MIT/LCS/TR-140

NAMING AND PROTECTION IN EXTENDIRBLE
OPERATING SYSTEMS

David D. Redell

Tius blank page was inserted to preserve pagination.

PR T

MAC TR-140

NAMING AND PROTECTION IN EXTENDIBLE

OPERATING SYSTEMS

David D. Redell

This report reproduces a thesis submitted to the
University of California, Berkeley, on September
23, 1974 in partial satisfaction of the require-
ments for the degree of Doctor of Philesophy in
Computer Science ’

Publication of this report was sponsored by the. Com-
puter Systems Research Division of Project MAC, an
M.I.T. Interdepartmental Laboratory and was supported
in part by the Air Force Information Systems Technology
Applications Office (ISTAO) and by the Advanced Research
Project Agency (ARPA) of the Department of Defense under
ARPA order No. 2641 which was monitored by ISTAO under
contract No. F19628-74-C-0198; and in part by Honeywell
Information Systems Inc.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

CAMBRIDGE . : MASSACHUSETTS 02139

This empty page was substituted for a
blank page in the original document.

'~ NAMING AND PROTECTION IN EXTENDIBLE OPERATING SYSTEMS

David Day Redell

stract 7 '

The properties of 9§Pﬁb§11§Y7b§56§,%8tﬁﬂdible qgerating systems
are described, and vgripus aqpectaﬂpf,sugh éygtggs age‘disgussed,
with emphasis on the conflict betﬁaen ﬁreekdﬁstxiﬁut§pn:g;_acCess
pfivileges and 1§;er ravpcation °§;?h98€:£riY?1¢83§; _The discussion
culminates in a set of goals for a new ggpgbi%}ty scheme.

A new design is then progosed!‘whigp prggiégg‘bothvtxpe exten-
sion and revoggtigg_ghrOQSh ;hg,dgfinitipn of generalized gealing
of capabi}i;ies,‘ ?henimplgmentag;qp.pf this}dgyl;p_is diggussed
in sufficient detail to demonp;;a;e{;ha: it ¥°9}§ PQ.V°F§FP;3 and
acceptably economical. S

The utilityvo§>the propoigd cggpyi}}ty mgghgnismnig dgmon-
st;qﬁed by describing two fac{lit}es_;mplemeﬁgabig in terms of it.
_ These are: (az;réquable‘pargmeﬁeys for 9#11; bgtwegn mutually
suspicious subsystems; and (b) difectories providing a civilized

medium for the storage and distribution of revocable capabilities.

s e R AR f - S e i e i i

ii

First, I wou14 like to thank my thesis advisor, Professor
R.S. Fabry, ’for providing that skillful blend of encouragement
and constructive criticism which “mﬁti! Jood advice. I am
also‘ indebted to the other members of "y Mnt, Professor
James H. Morris and Professor Mirtin Cratih, for vesting and
commenting on earlier versions uf this thasisz. (

It is a pleasure to thank the others who read and Eﬁuﬁnted‘
on earlier drafts, including Dr. James Gray, DBr. Butler Lampson,
Gene McDantel, Dr. Bernard Peuto, br.ﬁmﬂ”sturgis, 'tﬁa"esp§~
cially Paul Mclones. Earlier conversatious w!-.%hkruce I.induy also
underlie much of the work described here. o

Ruth Suzuki deserves the credit for the extremaly fast and
accurate typing of the Final draft of this thests.

Most of all, I thank my wife Conntd, not Giily for her

patience andl understanding, but for typing ths rough draft as well.

Contents

ADSBEYECE v v v v ¢ 4 e e e e e e e e e e .:.-. e e e e i

Acknowledgments, o .4 & |

Chapter 1:° Introduction R RIS DA SR O
1.10verview . W .ov v b oa b e e e e e 1
1.2 Protection . . v o v o v v v v e e e . 2
1.3 Framework for Discussion ¢V 4

1.4 The Computer Utility0 2. 6

1.5 Extendibility , . . , . . . v o0 0 0. .. 8
1.6 Thesis PLaR v + « 2 v'u oo v vvs o e e e 9
Chépter 2: A T&pical'Capability Syatem, 11

2.1 A Typical Capability System 11
2.2 Implementation of Capabilities in TCS 21
2.3 Revocation of Access Privileges . .'. .« .. ; . 38
2.4 Indirection Through Link Segments 54
2.5 Type Extension, . . « . o . .'; I) |
2.6 Hierarchies of Objects and Types 71
2.7 Type Extension Using Sealed Capabilities e e 77
2.8 Goals for a New Capability System 82
Chapter 3: A New Capability System 83
3.1 A New Capability System . . . « . « « ¢ « « « & 83
3.2 Design Considerations for Revocation 83
3.3 Interactions with Type Extension 96
3.4 Genefalized Sealing , « + « + v o . . . 97
3.5 Examples of Generalized Sealing . , 106

3.6 Implementation of Generalized Sealing in NCS ., ., 113

Chapter 4:

Chapter 5:

References .

Some Implementation Details

Possible Elaborations on the Design

Two Facilities Using the New Capability System .

Possible Facilities Using Generalized Sealing
Revocable Parameters
Directories

Summary and Conclusions

Summary 0 00 0. .
An Area for Further Research
The Future of Protection . . .

Page
130
134
137
137
138
143
154
154
154
157

158

Chapter 1

Iptrodpgtion;h

1.1 Overview

' Computers have been with us now for j“ét‘@ver'a‘ddartef of a
Centdry.” A1though their dltimate potential impact on society is
still hard to predict, it seems saféyto\EAY'tﬁif’:héy will rank
with sucﬁwfransSOtming‘1ﬁventions‘dé‘the'pfié%ing“b%esé and tele-
vision in théir effect not only on the way we live, but also on

the way we think. Already their role has shifted from that of

simply high speed calculating tools to a more fundamental function

as the nAtnrdi'reﬁbsitétY'fOrkaﬁ:ihCreaﬁiﬁéﬁ%ﬁbuntﬁbf“ébéiéty's

body of information. The near future éhdﬁid’héémthE‘develobment
of computer utilities bringing reliable and economical computer

access to the general public, in the form of services of unpre-

cedented scope and power [Fr 74]. .

These new roles of computers raise many serious social ques-
tions which are far from being answered'[R5‘74,'DF 65,'HEW 73].
Moreover, even if these questions arg‘saiisfhétorilﬁ answered, the
resulting policies will require an appropriate technological frame-
work within which they can be expressed and enforced [Po 74, Pe 74]..
Thus, sdch social and legal iassues as priVacf, secrecy, conflden-
tiality, and accountability generate a technologiéal problem which
could be called the "total system security pfobIéﬂ?"

The main subject of this thesiérisbgrdtecﬁibn. Protection is
that aspect of the total system sédﬁfifY‘btoﬁiém;ﬁhichvdealé with

the control of access by programs running within a computer system

to information stored within the system {La 71, Jo 73]. It is thus
concerned with prevention of undesired accesses, whether accidental
or malicious. Protection is intimately involved v:wifth‘ the naming

~ mechanisms used by programs to specify which Atess of i;nfomtion
‘they wish to access. We will diacyss gystem deaigne which provide
both naming and protection in a single iategrated mechanism [DVH 66,
,Fa;"’]' We also emphasize the notion of fx:adg‘wduttibutnble
access privilqggg, in the sgm’t;lug .any Mmqqt of a pt;\(ilege
may pass it on as he sees fit (La 69]. On the other hand, we recog-
nize the importance of allowing later revecatign of such privileges.
The main result of the thesis is the dmscription of a naming and
protection mechenism allowing both frae distriby

on of g:jgvileges

and subsequent revocation in an arderly WAY. .

R

Another desirable . characteristic of namipg and protection

SLAIN

mechanisms is extendibility [La 63b, iln7;ﬂ wl #mrny allovs

the constryction of the system ip layexs or "leyals of abstraction™
[D1 68b], thus increasing relisbility apd aklowing, user-written
extensiona to augment the system with nev services in 4 uniform

way. The extendibility of the propaped mechs

:I.gs will _bg_bguscuuad

in some detail.

1.2 Protec

'l‘he prouction probhn is oply ope %; of ;?e total system
security problem. Thus, in discussing the pwc:@g problem, it
is important to. delmt the scope, of the discuagion by y. fistinguish-
ing several other closely related problems, including:

e RS e

a) Hardware reliability
'b) _ Physical security
c) User authentication
@) Persounel certifigation |
ALl of the above problems exhibit two rather %&é#tmte properties:
.. 1) They da not admit of complete solutjees, but eoly of solu-
ions quantitatively comparable in terms .of costweffective
_prevention of trouble (e.g. high pemetrationp cast, long
3»:mean—tiqeebetweenﬁfailprqg,wggg;) TR
- 2). The fallure of a splution to any ope of them can under-
. mine the entire protection syatem. .
On the other’hand,'if we hypothesize a situat%g§$§3;gh§¢h‘problems
(a) through (d) have been completely solved, we can consider the
protection problem as occurring in a self—containéd ar;ificial
‘universe, free of such realvwor;g,g;;;iqu}gpqyquéyggka which can
_be pigked and circuits which can burn out. Within this idealized
~ framework, the protection problem dogs admit of complete solutions
in many important situatidns [La 74]. Thia s mot to say, of
‘ééursgf that all aolptionq_gonstrggtedugighéggsush a framework
are automatically complete. Yor example, Dﬂé cgp protect data by
requ;rﬁng'acég#sing'pfégtggs gpzp;gviqgaa‘pgangpcg_on~kex;authorizing
the access [La 69]. Intemlpamm like external passwords,
arenyplne:aplé.tqngnegsing,,andxgxg tgu§ pot5q¢ggqg§gtgiso;gtidn.
On the other hand, one can implemsnt dnternal keys which are
_ unforgesble, opening locks which are unpickahle, thus providing
a complete solution to the problem. The significance of this lies

not primarily in the reduction of the propability of failure (from

negligible to éero) but in the conééptual shift‘in how one views
the mechanism (with absolute confi&éncé, rather than quantitative
optimism).

It can be argued that the above viewpoint is untéaliétic;
since problems (a) through (d) ﬁo not‘adnicjafﬁcoﬁpleteasblutLOns
as hypotheéized. The point, however, is that tﬁis f&étoriiatibn
of the ﬁotal security problem allows one to take a very figorohs
approach to the situation in which mdliciéus intent manifests
itself in the behavior of high speed internal computations. This
1s precisely the situation in which our intuitions qfe least likely
to prove reliable in assessing thefquuntitativﬁ'adequacy qf,incom-

plete solutions.

1.3 Pramework for Discussion

Por our purposes, we can regard the function of the operating
system as being the transformation of the basic hafdﬁhfe,tesources
of the computer into a universe bf abatract-fea6urces or objects,

and a set of operations for manipulating those objects. This point

of view is often referred to as the‘chféatﬁqriéﬁféd hgproaéh, and

the collection of operations as the abstract machine. Each object

has an attribute called its type, which determines the set of
operations which can meaningfully be applied to the obfect. Various
types of objects are provided, most ndtabiy'grodﬁhséa. Processes
are the active entities in the system, c&pturing tﬁéaihtuit;ve‘
notion of a "locus of control” or “executioquoint;“ _Proceséeé

can attempt to access other objects in the system by performing

various operations on them, and it is these accesses which are

vchecked and allowed or disallowcd by the protection mechanisms of
the system. At any given time a process hss %gme set of privileges,
| specifying which operatious it nay yerform og which quects This
vset of privileges ie called the Sﬂ!ﬂi_ in ghich the process is -
executing. The priviieges available to a process can change as a
result of either:

'a) addition or removal of priyileges in its domain, of

g g e
THREE e A

‘execution, or ’ .
biA switching to a different donsin of execution.
Thus, domains themselves have an independent existence snd are
objects in their own right. (Tbe ,Feaspus, for takin; this point of

view will becoue clesr in Chnpter 2) A dquain csn be characterized

:procBSS.‘ It will oftsn be convenient, hgwever, to refer to the
actions of 2 process executing in a domaip.as, _being gerfqrmed by
the domain itaelf, and we will use this actiVe chsracterization
when‘there is no danger of ambiguity.q 7 ' '

B The domsin model is genersl eooggh to deqcribe most protection
;schemes found in existing systems [La 71] ,We_are?interested in

a psrticular class of sueh schemes in vhich a dogain consists of

a set of capabilities [DVH 66 La 6Q! Fa 74] A tapability serves

both as the name of an object and as a set of grivileges to access

S 4

that object. Thus, in a capability system, a domain is able to

: B FiART
name only those objects to which it hes .access viq its cspabilities.
Those capabilities are stored in the meporx o: the doqain, which

. we wiliiassooe coosists_of a number ogwseﬁgsgtsv[ge_ﬁéﬂVBCD 72],

v

each of which comprises a variable length attay of addressable -

items. A domain may copy its Capabilitiia'ahd distfibute them as
it ses fit, although it may mot, of course, make arbitrary modi-
fications to them. ‘Thus,‘capabilities‘iiéVli£§ a0£a‘“saaied in a

box," a characterization which we will pursue in some detail later.

1.4 The Computer Utility

The mechanisms discussed in this thesis would be useful in
any computer system.' The éoﬁtex; vﬁiaﬁ‘naxiniiésltﬁeir importance,
however, is that of the computéi utiliﬁy;féfhn ub£inn qf a comﬁutet
utility has received considersble attention in the literature [CV 65,
Sa 66, Sc 72, Fr 74] iné seens likely‘t;:pi;§l§§figéfe§§iﬁgly |
importaﬁt'rble in the future. IR,QBCh ahﬁiiiiﬁy;“a‘iarge user
community shates an appropriately large inféinhtionﬂstarégeband
prdcecsingiacility-in much the saié4uhﬁner Eh&t-the~h;;f§ df elec~
trical and ‘telephone utiiities shate the correapanﬂing power gemera-
tion and communication facilities. Such ghzaic sharing (i €.,
sharing of éhyéical‘resoutceé) pravided~the originnl motive for,
developing multi-user coupnieﬁ sysﬁehsv Thitfﬁntive‘wasAﬁhe desire
to lower the cost of hardware resources thtcuuh econonies of scale
and statiaticnl smoothing of inad flnctuatiaus This 13 gradually
being rendered less important by the continual dccline in hardware
costs. A much more fundaaental motive reuains howavur, ‘which is
in itself more than adequate justification for building a conputer
utility. This is the desire fbt flexible g aharing (sharing

of informetion) between users, so that thgy may bu@ld}upon each

pthe:'s work [Sa 66!“De 68]. A L
Since the user commupi;z“of ?»CQ“EQEFE;VF¥%¥E¥M$%§§ﬁ§FF of the
public at large, the logical sharing within that community takes
on more the character of transactions in a marketplace than of
informal friendly cooperation [Fr 74}. In‘pégpggq}gg;!
~a) Sharing is often financially moti;dégg; _k)
jb) The parties 1nvolved nay npt trust gach pther.‘%w

Point (a) 1mp11es that sharing often r%presents aalggor rental of

the shated objectslv The rgntal case is a_strong test pf the pro-

tection and accounting mechaniam of the couppten;utility.' This 1is

particulazly true in the case of subletting, in Which access, to a

_rented object passes through severgl hands b?forpx eaching the end

~ user. Point (b) which is in part regult pg (a), reflects the

fact that the standard attitude of the pa;tieg,ipngyed,ipLa trans-
er o . i Col TR . e _c;‘:;"s‘-‘”“f IS A RS H g
action in fny market place is gsg&l}yvsdme degree of mutusl suspi-

clon. Since programs in the system serve as the agents of users

on the outside, the programs themselves algo exhibif mutyal suspi-
clon. More detailed discussion and expmples of mutual. suspicion

can be found in Lampson [La 69] and Schroeder [Sc 72].

One aspect of the mutual suspicion problem yhich can be awk-
ward to'hgﬁglg;iglthgrfac; that the degree of syspicion between two

users may change with time. For ssample, gn employee may join or

leave a company, or a renter may be late in paying bis bill. Thus,
| “ is important that the privileges of g given user or program to

~access a given object be able to change with time, Moreqver, it
_4a very destrable chat these adjustmente of privilegey be as patn-

less as possible. We will égdfgsgegbiﬁwiggugé;fasd@éﬁ}gggth;

e s R LR G L

particularly in the case of increa‘iihg‘ Qdaiiicioh‘where previously

granted privileges are to be revoked.

1.5 Extendibility

The construction of a large operating system is a formidable
task. As the richness of the user environment proﬁded is incréased,
80 also is the size and complexity of the uyct‘d whi:ch‘ provides ii.
In fact, unless controlled by a suitable design methodology, the
complexity of a large operating system lay éﬁaiﬂfé’}iis’eﬁr being
cmplgtely' debugged. One of the most prodsiug' mh i’atho&blpgiu
is that of layering, in which the system is comstrutted as a bass-
‘;gyg‘_l_" and & series of extensions. Rach layer extends the environ-
ment in which it runs, thus presenting & richer enviromment for
higher layers. The key-assuuptibn in such a'iyafiiiis that no- layer
has eusedand in it any knowledge of the fﬁ&éfioﬁxﬁk,éf:higga:
layers. m., combined with the obvious pracautim of pri:rt'e'ct:lng
lower layers from imsrference by higher hﬁtjol; ;ﬁelmb a ctmtqfre'
in which changes to and malfunctions of higher layers csanot affect
the correct functioning of lower layers in ‘ﬂym S

The construction of a layered system can ha ﬁmd in two ways.
From a top~down point of view, the task is one 0t‘ Whtaly
dividing the desired set of ‘functions into a htquéne& of layets.
From a bottom-up point of view, the ‘task is te tmﬁm some pre-
existmg'syst'em into a more complete enviromment by"‘*addiﬂg,’mfuil

. new features. The latter point of view {6 most ipptppfiace‘ in the

*SMt‘mé called the "kernel” [Wu 741 or "nucleus"]t_ﬁa;JO].'

) i

case of user-written extensions, although to gtlargq;exten:, the
T I S 5 AR ST AN

exact distinction between system ggpggﬁggwggghupegbg;ggxams becomes
inimportant in s layered desigm.

Given the object-oriented point of view discussed sbove, the
objects and providiag the eppropriste eperations on thep. This
tmedtately raises the question of how such obscre sre pamed and
how access to them is controlled, It iélﬁatdesirable for the base-~
level naming and protection mechanisms to provide these functions
fof_all higher level objects in the system, We will &escribe

various type extension features which allow this.

1.6 Thesis Plan

Since the mechaﬁisms described in this theais.represent fur-
ther developments of ideas fouhd in several existing or proposed
computer systems, it is appropriate to summarize those ideas.
Thereforé, Chapter 2 begins by describing a hypothetical system
exemplifying the relevant featurﬁs of those systems, and goes on
to discuss the use of those features in various situationé, placing
special emphasis on revocation of privileges and on type extension.
The chapter concludes with a list of goals derived from’thege
discussions.

The cenfral portion of the thesis is Chapter 3, which proposes
a new system design satisfying the goals derived in Chapter 2, and
discusses the implemeéntation of that design in some detail. Some

possibilities for further elaboration of the design are also

10

discussed briefly.

Chapter 4 examines the use of the mechanisms . .of Chapter 3 in
providing two facilities helpful in common situations: revocable
parameters for mutually suspicious subsystem calls, and directories,
for storage and distribution of capabilities.

Finally, Chapter 5 summarizes the results of the thesis and

briefly evaluates their significance.

are applicable.

2.1 A Typic31‘Cspsbility Systen |

The central goal of this thesis 1s the detailed specificstion

of a proposed behavior for capabilities, and the description of an

.efficient implementation of capabilities exhibiting such behavior.

The main aspects of capability behsvior to be examined are the
distribution and revocation of privileges, and type extension. To
bring the issues into focus we sketch a hypothetical system called

npcsh (for "Typical Capability System") to serve as a context for

4discussion and as a starting point from which various improvements

can be explored This typical systen as described below is not
identical to any existing or proposed system but eonteins feetures,
found in many previous systems. including CAL—TSS {La 69 st 73],
Magnum [Fa 68] Plessy 250 [En 72 Co 72] KYDRA [Jo 73 Wu 74],
Project SUE [Gr 71], BEC 500 [Le 69], and Multics [BCD 72 CV 65,

Sa 741.

In the definition of TCS, two conflicting considerations

'influence the level of detail at Qﬂicﬁ'thé'veéiaﬁs featnres should

be described. On the one hand, it is important that the definition

be specific enough ‘to make subsequent discussions clesr and unam-

K]

' biguous. On the other hand the inclusion of extraneous detail

would not only cloud the issue but might slso falaely appear to

restrict the cless of systems to which our subsequent improvements

a

‘ For these ressons, the definitionﬁthat fqllows tends to pin

12

down only those details which are relevant to the later discussion.
In other cases, several alternatives niay be sketched, or the fine
points may be glossed ovat.entirely.whgpfnot chfig;ently
interesting. | » 7 | t)

Iﬁ defining TCS, a logical plape ﬁo bqgin is yithrthe capa-
biuti&s tfmuelvu. As sta:ed prMme, a cwthﬂi:y aerves
both as the name of an object and a8 a paﬁkagl of privileges allow-
ing the objcct to be accessed in various wm It is also desirnble
to diatinguish between objecta of diffcrun: typts in TCS chis
distinction is carried in the capability, rathgféthan in the object
itself, for reasons which will beco-e clcar du:ins che discussion

of type extemsion. 'rhus, a capability fm' an objact cmtaina-

a) the unique identifier or "ID” of ths object,

b) the t *123 of che object
‘ c) a aet af grivilgges to accesa tht object.

Each domain in TCS has its owu seslnnged gggress 32553. (As
poinced out by Fabry [Fa 74}, freely copyable ctpabilities elimi-
nate the need for comnunica:ing donains to share @ common address
space.) The capabilities poasessed by a siven donlin are stored
within che scsnnnts of its addre-s spnce.' At thu same tine, those
capabilitics serve as the ckeleton which definuu lnd ctructutes
that addreis space. (1t is~worth enphalizing :hat an address space
defined by freely cﬁpyable capabilities nends to be s nuch more
fluid structure than a nore conventional addresn Sp!gg defined by

system data structures.) Aasocintad with each.doulin is a single

*The object ID has sometimes been referred to as the "unique name'
or "global name" of the object. We wish to wvoid this terminology
to emphasize the fact that it is the capsbility itself which
should be thought of as the global name of the objoct.

. Jevel addresses and/or_programmable

implicit segment, which serves as the ?rootﬂyofm;ga.address space.*

A capability for the implicit segment is part .of the definition of
the domain. All other segments (r objects of other types) are

‘ addreébed via cgpgbilitiea in_;hisﬁimpliéit segment, fIhe?e‘is no
fundgqe@tal'réasqn, however, to :ggg;;gf éapabili;iea tq}appeai
‘only in this implicit, segment; in-fagt,.it,gdiLfﬁeﬂqsqgﬁEd hete

~ that capabilities and "nq;mai" data can be ftée;y intermixed in
any segment. ‘(Wgys.of implementing chiaiyithqut ;qmprgm;g;pgqthe
1ntegrity,of the capabilities will ﬁe diqgugs#d“xpter,)

Outside the context of any‘gartiqula: add;ess space, we can

»défine the gbsqlute gddtegsAof an,iﬁem,Séépabil;gy or datum) to be
a p#ir <C,d>, where C is a capability (for a segment) and d

is a displqpeﬁgntv(yprd,byte; or bit pgﬁ?@x),” Let. (C,d) denote -
;he contents of add:ess_jﬁg,d>.v Thgg i£ Cii ia,g%ggpgbility for

_Some domain's implicit segment, a slmple address w. issued by

thet domain corresponds to the sbsalute address <Cpw> (L.e.,

| vhrdsyw‘ 6fﬁtﬁg_imp;ic%t,ségmgn;)g ‘§;$;;a¥1xé‘th§,stagdgxd notion
ofvthe‘two;part gddrgsgﬂwslw“pg wggg‘iqf iﬁléag?egt, 8 ié equi-
yalent t°,;<(01’9)ﬁ??r Whgpbcapgbil;t;gs can be stored anywhere
1guthekadd§esaiapgc¢,_addresses(4nvo;vingtthgp can become more com-
plicated, such as s|w,|w, = <((C;,8),¥,)¥,> . (wherg both <C,,s>
and <(CI,s),w > must contain _segment capabilities). This suggests

_the Pr¢v18499,9§,§$¥¢°& ?8rdva?9;1*?1=!!¢t8ﬁ1°n49£-thsse~nulti-

11437 regtaters to hold

el sl

This is similar to the Multics degcriggor segment [B(72] ,or the
‘CAL-TSS working C-1ist [St 73]." In the '[ra 68"

Plessy 250 [En 72] machines, it is effectively 1np1enentgd in hard-
ware in the form of several capability registers. Lampson [La 74]
refers to the implicit segment as the "access point" of the domain.

14

Antermediste capabilitids during the evaluation 8f such addresses.
Lacking these features, a domain ‘*eﬁuz‘a"’uf&cuy utilize ‘only
capubﬁici\es in 1ts mnc"t:’ segmétit; all other capsbilities would
have to be copled fnto the fmplicit seghent ﬁﬂmm Various
forms of multi-level addressing have Been wwidd in cxisr.ing
systems [Hs 72, St 73, Ne 72, Wa TA}.

Figure 2.1-1 deplcts two domafns D, and D,, Whose implicit
segments are 8, and 8, résp&&tiﬁi}?-.' The address space of Di
includes segments S, S4» ‘8'4 and Sg. The a&rua space of D,
includes 82, :-1, 85, 86’"' and S.,.f
shared by both domaius, and that the eddress spsce of D, may in

Hote that 8, and S, are

fact 'mcm&; (indirectly) the enmtire address anee of Dl. depend-
‘ing upon the privileges in "Dz'vsl capability !orsl S

. As memtioned in Chapter 1, domains can be ‘characterized as |
either active or passive objects. “fn its passive role as a collec~
tion of privileges, a domain im our ty‘ﬁiéii"é@ahiﬁty sﬁété’i is
identfcal to its implicit segment; from this point of #1&, the:
distinction between a domain and 'a«; segment is hiﬁbly a chgstion of
emphasis. On the other hand, in its active rbhaa ‘an éﬁqfciser
of privileges, a domain is sure to require ad‘ditiml information
in its representation,’ rqiatins to contiol s‘théfﬁ‘tes, e’i’*’ro.r'haadling,

entry points and so on, which we will call ita ;@ﬁnﬁudﬂpto:‘.

While the exact details of this extra Infiﬁ:htim ﬁ”éno% televant
to the current discussion, it will sometimes be useful to distin-
guish Detween the domain in this larger sense, snd its implicit

 segment.

