.
+ ¢all post_any_lo;
lo_ sklo counter :» 0; // Reset this hlgh-water-mark,
end; // Repeat the loop, trylng this last 1/o-skipped
* /1 vage again,
else CoreTop t= Next (CoreTop); ;; gklpngver this core frame, conslder Next to
e LRU,
glse If Wired (Page(CoreTop)) // Skip over pages never claimabdle.
hen CoreTop := Next (CoreTop);
gise if Usaxedé?escrlotor (Page(CoreTop))) // See 1f page has been recently used.
m »
o Usage(Descriptor(Page(CoreTop))) := false;
U s ey Ceme et 1] \f so, relnltlallze check for

linext time, and skip this
Ilpixe. making
// 1t the most recently used. This
,Vlg Usage bjt Is.set true by the ,
/{ hagdware when the descriptor ls‘used.
CoreTop := Next (Corefoo); /L. sklo oqcr e, e
alae do; 1 At this stage,cthe.osge a3 the top of the ©
' /! core use ‘i thes abq-opre;eo:ay,aced.
/7 it is 8 gr targes Tor. replacewent. Ve will
/7 see If 1¢ needs. ta hgwwrtgpea»out; Af ng
1] Vho:is-in progress; u?cg ey g welte pege
!/ returpe,. we can clalm the page.
Page := Page(CoreTop); / h‘ﬂﬂ‘!gﬂf&‘(!ﬂ.eg cuErynt: res!dent.
Frame := CoreTop; ¢ a? And consider. the: frame..
CoreTop := Next (Corefop)‘r SMple | augqcy‘cpnsligrqtlon
. ‘uééi é, tiy.msedi if&u& ultimate-
/ \luuﬁqloiu ~ahis:was- the' right move,
'5wvc"¢v~9mta it uiil be - to.recent

E

‘ . oL /] use or 1/o, and it Is stilt good.
+ gcall try_to_write_page(Page); // See 1f pase needs writing out.
/{ Initlate such . ijo If so.
1f not to_In_progress (Page) // 1f tey tozwrite vage suceeeded In
/{ tetally writing out-page (fast pd),
/7. this hotds. Otheswlse, move on.
then do: . H-Tey-to: clt!m oare for real.
+ call make nonaccess!ble ekaz;
Turn off access to Page. We do not
I/ exlt this call until all processors
]/ have verified that they have flushed
// Descriptor (Page) from
// thelr assoclative

e SRS e LR T R

e& mec,g¢@#a «ﬁ b,
. anbuaaﬂh éngmq Qn o'

Jan obh sl eke® o) poes
suszasnove e Titne 1iag
hotauld sugd w8y, ey B
asa;¢.»@wa

-

++

end try_to_wr‘ te_'_pau:

_try_to_wrlite_page

try_'to_wrlte_bauzmcm:re’ {Page); // This procedure determines If a page has been

// modifled, and thus needs to be written out. It also
/1 cthecks for the case whare a paze should bde written to
// the pazlm device dué to recency of use.

dal Top of__pd used_llst Pbrcc. ‘ o ,
]___On__pd (Pan) 1/ If the page nreaﬁy has a copy on the paging device,

then 1€ ma@ﬂed (Bucrlotw (Page)) 1/ the dectision to write i3 the same as whether or not
h u gg _write_page (Page,"modified","nd_ ol"). /] Page hasg bcd\;; ‘modifeled. =
: 1" - Page not malfl‘éd, hadv ot pd, need not write. =
else /1 - Pépe s nbt on %ﬁc pering cevice. If it can go there,
Il u& wiil 2& I¥ g v
%,t thd (Pan) én to £0° on od,
P 1nsuse: {Top_of nl_used_ Hst) » te 1S no space for it,

- shh 14 ﬁba:f'eaiotséviitortraxe)) - w‘?“° Yggbltﬁ % Ogskpgf modified,
n cat) urlt!..oln(hac,“mdlflod“ "nq,_gd"

u else; , d, ¢ ‘ .
II Pazo 3?% : s»a 3 Q.m.r modmcd or not. |
1: Hodlfled(bescrlpter(?acc)) // 'I 456 &; msyxf g 7ndlcqxi it and write it.

1 wrl (Page "mudl :
itﬁ % iw (Page," not..m t.. ,72 : 71 WH:& even 1f not modlfled.

E w

write_page

write_page: procedure (Page, Modflag, POflag);

declare Modflag Lirarkl, Pofias Liarals

1f page_ls xéfo (Puge) ‘then fatues; -
Modifled (Descriptor (Page)) is falsas

a! ledr.s i
goll ¢ .m eb.tgs;s:l(l_t voMrv:
PR
te{Core age)) i “write";
1t Oevade d(Page) = “nult®
B F-0- - Va - PER Y 2705 R AP
Devadd (Page) i» allocan _dis ncord():
it Mu s Ypyt, K
ghen gal) olt (P«o):
I OnBE R | b5 ' o
shan

d‘%f Modflag = "mod!fied"

N T N, Ny, N,

SRR NN NN, N,

.
1 avred

This . procedure, which Is called when it Is
de termined that a nare must bYe written out,
does so. it Is defined in tultics that
& pare of zeros Is never writeen out, but specially
fla nd.v We_make that check here.
Modtfled

AN *‘ h !:g %g ‘gf ln& rest here.
s t o or " telll
whethir or ﬁaf tgrn én’ l" ‘ gd ’r "51!3

(POFectPare)), rot 8, 1 ¥put_on_gd", tells
ut !6 Qll¢¢at£ ‘a new pd record for Page.

(A%}

4’ Mﬁl?}cltloo to Page. Any
s vclﬂt Cactuslly the next

n& iaﬁg ca«:qtma teros, o write need be done,

a

t4d by f ..:orq once the i/o that
i

: m“ii ?e hoy rhi
” f - 3 modt*y ‘tRis pagé note

, égs‘ g{ﬂ*
X1 ab P ltntcﬂmblc.

iﬂ' w&.ﬁi”" bow What z?nd gf i o WQP‘OEC.

