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FUNCTIONAL DOMAINS OF APPLICATIVE LANGUAGES 

Abstract 

The expressive power of a particular applicative language 
may be characterized by the set of abstract functions di­
rectly representable in that language. The common FUNARG 
and applicative order problems are scrutinized in this 
way, and the effects of these weaknesses are related to the 
inexpressibility of classes of functions. 

Certain computable functions which are inexpressible in the 
lambda calculus are identified, and it is established that 
the interpretation of these functions requires a mechanism 
fundamentally equivalent to multiprocessing. The EITHER 
construct is proposed as an extension to the lambda calculus, 
and several theories including this mechanism are presented 
and proved consistent (in the 'ense that they introduce no 
new equivalences into the lambda calculus). 

A syntactic analog to the Scott construction, *-conversion, 
is developed in conjunction with these theories; this adjunct 
allows reduction of expressions having no normal forms in 
the usual lambda calculus to finite normal form approximations 
of the expressions. This leads naturally to a technique for 
proving the extensional equivalence of lambda calculus 
expressions which are not interconvertible. 

*This report reproduces a thesis of the same title submitted 
to the Department of Electrical Engineering, Massachusetts 
Institute of Technology, in partial fulfillment of the 
requirements for the degree of Doctor of Philosophy, June 1974. 
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Chapter 1: 

Introduction 

1 • 1: Programming !-anguqe Semantics 

The semantics of a programming language may be v.i,~d as .. a .theotY .which 
. <.··:~~:""~,-~~~ ~bD' ... ~,'"'h.. ,. 

accounts for the behlivior of programs wr!t~tm in t.~t: ~r:i~,~~· Ap. .. 

interpr-eter for a language L is a llX)del for the s,mantics ._Qf ~. and a,lf':ng~e 
. . , .· .• ·. ,.. . :'< ·r ' ·~·,;: . 

whose semantics is incOIDplete (in the sense of an incpaplet~ theory) ,-.y have 
~~ •·. ..... , . ... 'J.:' ~ ·-· '. ... ~ ;., 

many "correct" interS>reters ~ich behave differently just as an 1ncp"1J)lete 

:~ heory may have di spa rate models. We find that the usual more specific 

definitions of semantics (e.g. "the relation between expressions and the 

objects which they denote") make assumptions about the structure of a universe 
-:.·J:~t~l:fk ·~· .i -" 

of "meanings" which are difficult to justify in the general case, where side 

effects, assignment, •ad tranaf•r• ot controh.maat~ ~aee&unted 'f'or 

:Je~nt!cally •. Sll~h. cop.~4er,at1GD$.!DOUvate the reatfl.l!eMon of' the present 

work to applia.tiv.e laqg~s! ' 

Serious concern for rotmal semantics is not usual~ a1~ important .C<X'lt$ideration 

in the architecture or' practical' larigiiages. Ty~o,111~ .,. la,l'lgU&ge is desi&,nedc 

largely by pragmtic considerations and"' the ro.rmal sbat~nt._ of i.ts semaptics 
• - • '-A \ ' ~ ' • ' • ... • • ' 

is either abandonecf entirely ·or po'stt>o~d''untll the more 1iaportant 
.; ·. . .~ ;::'.~ . ! '.~!L ·,-.. , 

implementation issues are aorted out. The subsequent semantic formalization 
J ., ;'"1 t ' ~ : " '' . .. 

of tti. labg.uage inevitably b~O.is a •jor taak, and Hie complexity, volume, 
' '- ._ ·.~"':' ..f S r,. • ) ... '~ 

and inserutu1Uty of the result ay constrain· its usefulness. A classic 
~ .. ~~:: .·. 1: .·, '; - .. 'j ' 

example of such an wadertllk1 .. is th-e 'clesortption of .PL/1 in the Vienna 

Definition La,.uage(24J. · , · 
''"~ ,,. . 

An alternative technique or language design, ex•plifJ.•d to some e~t.ent in 

LISP[26J and its recent der.tvati~ea, lnvoi~~s 1 
;e ~~.ir~cation of ,the . :""·r . - . ·. 

pragmatics or a la~uage after decisions on some particular concise .semantics 
- • •• 

1
'. · ' ~- < . L."i : ;t.· •'. , , 

have been mad~. Unfortunately languages so des.i~ed ten~d to, haV'e s~r~pus 
\.: : ?1 - '_, ~, 

defects from a practici!d point of view and are abandoned .or complica,ted by the 
" .I ~ i "· 

addition of :I.St··~ mechanisms to make them llX)f"e useful .• 
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The designer of a language is thus confronted with a choice between concise 

semantics and practical usability, and he justifiably tends to opt for the 

latter alternative. The extent to which semantic considerations may be 

reconciled with practical issues remains an important open question, and the 

development of practical languages with concise, elegant semantics is the long 

tenn goal of much of Computer Science research. · 'nle problem is being attacked 

fran two discernible directions: (i) semantic formalisms which deal with the 

mechanisms of extant practical lan~uages, such as the analysis of 

uninterpreted scherilata[9,8,13,17,25]; and (ii) the adaptation of existing 

formalisms to very simple D:,c:1e1 languages such as the limbda 

calculus[2,3,5, 15,22]. The work reported here falls naturally into the 

second category. 

1.2: Applicative Languages 

Familiar concepta'of nathematics provide an informal semahtics for many 

aspects of. canputer languqea. Manuals for mat pto0gr'M1m1ng languages relate 

various program constructs to such notions as real rlU!lb.-rs, arithmetic, and 

functions, with liihich the reader is presumed to be acql,Ml,t.nted. Often 
' ,' .... 

terminology and notation are borrowed from mathematics, ,implying some infonnal 

relation between, say, a FORTRAN "function" and the ~omm,on mathematical notion 

of fl.l'lct ion. This relation is only appro~imate, isince for example no 

mathematical analog has been established for the FO~IRAN function which prints 

its argument on the teletype. In order to fo""'lize the relationship between 

program constructs and mathenatical notiqns, then, we focus our attention on 

the highly restricted class of apolicauxc languag•.:s· 

The semantic bases of applicative languages are the theories of mathematical 

functions, and the constructs of these languages are restricted to simple 

analogs of the related mathematical notions. Each applicative language 

provides a syntactic formalism for the representation Qf func~ions and their 

application to arguments, and the semantics of an appli~tive language is in 
. l' '.:I 

general a rule for the association of expressions, constru0,t.ed according to 

this formalism, with values ft-an an abstract semantic douin containing 

fun ct ions and constants. Formalizing a consistent semantics for an 

-------------------------------------
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applicative language appears to be an easy first step in pursuing the general 

problem of programming language semantics; since set theory provides 

satisfactory semantic domains, all that remains is the seemingly s.imp.le 

association of expressions with set theoretic functions ~d constants. 

Yet even this simple problem is plagued with ctanpl.ica.<t.ions, a.ad it· is only in 

recent years that. progress has be1Hl mde in thlll reat ~.illar-,gely due to 

t echniq uea developed by Dana Scott [5, 6,.22]. · In 1"act..., ·:tne• usual set tlleoretfc 

characterization of fimctions is not so well adapted to ti1e semantics of 

applicative languages as one might suspect: type_ r!strictions, placed on set 

theoretic fimctions i.n.?rd~'r_ to a~o.id Russ~.1 ·s .. P11r~dloq~~< a_re diffi?ult to 

reconcile with the natural proclivity of appli"cati,ve l~~..f.~es fo~ the 

self-application of ftmctions. The work of Scott justifies our optimism that 

$UCh pr.-0bleDNS are traot.ablet':'alld tlm.t the- -~·t~s of':8$%>11o=tt1Ye: langllages 

may be based on the mathematics of functions:. The-· e.rt~l~I\ or t.he·.reli!iUlting 

semantics to non-a~.Pli~atiye mechanisms sue~,~ a~iu.~~ifl:'n~, an~ side eff~~ts 
however,-remains an.area of grave uncertainty, and_ it Hfll:llS likely that 

• ·.;t. . ,-· . .. • • ~ '_ .......... ··:·· . . - - : . . ,,,.. 

theories ~f ftmctions will ultiml..~ly. prove to. be '1nadeq~~~ bases for the 

semantics of programming la~uages in general. In the meantime, however, 

applicat.iv~A.anguages •nd ~&ei1"' /ii111otioral-.-•-nticc dollNliD• '.are. probably the 

closest we h•ve c•e t;.o a suecessf.uJ. 1K"OD?Ulli1C·lan&14et temantios, and we 

feel that there is much insight to be gained from further exploration of this 

area. 

The semantics of an~appUcattve langugf Lt 'tihlil, .·Ml' J~~t:J.ieved as a mappinc 

between the set .of w.Ud expressioba tilld1,,~tbe idee!sn:d difCIQMEM of ~) and 

and a semantic dcmain of· ab•traot 't\.l'lct.1ona an4 oollst«lts., • caondquence ·of 

the Turing Universality of L is that this -sa'1ne 11uat :a 11Jany to one; each 

abstract semantic element has, in general, infinitely •ny representations in 

the language L. The semantic mapping trus leads naturally to a notion of 

semantic eguiyalence between expressions in L, partlt~irtg the domain of 

discourse of L into equivalence classes each of which corresponds to a single 
' ;:. :~~ - "" ~ • -~ ~~.~~ "'; _.,:,~ ; •,.f .• 

abstract semantic element. 
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1.3: The Thesis: Statement of the Problem 

The problem which this thesis addresses is the characterization of the 

exoressiye cower of an applicative language in terms of the structure of its 

abstract semantic domain. This process generally involves relating specific 

applicative' lang\Jage features to the expressibility or particular classes of 

functions, e.g. the soluM.on of the FUNAftG probla to the expressibility of 

functions appiig integers onto an infinite ,,range :o~ semantically di'rstinct 

f1..11ctions. 

This work focuses on a very few specific language mechanisms, with particular 
' 

attention given to an applicative analog of multiprocessing. Partial answers 

are provided to such questions as: 

1) Are there fwicti9ns whose 'COIDputability depends fundamentally on a notion 

aoelogous to wlt.J;proceesing? 
"'f 

2) ~at applicative mechanisms are necessary for the expressi~n of such 

flllctions, and is the impact of these mechanisms 9n the structure of the 
. ' 

semantic domain? 

3) ~at is such. relationship between aueh mult1pr~91h1ing construats and 

other issuea: or aJpUcath'e language evaluation, ,;such a\i evaluation 

order? 

The work presented here might be characterized as a search for an applicative 

language L which is-fuootinally 409pleM:iJlhthe.aeaaeLt1tiat,eveey oOllputable 

fl.motion de finale oft tbe ••mantic ck>lliam at L ta upreaa.tale in ·L -- our 

reluctance. to cite thia as the principal goal ofH:tbe· thesis .1& probably due to 

our failure to find such a language. 

1.4: Outline of the Thesis 

The organization of the remaining chapters is as foiiows: 

Chapter 2 develops the basic framework through the presentation of three 

interpreters for applicative languages, designated S (stack environment), 

T (tree environment), and N (normal order). Each interpreter exemplifies 

--------- ~---- --~ -~· 

/ 
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a typical language limitation and eaQh is, ·used to reclate a specific 

language characteristic to the expressibUi t.y. of :a l>'rticular class of 

fun ct ions. 

Chapter 3 demonstrates a particular computable fUnct1on which ls 

inexpressible both in N and in the lambda caloulu8, and relates this 

inexpressibility to the semant io requirement ttlat: an expression- 'l"' these 

languages have at most a single value.· 1'wo alt.at-native lanp:uage 

extensions are discussed, each of which solves. this., specific 

expressibility problem. The solutions involve, respectively, primitives 

for coding the representation of functions as integers and a 
:(. ~ 

multiprocessing primitive called EITHER. Each of these extensions 

requires modification of the structure of the semaptic domain, with the 
~· ... ~ 

use of coding leading to drastic and undesirable consequences. For this 

and related reasons, EITHER is chosen. To accoun~ for the ~mantles of 
;,,• -

EITHER, the semantic domain of N is expanded into a power set and each 

expression X is associate,Q semantically .:with an enUDMt-rable set containing 

the admissible values of X. 

The formalization of EITHER-augmented languages may procede in several ways, 

differing in the restrictions placed on evaluation order. Ch~ters 4, 5, 6, 
::·,·~. ;·. L : .. 

and 7 deal with certain fonnal theories, based on the lambda calculus, for the 

reduction ot expressione involving the EITHBR construct: 

Chapter 4 provides basic definitions and presents the Either-R Theory, in 

which lambda conversion is allowed only in expressions wh~se argument~ 
' '/ ~' ·. 

are in normal form. This restriction is motivated by the intuitive 

desire to maintain the distributivity of functions over terms of an 

EITHER clause, bUt it limits the power of languages based on this theory. 

Chapter 5 develops a theory of •-conversion, designed to mitigate the 

limitations imposed by the restricted lambda conversion of the Either-R 
: ',_' _; ·,,,. . - ·" 

Theory. The element • is introduced as a canonical representation of 
," .- ,\ ., 

every nonterminating computation, and a syntactic .mechanism is provided . , .. .: : . { 

for the reduction of expressions to approximation~ which are in normal 

fonn. The use of •-conversion provides techniques for, proving certain ,, 
relationships in the conventional lambda calculus. .This chapter presents 

f "~ 
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results which are of interest independently of their r"'elation to the 

development of the Either theories. 

1. 4 

Chapter 6 presents the Either-R-• theory, canbining the EITHER mechanism 

with •-conversion, and establishes its coos.istency. While this system 

retains the restriction on lambda conversion; it hae the power of the 

lambda calculus augmented by the EITHER primi ti'te. Thus, languages based 

on Eitber-R-• solve the specific expressibility problem raised in Chapter 

3. Interpreters and semantics for such· languages are discuaeed. 

Chapter 7 presents the Either-K theory, which combines the EITHER construct 

with unrestricted lambda conversion. Significant semantic differences 

between the Either-R and Either-K theories are n~ted, and it is 

infonnally observed that the removal of the restriction on lambda ,. 
conversion leads to the expressibility of certain functions which are 

inexpressible in the Either-R-• languages. 

The last dlapter sm•rizes the results of this tt0rk and proposes avenues for 

future research. 

1 • 5 : Fun ct ion al Dana ins 

An lmderlying assumption of this research is that ~ fundamental semantic 

intent of applicative languages is to provide compu~ational models of 

mathematical fl.l'lctions. As a consequence of tpis assumption, we are inclined 

to view functions in an applicative languae:e as approximations or models of 

abstract mathematical f\llctions, and to treat any dis.pari~y- between the 

behavior of the canputationa·1 model and the corresponding mathematical 

function as a "bug" or idiosyncrasy in the language. 

The thrust of this research is aimed at the limitations of particular 

applicative languages as m.:>dels of systems of mathematical functions. We 

begin by specifying, in the next section, criteria which must be obeyed by 
' :;..\ 

applicative functions to be intuitively satisfactory as models of mathematical 

flmctions, and then distinguish for each applicative language L that subset of 

the domain of L containing only such intuitively sa~isfyi~ functions. We 

call such a subdomain of L a functional domain of L. 
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1.5.1: Intuitive Criteria for Functions 

R·-..stricting our attention for the n:>ment to 1mary (s.ingle argull'lent) functions, 

we note that 

1) A function I. is a macping fran a domain Df to a range Rf. The 

set-theoretic nx>del off.. is a set of ordered pairs, { ••• <Di,Ri> ••• }, such 

that !.[Di ]=Ri if and CXllY if <D1 ,R1> is an •leMnt of !• 

2) A fun ct ion f. may be cartial over domain D, i.e., there may be elements D. 
l 

in D such that L[Di] is undefined;, this cor~es~~~~s to the practical 

situation of a nonterminating computation or a canputation which results 
. ., 

in an error condition. We shall refer to such a computation as 

divergent. 

3) If f.. and & provide the same mapping, then they are the same function. 

4) & is a sub§et or I.. (in ·the set-theoretic sense) tr and only if foi.-; every 

Di in the domain of g,, g.(Di ]=Ri implies. t:.[Dil=Ri. 

Given a language L and a fl&'lction r., a prinbipal intuitive requirement is the 

distinct ion between t~ funot ion r. and the varioaa: algorithms (or expre!-sions 

in L) which may be used to compute r.. Ai maj:ol' ~oaplicaticn in the semantics 

of applicative languages arises from this many-to-one correspondance between 

algorithms and fll'lctions, particularly in li~t. of the well knqwn 

undecidability of equivalences between algorithms. 

1.5.2: Functional Domain: Definition 

The intuitive consi<lerations of the previoua;weotion mottv&te the fol:lowing 

definition: 

Defn 1. 1: A functional domain F is a set ccntairUng the set 'N of natural 

numbers and computable functions, 1 along with an equivalence relation ~ 
such that: 

1 Unless specifically stated, we shall use the term func;ion with no implied 
type restrictions. Thus f\lnctions include functiona s o arbitrary order, 
consistent with the typeless character of the applicative languages considered 
here. 
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1) if x_ is in N or y_ is in N, then x-y if and only if x=y. 

2) if neither x. nor :t.. is in N, then x-y if and only if for every .z.. in 

F, x.(.z..]-y_(.z..] or both diverge together. 

3) if x.-:t.., then for every .z.. in F, ;.[x.J-.;.[x.l or both diverge together. 

Clause ( 1) simply asserts that different numbers,· e«· 2 and 3, are semantically 

different objects. Clause (2) asserts that any obje(l~ in F that is not a 

number is a f1..11ction, am moreover that functions a('e. semantically equivalent 

if and only if they perform equivalent computation~ for every set of 

arguments. Clause (3) insists that the applicatio~ or a func~ion to 

semantically equivalent arguments yield semantically equivalent values. 

An expression.& is said to be f~nckionil over ~he ctomai~ F if, for every 

choice of x. and I. in F, x.-:t.. implies that i.Cx.l-i_[I] or both computations 

diverge together. Thus (3) is the req-W.rement that. eve,.Y fun.ot1on in a 

functional domain F be functional over F. 

We note that the equivalence relation - is not, in general, canputable. 

Furthermore, there may be elements x. and :t.. in F su<Jh that 1C:t.. is not defined, 

that ~' such that neither 1Cx.. nor .. ex-:t..t is· derivable rran the ·above 

definition. 

This definition is rather DDre specific th8n necessary. The choice of natural 

numbers as a basis of semantically distinct constants, rather than, say, 

character strings or floating point numbers, is arbitrary. In dealing with 

the lambda calculus we cQJld make the apparently stronger requirement that 

normal ~expressions be semantically distinct, rather than just the 

particular normal (orm expresaiona whiqh are numeric oonstarlts; however it 

happens that the two altematives are entirely equivalent in the con-text of 

our nDdel la~uages, and our present definition is the less dependent on 

particular syntactic considerations. 
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Chapter 2: 

Interpreter Structure and Expressive Po~er 

In this chapter several illustrative inte~eters for applie!ative languages 

are presented, and compromises .in their implementation ati-e related to the 

inexpressibility of certain functions. The model_interpreters .~~ taken from 
~- . .. , 

Dertouzos[31 where they are discussed and motivated in greater detail. 
':°"' ~ ~' 

2.1: Syntax of Models 

The essential canponen.ts of an applicative lanwuage .syntax are conventions for 

the representation and application of functiona. · fypical applicative 

languages provide for the representation of functions by eith~r or--both of the 

follow!~ means: 

1) A set of reserved symbols designating oriJDitiye functions whose semantics 

are basic to the language; 

2) A convention for fungtional abstragtign, or the definition of new 

f1.11ct ions by mean~· o·r expression's· containi~g variables. 

The pure lambda calculus of Church[1] is illustrative of languages using only 

the abstraction mechanism; the comb1natory calcwlus .of Curry[ 12] exemplifies 

the use of primitives without abstraction. Curry[ 12] has demonstrated the 

equivalence of these mechanisms, with minor qualifications, and the choice 

between them for ou.r pw-po.- is largely & ._"-" .'1>,. "canvenie~; We pr-ovl<le 

here syntactic construct.a tor both. 

Beyond these constraints, t.~ ~yntactic -~-~ails of ~.t~~ la~g~!l!es discussed 

here are not important. A LISP-like syntax has been chosen. for the 
>-· <t""~ .. E.: :::.. , . 

development of the llDdels and to provide a definite basis for examples and 

illustrations, although the results and"examlitn·'._,. tie translated to conform 

to other syntactic conventions which are conaist.eot; with these constraints. 
, .:.. ' .i ;' . :·.~ ;·· .... ~ 

Syntactic characteristics of our 11Ddel languages include: 

1) A finite alphabet including the alphanumeric characters and the special 

characters "{" arid ")"; 

------- -----
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2) A countably infinite set of identifier§, each a finite string of 

alphanumeric characters of which the first is alphabetic; 

2. 1 

3) A set of nulDE!ric constanta, each represe,nted in the language by a finite 

string of digit•. 

The elements of the model applicative languages are the IRP!icatiye 

expressions (A.l's) whose syntax is given by: 

<AE> 

<identifier> 

<can bi nation> 

<AE list> 

<lambda expression> 

<bvl> 

<number> 

<letter> 

<digit> 

We assume of these 111> de 1 

:= <identifier> I <number> <canbination> 

expression> 

<lambda 

:=<letter> <identifier><di-t'it> !<identifier> 

<letter> 

:: ( <AE list> ) 

: = <AE> : <AE> <space> <AE list> 

·- ( LAMBDA ( <bvl>) <AE>) ·-

== <null> I <~dentifier> <space> <bvl> I 

:: <digit> I <digit> <number> I 
'/ ', '" 

·- A B Z' ·- ... 
== 1 2 0 

lane;u-.es tha\ de.ta is 1eit1Mr fttllnePic or functional, 

that is, that the yalue canputed for any appld.oati-ve mq,r•sion must be either 

a natural rumber or a function. 1 An expression X is atomic if X is an 

identifier or a number; in addition the roiiowi .. syntactic forms have special 

meaning in our m:>de l languages: 

1) The syntactic form of a lalllt>da exprea-aion ia 

1 
Our decision to ignore for the present other common data types (floatin~ 

point l'llmbers, arrays, character strings, lists) is justified by their · 
codability as numbers 1 so that our results concerning ~rocessing of numeric 
data may be extended ~o the processing of these other aata as well. 
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where LAMBDA is a reserved identifier in the language, the a
1 

are 

identifiers o'n the bound variablt l.l.li. Cif the lambda expressions' and the 

expression bis the~ of the lambda expression. 

2) The syntactic form of the aoplica'tion of the procedure (function) f to 

arguments x 1 ••• xn is 

Here f is presumed to be the representation of a functional datum, and 

the xi are representations of arb-i tra-ry data ·wh·ioh are' supplied to the 

ft.11 ct ion f as arguments. 

There is in each language a s•ll finite set of reseMd identifiers used to 

denote primitive functions. Our initial models will include the folfowing 

primitive ft.motion identifiers: 

1) The logic values T and F, primitive functions defined such that the value 

of the application 

(T a b) 

is the value of the expression Jl., regardless of whether the value of the 
- ~ ·~ ~' 

expression J2. is defined. Similarly, t~ .. value of 
'. • l c : • ,... • ' 

(F a b) 

is the value of the expression J2. .whether 9r not A has a value. 
l 

2) The ft.motion PLUS of 2 ajogument-s, defined such thtat the -value of the 

expression 

(PLUS a b) 

is the sum of the value-s or the -expressions A. and ]t. 'lbe value of th-e 

application of PLUS is undefined if either ~dt ttttf values or A. or ~ is 

nonnumeric. 

3) The fmction GREATER of 2 arguments, defined s\Jch that the value of the 

expression 

(GREATER a b) 
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is the primitive function T if g_ has a higher numeric value than the 

expression .Q., and F if the value of a is less thaQ or equal to the value 

of .Q.. 

We shall often refer to an identifier which is not a primitive function symbol 
. 

as a yariable. An occurrence of the variable y_ in the expression X will be 

termed a ~occurrence if one of the follow!~ applies: 

1) X is identically the variable y; or 

2) X is of the form CA1 ••• An) and the occurrence of y is free in one of 

the Ai; or 

3) X is of the form (LAMBDA(a 1 ••• a j)M), y doe& not -0oour in the bound 

variable list Ca1 ••• aj), and the occurrence of y is free in M. 

An occurrence of the variable y which is not free is bound. 

2. 2: Curried Functions 

The syntactic prcwision made here for functions of multiple arguments requires 

certain further elaboration. We may reasonably demand; for example, the 

ability to express the function MPLUS defined such that, the value of tMi>tus m) 

is the m-ary flrlction which returns the 8Um of its m arguments. Such 

fl.l'lctions are, in general, unrepresentable unless some primitive mechanism is 

provided within the language for the abstraction of mult~ple argument 

fun ct ions. We might consider the abstractiql'l pr.i.Jni tive ALPHA, defined such 

that the value (ALPHA F G m) is the m-ary lambda expression 

(LAMBDA(x, ••• x )(G x CF x, ... x ,>>> m m m-

where F and G are presumed to represent (m-1 )-ary ~ binary functions, 

respectively. We might t}\en define MPLUS so t.,.t (HPLUS 2) returns PLUS, and 

(MPLUS n) returns (ALPHA (MPLUS n-1) PLUS n) for n>2. 