15

Figure 2.1-1: An example of two domains

16

The active characterization of QOnains is somewhat inpretise,
since, strictly speaking, nothing is ever done by a domain but
always by a process executing in or assocliated with the domain.
This raises the issue of the exact relationship between 4q-ains and
processes.* Since protection and scheduling are essentially inde-
pendent fuactions, ic is tempting to dcﬂm du-n:lns and proceues
independently, and to allow processesy (at least potentially) com-
plete freedom to chopae their do-gia o!,qsqc;tttn.& This implies
that | R |

a) A given process tay execute in.ygriqg@,dﬂhgins at

different times.
b) A given domain may have zaro,~ane,.or le?aral processes
| executing in it at any givqm time.
'In such a schn-. two types of connuniettﬁen lechlnitns are required.

One is 1ntctprocee. connunicaqion, which dlluua tuo pqrallel pro-

cesses, in the same or differQnt &onnins ito nyuchronize their
execution and exchange nessages. The othnr is tntnrdanain

communication, which occurs at the point im time when a process

crosses from one donﬁin into another. This is gnnntally viewed as
being much like a procedure call/return aequnnce,ﬁincluding the
passing of parameters, and 1s thus referred to as';,¢anain4call.
This will be discussed in more Autail later.

In actual systems, one or both of two simplifying restrictions
is often imposed. The first restriction 13 to force a given process
to always execute in the same domain. Thio eliqinatpg,thejtather

complex machinery needed for domain-calls, and forces all

* 3
Called "environment binding" by Jones [Jo 73].

17 .

inter-domain communication to be cast as inter-process communication.
While this is clearly a simplification of the base-level system,

in practi¢e it often forceé‘highér‘lévéf'séféﬁﬁfé to essentially

Jsimnlané“ddnﬂih‘calls~6sing*multfﬁib"§f66é8§e§; dﬁ1y one of which

- 18 active ‘at any given time. This is Wot énly dnefficfent, but can

also. be surprisingly clumsy, coﬁsiéérthé'%hatfﬁérailél“brbéeSSes‘ N

seem to be such a powerful comstruct. Indeed, ;ﬁ%rhﬁuséd;bbtential

- parallelism seems to cause much of the clumsiness, -

- The ‘other restriction which iﬁﬁbfteﬁ*appiiéd~is'td allow only

one process at a time to execute in'a given domain. 'This can be

done dynamically, treating the domain as a "critical section," but

is wore often dome statically, by associating hx&ﬁldbnain‘with a
single pfbcess, and ailaﬁiﬁg’oﬁly’ihﬁtﬁbrﬁﬁe§5“t6fé$écute in it.
One'reasqn‘for making this restriction is the“pteviously mentioned
correspondence betweeﬁ'domiina and address spaces. As pointed out
by Lampson [La 69} this tends to rhd<’inséddﬁeséﬁﬁénfliéts between
multiple processes executing in thé same ‘domain. Oné way to avoid
these conflicts is to quip each process with special base registers,
or a pushdown stack foi:working storage, but what such mechanisms
really provide is simply ‘the ability for &ich"of“fﬁé‘processes
executing in a given domsin to see the domain somewhat differently,
in.a rather stylized way. A more atréightforﬁﬁr&*and”fléxible
approach . is ‘to -actually provide a”diffetéﬁf””ébpy“‘of‘fhé’doﬁain

for each process, and to use the standard sharing mechanisms to

avold redundant storage of the identicéal ‘compdnents bf these domains,

18

(e.g. pﬁre procedures, unchanging ca"bj.ii&“g.; o:#y..)«.*;. In ‘such a
| scheme, each process his.‘a‘ptgiun set of my- lﬂdmmna
them using the domein-call mechaniss.. Such.s sshema will be sssumed
in subsequant discussions of TCS, although this is ot esseatial
to the proper functioning of the improved capshility mechanisme
proposed later. | |

Given that a domain possesses soma .capability, it is allawed
not only to use the capability to access: the indicated object, but
also to. mi&mﬂg;a the capability itself in cextain carefully
constrained ways, including:

a) Copying: the capability mey be frealy copled ot any tise,

‘bere denoted by a simple assigament

G * €,
b) quucgg privileges: the privilages in: the: m;llity

ug be reduced, bers denosed by R

| m.;mc;(ie_,p‘), |
wheze P ,isf a mask indicating Eh‘ M?ctﬁ, of C's
previous privilegas which are. te Nrtgta:hnd. -
In some aystems [St 73] thease two mrumm madmnd
here, they are presented separately to esass mm; tm&tm
to an inpnwed scheme . |
One use of tha machsnisme described aq a5 would bejthe

*WQ will assume that a domain is created by an explicit create-
domain operation, and remains in existence until destroyed [St 73].
A more complicated approach provides the sutomatic greation of a
domain whemever a call is directed to a global domain-pgatotype .
object [wWu 74}.

19

passing of capabilities between domains via shared segments. 1In
one sense, this 18 a very powerful feature, sipce it ellows‘gny
possessor of a privilege to pass it.on without requiring any sort
of approval by the original donor of that privilege (except in the
special case in which the donor is empowered to disallow all such
v'sharing, e.g. ‘in the case of e "confined"’subsystem [La 73]) In
”another sense, houever this feature is very weak ‘since it pro~
vides only a relatively costly, clunsy and unstructured method of
inter-domain coumnnication. This weakness‘would be particularly
evident in the case of nistrust between domains (e g. "mutually
suspicious subsystems) Both of these considerations suggest that
" the domain-call nechnnism should provide for the passing of capa-
'bilities, as well as dats, as paraneters.: The latter conaideration
suggests ‘the utility of such a feature whils the former shows

" that the ability to keep a domaiu fron givingnaway its privileges
is already eliminated by freely copyable capabilities and is not
further compromised by allowing the passing of capabilities as

' parameters.

We assume that TCS allows the passing of capability psrameters
" ‘and implements this by copying the indicated capabilities from the
calling domain (or 1ler) to the called doaain (or callee) at the
time of the call and copying back any result capabilities at the

' time of the return. A domain—call thus takes the form

ca’ll (CG’P]. ’le":" ’e IPN) e

where the P, are parameters (data or capabilities) and CG is

20

a gate capability for the callee, allowiﬂg écﬁivltion at a particular

entry point. Sinilafly, a doﬁain;feéﬁrn‘takdn'thé form‘
return (RI’R2’ o ’lﬂ)

where the R1 gre‘the résults and the’gegurn;gatg is inglicitly
the site of the original call. We leave unppqcif#éd”hérebguch
details as static vs. dynanicvalloc§tion_of qucekfog capability
parameters in the receiver's addrescAspace;“qg;qnct;c.type:ghecking
of capability parameters, and so on. o

| In addition to making unuunge& acaesgég:gq;gbjgc:s, domains
cdn misbehave by naking unrea-onable deunnda on the resources of the

system [La 71] Some mechanisn must be providtd to prevent them

from 1ncerfering with each other in thic nannsr. Since the details

of accounting and resource allocatioa are beyond the scope of this
thesis, we will sinply agsume that each dou-in 13 fun&ed by an
account, which limits its resource cansunption

One particularly tricky problem which occurs in capability
systems is the "lost object prob;en," which arises when all capa-
bilities fo; a given object are 1naévarba§tlysgigggfdad, mn&}ng
explicit Qestruction'of the objact 1onsaibl§. and%the space occu~
pied thus'unrecoveiable.n Given our attitudc ahout accouaeing, this
is really an opporcunity for self-inflictcd h&ru, rather than mali-
cious sabotage. Neverthelesa, recovery from such situations must
be possible, hence several possible solutions to'che‘lost object

problem will be discussed at appropriate points,

< g

21

/

2.2 Implementation of C abilities in TCS .

SRS SR

g
L kd g PR

In this section we discuss, in a fair anount of detail cer-

tain aspects of the implementation of a syste- like TCS Three

considerations influence the choice of the patticular mechanisms

RSN e L3EEER {_;

described in this section For one thing, various systems similar

HIP P04

to TCS have been constructed and thcir impleuentations, although

varying in many ways, have shown some coumon features whoae advan-

i«l

tages have becomo generally accepted.» In addition, certain facilities

not included in any exiating capability syaten are widely regarded

4 {20 EE RN SIS W E

as desirable, hence their implementation implications are of interest.
s EERC D Y 52

Finally, discussion of implsmentation of TCS is intended to set

A% v limdaly ondo»

‘ the stage for the corresponding discusaion in Chapter 3 concerning

the implementation of a more sophisticated'cagability scheme

The moat obvious necessity in implementing a capability systen

is some mechanism to protect the reprcaentations of the capabilities

themselves fron unauthorized alteration. Thc proper functioning
3 w1

of the entire system is based upon the intesrity of capabilities,

hence this mechanism should be siaple, to maximize not only its

reliability, but also its understandability, and thus inspire user

“L

confidence. Two mechanisms have been proposed which we will call

sl ANE

A "partitioned menorY" and "tag;ed aamory "

,,,,,,,

All capability systems vhich‘have actually been constructed

SRR 1 ovd

have used partitioned memory. As its nane aussests, this scheme

involves partitioning the segmenta in the syaten into two classes.

iy o

capability segments which contain only capabilities, and data seg-

2 P U ¥

ments, which never contain capabilities. One obvions advantage

‘of this mechanism is that the cost of diatinguiahing between

T B T I G P e e T

22

capabilities and data is distributed 6vét ati entire segment, reduc-
ing thevoverhehd per itenm, but tﬁenmaih‘advantége of partitioned
memory is more subtle; it involves théﬁavoiéanéé of certain address-
ing compiiéatiéns which arise in the tagged ;;ﬁ;f§'§§§t6ach; as we
shall see shortly. The main disadvantage of ﬁﬁrtiiiéhéa memory is
that the artificial division of a user's memory into two parts is
inconvenient. It is often quite natural for information structures
(e.g. entries in a table) to contain botﬁ aata'aﬁ& égfébilities.
While su;h intermixing can be simulated ﬁaiﬁg a pair of segments,
this 1s a fairly clumsy procedure. For thiﬁ’aﬁdjéthei reasons,
discussed in detail by Fabry [Fa 74], we réjeééjpartitidned memory,
as indicated by our specification of TCS as allouing free inter-
mixture of capabilities and data 1n any sagpnnt.
The tagged nenory appraach allows such 1atatn1xture by attach-

ing one or more extra "tag" bita to each 1nfotnntion 1tem in each
segment. The term "1ten" is used here to &enote the basic ‘address-
ible unit of nsmory (worxd, byte, etc.). _xhesa tag bits are unmodi-
fiable by any»doftware eicépt the noét:ceﬁttai routine of the base-
level system. _Each item's tag 1ndicates’i£s status as 'data’ or |
'éapability.' An item must be thgﬁe&>§§k$ capaﬁiiity tofﬁe used

as one. An item so tagged can be genzritedv;hly by copying another
such item, or by the baééélevel cap@bilityecraaiion‘rbutine. On
the other hand,fa tagged éapability can be éiiséd:by overwriting
it; either with data ér with anothe;.dépdbility.. (The systen gould
require thaticapahilities always be ex;iicitly efaséd Séfofe their

étorage is reused. We reject this as too inconvenient for the user,

23

although there are caseg in which it would mgke things .alightly
. easler for the gystem.) . .. -4, e sw

 The only preduction computers sbich use,tagssd wemory are
the Burzeughs BS000 [By 61} .#nd its degcendants,’ The protected
- items in. these machines are 'descriptaxrs" .rather. g,p@n _capghilities.
- The differences between the twi;é%9953&9%5*5}?&J‘ﬁr&’sa,ﬂﬁﬁpt for
-one: desgripters. :n,re./.;cﬂneideg!bljxvssaé}}?? thhan capapilities. A
;Burousbéﬁd@sc:ivéerxﬂiggv<4§;ih1=§ lm; while. pany qxtendible capa-
bility, systems, have allewed i e¥cess, of 100 bits, fg5-eqch, capa-
‘bility. The impact of.this.will become clear in p mamept,

. While the advantages of tagsed memgyy.have heen slowly gain-

. inmg acceptance, gmother tread which has. had,eyen moxe impact is

- the reductipn of the size of; the addrspgable %F‘P';M{W‘Y

While machines wish items of 36, 4§,:9¥, even, 60 biss yere coumon
. ip.the past, the Dbyse (8 bit. charseres) is, ragidly,besewivg a
unfversal s5andard, ond SCTORG ATGWRLH.CaR,be. madg for, the ulti-
mase reductiop to.bit addressable. mamoriss. . .1p,such,gchemes, a
larger unit of information (4-,, $»: A, capabiliry)_ 1s, represepted by

- &-centiguous sequence of ifems. apd.pamed.by the addresp of its
. first. item plus its length. (J.npucd[, oF explicir). in iteps

- kagged memory da. given by Feustal

. Therge: is a very real canflict. m W $wp features.

.. Two problems. ariee when the. re p.of, & 5agees capability

Ateps. in. memory ., . Opg, 18, the obvious

iacrease in cost of apsociating @ tag With esch item as the, items

- got smaller. The gther jis. the miqu B pueh. & scheme, of

:::rious experimental. machines W » Aneluding
e Rice computers and Tliffe's BLH A 3emtal scussion of

e 73] .. P,

ip a pequence of addressabile

24

addressing thc sfddle of & capabilfcy.
If we assume that each item has & one Bit teg, ve ave faced
with the question of which of the ftews I & capabflf€y should have
their tugs on (L.e., set to 'capabifity'). If sl of ‘thefr tags
are on, there is no convanient way ‘for the systean to distfrguish
Betweer & vi¥id capabilfvy sddress, anid ode which points to the
niddle of & capability. Thé lattet cuss eould 1edd to the recog-
nition of the last few items of one capabiiity, together with the
first few items of an imbedfstely following capadilfty, as con-
stitutifg & valid capability, henée this awbigoity must Bée avoided.
- One way of doing this is to'edrn on only ‘tha tag of the first item
in ¢ach capability, and require ‘that the first (aad only the first)
1(‘:& located by a capability address be so W 4 !ﬁ:.s sakes the ,
“othet 1tess in a capability iddistingaists

‘ bie frow 'data, however,
“and leaVes them open to alteration unless very store opération
scans the tagd of the appropriste nusbet of preceding items and
tdtns theis off to inwure invalidation of any capability which con-
thins the item(s) being modified. |

it is ¢lear, then, that an sldréss pointing into the widdle
of u capability mest be distinguished both "fm . %ndtmbuny
address atdl from an sddress of untagged data. &;i»-mepga the
ticed for two tag bits on eaéh item, omé indicating whether the
iten is part of a capability at ®1l, and the othet ‘tndicating whe-
ther it 1s the First item of a capability, Bince the wecond tag
ia fiecedsary only when the first one iﬂb'm. 1t cotﬂd be’ 'fmlen'l'
from the bits of the item only when needed (although this obviously
doesn't work on a Bi’t-aiidr‘esh‘tﬁlé menory #mu;‘m ﬂ:ﬂﬁ %uld then

25

have no bits left at alll). ’ ; .

The other problem, the high cost of tagging small items,
exerts a strong pressure to increage the size of iggﬂg;;,Atguments
1n»favp§ of gmgll,igaws}ggue:gl;y:gigﬁﬂghgugggs gha;!fgér'akgiven
total yit capacity,.gddresg éize g;qgsmonL;tlogqr;;h?%gql;y‘with
ﬁgcreesing item size, Unfortunately, the cost of tagging grows
iinearly, reachingua max;mumvig ;he:§i§—aqgggg§thg,g§gg‘qf two‘
tagvﬁits:pe: ipforﬁation‘bit, which 1siclggtxykgutwpf‘;heigugstion.

One’glté;nﬁtiQe tagging ;cheng qﬁ}chvge:;gjegtﬁg}pra!small :
iteé; bu;vimpqgep ;he rgstrictioﬁ that ggpébé%}g%gs}cgg oqu;be
stored aﬁ éddreqsps which are an 9”59 ¥ﬂ;F$P1¢*9f the length of a
capability. In‘guch a schemg,uggpor%é;s:1tag:$ddge;§§§}e for normal
data;.while capability addr‘39€§79¥§§,;99§F§{2F3'Q?;§99.9F3d3t31~
mined "capability frames." Suphxgqut;ct}gggggggéfto gpmplicate
ﬁhe software and sgprifice“many,ofzghggadvgnpaggghof item-
addressability. y o

A much more sophisticated 8¢Pf9?£ ‘hi?h;9l99 involves the
notion of a capability frame, éttenpts to exploit the fact that
‘the assignment of tag bits to egch\i;ggﬁ;g_gzrg}gtivelykineffi—
'.cient encoding of the set of pogaib}g{@gtg/;;pg@il}ty configura-
tions in a given region of mnmpry.w’#vgn if»ggggﬁ&%;tiga,gqn*begin
at any address, the hqmber'of?di§t§§g9t£gxiﬁ?igﬁ%ggb;}p‘g%g;ven
cgpability‘framg is ﬂ;t‘latéai Atjiésiréﬁg}éﬁ%§b§§1i§%éiﬁ‘begin
in a frame, and can be preceded by one or more dﬁta items and/or
the trailing items of a:capgbiiigy which began in Eggbgggyious
frame. By associating with aacpiffES?iEhé“i@?éﬁ??kﬁiééié@?gent of

the capability, 1f aty, beginning in' the frame, it is possible to

26

simulate two bit tagging of each item. This is a somewhét compli-
cated approach, but may eVentually:provq‘to{be the key to bit-
addressable tagged memories, since it ‘allows the cost of tégging,
like that of addressing, to’grdw'dniyﬂlégéritﬁnically with decreas-
ing item size. This scheme algd has the rather intriguing property
thatrreéucing tﬁe size dfﬁéapabiiiiieé ddis ggg‘alwafé inéréase the
efficiency of memory utilization. For ngngEn pattern of uéage,
there is an optimum size for cépabilitie§; §uc5 that deviation in
either direction increases the total overhead fdf'hapability
storage.* No existing system uses such é ééheie}.a1fhodgh it has
begn»tentativgly'1nvqstigatéd”by Gtay.[Gi 731;‘;ry

We thus conclude that our implementation of TCS should use one

of three tagged memory schemes: . “ |

a) Items should beuningle bits, and the scheme just described
should be used to simulate two bit tagging.

b) Items should be a substantial fractibn‘bf‘the sige of a
capability, allowing a two bit tag ﬁ;f%itém:at a reasonable
cost. ‘ | | |

c) Items should be large enough to hold ih”éﬁtire‘capébility.

allowing a simple one bit tag‘péf item.

*Assume, for example, a bit addréss;Bf;LSi;5r§'1£3wiich the average
_ object 1s N bits long and is pointed fo hy k. capabilities.
Then the overhead for capability storage is the fraction of memory
taken up by tags, plus the fraction holdipg the capsbilities them-
selves. As ﬂQ%znction of the size ¢ of él#ﬂbigzgieﬂ, this is
loge ke -
c+log N +ke

For instance, if N = 103 bits and k = 10, the storage of 64 bit
capabiliries requires about 137 of .memory, while reduction to 32
bits or expansion to 128 bits increases the overhead to about 17%,
and 16 bit or 256 bit capabilities require sbout 22%..

F(c) =

27

To simplify subsequent discussions, we adopt alternative (c),
although it would probably not be feasible for TCS as described
since capabilities are 8o large. In Chapter 3 however e will
describe a scheme in which capabilities fit into more reaaonable
sized tagged items.

+

N The second major implementation aspect to be discussed is the
mechanism for mapping the IDs found in capabilities into physical
‘addresses of objects. The most obvious solution would be to simply
»use the physical address as the ID but that would imply updating
all the capabilities for an object whenever”it sas moved or deleted.
This is impractical due to the proliferation allowed by free copy-
ability, especially in a system allowing intermixing of capabilities
and data in segments.

Most capability systems have solved this problem by localiz—
ing changeable information about objects in a aystem,data structure
and forcing a11 access to the object via capabilities to go indi-
rectly through this structure, which has been referred to by such
terms as "Master Object Table" [St 73], "System Capability Table"
[En 72], and “Global Symbol Table" [Wu 74] Here, we will refer
to it as simply "the map."

There is a one-to-one correspondence betveen objects and
entries in the mapr An object and its ‘map entry are created and
destroyed together. Since the capabilities for an object are not
updated when it is destroyed it is not satisfactory to use the
location of an object 8 entry in the map as its ID, since that

would prevent re-use of map space freed by object destruction. In,

fact, the ID of a destroyed object must clearly never be re-used,

28

since capabilities for the old object could‘théh be uéed to access
the new one., This suggests thaﬁliDs should berduite long, so that
the space‘of IDs can never be exhausted; even‘ifwobjects’are created
and destroyed at the maximum possibie'iét;‘for th§ entire life of
the system. The alternative of occaisionally stopping the‘system
and comﬁacting the ﬁpace of IDs 1@ §i#uaiﬁi;; Suf iéss ﬁttractive.
Any generﬁtor of a sequeﬁce of unique iong integéfs can be tﬁe
source of IDs. A counter of the Eotal'numbef.df objectb created,
or a reél—tiné ¢lock of sufficient iength and resolution are the
common gxanples.v In either case, ﬁiovision must Se‘mm&e‘fbr
;esﬁarting the system after a faiiute uithoufzany pdssibilicy of
iepeating a pfeviously‘unedtlb. | | ‘:

As a first approximation, we can consider the map translating
such st into/phybical addresée; a;‘béihg\inélé;nnted ;é a large
hash tgble.in'primary-memoty, keyed on iﬁé.? Figure 2.2;1 shows
the representation of capabiiities and naﬁ éﬂtries. (Tﬁé field
labeied "address" is issumed to contain any extra ihforuation
neceésary to~distinguish betwéen pfinary and aeqondar& storage
addréssea~ The details afe hct relevant hafe.) Bach éietciae of
a capability involves: N

1) checking the apﬁropriateness'of the aétion, given the

type and privileges in the edpabiliiy (and signalling
an error otherwiée), o \ -

2) hashing into the map to Qerify the existence of the map

entry, and hence the‘correspondiﬁg‘objéct (and signalling

an error otherﬁise),

29

type
capability: privileges
object ID
object ID
map entry:
address

Figure 2.2-1: Format of capabilities
and map entries in TCS

30

3) checking the address in the map entry for the presence

of the object in primary memory (and signalling an excep-
tion otherwise),

4) using the address to perform the access to the object.
These steps are simple enough to be implnaented in hardware or
firmware, and uould be used heavily enough to. justify such imple~
mentation.

As déscribed so far, the mechanism does not deal adequately
with the two extreme cases of objects which are accessed very fre-
quently, and those which are acceesed very infrequently. Objects
in the foruar claas, such as. segnents containinz executing programs,
are so heavily used that hashing into the map in primary mewmory is
unlikely to be efficient enough. Thus,'it is necessary to hold
the most activa map entries in spacial hardware

In our implementation of TCS, this hardware takes the form of
a special associative memory, each element of which can hold one
map entry. The association is on IDs. On each accesg, the ID in
the capability is first presented to the associative memory. If
a matching entry is found, no reference to the map in primary memory
is made. Otherwise, the standard map reference is done, and thé
result replaces the least active (e.g. least recently used) entry
in the assoclative memory, as well as being ﬁaed to perform the
aécess. The effectiveness of similar hardware has been clearly
demonstrated in existing systems [Sc 71].

Whenever an entry in the primary-memory copy of the map is
updated or deleted, any corresponding entry must be invalidated

in the associative memory. This can be done by selectively

"ftequency of such context switching,A

31 -

clearing the matching entry (if any) or by totally flushing the asso-

‘.,,ua
‘‘‘‘‘ . SV D DLLOW 2{5{: . i &

ciative memory. ~ The cost of reloading the entire associative menmory

BInUL g e IS GL ABG

“on ‘each such flush might be acceptable, but the ettrc conplication

it g

required £6 do lelective clearfhg is 80 law chathit would undoubtedly

,,,,, BE LGS

":bé“fﬁghmcchd&”Schﬁgﬁ%:l ‘Note that total flnching of %he associative

o hdsgaevoe swideley
mamory is never logicaiiy necessary duc to the use of context—

. T3 fi*; d D Fid
1ndependcnt names as association keys. éinilar nééhnnisns involv-

G ki v;:f B TSR o S F 4

inéihgiggiégfcn"caiEbd%é;%iig;iﬂﬁ;;tjnaﬁis rcquite total flushing

e ate G iE g Tl

each time ‘the ‘cobtext (dountn, process;’écc is ﬂwitched of

g sl most ow

course, the’ significance of’ this 1- entiréiy depcndent uponxthe
SENNNETE S § Pete B Frra: LS R

] TN

" One apparent ‘alternative to a special atsociativa nnnory would
Do x grmtes HOEg Et gd 3

:ﬁe’Eﬁebﬁrocigicﬁjgfﬁaﬁiéhérai purposdwassociativt uenory'or "cache

THEva GG ‘aJa,. Ty

“holding the uost active’ items in’ prinary meMory, reggrdleas °f how’

addn etk]
they are being ‘used. Such a cache wouid naturally tend to capture

‘thé most active eatiies 1 the map, and thus spaed up the standard

omY il RmanUNg Ii i DAY

:machinery for’ acceasing ‘via the napﬁin primary memory, In spite

Madass v

OF 1es’ appealing siﬁplicity, ‘we reject tﬁis schene For several

o FE IR e F FIE

reasons. For one thing, a’cache which 1 large enough to be useful

for non-map items (e'g. instructions, data) is unlikely to be as

a8 iFiJ.‘ 3 ¥

fast 'as ‘we can afford to make special hardunre vhich captures only

iy :.-!,.; "
‘;{14 l; [sy mamra o

acﬁivé‘ﬁép“éﬁfriés. ?1acing anp ‘entries ’Ehe same cache with

Towrr - ot

’other ‘data also sacrifices any opportunity to accéas the two in

I e P [T
5Egny wEAYN §i >

“parallel In addition, "the cache, by“trancpaxcml apeeding up

“\g O Ly v

’primary memory, in no way bypasses the hanhing necesséry to "locate

a map entry. This means that entire "colliaion chains fron the

g : ¥ Yusins oW

map, rather than just active entriea, vould need ‘to migrate into

e s iRy dnpeTnns

32

the cache, and would have to be scanncd on ?@ch access, thus further
degrading pcrformanee as conpared with that o{ the spocizl purpose
- assoclative gunogy. A nq:ngpggr;l qny;qfé5£§5§§g}§;;,pgxthese
'ébjection§‘1;>;o s@y that the @éqba simply n!hﬂg‘ghg ngy?;yufaster;
. the relative overhesd for acceseing map gmtries in msaory is thus
not reduced by the cacke. Heace & cache, while valusble for other
purposes, is not optimal for °!RSP?13§,¢°t1?9,“?P199§F1°3r,

Aaother slternative which has besn sdopted 1n aome syatens
stems from the cbservation tﬁag;qgtiyq“capgﬁilitﬁg§?‘apnpell as
active map entries, ghou;é be hé;? ??Nggat,hé?gwﬁfgf, To this end,
programmable capability res#ﬁtﬁfﬁ can be provided, into which an
executing progran can losd capabilities before,use [Pa 69, Ea 72].
Moreover, the mep entry corresponding to sa gstive capsbilicy i
_ itself active, guggeétipg that space be provided in the register
for che map encry s well. An gecess via such 8 omart saglaser
can then proceed directly to the shfect. Of course, it is still
necessary tokgqton¢;;ca;;; reload any registers holding copies of
2 nap entey vhich 1s updated, which adds s certain smoumt of con-
plieatipg;;o_che ngchgnis!: Hé;gé,‘;h@:ahgigﬁgg?ogﬁg?ggfsgg?bli
capability regi#ters, wﬁether duart otrnot. introduces tha standard
problems of register allocation,‘sgve[gcatowo anucnces and so .
on, as well as the»novel requircnnnt ;g;t a calling dpnnin axpli—

citly‘etase :egiatera,coataining gggabilig&ep not being passed as

| paraneters. Other considerations in thc usq of capsbility regis-
ters are discussed by Naedhan [Ne 72] } ‘

We adopt for our inplenentation of Tcs the assecigtive memory

approach rather than smart capability registers, although the

33

preference is not a strong one. We assume that the overhead of
fetcﬁlng the capabilities themselies from primary memory is suffi-
_ciently reduced by transparent ﬁnch;nisms such as a program-counter

holding the current proce&ure»capabiliiy,'otiﬁirdware implementation

of all or part of the executing dgqh@g 8 1§p11c1t segment.

gt}

The success of the associativenneaory approach is completely
dependent upon the observed goadoaey=!a¢mvg1y & small number of

objects to be heavily acceesgd du:iﬁ; any tiven small interval of

A . -5 S B2

time (i.e., fraction of a second) xOn a coaraet time scale (i.e.,
minutes), the same kind of bqhavturiflwbﬁggrved in the sense that

during a given coarse time 1ntervn1 noat of the objects in the

system will not be accessed at all.s This suggests that the map
entries for such objects be kept in%secondary memory, and be brought
..into. the.hash-. c&bl&~ia-yrin§ry ndiory an;y when needed [Fa 74].