II i page has no secondary noun home, l.e., was

\‘\ \N‘\\\s’\ -~ \\\\\\\\\

/M orovlously a!l :crcs, nlve 1t one.
\ 94. d . recency of un.
cuﬁn

rm't #ﬁz}aﬁd ‘ ¢. (PPrec

";
11 471 :. «wwﬁm. od ‘t‘ﬁ* od,
// then update the status of [(ts pd record.
1/ 1€ Page has been modified while In core,

then Modtﬂod_from_dlsk (PDrec(Page)) := true; // we must Indicate that the pd copy that we

1! an about to start writing is different from the

Q,.U yd_thrcad to bottem (PDrec(Page)); /; ?ndfgazo that this pd record has seen recent use.

1] device_wrl tc(bwadd(nu). Phys_Coreadd(Coreadd(Page))); 1/

and write_page;

Start the actual wrlte.

S R R e R g e S

wudpabu wn t
o

bhg Femaaul 3
ga“auv-u catgeaasa WO g
RO .sfi S L

risn ait@::.} il
Wit g {opedd bbaA¥

4323 apawtedn! suse besy L aarey
ety nelyesibid os e Wagesd Edyiry

BarostEs &L aeves Yo edeg
e85 03 bavebisnes B aey gaed

Flust o pRNT wes monY Bailes wvew sw) 1|

ARy 03 PAIBP|TUED B8G VeI miwg // 1{ne; S¥ed Sy3 woJ; PRLLIED SJen) T
*PRISNANG S| SOLBT JO 8BEG ¢ //

3043 VOIISI|pU] UR S8 PPRASY LI1MV /)

SINY) $39.0403V} 33..32 *s0JT 2

“ww{.mﬁ t .:.:: ppeasy) .u.u”»uu...v.....“unun.%

e

A i xxf 3&8& !.& » 33..338 s 1p~se3em TIPS
R 8 dF @i R o
*pd”RI0I0| (@ ?;..T Tandy

SUS|e(D 28 pm] 0, PIOIII P
S193 3savUng /¢ .:!.o&u!) $o3™ hnuuckul.l 1

: * paoas. 005- e on o f o PR PR M
‘ g ull g 8 .Ch sg;Z;.k:.;LL,.".. PR , SR -
1 N ooy N . |

pesn 8q Ary pIedss PE By /1 Eﬁ.é n “uu__!s): R S

*INNGT PIOB8S Ba4) uco.__e..uc. 2 SPI0ODS™,

WSIP $1 SwOy. MRSIY fwnm?s\ :Sftmm&s rpeass cl,.-uq.a PELTYS]

£ XS Badld ' i tpaeses v T RS) (iesrpena T1

*330 S| S33230 3-«! 111 NOA ‘B3Snedsq ‘54| J0uiw 2 .
sAjIe|d0sse 24 JHe(Y $00patw a1 (s6ANE DAY ia.ea

UIIZ WUIARY BI0U SO IO BAE M JBYY MWD PV

s -. 2--33:.;3-3 Poi1POM
TOLRAPAS AJBPUSIPS. Y l 94
“eso? 11100 : ou“ » ~.”u=¢ -w«.&ﬁr&z ey ..:u-sio!g-s%:fu .ﬂ

- ﬁ.ﬁ.&mﬁmwmﬁwﬁmmﬁim_ i
s e i m R
Alosis jo.praisy| A .zwmw . mﬁ s ?.cw"@*
ﬂ._....un. -uw.uu u”u ;uv.._” ”u.. :vuu mﬂg?o vany ““ t(odug) ._....888....33 4@ i g

) I . eseser
w a«_ u :vs’ AT0T) (- ::-3 ppeRIO)) vv.o..ouln:.tu ﬂ

114

AL{EISAGG Juns, BBed 4, o.a : ves

PRSI NDU LIS §) oec‘ -~y

03 PAIFIOL LT IO0AS I |AND WUINRd SO __n-_“ Aue ‘sSaop ““)
31 31 CSOJBT (|0 SUIRIVOD BRI @ T 30V 40 5 :

..o._.u!.l JUIMIIIBP 01 PI|IWD S| WINPBI0IG S{N) H {(oveyq) co—mwca 2040778 |"o090 - .

0402”8 | "s¥ed

byohey ba sevd Ty

wiky wum&;ﬁ 3 Buffay wi ?zgu&é atsT

s4% eoiaPriem 11 L ehionss ba w81V %0 vodmun

tE Ll bhees Beowdr eo anlbolseln !

bagvs¥e A o anp Besyd a3 dedw pamurny A
sondd Lasdpuueet w1 T wheas Yo uadmin sarel 8 %)

wive 2edS en¥anibal spasuger w1 luebayt o Baliveda 3

: s:eéa wuvd ada . aldelVeve wf 1w Dasder svom LN
;5%%2%; %2 n;w at? wﬁsﬁﬁﬁi i,,ﬂ,

‘ o TR N R LR :E o g
- B pads 13niy i%z% ;s. PYPTEN SO e ey ey el 1AL
.N,.m . . %waﬁvf be ﬁ:vm!ﬁ vou .aE aaﬁ ol 4y : »um,.ftifvﬁ;figgt: 2en08. vﬁ% |
, o' Usinld W R R TR T
: ik “a% % §m iﬁ ﬁa% L5 S o A Ry g

o 36 S T e Yo L. 384 b Yo odT =1 39

Ve widemdnta fron Yy - Taeuti) Be_trmw 145 2

.,2:..3, Ghe ale? e %@feﬁ 19 ety :13 v i
; tastel o smtz_yeard

. gt SRR TE S gheebar o ?,,1 i;m gy %Y) CoLws Y e, ot i
xe st %;g af ﬁﬁ. B ; 5 % R) ¢ EETS M gnt 1L ﬂﬁu
EETTLL R TR PR T 3 LT

Ay i. o T 'y Laerte bds in pand :3?;;.m#m ww
#i blpode 21 %ﬁ a_% 5. i B % , i
conEn REed sasa m@: " -.l‘ " ik sty

Feade (la

®r yya ,

i{olieg) o1as
g »CE?_& x|
L OMATAE DAAY

H

EYTTY ..!:- ua:
et b syditun b kit

*0JNT SEA: sﬁtju R vod

«.:E.-
BoOERE T

sA1I9 30808 (9ge a s

S st yuts T paion T8 S
3 mm (AL a0 s!.aa 46 i

W SBUIRNNS

,...82! vesq // -3988 83 B

LE2A0eR0n thyoaer b sett sep

DI SR o, T
! PR T AN YR T R SRS I Y : p
A Liod »o:“nvoo.“wcum__-.s e uuo..” ““
© . paap epaess putqunulh Opel Siey sw\A(eans 7/ coTNTYr JGY RIS
s, my w,é ww!t.s“ W“.“u. ¥ PRIIEIS SARY M 3| }/ 0 ¢ 4397wy 77

