
MAC TR-136

FUNCTIONAL DOMAINS OF APPLICATIVE LANGUAGES

Stephen A. Ward

September 1974

This research was supported by the Advanced
Research Projects Agenc y of the Department
of Defense under ARPA Order No. 2095 which
was monitored by ONR Contract No. N00014-

70-A-0362-0006

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139

This empty page was substih1ted for a
blank page in the original document.

ACKNOWLEDGEMENT

The author gratefully acknowledges the assistance of his Thesis Committee in

t~is work. Professol"S Jack Dennis and Joseph Weizenbaum, his readers,

provided helpful suggestions and encouragement during the course of the thesis

research. The author feels a special indebtedness to his thesis supervisor,

Professor Michael Dertouzos, for his essential contributions to the direction,

motivation, and technical content of this work.

Particular thanks are due the author's wife, Debbie, whose constant support

and encouragement have thus far been rewarded by a depressingly long period as

the wife of a student.

The author is grateful to the Department of Electrical Engineering for the

Instructorship under which much of this research was carried out. This work

was also supported in part by Project MAC, an M.I.T. research program

sponsored by the Advanced Research Projects Agency, Department of Defense,

under Office of Naval Research Contract N00014-70-A-0362-0006.

This empty page was substih1ted for a
blank page in the original document.

FUNCTIONAL DOMAINS OF APPLICATIVE LANGUAGES

Abstract

The expressive power of a particular applicative language
may be characterized by the set of abstract functions di­
rectly representable in that language. The common FUNARG
and applicative order problems are scrutinized in this
way, and the effects of these weaknesses are related to the
inexpressibility of classes of functions.

Certain computable functions which are inexpressible in the
lambda calculus are identified, and it is established that
the interpretation of these functions requires a mechanism
fundamentally equivalent to multiprocessing. The EITHER
construct is proposed as an extension to the lambda calculus,
and several theories including this mechanism are presented
and proved consistent (in the 'ense that they introduce no
new equivalences into the lambda calculus).

A syntactic analog to the Scott construction, *-conversion,
is developed in conjunction with these theories; this adjunct
allows reduction of expressions having no normal forms in
the usual lambda calculus to finite normal form approximations
of the expressions. This leads naturally to a technique for
proving the extensional equivalence of lambda calculus
expressions which are not interconvertible.

*This report reproduces a thesis of the same title submitted
to the Department of Electrical Engineering, Massachusetts
Institute of Technology, in partial fulfillment of the
requirements for the degree of Doctor of Philosophy, June 1974.

-,-

-5-

Table of Contents

1: Introduction
1. 1: Programming Language Semantics
1.2: Applicative La~uages
1.3: The Thesis: Statement of the Problem
1.4: Outline of the Thesis
1.5: Functional Domains

1.5.1: Intuitive Criteria for Functions
1.5.2: Functional Domain: Definition

2: Intel])reter Structure and Expressive Power
2. 1: SJntax of Models
2.2: Curried Functions
2.3: The FUNARG Problem

2.3. l: The S 111>del
2.3.2: Arittnetic Completeness of S
2.3.3: Functional Incanpleteness of S

2.4: Evaluation Order
2.4. f: The T Model
2.4.2: Functional Incompleteness of T

2.5: The N 111>del .
2.5. 1: Axia11s for the Lambda Calculus
2.5.2: Normal order: Substitution

2.5.2.1: The I Evaluator
2.5.2.2: Axiomatic Consistency of N

2.6: Functional Domain of N
2. 7: Summar-y

3: Motivation for a Multi-valued Semantics
3.1: Necessity of non-functions. : WHICHFF
3.2: Codi~ ~illlitives: The C model

3.2.1: 'Ille Turing~cbine Tar Pit
3.2.2: Functionality of DECODE

3.2.2.1: LAMBDA-f'l"'ee AF.a
3.2.2.2: An FAumeration of D11_

3.3: E model: ttlltiprocessing prD1itives
3.ll: The Intuitive Paradox
3. 5: Plllt 1-valued Seltantfo Elements

3.5.1: Domains of Specification ,
3.5.2: EITHER and the Lambda calculus

3.6: The Power Set Domain
3.7: Interpretation of F•
3.8: Computable elements of F*
3.9: Summary

4: Theories of EITHER-conversion
4.1: Preliminary Definitions
4. 2: The Ei ther-R Theories

4.2.1: Pr~erties of Either Theories
4.2.2: EITHER and Evaluation Order
4.2.3: Consistency of Either-R

4.3: SUmmary

5: •-Conversion
5.1: The R-• Theories

5.1.1: Significance of normal forms
5.1.2: Theorem on Normal Forms
5.1.3: Relation to the Lambda calculus
5.1.4: Consistency of R-• Theories

5.2: Applications to the Lambda calculus
5.3: summary

6: The Either-R-• Theories
6.1: Consistency of' Either-R-•
6.2: Relation of • to EITHER
6.3: Evaluators for E
6. 4: Summary

Table of Contents

7

~
10
10
12
13
13

15

rn
19
20
21
24
28
29
30
32

~1

n
ft~
48
~§
~1
5~
·55
56

~i
58

~6
63
64
65
67
69
71
76

77
78
i~
89
91
91
93

95
95
98
99

100

Table of Contents

Either-K Theories
K-abstraction

-6-

7: The
7. 1 :
7.2:
7. 3:
7 [j.

Consistency of Either-K Theories
Functional Domains of Either-K
Summary

8: Summary and Conclusions
8. 1: Summary
8.2: Conclusions
8.3: Directions of Future Research

9: References

10: Biographical note

101
101
1 ,.~
1 1 ll
111

113
113
116
117

120

12 I

This empty page was substih1ted for a
blank page in the original document.

-7-

Chapter 1:

Introduction

1 • 1: Programming !-anguqe Semantics

The semantics of a programming language may be v.i,~d as .. a .theotY .which
. <.··:~~:""~,-~~~ ~bD' ... ~,'"'h.. ,.

accounts for the behlivior of programs wr!t~tm in t.~t: ~r:i~,~~· Ap. ..

interpr-eter for a language L is a llX)del for the s,mantics ._Qf ~. and a,lf':ng~e
. . , .· .• ·. ,.. . :'< ·r ' ·~·,;: .

whose semantics is incOIDplete (in the sense of an incpaplet~ theory) ,-.y have
~~ •·. , 'J.:' ~ ·-· '. ... ~ ;.,

many "correct" interS>reters ~ich behave differently just as an 1ncp"1J)lete

:~ heory may have di spa rate models. We find that the usual more specific

definitions of semantics (e.g. "the relation between expressions and the

objects which they denote") make assumptions about the structure of a universe
-:.·J:~t~l:fk ·~· .i -"

of "meanings" which are difficult to justify in the general case, where side

effects, assignment, •ad tranaf•r• ot controh.maat~ ~aee&unted 'f'or

:Je~nt!cally •. Sll~h. cop.~4er,at1GD$.!DOUvate the reatfl.l!eMon of' the present

work to applia.tiv.e laqg~s! '

Serious concern for rotmal semantics is not usual~ a1~ important .C<X'lt$ideration

in the architecture or' practical' larigiiages. Ty~o,111~ .,. la,l'lgU&ge is desi&,nedc

largely by pragmtic considerations and"' the ro.rmal sbat~nt._ of i.ts semaptics
• - • '-A \ ' ~ ' • ' • ... • • '

is either abandonecf entirely ·or po'stt>o~d''untll the more 1iaportant
.; ·. . .~ ;::'.~ . ! '.~!L ·,-.. ,

implementation issues are aorted out. The subsequent semantic formalization
J ., ;'"1 t ' ~ : " '' . ..

of tti. labg.uage inevitably b~O.is a •jor taak, and Hie complexity, volume,
' '- ._ ·.~"':' ..f S r,. •) ... '~

and inserutu1Uty of the result ay constrain· its usefulness. A classic
~ .. ~~:: .·. 1: .·, '; - .. 'j '

example of such an wadertllk1 .. is th-e 'clesortption of .PL/1 in the Vienna

Definition La,.uage(24J. · , ·
''"~ ,,. .

An alternative technique or language design, ex•plifJ.•d to some e~t.ent in

LISP[26J and its recent der.tvati~ea, lnvoi~~s 1
;e ~~.ir~cation of ,the . :""·r . - . ·.

pragmatics or a la~uage after decisions on some particular concise .semantics
- • ••

1
'. · ' ~- < . L."i : ;t.· •'. , ,

have been mad~. Unfortunately languages so des.i~ed ten~d to, haV'e s~r~pus
\.: : ?1 - '_, ~,

defects from a practici!d point of view and are abandoned .or complica,ted by the
" .I ~ i "·

addition of :I.St··~ mechanisms to make them llX)f"e useful .•

-8- 1. 1

The designer of a language is thus confronted with a choice between concise

semantics and practical usability, and he justifiably tends to opt for the

latter alternative. The extent to which semantic considerations may be

reconciled with practical issues remains an important open question, and the

development of practical languages with concise, elegant semantics is the long

tenn goal of much of Computer Science research. · 'nle problem is being attacked

fran two discernible directions: (i) semantic formalisms which deal with the

mechanisms of extant practical lan~uages, such as the analysis of

uninterpreted scherilata[9,8,13,17,25]; and (ii) the adaptation of existing

formalisms to very simple D:,c:1e1 languages such as the limbda

calculus[2,3,5, 15,22]. The work reported here falls naturally into the

second category.

1.2: Applicative Languages

Familiar concepta'of nathematics provide an informal semahtics for many

aspects of. canputer languqea. Manuals for mat pto0gr'M1m1ng languages relate

various program constructs to such notions as real rlU!lb.-rs, arithmetic, and

functions, with liihich the reader is presumed to be acql,Ml,t.nted. Often
' ,'

terminology and notation are borrowed from mathematics, ,implying some infonnal

relation between, say, a FORTRAN "function" and the ~omm,on mathematical notion

of fl.l'lct ion. This relation is only appro~imate, isince for example no

mathematical analog has been established for the FO~IRAN function which prints

its argument on the teletype. In order to fo""'lize the relationship between

program constructs and mathenatical notiqns, then, we focus our attention on

the highly restricted class of apolicauxc languag•.:s·

The semantic bases of applicative languages are the theories of mathematical

functions, and the constructs of these languages are restricted to simple

analogs of the related mathematical notions. Each applicative language

provides a syntactic formalism for the representation Qf func~ions and their

application to arguments, and the semantics of an appli~tive language is in
. l' '.:I

general a rule for the association of expressions, constru0,t.ed according to

this formalism, with values ft-an an abstract semantic douin containing

fun ct ions and constants. Formalizing a consistent semantics for an

1.2 -9-

applicative language appears to be an easy first step in pursuing the general

problem of programming language semantics; since set theory provides

satisfactory semantic domains, all that remains is the seemingly s.imp.le

association of expressions with set theoretic functions ~d constants.

Yet even this simple problem is plagued with ctanpl.ica.<t.ions, a.ad it· is only in

recent years that. progress has be1Hl mde in thlll reat ~.illar-,gely due to

t echniq uea developed by Dana Scott [5, 6,.22]. · In 1"act..., ·:tne• usual set tlleoretfc

characterization of fimctions is not so well adapted to ti1e semantics of

applicative languages as one might suspect: type_ r!strictions, placed on set

theoretic fimctions i.n.?rd~'r_ to a~o.id Russ~.1 ·s .. P11r~dloq~~< a_re diffi?ult to

reconcile with the natural proclivity of appli"cati,ve l~~..f.~es fo~ the

self-application of ftmctions. The work of Scott justifies our optimism that

$UCh pr.-0bleDNS are traot.ablet':'alld tlm.t the- -~·t~s of':8$%>11o=tt1Ye: langllages

may be based on the mathematics of functions:. The-· e.rt~l~I\ or t.he·.reli!iUlting

semantics to non-a~.Pli~atiye mechanisms sue~,~ a~iu.~~ifl:'n~, an~ side eff~~ts
however,-remains an.area of grave uncertainty, and_ it Hfll:llS likely that

• ·.;t. . ,-· . .. • • ~ '_ ··:·· . . - - : . . ,,,..

theories ~f ftmctions will ultiml..~ly. prove to. be '1nadeq~~~ bases for the

semantics of programming la~uages in general. In the meantime, however,

applicat.iv~A.anguages •nd ~&ei1"' /ii111otioral-.-•-nticc dollNliD• '.are. probably the

closest we h•ve c•e t;.o a suecessf.uJ. 1K"OD?Ulli1C·lan&14et temantios, and we

feel that there is much insight to be gained from further exploration of this

area.

The semantics of an~appUcattve langugf Lt 'tihlil, .·Ml' J~~t:J.ieved as a mappinc

between the set .of w.Ud expressioba tilld1,,~tbe idee!sn:d difCIQMEM of ~) and

and a semantic dcmain of· ab•traot 't\.l'lct.1ona an4 oollst«lts., • caondquence ·of

the Turing Universality of L is that this -sa'1ne 11uat :a 11Jany to one; each

abstract semantic element has, in general, infinitely •ny representations in

the language L. The semantic mapping trus leads naturally to a notion of

semantic eguiyalence between expressions in L, partlt~irtg the domain of

discourse of L into equivalence classes each of which corresponds to a single
' ;:. :~~ - "" ~ • -~ ~~.~~ "'; _.,:,~ ; •,.f .•

abstract semantic element.

-10- 1. 3

1.3: The Thesis: Statement of the Problem

The problem which this thesis addresses is the characterization of the

exoressiye cower of an applicative language in terms of the structure of its

abstract semantic domain. This process generally involves relating specific

applicative' lang\Jage features to the expressibility or particular classes of

functions, e.g. the soluM.on of the FUNAftG probla to the expressibility of

functions appiig integers onto an infinite ,,range :o~ semantically di'rstinct

f1..11ctions.

This work focuses on a very few specific language mechanisms, with particular
'

attention given to an applicative analog of multiprocessing. Partial answers

are provided to such questions as:

1) Are there fwicti9ns whose 'COIDputability depends fundamentally on a notion

aoelogous to wlt.J;proceesing?
"'f

2) ~at applicative mechanisms are necessary for the expressi~n of such

flllctions, and is the impact of these mechanisms 9n the structure of the
. '

semantic domain?

3) ~at is such. relationship between aueh mult1pr~91h1ing construats and

other issuea: or aJpUcath'e language evaluation, ,;such a\i evaluation

order?

The work presented here might be characterized as a search for an applicative

language L which is-fuootinally 409pleM:iJlhthe.aeaaeLt1tiat,eveey oOllputable

fl.motion de finale oft tbe ••mantic ck>lliam at L ta upreaa.tale in ·L -- our

reluctance. to cite thia as the principal goal ofH:tbe· thesis .1& probably due to

our failure to find such a language.

1.4: Outline of the Thesis

The organization of the remaining chapters is as foiiows:

Chapter 2 develops the basic framework through the presentation of three

interpreters for applicative languages, designated S (stack environment),

T (tree environment), and N (normal order). Each interpreter exemplifies

--------- ~---- --~ -~·

/

1.4 -11-

a typical language limitation and eaQh is, ·used to reclate a specific

language characteristic to the expressibUi t.y. of :a l>'rticular class of

fun ct ions.

Chapter 3 demonstrates a particular computable fUnct1on which ls

inexpressible both in N and in the lambda caloulu8, and relates this

inexpressibility to the semant io requirement ttlat: an expression- 'l"' these

languages have at most a single value.· 1'wo alt.at-native lanp:uage

extensions are discussed, each of which solves. this., specific

expressibility problem. The solutions involve, respectively, primitives

for coding the representation of functions as integers and a
:(. ~

multiprocessing primitive called EITHER. Each of these extensions

requires modification of the structure of the semaptic domain, with the
~· ... ~

use of coding leading to drastic and undesirable consequences. For this

and related reasons, EITHER is chosen. To accoun~ for the ~mantles of
;,,• -

EITHER, the semantic domain of N is expanded into a power set and each

expression X is associate,Q semantically .:with an enUDMt-rable set containing

the admissible values of X.

The formalization of EITHER-augmented languages may procede in several ways,

differing in the restrictions placed on evaluation order. Ch~ters 4, 5, 6,
::·,·~. ;·. L : ..

and 7 deal with certain fonnal theories, based on the lambda calculus, for the

reduction ot expressione involving the EITHBR construct:

Chapter 4 provides basic definitions and presents the Either-R Theory, in

which lambda conversion is allowed only in expressions wh~se argument~
' '/ ~' ·.

are in normal form. This restriction is motivated by the intuitive

desire to maintain the distributivity of functions over terms of an

EITHER clause, bUt it limits the power of languages based on this theory.

Chapter 5 develops a theory of •-conversion, designed to mitigate the

limitations imposed by the restricted lambda conversion of the Either-R
: ',_' _; ·,,,. . - ·"

Theory. The element • is introduced as a canonical representation of
," .- ,\ .,

every nonterminating computation, and a syntactic .mechanism is provided . , .. .: : . {

for the reduction of expressions to approximation~ which are in normal

fonn. The use of •-conversion provides techniques for, proving certain ,,
relationships in the conventional lambda calculus. .This chapter presents

f "~

-12-

results which are of interest independently of their r"'elation to the

development of the Either theories.

1. 4

Chapter 6 presents the Either-R-• theory, canbining the EITHER mechanism

with •-conversion, and establishes its coos.istency. While this system

retains the restriction on lambda conversion; it hae the power of the

lambda calculus augmented by the EITHER primi ti'te. Thus, languages based

on Eitber-R-• solve the specific expressibility problem raised in Chapter

3. Interpreters and semantics for such· languages are discuaeed.

Chapter 7 presents the Either-K theory, which combines the EITHER construct

with unrestricted lambda conversion. Significant semantic differences

between the Either-R and Either-K theories are n~ted, and it is

infonnally observed that the removal of the restriction on lambda ,.
conversion leads to the expressibility of certain functions which are

inexpressible in the Either-R-• languages.

The last dlapter sm•rizes the results of this tt0rk and proposes avenues for

future research.

1 • 5 : Fun ct ion al Dana ins

An lmderlying assumption of this research is that ~ fundamental semantic

intent of applicative languages is to provide compu~ational models of

mathematical fl.l'lctions. As a consequence of tpis assumption, we are inclined

to view functions in an applicative languae:e as approximations or models of

abstract mathematical f\llctions, and to treat any dis.pari~y- between the

behavior of the canputationa·1 model and the corresponding mathematical

function as a "bug" or idiosyncrasy in the language.

The thrust of this research is aimed at the limitations of particular

applicative languages as m.:>dels of systems of mathematical functions. We

begin by specifying, in the next section, criteria which must be obeyed by
' :;..\

applicative functions to be intuitively satisfactory as models of mathematical

flmctions, and then distinguish for each applicative language L that subset of

the domain of L containing only such intuitively sa~isfyi~ functions. We

call such a subdomain of L a functional domain of L.

1 . 5. 1 -1 3-

1.5.1: Intuitive Criteria for Functions

R·-..stricting our attention for the n:>ment to 1mary (s.ingle argull'lent) functions,

we note that

1) A function I. is a macping fran a domain Df to a range Rf. The

set-theoretic nx>del off.. is a set of ordered pairs, { ••• <Di,Ri> ••• }, such

that !.[Di]=Ri if and CXllY if <D1 ,R1> is an •leMnt of !•

2) A fun ct ion f. may be cartial over domain D, i.e., there may be elements D.
l

in D such that L[Di] is undefined;, this cor~es~~~~s to the practical

situation of a nonterminating computation or a canputation which results
. .,

in an error condition. We shall refer to such a computation as

divergent.

3) If f.. and & provide the same mapping, then they are the same function.

4) & is a sub§et or I.. (in ·the set-theoretic sense) tr and only if foi.-; every

Di in the domain of g,, g.(Di]=Ri implies. t:.[Dil=Ri.

Given a language L and a fl&'lction r., a prinbipal intuitive requirement is the

distinct ion between t~ funot ion r. and the varioaa: algorithms (or expre!-sions

in L) which may be used to compute r.. Ai maj:ol' ~oaplicaticn in the semantics

of applicative languages arises from this many-to-one correspondance between

algorithms and fll'lctions, particularly in li~t. of the well knqwn

undecidability of equivalences between algorithms.

1.5.2: Functional Domain: Definition

The intuitive consi<lerations of the previoua;weotion mottv&te the fol:lowing

definition:

Defn 1. 1: A functional domain F is a set ccntairUng the set 'N of natural

numbers and computable functions, 1 along with an equivalence relation ~
such that:

1 Unless specifically stated, we shall use the term func;ion with no implied
type restrictions. Thus f\lnctions include functiona s o arbitrary order,
consistent with the typeless character of the applicative languages considered
here.

-14- 1. 5. 2

1) if x_ is in N or y_ is in N, then x-y if and only if x=y.

2) if neither x. nor :t.. is in N, then x-y if and only if for every .z.. in

F, x.(.z..]-y_(.z..] or both diverge together.

3) if x.-:t.., then for every .z.. in F, ;.[x.J-.;.[x.l or both diverge together.

Clause (1) simply asserts that different numbers,· e«· 2 and 3, are semantically

different objects. Clause (2) asserts that any obje(l~ in F that is not a

number is a f1..11ction, am moreover that functions a('e. semantically equivalent

if and only if they perform equivalent computation~ for every set of

arguments. Clause (3) insists that the applicatio~ or a func~ion to

semantically equivalent arguments yield semantically equivalent values.

An expression.& is said to be f~nckionil over ~he ctomai~ F if, for every

choice of x. and I. in F, x.-:t.. implies that i.Cx.l-i_[I] or both computations

diverge together. Thus (3) is the req-W.rement that. eve,.Y fun.ot1on in a

functional domain F be functional over F.

We note that the equivalence relation - is not, in general, canputable.

Furthermore, there may be elements x. and :t.. in F su<Jh that 1C:t.. is not defined,

that ~' such that neither 1Cx.. nor .. ex-:t..t is· derivable rran the ·above

definition.

This definition is rather DDre specific th8n necessary. The choice of natural

numbers as a basis of semantically distinct constants, rather than, say,

character strings or floating point numbers, is arbitrary. In dealing with

the lambda calculus we cQJld make the apparently stronger requirement that

normal ~expressions be semantically distinct, rather than just the

particular normal (orm expresaiona whiqh are numeric oonstarlts; however it

happens that the two altematives are entirely equivalent in the con-text of

our nDdel la~uages, and our present definition is the less dependent on

particular syntactic considerations.

2 -15-

Chapter 2:

Interpreter Structure and Expressive Po~er

In this chapter several illustrative inte~eters for applie!ative languages

are presented, and compromises .in their implementation ati-e related to the

inexpressibility of certain functions. The model_interpreters .~~ taken from
~- . .. ,

Dertouzos[31 where they are discussed and motivated in greater detail.
':°"' ~ ~'

2.1: Syntax of Models

The essential canponen.ts of an applicative lanwuage .syntax are conventions for

the representation and application of functiona. · fypical applicative

languages provide for the representation of functions by eith~r or--both of the

follow!~ means:

1) A set of reserved symbols designating oriJDitiye functions whose semantics

are basic to the language;

2) A convention for fungtional abstragtign, or the definition of new

f1.11ct ions by mean~· o·r expression's· containi~g variables.

The pure lambda calculus of Church[1] is illustrative of languages using only

the abstraction mechanism; the comb1natory calcwlus .of Curry[12] exemplifies

the use of primitives without abstraction. Curry[12] has demonstrated the

equivalence of these mechanisms, with minor qualifications, and the choice

between them for ou.r pw-po.- is largely & ._"-" .'1>,. "canvenie~; We pr-ovl<le

here syntactic construct.a tor both.

Beyond these constraints, t.~ ~yntactic -~-~ails of ~.t~~ la~g~!l!es discussed

here are not important. A LISP-like syntax has been chosen. for the
>-· <t""~ .. E.: :::.. , .

development of the llDdels and to provide a definite basis for examples and

illustrations, although the results and"examlitn·'._,. tie translated to conform

to other syntactic conventions which are conaist.eot; with these constraints.
, .:.. ' .i ;' . :·.~ ;·· ~

Syntactic characteristics of our 11Ddel languages include:

1) A finite alphabet including the alphanumeric characters and the special

characters "{" arid ")";

------- -----

-16-

2) A countably infinite set of identifier§, each a finite string of

alphanumeric characters of which the first is alphabetic;

2. 1

3) A set of nulDE!ric constanta, each represe,nted in the language by a finite

string of digit•.

The elements of the model applicative languages are the IRP!icatiye

expressions (A.l's) whose syntax is given by:

<AE>

<identifier>

<can bi nation>

<AE list>

<lambda expression>

<bvl>

<number>

<letter>

<digit>

We assume of these 111> de 1

:= <identifier> I <number> <canbination>

expression>

<lambda

:=<letter> <identifier><di-t'it> !<identifier>

<letter>

:: (<AE list>)

: = <AE> : <AE> <space> <AE list>

·- (LAMBDA (<bvl>) <AE>) ·-

== <null> I <~dentifier> <space> <bvl> I

:: <digit> I <digit> <number> I
'/ ', '"

·- A B Z' ·- ...
== 1 2 0

lane;u-.es tha\ de.ta is 1eit1Mr fttllnePic or functional,

that is, that the yalue canputed for any appld.oati-ve mq,r•sion must be either

a natural rumber or a function. 1 An expression X is atomic if X is an

identifier or a number; in addition the roiiowi .. syntactic forms have special

meaning in our m:>de l languages:

1) The syntactic form of a lalllt>da exprea-aion ia

1
Our decision to ignore for the present other common data types (floatin~

point l'llmbers, arrays, character strings, lists) is justified by their ·
codability as numbers 1 so that our results concerning ~rocessing of numeric
data may be extended ~o the processing of these other aata as well.

2. 1 -17-

where LAMBDA is a reserved identifier in the language, the a
1

are

identifiers o'n the bound variablt l.l.li. Cif the lambda expressions' and the

expression bis the~ of the lambda expression.

