A FORMALIZATION AND CORRECTNESS PROOF OF THE CGOL LANGUAGE SYSTEM

MicHaeL Lee Van DE VANTER

MarcH 1975

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC
CAYBRIDGE MASSACHUSETTS 02139

A FORMALIZATION AND CORRECTMESS PROOF OF THE CBOL LANGUAGE SYSTEN

by

Michaal Les Yan De Vanter

Submitted to the Department of Electrical Engineering on

January 22, 1975 in partial fulfiliment of the requirements
for the Degres of.Master of Science.

ABSTRACT

In many important uways the design and implewmentation of
programming |anguages are hindered rather than heiped by BNF. Ue
present an alternative meta-language based on the work of Pratt which
retains much of the effective pouer of BNF but is more convenient for
designer, implementer, and user alike. [ts amenability to formal

treatment is demonstrated by a rigorous correctness proof of a simple
implementation.

THESIS SUPERVISOR: Vaughan R. Pratt .
TITLE: Assistant Professor of Computer Science and Engineering

ACKNOVWLEDGEMENTS

I would like to express my gratitude to my advisor; v:Vauéha»n
Pratt, Qho provided the inspiration and support for’ this wdrk;I to
Yuval Peduel who offered tireless criticism and encourag:mmt: to
Donna _]ean Brown who helped MKe thfs thesis éompnﬁ?nsible; to Al
Nemeth who made helpful comments on the final draft; and finally to

Cleavon who was always willing to listen.

This ._research was supported by the National Science Foyndation under

research grant nos. G J-34671 and G J-43634X

TABLE OF CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
I. INTRODUCTION

Il. THE CGOL APPROACH
ILA The Algorithm-

I1.B Comparison with other Methods

II1. BASIC CONCEPTS
HLA The Meta-Language
[IL.B User Model
[I.C Automatic Parsing:
IILD Correctness

IV. FORMAL DEFINITIONS
IV.A The Meta-language
IV.B Generative Model
IV.C The Parsing Program

V. CORRECTNESS
V.A Formal Statement
V.B Preliminary Lemmas
V.C Parse Theorem |
V.D PARSE Theorem Il

Vi. CONCLUSIONS

VI.A Summary

VI.B Further Work
SUMMARY OF NOTATION

BIBLIOGRAPHY

it

21
21

27
28

®3883

44

& § BLE 831X

I. INTRODUCTION

The design and implementation of programming languages is a complex probiem
which must be addressed from at least four distinct viewpoints. These viewpoints reflect
the different but interacting interests of the designer, implementer, user, and theoretician.
We address specifically the kinds of problems evident in the following two scenarios:

Scenario I: The old dangling ELSE problem.

An early ALGOL grammar in Backus Nauer Form (BNF) was ambiguous with
respect to nested IF-THEN-ELSE statements. This was noticed by implementers who
often adopted the fairly local solution of attaching an ELSE to the most recent
available THEN. Although BNF grammars were eventually discovered corresponding
to this resolution, the grammar for ALGOL was rewritten to simply forbid nested
conditionals [Nauer 1963].

Scenario 2: A new, theoretically sound approach.

This is a summary of advice given for the construction of deterministic parsers
and translators in T ke T heory of Parsing, Translation and Compiling [Aho & Uliman
1972].

1) Write your grammar in BNF.

2) Decide whether you want top-down or bottom-up parsing (top down is more
flexible for translation).

3a) If you choose top-down: apply known transformations to the grammar and
check the result for the LL{1) property. If successful, a reliable top-down
parser may automatically be constructed which handles a general class of
syntax directed translation.

3b) If you choose bottom-up: attempt to modify the grammar to satisfy the:
SLR(I) or LALR(f) conditions. If successful, a bottom-up parser may be
likewise constructed.

4) 'In both. cases, especially bottom-up, apply known: optimizing: transformations
to the parsers to attain practical efficiency.

In the first scenario BNF is being used as the formal reference tool, since it enables
precise syntactic description. It does not, however, reveal important: properties (e.g.
ambiguity) which the language designer needs to-consider. - Farther, the implementer must
work inf ormaliy, since the grammar itself does not suggest efficient parsing techniques (see
the survey of various approaches in ALGOL 60 Imptementation {Randell 1964]). Finally,
evidence indicates that the user may also be using informal-syntactic models (see the
description of expression evaluation in Introductton to' ALGOL:[Baumann1964]). This
situation precludes any serious attempt at formal verification.

A considerable amount of rigor has-been obtained via the formal approach in the
second scenario, but Aho and Ullman acknowledge several shortcomings. ‘Many grammars
cannot be made LL(I) and, even when they can, the resulting grammars are usually large
and awkward and thus unnatural for syntax directed translation rules. Formal techniques
do not exist for obtaining SLR or LALR grammars. Finally, in both cases nontrivial
changes to the original grammar usually require that the entire process be repeated.

A fundamental weakness with these approiches is:that BNF is inappropriate as a
definitional meta-language; it is essentially based on thearies of generative grammars. The
practical demands of parsing and translating restrict us to certain "tractable” grammars, but
such grammars are often very difficult to recognize. In addition these tractable” grammars
tend not to include the most convenient description of a language, so one usually ends up
with several representations for the same hngunge definition; eg., a"rshﬂple grammar for the
user, and a complicated one for the parser. Finally, it is often necessary to transform the
grammar into a parse table and then into an optimized parse table. Such multiple
representations form a severe obstacle to formal verification. |

What we would like, then, is a system which includes:

1) A natural and convenient definitional meta-language for the designer,

2) A user oriented meta-language which makes any defined language easy to learn
and use,

3) A simple method for automatically constructing an efficient parser/transiator for
any defined language, and

4) Enough precision in the above to permit formal proof that all components agree
precisely.

Pratt presents a system in "Top Down Operator Precedence” [Pratt 1973] which
addresses the first three of these issues quite well. He allows the implementer to "write
arbitrary programs” while offering “in place of the rigid structure of a BNF-oriented
meta-language a modicum of supporting software, and a set of guidelines on how to write
modular, efficient, compact and comprehensible translators while preserving the impression
that one is really writing a grammar rather than a program." This approach has been
followed in the construction of CGOL, a combination definitional meta-language and
extensible programming language [Pratt 1974] which demonstrates the power and
convenience inherent in this approach.

The CGOL system, as presented, does not satisfy the fourth criterion; it lacks a
complete formal context in which correctness may be stated and proven. In this paper we
complete a formal context, present an example implementation, and rigorously prove its
correctness.

We believe that many of the difficulties mentioned above may be avoided by writing
grammars in a meta-language whose descriptive power is tailored to fit the intended
application. We present and analyze such a meta-language for CGOL type translation; the
meta-language expresses a class of languages which are easily and naturally parsed. For an
exact definition of the describable languages, we present a user-oriented model which
describes how sentences may be generated from any grammar.

Since the meta-language is designed to fit the parsing method, it is possible to
construct an extremely simple parsing program which operates by simply reading a given
grammar as data. We give a LISP implementation of this parser, designed primarily for
clarity and ease of proof. | |

The correctness proof for the example parser is presented in two parts; theoretical
properties and a program proof. The theorems of the first part deal exclusively with

properties of the meta-language; these proofs are completely independent of the program
and the parsing algorithm. The use of these properties allows the actual program proof to
deal almost exclusively with argument passing and fiow of comtrof; the program proof is
tedious but straightforward. |

Chapter I1 contains an introduction and analysis of the CGOL approach to parsing.
Chapter III is an introduction and informal discussion of our system: the syntactic
meta-language, the generative model of defined languages, the parsing program, and
correctness criteria. Chapter IV covers the same material with complete formal definitions,
and Chapter V contains the correctness proof

[i. THE CGOL APPROACH

We begin with a presentation and analysis of the parsing/translating method
proposed by Pratt; a motivation and detailed introduction may be found in "Top Down
Operator Precedence” [Pratt 1973]. The discussion in this chapter centers on the parsing
technique: how it works, what features yield unique advantages, and how it compares with
known work in formal parsing theory.

ILA The Algorithm

Pratt’s approach to translation (which we refer to as the CGOL approach, after its
application in [Pratt 1974]), is specifically oriented toward the translation of expressions,
where an expression is simply an operator (e.g., + or x) with its arguments. For those not
familiar with expression oriented programming languages, the analogy to arithmetic
expressions is sufficient for the moment. Each operator of the defined language has
associated with it a program which embodies most syntactic and semantic information for
that operator. The programs, called denotations, are executed in a left to right scan by a
simple, recursive algorithm; each denotation has the power to look at the next symbol in the
input string, advance (but not back up) the current symbol pointer, and call the parsing
algorithm recursively to scan another expression. The pointer to the input string is a global
variable and may be advanced by any denotation. The denotation of a symbol may be
called at two points in the algorithm: step 2 and step 4. Step 2 corresponds to the case
where the operator is at the beginning of a string and does not take a left argument. Step 4
assumes that the expression parsed so far is the left argument to the operator.