Such a primitive is, however, tmnecessary in most languages. The technique of 

Curried flrlctions 1 may be used to couch multiple-argument functions in terms 

1 named in honor of H.B. Curry who developed this technique; see [12) 
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of unary f1.11ctions, whence the application of F to arguments A
1 

A2 
becomes 

( ••• ((F A
1

) A
2

) ••• An) 

and the n-ary lambda expre~sion (LAMBDA(Ar A
2 
••• A·n)M} becanes 

(LAMBDA (A 
1

) 

(LAMBDA ( A
2

) 

(LAMBDA (A )M) • • • )) 
n 

••• A 
n 

The convention of Curried fl.l'lctions simpl1f1'!$. Ulf presentation df proofs ··and 

interpreters, as only single a,rgument tu,notiona.n~.;bt"'e:onsidered; we 

therefore hastily adopt it for our present., purp,oaea. Tb..e convc:ntional. 

multiple argument syntax is slightly less C-011Pli04,te~, tiowever, ard tends to 

~reater clarity than the use of C'1r.ri.ed funotj,pn~i "ll,,~ntly allow 

ourselves the informal! ty of swi tQhing fre,ely b.e~.e~ ;,he,, .. two corwent.ions at 

our convenience. We may then consi4er, ins~nce.s. or. ~" multiple a.rgument 

syntax as an abbreviation for the corresponding Curriefi ,.:w.nta~, which we take 

as basic. 

An exception must be made in the first model langU8&' p~ented, however, as 

the FUNA.RG problem does not interact gracefully with.Ci.Jrried functions; hence 

in this case the assumption or single argument functions is not made. 
; \ ~'-

2.3: The FUNA.RG Problem 

We are now in a position to give an exuple of a ftactionally incomplete 

language, lbich we call s. S is an abistract?ian or the a:pplicative subset of 

LISP and similar stack-oriented languages; ~t aervea to .int.rOdUce the notion 

of environment, and demonstrates t.,_t certain lllilniMl structural constraints 

on environment handling mechanisms are neeesaary for ~ expreasibili ty of a 

particular class of ft11ct!ons. 
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2 • 3. 1 : The S llK> de 1 

An enviromnent is a linear sequence of ordered pairs (or bindings) (x,v), 

where x is an identifier and v is a value. Environments are thus a mechanism 

for the use of identifiers as variables, serving to record the values 

associated with eaoh variab~e. We represent the enviroiiment which binds the 

variable x
1 

to the value V 
1

, x
2 

to v
2

, and so on, as 

The envirornent structure of the interpreter for S aay be viewed as a stack, 

bindings being pushed onto the environment from the left at the start of the 

application of a lambda expression, and subs~uently being popped from the 

envi roment at the cmpletien or that applicatiori. The S interpreter finds 

the current value for a variable X by looking, in turn, at each binding 

starting with the let'tmost; Mhen a binding Whose first element is X is 

encounterect, the asaoclated value (the second element of the binding) is taken 

as the value of X. We •Y describe this operation by defining a primitive 

fl.llct ion lookup of two arguments, corresponding respectively to the identifier 

to be evaluated and the environment in Which its value is to be found: 

lookup[x;CCX 1,v
1

)CX
2
,v

2
) ••• (Xn,Vn))]= 

if x:X
1 

then v
1

; 

else lookup[x;(CX2,v2) •.• (Xn,Vn))] 

We now describe the interpreter for S as a function defined recursively as 

follows: 

S[x;e] = 

if x is a number, then x; 

if x is a 11amber of {T,F,GRBATIR,PLUS} then x; 

if x is an identifier then lookup[x,e]; 

if x is a lambda expression then x; 

if x is of the for111 (T y z) then S[y;e]; 

if x is of the form (F y z) then S[z;e]; 

if x is of the form (GREATER y z) then: 

if S[y;e]>S[z;e] then T; 

else F; 
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if x is of the form (PLUS y z) then S[y;e)+S[z;e); 

if xis of the form ((LAMBDACs
1 
••• sn) b) y

1 
••• y

0
) where the 

si are identifiers. the,n 

S[b;(s 1,s[y 1;e)) ••• (sn,s~l,,Je))e]; 

if xis of the form (y z1 z
2 

••• zn) where y is not a lambda 

exprtllitaion, then S((S[y;e] z
1 

••• zn);e); 

else undetined 

Thus S[x;e) canputes the value of the expression .1. in the environment it· 

S[x;fl] (where 0 is the empty envirorma-nt..) ccaputl.ea •the value or .& on an .S 

evaluator in its initial "bare" state; we may refer to this simpley as the.§. 

yalue 2I.. .I.· 

2.3.2: Arithmetic Completeness or S 

We refer to a la~uage as arithmetigally c99pl1te if every canputable first 
1 , ..!", t. ·. :.;;, . --~~ " '•,Jt .• ) ! . •. . k:. ~ , .. ,," ....... 

order function is representable aa a procfedUre ot that language~· ire stiow 
l.· · -. . .4·. ~ .. : ... , _ ·-.;·.. r ·: ~"'~- ·. ':.• ?.••. ~ ., ·' 

that s is arithmetically canplete by shOwing ·uat ror everi ffrst order'. 

partia:i recursive (hence canputable f 'too,~io'n t:'n~.;9·:.'!s' a 'cer'respondlng 

fun ct ion in s. The constructions or this sec ti~~,~~~' 'idaptations ~oi those 

appearW. in Dertoumoa[3] and. are ~ :t&C4•sl"•Piif~}'; to.r •1c4,.,,0f 

11 lustration; while each suNeciuea_t ':•4eli l•neaa&e J.•L-190 ari ~.tically 

canplete, similar constructions apply in each case and will not be repeated. 
... ./. t, . \ 

As a preliminary step, we consider the S f\.llction given by: 

(LAta>A(X l) 

((LAMBDA(X Y D)(D X Y)) X Y 
. . ' ~ ,. 

(LAMBDA ex Y)( (GREATER x y) 
(PLUS· 1 (I).~ ~M.tJI: 1 Y))..) • 

O)) )) 

which canputes the "recursive difference" function 

1 . ~- . ~· . - . . ·, .. ''. .. '. : , : • 
FolloWing the terllinology .of, l~,_,. ~rJf:.j~ RlctiO"A: ·contains ol')ly 

numbers in its range and domain, and ~ t-of:;~~ ::J 11ay conta.!ri Un 
addition to fllmbers) functions of order less an j. 
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D[x;y] = if x>y then x-y else O; 

by the algorithm 

D[x;y] = if x>y then 1+D[x;y+1]; 

el.se O; 

2.~.2 

Note that the extra two layers of LAMBDA bi..W~ns ,_.ve only to bind the free 

occurrence of the identifier D within its '(Mm·· Oe(;:i,ni.t1P4), and ti'l.ls to make the 

recursive f\l'lction operate properly on S. 1 

P[x] =if x<1 then 0 else x-1; 

in S by the expression: 

(LAHBDA(X)(D X 1)) 

where D is the recursive difference function defined above. 

Nolf w shall demonstrate that eve~ partial ~curaiv~ 'i\inction of first order 
, ~ "' . . . '·~ , . . .f: ' :·· .. ·: i1 ~ ... ~; ··; ~} -~ . .. l ~; ..\, ,1 :._ ~ ' 

is. repreaentat?+e as a ,fun.ct ion in S. In the foll~ng, lower case letters 
.,.:, . ,, . ;· ·'-· ... J 1' ::;·· '· ,.,. '; .:. 

r~r,~ent par!~ial recur:,~~ve functionq wttp,~ .~,P~r o~~ ~~~t~rs denote their 

correppondi~ :S fmct!ons: ... ... ~ 

1 )' For every' pair (J( 1lataPal tRllfb•MI n anct a, the -. ... rgUllent QQllSt.aot 

f\l'lction of •lUe a 1• •xpl'•8'd tn &,aa.i; 

. ,. 

2) For every pair of mmbers n and m, the m-ary pro1tct1on function which 

returns the value of its nth argument is exprei8'd"iff S:by: 

{LA"81)A(X 11 ... ~ Xn> 

3) The successor fl.llction 1• exprnaed !:ft.JS, by: 

(LAMBDA{X){PLUS 1 X)) 
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4) (composition) For every choice of numbers n and m, m-ary partial 

recursive functions g 1 ••• gn' and n-ary function r, the m-ary function h 

defined by 

is expressed in S as 

(LAMBDA(X
1 Xm)(F 

(G 1 x1 ••• xm) _ 

(Gn X1 ••• X~) )) 

where F, G1 ••• Gn are the S expressions corresponding to f and g 1 ••• gn' 

respectively. 

5) (orimitiye recursion) If the n-ary partial reeursive function g and the 

(n+2 )-ary primitive recursive functio.n r are e~pr~•sib-le in S ae G' -and F, 

respectively, then the (n+l)-ary fl.11ction h ~ined by: 

h[x1 , ••• xn,O] = g[x1 , ••• x
0

] 

h[x,, ••• ,xn,y+l] = rcx,, ••• ,xn,y,h[x,, ••• ,xn,y]] 

may be expressed in S by 

U.AMBDA cx 1 ••• xn Y) 

((LAMBDACX
1 

••• 

(LAMBDA ex, 
(F x

1 
(G X 

1 

xn Y H )(H x 1 •• ; xn Y)) x 1 • • • t
0 

Y 

X Y) ((GREATER Y 0) 
n -

X {P Y) (H x
1 

••• X (P Y))) 
n n 

xn > )) )) 

where P is the representation or the prede~esaor function given earlier. 

6) (mu-recursion) If the (n+1 )-ary total reoursive function h is expressible 

in s by H, then the partial recu~sive function g defined by 

g[x,; ••• ;xn] =the least y ror wbioh 

h[x1; ••• xn;y] = 0 

is represented in S by 
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(LAMBDA(x, •••. Xn) 

( (LAMBDA ( R ) ( R 0 ) ) 

(LAHBDA(Y)((GREATER (H x, ••• xn Y) 0) 

(R (PLUS 1 Y)) 

Y)) )) 

2.3.2 

Finally, we note that the class of recursive functions is by definition 

exactly that class of functions obtainable throu8'1 finitely many applications 

of the above six rules; hence the S representations given in the rules 

constitute a technique for constructing an S expression which represents any 

fl.l'lction l!hich can be shown to be partial recursive. 

2.3.3: Functional Incompleteness of S 

Recall that the fmctional canpleteneaa of a language L requires that every 

canputable f1.11cti6n defined m .. t~ se•ntic do•in of L be exsressible in L. 

Since the natural mmbers and (by the preaedin& sec~ion) first order functions 

are included in the se•ntic do•in ot S, .,.ery second order function is 

definable on the do1&in of S. The functional inoo~pleteness of S may then be 
;'; 

demonstrated by showirw that a simple second order function is not expressible 

as an S function. We begin by observing that --~'ihigher order functions .5U'.§.. 

expressible in s, e.g. the f1.11ction & (the "Wice" tm~·!On) given by 

g[f;x] = f[f[x]] 

is expressible in S as 

(LAHBDA(f X)(F (F X))) 

hence it cannot be argued that ~ first order functions are expressible in 
s. The weakness in S lllbich ye "111 d._,.trate .. d.ft.,.it'ea the 1.nexpreasibili ty 

of certain second orc:ler functio~. notal>,J.y .f'uoctiomt which ccntain free 

variables and l!hich appear as arguments or values (i.e., bodies) of lambda 

expressions: the so called FUNARO probi.m •. 1 .. 

1 ·.. . . ' 
General awareness of the FUNARO problem (as well as its n~) arose frj 

early exp~rience w1 th LISP. For discussion see Weizenbaum[ 23J, Hoses[ 1 O or 
DertouzosL3J. 
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Consider the ll'lary function f, whose domain contains only integers and whose 

range contains only first order functions, de£1ned by 

f[x) : that f'unction g defined by 

g[y] = x+y 

The fwiotion f is canputable; it may in fact be expressed in the lambda 

calculus by 

(LAHBDA(X}(UM!DA(Y) {PLUS x nn 

To sh:>w that I.. is W. expressible in the language of S, the following 

definition is useful: 

Defn 2. 1: We say that the expression .a appears as a sube_xpcessipn of the 

expression ~ it' any ot the f'oU-owhil)'~ trl'tie': ·. ' '~ 
1) The expressions .A. and .Q. a re identical; 

2) .Q. is of the form 

(bl b2 ••• ~ .. ) 

where .1. appears as a sube,pression of o.r;i~ or more qf t;tle bi; 

3) .Q. is of the form 

. CµMBOJCx,1 • ,,!~n).B) 
where .A. appears as a subexpression of B • 

.;, - " 

We say infonnally that .Q. contains .1. if .1. appears as a subexpression of R,. 

The basis of the inexpreaat,bili1;y of I. in. S, ~~ .••~a~~4' ,~ t;:h• prQOf of 

Lemma 2.2: Let A be any applica~_iye expr',~•~qn ,,-nd l~ B ba a lalllbda 

expression appearing neither as ~ stfb~P,res-.toq, .Qf:.A nor in the 
' .. ·, ~' '!' «. ~ ' -' . . 

envi roment .t.· Th,en B dqes not ~~~ ¥ ~,~pres-ej.on of SL.A ;e]. 

proof is by induction on the ~sio-n ·depth· of Sft;el. 

basis For the follow!~ 91ntactic olasaes or A, tbfe' computation of S[A;e] 

involves no recursion: 
.. S 

Case 1: A is a number, a primitive function identifier, or a lambda 

expression. Then S[A;e].:,A, and the lemma is trivially satisfied as 
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B is not a subexpression of A. 

Case 2: A is an identifier other than a primitive function symbol. Then 

S[A;e] is lookup[A;e] which cannot contain B since by assumption the 

environment e does not contain B. 

induction: The remaining cases of the syntax of A follow; for these we 

asstDDe that the LemDB holds for recursive calls to S. 

Case 3: A is an application of GREATER or PLUS; then the value of S[A;e) 

is a l'l.lmber or logic value and does not contain B. 

Case 4: A is the application of a logic value T or F to arguments A1 and 

A2• Neither A1 nor A2 can contain B since A does not contain B; 

hence the inductive hypothesis appliea tq.4l1.ther of the computations 

S[A 1 ;el and S[A2;e] and B cannot ~p.pear .in S[l;e] which is one of 

these values. 

Case 5: A is the application of a lambda expression (LAHBOA(X 1 ••• Xn)M) to 

the arguments A 1 ••• An. By the in due ti ve hypothesis, B does not 

appear in any of the values S[A 1;eJ ••• S[An;e], hence the new 

environment e'.:.CX 1,S[A 1;e]) ••• (X ,S[A ;e])e does not contain B. As n . n 
a subexpression of A, M cannot contain B; thus the inductive 

hypothesis applies to the value S[M;e' l returned as the value of 

S[A;e]. 

Case 6: A is the application of Y to the arguments A1 ••• An, where Y is 

·neither a lambda ·expression nor a primitive function symbol. Y is a 

subexpression of A and by assumption does not contain B as a 

subexpression. Then the inductive hypothes'i's applies to the 

computation of S[Y;e].:,Y', and Y' does not .oontai.n B; a second 

application of the inductive hypothesis reveals that B cannot appear 

as a subexpression of S[(Y' A1 ••• A0 );e]~[A;e]. 

These cases ar~ exhaustive, completing the proof. 

We can now characterize a major weakness of the language S by 
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Thm 2.3: Every function expressible in S ~ose domain contains only nurnbers 

may have at most finitely many functions in its range. 

Proof: Functional values in S must be either primitive function identifiers 

or lambda expressions. As there are finitely many prim! tive functions, 

we need only show that eaoh function or numbers in S has finitely many 

lambda expressions 1n its range. Implicit in th!s·argument is the fact 

that the number of functions exprt!ssed by a set ot la111bda expressions is 

no !reater than the number·of lambda exp~esslons in the set. Each lambda 

expression litltch contains no nontrivial oocur'ren6es ·of' tree variables 

represents (though not necessarily uniCfuely) a 'single function; lambda 

expressions with nootrivial occurrences or ·tree variables (i.e., which 

canpute di f.ferent functions in <liff.ering contexts) do not correspond 

semantically to ftmctions. 

By lem1111 2.2, a function of integers can have l~da el$press).ons in its 

range only if they appear as subexpressions of .th,e func.tion,. since for 
! , ~ ' : • Ii- ,[. 

any integer .n. and expression .!. the .. exp;ession CL Jl) .. cim contain the 
, 

lambda expression & as a subexpression only 1!', J, . .1,s a ~ubexpression qf .f.. . . __ .. ..... -

As the f\.l'lct ion ·must be represented by a n.ni t~ expression in the 
' - ,,,,.., . ~·. ': , -, t . ''. - '-' ;- ·: : ' 

language s, it 1111y contain only finitely 11Bny lambda expressions as 

subexpressions and hence has finitely llBny lambda expressions in its 

range. 

Clearly, the f\.l'lction f. defined at the beginning of this section is a function 

of integers having infinitely many functions 1n itW'Mnge; we conclude that f. 
is not expressible in s. The problem may be olaaracteri1ed ae· inadequate 

handll~ by s.of lambda apreeai~a .containing free variables. It is apparent 

that free variables are evaluated in the environment in lmich a functi'<>n is 

applied, rather than the environment in whioh it' ta eivaluated. Thus lambda 

expressions with 1\"ee va rJ.ables have. the property that the computation wh !eh 

they perform depends on values in the envil'Oftlle'nt ·et thetr caller; 'this 

dependency constitutes an implicit input and justifies our exclusion of such 

lambda expressions fran the class of functions. Yet proper S functions may 

include such lambda expressions as subexoressions; Witness the S function 
". < - • ~- i o'!- ' -' 

"'""'\\ 
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(LAMBDA(X)((LAMBDA(Y)(PLUS X Y)) 3)) 

-... :11ch contains no tree variables and hence no implicit inputs. The variable 

.. , oowever, appears tree in the lambda expression in its body; this innermost 

1.sr.:bda expression is riot a function. The question of the contribution of free 

0.1 •·iables to tbe functional richness of S naturally arises at this point: Are 

~nere f1.11ctions which are expressible in S .2n.l1 throt.tgh othe use of free 

·Ja riables? Our suspicions lead to the conjecture that every .. function I. 
:=:,pressible in S may be represented by an expreaston F -i:n Witch no la11bda 

,:·:;:pression appearing as a subexpression oonU,lins frM occurrences of 

v·d riables. This conjecture does not oomp1et.,ely deny the usefulness of free 

variables on the S DBoh.ine. Indeed, lambda expre&sion-e with free variables 
-· I 

are roderately well behaved when passed dowQMAnh i.e., as af'8WD8nts to 

rim ct ions; under these circumstances' the principal daa:cer is due to possible 

8onflicts with variables bound by the functions to which the lambda 

~xpressions are passed. They may, however, 'be conside~d to be "limited 

'"'1m ct ions" with the qualification that. they be applied w1 thin the scope of the 

.ree variables in their original environment and that they may not be passed 

to fll'lct ions whose b6und nriable list iooiude's 'any of the free variables. 

·,uch qualifications seriously impair the semantic clarity of the l~,nguage 

imposing them. 

2.4: Evaluation Order 

""he f1.11ctional incanplete11es:a of S was shown to be related to the specific way 

:_ n which S associates -valuea witll variables in an 'illterpreted pr<>g'ram: i.e., 

: he environment structure of s. The remaining. IMO'tiua rlf': this chapter 

,:--·esent model interpreters witi'l alternative emironme'ftt st·ructures, and which 

-::o 1 ve the speci fie probl• demonstrated in S;,, hovne.r, ~they delllC>'nstrate 

::- imilar inadequacies in the organi'8tion of cpptal .. s.traetures, i.e. the data 

3 t.t'ucture specifying which ~p;ut.,aUons are to:.: be perft>rt11ed and their relative 
1 

.<:equence. 

· The notion of f~nt501 ft~yctuf! has never, to the a.1thor's knowledge, been 
~cequately forma ze .n onna y it is the bookkeeping mechanism necessary 
';:o resolve algorithms into sequences of operations -- e.g. 1 the use of a stack 
-(J record the return points of calls to a recursive subrout.ine. 
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The first DDdel to be presented is T, similar to S except that its environment 

is structurally a tree rather than a stack. It is argued that T and S share a 
e ,•. •' 

deficiency \llich stems fran their eyaluatiotl order, in particular, fran their 
. . . '. ,,. ., 

unifonn evaluation of arguments regardless o'f ;,mether the resulting values are 

essential to the canputation. T is thus fundtloriany incomplete due to 

evaluation order. 

The N roodel, discussed in section 2.5, is claae.ly r.,,Lated to the normal order 

evaluation of the lambda calculus. It ~~ super~°"' to T in that every 

expression havi~ a T value has an equj,valent .. K .,_1ue, ~ile certain 

expressions have N values but not T values. 

2.4.1: The T Hodel 

The traditional solution of the enviroment p~··oblem of S involves a new 

"internal" representation or a function, c8tl.jd'l•: C;'lciiure. A closure 

includes, in addition tot~ i(Jformation i,n ,, l.fl.11~.<!4.~~r,~~~~n, a 
- ' . . : ' ·~ ', . . .. . . '. - ' " 

specification or the e~ir,<>09,ftDt· ~~ wta,!q•·:~t,'9,,~•:iYa~iable&.11:•re ~o .,e 

evaluated. As the Cl()Sl.lr.'e -~ania•.;lllll\P,eq&.lJ.r~·t•-·,.~ttnt~on or env~n?nmept 

branches, corr~pond.1qc t9 f~otig~l ap~~~~~1!~ .fr.cppblibic~,:oon\irol .ll~; ~­

re~urned, the ,nvirc~nt be<:~s ,a ~ .~at~~r t._..,.ifhe. .. lr~ .. s1;agk. of S; 

hence we call oor new lancu.aae .. T. The <lit;(~~ be.tl(e;ep T. a:nd S is tbat in, 

T, the lambda expression 

1 is no longer self evaluating. Its value,. in ,eqvi:I:'(>~ a., is. 

which is the representation of a closure in T. We define T as follows: 

1 

T[x;e] = 
i~ ~,.is.. a nu.mber,, t~n x; · ,3 -

if. x is a. ""1J>er of ,4j:'.,.F,,Pf,UT~~P~t tn•n x; 
!f ~ is •P,ident.if~ Ulen look-.{xr;,e.j;, 

We say an expression X is self evaluating if the value of X is X. 
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if xis of the form (Ty z) tben T[y;e]; 

if x is of the form (F y z) then .T[z;~]; 

if x is of the form (GREATER y z) then: 

if T[y ;e] >T[z ;eJ then T; 

else F; 

if x is of the form (PLUS y z) then T[y;e}+T[z;e]; 

if x is of the form 

(LAMBDA(s 1 ••• sn) b) then 

(FUNARG(s 1 ••• sQ) b e); 

if x is of the form 

((FUNARG(s 1 ••• sn) b e 1) y 1 ••• yn) then 

T[b;Cs 1,Y[y1;e]) ••• (sn,T[yn;e])+e 1J; 

2.4.1 

if xis of the form (y z1 z2 ••• zn) where y is not a 

FUNARG closure, then 

T[(T[y;e] z
1 

••• zn);e]; 

else undef,ined; 

We note that a lambda expression is not applied directly; it is first 

converted to a clostre (by its enluation), and thlh applied by the evaluation 

of its body in an environment fol"llled by appending the bindings of its bound 

var"iable 11 st to the closure environment. Ttitls thi! tree 't'al"iables or a lambda 

expression are evaluated in the envi.ronlient in wti'fcli' the lambda expression is 

evaluated. The reader may verify that the function re-presented in the lambda 

calculus by 

(LAHBDA(X)(LAHBDA(Y)(PLUS X Y))) 

which the preceding section showed to be inexpressible irt S, is expressible in 

T (indeed, by the same lambda expression). 

2.4.2: Functional Incompleteness of T 

E~cept for the special cases involving the application ot:the primitives T and 

F, the T evaluator ll'lifol"llly evaluates the e~aaions supplied to an operator 

as arguments before the operator i& appl.ied'•' · 'I'hiifS order: &f evaluation, which 

has been termed aDplicatiye order, has the virtue that each subexpression of 
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an AE is evaluated at most once, whereas in the· normal order evaluation of the 

lambda calculus an argument to a function may be eYaluated .·11any times. The 

di sad vantage of applicative order evaluation is tnat: a~guments may be 

evaluated (once) even though their value is irrelevant to the computation; 

this is not merely a matter of occa.sional ;·inefftoiency, since the frrele\l'ant 

argument may not be defined whereby the entire computatfon'dlverges. Consider 

the case of the trinary pro1ectlon function 

which returns its first argument regardless of whether its remaining arguments 

have de fined values. The applicative-order counterpart of P 
31 

is represented 

in T by the expression: 

This expression does .D.2.t. return a value under "'-evaluation unless all three 

arguments have de fined values. 

vur decisioJt to di stingui-sh between P 31 and f 
31 

in effec.t recognizes the 

undefined element, •, as a member of- the funot.ionel domains of ~r applicative 

languages. Intuitively, • represents the "value" of those computations wb1ch 

rlo not tenninate, and whose expressibility in each language L is guaranteed by 

the Turing universality of L. 

We now show that P 
31 

is not expressible in T: 

Thm 2.4: For every AE J.:., the T value of the expression 

(.( 3 • •) (2.5] 

(where • denotes any expression whose T-ftlue ;is undefined} is undefined. 

proof: We consider eichau•tively the poasil>l• 't values of the operator f: 

If f. is a Blmber or a primitive operator, then the value of (2.5J is 

undefined due to an error in J1iJ,QQt~QQAUtx, i~.e •. the application of a 

primitive to arguments for which it is not .defined. may assume that .f. is 

either a combination or a lambda expression, in which cases the value of 

the canbination is the value .of the application of the T value of .f. to 

the speci fled arguments. If the value of .f. is a number or a primitive, 
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(2.5] is again undefined due to an error in functionality. Hence the 

value of f. must be a closure. The computation of the application of a 

closure involves binding the values of eacfl ar~ment onto the 

environment, hence the evaluation of [2.5] entails evaluation of each 

argument. Since not every argument has a defined T value, the value of 

[2.5) is ll'ldefined. 

Since clearly the projection P
31 

has the property off. in Theorem 2.4, T must 

tc functionally incanplete if we are to consider P
31 

a function. 

