
MIT/LCS/TR-140

NAMING AND PROTECTION IN EXTENDIBLE

OPERATING SYSTEMS

David D. Redell

This blank page was inserted to presenie pagination.

MA.C TR-140

NAMING AND PROTECTION IN EXTEIDIBLE

OPEBATING SYSTEMS

Dav id D. Rede 11

This report reproduces a thesis submitted to the
University of California, Berkeley, 01.\ September
23, 1974 in partial satisf4ction of the require­
ments . for the degre.e of Doctor of Philo•ophy in
Computer Science

Publication of this report was spQnsored by the.com­
puter Systems Research Divi1ion of Project --.c, an
M. I. T. Interdepartmental I,aboratory and wa1 supported
in part by the Air Force Information SyttMs Technology
Applications Office (ISTAO) and by the Adv'anced Research
Project Agency (ARPA) of the J>epartmen.t of Defense under
ARPA order No. 2641 which was monitor•d by ISTAO under
contract No. Fl9628-74-C-0198; and in part by Honeywell
Information Systems Inc.

CAMBR:iooE

MA.SSACHUSE'l'TS INSTITUTE "OF TECHNOLOGY

PROJECT MA.C

MA.SSACHUSET!'S 02139

This empty page was substih1ted for a
blank page in the original document.

i

NAMING AND PROTECTION IN EXTENDIBLE OPEMTING SYSTEMS

t>-avid Day Redell

The propert:f,.es of cap~bUity"'.'b&l!l~4 e~tenciible operating systems

a'X'e describ~d, ~,ncl v~ri~us aspects. of such systt!IJlS are discussed,

with emphasis on the conflict between ,free ,disi,:Un1t:f,.on ~f access

privileges and ~ter revocation o,f thosc:_J>l'.-ivilege~. The discussion

cu~ll\inates in a set of goals for a new _c,apability scheme.

A.. new design is then proposed! which prpr,i~~s:, b_oth tY;pe exten­

sion and revocation through the d~finition o~ general\zed sealing
' , •' .· ·. ' ,, - : '_, ...

of capabi~itif;!s. The. itnplementaUon of this design is dis.cussed
" ' ~ ' . ' . ,- ' -

in sufficient detail to demonstrate that it wauld be wor~ble and
~ ' : -. : : ~ :·

acceptably ecol101Jlical.

The utility of the proposed e~~i~~t~ m.e,cpanism h demon­

strated l>y describipg two facilit~es_ ilnpletnen.table in terms of it.

These are: (a) revocable. p•r~ters for calls between 1QUtually
_. ' "_l ,, • ' •

suspicious subsystems, and (b) directories providing a civilized

medium for the storage and distribution of revocable capabilities.

ii

AcSgw'~~·

First, I would like to thank ay elleaia a&td.sor, Professor

R. s. Fabry, for providittl that akillful b lead -,of an.couragement

and constructive critic!• 1'b'1:cb-~~un.' ~'ach't.'Ce. I am

also indebted .t:o .the other 118111liere of_.,~.- Prof81Jor

James K.· Morris and Profeeaor *rt'.1.li ~Cti.-;;'fdi' TUlibg ·.a

coimentil'lg·l>ll earlier verstoua •t fli:tw t~.

It is a pleasure to thaiilt the otkan -Who rad· 8li4 ~~ted

on earlie-r drafts, includi.ng ·tit. J.-. C-ray, bz. ... BUt1et' Laapson,

Gene Mcl>antel, Dr. Bernard Pe'&ttO, 1>r. ~ :'sturglis, and espe­

cially Padl McJ'oues. Eariier conver&a-doU .. .-~·''Bruc:e·tinauy alSD

underlie mach of the w<>-Tk descrilrea him.

R.uth Suzuki deee~·e the cre41t fOr 'tlle --~•11 fut and

accurate ~t)11>.ina of the :rm.1 · 4raft of :rua dMI~•.
Moat '.f>t all, I thaftk·my liife ~', ·~--~Y :tor·ber

pa:tince al underuanctirag, btit fbi. ·c,pl.laa tla roulh -araft a• wll.

. , --;·- ---~

Contents

Abstract • • • • •

Acknowledgments ,
Chapter 1: Introduction •

1.1 Overvin
1. 2 Protection , . .
1.3 Framework for Discussion ••

1.4 The Computer Utility
1.5 Extendibility . .
1.6 Thesis Plan

Chapter 2: A Typical Capability System . . .
2.1 A Typical Capability System

2.2 Implementation of Capabilities in TCS

2.3 Revocation of Access Privileges

2.4 Indirection Through Link Segmenta . .
2.5 Type Extension ••••
2.6 Hierarchies of Objects and Types •

2.7 Type Extension Using Sealed Capabilities •

2.8 Goals for a New Capability System

Chapter 3: A New Capability System

3.1 A Ne~ Capability System

3.2 Design Considerations for Revocation •

3.3 Interactions with Type Extension •

3.4 Generalized Sealing
3.5 Examples of Generalized Sealing . . .

i

ii

1

1

2

4

6

8

9

11

ll

21

38

54

61

71

77

82

83

83

83

96

97

106

3.6 Implementation of Generalized Sealing in NCS 113

3.7 Some Implementation Details

3.8 Possible Elaborations on the Design

130

134

Chapter 4: Two Facilities Using the New Capability System 137

4.1 Possible Facilities Using Generalized Sealing 137

4.2 Revocable Parameters 138

4.J Directories . .

Chapter 5: Summary and Conclusions

5.1 Summary

5.2 An Area for Further Research

5.3 The Future of Protection

References

143

154

154

154

157

158

1.1 Overvie11

1

Chapter 1

I!!tro4P;ction

Computer·s have been with us now for just over a quarter of a

century.· Although tbeir.tlltimate· potential iq>act on society is

still hard to predict, it seems sate to say tn'af they will iank

with such transf o?'$1ng inventions' as the pritft'ing pt-ess and 'tele.­

vision in their ef feet not only on the. way ·wti''"tive, but also on

the way we think. Already their rot~ has 1:1h1ifted from 'that of

simply high speed calculating toois to a mb't~' ftindament.al 'function

as the natutai repository for an increal5'ing -~unt· of' s'ociety' s

body of information. The near future shoti'.td'se~';'the develol>ment

of computer utilities bringing relia61e and 'econolalc'al computer

access to the getteral public, in the' fona of 'iie·rvtc~s of unpre­

cedented scope and power [Fr 74].

These ne11 roles of computers raise mariy serious ~ocial ques-

t ions which are far frosnbeing answered Caci 74, DF 65,·HEW 73].

Moreo"lfer, even if these questions are· satisfactorily answered, the

resulting policies will require an 'approptiat·e ·technological frame­

work within which they can be expressed and enforced [Po 74, Pe 74] ..

Thus, such social and legal issues as privacy, secrecy, confiden­

tiality, and accountability generate a technological problem which

could be called the "total system security problem.''

The main subject of this thesis :is protecticin. Protection is

that . aspect Of the total system securi.'ty 'probiem. Which deals with

the control of access by programs runn:in'g Within ~- -co1nputer' system

2

to informatiort stored within the ayat• {l-a 71. Jo 73]. It is thus

concerned with pre\rention of uDclaieed acceSMa, lfhetber accidental.

or malicious. Protection is 1nt~tely 1nvo1~:wi~h the !!!'1ng

mechani81D8 us•d by programs to specify wb~.C4 .ttil\IP8. p_(information . . ' "' .. ·

t_hey ~ish to 4Cf-ess. , ~will dia~a ,v~t- ~· T!fhi~ p_rovtde

both naming and prot,ec~~ in a .at~· ~~·..-.ttc!. ~han:J.aa [IMi 66,

Fa 74). We al;sq em:phaai&e the ~t.~ o,f; ,(~~ .. AAa~ib.Jltabl,e

access P.rivil~~· in t~e sense tll&t,,ata7 ~~~. o~ a pd,"f'ilege

may pass it '?I\· as he s~ea fit [La 6~J... -~ t~, -~~1 Und, -~ recog­

nize the iat>9r~c~ qf allowing lat.el:~~~~~ anc~ pr~vileges.
, ' ! , . , , " 1 • , I • :· , • j _~, . •,' • · I. , ~., •:: ~ , ,• . · · .. • '·' . ,

The "'in ruul.~; ,o~. tbe _the~ia ,~•.;t.he~ ~~~~-~~; :·• 11•1ag. and

prot,ction ~~~ a,1.l~ b~t~. ~~fl!I cl.~ of. ,r~vileges

Ano~ .d'8ita~1~ . ch,lr•~teriati,c;. ~-- ~-· -~ protection

mechaniw ta ext!!dibility (La 6~, ~ .. 7~111 ,,_ ~· ~rt.y allows

the C()J\atn,c:.ti~ Of the ··~~ ~- ·-.~ ,,O~ , tt~~ ,Qj Uatraction"

IDi 681>1. t1m1t ~c;r-.sin~ te,l.14bU!J:y"~ ltlJ~•: ~r..,,r~ten

e]ttensi,ona ~o aq~t th,tt sy~tea w:l,t;'1.~- ~.,,.l~~"'" itlAJr,,~ifonn

w~y. the •~,t~h;i..l~t? ~f , tJle 'Ji~ ~1,~~; will, be,. ~scusaed

in.a"- d.U~l. r , ~ , . ,

· 1. 2 ProS!cJ!ee .
. ;J

n. pro~41Ctioa. _probl• is ~~- -., ~~~ ~~- ,p,,. ~al system

sec:ud~,l Pl\'~~,l~:-,. ~ •. 1~_~u·.·~~~~:~ -~~;po~, ~t

is itapor~t .to ~J.1'1-t ~he ·er~, of .. ~ ... ,&l~.,~~f~yJl'1,,~fa~~iah-

1ng several other closely related probleu, iaclucU.ag:

3

a) .¥ardware rel~~b~l,ity.
'""- ···-'""' .

c) User authentication

, All of ~h~ aboye probl~ e.~i~it .tw,o pitb.t~ qq.~q1~tv.q.ate ft'Operties:

_ , t) ~Y d9 _not ~~ of C011f1,~t•;raol~f:.it~l~.,bu~,r~tqy of solu­

ions qµant~tatj_vely c.~~blre ;n. t.!~ :;o~ co11t.,,,,ffective

.prevention of ,t~11.bie (e.,g. l!~h ~tfat~~,C9't, long

mean-t:f.DJ.e-between-;failur~~' e~c-). :· .

2}. . The £._il,ue of a aQlutiO.ll: ~Q,~~ .~ qf tqe1ll .~Q. under-

11in~ tt,.e e;ll~ire px;otec~~ aye,~-..

On the other hand, if we hypothesize a sitwr.tt~.~:¥h~cll problems

(a) through (d) have been completely solved, we can consider the

protection problem as occurring in a self-contained artificial

univei-se 1 free of such real-wo-c+q ~~ti;~~,~--; ~s~c,lul which can

be pi~lted '"1d ~~r~uita ~~h can ~~ out. .WAitbip, ~· idealized
' .. 1 '_ ,- '. ~' ~ \ ,, - . ~ . - . ~ -

f raDIE!ll!'?,!i'k"'f, ,the p~otec.tion l»~ob~·'9!! a~ ::,9~ q)wiete aolutions

in DUl1lY.).iaport•nt situati4l;l,s [La.)4l · ~ ¥ .. Jl9,t t:P say, of

course, ~ha~ a,)..l •oluti~ c,onst~o..ted. J,i{i~AiJW:.h a. f raaework
-. . ~ - '·

are aut°°"t;l~a,l.lY. ct9"P,lete. Jfor: e~11p):~, 01)~"' ·04P- ,prot~c;t 4ata by

requiri~~ a.c~esstq, p.l'.'pgr~ tt> p~v~.a. P4t18WQr#i .PD- key authorizing

the 1-cc•ss JLa 69]., 1'i.te~.pasjl11,0~. lite ~~JYl.l..passwords,

are.vulner4lJ>le t() guessing, $\cl ,ue ~~· nc>t -=•~t~ soiµtion.

Op tl~e, o~J1et= }lq,pd,. PQ.e can ~pl .. ~ M.it.erna,J., ~~~which .a.re

. µnforgeah.f~' pp~;ing l~~~· wtµ,.chare.:~.~·~-,thQ4i p~Qvid:lng

a c01JIPlete s.plµt:f.P:'l to the prob.J.ea. .~ •1-~H.~ pf _t:pis lies

not primariJ.y :I.~. the r~u¢tipQ.. of ~heq~o).l~~li~y:.o;f,f~~lure (from

4

negligible to zero) but in the conceptual shift.in how one views

the mechanism (with absolute conf14Dce, rather than quantitative

optimism).

It can be argued that the above vietrpo:tDt is unrealistic,

since problems (a) throulb (d) do not·adait of c.plete solut:Lons

a• hYl'Othesized. The point, hOweftr;. iii that cMs factorization

of the total security problem allows OGe to take a very rigorous

approach to the situation in which malicious intent manifests

itself in the behavior of high speed internal c0mputations. This

i~ precisely the situation 1n which our intuitions are least likely

to prove reliable in allsessing the ·quantitativ'e adequacy of incom­

plete solutions.

1.3 Fra11e.work for Discussion

Por our purposes, we can regard the function of the operating

system as being the trawlformation of tM basic b.tttdware resources

of the com.puter into a universe ot abstract resources or obJect,s, ·

and a set of operations for manipulatirlg those objects. This.point

of vi-ew 18 often referred to as the ob$ict-ol'·:1ait'ted approach, and

the coll~tion of 0perations as the abatracl: macb1ne~ 'Each object

has an atttibute called its !IE!' Which detend.ttes.the set of

operations Which can meaningfully be applied to thil' objec·t. Various

types of objects are provided, .O.t notably proCeisae•. Processes

are the active entities in the system, capturing tbeit&tuitive<

notion of a •t1ocus of control" or "execucion' point.•• Jtrocessea

can attempt to access other objects in the system J>y ~rf.orming

-.';\ ,. ,.,.

5

various
' - "-~

operations on thein, .and it is these accEMJ.~~s vh:f.ch are
• ._ ~~ •• ':. ·_,. J'. ·~ - ·.: ... '' .'\ :~~:.-·' .. ' 'l .2'11-. , . \ ··-·.~--

checked and allowed or disall~e~ . ~1 the p~q;~!t.t~on _,chanism.s of
c • "'. : I ' • ', • ~ j ., ~ - • ,i.. ,, . •

the system. At any given time~ a P.ro.ce~s. ,~s ~ ¥.~, Qf privile1es,
' .: . - .• • •. " . '• ' ~ ·' - ·t • .. - • -~' . '~ ..),_ "-' t • .•- •' . -

specifyi~g ~ich opera.ti~n~ it •Y p,e,rfo1111 ·f¥1 •i'?h. ~J>jec.ts. 'l'bis
: \ ' • : • i • }:.. 't ."-:• :, " ~- J • • ' ' " ': ,,_' _,c : ~ '. • • ,':,,,' ·_f{_; ,J •) -~ <· < '\~· < •

set of privile~~5 ,is. c.~lled ~he.~~ .,~n, ~~~'~J~e: prq~e~s is

executing. The privileges available to· a process can change as a

result of either:

a) addition or removal of pri:vf~~~~,i11.Us d,P114;in. of
l; ·, •"'' .' ",:' ::_',.,~ .. ·- ·-.. .

execution, or

b) switching to a differen~, !;Jomain, ~(e~f.':ltJo!:'•.
, ~ .- ', ~ ~.11r~,k > 1 :;r.,,·~,·~ ., t ·,-,_1,

Thus, domtlins. ~hems~lves have .. an in~T-f·~~~;:!xf~te:?~~.,.8::nfl are
l ~ '· - • ~ .• . '

obj.ects ~. their. o~ ~i.~ht. , (The. ,.;~s~>!~r t~in,; f}~fl!S : point of
L· 1 • ' •··· • ~ ' ' -. :. ' ~ • ,. . . ,

view will becOlll! clear in Chapter ~.) , A. d~p., c~ be,, c~ra~terized
:< . ' :' I ' .i7i \ _-i ,i 0 .• ~ ' . ' ~ . '. ~·<~'IS ~ ', ':. (' -· ~ .. .- ~ .- ~· J L

as a passive 9b~ect, serviJ;tg to. CC?~rol t!w ~e.~iiti9n.~.f an active
: ' : • ' • ., ": ; •• ' ~ __ '. ~ < .i • ' - : .t ~ 1 :...- , ,' •. ;. . ' . -, ''

process. It will often be c'?nveni~nt, ~eJ:.iL t~ r~~'f to the
... ,-\ ~: ;";;.:-:~·;_ _ ; .-:_ · ~- .-~11~<n··L\;"::< ·~"~ '"1!~)'".!f·- o::· ·~ - --- ...

actions of _a_,Pr?cess executi9f ~11 a dQ11aii>.,4'•,!?e~~''-~:t;t9rmed by
• ·_, • ' ~;- ·' ~ ' ~ - ' ', - , ' ' ~' .- ,_ - "" ·' # ~ • ' '

th~ domain ~~aelf, and we will ~,~!tis ~~~ve~ch.J:"&?f:~\"fzat;ion·

is no flanger of ambiguity.
-~ ·., ••· ' • ·' • --,. • , •. ,:= '• i-.r>.

when 1:here

schemes found in existins systema [La 71]. We are.interested in < ._ ; ' ; .· ~ - . . <:L:,:.!) "l -_, ':. , . . - ~,, " :·, : -·· ,+~-

& p•rticulal:' class of euch scheaee ~n, 'lfb.1.ch a d~~n i;:on~::l,sts of
,-, : <f -· '[. - ;.:-.,,.~h·~~·:..:~ ··,·: ,<!·:,, '':•$;'.f ft".'.<1., --

a set of capabiU.ties [DVB 6~, La 6~ ~ Fa . 74]. .A. t;apa:l>il.itY serves
•' .·. , t~~~"·•*, .. , ;_:·:. ~k.: .. \ ,. '•.;, ~,;_;::r~;.! -, ' . " ::-

1>0.~h as the ~ of an obje~t .. ~~·.·~,., se~ 1of ~~+:'f,~i~e~~;~. to access

that object. Thus, in a capability sxett?ll? ,,. ~~in i.s able to
·' - ' ~'":/.. J '•. -~-:.; j' . .) - ' . t ' 1 :: ... ,.,;,! ,, .. ··'' . ' , . ,

name only those objects to which it Q,as ac$:ess .vi" its. capabilities.
' '. ~ ~ I• : :-~ ... : · "{('f.•~::' ;,_::. ~~. :.::~, .: '.> '',, ~·; '; ·, '·' > '·:

Those C:apabilities .a,i;=e, ~t.ored in .. t~~ &leJ.'!O~ ~-£ .~e 40¥.1n, which
. ' • ~. ; ' ' ',. - l ' , ; ' ' ·.• .>' ' _, .. {.' .. ," "ii._ •• ,.,., /_

we wil~ :a~s~ co~is,ts of a nuta1?er ~~:.ll~lf!¥!~~ [~e ~ .•. BCD 72],

6

each of which comprises a variable len&th a-tray of addressable,

items. A doaai:n may copy its ~pabilitiea·al\d distribute them as

it se.as fit,.although it may not, of course, -- arbitrary 110di­

f1cations to them. Thus, capabilities are ltke data "sealed in a
;) ~

box," a characterization which we will ,Urtiue ill aome detail later.

1.4 The Computer Utility

The aechaniSlllS discussed in this tbeaia would be useful in

any computer system. the context vhi.clt maxi.Sees their importance,

hot.rever, is that of th6 computer utility. The .notion of a com.Puter

utility has 1:1eceived ·considerable atteation 1:11 :the litetrature [CV 65,

Sa 66, Sc 72, Fr 74] and seems likely. to.play an i11c~easiugly

important role in the future. :t~. ~ a utility, a large user

C011111UDity shate~ an appropriately.larae it>iorm&tion st~age and

proces.sing facility in ·miach the saae .-mer that the users of elec­

trical a.ad telephone utilities share the corresponding power geinera­

tion and c~ication facilities. s~ eti~sicai sharing (i.e.h
. '

sharing of physical resources) provided the original motive :for,

developing •lti-user cotaputet systeme. That 11.0tive was the desire

to lower the cost of hardware '.resources through·. •.-:onomies of scale
j . . ' ' ···'-··

·and statistical saocthing of 1,oac:t fluetuatioaa~· Tliis is gradually
i ' -.".·, : ' ". ~ ...

beiq rendered leas i.Jlportant by the contiaual a«tlne ·in hardware
. ,· ·.. i .. '

ci>sts. A llU<:h more fuad~tajl tlOtive rnaw, ~r, aich is
I

in itself more than adequate justifieatiou for building a COlllPUter

utility. This is the desire fbr flexible loaical sbari~g (slulring

of information) between users, so that they .. Y b~ld u;pon each

7

other's work (Sa 66, De 68].
·'' .

Since the user coanunit~. of a c~q~~~ ~~.1i1J~F-l'tcf9H~~~-~- of the

public at large, the logical sharing within. that cOllllllWlity takes

on more the character of transactions in a-marketplace than of

informal friendly cooperation [Fr 74].

a) Sharing is o~ten fi~c,ially ~t~y.._t;~,!
' _· .. ~ • • :. J - , • - -· " ., : . •• ' ' ~ ·' v: .:

b) _The p~rt~".~, iny,?lved,, ~:r_ Dft .tf~~~i~t~ll, 9t:~~r. _

Point (a) i.Japlie~ .th~t-. sharing,,_ ?,c~en r~!,,~•~:~ts ~'1'1 or:. tental of

the shar.ed objecu. The r.ental c•se is a strong test 9f the pro-
• ' '-~ • ~ . ..;·,; .• ·• J ... ;- ·-·~·. '. ':}'~-· •· - -·~

tection and acco.untins -~h~1811l of _t_he. compt1t,«arc util,ity. rnts is
. ' - . • -· . '. 1 ~ : ' ' ' . -·- ' . : '. ' _, . •, ~ . . '· ' ,

particulaflY true in the case of subletting, in.wJlich access.to a
' ,. ,• • -.... - , .''..,.·;·· ' L-,...:_>t gd-:.r, ~.' ·. .;, ~ ·l ·., {~}-~r-

rented object pa,sse,a thr2~gh _ ~·,,~~f., M,nd~,. ~.f}f-1.'f· 1:r,~c~_i,p, ~~e end
~- ';_ . ~' .. - ~'-"· _, " .

user. P~~~ (b?, wbic~ is in: P•:f,~ ~-,i-~".'1;fJ,f .. J•,) ,_ f~fl~f.f_S the

fa~.~ .. that the st~dard attf,~~e '?f t,b~ ~~,~-~fe~1 ifiv9.~yed. i~'" ~ trans­

action iJi ~Y market place ~s ';'St.Ull!y SQ1!ae ~gre~ 9.t '8Ut~l suspi-
._ • ~ ~ • ". ~ •• ' ' - :. ' ,. ~ ·, j -, • " _,_) •.,_ ;,

cion. ~t,nce pr?$7m,a& ~l:l. tb~ ~y~~"'"'''~~\ •• t~' rf~p.'.t,,pf ,..sere

on the outs~<te_~ the progl'SJ!l8 t~~l!ee ·~·~" ~P#~!f ~l¥'.!l suspi­

cion. ~re detailed. dis<:U!!Jifi_ol) at),d ~J.tt.s, o~ .11U$Uf~. S~J:licion
' ·. ," . , l ·._ '.': ~ o ·' • :' - : ./;i iJ, ,_,,,,\,,..:' ' -' · . 'L·~ · '"

can be found in Lampson [La 69) and Scproed•r [Sc 72)~
· •

1
• .' • · -.: • :.~-f t)f1_2· ~-~ -~ ~:;,'..;\'·:·:L,'i-1:~ i.r·.

One aa~ct ~.f tlle ~tual. '!u~p4~~'. l>r~fl·•'I., ,Yifhf~P. c~ ~'. awk-
. ., ' : • - ' .. - f),""''· .•• , .•. ,.. .•. -

ward to handle i~. the fact that t~;: dea,r~~: ?~,~~l?~~i~~ between two

users may c~g•_.~tb ~~·- Jo~,.,,,spe~••.1ffl,:~m-r.~1!,.Jo1n or

l~ave a COIDP,~l,' or ~,.renter ~.may b!! l'!f~ ~-~·Y.~1. ~~ bill. Thus,

i~ is imp~rt111;1t t~t the pr:f.vile1•~ of f. -~~en ~~:r;.,o,r pr~~l'am to
,. ·. . • ... , " , ·' ·.· . ·. , '· .. . ' - '" ... qu ·'- .. ".. . -

~ec~~s a ,1+v~ .ob~~~~ ~~ able t~-~,c~ge __ wj.~~Jt,~-' .,,,~~~~4T!, it

.. ;t.s veT:y des:L,J:•bl~2, t~t tb~se a4ju,,~-n~~" ~f ~~ivil,'-•~!, p~ ~' pain­

lt•sw as poi,is ible. We wU~ fi~dr~s~n~hi11 --:i,,u~B-~'- s~- lep.gth,

8

particularly in the case of iae?'eaaiag auspieiaa where previously

granted privilepa are to be r~)ted.

1.5 E:xteqdlbility

The conattuction of a large operating llY•tea is a formidable

task. As tbe richn•aa of the user envi~t provided is increased.

so also 18 the ai&e ud cGlllplex'ity of tlieayatn Which provid•s it.

In fact, unleae controlled by a euitab1e cle•ip•thodoloay, the

complexity of a large operating •1•t• tlay pm1ude its aver being

completely l.lebuggecl. One of the iao1t pntd.siq auch 1aethodolog:l'e•

is that bf l9!f::l!!i• in which the •yat. .. is cO..tructed u~ ba.f­

level* and a aeriea of esteiud.ou. Bach layer estencla th• envirou­

tnent in whieh it rua.a, thus pre9eftc:lna • d.clt.er envir.wnt for

higher layers. The key anuaption itl auh a ay1t• ia that tto layer

has embeddad in it any knowledge of the fuBCtioniq ~f hiaher

~ayers. Tlda, collbined with the oktoua·,r~aUti.\ of ptotectin:g

10Wer layenfrom itllllrfereace by hlaher laye't'e, 'yields a structure

in Which cbanau to and aalfunctiona of· h.~aur layers c:aanot affect

the .cottect funct:ioid.ng of lowe1.' ia,.r8 tn any W.,,'~
. .

The coaatruetiO'it of a layered ayat• c.G lMi -.iewd it& two ways.

Froa a top-ioWn ·point of view,· the.t:Mk i8 ou ~l appnpriataly
. . ' . . I f

dividing the ddired set of functions into-a~ of·l.ayara.
, . .

From a bottO.-up point of view. the tall is te era.ton •oae pre-

existing 111etem into a more cOlitplete ft.rirO...t by"actdifta waeful

new featul'ea. the latter point of·vtew.ia.>s.t •pprppriate in the

*sO..timd called the "keftlel" {Wu 74} or "~leuau' ".£~ 1170].

9

case of user-written extensions, although t<?. '\,~1~J~ e~~~nt 11 the

e~t distincU,o~" between flY,St~~' lt~P~~~ -~~~, ~e~,,~~~p-ams becomes

~~ort,~n~, ~n a, ,~re:r~d de;s~.

Give11 the object-oriented p.oint of view discussed •hove, the
. :~ , ·'· ·. ; .. !'.~q· .. ~ ~:~ ;i.: ~,-~"· .,,.~ ·;:c·: ?.:;· ·•. fi~;·;·:

appropriate way t~ view extc::~iou,s is ;I/I. ~~f.ining ne~_t\t,n>e~. pf
,. : . '·· J '] , : ' '.>: !. J :;.~ .~. ! , . ' ; •. ·-' . ,:. . . :: . . : <:.'

This obj~Cfs and provi~ing t~ &:P,Pr~f.~-~~.:~ ~Pl>':f~~}~9.f•, ._on, t~,,pi.

inmediately raises the q\l~S~~~~ ~~~; ~w, ,suf~ ,~~~0_~'.t~ ~re,,~F~~ and

how access to them is controlled. It is llllStdesirable for the base-

level naming and protection mechanislDS to provide these functions

for all higher level objects in the system. We will describe

various ~ extension featµres which allow this.

1.6 Thesis Plan

Since the mechanisms described in this thesis represent fur-

ther developments of ideas found in several •xisting or proposed

computer systems, it is appropriate to swmarize those ideas.

Therefore, Chapter 2 begins by desc~ibing a hypothetical system

exeaplifyidg the relevant features of those systems, and goes on

to discuss the use of those features in various situations, placing

special emphasis on revocation of privileges and on type extension.

The chapter concludes with a list of goals der~ved from these

discussions.

The central portion of the thesis is Chapter 3, which proposes

a new system design satisfying the goals derived in Chapter 2, and

discusses the implementation of that d~sign in some detail. Some

possibilities for further elaboration of the design are also

10

discussed briefly.

Chapter 4 examines the use of the mechanisms of Chapter 3 in

providing two facilities helpful in common situations: revocable

parameters for mutually suspicious subsystem calls, and directories,

for storage and distribution of capabilities.

Finally, Chapter 5 summarizes the results of the thesis and

briefly evaluates their significance.

11

Chapt~ 2

A. 'IyPical C~iftf :S!ffe~ .

2.1 A Typical Capability S1stem

The central goal of this theais is the detailed sp~cif ication

of a proposed behavior for capabilities, and the description of an
~ • . 1

~fficient implementatiQn of capabilities exhibiting such behavior.

The main aspects of. capability behavior to be examined are the

distribution and revocation of privileges, and type extension. To

bring the issues into focus, we sketch a hypothetical system called

''TCS" (for "Typical Capability System") to serve a~~ context for

discussion and as a starting point from which various improvements

can be explored. This typical system as described below is not

identical to any existing or proposed system b\lt contains features
. ': ; ~ _;

found in many previous systems. including CAl.~TSS [La 69, St 73),
' ~.;

MagnUJD [Fa 68), Plessy 250 [En 12,··co 72], HYDRA [Jo 73~ Wu 74],

Project SUE [Gr 71], BCc 500 [La 69), ~d Multics [BCD 72, CV 65,

Sa 741.

In the definition of TCS, two conflicting considerations

influenc~ the level of detail at which.the various features should

be described. On the one hand, it is important that the definition
. , .

be specific enough to make subsequent discussions clear and unam-
" . ··, .:: : ·1 .·· J L ·

biguous. On the other hand, the inclusion of extraneous detail

would not only cloud the issue, but might also falsely appear to

restrict the class of systems to which our subsequent improvements

are applicable .•
. .

For these, reasons, the defi~it~()J\,that. fqllows ·~_ends to pin

12

down only those details wh~cl\ are relevant to the later discussion.

In. other cuea1
-. Nft1-1 alartaat~, be sketche4, or the fine

points may be glossed over.entirely~ aot wfficiently

interesting.

In defining Tes. a logical place to Mgin 1.a with the capa-
. .

bilities theuelvea. M atatad pr~oualy, a capeility serves

both as the name of an object and aa a packa• of privileges, allow­

ing the object to be acc•ned iu varioua waya. It is alN desirable

to diatinauish between object• of differmt.t,,.-; in TCS this

distinction is carried in .the capability, ratllrer.~han in the object
. ' . · .. _, "'. '.-f J'' ·,: .

itself, for reasons which will become clear dut'iag the discussion
.·. ' -~ . ' -

o·f type extena~on. Thus, • capability f« - nject contains:
. ' ' ' ' ' ' ' ' ~. •. ,- ' '

a) the unique identifier or "ID" of the object~

b) the $lJ?!. o.f the o~ject,
!

c) a eet of privil!ge& to access the ~ject.
"

Each dwin in TCS has its OWll.ae~~ !;!!4resa •E•<r•· (As
'! ~, I ~- ~ ' ' - , , : '

pointed out by Jabry [Fa 74}, freely copyable cap&Mlittes eliai-. .

nate the need for c0111DUnicatin1 domains to share a COlmlOn address
"

space.) The capabilities possessed by a a~ven domain are stored
·,:·

within the sapents of its adclraas apace. At the: same ti:IJle, those

cspabilitiea. aene as the skeleton which def i- and ttt:ructurea
: " ' ' ,,,' . ' .,.

that addreaa space. (It is worth empba&iziag. tut -. address. space
,- . t' f_'

defined by f're.ly copyable capabilities te~ to be· a 1111eh 11are

fluid st1!'11cture thau a more conventiollal a04l~eaa sp~e d8fined. by
·,,· ..

system. da~a structures.) Associated with eacla dou~ is a single
. • . l

* -The object ID baa sOMti.Ma been referred to aa the "urd.que name"
or "1.tobal ,. di ···t.he> oi.jeet. Wir WMlt 'to·~~,., th& "teratnoloay ·
to einphaai.ze the fact that it ia the caJMlbility it .. lf which
should be thousht of aa tbe glObal n...a of tlMl object.

is>licit segment,

13

* which serv~s as t;he "root11 of, .. :J.~• address space.

A capability for the ilJlplicit. s•gaeut is. p.e.f~ o;, _t,he defini~ion of

the d.qmain. All <>the; s~~nte ~C?r objects o~.ot~~X'-~;zye,) are

addressed via capabili~ies in this iaaplicit '-'e8"nt. .There is no

fundamental reason, however, to restrict cap4bilit;l.es tQ appear
. . - ., >; - . , . ' •'

only in this implicit' sep.ent ~ in fact' it ,will be. asevmed here
-. ' . -:, '~ ~ .. -,. .

that capa~ilities and "nonnal" da.ta. ~an .be freely iQ.termixed in . , ,' . ' .• ... ' '. '

any segDlent. (Ways of im.ple•nting this withqut .compt:<>Dljlsi.ng the

integrity of the ca,pabilities will be dis~u,sJ~d litter.)

