MAC TR-134

CSG MEMO-106

SEMANTICS OF DATA STRUCTURES AND REFERENCES

David J. Ellis

August 1974

This research was supported by the National
Science Foundation under research grant GJ-34671.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC
CAMBRIDGE MASSACHUSETTS 02139

SEMANTICS OF DATA STRUCTURES AND REFERENCES

by

pavid J Ellis

Submitted to the Department of Electrical Engineering in
September, 1974 in partial fulfillment of the requirements
for the degrees of Master of Science and Electrical Engineer

ABSTRACT

Each programming language that handles data structures
has its own set of rules for working with them. Notions
such as assignment and construction of structured values
appear in a huge number of different and complicated ver-
sions. This thesis presents a methodology which provides a
common basis for describing ways in which programming lan-
guages deal with data structures and references to them.
Specific concern is paid to issues of sharing.

The methodology presented here consists of two parts.
The base language model, a formal semantic model introduced
by Dennis, is used to give the work here a precise founda-
tion. A series of "mini-languages" are defined to. make it
simpler and more convenient to expreas and describe the
semantics for a variety of constructs found in contemporary
programming languages.

THESIS SUPERVISOR: Jack B. Dennis
TITLE: Professor of Electrical Engineering

Acknowledgments

I wish to express thanks to my thesis supervisor,
Professor Jack Dennis, for the many ways he helped me. along
in this work. He welcomed me into the Computation Struc-
tures Group when I was still looking for a group to jein;.
brought the base language model to my attentlon, encouraged
my ideas at every turn, even when I felt I was in a.dead .
end; smoothed over numerous technical rough spots- and
exhibited patience and acceptance throughout. ..

Thanks are due to Jack Alello, Mafk’taventhal and
Nimal Amerasinghe, who read drafts of ﬁhe-%hesis ‘and made
many helpful comments and suggestiohs. “‘Ahne Rubin provided
technical assistance while I was typlng the th981s.

Generous financial support was grov;ded ovar the past
three years by the Woodrow Wllsop Fellgw;hap Foundation,
the M.I.T. Electrical Engineerlng.nepartqgnt4 and Project
MAC.

Finally, special gratitude goes to my family, for‘f,;'
always giving me support and advice, standing by me in
difficult times, and helplng me overcoma'dbubté about where
I should be. . .

RN v»‘,’«zﬂ?g&rm‘aﬁ‘gw‘_‘:*» + : S N SRR e N A *i;guz s P arnd e H ey

-4-

TABLE OF CONTENTS

Chapter 1: IntrodBetion...... . . oiiiiieeinceeessenennanaaB
1 1;, Gﬂi&t@lﬂom.h.........‘,4.u.¢¢..a....a.."......5
1.2, Ba;" ond. on Formml SeMANEIARE. . <ot ervnsaas or aosB

v l 3.» . Fm fwx{ﬂ‘e Mﬂua--bv@ﬂkw«q--bnvoocr.-.......m

Chapter 2: The Base Language MOdel.......................2&
C20¥. Ov&ﬁviéﬁ?bf'ﬁﬁi Model. .. L. .. .,..........,.......2;
2 2: - PeNE Lelghuge Thativetions. ;%ﬁ;....;.;.........zﬁ
2.3 prograndiny eiventions for BLLTL ..l L L. .38

Chapter 30‘48 ictures, Pointers apd Sharisg:....c........45

3.1-“»‘,~ ﬁ;-—'mm‘-..,;;.b-oiyo-bx"i‘"d”-li-boaoncowoai“
',»‘ 3 (\' -mo"“"wj“iijhyo-‘.o-.-w‘...awooubo“
niﬁ&*n‘hgﬂ‘ge 1 - Sttﬁﬁt“@@';.--......-w..o.-..-55

3.2

3.3

3.4. Mini-Language 2 -= Pointersé..........ccccevu.e...69
3.5

3.6

. Mink<Language 3 ~~ SHATAING....ccceveerecncnnanas. 79
\“- ﬁi‘éﬂ‘ﬁi@h ‘nd nx&mpld’f.;oonodo000;0110(0---004091

Chapter 4: Data #ypes and Typechecking..............106
- 4.1. Why We Want a Type System..........occ000v0.....106
4.2, Mini-Language 4 -- Static Typoeheeking..........108
4.3. Discussion and ExXamples......ccciceeeevocevcenssol2d

Chapter 5: Conclusions and Extensions..........ccc.... ..143
5(1- WﬁﬁtyW‘ K&Vﬁ Done.jliil.O.Iiﬁll-lO....l...‘.....143
5-2. Fﬂfﬁhﬁr worktoo.-oood-oo..-..-od.o'-.-o----.o---146

."

gibliography ------- ﬁ%-‘o.a.a-o.oido;.o';lnoo.000'.‘-.-.0.149

Appendix: 2 ﬁore Formal Treatment of BL................154
A.ld Int‘metet states.l.-..h“........'....'C l...'.154
A.2, anﬁeraphs and BL Instructions............ ceveas.158

Chapter 1

INTRODUCTION

l.1. General Goals

Students of computer science are confronted at a very

early stage with a great varlety of general—purpose pro-

gramming languages. Descrlptlons of these 1anQUages place

S A B o

heavy empha51s on common features such as assxgnment, pro-
cedures, condltlonals, raput/output and tlockkstructure. ;“
Aside from variations in notation, there are ﬁﬁﬁéiéﬁg rules,
" exceptions and special cases which’make fdé’diféefehéés be-
tween'comparablé constructs in:differeot ian;;ages. >Forve;-

ample, the body of a DO-iOop in‘FORTRANﬁﬁGst be executed at

FORTRAN 2 S
N =1 N = 1;
DO 50 I = 2,N DO T =270 N;
[body] [body]
50 CONTINUE | ENDt
_body executed once - | body not exécuted
Fig. 1.1-1. Looping feature in two languages

\ -—6=

least once, whlle in PL/1 it is to be skipped if the index-

is out of range (figure 1. 1 1) Such differences can be

studied by examining the semantice of different programming

‘languages. The semantics of a programming 1anguage is the!

_,

L3V

fe e e
atudy of the mcanzng of its constructs, or in other words

e et [
the effect of executing programs in the language.; The par-

ey g’ ‘i.w~'_'"\‘_, E EX 2 IRITRL LT

=

ticular concern of thls thesis ia the nction of data struc-

2 LAY A

SRR R

'turen and the aemantics pertaining to them as they appear

7; o g

in programming languages.

500

o Tnere.nre many araaa of qpplication in, whlch the use of
strnctured ?ntndrn both helpful and gonvanient in problem .
solving Some uxample areas are symbql manipulaticn. arti-
ficial intelligunce. computer graphiés. and simulation stu-
dxas;:’éanernll*"qpeaking, a data atrugxnre;iﬁ an agQregatg
data :6bject’ conEaIning other -data objectu as components.
Typxcal ina;qnpe@-pﬁ data structurasvina&udciarrays, segquen-
ces, vectorl, tuples and lists. We WLll not dwell on the
characterintics peculiar to each of theae different vari-
eties of data structu:g; our emphaula mill hé on%more gener-
al prapertiqugoga;Jng -£0 data struebnnts tnd>th€&r compon-

A
ents..

i g 4 ERE
MR 3 & L

Typically, a prbgramming lnnguage provides two basic

-7

Qperetions for handling data structures: component objects
of a data structure can be individuallj‘aceeseeu and manip—
ulated: and data structures can be eenetrueted‘freﬁ desié-;
nated ebjects as eoﬁponenté. These'oéeratreus interact with
the assignment operation of a progreumlng-lenguagetln éer;
forﬁlng several other tasks; such as 3531gn1ng structured
values to identifiers, or up&atlng components)of a struc-
ture. There is a great'gimilarity‘ih appearunee’amoug con-
structs for performing such tasks in veriouetpregrammihg
languages. On the surface,‘fr0m~a‘easugl;ega@@nation‘ofw'
language descriptions, distinctions between analogous con-
structs in dlfferent languaées eppeer to’be’mostly notatlon—v
al. But we shall see 1mportant semantlc dlstxnctlous, par—n

ticularly in the area of data being shared between dlfferent

structures.

Since each{programming lauéuage‘hes;its own‘set of
rulee for dealing with data structures eudJshering, it is
desirable to seek a rigorous method for describing what
happens. Our goal, then,,isrto”gainka:more‘precise under-
standing of the semantics of data structures. This will
provide a unified and coherent viewpoiht‘for aeedribing the

different approaches to data structures as they are found in

A € TATATNE RS L WL B e

-8~

programming languages. We w111 gay 8pec1fl€ attention to

the difficult and 1mportant issue of properties of sharing.

g

These issues depend uitimately on the ooncepta of cells

R ics

(which model computer memory 1ocations) and references to

cells Referencts are also commonly known aa_gginters We
will first discuss general questiona of programming language
semantics, and then move towards a more spec1fic treatment

of data structures and references.

. A ptogranning language provides a notation in which the‘
ptogrammer can model computational procosses and the 1nfor-
mation on whieh they operate. Programming language senan— “
tics deala with the relationship hetwnan programs and the
objects they represent. A formal s gggg@icsvfor a programm-
ing leﬁguage is afﬁreéise d&scfipéiaﬁ“éé"édéh°£h£ei5£i¢n-
ship. There has beer: mudh study ot formal aemantica of pro-
gramming languagos.: Wegner nWeg 72a] distinguiahea three |

classes of ﬁormal semantic models:

f RN, AT AR R
(1) Abatract semantic models. ‘In this apgroach the

objects being modeled are treated aa mathematical entities

TR

1ndependent of any particular repressntatlon. Models of

WL

-9~ ,

this class aim towards providing a formal mathematlcal de~
scrlptlon of the computational‘notlons belng studled.f‘onem .
well—known example of thls appfoaoh to semantlcs has beon“
the use of the lambda:calculus as a semontlowmodol foi pro;.
gramming languages. The’lﬁﬁbda-eﬁ%culﬁsfiﬁﬁichiis described
in [Der 74, MOrr 68, Weg 68], is Basically 4 ‘mathematical
formalism for the definitioh and application of functions.
It is ideallyvsuited”fofﬂﬁésérfbing aoioaiiéd:ééhiioaﬁiﬁo%ég
features of programming Ianguagéé,'suCﬁ as'éoélﬁofioh'of'ex~
pressions, use of prooedurés, aﬁa;blaék'sffﬁétﬁiiﬁéﬁ'Ltahéin
demonstrated its usefulness ih‘theseV#reagﬁtngﬁi64] ;ndipré_
sented a scheme:for'eitendihgotﬁé‘;aﬁbaa:ioioﬁao;\forméiism:
to model the language ALGOL 60 [Laﬁrééjf" ﬁoreyf;oeﬁtly}u
different extensions of the lambda.oaloﬁiﬁsﬁﬁaVéioeéhldeFﬁ#S
vised for describing'dtta‘types [Reyn 73]. | |

A second‘major éxample of the abstfact’approach to so—
mantlcs is found in the work of Scott [Scot 70 Scot 71]
Scott makes use of the m&tﬁématic&QiEHeorﬁ*offfntticos
[San 73] to construct sets which are the domaifis of func-
tions that represent the‘boﬁavfor'ofrﬁioéfémé:"The Scoﬁt‘:
formalism has been uSed'féc@hﬁiy:toééééégfﬁé Eﬁéﬁsemaﬁtioéiy

of ALGOL 60 [Mos 74].

e R s e I S e e T S e e e P G e e

-10-
We can brlefly summarize abstract semantic models by saying
"that ﬁhey charactorize the actlon of programs as functlons

P

over various,doma;na‘

(2) Input-qutpyt models. Models of this class use

statements of mathematical logic as assextions about.the

state of a computer syatem at varigus points during. the ex-
ecutlcn of programs on it. The agmantictaat‘a Ruogran . is

viewnd as the relation between input ggqqxtions (the state'
of the system before execution) and outpyt assertions (tha’

state_a{tqrfﬁpe;p;bgrgm‘iq\:pn). ‘ghgqoqurqggh.tphseuan;igs.

more frequontiv”caligd;the ggigﬂgsighggsronphumwua.deg,_,M‘

been muuh turther‘wcrk on it. Axiomatic, samgntics is”montr
usaful in provinq correctness of programs, i.g. establishing
that the afﬂhct of executing a proqrum fulfills mathematlcal

_ conditlonz Ehe program is supposed tp satisfy

(3) WW /This app

concsrnt“itulif'!mificaliy with modeling the changing . . 7
-Csell specifica with moge _ o

ach. tQ, semantics

states of a computer system performing computations. Such a
R R Anh i SR R :

task is usually accomplished by means.of a state-fransition.

system, in which a state of the model represents the infor-.

nation in the computer system at a given time. The effect

T

-11-
of a program on its input'data is reflected in the sequence
of transitions of the model. It 1s 1mportant to observe

“

that glven a state-tran31tlon system correspondlng to some
program, the sequence of states that models\the executlon of
this program defines the'action of an interpreter for the

program. For this reason, the approach to formal semantlcs

using operatlonal models is called 1nterg_et1ve semantlcs.

We can describe the way in which an interpretive seman-

tic model gives the semantics for a program written in some

source language. A translator transforms the program into

an equivalent program in another language which we call an

abstract language. Progra@s in an ahstract language are{
actec upon by an interpreter; this action resultsin a.
secuence of state transitions of-the modei: ‘fhe semantics
of the original source-language prcgram is given hysgchva
sequence of transiticns.‘ One reason’wevmake use cf>trahs—
lators is that scurce programs are uscally’represented as‘
character strings rather than”as data ohjects suitable for

g

processing by the interpreter.

Although the use of}interpreters,tQ,imp;egent pro-
gramming languages was (and still is) ccmmcgplace, %ccarthx‘

[McC 62] was the first to use an interpreter to define a

'_1’2_

lenguage‘(LISP). The semantlcs of LISP is glven formally by
an intefpreter ﬁfitten in LISP. Landzn [Lan 64, Lan 66b] |
uses an intérpfeter celled the SECD ﬁechlne to define the
1aNbda calculus, even though the(lambda calculus is a mathe-
matical formalism w1th a rigorous defxnition of its own. A
more recent discussion of cefinitional‘interpreters.1s'found
in [ié&h‘?é}. . -

Of these thfee approaches to forﬁel semantics of.pro-
gramming lenguages the 1nterpretive approech is best suited
for our goals of understandzng the semnntics of data struc-
tures and'references. In order to properly explain the se-~
mantics of a program that handles data structures, we w111
need to know how the data structures are formed, their com-
positlon. the relatlonshlps between the stroctures and thelr
components, sharing propertxes, and ather items of infor- |
mation. The best way to get a handle on this kind of infor-
.mation is to consider the state of the system at various
moments during the Qxecutlon of the prognam The 1nterpret-
ive approach is the only one which lends itselffd;rectly to
‘working w&tﬁjsﬁstes of the system. - Both of the other
'apbfcichss'até Vet téy suifed*for'proving assertions about

programé andd’ establishing their correctness; but these

-]13=

issues are outside our main concern here. A treatment of
data strucﬁures from_the‘viewpoint of axiomaticbsemeﬁtice‘
may be found in [Lav 74]1. We Qill werkyﬁowafds‘de§elopiﬁg
an interpretive model to be usedvas a semantlc‘foundntlon
for dealing with the important 1ssees ofdata‘stguetﬁfesand

references.

The most preminent ihterpretive model fo¥ sement%cs ie
the VDL model. VDL, the Vienna DefinltlonTLanguage;_is a |
metalanguage for wrltlng 1ntefpreters of programmlnguleh— _
guages.‘ VDL 1nterpreters have been\written for langueges
such as ALGOL 60 [Lau 68], PL/l [Walk 69, Luc 69], BASIC,/and
PDP-8 machine language [Lee 72].5 An elementary 1ntroductlon
to VDL may bekfound in [Weg ?25]. Just as.LISP works w1th
llStS, VDL works with tree-like data objects (whlch we call
labeled trees). The baSIC operatlon of the VDL model is as
follows: for each source language whoee semﬂnﬁlcs‘ee wish
to describe, we deflne a translator and an 1ﬁter§reter;’ ?he
translator transforms a source language program iﬁto en gﬁe

stract program, which is a form of labeled tree suitable for

manipulation by the interpreter (for each source language
the corresponding abstract language will be some set of

labeled trees; the structure of an abSEfact'program varies

“languages, different interpreters aro defined

-14-

‘from language to language) The interpreter, which consists

of VDL code, accepts a labeled tree as 1nput and interprets

B2

the effect of the program on its input data. For different

The fact that VDL uses treelike data objects reduces .

its desirability as a semantic model for our work on data

M RO v S

’structures.: We will be studying data structures in which

'components may be ehered between different objects- VDL 's

¥

labeled trees do not directly admit snaring of any klnd

Thus in order te model in VDL structures such as we will

{3y g S

Aﬁstudy, it would be necessary to go through the 1nconvenience

fv.l

of simnlating the memory of a computer. Since the study of

sharing is fundaﬂnntal to our work, 1t is desirable to work

/

-with ohjects in whioh sharing is represented directly. We‘

T W

therefore prefer for our goals a semanticsmodel that

manipulates data objects of a more general nature than VDL'
labeled trees. o | ; |

In [Denn 71], Dennis outlines'an:iprerpretive.spmantic
nodel called the ?_g~ anguade ggggﬂk The data ohjests manw
ipulated by this model are variants of directed graphs and-
can directly model sharing. As with VDL, fox each language

whose'seﬁantics'We wish to describe, we must specify a

-15-

translator which transforms,programs*in‘#he:languagevihto
data objects suitable for consumption by the model. These
objects are called ggggggggg;ggggggggggtﬁnlthe"bane‘lanqﬁaée
model. Procedure structures,.like}vDL‘iVigitfaétﬁprbgrams.
are acted upon by the»interpretnrfts”pxodugefstate*trnn—'f
sitions. But the base language model:-differs from VDL ‘in
that the composition of a~pnoa6duzefsbcddﬁ§ré“geﬁéraﬁed by
the translator fromAsome source program does not depend on
the language in which the program waamwrdtteh;* As a result,
there is no need to define a segg;g#eﬁ@qﬁgnggeter,fqifﬁach
programﬁing ;anguagé, There is a pigglég&§§?7§§p§l£6d~invg,
terégetér for the base language model which accepts arbit-
rary pfocedufe structures and inpggp;q;gbghgm:aa_prqgg@mg,u
Thus we see that the tranglgtgrgzfp;ﬁgheRpgggﬁ;agggggg medel
transiaté programs from their ggsppcﬁive”gog;qg?;anggaggg ,
into a single, commc#_languagg, We ca;;$tp§sc;§ngq@qeithe__

base lanquage. A procedure St;uc;uge'téprggqusra prqgram

in the base language, which consists of a sequence of in-
structions. The individual base 1anguageiin§;ru¢§iogg,spegn

ify the fundamental state transitions of the model.

In order to achieve the language-independence of the . .

interpreter in thé‘basellanguage‘mQQQL,vhbggpygga;gtgggﬁgugﬁg

-16~

do more work than their VDL counterparts. A VDL traﬁélator
simply converts a program from character string to labeled
_tree, while a tramslator for the base lhn@uage~model'ﬁust'
,Pgtfoxm;fua@tioaaasimilar;tO'th&sé'of & ecompiler. Thus,
‘once we specify.the semantics of the base language, i.e.
decide on a formal specification of the-actions performed by
the intexpreter in the baserlanguaéeﬁmadel;~the~semantics of
a particular &wegtgmm;nqxlanguagc*isiaétdwmined by its

1

translation into the base language.

| The base lahguage model is extremely well suited for
oﬁrjwak;'“@ﬁb”ﬁt&mﬁtﬁﬁevin!&ru&tiahs ofﬁﬁhé‘hQSe’lﬁgégagé
are particularly cohvenient f&f mihipuiﬁfing‘éﬁructurédl65-
jects and dealing with sharing. We can view the base lan-
guage ag™ the machine Langﬁ&gé'féiia'éégpuiér with»héaﬁ—
structured memory and symbolic a&dress;dpaéé. in‘this‘reé
speéct, programs in the base 1ah§uéqe ﬁiiijﬁé‘similar’to coﬁ—
ventional assembly ‘language programs. 1Thisisimi1éfi£y:is a
source df‘fﬁ;thgr‘¢0nvanience in uéing,théugééé}lAnguage as.

a programming tool.

AmeraSinghe [Amérv72] described the translation of a
block-structured lamguage BLKSTRUC into the base language.

In:BLKBTRUC, procedures aré "first-class objects” [Stra 67]

-17-

which can be used in contexts as general as objects of other
types. _BLKSTRUC's treatment of procedures is more general
than ALGOL 60's. The action of a translator‘fqr a language
with ndﬁ—local goto's ié described in [Ame; 73]f‘ Trans-
lators for tﬁe 1anguégesWSNOBbL4 and’simﬁla 67 are‘discussed
in [Dra’73] and [Cou 73];wahes; worké ghow the uéekofythe
basé language model in déécfibing the’éemantigs qf various
powerful programming laﬂguages. We wilivgéﬁsing a vergion
of the base language model as the semahtic foundaﬁion fér

our study of data structures.

1.3. Plan for the Thesis

We outline here the topics_co&ered in thé’rgst of Fﬁis
thesis. Chapter 2 describes the bésellaﬁguagevmédel’as we
will be using it. ‘The actioh ;f the.intefpretér is given by
describing the efféct of the inst?ﬁcﬁioné éf the base4_
language. The appfoacﬁ in Chapter 2 ié ihformal; a more‘
rigorous treatment is found ih théﬂAppenéi#. ‘Once thg be-
havior of the base language interpretéris‘knéwh;»wé have a
handle on the semantics of the prbgrammihgilﬁnguage con-
structs that interest us. All that will éhéh ﬁéé& ébkbe

done to supply a formal semantic definition is simply to

rdescrihe ‘the action of a translator which produces base lan-

~guage code.

In the remainder of thia thasis we w111 be‘uszng the
base 1anguage modal as a semantlc foundatlon for descrlbxng
 the dlfferent ways various programmzng languages deal with
data structures. We want to make clear distxnctlons between
kcomparable conatructs in different languages.} Although the
‘semantics of data structurlng constructs can be preclsely
qexprassed hy using the base language model, there is a cer~
tain respect in which the model ia less than ideal as a de-~
scriptive vehicle. Data structures as they are found in
programming languages are tied up with the notlons of var-
‘iables-and.values. we would like to make use of these
notxons in talking about the semantlcs of data structures.
But the deacriptlve level of the base language is only
.equipped for talking about prxmltlve transformatlons on the
objects wh;ch comprlse the 1nterpreter states. In this
sense the base language is too "1aw-leve1" for desgribingf

data structures in a manner suitable for aur purposes.

¢

To provide a hetter descriptive mechanism, we will
follow the approach taken by Ledgard [Led 71] in defining a

series of "mini-languages." Mini-languages provide de-

scriptive levels appropriate<to our ngeds,,¥§§_§t¥the same
time évoid.the syntactic a#d/semantig éomp;exi;y_pﬁ_fg}lfw
scale programming 1anguages, The prima:?‘adgﬁggggg_pfﬁ;yg
mini~language approggh is thgtﬁﬁsvcan:isq;atg:tbe popcgg;g
we wish to describe by eliminating all the conceptually ex-
traneous notions that are”needeé_;nva fpllfsigg ;gngugggfw
Accordingly; infa mini—langgggg’fqrﬁdegggipiﬁg;ggtglggggg;
tures, there are no procedures, Epnditggng}:§§?r§§§iqp§,j;
loops, goto's or operators. Miniflangugggsﬁgggwpgp meant to
be viable 1apggages(fo;_acﬁua}hggoggggm;ng;,Ehegka;e¥?§gd_
féf descriptive purposes only. The,snggﬁ,gggugegggticszgf
a mini-language are simple enough to be read?ly understood
on an iﬁformal basiQ} éhe se;ﬁAtiés’c;QEZhen bé?féréalized

SO A

by specifying translation into the’base lanéﬁage. In this
manner, the semantics 6f data~-structuring constructs in full-
scale programming languages can be given by describing how

to express these notions in a suitable mini~language.

Chapter 3 presents mini-languages for describing the
notions related to assignment, daté structures, pointers and
sharing. These mini-languages are then used.to describe the
data strﬁcturing semantics of éeveral full;scale programming

languages.

-20-

In Chapter 4, we treat the additional notion of static
typechecking, which has a direct bearing éh‘gﬂé semantics of
éatd3atrﬁcﬁurei in many important prbgfammingfianguageé.
This notion of static typeahediinéxdffigf;’fégﬁ'hédgard's in
that it deals with structured types, where Ledgard [L;gi 71)
deals with functional types and the types of arguments and
returned values. As in Chnpt§§‘3, we treat therdata struc-
turing facilities of three full-size languages; in |
‘these languhges the concept of static typechecking is di-
rectly tied in with the semantics quAaEa'kErBZEdies (spe-
cifically assignment). o

‘ah&ptorxgipresants a summary o£}What WQ,F°§°r in this

' thesis and suggests extensions for further study.

-2]-

Chapter 2

THE 'BASE LANGUAGE MODEL

2.1. Overview of the Model

We have chosen as the semantic tpuadgtionﬂfp: our work.
a version of the base language modelvset;fprwara_in,jpegp:];]
and [Amer 72]. The base language model centers around a
base language interpreter, which is essentially a. state-
transition system that we shall use to gg?ress the meaning
of computations. The interpreter specifies the behavior of

an entire computer system. We represent.a computation by a.

sequence of interpreter states. A state of the interpreter
will be a certain kind of mathematical object embodylng the
information contained in the computer system at a partlc—
ular point in time. We shall define a base 1anguage called BL
each of whose programs consists of a sequence of instructzons
Each instruction specifies a functional transformation bé;”:
tween 1nterpreter states, The language BL ia adapted from 1

the rudimentary language described by Dennis in [Denn 711%.

We represent Lnterpreter states by mathematical ob-

e

jects known as BL-graphs. Suppose we are given a set ELEM

0

w2

/ of elementary obijects and a set SEL of selectors. (For our

,,,,,,

purposes, ELEM consists of 1ntegers, real numbers and

strings; SEL consists of integers and strlngs) Then a
BL~graph is a variant form of dlracted graph; it consists of
nodes and arcs. Ea¢h arc connhects two hodés in a specified
direétion and is labeled with a selector. ‘We may associate an
e1ement&ryfabje¢twwith=éach*ndae‘from;ﬁhiah‘nc,arés'léaa'

out. There must also be a distinguished subset 6F the

nodes (called the root nodes) from which each node of
the graph can be féaohed'along:some‘diréééed path of arcs.
We give a formal mathematical definition of BL=graphs in the
Appendix.