2.5: The N DDdel 

This section introduces an applicative language whose interpretation involves 

normal order evaluation. The superiority of N over T derives frqm this 
'~·· 

revised evaluation order of N, which permits an e~press~o°' ,to be evaluated 

.:ven trough subexpressions of it may be undefined. A theorem of Church and 

Rosser establishes that if' an AE, A, has a value under W, evaluation order, 

then it has that value under normal order evaluation; thus in 1 teria of 

evaluation order, N is optimal. 

The simplest implementations of normal order evaluation involve the 

substitution of argument text in the bodies of lambda expressions, rather than 

the binding of argument values in environments. wtlile the explieation (and 

implementation) of such substitution algorithms is relatively straightforward, 

evaluation by simple substitution is often inefficient since 

1) It involves making many copies of program text during execution, and 

2) It often involves multiple evaluations of the 8allHI subexpression. 

for reasons of efficiency, substitution evaluators are thus primarily of 

theoretical interest. 

More efficient implementations of normal order evaluation retain the 

environment structure of the T DDdel, and introduce additional mechanism to 

indicate which bound expressions have or have not been evaluated. Since the 

L'nvi ronment implementations of normal order evaluation involve considerable 
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bookkeeping machinery and are hence conceptually ,m~h more complex than t_he 

substitution algorithms, they will not be pursued. 

2.5.1: Axians for the Lambda Calculus 

The primordial applicative language is the lambda calCJ,Jlus, which ha~ been the 
, : .I ' 

subject of much investigation since its conception l>Y .Alonzo Church ~n the 
' - •, . ' ·. 

1930s. The semantic basis of the lambda 9al~lus is ,a set of axioms which 

define an equivalence relation, =, on expressions of the language. Each axiom 

may be interpreted as a conteroion .I:1ill.t. for r'fdugtlOo··~) in the sense that 

it provides a means for converting (or recitucing) an AE to an equivalent (uqder 

=) AE having a different form. The present,.ation of t,.he axiQqls in this chapter 
, . _.:_ ... ~ t-. • •k ' 

is somewhat informal, serving primarily a~ motiv~tiQr') fof". the N interpreter; 
' - 'k • . • . ., : . ' ~ 

the interested reader is referred to Curry[12] and. Hindley[21] for further 
' . .,,,. . 

detail. Related issues are also covered ~~greater depth in later cha~ters of 

this report. 

The axians of the lambda calculus are or 4 typet,· designated alpha 

(equivalencae \l'l.de-r renmml.rg), Uk& (tmction ·api)liaatiort), dtlta (primitive 

fmct ion definition), and, in some fo111ulat·1ons, ~. "The delta and eta 

axians are not used in all formulations. The eta axiom seems to serve no 

important function in the eval~ation of expressiona a~d will be presented here 

only in passing. The delta axioms may be avoided by wel~ known coding 

techniques which involve the representation of nonfunctional data, e.g. 
1 natural rumbers, as lambda expressions. 

The formulation which will be primarily referred to in ,subsequent chapters 

canprises the alpha, beta, and delta axi~, arl! .. is often termed the 
•po: '· __..~ f., ;·:· " 

lia-deU1-calculus i_n the 11 terature. Unless .qtherwi;pe .gualified 1 generic 

ref~rences to "the lambda calculus" in this repprt. ~!~ote th~ beta-delta 

calculus. 

The equivalence relation = of interconvertal>Ui ty is generated by a relation 

1 Many such codings are possible· .. a pop.ul.ar a.Ao.ice represents 0 by the 
expression (LAMBDA (X) (LAMBDA (Y)Y~) and the mamber n+1 .bY. 
(LAMBDA(X)(LAMBDA(Y)((N X)(X Y)))) where N is tht-l"epr.es~ntation or the 
n. For development of such a codin!?,, see Churchl 1]. 

number 
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-> of reducibility; hence X->Y implies X=Y which, in turn, implies Y=X. 

Reducibility is in general antisymmetric, l'X>wever; thus -> provides an 

ordering of equivalent expressions which has important ramifications in the 

lambda calculus. The relation-> is defined to be a monotone relation 1 

meaning that it has the following properties: 

Reflexivity: For every X, X->X; 

T~ansitivity: If X->Y and Y->Z, then X->Z; 

Monotonicity: If X->Y and B is the result of substituting, in an expression 

A, X for an occurrence of Y, then B->A. 

The relation = is in addition an equivalence relation; he~ce X=Y i•plies Y=X. 

·, 
Central to the axians is the substitution .l'.lll..I., S, of fundamental importance 

to the lambda calculus as well as the theories of the roilowi.ng chapters of 
~ ''f< ,.,. • '' • ' :· 

this report. s is formulated as a three ar!iiment r~nction,' such that the 
: r· ,. • : , •, 

meaning of S[X ;Y ;Z] is roughly "the result of substituting 'the expression X 

for free occurrences of the variable Y in the expression Z. The definition of 

S is further canplicated, however, by the requirement that the operation 

S[X;Y;Z] not introduce confliota between tree.~ariablas in, tbe expression X 

and bindings of X within z. There is a long ·atatol"f ilDf incorrect algoritms 

for S; the de fini ti on given here is due to Curry: 

Defn 2.6: For expressions X and Z, and variable Y, the expression S[X;Y;Z] is 

de fined as follows: 

, 

1) If Z.:,Y, then X; 

2) If Z is a primitive, number, or identifier other than Y, then Z; 

3) If Z is of the form CZ 1 z
2

> then (S[X_;Y;Z
1

) S[X;Y.;z
2
J); 

4) If Z is of the form CLAMBDA(A)M) where Y.:,A, then Z; 

5) If Z is of the form {LAMtmA(A)M) where t is dirt'~retft from A, then 

(LAMBDA (B)S[X ;Y ;S[B;A;Hll>. where the vari'ab1e B is' chosen as follows: 

i) If Y does not occur free in M or if A is not free in X, then B.:,A; 

ii) Else B is any variable whi.ch oaeurs free neither·in ,ff nor in x. 

Terminology after Curry[ 12] 
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We now pr ocede to the statement of tne axiOC1tS:: 

Axian aloha: If E is a lambda exp~~ssion of the forui (LAMBDA(X)M) and the 

variable Y d_oes not occur fr~ in,~, U•.n a~:>-0.~te>A(X)S[Y; X;M]). 

We say that expres~rions A and B ~re c2urugt -~~-A can be converted to B by 

alpha conversion. alone. N0;.te that J.f, ~·.>Y bJ aj.;p,~ ,con¥•rs1.on· then Y•>X •. by 

alpha conversion; hence X=Y. Congruence is thus symmetric and tr1Dsitive, 

and ll'lder DDst circumstances congruent expressions may be treated as 

identical. We say that expresSion X ts 1n n6rmtl !QDa. if_ the only' reduction 

which can be performed on X is alpha contersioo. 1 

Axian ~: If E i~ an ,expre,ssion of,., the. form.( '~~A(X)M). A) then. 

E->S[ A; X;M]. 

Axian fil: If E is an expression of the fonn (LAMBDA(X) (H X)) wtiere X does not 

appear free in H and M is a .lambda -exp,rea_aion, then E.,.>tf. 
• r • • ' • ~ .. 

Axian delta: If E is an expression of the fonn (F A
1 

A2 · ••• An) where F is a 

primitive ft.motion symbol and each Ai is in normal form and contains no 

free wa1nab1ea, then E->f[A
1

; ••• ;A lWhere f' !s'the ~peration denoted by 
. n . <,; 

F • ·. , 

The fo llowi~ two theorems are of fundamental impc)rtance in the iambda 
. . .. ' - ... . _,. ;.::; . -..,:::; ": ' . ·r •. ,. 

calculus. The rirst is dbe, in Us initial primitive tonn, to Church and 

Rosser and is referred to in the 11 terature as the Church-Rosser Theorem: 

Thm 2. 7: Let X and y· be expressions such tbat X=Y. Then there exists an 

expreslon, Z., such that, X->Z and Y->Z. 

Qroof DBY be found. in Curry[ 12) .or, Hindl,ey[21l .arlfl el••.ere. · 

The Church-Rosser Theorem shows that the lambda calculus is coosistent in the 

sense that the relation = is nontrivial; in particular, X=Y is not true for 

incongruent expressions X and Y in normal form. We can thus prove that 

expressions X and Y are not interconvertible by finding normal forms x· and 

1 
This definition is recast more formally in the terminology of Chapter 4. 
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y', where X->X' and Y->Y', which are incongruent. 

Unfortunately, not every expression X is convertable to an· expression X' in 

normal fo m. For example, the important e?(pressi.on 

Y.:_(LAHBDA (F) ((LAMBDA (H)(F (H H)))(LAHBDA (H)(F (H H))))} 

which is the "paradoxical canbinator" of Curry, has no nortml t'orm. Further 

discussion in this area t'oUows in Chapters 4 and 5·, along td th reiated 

technical developments. 

A second important theorem, due to Corrado Boehm, haa.,betm proved only t'or 

systems "'11ch prooibit delta eonversions: 

Thm 2.8: Let X and Y be incongruent expressions in normal form, and let c and 

D be arbitrary expressions. Then there exists and expression Z such that 

C:(Z X) and D:;:(Z Y). 

oroof originally appeared in Boehm[20], in Italian; a proof' in English 

appears in Curry[27]. 

Boehm 's Theorem guarantees that incongruent normal forms. in the .R$-.$ 
1 calculus are semantically distinct; in particular, the axiomatic assertion 

that any two incongruent normal forms are intercoQ.v-ert,b.le results in an 

inconsistency. The extension of Boehm• s Theorem to sy~teJlls; )lhich include 

delta conversions requires that the constants ad~d to. ~he pure lamb<ta 

calculus also be semantically distinct. We might, for example, formulate a 

calculus includi~ the numeric constants without providing any ll!ans for 

distinguishing between them: we could provide the. primitive P~US qut not 

GREATER. While this formulation is valid in terms of the lambda calculus, 

Boehm's Theorem is clearly inapplicable since there is no expression Z which 

distinguishes, say, between the normal forms 2 and 3. 

1 
i.e., that formulation including axioms alpha, beta, and eta, but excluding 

delta conver21ions. 
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2.5.2: Normal order: Substitution 

Each of the lambda calculus axioms provides a means by which an applicative 

expression E may be reduced to an equivalent expression E'. While the axioms 

themselves place certain restrictions on the order in which such reductions 

may be performed, 
1 

the evaluator of an applicative expression has a great deal 

of freedan to choose the order in which to evaluate subexpressions. 

Normal order evaluation specifies that at each evaluation stage, the leftmost 

reducible subexpression is to be converted. 

2.5.2.1: The N Evaluator 

We define the N value of an AE x as follows: 

N[x] = 
if x is a number, then x; 

if x is a member of {PLUS,GREATER} then x; 

if x is a lambda expression, then x; 

if x is of the form (PLUS a .Q) where N[,a] and N[.Q.] are 

both defined and numeric, then N[s_]+N[.Q.]; 

if x is of the form (GREATER s.. .Q.) where N[s_) and N(.Q.] 

are both defined and numeric, then if N(s_)>N[.Q.] then 

(LAMBDA(X Y)X) else (LAMBDA(X Y)Y); 

if x is of the form ( (LAMBDA(s_).Q.),g_) where A is an 

identifier and .Q. and .Q. are AE's, then N(.Q.'] where b' 

is the result of substituting g_ for each free 

occurrence of A in .Q.; 

if xis of the form (,a.Q.) where A and .Q. are AE's and A 

is not a lambda expression, then N[(N[s_] b)]; 

else undefined; 

Note that we have eliminated the primitives T and F, which are entirely 

equivalent in N to the lambda expressions which replace them as values of 

GREATER. 

1 Not every expression E containing applications of lambda expressions, for 
example, is beta-reducible. Applications ofaxiom alpha, ie the renaming of 
variables, may be required before axiom beta is applicable. 



-38- 2.5.2.2 

2.5.2.2: Axiomatic Consistency of N 

We sl'Dw in this section that N evaluation is consistent with the semantics of 

the lambda calculus by demonstrating that N preserves the equivalence relation 

":": 

Thin 2.9: Let E be any AE such that N[E] is defined. Then E->N[E] where -> is 

the reducibility relation defined by the lambda calculus axioms. 

proof: by induction on the level of recursion in the computation of N[EJ. 

baSis: if E is a rumber, a primitive, or a lambda expression then N(E]=E. 

induction: we asslllle that the Theorem holds for recursive calls to N. 

Then the Theorem holds for the remaining syntactiD o-- of E by the 

., notonicity of ->. 

We note in passing that N[E] is not necessarily a normal form. Lambda 

expressions, in particular, are not reduced bJ )f, since. otherwise the 

evaluation of certain •aninsful expressiona (e.g. tJ1e paradoxical combinator 

Y) would not terminate. 

2.6: Functional Domain of N 

In this section it is shown that the entire domain of N constitutes a 

functional domain satisfying the intuitive criteria of [1.1]. We interpret 

the semantic equivalence relation, - , on the domain of N as follows: 

For X,Y in DN' x-y if and only if 

for every Z in DN and number n., 

(Z X)=n <=> (Z Y):n 

[2.10] 

where DN is the domain of N. Ve now- justify this interpretation of - on N 

thru 

Thm 2. 11: The domain of N is a fmctional domain, obeying the criteria of 

[1.1), twtder the above interpretation or-. 

proof: The equivalence relation - defined in [2.10] must be shown to obey 
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the three clauses of [ 1.1] over the domain DN of N. We treat the clauses 

individually: 

1) For rumeric constants X and Y, we must show that x-y <=> X_=.Y. 

<-· direct, by the equivalence of identical expressions. 

=>: Assume x-Y. Then by beta-reduction, 

((LAMBDA(a)a) X)=X 

and 

((LAMBDA(a)a) Y):Y 

and thus, by [2.10], X=Y since they are numeric. By [2.7) there exists a 

Z such that X and Y are each reducible to Z; since X and Y are not 

reducible, Y, Y, and Z must be identical. 

3) To show: X-Y <=> for all Z in DN' 

(Z x)-(Z Y) or neit~er defined. 

=>: Assume false. Then for some x-y there exists a z
1 

such that 

where r is the negative of -

a z
2 

such that 

cz
1 

xncz
1 

Y) 

This implies, by [2.10), that there exists 

(Z
2 

(Z
1 

X))=n 

for some rrume ric constant n but not 

(Z
2 

(Z 
1 

X) )=n 

(we are assuming here one of two completely symmetric cases with no loss 

of generality - the other case follows by interchanging the symbols X and 

Y). Defining z
3 

by the lambda expression 

z
3
.=.(LAMBDA(a) (Z2 (Z 1 a))) 

we note that 

Cz
3 

X)=n but (Z 3 Y)in 

hence by [2.10) XiY. 
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<=: Assume that for all Zin DN' (Z X)-(Z Y). Then (Z X)=n (for numeric 

constant n) if and only if (Z Y)=n by the argument of part (1 ). Hence by 

[2.10] X-Y. 

2) It must be shown that x-y if and only if for all Z in DN, (X z)-(Y Z). 

Fran part (2) of this proof, x-y <=> for all Z: 

((LAMBDA(a)(A Z)) X)-((LAMBDA(a)(a Z)) Y) 

hence, by beta-reduction, 

The significance of Theorem 2.11 is that every element of the domain of N 

corresponds to some element of the abstract semantic domain: every element of 

DN is intuitively functional. Thus N (and the lambda calculus on which it is 

based) is a language of "pure" functions. We shall find in the next chapter 

that this pleasant property costs us something, however, in terms of 

expressive power. 

2. 7: Summary 

The material in this chapter is largely introductory. The three interpreters 

presented are abstracted from conventional implementations, and their scrutiny 

serves to relate canmon implementation issues to the expressibility of 

functions. The major findings were: 

1) Each language is arithmetically complete, in the sense that every 

canputable function defined on the natural numbers is expressible. 

2) The FUNA RG problem leads to the inexpressibility in S of functions whose 

domain contains integers and whose range contains infinitely many 

fmctions. 

3) Applicative order evaluation renders inexpressible in T every function 

whose domain includes *, the undefined computation. An example of such a 

fmction is the constant function (LAMBDA(X)3) of one argument. 
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4) The interpreter N, based on the normal order evaluation of expressions by 

substitution, suffers from neither of these deficiencies. We can 

construct a functional domain F such that every expression X in the 

domain of the language N corresponds to an element of F; thus N is a 

"pure" language in the sense that every expression corresponds to a 

ft11ction or a number. This is not true, for example, in S, where lambda 

expressions containing free variables can compute different functions in 

varying contexts. 

We are left with N, an interpreter whose behavior is intended to model the 

lambda calculus; the remainder of this report, roughly speaking, deals with a 

particular weakness comroon to N and the lambda calculus • 
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Chapter 3: 

Motivation for a Multi-valued Semantics 

Central to this chapter is the argument that the N model, and hence the lambda 

calculus, is functionally incanplete because of the inexpressibility in N of a 

class of canputable functions on N's domain. The inadequacies of N leading to 

this weakness are explored, and two new model languages are presented, each 

curing the problem in a different manner. The first model, which has 

provision for encoding representations of functions as integers, is found to 

be unsatisfactory for both practical and semantic reasons. The alternative 

solution proposed in this chapter involves mechanism for the representation of 

semantic elements with multiple values; this mechanism, called EITHER, is the 

principal focus of the remainder of the Thesis. 

3.1: Necessity of non-functions: WHICHFF 

Consider the family of partial functions, {FF.} for i ranging over N, which 
1 

satisfy the following conditions: for each natural riumber 1., 

FF.[x] = i, i=x 
1 

divergent, 1'-x 

[ 3.1) 

Thus each FFi has a single element in its domain: the number 1_. For any other 

argument the value of FF.[x] is undefined. The {FF.} are clearly partial 
1 1 

functions in the intuitive sense of Defn [1.1], and are computable in each of 

the rrodel languages considered here. Furthermore, they are semantically 

distinct: for no numbers i'-j does FF.-FF .• There is then nothing intuitively 
1 J 

obJ"ectionable about a function which maps each FF. to its corresponding i. 
1 -

Consider such a function WHICHFF which, for each natural number 1., has the 

property that: 

WHICHFF[FF.] = i 
1 

Intuitively WHICHFF is a function fran {FF.} onto N; furthermore it is 
1 

[3.2) 

demonstrably canputable using "dovetailing" or multiprocessing techniques. 

Note in particular that the following definition of WHICHFF satisfies the 

condition of [3.2): 
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WHICHFF[f] = i such that f[i]=i, 

if such a number i exists; 

else undefined 

3.1 

[ 3. 3] 

We may view the dovetailed evaluation of WHICHFF{f] as the computation of f(O] 

for one second, the canputations of f[O] and f[1] each for two seconds, and 

similarly mtil any one of the computations f{i] ~erminates normally; the 

value of this f[i] would then be taken as the value of WHICHFF[f]. However, 

WHICHFF is not expressible in N; this is a result or 

Thm 3.4: Let L be an arittmetically caaplete applicative language and let DL 

be the domain of L. 'lben no tunctlon VHlCBF¥ harlng the properties of 

{3.3l is fmctfonal over Dl. .. 

proof by reduction to the halting problem. Assume that DL contains a 

fmction WHICHFF having the property given in (3.3). Then for any 

fmction f. in DL and any number ,l, L[ (WHICHFF f.) J-1. if f.-FFi.. Row 

consider the union of the functions FF
1 

and FF
2

, given by: 

FF12£x] = 1, L[x]=1; 

2, L[xJ:2; 

divergent otherwise 

[3.5] 

FF
12 

is clearly a coaputable first order function, hence it is 

expressible in L by the arithmetic C011Pleteness or L. Now L[(WHICHFF 
,· ~ .. 

FF12>J can have as its value at most one of {1,2}; thus either L[(WHICHFF 

FF 12) ]~ 1 or L{ (WHICHFF FF 
12

) ]'2. lsat.11e, with no loss of generality, the 

former. Then define the second order ft.metion & as follows: 

g[f] = the function gt' where 

grCiJ = 1, i=1; 
2, 1=2 AD5I, f[O] defined; 

divergent otherwi~. For every computable 

first order function f, gr (or equivalently g[f]) is evidently 

canputable. Moreover, if f[O] is undefined then gr is identical to the 

ft.l'lction FF1; otherwise gf is identical to the function FF
12

• We use the 

ability of WHICHFF to distinguish between FF
1 

and FF
12 

to determine 

whether f[O] is defined, by means of the function ll given by 
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h[f] = WHICHFF[g[f]] 

We note finally that for any function f. 

f[O] convergent => g[f] - FF 12 => h[f]~l; 

and 

f[OJ divergent => g[frFF1 => h[f]=l 

Hence h[f]=1 if and only if f[O] is divergent. The divergence of f[O] is 

decidable, as one of the computations h[f] and f[O] must converge; thus 

the function h provides a solution to the "halting problem" for first 

order functions, and is a well known noncomputable function. Since h is 

clearly canputable in terms of WHICHFF, we conclude that WHICHFF is not a 

canputable function over any domain including the first order functions. 

Since it was shown in the last chapter that every function expressible in N is 

functional over all of the domain of N, it follows that WHICHFF is not 

expressible in N. This inexpressibility relates intuitively to two aspects of 

the implementation of the N interpreter: 

1) The interpreter does not admit multiprocessing. If, in the evaluation of 

expression A, N embarks on the evaluation of a subexpression ,a of A whose 

N value is not defined, then the N value of A is not defined. 

2) The only mechanism in N by which a function f. can recover information 

about its functional argument & is the application of &.· There is no 

means by which f. can discover the algorithm (or program) by which &. 
canputes values, even though the internal reppesentation of &. necessarily 

includes this information. Hence if f. is to make any use of&,, then g 

must be applied to some argument; By the constraint (1) above, the 

nontennination of this application results in the nontermination of the 

application of f.. 

The correction of either of these deficiencies is straightforward in an 

implementational sense -- many extant languages boast provisions for 

multiprocessing and/or access to representations of functions. However, 

neither "correction" is easily reconciled with the semantics of an applicative 

language. The second limitation of N seems a natural consequence of our 
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distinction between the notions of a function f. and any of the algorithms for 

canputing f. f'ran its arguments; a language which provides mechanism for 

distinguishing between algorithms for computing a particular function f. would 

certainly have non-functional elements in its domain. The semantic 

ramifications of a cure to the first problem, however, are more subtle and 

will be explored in detail. 

The following sections present two alternative extensions to N, each 

corresponding to a "rix" of one of the above limitations. The function 

WHICHFF is expressible in each. 

3. 2: Coding primitives: 'ftle C model 

We noted that a limitation of N, justifiab..le by our intuitive respect for the 

semantics of ftmctions, is that no infor,..tion can be l"8covered aboot an N 

fl.l'lction without the application of that funot.toa. m· par"ticular, N provides 

no means for recovery or information about the· ........,tion or a tt.ftetion as 

an N expression. We have thus avoided the "TW'ing aachine tar pit" -- the 

argument that any language aa pawerf"ul as a•:uni.tirl"l!tai Turi.Dg Machine has 

exactly the same set ot expressible functions. 

The C model presented here has, in addition to the primitives and structure of 

N, prim! tives for the .. translation or the repre~ntation of language elements 

to aoo f'ran a tra:ctab.le form. Haki-ng the tundatltental' assumption that any 

fl.l'lction defined on a dOllain F is computable~ if and only. if it is computable 

fr an the representations of elements of ¥, we must conclude that a Universal 

Turing Machine (or its equivalent) operating on the i"ePresentations of 

arguments t.o the computable fun.otion f. etan compute rep~e$entations of the 

values of f... This is the substance ot our claim ot tulietional completeness of 

the language C • 

The interpreter for C is identical to the interpreter for N except for the 

addition of the prilli tive operators CODE' and DE'al'I>E. CoDE maps 

representations of the domain of C into the natural numbers: 

CODE: DC -> N 



3.2 -47-

and may be viewed as a Goedelization of the character string representing its 

argument. The claim we make for CODE is that if (CODE X) and (CODE Y) have 

the same (numeric) value then X and Y are semantically equivalent; they are 

in fact represented in an identical manner. We cannot, of course, claim that 

in general X-Y implies (CODE X)=(CODE Y), as there are many representations of 

each semantic element and the semantic equivalence of the representations is 

effectively undecidable. The operator DECODE is the inverse of CODE: given 

the Goede! number of the representation of an element, it returns the element. 

We thus claim that each expression X is semantically equivalent to (DECODE 

(CODE X)). 

Our claim for the functional completeness of C is formalized, to the extent 

possible, in 

Thm 3.6: Let F be a functional domain of C, and let 

g: F -> F 

be a computable function on F. Then g is expressible in C, i.e., there 

is an expression Gin the domain of C such that for all x,y in F, g[x]=y 

implies that (G X)-Y. 

proof: Since g is computable then so is h defined by: 

h..:.. (LAMBDA(Y) (CODE (g (DECODE Y) ))) 

as it is simply the composition of computable functions. Furthermore, 

since his a function from N to·N, it is expressible in C by the 

arithmetic completeness of C; let H be the representation in C of h. 

Then the function g is expressible in C by: 

G..:.. (LAMBDA(X)(DECODE (H (CODEX)))) 

It must be recognised that CODE is not functional: it radically disobeys the 

intuitive requirements of Defn 1.1. We note, for example, that CODE might 

return different values for the arguments (LAMBDA(X)X) and (LAMBDA(Y)Y) as 

they have different representations, violating our requirement that 

semantically equivalent arguments produce semantically equivalent results. 
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WHICHFF_example of the preceding section. The representation of WHICHFF in C 

involves writing an interpretor, operating on the CODEd representations of C 

expressions, which simulates the required "dovetailing" by computing 1 step of 

(g 1), 2 steps of (g 2), 2 steps of (g 1), etc. Presentation of actual code 

for WHICHFF on C woold be, at best, a messy task; it is hoped therefore that 

the reader will accept the expressibility of WHICHFF in C on the basis of 

Theorem 3.6 and this informal discussion. 