PARSE is the function which is called to scan and translate an expression starting at the
beginning of an input string.

STEP 1: PARSE looks at the first symbol of its input string (it will never look farther ahead
than the current pointer to the string). Since this symbol occurs at the beginning of an
expression, it is assumed to be an operator which takes no argument on its left side

10

(constants and variables are treated as operators with no arguments). PARSE executes
the denotation associated with this symbol.

STEP 2: The denotation for the current operator moves the pointer rightward along the
input string, when necessary to gather right arguments. The denotation returns the
translation of this expression, leaving the input pointer at the symbol following the
expression. ' '

STEP 3: PARSE now has the translation of an expression starting at the beginning of the
input string. The question is asked: should this expression be given as a left
argument to the next operator in the string, or should it be returned (presumably as a
right argument to the caller of PARSE)? The decision is made by comparing numerical
binding powers associated with each operator; the next symbol must have a left
binding power associated with it, and PARSE was given, as an argament, the right
binding power of its cafler. ’ |

STEP 4a: If the right binding power of the caller is greater (or equal), the transiation
obtained so far is returned. RETURN.

STEP 4b: If the left binding power of the next symbol is greater, then it is assumed to be
an operator, and the expression translated so far is its feft argument. The translation
is passed as an argument to the execution of the denotation asseciated with this
symbol. ’

STEP 5: The denotation for this operator moves the pointer rightward .akmg the input
string, when necessary to gather right arguments. The denotation returns the
translation of this expression, leaving the input pointer at the symbol following the
expression. '

STEP 6: Iterate to step 3.

We observe that the definitional information for each operator falls into four general
categories. In the first category we include the specification of the operator’s left and right
binding powers; these integers are used to locate the right ends of expressions. The second

1

category simply indicates the presence or absence of a left argument. This feature belongs
in a separate category since the collection of a left argument is not directly controlled by a
denotation;i.e, when a denotation is executed, its left argument, if any, has aiready been
scanned and translated. Denotation for operators with a left argument are executed from
Step 4b, those without from Step 2. The third category includes a procedure for right
argument collection which may invoke a number of techniques, the most obvious of which
is the collection of an expression (argument) by recursively calling the parser. In addition,
parsing decisions may be made by looking one symbol ahead in the input string. The
fourth category includes a procedure for translation.

IL.B Comparisons with other Methods

From a theoretical standpoint a CGOL translator has unlimited syntactic power.
This is not, however, the primary issue; it is much more important to ask what it can do
well. We provide one answer to this question by comparing the algorithm to a number of
known parsing methods, showing how CGOL combines certain advantages of each. This

discussion presupposes some familiarity with formal parsing theory. The topics discussed
are:

Introduction and Example Grammars
The Parse Type

Skeletal Grammars, Ambiguity

Operator Languages, Precedence Parsing
Flow of Control

Combination Unary/Binary Operators

IR U

I. Introduction and Example Grammars

The key to the effectiveness of the CGOL parser is the simple but powerful control
structure. The syntactic power of the parser is theoretically unlimited, since arbitrary
programs may be written as denotations; the control structure, however, creates an
environment in which a great many grammatical constructs may be handled very simply

12

The language CGOL presented in [Pratt 1974] and the translator constructor in this paper
are examples. This flexibility and convenience result from a unique combination of parsing
techniques, most of them well knewn by themseives. ‘Rather than:asking to which
theoretical class CGOL belongs, we fook for similarities between the gperation of the
CGOL parser and these in known categories. ‘CGOL combines. t:hmmga from many
different approaches.

We will refer to the following grammars in this discussion. They illustrate in a
simple way several of the issues relevant to parsing schemes. Example A is an ambiguous
grammar for the fanguage of arithmetic expressions; A’ is-a standard unambiguous version
in which + and x associate to the left and t assaciates to the right. These properties result
from the use of single productions and left and right recursion. B.is:an ambiguous
grammar for IF-THEN-ELSE statements {the well-known dangling ELSE problem).
Grammar B’ is an unambiguous grammar for the same language, repmﬁng the usual
solution to the problem.

Grammar A
-+ E+ E
-+ ExE
+E.
- (E)

NS WN e
mmmmm
+
m

Grammar A’

1 E~E+T
2 E-T
3 T TxF
4 T-F
S F-P1tF
6 F+P
7 P (E)
8 P a

13

Grammar B
1 S+ if B then S
2 S+ if B then S else S
3 S a+¢
4 B-borB
5 Bsb

Grammar B’

1 S - ifB then S

2 S > ifB then S’ else S
3 S-c

4 S’> if B then S’ else S’
5 S’» ¢

6 B->borB

7 Bsb

2. The Parse Type

If we trace the operation of the CGOL parser, observing the order in which the
components of the parse tree are recognized and assembled, we see that it is essentially
producing a left corner (LC) parse. We begin the discussion of this observation with a
brief look at top-down parsing. Parse types are categorized top-down, bottom-up, etc.
according to the order in which they recognize the grammar rules used to derive the input
sentence. An equivalent model is to imagine the derivation as a tree with the root
nonterminal symbol at the top, and the leaves corresponding to the sentence. A top-down
parser recreates this tree from the top downward, root nonterminal first. Stearns points out
that this type of parser is especially useful for combined parser/translators; since each
production is identified before its descendents in the tree, an implementation may
conveniently use recursive descent. Translation rules may correspond to grammar rules,
which may correspond to nested environments in the translating program. These ideas are
discussed at length in [Knuth 1968] and [Lewis & Stearns 1968].

14

LL Languages

The LL(k) grammars are those which can be naturally parsed deterministically (ie,
without backtrack as the input is scanned) from left to right, top-down. The usual parser
associated with LL grammars is the predictive parser which looks ahead k symbols on the
input stream before deciding which production to recognize at any given point in the parse.
In addition to the general usefulness of top-down parsing, predictive parsers for LL(k)
grammars are very simple; they may be implemented on a one-state Deterministic Push
Down Automaton (DPDA) [Kurki-Suonio 1969]. Further, they are very efficient and handle
errors reasonably well [Aho & Ullman 1972}

The central problem with LL parsing is that very few gram..ai » are LL(k). In fact,
very few languages have LL(k) grammars for any k; an example is grammar B’, which
generates a non-LL language. When languages do have LL(k) grammars, these are not
always the smallest or most natural descriptions of the language. For example, Stearns
discusses transformations which may convert grammars into LL(l) grammars at the expense
of added complexity [Stearns 1971]. Grammar A’ for arithmetic expressions is not an LL
grammar for any k because of left recursion (in rules like E » E + T). Left recursion may
be eliminated by converting a grammar to Greibach Normal Form (via a known algorithm).
The GNF grammar for arithmetic expressions is essentially right associative, although the
old grammar parse may always be recovered from a new grammar parse. Stearns presents
optimizations which reduce the nonterminal explosion in the case of arithmetic expressions
(in general the transformation squares the number of nonterminal symbols), but the result
depends heavily on the fact that this is an operator precedence language. This property of
arithmetic expression grammars (such as A’) allows a simpler treatment by the direct use of
operator precedence (to be discussed below).

Left Corner Parsing

As mentioned above, LC parsing is a variant on top down parsing. While a top
down parser must recognize the occurrence of a rule before any of its descendants, an LC
parser does not until the leftmost descendant has been found. This leftmost descendant, the
leftmost symbol in the right part of the rule, is called the left corner. This corresponds
quite closely to the operation of the CGOL parser; each rule in CGOL corresponds to an
operator, and each operator is recognized (its denotation executed) as it is encountered in a

15

left to right scan. Since operators may have expressions occurring as left arguments, they
are recognized after their left corner. This parse method has been said to parse the left
corner of a rule bottom-up and the rest of the rule top-down. When the first symbol of a
rule is a nonterminal symbol, as with all NILFIX and PREFIX operators in CGOL, the
parser is operating essentially top down.