Outsicle the cont_e~t of any particular addi'ess spac:e, we can

define the absolute !d?re~s of an ;1~- ,(f-llpabilH:y or dat~) to be

a pa;lr <C,d>, wheJ:e c is a ca~,¥il~ .(.f,~r a se~~t) and d

is a disp4ceaent .C,,ord, byte, or bi.t ~~). ~t. (C.d) denote
'. ,_ .. _, ..

the contents of address <C,d>. ~. if c1 is ~., f..-Pflbility for

some doui~' s. ~licit ~'gment ~ a r8:u;M .. ~dre~s w J.s,\led by

that doma,~ corres~onds. to th«! ab~;~~ ,addf~ffl. <C1 .w? (i.e.,

word w of the ilq;>~ic~t .se~t). S,~~,lJ.:, the st&P,da~d notion

of the two pa;rt ad.dres~ . s lw Qf we>r~ w.· in 11epe~t . s 1~ equi-

~ capal>iliti~• can l>e.storeclan~ere
• • 0 '.; ' '' 0 • F "• 0

in the address space, addres.-es Uivolvin& the\I ca:n t>ec:om.e more com-
! . - . i ' ~ , . - -"

p+icated,. IJUC~ as • (w1 1w2 ;;, <J(c1.~•l••i:l;~_z~ . ,C1'Jl,ert l>otb. <C1 ,s>

and <(c1,,s).,~1> . JllUst contai~. setWIJY-t ~ap~i~Jtiefl) ~ Tb.is. IJUggests

the provisioQ of 41r~ct har4ware impl9-11t&t.ion pf t4••e aul.ti-
.,,, • • ,' • ' '. ·-·- - > .. :· ' • ' • •• - • , • • '

jlevel addr~13ses. ~/or .)),fO&rB-8.~~e ~,fl.~FcJ .f•Ji1.ter~ , fO hold
* . .
Thill is ~i,.=llar tp th~ .~tics d,e~r~Plr~~,,,.,.~! .J~PP 7:Zl. or the
CAirTSS~ troftin&'C~fist [S't 73] •. tn 'tlii'Jd.Glml l)a· 681 and'
Plessy 250 [En 72] uchines, it is effectively impl~t~d.in hard­
ware in the form of several capaDility registers. I.aDaPson· [La 74]
refers to the implicit segment aa the "acceas point" of the domain.

14

·intermediA.te capabiliti~s ·during the ev&luat:l:on ctf aucli addnaaes.

Lack:tq these futures, a dMlaift ··uuid ·d:ttectly utili~e ·;oni;

capabilities in it• iaplicft 86...-Ut: all other capabilities would
'

have to be co}tiW into tile implicit · .. ~t '1'ifne uae. ·various

forms of aalti~l'nel addreestng l\av'e ~ ··~ in ·dieting

S)'•t-* [Ba 72,St 73, lfe 72, wu·f4].

Figure 2.1-1 depicts two doma!U. n
1

· aad · n2 , Whose implicit

seaments are sl and s2 rea~cti"ftly. 'the. ..Wreas apace of »1

includes ae...-te Sl' s3, s4 and s5 • The a4dreaa sp&c6 of D2

includes s2, s1 , s5 , s6 , and s7 • .Ote
1

tha~
1

61 and s5 are

sared by both dOlllBil:ls, and 'that the ~ of 1)2 uy in

tact tncluc1e (indirettly) the eat:lre NlnN ffac:e of D1 , depend­

ing upon the 1 privileges in D2 • 8 cap.tiillty 'tot" · SJ. •

.As·..t:toned in Chapter 1, cloMiU c:&li be 'c~ractetized as

either active or passive objects. ,, In it• ,aU1 .. role as a collec­

tion of prirlleps, a dOlnd.11 itt·ourt~i~l c:ap6illty system ia

idetitfcal to i.ta iilplicit segment; frOli :thh ,Olllt of view, the

di&tinction l>ettreen a domaill and a se..-.mt·ie au.ply a q:uestion of

e1aphasis. On the other hai\d.' in l't:s acti. rot.', a. an a•rciser

of privilegn, ;a domain is aure to req\d?'e adclitiOit'ai. information

in its repruentation. · r•1at1na to control. e't~t'urea, e'rror handling,

eut:ry point• ad so oa, Which we' wlll caf:l · ita: ••~:...ct..crlptor.

While tbe exact detail• of th1• extra tnf~ttcia·."it'ao1 felevant

to the. curreiit di.acu8ai6n, it will SoMtitlea be uae:ru1 to dl~tin-. -· - - ' ,_ . -, ' -- - . - . . - ' .. . ~- - -... -.-

gu~sh ?Hltween the d~:l.¥1 ill tbi• wa-~;: !'~•n ~: ~~·. 1111>it~it.
' . . - . .

, ·,·

15

s s s 6

Figure 2.1-1: An example of two domains

16

The active characterization'of domain& is aomevhat imprecise • .
since, strictly speaking, nothing is ever doae by a domain but

always by a process executing in or aaaociac:e.l with the domain.

This raises the issue of the exact relat~p between domains and

* processes. Since protection and achedtl;liq_are essentially inde-

perulen.t fuec.tions, it is tempting to deftaa~~ and proceaaes

independently, and to allow procease, (ac: leut potc9utially) com­

plete· fr,edoa to choose their dc-.ia of~· This iaplies

that

a) A given process My execute la.var:toua,Aflllaina at

eac•t1ag in ~:t •t: .&DY 11._ •. U..

In such a sc.hema. two types of c...._.t.cat'ioa ~haaU. are required.

One is intgi>roceb COlaUD~e&qion, nicll d1CJV8itvo P41'allel pro-
. - ;

ceases., in the same or 4iffer•t doaa:l.aa, Ito 81Qehranf;ze their

execution aad exchanae MtJsages. The other ia 1Ater4omain

cOllllUJlicat#.9f!., which occura at tbe pod.at ·'- ~-.. when a process

crossea from one domain into another. 'lh:ls i-8 generally viewed as

being much likQ a procedure cal1/return sequence. including the

passing of parameters, and is t.hua referred to aa a.domain-call.

This 'rill be discussed in 1110re -atail lat•r.

In actual systems, one or both of two •iJlplifyiug rest-r1ctions

is often imposed. The first restriction ia to force a aJ;ven procesa

to al.rays execute in the sw dmaain. Thia eU•ioa~ tM rather

complex machinery needed for domain-ca11a, and forces all

* .. Ca1led "environaent binding" by Jones [Jo 73).

'

..... ,

, ,. ,.~s

17 .

inter-domain communication to be cast as inter~process colUlllunication.

While this is cle•rly ·a sitapllficiitlon''of the 'base..:.1evel system,

tn praeti~e it ·often forces higher 'lev«f software to essentially

·si.Jlaulate''do.atft-calls ·using·multi1ffe -,roc$f)•es, ortly one of which

iB active a·t any give•· t·t.a.: This is tio'i Ot'llt '.fuet'ficfent, but can

·al80· be sur)>ii&injly clU.Sy t consider:tni '1Sbat;~ara11e1 processes

seem to be such a powerful construct. Indeed, th1f \.tnused potential

· pa'ralleliem see.a to c;au8e much of the tlluas'ines• .' ·

The otheti l'est'tii:tion Wb.ieh is' 'often applie'a is to allov only

one process at at~ to execute in''& given.doiilli.n. 'This can be

done dynamically, treating the domaii1tas a "erltical se<!tion,'" but

ia·more •f.ten doite statically, by a1ia-ociating 'uch'doaaainwith a

single process, and ·a.11.M.ttg only that'~prWceu' to'. ·•xecute in it.

One reason for ma.king this restriction is the previously mentioned

correspondence between dotlllins and ad.dress spaces. As pointed out

by. Lampeon ·{La 69] .this tends to r:e.auit· in·adclhsiV¢0nflicts between

multiple processes executing in the same 'domain. Ot11~ way to avoid

these conflicts is to eq~ip each process with special base registers,

or a pushdown stack for wo'rldng storage, but what such mechanisms

really provide ts simply ·the ability' for ~ach of ···tfie processes

e~ecuting in a glvea d0main to see the -dorta:ki •OlleWhat differently,

in a rather styli·zecl way'. · ·A :·'IDOre strrightfo~rd and flexible

,approach is to ·actually provide a 'diif tereut"'~opytf of ·the domain

for each process, and to use the standard sfieririg lllechanisms to

avoid redundatt1!' storage of the identictil·compohents of these domains,

18

. * (e.g. p1,1re procedu:ces, Ullcla4Raiaa c:qP~U·•~" et4.}. &a 'MCb a

scheme. each proCfl~a has a prl•ta •t Qt ... 1,na. w-.:mg

.tba using the. daaaa,~-~ -..haqj...,,.,; ~~•.AM•• ~ ·tte ••umed
in sub-.q\UUlt.; die.cu.as~ of ~. •U•M 1&11.t.• .• •t. ...-ti.al

to the pro~ ... f*1Cot1QaintJ of tbe ~ •••4'~.---aia

prQpoaed lat~!" . j

also to uni~• the c:apabjJ.1.ty ~-l.fi .:£Q. ~ ~lJ

conatrained · &¥•~ :J.ncludtn&:.

a), <:Qpi:y: tba ~ilit1 ., - ·~JJ c::epl:ed time.

here 8-.ot~ by. a aillple ••ipnr•

b) ~Mg1 rrtvilelff: the .. pi;ivilepa iA ,._, c••hili.ty

-.· be redlacect.. laer-. d••~-' bJ'.

recluca(C .P) . •
·.tbm;e P :ta a 1'Uk iacl1c••ina. •lae· a.atset. of ca'•

pre.viou.a pd.,v.ilqes ⁣k ••·-. 1"'.rqtda9d,.

In s~ ayataa. t~t. lll tbe.ae twC>..Dfl8r4t~·,..._:-.,CGllba.ct;

to an .. illeroved sea...

* . . .
We will aaaume that a domain is created.by aaespl:l:ctt: creat:e-
domain operation. Ud. reuina in exiateDCe uaU1l daeti'Oyed (St 73) ..
A _,re complicated epproach provides tile -~•:le _.,'L'e&Cion of a
domain wh.eaever a call is directed to a gloha1 domaillll-pfototype
object [WU 74}..

.,,··.c '·''''

19

p•ssing of capabilities between doma~~~ via shared se~nts., In

one sense, this is a very powerful featµre, sj.pce it allow~ any
'..:.,,-,· '":. -, ·! ·, '.

possessor of a privilege to pass it on without requiring any sort

of approval by the·C)r1g:l.nal .t-nor of'tfiat privilege (except in the

special case in which the donor is empowered to disallow all such
, , - . r ., 1> o. ":1:!, · ;e · ';~

~haring; e.g. ln the case of a "ccmtined;' subsyst• [La 73]). In
' ' , \ t ,,: '. ': ; 0 - - t' ~'. ·~ .

another sense, however, this feature is very weak, since it pro-
• -~ I ~ \: : ~

vtde~ only·. a r~l.ad.vely costly, ~luuy ··anc1 unstructured method of

inter-doU.in' c011111Unication. This weakness would be particularly
; :

evident.in the case of mistrust oetween domains (e.g. "mutually

suspic:lous'" subsyat.•s) •· Ba°th of these ~onstder~tiC:.ns suggest that
·-· '• .. :-.~;' ~· '· ' .. ,. -·~·;~;'' ,··1

the d011ain-call mechanism should provide for the passing of capa-
.. ·_;_-';,

bilities, as well as data, as parmieter8. The latter consideration

suggests. the utiH.ty of 'such a featur~. wh':J.1e the. former shows
" ,.· . ~ _, •";,:;.'_~! i..;~" ..

that the ability to keep a domain from giving away its privileges
' '

is already eliminated by freely copyable capabilities and is not

further compromised by allowing the passing.of ~pabilities as

parameters.

We assunae that TCS allows the passing of capability parameters

and implements this by copying the indicated ~apabilities from the

calling douaain (or caller) to ·the ~l~ed d~tn (or callee) at the
".' '.~j c·~ ~·u1.~.

time of the call, And copying baek any result capabilities at the

time of the return. A domain-call thus tilkea,the form
._.:".

where the Pi are parameters (data or capabilities) and CG is

20

a ~ capability for the callee, allowing acti,,.•U.on at a particular
.1; ' '

entry point. Slailarly, a douin-retura takes the form

return C8t.•8J• ,a,;

where the R
1

are the results and the return .• ~te is implicitly

the site of the origiaal call.. We leaft Uftttpeeified here such

details as static vs. dynamic allocation of 8'p4'Ce!for ca})&bility

paraaeters in the receiver's acldreaa apace, aut~tic type checking

of capability paTaaeters, and so on.

In addition to making unwanted acc.:eBN• to ob,Ucts. dOMins
~ '' - '

can Jlisbehave by uking unreaaOdable cl..acl• o1l ~he resource of the

system [La 71]. Some mechani• 11Ut be provided to prevent them

from interfering with each other in this r. Since the details

of accounting and resource .allocation ~-~~ beyoacl, t1'~ scope of this

thesis, we will siaply assume that each domain ~.s f~ded by an
. . ! -,;')' •• ' . ;·.:<

account, which limits its resource c~suaption.
' .J:

one particularly tricky problem which occurs in capability

syste11& is the "lost object; problem," which u.:f.ses .. when all capa­

bilities for a given object are ~rt~tly ~~arded, ~ing

explicit destrU(!tion of the object impossible, -.cl' t~ sp~• occu-.. ' . : . ' .. ,' : -~ - ": ,, ; '. ,, . . ·.• __ : . '. ..
pied thus unrecoverable. Given our attitude .Hout at;:couatins, this

' ' .. ' '

is reaily an opportunity for self-inflicted ha~,_ ra~ber than u;li-

cioue sabotage. Nevertheless, recovery from such situations must

be possible, hence several. pos&~b1e sol.utions to the lost object.

problebl will be discussed at appropriate points.

-------------------------~-----------·

21

2.2

In this section we discuss, in a fair .-ount of detail, cer-
.. - ' '!' .. : ' ; ~'t~-~· ,;5j :'.·:;, ·_,

tain as~cts of the impl~ntation of a s7stea like TCS. Thx-ee
• , . ' " • j 1 ·: -;~~ f·,,: ;

considerations influence the choice of .the ,.rticUl.ar mechanisms
":"./" • r • .; ; \• :,~fj~) tjf~,:·~: f ;> J ~ .. :.:.if

described in this section. P'or one thinJ, va~ious systems ~imilar
.,. -~- -

0000 ;,,;~. ; } ·,. - -:·, j 3,,J;, i•'.

to TCS have been constructed, •!1'1 thef!'.. ~~~¥;1t•~~o~8:.! although
, • • • ~ _,, .•• -,- t -. .•• . • ~ ...1o.. ... r~ ..

varying in Nny ways, have shown some ~o..an features whose advan-
··:· ~ ._: . ~ : i: .·;:>.t~_(,;, ·JI _J-Jj:::tr:.::. ··:.~~--~~

tages have become generally accepted. In addition, certain facilities
< .- • .-. •• • ' ,t ' (:~ .';,I·. ~ ·, ~: .·~- • -~· -~ -~"; :."'

not included in any ext.ting capability system ar~ 'Widely regarded
_ ._, : .. _, -~ ; ·-·~,j {J.£; ") ;j ~·"; ;· ~'. ,• J1~:-J.:! F '· :·: ; ._::- ;·_-·

as desirable, hence their impleaentation Uiplicatiop,s are of interest •
. _,. ·, ""' : :• •t,: '!if

Finally, discussio~ of iaple1Q8ntatiou of TCS is intended to set
- . _; , ' . ~ · ~-,-'."i;3l; 't_,;;'. ~ ·_t:..j".tb r.~-~ ;~~.t:-·-~_;·. L

the stage.for the cor~~spo~dinJ.di~~~~s~on ~~ ~fte~.\~~n~erning

the implementatio~,, of a ~re so!~ir~~ca~~ • f'~~tl.if! ~~~~~.·:

The most obvious necessity in iapleaentiug a capab.~lity system
- c< , ' -. ; ,, >-:' ·;__ : !:':_·~t·: ;_), .. :.,-:.._j .. ' '

is some mechanism to protect the r~resentations of the capabilities
·- ,'1- r, _! J.~.,i; '·_:;~·~ ~ '' ,·, '': :·-: ~. ,. " .. > :· ..

themselves from. unauthorized alteration. The proper functioning
• :i:" t ~:. •, 1 ' n -·~- -

of the entire sys.tem is based u~on t~ integrity of capabilities,
' " ~ •. ~: • .L'. -~· _-,.·' ,J'};·_;;f; .: ~; ·~ ,

hence this me~banism should be aiaple, to waxta:be not only its
.t:·;· _,,,~ . ;"'_r;i.f -~} ~_., - r p-~~ ' .

reliability, but also its understand,bility, ~d thus inspire user
- ·I- -~-~- .. . ,J ,.it --~ ' :::.:·_; ·! :.£-'; ' .,- ~-. - '..,

Two mechanisms have.been proposed, which we will call
- ' '. . .:'.lA.;·. tr;~;- -~ . {'ff~ , ~ ... , ,;

confidence.

"partitioned .-ory" and '•tayed aeaol")'."
. •' ;;; . f.: ~f.:~ ~~i-, .

All capability systems which have actually been constructed
- . -~ ·~: .···· ·-~~:tf~,f :~!1 ~-(,t <. : !' ·!·~;~_),

have used ~artitioned memory. As its name suggests, this
~.l.it ~,~·> b~:~;:;··~~~PJ f.: ~· :.~:;?,;.Jf ·. -~~:,~

scheme

involves partitioning the segment• in the syatem. into two
: •, ,._ •. ,• '• 1 J,;l;!.:' J.Y . .:. "i,.f 'fF·,; ,·~ .·~· >

classes:
·•' .

capability segments which contain only capabilities, and data seg-
,. {. ·:-~"~·,r,!_l ::~ .. -. .t~_-:·~, ·.~ .. ,.;J .-~·i.~:.}:-"·."f

ments, which never contain capabilities. One obviou~ advantage
'.'."-.

·of this mechanism is that the cost of distinguishing between

22

capabilities and data is distribut•d ovet an enfire segment, reduc­

ing the overhaac:l per item, but the main advantage of partitioned

memory is more subtle; it involves the avo14aftce of certain address­

ing complications which arise :in the tagecl ~ry approach, as we

shall see shortiy. The aain disadvantage of partitioned memory is
_,, '

that the artificial division of a uaar'• ...Ory into tlio parts is

inconvenient. It is often quite natural fo~ infot'IBation structures

(e.g. entries in a table) to contain both data and capabilities •
. '' - '

While such intermixing can be siaulated uaina a pair of aegsaents,

this is a fairly clumsy procedure. For this and other reasons,

discussed in detail by Fabry [Fa 74], we reject,partitioned memory,

as indicated by our specification of TCS as allowina free inter-

mixture of capabilities and data in any ae~t.

The taaged 1181110ry approach allowaauch iateraixture by attach-

ing one or more extra "tag0 bits to each infor.ation item in each

segment. The term "itea" is used here to denote the basic address­

ible unit of MIDOry {word, byte, etc.) •.. Th~ ... tag bits are UlllllOdi-

f iable by any aof tware except the most central routine of the base-

level syatea. la.ch item's tag indicates its status as 'data' or

'capability. ' An item a.tst be tagged as a capability to be used

as one. All item so tagged can be generated ~Y by copying another

such item, or by the base-level capability-:creatton routine. On
,,

the othet hand, a tagaed capability can be erased by overwriting

it, either With data or with another.capability. (the system could

require that capabilities always be expiicitly eTased bef.ore t~ir

storage is reused. We reject this as too inconvenient for the user,

23

eaaier .foi;- .t4e 4pa~.a.).

~ oQ].y pr9'1~c;ticm c;.otaput4t:,9,~~ W'"u~'IU\\ ~r;Y ~re

t~ "'r"Ji~Ughf ~00 ~(~,~l,.)1 .:,~·1~' c}"fC~~'~•rj~ ult\~ ij~\l~qcted

~~· i1i:,"h~~ ~cl,\Jiuee .~rt/~d!~J~~''' :.?t!~J: , ~Mn, AAP~~~lities.

· .. ~ 41ff~t:~C.e41,:.,bttfMe.,~ ti,i• t~'. ~O,IJCPl.:9~~4!i1hH•:~r~~ J?Bft,Pt for

. one; desfi,J;i,ft~:f,. ~re~~qn'}14•~•b&>f·i·s•t~•1' t5~ .. CftP!Bi~f~t·~· A

lt1'fro~a4~ .. d,•sc;ip~oJ: j,.' 48;,eit~ l.BUt 5~1,:4Mni1!x~~H~'1le capa­

biU~tf,, tilY•~,tua:~e. ,µ~~d, Mt ffilitM; of.,_ lQQ bj;1;,tfg~ 1 e~~q~· capa-

.. bility.. ~ ~~~ of:•~h1~;:~1~,~1'f••'-~!·~l1 ~ ft ~P,~! ;·

Whil~ ,tb~ &411~·~·; of ~HQ; IP@Il.::hf1f• ... ~·'9 t'lew~x.,g•in-
'.,,} "' ~.

~a •ec.ep~~~e, . .,.t~J ~F~"1.~f;l},hM~.~.tfY!&rJ!ff~;err~f'Va~t is

~\le r•ft•ctipJl..:9f tb~ •iz~. ~b~P•-r4fff8~lf .• ~:,~JJ-o~IT ·

·WJJil~ ,~~ 14~~ it •.. Q~1 l~, +J.t ti>K...:;'l'I\. 6flr b"fJ f&~lt1C~n

·. t~ ~he . ~:1, ~,)Jy~e, ~! • b~:· cr~ff£~), ~«J·~~JYekfBe¢'-"~· a

~v•n:aj: ff~~~ •-,,lf~rff&;~~tfr'~l>f~~;!~o~,. ~~~ ulti­

..._, J"•dlJ.~~j.qp._ ~:J>i~. a,cW~~pP~i~"f•,;--~ lf'~lf~llnJC~~,, a

larger unit of information .~J!, ~ . .fr~PM1~a;~~ rt-''f••eP..i•d by

.. ··a. ~t:Lgu.qus -8-WM.('a.,o.f :1~,..1, ~J'4!'!'~·~Y. ~; •«%.if•~fl of its

. f~•t.it,.a,p~:itif 1•1WP-~~ ~ ~~~i-*\J.Jeps~,,

tbtll'P~ :~!I a ve;tY t~~J., ~µc;a;, ~-~- 9f1! /l:~~s ·

,. Two.n.oW.-"1=,~:~. t~,i~~,~~,. iSIPM': ~ility

itiJ a ~~•;.9f~ .. 1~~ys~ ~~t~~!!f!Jlfl!lri•:ti:;~fl\if~,-~vious

iac:~~ in -~ of ~~qg ~i ~· ~.~ ~tf!R H f~1 items

·I~ -.11.«lr;. The.,~~ Ji&:~ ~:IJJr~ ,!ftt~~,~~ffi'~ of

* .; ·i:~~~e':~~!'t!~"i~Hfe~~Jjf.'11'~·!=~:l§C~:&f:~~~1n8
·. ·-,~~ mp1p:q,1~ ~~~'.·V .,...!".t,iJl,,1lfltl:ll ~: .,c ~- ··' 1 · 'r-; , .

v_

24

a:ildres•i>fta the' ~- of a t!'apa&iffty.

u·w ••BUM that each :I.tea baa a cMe- Ht·fta, tie ne faced

fl !h die ~tic>ll of· 'dfc!h ot t1N k,... iW • .,...1_,. should have

tl\e:tr t.aaa ott (f;.. •. , 1«1c to '_,..tJ:tty •>. · lf .dJr -df-'tBe:tt tap

are an, tlNte f8 no eot'l"fttaUdt W1'fd tae·aya~'tto;&i~i•h

Be~• a valid ~••tifty· dilir._~ ·an1· Cliltll·Wfatdft'jdia• •a the.

iddd1e of a ea,.tJil:lty. ~ ~ur·'ea9* eodfl laU t• the recog­

nition of fha l•at fn ttns Of 0.. capaaflSty, toptl!1-f -.tth the

fit1t fetl it-. of an iiiiMdtacely fotl'*ta&" C&fRility, •• con--'

stitud.flg a vali4 capdtl:fty • -...... th1• -.1~c., · auat h avoided •

. Otle ttay of doiatt tftia· 1'8 tcP-ttil'!l dn c.!t 'tit' Ull ·of tfie first item

in ~h cllJat:tlltY-,-' ~ctmre-tllat tfltcftr•t·t*'4,oaly clle first)

item 1o'Cat.i it a ca,aiU.ty addftitit k • t..,.a~ !iita liille• the

ot:het lteM ·fii· a d.,_.tU.ty iitiliaUJtp!AaM.• ftei{aata,; hotfever,

iifttl l•aws-ttM OJ*l to a1tftilttoll'uald9-ivftf lttff* •ration

acana the tql esf th•~~ l'1ialllet .t-~iiag·u...a and

ttltftl9 ·tha uf'f to tl'lnft lava11.~1iftt ot any,t1i1!y wtdeh con­

ta:16.& th ittil(B) belll-g fKMified.

tt is ~leat, theft, that a aadrWis 4r0111ttti1 :f.ttto ttre ll!tddl4!

of ;a capability llUirt be 1H.ttillp-1..., '-da fr611l a 'ftlid eapability

addreaa atdl ftoll m ddnn of mit..-aM clda. !ht•- __..ts the

deed fot t:wo 'tag bit• -OU each itea, one -tnftcatiltl Wretur the '

ite'lb. is pa"tt of • capabU.tty at 811, &ad 'tbe-:'0~'~•1 whe­

ttier ft 1* the first 1tn of • -clrp'al;J.ltty. lbce tile ~ tag

is Haeeft&ry billy .men the first· one 1-a -tMt. • tt: coUW 11ei "nolen'
1
'

frft till! bits ·of 'the itea only ~ (a:lt:hatt• 'this obviously
. ' ' : .. - -~ ·, :~ . .

25

have no bits left at all!).

The other proble111, the high co~t ?£ ta11i1in.~., ~..,p. itelll8,

exerts a strong pressure to incr~'«if J~e,.si~• of t~~· ".ArfUJBents

in favor of &¥.11 _iteu generally qit~ ,th~ J~.~ t~tp ,,fo; a given
' - I f . •. '". . '1<, •• ~ • • '

total bit capacity, address size ap.-ow,s only,.log41'ith1Jaj.Gally with
• ~- ' - • ' ; , ' ' 0 ; ., • ., ~ \ •• - • ': "

decreasing item size. U~fortunate.ly, the co~ of .. t4&&.~& grows
' ' ' '?} ~- • ' . ' ' < ' • < - ' ' , '

linearly, reaching a maximum in the bit-a4,4~!1!~"able c,~~ o.f two
, : • ,•' ~ : :. • .<.' \ •_,' • ') e L

tag bits per information bit, whic:;~ is cl~I'.l.Y 0,ut .of ,the, qwastion.
. ~ . . ; ' ·'· ' ~ , , ~ - '. . -

One alternative tagging scheme wl:lich we .reject .ali(>Ws small
. : . '- .~" • , : , , .; - _ · · ; - r __ • . _,

items but imposes the restt"iction that ~pa,~}.~~~~s .c~ only be
",.: . . ' . .,_, . -· .

capability. In such a scheme, ..-ory, is iteta-addressabie for not'll&l
~ - - ~ ; - • : ~ • < ; :' •• - ~}: I:

data, while capability addl'esaes lllU8t locate ane of. die p;r~eter-
·.~ -·.r···- ·1::-~. -1 .,··:~--'-:fl: ~· .. :~-- •:> ..

np.ned "capa~ility frames."

the software and sacrifice DIJUlY of Jhe adv~11ta~ .. :~ .. of item­

addressability.

A much more sophisticated sc~~ which.~!~<> involves the

notion of a ckpability frame, attempts to explott the fact that

the assignment of tag bits to each i_t~. ;i.s, • re~~tively ineffi-
- ' ~ --- ' : .. •. .. ",' .·

cient encoding of the set of pos.ai~f~ ~t~/c..,pa.bility configura-
. .• '" - ' <-.

tions in a given reg.ion 9£ lll8DIOry. lven if ~,IJ,abp.iti.e~ cfn begin
- - _, ·~:...:. ,...-,,. ,;. '· ' '

at any addresli, trua numbe:r of: dift~~~t. ,&fi'..,~~~~·~JP; .~ .. ,~ven
c4tpability fraue is not larg• ~ At ,..,st mall!, ~~b~li'ty_ ~an begin

' ' . : . ' ~ . : . "" .. ' - ' '

in a fraae, and can be preceded by oue or more data items and/or

the trailing items of a capabilit7 vl\ich belf.D in ~~· preyious
' > • '. • ' \ • • ~ \ ' l -;,.' ~ 1.~ ' t •. . ~

frmae. B; associating with each. t~iiie: the "~~~*~r .. ~i~pl.a~~nt of

the capability, if att,, beginti.ing irtrthe.traM,'it i~ ;ossible to

26

simulate two bit tagging of each item. This is a somewhat compli­

cated approach, but may eventually prove to be the key to bit­

addressable tagged memories, since it'aiioW& the cost of tagging,

like tl'\at of addressing, to grow only.1ogarltbmically with decreas­

ing item siu. This scheme also bas t~ rather intriguing property

that reducing the size of •capabilities cto'es not .always increase the

efficiency of memory utili~ation. ror a aiven pattern of usage,

there is an optilaum size for capabilities, such that deviation in

either direction increases the total overhead for capability

storage.*. No existing systea uses such a sch~. although it has

been tentatively investigated.by Gray [GI; 73].

we. t1"1& conclude that our ·iaiplementation of TCS should use one

of three t•gge4 memory schemes:

a) Iteu should be ai.le bits, and the scheme just described

should be used to silm1ate two bit tagging.

b) Itema sho\Ud be a substantial fraction of the s1%e of a

capability, allowing a two bit tag ~r it~ at a reasonable

cost.

c) Items should be large enough. to hold an entire capability,

alle>Wing a simple one bit tag per itetR.
* • . O·. [:.· ••• ::: .:J.: : · .. •. :
Assmte, for eqaple. a bit addressable ...,ry in.which t~ ave.rage
opjec~ is JI b.~tf. loo. •. ~'~ '8~·fM1!0)t1 .,, .'9~Pi~!t+ps.
'l'heD. tbe.9ftrhNd.for capabillty etor .. e is tile fraction of 118110ry
t~en up by.~w. plue.t;e,frac~~.hq,J,.lfiy ~;~ .. µt,~~., them­
selves. ·u a·£•ction of the siie c of c.p.Di11U.e._, this is

lots. ":C . .: i kc
P(c) • c +log c + 'N+.kc

For iastance. if N ~ 105 bits and· 'k' • io, · the storage of 64 bit
capab~~i~ies. ~·•vires !~g~ l~; o~ ~~l;fit ~A-tJ.~,.;r~1uct~~ ~o 32
bits or expansion to 128 tiits increaaee the overhead to about 17%,
and 16 bit or 256 l>it CA{>~b1,J.f~i••,,~»4t• .. ~t, ~~~ ..

27

To simplify subsequent discussions, we adopt a~ternative (c),

although it would probably not be feasible for TCS as described,
-....

since capabilities are so large. In Chapter 3, however, we will
:·; :- ; ~

describe a scheme in which capabilities fit into more reasonable

sized tagged items.

The second major implementation aspect to be discussed is the
,.. . .. •' ,,;t. :: .

mechanism for mapping the IDs found in capabilities into physical

addresses of objects. The most obvious solution would be to siml:>ly

use the physical address as the ID, but that would imply updating . .
.• _f: ' l '

all the capabilities for an object whenever it was 1110ved or deleted.

This is impractical due to the proliferation allowed by free copy­

ability, especially in a system allowing int~rmixing of capabilities

and data in sea-ents.

Most capability systems h4ve solved this problem by localiz-
.. ' (~.-~ v: . :

ing changeable infonsation about objec.ts in a systea data structure

aud forcing all access to the object via capabilities to go ~ndi-
; ,- f

rectly through this structure, which has been referred to by such
,,,:· r

terms as "Master Object Table" [St 73], "System Capability Table"

[En 72), and "Global Symbol Table" [Wu 74]. Here, we will refer

to it as simply "the map."

There is a one-to-one correspondence between objects and
.·,.,,.

entries in the map. An object and its map entry are created and
, ... '

destroyed together. Since the capabilities for an object are not
; } ... ; ;~

updated when it is destroyed, it is not satisfa~tory t~ use the
.i' '/ ~...-,. ~

location of an object's entry in the 11&p }ii& its ID, since that
< ·•' .;"<

would prevent re-use of map space freed by object destruction. In,

fact, the ID of a destroyed object must clearly never be re-used,

28

since capabilities for the old object could then be used to access

the new one. This suggests that IDs should be quite long, so that

the space of IDs can never be exhausted, even if objects are created

and destroyed at the maximum possible rate for the entire life of

the system. The alternative of occasionally stopping the system

and compacting the space of IDs ia plauaible, but less attractive.

Any generator of a sequence of unique long integers can be the

source of IDs. A counter of the total number of objects created,

or a real-time clock of sufficient leuath aad reao1ution are the

common examples. In either case, prnision must 1:>e made for

restarting the systea after a failure without any possibility of
.

repeating a previously used ID.

As a first approximation, we can consider t:lie -., translating
. .

such IDs into physical addresses as being iapleaaente:cl as a large

hash table in primary memory, keye~ on IDs. figure 2.2-1 shows

the representation of capabilities and aap entries. (The field

labeled "address•·• is assumed to contain any extra information

necessary to distinguish between pri1aary and secondary storage

addresses. The details are not relevant here.) Each exercise of

a capability involves:

i> checking the appropriateness of the action, given the

type and privileges in the capability (and signalling

an error otherwise),

2) hashing into the map to verify the existence of the map

entryw and hence the correspondin9 object {and signalling

an error otherwise),

29

type

capability: privileges

object ID

object ID
map entry:

address

Figure 2.2-1: Format of capabilities
and map entries in TCS

30

3) checking the address in the map entry for the presence

of the object in primary meaory (and signalling_ an excep­

tion otherwise),

4) using the address to perform the access to the object.

These steps are simple enouah to be iapleaent.ed in hardware or

firmware, and would be used heavily enouah to justify such imple­

mentation.

As discribed so far, the mecJianism doea not deal adequately

with the two extreme cases of objects which are accessed very fre­

quently, and those which are accessed Vfll'Y infrequently. Objects

in the former class, such as segments containi,~a executing programs,

are so heavi~~ used that hashing into tb.e up in primary •aory is

unlikely to be efficient enough. 1'.hus, it is necessary to hold

the most acti,_.. map ~t.rietJ in e,-cial hardvare.