A BL-graph w1€h a 51ngle root node is called a BL—obJect
We ldentlfy a BL—object by its root node.h Spec1f1ca11y,‘
for any node a in a BL—graph G, we' assocxate With o the suo—
graph of G whoae nodes and arcs are‘acoessible from a. Thls
subgraph 1s.a BLQgraph W1th o as 1ta noot“node; ‘we call lt

the ob]eot 2_,a.'

If there is a directed path from one node of a BL—graph

to another node, then the second node is called a descendant
of the'fitstrnodeg All nodes in a BL»graph are descendants

of some root node. A node from which no arecs emergdge is

-23~

called a leaf node. An elementary object:attaohed to a leaf
node is called the xg;gg of that node. ;f‘there'is an arc
from a node o to another node B, then 5;is;called a _com~ .
Eonent of a, and the object of B is ;alleoia CQFP?“#“#,??
the object of a. Compohente ere named by the selectors on
the aros leading into them. Ifiantobjeetaie.e;comoohent of
two distinct objects, it is said'to‘he shﬁréd het;éen‘them;
Nodes in a BL-object are denoted by ggthname'. A pathname’
for a node is a sequence of selectors 1abe}ing a dlrected
path to that node from the root node. Iféthe oEﬁect ofva R
node is shared, then the node will have dlatinct yathnages.

The property of sharing is of major s;gnlflcanca,fwe wxll

have much to say about it,
We will be making heavy use of.piotpriai repreeehtaF “
tions of BL-objects. An elementary object is drawn as an

encircled value (figure 2.1~1).

For a general BL-object, the '
nodes are drawn as heavy dots. S C . .

The root node is at the top. i Flg. 2. ;~1 Sample
T PR ' C alementary objects
Arcs emerging from a node are ?ﬁﬂj

drawn downwards from a horlzontal llne attnched to the node.

Selectors are written across the arcs that they ‘label. If a

~24~

‘selector is a strxng, we do not enclose 1t in quotes. Elem-

entary objects attached to root nodes hang downwards from

~ them. ‘Thus our pictorial conventlons for BL—obJects dlffer

slightly frOm those used in [Denn 71]

Sample BL—objects jare plctured An {igu;gq.zgl-z,agd“.,
ER S T F45 FAR ; Lt - S
2. 1'3‘ The °bj°Ct in flgure 2.1-2 has three components,
S = P I 7- L:" ’ 5 s e
— named k, ¢ and a, The c-compon-

JeﬁE,i#,ﬁﬂBﬁxw;N?éeyqucmyonent:

1 . vhich are leaf podes. The leaf

e~n-le
.
2

A

é v

Fig. 2.1-2. A sample
BL-object _ 'hi' is shared between nodes k

§or orw i Toew o i f R

k.c. Thenlggt,nqde,with,value

and a and has path-

names,k u and a.6 ~In
Brl G Bl Bl

flgure 2 1-3, the ob-

é ject with value l 6 1s
i shared between the ob-
% jects s b and 8 and

has pathnames 8.b.5

| Pig. Zyléﬁi?Rvﬁiﬁpfé“ﬁﬂ;bﬁféﬁf lﬁ‘} and 5.4, Thgﬁobjeoél"

e v a4 zBEYDSs gellou
pofronous efl3 28 o node c is shared

-25=

between the object of the root nadg andlthe Qﬁject c.Y.
Since the nodg c is a descendant of itself, it has infin-..
itely many pathnames c, c.yfz, C.¥:2.Y.2, c.yY.2.y.2.y.2, and
so on. The path joining this node to itgelfxis a directed

cycle.

A basic difference between out: BL-graphs and the graphs
of [Denn 71] is that Dennis does not allow directed cycles
in his objects. Cyeles seem to. impair the management of
storage and the handling_of;parallelihm'inscomputation}
However, cycles occur in many of the. structures we shall be
nodeling. Moreover, they are difficult to detect and re-
move (see [Amer 72]'for‘more~detailsfonwthe;pﬁﬁblémaaofﬁ~

cycles). We shall therefore not ruls:out cycles here.

 We follow [Denn 71] in giving the structure of a BL-
object which represents a state of the interpretef. An |
interpreter state is a BL-object having three' components as
follows:

(1) The universe-component m;dels system-resident in-
formation, both data and procedures. Generally speaking,‘
this informatién is independent of:which computations are’
currently active‘or_how far various computations have pro-

gressed,

(2) The 10cé1-stfucture—component?oftaﬁ”interpreﬁer
state has as components a series of activation records for
the variOus‘prgcedurei being iﬁterﬁreteé‘iﬁ:ihe sysfem}l
Thise«oamppnehts‘aré called ;gggl’atigétggei;'éhere is one
local structure for each activation of each base language
.procedure. A laealfstructure'reprdadﬁhi;§he¥enviteﬁment for
its activatign.-primarily.identizictl«aﬂ&vfhéirrassociated
values. Thus the»kocalﬁatructuﬁnﬁ&oﬂp&ﬂ&ﬁt of an inter-~
breter;stntg.mecorda,@he progress of cempataticns by model-
ing their changing environments. .

(3) The comtrgl-component ‘has .as coMponents a number of
sites of agtiwvity, which inedicaterfon-caéh ‘current compu-
tation the next insatruction to bevﬁsacuted,fﬁke approgriate

environment (local structure) for the comput

tion, and other
information. |

‘We shall not go into the details here of represe&nting
the universe- and control~ components of interpreter states.
The interested .reader can consult the Hﬁbﬁnﬂix”fdr»that kind
information. We .will be dealing almost exelusively with
local structures . in the remainder of this ¢hapter. In the
next section, we describe the action -~ 0f a ‘nimber of

primitive BL instructions.

2.2. Base Language Instructions

~ We introduce'the primitive instruetions of BL, théﬁyi
define state transitions of the ihte;fiifétei" in our m&ei:‘“ ;
some procedure written.inﬁaﬁ:anﬂ isifﬁteﬁﬁﬁé&edﬁauringyéﬁ{ﬁ

activation of the proceduxe.. We call the logal strugture

corresponding to this activakion the current local structure

%

(c.1.8.) for the instruction.. .

A BL - instruction - .consists . of auu %b§erf 2y

g
e
« Bt d

ation ~ code .and = up ' to’ three opafinds., j ﬂTke‘f

>'§v

operation. . code . .- is underlinéd. Most nﬁ the operaqép of

Y

the various ;nstructannt*ate seiectorh' whxch are frequentl?
- used to. denote names of" eomponbnts of the root nOdevof the :
c.l.s. We reserve the jetters x, vy, and z for selector

names used in this fashion. -

We shall give 1nformal descriptlons of the effects of

BL 1nstructlons, accompanled by sample "before" and "after"«

diagrams of the c.l 8. A more formal dofinitlon of these
miyeaes Crewrlio arvinE o Ty

instructions may be fOund 1n the Appendlx. |
(e . e f;e-; rv;,;;;:z;f,‘;"j,"e.. SRR 5 S

Each 1nstruction is desxgned to perfe;m a spec;fic sy

functlon in changang the c. l s Thls is called the rima:~w

7
,l.q, ’w“‘.

-28=

role (or, more simply, the ra;a)waﬁaﬁha:iﬁstiﬁééion;‘aﬁd‘dé;

pends .pn' certain mnditz,om being fulfilled (e:.g. the pres-

en¢e.qruabsengg,aﬁa%aacifxc-~¢wwMg»ngn,inathe~c.L.a.J.,'Thef
effect of an instraction ‘when such. conditkons do not hold is

called a spbaidisry .

' The greste instruction is used to ‘create a new com-

that the ¢.l.8. Was no x-component,

- the primmey role of the instruce

[l

tion.gcrephe x is to add one’

(Eigwos:2.2¢1) . The new x=

"'f‘-ig;.:;zl;z‘\“'l' role of
create x. .. - . |- = node. If:the-c;l.s. already has

~an.X~componant; -then:the in-
;truction create x has a subsidianyQuffaetaofwehanginq the
:‘irc-with ialﬁéfﬁr‘x_from<the #aat node to ﬁoint to a newly .
allocated ncée. Por this subeffect the fcrmer x—component
nade w111 remaxﬁ as part of tha c: 1 s.,anly if it was. shared
w;th some ahhsr nade. Figurea 2. 2»2 through 2 2~4 111us—’,

trata suhefﬁncts of th@ lnstructien

ite x and its in—
terplay with the shar&ng praparty. Partimna of a dlaqram

' onﬁlﬂﬂad~in dntted lines are no lnngez pnrt of the c. 1 8.

-29-

and can be thought of as garbage-collected.

-

T
®

Fig. 2.2-2. A
of create

subeffect
X

Fig. 2.2-4. A
of create

VPSPPI S BBV

subeffect

X

Fig. 2.2-6,
clear x

Role of

Fig. 2.2-3. A subeffect
“of create x

———

e Y XN
. f i
b \e)}

{ o _lg

Flg. 2.2-5. Rol?_of?,

v ,.,ziam»n_uk».uuglw
+ S B d ‘<§>

s SN
v -

| Pig. 2.2-7. A subeffect

“glear x

of

e o

R R S

-30-

The clear instruction ’is"‘uselc.i' ﬁo make ; ﬂéde émpﬁy;
‘ clear x detachea whataever hangsréounwardufrom~the'node X3
: ieavihg'x with'an‘émbﬁy vﬁlue. The old‘Qélue 9£ # is lost.
: even if it was ahaxad w1th some other néde. Fiéﬁ?es 2:2-5"
;~aad 2. 2-6 111ustﬁate ‘the role of g;ggg x. If there is no
,x—eomponent in the c.l.s8., gclear x - acts like ' create X

" and generates one (fig. 2.2-7).

-

The delete instruction removes arcs from the c.l.s.
The arc¢ from the roodt node to the node x is removed by‘the

;J.nst:ructién - delete x (figs. 2. 2~8 and 2 2%9) . Tha~arc ‘

Pigy 2.2-8. Role of | pig. 2.2-9." Role of

‘ﬁelete x | ﬁg}&&ﬁfx oo

‘with selector m from the node x is removed-by the two-
-operand form delete x,m (figs. 2, 2~10 and 2 2~ 11) If
}an arc to be removed daes not exist thcn ﬁha~subs£fect of

ltho.de gg Lnstruction it that no action- be taken.

=31~

Y‘ET;Z;__g‘ T__!—zr_ 7_;fz_f47_
' #X $
T |

g W‘\jf’ RN o'r'i?(‘%’ v_Lz

ES 3

é @ @ éé i /;\", é
Fig. 2.2-10. Role of Fig ERELS nolé'of“
- delete x,m ' delete x mo i

' The const 1nstruct10n is used to éttach elementary ob—
jects to nodes. If v is ahy element;ry object then }
ggggg‘v,x causes the value v to be attached to the n§de x.r
The bld’value of x, if any, is 1ost.'i Flgure 2 2-12 lllus—
trates the role of the instruction ' const 5,x (where x 15'
a leaf node), and figure 2.2-13 Shows“é;suﬁéffect'of the

same instruction (for the case when x is not a leaf node).

-7 ‘ T T Lx =l -—-;——l—--r— s
% y ._% x Y @ X . ‘ g
N L | ey
- ' 3
. \ /s
Fig. 2.2-12. Role Of | Fig. 2,g¢13..subeffect of
const 5,x ~ const 5,x

-32-

Arithmntic instructions such.aswggg,~sg§trwvmult~and
divy are used to manmpulate elemantary values. Por example.

the instructﬁﬁﬁ g X y,

adds thn uuluis at;achcd tol

nodes x»&nd Y and places the sum

_in node z~(ftgure~z.2-14). ft{

Fig. 2.2-14. Role Of|

244 x.y.8 is an error to attempt to ex-
a g . ’ ’

ecute an arithmatic 1nstruction
,if one of the farst two operand nodosyfails to ex18t or con-
tains an 1mproper value (not a leaf noda or empty or wrong
type of element&ry object) We 1eavo the effect of 3uch an

attempt undefined.

-

The link instruction is used to initiate sharing be-
tween nodes. The instruction link x,n,y .cauvees the node

Yy té beqome‘the n-component of x (so that y will be shared

Fig. 2.2- 15 Role of | . Fig. 2.2-16. Role of -
. Mgk x.n,y | | Hmk xmiy ,

P

’N@‘%’

Atk

L b
y D
‘ —) TSI | -
“Fig. 2.2-17. Subeffect - ?igw RS ‘Subeffect of
of l;gk X, n.y S f 1?l§ﬁ§*xfn.y | ?
f - ‘ ‘ - —

S e iaiah

- -33-

between the node x and the root node) This is degrbxwgdd-
1ng an arc w1th selector n from node x to node Y- Figures
B s.;_.;,‘ﬂ..«}. L

2. 2 15 and 2 2~16 111ustrate the role of the 1natruqtion

11nk X,n,y. If b¢ already has an x-component or 13 a 1qaf

node with some elementary value, then ﬁhe subeffact of the
: yovgdn sl

same instructlon causes the old value of x to be 1ost (flgs.v

[Rr & S RN
2.2-17 and 2. 2-18) ' The nodes for X and y must be prggent
Y ovet ’} IS5 A £ TEGE
or else the 1natruction is illegal. :

The select instructxon satisfies a dual purpose.u If a

node x has an n-component, then tho instructzon ,aei ctﬂx,n,y
LT L RN E dppfep e Y BRI

“makes the n—component of x the y-component of the ;oot node

SR L R B AN

(so that it can now be "addressed" by furthar BL instruc- .
. ‘_;«" "‘[d) B

thns) In thls manner a BL procedure may gain access to 4
.) 3 f £ OV L "-b_.,;, T
arbltrary nodes of a c. 1 8. If x has no n—component, then

o v s e
R T ST S TR b\ ; R

the instruction

‘makes it the y-component of the root node.

select X,n,y

TR B A T e TR R R o

generates one first,

then,

This is the

prlncipal way to construct BL~objects, i e. by using the

select 1nstructlon to add on compcnents.

These two roles of

the select instruction are depicted in figures 2.2-19 and

2;2—20, reepectively;

y~component prior to the execution of

does,

i 3

Fig. 2 2~19. lst rcle of
select X, 1,y

then the value is lost unless it was shared.

select x,n,y.

The root node may or may not have a

S If it

Fig. 2 2-20. 2nd role of

selegt x.n.y

The apply 1nstructlon providea for the actlvatlon of BL

procedures.

Let the p-component of the c. 1 8. represent the

BL code for some procedure (1 e, be a proce&ure structure)

Then the instruction
in the follawing manner.

ture is created.

agglx pP,X

actlvates thls procedure

Fzrst, a new, empty local struc—

The x-component of the c.l s. is then made

.,..Ah.,....,*ﬁN-v...,.._-_,.

 ~35-

the $par-component‘ (parameter'ltnkagelﬁfog‘thevnewﬁloqel

structure (we refer to the BL-object x as an argument struc-

ture) . Finally, oontrol is paseed)to{avpeygeite‘qf,ectiv—

ity. This means that the newly-created loeal atructure be-
comes the c.l.s. and the old 3;??,°f-§°§*YiF¥Ai§¢m3§9»§9:?
mant. The interpreter will now execute instructions from

the procedure p until it is told to return.

The return ;hetruetipn proviges gog‘te:m%gat;on:of the
execution of_a BLHp;ocedd;eendAfog retqu,tgnthgtgﬂllingi
procedure. Upon execution of a retuxn instructjon, the
c.l.s, is deleted. All its componenta vanish. The pargmeter

linkage, since it shares wlth the argument structure of

Tay e

the 1nvok1ng procedure 8 local structure. remaxns. Control

is returned to the dormant site of act1v1ty for the 1nvoking

procedure;, and its 1lécal struotﬁﬁéfbecomes’the”hew‘c.l.s.

The invoking procedure resumes’ from where it left off.
In order to invoke a procedure, it must be represented
as a component of the c. l s.v The gg inatructxon makes
data in the dniverse avai1abléf£o§4invoéétibﬁ’éﬁ“a BL pro-
cedure. We will not have oéé&&ioﬁ°é63ﬁ§épthf§»ihstfﬁctioo

here; further details are found in the Aﬁﬁehdixl

The instructions of a Bn'proéedurg”areqieheied‘ﬁith

-36-

‘naturalfnumbers; execution of”a‘BL‘procedurs\oonsists,of»the
udcessive exécutioh of its instfﬁetions in sséusnce scoord—
ing to‘the<ﬂumbéfs labeliné thém. ,Tﬂévremsiﬁihé BL instruc-
tions provios fof ohanges in the contfoi/sqqsenoety Each of
them has as one’of its opsrands a lahei) which must be a
natural number labeling some iﬁstftctiod of the proceduré
currently being executed. |

The instruction goto ¢ transfers contrsl to the
instruction in the current procedure whose label is the nat-

ural number f£. - - e

The“instruction elem? X, 4 tests whether the x-comr
ponent in the c.l.58. is a leaf node (e;emnntary object) If

not control passes to 1nstruct10n number z.

The instruction empty? x,4 checks whether the x-
component of the c.l.s. is an empty leaf node (i.e. no com-
ponents and no elementary value). If not empty, control

transfers to instructlon number L.

The instruction nonempty? x,{ performs the same
test as the corresponding empty? _instnpction, but control

passes to ¢ if the x-component is empty.

The instruction eg? X, Yok looks at the x- and y-

-37-

componentsvpf thelg.l.s._ Qch mqst bgL}gaf-QOQQS{zp: e1§e
the effect ofkthis instructioh is uédéf{pgq.‘ ?Bgse npdqsv
érg checkéd to see if they have the same elementary valug;
If the test fails (i.e. their values are not equal), the#

control passes to 4.

The instruction hag? x,m,¢ rchecksgwhethﬁr the .x~-
component object of the c.l.s. has an m~component. If not,

control passes to 4.

The instructioﬁ same? X,y, 4 chegks -Whgthe: the x-
and y-components of the c.l.s. share the same node. If not,
i.e. they are distinct nodes, control passes to (.

In all the ahove‘conditional instruétions} if the
c.l.s. fails to have a component ihdiéated by some operand,
then the effect is undefined.

Other conditional instructions analogous to the above
ones can be defined (e.g. tésting‘whétﬁér one éiémentary
value is less than another). We will have no need here for
such additional instructions.

Finally, we discuSs one more instrudtionféhat will be
needed. Given a BL object, we wili want to beJable to

access each of its components, without knowing beforehand

—-38-

the names of the selectors. The getc instruction serves
this purpose. Successive executions of the same instruction
getc x,1,4 extract successive components of the x-compon-
ent of the ¢.1.s. by causing the i-component of the c.l.s.
.to assume as its successive values the selectors on the arcs
leading from the node x. No component will be extracted
more than once, and control passes to g4 when no more com-

ponents of x remain to be accessed.

2.3. Programming Conventions for BL

In this section we introduce a few programming conven-
tions which will make BL procedures easier to write and un-
derstand. We can view BL as the machine language for a
hypothetical computer. Our con&entions are then similar to

the programming features provided by a macro-assembler.

Although individual instructions in a BL procedure are

labeled by natural numbers,

X,y,no we shall use symbolic labels.

const 'vyes',ans

For example, suppose that x

goto skip
no: const 'no',ans and y denote leaf nodes in
skip: the c¢.1l.s8. Then the BL code

Fig. 2.3-1. Use of

symbolic labels in BL of figure 2.3-1 places the

-39~

string value "yes" in the node .ans if .the vg;ueg;of x and y

are equal, "no" if they aren't.

The nodes addressed by operands.in the BL instructions
must be direct components of the, root node of the c.l.s,
With the select instruction, we can access nodes further.

down. in the c.l.§.. For instance, sup-

YT | pose ve wish to change ¢he vale 3 in
.3..., éé) . figure 2.3-2 into the value 4, This is
é:) 5—-, | done by the gonst instmiction, but in
(;: . order to. accéas -the proper node, we
-— , ;
,e f -} must use the gg&ect 1nstxuctibn three
times. In the BL codq hhatqperﬁorms
Fig.g2,3—2,‘ our task (f;gu;e 2. 3;3¥y$the reaerved

. selecter $teﬁp acts as a temp-

v T S orary varlabke., 5y usmng a
select x,b,S$temp
select $temp,d,$temp dotted pathname conventlon
select §$temp,e,Stemp | to’ rafer to approprlate nodes,

¢onst ‘ '4fl $temp we can abbrev;,?te t.hls BL code

Fig. 2.3~3. BL code
tO“aC¢8987& nOﬂef

.asfthe—smng&e inatructlon

const 4,x.b.d.e.. This can be
viewed as a macro-instruction whosewaupansigaLéivesmthé're-

quired select instructions., Alterpatively, we cap. look at

this convention as -extending "'aﬂdm‘s'tbiﬁ;byf" ‘to arbitrary
nodes in the c.l.s.

We will make frequent use of a mermsubhtitution cap-
ability, which:iw prdvimd by a e cmmtion. 1f z i® a
 lewf node contaifting some elementary valite, then *z denotes
this elemeritary value. ¥or example, in the c.l.8. of figure
2.3-2, %z denotes the value 6. ''1"11&5!‘‘f'al:al:aawv%r:l.aliz.‘.‘ié‘fx"i const *z,y
- specifies the same transition as the instruc;tion ggggg_g 6,y
when the ¢,1.#. 18 in this stats. ‘fnthoc ls. oﬁfzgute‘

2.3=4, thé lekf node with valﬁe 2 can

- ’; i < ‘be‘addresssd by any of the !o:m x.a,
%

value 2 itself, ‘can be dmp;gd by any of

[
“é thufam *(x.a), ?‘(x.*z), * (*y,a),

. ﬁ‘ig2 ,5:3‘.,4. or ¥ (%y, *3) . Asath;l.xdexample, the

BL :cm~of ftimef 2 3«5 «uﬁs'

- x,i,out -
COxeri | jedt x se. me.« Note tahat the

_all; tha Weﬁta of ehe c!b—

- oaete deop leat nodo, si. @ontm a8 -ue-
Out: s o0 .
L" S —e———t ceuivc values the names of
Fig. 2.3-5. 1
e thaj.ui:sétdri_‘jirom %. ' Thus

the dotted pathname x.¥i refers to the successive com-

R T Ll b

-41-
ponent nodes of x.

We now define several macros for BL to denote commonly

performed functions. The ;seti:“ﬁ55501(eet up docal

structure) is used to set up niew components in the S l %

Flgure 2. 3-6 shows the deflnlt;on«pf the - .s8tl macro;, and

flgure 2 3- 7 glves an example of its effect.

-setl (x1,...,xn) “ Y ? .
F— —— ~ 2 ‘=F%’ T g
create x1 . 4 | €%>,$f il
create xn - ‘ N O U
- Fig. 2.3-6. Bxpan- | Fig. 2.3-7. Effect of
sion of .setl macro | -setl (x,¥),

The remalnlng macros. we w111 use deal w1th llnkage be—

tween BL procedures. We first defxne a procedure closure to

be a BL-object with two components. - The $text—¢pmponent
contains BL.text of a preee&ure, nd the" $env-component con~
tains references to the»global variablqs named in the pro-

cedure. (Note that nge 1s a 1egal dhﬁ:actar~1n BL.)

The .call macro expands into BL'ccde‘ﬁb‘invoke a pro-
cedure. In the definltlon in flgure 2 3-&, the node P must

be a procedure closure, and al, ... , an are selectors

i e FASTTECE R e e o S e S T RN SRR A o T i sttt o T

A RISl o MR R R

-42-~

leadlng to the arguments, which may be arbltrary BL-objects.

erigure 2 3-9 givel an ex-

LAY P, Fa’l,...,an) | vumple of the iniiocation of'
;éfé§€§06$arg T § Cag proeedure p huving a

ole oo i S

Baxy, $gﬁﬁb‘P¥$‘“”' "'E'.inglc global refcrence w3
$ ‘rgl ,-Al

Fi

the procodnre'p is called

_$arg,n,an Mw x“lm&y.

in

i

2ply poarg. o Fhe Fold e.i.e." it*the
W - _;ocal ltructure of the in~
Fig.‘Z;Bae. Ex;ﬁhaicn of |
the .call macro L vahinq proa.durgpaand the

Y

'm a,&.a. [~ia thQ J:ocal

,structure of the called m«dure pe m* £ “"pictcrré

shows both the old c. 1 s. and the naw c.l. s. ymen control is

»a.i

'”%faq;“z;é;é; Bffect of .call p,(x,y)

-4 3~

The .getp macro (get Earameters) serves to blnd the

formal paxameters of a procedure tawthe actual arguments

ol
r

w1th whlch“&t was invdked. The getg %gcrc (g globals)

i%

makes the global variahlas named inﬂq prdecdﬁéh hcae551bke

in its body. These thAmaqsos axe defined*ln figures

2. 3—10 and 2.3-11.

.getp (x1,...,xn) “.gatg o kR Lgae oy KR

select ’§Pé§.l}xf"j

£ - $pa: $§i6h xA x1 |

. -
.

select S$par,n,xn ’ gg;ggg $par.$glob, xn, xn
Fig. 2.3-10. Expanslon Fig. 2.3-11. Expansion |
of the .getp macro of the .getg macro

The first actions a procedure normally performs when
given control are the retriavél of parameters and global
variables (using the .getp and .getg macros respective-
ly). Figure 2.3-12 is a "continuation" of figure 2.3-9,
showing both c¢.l.s8.'s after the invoked pfooedure p executes

the two macros .getp (u,v) and .getg (w).

With the BL programming conventions that have been de~
fined here, we are now ready to use BL as the language of

our semantic model.