2) The syntactic form of the aoplica'tion of the procedure (function) f to

arguments x 1 ••• xn is

Here f is presumed to be the representation of a functional datum, and

the xi are representations of arb-i tra-ry data ·wh·ioh are' supplied to the

ft.11 ct ion f as arguments.

There is in each language a s•ll finite set of reseMd identifiers used to

denote primitive functions. Our initial models will include the folfowing

primitive ft.motion identifiers:

1) The logic values T and F, primitive functions defined such that the value

of the application

(T a b)

is the value of the expression Jl., regardless of whether the value of the
- ~ ·~ ~'

expression J2. is defined. Similarly, t~ .. value of
'. • l c : • ,... • '

(F a b)

is the value of the expression J2. .whether 9r not A has a value.
l

2) The ft.motion PLUS of 2 ajogument-s, defined such thtat the -value of the

expression

(PLUS a b)

is the sum of the value-s or the -expressions A. and]t. 'lbe value of th-e

application of PLUS is undefined if either ~dt ttttf values or A. or ~ is

nonnumeric.

3) The fmction GREATER of 2 arguments, defined s\Jch that the value of the

expression

(GREATER a b)

-18- 2. 1

is the primitive function T if g_ has a higher numeric value than the

expression .Q., and F if the value of a is less thaQ or equal to the value

of .Q..

We shall often refer to an identifier which is not a primitive function symbol
.

as a yariable. An occurrence of the variable y_ in the expression X will be

termed a ~occurrence if one of the follow!~ applies:

1) X is identically the variable y; or

2) X is of the form CA1 ••• An) and the occurrence of y is free in one of

the Ai; or

3) X is of the form (LAMBDA(a 1 ••• a j)M), y doe& not -0oour in the bound

variable list Ca1 ••• aj), and the occurrence of y is free in M.

An occurrence of the variable y which is not free is bound.

2. 2: Curried Functions

The syntactic prcwision made here for functions of multiple arguments requires

certain further elaboration. We may reasonably demand; for example, the

ability to express the function MPLUS defined such that, the value of tMi>tus m)

is the m-ary flrlction which returns the 8Um of its m arguments. Such

fl.l'lctions are, in general, unrepresentable unless some primitive mechanism is

provided within the language for the abstraction of mult~ple argument

fun ct ions. We might consider the abstractiql'l pr.i.Jni tive ALPHA, defined such

that the value (ALPHA F G m) is the m-ary lambda expression

(LAMBDA(x, ••• x)(G x CF x, ... x ,>>> m m m-

where F and G are presumed to represent (m-1)-ary ~ binary functions,

respectively. We might t}\en define MPLUS so t.,.t (HPLUS 2) returns PLUS, and

(MPLUS n) returns (ALPHA (MPLUS n-1) PLUS n) for n>2.

Such a primitive is, however, tmnecessary in most languages. The technique of

Curried flrlctions 1 may be used to couch multiple-argument functions in terms

1 named in honor of H.B. Curry who developed this technique; see [12)

2.2 -19-

of unary f1.11ctions, whence the application of F to arguments A
1

A2
becomes

(••• ((F A
1

) A
2

) ••• An)

and the n-ary lambda expre~sion (LAMBDA(Ar A
2
••• A·n)M} becanes

(LAMBDA (A
1

)

(LAMBDA (A
2

)

(LAMBDA (A)M) • • •))
n

••• A
n

The convention of Curried fl.l'lctions simpl1f1'!$. Ulf presentation df proofs ··and

interpreters, as only single a,rgument tu,notiona.n~.;bt"'e:onsidered; we

therefore hastily adopt it for our present., purp,oaea. Tb..e convc:ntional.

multiple argument syntax is slightly less C-011Pli04,te~, tiowever, ard tends to

~reater clarity than the use of C'1r.ri.ed funotj,pn~i "ll,,~ntly allow

ourselves the informal! ty of swi tQhing fre,ely b.e~.e~ ;,he,, .. two corwent.ions at

our convenience. We may then consi4er, ins~nce.s. or. ~" multiple a.rgument

syntax as an abbreviation for the corresponding Curriefi ,.:w.nta~, which we take

as basic.

An exception must be made in the first model langU8&' p~ented, however, as

the FUNA.RG problem does not interact gracefully with.Ci.Jrried functions; hence

in this case the assumption or single argument functions is not made.
; \ ~'-

2.3: The FUNA.RG Problem

We are now in a position to give an exuple of a ftactionally incomplete

language, lbich we call s. S is an abistract?ian or the a:pplicative subset of

LISP and similar stack-oriented languages; ~t aervea to .int.rOdUce the notion

of environment, and demonstrates t.,_t certain lllilniMl structural constraints

on environment handling mechanisms are neeesaary for ~ expreasibili ty of a

particular class of ft11ct!ons.

-20- 2. 3. 1

2 • 3. 1 : The S llK> de 1

An enviromnent is a linear sequence of ordered pairs (or bindings) (x,v),

where x is an identifier and v is a value. Environments are thus a mechanism

for the use of identifiers as variables, serving to record the values

associated with eaoh variab~e. We represent the enviroiiment which binds the

variable x
1

to the value V
1

, x
2

to v
2

, and so on, as

The envirornent structure of the interpreter for S aay be viewed as a stack,

bindings being pushed onto the environment from the left at the start of the

application of a lambda expression, and subs~uently being popped from the

envi roment at the cmpletien or that applicatiori. The S interpreter finds

the current value for a variable X by looking, in turn, at each binding

starting with the let'tmost; Mhen a binding Whose first element is X is

encounterect, the asaoclated value (the second element of the binding) is taken

as the value of X. We •Y describe this operation by defining a primitive

fl.llct ion lookup of two arguments, corresponding respectively to the identifier

to be evaluated and the environment in Which its value is to be found:

lookup[x;CCX 1,v
1

)CX
2
,v

2
) ••• (Xn,Vn))]=

if x:X
1

then v
1

;

else lookup[x;(CX2,v2) •.• (Xn,Vn))]

We now describe the interpreter for S as a function defined recursively as

follows:

S[x;e] =

if x is a number, then x;

if x is a 11amber of {T,F,GRBATIR,PLUS} then x;

if x is an identifier then lookup[x,e];

if x is a lambda expression then x;

if x is of the for111 (T y z) then S[y;e];

if x is of the form (F y z) then S[z;e];

if x is of the form (GREATER y z) then:

if S[y;e]>S[z;e] then T;

else F;

2.3.1 -21-

if x is of the form (PLUS y z) then S[y;e)+S[z;e);

if xis of the form ((LAMBDACs
1
••• sn) b) y

1
••• y

0
) where the

si are identifiers. the,n

S[b;(s 1,s[y 1;e)) ••• (sn,s~l,,Je))e];

if xis of the form (y z1 z
2

••• zn) where y is not a lambda

exprtllitaion, then S((S[y;e] z
1

••• zn);e);

else undetined

Thus S[x;e) canputes the value of the expression .1. in the environment it·

S[x;fl] (where 0 is the empty envirorma-nt..) ccaputl.ea •the value or .& on an .S

evaluator in its initial "bare" state; we may refer to this simpley as the.§.

yalue 2I.. .I.·

2.3.2: Arithmetic Completeness or S

We refer to a la~uage as arithmetigally c99pl1te if every canputable first
1 , ..!", t. ·. :.;;, . --~~ " '•,Jt .•) ! . •. . k:. ~ , .. ,,"

order function is representable aa a procfedUre ot that language~· ire stiow
l.· · -. . .4·. ~ .. : ... , _ ·-.;·.. r ·: ~"'~- ·. ':.• ?.••. ~ ., ·'

that s is arithmetically canplete by shOwing ·uat ror everi ffrst order'.

partia:i recursive (hence canputable f 'too,~io'n t:'n~.;9·:.'!s' a 'cer'respondlng

fun ct ion in s. The constructions or this sec ti~~,~~~' 'idaptations ~oi those

appearW. in Dertoumoa[3] and. are ~ :t&C4•sl"•Piif~}'; to.r •1c4,.,,0f

11 lustration; while each suNeciuea_t ':•4eli l•neaa&e J.•L-190 ari ~.tically

canplete, similar constructions apply in each case and will not be repeated.
... ./. t, . \

As a preliminary step, we consider the S f\.llction given by:

(LAta>A(X l)

((LAMBDA(X Y D)(D X Y)) X Y
. . ' ~ ,.

(LAMBDA ex Y)((GREATER x y)
(PLUS· 1 (I).~ ~M.tJI: 1 Y))..) •

O))))

which canputes the "recursive difference" function

1 . ~- . ~· . - . . ·, .. ''. .. '. : , : •
FolloWing the terllinology .of, l~,_,. ~rJf:.j~ RlctiO"A: ·contains ol')ly

numbers in its range and domain, and ~ t-of:;~~ ::J 11ay conta.!ri Un
addition to fllmbers) functions of order less an j.

-22-

D[x;y] = if x>y then x-y else O;

by the algorithm

D[x;y] = if x>y then 1+D[x;y+1];

el.se O;

2.~.2

Note that the extra two layers of LAMBDA bi..W~ns ,_.ve only to bind the free

occurrence of the identifier D within its '(Mm·· Oe(;:i,ni.t1P4), and ti'l.ls to make the

recursive f\l'lction operate properly on S. 1

P[x] =if x<1 then 0 else x-1;

in S by the expression:

(LAHBDA(X)(D X 1))

where D is the recursive difference function defined above.

Nolf w shall demonstrate that eve~ partial ~curaiv~ 'i\inction of first order
, ~ "' . . . '·~ , . . .f: ' :·· .. ·: i1 ~ ... ~; ··; ~} -~ . .. l ~; ..\, ,1 :._ ~ '

is. repreaentat?+e as a ,fun.ct ion in S. In the foll~ng, lower case letters
.,.:, . ,, . ;· ·'-· ... J 1' ::;·· '· ,.,. '; .:.

r~r,~ent par!~ial recur:,~~ve functionq wttp,~ .~,P~r o~~ ~~~t~rs denote their

correppondi~ :S fmct!ons: ~

1)' For every' pair (J(1lataPal tRllfb•MI n anct a, the -. ... rgUllent QQllSt.aot

f\l'lction of •lUe a 1• •xpl'•8'd tn &,aa.i;

. ,.

2) For every pair of mmbers n and m, the m-ary pro1tct1on function which

returns the value of its nth argument is exprei8'd"iff S:by:

{LA"81)A(X 11 ... ~ Xn>

3) The successor fl.llction 1• exprnaed !:ft.JS, by:

(LAMBDA{X){PLUS 1 X))

2.3.2 -23-

4) (composition) For every choice of numbers n and m, m-ary partial

recursive functions g 1 ••• gn' and n-ary function r, the m-ary function h

defined by

is expressed in S as

(LAMBDA(X
1 Xm)(F

(G 1 x1 ••• xm) _

(Gn X1 ••• X~)))

where F, G1 ••• Gn are the S expressions corresponding to f and g 1 ••• gn'

respectively.

5) (orimitiye recursion) If the n-ary partial reeursive function g and the

(n+2)-ary primitive recursive functio.n r are e~pr~•sib-le in S ae G' -and F,

respectively, then the (n+l)-ary fl.11ction h ~ined by:

h[x1 , ••• xn,O] = g[x1 , ••• x
0

]

h[x,, ••• ,xn,y+l] = rcx,, ••• ,xn,y,h[x,, ••• ,xn,y]]

may be expressed in S by

U.AMBDA cx 1 ••• xn Y)

((LAMBDACX
1

•••

(LAMBDA ex,
(F x

1
(G X

1

xn Y H)(H x 1 •• ; xn Y)) x 1 • • • t
0

Y

X Y) ((GREATER Y 0)
n -

X {P Y) (H x
1

••• X (P Y)))
n n

xn >))))

where P is the representation or the prede~esaor function given earlier.

6) (mu-recursion) If the (n+1)-ary total reoursive function h is expressible

in s by H, then the partial recu~sive function g defined by

g[x,; ••• ;xn] =the least y ror wbioh

h[x1; ••• xn;y] = 0

is represented in S by

-24-

(LAMBDA(x, •••. Xn)

((LAMBDA (R) (R 0))

(LAHBDA(Y)((GREATER (H x, ••• xn Y) 0)

(R (PLUS 1 Y))

Y))))

2.3.2

Finally, we note that the class of recursive functions is by definition

exactly that class of functions obtainable throu8'1 finitely many applications

of the above six rules; hence the S representations given in the rules

constitute a technique for constructing an S expression which represents any

fl.l'lction l!hich can be shown to be partial recursive.

2.3.3: Functional Incompleteness of S

Recall that the fmctional canpleteneaa of a language L requires that every

canputable f1.11cti6n defined m .. t~ se•ntic do•in of L be exsressible in L.

Since the natural mmbers and (by the preaedin& sec~ion) first order functions

are included in the se•ntic do•in ot S, .,.ery second order function is

definable on the do1&in of S. The functional inoo~pleteness of S may then be
;';

demonstrated by showirw that a simple second order function is not expressible

as an S function. We begin by observing that --~'ihigher order functions .5U'.§..

expressible in s, e.g. the f1.11ction & (the "Wice" tm~·!On) given by

g[f;x] = f[f[x]]

is expressible in S as

(LAHBDA(f X)(F (F X)))

hence it cannot be argued that ~ first order functions are expressible in
s. The weakness in S lllbich ye "111 d._,.trate .. d.ft.,.it'ea the 1.nexpreasibili ty

of certain second orc:ler functio~. notal>,J.y .f'uoctiomt which ccntain free

variables and l!hich appear as arguments or values (i.e., bodies) of lambda

expressions: the so called FUNARO probi.m •. 1 ..

1 ·.. . . '
General awareness of the FUNARO problem (as well as its n~) arose frj

early exp~rience w1 th LISP. For discussion see Weizenbaum[23J, Hoses[1 O or
DertouzosL3J.

2.3.3 -25-

Consider the ll'lary function f, whose domain contains only integers and whose

range contains only first order functions, de£1ned by

f[x) : that f'unction g defined by

g[y] = x+y

The fwiotion f is canputable; it may in fact be expressed in the lambda

calculus by

(LAHBDA(X}(UM!DA(Y) {PLUS x nn

To sh:>w that I.. is W. expressible in the language of S, the following

definition is useful:

Defn 2. 1: We say that the expression .a appears as a sube_xpcessipn of the

expression ~ it' any ot the f'oU-owhil)'~ trl'tie': ·. ' '~
1) The expressions .A. and .Q. a re identical;

2) .Q. is of the form

(bl b2 ••• ~ ..)

where .1. appears as a sube,pression of o.r;i~ or more qf t;tle bi;

3) .Q. is of the form

. CµMBOJCx,1 • ,,!~n).B)
where .A. appears as a subexpression of B •

.;, - "

We say infonnally that .Q. contains .1. if .1. appears as a subexpression of R,.

The basis of the inexpreaat,bili1;y of I. in. S, ~~ .••~a~~4' ,~ t;:h• prQOf of

Lemma 2.2: Let A be any applica~_iye expr',~•~qn ,,-nd l~ B ba a lalllbda

expression appearing neither as ~ stfb~P,res-.toq, .Qf:.A nor in the
' .. ·, ~' '!' «. ~ ' -' . .

envi roment .t.· Th,en B dqes not ~~~ ¥ ~,~pres-ej.on of SL.A ;e].

proof is by induction on the ~sio-n ·depth· of Sft;el.

basis For the follow!~ 91ntactic olasaes or A, tbfe' computation of S[A;e]

involves no recursion:
.. S

Case 1: A is a number, a primitive function identifier, or a lambda

expression. Then S[A;e].:,A, and the lemma is trivially satisfied as

-26- 2.3.3

B is not a subexpression of A.

Case 2: A is an identifier other than a primitive function symbol. Then

S[A;e] is lookup[A;e] which cannot contain B since by assumption the

environment e does not contain B.

induction: The remaining cases of the syntax of A follow; for these we

asstDDe that the LemDB holds for recursive calls to S.

Case 3: A is an application of GREATER or PLUS; then the value of S[A;e)

is a l'l.lmber or logic value and does not contain B.

Case 4: A is the application of a logic value T or F to arguments A1 and

A2• Neither A1 nor A2 can contain B since A does not contain B;

hence the inductive hypothesis appliea tq.4l1.ther of the computations

S[A 1 ;el and S[A2;e] and B cannot ~p.pear .in S[l;e] which is one of

these values.

Case 5: A is the application of a lambda expression (LAHBOA(X 1 ••• Xn)M) to

the arguments A 1 ••• An. By the in due ti ve hypothesis, B does not

appear in any of the values S[A 1;eJ ••• S[An;e], hence the new

environment e'.:.CX 1,S[A 1;e]) ••• (X ,S[A ;e])e does not contain B. As n . n
a subexpression of A, M cannot contain B; thus the inductive

hypothesis applies to the value S[M;e' l returned as the value of

S[A;e].

Case 6: A is the application of Y to the arguments A1 ••• An, where Y is

·neither a lambda ·expression nor a primitive function symbol. Y is a

subexpression of A and by assumption does not contain B as a

subexpression. Then the inductive hypothes'i's applies to the

computation of S[Y;e].:,Y', and Y' does not .oontai.n B; a second

application of the inductive hypothesis reveals that B cannot appear

as a subexpression of S[(Y' A1 ••• A0);e]~[A;e].

These cases ar~ exhaustive, completing the proof.

We can now characterize a major weakness of the language S by

2.3.3 -27-

Thm 2.3: Every function expressible in S ~ose domain contains only nurnbers

may have at most finitely many functions in its range.

Proof: Functional values in S must be either primitive function identifiers

or lambda expressions. As there are finitely many prim! tive functions,

we need only show that eaoh function or numbers in S has finitely many

lambda expressions 1n its range. Implicit in th!s·argument is the fact

that the number of functions exprt!ssed by a set ot la111bda expressions is

no !reater than the number·of lambda exp~esslons in the set. Each lambda

expression litltch contains no nontrivial oocur'ren6es ·of' tree variables

represents (though not necessarily uniCfuely) a 'single function; lambda

expressions with nootrivial occurrences or ·tree variables (i.e., which

canpute di f.ferent functions in <liff.ering contexts) do not correspond

semantically to ftmctions.

By lem1111 2.2, a function of integers can have l~da el$press).ons in its

range only if they appear as subexpressions of .th,e func.tion,. since for
! , ~ ' : • Ii- ,[.

any integer .n. and expression .!. the .. exp;ession CL Jl) .. cim contain the
,

lambda expression & as a subexpression only 1!', J, . .1,s a ~ubexpression qf .f.. . . __ -

As the f\.l'lct ion ·must be represented by a n.ni t~ expression in the
' - ,,,,.., . ~·. ': , -, t . ''. - '-' ;- ·: : '

language s, it 1111y contain only finitely 11Bny lambda expressions as

subexpressions and hence has finitely llBny lambda expressions in its

range.

Clearly, the f\.l'lction f. defined at the beginning of this section is a function

of integers having infinitely many functions 1n itW'Mnge; we conclude that f.
is not expressible in s. The problem may be olaaracteri1ed ae· inadequate

handll~ by s.of lambda apreeai~a .containing free variables. It is apparent

that free variables are evaluated in the environment in lmich a functi'<>n is

applied, rather than the environment in whioh it' ta eivaluated. Thus lambda

expressions with 1\"ee va rJ.ables have. the property that the computation wh !eh

they perform depends on values in the envil'Oftlle'nt ·et thetr caller; 'this

dependency constitutes an implicit input and justifies our exclusion of such

lambda expressions fran the class of functions. Yet proper S functions may

include such lambda expressions as subexoressions; Witness the S function
". < - • ~- i o'!- ' -'

"'""'\\

-28- 2.3.3

(LAMBDA(X)((LAMBDA(Y)(PLUS X Y)) 3))

-... :11ch contains no tree variables and hence no implicit inputs. The variable

.. , oowever, appears tree in the lambda expression in its body; this innermost

1.sr.:bda expression is riot a function. The question of the contribution of free

0.1 •·iables to tbe functional richness of S naturally arises at this point: Are

~nere f1.11ctions which are expressible in S .2n.l1 throt.tgh othe use of free

·Ja riables? Our suspicions lead to the conjecture that every .. function I.
:=:,pressible in S may be represented by an expreaston F -i:n Witch no la11bda

,:·:;:pression appearing as a subexpression oonU,lins frM occurrences of

v·d riables. This conjecture does not oomp1et.,ely deny the usefulness of free

variables on the S DBoh.ine. Indeed, lambda expre&sion-e with free variables
-· I

are roderately well behaved when passed dowQMAnh i.e., as af'8WD8nts to

rim ct ions; under these circumstances' the principal daa:cer is due to possible

8onflicts with variables bound by the functions to which the lambda

~xpressions are passed. They may, however, 'be conside~d to be "limited

'"'1m ct ions" with the qualification that. they be applied w1 thin the scope of the

.ree variables in their original environment and that they may not be passed

to fll'lct ions whose b6und nriable list iooiude's 'any of the free variables.

·,uch qualifications seriously impair the semantic clarity of the l~,nguage

imposing them.

2.4: Evaluation Order

""he f1.11ctional incanplete11es:a of S was shown to be related to the specific way

:_ n which S associates -valuea witll variables in an 'illterpreted pr<>g'ram: i.e.,

: he environment structure of s. The remaining. IMO'tiua rlf': this chapter

,:--·esent model interpreters witi'l alternative emironme'ftt st·ructures, and which

-::o 1 ve the speci fie probl• demonstrated in S;,, hovne.r, ~they delllC>'nstrate

::- imilar inadequacies in the organi'8tion of cpptal .. s.traetures, i.e. the data

3 t.t'ucture specifying which ~p;ut.,aUons are to:.: be perft>rt11ed and their relative
1

.<:equence.

· The notion of f~nt501 ft~yctuf! has never, to the a.1thor's knowledge, been
~cequately forma ze .n onna y it is the bookkeeping mechanism necessary
';:o resolve algorithms into sequences of operations -- e.g. 1 the use of a stack
-(J record the return points of calls to a recursive subrout.ine.

?. • 4

The first DDdel to be presented is T, similar to S except that its environment

is structurally a tree rather than a stack. It is argued that T and S share a
e ,•. •'

deficiency \llich stems fran their eyaluatiotl order, in particular, fran their
. . . '. ,,. .,

unifonn evaluation of arguments regardless o'f ;,mether the resulting values are

essential to the canputation. T is thus fundtloriany incomplete due to

evaluation order.

The N roodel, discussed in section 2.5, is claae.ly r.,,Lated to the normal order

evaluation of the lambda calculus. It ~~ super~°"' to T in that every

expression havi~ a T value has an equj,valent .. K .,_1ue, ~ile certain

expressions have N values but not T values.

2.4.1: The T Hodel

The traditional solution of the enviroment p~··oblem of S involves a new

"internal" representation or a function, c8tl.jd'l•: C;'lciiure. A closure

includes, in addition tot~ i(Jformation i,n ,, l.fl.11~.<!4.~~r,~~~~n, a
- ' . . : ' ·~ ', '. - ' "

specification or the e~ir,<>09,ftDt· ~~ wta,!q•·:~t,'9,,~•:iYa~iable&.11:•re ~o .,e

evaluated. As the Cl()Sl.lr.'e -~ania•.;lllll\P,eq&.lJ.r~·t•-·,.~ttnt~on or env~n?nmept

branches, corr~pond.1qc t9 f~otig~l ap~~~~~1!~ .fr.cppblibic~,:oon\irol .ll~; ~­

re~urned, the ,nvirc~nt be<:~s ,a ~ .~at~~r t._..,.ifhe. .. lr~ .. s1;agk. of S;

hence we call oor new lancu.aae .. T. The <lit;(~~ be.tl(e;ep T. a:nd S is tbat in,

T, the lambda expression

1 is no longer self evaluating. Its value,. in ,eqvi:I:'(>~ a., is.

which is the representation of a closure in T. We define T as follows:

1

T[x;e] =
i~ ~,.is.. a nu.mber,, t~n x; · ,3 -

if. x is a. ""1J>er of ,4j:'.,.F,,Pf,UT~~P~t tn•n x;
!f ~ is •P,ident.if~ Ulen look-.{xr;,e.j;,

We say an expression X is self evaluating if the value of X is X.

-30-

if xis of the form (Ty z) tben T[y;e];

if x is of the form (F y z) then .T[z;~];

if x is of the form (GREATER y z) then:

if T[y ;e] >T[z ;eJ then T;

else F;

if x is of the form (PLUS y z) then T[y;e}+T[z;e];

if x is of the form

(LAMBDA(s 1 ••• sn) b) then

(FUNARG(s 1 ••• sQ) b e);

if x is of the form

((FUNARG(s 1 ••• sn) b e 1) y 1 ••• yn) then

T[b;Cs 1,Y[y1;e]) ••• (sn,T[yn;e])+e 1J;

2.4.1

if xis of the form (y z1 z2 ••• zn) where y is not a

FUNARG closure, then

T[(T[y;e] z
1

••• zn);e];

else undef,ined;

We note that a lambda expression is not applied directly; it is first

converted to a clostre (by its enluation), and thlh applied by the evaluation

of its body in an environment fol"llled by appending the bindings of its bound

var"iable 11 st to the closure environment. Ttitls thi! tree 't'al"iables or a lambda

expression are evaluated in the envi.ronlient in wti'fcli' the lambda expression is

evaluated. The reader may verify that the function re-presented in the lambda

calculus by

(LAHBDA(X)(LAHBDA(Y)(PLUS X Y)))

which the preceding section showed to be inexpressible irt S, is expressible in

T (indeed, by the same lambda expression).