In our itnplementation of TCS, this hardware takes the form of

a speci4l associative memory, each ele.nt of which can hold one

map entry. The association is on IDs. On each access, the ID in

the capability is first presented to the associative memory. If

a matching entry is found, no reference to the map in primary memory

is made. Otherwise, the standard map reference is dc;>ne, and the

result replaces the least active (e.g. least recently used) entry

in the associative memory, as well as being uaed to perform the

access. The effectiveness of similar hardware has been clearly

demonstrated in existing systems [Sc 71).

Whenever an entry in the primary-memory copy of the map is

u~dated or deleted, any corresponding entry must be invalidated

in the associative memory. This can be done by selectively

31

clearing the matching entry (if any) or by totally flushing the aaso-

ciB:t!~~ memory. . The c~st cit rei~i~' t~~,~~~1~~ ·-~~~ci~~~~e Jlle1QOry

• , ' _ (": e • l:' ;·. ~ " ' r'' ,

requlred tb' 'do aelectlve
~J 'th~' mathod ·<;'(' ch~l.~e. _,~z~~c:.-~ ~;sL! ··' ~.·.d.J \ ,,_,-_:_ :o<r H.l _:~l(f.~ 1:-~-:.:-.~(,/

Note that total fluthing of the associative

'~ry fa n~~~ logic~lly ~~~-~8ky:,.,·~~'° t~1 t~ ~u~~IWtj co~t~xt-

hdeJ;ena~nt' na.e& as·,·~ •• C>c1.t:r~i' "-;;::··'''shd.i.V ~~=~'invo1v-
ins~ .~~~1aft<>n ·oh·, ~onfeit~~~t1~Ji' r~~iie i:~l~·~l~bing

. ~'ch t1M "the~ '~iltut. td~jt~ ,''p;!~.;~-:.', ·' ~t·~~: ~; tsr·~t~bed. Of

ho~~se, the' ~ipffican~~~ of' t"i:ir 1~'~'ti~~1;{J .~~~~l ~;~~ the

':~-~ ;: ~ ,, '~, "';:!·" :"--'~ ..it~-;J-,,,~~J,, ,_~, i~·-~~_:J{.t~) :jJ ·!B-·~:.;!•.i:·.it.-'-··v·.;..~ .. ~
Orie apparent alternative to a special aiteociative ilimory would

'be· the;'~!:orl~i~-' ~f'' a·''l~ne~~i; ~~rp:~' a8$~ci.:ti~q~i-J:·~>:J·,,cache"
.~ ~ ., i ' i -·~.i;.,:~ ·. • .~ -. , ' .• . ,;> .. : ; ·, '}-, ; _,_·t,: 3 ·;_""',P .\:) "(~L~ -~ ::> <.n~-:,.. ~H.L~ >t, 'l'::)\; u_:.::. :'. ,--1~,,; •

holding the 1'1C>st active· iteas·ii priliary 111811.0ry, regardless of how

~hey -~~ b~ii\g · ~d~ Such·~(~~~ ~i~~ilturally.: t~ncl ~-~ capture

: t~ ~st activ~ ntries 'hi tilct~p/~d t:fi~'t*.d""'~p,~he'~iuctard
.· 111achi.Dirf' f o~ 'ilcc~sshg ',,1& i~ ~p'1· iii i;~ii.~:;17.'~iey:;·; ; 1~;; ~pi te

··&~' iti' ~~J>~a1lii& aiip11clty:~ ,;~''fej~C:t: :•if.1::ii~ £~r ~eve~a1

reasons.

fcfr' non~p it~ (e~ g. instriicti~: '~t;·) i~\.~itbly to' be as

fast, as ·'w.e ~an ~ff~rd to -~ sP.~ia1~'h4~~;~r::·i~~; ~~pt~res only

other ·:d~ta . al~~ sac~lf ice~ . ~f ~pori~tty "i~ ~ce~~~ the two in
:·· ~ i ~.Ji~,'~- "!.;; ~~::-l __ .,-3·'- . ·; 21-~J·;,~_J-:;~:l "';;.f:B~~i VJ; -

·parallel. In addition, 'the Cache, by tt'ana.~y speeding up
it~ ~:. ., .. :::·,·~: !;·,~ .. _:!J .~.:-~~·1(::f '1: ... \d.:G ~c-.~1s·:·)'t!.:~"" (·~

primary inemory, in no way bypasaea the bashing necessary to locate
. ' _, "·-!!·"·,,\ii ., · •PJ.<q··:-· i: f~ ,,.,... '' . :~

a map entry. This means that' entire''itcdllie:lon 'c:b~i.186 from the
-·.· .! .• ; ; '.: i 1 ~ ,;_ ~ _; . "'_-:, 1.tJ .. ! -1~r.d~H~ :i\~

map, rather than just active entrieaj, would need to migrate into

-,. -------~-----~

32

the cache. and would have to be .scanned on each accees, thus further

degrading performance as compared With that of t~ special purpose
' - ; • • , ,1 ,: ·; '. <J, • ; <· '-._.-:., .. - ':) ' J

associative Jllllit>ry. A more gener•l way of •ta_t;ial all of these
" ;' ' ., =-~ . ' < : -·· ··~· ; ! ~-· • ,- "• ' ; :.

objectiona ;is to say that the e&~!Je s~l:y ~ ~he ~ry. faster;

the relative over~ for accesaias Jll!lllP ~t.•1.41~ .1.Jl .._.,1'1,, ia thus
, .·'.- ·•· . " ' ~~- ,_' -, ':. ·~, ': -·t~~~:'.l!} . '·:: .. :';" '·' ·:·. :..

purposes, is not opti-1 for cap,turina active Mp•ntriea.
~· . '. ·-. - -'} ' ' _(. : ' .~ ..

Another alternative which ~· Mell aclopted :j.n at)fle .-yste.S
. _. .. : ,.._, . : . · .· · .- · . t.> ,-_ r: :.~ :· · . · !·

stems froa the observation that •tive ca,.a.tlttiee, aa well as
, '·.. ~ . . \ . , . , - -~ ~ ·"' ' .. ,. --~ . : ·. . ' !·;? ;

active map entries, ahould be held ia fat hall'dWare. To tlQ.s end,
,- . , :. ·,_ -.:· ~·! J :-._ ~ . ~-?-;; '.· r~"; '

progrBllMble capability register~.~- ~,prcWf.>df!ci.., into which an
• ' ~ : .,. '.'. I, ' ,> ' ··~· t;_;,v.:. : <. '·: ·'-"- ,; f '..;'J;-,1 ~{,:~,'!"\- :' __ ,~;;,

executing r>rograa can load cap8';i:lit1e• ~fne, ~. [!a §? t . '11 72 J •
' ., ·, ; '.·.;· ;"; (~~·~-:; : t ~.:..; ~-:~·<.:4"'!-_-:: ;". ; /,\-. .. :;_ -.~""'?\, -~·., ';\

Moreover. the aa! entry t::o!r~~~I. ~~, ~ ~f,~~" ~?~~H,~~y ia

itself active, suaae:ating that apace be ~.1• the ,r~gister
.· ' ,:- ' ._, .· ·. ~:. ~." "' '_ ,_-· _:""'.' t.f ~;' :.. . -· ·- ~ \,' - :-- : .;

necessary to aut~tically reload . ~y. re1:J...s"t'~" ~ld;l.A' cop,ie~ of
. ,. ' ,_. .. ,:_ ·-;~·:·'. ,~f.:, . .' '--'~'-:•' ·-:.

a map ~ntry which· is u~~ed, 1'hich acfd•.a ceruia aaounc of com-
: ' ~. ·. ·:· ,· ~ -. ··. -: .. {;:: : .. ~ -..,. _--l.:.~ ~.<:~ .; .:: : .. '.·{·} .

plication to the 11echani&11. Ale~, ~he dition.of progr..,.bl~ · , , "r. . , ! - .'. - • • ; · , :1:_,~1,- ,' ' -~ ·-,_ :-,_;- ·· r:-, '. \ ~ , . ,

capability registers, whether s.rt or- llOt.u~roclucea t~ •tandard :· {- :" -;~ .-··· : : ,._,, : }>:-. :-. > "1 ·~; ~ ~:!:> .~:~1,· --\;: , .. ("·'·· '

probl•s of re~ister all'!cat~~'.Sf"/~ut~~~"1~es, ~so
- • ' ,. , • ' ' •• • • ,-__ ".- - • - • ; > • ,.. - • • ' < '~

on, as well a• the nov~l re,ui~~at ~,~t a c~~J~nsj~~' ~rp~i-

citlf erase n!list•rt1 contain111f ~tli~t;•f ~t be:tn'·'aseed as
' ~ •.' ' fl. : ,, .i' ;._ "~ t : ' : " . ,), •. <; ,_ , ,, ' ' """ . _ ..

parameters. Other .consider~~~o~s in,~~~ o~ ~~b~!ity,~egis­

ters are discusaed b:y """~. (~)2l.

We adopt for our implementatiqn of TC$ the as.sociative meJl!ll>ry
· , . " .-;·-- ·. t ·Tu »~ . · rtSF ·~ ·:. ,~~"":.. ~·: -' .., tfft:

approach rather than smart capability reai•ters. altho\llh the

33

preference is not a strong one. We assume that the overhead of

fetching the capabilities themselves from primary memory is suffi-

.ciently reduced by transparent mechanisms such as a program-counter

holding the current proced.u,re,ca~il~ty,·ol:-itterdware implementation

of all or part of the executtiflg·-·;;··qtplicit segment.
·,, • -·, ~-·~ei.~.<.-.'.~'-~"""'"!JS/

The success of theassociative~memory approach is completely
~~

dependent upon the observed f••••~ fer ly • small number of
: t

objects to be heavily accessfd duli..····atty ttven small interval of
\

time (i.e., fraction of a se~ondr:·-~on~;---~~araer time scale (i.e.,
<

minutes), the same kind of b•ba•toirlt'lr"UtnJtrved in the sense that
l

during a given coarse time i~tervitl ..Oat ot the objects in the
. l

system will not be accessed at all.~ This sugaeets that the map
~

. ~ .

entries for such objects be kept in,'8-condary me110ry, and be brought
.< -' '"~··1\ .•

... J.D.to.. tbe.~JMaa ... u.ai..4a pr~ ~ry'·°"lY when .needed [Fa 74].
,• ''. .-· . ,...-~~"' it~ . ""it~~~#-..,. .. 'i.K'<",..,[•/;,ft.•'t~--.-,,·1-- ,_, ··:· '$,-,.~..., .• ~.,,..,"'"

bperience ·~th a sild'.'~;··~~b-,'Cthe "~ttve Sepent Table't [BCD 72])
~ ... · ·.~·.' """'-'·"· ·.1i~."'--~·-<·'"_.,, , .. --~,., .. ~, .. ~. ·J"!-:' - .,,.,.._ ,, r"'""",,-· ~

in Mult:Q:s sh0ws that this approa<:1l.:"'fCan be quite successful ~n

saving a: large amount 'O'f ·p'fiiiiarf-...j,rf·w:i.tliO'Vt'Tn"Cfurring a ~igni-
... L.~. . j

f~~t ~pe&d- ~falty~ ' · ,,. '. ., ' ,
'(. '. ,. ,.,, .! .,. ' •• ,: ' o,,

.__,.,.-.#

Another aspect ~!, .'.l~§' ~.~.,,.to.,..N..flitscus•ed ifi para-

meter passing during domain calls. l'his is inclti.ded mainly ~
-4 t

background fo?' a arore elaborate .~;·= ~ . ..ill .Cbapta~ • ..I,
' .·. . ~

hence it omits details not rereviiitto'"tnat' di&CWl&ion. Fig~re

2.2-2 sh~L~lM! W,Pr~,j,i,1&~ p~ the ~1;1 ~U ,~-.=ruction. First,

the return gate must be retained, allowing re-entry into the caller

at the site of the call. This is saved in a pushdown stack Qf such

34

c.all(CG.Pl.P2,, •••• tt1 J.
p

I + 1

P + get_parameter(I.Call•r)
put_paraaeter(I,Callee..P)

i.' ':, . ':".

35

gates which is associated with the process.* Then the parameters

are copied from the caller's address apace into that of the callee.

We assume the existence of two sub-operatiou.a internal to the base-

level system:

P + get_yarameter (I,D)

These operations serve to .fetcli and store the Ith parameter P

at the appropriate locaticin in the address space of domain D.
"'"~·''"···-~

The actual layout of the paramet4frs in the address space need·not

concern us here. We ~!!~- ~~!~~ ~· the nuaber of parameters,

and Git, the return gate• are automatically •vailable to each base­

level operation. (MQa.t..oPe~ finish by .xitii>.& through GR;

the exceptions are ·11~il!:C,!,l_i,,~ do.ain-ratum.) To simplify

the discu1sion, -. have omitted description of the copying of

results 'ti:O..:th4 C4lJ.~ ··b&~~ -~ '.t~ cai1;i :~n the return is done,

since this is virtually identical to the handling. of the parameters

during the call. Thus, Figure 2.2-3 shows only the retrieval of

the return gate from the stack necessary to re•uae execution of

the caller.

In concluding <>Qr dieeuasion of TCS' illpleaientation, we

briefly conaider two possible ways to attack the lost object pro-

blem, neither of which we regard u satisfactory. One approach

is to maintain with each object a reference c<>UDt of existing

* A variant of the call operation, referr4'CI to as a "jump .. call" is
obtained by Gaittiltg the saving of the ret~ gate. This causes
the callM to return not to the ~urre\\t caller, but to the pre­
vious caller. This is occasionally useful, as we .•hall see in
Chapter 4. ·

36

return()

ENTER

G ~pop ()

EXIT thru G

Figure 2.2-3: TCS domain-return operation
(without results)

37

capabilities, and to delete an object when it becomes lost, as well

as when it is explicitly deleted.*• There~·are ~t- least three draw­

backS to'this.approach:

ca} The destruction of capal>tHii~s'(e.g: through overwriting

or ~egment dei~f:ion)'~a~ ~ det.ct~ 1 and -~he r~ference

counts maintained.

b) Lost self-referential structures are not deleted properly.

c) An object may be lost t~'the ~::.Jho ftlnds it, even
. - . ' -.; . ·'. : ~ " :~- :·i· ; < ;,_ ,- •• '·' -- '") _ .. ;~

though capabilities exist elsewhere.

We therefore reject. the ref~renc~··~ount appr~ach. (For ·a contrary

. vieW, se~ wUlf,. etai.' [Ciu 74]).

Another approacli is to all~ ifun-l~ains'' ~i'1o~t ·objects by

aliow:f.ns a :.suitably>authorbed ~~id~ (~:·1:;·,~~fwich ·owti. ·the

funding account) to reqiiest •P<>nt~~-·~~i~£10ri of fully privi­

leged capabi1iti~s for· fuiided,~bjects.fce!hgjf; ?hie is.rather

inelegant ~~ ··req'1ires fair1y cmlP11~~ted~0dat~:.t;~~tures' which

may'o~ ... , not'be.othenrlae neceeaary.
Other approaches to a base-level soiution to 'the' lost object

proble111 can be envisi~ned" (e.g. gl~b.ii garbaae co:if~~tio~)1
but we

choose instead to postpone the solut:ton'L~til ·~'higher l~vel of the

system.
,_ . · ~ · , . -' "'1 S<i-.:..~_' ·~·:. ~-··lt-.. :".1 · ;, ! ,_

Thus, the base ... level system simply allows objects to

becoJae lost, and the users depend upon the directorj-&yst.em, as
· ·,,, ':».:· ·~ir. _·' .~)i~""'·~·;.t<.. ~.i'~~'..,:i-0 '.'."

described in ch&pter 4, to pi-event this occun:ence.

* We us.- 'tl1i&t eJlpU.ci't: delet.idA iii d.ellf~~lal4e~ ail!lce other-
wise, the uaer who funds the· ob!ect ay 1'e unable to- r.eclai• the
spaee ··eceupi.*1 \Jy- ·:k. '-,.;

, __ •ti'

38

2.3 Revocation of Access Privileges

In the context of TCS, we now explore various approaches to the

distribution of capabilitie~ and the revocation of access privileges.

As an example, we use the simple situetion in which domain A
' ~ ' " '

wishes to grant to.domain B a set of pr~vilegea to access object
. .' '~ ~ l ·"> -

x.

The first approach which suggests itself ts t~e simple copying
. ";

from A to B of a capability for ,x c~tainina the desired

privileges, as shown in Figure ~.3-1. "J;his. ie clearly the intended

use of copyable capabilities, and is quit' eatisfa~tOJ:}' provided
. ' ._,,.,, .

that the amount of trust A has in If,

however, A subsequently dec~d~s that SOllil different a~t of privi-
. . ~ ; ;-. ,:: . . ' ' , . '-· ~ ·;:_ '

leges is more_ a~propriate for B, a second c4pability for X 111Ust
'~ :. ; .;,

be passed as a rep]A~ell&tlt. Thi• .. y be quit• .tnconveni~nt for B,

who 111ay have made various copies of the oriaina.1 .. r.;apabili~y, some
. ·~ ' . c;·.p; . ,,,,, ... •;.c·

of which may have been pa~sed on to othet: d~in~~ Mo~e~v~r,

unless the privileges in the new, capabilit)'. ar~ ~ su,pe,rset of those
~ . '' - . . . •' ..

in the original, A must pessimisticallt aaeuae that B will
'<' ~ i . ' , ,c: ,. f'. ' ' ' . -~ '

retain both capabilities 1 and thus posse~a the, lplion of the privi-
-' ·' '..: ·.; ,, . ~ ' '. ' '

leges in the two. In other word8, privil"9• ;once •ranted can never

be revoked.

This sit11ple example shows that the typi,c~l capabilJ,ty mechanism,

while useful, does not adequately cope with the difficult situation

of changing levels of trust, particularly when trust decreases 4nd

••
We will generally omit the phrase "the,peraen mctcwns •·eanain"
and simply inpute feelings of "trust" and "suap:lcion" to the
domains themselves.

39

Note:

object name

----+ capability propagation

x

Figure 2.3-1: Passing a capability

40

fundamental changes to the behavior of capalitlities, however, it

seems appropriate to expl~re the -ntt:ous·approaches which have

been proposed' for solving the revo~ti.ci'n'"P'roblem without making

any major modifications to the underlying capability mechanism.

Caretakers: A standard "escape hatch" in 1ll0st protection

systd'tl is the ability to interpose·• ~,'oret&ih.'' domain between
~· -

an object and the domai.nsvhie~ acc'8• it. The catetaker can

implement any access control p'I'otc>Col D9!~:PiCW~ed by the system •

. This situation is ahown in Fi11n:e 2.3-2, in which A has created

a ea,retaker domain C, and given to) 4 C!,.wtlity to call C,

rather than a capability to access X directly. Two ~roblems

are immediately evident. .;One is simply the :l.neff iciency of

calling C each time B a4cesses X. For exaaple X may be a seg-
'

ment, in which case the extra domain-ca·ll is liltely to cost much

more than the segment acc4ss itself. The other problem is that

B now receives a capability ol type 'domain' rather than one

indicating the type of X. Unle•s the systeaa provides facilities

for allowing domains t& "maBflu•~ade" as objects, this will change

the interface seeJ1 by B whan ac.cesaing x. For example, to

store into a segment, B must execute either a store-operation

or a domaia-call-operation, depending on whether qr not a care-

taker has been interposed.

More generally, one can object that the caretaker mechanism

is not, in itself, a solution to the problem, but merely a frallle-

work within which a solution can be implemented. We have said

nothing so far about the basis upon which the caretaker C decides

to allow or refuse a given access request. In the simplest case,

41

A B

call-only

. A caretaker Figure 2.3-2· domain

42

A specifies .a single set of privileges and gives a corresponding

capability to C, who exercises it each time B (or any other

domain having a copy of B's capability) atteatts an·access. When­

ever A's levE!l of .. trust in B deHeaa~·.·· a weaker .~apability can

be given to C. On the other haa4, 1' At ··Wishes :t:o cont er inde-
. !' •

...... ~, ,.(1,1'."''.
~ ~ ,

pendently T~l~ privileges to ac•..S ·X"' · '1>1l .• .., ... ioua domains

by authorizing them ~11 to call C,, · '~n·'·f; · given that it can

distingui:ah reliably between its #ariou• CialW~•, iinds itself in
: . "

the position of a procetts ia 1.tl4aou'a.·'~'•••-.• system" [La 71];
• '··c •. ,. ~.,,-'· {

that is, C must es,entially r.-!Ay~t the •yatem's protection
~ ,f ./

machinery. This cab be avoid~ ~y cl,filli"' multiple caretakers
;

for X, e•ch alloWC,.ng an ittdepen4eqt .,t of privileges, as shotln
,. f

Since the :caretake"5 in this situation are not
~._ ; 1 •

;"''.,,_+-' ,;~-

in Figure 2.3-3.

really making any dee is ions., but y'tt aerely usi111. their privileges

whenever requested, one wou]Jd ho'e that the overhead of an actual

domaip. call might be avoide._+.. ;~ ... -~ill return to this point later.

Co~tte>l: Most ~ern protectidp S¥•teaB8 pro-vide soae mechanism

to capture the notion 6£ one domain,baina aul>ordinate to, or under

the control of, another domain. '11U.a ta sometiaea repre•ented by

a static clc:Jmati\.tif.arar~hy·fSt J3)• iut •'will treat coatrol as

being a privilege which, when contained in a capability for a

domain, authorizes the possessor of the eapability to control that

domain. (The distinction is aot very iltportaat fd~ the discussion

which follows.) In our typical system, lllUCh of the power of con-

trol can be sranted by giving one domain a suitably privileged,

capability for another domain's iaPlicit seaaent, as was suggested
/

in Figure 2.1-1, although complete control would require a

43

Figure 2.3-3: Multiple caretakers

>" • • <:~- '.

44

capability of type 'domain' allc>Wing access to the controlled

domain's domain-descriptor.

This facility for one domain to control another is applicable

to a subset of our problem of c1'anging degrees of trust; domaitl A can

attelllpt to enforce any reduction iµ its degree of trust of B by retain-

ing control over B, althouah this requires that B .have total

and unconditional trust in A. the latter coo4::t..tiaJl ~learly limits

the class of situations in which control of B. by A 1s a,ppro-

priate.

!11en when the contr~ ·facility is ""li~le;. t\ere at'~ still
'; ~· ~ '•. ~

problems ·with its usa. It wo..U.4 4.ppeff cfi&& ... A, : haVil,)C given •

capability for .,X to col.l,trolled .domain B, col.lid later search

the entire address apace of B,. reducing the 'privileges in all

copies of the capability to match its re~ intentions. The

success of this search, however, can be compromised if B is

allowed to execute concurrently, making the capabilities in ques-

tion "moving targets." thus, concurrent execution by B (or any

other domain able to manipulate B's address apace) must be pre-

vented, either illplici:tly by placement in the same process with

A, or explicitly by being "stopped" by A. using its control

privilege.

Even if . A manages to successfully weaken the capabilities

in B's address space, there remain$ the posail>ility tb&t copies

may have escaped to other domains which are not under ,A's control.

To prevent this, A must carefully limit B's comaunication with

other domains via shared segments, domain-call parameters, and so

on. In short, B must be "confined," which, as noted by Lampson

45

[La 73] can be both very rest:dctive for B, ~d very d:f,Uicult
- - i - ' . : : '~·rt,.;,l }_ ' ,\ \ ,_ ... ·:

for A. In the latter ~egard, bowev•t,_it iiJ wort:,h nc;>,ting that
• ' • '. • •: ' l. > .'; • • ±.:r •". ~,.) ,.,~ • '

the problem of "covert channels" does not exist. for ca:R~bilities,
. . :~' , .. ~. . ,.:,:.-~·· ,,C· :,._,.. :· :·· :· · . .ii.I_:

since transmission of the bits of a ~.apabilit_y is not the same as
' ·. ~-- , - :: ; ·"': . ··~ '.: ~-, ·'. ,:· _: '""" f :·,. - ~., l.' .

transmission of t~e capabili,ty itself •
. - ,.;·(· '..' "'. / ·-::1 '.

A simpler mechanism which has be~n proposed [La 7)... Gr 72]
' ' "· :. ; 1 - ~· ~ '-"· • • ~ ' - ~ • "!'~ ~ :'":'"'t -~ f, i -~ -; ff:) · ! .• -

to deal with the above probleu u.aes a "copy-flag" cont~i.n.ed in
- ' : ~ -

each capability. Ori~inally,_ the flag is on .. to allow copying, but
; -l ; . r . ~ ~t ' l ; :.' :::,- . : ' ~ ,i'

once it is turn~~ off, it can nev_er be tu1:1'~. back on, -~~d all

copying of the capability is disallowed. ThUtil, A .· f.&n J>l,ace a
i' ' ; (.,. 3 < ••• , ' .~ - '·l ~-

non-copyable capability for X .~'1 ~-·~ addr~_,s !il>.ace, _and
1
later

-r· . - ,.·., -. . ·-

revoke any desired privileges frOlll that _c•pa~ili~y,_ con~idpnt that
/• -- f • - - • ' '. ! .. "'. !""':",~t :1-n '.<· •.r ·:~· r;; : ' · ..

no other copies exist. This is even more of a restriction on B
.1 • ~ ·I' "' · . , ' } :·; f·~ ~ -_,,,

than confinement, however, since free copyability is oµe of the
' - . -"'; ... , --_ ~.~~- ~ ~ :°'j';~--- .1 i ,,h:': - ;': ·.

fundamental properties of capabilities. If one ~ssumes t~t the
. .. -~: + - - ;:'!:~ ... - - . -- "'~- -'~' :_"" ::~ i._, .,_.

passing of capabilities as dOIQllJ.n-eall par8'18ters is done py copy-
. . ·_ ; ,, - . ;_ -. -,.~-- ··.;~:r , ,;-__ ~_:-;r,; :;l.r:·~ .

ing, then non-copyable capabilities canpot even be passed as para-
, . ,.,,_ > " : .. . -~ ~ -~-·- : ~ ,·,·-~;_:._-~ :(-~ .. ·'"" ~ :"' .

meters, uaaking them virt~ally useles,. The sc~eme c~n b~ salvaged
. . " ~ ; - ~ '. ""'" : . t' f •.. > •

by introducing "indire~t capabilities" whi~hrpoint to the non-
. - --~ :. ' "' - ' : ' . '·, -~ . .

copyable capability a-p.d are themselves COP,Y&b~e. but, as we will
.! I ~ ' ,; '• ; ~ ~-~ ::"'"jJ "•_ • ;f·~ <"·::'}f~_i'' ~ ,",

see later, such •.n indi_rection f~tµre_. i~ p9wer~ul, e~~'!~h to com-
- • ·~ · , 1 ,, , , , r ,,'' · •. ·• , • -· , · ~ , ,I "• ·-' .- • , ·•

pletely eliminate the need for A . to. ~ontJC?l B in the first
:J t ~ ;-·.,··:; ; ~..,,, !

place.
·: ,.

Ownership:. The idea of one user or do,.in '.'~inJ" a shared

object has apfea~ed in many systems,, ~~r ~u~~ ~~~f~ses,as account­

ing and resource allocation. as w~ll.as for protectj.qn~ In the
. - . _;·~·-··;:' ·-·lf~··:-~.·;·.1· ..• ··.

46

retaining ultimate control over the object, in the sense that any

other domain' a c:apability for the object' should be subject to revo­

cation by the owner. Owiierahip, like control,- could be defined

as a static relationship betwe6n each object and its owning domain,
I .. , . . ,

but again, we assume inatead that 'ownership' is simply a privilege

which confers 'owner' status on any poeaea801' of ~·capability con-

taining it.

As described thus far, ownel."ahip avoids the problems which

limit the applicability of the. control aciteae.· In particular, it

is usable in the case of mutual suspicion, since it makes no assump­

tions aboUt the relationships bebreen domains~ However, several

issues have been ·left unresolved'.
\

If the owner of an object wishes to revoke a given set of

privileges froaa all outatandi.ng capabilities for the object then

the desired'aetion is clear, if somewhat i.Practical. The base

level system must BUSPend alf' other actiV.:fit~ '~nd search the address

space of every domain in the systea, performmg the appropriate
. "'•·

reduction on each capability for the object 1.'n question. It is

worth not:Lng that one cue of ~uch 1J11.i:form revocation has a much

more reasonable interpretation; if a.1{' p~l~i~l«"J are to be

revoked f.roa all capabilities for the ~bject, the owner can simply

make a copy· of the object and destroy the or'iain&l. An even more

efficient aechani• to produce the same ef f.eet can be provided in

the conte~t of the implq.entation in aaction 2'~ 2 1J1· sinqily allow­

ing the ownet of an object to chaiip its m'; t~re6jr in~alidat:fing
all outstanding capabilities [CC 69). (Of cour,... the' operation

must return to the owner a new capability coa~illl the new ID.)

47

If the owner of an object wishes to revoke individual privi­

leges, a global sea~ehfo{s implied, as indicated above. If, how-
.J',, ·-.\'-

ever, the.R~r !f!L'b~• to t"evoke ·~heae pi:ivilegee frOUl some but
-~..... - }-

not all of the cp.pab:ljtt-~_-!for ttfe object, even more fundamental
~ : {

problems arise. ··'the cenqral queetion is how the owner should
'• , ..

. 1Jpe~.~tY. ~-~~ set of .c&NP~!~ll'.on ·wic~.-~J!•L~evocation i6 to take

effect. In t~ context Qf TCS, the ,.6n~ obvio-~s"N>ssibility is
i ;' .,
I «

the .. 41..P.~Uicati~n of a s~t of domJns i~.Jib.i.c.b.. the \evocation
' . .. l, ' ~

"< -''•"• ; 'J • ~., ""~'' ,<'e"'<~#~j ; t.

should occur t eith'e-r by ~isti.M··f~ set ~'o'r'~by'. listtng the comple-
1 • ; \ < _f

l . J /" "\ ' .!

aentary set 91 domains yiji~h should . .,..in uu.aff,ited. The pro--,.:,,. _,.,

\i' ~ -··
ble~ is that in a system~roviding freely copyable capabilities,

the owner of an object i~ unlikely to have complete knowledge of

the -pr~pagation of capab~lities for that 6bj.taiet''~hrousltout the
. ·. ; ~r . '~

system, ~d is therefore ~ot in a positiqi to provide ei~er type
. . ~ ; ~

•.• ,., .. , ·. 1 ' .

of domain~ lkt.. Figure 2. 3-4 depi~.&iM. s1 tait'f'5n-·Jn wh~h A
.... i . ·"' : ~, "'~ > f

has givei capabilitiee far o1'1led object ' to B and c,: Sub-• ~

seg,u.n'f'1y, B and c "4;ve passed copies ~f'-~!l:'.~~abilities
to D and E, respecti~ely. If A netW decide• to revoke a~

privileges from B' t:L£ll..R{tPi!.!.ty, the revocation should clearly
' \

effect D's capabi~ity, but not\ C's or E's. A domain list pro-

vided by A to cot\trol the revpoaticm would specify either revo-
... ,,. ..• •'· ~,,,_

cation from B, allowing D to escape, or exeaption of C,

incorrectly af'fecting .. E. ·

There are other relatively simple situations in which no

correct domain list can be prepared, regardless of A's global

knowledge of the distribution of capabilities among domains.

Figure 2.3-5 depicts such a ait114tion, in which domain D has

48

Figure 2.3-4: Ownership,

49

A

/
/

x

,/

/
I

/

I

I
/

Figure 2.3-5: Multiple sources of capabilities

50

received capabilities for X from both B and C. Ideally, revo-

cation of B's pri~ileges shoul4 affect the capability which D

received from B, but not the one received fro• c. Such distinc­

tions clearly cap.not be •x.Presse~'i.n a domain list, and require

of A a completely unreasonable amount of knowledge of the inter-

nal structure of other domains.

Yet another fundamental probl_. involves the authorization

of revocation by domains ,other ttuia ·the _original owier. In

Figure 2.3-4, for exaaple, B stands in much the ~ame relationship

to D as A does to B, hence it woul.4.seea reasonable to allow

B to revoke the privileges it granted to D. Since ownership is

a normal privilege, A could authorize this by s:l•_ply including

'ownership' among B's privileges, but th141,clearly givttcs B too

much power (e.g. the ability to interfer~ _with ~ ""ad JO;• Simi­

larly, in Figure 2. 3-5, B should be authori&ed._l:.o revok~ the

privileges of the capability it has passed'~o D, but,.dot the one

D has received from C.

Thus, the privilege of ownership, while sufficient to author-

ize the total revocation of all capabilities for an object, is.

insufficient to deal with more .. neral situations.

Indirection: Most of the ~obleas with revocation in capa­

bility systems seem to be caused by the propagation of capabilities

throughout the system. This '•U~t&that m-.tu A in our exam-

ple should never give to B a capability for X whose privileges

it may subsequently wish to revoke, but should retain the capability

and give B a "pointer" to it. The success of this approach is

very sensitive to the exact nature of the "pointer."

51

From domain A's point of view, tQe ll!Q'~ obvioue kind of
I ,· .' ' ' ,'. ',""

pointer to the capability is simply its addJ:\~· ~Il . A's aodress
' ' . ···" -

space, but this address by its~l~ is aeaningi~ss to B. To use
_. ', i ~~ ' :

the address, B needs to specify that it s~~~ld .l:>e interpreted
' .··: "..;;,

relative to A's address space, ~ action which cl~arl.y requires
. . ·, t,3. - - .

authorization in the form of a capab~lity fqr .~ (or for A's
·.v/ , ,· ,;

implicit segment) allonng capabilities ,in A's.address space to . . ' .. ~-

be exercised, but not fetched or storeq. : Givin~. such .a capability

to B clearly compromises A, howeve.r., s,ipce., B may use it no~

only in conjunction with the pointer provided by A1 but also

with any other pointer B may inveQt. Mort1over, this scheme

also causes problems for B, . since inst . .aad
1

, ~f a . s.~I18le c1apability

for X, a capability for A and a ~ointerl:~~st ~,!Jsed. Thus,

B effectively receives the absolut~ address <C1A:.J:s> wtiere ~

is the u.ulti-level address of ~ in. A'a a~~i:e~~. sp~ce. These
. • ' . ··- ' . • ,, . ,. l •. - .

problems can be reduced somewhat by ihe obv~o~ expedient of always
. - -. ,. .. \ ',' .

passing the simple absolute addl'eaa ~f ,d> ; oi ~~.s c~p•bility

for X, thus limiting A's vulnerability t9. a single segment, and
... . ~ . ' .. ', •,• . : . .. -" '.: . . - - ,

guaranteeing that the pointer which B mua~ handle will always
: ~ . ,' . '

be a simple displacement. Moreover, if this si~le ~b8:olute address

can itself somehow be squeezed into a single capabili~y. both
~ • - : ~: i. ~

problems have been solved, since oni, the ~ngle ~'slot". in A's
• ~ ,_ - ~ t - ;, .

addres• space which contains _t}\' cap~.bU~ty, ~Q~ ~ . is uslilble by
• - '. !, - \ ' -if ' ,- • • .' >. ..~

B, who need only keep track o! t~ slot .c•!rbi,~ity, rather than

a capability and a pointer. Of coJ.1:r,se, c~r~. ~t 'till b.e taken
" . '> ~' . ~ , . . ~ ' ;

to allow B to ignore the difference between a slot ~apab~lity
- . , ~- -. -·::· ~ -.. ~ -·-1·:~ ', / \'

and a capability for the deS:l.f_ed· object.