Nondeterministic LC parsing has been used for some time [Irons 1961] [Cheatham
1967], but only more recent work has examined deterministic LC parsing. Rosenkrantz and
Lewis identify the LC(k) languages, those which have LC(k) grammars and can be parsed
deterministically LC with k symbol lookahead [Rosenkrantz & Lewis 1970). The class of
LC(k) languages is shown to be identical to the class of LL(k) languages via the result that
the elimination of left recursion produces an LL(k) grammar if and only if the original
grammar was LC(k). Thus LC(k) grammars give us no ultimate increase in expressive
power, but they do offer a naturalness and economy of description in many cases. In an
LC(k) translator this advantage is gained at the cost of some potential flexibility (since left
corner nonterminals may not be parsed top-down). An important advantage is that one rule
corresponds to one operator, and the semantics for a rule may be conveniently localized.

Grammar A’ is LC(1), and thus a transformed version, without left recursion, is
LL(1); in fact, this is nearly identical to the example transformed by Stearns in [Stearns 1971]
where the number of nonterminals becomes squared under the transformation. Grammar
B*, however, is not LL(k) for any k. In fact, it is intuitively clear that the language
generated by B’ is not an LL language, since it is impossible to tell at the begining of a
string which of two rules is to be applied; there can be no LL(k) or LC(k) grammar which
generates the language.

3. Skeletal Grammars

While the CGOL parser traces a left corner parse and operates with lookahead |, it is
not actually an LC parser as defined by Rosenkrantz and Lewis, since it uses no grammar
in the ordinary sense. There is only one nonterminal in the parser, the implicit one for an
expression. All expressions are treated the same. What we have then is more like the
grammar A’, sometimes called a skeletal grammar. Skeletal grammars typically are
ambiguous, so external means need to be used to resolve any ambiguous sentences. The
CGOL parser resolves this ambiguity by a number of techniques sometimes seen in parser

16

implementations, linear operator precedence functions, flow of control decisions, and
two-state unary vs. binary operator recognition. Some of these techniques have been viewed
as optimizations to be used whenever a grammar is found with the right property, although
it is seldom obvious at a glance if this is the case. Techniques have even been developed to
transform grammars in the hope that the desirable properties might be obtained.

The CGOL approach is to avoid juggling context-free grammars at all. This is done
by not attempting to describe difficult matters with cfg rules. These rules are certainly
useful for describing phrase structure (as-in the two amhiguous example grammars), but
begin to grow in size and fose clarity when they describe anm hierarchies and
association (as in grammar A).

4. Operator Languages, Precedence Parsing

Some of the information which is normatly represented by nonterminal symbols may
be defined as properties of the terminal symbols, if the languages are defined by operator
grammars. These are context-free grammars which have o ad jacent nonterminal symbols.
Although these are something of a special case in the literature on formal languages, a great
many useful programmmg languages have (or are very close'to havmg) operator grammars.
All four example grammars are operator grammars; see also [Floyd 1963] for an operator
grammar for ALGOL. In fact, it seems that ad jacent nonterminals usunily appear when we
try to solve some "problem” with a grammar (say ambiguity, or left recursion) by
transforming it into something less natural. Rules with no nonterminal symbols at all are
especially nonintuitive; we like to think of each rule as having some meaning, but when a
rule has no associated terminal symbols, its occurrence refative to a sentence will only be
implicit. In the CGOL parser each rule is attached to some symbol, an operator. With this
restriction CGOL is able to apply the following techniques.

Precedence Parsing

The term precedence parsing describes a well known family of ‘techniques used in
bottom-up parsing. The standard implementation of a bottom-up parse is known as a
shift-reduce algorithm. This algorithm scans the input, one symbol at a time, from left to
right. A shift step reads an input symbol and pushes into onto a stack. A reduce step occurs

17

when a sequence of symbols on the top of the stack correspond to the right side of a
grammar production; this leftmost reducible phrase is called the "handle” of a sentential
form. This series of symbols is popped off the stack and is replaced by the nonterminal
symbol on the left of the rule. A parse is complete when the stack contains only the root
nonterminal of the language and the input stream is empty; the output is a bottom-up parse.
Precedence parsing methods are distinguished by the method of making the
shift-reduce decision, i.e. deciding if the scan has reached the right end of a handle. The
general technique is to derive from the grammar a relation (usually written ») on the
symbols of the language. Although a variety of precedence techniques have been
developed, their essential feature is that they compare two ad jacent symbols in a sentential
form,; if the relationship > holds between them, the right end of a handle has been reached.

Operator Precedence

The application of precedence techniques to operator languages leads to a well known
and efficient parsing method (see [Floyd 1963]). Operator precedence grammars are those
for which the shift-reduce decision may be made uniquely by considering only terminal
symbols; i.e., the uppermost terminal symbol on the stack is compared with the next input
symbol. Considerable storage space and algorithmic complexity is saved by simply ignoring
nonterminal symbols; i.e, not using them to carry information. The resulting parse tree is
called the skeletal parse, since all productions with single nonterminals on the right side are
missing. The interesting structure is there, though, since extra nonterminals with rules like
E -» T in Grammar A’ are often included only to express properties like right or left
association and have no semantic implications.

Although operator precedence seems a somewhat obscure property for a grammar to
have, Floyd argues that many useful programming languages are quite close to having
operator precedence grammars. He offers an ALGOL operator precedence grammar as an
example and identifies certain problems which he suggests be solved via escape clauses, or
special parse techniques. It seems that the technique handles the ma jority of language
features quite well, but has certain difficulties which would be much better dealt with by
exception, than forced in the basic scheme. CGOL deals with some of these problems quite
well. , :
Pratt con jectures that operator precedence techniques are widely applicable because of
their intuitive appeal; they correspond exactly to the ordinary conventions for writing

18

arithmetic operators. Grammar A’ for example is an operator grammar in which the
relations * > % » + hold. These represent the notion of the precedence hierarchy of these
operators. We also note that + » + and x » x, meaning that these two operators associate
to the left. On the other hand, the relation * < 1 holds; this means, in the operator
precedence scheme, that this operator associates to the right.

Linear Precedence Functions

An optimization often considered for operator precedence schemes (and for
precedence relations in general) is the encuding of the precedence matrix (i.e. the relation)
via linear functions. Typically, two integer valued functions f and g are defined over
terminal symbols. If for two terminal symbols x and y the relation x » y holds, then it will
also be true that f(x) > gly). While the technique only works for a small number of
possible matrices, it turns out to be easily applicable to grammars like A*. Again, the
conventional hierarchy of the operators in arithmetic expressions allows this encoding
scheme to work.

An operator precedence parser for arithmetic expressions is very compact and
efficient. CGOL makes use of the operator precedence technique, but without forcing the
designer to express his ideas in BNF first, only to have them transformed by algorithm into
what might essentially be the original idea. The designer simply defines left and right
binding powers for each operator. ' '

' We recall that left corner parsing treats the left argument to an operator in bottom-up
mode, and the rest of the rule in top-down mode. It is in the bottom-up mode that this
technique is used by CGOL. When PARSE has scanned a complete expression, a decision is
made by binding powers. If the next token of the string wins the expression, then the
expression becomes a left argument. If PARSE returns the expression, then the expression is
the result of a top-down call from some higher level. The operation of CGOL for
grammars composed of only arithmetic operators, like 8, is exactly parallel to the operation
of the canonical strong LC machine of Rosenkrantz and Lewis [Rosenkrantz & Lewis 1970).
The nested environments of CGOL correspond to the stack of the LC machine. An LC
stack entry may either be a single nonterminal symbol, corresponding to a call to PARSE
which has not yet parsed an expression, or a pair of nonterminal symbols, corresponding to
a call to ASSOC which already has a left argument (or left corner) parsed, waiting to be
attached to something.

19

5. Flow of Control

A ma jor difference between CGOL and the LC machine becomes clear when we
consider grammar B’. This is an operator precedence grammar which is easily handled by
traditional bottom-up methods, but it is not LL(k) for any k. By the result of Rosenkrantz
and Lewis then it is also not LC(k) for any k. The CGOL parser handles this example
with great ease, since the program for the operator IF can simply parse its THEN argument
and then look one token ahead to see if it is ELSE. Both possibilities are treated by the
same denotation, so we are using the equivalent of the ambiguous version, grammar B. As
with arithmetic expressions, CGOL uses an ambiguous grammar with a simple rule to
resolve ambiguity; in this case it is simply to take the ELSE if it is there. Aho, Johnson, and
Ullman treat this example in some detail, pointing out that this solution is a simple fix to
the otherwise ambiguous top-down parsing table for grammar B
[Aho, Johnson, & Uliman 1973]. We have a situation where the top-down predictive parsing
technique works for cases which are outside of the normally defined LL boundaries. By
allowing arbitrary programs as denotations, CGOL allows an operator to collect any right
arguments in a very general top-down fashion. We might say that each operator has its
own top-down predictive parser for the grammar of its right arguments. It is this feature
which allows the use of regular expressions to specify annotation patterns within the
meta-language defined in this paper. In fact the restrictions placed on the use of the
regular operators make each annotation pattern the equivalent of a miniature LL(1)
language, although the restrictions are in.fact even stronger than LL(1).