W:’kza-.»-\m s curiagnd
"“Bxperience with a smﬂir scheine’ (tke "Active Segment Table'* [BCD 721)
in Multics shows that this approacgﬂpan be quite successful'

~~~~~

o

ficant speed-gegalty.

: 14-

¥

~ Another aspect °f TCS' $mpLgnan§nxinn tn»b.‘d&scussed ig para-

meter passing during domain calls. !his 18 included mainly ns

background for a more elaborate schp-a dpvaiaagdwin Chapzaz‘l

e s

hence it omits details not relévant to tﬁat discussion. Figure

2.2-2 shows, the qprgéggg,gg_;he domain call jmstruction. First,
the return gate must be retained, allowing re-entry into the caller

at the site of the call. This is saved in a pushdown stack of such




34

call (CG,P

1'929. e ’Pn ) ’.
P

1 P« get _parameter(l,calidr) ;
put_parameter(1,Callee,P) |

Figure 2.2-2: TCS domair-<cal] operatish




gates which is associated with the process.* Then the parameters
are copied from the caller's address space into that of the callee.
We assume the existence of two sub-operations internal to the base-

level system:

P + get parameter (I,D)

. put_pazameter (LD,P)

These operations setﬁé'tdgfetéh::nd store the I'" parameter P
at the Qppropriate 16caci$p in the address épaceydf domain D.
The actual layout'di éﬁé'ﬁéiékéﬁéxs in the address space need-not
‘concern us here. We égggggwgéggg Ny, the ﬂu-bqr of parameters,
and GR’ the return gate; are automatically available to each base-
level operation. (Mpn;woébtatigga finish by éxiting through GR;
the exceptions are;ﬂgggigﬁgéii:;éd domain-return.) To simplify
the discussion, we have omitted daacripéion of the copying of
resulﬁélffdnﬁthé:cg;;ééwﬁééigééitﬁéAéiflgglaﬁ;n,the return is done,
~since this is vittu#lly identical to the handiing.of the parameters
during the call. Thus, Figure 2.543 shows only the retrieval of
the return gate from the stack necessary to resume execution of
the caller. |

In concluding our discussion of TCS' implementation, we
briefly consider two poséible ways to attack the lost object pro-

blem, neither of which we regard as satiafaccorj. One approach

is to maintain with each object a reference count of existing

*A variant of the call operation, referred to as a "jump-call" is
obtained by omitting the saving of the return gate. This causes
the callee to return not to the current caller, but to the pre-
vious caller. This is occasionally useful, as we shall see in
Chapter 4. ” '




36

return( )

ENTER

G+ pop( )

EXIT thru G

Figure 2.2-3: TCS domain-return operation
(without results)



.capabilities, and to delete an object when it bocomes lost, as well
as when it is explicitly delété&.*f iheféﬁaré 5&*1&552 threeudraw-
backs to this approach: | |

“a) The deatruction of oébaﬁiiitiéoﬁio;gi tﬁ;oogﬁiovofﬁriting

or segment deletion) must be detected and the reference

vemee Yo saret o a

counts maintained.
b) Lost self-referential structures are not deleted properly.
¢) An object may be 1ost to the uaer ﬁho funds it even
though capabilities exiat eIaewhere | A
We therefore reject the tefofénéévéohntfaﬁﬁfooch; z?ofiazcontrary
view, ses Walf, etal. [Wwu 741y, 0 TR
Another “approach is to allow "un-losing" of lost objects by
ailoﬁingﬂa;soith51§ihﬁtﬁotizodiéo;gié;(;fé?&gﬁf$wh£chdo§osVthe
funding ooEOuotj to ré{&eét éﬁonéﬁénddi‘Eé&ﬁ?é@idﬁ”&f”fuii§ privi-
leged capabilities for funded objects ICé 5?1 Thia 1s rather
W"inelegant and requires fairly couplicateé data ‘structures which
nay ‘or ‘may not ‘be otherwise necesanry. R VAT e |
‘Other approaches to d”booo;loveINSQiGtioo’to’tﬁo lost object
"problem can be envisioned’ (e. g global garbage coliection) but we
choose instead to postpone the solutfon until a higher level of the
system. Thus, the ﬁoae;1GVé1‘oyot;3d;fn§iy aifgwémobjocté to
become lost, and the users depend upon the directory system, as

" described in Chapter 4, to prevent this occurtence;"

NS RS

% . )

We assume that explicit deletion is slec igviilable; since other-
wise, the user who funda the- object nny be unsbie g2 reclaimsthe
‘space occupled by X,

TR




38

2.3 Revocation of Accegs Privileges

In ﬁhe contéxt of TCS, we now explore ve;ioueuapproaehes to the
distribution of capabilities and the revoeat;pg ofjaccess privileges.
As an example, we use the simple situstion in which domain A
wishes to grent to.domain B a set pf gg%y;legeg to access object
X.

The first approach which suggests‘;saelf_ie the simple copying
from A to B of a'capability for:zx“eoptaig}ng the desired
privileges as shown in Figure 2. 3—1 This is clearly the intended
use of copyable capabilities, and is quite satiﬂfactory provided
that the amount of trust A has in B teunins conltant. If,
however, A eubseqqeptlyvdee}des thﬁtfég'€~4;ff‘?‘@t,§?5 of privi-
leges is more appropriate for B, a_gecone:cepeyilieykfo:,‘x must
be passed as a replacement. Thisbpny;be{quite;;gcopvenient‘for B,
who may have made various copies ofetheAq:;g%&glbggpayézigf{ some
of which may have been passed on to other domatns, Moreover,
unless thebprivileges in the pewﬁcagab;l;ex greve superset of those
in the original, A must Pe§31?1§t199¥}!ﬂ“?“‘°,thﬁ? B “yill
retain both»eapabiL;;ies, ahd tﬁua possess the gpiqq‘ef Fhe:privi-
leges in ;ﬁe'two. In other words, priej}egeqtoneehgtan;ed can never
be‘revoked. . _

This simple example‘ehqés that the txpipe;ﬂeapebility mechanism,
thle useful, does not adequately cope with ehefdifficult situation
of changing levels of trust, particularly when trust decreases and

. revocation of: grivileges is desired.. Ee&ato pnopusﬁag any

We will generally omit the phrase "the nctsen nho owns & donain"
and simply inpute feelings of "trust" and “suspicion” to the
domains themselves.




39

Note:
~————————p = object name
w—— e —gm = capability propagation

ST C—— T—— T—— ——

Figure 2.3-1: Passing a capability



40

fundamental changes to the behavior of capabilities, however, it
seems appropriate to explore the various &pproaches which have
been proposed for solviﬁg"thé revéZatiahW;}oblem without making
any major modifications to the underlying capability mechanism.

Caretakers: A standard "escape hatch"” in most pfotection
systemis 1s the ability to interpose a "arctak!r" domain between
an object and the domains which accéss it. The cafhtaker can
_ implement any access control protodol ppgfiiﬁﬁﬁded by the system.
. This situation i;”shown in Figure 2.3-2, in uhich A has created
a caretaker domain C, and given to akw-gmc9pgbi1£ty to call G,
rather than d capabilityvtg access X di:ectly. Two problems
are immediately-evident. éOne is simply the inefficiency of
calling C each time B aécessea X. For example X may be a seg-
ment, in which case the eitra domain-call is likely to cost much
more than the segment accéss itself. The other problem is that
B now receives a ceﬁhbility'ofﬁgype 'domain' rather than one
indicating the type of X. Unlggs'thé system provides facilities
for allowing domains to="nasqu§tﬁde" as objects, this will change
the interface seen by B when accessing X. For example, to
store into a segment, B' must éxecute either a store-opgration
or a domaia;cail-operation, depending on whether or not a care-
taker has been interposed.

More generally, one can object that the caretaker mechanism
is not, in itself, a solution to the problem, but merely a frame-
work within which a solution can be implemented. We have said
nothing so far about the basis upon which the caretaker C decides

to allow or refuse a given access request. In the simplest case,




41

call-only

Figure 2.3-2: A caretaker domain



42

A specifies a single set of privileges and gives a corresponding
capability to C, who exercises it each time B (or any other
domain having a copy of B's capability) attenpts an ‘access. When-
ever A's levéi of trust in B -deefeaaég, a weaket .capability can
be given to C On the other hand, if A.<iﬁ$m!m'to confer inde-
pendently revqaable privileges to acegna dx oa’varioua domains
by authoriziug them all to call C,- ﬂQen ”?‘» given that it can
distinguiah rtliably between its ﬂarious cni16233 finds itself in
the positioh of a proced#s ia L@ppaon s,"neaange system" [La 71];
‘that is, C must easentially teﬁiavant the ﬁystcm 8 protection
machinery. This can be avoided by d’finiq‘ multiple caretakers
for X, each allowing an independeqt agt of privileges, as shown
in Figure 2,.3-3. Since the carecdkegs in this situation are not
really making any decisionsk ggt qte nctely using their privileges
whenever requested, one wouyd hqée that the overhead of an actual
domain call might be aV°1d§§1 é;ngill return to this point later.
Controi: Most mofétn pro;ecti&g systems provide some mechanism
to capture the notion éf one donninfieing ogbutdinatg‘to, or upder
the control of, anotheerGQAi;:}w¥§is is sunetine§ fepresented by
a static domadn hiferarehy [St 73], but we.will treat comtrol as
being a privilege which, when cqntained in a cgpability for‘a
 domain, authorizes the possessor of the cabcbility to control that
domain. (The distinction is not very important fdf‘thg discussion
which»follqws.) In our typical system, much of the power of con-
trol can be granted by giving one domain a suitably privileged,
capability for/gnother domain's implicit segment, as waé suggested

in Figure 2.1-1, although complete control would require a




43

Figure 2.3-3: Multiple caretakers




44

capability of type 'domain' allowing adeepa to the controlled
domain's domain-descriptor.

This facility for one domain to control another 19 applicable
to a subset of our problem of changing degrees of trust; domain A can
attempt to enforce any reduction ﬁh its degrée of trust of B by retain-
ing control over B, although this requireg that B have total
and unconditional trust in A. The latter condition clearly limits
the class of situations in which control OISNB(.by A  4s appro-
priate. : | | | A

Even when the cont:oi'EJCility is gégliég?iig‘tﬁe:e are still
problems with its qu; - It would appear cﬁw A,:aving given a
capability for X to nqg;rolledjdonain B, could léter gearch
the entire address gﬁace of B,(freducing thg'btivilegea in all
copies of the capability to match its regti;d intentions. The
success of this search, quevet, Caﬁ.ﬁe compromised if B is
allowed to exacute.concurrehtiy, making the capabilities in ques-
tion "moving targets." Thus, concﬁrrent execution by B (or any
other domain able to manipulaté B's address space) must be pre-
‘veﬁted, either implicitly by placement {n,the sane‘proceas with
A, or explicitiy by being "stopped" by NA, us#ng its control
privilege. '

Even if . A manages to successfully weaken the capabilities
in B's address space, there remains the possibility that copies
may have éacaﬁed to other domains which are not under A's control.
To prevent this, A must carefully limit B's éon-nnication with
other domains via shared segments, domain~call parameters, and so

on. In short, B must be "confined," which, as noted by Lampson




[La 73] can be both very restrictive for B and very difficult
| for A. In the latter regard however, #t is worth noting that
the‘problem of “cqvert(channeae" does nct?eiigtéfgr capabilities,
since transmisaion of the bits of a capability 18 not the same as
transmission of the capability itself.r I '
A simpler mechanism which has been proposed [La 7i{igr 72]
to.deal with the above problems uses a "copy-flag" contained in
; each capehi}%ty, ”Or;grnelly{?theiflegt}sgogﬁegﬂg¥}qY«copying, but
once it is turned off{hit can:never he‘turmgqlhéckwpn,‘ggg all
| eopying of the“capebility}ie disallowed. Thus, A gan place a
non-copyable %Péb%%itx,,for X n B's sddreps gpace, and later
remohe any‘déSireéAér1V1133?9;f?QF,FP‘Fh99R§§§}%SX;vé??gid?nt that
no other copies exist. This is even more of a restriction on B
then confinement3 however, since gree:copyahigﬁtx:%exOnefpf the
fundamental prcherties‘?f capabilities:‘ igpgpf_eggmmeetthét the
passins éf c;pamme; as domé;ln-,cel},. parameters is done by copy-
ing, then non~copyab1e capabilities canpot even be passed as para-
meters, making them virtually useless.A Iheﬁechgme‘cgmcke;ealvaged
by introducing fihcirect capeb;litres"rvhichrgp}mt to the non-
copyable'ce?ebility apd;are themgelyee“copyab}e,“hct, as we will
see 1ater, such an 1ndirection feature 13 pownrful enough to com~
pletely eliminate the need for A to cbntrol B in the first
place. v h m e |
0wnershig:ﬁ»1he idea of Qme user or eqma%n ?qyn}hg" a shared
.object hes ag?eared in mahy‘syetemgarggr eueh ggrgcseqtae:eccount-
ing ahd resource allocation,mas well;es%fgr PE?tEQE%QQF Ih the

context of protection, the owner of an object is thought of as

e SRR kit S




retaining ultimate control over the bbjett; in the éensé that any
other domain's capability for the objéctyshoﬁld‘be subject té revo~-
cation by the owmer. Owhetship,'iike cbﬁtrol; 6d¢ld be defined

as a static relati&ﬁbhip between éaéh‘ébj;ét‘anégité éwnihg domain,
but again, we assume instead that ounership is simply a privilege
which confers 'owner' status on,any poossssot oféa capability con~-
taining it.

As described thus far, owneiahiﬁyaﬁoidé the problems which
limit the applicability of the control scﬁQ;b:’ Iﬁ:particular, it
18 usable in the case of nutdallsusﬁieidétibinct it makes no assump-
tions #bout the relationships bet&kén:&eiﬁiﬁéi_ HﬁﬁnVer, several
iégues'havéabeen left uhresolﬁéd; e et |

If the owner of an object wishes to revoke t’given set of
privileges from all outstanding c:ﬁdbiiitiig for the objett then
the desired action is clear, if someuhnm inpraetical. Thé base
level system must suspend all other activity and search the addtess
space of eva:y domain in the systen, perfotaing the appropriate
reduction om each capability for the object in question. It is
‘'worth noting that one case of ‘such unifbrmirdvocation has a much
more reasonable interpretation; if giilpti;iiééésvaté tﬁ be |
revéked from all capabilities‘for thefésjett, the owner can simply |
make a copy of the object and.destroy the 6ti§iﬁ;l. Ah‘évén more
efficient mechanism to produce the same effect,can be provided in
the coﬁtéﬁt of the impleneatétion.ih a&ttion iﬁf‘ﬁf’simgly allow-
ing the owner of an object to chaﬁgé'its4iﬁiuéﬁ§ré£§ iﬁ#alidating,
all outstandiné capabilities [CC:69];l‘(0f ébu:&é;'thg:operation

must return to theé owner a new éapihility ébﬁi&iqﬁﬁgvthn‘new 1D.)




47

If the owner of an object wishes to revoke individual privi-
leges, a global seageh“fé‘impl;gd, as indicated above. If, how-
ever, the owner wiéhes to revokéighese privileges from somé but
not all of the c;pabilittes Eor tﬂe object, ‘even more fundamental

problems arise. The cenQral queséion is how the owner should

;specify the set of capabﬂli;ies on vhich ‘the revocation is to take

effect In thg context qf TCS, thefénly obvious possibility is

the gpegification of a set of domqina ig.ﬁhish.the gevocation

n,4 ey '&

‘ﬁ should oceur, eithet by Eisting th; set, or By 1isting the comple-

'nentary set qf douains vhieh should xgmain unaffetted. The pro-

T o

blem is that in a system%providing freely copyable capabilities,

the owner of an object i& unlikely to have conplete knowledge of

“the pxopagation of capabﬁlities for that 6bip¢f“chrougbout the

system, and is therefore not in a positiqﬁ to provide eitver type

»w;ef'db-ainwlista ...... _Figure 2 3-4 depig;sm&hnmlitaaiiﬁn “in whiph A

has given capabilitiee far ouned object ¥ to B and G Sub~

, seguently, B and C hgve passed copies o?“their capabilities

to D and E, respectigely. If A now decides to revoke some
privileges from B's ggggbility, the revocation should clearly
effect D's capability, but notﬁ C's or E's., A domain list pro-
vided by A to coﬂxrol the reqpcution wonld specify either revo-

cation from B, allowing D to escape, or exemption of C,
incorrectly affecting E. -

There are other relatively simple situatibﬂs in which no
correct domain list can b; prepared, regardless of A's global

knowledge of the distribution of capabilities among domains.

Figure 2.3-5 depicts,sﬁch a situation, in which domain D has




48

Figure 2.3-4:~0wnership _




49

Figure 2.3-5: Multiple sources of capabilities



50

received capabilities for X from both B and C. Ideally, revo-
cation of B's privileges shoﬁld‘affect the capability which D
received from B, but not the oﬁb received from C. Such distinc-
tions clearly capnot ﬁéngpresseiﬁin a domain 1ist, and require
of A a completely unreasonable amount of knowledge of the inter-
nal structure of other déméins.'>? ’

Yet another fundamental problpﬁ involves theiapthorizatioh
of revocation by domains other ;héaAthe;Pfigiual owier. ‘In
Figﬁre 2.3~4, for exanpla,‘_B stands in much the)ﬁgme rel&tioﬂship
to D as A does to B, hence itkﬁoulduseal.f;asonable to allow
B to revoke the privileges it granted to D. B8ince ownership is
a normal privilege, A could authorize this by siggly inclﬁding
'ownership' among B's privileges, but th;liélea:ly gives B too
much power (e.g. the ability to integferé#v?th;~§iwand EE. Simi-~
larly, in Figure 2.3-5, ' B should be aﬁthdtiiéﬁfié reVoké the
privileges of the capability it has passed to D, but;nbt the one
D ‘has received from C. ' e

Thus, the privilege of ownership, whilg sufficient to author-
ize the total revocation of all capabilities for an object, is
insufficient to deal with ﬁote general situations.

Indirection: Most of the problems vith revoéation‘in capa-
bility systems seem to be caused by the propagation of capabilities
throughout the system. This suggests that domain A in our exam-
ple should nevef give to B a capability fof X whose privileges
it may subsequently wish to rgvoke, but should ret;in the capability
and give B a "pointér" to it. The success of tﬁis approach is

very sensitive to the exact nature of the "pointer."




From domain A's ppint of vigw,‘pge’mgggﬁo?vious kind of
pointer to the capgbility is‘s;mply itsladdféggh;nl A's address
space, but this address by itself is meaningless to B. To use
‘the address, B needs to specify that it ngg%Q_be interpreted
relative to A's‘addresa space, an action gh;ggﬁqlgarly requires
<aqthoriiation in the form of a capability fg; ¥At‘(qr for A's
implicit segment) allowing capabilities in Afs?gdqresg space to
be exercised, but not fetched or stored,ﬁxGiving(quchla capability
to B clearly compromises A, however, since B may use it not
only in conjunction with the pointer provided by A, but also
with any other pointer B may ;nyeqt,uvyotgqver, th}s scheme
also cauéés problems for B, since ;natggdhgf aAgingeAcgpability
for X, a capability for A ‘§n4 a Eqinteyﬂggp; Qgrgsgd. ~ Thus,

B effectively receives the absolute address Fclaﬁéx? vhere A,
s the multi-leval address of X' in A's address epace. These
ppoﬁlemg éan be rgdu9ed sgmewhat b? &he‘obv;qpsvgxpédien; of alwa}a
p#ssing tﬁe sipéle absglutg_gddrgss ﬁg,d?‘%inléjgicgggbility

for X, thus liﬁiting§ A's vulnerability to a single segment, and
guaranteeing‘that the poiﬁ;gt which B pga;,h?nd;g will always

be é‘#implg displacement. Moreover, if_thiE:Ei?Plﬁ absolute address
can itself somghqw Pe squeezed iptqva‘g;g§¥g gqpability, both
problems have been ;olved, since only thgkp§ngiga?glot?;;n A's
Qddreés space which contains Fﬁg céP??*;}FY;f?E g;é}a usable by

B, whé need only keep tfgc@ of ﬁh@ﬂplgt,ga?gbi}i;y, rather than

?a caéability ana a pointer. Of cQﬁE§¢3 cgrghygy;,?;ili\bg_taken
to”#llow B to igno:ebthediffgrgpge"bgtggég_gpq}qt gapap;lity

and a capability for the desired object.




¢ LT R R s e b e

52

Evén ignoring the problem Of'squéezing 8o much information
into a single capability, there are still restrictions on the use
of indirection through capability'slots.h The proﬁiem is that such
slots can never be réused. For exanpi;,-suppoéé thﬁt' A passes
to B a‘capibility for the slot eonﬁdining.oneidf' A'svéwn capa-
bilities for X, as shown in Figure 2.3-8. If. A iifefﬁdecides
to revoke all of B's privileges to .ée.ia';x by efasihg the capa-
bility from the slot, B still retains its slot cépasility. There-
fore, A must be very careful never to pince ahothet4¢apabi11ty
in that slot. :

One way of attacking the ﬁonéreiskbility‘problem 1§‘to squeeze
still more information into the slot‘capaﬁfiifb; namely”the ID of
X, and to check on each access that this iD i#tches the one in
the'slot. This eases the restriction Banndhlt;“a.éibt may be
used any number of times, but only once for any given object. Com-
plete reuaability of slots requires thn incluaian of a "slot "
in both the slot capability and the cap;bility in the slot, to be
compared on each access. This esienfiallyvaiohhts to re-invention
of the unique ID mechanism of the baae-level system, and 1is likely
to be very cumbersome, for both uset nnd inpleueator.

The»non—reusability of slots in the 1nd1rection scheke is n@t
really a‘fnyél flaw. It simply forces tﬁé‘;eéh#ﬁiaﬁ to be used
in a rather scylizad,why. ¥or example, domain A, rather than
giving B a capability for some location In its ‘own data struc-
tures containing a capability fork‘x, nnat‘c6p§bt§e cabability;'
for X ‘to some spot whi¢h will never be used qu.aﬁ}thiﬁg except

indirection via B's slot capabifity. Ahtuﬁiiy;"ﬁ vonid 




53

Figure 2.3-6: Indirection through a "slot"



54

undoubtedly have made an extra copy for B's use in any case, so
that subsequent revocation of B's privileges would not interfere
with A's own accessing of X, vThus, the only real burden on A
is the caveful allocation of slots so that they will never be
reused. One approach wbuld be te éet Iitéﬁgogéfgegaent of A's
addresds space and a@lgcéce g;ogsw%q&ﬁt”gpquéntiaﬁly; A much more
atttactive, if rathér more expe;pive;”s&h;;; ié éhe creation of a
tiny new segment to hold each slof.‘)thﬁa‘éé;’é;ly takes advantage
of the base-level allocation machiuery,ggut also implies that the
displacement which we squeezed into the slot capability is always
zero, and hence may be omitted.

Privilege revocation by indirectios through such "11ink" seg-
ments is actually a fairly actracgivéﬁséhéib}“@high we pursue in
some detail in the next section.?_lt is concepéually related to
both the caretaker and control scganna~d¢geus§§d above. If one
thinks of the link segments as domains, in the'pAeaive sense, then
indirection through such a link &oﬁain is much like calling a
simple‘caretaker which merely exercises it#»dnﬁabiiity §n.deaand.
(Note, however, that the cost of an actual domsin-call has been
avoided.) On the other hand, from the point of view.of its
creator, this passive caretaker is a verj well-behaved controlled
domain, since-there is no possibility of its capability béing

copied or moved.

2.4 1Indirection Through Link Segments

Since indirection thfough link segments created especially




for that_purposebseems to prqvidgdmnny g;si;able features for revo-

cation, w e noy pursue this epp:ogghssonewhat,more yigoroqsly The
discussion 1s ptill in terma of TCS, An. the senge that we attempt
to minimize modifications to the.bqge-level sygtem;@pd construct
the revocation?machinery "on top of'" that gystep Althoqgh we
will Jater argue that o falrly complex ravocation facility should
tnstead be included in the base-lgvel system, it is useful to
explore this higher level 1mplem’§§9t£2ﬁ%a?w?é&}??ﬁ&????&»

As mentioned during the discussionyof ownership, it is
; desireble for shy possessorbof‘ﬁ5cip§%ilitfﬁt5€be able to distri-
bute copies of it while retaining the power to revoke the privi-
ileges thus conferred;<wThus, ifﬁ;c:;ss privileges pass through the

PR . IRESRE L FTZStEIN A

hands of several distributors, the corresponding link segments

form a chain. VCepabilities ecceasing vie that chain are subject
g R ’\a’ W WS ORI i‘}.}

to revocation by any of the distributors. Any possessor of such

a capability may extend the chein b;icreating eilink segment and
storing the capability in it:‘ Retaining ;‘pow;;ful capability for
the link segment allows later reduction of‘the privileges in the
’capability stored there. If and ohen all privileges are to be
ﬁrevoked the 1ink segment can be destroyed:x" |

DR A Hiw, L8

Thus far, we have made no cbanges at all to the TCS base-

-

41 ,:f,d l_-4~,.‘

level capability mechanism, but neither hsve we provided any way

T B L3 Lpr

for the indirection chains to be used to eccees the target object.

e ¢ o
LAY

This will require a fairly simple nodification of the base-level

L ST B

system, but before describing that modification, it is instructive
to obeerve precisely what goes wrong in attenpting to do without it.

Fuwdhee s macd

In terns of our stsndard exawple of A giving B privileges




56

to access X, we find that A, in'Figure.Z.éel, hhving created
link segment SL and stored its capability"é” for X there,
must now give to B a capabilfity C * for S Clearly, B's
capability C, must not allow B “to tamper with the capability
in 8§, but only to use it as i'coﬁpdﬁaﬁfgcf;e”ﬂﬂlti¥1e§él
address for X. (For example, 1f X 1is ; segnent, B's address

for its 5th word, given“that C, 1is located aé locatibn'B of B's

L

implicit segment Sy is

3|05 = <((€4,3),0),5> £ <(C;,0),5> = <C_,5> .)

There are four 1nterdepeudent prcbiens with'this atteupt“to
imple-ent link sagnants on an unnodified cupability system

1) NOn—tranapatency. A donain acceaaing an objact must

know how nany 11nks are present 1n the chain lcading
from its capability to the object (1 e. how unny 0'
to insert in its multi—level eddrcss, as ia '"3|0|5"
above)

2) .Ambiguitz' A link in the chain is indistinguishable
from a target object which happens to be a segnent con~

taining a capability 1n location 0

3) Subvertability This is really iaplied by problems (1)

and (2); if the accessing donain accidentally or mali-
ciously specifies a multi—level addresa which is too
short, it can obtain a copy of a capability stored in
the chain, thus circuuventing aubaequent revocation