52

Even ignoring the problem of squeezing so much information

into a single capability, there a~e still restrictions on the use

of indir~ction through capability slots. The problem is that such

slots can never be reused. l'or exa.P1~, suppose that A passes

to B a capability for the slot containing one of A's own capa­

bilities for X, as sholilri in Figure 2.3"""6. If A later decides

to revoke all of B's privileges to access "x by erasing the capa-

bility frail the slot, B still retaina its slot capability. There­

fore, A must be very careful never to place another capability

in that slot.

One way of attacking the non-reuaability problem ia to squeeze

still more information into the slot capability, namely the ID of

X, and to check on each acces-a that this ID matches the one in

the slot. This eases the restriction aoaewhat: a slot may be

used any number of tiaes, but only once for any t1ven object. Com­

plete reuaability of slots requires the illcltision of a ''slot ID"

in both the s·lot capability and the capabillty :ln the slot, to be

compared on. each access. This essentially U.Owta to re-invention

of the unique It> mechanisa of the baee-level system, and is likely
'" . ~. l '.. ' > •

to be very cumbersome, for both user and implementor.

Th.e mm.-reusability of slots in the lndtrection sch- is not

really a fatal flaw. It si.Ply force·& the mechanism to be used

in a rather stylized way. i'or exaaple, d411&in 'A, rather than

giving B a ca~bility for some location h.its.Olft data struc-

turea containing a capability for X, auat eopy the capability_

for X to soae spot which will ne~er be used for 411ything except

indirection via B's slot capability. ActwUly, A would

53

x

Figure 2.3-6: Indirection through a "slot"

54

undoubtedly have made an extra copy for B's use in any case, so

that subsequent revocation of B's privileges would not interfere

with A's own accessing of X. Thus, the only real burden on A

is the caref.U allocation of slots so t.fta" they will never be

reused. 'One approach would be to set a1:&; one' .sepent of A Is
l

a4dresa space and ~l~cate slo~ .. !rtJt ~~tia~ly. A much more
,-.~ _,'

attractive, if rather more expe~ive. •di• is the creation of a

tiny new segme~t to hold each slot.

of the base-level allocation machinery, .·but also :iapliea that the

displace•nt which we squeezed into the slot capability is always

zero, and hen~e may be omitted.

Privilege revocation by indirec~io$ through such "link" seg­

ments is actually a fairly attrac,ive.schel.e·, '~ich w pursue in

some detail in the next section. It i• concep~ually related to
? .

'· both the caretaker and control sc~-clt...,....d above. If one

thinks of the link segments as domains, in the pa..ive sense, then

indirection through such a link domain is much like calling a

simple caretaltet' which merely exercises its ci•pability on demand.

(Note, however, that the cost of an actual demain-call has been

avoided.) On the other hand• from the point of view of its

creator, this passive caretaker is a ~ry well•behaved controlled

domain, since there is no possibility of iu capability being

copied or moved.

2.4 Indirection Through Link. Sel!!nts

Since indirection thro~gh link seamenta created especially

55

The

discu~sion is Jtil,l in te~ of ,'.f~.~~ _,.in ,the; _IM!~,.,. t;~t we attempt

to minimize Jll0di~~~a,ti~f1S fO ;~~ b~;-l~V:~f SY.flt"" ~'.,5~9struct
;

t:h~. revp~'Jion, machin4!:ry, "on ~op1 .o~::.~t~t1:~11:~~~.~ ~thou.J.h we

will .:::late~ .aJ:gue t~at ~ f8ttrly 4fm8.l,~n~,r~voc::•tio~ ffl<;.~}-,~;~! should

:f.nstea.d ~e included in t;he b•IM!-::~~v~~,'1,Y.;&t•.~ ,it .~ !-'Jileful,, to
'·" ' ' . ~· ff¥,. ~ ,:,. ;:<:'; ' ,'.} • • • •. ~" ' ~ -· •

As mentioned during the discussion of ownership, it is

desirable for any poss$ssor of 'ti.· ~ab'ilit1 ;to 'be able to distri-

bute copies of it while retaining the power to revoke the privi-.
- /: .,•.

leges thus conferred. Thus, if access privileges pass through the
j,;:_ :·_.- J

hands of several distributors, the corresponding link segments
..: "~- -_· ~:. -~ ,- ,_:;: ., 1 • .:.ll~ :-:~t;~:] .. J - Cf1'}~1. 1 .J

form a chain. Capabilities acceasin&''vla' t'liat-ehain are subject
',·!

to revocation by any of the distributors. Any possessor of such

a capability may extend the chain by creating a link segment and

storing the capability in it. R.eta,ining a powerful capability for

the link segment allows later reduction of the privileges in the
/.i -~ :_,r•:-::.J~ -:._:;c:'

capability stored there. If and when all privileges are to be

revoked, the link segment can be destroyed.
; , ~ 1 ~ ;J::., .. J~-: , ~3f·\,1, ~ (_ i'

Thus far, we have made no change• at all to the TCS base-

level capability mechanism9 but neitht!r'h&ve we provided any way

for the indirection chains to be used to access the target object.
F:. j . "• . ..:.-•

This will require a fairly simple aodification of the base-level

system, but before describing that modification, it is instructive

to observe precisely what goes wrong in attempting to do without it.
'., -··; '.,,_ '> ~ ,'_ •. 1.. ::.. {J ~~ - , ___ .,,

In terms of our standard exaaple of A giving B privileges
~ -• -- l : • .,-..

56

to access X, we find that A, in Figure 2.4-1, having created

link segment 5i. and stored its capab1lit!y ex tor x there,

must n0w give to B a capability CL·· for SL. Clearly, B's

capability <=i. must not allow B to taaper :wtth the cap4bility

in SL, but only to use it as a ~omponent' of ·a DilUlti:..level

address for X. (For uaaple, if X is a aeP,.nt, lS's address

for its 5th word, given that CL is located at locatioq. 3 of B's

implicit segment s1, is

There are four interdependent prohleaa with this attempt to

Ulpleaent link sepaents on an unmodified capability aystem:
- ; .·.

1) llon-tranaprency: A douin acc•aeina an object lll\ISt

know how aany links are preaeat in the «~U.in leacling

from its capability to the obj.ect .u.e. how .ny O's

to insert in its multi-level address, a• u "3 j-O I 5"

above).

2) Ambiguity: A link in the chain is indistinguishable
<;:

from a target object which happens to be a sepent con-

taining a capability in location O.

3) Subvertability: This is really 1-Plied by probleas (1)
'.

and (2); if the accessing dOMtn accident<11lly or aali-

ciously specifies a JDUJ,.ti-level addre•s .Which is too

' short, it can obtain a copy of a capability stored in

the chain, thus circumventing subsequent revocation.

4) Loss of selective adjustmeut in 19!1 chains: Only the

last link in the chain contains a capability whose

57

x

I
5
J_---

Figures 2.4-1: Example of indirection
through a "link" segment

58

privileges apply to the target object. Each earlier

link contains a capability whose privileges apply to the

next link in the chain. The only revocation allowed by

aue;b. a link is total rnoca,t;Loa ll!,, breaking the chain.
~',,

All of .theae difficulties a~ ava1cled-b,y a ~imple llOdifica­

tton to-U&ebase-le'l'el system, 't;hich lluT~es anew operation
' . t ··t ~ '

on capabilities, and changes the.:h~,~r o' the base-level system

slightly when a cC?apability is enco~ered to Jilllich this operation
··-'...,,,,_.

has been applied.

The new operati~ allo"':a c.apal>ility of type 'aepaent' to
.. _, - - ~

be converted into a capability of type •indirect• in which all pri­

vileaes are 'on. • (As we shall see later, thi.s is just a specific -,

instance of a more g~ral ~i• ueful for type atenaion.)

The intention is that eUCh ·_~,iirect eapabiliti·,u1 fOT link 8epellt8

should be handed out to doaa:llns which are heing given revocable

privileges. For example, -m·Figure 2.4-1, the c.apability CL

which A gives to B ~t be of t~ 'tnc.t~rect, ' although A's
, ., ;! '·

own capability f0t" SL is of type •·94tpaent. '

Whenever an operation which eXpects a c~ability for SOile

object encounters inst•a4 a capability of tYl>e 'inc;lirect,' the

indirect capability is followed; that is, it ia ~eplaced by.a copy

of the capability in (location 0 of) the se ... nt to which it points,

with any privileges deleted which did not aJ.ao occur in the ori-

ginal indirect capability. This step is iteJ>ated, f.S necessary,

until the resultant capability is not of type '~ect,' at which

point the operation proceeds as usual.

Thus, each time an object is accessed via a c1'ain of link

59

segments, that chain is autcnaatically followed to the target object
,. '. ~: -~··-:t~ ~·~_: :. ::!;.:~. :~_·.;!~ ·: ~;-,,(r~ .. o.-:1~;_t-~ :..;::,:~~ ~-';

unllJllbiguously indicated by the first llOn-indirect capability
. ,. ",,".t:.} :-.:"r..,1:1.··~.rJL'-' ·:·-~: :' ~lii.!- i

encountered. The resultant capability is exercised, but is not
.• (t_:· ',;·:-..~t~ >,,_:i-.·-~~"':·~;-.. .. 7.; ._.,-~J. '~)_,! !'10l)t,:.:~·-~·1·Jf~l.O: .

otherwise available to the ac~eseing do11ain 1 hence the chain cannot
... :· --~~- -: • ·-; __ ,, ~:_7 -::i.il ._ .. -·;::~-:p.-;·.-~ :.t_j•J:. ,.L.1.i:.t ~--,,_d:: .

be circumvented. The privileses conferred are the intersection of
} , - ' ; t ;1;_ '~- .,. -c , • •/~.,,..· ;.~ "l' r~Jl.,(;..;~ ,.z~ : ... - 1 't •• ti

those found during the entire scan of the chain, .thus allowing
:_.,_~-.t!·~· %!.' _,_,:~ ~~·-,~~~-:_, -, ~J,.~~>B ;~d.::.,·).i: ('~ q_ ... \-~- :~~r··

independent revocation by each inte'E'IMdiary doltau controlling
-~·~.}_{)~' ·:_--(~t . i.i ~~-':'':~) ·-'~-~,-,··:~. ";,. .r. .''~;'~'.'L~hn.~ -f!ltf:t :dB'Hod·.~!/)

a link in the chain. ln other words, problems .Cl) t;.hrough (4)
. ,;- .<i. ~' ?:; .. «-.'.-),. :~-: -; :J.u".L~ ... ~, ~~, j_srt_; n~;.::~i~.~ .. r ~(~-~~ }~r: ~!J1('"'~

above have been avoided.

It is important to note that an indirect capability is
;_. < ."- L. -- •. ~~ ·~.!f~, ~ .. ;-;.. t • :.,; < i rt~ r~ j : ;.

1~ : j J ; ' ~"

followed only when it is used to access its ,target obj_ect; follow-
. ' ~- :~:},.:~;·._" •-1 "·., i:t.f-c ... ; .. c: . rt..: v ._-_; ;~·~.! :::;·S ·)J:<'.'~}d .:;-~[·: ... t..t~1-~ SHU~~ ~:1..\L~! ;·1 ~

ing is n~t perf onaed when the ca~bility itse.1.f . is ID8n_ip~lated
. , . ~~ _ ". '.."? ._. :·~r·p":;~~ __ j r;t: .. !·, ·:. r.F-· "1·!" •. i.~: .·. !·: f-.q t, •""7J bu~~.!<,, .. ,,:-· ·.Li

(e.g. by the copy or reduce oper~tions). . .
. J ti.Ji,): : _, 1 .1~·,·t.! .. ~-:~:-::_; -'Lf_:-r·-, 1:.~ 1,.-~· J':i.!"'9d :~_,,., .. ;_

The indirection f.-ture being deacri~ is fund,amentally
... ·~~-LI -:::;:f~~ -: ~ -.:~1<~lft<-~.J.i"h.·,:1n; Et ·jt ' .. L

different, not only in design, but in intention, fr~ the multi-
"~·--<~ 't. ~·::\~· ·-~~ ·U~l.Uf:._•~)·~·' ·1-~·"i::-r ·.,_.1.:~;:L~ '~.,S-f;1 1! , .:

level addressing feature of TCS. In some systems, such addressing

has also been referred to aa "capability ind~rection." A.system
-; , , ..:. , ; v ~: "J !.·.; _:-~ . , ~ J ."L')~~ .i>-J ;; .. f. .. ;·,;··rl tJ.()":_r~ ., 4_/:_r~c ·1 1 ~ 1 ~

in which both of these features were desired woµld requi~e two
:,1:. '. ·~ .~·i_:. ~ :;·:_i._f-"'. uri~-~~ ··::~:-q t~cj '")"lf~'b-:·~'JI':' ,.£-,-1- ;.! .:.

separate mechanisllls.

Distribution of revocable capabilities using this scheme
· ·""l.i.J~.<~-. \'Ci ~f.0 • ~_::j 'tUSiK~P ;;-": ~- ~1~'.·fV'?(ti7(~

involves five steps:
·.i"ll'

1. Creation of a link segae~t.
,. r :2"··. J :.~.'l!. •;.)-~ t t,_,_; ''} .'; { [/<t ·~r· _J>·-'~~do :;;.j5: _ ,t:~

2. Conversion of a capability for that segment into an
·1-:4.; c·~~·;_ .: · ;L.'., . .t.i·;-.1 s·"';t..; "'J - :;,ut· ?., ~ ,. _ _tr{':' ·

indirect capability.
~ ·! -~~\}-;~-~ -, ?""'._A}':;·~~ , ~-- j !~,_,dJ.~~ . l!::.~.: . .'ff.;~:<.~;: .~(~ C"·t·

3. Copying of the distributor's own powerful capability
<·.~· ,;,.'>_ ~- . ->· 1 .~ I.;-:.!~) "'i£'*:.:JF;-:-: :ri 1 J21° "i~"';:: .~ ~~<·.·-~' .-.i···

for the object into the link.
'"'t ,_:'. ~' -· '~ l'

60

4. Reduction of the priv-ile1es of the capability in the
~- . - .

link to an appropr:tate level.
'~' ~" .. '~ ' '

5. Distribution to the t-eeeiving domaiin.(a) of copies of
. ~

the indirect capability produced la step 2.
, : : 'Y , "~ ·, .

Any later reducti-On in level of trust can be mforced by re1xecut-
'·. l:

ing atep 4. $1>ecifyina socae reduced set of privileges.

Although this indir*<:tien scheme does a t'eaaonable job of
(:

capturing the notion that a distributor of a capability should
- '; ':Oe '))\°: r~ ,,; .,·;;.

retain the Po"Mr to revoke the privileges it c•f•rs, it gives

one the f•eling that the desired •cbui• tS
1

k1.:,_8 "simulated,"
' • • '.' ·~of ~ '\.,' <..; :. '_u

in the senee that the basic action ~f d1•trt1MaU.Wia a eapabilit:y

... ' ·> "! - ""!'. •• ~ •'< r"'' ") .- '.··

rather than being an atCIWlic operatiotl. Tbta hu two consequences:
~ ~~~! \ ··'' .' ~. ~~~- -.:

a) It is inconvenient for the uMr.
·-·

b) It may allow other aequaces of operations to produce

a non-meaningful state.

The former prc>blea can be easily dealt with by pto'\fiding a simple

library proeedure t<> perfora the aetioae recauired fOr·capability

distribution. The latter p"roblea, however, ta not so easily dis-
.~ : : . ' ' : l ' -· . ' ., .

posed of. Suppose, for mtaaple, that by accident or daaign 9 a
' ;::., < i , ~(;

domain, in)>erfondiig step 3 o,f the procedun. atorea not the
") _(

appropriat~ object capability, but the incliract capability created
' -

' t, (jc."- ~ :;;:_ "p- ; ,•/

in step 2. This is just one way ill whicb circular indi~ection
. . , \ ·r ::< ..

chains can be created. Such chains, when followed, will cause an

endless loop in the base-level syttea. Of course, one could deal
r

with such a situation by placing an arbitrar1 limit on the length

of an indirection chain to be f olloved before it i~ ab-.ndoned and

61

. .
an error is signalled, but this is rather. ad poc and inelegant.

-:+ •.:· . •. ~ .

An atomic operation producing only well fotaed chains would be
) . '

much more attractive.

Another problem with this scheme is its relati~e inefficiency.
~ < ~ ' ' '.i' -, 7;·: 1 ;" .. --: :-: i ;, _;' ~ ,;; ' ,.

For one thing, it would generate large numbers of small segments.
~-,_i_ :-~ ·~" .t • .'~.~ li; ,,.j \,..I ' ~ .

This could be extremely costly in terms of both space and time,

especially in a system using block-OTiented rotating magnetic
>) d ' -, ~: !'·;_ i .t .:~ B ;: !.) ; i : : ·; ·~,:

storage and a corresponding paged primary mialllory. For another

thing, the scheme requires the following of a chain of links each

time an indirect capability is exercised. This overhead could

prove prohioitive, particularly in the case of indirect access to
', .. /\~. ~-· ·;· ",)}';.:!

segments. Moreover, any mechanin atteiaptiag to capture a compu-
. 1 ! • "'.:--do- -:,:..: :i:i ·.,,~~~e.~ ._, : .. ~; · -~;--'~

tation's set of recently used chains -.nd retain them in fast hard-
' }

ware would be complicated by the fact that every store instruction
~- ., , ~-- _ .:. nyr: .: <~-~- _:· -~ ~ , ·

would have to be regarded as poteatially invali4ating this "look-
• ,i_ • , ·::~':!'.i_~ :,}l...t;·:... :_, ~·-,,:

back" information by overwriting a link in .Oae chain •
. ~·' ' . ,·."_:" ~-. ;_~ ·; t lJ.o~»?

By comparison, if equivalent revocation features were built
-... ' ·:.~... ·: ~=-···: ::, .. -! ~ k~9.~: 1.: r?:·.~.;~.

into the base-level system, they would probe.Jtly be easier to use,
• ,,. d • ,, "' : r~ :_ J.~'1~·,·~ ··i~ f ;: :- r ~~1·;:·,

harder to misuse, and more amenable to op~iaiaat1.on. This approach
, ·f, ; ':~ .·~ . , ~~ \.-'. . . .-~t~~ : ... : f.· ~ V,;')'{i ~J--:: h -~· '·,

is explored in detail in Chapter l.

:-.r •"·-..· v J ·~-~-
, :;._

2.5 T:ype Extension

The definition of a large c091Plex syatea aa·a sequence of

"layers" has been found to be a valuable technique, aiding all
'} :~'r . :; ;.':ru~~:. .~:'::_.,·.lo.~~.;·~ · ~

stages of design, implementation, testing, and documentation
; -, .~: '.; d ': f 'j .2~ ,] : '." .; i. ,, :'.; . ,' .

[Di 68b, Pa 72, La 69]. In an object-oriented syatem, this implies
·fa~!' L ,·;i~r;~i.:;,.1 :::,.sr·.c.f ~ ,: ·_.

62

that not all of the various types of objects provided will be imple-

mented, or even known about, by the base-level system. On the

other hand, it would be most inconvenient if the Dailing and pro-

tection machinery provided by the base-level system (i.e. capabil-

ities) had to be reinvented by each new layer of the system; this

would not only raise serious probleaa for the implementation, but

would also force the users to interface with several parallel

mechanisms for storing privileges, passing privileges to other

domains, and so on. It is therefore very desirable for the base-

level capability 1nachinery to provide capabilities for objects
<..J

of which the base-level system has no k.nowle4ge •
. .

The various base-level facilities involving capabilities can
' '

be divided into two categories. In the first category are the

facilities involving capabilities theaaelvea: their creation,
\ '~ : "

integrity while stored, copying, erasure, and so on. In the second

are the facilities.for manipulating base-level objects naaed by
) ::'. .J -~ ' .· .··

capabilities: fetching from a segaent or calling a domain, for
:.· ; ") l ~_. j ~. :J ' •. '

example. It is the facilities in the first category which can and
.. "J':.. ; .. , ,,

should be provided for higher-level objects unknown to the base-

level system.

As indicated in section 2.1, a capability provided by TCS con-

tains the ~ of its corresponding object. The division of the

set of all objects into types is a well knawn and intuitive idea
'· .,:

(althought as pointed out by Morris [Mo 72), the difference between

the type of an object and the privileges allowing accesa to it is

somewhat indistinct)., The set of objects provided by the base-level

system falls into some small fixed number of types. The questiQn

63

is: wha.t. type of capability is us.~4, to ,~~ a higqer-level

(nex,~endl'.ld") o~~ect? Various answers ~av4! ,?,~'''i'i pr,opo,ed, four of

which we will explore.

Approach .1: . ~presentation. c~p~;~!,f ~it,,· , ,~:f., ~~'{e~" layer of

the system _runs in an environmeq.t. prq~~dec;t ,by t1:1:e _lower_ layers,
. ·, _, '\ - . . ~ . ..; - ,. . ' - . -

hence any object it defines mu.st ~e repre61_en,te~ :ln terms of lower
•. ' < I '• ',j • ~ •1'./ - ~ ' ,' ' ' "

level objects. We wil,.l ,assume t~~- .~he reptes,ent91t,1:°n e>f eac\l

ext,ended _objei;:t is a sin,sle lower ,.;4!vel ol>~,~c~,• J~~~~e that single

<>.bj ect can . be a segmen_t con~ainiqg _capa,bi,lit;te~ for. any other ob-
. ' . _".'. ,-·.·: 1·. ,· '

jects which are necess•ry· Thus the JBO~t o.bvi~us. ~ndidate for
.·.;.,.

the_ capability _for ~ -:xtended object is . .,!-•laq>~y -~ c8:p~_bil~ty for

_the rep_resenting object •. A postt,,ssor ...:of __ t~~ ~p,,,ility could

call the layer impl~n~in~ that ~t-~e~.,.~Yl>e ~o 7;:~quest some

operation, and_ pass _the capabi~ity _tq 4\d~c,,~~ ~~~ .. ~tended object

to which the opera..tion _should)>e ,appl~ •. Hav;l-p.~ J>~~n P.a,•sed this

capability, the d~~n. ilnplemeiiti~_g ~h~~,e;x~~:~1d, op~r,ation would

~utoQl&tically have access to.th~. repres~t,~i~n.of the object.
• ' l . • T ': '. ~· .'t ; ~, J ' r , ,

The~e are at least three problems with thi• approach. The
.. • > : ; -. ' • ·._ ' '• \: ; • - • • •

first and most important concerns the selec;~ion of ,an appropriate
• ' • ' ' • ~ J • • ~ .;,,. '

se~ of privi.leges ~o appear in the c~P~~~ilit!., .· The dif.ficulty is

. that the do•in ~l~ntill& t~~ ~te.nAed ohjeFt J;eq~ires •u~sen-
,. . • • ' ' } ' • ' ' l ~ '· •' '. •

tially complete power to JQ4nipulate t~e ~epr~~ent~tion, while
. - • '' ,d: . -~ .

wishing to deny s~cb power to the u~;ll\I. <\o~~,,<s~ in_ <o_:r;der to

prevent tampering with the rep~~~ta.~,~on. :; lf the_ s~ '7apability

is used by .both, this is clearly not possib;lJil .• Hence, the imple-

DM1nting domain, 1'aving _U!>'?D reqU~1Jt1: creat,ed t}\~ ,rep:r~sentation
• . ,• . • • ~ 1 ' ' ,. " ' • , ' ,

of a new a.xtended object, and. thus, ~taip.ed a ,.~:~l~~' pr~vi,leged

64

capability for ·that rep'r~sentation, iauat: apprdpri&tely weaken that

capability be°fore teturtting it"to'the ca!Ii~a user dom&'in. However,

in order to guarantee its own future accen to •tlie representation,

the -·imtileaenting domain muat do ~ of tire· tbiup. 'lither it must

save a copy of 'the original fully privil.~g.d· capabilfty ;for later

use. or it must make arrangellents illc>Wing it t5~' cfun.,,er'i. the weaker

capability back into tbe fully prfv:f.te&el"o~ •• 1t lat:er receives

it as a parmaeter to some operation on'the. utelired object.

The first method obliges the hlpiementing d-in fo'maintain

a global table containing privilege(t"'cap•b'i!it'i~'~ for .• i1''existing

extendild objects which its layer has creat~ ~ ~.r&d to. locate the

correapOnding entry wtlene'Ver it receiV.a a ~. wi4ir'"eapability.

This method is reasonable' if s0t&ewhaf"c1\G.y •.. -

The second method 'requites se.e· faC:llity.sillilar to Jones'

·1ramplicatibn° [Jo 7l], allowiiig-the '~1.leuting domain to add

sp~cified privileges.to capabiliti~s of .~h.e type of the represent­

ing object. Cle•rly, the power to-alaplify'~a~b!lities of a given

type is a 'Very dangerous power, aJc.1 .U.t be tighfiy controlled,

~ince it Carl completely subvert fh~' · fater-uae'r, prc)'ftlct:lon of

objects of that: type if misused. l'fti!le ';tllis: 't~~"&n in~lete sub­

version of the objects in question, in . tlG! ~i~ tbit' tney still

follow the semantic rules which define their tY,e' it lllUBt be

regarded as a failure of the cor~e~iG;g blyer, since' the correct

functioning of a layer inc1udes the ptotectfcni ~f ;its ·u.e·ri, from

each other. Thus, the authorizatioh of ..Plicatioh -miist be t~e

responsibility of the layer implellirmting·"t.lie'fyp .. w!i~se capabilities

are being amplified. One of the llain crit:erla o'f. l.ayet,ing, however,

65

is that a given layer should have no knowledge of higher layers.

\
Thus, it is not possible for a layer to d!stinguish betw~en "legi-

!

timate" higher layers which need amplification, and untr~stworthy
' ' . . ' ·5"

domains which would use amplif icatioi;i to. gain unde~ir.ed access to

other domains' objects. We thus co~~+~~ that privileg~ amplifi­

cation by itself is insufficient to solve the problem of assigning

appropriate privileges to the usin$.and imp~ementing domains of
·,,,.f· . . < • '

an extended object, given that the same type of capability is used
·.i .~, . j ' ; i . "-" - .-o • •

by both domains. (In conju~.ction with anothe.r.cong>le.ntary

mechaniSm ("constituent rights" [Jo 73]) .•· ho'tfev;~r, amplification

can P.rovide a very powerful type e_xtenaio,n ~acqity which is equi­

valent to one which we will describe later.)

The second problell with the repreaentat~e>n-capabili.ty approach

involves the control of access to.the .extendeif object, as opposed

to its representation. Privileges are neede4, in each capability

to specify which of the ope;ations on the extended type a~e author­

rized to possessors of that capability. Thts certainly c•nnot be

done by assigning new ll8•nings to the exi.s~ing .Pri,vileg~s, since
• : . ,- ' '! ~ .. ~ .\ :- - 'i . ~ ,' '· - ; , :

granting the use of some operatiop on the.extended obj.ct would
' . !. ~- ~ _., ; :~ - ..

then imply granting some unrelatf,ld access to the representation.

Hence, multiple sets of privileg~a •re needed,. Qn the one band,
J'-

this tends tb make capabilities unclesirably l~rge. On the other
;'_,"

hand, the number of sets of privileges prov;l.ded places a fixed
< , •" !",- ~·c ~-~ .'' t !..~ '.,-i r o"'

upper bound on the number of times a base level type can be extended.
{ r-1 '• ,., .i _i J

This situation is especial:~ frust~~ting s~ce in llQst capabilities,

only one of the sets of privileges.will be ~on-eapty.

The third problem with the repreisentation-capability approach
' ' ::. t:,r;.!', ..> ••

66

is the difficulty of determining·, given some capabilityt the type

of the corresponding object. This i~ ·ca~ by the· ''unofftcial"

status of extended type·~· in this 'approach. A given base-level

object ~y have been extended one or more ts.es, but the type

fields of 811 capabilities for it still coata~·its base-level

type. The only indication that the ·Ca,abiltty :ta of a given

extended type is the presence of a -tchtng fully privileged capa­

bility in the previously mentioned t&ble
1

ka)lt .by the domain imple-

menting that extended type. Thus, one is not able to aak of a

given capability "what is its type?" but onl; ... 18 it o.f type T?"

for some list of types T. trhis is a ~lw.'ay and cos~ly substitute.

Approach 2: Domain cap~bflities. This approach is, in some .
' . ~ '~~ ' !

sense, a variant of the previous approach, in. which the represen-

tat ion of each extended object i~ 'a doltain· •.. A uaing dOllllin has
• r

only one privilege in its capability for this representation d*in!
' '' i . ·: . ' : ~- _I .\'

the privilege of calling it. To perfora an extended operation,

the user performs such ·a cali, indicating only the operation to be

}>tarformed; the object to which the operatio~, ·applies is implicit

in the identity of the called domain. Actu~ly, this approach

falls outside the framework of our discuS.Sion, •ince it requires
\-\:' .

independent domains callable by any process (a~ least if, extended
' ~ ' ·,~;

objects are to be shared). It deserves mention, holff;lver, since

it has ~een used in at least two systeu [En 72, P'a 68), and

because it attacks the three problems.of the representation-
.,

capability approach, with somewhat mixtkl results.

The first problem, that ~f easily allowing only the imple­

plementing domain full access to the object's r~~resentation, is

67

bypassed, since each object has, in effect, its own copy of that

domain, which can retain a privileged capability for the rest of

the representation in some convenient location in its address

space.

The second problem, that of controlling access to the extended

object, is solved by embedding in the domain information about the

operations it is willing to perform. Thus, privileges for extended
' ' J •, ~ ,. ~;."· 't ,' •• J

objects are represented and controlled differently for base-level
' . 'j' y

and extended objects; whenever a less privileged capability for

an extended object is desired, a copy of the domain can be made,

which is then ordered never to perform the operations being denied
~·~ ?.)

to receivers of the less privileged capabilities. This is not as

expensive a solution as it might appear, for two reasons. First,

the various copies of the domain representing a given extended
.\,;; - .

object can retain in their implicit segments the infonaation spe-

cifying the operations they are willing 'to perform, and can thus
..

share all the other identical coaponents of their address spaces.
;

Second, the capabilities for a given object exhibit a strong ten-
.-:t· . '

dency to fall into a small number of subsets, each containing capa-

bilities with identical privileges (a tendency which we shall

eX}>loit later). Thus, the number of copies of the domain repre-

senting a given object tends to be much smaller than the number

of capabilities for the object.

The third problem, that of determining the type of a given

object, is handled in an interesting if somewhat clumsy way.
• j r

Clearly, examination of the capability will always indicate the
~ --. ' '

type to be 'domain.' One can establish a uniform convention,

68

however, for associating some arbitrarily chosen unique capability

with each extended type, and storing a copy of that capability in
•. ;~ - .

some standardized location in each ~omain (e.g. location 0 of its

implicit segment) representing an objec·t of that type. If users

are allowed to examine that location, they can then relia_bly deter-
~. ' "

mine the type of each extended obj•ct. The main objection to thia
. .· [

scheme is that base-level types and. utended types are represented

differently, which disallows any uniform type-checking •chaniea.
•• ':.: • < ~ :~ \

There are some other probl..a peculiar to the domain-capability
~ ·~

scheme. Two difficulties arise froa the fact that the domains

implementing the extended type are aaaociated with the objects of

that type, rather than with the accessing procases. One reason
I .",··.·

for wanting to associate a domain with each procesa as the "repre-

sentative" of a given layer ia that the tocal storage of ~;~e doaain
·,,', ,, ;.·

provides a natural repository for inforaatioa describing the atatus
:(,' .t'

of that process from the point of view of that layer. This "own"

storage is not provided by a acb8.e which aaeoctates do11ains with
' (; .

extended objects instead of processes [ll'a ~4], $me systems have.
'.- .

made heavy use of such own storage (e.g. ~-TSS, Multics); it is
'

not clear to ~at extent this is intrinsically necessary •
• , .~, 'l.