2.4.2: Functional Incompleteness of T

E~cept for the special cases involving the application ot:the primitives T and

F, the T evaluator ll'lifol"llly evaluates the e~aaions supplied to an operator

as arguments before the operator i& appl.ied'•' · 'I'hiifS order: &f evaluation, which

has been termed aDplicatiye order, has the virtue that each subexpression of

2.4.2 -31-

an AE is evaluated at most once, whereas in the· normal order evaluation of the

lambda calculus an argument to a function may be eYaluated .·11any times. The

di sad vantage of applicative order evaluation is tnat: a~guments may be

evaluated (once) even though their value is irrelevant to the computation;

this is not merely a matter of occa.sional ;·inefftoiency, since the frrele\l'ant

argument may not be defined whereby the entire computatfon'dlverges. Consider

the case of the trinary pro1ectlon function

which returns its first argument regardless of whether its remaining arguments

have de fined values. The applicative-order counterpart of P
31

is represented

in T by the expression:

This expression does .D.2.t. return a value under "'-evaluation unless all three

arguments have de fined values.

vur decisioJt to di stingui-sh between P 31 and f
31

in effec.t recognizes the

undefined element, •, as a member of- the funot.ionel domains of ~r applicative

languages. Intuitively, • represents the "value" of those computations wb1ch

rlo not tenninate, and whose expressibility in each language L is guaranteed by

the Turing universality of L.

We now show that P
31

is not expressible in T:

Thm 2.4: For every AE J.:., the T value of the expression

(.(3 • •) (2.5]

(where • denotes any expression whose T-ftlue ;is undefined} is undefined.

proof: We consider eichau•tively the poasil>l• 't values of the operator f:

If f. is a Blmber or a primitive operator, then the value of (2.5J is

undefined due to an error in J1iJ,QQt~QQAUtx, i~.e •. the application of a

primitive to arguments for which it is not .defined. may assume that .f. is

either a combination or a lambda expression, in which cases the value of

the canbination is the value .of the application of the T value of .f. to

the speci fled arguments. If the value of .f. is a number or a primitive,

-32- 2.4.2

(2.5] is again undefined due to an error in functionality. Hence the

value of f. must be a closure. The computation of the application of a

closure involves binding the values of eacfl ar~ment onto the

environment, hence the evaluation of [2.5] entails evaluation of each

argument. Since not every argument has a defined T value, the value of

[2.5) is ll'ldefined.

Since clearly the projection P
31

has the property off. in Theorem 2.4, T must

tc functionally incanplete if we are to consider P
31

a function.

2.5: The N DDdel

This section introduces an applicative language whose interpretation involves

normal order evaluation. The superiority of N over T derives frqm this
'~··

revised evaluation order of N, which permits an e~press~o°' ,to be evaluated

.:ven trough subexpressions of it may be undefined. A theorem of Church and

Rosser establishes that if' an AE, A, has a value under W, evaluation order,

then it has that value under normal order evaluation; thus in 1 teria of

evaluation order, N is optimal.

The simplest implementations of normal order evaluation involve the

substitution of argument text in the bodies of lambda expressions, rather than

the binding of argument values in environments. wtlile the explieation (and

implementation) of such substitution algorithms is relatively straightforward,

evaluation by simple substitution is often inefficient since

1) It involves making many copies of program text during execution, and

2) It often involves multiple evaluations of the 8allHI subexpression.

for reasons of efficiency, substitution evaluators are thus primarily of

theoretical interest.

More efficient implementations of normal order evaluation retain the

environment structure of the T DDdel, and introduce additional mechanism to

indicate which bound expressions have or have not been evaluated. Since the

L'nvi ronment implementations of normal order evaluation involve considerable

2.5 -33-

bookkeeping machinery and are hence conceptually ,m~h more complex than t_he

substitution algorithms, they will not be pursued.

2.5.1: Axians for the Lambda Calculus

The primordial applicative language is the lambda calCJ,Jlus, which ha~ been the
, : .I '

subject of much investigation since its conception l>Y .Alonzo Church ~n the
' - •, . ' ·.

1930s. The semantic basis of the lambda 9al~lus is ,a set of axioms which

define an equivalence relation, =, on expressions of the language. Each axiom

may be interpreted as a conteroion .I:1ill.t. for r'fdugtlOo··~) in the sense that

it provides a means for converting (or recitucing) an AE to an equivalent (uqder

=) AE having a different form. The present,.ation of t,.he axiQqls in this chapter
, . _.:_ ... ~ t-. • •k '

is somewhat informal, serving primarily a~ motiv~tiQr') fof". the N interpreter;
' - 'k • . • . ., : . ' ~

the interested reader is referred to Curry[12] and. Hindley[21] for further
' . .,,,. .

detail. Related issues are also covered ~~greater depth in later cha~ters of

this report.

The axians of the lambda calculus are or 4 typet,· designated alpha

(equivalencae \l'l.de-r renmml.rg), Uk& (tmction ·api)liaatiort), dtlta (primitive

fmct ion definition), and, in some fo111ulat·1ons, ~. "The delta and eta

axians are not used in all formulations. The eta axiom seems to serve no

important function in the eval~ation of expressiona a~d will be presented here

only in passing. The delta axioms may be avoided by wel~ known coding

techniques which involve the representation of nonfunctional data, e.g.
1 natural rumbers, as lambda expressions.

The formulation which will be primarily referred to in ,subsequent chapters

canprises the alpha, beta, and delta axi~, arl! .. is often termed the
•po: '· __..~ f., ;·:· "

lia-deU1-calculus i_n the 11 terature. Unless .qtherwi;pe .gualified 1 generic

ref~rences to "the lambda calculus" in this repprt. ~!~ote th~ beta-delta

calculus.

The equivalence relation = of interconvertal>Ui ty is generated by a relation

1 Many such codings are possible· .. a pop.ul.ar a.Ao.ice represents 0 by the
expression (LAMBDA (X) (LAMBDA (Y)Y~) and the mamber n+1 .bY.
(LAMBDA(X)(LAMBDA(Y)((N X)(X Y)))) where N is tht-l"epr.es~ntation or the
n. For development of such a codin!?,, see Churchl 1].

number

-34- 2. 5. 1

-> of reducibility; hence X->Y implies X=Y which, in turn, implies Y=X.

Reducibility is in general antisymmetric, l'X>wever; thus -> provides an

ordering of equivalent expressions which has important ramifications in the

lambda calculus. The relation-> is defined to be a monotone relation 1

meaning that it has the following properties:

Reflexivity: For every X, X->X;

T~ansitivity: If X->Y and Y->Z, then X->Z;

Monotonicity: If X->Y and B is the result of substituting, in an expression

A, X for an occurrence of Y, then B->A.

The relation = is in addition an equivalence relation; he~ce X=Y i•plies Y=X.

·,
Central to the axians is the substitution .l'.lll..I., S, of fundamental importance

to the lambda calculus as well as the theories of the roilowi.ng chapters of
~ ''f< ,.,. • '' • ' :·

this report. s is formulated as a three ar!iiment r~nction,' such that the
: r· ,. • : , •,

meaning of S[X ;Y ;Z] is roughly "the result of substituting 'the expression X

for free occurrences of the variable Y in the expression Z. The definition of

S is further canplicated, however, by the requirement that the operation

S[X;Y;Z] not introduce confliota between tree.~ariablas in, tbe expression X

and bindings of X within z. There is a long ·atatol"f ilDf incorrect algoritms

for S; the de fini ti on given here is due to Curry:

Defn 2.6: For expressions X and Z, and variable Y, the expression S[X;Y;Z] is

de fined as follows:

,

1) If Z.:,Y, then X;

2) If Z is a primitive, number, or identifier other than Y, then Z;

3) If Z is of the form CZ 1 z
2

> then (S[X_;Y;Z
1

) S[X;Y.;z
2
J);

4) If Z is of the form CLAMBDA(A)M) where Y.:,A, then Z;

5) If Z is of the form {LAMtmA(A)M) where t is dirt'~retft from A, then

(LAMBDA (B)S[X ;Y ;S[B;A;Hll>. where the vari'ab1e B is' chosen as follows:

i) If Y does not occur free in M or if A is not free in X, then B.:,A;

ii) Else B is any variable whi.ch oaeurs free neither·in ,ff nor in x.

Terminology after Curry[12]

2.5.1 -35-

We now pr ocede to the statement of tne axiOC1tS::

Axian aloha: If E is a lambda exp~~ssion of the forui (LAMBDA(X)M) and the

variable Y d_oes not occur fr~ in,~, U•.n a~:>-0.~te>A(X)S[Y; X;M]).

We say that expres~rions A and B ~re c2urugt -~~-A can be converted to B by

alpha conversion. alone. N0;.te that J.f, ~·.>Y bJ aj.;p,~ ,con¥•rs1.on· then Y•>X •. by

alpha conversion; hence X=Y. Congruence is thus symmetric and tr1Dsitive,

and ll'lder DDst circumstances congruent expressions may be treated as

identical. We say that expresSion X ts 1n n6rmtl !QDa. if_ the only' reduction

which can be performed on X is alpha contersioo. 1

Axian ~: If E i~ an ,expre,ssion of,., the. form.('~~A(X)M). A) then.

E->S[A; X;M].

Axian fil: If E is an expression of the fonn (LAMBDA(X) (H X)) wtiere X does not

appear free in H and M is a .lambda -exp,rea_aion, then E.,.>tf.
• r • • ' • ~ ..

Axian delta: If E is an expression of the fonn (F A
1

A2 · ••• An) where F is a

primitive ft.motion symbol and each Ai is in normal form and contains no

free wa1nab1ea, then E->f[A
1

; ••• ;A lWhere f' !s'the ~peration denoted by
. n . <,;

F • ·. ,

The fo llowi~ two theorems are of fundamental impc)rtance in the iambda
. . .. ' - _,. ;.::; . -..,:::; ": ' . ·r •. ,.

calculus. The rirst is dbe, in Us initial primitive tonn, to Church and

Rosser and is referred to in the 11 terature as the Church-Rosser Theorem:

Thm 2. 7: Let X and y· be expressions such tbat X=Y. Then there exists an

expreslon, Z., such that, X->Z and Y->Z.

Qroof DBY be found. in Curry[12) .or, Hindl,ey[21l .arlfl el••.ere. ·

The Church-Rosser Theorem shows that the lambda calculus is coosistent in the

sense that the relation = is nontrivial; in particular, X=Y is not true for

incongruent expressions X and Y in normal form. We can thus prove that

expressions X and Y are not interconvertible by finding normal forms x· and

1
This definition is recast more formally in the terminology of Chapter 4.

-36- 2. 5. 1

y', where X->X' and Y->Y', which are incongruent.

Unfortunately, not every expression X is convertable to an· expression X' in

normal fo m. For example, the important e?(pressi.on

Y.:_(LAHBDA (F) ((LAMBDA (H)(F (H H)))(LAHBDA (H)(F (H H))))}

which is the "paradoxical canbinator" of Curry, has no nortml t'orm. Further

discussion in this area t'oUows in Chapters 4 and 5·, along td th reiated

technical developments.

A second important theorem, due to Corrado Boehm, haa.,betm proved only t'or

systems "'11ch prooibit delta eonversions:

Thm 2.8: Let X and Y be incongruent expressions in normal form, and let c and

D be arbitrary expressions. Then there exists and expression Z such that

C:(Z X) and D:;:(Z Y).

oroof originally appeared in Boehm[20], in Italian; a proof' in English

appears in Curry[27].

Boehm 's Theorem guarantees that incongruent normal forms. in the .R$-.$
1 calculus are semantically distinct; in particular, the axiomatic assertion

that any two incongruent normal forms are intercoQ.v-ert,b.le results in an

inconsistency. The extension of Boehm• s Theorem to sy~teJlls;)lhich include

delta conversions requires that the constants ad~d to. ~he pure lamb<ta

calculus also be semantically distinct. We might, for example, formulate a

calculus includi~ the numeric constants without providing any ll!ans for

distinguishing between them: we could provide the. primitive P~US qut not

GREATER. While this formulation is valid in terms of the lambda calculus,

Boehm's Theorem is clearly inapplicable since there is no expression Z which

distinguishes, say, between the normal forms 2 and 3.

1
i.e., that formulation including axioms alpha, beta, and eta, but excluding

delta conver21ions.

2.5.2 -~7-

2.5.2: Normal order: Substitution

Each of the lambda calculus axioms provides a means by which an applicative

expression E may be reduced to an equivalent expression E'. While the axioms

themselves place certain restrictions on the order in which such reductions

may be performed,
1

the evaluator of an applicative expression has a great deal

of freedan to choose the order in which to evaluate subexpressions.

Normal order evaluation specifies that at each evaluation stage, the leftmost

reducible subexpression is to be converted.

2.5.2.1: The N Evaluator

We define the N value of an AE x as follows:

N[x] =
if x is a number, then x;

if x is a member of {PLUS,GREATER} then x;

if x is a lambda expression, then x;

if x is of the form (PLUS a .Q) where N[,a] and N[.Q.] are

both defined and numeric, then N[s_]+N[.Q.];

if x is of the form (GREATER s.. .Q.) where N[s_) and N(.Q.]

are both defined and numeric, then if N(s_)>N[.Q.] then

(LAMBDA(X Y)X) else (LAMBDA(X Y)Y);

if x is of the form ((LAMBDA(s_).Q.),g_) where A is an

identifier and .Q. and .Q. are AE's, then N(.Q.'] where b'

is the result of substituting g_ for each free

occurrence of A in .Q.;

if xis of the form (,a.Q.) where A and .Q. are AE's and A

is not a lambda expression, then N[(N[s_] b)];

else undefined;

Note that we have eliminated the primitives T and F, which are entirely

equivalent in N to the lambda expressions which replace them as values of

GREATER.

1 Not every expression E containing applications of lambda expressions, for
example, is beta-reducible. Applications ofaxiom alpha, ie the renaming of
variables, may be required before axiom beta is applicable.

-38- 2.5.2.2

2.5.2.2: Axiomatic Consistency of N

We sl'Dw in this section that N evaluation is consistent with the semantics of

the lambda calculus by demonstrating that N preserves the equivalence relation

":":

Thin 2.9: Let E be any AE such that N[E] is defined. Then E->N[E] where -> is

the reducibility relation defined by the lambda calculus axioms.

proof: by induction on the level of recursion in the computation of N[EJ.

baSis: if E is a rumber, a primitive, or a lambda expression then N(E]=E.

induction: we asslllle that the Theorem holds for recursive calls to N.

Then the Theorem holds for the remaining syntactiD o-- of E by the

., notonicity of ->.

We note in passing that N[E] is not necessarily a normal form. Lambda

expressions, in particular, are not reduced bJ)f, since. otherwise the

evaluation of certain •aninsful expressiona (e.g. tJ1e paradoxical combinator

Y) would not terminate.

2.6: Functional Domain of N

In this section it is shown that the entire domain of N constitutes a

functional domain satisfying the intuitive criteria of [1.1]. We interpret

the semantic equivalence relation, - , on the domain of N as follows:

For X,Y in DN' x-y if and only if

for every Z in DN and number n.,

(Z X)=n <=> (Z Y):n

[2.10]

where DN is the domain of N. Ve now- justify this interpretation of - on N

thru

Thm 2. 11: The domain of N is a fmctional domain, obeying the criteria of

[1.1), twtder the above interpretation or-.

proof: The equivalence relation - defined in [2.10] must be shown to obey

2.6 -39-

the three clauses of [1.1] over the domain DN of N. We treat the clauses

individually:

1) For rumeric constants X and Y, we must show that x-y <=> X_=.Y.

<-· direct, by the equivalence of identical expressions.

=>: Assume x-Y. Then by beta-reduction,

((LAMBDA(a)a) X)=X

and

((LAMBDA(a)a) Y):Y

and thus, by [2.10], X=Y since they are numeric. By [2.7) there exists a

Z such that X and Y are each reducible to Z; since X and Y are not

reducible, Y, Y, and Z must be identical.

3) To show: X-Y <=> for all Z in DN'

(Z x)-(Z Y) or neit~er defined.

=>: Assume false. Then for some x-y there exists a z
1

such that

where r is the negative of -

a z
2

such that

cz
1

xncz
1

Y)

This implies, by [2.10), that there exists

(Z
2

(Z
1

X))=n

for some rrume ric constant n but not

(Z
2

(Z
1

X))=n

(we are assuming here one of two completely symmetric cases with no loss

of generality - the other case follows by interchanging the symbols X and

Y). Defining z
3

by the lambda expression

z
3
.=.(LAMBDA(a) (Z2 (Z 1 a)))

we note that

Cz
3

X)=n but (Z 3 Y)in

hence by [2.10) XiY.

-40- 2.6

<=: Assume that for all Zin DN' (Z X)-(Z Y). Then (Z X)=n (for numeric

constant n) if and only if (Z Y)=n by the argument of part (1). Hence by

[2.10] X-Y.

2) It must be shown that x-y if and only if for all Z in DN, (X z)-(Y Z).

Fran part (2) of this proof, x-y <=> for all Z:

((LAMBDA(a)(A Z)) X)-((LAMBDA(a)(a Z)) Y)

hence, by beta-reduction,

The significance of Theorem 2.11 is that every element of the domain of N

corresponds to some element of the abstract semantic domain: every element of

DN is intuitively functional. Thus N (and the lambda calculus on which it is

based) is a language of "pure" functions. We shall find in the next chapter

that this pleasant property costs us something, however, in terms of

expressive power.

2. 7: Summary

The material in this chapter is largely introductory. The three interpreters

presented are abstracted from conventional implementations, and their scrutiny

serves to relate canmon implementation issues to the expressibility of

functions. The major findings were:

1) Each language is arithmetically complete, in the sense that every

canputable function defined on the natural numbers is expressible.

2) The FUNA RG problem leads to the inexpressibility in S of functions whose

domain contains integers and whose range contains infinitely many

fmctions.

3) Applicative order evaluation renders inexpressible in T every function

whose domain includes *, the undefined computation. An example of such a

fmction is the constant function (LAMBDA(X)3) of one argument.

•

2.7 -41-

4) The interpreter N, based on the normal order evaluation of expressions by

substitution, suffers from neither of these deficiencies. We can

construct a functional domain F such that every expression X in the

domain of the language N corresponds to an element of F; thus N is a

"pure" language in the sense that every expression corresponds to a

ft11ction or a number. This is not true, for example, in S, where lambda

expressions containing free variables can compute different functions in

varying contexts.

We are left with N, an interpreter whose behavior is intended to model the

lambda calculus; the remainder of this report, roughly speaking, deals with a

particular weakness comroon to N and the lambda calculus •

This empty page was substih1ted for a
blank page in the original document.

3 -43-

Chapter 3:

Motivation for a Multi-valued Semantics

Central to this chapter is the argument that the N model, and hence the lambda

calculus, is functionally incanplete because of the inexpressibility in N of a

class of canputable functions on N's domain. The inadequacies of N leading to

this weakness are explored, and two new model languages are presented, each

curing the problem in a different manner. The first model, which has

provision for encoding representations of functions as integers, is found to

be unsatisfactory for both practical and semantic reasons. The alternative

solution proposed in this chapter involves mechanism for the representation of

semantic elements with multiple values; this mechanism, called EITHER, is the

principal focus of the remainder of the Thesis.

3.1: Necessity of non-functions: WHICHFF

Consider the family of partial functions, {FF.} for i ranging over N, which
1

satisfy the following conditions: for each natural riumber 1.,

FF.[x] = i, i=x
1

divergent, 1'-x

[3.1)

Thus each FFi has a single element in its domain: the number 1_. For any other

argument the value of FF.[x] is undefined. The {FF.} are clearly partial
1 1

functions in the intuitive sense of Defn [1.1], and are computable in each of

the rrodel languages considered here. Furthermore, they are semantically

distinct: for no numbers i'-j does FF.-FF .• There is then nothing intuitively
1 J

obJ"ectionable about a function which maps each FF. to its corresponding i.
1 -

Consider such a function WHICHFF which, for each natural number 1., has the

property that:

WHICHFF[FF.] = i
1

Intuitively WHICHFF is a function fran {FF.} onto N; furthermore it is
1

[3.2)

demonstrably canputable using "dovetailing" or multiprocessing techniques.

Note in particular that the following definition of WHICHFF satisfies the

condition of [3.2):

-44-

WHICHFF[f] = i such that f[i]=i,

if such a number i exists;

else undefined

3.1

[3. 3]

We may view the dovetailed evaluation of WHICHFF{f] as the computation of f(O]

for one second, the canputations of f[O] and f[1] each for two seconds, and

similarly mtil any one of the computations f{i] ~erminates normally; the

value of this f[i] would then be taken as the value of WHICHFF[f]. However,

WHICHFF is not expressible in N; this is a result or

Thm 3.4: Let L be an arittmetically caaplete applicative language and let DL

be the domain of L. 'lben no tunctlon VHlCBF¥ harlng the properties of

{3.3l is fmctfonal over Dl. ..

proof by reduction to the halting problem. Assume that DL contains a

fmction WHICHFF having the property given in (3.3). Then for any

fmction f. in DL and any number ,l, L[(WHICHFF f.) J-1. if f.-FFi.. Row

consider the union of the functions FF
1

and FF
2

, given by:

FF12£x] = 1, L[x]=1;

2, L[xJ:2;

divergent otherwise

[3.5]

FF
12

is clearly a coaputable first order function, hence it is

expressible in L by the arithmetic C011Pleteness or L. Now L[(WHICHFF
,· ~ ..

FF12>J can have as its value at most one of {1,2}; thus either L[(WHICHFF

FF 12)]~ 1 or L{ (WHICHFF FF
12

)]'2. lsat.11e, with no loss of generality, the

former. Then define the second order ft.metion & as follows:

g[f] = the function gt' where

grCiJ = 1, i=1;
2, 1=2 AD5I, f[O] defined;

divergent otherwi~. For every computable

first order function f, gr (or equivalently g[f]) is evidently

canputable. Moreover, if f[O] is undefined then gr is identical to the

ft.l'lction FF1; otherwise gf is identical to the function FF
12

• We use the

ability of WHICHFF to distinguish between FF
1

and FF
12

to determine

whether f[O] is defined, by means of the function ll given by

3. 1 -45-

h[f] = WHICHFF[g[f]]

We note finally that for any function f.

f[O] convergent => g[f] - FF 12 => h[f]~l;

and

f[OJ divergent => g[frFF1 => h[f]=l

Hence h[f]=1 if and only if f[O] is divergent. The divergence of f[O] is

decidable, as one of the computations h[f] and f[O] must converge; thus

the function h provides a solution to the "halting problem" for first

order functions, and is a well known noncomputable function. Since h is

clearly canputable in terms of WHICHFF, we conclude that WHICHFF is not a

canputable function over any domain including the first order functions.

Since it was shown in the last chapter that every function expressible in N is

functional over all of the domain of N, it follows that WHICHFF is not

expressible in N. This inexpressibility relates intuitively to two aspects of

the implementation of the N interpreter:

1) The interpreter does not admit multiprocessing. If, in the evaluation of

expression A, N embarks on the evaluation of a subexpression ,a of A whose

N value is not defined, then the N value of A is not defined.

2) The only mechanism in N by which a function f. can recover information

about its functional argument & is the application of &.· There is no

means by which f. can discover the algorithm (or program) by which &.
canputes values, even though the internal reppesentation of &. necessarily

includes this information. Hence if f. is to make any use of&,, then g

must be applied to some argument; By the constraint (1) above, the

nontennination of this application results in the nontermination of the

application of f..

The correction of either of these deficiencies is straightforward in an

implementational sense -- many extant languages boast provisions for

multiprocessing and/or access to representations of functions. However,

neither "correction" is easily reconciled with the semantics of an applicative

language. The second limitation of N seems a natural consequence of our

.. ;- -_,. '.-

-46- 3.1

distinction between the notions of a function f. and any of the algorithms for

canputing f. f'ran its arguments; a language which provides mechanism for

distinguishing between algorithms for computing a particular function f. would

certainly have non-functional elements in its domain. The semantic

ramifications of a cure to the first problem, however, are more subtle and

will be explored in detail.

The following sections present two alternative extensions to N, each

corresponding to a "rix" of one of the above limitations. The function

WHICHFF is expressible in each.

3. 2: Coding primitives: 'ftle C model

We noted that a limitation of N, justifiab..le by our intuitive respect for the

semantics of ftmctions, is that no infor,..tion can be l"8covered aboot an N

fl.l'lction without the application of that funot.toa. m· par"ticular, N provides

no means for recovery or information about the·,tion or a tt.ftetion as

an N expression. We have thus avoided the "TW'ing aachine tar pit" -- the

argument that any language aa pawerf"ul as a•:uni.tirl"l!tai Turi.Dg Machine has

exactly the same set ot expressible functions.

The C model presented here has, in addition to the primitives and structure of

N, prim! tives for the .. translation or the repre~ntation of language elements

to aoo f'ran a tra:ctab.le form. Haki-ng the tundatltental' assumption that any

fl.l'lction defined on a dOllain F is computable~ if and only. if it is computable

fr an the representations of elements of ¥, we must conclude that a Universal

Turing Machine (or its equivalent) operating on the i"ePresentations of

arguments t.o the computable fun.otion f. etan compute rep~e$entations of the

values of f... This is the substance ot our claim ot tulietional completeness of

the language C •

The interpreter for C is identical to the interpreter for N except for the

addition of the prilli tive operators CODE' and DE'al'I>E. CoDE maps

representations of the domain of C into the natural numbers:

CODE: DC -> N

3.2 -47-

and may be viewed as a Goedelization of the character string representing its

argument. The claim we make for CODE is that if (CODE X) and (CODE Y) have

the same (numeric) value then X and Y are semantically equivalent; they are

in fact represented in an identical manner. We cannot, of course, claim that

in general X-Y implies (CODE X)=(CODE Y), as there are many representations of

each semantic element and the semantic equivalence of the representations is

effectively undecidable. The operator DECODE is the inverse of CODE: given

the Goede! number of the representation of an element, it returns the element.

We thus claim that each expression X is semantically equivalent to (DECODE

(CODE X)).

Our claim for the functional completeness of C is formalized, to the extent

possible, in

Thm 3.6: Let F be a functional domain of C, and let

g: F -> F

be a computable function on F. Then g is expressible in C, i.e., there

is an expression Gin the domain of C such that for all x,y in F, g[x]=y

implies that (G X)-Y.

proof: Since g is computable then so is h defined by:

h..:.. (LAMBDA(Y) (CODE (g (DECODE Y))))

as it is simply the composition of computable functions. Furthermore,

since his a function from N to·N, it is expressible in C by the

arithmetic completeness of C; let H be the representation in C of h.