6. Combination Unary/Binary Operators

The third technique used to resolve ambiguity in a CGOL parser is a solution to a
problem encountered by Floyd when he tried to write an operator precedence grammar for
ALGOL. Certain symbols of the language have two uses, and operator precedence by itself
can not distinguish between them. The common example of this is the minus operator
which may be used either as unary or binary. CGOL allows this double definition in a
general form. Any operator may have two unrelated definitions if one of them has a left

20

argument and one does not. CGOL is in this sense a two state machine, one state
corresponding to an immediate call to PARSE, when no left argument is present, and the
other to a call to ASSOC, when there is a left argument available. There is never any
ambiguity.

21

[11. BASIC CONCEPTS

In this chapter we motivate and informally introdu;e_ the components of our language
system. The notions presented: will be given full formal treatment in the following chapters.
We discuss first the meta-language, giving examples of its use. Since the meta-language is
nonstandard, we will present a generative model which determines the sentences of 2
defined language. The chapter concludes with a brief discussion of the translator algorithm
and its correctness criteria.
IH.A The Meta-Language

Our formal lahguage system is based on a synfactic meta-language which:

(a) restricts the syntactic power of the system in a way which permits rigorous proof's,

(b) embodies the full power of the scheme in the sense that we want it to express
anything which the parse/transiation scheme handles naturally and efficiently, and

(c) allows the automatic construction of simple translators.

We recall from Chapter II that the translator uses four types of information for each
operator in the defined language:

(1) Left and right binding powers,
(2) Presence of left argument,
(3) Pattern of right and annotated arguments, and

(4) Translation rule

In the original CGOL facility this information is specified by the designer in a varying
mixture of declarative and procedural modes. To faciiitate uniform treatment, we will allow
exactly one type of meta-language statement, a production, which will-contain all of the data
necessary to define a single operator. We restrict the syntactic power of the translator by
requiring that aff syntactic information (pares 13 25 Hsted above) be stated in 2 declarative
language, leaving only the translation rule in procedurstform. This declarative segment
includes a template of argument positions (parts 2 and 3 and’ a specification of binding
powers (part). Thus we might write:

Ex. 1 ~ "+~ 14,147 <denotat ion>

to define + as an operator of the language with left and: right arguments. It has left and
right binding powers of 14, and <denotation> is a procedure which: accepts as input the
translations of the arguments and calculates the transiation of the emtire phrase. To deal
with more general programming language features we aflow productions like:

Ex. 2 “IF" ~ "THEN" ~ ("ELSE" ~ | A) ,Bj<denctation>

which defines the standard conditional operator. This production includes the specification
of extra right arguments (in addition to the normal one with IF acting as a prefix
operator), we call "THEN" ~ ("ELSE" ~ | A} the annotetion pattern of the operator
"1F". Here the alternation (or union) symbol | is used: to specify a choice of two patterns,
one of which is the nult string . An even more powerful conditional may be specified by
the production: ‘

Ex.3 "IF" ~ "THEN" ~ ("ELSEIF" ~ "THEN" ~ }* {"ELSE" ~ | A) ,6;<den>

which uses the star closure symbol * to indicate any number of occurrences.

We write annotation patterns using regular expression notation (as in Examples 2
and 3) because it is well known, quite general, and amenable to formal treatment. In an
actual implementation one might extend this notatiow to inclisde pattern operations
expressible in terms of the basic notation. For example, we might introduce the brackets [
and], and let [a] denote {a|x). We could then write simply:

23

Ex. 2’ "IF" ~ "THEN" ~ ["ELSE" ~] , B;<denotation>

instead of Example 2. Another possibility might be < and > to mean + closure (one or
more occurrences). Such extensions are not included here, since they do not affect the
theoretical behavior of the meta-language.

This meta-language is restricted enough to allow formal treatment (goal a above) and
is general enough to exploit the power of the parsing scheme (goal b). The patterns,
however, are too powerful for simple parsing (goal c); any of these patterns could
theoretically be parsed, but not all of them easily or unambiguously. We solve this by
restricting the class of permissible patterns to those within the power of a very simple
parsing algorithm. A

This matching algorithm for patterns (arguments on the right side of operators) is
deterministic and never looks more than one symbo! ahead in the input string. Our model
of the algorithm is a person with one finger on the pattern, one finger on the input string,
and almost no memory! It should always be clear what to do next; no backing up allowed.
To put this differently, the user should always be able to understand the parsing method.
To insure the correct operation of the parser, we adopt the following three rules.

The first rule is that patterns joined by alternation not begin with the same symbol.
Thus we disallow the pattern:

Ex.I’ ° "IF" ~ ("THEN" ~ | "THEN" ~ "ELSE" ~) ,6;<denotation>

as an alternative to Example I. In fact we prefer the original form for the following reason:
an annotated argument should be identified by the name of the preceding symbol, not by its
position in a pattern. We intend that there be no difference between the two THEN
arguments specified in example I'.

The second rule solves a problem arising from the use of the symbol A in patterns
Whenever the pattern A is an alternative, the scanner could "match” A and miss a non-null
matching symbol. This problem is solved by a fiat similar to the dangling ELSE solution.
The parser will always match as much of the input string as possible; the pattern A is always
the lowest priority choice.

The third rule prohibits certain other patterns which cannot be completely handled
by the parser. For example, we consider the production

24

Ex. 4 - "FOO" ~ ("BAR" | A} "BAR" ,2;<denotation>

which describes two possible phrases; one has one occurrence of BAR, the other has two.
Because of the fiat above, our algorithm can only parse the second possibility correctly.
This a local case of the danghing ELSE probilem, and since it i3 detectable, we disallow
patterns in which it eccurs. Informally, this rule restricts the use of patterns which give the
parser a choice whether to continue, based on the presenice of some-delimiter symbol like
ELSE. We will reguire that such a pattern not be concatenated on the feft with a pattern
which can start with one of its delimiter symbols. In place of Example 4 we might use the
production

Ex. ¢ "FOO" ~ "BAR"™ ("BAR" | A} ,2;«denvtations

which matches the same phrases but can be parsed correctly.

While not inwnediately obvious, these restrictions are completely local to each
production and are intuitively motivated Patterns which violate them and can sometimes
be rewritten in an acceptable form, and the acceptable form often makes more sense. In
fact, the verification of these conditions is computationatly quite simple and an interactive
definitional facility would have verification and debugging aids butit-in. These rules are
considerably simpler and more intuitively appealing than the LL and LR conditions.

On a global level, use of the meta-language is quite straightforwird; the global
restrictions which de exist are very simple. Only one production may be given per operator,
although some symbo'ls may be used for two dif ferent operators, one with a left argument
and one without (eg., the binary and unary minus operators would be defined in two
separate productions). A symbol defined as an operator may also be use as a delimiter (in
annotation patterns) as long as its binding powers remain well defined, since the role of a
delimiter is passive. This sort of detail is trivially manageable by a definitional facility.

An important property of this meta-language is that a set of productions forms a
complete fanguage definition; no other information is necessary. It is precisely this extreme
modularity which makes designing extensible languages convenient.

25

HI.B User Model

Once we have a language definition, a set of productions, we want to of fer the user a
manual explaining how to use the defined language. We claim that the productions
themselves are straightforward enough (and their syntactic interactions simple enough) to
serve as the basic manual, once our generative model is understood. For precision and
verification this model will be presented in formal terms. It should be understood, however,
that the formalism is intended only to add rigor to intuition; intuition need not be bent in
order to agree with formalism. Some of the assumptions on which the model is based are
discussed in Top Down Operator Precedence [Pratt 73).

The operator is the basic definitional unit in these languages; appropriately, the
user’s primitive concept is the relation "is an argument of”. We carry this one step further
by specifying what kind of argument (what role it plays). Also, to allow more than one
argument of the same kind, we specify an ordering. It is then natural to represent
expressions as trees: nodes correspond to operators and subtrees correspond to arguments.
The branches are ordered and labelled to identify the argument: normal arithmetic
arguments are connected by branches labelled teft or right, and annotated arguments are
labelled by the annotating token itself, the delimiter. This is very closely related to
McCarthy’s abstract syntax [McCarthy 1963].