4)  Loss of selective adjustneat in logg‘chains Only the

last link in the chain contains a capability whose




57

Figures 2.4-1: Example of indirection
through a “"link" segment



58

privileges apply to the target object. Eéch €arlier
link contains a capability whose privileges apply to the
ﬁext link in the chain. The only revocation allowed by
such a link is total revocatioa‘bx breaking the chain,
All of these Jifficulties are avaidadnby a ginple modifica~-
tion to the bue—le\tel system, which :mttmas a' new operation
oﬁ capabilities, and changes the behayiot og the ‘base-level system
slightly when a capability is enconq%eted to nhich this operation
has been applied.
The new operation Si;éﬁg;a capability of’type 'ségnent' to
be converted into a cabébiiigf of type 'indirect' in which all pri-
vileges are ‘on.! (As,wegshall see later, this is just a specific
instance of a more gen;gfal mclmnisn useful for type extension.)
The intention is that sﬁéh:%gdiiect capabilities for 11nk.sggnents
should be handed out to domains which are being given revocable
privileges. For exampie,*ia?Fignre 2.4-1, the capability CL
which A gives to B muat be of txpe 'inditect ' although A's
own capability for: SL is of type ‘segment . '
Whenever an operation which expects & capability forvsome
object anéounters instead a capability of type ’1ndirect,"the
| indirect\caﬁability is followed; that is, i;\ig replaced byfa copy
of the capability in (location 0 of) the segment to which it points,
with any privilegeé,deleted vhich did not aleo occur in the ori-
ginal 1ndire§t capability. This step is itg:a:ed,igs necessary,
until the resultant capability is not of type 'indirect,' at which
'point the opér&tion proceeds as usual.

Thus, each time an object is accessed via a chain of link

-
J




£ N A e ST e

SR e T R S R R T e R S

59

segments, that chain is automatically followed to the target object

1 < . P I S SR T £

unambiguoualy indicated by the first non—indirect capability

i 2 dadfl

encountered. ‘The reSultant capability is exercised, but is not

cheawy egth ond oL i ]

;. RIS

otherwise available to the accessing domain hence the chain cannot

RN Y ey J*T PRY e RN _,r.’.;‘aiixbu i

be circumvented The privilegea conferred are the interaection of

{350 PR gLy aniad Th
those found during the entire scan of the chain, thus allowing
™ PR AT s eFERA Eil Linuns e U
independent revocation by each 1ntcrnediar% donainlcontrolling
fuinatd . B soshr gl ekdd dgnadils

‘a 1ink in the chain. In other words, problema (l) through 4)

ot FUEA UL T % iiﬁ S = 3 ERTE B fa 134 ‘:‘f

above have been avoided

T AT B i R B B TR TP B Rt
It is important to note that an indirect capability is
- &a ke Ginmm LTRSS 2% G ,f;’v‘,; ROV i o

followed y when it is ueed to access its target object follow-

S f“\‘ ;~ ;. TRl T g ;._.’- i43

ing is not performed when the capability itself is manipulated

seboong orasd st Lanr stoswe

% pargeRR TN E oanH YELO LI TIEY & wil ;,‘_, Xy
(e g. by the copy or reduce operations) ,
DA gertdiionc b grrkont i

The indirection fe&ture being deecribed is fundamentally

g ,: RS- S 3 LTt 7‘1 j’.‘«i {

different not only in design, but in intention, fron the multi-

g ¥ .
St EDRA I

EERTIED F 1S § ARS F Y S v 13

level addressing feature of TCS In some systems such addressing
SFIeEd e t(zl”smﬂﬁf

has aleo been referred to as "capability indirection.' A system
ERTN SR R ciyans wd onk o mologwa oo ook

in which both of these featuree were desired wonld require two

v byng wr @EG UnYy 0l S Eshmne T
separate mechaniams.
P - - R RN S PR Syliiorgrie ogiiUots
‘»_,,, L Y < Plyiatt P FEGOE , HE L

Distribution of revocable capabilities using this scheme

T R B AT ‘;’!_‘z‘ vl ;f’ﬂm}“ WA SRNOITG
involves five etepa- -
Coves secoutg pphenoayy a0t oG D gmide gedaredres ax
1. Creation of a link segment._
T PR OT T T { chhek owe o bped L wod Didpoge s S50t BISEES Rt B E
2. Conversion of a capability for that segment into an
ST S R S oniipe o wmwW Gl DabBboal o i
indirect capability
S S 1o 5 alis riesr ey Chmparse oo fire Talbndl
3. Copying of the distributor s own powerful capability
ERC [N ¥ . of (OSSO N OREHE I S

for the object into the link )

Roeststs




R AR IR L

60

4. Reduction of the privilegas of thn c&ptbility in the
link to an appropriate level
5. Distribution to thz recuiving dan;in(s) of copies of
the 1nd1rect capability ptoéuced in step 2
Any later reductton 1n level of trnst can bé enforced by re-~execut-
ing step 4, specifying ‘some reduced stt of ptivileges.r -
| Although this indiréctian scheun does a teaaonablé job of
capturing the notion that a distribntor of a capability should
retain the power to revoke the ptivileces it ccufers, it gives
one the fceling that the dasirad -eeh:nicn s buing “simulated "
in the sense that the basic action of disttiiuiiﬁg a eapability
is ptovided by a particular non—atotic sequenee of opetations,
rather than being an atanic operatioa. Thlg-ﬁ;s two consequences-
a) It is 1nconvenient for the u“r.,q R
B) It ‘may allow other aequcnces of operations to produce
a non—meaningful state. o T
The former problem can be easily dealt with by providing a simple
‘ 11braty procedure to perfor- the actiana ruquiraé;for Lapability
distribution. The 1atter problem, houavtt. 13 not ao easily dis~
posed of. Suppese, for exanplc, that by acciﬂant or design,
domain, in performing step 3 of the ptaccdurd; btoren not the
apprOpriate object capability, but the 1nditect capability created
"in step 2. This is just one way in which cireular inditection
chains can be created. Such chains, uhcu followcd will cause an
endless loop in the base-level synte-. Of cburse, one could dgpl
with such a situation by placing an arBitrAf; ii;if on the length

of an indirection chain to be followed before it is abandoned and




61

an error is signalled but this is rather ad hoc and inelegant.

An atomic operation producing only well forned chaine would be

S

much more attractive

Another problem with this scheme is its relative inefficiency.

For one thing, it would generate large nunbers of small segments
This cOuld be extremely coetly in terms of both space and time

2oy . : JENTEINES

‘especially in a system using block—oriented roteting magnetic

3 i 2 4 4&51

storage and a corresponding paged primary menory. For another

SR AL

(thing, the scheme requires the following of a chain of links each

time an indirect capability is exercised. This overhead could
Ry »f %’5:3:,? H ‘f " '5'~“4-~ """"

prove prohibitive particulerly in the ceee of indirect access to

ERReH ;; R SRS T

segments. Moreover any mecheniem attemptiag to cepture a compu~
tation 8 set of recently used cheine end retein them in feet hard-

EEL T G &

ware would be complicated by the fect that every store instruction

: P Clawel esl
would have to be regarded as potentially invalideting this "look-
X pLY ] B ,_,;‘-.f.‘rn.
back" information by overwriting a link in eon§ chain
By comparison, if equivalent revoeation featurea were built
£ 3& = J_J‘ i

into the base-level syatem, they would probebly be easier to use,

harder to misuee, and more enenable to opti-ization. This approach

e i« D Py E R

is explored in deteil in Chapter 3

2 5 Type Extension

‘ The definition of a large conplex eyeten ae a eequence of

i . ““ ;xq

"layers" has been found to be a valuable technique, aiding all
¥, . G b TR %
stages of design, implenentation, teating, end docunentation
Fi5d o ‘»S‘,‘j f‘.‘.‘?f«,
[Di 68b Pa 72 La 69] In an object-oriented ayatem, this implies

LT A L ary } Wi




62

/ that not all of the various types of objecta provided will be imple-
mented, or even known about, by the bese»level system. On the
other hand, it would be most inconvenient if the naming and pro-
tection mschinery provided by the base~1eve1 system (i e. capabil-
ities) had to be reinvented by each new layer oi the system this
would not only ralse serious problauc forvthe 1up1ementation but
would also force the users to interfcce with several parallel
mechanisms for storing privileges, passing privileges to other
domains, and 80 on. It is therefote very desirable for the base-
level capability machinety to provide capabilities for objects

of which the base-level system has no knowledge.‘

The various baae-level facilities invoiving capebilities can
be divided into two categories. In the firet category are the
facilities involving capabilities thenselveaz their creation,~
integrity while stored copying, arasure, and 8o Qe}f In the second
are the facilities for manipulating base-level objects named by
capabilities: fetching from a sesnent or calling a domain, for
example. It is the facilities in the firstmcsteéory which ‘can and
should be provided for higherelevel‘objecto unknown to the base-
level system B o o

As indicated in section 2.1, a capability provided by TCS con-
tains the type of its corresponding object. The division of the
set of all objects into types is a well knovn and intuitive idea
(although, as pointed out by Morris [Ho 72], the difference between
the type of an object and the privileges allowing accesa to it is

somewhat indistinct)., The set of objects provided by the base—level

system falls into some small fixed number of types. The question.




b Ty Sy A b s MG B
R TR R e P g Ao

63

is: what type of capability is uag@ltoiggmz a higher-level
("extended") ob;ect? Various answers have been proposed, four of
which we will explore.

épproach 1: 3gpresentatioq caquiiit;g§51légy_g%yeq”layer of

the system runs in an gpv;tqgmcq:ﬂp;gg;dgg,pg_;hem;qweg_Layera,
‘hence any object it defines must ge?regregegtgg}ig qg?mshpf lower
level objects. We Vi;lqésgume t@ag,%hg;rgpgeggptﬁqﬁqgigf each
gxpgnded 9bject 13 a siqglg’laweraggvel\obigggﬁ‘gﬁpge‘;hat single
’rgbjgct caprg a segment coq;ainiqg_gppgpi}é;iasJﬁo:nany other ob-
jects whiéh are necessary. AIhué‘;he most vaigg% gquidate for
the capability for an extended object?;s%;§gg}ngbqggﬁpility for
.‘;hg‘regregénting °b33°F:‘ A goqqggsp;;?f¢§§3;%cgpgp;;igyicould
call the layer implementing ;hgt'Q§;§?gng5yp§;toxggngay,some
operation, andlpaaajthe cgp@b#%@tiwtq ;pd;cggg_ggéffgtendgd object
td‘which the ope:qxion‘ghould pgéappl;gd,;zﬂa§ggg_yg§n pasged this
capability, the dpmg;p?implemen;ing,thmgyggggggtqgﬁggc;on would
QutomaticalLy have access to‘thg;rgprgﬁgggsipn.of;hg‘opject.
:Theza are at lgagpvthree gfgb;egs ?1th,th4§'9PP?°a9h' The
first and most important ;onqernglthg‘gglggg}pgwof an appropriate
seg.pf privileges ?o appear inthe‘qu§E$L1§Xf%AThe_@ifficulty is
.tb@t thg do@gin 1yalegen;igg ;hg Q;tegded quggtigquirgs egsen—
tially comp}ete power to manipulate ;hgkggg;%gggggtion, yh;le
wishing to deny such powgr,;qythevqg;g§.4qggiﬁﬁs1 ipopgder to
prevent tampering with the rgpsgaegtqg}on.ﬁ;lf thevaang ggpability
is used by po;h, ;his is.clgarly not Ppssib}g, Hﬁgge, thevimple—
‘manting domain, having upon request, created the representation

of a new qxteqded object, and thus‘gbtaipéq,af@g;}y_p;;vileged




R SRR T e S R SRR e
64

capability for that reptesentafibﬁ; must appf&ﬁfiétéiy weaken that
capabiiity before returning 1t "o ‘the éaIifﬁﬁtdﬁéfidaigih: However,
in order to guarantee its own future access toféﬁé feﬁréa;ntation,
the “implementing domain must do‘ﬁﬁéféf{f;b“thiﬁgﬁaJiiither it must
' save a copy of the otlgihal'fﬁliy'ﬁiiviiéénﬂjéﬁpibilffy;fér later
use, or it must make arrangements iiléhiﬁgffé't%:éﬁnvéfipihe weaker
capability back into the fully §fi§£16ged%6n¢ dhiﬁuit‘létér receives
it as a parameter to some operation on the ettigﬁéd objééf.
The first method obliges fﬁb‘iﬁﬁi@ﬁaﬁting'&bﬁiid to maintain
a global table containing p;iﬁileéd@dcébi%iffflé%‘fbr'aiiwexisting
extended objects which its layéfigéd’éf?dtgd;';ﬁd:faﬁiocate the
corresponding entry whemever it reééiéib‘hfabdkrﬁééf“éapiﬁility.
This method is feaéohaﬁlé,‘if”ségéﬁhiimti§ﬁby§ﬁvg | 7
The second méthod”requiféﬁ‘ébné’fadiii%j(éiﬁiiéx to Jonegf
"'amplicatién" ' [Jo 73], allowing the inplmnting domain to add
specified privileges to capabilities Sffghe iypé §f‘the rebrasegt— _
ing object. Clearly, the ébﬁerztériipiifygékﬁiﬁiiifiég‘6f a given
type is a very ﬂangefoﬂs power, and must Sé'tfihfffpéontrolled,
since it can éompletely'sﬁbbert fhé’fﬁté:éusdfig}éféctiéﬁ4bf
objects of that type if misused. Widle this 1s ‘an ‘incomplete sub-
version of the objeéfs'in question, iﬁdfﬁi‘éigéé%:hsf‘tﬁey_still
follow the‘seﬁahiic rules which ééfihé"fﬁéir‘€§p§, it must be
' regarded as a failure of the éérfé%ﬁdﬂdiﬂh'liiéféﬁbiﬁéé‘fhe correct
functioning of a layer includes the ﬁf&fhé%fénﬁg¥?it§"ﬁbéf% from
each other. Thus, the authorization of aqﬁii¢éti§i‘?hﬁst'be the
| responsibility of the la&éf‘impléﬁéntiﬁ§:¥ié‘%§§iﬁﬁﬁé&e“é&babilities

are being ampiified.  One of thé‘ﬁaiﬁlciifééiﬁ'df 1§yet;ng; however,




65

‘is that a given layer should heveﬁno knowledgezofvhigher layers.
vThus, it is not possible for a layer t&}éietingpish between "legi-
timate" hiéher iayers which needlaepliti;etipe?'and untrgstworthy
domains which would use amplification tqi;ainaundeeired access to
other domainsi ebjects.‘ We thus eoeeigge\that priyilege amplifi;
catibn by itself is iesuﬁgieient to eeiyevthe“problem of assigning
apprepriate priyiieges tobthevqsiggzandiimpiementiegvdpmains of
an e;teeded object,‘given that\the:eeqeitype q{icapability is used
By both domeieer‘v(ln conjuqetien'with.gnqther&eggplegentary
meehanism'("constituent rights" [Jo 73]5,‘howevet, amplificatiou
can provide a very powerful type extension facility which is equi-
:valent to one which we will describe 1ater )

The‘second prpblem with themrepregeptatiqgfcaﬁgbiiity approach
invplves tte(centrol of eccese to the,extepdegzpbjeet,\es opposed
1to ite representatioﬁ. Priviiegee~ererneede§,in eeeh capability
‘to speciff whith»ofvthe oﬁeratioes en_the ertegded:type are author-
rized tovfoesessers of that eaeabiiitf; Ttis eertainly cannot be
,qone by assigning new meeniege“to the exigtinngriyiiegeggrsihce
graeting the use Qf seme eperatiop on the eitended object Qould
then imply granting some unrelated access to the representation
>Hence, multiple sets of privileges are needod On the one hand,
this tends to make capabilities undesirably large. On the other
hand the number of sets of privileges provided places a fixed
upper boun§ on the number of times a heeeﬂlege}\ty?e“eaq”be extended,
Tﬁie situatioe‘ie especieliynfrtetreting sigee in gqettcepebilities,
only one of the sets pf privilegee;wili be non-empty. |

The third problem with the repreeentati?qfeapabiiity approach




66

is the difficulty of detefmining;jéiven EOGeJeepaBiliﬁy,'the type
of the corresponding objéét.‘ This is caunulhy the "unofficial"
status of extended types in this’ approach A given base—level

object may have been extended one or note”tihes, but the type

fields of &1l capabilities for it still contain its baaeulevel

"~ type. The only indication that the capebility 18 of & given

extended type is the presence of a uatehing fully privileged capa-
bility in the previously mentioned table kapt by the douain imple~

menting that extended type. Thus, one is not eble to ask of a

~ given capability "what is its type?" but only "is it of type T?"

~ for some list of types T. This is a clu-ey and costly substitute.

Approach 2: Domain cepvpilities. This approach is in some

sense, a variant of the previous approach in which the represen-
tation of each extended object is ‘a douin.MA using douain has
only one privilege in its capability for‘thic representation domain:
the privilege of callinglit. Teﬂpengdim‘ante;;;nded ;peration,

the user performs such a call, indicating;dnl&'Eﬁe‘opera;ion to be

~ performed; the object to whiehufﬁe‘eperetienﬂnpplies is implicit

in the identity of the called domain. Actually, this‘apptoech |
falls outside the framewprk of our discueeion,fsince it requires
independent domains callable by any proceas (at least if extended
objects are to be shared). It deserves nention,‘however, since'
it has peen used in at least‘éﬁo syééias?isﬁ"ii””réiés1} and
because it attacks the three ptobleme of the representation-
capability approach with somewhat mixed results

The first problem, ‘that of eaeily.allowing onl&lfhe‘imple—

plementing domain full access to the 6bjeet‘s iepieeentation, is




67

‘bypassed, since each object has, in effect, its own copy of that

domain, which can retain a privileged capability for the rest of

“the representation in some convenient location in its address

space

The second problen, that of controlling access to the extended

’object is solved by embedding in the domain information about the

operations it is willing to perform. Thus, privileges for extended
objects are represented and controlled differently for base—level
and extended objects, whenever a less privileged capability for

an extended object 1is desired a copy of the domain can be made,

“which is then ordered never to perform the operations being denied

to receivers of the less privileged capabilities. This is not as

expensive a solution as it might appear fot two reagons. First,

et iy
EEEN H

the various copies of the domain representing a given extended

B

'object can retain in their implicit segments the information spe-

S SN

cifying the operations they are willing to perform, and can thus

share all the other identical components of their address spaces.

Second the capabilities for a given object exhibit a strong ten-

B S

dency to fall into a small number of subsets, each containing capa—-

bilities with identical privileges (a tendency which we shall

K"
HE

exploit later). Thus, the number of copiee of the domain repre-

yaenting a given object tends to be much smaller than the number

of capabilities for the object.

The third problem, that of determining the type of a given

object is handled in an interesting if sonswhat clumsy wny.

' Clearly, examination of the capability will always indicate the

type to be 'domain. One can establish a uniform convention,

B TR R O




68

however, for associating some arbitrerily choeen unique capability
with each extended type, and etoring a copy of that capability in

some standardized location in each donnin (e 8- location 0 of its

implicit eegnent) repreoenting en object of that type. If users

BB

are allowed to examine that location, they can then reliebly deter~
mine the type of each extended obj;ct. The nnin objeetion to this
scheme is that baee—level types and extended types ere repreaented
differently, which disallows any uniforu type-checking anchanisn. |

There are some other problenn peculier to the dolnin—cnpebility
| scheme. Two difficulties arise fton the fnct thet the doneins
implenenting the extended type are aeeocicted with the objects of
that type, rather than with the acceesiné proceeaes. One reeeon
for wanting to associate a doﬁnin with each proeeee as the "repte-
sentative" of a given layer ie thet the local storage of the domain
providee a natural repository for infor-ction deacribing the status
of that process from the point of view of that lnyer. This Yown''
storage is ‘not provided by a echene ;nich eseocietea doneine with
extended objects instead of procesoes [!a 76]. Sone syetema have
made heavy use of euch own storage (e. g. CALoTQS Hultics) it is
not clear to wnat extent this is intrinsically necessery

Another ninor difficulty with the donotn—capebility approach
is its implicit assumption that all operations’on extended objects
are moncdic. While this is undoubtodly the noot co-non case,
7 exemples abound of ueeful operetionn which epply to two or more

objects ("file-to—file copy"), to some large inplicitly defined

set of objects ("close all open filee") or even to no object at

all ("creete a file"). Forcing euch operations into the nold of a




69

call on a particularvobject is not oniy artificial for the user,

but can be somewhat inconvenient for the 1mplementqr.

Approach 3; Sealed-data cagahi&itieg. This approach is moti—
vated by,theNfoilowing’obseryntion‘shogtvthefyseﬂof_representation
capabilities in Apnroech 1: 1If the using doggins are not allowed.
direct access to the representation of, an extended object, and if
the implementing domain always replaces the user 8 weak capability
with the corresponding strong one saved in 1ts own table, then the

user's weak capability is never sctually used‘to access the repre-

sentation- This suggests the posnibility og changing the type

‘field in the user 8 capability to contain, ot the type of ‘the

representation, but some new value associated with the type of the

extended object. There are two distinct ndvanteges to this change.

-On the one hnnd it provides an eesily visible and unforgeable

(given mechanisms to be described shortly) indication of the type

of the extended object. On the other hand it renders the capa-

bility useless for directly accessing the ropresentation, thus elim-~

inating the need for a aeparate set of privileges to control

4"

such access, as was required in the represent%tionvcapability
: : . . e PR A 1 ST AT T A

approach.‘

From the implementing domain's viewpoint, the creation of a

new extended object using this epprooch conid he done by:.

‘ i) V creating a representation of the ob;ect e
2) _bsaving a fully privileged gapghility for the representa-
tion in a hash table keyed on IDs . |
’73) ’constructingvs_ney cagahilitz‘contgin%ng_theﬁegtended

type, full privileges, and the ID of the representation,




70

and returning it to the caller.
When called to perform some operation, the iapianentihg domain can
examine the passed capability: |
1) checking the typé to vérifisth;t tﬂe Bbject is one that
it implements h B R | |
2) checking the ptiviloges to verify that the requeuted opera-
tion is authorized
3) ‘locating the rcptgséﬁtatioﬁ;capability;in itt table and-
:perfbtning the operation tn'thé'taprco;nt;tioﬁ
Clearly, the creation of éipdbiiities for cxt‘ndé&wobjects
must be carefully controlled since a forscd cayability could deceive
not only the users, but also the 1np1ancnting donnin.‘ The creation
of capabilities of a given type can 1ts¢1f be authorized by a capa-
bility. ‘When this capability and an arbittary datu- are presented
to an appropriate new base-level operatibn, a new capability is
returned with the authorized type, all privileges on,' and the
datum as its uriique ID. (As suggested above, this night be the ID
of the representation, but could:be ‘any value desired by the imple-
menting domain.) Section 2.6 will discuss how s&tﬁ.;ﬁthttizations
to create new capabilities can thenselve:,be.ctnaté;iitd distri-
buted. I o
The sealed-data approach as‘déséribed}{gAa q§ite acceptable
type exten§i§n ncchdnism;'aﬁd has in faétfﬁée; d;éd in at least
one actual system [St 73]. It‘élac;é each hiihét layer in much
the same position as the base-lev¢1*s§atcn; a tééﬁbility is reggrded
tas holding an ID sealed in a"tanperproofbbox,-whith guarantees

that the name presented by a user is in fact a'ﬁalid name given




71

him by that layer. Furthermore, it allows this without forcing
re-invention of‘chg sgaligg.mechanis&hin each new layer. It does,

- however, require that each new layer implement its own table for
converting an ID into g capability for. the represeptation of the
corresponding object; this is a p@rtial:dupliégtign of the function
of the base-level "map" of section 2.2. It is desirable to avoid
re-invention of the map, as well as of the capabilities themselves,
an gdvantagegposseased_by our fourth approach to type extension.

Approach 4: Sealed capabilities. The need for each layer to

maintain a table mapping extended object capabilities into repre-
sgp:atign qapab1;1t1e8~can be eliminated 1figge,sy§&em.siwply
allows each exteénded capability to contain the corresponding repre-
sentation capability, The ex;qndgg-;ap&biljgyfggus Secémés a
tamperproof box holding another capability! On the surface, this
makes it appear 1nev1t§p1e for capabilities to grow larger an&'
larger as objects are extended repeatedly, a prpblem already dis-
cussed in connection with our first approach to type extension.

A carefully designed implementation, however, .cap avoid this
phenomenon, allowing unlimited extension with fixed size capabil-
ities, as we shall see in section 2.7, which discusses the sealed-
capability approach in more detail, First, howeyer, we digress

- briefly to examine some more geperal questions. about type extension.

2.6 Hierarchies of Objects and Types
In a pon-extendible system, only.a small fixed number of

predefined types are provided, hemce.types can be.identified by




72

small integers. In an extendiblé system, a much larger set of
- types is needed. Two conflicting consideérations influénce the
choice of the size of this set. On the one hand, it is desirable
to minimize the size of type identifiers, sincé these appear in
capabilities, where compactness is a great vi¥tue. On the other
hand, it is desirable to maximize the total number of types
available, to insure that the supply will n&ﬁef be'exh;usted,
especially since type identifiers, like object IDs', can never be
reused. | |
Emphasizing the first consideration results in a system in
which the number of types, while much I&fﬂtt‘ﬁﬁan the number which
would ever be legitimately used, fs stifl fairly modest :(Ae.‘g.' thou-
sanﬁe or'mﬁﬂions of types) [St 73]fk Tﬁiéiiéﬁvﬁs 6§én the possibility
of a malicious program using up all »‘avéfiabré'*’ﬁypas‘ within a few
minutes of determined computihg.'”Tﬁpéé“iﬁ such s‘sySteg must
therefore be viewed as a finite resource, and must be allocated
as such. This is possible, but somewhat inconvenient.
Emphéﬁiztng the provision of aﬁ‘iﬁﬁihﬁﬁﬁéiblé'éupply of.types
results in a system design in which thé“sﬁﬁé%aof'type identifiers,