Then the function g is expressible in C by:

G..:.. (LAMBDA(X)(DECODE (H (CODEX))))

It must be recognised that CODE is not functional: it radically disobeys the

intuitive requirements of Defn 1.1. We note, for example, that CODE might

return different values for the arguments (LAMBDA(X)X) and (LAMBDA(Y)Y) as

they have different representations, violating our requirement that

semantically equivalent arguments produce semantically equivalent results.

-48- 3.2

WHICHFF_example of the preceding section. The representation of WHICHFF in C

involves writing an interpretor, operating on the CODEd representations of C

expressions, which simulates the required "dovetailing" by computing 1 step of

(g 1), 2 steps of (g 2), 2 steps of (g 1), etc. Presentation of actual code

for WHICHFF on C woold be, at best, a messy task; it is hoped therefore that

the reader will accept the expressibility of WHICHFF in C on the basis of

Theorem 3.6 and this informal discussion.

3.2.1: The Turing-machine Tar Pit

The introduction of the specter of coding requires rurther reflection. We

have made the enticing observation that, with the introduction of a simple

mechani9111 allowing the representations of functions to be accessible as data,

every canputable function beccnes expressible. We have noted corollary

disadvantages -- (i) the semantic confwsion resulting from the nonfunctional

character of <X>IE, and (ii) the practical absurdity of having to include the

code for interoreters in the definitions of certain functions.

However, the inclusion of coding primitives in an applioative language may be

objected to on mre fundamental grounds than the above. The stated semantic

goal of an applicative language is the representation of functions. Thus such

a language provides a set of rules and conv~n.tions for associating expressions

with abstract functions; moreover, the power and consistency of the language

stem largely &an the applicability of these rules and conventions to every

expression in the language. In the lambda -calculus, for example, we are

assured that expressions which are interconvertible via the alpha and beta

axicms are equivalent. The cost of this assurance is a corresponding

constraint on the canputations which we might perform: the alpha axiom

positively prdlibits us fran writing a function which distinguishes

(LAMBDA(X)X) frcm (LAHBDA(Y)Y). We accept this constraint because the

structure which it imposes is useful to us; we recognize that we cannot be

assured of a relation and simultaneously be allowed to violate it at will.

Coding primitives may be viewed as a mechanism for violating the structure

imposed by an applicative language. None of the lambda calculus axioms, for

example, are valid in the presence of coding, since "functions" can be written

3. 2. 1 -49-

which distinguish between interconvertable expressions. The rules and

eonventions for representing fun ct ions are, in effect, abandoned. The

programmer is thus freed from the structural constraints of the language, but

finds himself in a semantic anarchy -- while he may write any function he

pleases, he may make no assumptions about the structure or representation of

its arguments.

3.2.2: Functionality of DECODE

We may convincingly defend the contention that CODE is not a function by

demonstrating that it returns semantically distinct integers, say, for the

equivalent arguments (LAMBDA(X)X) and (LAMBDA(Y)Y). This demonstration does

not apply, however, to the inverse of CODE; there is nothing inherently

nonfunctional in the fact that DECODE returns semantically equivalent

expressions (LAMBDA(X)X) and (LAMBDA(Y)Y) when given semantically distinct

integers as arguments. It is the purpose of this section to demonstrate that

ftmctions with the property of DECODE (i.e. mapping a subset of the natural

numbers onto the entire domain of discourse) are expressible in N and the

lambda calculus.

3.2.2.1: LAMBDA-free AEs

It is convenient for certain purposes to use the techniques developed

primarily by Curry[12] of the calculus of combinators for the reduction of

applicative expressions to equivalent expressions whose use of lambda

expressions is highly restricted. For our purposes we shall consider the

combinators listed below (along with their respective definitions):

I - (LAMBDA (X)X)

K - (LAMBDA (X) (LAMBDA (Y) X))

w - (LAMBDA(X) (LAMBDA(Y) (X Y)))

s - (LAMBDA(X)(LAMBDA(Y)(LAMBDA(Z)((X Z)(Y Z))))

Gl - (LAMBDA(G) (G G))

G2 - (LAMBDA (G) (LAMBDA (Y) (Y G)))

G3 - (LAMBDA(Y)(LAMBDA(X)((Y X) X)))

-50- 3.2.2.1

a
4

.=_ (LAMBDA (G)(LAMBDA (D) (LAMBDA (X)(G (D X)))))

We sl'Dw in this section that every applicative expression using no lambda

expressions other than the above combinators; we begin with

Lemma 3. 7: Let R be a LAMBDA free AE in the single argument applicative

la~uage L, and let R contain occurrences of the variable x. Then R is

equivalent (by alpha and beta axioms) to a LAMBDA free AE of the form (R'

x) where R' contains no occurrences of the variable x.

proof is by structural imuction on R.

basis: R is atomic (in particular, R is not a canbination). If r is the

variable x, then r' is (I x)=x (by axiom beta). If i:. is not the variable

.x,, then .t. contains no free occurrences of .& am r' is {(IC r) x) =

{(LAHBDA(X).c) x): r.

induction: R is a canbination of the form CR1 R2). By i~tive

hypcthesis, R=(CR
1

' x) (R
2

' x)) for some AE8 R
1

' llnd ._R
2

' not involving the

variable x; then R ':(((S R
1

) R
2

) x) = ((LAMBDA(Y)(l.AttBOA;(X) ((R 1 X)(Y

X))))) = CCR
1

x)CR
2

x)).

The principal result of this section is the following adaptation from Curry's

Synthetic Theory of Combinators:

Thm 3.8: Let A be an AB in a single-argument applicative language L whose

semantic equivalence obeys axiolas alpha and beta. Then A is equivalent

to a LAMBDA-free expression A• containing only the canblnators I, K, W,

s, G1, a2 , a
3

, a4 , and the]>rimitives and constants or L.

proof: We soow that, given any such A which is not LAMBDA-free, we can

construct an equivalent A' containing fewer LAHBDAs. Let.A be an

innermost LAMBDA expression occurring as a subexpression of A. We then

construct A' by replacing a as follows:

Case 1: Jl is of the form CLAMBDA(x)x) for some variable x; we replace .Sl.

by I (equivalent by axiom alpha).

·-';,· .. ·

3.2.2.1 -51-

Case 2: .s.. is of the form (LAMBDA(x)y) where x and y are different

variables; we replace .s.. by (Ky).

Case 3: .s.. is of the form (LAMBDA(x)(b x)) where xis a variable and bis

an AE: replace .5!. by (W b):(LAMBDA(Y)(b Y))

Case 4: .s.. is of the form (LAMBDA(x)(c d)): By Lemma 3.7, the body (c d)

is equivalent to an AE (r' x) where the variable lt does not appear in

r. Then .s..=(LAMBDA(x)(r' x)) which is reducible according to case 3.

Since each expression A which is not LAMBDA free is thus equivalent

to an expression A' containing fewer LAMBDAs, a finite number of such

reductions will reduce each such A to a LAMBDA free A*. This completes

the proof.

It is a relatively simple exercise to show in addition that each of the

c.~binators I, W, G
1

, G
2

, a
3

, a4 is in turn equivalent to an expression in K

and S, allowing us to simplify Theorem 3.8 by eliminating all but 2 of the

canbinators. This is unnecessary for our purposes, however, so long as the

number of cccnbinators required is finite. An important observation to be made

at this point is that the construction of A* detailed in Theorem 3.8 is

effective; thus we could program a canputer to convert AEs to LAMBDA free

form.

3.2.2.2~ An Enumeration of DN

In this section it is demonstrated that the domain of every applicative

language with the power of the N model contains functions which . ..enumerate the

danain of that language, ie, each such language L with domain DL contains a

function

f: N -> DL

such that for every finite expression lt in DL there is a number n which

satisfies (f n)=x. We precede by Goedelizing the LAMBDA free expressions of

-52- 3.2.2.2

Let pair be a number pairing function such that, for each i and j in N, the

value of pair[i,j] is a unique number Pij' and let left and right be functions

recovering the canponents of a pair; ie, for every i and j, left[pair[i,j]]=i

and righ t[pair[i, j]]=j. There are many well known such pairing functions;

since they are al 1 first order computable functions, we may assume that they

are expr~ssible in each of our model languages.

Let us now suppose that we label the (finitely l!lllny) prim! tives of the

la~uage L as p
1

, p2 , ••• Pn· Note that we include the combinators K, I, G1 ,

etc. in this list so that we can enumerate LAMBDA f'ree expressions only. We

now specify the coding details: for each LAMBDA free expression x., we define

the Goedelization g[x] as fellows:

g[x] =
if x is a number then pair[O;xl;

if x is a primitive p j then pair[1 ;j];

if x is a combination (a b) then pair[&[a);g[b] 1;

The fimction & is caaputable t'rom tbe representation of x., but we cannot in

general claim that it is computable from the functional properties of X· The

function & is, in t'act, a satisfactory choice t'or the CODE. Function of the C

model, assumi~ (as we may) that we are content to deal with LAMBDA free

expressions of C. If such a function & could be shown to be computable in,

for example, the N 11Ddel, we would have a direct A priori demonstration that

the languages are expressively equivalent. We must, however, be content with

the expressibll ty of a semantic inverse of g: the .. function .!!1!L defined such

that, for every LAMBDA-free expression 1'-.t enu{g[x])=x. This apparent

asymmetry can be explained by the observatio~ that & is not a function, in the

sense of Oefn [1.1) which prohibits the mapping of semantically equivalent

expressions into di.ffering numbers. The fact that Jt!lll may map different

numbers into semantically equivalent values is consistent with its

fl.l'lctionaHty. We label the expressibility of enu as

Thm 3.9: Let L be an extension of N with primitives 11, 12, ••• , ln

(including combinators K and S). Then there is a function enu:N->DL such

that, for every LAMBDA free expression .1. in DL, there is a number i such

that enu[i]-x.

3.2.2.2 -53-

proof is a straightforward programming job. Such a function for the

language N would take the form: ,

(LAMBDA(N)((GREATER (LEFT N) 1)

{(ENU (LEFT (RIGHT N)))

(ENU (RIGHT (RIGHT N)))

((GREATER (LEFT N) 0)

((GREATER (RIGHT N) n-1) ln

11) •••))

(RIGHT N))))))

where 1i is the _lth primitive of N, and LEFT. alld RIGHT are the N

expressions corresponding to the .an, and rilbt, f~ct1ons above.
-E

3.~: E roodel: Multiprocessing primitives

An cictension to the N interpreter which is somewhat more palatable than the

use of coding primitives is the addition of mechaniStll for multiprocessing: the

quasi-simultaneous evaluation of several expressions. We consider her~, the E

model, which is the 'ff mo~l of Chapter 2, augmented by 1;.he primitiv.e operator
t•",

EITHER whose interprelation is as follows:

For every choice of expressions A. and]t, [3. 1 O]

E[(EITHER &~)] •

if E[A,] is defined but E[)t] is not; then E[I.];

if E[.R.] is defined but ![I.) ~is not, then E(!l];

if E[&.] and E(.2,] are both defin'4td then 'one of 'these values;

else undefined.

Note that we do not specify whJ.ch of the arguments is' returned if both have

defined values; we ID8.Y, conaider th.at this s•l•Otibn is made by some

nondeterministic process over wbich we have no control. EITHER is evidently

canputable by dovetailing techniques, eg by evaluation of E[.saJ and !flt) each

for 1 step, then each for 2 st~~, and so ort:.until one evaiuation or the other

returns a value. EITHER is not, however, functional: in the case where .a and

-54- 3.3

.Q. each have defined values (and their values differ), then the value of

(EITHER .a .Q.) is dependent on the representation of .a and .Q. and on details of

scheduling of the dovetailed computation.

The power of the either primitive is demonstrated by the expressibility of

WHICHFF in E as follows:

WHICHFF(f.] = g 1 (!.; O]

where g 1[h.;,nJ = either[.bJnJ;g 1[h.;n.+1]

Note that for i>j, g 1[FFj;i] is undefined and hence for J..ij g1[FFj;i]=j. Thus

for every rumber j, E((WHICHFF FFj)]:j.

The presentation of the EITHER' primitive in this section. is informal, based

largely on its intuitive relation to the implementation mechanism of

multiprocessing. The formalization of this mechanism is a principal topic of

the remaining chapters. The remainder of the present chapter explores the

impact of EITHER on the semantics of an applicative langu~e.

3. 4: The Intuitive Paradox

The reader has doubtless noticed ·that fundamental questi9~ .raised in the
, , ·. ·1 ,. '. V! "'. ·, ·-

first sect ion or this chapter demand a more pr~i~~ cb~na.c,~e,l;'i;ation of the
. ' " ~ . ' - ~ ..,,

hitherto vauge notion of functional completeness. Specifically, Theorem 3.4
shows that WHICHFF is not ft.11ctional over the enU.l'ety ot ~~ rooctional

domain which includes all first order functions. Thus the baai~ intuitive

requirements of (1.1] are incoq;sistent with the exlstenoe of a functional

domain F which is arithmetically complete and .tm1.tuctes &very computable

function f:F->F. Two alternativea facing us are th& t'ollowtng:

1) We can deny that WHICHFF is a computable function. Indeed, Theorem 3. 4

may be interpreted as a statement tnat ·no cotlrputabie function defined on

first order functions has the properties of'1Rf!etW'F 8fvef1 in [3.2]. Our

intuitive cla,i.Jn that WHICHFF is a oomputablt'nftcti&n is based on the

incomolcte. specification of its behavior o'fer".the entil"e functional

domain: [3.2] merely defines it over the reetrictecfdomain or {FF
1

}.

3.4 -55-

2) We can revise the notion of a functional dqmain F such that, for every

function f. in F there is a dO!DfiQ ~ 1Mci,f.1QAW.on over. which; the

behavior off. is defined.: Th~_fun.ctional criteria of [1.1]·.are then

required to apply only when tne 4rguaent.,. et::-f:!aPe·.draum from its domain

of specification, sf.

3) We can postulat~ new ei~ments or the-functional domain F corresponding to

the values returned by otherwise nonfunctional procedures.

We reject the first choice on the grounds that it restricts our considera,tion
~·.r. - , t : .

to tl'x::ise flllctions expressible in the lambda ca·1®1u's, glving us no way of

distinguishing between N 1 aQd.-. tbe .iQ~!#~i¥tlY s...-ioP..•I. -~- · Tfte·i~ec6nd '~fioice 'is
~ ,. ~ .,,.... ·' ' .

rejected after br~!!f COf!S!~e~~ion. (ip, a J'g!l.~f?winc1·uetion-) paJ'ltlt''&ecause or
•, ~ ··' ! ,i ~ _'

the technical_ canplic~t~oM. it eqtails" ~~IR"*rtlr baceaae it: deriies the

semantic valid! ty or, th~ ·l~s.restilll; -¥~~--"11'!tahledpftpN8S1ons. ·· 1The
c. • ". • \

third choice seems the 111>.st pr~sin.1:1 ~~ t• llQJ'i~ ot'l·V4'Ww !.Oft M-gorous·

analy-Sis, but requires a_·~~{l,tan~.Jc,) i.:nt~c1"4~ 1HP·amoae;ii•l'ulltft8' milst be
carefully sertitinized,. .·Thi~ pro~e~.~ ia,. *~'~#)ed<3rtn ·Al>Rq'\1Htt'..J seotltm,~1

3.5: Multi-valued Sanantic Elenents

The domain DN of language N was shown, in Ch•tw' i 9 to .haw ·tm!'"1> ... 0P4t~tli tnat

every element .1. of D
1
correspo~a tp.,~,. . .Qfll\r•~ of *'' t'tlnet10IOlf3. .:

danein; thus each expression .1. in DN has, intuitively, exactly~- semantic

value or meaning. 1 In this chapter it was shown that this graceful property
~·:·' ; "':' 3 ;"" ~ "- } ',_f'. ' 1 '• • ' : [. ,T ,,-

of DN i~ inoo11s1stenb·witb "••'-exproessibli'tt of"' the ~noti.on:~~C~J'.'F, .a
demonstrably ccaputable aD6uintui;t1vely 'nil :t>9ha•ed';runctfori' over a ..

particular ·s~&t -pt', .Dir ()UP 1lltpl911Jeiiit.t'ioh 'o'r·wif~Cfii~:tr ~ll~' i~~o-tion~~' 'cc:,ve;~.
this r:~stricJ,ed doma.tn S, i·IDebeves !~l'y 1£\itiitn 'gf~n.'~r~llM(nt's. f_rom D,N _wni5:~ ..

are not .in s; furti~-re, this ·arinc)ying ~aefelct: :1s= '~aricte~istic or eyerv
+ -- . , : ' • ' - ., _-_ ,: :-, ::;-'.""j

implementation of WHICHFF in a la~µagie ·19d¥n'.cient'ly' powerful as to be

arithmetically canp~~t~,. The_probl~~ ~a,'~~p~.-. WIICff.f!".'iS·&pplied to

the flllctio~ FF12: ,either of the valµes 2 .or.,.3_is coeaistent .. Wf.tlt':th'f!

-56- 3.5

definition of WHICHFF (3. 3], and there is no implementation of WHICHFF which

consistently returns a Bingle value, eg 2, when applied to every x in DN

semantically eq u1 valent. to F'F
12

• Thus the evaluation of (WHICHFF FF 12 > leads

to, exactly the same under~etermined result as 'the evaluation of (EITHER 1 2):

the E values of each expression might be 1 or 2, depending on circumstances

which are irrelevent to the semantics of each expression.)
~·,,

3.5.1: Domains of Specification

One means of avoi"ing such apparently nendetermint'stic computations is to

exclude them frOBJ our semantio model, i~, to d~ny that (EITHER 1 2) has any

semantic value.. t>n4er ttiis, raatridtfon, we must 'ca're'tufly exclude from our
' l; .. ,. •

consideration .'1J\Y eec11ression 'navit!g ''llfultip1e E''va'l"ues, either by avoidi_ng the

use of EITHER and ""et-ting t-o the well' behaved Cfbaiairi_ r5~, or ,by a~surin~
our.selves, at each application of EITH!Jf, t'h&t tti'e

1
res'U1t is single valued.

We nay not~, pura,uant to the latter- program/that for, all ~xpressions .1. and ,!t,

E[(EITHER A.!t)] is single valued if

1) A. is single valued and !t is meaningless; or

2) 14 is single valued and A. is meaningless; or

3) i. and J2.: are both meaningle·s; or

4) .1. and ,b. are each sinl']:e \'alued and their Villues are B4!mantically

equivalent.

So long as the arguments to E:I:THER :satisfy, the aboYe aciteria,. EITHER is

intuitively f1.11ctional. For each funQtion .(,wnoaerd•t:tn1,tion involves EITHER,

we may then carefully def~ne a domain or s,pecif,J,pat.ion s, !suoh that for

arguments X. fr an Sf' E[(f x) J ,.1.s single valtfft(f. ··We. may, ror example, show

that our definition of WHICHFF in t<erms .. pf iITfJER .is fJJn-ational over a domain

of specification including the functions {FF1 }.·

This means of avoiding tbe seMntic difficulties or EITHER may raise certain

aesthetic objections. First, it places on us the considerable burden of

having to construct domains of specification for each of ~ large class of

fl.l'lct ions, an~ the necessity of showing tl'~t each s11eh function i~ well
" behaved over its particular domain of specification. Second~ 'it rules out

3.5.1 -57-

consideration of algorithms for well behaved functions which have

multiply-valued subexpressions. Consider, for an example of the latter

limitation, the function .f_ defined so that

f(n] = 5, n=1

5, n=2

else undefined.

Now, since .f..[1]=5 and .f..(2]=5, it is intuitively reasonable to claim that

.f_[either[1;2]]=5; yet we cannot make such a claim unless we are willing to

assign some semantic value to either[1 ; 2].

3.5.2: EITHER and the Lambda Calculus

There is an essential incongruence between EITHER and the axiomatic basis of

the Lambda Calculus which precludes the incorporation of the former as a

primitive with an associated delta rule. 1 Recalling that these axioms define

an equivalence relation, =, on the domain of the language, incorporation of

EITHER results in the equivalences:

and hence

{EITHER 2)= 1

(EITHER 2):2

1:2

fran which it follows, by the famous logic of Russel, that "I am the Pope".

Clearly the relation between (EITHER 1 2) and 1 is not equivalence, but rather

some irreversible reducibility property. Any evaluator which can yield 1 as

the value of (EITHER 1 2) cannot be claimed to preserve semantic equivalence;

it merely reduces that expression to one of its several values and discards,

in the process, information about the other values. This is the underlying

reason why N (and the Lambda Calculus) are incapable of expressing WHICHFF,

and is basic to the proof of Theorem 3.4.

1
Such a delta axiom is formally ruled out by the requirement that the

arguments to primitives be in reduced form, thus restricting applications of
EITHER to cases where both arguments have meaningful E values.

-58-

3.6: The Power Set Domain

' I
\

3.6

•

The natural extension or a runctional domain F or single-valued elements to a

danain F* of multiply-valued elements involves the interpretation of F* as the

Dower set, or set of subsets, or F. Thus the elements 2 and 3 of F correspond

to the unit subsets {2} and {3}, respectively, in F*, while the semantic

element of F* correspond!~ to the value of (EITHER 2 3) is- the subset {2,3}

of F containing both 2 and 3. The meaningless element • corresponds to the

empty subset 0 of F, havi~ no value. Other useful relationships which we

would like to see in F* include the following;

2) (EITHER (f.Jl)(f..b.))-(f. (EITHER .1.~)) 1 or equivalently, the elements

{f[a],f[b]} and f[{a,b}] in F• are the same.

3)The natural interpretation of either on t'unetions leads to the semantic

equivalence (EITHER f g)""(LAltBl>A(.X) (IUTHER (f X)(g i))). This allows us

tc propose, in symmetry with (2), that:

4) ((EITHERf.&) A.) - (EITHER (f..1.) (&,&)).

5) (EITHER .1. •)""A., Wiere • is the element c.orresponding to the undefined

canputation.

6) If .i. corresponds to {a1, ••• ,aj} in F* and R. corresponds to {b 1, ••• ,bk},

then (EITHER it.b.) corresponds to {a 1, ••• ,aj, b 1, ••• ,bk} in F*. In

general, EITHER of multivalued elements corresponds. to the µpion of the

respective elements of F*.

3.7: Interpretation of F*

The semantic mdel being developed in this chapter demands a certain amount of

intuitive realignment on the part of the reader. The attractive feature of F*

as a semantic domain is that it allows the preservation of a notion of

semantic equivalence, without cost in terms of expressibility of certain

functions. Its major disadvantage, at least from an intuitive standpoint, is

that it requires that we postulate certain abetraot sema!ltic elements which

3.7 -59-

are intangible in practice -- if the expression x has multiple values, say 2

and 3, then we have no way of discerning from the value "3" typed by our E

interpreter that "2" is also a value of .x_. We could, of course, build an

interpreter which would enumerate the values of x by dovetailing computations

at each EITHER juncture. However, as x might have infinitely many values,

this process nay never terminate; worse yet, even for an x with finitely many

values we cannot tell, in general, when all of the values have been typed.

There are, however, situations where this ambiguity is ~nimportant. We may

know, for example, that xis single valued, in spite of the dual values of a

subexpression y_ of x_. Alternatively, we may recognise that x has many values,

but be willing to settle for any one of them.

3.8: Computable elements of F•

If we have a procedure for identifying the computable elements of a single

valued domain F, we can characterize the computable eleilents of the power set.

danain F• as these elements of F• which are effectively enumerable sets of

canputable elements of F. Given an expression X we can enumerate the

canponents of the F* element representing X; one me~ns .of dolng so is provided
. -- - :::-. - ' - "' :· ~ . .P.:

in Chapter 6. Furthermore, given an expression G for a function which

enumerates a set S of elements of F, we can construct an expression whose

representative F* element is S; take for example the expression

((Y (LAMBDA (H) (LAHBDA(X)(EITHE;R (G X)(H (PLUS 1 X)))))) 0)

where Y is the fixed point operator (LAHBDA(F)(CLA"8DA(G) (F (G

G)))(LAHBDA(G) (F (G G))))). This expression reduces. to aa- expression of the

form

(EITHER (G 0)

(EITHER (G 1)

(EITHER (G 2)

(EITHER (G 3) ---))))

and its corresponding element of F• is exactly the range of G.

-60- 3.8

We may use as our fi.mction G in the above expression an enumerator ENU of the

entire domain F, constructed by the techniques of section 3.2.1.2; this

expression, TCP, corresponds to the semantic element of F• which is the set F

itself.

3. 9: Summary

This chapter raises the·question of the expressibility of a particular
' . "-: .. , . '

fmction, WHICHFF. This function is ineJFpJ'.'essible ~n the lambda calculus, and

intuitively it requires a mechanism for multiprocessing for its implementation

in spite of its applicative -- hence time independent -- nature. Two

alternative extensions Of the N interpreter are preposed, .each of .which

renders WHICHFF expressible:

1) Primitives can be adqed to N which allow coding and decoding of arbitrary

expressions into and fran numbers. This 1neqhani,sm allow~ prQJrams to

access the representation of fun~tion_s, and it is ar~ed. that such a

OODE/DECX>JE facility ext~mds any arithmetically cani>,l,et.e la~~age to

f1.11ctional canpleteness. Yet the use of this mechanism is awkwal'l'd: the
• , ·~ •.: !"' • ' • ' . • -. •

specific implementation of WHICHFF, for example, requires coding an

interpreter which simulates the .necessary multiprocessing. Moreover the

semantic ramifications of CODE are drastic, involving abandonment of much

of the applicative structure of any laDgu&ge in wh'!Ch -it 'is embedded.

2) A irimitive, EITHER,". can be added to N to implement multiprocessing.

EITHER renders WHICHPF easily expressible, and it may be justified

semantically in an applicative language.

In connection with (1), it is noted that although the new primitive CODE is

radically nonfi.mctional, the inverse operation of DECODE (Which maps codings

into the fi.mctions which they represent) is acceptable as an element of our

fl.llctional domain. A canbinatory proof shows that such decoding functions

are, in fact, expressible in the unmodified N language; benge we can write in

the lambda calculi fmctions which enumerate the entire semantic domain of

these calculi.