A Be 8 PY e Iy AT wgﬂu’?ﬁg; 4 g : 3 W Y @it ennns ﬂm.ufwmn hwrr kg
sng 2P, o2 " €] o 4397emg ot 2 N .
% 40 4500 i AP UROD éﬂg " ““ wmon..auu -.csn._.,za ¥

G
4003 YSip W43 u..-%-.I:. 8] Ased mu? “%.a Y oy oY

Yo ‘”»_,Mﬁvﬁ.&m :
24 PLOOYS 1} 003 Y3 I8 BV|IJ0IS PIOINS PO Jf - .
S143 03 V23103 Aty Bm 18y) 30T, M43 Ay /{/ 3-..&:......‘:.3.».‘4..@ g .
*pE Byl VO PESA AQIUSIBs 1S0s Syl FuGue AJdafs [} 1(304y¢) WOIIGL"OITPeRIYY pe 3 W
. (30404) ssoom; JT ST

Bf 31 ‘8400 w| S| PIODNL PO SINI VO IFGU I 41 [/ ;
"984) AJRS21R I0U SPICIBI BFONL DI ALUO VED g [/ (deayq) ssn™uy , Fy)

i U T TP
£0CISI1)TpITIARS o, 204Q¢g) T8 swITISsg) @

. ‘PuUd Squuield Isow // »uu.ﬁ. Xy .
B4l 3¢ BUjAANIS ‘28| POSA PU NI JBAQ GO0 // Y T 1 o™d0s w3 284
*£2833050U 38 SUS| S8 GOB| Sy J00Gdy [/] w
‘S,SAJ PRIIIIV] JO JIUNGD W3 BX) W12 V) n 0 =t 239
v
rd ‘29203 e J8A0 PASSEd SEy 00O / 1381 (TpeInTPdT0Td0L et 184157 PET RN
~ vse!o.n nu-...w o.u. -o_ﬂo_..!. on.n—-._u":._-v “\ ? ME 1wl

MWIITISAN S
190404 ! _s.ulu...ug

§ o | ,_ - -

" _ (ITTONITIV spaodes T L

4 *300) |043VU02 03 pasn // au?..t‘mmm nn». ‘mr”ntﬁ
A . . J07d0y

£29404 9043 38 |"paSN™

S(SAITIINIE BES) "BUDD S) SINI UBYM PRIVIWIIIN] S| //
IVAOD B0 B41 ‘HLQRLINAR BQ || |N PIOONI iDw //

U0 VYT SOICI PV BOUIRBIS 3 jIN-PpRII ¢ SUJLINIS //
BIULS "SIOVINBIS 8 1INPRIL O JIQUNU B¥sRL B [/
PIIICIS SBY IO ‘BUD PABIS SEY I| WeUM SUINIMI 7/

FIEY u,.u."-u..-u.uh_u...o-:nvu.ououw“ uu._.we“uowwan..nn ““

. ‘ N

Syl E2J0U| OF PA1ED S| BaNpaI0Ad Syl 7/ t3IRpUS8IE 1pI000a"Pd™ 84 308 :

PIOIBLTPET004 08

AR R Fi- el e W e S Gt e e e Lo
.

ot gelnneds Yol iaésg»ﬁ ¥t méfgg in% 3 S L © At hbaesa I eI AN 1

nolisiompy odf aode 2sind srel Tovinos steal o siste A\ : : B s o)
‘madoval #1210 .bavvazdo gl nolssvsns odi we So\} ;
: ;@a;g&c ?.333 .:u?a ugw? ol 52& ﬁ,

L Sww 4 www e rron by

post_page

post_page:procedure(Coreadd); //

l/
/!
loga) Page;
I1f Rws_In_frame (Coreadd) //
//

then call rws_done (Coreadd);

else do: //
Page := Page(Coreadd); //
lo_In_progress (Page) := false: 1/
1f lo_read_or_write (Coreadd) = "read" //

then do;
Coreadd(Page) := Coreadd; 1/
call make_accessible (Page); //

end;
e

Urltes _outstanding := Writes_outstanding

call thread_to_top (Coreadd)‘

//
/7
/l/
//
/1
/7
end;
call notify (Event(Page)); ;5

regurn’
nd post_page:

e

This procedure is responsible for changing the
state of page control data bases when the completion
of an 1/o operation Is observed. It is Invoked
from Individual devlice control routines.

I1f there was an rws here,
or aborting.

go process the completion

This was a normal page read or write,

ldentlfy the page Invoived In this operatlon.
Turn of 1/o0 flag.

See iIf read or write completed.

Page will be made accessible In this frame.
Insert physlical core address, turn on access.

8T1

Handle a write completion.

-1; // Maintain heuristic for find_core.
1/ Make thls core frame the most likely

candidate for claiming. The usual reason that a

write was started Is that it was a good candidate for
claiming In the first place. If Pare has been used,

(this Includes modifled) since the Usage bit was turned

off, find_core will not claim this paze now. Otherwlise,
it will De the very next page claimec.

Cause any process waiting for the completion of this
i/o operation to resume.

++

start_rws
rws:procedure (PDrec); - - 11 Thls procedure lnltlates the moving of a
start_rws:procedure () 1/ mdlfled pago from the paging device to the dlsk.
local Coreadd; ,
declare Rws_active_count mm /7 Tnhis counter is a hgur)stlc for Hmltlng rws activity.
Coreadd := find_core(); o 1 Get a pagk of core for the rws buffcr.v
Rws_In_frame (Coreadd) 1s m: S “11- Mark thls Dl{ﬁ frame as unclaimable, Flag
/1 also lets past_page know what to do.
Rws_in_progress (PDrec) := _r.mr /1 tark this pd ?!corz as Having an rws In progress.
to_read_or_write (Coreadd) t= "read"; - ll lndlcote the ‘direction of I/0 for post_page. - ‘
: - N
Coreadd (PDrec) :» c:»readd; 1l Set: uu this rélatlon, so that rws_adbort can v iy
' .o /4 find Coreadd. . o
POrec(Coreadd) := Pong By . -~ -41:°Set up this relatfon, :36 that rws_done can find PDrec. 1
;g__%, pd_thread_out (PDreg): >] THre®d Phréc out of used 1ist, so It can't be claimed. 1
] devlce rud(bevad uaug) Phus«coreaddworndd)): Y 1A ﬂartsaﬂd,mfﬂbly glnlsh the read. ‘
&o!n mtar w@ma dr(PDrec) write"); 17 Matér wot foX to' che disk,
w a!vwmt ¢ 1; 1 mmntn tmmns?tcu o
%.,q ” mm 8 1= Number_of_free_pd_records ¢ 1; ‘F/ 'indlcate tﬁat xhlg rgcom
1/ s inthe pPotess of be réed.
Mod‘?f'ed ?rom_dlsk(Ponc) 1= false; /1 1ndicate’ ébat ghfq pd rccord uln be same a5, disk
,, “Wo ‘ s .
do while Rws_active_count > 30; H 1t there Ts & Nrtq amount of nn actlvlty xolnz on,
' // walt for some of It to subslde. .