The purpose of syntactic convention is to uniquely represent these expression trees as
linear strings of symbols. Two well known examples are the use of postfix and prefix
notation to represent ordered trees. In the domain of binary trees infix notation is
commonly used, but here additional conventions are necessary to resolve the association of
intervening arguments. An example of this problem is the string a+bxc, where we know by
convention that b is the left argument of the operator x and not the right argument of +.
The convention used here is usually viewed as a hierarchy of the arithmetic operators in
which the higher operators "go first” or "take precedence” over lower operators. We use this
convention to recover the correct tree from a given string; it may also be used to determine
which trees are directly expressible as strings, and which trees require the use of
parentheses.

The languages we define use a combination of notational conventions including
infix. To deal with association problems we adopt a convention based on the idea of
operator hierarchy. A binding power is a numerical value which represents the precedence
level of an operator; thus an expression between two operators is understood to be an

argument of the operator with the higher binding power. This convention is generalized
somewhat by allowing separately specified left and right binding powers for each operator,
allowing operaters to behave asymmetricafly.

We incorpotate this converition in & model for writing linear expressions from trees.
The basic rute for writing expressions is: don't ase an expression e 13 a left (right)
argument to an opeérator op if the teft (right) binding power of op is high enough to cause
any subexpression of e to associate incorrectly. ‘We Tvow thit ass muy be used as an
argument to +, but a+b may rot be used as an argument to ». Formafly, we measure the
resistance (ofi ‘enth side) of an expression to false assoctutions. ‘We will define the r-index
(1-index) of art expression to be essentialy the fowest rigit {left) binding power of any
internal operator exposed to the right (left) sidle of the expression. ru: example, the
r-index of a3 is equal to the right binding power of +, sirite & vperator to the right
of this exptession (say another %) might take txe intorrectly as a-left argument. The
1-index of the expression SIN a is w, since it is tota¥y invuinerable to Talse associations
on the left. Although this model does not aflow certain expressions trees to be written, most
defined languages include a bracketig onerator (Jike parentheses) which is semantically nuil
and creates an expression with |-index=r-index«8. Thus, (a+b) may be used as an
argument to ». B

The only other way in which operators may syntactically iriteract results from the
generalized dangling ELSE problem. The expression IF a THEN b has the property that
an ELSE otcurring itnmediately after b will cause the parser to continue collecting arguments
for this phrase (recall the fiat: given the choice of continuing or not, the parser will always
contifiue). The informal fule is: don't follow an expression ¢ by a delimiter which will get
incorrectly included with e (or sorme subexpression of). This rule prohibits the use of an
IF-THEN expression as the second argurent (1., the THEN argument) to an
IF-THEN-ELSE expression. We formalize this rule by defining the c~set for each
expression, the set of tokens which would cause argurrent collection to continue incorrectly
at some level. We say: an expression may not be followed by a token in its c-set.

These three properties (1-index, r-index, and c-set) completely describe the |
syntactic behavior of any expression. A standard BNF grammar would represent the same
information implicitly by the use of one nonterminal symbol. More closely related
techniques have bee¢n studied which attach various modifiers to nonterminal symbols in
context-free grammats; see especially "Indexed Grammars® [Aho 1968] and the
transformation defined on well-chained grammars in [Stearns 19711 The CGOL approach

27

is extreme in the sense that nonterminal symbols play virtually no role at all.

The separate treatment of syntactic properties is an important feature of this
approach; both designer and user can deal with the various syntactic issues explicitly and
separately. The most prominent syntactic feature of a language is its basic phrase structure,
expressed by the productions as an ambiguous context-free grammar with one nonterminal
symbol (called "expression”). Argument association is dealt with separately by binding
powers, similar to the arithmetic conventions. Pratt argues that binding powers may be
usefully assigned on the basis of an implicit hierarchy of data types, corresponding closely
to ordinary intuition and conventions for programming languages. The annotation patterns
are also treated separately. Delimiters like ELSE which can cause problems can be explicitly
noted (an easily computable property) and the operator combinations which interact can be
listed. For example, it would be observed that 1F-THEN-ELSE expressions interact with
themselves if improperly nested. In a well designed language, these interactions will be
rather limited in number, freeing the user from this concern in most cases.

II1.C Automatic Parsing

Our meta-language defines a class of programming languages for which the CGOL
translation technique is particularly appropriate. We demonstrate by presenting a simple
parsing program which, when given a set of productions as data, correctly parses sentences
of the defined language and can be easily extended to handle translation via denotation
programs. The program is a working (although inefficient) LISP implementation which
requires the transformation of productions into a suitable L ISP representation.

A definitional facility would be a set of programs to provide this and other services
to the designer. The meta-language processor is a program which accepts productions of the
meta-language, either incrementally or in batches, and stores the information. In this
implementation the data are simply attached to the name of the operator being defined (via
the property list). A facility could also include automatic verification of annotation patterns
with debugging advice, and automatic documentation.

Incremental implementations would be convenient and could even be performed
on-line. An extreme example is a bootstrap, in which denotations may be written in the
language defined so far (e.g. the language CGOL [Pratt 1974]).

28

HI.D Correctness

We consider a formal proof of correctness: an essential; practicai-component of the
system; it is pointiess.to have automatic parsing mwmmfm ‘mistakes wilt be
made. The claim we-want:proven; then; is-simpie: givenany Nnguage:definition in the
proper representation, the parser works correctly. -

To say that the parser works. correctly-requires: a: precise definition.of what it should.
do. Our specifications-of a meta-language and user med#l provide a.formal context in
which correctness:may. be rigorously-defined. '

We say.that:a-parser operating on:some- language-definition-is.correct when the
following are true:

I. If the expression (Le, tree) e.is written according: tvmnnmkm as the string o,
then the: parser will recaver: the tree e

IL If the parser recovers a tree e, then the input:string is in the.defined language.

Part I guarantees that any valid string of the language: wmbepzﬁed cnrrectly, part I
assures that no-incorrect strings will-be parsed:

The correctmess theorem: is actually a statement refating the behawior of two functions:
writing (mapping trees into:strings)'and.parsing (mapping strings:into-trees). Both parts of
the theorem are proven by induction, but over differens:domains: part-T-over the domain
of trees, and part Il over strings: It is-a coroltary of ‘tiie-theorsm:that:the languages defined
are unambiguous; i.e, no string can be written from mere: than one tree:

From the standpoint of formal language theory, the thearem:is:a proof of
equivalence of two:alternate language definition-mechanisms. A generative description is
presented as the user model; an analytic description is implicit in the parsing program.

The proof itseff is carried out in-two phases. In-the first; we prove a number of
theoretical properties of the language cluss, i.e. of the definitional mechanism. These
properties are independent of any progranyor parsing algorithm. Given these results, the
actual proof of the parsing program is tedious, but quite straighitforward

IV. FORMAL DEFINITIONS
In this chapter we present the formal details of the language system introduced in
Chapter III. Section IV.A presents the meta-language; the parsing program for defined
languages is given in Section IV.C. The generative model of defined languages, given in

Section IV.B, permits a formal statement of parser correctness, discussed and proven in the
next chapter.

IV.A The Meta-language
We begin by naming the basic lexical units of our defined languages.

Definition: A token isa single lexical symbol in a defined language.

Notation:
(i) Actual tokens will be represented using only upper case letters; eg. IF, ELSE,
+, and (.

(ii) Lower case letters are used for meta-variables in this discussion; e.g. t (possibly
subscripted) refers to some token.
(iii) Greek letters represent strings of tokens; eg. o, £, Y.

While the token is a lexical unit, the operator is our basic definitional unit.

Definition: An operator is a set of semantic and syntactic information, representing some
operation. We use the meta-variable op for operators.

Productions

An important feature of this system is that all specifications necessary to define a
programming language are in the form of operator definitions. A single operator definition
is expressed in a meta-language statement called a production; productions are the only

statements in the meta-language.

Definition: A production is a cluster of information which defines an operator and
associates it with a token of the defined language. A production defining the
operatar op for the token GP must be in one of four forms depending on the operator

type.
OPERATOR TYPE PRODUCTION
NILFIX "OP* <p> ,<rbp>;<denotation>
PREFIX "OP" ~ <p> ,<rbp>:<denctation>
PGSfFlX ~ "OP" <p> ,<lbp>,<rbp>;<denotation>
INFIX - ~ "OP" ~ <p> ,<lbp>,<rbp>;<denotation>
where: |

1) quotes (") are meta-language symbols enclosing the token being defined.
2) ~ is a meta-language symbol denoting the presence of an argument.
3) <p> is an optional annotation pattern, defined in the next paragraph.