" = . B s Ty Ay ey 4 o - SRl L e e T S e L e
R A e e S LI SR G S i N i

Fig. 2.3-12. 'Stat'e”‘of the two -f;ﬁ;i.s.:fsé after procednr;é

p executes thé matres .getp %"v) “and .getg (W)

-45-

Chapter 3

STRUCTURES, POINTERS AND SHARING

3.1. Mini-Langquages

In this chapter we present a serigs’of mini-languages
which treat the issues of structures, ppinté;sMand‘shaxing;
The progression of mini-languages is'hie:aréhipaL,in ﬁhat it
starts from a few basic concepts and proggeds‘outward by
extension. Mini-Lénguageko is the "kernel" laquqge, iso%
lating the notions of variables, values an§}a§Signment.
These basic concepts form the gOrg for‘ou? domain of‘§i$—
course. Mini-Language‘l is a‘direct'extgnSiop;of Mipi—
Language O, adding"to it stru;tured values and the notioﬁs
of éonstruétionfof s;ructuredvébjécts and'sélécﬁidn 6f;com»
ponents from structures. Mini—Language'é ekﬁendvaihi%
Language 1 by including pointers and the £Q046éera£i§ns of
building and following pointers. fihally, Mihi—Langﬁége 3
treats the idea of sharing of components beiween objects.

By revising the concept of struétured vaiﬁérfoﬁnd in Mini~
Language 1, the notiohs relating to poiﬁféfétaré sﬁbéumed in

Mini-Language 3 by notions relating to’sharing;

Each mini-~language is treated in a separate section of

this chapter. 1In each section, ;;»first discuss in general
terms thé coﬁcéﬁté addreéséd by thé miﬁi?iahguage under con-
sideration. New terminology is introduced. and we describe
the relation to previous and/or succee&ing mini-languages,
We then‘suppliua BNF-style syﬂﬁak-ﬁogathér.vith a descrip~-
tiongdf'tﬁa's&nﬁactic classes and whaﬁfﬁhey'répresént.' The
8emantics 6f ﬁﬁé mini—language is stited ihfofmally. a 1&
ALGOL 60; }Wé'théh'formalize the agmjhtics hy giving sﬁmples
of rulQB for ﬁranslation from‘thezﬁiniflhnéuige into thé‘~
base iéhguagg BL. EQCH section iﬁ‘cokciﬁédarb;'éu"movie"_'
iiiuit#ating the inte:pretaﬁios of the g#?prdéiém produced
by‘the-tfhhslator from a samp;é prbgf&ﬁ‘iﬁf;hé'miniéléngdége.
The final'sqction of this chapter agpliésjthese mini-
1angua§éa t§ the task Qf dedciibingfthe data stﬁucturing |
sem#ﬁtics of "rea1~wbrld4 programmiﬁé 1§ggﬁages. The lan-

guages PAL, QUEST and SNOBOL4 are used as examples.

3.2. Mini-Lanquage O -- Basics

Mini-Language 0 (ML-0) is the foundation upon whicthe
build our mini-language setup. In introducing the concepts,
of value, location and assignment, ML-0 serves as a kernel

for our set of mini-languages. The notléhe'of,structures,

-47-

pointers and sharing will emerge as extensjions to ML~0 in

succeeding mini~-languages.

All our mini-lgngggqes,.atgrting~with}ubf0,;Qperate 3%
within the conceptual world of values. stored in locatiens -
which we call cells. The relationship between a cell and
the value stored in it is called the contents mapplng. AN
cell with no value stored in it is said to be empty and has
no contents. We are concerned here w1th the fundamental op~
eration of asslgnment, which is uaad to change the contents
;mapp;ng. In fact the entire purpose in creatlng ML-O was
to isolate the concept of assignment by P1301ﬁé“1£l1n as)'
minimal and austere a set of surroundings aa poss;ble.? This
notlon of assignment will ramaan‘unahanged in the remaining
mini-languages of this chapter‘ "~ The assignment statements
of these languages will be "consistent" extensions of what

we define in this section.

Another important contept we deal with here is the
notion of binding. Each identifier in an’ MLLO ‘program is .
associated with a unique and distinct cell. This' assgeia=:
tion is’called the biﬁding'offgn’idiﬁtiffﬁ%?*fT%k?@éggg‘bf‘
an identifier will be the contents of the cell to whirh it

is bound. (An identifier bound to an 'empty tell has no

e et A YR S GRS s st e T g b g e s R I L ko St s o e A A T e A R e - YT e R

-48-
vaiue,)' Unlike the contents mappiaé, the bihding'relatioh
remains invariant throughout the éﬁégaéion of'an ML-0 pro-
gram. This' invagiance is & property: nbt only of ML<0, but

of ‘&ll the mini<languages in this thHesis.

suitax o HL-0

We give “BN?—style syntax for ML-OV Informal use is.
‘made of the ellipsis ("...") to inﬁicatc repetitlon. Twp_
ksyntactic elasses are primitlve' (Lnteger) denotes Lnteger
eon-tants. and (1denti£ier) denotes a;ﬁhanumeric strings
starting with a letter. |

(program) £:= (assignment) ; ..., (assxgnment)
"(assignment) ::" (destinatxon) - (expression)

(expreseioh) ;i% (déStinution) t {gétierator) | il

(déstination) ::= (idemtifier),

(generatogk” i ‘(integer}_

Description

To understand assignment, we explain the syntactic
clasqes :§i§ﬁing;to valugqaapdscqlléyggaw(ggnggagar}‘i&Haa—
p’iece. 'of program tht denoting a. %ra;;ga.«fv All: valuee in. MI:—O-
are intage;;@, swm mma-lanqm Lno;luda other types
of valnes as well. A (destination) is a pisge of program.

textgréfhtfihg,tc a cell; (d@‘tin‘tiﬂﬂgﬁw*ﬂLnL*97aﬂﬂ:fimply

~49-
(identifier)s, i.e. variable names. The reserved word nil
will be used to signify empty cells. An (expre331on) is a
piece of program text whlch “ylelds" a value. The semantlc
description below discusses emaluatlon of (expre881on)s in

ML~0.

An ML-0 (progfam) iB,SimPl§_g.sé$9¢éé9 Qf (assignment)s,
each of which consists of‘a'(aestihatibﬂyfand an (expression).
The beSic'meaning of an (assignment) is td~caﬁée'the value
yielded by the (expression) to 5e”st¢£eéiihto fﬁedeeil re-

ferred to by the (deétinatioh)}

Semantics of ML-0 (informal)

The notlons we have Just 1ntroduced w111 now be made
more prec1se. We give the semantlcs associated w1th each :
significant syntactic class of ML-O (now as a descrlption in

English, later more formally via translatlon into BL)

(1) (program)s: The executlon of an ML~0 (program)

s

coﬁsists of two steps; First bind each (1dent1f1er) oc-
curring in the (program) to a dlstlnct, empty cell. Then
execute all of the (assiénmenﬁ)sisequentially}71eft to
right. This rule giving semantics of (program)s will remain

intact for all the subsequent mini-languages in this chapter.

= R L i

~50-

(2) iuﬁgﬁﬂﬂ.“PtZQ- The executlon of an (assignment>
W s o

[

cons;sts of three steps -

(1) Identify the cell referred to by the
{destination) on-the :befthand : side of the
(assignment) (see rule (3) below).

(ii) Obtain the value yielded by the (expression)
on the right-hand side (see rule (4) below).

(didid) Make €he;v£1ué‘ffémﬁéteﬁ"(iiytfhé"néw’ébntents
_ of the cell from step (i).

Thus the effect of executing an (assignment) is a change in
the contents mapping. This rule, like rule (1), will govern

the semantics of the remaining‘mini~1quﬁt§eg..

(3) ig%stination)a A (destination)

in ML—O is always some (identifier), and refers to the cell
bound to thls (identifier) This bind&ng is detormlned at
the beglnning of program execution; as we hava already sald

it remains constant throuqhout execution.

(4) geggression}s- There are three:varietiea of
(expression) in ML-O We descrlbe ‘their lemantlcs in rules

(5), (6) and (7) below.

(5) nil: The speeiallaymbolgniLgindicetea;ghe’ebeence
~of a éaluee‘ Any time we are directed to store in some cell
the y&lﬁe yielded by an (expressignkiwhich‘is nil, this

means to make the cell empty. All of our mini-languages

treat nil in precisely this manner.

(6) (destination)s as (expression)s: ~When a.

{(destination) occurs as an instance. of an {expression) - (in
ML-0, this means on the right~hand side of an (assignment)),
it yields the value contained in the cell to which it refers
(see rule'(3) above). If this cell is~nmpt§, the.
{expression) is treated like nil (see rulerS) above) . TPhis
semantic rule (known elsewhere as "dereferencing”) will hedd

verbatim for all our mini~languages.

(7) (generator)s: A (generator) in'ML-0 is an
(imtegery, which is the ‘decimal representation of some
integer value. It is this value which is yielded by the
{generator).

The above seven rules Constitute‘dur informal descrip-

tion of the semantics of ML-O0.

BL Representation

The semantic rules we just gave a;gwa bit long-winded
and imprecise. A rigorous desc:;ptggyagﬁ ;he‘gem;ntics of
ML-0 can be obtained by "translgtiﬁgf ;hgse ru;gs into BL.
instruction sequences . Before doing this, we ?isguss our

basic conventions fox representing mini-language programs in

~52-

' the base language model. "To e&dh_ptogfam in oneé Of our
mini-languages, tﬁgrewisfa»singie’loqa&.ﬁﬁancture. The
- ¢ells used by the program are represented by nodes in the
local structure. For each identifier octurring in the pro?
gram, there is a~cbrrespéndiag1y~naﬁeaweﬁwponent~of the
local structure which gives its binding. - In’ other words,
-the cell bound to an identifier x’'will be the x-—component
-node of the local structure. *Thdwéouteeﬁiﬁéf this ce;l is
the object of its node. Thus thuwnnitreatleéioh of any ’
program in one of our mini-languages will have a "prologue”
to bind the identifiers of the program. For example, the
prologue for an ML-C (program) whase (identi fier)s are x, y
anhd z will be the BL macro-instruction .setl (x,y,2), which
expands into the sequence crggﬁe x, eag y: ereage z,
,creating nodes for the cells bound to/theae (identxfzer)s._
Integer values are represented in the base language model by
elementary objects of type integer. Ea |
' '‘As for the traneietibh‘rhlei.Ehemeeive;fwwe>§ive’sample

ML-0 statements’ ((asslgnment)s) and the BL code they are‘~‘
translated into. Each example is illultrated by one or two
"befbre and after" ﬁicturee‘shewingﬁthefcﬂéhge‘the statemont

makes in the local structure. Alﬁﬁbugh‘ou?dexamples are

-53-~

meant to be indicative rather than exhaystive, they should
be more than sufficient to give the reader a complete pic-
ture of the rules for translation from ML-0 into BL.

There are essentially three kinds of (assignment)s

in ML-O:

(1) (identifier) e nil

e.g. X « nil is translated

into the BL code

Fig. 3.2-1. Effect of

clear x (fig. 3.2~1). | the ML~D (assignment)

(2) (identiﬂie:) + (integer)

e.g. y + 2 is translated into‘ghé‘ggfﬁﬁdﬁ’km,

const 2,y (figs. 3.2-2 and 3.2-3).

XY ox Yy 1 » 9 4. x v
to |t 5 T &4
Fig. 3.2-2, Effect of | ‘ Pig. 3.2-3. Effect of

(3) (identifier) « (identifier)
e.g. y ¢ x is translated into the BL code

.call assignO, (x,y). This code invokeg a,BL'prgcédurewnamed

-54- . .

-assxgno whlch performs the operation apec;fxed by the ML~0

4

(asslgnment} The deflnltlon of the proeodure assigno is

shown in figure 3. 2—4, and two examples of Ehe

ML-O

(assignment) y » x ‘sfe pictured-if figuré 3.2-5.

‘aosian: getp "(u v)
o 'ggx u.mov
clear v
mov: g const L o*u,v
Figure 3.2-4.

procedure asaign0 . | . g KM X

Definition of the BL. | = [Figs. 3.2-5.

'Effect of
in ML~0

The three translation rules here givefus a precise formul-

ation ‘for the semantlcs of ML-0 in teraa of the aamantlcs ‘of

o
At

the base 1anguage model.

‘ &éze;ﬂgxis e

 We conclude this section by giving a sample ML-0

(program) together with its BL translation.. Our example 13

O .ﬁ.v.gﬂi.

acoom@an;ed by a sequence of pictures formlng a "movze" to

illustrate the dhanglng state of tha local structure as the

wi

program is znterpreted, statement by stntemcnt.

Sl

f55-

.setl (x,y.z) -

«3: comst 3,x
«x; .call ‘aésign0;(x,y)

-
- 4; const 4,z
\ “ - nil gleér y , |

NN R R X

J
%
b

74 o
-

@1 |

,apﬂ?%gguﬁzg, RS R ;-thﬁgﬁyﬁﬁ{"ﬁﬁblif‘ﬂffﬁ‘ﬁfx°;@Tix

3
&

‘vi;;,* ey e i it 5
X‘ ’Ji
)

{
N PRI 1 NG EERE 4 N SRR EN

5

3.3;'?nin1~ganguagg;1~h¥%sgguéf”fﬁh*“

Mini-Language 1 (ML-1) adds the notion of data struc~
tures to the’foundation provi#éd“py ML-0 " As we have said

| before, a structure is a data oBfect Whieh consists of indiv-

S R SULAE S O S S

™

idually a;cessible componént objects. There are two funda<
mental operations relating directlyiéo’this.conéeéfbof
structures: (1) construction of a structured object whose
components will be objects thh given values, and . (2) selec¢~
tlon of component objects ‘from a structure. ML—l‘pfov;des
for these operations while refé#niﬁd?iﬁtact the>éohcepts and
mechanisms of ML~0. 1In particulgr,ﬂéggznafioﬂswéf cells,
values, contents, binding and-assignment are-exectly-as -
'pefagé.'j“/ | | ERR

*In addltlon to the 1ntegef vakues fQund in ML-O ML-l
prov1désva new class of structunes. ‘A sﬁructureawvaiue qon~
‘sists of a sequence of component values (which may be int—
_egers or structures). To atare amay a stgue@uzeé value, -we
require one cell fdr the structure, and aiso qeparate cells
to hold the valuesﬂof 1%8 eomponenta. This r;quxéement 1s a
'departure frdm ML-G, in which all calls ln use are bound to
—identifiers. ~ Componént cells muat now be handled by some
kind of free-storage management techniqus.or gell.silor
cator. .

'In ML-1, a °911;mlyfaiﬁﬁmﬁ«SQCQQ’QiVQ:VGlﬂﬂﬁ'Of‘diff*

erent types (an integer one moment and a.strueture the-next,

oY vice versa)., There are no restrictions on what values

-57-

may be stored in which cells. There is a need, however, to
detect references to nonexistent components of a structure.
Such error-checking will have to be performed by the defin-

ing interpreter.

Syntax of ML-1

There is a new primitive”éyhtactic class here, namely
(selector), which denotes alphanumeric strings together with
integers.

{program) 1:= (assignmeﬁt) P e ;'(assiéﬁﬁent)
{(assignment) ::= (destlnatlon) - (expresslon)

(expression) ::= (destination) | (generator) | n11

(destination) ::= (idéntifier) | (selection)

(selection) s3= (selector) of (expge581on)

{generator) ::= (integer) | (constrUctlon)

(construction) ::= [(field) ;V:: (field) 1

(field) " :1:= (selector) :t(expression)
Description

Structures in ML~1 are sequences of componeut values
Each component in a structure has assoc;ated w1th tt a |
{selector). The selectlon operattonrg;ves 1nd1v1duai access
to the components of a structure by using the (selector)s to
indicate the appropriate components. ~Thus, for example, the
(selection) a of x refers to the component of the struc-

ture x having the (selector) named "a".

-58~
'The notion of (destination) :{# extended in ML-l to in-
Clude selections of component objects from‘stfnctures. in,
particular, (selection)s may appear on both sides of
(assignment)s. This allows for selective updating of com-
ponents‘og‘a structure. A;(selection)\pccurs,as an instance
 of a (destination) and refers to a component cell for a
structure. In this way, ML-1 preserves'the ML~0 association

between (destination)s and cells.

Also as in ML-0, distinct {destination)s refer to dis~

tinct cells. There is no sharzng Qf data,

All values in ML—l are created by instances of
(generator)s._ A (construction) is a special kznd of
{generator) provided*by-ML*I’fpr“buildingzstructured values.
Iin a (construction), we simply supply (exp:ession)s4yicld-
1ng values for the components with the assoclated (selectors).
Each component name/value palr is called a (fleld) Thus
the two kinds of (generator)s, namely (1nteger)s and

(construction)s, produce the two kinds of values in ML-1.
Semantics o =1 _f(info

. As with ML<0, in order to lend precision to the notions

we have introduced, we give an informal description of the

e A

-50=

semantics associated with each significant syntactic class

of ML-1l.

(1) (program)s: The semantic rule for an ML-1 (program)

is identical to rule (1) in the previous section for ML-0

{program)s.

(2) (assignment)s: ML-1 (assignment)s work by the same

principles as in ML-0, but there is. a new factor here. Sup-
pose the value yielded by the (expression) on the right-hand
side of an (assignment) is some structure, Then new cells
must be allocated to store the component values of this
structure. The component cells are said té‘be subordinate
to the cell for the structure ‘they belqng to-(ife. to the
cell referred to by the (destination) 6h the 1eft~hand side
of the (assignment)).- Mofeover, if a cell containing a
structured value is assigned some néw value, then the com-
ponent cells subordinate to this cell are detached and left
for the cell allocator to garbage-collect, Structured val-
ues are copied on assignment, component by component (and

recursively for structure-valued cbmponehts).

(3) (destinationys: There are two kinds of

(destination)s in ML-1. (identifier)s are handled exactly

-60-
as in rule (3) for ML-0. We now discuss (selection)s.

(4) (selectiond)s: A (selection) consists of a

{selector) and an (expression). The value yielded by the
({expression) (see rule (5) below) is determined. This
value must be a structure, or the effect of the
{selection) is undefined. Furthermore, this structure must

have some component with the given (selector). Finally,

‘this component must be stored in some component cell (which

was allocated when the structured value was constructed).
Then this component cell is the cell referred to

by the (selection}).

(5) (expression)s: With respect to the three kinds of

(expression)s in ML-1, the occurrence of the indicator nil
or of a (destination) is treated exactly as in ML~-0. As for
(generator)s, the only aspect we need to explain here is the

semantic rule for (construction)s.

(6) (construction)s: A (construction) consists of a

sequence of (field)s, each with a (selector) and an
(expression). Each (field) represents a component with the
indicated (selector) and with value yielded by the

(expression). The rule for interpretation of a (field)

Thg semantlc rule for a (constructi
k(f;eld?s sequentlally, Jeft tg ri
_This results in a seriep. of

~ponent cells and acgesgible by, (selecte

Lidts R g S R

~61~

. consists of three steps -

R R Tt seyp e, G T e Tl mencigel g meid

(1) Evaluate 1ts (expre381on)

R ¢+ Allocate a new'cellﬁand store the velue from
« step (i) in it .(&he 9ell remains empty, if
e step (1) yielde}no va?ZéT*

. (iii) Associate the widwly aTlowated comsonént cell
. (and the value it now contains) with the ‘

(selector). of the (Field)-

e B @:f;wwmbeW%mg

D8 0,@F ., B8, W4 beLter
know it, a structyre, .There is omevadditipnal. restpiction
on (construction)s: the (selector)s of its (fie;qggxmgggﬁbe

dlstlnct. or else such a (constructlon) is 111egal and has

: L T memary Y el S5l
undeflned effect
BL Representation .
i R iR L s B IR 7

- We represent:structures inifl+-l by BL-6b3é&¢s {h which

the roet node/eorvaspondsntoythiﬁellihwuﬂlté?é*tﬁéﬂytfﬁctﬁre

in, and in which-the-ares-are:iabeled withW the(sélectsrys
of the strtcture and lead into nodes rg@%gggg&égg the corr-
esPonding component cells. Agtﬁyamg;qﬂgggbgwgaqiready 384n
is the eqv1ronment (lgcal @tmcgura} f%gﬂam%ahn&uﬁgem

program, which is a structured vaLnQAwhggpgﬁgghﬂgg,;,;;;;;

F T P RRTT i o e T e
% O % PRI SRR WAL e @OEOVT TraLsY Y RN
Y 5 et

~62~

the variables used in the program. Another example is the

structure generated by the (construction)

[a:1l; b:[c:27’d{n11 }‘]{TWhQ8é Bﬂ"fgp-, ‘ '
drnil o I-ihnl
resentation is pictured in fig. 3.3=1. - - | ¢ '
| . S ® <4
A valid ML-1 (destination) corres- (%) b

ponds to a node addressable by a cdm- .
; ; v o Fig. 3.3-1.
pound pathname. For instance, if the = |BL-object for
ja structure

“mtruéttured value of figure 3.3-1 is
assigned to the (identifier) x, then the cell referred to by
the (destination) c of b of x will bé“feprésenfed by the
" node x.b.c.

As with ML-0, a ML-1 (progfams Qhoée (identifie:)svare
‘xl, ... » xn has in its BlL translation the ;iélogue B
;setl (xl,...,xn). We now treat translatiﬁﬁ”bfﬁVarioué ML-@
{assignment)s into BL, illustra&ing-gnnafaivtraﬁsiation
techniques that can be readily applied to any Ml-l 'state-

ment. The following cases are representative:

(1) (identifier) « nil
and (2) (identifier) « (integer)
are both handled exactly as in ML-0 by the respective BL
primitives gclear and const. Note that the action of these

BL instructions disconnects any subordinate component. cells

that need to be detached.

(3) (identifier) ; (identifier)
e.g. vy ¢ x. This kind of ML-1 {agéignmeﬁ£$:pb§es a problem
in translation whenvthe source (éxéression) X h@s a struc-
tured value. In that case,.thewbtructUred valhe for x must
be copied component by component into Y creatlng new cells
as required to hold new componenta of y. This klnd of

action is illustrated

- S " in figure 3.2-2, We

37 R |

a 5 e « b o b _ . shall translate the
. R l" gt A

ér"v Sl &L 05T cmmens v

: 1 _Qg_ajcall on a BL pro-
Fig. 3.3-2. Sample effect of | cedure named assignl,
the ML-1 (assignment) y ¢ x B o
when x has structured ¢alue. { so the BL code for the

statement y + x will
be .call assignl, (x,y). The code for the‘BL_procedﬁre.
assignl is shown in figure 3.3-3. ‘If x is - empty or has an
integer valﬁe, then assignl worké like the assign0 procedure
which translatés the corresponding,#Lw@z(ataignment).» If x

has a structured value,-then for sach gomponent of x, we

generate a corresponding component for‘yaiallogating a new

cell) and call assignl recursively to give this component

-64 -~

of y the proper value. Here, the parameter. u corresponds

\assighl: .getp
clear

elem?
return

‘gtruc: ~ .getg

loop: gete
N .call-

goto
out: return

‘nonempty? u,out

(u.v)‘

v

u, gtruc

*u,v

(assignl)
u,i,out
assignl, (u.*i,v.*1)

loop

Figure 3.3-3. Definition of the
BL p:ocedu:e assignl.

to x, and the parameter v corresponds to y.

(4) (identifier) « (selection)

e.g. y e b of x.

The pitfall here is that we

must check to verify that x

indeed has a b-component.

The following BL code takes

care of this test:

has? x,b,error

.call assigni.(x.b,y)’

}

By T4 .

- -
-

ST R

d
[]

Fig. 3.3~4. Effect of
y + b of x

in MIJ"'lo

-

-65~

The label "error" refers to some unspecified place we branch

to if x has no b-component.

(5) {(selection) « (identifier)
e.g. cof aof y « x is translated into the BL code

—mre

has? vy,a,error
has? vy.a,c,error
.call assignl, (x,y.a.c) (figure 3.3~5).
- (6) {(identifier) ¢« (construction)
e.g. y ¢ [a:3; b:nil; c:x] translates into

clear y

const 3,v.a

clear y.b
.call assignl, (x,y.c) (figure 3.3-6).

x Y g g X == o
11)3 t g R
-+ ¢ &y ‘é &b o
§o | 46 ‘&

Fig. 3.3-5. Effect of Fig. 3.3-6. Effect of

c of a of y ¢« x y ¢ [a:3; b:nil; c:x]

There is a subtle pitfall in these translations, Spec-
ial care must be taken in translating (assignment)s in which

the left-hand side and the right-hand side both refer to

- has? y¥,b,error

(assignment) b Ofy «y into

-66=
cells in the same structure. Suppose, for example, that y
has the'structured value depicted iﬁlfiéufe 3.3-7. Trans-

lating the (assignment) b of y « y into the BL code

T} will not yvield the correct re-
.call assignl, (y,y.b) - :

sults of figure 3.3-8. 1Instead, there would be a nontermin-
ating sequence of recursive calls of thé procedure assignl

(figure 3.3-9). We must therefore translate the

(:)-.—- LT
noAc‘-—-U':w,

has? y,b,érror | | | '; ?Fig.“3.3a9

.call assignl,(y,$temp)

.callwaséigﬂl,($£emp,y;b)
With this translation, the recursion terminates because we
are -not ypdating- the structure. $tempiduring the process of

recursively going through its comporiénts.

'For other cases of "overlapping" assignment, we adopt

:':f_'67—

similar translations. For example, we translate the
(assignment) vy b‘[a:l; b:y] into the BL code

.call assigni,(y,stemp)

clear y |

const 1,y.a

.callkassignl,{$temp,y.b);

and we translate y ¢ [c:a of y] into
has? vy,a,error

clear Stemp

link $temp,q,y.a
clear y

.call assignl, ($temp.g,y.c).
Note that in ML-1, the translator can detect any
occurrences of these "overlapping" assignments and make the

according adjustments.

ML-1 Movie

As in the pkevious.sectiqq&kwghgoncluggpwith‘a_moyig ;
of a sample ML-1 (program) and its translation into BL.