m‘ m poss_any_lo; /7 See whst h!\‘ c&nn feted.

g seadRE

ruws_abort

 rws, ibont‘ gmggggg;g(Pazn>:
J.mmm::

e

‘Phrec 1o POrec (Pasc).

This procedure Is lnvoked when 3 page fault

~ Theve afe th

/7
/I ls taken on a pan wblch has an rws In progress.
I/

// process has Inltiated

h
l; }Zam ave Qﬁ%ﬂh‘g}tl"’d by rws_dope, .and must

iA QWD Wiﬁvfﬁ"

.cases. 1) No abort has

2T boew 1Tt (a tud
17 fo ﬁ%t&?&.ﬁ ﬂv&wm" oner Bamais

ws_done. lnothor
one., We walt for It.

| Ihtense. ln;erpst here.
Lk TR u STIKE L% oo ; :
“ &:ﬁjﬁzgﬂﬂ”s 4”!0‘) ;3 """" : :‘v 3 }% Ccné ;, cln:'up. and the

ngilxtrbreco,*‘?*‘lf*

I/ww m m an‘

ft 'rw re over.,

No mk $_abd) ..
i 7t_Complete(PDrec] Rws u ’ 'ﬁ -mf we“w '

: ;‘ P sor:m‘(‘?ue) :"ggre::d(ﬂ;rh’i :" 0Lt !I* u’se Fink” v 83 2 home for hn.
. - make_ascces) i al add int
t,,m% : 'mmwm&mwm mv"

meter_ dlnt(mshddr(l'one);”n

n‘ﬁﬂ

17108
ER - 1 Wsn _to_bottom (corn (P
a1 TGS pdEh rood:::_hntteu (PDY zﬁﬁ
re. {PD: .In..uu (Pnroc) u

R N4 w;%:‘.migfw%&ﬁ(!
“%a‘g % ¥

g b e

oy

tid g

e %2 esr r ntly used.
é AOUIRENR, htttheeRe o o
i “FF *i’%eﬁ“":d'ecﬁlslon ‘made

021

" 4 3
%@%n
e ., 0y t

deds,, Q\;E‘r’otlv used.

‘f” “*’W?)’;”)Wnufh thi's fﬂf'.t'c. o

s sdki ct
Rws_ frm Coruddt ec)) t- M
Ng r.of _free_nd_records - ‘

else;
slse Abort_flag (PDrec) :» Jeun;

R

and rws_abort;

LeRTa e Number_of _free_pd_records <t °

11 by start_rws.

// Return to page_fault with Rws_in_progress off.

// Case 2, Abort already started. page_fault will

/7 walt for It

// Case 1. Abort the rws. page_fault will walt for It.
// Return to page_fault to elither continue

// and rastart the flult, or walt.

e R I e R B

rws_done

rws_done:procedure(Coreadd); _ //
/1
//
declare Rfws_active_count arithmetlc, ertes outstand
local Pbrec;
POrec := PDrec(Coreadd); ’;
1f Abort Flau (PDrec) 1

Ihf? //
Io read or_write (Coreadd) = “read" 17/
then Hodlfled from_disk (PDrec) :» true: 1/

/!

This procedure handles the completion of
1/0 done on behalf of read-write sequences.
Aborts are notlced here, as well,

Ing arithmetic:

ldentify the concerned pd record from the
fleld speclally reserved for this purpose,
If an abort was requested
abort the rws,

1f a read was aborted, we will not write,
and must re-Indicate that record differs
from dlsk,

else Vrites_outstanding := Wrltes outstandlng = 1; [/ Otherwise, maintalin write count.

Abort_Complete (PDrec) := Lrus; ’5

'y

/1

1/

o /!
~'g8l) notify (Event (PDrec)); ;I

i

S A £ ST
/

end;
slse

3

1f Io_read_pflﬁ?lie(Cd?Ei&&);- "Hesaﬁ'”'f;
then da:

‘;\\

Indicate that we have aborted the rws. We
cannot make the pare addressable because
{npolint of fact!) we have no way to locate
Pare(PDrec) In the actual implementation.
This is due to not having enough space to
save the required pointers.

! Ye now cause all nrocesses who faulted on

this page during the rws to resume. They
/ will all re-~take the page faults which made them

firse sog t éi “'!‘ &b-;fif gag to-Jock:
ug

the page.
addressa t 9 g 4$ﬁa$
ﬁ»r. QI.’w a2l see page. fault)"

there
and slmp teturh . Gip g ae

A"HoFHd 1 rws readsér ﬁr te: QQ&JI tion.
If a read finished, !taét the 3r te.

lo_read_. or write(Coreadd) := “yrlte"; / indlcate 1/0 firectlon for next time.,

caTl device_write(Diskaddr{Phrec),Phys_Coreadd(Coreadd)

else da: i The wrlite, and hence the rws, has finished, successfully

11 ¢

Rws_active_count := Rws_active_count - 1;

Writes_outstanding :» Writes _Ou
Rws_In_frame (Coreadd) t=

Rws in_ progress (PDrec) :=» false: // Turn off rws indlcator for pd record.

In_use (PDrec) := false;

// Start the write.

l.e., without an abort.)

; // Turn off rws indicator.

// Thls record Is now free.

1¢t

// Maintain the rws actlvlty heuristic.
tstandlng - 1 // Paintain find_core's heuristic.