3.2.1: The Turing-machine Tar Pit 

The introduction of the specter of coding requires rurther reflection. We 

have made the enticing observation that, with the introduction of a simple 

mechani9111 allowing the representations of functions to be accessible as data, 

every canputable function beccnes expressible. We have noted corollary 

disadvantages -- (i) the semantic confwsion resulting from the nonfunctional 

character of <X>IE, and (ii) the practical absurdity of having to include the 

code for interoreters in the definitions of certain functions. 

However, the inclusion of coding primitives in an applioative language may be 

objected to on mre fundamental grounds than the above. The stated semantic 

goal of an applicative language is the representation of functions. Thus such 

a language provides a set of rules and conv~n.tions for associating expressions 

with abstract functions; moreover, the power and consistency of the language 

stem largely &an the applicability of these rules and conventions to every 

expression in the language. In the lambda -calculus, for example, we are 

assured that expressions which are interconvertible via the alpha and beta 

axicms are equivalent. The cost of this assurance is a corresponding 

constraint on the canputations which we might perform: the alpha axiom 

positively prdlibits us fran writing a function which distinguishes 

(LAMBDA(X)X) frcm (LAHBDA(Y)Y). We accept this constraint because the 

structure which it imposes is useful to us; we recognize that we cannot be 

assured of a relation and simultaneously be allowed to violate it at will. 

Coding primitives may be viewed as a mechanism for violating the structure 

imposed by an applicative language. None of the lambda calculus axioms, for 

example, are valid in the presence of coding, since "functions" can be written 
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which distinguish between interconvertable expressions. The rules and 

eonventions for representing fun ct ions are, in effect, abandoned. The 

programmer is thus freed from the structural constraints of the language, but 

finds himself in a semantic anarchy -- while he may write any function he 

pleases, he may make no assumptions about the structure or representation of 

its arguments. 

3.2.2: Functionality of DECODE 

We may convincingly defend the contention that CODE is not a function by 

demonstrating that it returns semantically distinct integers, say, for the 

equivalent arguments (LAMBDA(X)X) and (LAMBDA(Y)Y). This demonstration does 

not apply, however, to the inverse of CODE; there is nothing inherently 

nonfunctional in the fact that DECODE returns semantically equivalent 

expressions (LAMBDA(X)X) and (LAMBDA(Y)Y) when given semantically distinct 

integers as arguments. It is the purpose of this section to demonstrate that 

ftmctions with the property of DECODE (i.e. mapping a subset of the natural 

numbers onto the entire domain of discourse) are expressible in N and the 

lambda calculus. 

3.2.2.1: LAMBDA-free AEs 

It is convenient for certain purposes to use the techniques developed 

primarily by Curry[12] of the calculus of combinators for the reduction of 

applicative expressions to equivalent expressions whose use of lambda 

expressions is highly restricted. For our purposes we shall consider the 

combinators listed below (along with their respective definitions): 

I - (LAMBDA (X)X) 

K - (LAMBDA ( X) (LAMBDA ( Y) X) ) 

w - (LAMBDA(X) (LAMBDA(Y) (X Y) )) 

s - (LAMBDA(X)(LAMBDA(Y)(LAMBDA(Z)((X Z)(Y Z)))) 

Gl - (LAMBDA(G) (G G)) 

G2 - (LAMBDA (G) (LAMBDA ( Y) (Y G))) 

G3 - (LAMBDA(Y)(LAMBDA(X)((Y X) X))) 
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a
4 

.=_ (LAMBDA (G )(LAMBDA (D) (LAMBDA (X)(G (D X))))) 

We sl'Dw in this section that every applicative expression using no lambda 

expressions other than the above combinators; we begin with 

Lemma 3. 7: Let R be a LAMBDA free AE in the single argument applicative 

la~uage L, and let R contain occurrences of the variable x. Then R is 

equivalent (by alpha and beta axioms) to a LAMBDA free AE of the form (R' 

x) where R' contains no occurrences of the variable x. 

proof is by structural imuction on R. 

basis: R is atomic (in particular, R is not a canbination). If r is the 

variable x, then r' is (I x)=x (by axiom beta). If i:. is not the variable 

.x,, then .t. contains no free occurrences of .& am r' is {(IC r) x) = 

{(LAHBDA(X).c) x): r. 

induction: R is a canbination of the form CR1 R2 ). By i~tive 

hypcthesis, R=( CR
1

' x) (R
2

' x)) for some AE8 R
1

' llnd ._R
2

' not involving the 

variable x; then R ':( ((S R
1

) R
2

) x) = ((LAMBDA(Y)(l.AttBOA;(X) ( (R 1 X)(Y 

X))))) = CCR
1 

x)CR
2 

x)). 

The principal result of this section is the following adaptation from Curry's 

Synthetic Theory of Combinators: 

Thm 3.8: Let A be an AB in a single-argument applicative language L whose 

semantic equivalence obeys axiolas alpha and beta. Then A is equivalent 

to a LAMBDA-free expression A• containing only the canblnators I, K, W, 

s, G1, a2 , a
3

, a4 , and the ]>rimitives and constants or L. 

proof: We soow that, given any such A which is not LAMBDA-free, we can 

construct an equivalent A' containing fewer LAHBDAs. Let.A be an 

innermost LAMBDA expression occurring as a subexpression of A. We then 

construct A' by replacing a as follows: 

Case 1: Jl is of the form CLAMBDA(x)x) for some variable x; we replace .Sl. 

by I (equivalent by axiom alpha). 
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Case 2: .s.. is of the form (LAMBDA(x)y) where x and y are different 

variables; we replace .s.. by (Ky). 

Case 3: .s.. is of the form (LAMBDA(x)(b x)) where xis a variable and bis 

an AE: replace .5!. by (W b):(LAMBDA(Y)(b Y)) 

Case 4: .s.. is of the form (LAMBDA(x)(c d)): By Lemma 3.7, the body (c d) 

is equivalent to an AE (r' x) where the variable lt does not appear in 

r. Then .s..=(LAMBDA(x)(r' x)) which is reducible according to case 3. 

Since each expression A which is not LAMBDA free is thus equivalent 

to an expression A' containing fewer LAMBDAs, a finite number of such 

reductions will reduce each such A to a LAMBDA free A*. This completes 

the proof. 

It is a relatively simple exercise to show in addition that each of the 

c.~binators I, W, G
1

, G
2

, a
3

, a4 is in turn equivalent to an expression in K 

and S, allowing us to simplify Theorem 3.8 by eliminating all but 2 of the 

canbinators. This is unnecessary for our purposes, however, so long as the 

number of cccnbinators required is finite. An important observation to be made 

at this point is that the construction of A* detailed in Theorem 3.8 is 

effective; thus we could program a canputer to convert AEs to LAMBDA free 

form. 

3.2.2.2~ An Enumeration of DN 

In this section it is demonstrated that the domain of every applicative 

language with the power of the N model contains functions which . ..enumerate the 

danain of that language, ie, each such language L with domain DL contains a 

function 

f: N -> DL 

such that for every finite expression lt in DL there is a number n which 

satisfies (f n)=x. We precede by Goedelizing the LAMBDA free expressions of 



-52- 3.2.2.2 

Let pair be a number pairing function such that, for each i and j in N, the 

value of pair[i,j] is a unique number Pij' and let left and right be functions 

recovering the canponents of a pair; ie, for every i and j, left[pair[i,j]]=i 

and righ t[pair[i, j] ]=j. There are many well known such pairing functions; 

since they are al 1 first order computable functions, we may assume that they 

are expr~ssible in each of our model languages. 

Let us now suppose that we label the (finitely l!lllny) prim! tives of the 

la~uage L as p
1

, p2 , ••• Pn· Note that we include the combinators K, I, G1 , 

etc. in this list so that we can enumerate LAMBDA f'ree expressions only. We 

now specify the coding details: for each LAMBDA free expression x., we define 

the Goedelization g[x] as fellows: 

g[x] = 
if x is a number then pair[O;xl; 

if x is a primitive p j then pair[ 1 ;j]; 

if x is a combination (a b) then pair[&[a);g[b] 1; 

The fimction & is caaputable t'rom tbe representation of x., but we cannot in 

general claim that it is computable from the functional properties of X· The 

function & is, in t'act, a satisfactory choice t'or the CODE. Function of the C 

model, assumi~ (as we may) that we are content to deal with LAMBDA free 

expressions of C. If such a function & could be shown to be computable in, 

for example, the N 11Ddel, we would have a direct A priori demonstration that 

the languages are expressively equivalent. We must, however, be content with 

the expressibll ty of a semantic inverse of g: the .. function .!!1!L defined such 

that, for every LAMBDA-free expression 1'-.t enu{g[x])=x. This apparent 

asymmetry can be explained by the observatio~ that & is not a function, in the 

sense of Oefn [ 1.1) which prohibits the mapping of semantically equivalent 

expressions into di.ffering numbers. The fact that Jt!lll may map different 

numbers into semantically equivalent values is consistent with its 

fl.l'lctionaHty. We label the expressibility of enu as 

Thm 3.9: Let L be an extension of N with primitives 11, 12, ••• , ln 

(including combinators K and S). Then there is a function enu:N->DL such 

that, for every LAMBDA free expression .1. in DL, there is a number i such 

that enu[i]-x. 
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proof is a straightforward programming job. Such a function for the 

language N would take the form: , 

(LAMBDA(N)((GREATER (LEFT N) 1) 

{(ENU (LEFT (RIGHT N))) 

(ENU (RIGHT (RIGHT N))) 

((GREATER (LEFT N) 0) 

((GREATER (RIGHT N) n-1) ln 

11) ••• )) 

(RIGHT N) ))))) 

where 1i is the _lth primitive of N, and LEFT. alld RIGHT are the N 

expressions corresponding to the .an, and rilbt, f~ct1ons above. 
-E 

3.~: E roodel: Multiprocessing primitives 

An cictension to the N interpreter which is somewhat more palatable than the 

use of coding primitives is the addition of mechaniStll for multiprocessing: the 

quasi-simultaneous evaluation of several expressions. We consider her~, the E 

model, which is the 'ff mo~l of Chapter 2, augmented by 1;.he primitiv.e operator 
t•" ...., 

EITHER whose interprelation is as follows: 

For every choice of expressions A. and ]t, [ 3. 1 O] 

E[(EITHER &~)] • 

if E[A,] is defined but E[)t] is not; then E[I.]; 

if E[.R.] is defined but ![I.) ~is not, then E(!l]; 

if E[&.] and E(.2,] are both defin'4td then 'one of 'these values; 

else undefined. 

Note that we do not specify whJ.ch of the arguments is' returned if both have 

defined values; we ID8.Y, conaider th.at this s•l•Otibn is made by some 

nondeterministic process over wbich we have no control. EITHER is evidently 

canputable by dovetailing techniques, eg by evaluation of E[.saJ and !flt) each 

for 1 step, then each for 2 st~~, and so ort:.until one evaiuation or the other 

returns a value. EITHER is not, however, functional: in the case where .a and 
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.Q. each have defined values (and their values differ), then the value of 

(EITHER .a .Q.) is dependent on the representation of .a and .Q. and on details of 

scheduling of the dovetailed computation. 

The power of the either primitive is demonstrated by the expressibility of 

WHICHFF in E as follows: 

WHICHFF(f.] = g 1 (!.; O] 

where g 1[h.;,nJ = either[.bJnJ;g 1[h.;n.+1] 

Note that for i>j, g 1[FFj;i] is undefined and hence for J..ij g1[FFj;i]=j. Thus 

for every rumber j, E((WHICHFF FFj)]:j. 

The presentation of the EITHER' primitive in this section. is informal, based 

largely on its intuitive relation to the implementation mechanism of 

multiprocessing. The formalization of this mechanism is a principal topic of 

the remaining chapters. The remainder of the present chapter explores the 

impact of EITHER on the semantics of an applicative langu~e. 

3. 4: The Intuitive Paradox 

The reader has doubtless noticed ·that fundamental questi9~ .raised in the 
, , ·. ·1 ,. '. V! "'. ·, ·-

first sect ion or this chapter demand a more pr~i~~ cb~na.c,~e,l;'i;ation of the 
. ' " ~ . ' .... - ~ ..,, 

hitherto vauge notion of functional completeness. Specifically, Theorem 3.4 
shows that WHICHFF is not ft.11ctional over the enU.l'ety ot ~~ rooctional 

domain which includes all first order functions. Thus the baai~ intuitive 

requirements of (1.1] are incoq;sistent with the exlstenoe of a functional 

domain F which is arithmetically complete and .tm1.tuctes &very computable 

function f:F->F. Two alternativea facing us are th& t'ollowtng: 

1) We can deny that WHICHFF is a computable function. Indeed, Theorem 3. 4 

may be interpreted as a statement tnat ·no cotlrputabie function defined on 

first order functions has the properties of'1Rf!etW'F 8fvef1 in [3.2]. Our 

intuitive cla,i.Jn that WHICHFF is a oomputablt'nftcti&n is based on the 

incomolcte. specification of its behavior o'fer".the entil"e functional 

domain: [3.2] merely defines it over the reetrictecfdomain or {FF
1

}. 
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2) We can revise the notion of a functional dqmain F such that, for every 

function f. in F there is a dO!DfiQ ~ 1Mci,f.1QAW.on over. which; the 

behavior off. is defined.: Th~_fun.ctional criteria of [1.1]·.are then 

required to apply only when tne 4rguaent.,. et::-f:!aPe·.draum from its domain 

of specification, sf. 

3) We can postulat~ new ei~ments or the-functional domain F corresponding to 

the values returned by otherwise nonfunctional procedures. 

We reject the first choice on the grounds that it restricts our considera,tion 
~·.r. - , t : . 

to tl'x::ise flllctions expressible in the lambda ca·1®1u's, glving us no way of 

distinguishing between N 1 aQd.-. tbe .iQ~!#~i¥tlY s...-ioP..•I. -~- · Tfte·i~ec6nd '~fioice 'is 
~ ,. ~ .,,.... ·' ' . 

rejected after br~!!f COf!S!~e~~ion. (ip, a J'g!l.~f?winc1·uetion-) paJ'ltlt''&ecause or 
•, . . . .... ~ ··' ! ,i ~ \_' . .. . . 

the technical_ canplic~t~oM. it eqtails" ~~IR"*rtlr baceaae it: deriies the 

semantic valid! ty or, th~ ·l~s.restilll; -¥~~--"11'!tahledpftpN8S1ons. ·· 1The 
c. • ". • \ 

third choice seems the 111>.st pr~sin.1:1 ~~ t• llQJ'i~ ot'l·V4'Ww !.Oft M-gorous· 

analy-Sis, but requires a_·~~{l,tan~.Jc,) i.:nt~c1"4~ 1HP·amoae;ii•l'ulltft8' milst be 
carefully sertitinized,. .·Thi~ pro~e~.~ ia,. *~'~#)ed<3rtn ·Al>Rq'\1Htt'..J seotltm,~1 

3.5: Multi-valued Sanantic Elenents 

The domain DN of language N was shown, in Ch•tw' i 9 to .haw ·tm!'"1> ... 0P4t~tli tnat 

every element .1. of D
1 
correspo~a tp.,~,. . .Qfll\r•~ of *'' t'tlnet10IOlf3. .: 

danein; thus each expression .1. in DN has, intuitively, exactly~- semantic 

value or meaning. 1 In this chapter it was shown that this graceful property 
~·:·' ; "':' 3 ;"" ~ "- } ',_f'. ' 1 '• • ' : [. ,T ,,-

of DN i~ inoo11s1stenb·witb "••'-exproessibli'tt of"' the ~noti.on:~~C~J'.'F, .a 
demonstrably ccaputable aD6uintui;t1vely 'nil :t>9ha•ed';runctfori' over a .. 

particular ·s~&t -pt', .Dir ()UP 1lltpl911Jeiiit.t'ioh 'o'r·wif~Cfii~:tr ~ll~' i~~o-tion~~' 'cc:,ve;~. 
this r:~stricJ,ed doma.tn S, i·IDebeves !~l'y 1£\itiitn 'gf~n.'~r~llM(nt's. f_rom D,N _wni5:~ .. 

are not .in s; furti~-re, this ·arinc)ying ~aefelct: :1s= '~aricte~istic or eyerv 
+ -- . , : ' • ' - ., _-_ ,: :-, ::;-'.""j 

implementation of WHICHFF in a la~µagie ·19d¥n'.cient'ly' powerful as to be 

arithmetically canp~~t~,. The_probl~~ ~a,'~~p~.-. WIICff.f!".'iS·&pplied to 

the flllctio~ FF12: ,either of the valµes 2 .or.,.3_is coeaistent .. Wf.tlt':th'f! 
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definition of WHICHFF (3. 3], and there is no implementation of WHICHFF which 

consistently returns a Bingle value, eg 2, when applied to every x in DN 

semantically eq u1 valent. to F'F 
12

• Thus the evaluation of (WHICHFF FF 12 > leads 

to, exactly the same under~etermined result as 'the evaluation of (EITHER 1 2): 

the E values of each expression might be 1 or 2, depending on circumstances 

which are irrelevent to the semantics of each expression.) 
~·,, 

3.5.1: Domains of Specification 

One means of avoi"ing such apparently nendetermint'stic computations is to 

exclude them frOBJ our semantio model, i~, to d~ny that (EITHER 1 2) has any 

semantic value.. t>n4er ttiis, raatridtfon, we must 'ca're'tufly exclude from our 
' l; .. ,. • 

consideration .'1J\Y eec11ression 'navit!g ''llfultip1e E''va'l"ues, either by avoidi_ng the 

use of EITHER and ""et-ting t-o the well' behaved Cfbaiairi_ r5~, or ,by a~surin~ 
our.selves, at each application of EITH!Jf, t'h&t tti'e 

1
res'U1t is single valued. 

We nay not~, pura,uant to the latter- program/that for, all ~xpressions .1. and ,!t, 

E[(EITHER A.!t)] is single valued if 

1) A. is single valued and !t is meaningless; or 

2) 14 is single valued and A. is meaningless; or 

3) i. and J2.: are both meaningle·s; or 

4) .1. and ,b. are each sinl']:e \'alued and their Villues are B4!mantically 

equivalent. 

So long as the arguments to E:I:THER :satisfy, the aboYe aciteria,. EITHER is 

intuitively f1.11ctional. For each funQtion .(,wnoaerd•t:tn1,tion involves EITHER, 

we may then carefully def~ne a domain or s,pecif,J,pat.ion s, !suoh that for 

arguments X. fr an Sf' E[ (f x) J ,.1.s single valtfft(f. ··We. may, ror example, show 

that our definition of WHICHFF in t<erms .. pf iITfJER .is fJJn-ational over a domain 

of specification including the functions {FF1 }.· 

This means of avoiding tbe seMntic difficulties or EITHER may raise certain 

aesthetic objections. First, it places on us the considerable burden of 

having to construct domains of specification for each of ~ large class of 

fl.l'lct ions, an~ the necessity of showing tl'~t each s11eh function i~ well 
" behaved over its particular domain of specification. Second~ 'it rules out 
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consideration of algorithms for well behaved functions which have 

multiply-valued subexpressions. Consider, for an example of the latter 

limitation, the function .f_ defined so that 

f(n] = 5, n=1 

5, n=2 

else undefined. 

Now, since .f..[1]=5 and .f..(2]=5, it is intuitively reasonable to claim that 

.f_[either[1;2]]=5; yet we cannot make such a claim unless we are willing to 

assign some semantic value to either[ 1 ; 2]. 

3.5.2: EITHER and the Lambda Calculus 

There is an essential incongruence between EITHER and the axiomatic basis of 

the Lambda Calculus which precludes the incorporation of the former as a 

primitive with an associated delta rule. 1 Recalling that these axioms define 

an equivalence relation, =, on the domain of the language, incorporation of 

EITHER results in the equivalences: 

and hence 

{EITHER 2)= 1 

(EITHER 2):2 

1:2 

fran which it follows, by the famous logic of Russel, that "I am the Pope". 

Clearly the relation between (EITHER 1 2) and 1 is not equivalence, but rather 

some irreversible reducibility property. Any evaluator which can yield 1 as 

the value of (EITHER 1 2) cannot be claimed to preserve semantic equivalence; 

it merely reduces that expression to one of its several values and discards, 

in the process, information about the other values. This is the underlying 

reason why N (and the Lambda Calculus) are incapable of expressing WHICHFF, 

and is basic to the proof of Theorem 3.4. 

1 
Such a delta axiom is formally ruled out by the requirement that the 

arguments to primitives be in reduced form, thus restricting applications of 
EITHER to cases where both arguments have meaningful E values. 
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3.6: The Power Set Domain 

' I 
\ 

3.6 

• 

The natural extension or a runctional domain F or single-valued elements to a 

danain F* of multiply-valued elements involves the interpretation of F* as the 

Dower set, or set of subsets, or F. Thus the elements 2 and 3 of F correspond 

to the unit subsets {2} and {3}, respectively, in F*, while the semantic 

element of F* correspond!~ to the value of (EITHER 2 3) is- the subset {2,3} 

of F containing both 2 and 3. The meaningless element • corresponds to the 

empty subset 0 of F, havi~ no value. Other useful relationships which we 

would like to see in F* include the following; 

2) (EITHER (f.Jl)(f..b.))-(f. (EITHER .1.~)) 1 or equivalently, the elements 

{f[a],f[b]} and f[{a,b}] in F• are the same. 

3)The natural interpretation of either on t'unetions leads to the semantic 

equivalence (EITHER f g)""(LAltBl>A(.X) (IUTHER (f X)(g i) )). This allows us 

tc propose, in symmetry with (2), that: 

4) ((EITHERf.&) A.) - (EITHER (f..1.) (&,&)). 

5) (EITHER .1. •)""A., Wiere • is the element c.orresponding to the undefined 

canputation. 

6) If .i. corresponds to {a1, ••• ,aj} in F* and R. corresponds to {b 1, ••• ,bk}, 

then (EITHER it.b.) corresponds to {a 1, ••• ,aj, b 1, ••• ,bk} in F*. In 

general, EITHER of multivalued elements corresponds. to the µpion of the 

respective elements of F*. 

3.7: Interpretation of F* 

The semantic mdel being developed in this chapter demands a certain amount of 

intuitive realignment on the part of the reader. The attractive feature of F* 

as a semantic domain is that it allows the preservation of a notion of 

semantic equivalence, without cost in terms of expressibility of certain 

functions. Its major disadvantage, at least from an intuitive standpoint, is 

that it requires that we postulate certain abetraot sema!ltic elements which 
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are intangible in practice -- if the expression x has multiple values, say 2 

and 3, then we have no way of discerning from the value "3" typed by our E 

interpreter that "2" is also a value of .x_. We could, of course, build an 

interpreter which would enumerate the values of x by dovetailing computations 

at each EITHER juncture. However, as x might have infinitely many values, 

this process nay never terminate; worse yet, even for an x with finitely many 

values we cannot tell, in general, when all of the values have been typed. 

There are, however, situations where this ambiguity is ~nimportant. We may 

know, for example, that xis single valued, in spite of the dual values of a 

subexpression y_ of x_. Alternatively, we may recognise that x has many values, 

but be willing to settle for any one of them. 

3.8: Computable elements of F• 

If we have a procedure for identifying the computable elements of a single 

valued domain F, we can characterize the computable eleilents of the power set. 

danain F• as these elements of F• which are effectively enumerable sets of 

canputable elements of F. Given an expression X we can enumerate the 

canponents of the F* element representing X; one me~ns .of dolng so is provided 
. -- - :::-. - ' - "' :· ~ . .P.: 

in Chapter 6. Furthermore, given an expression G for a function which 

enumerates a set S of elements of F, we can construct an expression whose 

representative F* element is S; take for example the expression 

((Y (LAMBDA (H) (LAHBDA(X)(EITHE;R (G X)(H (PLUS 1 X)))))) 0) 

where Y is the fixed point operator (LAHBDA(F)(CLA"8DA(G) (F (G 

G)) )(LAHBDA(G) (F (G G)))) ). This expression reduces. to aa- expression of the 

form 

(EITHER (G 0) 

(EITHER (G 1) 

(EITHER (G 2) 

(EITHER (G 3) --- )))) 

and its corresponding element of F• is exactly the range of G. 
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We may use as our fi.mction G in the above expression an enumerator ENU of the 

entire domain F, constructed by the techniques of section 3.2.1.2; this 

expression, TCP, corresponds to the semantic element of F• which is the set F 

itself. 

3. 9: Summary 

This chapter raises the·question of the expressibility of a particular 
' . "-: .. , . ' 

fmction, WHICHFF. This function is ineJFpJ'.'essible ~n the lambda calculus, and 

intuitively it requires a mechanism for multiprocessing for its implementation 

in spite of its applicative -- hence time independent -- nature. Two 

alternative extensions Of the N interpreter are preposed, .each of .which 

renders WHICHFF expressible: 

1) Primitives can be adqed to N which allow coding and decoding of arbitrary 

expressions into and fran numbers. This 1neqhani,sm allow~ prQJrams to 

access the representation of fun~tion_s, and it is ar~ed. that such a 

OODE/DECX>JE facility ext~mds any arithmetically cani>,l,et.e la~~age to 

f1.11ctional canpleteness. Yet the use of this mechanism is awkwal'l'd: the 
• , ·~ •.: !"' • ' • ' . • -. • 

specific implementation of WHICHFF, for example, requires coding an 

interpreter which simulates the .necessary multiprocessing. Moreover the 

semantic ramifications of CODE are drastic, involving abandonment of much 

of the applicative structure of any laDgu&ge in wh'!Ch -it 'is embedded. 

2) A irimitive, EITHER,". can be added to N to implement multiprocessing. 

EITHER renders WHICHPF easily expressible, and it may be justified 

semantically in an applicative language. 