ML-1 . BL,

const 2,y.a
.call assignl, (x,y.Db)

< X

Mi~1
+« a of y;
of vy « 3;
- Y3
« [1:2a of x:
2:[r:nil;
of 2 9f y + 2

5

@— X~
.—v.cg

Hprolpgue

-68=—

BL

d

.call

- y,a,error -
.call»

assignl, (y.a,x)
Y;é)error
3,v.a

assignl, (y,x)

clear y

.call

X « 4

- X,a,error

assignl, (x.a,y.1l)

" Y.2

¥.2.r

- 4,y.2.8
vy.2;error

y.2,8,error

X, a,error

“assignl, (x.2,y.2.s)

.Ry¢,error

assignl, (x, $temp)
assignl.f$feﬁp.x.c)

}.r,

i

b

o c
éé‘
y - [a:2 1X;

: ¢:ni} }

1
(o))
v

@~
®'°’ (¥4
@ ri®
@1,
|

@~
@
(Oas

@]
Pl
S
g::_ }vk-i

J"
farlee

L]
@—.’8

o
~

X

—
o » ¢
¢ ¢ &
0,

y « [l:a of x; s of 2 of y c of x ¢ x
2: [r:nil; « a of x
s:4]]

3.4. Mini-Language 2 —- Pointers

Mini-Language 2 (ML-2) extends the concepts we have de-
veloped and treats the notion of pointers (references). A
pointer is a means by which one can indirectly access a cell
and its contents. As with structures, there are two basic
operations inherent in ﬁhe concept of pointers: (1) crea-
tion of a pointer value which refers to a given cell, and

(2) accessing the cell a pointer "points" to. We wish to

- provide’ for these operatxons«while Qreserving the eoncapts
and mechanxsm' that have already been devoloped in this

chapter.

| In,ML—2,fthera:is a new.clasavdf pointer values. As
with ME-1, cells can accommodate successive values of diff-
erent classes. We will not, however, allow indirect refer-

ences ”Ehroixt;h values which are not pointers.

o One rcspdct 1n‘wh1ch the notinn of paintar difﬁens £rom
previous cancqpts is tbat a poinhnr vulue contains infor-
fation aﬁout ‘the ggl; it refers to. Pravﬂous concepts of
| value had'nnﬁhxng to do with cerlc. We shnll ‘se some of

the difficultiea caused by this cxtun-ien.

In this section, we treat ML-2 as an oxtension of ML~1.
However, it is not necessary to 1nclude structures in order
to hundle the new notion of psinters. One could alterna-
tively omit structures from ML~2 and view it as a direet

extension to ML-O.
:nt'1, ’L";2

The “hoxud" portion of ‘the ML—2 ayntax is that part of

]

ML~-2 that &4&1: with structured valne! and the basic oper-

ations on ﬁhem

=71~

{program) ::= (assignment) ; ... : (asslgnment)
{assignment) z:= (destlnatlon) - (expression)

(expression) ::= (destination) | (generator) | nil

(destinatibn) ::= {identifier) | (indirep;)‘]f(selgction)
{indirect) ::= val (expressxon}
(selection) s1= (selector) of (expressxon)
{generator) si= (1nteger) | (polnter) | {(construction)
(pointer) ::= ptr (destination) '
(construction) ::= [(field) 7 ... 5 (field) 1
{field) 1= (8 elector),;y&g&ggggaigny

Description

Theré are two new syntactlc classes 1n ML -2. A
<p01nter), consisting of the symbol Eﬂg and a (destlnatlon)
specifies the creatlon‘of a po;nter value wh1chyw111 refer
to the same cell as the (destination). The oniy way to
build pointer values in ML-2 is by means of’?boihter)é; wév
therefore classify the (pointer) syntaetically ‘as ‘an ‘in-
stance of a (generator). - An {(indirect), consisting of the
symbol val and a (pointer-valued) (eéxpression), is ML=2's
way of accessing the-cell referred to by ‘a pointer value.

As such, an (indirect)giswaukindbbf>(ﬂés&¥ﬁ££ibﬁ).

We have already seen all the bthet;ML¥§‘syntax éiasses.

-72=

Semantics Of ML-~2 (informal)

A1l we need to give here are informal semantic rules
réo:re%pﬂﬁdin§ tb thé.two:new‘§yﬁtié£ic élaases. All the
other semantic rules fnr;ML;z.a?e%iéin&iéai«te~théfeerres-
ponding rules for~M£b0‘or ML-1. |

(1) (pointex)s: This kindaoﬁ:(e?gression& comtains a
(destination) and.yieldsva-pc&nﬁgcﬂvnﬁuevwhiéh”reférs'tb’the

same cell as the (destination?,

(2) {indirect)s: An (indirect) contains an:(ex?xession).
The value yielded by the (expression) i; dot&rmined; If it
isn't'a'pcihter; the Zindi#ec£$fhi;7uﬁdﬁfined vg1ue, Other-
wise thé (indireuf) épécifies‘tﬁééciii'r@fétred.to by this

pointer value.

BL Begresenta;ion

vDecidxnguon,a way to represent pﬁ&ﬁtar‘values’in*BL
presents. difficulties. In-'most convention&l -systems, point-
er valuas;are-sgmply«theanqmnzicwadﬁnu'Uhi of céils;. How-
ever, in the base language model, referending of éells is
symbolic. The?mGStwatraightferward;appto%gﬁhﬁo thiS"prObléh
is to view gkcell's p;thnamg,(i.e. sequence of selectors

from the root node of the current local structure) as its

-73=

address. A pointer value would then be represented in the

base language model by an elementary string value encoding

the pathname of the cell pointed to. Under
after executing the ML-2 instructions

X+ 3; v «ptr x; z ¢ y; w e val y
the environment would appear as in figure
3.4-1. After the further instructions

Z « X; val v « ptr =z
are executed, the environment would then
appear as in figure 3.4-2. Under ;uch a
scheme, translation into BL would not be
difficult. However, this approach breaks

down in the presence of structures. For

such a scheme,

example, execution of the sequence of ML-2 instructions

X « [a:2]; y « ptr a Q; X
would result in y having as value the
pathname "x.a" (figure 3.4-3). If we
then execute the (assignment) x ¢ 3,
x would no longer have an a-component:

the cell containing the value 2 would

i N
¢
é‘

3.4-3

therefore no longer have the pathname x.a and would hence

be inaccessible through y. 1In other words, under this

-74=

scheme there is no way to providé for retentidn'bf cells k
referred to by pointers. The main“coﬁceptual weaknésé of
this scheme is that the address of a cell depénas'on a par¥
”ticulaxhpathlbf access to it. \Sﬁch‘avdepéndéﬁce is to be
avoided.

A second way to refer t§ a cell‘is>by direétly linking
to it, that is, sharing it. It is i“‘m;:e.gative that the
‘pointer have a separate cell for itaei;Fas well as the cell
‘it paints to. Otherﬁise; afterexeeuting ;he_ML-Z iﬁstrﬁCf‘

_tiqhs: X + 3; y « ptr x we would have a

siﬁuazidﬁ.as pictured in figure 3.4-4 in 17—11;-
: : o ERCEE Sl SRR EE
. , !
which the (assigmment) y + 2 would err- <f§—j
oneously affect x (we want to access x
‘ ' ‘ : FPig. 3.4-4

through y only by use of the (indirect) >
‘val y}. To insure separate cells, we will make a pointer
value an ingtance of a structure, where the cell pointed to

will.be‘the;sole component cell. Thus

E ‘i
4
@ svol
&

further instruction x + 3, we see that ' Fig. 3.4-5

the result of executing the instructions
X « [a:2]; y ¢ ptr a of x

will be as in figure 3.4-5, and after the

the cell containing the value 2 is proper-~

~75=-

ly retained (figufe 3.4-6). Note that we

have adopted the reserved name "$val" as . X

J
R
the selector for the sing}e component of <:) $vod

an ML-~2 pointer value under our repre-

sentation scheme (to avoid clashes with

the (selector)s of ML-2 structures).

Now that we have settled on a BL representation for
pointer values, translation of ML~2 ‘into BL is straightfor-

ward. We only need consider four new cases of (assignment)s:

(1) (identifier) e {(pointer)
e.g. y ¢ ptr x is translated into the BL ¢6de
clear vy |
link y,$val,x

(2) (identifier) « (identifier)
e.g. Yy ¢« X 1is translated inﬁd tﬁeiiniécition
.call assign2,(k,y), wherérfﬁ; dﬁgiﬁiggén?of the BL pro-
cedure assign2 is'shown‘in figu?e 3,4-7. AThe difference
between assignl and‘assignZ.i§ £hét‘as;ig§2 has additional
code to handle assignmeht of poiﬁter‘vaiugs,,preventing us
from attempting to copy the conténts'df aicell referred to
by some pointer. An example of the assigning of a pointer

value is depicted in figure 3,4-8. o 3)

-76=

assign2: .getp (u,v)
. gleap v '
elem? u,;émp
const © *u,v

e

E

comp: has? u,$val,struc
Iink v,Sval,u,.$val

E

struc: .getg (gssigpg)_
loop: v‘gggg - u;i,out
.call - assign2, (a.%i,v.*i)
. gete loop .
out: gtturn o

Pigqure 3.4~7. Definition of the
BL procedure assign2. o

LA T E
the ML-2 (assignment)
LYy « % when x has:a

- pointer value.

gved L f

| L;,{'*f;

(3) (identifiery « (indirect)

e.g. z & valy is translated into' the BL dode

‘77

has? vy,$val,error
.call assign2, (y.$val,z)
(4) (indirect) ¢ (expression)
e.g. val x « 3 ieitrené;ated into thetaL:cgée

EEEZ X,Sval,error
const 3,x.Sval

Using these traﬁslﬁrién echem@s. it is easy tb ﬁrad;ce :
BL code corresponding teeépy ML-2 (program). However, the
presence of - "overlapping»rassignments can no longer dlvways
be detected by the translator. For example, in the state ;
Vdeplcted in figure 3. 4—9, we want the (assignment)”

b of y « val x to result in the state shown in figure

3.4-10. The BL code

has? x,§val,errexr - .
.call assignZ (X $Valo TR
$temp)

.call a981gn2 ($temp,
y.b)

works properly, In

other words, the trans- ¢ B4 E E

*,

lator,must ptoduce BL code to paribru extra copying whenever

there is a posaxbilley of’ overiap. ﬂ?h;s i# uMmajar souréé of

1neff1c1ency. since everlqg,$gﬁpxgg;uly an infrequant event

| ML-2 Movie

val y « 5;

z ¢+ [C:?; d:val Yf\

b Qf X ¢ 67

¥
—ute
o M-

1 pfolog\ze

-78~

B

b.setl (x y,z)

' clear ®x
const 4,x.a

c;ear x.b

has? x,b,error

‘clear y

3ok y,$val,x.b
has? . .y.§val,error
const 5,y.$val

Das? y Y»$va1 exrer o
.call assign?, {y.$val,$temp)

.call assign2, (y,z.c)

.call assign2, ($temp,z.d)
 link z.e,Sval;z
- has? x,b,er¥ror
~ .call assign2,(z,x)

3.5. Mini-Language 3 -~ Sharing *

So far ih this chapter; wé'havg~pxégtéééquFhroughv
three mini—languéges in develbﬁing»oﬁrkgéﬁanﬁicygpdelkfo;}
data‘structures‘and pdinﬁeré; .Alth§ugh'ni;2 hgpdies al} Qf
these concepts, there are sdmerespééts:in which thé dé;ién
we so carefully built up becbﬁeéfcuﬁﬁéféaﬁe:éhd iﬁeleéant.
In this section we shall look at some’bf'ﬁﬁ;'ﬁeakneéses éf'

ML-2 and seée how they reflect a conceptual shortcoming in

-80-~

our design. The mini-language ML-3 is devised to remedy
these deficiencies. By revising the notion of structures,
ML-3 becomes not only more powerful and efficient than ML--2,
but conceptually simpler as well. In fact, the entire ap-
paratus of pointers that was developed in the previous sec-
tion is subsumed within the re-definition of structured

value.

The main difficulty with ML-2 emerges when we consider
the way pointer values are represented in the base language
model. This is admittedly a rather strange way to examine
the merits of a language, namely in terms of a representa-
tion decision with respect to a particular semantic model.
But the base language model is special in that it was spe-
cifically designed for the purpose of describing the con-
cepts of sharing which we are studying. So it is perfectly
valid to use insights provided by this model to aid in de-
signing mini-languages which deal with data struqtures and

sharing.

In the last section, we chose to represent a pointer
value in the base language model as a one-component struc-
ture whose component cell is precisely the cell pointed to.

In other words, pointer values are instances of structures

-8]1~-

whose components share with other data objects. Itvis this
much more general concept of’shared data objects that con-
cerns us in this section. The only klnd of sharing provided
;n ML;2’is the pointer, which is a structure yaVLng‘exectly
oﬁe component cell;.shared with‘soms object. 1In the course of
trying to model aspects of real-world programming languages
in ML-2, this llmltatlon becomes a stumbllng block. For
example, the notlon of _gglg in languages 11ke BASEL is that
of a vector of addresses, i.e. a structure w1th ao rbltrarx
number of components sharlng with” other objects. In ML-2:
this can be modeled only as a strdcture whose.components“
are pointers. These components, When‘reéreseﬁted in the

base language model, take up an extra level of indireetion,

which becomes a bit clumsy.

To give a better treatment todthisgeneralised“nbtion
of sharing, we recise our concept'of structure. 1In MLeZ, as
in ML~1l, the notiohvof‘structured values as being’com?osed
of components with (selector)s sndeAlues; does not directly
utilize the concept of cells. Cells are pai»t ‘of only
pointer values. What we've done 1n ML—2 is represent
pointers like structures but use a different gset of rules to

manipulate them. This conceptual distinction puts the two

~82-

notions -- structured values and.pointer'values>~- almost at
odds with each 6ther in ML-2. We‘ihclude cells in our re-
visedlconcept of structured values in’MLF3; as a result of
this, the needvfor’a separéte class ofk§Ointer values van-

ishes.

A structured value in ML-1 and in ML-2 was a collection
of components,»each consisting of a‘value and~an‘assqciated
(selector). In ML~-3, we dgfine a component of g structure
ﬁo now be a (selector)—ggl& pair, ra;hexwphan a (selector)-
value pair. fhe value of a sﬁructurgd object is still the

set of its components.

(program) ::= (assignment) ; ... ; (assignment)
{assignment) = (destination) - <QXP?).
{expr). ga= (destinatiOn)'l (geherator)

| (modification) { nil
(destination) ::= (identifier)] (sglectidn)

{(selection) -::= (selector) of (expr)

{generator) ::= (integer) | (construction) -
(construction) ::= [(field) ; ... ; {field)] ‘
{field) ::= (selector) : (cell expr))
(cell expr) ::= share (destinatibn)] {expr)

(modification) ::= (construction) (expr)

R i R s S S H ~»“??’WW¢~M“<"~*W R SRS e AR T

-83=

Description

The syntactic classes of ML~3 are identical to those of
ML-1, wmth two addltlons. Flrst, there are now two kinds of

expressions in ML-3: an (expr) ylelds a value, and a

(cell expr) yields a cell The only occurrence of

{cell expr)s is within the (fleld)s of a (constructlon)
(where there used to be (expr)s in ML 1 and ML-Z) The”mk

-

rules for evaluatlng both klnds of expressions are given
below. The second addltlon 15 a new klnd of (expr), namely
the (modlflcatlon) which ylelds structured objects bUllt

from other structures. All other‘syntactic classes are

exactly as they were in ML-1.

Semantics of ML-3 (informal)
The semantic rules for (progréﬁ)s}"(aésighment3s,
(destination)s, (identifier)s and (selection)s are identical

to the rules given for ML-1l. The: remaining elements warrant

some discussion.

(1) (expr)s: The ocgurrence .of .nil or of a
(destination) as an (expr) isqhanéﬂﬁd just -as in ML~0 and
ML-1. (generator)s are either (intgge;)s,{wh;ch_are.handled

as before, or {construction)s, which are described in

-84~

rule (2) below. (modification)s are discussed in rule (6)

below.

(2) {(construction)s: The semantics of (constructions)

and (field)s follows directly from the new ML-3 notion of
strucﬁures. A {(construction) denotes the value of a struc-
ture which is generated on the spot. A (construction) con-
sists of a series of (field)s, each with a (selector) and a
{cell expr). Each (field) represents a component consiSting
of this (selector) and the cell yielded by the (cell expr)
(see rule (3) below). Finally, the structured value yielded
by the (construction) is the set of components given By its
{field)s. We make one restriction on (construction)s: the
{selector)s of its (field)s must be distinct, or else the

{construction) is invalid and has undefined effect.

(3) (cell expr)s: The two kinds of (cell expr) are

discussed in rules (4) and (5) below.

(4) shared;jdestination)s: A (cell expr) of the form

share (destination) yields the cell referred to by the
{destination). This is the basic source of sharing in ML-3;
shared (destination)s are used to build structures having
components whose cells are already in use. It is this

facility which subsumes the ML-2 notion of pointers.

-85=

(5) (exprd)s as (cell expr)s: The cell yielded by an

{expr) occurring as a {(cell expr) is a newly-allocated cell
distinct from all cells in use and containing the value
yielded by the (expr). Evaluation of a {(cell expr) of form

{(expr) is the only way to allocate new cells in ML-3.

(6) {(modification)s: A (modification) consists of a

(construction) and an (expr). The value of the (expr)

(which we call the modificand) must be a structure or the

indicator nil, or else the effect of the (modificatién) is
undefined. The value yielded by the (modification) will be
a newly-generated structure whose components are obtained as
follows:
(i) Each component of the modificand whose
(selector) belongs to no (field) of the

{construction) will be a component of the
new structure.

(ii) For each (field) of the (construction) there
will be in the new structure a component with
the same (selector) and as its cell the cell
vielded by the (cell expr) of the (field).

Alternatively, we can view each (field) of the (construction)
as either replacing or appending a component to the modifi-
cand depending on whether or not its (selector) belongs to

some component of the modificand. Note that evaluation of a

{modification) may cause allocation of new cells, but it

B A AR s g #, e 0 U0 A S e I G R S I N I S R MRS I R R AR R T T TR
BRI A
-86~
- £
e vl beblely [lan odv salyaxse [ls >y mas edague

does not ln any way affect the contents of oxiating cells.
- Boteuoliseyviwan 5 21 TuQas flsod 5 B6 poiiIunos (Noxs]
Strlctly speaking, (modiflcat:l.on)l are redundant J.n ML-3.

AT T 1-"1:#!"7 EDRe

Py oidd prigisdnod Los ped

SR

If for example, the (1dent1£1.er) x has a structured value

’ E I , e ey ~ Ys 'ri‘)
gy o Cuwaxs [ient s Ao noldsplsviE L [wopa) S0l Yo LbEhaely
with two componenta whose (selector)s are a and b. then the

foow oot mllon wen sisvolis of yew vino eid I R

(modification) [b: 3, c:share y] x will 'yield the same value

adh the MRV Taiiliked a _&»f‘é’,ﬁ:

Caqewad it 3o asulev sdT L UaRD S OB ST T R s AT AN S St
BL Reg‘ regsen taglon
. - =S A - Ny Foefre
Vet yn svpdouxde 5 od deum (bpepiXibom edz o idw

we ropresent a structured va in, ML-3 ~object
Cpobnesi¥ibomy edd 1o Joatis GEL S ; ¢ ‘Jnygffw

whose arcs lead into the nodes fg;' the W cells, and,,

3l Libw rnobdesoiTibom sdl oy iy SULS

are labeled with the correcpmding» gmwugr)gmagglg 18y o

zx menlsido 91s BIA900GMOD SEONW

strughtfemrd. simple and clean.

We mwgi-}m)&Mbh uunahtmﬁzuﬁea gu‘ugnmentn

i . 4 "
SRS G0 I 1 A S

into Bk' Do SOt

Ad), 4«@@»&%@» mmlf ity dass 10k
“ P (SR LA E_ Sx ooy SR T SR 1N
andr Lz)ww('ﬁlmlﬁﬁ')?ﬂ' *irﬁmtmgm)ﬂ
i 233N sdd ro ugKe Lail it
are both handled as in ML-0 and ML-].
g o Aspe e vfy, T, SERTa Y ofmeg wa iy Ten 89Wo (Y {avvidnaradiA
(3) < identifmr) £ (identAfi) T,
ff)(" DT A SO HEERINE N S

er.gﬂ. y +« x is translated J.nto _;.cnlj. quigx;xa,(,(mygr. wheare.

R R C T I A% N ASe 1aj',

the BL procedure assign3 is def.:.ngg,mi.m;; figure 34570 They. .

I . el ‘:r;L‘_\r;_. ‘-fi.);{"” 14‘j'/‘) R ey ERIR

code is the same as for tha procodure auigp,]. £or. empty; p,n,d

allies wan 30 EPEY

integer values of the source (idnntiﬂer) x, except for the

the presence of the

-8 7 -

B

same? X, y,out test whlch makes sure

the (a551gnment) is nontr1v1a1 (otherw1se the clear 1n—

struction would destroy the value we want to keep)

If x

has a structured value, then y w1ll get the same structured

\

value.

This means, by the néw"&éfiniticn‘6fwééfuctured

value, that the components ofui'wiii'now share with the com-

ponents of x (figure 3.5-2).

In executing uny (assignmént),

assign3: .getp (w,V)
same? ' u,v,out
clear v
nonempty? u,out
elem? u,struc
const *u,v
retugn,

struc: getc u,i,out
link = v,*i,u.*i
goto struc

out: return

Flg. 3.5-1. "Definition N

of the BL procedure

assign3 -

_ shared, noét copied.

the ML~3 (assigument
Yy « kX when x has a

structured value

the contents of exactly

one cell will be copied.
Componept cells are now

Note

that this is a vast gain in efficiency for ML-3 over ML-1

and ML"'2 .

The "meaning” of the (assignment)

differs between ML-1 and ML-3.

y ¢+ x, then,

For éxaﬁplé; after ekécuting

the instructions xo—[a3 b4], yo-x- a_;_gyo-s

=~ =t . DI T T TG0

then the expression a g“ x w111 yleld‘the value 3 in ML l
(and ML—Z); but will evaluate to 5 in ML-3

L S T

@ aesitien) - (sieetiens
©.5. v ebofx is trmsiated into the BLcode
has?> x,b,error |
‘ .call ass;gn3 (x;£ y)

n{ (5) (selection) . {Ldentifier) L
e. g. a gﬁi‘i - §< s trgnslated imo. mah m

has? wwrrqr; oL
.ean usmuwyw)

Mfﬁian) - (consﬁruetionb

(6} (
e.g.‘ y - [awx° d b Qg X; e: dh_gg z] 1s;%§§§slated into

has? x b error v

.call assign3, (x.b,
- o Akemp)

clear vy
call assiond, (x,y.e)
.call domigha’ (stemp;

N

st ki 5 on s rig; 3.5-3. Effect S
link vy,e,2 | v e [e:x; d:b of x- e: share z]

Lin an-s TTE

Note that overlapping (assignment)s pose no problem at all
oL ey e e O RIS NG e BB T e Trgas e B T

for statements of types (4) and (5). This is due to the

fact that component cells of a structure are néqunger‘
cqpied on assignment.«>However, we do need:ﬁhekuéé of temp-
oraries in (assignment)s involving (constructionys, for
instance, to'také café of the case when y shares with

b of x before executing the (assignmeﬁt) in example (6)

above.

Finally, we note that pointers in ML-2 bhave been sub-
sumed in ML-3. In place of the ML~2 ptr (destlnatlon)

we can write the ML-3 (constructzon) [val share (destlnatlon)],
and wherever ML-2 uses val (expr), ML-3 substitutes

val of (expr).

ML-3 Movie
ML-3 : u - - BL
.setl (x,y,z)
X « [e:3; d:nil]; . clear x

;;c: st i.x.c
c far k.d
2z e [az:4; b:[q: , xrc,arror

N r

assxgnB (x c.$temp)

clear
has?
.call
.SLEEE‘ .
const 4,z.a

clear z.b ‘ ‘

.call assign3, (Stemp,z.b.q)
clear |

z.b.r

ML-3

y + [p:share x }:

X ¢« [b:5] z;

~90-

clear vy

link y.,p,x

has? vy,p,error

.call assign3, (y,y.pP)
has? z,b,error

.call assign3, (z.b,y)
.call assign3, (z,x)

const 5,x.b

z ¢« [c:share gqof y] z: has? y.qg,error

link z,c,y.9q

y « [a:b of z; c:share z] x; has? z,b,error

o X -
roxﬁ‘
o 1]

prologue

.call assign3, (z.b, $temp)
.call assign3, (x,v)

.call assign3, ($temp,y.a)
link y.c,z

M 1
3 & b
. b $

6 @37.

o8

?

1

‘L‘LFL

éa

ga‘

y [p;share x]

-91~

-2 ¢« [crshare

3.6. Discussion and Examples

q of yl=

'y + [a:b Of 2;

c:share z]x

In this chapter we have built up: a hierarchy of mini-

languages, culminating in ML~-3.

We-now relate this develop-

ment to the main issues that were: raised in Chapter 1. A‘

ma‘jor concern with respect to a given "real-worlé@" program-

ming language is the effect of its assignment operation on

an environment containing structured data iobjects. We know

2o ,-pg«,:;;.u;f.p,m«;, K s A i i B e A AR T L R e e e T et S R '}-‘N;,;,,-,v_.,«_ @‘,men SR e e L g T [RUES

-2

that executlnq an asslgnment statement of. tha form X :=,e
Wlll result in the identrfidr X hQVing the vaﬂue a!sbdiated
w1th the exprtss;on e. What is unc‘rtamn is whé effect’ bf
sueh an asulgnment upon ‘the sharing relationahips among the
varicus ceils in the envizonmantmAAVaxxatiopsfinmnharangn

properties can in general induce differences in the effect-

_of,suhﬁequent;assigﬁmentb.

| We g;ve an exaﬁple ad;pted ﬂrqn [Bur 68] The only
data atrndtﬁres in ﬁha BWV$rdnmaat;ﬁill be L13941£xe lists
W1ﬁh two compqnents seleeted b; the renpactive selectors
- m And: ___;._.‘ Burstall Mpara amlogom px%grm in two
ji;néﬁaééﬁé“‘nist-Algat, whidh'caﬁﬁinas'ALGOL'GO assignment
with structures essentially equivnlcnt to LISP lists, and
ISWIM ("1f you See What I Mean"), which is hased on the same
functional lamhda—calculus notmons as LISP | In both lan-
guages, thestweaargunegt-fﬁncﬁionﬁggg!,rtturns a list whose
‘head -is the first argument and whose tail:-4s the second argu-
ment: the:funcdtions head and tail ‘select the components £rom
a list. Burstall's twasprograms sre shown in figure 3.6~1.
Program A, we anestﬂld*npéintS»B‘whila program-B- prints 1
"gince it does not oater for the side~effect on y of the

assignment to x." This explanation gives little insight

‘=93 -

into why there should be such a difference in the first

place. The obvious distinction hetween the two.programs. ..

