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ABSTRACT

This book is an introductory course in mathematical logic covering
basic topics in quantification theory and recursive function theory, and is
intended for the reader who is interested in artificial intelligence, computer
linguistics, and other related areas. The text is theoretical, but organized
with implementation in mind. Toward the end there are a few experimental
subjects aiming toward systems that can examine their own behavior, and
toward the semantics of programming languages. The arithmetization of
metamathematics is carried out in LISP rather than in the natural numbers,
following an axiomatic treatment of LISP.
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[Dhar Lho said], '"Logic is the most important science of all learning.
If one knows logic, all other studies become secondary. Therefore, I shall
first discuss logic with you. Generally speaking, logic is the study of judge-
ment and definitions, of which the most important subjects are the studies of
direct experience, of inference and dedyction, of 'sufficient reasoning' and
'false reasohing', of 'non-decisive proofs', and of the patterns for construct-
ing propositions. Now, tell me about al] these things!" |

[Milarepa replied ...}, "What I understand s that all manifestations
[consist in] Mind, and Mind is the Illuminating-Vaidness without any shadow
or impediment, Of this truth I have a decisive understanding; therefore not
a single trace of inference or deduction can be found in my mind. If you
want me to give some examples of 'false-reasoning', your own knowledge is
a good one because it is against the Dharma; and since this 'false reasoning'
only enhances your cravings and makes them 'sufficient', it is a good example
of 'sufficient reasoning'. Your hypocritical and pretentious priestly manner
contains the elements of both 'false' and 'sufficient' reasoning, which in turn
stand as a good example of 'non-decisive proof',"

-The Hundred Thousand Songs of Milarepa-




PREFACE

I would like to discuss first the contents of this book, and then the
attitudes behind it. o

The first two chapters are about LISP. : In Chapter One, s-expres-
sions are introduced as a data space, and the basic functions of s-expressions
arev.ptl‘;esented. In Chapter Two, recursive procedures are explained, and
the recursive functions gfrs,-vexpress.i‘onsvare fdaﬁnadzaasthwe for which such
procedures can be written, There is ardiseuasionsnftwhy these appear to
include all effectively computable functions:(Furing’s and.Church's theses).

Chapters Three and Four are abeout propositional-logic. Chapter
Three introduces the notion of a deduction from given premises leading toa
conclusion, and establishes the fact that deductions are mechanical procedures
that can be checked for correetness by.a computer:program. Chapter Four
considers theories in propaaitional logic and mmodels. for:propositional logic,
and contains congistency and completeness theorems. . Al.of this is a dress
rehearsal for firat order logic, where the same themes will. be vepeated ina
richer setting. : . :

Chapter Five is a brief interruption of the dewlopment of deductive -
systems to discuss the concepts ''recursive' and 'recursively enumerable'’,
and to demonstrate the existence of undecidable qnestions such as Turing's
halting praoblem. , . - L :

The central portion of the book is about first order: quantifxcation :
theory, specifically first order languages with function and predicate names.
Chapter Six introduces first order languages, first.erdermodels, and the
semantic notion of. satisfiability, Chapter Seven defines:deduction, proves it
to be semantically consistent, and presents a number of standard proof- .
theoretic results, including the deduction theorem, replacement of equivalents,
change of bound variables and the choice ruje... Chapter: Eight contains the




completeness theorem for first order logic in several different forms,
together with related results such as compactness and the Skolem-LBwenheim
theorem, Chapter Nine is a bundle of loose ends, which includes the
extension of first order theories by means of conservative definitions, decida-
bility, and comparisons with other deductive systems, namely Robinson's
resolution, and Gentzen-type systems.

The next topic is the theory of arithmetic, which is the arithmetic of
the s-expressions, The arithmetic of the natural numbers is treated as a
special case of this. The theory is presented informally in Chapter Ten, and
as a formal first order theory in Chapter Eleven. In both cases, there is an
emphasis on the strong analogy between Peano's postulates for the natural
numbers, and the corresponding postulates for s-expressions,

Chapter Twelve is concerned with the representation of recursive
functions in the first order theory, which is then used to prove the incom-
pleteness of arithmetic in three different ways: The first way is by construc-
ting the LISP analogue of G8del's undecidable sentence. The machinery to do
this comes naturally, because it is none other than an updated version of the
proof-checker discussed in Chapter Three, Representing formulas and
deductions by s-expressions is not nearly so strange or impractical as repre-
senting them by GHdel numbers. The second method of proving the incom-
pleteness of arithmetic is by representing computation (as distinct from
deduction) in the deductive system, and mapping the halting problem into first
order arithmetic, The third method uses an "information theoretic com-
plexity'' approach due to Chaitin. The argument advanced here is that these
incompleteness results are not irrelevant theoretical considerations, but
rather that they illustrate the richness of arithmetic, and introduce new (meta)
ways of reasoning. |

This idea is followed up in Chapter Thirteen, which presents a formal
axiomatic '""metamathematics' which can be used to reason about formal
arithmetic, and to produce proofs of the existence of proofs which are
generally much shorter than the original proofs. There is a hierarchy of
metamathematical levels, in that one can prove that there is a proof that there
is a proof of some formula. This technique also enables one to prove the

validity of theorem schemas and derived rules of inference,




Chapter Fourteen is about the recursion theorem, ‘and its usefulness
for representing partial recursive functions in first order arithmetic. This .
chapter is useful as background for studying current research in the seman-
~ties of programming languages. ,

Chapter Fifteen contains some concluding remarks about second order
arithmetic and axiomatic set theory. s sl .

a B % .

Once upon a time, it was believed that' theprob}em of getting a machine
to behave i'ntelligentl.y would be solved by starting with a.small kernel of
intelligence capable of learning, reasoning, and organizing itself as it grew,
There were several variants of this idea, and.some of them assigned an
important role to a ''proof procedure' that could create demonstrations of
logical propositions. , o

This approach is now considered naive and simplistic. As researchers
have immersed themselves in the task of simulating detailed aspects of human
speech and perception, there has been a growing appreciation of the complex-
ity and subtlety of these acts, and the»laztgd amm&t;a&detaﬁed knowledge that
seems to underlie the phenomenon of intelligenee. = Artificial intelligence
research is now detailed and nitty-gritty rather than ivague and general. How
do light and shadow allow us to find the edges of a block? »_-Hoiv,: daes the pre-~
formed concept of a block allow us to infer one from some edges? H'ow do
we determine the antecedent of a personal pronoun? »

Artificial intelligence is also becoming a more structured dlsmpline.

- not as a universal mathematical theory, but as an epistemological and
psychological theory, . One of the main.develapments of the.last few years is
the recognition of knowledge as being procedural rather than merely factual.
Knowledge is not a body of facts but, rather, whatone.doees with one's facts
and situations. Such a study cannot help but run into the problem of intention-
ality. It is no accident that phenomenology, gestalt psychology, and the
developmental epistemology of Piaget are now seen by many workers as
relevant to artificial intelligence research,

The logistic approach to artificial intelligence is severely and, in my
opinion, correctly criticized in Marvin Minsky's curreqtly unpublished
"Frames" paper. Almost all of thp c_éiti‘g_‘isms are r:ei}}a‘ft_gd:tg the fact that




logical deduction isolates the factual infofmation or axioms from the methods
of reasoning or rules of inference, (i) This separation forces one to repre-
sent knowledge about the world as a large body of independent statements.
Without a structure governing their relations, there is no way of selecting the
relevant facts from among all the possible ones, and so attempts at deduction.
run into a combinatory explosiveness., (ii) Many '""facts' are true only when
used in a reasonable way. Minsky uses the example of ''nearness' which is
transitive in the sense that if A is near B, and B is near C, then A is near C,
'This bit of r‘ekasoning works as long as it is not carried too far, In principle,
one can always make a more precise formulation of any axiom by adding more
parameters. But this seems to be unrealistic and, in any case, people do
not make use of deduction beyond the point of common sense, (iii) Deduction
is monotonic in the sense that adding new axioms allows one to make new
inferences, but does not prevent one from making any of the old ones. Ifa
general rule turns out to have exceptions not foreseen at the time it was
postulated, there is little one can do except change the original rule, and
recheck everything one has done so far for correctness. The rules of logic
do not permit one to make restrictions concerning the inappropriateness of
certain deductions. (iv) Consistency and completeness do not appear to be
desirable properties of a practical system of reasoning because there is no
way to organize a body of real knowledge that is either consistent or complete,
I‘or example, human reasoning appears to make use of some of the principles
of sct theory, but has no specific safeguard that prevents the paradoxes of
naive set theory. - If someone is informed of Russell's paradox, he may either
develop a critique of it or simply ignore it and go about his business. But in
no case will the existence of the paradox interfere with his reasoning about

ordinary situations. 1

ll\flinsky writes ''l regard the recent demonstration of the consistency of
modern set theory, thus, as indicating that set theory is probably inadequate
for our purposes--not as reassurance that set theory is safe to use!"
Minsky is referring to the work of Yessenin-Volpin, who curiously enough is
saying much the same thing. Following a famous result of GBdel, the con-
sistency of ZF (axiomatic set theory) cannot follow from any argument that
¢an be formalized within ZF itself. Since ZF is intended to incorporate all
the set theoretic principles that mathematicians need to do their work, this



The question, then, is why study mathematical logic at all and, in
particular, why should there be a book organized as if the most important
task to be done is to create an automated proof-checker capable of axiomatiz-
ing systems of knowledge of almost any kind? (A proof-checker, as distinct
from a proof-procedure, doesn't have the smarts to create a proof. It
merely forces the intelligent human or other proof-generator to be completely
precise, and perhaps it fills in the gaps in the proofs if they are not too
difficult.) I think that the answer to this question is not that such a project
ought to be undertaken, but that the presumption involved is contained within
logic itself, and goes back at least as far as Descartes, if not Aristotle.

The logistic method is an attempt to grab a hold on the world by
reducing it to premises, inferences and conclusions. This is not always a
healthy way of relating to the world. I think that part of Dhar LLho's error
was in not seeing this. Formal logic is the necessary consequence of informal
logic, and automated logic is the necessary consequence of formal logic. The
nature of the fruit is in the seed, and the mature fruit tells us something about
the seed, as well as vice versa,

Formal mathematical logic can be viewed as a structure, interesting
in itself. But there is always a motive for one's choice of structures to
develop. In the case of first order logical theories, this motive is the notion
that, at least in principle, entire areas of mathematics can be formalized
axiomatically in first order logic, and their theorems proven within it.
Carrying this one step further, there is the ambition to axiomatize "real"
situations in the same way, _

It is for this reason that the later chapters of this book are aimed in
the diréction of a large and unsolved problem which the professional logicians
have not been overly interested in solving. How can a deductive system

incorporate within itself those metamathematical processes which are

has discouraged logicians from expecting to be able to prove the consistency
of ZF. But Yessenin-Volpin writes that ZF is '""not so expressive as is
commonly believed'. His consistency proof (which is too new and unusual
for there to be any adequate professional evaluation at this time) uses tech-
niques that are startling to mathematicians, but possibly relevant to Minsky's
discussion, which he calls "tactics of attention', and which relate the deduc-
tive process to questions of modality and intention.



necessary to the work of a real mathematician, and do so in such a manner
that new mathematical tools are proven to be valid before they are used? If
mathematical logic does not investigtite this problem soon, it will have failed
to mature its most irﬂportant concept, which is the applicability of the axio-
matic method.

In stressing this point, I am guilty of some confusions and inaccurac-
ies which will be evident to any trained mathematical logician. Questions of
foundations have been obscured by using axioms and definitions that are too
strong. The distinction between finitary and set theoretic reasoning, and the
historic context that makes this distinction important have not been made
clear enough., = My decision to allow definitions into theories has converted
them into temporal or developmental entities, which is not as neat as the
standard treatment of theories, although it is more practical and realistic.
Some of the proofs of theorems are a bit sketchy and occasionally non-existent.
This is especially true if the theorem asserts that there is an effective pro-
cedure that does such and such, The book is written for people with compu-
tational experience to whom such things are self-evident, On the whole, 1
think that this book is a useful introduction to logic from one point of view.
The student who then wishes to continue his study of mathematical logic will
have little difficulty in making the transition to the more standard pre‘sentatioh.

k ok %

In some sense, then, this book is not about what its contents appear to
be. The reader will have to form his own opinion concerning the relevance
of logic to artificial intelligence or any other endeavor. If he is interested,
this book will lead him through a maze of particulars and details, and will
suggest some ways in which to organize this experience. Because logic is so
abstract, it generally turns out that anything which is a real problem in logic
will present itself elsewhere in some other form. You will have to ask your-
self what is the relation between quantification, and space and time, or what
is the relation between the deduction theorem, and modalities of speech such
as the subjunctive, or whatever else it is that you notice while studying logic.
Good luck!
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PREREQUISITES

It is assumed that the reader has a background and interest in
computer programming, and that he has mathematical a’pt}it.ude. The text
assumes no specific mathematical knowiedge'o&er than those fyndamental
concepts basic to all of theoretical mathematics, but some mathemat1cal
sophistication is expected. : ! ‘

LISP is used extensively, and it will help to have programmed in LISP.
But this is not essential because LISP is developed in the first two chapters.
There is some reference to common. programming 1de&s such ds ALGOL
call by value and name, procedures, etc. o -

The mathematical prerequ1sxtes can all'be found in fHalmos] They
include: L. . '

Sets, subsets, membership, union, intersection, 'complement.

power set, o L o

Function, domain, range, argument, value.

Cardinality, finite, infinite, countable, uncduntable, diagonalizatlon.

Equality, equivalence relation, partitien, coset. )

Mathematical induction, ,

~Partial ordermg, linear ordermg. upper and Iower bound greatest
upper bound, and greatest lower bound. ’ '

Some familiarity with symbolic Iogit iwill be useful, but not essential.
- References to other mathematical subjects such ag ana,lysis, topology or
ordmal numbers are mamly used as 111ustraﬁoﬁs tﬁatmay be skipped over,

1 When a reference 1s made: in square brankm, ﬁxe feompteteeitatien can be

found in the bibliography, listed alphabetﬁ:ﬁs&y Kyéumle mame.




CONTENTS

CHAPTER ONE SYMBOLIC EXPRESSIONS
§1 1 S-expl‘esswns - . ] . . . . e . 3 .
§1.2 Basic Functions of S-expressiona e e e e 4 s
CHAPTER T WO RECURSIVE DEFINITIONS

§2.1 Functions . . . .+ . .
§2.2 Recursive Definition . . .
§2.3: Partial Recursive Functions .
§2.4 A Universal LISP Function .

- » ‘I L] .
L S
« e e
¢« o o »
e e e o
e o s 0

CHAPTER THREE : PROPOSITIONAL LOGIC -1

§3.1 Propositional Formulas . . .
§3.2 Interpretation . . . . . .
§3. 3 Deduction ¢ e . . . . -
§ 3. 4 : PI’OOf'ChQCking - » . . ‘ ]

s o o s
e o. 0 o
¢ e o . @
[ <o< ¢ &
. .', . o
¢ o o o

CHAPTER FOUR  PROPOSITIONAL LOGIC - Il
§4.1 Proof TheOry . . . « & o o o« o o o .
§4 2 MOdtl Thmy . L [} ® L L] . L] .
$4.3 Consistency and Campleteness s s s s e e .
CHAPTER FIVE RECURSIVE FUNCTIONS.-AND SETS
§5.1 Recapitulation . . e e s e e e e e
§5.2 Turing's Halting Theorem . . -

' $5.3 Recursive and Recursively Enumerable Sets . e e
CHAPTER SIX FIRST ORDER LOGIC - INTRODUCTION

$6.1 Languages, Formulas and Sentences . . . . .
$6.2 FirstOrderModels . . . . . . . . . .

§6.3 Theories e e e o o e e o 4 e e &
CHAPTER SEVEN FIRST ORDER LOGIC - DEDUCTION
§7.1 Substitution . . . e e

§7.2 The Rules of Deduction e e e .
§7.3 The Consistency Theorem =,

§7.4 Existence of Deductions, chlaaemeut
7.5 The Deduction Theorem . . . .
§7.6 The ChoiceRule . . . . . .

CHAPTER EIGHT FIRST ORDER LOGIC - COMPLETENESS

L] . L] L ] . L[]
« s o o @ .
* o & .o e o
o .- L) ® L L ]
e s ° e e @

§8.1 Completeness . . .« ©+ v & o o o« o o
§8.2 Equality . . . e e e e e .
$8.3 The Skolem L¥wenheim Theorem e s 5 e e s

Page

13

14
23
24

32
34
37
39

42
50

52
53
55

.58
61
65

89
93
95



elends st e I A

Page
CHAPTER NINE FIRST ORDER LOGIC ADDITIONAI,
TOPICS
§9.1 Definitions . . . . . e e e e 98
§9.2 Herbrand's Theorem . B 103
§9.3 Substitution and Unification . . e e e e e 106
§9.4 Resolution . . . e . . . . 110
§9.5 Gentzen-Type Systems . . . e b e 115
§9.6 Decidability . . . . . . . . . . . 116

CHAPTER TEN INFORMAL ARITHMETIC

§10.1 The Postulates of Arithmetic . . . . . . . 118
§10,2 Primitive Recursion . . . . . . « + . . 120
§10.3 Other Arithmetics e e e e e e e e 122

CHAPTER ELEVEN FORMAL ARITHMETIC
§11.1 Multi-Typed Logic . « o e s 125

§11.2 Axioms for the Theory of Arithmetic . . . . . 127
§11.3 Development of the Theory . . . . . . . . 133

CHAPTER TWELVE RECURSION AND DEDUCTION
§12.1 Expressibility and Representability . . . . . . 137
§12.2 Primitive Recursion . e e e e e 139
§12.3 The Incompleteness of Arithmetic . . . . . . 140
§12.4 Representability of Recursive Functions . . . 147

CHAPTER THIRTEEN METAMATHEMATICS

§13.1 Truth and Tarski's Theorem . . . .+ « + « 149
913.2 Metamathematical Deduction . . . &« . . . . 152
913.3 The Hierarchyof Truth . . . . . . . . . 155

CHAPTER FOURTEEN THE RECURSION THEOREM

914.1 The Nature of the Problem . . . . . . . . 156
§14.2 The Recursion Theorem . . ci o s o = 159
$14.3 Application of the Recursion Theorem . . . . . 164

CHAPTER FIFTEEN SECOND ORDER ARITHMETIC
AND SET THEORY

§15.1 Second Order Arithmetic . . . .+ + « o o« 170
§15.2 Axiomatic Set Theory . . . . . « =+ « o« 173

BIBLIOGRAPHY




This empty page was substituted for a
blank page in the original document.



< T i NIRRT VI D i T R e R MR e R T NS e S R B A

CHAPTER ONE
SYMBOLIC EXPRESSIONS

Preview of Chapters One and Two

Chapter One introduces the basic data of LISP which are called
s-expressions, and a set of basic functions, of s;-expressions from which one
may construct many other LISP functmns._ (;hapter Two mtroduces a simple

language, recurswe in nature, in which one canp des e precxsely how to
compute a comphcated function from the basic functions It 1s 1mportant to
learn this material thoroughly before proceeding further in this book because
LISP will be used in relation to all the subsequent tqplcs of dlscussmn, and
because, as we shall see later, LISP itself is the sub;ect of a theory which is
as elegant and simple in its postulates as ig m;mber{ theory, .

Pedagogxcally, it makes sense to have some praetical experlence with
a SubJeCt before attempting a theory about 1t Forhexample, numbers and
the use of numbers are taught in elementary school while number theory is
typically a college level subject. Therefore, it is important to make use of |
these two chapters and their exercises to acquir g some basic sk111 w1th
s-expressions.

If you are already a LISP progr\ammdgg.k_;gﬁt skim through the two
chapters and note that some of the definitions used here differ from the pro-
gramming system you are used to, and that many parts of the language have

been omitted.

§1.1 S-expressions

The basic units from which s-expressions are built are called atoms.

-1-



We shall define atoms, and then show how to build larger s-expressions from
these. Atoms are of two kinds: names and numbers.

A name is any sequence of one or. more capital letters and digits which
begins with a capital letter, :

A positive number is any sequence of one or more digits that does not
begin with 0,

Zero (0) is also a number.,

The positive numbers tog%ther Vrﬁh 0 ai'gcaned natural’ numbers. -
While we could define’ mamy othér ktwis of Ritnberd, "I this b&éﬁ we shall

always mean natural number when we siy‘ri mﬁgss we spécity other-

ST RO YRS A TT &b RPN S TP PR s TR SRS

wise, Therefoi‘e-

L e e g GoiEriiosaiiiolt et 5; Cosrenite e
A number is a positive némber or ‘zero. _
DTSR TP PR VRTINS § SN S SN SO B SRR S S e TS

There are many "types of entities ‘whith cah be a’hd ére considered

Ay A

atoms in various ISP sysfems. Once aghin we sha f reh‘tﬂet*oﬁrselves to

the mmunal sfruc*tm‘e required by the s:fbfect ma%fér o

gt s;;if}r

fore:
An atom is either a nameé or a number,

Examples ofat&ﬁhé

REDBOX EENES BB
. AQ34500J7

We now proceed to s-expressions whith aré the mhih subject of this
chapter. An s-expression is a tree-like structure created entirely from
atoms placed in a particular arrangement. Parentheses, dots, and the




spaces used to separate one atom from another are used to specify this

arrangement,

An s-expression is either an atom or else it is a structure having the

form (a . B) where both @ and B are s-expressions.

This is an example of an inductive definition. From it, we can infer
that A is an s-expression because A is an atom. Similarly, B is an s-expres-
sion., Therefore (A . B) is an s-expression. Applying the definition again,

since (A . B) and C are s-expressions, ((A . B) . C) is also an s-expression.

Examples of s-expressions:

A XYZ

(A, XYZ) ((A., Xyz). A)

(A . (XYZ. A)) (A1 . (A2, (A3 . NIL)))
((A1. A2). (B1. B2)) ((A. A). (A. A)

Since we shall frequently make use of this kind of definition, it merits
some discussion. It is a common practice among mathematicians to limit

11

such a definition by adding: "...and nothing else is an s-expression'. We
shall always assume this to be the case.

It is possible to conclude from the definition that all s-expressions
have the same number of left and right parentheses. This is because (a) all
atoms have the same number of left and right parentheses, namely none, and
(b) any other s-expression has the form (a . 8) where a and B are s-expres-
sions. If this proposition is true for o and 8, then it is certainly true for
(a . B) which adds one more parenthesis of each type. It is also evident that
each left parenthesis is paired with a unique right parenthesis, namely the
first right parenthesis encountered by making a left to right scan starting at
the given left parenthesis such that all the intervening parentheses are paired.

Notice that both (A, (B. C)) and ((A . B) . C) are s-expressions, and
that they are considered to be different s-expressions. The mathematical
principle which asserts that algebraically X+ (Y + Z) is the same as (X+ Y)+ Z

is called associativity. The composition of s-expressions is not associative.

-3-
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()nc more comment, this time on the use of Greek letters. A Greek
letter is never part of any s- expression, or fqr that matter ax;y other type of
entity constructed anywhere in this book. It is purely an explanatory device,
as in the previous definition where we say ''let @ .and 8 be any s-expressions’.

Problem Set 1

1. -Which of the following are s-expressions?

a., ABC b. 35A
c. (A.BY "d, ta. B)
e. (A.B.C) f. (A.B). C)

2. How many different s-expressions are there that use the atom "A"
exactly n times and contain no other atoms? (Call this function ﬂn) Don't
try to find an algebraic formuld for #(n) which' may not enst " but learn how
to compute #(n) when you. know the values of rfor an numoofs 1oss than n.)

The examples of s- expressxons w{m:h have just been given sre all _
written in what we call dot notation. There is anotherr'zsl}orthand" notatipn _

for writing s- expressions called list notat:on. It is more ¢ nvenient and is

,,,,,

more generally used, Howevel, we are nof introducing any new s-expres-
sions, Every s-expression can be writteﬂ uo”{ixg only dot notntion, but many

s-expressions are much éasier to vrrite m list notation. Some 8- expressions
cannot be written in-list notation. ‘ - # ‘

Although list notation'is mbst commonly used ‘dot notation 1s
considered more basic. Theoretical propertiea of s-ex:presslons are
resolved by referring to dot notation. T b

In the list notation, a Speci”al status is given the atom NIL as the ,
terminator of lists. A list is an expressxon having the form ( “2 . . a
where each a, is an s- expression. ' In other words, a hst is just several

expressions enclosed between a ‘set of p&ren&eses with Spaces between
them. This list is the same s- expresswn as (a (d (an . NIL)

o)

2 :‘-:t . o. »




Some examples of lists (left column) and the equivalent in dot notation

(right column):

0O

(A)

(A B C)
((A))

((A B) (XYZ) (U V))

((A) ((A))

NIL

(A . NIL)

(A. (B. (C. NIL})))
((A ., NIL) . NIL)

((A . (B'. NIL)) . ((XYZ . NIL)

. ((U. (V. NIL)) . NIL)))

. NIL))

((A. NIL) . (((A. NIL). NIL)

Some s-expressions cannot be represented without dots, for example
(A . B). Mixed notation may also be encountered such as ((A . B) (C . D)).
In this case, there is a list at the top level, and dots at a lower level,
is the same s~expression as ((A, B). ((C. D). NIL)). In general, we
avoid creating s-expressions that require dots, but it is well to keep in mind
that the dot hotation is the simplest way of explaining' the underlying theory of

s-expressions.

Problem Set 2

1. Write each of these s-expressions using only dot notation.

a,
c.

e,

A ' b. (A B)
(1 (2) ((3)) . d. ()
(A (B ((C)) f. ((A)2)

2. Write each of these s-expressions without dots if possible.

-
b.

\C.
.

C e
f.

((A. NIL) . ((B . NIL) . NIL))

(A.NIL). (B. NIL))

(A. (B. (C. NIL))

(NIL . NIL) |
((APPLE . (PIE. NIL)) . ((CHEESE . NIL) . NIL))
((X. NIL) . ((NIL . Y) . NIL))

This




§1.2 Basic Functions of S-expressions

We are now going to consider a small number of very basic operations
that one can perform on s-expressions. These operations are the foundation:
of all subsequent processing of s-expressions in much the same way that
counting up and down is the foundation for all of arithmetic. As you probably
know, counting is even more basic than add.lng and multiplying when we
analyse operatmns from the mechanical viewpoint

Because we are using a mathematical approach, we describe these
operations as being functions. The first funotion to:be diacussed is called

cons.

The function cons is used to construct bigger s-expressions out of
smaller ones, It takes two s-expressions and puts a left parenthesis before -
the first one, a LISP dot between them, and a right parenthesis after the
second one, For example, cons.of A and B is (A"."B). Also, cons of
(A.B)and(X. Y)is ((A, B) . (X. Y)).

We need a reasonable way of writing these assertions other than in
English. So we use a notation that looks like this: ‘

cons[A,B] = (A . B):
consf(A . B),(X. Y)]= ((A. B) (X. Y))

We have said that cons is a function. -In the first line above, A and B
are arguments of the function cons, and (A . B) is the value of cons associated
with these two arguments. It is a common mathematical and acientific nota-

~ tion to write a function followed by a list of its argnments enclosed within

parentheses. The arguments, if there are znore than one, ‘are separated
from each other by commas. . This is’ exacﬂy what we have done here except
that we use square brackets instead of parenfheses. The reason for this is
that when the arguments are s-expressmns, this could get conﬂusing since
parentheses occur as parts of s-expressions.

Getting back to cons for the moment. Since every s-expression is
built from atoms, every s-expression can be put together from atoms using
cons. Consider the caseof (A, (B. C)). We have cons[B,C]=(B . C),and
cons[A,(B. C)]=(A . (B. C)). Putting these together, we have cons[A,
cons[B, C]]=(A . (B . C)). This is an extension of our notation, and is
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called composition.

Let us look at some examples of cons:
1. cons[BILL, JOE] = (BILL . JOE)
2. cons{A,(B. C)]=(A. (B. C)
3. cons[A,cons[B,C]]=(A. (B. C))
4. cons[A, NIL] = (A) :
5. cons[A, (B C)] = (A B C)
6. cons[A, cons[B,(C)]]=(A. (B, (C. NIL))) = (A B C)
7. cons[A, cons[B, cons[C, {)]}}=(A B C)
8. cons[(A), (A)]=((A) A)

Problem Set 3

1. What is the value of each of the following? .
a. cons[B, B] b. consf(A . B),(A . C)]

c. cons[(AB),(AC)]  d. cons{Q,(R S)]
e. cons[{AB C),(DEF)] f. cons[cons|cons[A, NIL],
¢ NiL],NIL]

2. What is a commutative operator? Is addition of numbers commuta-
tive? Is cons commutative? ’ DR

3. Describe a necessary and sufficient condition for the value of cons
to be expressible without dots. ‘

Next, we consider the pair of functions car and cdr which are used to
take apart s-expressions., Car and cdr are ﬁnaf'z""*fﬁnéﬁans;‘ ‘unlike cons -
which is a'binary function, each takes only a single'argument.

B cart(A . B)] - A , I
cdrf(A. B)]= B

Car and cdr are not defined as having values when their arguments are
atomic. For example, car[A] has no meaning., Any s-expression which is
not an atom we call a composite s-expression. If a composite s-expression

is written in dot notation, there is always one main dqt, » -This is the dot
which is contained only within the outermost set of parentheses. Then car of
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the s-expression is the expression between this dot and the leftmost paren-
thesis of the whole s-expression, and cdr is the expression between this dot
and the rightmost parenthesis,

((A.(B.C).(D. B}

car cdr
Examples:

car[(A B)]=A

cdr{(A B)] = (B)

cdr[(B)] = ()

cdr([()] is undefined
car{(((A)) (B))] = ((4))
car[cdr[(A B)]]=B

cdrcdr[(A B)]] = () = NIL
car[((A))] = (A)
carfcar[((A)]] = A
car{cons|A, B]] =
cons{car[(A)], cdr[(B CD)]}=(AC D)

Many people have objected to the names car-and cdr. proposing some
alternative such as "first" and "rest" which deacribe the effect of car and cdr
on lists. Yet these names have remained around because they compose into
sequences of cars and cdrs and remain at least slightly pronounceable. For
example, caddr (pronounced CAH-duh-der) means "car of cdr of cdr", So
caddr[(A B C)] is the same as car[cdr[cdr[(A B C)]]] which is C. Notice that
it is the rightmost a or d in the word which gets performed first, just as it is
the rightmost function when we write out the longer form.

Examples: ,
“carf(ABC)]=A '~ cadr[(AB cn =¥

caddr[{(A B C)] = C cdddr[(A B ©)] = ()
cdar[(A B C)] is undefined cadadr(((A B) (C D) (E )] =




Problem Set 4

What is the value of each of the following?

1. car{(A . B)] 2. cdr{(A. B)]

3. car[(A B)] " 4, cdr[(A B)]

5. car{edr[(A B)]] 6. cadr((A B)]'
7. cdar[(A B)} | 8. cdar{((A"BR]

9. cdar{((A)B)] 10, caaarf((ta)
11. CO!‘IS[‘C&I’K(;&”?J, o R R T R R
cadr[(A (((B) (CHN]]

Mixed Iixpressions

We have been discussing LISP expreésions such as "eonsfx; y|"..
Arithmetic cxpressions such aik "3k + yz‘"i are Tamilar 16 you'and need no
special explanation. = Since numbers are considered atoms and cun appear
within s-expressions, it is perfectly me&ningful to mix LISP and arithmetic,

. Example:

- car{(2 3 4))+-cadr{(57 9)] = 2+7 289 . "

Not all such expressions will be meaningful, 3+ car[(4 A 10)] =7, but

3+ cadr{(4 A 10)}is undefined. ("A" is a name,; -and addition is not defined on

names. Certainly we-would not want:to Saytetegorically that 83+ A 'is mean-

ingless, The question of whether A can be:congidesed o be a variable or

- whether it means only itself is one of interpretation; ' The question can only
be considered in context, and we cannot discuss it &dequately here, )" 8

Within LISP, the notions'of ‘truth and falsftycan be represented by the

atoms T and F respectively. © A -function whése: vatue is dlways T or F is

called a predicate. ‘There is'd basic predicate calléd ‘dtom which tells us
whether its argument is an atom, that is, it las the valiie ¥ if'Hs argument is

an atom, and Fif its argunment is'a compoiifte &« ékpiession. -
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Examples:

atom[A]= T  atom(1974] = T
atom{(})} = T atom[ABC] =T
atom[(A B C)}=F " atomfear[(ABC)]]=T

atom[cdr[(A B C)]} = F atom{eons(A,B]} = F

Equality itself is considered to be a basic predicate of s-expressions.
Suppose we. give the notion of equality the name equal. Equal is defined as a
binary predicate which has the value T if both its argumgggg are the same,
but has the value F if its arguments are different s~gxpressions.

Enmples:v
equalfA,A)=T equal(ABC),(ABC)]=T
equal[NIL, ()] =T ~ equal(AB),(A. (B. NIL)]=T
equal{A, (A)] = F equal{(A . (B-. C)),

equalcar((2 3 4)]+2, 4] = ((A.B).C)]=F

In practice, we shall seldom use the function name equal, but instead
use the equal sign to mean the same thing. Instead of writing equal{A, A},
we shall write A = A, or when necessary [A= A}, . When a function symbol
(usually a special symbol rather than a name spelled. with letters) is used
between two arguments rather than preceding both of them, this is called
infix notation. We use it frequently and in fairly.obvious ways, but since
problems of syntax are not an impo:tant;pgx‘-ﬁqt this book, there will be no
formal theory about parsing such grammars. = In conclusion, the preceding
examples will normally appear as [A=A}=T, [A=(A)]=F, etc.. |
, Cons, car, cdr, atom and equal are the five basic f\mctions for the
mapipulation of s-expressions.

Suppose we wish to form a list from three constituents. We can des-
cribe this construction by writing cons[a, cons[B, cons[y, NIL]]] where «, 8,
and:y are the three s-expressions to be listed. This is too long to write, so
we introduce the shorter notation using the function list which can have any
number of arguments including none. The preceding example can be replaced
by list[a, B8, 7).
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Examples:

list[A,B,C] = (A B C) list[] = NIL = ()
list[(A B), (C D)}:=({A B) (C D)) Hst[1istfA ] = ¢{A))
cons(A, list[B; C,.D}} =¢<A B C D) Tl Timmeesso

- Ancther convenienece is the predicate:null which has a gingle argument
and is true only if that argument is NIL,

Examples:

null[()] = T null{A] = F
null[edr{(A)]] = T null{(NIL)] = F

Atoms can be sorted out into two types, names and numbers, and to

do this we introduce two predicates, name and num. -

Examples:
name[ABC] = T name[(A)] = F
name[5] = F num{5] =T
num[cadrf(A 2 (5))] =T numf{(3)} = F

num{[A] = F num|3+ c;ar{(S)]] =T

There is another function which we shall consider to be basic without
any justification at present. Consider the set of all names (not numbers).
There are infinitely many of them, but they can be placed in a definite order
in an infinite list, that is, they can be enumerated. We list shorter names

before longer ones, arranging the finitely many names of any particular
length in alphabetical order, putting 0 thru 9 at the end of the alphabet.

The function enum is only defined when its argument,ié a number,
The value is always a name, and if we form the list enum[0], enum|[1],
enum|[2]... we get exactly the enumeration discussed above.

Problem Set 5

1. list[A, 2 +car[(3 4)], B] 2. list[2+2,2+2:=4,2+2=5)
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O 1 »

atomf list{A, A = B]]
name[enum|[2 + 2]}
cons[name[A], num[A]]
list[(A B), list[(C D), (E F)]]
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enumi2 + 2]

. enum[A]

8. (A. B)=(B. A)

10.

cadadr[((A B) ((C D) (E)))]



CHARTER . TWO: - -
RECURSIVE DEFINITIONS =~

Preview of Chapter Two

The chapter begins with some comments on functions, and the termi-
nology concerning them, from:the viewpeh) "‘ﬂ?a&v’e é‘é‘fi‘h@ﬁry After thl‘,
a_very simple language is:defined whick, togetired ¥ «,“‘L“‘.the* basic functions '
discussed in Chapter:One, will:allow us to W evéry ﬁm’ction of 8- expres-
sions that is in any reasonable sense calculable,

Having now completed Chaptér One, BUL R R ycm had learned arith-
metic but net glgebra. We can handle 242 =87 Bt AGE £¥' y&z, What we
need among other things are variables; :snd f&%ﬁ*‘m W*ﬁh‘ém 80 that we can
describe general instead of :parueuhm [ ARG e

§2.1 Functions

The concept of a "funcﬁon" in set theory "{eynonquus with mapping"
A amd B and for every

ot "correspondence". Suppose we have 1_:w 8
~object in A, there is an ob”ject (or element)'o?‘B assoéiéteg with it. Then .

P .'"“; BETLLG '; 4% -

this co:-respondence is caﬁed a fur;f:tien "rand A %ggge min of the function,

) rye} entofAhasa

e 33 gxerg element inB must
correspond to an element in A A given element e! B may correspond to -

‘more than'one element of A or to none af all ' 4

From the point of view of set theory, the fnnction itself is viewed as a

set. If f is a function from A to B (we write this gs !'A "_,B) then f 1tself is a




Tinse bt o

such that for every a € A there is exactly one such ordered pair which is a
member of f,

Some funttions have mote thah owe argament. If f is a function of n
arguments, thenf has n domains, A;l Hra ﬁn, and one range, B, and we may
specify this information by writing ff‘:aai-¥ P xﬁh"B The function f is then
a set of n+ 1-tupkes (a,i», e .'faﬁ-.{b»b MMQI € A;i” and b € B, and such that
for every combination of one a, from eath A there is exactly one such
n+1-tuple in f, For example, cons:S xS S is the infinite set of trlples _y
{{A,A, (A . A))...] contathing every powsible pair of ‘s~expressions together
with their cons.,

As was mentioned n Uhspter M mvewbers of the domain(s) of a
function are calied argumenta, aid members of the ramge are called values.