In connection with (1), it is noted that although the new primitive CODE is 

radically nonfi.mctional, the inverse operation of DECODE (Which maps codings 

into the fi.mctions which they represent) is acceptable as an element of our 

fl.llctional domain. A canbinatory proof shows that such decoding functions 

are, in fact, expressible in the unmodified N language; benge we can write in 

the lambda calculi fmctions which enumerate the entire semantic domain of 

these calculi. 
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The introduction of EITHER or equivalent mechanism requires that we modify the 

structure of the semantic domain and its relation to expressions of a 

language. In particular, it seems most natural to associate with each 

expression a ~ of abstract values, rather than a unique single value. We 

thus move fran the domain F of single values to the domain F• whose elements 

are erumerable subsets or the elements of F; we term F• the power set domain. 

The presentation of EITHER in this chapter is informal and relies heavily on 

implementational notions such as multiprocessing. The following chapters 

formalize the meohani.sin in terms of systems or conversion rules, based on the 

lambda calculus; this process both justifies and refines the rough 

implementation 111>del sketched here. 
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Chapter 4: 

Theories of EITHER-conversion 

While the implementation and semantic considerations of the previous chapter 

provide a strong intuitive basis for the interpretation of EITHER, the further 

development of this new mechanism requires something more concrete. 

Specifically, the incorporation of EITHER into a language E involves syntactic 

manipulations of expressions in E, and hence necessitates a formalism which 

distinguishes tlx>se syntactic manipulations which are semantically valid from 

those which are not. The relationships developed in the last chapter are 

analogous to the convention that "(PLUS 2 3)" represents the sum of 2 and 3, 

without a corresponding mechanism for associating this expression with the 

expression "5". 

This chapter begins the project of developing formalisms, i.e. conversion 

axioms, for the syntactic manipulation of exp,·essions involving EITHER. 

Several theories (i.e., systems of axioms) are presented in this and 
1 subsequent chapters; each is based on the beta-delta calculus, with 

additional axioms for manipulation of the new EITHER construct. The 

distinction between these theories stems from an issue of evaluation order, 

discussed in a following section, and reflects alternative interpretations of 

certain expressions involving EITHER. 

A principal difference between the axiom systems presented here and those of 

the lambda calculus is the introduction of a new asymmetry, in the form of an 

ordering relation ~. between expressions of E. We have seen in previous 

sections that it is !Utile to require that E interpretation preserve an 

equivalence relation; such a requirement was shown to lead to an 

inconsistency in any language capable of expressing WHICHFF, since (WHICHFF 

FF12>-1 and (WHICHFF FF 12)-2 together imply that 1-2. The asymmetry of~. 

however, allows the relations (WHICHFF FF 12)>1 and (WHICHFF FF 12 )~2 to hold 

without compromising the semantic relation between 1 and 2. We view the 

relation ~ as designating EITHER-reducibility, and may interpret x>y 

informally to mean that the values of y are among the possible values of x. 

1 
No attempt is made to incorporate eta conversion into the systems presented 

here, although we expect that no new difficulties would arise in doing so. 
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We shall use X•Y to mean that both x~y and y~x. 

It is important to distinguish between the relation ~ and the "reducible to" 

relation, ->, of the lambda calculus. If the expression X is reducible to the 

expression Y by means of conventional lambda calculus axioms, then it will 

follow that ~Y and Y~X; the reverse, however; is not true. The semantic 

interpretation of X~Y is that every value of Y is also a value of X; i.e., the 

element of F• corresponding to Y is a subset of the element corresponding to 

x. 

4.1: Prelillinar,.- ~f'initions 

The terminology or this section is adapted fran standard usage in the lambda 

calculus, and appears e.g in Curry[12]. 

The relation ;i.. defined in each of the axiom systems presented here is a 

monotone relation, i.e. it has the following properties: 

Renexivi ty: For every x, x~x. 

Transitivity: If X~Y and Y~Z, then X~Z. 

Monotonicity: If i~Y and B is the result of substituting X for an occurrence 

of Y in expression A, then B~A. X for an occurrence of Y, then B~A. 

The above properties are assumed to be axioms of each system. 

Certain of the axiQlls to be presented lead to a- distinction between the 

operations of contraction and abstraction; for example, the derivation of 

S[A;x;M] 1 fran ( (LAHBDA(x)M)A), justified by the bet.a axiom of the lambda 

calculus, may be tel"llled a beta-contraction. The invel'Be operation of 

converting S[A;x;M] to ( (LAMBDA(x)M)A) my be termed a lllll.-abitraction. An 

expression which is a candidate for contraction is called a redex; thus 

( (LAMBDA(x)H)A) is a ~-redex in the lambda calculus. The result of 

performing a contraction on a redex X is termed the CQAtractum of X. 

An expression in a particular calculus is in normal fQ.cm. if it contains no 

1 Recall that S is the substitution operation of the lambda calculus, Defn 
[2.6]. 
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redex applicable to that calculus. We say further that the expression X is in 

beta-normal form if X contains no beta-redex, and similarly for the delta, *, 

and E red exes to be de fined presently. The statement that X is in normal 

form, without further qualification, may be taken to mean that X contains no 

beta-, delta-, *-, , or E-redexes. 

We shall often use the notation X{Y} to designate an expression X containing a 

particular instance of a subexpression Y; having identified an expression 

with the notation X{Y}, we shall then use an expression of the form X{Z} to 

denote the result of replacing Y in X{Y} by the expression Z. In this 

notation, the roc>notonicity of ~ is the implication of X{Y}~X{Z} by Y~Z. 

A relationship of the form A~B is in general derived through a series of steps 

A 1 ~A2 , A 2~A3 , where each Ai~Ai+ 1 involves the substitution of an expression y' 

in A. for an occurrence of an expression Y~Y'. The monotonicity of~ 
1 

justifies each such substitution, and the trnnsitivity assures that the 

validity of the entire series follows from the validity of the individual 

steps. We shall use the terminology 

Defn 4.1: A reduction step in A from X to Y, for expressions X and Yanda 

particular axiom system A, is a proof that X~Y by a single application of 

an axian of A. 

Defn 4.2: A reduction sequence from x0 to Xn in system A is a series 

x0~x,~ ... ~Xn such that each Xi~Xi+ 1 is a reduction step in A. 

4.2: The Either-R Theories 

The first axiom, comroc>n to each of the systems presented, is taken directly 

fran the lambda calculus: 

Axiom alpha: (Renaming) Let E be an expression of the form (LAMBDA(X)A) where 

X is any variable and A is an expression, and let Y be any variable not 

occurring free in A. Then E•(LAMBDA(Y)S[Y;X;A]). 
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We say that expressions A and B are congruent if A can be converted to B by 

alpha conversion alone. Congruence is thus reflexive, symmetric and 

transitive, and to simplify subsequent proofs we shall often allow ourselves 

to treat congruent expressions as identical. 

The next axiom is a restricted .form of the beta axiom of the lambda calculus, 

allowi~ beta conversion only on a beta-redex 'whose argument is in normal 

rorm! 

Axian beta-R: (lambda conversion) Let E be an expression of the form 

( (LARBDA(A)JU.s;:J lllhere ~ is in normal rona. 1ben Ed'-. llhere E' is the 

eoatractum :$[~;.IU of' E. 

"The fbllowitg axi-m provides a paradigm for delta--comrersion, the application 

of" primitive ft.mctions to &l"gmlents in D01"11&1 'fora. A particular ca'lculus 

wi 11 have a .family of delta rules, specifying :the behavior or each primitive 

-- e.g. the delta rule fbr the prillitive PLUS amser:t.ing the equivalence or 

(PLUS n m) to n+m fbr all integers n and m. Of interest here is the general 

fonn of such rules: 

Arlan delta: Let E be an ex:presion of' tbe form (AB) ..ttere A is a primitive 

fim.ction tWWlbol and B is a .normal form. expreeaicm containing no froee 

variables. Then E-E', where E' is the contractum or E derived .from B by 

the (here mspecified) rules associated w1 th A. 

We may term such an expression E a delta-re4ex, and the conversion of E to E' 

is a delta-contraction. Since the relation between E and E' is equivalence, 

the axiom provides also for the delta-abstraction of E' to E. 

We note that axioms alpha, beta-R, and delta define a lambda calculus under 

the equivalence relation •; no use has been mde of the asymmetric relation 

~. 

We shall term an expression of the form (EITHER a, a
2

)_, where a
1 

and a
2 

are 

arbitrary expressions, an E-reciex. We treat the E-r-edex as a new syntactic 

construct, rather than attempting to classify EI'l'HBR as an added primitive 

ft.met ion 'Whose operation is specified by delta rules. In particular, we 

regard the restriction that arguments of :prilli.Uve functions be in normal form 
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as unacceptable to the process of EITHER-conversion. 

Axiom epsilon: (EITHER-contraction): If Eis an expression of the form (EITHER 

a 1 a2 ) where a 1 and a 2 are expressions, then E~a 1 and E~a2 • 

Axiom mu: For every expression E, E•(EITHER E E). 

Axiom rho: (EITHER-distribution) If E is an expression of the form (f (EITHER 

a b)), where f, a, and bare arbitary expressions, then E•E' where E' is 

the expression (EITHER (f a)(f b)). 

The conversion of the redex (EITHER a
1 

a2) to one of the expressions a
1 

or a
2 

will be termed an E_-contraction. The conversion of an expression E to (EITHER 

E E) will be called an K-abstraction. 

4.2.1: Properties of Either Theories 

The elementary relationships established in this section hold for subequent 

theories as well as for Either-R. In addition to their usefulness in proofs, 

they provide a preliminary reassurance that the Either-R axioms are consistent 

with the intuitive semantics of EITHER. 

Thm 4.3: X~Y if and only if, for all Z, 

y~z => x~z 

proof: only if: by the transitivity of ~. 

if: Let Z be Y; then Y~Y by the reflexivity of ~, hence X~Y by above 

hypothesis. 

The above theorem is consistent with the intuitive notion that X~Y means 

values derivable from Y are also derivable from X. 

Axiom mu justifies the trivial abstraction of an expression E to the 

expression (EITHER EE); The following theorem shows that nontrivial EITHER 

expressions may be abstracted: 
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Thm 4.4: Let X, A, and B be expressions such that X~A and X~B. Then 

X~( EITHER A B). 

proof: By Axian mu, X~(EITHER X X). 

But since X~A and X~B, (EITHER X X)~(EITHER A B) by the monotonicity of 

~. Hence X~(EITHER A B). 

We may apply this theorem, for example, to the expression A given by 

A.:..((LAMBDA(X)(PLUS X 3) )(PLUS 1 2)) 

By pe rfonning single be.ta and delta contractions, repectively, on A we deduce 

the relations 

A~(PLUS (PLUS 1 2) 3) 

A~((LAMBDA(X)(PLUS X 3)) 3) 

Application of Thm 4.4 yields the result 

A~(EITHER (PLUS (PLUS 2) 3)((LAMBDA(X(PLUS X 3)) 3)) 

This demonstrates that the Either-R theory allows EITHER-free expressions 

(such as A above) to be converted to expressions containing EITHER. 

Thm 4.5: X•Y if and only if for all Z, X~Z<=>Y~Z. 

proof: is by two applications of 4.3. 

Thm 4.6: For all f, g, and a, 

((EITHER f g) a)~(EITHER (f a)(g a)) 

proof: By Axian epsilon, ((EITHER f g) a)>(f a) and ((EITHER f g) a);.(g a); 

hence, by Thm 4.4, ((EITHER f g) a)~(EITHER (f a)(g a)). 

The intuitive arguments of the last chapter suggest that the above result 

could be strengthened to full equivalence (i.e.,•), and this more powerful 

result may in fact be a theorem in our Either theories; however we have not 

pursued this equivalence since it is irrelevent to the subsequent proofs. 
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4.2.2: EITHER and Evaluation Order 

Chapter 2 notes the distinction between normal and applicative order 

evaluation, characteristic respectively of the N and T interpreters. 

Applicative order evaluation, in which arguments to a function are evaluated 

prior to the application of the function, is shown in that chapter to lead to 

the inexpressiblity of certain functions which ignore their arguments. For 

example, the applicative order evaluation of the expression 

( (LAMBDA(X)3) A) 

does not terminate if the value of A is undefined, whereas the normal order 

evaluation of that expression yields the value 3. 

The .restricted conversion of the beta-R axiom is similar to applicative order 

evaluation -- in each case, the argument to a function must be avaluated 

(reduced to normal form) before the application of the function (beta 

conversion). The only distinction between bet-,a-R conversion and the 

applicative order of the T interpreter is the degree of evaluation required; 

while Either-R requires that arguments be reduced to normal form, T requires 

only that they be reduced to lambda expressions or atoms. We may thus, view 

the restriction on beta conversion as a more serious constraint than the 

applicative order evaluation of T. 

The rootivation for this restriction in the Either-R system is our intuitively 

based demand that the axiom of EITHER-distribution, rho, hold. This axiom is 

in fact inconsistent with the unrestricted beta conversion of the lambda 

calculus; consider, for example, the expressions I, Z, and F defined by 

I .=_ (LAMBDA (X)X) 

Z _ (LAMBDA(Y)(LAMBDA(X)X)) 

F ..::. (LAMBDA(H) (H H)) 

Using the axioms of Either-R (notably EITHER distribution) in conjunction with 

unrestricted beta conversion, we may deduce that I.=.Z as follows: By Axiom mu, 

I .=_ (EITHER I I) 

and by (restricted) beta abstraction on each of the terms of the E-redex, 

T ~(EITHER (F I)(F Z)) 
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since both (F !).:_! and (F Z).:_I. Then the axiom of EITHER distribution yields 

I.:. (F (EITHER I Z)) 

fran which, using unrestricted beta conversion {as the argument is an E-redex 

and hence not in normal form) we deduce that 

I .:. (({EITHER I Z)(EITHEB I Z)) 

whence by EITHER contraction 

I ·;,. (I Z) .:. Z 

Thus we have derived J;itZ; to show Z~I (and hence l•Z) we make the deductions 

I ~--··Z 

{I Z) ~ (Z Z) 

Z ~I 

using the DDnotonicity of ~ and beta-R abstraction. 

It follows that, u.sing .1.11restricted b&a cc:aft.ftrl.QD in C()ftjunction with the 

Ei ther-R axiae,, we can prove everx pair or e~Aons- equtnlent -- 1.e:. , 

the system is inconsistent. We avoid this p.tttell in at:tAwr•ikbr .ans or the 

restriction on beta conversion. '!be beta-R restriction is not, however, the 

only solution to this problem, and in Chapter 1 an alternative axiom system -­

designated the Either-IC theory -- is presented. 

It stx>uld be noted at this point that the reatr.tct.ien,on bet• conyersion is 

expensive in terms of expressive power. It prohibits, for example, the 

reduction of the expression 

{(LAMBDA(X)3) ((LANBDA(Y)(I Y)){LAMBDA(Y){Y I))) 

to the value 3, since the argumeQt in that Q)r9Ssi'O.D baa no normal rorm. A 

more serious drawback is that it interreres. with tb.e ~etaibility of 

recursive f"mctions since recursion requires, in the lambda calculus, the 

application of rmctions to argU11ents having no normal rorms. Chapter 5 is 

devoted to the mechanism of •-conversion, whJ;cb llit.J.ga~ the$8 .. limitations 

imposed by the restricted beta conversion. 
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4.2.3: Consistency of Either-R 

An extension of the axianatic basis of the Lambda calculus may lead to 

inconsistencies, e.g. the equivalence of 1 and 2. Such equivalences do not 

ho Id in the conventional lambda calculus; in particular, the first Theorem of 

Church and Rosser establishes the consistency of the Lambda Calculus axioms by 

showing that the proposition X:Y is not provable for any pair of expressions X 

and Y having incongruent normal forms. We are thereby assured that the 

equivalence relation = established by the lambda calculus does not place every 

expression in a single equivalence elass, and thus that the cardinality of the 

dcmain of the Lambda Calculus is greater than 1. The existence of infinite 
1 sets of mutually incongruent normal forms shows that the domain of the lambda 

calculus is infinite. Moreover, an important theorem. of Bo~hm[20] shows that 

any axianatic assertion of the form X=Y, where X and Y are incongruent normal 

fonns, leads to an inconsistency. 

The theorems of Church-Rosser and Boehm are, not surprisingly, inapplicable to 

the axianat.ic extension presented here. Furthermore, they probably cannot be 

augmented in minor ways to argue the consistency of the present system, as the 

uniqueness of normal forms, on which they depend, has been compromised by our 

extension. 

Accordingly, is the purpose of this section to establish that the domain of 

the lambda calculus is a subset of the domain of the Either-R system, and that 

the new equivalence relation • is consistent with the relation = of the lambda 

calculus. In particular we wish to show that, for any two either-fre~ 

expressions X and Y, X:Y if X•Y. Proof of this assertion establishes that 

1) The domain of the Either-R system includes the domain of the lambda 

calculus, hence the new system is nontrivial (having infinite 

cardinal! ty); and 

2) The semantic equivalence defined by the Either-R calculus, applied to 

EITHER-free expressions, is a subset of the equivalence of the lambda 

calculus. 

1 For example, the set I.:_{lambda(x)x), I'_:..(lambda(x)I), I".:_(lambda(x)I'), 
etc. 
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It has been noted that in the Either-R system there are expressions X and Y 

such that X=Y but for Yiich X•Y is not provable -- a consequence of the 

restriction on beta conversion which is explored further in the analysis of 

the R-• system in the following chapter. 

We procede to the consistency proof, beginning with with the following 

det'inition: 

Defn 4.7: The E!tHER-free expression X' is an e-residyc of the expression X 

if and only if X" •Y be derived rrca X by replacing every e-redex 

(EITHER x1 x2) in X by one or the operands x1 or x2• 

Thus the expression X" is an e-residue of X if X" is EITHER-free and X~X" may 

be demonstrated aolely by means of EITHER-contraction (axiom epsilon). 

Defn JJ.8~ The expression X is unitary if and only if there exists some 

EITHER-free expression I such that, for every e-residue X" of X, X • =Y (in 

the lambda calculus). 

Thus 

(EITHER {LAMBDA(X)X) {LAMBDA{Y)Y)) 

is t.mitary, since its e-residues (LAMBDA(X)X) and {LAMBDA(Y)Y) are congruent. 

We note that EITHER-free expressions are unitary, although unitary expressions 

are not necessarily EITHER-free, as the above example demonstrates. 

Furthermore, a tmitary expression X may contain subexpressions which are not 

unitary; witness the expression 

((LAMBDA (X)(DIFFERENCE X X) )(EITHER 2 3)) (4.9) 

whose e-residues are 

( (LAMBDA(X) {DIFFERENCE X X)) 2) 

and 

( (LAMBDA(X) (DIFFERENCE X X)) 3) 

each of which is convertible to 0 by the rules of the Either-R system. Hence 

expression (JJ.9] is tmitary; it contains~ however, the subexpression 

(EITHER 2 3) 
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which has e-residues 2 and 3, which are not equivalent under -· Hence the 

subexpression is not unitary. 

The proof of the consistency of Either-R is based on the observation that, 

while EITHER may be introduced into EITHER-free expressions by 

EITHER-abstraction, the result is necessarily unitary. Moreover, the axioms 

of Ei ther-R preserve the unitary nature of expressions; we will thus argue 

that the result of an Either-R reduction sequence ou an EITHER-free expression 

must be unitary. We now introduce a relation which orders expressions by the 

interconvertabili ty, in the lambda calculus, of their e-resi.dues: 

Defn 4. 10: For any expressions X and Y we say that X encloses Y if, for every 

e-residue y• of Y, there is an e-residue x· of X such that X'=Y' in the 

lambda calculus. 

Observe that enclosure is reflexive and transitive; the following lemma 

establishes that it is monotonic: 

Lemma 4.11: Let Y be a subexpression of X{Y} and let Y enclose Z. Then X{Y} 

encloses X{Z}. 

proof: Each e-residue of X{Z} is of the form X • {Z ·} where Z • is an e-residue 

of Z; and for each e-residue y• of Y there is a corresponding e-residue 

X'{Y'} of X{Y}. Hence for each e-residue X'{Z'} of X{Z} there is an 

e-residue X'{Y'} of X{Y} such that Y'=Z'; it follows that X'{Y'}=X'{Z'} 

hence X{Y} encloses X{Z}. 

Corollary 4. 12: If X{Y} is unitary and Y encloses Z, then X{Z} is unitary and 

every e-residue of X{Z} is convertible to an e-residue of X{Y}. 

Lemma 4.13: Let X~Y be a single reduction step in Either-R. Then X encloses 

Y. 
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proof: Let U be the subexpression of X which is replaced by an expression W 

in the reduction step X~Y. .BY Lemma 4. 11, we need only to show that U 

encloses W to establish that X encloses Y. We exhaustively examine the 

possible reduction steps from U to W: 

Case 1: Alpha conversion on U. Then U and W are congruent, and for each 

e-residue w· of W there is a congruent e-residue u· of U. 

Case 2: beta-R conversion on U. Let P be a beta-redex of the form 

((LAMBDA(X)M{X})A) liihere A is in normal .fon1, and let Q be the contractum 

S[A;X;M{X}] of P. Then every e-residue p• of Pis of the form 

((LAMBDA(X)M' {X} )A) where M' {X} is an e-residue of M{X}, and there is one 

such e-residue P' for every e-residue M' of M. Each e-residue w· of W is 

of the form M'{A} and there is one such a-residue w· for each e-residue M' 

of M. For each M' the corresponding e-residues of P and Q are 

((LAMBDA(X)M'{X})A) and M'{A} respecti•ely, liihich are interconvertible in 

the lambda calculus by a single beta conversion; hence P encloses Q and Q 

encloses P. W is either a beta-R contraction or a beta-R abstraction of U, 

hence U encloses W. 

Case 3: delta-conversion on U. If either U or W is a delta redex, then both U 

and W are EITHER-free and thus U encloses W. 

Case 4: EITHER contraction. If U is an expression of the form (EITHER A A } 
1 2 ' 

clearly U encloses both A1 and A2; each e-residue of W is an e-residue of 

A
1 

or of A
2

• 

Case 5: EITHER-abstraction. Then W is of the form (EITHER U U), and each 

e-residue of W is an e-residue u· of U. 

Case 6: EITHER-diatribution. Let P be an expression of the form 

(EITHER (F A}(F B)) 

and let Q be 

(F (EITHER AB)) 

The e-residues of P consist of all the expressions of the forms (F • A·) and 

(F' B') where F', A', and a· are respectively e-residues of F, A, and B. 

We note that the e-residues of Q consist of exactly the same set of 

expressions, hence P encloses Q and Q encloses P. Thus for a conversion 
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U~W of the fornis P~Q or Q~P, U encloses W. 

This canpletes the proof of Lemma 4.13. 

We present the obvious generalization of this result as 

Corollary 4.14: Let X and Y be expressions such that X~Y in the Either-R 

system. Then X encloses Y. 

proof follows directly from Lemma 4.13 and the transitivity of the enclosure 

relation. 

This corollary shows that the ordering ~ of the Either-R system implies 

enclosure; thus the number of distinct (under = of the lambda calculus) 

e-residues of an expression X can only be decreased by a reduction step in 

Either-R. While each reduction step may introduce new E-redexes (by 

EITHER-abstraction), the terms of each redex so introduced are necessarily 

interconvertable. The consistency of the Either-R theories is a special case 

of this corollary: 

Thm 4.15: Let X and Y be EITHER-free expressions such that X~Y in the 

Either-R theories. Then X=Y in the lambda calculus. 

proof: By Corollary 4.14, X encloses Y; since X and Y are each EITHER-free, 

X and Y are respectively e-residues of X and Y. Hence X=Y in the lambda 

calculus. 

The above theorem establishes that the Either-R theories are consistent in the 

sense that they introduce no new equivalences between expressions which are 

distinct in the lambda calculus; and are hence of infinite cardinality. It is 

noteworthy at this point that the above proof, specifically Lemma 4.13, 

depends on our restriction on beta conversion. when unrestricted beta 

conversion is allowed (as in the Either-K theories presented in Chapter 7) it 

is not true in general that every beta-redex X encloses its contractum x·, as 

demonstrated by the beta redex 
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A.=_((LAMBDA(X) (PLUS X X) )(EITHER 2 3)) 

whose e-residues are each convertible to 2 and 3, respectively, while the 

contractum of A 

(PLUS (EITHER 2 3) (EITHER 2 3)) 

has an e-residue (PLUS 2 3) which is convertibl& ne0ither to 2 nor to 3. 

4.3: Summary 

This chapter defines the ground rules for the axianatization of Either 

theories and presents the 81 ther-R theory. While the usef'ulness of this 

system is limited due to the restriction placed on beta conversion, it 

develops much of the mechanism to be used in subsequent chapters. 

4.2.3 

The ir incl pal distinct ion to be mde between the. Either theQries ll es in the 

circumstances in lilich beta-conversion is allowed. 'n\e Either-R Theories, 

which prohibit beta-conversion unless the argument to be substituted is in 

normal form, al low the distribution of functions over the terms of an 

EITHERexpression - a relationship which we find intuitively gratifying. 

Unfortmately this restricted .beta-conversion results in a very weak theory, a 

problem to which the next chapter is devoted. 

The Either-R theory presented in this chapter is shown to be consistent in the 

sense that X~Y, lllere ~ is the ordering defined by t.he new axioms, is not a 

tautology. The iroof is based oo the consistency of the lambda calculus; 

specifically, it is shown that, for expressions X and Y which are EITHER-Cree 

(and thus admissible syntactically in the lambda calculus) X~Y implies the 

interconvertability of X and Y. This general technique will be followed in 

subsequent consistency proofs as well. 
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Chapter 5: 

*-Conversion 

It was noted in the previous chapter that the restricted lambda conversion of 

the beta-R axian, i.e. the requirement that the argument of a beta-redex be in 

normal fo nn before the contraction of that redex, severely limits the 

expressive power of languages based on the Either-R theory. Iri particular, 

the inexpressibility of recursive functions constitutes an intolerable 

restriction since it renders such languages functionally incomplete. 