3.9 -61-

The introduction of EITHER or equivalent mechanism requires that we modify the

structure of the semantic domain and its relation to expressions of a

language. In particular, it seems most natural to associate with each

expression a ~ of abstract values, rather than a unique single value. We

thus move fran the domain F of single values to the domain F• whose elements

are erumerable subsets or the elements of F; we term F• the power set domain.

The presentation of EITHER in this chapter is informal and relies heavily on

implementational notions such as multiprocessing. The following chapters

formalize the meohani.sin in terms of systems or conversion rules, based on the

lambda calculus; this process both justifies and refines the rough

implementation 111>del sketched here.

This empty page was substih1ted for a
blank page in the original document.

4 -63-

Chapter 4:

Theories of EITHER-conversion

While the implementation and semantic considerations of the previous chapter

provide a strong intuitive basis for the interpretation of EITHER, the further

development of this new mechanism requires something more concrete.

Specifically, the incorporation of EITHER into a language E involves syntactic

manipulations of expressions in E, and hence necessitates a formalism which

distinguishes tlx>se syntactic manipulations which are semantically valid from

those which are not. The relationships developed in the last chapter are

analogous to the convention that "(PLUS 2 3)" represents the sum of 2 and 3,

without a corresponding mechanism for associating this expression with the

expression "5".

This chapter begins the project of developing formalisms, i.e. conversion

axioms, for the syntactic manipulation of exp,·essions involving EITHER.

Several theories (i.e., systems of axioms) are presented in this and
1 subsequent chapters; each is based on the beta-delta calculus, with

additional axioms for manipulation of the new EITHER construct. The

distinction between these theories stems from an issue of evaluation order,

discussed in a following section, and reflects alternative interpretations of

certain expressions involving EITHER.

A principal difference between the axiom systems presented here and those of

the lambda calculus is the introduction of a new asymmetry, in the form of an

ordering relation ~. between expressions of E. We have seen in previous

sections that it is !Utile to require that E interpretation preserve an

equivalence relation; such a requirement was shown to lead to an

inconsistency in any language capable of expressing WHICHFF, since (WHICHFF

FF12>-1 and (WHICHFF FF 12)-2 together imply that 1-2. The asymmetry of~.

however, allows the relations (WHICHFF FF 12)>1 and (WHICHFF FF 12)~2 to hold

without compromising the semantic relation between 1 and 2. We view the

relation ~ as designating EITHER-reducibility, and may interpret x>y

informally to mean that the values of y are among the possible values of x.

1
No attempt is made to incorporate eta conversion into the systems presented

here, although we expect that no new difficulties would arise in doing so.

-64- 4

We shall use X•Y to mean that both x~y and y~x.

It is important to distinguish between the relation ~ and the "reducible to"

relation, ->, of the lambda calculus. If the expression X is reducible to the

expression Y by means of conventional lambda calculus axioms, then it will

follow that ~Y and Y~X; the reverse, however; is not true. The semantic

interpretation of X~Y is that every value of Y is also a value of X; i.e., the

element of F• corresponding to Y is a subset of the element corresponding to

x.

4.1: Prelillinar,.- ~f'initions

The terminology or this section is adapted fran standard usage in the lambda

calculus, and appears e.g in Curry[12].

The relation ;i.. defined in each of the axiom systems presented here is a

monotone relation, i.e. it has the following properties:

Renexivi ty: For every x, x~x.

Transitivity: If X~Y and Y~Z, then X~Z.

Monotonicity: If i~Y and B is the result of substituting X for an occurrence

of Y in expression A, then B~A. X for an occurrence of Y, then B~A.

The above properties are assumed to be axioms of each system.

Certain of the axiQlls to be presented lead to a- distinction between the

operations of contraction and abstraction; for example, the derivation of

S[A;x;M] 1 fran ((LAHBDA(x)M)A), justified by the bet.a axiom of the lambda

calculus, may be tel"llled a beta-contraction. The invel'Be operation of

converting S[A;x;M] to ((LAMBDA(x)M)A) my be termed a lllll.-abitraction. An

expression which is a candidate for contraction is called a redex; thus

((LAMBDA(x)H)A) is a ~-redex in the lambda calculus. The result of

performing a contraction on a redex X is termed the CQAtractum of X.

An expression in a particular calculus is in normal fQ.cm. if it contains no

1 Recall that S is the substitution operation of the lambda calculus, Defn
[2.6].

4. 1 -65-

redex applicable to that calculus. We say further that the expression X is in

beta-normal form if X contains no beta-redex, and similarly for the delta, *,

and E red exes to be de fined presently. The statement that X is in normal

form, without further qualification, may be taken to mean that X contains no

beta-, delta-, *-, , or E-redexes.

We shall often use the notation X{Y} to designate an expression X containing a

particular instance of a subexpression Y; having identified an expression

with the notation X{Y}, we shall then use an expression of the form X{Z} to

denote the result of replacing Y in X{Y} by the expression Z. In this

notation, the roc>notonicity of ~ is the implication of X{Y}~X{Z} by Y~Z.

A relationship of the form A~B is in general derived through a series of steps

A 1 ~A2 , A 2~A3 , where each Ai~Ai+ 1 involves the substitution of an expression y'

in A. for an occurrence of an expression Y~Y'. The monotonicity of~
1

justifies each such substitution, and the trnnsitivity assures that the

validity of the entire series follows from the validity of the individual

steps. We shall use the terminology

Defn 4.1: A reduction step in A from X to Y, for expressions X and Yanda

particular axiom system A, is a proof that X~Y by a single application of

an axian of A.

Defn 4.2: A reduction sequence from x0 to Xn in system A is a series

x0~x,~ ... ~Xn such that each Xi~Xi+ 1 is a reduction step in A.

4.2: The Either-R Theories

The first axiom, comroc>n to each of the systems presented, is taken directly

fran the lambda calculus:

Axiom alpha: (Renaming) Let E be an expression of the form (LAMBDA(X)A) where

X is any variable and A is an expression, and let Y be any variable not

occurring free in A. Then E•(LAMBDA(Y)S[Y;X;A]).

-66- 4.?

We say that expressions A and B are congruent if A can be converted to B by

alpha conversion alone. Congruence is thus reflexive, symmetric and

transitive, and to simplify subsequent proofs we shall often allow ourselves

to treat congruent expressions as identical.

The next axiom is a restricted .form of the beta axiom of the lambda calculus,

allowi~ beta conversion only on a beta-redex 'whose argument is in normal

rorm!

Axian beta-R: (lambda conversion) Let E be an expression of the form

((LARBDA(A)JU.s;:J lllhere ~ is in normal rona. 1ben Ed'-. llhere E' is the

eoatractum :$[~;.IU of' E.

"The fbllowitg axi-m provides a paradigm for delta--comrersion, the application

of" primitive ft.mctions to &l"gmlents in D01"11&1 'fora. A particular ca'lculus

wi 11 have a .family of delta rules, specifying :the behavior or each primitive

-- e.g. the delta rule fbr the prillitive PLUS amser:t.ing the equivalence or

(PLUS n m) to n+m fbr all integers n and m. Of interest here is the general

fonn of such rules:

Arlan delta: Let E be an ex:presion of' tbe form (AB) ..ttere A is a primitive

fim.ction tWWlbol and B is a .normal form. expreeaicm containing no froee

variables. Then E-E', where E' is the contractum or E derived .from B by

the (here mspecified) rules associated w1 th A.

We may term such an expression E a delta-re4ex, and the conversion of E to E'

is a delta-contraction. Since the relation between E and E' is equivalence,

the axiom provides also for the delta-abstraction of E' to E.

We note that axioms alpha, beta-R, and delta define a lambda calculus under

the equivalence relation •; no use has been mde of the asymmetric relation

~.

We shall term an expression of the form (EITHER a, a
2

)_, where a
1

and a
2

are

arbitrary expressions, an E-reciex. We treat the E-r-edex as a new syntactic

construct, rather than attempting to classify EI'l'HBR as an added primitive

ft.met ion 'Whose operation is specified by delta rules. In particular, we

regard the restriction that arguments of :prilli.Uve functions be in normal form

4.2 -67-

as unacceptable to the process of EITHER-conversion.

Axiom epsilon: (EITHER-contraction): If Eis an expression of the form (EITHER

a 1 a2) where a 1 and a 2 are expressions, then E~a 1 and E~a2 •

Axiom mu: For every expression E, E•(EITHER E E).

Axiom rho: (EITHER-distribution) If E is an expression of the form (f (EITHER

a b)), where f, a, and bare arbitary expressions, then E•E' where E' is

the expression (EITHER (f a)(f b)).

The conversion of the redex (EITHER a
1

a2) to one of the expressions a
1

or a
2

will be termed an E_-contraction. The conversion of an expression E to (EITHER

E E) will be called an K-abstraction.

4.2.1: Properties of Either Theories

The elementary relationships established in this section hold for subequent

theories as well as for Either-R. In addition to their usefulness in proofs,

they provide a preliminary reassurance that the Either-R axioms are consistent

with the intuitive semantics of EITHER.

Thm 4.3: X~Y if and only if, for all Z,

y~z => x~z

proof: only if: by the transitivity of ~.

if: Let Z be Y; then Y~Y by the reflexivity of ~, hence X~Y by above

hypothesis.

The above theorem is consistent with the intuitive notion that X~Y means

values derivable from Y are also derivable from X.

Axiom mu justifies the trivial abstraction of an expression E to the

expression (EITHER EE); The following theorem shows that nontrivial EITHER

expressions may be abstracted:

-68- 4.2.1

Thm 4.4: Let X, A, and B be expressions such that X~A and X~B. Then

X~(EITHER A B).

proof: By Axian mu, X~(EITHER X X).

But since X~A and X~B, (EITHER X X)~(EITHER A B) by the monotonicity of

~. Hence X~(EITHER A B).

We may apply this theorem, for example, to the expression A given by

A.:..((LAMBDA(X)(PLUS X 3))(PLUS 1 2))

By pe rfonning single be.ta and delta contractions, repectively, on A we deduce

the relations

A~(PLUS (PLUS 1 2) 3)

A~((LAMBDA(X)(PLUS X 3)) 3)

Application of Thm 4.4 yields the result

A~(EITHER (PLUS (PLUS 2) 3)((LAMBDA(X(PLUS X 3)) 3))

This demonstrates that the Either-R theory allows EITHER-free expressions

(such as A above) to be converted to expressions containing EITHER.

Thm 4.5: X•Y if and only if for all Z, X~Z<=>Y~Z.

proof: is by two applications of 4.3.

Thm 4.6: For all f, g, and a,

((EITHER f g) a)~(EITHER (f a)(g a))

proof: By Axian epsilon, ((EITHER f g) a)>(f a) and ((EITHER f g) a);.(g a);

hence, by Thm 4.4, ((EITHER f g) a)~(EITHER (f a)(g a)).

The intuitive arguments of the last chapter suggest that the above result

could be strengthened to full equivalence (i.e.,•), and this more powerful

result may in fact be a theorem in our Either theories; however we have not

pursued this equivalence since it is irrelevent to the subsequent proofs.

4.2.2 -69-

4.2.2: EITHER and Evaluation Order

Chapter 2 notes the distinction between normal and applicative order

evaluation, characteristic respectively of the N and T interpreters.

Applicative order evaluation, in which arguments to a function are evaluated

prior to the application of the function, is shown in that chapter to lead to

the inexpressiblity of certain functions which ignore their arguments. For

example, the applicative order evaluation of the expression

((LAMBDA(X)3) A)

does not terminate if the value of A is undefined, whereas the normal order

evaluation of that expression yields the value 3.

The .restricted conversion of the beta-R axiom is similar to applicative order

evaluation -- in each case, the argument to a function must be avaluated

(reduced to normal form) before the application of the function (beta

conversion). The only distinction between bet-,a-R conversion and the

applicative order of the T interpreter is the degree of evaluation required;

while Either-R requires that arguments be reduced to normal form, T requires

only that they be reduced to lambda expressions or atoms. We may thus, view

the restriction on beta conversion as a more serious constraint than the

applicative order evaluation of T.

The rootivation for this restriction in the Either-R system is our intuitively

based demand that the axiom of EITHER-distribution, rho, hold. This axiom is

in fact inconsistent with the unrestricted beta conversion of the lambda

calculus; consider, for example, the expressions I, Z, and F defined by

I .=_ (LAMBDA (X)X)

Z _ (LAMBDA(Y)(LAMBDA(X)X))

F ..::. (LAMBDA(H) (H H))

Using the axioms of Either-R (notably EITHER distribution) in conjunction with

unrestricted beta conversion, we may deduce that I.=.Z as follows: By Axiom mu,

I .=_ (EITHER I I)

and by (restricted) beta abstraction on each of the terms of the E-redex,

T ~(EITHER (F I)(F Z))

-70- 4.2.2

since both (F !).:_! and (F Z).:_I. Then the axiom of EITHER distribution yields

I.:. (F (EITHER I Z))

fran which, using unrestricted beta conversion {as the argument is an E-redex

and hence not in normal form) we deduce that

I .:. (({EITHER I Z)(EITHEB I Z))

whence by EITHER contraction

I ·;,. (I Z) .:. Z

Thus we have derived J;itZ; to show Z~I (and hence l•Z) we make the deductions

I ~--··Z

{I Z) ~ (Z Z)

Z ~I

using the DDnotonicity of ~ and beta-R abstraction.

It follows that, u.sing .1.11restricted b&a cc:aft.ftrl.QD in C()ftjunction with the

Ei ther-R axiae,, we can prove everx pair or e~Aons- equtnlent -- 1.e:. ,

the system is inconsistent. We avoid this p.tttell in at:tAwr•ikbr .ans or the

restriction on beta conversion. '!be beta-R restriction is not, however, the

only solution to this problem, and in Chapter 1 an alternative axiom system -­

designated the Either-IC theory -- is presented.

It stx>uld be noted at this point that the reatr.tct.ien,on bet• conyersion is

expensive in terms of expressive power. It prohibits, for example, the

reduction of the expression

{(LAMBDA(X)3) ((LANBDA(Y)(I Y)){LAMBDA(Y){Y I)))

to the value 3, since the argumeQt in that Q)r9Ssi'O.D baa no normal rorm. A

more serious drawback is that it interreres. with tb.e ~etaibility of

recursive f"mctions since recursion requires, in the lambda calculus, the

application of rmctions to argU11ents having no normal rorms. Chapter 5 is

devoted to the mechanism of •-conversion, whJ;cb llit.J.ga~ the$8 .. limitations

imposed by the restricted beta conversion.

4.2.3 -71-

4.2.3: Consistency of Either-R

An extension of the axianatic basis of the Lambda calculus may lead to

inconsistencies, e.g. the equivalence of 1 and 2. Such equivalences do not

ho Id in the conventional lambda calculus; in particular, the first Theorem of

Church and Rosser establishes the consistency of the Lambda Calculus axioms by

showing that the proposition X:Y is not provable for any pair of expressions X

and Y having incongruent normal forms. We are thereby assured that the

equivalence relation = established by the lambda calculus does not place every

expression in a single equivalence elass, and thus that the cardinality of the

dcmain of the Lambda Calculus is greater than 1. The existence of infinite
1 sets of mutually incongruent normal forms shows that the domain of the lambda

calculus is infinite. Moreover, an important theorem. of Bo~hm[20] shows that

any axianatic assertion of the form X=Y, where X and Y are incongruent normal

fonns, leads to an inconsistency.

The theorems of Church-Rosser and Boehm are, not surprisingly, inapplicable to

the axianat.ic extension presented here. Furthermore, they probably cannot be

augmented in minor ways to argue the consistency of the present system, as the

uniqueness of normal forms, on which they depend, has been compromised by our

extension.

Accordingly, is the purpose of this section to establish that the domain of

the lambda calculus is a subset of the domain of the Either-R system, and that

the new equivalence relation • is consistent with the relation = of the lambda

calculus. In particular we wish to show that, for any two either-fre~

expressions X and Y, X:Y if X•Y. Proof of this assertion establishes that

1) The domain of the Either-R system includes the domain of the lambda

calculus, hence the new system is nontrivial (having infinite

cardinal! ty); and

2) The semantic equivalence defined by the Either-R calculus, applied to

EITHER-free expressions, is a subset of the equivalence of the lambda

calculus.

1 For example, the set I.:_{lambda(x)x), I'_:..(lambda(x)I), I".:_(lambda(x)I'),
etc.

-72- 4.2.3

It has been noted that in the Either-R system there are expressions X and Y

such that X=Y but for Yiich X•Y is not provable -- a consequence of the

restriction on beta conversion which is explored further in the analysis of

the R-• system in the following chapter.

We procede to the consistency proof, beginning with with the following

det'inition:

Defn 4.7: The E!tHER-free expression X' is an e-residyc of the expression X

if and only if X" •Y be derived rrca X by replacing every e-redex

(EITHER x1 x2) in X by one or the operands x1 or x2•

Thus the expression X" is an e-residue of X if X" is EITHER-free and X~X" may

be demonstrated aolely by means of EITHER-contraction (axiom epsilon).

Defn JJ.8~ The expression X is unitary if and only if there exists some

EITHER-free expression I such that, for every e-residue X" of X, X • =Y (in

the lambda calculus).

Thus

(EITHER {LAMBDA(X)X) {LAMBDA{Y)Y))

is t.mitary, since its e-residues (LAMBDA(X)X) and {LAMBDA(Y)Y) are congruent.

We note that EITHER-free expressions are unitary, although unitary expressions

are not necessarily EITHER-free, as the above example demonstrates.

Furthermore, a tmitary expression X may contain subexpressions which are not

unitary; witness the expression

((LAMBDA (X)(DIFFERENCE X X))(EITHER 2 3)) (4.9)

whose e-residues are

((LAMBDA(X) {DIFFERENCE X X)) 2)

and

((LAMBDA(X) (DIFFERENCE X X)) 3)

each of which is convertible to 0 by the rules of the Either-R system. Hence

expression (JJ.9] is tmitary; it contains~ however, the subexpression

(EITHER 2 3)

4.2.3 -73-

which has e-residues 2 and 3, which are not equivalent under -· Hence the

subexpression is not unitary.

The proof of the consistency of Either-R is based on the observation that,

while EITHER may be introduced into EITHER-free expressions by

EITHER-abstraction, the result is necessarily unitary. Moreover, the axioms

of Ei ther-R preserve the unitary nature of expressions; we will thus argue

that the result of an Either-R reduction sequence ou an EITHER-free expression

must be unitary. We now introduce a relation which orders expressions by the

interconvertabili ty, in the lambda calculus, of their e-resi.dues:

Defn 4. 10: For any expressions X and Y we say that X encloses Y if, for every

e-residue y• of Y, there is an e-residue x· of X such that X'=Y' in the

lambda calculus.

Observe that enclosure is reflexive and transitive; the following lemma

establishes that it is monotonic:

Lemma 4.11: Let Y be a subexpression of X{Y} and let Y enclose Z. Then X{Y}

encloses X{Z}.

proof: Each e-residue of X{Z} is of the form X • {Z ·} where Z • is an e-residue

of Z; and for each e-residue y• of Y there is a corresponding e-residue

X'{Y'} of X{Y}. Hence for each e-residue X'{Z'} of X{Z} there is an

e-residue X'{Y'} of X{Y} such that Y'=Z'; it follows that X'{Y'}=X'{Z'}

hence X{Y} encloses X{Z}.

Corollary 4. 12: If X{Y} is unitary and Y encloses Z, then X{Z} is unitary and

every e-residue of X{Z} is convertible to an e-residue of X{Y}.

Lemma 4.13: Let X~Y be a single reduction step in Either-R. Then X encloses

Y.

-74- 4.2.3

proof: Let U be the subexpression of X which is replaced by an expression W

in the reduction step X~Y. .BY Lemma 4. 11, we need only to show that U

encloses W to establish that X encloses Y. We exhaustively examine the

possible reduction steps from U to W:

Case 1: Alpha conversion on U. Then U and W are congruent, and for each

e-residue w· of W there is a congruent e-residue u· of U.

Case 2: beta-R conversion on U. Let P be a beta-redex of the form

((LAMBDA(X)M{X})A) liihere A is in normal .fon1, and let Q be the contractum

S[A;X;M{X}] of P. Then every e-residue p• of Pis of the form

((LAMBDA(X)M' {X})A) where M' {X} is an e-residue of M{X}, and there is one

such e-residue P' for every e-residue M' of M. Each e-residue w· of W is

of the form M'{A} and there is one such a-residue w· for each e-residue M'

of M. For each M' the corresponding e-residues of P and Q are

((LAMBDA(X)M'{X})A) and M'{A} respecti•ely, liihich are interconvertible in

the lambda calculus by a single beta conversion; hence P encloses Q and Q

encloses P. W is either a beta-R contraction or a beta-R abstraction of U,

hence U encloses W.

Case 3: delta-conversion on U. If either U or W is a delta redex, then both U

and W are EITHER-free and thus U encloses W.

Case 4: EITHER contraction. If U is an expression of the form (EITHER A A }
1 2 '

clearly U encloses both A1 and A2; each e-residue of W is an e-residue of

A
1

or of A
2

•

Case 5: EITHER-abstraction. Then W is of the form (EITHER U U), and each

e-residue of W is an e-residue u· of U.

Case 6: EITHER-diatribution. Let P be an expression of the form

(EITHER (F A}(F B))

and let Q be

(F (EITHER AB))

The e-residues of P consist of all the expressions of the forms (F • A·) and

(F' B') where F', A', and a· are respectively e-residues of F, A, and B.

We note that the e-residues of Q consist of exactly the same set of

expressions, hence P encloses Q and Q encloses P. Thus for a conversion

4.2.3 -75-

U~W of the fornis P~Q or Q~P, U encloses W.

This canpletes the proof of Lemma 4.13.

We present the obvious generalization of this result as

Corollary 4.14: Let X and Y be expressions such that X~Y in the Either-R

system. Then X encloses Y.

proof follows directly from Lemma 4.13 and the transitivity of the enclosure

relation.

This corollary shows that the ordering ~ of the Either-R system implies

enclosure; thus the number of distinct (under = of the lambda calculus)

e-residues of an expression X can only be decreased by a reduction step in

Either-R. While each reduction step may introduce new E-redexes (by

EITHER-abstraction), the terms of each redex so introduced are necessarily

interconvertable. The consistency of the Either-R theories is a special case

of this corollary:

Thm 4.15: Let X and Y be EITHER-free expressions such that X~Y in the

Either-R theories. Then X=Y in the lambda calculus.

proof: By Corollary 4.14, X encloses Y; since X and Y are each EITHER-free,

X and Y are respectively e-residues of X and Y. Hence X=Y in the lambda

calculus.

The above theorem establishes that the Either-R theories are consistent in the

sense that they introduce no new equivalences between expressions which are

distinct in the lambda calculus; and are hence of infinite cardinality. It is

noteworthy at this point that the above proof, specifically Lemma 4.13,

depends on our restriction on beta conversion. when unrestricted beta

conversion is allowed (as in the Either-K theories presented in Chapter 7) it

is not true in general that every beta-redex X encloses its contractum x·, as

demonstrated by the beta redex

-76-

A.=_((LAMBDA(X) (PLUS X X))(EITHER 2 3))

whose e-residues are each convertible to 2 and 3, respectively, while the

contractum of A

(PLUS (EITHER 2 3) (EITHER 2 3))

has an e-residue (PLUS 2 3) which is convertibl& ne0ither to 2 nor to 3.

4.3: Summary

This chapter defines the ground rules for the axianatization of Either

theories and presents the 81 ther-R theory. While the usef'ulness of this

system is limited due to the restriction placed on beta conversion, it

develops much of the mechanism to be used in subsequent chapters.

4.2.3

The ir incl pal distinct ion to be mde between the. Either theQries ll es in the

circumstances in lilich beta-conversion is allowed. 'n\e Either-R Theories,

which prohibit beta-conversion unless the argument to be substituted is in

normal form, al low the distribution of functions over the terms of an

EITHERexpression - a relationship which we find intuitively gratifying.

Unfortmately this restricted .beta-conversion results in a very weak theory, a

problem to which the next chapter is devoted.

The Either-R theory presented in this chapter is shown to be consistent in the

sense that X~Y, lllere ~ is the ordering defined by t.he new axioms, is not a

tautology. The iroof is based oo the consistency of the lambda calculus;

specifically, it is shown that, for expressions X and Y which are EITHER-Cree

(and thus admissible syntactically in the lambda calculus) X~Y implies the

interconvertability of X and Y. This general technique will be followed in

subsequent consistency proofs as well.

5 -77-

Chapter 5:

*-Conversion

It was noted in the previous chapter that the restricted lambda conversion of

the beta-R axian, i.e. the requirement that the argument of a beta-redex be in

normal fo nn before the contraction of that redex, severely limits the

expressive power of languages based on the Either-R theory. Iri particular,

the inexpressibility of recursive functions constitutes an intolerable

restriction since it renders such languages functionally incomplete.

The mechanism of *-conversion, to be introduced in the present chapter,

ameliorates this limitation by extending the ordering relation~ in a way

which is consistent with its function in the Either-R theory. Although

*-conversion and EITHER reduction are in an important sense complementary

operations, their respective mechanics may be dealt with separately; thus for

the purposes of this chapter we temporarily disregard the axioms of EITHER

conversion. In Chapter 6 we canbine the two mechanisms.

The semantic interpretation of ~ suggested by the Ei ther-R. theory is one of

inclusion 9f values; it was noted that X~Y signifies, in general, that each

value of Y is also a value of X. The corresponding relation in the semantic

danain F* is set theoretic inclusion. Thus if x and y are the semantic

elements of F* corresponding to X and Y, respectively, then X~Y implies that Y

is a subset of x. Consistent with the semantic notions of Chapter 3, the

expression (EITHER X Y) corresponds in F* to the union of the elements x and

y. It was further suggested that the undefined computation corresponds, in

F*, to the empty set -- i.e., it has no values whatsoever.