The set ﬂ” F’} is called A A Denotion wivose ranie i8 ¥ is called a
predicate. - -

Any subset of ‘& functich i \QMQ* piattinl dusciton, < That is, a partial
function is a Tunction that mnay not Seve mam:m mfamments. ~Serrre-
times we are a bit sleppy and use the word “tunciion” wheh wo muan 'partial
function'. Then, when we W 10 smpivasice e compledensss of a function,
we are led to use m&mmm mmwwu ‘and

total predicates,
| A1l of this may seem extremrely obvious, M it is impomm teo stress
that when we talk of a tunttion we wre not mmmmm a Wwﬁ&u‘!’e or a sub-
routine. 'The digtinction is tmpoﬁam, ami ia roughly analopous to the differ-
ence between a 1val of bread and a recipe w- W a waf of bread. Recipes,
like procedures, cam e pub?iﬁhéd n Eb%s ﬁ'ﬁﬁ joatr: mis. No onbe has ever
published a loaf of bread. Samalnriy, the ﬂmctim mbns can beé discussed, and
subroutines written to compute it, bat the function i‘ftse’lf is an infinite set and

is therefore a toncepteal chjett valy, never a W theat. It is also impor-
tatit not to cowfus‘e the natme of a W@h ‘wﬂh the function ftself.

82.2 Recursive Definition

- Recursive Definition: A definition of a function
permitting values of the fanttion to be computed
systematically in a finite number of steps; esp:
a mathematical definition in which the first case

W) ‘




is given and the nth case is defined in terms of
one or more previous cases and esp. the
immediately preceding one,

Webster's Third New
International Dictionary

It would be hard to improve on this definition. @ We shall start this
discussion by illustrating that many ordinary functions of arithmetic may be
defined recursively starting only with the functions successor and predecessor
as given. The meaning of the notation being used will be explained in Inglish.
After this, we shall define more formally the language we have been using.

The successor of a number is one more than that number. For
cexample, the successor of 5 is 6,  Our notation for the successor of n is n "
So 5 - 6, and 5" - 7.

The predecessor of a number is the next smallest number. 'T'he pred-

ccessor of zero is not defined.  Our notation for the predecessor of nis n .
So 7 =6, and7 =5, and 1 _ is undefined.
Starting with only these two functions, and equality, we proceed to

define addition and multiplication:

(1) m+n« [n=0-*"*",T "ml+n-]

(2)mxn¢[n=0-+0,T *m+m xXn |

Translated into English, the first definition reads: ''The sum of m and
n is m if n is 0; otherwise it is the same as the sum of the successor of m
and the predecessor of n." This fits the dictionary definition perfectly. We
say that we are recursing downward on n. When we count n down to 0, then
the process is over and we have an answer. For example, 5+ 3= 5+3 =
6+2=6+2"=7+1=7+1"=8+0=8. The recursive definition is applied over
and over again until the second argument (called n in this definition) is 0. As
long as n is greater than 0, the second part of the definition applies and the
computation proceeds, When n = 0, then the first part of the definition applies
and the computation is over. It never becomes necessary to take the pred-
ecessor of 0, and therefore an undefined condition will never arise.

We call line (1) a recursive definition. It provides an explicit method

of computing the function ''+" given the successor and predecessor functions.




This particular recursive definition gives a value which is a number every
time it is applied to a pair of arguments which are numbers. But not all
recursive definitions are this way, A recursive definition may not compute
a value for a variety of reasons. The fact that (a} this parucular recursive
definition computes a total function, and (b’) this total functmn is the familiar
function "+" are particulars which are obvkms in this case, but in general
the correspondence between the functmn computed by_xa recurswe definition
and a function understood or Spec1f1ed in some ather way must not be
assumed without good and su:t'ﬁcient rm&m. '

Line (2) is a recursive ‘definition for mﬁlﬁplicétion. It can be trans-
lated into English as ''The product of m and n 18 0 if n is 0; otherwise it is
the sum of m and the product of m and the predecesso!‘ of n." . 'I'lus definition
invokes the previous definition of a&dition.  So.the recursive defimtwn of
multiplication is really both lines, |

It will be our‘ general habit when mckmg recuraive deﬁnitions to build
up more comphcated functions from simpler ones. From the definition of
multiplication we see that 5 Xx3=5+5 X2+ ‘545*3 X ! 5‘+3+5+ 5x0=5+5+
5+0=15, : ' -

Recursive definition is alao used to apecify the computation of predi-
cates. The numerica! re}atioa "is great tht.n"igmmmple of such; It
can be defined by'

m>n*§m O-‘F,nzo*? T‘*m >n}

which expresses the English definition "lf m is aero. then m is not gx:eater
than n; if m is not zero and n is zero then m is sraate:r ﬂmp n; and if neither
is zero then m' being greater than n Jeptmdb on m being gre:ater than n”. "
When m and n are numbers, the value a! i win always be either T or F,

The predicate "> can now be used to éeﬁne tha fumtion max[m. n], whose
value is the Iarger of its two argumems .

max{m.n)* Im>n "m.T ~“+n}

Recursive definition is used to define Pinctions of ‘Saexpressidns other
than numbers in a similar way. An important LISP function is subst[x, y, z],
whose value is the s-expressjon resulting from substituting the s-expfession
x for all occurrences of the atom y :m the s-expression z. For example, the




result of subétitu’ting (R S) for all occurrences of B in (A B (C B)) is
(A (R S) (C (R S))), i.e., subst[(R S), B,(A B (C B))] = (A (R S) (C (R ).
Subst is defined recurswely by:

subat[x.y, z)e [atod {z] - [y= z *x.T g ﬁ].fI‘ *, cam[mbst{x. Ys -
carIz]]. subst X y. gdr[z]]]] . .

O

Whl(‘h translates "If 2 is &n atom, then, Lf ¥ is tl;e same as 2 the value is x,
otherwise the value is z; but if z i8 not an atom then the value is obtained by:
first computing subst of x and y and car of z, and subst 'of x and y and cdr of
z, and then taking the cons of these two g-expressions. "

This example is more complex than the preceding ones in two ways.
It contains a choice nested within a cho:ce {n’ that if z~xs tn artom. then there
is still another decision to be’ made. Ala’o, the recursion generates a tree-
structure of subproblems rafher t‘han a llnear sequence as m the prec.edmg
numei-ical examples. The recursion on the argument z may requxre com-
. puting subst of car{z]'and difr(z]. ‘which may in turn | Juire éomputmg Sllbbf
with the tlurd arg-ument bemg car[car[z]],ﬁ cdi‘fcarfi]L— sz]], and
cdr[cdr{z]]. The larger the s- exprnssion z, tﬁe larger ‘this free of sub-

R f‘f"

problems will grow, _ A | L

subst[ (R §)/8,(A B (C B)I=Gh (R 8).(E.(R.9))

subst[ (R S),B,A]=A
subst[ 'ﬁ;§);nv."a"]i'_(n’ 8)

(R )., B)] abac[(R 8,3, NIL]-NIL

subst[(R 5);B,C}=C ef@smmx |

subst[(R S) B,B]-(R s) "‘.ub.i[(n 8),B m.]-sm

cons[A,cons[ (R S) cona[com[C.comI(R S) ,@NIL,] ]r,nn.]u-@n (.R S) (C (R S)))
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We have been making use of the Ianme of recursive definitions in an
informal way; we now proceed to define the Tanguige 'mqré fbrmﬁny First
we give a concise grammar, and then define &w nmamica of the language as
a set of instructions for computing aemﬁe:t m&w from gmm b*asic
functions, :

Grmmar«“

1, An 1dentxfier is a sequence of one. or more Iower case 1etters
and digits, It must begin with a letter. ~ (This is the same
as the definition of a mme except tha,t Me_s have upper
case letters. Imors and names are.in- onerto-one
correopondence by merely tbe case of the.letters,)

2. A variable is an {dentifter. B o

3. ,An ob&t is an s-exprusion. ) ~'

4. A functivn name is an identifier. woe exccption beiow. )

5. A form can be any of the following:

a. a variable
b. &n 0bj&ct
c. Pl¢ 1reeer§ I where ¢ is a funetion mme, and uch
' € isa fm‘m. (ﬂ'ee exception below.)
d. a condxtioml form (Bee’n* — ,

'6. A prowitiona} form is a form. (The diatinf.tﬂon is semantic
and will be. madom the fonowing ‘discussion. )

7. AchiWarm is Ell "(,..., n %werenZI and
each of the 7. {# a propositional form. md éué!; ofthe ¢i is
a form.

8. A recursive definition iseft,,....5 I+ ¢, wher0~¢ is a
function name, each of thé ‘i is i"vmabie, and c is a form
containing no variables G!her thanp the §..

Exception: Rules 4 and 5 above permit forms such as cons|car[x],
cdry]] but not forms such &8 3 Xm+n, It 18 convenient to have
functions specified by conventional symbols such as '"+", "x" and "+"
as well as by identifiers, and it is also convenient and conventional
to use certain of these symbole as infixes (m+n), prefixes (-m)

'

-18-




and suffixes (m). Because we are not concerned with writing
compilers we shall gloss over the syntactic problems of such
notation in the foIlowmg way: every. function and predicate
which is specified by a conyentional. &ymbol has an identifier
type name also. As long as the parsipg. of any form that we
write is clear to the reader, we can pretend in. certain theoret-
ical situations that the only ofﬁcxal notation is. &hat of 1dent1f1er
names followed by arguments in brackets, ice., @La0 ]  For
example, "3 xx-y>2"is sxmply a convenient, notatmn 80 that

we do not have to write out ' 'greater ;[Qi;{qrgngg[,t;mes [3,x],ylz]".

Semantics:

1. A recursive definition has meaning because it is an explicit
algorithm for computing a partial recursive finction. To
the left of the left arrow in the recursive definition is the
name given to the partial function baingwined. and a list
of variables. The list of variahles apecifies the number
of arguments the function has,: and assigns these variables |
as the temporary names cf the arguments while’'the compu-
tation is in pragress.. This temporary:identification of
arguments. with. variables is calied a binding :6f the wari-
ables, The value of the function is obtained by evaluating
the form to the right of the left arrow,: using the rules
given below, with this binding of the variabtes in effect.

2. The value of an object is itself. - . s

3. The value of a variable is obtained from:the binding as
Speclfled in rule 1. o :

4, The value of a form of the type cp[(l, .o .,.Atn'}” is computed by
first evaluating each of the forms € using these rules, and
using the resulting sequence of values as arguments for the
function ¢. If @ is one of the basic functions or predicates, °
its value is obtained immediately. ' : Howewer, if @ is itself
specified by a recursive definition, then the current com-
putation must be set aside, and the compatation to obtain
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the value of @ for these arguments must be performed.
When this is completed, the curtent computation is then
resumed, and neither the bindings or the varidbles, nor
any other partial results in'proé'éiifjfriﬁ"hiv"e been changed
from what they were before inwking the deﬁnition of Q.
This process can ocetr nested t6 a considerabie depth
with many levels of compuuﬁnn 1ntcrrupted and incom-
plete, When the definition of p is invoked from within the
definition of ¢, this process is called recursion. The
example of subst is a good case to study.

5. A propositional form is & form whose sxpected value is T
or ¥, Typically, it is either one of tve objects T or F, or
it is a form Mfl. co e %] where ¢ i3 a pmdmate. It may
also be a conditional form.

'8, The value of a conditional fam;{vi *-4‘1'. cous¥ W ]is

‘ obtained by evaluating the proposittonsi forms %, from left
to right until one i{s found whose valae i¢ T. Then, no
more ¥, are evalusted, but the convupoadingti- is evalu-
ated, and it velue is the value of the conditional form.
An important property of a conditionsl form is that nothing
gets evaluated beyond what is necessary to sélect and eval-
uate the praper ¢ For example, {f wi"ava’wma to ¥, then

¢ is not evaluated but passed over, and v ‘gets evaluated,

If the value of L is T, then ¢, is evalunted to provide the

value of the conditional form. and evﬂ'yﬂnny to the right

of. ¢ is ignored,

There are a variety of reasons why the pmus of mmlting a recur-
sive function may not produce & value:
1. A variable on the right side of a defimition does not-ocecur on the left
side, : , : o
2. A function referred to in the definition h&s not been defined.
3. A function is given an incorrect number of arguments.
4. In the process of evaluating a conditional form, one of the L
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evaluates to something that is neither T nor F.

5. In the process of evaluating a conditional form, all the m, evaluate
to F and the end of the form is reached. :

6. A function called in the computataon is-given an argument for
which no value is defined, such as car applied to an atom, or addition applied
to non-numbers. : .

7. The computauon continues forever without encountering any of the
errors mentioned above, but without ever terminating.

Reasons 1 thru 6 above are simply programming errors that can be
avoided by correct procedure. Reason 7 is a fundamental.property of com-
putation having important logical consequences, There is no possibility of
eliminating it from any programming language powerful enough to do general
purpose computation, |

.Problem Set 6

| In each of these problems you may assume any 6f the definitions made
thus far, including all the problems precedmg the one you are working on,
Sometimes it is necessary to define a helping function first before defining
the function you want. o
1. Are the functions "-" and ''+'" defined here total or partlal'?

m-n¢[n=0-*m, T"’m -n]
min¢+ [n>m-0, T"1+[m n] +n]j

2. Define' expt{m, n] or m". (Let expt[0,0] = 1.)

3. Define remainder{m, n].

4. Define m In, which means m goes into n an integer number of times.
(It is a predicate, )

5. Define prime|n], a pred1cate wh1ch is true if n is a prime number.
(The first prime number is 2.) ' '

6. Define gecd[m, n} (greatest common d1visor), and. lem{m, n] (least
common multiple).

7. Define nthprime[m], which g1ves the nth prime. Use the conven-
tion that nthprime[0] = 1 and nthprime[l] =

8. Define the predecessor function using only successor and equality,

~2]-
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thereby demonstrating that all the functions in this probIem set require only
successor and equality as their basis,

Let us adopt the coding convemntion that a finite set of s-expressions
will be repre‘se‘ntéd'z in LISP by a H#t of these s-expressions. For instance,
the set {A B C} can be represented by the 1ist (A B C) or by the list (B C A)
or by any other permutation of the members. Thé Iist must have no repeti-
tions. We can then define LISP functions that perform basic set-theoretic
operations, For example, the mum of mmuship is represented by the
LISP predicate membaer, defined by '

memberfx, y} + [sullfy} 4 F,x = carfy] + T, T + member{x, cdry]]]
The operation of taking the unicn of two sets is represented by the
function union: /

, 11 - fm -
umon[xg&*&fglhz dlfiﬂ;fg ¥} IWII#N{M!LYL

Problem Set 7

1. De{ine the function inters m[x,y}
2. Define the predicaw m:, y] which means "equivalent" in the

sense of representing the same set. Two lists representing sets are sequiv
if they dif‘fer only in the order of mm elmm:, 6. d. , wquivt’UL B C),
(A C B)} =

3. Define the function reverse, whose vﬂﬁé is the same list as its
argument, but in réverse order, e. g., reveru[(m B) (C Dms «C D) (A B)).

4. Define the function length, which camwtca thé length of the list x,
length[NIL] =

5. D&ﬁm the fumtm size, where sive(s]is the mmber of atoms
oc¢curring in x, counting each atom ag m&ny times as it oecnrl, e.gd.,
sizef(A (A))] = 4. ‘

6. Define the furxctmn vocal, where vmbfx} is the set of atoms
occurring in the s~expression x. - VocabH{A (B C) C}] = (A B C NIL), or any
list which is sequiv to this. : :
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§2.3 Partial Recursive Functions

The basic functions for computing with s-expressions (including num-
bers) are: car, cdr, cons, equal, atom, num, name, enum and successor.

We have seen that predecessor can be defined from successor. Name
can also be defined from atom and num if we are sure that there will never be
any other type of atom. We prefer to leave this unspecified.

The function enum is peculiar, ' Without enum, we would not be able
to define those functions which depend on the spelling of names, but would be
limited to functions that only take note of two names as being the same or
different. B’Lit using enum, we can define concat, which concatenates two
atoms (e.g., concat[A, X3] = AX3), and e@lode, which lists the letters and
digits in a name, e.g., explode[AX3]= (A X 3). These two functions, in
turn, form the basis for any other manipulation of the characters that make
up names,

The basic functions of s-expressions together with the language of
recursive definition lead to the concept of a partial recursive function.

Lemma 2,1

Consider a finite sequence of recursive definitions:
wltgll LB ] gmll‘- tl
‘pn[gll LI gm ]" en
n
where each ®; is a distinct function name, and each € contains only the
names of basic functions and names from the sequence ProeeesPpi then
associated with each ?; there is a procedure for computing a function of m,
arguments, This procedure, when performed with any given sequence of
m, s-expressions as arguments, either produces a value, encounters an
undefined situation, or fails to terminate. Thus, each function-name tpi is
associated with an m, -ary (partial) function, namely that function defined for
exactly those arguments for which the computation terminates with a value
(the value of the function).

The entire preceding section is sufficient proof that such a well-defined
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computational procedure exists.

Detinition 2,2

A partial recursive function (of s-expressions) is any function for
which at least one computatioml procedure as dotined above exists,

It is well to keep in mind the distinction between a function, a
function-name, and a procedure. R is the process of writing down recursive
definitions that associates names and pmeeduru with ﬁmctions. A function
is independent of any procedure used to apeci!y 1¢, However, the concept of
recursiveness is absolute; a lunction is either recursive or it is not recur-
sive. It is recursive if there is at lecut one way to compute it (and it is
easy to see that there are then many ways to c@mpute it), and it is not
recursive if there is no way to tompute it, Whea & function is specified in
some way that does nhot imply a computational M&AM this does not tell
us whether or not it is recursive,

§2.4 A Universal LISP Function

It is natural to want a theory of recursive functions. We may usk
questions such as: How large is the class of recursive dunctions? Are
there functions that are weil defined but not recursive? If we add new com-
putational twm or more bmc mm. are we ablt to mpute more
functions? - The idu of an interpreter or uaimul !\mntlm is central to
such a theory.

The fmportance of lemma 2,1 {8 that the prbcedure for computing
partial functions is effective. This means that we can progrem a general
purpose ccmputar 80 that vhen we give it a scqumce of recursive, definitions,
and a set of arguments for oae d‘ the Mctiuna. ﬁu computer then computes
the yalue of the function applied to these u‘m«m if the value exists, and if
the computer has enough storage and time, Such & program is called a
LISP interpreter, and has been written for many computers, What is of
great significance for the theory of recursive functions, is that such an
interpreter can be written in LISP itself,

We define a universal LISP function called apply. Apply|fa, args] has
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two arguments. The first argument is a sequence of recursive definitions
as in the statement of lemma 2.1. Since an argument for apply must be an
s-expression, we must code such a sequence of recursive definitions into a
single s-expression., The first function defined in the sequence will be the
one we wish to compute, and the other defzmtiens necessary to it may follow
in any order. T_he second argument for -appl,y, is a list of the arguments for
this function. N R o k

We first define a translation whereby a sequence of recursive
definitions, as in the schema of Lemma 2. 1, becomes a single s-expression,
the argument fa of apply. We shall call this translation process "*'", so
that, for example, if €is a form in the language of recursive functions, then
€* is its translation into an s-expression.

Rules for translating recursive definitions into s-expressions:

1. If €is a variable, then €* is the atom obtained by makmg all
of its letters upper case.

2. If €is a number, then €* is just €.

3. If€is T, F, or NIL, then ¢* is just €.

4. If eis any other object (s-expression), then €* is (QUOTE €).

5. Ilfepisa functlon-name. then ¢* is the atom obtained by
making all its letters upper case,

6. If €is a form of the type o[€,, seses €], then € is (p* € ... € *).
(Forms using infix, prefix, or suffix qperﬁtprs are translated

~ as if they were in standard form. There are names for each
such operator. Also, some functions have an indeﬁnite
~number of arguments. They are LIST, PLUS, and TIMES, )

7. If ( is a conditionai form [w * ‘1’ oo My cn.l, then €x* is
(COND(w*s*)...(fr*c*)) o

8. A recursive defimtmn tpﬂl. cees Qﬁ] +¢is traﬁaaated as
(¥ (5% ... & *) ex), : -

9. The argument "fa" of apply is a list of translated recursive
definitions as described in step 8, with the fariction to be
applied coming first on the list, and all functions that it
uses, except for basic functions, appearing in any order
on the list.
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The translation process "*" is the LISP equivalent of a technique
known to logicians as "Gidel nombering’ M'tic?h we shall discuss later.

However, Gidel numbering is’ u Ybsrettenl W which is impossible to
use in any practical sense, whereas the use of s-expressions to define

recursive functions is standard practive for LISP programmers. .

Rule ¢ - i
1. X
- a8
2, 25
3. F
A
{A B)
(3)
5. car
6. car{x]
| consfu, car{d ]
6a m+hXp+qg ¥
T {x =ﬂ 41, x=1~ 1,#{* Qm 4% :/:;‘ﬁ_ T y O
{x-lj-}—M{x.'ﬁﬂ {PL038 (FIBR ( 3 ER
xmmm xzﬂm '

8.  fibbixj* [x=0 1, x=1 91, fsmmm’ﬂmu xm 1)
‘I‘-’ﬁbb{x i)+ Hbblx - 21] - HEQ < ~ J

9, : i1 * 1ist ftch.
. ?e%i?] " 1:{; Ix, % {yﬂ
['mmﬂm X {GLITOH: Y & {GLITCH (%)
A5 XWC&%}A ﬁ’] ={A{B CYH

~ The Mﬂ Wﬂwm mhmm via a mumber of
auxiliary fumetions. L :




/
Definition of apply:

applyl[fa, args] « app[caar([fa], args, fa]

applfn, args, faj « |
fn = CAR - caar[args],
fn = CDR < cdar[args],
fn = CONS - cons[car[args], cadr[args]],
fn = LIST -+ args,
fn = ATOM = atom|[car|args]],
fn = NUM - num|car[args]],
fn = NAME - name[car[args]],
fn = NULL - null{car[args]],
fn= ENUM - enum/|car|args]],
fn = SUCCESSOR - carlargs},
fn = PLUS - applus[args],
fn = TIMES - aptimes[args],
fn=NOT - [car[args] = T #® F, car[args] = F * T],
T - apd[assoc[fn, fa], args, fa] ]

eval[e, a, fa] « |
num|e] * e,

e=T e,
e=F e,
e=NIL “* e,

name[e] # cadr[assoc]e, a}l,
car[e]=QUOTE - cadrle], .

car{e}= COND = evcon{cdr(e], a, fa],
car{e]= AND = evand[cdr{e], a, fa],
carf[e]=OR = evor{cdr|z], a, fa],

T - app[car[e], evlis[cdr{e], a, fa], fa] ]

apd[fd, args, fa] + eval[caddr[fd], pair[cadr[fd], args], fa]
applus[a] « [null[a] * 0, T - car[a]+ applus[cdr(a]]]
aptimes([a]+ [null{a] * 1, T # car[a] x aptimes[cdr{a]]]
assocle, a] « [e=caar[a] ® car[a], T < assoc{e, cdr[a]]]

pair[x, y] ¢ [null[x] < [null[y] * NIL], T # cons[list[car([x], car[y]],
pair[cdr(x], cdr[y]]]] |

evlis[e, a, fa] + [null[e] # NIL, T < consfeval[car[e], a, fa],
evlis|cdr([e], a, fa]]}]

evconle, a, fa] + [eval[caar[e], a, fa] ® eval[cadar[e], a, fa],
T - evcon{cdr(e], a, fa]]

evandle, a, fa] + [null[e] # T, eval[car[e], a,fa] <
evand|cdr(e], a,fa], T * F]

evorle, a, fa] + [null{e] #* F, eval[car[e], a,fa] * T, T * evor|cdr{e], a, fa]]
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The reader who finds this piece of coding dense may either puzzle
through it himself, study one of the texts on LISP programming. or simply
take it on faith that it does what we elaim it M 'I‘lut reader familiar with
one or more LISP dialects should note that this mtetpreter differs consider-
ably from the apply operator of any emwm implemcntatwm Its arguments
are different, it does not handie LAMBDA o!”meﬂonat ai:guments. it does not
evaluate free variables, it treats 'F. E“ m ani Mimh in a non-standard
fashion and it has no PROG feature. '

Although we must normally defipe mMim with a fixed number of
arguments, this interpreter provides three specific gxn_epti_ons. PLUS,

TIMES and LIST. | - |

It also provides for three logical operators: OR, AND and NOT.

NOT is a function defined only on the domain . Its behavipr is completely
explained by noting that not[T]= F and notfF}=T. The prefix symbol for "not"
is "=". AND and OR are slightly more complex. They are variants of the
conditional form. Mathematically, "A" and "V (m am for "and" and
"or", respectively) are functions en the dymsin § lhvﬁ;g two arguments.

They are completely Wb}ﬁ&mm

X X -""‘I ﬂr
T T T T
T F F T
F T F T
F F F F

If these were evaluated in LISP in the same manner as other functions, then
a form such as "¢ V ¢," would require first evalaiting 4 and ¢, with the
expectation of getting T or F in each case and M nﬂng the abtwe table to
get the value of the form. What we actually do i,s q,utte differeat- First €
is evaluated. IfﬁxiaisT theawconclndethatc Vc‘,‘ is T and do not
evaluate 6 at all. But if (1 is F, then we have to evaluate Y We treat
"A" gimilarly; if § is F, we conclude that cl A U is F and do not evaluate €-
The form "¢ v €' is completely equivalent to the conditional form
[, * T, T * ¢], and the form "(1 A cl" is completely equivalent to the

“
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conditional form [€ < T =* F].

This makes possible such definitions as the following alternative
definition of member which would not work if these functions were evaluated
in the standard way.‘ (Why?) ‘

member{x, yl ¢ mnull{y] A [x = car{y]V member(x; cdr[y}]]

The interpreter we have defined conv*enlently provides for AND and .
OR to have an indefinite number of arguments The form "CJ ves A c " is
translated into (AND €* ... € *), and simﬁarly fop " with OR AND
evaluates its arguments from the Teft to right untfl it either finds a false one,
whereupon it concludes F without further evaluhtion. or else if they are all
true, then the value is T. (AND), that is, AND of no arguments, will be T
because none of its arguments are false. OR evaluates its arguments from
left to right until one of them is true, whereupon it comoludes T without
further evaluation, or else if they all evaluate false, then the value is F.
The value of (OR) is F because it does not have at least one true argument.

Theorem 2. 3 (lntggz;eter Theorem)

Let 6,,...,6 be a self-contained secjﬁ‘ence' of 'ié&ﬁ'réive definitions
(in the sense of Lemma 2.1), let ¢ be the name of the function defined by 61, |
and let L PTRRRPY. . be any sequence of s~ expressions where m is the num’ber
of arguments for gol .Then either - EES :

L)
or else both sides of this equation are undeﬁ!x,m (i., Lo both -eomputations
produce the same value, or both fail to produce valqes)

¢p1[a1.....a 1= app’ly[list[é *....6 *]. ﬁst[al.....d

The st‘ai'ting point for all theoretical study of computation is the fact -
that any one formulation of a sufficiently general class of effectively comput-
able functions always turns out to be equivalent to all other sugh formulations.
Historically, A, M, Turing defined a class of conceptualized machmes of
very simple design having an infinitely long tape* ‘”’which to read and write.
Any function that can be ‘¢cofiputed on such a Tuf ¢ hine is called com-
putable, Turing then gsve very conwnc’iﬁé“érguménis to show that the most
elaborate computers that he ¢could think of céuld’ ”ﬁot compu e anythmg that
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these very simple machines could not compute, given enough time. Turing
also showed that there is a universal Turing machine that could interpret any
other Turing machine, given a description of the other machine,

It is possible to write a recursive function that simulates a universal
Turing machine. It is also possible to design a Turing machine that simu~
lates the interpreter "apply". ~ This not very surprising fact is the basis for
a proof that the partial recursive functions m;‘ the same as the partial com-
putable functions on a Turing i;iachh!e. '

Turi_rig' s Thesis

Any function which ¢an be eﬁmwely ch ‘can be computed by a
Turing machine,

From this we may conclude that any funetion of s-expressions that is
effectively computable is recursive. This is She converse of lemma 2.1,
and is known as '"Church's thesis". | "

Problem 8

Write an interpreter that evaluates arithmetic forms orly. It will be
called areval, and has two arguments. The first argument i3 a form to be
evaluated for mmp&e, (PLUS 3 (TIMES x Y} The soeond ‘argument is an

a-list" which defines me vilues of the wriabm wewring wwtin the first.
argument, for exampte, ((X2)} (Y 7). 'So arevﬂ{(PLUS 3 (TIMES X Y)),
((X2)(Y TV} =3+2 X7 = 17. ] does not handle conditional {forms or function
definitions. - B

Further Reading

' For the reader wishmg to leam LISJ? a8 & progranming language, -
there are two books: [McCarthy et al, } and [Weissman]. Additional informa-
tion on particular LISP fmprementatims is usually svsilable at each installa-
tion.  There is also a set of graded LISP problems with anewers [Hart and

Levin], which is useful as a teach-yaurself aid,




There is an excellent discussion of the validity of Turing's Thesis in
[Kleene, §70]. In [Davis], Turing machines are used as the starting point

for the development of recursive function theory.
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CHAPTER THREE
PROPOSITIONAL LOGIC I

Preview of Chapters Three and Four

This chapter begins our study of logic as a tool for making formal
deductions. Propositional logic is the logic dealing with the compounding of
sentences or propositions using connectives such as "and", "or", "not", and
"implies'., It is not an adegquate logical language for making inferences
because it deals with entire clauses and does not consider their internal
structure. We study propositional logic because it is the ground floor of the
two-story edifice of first order logic, which is our main subject. The ter-
minology and organization of our study of propositional logic will carry over
directly to first order logic. '

Chapter Three introduces the language of propositional logic, the
technique of making logical propositions, and the feasibility of mechanically
checking deductions to determine if they are correct. Chapter Four presents .
the mathematical theory of propositional logic.

§3.1 Propositional Formulas

Making use of a fairly loose analogy, we can say that propositional
variables correspond to simple declarative English sentences, and that
propositional formulas correspond to compound sentences,

A It will not rain tomorrow.
B We shall go to the beach,
A DB I it does not rain tomorrow, we shall go to the beach. )

A and B are propositional variables, "2'" means "implies", and AD B
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is a propositional formula. :
We shall make the assumption that unlike English sehtences proposi-

tional variables can always be interpreted as being either true or false

assertions, There is no middle ground such as too ambig‘uops or "doesn't

iy

“make sense'', Proposnional 1og1c is also cruder thg.n Englisl} in that the
truth of a compound proposition depends only on the truth of its components.
and the way they are connected by log1ca1 operators, and not on the way that
they might meaningfully be related. For example, the English sentence

"If two plus two is five then the world will end next Monday, " ¢an be con-
sidered as nonsense. Suppose we let A mean "Two ;ﬁfu’s two is five," and B
mean ""The world will end next Monday." If A and Bare both false, then

A D B is considered true. This is part of the definition of "', which simply
requires that if A is true then B must be true. Since A ii‘ot true, B '
~doesn't have to be true for A 2 B .to be-true. .- The.saying "'If wishes were
deeds, then beggars wonld be kings, " captures the essence of this type of
thinkmg. e e =

Defm1t10n 3 1

A proposmonal vari.able is a name. . (Ig;:bggiqg,‘wiﬂ;:gg capital letter.) -

A proposxtlonal formula is

(i) a proposxtional variable |
or (ii)—fa) -
or (iii) (a) v (B)
or (iv) (a) A (B)
or (v) (a)>(B)
or (vi) (a) = (8)

where a and B are themselves propositional formulas.
The names of the propositional oéom‘;ecgigg\s are:.

=, not

vV or

A and

S implies

= equivalent
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It follows from this definition that prOposmonal formulas can be con-
structed of arbitrary size and depth of parenthesization. Sometunes we do
not write all of the paremheses becme they ere not needed

Examples:
A _ _ , A>B .
AV (BAC) o A 2(B2C))

(AAB)=(BAA) (Al A (A2 A A3))

§3.2 Interpretation
The following truth tsble is designed to interpret propositional formulas
for truth or falsity. To imterpret & formula we must first decide on a truth
~value (T or F) for each propositional variable, This cannot be inferred from
the truth tables and for the moment at least must be considered as given.
Having done this, we can then asaign a truth value to each snb-fnrmﬁla'
starting with the innermost ones and ending with the entire given formula,

Truth Values of the Progositionl! Couuectives~

A B AAB AVB =-A ADB A=B

T T T T F T T

T F F T F F F

¥ T F T T T F

F F F F T T T
Example:

Evaluate (A A B) 2 (B V C) when A is T and B and C are F.
From the table, we gee that if A is T and B is F, then
AABis¥, IfBisFandCis F, then BV Cis F. So the
formula becomes F = F, which according to the table is T.

Problem Set 9

Evaluate each formula, using the following table of values for variables.
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Al: T Bl: F
A2: T B2: T
A3 F B3: F.

1. A3>B3 2. A3 > A2

3. A1V Bl 4. A2 A Bl

5. —A3 6. ‘1"1}‘#83.

7. "1(A3 vV B2) 3. “"(BIDBl)

them into s-expressions. The s-expression form should come as no surprxse-
propositional variables undergo no change, and the other forms translate mto :
(NOT a), (OR a ), (AND « B), (IMPLIES a 8), and (EQUIV «a ﬁ) Thus

(A A B) = (B ¥ C) translates into (EQUIV.(AND ABY(OR B C)). -

Problem Set 10

1. Write a LISP predicate wff(x] which is8 T if x 1s a well-formed
formula of the propositional logic and F otherwise- wit itsel‘t should never be
undefined. SN P
"2, An mterpretatmn for the propositional, vaxiables of a formula is a
list (in any order) pairing each name with T or F, For example, ((A T) (B F)
(C F)) is the interpretatlon used in the example preceding problem set 9,
Write a LISP predicate propevalle, a], where. e ig, 3. propeaitional formula and
a ig an interpretation for it. Propeval sbqplsi interpret the. f,grmula as T or F,

If a propositlonal formula has exac:tlyr n dtﬁerent variabies in it, then
there are 2 different interpretationa for the formula. This ig.the number.of .

different ways to assign T or F to n things.

Definition 3.2

If every interpretation of a formula is T, then the formula is called a

tautolm.

If at least one interpretation of a formula is T, then the formula is
called satisfiable.
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If no interpretation of a formula is T, then the formula is called

inconsistent.

Corollary 3.3

Every tautology is satisfia.ble but not vice versa.. If @ is a tautology,
then g is inconsistent. If o is inconsistent, then ~a is a tautology., If&
is satisfiable and is not a tautalpgy then ~a is alaqua;xgﬁahle and is. not a
tautology. -

Problem Set 11

1. Which of the following ure tautolegles? = Which of the rest are
satisfiable or incmsistent?

a, AV-AA ' bh. AA-B

c. APB < d ADIAVBY .

e. AD-A con o ol AV S-BYSw(AAB)
g- (AAB)={(AVEB) h. ~(A>B)AB

2. Write a LISP funétion Wti{x{ Such that ﬂ“ x ia a formula of the
propositional cnlcu&us, then vars{ﬂ h tﬁe d’éf oi‘ aH iha 'ropbsmonal variablesz
that occur in X. o ~ B |

3. Write a LISP funetion tahh!x) suth tlni if x is a set of propos:txonal
viriables as is genersted above, then the valué of ta’bs{xj is a 1ist of all 27 ‘
interpretations for these variables, For example consider the formula
(IMPLIES (AND A C) (OR'B Cffi' Then vary' dr'gifa formula {s (A'B'C) or
some permutation thereof, and tals of (A B'¢Y iaw oihe permutation of
(A T) (B T) (C T ((A T) (B T) (C F)) HA™TY (8 F) (C TV (AT (BF) (C F))
(AF)(BTICTHDHAF)(BT)IICF{AFIBF(CT)(AF)(BF) (C F))) '

4, Write a LISP predicnte uut{xi that is '!‘ if x is a tautology. and F
otherwise, : covauTd R D T Dol gt
5. Write a LISP predicate sat{x} wiich is T if x is satxsfiable, and F

otherwise.

Two propositional formulas « and 8 are said to be egﬁivalent formulas
if @ = B is a tautology. The following tdble of equivalences contains many
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well-known properties of propositional formulas. They are given in the form

of schemas where the Greek letters-are used to represent any formulas. So
aAB being equivalent to B A a meansg more thap AA B being equivalent. to.