E

Prograp.A: Li‘t’A19¢lv _Program B: ?§£}§,; i
1} begin 1list x,y: ‘ EEEQE let x=undef and y=undef;
2 X = CONS (1,nil) ; ’ let“x g_g*(l,giég
3| y := CONS(2,x); - \Let ¥ = _g_ggg_(z,x)
4| HEAD(x) := 3; |+ 6% X = cons(3,tail(x));
5{ Brint(HEAD(TAIL(Y))) | | resylt hesd(tail(y))
end : :

“PFig. 3.6-1. Two sample proggamgwwith’difggrent_effectsr

lies in 1ihe"4. ISWIM, being a functional aﬁpiicativewlanF
guage, has no direct counterpart to the List-Algol component
update statement HEAD(x) $= 3. Btt’this is not the root of
the semantlc difference between the two programs.’ Burstall

neglects to say that even 1f we change 11ne 4 1n Program A

to x := CONS(3 TAIL(x)), Program A wxll atill prlnt 3.

The source of the trouble lies in a subtle difference
between the cons functions. in the'two langﬁegeb. we can
pinpoint the dastlnctlon by translating both pvograms 1nto
ML-3. Line 2 in both programs can be tranglnted 1nto
x ¢ [head:1; ta11 nil], with the resultin§ onvironmentlas

in figure 3.6-2. Line 3 in Progrém»k;iawuquivalent‘towthe

ML-3 statement y « { head:2; tail:share ¥ J. while line 3

in Program B is equivalent to 'y'* [héadzg; tail:x]. The

i‘urespective resuits are shown in £%§ﬁ¥53?5*5;3’“§§13‘6"4‘

Fig. 3.6~2.

State after |
B 1 i ;, & . ..

‘Fig. 3.6-3.
After line 3,
.. Program A,

"Fig. 3.6-4.
After line 3,
. Program B..

b

X

Finally. the ;avi-eg llne 4 for Program A, whlch reads

1= cousw TAIL(X)) , is aquwalent t:o the M‘L-3 statemant

X & [head 3- tail ggage taxl “g x }, whzle line 4 of Pro—

gram B is aqu;valent to x - [head 3- tall taml of x]

The respectlve results are shown in flgures 3 6 5 and 3.6+«6.

E ig e ..43 .Leﬂ"si :
line 4, Program A.

~After new:

e

ﬁ_,

. haé'hi

AE’. b
line 4, Program B.

-5

We can see that the ML-3 expression head of tail of y

yields 3 in figure 3.6-5 and 1 in figure 3.6-6.

The differeﬁce between the two gggg;?gncgipﬁsiin_guyf
stall's two languages should now be cié;f."If an ;rgﬁﬁeﬁ£
to cons is é constant or Qil,'bo€h iahQﬁgééé Qpeéify‘allo-
cation of a new cell to confain‘éﬁe‘éfgéméhf véiué; SBuﬁ if
an argumént is some’identifiéf.-EﬁélLiéﬁ;Aiéoi.céﬁérgielég
for the corresponding component the argument‘s location,
while the ISWIM g¢ons yields the aggument's vajue. This
property of the ISWIM cons function is;gg@ygxplicitlyr$tated
in Landin's descriptions of .ISWIM.[Lan.64, Lan-65, Lan 66a].
In fact, the on;y'place'frqm,yhich this property could be
readily ascertained was in Burstall's statement that Program
B prints the value 1. The ML=3 code into which we..trans-
lated thg statements of.thg two p;ggrams,qu,ﬁptg;mined only
from the stated fesulps of those programs. What is to be
concluded from this is not that Landin was sloppy or vague
in his language,desigh and defiqitipﬁ.nbut rather that the
language definition methods which are 80.widely used make it
extremely,difficult to extractygpmg_pf the properties of
significant practical importance.’“in«othg;ywvxds.pa lan-

guage which features data structuges will be better under-

-96-

stood and better specified if it defines these facilities in
some manner which makes clear the specific sharing relation-

ships amdng locations.

In the remainder of this section we shall use our mini-
languages to talk about the data structuring facilities and

mechanisms of several additional programming languages.
PAL

The language PAL ([Ev 70] supports only one kind of data
structure: the tuple. A tuple is a structure whose selec-
tors are consecutive integers starting with 1. As with
ML-3, the cell in which a component of a tuple is stored is
" considered ah integral part of the value of the tuple. The
PAL expression 4,5,6 specifies the construction of a tuple
- whose components have the respective values 4,5, and 6; asl
such, it is equivalent to the ML~-3 (construction)

[1:4; 2:5; 3:6]. Selection in PAL is expreéSed by juxtad
position; if the tuple value 4,5,6 is assigned to the var-
iable x, then the PAL expression x 2 evaluates to 5 (it
selects the second component). This expression corresponds
to the ML-3 (selectioﬁ) 2 of x. The corréSpondences we

have established are summarized in figure 3.6-~7.

i
i
i

Case,

The concepts of value of a tuple 1n PAL and value of a

PRI
e

structure in ML-3 are very close, and we mlght expect 51mi-

lar a831gnments to behave 91m11ar1y.

as flgure 3. 6—8 confirms.

—3 :

®

3
obd 6

X

LIt Y

4,
X

.,6; ?ﬂL,r

5
2

y

!

xe[1:4;2:5;3:6];
y - ? of x L

Fig.-3.6-7

and selection in PAL.

cOnstruction‘_

Thls 1s 1ndeed the

X
Sy

—
% {oaL

.l.l .ll i

ML~

xé[1: 7523 :8);
Y «X

F;gg 3 6-8.

value of

e e\xuple in PAL

A
PAL has a semantic rule that compongents of a tuple

share with the items inﬁthéfiiﬁtéeaéwéiiich that constructs

it; an example of this rule is shown in figure 3. 6-9. This

sharing can be blocked us1ng the PAL ggghare operator ("s").

Figure 3 6-10 gives an. example of thxs.n"

X ¢ [1:5; 2:617
y « [1: share X5 |
o2

Fig. 3.6-9.
PAL tuple

Sharing in |

e

b 4

Y.

+ [1:5;2:6];
« [1:%;2:7]

rig. j‘ﬁ—iﬁs‘
sharing in PAL.

construction.

Blocking of

-98~

We discuss one more feature of PAL: the aug function.
If t is an n-tuple.(i.e. tuple with selectors 1,2,...,n) and
e is any expression, then the PAL expression t aug e
denotes an (n+l)~tuple whose first n components share with
the components of t, and whose (n+l)-st component shares

with e. Examples are shown in figqures 3.6.11 and 3.6.12.

42— |x := nil aug 37 | PAL
y := nil aug x

P e =
U4 Ix ¢ [1:3] nil;

’_é v « [l:share x] nil

Pig. 3.6-11. Example of the
use of the PAL function aug

[T Y Y

h ¢

]

J
x

—
2
L] 7 T 1 {7 ‘1 Yy := X aug z
i 2 4 2 3t 1
*%3&) @B é X ¢ [1:[1:7;2:8];2:9];

i1
2 ¢« [1:5;2:6];
y « [3:share y] x

N
il
%o~
N~
-e

P - ol

Fig. 3.6-12. mAnother example of aug in PAL

The above features illustrate nearly all of PAL's data
structuring capabilities, and they are easily expressed in ML-3.
Even though the data-structure facilities of PAL bear a

strong resemblance to ML-3, we have given a demonstration of

~99.

a full-scale, real-world programming 1gﬂgqgge whose data
structuring mechanisms have been suchggfplly;trgatedﬁwithin
our model. We disouss two more languages.

The language QUEST [Fenn 73] prévides data’ structures
called lists that appear very much like PAL's tuples (see

figure 3.6~13), However, the definitiom of assignment in

. QUEST treats lists as

1 x « 3,45 |ouest]| -
T ’ : | i . for. wh
X I |y & x(2) : 4 . -speecipl cases for which
' i ,éb X = 3,4; . PAL{ special rules apply.-
| ly = x 2. | . o
| ,65 X + [1;3;254]? Mmr-3| ~ This reduces,. essen—

y « 2 of x

tially, to.a treatment

Fig. 3.6-13.f§;sts in QUEST.

- of lists in thenwayj
ML-1 treats structures. Compongat;valuén agghcqpiedfon‘
assignment rather than shared. Figure 3,6-14 presentsvan

example. Note that componentwise copying is coded in ML-3

. ‘1: I X« 6.7.;. QUESAT‘x - fl:6;2:7]; ML~-3
x : = Y . i PR e 5 4 ’ .
: Y+ X3 RN e« 'flinil:2:nill;
rlq riﬁ rj—q Z ¢« 5,Xx : 1?'95 y.« 1 of x;
. ! 3 _;| 3 AN RS BES ::E PPN X y .
¢ é)é) é | xerise:2:73; [Mr-1 f;_”}-{-;y-_"'z oL i
@ / 1 Y .-‘x,;-‘ o o 1 ,».,'2;:(&-3::11; :2:nill);
éé Ze[1:5:2:x]) 1 of 2 _O__TE——Z ¢ 1 of x:
Fig. 3.6-14.MCogging'of components in QUEST assignment

~100-
by repeatéd,C6m@onentvupdates, réfieétiﬁéﬁé lack of effi-
| ciéncy;"QUESTtéééighménts,xﬁniiké>tﬁéit Edﬁﬁtetparts in PAL,
cannot be'directf§ traﬁéiated intafnﬁ;Q%Gchéut knbwiné‘ttn-
time values (i.e. exactly what c&mpuaents a structured value
possesges at arixtsiveﬁ-#i‘“e" 80, ﬂwyw be. individually up-

dated).

“Like HL~Q;»QUEST“haﬁdles‘hharfﬁq?tntireIY*by means Of

pointers (¢alled references).

- 3;" |QUEST |
ref x:
-+ at'y

37 M-z

!‘ \x.,
val Yy

Their use i illustrated in

figure 3.6~15. There is no

appreciable differerce be-

tween: the: behavior of thede ! Figp 3;§~15. References

iﬁ QUEST.

pointers. and those in ML-2.

Translation~ inte ML-3 would -~ - = - o \
be trivially easy.

For the i‘ﬁtereste’d reader, the paper on QUEST [Fenn 73]
speclfles a way to express general ML-B-izkewstructures in -
QUEST us;ng 1ista and referencea \ QUBST functions cons, car
their LIS?»caunterparts. The simnlat;on requires an extra
level of lnditaﬁtinn throughout. a maéer &neffieiency (£ig.’

3.6-16) . Thus we see that using our mini-languages, we have

SNOBOL4

-101-

not only able to 111ustrate the data structurlng semantlcs

: ',‘& ',n’»

of QUEST but we have also percelved a shortcomlng in the
design Of QUEST: 1like ML-2, QUEST fails to regognize the

fundamental significance of’the,concegt of sharing.

+

X *{c°n$(4ﬁnii), T ouest]
Y ~ COnafstx)r fg___
tem_p]_ Q- njl. 5 : REE ﬁ‘lp‘ —_—

temp2 ¢ [1:4:2:ptr. templ].
X « ptr temp2;

‘temp3 « [1:5;2:ptr val val x]
Y ggg Jemp3: - o ,
xe[val: [1:4;2: [val a;_]l]%ﬂé_w*j

ye[val [1ss;

- 2:[val: %&valgﬁx]]]

”Fig. 3.6- 15 QUEST s;mulation of LISP cons.

TR T T T b

In the language SNOBOL4 [@ris 71], one, finds data

structures called “programmex;defingqfdagaitypea,f(_An in-

vocation of the function DATA causes selector and construc-

tor functions to pewdefined : Forﬂdxww_}g, the invocatiop

DATA(COMPLEX(R I)') defines the constructor functlon

,,,,, », 3 'fe’"‘;,‘ f’if: 3 4
COMPLEX and the associated selector functions R and I,
settlng up the correspondence depicted in fiqure 3 6 17.

Beyond thls aspect, in whlch thele SNOBOL structures behave

,,,,, Moy TEa s n.{‘ww*

exactly as do all the structurea we have seen ln other

SIS

PR S YRR o s g e it AL R A s i D e R i e S N ¥ at s
Y
-~102~
-~ an - e i Ly e e e 1o -, Py et ‘ 7 . . ¢
S N "’h,, e Lt b

1anguages, the sharing relationnths need to be considered

4 ;‘,5;1 Tro_ Ll ’_l,_’é X g
l. C .)) A e s Bl e g e
b Este “»?| RGNS & 1 k3¢ Tata TN piT ST
l % R
vt c
3 I :
AXL57 e e
. E o~ n:--- poy 7:‘ 444444 ‘; R
oy " Fig 3.6=T ifg? v
Dl rﬂggrung%t w;ei = f T — “fk T
"~ !

P Rgmad

3

;,7.\: ...,1«; ":,'T-?k“

But semantic rules which'wduxg;ghuhb?hc?j

are nctwééihenféuna?‘xﬁaépqd gii h(txpan bé‘seen are a few
examplcs. A&:riﬁh_fﬁﬁiﬁbMCa:sfnlc.xininatian o£~the exam-

Ta o srerdslamie TUHEG Lelecl b

ples is requirad to pfcauéc a connzaéenf and‘unambiguous

ML-3 representation for the data structuring facllxties of

‘?"; - \,’

SNOBOL4 Soms detective work is needed horo as well: each

of the two’ bbbku [Gris fI, Gr1§‘73f prdvfdfk'inaufficlent

AP [l RAST

Informatich ke mMake sudh s determination, But ‘using both

Rerg 2

‘togeﬁher, eﬁcﬁgh clueéwcan‘be gatherod to rochVernossible
anibiguitzes ::arfin %ezicimz. 2 : shown "in “\’ffé“ur: a:usiilg SIS Y

ot owosmuadanen odd o wecien o {7 HYKEIGMOE

The translation into ML~3 may be straightforward but a

A

fAmept rornalsz badsiogwas sl b THITMOD

URES I R ko
number of other poasible translations which would result in
foenupli ol bedolgeb sunshIOgRs IO affd gQu pooties
dlfferent sharing properties were rulod cut only after i
savpdnyeda JOH0OME seedd doidw ol roges 8id? bDooeal S

palnstakmng eéxamination of the examplos in both books. _
st o rmme aved ew mevudouxdes offd [le ob gs vidoare

;r,‘

Surely a discussion of sharing in these books could have

-103~-

shed much-needed ln.ght on the semantlcs of data structures

[e
ER S

in SNOBOL4

¥ [ATA ("NODE (VALUE, LINK)")
P= NODE(Sc)
—— r y Q = NODE(6,)
velue lak Vvalue \'l\k LINK(Q) = P

évg{uh.gg peT “value:5: 1ink= i:ll]
o Jel 9.5 [value:6; link:ni 1]
Tk 6 g« p

Fig. 3.6-18. Sharing propeptidmdin SNOBOL: ... - . |

T
¢

e

&. -~y

gompjecteness. - - T E AR A T) 0 Seic s B I B

In this chapter, we defilied a se¥feh’ 6 mini-Tanghages
and used theri to mé@el data structixrx facilitie“s‘ 4n E‘hree
repfbéeﬁtaﬁiﬁe ‘programming Ifaﬁéii"hg‘*ésiﬁ An important 'question

to ask is how cdmplete our’ méaélir"i‘é*fis‘ “In other wordﬁ, how

thoroughly have we covered the' ‘approaches to data struc’&ures
found in these three’ langhaged¥ “KE Eivet glance our treat-
ment semz»‘réther mamplm because of: the!limited express-~
ive power of the: mini~languagas we-defined..:But most-of the
features not included in our: mimlu@m AT i‘indepéndent
of the notions of data: s&rucmiulada::tﬁmehhmfthu théf.v}ay
such features are defined im:an m:mm::g langudage
has no bearing on how the.language approaches conespts of '

A RSN A RS B O I € O OUETE S A S o

R P

-104~-

daﬁa structures. The faét;that our mini~-languages lack
character strings and conditional expressions, for inétance.
does not reflect on ﬁheir;cdmplatenQSs‘fﬁr'déscribing'data
structﬁres.

In PAL, there are only“tﬁo notions we haVEnoglgovered
which haVefa¥diréct héaring,on d§ta§st£n¢turea. Fiist, ar5~

itrary integersvalued expressions oan be used to select com-

- ponents from a tuple. For example, the selection x n re~

fers to the component of the tuple x whose selector is the
value of the variable n. This cannot be. translated into our

mini-languages, which allow only. gonst nt

(selector)s (the

 ML-3 (selection) n of x would. look for a component with

selector "n"). The second uncovered feature in PAL is the

‘built-in function Order, which when applied to a tuple

‘yields the number of components in the tuple.

Neither of these two notions can be expressed in our
mini-larquages, but it was not our goal to: be able to do
so. For these two data structuring features, the semantic,
issues are well understood; we don't really nﬁéd:ﬁo treat
thém:in our mini-languages. Extendimg:thésmiai»aanguaqes to
handle extra notions like these would only serve to ruin the

syntactic and@ semantic simplicity of the mini-language

AL

-105~-

~approach.

In QUEST, the only data;st;ucturing features we did not
treat are the use’of‘expressions to selééﬁ components from a
list, and several built-in funqtiongathatgaperate on lists.
As w;th PAL, we feel that the %gﬁpggy;a@ggg,he:g arevoutside

the area of our main concern.

With SNOBOL4, we completely neglected the area of
arrays. ‘Although arrays arewhighmykraldvuntutoftheViSSuéé
we are interested in, they present some difficult problems
for whose solutions additional mechanisms are needed. : We
discuss some of thESe problems: in Chapter S.

The three languages covered in this section are all
"typeless" languages in the éehse‘that there are no dec-
larations associatihg-idehtifiérﬁjﬁikﬁ’pﬁfticﬁlér data
types. 1In thé next chépter. Qe'deai\withq"tfﬁed"'lﬁnéﬁages

and some new semantic issues they introduce.

-106-

Chapter 4

DATA TYPES AND TYPECHECKING

" In this chapter we will add i;ﬁdw“féeéﬁ'Eb“ihéf&ésign}
of our previous mini-languages. tonsidér the ML-3 o
(assignment) vy ¢ Xy which directs that ﬁhﬁﬁﬂﬁﬁteﬁtﬁ of the
cell for:x be placed into the celkd: for yznguwhrans%ated-J
this (assigmoent) into an invecation of the Bl procedure
assignd (defined beck in fig. .3.5~1). Bvery time this pro-
cedure is called, there is a separate set: Gf tests par—
4formed,to ghqck‘wbgpher theAcgl; gggﬁghgﬁgirgq;?ggggpter,

(which corresponds to x) contains an integer or a structure.

The set of BL instructions chosen to perform the assignment

operation depends on the result of thess tests. In prac-
tice, however, a prqg;ammer}yil}{g?ng;;y kgggﬁigsadygpcg
whether the identifier x will take on integer»oi structured
values. This knowledge makes these runtime type tests in

assign3 superfluous. We would like some way of telling the

translator not to make such tests where they are not needed.

The technique of static typechecking achieves these

goals., Its basic idea is to partition the set of values

-107-

M

into convenient subsets called types. The translator can be
informed of the progtammer 8 1ntentlons of keeplng values
only of a certaln type in some glven cell | Wlth thls know—
ledge, redundant runtime type tests can be ellmlnated“ But
it is still necessary to prevent type errors; fot‘enample;
suppose we tell the translator that the varlable b4 w111 take
on only structured values. Each tlme we access the value of
x; the BL code produced by the translator w111 fetch the
components of x. If we somehow place anylnteger value.ln
the cell bound to x, then durlng executiOn the 1nterpretet
would attempt to extract components where there ‘are none,
yleldlng undeflned, probably erroneous results.‘ To prevent
such type errors from occurring, we would 11ke to have the
translator test each (a931gnment) to.make sure lt couldn't
specify the placlng of a value of one type into a cell 1n;
tended to hold values of another type. - Any (program) con-
taining (assignment)s which fail thiewtest is invalid; the
translator will notify the.uset,ofrsuch~enn9ﬁrer in the same

way that it flags syntactically erroneous (progrem)s.

In testing (assignment)s for v&fldity. it will be use-
ful for the translator to know for each (destination)'the

type of values intended to be stored in thejf"‘“a‘jssociated cell.

s
o

-108-~

‘This cfiferion can help ﬁs decidé’hoﬁ tg.bartitipn the ML-3
values inioitypes. If we divide valués into just two types,
integers éndlstructures; then the’abo;e‘crite;ion is not al~
ways saﬁiSfieﬁ; éudeae thé (identifier}vx is specified as
assuﬁinéfoﬁly structuredvvalueﬁ.b Then}tﬁgyvalues yiel@ed{by
uﬁotﬁ ofrthe (éxpreésibn)s [’aziz b=4-] apd

‘[a:3} b;[‘c=5% d:6]]- can ﬁe atored-in,Fhelcell bound to
%, but Qé cannot say<anytﬁing about?the:tj;; ofrthe
(deétinétiaﬁ§ b of x. kIﬁ one‘éagévi;_h§s anqinteger va;ué;
iﬁ the.other case, é strﬁcture. Th#ﬁy'afina: “pré |
classifiéatioﬁs'are’callé&ﬂfbf. We will yant~t$};5certain
ffbmithe'type‘of a strucﬁured~valﬁe‘whAt\gomppnénts it hasv

and the type of each component. Such a type system is the

basis for our next mini-language.

Mini-Language 4 (ML-4) adde the notions of data types.
and st‘é;ti:-&a typechecking to the concepts we developed in the
previous: chapter . specifieaily;»ii?fsﬂan“extéﬁsioh to ML-3,
associating to every (expression) and- to every cell a par-’
ticular data type. For our purposes; we. consider data types

as sets of vaiues.u/The set of integers is:an MiL~4 data

type. Further, the set of all structured values with a

o g’ S &
T A SR B

-109~

given set of component <sg1ector)s such that the type of the
component ‘associated to each specific (selector) is-given
also is an ML-4 type. With this collection of data types, .
if we associatg a type to each (identifier) mentioned in a -
{program), then we shall be ablg to determine the type asso-
ciated with each cell referred to invthe (program). More-
over, for any particular data type, one can determine whether

the value yielded byga’giVen"(expressioﬁS ﬁeloﬁééQto'this type.

Syntax of ML-~-4

The rules here govern the syntax of that part of ML-4
which is not found in ML~3 (namely the type system). We in-
troduce the new primitive synfacfié”éiafézitYPenahe5mt6 de-
note the set of underlined alphﬁhﬁﬁeric’éé?iﬁéékbeginﬁihg
with a letter. The distinguished‘k%&pehaﬁé§"int has partic-
ular significance, which will be discussed Bélow.

{(program) ::= (prelude) ; (assignment) ;...: (assignment)
{prelude) 23= (defn) ;..,; (defm) : (decl) ;...; (decl)
(Gefn) ::= (typename) = (structype) N ‘

(structype) ::= [(comp decl) ;...; (comp dec1>]

{comp decl) ::= (typename) (selector) e ‘

{decl) :3= (typename) (1deatafier) Boned fldentifler)
The remainder of the ML—4 syntax is iﬂontical to»the syntax

presented for ML-3, with two exceptiéns;'fiirstiiML-é has no

' *110"' ST R

(modificationys (which we simply wen't have cecasion to-make
use of), ‘and é&cﬂﬂ‘i‘ﬁééwﬁtfuéﬁi&ﬁyﬁ appear slightly diffes-
ent:

< {constructiony fi=' (typerame) [(fieldy ;...; (field)]

(The’ (selector)s that no longer explicitly appear in. the
(field)s of a<construqtzon>mybafqﬂnd§ jn the (defn) for

the (typename) of the {(construction).)

Description .

| We need to interpret the new syprastic slasass. A
(program) in ML-4 is essentially a (prpgram) in ML-3. pre-
ceded by a (prelude). The (prelude) im a sequence of type
definitions ((defn)s) follawed by a fequense of declarations

((declys). A (decl). copsisting af a (i), and a Llist

et

of (identifier)s, specifies that those (identifier)s are to
assuméivalueS\oniy@VofvthéﬂtyPefgiv@n?%&wthé’(typehtmeﬁ;
‘Types in ME~4 are denoted by members of fwo syntactlc‘

classes as follows-

(1) A {typename) is either the symbol int (which de-
notes the type consisting of integar values) or the
- nethe assoclated with- seme’ typéiby a (defh) :

(2) A (structype) denotes a strugtqred type. (i.e. a
type consisting of structured values). The ‘
(selector)s and types of the associated components
of a value of such a type are specified by the

R

-111~-

{comp decl)s (component declaratlons) in a
(structype)

Observe that if we/know the typé of # structﬁredvélue, then
we know the type of each of 1ts compon;ﬁéi.v Tﬁé;e afe two

basic purposes for using (typename)s.. first, to provide for
multilevel structures (i.e. strudtures with‘campbhénts which
are structures), and second, to 4116w for recursion-in type

P

definitions. We discuss recur§§4e‘typda later. -

_ Semanticgfof’ML§4 (iggormal)‘

Wedefma the

T Ak

m“‘*> and @tmtwe).

ML-4. Elepepts thﬁh9N¢13§9§3A(§,wﬂ?

define data types acco:ding.to_thrggﬁgglcp;i

(i) The (typename) int denote; thg class of all
integer values.

(ii) Suppose 8yreees8 are (#glector)s -and
AR are syntactic items denoting data
types.. Then the (structype) [t -§ #..i;tksk]

.~ d¢nqtes the class of all structure% with
exactly k components with.{selactor)s.
Syseeei8 ‘'such that for each i = 1,...,k the
value 51¥ any) contained in-the: compoﬁént cell
selected<by 8y belongs to the type t

(iii) If t is the‘(typename) OF a Zdefn), then t
denotas the . ‘type specified by the, (Btrugtype)
of that (defn). 1In this case 'we say that the
(defn) defines the (typename) t. o

These rules give the semantics for type definitions in MI-4.

-112-

Note that according to rule (ii), if x is a value belonging
to a structured type t, then the types of all the compon-

ent cells of x are determined.