~1like the vspa’ée of object ms‘,"is"effe‘é*t‘ivéifi' mﬁnité ({.e. too
large to de exhausted during the lifetime of the syétaﬁ)} By
combining these two infinite name bpieés, the HYDRA system [Wu 74,
Jo 73] provides an elegant conceptual franéwork in which types are
themselves objects. This is illustrated in Figure 2.6-1, which
depicts the set of all objects aB forming &' three-level tree. For
purposes of this figure, only two aﬁtﬁbutes"o! each object are

of interest. One is its ID. The other is its typé, which is




73
An object:

© type

(=
N\

 Figure 2.6-1: Three-level object hierarchy

>




74

]

simply the ID of some other object,f ,Ih31sting that the other
object so identified be of tyﬁé”'tﬁpe, aﬂd providing a special
root-object with ID 'type' (which is gl‘o of type 'type') forces
all objects (except the root) to occupy either the second or third
level of the tree. The secondAlevel contains the types, while
the third level comtains the non-type objects.

Creation of objécts in guch a scheme can be described concep-

tually as a single ol:oer."mzi.c:sﬁ:~é

c + create _object (C )

obj type

where the new object will be a type iE ct?ﬁw“ 1s'a capability

naming the root objact .and a~nornal ohjeca Ak C ype is a capabil-

1ty ming a second level object. If ?g:tm m a third level
object, an error is iigga&led. In practiqg, ef course, such a
 unified base-level create  object operagion caﬁpot replace the
specificfthect-creatinn«Qperationsyfn;fthe variohs.extended types,
since only the eorrespoading iaygr haaﬁbbth tha auﬁhority and the
>knewlcdse naedad to crea:e and inittziiée the warieus conponents
of the rnpxeaentation of a given typowof‘extendeahebgeCt.

The practical disadvantage of the viewpoint just described
is the large size of type 1IDs. Nevertheleaa, we‘adopt the HYDRA
view of types as being objects. In Chapter 3, we describe a scheme
which manages to adopt this point of view, and yet provides an

extremely compact representation for capabilities.

There is a second kind of hierarchy among the types in an

Unique IDs, which are simply long integers, are shown as symbols
in Pigure 2 6-1 for clarity.

f



75

extendible system, which has been described by Morris [Mo 721.
This second hierarchy involves only the types, rather than all
the objects, and attempts to characterize the lqyered nature of
the system. Figure 2.6~2 illqstrates a simplé example, in which
segments are assumed to be predefined, and various plausible
extended types are shown, gach indicatidg the type of its imple-
mentation. This aasumés thaguﬁiixobjects-of a given extended type
- ( have the same type of representation, which does not seem unreasonable,
One can find exanplzs however, Qf situations in which differing
characterietics .of objects of the sang extended type might make
different types of repnesentationc deairnbla In Figure 2.6-2,
for exanple, one might wish to alxpv 1ong dgcunenﬁs eouposed of
a collection of text files, which aceérdin;,tp our conventions,
would be represented by a sesmnnt,eonctininggaeveral text file
capabilities. As another‘exanple, one nighbéwish to represent a
customer list as a sorted-file or as a lin!od 118t depending on
the frequency of insertions and dqietiqns aupuettd. in the general
case then, the types form not a siuple treé bt a directed graph
without cycles. The latter property expresses the partial order
induced on types by the layered sttucture of the system. Note that
for any given extended object, thgre.is onlylonekrepresenting
object, hence for a given representing object, the extended objects
it represents can form at most a tree. (Of course, in any realistic

situation, this tree is only a linear chain.)




76

DOCUMENT CUSTOMER LIST

Figure 2.6-2: A type tree



5o e Bk e Tl ot Fes g £

2.7 Type Extension Uaing_Sealéd Capabilities -

We now return to the last of our four approaches to the naming
of extended objects, that using "sealed capnbiiicies." As in the
sealed~data 4PP¥°5ch, the manufacture of extenﬂc& capabilities
must be carefully controlled to prevent forgery. Given the view
that types are objects, the appropriate auchorizatipn to manﬁfac—
ture a capability of a given type is avgapability of that type.

A layer can obtain a new type T by executing

'CT + create_type () .

- sﬁbgquenti?, ;t‘éan”geiliqgg‘capability :c‘vby’eﬁecuting

" C, « seal ?Cé9I2 v )

as 1llustrated tn Pigure 2.7-1. C_ will have type T, all privi-

~ legas on, and a new unique Ib lﬂgithcd by ﬁic‘tyatdn;

Later, . C can be recovd 3 - wetag

c *,gnffAI,(c"gT{:, .

- Note that CT must be presented to authorize unsealing, thus pre-

venting any random possessor of C8 from obtaining the capability'

’ C which is sealed inside.

The implementation of capability sealing as just &escribéd
requires a fair amount of machinery, such aavﬁﬁatvto bevdeacribed
in Chapter 3. However, a slightly restricted vetﬁion,of éapability
sealing can be added to TCS in a surprisingly iiu@le way. In the

descfiption below, we assume that a layer wishes to implement




78

Cs <« seal(C,CT)

type
C privileges
S
< ID
~
type (T) \\\
privileges (all) >
ID (new)
~ ~
~ ~
~ / ~
T -
~ h

N

Figure 2.7-1: Sealing a capability



‘‘‘‘‘‘

ﬁcapebilities of type T sealedbineide.

79

extended objects of type Txrfwhqee,repreeeotetiogs-are of type .Tr.

The creation’ of type Tx is perfor-ed‘by the operation:

Cp + create type (T_,P) .

on e IR e T
Y PARTERINES P £ 10

Ipar

‘Note that the t.ype of the repreeentation ('r ) must be specified

ST50 BERCF ST BN H’ ey AT

This is one of the restricrions neceelery for the inplenentation

described below, and forcee the aet of typee to form a tree, as
o . Pommen s il
discussed in the previous section.l Also, a set of privileges (P )
S PO oY H4Y 3 Dubmmadws

must be specified whose eignifieence will be explained below

FERTR L PL

The resulting capability for the new type ( ) allows the crea-

“1\

......

tion of new capabilities of type T conciining representation

g LA F ST L R I S

The erettion of an extended obfect io;olvea the c:eation of

its repreeentation (which reautte in a capability C ), followed
chgds s ningae ol
by the creation of a cepebility C for the extended object using
» CivE ; Swaglaes
the operation'

o

Gx + aenl (C ¢ ~,C“.lf.f x’); "

T N
RSN A AR T

.This produﬁesra .aesled capsbility . G . - The: m reet:icc.ion in

the. acheme is the zequ&rm&: Lhat. - G emuiu at least the privi-

leges in P_. (In-pragtice, tida 1o np punblem, since sealing is

generally preceded by the cxstiom, of. the: reprasentation, which
produces a fully privileged capahﬁlﬁgaﬁw§§?)g; ELA B e

Later, whenever the‘inpleaeqring domain receives as a para-‘
meter a capability Qx of the new type, it can recover the sealed

capability C_ using the operation:




80

c, + unseal (é*;Ci ) .
Note that the tecovgred ca.p;hi}ity Cr has exactly the privile;es‘
Pr, which cannot be(gfeatei”tgan thi'privilcgﬁs in the capability
originally sealed Thus the lcyer uhich 1:91&!&&:3 the repre-

V'senting cype nnad not trust the 1aycr iupl-nnting the extension,
since the latter can only recover priﬁiiegu which it: had previously.

The schene just described can bc 1:p1¢nnnted by representing
,the extended type as shoun in Figuze 2. 7-2 thc inplaunntation
of sealing now consists of lerely changing ch: cype ficld of C
frou T, to T and turning on all pzivi%asg- to prodnce C..
wh:lle unsealing sinply changes it bac:kan&L utn t:hc pri\rilages to
Pr’ :hus reereacing C asain, lote that c .. will thus contain
the same ebject ID aa did c e’ rnthct than a n?w ID provided by

the systen. In practice this is not n :ﬁrioua problen

“This 1upleueutation clearly allou- a zivnn objact to be extended -

one or more times, and still be rcpresentnd by a sznndnxd-sized
capability. Variations on this scheme which depend on short type
iDs are described By Sturgis [8t 73] and Lindsay [Li 73]. Another
- related scheme is the "constituent wigits™ approdch disciidsed by
‘Jones [Jo 73}, which is essatitislly equivalsht to ‘sedling & segment
containing aeversl capabilitiss. - Chepter ‘3 will descrite a scheme
%, ‘alowthy arbi-
trary sealing of capabilities. N

- which ekiminates: the: restrictions described

s




81

Figure 2.7-2: Representation of a type



82

2.8 Goals for a New Capsbility System
This chapter has attempted to set the stage for the proposed

capability mechanism of Chapter 3 by sketching a typical capability

system, exploring the problems of revocation snd type extension in

the context of that system, and discussing various relatively n;nor

modifications to such a system attempting to solve those problems.

In disucssing these modifications separately, examining both their

strengths and their weaknesses, a pulbct of desirable properties
have been noted. Thesé are listed below,i and are adopted as the
~ goals to be ut by the dui.;i propuul mcm:u- 3.

1)

3

Y

5)

6).

7)

Revocation should take effect {immedtately.

It should be possible to revoke ths various privileges

" in & capability independestly.

It should be possible to selectively revoke the privi-

' leges of a subset of the capabilities for an object, and

this should require no global knowledge of capability
propagation. | v
Any distributor of a capsbility et;.c:; ‘ﬁb‘t just the "owner"
of the object) should be able to revoke its privileges.

The users of upnbilithi should not need to dhtimﬁh
betwsen revocsble and non-revocable capabilities. |

The cost of revocability nhoal.d not In excessive.

The mechanisms of revocation and type extendion should

interact correctly.




83

Chapter 3

A New Capability System

3.1 A New Capability System

The goal af this chapter is the description of a new capa-
bility system (calle@*!es-fﬁr qhqu? ‘Which meets all of the goals
listed at the end of Chapter 2. | ¥;1§Arequires a fairly substan—
tial departure from the TCS system of Chaptct 2. After discuasing
two abstractions of the "1ink aesnent" achene of Chapter 2, we
adopt the fanily tree model to aescribe the revocation behavior
of capabilities. The mechanisufof generalized sealing is then

proposed, to provide both rcvocation and type extension, gnd the

practicality of 1mp1enenting the -chene is prgued in some detail.

3.2 Desigg Conaiderations for Revocation ,

In the design of the NCS cap:bility acheme presented in this

_,.,_4:._.'-

! cﬁapter, we wish to retain as Iﬁﬂ&“iﬁ“bodﬂible of tha advantages

emn

of thé inairbction scheme of Chapter 2, ng gts pro-

blems There are at least two approaches: which can be taken in

,attemyting to capture the essence of the indirection scheme in a

base-level cnnstruct, as depicted in»?tgquWQWlea. On the one

hand,' as in F%gure 3.2-1b, one can fregagd.,_;e ae being merely

a part of the?mapping from C  to zgg ohigck.. iid C, as being

a special revoker capability vhich allovs that napping to be broken.
i T e SRGE 1

on the Gther hand, as in Figure 3 2-1¢, one can regard both C :

and C, as being capabilities for the object, with Cb being

b
somehow dependent on ca in the sense that revoking Ca




84

object

(a) Indirection scheme

/E—:_:]Cb

object

(b) Revoker-capability approach (c) Dependent-capability
approach

Figure 3.2-1



automatically revokes Cb as well.

Taking the former point of view results in a scheme in whiéh
the mapping from a capability to an object is itself viewed as
being essentially like an object, since one can have a capability
for it and thus be authorized to manipulate it. To allow indivi-
dual privileges to be revoked independently, one must define the
mapping as eoutaining, or at least limiting, the privileges of the
capability;"yfhewgs;gblishing of one's future power to revoke a
capability should be an atomic operation, a8 discussed in Section

2.4. For exanple, the situation in Figure 3. 2—1b can be produced

by executing

Fr + revoker (Cb)' .

Subsequently, the;possesaggvpf %Ct can revoke the privileges in

Cb by executing

‘revoke (Cr,PTff“.

In its effect on Cb’ this is equivalent to the TCS operation

reduce (Cb’P) .

The difference lies in the fact that, unlike reduction, revocation
also takes effect in any and all copies of Cb which may exist.
The interaction of revocation with copying is clarified in

Figure 3.2-2, which shows the situation resulting from executing




86

Figure 3.2-2:

object

Interactions of copying
and revoker capabilities



87
C «C
y z

cr_* revoker (Cy)

cC «C
X y

This kind of interaction causes subsequent revocation of Cy to
affect Cx but not Cz, which is clearly the desired behavior.

More complicated situations include "subletting," as shown in
Figure 3.2-3, in wﬁich'both the priginal owner (héiding Co) and
an intermediate disEributO@w(hoiding Cd) retain the power of
revocation over the user (holding C ), and "bill collecting,"
as shown in Figure 3.2-4, in which the ability to revoke the access
of»the user (holding Cu) is délagated to a "colléction agency"
domain, with the owner (holding Co) retaining the option of later
disabling the collection agency if the contract with the user is
renegotiated. Note that the latter example takes advantage of the
fact that¥re§b€a$ility,‘bting authorized by a gapability, ig itself
thus revocable. o

The revoker-capability approach jiist described has a good
deal to recommend it, andéhas in fa;t beén explored in some detail
in a system design projé&t.ﬁé Stanford Research Institute [Neu 74].
However, we pursue beré'the'dépandent-capability approach instead.
Investigation of the two approacgea reveals the following advantages
of this choice:

a) It avoids the introduction of special capabilities

authorizing revoéation,vthus simplifying matters some-
what (although a certain amount of complication is

unavoidabie, as we shall see shortly).



88

object

Figure 3.2-3: Subletting using revoker capabilities

(———-‘Elcu
¢, =

(s

object

Figure 3.2-4: Bill-collecting using revoker capabilities



P R v e R S

89

b) It'gvoids treating the quabi}i;y—tpfobjeqyxmgpp;ng as a
mgnipulablg object, whichtg;gg;figgg;ly-reduggg_}mpi§4
mentation costs, but;gpcrificepityq?gb};ity to g§ke
reypéabi;ity itself ;evgggb}g,' .

c) It ggn:be cast in tegmgjofhgjmgchgéigm (;9 be described
in Section 3.4) which gg}fﬁgsjghgbnogigng of revocation
and type extension. | | |

It must be admitted that the choigg.§g_pqttggtgrely clear-cut; in

particular, the opposite cqgclusipn m}#h;,bgzgégched in.a.gontext

in which‘revocgble:revoggbi;;tyngggvcpﬁéiqﬁgggw}ypoxtapg.i:

Oné motiyatiqn fo; thevno;;pp ptAgepquaqpygapabi};gigs is
the observation tha;_a weakened copy of aﬁga?;}gulex,capahility
can arrive in the possession & domsin as a Fesult of either of the
following sequences of actiqps: A ‘ ,

a) Thg)p;;v;}gggq‘1nﬁ;he‘or*sigalfgggg?#l};yiare ;educed

~ to the desired set, and then a gqéﬁ,isxpgsgedito the
b) A copy is passed 59,:h9?°9?1§4§&»4°h3%9? ggdxghen the
‘extra privileges are revoked from the originsl.

‘The essence of sequence (b) is that the ggpnt;pg,doyain "has

‘second thoughts” 4nd wishes it had ggeé:sgggggge.(a) instead. This

suggests defining the revoke operstion by simply changing the

reduce operation to be commutative with copying, in the sepse that

revoke (C#,Pf; CB'+°C;

and

Cb + Ca; revqke‘(ca,'?) '




90

‘produce the same‘nef'éffect. ‘Of cdﬁtsé,>r§§3Eatipn cannot be
expected to undo any intervening exercise 6f tﬁE'affected capa-
bilities hence this commutativity applies only to the state of the
protection structures, rather than to the state of the objects
being protected. Nevertheless, it is an attractive way of describ-
ing the effect of revocation. |
Exactly how the revoke operation mhnagéa fﬁ find all outstand-
ing copies of the capability being févokedfiél'éfﬁéoﬁtde, the cen-
tral implementation question concerning this scheme. At this |
level of discussion, however, we siﬁpiyriﬁakinéﬁihdi:acglobal
search is done to'i¢ca£é and revoke the apbtbﬁfiﬁéeﬁéapabilities.
Given® that we require commutativity of cépying and revocation
there are several possible schemes, corfhsbéadiﬁg"ébvdifférent
assignments of dependency among the v;riiﬁs;éﬁbébiiitiesi¢21sting
for a given objéct.‘ Clearly, the cﬁiﬁnthﬁiiiti’fequirenent con-
strains the choice to assignments in which the dependency set of
any given capability includes allyéth;f ‘capabilities which have
been derived from it thrbugh.oné or more levels of copying. We
examine three schemes, corresponding taviﬁfeé'éﬁ&h‘assignmencs.
Scheme 1: The simplest scheme considers all éﬁbab;ii&ies
for a given object to be iﬁtetdependént,“so«tﬁitireﬁoﬁinélprivifi
leges from any of the éapaiilities,afféciﬁgéﬁgﬁiall."Thié approach
18 clearly unsatisfactory iﬁ géﬁéfal,}for'téo)tEASéns: '
a) All capabilities for a given object are fcrced to contain
the same set of privileges.
b) Any domain pqsseaging a privilege can revoke it from

all other domains.



91

Nevertheless, this approach has one virtue which makes it worth
mentioning: it i1s possible to copy a capability and have the copy
retain the revocation powers of the origina;. This is desirable,
for example, when a domain simply wishes to move a capability
within its address space.

Scheme 2: A more appeelipg scheme considers the capabilities
for a given object as formiﬂgfi "family tree" generated by the
copy operation as follows:

‘a) The initial capahility (p}n@ucnd”a; quect creation time)

1occupies the root noée of ; thé tree. g
kb) Whenever an existing capability i& copied the copy occu- |

s,

pies a new son node of the node contnining the capability
being copied. ‘ ,’ h , , ‘; f
A typical family tree is sﬁowh in”!igute 3. 245 By defining a
capability to be dependent on eth of its ancestors in the family
- tree, we maintain at all times. th. condition that no capability
can have any privilege not,pgeeesee@ by all of its ancestors.
Thus, revocation affects entiie anbtfees of the family tfee.

This tree-structured dependency solves the two problems
encOuntered with version 1 above, since it allows different
capabilities to contain different sets of privileges, and strictly
circumscribes the effect of revoking privileges from any given
capability. Thus domain A may pass capabilities to domains B
and C, such that

a) B and C have different privileges from each other,

and from A,

b) A may revoke the privileges of° B and C independently,

Bt L Eat s




92

L]

Figure 3.2-5: A typical family tree of capabilities



93

and c) B and C may not interfere with each other, nor with -
A, by revoking the privileges.

Unfortunately, by treating copying in this way, Scheme 2 sacrifices

the one advant;ge of Scheme 1: the ability to produce a copy with

identical revocation powers. A capability cannot be méved by copy~

ing it and discarding the original, since the copy, being a son

of the original would lack ;he power of revocation over other

such sons, and would therefore bg an inadaquate replacement for

the original. e
The problem ie caused by tw¢=gouf1icting notions of what

copying is fo;, uusgesting that! cwa”dtftére&} perations are needed.

Eggg By eombining th;"ggtions QI'Scheme 1 and Scheme 2,
we define ; "reduced family tree“ of capabifities generated by a

pair of copy opethtipnp: I ;fﬁ

#

C, +€, -~ (as in Scheme 1) .-

Cb <+ gon (Ca) (as in Scheme 2) .

The reduced faﬁily‘tfeebié génerhted&ié“foilowé:
a) The initial capability occupies the root node.
b) The copy operation produces a new capability occupying
the same node as the capability being copied.
c) The son operation produces a new capability occupying
a new son node of the node containing the capability
beiné copiled.
. A reduced version of the family tree in Figure 3.2-5 is shown in
Figure 3.2-6. As in Scheme 2, revocation affects entire subtrees,

Thus, while Scheme 1 proposed a set of capabilities, and




94

Figure 3.2-6: A reduced family tree
corresponding to Figure 3.2-5



RNt 2Carmt vty O AR TN A PEPNIE UL IR

- 95

Scheme 2 proposed a tree of capabilities, Scheme 3 proposes a tree
of sets of capabilitfes. This is intended to capture the observed
tendency of the éapab‘iliti’ea for a given object ":t‘t'iif‘fall‘ naturally
into subsets containing equivalent capabilitfes “(as mentiomed in
Chapter. 2).  In this scheme, the capabilities 1" each fanﬁ’l'}ﬂr"'tx"ee‘
node: always contain the same privileges, eitice -any change 'to ' ‘one

© of them affects thea all. On the othei Nard, capabilities in’

atfferent nodes of the family tree can’ contain #&fferéht“privileges,

dnd‘intiract'accordinn.to%th§»tu1és~bf~dGGCenaihtfrtv6Cdfibn;”'This
contragts with ‘<.ygt¢m 11ke TC8, in whieh aﬁyffﬁofcapabilitiés

may contain different privileges, and reducing“the'pri§iiéges*in

one never affects the other. | | |

Onevvalid complaint about this scheme is that it forces an
early decision as to which gﬂﬁt&iiitisiwéﬁiﬁlﬁi&ivintﬁiily wish to
revoke. iThe*teeotnoudad §01£¢y“woﬁ1d*be té'ui;f&'rGVOcable capa-

- bility whenever there was nnyvdoubt~ceneefﬁfhgﬁ€h¢ trustworthiness
of a receiving domain. Indeed, thi"1sw€he?fépﬁif£¢téioﬁ'fdr‘our
fcstricctnnwth&tvéapabttitics with the saﬂerftﬁﬁfifion status may
not differ in their privileges. It seems intuitifely@reasonttle
that any level of trust less than complete trust may be subject to
change, especially since incomplété:trust is often based on incom-
plete knowledge. Thus; the same ressrvetions wirieh prospt bne to
pass ‘a capability with rectrictedf§f1v£¥hg§aiiﬁdu1d‘proﬁﬁf“pné to

‘make that capability revocable. o ol |

Wh-ﬁishzto adopt the reduced family fr!é:tﬁfthefhbdel'of*
revocation behavior in NCS. The implementatfon described in'

‘Section 3.6 produces exactly this behavior, in ‘addition to a -




sealed-capability type-extension machaniem. in the implementation,

‘these. two mechanisms not only intepsct strongly, but.aleo display

a striking similarity, despite thedr. M dem defini-

~ tions,. We therefors present, im: Section: 3.Ai: a:more gensral:
. nacham.m vhich subsumes. them both..  It. shauid: be- enphasised that

this generalized mechanism: doss. ngt provide smy: sdditiomal: privi-
lege revocation features,. Mfmx&m rather as-an iateresting
descriptive device unifying two- sesmingly different comstructs.

We will concime to use the family. tremthaMf &8 nll, ‘where

appropriate.

. In the design of NCS, . we wish:te sdopt the: sealed-capability

~approgch to type. extension, as desoxihed in Chapter 2.. The mfnor

restrictions in. the TCS umili@i _sesling wechanion Wﬁ?_?sugm )
will be eliminated, but this is not a “*"W e

is crucial, wﬁt s 1s .the. Fl'O.P‘t;!:“th_; af type~extension
with revocatioa. ' : ‘

One aspect of such.proper iateractien hae oty e
oneds “”“”pom esible to.revelm secess .;»o-_a@cnﬁdxnhjcch
as well as to base-lavel objects. MNore .“, . m i
be handled through the normal base-level-rewhe operatien, without,
foz.~w9i.s any nead to explicitly, notify. the Wﬁxuhm taple-
G ;t‘hg.@wt" that. access is being yevoked. . Thus, nho extra bur-
don 10 Pitent. o0 she deus. of o omdel mﬁ?@k‘!"?wh certain

mild constraints are placed on the implementing layer, as we shall

-~y




see in Section 3.5.

Another interaction which must be handled properly is the
revocation of capsbilities for objects which are representations
of extended objects Since such capabilities can be sealed inside
the extended object capabilities (to any depth), the revoke opera-

rv?

tion, during its hypothetical globel sear;h, nnst be able to look

inside the extended object capabilities and renove the appropriate
privileges from any eligible representation capabilities it finds
there. This requirement rules out such inplenentatipns as that
described for TCS in Section 2 7 in which a sealed representation
capability has no explicit existence, but can be reconstructed on
the basis of certain assumptions, the key aasunption being that
,its privileges renain constant which can be false in a system

v

providing revocation. The important point here is not that a
IAyer implementing sn extended type would nornally be in the posi-
.tion of having its representation eapabilitiesirevohed but that
it must not be poasible for the freelv available type-extension

mechanism to be misused to "hide" capabilities from the revocation

mechanism.

3.4 Generalized Sealing

In discussing capabilities, ve have songtines referred to
i Svi8 IR SR B

them as being infornation “sealed in a box " This characteriza—

HES

tion has been used by Lampson [La 69], Morris [Mo 73] and others,

and suggests the obvious generalization of repeated sealing, i.e.

boxes within boxes. we have alresdy seen ons situation in which

=]



98

such a construct was useful: the sealed cepnbilirf approach to
tjpe‘extension} In this section, we propose a much more general
vcepability seeling mechanism foifhcsfﬁiiéh not“oni;“eliows'type
extension without the restrictions iapoaed in Section 2 7, but’
also provides for revocation which follows the reduced family tree
discipline of Section 3. 2 |
The aet of seeling infornarion in,a bok can have tﬁo conse-
quences: o |
" a) Readingvof che,information 18 prevented. -
b) Modification of the‘infornetion;isjprevented.

‘Morris [Mo 73] has referred to seeling as being transparent if
only restriction (b) holde, and gggggg if both reatrictions (a)
and (b) hold. We wish to generalize this distinction to allow
partially opaque sealing of capebilities. Thia‘ie acconpiished
by using boxes wnicn ere pertiyjopaene andwperrip'érnneperent.

The opaque parts of a box have infornation on them, they cover

and override the correeponding parts of the capability sealed
inside. The transparent parts of a box allow the corresponding
parts of the capability sealed inside to show through, an& to thus
remain in effect. It is not surprising that this selective "fil-