B A A. It means, for example, that (A 2 B) A C is equivalant.to C.A (AP B)

Equivalences of Propéaitional Formul’aé:

1. avg Bva commutativity of "or

2. aV(@BVvy (a Vv p) v r associativity of ''or"

3. aAf e commufﬁwi‘ti?ﬁf"é;ﬁd"
4. aABAYY  (anBiny ‘“”}“aséoclﬁiéify of "and"
5. —ma& . ‘@ 7Y elimindtion of double negation
6. =(@Vh e nA —13"" U7 DeM@Fgants’ ‘Laws’ o
7. e NB) T e vagT "%Delfogkan‘s LﬁWs

8. avV@AYY (&« VB)A (o v 'y) arstribltive Taw

9. aA@BVY ' (a Ap) V(a Aﬂ d:s%ﬁﬁﬁt’ﬁeaaw B
10. a V& - ffaémiio?g“

11, aAa | a

12, a2 m@VB - ‘-»efﬁhﬁiiujoﬁ e&"tmplies"

13. a= ﬁ (a o ﬁ) A’(B o a)' elimingtion oi "equ‘iv"'

iF beo2

: From eqnivalences 1, 2, and 10, ‘We Sée ﬁ:é" ! éaﬁon for regarding

Mop¥ ag havrmgm!ﬁdemﬁe RumBer of b ghimiées  in wiﬁ%f without '
repetitions. - From eqtivaledcess; ‘¥, andP13 "the snid Hofds for “and™.

So we cari write A V B Vi@ withoti¥ bho*ﬂr‘&f WA Sy $t A dlibctates, and in

s-expression lefigukge we can write (OR KB ®),” Fefmitting AND and OR to™

have an indefinite number of arguments. It is consxstent with this bractice to

- assume that (ORY < F and that (ANDy = T;* 7 o ohab gaiea o

Problem 12

Rewrite wff, propeval; taut and sat to handle AND and’ OR with an
indefinite number of argunients. T

§3.3 Deduction

If we are given "It will not rain tomorrow, " and "If it does not rain

~37-

SRR

Rt e



tomorrow we shall go to the beach, " then we migy' draw ‘kthé:’c'ohcl'uSion
"Tomorrow we shall go to the bedch." This is called a deduction,
, A
ADB

B

Ultimately, we want to be able to magex;.se of deductions of consider-
able length, and to Afrive at~coﬁcm'siens th.gt n:?e not immediately obwious
from the given statements. | The rules for mak&ng deductions. in propositional
logic are extremely mm,ple, | A &eﬂuctwn ncmgqsts of a sequence of numbered
lines. Each line is a prqyaai‘twnal fanmtla.. Ql?d the lastone.is the desired
conclusion. ‘There mus:t be a Teagon or MM@ for writing each line,
and there are only three kinds -of just ". ation, A line is Miﬁod {a) because
it is given, (b) because it is an axiom, or (c) bqamse it follows from previous
lines by using & rule of inference,
As axioms far,prcpusimmﬂ logic, we M allow any !’m:mula that is
a tautology. : :
The only mienf mim for Mml lagic is medus-ponens.
This rule states that if there is a line in {he daduction, Mhich is the formula a,
and if there is am&m' line in the deduction Mh the formala & 28, then we
may deduce the formula 4. We, ma.;a gnd;m;.&m teons
inference, and 8 the ¢ nSeg gaent of the bufer :
appear before “the other in the mm hut;mg
antecedents, T
The tol»lowang ﬂeductizm mws ﬁwt 'H e e
1 thru 6 below, the fanmﬂa mnmbemml 21 can *bfve deduced

1. ADB .given .

2. B=2C RSP R givmf_,u,.
3. C>D ,‘ifven

4, AVE given

5. DDG given

7. (ADB)D((B>2C)2(AD>CH tautology
8. (B2C)2(ADCQ) : Mp 1,7
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9. ADC | Mp 2, 8
10. (ASC)2(C>D)=>(A>D)) tautology
11. (C>D)D>(A>D). Mp 9,10
12. A®D Mp 3, 11
13. (AVE)>((A>D)>(DVE)) - tautology
14. (ADD)>(DV E) Mp 4, 13
15, DVE Mp 12, 14
16. (DVE)D2((D>G)>(GV E)) tautology
17. (D2 G)>(GV E) Mp 15, 16
18. GVE Mp 5, 17
1. (GVE)2(E>G)>QG) tautology
20. (E2G)DG Mp 18,19
21. G Mp 6, 20

3.4 Proof-Checking

We are now in a position to attempt a miniature proof-checker for
It is a predicate of three arguments, proofchkig, c, d],
where g is a list of given formulas, c is a conclusion, 'and d-is a deduction.
If all the arguments have the correct format, andd is a valid deduction
proving c starting with.g, then the value of m:oofchk is T... Otherwise it is F.
. We have already specified an s-expression language for propositional
formulas allowing AND and OR to have an indefinite number of arguments.
The format of the arguments of proofchk is as follows:

propositional logic. -

A list of propositional formulas,

g:
c: A single propositional formula.
d: A list of steps. Each step is a hst of three items. . The

first item is a number. The steps are numbered con-
secutively, 1, 2, 3 ... The second iteris is a formula.
The third item is the justification for the formula, It can
be (i) GIVEN, {ii) TAUT or (ifi) (MP m n). ‘where ‘m - and

n are numbers of prev:ous lines.
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Using the previous example, g = ((IMPLIES A B) (IMPLIES B C)
(IMPLIES C D) (OR A E) (IMPLIES D G} (lMPLIES E G)), c=G and d:

({1 (IMPLIES A B) GIVEN) (2 (IMPLIES B C} GWENT .o (20 (IMPLIES
(IMPLIES E G) G) (MP 18 19)) (21 G (MP 6 20))).

For a deduction to be valid, it must have the correct syntax and in
addition:

1. If the justification for a step is TAUT, then the body of the step
must be a tautology ‘ -

2. I the justification for a step is GIVEN, then the body of the step
must be a member of the list g. ‘

3. If the justification for a step is (MP m n), then letting the body of
the step be #, and letting the body of step m be &, the body of step n must be
(IMPLIES a ). Furthermore both m and n must be less than the number of
the step being justified. ’ Ere e '

4, Themmmmwmtue, ‘thie conclusion.

A recursive detfinition of proofehi followe: ’

proofchkig, ¢, dJ + 1af ;A wiffe ;A vtatq:nsﬁdl A -‘mun[d] A
steporder - emdrfixstid)] = ¢ N prdofebki g,
wiflisix]}* [neilix] * T, stomin} +¥F; T"‘Mﬁ"‘ mfﬂlﬂxm

s1[x}+ —atomix} A nulifedrix]]
s2[x]* —atom|[x] A slfclrixl]
s3[x] ¢+ —atomfx] A s2{cdrix]]

wisteplisx] * [nullfx] * T, atom[xl *F, T+ wt‘gte;;(c&r{x}} A
wisteplis[cdr[x]]}

wistep[x}+ $Hx]A rmmfctrf:ﬂ*h w!ﬂ&adr[xﬂ A wljum[eaédr(xn

wijustfx}+ x = GIVEN Y x = TAUT V 1&3}‘&}/& clrfx} NP A
num[eadr{x}} & numjcaddrix]]]}.

steporderfx]* {si[x] * T, T *caarfx}+1 = me} A gteporderfcdr|x}]]

proofchkiig.d; ]+ joalliq) + ’r. T+ impehttc. dﬁ earfqn N
proofchkl(g, d, edriq]}} .

stepchk(g, d, s} ¢ [caddrfs] = TAUT -+ taut[cadr[s]]. caddr[a] = GIVEN -»*
memberjcadr{s}], g], T + mpchkid, s, caddr[s]}]

mpchk{d, s, j] + caar{d] s cadr[j} A cadr{j} < car{s} A caar[d} = caddr{j] A
caddr{j} < car[s} A cadr{fetchicaddr[j], d]] = list[IMPLIES,
cadr{fetchfcadr{j}, d}}, cadr{s])

last[x] & [s1[x] * car[x], T < last{cdr{x]]] v
fetehin, x] ¢ [null{x] # NIL, n = caar{x] @ car[x], T - fetch{n, cdr[x]]]
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Problem 13

If you have access to an interacting LISP system, program a more
practical proofchecker in which you can specify the given and the desired con-
clusion, and then enter lines of proof. @ The program should give diagnostics
when it does not accept lines offered to it, and let you try again,

There is a difficulty with this method of proof that prevents us from
making deductions in a reasonable length of time in certain cases where we
would expect to be able to do soiii:Suppose a is‘a formula containing 40
different propositional variables, It shquld begm;o show that a V ~a is a
tautology. But if we set ta;ut”t'ocheck Miother this is a tautology, then it

will try to form a list of 240

interpretations and will fail on any existent
computer, A ‘

One way around this difficulty is to make use of the idea of substitution
instances. If a is any formuja,, then: rmwwmw&tonal
varlables wgth formulas _generates A substitutiondnatance éf:the original -
formula If a particular propositional variable isito:be replsced, then all -
occurrences of it must be replaced, and must bereplaced:by tive same
formula. For exampile, @;pbsﬁ&ntion instence: otAA&B:@ A) could be
(c v D) A ((B = D) D (c VIDe oo e i e b SR

A substitution mstqnqe of a ;autolm i& ﬁmys tétantolaogy -So we
can add to our deductive systern for the propositional-degic on¢ more rule of

inf erence: -

sub‘stitui_ion"z‘-iiié': R

A line in a deduction is justified if it is a substitution
instance of a prevmus line, and that,yprevioués lme i.a a
' tautology ‘

Problem 14

Modify proofchk to allow for substitution instances of tautologies. -
The justification for such a line will have the for;,:} (INST. 3), Where n refers
to a previous line, whose Justification is TAUT




PROPOSITIONAL LOGICH

Prew ew of CMW

This chapter deveiops atheory of propesititinal togic, The concep-
tual framework, and even many of the Wﬁiﬁ’mrry ovér d{rectly to

the theory of firsé ovder logle. - - SRR

The theory natarally divides H9elf inte two dspects, The firat of
these, called groef theery, concerms Heeif: MWM farmtﬂas and
deductions, viewed as formal cbjects to be menipalistd, “withott sty concern
for what they ave intalttvety suppesed 1 wiéan,” “PRée sétond dopect of the
theory is model tsory whose purpece I8 8 vl idits the 1og1¢ wth reépect to
its intended meaning. The most important theorems for our purpose are

those that relate proof theory to model theory,

§4.1  Proof Theory

At any given ﬂvme it 18 usefol to Hmit t&e mcussion of pr'opgaitional
logic to those formulas that contain only & pwtwtxiar get of pmpoltﬁanal
variables,

Definition 4,1

A vocabulary s any m«emzpey set af prv‘t_"' ﬂgnal variables.
A l_a__nm (of propositichal Togit) is the | set of all tormulas containing
only variables from . a particular vocabulary,

-42-




A vocabulary may be finite or infinite. Every vocabulary defines a
unique language, All languages are infinite sets even when based on a finite
vocabulary. If the formula a is a member of the langyage L, then the
formula ~a is also a member of L and vice versa. v If the formulas a and 8
are both menibers ef L, thena AB8, aV ﬁ, etc.ﬂa,re“gls»q Egnembers;of L.
CoriVersely, if a compound formula is a member ofL,;:'theg; its constituents
are members of L. ' | v

When using logic as a deductive tool, we frequently select some set
of formulas belonging to a language as the axiomatization of our subject
matter, Such a set of axioms can be called a theory. We then want to dis-
cuss those formulas that can be deduced Within the theory. These are some-
times called theorems. This motivates the following definitions:

Definition 4.2

IfLisa language. then a eorx is any subset of L, If T is a theory
of L, and & is any formula of L, then the notaticn "'I‘!-a" means that there -
exists a deduction (as specifxed in Chapter Three) such that every given
forrnula of the deduction is in T, and the conclusmn is a. We can read this
as "a is deducible from T". The set of all @ in L such that Tra is the
set of theorems of T for which we write Th(T)

Definition 4. 3

The theory of T is said to be inconsistent if there is some formula «
such that Trta, and Tka, Otherwise T is consistent,

Corollary 4. 4

If T C L is the empty theory, then Th(T) includes all tautologies of L.
If T € L is inconsistent, then Th(F) = L. If T and R are theories of L, then
(Th(T)-U Th(R)) € Th(T U R).

Definition 4.5

A theory T © L is complete (iri L) if for every formula & € L either
either Tta, or Tka. |
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It is important to observe that the completeness of a theory is
relative to the language of which it is a part. The ‘theory is complete if all
the formulas of L are provible or refutable from T, and none of them are left
undecided, But the same theory may be incomplete with reSpect to a larger

language.

Definition 4.6

If T< L is a theory, and @« € L, then if nefther Tra, nor Tr-a, then
@ is said to be independent of T

We have seen that formulas may be divided into three classes,
tautologies, mconsistent forrrmlas, and those that are satisfiable but not
tautologies. Given any conamﬂmt them‘y‘!‘“ in tbe lsnguage L, the formulas
of L can then be divided into three dispht chues reiaﬁve to T: (i) those
that are deducible from T, which includes th:e mﬁw“. as a subaet
(ii) those whose negatfons are d"educth&e trom T wajch we can call the
formulas refutable ffom T and which mcludea all me im;onsiatent formulas
as a subset, and (ili) those that are independent of T. HTisa complete
theory, this last class is empty.

tautologies

" deducible

satisfiable
but neot

rcfd:ible
from T

tautologtes

inconsistent

formulas T is incomplete T is complete

'.'



Problem Set 15

1. Which of the following theories are inconsistent? Which are com-
plete within the smallest language containing them?

a, A b. AVB
-A VB
B> C
-1C
c. AVB d. A ‘
1B ' B
C

2. Prove that if T is any consistent theory in L., there is a theory T’
in T..which is complete and consistent, and such that T < T,

3. Show that every complete theory has a canonical form.

The main theorem of this section is known as the deduction theorem
(for propositional logic). It is the formalization of the intuitive proof tech-
nique whereby when we want to prove a result having -th’év'fdrm "A implies B",
we assume A and then derive B. | '

Both the statement of the theorem, and the method of proof are typical
of proof theory. The statement of the theorem is simply that if a certain
deduction exists (and a deduction is itself a formal object as defined in
Chapter Three), then a certainother deduction must also véxist. The proof
of the theorem makes no appeal to the meaning of propositional logic, but
merely describes how to obtain the second deduction if the first one is given.

This is known as a constructive proof.

Theorem 4.7 (Deduction Theorem)

If TU {a}rB, then Tra D 8.

Proof: The assumption of this theorem is that there is a deduction of the
formula 8 in which only the formulas of T and the formula a are justified as
given. Let this deduction be the sequence of formulas ﬁi.”. .oy ﬂn where

Bn = B. We shall use the method of mathematical induction to )show that for
each i, where 1 < i < n, it is the case that Tra DBi. This is sufficient to

prove the theorem, because Tra 2 Bn is the desired result.
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By the induction principle, it is sufficient'to show that if Tra 2. ﬁ for
1s j<i, then Tha Dﬁ There are four cases to consider (i) if ﬁ is a
tautology, then & 2 3 is also a tautology, and 8o 'I"*& Dﬂ (if) If B follows
from ﬁ and ﬁk by modus-ponehs in ¥re given proof, Where B is ﬂJ > ﬂ
j<i, and k < i, then by the inductios assumption Tra DﬁJ and Tra 2 (ﬁ Dﬁi
Then since (& 3.0 )2 ia D (33 D-‘ﬂi‘)s)@ = Eﬁ ) is a tautology, by two apphca-
tions of modus-pams we get & D # ﬁilﬂ!# is justified as given in the
first proof, and g, € T, then THB,, hnd sl’nceﬂi b'(a S$,) is a tautology, by
modus-ponens we g’e‘t Tra 2 8,. ﬁv? l’fﬂl 15 Jastitied u a given in the first
proof, and B1 is @, Then T+ 3’1 becagse this Tormuls {a 2 a) is a tautology.

A constructive proof usually telis us more than is required for the
theorem. This proof, for exampie, il oe Wt the deduction Tra 28 is
computable from the dedaction T d fadng. Movegver, the second deduction
is atmestthreetmvsasimnmm mwwnmmm
proof is an existential proof, . o -

Problem 16
Let T be the theory A 2 B, B acs.‘ Tien T U {AIC, and we write
out this deduction in fell: -

i. A given

2. A®B8 given
3. B Mp 1,2
4. B2C given

5. € Mp 3,4

The deduction theorem tells us that TFA D C, Obtain this deduttion by
following the construction given in the proof of the deduction theorem. is
there a shorter dedustion for THA © C? :

§4.2 Model Theory

While proof theotry is coniterned with the properties of deductions,
model theory is concerned with the meaning of the formulas. A formula is a
logical compound of propositions, each of which is regarded as true or false
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in some context. The purpose of a model is to supply that context; therefore:

Definition 4. 8

A model in a language L is a function from the vocabulary of L into 7.

If the vocabulary of L is finite with n members, then there are 21
different models for L.. If the vocabulary of L is infinite, then there are
infinitely many models for L, in fact, uncountably many.

If M is a model in the language L, and @ € L, then M assigns a truth
value to each variable occurring in @. Then, using the truth tables for the
propositional connectives, or else using some procedure such as propeval of
Chapter Three, a truth value can be assigned to a,

Definition 4.9

If a evaluates to the value T using the model M then we say that M
satisfies &, and we use the notation "M fa'' to express this concept.

Corollary 4.10

If M is a model in L., and & € L, then either M fa, or Mf=a. If for
every Min L, M }:a, then @ is a tautology. If there is at least one model M
such that M I:a, then «a is satisfiable, If there is no such M, then «a is

inconsistent.

Definition 4.11

If TS L is a theory, and M is a model in L, and if M ka for every
o € T, then we say that M is a model for T, or M satisfies T, and we write
MET.

So far, we have used the symbol " k' to relate models to formulas or
theories. We can also use " }'" to express the idea that in any context where
the theory T is satisfied, the formula a is also satisfied.

Definition 4,12

If TC L, and « € L, and if every model in L that satisfies T also
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satisfies @, then we say that T semantically implies or semantically entails

a, and we write T|=a.

It is important to realize that Tl:a, or T semantically implies &, is
not the same thing as saying T+e@, or @ is deductible from T, at least not
until we have proven this to be the case.

The main result of this section is the compactness theorem, a rather
surprising result when first seen. Suppose some infinite theory is not satis-
fiable by any model. One might think that this is a property of the theory as
a whole. But the compactness theorem states that the unsatisfiability can
always be localized to some finite portion of the theory.

An unsatisfiable theory is one that has no model. An inconsistent
theory is one for which there is a formula .a@ such that both @ and —a can be
deduced from the theory. The former concept is model theoretic, while the
latter is proof theoretic. If a theory is inconsistent, then it is obvious that
some finite sub-theory is also inconsistent because the deduction of the
inconsistency had t‘o come from finitely many given formulas., But we have
not yet proved that unsatisfiable and inconsistent are equivalent concepts.
The compactness theorem is a result preliminary to proving this.

Theorem 4. 13 (Compactness Theorem)

If a theory is unsatisfiable, then it has a finite sub-theory which is

unsatisfiable,

Proof: If the theory T is finite, then the theerem is trivial because the sub-
theory T ‘is taken to be T. The theorem did not promise that T was a
proper subset. If the vocabulary of T is finite, then there are 2™ models
where n is the number of propositional variables in T. None of these models
satisfies T, and therefore eachbone falsifies some formula of T. This set

of formulas is not satisfiable, and is the required T, '

Suppose the vocabulary of T is infinite. Let the propositional
variables of T be enumerated in some order as the sequence al, a2. ces  We
shall call a function from some initial segment of this sequence into 7 a
""partial model'. A partial model assigns truth values to a, thru a_ for some
n 20, We can picture all partial models as nodes on an infinite tree. The
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first node is the empty partial model. The next level containing two nodes
assigns T and F to s and the third level containing four nodes assigns T
and F to a, and a, in 4 different ways, etc,

A partial model assigns truth +: ‘alues only to those formulas of T
whose propositional variables are among those that th»e particular partial
model interprets. If a partial model interprets at least one formula of T as
false, it will be called a "terminal'. We now "prune" the tree by cutting
off all nodes that are descendents of terminals, If the pruned tree has
finitely many nodes, then for each terminal we select a formula which is
falsified by that terminal. The set of these formulas is the required finite
T', because if M is any model, then some initial sequence of M is the same
as some terminal So there is a formula in T’ which is not satisfied by M.
Therefore T’ is an unsatisfiable theory. ‘

Now suppose that the pruned tree after ehminating descendents of
terminals is still infinite. Then there must be some infinite descending path
passing through infinitely many nodes. This is because if the tree is infinite,
then either the left or right half of it is infinite. Then either the left or right
half of this half is infinite, etc. But such a path constitutes a model.
I'urthermore, this model does not falsify an'i formulas since none of the nodes
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it passes through is a terminal. So this model must satisfy the theory T -
contrary to assumption. Therefore the pruned tree cannot be infinite.

84.3 Consistency and Completeness

We now use model theory to critique the consistency and completeness
of deduction. We want to show (i) that deduction only audm us to obtain con-
clusions that are semantically justified, and (ii) that all such conclusions can

be obtained by deduction.

Theorem 4. 14 (Consistency Theorem)

If TCL, @ € L and Tra, then Tha. -

Proof: Let.ul, ceesO =W be a deduction of @ from T. By the induction
principle, if we can show that Thj for j<iimpliies Tta,, then we can con-
clude that T}:ai for each i, and, in particalar, THa. There are three cases:
(i) 1f @, is a tautology, then Tzl:ni becamse all models of L satisfy o, i (ii) If
@, is given, then @, € T and so Ti-\u - {idd) ﬂ‘n follows from @ and a, by
modus-ponens, ma is &; Da mwwmmm Téa,
and Tha. Da, o S0 if MH MML: and Mba, LN Fm,mwmsbie

of "2, it is seen that Mim and B0 T%n.,

Lemma 4,15

If T fa, then there is a finite subset T’ of T such that T’ ko

Proof: T U {~u«}is an unsatisfiable theory, since every model that satisfies
T also satisfies &, and therefore does not satisfy ~a. Accm'ding to the
compactness theorem, there is a finite subset of T U «{-nd]; wkhich is also
unsatistiable. We can always include —~a in this set, o it can be written
T'U {~o} where T'C T is finite. If M}T, then M cannot satisfy &, and so
Mta. Therefore T }a. o

Theorem 4. 16 (Completeness Theorem)

If TCL, @ €L, and T}a, then The.

Proof: By lemma 4,15 there is a finite T C T such that T fa. Let T =
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{Bys--- .32}. Then B, = (B, 2 ...(B_ = a)...) is a tautology, and there is a
deduction starting from this tautology, introducing each ﬁi as given, and then
detaching it from the tautology using modus-ponens, such that the conclusion

of this deduction is ¢.

Corollary 4.17

If there is at least one formula that cannot be deduced from the theory

T, then T is satisfiable,

Problem 17

Prove corollary 4,17.
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CHAPTER FIVE
RECURSIVE FUNCTIONS AND SETS

Preview of Chiapter Five

This chapter continues from where we left off in Chapter Two.
There we formalized the notion of & recursive function, and showed that
there was a universal recursive function apply. In this chapter, we continue
the discussion of recursive function theory by demonstrating that there are
perfectly well defined functions that are not recursive, It is surprisingly
easy to get such a result once we have & universal function. The theory
goes a bit further by showing that there are functions that are in some sense
not even halfway recursive, : '

$5.1 l{ecapitulation

To summarize the results of Chapter Two briefly, the following
schema repredents a sequence of n recursive definitions:

tpl[%l....,!ml]* A

L L TP %mn] -
Such a sequence defines n partial recursive functions, gives them the names
@, thrue , and specifies procedures for computing these functions which
terminate with a value whenever the partial function has a value, and are
otherwise undefined or fail to terminate, The recursiv'e function specified
by the procedure may not be the one we expect, but it must exist because the




behavior of the procedure is taken as its definition.

There is furthermore a well-defined effective method of coding a
sequence of recursive definitions into a single s-expx:ession. and there is a
partial recursive function called apply such that if 5 is the coded 8- expression
just mentioned, and @, has exactly k arguments (that is, my = k) and @, thru
ak are any s-expressions, then:

¢, la, ..., 0 1= apply[B, listla,, ..., akH
‘where the symbol "=" here means '"strong equality" in the sense that either
both sides have the same value, or both sides are undefined (We can also
compute any other of the @5 merely by putting its defir;ition first when coding

B.)

35.2 Turing's Halting Theorem

A. M. Turing first proved this halting tm;'em u&ing his cenceptual-
ized computers now known as Turing Machines.. He showed that there is no
computer that can always predict whether or not:another computer will halt or:
continue to run indefinitely, after stucring the structure and initial state of
that other computer. . It ig assumed-here that all:computers have access to an
unlimited supply of initially blank auxiliary etorage. Of course a computer
can predict that another computer will halt by eimp&aﬁhgs'i_taybeheviar until a
halt is encountered. But there is no way to do this without danger that the
computer doing the simulation will itself not halt.in some casges. A proof -
along these lines can be found in [Davis]. : P e

We define the total binary predlme halt{x, y] as. follow&- If applyix, y]
is defined, then halt[x, y}is T; otherwise heltfx, y}is Fi: ;The predicage hait
is certainly meaningful and well defined. But we have not specified any
effective means to compute: it.

Theorem 5.1 (First Halting Theorem)

- The predicate halt is not recur'sive.

Proof Suppose, to the contrary, that halt is recursive. Then there is a
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sequence of recursive definitions, the first of which computes halt, and the
rest of which are suxiliary hinctions for lm!t. Then we can define the
recursive function diag as follows: o

diag[x}* [halt[x, 1ist[x}1 * listlapply(x, list[x]}}, T * NIL]

The function diag is recursive because it has been effectively defined from
apply and halt both of which are, or are preaumed“ to be, recursive.
Furthermore, diag is a total function becme halt is total, and while apply
is not total, it only gets to see those ar'um‘nts certified by halt as producing
a value for apply. Because diag is recursive, its definition can be coded
into an s-expression which we shail call diag®. This is a list of the trans-
lation of the recursive definition of diag written sbove, followed by the
definitions for halt and its aweiliary fasctions,  and apply and its auxiliary
functions. Now consider the value of diagiding®} This-value must exist
because diag is tota}, Therefore, by tie iterpreter theorem, applyldiags,
list[diag¥]] must be defined and have M same vilue; and hence halt{diag*,
Iist[diag*]Jis T. But thew from the recwrsive definition for diag, we have:

diaefdiea*l - lstlapplylding®, mwm . usmumdwv 1

This is a contradiction because it asserts that some s-expression is equal to
1list of itself. This is like having a number 1 such that n = 1v.  Since we have
arrived at a contrudiction using correct ressoning, we must conclude that

our original premise that halt is recursive is not true. :

This proof is confusing at first sight, If you study it carefully, you
will see that it is really no different in its basic technique from Cantor's
diagonalization proof that the real numbers are not countable, That is why
we have called the self-applicative function "diag". Maost undecidability and
incompleteness proofs involve some sort of diafémuzatmn technique,




§5.3 Recursive and Recursively Enumeradble Sets

.Definition 5.2

A set of s-expressions is recursive if there is a total unary recursive

predicate which is T for members of the set, and F otherwise.

Since the numbers are a subset of the s-expressions, this definition
extends to numbers. For a set of numbers to be recursive, it is sufficient
to have a predicate which is defined only for numbers, and is T for members
of the set and F for numbers that are not members of the set. This is
because the set of all numbers is recursive using the basic predicate num.

If a set is recursive, then there is an effective test for membership
in the set which terminates either way. We have just proven that the set of
all s-expressions x such that apply[car([x], cadr(x]] is defined is not a
recursive set,

There is a weaker condition than recursiveness called recursive
enumerability. It applies to sets where there is a membership procedure
that always terminates when the answer is yes, but may not terminate when

the answer is no.

Definition 5. 3

A set of s-expressions is recursively enumerable (abbreviated to r. e.)
if it is the set of values for some total unary recursive function defined on the

domain of numbers,

This definition creates the picture of a machine that runs continuously,
and from time to time prints out some s-expression. Every s-expression
that is a member of the set will be printed eventually, and only members of
the set will be printed. There may be repetitions., But we cannot always
conclude that some s-expression is not a member of the set, because we may
not have waited long enough. This is a good intuitive view of recursive

enumerability.
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Defmitlon 5.4

A predicate is recureively ble if the set of arguments for

which it is T is r.e.

There are many alternative d&ﬁnﬁm for 8 r.e. set, some of which
are given in the fnll&ltn( : ‘

Corollary 3.5

(a) A set is r.e. if and only if it -is the raw (m of: values) of aome
total recursive fupetion,

(b) A setis r,e. {f and oy if it in mw -of game partial
recyrsive function,

(c) A set is r, e, if and only if it ia the: M ‘of definition for some
partial recursive func¢tion (i, e., the set of ﬁmm o hhicb the partial
function is defined).

(d) If a set is r.e. and its complement is also r, e., them both are
recursive. (This meann complement with reapect to the set of all s-expres~
sionsg, but it is also true if we take 3 complement with mm to the get of .
numbers, or any other recuraive set.)

Problem Set 18

1. Prove all the parts of corollary 5. 5.

2. Show that halt is a 1. e. predicate,

3. Using theorem 5.1, and mon&ry 5.8, psrt (d), speeify some set "
which is not r.e, T : :

The laat reault of the chapter is a strongesr halting theorem in which
we demonstrate the existence of a predicate that is not even r, e, - We deftne
the total unary predicate tot[x] te be T if and only if x i8 3 sequence of -
recursive definitions which is syntactically well formed, and furthermore
specifies the computation of a total unary function of the s-expressions.
'Tot[x] is F if x is not a well-formed sequence of definitions, or if it defines
a non-unary function, or if it defines a non-total function. Tot itself is never
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undefined.

Theorem 5. 6 (Second HaltMTheorgm)

The predicate tot is not r. e,

Proof: Assume to the contrary that tot is r.e. Then the set of arguments x
such that tot[x] is T is a r.e. set, and there is some total recursive numeric
function totenum which enumerates this set. Now consider the function diag2
defined by:

diag2[x] « [num{x] * listfapply[totenum|x], list{x]}], T * NIL]

Given our premises, diag2 is evidently a total unary recursive function.
Letting its definition sequence be the s-expression diag2*, we have
tot[diag2*]) = T. Therefore, there is some sumher k'auch ‘that totenumlk] =
diag2*. Then diag2[k] = listlapply[diag2*, listik}]] = list{diag? k)l - This is
a contradiction, So the i;i;tiél ésé.uxgﬁ;ién }bat»t,o«t,'is{_f r. e_._xm:ust -be false,
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Once again, the distinction between a rope and-a snake had proved too
subtle for Western logic. S
-The Adamantine Sherlock Holmes-

CHAPTER SIX
FIRST ORDER LOGIC « INTRODUGTION

Preview of Chapters Six, Sevenand Eight

Chapter Six iftroduces ﬁmhﬁjﬁiiéﬁ;*ﬂi@di‘ieg ‘and models of first
order logic. It contains some basic defifitttons, and an intuitive exploration
of the subject to develop skill in handling formulas and their meanings. No
deep theorems are proven,

Chapter Seven defines and develops the theory of deductions, With
the exception of the consistency theorem, all of Chapter Seven is proof-
theoretic and constructive in nature, It contains all the basic results on
provability that we shall need for the rest of the book. Chapter Seven is
long and contains many difficult exercises. 'This seems necessary in order
to develop some practical senise about deduction, which theoretical study
alone is not likely to do. _

Chapter Eight starts with the completeness theorem which is the
central topic for the classical study of first ordetr logic. 'The completeness
theorem is then extended to logic with equality, and some consequences of the
completeness theorem having philosophical implication are discussed.

§6.1 Languages, Formulas and Sentences

First order logic is thuch more subtle than propositional logic. In a
certain theoretical sense, it is sufficient to represent any completely formal-
ized process of deduction. Let us consider a very trivial deduction: Bowser
is a dog. All dogs are mammals, All mammals are vertebrates, There-
fore, there is at least one vertebrate, -A'l"lb"Each of these sentences is simple
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rather than compound. If we call them A, B, C and D, respectively, there
is no way to deduce D from A, B and C using proporitional logic. The
internal relations that make this an evident deduction are simply not available.
These statements can be formalized in first orde‘r logic as folldWs:

) dog[BOWSER]
Vx(dog[x] > mammal(x])
Vx(manimal[x] > V¢rtebrate[x])

glow >

Ix(vertebrate[x])

When we define deduction in first order logic, it will be seen that there is a
deduction of D given A, B and C, : _

In this example, there is a variable, x, an object, BOWSER, and
three predicate names. A slightly more complicated example, containing a
function name in addition to a predicate name is: The number three is not
even. If a number is not even, then it is odd. If a number 1s-odd, ‘then its
square is odd, Therefore there is some number the square of whose square
is odd.

—even(3]
¥n(—even[n] = odd[n])
¥n(odd[n] > odd[square[n]])

~ En(odd[square[square[n]]])
This is also a valid conclusion in first order logic.

Definition 6.1

A function name is an identifier.

A predicate name is an identifier.

A vocabula_tx for first order logic is a non-empty set of predicate
names, and a (phossf:ibly empty) set of function names, together with a number
(20) for each name called the degre‘e of that name.

- The purpose of the degree is to specify the number of arguments a
predicate or function has. ' |
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A term is:
{1) a variable
or (ii)¢{1’1'¢00a1 ]

where ¢ is a function name of degree n, and each of the 7; is a term. (Note
that this definition allows terms of arbitrary depth, Also. if the degree of
@ is 0, then @[] is a term. A 0O-ary term is called & constant. )

An atomic formula is ¥, ..., T b where ¥ is a predicate name of
degree m, and each ‘ri is a term. (Notg t.hat ptgdhate ;}ar{ies occur only
outside function names, and that predicatée names eatmot be nested within
each other. Also, if the degm of is 0, then ﬂ} is an ntomic formula. )

A formula is:

(1) an atomic formula

or (i) =(a)

or  (iii) (&) Vv (B)

o {iv) (a) A (B)

or (v) (&) D (B)

“or (vi) () = (B)
or (vii) V8{a)

or (viif) ¥8(a)

L B,

where a and 8 are Iofmulag. and § is a variable., The symbols Vand are
called the unjversal quantifier and the existential quantifier, respectively,
and can be read as '"for all" and "there existas".

Informally, we shall relax this grammar in several ways, We may
drop some of the parentheses when this does not result in ambiguity for the
reader. We do not specify associative grouping for "V and "A", since this
makes no difference, We assume that """ anmﬂtu from the right, so that
pix] > q[x] > rix] meéans p{x] D (q{x] > r{x]). We use terms eénhining infixes,
prefixes and suffixes in the same manner as in Chlﬁter Two. " Finally, we
use objects as terms, which saves us the trouble af rapresenting each object
by a constant, :

Throughout this book we shall use the convention that when a quanti-
fier and its quantified variable are followed immediately by a left parenthesis,
then the scope of the quantifier exte'nda. exactly as far as the matching right
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parenthesis. For example, Ix(p[x]) = q[x] means (Zx(p[x])) = q[x], and not
Ix((p[x]) = alx]).

Examples of Formulas:

a. ¥x(p[x]> q[x]) : b. =En(n/= 0)

c. (n+m)xp=nxp+mxp d. 3x(p[x]) DVx(p[x] Dp[f[x]]) =)
- Axlplfie{xl])

e. (~p(]V -alD ==(p[]A q[) £ plx]V plg[x]]V plelglx]l]

Definition 6. 3

‘The set of all formulas using a giv’en f’vbckEbulary' is called a lang:g' 'age.

Definition 6. 4

In a formula havmg the form vg(a) or Eg(a) every occurrence of the
variable § is a M occurrence of ! It is bound by the initial quantifier of
the formula unless it is bound by some quan,tifier 1{1 &.. Anoccurrenceof a
variable that is not bound is 2‘33_. ' -

It is only meaningful to talk about a particular occurrence of a variable
being bound or free with respect to a particular formula. For example,
within the formula Ix(p[x]), the variable X is bound vﬁth respect to the whole
formula, but free with réspect to the subformula p{x] In fhe formula
pl[x] > Vx[q[x]], the first occurrence of x is free “and €he second and third
occurrences are bound, - In the formula Vy(pl[x, v .'ix(pz (x, ])) the only
free variable: (with respect to the entire formuia) is the ﬁrst occurrence of x,

Definition 6.5

If a formula has no free varxables (with respect to, itaelf) then it is
called a sentence. A un;versal closure of a formpla @ is a.sentence
V§1. .. Vg (a) where the § are all the distinct iree miebles of a in any order,

§6.2 First Order Models

Definition 6, 6

Let L be a first order language. Then a model in L i8 a package
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containing the following:

(1) A non-empty set D called the domain of the model.
(ii) For each function name ¢ of degree n, a function @:D" - D,
(ii) For each predicate name p of degree m, a predicate y:D™

When we speak of finite, infinite, countable or uncountable models, we
are referring to the cardinality of their domains. It is important that the
domain be non-empty, and that the functions and predicates that interpret the
function and predicate names should be total. :

The significance of models is that thsy specify semai:tics for formulas,
Consider a language L, a formula « € L, and a model M in L. Temporarily,
we need another entity called an inte:;gritaﬁon. ‘An interpretation I for the
formula &, and the model M 18 a total furietion from ihe set of variables
occurring in « into the domain of M, Given M. I und a. we can define a
valuation for every sub-component of @, Thé valution of a term will be a
member of D (the domain of M), and the MMW ol a formult will be a truth
value (member of ¥), defined ds follows:

(i) If € is a term whichis a muble. t!m V(M. I. £ = KS).
'rhat is, the valuation of § is the mmnm« to
it by the interprmuon L. L :

(ii) ‘Il‘r is & term having the famﬂf . u.‘r ]. then

VIM, LT) tfﬁ(V(M I.‘r ) NP V(Ma. L7, )-)r ~That is, the .
valuation of T is found by first obtaining valuations for
the 7, which will be members of D, and then using @,
which is the function modeling the function name ¢, to
- obtain a value in D from theése’ u-guments.
(ii1) 1f B is an atomic formu;a &{fl, ive .1‘ i, then
VIM, L 8) *F VM, LT,), ..., VM, x.r ‘). 'This is a
truth value. S
(iv) The valuation of a formula having the fcrm -(B),
(B)V (), (B) A (¥), (B)D(¥), or (8) = (¥) is obtained
from V(M, I, 8) and V(M, L, ¥) using the truth:tables for
the propositional connectives.