As examples, the objects of figure 4.2-1 belong to the

type int. In the presence of the (defn)s

pt = [int p] and t = [int a; pt b 1, @@@

the objects depicted in figure 4.2-2 Fig. 4.2-1.
Objects of

belong to the type t (which is the class type int

of all two-component structures with

a-component of type int and with b-component a one-component
structure whose p-component is of type int). Note partic-
ularly that a cell constrained by our type mechanism to hold
values of a given type can be empty. A value may belong to

more than one type (par-

ticularly if it is a Plﬁ rll =1
4,

SERRE

structure some of whose jg és g

component cells are emp-

Fig. 4.2-2. Six objects of
type t = [int a; pt b]
(where pt = [int p])

ty). But given any value

v and any type t, one can

always tell whether or

not v belongs to t.

A (typename) does not have to be defined textually be-

=113~

fore it is used in a (prelude). For 1nstance, the (defn)

sequence tl = [t2 c],.g_ = [int d; int e] is perfectly

St

legal. A nontr1v1al appllcatlon is the deflnltlon of recur-
sive data types, which arise in ML~-4 when a (typena;e)%;e
used as part of the {structypel in its definition. Con-
/sider, for example, the (defn) x = [int a; g“b].; Thig '
defines a type named r consisting of twoneompbnent struc-
tures for which the a-component ceII‘canyhbld"oﬁiy integer
values and the b~component cell can hold values only of
type r. Although it sounds circular,: it is peﬁfectly»well

~ defined, Values of a recursively definedﬂtype‘can have sub-
structures nested to an- arb&trary depth, ana 5@#Objects

representing such values frequently centaxn directed cycles.

We make three restrictions On'{defg)s in ﬁL—4. First,
the (selector)s occurring in a‘(sﬁt@éty§e§ @ﬁet be distinct.
Second, a (typename) can be_defineqfonly once in a (program).
Third, the (typename) int must not be redeflned Any
(program) not obeylng ‘these restrlctaons 45*synteet1cally
invalid (i.e. is to be rejected by the translator). - The

meaning of an invalid (program) is undefinhed. -

(2) Declarations: As with (defn)e, the semantics for a

(decl) does not specify anyﬁparticularﬁactiohé'tekbe per;‘

| glven by ﬁruuiaely one (tgpanpma)

~114-

formed at runt:.zm. 'rhe effect of & (decl) 1s to cause the

(identifier)u J.n it to ba aem:LM witxi tha type named in

: the (decls. :

,In ordex for.a (program) to be synt

(identfifi‘or) octmrri.ng in some @p e ST, gPpear. ,e_xéet-

1y once in the (program)'s (decl)

onoe in the (defn)s.

. Prom the above semmitic rules foFr rasfn)e and (decljs, it

is-possibie tp uhiguely Aerermim

dn ammﬁwm {progra);:- This is 8bne as' followa:

r

. $4) Suppose: tun {oxpression)- iv- a-{detinutiony. If it
is an (identifier), then this (iwtiﬁcr) occurs in
Sio s eneetly oaendderl) aml ikt b 1O given by tHe
(tjrpenm) of the (deél). 1f it is a (selection),
 then it consiste of & (seleetor) .sod.an (exppession).
hé' E'ype “of the (' expr“aion), whiah can be determined

reeurpQVegngwill . i type designated
by & {Strie 'rfae type of the (selection), then,
is given o) 40 e (oonp decl) of :the

s - (
{structype) that contains the qivm (aolactor)

(iiy If the (ewpredsion) is a. {;ﬁ“‘ ,' ‘thére are two
cases: (integer)s are of M and (constructlon)s,

| - and of thie typd givew by ERGLE CORgShane) .
Thus we cah deteimine from W{Mﬁ&a}bf% Symtactically

valid (progeas) the type Gf W{Wéﬁﬁ!&% this type is !

presence of the (prelude) m = Im as z&m bJ- P
ytvpe ~ it e int d]: xtype % ytype y the type corres-

-115-~

pondences shown in figure 4.2-3 are valid.

(3) A531qnments. the seman- - sion V"gfygf_
ties of an ML-4 (assxgnment) 8pe-x a of x int i
c1f1es the same runtime actlons as b of x ytype
its ML~-3 counterpartF in addltion, e Qgiy ; dnt
~ the traeslator is dlrected to per- 3’- int
form certaln additional tests. An 2~xgg[3 4] ytype
) o &[5 -
(ass;gnment), as before. consrsts brah,ytypelﬁ n11]]' xt,
of a (destlnatlon) and an ‘ - Fig., 4.2-3. Types of
: %amaeef&exareeqeqn)

{expression). The ML—4 type sys—
tem forces the cell referred to by the (destlnatlon) to hold

values only of a certaln type. Thus the translator must ver-

ify that the value of this (expre381on> matches thls typer

A (cqnstructien) in whichvthe}combqéegtskfailltobmetch
the types of the cqrreepqnding fieids igfthe((defn).of its
(typensne) is an invalid (expression) and has undefined type.
For example, if we dﬁfiPeAH.£,=_L£BE;32,$B_.blv. then the
(construetioh) z[l-2-3] 718 invalid baeause of its extra
component ; the (constructlon) gjl'vz[2 3]] ;re»e;eo ;nveiid
because its b—cqmponentgis;qgmtygewg rether_tpap.igg(aebre—
quired. We also eell af(eonetrectrgp)vépﬁelid%if its

({typename) is not defined in the (prelude).

-1l6-

An‘Mn~4:tpmngram) is invalid if in any of 1ts

AT md :w? st

{aaaignmant)- theftype of tha (oxpre-sion) is un-

'»u-'c‘l"

' défined or fnils to match tha typa of ﬁhe,<dest1natlon)

| Each of these: tun tﬁpea 1: givln by praeitely one
(typenané); thﬂﬁg‘Qypea are detiaad to match 1f and

anly if thdir (typenlmn)s aro idnaticul. The mechan~-

=3 Lo, o~
SRS SRR S Il 4

isms we shall dgztga for the translueoédin-ure that 1t can‘
TR ERACT cavotad B
‘*aIW&yh dﬂtermint whother or not a givun ML-4 (program) is
»Jg. S '
valid %ﬁuWe xﬂaﬁ& need for runtin- gypowgeuts. noxr are
there any runtlme type errors;:wnnu-v;¥.Jihruhtimejerror |
swxll occur if tho;; is an atte¥§£.to th£¥;ta;$mpoﬁents from

an empty call of a structurad type \ For instagce, t@g.u;-4

(program) ll = [nt a; s2 b]; 32 = [’g c] sl X1

X ¢ _l{s ;l] g;.b ‘of x « 4 f wiil £ail on interpretatlon
of zts laut (assignment) (sxnce thc Lnterpreter W111 look

 fbr a nonexistent c—component in tha amgty cell for b of x)

even thouqh Ebe type of’thn (dastinabion) ‘e of B of x (lnt)

matches the type 6f the (expressiony 4. “ s “we ‘require

' runtlme tedts ﬁo dﬁeck ﬁhe (aelecﬁion)l in HL~4 T"}(:';"éir\é"x"'?af;1ly}
spe&kin@?‘ﬁéiﬁiné“f&f‘ém@%?‘céiié*isiukﬁﬁiiy\mhéﬁLeiéief'

than testing the type of the conteénts of a cell at runtime.
' TR LR RN S ST T i St S SR

If we strip off the (prelude) from a valid ML-4

=117~
{(program), then we will have in essence an ML-3 (program) in
AWhichvéach cell takes on values 6f dh1y bné”typé:>'Mdré6Ver,
the effect of executing this ML-4 (pqufam) is idénﬁicgivto

the effect of executing ité;MLf3 equivalent,

Translation into BL

To give a precise formulation for thgksqmantics of

ML-4, we describe the translation of ML-4 (program)s into BL.

With the previous mini~-languages, it sufficed to show the BL

code corresponding to_various program constructs, namely the

different kinds of assignment statements. This is no longer

sufficient in the case of ML-4, since the semantics now con-
tains rules for typechecking by the trans]ator. We must
therefore also describe the typechegki@gﬁp:oge@ures per-

formed by. the ML-4 translator.

In &iscussing how the translator performs typecheécking
of ML-4 (program)s to determine their validity, we begin by
describing the information supplied to thé translator by the
(prelude) of a (program). We shall treat the translator as
a BL procedure. As it proé&atos,tho%%prdludy)frthe trans-
lator builds two component objects in its loeal structure:
one component named $aefns which fepxegepts the type defin-

itions, and one named $decls which corresponds to the

-118-

S

_ the Qchéggtionqﬂ $defns is a>gchggg whgsg §§9;°n? com-
_ponent for each (typename) found in the (prelude). Each
cohponent»of $defns is a structure with information on the
type asscciatédeiﬁh the (typename). For each (typename)
defined in a (dean), the eerr&mding”é@he}it'éf's&éfn's

has“an *a" fleld with tHe HulbéF of “esfigonents in a value

"' Gf ‘that type, numbéred fields giving the ‘t8elector’s of the

components in the proper order, and a "val" fleld giving the

' typés of the coliponents (by medas of links to the proper

-

i

" entries in §défnsf. The int-comp

&i€ of Sdefns has only a
* Val-coMfonant dontaintig the elementisy value 'IAEF. $decls
ig a structure with one ém@oaént “#oF euch (identifiery de-
claved in the (prelNday. 'rf, oaj, tWe (deREifiéey x'fs

bhé Of ‘Sadcls

declared to have type t, théﬁféﬁgﬁ.%»,;,
ﬂm Wi‘t(h %M ol .,ﬁﬂ $dufas, _In. each of :f.iqures_

A4 2%y 4.2-5 and 4.2-G.we give & éprelude) and ;exhibit the

. objects §dsfns aud $decla constructed by the translator from
- the (preludek:. The tyge with (typsmawe) s in:figere 4.2-5
is recupmively defined; obsexwe that $defns has a directed -

cycle in thie dase. ST e e e B

]
{

Once Ehese cbjects have Been cémstricted By the trans-

lator; all the informstion required £0i typechecking is

-119~
available. Each type to be associated with some cell re-
ferred to inlthe (program) is represented by a component

node of $defns. Two types match iff£f they have the same

Sdeprs Sdacke
iht X ¥ 2
;i; [
"Fig. 4.2-4. | | Fig. 432-5. sdefns and $decls |
{prelude) structures for the (prelude)
int x,y.z |- & = [g ps dpkt v]; £ x.y5.dat m

Fig. 4.2-6. $defns and $decls for
the (prelude) tl = t a:. bl:
= i

|1n c}; tTfkl.

{typename). To dgécribekhqw,thé%tranglitor performs the
actual typechecking, all Ehat ne¢ds ﬁq ﬁé shown is how to

access the node for the type of any ML-4 (expression); once

~120~

we can do this, the tyPedhéckiﬁg'is straidhtforward: an
(absignﬁéntybhés:a‘€§§§ error ifffﬁhé;ﬁgdé; for the types
of its (destination) and iés (e#ﬁfehhiéﬁ) af& é}§£inctQ

The type of an (identifier) x is given by §decls.x.
The translator will mark a {program) ihvd;fd<if §n§ of its
<1dent1f1er)s ane undeclared Iﬂ 5 ia‘the}nodewfor the type
of a (destinatxon) D, then the type of the (selection)
s of D is given“by~the nodefﬁ.vql.n. ‘The translator veri=
£iesa§»purtvéfbits ty@ech@ékiﬁg that valuésyof‘éhE'type of
Dad¢‘£néeéﬁhaké'i¥caﬁ§onants, $Phus wn‘can:isﬁaninin the
node for the type of any (destination) in an ML-4 (progiam).
Figure 4.2—7.iliustra£eo teme»ﬁagp;é‘ML-4 (S;;ignment)s in-

volving only (aaétination)s and;gtvcignh'typechecking code

L—4 code» 7VBLrtypquecking c°ﬂ°.m.>,ﬁ
y ex gzggg $decls.y,$decls.x,no f

z + aof x f(has? " $decls.x.val,a,no
’ : ;:-?$doc1st.sdaclg‘x.wal Q.no

[

bofyes+z I fjl‘ﬁdicin.y va}B,fHo
| ? $decls.y.va Jhiﬁﬂnnln@a,no
b gg y + jhas? S$decls.y.val,b,no
c g_ ._; x {has? $decls.x.val,a,no

‘gaeéls %, val.a.v&1, ¢, no
$decls.y val. b.sdoclq.x.val a. val c,no

Fig. 4.2-7. Examples of BL typedbockinq.

-121~

to determine their valldity. A branch to the label "no“

Cle P InIE

1nd1cates that the (assignment) has a type error.

If an (exprotsion) is- anfgznteger). then itn typa i$

given by the node $de£ns lnt Théwtypa of a (construct1¢n)

whose (typename) ‘i t is given-by ﬁhgfnode $defna t. pro-

vided the (danstructlon> is valld To check this, the types
of the components in the (eah!trﬁﬁtiun) mast match the
(typename)s-ln the (structype) that defines t; moreover,

there must hcfthe‘saﬁe'huﬁbefﬁbfi;‘"fL ents in both places.

Thus the translator can accass byv w,_m::heme“f’f'ne node for

the type of any\(gangrator) As‘arxanult. we now see how

the‘Eraneiéﬁér‘accééées:tha nodeq;f”5ithc types of.arbltrary

ML~4 (expressxon)s* Figure 4.258igiﬂas some axamples of.

ML-4 (a351gnment)s containang arhiugﬂry kinds of

{expression)s; alang w:thAaach (aa”ffl t) we show BL code

which tests its validlty. This coup&ates our plcture of

how the translator perﬁorms static Q¥PBChecking, the mech-

dgon

anisms should be claar fnum ﬁhe

es in f;gures 4,2-7

and 4.2-8.

The actual BL code generated by the translator (i.e.
the BL code to be interpreted at runtime aﬂfiﬁéffhe execu-

o . Dot I S S RRIRTEC Bt SR U R S SULTS 2 S S MR L
tion of an ML-4 (pr?gram)) is similar to what we presented

S g B L
B

-122-

in the section on ML-3. There a£e tWO‘diffgrences reflect-

E MLA c@d@

| BE typemlekinwim-

|Bame? $decls. x,&@qfns int, DO

x - 2
z + t[2]

V g&_ - $defas.t wak.

|same? $decis.z,$defns. t no
'ggggg LeStamp /% witlues of kype &

mast have exactly
Sl - one-companent. */
eg? $defns t n.$tw no
’ ' ‘c’omponent
Ty

5., int, no

w«-r -_ew;;:’}

o7 $decls.w,§defns.x.no

5 7, stempc0

ﬂz $defns 5.n,$temp no.
Tewldct ‘Sdefnd.r, 1§ 3 ‘
% $c3.qful~ .val. *stemp $decls W, no

ST featp

% $defna’-3§;,,ya1 * Stemp, $decls.x,no

y ¢ 5[&[55 9_2711

| Fig. 4&2"8:# MQre

sm? $decls.y,$defna 8, no

1 afptmegs.

gg?_ Sdefns.a.n.stemp no. |
- {aslact $afneim, 3 tomp

Same? $d&fns.s.val *$temp,$defns t.no

‘jcomst lfﬁm ~~~~~

eq? $defns.t. n.stemp.no

|has? gdecisoiemd,bino -

select $defns.t,l.$temp

m mm omlicF gremp,

sdeclis.w.val.b,no

i ne R s

examprles of BL typec’heckmg

J.ng the sw:.t:ch of typecheck:.ng from runt:.me to translate- '

time. met, occurrences of (aelection)s in lm-:i yleld run-

time type tests, such as the BL code gg Xx,b,error for

~123-
the ML-~3 (selection) b of x. VIn-MLf4 §h§§lfuntime»type_
tesﬁ is replaced ﬁy the simpler and faster test .
nqnemgtx? x;error,k‘which makes sure theré‘isinp‘érroneous
attéﬁﬁt té aécess‘component cells of an ewpty'cell.

The second change is ﬁh#t éhé éomplicated pfoceduref
assign3 with all itsrtype tests is not needed at all. The
BL, code genératg@ from thez(agsigpmeqt)"y>+’x agpénés on
the type of thé (deStinatidn§ Y. If_igsftype is,;gg,“then
by virtue of the translator;s‘étatié typeehecking we'know
that x c¢can hdld;only integer values. In thig case the BL.

. -gode in: figure 4.2-9 is;gen-

clear Yy

noneggﬁx? x,skipﬂ

const *X,y

-.erated, I1f-y'is of a atruc-

tured type, then the trans-

skip: ... " lator knows that its
Fig. 4.2-9. BL code for
the ML~4 (assignment)
y ¢« x when y is int

.(selectox)s: 8y, ... s S

_are given by

s, = *($decls.y.1l) , ... , s

. = *{$decls.y.* ($decls.y.n)).

k
In this case the BL code in'figure 4.2-10-is generated. The
translator can always tell which case applies by testing
whether the pathnames ‘$decls.y ‘and $&¢fﬁé:iﬁ@ lead to:the

same cell. The BL instruction same? $decls.y, §defns.int,go

performs this test. A branch to the_}abe;“?gé"cindiggtes

T a124-

that y haa & structured value afﬁ thnt tba second case
‘ S DI R PIE T Do e RS 1 g

appli;es Thus ' by sub-

= Yy ““[o aeituting the"ﬂ“;ggg ty?
" Pt Boasee R W

youn . xove, | | Cest for the has? test

RN ¢

~ ‘apidt'Ghe- BL tod¥ of fig-

LI L YRR R b o ik 8059 aRa 402410

skxp; v oo
Flg. 3. 2»1@ aa eaduqfar eac

o - MLrg. (Y e X

whm Yy S.n -mmw

yiie Idbidd byfthumﬂmnt tnnnuiaﬁbt@ﬁw

© Most mxmﬁng mmm pm&mgﬁgmg, m&um
have a typ- syﬁﬁwwimli to that u?"ﬂ!:wt* m W wt'

thei.x ypoaghesking. is MQ at translation: tine. sather than
_runtipe. . Xy, this seetion. we trwst

- facilities: of thyesn of thess JANGENges: -UWEkng ML-4 &8 2. .

~125-

treatment of data structures The structures are called

records, and the ALGOL W analog to an ML-4 structured type

is called a record class. An ALGOL W record class declar—
atlon can be’represented hy an ML—4 <def§2_ Flgure 4 3 l
shows how the two languages deflne classes of structured
objects; the ML-4 type with (typename) ggig corresponds to
the ALGOL W record class naméd bair; Struetured objects are

built in ALGOL W through the ‘use of record'desanators,

which are analogous to ML-4 (construct;on)s.J Expressions in

both languages whlch build structurss from the "pair“ class

are also shown in figure 4. 3~l

language | type definition @ Jobject construction

ALGOL W -| record pair (integer a,b) | pair (3,4)

ML-4 pair = [int a; ipk b] . _PAIE[314]

Fig. 4.3-1. A parallel betwesn ALGOL W and ML-4.

There is a major difference between ALGOL W and ML-4
with respect to these elements, ikithough‘a record desig-
nator builds a structured object ifi ALGOL W, it does not
yield as its»value the object it constructs. ‘In fact, rec-
ords are not‘eveusvalues in ALGOL W. ‘A-récord class is not
a legitimate type in ALGOL W;freéordjbaroﬁiccebﬁéd'tthugh

values of reference types. For instahcesiﬁhsiiLéOLiw:record

-126-

designator pair(3,4) in fiqure 4.3-1 yields a value of type
reference (pair). ML-4 will treat reference expressions ih
ALGOL W similarly to the way ML-3 treats pointers in ML-Z:
The correspondence is depicted in figure 4.3<2. Note that

in dealing with

AL_GM . ..r...!__‘_ ALGOL W records,
record pair (integer a,b); y 2
reference (pair) vy, z; |] :

|3 = pair(3.4); z = y * # Ve need an extra

| M1.-4] i) level of indir-

pair = [int a; int b];
refpair = [pair ptr]; é (Ib ection (the "ptr"

refpair y,z;
y « refpair[pair[3:4]]:
Z &Y

component) . This

Fig. 4.3-2, Reference expressions (at least with

in ALGOL W.

respect to our

scheme of rep-
resentation) is the same kind of inefficiency we encountered
with ML-2. It is worse here, though, since ML-2 made use of

the indirection only when sharing was needed.

Components of a record can be accessed by selector fun-

ctions in ALGOL W. Pigure 4.3-3

language selection
;ALGOL Wi a(z)
ML-4 _a;gg ptr of =z

(z is of type reference(pair) Fig. 4.3-3. Selection.

shows the correspondence between

selections in ALGOL W and ML-4

in ALGOL W, refpair in ML-4).

-127-

Once these differences concerning the construction and

selection operations have been taken 1nto account. we find

that assignment, sharing and typechecking in ALGOL W are

almost identical to the "obv10us“ ML-4 counterparts (e g

replace "=t with u‘_n)

In this respect ALGOL w 1s 51m11ar

to the language SNOBOL4 described in section 3 6

PL/1

PL/1 was one of the earliest languages to0 have compile-

time typechecking and to treat both dats: structures and

pointers. Most PL/1 constructs handling these notions look

Pr./1|

"DECLARE 1 X,
2 I FIXED BIN,
2 8,
3 J FIXED BIN,
3 K FIXED BIN;

markedly different from the

constructs we have seen in

E

DECLARE Y LIKE X; EE&R'= [int i: pair s]:
DECLARE Z LIKE X.S; Bair = L;_,yn. Ant k];
X.I = 5; X.8.J = 6; trip x,y: 23£~ z;
Y = X X « trip[pdl nil;nilll;
Y.S.K = X.I; Yy ¢ ,E_EI gair[nil nilljl:
z = ¥.5; %urze.m%wms:
‘ iof x« 57 jof 8 of x « 6;
T 1. T iofyeiof ¥ . \
3 i " Jofsofyejofs of x;
:_LS‘ 'i? "i?c K Eg—f-s y « k. of s of x;
A y 4 3 kof s of y « i gf x;
ké)'_'é&s) j of z + j of 8 of y:
é ') | kofz+k gf s of v

jFig. 4.3~4. Strqctures in PL/1.

~128=-

other 1anguagu. Figura 4 3—4 nhows hou PL/l handlea a

:;r\i‘.

sample stmcture and gim an m,-ut mivulmt. ,We mke two

Y [RES

observatiom. Fint. all comomt mlls cf the PL/l struc-

t;ures in thil oxwle are allocntod t&um tha declarations

‘are 1nterpretad. Wlth ML-4 Wmt cells are allocated

ag ~td P ,".7’,"»’

when the structurad vnlue is &ctually cm!‘tructed Second,
a PL/1 structure assignment like Y = X in fig. 4.3-4 ;iﬁ_
v 3t :oopping (xeewrsively for
Structused conpanents) s with silol Gl QUESP.

mumm*w thére 18 no ﬁaxing mng m‘../l strue-u'

tures uatit ‘we irftfo&uae poim;mmm m:mumm
i £ 4 i’ 18 ®PL/1 ‘variatle daclnm m bc - powm

claring a structnred variabln zwith tho attmﬁm@e BASED(P)

!

introduces a vast copcepts f’f“f mm». J!hdsu variable no-

ébﬂjwts my tbe

t‘he role of a struetumd gm

mgure 4. 3~5 m& “a-*gat of PL/1 doclarations invoiving

aasm atrmmmmnw giwi a mrmpeﬂing AIL-4 (;relude) _

m« o

i

{ }‘ iy

Axtuom tu. Wl mm.um of fzgqre 4,3-4 Opec.lfy

a116eation o2 Wiarage

cation of camponent cells as well), the declaration of LIST

-129-~

in figure 4.3-5 does no such thing. BASED structure values

in PL/1 are constructed through the use of an ALLOCATE

PL/1

DECLARE (P,H,T) POINTER;
DECLARE 1 LIST BASED(P),
2 BACK POINTER,
2 FWD POINTER,
2 NUM FIXED BIN;

ML~4
ptr

list = [list ptr];

lis

t = [ptrlist back;

ptrlist fwd;

int num];

ptrlist p,h,t

ALGO

LW

record list
(reference (list) back;
reference(list) fwd;
integer num) ;
reference(list) p,h,t;

Fig.

4.3-5.

PL/1 BASED
structures as types.

¢

’ [
4

ptr
'S

"
back rrd Sumy

Fig. 4.3-6.
Value of p.

statement. Under the dec-
larations in figure 4.3-5,
the PL/1 statement
ALLOCATE LIST may be rep-
resented in ML-4 by the
{(assignment) P ¢ ptrlist]

list[nil;nil:nill].

Since LIST is declared to
be BASED on the pointer P,
the allocation causes the
value of P to be set to
point to the newly-built

structure. The result of

this allocation is shown in fig. 4.3-6.

BASED structures in PL/1 are ac-

cessed through pointers. In our LIST

example,

a use of the name LIST refers to

whatever the pointer P is currently

pointing to (which will be the most re-

cently constructed structure BASED on P, unless P has been

-130-

subsequently updated). To refer to a prwim allocation,
one must use a guasliified referencé‘ snch“a;ﬁ T -> LIST (wh’ich.,
i;sdiseat“ whatever the “poihter: T :Ls curren.::l.y‘ pgint.ing_ to).
Figure #4.3«7 draws tha._,canneCtioh:Wen PL/I, ALGOL W and
ML-4 in accessing Fields of structures (,;t ;Ls ;gssun\ed that

the declarations in fig. 4.3-5 are stili in force).

[PL/l - | arcor w [m-a

Trer | ptr of p

qw> LIST t | ptroft

S LIST.NGM - p".num; ~ num of ptr of p

| T -> LIsT.NOM| t.ngm 1 nem. of gtx _g £
Fig. 4.3-7. Accessing fialés

The meaning of assignment in PL/rl is ‘é:mli«lgr-‘ ‘éo _ALG(;L W
vexc-ep‘t for .its handling of structured values (which ALGOL W
does not choose to handle). »in thi&rgaae,‘aglug;hame'aaia;
PL/1 copies rather than .:i,,.nﬁuce‘ il?fg.ring; " All? ,shAri:;g of ditia
in PL/1 is done through poin‘te,x;s.‘A o

Typoéhe@ctng in PL/l d:ifim from: ML-4 and: ALGOL W in

one major area, that of pointers. - m ALGOL Kx, tnmla,tor

insures that a reference value ocan peiast to reaords only

from one record class; if cl and o2 -are whid L record

classes, then any attempt to make a value of type

-131-

reference(cl) point to a record from class c2 will be caught
by the translator and marked as illegal. The type system
for ML-4 imposes =ssentially the same restrictions. How-
ever, a variable of type POINTER in PL/l1 can be set to point
to values of any type at any time (including nonstructured
values). This causes difficulties of the same kind that
static typechecking is supposed to eliminate. For example,
in the PL/1 program segment of figure 4.3-8, the assignment

P =Q 1is legal, even though P points to a strugture of type

DECLARE (P,Q) POINTER; |pL/1 |M1—-4]
DECLARE 1 M1 BASED (P), ml = [int j: int k];:

2 J FIXED BIN, ptrml = [ml ptr];

2 K FIXED BIN; ptrm2 = [int ptr];
DECLARE M2 FIXED BIN BASED(Q): ptrml p; ptrm2 q;
ALLOCATE M1:; p ¢« ptrml[ml[nil;nil]];
ALLOCATE M2; q + ptrm2[nil];
P =0Q: P ¢+ q;
M1.K = 5; k of ptr of p « 5
Fig. 4.3-8. Lack of type restrictions on PL/1 pointers.