The mechanism of *-conversion, to be introduced in the present chapter, 

ameliorates this limitation by extending the ordering relation~ in a way 

which is consistent with its function in the Either-R theory. Although 

*-conversion and EITHER reduction are in an important sense complementary 

operations, their respective mechanics may be dealt with separately; thus for 

the purposes of this chapter we temporarily disregard the axioms of EITHER 

conversion. In Chapter 6 we canbine the two mechanisms. 

The semantic interpretation of ~ suggested by the Ei ther-R. theory is one of 

inclusion 9f values; it was noted that X~Y signifies, in general, that each 

value of Y is also a value of X. The corresponding relation in the semantic 

danain F* is set theoretic inclusion. Thus if x and y are the semantic 

elements of F* corresponding to X and Y, respectively, then X~Y implies that Y 

is a subset of x. Consistent with the semantic notions of Chapter 3, the 

expression (EITHER X Y) corresponds in F* to the union of the elements x and 

y. It was further suggested that the undefined computation corresponds, in 

F*, to the empty set -- i.e., it has no values whatsoever. 

This chapter develops the syntactic analog of the empty set in F*. 

Specifically, the new syntactic element * is·introduced as the canonical 

normal fonn representation of the undefined computation. The interpretation 

of ~·as set theoretic inclusion in F* suggests that, for every expression X, 

X~* (since every· set has the empty subset). It would seem, then, that the 

consummation of the semantics of E:ITHER reduct1on requires that its syntactic 

mechanism reflect this aspect of the structure of F*. 
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5.1: The R-* Theories 

We nCM focus our attention on •-conversion and its relation to the restricted 

beta convers.ion. To tbis end we consider the R-• system whose axioms include 

alpha,. beta-R,, and delta dismssed pr"eviously, in add! tion: to the f'o.llowing: 

Axicm sigma: (9-.contraction): For every expression E. ~-

Thus * is an apression in the Ii-• SJS;tem wb:iolt 1.s 1C111er, in the sense of ~, 

than e¥ery ot-b.er a.pression. llllle e·very expression is reducible to •, • is 

itself only reducible to • (as • is not a beta- or delta-redus. and contains 

no "Variables). 

Det'n 5. t: .In expression oC the fcrm C• &). where A is an arbitrary 

expression. is eal led a •-rem. 

Consistent with our previously derined: notion of normal. forms, ve shall 

henceforth require an m:pres.sio.n X to conta.in no •-redoes if it is in normal 

form. Rot.!~ that the only comersion which •Y be p.erf"&rmed on a •-redex 

without reat.llting 1n &not.her •-redex is its replace.sent by •, we shall say 

that the contract.um oC a •-redex is •. 

The restricted laltibda conversion allowed by t.he beta-R axian bears a curious 

resemblance to the lambda-I calculi of' Churcllf1}. In these systems, Church 

specifically i;rol'libits expressions of" the for'lll (LAMBDA.(X)M) unless the 

variable I appears free in U1e body M; thus the lamibda-1 systems exclude, in 

general 1 fmcticns which igJlore their argumnta. A pl'"iaei.pal consequence- of' 

this restriction is t.be fact tbat.~ for expreaaice I t.Cl- _baff a normal form, 

every subexpression or I: 11Ust have a norml fCil'll.. lie note• with passing 

interest,, that the normal fbn1i ~rlcti.Dn. oC bS&-B &llClllS wt to cteri.e any 

normal f'bl'll in the lambda-I calCtll.vs 11bicll is poasUtle usi.ng unrestrict.ed beta 

com:ersion; this follows frm tbe cbser.aUcm U.t in tile laalxlia-1. systes we 

can. always reduce the argument in a beta-r-edu t.o nonial t'ora befol"e 

contracting the redex. 
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Church's preference for the lambda-I over the unrestricted "lambda-K"1 

theories stems fran the elusive nature of those expressions having no normal 

fonns. The theorem of Boehm assures us that expressions having incongruent 

nonnal fonns are semantically distinct, and the theorems of Church-Rosser 

guarantee that equivalences between expressions having normal forms are 

decidable. The semantics of normal forms is consequently uncomplicated: 

every pair of semantically equivalent normal form expressions is provably 

equivalent, and for every pair of incongruent normal forms we can find a 

context in which they produce different values. 

The admission of expressions having no normal forms compromises this situation 

severely. The requirement that a semantic equivalence relation be 

extensional, i.e. that equivalent expressions produce equivalent values in 

identical contexts, leads to a distinc.tion between semantic equivalence and 

the equivalence of interconvertability under the lambda calculus. Scott[22], 

for example, demonstrates an infinite sequence Y0 , Y
1

, ••• of fixed paint 

operators which are not convertible to one another despite the fact that they 

produce the same values when embedded in identical contexts. The problem of 

constructing a functional domain for the lambda calculus is fundamentally 

equivalent to the definition of an extensional relation of semantic equialence 

over the expressions of that calculus, a project whose recent success is due 

to Scott. The technique used by Scott[5,6,22] involves the notion of 

successively better aporoximations to the abstract semantic element 

represented by an·expression X, so that the semantic element associated with X 

becanes the limit of this sequence of approximations. In the Scott model, a 

function f' approximates every extension f of f'; more generally, f' • 

approximates f if and only if for every z, f'[z] approximates f[z]. This 

notion of approximation seems essential to the interpretation of domain 

elements as functions, largely because the th~ri~s of functions with which we . . 2 
are familiar employ type restrictions ruling out self-application. 

1 Church [ 1] and· Curry[ 12) refer to the unrestricted conversions of the 
conventional lambda calculus as lambda-K conversion1 presumably because of the 
admissibility of the canbinator K=(LAMBDA(X) (LAMBDa(Y)X)) in these systems. 
K is excluded fran the restricted Tubda-I systems by the non-occurence of the 
bound variable Y in the body of (LAMBDA(Y)X). 
2 In.particular, (LAMBDA(X) (X X)) is difficult to interpret as a function in 
the usual set-theoretic way. Hindley[21] speculates that a theory of 
ft.11ctions based on canbinatory logic, rather than set theory, might 
consistently al low self-application; while awai·ting further developments we 
remain pessimistic. 



-80- 5. 1. 1 

The mecil.anism of •-conversion presented in this chapter is reminiscent of the 

Scott construction. Specifically, we introduce means by which the various 

approximations of an abstract semantic element can be represented as 

expressions in the language itself, and provide for the syntactic conversion 

of an element X to an approximation X' of X. We have thus come to view 

•-conversion as a syntactic analog of the Scott construction in which 

approximations are expressed in the domain of the language rather than in the 

abstract semantic domain. 

The addition of •-conversion to the lambda calculus leads to a multiplicity of 

normal fonns for every expression. We shall see, for example, that the Y 

operator 

Y:(LAMBDA(F)((LAHBDA(H)(F(H H)))(LAHBl>A(H)(F(H ff))))) 

which has no normal fonn in the conventional lambda calculus, has infinitely 

many nonna 1 fo nns 

• 
{LAMBDA ( F )(F • )) 

(LAMBDA(F)(F CF •))) 

(LAMBDA(F)(F (F (F *)))) 

when •-conversion is admitted. Each of these normal fonns may be interpreted 

as an appro:leimation to the Y operator, and in any context where Y gives a 

nonnal form value, one of the above normal forms of Y will give an identical 

value. Since the semantic element associated with each of these normal forms 

is clear {in the sense that normal forms are semantically distinct) we retain 

something of the semantic simplicity of the lambda-I calculus. The semantic 

value of a given expression is simply the set of normal form values of that 

expression, and expressions X and Y are semantically equivalent if and only if 

they have identical sets of normal forms. 

One of the mtivations for •-conversion is to enable us to retain the power of 

the unrestricted (lambda-K) calculus while restricting beta conversion. It is 

intuitively reasonable to expect that one can always find a sufficiently close 

approximation to the argument of a lambda expression that the restriction on 
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beta conversion becanes unimportant where •-conversion is allowed, and much of 

the remainder of this chapter is devoted to the proof that this is in ract the 

case. 

5.1.2: Theorem on Normal Fonns 

The main result of this section sheds light on the ordering (under ~) of the 

normal fonns derivable in R-* from an expression Jr.. We begin with the 

followi~ definition, adapted from Curry[12]: 

Defn 5.2: Let P be a redex and.Q be a subexpression in an expression B, and 

let a· be the result of replacing P by its contractum p• in B. We define 

the residual§ .Q.( .Q. !flth respect .t.Q .f. as subexpressions of B' designated ' 

as follows: 

Cas.e 1: P and Q are the same redex in B. Then Q has no residual with 

respect to P. 

Case 2: P and Q are non-overlapping subexpressions of B. Then the 

r~sidual Q' of Q is that subexpression in B' which is homologous 1 to Q 

in B. 

Case 3: P is a subexpression of Q. Then the residual of Q in B' is the 

expression Q' which is homologous to Q in B. We note that the 

occurrence of Pin Q has been replaced by p• to make Q'. 

Case 4: P is a beta-redex ((LAMBDA(X)M)A), and Q is a subexpression of A. 

Then p' is S[A;X;M] and contains n instances of A corresponding to the 

n tree occurrences of the variable X in M; let these instances of A be 

identified as A1 ••• An. Each Ai cGntains an instance Qi of the redex 

Q; these n expressions Q
1 

••• Qn are the n residuals of Q in B'. Note 

that n may be zero, in which case we term the contraction of ·P a 

cancellation and Q has no residuals. 

1 . ' 
homologous subexpressions occupy the same relative position in their 

containing expressions; thus A in ({X (WA) Z} Y} is homologous to Bin ((P (Q 
B) R) S) independently of the structure of the subexpressions X, W, Z, Y, P, 
Q, R, and S. 
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Case 5: Pis a beta-red.ex ((LAMBDA(X)M)A) and Q is a subexpression of M. 

Then P .. is S[A;X;M] and the residual Q' of Q is the subexpression of 

P.. which is homologous t.o Q in M. 

Case 6: P is not a beta-redex. and Q is a subexpression of P. Then Q has 

no residmtl in B ". 

Infbl'lllally, a Pesi<klal of" an. expression Q· is - 1-ge o.f O after a 

contraction.. Consider. for example., t.lllt roesi:Chala. of tbe .._presaion f PLUS 

l 4} in t.be beta-redex 

( (UIBJA (I) (PUS I I)) (PLUS 3 ')) [5.31 

(PLUS (PLUS. 3 4)(PLUS 3 -)) 

Ve note that the two resJ.duals of' ttn~ subapress1.on (PLUS 3 4) or expression 

[5.31 are the OCCUl'ences ol (PLUIS. 3 4.} in tbe efllltractvll.. Contract.ion in the 

delt.a reds (Ptm 3 -.) in Ulll"'•alm [5 .. 3J ~tie tile r-eaidlilal 

{(Utal(X}(PLUS X I)} 1) 

We shall occasionally find it useful. to sl)e'ak or the residual of an expression 

Q after a series oC cmtraetions; ve •Y t.hus reter to o_ aa a residal or Q, 

with respect to the seomnce ot ccntraction8 ~,~ ••• ~n U there is a 

subexpression °'1-1 or Bn - t sllCh that °'1-t is a ~sidual of Q and ~ is a 

reaidWtl ot Q t• 'lh.us ecaaecvtive t.ta- Mid elta-eontraetiona on expression . n-
[Sc.31 yield 

(PLUS 1 (PLUS 3 10} 

whiell cant.aim a single residual of the subexpreaai.Ul (PLUS 3 4).. 1he 

follawi rg lemm eatablislles tnat. the residual ot a redn is .al97s a redex: 

Lemma 5.4: Let P and Q be red.es in an expression Bt and let Q• be a 

residual oC Q with- respect to P. Then Q"' is a l"eder. 

proof': We eonsider the f'olloving collect:bel~ e&awtt.1¥& eases: 
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Case 1: P and Q are non-overlapping. 1 Then Q' is the same redex as Q. 

Case 2: P is a subexpression of Q; we consider the cases of the syntax of 

Q: 

a) Q is a beta-redex of the form ((LAMBDA(X)M A). If P is a 

subexpression of M, then Q' is the beta-redex ((LAMBDA(X)M')A). If 

P is a subexpression or A, then Q' is the beta-redex 

( (LAHBDA(X)M)A' ). 

b) Q is a •-redex of the form (• H); then P must be a subexpression of 

M, and Q' is the •-redex (• M# ). 

c} Q cannot be a delta-redex, as it contain P. 

Case 3: Q is a subexpression of P; we consider cases of the syntax of P: 

a) P cannot be a de lta-redex, as 1 t ·!ontains the redex P. 

b) P cannot be a •-redex, as then Q would have no residual. 

c) Pis a beta-redex of the form ((LAMBDA(X)M)A) where Q is a 

_subexpression of A. If Q is cancelled by the contraction of P _, then . 
Q has no residual; hence M must contain 1 or Jlk)re free occurrences 

of X. Then each residual or Q is the redex Q !~self. 

d) P is a beta-redex ((LAHBDA(X)H)A} where Q is a subexpression of M. 

We examine syntactic cases of Q: 

1) Q is a delta-redex; then Q' is identical to Q, since Q may 

contain no free variables (in particular, no free occurrence of 

X). 

11) Q is a •-redex (* M). Then Q' is the •-redex (• M'). 

iii) Q is a beta-redex ((LAMBDA(Y)B)C). Then Q' is a beta-redex of 

the form ((LAMBDA (Y)B' )C'). 

1 
Two expressions are non-overlapping if neither is a subexpression of the 

other. 
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The converse of the above lemma is not in general true, i.e., the residual P' 

of P ney be a redex even though P is not. Consider for example the expression 

P.:.. ( ((LAMBDA(X)(LAMBDA(Y)Y)) 3) 4) 

which is not a redex. Contraction of the beta-redex in P yields the residual 

P' of P given by 

P' _ ((LAMBDA(Y)Y) 4) 

which is a beta-redex. 

We sl'Duld like to distinguish between reduction steps in R-• which are 

contractions and those which are abstractions; for this distinction the 

followi~ notation is convenient: 

Defn 5.5: A contraction .WR, A~>B is a single. re<htction step fran A to B 

which is either a beta-, delta-, or •-contraction. 

Defn 5.6: A con~raction seauence A0~>A 1 ~> ••• ~>~ from Ao to An is a reduction 

sequence fran A0 to An containing only alpha-oonve-rsions and contraction 

steps. The length n of such a sequence is the number of contraction 

steps in the sequence. 

We now examine contraction sequences which terminate in normal fonns, 

beginning with 

Lemma 5.7: Let X{Y} be an expression containing a redex Y, and let 

X{Y}~> ••• ~>X' be a contraction sequence of length n, where X' is in 

normal fonn. Then there is a contraction sequence X{Y'}~> ••• ~>X', where 

Y' is the contractum of Y, of nor fewer steps. 

proof is by induction on n. 

basis n=1: X' contains no redex, hence Y must be either contracted or 

cancelled (by a beta- or •-contraction). If Y is contracted then 

X[Y' ]~>X' by the null sequence. If Y is cancelled then X[Y' ]~>X' by the 

same contraction as X[Y]~>X'. 
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induction: We assume the lemma to be true for sequences containing n or 

fewer steps. Consider the first contraction step X(Y]~>X 1 in the 

n+1-step sequence X(Y]~> ••• ~>X', and let Y1 ••• Yj be the j residuals of Y 

in x1• If j=O then the argument in the basis applies, as Y is either 

contracted or cancelled in the first step. If j>O, j applications of the 

induction hypothesis establish that x1 '~> ... ~>X' in n-1 or fewer steps, 

where x1' is the result of contracting each Yi in x1• But X(Y']~>X 1 ' in 

a single step; hence X[Y']~>X' inn or fewer steps. 

The significance of Lemtqa 5. 7 is that the cont.raetion of a redex Y in 

expression X cannot prolong the reduction of X to normal rorm• ·rnronaally, we 

expect that if the subexpression I p~ays • significant role in the evaluation 

~r X, the contraction of Y will sho.rten the reduction of X; if, however, Y is 

irrelevent to the value or X then Y may be replaced by an arbitrary expression 
!. 

with no effect on the evaluation of I. This consideration motivates 

Lemma 5.8: Let B0~>B 1 ~> ••• ~>Bn be a contraction sequence of length n, and let 

Bn be in normal form. Let P be a redex in s0 ~ and let p' be the 

contractum of P. Then one of the following applies: 

a) There is a cootraction sequence B*~> ••• ~>Bn of n or fewer steps, where 

s• is the result of substituting • for P in a0 ; .2C. 

b) There is a contraction sequence B'~> ••• ~>B containing fewer than n n 
contraction steps, where B" is the result of replacing P in B by p'. 

proof is by induction on the length n of the contraction sequence B0~>Bn. 

basia n=1; then B0~>Bn in a single contraction ·step. Let Q be the redex 

contracted in e0~>Bn. If Q is the same redex as P, then B' is identical 

to Bn' and (b) is satisfied. Otherwise P muat have no residual in Bn, 

since Bn is in normal form and any residual of P is a redex. Then P must 

be cancelled by a beta- or •-contraction in B ~>B and (a) is satisfied. 
0 n' 

induction: n>l. Consider the redex Q contracted in the step B0~>B 1 • If 

·Q is the same redex as P, then (b} is satisfied as before. otherwise we 
' consider the j residuals P1 ••• Pj of Pin e1• If j=O then Pis cancelled 
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in the step B0>>B 1, and (a) applies. If j>O, we apply (by the inductive 

hypothesis) the lemma to the contraction sequence B1>> ••• >>Bn' whose 

length is n-1: 

Case 1: Each residue Pi in a
1 

is convertible to•; i.e., (a) applies to 

each Pi. Then (a) applies to P in B
0

, as B*>>B
1
• in a single step, 

where B
1

• is the result of replacing each Pi in B
1 

by •. 

Case 2: Some residue Pi of Pin B1 is not c<XJvertible to•; i.e., (b) 

applies to Pi. By Lemma 5.7, contracting any Pk in B1 cannot prolong 

the. sequence s,>> ••• >>Bn; by the induction hypothesis' there is at 

least one Pk whose contraction shortens tbe sequence. Then if ~ 1 " is 

the result of contracting each Pk in B
1

, there· is a contraction 

sequenoe B
1

>> ••• >>8
8 

in fewer than n..;.;1 steps. Since·B .. >>B
1

' in a 

single. contraction step (of the same ld:itd as B
0

>>B
1

) (b) is satisfied. 

·This canpletes the proof of Lem• 5.8. 

The following theorem establishes a fundamental property of •-conversion. 

Informally it ensures that, for any two normal form expressions A
1

• and A
2

• 

which are each derivable fran an expression A, there is an expression A* in 

normal form which is an upper bOUpd of' A1 • and A2_* in the sense that A*>>A 1 • 

and A*>>A
2
•, and furthermore that A>>A•. This result is then' extended to the 

case of an arbitrarily large finite set of expressions A1• ••• A each derivable n . 
fran .A. The existence of normal form upper bounds of arbitrary sets of 

expressions derivable fran A is essentially equivalent to the proposition 

that A can be approximated, to arbitrary accUl"aey, by normal forms derivable 

fran A. 

Thm 5.9: Let A1• and A2• be normal form expressions and let A be any 

expression such that A>>A 1• and A~>A2•. Then there exists an expression 

A• in normal form such that A>>A•, A•>>A 1 •; and A•>>A
2
•. 

Proof: Let P[n;m] be the proposition that Lem• 5.9 is true for every A, 

A1•, and A2• such that: 

(1) A~>A 1 • in n1 steps and A>>A2• in n2 steps, where n 1 +n~n; and 

Cii) A contains m or fewer redexes. 
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Then the lemma is true if and only if P[n;m] is true for all n and m; we 

precede in the following steps: 

1) For every n, P[n;O] is true since in these cases A contains no redex 

and is caisequently in normal form. 

2) For every m, P[ 1 ;ml is true since in these cases either A:=..A
1 
• or 

A:A
2
•; hence A must be in normal form and A*=A. 

3) If for some n and m and for all j P[n,j] and P[n+l ;ml are true, then 

P{n+l ;m+1] is also true. 

proof: Let A, 1
1
•, and A2• be expressions such that the premises of 

P[n+ 1 ;m+ 1 l are satisfied; then A contains m+ 1 or fewer redexes, and 

n 1+n~+1 where n1 and n2 are the respective lengths of the sequences 

A>>A 1• and A>>A2•. We now choose an innermost redex Y of A, i.e. a 

redex Y which contains no other rede·:. Such a redex Y must exist 

unless A is in normal form, which is ruled out because m+1>0. Let 

A {Y} denote A (which contains Y as a subezpression) and let Y' be the 

contractum of the redex Y. Then by Lemma 5.8, one or the following 

applies: 

a) A{•}>>A1• in n1 or fewer steps, .Ind. l{•}>>A
2

• in n
2 

or fewer 

steps. 

b) A{Y'}>>A
1
• ln n

1
"' steps and A{Y'J~A2• in n

2
' steps, where 

n 1 "'+n2 '<n 1+n2• 

If case (a) applies, then A{•} has fewer than m+l redexes, and by 

P[n+1,m] the proposition P[n+i,m+1l is true. If (b) applies, then 

P[n+1 1 m+1l is true if P[n;jl is true (where j is the number of redexes 

contained in A{Y'}); by hypothesis, P(n;j] is true for all j, hence 

P[n+1;n+1l is true. 

4) If for all j P[n;j] and P[n+1 ;OJ are true, then for all i P[n+1,i] is 

true. 

Proof is by induction on i. P[n+1;0] follows directly from (1); 

P[n+1;i+1] follows fran (3) and P[n+1;1]. 
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5) For every i and j, P[i;j] is true. 

proof is by induction on i. 

basis: fran (2), P[1,j] is true for all j. 

induction: Assume that P[i;j] is true for all j. By (1), P[i+1 ;O] is 

true; hence by (4), P[n+1;j] is true for all j. 

This canpletes the proof of Theorem 5.9. 

The proof of Theorem 5.9 involves a succession of steps from the expression A 

to the normal form A•, such that the result Aj of each step retains.the 

property that Aj~>A 1 • and Aj~>A2•. The moderate complexity of the proof stems 

fran the obscure senae in which each step canes •closef'• to A•; by Lemma 5.8, 

each successive step. trm Aj to Aj+l either: 

i) Reduces (by one) the number of redexes, while keeping the total number 

of steps in the contraction "sequences Aj~>A 1• and Aj~>A2• constant; .Q.C. 

ii). reduces the total rumber of cClltraction steps, while changing 

{,increasing or decreasing) the number. ot redexes by some arbitrary finite 

amount. 

The proof of Theorem 5.9 is essentially a demonstration that A• can always be 

derived fran A by such a sequence in finitely many steps. 

The generalization to arbitrary finite sets of normal f'orie t'ollows naturally: 

Corollary 5. 1 O: Let A be any expression and let A1 ••• A j be expressions in 

normal fonn such that, for each i, A~>Ai. Then there exists an 

expression A• in normal form such that A~>A• and, for each i, A•~>Ai. 

proof is by induction on j. 

basis: For j>2, the corollary is trivially true; for J=2, it is true by 

direct application of Theorem 5.9. 

induction: Assume the corollary is true for each set A1 ••• Ak containing 

fewer than j expressions. By Theorem 5.9, there is an expression A
1
2• in 

normal form such that A 1 2•~>Ar and A 1 2•~>A2 and A~>A 1 2•; by the induction 

hypothesis, we can now find an upper bound of the set A12•, A3, ••• ,Aj 
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which contains j-1 expressions; let A* be the normal form upper bound of 

this latter set. But, since A*~>A 1 2•, it follows that A*~>A 1 and· A~>A2 ; 

hence for each Ai, A*~>Ai, and A* is the required upper bound. 

The final theorem of this section establishes that, for the evaluation of any 

particular expression X{Y} (i.e., the reduction of that expression to a normal 

fonn) there exists a sufficiently good approximation Y* of Y such that Y* is 

in normal ft>nn: 

Thm 5~11: Let X{Y}~> ••• ~>X* be a contraction sequence of length n, where x• 
is in normal fonn. Then there exists an expression Y* in normal form, 

such that Y~>Y* and X{Y•}~>x•. 

proof is by induction on the length n of the contraction sequence. If n:O, 

then Y is in normal form .and is the requir(?d Y•. If nX>, we consider the 

residuals Y1 ••• Yj of Yin x1• By the induction hypothesis each Yi can be 

contracted to a normal form Y
1 
•, and the result x1 • of replacing each Yi 

in x1 by Y 1 • is such that x1 ·~>X•. Since for each i Y~>Ii*, by Corollary 

5. 1 O there is a Y* such that Y~>Y• and for each i Y*~>Yi. Then 

X{Y}~>X{Y• }~>x,~>. ~ .~>x•. 

We may speculate further on the structure of the set S of normal forms of an 

expression A. The above theorem sh:>ws that any>fini~ subset of S bas an 

upper bound in S; since • is in S, we may claill further that each finite 

subset in S has a lower bound in s. It seems likely that S fonns a lattice 

ordered by ~. totiich is to say. that each f'inite subset or S has both a least 

upper bound and a greatest lower bound. In general such a lattice of normal 

forms can be comolete only for those expressions which have normal forms in 

the lambda calculus. 

5.1.3: Relation to the Lambda Calculus 

In this section we demonstrate a sense in which the R-• theory is as powerful 

as the (unrestricted) lambda calculus;, in particular, we show that any 

expression A which has the normal form. A' in the lambda calculus has the same 
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normal fonn in R-•. 