tering" action can be used to capture the notion of priviiege
’revocation, as we shall see. | R

The ability to seal things in'ooxeskia carefoily controlled;

as is the ability to unseal boxes and thus gain accees to their
contents. Various kinds of boxes are aveilable"the sealing and/or
unseaiing of a given kind of box is icgelf authorized by an appro-

priately privileged capabiliry for airype.wﬂin thie echene, a type




PR R NP Y

99

is simély a template for making boxes. As w@_will shall see, such
templates, when used i; a particular way, ganetntd a HYDRA-style
' ' 3-level object hierarchy, but this is not an explicit part‘of‘buf
definition of types. The association of bo*eS’with types should
not be taken as meaning that boxes are themselves objects, which
they are not. A box is merely the "skin" of a capability, and has
no independent existence of its o&n.

The format of boxes is shown in Figure 3.4-1. A type is just
a template for making boxes, and a capability is‘juét a box con-~
taining something, hence this can also be used as the format of
types and’ capabilitie&._ Qne Qanwthink of the'gields as being

A

written as "trit atrings" whgte each digit takbs its values from

R ¢t b A R v i u“,'ﬂ,».o!:s,

{0,1 transparent} The fialds are a11 fauiliar from previous dis-

-

-cussions, with the excaption of tha "capability—ID" field. This
field: iﬂggtifias the capability, and serves to distinguish it
(and all copies of it) from other ainilar capabilities, even 1if

their type, privilegea and obﬁectsiﬂ fields are the same. This is

important,'for example, during the hypothetical search which per-

forms revocation of privileges.

In spite of the alarming size of these capabiliﬁies, we con-
tinue to assume that each addresesble location in memory is capable
of containing one. At‘tﬁé same time, we will take ghe apparently
paradoxical view that each of the four fields in a capability is

the full size of a data item which could be étored in the same

location as the entire capability. This kind of behavior should
;. . A come as no surprise in a system which allows capabilities to be

nested to any depth without increasing in size.

R A T



100

capability-ID

type

privileges

object-ID

Figure 3.4~1: Format of boxes,
types, and capabilities




101

The seal and unseal operations are fairly simple. Executing

- Cg + seal (C,Cy)

creates capability C_. by sealing Cé in a béx specified by the

'S
iamplate cﬁntained in type T, as agfhorfzedéby the privilege of
sealing in CT The box produced 13 a yotbatim copy of the tem-
plate in type T with the exception that the capability-ID and
object-ID fields, 1if opaqua,vw&llqhgvtithe same new unique ID

written on them. ' Executing

.C.+vuéseé; (Cs,CT).u"“

4

revarsea the process by reuoving one orvmofe nges from C until
1t sucesds in removing a box whoge gygg fig;gmja opaque. The
value of 1ggwtype;field“nustmnatchutha§nofithaitemplate in type T;
otperﬁiéé;”§§>;rror'is';ighﬁiiéd;gﬁﬁuﬁé:#;iue is returned. The
capability CT must contain the privilege of unsealing.

Given the above mechanism, various kinds of templates can be
defined, of which we will use three,

The simplest kind of template is shown in Figure 3.4-2. It
1s completely t:mparent. and. mrm:aﬁ ,bmsgs ‘'we will call
"xockers," aince their onlyﬁfnnctinn;isﬂxnAgxayent their possessors
f:om modifyiang their- eontents in any ey Iawgarticular, lockers
are used towconcrol revoc&tion, ns-ﬂill‘be‘dipcussed in the next
segeion., A type containing this template 13 provided by the system,
and a capability for the type, allawing sealing but not unsealing,

is publicly available.



102

s —
Figure 3.4-2:+ A "locker" .
capability-ID .

Figure 3.4-3: A "revoker"

_capability-ID
ability-ID

type

priﬁileges‘

object-ID

Figure 3.4-4: An "extender'




103

A slightly more complicated template ig. shown in. Figure 3.4-3.
It is transparent except for an opaque capability-ID field, and

generates boxes we will call "revokers." .

akl from the defini-
_Fion_éf,thg.seal operation that\ggch,néyg;pyoggpsﬁili.thupwhave
its own new capability-ID.) As will be agﬁggiq”;heﬁn;x;<section, ,
sealing a capability inya,revqkerhppx is equivalent to genefatiﬁg
a new son-node in the reduced fgﬁ;lxy;ree.‘ggf;ype containing this
template is also publicly\aﬁa;lqp;gggg;ueggling,_buthoi unsealing.

The third kind of template is shown in Figure 3.4-4. It is
completeiy opaqh;.‘ The vaiue«ggﬁ;hg,tyne.f;gldqigéjustﬁthe D
~of the type containing the template. Boxes: geperated by such tem-
"p;a;es>we w111 ¢g1l "exten@ers;?;,xxtepgg; hgxegfproy;QR a sealed-
capability cypgfe#tensiqn.fgcility;ggvdésgt;§g§ in Chaptegﬁzz
~ Several types ;Qnga;ninzﬂsucp_;égp}ggegiQrc?g;egggiqnd,by the system,
an@}an ngration is provided for .creating more; such typeg.an demand.
These types are pot made publicly aqqeagibl@.i

There may be other kinds of templates which would prove
lintergsting or useful, but we will notﬁpgraggﬁghig here. Instead,
we turn to ‘the relationship between the sealing mpchani;m and the '
other operations of the base-level systenm.

As mentioned previouysly, the bssq-level operations taking capa-
bilitieg as arguments can be divided into two groups. Most of
them simply "look at" the capabilities as the names of objects
which are their actual argyments. . A,fqgiqg.gggp4qg§ directly con-
cerned with the cababilities thgqsglyes,‘irﬁg,;reggqen;,gfucapa—
| bilities by the former pggrationg';s,quitgvsiqé;g:,ﬂgﬁey always

rely on the external appearance of a capability, regardless of its




104

~internal structure of nested boxes. Fdr’théVihfter‘dpetations,
chefsituatioﬁ ig more complex.
In addition to the seal and unseal operations described above,
. there are four kinds of E&se¥1evai‘bbe%ﬁfidﬁ!”ﬁhiﬁh hanibhiate
f’cspabilitiga’fhénselves: ‘
a) cfiation of base-lével objects
b) copying of capabilities
" ¢)  erasing (overwriting) of capabilities
d) revocation of privileges ,
Each of tﬁése'is now described in some detail. =
Creation of bh%e-levél}ébjécth 18 1dvolved with the capability
‘mechaniam in two ways. On the ona‘hsaa,“aiéh'nga’dﬁjeéf”imat~be
named by an initial capability whidh’ {5 té be ‘Fetutned as thé
‘value of the ‘creation oparation. ”Tﬂéjfﬁﬁfiiitiéhléf this capability
-gan best be déscribed as the sealing of #n empty extender box,
using a type owned by the baéééi§€615i§¢€ii éﬂ“n"téﬁbl&té: Thus,
base-level object creatton depaﬁﬁi‘on‘ééilingJ T
~ 'On the othet hand, sealing dépends on ‘the previous creation
of types, which are base-level objéét&i‘*iyyea’corfeaponding to
the various base lével 6bjects (ééiﬁéﬁés;:déhiiﬁgfﬁétc.)véte
" created at system iniftalization tiﬁi;ﬂnit{léaéf”tﬁaf"root" type
(ID = 'type') must be created “out of thin atr,” and {n fdct, all
base-level types are-predﬂﬁabiy c:é;ﬁoé‘fhibfﬁaygféifEOéﬁh‘concep_
tu&l‘ly', onte ‘can think of the ~bh‘§¢->1évéi"‘¢3f“&tq?ﬁ “uding its own
. creaté_type ' operation, which would fn tutn uié‘théfeéhi‘Operation
specifying the root type as a template). | s

' Copying of capabilitiés 1s cénceptually simple in this scheme.




A N B Y T T e e

The entire capability, including any number of nested boxes, is
reproduced exactly, so that the new capability ia indistinguishable

from the original. Thus, executing

C,.+«¢C

i g 2

results in two identical capabilities.

The overwriting of a capability with data or with another
capability is also’simple.b Theﬁove;yritteq capahility ie_destroyed,
with no particular eide—efﬁectsvexcept topzthe;obvious possibility
that some previously allowahle actionsteremnoe'gorbidden.

The most complicated operation in this scheme is revocation,

which is performed by executing
revoke (C,P)

~which tevokes:frop C (and_all copiee‘of‘hC) ‘ahyrp:ivileges
Which areLcezo in mask P. Ihe PS?@F39§FVb9¥ of_fg is required
to be a revoket,. Note thatkthe tgyoke)ope:ation,_like the TCS
reduce operation, is portrayed as, uodifying an existing capability,
rather than producing a8 new one (cf. seal, unseal). Geheralizing
the discussions of Sections 3.2 and 3.3, we oill hypotheeize that
the underlying capability machinery pegforqsva élohal search any-
time an existing capability is go@i:ied gad_teﬁlecte.the‘changes
cinrallycopies of the capability, even thoeepphich are gealed in

’nesteq boxes.* (These copies are eaaily recognized by their

,,,,,

*In the design being described, this hypothetical search is exploit-
ed only by revocation. Sectieﬂ '3.8 wilt survey wotie possible ela-
borations on the design, two of which would also depend on this
search. At ‘risk of repetition, we agafn ‘point out ‘that this global
search i1s only a descriptive device, and is not actually implemented
as such.




106

capability-ID fields.) The particular modification performed by
the revoke operator is the writing of an OPGQue 0 at each posi-
tion in the privilege field of c which corresponds toa 0 in
the mask P. This is orly done, however, if the outermost box of
C 1is a revoker; the revoke operation-refuaes to write on any
other kind of box, and signals an error if ‘this is attempted
Operations must also be provided for testing the tag of a
memory location to see whether it contains a cdpability; and if it
does, for displaying the various fields of thetdipebilitf.“These

operations are stteigﬁtforward‘ana'reqoire‘no"detaiie& discussion.

3.5 Examples of Generalized Sealing

Thie section outlines some intended uses of the NCS sealing
mechanism joet described, and reviews the 3oole’listed at the end
of Chapter 2, to assure that they have all been met. The descrip-

tion of directories and other speeific facilitiooawhich can be

 implemented using NCS capability sealing is postponed until

Chapter 4.

There is more than one reasonable way to use'the NCS sealing
mechanism for revocation, depending oponythe exact situation (1.e.
the number of domains 1nvolﬁedAand their telhtiooshipe‘to'each,
other). In the example sitoationsibelow;wit is aoitnedrthet

domain A possesses aeeboofliti ";end;ﬁsﬁep, to pass it to one or

 more domains B. In choosing e_gpthod,oi'doingjtﬁis, ‘A controls

' the possibility of,loter.tevocatiqﬂ,oﬁ"tﬁe ﬁﬁxioué‘cayabitities

passed.




To illustrate the various situations, the sealed capabilities

are shown as arranged in corresponding redussd family trees. Recall
that sealing a capability in a8 revoker box corrsaponds to generating
a new son node in uhs tree. §("

The simplest situntion 15 one in which’ A conpletely trusts
B, and simply passes a copy (c ) of its own capability (C ), as
shoun,1nwgignm¢43,§gl,,,xhgiqgg;:;apquqg@'q;gﬂa;g of this is in
"system calls," in which A regards domain calis on B as being
operations of its "extended machine." As will bs seen in Section 3.6,
the passing of such g.n—seslsd cspsbility psranstsrs represents’
a considersble ssvtng.“ This 1: wery significant. since expetience
| suggests that a grest"uidnnity of domain calls sxscuted are in
: fact system calls {85‘7249 There are also logicsl reasons for

. o g e,
passing non-sealed~csﬁsh&i&ﬂ&§s pn certain kinds of system calls.

e o wu~_«,

namely those which dtinpi¥!ﬂ¢,

sxtended -ncblniznl for capability

storage and/or transmission, such as directoriss or nssssge

R P T S
IR L3 \

channels.

If A does not have complete trust in B, then before pass-
ing C to B, A shautﬁ“ltsl it in a revoker box. Byvkeeping
one copy (C ) of the snsléﬁ'eapibility, and passing another (C )
to B, A retains thctggng of later revoking B's privileges.
This situation is ilgysarlﬂﬁd 1n Figu:e 3. 5«2.

If A wishas to pase. ;v""csbig cspsbilities to the several

ls }‘w .
domains Bl,Bz,...,B g %ﬁlternsﬁive wouyld. be the creation of

;{
Gy as above by stg}ini’ ﬁgnfséreyoker, followed by the passing

of n ' copies of CR (densted CB ). to the domains B as

i’
i
- shown in Figure 3.5-3. . (Note thet Lhia 48 Juat the;situation



108




109

which would arise if A passed CB to Bl, and B completely

1 1

trusting Bz---Bn, in turn passed copies to them.) There are two

limitations to this use of the mechanism. One is the non-selectivity
of A's power of revocation; revoking privileges from any of the
domains Bi requires revoking from all of them. The other limita-
tion is the lack of isolation between the domains Bi;
them is capable of revoking the privileges of all of them, which

any of

may be inappropriate.
Both of these limitations can be avoided by simply handling

each of the domains Bi separately as in Figure 3.5-4. This

allows selective revocation from each of the B and isolates

i’

them from each other in case they are mutually suspicious. For

example, the various Bi may be the renters of a program owned

by A, in which case both of these considerations are important.
On the other hand, there are situations in which A does

not need to revoke the privileges of the various Bi selectively,

but does wish to isolate them from each other. For example, a
professor may wish to grant access to a grading program to all of
the students in his class. He certainly wishes to prevent the
students from revokiﬁg this privilege from each other, but may
well have no desire to revoke their privileges independently,
especially since this is somewhat costly and requires that A

retain and use n different capabilities Cp - In this situation,
i
in a revoker box, and

A can produce a single C_ by sealing C

R A

can then distribute the capabilities CB " produced by in turn
i
sealing CR in a locker box, as shown in Figure 3.5-5. This not

only eases simultaneous revocation, but is significantly cheaper,



B Y N R ]

R R

110

~Figure 3.5-4: Paasing independently.

revocable capabilities

v

’Fighre‘B}S—EE Piisinafiabi;tedli

- simultaneously revacable capsbdlities .




111

given the implementation to be described. j‘
From this discussion, it should be clear that goals 2, 3, 4

" and 5 of Séction 2.8 are satisfied by the proposed design. Goal 6,
that o!@iéaabnahip cbét, will be treated in the mext section,
‘ ﬁhich‘pféposeé“aﬁ implementation for aealed‘cdpabilities and dis-
cusses its efficiency. This‘léieéékéﬁfy°é§ai”fffiﬁaé of “imnmediate
revocation, and goal 7, that of proper intefdctisn Between revo-
cation and type extension. Beéwﬁhﬁmfﬁénfjcﬁgbééégé goals generate
one fairly subtle problem, which st ﬁe&éigéﬁééé& héfoféghlllthé
goals can be considered satisfied.” u 7 w

It 'is ‘clear that 'revocation as defined takes gfféctfimnédiately
in the sense thit the privileges of the appropriate capabilities
afe’imhédiatél&‘ﬁbdified. This is oniy sighificdht, however; to
the extent that the correspbndfnﬁﬁ&ﬁﬁ?ﬁtf&nﬁ“oﬁjéﬁé objéét in ques-
tion are immediately prohibited, wﬁiéhjiﬁﬁt§§§éﬁigea§s dﬁ§the’
checkiné of thevprivilages by the opétaffgdﬁ.gyﬁﬁiééih imagine the
fbllowing kind of éqggg;io,n%q vhich tevocaéiodzié effectively
délayed; Suppoéé'that donaid' A in process P, passes to domain
B in pfocess PB a capabllity to access X, which is an extended.
object implemented by layer L. Suppose thatjlayer L 1is repre-
sented by domain L, in P, and by domain L, in P,. Assuming |
that we can say nothing about the relative execution speeds of PA
and PB [Di 68] the sequence shown in Figure 3.5-6 is one possible
outcome, and produces an effective delay in revocation wﬁich is
visible to A. Strictly speaking, the problem here is caused by

the occurrence of étep Al between steps B2 and B3, which should be

executed together as a "critical section." Synchronization between



Al.

A2.

A3.

A4,

AS.

in P

112

BL.

B2.

A revokes B's privilege

to modify X

A calls LA to examine X

LA returns to A the

original state of X

B3.

A calls L, to examine X

A

LA returns to A the

modified state of X

Figure 3.5-6

in P

B calls LB to modify X

LB verifies that B is

authorized to modify X

LB performs the previously

checked modification of X

and returns to B



i e S e T e e e R g e

e AR BT RS e s gl

113

the base~1eve1 system and higher layers is ftaught with difficulties,

however, hence the following alternativa acems preferable when a

’ layer is about to access the repreaentation of an object, it must

mypl o Ufak

first lock all parts of the repreaentation to bebtouched and then
check to see that the requested opcratian 18 auchorized In many

cases, this interlocking would be neceaaary anyway, the major

) change due to’ revocation is the noving of privilege checking inside

of the critical’ section. (In particular this means that pre-check—

ing of privileges as an integral part of the douain call machinery

[St 73, Wu 74] is not very useful in a syatcﬁ 1n which privileges

LEE w il

FURE

are revocable. )

“In the context of Figure 3. 5—6 uch checking would delay

step A3 ‘until after step B3. Th. crucinl point is thac thia
" renders the situation” 1ndistinguisynb1e fron one’ 1n which step B3
" 6cetirred before AL, Thua, although an acceca Iay occur‘clightly ‘

 after permission to perform 1t has baen revnkcd there 13 no way

for a properIy written (1 e. tining 1nd¢pandcnt) program to detect

e

this occurrence.

3.6 Implemencatio_n of Gemralized Sealin; in Hcs

A8 in previcus discussions, we besia by dascribing the repre-

sentations of capabilities theaselvca.} A tagsed nemory location

£

holding a capability appears to the usec Eo coﬁ;cin a rather ‘large

amount of infornation, but in actuality 3t contains a short form

A R IR 2 S

Except ‘for real-time deiays.




et s

114

of the.capability, consieting of‘a "locker’bit"* ape the ID of the
capability ae shown 1nnjt;ute 3.6—1. T@e qthet fgelde_ere stored
elsewhere and the I is sufficient to locqte them, allowing recon-
struction of the complete ___g forn of the capability

| The most important advantage of thia qpproach is that it
allows the chnngeable’info;matipq“(eig, revocable privileges) in
all cépiesﬁof a capabiiitydto be centralized and thus updated
:without a global search. This is crucial to the practicality of‘
the schene and will be disc;aaod in  more detail shortly.

This approach also allows the effective storage of an entire
capebilityiin a singlekptacticqtrgigedEggrqﬂpfﬁg‘tggged memory.

. For e#a;ple, on the”terr;tly p“‘?‘%’t%ﬁ,!?‘?'@E%Q?gtggt“ new

| unique 1D is genetatec everzjlovg%crgeecQPQQi'tgg uge of 48 bit
worde‘woulc eliow the SYFtQQ;FQ Fﬂ%y¢°n§%°§°%§%¥-§Q£3‘b°ﬁt a cen~
tury without exhausting its supply of na-nl.v ﬁsing a nqme—epace‘
compaction approach and a somnuhat more realistic level of pessi-
mism would probably allow the use of 32 bit uords withqut requiring
an objectionable frequency of systcu shutdowns to perform the
compactions (i e. once every few weeks or nonths at worst).

An attractive way to store tha boxee uhich cqnatitnte the
actual substance of the capabilitiea_yould be 1n a global hash
table containing small fixed aized entrins ang keyed on unique IDs.
The map, as deecribed in Section 2 2 in ju;t such’a atructure,
which sugsestn implenenting each box as & map antg? This approach
,yields an 1ntegrated structure fg;uthe”teccggtrqc;ignﬂgpd inter-

pretation of nested capabilities fron their ehort.fOrns The

This is not the same as the tag bit on the cepnbtlity; and will
be discussed below.



115

locker bit

|

capability

capability-1ID

(short form)

capability-ID

type

privileges

contents

Figure 3.6-1: Format of (short-form)
capabilities and map entries



116

increase in size and complexity of the map machinery, while non-
negligible, is not excessive.

The format of a map entry is shown in Figure 3.6-1. The
capability-ID, type and privileges filelds of the corresponding
box are represented dir?ctly, while the object-ID field is replaced
by a new "gontents" field which serves to locate the contents of
the box. Map entries for various particular kinds of boxes are
shown in Figure 3.6-2.

Base level capabilities, while conceptually the same as other
extenders, are represented in a special form. The contents field
containa the physical address of the object, hence these map
entries correspond to the map entries in a systeﬁ like TCS. The
privilege field would always contain all 1's since revocation
does not operate on extender boxes, hence its value can be implicit;
the space in the map entry is used to record the sizé of the base-
level object instead.

Normal (i.e. user created) extender boxes are represented
similarly, but their contents are capabilities, rather than physical
a@dresses, and_they make no use of their privilege fields.

Revoker boxes represent their transparent type and privilege
fields as all 1l's. In the case of the type field, this value is
a constant which is specially recognized by the capability recon-
struction machinery. 1In the case of the privilege field, it is
used as a mask, hence any O0's written in it are effectively opaque,
as required for revocation.

Note that no map entry format is described for locker boxes.

Locker boxes are so simple that they may be implemented in a much



117

) SR T U

Initial-capability
for base-level

. T

object
(special extender)

siﬁeﬁ

1

Extender

(normal extender) f;;

e

»i‘

111,11,

Revoker }

T — #

Figure 3.6~2: Map entries
representing various kinds of boxes

Cap

.:.Type
Priv

.} Cont

Cap

- Type

Priﬁ

Cont

Cap
Type
Priv

Cont



i TR LAY

118

cheaper way. As shown in Figure 3.6-1, 3 single locker-bit in the
. short form capability, rather than a eonplete map entry, serves to
1ndicate the presence of one or more iocket baxaa €Since they
are transparent gnq‘ggnfreggygbxgjwgp}tipln«gQﬂ@ecueive,locket
boxes are indistinguishable from a single one.)

Given‘the described representations of the various kinds of
boxes, the seal and unseal operations may be implemented as shown
in Figures 3.6-3 and 3.6-4, respectively. The negl operation
. creates a new map-entry rspxeaenting.ﬂhe new box and stores in its
\ contents field the sapability bcing adhled S@ingg?}n a locker
kboy,isuhandlcd specially by simply &ugbing on ;he locker bit in
the secled\ctpability.’ Thﬁ'ﬂﬂ!éil“ﬁtii&tion simply returns the
contents of the appropriate extender box. (Recall that revokers
and lockers can never be unsealed.) Figure 3.6—5’suunar1zesvthe
various low-level -facilities used in the desctiption of these and
other operattona - These are aggusied tb be cleay fton previous .
discusstuna’ with the exceptiou‘af“c&pability teconatruction

("Racnp“?“nad ‘assoclative memory Ioo&up ("Cap_: find" and "Cont_find")
which will be described” shortly.‘m o

The creation~of each _new baae—level ocbject 1nc1udes the
construction of the "root" map entry represencing its initisl
capability. This map-entry is self sufficiept, in the sense that
it does not depend on #ny other map entry for its proper interpre-
tation. IOn.the other hand, a map entry representing a revoker or
extender box contains another capability; its one-word contents.

field holds the short form of the capability, hence its interpre-

tation is dependent upon the other map entry holding the rest of




119

. C. + seal(C ’C'I‘)

C« iecap (c)”
Cp « Rmeapte )|

s o e
H .

e :
i

t 5)‘ - R
ied-ton ERBQ’

] N y
*

i st gn .

R "ERROR

| ggtc . LASH 0133',’.(&7; % 1+ NewHID( )
LOCkE§(c§) <—f e & By e .

b i

Type (M)ﬁ }“ml‘l#

Priv(-# 11...1 ; ~ |type() « obi(cy)

R T ’ Cont(M) « ¢ o=
- Cap‘(ca) 1
' Locker(cs)* 0

Figure 3.6-3: NCS seal operation



120

cn + unseal(G;GTS

C + Recap(c) |
.cT”f_Rncip(ai} E

Return €ont (C)

Figpté 3.6-4:

NCS unseal operation



121

Map

Y
Fields in various data structures (see also corresponding figures)
. Cap (x) | | ' c#pability»ID . B
"l‘ype (x) | \ type B 9
Prﬁ (xj | | privileges |
0bj (%) . . object-ID |
Sizé (x) | » | siz’eb
Ccnt (;) o ct;lttnts A» R
Unique names
“New ID () - - | ‘generates- a mmique‘m
New map entry (I) | cteatea mép entty with capability-ID I
Map entry (I) o fiads nap entry with capability-ID-

Delete_mp___entry 0 deletes mp eatry M

-Capability recomstruction -

“‘Recsp- () - - - ' recosstrects long formof ¢

Msociative memory

Cap find (I) find entry w:lth capability-ID- I

{skee LRYU entry) *
Cpnt___find (x) \ find entry with contents = x

- (else: mﬁeuwy’):a

Figure 3. 6 5 Law 1evel facil:lties used by operations

iig USSR LA N S e



R T R e e o

122

thst capability. Thua, repeated uﬂ.i,n. of a bue-level objec.t
?

results in the gemntion of a tree of map utri.es, uhich combines
the functions of the type :ru of Sectiom 2. 6 and thc reduced
family tree of Section 3 2. An exsmpls of mh a tree is shown in

g ? %“

Figure 3 6-6, in vh:l.ch a ug-nt is used as the rcpuuntation of

an extended gbject of cyp; 'dircctoty,' fat vhich various capabilitics

LS

have been distributed. ,

It is important to note that while the mwguion
gemwu mh-.tmwmmn,. the unseal apmm does not dis-
mantle them. For example, in r:tgurn 3.6-6, if th. hyor :l-ple-
unting directories unseals c3 to obnin cs . the up nttuctute
’runhumhtnpd m-acm“fw‘hmﬁwﬁnp |

SRS SRS S

‘ entr:tec un bc diacuuod latcr.

‘,..,

In m-r to reconntruct the 1on| fon of a cqmbility. it is

' necessary to examine the boxes Mmi#,& o «vith the

outermost: and . warking: jewerd, until all fislds: are: Mletely opaque.
Given the particular kinds of boxes M in our scheme, this simply
entails tcmins down a chain of (zero or -’ote) ra;oher- until a
non-rwom m u m:ud This rlcmtraetion procedure, |
shown 1n m 3 6—7 + 18 rather swht to the "fallmd.ng" proce-~
dure for. hdimction chu:l.ns of Section 2.4, In oth.t fiauru, the

s Yeyn ] wnnd

apability mmctm preco&uu is utmnd to 1n the form
C «+ Recap (c¢) :

where c denotes the short form and C the recomstructed long

~ form of the capability. In additfon to the visible long form, the

reconstruction process also recovers the represengation pointer




123

Capabilities:

long: Y Yy f 8 I ’55: g
"dir’ ‘dir™ 4 | 'atet | | raix’ "seg'
. I 2% ‘ 1 e, | i1,
- Kt . ! p————
: a
€5
short: , Fi
Map:
Objects:

Figﬁre 3.6-6: A map entry tree



124

C + Recap(c)

I

1+ Cap(Cont 00))
P+ PA Priv(xx

‘ W.ﬂ&) « Cap(¥)
izal{A) « Priv(W)}
Cont (A) + cmao“ | |

k- - B iy ,ur« vn. s v e

Figure 3.6-7: Capability recomstruction

TR R e T R e e e e e



‘from the capability to the object, which comsists of the short form

representation capability in the case of extended objects, and

the address and size for base-level ocjecta. Thus, the result of

the reconstruction process is a iagging, as shown in Figure 3.6-8.
" The cost of the reconstruction process is relatively high,

since it involves scanning a chain of map entries, each of which!

et berloeated’by hashﬁsg into the map. The recention of the most
Tdetive” uﬁppingn“!ﬁ fast hxrﬂvt;e thus becomes even more important
" "than in a systemwiike TCS. Thg assoctdt1ve’ memory discussed in

'§é&£16£'z;if§§91§fbe ﬁsééygiéﬁbut change to hold map entries from

s ‘l"'

‘hctiVG“cﬁitcé“&ﬂﬁ*tﬁd&wgp&ﬁﬁ;ﬁp the scan. Oh the other hand, a

¥‘<

" 50% increase in Ehe size of thh asaociutivctncnory entries allows

"them to contain entire mappinss, rather than single map entries.

On the average, this modification would prubnbly not provide a very

dzwm improvement. in. qugds »(hy bymm monstruction

process entirely, rather than ncrcly accelerating it) and might
even slightlyégcéﬁcQ:thcjcéiiﬁig;;;i;fajpng# gtili;ation in the
assoclative memory (if the average chain iength was less than 1.5
map entries). It is desirable, however, eince it allows a fixed
amount of associative memory space to effectivély contain a chain
of arbitrary length, thus preventing long chaicq frop severely
degrading performance by filling up the associative memory. We
therefore specify the gséociative memory as containing the several
most recently used complete mappings. Tha_éxact number to be
retained would depend on several considerctions,:ranging from
available hardware components to expected usage patterns. Two

factors which favor maximizing the number are the relatively high



126

capability-ID

: ,X i 1\ 344

ERS DR SR

type
i:—b

Capability

Representation "
rotater

* Base-level objects only
. Rex Address if bane-levcl ohjtct
' Reprasentation capability (ﬁnﬁ: formw) if extéediiled object

Figure 3,6—8; A_nnyging o
(as stored in the assotistive: semory) -



127

cost of initial loading (= capability reconstruction) and the fact
that the retained mappings renein valid through domain—calls and
process switching. '

In the various figures, the associative‘menory,facilities are

represented in the form

A + Cap_find (X)

A + Cont ftad {(X) .

Each of these finds an associstive memory entry whose‘appropriate
field (capability~ID or contents) contains the value X If no
such entry is present the least recently used entry is found.

| The revoke operation is quite straightforward in terms of

its effect on the msp. Since sll copies of a given revoker box

are represented by a single map entry,rthe nasking of the privilege

fleld of that map entry eutouatically revokes the corresponding
privileges from all the copies, includins those sealed inside
other capabilities. The only problen is that soue of these latter
capabilities msy already have been reconstructed and saved in the
associative memory, necessitating their resovsl.

Unfortunstely, the names of sll such cspabilities cannot be
determined from the name of the capability being revoked except
by introducing a complicated and fragile bsckpointer structure

into the nap—entry“trses. One wsy of dealing with this problem is

i

ato conpletely flush the associative«uihory on eseh revocation

‘o This will be sezisfsctory ig- tﬁe !requency of revocation is rela-

R

,tively 10w; If revocstiontih a sufficlentiy irsqusnt occurrence,

-\houever, his uill drasticslly reduee the utiliéy df the associative




128

memory by forcing heavy use of the axpenoiwc roloading procedure.
A quite satisfactory comproniac betwunn total flnshins of the -

associative memory and selective renoval of only the affected !

capabilities is the removal of all capobilitino for the same '

object. This 18 easily accompliohod using thl "Contﬁfind" feature
of the associative memory, as shown in Figure 3.6-9. (For sim-
plicity, we have assumed that -0- is not a valid value of the !Cap
or Cont fields of a mapping, and can thnrcfote be used to diaable

an associativc memory entry ) This acni—oeloc:ivo remov:l will

3

sometimas force unnecessary reloading of c&plbilittcs which were
not affectcd by the revocation, but thiu will only hnppen when
capability is revokcd and anothcr capchility for thc same object

which is not its descendant in tha faaily trea cppocrs in the

associative ncnory. ‘ ’

The storage of inactive map entrios 1n socondnry nenory is
mich the ssme in ucs as in TCS. Each rcs uap antry corrcoponds to
a completc tree in NCS but only the octive pctho in the conplete

tree need be hept in princry nouory. It scc-s likely that known

-

techniques for localizing lis: strocturoo 1n oocondary -enory ;
'[Bo 671 could contribuce significantly to nininiﬂins thc overhoad

incurred ‘when an inactive path beconeo sc:ive and -usc bc brough:

into printry nenory.

*One possihle frcquent exanple of this unuld be romveanion of a
domaia-call parsmeter upom returs:.fsos the eall. -Bewotation of
the callee's capability would unnecessarily remove the ¢aller's own
capability from the associstive mesory. This coullbe.awvided us-
ing a modification suggested by Peter Bishap of ¥.I. T., in which
the mapping. produced by the capahpility reconstrusdion mechanism
would include the length of the chain scamnad to produce it. By
comparing this value for the. capsbility being. revoked: amd the
capability being removed from the associative menipry, one could
avoid removing tree-ancestors of the revoksd capakility.

1




129

: :,euoke(%?g ) :

— Py rempey pa
Priv(}i) « Priv(M)A P

zu\, 5 E .~_¢J- s L ‘ B TR

"'Ll

Cap(A) =0 ‘i
Cont(AY = 0
S S RS ST e

b



130 S .

3.7 Some Implementation Details

In describing;' ati hpleaen&d system, it is often desirable
to omit or simplify certain details vhich, wiiile necessary in the
implementation, are of‘ 1itti§ Vi‘ntriuic interest, and tend to °®
obscure the significaant ptiac;l.vm of the design. Uﬁfortumtteiy,
in arguing the practicality of an wilplmteé system like NCVS,
one is oﬁtged to address such issues. - This- ngétiﬁn is invdlved
with usuch details relating to the maintenance bf the system data
structure we have called the map. Readers nha;«fin‘d themselves:
growing bm':ea with the arguentl can skip th remsainder of this
section vithout signifimt loss of co&tiﬁuizy. | ) *

The banic problem w:lth the map as described thus far is t:he
lack of any mchanim to keep 1t fr:o- filling up. ‘For example,
by repeatedly sealing a #ingle eq;abﬂity at the rtlétively ﬁodcst
average rate of once per nillisecﬁn&, a malicious domain could:
fill up a 1 million word map in a few minutes, In a system like
TCS in which ea-éit mp entry cerrupoﬁs to a diffcrcat objectﬁ, {one
might be able r.é depend oa the Mttum of other rescurce usége
for the ocbject to limit "ﬁuéq of the mp-rmxchgurce and pre-
vent its exhaustion. This is clearly mot the case in the new
scheme, in which creation of map entries does not ‘:inply,any other
resource usage at an."" | L | - S

For this reason, it is netessary to treat mmtrus a8 an
allocatable resource and thus lin;; the smount of -ap space
available to each domain via its account. An account's reserve
of available map space must be decremented each time a domain it

funds creates a map entry, and incremented when the map entry is



CrE R SO i Y

RSP BT

131

deleted This requires that each map entry contain an extra field

sl TwmAss T
specifying the account which funds it since this may not be evident
SN & i_ i;,._ﬁ“:( H k '}v":'” sn Pt

at the time at which it is deleted Since unused map space resides

SMr} R

St &

on secondary storage, it is quite inexpensive, hence the allocation

given to each account can be sufficientlvhgenerous that no ‘reasonable
g AT > vy 4 G syt oy pogidia O
program would ever exhnust it. The limit eerves only to contain
Com H Td Rz g Lom ol .
the demage done by pathologicel prograns 5 !
o frogxtheu:vstem 8 point of‘viev, th;Fnrohlemvis now solved
T T I TeT I S T PSR i %ot T SR
isince each ucer can harm o;ly him;elf by:eftravagant use of map
P PEle BN o [
space.v This is not really sufficient houevii' the consequences of
TS SRS ¥y SEE B il T v TR s gl
such“self-inflicted harm must'not b; too severe. A given account's
i hrhmesan R = xix s

3

ﬁ‘allocation of map space can be cluttered by an undebugged program,

- _— 3 SRR
T T R WEALiE I & JeFeNty Geld mEry s tales Dlund

V'hence some mechanism must be provided for prevontion of and/or

. ; . s N
cer i by beely o b tma b, SO R X ) 2w by SRR A YD

recovery from such a situation. Prevention cannot reasonably be

N pEy By b s = "",’;5»! B owavity Yol i ,’;.::é} cg,‘. AJ}{

expected of the base-level systen, since it cannot distinguish

wios o BRES f { 5o 3G }@J FEEHD 'ﬁf LY fanei o

between legitimate and illegitinate use of -np space, hence recovery

R B m.;@a% DF @l g vy

4mnst be possible.‘ We take the point of view, however, that this

x Cothx 3 K ERES - Th J %u‘ Joui L sk :’E?ﬁ
recovery need not be particularly easy ar grncoful since, as
. nety sl porw Ay belslonl srbleas L vi
mentioned previously, most use of the sealing nochanism is expected
. £ 6 asitTuas Lk ind nE LREED

vto be made via more civilized facilities rather than directly. The

I

Ce craris ?
inplementation of such facilitie. will be discussed in some detail

FICE IR -t R DA

Hin éh;nt:ruz ‘FAtwthis4goint we areéonly concerned that such faci-
S eglan - x : TR S s Ta WY T Ak TOR TR 8 BRRION IS I o3 -3
lities ;;e ;ealing in an orderly :ey. 2 ) ,,M_f. L
What constitutee orderly ueeio; :ﬁé%é;;iiﬁé nechaniam? So
, . PR RS I S SEnT B o - H
far, no method has hee; deecribe; for renoving unneeded map entries,
Soropeed il e ovigeenly gnh ey D

hence any use of sealing will eventuelly fill up the map The

o3 i

et “ coometdsetah va Lawmollod 3 ¢

basic question is° when is a map entry no lonser needed? There

L .h,‘,’») RTINS B At [T ('_t; Prfy ) Wi f«



132

are at leaat twc circuutancn 1n uhich t.his 18 true'
'a)" Its privilege field 1s aupty, S ; B !
b) Its contents field point- to a m-e’xhtent up entry
or objecc ‘ ‘ ‘ !
If either of these conditionh holda the np em:ry i.s \ueleu and
may be deleted. Condition (a) mgnts tht ravalm oporntion, upon
reducing t:he privileges in a up eut;ry, :hould chock uhether any
privilcges remain, and if not m;tu the eatry fm thc map. ¢ Con~
dition (b) mggeats that tha capchmey rueomtmction uch;nisu, |
upon emountcring a nap entry \dwu muats ﬁ.cld mntaina such
a "dead-end" capability (wh.teh we \rill eal}. an “whw" entry)
‘should cmcm 1t from the up A up -uzry m coam:a fnld
contains t.hn address of a ban leval object 1: dcloted whcu the
object is deletsd thna uoluing my mp min peint:l.ng t:o it,
| VIn general, the delction of a m an:ry mvcma one ot nore
other map entries t.o beeone 1solatcd. md thut h dakted the next
time t:hay are exereised by the recmtrw:tim mm‘ In this *
way, entire inolatad subtrees can be muy aliaim:ed (The
case in which such cntr:l.« are never -ubmtly am::iud will
be discusm shortly ) ‘
| 'xhua. in oddit:ion to its noml cxmm activitm
(destroyiu uuueedad objacts, atc.). s uu-m m should
revoke any unneeded capabil:u:ies to clm whm wp ?’:"
Swln’ly, the problm of clmins ap l!tnr ﬁh aucution of
an umh!mu«l domin involves dalet.iaa of m obj‘cts and. up
entries, followed by dnhti.an of t:ho dm;in imlg@ Pxehlm can
arise if t:he faulty domain has duetrdﬂd all capckiliem for any



133 :

such object or map entry, which is then lost. A feature solving
the lost object problem will be described in Chapter 4 but it
would be expensive and cumbersome if used for every mep entry. We
therefore allow map'entries to become lost snd require that recov-
ery from this situation be possible. This requires the revocation
of all capabilities originally passed to the faulty domein, thus
isolating the subtrees of map entries produced by its execution.
The lost map’entries in these(trees will never be exercised how- .
ever, since by definition there are no capabilities for them.

For the reason just cited ‘some mechanism must be provided to
exercise lost map entries. Moreover,'eyen‘for map entries which
are isolated but not lost, it would be helpful if their elimina—
tion from the map was automatic, since it may be some time before

they are exercised This can be accomplished by adding to the

base—level system a relatively simple operation of the form:
exerciee (I)

,Which simply exercises the I-th map entry by reconstructing its
capability. A 10W°pt10tity background process (sometimes called a
"daemon" phantom") can now be constructed which uses the new
operation to slowly sweep through the map eliminating isolated map
entries. The rate at which this is done is a tradeoff between
minimizing the extra load imposed on the map machinery and maxi-
mizing ‘the rate at which map spece is‘recovered. Given generous
“allocations of map space to the various accounts, the rate could

probably be quite low. The exercise operation is not available

to the users, since they have no use for it, but it is not at all



134

dangerous, hence the background process need not be trusted by

the base level system.

3.8 Possible Elaborations on the Design

There are several directions in which NCS as described in
this chapter could be elaborated. We here digress briefly to dis-
cuss four examples, arranged in order of increasing difficulty
of adding them to the implementation described.

A simple feature which might well be included in an actual
system allows examination of the relationship of two capabilities,
to determine if one is a descendant of the other in the same map
tree. This would be useful:

a) To determine revocability of one capability by another.

b) To determine accountability for unauthorized distribu-

tion of a capability.
This checking could easily be provided by an operation which simply
scanned from the first capability's map entry to the root (base-
level object) entry of the tree, watching for the second capability's
map entry.

Another feature, which has been mentioned previously, would
be the definition of other useful kinds of boxes in which to seal
capabilities. For example, a box in which two or more capabilities
could be sealed would eliminate the need for a small segment to
act as the root of a compound representation of an extended object.
This is similar to the scheme used in the HYDRA system [Wu 74].

On the other hand, its implementation would require variable-sized



135

map entries, thus significantly complicating the implementation of
the map.

A third rather interesting possibility is based on the obser-
vation that the masking of privileges by the revoke operation is
not an intrinsically irreversible process. One could just as easily
provide an "unrevoke'" operation for restoring previously revoked
privileges. Note that in this context, the use of lockef boxes
takes on a new significance, since it not only prevents inter-user
interference, but also prevents the possessor of a capability from
restoring privileges which have been revoked from it. The only
major implementation difficulty with this feature is the impossi-
bility of automatically deleting tqtally revoked entries from the
map, since they may iater have their privileges restored. Tﬁis
would require explicit deletions of map entries, making the appear-
ance of the mechanism more complex. In addition, the whole notion
of unrevoking privileges cannot be described cleanly in terms of
the family tree model. Nevertheless, this feature could be quite
useful, since it allows increased levels of trust between domains
without necessitating the inconvenient repetition of the capability
distribution procedure. The whole notion of temporary revocation
could be quite useful, for example, in the debugging of locking
protocols in a complex multi-process data-base system.

The fourth possibility is similar to the previous one in the
sense that it attempts to preserve an established pattern of dis-
tributed capabilities while changing the meaning of those capabil-
ities. In this case, the change is to allow switching of the con-

tents of an extender box. This would enable a layer implementing



136

an extended object to dynamically change the identity of its repre-
sentation. Of course, care must be taken to avoid the possibility
of circularities in the map; this can easily be done by using the
first extension mentioned above to detect the case in which the
new representation is a descendant of the extender which is being
modified and signal an error.

The extensions described in this section could be added to
NCS without excessive difficulty, but for the sake of clarity, the
remainder of this thesis will assume that only the mechanisms ori-
ginally described in Section 3.4 are provided. The facilities
described in Chapter 4 would require some modification if any or

all of the extensions were in fact included.



137

Chapter 4

Two Facilities Using the New Capability System

4.1 Possible Facilities Using Generalized Su&ing

The purpose of this chapter is to-briefly explore two examples
of helpful facilities which can be constructed using the: NCS
.generalized sealing mechanism described: in: Chapter 3. -One is an

improvement to the base-level domain-call n&inery providing

selective revocation of capabiliry parameters:passed omn a call
when. the corresponding return ogeurs. - The other is an extension

providing a new type of object cﬂM & dﬁecx:ony; -whieh’ allows
storage and distribation of cepabilities im s manner which is often
much more cmweni.ent than that provided. by the: base~level system.

- Other umeful facilities could also be:dafined:in a similar
fashion. Plausible exewmples might incilude::

a) An interprocess communication facllity providing extended
objects called meﬁmcm,ngm of transmitting
messages coataining rapsbilities valid omly until the
next message is received. - .- |

b) A remtal mediation service, guarabteeing to the lessor
-that privilcges -will . be revoked apon: coatractf ‘expiration,

and to the lessee that:revocation eannot. occur before \
. that time.. /
These and other possibilities will be left: umezplored here. The:
- -point is simply that the nested: capability scheme: allows the
‘construction of an open-ended set: of :extensdons, many.of which can
also make use of the revocatiom preperties provided.. . .

©



138

4.2 Revoca.ble Paranetets

There are certain events which constitute natural points at
which to distribute and revoke capabilities, The most obvious
empln are the occurrence of a dommin-call snd the subsequent
corresponding return. As discussed by Sd:mndct [Sc 72], the
temporary granting of access to pn'aleter ubjoct:s is a matural
and useful feature of calls between smstually susptcious domains.
There are other situations, however, in which it is unnecessary
or even inappropriate to revoke all capebility ‘pu-au:drs when a
return occurs. in particular, as previously noted, calls to trusted
mhiaem!.an domaing need not revoke their p&ms, which
can result in substantial savimgs. We thevefore propose a more |
general mechanism in which the caller can specify, for each para-
meter passed, whether it is to be yevoked whem the called domain
- returns. | | _

It would probably htpouﬂd.c to: provide mg improved domai‘.n
call as an extension rather tham an istegral part of the base-
level system. fhis would reguire ihat»sn domein-calls and returns
(oxr at lesst all those which involved smy vewocable capability
parameters) be routed through this mcnam,aukich would be both
clumsy and costly. We therefore describe revocsble parameters as
being included in the base-level domain~call mechanism. ,

In t’he ‘previous discussion of parameter passing in Chapter 2,
we found it unnecessary to specify the details of the copying of
capabilities from the caller's address space to the callee's
address space. Ia discussing the modifications necessary to pro;

vide revocable parameters, we continue in the same fashion,



describing the implementation of parameter passing in terms of the

get_parameter and put_parameter operations used in the discussion
of TCS in Section 2.2.
When a domain call occurs, the caller controls parameter

Yo

-revocation by passing a Boolean. vector R az an extra parameter,

each element of which specifigs whether the corresponding parameter

should be revokcd upon raturn. The call thus has the form

Call (CG,F

1’ 29---9P‘9R)

. where  R[i] rgontrals~the-zevo§§é}on of ?i.
szocation“of'barametefb“éé implemented using the same push-
¢anf§t;CkahiCthQVé8 theﬂféﬁﬁ?ﬁfgate used to reactivate the call-
ing domain when the»ealleemrexgéns. Thus, instead of just a gate
capability, each domain—call cbtresponds to a packet of information
“as shown 1n Figure 4.2-1,  The first item is N, which is the
number of capability parameters.cgﬁberrevékadqgatd the last item
is the return gate. Between them are the Nk capabilities which
will be revoked when the return occurs. Figure 4;242 depicts the
domain-call operation, and resembles Figure 2.2-2 which shows the
TCS version. The differences comprise the steps necessary to save
the extra inform#tion in the stack. Each fevocable capability
parameter is sealed in a revoker box; one copy of the sealed capa-
bility C 1is passed to the callee, and another is retained in the
stack.k The discipline followéd is thus thag of Figure 3.5-2; seal- "
ing of the callee's parameter in a locker is nbt necessary, since
it is not received by any other domain. Figure 4.2-3 depicts the

domain-return operation, as compared with the TCS version in




< ey g

140

Top of stack

Information for

ong;cnll

Figure 6‘3»1:-Pixantterv#dﬁécdfiana&ita'tn stabk

Eooi o



141

R < égq*parameter(NP,Caller)'
NR <« 0

k™

Yes

-

. I 1 (Ng
: "WM§EE + get_parameter(0,Caller)

{ exit thru G

|

put_parameter (I,Callee,P) C « seal(P,C . 1oy
R -} put.parameter(I,Callee,C)
push(C)
I« I+l lf Np © Mgt

Figure 4.2-2: NCS domain~call operation




142

return( )

ENTER

g

N, * pop( )

Yes

&

No

C < pop( )
revoke (C,0)
NR « NR—l

G < pop( ) |

EXIT thru G

Figure 4.2-3: NCS domain-return operation




143

Figure 2, 2 3. The added steps use the information in the stack to

revoke the appropriate capabilities from the callee before retriev-

LN

ing the return gste and returning control to the caller. ~Note that

3

the revocation is total and thus releases nap entries in an orderly

SRR

way, as discussed in Section 3 7

4 3 Directories

The notion of a directory, cataloéue ’or name-table mapping
symbolic object names intp some form of internal object pointer
‘has appeared in most operating systems.‘ The idea of a 1arge
collection of directories arranged in.;?tree—structured hierarchy
originated mainly with the Mnltics system [Da 65],»and has been
adopted in several other systems incezthat time [St 73 Co 72,
klRi 741. - |
| . A directory consists of a variable number of entries, each
containing a different symbolic nams snd a pointer to an object
(plus other information to be discussed shortly) The assumption
that a unique directory entry is created with each object com~
bined with the fact that directories are themselves objects, induces
‘a tree—structured hierarchy on the set of all objects in existence
at any time. The internal nodes are the directories and the leaves
are the objects of other types. Concatenating the names of all
entries along the 'path:from the root directory to a given object
yields the tree name of that object which uniquely identifies it.

HFR

The global tree—structured view of the universe of objects

ek

" :
Except the pre—defined "root" directory.




144

can be useful in several contexts, such as systen backup and
Arecovery, accounting, and as described below io solving the
"lost object problem," but it is often more couvenient in other
‘contexts to nodify this view in two vays. | |

a) To allow the eatablishing of several directory entries
for the same object.

b) .To allow general path names which can be interpreted as
starting in any directory, rather thnn only thc root-
directory. o » |

Both of these features can be added wdtbout disturbing the under-
lying troe*structure, as long as the oxtrs entries ("links") in
(a) can be distinguished fron the origin‘l lntriea ("btlnches")
uhen this is desired This treat-ent of linka as beins full-
fledged directory entries, contrasts with thc Hultics approach
in which links are merely'a re—naning device lnd heve no pro-
tection significance. We choose this approech to facilitate sub-
1etting of rented objects. x |

| In addition to neming, the directory aysten,is useful for
purposesof acccss control. Attaching an gggggg 1ist to each
directory entry aids in the orderly diotribution of privileges

to access shared objects. Each entry in tbc acceso list contains

a pair
(lock, privileges)

which allows any possessor of a key matching the lock to obtain
the corresponding privileges.~ (Of course, the specificstion of

the access list, like the creation and deletion of entriee,



145

represents an access to the directory itself, and must also be
controlled.) The simplest example of a lock would be a user name.
A more sophisticated version of this is the "principle identifier"
used in Multics [Sa 74], which is a kind of three-dimensional user
name with more complicated rules for matching locks with keys.

An even more flexible scheme will be described below. Note that
in all such schemes, a user may not invent his own key(s), but