4) <lbp> and <rbp> are left and right binding powers, non-negative
integers.

5) <denotation> isa program which calculates the transiation of op, given
the translations of its arguments.

3

Notation: When an operator op has been defined we refer to the components of the
production as follows:

type [op] is one of INILFIX,PREFIX,POSTFIX, INFIX}.
plop] is the annotation pattern defined for op.

1bp [op] is the left binding power defined for t;p, if any.
rbp [op] is the right binding power defined for op.

den [op] is the denotation defined for op.

Aside from patterns, what we have is a simple formalism in which ordinary unary and
binary arithmetic operators may be defined. The first part of each production is a template
in which the defined operator is quoted and the symbol ~ is a place holder for arguments.
The left and right binding powers are stated separately, and the denotation incorporates a
translation rule. We recall the production in Example | of Section IILA in which the
operator + is defined:

Ex. 1 ~ "+" ~ ,14,14;<denotation>

In this case type[+] = INFIX, and 1bpl+] = rbp[+] = 14.

The optional use of annotation patterns is a distinguishing feature of this
meta-language. A pattern allows an operator to take multiple right arguments, each labelled
with an identifying token. In addition, tokens may be included which label no argument
but play a purely syntactic role.

32

Delinition: An annotation pattern, or simply pattern, is‘an expression specifying possible
labelled argument configurations. We use the meta-variables p, ¢, and rto
represent patterns. A pattern p must be in one of :the following forms:

L A
2. "d" where d is a token
3. "d" ~ where d is a token, ~ a ‘meta-symbol as above

or, inductively, for Some annotation patterns ¢ and 7, and the
associated sets ﬂmv. ftrst r and cont

P
4 qr if cont, 0 fist, = ¢
5 (qir) if ftmq n first, = ¢
6. (g)* ifcontq n fmtq -

Definition: A delimiter is a token used in a pattern. We use the meta-variable d (possibly
subscripted) to represent a delimiter.

Before defining the sets first and cont, we refer briefly to Example 2 of Section IILA:
Ex. 2 "IF" ~ "THEN" ~ ("ELSE" ~ | 1) ,8;<denotation>

In this example the operator IF is defined with type[op] = PREFIX, and we have the
pattern pIIF] = "THEN" ~ ("ELSE" ~ | A) (which will be seen to satisfy the
restrictions). As in the operator part of a production quotes enclose the tokens, in this case
delimiters, of the defined language, and ~ holds the place of an argument.

With the exception of the restrictions imposed on cases 4, 5, and 6, these patterns are
ordinary regular expressions with the usual interpretation; the symbois A, |, and * denote
the empty string, pattern alternation, and pattern star closure respectively.

Although the symbol ~ is intended to hoki the place of an argument (a

33

subexpression) we will expedite our discussion of patterns by considering a language in
which we inciude the symbol ~ to match itself. Thus, we will say that the string d matches
the pattern "d", and the string d ~ matches the pattern "d" ~. Two strings which match
plIF] are THEN ~ and THEN ~ ELSE ~.

Notation: When the string w matches the pattern p, we write w=<p.

Recalling the restrictions imposed in our definition of annotation patterns, we now
define the sets first and cont. We begin by defining our notion of first.

Definition: first{w) = the first symbol of the string w (undefined if w = 2).

Definition: ftrst, = U {first (@)},

W< P, WeA

The set firstp is simply the generalization of first(w) to all strings matching p. Similarly,

we have two forms of cont.
Definition: If w=p then cont) (w) = U g, 5.5 firstB)}.
Definition: cont, = Uw«pcontp(w).

The set cont , (@) includes any symbol which may follow w in a longer string, when

both w and the longer string match p. In the context of finding a string to match a
particular pattern, this set has the following interpretation. Assume you are scanning a
string from left to right and have just reached the end of a string w which matches the
pattern p. If any of the symbols of cont p(w) occur next in the string, then it may be

possible to continue scanning and find an extension of w which also matches p. Referring
again to Example 2, we have cont p [1f] (THEN ~) = {(ELSE} and

cont 1y (THEN ~ ELSE ~) = ¢. The set cont is the generalization to include all tokens
which might occur this way, so we have contp iy = {ELSE!.

The sets first and cont enable us to state important restrictions on the use of
patterns, restrictions which are directly motivated by our parsing algorithm for matching
strings to patterns. While we can not in general prevent non-local interaction of annotation
patterns (e.g., nested 1F-THEN-ELSE expressions), it is possible to insure that there are no

34

ambiguities or unexpected results relative to a single pattern. The three restrictions prevent
any such problems.

The essence of the matching algorithm is as follows: look at the part of the pattern
remaining to be matched and decide what to do next. If the pattern is A, then simply stop.
If it is "d", then look at the next symbol in the input string. It must be d or there is an
error. Likewise, "d" ~ means to check for d and afterwards "collect an argument”. When
the pattern is the alternation (q¢|r), there is the obvious problem of choosing which
- pattern to use. The decision is made by examining the next symbol and determining
whether it is in the sets first q Of first,. When the pattern is ¢r, the two patterns are simply

matched in order. Finally, when the pattern is {¢*), the next symbol is always checked for
membership in ftrstq. If true, the pattern ¢ is matched and the process repeated.

The restrictions on patterns insure that the choices made by this method are always
unique; i.e. that they are the only possible choices. Thus, in the case of {q|r) we require

that first ¢ " first,. = ¢, no symbol may be in both sets. The problem with qr is slightly

more subtle; the restriction here (cont_, 0 cont re ¢) insures that the choice, whether to

q
continue matching a longer string to ¢, or to stop and begin matching r, is always unique.

The * operator is essentially an extension of concatenation, so the restriction on the pattern
(¢)* is similar. It must always be clear whether to continue matching an instance of ¢, or
to go on to the next, so we require that cont, 0 first, = ¢. Important properties of these

restrictions, independent of any parsing algorithm, are proven in Section V.B.

Sets of Productions

We have now defined the local properties of a meta-language production; there is no
other form of definitional information. A complete language definition is any set of
productions, defining a set of operators, which satisfies minor global restrictions (to insure
that all properties are well-defined).

Definition: An operator is of type NUL-TYPE if it is defined without a left argument.

An operator is of type LEF-TYPE if it is defined with a left argument.

35

Definition: A language definition D is a set of productions in which:
1) no token OP has more that one NUL-TYPE production,
2) no token OP has more than one LEF-TYPE production, and
3) no token is both a LEF-TYPE operator and a delimiter.

Conditions | and 2 allow a token to represent two operators in the special case where
one operator takes a left argument and the other does not; i.e, when there will be no
ambiguity. In this case, two separate operations are actually being defined, but they are
represented by the same symbol. Such an token is both LEF-TYPE and NUL-TYPE. Context,
i.e. the presence of the the left argument, will always make it clear which operator is meant.
Condition 3 guarantees that the left binding power of every token is well defined, since the
parser uses the convention that delimiters have Ibp = 8. The left binding power of all
delimiters is by convention 8.

IV.B Generative Model

We have presented in Section IV.A the structure of our meta-language. A generative
model is now defined which determines the correspondence between a language definition D
(a set of productions) and the languages defined by D (a set of token strings). The model is
closely related to the assumptions on which the CGOL approach to translator writing is
based: the argument relationship among operators and the syntactic conventions for linear
representation are related but separate issues.

We begin with the set Epy of abstract expressions, collections of operators with
specified argument relationships. We then define three properties of expressions which
measure potential for syntactic interaction. Given these properties, we define the subset
E'p € Ep of expressions which are grammatical; i.e, may be unambiguously represented as
linear strings of tokens. The process of linear representation is defined as the function Wp,
mapping expressions into the set £* of strings of tokens.

Expression Trees

Our basic notion of abstract expression is based on the relationship "is an argument
of " among operators. This notion is extended by ordering and labelling each instance of
the relationship, identifying the particular role being played by the argument. Thus, an
instance of the refationship might be "is a left argument of" or "is an ELSE argument of .

Our formal model of these expressions is a set of ordered trees with labels on both
nodes and branches. A node corresponds to an operater whose arguiments (subtrees attached
by ordered, labelled branches) occur in a configuration appropriate to the definition of the
operator. Examphes of these trees are given in Figure 1. Figure la fs an expression tree
containing only arithimetic operators. Arguments here are labefled “jeft” and "right”,
indicating their roles. Figure Ib shows a conditional expression in which the test is the

"right" argument and the alternative values are appropriately labefled. Figures lcand id
illustrate possible uses of delimiters which label no arguments. In these cases the tokens)
and F1 are included to signal the end of the expression. We formalize this latter technique
by permitting labelled branches which connect to the nuil subtree, although we will not
include the null tree as part of our set.