Thm 5.12: Let A0->A 1-> ••• ->An be a sequence of beta- and delta-contractions 

in the Lambda calculus (possibly intermixed with alpha conversions), and 

let An be in normal form. Then A0~>An in R-•. 

proof is by ir¥iuction on n, the m.tmber of caitractions in the sequence 

Ao-> ••• ->An. 

basis n::O; then A0 and An are identical, and the theorem is trivially 

true. 

iruiuction: n>O; we assume then that A 1 ~>An and must show that A0~>An. We 

procede by showing that A0~>A 1 for each of the possible contraction steps 

A0->A1• If the contraction step is an alpha~ or delta- conversion, then 

the same caitraction can be performed in R-• hence A0~>A 1 ; we thus need 

only consider the case where A
0
->A

1 
by a beta cont~tion. Let P t>e the 

beta-red ex contracted in the step A
0

->A
1

; ·.then P is of the form 

((LAMBDA(X)M{X}) Y) 

and the contractum p' of P is of the form M{Y}, containing j instances 

(residuals) Y
1 
••• Y j of the argument Y. By Theorem ?. 1J each Yi may be 

contracted in R•• to a l'lOrmal form Yi•, such that A 1 tt~)A0 where A1• is 

the result of replacing each Yi by Yi•. By Corollary 5. 10 there exists 

an upper bound Y• such that Y~>Y* and, for each i, Y•~>Y1 • By 

contraction of the subexpression Y of A
0

{Y} we hav~ A0_{Y}~>A0 {Y*}; since 

Y• is in normal form, the beta caitraction of the redex p• in A0 {Y•} 

((LAHBDA(X)M{X}) Y*) 

yields a contractum M{Y•} containing j instances of Y•. But each 

instance of y• may be contracted to the corresponding Yi•, hence 

A0 {Y•}~>A 1 •. Then we have A0 {Y}~>A0 {Y•}~>A 1 •~>An' ar¥1 A0~>A0 in R-•. 

The simplest illustration of the use of •-conversion to mitigate the beta-R 

restriction involves the evaluation of the expression A given by 

A .:. ( (LAMBDA(X)3) B) 
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where 

B .=. ( (LAMBDA(H} (H H} }(LAMBDA{H} (H H)) 

:~ince B has no normal fonn in the conventional lambda calculus (or, as a 

consequence, in Either-R) the beta-redex A cannot be contracted under beta-R. 

Hence A has no normal form in Ei ther-R; in R-•, however, •~ontract ion on the 

subexpression B of A yields 

A ~ ((LAMBDA{X) 3) *) 

which may be contracted, under beta-R, to the value 3. We thus can derive the 

vah;te 3 fran the expression A, despite the restriction on beta conversion. We 

may of crurse derive other normal form values of A which involve the element 

*; these may be interpreted as "approximations" of the value of A in the sense 

that they retain partial infonnation concerning the value of A. In this light 

the expression • i ts&J.f is a particularly bad approximation of A, as it gives 

no clue about the value of A. The expression 3 {which is, significantly, 

•-.free) i.s a perfect approxima·tion of A since it contains all of the 

infonnation necessary to.derive the value of A -- i.e., A=3 in the lambda 

calculul5. 

5. 1. 4: Consistency of R-• Theories 

We ob:Jerve, at this point, that the addition of the •-conversion axiom to the 

lambda calculus does not lead to inconsistency; specifically, if X and Y are 

Lfree and X~Y in an R-• Theory, then X=Y in the corresponding Lambda 

calculus. The intuitive justification for this claim stems from the 

unidirectional nature of •-contraction - there is no corresponding abstraction 

operation. Thus if the reduction X~Y involves the •-contraction of a 

subexpression U, then U must be cancelled since Y il5 •-free. 

The consistency of the R-• Theories follows as· a special case of the 

consistency of the Either-R-* Theories, which is proved in the next chapter; 

consequently no proof is given here. 

5.2: Applications to the Lambda Calculus 
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The theorems of this chapter may provide tools of general usefulness in the 

study of the conventional lambda calculus. Suppose, for example, that neither 

of the expressions X and Y have normal forms in the beta-delta calculus, and 

that furthermore they are not interconvertible. We may still suspect, 

however, that they are equivalent in an extensional sense. In particular we 

may wish to prove that if either of Z{X} or Z{Y} has a normal form in the 

lambda calculus then Z{X}:Z{Y}. 

The medianism of •-conversion suggests a technique for constructing such 

proofs. Suppose we could show that in ft;..• the expressions X and Y have 

identical sets of normal forms. 1 From Theorem s. f1 it then follows that, for 

a.ny z and every z• in normal form, Z{X}~>z• if and only if Z{Y}~>z•. But 

Theorem 5.12 extends this extensional equivalence to the lambda calculus; 

hence for any Z and any normal form z•, Z{X}->Z• u· and only if Z{Y}->Z* where 

-> denotes lambda calculus reduction. We deduce from these observations that 

any two expressions which have interconvertible sets of normal forms are 

eqivalent in this important extensional sense. 

We may apply, for sake of illustration, the above technique to the example 

cited by Scott2 of the two fixed point operators 

Yo=-CLAMBDA{F)(Z Z)) 

and 

Y
1
:CY

0 
(LAHBDA(Y)(LAHBDA(G){G (Y G))))) 

where Z is the expression 

(LAHBDA(H){F (H H))) 

Y0 and Y1 are not interconvertible in the lambda calculus~ and neither has a 

normal fonn. Noting that Y0 contains the single redex {Z Z), the unique 

single contraction which can be nade reduces Y0 to the expression 

(LAHBDA(F)(F (Z Z))) 

1 Specifically ... we must show only that x~x• implies Y~Y·~x• and conversely, 
where x• and Y• are any normal form expressions. 
2 Scott[22] credits the example to Corrado Boehm, and acknowledges an 
unpublished proof due to David Parle that the expressions t

0 
and Y1 are 

eq Uivalent in the Scott formalism. 
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which again contains the single redex (Z Z). It becomes clear from the 

sequence of reductions that this process leads to the conclusion that the 

normal forms (in R-•) of Y
0 

are all of the form 

(LAMBDA(F)(F (F (F (F ••• (F *) )) )) ) 

and for every natural l'llmber n there is a normal form Y0•n whose body is F 

applied to • n times. 

We nCM refer to the definition of Y
1

• By Theorem 5.11, for every normal form 

Y1 ' of Y
1

{Y
0

} there is a normal form Y0• such that Y 1 {Y0•}~>Y 1 '. Hence every 

normal form of Y
1 

is a normal form of Y1 {Y0•n} for some for some n. But each 

of the latter is of the form 

(G (G (G (G ••• (G •) ••• )))} 

where G stands for the expression (LAMBDA(Y)(LAMBDA(G)(Y G)} ). But (G •) 

reduces to (LAMBDA(G) (G ( • G))) fran which,· by contraction of its •-redex, we 

arrive at Y1•1,:.(LAMBDA(G)(G •)). Then Y1•2,:.(G Y1•1) has as its maximal normal 

fonn. (LAMBDA(G)(G (G •))); and it becanes .clear .fran this informal argument 

that each R_. nonnal .Corm Y1 •n of I 1 is of the fol"ll 

(LAMBDA{G)(G (G (G (G ••• (G •) ••• ))))) 

whose body contains n applications of G. Thus each normal form derivable from 

Y0 in R-• is derivable from Y 1, and conversely. 

Now if, for some X, X{Y0}:X• in the lambda calculus where x• is in normal 

fonn, then by Theorem 5.12 X{Y0 }~X• in R-•. Then by Theorem 5.11 there is a 

nonnal fonn Y0• 0 of Y0 such. that X{Y0•n}~>X•; since Y1 has a normal form 

Y 1 •m~>Y0•n, then X{Y 1 }~>X• hence X{Y1}:X• by the consistency of R-•. An 

entirely symmetric argument shows that X{Y1}:X• implies X{Y0}:X•. 

5.3: Summry 

The medlanism of •-conversion introduced in this dlapter allows expressions to 

be a~proximated, to arbitrary accuracy, by expressions in normal form. The 

initial lll)tivation for •-conversion is the mitigation of the limitations on 

expressive power imposed by the restricted beta-conversion, but the techniques 
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of this chapter may be useful generally in the lambda calculus. 

The principal technical results of the chapter are: 

1) The introduction of • as a canonical representation of the undefined 

(nonterminating) canputation, and the axiom on star conversion asserting 

that, for every X, x~•. This axiom is motivated by the interpretation of 

~as denoting set theoretic inclusion in F•; the empty set, corresponding 

to the ll"ldefined computation •, is a subs-et or every element of F•. 

2) Theorem 5.9 and its corollary establish that for any set A
1
• ••• An• of 

normal fonns derivable from an expression A. in R-•, there exists an 

expression A• in normal form such that A~A• and A•~Ai for each i~n. 

3) Theorem 5.11 shows that if expression X{Y} is reducible to z•, a normal 

fonn in R-•, then there exists a normal form Y• such that Y~Y• and · 

X{Y• }~Z•. Informally this result assures us that' for every expression Y 

·and every context X{Y}, there is a sufficiently gOOd ttormal form 

appr<>xima tion y• of Y. The previous result (2)then· guarantees that, for 

any finite set of approximations of Y, we·ean find a normal form Y• 

which may be used in lieu of any meinber of the set. 

4) Theorem 5.12 provides the final tie to the lambda calculus, by showing 

that every normal form derivable in the l~mbda calculus is derivable in 

R-•. 

The R-• Theory is thus as powerful, in an important sense, as the lambda 

calculus w1 th tmrestricted beta conversion. Furthermore, the R-• Theories 

suggest a natural test for extensional equivalence of expressions: the 

interconvertability of normal forms. This technique is applicable to the 

lambda calculus, and the extensional equivalence of nonconvertible fixed point 

operators Y0 and Y1 is used as an illustration. 

The development of •-conversion in Chapter 5 is independent of the EITHER 

reduction of the previous chapter. The combination of the two mechanisms is 

the project of the next chapter. 
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Chapter 6: 

The Either-R-• Theories 

The desire for a syntactic basis for a language E, incorporating the EITHER 

mechanism informally described in Chapter 3, has led to the presentation (in 

Chapter 4) of the Either-R theory. It was noted that the restricted beta 

conversion of Either-R limits the usefulness of that theory since, for 

example, 1 t prohibits the expression of recursive functions. The inadequacy 

of Either-R as a basis for the language E motivated the development, in the 

last chapter, of •-conversion. The present chapter brings these efforts to 

fruition in the form of the El tber-R-• system, whloh coosistently combines 

*-conversion with &ITHER reduction and provides a satisfactory basis for a 

language E. 

Specifically, an Either-R-• theory shall c·onsist of the following axioms, each 

of lillich is presented in a previous chapter: 

aipha (Ch. 4) lnterconvertabil1ty (by renaming) of congruent expressions -­

e.g. (LAMBDA(X)X) • (LAMBDA(Y)Y); . 

beta-R (Ch. 4) lambda conversion restricted to redexes whose arguments are 

in normal fonn -- e.g. ((LAMBDA(X)X) 3)•3; 
various delta axians (Ch. 4) specifying the interpretation of primitive 

fll'lctions and constants -- e.g., (PLUS 3 5) • 8; 

epsilon (Ch. 4) contraction of E-redexes-- e.g., (EITHER A B)~B {Ch. 4); 

mY. {Ch. 4), abstraction of E-redexes -- e.g. E-(EITHER E E); 

rho (Ch. 4), distribution of function application over terms of an E-redex 

e.g. (F (EITHER A B))• (EITHER (F A)(F B)). 

sigma (Ch. 5) •-contraction -- A~* for every expresion A. 

6. 1: Consistency of Either-R-• 

The consistency of Either-R-• may be established by techniques closely 

analogous to the Either-R consistency proof. Recall that the earlier proof 

involved the notion of enclosure, and culminated in the implication of 

enclosure by~ -- i.e., X~Y in Either-R implies X encloses Y. Extension of 
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this technique to the present case requires that the mechanism of 

•-contraction be accounted for; accordingly, we extend the notion of 

enclosure by 

Defn 6.1: X .!.-encloses Y if, for each e-residue 1 Y' of Y, there exists an 

e-residue x' of X and an expression X* derived from X by •-contraction 

alone, such that X*=Y* in the lambda calculus. 

Note that we admit expressions containing the element • in the lambda 

calculus, treatine • simply as a free variable. It is clear from the above 

definition that •-enclosure is transitive, and that if X encloses Y then X 

•-encloses Y. 

6. 1 

The followi~ Lemma and its Corollary confirm that •-contrac,tion introduces no 

new equivalences in the conventional lambda calculus: 

Lemma 6.2: Let X and Y be •- and EITHER-free expressions, and let x~x• by the 

•-contraction of a subexpression U of X. If X•=Y in the .lambda calculus, 

then X:Y .. 

proof: Noting that x• contains a single • (the contractum of U), treating • 

as a variable in the lambda calculus gives us 

X:((LAMBDA(•)X•) U) 

by beta conversion. But X*=Y, hence 

X=( (LAMBDA(*)Y) U) 

and as Y is •-free the contractum of this beta-red.ex is simply Y. Hence 

X:Y. 

Corollary 6.3: If X and Y are •- and EITHER-free and x~x• by a series of 

•-contractions, then X*=Y in the lambda calculus implies X=Y. 

proof is by a simple induction on the number of •-contractions in the 

1 Recall Defn 4.7. 
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reduction sequence from X to x•. 

The above lemma and its corollary are hardly counterintuitive in light of the 

developments of Chapter 5. In particular, it is clear that any occurence of • 

in x• must be cancelled in the derivation of Y from X, since Y is •-free. 

Hence we may replace such occurences by arbitrary expressions, which are still 

cancelled in the derivation of Y; the choice of the homologous subexpressions 

of X yields X=Y. 

The consistency proof for Either-R-• follows the format of the corresponding 

proof for Either-R, except that the enclosure relation in the latter proof is 

extended to •-enclosure in the f'onner. The basis of this extension is given 

by 

Le11111e 6.4: Let X~Y be a single reduction step in Either-R-•. Then X 

•-encloses Y. 

proof: Lemma 4.13 estaj>lishes the lemma for the reductions allowed in 

Either-R; hence we need consider only the case of a •-contraction. Let 

U be the contracted subexpression of X. For each e-residue Y' of Y, 

there is a corresponding e-residue X' of X such that either x· and Y' are 

identical or Y' is the result of the •-contraction of an e-residue u· of 

U in X'. Hence X',)y' by *-contraction, and X *-encloses Y. 

The follow!~ theorem is the Either-R-• analogy of Theorem 4.15: 

Thm 6.5: Let X and Y be expressions containing no occurrences of EITHER or •, 

and let X,)Y in Eitber-R-•. Then X=Y in the la.bda calculus. 

proof: By Lemma 6.4 and the transitivity of •-enclosure, X •-encloses Y. 

Since each of the expressions X and Y is EITHER-free, each expression is 

its own unique e-residue, and X,)X*=Y where X,)X• by •-contraction alone. 

By Corollary 6.3, X=Y in th~ lambda calculus. 

Thus the consistency of Either-R-* follows from.the consistency of the lambda . 
calculus. 
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6.2: Relation of * to EITHER 

We have al ready noted that the mechanism of •-contraction leads to the 

interpretation of each expression A as the upper bound, in the sense of ~, of 

a family of expressions derivable from A. To formalize the relation between 

such a family of expressions, we introduce the terminology of 

Defn 6.6: Expressions X and Y are consistent in a theory T if and only if 

there is an expression Z such that both Z~X and Z~Y in T. 

Then the R-• theories are partitioned by the consistency relation into 

equivalence ciasses, of Wiich there are infinitely mny (since there are 

infinitely many mutually incongruent normal forms). Then the characteristic 

of R-• which is established by Corollary 5. 10 is that any finit.e set of 

consistent expressions in normal form has an upper bound which is also in 

nonaa 1 form. 

We note that in R-• the > ordering on the set of expressions derivable from an 

expression A is, in general, nontrivial. Unless A.is the element • the upper 

bound of the set, A, is distinct from the lower boun4 •; furthermore there may 

be infinitely many expressions A 1~A2> ••• in the set such that for no J>i is 

A j~Ai. This is certainly not the case in the conventiol}al lambda calculus, in 

which consistency implies interconvertibility and hence equivalence. What the 

mechanism of •-contraction has added to the lambda calculus is a method of 

deriving fran an expression A an approximation A• to A 'Which is strictly 

weaker in the sense of >. We may. then view the • mechanism as a method of 

introducing new expressions which ~e weaker than the conventional lambda 

calculus expressions, as each expression in R-• is derivable from a •-free 

expression. 

In this light we must regard the EITHER construct as a mechanism for 

introducing stronger expressions into the lambda calculus. While R-• (and for 

that DBtter the conventional lambda calculus} contain upper bounds only for 

consistent sets of expressions, we can with EITHER represent t~e upper bounds 

of arbitrary (enumerable} sets of expressions. 1 Observe further that, for 

l 
Or, equivalently, we may say that in the Either theories, every set of 

expressions is consistent. 
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arbitrary expressions X and Y, the expression (EITHER X Y) is the least upper 

bound of X and Y since by Theo•"'em 4.4, Z~X and Z~Y implies Z~(EITHER X Y). 

This suggests that the ordering of Either-R-• expressions by ~ forms a 

canplete lattice. 

6.3: Evaluators for E 

As we have noted, interpreters for languages supporting the EITHER construct 

require a slightly different structure from our previous examples: the 

reducibility of expressions to multiple values sugaests that an evaluator for 

E should erumerate the values of the input expression. Accordingly, we 

formulate the evaluator as a function E of 2 arguments, an expression X to be 

evaluated and a rumeric index j specifying which value is to be returned. The 

evaluator is constructed such that, for each X and j, E[X;j] is an expression 

x· in normal form such that X~>X' in Either-tt••. The value of E[X;j] is, in 

general, not defined for all values of j; it may be assumed .in particular 

that E[X;j] is l.lldefined for those cases ,of X and j not rep~esented in the 

algorithm presented infonnally below. We again assume the existence of an 

invertable pairing function, and use here the notation <n;m> to denote that 

natural number which uniquely encodes the ordered pair of natural numbers 

(n,m). We make the further assumption that for non and m is <n;m><2. 

E[X;j] = 
if j=O then •; 

1 
if X is atomic and j:1 then X; 

if Xis of the form (LAMBDA(Y)M) then (LAMBDA(Y)E(M~n]); 

if Xis of the form {EITHER AB) and J=<l;n> then E[A;n]; 

if X is of the form (EITHER A B) and j:<2;n> then E[B;n]; 

if X is of the form (A B) and j =<<m;n>;p> then 

APPLY[E[A;m];E[B;n];p]; 

where the algorithm· for APPLY is given informlly by 

APPLY[F; X;j] = 

1 
Recall that the atomic expressions are identifiers (including primitive 

flmction symbols and variables) and numeric constants. 
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if F is of the form (LAMBDA(Y)M) then E[S[X;Y;M];j]; 

if (F X) is a delta-redex and j=1 then F[X]; 

else if j=1 then (F X); 

6.3 

We note that E[X;j] is in normal form where it exists, and the value E[X;j] is 

in each case the result of an Either-R-• contraction sequence on X. Although 

we don't claim that the values E[X ;j] of X are ordered by ~ for successively 

higher values of j, the index j specifies, roughly, which of the 

approximations of X is to be returned. 

We may envision implementations of the E interpreter which make use of massive 

para! lellsm to compute simultaneously the values of (F X) for many different 

approximations of X; such use of redundant canputation may serve to minimize 

the real time required to compute an acceptable value for X. Such an 

implementation follows, roughly, the spirit of fast adder circuitry which 

canput-es redundantly· the high order portion of a sum simultaneously with the 

low order portion, and then selects the correct high order portion on the · ·· 

basis of some intermediate carry~ · These implementational issues are largely 

ignored in the present work, but present some intriguing pos1'ibili ties for 

future re5earch. 

6.4: Summary 

The Ei ther-R-• Theory may be used as the semantic basis for a language, E, 

which so Ives the specific expressibility problem demonstrated in Chapter 4. 

The evaluation of expressions in E lends itself naturally to the use of 

multiprocessing techniques litich tend to minimize the total real time 

necessary to rel!ze an acceptable evaluation of an expression {F X) by the 

simultaneous application of F to one approximation of X while computing a 

better approximation. While the implementation details are not pursued here, 

we feel that current technological developments make this area worthy of 

further study. 
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Chapter 7: 

The Either-K Theories 

The inconsistency of EITHER distribution (Axian rho) with the unrestricted 

beta conversion of the lambda calculus has motivated the restricted beta-R 

conversion of the systems presented thus far. This chapter explores an 

alternative formulation, in which EITHER distributivity is sacrificed in order 

to accanlll)date the conventional (unrestricted) beta conversion. 

The Either-K theories include the axioms alpha, delta, epsilon, mu, and the 

(unrestricted) beta axiom of the lambda calculi: 

Axian ~: Let Ebe an expression of the form ((LAMBDAC.1).~)~J. Then E•E', 

where E • is the contractum S[g;.1.;R.l • 1 . 

Since Ei ther-K presel""les the axians of th-e lambda calculi~ it is clear that 

the equivalence • in Either-K is a proper extension of the lambda calculus 

equivalence =· In this sense the Either-K calculi are closer to the 

conventional lambda calculi than the Eitber-R-• theories. 

There is, however, a fundamental sense in ~ich Either-K is .a more radical 

departure fran the lambd8 calculi than is Either ... R,.•. In the latter theories 

ftnctions are ultimately applied only to normal form operands whose semantics 

are ttx>se of the lambda calculi. The ability, in Either-K, to apply functions 

to multivalued expressions (such as E-re.iexes) requires that we reinterpret 

the semantics of each fll'l~ti~n relative to these new elements of its domain. 

7. 1: K-abs traction 

By the axian J2W. of the lambda calculus, ~qe expressions 

M 

arxl 

((LAMBDA(x) M) A) 

are equivalent when A is an arbitrary expression and M contains no free 

S is the lambda calculus substitution fl.l'lction given in Defn 2. 6. 
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occurrences of the variable x. This fact is consistent with the observation 

that the bound variable, x, is ignored in the body of the function applied to 

A; hence the value of the application is independent of the value of the 

argument A. Despite the intuitive satisfaction with which we accept the above 

equivalence, the presence of functions which ignore their arguments 

canplicates the proof of nany otherwise straightforward results in the lambda 

calculus. Indeed, Church has argued against the inclusion of such functions 

in his theories, fearing at one time that they led to inconsistencies. 1 

The task of proving the consistency of the E~ther-~ theories, to be attacked 

presently, is likewise complicated by the inclusion of functions which ignore 

their arguments. The def'initions and results or this section provide 'the 

mechanism for dealing with the formation of such t"urtotions in later proofs. 

We begin w1 th 

Defn 7. 1: A K-redex is an expression of the form 

((L.AMBDA(x)M) A) 

where A is any expression and M is an expression not containing free 

occurrences of the variable x. 

Defn 7.2: A K-abstraction is a reduction step2 conaisting of the replacement 

of a subexprel!sion M by a K-redex of the form 

((LAMBDA(x)M) A) 

where A is any expression and x is a variable not occurring free in H. 

We now wish to show that the K~abstractions in a reduction sequence can be 

postponed to the end of the sequence. We introduce a term to describe 

reduction sequences ~ose K-abstractions follow all other reductions: 

Defn 7.3: A reduction sequence R is K-normal if no K-abstraction in R 

1 For discussion and historical insight, see Curry[12], particularly the 
canment at the end of Ch. 3. 
2 r ecal 1 De fn .II. 1 • 
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precedes a reduction step which is not a K-abstraction. 

Thus a reduction sequence x0~x,~ ... ~Xn is K_normal if there is an i, where 

O~i~n, such that the reductions x0~ ••• Xi are not K-abstractions and the 

reductions X.~ ••• ~X are only K-abstractions. We wish to show that, for every 
1 n 

reduction sequence x0~ ••• ~Xn' there exists a K-normal reduction sequence from 

x0 to Xn. We begin with sequences of length 1: 

Thm 7.4: Let x0~x 1 ~x2 be a two-step reduction sequence from x0 to x2 , where 

the reduction step x0~x 1 is a K-abstraction and the reduction step x 1 ~x2 
is not a K-abstraction. Then there is a K-normal reduction sequence from 

x0 to x2~ containing at most one reduction step which is not a " 

K-abs tract ion. 

proof: Let U be the subexpression of x
0 

which is replaced in the reduction 

step x0~x 1 • Then U is replaced in this 'Step by U', an expression of the 

form 

((LAHBDA(y)U) A) 

where y is a variable not occurring free in u. We exhaustively examine 

classes of the reduction step x 1 ~x2 : 

Case l: The reduction step modifies only the subexpressicm A of U'; let U 

becane A' in x2• The K-normal sequence from x0 to X2 is then the single 

K-abstraction replacing U by 

Case 2: The reduction step modifies only the subexpression U of u'; then U 

becanes W in x2• The K-normal sequence from x0 to x2 is then: 

a) Replace U in x0 by W, yielding x
0
'; 

b) Replace Win X0 ' by the K-redex 

((LAMBDA(y)W) A) 

yielding x2• 

Case 3: The expressio~ U' in x1 is replaced by U by beta reduction. Then 

x0 and x2 are identical expressions, and the empty reduction sequence 
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yields x2 fran X0• 

Case 4: 1be reduction step replaces some subexpression V of x1 by the 

expression v·, where Vis not a subexpression of U' and u' is not a 

subexpression of V. The K-normal sequence from X
0 

to x
2 

is then 

a) The replacement of Vin x
0 

by V', yielding x
0
'; 

b) The replacement of u in xo' by u', yielding x2. 

Case 5: The expression U' is replaced by the expression 

(EITHER U' U') 

The K-normal sequence from x
0 

to x
2 

is tben 

a) The replacement of U in x
0 

by (EITHER U U), yielding x0 '; 

7.1 

b) The replacement of (EITHER U U) in x
0

' by (EITHER U' U') through two 

consecutive K-abl!ltractions. 