Another minor difficulty with the doaai1l-capability approach

is its implicit assumption that all operati089 on extended objects
~ ~

are monadic. whlle this is undoubt~ly the •st coailaon case,
', ;

examples abound of useful operations which apply to two or more
\

objects (l'f ile-to-file copy")• to some large implicitly defined

set of objects ("close all open f ilea") or even to ,no object at

all ("create a file"). Forcing such operations into tu 'lllOld of a

69

call on a particular object is not on~y artif~ci•l for the user.
,' t

but can be somewhat inconv.enient for t~e.,~l~nt9~~
' - . -~ i - ' ' . ' ·' '• ~ ' . ' . ' '

Approach 3: Sealed-data caJ?M!A;itie!J ~ . :rll~~ .~.PP;t~.!l~h is moti-
. - ~ - ·'· 74'.hjf_ ... ' ,_,_ . ··- ~ ,J.' .

vated by the following observation about the use of ~epresentation
·_ - .- • ~,"' ~ '..' ,} ::~; ·: -\ : ',: ., . "': , • j c

capabilities in Approach 1: If the u~ing ~o.,.,ins are not allowed.
j ~- ~: - '; : ·:.:- ~ ' :

direct access to the representation of. an e.xten~ed o~ject, and if
- '~ · .. .lV'.l· ', ~~< ~~: '":.~,.):. -

the implementing domain always rep_lac41s the. user.' s weak capability
-~.-·---~. -~ -· ,,-~:.: >;·.,:~-

with the corresponding strong one saved in its own t~ble, then the
. ·:"" :~·. ; ~ ~ . ' ': -~ .- . . /' ' :

user's weak capability is never act~lly useci to access the repre-
:· •:1;\,(~.:,_ :.J..:•:.'~ < C·~·~r·~Y,!::2.~:·.-:.·•

sentation. This suggestfi! the posa.~pility pf, chal1JJPJ the type
"" 1.l..- ;~·_;..;.,)!,';_- ,;;J..~ ,•-._,·~--~·~,.

field in the user's capa!>ility .~o: c~~~.;n, lli>~- t~~ tpe of the

representation. but some new valu~ associated with tbe type of the
·t. ;~·:.~ tf>]?·:~··, . '

extended. object. There are two distinct fdV~Utfgef .. tQ th."t.~ change.
,~.,_ .,, < ,c O:j''.'-,··,.i.',71 i~ ;-~:}. ,:..~ ... -~. _aJ. ;, _,·~,· I , •

·On the one bud, it provides_an ••sily vis:f.~~e !!-~ unfor¥eable
- ... ~ - < .: ' - ' 4' - ·)_ ~ ' • ·' i . ' - ' ~ '-" s : ·' '(:

(given mechanisms to be described shqrtly) indication of ~he type
,._ : ~-' ' t·.-~:':(:. ; .. J:~t: . i1-' • <; -: : ,.. '. -,

of the extended object. On the ot~r.hand, it render~ t:he capa-
. J)'.'"·'- ':: ~ _- : ·,·_.. ---~Ji.';. .~·~'!''!; '

bility useless for directly accestJing.;he r'prese,"Qt~tion, thus elim-
, :._,·_:-, ~~-~_. '.\' '{o:<.'. ·'.'.' ·~.~'

inating the need for a separate set of pri~i~!l~!tJo control
' -, • • .. '\: • ,)_' .J ;. '· ~;: '::; ;i:b -~ "f;:; - -

such access, as was required in the repr~seqtation~capability
J ,. -~ ~ .< Sj ,.- l_ • f.L~- .!.~~~I t],J._.. > . ' ' .'

approach.

From the implementing domain'• vie¥PQint, tbe cre•tion of a
i."

new extended object using this approach c.ovJ.4 .lie. do~. by:.
',. -:,_ ~: : -~- '-.~ '-'., .'.· . ·-,·;.>.'.:'i1f~it~'; j;~,.:>~ ·~~: i . .:-,.·:i·

1)

2) saving a fully privilege4 c;ap,4bilJty. (or. _t'hfa re,p,~~senta-
. '; .: '.• .~' -~ -· "~ ~ ·~ ·.,;'·; ~lt":5.J;;.:·.•'.,,-._ ~.{.;' t ·; .. -,~···

tion in a hash table keyed Qn IDs
".~ , ' >!.A~ ·~:.- ;.~ .~ :i ,_: -~ .:~"'-.- '-~;·

3) constructing a new capabil~ty con~flining tQe,_e~tended
· . · ~ ::· .,_: :; :- . ~·.· ... · 'tr. .:~ ·. '. '

type, fufl privile~es, ~d t~:!\~ ~P. of t.~ rt;pFe-~entation,

70

and returning it to the caller.

When called to perform some operation, the illpl-.enttng domain can

examine the passed capability:

1) checking the type to verify th~t the object i• one that

it implements

2) checking the p~ivileges to verify that the requeated opera-

tion is authorized

3) locating the rapreaeutatio~'capability.in its table and

performing the operation on the' r.epreeentatio~

Clearly, the creation of capabilities for extended objects

must be carefully controlled, Since:a~fora.4 ~ability Could deceive

not only the users, but a1so the iap1eaend.ng cl~i~·. The creation

of capabilities of a given type c~ itself be authorized by a capa-
·'

bility. Wben this capability and an arbitrary datum are presented

to an appropriate new base-level operati0n, a new capability is

returned "1th the authorized type, all privilege• 'on,' ~d the

datWl as its unique ID. (As augaeated above, thiS aight be the ID

of the represe'1tation, but could be ·any value desired by the imple­

menting domain.)' :Section 2.6 Will discu•a how a\l~h authorizationa

to create ne1' capabiliti•a can thelleelvea be cr.ated and diatri-

buted.
:'

The sealed-data approach as described is a quite acceptable

type extens;ion Mchanism~. and has in f«Ct 'bt.en USed in at least
. ' ' ~ ,.

one actual system [St 73]. It places each higher layer in much

the same poaition as the base-level system; a capability is reglfrded

as holding an ID sealed in a tamperproof ,box, Which gua~antees

that the name presented by a user is in fact a valid name given

7l

him by that layer. Furthermore, it allows th:f..~ ~~pout forcing

re-invention of the s~aling mec~is~.ia. eac;~ 'Q.elf l•yer.. It does,
• ~ ·, ,., t I

howeve~, require, that e4c.h new layer iapl~t it• Ollfll.table for

converting an ID into e. cap4bil:f..ty for, t~ r,.pre~•RtaU.oR of the

correspondins object; this is a Pfrtial dqpii~at~qu of the function

of the base:-level "map" of section 2.2. lt u desirabl,.e to avoid

re-invention of the map, as well as of ~ ¢<1l~b~Uties ~hemselves,

an advalltage ,possessed by our fourth f.Pp.ro~c~;to type ~tension.

Approach 4: Sealed capabilities. The need for each layer to

maintain a table mapping 4'1tte~4ed .. object -C'U>4bilitj.ea into repre­

sentatio.n capabilities can be elimil)a,tecl if . ~.)IYf,tem. s.imply
'.' . . . ~ ' ' ' ...

allows.each extended caP.i1,bili~Y- tD cqg,ta,;S,~htlCOJ;J:"esponding repre­

sentatiOn capability. The extant\e4 c:apabiµ.~ttP-us bec9ius a

tmnperpro~f box holdiq anotber ~abjJ.ity!. pn the; .~rface, this

makes it appear ineirit'-".J>le for ~biUt~i .tcv1rpw J.4i.rger and

larger as objects a~e ~tended raputt!UilY~-~ .. prpb~ already dis-

cussed in connection with our first 1'-RPro~ t.o -tYP~: e~tension.

A carefully d~if ip.ed .aplement~U;oi:a., how.eve~..,, .c.~b~oid this

phenomenon, allo~ing unlimited ex~.-i,on ~~h ~ixed si~e capabil­

ities, as~ shall see U\,s~ctiQU 2.7, :wbi~ 4:iac.usses the sealed­

capabil,ity appro•ch 4 JllOre ~et.ail. Fit's~, ~Y,ft'., ~- d~gress

briefly tc;> e,¥•11'1~e ~,9JM. 1p<>:i-e '~~All, ciue.J~iOIMJ, ~out ;}'P4il extension.

2. 6 Hierarc;J;li!s. o,fi. OgJ~ts and Ines.

In a ~ou-extenclible systeia, only .a s-.l~, .fiud a••r of

predefined. types are ~l"ovid~, 1*tc,, typ,s. cr-n ~'~¥.la,ii~:J,fi,ed by

72

small integers. In an extendibl~·syttem, a much larger set of

· types is needed. Two conflictiftg cOrllid•rations influence the

choice of the size of this set.
1

0tl tb6 one hand, it is desirable

to minimize the size of type identifi•rs, 4ince these appear in

capabilities, where compactness is a gfeat vittue. On the other

hand, it is desirable to maximize th~ total ~t of types

available, to insure that the supply Will ne'ter be ezhausted,

especially since type identifiers, like olSjeet tns•, can never be

reused.

!mphasizing the first c011sfderatiort results in a system in

which the number of types, wile web l•t'Pr·ttian the number which

would ever be le&J.U.mately used, ii!J .ftrtl' f~irly Mdes~ (e.g. thou­

s·ande or ndll.ions of types) [St 73]. Ttiia 1:-a~s open the possibility

of' a malicious program using '1p all a\tc'S:lab1e''t:ypes wt'tbin a few

minutes of determined computing. ~· in such a system must ·•
therefore be viewed as a finite rt!souica. and must be allocated

as such~ This is possib1e, but: ~t inconvenient.

Bmphauri~ing the provision of aft i~ulftible supply of types

results in a system design· in which thEf 'ap"ilc:e of type identifiers,

like the spa:c~ of object IDs, ia'effect·t•ily in-finite (i.e. too

large to be' exh4usted during the 11fet1.ta of the system) • By

combining theft t1fO 11\finite nae·· •pa~..-&/tM ·lfrl>li system {Wu 74,

Jo 73] provides an elegant conceptual framework in which types are

theniselves objects. This is illustrated in Figure 2.6-1, which

depicts- the set of all o-jects aa f~iaa •:..t-hoe-;;;.i-evel tree. For

purposes of this figtJre, only two attrtbutes of aa«~h object at-e

of 'interest. One is ita m. the other 18 its type, which.is

73

An object:

Figure 2.6-1: Three-level object hiera~chy

,,, ..•

74

simply the ID of some other object.* ln-1sting that the other

object so identified be of type 'tjp~, -, a.ct providing a special
f

root-object with ID 'type' (whiCh is""~o of typ~ 'type') forces

all objects (except the root) to occupy either the second or third

level of the tree. The second ley"el contains the types. while

the third level contain• the non-type objects.

Creation of objects in ~uch a scheme can be described concep­

tually as a single operation:'

llhere ~the new object will be a type ff,, c~8 ~is a capability

nma1ng t- root object" and a,,normal object ~f. Ct e is a capabil-
-- - ' ,,1P

ity -~QI a second lev•l object. If -,~type :...,.. a third level

obj,ect. aa error is ~led. In practiCf•·oC''-:course, such a

unified base~level cre&te_object opera'1on cattpot replace the
_,

specific _@ject-creat~.operations ,,fo:L~~he vari~ . .extended types,
--., •" . ,.,,.· ·~-~"t. !"'

sinctt only the ~rtespoa4ing t.a:r~r bQ,,bot~,t¥ aUf2hort~Y and the
• K ,~' '< •,• ,

kn.-wieq. ~ed
1

~o areate_and $.liitt•U·ae ti.e -~ad.ou-,~onents
,<t . . -. __ ;_ -... ,,· .,,

The practical disadvantage of the v~evpoint just described
\J . • '* •· '" '

is the large size of type IDs. Neverthe:leea, w adopt the HYDRA

view of types as being objects. _ In Chapter 3, we describe a scheme

which manages to adopt this point of vi•w, and yet provides an

extremely compact representation for capabilities.

There is a second kind of hierarchy among the types in an

* Unique IDs, which are simply long integer•, IU'e shown as symbols
in Figure 2.6-l for clarity.

75

extendible system, which has been described by Morris [Mo 72].

This second hierarchy involves only the types, rather than all

the objects, and attempts to characterize the layered nature of

the system. Figure 2.6-2 illustrates a siaple example, in which

segments are assumed to be predefined, and various plausible

extended types are shown, each indicating the type of its imple­

mentation. This usumes that all\objects of a given extended type

have the same type of represen~~ion, which does not seem unreasonable.

One can find exanaples, however, ~f situations in which differing
·~.

characteristics.,of objects of the s-.,e extended type might make

different t,1Pes of re~i.;esentationa desir~~. .. In Figure 2. 6-2,

" for example, one Jlight wish to aftpw/loaa,•~"· composed of

a.collection of text fi~es, :which, accord.tq_.~9, . .0UT conv•ntions, . ' .. {

would be repreaented by a segment eont.ainin& ~ever al text file

capabilities. As another 'example, one aipt iwtsh tto represent a

customer list as a sorted~file or as a .U11lid"l11t •. _depending on

the frequency of insertiona and· d¥e~iQas; ..,.«ed. .J:n the aeneral

case then, the types fora not a simple.tree,. bil't a directed graph

withoutcycles. The latter property expresses the partial order

induced on types by the layered structure of the system. Note that

for any given extended object, t~l'e ia only one representing

object, hence for a given representing object, the eJS:tended objects

it represents can form at most a tree. (Of course, in any realistic

situation, this tree is only a linear chain.)

I
I

I

I
I

76

/
/

/
/

/

/
/

/

Figure 2.6-2: A type tree

77

2.7 Type Extension Using Sealed Capabilities

We now return to the last of our four approaches to the naming

of exten4ed objects, that uaing "aealed capabilities." As in the

sealed-data appf(Mlc::h, the •o.ufacture of extended capabilities

~t be carefully controlled to prevent foJ;geey. Given the view

.that type• are objects, the appropriate authorization to manufac­

ture ~ capability of a given type is a capability of that type.

A layer can obtain a new type T by executing

CT + create_type ()

· Sub9eqoent1y, 1t -can. seal. azi,r capability C: by executing

~. '

as illustrated i,n. J'ipre 2.7~1. · C . rill n.va t1fe T1 all privi-
- • '...\. ~~-,,.. ... ,... ·», ... ,,.,. ' • ·~.-,'.-- ,, . ··~ .. - ,\ • ' ·. '"'.

lepta on., and a new, uniq'8 IO q•ilft-4 by d.e •Y•t•~
' .

<:

C + unseal (C
8

,CT}

Note that CT must be presented to authoriae uuse4ling, thus pre-

venting any random possessor of C from obtaining the capability
8

C which 111 s.Uad: inside.

The implementation of capability aealing aa just described

requires a fair maount of machinery, such .. tJaat to be described

'

in Chapter 3. However, a slightly restricted version of capability

sealing cazi be added to TCS in a surprisingly a1..,1e way. In the

de•cription below, we asaulae that a lay•r wiahea to impl-.nt

78

c
type

privileges

ID
type (T)

privileges (all)

ID (new)

, I ,
' ' ' ' ' ' ' ' ,.,,....._...._ ___________ ,

Figure 2.7-1: Sealing a capability

extended objects of ,type

The creation'of type

·: ·'
, '

T¥;_; who•e: representations are of type

T is performed by the operation:
x

',.!' •i ;_i~.) ;-

Note that the type of the repre-.ntation (T) must be specified. r .
.. .. "<~tJ "·~·~·.1; }· .. ~~ ~·.·:.\1.".-J1 ~"'H':f'f.: : .. :),j.._.~:.-

ThiS is one Of the reatrictiona neces .. ry for the implementation
.~-~ ',. '::· -~ i.,· ~ ·.· ,1.~J :;::_:. i - ~..r

described below, &net forces the eet of types to form a tree, as

T .
r

' • _;:• - .,.. .) ' , • ~. . : • i. ~:.t;".-..-:J ".!}:

discussed in the previous section. Also, a set of privileges (P)
·',' . 'die -: •. ,.,ql(~1 ;.~·.Jiftc:-~;:•. '' r

must be specified, whose !lignificance will be explained below.
,:; './ ... J . ! . ,':· f '\' 0. :·... ~;Ji.::. .. :

The reslll.C:ing ~~bility for t1:'·:~ ;t~e. ('1.z) '."~ll~s t~~
1
crea-

tion of new capabilities of t,P. T , coatbning r~resentation
.X .

; ;;:;f.;•\ l• ' ...

T sealed inside. r

~·'. t~ .t ~" <· ,·· . .. ' .:,• '

"capabil'.ities' of typ~
•· ~=·~. ~:· , .. :.:. i __ ; ·r>:?i: .. .

The creftion of an extended. ot>Ject ·· iD.volvea the creation of
·~·' · J.,.,i ~, ,~·-~nt.: ~-

its represeu'tatton (which
1

reaul1:• in a caPal»illty ~Cr), followed
• '. , ' '. • l ; • ,. - d .c ~ , " I~. 1 i~ f~ ~t (' u.J • ,.· '... ' • J .. f

by the creat'ion of a capability Cz . for the eztended object, using
· · ·. t ,. ;;,,i~Jq~L

the operation:
,,_.

ex.+i <cecT r)., ",.,~
x

•. 1-his pr94~•,a •eal.eR ca~l.t.~.,, ax.

the: ~ iB i.be ,r;eq.u.~~ .:tihat: ., c?'

l,eges in P:t· .(~,~~• •. -~ ~ •. c.,.,..._ •. ~o:aeal.ing is

g~n.er-1.ly P~•*ed by tlJ4t, ~--~ of.c~laaLr~on,.J 11hich

produces a fully privileged ~.LU.5 ~).i. _1:· : , . "

Later, whenever the ,ilapl~ting domain r•ceivea as a para-

meter a capability C of the new type, it can recover the sealed
,:X

capability C using the operation:
r

80

c + ~al (C ,CT)
r x . x

Note that the recovered capability Cr has exactly the privile1es

P , which cannot be sreater than t'8 ·privileaea in the capability
r

originally sealed. Thus, the layer which illpl-.nts the repre-
~ ; '·'' l1" • ,,"

aenting type need not trust the layet' :btfJ.eaentiag the extension,
·;•, .,. {· _; .J ;;-, ~~·:;._ :"'.L.'. ·; •'·_;,"

since the latter can only recover privilegeel which. it bad previously.
·. ··.:. ~ \~ '-h • i ~ ''.:

The scheM just described C&1l be.ilrl>lemented by representin3

the extended type u ehovn in Figure 2. 7-2. The illpl-.tation
' ., , ~ ::. ·', ~:

of sealing now consists of ma"•ly cbaagiaa tile type f :l.eld of C
. _ · .. " ., · .:._. '·, .::zf."~~~ ·~ . ; · .'.'. .· ·. ·. r

from Tr to ·Tx and tumia~ton ~1·'~4:~~ ~~Pt.:~~ ex'

while uneealillg simply changes it back ad Mt• t!M privileges to
,';_.,. ·' .• ·o:- '. '> '" . } ~·

P , thus recreating C apin.. Mote tta.t C will thus coutain
l' . _, J . . i ' _. J;' · , "' 1:, · ' , ':. :~. ; j ;'~ ':»•: '''H .

the ea• object ID aa did C , rather than a. aev· ID provided.by
· . . . r . . : 1:. t.:, ·.,.,

the system.. In practice this ia not a aa~ioua .Problem.
- ;_ ·: -. '.-· .. · -r,• ~ r ·" .,_ - ~- ~· " · ·

This implementation clearly allova a pven ~j~t to be extenaed · ··
. -·~.:{')>-:-...~··'.\•)

one or 11<>re time•, and still be reprueo.tecl .., a a.tao.dard-sized

capability. 'Vari4ti.ons. on ·IMIB ·a~ whi¢h ~encl on short type

IJ>s are deecribed by Sturgis [St 73] ancl Lindaay [Li 73]. Another

relateO .• -.... j,a. die "eoutt'~<'•i__.1.~·'d~·d by

Jbnes· (.Jo .'J..3 }~ i:Wbtch is' e88etit:Udil¥' ·~ tio '•ttetl!thg • segment

OOntait&ine,_.4 upabtl~., '·.~ '~ ~l..beft'ttilt •·ll: ac~•

which awtnat• tha; ·¥"-.c:t~ ctHt:rSb# 1~ ··ea:~ arbi-

' . ~

81

T
r

Figure 2.7-2: Representation of a type

82

2.8 Goal.a f« a Nev C!p!bilitt !Yet•

Thia chapter bu attempted to aet tM •taa4a for the proposed

capability me.bani• of Chapter 3 by alretehiag a typical capability

ayatea, exploriag the probleM of revecation -4 type eateaaioa in

the contest of that ayat.•, * cliHU•._ 'Nd.oua· 1'~1-vely Id.nor

aoclificati4u to aueh a ayat• at~\ to .,1,,.· tboaeproi.1-..

In diauc.aatng the• moclificatiou aepar-.ly;, --1•1.q ltoth their

atrengtha and their veaJme••••, a number of deatt'altle properties

' - • • ,~,,,. <. -C""'

aoaJ.a to be .ec by the de~ pr.-.· ~ Claaft•l' 3.
' ~' __ ,.,, .. ~. --· "'J

'Gofil.

1) &avocatton ahoulcl take effect trr ~ly.

2) It Roul.d be pontbla t• r•aka dlia -~ prl\til• ...

in a capability inrletMIMl•t.ly.

3) It ahould be pqaibla to •1•~i.vely ·revoke the prtvi­

legu of a aub8et of thit capnil'.l:dae fdt' a object, and

thia aoulcl require ao 1.1.oHl lmawl._ of capabi.lity

propagation.

4) Any diatrili>utor of a cap&bilitJ (1. e•. ..Ot just the "oner"

of the object) abou1d be able to le1na ita privileae•·

5) The waera of capal>ilitiea OouW . ._. -- to cU.atiquish

bet-.n revoca~e and ODa-revocaid.e e.llldd.'liti••·

6) The coat o,f re:vocallility McluJ.AI. not h weui,,..

7) The MiCbani .. of revocation .-ti .. tne .__.iou abould

interact correctly.

83

Chapter 3

A New CaP!bilit7 S)'&tem

3.1 A New Capability System

The go.al of .tliis.ehapter is the description of a new capa-

bility system (cal1ef<BBS'· ~·· t~.ntWlich, •eta all of the goals
.. - ·-~"'""-~-""t ... J '

listed at the end of Chapter 2. Thia requires a fai,rly substan-

tial departure from the tcs system of CbapteJ' 2. After discussing
I

two abstractions of the ''li~!t sepent" scheme of Chapter 2, we

adopt the family tree IQ.Odel to -1escribe the revocation behavior

of capabilities. 1he · mechanisut' of generalised sealing is then

proposed, to provide both revocation and type extension, and the
-',·t·: - - ~ ~:·· ~-, ·• ~. . . ~

practicality of iiapleiaentiiig tile achtime i8 ~rgu.ed in some detail.

3.2 Desil,! Coa..ideration• for llevocation

In the design of the RCS capability sch ... presented in this
~-.--,.-. *">·""'-""•'
l "' ~~-'"-•,

cliapur, we wish to retain as miuyllr'~ible of the advantages

of the·1na1r,actlon scheme of Chapter 2,'.~1WCY~~~~·.:4ts pro·
"" _,,, .. .,, "

blel)S. 'rhere are at·least two approachesjwbich can be taken in
'

attempt!Ilg to capture the essence of the ~direction scheme in a
. .

base-level CJ?n•truct, as depicted ilt"'Hgote 5:~la. On the one

hand, as in Ftaure 3~2-lb, one caa {rep.ff, Q4 ~~ being merely

a part of ~h.'7' ~mapping from Cb to ... ~.oiJag, k Cr as being

a special revoker capability which allwa that mapping to be broken.
. '"') ~

·: ,,-.,

On t}Mi! other hand, as in Figure 3.2-lc, one can regard both C a

and Cb as being capabilities for the object, with Cb being

somehow dependent on C in the sense that revoking C a a

84

object

(a) Indirection scheme

c
r

object

(b) Revoker-capability approach

Figure 3.2-1

object

(c) Dependent-capability
approach

85

automatically revokes Cb as well.

Taking the former point of view results in a scheme·in which

the mapping from a capability to an object is itself viewed as

being essentially like an object, since one can have a capability

for it and.thus be authorized to manipulate it. To allow indivi-

dual privileges to be revoked independently, one must define the
"' • , ~··.R

ID&pping·aa c-ontaining, Of at least limiting, the. privileges of the

capaO.ili-t:y~· ·· · '.Ehe establishing of one's future power to revoke a

capability should be an f.t.~c op~ra_ticm,· u ~scussed in Section

2.4. For exSaple~ the situation in Figure 3.2-lb can be produced

by executing

Subsequently, the:posseaelq~ of ~er can revoke the privileges in

Cb by executing

In its effect on Cb, this is equivalent to the TCS operation

The difference lies in the fact that, unlike reduction, revocation

also takes effect in any and all copies of <;, which may exist.

' The interaction of revocation with copying is clarified in

Figure 3.2-2, which shows the situation resulting from executing

c
r

86

--·-~~---•CD

object

Figure 3.2-2: Interactions of copying
and revoker capabilities

c
x

c
y

c
z

c + c
y z

87

C + revoker (GY.),
T.

c + c x y

This kind of interaction causes subsequent revocation of c
y

to

affect C but not C , which is clearly the desired behavior. x z

More complicated'slluatlone include "s\lbletting," as shown in

Figure 3.2-3, in which both the priginal owner (holding c)
0

and

an intermediate dist.riwt,H1 (holding Cd) retain the power of

revocation over tbe user (holding Cu)• and "bill cQllecting,"

as shown in Figure 3.2-4, in which the ability to revoke the access

of the user (holding C) is delegated to a "collection agency"
u

domain, with the owner (holding C) retaining the option of later
0

disabling the collection agency if the contract with the user is

renegotiated. Note that the latter example takes advantage of the

fact that Tevocability, b•ing authcn:'Jz~c:Ll>y a capability, is itself

thus revocable.

The revoker-capability ~r91l9h j.j,ist;described has a good

deal to recouaend it, and,has in fact been explored in some detail

in a system design project at Stanford Research Institute [Neu 74].

However, we pursue ~ere the dep•dent-capability approach instead.

Investigation of the tw0 approacies reveals the following advantages

of this choice:

a) It avoids the introduction of special capabilities

authorizing revocation, thus simplifying matters some-

what (although a certain amount of complication is

unavoidable, as we shall see shortly).

88

• c

. cb u

[1 Cd •

I c .. •CC> 0

object

Figure 3.2-3: Subletting using revoker capabilities

c
0

object

] c
u

Figure 3.2-4: Bill-collecting using revoker capabilities

89

b) It. avoids treating the cap-J>i~ity~to~object mapping as a

mal)ipu1able object, which npit1~~ly redµ~j!~~mple-
' > ~ '1 ' . . - ' ' " •. > -

. c)

mentation costs, but s.acrfJices t~•-f'J;>Jlity tp JD.tke

rev9ca)>ility itself revpc~b1e.
' . ~ . ~ - - ". . '

It can be cast in tel'ID$ of a mechan.ism (t() be described
• ~ • - • - > • •• ' • • ';

in Section J.4) which up#.f~.es t~, notipns of revocation
•'· -' , ? J. .,' - '. ••

and t~e extens:f,.on.

It must be. adm:ltted tllat tlHt choii;:, t• ~ot. e~t:t.rely cl.ear-cut; in

particular, the opposite conclusion might be.~eached in a context
~ • ' - - ' ' ' - ; • ' ' • • - c • •

in which revocable. revoc~bil,~ty !•• consi~rf~~t. ~o~tan7.
One 1D0tivation fof the not:1.on .of ~epe1ld•1:1;t, capabi~:lti.~s is

the observation that a weakened copy of a paft:lc:ula.r capability
., . . , ; _., ;- ·. ~- •r .: •J

ca1.1. arrive ~l.l the possession a domain as. a, re.•1,11,t oJ eit~~f of the
. ~ , l · ; , ,.·'; •.; , · .··· • . ~-~e.1·\ ''"~-

following sequences of actions:
·,

a) The . PJ:~Vileg'18 in \:he original. c~.f~~ilf ~Y are reduced

to th~ des,ired set, .~d then a copy . is p4ssed to the

rece:lv.~g d011J.&i1L

b.) A copy is pass~d ~9 the rec:,iv:in,8 ~oma+~, 8Jld then the

extra privilefeS are r~vo:k.ed fr'?~,the o,r:f..g~nal •

. ~ ~ssence of sequen<7e (b) is that the l$J;'~t~n1. d~in "has
.

se9ond thoughts" a,nd ,q.ahes ~t,~ ~ad:8'!f~~~e (a) instead. This

suggests defin:tn&,, the revoke oper~ti(;)n. ~l •illP~>' .~~~g,~n~, the

reduce operation to be commutative with c;:opyig.g, in the.se~se that
• . '• • ~ '. •"' ~' _,,,", '+!

revoke (C P1 • C . + C' a' , b a

and

C + C · revoke (C ,P)
b a' 1 a

90

produce the same net effect. Of course, re~ocation cannot be

expected to undo any: interveninl exercls~ of'. the affected capa­

bilities hence this comutativity applies only to the state of the

protection str~ctures, rather than to the st4t:e.of the objects

being protected. Nevertheless, it is an attr.ctive way of describ-

ing the effect of revocation.

Exactly how the revoke operation miulage~ to find all outstand-
' . ,. -, ' ,.·:,.,-!_ '

ing copies of the capability being revoked is, of.course, the ceu-

tral implementation question concerning this'scheme. ·At this

level of discussion, however, we simply iilaaine·· that a·· global

search is done to locate and revoke the appropri~fe capabilities.

Given"that we require COtmaUtativlty of copying and fevocation

there are several' possible schemes, corrhpOildlng'to different

assignments of dependency among the v~ribus cap.bilities ·.existing

for a given object.· Clearly;· the comiautad.vltf requirement con­

strains the choice to assigmaents' in which the dependency set of ..
any given capability includes all. either -~pab:ilities which have

been derived frOdl it through one or .Ore levels of copying. We

examine three schemes, corresponding to'thtee such assignments.

Sch•e 1: The simplest scheme considers ali capabilities

for a given object to be interdependent. so1 tk~t:' revoltingpriv:L-:

leges from any of the capabilities aff ects•f ~him all. This approach

is clearly unsatisfactory in general, 'for two reasons:

a) All capabilities for a given object are forced to contain

the same set of privileges.

b) Any domain posses~ing a privilege can revoke it from

all other domains.

91

Nevertheless, this approach has one virtue which makes it worth

mentioning: it is possible to copy a ca~bility and have the copy

retain the revocation powers of the original. This is desirable,

for example, when a domain simply wishes to move a capability

within its address space.

Scheme 2: A JQOre appealiJlg scheme con.aiders the capabilities

for a given object as forming 'a "family tree" generated by the

copy operation aa follow•:

a) The initial capability (p~yca4 •t., object creation time)

· oceupies the root no4e of ;.·thtr ti·ee·.,
\, ;, -

,/
Whenever aft e:Kisting capabi~ .i&:·<!opied, the copy occu- , b)

pies a new son node of the/node cont~ining the capability
·''- ._,,, ",.,,

being copied.

A typica·l faaily tree is shown in PiFe J. 2.:..~~· ·· sy· defihing a

capability to be dependent on •-fh of its ancestors in the family

' tree, we maintain at all t~1 . .--ha . .c~ndition that no capability

can have any privilege not p~saeiiM by all of its ancestors.
,,, "•'"• ... ·

Thus, revocation affects entire ~ees of the family tree.

This tree-structured dependency solves the two problems

encountered With version 1 above~ since.it all0ws different

capabilities to contain different sets of privileges, and strictly

circumscribes the effect of revoking privileges from any given

capability. Thus domain A 1'MIY pass capabilities to domains B

and C, such that

a) B and C have different privileges from each other,

and from A,

b) A may revoke the privileges of· B and C independently,

92

Figure 3.2-5: A typical family tree of capabilities

93

and c) B and C may not interfere with each other, nor with

A, by revoking the privileges.

Unfortunately, by treating copying in this way, Scheme 2 sacrifices

the one advantage of Scheme 1: the ability to produce a copy with

identical revocation powers. A capability cannot be moved by copy-

ing it and discarding the origi~l. since the copy, being a son

of the original would ~·~~ tbe .. ~ower of revocal:ion over other

such sons, and would ther&fore ~ an inadequate .replacement for

the original.

The proh,.lem U caused by twct •. J;Gafl,k~~ng notions of what
..,:

copyingfis f.o~, ~"!sting that~·tW~'"dffntren) operations are needed.

Sch!p.L.3: . Jy c0mbining th~ ~~ions. ,9" Scheme 1 and Scheae 2,
.. ,,, ''•"'-.~·' I ~

we define a "reduced family tree" of capabi}«.,tie~ generated by a
,i:,,.. ~ "n.-

pair of copy operat~-:

'
·'cas in Sch~ J.l

The reduced family tree is generiltecf u· follows:

a) The initial capability occupies the root node.

b) The copy operation produces a new capability o~cupying

the sa.e node as the capability being copied.

c) the son operation produces a new capability occupying

a new son node of the node containing the capability

being copied.

A reduced version of the family tree in Figure 3.2-5 is shown in

Figure 3.2-6. As in Scheme 2, revocation affects entire subtrees.

Thus, while Scheme 1 proposed a set of capabilities, and

94

Figure 3.2-6: A reduced family tree
corresponding to Figure 3.2-5

. 95

Scheme 2 proposed a .!!:!!. of capabilities, Scheme 3 proposes a tree

of !!!,!; of capabilit0les. ·This i• iriteftded to capture the observed

tendency of the capabilities for a ·11ven object: tO fall naturally

iftto aubaets: cootatni:ngequival•t' ca,.bflitftJI 'la• mentiorted' in

ChapteT. 2). In thl• schelle, the c.,-t.llt~tt• i:rr~·eacb family' tree

nod•· al.ways conta$1\ ·the auie 1>ri1'tl .. ft';'' •l:i'i& •any· c~ge:';tO'''one

of: them •ffects thelll all•' O.. ttle ot!~·ttad4·; .(:--~llt'tes iii-1

dicf£1ft"ent nodu o.f the f.-.lly tre• can'-con~il cfiffet'erff privileges,

and interact accor4inato·the rules &f4-..Ceniant~revi:>cation. This

contraeta widl •8"8tem like Tes. in Whtch at\y'tWo'capabflities

may contain different privileges, and reducing the privi1~gee in

one never affects the other.

One valid complaint about this scheme is that it f orcee an

early decision as to which cQd111tJ.u _.. . ..,_., .• uat.Ua.11.y wish to

re@ke.. : The· re~de4 pe>ltcy· wotlld."'be to -wle a r«Vocable capa­

btlity whenever there we any ·doa'bt cneeratftta:'.t:Jbe h"uatvartbi'nese

of a receiving 4omain. I1Mleed, thte ·1s 'i'he ·;j'Usd.f:teatfon for our

reatriction .that capabil'ities with tile saile ~t'ion status may

not diMel' ,tn their pri•ileges~ lt ··He.us itttui-tt:..rely<·rea•onable

that any level of trust less than complete truaf~l\ay be subject to

change, especially since inc-..lete'1:'ftlet is often based on incom­

plete koowl•dge. TIN& 1· the .-. TeM'i4ili't1ou wh!eh Pr~ ··One- to

pau:a :capability wtrl'l reatricted ~rivtlelff ~ld' proaipt'one to

· make t ... t capability T8VO'Cable. ·· ' · '" · ,,, ·

We WiSh to adopt the reduced f•11Y t-ree n the, 1.odel of ·

revocation behavior in NCS. The iaplesllibt1tt~On:· :awcribed 1.n

'S.Ction 3· •. 6 produce• euctly this' behavior, ln ·adcH.tion t<Y a

96

seale4:capab:LlitY type~tena.ion ~h•'···i 1-.• i9p11•1nution,

t~ae two mechaa:I•• not 0'1~ 1•~ ~1• bu&i.. a19o tHaplay

-· str1.kiala aUdlac.t.ty~ ~1~ the4s. ~! 4~~ def ini­

tiona,.: We t~~ff:~, ia·~l.o~,.-i90rw~1

aechan~•, ~_,, tbaa. botbr .. ·· .Jt;, ,.._•~·•· r I 5 J 1atM111·, that
, ... - ',._ . . - . . ~ ·:

thia.~JJia•d· ~·°'*'•!11 p~~.._Uoaal··pl'.ivi•

le .. revoe&Ct• f~rea •. ~. fuacd...- .,.._ ..,,. :tat•~ng

detJci-iptJ.ve.. devtca· ~fyta., t111>< ••• Jtri· ..Uenat ceeMtUGC•.