We now define formally the set of expressions corresponding to a meta-language
definition. Our basic requirement is that the argument configuration for each operator be
appropriate to its definition. This requires a more precise definition of the correspondence
between patterns and sequences of subtrees. '

Definition: The ordered subtrees e,,...,e, (n28), labelled d,,..,d,, match the
pattern p iff one of the following is true:

L p=2A | and n=8, i.e. there im.-'no subtrees.

2. p = "d" and n=1, where e, is null and d=d,.

3. p = "d" ~ and n=1, where e,‘ is non-nufl and d=d;.
or, where ¢ and r are patterns, one of the following:

4 p=qr and 3k B<ksn such that e;,...,e match ¢, and

37

+ IF
le;}////// \\\\Q;ight righ HEN ELSE
x C T X +
left right
left right
A B X 1
Figure la Figure 1b
(IF
left) righ THEN Fl
- T Y
left right
D E
Figure Ic Figure Id

Figure 1. Expression trees

€)ols «« o » € match r.
5 p = (¢}r) and €p,...,e, match ¢ or r.

6. p = lq}* and either ne8 or 3k 8ckan such that e,...,e, match
’ q,and ey,q,...,e, mach (g)*

We are now ready to define our complete set of expression trees.

Definition: The set of expression trees Ep corresponding to a language definition D
contains the set of finite trees defined inductively by: .

Basis: ecEp, where e is a single node with no branches attached, iff the node
has a label op such that op is defined in B, typelopl-NILFIX, and
A=<plop]. '

Induction: ecEp, where e is a tree with sibtrees attached by labeled
branches, iff the root nede has a label op such that op is defined in D,
each non-null subtree is in Ep, and one of the following cases holds:

I typelopl =NILFIX and e has subtrees €;,...,e, (n28), labelled
dy....,dy, which match plopl.

2. typelopl =PREFIX and e has subtrees eg,€,...,€, (n28),
labelled right,d,,....d, where ¢,...,e, match p [opl}.

3. typelopl=POSTFIX and e has subtrees ey, €,...,€, (n28),
labelled left,d,,...,d, where e;,...,e, match plopl.

4. typelopl=INFIX and e has subtrees e€jq.€p,€1,....€, (n28),
labelled left,right,d,,...,d, where e;,...,e, match
plopl. ‘

39

Syntactic Properties of Expressions

Having defined our abstract domain of expressions, we now apply syntactic
conventions. We claimed in the previous chapter that there are only two basic types of
syntactic interaction possible among expressions in linear form. We define three properties
of expressions (r-index, |-index, and c-set) which explicitly measure the tendency for
an expression to participate in such interactions.

The first and most common form of syntactic interaction is the association of
intervening subexpressions (aiguments). For example, in the expression a+bxc there is a
choice, governed by convention, for the association of the subexpression b; it may either
associate to the left (and become an argument to +) or to the right (as an argument to x).
Since operators are sub ject to this interaction on either side (and binding powers may differ
from right to left), we define two corresponding properties, beginning with the left.

Definition: If ecEpthen I-index(e) is defined inductively as follows:
Basis: If e is a node with no branches attached, then
I-index{e) =
Induction: If e has subtrees then iet op be the label of the root node:
a) if op is of type LEF-TYPE (i.e. if it has a left argument), then
I-index(e) = minllbp o], I-index (e,
b) otherwise (if no left argument)
|-index(ei = o
The value of I-index is a numerical measurement of an expression’s resistance to
false association to the left. If an operator has no left argument at ail, then there can never

be an intervening expression on the left, so there can never be a problem. In this case,
I-index is . Since a left argument may itself be an expression with a left argument, and

so on, this property is defined inductively over all such: subexpressions. An expression’s
resistance is only as high-as the weakest "exposed” operator.

For example; if e-is the expression tree:shown-in-Figure la, there are two operators
exposed to theleft, +and = By definition-we-know that:

I-index[e] = minlibpl+], ibpinl, IbplAll,

but since ibp{A} = w-this is equal tomin{ibpi+], Ibptal]. From this:we understand
that we have two:subexpressions, A and AsB; which-might:be:filsely associated to the left.
In an expression tree these-exposed operaters are:those-wiich:may be-reached from the top
by following branchies fabelléd 1 eft down-the-tree: ‘

The situation-on the right side of expressiens-is analogous-although complicated
slightly by the-presence of ‘multiple right-arguments.
Definition: If ecEp then r-indax(e) is defined inductively as follows:

Basis: Ife isa node with no branches attached, then-
r-index{e) = w;
Induction: If e has subtrees; then let op be the-label of the root node:
a) if there is a subtree e, and if it-is nm-m:lt, then:
r-index{e) = minlrbplopl,r-index{e,)],
b) otherwise
r-index{e) = .

The value of r-index is analogous to |-index- except that we now refer to e,

instead of e,y When: there are subtrees e,,...,¢, whichmuch the pattern p lop] (ie.,

when n>8) then e, is simply the last (rightmost) one. It is"thu-.;qbéxpmsion which, if
non-null; is exposed to the right and is subject to false association. For example, both 1

41

and X+1 are exposed to the right in the expression of Figure Ib. If e, is null, then its label
d, is being used as a purely syntactic token to indicate that there are no more arguments to
the right. In this case there is no possibility of false association, so the value of r-index
is = Examples of this are the expressions of Figures Ic and 1d. Now if the annotation part
of the expression is entirely null (i.e. n=8), then the expression is of the ordinary arithmetic
variety (e.g., Figure la). In this case, e, refers to the right argument ey, if there is one,
and r-index is the exact counterpart of |-index.

We turn now to the second type of syntactic interaction, the generalized dangling
ELSE problem. We recall that our pattern matching algorithm (i.e. for collecting right
arguments) will continue to gather arguments as long as possible. We are interested in the
case where the pattern p has been matched (say by the string w) and there is a choice
whether to continue. Any token for which this is possible is by definition in cont , ().

Looking at our standard example where pIIF] = "THEN" ~ ("ELSE" ~ | A), we have:
contp[”-_-](THEN ~) = {ELSE}.

This tells us that if the operator IF has so far collected the token THEN and a following
argument then the collection may stop, but if ELSE appears next in the input string, it will
be included. When we deal with general expression trees, this problem can be caused either
at the top level (by the pattern of the topmost operator) or at lower levels (in exposed
rightmost arguments), so the property c-set is defined recursively, similar to r-index.
The c-set of an expression is the set of all delimiters which would be incorrectly included
if placed after the expression in linear form.

This definition requires the property cont to be defined on an ordered set of subtrees,
rather than the on strings of the original definition. The correspondence is quite
straightforward: a null subtree e; with branch labelled d; corresponds to the single symbol
d;, and a non-null subtree e; labelled d; corresponds to the string d; ~. As is proven in
Lemma 11 of Section V.B, this translation does not affect the definition of cont; the symbol
~ can never be in the set.

42

Definition: f ecEpthen c-set(e) is defined inductively as follows:
‘Basis: If e isa node with no branches attached, then
Induction: If e has subtrees, then iet op be the label of the root node:
a) if there is a subtree e,, and if it is non-null, then
' c"“t(e’ - w’wjiaigooo'%’] Q’llti’.’a
b) otherwise
C“set(Q, - w,&#li‘?‘.aﬁ'ce.’.

Grammatical Expressions

We now use these three syntactic properties to restrict our set Ep of expressions by
eliminating those which permit unwanted syntactic interactions.

Definition: ecEpis 'gv‘rammaliai iff one of the following is tme
Basis: e ha‘sl no branches attached, or
Induction: e is a tree with root mvhbe!h:l n;ndwm\ m satisfying:
0) each non-nuil subtree is grammatical,
) r-index{egy) 2 Ibplopd, if there is a subtree e
'2) rbplop) < I-index(ey, for @sisn, when ¢, is non-null.

3) d; € c-setle,,), for 1sisn, when e; is non-null.

43

This definition allows us to build trees while watching for syntactic problems. The
restrictions correspond to the informal rules described in Section II1.B; each restriction may
be understood as the prevention of unwanted syntactic interaction. Restriction I covers the
use of an expression as a left argument; it insures that the whole expression will be treated
as the argument, not some exposed fragment. For example, this restriction would prevent
the use of the expression in Fig. la as a left argument to the operator ¥, since the
subexpression C would incorrectly become the left argument of . Restriction 2 is the
equivalent on the right side. Restriction 3 insures that no delimiter will be improperly
included with a subexpression; e.g., don't use an IF-THEN expression as the THEN argument
to an IF-THEN-ELSE expression.