Case 6: 1be expression U' is replaced by the expression 

(EITHER ( (LAHBDA(y)U) A
1

) ({LAMBDA(y)U) A2) 

by Axian rho. The K-normal sequence frm X
0 

to x
2 

is then 

a) The replacement Qf U in x
0 

by (EITHER U U), yi.elding x0 '; 

b) The replacement of (EITHER U U) in 10 ' by 

(EITHER ((LAHBDA(y)U) A1)((LAMBDA(y)U) A2)) 

through two consecutive K-abstractions. 

Case 7: 1be subexpression u' is replaced by ae expression W of the form 

((LAMBDA(z)U) A) 

derived ft-an U' by alpha conversion. Tflen the variable z does not occur 

· ft-ee in U, and x0 •Y be reduced to x2 by a ..ing,\e K .... traction. 

Case 8: Some subexpression V containing U' is replaced by an expression 

V'. Then one of the following applies: 

Sa) V' is derived from V by alpha con,versj.on •. Then we may apply that 

alpha-:conversion to x0 , yielding x0 ', and follow with the 

K-abstraction from X0 ' to X2• 

8b) V' contains n occurrences of U', where n is zero or greater. Then 

there is a reduction ~ the same type from:· x0 to· X0 ', where x0 ' is 

identical to x2 except for the n occurrences of U in x0 ' corresponding 

to n occurr::ences of U' in x2• Our K-normal sequence from x0 to x2 
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consists of the reduction of x0 to x0 • followed by n K-abstractions 

replacing the occurrences of U by u·. 

This list of cases is exhaustive, canpleting the proof. 

Theorem 7.4 shows that every two-step sequence of reductions is equivalent to 

some K-nonnal reduction sequence. The generalization of this result to 

sequences of n reductions is canplicated by the fact that the K-normal 

sequence guaranteed by Theorem 7.4 may be of arbitrary length, th.ls ruling out 

a simple induction on the length n of the reduction sequence. 

Lemma 7.5: Let R be a reduction sequence trom. x
0 

to 1
0 

containing exactly 1 

reduction step wich is not a IC-abstraction. lben there: is' a IC-normal 

reduction sequence fr·<lll I-0 to In. 

proof: by induction on the length n of ~tbe reduction sequence R. 

basis: Trivially true for n<2; .. for n=2, guaranteed by Theorem 7.4. 

induction: Let x0~x 1 ~ ••• ~X0 be the reduction sequence R. If the step 

x0>x
1 

is not a IC-abstraction, then R ls IC-normal; hence we ·may assume 

that x
0

>X
1
· ~s a K-abstraction. Then a single step of the subsequence 

x
1
> ••• ~Xn is not a IC-abstraction; by the inductive hypothesis, there is a 

K-nonnal reduction sequence. x 1 ~Y0~Y 1 ~ ••• ~X0 of which only the reduction 

·. step x1~Y0 may be other than a t-abstract.ion. But by 'Theorem 7 ~4, there 

ls a K-nonnal sequence I0>ZO~ ••• ~Y0 equivalent to the sequence X0>X 1~Y0 ; 

thus the reduction sequence x0>ZO> ••• ~Y0> ••• ~X8 is IC-normal fromx0 to In. 

Defn 7 .6: The K-index of a redu-0tlon sequence R is the number of 

non-~-abstractlon steps in R which follow the n.rst I-abstraction in R. 

If ·R contains no K-abstractlons, then the IC-index of R is zero. 

Note that the K-index of a reduction sequence R is zero if and only if R is 

K-nonnal. We shall base the induction in the proof or the next theorem on the 

K-index of the reduction sequence to which it is applied. 



-106-

Thm 7. 7: Let R be a reduction sequence fran x0 to Xn. Then there is a 

K-normal reduction sequence fran x
0 

to Xn. 

proof is by induction on the K-index of R. 

basis: Ir the K-index or R is zero, then R is It-normal. 

7.1 

induction: The K-index n of R is greater than zero. Let x0~~ •• ~Xn denote 

R, and le_t Xi ~Xi+t be the first K-abstraction in R. Let Xj~xj+1 be the 

first reduction step following x1~x1•1 in R which is not. a K-abstraction; 

the existence of such a j is assured by the I-index of R. Then the 

subsequence Xi~Xi+ 1 ~ ••• ~Xj~Xj+i of R contains a single step which is not 

a K-ab&traction; by Leam 7.S there is a 1-nof'M:l sequence 

Xi~Y0~ ••• ~Xj+ 1 frca Xi to Xj+1 •. Then tbe sequence R .. given by 

x0~ ••• ~xi~Y0~ ••• ~xj+1-~ ••• xn has a K-index ot n~t. Sy the induction 

hypothesis, there is a K-no.rmal sequence frat x
1 

to X
8

• 

It follows ~an Theorem 1.1 that eYery reduction sequence my be reordered in 

such a way that every K-abstraction follows everJ reduct.ion step which is not 

a K-abstraction. Curry[ 12] refers to expres~~pns a~ t,i.ct.1ki_S?Uf if they ap,pear 

as the arguments of K-redexes; hence A is a fictitiws s1i1bex1>ression of B 1.f A 

is cancelled in the evaluation pf B. Theorem 7.7 aNert.s that tbe 

introduction of fictitious subexpressions can be postponed to the end of a 

reduction sequence. Consider the f'ollowing expr'essions: 

Z ..:. (LAHBl>A(X}3) 

A ..:. ((LAMBDA(H)(H H))(LAMBDA(H) (H H)) 

I ..:. (LAMBDA(X)X) 

Then the reduction sequence 

3 ~ (Z A) ~ (I (Z A)) 

is not K-normal, since the K-abstraction 3~(Z A) precedes the b~ta abstraction 

(Z A)~(I (Z A)). We nay, oowever, reorder the sequence so tl;lat the fictitious 

subexpression A is introduced in the last reduction step; the resulting 

reduction sequence 

3 ~ (I 3) ~ (I (Z A)) 

i s K-n orma 1. 
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7.2: Consistency of Either-K 'lbeories 

It was noted, following the proof of the consistency of the Either-R theories, 

that the technique used there was inapplicable to the Either-K axioms since 

unrestricted beta conversion does not preserve the enclosure relation. We 

avoid this difficulty in the corresponding proof for the Ei ther-K theories by 

arrangi~ the reduction sequence of an EITHER-free expression so as to ensure 

that arguments in beta contractions are_ unitary. Since the Either-K reduction 

sequence of an EITHER-free expression can introduce non-unitary subexpressions 

only through K-abstracti-On, the result of the preceding section provides a 

critical step in the present proof. 

We begin by distinguishing expressions containing only un·itary subexpressions: 

Defn 7 .8: An expression X is ~ if every subexpression .of X, includicng X 

itself, is tmitary. 

Note in particular that every EITHER-free expression ls pure. We now precede 

to the major task of this section, which ls the proof that the reductions 

permitted by our axians preserve purity or expressions. We· begin wl th the 

case of beta-contractions: 

Lemma 7.9: Let Y be EITHER-free and let X be a pure beta-redex ot' the form 

((LAMBDA(y)B) A) 

such that for each e-res!due X' of x~ X'=Y. If z is the result o~ lambda 

conversion on X {le, Z is the result of substituting A for each free y in 

B), then for elfery e-residue Z' of Z, Z '.=I. 

proof: Let z' be an e-residue of Z. Then z' contains zero or more 

occurrences of A1, A2, ••• ,An where each Ai is an e-residue of A. By 

the purity of X, A is unitary, hence each A
1 

is convertible to A1• Thus 

Z'=Z'' where z~' is the result of lambda conversion on 

((LAMBDA(y)B') A1) 

where B' is some e-residue of B. Hence z"'=Y, and Z'=Y. 
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Lemma 7.10: Let X, Y, z, and z' be as in Lemma 7.9, above. Then Z is pure. 

proof: Let U be an arbitrary subexpression of Z, and let W be the 

corresponding subexpression of B. If W contains no occurrences of y 

which are free with respect to X, then Wand U are identical, hence U is 

unitary by the purity of X. If W contains such occurrences of y, then U 

is the result of lambda conversion on 

({LAMBDl(y)W) l) 

and, by Lemma 7 .9, U is unitary. 

We next stx>w that beta abstractions preserve purity, so long as they are not 

K-abstractions: 

Lemma 7. 11: Let Z be a ptre expression containing 1 or more occurrences of 

the subexpression l. Let W be a beta-redex of the form 

((LAMBDA(Y)B) l) 

such that the contractum of W is z. Then W is pure and, for every 

e-residue w· of W there exists an e-residue z• of Z such that W'=Z'. 

proof: Since A is a subexpression of the pure expression Z, A is unitary; 

let thee-residues 1 1 ·, 12 ·, ••• Ak. of A each be convertible to A' in the 

lambda calculus. For each e-residue B' of B there ts a corresponding 

e-residue z• of Z, such that z' contains some Aj' in place of each free 

occurrence of Y in B; hence Z '=S[l' ;y;B' ]. Each ~residue w· is of the 

form ((LAi'MBDli'(Y)B')A1 ') where B' is an e-residue of B; but then w· is 
convertible to S[l • ;y;B' ]=Z •• Thus each e-residue W' of W is convertible 

to an e-residue z' of z. Noting that homologous subexpressions B1 and Z1 

of Band Z, respectively, are either identical or related by 

Z1=S[A';Y;B1], we deduce by the above argument and the purity of Z that B 

is ptre. Hence W is pure. 

Note that Lemma 7.11 fails to tx>ld for K-abstractions; consider, for example, 

the K-abstraction 
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M~((LAMBDA(X)M)(EITHER 2 3)) 

where M contains no free occurrences of the variable X. Clearly the 

abstraction of M is impure regardless of the purity of M. We now present the 

principal result of this section, from which the consistency of the Either-R 

axians fo !lows directly: 

Lemma 7.12: Let X~Y be a single reduction step other than a K-abstraction in 

Either-K, and let X be pure. Then Y is pure and X encloses Y. 

proof: The cases where X~Y is a beta conversion follow directly from Lemmas 

7.9, 7.10, and 7.11; and if the step is an alpha conversi-0n, the 

e-residues of Y are clearly congruent to the e-residues of X, and Y is 

pure. If X~Y is a delta conversion then both X and Y are EITHER-free and 

the lemma is trivially true. If X~Y is an· EITHER-conversion in either 

direction, the purity of Y f-0llows frr·m the purity of X and the 

e-residues of X and Y are identical. 

The consistency of the Either-K theories is presented as 

• 
Thm 7.13: Let X and Y be EITHER-free expressions, and let X~Y in Either-K. 

Then X=Y in the lambda calculus. 

proof: Fran Theorem 7. 7, we may assume that there is a K-normal reduction 

sequence from X to Y; let X~ ••• ~Xi~y0~ ••• ~Y be such a sequence, where the 

subseque_nce X~ ••• ~Y0 contains no K-abstractions and Y0~ ••• ~Y contains 

only K-abstractions. Then Y0 must be EITHER-free, since each of the 

K-abstractions Yi~Yi+ 1 can only increase the number of EITHER redexes, 

and Y is EITHER-free. Y0:Y in the lambda calculus since each of the 

conversions Y0~ ••• ~Y is a valid beta conversion. By Lemma 7.12, X must 

enclose Y0 since X is pure; but each of these expressions is EITHER-free 

and hence is its own e-residue. Thus X=Yo=Y. 

Cor.ollary 7. 14: Let X and Y be EITHER-free expressions, and let X•Y in 

Either-K. Tnen X=Y in the lambda calculus. 
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proof: Directly fran Corollary 7.13. 

1.3: Functional Domains of Either-K 

The semantics of the Either-I Theories bear a superficial similarity to those 

of the corresponding Either-R-• Theories: in each case a functional domain F 

of the lambda calculus is extended to a domain F* whose elements are 

erumerable subS'ets of F. The question of restrictions on beta conversion 

seems, at first glance, to be an issue of evaluation order whose semantic 

ramifications parallel, say, those of the applicative/normal order 

distinction. While this analogy can be defended·, as it has be.en in earlier 

sections of this thesis, tl»re is evidence suggesting that the distinction 

between the Either-R and Either-K semantics is or a rather lll)l'e fundamental 

nature. 

The distributivity of function application over EITHER terms, sanc.tioned in 

the Ei ther-R Theories by Axiom rho, constitutes a limitation on the expressive 

power of languages built on these theories. Conaider, for example, the 

function f_ Yiose informal definition is 

f[x] = x+x; 

which canputes, in the· lambda calculus, a numeric value which is twice the 

value of its argument x. Our experience with conventional applicative 

languages reinforces an intuitive expectation that f will have only even 

numbers in its range (assuming that the domain of f is the set of natural 

numbers). The natural extension or our intuition to the Ei ther-R Theories is 

consistent with the range of f there,. containing enumerable sets of even 

numbers. In the Either-K Theories, however, we must realign our intuition. 

The application of f to the argument either[2;3J, for example, is reducible in 

Either-K to any of the numbers in {4,5,6} rather than the {4,6} result of 

Either-R. Thus although the semantics of the application of functions to 

single-valued arguments remains consistent with the lambda calculus, the 

behavior of fll'lctions with multivalued arguments differs between the Either-R 

and Ei ther-K systems. 
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A more bizarre demonstration of this difference is the function g defined 

info nna lly by 

g(x] = if x>x then 1; 

else 0; 

which, in the lambda and Either-R calculi is equivalent to the single argument 

constant function wpich always returns zero. Yet the Either-K reduction of 

g[either[1;2]] yields the values {0,1}, even though g[1] and g[2] each 

evaluate to {O}. Since the behavior of g in Either-K violates the 

distributivity axian of the Either-R Theories, we clearly cannot express in 

these theories a function with the properties of g; yet g appears to be a 

canputable function definable on the domain F*. 

7. 4: Summary 

This chapter presents a consistent theory which combines EITHER conversion 

with unrestricted beta conversion. This combination requires 1) that we 

abandon the distributivity of functions over EITHER terms, and 2) that we 

reinterpret the semantics of EITHER. The latter reinterpretation is only 

hinted at in this chapter, and we confess that the semantics of the Either-K 

theories require further study. 
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Chapter 8: 

Summary and Conclusions 

There has been a definite tendency, in the course of the work reported here, 

to provide questions much 11Dre frequently than answers. We regard this 

situation, perhaps'defensively, as a healthy attribute of research in a field 

as theoretically immature &"S the science of programming languages. 

8. l: Summary 

The general topic of this thesis is the correspondence between the syntactic 

mechanism of an interpreter and the semantic structure of the language it 

interprets. The restriction of this study to the class of applicative 

languages is defended, in Chapter 1, on the grounds that 

i) Interpretive·mechanism for applicativ~ languages is simple, since such 

ccmplications as assignment, side effects, and transfers of control are 

avoided; 

ii) The semantics of applicative languages are independent of the notion of 

time; 

iii) The theories of mathematical functions may serve as a semantic basis 

for appllcative·languages. 

Expressions of an applicative language are viewed as representations of 

objects in an abstract semantic functional domain containing functions and 

constants, and expressions are semantically equivalent if they represent the 

same abstract element. 

The stack- and tree-environment interpreters presented in Chapter 2 illustrate 

semantic llmi tations imposed by typical compromises between efficiency and 
1 

ex.pressive ·power. The defect of S must 'be viewed as an interpreter "bug" if 

·we take mathematical functions as a semantic basis, since certain expressions 

are interpreted by S in a manner inconsistent with the behavior of functions. 

The T interpreter of Chapter 2 relates the issue of evaluation order to the 

expressibility of certain functions. The applicative brder evaluation of T, 

1 i.e., the FUNARG problem. 



- . ..:.-·- -

-114- 8. 1 

in which arguments to a ft11ction are evaluated before the application of the 

function, is seen to lead to the inexpressibility of functions which ignore 

the value of their arguments. This motivates a preference for the normal 

order evaluation of the N model, in which such functions are expressible. !pe 

demqnstration in chapter 2 of a functional domain F of N assures us that every. 

expression is interpreted by N in a way that is consistent with our functional 

semantics; it does not, tx>wever, establish that every valid semantic element 

(e.g., every canputable function defined on the semantic domain of N) is 

expressible in N. 

Chapter 3 demonstrates a flllction, WHICHFF, which despite its computability is 

expressible neither in N nor in the lambda calculus. The expressibility of 

WHICHFF seems to require a mechanism analogous to multipr90essing,, and two · 

therapeutic language extensions are considered: 

i) A "codirg" primitive which allows a program access to the representation 

of a fmction supplied as its argument; and 

ii) A irimitive EITHER whose interpretation involves the dovetailed 

evaluation of its arguments. 

The admission of coding essentially abandons all semantic constraints and 

allows the programmer to reinterpret expressions as he wish~s; we thus discard 

this alternative as semantic anarchy. The EITHER primitive may be justified 

in terms of applicative semantics, however, by the expansion of the semantic 

danain F into the power set F•, each of whose eleme'rits is a subset of F. Thus 

once EiTHER is introduced we must semantically associate each expression X 

with an erumerable set of abstract values or •me·anings• of X. Such a 

multivalued semantic domain is necessary to reconcile the fun'Ction WHICHFF 

with applicative language semantics. 

The semantic domain F* 111>tivated in Chapter 3 is suggestive of a canplete 

lattice ordered by set theoretic inclusion. The undefin~d (or nonterminating) 

canputation is naturally associated with the empty set in F*, and that 

expression TOP whose values include the entire domain of the lambda calculus 

corresponds to the max1-.1 element of F•. The semantic ,elem,nt associated 

with the expression either[a;b] becanes the union of the respective F* 

elements corresponding to the expressions a and b. 
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In Chapter 4 our attention returns to the subject of interpretive mechanisms. 

In particular we desire a formalism for syntactic manipulation of expressions 

in a language including EITHER, reflecting the insight gained through informal 

scrutiny of the structure of F* in Chapter 3. The formalisms introduced in 

Chapters 4-7 are systems of conversion axioms, similar to (and based on) the 

lambda calculus; each system (or theory) defines an ordering, >, corresponding 

to inclusion in F* -- thus, for example, eitber[a;b]>a and either[a;b]>b in 

each system. 

A canplication arising in Chapter 4 involves the reconciliation of the beta 

reduction 1 of the lambda calculus with the intuitively motivated requirement 

that f\llctions be distributive over EITHER terms -- i.e., that f[either[a;b]] 

be equivalent to either[f(a]; f[b]). The EITHER-R system presented in Chapter 

4 resolves this difficulty by restricting beta conversion to arguments which 

are reduced to normal form; while consistent, the resulting theory is too weak 

to be useful. 

The syntacti~ mechanism of •-conversion, presented in Chapter 5, solves this 

problem of Either-R. Chapter 5 introduces the expression * as a canonical 

(normal form) representation of the undefined computation, and extends the 

ordering > so that the syntactic significance of * CA>* for every expression 

A) reflects the semantic significance of the undefined computation (the empty 

set is a subset of every element of F* ). The use of •-reduction allows every 

expression, including the single-valued expressions of the conventional lambda 

calculus, to be reduced to multiple normal forms. The R-* :theory developed in 

Chapter 5 reinforces an interpretation of the normal forms derivable from an 

expression X as aoproximations to X, and shows that for any context A{X} 

havi~ normal form value A' there exists a sufficiently good (normal form) 

approximation X* of X such that A{X*} also has-the value A~. This result has 

major semantic consequences; in particular, it implies that meaning of an 

expression X is completely characterized by the set of normal forms derivable 

(in.R-*) from X. Moreover the result is shown to carry over to the 

conventional lambda calculus, since every normal form derivable in the lambda 

calculus is derivable in R-*. The extensional semantic equivalence relation 

1 Informally, beta· reduction is the application of a lambda expression 
(user~defined f1.11ction) by substitution of its argument for free occurences of 
the bound variable in the body of the lambda expression. 

,. 
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suggested by these findings, namely the interconvertability of normal forms 

derivable in R-•, is demonstrated by showing the equivalence of 

non-interconvertable expressions for the fixed point op~rator Y. 

8. 1 

The mechanisms of •-conversion and EITHER-reduction are combined, in Chapter 

6, to yield the Either-R-* system. The respective functions of the two 

mechanisms are, in a sense, complementary; roughly speaking EITHER allows 

expressions to be combined to make "stronger" expressions while •-conversion 

allows expressions to be resolved into weaker component expressions. The 

Either-R-* system is consistent, retains the power of the lambda calculus, and 

interprets EITHER according to the semantic notions of Chapter 3. We thus 

view Either-R-* as a practical syntactic basis for the construction .of for 

interpreters of languages based on multivalued semantic do~ins; such an 

interpreter, E, is presented at the end of ·chapter 6. 

Chapter 7 explores an alternative resolution of the conflict between 

unrestricted beta conversion and the distributivity of functions over EITHER 

terms. The Either-K system presented in that chapter sacrifices such 

distributivity in order to allow the unrestricted beta conversion of the 

lambda calculus. While this combination results in a consistent theory {as 

demonstrated in Chapter 7) it leads to a semantic structure which is 

fundamentally different fran that of the Either-R theories, in particular 

regarding the application of functions to multivalued arguments. 

8.2: Conclusions 

The study of applicative languages from the complementary viewpoints of 

interpretive and semantic structure leads synergistically, we feel, to a new 

insight in each area. We have repeatedly found the syntactic mechanisms and 

semantic structures to be mutually illuminating, and view this dual 

perspective as a principal influence on the direction and motivation of this 

thesis. 

The following are viewed as the principal results of this thesis: 

1) The 11Dtivation and presentation of an applicative model of 

multiprocessing. The applicative approach to this mechanism has certain 
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technical advantages over conventional formulations; notable among these 

is the complete irrelevance of time as a parameter of language semantics. 

The corollary disadvantage of the applicative model ls its uselessness in 

the study of time dependent implementation considerations -- such as 

scheduling, deadlocks, and synchrony of processes. 

2) The formulation of the semantic domain F* for multivalued applicative 

languages. We find particularly interesting the potential extension of 

the Scott formalism which F* suggests: we have added$ to the Scott 

domain, tmique upper bounds of arbitrary sets of semantically distinct 

elements. The lack of such upper bounds in the Scott model has been 

conspicuous, and the EITHER construct presented here seems to provide a 

natural interpretation for them. 

3) The mechanism of •-conversion and the results relating it to the 

conventiona1·1ambda calculus. These results augment the lambda calculus 

with a syntactic substructure (i.e., t~e ordering under~) which bears 

close analogy to the semantic structure developed by Scott. In addition, 

•-conversion provides a concrete (syntactic) relation of semantic 

equivalence which may illuminate the relationship between lambda calculus 

expressions having no normal forms. 

4) The presentation of consistent theories of EITHER conversion. The 

analyses of these systems is by no means exhaustive; we have not shown, 

for example, that no axiom is derivable from the remaining axioms. The 

theories do, however, provide sufficiently powerful syntactic mechanism 

that interpreters may realistically be based upon them. 

8~3: Directions of Future Research 

We recogniz~ that this section constitute~ fertile grounds for an essay strewn 

with universal quantifiers. Restricting our attention to specific questions 

lef.t unanswered by this work, we find most demanding of further attention: 

· 1) .The relative expressive power of EITHER-augmented versus CODE-augmented 

languages. .we conjecture that every computable function defined on the 

single-valueq domain of the lambda calculus is expressible in the 

language E, and have in fact spent considerable effort in trying 
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(unsuccessfully) to prove this conjecture. The discovery of computable 

ft.nctions expressible (with coding) in C but inexpressible (with EITHER) 

in E would be counterintuitive and somewhat depressing. 

2) The semantics and expressive power of languages based on the Either-K 

Theories. The presence of functions which compute different results for 

a multivalued argument X than for singlevalued components of X raises new 

fundamental questions: what is a computable ftmction on F•? Are the 

Either-K Theories functionally complete? Ir not (and we are pessimistic 

on that issue) which functions are not exprestsible in Either-K?· 

3) There appears to be a great deal of room for further development of the 

theories of EITHER conversion. The extension of these theories to allow 

eta reduction seems feasible. Further extensions may make the 

extensional relation of semantic equivalence tractable by syntactic means 

alone, e.g. by axiomatically asserting in Either-R-• the equivalence of 

expressions whose normal forms are interconvertable. 

4) The area of interpretive mechanisms for EITHER-based languages has some 

interesting possibilities. The techniques of caaputational complex! ty 

studies, for example, might yield some quantitative bounds on the 

ccmputation time necessary for the evaluation of classes of applicative 

expressions. As the cost of computation power continues to plummet, 

methods for making use of massive parallelism becomes a practical as well 

as academic interest. 

5) The relationship between the mechanisms of EITHER- and •-conversion and 

the semantic constructions of Scott demand more serious attention than 

the informal parallels drawn here. Much ~ Scott's important work seem5 

to bear rather directly on the systems presented here, and we recognize 

that too ll ttle advantage has been taken of this resource. 

It must finally be acknowledged that our quest for a functionally complete 

language -- one whose domain D contains every computable function defined on D 

-- has not been an unqualified success. The lambda calculus, whose functional 

ccmpleteness was suspect, was scrutinized and found to be incapable of 

expressing certain functions (e.g. WHICHFF). To remedy this inadequacy, the 

lambda calculus was extended via the EITHER construct; the result (the Either 
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theories) is, indeed, capable of expressing WHICHFF. However, the new 

systems have additional elements in their domain, so that the functional 

canpleteness of the Either theories is again suspect. The results of this 

thesis, then, suggest a similar program of scrutiny and extension to repair 
' 

their inadequacies. There is an inevitable circularity in this course of 

research, mitigated by the fact that each cycle allows us to see previous 

cycles more clearly. 

A way a lone a las~ a loved aiong the/ 
riverrun past Eve s and Adam s, from 
swerve ot shore to bend of bay brings 
us by a commodius vicus of reclrcula~ion 
back to Howthe Castle and Environs. 

-Finnegan's Wake, 
last/first lines 
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