We will coaU .• uae. to Wle .. ihe £•ly .. tJ."•• 4U..:M;;W-ll•t where

apprqprt.ate.

3. 3 Iat1tr~~'at··Wifi Ixn•IMMQ91..

I~ ~be chat.pa of ms.,,•'4Ar~ ~, . .._ 11tc1-catnility

appr~la .~ t.ne •teaa'-• N ... si"4 ill Olliapas .a~; .. TM 1Jdaor
' . ' ... :~.-· " ' '

wil~.~ ~1-isa•c.;ecl, .. ~ ~~·H not.,a·~:M',Mf'tMdl. WUC.

ta.· cwc:.ial, ~·~, 4 -the proper ::¥1....,.ticla l»if .c,,.....teaeton

One aapeet of aucb. Rl'Ope~ ~41CMell .· ~ .a:b.-~ 'beu ,aen­

tioned.: . :Lt.--. t>..po,.da.J. t~,._..._ .-,1•• to·~CeaMld,4ltjec~s,
' as we.1.lu to 1.J>Ne-..kv•~.oh;i#tc.te. ·~ ..,m:;~oa,aust

be handled through the noraal ba•~"«°...,.r,~•tW., ·~t,

tor: i.. •IJ.f ~ ~ evlici~ly, aocu1 •• ~-, •Wl tmpl.e­

ment• ,the. ~~t, ~ ~-. i• bei.1'&,~ ,._,,~QQ~.-e• b\ir­

den a, plaacl :OP the ueer of thai ~· ~., :ak.Jio.,.tt ~ain .. .
mild constrai.ncs are placed on the 111pl~t1ag layer, a we shall

97

see in Section 3.5.

Another interaction which.must be handled properly is ~he

revocation of capabilities for objects which are re.presentations
, ~.i' - . ,·:;.: ~'~:··-» !-, :·~· ~r-._-,- ,

of extended objects. Since such capabilities c.an be. sealed inside
• , ·: ·. /". ~ ! _'i ~ (••. i j , I ~ •

the extended. object capabilities .Cto any deJ>.th) '· the revoke opera­
_., ·t· ·)l.:,. ~- ~ -

tion, during its hypothetical global search, must be a.ble to look
c. 'j' '":·~:.d·:-.. \ (" .

inside the extended object capabilities and rnove t\'1-, appropriate
I.'.' .' ·:,.·,'

privileges from any eligible representation capabilities it finds
i ••••

there. This requirement rules out such 1mple,aen~ati9ns as that
J !• <_'j_-.-. '~ ~--·~ -;.~l<{ f,'l_ '-i:i '>, •

described for TCS in Section 2. 7, in which a sealed representat.ion
• ·~ I'. '"'. ! • ', ·_, -~ _; ' • ?,"• ,•

capability has no explicit existence,_ but can be reconstructed on
.'• •• ' :.' ·~~ :)'. ·: 'f ·;_ ·:}~~

the basis of certain assumptions, the key assuaption being that
• • • "" < '~~-~ ' • .'; .:.·.·) __ ,. ·, ' '

its priv~leges remain constant,:~ich_,ca~ b~ fa~~e .. ,i~,a system

providing revocation. The important point here is n9t that a
-:- ·. . : .. r: .. - _.-:'?::. -:' ~--.F ', _\ t,

layer implmnenting an extended type would ~raally be in the posi-
• . ~' ._ : ; -~ ,. ::_· • "_: _J ·~(·:·, f,-:;j ~-._ ·, .

tion of having its. representation ~pabi:lities revoked, bu.t that
: ,-, ,...: .· _-.,<":..--~:,. · .. ··~-·-,r · ~, -zr: ~-:1.~,t.; ,··,, ,

it must not be possible for the fraely available. type-extension
·' ' ·; .)'! ; ; :: ·,;·tJ

mechanism to be misused to "hide" capabiU.ties from the revocation
~ ~ . ~ : ; r

mechanism.

i"·,·,." '· ..

3.4 Generalized Sealing

In discuasin$ capabilities, we have sometimes reJerred to
, ... , :1~ f. 'd\';

them as being information "seal~ in a box." This characteriza-
-. , . ,. . , '.. ~~'-;_i : :r;,. " - ;. ,.. i i. ... , ! ~. i : -~ r·

tion has been used by Lampson [La 69), J1orris [Mo 73] and others,
,,.:. ~-; 1 '.''. ; ,,,;- ~· ~ l . : '· ... -.._t • • J '

and suggests the obvious generalization of repeated ,ealing, i.e.
' • ' '. ;; ,• r:·;c \"- ~.

boxes within boxes. We have already see~ one situation in which
,, ~ ·~- ."J ' ' _, ~ ;.} .

98

such a construct was useful: the sealed capability approach to

type extension. In this section, '-1e propose a much more general
. .

capability sealing mechanism for NCS which not only allows type

extension without the restrictions imposed in Section 2.7, but

also provides for revocation which follaws the reduced family tree

discipline of Section 3.2.

The act of sealing information in • box can have two conse-

quences:

· a) Reading of the ,information is prevented. ·

b) Modification of the. infortl4ltion is prevented.

Morris [Mo 73) has referred to sealing as being transparent if

only restriction (b) holds, and opaque if both restrictions (a)
·J :

and (b) hold. We wish to generalize this distinction to allow

partially opaque sealing of capabilities. This is accomplished

by using boxes which are partly opaque and partly transparent.

The opaque parts of a bo~ have information on them; they cover

and override the corresponding parts of the capability sealed

inside. The transparent parts of a box allow the corresponding

parts of the capability 1ealed inside to show through, and to thus

remain in effect. It is not surprisillg that thill selective "fil-

tering" action can be used to capture the notion of privilege

revocation, as we shall see.

The ability to seal things in boxes is carefully controlled,

as is the ability to unseal boxes and thus gain acce•s to their
·,_ ',

contents. Various kinds of boxes are available; the sealing and/or

unsealing of a given kind of box is itself authorized by an appro-

priately privileged capability for a type. In this scheme, a type

99

is simply a template for making boxes. As we will shall see, such

templates, when used in a particular way, g•tierate a HYDRA•style

3-level object hierarchy, but this is not an explicit part of our

definition of types. The association of boxes with types should

not be taken as meaning that boxes ar9 themselves objects, which

they are not. A box is •rely the "skin" of a capability, and has

no independent existence of its awp.

The format of boxes is shown in Figure 3.4-1. A type is just

a template for making boxes, and a capability is. just a box con­

taining soaaething, hence this can also be used as the format of

types aiid ~apabiiitiea.. 0,ne··c;~ itii;t' ~f- the"'Field• as being
-....... '""'~-·-.. ·~' •"'""';·

writt~n as "trit strings" where each digit ta .. s its values from
' \

_..,. ,, ·"·' ·--··""" ... _. -'·"~'i

{0,1,~rans~rent}. The f i,elds are all familial: from previous dis-
' ·t,, • '··" .,_.."'-A• < .,_..,.., ·" ·~

cussions, Wtth the excepl:iOn·of-the "cap•bilitJ-ID" field. This
.,, • '>-• H• •• ~··"~·'>-~,j.-,.·~ .. ~~;.>'"·

field,.i~tmU.fiu the capability, ~ -to distinguish it

(and all copies of it} froaa other similar capabilities, even if

their type, privil•S•fl ~ ~j~ct~rfields are ·the same. This is

important, for example, during th• hypothetical search which per-

forms revocation of privileges.

In spite of the a~arming size of these capabilities, we c9n­

tinue to ass~ that eacll addr~••able location', in Jl81DC>t'Y is capable

of containing one. At the same ti8'e, we will take the apparently

paradoxical view that each of the four fields in a capability is

the full size of a data item which could be stored in the s~

location as the entire capability. This kind of behavior should

come as no surprise in a system which allows capabilities to be

nested to any depth without increasing in s~ae.

"'

100

capability-ID

type

privileges

object-ID

Figure 3.4-1: Format of boxes,
types, and capabilities

"'

101

The seal and unseal operations are fairly si~ple. Executing

creates capability c
5

by sealing C(in a bqx specified by the
. ,,~ .

template contain~d in type . T.! as •.1i1thorized £by the privilege of
--·· ~' .<-.. ' •

8e~U.ng in c
1

·. · The box · prOducicf :l8~'a~)'4lfbatim copy of the tem­

plate in type T, with the exception that the capability-ID and

object-ID fielda9 if opaque, '6lli haft~. the eame new unique ID

written: on them. Executing

r~erses the ~roc~ss by r~mov_:l.ng ~ne J>r. ,~t~. :~:xes from c8 until

it suc~ds · ~g. .r~:lps a, bo:J; wf;lJ~ft UR. f itlLJ• opaque. The
f ' ' ~

' t ~ ~

value of it.a type field llUSt.aaech-~ of. ~a..J template in type T;

otber'Wise, an .error is ~ignall~ ~d .. ~9 "'aiue is returned. The
:;

capability CT must contain the privilege of unsealing.

Given the abave mechanism~ various kinds of templates can be

defined, of which we will use three.

The aimp~est kind ~f template ~· shown in Figure 3.4-2. It

is ~ompletely tuuparent •. ao.4 .. &illet.a.t~Ul. J>ox~u1 !we will call

"lockers," aince .. their ouly __ fuac;.tJ.cm .is . .ta .. ~ea.t their possessors

f~om aodifyia9 gH,ir eonteata ill eny w.y·""····I& ~articular, lockers

are used ta-c:oattol revocat'ion 1 .. ,·will -be ·~ussed in the next
~~ .

.. • ' y.... ···~ ~·~,, •• _,.,., -, ... ,.':; .. ~'

ae.p.~191,'l•,. A type cop.t4hJiug thia-.templace is provided by the system,

and a capability for the type, allowiug sealiug but not unsealing,

is publicly available.

102

--------------------------..-------,, re;;;::.

.. ...

Figure 3.4-2 t A "locker'' .

capability-ID

Figure 3.4-3: A "revoker"

capat>,ili~Y'."'IU I~
•' -~

typ~
''

privileges

object-ID
--... .:r ... ~

..::::.. '• ~-

Figure 3.4-4: An "extender"

103

A slightly more compl!cated .. t,uplate ~ s~ ~n. Figµre 3. 4-3.

It is transparent except for u. :Op4ClPfl. ~~i~~ty-~p .•(ield, and

generates boxes we will cal,l "r.e.v<>bJ;s." . (~:11)..frppi the defini-

. tion of .t:he seal op.-=r~U.on th4t ~h p.e,., ~o~~ wU;l. .ca:hus. have

its own n~ capability-ID.} As will .be a~,in.J:he ~Xct section, "' i ' .. , . . . - .

sealing a capability in a revo~~,PQX is eqpJ,v,~nt to generating

a new son-node in the reduced family", tr~e •. , .. ~ ty.pe containing this

tSlaplate is also publicly.a.va:U~,f,oJ:.fl~;ll;lg.,. put.!lot unsealing.

The third kind of te111P.l.ap.te u, s~ l41. f~x-e 3~/t-4. It is

completely opaque. The value q~. the tyt).e U.,ald ~·just the ID

. of the t}'l>e ~o,:ita:l,ning the te•l'9-X..· ~~s: aeP.#t."•~ed: by such tem­

J?~&tee we will call "e¥tend.ers. ',' .~te~~ qpxes. proy~4• a sealed­

capabilit;y typ~.e:ir;tension facili~Y u,,des.,;~~H~ hll C~ptei;.2 • .
Seve;~l types cc.>n~afnina sucp ~-~~~e•. •r• .. e~~--~i4•d py the system,

an~ an operation 1' prov1~'4 foi::,.crr ... tl.liar"'~~i a~h ~ype" .• ~n dema.nd.

These types aJ;e Qot u.de pµ~licly a~efaibl-.

There may be other k1',ds .of ~-.Pl•tes ;w~.~AA tirQ\114 .prove , . ' . . - - ~ _; .. . ' . '· ... - '

interesting or useful, but;,w,,will. not .. \)µra~,.~1., h"'°e. Instead,

we turn to the relationship be~~·~ .~~ .,~~ ~c~iarn and the '

other operations of the base-level aysteJll•
' -

A!J mention-.d ptevio~ly, tb.e ~~"':'+•v~ p,pe,ratiqn-.. tak,ing capa­

bilitiee as arguments e,an .be dt,vf4• iv.to ,t::~, POUR•" Moat of

them simply "loo~ 4t11 the capabiUtJ,,~a u, ,th.4,.µ.uaes o~ objects
' ·• . . ' '' ' . _, - • ' • ,f ~' ,.· ·, - . • -

which are the;~ ac.tual ai:gvments •. A.£"', ;O~; ~ q~ 4J;re.ctly con­

cerned with the capabilities themselves •. l'l14 ~reatlle~ of capa-. . , _, : -· . - , ~ \ ,. ; ..

bilities by the former operation~ is qui~. s,i~µa: .~hey always

rely on the external .app~ftr&n~J! _q~, ,a capltffU~1 .-:. r;.ee~dless of its

104

internal structure of nested boxeg. ror the fitter operations,

the si.tuatiott is more complex.

Itr addition to t:he seal arid i.lnsaal operations described above,

there att foul:' kfitds of 1'aae ... 1eve1 opend.ott. ·wt:cn manipulate

capabtlitl•• theuelves:

a) creation o~ base-level objects

b) copying of capabilities

c) erasing ·(<Werwrit'ing) of capabilities

d) revocation of privileges

Each of these is noW deactib'ed in IJome detalt ·

Ci"eat:iOl.t of ba'lie-level' object• is· 11Wo1ved ltith the capability

aechaniaa in two ways. On the OU bUtt,. Qcb new of>j ect ; 11U8t be

named.by an tnitial capability -1\i~'U;to be'tetutned as the

value of tfle ·creattoil ·oJS*l1itiori. ·?he.: fabtfad.6n ·of tliis capability

·eaa 'beat btLde.Crt~ed. as the 8ea1lii ;of '1\ •tt cixtenhr. box,

using a type owned by the 'base~1Wel •,.C.ft a.·a t.Plate. Thus,

ba11e-level cttijeet creat:ttoti depends on lealing. :·

On the·othet hand, aealing·~ll!nds on 'the'pi"evious creation

of types, wht-ch are b'ase.;..l•et obj*ct•·~ TJ'Pe•' coi'reapondina to

the various base level Object& (eH!'ataett~s. dO&Uia~: ')et:c.) are

created at ·.Y•teni ·tnit'ialitatiorl time~ ·· A1: l•ut the "root" type

' (ID • 'type''')' aust be creued "oU't 'ot thin '&1,: ;'" and in fact, all

base-level tjpes are pre•Um&bly created tb:ts·way '.(Jit'h.ot.fp concep­

tually~ one can thilik 'ot the ·'hat-'levef· .Y•t•11·uaitlg' 'ita own

create_'fyp• '·operation, wtitch would in tun. uae. the eeal operation

apecifying ·the ·root type as a · t•fate' .

· ~g 'of capabilities ts· cOnc:.,tually. siiaple in ~is scheme.

,·:>,. -

105

The entire capability, including any n\Dllber of nested boxes, is

reproduced exactly, so that the new capability it indistinguishable

from the original. Thus, executing

results in two identical capabilities.~
• . !,

The overwritin$ of a capability_ with da~a,<>r with another

capability is also simple. The pve,rwr:ltten capability is destroyed,
i.; ~·-._ ·~. : : •' ~,.·', ~

With no particular si<le-effects except for the obvious possibility
' " . . ' ~ . • ' - . .., ~- '< ;: ..

that so111.e previously allowable actions are now forbidden.
' ,__ -· .• '

The most complicated operation in this scheme is revocation,

which is perforaied by executing

revoke (C,P)

which revokes ,from C (and all copies of C) any p~ivileges
- ,\ .

wbich are zero in mask P. The outermost box of c is r~quired
- ' ' _:_ii. ' -.• v

to be a revoker. Note t:hat the r,woke operation, like the TCS
.' . t '.· '.1 . ;: .: ' '·.: (_:: ;

reduce operation, is pol'trayed .as .. 1110difying an. existing .capability,
' ' • -~ ' - ._- '. ' ' ' ~ '::;. ; ;.'·j ··: i .-

rather than producing a new one (cf. seal, unseal). Generalizing

the discµssions of Sections 3.2 and 3.3, we will hypothesize that

the underlying capability 1114chinery ~do~ a global search any­

time an existing capability is llQditied ~nd feflects the changes
.. ' . ,,_ ·. ·•, <. . - '.-'

in all copies of the capabil:l,.ty, even those wh~ch .are :sealed in

nested boxes.* (These copies ar~ easily recognized by their
. t' ~ ·. ::- :-' ;, .. :: ',.: ·. 7 !' •• ·- • : ' c ' 2 -

In the design beiqg described, ~his hypothetical ,search is exploit­
ed only by revocad.oti. Sectio¢ 'j~:w Wifl survey 'aoiiie 'POlisible ela­
borations on the design, two. of which W(M,\ld al:s,~ ~epEmd on this
search. , At rlsk of repetition~ Ve -agafn ~:t1.ft 'mit ''that this global
search is only a descriptl\re device, and is not actually implemented
as such.

106

capability-ID fields.) The particular modification performed by

the revoke operator is the writini of an opaque 0 at each posi-

tion in the privilege field of C which corresponds to a 0 in

the mask P. This is o1ily donet howevert if the outermost box of

c is a revoker; the revoke operation refuaes to write on any

other kind of box, and signals an error if this is attempted.

Operations must also be provided for'. test'ing the tag of a

memory location to see whether it contains a capability, and if it

does' for displaying the various . f ie1ds of the capability •. These

operations are straightforward and require no detailed discussion.

3.5 Examples of Generaliz5d S~ing

This section outlines some intended. uses of the NCS sealing

mechanism just described, and reviews the goals listed at the end

of Chapter 2, to assure that they h&ve a11 been met. The descrip­

tion of directories and other specific facilities which can be

implemented using NCS capability sealing is postponed until

Chapter 4.

There is 1a0re than one reasonable way to use the NCS sealing

mechanism for revocation, depending upon the exact sitUation (i.e.

the number of domains involved and the:i.r relationships to each

other). In the example situations below, it is a&isu.ed that

domain A possesses a. capab:i.'lity ~d wtsh•• to p .. s it' to one or

more domains B. In choos'ing ~ -.iho<l of do.in&' tllis, A controls

the posaibility of later revocatiqn. of. the ,,&rious capabilities

passed.

107

To illustrate the various situations, the sealed capabilities

are shown as arranged in corresponding reducecJ family trees. Recall

that sealiiig a capabilit:r iii a revoker box coirttspouds to generating .
a new son node in t;fte , tree. ,

f

The simplest ~~·~~PP. I.a .. one in which A completely trU8ts

B, and simply pas.sea a copy (C
8

) of its mm.· eapability (CA), as

sh<>Nn ~ .J!':l.gur;• ,J~S,..,.J.:., -~ ~ ,WOr,~1', a~i, of this is in

''system calla,'' in which A regards dO..in calls on B as being

operations of its "extended machine.'' As will be seen in Section 3. 6,

the passing of such ~;;.;.&ea'"IW., c•pability parameters represents

a considerable sav~g.,, Th~es't,:••ry significant, since,experience
\

·\. . . '. '

suggests that a greaf·~ of dmuin caUa executed are in
~ '

fact system calls [SS~}Ul · there are also logical reuona for
,;' ... ~·~·;'·;";,-~.:::.:/'·. l', :.·~ A . ,

passing non-sealed ieajielr:iH tt.a ''psl certain kin4s of ayatea calls,
1, ~; • ";.Cr~·c.-;c,c.·,,,,lc j

nqely those which ~··pd'!':·~/,xtended •cbani .. for capability
-., . ~.,;~' . '

storage and/or tranaaisaion, euch u directories or aessage

channels.

If A does not have complete trust in B, then before pass-

ing CA to B, A slaoUllt ""1 it in a revoker box. . ··~·::. ..
By keeping

one copy (CR) of tl:fe 8\'il.eCl~'fa)»ility, and paeaing another Cc1)
. ' .. ~ . ,,__,., ,; .,,

"•""' '":

to B, A retaiua tbe.~'f.l' .6ff later revokiag JJ'• privileges.

This situation is il~~ .. ~ Figure J.s 2.
p _, •;~"· ~- .,-:;..;.;,J:' ' .. :-,~µ~,:·,·t'<~ ·-~~ •. ~,

If A wisW~ to rtu• ,i:'90ca'bl, capabilities to the several

domains B
1

,:s
2

,-. •• ,B ,t:;:·l.teraaJ1ve WO'Jld be the creation of
. n r .
:,, d: .. , ·'""-" :'. , l'I

CR as above by ~.;nf..r .. :Fa: ,,;~ .,,,,re..,oker, folioWed by the passing

of n copies of CR (denoted c
1

)_ to the domains B1 , as
1

shown, .in F·j;gp&'• . .a.s~a .. , ~te -Ii-~.- ft1-:n.tt~tion

108

.. •

• ..

Figure 3.5-2: Passing a revocable capability

109

which would arise if A passed CB to B1 , and B1 , completely
1

trusting B • • ·B 2 n' in turn passed copies to them.) There are two

limitations to this use of the mechanism. One is the non-selectivity

of A's power of revocation; revoking privileges from any of the

domains B. requires revoking from all of them. The other limita-
1

tion is the lack of isolation between the domains Bi; any of

them is capable of revoking the privileges of all of them, which

may be inappropriate.

Both of these limitations can be avoided by simply handling

each of the domains Bi separately as in Figure 3.5-4. This

allows selective revocation from each of the Bi' and isolates

them from each other in case they are mutually suspicious. For

example, the various Bi may be the renters of a program owned

by A, in which case both of these considerations are important.

On the other hand, there are situations in which A does

not need to revoke the privileges of the various Bi selectively,

but does wish to isolate them from each other. For example, a

professor may wish to grant access to a grading program to all of

the students in his class. He certainly wishes to prevent the

students from revokirig this privilege from each other, but may

well have no desire to revoke their privileges independently,

especially since this is somewhat costly and requires that A

retain and use n different capabilities CR . In this situation,
i

A can produce a single CR by sealing CA in a revoker box, and

can then distribute the capabilities CB produced by in turn
i

sealing CR in a locker box, as shown in Figure 3.5-5. This not

only eases simultaneous revocation, but is significantly cheaper,

110

Figure 3. 5-4: .. P.,4aJP.D.1 jptcl•~•tlJ,
revocable· ''capalitlit1ea · · ·

,:',

· Fiaitre 3·. s-5: Puaina isolated
~1_10-~lY: .. ~~' ~~.M:••

111

given the impleaentation to be described~

From this discussion, it should be clear that goals 2, 3, 4

and 5 of SeCtlon 2.8'are satisfied by the proposed design. Goal 6,

that of''reasottaltl~ ¢0'-t, will be treated in the neict section,

-iihtch propoae~;an implementation for sealed capabilities and dis­

cusses its efficiency. This l~a-h•';onl:y gg.1;·'!'~ 'tliat of :lna.diate

revocation, .ud goal 7, that of proper int•i-~t't'l>n'.between revo­

cation and type extension. Bet-.u."'the.~'J~.itfto ~oal~ "generate
,,, .. ; ~- .,,., f· •. .

one fairly subtle problem, which milit be ·Ja1it:~eed Mfore all the

~ ;
goals can be considered satisfied."·

If':ts:cieu that;.revocation as defined takes effect i.Jla8diately

in the sen8e cll&t the privileges of the .ppropriate capabilities
. . .

are ilmnedtatl?l11ioclified. This is only sipUicant, however, to

the extent that the correap0ndt111 11<ijSilflfti'.6u'• oi\1th,. o'bje~t' in ques­

tion are immec.Uately pt"Ohibited~ wHl~h-1_n 1tdfi/~ 1d-~..is on; the

checking of the privileges by the 0perat:i&ii.'/~tcan 1-gine·the

following kind of sce114rio, in which revocation ia effectively
' -" . . ' : :;. S: ~

delayed. Suppose that domain A in proceaa PA passes to doaain

B in process PB a capability to access X, which is an extended

object implemente4 by layer L. Suppose that layer L is repre-

sented by domain LA in PA and by domain LB in PB. Assuming

that we can say nothinl about tbe relative eaecution speeds of PA

and PB [Di 68] the sequence shown in Figul'e 3.5-6 is one possible

outcome, and produces an effective delay in revocation which is

visible to A. Strictly speaking, the problem here is caused by

the occurrence of step Al between steps B2 and Bl, which should be

executed together as a "critical section." Synchronization between

Al. A revokes B's privilege

to modify x

A2. A calls LA to examine x

AJ. LA returns to A the

original state of X

A4. A calls LA to examine X

AS. LA returns to A the

modified state of X

112

Bl. B calls LB to modify X

B2. LB verifies that B is

authorized to modify X

BJ. LB performs the previously

checked modification of X

and returns to B

Figure 3.5-6

113

the base-level system and higher layers is fraught with difficulties,
I { ;·· •· l

however, hence the following alternative ••ems preferable: when a

layer is about to access the repJ.'\e~nt~tiOQ. of ~~object t' it must
O ' T tr:;'. .;.;, jf: < ::.._i: f:(,f'\ ' :: ,.'·~- ~ \•;> :•

f!rst 1ock all parts of the representatiOD to be touched and then
'-\ ,•• . ' I ,0, •;;·; -'·

check to 'see that the requested operation ::1.8 authorized. In many

cases, this 'ittterlocktng:;C>Ul.ct'be n~e~~~Y ~~41y; the major

c~ge due' to' ..!evocation is.,t~e'·'~vit'.i"'8; ~t'privilege. checking lniJide

°'£ the crtttca1: section. <:in·, ~~~tt~~1~r this.uie~·that pre-check­

ing. of· privileges· as an integral part'"of the d~in call machi~ry
··'' '•' •·' '; :; '·£, ~· •.

[St 73, Wu 74] 'is not very useful in a system in which privileges

are revocable.)

·:1n· the conteit of ripre'''3.s'.:.:6', j~h ch;eki~g w~uid 'delay
~- " --· ,) ... ~ -.; _:. ;, .4- -~~~ ~~ .";:!~·,~ > .; . ::E:..r>·::f;l 1'

step Al ·uritif after step B3. The crucial point is that this

rendets the situation~·lndistui~i~~bl~if'it#. one. i~·~ich step B3

occurred Jtetore .Al. Thus, alfb~~ an a~~~ ~y oc~u~. slightly

after penl:l'ssic>n· to J)e'rfo~' ft"'~• bMn -~~ked';"i'th~~e is no way

for 'a. pr6:Pfitly Written (i.~J~,;;tbing ·tnd~p;n'knt) pr~gram. to detect

this occuirehce.'
; . ('"

\ _:' (· ... ·.-~-.. li-.~j.,:·._.f, ~- ::,,_~-\---..;._·;,, ---.. ~--~?; -~:) :'' .:-" ... ~.J ...
li inpreviOUa· diacuesiona~ we begia by describing the repre-

sentati~na· of' capabilities t~i~es .'' 'l 'laaaei 1-mo~(\ocation
'. . -. » .. ,. ;. •"' . ~ ;; ' ·: ':_,.l }' ~i ~-~~; ·? .j_- '; /~iJi'.'· ":;:,;>{;,. ~ '..: :_:· '·f-, :

holding a: capability appears to the u11er to contain a rather large

amount of:' lnforiaation,'~.b~t· i~af~~it~y· l~: c~~~~iu a· sh~~t ~

114

of the capability, consisting of a "loc~r bit"* and the ID of the
' . ..

capability as shown in Figure 3.6-1. The other fields are stored
' ' - - ; ' "'. ' . - ·~ .

elsewhere, and the ID is sufficient to lo~te them, allowing recon-

struction of the complete lona fora of the,~ap~bility.
. ,,-.. ·•' . . . '•

The moat important advantage o~_th,ia ~proach is that it
_. .. •. : }:,11~1- ·~"\;.': ' ,: : >. ·, \. ' -.. - ·~·

allows the changeable information (•~I· rev~ble privileges} in
' ::: . ' ., :. ~ ~. "'1 ~ ; -_," ' ..• -. ' f

all copies of a capability to. be cen.tr~~- ~ th~ updated
.. . : ., ,• '·'' •), . '- ' .

Without a global search. Th.~~ is crucia}- to. ~he., practic•lity of

the scheme, and will be diacuaaed in mare de~ail shortly.
' -:- ·r . ', .t:'· ~~· _, .' ·• ._ • - •

This approach also allows the •f fectiye '~O~fl• of -.n entire '· ' ..

capability in a single practical-1Pi~ecl .!9ri .. of ,,, . t11.gged memory •
•• ·.: • .. - • : , < <' ~- ·.; • ..::: . -.. • ·., J - •' •

For example, on the terribly pessimistic aaa1'tlptiou.that a new
: . : - ;, ' : ,' •. "' "" ~ !

0

• _l • ; ; ,! " 1.{

unique D> is genetated every_lO 1'1Qroaecood9 1 ~~ u~~'ot 48 bit
. ·; .. (' .. ,•· .. " ..) '

words wuld allow the s.yat~ .to 1:Ul1i ,.cont~o~1-l (q~
1
&,1?0\lt a cen-

• .. ~ ' . ' . ,; . ' - .. -' 4 ~ ~ ... ~· •"' ; ' -· •

tury 'Without exhausting it.a ,.upply of ~·· .. qs~n.a., ~-space ; ' ' . , , : > ;,,' ~ ;' . ·~ .f.;_,, , .i ;.~' "._:.:...o~- ,' "'". , ; '"" '

compaction approach and a s~t 90re .r~4ut.i.c).evel q.f peui-
. • ' ' '. , • ,;' "J . '. f • I.; ~ "/•' ' '; 1~~..: - :_•' •

mism woul~ probably allow the use of 32 bi~.,_ ~1i;~1~1 wi~hq.u.,t requiring

an objectionable frequency of system abutd~ to perform the

compactions (i.e. once every few week.a or months, .at worst}.

An attractive way to stiu:e ·"°'~ .bo:q .. ~ .~~-_cqnatitu~e the
• ·' • . "' •. • '· ,.. ·-· ' • ,,. -~1 '; .' ·,·.

actual substance of the capabilit,~a,, ~~~d, ~,, .~n fl. ,global hash
!. l.t ·' -': J,_ ~ . " - ·-· ·'. " \;, _,. . .. \-, ., ~ ' '

table cotltaining nall fix~.'~izecl enti:i~~ ~ ~r~ op unique IDs.

inie map, as ~eecribed in Section 2~-~.~ 18 j~1t.~uclila Je~~~ture,
which sug~eeta impl~ting. each ,l~~x. ~ •: ~~P, ~tft· ... Jh~&, approach

yields au integrated structure for the i:ec'ou-t.ru¢1.oJl ~- inter-... \ ' .. ' ·' ' '[''' ; . '. ; . ' ' ; '

pretation of u.eated capabilities from their short. forms. The

* Thia ia not t:be same as the tag bit on the calpab,tlity,,, and will
be discualled below.

capability
(short form)

115

capability-ID

capability-ID

type

privileges

contents

Figure 3.6-1: Format of (short-form)
capabilities and map entries

locker bit

f I

ll6

increase in size and complexity of the map machinery, while non-

negligible, is not excessive.

The format of a map entry is shown in Figure 3.6-1. The

capability-ID, type and privileges fields of the corresponding

box are represented directly, while the object-ID field is replaced
~

by a new "contents" field which serves to locate the contents of

the box. Map entries for various particular kinds of boxes are

shown in Figure 3.6-2.

Base level capabilities, while conceptually the same as other

extenders, are represented in a special form. The contents field

contains the physical address of the object, hence these map

entries correspond to the map entries in a system like TCS. The

privilege field would always contain all l's since revocation

does not operate on extender boxes, hence its value can be implicit;

the space in the map entry is used to .record the size of the base-

level object instead.

Normal (i.e. user created) extender boxes are represented

similarly, but their contents are capabilities, rather than physical

addresses, and they make no use of their privilege fields.

Revoker boxes represent their transparent type and privilege

fields as all l's. In the case of the type field, this value is

a constant which is specially recognized by the capability recon-

struction machinery. In the case of the privilege field, it is

used as a mask, hence any O's written in it are effectively opaque,

as required for revocation.

Note that no map entry format is described for locker boxes.

Locker boxes are so simple that they may be implemented in a much

117

Cap

T . Type Initial capability
fo·r base-level

object
(special &xtender) si~e' ... · ... Priv

1--------------,_;.------...................

I

Extender T

(normal extender)

c

I

Revoker
p

Figure 3~6~2: Map entriei ··.
representing various kinds of b~xes

. Cont

Cap

·.tYPe
Pr iv

Cont

Cap

Type

Priv

Cont

118

cheaper way. As shown tn Figure 3.6-1, 4 sing~e locker-bit in the

short form capability, rather than a ~e>aplete map entry, serves to

indicate the presence of one or more locq~.lM;Jxea. · (Since they

are transl>&rent and.~()n~retno,y!tbl,e~ ~tipa-~cv.•ive lock.er

baites are iridistittpishable from a siagle one.}
•• < ' "· ' ' c ' '"'' ' _. • .,,,. ,.,.,,,_.