(v) The valuation V(M, L, Y&(B)) is T if V(M, J,B8) is T for
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every J which is an interpretation identical to I except
possibly for the value it assigns to the variable §.
Otherwise, the valuation of V&(B8) is F.

(vi) The valuation V(M, L 3&(8)) is T if V(M, J, B) is T for
at least one J which is identical to I except possibly
for the value it assigns to the variable . Otherwise,
the valuation of Z&(B) is F.

Proceeding from smaller to larger components in this manner, we
see that a valuation V(M, I, ) is eventually defined. It is evident that the
choice of the interpretation I is important only for the free variables in «,
and that if @ has no free variables, the valuation is independent of I. So if

« is a sentence, we simply write V(M, a).

Definition 6,7

If M is a model in L, and a is a sentence in L, then if V(M, a) = T,
we say that M satisfies &, and write M Fa.

If @ is a sentence in I, and all models in L satisfy a, then « is X_a_l_i_g.
If at least one model satisfies a, then a is satisfiable. If no models satisfy
«, then a is invalid, '

The negation of a valid sentence is invalid and vice versa. We could
draw the same sort of chart for valid, satisfiable-but-not-valid, and invalid
sentences of first order logic, as we draw in Chapter Four for tautologies,
satisfiable-but-not-tautological formulas, and inconsistent formulas of
propositional logic. In fact, tautologies are a subset of valid formulas, if
we define a first order formula that is valid from its propositional structure
alone to be a tautology. Similarly, propositionally inconsistent formulas of
first order logic are a subset of the invalid formulas.

So far, we have discussed only sentences. What about other
formulas? It turns out that there are two ways of regarding a formula with
free variables, One way is to see the formula as belonging to some context
which supplies interpretations or restricts the meaning of the free variables.

For example, in the pair of formulas:
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2x+2y = 1

2ay? -

one probably wants to solve for all mtérﬁre‘hﬁons that satisfy both formulas,

oo e

. In the domain of real numbers, there are two of thein. The other context for
a formula having free variables %s %o regard the Qarmula as meaning the same

thing as its univ#!rsal Closure, mw

‘Bﬁiz'x + fwizx =1
Here the meaning is ﬁu‘tﬂmm%mmm x, i.e., Uxfsin X +
2 _
cos"x = 1),

Definition 6. 8
For any !‘Brmula o, Mpa means M M satisftes 2 closure of @, A
formula is valid, . Bfm MM” s cloaure is velid, sstisfiable or

invalid, reap&ﬁvﬁy
Two formulas @ and § are equivaient, it & "iﬂ Wiﬂ.

Problem Set 19

1. Classify each of the mwlmug Termulen .as wug either valtid,
invalid, or satisfisbie but not velid,

a. pix] ¥ -pix] Wxﬁ wa})
Vaipix]) A —~Txlplx) 4. Wa¥splx, y 11 > Wixipix, yP
e, X4y=y+x f. Mﬁp{t]) & ﬂﬁﬂ;ﬂx))

2. The sentence YxWady( ix-y] € 8D mx; ﬂy}] <€) interpreted on the
domain of real numbers awmsﬁmﬁs ‘a coptinaous fenction,  Write a
formula that asserts ‘tha‘t fis & anﬂbml,y contituous funcﬁpm Does one of
these conditions imply the other logically? R

3. Show that sach pair of formulas ia equimnlanb

a. Ve AB) Via) A VE(A)
b. I&(a Vv B) () V TEB)

c. V&a v B) _ Ve(a) vV 8 where B has no free §

B~




d. Eg(a 2 8) a > TE(B) where a has no free §
e. Ve(a>8) d&€(a) 2 B where B has no free §

§6.3 Theories

Definition 6.9

A theory in a language L is a subset of L.

If T1 c T2, then we say that T2 is an extension of Tl’ and T1 is a
contraction of T2. If L1 < L2, then we say that L2 is an extension of Ll'
and L1 is a contraction of L.

If Mla for all « € T, then M ET.

If T<L, and if M}T implies MFa for all models M in L, then M fa.

A theory is satisfiable if it has a model.

Definition 6.10

Two models M1 and M2 in the language L are said to be first order

equivalent if M, ko if and only if M, ko for every & in L. We write M, ~M,,

to denote first order equivalence,

Let M1 be a model in the language Ll’ and let L2 be an extension of
Ll' If M2 is a model in L2 which has the same domain as M1 and the same
interpretations for all the function and predicate names of Ll' then M2 is an

» . . " : "
expansion of Ml' and M1 is a contraction of M (The word "extension

2.
applied to models has a different meaning from '""expansion' and is not used

in this book. )

Problem Set 20

1. Prove that if T C L is a theory such that if a is any formula of L,
then either T‘:a, or T F—wa, then all models for T in L are first order
equivalent. '

2. Prove that if T2 o L2 is an extension of T1 c Ll’ and M2 is a model
in L., such that M2 |=T2, then there is a model M, in L, such that M, }:Tl, and

M1 is a contraction of MZ'

-65-




As an example of a theory, consider the theory of partial ordering,
which belongs to the language havhrg only the binary predicate ''<" meaning
less than. The theory is:

X< X
XRy22y<zOx<z

This theory can belong to any lengusge containing the predicate <", Any
model that satisfies ’thi‘s theory must be a partivl ordering in the usual sense
because these are the axioms for a partial ordering,

Suppose we extend this theory by adding to it the im-mula Iy(x < y).
This says that given any object, there is anether ohject greater than it, Then
there must be another thject greager than that, &nd so forth. By applying
the second axiom, which is a tramsitive law, we see that any ubject on this
chain is < any object occurring further along the chain. The first axiom
says that no object is < itself. ‘So we Tan cm&ade fhat this theory having
three formulas has only infinite models. Tt 46 satiutie mﬁu‘ eaaily. for
example, by the real numbers, or tve natural 1 ers, or the ‘transﬂnfte
ordinal numbers, by letting < have its Wrymemgmewh case,

Another examp&e of a theory is mm dm mﬂer nﬂdiﬁon.

formalized in a language with the my weﬁnate =M, ﬂm hhury function
"+', the unary function "'-", and the constant D,

x=% _ x+{y+%) = (x+¥y)+z
X=y=2y=X x+0 = x
x:yDy: ZIdX=1%2 I+('-xi>=ﬁ

X=y2ou=vIx+u=y+v
X=yD-K-= -y

Any model that satisfies this theory is a group. There are, of course,
many different groups, and in semme modeis the plus sign must be interpreted’
by an operation usually called multiplication, snd '0" must be interpreted by
"1" or "e'. The axioms in the left column are the axioms for equality in the
language {=,+,-,0}. They are necessary to assure that we will be able to
prove those things that we need to prove about equality.
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Definition 6.11

Let L be any language containing the binary predicate "=". We call
such a language a language with equality.: ‘Meostdanguages that we study will
be languages with equality, - :The meo:)&E'ﬁ,xdr the theory of equality for the
language L is the following set of a;:;omg;w o

(i) x

(i) x

]

x
yDy:x
(iii) x =yDy=22x=z

H

(iv) For each n-ary function name ¢ in L, the axiom
X =Y, i R Dxn = ynD(p[xl,...,xn] =qp[y1,...,yn]
(v) For each m-ary predicate name ¥ in L, the axiom

Xy =Y 2 e 2% = ym3¢(xlf---.xm]3#)(y1.....ym]

The number of such axioms depends on the size of the language L, and
might be infinite. The first three axioms are the theory of 'equivalencé
relations. The rest of them are necessary, as we shall prove later, to
assure that we have axiomatized equality as well as is possible in first order
logic.

Problem Set 21

1. What is the theory of linear crdermgs?

2. What is the theory of semi-grdups? Of abelian groups?

3. Which of the following theories are satisfiable?  Find a model for
each satisfiable theory. Which theories have finite models?

a, x<x
x<y_2y<z>2x<z v
x<yOdw(x< wAVz(mx<zV-z<w))

b. The formulas of (a) and &y(x < y). '

c. The formulas of (a) and »
Iwdx(w< x AVy(y< x23z(y < z A z < x)))

-87-

e R B i At S S ke st R




d. The formulas of (a) and
Ix(w < x AVy(y < x 2 3z(y < z A z < x))).

e. The formulas of (d) and IxVy(—x < y).
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CHAPTER SEVEN
FIRST ORDER LOGIC - DEDUCTION

" Preview of Chapter 'SeVen

We develop’ the mechamsm for making formal deductions in first
order logic. As with propositxonal logic, a deduction is a step-by step
process for obtaining a conclusion from given premises. It can be 1nspected
for correctness by a proof-checker Most of the theorems in this chapter
are concerned with the existence of demonstrations, and have the practncal
effect of saving us time. They will also have theoretical a.pplicatlons in
Chapter Eight ' The mechanism of substitution, a neceuary prereqmsite, v
is discussed first.

§7.1 Substitution

In thxs book, we make a sharp distinction between the words
| substltution" and "replacement'" which is very useful, but has not won .
genera] acceptance at the present time, = Qur notation.for: substitution
follows [Robinson], ‘We shall discuss ‘rapla.c‘emeat later :in this chapter.

The LISP function subst (see §2.2) is a good example of a subatitution
operator, Subst[x,y, z] substitutes x for all occurrences of y.in z. ‘Some-
times, we wish to perform several substitutions simultaneously on the same:
object. Fcr, example, we may substitute Q for A, -and &foc ‘B-in the
s-expression (A B C), in which case we get {Q R C). We.can define a LISP

function sublis that does this. The first argument is @ list of pairs, and the

second argument is the object of the substitution. The effect of each pair is
to cause the first member of it to be substituted for all occurrences of the
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second member of it. So sublisf{{(Q A) (R B)),(AB C)] = {QR C).

sublis[x, 8]+ [atom([s] * subl{x, 8}, T * cons[sublis{x, car[s]],
sublis[x, cdr{x]}}]

subl[x, s] *[null{x] * s, cadarfx}= 8 *caar[s], T * subl[cdr[x]), s]]

Sublis performs what is known as a E&ﬁﬁn&*éﬁsisubstitution. It does
not substitute on that which it has already substituted, For example,
sublis[({(A B) (B A')) (AXBY)]=(BXAY) Thealternative to simultaneous
substitution is sequential substitution. In this case,. ,it.«,ma,k,es & comsiderable
difference what is done first. Thus subat[A. B, sybst LB.& (A X B Y)]] =
(A XA Y), but substl’B A, suxmfh B, (A xs Yh = (B xn Y).‘.

For first order logic we sball naeq to subgétute terms for variables _
.occurrmg in formulas or terms. F‘nr&arm e onl y anbs;;ltute for free
occurrences of variables. A.n enmp‘le of a snhﬁtmgog is to subsgtitute the
term g[y] f&r all free occurrences of thg wrhbig,x in tha farn;u.}; plx]=
Sx(q[x]) ‘The resvlt is p{g[yn = lx(g{x” » Bomae ﬁxe %Miog of substitu-
tion occurs frequently. we need 2 precm way of mm it, 89 th long
explanations are not necessary., If « is any formula, T is a term, and § is a
variable, then by @(r /%) we mean the formula obtained by egp%tqtm‘r for all
free occurrences of § in @. We also allow @ to be a term, in which case all
occurrences of § in-a are free. We can' dm spéctty a ‘Sin'i\ﬁtlnéous substity-
tion, where each patr sepsrited by & ' /" sérves the dame purpose as the ‘

- pairs in SUBLIS, These arecalled substithifon éo@bhe?x i’br example,
if & s the formula pia} A qlyl. then mrmwwyf% the formula plgly]] A
qfhix, y1). :

In addition to not substituting for bound stcurrences of ‘a*"variable‘,
there is another restriction in fiest order logic. ‘Conkider the result of
substituting giy} for all free ocourrended of X:4i plcf A Faly > rf€). The
resutt is pigly}} A Sytqly] > righyfP. W cutt tthy ah frnprdper suwatuﬁon '
because the varisble y in gly} s captured by the qahitithéet” if thé seond
instance (from the left) where #t o Bhbbtituted) 'Ry Gider that tﬁ! Bﬁbstitution
a(r/8) be proper; it.is necessary that wirerever theéreis d'fiee ¢ becurrence of
€ in @, it is not within the scope of any quantifier that binds a variable that
occurs in T, When (7/€) is proper, we also say "T is free for § in a'.




Examples:

1. If we substitute y for x in Wx3y(r(x, y]). this is a proper substitution
because no substituting occurs. There is no free xin the t’ormula and it is
permissible for bound occurrences of X to be within the' scope of a quantlfier
ony. o ‘

2. If we substitute y for x in p[x, y] @ xdy(q[x, y]), the result is
ply, y] @ 3x3y(q[x, y])). This is a proper substitution bécause wherever x is
free, it is not within the scope of a quantifier binding y, although a bound
occurrence of x is within the scope of a quantifier on y.

Substitution plays an important part in the rules of deduction of first
order logic, but in each case improper substitution is not allowed. ¥ We shall
adopt the convention that substitution on formulas of first order logic is
undefined if it is improper. In each case where-a rule using substitution is
given, the rule does not agp_l_x when the substitution is impmer because no
result is defined. , -

Formulas of first order logic are translated into LI§P as follows.

The idea should be obvious by now.

(i) IfT is a term, then T* is obtained by using the same
" rules as for forms in the language of reécursive
definitions, For example, g[x, A}, Where A is an
object, is translated into (G X (QUOTE A)).

(ii) Atomic formulas are translated similarly.’

(iii) Composite formulas are traﬂilated into (NOT a*),
(OR al* cee O *) (ANDa * A *) (EQUIV
a*a o*) (EXISTS Ex a*),. and tFORALL ex ax),
where the a's are formulas, and ¢ is a variable.

Problem Set 22 e

1. Write a LISP function sub which is the equivalent of sublis for first
order logic. If & is a formula, the T terms, and the ‘i variables, then
sub[list[list[‘rl, §1 | list[‘rn..%n})},,-a.h] is the f»ormul,a.a(fl /51... .es Tn/§n) if

the substitution is proper, and NIL otherwise,
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2, Write a LISP predicate inst of three arguments such that
inst[a, §, 8] is true if a is a formula, £ is a variable, and there exists a term
T such that the substitution &(r/§) is proper, and the result is 8.

§7.2 The Rules of Deduction

Definition 7.1

A deduction is a numbered sequence of formulas each having a valid

justification. There are five types of justification:
(i) Given
(ii) Mp 4, j |
For this to be a valid justification of line n, it is necessary
. thati<n, j<n, and'if line (1) is the formula a, and line
(n) is the formula B, then line (j) must be the formula a > B.
(iii) Tauat

(iv)

(v)

If a formula of propositional logic is a tautology, then the
result of substituting formulas: ofir«ﬁmt order logic for all
its proposxtmnal variables is a tautology of first order logic.
All occurrences of a particular propositional variable must
be replaced. by the same formula. -

Q1 and Q2 - :

Q1 and Q2 are axiom schemas for ﬁrgt order logic. Each
schema represents an infinite-set of formulas which are
called the inatances of the scb#mq. If a formula is an
instance of Q1, then Q1 is a valid justification for it, and
similarly with Q2. The schemas are:

- -

Ql:  V&(a)> alr/8)
Q% alr/f) 2 A%a)

where a is any formula, § is any variable, and T is any term,
and a(r/%) is a proper subﬂituﬁon.

Q3i, and Q4 i

Q3 and Q4 are rules of inference for first order logic. The
distinction between a rule of inference and an axiom schema
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is that a rule of inference depends on previous lines of the
deduction. Modus-ponens is also a rule of inference,
"Q3 i'" is a valid justification for line n if i < n, and there
is an instance of the schema Q3 in which line (i) appears

‘above the horizontal line, and line (n) appears below it.

The case of Q4 is similar,

a D
B: TSR

- D a
Q4: E‘T—‘zu ET

where 8 is any formula, § is any variable, and @ is any
formula which does not contain & free.

If T is any theory, and there is.a deduction in which only formulas that

are in T are justified as given, and if the conclusion of the deduction is the

formula «, then we say that there is a deduction.of a from T, and we write

Tra. If there is a deduction of & in which no formula is justified as given,

then we say that a is a theorem of logic, and we write Fa.

The following sequence of seven steps is:an example of a deduction in

first order logic:

.

B I Y TS

Yy(plx, y]) @ plx, y] Q1

plx, y]1= Ix(p[x, y]) | Q2
(Vy(plx, y]) 2 plx, y)) = (p[x, {] 2 Ix(p[x, y])) 2

(%(plx, y)) = Ex(p[x, y))» . Taut
(plx, y] 2 Ex(p[x, y])) 2 (Vy(p[x, y]) = Tx(p[x, y}) Mp 1,3
Yy(plx, y]) = Ix(p(x, y]) Mp 2, 4
IxVy(plx, y) > Ix(p[x, y] - Q45
H’!f"'y(P[X_._y]) 2 Wix(px, ¥] . Q3 6

Since this deduction has no given formulas, we may write
FixVy(p[x, y]) = Vy@x(p[x, y]). o

The next example is a somewhét lengthy proof taken from the theory of
formal arithmetic. It illustrates a great many points that will be made in the
next few chapters, and you ;hay wish to réfeif bdék to it. For the present, it
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X4

is simply an example of a formal deduction., We prove the sentence o'+0’ =0
from four axioms which are the first four lines of the demonstration. As an
aid to comprehending the organization of the dedudtion, ixnportant subgoals
are marked with an asterisk (*).

1. VWxVWVz(x=y>2y=z2x=2z) Given
2. Wx¥y(x=y>x= y') v Given
3. Ym(m+0=m) Given
4. ¥m¥n(m+n'=(m+n)) Given
5. Vm¥(m+n'=(m+n)) > (0’ +n-(0+n)) _ Q1
6. V¥n(0'+n’=(0"+n)) Mp 4,5
7. Wn(0'+n'=(0"+n)) 2 0'+0'= (0'+0)’ Q1
(*) 8. 0+0'=(0"+0) Mp 6,7
9. VM(m+0=m)>0'+0=0" Q1
(*)10. 0'+0=0 | " Mp 3,9
11, Vx¥y(x=yo>5x'=y)2W(0+0=y2(0'+0)=y) Q1
12, V¥y(0'+0=y > (0'+0)=y) Mp 2, 11
13. Vy(0'+0= y3(0+0) =§)20'+0=0"D>
(0'+0) = Q1
14. 0'+0=0">(0 +o)=o" Mp 12,13
(*) 15. (0'+0)'=0"' Mp 10, 14
16. VxWyVz(x=y 2y=z23x=2z)> Yyvz(0’ £0'= 2y 2
y=220 ‘+0'=2) Q1
17. Vy¥z(0'+0'=yD>y=2z20+0"=2) Mp 1,16

18. Vsz(0+0=yDy-zDO+0=z)D
vz(0'+ 0" =(0'+ 0)’ D(0+0)-230+0-—z) Q1

19. Vz(0'+0'=(0'+0) ' 2(0'+0)'=22>0'+0'=2)" " Mp 117,18

20. Vz(0+o-(0+0)3(0+0)-230+0 z)D ,
’ -(0+0-(0+O)3(0+0)-0 250'+0'= O) Q1

21, 0+0'=(0'+0)2(0'+0)'=0""20'+0'= 0" . Mp 18,20
22, (0'+0)'=0"">0+0=0" Mp 8,21
23, 0+0'=0" . Mp 15,22

We may safely conclude from this example that deduction is an
extremely tedious process full of needless repetition of similar patterns, and
that something must be done to speed it up. We shall consider this subject
later,
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Problem Set 23

1. Show (by writing a deduction) that each-of the following formulas is
a theorem of logic:

a. ¥x(p[x] = q[x]) @ (¥x(p[x]) = ¥x(q{x]))

b. Vx(p[x} = q[x]) = (I(p[x]) = Ex(qfx])).
c. Wxmp[x] = -~3Ix(p[x)

d. Wx(p(x] A qix]) = (¥x(p[x]) A VY(q[x]))

e. x(p[x]V q[x] = (Bp{x]) V Ex(q{x])))
f. E(p[x] A q[x]) > (B(p[x]) » Ex(q[x])

g. Wx(p[x]) > Ix(p[x])

2. Which of the following formulas are instances of Q1 or Q2, and
which are neither? Why? ~

a. Wx(p[x]) 2 p[x]}

b. Vx(p[x,y]) > ply, y]

c. Vxiy(p[x, y]) >3ylplglyl y))
d. plglyl y]> Ex(p(x, y))

3. Define the unary LISP predicates aqul and axq2 which are true if
their arguments are instances of Q1 or Q2 respectively. _

4. Define the binary LISP predica%es riq3 and riq4 which are true if
the second argument is derived from the first argument by rules of inference
Q3 or Q4 reSpectively.

5. Modify proofchk 8o that it is a proofchecke,r for Iirst order logxc.
The only modifications to fhe format of a deduction are (i) TAUT must handle
substitution instances efficiently. and there is texen no longer a need for INST
as a Justification. (ii) the justificatmns QL and Qz muat be added and (iii) the
Jusnficatlons (Q3 i) and (Q4 i) must be added, -

§7.3 The Consistency Theorem

The statement of the consistency theorem for first order logic is the
same as the consistency theorem for. propesitiosal logic:{theerem 4.14), but
the meaning behind it is considerably more subtte, -
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Theorem 7,3 (Consistency Theorem)

If TSL, @ € L and Tra, then T fa.

Proof: The proof is by induction and follows the same lines as the proof of

' theorem 4.14. The induction hypothesis is that if T Fa for j<i, then T }:a
where the deduction is the sequence al’ vees O n ’ﬂhere are seven cases to
conS1der and the first three are the same as in tha previous proof.

(iv) If a, is an 1nstance of Q1, then it has the form VE(B) D B(T/€).
Let M be any model and I any interpretation for the variables in this formula.
If V(M, L Y§(8)) is false, then M,I}a ;+ M V(ML VE(8)) is true, then V(M, J, )
is true for any J differing from I at most at the variable §. In particular,
there is that J that assigns to § the value which is V(M, I, 7). - Therefore
V(M, L, B(1/§)) is true because no variable in 7 is bound by quantifiers in 8, and
soM,]I |=a in this case also. What we have.shown, then, is that every
instance of Q1 is valid. (

(v) If @, is an 1nstance of Q2, thxs also is valid, and the proof is left
to the reader,

(vi) If o, is derwed from o, by the rule Q3 then since J < 1. the
induction hypothesxs 1s that T Fa .o Let a be the formula ﬁ i where 8 has
no free £, Then a, is the formula 8> V§(7) Let M be any ‘model that
satisfies T. Then M IFB Dy for all interpretations L. Choose one such I.

If M, I does not satisfy B, then M, ke, UM, 1}:3, then M, I}y also. But
then M, J also satisfies B8 where J is any mterpretatiqn differmg from I at
most on §, becauseée B has no free §. So M, J also satisﬁes 7 for all such J,
and therefore M, IFVE(¥). So M, Ilna in either caae, and the conclusion is
that T l:a o

(vn) If a. is derived from & _ by the rule Q4, then since j < i, the
induction hypothesis is that T 'uc .. Let a, be the formula B 2 ¥ where ¥ has
no free §, Thenai is the formula 3§(8) Oy. Lét M be any model that
satisfies T. Then M, 1§S 2 ¥ for all interpretations 1.~ ‘Choose one such I.

If M, 1FY, then M, 1 |=ai. If M, I 'does not satisfy ¥, then M, I dées not satisfy
B. Let J be any interpretation differing from I at most on §. M, J does not
satisfy ¥ because ¥ has no free §. So M, J does not satisfy 8, and since this
is true for all such J, M, I does not satisfy 3§(8). So M, I|=o::zi in either case,
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and the conclusion is that T Fai.

Corollary 7. 4

If Fa, then «a is a valid formula,

Corollary 7.5

If the theory T is satisfiable (has a model), then it is consistent.

87.4 Existence of Deductions, Replacement

Since deduction is a very tedious process, we would like to speed it
up by introducing additional axioms and rules of mference. But, in fact, no
matter how many additional rules we introduce, there will always be more
that we would like to have. If we were to introduce a great many rules fight
from the start, then the proof of the consistency theorem would be very long
because we would have to consider each rule separately and show that it is a
valid form of reasoning. Now that we have proved the consistency theorem,
we can deal with new axioms, and new rules of inference in a different way.
What we can hope to show for each one is that it is eliminable in the sense
that if we have a deduction using such an axiom or rule, then there is an
effective way of obtaining a deduction that does not use it, but which proves
the same conclusion from the same premises.

As a very brief example of this, consider the rule:

R1: a>B,B807
a>oy

This is a derivative of the rule of modus-ponens which stated in this style is:

a,aDQ
B

Now suppose we have a deduction that uses the rule R1:

1. a>8 Given
2, Boy - Given
3. a=>y R1
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We know that this proof can be expanded to:

1. a>8 Given
2. B>y Given
3. (@28)>(Boy)>(ax>y)  Taut

4. B2Y>2(@>Y) Mp 1,3
5. a2y ' | Mp 2, 4

This can be done in every situation in which Rl is used, so we can say that
R1 is constrﬁctively eliminable. The consistency theorem then guarantees
the correctness of the rule as a method of reasoning, This not only shows
that it is correct reasoning, it shggvs that the introduction of the rule does not
alter any of the proper{ies of first order logic.that we may prove in the
future, becauge the rule itself is not essential to any deduction in which it is
used,

Problem Set 24

1. Show that the following are constructively eliminable rules of
inference: ‘

. Yea) . i%(a)

QXl: FTE) QX2: —zFTT)
a Q-

QX3 vetay DA ((()

. alr/8)
QX5: ywra )

2. Rules Q?_ and Q4 are necessarily stated as rules of inference, and
cannot be treated as axioms. Show that the following schemas are not valid
by describing counter-model for an instance of each schema.

a. (a>pB)>(a > VE(B)) where a has no free §.
b. (8> a) > (I5(8) © &) where a has no free &.

The formulas a and a({/§) are said to be similar if the variable { does
not occur free in &, and if { is free for § in &, When this is true, it will also
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be the case that § does not occur free in a({/%), and § is free for { in a({/%),
and a(/§)(§/L) is the formula a.

 Theorem 7.6 (Change of bound variables)

If « and a({/%) are similar, then PV!(a) = VC(a(C/%)) and FEE(a) =

8(a(L/5)).
Proof:
1. V8(a)> all/€) Q1; Why is this substitution proper?
2, VE(a)DV{(l/%)) Q3 1; Can V&(a) have free £?
3. Vl{a/$) a Q S
4, VE(a(C/f) 2 Vi(a) Q33
5. V&(a) = ¥¢(a(L/8) Prop 2, 4

The 3 case’is symmetrical in form,

You will notice that as we acquire more techniques, deductions will
become more and more condensed. At this point, there ig no longer any
reason to write out in full any sequence of steps that depends merely on
propositional logic. We- juSt write "Prop” and list the antecedents.

The distinction between replacement and substitution is that
(i) replacement refers to replacing of an entire str&ctui‘e bf some sort by
another, whereas in substitution we always substitute in plice of something
atomic such as an atom or a variable, and ({1){¥18 not n necessary to replace
all occurrences of a given structure, but only as many as we 'wiish‘ 'The
semantic justification for replacement {'s that se:methlng may be replaced by
something else that is in somée sense its equal or equivalenf The Semantlc
justification for substitution, on thé other hand;" is thaf We are obtaming a
particular instatice of a general statement.

An example of replacenient is to take ‘the formula 6'4- 0 = (0 + 0)' and to
replace the underlined tefth with the term 8, Our Justification ‘for doing this
is that we have alresdy concluded that thege two tef*xhs are ‘equal, i. e.,
0'+0 =0, The result of the replacement 18°0'+0" = (O') or dropping paren-
theses, 0+0' = 0", ~ Another example is to replace the first occurrence of
2+2in (2+2)+2 = (2+2)+2 With 4 because We alreadJy have 2+2 = 4, This

e
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gives 4+2 = (2+2)+2, This is valid, even though we have not replaced all
occurrences of 2+2,

Now consider the subsntution of 2 for x and 3 for y in x+y = y+x.
This gives us 2+ 3 = 3+2, which is an instance of the general rule, 2+3 =
y+x has no useful meaning because partial substitution does not accomplish
the purpose of substitution. Notice, also, that it is notmeaningful to
substitute for a constant. |

It is important that entities that get replaced are proper sub-expres-
sions in whatever context they appear, and not accidental pseudo-expressions
caused by juxtaposition. For instance, if we start with the equation 2+3x 4=
14, and then replace "2+ 3" with "5", we get 5 x4 =14, which is incorrect.
"2+ 3" is not a sub-expression of "2+ 3 x 4" because the conventional associ-
ation is "2+ (3 x 4)".

Theorem 7.7 (Replacement of Equivalent Formulas)

Let and B be two formulu auch that Trc = 8.,  Let ¥ be any formula,
and & be a formula that is obtained by replacing some (but not necessarily all)
occurrences of & in ¥ by 8. Then T")' =8,

Proof: We begin the proof. by identifying cert;in aah-formulas of yand é as
'"'corresponding components”, If an @ occurring in ¥ is replaced by a 8.in 3,
then the @ and the 8 are correSponding components. Any. sub-formula of ¥
which contains no occurrences of a that get replaced, and is not contained in
a larger such formula is also a ,corré_agom component to the sub-formula
of & which is identical to it both in content and in position. The formulas ¥
and 6 are tﬁus built up identically, start].ng with corresponding components
using the propositional connectives and quantifiers.. Also, corresponding
components are either identical, or else one ig & ,aggl;thg other is . In
either case they g:an,be,pxj'ove;': equivalent from T.. We proceed by induction
on the number of bro'positionaly connectims and the quantifiers to show that
this equivalence extends up to the formulas y and 8: (i) If 7¢ is =Y,, and &,
is -162, and 'I‘l-‘)'2 = &, then ’l‘l-'y1 = 6 because (;f! a 6 )3(—171 LY )is a
tautology. (ii-vi) The c%ﬂ,es for me other propositional. comectiveg and the
universal quantifier are left to the reader. (vii) If 14} is 3!(72), and 61 is
35(5 ), and ThY, = 2, then T")'1 2 61 because V;(yz = 62) follows by rule QX3,
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and because FVE(y, = 62) > (88(7,) = 38(,)). (See problem set 23, No.lb.)

Theorem 7.8 (Replacement of Equal Terms)

, " Let T be a theory with equality (i.e., EL € T). Let LA and 7, be
terms such that T!"rl =.T,, let a be any formula, ‘and let 8 be a formuta
resulting from replacing some occurrences at”'r1 in o by Tye Then Tra = 8.
Proof: By induction on the depth of the terms in:. -Let the corresponding
components be.terms, either L and the 7, that replaces it, or identical terms
that are in indentical positions in o and #; and are the largest possible such
terms. If 0 and @ are corresponding terms, then they can be proven equal
from T. Larger terms are built from these by: functien composition. Let
qual, cees @y ] and qo[Gl. sees G }be in corresponddng positions, and by the
induction hypothesrs 'l‘!-a1 = 6 Then these terms can be proven to be equal
because there is an axiom ianL which is Xgi= ¥y P ees X, =y >
<p[x1. ceos xn,] = ‘?Iyl’ cess ﬁ}. Similarly, once all terms in corresponding
positions are equal, the atomic formulas cen be prowven-equivalent from the
reflexive axiom of equality (x = y 2y = x) and 'um:;double application of the
axiom E; whichis x, =y, 2...2x =y 2lx,i.c.x 12 %y, ..., Ym]-.
Once corresponding atomic formulas are proven equivalent, the induction .
proceeds as in theorem 7.7,

We introduce one more derived rule of inference obtained from Q3 and

Q1:

Inst:

1/:;1.....r )

where the § are distinct variables, and the mlbatitution is proper.
A shorter demonstraﬁon for 0'+ 0" ='0"' can now beﬂngen-

1. m+0=m ' - Given
2. m+n =(m+n) " Given
3. 0+0=0 | Inst 1
4. 0o'+0'=(0"+0) Inst 2
5. 0'+0=0" Replacement 4, 3
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§7.5 The Deduction Theorem

The deduction theorem for first order logic is rather subtle, and
takes some effort to understand, but a correct perception of it will yield a
lot of insight. into the nature of rules Qi thru Q4. The most naive statement
of the theorem is actually false, It is not the case thatif T U {@}rB, then
Tra D B for any formulas @ and 8. If this were true, then since p{x]}r¥e(p[x])
by QX3, it would follow that Fp[x] > Vx(p[x]), and then by another application
of QX3, r¥x(p[x]> Vx(p[x])). But this sentence is not valid; it is not satis-
fied by the model on the domain {0, 1} where p{0] is true, and p[1]is false.

We have chosen to interpret a formula standing as & line in a deduction
as being equivalent to its universal closure. In fact, the rules QX1 and QX3
allow universal quantifiers to be added or stripped from the beginning of a
formula at will as long as they take the whole formula as their scope.

The trouble seems to be that when such an"open formula is incorpo-
rated into the left side of an implication, it is negatéd because a = 8 is the
same as ma V . But its implicit universal quantifier gets left outside the
negation and causes the error. ' ’

Theorem 7.9 (First Deduction Theorem)

If TU {a}FB, and & is a sentence, then Tra 2 8,

Proof: By induction on the demonstration ﬁt. coe ,ﬁ_n = 8. (Please review
theorem 4.7.) | |

() 1If Bi.is a tautology, then so is « Dﬂi. :
(i) If ﬁ is in T, thena 2 ‘ﬂi‘ is derivable“from.ﬁi.a
(iii) If ﬁ is @, then @ > a is a tautology.
(iv) If ﬂ follows from two antecedents by modug-pqnens. then by the
induction hypothesis a>-f. anda > (ﬁ =] Bi) are provable from T. Then
a > B is provable from these by propositxonal logic.
(v) If ﬁi is an instance of Q1 or Q2 then a 2 ﬁi is derivable from ﬁi
(vi) If ﬁ follows from 5 by an application of Q3, then ﬁj is y>2 3§, and
ﬁ is ¥y D VE(9) where vis a formula that has no free §, By the induction
hypothems, Tra DﬁJ or TFra D (¥ ©8). From this we derive (a A ¥) D 8,
and then apply Q3 to get (@ A ¥) D V§(§) which is valid because @ is a sentence,
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and so has no free §, From this we can get a 2 (y 2 V§(8)),

(vii) If ﬂi follows from ﬁj by Q4, then ﬁj is ¥y 26, and Bi is g(y) D 6
where § has no free §. By the induction hypethesis, Tta 2 (y 2 8), from
which we dedizce'y S(a D8). Since a has no free §, we can apply Q4 to this,
gettmg TE(y) 2 (@ 2 8) and then rearrange to get a 2 (3&(y) 2 8),

A formula is said to degend on a preceding formula in a deduction if
there is a chain of antecedents working back to the preceding formula. If the
conclusion of a deduction does not depend on one of the given formulas, then
we could omit that formula and all its dependents without sacrificing the
conclusion, o

A variable is varied in a deduction any time Q3 or Q4 is used with that
variable being the § mentioned in the deduction rule. |

The fact that of the original rules of inference only Q3 and Q4 can vary
a variable is quite significant. Suppose that the formula p[x] is giver{’ in a
deduction. Wijthout using Q3 or Q4 it is quite ’i.iﬂpgssfble?:to derive from it
pl[5] or Vx(p[x]) or p[y]. Only these two rules have t’he'power to interpret a
free variable universally. ‘

We stated earljer that the intended interpretation of the fact that B is
deducible from @ is that the universal closure of & semantjcally implies the
universal closure of B Let us consider a different iﬁterbretation. What if
the mterpretation of the deduction aFf was that for any M and I 1f M, I|=az then
M,1EB? A study of the deduction rules and axioms of logic shows that all of
propositional lqgic, including modus- ponens as well ag Q1 and Q2,  preserves
this interpretation. But Q3 and Q4 do not.

So if p[x]rqg[x], then we can certainly conclude that ¥x(p[x]) > Vx(q[x])
using the standard interpretation of closure. 'If, 'in addition, the variable x
is not varied in any formula that depends on p[x], then x has reinained

_constant, so we c¢an conclude using the deduction theorem that""p'(x]ﬁ q[x].

Theorem 7. '10 (Final Deduction Theorem)

IfTU {a} +B, and no variable occurring free in a is varied in any
formula dependmg on &, then Tra ﬁ . ‘
Proof: We shall reconsider case (vi) of the proof of theorem 7.9, and let the
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reader do the same for case (vii) B.isy>56, where ¥ has no free §, and
ﬁ is ¥ D A&(5) and is derived by Q3. If a does not contain free ! then the
constructlon deacribed in the previous proof still works. On the other hand,
if B. is not dependent on a, then T"'B and so Thﬁi . Then by propositional
logic, Tra O ﬁ

The deduction theorem makes many deductions shorter to write and
easier to organize conceptually. As a brief example, we demonstrate
0+m = m. The third line is what is known as an induction axiom. and is
part of the theory that this proof is taken from. '

1. m+0-0 . Given
2. m+n (m+n) ’ Given
3. (040 =0)2¥n(0+m=m>0+m’'=m)>
Vm(0+m m) ‘ Given
4, 0+0=0 ’ . Ist1
5. "m(0+m = m>0+m' = m)DVm(0+m=m) Mp4 3
(6)° ‘6. 0+m=m " Assume
7. 0+m’ = (0+m)’ | | Inst2
(6) 8. 0+m'=m’ ‘ A - vRepiacement? 6
9, 0+m=m>0+m'+m’ | ‘Dischargea [
10. Vm(0+m =m>0+m’ = m’) . Qx39
11. ¥m{0+m = m) ‘  Mp10,5
12. 0+m=m ' X1

The rules for mcorporating the use of the deduction theorem into
formal deductions are: ‘ S

(1) There is a column for noting dependenciee (,we Locate it to the left
of the line number);

(ii) When a line is justified by ''Asgsume’, its owm line number goes in
the dependency column. Several such lines mey appear ina deduction.