may invent any locks he chooses and apply them to his objects, as
discussed by Lampson [La 69].

In non-capability-based systems, directories are usually
implemented as base-level objects [Or 72, Ri 74], since their
access lists are generally used as the system's primary protection
facility. In a capability-based system, howevef, directories can
be implemented as a higher-level extension, providing symbolically
named ''pigeon holes" for the storage and dissemination of capa-
bilities [Fa 68]. This is an attractive organizafion, since it
removes from the base-level systeﬁ all handling of symbolic names
and the corresponding variable-sized data structures. From the
point of view of the base-level system, the directory layer is
simply another user domain, although, of course, it must be regarded
as a trusted machine extension by normal user programs which store
their capabilities in directories. The desirability of providing
both directories and capabilities in the same system is convincingly
argued by Lampson [La 69].

The directory layer described below provides for storage of
any number of capabilities in each directory, Ane per entry.

Attached to each entry is an access list atuthorizing a domain to



146
obtain a sealed copy of the stored capability by'exccuting
DR
C + lookup (cn, Name , c‘),

where CD is a capability for the dircctory (;uthorizing lookup

acceas), Name is a character strin;, and Cx is a Egz,capabiiity.

The unique ID of the kay capability 13 uatchnd agninst thc locks
in the access 1ist of the entty and tho corrcsponding privileges
are returned in C. Subsequent reduction of the privilcges

authorized to holders of key C uill retrocctivcly reduce the

.privilegel in C, using the undhrlying revocation nuchincty.

(Various conditions, such as failure to find an nntry with the
given name, or failure to find a lock in thc cccc-a list vhich
matches the kcy C cause errcrs to be signallcd nnd no capability
to be rcturncd ) The use of frcely diutributcble capabilities as
the keys authorizing ditectary looknps allous the users to flexibly
and econonically eatablish any group anthorixntion schanc desired
by simply paaaing keys to each othcr.v Bcitbcr the base-level
systcm nor the directory layer nead takc any explicit notice of
such groups {La 69 St 73] More congliccted facilitiea such as
path name lookup [Da 65], multiplc dircctory scnrching [Or 72, St 73]
and antonatic lookup on first uae of a ny-balic name (Da 68]
could be inplenented in terma of this basic lookup priuitive-‘
these will not be discussed here.

In such a directory system, there is no intrinsic distinction

In terns of base—level cperationa, this uould be written
C + call (g c,nmcx) T

where is a capability for a gate into thc directory layer
corroupoﬁding to the lookup operation.

B A T A R SRR



T A e

B S e
147

between the various directory entries containing capabilities for
a given object. For the reasons cited previOusly, however it is
useful to distinguish one of the entries aa a branch and consider
the others to be links. In petticulsr one can solve the lost
object problem by guaranteeing that the branch exists for at least
as long as the;pbjeet.' This 18 ‘@écomplished by creating the
object and the branch simultaneously, and having the directory
system, upon removing the branch f;oﬁﬂthe‘ditecto;ygpdEIete the
object (if it still exists). | |
' The use of branches to solve the lost ohjectﬁprohie;fis rela-
tively strsight?orsstd in the c;se-of'hesefieVeifoh]ects and |
directories. :By;oeffofsiné fhé"é}eékioﬁ‘3§;aiigéﬁéh'osjects through
calls on the directory layer whiéhusisofcreat;>;ﬁdi;ectofy brsnch;
one can insure the existence of a branch for each new object.
When the branch is remosed, the object can be destroyed by the
directory layer, either iInternally (in the -case of ditrectories) or
by calling the appropriate operation (is the case of base-level
objects).
In the case of extended objects, however, the situation is
more complicated, for two reasons: |
a): 1t is inappropriate for the directory layer. to have
embpdded in it any knowledge of (e.g, calls on) higher
- layers. c G ctmsl wmE T brhy
b)  New higher level extended typea can, be defined at any

!"?

7 co'

Thesge considerationa,render imposaible the ereatiog gf such objects

via the directory 1ayer, and,nece&eitate\e aoxe eircumspect




148

approach to their deletion when a branch is removed.
When a higher layer creates an extended object X and wishes
to take advantage of the directory syacea to keep X fron becoming

lost, it can do 80 by executing

make_branch (G, Name, Gy, C.) * .

This creates an entry in the direcqory 1nd;gat¢d by CD' The
entry has name Name and contains ,Cx, a_cnpabilicy_fox the new

cbject. 1In addition, the entry holds CG a capability for gate
G into the caller (i.e. the 1ayer 1lplencnting the object) When
the branch is later removed from the Aiggc;pry, the directory sys-

tem guarantees to execute
call (CG;CX) | W | .
The gate G should correspond to the deletion. opeta:iou for objects
of tha extended type, haence this is equivalent to .
deletéb(cx) .
Of course, it is the responsibility of the ilmyer implementing X
to insure that this call does fn fact result in the deletion of X.

The directory layer's only contern 1s that it ust be prepared for

anything which may happen between the time it performs the call

*Repeatea use of the make branch operstion specifying the same
object X would cause the directory structure to'fail to be a
tree. This might be of ¢oncern to layers at or sbové the level
at which X was implemented (although it certainly would cause no
‘trouble for the ‘directory layer). ’The layer tuplementing the ob-
Ject could protect itself from this situation if the make branch
operation were modified to require anm sxtrs’ parmmeter Crs a
capability for the type of X, as authorization to make a branch
for X.



149

and the time the callee returns. This could include various types
of errors, blocking of the process, and even further calls on the

directory layer. The straightforward way to handle this is simply
| to have the directory layer complete its part of the branch removal
and then exit to the object deletion operation via a jump—call as
described in Section 2, 2 |

It might appear that the calling of the higher layer object

deletion operation by the directory layer violates the ordering
constraints of layered system construction | This is not really
the case, however since this call does not represent any knowledge
of the higher 1ayer embedded in the directory layer. Such "blind"
upward calls are quite similar to hardware "traps" ori"erceptions."

The other directory layer operations of interest are:

make link (C,,Name,C)
renove_antry (cbﬁﬂame)
set_lock (Cﬁ;Name,L,P)
CK + create_key‘(’)x"
createLdirectory (CD,Nene)i~

delete directery (Cp)

The make 1ink operation establishes a new entry in directory D,
oy

| containing Cx and named Name Thei remove entry operation
removes a link or a branch In the latter case, it performs
object destruction as described above. The set lock operation
establishee a new lock on the named entry in directory D The
Xlock is L (i.e. it can be opened using a key with capability—ID L)

We ignore the extra complications involved if object deletion is
allowed to fail. ST .




150 .

and it confers the set of privilegea P. The create Eey opera~
tion simply returns a capability of type 'ksy with a new unique
capabilicy-ID The create directory operction establishes a new
eupty directory as a son of directory D (i e. pointed to by a
new branch in D with nanz Nane) Thc dclete directory opera-
tion deletes the directory D. This requirea tlnaval of all
entries from D, including any_branchas fqr other dircctories
| which nuut thus be deleted, an& sokcn.b In‘otherwcrds, the entire
subtree rooted in D must be traveracd and delctcd This coupli-
cation is best postponed until a hishcr laval utility progran,
hence the directory layer can siuply refuae to delete a non-
empty directory. o l

The implementation of directorieaias de;cribed is relatively
straightforward. Each directory is represented as a segment, con-
taining entries formatted as in Biguzqﬁé.B-lf VThe original capa~-
bility C and the entry name sre present when the entry is first
created, along with the dclctionagatcrcapability in the case of a
branch. Subsequent use of the set lock operation.proceeds as
gshown in Figure 4.3-~2. rir-ttehc lock 1is added to the access lint
if not already present togethcr with a capability to hold the
-privileges corresponding to the lock This capability is created
by sealing the original capability Cx in a revokcr box Then
the privileges in the capability are rcvokad doWn to the desired

level. Note that in the case of applytu; the set lock operution

to an already existing lock, any outstanding captbilities previously

obtained via that lock using the lookup opcratiqn will also have

their privileges revoked. Finally, if the pevocation was total



o e T IS e T w;f»vfﬁ-a‘/'»;:«,r~za%’,£sx:wr,fw§s‘~eq§;%“’, eii

151

deletion gate capability* {

"object capability { *»\ X

ce

symbolic name R Name

ot 1 L3 & - ae
i o
TR R ad @

acdess list ﬁ

*in branches.only

Pigure 4.3-1: A directory entry

b3
%
i



152

o CI. + geal(C,

C.

)

i

“revoker

e

4 remove <LI’CI>
.from access liset

.

- Figure 4.3-2: The set lock operation




153

(i.e. P=0), the 1ockkiq delg_t:.ed from the access list. (Such
total revocation :lsﬁ_g;{l.‘srqugrgow on each lock in the access list
vhen the entire ﬁirectory entry is removed. This is another exam-

4 . _ .
ple of orderly use of the underlying map machindy; ‘as discussed

insécﬂon 3.-}:}” T R T NN T T S T

e 1ooKap ‘operation: upor - Pind firg ‘the ‘ndfled ‘entry, searches
* the access 114t for ‘4 Tock satcHing the pFoffered key! “If-one is
found; ‘the corresponding ‘capabitfey te ‘sedfed 1a47a locker box and
returned €6 the ‘€alier. - This, thé H¥€ redatt '0f the set lock
“dind lookip operations i distribution ‘of capaBliries ‘Fo1lowing
t’he ;ﬂjéﬁﬁngﬁf Fi’:gure "G Gl LB P Ty ER LS AR

. éfé&-éé__ﬁe‘j»‘*»"ope‘racioﬁ**1:*«%@&%&=ﬁfu5t&i‘f*f:d.?ﬁﬁienedc. It
" “would 'Bé ‘nicely captiired-by the 43&513 uaﬁng of ‘an ‘empty extender
' box. Lackiig this ‘Pscitity, thé 3frectory ldyer éan siuply seal

* ‘any hafdy chpability ;"‘fsiﬁée""‘o&fy jﬁte{"éxtirﬁiltpﬁdar&'ﬁce of the

~ newkeycapabil‘ityisdigﬁificaﬁf
"' The directory layer jist ‘@dséribed ‘ts proébably the best exam-
*'ple of the ‘kind of “éseful ‘exteiitotis WiEdh cat be ‘hidtructed using
' ¢the ﬁé.s“uésrad capdﬁﬂity wnectiinfon " Tt ‘provides ettre

’j useful

features for thé<usefs of the dyst

i, ‘yot “£t's tdfledentation is
‘rende¥éd relativeély simple by the poldt“of the tadeflying base-
- fevel nanfng ‘4nd ‘protetrion factitties: i bebogus widenes

,A
W
]



SRR T T T T T T T e e L e

154

*'Chapter 5

Sumary and Conciusioms

ERY Summary , R .

This thesis has discussed 1n£egra;cd ﬂgning'g§¢,pgg;gption
.mechaninis ipx_cenpu;ex‘qxstent,lp:aﬂ#@ig‘mygggﬁggcdfaains called
~capabilities which both identify an object -and authorize access
_to it. A major advantage of capsbilities is the flexibility pro-
vided byltheir being freely copyable. vAfcqrnqqpéad§gg;d;aﬁdvant;ge
in exiqting,cngbility gystems bas bqenﬁthaudiéiiggkty{cg:;evbﬁing
previously dis:ributed capabilities.  The qaggyggﬁgggrqf*pyis,_ ' 
thesis has been the design of & capability system providing both
free diatrihution and orderly revocatiau of eapabilxties.\ Various
appxoachas to this problem were diacuaaqd dn Gha@ﬁ@r 2, cul:inating
in a set of goals to be mat by a new dcnign. : Ihe zenemlized -
capability sealing mechanism of chqrger 3 il ahm ta meet these
goals,’ praviding selective revocation gf capab&litics, as well as'
a flexible typg,extcnsion facility‘AaA,QOQlihLe iuglescntation of
the design was discugsed in. sufficient de:qil ;n denonstrate its
pxaqticg;ity, Various possible alaboxq;iangjon the desian were - |
also,diccuaae¢ Chapter 4 deacribed  two f;cilities qyg;yiag

5.2 An Area for Further Research

In terms of the facilities provided, the namins and protection

mechanisms described in this thesis appear to be a sound basis

upon which to build a secure and flexible user environment. In




155

particular the provision of revocable capabilities eliminates
one of the main objections often made to;Qapebilityebased designs
[Sc772], thus making the_proposed\design agplisable in a wider
class of situations One could thus characterize the thrust of
this thesis as an attack on the flexibilitx aspect of the pro-
tection problem.

On the other hand the thesia does not makevany direct attack

. on another more general aspect of the protection problen which one

might call the comprehensibility of protection mechanisms.

Experience indicates that protection mechanisms which are confusing
to users are likely to be misused or even go unused [Sa 74, Sc 72].
’Even the usef who correctly applies a,¢9“f931§3 protection feature
may feel no‘great confidenee that it‘enfortes his‘intentions.
‘There are at least three ways in'which protection systems can be
confusing: “ - | |
"755‘, They can be‘based on a 4is°:d§?1¥sse£k9?.99???ate but
P interacting mechanisns o ‘ |
b) bThe relevance of the mechanisms topspecific situations

3

can be obscure T
ISR

c) The correspondence between globsl state of the protection
machinery and the desires of the users can be difficult
, Aot it St i s o ;

to assess.

A fair amount of progress has been made on problem (a). The
‘early proliferation of ad hoc protection mechanisms was a major
motivation for the original development of cepabilities [DVH 66],
as well as later more:abstract trestnents:bywyanpson)[La 711,

Jones [Jo 73], and others. On the other hand, strict minimization




B S & ot

156

v'of the set of primitives will not necessarily clarify the descrip-

tion, especially since it nay exacerbate ptobleu (b) ' For example,

our unification of privilege revocation ané type extenaion in a

single uechanism, while intaresting in itsclf -ny or nay not repre-
sent a net increase in the ccnprehnnsibiiity of the design

Problem (b) is caused by the g;p — often quite broad -

| bétween the concerns of the hunnn uaerl and the nechanisns provided

by the protection system, in %eraa of which they sust express

those concerns. Of course, the uuer ﬁntd ant deal only with the

. protection primitives of the syste-, varioua extensions, auch as

those nentioned in Chnpter 4, can be previd.d Tbesc do not go far,
however, 1n attenpting to cayture the 1nteraations beeucen users
seen in the larger social context. This 1: dua in part to the
imprécidion of many legalhandvsdgiiizpfiﬁéipiis}lit;;izing from

their implicit reliance on the rcaaonabla judgennnt of the parties

"involved, :characteristic sadly laching 1& unlt colvuters. Mach

work remains to be done 1n mnpping Such princiylcs into the pro-
tection prinitivea of conputer systc- [Ie 74 Pe 74 Tu 74].

Problem (c) is perhaps the aoat difficult of the three.

’ During our discussion of capability nachaniins, ve enphasized

the desirtbility of allowing distributian and revocation of capa-

bilities without requiring global kanuiadgt of such propagation on

'the part of the participants. éu globcl kaewliise is sometimes

‘desirable for 1ts own sake huuUVQr. nortavut, avaa 1f the entire,

state of the protection ﬁiéhiné%&sié vieible (uhith can 1tself

raise serious questions of privacy), the fnll sisaificance of that

vstate cannot ‘be assessed without kaouiedge of thc levels of trust

055" SRS e S



157

-

and suspicion between the various possessors of access privileges.
: A
This appears to be a very fundamental problem, and it is not clear

what approach (if any) will prove fruitful in dealing with it.

5.3 The I*utur‘eof Protection

Much work remains to be done in the area of protection In
the long run, protection will coutribute to the development of
generally available computer utilities in at least three ways:

| a) By faoilita:ing*the déiéidﬁ!ﬁnt‘of eitromely large soft-
“vare systeua,'sﬂbhﬂas~soﬁht311cated service programs,
and the oparating systeﬂ aﬁfthe computer utility itself.

'b) By proteccing the invcatnonts of users who develop large

**proprietary prograus and/bt'dita bases, thus providing a
suitable matketplace for auch services. »

c) By enforcing socialjﬁout!bls oh the disaemination of

<;'étored 1nformation. -
: Given the difficukty and inpor&ance of the probkems to be solved
protection pronisea to. be an actihz arna of research for many '

years to come.




[BCD 72]

[Bo

[Bu

[cc

fcv

[Co

[Da

[Da

[DF

[DVH 66]

[De

671

6lj

691

65]

72}

65]

681

65]

65]

158

References

Bensoussan, A., Cingen, C.T. and Daley, R.C., "The
MULTICS virtuel memory: enncggtsenndﬂdgqign," Communi -
cations of the Associltion for Coqgutiqgrﬁachinery,
Vol. 15, No. 5 (May 1972), pp. 308-318. o

Bobrow, D.G. and Hurphy, D.L., "Structure of a LISP
system using two-level utoraae," Co-uﬂhations of the
Association for Compat iog Mschioexy, Vol. 10, No. 3
(March 1967, pp. 155

Burroughs Corporetion,:"The descriptor -- a definition
of the B3000 information pxoggasing;syatem," Detroit,
Michigan (1961).

Conpucer Center, University of Chlifornia Berkeley,
Guide (1969).

Corbato, F.J. .and Vyssotaky, V.A., "Introduction and
overview of the MULTICS system," AFIPS Confereace
. ae 1965 LJoint Computer Coufetence, Vol 27,

Cosserat, D.C., "A capability oriented multiprocessor
aystem for xapl~:1un~aggltsg;&gns " ICC Conference,
Washington, D.C. (October 1972 8 PP. ‘ ,
Daley, R.C. and Neunann, P G., "A general purpose
file syatem for. secoud;:y‘a;qypgaﬂ ', Proceedings AFIPS

1965 Fall Joint Computer Conferemce, Vol. 27, Pt. I,
AFIPS Press, Montvale, Nil., 9. 2f3-230.

Daley, R.C. and Dennis, . J“Be,y"Virxqal,aemoty,processes,
and sharing in MULTICS " Canluncationg of the Associa-
or Comput ing 3 &¥, Vol. 11, No. 5 (May 1968),

David, E.E. and Fano, R.M., “SOmc thoughts about the
social implications of accessible computing," AFIPS
Conference Proceedings 1965 Fall Joint Computer
Conference, Vol. 27, pg.liz3-247

Dennis, J.B. and Van Horn, E.G., "Programming semantics
for multiprogrammed cowputations," Communicatiomsof the

Association for Compu igg Ms¢hinery, Vol. 9, No. 3
(March 1966), pp. 1&3~15

Dennis, J.B., "Segmentation and the design of multi-
programmed computer systems," Journal of the Agsocia-
tion for Computin ~hinery, Vol. 12, No. 4 (October
1965), pp. 589-602.




[De
[p1
[p1
[En

[Fa

[Fa

[Fe

[Fx

[Gr

[Gr

o [er

(Ha

68]

68]

68b)

2]

68]

74]
73]
74]
71]

72]

73]

70}

[HEW 73]

Dennis, J.B., "Programming generality, parallelism, and
computer architecture," Proceediggg_IFIP 1968, North
Holland, Amsterdam, pp. Cl-7.

Dijkstra, E.W., "Cooperlting Sequential Processes,"
, s (P.. nguys ed.), Academic

\S

Dijkstta, E.W., "The structute of the THE multiprogramming
of. the Association for Computing

ggghinegz Vol. 1;, NQ, §r',‘y&1968),;pp. 341-346.

England, D.M., "Architectural features of System 250,"

Infotech State of the Art kepott on Operating Systeus
(1972), 12 pp. \

Fabry, R.S., "Preliminary. descrlption of a supervisor
for a machine oriented a;qpndwggpabilities," ICR
Quarterly Report’ 18 (Auguat 1&@8) ICR, University

of Chicago.

Fubry, R. S.,'"Capability—hach addressing," Communications
of the Association"or OwmpiL] Machinery, Vol. 17,
No. 7 (July 1974), pp.

Feustal, E. A., "On the.advantagga of tagged archi-
tectute,"[ : g ters, Vol. C-22,

Frankston, R.M., "Thc conputet utility as a marketplace
for computer services," Pro;a;g MAC Report MAC-TR-128
(1974).

Graham, G.S., "Protection stthctures in opérating
systems," M.S. thesis. Univerasity of Toronto (1971).

Graham, G.S. and Denning, r.J., "Protection - principles
and practice," Progeedings AFIPS 1972 Spring Joint
Computer Conference, Vol. 40, AFI?S Presa, Mbntvale,
N.J., pp. 417—429. ‘ ,

Gray, J.N., IBM San Joaeaassearch Laboratory, private
communication.

Hansen, P.B., '"The nucleus of a. multiprogranming system,
Communications of the ggsqgiutxon for Computing :

Machinery, Vol. 13, 4 (April 1970), PP- 238—250.

U.S. Department of Health Education, and Nhlfare,
"Records, computers and the rights of citizens," Report
of the Secretary's Advisory Committee on Automated
Personal Data Systems, Washington, D.C. (July 1973).




[HP 73]

‘/[».on 731 \‘

fLa 69]

[La 69b]

[La 71]

[La 73]

[La 74]
(L1 73]

Mo 72]

(Mo 73]

[Ne 72}
[Neu 74}

for 72]

[Pa 72}

‘ "l‘cchnigun, Acaduic Prcu, !lcv York, !‘t Y

160

noare, C.A.R, &nd ?a’rtomc, R.H.,

1"

Jones, A.K., "Protaceion fo: projrammed systeas," |

- Ph.D., thesis, Catnegiiﬁﬂhilbn«ﬂhiv!tuity (1973)

wtﬁctms " P;oceed-?

Lampstn, B.W., “An mwi& of ‘the CAL t:lmharing
systen," Computer Cum—u‘ m«rnuty of California,
Berkeley (1969). '

' Lampson, B.W., “Ptot‘ctfcn ™ Py a8 Jth Annual
© Prificeton Confersnce Wt%cy (March 1971),

Lampaon, B.W., "Redundancy and robustness ia memory
proestion, " osestinge W17, North Bolla

;’1 vﬁi ’

Limiuy, B. G. s Su;gut:lom for an extensible capahility—

based machinie architecture,'t Toternatiohal Workshop on-
- Computer Architecturé, W rrme (June 1973).

Morris, J.H., ”Auth‘nttuticm t&ga. the ‘proper division |
of hardmhf:oftwam mmmuty" (197%), unpublished.

‘Morris, J. u "Types are not nta " ACM Sy-posiua on

Princlpla of Progr

m ; ”" Mtalt, M‘.‘. '

Readhm R.M., '?t‘omci& sym and protection
s : 8 1972 ;

, Mplmntqtiom,'f Pre

pp. 571-578.

Neumanti, P.G. et al, "On the design of & provably

| seture operating mu&," Wovktng Paper, IRIA Inter-

national Workshop on Protabtivi’ in Opcratiag Systm,
Paris (Ausust 1974). .

Otgnniék ‘E.I. 'mu ULTICS 8 "'"un }a Mnauoa of
its Stmcturl, 'l‘he ﬁ, bridge, Mass. 1972).

Pnrnas, D.L., "On the critaria to be uazd m deconposms
systems into nodulu," DL . of ¢




[Pe

{Po

853

[Ro

V[‘Sa

[Sa

' [Se

[Sc

[8S

[st

{Tu

[Wu

74]

74]

74]
74]
66]

74]

7]

72]

72]

73]

74}

74]

161

Peuto, B.L., "Comparative study of real estate law
and protection systems,'" Ph.D. thesis, University of
California, Berkeley (1974).

Popek, G.J., "Protection structures,” omputer, Vol. 7,

No. 6 (June 1974). PP 22—-33.

Ritchie, D.M. and Thompson, K., "The WIX time-gsharing
systea," Communicgtions of the Association for Computing
Machinery, Vol. 17, , Ro. 7 ( uly 1974), pp. 365-375.

Rotenberg, Leo J., "Making couputcu keep secrets,"
Ph.D. thesis, M. I ‘r. (1974), Project ‘MAC Raport
MAC-TR-115.

Saltzer, J.H., "’!raffic ébntrol in a8 multiplexed

‘computer system," Ph.D, thesis, H 1. T (1966) Project
.. MAC Report MAC-TR-~30,

Salczer, J.H., "Protection and the contzol of mfor-
mation sharing in WL’I'ICS," ‘ aications of the
Assoclation for Comp gz M " Yo. :
July 1974), pp..

Schroeder, M.D,, "Perfomance of the GE-645 associative
memory while MULTICS is in opcf;:ion," Procaedingg
Workshop on System Perf luation, Cam ri_,dge,
Mass. (1971), pp. 227-245. ‘ :

Schroeder, M.D., "Cooperation of mutually suspicious
subgystems in a cmuur utility," Ph,P. thesis, M.I.T.
(1972), Project MAC chort mcumlm,

Schroeder, M.D. and Saltzer, J.H., "A hardware nrch;l- »
tecture for implementing pxot.oe i.m rin;s, Comsunica-

tions of the m«m ation for ting Machinery,

Vol. 15, No. 3 (M |
Sturgis, H,E., "A poatnorteu for d ::hntharing syatem,"
Ph.D. thesis, Ua:l.varsity of Califormia, Berkeley (1973),

Xerox PARC Technical Report 74*1.‘ ,

Turm, R., Priva and security in personal information

‘databank systems," Rand Report R-1044-8SF (1974),

Rand Corporation, Santa Monica, Calif.

Wulf, W. et al, mrm the lwml of a mltipmconor
opcrating system,” :ione of the gmciﬁion
i A " d 1 * ﬁ. v 19?4) N )




BIBLIOGRAPHIC DATA 1. Report No. 2 3. Recipient’s Accession No.
SHEET MAC TR- 140

4. Title and Subtitle 5. Report Date: Issued
Naming and Protection in Extendible Operating Systems November 1974
6.
7. Author(s) 8. Performing Organization Rept.
David D.. Redell No. MAC TR~ 1
9. Performing Organization Name and Address 10. Project/Task/Work Unit No.

PROJECT MAC; MASSACHUSETTS INSTITUTE OF TECHNOLOGY :

11. Contract/Grant No.

545 Technology Square, Cambridge, Massachusetts 02139

2641

13. Type of Report & Period
! Covered ¢ Interim

Scientific Report

12. Sponsoring Organization Name and Address
Office of Naval Research
Department of the Navy
Information Systems Program 14.
Arlington, Va 22217

15. Supplementary Notes

16. Abstracts
The properties of capability-based extendible operating systems are described,

and various aspects of such systems are discussed, with emphasis on the conflict i
between free distribution of access privileges and later revocation of those privilege
The discussion culminates in a set of goals for a new scheme.. A new design is then
proposed, which provides both type extension and revocation through the definition of
generalized sealing of capabilities., The implementation of this design is discussed
in sufficient detail to demonstrate that it would be workable and acceptably economi-
cal. The utility of the proposed capability mechanism is demonstrated by describing
two facilities implementable in terms of it. These are: (a) revocable paramters for
calls between mutually suspicious subsystems, and (b) directories providing a
civilized dedium for the storage and distribution of revocable capabilities.

17. Key Words and Document Analysis. 170. Descriptors

17b. Identifiers/Open-Ended Terms

17¢c. COSATI Field/Group

18. Availability Statement 19. Security Class (This" 21. No. of Pages
Report) 166

Approved for Public Release; 120, Security Class (This 22. Price

Distribution Unlimited pa%%CLAssunED

FORM NTIS-35 (REV, 3-72) USCOMM-DC 14852-P72

THIS FORM MAY BE REPRODUCED