This chapter develops the syntactic analog of the empty set in F*.

Specifically, the new syntactic element * is·introduced as the canonical

normal fonn representation of the undefined computation. The interpretation

of ~·as set theoretic inclusion in F* suggests that, for every expression X,

X~* (since every· set has the empty subset). It would seem, then, that the

consummation of the semantics of E:ITHER reduct1on requires that its syntactic

mechanism reflect this aspect of the structure of F*.

-78- 5. 1

5.1: The R-* Theories

We nCM focus our attention on •-conversion and its relation to the restricted

beta convers.ion. To tbis end we consider the R-• system whose axioms include

alpha,. beta-R,, and delta dismssed pr"eviously, in add! tion: to the f'o.llowing:

Axicm sigma: (9-.contraction): For every expression E. ~-

Thus * is an apression in the Ii-• SJS;tem wb:iolt 1.s 1C111er, in the sense of ~,

than e¥ery ot-b.er a.pression. llllle e·very expression is reducible to •, • is

itself only reducible to • (as • is not a beta- or delta-redus. and contains

no "Variables).

Det'n 5. t: .In expression oC the fcrm C• &). where A is an arbitrary

expression. is eal led a •-rem.

Consistent with our previously derined: notion of normal. forms, ve shall

henceforth require an m:pres.sio.n X to conta.in no •-redoes if it is in normal

form. Rot.!~ that the only comersion which •Y be p.erf"&rmed on a •-redex

without reat.llting 1n ¬.her •-redex is its replace.sent by •, we shall say

that the contract.um oC a •-redex is •.

The restricted laltibda conversion allowed by t.he beta-R axian bears a curious

resemblance to the lambda-I calculi of' Churcllf1}. In these systems, Church

specifically i;rol'libits expressions of" the for'lll (LAMBDA.(X)M) unless the

variable I appears free in U1e body M; thus the lamibda-1 systems exclude, in

general 1 fmcticns which igJlore their argumnta. A pl'"iaei.pal consequence- of'

this restriction is t.be fact tbat.~ for expreaaice I t.Cl- _baff a normal form,

every subexpression or I: 11Ust have a norml fCil'll.. lie note• with passing

interest,, that the normal fbn1i ~rlcti.Dn. oC bS&-B &llClllS wt to cteri.e any

normal f'bl'll in the lambda-I calCtll.vs 11bicll is poasUtle usi.ng unrestrict.ed beta

com:ersion; this follows frm tbe cbser.aUcm U.t in tile laalxlia-1. systes we

can. always reduce the argument in a beta-r-edu t.o nonial t'ora befol"e

contracting the redex.

5.1.1 -79-

Church's preference for the lambda-I over the unrestricted "lambda-K"1

theories stems fran the elusive nature of those expressions having no normal

fonns. The theorem of Boehm assures us that expressions having incongruent

nonnal fonns are semantically distinct, and the theorems of Church-Rosser

guarantee that equivalences between expressions having normal forms are

decidable. The semantics of normal forms is consequently uncomplicated:

every pair of semantically equivalent normal form expressions is provably

equivalent, and for every pair of incongruent normal forms we can find a

context in which they produce different values.

The admission of expressions having no normal forms compromises this situation

severely. The requirement that a semantic equivalence relation be

extensional, i.e. that equivalent expressions produce equivalent values in

identical contexts, leads to a distinc.tion between semantic equivalence and

the equivalence of interconvertability under the lambda calculus. Scott[22],

for example, demonstrates an infinite sequence Y0 , Y
1

, ••• of fixed paint

operators which are not convertible to one another despite the fact that they

produce the same values when embedded in identical contexts. The problem of

constructing a functional domain for the lambda calculus is fundamentally

equivalent to the definition of an extensional relation of semantic equialence

over the expressions of that calculus, a project whose recent success is due

to Scott. The technique used by Scott[5,6,22] involves the notion of

successively better aporoximations to the abstract semantic element

represented by an·expression X, so that the semantic element associated with X

becanes the limit of this sequence of approximations. In the Scott model, a

function f' approximates every extension f of f'; more generally, f' •

approximates f if and only if for every z, f'[z] approximates f[z]. This

notion of approximation seems essential to the interpretation of domain

elements as functions, largely because the th~ri~s of functions with which we . . 2
are familiar employ type restrictions ruling out self-application.

1 Church [1] and· Curry[12) refer to the unrestricted conversions of the
conventional lambda calculus as lambda-K conversion1 presumably because of the
admissibility of the canbinator K=(LAMBDA(X) (LAMBDa(Y)X)) in these systems.
K is excluded fran the restricted Tubda-I systems by the non-occurence of the
bound variable Y in the body of (LAMBDA(Y)X).
2 In.particular, (LAMBDA(X) (X X)) is difficult to interpret as a function in
the usual set-theoretic way. Hindley[21] speculates that a theory of
ft.11ctions based on canbinatory logic, rather than set theory, might
consistently al low self-application; while awai·ting further developments we
remain pessimistic.

-80- 5. 1. 1

The mecil.anism of •-conversion presented in this chapter is reminiscent of the

Scott construction. Specifically, we introduce means by which the various

approximations of an abstract semantic element can be represented as

expressions in the language itself, and provide for the syntactic conversion

of an element X to an approximation X' of X. We have thus come to view

•-conversion as a syntactic analog of the Scott construction in which

approximations are expressed in the domain of the language rather than in the

abstract semantic domain.

The addition of •-conversion to the lambda calculus leads to a multiplicity of

normal fonns for every expression. We shall see, for example, that the Y

operator

Y:(LAMBDA(F)((LAHBDA(H)(F(H H)))(LAHBl>A(H)(F(H ff)))))

which has no normal fonn in the conventional lambda calculus, has infinitely

many nonna 1 fo nns

•
{LAMBDA (F)(F •))

(LAMBDA(F)(F CF •)))

(LAMBDA(F)(F (F (F *))))

when •-conversion is admitted. Each of these normal fonns may be interpreted

as an appro:leimation to the Y operator, and in any context where Y gives a

nonnal form value, one of the above normal forms of Y will give an identical

value. Since the semantic element associated with each of these normal forms

is clear {in the sense that normal forms are semantically distinct) we retain

something of the semantic simplicity of the lambda-I calculus. The semantic

value of a given expression is simply the set of normal form values of that

expression, and expressions X and Y are semantically equivalent if and only if

they have identical sets of normal forms.

One of the mtivations for •-conversion is to enable us to retain the power of

the unrestricted (lambda-K) calculus while restricting beta conversion. It is

intuitively reasonable to expect that one can always find a sufficiently close

approximation to the argument of a lambda expression that the restriction on

5.1.1 -81-

beta conversion becanes unimportant where •-conversion is allowed, and much of

the remainder of this chapter is devoted to the proof that this is in ract the

case.

5.1.2: Theorem on Normal Fonns

The main result of this section sheds light on the ordering (under ~) of the

normal fonns derivable in R-* from an expression Jr.. We begin with the

followi~ definition, adapted from Curry[12]:

Defn 5.2: Let P be a redex and.Q be a subexpression in an expression B, and

let a· be the result of replacing P by its contractum p• in B. We define

the residual§ .Q.(.Q. !flth respect .t.Q .f. as subexpressions of B' designated '

as follows:

Cas.e 1: P and Q are the same redex in B. Then Q has no residual with

respect to P.

Case 2: P and Q are non-overlapping subexpressions of B. Then the

r~sidual Q' of Q is that subexpression in B' which is homologous 1 to Q

in B.

Case 3: P is a subexpression of Q. Then the residual of Q in B' is the

expression Q' which is homologous to Q in B. We note that the

occurrence of Pin Q has been replaced by p• to make Q'.

Case 4: P is a beta-redex ((LAMBDA(X)M)A), and Q is a subexpression of A.

Then p' is S[A;X;M] and contains n instances of A corresponding to the

n tree occurrences of the variable X in M; let these instances of A be

identified as A1 ••• An. Each Ai cGntains an instance Qi of the redex

Q; these n expressions Q
1

••• Qn are the n residuals of Q in B'. Note

that n may be zero, in which case we term the contraction of ·P a

cancellation and Q has no residuals.

1 . '
homologous subexpressions occupy the same relative position in their

containing expressions; thus A in ({X (WA) Z} Y} is homologous to Bin ((P (Q
B) R) S) independently of the structure of the subexpressions X, W, Z, Y, P,
Q, R, and S.

-82- 5.1.2

Case 5: Pis a beta-red.ex ((LAMBDA(X)M)A) and Q is a subexpression of M.

Then P .. is S[A;X;M] and the residual Q' of Q is the subexpression of

P.. which is homologous t.o Q in M.

Case 6: P is not a beta-redex. and Q is a subexpression of P. Then Q has

no residmtl in B ".

Infbl'lllally, a Pesi<klal of" an. expression Q· is - 1-ge o.f O after a

contraction.. Consider. for example., t.lllt roesi:Chala. of tbe .._presaion f PLUS

l 4} in t.be beta-redex

((UIBJA (I) (PUS I I)) (PLUS 3 ')) [5.31

(PLUS (PLUS. 3 4)(PLUS 3 -))

Ve note that the two resJ.duals of' ttn~ subapress1.on (PLUS 3 4) or expression

[5.31 are the OCCUl'ences ol (PLUIS. 3 4.} in tbe efllltractvll.. Contract.ion in the

delt.a reds (Ptm 3 -.) in Ulll"'•alm [5 .. 3J ~tie tile r-eaidlilal

{(Utal(X}(PLUS X I)} 1)

We shall occasionally find it useful. to sl)e'ak or the residual of an expression

Q after a series oC cmtraetions; ve •Y t.hus reter to o_ aa a residal or Q,

with respect to the seomnce ot ccntraction8 ~,~ ••• ~n U there is a

subexpression °'1-1 or Bn - t sllCh that °'1-t is a ~sidual of Q and ~ is a

reaidWtl ot Q t• 'lh.us ecaaecvtive t.ta- Mid elta-eontraetiona on expression . n-
[Sc.31 yield

(PLUS 1 (PLUS 3 10}

whiell cant.aim a single residual of the subexpreaai.Ul (PLUS 3 4).. 1he

follawi rg lemm eatablislles tnat. the residual ot a redn is .al97s a redex:

Lemma 5.4: Let P and Q be red.es in an expression Bt and let Q• be a

residual oC Q with- respect to P. Then Q"' is a l"eder.

proof': We eonsider the f'olloving collect:bel~ e&awtt.1¥& eases:

5. 1.2 -83-

Case 1: P and Q are non-overlapping. 1 Then Q' is the same redex as Q.

Case 2: P is a subexpression of Q; we consider the cases of the syntax of

Q:

a) Q is a beta-redex of the form ((LAMBDA(X)M A). If P is a

subexpression of M, then Q' is the beta-redex ((LAMBDA(X)M')A). If

P is a subexpression or A, then Q' is the beta-redex

((LAHBDA(X)M)A').

b) Q is a •-redex of the form (• H); then P must be a subexpression of

M, and Q' is the •-redex (• M#).

c} Q cannot be a delta-redex, as it contain P.

Case 3: Q is a subexpression of P; we consider cases of the syntax of P:

a) P cannot be a de lta-redex, as 1 t ·!ontains the redex P.

b) P cannot be a •-redex, as then Q would have no residual.

c) Pis a beta-redex of the form ((LAMBDA(X)M)A) where Q is a

_subexpression of A. If Q is cancelled by the contraction of P _, then .
Q has no residual; hence M must contain 1 or Jlk)re free occurrences

of X. Then each residual or Q is the redex Q !~self.

d) P is a beta-redex ((LAHBDA(X)H)A} where Q is a subexpression of M.

We examine syntactic cases of Q:

1) Q is a delta-redex; then Q' is identical to Q, since Q may

contain no free variables (in particular, no free occurrence of

X).

11) Q is a •-redex (* M). Then Q' is the •-redex (• M').

iii) Q is a beta-redex ((LAMBDA(Y)B)C). Then Q' is a beta-redex of

the form ((LAMBDA (Y)B')C').

1
Two expressions are non-overlapping if neither is a subexpression of the

other.

-84- 5. 1. 2

The converse of the above lemma is not in general true, i.e., the residual P'

of P ney be a redex even though P is not. Consider for example the expression

P.:.. (((LAMBDA(X)(LAMBDA(Y)Y)) 3) 4)

which is not a redex. Contraction of the beta-redex in P yields the residual

P' of P given by

P' _ ((LAMBDA(Y)Y) 4)

which is a beta-redex.

We sl'Duld like to distinguish between reduction steps in R-• which are

contractions and those which are abstractions; for this distinction the

followi~ notation is convenient:

Defn 5.5: A contraction .WR, A~>B is a single. re<htction step fran A to B

which is either a beta-, delta-, or •-contraction.

Defn 5.6: A con~raction seauence A0~>A 1 ~> ••• ~>~ from Ao to An is a reduction

sequence fran A0 to An containing only alpha-oonve-rsions and contraction

steps. The length n of such a sequence is the number of contraction

steps in the sequence.

We now examine contraction sequences which terminate in normal fonns,

beginning with

Lemma 5.7: Let X{Y} be an expression containing a redex Y, and let

X{Y}~> ••• ~>X' be a contraction sequence of length n, where X' is in

normal fonn. Then there is a contraction sequence X{Y'}~> ••• ~>X', where

Y' is the contractum of Y, of nor fewer steps.

proof is by induction on n.

basis n=1: X' contains no redex, hence Y must be either contracted or

cancelled (by a beta- or •-contraction). If Y is contracted then

X[Y']~>X' by the null sequence. If Y is cancelled then X[Y']~>X' by the

same contraction as X[Y]~>X'.

5. 1. 2 -85-

induction: We assume the lemma to be true for sequences containing n or

fewer steps. Consider the first contraction step X(Y]~>X 1 in the

n+1-step sequence X(Y]~> ••• ~>X', and let Y1 ••• Yj be the j residuals of Y

in x1• If j=O then the argument in the basis applies, as Y is either

contracted or cancelled in the first step. If j>O, j applications of the

induction hypothesis establish that x1 '~> ... ~>X' in n-1 or fewer steps,

where x1' is the result of contracting each Yi in x1• But X(Y']~>X 1 ' in

a single step; hence X[Y']~>X' inn or fewer steps.

The significance of Lemtqa 5. 7 is that the cont.raetion of a redex Y in

expression X cannot prolong the reduction of X to normal rorm• ·rnronaally, we

expect that if the subexpression I p~ays • significant role in the evaluation

~r X, the contraction of Y will sho.rten the reduction of X; if, however, Y is

irrelevent to the value or X then Y may be replaced by an arbitrary expression
!.

with no effect on the evaluation of I. This consideration motivates

Lemma 5.8: Let B0~>B 1 ~> ••• ~>Bn be a contraction sequence of length n, and let

Bn be in normal form. Let P be a redex in s0 ~ and let p' be the

contractum of P. Then one of the following applies:

a) There is a cootraction sequence B*~> ••• ~>Bn of n or fewer steps, where

s• is the result of substituting • for P in a0 ; .2C.

b) There is a contraction sequence B'~> ••• ~>B containing fewer than n n
contraction steps, where B" is the result of replacing P in B by p'.

proof is by induction on the length n of the contraction sequence B0~>Bn.

basia n=1; then B0~>Bn in a single contraction ·step. Let Q be the redex

contracted in e0~>Bn. If Q is the same redex as P, then B' is identical

to Bn' and (b) is satisfied. Otherwise P muat have no residual in Bn,

since Bn is in normal form and any residual of P is a redex. Then P must

be cancelled by a beta- or •-contraction in B ~>B and (a) is satisfied.
0 n'

induction: n>l. Consider the redex Q contracted in the step B0~>B 1 • If

·Q is the same redex as P, then (b} is satisfied as before. otherwise we
' consider the j residuals P1 ••• Pj of Pin e1• If j=O then Pis cancelled

-86- 5.1.2

in the step B0>>B 1, and (a) applies. If j>O, we apply (by the inductive

hypothesis) the lemma to the contraction sequence B1>> ••• >>Bn' whose

length is n-1:

Case 1: Each residue Pi in a
1

is convertible to•; i.e., (a) applies to

each Pi. Then (a) applies to P in B
0

, as B*>>B
1
• in a single step,

where B
1

• is the result of replacing each Pi in B
1

by •.

Case 2: Some residue Pi of Pin B1 is not c<XJvertible to•; i.e., (b)

applies to Pi. By Lemma 5.7, contracting any Pk in B1 cannot prolong

the. sequence s,>> ••• >>Bn; by the induction hypothesis' there is at

least one Pk whose contraction shortens tbe sequence. Then if ~ 1 " is

the result of contracting each Pk in B
1

, there· is a contraction

sequenoe B
1

>> ••• >>8
8

in fewer than n..;.;1 steps. Since·B .. >>B
1

' in a

single. contraction step (of the same ld:itd as B
0

>>B
1

) (b) is satisfied.

·This canpletes the proof of Lem• 5.8.

The following theorem establishes a fundamental property of •-conversion.

Informally it ensures that, for any two normal form expressions A
1

• and A
2

•

which are each derivable fran an expression A, there is an expression A* in

normal form which is an upper bOUpd of' A1 • and A2_* in the sense that A*>>A 1 •

and A*>>A
2
•, and furthermore that A>>A•. This result is then' extended to the

case of an arbitrarily large finite set of expressions A1• ••• A each derivable n .
fran .A. The existence of normal form upper bounds of arbitrary sets of

expressions derivable fran A is essentially equivalent to the proposition

that A can be approximated, to arbitrary accUl"aey, by normal forms derivable

fran A.

Thm 5.9: Let A1• and A2• be normal form expressions and let A be any

expression such that A>>A 1• and A~>A2•. Then there exists an expression

A• in normal form such that A>>A•, A•>>A 1 •; and A•>>A
2
•.

Proof: Let P[n;m] be the proposition that Lem• 5.9 is true for every A,

A1•, and A2• such that:

(1) A~>A 1 • in n1 steps and A>>A2• in n2 steps, where n 1 +n~n; and

Cii) A contains m or fewer redexes.

5. 1. 2 -87-

Then the lemma is true if and only if P[n;m] is true for all n and m; we

precede in the following steps:

1) For every n, P[n;O] is true since in these cases A contains no redex

and is caisequently in normal form.

2) For every m, P[1 ;ml is true since in these cases either A:=..A
1
• or

A:A
2
•; hence A must be in normal form and A*=A.

3) If for some n and m and for all j P[n,j] and P[n+l ;ml are true, then

P{n+l ;m+1] is also true.

proof: Let A, 1
1
•, and A2• be expressions such that the premises of

P[n+ 1 ;m+ 1 l are satisfied; then A contains m+ 1 or fewer redexes, and

n 1+n~+1 where n1 and n2 are the respective lengths of the sequences

A>>A 1• and A>>A2•. We now choose an innermost redex Y of A, i.e. a

redex Y which contains no other rede·:. Such a redex Y must exist

unless A is in normal form, which is ruled out because m+1>0. Let

A {Y} denote A (which contains Y as a subezpression) and let Y' be the

contractum of the redex Y. Then by Lemma 5.8, one or the following

applies:

a) A{•}>>A1• in n1 or fewer steps, .Ind. l{•}>>A
2

• in n
2

or fewer

steps.

b) A{Y'}>>A
1
• ln n

1
"' steps and A{Y'J~A2• in n

2
' steps, where

n 1 "'+n2 '<n 1+n2•

If case (a) applies, then A{•} has fewer than m+l redexes, and by

P[n+1,m] the proposition P[n+i,m+1l is true. If (b) applies, then

P[n+1 1 m+1l is true if P[n;jl is true (where j is the number of redexes

contained in A{Y'}); by hypothesis, P(n;j] is true for all j, hence

P[n+1;n+1l is true.

4) If for all j P[n;j] and P[n+1 ;OJ are true, then for all i P[n+1,i] is

true.

Proof is by induction on i. P[n+1;0] follows directly from (1);

P[n+1;i+1] follows fran (3) and P[n+1;1].

-88- 5. 1. 2

5) For every i and j, P[i;j] is true.

proof is by induction on i.

basis: fran (2), P[1,j] is true for all j.

induction: Assume that P[i;j] is true for all j. By (1), P[i+1 ;O] is

true; hence by (4), P[n+1;j] is true for all j.

This canpletes the proof of Theorem 5.9.

The proof of Theorem 5.9 involves a succession of steps from the expression A

to the normal form A•, such that the result Aj of each step retains.the

property that Aj~>A 1 • and Aj~>A2•. The moderate complexity of the proof stems

fran the obscure senae in which each step canes •closef'• to A•; by Lemma 5.8,

each successive step. trm Aj to Aj+l either:

i) Reduces (by one) the number of redexes, while keeping the total number

of steps in the contraction "sequences Aj~>A 1• and Aj~>A2• constant; .Q.C.

ii). reduces the total rumber of cClltraction steps, while changing

{,increasing or decreasing) the number. ot redexes by some arbitrary finite

amount.

The proof of Theorem 5.9 is essentially a demonstration that A• can always be

derived fran A by such a sequence in finitely many steps.

The generalization to arbitrary finite sets of normal f'orie t'ollows naturally:

Corollary 5. 1 O: Let A be any expression and let A1 ••• A j be expressions in

normal fonn such that, for each i, A~>Ai. Then there exists an

expression A• in normal form such that A~>A• and, for each i, A•~>Ai.

proof is by induction on j.

basis: For j>2, the corollary is trivially true; for J=2, it is true by

direct application of Theorem 5.9.

induction: Assume the corollary is true for each set A1 ••• Ak containing

fewer than j expressions. By Theorem 5.9, there is an expression A
1
2• in

normal form such that A 1 2•~>Ar and A 1 2•~>A2 and A~>A 1 2•; by the induction

hypothesis, we can now find an upper bound of the set A12•, A3, ••• ,Aj

5. 1. 2 -89-

which contains j-1 expressions; let A* be the normal form upper bound of

this latter set. But, since A*~>A 1 2•, it follows that A*~>A 1 and· A~>A2 ;

hence for each Ai, A*~>Ai, and A* is the required upper bound.

The final theorem of this section establishes that, for the evaluation of any

particular expression X{Y} (i.e., the reduction of that expression to a normal

fonn) there exists a sufficiently good approximation Y* of Y such that Y* is

in normal ft>nn:

Thm 5~11: Let X{Y}~> ••• ~>X* be a contraction sequence of length n, where x•
is in normal fonn. Then there exists an expression Y* in normal form,

such that Y~>Y* and X{Y•}~>x•.

proof is by induction on the length n of the contraction sequence. If n:O,

then Y is in normal form .and is the requir(?d Y•. If nX>, we consider the

residuals Y1 ••• Yj of Yin x1• By the induction hypothesis each Yi can be

contracted to a normal form Y
1
•, and the result x1 • of replacing each Yi

in x1 by Y 1 • is such that x1 ·~>X•. Since for each i Y~>Ii*, by Corollary

5. 1 O there is a Y* such that Y~>Y• and for each i Y*~>Yi. Then

X{Y}~>X{Y• }~>x,~>. ~ .~>x•.

We may speculate further on the structure of the set S of normal forms of an

expression A. The above theorem sh:>ws that any>fini~ subset of S bas an

upper bound in S; since • is in S, we may claill further that each finite

subset in S has a lower bound in s. It seems likely that S fonns a lattice

ordered by ~. totiich is to say. that each f'inite subset or S has both a least

upper bound and a greatest lower bound. In general such a lattice of normal

forms can be comolete only for those expressions which have normal forms in

the lambda calculus.

5.1.3: Relation to the Lambda Calculus

In this section we demonstrate a sense in which the R-• theory is as powerful

as the (unrestricted) lambda calculus;, in particular, we show that any

expression A which has the normal form. A' in the lambda calculus has the same

-90- 5.1.3

normal fonn in R-•.

Thm 5.12: Let A0->A 1-> ••• ->An be a sequence of beta- and delta-contractions

in the Lambda calculus (possibly intermixed with alpha conversions), and

let An be in normal form. Then A0~>An in R-•.

proof is by ir¥iuction on n, the m.tmber of caitractions in the sequence

Ao-> ••• ->An.

basis n::O; then A0 and An are identical, and the theorem is trivially

true.

iruiuction: n>O; we assume then that A 1 ~>An and must show that A0~>An. We

procede by showing that A0~>A 1 for each of the possible contraction steps

A0->A1• If the contraction step is an alpha~ or delta- conversion, then

the same caitraction can be performed in R-• hence A0~>A 1 ; we thus need

only consider the case where A
0
->A

1
by a beta cont~tion. Let P t>e the

beta-red ex contracted in the step A
0

->A
1

; ·.then P is of the form

((LAMBDA(X)M{X}) Y)

and the contractum p' of P is of the form M{Y}, containing j instances

(residuals) Y
1
••• Y j of the argument Y. By Theorem ?. 1J each Yi may be

contracted in R•• to a l'lOrmal form Yi•, such that A 1 tt~)A0 where A1• is

the result of replacing each Yi by Yi•. By Corollary 5. 10 there exists

an upper bound Y• such that Y~>Y* and, for each i, Y•~>Y1 • By

contraction of the subexpression Y of A
0

{Y} we hav~ A0_{Y}~>A0 {Y*}; since

Y• is in normal form, the beta caitraction of the redex p• in A0 {Y•}

((LAHBDA(X)M{X}) Y*)

yields a contractum M{Y•} containing j instances of Y•. But each

instance of y• may be contracted to the corresponding Yi•, hence

A0 {Y•}~>A 1 •. Then we have A0 {Y}~>A0 {Y•}~>A 1 •~>An' ar¥1 A0~>A0 in R-•.

The simplest illustration of the use of •-conversion to mitigate the beta-R

restriction involves the evaluation of the expression A given by

A .:. ((LAMBDA(X)3) B)

5. 1. 3

where

B .=. ((LAMBDA(H} (H H} }(LAMBDA{H} (H H))

:~ince B has no normal fonn in the conventional lambda calculus (or, as a

consequence, in Either-R) the beta-redex A cannot be contracted under beta-R.