(iii) When a line has one or more antecedente under some rule of
deduction, the dependencies of the antecedente are inherited This means
that a line that is dependent on several assumed lines will have the line
numbers of all these assumed lines in its dependency column. (If a line is
dependent on an assumed line through several different paths, ‘the line number




of the assumed line still appears only once in the dependehcy column of the
dependent line. )

(iv) A variable in a dependent line may not be varied if it appears free
in any of the assumed lines that the dependent line depends on. This must be
explicitly checked out when using Q3, Q4, or any ‘rule of inlerence derived
from Q3 or Q4. ' ' '

(v) A dependency is removed by the process of discharge in which the
assumed line is introduced as the premise of a *=', . The dependencies may
be removed in any order. (Refer to the transition from lines 8 to 9 in the
preceding example. ) ‘ '

(vi) Only an independent line (having nathing in its dependencies column)
is a valid conclusion of a deduction. :

37.86 The Choice Rule

When reasoning informally, we sometimes prove that there exists an
x having a certain property, and then say, "Let k be such an x." If the
constant k has hot been used before in'this chain of reasoning, its interpre-
tation has not yet been restricted in any way, 8o no.problem is created by
doing this, The choice of the name k is avbitrary, so if we'succeed in
proving some result that does not involve k, then wie should.be able to prove
the same result without mentioning k. It is important to realize that
inventing the name k does not introduce a new object into the model of one's
subject matter. It is only a new name that is beitig created, and it could turn
out that the new name really describes an obJect a§rgeady familiar under a
different name.

In first order logic, a consatant i@ a function of no arguments.
Properly, it shéuld have a set of brackets following it. So k{] is a constant.
But often we omit the brackets for convenience., (In s-expression notation,
which is more strict, & constant is encIose’dﬁby‘ parehtheses. | For example,
k(] translates fnto (K). This will dlways serve to distinguish a constant from
a variable which would not have the parentheaes. or an ob]ect which would be
translated as (QUOTE *).)
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Rule C

Within a deduction, if we have obtained a line which is
the formula 3§(a), then we may derive from this the line
a(o[)/8) where ¢ is a new 0-ary function name, The justi-
fication for the derived line is '"Rule C j', where j is the
line number of the first formula., If a has free variables
other than §, then it is necessary not to vary any of these
in any formula that contains the constant @[],

The conclusion of the proof must be a formuila that does
not have any of the new constants ¢[].

A deduction may have any number of both assumed lines
and applications of Rule C.

Example:
(1) 1. Yx¥y(p{x, y] A qfx, yD Assume
(1) 2. Iylplx,y] A qlx, y) QX1 1
(1) 3. plx, k] A qfx, k] ‘ Rule C 2
(1) 4. pix, k] | Prop 3
(1) 5. 3y(plx,y) QX5
(1) 6. ¥xdylpix,y) QX3
(1) 7. ¥x3y(qix,y)D - Similarly
(1) 8. ¥x3y(p[x, y]) A ¥xBylq[x, y]) Prop 6,7
9. Wx3y(p[x, y] A qlx, y]) 2 (¥xZy(p[x, y]) A
Vxdy(qlx, y])) Discharge 8, 1

Notice that the application of QX3 in line 8 varies x which occurs free
in line 3. This iz valid becaule line 5 does not have the constant k. If
steps 5 and 6 are done in reverse order, i.e., Yx(p(x, k}) and then Iy¥(p(x, y)),
the result is not valid,

The validity of Rule C depends on the fact that any conclusion not con-
taining the new constant names can also be derived from a demonstration not
using Rule C, as the following theorem shows. ‘




Theorem 7. 11 (Elimination of Rule C)

If Tra using several applications of Rule C, and « does not contain
any occurrences of the constants introduced by Rule C, then Tra without using
Rule C. '

Proof: We shall prove the theorem for the case that only one application of
Rule C is made in the deduction, and let the reader extend the proof

Let line (i) be obtained from line (j) in the deduction by Rule C,
where line (j) is 3§(8), and line (i) is B(p[]/8), andcp is a new constant, To
show that Tra without the use of Rule C, we shall show that this is true for
each line in the deduction which is dependent on line (i), does not contain
the constant ¢, and is the first line in its dependency path going back to line
(i) not to contain ¢, Let these lmes be the ,formulas Xy thru Yy If Try |
w1thout Rule C for each such ¥, the conclusion follows.

. It is obvious that T U {8(p[]/&)} ¥ without use of Rule C. We can apply
the deduction theorem here because we have expligitly stated that no variable
occurring free in B(p[]/8) may be varied in any line containing occurrences of
®. Therefore, THA(@[]/5)- 7. Now take any such deduction, and replace
every occurrence of @[] in it with a variable { not oceurring in either T or this
deduction. The deduction is still valid, and its conclusion is 8({/§)>¥. By
Q4 we get IL(B(L/8)) > y. But I§(B) is already provable in T, and so by some
changing of variables and modus-ponens, we get TFry,

Note: We did not consider the possibility that ¥ depends on B(p[]/%) by
two different paths, and that it has two immediate antecedents, and is the first
formula in one path not to contain ¢, but the other path has been free of ¢ for
some time and may have varied some of the variables of B(@[]/§). But the
only rule of inference to have two antecedents is modus-ponens and if the
conclusion of modus-ponens has no , then either both or neither of the ante-
cedents have ¢, and so the situation does not arise.

Theorem 7. 12 (Constant Extensions)

If TS L is a consistent theory, a is a formula in L containing only §
free, and ¢ is a 0-ary function name not in the vocabulary of L, then
T J {3€(a) D alp[]/E)} is a consistent theory, and if B € L is provable in this
theory, then B is also provable in T.
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Problem Set 25

1. Prove theorem 7.12. (Hint: You will need as a lemma ,3§(a >
B) © (a D #§(B)) when & has no free §. The metho_d'qg proof is similar to the
proof of theorem 7.11.) o

2. Why isn't theorem 7,12 valid if 3&(a) is not a sentence?

3. Theorems 7.7 and 7.8 state that:

(i) a sfry=s
and (ii) T, = ‘rzl'a a8

where (i) 6 derives from ¥ by replacing some occurrences of « with 8, and
(ii) B derives from a by replacing some occurrences of 7, with T,.  If these
theorems are applied to dependent lines in a proof making use of the deductlon
theorem, then it is important to know which variables are varied in the
deductions symbolized by "F'" {n lines (i) and (it} above. This is so that no
conditions of the deduction theorem are violated.’ béééfsely ‘which variables
~ are varied in these deductions? Why is lIne 8 of the déduction following
theorem 7. 10 valid? | ’ - |
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CHAPTER EIGHT o
FIRST ORDER LOGIC - COMPLETENESS .
" T ’ e - R IR .

reEoL

§8.1 Completeness

gt

The completeness theorem is s1mple to state. but 1eng=thy to prove.
We want to show that if’r Fa, then Tra. It turns out that if. we can show that
‘evéry consistent theory has a model then the comgleteness theqyem follows
almost 1mmedtptely So given a consistent theorem T, we want to obtain a
model for it. Since we have to do this in the abatract, i.e., for any. th,eoraf.
the only stuff we have available for the purpose of building a model is the
vocabulary of the theory itself. To further’ c&n}ﬂfcﬁe‘%iﬁé&'s there is no
‘unique or canonical model for mest theories, 86 the éltbic’e must be somewhat
arbitrary. The program is roughly as follows: S

(i) We show that more constants can be added to the language of the
theory so that there is a name for every object that the theory asseérts must
exist. R T , :

o (ii) We next extend the theory arbitrarily until:it is complete..

( 111) We then show that there is a.get-of terms:in the enlarged language
that serves as the domain for a model in a fairly natural way, This model,
with the extra names thrown away, is a model for the original theary.

The completeness theorem was first proved by G&del. The p_resent'
proof is derived bys. niethiod first used by ﬁenkin. o

Lemma 8.1 (Lindenbaum'x Lemma)

Every consistent theory has a consistent coxnp;ete extension.
Proof- Given TC L a consiatent ‘theory. Let “1’ 2. ros be all' the senternces
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0 , 41 P Ty U {ai+1} if @, is independent of T
otherwise let T +1 be the same as Ti‘ Let T* be the union of all the Ti‘ We
show that each Ti is consistent by induction on i. T0 is consistent because
it is T. Assume that T is consistent. If 'I‘i+1 is the same as T then it is
consistent. If it is not the same, then T, ., is T, U {aﬂ-l} where @i
independent of Ti It 'I‘i +1 Were inconsistent, then anything could be
deduced from it, and in particular Ti +1 #1° %° by the deduction theorem,
Til-a i1 —nai +1 OF Til-—wa which contradicts the fact that a. i+1
ent of T So all the T are consmtent and therefore T* is consistent because
any contradlctxon in T* would also be contained in some sufficiently large T;.
To show That T* is complete, let 8 be any formula in L Then its umversal
closure is one of the a, i If a, is independent of T, ,, then o € Ti’ so in any
case, a, is pr‘ovable or refutable in Ti and hence in T*, and so is 8.

of L. LetT,.beT, and T

o
is independ-

Definition 8. 2

A ground term is a term with no variables in it. A ground formula
is a formula with no variables in it. (A ground formula is always a sentence,
but not all sentences are ground formulas. )

Definitipn_ 8.3

A theory T € L is a Henkin theory if there is at least one ground term
in L., and if whenever 3§(a) is a sentence that is provable from T, then there
is a ground term T in L. such that Trta(r/§). .

Lemmma 8.4

fTCL is a consistent theory, then there is an extension T* of T in
an enlarged language L* which is a consistent complete Henkin theory.
Proof: Let TO be T, and Lo be L. Let k1 Jfor iz1andj=z1bea setof
constants not in L, Given the language Li‘ we define the language L.,y by
adding the constants ki+1 1’ ki+1 gs oo to it. Given the theory Ti C Li’
we define the theory T, ,6 C Li +1 by enumerating all the sentences of L having

i+1
only the variable x free (let this enumeration be ai 1 ai 9. .) and adding to
Ti all the sentences of the form ﬂx(a j ( 1+1 J/x) for i=12,3...
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Let L* be the union of the L,, and T, be the union of the T,. Tagis
consistent because it is derived from T by adding a great many new formulas,
each one of which is a consistent extension by theorem 7.12. Let T* be a
consistent complete extension of T by lemma 8.1. To show that T* is a
Henkin theory, let SE(B) be any sentence of L*. Let L, be the least language
of which it is a member. Let @(¥) be an equivalent formula by change of

bound variables. Then ¥ is o, . for some j, and dx(y) 2 ‘)‘(ki_'_1 j/x) is a
member of T, ., and therefore T*. So if 3§(B) is provable in T*, then so is
B(k, /§) via several operations on bound variables.

i+1,j

Lemma 8.5
A consistent, complete Henkin theory has ‘a model.

Proof: Given the theory T < L, let D be the set of ground terms in L, but
underlined. (If glh[]] is a ground term in L, then me D.) - D is non-
empty because a Henkin theory always has at least one ground term. Letp
be an n-ary function name in 1., We define the functxon q: to interpret ¢ as

follows. If7l,...,Tn are objects of D, .then_qo(_g_l_:. ++v,TH) ig the object
o[rl,...,Tn]. Let ¥ be an m-ary predicate name in L; then we defin-e»?]:(gl_,
.»Tm) to be true if and only if T"'V)UI- eces rm].. This defines a model in
L. Call it M. ;
To show that MFT, we shall prove that if a is any sentence in L, then
Tra if and only if M Fa. The proof is by iaduetion:on the total number of
logical connectives and quantifiers in «, ,Ihdzucﬂticlm basis; If there are no

quantifiers or logical cbnnect"ixlres in &, then & must be a ground atomic
formula. Then TFa if and only if M fa from the definition of function and
predicate 1nterpretat1ons in M. Induction step {i) If is B, then if Tra,
then B is not provable in T because T is consnstent, and hence not satisfied by
M by the induction hypothesxs. So M |=a. If M l:a then M does not satisfy

B. and 8 cannot be proven from T. Since T is complete, Tra. (ii) The rest
of the logical connectives are left as an exercise. (iii) If a is the sentence
A§(B), then if Tta, there is a ground term T such that ~'I‘%FB'(I’T_/ §) because T is

a Henkin theory. The sentence B(r/§) has one less. quantifier than «, and so
by the induction hypothesis MEB(T/§). Therefore, -M{I%(B8). Now suppose
that M |=3§(B). Then M, 1 }8 for some I interpreting ¢ as an object in the
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domain D of M. But this object T is an underlined ground term, and given
the special way M was defined, M EB(¥/8). By the induction hypothesis,
TB(T/€), and so TrIAL(B). (1v) The V case is left as an exercise.

Theorem 8.6

Every consistent theory has a model.

Proof: It has a consistent, complete Henkin extension in an enlarged language
by lemma 8,4. By lemma 8.5, this theory has a model. Then rerﬁoving
the interpretations for the new constants from this model gives a model for
the original theory. (See“problem set 20, No.2.)

Theorem 8. 7 (GHdel's Completeness Theoreni)

If Tha, then Tra.

Proof: (If & is not a sentence, consider its closure.) " If T ka, then T U (~a}
has no model, Therefore it is inconsistent by theorem 8.6. So anything can
be proven from it. In pafticular, T U {~a}ra, and so by the deduction
theorem TFr—a D2 &, or Trea. '

Theorem 8,8 (Compactness Theorem)

If T is not eaﬁsfiable, then there is a finite subset of T that is not
satisfiable,
Proof: By theorem 8.6, if T is not satmfiable. then it is inconsistent The
demonstration of inconsistency must come from finitely many formulas of T.
This finite inconsistent lub-theory has no model by corollary 7 5.

Theorem 8.9 (Skolem-L&wenheim Theorem)

If ¢ a theory hu s model it hna a counzable maodel.

Proof: If the theory has a model, then it is consistent’by corollary 7.5. If
it is consistent, then it has a model (theorem 8! 6) wltie’ﬁ is ‘countable by the
method of proof of lemma 8.5, ' T

The reason for producing these results in such rapid succession is to
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demonstrate how many of the significant properties of first order logic follow
from one central argument.

The completeness theorem has several useful interpretations. One
of these is that first order deduction is strong enough to derive any conclusion
which is valid. When we put completeness and consistency together, we have
Tra if and only if T Fa. Therefore, the limitatxons of first order logic are
linguistic. If a certain formula « cannot be derived from the theory T, it is
because there are rhodels for T in which a is false. i T is supposed to
describe some model M in which «a is true, then it evidently is not a complete
description of M. ’

The completeﬁess theorem allows us to assert many facts about
provability without producing constructive proofs. Instead, we argue the
case that something semantically follows from some theory, and then assert
its provability from that theory by using the completentss theorem.

On another level, the completeness theorem in the form of theorem
8.6 provides a criterion for the "existence' of matheinatical entities. If we
invent some set of postulates, when is there & mathematical éntity to which
they apply? If the postulates can be formalized as a first order th_eory, then
it is sufficient that they be consistent in order for theére to bée a model for
them. Lemmas 8.4 and 8.5 show that consistent language, suitably extended,
provides its own model or subject matter. '

$8.2 Equality

We return now to the problem of equality. In §6.3, a set of axioms
E; for the equality predicate was proposed. In §7.°3, it was proven that 'E‘L |
is sufficient to prove the equivalence of formulus coataining equal terms. In
this section, we consider the model theoretic aspect of equality. ¥From now
on, we shall assume that any theory in a language contsining the predicate "="
is an equality theory (has E; as a subset) unless we state otherwise.

In §6.3, we discussed a theory that'had only infinite models. Is
there a theory that has only finite models? : Constdeér-the ’iheofy:

=1

IxTy((x # j) AVz{x = 2 Vy =12))
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Intuitively, this theory seems to say that there are exactly two different things
‘that exist. It is satisfied hy a model containing 0 and 1, with 0 #.1. But it
is also satisfied by the model whose domam is the 1ntegers if we interpret '="
to mean congruent mod 2"'. There is nothmg in the theory that prevents such
an interpretation, although this is not the sta.ndard .interpretation of non,
Furthermore, there are no axioms that can be added to the theory that would
eliminate such interpretations.

Definition 8.10

If L is a language with equality, then a normal model in L is a model
in which the interpretation of ''='"" is that any member of the domain of the
model is '"=" to itself and not "'=" to any other object in the domain.

Clearly, any normal model for the two object theory must have
cardinality 2. So there is an advantage to considering only normal models,
since these are the ones we want anyway. The validity of this approach is
confirmed by the followmg theorem.

Theorem 8.11

If T is a theory with equality, and M is any model for T, then there is
a normal model M* which is first order equivalent to M. |
Proof: In the model M, there is an interpretation for the predicate name '"="
which we shall denote by the symbol ''~'". Since "~'" .satisfies the first three
axioms of EL' it is an equivalence relation on the:domain D of M, and
partitions D into co-sets. If d € D, then we denote the co-set of all elements
of D which are "~'" to d as [d]. The set of all such co-sets will be called D*
and is the domain of the normal model M* that we seek. .. We define function
interpretations in M* by the following equation, where pis the interpretatxon
of ¢ in M, and {§ is the new interpretation being defined on D*,

B(idy L. ... [4,]) s [@(d,, ..., d)]

That this is a consistent definition independent of the particular elements
chosen to represent the co-sets follows from the fact that in the model M, the
interpretation @ of @, and the interpretation "~" of "=" must satisfy axiom
schema (iv) of E; and therefore if d, ~e for1<i<n, then a(dl. ceerd))~

~94-




qo(e TERTLR ) and so [«)(dl.....d )] is the same co-set as [¢(e1....,e )],

The mterpretatmn Tofa predicate name ¥, is derived from the interpretation
¥ similarly, and the consistency of this definition follqws from axiom schema
(V) of E| . o ' : | - |
To show that M ~ Mx*, let a be any i‘ormula of L, and I an interpreta-
tion of the vanables of & into D. Define the inter;;retatmp I* by Ix(§) =

[ §)] Then show by induction on, the logical coanecﬁves and quantifiers of
a that if B is a subformula of @, then M, I}-.ﬂ Af and oply if M*, I* Fﬁ,

From now on, when we Speak of a mggiy m a. Languege with equality,
we shall mean a normal model unless we explicitly state otherwise.

v, "
By N

* Problem Set 26

(A1l languages aod theomea have equality, snd all models are normal.)

1. Specify a theory having infinite mod‘els. and finite models of cardm-
ality 3 xn for every nz1, and havmg no finite models whose cardmahty 1s not

- a multiple of three.

2. Specify a theory having models of cardinahty p for every pr1me
number p, -and no other finite models.

3. Prove that if a theofy has arbﬁfmiy latge finite models. that it
must have infinite models. {Hint: Use the compoctneu theorem. )

4. Prove that if-u consistent theory i8 complefe. alI models for 1t
either have the same finite ¢ardinality, or eISe they are all infinite. .

§8.3 The Skolem-L¥wenheim Theorem

This theorem was lmown early in thig‘ centuxy hgtone the completeness
theorem was proven, It tt,xen had to have a proof thlt did not depend on
deduction at all, but was entirely model-theorgti,c in nature, although the
term ""model" was-not used until somemmatgr. S

If we consider a logic with eqya;ity,ﬁ then the Skqumwwweaheim
theorem states that every satisfiable thegry has a finite ar countable. {normal)
model, This 1s rather puzzling becaugc we can formalize the theqry of real
numbers in first order logic. This theory at first sight.seems to require &

model containing at least all the real gumbers. . .. When we study.the axioms,
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we find that they require the existence of all real roots of polynomials, and
all real numbers defined by limits or integrals such as # or e or logarithms
or Bessel functions. The theory even asserts topolég‘iéal closure properties
such as that every non-empty set of real numbers bounded above must have a
least upper bound. How then can‘thi“s'théori' have a countable model?

This is known as Skolem's paradox, and the problem seems to lie
either in our naive assumption of the absolute notion of "uncountable , or in
the limitations of symbolic language to d1scuss what really exists. (You can
take your choice.) The fact is that if we take a "descrlptlon to be a piece
of writing of finite length composed of discreet symbols from a finite alphabet,
then the set of all potential descriptions is countable. So regaﬁrdlesé of what
we consider to be acceptable or well-defined descriptions, we can only des-
cribe countably many real numbers. We then find that every number that we
describe and look for really is in such a countable model, including, for
example,' the values of definite integrals which we know exist but cannot even
compute, |

If we believe that there really are "many'' more real numbers than
rational numbers or integers (and most mathematicians gince Cantor act as
if they believe this) then we must accept the situation that ''most'' real
numbers are inaccessible to description in any manner. However, Skolem
suggested that perhaps the notion of uncountable is relative to one's language,
and that there are uncountably many real numbers in real number theory
because there is no one-to-one correspondmce poujble between the real
numbers and the natural numbers within the theox'y. But viewed from outside
the theory, such a correspondence is possible as his 'co_untable model shows.
Viewed this way, "uncountable’ refers to our inability to "eount" or specify
an enumeration, rather than to the lar'ge size of a set, |

This situation is further dramatized by the fact that it is possible to
axiomatize set theory in first order logic. The Von Neumann -Bernays- ~-Gldel
(NBG) set theory has a finite number of axxoms (see [Mendelson, Chapter 4]
and purports to be about sets of arbitrarily high cardmality and ''classes"
which are even bigger than sets, such as "the class of all sets'. If NBG is
consistent, then it has a countable model. ! If it is not consistent, then

1'I‘hat is, if one is willing to accept the fairly conservative portion of classical
mathematical reasoning used in the proofs of 8.1 thru 8. 5.

-96-




methods of reasoning used as a matter of course by mathematicians in all
different fields are called into question. '

Philosophically, one may believe that all the entities of mathematics
are given a priori, but that our language has difficulty dealing with them, or,
if like the intuitionists one restricts one's belief to those things that could at
least potentially be written, then one may take all the higher infinities to be
mere semantic constructs. There is current research [Yessenin-Volpin]
which attempts to prove that axiomatic set theory is consistent from an
"ultra-intuitionist' viewpoint that believes in nothing it cannot see. It is too
early at this time to evaluate this work. '

-97-




CHAPTER NINE
FIRST ORDER LOGIC - ADDITIONAL TOPICS

Preview of Chapter Nine

This chapter is a collection of several topics not all of which are
sequentially related. The only one of these that is a necessary prerequisite
for subsequent parts of this book is §9.1 which is the study of formal
definitions. ‘

The system we have been studying so far is known as Hilbert-type
deduction. It is characterized by straight line proofs. Within the past
decade, research in automated theorem proving has been dominated by a
radically different approach known as resolution. §9.2 thru §9. 4 are about
resolution and its prerequisite topics. §9.5 is about still another form of
deduction known as a Gentzen-type system.

In §9.6, we return to the Hilbert-type system which we shall use for
the rest of this book, and discuss the question of decidability of theories,

§9.1 Definitions

When a formal theory is presented as a set of axioms T in a language
L, it is usually necessary to make definitions as we proceed to develop the
theory, for if we have to describe advanced concepts in primitive terms, the
length of the formulas we must use to do this becomes explosively long. We
shall have some examples to illustrate this later.

The main questions that we want to consider in this section are: How
do we make definitions that do not add anything to the basic assumptions of the
theory? How do we know that the theory is still consistent after we add
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definitions to it? If the theory was deSigned to fit some model, how do we
know that the definitions don't alter this?

Definition 9.1

Let T © L be a theory, and T, € L, be an extension to T. We say that

T, is a conservative extension of T if whepever T, ra and @ € L, then Tra.

A theory is consistent if and only if gyngy_con;servq,tiy.e extension of it
is consistent, | | o .

The easijest sort of det‘imtlon that we can makg is to replace some
commonly os:curring term by a new fnnctmn name, or some commonly
occurring formula,by a new predicate name, '

Rule X (Explicit Definitions):
An explicit definition is a line in a proof having the form:

Pl€y, 0 n8 =T
or IE,....5. 01%a

where @ is a new function hame and 7 {8 a term having no
variables other than the €, orpisa new predicate name and
@ is a formula having no free variables other than the §..

The restriction on the free variables occurring in T or @ is necessary
to avoid definitions that are ambiguous and have c‘éﬁffi&ictofy instantidtions.
For example, if we défine f[x] = x+ y, then two inatahdés of this are f[O] = 0+0,
and f[0] = 0+ 1, from which we can deduce 0'= 1. Or i we define p[x] = -

(x> y), then we have p[2]%(2>1)5(2>3)or T = F.

Theorem 9.2 - -

If T1 i~ Ll is an extension of T < L. by Ruln X, then it is a conservative
extension. Furthermore. if M is any model in. :L that satisfies T, then there
is a unique expansion of M in I.‘1 that satisfies T ‘

Proof: Let M be a model in L that satisfies T. If ¢ is a new function name
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in L, introduced by Rule X, then we define w(dl. cea,d ) for any elements d
in the domain of M by letting this value be V(M, I, 7) where T is the defining
term in Rule X, and'l is an interpretation of the variables § into the d,
respectively. Any other way of definmg @ would not satisfy the defming
equation, and so the expansion of M is umque. If the extension is by way of
a predicate name §, then we define Mdl. S, d ) to be true if and only if
M, II:a where 1 1nterprets the § which are the only free variables in @ into
the d, respectively, and this expansion is also uniqde. e

Suppose T, ko and & € L. Leét M be any model for T. M has an
expansion that Satlsfles T, and therefore satisfies a. Since a € L the con-

1

traction of M1 to M also satisﬁes a. Smce this is true for all M that satisfy
T, we have Tka, and by completeness, Tra,  So T is a conservative

extension of 'I:.

The uniqueness quantlfler | § means "There exists exactly one §
such that ...." It is not a new logtcal coneept but merely an abbreviation,
The formula ,§(a) is an abbreviation for 38(@.A YE(@(/8) 2§ = §)), where {
is a variable not occurring in @. This notation is used only in languages with
equality. “ | | -

If the formula & §(a) has only the variables C thru C free, and the
(normal) model M satxsﬁes it, then for every chaice of cl thru 4, in the
domain of M, there must be exactly one d 1,,151.1(:1; that ;,f I mterprets '
¢s--e»€ 6 into d, thrud 1 resgggtwelx,"tpgg,\m,;l_}gg@ This defines a
n-ary function on the domain of M.

Rule F (Function Definitions):
In a deduction in a theory with equality, if line (j) is

hne (i) a(v[(l, ce .,C ]/5) wh“"ere @ is mnvary fqnctign name,
and the Justificatmn for line (1) is "Rule F j" where j < i,

ety
Theorem 9.1

If TCL, Thﬂlg(a), a has only the variables § and the Ci free, ¢ is a

new name, and T, is T U {a(tp[CI. oo .Cn]/§)}. then T, is a conservative

1
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extension of T, and if M is any model that satisfies T, then there is a unique
expansion of M that satisfies Tl'
The usefulness of definitions comes from the ux_xi,quenels_s] of their
model expansions, which is a much stronger eonditicn than that the definitions
are conservative extensions. It not only guarantees consistency, but means
that the theory bemg developed is still appligable. to the original model.
A strong proof- theoretxc property of defmitlons is that .they are

eliminable. This means that every formula in the extension can be effect-
ively mapped onto a formula of the orlgmal language in a manner that
preserves provabihty. So anything that can be said in the extended language
can be said in the original language, although it may be of prohjbxtlve length
and therefore not a practical thing to do. .. Proving the effective ‘elimination
of Rule X defmitmns is easy. Provmg the effective elimination of Rule F
definitions usmg proof -theoretic techmques is quite complicated combma-
torially. It is"done in [Kleene §74).

The following examples show how rapidly the procesa of defimtion can
proceed The theory N is the classxcal theory of natural numbers whose
axwms we do not Spemfy here. The theory is stated in the language
{=.0, '+, x}.

1. (m<n)s= 3p(m+p n) Rule X

2. (m 2n) = -(m<n) " RuleX

3. prime[m] & -ﬁﬂp&'q('o <pAp<mAh
PXq=m)A0<m Rule X

4. &,pn=02p = 0)A(0<n> (This is now
(nxp<m'Anxp zm)) = - provable. )

5, M=02mM++n=0)A(0<n>
(nx(m-n)<m/\nx ,
(m +n) 2m)) : Rule F 4

This definition of division is peculiar. - The reason is that Rule F
only allows us to define total fux;ptxons. In Qrder to make ¢ dtVision total, we
have to arbltrarily define division by 0, it doesp't matter how, - The second
part of line 5 is the useful part and it cannot be uged to. prove any properties
of division by 0.

This brings up an mterestmg pomt which is that the models of first

s
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order logic always have total functions. This does not mean that we cannot
model a subject that has partial functions. It does mean that if we érovide
axioms that do not completely specify a function, then we may expect the
theory to be incomplete, and to be: satisfiéd by all models that complete the
partial functions in all possible ways,

"To put this differently, suppose we had introduced as an axiom of N
the formula 0< n>(n X (m *n)<m’'Anx(m +n) 2m’). This defines divis-
ion except by 0. It allows us to prove all the ordiﬁéi?y results about division
that we would like to 'prove, but formulas such as m +0 =0orm %0 =1 will
be independent of this theory. We may choose to use thxs approach because
it is distasteful to make arbltrary choices that are not’ necessary.

We now introduce additional definition schemas to define functions and
predicates by cases, and to define part1a1 functxons and predicates. It is
important to know whether a given function of predicate has been introduced
as total or partial. The rules X and F already speciﬁed and the rule K
that we give next define total functions. the rules PK and PF defme partial

functions,

Rule K (Definition by Cases):
The definition schemas:
71 D $[§1. s 00 ,;m] 5a1
Ve O WlE e 5 150
and

7 D¢[§1.....§

n]=T

1

yk D‘Plgl,..‘.gf]f: T

are justified when (i) $ or ¢ is a new name, (ii) the T have no
variables other than the § i+ and the a and 7 have no free -
variables other than the §i, (iii) Ti-—-:('y AN y ) fori< jsk, and
(iv) T"('}'1 ees V )‘k) If all prevmusly defmed function and
predicate names used in such a definition are total, then the
new function or predicate name is total.
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Rule PK (Partial Definition by Cases):

Same as Rule K except that condition (iv) is not required.

Rule PF (Partial Function Definition):

If Try 2 & §(a) where the only free variables in this

formula are Cl thru Cr; and ¢ is a new function name, then:

YDa(go[CI. ....Cnl/é)

‘is justified, and defines a partial function.

Problem Set 27

1. Prove theorem 9. 3.

2. Prove that all total definition schemas imply unique model ecxten-
sions, and that all partial definition schemas imply the existence of model
extensions, and that all these extensions are conservative,

3. Critique the following proposal for an "ém'biguous function"
definition schema: If T+¥&(a), and the only free variables in this formula are
Cl thru Cn, and @ is a new function name, then define ¢ by d@[{l. .o .'Cn]/E).

§9.2 Herbrand's Theorem

Definition 9. 4

A sentence is called a prenex normal form sentence if it is
Q1§1. .. Qnin(a) where each Qi is either V or 3, the §i are distinct variables,
and a has no quantifiers,

Theorem 9.5

Every sentence is equivalent to a sentence in prenex normal form
having the same function and predicate names. ) | |
If T is a theory, then Th(T) = Th(T ) where T1
normal forms equivalent to the closures of the formulas in T.

is a set of prenex

Proof Sketch: To put a sentence in prenex normal form (i) eliminate "= &' by
(a = B) * (a2 B) A (B2 a), (ii) eliminate "2 by (a 3 B) * (:-.a v B), (iii) change
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variables so that every quantifier has a distinct variable, (iv) move the
quantifiers outward using transformations such as ~V&(a) * I§(—~a) and

a vV VE(B) *V¥ia v B). These are all equlvalences. ~ (Note that in the last
formula, o has no free §, Why?) -

Herbrand was trying to solve the fundamental problem of first order
logic, which is to determine when a formula a is a member of Th(T), by
purely proof-theoretic techniques. As p.art of this program, he showed how
a theory could be expanded into a form in which there were no quantifiers.

Given the theory T, we have the equivalent theory T1 in prenex
normal form, Let Q1§1. .o Qnﬁ_ﬂ(a) be a sentence of this theory, If Q1 is
universal, then it can be dropped by rule QX3, If it is existential, then we
can drop the quantifier and make the substitution®{]/§, in the manner of
problem set 27, number 3. In either case, we have gotten rid of the first
quantifier. This pi‘ocess can be repea‘tedifor,. each quantifier in turn, merely
dropping the universal quantifiers, and substituting-ambiguous function names
~ for the existenfially quantified variables. 1 ;i is existentially quantified,
then it will be replaced by <pi[-§i1. oo gik] Wher&Qg--- .Qik are the universal

quantifiers to the left of Qi in the original formula. For example:
VxAyVzA wip[x, fly. w2, gly. z])

becomes
plx, f[hl[x}, h2[x, z]], z, g(hl{x], z]]

where hl and h2 are new function names. They are called Herbrand function

names,

This process can be done for an entxre theory T1 in prenex normal

form producing the open theory T2' From the previous dwcussmn it should
be clear that 'I‘1 U T2 is a conservative extension of Tl‘ and that if M is a
model for Tl’ then thére is an expansion of M that satlsﬁes T2 This
expansion is not necessarxly unique, Conversely, any model for T2 can be
contracted to a model for T therefore T 'is satisfiable if and only if T2
satisfiable,

Let L, be the language of T,. It is the language of T (and T,)

together with all the Herbrand function names. Let H be the set of all
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ground terms in L,. We add one constant to L, if necessary to make sure
that H is not empty.

Let 'I‘3 be the set of all ground instances of T2 (If & is an open
formula in T2 having distinct variables § thru § and h1 thru h are in H,
then Ol(h /§ I /§ ) is a ground 1nstance of a ) If 'I‘ is satlsflable.

“then obviously T3 is sat:sfiable ‘The converse is also true, but needs a.
proof, which we supply presently. ‘

When we look at the formulas of T3, we see that not only are there no
quantifiers, but there are no variables either. A formula in T3 is simply a
logical compounding of ground atomic formulas. If we view each distinct
ground atomic formula as a distinct propo’si’tional'\}oriable. then we can
regard T3 as a theory of propositional logic. lf 'I‘3 is sgﬁsfigble as a first
order theory, then it is also satisfiable a8 a propositional theory by allowing
a first order model to supply truth values for eat‘:‘h"gfbund atomic formula,

Conversely, if T, is satisfiable as a propositional theory, then it is
satisfiable as a first order theory. To show this, let M be a propositional

model for T ‘We define the model M’ on the domain H of ground terms by

defining'fungtion interpretations in the same manner as in lemma 8.5,

i.e., 5‘*‘1'-- h ) is the term:p{hl....,h . We defme &(hl.....h ) to be
true if and only 1f M H:[hl, eeesh ] This defines M, and M FT because it
produces the same valuations on ground atomic formulas as does M.

M’ also satisfies T2 because if a € T2. then a is an open formula,
and if I is any interpretation of the variables of & into H, then M, Il=az.
because the corresponding ground instance in T is also satisfied by M’

(This sort of argument can only be used when we aIready know that the
language has a ground term to express every object in the domain of the
model. The situation is similar in some ways to lemma 8 5.) This proves
that T

is satisfiable if and only if T, is satisfiable,

2 3

Theorem 9. 6 (Herbrand's Theorem)

Suppose that T is an inconsistent theory. This fact can be demon-

| be the prenex oormol form for T. Let
T2 be the open theory obtained from T, by dropping quantifiers and intro-
ducing Herbrand function names. Let T, be the setof all ground instances

strated in the following way. Let T
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of T (making sure that H is not empty). Then there is some finite set of
formulas in T3 whose conjunction is proposxtmnally meons1stent.

Proof: If T is incon51stent then it is unsatisfiable by the consistency theorem.
IfTis unsatlsﬁable, then Tl’ T2 and T3 areunsa,t).sﬁable as noted in the
preceding discussion. Then T3 is propositionally unsatisfiable. By the
compactness theorem for propositional logic, some finite part of T3 is
unsat1sf1able and by the completeness theorem for propositional logic, the

Con_]unctlon of this finite set of formulas is inconsistent propositionally.

This proof would not have been satisfactory to Herbrand. The state-
ment of the theorem makeé no reference to models, and can be proven using
only finitary proof-theoretic methods. Such a proof is given in [Herbrand,
p.168]. The proof is c,bmplicatec_i and has error which has been corrected by
subsequent loéicians, (Herbrand's paper was presented as a thesis at the
Sorbonne in 1930, In 1931 Herbrand was killed in an alpine climbing
accident when a piton came out. He was 23 years old.)

If we can demonstrate 1ncons1stency. then we can also demonstrate
provability because T U {ma ] is inconsistent if and only if Tra. The insight
of Herbrand's theorem is that in all cases only a finite. amount of model con-
struction effort is ynecessar‘yvtb show that no model can be built for a theory.
This suggests an entirely new approach to creating demonstrations than the
Hilbert-type syé_terri.,é and Herbrand's theorem is the '"completeness'' theorem
for this new typé of demonstration. This idea will be expanded in 9. 4.