P — a e e

M1l and Q points to the integer M2. The reference to M1 in
the following line (M1.K = 5) designates whatever P will be
pointing to (which is the integer M2 since P has just been
assigned the value of Q). Thus there will be'(depending on
the implementation) a runtime error or at least an erroneous

result as an outcome of the attempt to update a component of

-132-

' the integer Qalﬁe M2, The ML~4 translatlon of this program,
‘also shown in‘figure 4.3-8, is 1nva11d since in the
(assignment) p + g the types fa11 to match (EL____vs
gggﬂg).' If in the PL/l program we had declared M2 to be
BASED:on P, then the corresponding.ML~4 (program) would have
two conflicting declarations for p, whiéﬁfwbﬁidraléo render
it invalid. Thus We see thatrthéitypechééiiﬁé sYsteﬁ_in
PL/1 fails to catch a whole class of programs which mmght

have runtlme type errors.
ALGOL 68

The traatment of data structurea and pointers in
ALGOL 68 is 11nked te .an intricate system of types and type-
checklngs' ALGBL,EB is a difficult language to leagp and
understand; the defxning documentqtion tVW;j 69; VWij 73]
presents ‘an intzmldatlng formalzsm to the uniniﬁiated
ggwaver,:thgre are'wo;ks (e.g. [Lind 71]) which are immense-
ly helpful.

'I!ms in ALGOL 68 are called modes. Thé modes of rele-
vance to us are the mode int (integer values) and the modes
built from the mode-constructors struct and ref (structured
and reference values, respectively). We describe a corres-

pondence which assigns ML-4 types to ALGOL 68 modes:

on DRI R SRR

-133-~

(1) To the ALGOL 68 mode 1nt we assmgn the ML-4
type int.

(2) IfM r e 0 0 are mdea md S '0..'8 am tvags
(the equivalent of (selector)% then to the mode
struct (M reses By) We ass;w;;,,;gtha__ Mi,~4 - type -
[T, S ,...,} S. 1, where the T are the ML-4 types

171
corresSponding to the Mi‘ , : C

(3) If M is a mode then to the mode ref M we assign
the type [T ptr], where T is the &L-4Atype~corres»
ponding to M.

Mode—declaratlons in ALGOL 68 are just llke type deflnltions

in ML~4 for example the mode~declaratlon

mode pair = struct(int a, int b) is equivalent to the ML-4

(defn) pair = [int a; int b].

A declaration in ALGOL 68, oesides aosociating an iden—
tifier w1th a mode and 1mp081ng type restrlctxons on the_yi
rest of the program, has a two-folc r;nplme effect | cOn--
51der a declaratlon‘of form M‘X‘% E.”for ;nsﬁaoce igw_x = 3,
where M is a mode, X ao identifiep,ﬁanqwEjan_expressioqp
yielding a value of modevM; Thiepdeclaration first binds X
to a newly-allocated cell. Second, it places the mode M
value yielded by E into:this cell. What is" pecullar about
ALGOL 68 declaratiohevisvthat'this%vaiue'can neQer be |
changed. It may,.however,'be aArefEf;ch valﬁe”(i;ellthe‘
mode M. is ref N forbsome otﬁer goéeg§)§vinrtﬂieﬁcase it

refers to (points toi'a cell holding vaiuee of mode N. This

-134-

latter cell (and not the former”éell) Can.yé ﬁpdatéd by the
a351gnment operation in ALGOL 68 :Thna the'meanzng of
assignment in nnee& 68 difﬁaﬂsrﬁramﬂaq'igunont in the other
Vlanguages we have discu83961 amta<thut an identifler whose
,daclmd mode is not a :rafm m mm mntlally as
a constant. An identifier of mode ggg N in ALGOL 68 plays
| ‘the same role as a varlable of type H in another programmlng 7
language. | | R |

The specific definition of ALGOL 66 rrriQnMent is as
follows: let E be an expreasion yzelding a value of mode M
(M can be arbitrary) and D an exprelsion of mmde ref M.
The value of D is a reference to a cell wbich can hold val-
ues of mdde M. Thén D ?= E is a valid atsignment and
specifles that the mode-M value of E xs to be stored in the

mode-M cell referred to by (the value of) D.

A particular_kind of ALGOL 68%;xpr¢pp}on,%known as a

local generator, specifies allocation of a mew cell when it
is evaluatrd; If M is a mode,’§hep evalyation of the local
generator;;gg g caurgq_énaw‘cnll‘{uh;gh ¢gn on1y h9l¢ val—
ues of moée ‘M) to be rlioented.: ?hc value yielded by loc M
is a reference to this new cell and tharcfore belongs to the

mode ref M.

-135-

To obtain a varieble ih ALGOLkGS,whlehlwill teke"on
valges‘of“a queﬂMg we must‘deelere:ehiidehtifle: x‘of‘hpde
ref M so that assignment can change the mode-M valuee,

This may be accompllshed by means of an ALGOL 68 declaratlon
of form M X, whlch is really an abbreviatlon for the dec—
1arat10n’ ref M X = loc M.tACOn51der, for‘example; the |
ALGOthé deelafetion 1ntvx (eduiveleht torthe declaratloh
ref 1nt X = loc 1nt), whosebeffect is deplcted in flgure

g

4,.3-9, The 1dentif1er X, whlch is declared here to be of

“Mmode ref igg, is

EEH 3| Ty | e s e e
refint x=locdnt) | b | cell; the lower cell
..MIJ-—A-J : B Lo Ptl“ VAR R wn i
refint = [int ptr]: ¢ 1s allocated (by
refint x;. . S TERR S .
S reflnt[nll] | . evaluatlng 1oc 1nt
'Fig. 4.3-9. Semantics of the .
ALGOL 68 declaration int x. in ALGOL 68, and by

;'evaluatlng the

{cell expr) ‘nil ‘in the (consttuctieﬁ} reflnt[nll] in

ML-4);‘and the upper cell receives'as (permanent) value'al
pointer to the lower cell.’ Subsequentheiecutlon of the
ALGOL 68 assignhent ’x‘:— 3 would place the value 3 in the
loﬁer.cell: therefore its ML—4 equlvalent is the (a531gnment>

ptr g§ X « 3. bThe”static typechecklng rules for ALGOL 68

T

136~

insure that any assignment attemptlng to plaee a non-xnteger
’value in the lower cell is detected and indicated to be
invalid. |

| There 1s one aspeet of the ALGOL Gautype system Which
is more lenlent than the ML~4 system.' Uniike!PL/l, no type
errors can arise from thls loosening:” Consider the ass1gn—
ment yl;= X, where both ldantiflers x end y have been de~
clared to.be of mode ref 1nt. This aaszgnment speczfies the
updating of the mode int cell pointod to by Ve But the
rzght~hand side, which must then eupply‘an integeg value,'ls
'Fof mode ref &g? according to ML-4 nule:, the as:ignhént is
dto be rejected hy the translator as’ invalld.{ However,ﬂ
ALGOL 68 recognlzes that the ggﬁ_&g&,value of E3 peints to an
int value, 80 all that needs .to. he done tgnobta;n the re~
quired 1nteger velne is followfthevpointen x.U Thls process
is called dgrefexgnclng.‘ In general, the procedure for ob—
talnlng a value of a desired mode from a value of some other

EoYs

mode ls known as coeroion or conve;aign. Thus. in the

[R5 S

ALGOL 68 type system, if the left-hand side of an asslgnment
is of mode ref M, then the assignment is valid provided the
rlght-hand slde iI of mode M or can be coorced to y131d a

‘474

mode M value. In our case, the procedure whlch translates

-137-

from ALGOL 68 into ML-4 must recognlze that dereferencxng is’

EE

called for, mark the a551gnment y 1= X as legal and gen-
erate ML—4 code whlch takes the coerc10n 1nto account Of
the three assignments in the example shown ln,flg.y4 3 10

coercion takes place only in the §éé6hd{dﬁé“}hhéré y is -

dereferenced). -The y onxthé‘rfgﬁféﬁaddﬁé§§%f%@?é;is trans-
lated into the ML-4 (expression) ptr of y;;yieiﬂing a valid

ML-~4 (assignment);

Note that the mode of ALGOL - ﬁa;s
, o int x a:3". ‘
x is int, and the mode int y, 27 oo
B IR < SRR
of y and z is xef int. . gz':— b 4 IR 'T““%‘“‘T
Y 3= 4y R RS * ¥ 4
b BT (
The concept of oo MEsg) é :'" "1"
. : refxntf Iint ptr], Ptr prr
structured values in ['int x: ~ ' é é
}reflnt Yi2;
ALGOL 68 is essen- - X & 35 o
Sy e reflnt[nillz
tially the same con- |z e xggigg[g 1]
B | ptr of v « x;:
cept when taken by ptr_gg z + ptr of y;
‘ ' " | ptrof y A

U S
|Fig.. 4.3=10.- An example of
coercion in ALGOL 68.

itself as in ML-lvand

ML-2 (as well as PL/l
and QUEST) . Sharingv
arises only tﬁrough_the csa cfﬂgefa;ggcc;moées;;aasiqgmgnpvof
structured values i§,d°éé by‘compongacﬁﬁﬁgtcgpyigg,-w?igure

4.3-11 gives an example. The mode of z is pair; the mpdeapf

-138«

“ x is ref pair. The expre331on. (5 6) in the declaratlon
for z is called a structure dlsg; X and 81mply glves values

for the components of z.

' ArdoL 68|
"mode pair = struct(int a,b);
2 ir 2 = (5 61‘)1
pair x;
X 1= Zy
ML~4 |
Rair = [ipt a: igt bl
refpair = [pair Ptr},
&11’ 23 regw : Jﬁf ‘
2 « pair[5:;6}; 4.
X« £2£E§££[Bé&*L.£~.B£L1]'
a of ptr of x-» a gf z; R
b of ptr of x « b of 'z

Fig. 4.3-11. Stxuctuwe aasxgnmant
in ALGOL 68.

The selection of cdﬁp§nénts from a structure ih‘AtGOﬁ:GS
is synta¢ticaliy iaeﬁticﬁ1;tp ML-4. 1In fig. 4.3-11, the éel-
ection b of z, which refers to the b—coﬂponenéﬂcell of z,
is of modezint. There is a major compilcation concernlng
selection in ALGOL 68. We can 1egally form the selectlon
b of x, where x is of reference;to~str&d££fe modé;w:The mode
of the selection b of x is ref g._:_m_;_ not ‘int j‘éx}éﬁ"tho‘&'gh "
the b-component cell for the structure pointed to by x in

figure 4.3-11 is of mode int. We say in this case that the

_7'13 s 2

po:.nter is dis _ute | over the cowonents (:m ALGOL 68

term1nology, X 1s"'endowed with suhnma") 'l‘huS, for ex-
ample, the asa:.gnment b of x := a of. z is legal, 1n the
ALGOL 68 program of fJ.g. 74 3-11 1t would place the value 5.

into the b-component cell of th;e. gtrgcﬂ:qre_ po;nte‘d to by X.

UnfOrtn;i&tg;y, the "obvious" trmlgs:ién :.nt,o ML-4. -
fails. The ML-4 type refint, defined as [int ptr], corres-
poﬁas to the mode xaf jnt, but in;fig‘ w»awllvthare -is no.
corresponds to th@m 68 Sﬁlﬁcmﬂ t_b;:ﬂﬁsgsx-v Thus, . in
translating from ALGOL 68 into«m-'-*,;sugh cells. 'must be .
added to the picture (t:hese cells w111 hold poxnters to the

1nd.1.v1dua1 components of t‘he structure referred to by x)

The corrected translatlon mechanism is shown in flg. 4. 3-12-

| ALGon 681 o o T R Lo e s *[m:.—4_____
mode pair = struct(int a,b); jpair = [int a; int Db]; ~
Al xi S R © {refpair =" [palr pte); -

lint ptrl;
nt’ a'reﬁnt bl;

X
b

™ : B3 Phs a -
AR A g ey
2 4"47 ptr of a of x$sub - 3;

& g%‘** o | ptr 8F'b OF X§sth @ “ phy o i of x$sﬁb
M Fig. 4. 3712, Diatrilmtoﬁ, go;ntggs .in ALGOL 68.

A

=140-

for each referenceéfo-séructufe identifiér'x wenédd to. the
local structure a reserved identifier xssu‘b to hold the °
subnames (dlstrlhuted component pointe:s).‘ By looklng at
the local structure piéturéd inﬁié;’4.3f12, we see that
there are two ways to access component cells of ﬁhe struc-
ture pointed to w x: through x"(vi‘ﬂéh‘ {dewtination)

b of ptr of x) as when updating the structure itself by com-
ponentwise copying; or tﬁroughx$¢ﬁbfﬁﬁ1&h<taes£inatibn$

ptr of b of x$sub) as when explicftly selécting from x using
subnames. theﬁthat'our't:tnsl&tibﬁ*ébﬁi&%ﬁﬁ t& the stip-

ny system.

ulations set by the ML~4 ‘static

We glve a final ALGOL 68 example, illustratlng a re-
cursive structured mode. The example is ahown in flgure
4,3-13. box is a structured mode, recurnively deflned and
a and b are of mode ref box. Note that the modqwf the. sel-
ection n of a _15.52£ £g§ §g§. ‘Thé:dni&eégehéiaﬁiinTgﬁg
program occurs in thé-l£§t>assignment, where A»is derefe
erenced. A recursive modé'definitionmagéh asf”
mode badbox = stryckiint v. gadbox n) would bo illegal the
"ref" inside the definition of tha modezhgg,ﬁs nbcusaary

since there is no implicit nil in ALGOL 68‘- modes as Ehera

is with ML-4.

-141-

Thus we see that even with a language as complex as

P

ALGOL 68, we can use ML-4 to make clear its approaches to

the semantics of data structures.

ALGOL 68 | - __? —
mode box = struct(int v e _;_ % bgb
réf box n); "37 K ‘RZ VR
—_— === v Ptr , v
box a,b; 'ﬁ
[N2 (3 ! T
v of a := 8; | prr g{//x\er v oo pu ptr
n of a := b; ; vi; ‘;ZEE:::i,//
e - \/_) Pt’_ 9 .: -
b := a; ,
M4

box = Iint v; refbox nl; refbox = [box ptr]:
subbox = [refint v; refrefbox n];
refint = [int ptr]; refrefbox = [refbox ptrl;

refbox a,b; subbox asub,bsub;

a + refbox[box[nil;nil]l; b « refbox[box[nil;nill]:

a$sub « subbox[refint[share v of ptr of al;
refrefbox[share n of ptr of a]l;

| b$sub « subbox|[refint[share v of ptr of b]l;

' refrefbox[share n of ptr of bl]l;

| ptr of v of a$sub « 8;

| ptr of n of a$sub « b; Fig. 4.3-13. Final
| v of ptr of b « v of ptr of a; ALGOL 68 example.
i n of ptr of b « n of ptr of a

Completeness

In this chapter, we defined the mini-language ML-4 and
used it to model data structuring facilities of the lan-

guages ALGOL W, PL/1, and ALGOL 68. As in the last chapter,

e covesod nearly all ehe &ata stxuc%°5

-142~
we close w1th a few remarks on the completeness of our cov-

erage of the approaches to data structures found in these

three languages,

With ALGOL W, as w1th SNOBOL4 in the pravmous chapter.

ring Pacilities thor-

“oughly, Witk th& excqptLOn of arrays. ‘We comment on arrays

~and some wf thgir;speoial issues in Chapter 5.

For PL/lpand ALGOL 68, our treatment is far from com—‘

plete. This is to be expocted becausq aﬂ tha ahear bulk and

complexity of these two 1an_“;__‘j;‘ *rhm:a' m numems

B

features deallng with datw structwrtes u&&aﬁ-w& have not de—
scribed“*'Yat>wa;cfaﬁh“€hkt ﬁhoa&fféﬂﬁﬁ&#ﬁ*wﬁiﬂh”w&\aid~de-
scribe in PL/1 and ALGOL 68 constiﬁﬂtw tﬁh "heart" of their
data structuring facilitxes¢ thus onr‘deioription of these

*-f-oumnntmc hpproaches

features shouLd maka clear the undcnil

to data structures in these 1angutgastao<wuk&.

-143~-

chagter 5

CONCLUSIONS AND EXTENSIONS

‘5.1, _What We Have Done

~There are a 1arge number of programmlng languages uﬁ;ch
work with data structures, Because 95wth9,Y§FletY’3f ap-
ﬁroechee fOuuq'in tﬁesevlangueges, me@gysubt;e but important
semantic distinctions crop up. With most laquaaesg;#hﬁwg
semanticek(including in particular the semantics for the
deta structurépg feci%itieg)“age Qegc;iyeqtgggcgmalyxm;nAv
English. We ccusider suchrqeegﬁiptiyeggetRQQgﬂipggegugte
for_our goals, since in‘meny,ceses,tggy“faixdto‘make clear
some of the: 1mportant semantic principles such as sharlng.

,.1.@w;

As we have seen, a mlsunderstandlng of the 1nteractlon be—

tween notions such as asslgnment and sharlng can lead the
programmer into erroneous conclusxons about the effects of

programs.

We have therefore developed in this thesis a method-
ology for describing the semantics of data structures in
progremmieg languages. Inrorder tc precise;quesq;;pe,mech—
anisms found in programmlnc languages whlch handle data

structures, we made use of the base 1anguage model, whlch 1s

e

g e PR e Ty s e s s e e RO i

~-144~

an interpretive model for "Farmal semantics. The base lan-
guage model is esdentiafly‘a‘mifﬁéﬁitfdﬁl formalism for
modeling the changing states of a ggggnt§ng system on which
various computations are performed; ‘A‘;afhématical t£eat-’
ment of ﬁhe”basé'lahgﬁAge modei"ié'fbuﬁ& in ‘the Appendix;
our approach émﬁhasizedvthé’use of the bdse language as a
*pgog‘fming tool similar té many conventional assembler lan-
guages. A major advantage of tie basse larguige model over
 other formal semantic models is ‘Chat it manipulates data
objects of a sufficiently general nature that we can make
direct use of its data representations in our work withciit
neea'fbf”apécfﬁi‘enébding'mééhiﬁibmd.:&u‘

The ma;n éorﬁlon‘of th1§ thetis wﬁs concerﬁed with the
fpresentatiun and use of a series of m¢n1~languages. With
these minl-lﬁnguages, we 1solated the relevantkconceptual .
abstractlons such as assignment value, constructlon,‘éelec-
tion, sharing and typechecking. The mini-languages prov1ded
a “ﬁi@ﬁ&Iév*i*“ﬁ%iﬁffptive“ﬂﬁﬁiﬁiﬁ'ﬁﬁf&ﬁ*ﬁﬁdéfi%;siﬁpler'and
mofe convenient to talk about eemantic issues relating to
data structures Z |

The basic structure of our mathodoiégy was to flrst

make clanr the semantlcs of our mini-languagea by speclfylng

-145-

their translation into the base language. Once this was
done, we no longer needed to think in terms of the primi-
tive operations of the base language. We were then able to
describe the semantics of data structuring features in some
programming language by simply using the appropriate mini-

language to describe how the relevant mechanisms worked.

In treating the data structuring semantics of several
programming languages, we gave mini-language code into which
constructs of these languages are translated. Determination
of this mini-language code presents difficulties when the
semantics of the source language is incompletely or ambigu-
ously specified, reflecting the inadeguacy of the descrip-
tive methods in use. Of course, once we have obtained a
consistent translation into the right mini-language, we have
an unambiguous semantic specification of the relevant con-

structs.

Using the techniques we developed, we described the
data structuring semantics of a number of representative
programming languages. With the simpler languages, we were
able to give a nearly complete treatment of the data struc-~
turing facilities. As to the more complex languages, we

were able to cover most of the fundamental approaches to

. develop new mini-languages with additional mechanisms. 1In’

~-146-

data structures without getting caﬁqhtsﬁp'in the intricacies
of features of felatively little semantic relevance to the
issues we are concerned with. In the next séction, we talk

about some of the[arias that were left uncovered.
5.2. . Further Wor

There are a number of semantic areas that we have not

treated. In order to cover these arveas, we would need to

this section, we give brief mention to two such areas and

what kinds of new mechanisms are required to treat them.

‘The first uncovered area is:Uniéna.?lwiEﬁ the pre sys—
tem of ML-4, every cell is constrained to hold values of
oniy'dne type. In many programming laﬁguaééé,-this restric—
tion is weakened somewhat by defining ﬁhithtypes. If type
t is the union of types tl and t2, then a cell of type t can
hold values of type tl as well as values of type t2. For
example, suppose we declare z to be of type t in some 1&n~
guage that admits union types, and suppose:tHat the express-
ions el and &2 yield valueﬁ of types tl &ﬁa*té,;respective—
ly. Then both the assignments z := el and 2z := e2 would

be legal. This capability is not within the reach of the

P R e AR e A i g Ari e AR S SN v RN o St A O s i e
SRR R G e il e edi s Claki casi e (TR e e st s Bl s e g e L S e i s L e

-147~-

type mechanlsms we developed for ML-4. Suppose we declare x
"to be of type tl. 4Then the assignmentw—x :;?;”:cau bevere;k
cuted without type error preci#@ly When' the’ valué of z is of
type t1 rather than of type 2. 96 iff ‘G¥fer £ @dd to our
mini-languages a tapability to Hﬂﬁﬂie”ﬁ%fﬁﬁgi§gamérkiﬁagdfﬁx
additional runtime type testing mechanistf “‘tmstiﬁe dntro< Y7

duced into the design of Eﬂe‘laﬁﬁﬁaéé:r” Ll

oo - W e N . \\,1‘*,' i - E .,,)
The ‘second uncovered area 1s arrays. The type System

of ML—4 is 51mply not equxpped to deal w1th arrays whose

B ; "‘7 P
Subscrlpt bounds are flexible. The type of such an array

would contaln structures hav;ng dlffering numbers‘of coﬁ;’
ponents. A structured type in ML-4 requires a set of selec-
tors Whlch is known to the translator and cannot change.mw

Even w1th unlons; we are no better ;rf iﬂFor instance, the

b b

type conslstlng of all PAL tuples could not even be expressed
as a flnlte union of ML—4 types,Aslnce a“tuple can heSe anyk
one of an 1nf1n1te number of selector setsi({l} {1 2}
{1,2,3%},, {1,2,...,n}, ...). I

There. are many other complicated issues concerning
arrays, such as different array type coﬁccpts,~ change~

ability of bounds, and assignments between fixed and flex-

ible arrays. All of these issues introduce new complexity

)

-148-
into tlhe language, requiring the development,pf more techniques.

To sum up, Qur mathadglggy for describing data struc-
tures has special advantages from each of its two portions.
The use of the hase language model provides for a precise,
formal characterization of the semantic rules of the lan-
guages under study, while our minj~languages provide the
convenienge of high—level descriptions of the actipna~being
modeled. 1In order to deacribe ahy programming language
featﬁre, all that needs to be done is construct an appro—
priate mlnlulanguage which handles only the concepts dlrect-
ly relating to that feature. The syntax and semantlcs of
such a miniulanguage are naturally easy to wurk with and |
understand. By speéifying translations from source lan-
guages into the mini-language and f;émkthe mini-language
into tﬁe base language, we gain a p?ecisé but Qonceptuallf
clear"characterization of the semantic§ of the features -

we wish to study.

{Amer

[Amer

[Bur

[Cou

[Denn

[Denn

[Der

[Dra

[Earl

[Ev

72]

73]

68]

73]

71]

741

741

73]

71]

701

~149-
Bibliography

Amerasinghe, S.N. The Handling of Procedure Var-
iables in a Base Language. S.M. thesis, M.I.T.
Department of Electrical Engineering, Sept. 1972.

. Translation of a Block Structured Lan-
guage With Non-Local Go To Statements and Label
Variables to the Base Lanquage. M.I.T. Project
MAC Computation Structures Group Memo 84, June
1973.

Burstall, R.M. Semantics of Assignment. Machine
Intelligence 2, ed. E. Dale and D. Michie.
Oliver and Boyd, Edinburgh, 1968, 3-20.

Coueignoux, P. and Janson, P. Translation of
Simula 67 into the Common Base L.anguage. M.I.T.
Project MAC Computation Structures Group Memo 87,
June 1973.

Dennis, J.B. On the Design and Specification of
a _Common Base Language. M.I.T. Project MAC Com-
putation Structures Group Memo 60, July 1971.

. Private communication.

Dertouzos, M.L. Computer Lanquages: Structure
and Interpretation. Class notes for subject
6.031, M.I.T. Department of Electrical Engin-
eering, Feb. 1974.

Drake, C. The Semantic Specification of SNOBOL
in the Common Base Lanquage. M.I.T. Computation
Structures Group Memo 85, June 1973,

Earley, J. Towards an Understanding of Data
Structures. CACM 14, 10, Oct. 1971, 617-627.

Evans, A. PAL Reference Manual and Primer.
M.I.T. Department of Electrical Engineering,
Feb. 1970.

U e Y PR ST e g e

[Fenn

[Floy

[Gris

[Gris

[Hoar

" [Hoat
[Hoar

[Hoar
[Lan
[Lan
[Lan_

[Lan

73]

67)

73]

6&1

59*]

Fenner,

~150~

T.I. et: al. QUEST: The Design of a

Very High Level Pedagogic Programming Language.

ACM SIGgggg ggtlgg
iFloyd.'R W.f

Griswold, R.E., and Griswold, M,T. SN
T mer, Frentxce~H&11, EBQIAWN,af {
",1973. o s

Hoare. C.A. R

rab. }?7_3 ;;-27 .