Hence A has no normal form in Ei ther-R; in R-•, however, •~ontract ion on the

subexpression B of A yields

A ~ ((LAMBDA{X) 3) *)

which may be contracted, under beta-R, to the value 3. We thus can derive the

vah;te 3 fran the expression A, despite the restriction on beta conversion. We

may of crurse derive other normal form values of A which involve the element

*; these may be interpreted as "approximations" of the value of A in the sense

that they retain partial infonnation concerning the value of A. In this light

the expression • i ts&J.f is a particularly bad approximation of A, as it gives

no clue about the value of A. The expression 3 {which is, significantly,

•-.free) i.s a perfect approxima·tion of A since it contains all of the

infonnation necessary to.derive the value of A -- i.e., A=3 in the lambda

calculul5.

5. 1. 4: Consistency of R-• Theories

We ob:Jerve, at this point, that the addition of the •-conversion axiom to the

lambda calculus does not lead to inconsistency; specifically, if X and Y are

Lfree and X~Y in an R-• Theory, then X=Y in the corresponding Lambda

calculus. The intuitive justification for this claim stems from the

unidirectional nature of •-contraction - there is no corresponding abstraction

operation. Thus if the reduction X~Y involves the •-contraction of a

subexpression U, then U must be cancelled since Y il5 •-free.

The consistency of the R-• Theories follows as· a special case of the

consistency of the Either-R-* Theories, which is proved in the next chapter;

consequently no proof is given here.

5.2: Applications to the Lambda Calculus

-92- 5.2

The theorems of this chapter may provide tools of general usefulness in the

study of the conventional lambda calculus. Suppose, for example, that neither

of the expressions X and Y have normal forms in the beta-delta calculus, and

that furthermore they are not interconvertible. We may still suspect,

however, that they are equivalent in an extensional sense. In particular we

may wish to prove that if either of Z{X} or Z{Y} has a normal form in the

lambda calculus then Z{X}:Z{Y}.

The medianism of •-conversion suggests a technique for constructing such

proofs. Suppose we could show that in ft;..• the expressions X and Y have

identical sets of normal forms. 1 From Theorem s. f1 it then follows that, for

a.ny z and every z• in normal form, Z{X}~>z• if and only if Z{Y}~>z•. But

Theorem 5.12 extends this extensional equivalence to the lambda calculus;

hence for any Z and any normal form z•, Z{X}->Z• u· and only if Z{Y}->Z* where

-> denotes lambda calculus reduction. We deduce from these observations that

any two expressions which have interconvertible sets of normal forms are

eqivalent in this important extensional sense.

We may apply, for sake of illustration, the above technique to the example

cited by Scott2 of the two fixed point operators

Yo=-CLAMBDA{F)(Z Z))

and

Y
1
:CY

0
(LAHBDA(Y)(LAHBDA(G){G (Y G)))))

where Z is the expression

(LAHBDA(H){F (H H)))

Y0 and Y1 are not interconvertible in the lambda calculus~ and neither has a

normal fonn. Noting that Y0 contains the single redex {Z Z), the unique

single contraction which can be nade reduces Y0 to the expression

(LAHBDA(F)(F (Z Z)))

1 Specifically ... we must show only that x~x• implies Y~Y·~x• and conversely,
where x• and Y• are any normal form expressions.
2 Scott[22] credits the example to Corrado Boehm, and acknowledges an
unpublished proof due to David Parle that the expressions t

0
and Y1 are

eq Uivalent in the Scott formalism.

5.2 -93-

which again contains the single redex (Z Z). It becomes clear from the

sequence of reductions that this process leads to the conclusion that the

normal forms (in R-•) of Y
0

are all of the form

(LAMBDA(F)(F (F (F (F ••• (F *))))))

and for every natural l'llmber n there is a normal form Y0•n whose body is F

applied to • n times.

We nCM refer to the definition of Y
1

• By Theorem 5.11, for every normal form

Y1 ' of Y
1

{Y
0

} there is a normal form Y0• such that Y 1 {Y0•}~>Y 1 '. Hence every

normal form of Y
1

is a normal form of Y1 {Y0•n} for some for some n. But each

of the latter is of the form

(G (G (G (G ••• (G •) •••)))}

where G stands for the expression (LAMBDA(Y)(LAMBDA(G)(Y G)}). But (G •)

reduces to (LAMBDA(G) (G (• G))) fran which,· by contraction of its •-redex, we

arrive at Y1•1,:.(LAMBDA(G)(G •)). Then Y1•2,:.(G Y1•1) has as its maximal normal

fonn. (LAMBDA(G)(G (G •))); and it becanes .clear .fran this informal argument

that each R_. nonnal .Corm Y1 •n of I 1 is of the fol"ll

(LAMBDA{G)(G (G (G (G ••• (G •) •••)))))

whose body contains n applications of G. Thus each normal form derivable from

Y0 in R-• is derivable from Y 1, and conversely.

Now if, for some X, X{Y0}:X• in the lambda calculus where x• is in normal

fonn, then by Theorem 5.12 X{Y0 }~X• in R-•. Then by Theorem 5.11 there is a

nonnal fonn Y0• 0 of Y0 such. that X{Y0•n}~>X•; since Y1 has a normal form

Y 1 •m~>Y0•n, then X{Y 1 }~>X• hence X{Y1}:X• by the consistency of R-•. An

entirely symmetric argument shows that X{Y1}:X• implies X{Y0}:X•.

5.3: Summry

The medlanism of •-conversion introduced in this dlapter allows expressions to

be a~proximated, to arbitrary accuracy, by expressions in normal form. The

initial lll)tivation for •-conversion is the mitigation of the limitations on

expressive power imposed by the restricted beta-conversion, but the techniques

-94- 5.3

of this chapter may be useful generally in the lambda calculus.

The principal technical results of the chapter are:

1) The introduction of • as a canonical representation of the undefined

(nonterminating) canputation, and the axiom on star conversion asserting

that, for every X, x~•. This axiom is motivated by the interpretation of

~as denoting set theoretic inclusion in F•; the empty set, corresponding

to the ll"ldefined computation •, is a subs-et or every element of F•.

2) Theorem 5.9 and its corollary establish that for any set A
1
• ••• An• of

normal fonns derivable from an expression A. in R-•, there exists an

expression A• in normal form such that A~A• and A•~Ai for each i~n.

3) Theorem 5.11 shows that if expression X{Y} is reducible to z•, a normal

fonn in R-•, then there exists a normal form Y• such that Y~Y• and ·

X{Y• }~Z•. Informally this result assures us that' for every expression Y

·and every context X{Y}, there is a sufficiently gOOd ttormal form

appr<>xima tion y• of Y. The previous result (2)then· guarantees that, for

any finite set of approximations of Y, we·ean find a normal form Y•

which may be used in lieu of any meinber of the set.

4) Theorem 5.12 provides the final tie to the lambda calculus, by showing

that every normal form derivable in the l~mbda calculus is derivable in

R-•.

The R-• Theory is thus as powerful, in an important sense, as the lambda

calculus w1 th tmrestricted beta conversion. Furthermore, the R-• Theories

suggest a natural test for extensional equivalence of expressions: the

interconvertability of normal forms. This technique is applicable to the

lambda calculus, and the extensional equivalence of nonconvertible fixed point

operators Y0 and Y1 is used as an illustration.

The development of •-conversion in Chapter 5 is independent of the EITHER

reduction of the previous chapter. The combination of the two mechanisms is

the project of the next chapter.

6 -95-

Chapter 6:

The Either-R-• Theories

The desire for a syntactic basis for a language E, incorporating the EITHER

mechanism informally described in Chapter 3, has led to the presentation (in

Chapter 4) of the Either-R theory. It was noted that the restricted beta

conversion of Either-R limits the usefulness of that theory since, for

example, 1 t prohibits the expression of recursive functions. The inadequacy

of Either-R as a basis for the language E motivated the development, in the

last chapter, of •-conversion. The present chapter brings these efforts to

fruition in the form of the El tber-R-• system, whloh coosistently combines

*-conversion with &ITHER reduction and provides a satisfactory basis for a

language E.

Specifically, an Either-R-• theory shall c·onsist of the following axioms, each

of lillich is presented in a previous chapter:

aipha (Ch. 4) lnterconvertabil1ty (by renaming) of congruent expressions -­

e.g. (LAMBDA(X)X) • (LAMBDA(Y)Y); .

beta-R (Ch. 4) lambda conversion restricted to redexes whose arguments are

in normal fonn -- e.g. ((LAMBDA(X)X) 3)•3;
various delta axians (Ch. 4) specifying the interpretation of primitive

fll'lctions and constants -- e.g., (PLUS 3 5) • 8;

epsilon (Ch. 4) contraction of E-redexes-- e.g., (EITHER A B)~B {Ch. 4);

mY. {Ch. 4), abstraction of E-redexes -- e.g. E-(EITHER E E);

rho (Ch. 4), distribution of function application over terms of an E-redex

e.g. (F (EITHER A B))• (EITHER (F A)(F B)).

sigma (Ch. 5) •-contraction -- A~* for every expresion A.

6. 1: Consistency of Either-R-•

The consistency of Either-R-• may be established by techniques closely

analogous to the Either-R consistency proof. Recall that the earlier proof

involved the notion of enclosure, and culminated in the implication of

enclosure by~ -- i.e., X~Y in Either-R implies X encloses Y. Extension of

-96-

this technique to the present case requires that the mechanism of

•-contraction be accounted for; accordingly, we extend the notion of

enclosure by

Defn 6.1: X .!.-encloses Y if, for each e-residue 1 Y' of Y, there exists an

e-residue x' of X and an expression X* derived from X by •-contraction

alone, such that X*=Y* in the lambda calculus.

Note that we admit expressions containing the element • in the lambda

calculus, treatine • simply as a free variable. It is clear from the above

definition that •-enclosure is transitive, and that if X encloses Y then X

•-encloses Y.

6. 1

The followi~ Lemma and its Corollary confirm that •-contrac,tion introduces no

new equivalences in the conventional lambda calculus:

Lemma 6.2: Let X and Y be •- and EITHER-free expressions, and let x~x• by the

•-contraction of a subexpression U of X. If X•=Y in the .lambda calculus,

then X:Y ..

proof: Noting that x• contains a single • (the contractum of U), treating •

as a variable in the lambda calculus gives us

X:((LAMBDA(•)X•) U)

by beta conversion. But X*=Y, hence

X=((LAMBDA(*)Y) U)

and as Y is •-free the contractum of this beta-red.ex is simply Y. Hence

X:Y.

Corollary 6.3: If X and Y are •- and EITHER-free and x~x• by a series of

•-contractions, then X*=Y in the lambda calculus implies X=Y.

proof is by a simple induction on the number of •-contractions in the

1 Recall Defn 4.7.

6.1 -97-

reduction sequence from X to x•.

The above lemma and its corollary are hardly counterintuitive in light of the

developments of Chapter 5. In particular, it is clear that any occurence of •

in x• must be cancelled in the derivation of Y from X, since Y is •-free.

Hence we may replace such occurences by arbitrary expressions, which are still

cancelled in the derivation of Y; the choice of the homologous subexpressions

of X yields X=Y.

The consistency proof for Either-R-• follows the format of the corresponding

proof for Either-R, except that the enclosure relation in the latter proof is

extended to •-enclosure in the f'onner. The basis of this extension is given

by

Le11111e 6.4: Let X~Y be a single reduction step in Either-R-•. Then X

•-encloses Y.

proof: Lemma 4.13 estaj>lishes the lemma for the reductions allowed in

Either-R; hence we need consider only the case of a •-contraction. Let

U be the contracted subexpression of X. For each e-residue Y' of Y,

there is a corresponding e-residue X' of X such that either x· and Y' are

identical or Y' is the result of the •-contraction of an e-residue u· of

U in X'. Hence X',)y' by *-contraction, and X *-encloses Y.

The follow!~ theorem is the Either-R-• analogy of Theorem 4.15:

Thm 6.5: Let X and Y be expressions containing no occurrences of EITHER or •,

and let X,)Y in Eitber-R-•. Then X=Y in the la.bda calculus.

proof: By Lemma 6.4 and the transitivity of •-enclosure, X •-encloses Y.

Since each of the expressions X and Y is EITHER-free, each expression is

its own unique e-residue, and X,)X*=Y where X,)X• by •-contraction alone.

By Corollary 6.3, X=Y in th~ lambda calculus.

Thus the consistency of Either-R-* follows from.the consistency of the lambda .
calculus.

-98- 6.2

6.2: Relation of * to EITHER

We have al ready noted that the mechanism of •-contraction leads to the

interpretation of each expression A as the upper bound, in the sense of ~, of

a family of expressions derivable from A. To formalize the relation between

such a family of expressions, we introduce the terminology of

Defn 6.6: Expressions X and Y are consistent in a theory T if and only if

there is an expression Z such that both Z~X and Z~Y in T.

Then the R-• theories are partitioned by the consistency relation into

equivalence ciasses, of Wiich there are infinitely mny (since there are

infinitely many mutually incongruent normal forms). Then the characteristic

of R-• which is established by Corollary 5. 10 is that any finit.e set of

consistent expressions in normal form has an upper bound which is also in

nonaa 1 form.

We note that in R-• the > ordering on the set of expressions derivable from an

expression A is, in general, nontrivial. Unless A.is the element • the upper

bound of the set, A, is distinct from the lower boun4 •; furthermore there may

be infinitely many expressions A 1~A2> ••• in the set such that for no J>i is

A j~Ai. This is certainly not the case in the conventiol}al lambda calculus, in

which consistency implies interconvertibility and hence equivalence. What the

mechanism of •-contraction has added to the lambda calculus is a method of

deriving fran an expression A an approximation A• to A 'Which is strictly

weaker in the sense of >. We may. then view the • mechanism as a method of

introducing new expressions which ~e weaker than the conventional lambda

calculus expressions, as each expression in R-• is derivable from a •-free

expression.

In this light we must regard the EITHER construct as a mechanism for

introducing stronger expressions into the lambda calculus. While R-• (and for

that DBtter the conventional lambda calculus} contain upper bounds only for

consistent sets of expressions, we can with EITHER represent t~e upper bounds

of arbitrary (enumerable} sets of expressions. 1 Observe further that, for

l
Or, equivalently, we may say that in the Either theories, every set of

expressions is consistent.

6.2 -99-

arbitrary expressions X and Y, the expression (EITHER X Y) is the least upper

bound of X and Y since by Theo•"'em 4.4, Z~X and Z~Y implies Z~(EITHER X Y).

This suggests that the ordering of Either-R-• expressions by ~ forms a

canplete lattice.

6.3: Evaluators for E

As we have noted, interpreters for languages supporting the EITHER construct

require a slightly different structure from our previous examples: the

reducibility of expressions to multiple values sugaests that an evaluator for

E should erumerate the values of the input expression. Accordingly, we

formulate the evaluator as a function E of 2 arguments, an expression X to be

evaluated and a rumeric index j specifying which value is to be returned. The

evaluator is constructed such that, for each X and j, E[X;j] is an expression

x· in normal form such that X~>X' in Either-tt••. The value of E[X;j] is, in

general, not defined for all values of j; it may be assumed .in particular

that E[X;j] is l.lldefined for those cases ,of X and j not rep~esented in the

algorithm presented infonnally below. We again assume the existence of an

invertable pairing function, and use here the notation <n;m> to denote that

natural number which uniquely encodes the ordered pair of natural numbers

(n,m). We make the further assumption that for non and m is <n;m><2.

E[X;j] =
if j=O then •;

1
if X is atomic and j:1 then X;

if Xis of the form (LAMBDA(Y)M) then (LAMBDA(Y)E(M~n]);

if Xis of the form {EITHER AB) and J=<l;n> then E[A;n];

if X is of the form (EITHER A B) and j:<2;n> then E[B;n];

if X is of the form (A B) and j =<<m;n>;p> then

APPLY[E[A;m];E[B;n];p];

where the algorithm· for APPLY is given informlly by

APPLY[F; X;j] =

1
Recall that the atomic expressions are identifiers (including primitive

flmction symbols and variables) and numeric constants.

-100-

if F is of the form (LAMBDA(Y)M) then E[S[X;Y;M];j];

if (F X) is a delta-redex and j=1 then F[X];

else if j=1 then (F X);

6.3

We note that E[X;j] is in normal form where it exists, and the value E[X;j] is

in each case the result of an Either-R-• contraction sequence on X. Although

we don't claim that the values E[X ;j] of X are ordered by ~ for successively

higher values of j, the index j specifies, roughly, which of the

approximations of X is to be returned.

We may envision implementations of the E interpreter which make use of massive

para! lellsm to compute simultaneously the values of (F X) for many different

approximations of X; such use of redundant canputation may serve to minimize

the real time required to compute an acceptable value for X. Such an

implementation follows, roughly, the spirit of fast adder circuitry which

canput-es redundantly· the high order portion of a sum simultaneously with the

low order portion, and then selects the correct high order portion on the · ··

basis of some intermediate carry~ · These implementational issues are largely

ignored in the present work, but present some intriguing pos1'ibili ties for

future re5earch.

6.4: Summary

The Ei ther-R-• Theory may be used as the semantic basis for a language, E,

which so Ives the specific expressibility problem demonstrated in Chapter 4.

The evaluation of expressions in E lends itself naturally to the use of

multiprocessing techniques litich tend to minimize the total real time

necessary to rel!ze an acceptable evaluation of an expression {F X) by the

simultaneous application of F to one approximation of X while computing a

better approximation. While the implementation details are not pursued here,

we feel that current technological developments make this area worthy of

further study.

1 -101-

Chapter 7:

The Either-K Theories

The inconsistency of EITHER distribution (Axian rho) with the unrestricted

beta conversion of the lambda calculus has motivated the restricted beta-R

conversion of the systems presented thus far. This chapter explores an

alternative formulation, in which EITHER distributivity is sacrificed in order

to accanlll)date the conventional (unrestricted) beta conversion.

The Either-K theories include the axioms alpha, delta, epsilon, mu, and the

(unrestricted) beta axiom of the lambda calculi:

Axian ~: Let Ebe an expression of the form ((LAMBDAC.1).~)~J. Then E•E',

where E • is the contractum S[g;.1.;R.l • 1 .

Since Ei ther-K presel""les the axians of th-e lambda calculi~ it is clear that

the equivalence • in Either-K is a proper extension of the lambda calculus

equivalence =· In this sense the Either-K calculi are closer to the

conventional lambda calculi than the Eitber-R-• theories.

There is, however, a fundamental sense in ~ich Either-K is .a more radical

departure fran the lambd8 calculi than is Either ... R,.•. In the latter theories

ftnctions are ultimately applied only to normal form operands whose semantics

are ttx>se of the lambda calculi. The ability, in Either-K, to apply functions

to multivalued expressions (such as E-re.iexes) requires that we reinterpret

the semantics of each fll'l~ti~n relative to these new elements of its domain.

7. 1: K-abs traction

By the axian J2W. of the lambda calculus, ~qe expressions

M

arxl

((LAMBDA(x) M) A)

are equivalent when A is an arbitrary expression and M contains no free

S is the lambda calculus substitution fl.l'lction given in Defn 2. 6.

-102- 7.1

occurrences of the variable x. This fact is consistent with the observation

that the bound variable, x, is ignored in the body of the function applied to

A; hence the value of the application is independent of the value of the

argument A. Despite the intuitive satisfaction with which we accept the above

equivalence, the presence of functions which ignore their arguments

canplicates the proof of nany otherwise straightforward results in the lambda

calculus. Indeed, Church has argued against the inclusion of such functions

in his theories, fearing at one time that they led to inconsistencies. 1

The task of proving the consistency of the E~ther-~ theories, to be attacked

presently, is likewise complicated by the inclusion of functions which ignore

their arguments. The def'initions and results or this section provide 'the

mechanism for dealing with the formation of such t"urtotions in later proofs.

We begin w1 th

Defn 7. 1: A K-redex is an expression of the form

((L.AMBDA(x)M) A)

where A is any expression and M is an expression not containing free

occurrences of the variable x.

Defn 7.2: A K-abstraction is a reduction step2 conaisting of the replacement

of a subexprel!sion M by a K-redex of the form

((LAMBDA(x)M) A)

where A is any expression and x is a variable not occurring free in H.

We now wish to show that the K~abstractions in a reduction sequence can be

postponed to the end of the sequence. We introduce a term to describe

reduction sequences ~ose K-abstractions follow all other reductions:

Defn 7.3: A reduction sequence R is K-normal if no K-abstraction in R

1 For discussion and historical insight, see Curry[12], particularly the
canment at the end of Ch. 3.
2 r ecal 1 De fn .II. 1 •

7. 1 -103-

precedes a reduction step which is not a K-abstraction.

Thus a reduction sequence x0~x,~ ... ~Xn is K_normal if there is an i, where

O~i~n, such that the reductions x0~ ••• Xi are not K-abstractions and the

reductions X.~ ••• ~X are only K-abstractions. We wish to show that, for every
1 n

reduction sequence x0~ ••• ~Xn' there exists a K-normal reduction sequence from

x0 to Xn. We begin with sequences of length 1:

Thm 7.4: Let x0~x 1 ~x2 be a two-step reduction sequence from x0 to x2 , where

the reduction step x0~x 1 is a K-abstraction and the reduction step x 1 ~x2
is not a K-abstraction. Then there is a K-normal reduction sequence from

x0 to x2~ containing at most one reduction step which is not a "

K-abs tract ion.

proof: Let U be the subexpression of x
0

which is replaced in the reduction

step x0~x 1 • Then U is replaced in this 'Step by U', an expression of the

form

((LAHBDA(y)U) A)

where y is a variable not occurring free in u. We exhaustively examine

classes of the reduction step x 1 ~x2 :

Case l: The reduction step modifies only the subexpressicm A of U'; let U

becane A' in x2• The K-normal sequence from x0 to X2 is then the single

K-abstraction replacing U by

Case 2: The reduction step modifies only the subexpression U of u'; then U

becanes W in x2• The K-normal sequence from x0 to x2 is then:

a) Replace U in x0 by W, yielding x
0
';

b) Replace Win X0 ' by the K-redex

((LAMBDA(y)W) A)

yielding x2•

Case 3: The expressio~ U' in x1 is replaced by U by beta reduction. Then

x0 and x2 are identical expressions, and the empty reduction sequence

-104-

yields x2 fran X0•

Case 4: 1be reduction step replaces some subexpression V of x1 by the

expression v·, where Vis not a subexpression of U' and u' is not a

subexpression of V. The K-normal sequence from X
0

to x
2

is then

a) The replacement of Vin x
0

by V', yielding x
0
';

b) The replacement of u in xo' by u', yielding x2.

Case 5: The expression U' is replaced by the expression

(EITHER U' U')

The K-normal sequence from x
0

to x
2

is tben

a) The replacement of U in x
0

by (EITHER U U), yielding x0 ';

7.1

b) The replacement of (EITHER U U) in x
0

' by (EITHER U' U') through two

consecutive K-abl!ltractions.

Case 6: 1be expression U' is replaced by the expression

(EITHER ((LAHBDA(y)U) A
1

) ({LAMBDA(y)U) A2)

by Axian rho. The K-normal sequence frm X
0

to x
2

is then

a) The replacement Qf U in x
0

by (EITHER U U), yi.elding x0 ';

b) The replacement of (EITHER U U) in 10 ' by

(EITHER ((LAHBDA(y)U) A1)((LAMBDA(y)U) A2))

through two consecutive K-abstractions.

Case 7: 1be subexpression u' is replaced by ae expression W of the form

((LAMBDA(z)U) A)

derived ft-an U' by alpha conversion. Tflen the variable z does not occur

· ft-ee in U, and x0 •Y be reduced to x2 by a ..ing,\e K traction.

Case 8: Some subexpression V containing U' is replaced by an expression

V'. Then one of the following applies:

Sa) V' is derived from V by alpha con,versj.on •. Then we may apply that

alpha-:conversion to x0 , yielding x0 ', and follow with the

K-abstraction from X0 ' to X2•

8b) V' contains n occurrences of U', where n is zero or greater. Then

there is a reduction ~ the same type from:· x0 to· X0 ', where x0 ' is

identical to x2 except for the n occurrences of U in x0 ' corresponding

to n occurr::ences of U' in x2• Our K-normal sequence from x0 to x2

1., -105-

consists of the reduction of x0 to x0 • followed by n K-abstractions

replacing the occurrences of U by u·.

This list of cases is exhaustive, canpleting the proof.

Theorem 7.4 shows that every two-step sequence of reductions is equivalent to

some K-nonnal reduction sequence. The generalization of this result to

sequences of n reductions is canplicated by the fact that the K-normal

sequence guaranteed by Theorem 7.4 may be of arbitrary length, th.ls ruling out

a simple induction on the length n of the reduction sequence.

Lemma 7.5: Let R be a reduction sequence trom. x
0

to 1
0

containing exactly 1

reduction step wich is not a IC-abstraction. lben there: is' a IC-normal

reduction sequence fr·<lll I-0 to In.

proof: by induction on the length n of ~tbe reduction sequence R.

basis: Trivially true for n<2; .. for n=2, guaranteed by Theorem 7.4.

induction: Let x0~x 1 ~ ••• ~X0 be the reduction sequence R. If the step

x0>x
1

is not a IC-abstraction, then R ls IC-normal; hence we ·may assume

that x
0

>X
1
· ~s a K-abstraction. Then a single step of the subsequence

x
1
> ••• ~Xn is not a IC-abstraction; by the inductive hypothesis, there is a

K-nonnal reduction sequence. x 1 ~Y0~Y 1 ~ ••• ~X0 of which only the reduction

·. step x1~Y0 may be other than a t-abstract.ion. But by 'Theorem 7 ~4, there

ls a K-nonnal sequence I0>ZO~ ••• ~Y0 equivalent to the sequence X0>X 1~Y0 ;

thus the reduction sequence x0>ZO> ••• ~Y0> ••• ~X8 is IC-normal fromx0 to In.

Defn 7 .6: The K-index of a redu-0tlon sequence R is the number of

non-~-abstractlon steps in R which follow the n.rst I-abstraction in R.