§9.3 Substitution and Unification

The theory of substitution and unification is part of the theory of
resolution developed by [Robinson]. It is interesting enough in its own right
to be presented as a separate topic. It is perhaps part of the answer to the
question: What is the equivalent in the theory of symbolic processing to the
number theoretician's interest in factoring, least common multiples and so
forth? -

Before we can perform the operation of substitution, we need some-
thing on which to do the substituting. @ We could develop the theory of substi-
tution on s-expression but, instead, we shall do it the way Robinson does it
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so that nothing needs to be altered for §9. 4,

Definition 9.7

A literal is either an atomic formula or else it is a negated atomic
formula (i.e., an atomic formula preceded by '"—''), = A clause is a finite set
of literals. Literals and clauses that do not have variables are called
ground literals and ground clauses.

The mterpretatmn of a clause that we shall use in §9 4 is the dis-
junction or "or" of its literals. The idea of a set of literals rather than a
sequence is that a set does not specify an order for its components, nor is it
meaningful for an element of a set to be a member several times over,

This is a useful condensation of the assoc1ative. commutatxve and idempotent
properties of "'V'', A clause can be represented by the usual finite set
notation which is a list of elements enclosed by braces and separated by
commas,

Examples of Literals:
plx. y] - q(x, fly, glx y]1
—plk(], j[1] r[x, (A B C)]
Examples of Clauses: ,
{oplx.yl, rix(ABC) -alxfly, glx, y]ll}
x+y=3, 1+2# 3} '

Definition 9. 8

A substitution component is an expression of the form "7/£" where T

is a term and § is a variable, and 7 # §, Its meaning is ''substitute 7 for all
occurrences of §.'.- A substitution is a finite set of substitution components

such that each §i is distinct. Its meaning is ''substitute each LA for all

"' This is a simultaneous substitution.

occurrences of its §i.
If C is a clause, and 8 is a substitution, then C8 is the clause resulting
from performing @ on C. For example, if C is {p[x, yl, —alfly]}}. an_d 9 is

{glz]/x, f[x]/y}, then C@ is {plglz], f[x]], ~q[flf[x]]}]}. The notation COA means
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the clause resulting from first performing @ on C, and then performing A on
the result of this, This is a "postfix'' operator style of notation which has
the advantage that the operations get performed from left to right.

Definition 9,9

If @ is the substitution {‘r /8 preeeeTy /§ } and A is the substitution
{o /Cl, cees /C }, then the compomtxon of 9 and A written §A, is the sub-
stitution deﬁned as follows: Let A be the set of all components of A except
those for which C is one of the £'s, Let 8’ be the set of all components of
the form T, :\/E where ‘r /§ is in 8, and n A is the result of performing A on T
except those cases where ‘rlk is E in whxch case TA/ S is not a substitution
component, Then 91 is defined to be the union of the sets 8 and A',

This definition of composition of substitutions is not commutative
because it is intended to produce the substitution which is "first do 8, then do
A'. If the T's replace all occurrences of the §'s and then A is performed,
they will get changed into TA'S. The oill:i components can act on the original
text only when Ci is not one of the §'s. However, even if they get thrown out
they still have an effect in defining the 'ri;\/; eomponents. For example, the
composition of {f[x}/x} with itself is {f[f[x]]/x]}.

Corollary 9,10

For any clause C, and any substitutions § and A, (C8)A = C(8)).
For any substitutions 8, A and 4, (BA)4 = 8(Ms). (Substitution is
associative, ) B

The set of all substitutions form a> semi-grqup, with the empty substi-
tution as identity. |

Examples of composition of substitutions:
{x/y} {x/y, y/x} = {y/x}
x/y, y/x} {x/y} = {x/y}

{g[x YI/x’ h[ ,Z]/ }{f]'[ / 2 .f3 }— f1 om
hi2(z], f3[}l’t]]/y.)tr'1]3[:]/z£z]/y e)/2 - {glr1ly). L=/,

{n2+2/m, 3 x m/n} {n - 3/m} = {n2+2/m.3 X (n2 - 3)/n}
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Definition 9,11

A finite set of literals is called a singleton if it has exactly one
element. If C is a finite set of literals, and-C8 is a singleton, then @ is said
to be a unifier of C. @ is a most general unifier of C if it is a unifier of C,
and if for every A which is a unifier of C, A = 84 for somey.

Not every set can be unified. A necessary but not sufficient condition
for a set to be unifiable is that either all literals begin with ''=" or else none
of them do, and that they all ‘have the same ‘pred‘icate.naiq‘xe. At the opposite
extreme, if a set is élready a Singleton, thén e\}cry substitution is a unifjer
of it, and the empty substitution is its most g'en‘ér;al_;l ,,uqifi,er_.

Examples: | ,

{p(3], p[5}} cannot be unified.

{p[3], p{x}} has most general unifier {3/x].
{pix], plfly]]} has most general unifier {f[y]/ x}.
{p[x], p{f[x]}} cannot be unified.

{alfly), x], q[x, f[Z]]} has most 7eneral-unifier {f{y]/x, y/z} or
' {flz]/x, z/y}. -

The unification algorithm is an ‘effective process for finding the most
general uniffer of a sét of literals if it exists. ~The algorithm as given does
not work for clauses containing infix or postfix operators or other relaxations

of grammar, and we do not attempt to change this, ‘

Let C be a finite set of literals. The disagreement set D of C is the
set of all well-formed terms or formulas that begin-at the first symbol
position at which not all of the literals of C agree. We can think of a cursor
moving character by character from left to-right on all the literalsin C and
stopping as soon.as:there is any discrepancy between any two litérais. We
then copy the smallést we}l-formed term or formula that starts at each
~ cursor position, and this is the disagreement set. : For example, the disagree-
ment set of {p[x, h[x, yl yl. pix, glyl vk pix, a5} s {h{x,y], glyl al. ¥ C has
at least two literals, then the disagreement set of C has at least two elements,

The disagreement set is obviously computable.
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The unification alogrithm is stated as a program, with program
variables C, D, 8, £ andT. C is initialized to the set to be unified, and 0 is
initialized to the empty substitution.

Loop: C:= C8; (Performing 8 on C is specified here.)
If C is a singleton then terminate with most gene_ral unifier 8;
D:= disagreement set of C arrangéd‘in a sequence with variables
ahead of other elements; - |
€:= first element of D;
T:= second elemgnt of D;
If € is not a variable then fail;
If T contains occurrences of § then fail; .
8:= 6{r/%}; (Composition of substitutions is specified here,)
Go to ioop; ' '

Theorem 9, 12 (Unification Theorem)

If C is a finite set of literals, then if it has a unifier, it has a most
general unifier, and the unifica_tiqn, algorithm will compute one. Otherwise,
the algorithm will te_‘_zf'minaterwith a fail. The algorithm always terminates.
(Proof in _[Robihson ] )

Problem 27

The LISP function sublis[x, y] performs a substitution on the
s-expression y when x is a list of pairs, each of which is a substitution com-
ponent. (See §8.1.) Let us call'x a substitution if it is a list of pairs, and
the cadr's of the pairs are all different atoms, and ear and cadr of each pair
are distinct. Define a LISP function compose(x, y] such that if x and y are
substitutions, then compose[x, y] is a substitution, and if z is any s-expression,
then sublis[y, sublis[x, z]} = sublisfcompase[x, y], z}.

§9.4 Resolution

We continue from the concluding remark of §9.2. Starting with a
theory T that we wish to demonstrate inconsistent, we generate T1 in prenex
normal form, and T, which is an open theory. The next transformation in
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this process of preparation is to put the formulas of T2 into what is known as
conjunctive normal form.

Definition.9.13

If L1 thru Ln are literals, then L1 Vieeo V Ln is called a disjunct.
If D1 thru Dm are disjuncts, then D1 Adas A Dm is called a conjunctive
normal form, ' '

It follows from DeMorgan's Laws, and the distributive laws for
logical connectives that every open formula is equivalent to a conjunctive
normal form. Having put a formula in conjunctive normal form, we can then
turn each disjunct into a clause simply by eliminating any redundancies and
making a set of the literals, Now if we have a theory in such form, each
formula is a conjunction of clauses. Since a theory is semantically the
conjun.étion of its formulas, we can further collapse the whole structure and
regard the theory as simply a (possibly infinite) set of clauses in conjunction.
The boundaried of formulas are no longer important, If 'I'2 is an open theory,
we call the equivalent set of clauses T3.

IfT 3 is unsatisfiable, then there is some finite set of ground
instances of T, which is inconsistent. Call this T,. Ground resolution is

an essentially propositional rule of inference on ground clauses that is used
to demonstrate the inconsistency of T4.

Definition 9, 14 (Ground Resolution)

If @ is an atomic formula, then a and ~a are called complementary
literals, A ground resolvent of a pair of clauses having complementary.
literals is the clause consisting of all the other literals of both clauses, as is.
indicated by the following schema, where @ and ~a are complementary, and
the B, and 7, are any literals and i 2 0, and j 2 0.

=T {anplo---pﬁn}
ey}

[pln-GOnﬁnnyls--yoym}

This rule is not only propositionally valid, but is completé in the
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following sense: The empty clause has the value 'false" in all interpretations.
Robinson denotes the empty clause by the symbol O, If a set of ground
clauses is inconsistent, then it is possible to deduce O by a finite number of
applications of ground resolution, and no other rules of inference or axioms.

So far, there is no great efficiency in this schema. It is not any
faster than earlier decision procedures such as {Davis and Putnam]. The
major advantage of resolution compared to ground reésolution is that it is not
necessary to generate the theory T 4 2t all. Resolution is a combination of
ground resolution and instantiation. But instead of generating ground
clauses, it does no more instantiation than is necessary. In resolution all
substitutions are as generél as possible,

Resolution is defined as a deduction rule that has two clauses (not
generally ground clauses) as its antecedents, and another clause as its
consequent. A pair of clauses may have no resolvents, or one resolvent, or
more than one resolvent, The completeness theorem for resolution is that if
T3 is unsatisfiable, then there is some finite sequencey of resolutions on T3
that generates 0, The completeness theorem follows from Herbrand's

Theorem and is in Robinson's paper,

Definition 9. 15

L.et C and D be two clauses. Let C' be obtained from C by substitu-
ting the variables x1, x2 ... for the variables occurring in C, and D' be
obtained sim’ilarly from D using the variables y1, y2... This is to guaran-
tee that C’' and D’ have distinct variables without their being substantially
different from C and D.

Suppose that there are sets L, M and N such that: (i) L< C),

(ii) M © D/, (iii) L-and M are non-empty, (iv) N is the set of all atomic
formulas that are either in L or M, or whose complements are in L or M,
(v) N is unifiable, and 8 is a most general unifier of N, and (vi) L@ and M8
are complementary singletons, Then (C' -L)8 U (D' - M)@ is a resolvent of
C and D.

As an example of resolution, we prove the validity of the sentence
Vx(p[x] = q[x]) 2 (Ix(p[x]) = x(q[x])). (See problem set 21, No.16,) First,
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the entire sentence is negated, to obtain the one sentence theory T, then it is
put in prenex normal form, Tl' and the quantifiers are dropped introducing
the constants k1 and k2 in T2. Then it is put in conjunctive normal form,
giving the theory T3 which is the first six lines of the proof presented below.
This is not at all obvious, and it will probably take some effort to obtain this
result, and also to verify that T3 really is the denial of the original formula.
It is worthwhile doing this. Note that it is essential to the meaning of line 6
that it have two distinct variables.

Since each line in the demonstration is a clause, we do not bother
with the braces., The renaming of variables is also relaxed in a manner that
does not affect the demonstration. Lines 3 and § are superfluous.

1. -plx] q[x]

2. ~q[x] pix]

3. plky] -plx]

4. plk,1 alk,]

5. —aqlx] qlk,]

6. -plx] -qly] :

7. q[kll q[k2] Res 1,4
8. -pix] q[kll Res 6,7
9. -p[x] ~ Res 8,8
10. —q[x] Res 2,9
11, q[k2]- : v Res 7,10
12, O _ Res 10,11

Lest we g1ve the impression that resolutxon is obscure, we offer a
proof of 0'+0’= 0’ from the same assumptions as the Iong demonatration in
§7.2. In doing the preparatory work for thxs problem. we come across an
interesting property of resolutxon. Suppose we wish to prove a from a set
of formulas B thru B Wthh can be axxoms. definitions, or prev1ously proven
theorems. We do ’thxs by demonstratmg the mconsistency of ‘1(3 1>
B > a). In conjunctive normal form, this. becomes ﬂ‘k b eee A ﬁ A -a,

Thxs means that the premises of the demonstration do not have to be negated
and that each one can be prepared independently. _ Q;;ly a r;eeds to be
negated. In the following demonstration, linel 1 thru 4 are given, and line 5
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is the negation of what we are trying to prove.

1. x#dy ytz x=2

2. x#¢y x=y

3. m+0=m

4, m+n = (m+n)

5. 0'+0 #0"

6. (m+0) =m’ Res 2,3
7. (m+n)#z m+n =2 Res 1, 4
8 /

9

. m+0'=m Res 6,7
a . Res 5,8

It is very characteristic of resolution that although we can prove
m+0 =0 directly with no negations of desired results, we cannot prove
0'+ 0’ = 0" this way. The reason for this is that the latter is an instance of
the former, and resolution always keeps things in their most general form.
The preceding demonstration is about as efficient as one could hope for.
Each line represents a bit of reasoning leading directly to the desired resuilt.

Since the invention of resolution, a great deal of effort has gone into
making it even more efficient., Resolution fits in well with many different
heuristic devices used by artificial intelligence programs. It has been
shown that resolution is complete under severe restrictions as to the order
in which different clauses get introduced. The effect of such restrictions is
to cut through the combinatorial explosiveness of having to resolve all
clauses in all possible ways. ~When there is a model of the subject matter
available, it becomes possible to use it to drive the resolution into fruitful
lines of attack, There is now an entire book about resolutiqr; and the many
techniques that have been invented to increase its effiéiency. [Chang and Lee]

In comparing a Hxlbert type proof system with resolution, let us start
with some of the differences. A Hilbert system is a linear method of
deduction following precise rules and therefore subject to mechanical verifi-
cation which we call proofchecking. It has more symbols than are actually
needed, and at every point offers many ‘different Options. There are always
different ways of expressing the same thing, Most of the design effort,
including the various kinds of definitions, has gone into making it possible for
a person who is inventing a proof to formalize it in a manner which approxi-
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mates his own use of language.

Resolution, on the other hand, has been designed for the purpose of
mechanical theorem proving. Rather than allowing for flexibility in expres-
sion, Jusg,the opposite tactic is used. The input data is reduced to a
canonical form as soon as possible, even at the cost of maklng it humanly
unintelligible. The combinatorial complexity is reduced by having a single
rule of inference, by keeping all assertions in their most general form, and
by heuristics, all of which provide restr1ct1ons rather thAn introduce
additional options. The result is the most powerful m-depth mechamcal
theorem prover available today.

We might ask what use is it? Even if further improvements resulted
in a speed-up by a factor of 1010 this would not be enough to give a theorem
prover the appearance of "intelligence . The idea of a theorem prover as a
sort of universal intelligence has been largely abandoned by people working
in artificial intelligence. The usefulness of a theorem prover seems to be.
in filling in‘the,gaps left by some more intuitive process. Whether that
process is human or machine, ‘

§9.5 Gentzen-Type Systems

Gentzen developed a system of deduction quite different in appearance
from Hilbert-type systems, for the purpose of studying the propertxes of
deductions. An exposition of Gentzen's system can be found in [Kleene §77].
We do not describe the system here, but simply comment that rather than
being linear like a Hilbert deduction, a deduction in Gentzen's system has the
shape of a tree with the resultant theorem at the base of the tiee, anda
branching structure going up from this. - The tip of ‘evefy branch is a certain
type of trivial tautology. : : R |

An interesting aspect of a Gentzen-type system, which has a certain
appeal for artificial intelligence programming, is that it is highly suitable for
working backwards from the goal to the given data, creating’a structure of
subgoals on the way. A list of subgoals may be conjumetive or disjunctive,
that is, either it is necessary to solve all of them, or only one of them, This
sort of alternating tree is similar to a move tree in a two-person game such
as chess. A Gentzen-type system would have been at least as: suitable as a
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Hilbert-type system for the purposes of this book, and probably more so for
anyone building a real proofchecker, We have used a Hilbert-type system
only because it is more familiar and easier to expléin initially.
_ Extensive research has been done on modified Gentzen-type systems.
[Yonezawa] has desxgned a theorem prover contaming many fewer and
simpler rules than Gentzen originally had. He also has restrictions on
generating substitution instances that make for efficlency. Yonezawa proves
that this restricted system is nevertheless complete. When one looks at this
program, one gets the feeling of seeing the basic prmc1p1e of resolution
(substitutions kept most general) in a different form. This suggests an
interesting field of study which might be cal'led‘c.omparative proof theory.

§9.6 Decidability

A theory T is called effective if T is a recursively enumerable set.
If T is an effective theory, then Th(T) is a recursively enumerable set since
it is theoretically possible to enumerate all deductiens in T,

The theory T is called decidable if Th(T) is a recursive set. This
does not follow in any way from T 'b:eiﬁg a recursive or even a finite set.

Theorem 9. 16

If TC L is decidable and & € L, then T U {a} is decidable.
Proof: If Tra, then Th(T U {a}) = Th(T). If Tk-a, then T U {&} is incon-
sistent, and Th(T U {a}) = L. The interesting case is where & is independent
of T. We can assume that a is a sentence. Then by the deduction theorem
T U {a}FrB if and only if Tra @ B, and this is decidable because T is decidable,

Corollary 9.17 =~

Every consistent decidable theory can be extended to a complete
consistent decidable theory,

¥

First order logic is called decidable if the set of “all valid sentences
is a recursive set,
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Corollary 9,18

If there is at least one undecidable theory having a finite axiomatiza-

tion, then first order logic is undecidable. (In Chapter Twelve we provide

such a theory.)

Problem Set 29

1. Prove corollary 9.17. (See lemma 8.1,)

2. Prove corollary 9. 18.
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CHAPTER TEN
INFORMAL ARITHMETIC

Preview of Chap{er Ten

The study of the natural numbers is known as number theory. When
we say ""arithmetic', we mean the more generalized study of s-expressions
including natural numbers, or possibly the study of discrete data structures
in general, which we comment on briefly. The study is "informal" in the
sense of beingv a mathematical discussion in English as distinct from a formal
theory expressed in first order logic ( which we study beginning in Chapter
Eleven).

$10.1 The Postulates of Arithmetic

Peano's postulates for the natural numbers are:

Zero is a number,

.  The successor of a number is a number,
Zero is not the successor of any number,
No two numbers have the game successor.

[S2 B S R

. Any property which is true for zero, and is such that if it is true
for some number it i8 also true for the successor of that
number, is true for all numbers, |
These axioms are stated informally, and do not come with any

instructions on how to reason logically from them. The notion of equality

and its properties, as well as the notion of a function, and 't'he fact that
successor is a function, are also not explicitly given. In tfying to reason
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from such a set of axioms, it is not quite clear which assumptions that we
bring to the problem are logical, set-theoretic, arithmetic, etc. That is
why formal systems were developed.

The last postulate is known as the induction principle, and has always
been the most controversial of them. We-have-alr‘eady used induction in
many of the proofs of theorems in this book. The notion of "property' in the
induction postulate is a bit vague. In formal number theory, property-is
taken to mean "predicate'. | '

The LISP postulates are a complete analogue to Peano's postulates.
They even correspond in number. They are:

1. Atoms are s-expressions.

2. Cons of any two s-expressions is an s-expression.

3. Cons of two s-expressions is never an atom.

4, If o differs from B; or if y differs from 6, then cons of
@ and ydiffers from cons of 8 and 6.

5. Any propérty which is true for all atoms, and is such that
if it is true for @ and B it is algo true for cons of &« and
B, is true for all s-expressions.

The induction principle can be used informally on s-expressions to
discuss properties of tree-type structures, For example, consider the
LISP function reverse defined by:

reverse[x, y] + [atom[x] #* x, T * cons[reversefcdr|x}],

reverse[car([x]]]]

This recursive definition can be stated in English without reference to car and
cdr as follows:

(i) Reverse of an atom is itself. -
(ii) Reverse of the cons of two s-expressions is reverse of the
second consed with reverse of the first,

From (i) it follows that reverse of reverse of an atom is itself. Now suppose
that reverse of reverse of a is itself, and the :safrie' for B. Then by (ii)
reverse of reverse of cons a and B is reverse of { réVérsé of B consed with
reverse of &) which is reverse of cons of 8 and @. Applying (ii) again we get
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that this is reverse of a consed with réverae of B which is o consed with 8.
This supplies the induction step, and fram the.induetion principle we conclude
that reverse of reverse of any s-expression isitself,

There. are only two differences between the LISP postulates and
Peano's postulates. ' One is that cons i8 binary, while successor is unary.
The other is that there are many atoms but only one zerc. - So'in addition to
the LISP postulates we need some wiom postalates:

1. Every atom is either a name or a number buf not both,
2. The names are in one--to-one mrrmd&nce with ‘the
numbers. - a

Another way of putting (2) 18 to say that the names can be effectively enumer-
ated, '

Neither predecesscr, nor car and cdr are mentioned in these postu-
lates. The reason for this 18 t6 avoid the Thet tﬁ&‘t %ﬁm are partial functions.
However, there is no probiem’ mmﬂmiﬁg tﬁeﬁf as either partially defined
functions, or functions completed in ai arbitéary way.

The functions plus and times are not memioned in the theory either.

If one tries to define thewe {n the’ Iiug\uge i"irnéf'&fven by ﬁeano's postulates,
one finds that there 1§ fis' way fo do oifs #dt’ “doe ”m:{ add something more to
the theory, In fact, when we formalive this" iheory. ‘it turns out that there is
no way to make these definitions so that they urne &Mervaﬁve.

There {8 no reasonable LISP analogue for plus and times. Therefore,

starting from ms point, the two theories diverge,

§10.2 Primitive Recursion

The reason why the definitions of plus-and-times are not conservative
is because they are recwrsive.: ‘Recursive defiritions do not always terminate,
and, as we have seen in Chapter Five therg is no general way to decide
'whgch ones do and which ones do not, We hyve not.considered so far what
happens when a recursive deﬁnititm is adda&tg,a first order theory. This
topic is 1mportant but ﬂeeds a full and d&tﬂﬂe@ trestment which we provide
~in Chapter Fourteen. For the moment, let us note that it is "'safe" to add a
recursive definition to a theory if we know that it defines a total function, but
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that such definitions are not necessarily conservative. (Note that none of
the definition schemas of §9.1 allow any recursion at all, ).

Because the problem of deciding which procedures compute total
recursive functions is not generally;decida,_bge, it.is useful to. define a subset’
of the recursive procedures which are easily: recognized'v?by- their restricted
syntax, always define total recurs:ve functxons, and define a W1de variety of
important and useful functlons. The set of primitive recursive procedures

. meets these criteria, and any functlon that can be comPuted by a primitive
recursive procedure is called a pr1m1t1ve recursxve functlon. ~ They are dis-
cussed 1nforma11y here, and formally in Chapter Twelve. B v

The basic idea of pr1m1t1ve recursion 1s to recur ih a manner which

counts down, and terminates at zero. In an e licit,defmitwn of f(n), f

would not appear in the definitlon because thisuis‘ "circular" or recursive.
In a primitive recurswe defimtion f(n) 1s defined m terms of f(n) .and f(Q) is

defined explicitly.” I fhas more than one argument then it is necessary to

count down on only one argument 'For example-

(i) The sum of m and 0 is m.,
(ii) The sum of m and the successor of n is: the sucgessor of the
sum of m and n.

Here the primitive recursion is-on the second “a*rg'uthe'm orn., Ifniso, the
definition is explicit and does not refer to the sury of aﬁything Otherwise,
the sum of some number and the successor of n is defined in terms of the sum
of that number and n.

The fact that primitive recursive definition always defines a total

, function is derived from the fact that coynting dawnward- glways arrives at

zero after f1n1te1y many operations.. . . .. .- .

The definitions of plus and times ngea in §2.2 are examples of

primitive recursive defmztwn. After these, ,we can make the definitions -
mPemn=0-1,T*m xm" ]
hyperexpt(m,n]* [n = 0+ 1, T + m"YPErexptim, n ],
Hyperexpt([5, 3], for example, is 5 ,
An example of an.arithmetic function that is not primitive recursive

is Ackerman's function, It grows faster than any primitive recursive function.
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Ackerman's function is a function of three arguments, p, mandn. Ifpis 0,
then it adds m and n; if p is 1, then it multiplies them; if p is 2, then it
computes mn; if p is: 3, then it hyperexponentiates, etc.
ack[p, m,n]¢ [p=0*m+n,n =0 p=1" 0,‘T +1],

T <+ ackfp , m, ack{p; m,n"]]} ‘
Ackerman's function belongs. to the cté.qs of déuble recursive functions.
There is a transeendental hi'erarchy of reeur’si’on ééhemas of which‘rprimitive
and double recursions are merely the first two steps.

- The concept of primitive recursion ean be apphed to definitions of
s-expressions as well as numbers. The Ldﬁea hﬂre is to count downward by
taking car and cdr. Ih a primmva recursive cﬁeﬁmnon on s-expressions,
the function must be defined explicztly for ahmk: argnments and otherwise
defined in terms of the function applied to car and/or cdr of its argument.

A function of more than one argument mnst £enew thia gscheme for one only
argument,

The function subst is a typical example of pnm:tive recursion.
Almost every LISP function we have defined so far except for apply and its
subsidiaries is also primitive recarsive. Ewen proofeheck and propeval are
primitive recursive, aithough it may tale sonve W of thee definitions
to realize this.

§10.3 Other Arithmetics

We use the term "arithmetic™ to mean a formal mathematical system
consisting of expressions that can be written in aome finite alphabet, and
subject to a grammatical description. "L‘his is saﬁmewl&u: related to what a
programmer would call = "data type’. S-expressions, integers, arrays,
and even floating point numbers can be considered arithmetics, but real
numbers, or set theory cannot, because the theory is not about entities each
of which has a standard description in some notation. Arithmetzcs. always
have countable domains.

The following question are important ter an: examination of any
arithmetic: ,

1. 1Is there a syntactic description of the domain of objects?

2. Is there a set of basic functions and predicates such that all
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computable functions and predicates on the domain are recursive in terms of
the basic ones?

3. Is there an induction principle which applies to the domain?

4. 1Is there a primitive recursion schemaon the domain?

5. Is there an axiomatization of the domain?

As an example, we examine the integers using this syllabus. We
assume that the natural numbers have alregdy.beeﬂ examined.

1. An integer is either a natural number, or a natural number other
than zero preceded by a minus sign. L

2. All computable functions can be defined using the language of
recursive functions starting only from successor, predecessor and equality.
(Equality may be considered as given prior to any particular arithmetic |
hecause it is a ""logical" notion.) The predecessor is essential here, and
cannot be defined from successor as it can be for the natural numbers. At
this point, you might try to define addition, subtraction, multiplication, the
ordering relations, the predicate positive[n], and the absolute value of n.

3. There are several useful induction principles, ‘all of which are
equivalent. (i) If a property is true of 0 and inherited under successor and
predecessor, then it is true for all integers. (ii) If a property is true for 0,
and inherited under successor and negation, then it is true for all integers.
Any combination of a basis step and an induction step that covers all integers
is a valid induction principle. )

4, The most obvious primitive recursion schema is to define a
function explicitly for zero, and then to define it for positive cases in terms
of the function of the predecessor of the argument, and for negative cases in
terms of the function of the successor of the argument. This means counting
up or down, but always toward zero. | _

5. The equivalent of Peano's postulates seems to be: (i) Zero is an
integer. (ii) The successor and predecessor of an integer are intégers.
(iii) The successor of the predecessor of an integer and the predecessor of
the successor of an integer are both equal to that ihteger. (iv) Zero is not
positive. (v) The successor of zero is positive. (vi) The successor of a
positive number is positive. (vii) An induction principle such as 3(i) above.

Without (iv) thru (vi), we could be describing a finite set of objects
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arranged in a circular chain. But these axioms specify that 0 is not positive,
while _0', 0", etc., are., So 0 cannot belong to this:sequence.

[McCarthy] considers methods of defining arithmetics from given
base sets using as basic operations "disjoint union'' and '"cross product” on
sets, He shows how the defining equation for an arithmetic answer questions
1 and 2 of our syllabus, This method could easily be extended to provide
answers for the rest of the questions also. ‘
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One's not half of two, it's two are halves of one:

e, e. cummings

CHAPTER ELEVEN
FORMAL ARITHMETIC

Preview of Chapter Eleven

The arithmetic of numbers and s-expressions discussed in Chapter
Ten is formalized into a system which congists of a theory; ‘plis a set of
rules for extending the theory by means of definitions and primitive recursive
schemas. A sample of the development of the theory then foltows.

811.1 Mu1t1 Tae Loglc B

The use of types in fu-st order legic iseamveni.m a#bremtmn, and ..
not a new theoretical concept. . Formal arithmetic is,a theory about s~expres-
sions, and about numbers which are a special: :,”m of gisamdm,; We'
adopt the convention that variables.beginning with:the letters m,.n, pand q .
are to range over numbers, while variableg-beginning ,ugitt; the letters r.thru

'z are to range over s-expressions. We haugajready hees using these con-

ventions throughout this book. Va.rga.b@gs»bggm&ing with the. letters. a thruk
are reserved for future use. _
When writing formal: schemas, we. aahall A:et the Grfeek letters S(xi) and

{(zeta) stand for s-expression, variables, -and g{eta), and #{nu). stand for
numeric variables.

A formula having the. from Vq{a) is mgbwevmm for. Y“numﬂ] >
@(%/n)), and a formula having the.from Ina) is-am abbreviation for &S(num|[ .
§1A-a(§/m), where § is a new variable, Ansepen formula havipg numeric
variables is equivalent to its closure, Everything we.need to know about the
use of typed variables follows from these faqis, If we simply.keep in mind.
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the intended interpretation, we shall not go wrong.

Having assigned types to variables, it then becomes reasonable to
assign types to function names, predicate names, and terms in some cases. ..
If a function has n arguments, then it has n argument types and a value type.
If a predicate has m arguments, then ithas m argument types. (Its value
type is ""truth value' or 7, )

For the purpose of first order theory of arithmetic, we consider the
following functions and predicates to be basic, and assign types to them as
follows:

equal: SxS-+*% : successor: N *N.

atom: S-*7% cons: SxS+S
name: S-=*® . epum: @ NS

num; S+

We have now created a very precise situation in wluch each of these is
a total function or predicate on its intended damt&n Tl‘itxm be quite use-
ful in presenting the theory that fellows, = . = :

We now praoceed to assign types to terms, If a t’em has a type
according to these rules, it will bé called & well-typed term. But not all
terms will be well typed, and we do not intend to exclude terms that are not
well typed from consideration.  The.tfpe of & ‘v«ﬁimm been given.
Variables that de not begin with t&e‘tmer m,.n. ‘p g o r'thrd z are not
typed for the present.: The'type ofa’ Mb& ‘is nugneric, and the type of any
other object is s-expression. If N‘rl. eeesTy 118 a term such that for each i,
if the i-th argument type of ¢ is nameric, M ?‘ is mﬁe. ‘and if the i-th
argument type of ¢ is B-expression, then the %yped‘r 8 either s-expression
or numeric, then the entire term is well typed. and its type is the value type
of ¢, Otherwige, the term is not well typed. We dan ﬁeo define atomic
formulas to be well typed in the same miénner, o

If we were working with more than ‘thése two types, the same principle
would apply. Some types are sub-types of others in the sense that all
numbers are s-expressions. That being th¢ case; the i-th argument term of
such a term should be either the i-th argument type of the main function of the
term, or a sub-type of that type, |
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These conventions allow us to say that a term such as length[x]+1 is
a numeric term because length is numeric valued. A term such as car[x]+
cadr(x] is not well typed but it might st111 be meanmgful dependmg on
whether or not x is a list of numbers, ‘

The conventions on typed variables affect the idea of substitution. QI
and Q2 need to be modified. The following rules are vahd for subst1tut1on on
a-numeric variable: ‘ : '

Qla: Vn(a) 2 num(r] > a(r/n)

Qlb: Vy(a) 2 a(r/n) where T is numeric
Q2a: a(T/n) > numir]> ﬂn(a) . .
Q2b:  a(r/n) 2 dn(a) where Tis numerlc

Examples-

Qla: Vn(n'>0)> num[car[x]]-‘-’ car[x] >0
Q1b: Vn(n >0)23 >0

The definition schemas X, F, K, PF and PK of §9.1 get modified
appropriately. We shall examine the situation for Rule F;  the rest are
similar, ”

Suppose that we have ‘deduced the formula ﬂln(a) There are two
abbreviations in use here, and just as a reminder, we write this formula in
its expanded form. ‘

& (num(§] A a(§/n) A VE((num({]A a(C/n)) 5¢£=4)

Let the formula a have only 7, 51 thru § , and v, thru um free. Let ¢ be a
new name. Then we can write a(¢[§1. <oy § sV seees v ]/n) . The function
¢ will have a numeric value type because n 1s a numeric variable, and will
have n s-expression arguments followed by m numeric arguments. There is,
of course, no reason to list them in this order, ‘but whatever order is used in
the term @[... ] will determine the argumeht type deSQripfion dffcpl once and

for all.

$11.2 Axioms for the Theory of Arithmetic |

The axioms are listed in groups with some discussion when necessary.
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Group A: The theory of equality, E, .

This group includes the three equivalence axioms for , and an

axiom for every function and predicate name that will ever be introduced into
the theory. (See definition 6.11,)

late 1,

botht T

1

Group B: Peano Arithmetic

B1 num[n']‘

B2 n'#0

B3 m = n' 5>m=n

B4  a(0/n) 3> V(a2 e’ /m)) > Vn(a)

These axioms correspond to Peano's postulates 2 thru 5. For postu-
see the computation schema, Group G.
Schema C: Primitive Recursion on tire Natural Numbers
LR U B
@ffglr cewy §n,fﬂ” 1,"2 H 1

where (iY@ is a new name, (ii) 1’1. has no occurrences of ¢, and

no variabies other thaa the &i, (iti) every amq:wfr‘me of @ in Ty
is of the form @f...,n], amnd 12 has ne variabies other than the
€, andn, and (iv) 7, and 7, are well typed Some of the §,
may be of numeric t'yp& and the argument 11 dm not hmre to

be placed last

The function ¢ defined in this schema will be of numeric value type if
and 7, are of numeric type, and will have seexpression value type if

one or both of the T, are s-expression typed. The argument types of ¢ come

theéry,

‘ from the types of the g, i and the type of 7 which is numemc.

The primitive recursmn achremas for "+ and "X*' are part of the basic
They are: , o
m+0=m :
4 /
m+n = (m+n) J
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and
mx0-=20
mxn = m+(mx n)

Group D: S-Expression Arithmetic

D1: -—atom|[cons(x,y]]
D2: cons[w,x] = cons[y,z]2(w =y A x =2z).

D3: VE(atom[§]> a) D VEVL(ax D a(f/8) >
' a(cons([§,{}]/8)) 2 V&(a)

Schema E: Primitive Recursion on the S~Expressions

atom[{] 3(p[§1. eees §n,»C] =T

<p[§1, e En, cons[cl,tz‘]] =T,

where (i) ¢ is a new name, (ii) LA has no occurrences of @, and

no variables other than the §, and {, (iii) every occurrence of
@ in 7, is either¢[..., Cll or ¢|.. .{,(2 J and T, has no variables
other than the §i, ¢ 1 and CZ' ‘and (iv) L] and 7, are well typed.

2

The comment about the type description of ¢ made for Schema C holds

for Schema E, except that the recursion variable here is always of s-expres-

sion typé.

Group F: Atoms
F1 name([x] = atom[x]
F2  num{x] > atom[x]
F3  atom[x]> (name[x). & ~num|x]) -
F4 name[enum[n]]
F5 namex]~ Eln(exmm[n] = Xx)

Group G: Computation Schema

“All true ground literals formed from the basic functions listed

in §11.1, and the functions predecessor, plus, times, car, cdr,

and their compositions,
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This schema is for the purpose of saving us time, and to enable us to
make free use of numbers and s-expressions, Without this schema, the
theory would be about the numerals 0, o, 0", etc., but not about 1, 2, 3, etc.
All such literals can be evaluated rapidly by a cox’n‘pute':", program,

Examples:
2+2=4 cons{A,(B C)]=(ABC)
2+2#5 numf{cadr{(2 3)]}
—atom|[(A B C)} -huml[A]

Group 'H' Embedding
If the theory of s- expressions is embedded in a 1arger theory
in which there are things that are not s-expressions then we
need a predicate sexpria] having universal scope and true for
s-expressions only. (The variable "a" is not of s-expression
type.) We need to add sexpr to the compuitation évchéma, and
we need two other axioms, namely: sexpr{cons{x. y]]. where x
and y are s- expression variables, and atom[a] 5 sexpr{a]
This situation presents itself when we consider a second order
theory in which there are sets of s-expressions.