&ssigﬁing'°'
uﬁ s

An'Axibﬁitiéfﬁﬁhi ,£Qi ohputer Programm-

ing. CACM 12, 10, Oct. 1969, ’578-530 583.

7]

721

64)

651 ____

66a]

66b]

:-;an,; 1971, 39-»4;5.

Ptoof of*a~:'” o tACM 14, 1,

PR RN

uotes on Data Stgug;ur;ng. 'St tured

Progr ming, ed. E.W. ﬁifkstra. hcademic Press,

1972

Lansh;n:
ions.

CHHrch

Mar. 1965, #9-10%, I¥

P. The Mfému"@j ‘Evatustic: of Express-—
Computer J.,. §,.° ,_;j;l,?&. ‘3*4!8—320 |

A 0qrrespondence Between Algol 60 and
s tambde Not mgm*e’*?s ‘Peb. and

i

VN ,‘ ERINE R

The Next 7Q0 Prqgramminq Languages.
3 max 196@ ”IS‘?-].SG. J%gu

[Lau

[Lav

[Led

[Lee

[Lind

[Luc

[Luc

[McC

[Moxrr

[Mos

68]
74]
71]

72]

711}

68]

69]

62]

68]

74}

-151~

Lauer, P. Formal Definition of ALGOL 60. Tech-
nical report TR25. 0887 IBM ILaboratory, Vienna,
1968. '

Laventhal, M. Verification bf Programs Operating
on Structured Data. M,I.T. Project MAC Tech-
nical Report TR~124, Mavrch 1974,

Ledgard, H.F. Ten Mini-Languages: A Study of
Topigal Issues in Programming Languages. ACM
. Computing SurVeys 3, 3,~Sept;/1971.

Lee, J.A.N. Computer Semantlcs Van Nostrand
Relnhold, New York, 1972 ‘

Lindsey, C.W, and van der Meulen, S.G. Informal
. Introduction to ALGOL 68. Mathematisch Centrum,
Amsterdam, 1971. ‘ : '

Lucas, P., Lauer, P. and Sthleltner, H. Method
ggg Notation for the ¥ rmal 4, 1tlon of Pro-

IBM Laboratory, Vlénna, June 1968

-Lucas, P, and Walk, K. -On. the Formal Description

of PL/1I. Annual Revxew of Automatic Programming
6, 3, 1969.

Mccarthy, J. et, al. LISP. l,S Programmer 8
Manual. The Computation Center and Research
Laboratory of Electromics, M.I.T. M.I.T. Press,
Canmbridge, Mass., 139682, g

Morris, J.H., Jr. Lambda Calculus Models of Pro-
gramming Languades.:.M,I.T. Project MAC Tech-
nical Report TR-57, %968, . .

Mosses, P. The Mathematical Semantics of Algol
60. Technical Mohograbh PRG=12, Oxford Univer-
sity Computation Lab), Programmifig Research Group,
Jan. 1974.

[Reyn

{Reyn

ISanu

[Scot

[Scot

[Stra

[Stra

{UWij:

fvwij

{walk .

[Weg

723

731

73]

70]

71]

66]

67]

69]

73]

69}

68]

Reynolds, J.C.

~152-

Defxa‘i l .II Wit

reters for

HLghar-Order Programming nanguiébs Proc. 25th

E _ iuyM
Research Group.

Scott,

00nputation.

19?2 717~740

nygéggg!hory, Programmzng

16‘-'75’.‘ o

D.‘ outl:.m of & Mal Theory of
Pro

e » and Strachey, c.
Samuntins;fur cbmpu$0x¢Languugua~ Broc. Symp-

. ﬁh .. e . St ity

Strachey, C.

ceton Co
B, X970, 21369-

Towards a Mathematical

ey Polytechnic -

Towards a Fcrmal Sanntlcs. Formal

— mommmmd

Fundgggntal gcagagts Ln Proqxammlng

HAED

Van wxangaazden; A.

Wm*)

(Odd

-ﬂaﬁn&t on the Algo-

rithmic Language ALGOL 68..:-liamerische Mathema-
1969, '

tik, 14, 2,

Wegner,

Structures and Macgf»_

Hill,

P.

1968.

79-218.

[Weg

[Weg

[Weg -

- [Weg

[Wir

[Woz

70]

71]

72a]

72Db)

66]

69] -

-153-

. Three Computer Cultures: Computer Tech-
nology, Computer:Mathematics and Computer Sci-
ence. Advgces 1n g_muters 10, 1970.

. Data Structure Models for Programming
Symp sium on. Data Struc-—

Notices, Feb. 1971.

R Progmmm; Language Semantics, Formal
‘Semantics of Proqraming I__’&x_qg_agas. ed. R.

- Rustin. - Prentice~Hall, fsnglm Cliffs, N.J.,

1972.
. The Vienna Definition I;angﬁage. ACM
‘computing Surveys 4., L, March 1972, 5—63.

“Wirth, ‘N., and Hoare, C.A.R: k ‘Contribution to

the Development of ALGOL. CACM 9, 9, Sept,
19686. : g v g i Fepdo TRY e e

Wozencraft, J.M., and -Bvans,: A, mtqs on Pro-~
gramming Linguistics. M.I.T. Department of

- Electrical Engineering, 1969..

~154~

Appéhdixﬂ

A MORE FORMAL TREATMENT OF BL

at ‘a ngen tima in tha couputer.uyutnm uasnma modellng. In
this section we describe in detail tha structure of BL~-
graphs reprasnntlng interpnetar .#ﬂtqa An'tmg baae language
model. mha‘trcatmant hﬂre diitarl’ﬁanﬂwhnt £MQm {penn 71]
and [Amer 72], hut is easentzally squivalgnt, In the next
section we formalize BL~graphs and the BL instructions.

We assume that the reader is fawiliirﬁﬁiﬁh the concept
of process as a locus of control. A:proce:s,is‘regrasenﬁed
in an interpreter state by a BL~object which we call a gsite
of activity, or_g;ﬁ. The BL-graph for an intérpreter state
is,essentiilly a collection of SOA's. Thé root nodes of
such a BL~graph are the root nodes of its SOA's. Thus an

interpreter state is represented

by a BL~graph whose skeletal SoF Wh

form is shown in fig. A.l-1l. ‘Fig.'A;l—i.'4Skeleta1

. structure of BL-graph
We now describe the struc- for interpreter state

ture of the individual SOA's of

* =155~

an interpreter state. A SOA is a BL-object with four com-

ponents:

(1) The ep-component is a local structure, a BL-object

representing the environment in which the SOA's computation
takes place. (The name "ep" is an abbreviation for environ-
ment pointer.) Components of a local structure represent
variables and temporaries used by the computation. Nearly
all the BL instructions executed as part of the computation
affect its local structure. We allow for the possibility of
different SOA's sharing the same local structure, but usu-
ally the local structures of the different SOA's are dis-

tinct.

One distinguished SOA has as its ep-component a BL~
object known as the universe. The universe represents the
system~resident information present in the computer when no
computations are in progress. Generally speaking, this in-
formation is independent of which computations are currently
active or how far individual computations have progressed.
This special SOA stands, so to speak, at the head of the
system call chain, so that every process can trace its an-
cestry back to it. Access to the data in the universe is

passed from caller to callee, so whatever access a partic-

-156-

ular SOA has to the universe is determined by the call chain

leading back to the one distinguished SOA.

Two kands of objects are found as components in the

universe: data structures -and 3;__g§g;g atrggggges. Eadh

kind of object can have objects‘of eather kind as compo-
nents. A dato structure in tﬁe»modoi cao bevéoy afbitrory
BL—Ob]ect' a procedure structure 13 a speclal kind of BL-
;object representlng a procedure expreased in the base lan-
guage. a BL instructlon is easily repreaented as a BL-
Object' for example. the 1nstructzon ggggg 3 X is depict-

ed in f;gure A.1-2. The components

with selectors 1,2,... of a procedure

1
v) o 1
structure are- simply representations of | ‘

its instructions in order. A procedure

“tFig. A.1-2, A

‘sample BL in-
gtruction as

a BL-object.

structure may also have components

which are procedure structures for nest-

ed procedures. Figure A.1-3 illus-
trates a"skeleton’procedure'structure‘for‘a procedure p
with one procedure f nested inside.

(2) The ip~component of a S0A gives the.instruction
currently belng executed by the SOA's oomputatlon, as well

as the procedure contalnlng thls 1nstruction ("lp" stands

~157-

for instruction pointer). The ip-component is a two-
component structure, whose proc-component gives the current

procedure structure from which

instructions are being executed, *qqfﬁuu_ﬁfwhxa
, . i, ¢
and whose instr-component gives ¢ d procedune
‘I&b 8(_' 'n‘“‘ SC Strohute
, . st sty [dar £
the number of the instruction o r fF M
1., "
currently being executed in r t -] \
iﬂ‘g‘_ m-fl-_eL
1 sty INGtr,
this procedure (fig. A.l-4). we g
. . Fié. A.1-3. A sample
Thus the instruction currently procedure structure.

being executed within a. SOA s
is given by the dotted pathname ip.proc.*(ip.inst), taken

relative to the root node of s.

2 SOA

(3) The stat-component of a o pora

SoA, which gives its status, is an Proc. ingt
mm:\ s*r\x. ?
elementary object with the value 1 %
when the SOA is active (i.e. curr-~- BL\V\%L*GV\
Lm‘l\‘\‘li NJ
ently processing instructions), 0 ! execot

i
L

! Fig. A.1-4. ip-

if the SOA is dormant. component of a SOA

(4) The ret-component of a
SOA s shares with the SOA that invoked (created) s. When
5 executes a return instruction, the SOA given by the ret-

component of s is activated; the current SOA is put to sleep.

RN ST A A e AT T

~158~

With the structure of an lnterpreter state glven above,

 we can procead to-the next section. which descrxbes how the :

BL instrugtions tranaform.interpreter states.}'

We give a formal mathematiéﬁiléefiniﬁion“of'BL-graphs.
Suppose the seta ELEM (alemontnry objcctl). SEL (selectors)

and NODES (nadas) are givan. For our putposea, ELEM shall

AT Form

x&, truth valuel, rtal nnubﬁrl and strings;

consist: otz’iv*“

' SEL thall comsiut of integers ;nd atringaz lndAHODES thall

ha nn arbitrary countahly in:initc ant Stxinsa arc takan

‘»ovéx Bome :utttbin alphahot whieh incladtc th- nl#hanunnric

redn

charactexl togathar with some’ apcciii

et

érs. A

'aoxaz th.an thrac setd ‘is n 4-tgp10 éfé“(ﬂ;a;n;vn

'3in ﬁhiﬁhx -,[N-@

,'jipg%Wnaﬂos in use) is a £iniec iﬁbﬁa: af nﬁbBS* e
B K “Mt m.) = R o 2% xw RRREEE e :

R k'::-.im“)‘ '_.c U x &m:.’ k:u;&

we'iht.arpro" et ta..e m €A to ‘meai Erdive 44+ “a

with um&m ¢ lesding fmné& a &n%& ﬁ

(a5 8) eV to Mban a e a I‘uf‘nﬂﬂi’iﬁdhwd&dh‘ﬁtiry value

g

r 7j£E&g5&d§ﬁ§§ibut:

A BLgEaph q must ilﬁ&tty ‘the' asx?;f

-159-~
(1) If @ € U, ¢ € SEL, then there is at most one B € U
for which (a,0,B) € A.

- (2) If o € U, then there is at most one § € ELEM for
which (a,8) € V.

(3) prl(A) N prl(V) = ¢, where prl is the first-

component projection mapping. Equivalently,
¥ a € U: ~[g8 € ELEM: ((a,s) € V)
& g(c.P) € SEL x U: (a,0,B) € A].

* *
(4) D (R) = U, where D is the reflexive transitive

closure of the immediate-descendant mapping

D: ZU - 2U defined by

D(S) = {p € U: ga €8S, o € SEL s.t. (a,5.B) € A}.
Property (1) insures unique selection, i.e. that the selec-~
tors on the arcs emerging from a node are distinct. Prop-
erty (2) asserts that no node may have more than one elem-
entary value. Property (3) says that no node may have both
components and an elementary value, i.e. that elementary
values can be attached only to leaf nodes. Property (4)
states that every node of a BL-graph is accessible along

some directed path of arcs starting with a root node.

We now give a formalism for defining transformations on
BL-graphs. The formalism is based on [Denn 74]; it makes
use of a set ID of identifiers and a mapping

v: ID U ELEM | NODES -+ ELEM | NODES which assigns values

-160-

to identifiers and acts as the identity function.on elem-

entary values and nodea. A bhasic txansformat

BL~-graph g = (U,R,A,V) into a new gmup‘h g* = R LA V')

and updareas “he ‘valuation- mappd.ng v ‘dmto -a new ‘mapping v'

The notat::on vla/x] means xy (yax - a, .ESES - v(y)), i.e.

mapping equiwalant to vaxe;ept that ,;.xt.m;ps x into a.
e fullwing ‘basic transformations tn& mxilxary

functlons are def:.ned for arhxtmzy Blwg'.‘apha-‘ o

. [defined provided é‘%ﬁ, & € ‘BUEM,
- where o = y(a), & = v(d)] .
V¢ 2V U T, 8)Y, U= R SR A WA, o= .

‘DeleteElem{a, d): ‘[défined provided o €U, § € ‘BLEM and -
(oc,a) €v, where a = v(a). 8 = v(d)]

V' =V - {(a.8)}, U' = U, R' = R, A" = A, "v' = v.

AddArc(a,s;b)~: [defined pQrdiiided a.B € U. o € SEL,
, ‘ where o =.y(a), o, 7 n8), ﬁ*-‘v«(b)]

A' AU {(avGoB)] U' =U0 R"SR' V' =V: \J' =\)-
-DeleteArc(a.s b) [def:.ned provided a.B E U, o € SEL and

aseBY € R, Whete o & v(%), o = vis),
B = (b)]

A' A — {(a,a‘ B)} U' 2 U, R' = R' V' = AV' \J = Ve

-Delatecompc(a) ,f&eﬁ:n‘od :prov:b&d&*a&-i U, ‘Where'd = y(a)]
A=A N -~ {@)) x SBL x U), 8" = s Blw= R, B
V' =V, ' = y.

-161-

Prune:
* I ’
U' =D (R), R" =RNU', A' =AnN (U' x SEL x U*),
V''=V A (U x ELEM), v' = y. S
HasComp(a,s): ~[defined provided a € U, o € SEL,
where o = v(a), o = vw(8)] .

if 98 €U: (0,0,8) €A then true elge false.

Comp(a,s) - .312 [defined provided & €U; ¢ € SEL.and
') Hascon}y’(ga.) = t;ru‘ez...e, ip € U: (a,0.,B) € A,
- wherea = v(a), o =‘v(8)]

let peEU such that (a,0,B) € A; _
v' o= v[ﬁ/b]. U' =U, R' =R, A' =4, V! =V.

, HasElem(g) : [def:.ned prov:n.ded a €U, w"nerc Yo 8 v(a)]
if @6 €-ELEM: (o,48) € V then true-else-false.
Elem(a) + d: [defined provided a € U)andﬁasElsm(a) = true
i.e. @5 € ELEMi (a,s) €'V, e a = y(a)]
let § € ELEM such that (a,8) € Wy sl
o' = vls/dl, U' = U, R' =R, ' =N, X" =V,

NewNode < a:

let o € NODES ~ U;

v' =vla/al, U' =U U {a}, R =R, A'. = A, V' =V.

- MakeRoot(a) : [def:l.ned provided a € U - R, where o = y(a)]
R' —Ru{a} U’ U, A A, v' '-—-\z, v' = v

RemoveRoot(a) [defined provided d G R < U. where a = y(a)])
= U - fa}, R = R = {a}, A-‘" BV =Y, V=,

The following transformations are composites of basic

transformations:

-162~-

NewComp (a,s) - b:

NewNode -+ Db; | [n. b. the semig‘ol,cn ind,;.ca,tes cqm-
AddArc(a,s,b) position Of trEns#formations, with
2R application in the order shown]

DeleteComp(a,s): - o

if Has,ééﬁﬁ(a.ms)z S e [t‘ha comfoslt.e trans forma-

tion ;n 1e set hraces is
iff ‘the- node de—
s & has a component

then {Comp(a.s) =+ by
DeleteArc(a,s,h);

* witﬁ Tﬁ octor denoted by 8]
Prune}. ettt
_MakeEmety(aLsL' -+ b: B [ﬁakes ;"b 'déhote an empty

then {compta.s) - by o fa.ugtadwm'ﬁa}
Af HasElem(b) :
hen [Elem(b). » d;
| Deletqm«nﬁbaﬂ‘-}z;
else {Deletecomps(b);
Prune} } |

else NewComp(a,s) -+ b.

We now have the 'mak:hine’fy to describe the action of the BL
i'ntéfpx‘etéf . “The i'basi:c: ‘action u"ﬁo " ﬁic'ﬁ 5 root node , which
will be some SOA, t‘hen to execute t:he next instruct:.on
(g:.ven by t;he ip—coq:onent of the SOA) with reagpct to the
current 1oca1 structure (given by the ep-component of this
SOAY. Figure A.2-1 ilTustratés the skeletal stilicture of a
sample SOA. In the procedure we will give tidﬁifiné' the ~

action of the interpreter, special names are uséll t& des-

e Rl e SR Sy

-163~

ignate nodes in the current SOA. These names appear as

labels for the nodes in fig. A.2-1,

rmﬁndh

nxnnksd\ ""”+
i . 1‘+)
‘P e ?h+ re
Yoot e
Prow.
- Fig. A.2-1. sStructure of a SOA
dhrinq &ntérprstitﬁdﬁf ot el ’

Before giving a procedure which specifies the action of
the BL 1nterpreter. we define several auxillary transforma-

tions. Thege yse .the special names shoun%iﬂ fig A 2 l.“

B P
SXE

PlckActiveRoot 2 Root-
let a E R g that EB E U- (a, stat',B) € A & (B 1) E V-
\). = v[d./root], U' = U' R. R, A. = A' V. = V- o

Sugcﬂ+sggx£: , S DTS SO
v' = vix+l/nextl, Y’ =.U, R' =R, A' =A, VI =V,
where x = y(k).- GO DU R T e Tt

BT et

SRR

-164-

GetNextInstr:
DeleteElem(inum,k) ;
AddEiem(inum,next).

Jump (i) + next: [defined for . € {0,1,2,...} < ELEM,
where z = y(1)]

v = V[L/next]. U' = U' R' = R, A':ﬂ Ag V' =V,

Empty(a): [defined for o € U, where a = y(a)]
if HasElem(a) '

then false
else if doc € SEL, P € U: (a,0.,B) € A
then false

else true.

The action of the BL interpreter is specified by the repe-
titive application of the traneformation given by the follow-

ing procedure:

PickA¢tiveRoot~+'rdot; /* pick ah‘activé root node */
comp(root, *ep') -+ cls; /% access the e.l.s. via ep */
Comp(root,'ip‘)‘a ip;: |

comp(ip, 'proc') =+ proced:; /* accegd §f¢cedﬁfé structure */
COmp(ip,'iné#') -+ inum; /* nﬁmber 6f:cuf§ént instr. */
Elem(inum) = k3 o |

Comp{proced,k) -+ inst; /* fetch current instruction */
Succ + next; /* set fo¥ mext instruction */
ExecuteBLInstruction(inst): /* execute the instruction */

GetNextInstr, ~ /* reset ip for new instr. */

YR LTERE e e

-165~

Finally, we define the operation of all the BL instruc-
tions by giving the transformatiqn‘ExeuneBLInstrqctipn.

ExecuteBLInstruction(inst):

Comp(inst,0) - operation;

case operation of /* choose the action that matches the
operation code of the instruction */
'create’:

comp(inst,l) - x; - /* éreate X */
DeleteComp(cls,Xx);
NewComp (cls,x) = a.
'clear’: ,
Comp(inst,1l) -+ x; - /* glgar x */
MakeEmpty (cls,x) =+ a.
'delete’:
Comp(inst,lf 4 X3
if jHaSCOmp(inst,Z) 7 " s
then Deletecomp(cls,x) /*. delete x x/

else {Comp(inst,2) = m; /* delete x,m */

if HasComp (cls,x)
then {Comp(cls,x) - a;
DeleteComp(a,m)} 1}.

‘const':

Comﬁ(inst,l) -+ V3

Comp(inst,2) -+ x; . - /* const v,x */

MakeEmpty(cls,x) - a;

AddElem(a,v) .
'add':

Comp(inst,l) - x;

Comp(inst,2) =+ y:

~166~

Comp (inst,3) - z: ' /* add x,y,z
comp(cls,x) + a:; Comp(cls,y) + b: S
Elem(a) + d; Elem(b) + e;

MakeEmpty(cla,z‘)‘ -+ c;

Addzlem(c, 'fﬁi‘ (‘ﬁ?*y {@)).

/* other arithmetic instructions are similar

'link':
Comp(inst,l) - x;
Comp(inst,2) -+ n; _
Comp (inst,3) -+ y: /% Iimk %,n,y
COMP(clu;x)' - a; Comp(cls,y) «+ by SR
if HasElem(a)
then (Elem(a) + d; DeleteElem(a,d)} -
else DeleteComp(a,n); Lot e
AddArc(a,n,b) .
'select’s
Comp(inst,l) - x;
" Comp(inst,2) -+ n;

+/

*/

Comp(inst,3) =+ y: ‘ /* select x,n,y */

Comp(cls,x) - a;
if ~HasComp(a,n)

- then fif HasElem(a)

‘ then {Elem(a) -~ 4;
- DeleteElem(a,d)};
NewComp(a,n) + b}
else Comp(a,n) =+ b.
‘apply': | _

Comp(inst,l) -+ p;

- =167~

Comp(inst,2) - x;

/* apply p,x */

Comp (cls,p) - proc; Comp(cls,x) - arg;

Comp (proc, '$Stext') - t;
NewNode ~- newsoa;

NewComp (newsoa, 'ep') - newcls;
AddArc (newcls, '$Spar', arg);
NewComp(newsba,'ip') + newips;
AddArc(newip, 'proc’,t):

NewComp (newip, 'inst’') -~ newinum;

AddElem(newinum, l);

NewComp (newsoa, 'stat') -+ newstat;

AddElem{newstat,l):
AddArc (newsoa, 'ret',root);
MakeRoot(newsoa);

Comp (root, 'stat') -+ stat:;

' DeleteElem(stat,l); AddElem(stat,0).

‘return':

Comp (root, 'ret') - oldsoa;

Comp (oldsoa, 'stat') - oldstat;

DeleteElem(oldstat,0); AddElem(oldstat,l):;

RemoveRoot (root); Prune.

' m'ove_l :

Comp(inst,1l) - f£;
Comp(inst,2) - x;

Comp (proced, £f) -+ a;

Deletecomp(cls,x); AddArc(cls,x.,a).

'goto':

Comp(inst,1l) - 4:

Jump(g) - next.

- :/* move f£,x * /

/*'go_t_q_-z * /

~168~

‘elem?': ,
comp(inst,1) = .x;
Comp(inst,2) =+ £;
Conmp(cls,x) -+ a;
if -qﬁasElem(a)

then Juﬁp(z) -+ next.

'empty?': '
Comp(inst,l) - x;
Comp (inst, 2) - 43
Comp{cls,x) -+ a;

,i..E -~Empty (a)

then Jump(g) -+ next.
Comp(inst,l) - x;
Comp (inst,2) = 4; -
Comp{els,x) - a;
if Empty(a)

then Jump(4) + next.

reg?': o
Comp(inst,l) = x:

Comp (inst,2) =+ y:
Comp (inst,3) -+ £:
Elem{x) =+ d4; Elem(y) -+ e;
Af v(d) # v(e)

then Jump(4) - next.

‘has?': - ,

Comp (imst,1) <+ x;

Comp(inet,2) -+ m;

/* sERtyR x.4 */

/* ponempty? X.4 */

. |
/*' m X, Y l:‘ */

P

~169-

Comp(inst,3) - £; /* has? x,m,4

P

*/

if —HasComp(x,m) = - SRR

then Jump(f) -+ next:
'same?’':
Comp(inst,l) - x; Sl e e
Comp(iqst,Z) +yi ' ?w. . N
if v(x) # v(y)
 then Jump{yt) 4 next.

/* other comparlson 1nst§uct10ns a;e szmllar

3 I Lu AL ﬁ

'‘gete':

Comp(inst,l) - x;

_\.*/

. ,‘*/

Comp(indt,2) =+ Az oo ielesn oo r 0

Comp(inst,3) - £; : /% getg %ii,
- Comp(cls,x) + a; MakeEmpty(cls i) -+ b- |
if HasUnmarkedComps(a) >
.ﬁhen,faeﬁuﬁmufﬁQGGG,pfgyngzggp' Y B RS N
Mark(a,s),
AddElem(b s)} .

- alse ,{maﬂc{)@sgﬁ(a):,;r S R SO R TN SN

ump(e) -+ mext}. .

JURPY fopt ive sl
Q.L}j FG- R

~n

endcase

This completes the definition of the tranlfofmation
ExecuteBLInstruction. The getc instruction, however,
requires some special additional mechanisms, which we now

show.

oy

-170-

HasUnmarkedComps (a) : [defined §rovidad,a € U, where a = v(é)]
if %o € SEL: (a,0,P) € A for sope B €.V
- and o £ MARKSET (a)

then true else false.

GetUnmarkedcomp(a) + s: [defined provided a € U and

HasUnmarkedéﬂm@n(d)"E“ﬁrﬁe.'ﬁhere
a = y(a)]) .

let o € SEL be as in the HasUnmarkedComps predicate;

v' = vlo/8].

Mark(a,s): [defined provided o € U and g € SEL, where
a = y(a), o = v(s)]
MARKSET (0) ¢ MARKSET(a) U {o}.

UnmarkCompsOf(a) : [defined provided o € U, where o = y(a)]
MARKSET{(G) « ¢. ' :

We observe that each node a € U_has a set MARKSET (a) asso-

ciated with it. All such .marksets are initially empty.

‘There is one final remark to be qué,_‘Aithough our
definitions of the BL instructions contain many composite
transformations, the interpreter is to regard the effect of

a BL instruction as an indivisible unit.