Given the described repreaentations of the various kinds of

boxes, the seal and unseal operationa aay be impleaented as shoWtt

in Figul:"es 3.6-3 ap.d 3.6-4• re•.P«tctively. The se41l ~peration

creates a new aap~eiitry rtlP.X:esent1na.die iiew box and stores in its

~ conteuta fie.ld the ~ility baiag ..-led. SUling in a locker
" ~ l ' i

bok ia A&MJ.ecl speeJ.al.1¥ by •iapl.., t~g on the lock.er bit in

th* aealed capability. 'ftte anaeat·aperatiou simply returns the

contents of the appropriate extender box. (Recall that revokers

and locker• can never be unsealed.) Figure 3.6-5 81.mDa.t'i.ses the

various low-l'iWel ·'facilities -.t in ·t:tie deacription of these and

otller opft'at1oms • These are aa8UM'4 ~., be cleat from previous ,

diacuo:tou, wtth·-ctie exception of caJ*biU.ty t'econatruction

("bcap~d· 11s1octative iaemory l'o0kiJI> (''Cap ftud'' and "Cont_find")

which Will '6e deacrlbecf shortly.

The cr-.,tiou,~f, e•ch. n_,, ba-.,...level object. includes the
-· '·,

construction of the "root" map entry representing its initial

capability. This map-entry is self sufficient, in the aanae that

it does not depend on any other map entry for its ptloper interpre-

tation. On the other hand, a map entry representina a revolter or

extender box contains another capability; its one-word contents

field holds the short form of the capability, hence its interpre-

tation is dependent upon the other map entry holding the rest of

119

llUlOR

. ·· ·c + c · .

.,Lock~'(c· > + ,r
., '······-·~~--Ii· .,..

No
(

''1',_ • ' _.,.:.,.

Type (M)'' ~~{: • , 1
2

Priv(~·c,.+- ,9-1. .• 1
''' • '" •P .,._,oO~c·•· z. "·O

Cout(M) + c

' ~ > 1

Figure 3.6-3: NCS -seal operation

120

ERJ.Olt

B.etllrn -eon t (C)

Figure 3 .. 6-4: NC~ unseal operation

121

Fields in various data structures (see also corresponding figures)

Cap (x)

Type (x)

Pr iv (x)

Obj (x)

Size (x)

Cont (x)

Uu1CIU5.na.11H

New_;U> (.)

New map entry (I) - - , '

Map_entry (I)

Delete_map_entry (M)

· Cff!b!lity recelUftrucul.eD

· lteaap. (c:)

Associative memory

Cap_find (I)

Cont_find (x)

r) ' > , • 4 ,; J· ,) i' '\ • '

capability-ID

type

privileg_es
... ~.

object-ID

size

contents

creates map entry with capability-ID• I
c,~_;)'" ;·-4·f;.~~~1 ~~,!'; ... ~,

fhicis up entry with capability-ID• I
.. ·- ·~ ,~-:> ' . 1· :" ~., ·.':... < ~'. • ~

deletes map entry M

find entry with capability-ID• I
~cUl1Jk~ty) ?,;,n·,.·.·~

find entry with contents • x <••" ·UUJ'.. ~~i

''' ! -. ol

Figure 3.6-5 L01li level facilities used by operations

122

·-
that cepability. Thus, re.,..ted ~ of • baae-level object

: -~ 1 . ' , ·-. t ·;.

results in the aeneratioa of a tree of aap atriea, wbich combines

the fuactiou of the type tree of Section 2.6- and the recluced
''

faaily tree of Section l.2. An __,ia of MCh a tree ia shown in

Fiaure 3.6-6, in which a .._.1: 1• ...a u tbe repnaentation of
' .

fJ :. ~ ,_ ' I ' '

an exteadacl ohject of type 'directory,' for wich various capabilities

have been d:btributed.

It is 1-portant to note tbat vbi1e the ~-~~ticm

geuw8t.H . .-,t~ ~tee•, tile w 11al ,,_...,.*' do.a !!!!!,. dis-

mantle tha.. Por aa.ple, in figure 3. 6-6 • if the layer iaple­

Mnting directot'iea uaMal• c3 to ntaiA c5.. die Mp atructure
· .. '.~-·;, ,~· • '"''•'. ·'. '· . , (.r~· r{'"f_j~"J.,~'ft- :],,•;'.'I.'··;

r-ina -chan&M. The wbai• for aleuoD cd m=ee4«1 •P

entriee will be 4i•euaaed later.
- ·. •''· "

In order to r.con.truct the locaa fora of a capability, it. is

necessary to-•M the bozea •f,ch••l*,;:·U•~'.~with the
-·-~ ·-.-.·~· ~ ~" ~-·,~-- ,.,,., _ .. .,." ,, '

Given the particular kinda of bontt uecl 1a ~ adleme, this simply

L· ,-; " . . ~-.:-i "

tbe "'f ollowin&" proce-

dure for iadirection chains of SectioD 2.4. In_odaa'I' ftgurea, the
,',. ·t ,''!

., ,

capability ncout~ttoa proce4ure la refetted to :1n the fora

C + lacap (c)

where c denotes the short fora and C .. tllie recoutrueted long

fona of the capability. In addition to the viatb14' loaa fora, the

recoaatructioD. process aleo recover• tlaa t:!P£!!!.fliqa·JH!iater

123

Capabilities:

long: y y s <5 (l

'dir' 'dir' 'dir' 'seg'
' 11· .. 1_2_ p--2. 11 ••. 12

"'~ a B ex

Map:

Objects:

Figure. 3 .. 6-6: A map entry tree

, l + Cap(Coat OQ. · Y
P + PA Priv(H) :

,.

124

c + a.c.p(c)

Figur• 3.6-7: Capability reconstruction

125

/

from the capability to the object, which consists of the short form
I

representation capability in the case of e~tended objects, and

the address and size for base-level objects. Thus, the result of

the reconstruction process is a .. ppina, as shoWn in Figure 3.6-8.

The cost of the reconstruction process is relatively high,

since it involves sciuining a chain of up entries, each of which\

must~~ located"by--haahi:ag-tnto the •P· The retention of the -most

aer:t"'d"''IUpJ>1!r1tr~11r 'fa1t· bn'dWte thus becomes even more important
<}'-- j

s~cti(;~ 2~i :c;~µi~(~ uaeci--Wiibf>ut change to hold map entries from
~' .' -:« . ;

: \ . - - 4 i) '~ ,f
.. 'SO%- incre4Se 111.~--"f'btl size ot ihfi associaU.-vecmnory entri:es allows

-, - . . ~

them to contain entire mappings, .rather tluul single map entries.
'\ ~ . '·' L "".. ,_ , : ,- _-----: " .

On the average, this modification would probably not provide a very
• ,< :.~ • •J: ~ - ' '.... ~ ··.-" ,i ... j t_J: ... ,- :1 !7: • : ·-·

~-...+;I.e., fR>rq•11111nt,.¥l-- -.pWi !(., m••"'-·'~'wreconstruction

process entirely, rather than •rely accelerating it) and might
.9; - ' •_:-··: f }

even sUJm~y i:educe- t;be.e~~ic~9:9~~ril~ utilization in the

associative memory (if the average chain length was less than 1.5

map entries). It is desirable, however, since it allows a fixed
.

amount of associative memory space to effectively contain a chain

of arbitrary length, thus preventing lo~g chain~ from severely

degrading perfot'118Uce by filling \IP the aseocf.t.tive memory. We

therefore specify the associative memory as containing the several

most recently used complete mappings. The exact number to be

retained would depend on several considerations, ranging from

available hardware components to expected usage patterns. Two

factors which favor maximizing the nuaber are the relatively high

----------- -----------------------~--

126

> ..,,.-. - - • ' •• '- .- - """ •

capeltility-1])
I• ._ • .. ,. ·- ; "' '~~"'-"' .. " ··'

Capability

l.e>preaentation
...,el.acer

* Base-level objects only
. ~ ---

** Mdress if base-level obJect

tJP8

llepR---tarl' eapabi~fty (IJllDR ftdl}- ·if_i- .- liMite4 · object

Figut'e 3.6-8: AMPPin&
(Mi tltored fn tWa- ,If I 'tty)

, > ~.; • (' ,''

127

cost of initial loading (• capability reconstruction) and the fact

that the retained mappings remain valid through domain-calls and
' '. , .. ' ~ " ' ., " ,_ "::o ,

process switching.

In the various figures, the associative memory facilities· are

represented in the form:

A + C.p .:..fiml (X), ·

A + Cont _f ttid {I'.) •

Each of these finds an associative memory entry whose appropriate
{ ·: : '. .. '·~ . ' .. ·, .. "

field (capability-ID or contents) contains the value X. If no

such entry is present, the least recently qsed entry is found.

The revoke operation is quite straightforward in terms of
• • f ~ 1.Y ' . ' ;'

its effect on the map. Since all copies of a given revoker box
' .. f~" '

are represented by a single map entry, .. the. uaking of the privilege

field of that map entry automatically revokes the co~responding

privileges from all the copies, including those eealed inside
.. ~. ,

other capabilities • The only problea is that some of these latter . ,· j .~

capabilities may already have been reconstructed and saved in the
• 1- ~ •; ' 1;.~i ; , ; ,,

associative memory, necessitating their removal.
~ ' . r I :.

Unfortunately, the names of all such capabilities cannot be
,,

detei:mined from the name of the capability being revoked, except

by introducing a complicated and fragile backpoint~r structure
': ·. \ .. ' . ~'

into the map-entry·treea. One way of dea1inJ 14~11 ~h~s problem is
i • < ''.• '. l~ •,; .'. ' ' ., ; • r ·"f'.• ~ .- .. • '. • . ~ ' • • '

-. to completely flush the aaaociatti#'&·~·,O.:~h ~ocation.
' ', •{ >• : '. ,'. ; ~.:: • " c'.'. ,: ,

'l'llis will-'be Satisfactory if th'ftecfUeilCy of r~vocatfon'is rela-
·~:4-.· ~. - : ' . : _,,»t/ 'i .

tively low. If revocatt.etti. ta a 1*\lffictent!j l:reqoant'.: occurrence,
. . . ,.,, ' . "' ... '·'" . '.,: ,

ho•var,· this will. draadctll.ly 'redut:e t~·'·ist~lity:·~f the' associative
"-'f \; J .,.... J. ·,, \ .

\:'\' ''t .•

128

memory by forcing heavy use of ~he expenaive reloading procedure.

A quite satisfactory compromise between total fluahiag of the •

associative meaory and selective r..aval of oaly the affected
, '

capabilities is the removal of all ca,_biliti•• for the same

object. This is easily accom.pliahed ua1Ra tba "Cont_find" feature

of the associative aeaory, u shown in Figure 3.6-9. (Por aim.:..

plicity, we have aasuaed that Q,. is not a valid value of the !C4p

or Cont fields of a mappina, and can therefore he used to disable

an associative memory entry.) Thia seai-aelacti.- removal will

sometimes force unnecessary reloading of ·calMlbiliU.ea which were

' not affected by the revocation, l'>ut th1• will oal)' happett when a
' ' ..; ,: ,.. ·:' 'i;' . •

capability is revoked a11d another capalJility for the ...a object
, •. ' _J

which is not its descendant in the faally tree •ppears in the
, .

associative JMllM)ry.*

The storage of inactive map entries in .. coadary 118110ry 1~

DUch the a.-e in NCS as in TCS. Bach ~S map entry cotteapOAda to
•':'-

a complete tree in NCS, but only the active pa.the in the complete

tree need be kept in primary meaory. It 8eell8 likely that knavn •
'Y-' ;< ~ •" ' r

techniques for localizina list attucturea in ataCOIMlary ..-.ory l

[Bo 67) could contribute significantly to aiaildciag the ot"erhea4

incurred when an inactive. path becomes active Md .-c be brought

into primary 11811Gry.
* . ..:• -

One poui.ble frequent exapl~ of this would 'be r~on of 81
cl~~,,_.._.~,~ ••tunc.fna dlal.eal.L- :iar•aeton of
the caDae'a capabllity 1111oUlcl uaneceaa.rily r~ Jhe ·ea11er'~ own
c~iJ.j,ty.froa tn.,-..oci..t.w;...-, .. , _.....,. _.,,k.;M'Oidect us­
ing a modification sugested by Peter :a1.-p of ~'.X. T. • ill wh:leh
th~ 9'1tiAa,pZ'9'l..- n, tjae, .. ~paitUU~- ._.,.t1'1111t¥aar.uumsm
would include the length of the Chaia ecamwd to PJ"oduce it. By
cCIGlJt.,r~a tla:t.• ,11a~~ f~J; tile. ~.-.lkr •• r~·,.- 1 the
capability being removed from the aaaoctatiw •1'~y, one could
avoid removing trae-aaceatora of the ~avoa..a c~lity.

129

rev:oke(C.P)
' . ' - ~ · ... ' . ,, ·; .

J!!Wn··

'·

.. '': ~£. .. ~ - - '

Priv(M) + Priv(M) AP

. t ~'.

C~p(A) -0
Con'tfAl

..
6 \ . ~ ~.}_,,. ~

•
) ft

.,) .. ;

'
Fiaur~ 3 .:6_::9 :' NCS. re~~k~ op~~~tion'

'• ···'

;. "'

130

3.7 Some Imple•ntat:lon Details

In describin8 an .iaplellBtlt\ed system, it 1a of ten de•~rable ·

to omit or •iaplify certain details which, wile necessary in the

implementation, are of little mtrineic interqt, and tend to ;

obscure the aignificaa:at p'l."inciplea of tlMl claip. Unfortunately,

in argutrag the practicality of an u1d.11P1-eated ly•t- like NCS,

one is olJHged to address such 1uuu·. ·· · ft:ts··91tction i8 tnv6lved
;

with such details relatiile to the .. iatenance Pf the ayatea data

structure we have called tu up. l@t!d•~~~~ f~~ t~lves;

gr0Win1 'b<rre4 w.lth the arpm«ant• ·can tf1dp dis r:e.•Dldet'i of thU
"·· ,_, . '

section without aignifiC.-t lo•• of coatiauity.

The baaic probl• "1th the map .. 4-cribed tkus far is the

lack of any ~chani• to keep it, .. fr,o- fillias up. Par qample,

by repeatedly ... u .. a liap carat.ility at the relatively modest

average rate of . once per udlliaecond, a ulie1'*9 clouin could '

fill up a l .Ulion word aap in a few aiUU.t••· In a system lilte

TCS in which eaeh •P ent.ry co~t:e.tpond8 to a 41ffereat object,rone . ', ""'" ...

might be able to dep..t on tha Wtitation of ot.bft· .reaource u.Age

for the ol>ject to limi.t uaaa• of the a9PM•*·"~rce a1kl pr•-
' ,

vent it• al:tauation..,, Thi• :ta clearty no~ t.M ·~'in the new .

scheme. ia which creatioo..of map entriaa ._...OK lmfly any otlaer

re·aource .. ge at all. ·

For this reason; it is necessary to treat ...,· · b,"i..a as aa

allocatable resource and thus U.111~ the -..t: of • space

available to each domain via its account. An account's reserve

of available •P space lllllSt be decra.nted each tiae a daaain it

funds creates a map entry, and incremented wben t~ .., entry is

131

deleted. This requires that each map entry contain an extra field
; ; . ~

specifying the account which fund• it since this ma7 not be evident
.;,;_~.;".:.'. c.L ~-·~: ~ -.?\,-~ ·~ .. :£··-xi:-~ \ -.'-':" ~

at the time at which it is deleted. Since unused map space resides
· , :. : ~ ,_ ~, - .t.r ::-i :J _ : .i,f -~: J: J :.- .:- ,-, .. · , :3 .. ~ r

on secondary storage, it is quite inexpensive, hence the allocation
• : ~ '° - ~,). !., ('f ; -- .. <)

given to each account can be sufficiently 1enerous that no reasonable
··:"r''.~-:-',.~~·-: ~ -' ... " .•. '.:<:-ti·:!.::'._;~~.~,) .. _ l.'!·-.>l~-.i-r:} -~-) ~j '..,'l~ -~--~ ~:

program would ever exhaust it. The limit serves only to contain
T ".j·-,; ::;ii'\ " _. G~:> -~- i .t -~··~F • ~-,~7, -1> -' f ,:~ :._

the damage done by pathological programs.

From the systea's point of view, the problea is now solved
;r,- :' i' .~: ,,. • ~i r·~.;:- :~.a -,; _ .J : r,:' -t .' t ~'- f_,L~ f-:~.Z.L~~ ·" c • ,,

since ~ch user can .. -~~, only _h~~~- ~ ~~;~~·,.~~t, _us~ of map
' • , .. ' .-.; ,, -: ._, ' '- .- > -- •. ,,,J c.' -'8;:<- :• ,•.•: .. '

space. This is not really sufficient however; the consequences of

such self-inflicted harm DQst not be too severe. A given.account's
~ ·'.:, ,· '.·'· ;~?,·:i. ~,,r,) ... ~" .!·.:: ;.~·J..r.::.· '.J:·;·::;-'·'··~."'f;).::;._t; ~ \.'

allocation of map space can be cluttered by an undebugged program,
... ~:: ."·""·! ·· '.t.'+ .·_,;'h.,. './_r:;,r,,:.:j -:·/.·.-..;. ,> ~;ih·l~· ~·-·;I ri!C'~ ~ ~: ~ ., · ·.JIJ::: ·J hJ.uo....,.t.·

hence some mechadlism ~st be provided for prev~tion of and/or
(~ :r •:<;Jt ~ .···1t': ~ J":;·~::'J; -d·.. ·.:.-.:::,,.. h} £:<::~<;·_;.flb}..' :·;,d·; -;;itl E~ .. :.

recovery from such a sit~tion. Pl!'eventioncannot reasonably be
~ .t •

expected of the base-level systea, since it cannot distinguish
.~ • ,\. ·;.. • r~· .• .t'U~; ·:; ~ L/\ 1:-:;£~i0, .'-,.·,]_{. :·1~}lJ~ i.~Jf_,: .. _,ttk'--JL;,j,.:~:_·:~ ~--·~

between legitimate and illegitimate uee of .. P space, hence recovery

must be possible. We take the poiDt of view, however, that this

recovery need not be particularly aa.y or graceful, since, as
_;t~ t·. ..;-:.;; ~ ~ ',·cot:?~·-· :z ~-"'~ · :-~ ;· _ ·y r~-lc> L·~1i ... _;_{;h~[::-. ,,:;,_ i.:~-n~:-~ ~ ~ :, :

mentioned previously, most uae of the sealing •chanism is expected
: .. · -·:,9 ~-:· .. s . :;j· ,?:.;.)_i,·.~·:::·~i:.:3 .ti:,,.;r~ ~:~::".>!:.,~·:~- t:.;_ ~~-2~~ -'

to be made via more civilized facilities rather than directly. The

implementation of such f acilitiee Will be dJ.~cuaaed in soaie detail
"'',:; ·'- ' ·:~ ~-· t. ·1 ·1 t: ... _{ ;:.; ·"'"9J'.- . :J ~ . . - -~ •.

in Chapter 4. At this point we are only concerued that such faci-
•'. .-·-t~d:"-,, h~t;'-~.:~(.;a.t.: :·f:f" ~ ;~ :.,.~-

lities use sealing in an orderly way.
•5r 1

} ~- •1:;/.,., • '. '. f Jd!}•:{l,. -' :.,_~:-:f:.,:,,\l~,~ .j - :.U. '·-~-

What constitutes orderly use of the sealing mechanism? So
::. ~; Lf-. ',~ ~ ::j r :.t:~""~,1.~ ,-~t ~'i-i_.: i~d.~ ~- :~ f\.t; :·. ;-1-:

far, no method has been described for r..,vin3unneeded map entries,
f'J.c. · ·_-t:::. ,_.,. _. .. :~ , ... ~.-r.:~.r~1-~· -~~-: faJ4j·('tJ) -h~:-: \: · ;~·t··

hence any use of seali11g will eventually .fill up the map. The
a.Di -· :.! 1.:,:'.~ ::, ·~-, '.~:-(::J:tL~_-:;·-~ \;t'.'; ~-~-}r;~rJJJ.;__ w-~ ~i-. ·1 ··:'

basic question is: when :ls a map entry no loqer needed? There
~(-' ~-- ;._.-tf ~-·,·'"!·, " ftf"~~Jl{"•j:; .JJo_,,f} .. :1 ~~);!i >~~

'

132

are at least two circuutancee in which this ia true:

a) Its privilege field ia empty.

b) lt8 contents field point• to a aoa-aiatent up entry

or object.

If either of these condition holda 1 the, map eatry $.a uaeleaa :and
• ;.-. ,'<",f.

may be deletacl. Condition (a) -...•t• the revab operation, upoa

reducing the privileges in a Mp eatry, ahould check. liibether any

dition (h) auaaeata that the capaltility r~~ruction .. chanism,
·. z: .l.

upon encouo.tering a map entry tlho• coateats fMtl.4 c:oataina such
'.
- ' . ~

a "dead•end" C4p&bility (which we will tall a "iaolatecl" entry)

should delete it froa the ..,. A -.,. •~S'.7 ._.. eoatetata field

contains Iha .idreaa of a b&ee level object 18 deleted when the
~-

object is deleted, thus isol&t:iag aay up eatriH ·pointiag to it~

In aeneral.1 the deletion of a map •try ~ c-.. ou or llOl'e

other.map entries to become iac:>.lated, .a thu.llie elated the next
~·. ~ :

tiae they are exercised by the recoaaaucti• lft_... In this'

way, entire iltolatecl. subtrees can be pa&ual1-y •l'fa:htated. (fte
"·~·~>>

case. in whidt such entd.ea are never .-...-t.ty naciJIM will

be disc,,,,..... shortly.)

Thua:., ill addition to its nontJ. cl........, activitiff
'

(dutl:oyille 1m12aeded Q1tjecta. etc.), & Will~ dil•aia should
. ' ~.. ,·~: -~-J~.:::~fo;~ ,·: :..:}.':}_ ·.

revollia any wared'ed capabilities t.o cleaa • •
'·'

Maila:rly. the p.rebln of cl.eaaf.asup af\u • .-cut:i.on,of

' an uadelNaell: cieaain involves deletion of •11me1decl,o&,j•t• and:11ap
., :.•

entries, foll..O by deation of bile cfMain ital.fill-' ._.leas can

arise if thtt faulty domah has diaearcW aU ~~ll:Uiea for ~y

133

such object or map entry, which is then lost. A feature solving

the lost object problem will be described in Chapter 4, but it
:-, ",

would be expensive and cumbersome if used for every map entry. We

therefore allow map entries to become lost and require that recov-

ery from this situation be possible. This requires the revocation

of all capabilities originally passed to the faulty domain, thus

isolating the subtrees of map entries produced by its execution.

The lost map entries in these trees will never be exercised, how-

ever, since by definition there are no capabilities for them.

For the reason just cited, some mechanisnt. must be provided to
'> J /. _. ,_ ')

exercise lost map entries. Moreover, even for map entries which

are isolated but not lost, it Would be helpful if their .elimina-

tion from the map was automatic,· since it may be some time before

they are exercised. This can be accomplished by adding to the
,,

base-level system a relatively simple operation of the form:

'
which simply exercises the . I-th map entry by reconstructing its

capability. A low-priority background process (sometimes called a

"daemon" or "phantom") can now be constructed which uses t~e new

operation to slowly sweep through the map eliminating isolated map

entries. The rate at which this is done is a tradeoff between

minimizing the extra load imposed on the map machinery and maxi-

mizing the rate at which map space is recovered.. Given generous

allocations of map space to the various accounts, the rate could

probably be quite low. The exercise operation is not available

to the users, since they have no use for it, but it is not at all

134

dangerous, hence the background process need not be trusted by

the base level system.

3.8 Possible Elaborations on the Design

There are several directions in which NCS as described in

this chapter could be elaborated. We here digress bfiefly to dis­

cuss four examples, arranged in order of increasing difficulty

of adding them to the implementation described.

A simple feature which might well be included in an actual

system allows examination of the relationship of two capabilities,

to determine if one is a descendant of the other in the same map

tree. This would be useful:

a) To determine revocability of one capability by another.

b) To determine accountability for unauthorized distribu-

tion of a capability.

This checking could easily be provided by an operation which simply

scanned from the first capability's map entry to the root (base­

level object) entry of the tree, watching for the second capability's

map entry.

Another feature, which has been mentioned previously, would

be the definition of other useful kinds of boxes in which to seal

capabilities. For example, a box in which two or more capabilities

could be sealed would eliminate the need for a small segment to

act as the root of a compound representation of an extended object.

This is similar to the scheme used in the HYDRA system [Wu 74].

On the other hand, its implementation would require variable-sized

135

map entries, thus significantly complicating the implementation of

the map.

A third rather interesting possibility is based on the obser­

vation that the masking of privileges by the revoke operation is

not an intrinsically irreversible process. One could just as easily

provide an 11unrevoke 11 operation for restoring previously revoked

privileges. Note that in this context, the use of locker boxes

takes on a new significance, since it not only prevents inter-user

interference, but also prevents the possessor of a capability from

restoring privileges which have been revoked from it. The only

major implementation difficulty with this feature is the impossi­

bility of automatically deleting tQtally revoked entries from the

map, since they may later have their privileges restored. This

would require explicit deletions of map entries, making the appear­

ance of the mechanism more complex. In addition, the whole notion

of unrevoking privileges cannot be described cleanly in terms of

the family tree model. Nevertheless, this feature could be quite

useful, since it allows increased levels of trust between domains

without necessitating the inconvenient repetition of the capability

distribution procedure. The whole notion of temporary revocation

could be quite useful, for example, in the debugging of locking

protocols in a complex multi-process data-base system.

The fourth possibility is similar to the previous one in the

sense that it attempts to preserve an established pattern of dis­

tributed capabilities while changing the meaning of those capabil­

ities. In this case, the change is to allow switching of the con­

tents of an extender box. This would enable a layer implementing

136

an extended object to dynamically change the identity of its repre­

sentation. Of course, care must be taken to avoid the possibility

of circularities in the map; this can easily be done by using the

first extension mentioned above to detect the case in which the

new representation is a descendant of the extender which is being

modified and signal an error.

The extensions described in this section could be added to

NCS without excessive difficulty, but for the sake of clarity, the

remainder of this thesis will assume that only the mechanisms ori­

ginally described in Section 3.4 are provided. The facilities

described in Chapter 4 would require s0me modification if any or

all of the extensions were in fact included.

137

. Chapter 4

Two Facilities Using the Nev Ca2abilit7 Szstem

4.1 Possible :Facilities Usina·GeneralizedBeaitng

The purpose .-of this chapter .ilvtorb.ri.dly qplQxia· -cwo examples

of helpful f acilit:les which can: :be conatructed .. uldltg the.· HCS

generalized sealing mechantsa daecribed tp Chap~r 3'. One is an

iat.provaaen~ to the baae""!levd:.,d~,.call _.uuy· p~Uing

when the corresponding return occurs. -1'be~ ~ ,u -an extension

providing. a new t-ype of object caJlect a dftectcmy;: Wht-dr: allows

ste>ra.ge aad. diatrilmtion Qf capAbili.t.'8s ia' a -=er wh:l:cll is of ten

nau.ch more convea_ient than that praw.dadhby :titae:).basa•level. •ystem.

Other uaeful .facilities ~W aha: bet:4.af1ilne*: ill a •imilar

a) An interprocess coDmunication facility prOYilli.ng extended

object• called llle& 1 ~. -c,pable~. of ti:ansmitting

.-a.age• coataiaiag -eap9biliti&a:· u.1:1.d •ly until the

next llleseaga u received.

b) A reetal·mediat:1oa aerviee,,·paraD.teeiag to· the lessor

that priv-il.eges. Mi.11 .. .t-. dYoir.ed :apoa:; contract. expiration,

. that u.-..

These and other pou.ibtlitiea W!lll ae'.lefct: ~ored "here. The

point is simply that the •steel· oapqiiU,t,.· . .,,._.,allows the

-~- ,---- --.-----:~---~

138

4.2 Revocable Parameters

There ar.e certain event.a which conat.itute natural points at

which to diatribut.e and revo• ~tW.. '1'ha ll08t obvious

exapl.- •• dlll occurrence of a d-ln......ii:-.ul·:t:he subsequent

correspcomdin& return. Aa diacuued-l>y actnoader .ESc 72], ·the

temporary grm:tt11'g of accesa to par~• ob~aces ie a natural

and ueful feature of calla :be'tl•Ml --..u.-, .uapid.t>u.a -dauins.

There are -Other situatiom. ~, ·ta 1llld.dl i.t ia • ..,.,.,,.asary

or ewm inappropriate eo reveM all capetd.,U..ty para.tars ·when a

return occur.. la particular.• p~~y aotrect. .cal.bato trusted

can t:'e&Ult in aubetat:i&l .aa'riap. tie tM.,.,_. propose a SDOre

general 9c•an'f- .11\ which the eal!Atr aaa .,_nfy,. for each para-,

meter puud, whet.her it 18 to be·~-- the calW domain

It weu14 probably M-P098i.W.e ee.pr:ovUe tl'ds improved domain

call a·• extAta•ion radae1: t1- .an· .tatep:al pan of the base-

level system. Thia would recpdre di•-all eo.n..-calla and returns

(or at i..-t all taoee wtU.ca ilwol...t;. may••· ~able capability

parame~er•) be route4 tl\rough tht• tsteti•ho, t61ch would be both

clumsy ancl eoatly. We taerefore-:1.11e ~oeeltle parameters as

being included in the base-level damain.-call •chaniam.

In tbe previou diacuaaon of·· iaar~ pui81Ag in Chapter 2,

we fe>WlA it. -.aceaaary to sped.fy dte decau.i of the eopying of

capabil:lU.es fr• the caller's ad4r ... •i-ce to the allee' s

addreaa apace. Ia dia-.aina the llOllifU.tieml a8C4Masy-to pro-

vide revocable parameters. we continue in the same fashion,

139

describing the implementation of parameter passing in terms of the

get_parameter and put_parameter operations used in the discussion

of TCS in Section 2.2.

When a domain call occurs, the caller controls parameter
1

,

r~vocation by pa.1si.n& •Boolean.vector R ~an extra parameter,

each element of which specif i'T' whether the coriesponding parameter

shoulti·be revoked upon·Teturn.: Tile call thus has the form:

Call (C0 ,? l ;p 2, ••• ,P n ,ll)

where R.(i] controls the l!'evocjt;ion of Pi.
•' ,..

Revocation·of parameters·~· ~plemented using the same push-

down •tack whiell'"1Javes the r$'fn gate used to reactivate the call-. , ,~~ ,_ ' - . '

.ing domain whtn the· caUee..-re.tjltns. Thus, instead of just a gate

capability, each domain-call cC>tresponds to a pack.et of information

as shoWn. in Figure 4.2-l. The first item is NR' which is the

number of capability pUametH'.8 to. be revoked'j '.~&1'd tlte l,ast item

is the return gate. Between them are the NR capabilities which

will be revoked when the return occurs. Figure 4.2-2 depicts the

domain-call operation, and resemb~es Figure 2.2-2 which shows the

TCS version. The differences comprise the steps necessary to save

the extra information in the stack. Each revocable capability

parameter is sealed in a revoker box; one copy of the sealed capa-

bility C is passed to the callee, and another is retained in the

stack. The discipline followed is thus that of Figure 3.5-2; seal-

ing of the callee's parameter in a locker is not necessary, since

it is not received by any other domain. Figure 4.2-3 depicts the

domain-return operation, as compared with the TCS version in

------ ~- -----~ -- ----- .. ---·~~ ~-~;;- --- --- -

Top of stack

lnforaation for
one call

'-

140

c
~;-

1
c - 2

,_ .• "1"·. j .. '

:a.turn_ aat• ~>
'= tii .:'..'.--«~--~ ~"'''" ..

-· "" " .. l

t,

' I

141

call(CG,Pl,P2 , •.. ,PN _1 ,R)

~-----p
ENTER

I + 1

R + ~etyarameter(NP,Caller)

put_parameter(I,Callee,P)

I + l+l

NR + 0

Yes

do pus, R
~~·. CG + get_paraaeter(O,Caller)

IXIT

C + seal(P,C k) . revo er
.pu.t~ter(l,Callee,C)

push(C)
NR + NR+l

Figure 4.2-2: NCS domain-call operation

142

return()

ENTER

No

C +- pop()
revoke(C,O)
N +- N -1 R R

G +- pop()

Yes

Figure 4.2-3: NCS domain-return operation

143

Figure 2.2-3. The added steps use the information in the stack to

revoke the appropriate capabilities from the callee before retriev-

ing the return gate and returning control to the caller. Note that

the revocation is total, and thus releases aap entries in an orderly

way, as discussed in Section 3.7.

4.3 Directories

The notion of a directory, catalogue, or name-table mapping

symbolic object JlameS intp SQme form Of internal object pointer
.. "':-. ~'. ' ;:.·'.- ..

has appeared in most operating systems. The idea of a large
'

collection of directories arranged in a tree-structured·hierarchy

originated mainly with the Multics system [Da 65], and has been

adopted in several other systems &nee that time [St 73, Co 72,

Ri 74].

A directory consists of a variable nUDlber of entries, each
.. . ,,.

containi~g a different symbolic name and a pointer to an object

(plus other information to be diecussed shortly). The assumption

* that a unique directory entry is created with each object,
.. ;: , : ', .. ~ _:

com-

bined "1.th the fact that directories are themselves objects, induces

a tree-structured hierarchy on the set of all objects in existence

at any time. The internal nodes are the directories and the leaves

are the objects of other types. Concatenating the names of all

entries along the path:fr01a the root directory to a given object

yields the tree ~of that object which uniquely identifies it.
,;.' ! ' ' ... ~ .

The global tree-structured view of the universe of objects

* Except the pre-defined "root" directory.

144

... '

can be useful in several contexts, such as aystea backup and
t . .J l '.l'. '·'

. recovery, accounting, and, as described below. in solving the '

"lost object problq," but it is often more cot&Venient in other

contexts to modify this view in two ways:

a) To allow the establishing of several directory entries

for the same object.

b) . To allow general l?!!! names which can be interpreted as 1
,._

. ' " J.

starting in any directory, rather tbau 0nly the root-
L,

directory.