In addition to these axioms, we need definition schemas., In §9.1, we
defined schemas X, F, K, PF and PK. Sc¢hema X is really a special case of
schema K in which k = 1, and Y, is T (true). These form a part of the
theory of arithmetic, with suitable allowances being made for types,

Definitions made with quantifiers do not, in general, define functions
" that are computable, To define functions bjr’i explicit schemas that always
result in computable functions, we must intx?oduce as special cases of F, K,
PF and PK the rules CF, CK, CPF and CPK. These have the same schemas
as F, K, PF and PK, except that no quantifiers are permitted in any of the
formulas of these "com;mtabl"e" schemas., For example, CF is the rule that
permits a(p[g ces» §n]/t) after having deduced alc(a-) ‘where & has no
quantifiers,

1’
We can now say something about each function and predicate name
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defined in the theory of arithmetic by examining its history of antecedent
definitions. ¥ When we do this, we find that some functions have been totally
defined, while others have been partially deﬁned Some, are computable
from the definitions, and some are not. These two cembine in all four ways.
For example, a function may be only partially. defined, but Lhe definition
gives an effective method for dec1d1ng whether it is dgfmed and computing it
for those cases in which it is defined. L ,

We have defined eight definition schemas, not countmg schema X
which is a special case of schema K. The way in which these schemas
preserve computability and totality is sufr\_xmé‘x‘:igaed as .,fgllQWiS: N

Schema: F K PF PK CF CK CPF CPK
_ Preserves totahty _ yes yes no no yes yes no  no

Preserves computability: no no ho no yes y‘eﬂs'.,y;es, yes

Def1n1t1on 11 1

A basic function (for the first order theory of arithmetic, not for com-~
putability) is equal(=), successor( "), cons, atom, num, name br enum. -

A primitive recursive function is a function thi&t may have the primi-
tive recursion schemas, and CK in its history of definition, “but no ‘other
definition schemas. i rwi sl :

A total functmn has only the primitive recursion schenms, and the
definition-schemas F and K in its history. {CF and CK are special cases of
these. )

A computable partial function has only the primitive recursion
schemas, and CPF and CPK in its history, . (CF:and CK are special cases of
these.) _The special quality of these functions-is that it is possible to compute
the domains of definition, and to compute the values.for specific arguments

within these domains., , : .
A total computable function has only the primitive recursion schemas,
CF and CK in its history of definition.

It is evident that the primitive recursive functions are total computable
functions by this classification schema. :
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The language used in definition 11.1 is a bit sloppy. When we used
the word "function', what we really meant was "function name or predicate
name', What we have just done is to introduce a classification schema for
the names introduced into the theory of arithmetic by the various definitional
schemas., The fact that a given name is cla‘ssiifi‘edias ""computable" does
indeed mean that it corresponds to a computable function, but a function name
not classified as "computable' may also correspond to a computablé function,
although the method used to define it does not of itself provide a computationai
procedure.

A name classified as "computable' but not "total" has the peculiarity
that there is an effective means of deciding whether or not it is defined for a
given set of arguments, and then there is an effective means of computing the
value when it is defined. This is more than can be said for partial recursive
functions in general. This special cateogry is useful for predecessor, sub-
traction, division, car and edr, functions defined only on lists, functions
defined only on lists of numbers, etc. o

We now have a developing system with. many built-in conveniences for
making definitions. We have been calling it 2 "'theory'', but it is not strictly
speaking a theory, but rather a theory, and a set of rules for creating
extensions. Once a certain extension is created, it restricts the use of a
certain name which then cannot be used to cresate some other extension.

The system we have just described has a model which is the domain
of s-expressions, with the basic functions having their standard interpretation.
Each extension has a corresponding enlargement of the model. If the -
extension is total, then a uniquely defined fanction or ptedicate is added to
the model. - If the definition is not total, then there may not be a unique
enlargement of the mbdel, but there will be at least one enlargement,

As was already mentioned, the total definition schemas are conserva-
tive, and in fact eliminable, but the primitive recursion schemas are not so.
This raises the question as to whether there is some language with a finite
vocabulary that is adequate to describe the theory. If we restrict ourselves
to the numeric part of the theory, then Gddel answered this question by
showing that the only instances of the primitive recursion schema needed are
those for "+" and "x", and that once these formulas have been given, all
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other primitive recursive functions can be defined using only rules F and K.
So formal number theory is presented in the language {=, 0, ‘+,x}. The
proof of this fact involves coding finite sequek;étﬁ‘ of nunibers into single
numbers, and then showing that there is a function definable from + and x that
can extract the i-th component of such a sequence . L

§11.3 Development of the Theory

The purpose of this section is to prowde some concrete examples of
the system specified in §11.2. The first part is about number theory, and
the second part is about s-expression theory.

In the development that follows, many shortcuts will be used to make
the formal deductions less tedious. We shall assume various properties of
propositional logic, quantifiers, variablés, and eﬁuihﬁ?ﬁﬁéiﬁ&ihg symmetry,
transitivity and replacement. However, every detail invGlving the properties
of arithmetic will be written out in full, i.e., all references to the axiom
system we have just presented will be completely explicit., The distinction
between properties of logic and équality on the one' tmnd ind prapertles of
arithmetic on the other can be made very precise,

We start out by repeating the followfng‘ deﬁnitiona'

N 'Schegha c

Di: +: NXN+N ‘m+0=m }
m+n (m+n)

D2: X: NXN-=N mx0=0 Schema C
mxn = m+(an) u

Thl: O+m=m
The proof from almost identical a:iem has already been given.

Th2: m'+n=(m+n)

1. m+0=m’  Instance of D1

2. m+0=m I

3. m'+0=(m+0) ~ Replacement 1,2
(4) 4. m +n=(m+n) ' , 'Aséume |

5. m +n’ = (m'+n) o Instance of D1
(4) 6. m'+n'=(m+ id)_" J Replacement 4,5
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(4) 7. m'+n'=(m+n) Replacement 6, D1

8. m+n—(m+n)3 " .
m'+n’= (m+n) Discharge 4,7

9. (m'+0 m)DVn(m+n (m+n)' >
m+p (m+n))D ,
Vn(m +n-(m+n)) Instance of B4

10, m'+ n={(m+ n) From 1, 8, 9

Problem 30

i1t

1. Th3: m+ n=n+m
2. Th4: 0Xm-=m
3. Demonstrate m # 0 2 Hln(n' = m). Then predecessor can be

definedby m # 02 m”™ = m.

From here, one may proceed to prove the commutivity of multiplica-
tion, the associativity of addition and multiplication, the distributive laws,
and then move into the area of primes and factoring. '

Because this is a first order theory, one cannot talk about sets of
numbers, but only individual numbers. For example, one cannot state
directly, let alone prove, that every number can be factored uniquely except
for the order of the factors, into prime factors, How;aver, one can state
this indirectly because the set of factors of any number is always a finite set.
It is possible to state, and to prove, that for every number there is a list of
primes, unique except for order, whose product is that number,

Every non-empty set of numbers has a least member, but this cannot
even be stated indirectly so as to apply to all infinite sets of numbers. A
related concept is to say that any predicate satisfied by at 1least one number
has a least number that satisfies it. If ¢ is any numeric predicate, then we
can prove as a theorem &n([n]) 2 An(P[n] A Vm(P[m] > m = n)). However, the
statement '"This theorem schema is true for any ¥, " lies outside the scope of
first order logic because it informally quantifies on a predicate, whereas first
order logic quantifies on variables only.

Second order logic quantifies over first order predicates, However,
there is no effective method of deduction for second order logic which is
semantically complete in the sense that if T |=a, then Tra. An alternative to
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second order logic is to stay with first order logic, and to develop a second
order theory whose intended model has a domain of two types, numbers and
sets of numbers., (We do this in Chapter Fifteen, only for s-expressions
and sets of s-expressions.) But there is no escaping the essential incom-
pleteness, which in the latter case presents itself as an incomplete theory
rather than as an incomplete logic. Still, second order number theory is
more powerful than first order number theory. In fact, second, third and
even fourth order theories are in constant use by mathematicians, and their
formalization is a necessity that must be faced. For example, one may
speak of real numbers, functions of real numbers, and families of functions
of real numbers, the latter being a third order concept. Such investigations
lead us to the study of axiomatic set theory.

In the development of first order s-expression theory, we find it con-
venient to introduce the infix ''*'" to represent cons. We shall have it associ-
ate from right to left, so that A*B*NIL = A*(B*NIL) = (A B). The function
append which is familiar to LISP programs will be represented by a colon(:).

Its primitive recursive definition is:

D5: (:): SxS~+8 atom[x] D x:z = z} Schema E
(xxy)iz = x*(y:2)
Th6: atom[x]> x:[y:z] = [x:y]:2
(1) 1. atom[x] Assume
2. atom[x] 2 x:[y:z] = y:2 Instance of D5
(1) 3. x:{y:2] =y:2z Modus ponens 1, 3
(1) 4. xxy =y Modus ponens 1, D5
(1) 5. x:(y:z] = [x:y):2 Replacement 4, 3
6. atom[x]> x:[y:z] = [x:y)z Discharge 1, 5

Problem 31

1. Th7: x:[y:z] = [x:y]:z. Hint: It is important to choose the correct
induction instance. If we induct on x, then Th6 is the basis step. Show that
if us[y:z] = [u:ykz and v:[y:2z] = [v:yl:z, then [u*v]:[y:2z] = [[wv]y]:z.

2. Define the partial computable functions car and cdr.
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The theory of s-expressions has no standard curriculum, unlike

number theory. At this point, one might formalize notions of permutation,
combination, rotation, etc., or one might define sublis, and develop formally

the theory of substitution presented in §9. 3.
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CHAPTER TWELVE
RECURSION AND DEDUCTION

Preview of Chapter Twelve

; Startmg with this chapter we unite two subjects which have been
developed more or less mdependently until now. In Chapters Two and Five
we developed the langua.ge of recursive functions wb?yih 18 a langyage for
descrlbmg formal computatmns on s- expressmns. .The notion of recursion
is shown to be absolute, and completely mdependent of this method of defining
it, because, by Turmg's and Church's theses. it is 1dent1ﬁed with effectively
'computable. ,
| In Chapters Six thru Eleven, we have develqped the subject of first
order log1c as a language for makmg assertiong. andmproving consequences. of
these assertmns. and then partu;ulanzed thie to the theory of s-expressions.
The only relat1ons between deduction and recurSion th;t wve have established
so far are that deduction is SubJECt to mechanical verific_;ation, i.e., ;

"proofcheck" is recursive, and that certain types of definition within first
order arithmetic provide recursive descriptions.

There are two 1mportant questions about the relation between deductmn
and recursion that we consider in the rest of this book. The first is the
problem of representing, and discussing recursive functiiixis' ‘or effective pro-
cedures within first order'iogic;' ' The second 13 the problem of reducing
deduction to computation in routine cases, In this chapter, we begm with the
first of these guestions by "repr’eéeatizig reeurs:we functxons in ar1thmet1c.

§12.1 Expressibility and Representability

In this chapter, let us consuder the theory of ar1thmet1c as consxstmg
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only of those function and predicate names that we classified as "'total" in
Chapter Eleven., These are the names that necessarily lead to unique model
extensions because of their definitional history. Since the standard model
for formulas in this language is unique, we can Speak of a formula as being
either "true" or "false" according to whether or not this model satisfies it.
There is no middle ground. (We are not claiming that there is an effective
procedure for deciding which formulas are true and false, only that each one
must be either true or false.)

Definition 12.1

If § is a predicate in thé sense of being a mappmg from S™ into ,
then it is an arithmetic predicate if there is an1 m-ary predicate name ¥ that
can be defined in the theory of arithmetic sich that ‘?’or “any s-expr‘essxons al
thruo ., o, sens0) i true ifmamxy “*pr""" ]is true.

For any formila @, we write Ata to mean that there is a deduction of
@ from the theory of arithmetic. A is understood to mean the theory consis-
ting of all the ¥xioms and &kiém schemas’ dimua& in C‘hapter EIeven. and
the definitions and primitive’ ucurﬁen :ehmu mmnry to define all the
fuiiction and predicite names in &, This is wf e most satmfactory §
notation, because it dées not fuuy spéclfy A ﬁut ii wil‘l not lead us into
error if we are aware of this. |

Defimtmn 12,2

The pradicate d) is expressihle if it is pqaaible to define a predicate .
name ¥ in arlthmetic such that for any 8- exyream thru Dt if ‘
$0,,...,0, ) is true than Aw;al,.,,,o b and n%'(q*....,a ) i8 false, then
Ah—uw[o,...,a IR ' L

The n-ary function qo is re rese e n’ gt is poss:ble to deﬁne a
function name ¢ in arithmetic such that for any s-expressxons 01 thru 0 +1° if

$@,...,0) =0, then AFPIO,, ...,0,} =0, o

The notions of arithmetic, ekpressibie and representable, may also
be relativized to functions and predicates having numeric arguments or values.
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Corollary 12,3

All expressible predicates are arithmetic. v
All expressible predicates and representable functions are recursive.

The effectiveness of the theory A, and the fact that the theorems of an
effective theory are recursively enumerable -are a-sufficient proof of cffect-
iveness., Keep in mind that-for a procedure to define a total function is not
the same thing as our being able to prove that it defines a total function.

§12.2 Primitive Recursion

Corresponding to the definition of primitive recursive functions in the
system A, there is a subset of the language of recursive function definitions
that leads to primitive recursion. Welist the corresponding schemas side
by side: ' '

“Schema C:

(p[gl.....§n.0]=1‘1 ey -

) > ¢[§ ..no’g ’n].—[n':o*T!T—’T(n /n)]
¢ 1 *p* 7 RS | 2%
w[glpo.o'gn.‘n]':fz« : B G R ) L k

Schema E:

atom]29(8;, .., QL= M) gpe g g]* [atom[C] 4T,
LIPS S S SRR T,_-'yrz_(cag.{Cl{Cﬂcdr[Cl/Cz)l
Rule CK
e _. _ $[;,1,f'f"§xﬁ]..f,l71, *,°f1'f"'7k"°‘k]
Yk:’#’lgl----.gm]‘*ak‘ T . . : :
and

71 3¢[§1’v°0:§n]=1.1 | | . : : R
o0 . ¢[§1: LN N gnl" [71 o T1t e 'yk "Tkl‘r,,

Y 2P8 . a8 1= T

n k
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The restrictions for Schemas C and E, and Rule CK are given in
§11.2 and §9.1, respectively. In particular, there are no quantifiers any-
where in these schemas, and it must be provable that exaetly one of the Y;
must hold. The definitions in the right column define the subclass of the
recursive functions that are the primitive:recarsive functions. :

Theorem 12. 4

All primitive recursive predicates are expfeésible,‘ and all primitive
recursive functions are representable. . ot '

Proof: By nested induction. The outer induction is on the length of the
definition history. :The basis of the induction is:that the basic functions are
representable. This follows from the computation schema, Group G. The
induction step is to show that for e&ch schama. if all the precedmg definitions
are representable, then it is representable also. -

For Rule CK, the fact that any. g‘ound ins@nce of the schema can be
proven or refuted follows from the induction bypoﬁnc!ts. ‘and’the repls#cement
of equal terms and formulas, since there are no variables or quantifiers to
deal with, For the schemas C and K, there is also an inner induction needed.
The preceding method will work only for t}g case ihaat .= 8.in Schema C, or
atom(f{] in the case of Sc!iema E. But thig is the basis for an induction on
the natural numbers or the s~ expressions wheraby ] .m ¢an be repre-
sented, theno|...,n ] can be represented orifel... ,C landel..., 52] can
be represented, thend..., 4 *Czl can he r‘epreaanted

§12.3 The Incomp}eteness of Arithmetic

We are now able to demonstrate that ﬂie megxzy of arithmetic is
incomplete. This is not in itself surprising, ‘because we have not investi-
gated the axioms presented in §11.2 very seriously, and there is no reason to
believe that they are sufficient to prove everythiag that we would like to be
able to prove about arxthmeuc. However, the heor@heténess theorems will
apply to any attempt to' strengtheﬂ these axioms%also. We prove incomplete-
ness in three different ways. e “
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Lemma 12,6

There is a primitive recursive predicate aproof|x, y] which is true if
and only if x is the s~expression translation of a formula a in the system A,

and y is the s-expression translation of a deduction that proves a in A,

We do not offer a formal proof of lemma 12, 6 which would have to
begin by writing out such a proofchecker. By now, you should be aware that
if the amount of ""work'' that is involved in evaluating a recursive function is
bounded exponentially by the size of its argument, then it will be primitive
recursive.

In order to be able to assert meaningfully that Ara, we must make
sure that the names used in a have the meaning that we intend. @ We shall say
that a sequence of lines as in a deduction determines « if every name
appearing in a except for the basic names is totally defined in this sequence.
Suppose A is the s-expression translation of a sequence that determines a.
Then if there is some s-expression g such that aproof[A:y, a*] is true, then
we can reasonably assert that a has been proven. (The symbol ":" means
append, and y is the continuation of a deduction that begins with A, @ is the
s-expression translation of a. )

The predicate aproof, or something similar to it, is what Gddel called
"the arithmetization of metamathematics'', meaning that we can interpret an
arithmetic fact, namely that the predicate aproof is true for certain arguments,
as an assertion about the provability of some formula.

The key to GBdel's incompleteness theorem is that the arithmetization
of metamathematics allows us to create a sentence which asserts "I am not
provable in arithmetic.'" If this formula is provable in arithmetic, then it is
not true, and so arithmetic is capable of proving things that are false. If the
formula is refutable in arithmetic, then if arithmetic is true, it is provable,
and so again we have deduced something false. So if arithmetic is true in the
sense that the standard model satisfies it, then it is incomplete, and this

sentence is true but neither provable nor refutable.

Theorem 12,7 (GBdel's Incompleteness Theorem)

The system A is incomplete, in the sense that there is a formula B
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it

such that neither AFB8, nor AFr-8, _
Proof: The primitive recursive function subgum is defmed as follows:

subquote[x, y, z] ¢ [atom[z] < [y = z * 1ist[QUOTE, x], T * z], car[z] =
QUOTE 2, T »* subquotgfx, y, ear{z }]*subquote[x y, cdr[z]]]

Let A be an s-expression translatiam qf a dntexzmaming sequence for aproof
append(:), and subquote, Consgider the formula:.

a: -—3x(aproof[A:x, subguotely, Y, yl1)
Its translation is the s—exprmiﬁn*--

a%: (NOT (EXISTS X (APROOF (APPEND mUm'E A):-X)
(SUBQUOTE ¥ (QUOTE Y) m

a* is a genuine s-expression, and the only thing that prevents our wr1t1ng it
out in full is that we have not writter a program for aprﬁef and then converted
it into a sequence of primitive recursive definittons th A.  This would make
the s-expression A perhaps two or fhree writtm‘pag%s in Iength

Now consider the formula; '

B: —Ex(aproof[A:x, subguotefe*, ¥, e}
Its translation is the s-~expré$310n:

B+: (NOT (EXISTS X {APROOPF (APPEND (QUOTE 1) X)
~ (SUBQUOTE (QUOTE, @*} (QUOTE Y){QUOTE a*))

B is a sentence cnntalning the grmmd term subquote[oe* Y a*]. 'I‘hi's term
can be evaluated using the definition of subquote, and the value turns out to be
the s-expression £*. Since subqucte is prxmittve recnraave, it is represent-

able, and therefore Af'subquotefa* x, ex*l = ﬂ* ' Then by rep%ﬁement of .
equal terms, we have:

(*) AFB = ~Ex(aprooffh:x,f%])

Now suppose that 8 as determined by A were provable in A. Then we
could write out such a deduction, and cede this deduction into an s-expression
beginning with A, Call the tail of this deduction . Then since it is a valid
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deduction, aproof[A:g, B*] would be true. Since aproof is primitive recursive
and therefore expressible, this formula would also be provable, and from it
and the formula (*) we could deduce 8. Therefore arithmetic would be
inconsistent.

Suppose on the other hand that =8 could be proven in A. Then we
could prove Ix(aproof[A:x, 8*] from this and (*). Assuming that the standard
model satisfies arithmetic, there must be some s-expression § such that
aproof[A:4, B*] is true. Translating A: back gives us a deduction of 8, so
once again A would be inconsistent.

Assuming that A is a consistent system, and that the standard model
for the s-expressions satisfies A, then we must conclude that B is neither

provable nor refutable from A.

This proof mirrors accurately the construction used by G8del in his

proof which was for the theory of natural numbers in the language {=, 0, I, +, xJ.
However, his reasoning about this construction was quite different because he
did not assume that arithmetic was necessarily consistent, and since he was
restricting himself to finitary mathematics, the concept of a standard model
could not be used, What he proved was that either arithmetic is incomplete
or else it is either inconsistent or at least w-inconsistent, which means that
there is some formula a such that Ardx(a), yet AF—~a(0/x), —wz(O’/x).
—wz(O"/x), etc.

At first, one might think that this incompleteness theorem indicates
that the theory A is too weak and should have some stronger axioms. For
example, we might add B as an additional axiom, since it is true but
unprovable from A. It turns out, however, that the incompleteness of
arithmetic has nothing to do with this particular choice of a set of axioms,
Any true, effective extension of A will also be incomplete.

To show this, let B be any true, effective extension of A. The
effectiveness of B means that its axioms must at least be recursively enumer-
able. From this, it follows that there is a primitive recursive predicate
bproof[x, y] which is true if and only if x is a proof of y in the theory B.
Bproof is expressible (in A) because it is primitive recursive, It is expres-
sible in B because B is a consistent extension of A, and so the incompleteness

proof can be repeated in B, generating a formula undecidable in B.
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It is not even necessary to arithmetize deduction in order to show that
arithmetic is incomplete. It is sufficient to arithmetize computation.
Starting from the definition of apply, we define the funcnon applyk[x, 7.P ]
which has the property that if app!y{x, y] =z, then ‘there 1s a number po such
that if p 2 P then applyk[x, y, p] list[z], but if P < po, ‘then applyk[x, Y, P ] =
NIL. If apply(x, y] is undefined, thén for all p. applyk[x, Y, p] = NIL One
way to define applyk is to add an extra argumeﬁt to every subsidiary function
of apply. Each time a function is called, this’ argument gets decremented
If it ever gets down to zero, then the computation is interrupted, and the value
is NIL. It is also necessary to modify every function so that all exp11c1t1y
undefined conditions get checked out, and so that a value of NIL gets referred

to the top level of the computation prompﬂy. h

L.Lemma 12.8

Applyk is a primitive :xjg‘cntfs;i?gw_,f};m:tigm .

Alternate Proof that Arithmetxc i.s In;:qmplet& I arithmetic were -
complete, then every ammetic pregaqau would he expressible, and hence
recursive. We know that the predicltes h&lt and total, defined in Chapter:
Five, are not recursive. They are, however,, arithmetic hecause they can
be defined byﬁ | - . - '

halt{x, y] = 1z@plapplykix,y,p] = listf&})> =  "Rulte X
total{x] = Vydzdplapplykix, list{y}; p] = %itttb}? | ~Rule X

Therefore arithmetic is incomplete.

Problem Set 32

1. Let A be the theory of arithmenc aciuding the deﬁnitxons of appiyk
and halt, Show that there is a finite get of axi & T.in A such that if Ty and
T, are ground terms contaming no constanta m than.0, and no functions
other than successor, ‘enum and cons, then if. W{fr( 2] is true then
Tl-halt[ ]

2 Show that flI‘St order logic is undecidable. (-See corollary 9.18.)
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There are still further ways of demonstrating that arithmetic is
incomplete, and each one illuminates a different aspect of the problem.
GBdel's proof and the proof of Tarski's theorem in Chapter Thirteen are
related to Epimenides' paradox. Epimenides was a Cretan philosopher of
the fifth century B.C. who pondered the truth of the assertion: ''This very
sentence that I am now speaking is a lie." Epimenides was dimly
remembered by the Apostle Paul who wrote the famous slander: '"One of
their very number, a prophet of their own said, 'Cretans are always liars,
hurtful beasts, idle and lazy gluttons.'" (Epistle to Titus, I, 12)

Another approach to incompleteness has been developed by [Chaitin]
starting from what is known as Berry's paradox, which goes something like
this: '""Consider the smallest number that takes at least one hundred words
to describe.' If we ignore for the moment the problem of what is a valid
""description' of a number, it is evident that some very large numbers can be
described in very few words; for example ""one billion hyperexponentiated
one billion times'. Among all the possible descriptions for any number,
there must be one or more having the least number of words. So associated
with each number is a number which is the word count of its shortest
description(s). The smallest number for which this count is at least one
hundred is the number that is referred to in the quoted sentence above. Yet
that sentence which has less than a hundred words ""describes' the number in
question. This is the paradox.

Chaitin replaces the ambiguous concept of '"'shortest description length
in English" with the precise notion of "information theoretic complexity".
The information theoretic complexity of an expression is the shortest
instruction that can be given to a computer that will cause the computer to
print out the expression in question., Obviously, the number one billion
hyperexponentiated to the one billion is not very complex because a program
to generate it is quite trivial. Information theoretic complexity does not
consider the amount of time taken by the computer, or the amount of inter-
mediate storage required, unlike the "complexity' of current complexity
theory research, One may argue that the definition of information theoretic
complexity is arbitrary because it depends on the choice of computer. This

is true, but since any universal computer can simulate any other one, the
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difference in complex1ty as measured by one computer and another cannot
differ by more than a fixed constant, and this can be kept manageably small
if the computers in question are of fairly simple descripnon tnemsewes.

Let us fix the definition of complexity more premsely. The functxon
size{x], the number of characters required to prmt the s- expression X, is a
recursive function. We now define the complexity of an s- expressmn X as
being the least size of any s-expression y such that apply{y, NIL] =x, The
complexity of the s-expression which is a lmt ‘of the first bilhon prlme
numbers is ‘evidently quite moderate, because we can easﬂy erte a program
to generate it, and cast this program in the form of a recursive function of no
arguments. The complexity of a list of one billion random numbers would be
large, however, somewhat the same order as the size of the list itself The
complexity of any s- expresswn cannot be more than slightly larger than its
own size, because x can be generated by the functlon (FN 0 (QUOTE x)) |

The function complexlty[x] can be deﬁned in arithmetic usmg Rule F
because the following formula is provable.

. n(Sy(eice{y] = n A Eplapplykly, NIL, p} = list{x])) A Vz(size[z] 2
n V ~dp(applyk{z, NiL, p] = list{xp))

We are now in a position to formalize Berry's paradox. 'Let g(n] be
a recursive function that enumerates all theorems of arlthmetlc W:lth applyk.
size and complex1ty defined. G is not all that complex m itself It must
contain the deduction rules for ﬁrst order logic. the anoms of arithmetlc
the definition of applyk, and some enumeration machinery. Consxder the
first formula in the enumeration g[Oi, g[l] .eo that 13 of the form
complexity[a]> 1, 000, 000, 000 for some s-expressmn a. I arithmetlc is |
true, & cannot be generated by any program of moderate leng'th. yet we have
just descrlbed such a method which consists in enumeratmg the funetlon g
until we come to such a formula, This process ean easily be formahzed into
a function of no arguments The only way out of the contradxction is to assume
that no formula of the form comple:uty[a] >1, 000 000 000 will ever be
generated in the sequence gl0}), gl1], ... But this sequence contains all the
provable formulas of arithmetic, and so the conclusion is that only finitely
many formulas of the form complexity{@] > n are provable, and that n is not
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much larger than the complexity of the enumeration process, This is a
startlingly different way for arithmetic to be incomplete.

~ . Chaijtin's article is highly readable,- and-relates. information theoretic
complexity to the notion of ''random sequence' as well:as computability:and:
incompleteness. '

It is_sometimes: claimed that the various: imampl:etaeness and

undecidability results are not uaseful to the:computer programmer. concerned
with artificial intelligence or mechaninal Anferance, hegauseall these *
theorems are based on weird techpiques that.-berdes on para:dox and always
inyolve self-application or. dlagomuzgtiag. One never wanta to do those - -
particular things, anyway, 4n anywpractmgl aatuation. 1 wounld argue that, on
the contrary, self-application is precisely what one wants to do, because a
system of deduction that can examine its own behavior is that much more
powerful. Chapter Thirteen is an exammatlcm of thls very quest;o,n. By
proving incompleteness in three dxfferent ways 1 hope I have made the point
that incompleteness is a result of the richness of logic, rather than indicating
its impoverishment

$12.4 Representability of Recursive Functions

Let ¢ be an n-ary total recursive function. Let ¢* be the s-expres-
sion transiation of a sequence of recursive definitions that computes ¢. The

following formula contains exactly the variables x, thru X, and y free:

1

p(dz(applykkp*, list[x,, ..., x L p] = y*z) A
¥m(m < p  atom[applykfp*, list[x, ..., x ] p]])) v
Vm(atom{applykjp*, list[x;, ..., x Lm]]Ay = NIL)

Calling this formula a for the moment, it is possible to prove 31 yl{oa)
within arithmetic. In fact, such a proof is completely independent of the
definition of applyk and the s-expression ¢*, and depends only on the principle
of any non-empty set of numbers having a least member, Either there is a
least p such that applykko*, list[x,, ..
is car of that value, or else the second part of the disjunct holds and y is NIL.

.»X ], pl is non-atomic, in which case y

Therefore, we can define the function ¢ by Rule F, getting at(lp[xl, cees xn]/y).
This happens to be true for any s-expression ¢*, If ¢* defines only a partial
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function computationally, then the function @ defined in first order arithmetic
is completed by having the value NIL wierever the: computation does not:
produce a value., If @* is not a procedure at all, ¢ will still bve a:gonstantly
NIL function. But ¢ will not necessarily be eomputable.

While there is no ‘process that always tells us whether ¢* computes a
total function, in each case where it deet, & will bé répresentable in arith-
metic, for if on1 thruo are any s~elpressions; then for some number p and
some s-expression.o; 17 Arapplykip*, Ii-sﬁﬁi, e .0 1 p‘i.:- list{o . n+1 1, ‘and for
m < p, AFapplykfo*, Iistlal. ceor @y ],m] NIL.: 'Fherefbre-

Theorem 12. 9

A1l total recursive functions a‘:x‘é,y representable.
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CHAPTER THIRTEEN
METAMATHEMATICS

Preview of Chapter Thirteen

Given a formal system of deduction, a2 metamathematical statement is
an assertion about the system, very often about the system as a whole., For
example: (i) Arithmetic i3 consistent. (ii) Arithmetic is incomplete.

(iii) The formula B cannot be deduced within the system. (iv) The formula ¥
cannot be deduced within the system except by a deduction whose length is
astronomically long. (v) The name LENGTH defines a function having an
s-expression argument and a numerical value, (vi) Every formula of the
type VE(a) @ Z8(a) is provable. (vii) Replacement of equal terms is a
derived rule of inference.

Metamathematical reasoning is the method By which we arrive at
statements such as these. It is impossible in any practical sense to do
without metamathematical reasoning, and in fact we have used it throughout
the book. If we want a practical system of logical inference, it will be
necessary to formalize at least part of metamathematical reasoning, and that
is the purpose of this chapter. Much of it has to do with formalizing the
semantic notion of "truth", just as in Chapter Twelve we formalized the

syntactic property of '"provability’.

€13.1 Truth and Tarski's Theorem

We first define truth as a semantic or model theoretic concept, and
then later in the chapter we shall make use of some axioms concerning truth,
It is important to proceed in this order because it is only by having a clear
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model-theoretic concept that we shall know that our axioms are reasonable.

If a is a formula of arithmetic, all of whose function and predicate
names are defined and total, then we shall define truth{a*] to be true if and
only if a is true. Defining neg{x] to be 1ist[NOT, x], either truth[a*]or
truth[neg{a* ]}, but not both, must hold for any totally defined arithmetic
formula a, because either Ska or § [:—1& .where S is the standard model of
the s-expressions.

We now make the important point that the predicate "truth' is not an
arithmetic predicate. It lies outside of the system A, and:if the formula «
contains "'truth' then & is not an arlthmetlc farmnla and the above discussion
does not apply to .« at all, If “truth" were an lrﬁhmet;c predicate, then it
would be possible to establish Epimemd:es' paradox within arithmetic. This
is known as Tarski's theorem., '

Theorem 13.1 (Tars’ki's Theorem)

Arithmetic truth is mot arithmetic,
Proof: Suppose to the contrary that it ‘were possible to define truth[x] within
arithmetic such that if @ is any arithmetic formula, thén S%u if and only if
Sktruth[a*]. Let 8 be the formuila ﬁtmth{sdbquew{y, Y y‘ﬂ Lety be the
formula —truth[subguote(#*, Y, B%]). Thenys= *Ttruﬁabf*] so S}y if and only
if S E-truthy*] if and only if Struthfneg{y*]] if and only if Sk-v.

Because S }ka if and only if Sl:truth{a*] 15 true only for arithmetic
formulas, it becomes necessary to express the predicate "a* is arithmetic"
itself within arithmetic. If we did not hibve defihitions, the ‘problem would be
easy. An arithmetic formula would be one whose function and predicate
names are only the basic ones. But since we do allow definitions, the prob-
lem is administratively more complicated, although not onceptually so.

An administrative function is a function that makes certain system
information available within the system.  These functions are not charged
with the semantics of "truth", -and so we may consider themto be ordinary
arithmetic functions. They tell us what has been written down in the system
so far. The only administrative func}ion that we need ndw is defnfx]. If x
is a name that has been defined by any 'o'f the definition rules or primitive
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recursion schemas, then defn[x] is a list of the name of the rule, énd the
lines of the definition itself. = For example, defn[PLUS] might be

((SCHEMA C) (EQUAL (PLUS M 0) M) (EQUAL (PLUS M (ADD1 N)) (ADD1
(PLUS M N)))). It is evident that starting with a certain amount of initial
knowledge, and the information obtained from defn, the history of any function
name can be investigated, and various determinations made, such as that it is
total, primitive recursive, etc. In particular, if the history of definition
does not include TRUTH, then it is arithmetic, From this, we can define the
predicate arith{x] which is true if and only if x is a* for some well-formed
arithmetic formula a@. Arith itself is total, arithmetic, and computable.

We now postulate the following formal metamathematical axioms which
are justified because they are true, that is, they are satisfied by the model
which is the standard model for the s-expressions enlarged (non-conservatively)
by interpreting the predicate truth[x] to be true if x is a* where a is a true
arithmetic formula, and false if x is @¢* and & is a false arithmetic formula,
and leaving truth[x] unspecified for all other x, Notice that none of these

axioms make any assertion about truth[x] unless arith[x] is true.

M1: Semantic Completeness and Consistency of Arithmetic
arith[x] D (truth[x] = —~truth[neg[x]])

M2: Validity of the Axioms of Logic
arith(x] 2 taut[x] @ truth[x]
arith[x] @ q1[x] = truth[x]
arith{x] 2 q2[x] 2 truth{x]

M3: Validity of the Rules of Inference of Logic
arith[y] @ mp(x, y, z] @ truth[x] > truth{y] 2 truth[z]
arith[x] 2 q3[x, y] @ truth{x] = truth{y]
arith[x] 2 q4[x, y] @ truth[x] = truth{y]

M4: Truth of the Axioms of Arithmetic
arith[x] > ax[x] 2 truth(x]
where ax[x] is true if x is a* for some formula a
which is an axiom or instance of an axiom schema
in Group A, B, D, F or G,
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arith[x] 2 ninduct{x]:= truth[x]

arith{x] > sinduetfx}> truth[x}
where those prédicates usm’tw x‘{s an instance
of B4 or D3, reaspectively. et

M5: Truth of Formulas Introduced as Definitmns ,
anth[x} > ﬁy( memberlx. cdr[defn[y]]]) > truth[x]
If x is a* for a formula o introduced by some
defmitlon or primitive recursion schema, then it
is a member of defn of the name that was defined
(Car of thia list is the name of the schema. )

M6: Truth of the. Predieat& 'Emth :
arithfa*] 2 (@ # truth{a*])
This is an axies schema whioh. emm be represented
in the preseat system uwpm saiom,

Schema M§6 is at the very center of the notion'of fornral metamathe-
matics. It is bidirectional. ~First'it allows thiit'if we can assert some
formula a then we can assert that & is true. In the other directlon. 1t allows
us to pass from the assertion that & lb true to o ‘iﬁwl!’

§13.2 Metamathematical Deduction

Let us modify the primitive reéuréii}e function aproof [x, y}] slightly by
requiring that any deﬁmtxons occurring in x be consistent with the system A,
We can now do this by using defn This anows us to diapense with the
nuisance of the determining sequence A used in Chapter Twelve. It is now
possible to prove by induction on the length of the Jeducti.on y:

(**) arith{x]> Iiy'(aproof [y. xl) 3 truth[x]

The formula 8 of theorem 12 7 cannat-be. dcducod thhin the system A,
but at the time that we proved this, we argued metamathematically that B was
true. We can formalize this argument as. !ollows: ‘

(1) 1. -8 Adsume
2. B =-dx(aproof[x, *]) ~ This is provable in A,
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3. arith[f*] Also provable in A,

(1) 4. Ix(aproof[x, B*]) Prop 1,2
(1) 5. truth[B*] S Instance of **, 3 and 4,
(1) 6. B8 M6 5
£ 7. —B>8 | ~ Discharge 6, 1
-8. B ' Prop 7

This shows that formal metamathematics allows us to prove some
formulas of A that are not proVable in ‘A, . However, it does not allow us to
complete A, Halt and total are still not recursive, . since. the notion of
recursiveness 1s absolute and therefore not dependent on one's choice of an
axiom system. No formula of the sort complexity[&] 31, 000 000, 000 can be
proven in formal metamathematlcs, or in any truthful system whose axmms ‘
can be enumerated by a function of feasible complexity. o

The followmg extreme case shows that there are formulas having
proofs of unfeasible length in arithmetic that have feasible proofs in meta-
mathematics. Consider the formulas

10

a: ~Ix(size[x] < 10 A aproof[x. subquote[y Y, y1)

B: ﬂax(size[x] < 10“3 A aproof[x. subqudte[a* Y a*]])

B asserts that there is no proof of 8 (in arithmetic) of feasible 1ength

there were, arithmetic would be untrue, and so we may assume that there is
no such proof. B is therefore true. Unlike the,form.ula 8 of theorem 12.17,
however, this one is provable in A, Let 01, e ,0 be an enumeration of the
finitely many s-expressions whose size is less than 1010 ~ For each i,
Ar—xaproof[ci, B*]. From all of these results, and the assertion that this list
is complete, it is possible to prove B because the existential quantifier is
bounded.  Of course such a proof is muech larger than 1010- in size.