¢call pd_thread _to_top (PDrec); /! Thls record Is now claimable,

Devadd (Pape(PBrec)) := DIska&dr(PDrec); // The page that was on thls pd record
// is now on disk.
On_nd(Page(PDrec)) := false; // Let all know.
Page (Coreadd) := U'null% /! The core block used as an rws buffer Is now
// Immediately clalmable.
mSicall thread_to_top (Coreadd); // Make it best candldate for claiming.

E

end rws_done;

44}

auxiilaries ' N

/* Although some of these short routines might better be expressed In
1ine, they are conceptually modules In their own right, and
may be called from other polints In the system,#/

/* Small auxllliary routines +/

device_read:procedure (Devadd, Phys_Coreadd):; // Called to Inlftlate a read -
// selects correct 1/o routine.

declare Phys_Coreadd arlthmetic:

Lf Device (Devadd) ™= "“drum" // meter disk reads
thea meter_dlisk (Devadd, "read"); /! meter It

sall (select_to_routine_entry(Device(Devadd), "read™))

(Phys_pevadd (Devadd), Phys_Coreadd);]/ call right routine,
end device_read;

device_write: procedure (Devadd, Phys_Coreadd); // Called to write a page.

tirl tes_outstanding := Writes_outstanding +1;
sall (select_lo_routine_entry (Device(Devadd), "wrlite"))
{Phys_Devadd (Devadd), Phys_Coreadd);

€21

end device_write;

_ make_accessible: procedure(Page); // Called to make s page accessibie,
Phys_Coreadd (Descriptor(Page)) :» Phys Coreadd(Corcadd(Paxe)); /7 F111 In physical address. {
Addressable (Descriptor (Page)) := true; /! make page addressable. :
end make_accessible; ,
make_jibhaccesSibYésprocedure({Page); /{ Called to make a page non-accessible.
Addreg¥iable (Descriptor (.gge)) t= false: oo dd wakenpage: hOn-gddressadle. ,
call clear assoclatlvqﬁme ry; , s uifl . Flush descg}n}oy frop‘pggggjatlve memorles. : 5

‘end make_ nonaccessleh ‘) Ve

meter_disk:procedire (Devadd,Type);s

‘ : TR A Pri l 1 fL rl iment.
toc] YType 11ieral. Experiment_sctive . /l rincipal procedure o W mtt,e ng exper imen

if not Experiment_active then return: M cqnnot nmnte dau M’ ~bqﬂ‘er pot. glred.
Trace datun..gggggggg; Trace_datum(Devadd: nevadd. YyperType); - -

enqueue (Trace_datum,Trace_queue);
end meter_disk;

post_any_lo:procedure; // This routine Is called In any situation where page
. // control discovers some l/0 bottleneck.
// 1t polls 1/0 routlrmes for complete status. They will
J/ call post_parce If any status arrlves.

declare lo_devices set literal:;
local Device literal:

do Device := range lo_devlices; // l1oop over all lo devlices.
call (select_lo_routine_entry (Device,"post"))
[$F // make an appropriate call.
end;

end post_any_lo;

VZ4!

flixed_head_control

/* A Typlcal Paging 1/0 Control Routlne #/
/* This routine Is the i/o control routine for the flxed-head disk. There exist routines
almost identical to it for the moving=-head disk and drum. The routine select_lo_routine_entry

(not glven here) is used to select the appropriate entry of the appropriate routine R
glven the device ldentifler and the function to be performed. */ i

daclare Phys_Devadd arlthmatlc, Phys_Coreadd arlthmetic:

fixed_head_read:procedyre (Phys_Devadd, Phys_Coreadd); // Read entry,
call fixea_ﬁeas_start (Phys_Devadd, Phys_Coreadd,"read"); // Call common queueing routine.
end;

fixed_head_write:procedure (Phys_Devadd, Phys_Coreadd); /] vrlte entry,
cal) fixed_head_start (Phys_Devadd, Phys_Coreadd, “write"); // Call common queueing routine.
and; H
fixed_head_start:procedure (Phys_Devadd,Phys_Coreadd,Dlirection); // Common routine to gqueue flxed-head o
]/ disk requests.
declare Direction llgteral: . ,
¢all fixed_head _nost; : /] See 1f any operations
// have completed.
engueye (construct |o_gro¢nm :
(Phys_Pevadd:Phys_Devadd, : /1 Construct a channel program - -
Phys_Coreadd: Phys_Coreadd, /1 and enqueue it.
Direction:Direction, '
Next:"nul1™),Fixed_Head_Channel_Queue);
1f (fixed head disk is not busy) then call start_io(Fixed_Head Channel _fueue);
: - . 7/ There 13 now work for the -
/7 fixed head disk. Start It If
. /7 it 1s ldle.

Gon
t:’r}u ¥

Ty
flxed_head_pos tx:&plgc_ggﬂf:

i

pOSt compleéted: owerstiohs.

TR S Y

AT veed o

A N B TR T
do lo_F¥E&tus :» rapse. (.pv.;g‘“;!gu/dlﬁ?v status);: //Look st allimew statuss: - . VR)
ir : lousgatus. é@‘lﬁﬁ . complete status);'’ 11 Xakies 10 o0t of Wirrdware' quete. - - :
"‘i‘ﬁ':oﬂma»&e cadd (lo_status)); Ayow s i Taform- paget contirol. See the

// dectaration of lo_status.] .
h_!g‘;‘,' Fo Ny 19 e H AT

__temove lo_program (lo_status) from Fixed Head_Chahnel¥: Quétey -
‘ P iRy R b i ——— RV T R AT
m; ') j \a:: pud e 0 T

_beni3 mert (en

127
Aggendix B

Implementation of the Hardcore Meters

In"thisiappendix,‘we relate the exact fdeﬁtit{é§;6f’the measured
events of Multics page control with which this experiment was concerned.
This is necessary both to provide validié&“fof whét we ﬁavé'dohé, and to
help others design similar techniques for other systems. It is assumed
that the first appendix has been at least partially ‘understood, perhaps
with the overview sections fully understood.”