Both of these features can be added v.lthout disturbing the under­

lying tre..,..structure, u long as th• extra ent~ie• ("U.n,ks") in

(a) can be distinguished from the oriaiA&l entriea {''bru.ches")

when this is desired. This trea~t of links as being full-

fledged directory entries, contrasts v.lth the Mu.ltics approach

in. which linke are merely·a re-naaing clevice and have no pro-

tection significance. We choose this approach to facilitate sub-

letting of rented objects.

In addition to naming, the directory syatea is useful for

purpow of access control. Attaching an !!=C••• .M:!! . to each
. . .

directory entry aids in the orderly distribution of privileges

to access abated objects. Each entry in the access liat eo11tains

a pair

which allows any possessor of a key matching the lock to obtain

the corrqponding privileges. (Of courae, the specifi~a.tion of

the access list, like the creation and deletion of entries,

145

represents an access to the directory itself, and must also be

controlled.) The simplest example of a lock would be a user name.

A more sophisticated version of this is the "principle identifier"

used in Multics [Sa 74), which is a kind of three-dimensional user

name with more complicated rules for matching locks with keys.

An even more flexible scheme will be described below. Note that

in all such schemes, a user may not invent his own key(s), but

may invent any locks he chooses and apply them to his objects, as

discussed by Lampson [La 69).

In non-capability-based systems, directories are usually

implemented as base-level objects [Or 72, Ri 74), since their

access lists are generally used as the system's primary protection

facility. In a capability-based system, however, directories can

be implemented as a higher-level extension, providing symbolically

named "pigeon holes" for the storage and dissemination of capa­

bilities [Fa 68). This is an attractive organization, since it

removes from the base-level system all handling of symbolic names

and the corresponding variable-sized data structures. From the

point of view of the base-level system, the directory layer is

simply another user domain, although, of course, it must be regarded

as a trusted machine extension by normal user programs which store

their capabilities in directories. The desirability of providing

both directories and capabilities in the same system is convincingly

argued by Lampson [La 69).

The directory layer described below provides for storage of

any number of capabilities in each directory, one per entry.

Attached to each entry is an access list authorizing a domain to

- -- -- --- ----~·---··-·-~-----~~~---·- ---

146

obtain a sealed copy of the stored capabi11ty by executing

where CD is a capability for the directory (authorizing lookup
,) ' r: . ~'f

access), is a character striaa, ~ ,~. 1• a~ capability.

The unique ID of the key capability 18 aatcbed aaain&t the locks
\ . :;

in the access list of the entry and the corrupoDding privileges

are returned in c. Subsequent.reduction of the privileges

authorized to holders of key CK ~11 re~roactiv~ly reduce the

privileges in C, using the unde-rlying revocation mactiinery.

(Various conditions. such aa failure to f~an 9'try with the

given name• or failure to find a lock ill tM ace••• list which

matches the key C~ cause erl,'ora to be ·~~•d .. and no capaJ>ility

to be returned.) The use of freely diatri~table.capabilities as
' ; ~ r,,,;

tbe keys authorizing directory looltupa allova the users to flexibly

and econoaically establish any group &UtboriaatiOI\ scheme desired
1. ' ~ ~; • I. ,

by simply passing keys to each other. Reither the base-level

syste• nor the directory layer need take any explicit DQtice of
. ;. ·.. ~ -,

such groups tLa 69, St 73]. More ccaplic:.•ted facilities •uch as
<- . ' '..

path name lookup [Da 65], multipl• directory aurcbirlg (Or 72, St 73]
,, , · 3~r'. . ;

and automatic lookup on first use of a a~lic ·natae (Da 68]

could be implemented in tel'11ls of this basic lookup primttive;
·,, ., ','", ,. "1'1 '., , ..

these will not be discussed here.

In such a directory system., there is no intrinsic distinction

• In term.a of base-level operatiOQS, this woul4·be written

C +:call (c~',cD ~c.:) . .,
where Cc_ is a capability for a pte irtto the.directory layer
corrupoikl:ing to the lookupopet'ati.OD.

147

between the various directory entries conta~11ing capabilities for

a given object. For the reasons cited previously, however, it is

useful to distinguish one of the entries aa a branch and consider

the others to be links. In part-icular., one can solve the lost

object problem. by guaranteeing that the branch exists for at least

as long as the -~ject~ This i& ·~Ollt'1ished by creating the

object and the branch simultaneously, and having the directory

system, upon removin~ the branch from· 'the dtrectocy, · delete the

object (~f it still exists).

The tise ~£ 'branch~s to solve the lost object prob!.;; is rela-
•;. . ,; . • '•• . ;;; ·c l. ... '. . .,

tively straightforward in the case of base-level objects and

directories. . By. perfomtng the c~e~tion "~t" ati. such objects through

calls on the directory layer which aiso creat~'~ ~irectory branch,

one can insure the existence.of a branch for 8-Ch new object.

When the branch is removed, the object can be destroyed by the

directory ·1.ay.r, ·•ithftr· 1n'temally· '(ln tbcf ·case of· db'ectories) or

by calling the appropr~ate operae:ton (!If l:he cil94i of base-level

objects).

In the case of extended objects~ however, the situation is

more CQlllPlJ,.uted, for two reaaail11:

a) l~ is ~Pl:O,PJ::f.llte ·.~~ ~~· dJ.r~tory:i i+y;~ .tq pave

e!Ph~d~ in it anf, ,~~· ~., (e ·~:. ~"1-l~ on~ higher

layers.

time..

148

approach to their deletion when a branch ia removed.

When a higher layer creates an extended object X and wishes

to take advantage of the ~irectory syatea to keep X from becoming
I
I

lost, it can do so by executing

This creates an entry in the direct.ory incli~ted by CD. The

entry has naae Name and contaW CX, a capability fo:r the new

object. In addition, the entry bolds c
0

, a capability for gate

G into the caller (i.e. the laye~ :iilpleallltiag the ob~ect). When

the branch i• later removed f roa the d1~t~ • the cU.rectory sys-
·,

tea guarantees to execute

The gate G should correarpond t.o the·· Gelet4.on .. P11H•t-1oa for objects

of the extended type, 1leace thia '8· ect\liYaleot l:O ..

Of course, it is the responsibil:f.ty af ·the ·ia,er iapl..atli:ing X

to in8Uri tut this call does f.n fact :.r.u1t in the ·deletion of x.

The directotj- layer' a only cont:fn'n is tat tt 'timst be prepared for

anything which may happen between the tille lt perf!lWB the call

* ' ·.• '
~ated uae of the ab branch opedttvn specifyin& the s.-e
object X would cause the directory atructvre toifail to be a
tree. This a1ght be of eoncem to layer• at or ttbove the level
at which X was impleliented (although it certainly -.u14 cause no
11:roale tor ·tt.e ·directot'y 'layerl~' ·t11e··~ tilfPlt!lldt~ the ob­
ject could protect itaelf from this ai~uation if, t- Mb branch
operat:im were 11oct:l·fied t-o require' U" Utft-' P.r~.t c,_., - a
capability for the type of X, aa authori&ation to uke a branch
for X.

149

and the time the callee returns. This could include various types

of errors, blocking of the process, and even further calls on the

directory layer. The straightforward way to haiidle this is simply

to have the directory layer complete its part of the branch removal
>;

and then exit to the object deletion operation via a jump-call as

* described in Section· 2.2.

It might appear that the calling of the higher layer object

"
d~letion operation by the directory layer violates the ordering

constraints of layered system construction. This is not really

the case, however, since this call do's not represent any knowledge

of the higher layer embedd$d in the directory layer. Such "blind"

upward calls are quite similar to hardware "traps" or "exceptions."

The other directory layer operations of interest are:

make_li.nk (~,)fam.e,~)

re1119ve_entry (~1llae)

set_lock (Cyj~N ... ,L,P)

CK + create_key ()

create_directory (CD,Naee)

delete_directory (~)

The make_,_link operation establishes a new entry in directory D,
... . i' "·'

containing Sr and naed Name. The reaove_entry operation

removes a link or a branch. In the latter case, it performs

object destruction as described above. The set lock operation

establishes a new lock on the named entry in directory D. The

lock is L (i.e. it can be opened us:Lng a key with capability-ID• L)

*we ignore the extra complications involved tf object deletion is
allowed to fail.

150

and it confers the set of privilClpa P. The create_key opel'a­

tion simpil.y returns a capability of type 'key' with a. uew unique

capability-ID. The create_direetory operation establishes a' new

empty directory as a sou of directory' D (i.e. pointed to by a

new branch in D with name Na.ma). The clelete_directory opera­

tion deletes the directory D. This require• removal of all .
entries from D, including any branches for other directories

which muat thus be deleted, and so on. In other words, the entire

subtree rooted in D must be traversed aa4 deleted. Thia coapli-

cation .is beat postponed until a higher level utility program,
'. •,

hence the directory layer can simply retuee to delete a non­

empty directory.

The implementation of directories as described is relatively

straightforward. Each directory is rfiPreaeated as a sepent, con-

taining antries fOftlatted as ii& B:l:SUN 4.3-L The oriainal capa­

bility C and the entry name are preeent when the entry is first

created, alona with the deletioa ... gate·capaMlity in the case of a

branch. S\'ibaequent use of the eet_lock operation proceeds 8.41

shown in Figure 4.l-2. first.the look is added to the access list

if not already present, together with a capability to hold the

privileges corresponding to the lock. Thia capability is created

by sealing the original capability ex in a re17oker box. Then

the privileges in the capability are revOked down to the desired

le"el. Note that in the case of applyina the set_lock operation

to an already existing lock, any 01.itataading capab.ilities previously

obtained via that lock using the lookup operat:L-oa will altlo have

their privileges revoked. Finally, if the ..voeatien lfU total

~•,ic'?-1"1',,..-:.•:~~"''''."•·'c"ti!>•.;¢,,>•~·<'•;·.''"~;>Of"''"''"'~'~;"l'<(J>•"'~' ·''~$:"'.~·---~l}l'li~JtJil>\'ll!'Jil!!'"lllJllf.1~~!11!.'!'•••i\'!1!8.~;;~il!lllt~-;-·'!'!h•."""
. . ,'' - ., ~-. ' ' · .. ··~, : \- . - . ', .

•A .1
151

deletion gate capability* I

symbolic ll8Jl!,e

access list

I
ftguTe 4;3~1:. A di.rect9n

1
entry

"<. ' '..,,"' ~

152

set_lock.(CD,Name,~,,P)

1•
, ENTER

r +' ibdex of; t

L 111 .a~c~.,! lj.ii~
'

No

EXIT

bad

. IUOR

r.-ove <LI'Ct>

.froa acceaa liat

Figure 4.3-2: The set_loc~ operation

---~·"'---

...

•

/

&i.·· 153

(i.e. P = O), the loc~ ie del~tod froa the access list. (Such

total revocation is ~lso perf ora8d o~ each lock in the access list
,., ·,,; ~! ·" :.• ;,-;. ...' ~~ '.:- ~=-- .:;; J

when the entire directory entry is removed. This is another exam-
I •

ple of orderly use of the underlying up llliChi~;.';;a.i discussed

•;The lootrop 'o;ftttibtt ;1 'upon ; tf'\id~g .. .,... 'naW.id ''.mtiY ,: searches

the access 11.a'f'foi ·a 'rock lli4teftffrg tti•·1>fO'f&rr6f 't~.~ . tf-~·one is

totmei; ··the cbirnpoddfri.g ::~~ifty:·J:bi~wiW · in''"a · loc~ · tiox and

retunaed'to''tlit! 'c'ill'er. "·TtiU;<)t!W-'~· ~ ld-t''1:he ' ~.: .. Jock

· -and' loalitP' · opeiatfons ·ta dltittfW60o <:of<e~'lities !fO'llWing

the ·cfi.icfiiptlne'..iof rfiure' 3 ~ 5·5 F q '' · t · · • :; ·" -" · · • · ;H · ·' • :

· ·: ·the·· ete.u_lej-''aperattoa'1.ar•;quft'e-nalitl'"·td 1.'ll#iearent. It

-would ;'Ii~ ;nfcety capt::tired·ftY' thj ·if;alile ieal?!Aa· of :;ail 'empty extender

box.'
1

.Lactiiftg·;tfffs··fac:llfty, ;tlU! Cftrectary '~yft 6l'ft stmply seal

anf·lmiicf1 ~abilttj, · s±nC:!e ·o~y 1fhe<;>bt'erMf''jpJWrai.lnce of the

11.W'"by capabil'ity'-18 "j!jttff:te.ttt;· '"" ",; ~:£,; , ' ; ! !

. '· T!ii .: dire~ l«ye'r '.ftis't' 11<ffiatttbed Itlt ~f1lj' ~h• bee·t exam-

. ple of '·'the 'ltilid' of •)uafful · exteii'.ito1$ '1litdh c''cft 'll»e ''CBd~cted using

the RC! ltest'ed ;C«patnl'.fty 'IW(!tlhfa/:·«~tt';idrlfis;wfrilail)' useful .
fearores for· :tliMi:u•t!ri"af I t!he .:iJ.);tii, ·j« .. ff• t.llii..-.Uta't'fon is

·. rei\de~~ rei•ttvi1y c'S'bapl'.• ·BY·~& ilpOttitP:W tbi ' fitljing; lase-

tevii ·-,;ui1dug· :*1.f 1Pnt.€tt01f'fadfi1ffef~d; '1) c:' <:uc '

. L, ~ .. , ; ·' :,. . . ;

----,- -- .--- ---.-- -

154

·chapter S

Suwg and Conciwl~
,,,:::., · ..

This thesis has discussed integra.ted ~· ~ .,P.i:(,t,t•,etion

. mectw\ia& f.or COfllllUtU 9at••, p~~ p~,,,_i ,ade8 ealled

. capabiliti .. Which .bo.th i,deQtify: aA obj.ec~ ·&a4 ,:au~r,ize .~ceas

to .it. A major adv•~ae of ~b14~~~ 1a .dta ~~19.1,U.ty pro­

vided by their be.in.g freely copy.aOle. A·corr~w,~advantage

in existing ~ability .•Yst..-a bas lteell. t!tie .4U:f1~1JA~ty of .revoking

previously distributed capabilttiea •. :~ •1.u ;1:'48'+~~ ·•.f this
. "' ··'. . " ;e, _..,_.,' '··: " .· -,- ..

theaia haa- be~ the d••ip of a c~l~t.1 •t;,ap~.idina both

.free distribution and orderly revoct.U.~, of ~"it:l~ieap. , Various
·~ . . ' - - ...--·. ' . .{... - . ~ ~ •",

approaches to. t.hia pro~la were disc~.~ .~~i.; ·.2, c;uJi11~nating
• • • ' ~ ,_. • ••• '·. ' • ' , ~-. -·' > •••

capability sealing mechaniaa of CA9t•r _ ~,,.._ fl~ tQ ,~t these

goals, providiag aelect~ve revoc.-.eioa,~~ ~~~i~i••~ as well as
. - ' . \" ·,

a fl~ibJ.e -·~ \extueion facility~. 4 ~ill~ .. ~~~tion of

tile deaip . ._,, diacuesed in .auf f~:l.e•t .cA,e~l ,~ <~~t~ate i~s

prae:ti~it:.f.• Various ~ai~le •l•bo~µ~All '.~~ clef&~;were

also 4iac~. CR&.-tttr .4 de~~ia.4: ?!'> ~~~;i:~j,es '. QJl~'~g

revocable capabilitie• to ~he aeed,a.of -.~.in,g.,c;j,fic;.w4ys.
' -. •. ,, •. ·--''·" _;,1-·- •. ,,, ,.,_, ,;. . "

S.2 An .U.ea for Further Research

In terms of the facilities provided, the naming and protec1;1on

mechani... described in this thesia appear to be a sound basis .

upon which to build a secure and flexible uaer enviromaent. In

~~ .. _..'/·c;~'·-:f1,-.~t;.>~:·< :~';:::{t;• -.

155

particular, the provision of revoca\>.le cap4,bilities eliminates
- r -;· .: -· { .1 .l .-.-

one of the main objections' often made to ~pability-based designs

[Sc 72], thus making the propoeed design •RPli¢able in a wider
.. :c1.t -. · · ,

class of situations. One could thus characterize the thrust of
~·~·J~ .~. i ·;· .

this thesis as an attack on th~ flexib~~~.~~ :aspect of the pro­

tection problem,

On the other hand, the the•ia does not make any direct attack

on another more general aspect of the prot~ction pr9ble111 which one

might call the CO!J>rehensibilitl, of protec:tion •ech8Ili~ms. ·
' . ; '. ·1 ' '. ' • '• - ~ - • ' • 'I ' -, ,J ';;o ~. - ~ -

Experience indicates that protection mechanislllS which are confusing
;,;, ~. - ·~ ~ , ... ,. ~ ·:.~ ~-.-.,: ~--·? ·~, '...;; -·'~-' '- - ,·: .

to users are likely to be misused, or even go unused [Sa 74, Sc 72).
': .. ' ~ ',' : cf:' ~ -, .~: :.-- , :- ' ' .

Even the uset who correctly applies a confusinJ protection feature
• l ' ' . ~, .

may feel no great confidence that it enforces ~,~s ~n,~-~lltions.

There are at least three ways in which protection systems can be
. '<i "~ -~ .. " •

confusing:

a) They can be based on a disorderly set of ~eparate but
;;. . ._,n -. . ~,_ /:

interacting mechanisms.

b) The relevance of the mechanisms to specific situations
<' ·'·! t.

can be obscure.

c) The correspondence between global ~t~~e of the protection

machinery and the desires of the users can be difficult
" . f '•C

to asaess.
. '

A f'ir amount of progress.has been_~~ 011 J?roblt!111 (a). The
'· •• -~ .; - • _; - : - , ... ;> ' -

early proliferation of ad hoc p~otection mech~isms was a major
. -.. -. - . ., . -' ..:

motivation for the original de-o-elopment of capabilities (DVH 66),
'. -·,,·; 'r

as well as later more.abstract treatDtents bf L,m&Pson [La 71],

Jones (.Jo 73], and others. On the other ~ •. strict minimization

156

of the set of primit,ives wii1 not neceaaartly ci~rify the deacrip-
~ . '. ' £~ . . • .. .· . - "> -' ' '

tion, especially since it may wcerbate p~lea (b). For exaaple,

our unification of privilege revocati~ and type exte~aion in a
single mechan18in, While iftt~reatin& tn itaelf ,":,:;,_;,:or may not repre­

sent a net , iftcreue . in t~. comprebeUeibt1i~7 o~f the d•~ian.

Problea (b) is caused by the gap - o"itP.;, quite br~ad.
' . ., i,-·.d~ _; -"' : -· .:·:

between the concerns of the h'81An uaers and the mecbauams provided

by the protection system, in• t·~*· ~(..4i1~~;~l\8y ~t ~ress

those c01lcerns. Of course, t:lfA O,t.·~ aot 4eai ~n1y with the
' ~ "'~ ,' ~; ,<, ,·· .--.;,. • -~~ ,;:

protection primitives of the syst .. ; various extensioils, such as

'• < • \: ~;~_,· !~-.. '.-;.;. ···: /'-<;

hQWe"r, in atteapting to capture the int:eracttoaa hem.en users
' ;\ ._, '.') __ ,,, J :::- ~ ..::.: .) .i..~ .Z- •

8een ··in the larger social context. Thia ia due in part to tlie

imprecision of many legal. and s~:W. prtKlples,
1

~e~ltin1 from

their implicit reliance on the rea80&\Ul~ jwtgela•~·it of the parties

involved, a characteristic aadly'"~t~, ia,:~t -tera. Mlach

work remains to be done in m&P,i'g ~h,prladplea iato the pro-
- -· - < ' 1 . -' -.' . ~·: ~. ··;.''l'r

tection priaitives of computer syat ... [lo 74, Pe 74, Tu 74].

Problem (c) is perbatJs the mo9t'''cltfficult of the three.
" • .. ; -" ! .• ,. : •. - • • ·- ;_ •. ::. . . :·::. \

During our discussion of capability aec:ban~, we emp~ized
. ' . -. > ~ ' . . . -..::~ (··:r; [' , .,\a... '{ ~; ~. ;·,,. > t ':;. ,,t :·.;-.

the desirability of allowing distribution aed. revoc•tion of capa-

bilities without requiring glo-1 ~l Of euch p_t'opaption oa

, the. part of ~ p~td.cipanta0:'i:J'~i i1oh,i''~ti.ge la SOMU.aea

c • '- -L· . ··. " .- :.~ ": i · :- ,,;_, ,/'.--;-: ';_,"'.''({' ~ ~ :

desirable for its own sake, boWvet. No~r,. ftea if the entire,

state of the protection machine~· iS visible c1'ht~h can itself

raise seri~ q\iesd.ons of privacy); the f~l etpiflUaee of that

state cannot be assessed without knowledge of thelneis of trust

. -~.--h •

157

and suspicion between the various possessors of access privileges.
\

This appears to be a very fundaaental problem, and it is not clear

what appro•ch (if any) will prove fTtdtful in dealing with it.

5.3 The J?utureof Protection

Much work remains to be done in the area of protection. In

the lang rUn t 'protection Will contribute to the development of

generally available computer utilities in at l~ast three ways:

a)· By faeilitating the ~el.opmlmt of extremely large soft­

ware systeaa, such att soph1:8\:icated aer\ri~e programs,

and the operating .,-~ea· .~.rthe computer utility itself.

b) By protecting the investment• of users who develop large

·proprietary progr81i8 *"1/~ Uta bases, thus providing a
' • ? ,';_,.,)

suitable 11&rketplace for such aervic~s.

c) 'By enfOTcing socia1·~1•·~ the dissemination of

· Stored ·information ..

Given the diffi:dul:t}' and iaportance of the pro~ tn be solved
~ - ! :;; : . , ,. ~ '":.L~ ::-..

protection pr:Oidsea to be 81\'tetiltre ~ea of research for many

years to come.

--~-----~-..

[BCD 72]

[Bo 67]

[Bu 61)

[CC 69]

[CV 6S}

[Co 72]

[Da 65]

[Da 68)

[DF 65]

[DVH 66]

[De 65)

158

Heferences

Benaoussan, A., Cingeu, C.T. and DAley, R.C., "The
~~I.cs y~.tuaJ. ·~r: :q~tll;,~ ~ign," Comuni­
cations of the Aaaociatiosi for · ·· tin Machine ,
Vol. 15, No. 5 May 1972 , pp. 308-318.

Bobrow, D.G. and Murphy, D.L., "Structure of a LISP
aystem uaing two-le.vet atoraae," c~•ations of the
Aasoc1ation fa! ~MtJl!Mirtq,. YoJ.,. 10, lo •. 3
(March 196? j , pp:!~ ~ · · ·· · - · ·

Burroughs Corporation,· "The deacriptor -- a definition
of ti\e B.$000 io.fo~t~ ,,~i.p.&;ayJt.e111, 11 Detroit,
Michigan (1961). · ·

Computer Center, University of C-alifornia, Berkeley,
c.i ... ;rss uer1 -~. (1969),.

Cosserat, D.C., "A. cap&bility.oriented multiproceesor
ay:s~. ;.or ~.i~t.i. ~J.:Lp~~~~' ·~, ICC Conference,
Washitlgton, D.C. (<>etober 1 72 , 8 pp.

-: •-" ·x; ··"::· ·.• '
Daley, R~c. and Neumann, P.G., "A general purpo•e
file, .~t• fo,r .. ·•~l'. ,.-cwaae l~, Proceec:U.ng• AFIPS
1965. Pall Joint ~t•t Ce!!f•ence, Vol. 27, Pt. · I,
AFIPS Press, Jf.rmt~,.. ;B~..-,...:.V. 21~-230.

I>aley, &.C. 8Ad ~1-.. .. J.:-"'.;y, "Vicittµll .-ory,processes,
and sharing iii MULTICS," _CD•uncat!2!! of the Aaaocia­
t:Lqa W lr.'u-tina cl4!fMMih1 ~ol• 11, lo• S . (May 1968).
pp. 306-31 . ,~

. ' ; ' "
David, E.E. and Fano, R.M., i•Some thoughts about the
social implications of acceaaible computing," AFIPS
Conference Proceftciiql!·l96S Pall Joint Co!tn!ter
Conference, Vol. 27 • pp. U'-241.

Dennis, J.B. and VaQ. Horn, E.G._, "Ptogra1111.ing semantics
for multiproaramed · cOlkpUtations,." · c.-.m1catiom of the
Association for COf!P!tttf !!!hi•!f• Vlil. §, No. ,3
(March 1966), pp. 143-lS •

Dennis, J.B., "Segmentation and the deaign of 1'1Ulti­
programed computer systema," Jourul Of the yaocia­
tion for CO!PU.t,it'lg !l!d!il'len, Vol. 12, Ro. 4 (October
1965), pp. 589-602.

/

[De 68]

[Di 68}

[Di 68b]

[En 72)
I
! .

[i'a 68)

[Fa 74)

(Pe 73}

[Fr 74)

[Gr 71]

[Gr 72]

(Gr 73]

(Ha 70}

[BEW 73)

159

Dennis, J.B., "Progra11111ing generality, parallelism, and
computer architecture," Proceedings IFIP 1968, North
Holland, Aaste'Cd.a111, pp. Cl-.7. 'i

Dijkstra, E.W., "Cooperating Sequential Process•s,"
:S.a Progr.amin& LeJll!al!•. (~. ~uys, ed.), Academic
Prus (l.968) ,. PP·• 43~112. ,;

EnglaAd, D.M., "Architectura.L,.fe•turea ,et System 250,"
l.11fotech State of the Art :bP9i:t.on Operating Systems
(1972), .12 pp.

Pabry, a.s., "Preliai.ry.d~iption of a eupervisor
for a· m.chitie 011eq~ 8:'1~ Pf.pabilities," ICR
Quarterly Report 18'(~t. l~), ICR, University
of Chicago. -

Fabry, ll.S., "Ca.pab~lit.1:-bas~:addresaing," Communications
of .;i:be Associ4"-ioo ot i Machiner , Vol. 17,
No. 7 (July 197~), pp. · 03.;41 •

reuatal, ~.A.'. H~ the adv..._~. of tagged archi­
tecture," Im ~-.,ct&e-Jt:!ftlP!:'ters, Vol. C-22,
No. 7 (July 1973), pp. 644-65 •

Frankston, a.M., "Th4a coapq;e.r; .. utility as a. marketplace
for. c:oapute}:' servkea.," J.>roJ..C::'· MAC Report MAC-TR.-128
(1974).

Graham, G.S., "Protection struct\u:·es in operating
systems," M.S. thesis, University of Toronto (1971).

Graham, G.S. and De1U11.ns ... P•.J .• , "Protection .. principles
and practice," Pr99eedi!!Jl!:.@IPS 1972 Spring Joint
Coagn!ter Conference, Vol. 40. AFIPS Presa, Montvale,
N .. J., pp. 411-429.

Gray, J.B., IBM San Jose Ja~rch Laboratory, private
communic•tion.

Hansen, P.B., "The nucleus of a.multiprogr.-111g system,"
co.p!i9t!011S of tb•M•gs.1.4\f.M>n for C<?!J>uting
Mach.i!!!X~ Vol. 13.,: ~· 4 (Api:i1r 1970) , pp. 238-250.

U.S. D~partment of Health, Education, and Welfare,
••a.cords, computers and .i:n. .~~ahte of eiti~ens," Report
of the Seeret8"y's Advisory· ao.i.n1ttee on Automated
Personal Ditta Systems, Washington, D.C. (July 1973).

[HP 73)

[Jo 73)

{La 69)

{La 69b]

(La 711

[La 73)

[La 74]

[Li 73)

[Mo 72)

(Mo 73]

[Ne 72)

[leu 74}

[OT 72]

[Pa 72)

160

Hoare, C.A.R. ~ Pe'troH 9 'I.It., ()per•tilll Sfste ..
Techni9uea, Acadeatc Pr•••• *" York, It· Y. J973) .

, : : . i ,., ' · ~ , : >' ; 1- ·;. : • • ";:, "' ~-{I . . .~ . .

Jbn~sri, A.X. • ''!YO.a~ b;l• ~-- syat8118."
Ph.l>. thesi.•• Carbegft.,.lloli'atwiraity (1973).

Lapaon;,· 8.W.,' "J>ynmli~ .~ s~tuitee, 0 ProcHd-

·~·l9H~ b;tl~~-·'ff ·Col\fer•ce. vol. JS,
· '""· tMltVli&T · ··:· • ..ft. ·.

Lapa&b, B'•"·~ ·hh onl'-lt•"~ the CAL 'timnharing
•Y..ta,,. :COllp\lte't cnter,·'\ftif.Vft•:lty of California,
Berkeley (1969). · ·

'···-

Morris, J.H., "Authentication t~•: the
1
.Pr~er division

of hllrdwarilfsoftWare re&pdDlbll.ity" (;1972)-,· uapubliabed.

·Morris, J. H. • ''Types a~ not Mta," AQ1 $11!PO•iUll ·Q.i
P;rt.ctpl.e• of Prctr~'Ma'jlll\pa, to*ton,· Ma••~
(Oc'tolffir' 1973).~ . ') i;

Meedhalll, R.M. ,· •iprm:ft~ _,_._ ·.and protection

iJll>. ·1~ntatto11a, ". ?m.Jr•• a'ai;Joint
<W!!!r''OO!lf•~· t .· ' .'' . tit ' ~} tvau' s~ J ••
PP• 571-578. · · · "·.· « · ' .~.: :.,

Neuantt, P·.G. et al, •'db ~''Mign of a ~ably
· .._. o,e.atiJtl qa~!!:...._.1 Pape. itu Inter­
~lbul WOt'Wbiop on ~~in Operatti'l• Syat ... ,
Parts (Aupet 1:974) • · ·

Qrpn1ck, &.I~, The .. <!Z!tq: izt, ~nation of
its ~tucwr•. ~ ~1t;

1

1iiiiirtd .. , •••· (1i72).
' ~ ~· c ' "'.~ . •

i~):ir·~, ,,~~":~~~t''·
• • •• < • ~-"'

[Pe 74]

(Po 74]

[li 74)

[Ro 74)

['Sa 66)

{Sa 74]

'[Sc· 71]

[Sc 72]

[SS 72]

[St 73)

('l'u 741

[Wu 74)

161

Peuto, B.L., "Comparative study of real estate law
and protection systeme, '' Ph.I). thesis, University of
California, is.rkeley (1974).

Popek, G.J., "Protection structures," Cgsuter, Vol. 7,
No. 6 (June 1~74), pp. 22 .. 33.

Rotenberg, Leo J. , ''Making coasputera keep aecre ts , "
Ph.D. -thesis, M.I.'t, (1974), ~'1ject Ma\C bport
MAC•'tl.-115. · '

S.ltzer, J.B., "'lr,af:fic control in• DlUltiplexed
CQllputer system, 0 P)l.D, thesis, M~l. T. (1966), Project
·-.C B.eport M/lC-Tl. ... 30. - ·

Saltzer, J.H., "Protection and
aation sb4lring in MULTICS,"

aociatiOll for t ·

the c0ntrol of infor ..
tiona of the

, Vol. 17 , o. 7
Ju y 1974 , pp •.

Sc~oeder, M.D, 1 "P•d=1n1oce of the c;g...645 associative
...,~ while ,MULTI.CS is ta o;et'ltion," P~oceecltaaa
WorkShop on Sy•tea hdW!!I!; tfduaticm, Caiilbridge,
Mus. (19715, pp. 221·2 . · ·

Schroeder, M. D. , '"Cooperatioa of' mutually auspicious·
subqste• in a co.puteT ut111ty~1' Pb~J. thesis, M.l.T.
(197,1), Project HA.C leport MAC-.,..104,

Sturgis, H.E., "A poatmortea'for a t~ring ayatea,"
Ph.D. tbeaiS, Uq,iveraity of C41ifo~a, Berkeley (1973),
Xeroir: Pile Tecbniul Report 74-t-1 ...

Turn, R., "Privaoy and aecurtiy in perac:m.U information
databank ayate_.," &maci a.port ir'l044-alr (1974),
land Corporation, Santa Monica,, Calif.· ·

Wulf, w. et al, "HYDIA: the kerael of a -.altiprocesaor
operating system," ~ !lfflicat9. ·.of the 9eocia£ion
for ~t!!,& ~~1.ae!'f, VOl. , llo. i (;t\iDe lt745.
pp. '~345. .· ' ' '

i

BIBLIOGRAPHIC DATA Il. Report No.
SHEET MAC TR- 140

4. Title and Subtitle

Naming and Protection in Extendible Operating Systems

7. A uthor(s)
David D. Rede 11

9. Performing Organization Name and Address

J. Recipient's Accession No.

S. Rep on Date: Is sued

.Nml.emb..e.r.: _l9_2 4
6.

8. Performing Organization Rept.
No. MAC TR- 140

10. Project/Task/Work Unit No.

PROJECT MAC; MASSACHUSETTS INSTITUTE OF TECHNOLOGY:

545 Technology Square, Cambridge, Massachusetts 02139
11. Contract/Grant No.

12. Sponsoring Organization Name and Address

Office of Naval Research
Department of the Navy
Information Systems Program
Arlin...8_tonJ Va 22217

15. Supplementary Notes

16. Abstracts

2641
13. Type of Report & Period

Coverec : Interim
Scientific Report

14.

The properties of capability-based extendible operating systems are described,
and various aspects of such systems are discussed, with emphasis on the conflict
between free distribution of access privileges and later revocation of those privilege~
The discussion culminates in a set of goals for a new scheme. A new design is then
proposed, which provides both type extension and revocation through the definition of
generalized sealing of capabilities. The implementation of this design is discussed
in sufficient detail to demonstrate that it would be workable and acceptably economi­
cal. The utility of the proposed capability mechanism is demonstrated by describing
two facilities implementable in terms of it. These are: (a) revocable paramters for
calls between mutually suspicious subsystems, and (b) directories providing a
civilized dedium for the storage and distribution of revocable capabilities.

17. Key Words and Document Analysis. 17a. Descriptors

17b. Identifiers/Open-Ended Terms

17c. COSATI Field/Group

18. Availability Statement

Ap~oved foT Public Release;
Distribution Unlimited

FORM NTIS·35 !REV. 3·721

19. Security Class (This

Reb~~ LASSIF IEil
20. Securtty Class (This

Page
UNCLASSIF_l.ED

THIS FORM MAY BE REPRODUCED

21. No. of Pages

166
22. Price

IJSCOMM-DC 14952-P72