The metamathematical proof of ﬁ is so szmllar to the preceding proof
that we do not even need to write it down. '

Theorem schemas are metamathematical ass_ertions that occur very
commonly, We do not want to have to write out a deduction for each instance
of a schema that occurs frequently., Congider ‘the least number schema which
is: R R : ' '

In(a) DIn(a A ¥(avin)D2v 2n) o
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This is true for any well-formed formula a, any numeric variable 1, and any
numeric variable ¥ which is free for 1 in.a. The assertion that all instances
of this schema are provable is not even metamathematical. I is: .

iyﬂzﬂw(wff[y] A numvar{z] A numvar{w] A —null[sub(list[w, z}, y]] A
= 1ist{IMPLIES, Hst{EXIST, z, vy}, list{EXISTS, 2, 1ist{AND, y,
list[FORALL w, 1iat{iMP°L1E5 auh{lilt[w zl, vyl list[GTQ, ,
z1111D © Tulaprooftu, x})

where sub is defined in problem set 22, No.1, Letus abbreviate this to
Inp[x] 2 dy(aproofly, x]) where lnp stands for least number principle. This
formula is provable by formalizing a deduction schema !or this theorem
schema, Itis tedious work, and ane ttrst has to dnl with some properties
of substitutivity. But having done thia. we can then deduce from (#*) the
formula:

arith[x] = lnp[x] 2 truth[x]

The advantage of having this formula is that given any arithmetic formula «
such that Inpfa*] is provable, we can derive a itself from M6. Lnp is a
simple primitive recursive formula that m&rﬁy tests fts at‘gumem to see if
it has a certain format. Lnp is called & thedrem séhema. In general, a
theorem schema is any unary prﬂﬂcate ¥ such that:’ - .

arith{x] > ¢(x] > truth[x] )
has been proven, and an inference gschema is:any: aﬂ-ary prodicate #-such
that: . S . '
arith(x,]2... Darith{x 1> truth(x‘l']'n ces 3'§mh[xn] = |
leo TETE S8 1= truth[xm_l]
has been proven.

Metamathematica allows us to demonstrate. that a predicate defined in
arithmetic is a theorem schema or inference achema, This.solm half of
the problem of reducing deduction to computation in routine cases}ﬁ The
other half of the problem is to prove that the predicate defined in the logical

theory is the same as the predicate computed by some procedure in a
programming language. When this has been established, we can then compile
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the procedure, knowing that it is a valid addition to our collection of proof
techniques. Theoretical results relevant to this problem are presented in
Chapter Fourteen.

Problem Set 33

1. Show that a = truth{&*] where a is any formula is an inconsistent
schema,

2. Using (¥**) and M1 thru MS§, prove an airthmetm formula asserting
that arithmetic is consxstent.

3. Why is M4 necessary to the proof of (**) even though each ground
instance of M4 can be deduced from M6?

§13.3 The Hierarchy of Truth

The notion of truth in the system we have just described can be
formalized by means of a predicate truthl[x] which is ousside that system.
This leads to a hierarchy of truth functions, each of which ¢an reason meta-
mathematically on the systems below it. . It is possible to define a predicate
truth[x, r] where r is a rank number, and {0 axjomatize truth so that at each
rank the truth of formulas of lesser rank can be discussed. . An arithmetic
formula is of rank 0, and any formula in which .g;lkoc%rteneés of truth are’
of the form truth[...,n] where n is a number is of rank n+l, If a formula
contains truth[x, y], where y is anything other than a number, then the
formula is outside the rank sytem. and cannot be discusgsed on any level. It
is natural at this point to extend this idea even further by letting the second
argument of truth be any ordinal number. This creates a whole new situation,
It is not clear how much of this hierarchy is actually useful, but it would seem
that having at least several levels of it are. SRR ’
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CHAPTER FOURTEEN
THE RECURSION THEOREM

Preview of Chapter Fourteen

The purpose of this chapter is to relate functions described by
procedures, which are, in general, psrtinl reécursive functions, with descrip-
tions of functions in first order writhtnetic. -We need fo do this in order to
prove theorems a’isbut‘ procedures, and in ordér to tind ‘procedures for com-
puting functions that have been defined logically. One example of the latter
is the problem of computing a function which s been proveti to be a theorem
schema or inference schemu by the metiols bithined i Chiptér Thirteen.

The recursion theorein is & basic result in tetutsive function theory.
Its relevance to these problems has ‘been resogulied by resedrchers in the
semantics of programming languages, & Complex subject Whicth we do not even
approach except for the very trivial "langubige of tecursive functions” as
specified in Chapter Two. Research in this ared, rarging from abstract
topology to detailed semantic descriptions of ALGOL26Y, (s Being done by
[Scott], [Strachey] and others in the Oxidrd Progremiritig Research Group,
and {Milner], [Newry], [Igorashi] and others at the Stanford Artificial Intelli-
gence Laboratory. |

914.1 The Nature of the Problem

In Chapter Twelve we describe a correspondence between procedures
and formulas of first order arithmetic for the special case of primitive
recursive functions. It is easy to generalize this syntactic correspondence,
but not immediately useful because of preblems of consistency.
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Consider a recursive definition having the general form:

¢[§1,....§ ]+ €

It can be converted into a set of formulas of first order arxthmetxc by replac-
ing the "¢" with "=", and then applying the dxstributlve rule of cond:tlonal
| forms, and the conversion of conditional forms into logical formulas des-
cribed below, until there are no more conchtxonal forms. ~ Since every part
of the language of recursive functions except for the conditional is part of the
language of logic, the result must be a set of formulas of lbgic.

D15tribut1ve Rule for Conditwnal Forms

Transform <p[. ces [‘lr1 P €L ﬂ - <n].. ..] mto ['”1
ol..., 1....] . ﬂ' 4(0[ . € ,;.. ]] whereqp is any function
or predicate name, includmg " ",

 Conversion of Conditionals into Logical Formulas

When the conditional form [ﬂl - €. .1 %}is not a
sub-form (i. e., when it is on the outside), transform it into
the sequence of formulas: o |

T, De

1 1
S>q. D
MR
' o :a*:':”'-
‘1‘!’13 —'"nl. 1! t’

When the conditmnal form is on the outside of everythmg
except for logical connectlves, transiorm it iqto the conJunc-
tion of the formulas of this schema.

Example
subst{x, y.z] ¢ [atom{z] * [y =z * x,T * z], T - subst[x, y,
car[z]]*subst[x, y, edr{z]}]
becomes
atom([z] > ((y = z O subst[x,y, z]=x) A{y # 2 2 subsft[x. y,2]=12))
—atom([z] 2 subst[x, y, z] = subst[x, y, car(z}l*subst{x, y, cdr{z]]
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Unfortunately. there is no justification for changing "«" into "='". A
procedure cannot be inconsistent; it can at worst not produce a value, or
produce a value not anticipated. The assertion that the left half is equal to
the right half may be logically inconsistent, There are three situations that
may arise from a recursive definition; ‘it may over- deﬁne, -under-define, or -
exactly define a function. . :

Case I: If a recursive definition defines a total function, then the
transformation into logic produces a set of formulas that represents the
function. Subst is an example ef this. The function subst computed by the
recursive definition 18 the same a® the Tunotim nprbaented by the two
formulas. . '

Case II: The recursive definition is ‘un&er-dei’iﬁ'ed ~ In this case, the
function computed by the recursive Wﬁm is parﬂal and there are more
than one completions of the function that are model tmlargements satisfying
the formulas. Cansider -

fin]*+ fn + 1)

fin, m]+ #{m,n] )
Both of these defmiﬁons compute totally mdeﬁned &unct:ons. The first is
satisfied by any constant function; te second is satisfied by any commutative
function (on the natural numbers). . :

Case III: The recursive definition is over- -defined. In this case, the
function computed by the recursive &eﬁnitmn is p&ﬂi&l and there are no

' completions of it that satisfy the formuhs. There are ne model enlarge-
ments, and the system is inconsistent. An emnple is the definition:

fin]+ fin] + 1

As a procedure, it does not converge.. As an assertion, f{n] = fifn] + 1 is
inconsistent, ' ‘ |
Combinations of Cases I and HI also occur.
The last example is extreme, but there is no general method for
deciding which recursive definitions are over-determined, Nor can we
regard them as undesirable. The definition of apply given in $2.4 is over-

‘defined. and there is no way to avoid this.

In §12. 4, we proved that all total recursive functions are represent-
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able, although we cannot always decide what is a total recursive function.

Suppose we call a partial function 0 partially representable if it is possible
to define a function name ¢ in ar1thmet1c Sugh that if @(01. wiee .0' ) is defined
and has the value o then Atpfo,, ... O, ]=

n+1’ Oher-

Theorem 14.1

All partial recursive functions are partially representable.
Proof: This is implicit in the proof of theorem 12. 9, ‘The representing
function described in that proof has the value NIL for those arguments for
which the partial recursive function is undéfined, but it“may not be possiblé
to compute this NIL, |

This method of representation is indirect, depending on the definition
of an interpreter function applyk which itself is fairly complicated. The
recursion theorem which follows is relevant to obtaining a direct transforma-
tion of a recursive definition into arithmetic without the gdanger of inconsis-
tency, and in a manner that allows us to prove logical asb_s,(értj‘ons‘about the
procedure itself. o

Problem 34

Show that apply is over-determined.

§14.2 The Recursion Theorem

The notation that we use here folows [Scott] 1n his ‘work on lattice
theory and programmmg languages, although we do not actually defme a
lattice, '

We introduce an object "' called "bottom' or "undefined". Letting
, is the set SuU{t}. The symbol "E"
meaning "is less than or equally defined than" is a binary operator on S

S be the set of s-expressions, S

defined by: L1E1, LEa, and &S &« where  is any s-ﬁexprestxon. e is a
partial ordering. ‘ ' ‘

The notion of equality on the domain S will be represented by the
symbol "='", The symbol "=" will mean computatxonal equality. "='" is not
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a (.omputable predicate, The two equalities can be compnred in the followmg
table, where & and § are distinct a*-sxpraaﬂiﬂm

c d c=d c=d
«a « T T
a 8 F F
a 4 i F
L - 4 F
1L 4 L T

The predicates atom, name and num, and the functions cons are
extended to the domain S, in‘the same mupmer ws "=", by tefining the value
to be 1 if any argument i8 1. The functiofis erum, successor, ’pf-‘edéées‘36r
car and cdr are also extended to S by d&ﬁnﬁ&m value to be L if the argu-
ment is 1 or if the value is° m«aemm. ‘el g., ewithfA) « 1, and car[A] = 1,

A function @ is called munotenic it ﬁi‘s’b fori£ikn implies that
o(a CITRREN W e tp(bl. eeesb ), for all a, and bi in S The basic Tanctions
mentioned m the preceding paragraph are all momtonic.

_ The ordering """ extends to functions by deﬁning ¢15¢2 it 'for all a,
thrua inS,, @,(a,,...,8 e “’2(‘1'“'“‘*‘ o e AL ,

Let {a,} be an infinite sequence of elements of S,. Itisa monotonic
sequence if a;€ a; for i < j. A sequence of fusetions: @} (all having the
same number of arguments) is a _rg__on_ggaic quence 1f@1§ Qj for i < j. An
upper bound for a sequence is an object such th:t az:y member of the sequence
is "E" to it. A least upper bound tor a seqaence is an upper bound that is
"e" to any other ‘upper bound

Corollary 14,2

Every momtonic sequence lwa a Lﬁast uper qud _1If each function
in the monotonic sequence {cp } is itself a monotonic function,. then the lub of
the sequence is also a monodmnic function. .

A functional is a function that takes functions as arguments, i.e,, it
has one or more domains that are themselves function spaces. The notation
for functionals is a bit cumbersome. When we write O:[Sn S ], Sn ‘1, we
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mean that ® is a functional whose first argument is an n-ary function on Sl'
whose 2nd thru n+1-th arguments are members of Sl’ and whose value is in
Sl‘ More complex possibilities exist, but this particular type of functional
will be the only kind that we need to discuss here. Functionals can be
monotonic in the same way functions are, since all their argument and value
domains are partially ordered.

If ® is a monotonic functional of the type mentioned above, and {(pi} is

a monotonic sequence of n-ary functions, and a, thru arl are a fixed set of

1
elements of Sl’ then {‘P(Gpi. PR an)} is a monotonic sequence in Sl’ and
therefore has a least upper bound. The functional ® is said to be continuous
if it is monotonic, and if for every monotonic sequence {tpi}, and every choice

of ai in Sl:

lub{Q(cpi, Byseens an)] = ¢(1ub{s0i]. Aisenes an)

A fixpoint for the functional @ is a function ¢ such that for every choice
of a; tlyru a in Sl‘. ®(p, Aiseees an) B <p(a1, ceos an). A least fixpoint for @ is

a fixpoint which is "E'" to any other fixpoint.

Theorem 14. 3 (Fixpoint Theorem)

If ¢ is a continuous functional having one n-ary functional argument,
and n ordinary arguments, then it has a least fixpoint which is monotonic.
Proof: Define P by letting goo(al, ceas an) =, for all a;. Define Pl by
letting ¢n+1(a1' cees an) = @((pn, 3yseees an). We can show by mduct;on, that
the sequence {tpi} is monotonic because ‘POE‘pl' and if (pn'.'—.‘¢n+1, then

D = o

‘pn+1(a1’ cees an) é(‘Pn‘ Biseees an)_tb((pm_l, Biseens an) &pn+2(a1. “ees an),
sop . E® 5. Lety be the lub of the sequence {cpi} . Because ® is contin-
uous, (o, Atseees an) = 1ub{¢(«pi, Bipeens an)} = lub{goi(al, cees an)} 2=
pla,..., a ). Soe is a fixpoint for ®. Now let ¥ be any other fixpoint of &.

i = E "o s g
‘po 5¢J and 1f¢n5¢l then ¢n+1(a1;n . o’an) ¢(¢n’ alp . -'.an) °(w. al,
an) = 4’(31. oy an)‘ or <Pn+12¢\. By induction, cpiEqb for all i, and so ¥ is an
upper bound for {(pi}. Since ¢ is the lub of {rpi}. 9=y, and so ¢ is the least
fixpoint of . ¢ is a monotonic function because if aiE bi’ then w(al, cees

£ = 2
an) ®(p, al....,an)_¢(tp.b ..bn) o(b bn).

1.-- 1;0--
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This proof of the fixpoint theorem has been an exercise in abstract
algebra; it uses no properties of S1 other than that S1 is a partially ordered
set having a least element, and such that every monotonic sequence has a
lub, But the notions of monotonic and continuous are surprisingly useful in
the theory of computation. We have already noted that the basic functions of
computation are monotonic. In fact, any partial recursive function is mono-
tonic because that simply means that supplying more information about the
arguments of the function does not decrease the possibility that the function
has a value,

Let ¢ be a partial recursive function on S, We extend it to be a total
function on S1 by letting the value be L wherever the value was previously
undefined. ¢ may also have L as an argument, in which case the value will
be L unless the argument is not needed in the computational process, and a
value is obtained without it. By Church's thesis, there is an effective
procedure that computes the value of ¢ whenever it is an s-expression, but
may never terminate if the value is L. Let ®; be the function such that
<pi(a1, cees an) is defined by doing i amount of work on the computation of
<p(a1. cees an), and returning\ the value if one is obtained, and being undefined *
otherwise, The sequence (tpi} is not uniquely determined unless we fix a
particular procedure for computing ¢, and specify an exact definition of work.
But by merely postulating that every computation requires some finite amount
of work, we see that every such sequence has ¢ as its lub.

Let ®(p, COPRER an) be a functional. We would like to call ® partial
recursive if there is an effective procedure for computing it. But this
requires that we specify how this procedure is to be given functions as argu-
ments. If ¢ is a partial recursive function, then the problem is simplified.
We simply give to the procedure ® a procedure that computes ¢, and require
that the value be independent of which procedure for ¢ is used. But we do
not wish to restrict the argument ¢ of ® to partial recursive functions only.
So we invent the notion of an oracle which is like a black box, or an on-line
intervention in a computational process,

The purpose of an oracle is to simulate the effect of a partial
recursive function even when it is not. A black box that gives the value of

\'P(al, . an) when it is defined, and replies "+'" when it is not defined does too

-162-~



much, because when a recursive process does not terminate we are not
generally told that; we simply wait for ever. On the other hand, a black box
which gives the value of ¢(a,;,...,a ) when it is defined, and hangs up forever
if it is not defined, is insufficient, because we c€an run any process for a
certain amount of time to see if it produceé a value within that time. A
workable ‘ibdee is to make use of the notion of a function as a limit. So, given
the function ¢, let {(p } be any sequence of functxons whose lub is 9. Then an
oracle for ¢ is a black box that when mterrogated about cpi(al, ceesd ) for
part1cu1ar i, either produces a value or rephes nym ‘

We now define a part1a1 recursive functiqnal ‘b(q::, ap,.-.,2 ) as a

functional for which there is an effective procedure which computes its value
when given the arguments a,, and an oracle for ¢. If the value of ®is "1",

.then the procedure is permitted not to terminate. Implicit in the idea that

® is a function of @, and not of the particular oracle ‘chosen to represent ¢, is
the requirement that the value of the computation is independent of the choice
of oracle for ¢.

Lemma 14. 4

All partial recursive functionals are continuous.

Proof: The symbol "1" never enters into an effective procedure. It is used
in discussions about effective procedures to mean that information is not
available. A procedure can never contain "if x = 4, then ...". This is
sufficient to make all effective procedures monotornic. 1 NoW let a, thru a_

1

be a particular choice of objects in S,, and let {qp } be any monotonic sequence.

1
In the following discussion ®(p, a 1500058 ) is abbrevnated to Q(qo)

Let ¢ be the lub of the sequence {qo }J. If G(ga) > 4, then <b(<p ) = 1 for
each i, since ® is monotonic. So 1ub{¢b(<p )} = dp). o= «a where a is

an s-expression, then since this computatlon is independent of the oracle used

One way to be sure that the procedure does not act on the information ''this
argument is undefined" is to replace each individual argument with an oracle

for a constant'function $[} based on a sequence {§; }. This sequence either
produces the argument for some i, or it never does. and the argument is
"1",  In other words, the procedure has to work to obtain each argument,

and it can never know if or when it will get the argument until it gets it.
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for ¢, we can let the oracle be based on the sequence {tp } Because o was
computed by an effective precedure. it can only have interrogated the oracle

a finite number of times, Let cpk be the highest function m the sequence [¢ }
that was used, Consider the computatum of ‘bk) where tpk is represented by

an oracle using the sequence beg;nning with @, th p’w 4nd then bemg ¢k |
from there on. This computatmn must proceed exfictly like the prevmus éne, -
because no function with an index greater than k will ever be mterrogated

#jl

So @(p) = é(qok)slub{wp 1} S bl andaofis cmtmuue. -

Theorem 14.5 (Kleene's Recursxon Theorem)

Every partxal recursive tunctional hua IM fi:pomff which is'a
partial recursive function. : R TR TER S S
Proof: By lemma 14. 4, if ® is partial recureive, it is continuous: By
theorem 14, 3, it then has a least fixpoint®, To show that ¢ is partial
recursive, consider the sequence {p,} in the proof of theorem 14. 3 of which ¢
is the lub. ¢, is partial recursiVe becluse it is repy esented by the process
that never produces a value. Supposeqo is partul recursive. Then ¢ o+l is
partial recursive because ¢ . (a rreei f - O ”ii’. cees ) ‘and ‘there' are
effective procedures for¢_ ané'l By W&&u‘ Vit the w tre ph‘“i‘tiai
recursive, and so ¢ is partial reeureivé beéiede i’f i‘s ’cﬁ!r&puted by the
procedure that trtes all the wi ;5

914 3 Apphcahon of the Rec’ursion Theorem

| CORSlde!‘ a recursive deﬁnition. .
¢v{§1’ 6w‘u§ }‘- €

where € has no free variables other than the 5 .and every function and
predicate name in ¢, except for e, is alreedy &éﬁmd amd parttai recursive.
Then ¢is a part1a1 reCu«rsxve fun¢ttoml bacau;egda apaeﬂm& a computation
depending on the functional argument A aﬁd ﬁr%”i«%x&:resﬁm at‘guments §
thru € . Furthermore, 1£ """ is. replaeed, by "8‘" then we have the fdxpoint
equatlon for this functional

Unfortunately, the situation gets a bit messy here because there are

&

various semantics that one can propose for the language of recursive
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definitions. The choice of semantics will determine what functional
S(o, §1, cees §n) is specified by the form €. We shall briefly consider two of
them here: °L is the functional specified by the LISP semantics described in
Chapter Two. °C is the functional specified by the complete semantics, that
is, the semantics that computes as much as is poseible from the information
available in €, . The two semantics never producg conflicting values, but fb
may produce a value where QL fails to do so, that is.:,.QE,.. e - There are
two significant differences between the two:

I: LISP evaluation uses call by value. This sometimes gets hung up
because all arguments for a function must be pre-revaluated, even if they are
not needed for its computation. For example, the definition:

f[rn, n’] m=0-1,T *flm -1, f[m; n]]]

computes in LISP a function that is 1 if m is 0, and is gtherwtse undefined.
But the complete semantics uses call by name, which does not attempt to
evaluate the inner f[m, n}], and so does not get into an endless cycle. It
computes the functlon which is 1 for all numeric arguments. ~ This problem
is discussed thoroughly in [Vuillemin]. - " -
II: LISP semantics Speciﬁes a left to~r1ght order of evaluatlon for
conditionals and loglcal operators. For example. the defmmon

fIn] « [f[n] =0+1,T -01]

computes the totally undefined function m LISP but the cpnstant function
fin] = 1 in the complete’ semantics. | ,
In LISP, the form < v €, is evaluated by f1rst evaluatmg . Ife¢
has no value, then the expression is undefmed In the complete semantlcs,
the expressmn is true if either branch is true. Tlns point can be stated by
means of the three valued truth tables for the operat;on "v" keepmg in mind
that the mterpretahon of "L ig "1nformation not available » or "value
onknown (See tables at top of next page.) h
Both of these tables are monotonic, a necessity for them to be com-
putable. We might call the first one "weak'', and the second "'strong" or
"symmetric''. We have chosen the word "complete because of the property

of semantic completeness which is the same as in log:c. (From B we can
deduce A V B without having to prove that A is true or false.) The strong
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truth tables are discussed in [Kleene, $64] in cameﬁon with pirthl recuraive
functions. His term for "monotonic” is "regular’.

Let us examine some recursive fnncttmh md thou' ﬁxpoints taken
from [Manna and Vuillemin], Comdor the !‘uncﬁonll. o

0(¢,a,b) jsfa=b%b+1, T *Q{a,ﬂa-l,b-c-lm

A fixpoint for ® is a functzon ¢ such that ¢(a, b) ! W a. b) for every choice of
aandbinS;,. "+"and"-" are functions that are mdqﬁnod !or mn-numerical
arguments, or 1f the result of subtr&cuon is mgam The mtnrc of vt g
such that for the equat).on to be true, both sid« muut be tha nme uumber. or
both must be undefined. Notice, also, t:m nat w in the conatiow

expression is undefined if either argument is und&ﬂuod A We now specify
three functions, each of which is a ﬁxpoént of ®: L

solz a+l ‘
®,: ifazbthena+1 elsed -1
<p3: ifazbanda -bis ev!t# ihvena+ 1'
else not defined '
A certain amount of investigation will convince one that each of these is a fix-
point. It can also be shown that P, wl-and @3 ¢2. 93 is in fact the lezct
fixpoint of @,
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We now extend the theory A of Chapter Eleven to be a theory A1 about
the model S1 which is the s-expressions with the added object ''+", and the
definitions of the basic functions extended appropriately, However, we shall
not use "+", "E'" or "='" anywhere in the language of the theory, because they
are not computable, -

The variables beginning with r thru z range over s-expressions, while
variables beginning with a, b and ¢ range cw'er.Sl‘.‘ The axioms of group H
are now needed because we admit to the possibility of their being something
that is got an s-expression. In this theory, list{x}# x.is'a theorem, but
list[a],f a is not, becauge of the counter-example consf{i, NIL]= 1,

v Specifically, we have axilomatized the theory of s-expressions so as to
admit the possibility that there might be things that are not s-expressions,
But we have not axiomatized S1 particularly; - we: smapiy note that S is one

model that satisfies the theory A S

Consider the recursive deﬁnitzon fla}+ fla]+ 1. Its least fixpoint is
the totally undefined function. Since this is a "total" function on the domain
Sl’ the equation f[a] = f[a] + llis satisfiable in Sl' and ho inconsistency
results from it. The instantiation f[3] = f{3] + 1 is satisfied because
1= 1+1, and "=" approximates ' to the extent that it is:computable. One
cannot derive 0 = 1 from this formula, because if we start from the theorem
m =m+ 120 =1 (which is provable), we find that replacing m with f[3] is
not a valid substitution because f{3] is not a numeric typediterm'.

Partial Recursion Schema ‘

If ¢ is a new name, then the transformation of the recursive
definition ¢[x1. cens xn]!- € into a set of formulas of A1 may be
used as a definition for @,

Net only is this rule consistent, but it makes all partial recursive
functions partially representable, and all total recursive functions represent-
able in a direct manner., We present the following theorem without proof
because there is too much detail that we have nqt completed it is not difficult
conceptually.

Theorem 14. 6 (Partial Repregentatmn)

Let the functxon name @ be defined in A by the partial recursion
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schema, where all the other function and predicate names in the schema are
already defined and (partially) representable, Then 5(01. PN .Cn) = °n+1’
where @ is the least fixpoint of €in the complete semantics, if and only if
All'(p[a *ee "on] B cn+1’

This theorem is the justification for the "completeness' of this
particular choice of semantics,

If a function ¢ has been defined by the partiél recursion schema, we
may be able to demonstrate that it is a total recursive function by proving the
formula E{y(zp[xl, ceesX ] y). This also allows us to assert that the function
¢ is a well-typed s-expression valued function. Other totality and type
information may be developed similarly, One may be able to prove
Hn(cp [x, m] = n), which types ¢ as a total numeric-valued function having an
s-expression argument and a numeric argument. If one can prove
¥[x] @ Ey(p[x] = y), then one has shown that ¢ is defined at least for those
values where Y[x] is true. _

It is not possible to prove the totality of all total recursive functions
in this manner, since this would make ''total" recursively enumerable, But
it is possible in many cases. In particular, it is always possible to prove
that primitive recursive definitions define total recursive functions. (The
argument is by induction. )

One word of caution on this schema., The model S1 introduces "'1"
into the domain, but not into the logic itself, The model is still a model of
standard two-valued first order logic. So while the recursion schema permits
replacement of '¢" with ''=", it would be inconsistent to replace "*' with "®'",
p[x] # —p[x] is inconsistent in the present system, although one could develop
a three-valued logic, :

The recursion theorem can be stated in a multi-dimensional form
which is that given the set of equations:

L C PP S FTREE §n1) =080 §n1)
LN U P P ST Enk) AL FPRPRY s'.nk)
where the fbi are partial recursive, there is a set of least fixpoints 5'1 thru q(

-168-



which are partial recursive., This conveniently corresponds to the program-
mer's habit of defining recursive functions in interdependent batches. The
partial recursion schema may be extended to permit this,

Problem Set 35

1. Investigate the work of Vuillemin, and the Oxford Group, to see
how the recursion theorem is used in the study of the semantics of program-
ming languages. How do they deal with the problem of the computed function
of LISP and ALGOL being less than the semantically complete fixpoint?

2. Extend the syntax of first order logic to allow cond1t1ona1s used
either as logical connectives, or choice functions within terms, so that con-
ditionals can be nested inside each other, Add transformation rules that are
consistent, and make this logic complete semantically. Theorem 14.6 is
now trivial to prove,. -
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CHAPTER FIFTEEN
SECOND ORDER ARITHMETIC AND SET THEORY

§15.1 Second Order Arithmetic

Starting with the system A presented in Chapter Twelve, we can
develop a second order thAeory of s-expressions. The model for this theory
has as its domain the set S U [Sz}, i. e., there will be both s-expressions and
sets of s-expressions in the domain, Set variables will begin with a capital
R, Sor T, and be followed by at least one lower case letter.

The basic predicate of set theory is membership. In second order
arithmetic, things that are members are s-expressions, and things that have

members are sets. So:
a € b @ (sexpr[a] A set[b])

The principle of extensionality is that two sets are equal if they have

the same membervs:
EXT: VWx(x€ Sa=x€ Sb)>Sa =Sb

The principle of comprehension is that there is a set to correspond to

every property definable in the theory, or:

COMP: ISaVx(x € Sa = )

where a is any formula not having the variable Sa free,

From the extensionality axiom, one can prove that the existential
quantifier in the comprehension axiom schema is unique, i.e., 3;‘San(x € Sa=
a).

The induction axiom schemas of first order arithmetic can be replaced

by single formulas in second order arithmetic:
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NIND: 0 € Sa>Vn(n € Sa>n’€ Sa) D ¥n(n € Sa)
SIND: Vx(atom[x]> x € Sa) 2 VxVy(x € Sa>y€ Sa>xxyé€ Sa) =]
¥x(x € Sa) o

Together with the axioms of A, these are the axioms for second order arith-
metic, A2. v S

We can define certain classes of sets. and even gwen them special
variable types that are sub-types of the type aet" The most obvious one is
the set of numbers, We defme the type nse_t‘:'_:i’by,

nset[Sa] = Vx(x € Sa > num(x])

Variables of type "'nset" will start with a capital N, such as Na, Nb, etc.

The least number princxple can be stateq as, a single axiom:

Zn(n € Na) 2 8, n(n € Na A-¥m(m € Na-? n 5. m))

First otder finctions and predicat‘es"biiﬁ’be represented as individual
sets in second order arithmetic. If § is'&h m=ary predicate on the s- expres-
sions, then it is represented by the set containing only hsts of length m, and
such that hst[al, TRRYS X }i8 & member of the sat if and only. ifI(a s ..,o ) is
true. I ¢ is an n-ary function on s-expressigns. then it is represented by a
set containing only lists whose length is n+1 and such that hst[cr AT TRREY
o § ] is a member of the set if and only ifp( AL ,c ) = n+1' Putting the
value first is a matter of conveniense. - it x-s -CRAY tmmake definitions such as:

Parfun3{Sa] # (¥x(x € Sa > s4[x]) A Vt\'y(xf Sa > y € Sa: b cdr[x] =

- edriylx=:3))
Totfun3[Sa) = (Parfun3[Sa] A VX(83[x] D Ay(y*x € Sa”)

Parfun and Totfun are second order prediestes.  :Obviouysly, onie can continue
to make specific definitions of functions and predicates having such and such
numenc or symbolic arguments and values. S
There are second order functions or, functionals whicb process first
order functmns a,nd might be called combim,tg;s of first order functions.
These are abstract rather than procedgra], operations and do not correspond
to recursive proceeses necessanly. For examgle, gjven the unary partial
functions qol,' andw there is the yartial fung;ioa WI“”‘ . .The second

order function Compose(Sa, Sb) has this. compoaition function as its valye. It
is trivial to prove:
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Parfunl[Sa] > Parfunl [Sb_] > HISc(parfunl[Sc] A VxVy(list{x, yj'G Sc=
¥z(list[z, y] € Sa A list[x, z] € Sb))) -

Using Rule PF, we define this unique Sc to be Compose([Sa, Sb].
Corresponding to any procedure for computing a first order partial
recursive function, is the set which is the function it computes, We can call

this the extension of the procedure. Trivially:
:E{ISaVy(y € Sa = IzAwdn(applyk[x, z,n] = list[w] A y = wkz))

Using Rule ¥, we define this unique Sa to be Extension(x].

It is possible to define an ordinary first order recursive function
pcompose such that if x and y are s-expression translations of procedures for
unary partial recursive functions, pcompose[x, y] will be a procedure for
computing the composition of the two functions. Then for any such xand y
the following identity holds:

Extension{pcompose[x, y]] = Compose[Extension[x}], Extension[y]]
It is even possible to define an abstract Apply by:
3, y(y*x € Sa) 2 Apply(Sa, xJx € Sa Rule PF

This second order function applies any function (represented by a set) to its
list of arguments, and produces a value {abstractly). The evaluation of a
partial recursive function by an interpreter coincides with a special case of

this in the sense that:
In(applyk(x, y, n] = list{z]) 2 Apply[Extension(x Lhyl=2

The purpose of this discussion has been to show that a much larger
number of situations can be discussed very precisely in second order arith-
metic than in first order. This is done at the expense of making the dis-
cussion abstract, in that the entities being discussed are no longer construct-
able., It seems as though any mathematical discussion cannot realistically
be kept at the first order level. When we want to go beyond the second level,
we can either explicitly formulate third order and fourth order arithmetic,
etc., or we can go into axiomatic set theory.

Problem Set 35

1. Show that there are formulas of first order logic that are not prov-
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able in first order logic, but are provable in second order logic.

2. Prove that second order logic is incomplete,

3. Define the functions Union, Intersection’ ¥nd Complement (with
respect to the set of s-expréessions). - ‘Union; for' ea;armple, 18 a’ furiction of
two arguments which ape setd, and the-valte 1§ e sets Whieh §5 their uniom.

4, What is an impredicative de&ai’(.ibﬁ? ’Hw&es the axiom scheénta
COMP avoid impredicative definitions® '+ o Jao w0 2o o0

§15.2 Asxipmatic Set Thoery "

There are’ basically two styles of axiomatic set theory. Zermglo- '
Fraenkel (ZF) set theory is'a fheory about sets Eni’ s, w“hﬁe von Neuméﬁn-
ernays-G&deT (ﬁBG) sef theory is’ a “fhe y'about sets and ciasses, which
are universal objects that'are too bxg towﬁewc{inéd seis. ‘2F has axiom )
schemas giving rise to infinitely many mdfvf dodl ax’ioms, while NBG is fxmtely
axiomatized, For the reader wishing an introduction to set theory,
[Shoenfield, Chapter 9] discusses ZF, and [Mendelson, Chapter 4] discusses
NBG. Set theory is discussed informally, that is, without reference to an
axiomatization in first order logic, in [Halmos]. _

Two of the important concepts developed in set theory are cardinality,
and ordinality, We are using the concept of cardinality when we investigate
second order arithmetic and mention higher arithmetic. One of the principles
of set theory is that, given any set, there is the set of all subsets of that set
(known as the power set) which is of higher cardinality than the original set.
So when set theory axioms are added to arithmetic, we automatically get sets
of s-expressions, sets of sets of s-expreasions, etc. Axiomatic set theory,
as it is commonly presented, is abstract in that the only basis for construct-
ing sets is the empty set. Buf it is easy to merge the axioms of set theory
with an existing theory such as first order arithmetic,

The other major concept of set theory is ordinality. ¥We have hardly
mentioned ordinal numbers in this book, yet the theory of ordinals enriches
the study of recursive functions, and axiom systems at almost every level,

There is a whole hierarchy of ordinal numbers even when we restrict
ourselves to countable ordinals - those having the lowest infinite cardinality.
The smallest transfinite ordinal is called w. There is the sequencew, w+ 1,
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w+2, ..., and an ordinal w X 2 that is greater than any of these. There is
the sequence WX 2, WX 2+ 1, ..., 8nd the ordinal W X 3 which is greater than
these. The ordin&l u2 is. greater than any ordipal .in.the saquence &\, @ % 3,
wx 3, etc. All of these and many mpre are still countable,

Ordinals are the natural mathematical: atructure:for ‘Trepresenting the
idea of trsn.cendence. For example; Gldel's theorem allows us to find a
formula independent of a certain axiom system.  -Thkis 'ctn be repeated
ad infinitum, but even after adding infinitely many. axioms, we can still find
an independent formula and after addmg squem;es 9! smencu of new
axioms, we still find that we can obtagm an indcpcpqlwt Igtx;\ulg. The
unsuccessful effort to finauj compla‘te the axjom ayltem lends naturally to
. Kleene's concept of a construc;ive ordi,nal. *
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"There is a great wind coming whose electrical storm shall be felt
for the duration of the century, " Samdup mused raising his dark eyebrows
and staring out meditatively at the ominous sky.

"Humanity 'shall hecome possessed by its technology, " Martha agreed,
handing Mycroft the gramophone. recordings of the German Embassy, the
keys to the one hundred horsepower Benz, and the telephone number of the
real Von Herling who remained in his hotal; room tiod up with h;.s telephone
cord, »

"Good grief " she continued, as her voice changed from a Suffolk to-

a New Jersey accent, "'even the opera itself will vtnish and people shall
listen to recorded music at home.'" Smiling at Sherlock, she took off her
old lady's grey wig aad her beautiful long red hair streani:ed down her
shoulders. '"We are our own machines, and all of the powers of the universe
are within us."

-The Adamantine Sherlock Holmes-
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