We also discuss here the techniques:uséaiin;impléﬁénting the Multics
Supervisor interface for this experiment. ~

'As should be clear from Chapter 2, we are interested in metering
movement of pages in and out of the composite entity of core-drum. This
"movement" in fact consists of copy creation and copyjaéétrucinn. Move-
ment "into" core drum consists of the creation of a page coPY“in core-
drum where there previously was none, and movement "out of" core drium con-
sists of the destruction of core or druﬁ Cdbies'bf éfiage, such that there
is no copy in core—drum.' We speak of this creation and deletion as move-
ment because it is represented as movement ofiﬁaééélfh\an'LRU’stack;

We will now analyze the different types of motion in and out of
core-drum. Pages come into core-drum éither from tﬁéioﬁiside, i.e., disk,
or by being created in core. Pages entering from disk can only do so as
the result of a page fault to disk or a prespaging from disk, so a call to
“"meter_disk" (see Appendix A) was installed in the i/o dispatching
routine to record all reads from disk. Pages created in core never
involve input/output. For the most part, these are pages which were

never touched before, and would thus cause a page fault no matter how

128

large core-drum were. These page fauh:s,’hvwever, involve neither
multiprogramming, i/o, nor idle time, and are thus of slightly less
interest in performance predictions than npregeneralpa&efal-tltﬂ - We.
chose to igngre thgn. There is one other type of_._: inyard mor.ion, which
will be motivated in our discussion of outward motion.. =
Outward'ppt;qg: consists of pqs;?ggg fron core-;drum i?frhis_ consists
of oustings from drum (which, as can be verified; from "get_fres pd record"

in the last appendix can only happen if there iQt:,b_Z:nggyyﬁ;,,j.p;-;org); or from
core. Oustings from core are only oustings from core-drum if page con-
trol (specifically, "try_to_writg_g%g"f)é,sl;eqfi;ﬂtl}gfs that it should trmt‘rbe,,,
written to the dru because of either lack of apace there or. the concerned
page is one of the special-cased "gtpd" pages. We Vil]- first consider
the oustings from drum. f;_‘_he ousting o‘;f}_ég_ page whicl};isj g}ffg}'ent than
its disk COPY, if one was ever made, is accoqlishgdby .tb?.d j.nj_.,,tj.ﬁa};j.op o_,,,:f
a read-write sequence (rws). These rws initiations were thus metered as
outward movement. The ousting of a page vhichia identical to a disk
copy is done by simply claiming the drum frane (see "get_ free pd record”"),
and this event was likewise noted. Oustings froncore }ptﬁeﬂte}gt_‘ us when-
ever they are not oustings to the drum. . (e define an ousting "from core
to the drum" to be an ousting from core when a qopy of the concerned phge
is on drum. Note that this 1@1},;3:?@ ordering of the hierarchical
memory system.) These oustings from core normally happen only for the
special "Global transparent paging d‘gv‘ic_gj (stpd)!‘_g;;y of the root direc-
tory, whose treatment was already fully covered, and in bad cases of page

faults or rws initiations, when there are no free drum frames available.

129

This case was also covered. As an interesting consequence of this defini—
tion of an ousting not to the drum, we obsarved a 1arge number (approxi-
mately 2400 per hour) of oustings of pages ﬁhich were a11 zeros, and were
all zeros when brought into core (the conjunction of these statements es-
sentially implies that these pages had no copies on either drum or disk) *
: Some special experiments designed to discover the source of this peculiar

traffic were essentially fruitless. The data reduction programs described

2
cellyorgwy z,-._ ;;«;»‘.

in section 2.3 were modified to ignore the;e anonalous oustinée.

One comnsequence of metering read-write sequence initiation as out-
ward motion is that the aborting, or reversal due to a page faulr, of a
read-write sequence must be metered as imward motion. This was done (see
"rws_aborc").

One remaining event which had to be metered was that of page destruc-
tion. The event we chose to represent this destruction was the handing
back of the disk frame, if’one‘existed, to the free disk pool, of any disk
frame at all. This happens in two cases. First, explicit pege destruc-
tion via the deletion of segments of the virtual memory requested by super-
visor call, or their explicitly requested truncation causes this to hap-
pen. Secondly, as we have described, find core deallocates both disk and
drum frames when a page containing all zeros (a void page) is found with its
used bit off. As described in section 2.2, we are interested only in the
destruction of pages which are not in core-drum. The destruction of any

such non-void page will always involve the deallocation of a disk frame,

and thus will be properly metered. The destruction of void pages is not

*Even though this constituted about one quarter of all core-drum oustings,
they bear absolutely no significance to the experiment.

130

a significant event, as they do not occupy a place in either the IRU or
LRU extension stacks of section 2.1. The discovery of a newly void page
by find_core also causes such an event to be recorded in the trace data

as a page deletion. However, this page cannot be in the extension stack,
because it was found by find_core because it was, in fact, in core. The
data reduction programs were aware of these out-of-list deletions, and
duly ignored them. The destruction of pages in core-drum which were never

ousted is handled and ignored by this same mechanism.

131

Interface Details
The Multics hardcore interface for this experiment was designed to be
a semi-permanent part of the Multics system, and thus have as. little ef-
fect as possible on it when not it use. Thus, a page of the virtual memory
was allocated for the circular buffer described’in section 2 3 and its
ok Cu B In

auxiliary data. When the experiment was enabled via highly privileged

e

supervisor primitive, this page was given a dedicated page frame and with-

[P

drawn from the pool of pageable core.f This was necessary to insure that
page control when storing data in this buffer, o ld not take a page ‘
fault. Page control was also made to check a switch (the "enabled/dis-’
abled" switch) as to whether or not this had been done before»attempting
to reference the buffer.» Another highly privileged supervisor prhmitive
freed the page frame given to this buffer, resetting this switch before
doing so.

The copying of data out of this buffer, via privileged supervisor M
entry point, ostensibly requires simply copyingTits contents into a user-
specified area. However, it was an aim of theAinterface design to insure
that the buffer would not change while the information was being copied.
This could happen by either the processor not doing the copying taking a

page fault, or the processor d01ng the copying taking a page fault refer-

RN Cal
b

encing the user's area. Hence, to insure that no page control activity
took place while this data was being copied the data-gathering primitive
had to lock the ' page table lock" while doing this copying. This, in
essence, prevents page faults from being processed and cannot be done
until any other process has unlocked this lock “The effect of this lock

is to insure that only one processor is in page control at a time. When

R T R e DT Sy M LY BT

132

one has the page table lock locked, one must not take a page fsult, or infi-

!’8’*:4
e

nite looping will result when that processor tries t:o lock the page table

; By =)
it

A lock to process it. Vhat is more. t:he psse feult hendler 1s not recur-

PN nd ot

s:lve. Thus s it was necessary to "wire" a dedicated pege of the virtual

memory (allocate a dedicated core psge frme end withdtsw the letter from
eri DRI VLA S POt S R e
the pool of pegcable core) to copy t.he wired buffer 1nto. Both pages