If ·R contains no K-abstractlons, then the IC-index of R is zero.

Note that the K-index of a reduction sequence R is zero if and only if R is

K-nonnal. We shall base the induction in the proof or the next theorem on the

K-index of the reduction sequence to which it is applied.

-106-

Thm 7. 7: Let R be a reduction sequence fran x0 to Xn. Then there is a

K-normal reduction sequence fran x
0

to Xn.

proof is by induction on the K-index of R.

basis: Ir the K-index or R is zero, then R is It-normal.

7.1

induction: The K-index n of R is greater than zero. Let x0~~ •• ~Xn denote

R, and le_t Xi ~Xi+t be the first K-abstraction in R. Let Xj~xj+1 be the

first reduction step following x1~x1•1 in R which is not. a K-abstraction;

the existence of such a j is assured by the I-index of R. Then the

subsequence Xi~Xi+ 1 ~ ••• ~Xj~Xj+i of R contains a single step which is not

a K-ab&traction; by Leam 7.S there is a 1-nof'M:l sequence

Xi~Y0~ ••• ~Xj+ 1 frca Xi to Xj+1 •. Then tbe sequence R .. given by

x0~ ••• ~xi~Y0~ ••• ~xj+1-~ ••• xn has a K-index ot n~t. Sy the induction

hypothesis, there is a K-no.rmal sequence frat x
1

to X
8

•

It follows ~an Theorem 1.1 that eYery reduction sequence my be reordered in

such a way that every K-abstraction follows everJ reduct.ion step which is not

a K-abstraction. Curry[12] refers to expres~~pns a~ t,i.ct.1ki_S?Uf if they ap,pear

as the arguments of K-redexes; hence A is a fictitiws s1i1bex1>ression of B 1.f A

is cancelled in the evaluation pf B. Theorem 7.7 aNert.s that tbe

introduction of fictitious subexpressions can be postponed to the end of a

reduction sequence. Consider the f'ollowing expr'essions:

Z ..:. (LAHBl>A(X}3)

A ..:. ((LAMBDA(H)(H H))(LAMBDA(H) (H H))

I ..:. (LAMBDA(X)X)

Then the reduction sequence

3 ~ (Z A) ~ (I (Z A))

is not K-normal, since the K-abstraction 3~(Z A) precedes the b~ta abstraction

(Z A)~(I (Z A)). We nay, oowever, reorder the sequence so tl;lat the fictitious

subexpression A is introduced in the last reduction step; the resulting

reduction sequence

3 ~ (I 3) ~ (I (Z A))

i s K-n orma 1.

7.2 -107-

7.2: Consistency of Either-K 'lbeories

It was noted, following the proof of the consistency of the Either-R theories,

that the technique used there was inapplicable to the Either-K axioms since

unrestricted beta conversion does not preserve the enclosure relation. We

avoid this difficulty in the corresponding proof for the Ei ther-K theories by

arrangi~ the reduction sequence of an EITHER-free expression so as to ensure

that arguments in beta contractions are_ unitary. Since the Either-K reduction

sequence of an EITHER-free expression can introduce non-unitary subexpressions

only through K-abstracti-On, the result of the preceding section provides a

critical step in the present proof.

We begin by distinguishing expressions containing only un·itary subexpressions:

Defn 7 .8: An expression X is ~ if every subexpression .of X, includicng X

itself, is tmitary.

Note in particular that every EITHER-free expression ls pure. We now precede

to the major task of this section, which ls the proof that the reductions

permitted by our axians preserve purity or expressions. We· begin wl th the

case of beta-contractions:

Lemma 7.9: Let Y be EITHER-free and let X be a pure beta-redex ot' the form

((LAMBDA(y)B) A)

such that for each e-res!due X' of x~ X'=Y. If z is the result o~ lambda

conversion on X {le, Z is the result of substituting A for each free y in

B), then for elfery e-residue Z' of Z, Z '.=I.

proof: Let z' be an e-residue of Z. Then z' contains zero or more

occurrences of A1, A2, ••• ,An where each Ai is an e-residue of A. By

the purity of X, A is unitary, hence each A
1

is convertible to A1• Thus

Z'=Z'' where z~' is the result of lambda conversion on

((LAMBDA(y)B') A1)

where B' is some e-residue of B. Hence z"'=Y, and Z'=Y.

-108- 1.2

Lemma 7.10: Let X, Y, z, and z' be as in Lemma 7.9, above. Then Z is pure.

proof: Let U be an arbitrary subexpression of Z, and let W be the

corresponding subexpression of B. If W contains no occurrences of y

which are free with respect to X, then Wand U are identical, hence U is

unitary by the purity of X. If W contains such occurrences of y, then U

is the result of lambda conversion on

({LAMBDl(y)W) l)

and, by Lemma 7 .9, U is unitary.

We next stx>w that beta abstractions preserve purity, so long as they are not

K-abstractions:

Lemma 7. 11: Let Z be a ptre expression containing 1 or more occurrences of

the subexpression l. Let W be a beta-redex of the form

((LAMBDA(Y)B) l)

such that the contractum of W is z. Then W is pure and, for every

e-residue w· of W there exists an e-residue z• of Z such that W'=Z'.

proof: Since A is a subexpression of the pure expression Z, A is unitary;

let thee-residues 1 1 ·, 12 ·, ••• Ak. of A each be convertible to A' in the

lambda calculus. For each e-residue B' of B there ts a corresponding

e-residue z• of Z, such that z' contains some Aj' in place of each free

occurrence of Y in B; hence Z '=S[l' ;y;B']. Each ~residue w· is of the

form ((LAi'MBDli'(Y)B')A1 ') where B' is an e-residue of B; but then w· is
convertible to S[l • ;y;B']=Z •• Thus each e-residue W' of W is convertible

to an e-residue z' of z. Noting that homologous subexpressions B1 and Z1

of Band Z, respectively, are either identical or related by

Z1=S[A';Y;B1], we deduce by the above argument and the purity of Z that B

is ptre. Hence W is pure.

Note that Lemma 7.11 fails to tx>ld for K-abstractions; consider, for example,

the K-abstraction

7.2 -109-

M~((LAMBDA(X)M)(EITHER 2 3))

where M contains no free occurrences of the variable X. Clearly the

abstraction of M is impure regardless of the purity of M. We now present the

principal result of this section, from which the consistency of the Either-R

axians fo !lows directly:

Lemma 7.12: Let X~Y be a single reduction step other than a K-abstraction in

Either-K, and let X be pure. Then Y is pure and X encloses Y.

proof: The cases where X~Y is a beta conversion follow directly from Lemmas

7.9, 7.10, and 7.11; and if the step is an alpha conversi-0n, the

e-residues of Y are clearly congruent to the e-residues of X, and Y is

pure. If X~Y is a delta conversion then both X and Y are EITHER-free and

the lemma is trivially true. If X~Y is an· EITHER-conversion in either

direction, the purity of Y f-0llows frr·m the purity of X and the

e-residues of X and Y are identical.

The consistency of the Either-K theories is presented as

•
Thm 7.13: Let X and Y be EITHER-free expressions, and let X~Y in Either-K.

Then X=Y in the lambda calculus.

proof: Fran Theorem 7. 7, we may assume that there is a K-normal reduction

sequence from X to Y; let X~ ••• ~Xi~y0~ ••• ~Y be such a sequence, where the

subseque_nce X~ ••• ~Y0 contains no K-abstractions and Y0~ ••• ~Y contains

only K-abstractions. Then Y0 must be EITHER-free, since each of the

K-abstractions Yi~Yi+ 1 can only increase the number of EITHER redexes,

and Y is EITHER-free. Y0:Y in the lambda calculus since each of the

conversions Y0~ ••• ~Y is a valid beta conversion. By Lemma 7.12, X must

enclose Y0 since X is pure; but each of these expressions is EITHER-free

and hence is its own e-residue. Thus X=Yo=Y.

Cor.ollary 7. 14: Let X and Y be EITHER-free expressions, and let X•Y in

Either-K. Tnen X=Y in the lambda calculus.

-110- 7.2

proof: Directly fran Corollary 7.13.

1.3: Functional Domains of Either-K

The semantics of the Either-I Theories bear a superficial similarity to those

of the corresponding Either-R-• Theories: in each case a functional domain F

of the lambda calculus is extended to a domain F* whose elements are

erumerable subS'ets of F. The question of restrictions on beta conversion

seems, at first glance, to be an issue of evaluation order whose semantic

ramifications parallel, say, those of the applicative/normal order

distinction. While this analogy can be defended·, as it has be.en in earlier

sections of this thesis, tl»re is evidence suggesting that the distinction

between the Either-R and Either-K semantics is or a rather lll)l'e fundamental

nature.

The distributivity of function application over EITHER terms, sanc.tioned in

the Ei ther-R Theories by Axiom rho, constitutes a limitation on the expressive

power of languages built on these theories. Conaider, for example, the

function f_ Yiose informal definition is

f[x] = x+x;

which canputes, in the· lambda calculus, a numeric value which is twice the

value of its argument x. Our experience with conventional applicative

languages reinforces an intuitive expectation that f will have only even

numbers in its range (assuming that the domain of f is the set of natural

numbers). The natural extension or our intuition to the Ei ther-R Theories is

consistent with the range of f there,. containing enumerable sets of even

numbers. In the Either-K Theories, however, we must realign our intuition.

The application of f to the argument either[2;3J, for example, is reducible in

Either-K to any of the numbers in {4,5,6} rather than the {4,6} result of

Either-R. Thus although the semantics of the application of functions to

single-valued arguments remains consistent with the lambda calculus, the

behavior of fll'lctions with multivalued arguments differs between the Either-R

and Ei ther-K systems.

7.3 -111-

A more bizarre demonstration of this difference is the function g defined

info nna lly by

g(x] = if x>x then 1;

else 0;

which, in the lambda and Either-R calculi is equivalent to the single argument

constant function wpich always returns zero. Yet the Either-K reduction of

g[either[1;2]] yields the values {0,1}, even though g[1] and g[2] each

evaluate to {O}. Since the behavior of g in Either-K violates the

distributivity axian of the Either-R Theories, we clearly cannot express in

these theories a function with the properties of g; yet g appears to be a

canputable function definable on the domain F*.

7. 4: Summary

This chapter presents a consistent theory which combines EITHER conversion

with unrestricted beta conversion. This combination requires 1) that we

abandon the distributivity of functions over EITHER terms, and 2) that we

reinterpret the semantics of EITHER. The latter reinterpretation is only

hinted at in this chapter, and we confess that the semantics of the Either-K

theories require further study.

This empty page was substih1ted for a
blank page in the original document.

8 -113-

Chapter 8:

Summary and Conclusions

There has been a definite tendency, in the course of the work reported here,

to provide questions much 11Dre frequently than answers. We regard this

situation, perhaps'defensively, as a healthy attribute of research in a field

as theoretically immature &"S the science of programming languages.

8. l: Summary

The general topic of this thesis is the correspondence between the syntactic

mechanism of an interpreter and the semantic structure of the language it

interprets. The restriction of this study to the class of applicative

languages is defended, in Chapter 1, on the grounds that

i) Interpretive·mechanism for applicativ~ languages is simple, since such

ccmplications as assignment, side effects, and transfers of control are

avoided;

ii) The semantics of applicative languages are independent of the notion of

time;

iii) The theories of mathematical functions may serve as a semantic basis

for appllcative·languages.

Expressions of an applicative language are viewed as representations of

objects in an abstract semantic functional domain containing functions and

constants, and expressions are semantically equivalent if they represent the

same abstract element.

The stack- and tree-environment interpreters presented in Chapter 2 illustrate

semantic llmi tations imposed by typical compromises between efficiency and
1

ex.pressive ·power. The defect of S must 'be viewed as an interpreter "bug" if

·we take mathematical functions as a semantic basis, since certain expressions

are interpreted by S in a manner inconsistent with the behavior of functions.

The T interpreter of Chapter 2 relates the issue of evaluation order to the

expressibility of certain functions. The applicative brder evaluation of T,

1 i.e., the FUNARG problem.

- . ..:.-·- -

-114- 8. 1

in which arguments to a ft11ction are evaluated before the application of the

function, is seen to lead to the inexpressibility of functions which ignore

the value of their arguments. This motivates a preference for the normal

order evaluation of the N model, in which such functions are expressible. !pe

demqnstration in chapter 2 of a functional domain F of N assures us that every.

expression is interpreted by N in a way that is consistent with our functional

semantics; it does not, tx>wever, establish that every valid semantic element

(e.g., every canputable function defined on the semantic domain of N) is

expressible in N.

Chapter 3 demonstrates a flllction, WHICHFF, which despite its computability is

expressible neither in N nor in the lambda calculus. The expressibility of

WHICHFF seems to require a mechanism analogous to multipr90essing,, and two ·

therapeutic language extensions are considered:

i) A "codirg" primitive which allows a program access to the representation

of a fmction supplied as its argument; and

ii) A irimitive EITHER whose interpretation involves the dovetailed

evaluation of its arguments.

The admission of coding essentially abandons all semantic constraints and

allows the programmer to reinterpret expressions as he wish~s; we thus discard

this alternative as semantic anarchy. The EITHER primitive may be justified

in terms of applicative semantics, however, by the expansion of the semantic

danain F into the power set F•, each of whose eleme'rits is a subset of F. Thus

once EiTHER is introduced we must semantically associate each expression X

with an erumerable set of abstract values or •me·anings• of X. Such a

multivalued semantic domain is necessary to reconcile the fun'Ction WHICHFF

with applicative language semantics.

The semantic domain F* 111>tivated in Chapter 3 is suggestive of a canplete

lattice ordered by set theoretic inclusion. The undefin~d (or nonterminating)

canputation is naturally associated with the empty set in F*, and that

expression TOP whose values include the entire domain of the lambda calculus

corresponds to the max1-.1 element of F•. The semantic ,elem,nt associated

with the expression either[a;b] becanes the union of the respective F*

elements corresponding to the expressions a and b.

8. 1 -115-

In Chapter 4 our attention returns to the subject of interpretive mechanisms.

In particular we desire a formalism for syntactic manipulation of expressions

in a language including EITHER, reflecting the insight gained through informal

scrutiny of the structure of F* in Chapter 3. The formalisms introduced in

Chapters 4-7 are systems of conversion axioms, similar to (and based on) the

lambda calculus; each system (or theory) defines an ordering, >, corresponding

to inclusion in F* -- thus, for example, eitber[a;b]>a and either[a;b]>b in

each system.

A canplication arising in Chapter 4 involves the reconciliation of the beta

reduction 1 of the lambda calculus with the intuitively motivated requirement

that f\llctions be distributive over EITHER terms -- i.e., that f[either[a;b]]

be equivalent to either[f(a]; f[b]). The EITHER-R system presented in Chapter

4 resolves this difficulty by restricting beta conversion to arguments which

are reduced to normal form; while consistent, the resulting theory is too weak

to be useful.

The syntacti~ mechanism of •-conversion, presented in Chapter 5, solves this

problem of Either-R. Chapter 5 introduces the expression * as a canonical

(normal form) representation of the undefined computation, and extends the

ordering > so that the syntactic significance of * CA>* for every expression

A) reflects the semantic significance of the undefined computation (the empty

set is a subset of every element of F*). The use of •-reduction allows every

expression, including the single-valued expressions of the conventional lambda

calculus, to be reduced to multiple normal forms. The R-* :theory developed in

Chapter 5 reinforces an interpretation of the normal forms derivable from an

expression X as aoproximations to X, and shows that for any context A{X}

havi~ normal form value A' there exists a sufficiently good (normal form)

approximation X* of X such that A{X*} also has-the value A~. This result has

major semantic consequences; in particular, it implies that meaning of an

expression X is completely characterized by the set of normal forms derivable

(in.R-*) from X. Moreover the result is shown to carry over to the

conventional lambda calculus, since every normal form derivable in the lambda

calculus is derivable in R-*. The extensional semantic equivalence relation

1 Informally, beta· reduction is the application of a lambda expression
(user~defined f1.11ction) by substitution of its argument for free occurences of
the bound variable in the body of the lambda expression.

,.

-116-

suggested by these findings, namely the interconvertability of normal forms

derivable in R-•, is demonstrated by showing the equivalence of

non-interconvertable expressions for the fixed point op~rator Y.

8. 1

The mechanisms of •-conversion and EITHER-reduction are combined, in Chapter

6, to yield the Either-R-* system. The respective functions of the two

mechanisms are, in a sense, complementary; roughly speaking EITHER allows

expressions to be combined to make "stronger" expressions while •-conversion

allows expressions to be resolved into weaker component expressions. The

Either-R-* system is consistent, retains the power of the lambda calculus, and

interprets EITHER according to the semantic notions of Chapter 3. We thus

view Either-R-* as a practical syntactic basis for the construction .of for

interpreters of languages based on multivalued semantic do~ins; such an

interpreter, E, is presented at the end of ·chapter 6.

Chapter 7 explores an alternative resolution of the conflict between

unrestricted beta conversion and the distributivity of functions over EITHER

terms. The Either-K system presented in that chapter sacrifices such

distributivity in order to allow the unrestricted beta conversion of the

lambda calculus. While this combination results in a consistent theory {as

demonstrated in Chapter 7) it leads to a semantic structure which is

fundamentally different fran that of the Either-R theories, in particular

regarding the application of functions to multivalued arguments.

8.2: Conclusions

The study of applicative languages from the complementary viewpoints of

interpretive and semantic structure leads synergistically, we feel, to a new

insight in each area. We have repeatedly found the syntactic mechanisms and

semantic structures to be mutually illuminating, and view this dual

perspective as a principal influence on the direction and motivation of this

thesis.

The following are viewed as the principal results of this thesis:

1) The 11Dtivation and presentation of an applicative model of

multiprocessing. The applicative approach to this mechanism has certain

8.2 -117-

technical advantages over conventional formulations; notable among these

is the complete irrelevance of time as a parameter of language semantics.

The corollary disadvantage of the applicative model ls its uselessness in

the study of time dependent implementation considerations -- such as

scheduling, deadlocks, and synchrony of processes.

2) The formulation of the semantic domain F* for multivalued applicative

languages. We find particularly interesting the potential extension of

the Scott formalism which F* suggests: we have added$ to the Scott

domain, tmique upper bounds of arbitrary sets of semantically distinct

elements. The lack of such upper bounds in the Scott model has been

conspicuous, and the EITHER construct presented here seems to provide a

natural interpretation for them.

3) The mechanism of •-conversion and the results relating it to the

conventiona1·1ambda calculus. These results augment the lambda calculus

with a syntactic substructure (i.e., t~e ordering under~) which bears

close analogy to the semantic structure developed by Scott. In addition,

•-conversion provides a concrete (syntactic) relation of semantic

equivalence which may illuminate the relationship between lambda calculus

expressions having no normal forms.

4) The presentation of consistent theories of EITHER conversion. The

analyses of these systems is by no means exhaustive; we have not shown,

for example, that no axiom is derivable from the remaining axioms. The

theories do, however, provide sufficiently powerful syntactic mechanism

that interpreters may realistically be based upon them.

8~3: Directions of Future Research

We recogniz~ that this section constitute~ fertile grounds for an essay strewn

with universal quantifiers. Restricting our attention to specific questions

lef.t unanswered by this work, we find most demanding of further attention:

· 1) .The relative expressive power of EITHER-augmented versus CODE-augmented

languages. .we conjecture that every computable function defined on the

single-valueq domain of the lambda calculus is expressible in the

language E, and have in fact spent considerable effort in trying

-118- 8.3

(unsuccessfully) to prove this conjecture. The discovery of computable

ft.nctions expressible (with coding) in C but inexpressible (with EITHER)

in E would be counterintuitive and somewhat depressing.

2) The semantics and expressive power of languages based on the Either-K

Theories. The presence of functions which compute different results for

a multivalued argument X than for singlevalued components of X raises new

fundamental questions: what is a computable ftmction on F•? Are the

Either-K Theories functionally complete? Ir not (and we are pessimistic

on that issue) which functions are not exprestsible in Either-K?·

3) There appears to be a great deal of room for further development of the

theories of EITHER conversion. The extension of these theories to allow

eta reduction seems feasible. Further extensions may make the

extensional relation of semantic equivalence tractable by syntactic means

alone, e.g. by axiomatically asserting in Either-R-• the equivalence of

expressions whose normal forms are interconvertable.

4) The area of interpretive mechanisms for EITHER-based languages has some

interesting possibilities. The techniques of caaputational complex! ty

studies, for example, might yield some quantitative bounds on the

ccmputation time necessary for the evaluation of classes of applicative

expressions. As the cost of computation power continues to plummet,

methods for making use of massive parallelism becomes a practical as well

as academic interest.

5) The relationship between the mechanisms of EITHER- and •-conversion and

the semantic constructions of Scott demand more serious attention than

the informal parallels drawn here. Much ~ Scott's important work seem5

to bear rather directly on the systems presented here, and we recognize

that too ll ttle advantage has been taken of this resource.

It must finally be acknowledged that our quest for a functionally complete

language -- one whose domain D contains every computable function defined on D

-- has not been an unqualified success. The lambda calculus, whose functional

ccmpleteness was suspect, was scrutinized and found to be incapable of

expressing certain functions (e.g. WHICHFF). To remedy this inadequacy, the

lambda calculus was extended via the EITHER construct; the result (the Either

8.3 -119-

theories) is, indeed, capable of expressing WHICHFF. However, the new

systems have additional elements in their domain, so that the functional

canpleteness of the Either theories is again suspect. The results of this

thesis, then, suggest a similar program of scrutiny and extension to repair
'

their inadequacies. There is an inevitable circularity in this course of

research, mitigated by the fact that each cycle allows us to see previous

cycles more clearly.

A way a lone a las~ a loved aiong the/
riverrun past Eve s and Adam s, from
swerve ot shore to bend of bay brings
us by a commodius vicus of reclrcula~ion
back to Howthe Castle and Environs.

-Finnegan's Wake,
last/first lines

-120-

References

[1) Church1. A. 1 The_~ ot_ iamb<Jf C~pxers;i'I\ Annals of Mathenatics
;:stud1e~n---Un vers ty ress •

[2) Landin.t P, "A lambda-calculus Approach" in Advan·~ in Pro,rgr.iing and
!'t.2!!.-numerisail Computation, Penaago~ Press, Rew York 9 •

[3) Dertouzos, M., \r~Q.jyce AWtJn~,~~}'~i~a ~ 8"'py\cr I&nguages (cl~ss
notes ror •• ·• subje • r ng, 1 •

9

[4] Perlis, A. J., "The Synthesis of Algorithmic Systems", JACH, January 1967.

[5] Scott, D., Out~iN ill' &olt'"t~cal}le'iJ .or_ ~ation, Technical
monograp G~, o n nrs :a· <v--i9 .•

[6)

[7]

[8]

Scott, D., lhe LajSice 9J:. .rlmr ptngraf'§, Technical 111>nograph PRG-3, Oxford
UniversTty vember 'l97U. · ·

Hoare, C. A. R., "Procedures and Pargeters: An Axianatic Approach"
L§cture. Botes in Mathematics 1HH, Springer-Verlag, Berlin 197i.

Hewitt~ C. rsr~ ~-?!Pjifi~ MlllfiLili§f ';la) §i 1-91~ :00~,!1tfu n: M@iiii:J:rJ;}'ipr:U in

[9] Cooper:D· C., "Progrp Schemes, Progrw and Log!c"t Lecture Notes !n.
~atheipatics 186, Springer-Verlag, Berlin, 197 •

[10) Moses.1. J.,, "The Function of FUNCTION in LISP (or, ~I the FUNARG Problem
::shou.1.d Be Called the Enviroment Problem)", SIGSAM Bulletin 15, July
1970.

(11) Rosenbloan, P. C., The_ ilrf'~~ 0£ Matheutical Logic, Dover
Publications, lreW o cr.-

[12] Curry, H. B., and Feys, R., Combinatorv Loaic, Amsterdam, 1958.

[13) Paterson, M.S., "Program Schemata", Hachine Intelligence !ll., Edinburgh
University Press 1968.

[14] Strachey.1. c., "Fundaaental Conceets in Progr81111i.ng Languages", NATO
Conrerence, Copenhagen, 1967.

[15) Morris, J., ~bci~-Ca1~~tus Models .2! Prnmp•ing Languages, PhD Thesis,
H.I.T. Cell er •

[16] Schwartz, J.T., "Semantic Definition Methods and the Evolution of
Programmillg La~u~es" in Formal &-•ntica .2! Progrppping Languages,
Prentice-Hall 1972.

[17] Ershov~ A.P., "Theory of Program Schemata", IFIP Congress 71, August
h71.

[18] Landin, P.J., "The Next 700 Programming Languages", CACM March 1966.

[19)

[20]

Wegner, P. , "Programming Language Semantics" 1. in Formal Semantics Qf
Progr•mmtng L1nguages, Prentice-Hall 19r2.

Boehm c. "Aleune Proprieta Delle Fol"lle heta-eta-normali nel
iambda-IC-calculo," Consiglio naziona--re-cterre ricera Roma 696, 1968.

[21) Hindley! J.R • .et_ .i.!, ~~~~duction ,t..2. CQ8b1natorv Loaic, Cambridge
Un versitJ"'Press • ·

[22) Scott, D. "Lattice Theory, Data Types and Semantics" in Formal Semantics
of Progrepping Languages, Prentice-Hall 1972.

9 -121-

[23] Weizenbaum,,_ J. "The FUNARG Problem Explained", unpublished memorandum,
MIT 1'::168.

[24] Walk, K. et al, "Abstract Syntax and Interpretation of PL/1, Version
III," IBM Laboratory, Vienna TR25.098, 1969.

[25] Floyd, R. W. "Assigning Meanings to Programs," Proc. Symposium on Appl.
Math. volume 19, 1967.

[26] McCarthy, J. et al, The LISP 1......5. Programming Manual MIT Press 1965.

[27] Curry, H.B. gt al, Combinatory Logic vol. II, Amsterdam, 1972.

This empty page was substih1ted for a
blank page in the original document.