45 asdy LnUER

be:l.ng wired (the Buffer end the tenpor;ry copy pege) ensured thet no pese

. u,% 4 ey
& N Jﬁ v_vx J

fault would take place during the copy. ‘me contents of the copy pege
E cozidasaw o Jobg sl
could then be cop:l.ed to the user-specif:led area sfter the pege t:able lock
LR R TR : nmbh o goiweds omels o
had been unlocked. v ’

£

A further difficulty arose becauss the sesnent contn:l.ning the tem- V

Py t : I N e s W o ca od ome (Mo TIuws *'
potary copy pege is a one-per—system segment , end &us could not be used
SrEidr B i ST
by two processes simltaneously. 'mus, a lock had to be used to exclude
ER RS 3 ‘1';; BHG A =S 1i

such usge of this segnent. 'Ihis lock would be locked by eny process wenting

o

to gether data before 1t wired the tenporery copy page, md unlocked nfter

e U
sish Yo m

it had been uuwired. A procesa or fi.ndiag;the lock locked would be multi-

‘- z*‘?""u’? ¥y eidby FC

—progrmed, and the assoc:l.eted process notiﬂed when ﬂxe lock vas unlocked.

T E w EL L wsvsmel o
The code wh:lch cop:l.es the wired buffer 1nto the tenporer:lly wired

temporery copy pege :l.s entered only when the 1.::5: hes been vrlred. Kow-

ever, it is possible that r.he fonser aey not be wi.ted, speciﬂcally, i.f
the exper:lnent has not; been ensbled * Ift;!is is“tk; c;se. a fetal pege
fenlt with the page teble lock locked would result, ro evo:l.d this, the
ensbled/di.sebled svitch mst be cheched by;i;j’cod;, but :u cannot check

,-).\'" Sidpt - s

th:ls switch until the pege teble lock 1s ncmliy locked Ooly vhen 1t is

87 s G RSB G

locked can no page possibly be nsde unreforenceshle, as no other process

Ceg P

can be 1n pege conl:rol ‘me enebled/disabled switch is turned to dissbled

Hpr T —

133

BEFORE the buffer is unwired, and the . .buffer can only be made unreference-
able AFTER the page table lock is locked EFTER it‘has been wired. Thus,
the sequence of events in a call to gather is as follows.‘

1. Attempt to lock the copy page lock; multiprogram and retry if
~ failure.
2. Wire the temporary copy page.
3. Attempt to lock the page tabie lock; loop uatil successful.
4, Inspect the ‘enabledfdisabled switeh; copy:.the wireéd buffer into
the copy page if enabled, else COpY, zeros., .

SARL

5. Unlock the page table lock.
6. Copy the temporary copy page out to the user-specified area.
7. Zero the temporary copy page, and unwire it.

8. Unlock the copy page lock; notify any waiting processes.

The step of zeroing the copy page is done so that this page will be imme-
diatedly claimable to find core. This is done as both a friendly gesture
and an attempt to keep this page off of the drum and out of the disk traf-
fic visible to the experiment. The page frame is always void when unwired
(returned to the pool of pageable core).

The sequence for enabling the experiment is as follows{

1. Wire the buffer page.
2. Set the enabled/disabled switch to enabled.

The sequence for disabling the experiment is as follows:

1. Set the enabled/disabled switch to disabled.
2, Unwire the buffer page.

The only remaining question of locking is that of the buffer be-
coming unwired as page control is placing data in it. This cannot happen.
Any page control operation sequence other than those just described can

be summarized as:

134

. Attempt to lock the page table lock; loop until successful.

Do all nature of page control.

Conditionally, unlock the page table lock and end this sequence.

. Check the enabled/disabled switch; add data to the buffer if and

o
L]

only if it is enabled.

5. Go back to step 2.

The making unreferenceable of pages by find_coré falls under step 2
above. During the checking of the switch and the placing of data in the
buffer, this making unreferenceable cannot happen on this processor. The

page table lock excludes any other processor, and there is no problem,

135

Appendix C

System Performance Graphs during Experiments
) : - ...' ;?\‘ N

We present here graphs of user load, cpu utiliﬁatién, and paging over-

head as functions of time of day on the’ days of t];g two qxperiments, "dtm

.—-‘%t,.

,»»-'

21" and "dtm 23". ’Zh:l.s data was condensed from a g’?a@i-cal presentation

of these parameters routinely pxzepared by the M, I" 'P. Iﬁtbrmation Processing
Center, It is giveﬁ here to provide a feeling f& gElfhamrﬁelae?!.ve user load
during the experimentf, and to allow" a rough approxipati.on to_t toal system
headway during the qxperiment to be _cqmputed. This? may i:e c;é‘mputed by
multiplying the time pf the experment (rmg"’h»lx 14 hours, q}' 50,000 seconds)
by the fraction of the system which was not idle t:;ne or pagj.ng overhead
(quite roughly, 407) »- obtaining 20,000 seconds, and mltipl}:tng by the

system memory reference rate (400,000 referenceqmgggx second);z obtaining

8 x 10° virtual memory réferences.

User
load,
Users

Time of day, EDT

Figure C.1 User Load during Experiments

dtm 21, 0945 - 2359

May 7, 1973

23, 0945 - 2359
14, 1973

2000 2200

9¢1

% of total

system 100 |

time
spent
idle

80 1

60 1

401

201

Figure C.2

Percent of Total System Time
Spent Idle, as a Function of

Time of Dav (approximate).

All types of idle time combined.

dtm 21
dtm 23

0 Time of day, EDT
1000 1200 1400 1600 1800 2000 2200 0000
Next

LET

Percent of
total 100
system time
spent in

paging
overhead 80

60

40

20

Figure C.3 Percentage of Total System Time
Spent in Paging Overhead as a
Function of Time (approximate)

dtm 21
----- dtm 23
- TN
s // \\
- =T~ ’) / I
—_ - _-"/ —— - N
1000 1200 1400 1600 1800 2000 2200 0000

Next
Time of day, EDT : day

8€1

Bl

B2

B3

Ccl

- G2

C3
C4

D1

F1

M1

139

B;blﬁio’gragl_;z‘ ’

Belady, L A, "A Study of Replacg;ment Algori.t;hmg for a Vi.rtual -Storage
Com’pute mgm___ mer’nﬂ i’, ‘2 (m%)&, ‘pp 78-10’1 _

Bensoussan, A., Clingen, C,. T., and Daley, R. C., “The Multics Virtual
Memory: Concepts and Design" of the ACM 15, 5
(M&:y 1972‘)- pp 30&-:3?13 e S A D A ,

Belady, L.A., anlf’ﬁ:ehner, C. J,, W ~ it er
Systems”, Communications of the ACM 12, 5 M m)?gw. 282-—! ;'8':8.

Brawn, Barbgra S._, and Gustavson,A Frances GV., ,:"Program Behgvior in a

g 33 2 (198 FI0),

Coffman, E. G., and Jones, N.D., "Priori.ty Paging Algdtittﬁs antr ‘the

Extension Problem:, Proc. Switching and Automsts Theory Symposium,
Oct. 1971. IEEE Computer Society, RNorthridge, Cal., pPp. 177-180.

Coffman, E.G., and Randell, B., "Performance Predictions for Extended
Paged Memories", Acta Informatica 1, (1971), pp. 1-13.

Chow, C.K., "On Optimization of Memory Hierarchies", IBM Research Re-
port RC 4015, IBM Thomas J. Watson Research Center, Yorktown Heights,
N.Y., Sept. 1972,

Corbat6, F.J., "A Paging Experiment with the Multics System" in
Ingard, In Honor of P.M. Morse, M.I.T. Press, Cambridge, Mass.,
(1969), pp. T217-228,

Denning, Peter J., "The Working Set Model for Program Behavior",
Communications of the ACM 11, 5 (May 1968), pp. 323-333.

Fine, Gerald H., et al., '"Dynamic Program Behavior under Paging',
ACM Proceedings of the 21st National Conference, P-66, Thompson
Books, Washington, D.C., (1966), pp. 223-228.

Mattson, R.L., et al., "Evaluation Techniques for Storage Hierarchies",
IBM Systems Jourmal 9, 2 (1970), pp. 78-117.

Madnick, S.E., "Storage Hierarchy Systems', Ph.D. Thesis, M.I.T.
Dept, of Electrical Engineering, April, 1973.

McCarthy, John, et al., Lisp 1.5 Programmer's Manual, M.I.T. Press,
Cambridge, Mass., 1965.

ufa’ sgam:zg e a%p;mf @x- sl g
o “ii.{»ﬁ%‘ ,qg (0%

CS_TRscanninq Prdiect oot R — S
Document Control Form Date: J /7 19

Report # <R -/L)

Each of the foliowing should be identified by a checkmark:
Originating Department: '

O Artificial Intellegence Laboratory (Al)
K Laboratory for Computer Science (LCS)

Document Type:

B(Technical Report (TR) [Technical Memo (TM)
O Other:

Document Information Number of pages: 1%0(146-/mac£S)

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
O Single-sided or [0 Single-sided or
x Double-sided M Double-sided
Print type:

(1 Typewriter] offsetPress [} Laser Print
[] inkJet Printer x Unknown [J Other.
Check each if included with document:

b

XL DOD Form] Funding Agent Form X Cover Page
(] spine] Printers Notes [Photo negatives
O Other:

Page Data:

Blank Pagesey sage numben;

Photographs/Tonal Material wy pags numbes:

Other {nobs description/page number).
Description : Page Number:

Imace w0p@ 2 (1- 140) awirse TETLE EACK, - Yo
(1yi- 116) S€AnciNTRol Covf R, DOD, TRET'S 3)

Scanning Agent Signoff:
Date Received: _J /] /1{ Date Scanned: _L/_/ o/ 96 Date Returned: i/ PES

4
Scanning Agent Signature: W W ! 4’0‘& .

Rev 984 DS/LCS Document Control Form cstrform.ved

BIBLIOGRAPHIC DATA 1. Report No. 2. 3. Recipient’s Accession No.

SHEET MAC TR- 127

. Title and Subtitle 5. Report Date: Issued
An Experimental Analysis of Program Reference Patterms in May 1974
the Multics Virtual Memory 6.

7. Author(s) 8. Performing Organization Rept.
Bernard S. Greenberg No. MAC TR- 127

9. Performing Otganization Name and Address 10. Project/Task/Work Unit No.

PROJECT MAC; MASSACHUSETTS INSTITUTE OF TECHNOLOGY :

11. Contract/Grant No.

545 Technology Square, Cambridge, Massachusetts 02139
N00014-70-A-0362-0006

12. Sponsoring Organization Name and Address 13. Type of Report & Period
Office of Naval Research Coverec : .Interlm
Department of the Navy Scientific Report
Information Systems Program 14.

Arlington, Va 22217

15. Supplementary Notes

S.M. Thesis, M,I.T., Department of Electrical Engineering, January 31, 1974

16, Abstracts : This thesis reports the design, conducting, and results of an experiment
intended to measure the paginf rate of a virtual memory computer system as a function
of paging memory size. This experiment, conducted on the Multics computer system at
M.I.T., a large interactive computer utility serving an academic community, sought to
predict paging rates for paging memory sizes larger than the existent memory at the
time. A trace of all secondary memory references for two days was accumlated, and
simulation techniques applicable to "stack'type paging algorithms (of which the least-
recently-used discipline used by Multics is one) were applied to it.

A technique for interfacing such an experiment to an operative computer utility
in such a way that adequate data can be gathered reliably and without degrading system
performance is described. 1Issues of dynamic page deletion and creation are dealt with,
apparently for the first reported time, The successful performance of this experiment
asserts the viability of performing this type of measurement on this type of system.
The results of the experiment are given, which suggest models of demand paging behaviorn

17. Key Words and Document Analysis. 17a. Descriptors

Virtual memory

Demand paging

Computer System Performance evaluation
Computer System Performance prediction

Stack algorithms

17b. Identifiers /Open-Ended Terms

17¢c. COSATI Field/Group

18. Availability Statement 19.. Security Class (This 21. No. of Pages
L. Report) 141
Unlimited Distribution UNCIASSIFIED
. . 20. Security Class (This 22. Price
Write Project MAC Publications age
UNCLASSIFIED
FORM NT!15-35 \REV. 3-72) USCOMM-DC 14952-P72

THIS FORM MAY BE REPRODUCED

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 994