Definition: E'p = fecEp| e is grammaticall.

Our defined language will be based on only the expression trees which are
grammatical. Ungfammatical trees may be easily fixed by the addition of some operator
with bracketing properties, typically the semantically null operator (. For example, the
expression shown in Figure Ic would, given a reasonable definition, have Ibp = rbp = 8
and cont = ¢; i.e, it is syntactically secure.

The Writing Function

Now that we have eliminated syntactic problems from our set of expressions, we may
use a trivial writing function.

Definition: The writing function Wy is defined recursively on the set Ep as follows:

If ecEpthen: UWple) = « OP BdY,...d,Y, where
OP is the token naming the operator at the root node of e.
a = Wpleyy) if eqy exists, A otherwise.

B = Wpleg) if ey exists, A otherwise.

44

d; = the label on tree ¢, for 1<i<n.
¥; = Wple) for 1<is<n, when g is non-null, A otherwise.
The linear representation of trees defined by Wy uses a very simple convention. An
argument is preceded by its label, with two important exceptions: the labels left and

right are implicitly represented by juxtaposition with the operator.

The Defined Language

Finally, the defined language Sp is simply the linear form of the grammatical trees.
Definition: Given a set D of productions, the defined language is Sp, where

Sp= WplED).

IV.C The Parsing Program

We present the parsing program in two parts; in addition to the actual program
(which we will view as a function from strings into expression trees) we give a specification
of the internal representation required for meta-language productions. A program which
automatically converts a meta-language production to this internal form is called the
meta-language processor.

The Meta-language Processor

There is virtually no processing of the information given in the productions of the
meta-language. It is simply broken into the natural categories, converted into a standard
LISP representation, and attached to the property list of the defined token. The categories
and their property list names are:

45

1. Type »(e.g. INFIX) ‘ NUL-TYP, LEF-TYP
2 Annotation Pattern | NUL-PAT, LEF-PAT
3..Lef t bvinding power LBP

4. Right binding power NUL-aBé, LEF-RBP

5. Denotation NUL-DEN, LEF-DEN

Since it is possi’ble' to have two operators for the same token, one with a left argument and
one without, the two sets of data will be separately named so they may coexist and be
independently retrieved from the property lists. The one exception is the left binding
power, since it is irrelevant for NUL-TYPE operators. Any token used as a delimiter,
however, will have its left binding power set to 8. The denotation properties will not be
used in this implementation, since it will only parse and not translate.

The definitional information will be represented as LISP data in the following forms:

Type: The NUL—TYP and LEF-TYP properties are simply the appropriate names. Thus
NUL-TYP may be either NILF1X or PREFIX, and LEF-TYP may be either
POSTFIX or INFIX. B

Left binding power: The property is a non-negative integer.

Right binding power: The property is a non-negative integer.

16

Annotation Pattern: The representation of a pattern p is the list 'rapr [p] defined
recursively by: g

LIfp =2 then repr[pl = (LAMB).
2. If p = "d" | then repr (p] = (d) , where d is the token.
3.3 If p="d" ~ then repr[p]l = (d ARG) .‘Whered is the token.

or, if ¢ and r are patterns, and repr (g1 and repr {r] their representations:

4. If p = qr then repr[p] = (CONC repriql reprirl).
5. If p = {qlir) then repr [p) = (INION repr(¢] reprirl).
6. If p = (q)* then repr[p) = (STAR repriq)).

Since this information is on property lists, it is globally avaih!;l,evto the parsing
program; a request for one of these properties will have:the same value independent of the
particular environment from which it is made. For the purposes of proof, we give the
following axioms which formally specify the operation of the meta-language processor.
Axiom 1: If the tokégr OP is defined in D as a nilfix operator, then-

(a) (GET 'OP 'NMUL-TYP) = NILFIX
(b) (GET 'OP 'NUL-PAT) = repr[plopl]

- {c) (GET "OP "NUL-RBP) = rbplopl

Axiom 2:

Axiom 3:

Axiom 4:

Axiom 5:

17

If the token OP is defined in D as a prefix operator, then

(a) (GET *OP 'NUL-TYP) = PREFIX
(b) (GET *0OP 'NUL-PAT) = repriplopl]
(c) (GET *OP *NUL-RBP) = rbplopl

If the token OP is defined in D as a postfix operator, then

(a) (GET ’0P 'LEF-TYP) = POSTFIX
(b) (GET 'OP 'LEF-PAT) = repriplopl]
(c) (GET *OP °"LEF-RBP) = rbplopl

If the token OP is defined in D as an infix operator, then

(a) (GET ’OP 'LEF-TYP) = INFIX
(b) (GET *OP 'LEF-PAT) = repr{plopl]
(c) (GET ’OP °'LEF-RBP) = rbplop]

If the token OP is used as a delimiter in any production in D, then

(S) (GET 'OP °LBP) = @

It may now be seen how our global restrictions on sets of productions insure that all
of these properties are well-defined. Properties NUL-TYP, NUL-PAT, NUL-RBP, and
NUL-DEN can only be determined if a nilfix or prefix operator is defined for OP, but we
only allow one such production per token. Similarly, LEF-TYP, LEF-PAT, LEF-RBP, and
LEF-DEN are well-defined. LBP may only be determined if a postfix or infix operator is
defined for OP (in which case only one such definition is allowed) or if it is used anywhere
as a delimiter (in which case the LBP is 8, no matter how many times it is used). A token

48

may not, however, be both.

The Parsing Program

We present below the L1SP code for a straightforward parser implementation. The
parser returns the expression tree in a simple list representation defined below; an extension
to the full translator would have the arguments passed to the denotation, rather than being
assembled into a list.

Expression Tree: The representation of a tree ecEyp .is the recursively defined list:
reprlel = (OP rgg gy ryp +o. ry)} where
Fleft = (LEF T reprleyyl) if egqy exists, otherwise non-existent
rient = (RIGHT repr [egl) if ey exists, otherwise non-existent
r; = {d; reprlel) if e is non-null
ri = {d;) if e is null

Several prominent features of this program should be kept in mind; it was written for
perspicuity and convenience of proof. There are therefore no global variable references;
for each subroutine the input stream is passed as an argument and returned as a value.

The result is a program which is approximately twice as long and much less efficient than it
could be. The main problem is that passing the input string as an argument often requires
that the same expression be evaluated more than once. This problem could be easily solved
but would result in rather more obscure code; efficiency has been sacrificed for clarity. An
equivalent but efficient program could be proven correct by proving its equivalence to this
one. Such a proof should be considerably shorter than an original proof of correctness as
given here. '

The Basic Parsing Program

(DEFUN PARSE (RBP STRING)
(ASSOC RBP (NUL-TYPE STRING)))

(DEFUN ASSOC (RBP STATE)
(COND ({LESSP RBP (GET (CADR STATE) 'LBP))
(ASSOC RBP (LEF-TYPE STATE)))
(T STATE)))

This is the top level control structure of the parser. The function PARSE receives as
input a right binding power and a list of symbols, the string: in- Sp.4o be parsed. The status
of the parse is contained in the variable STATE which is passed and returned among the
procedures. STATE is always a list whose first element is the representation of the
expression (tree) parsed so far, and whose remaining elements are the unparsed input string.
Given that an expréssion has been parsed, the function ASSOC (not the standard LISP
function ASSOC) decides whether to give it as a left argument to the next operator in the
string (by calling ASSOC recursively), or to return the current state. -

The function NUL-TYPE collects the arguments.for the next operator in the string, on
the assumption that it is nilfix or prefix. It in turn calls NILFIX or PREFIX to handle the
separate cases. The function LEF-TYPE is similar, except that the expression parsed so far
is assumed to be the left argument to the next operator in the string. The subroutine FIND
handles the collection of all annotation tokens and arguments; it uses the functions
LAMBDA-P (predicate for null string membership in a pattern) and. FIRST (the set first
previously defined). '

Functions to Process NUL-TYPE Operators

(DEFUN NUL-TYPE (STRING)

(COND ((NULL (CDDR STATE)) ERROR) send of input
((EQ (GET (CAR STRING) °NUL-TYP) °NILFIX)
(NILFIX (CAR STRING) ;operator
(COR STRING) sunparsed string
{GET {CAR STRING) ’NUL-RBP) ;rbp [op]
(GET (CAR STRING) *NUL-PAT))) " 3 plop)
((EQ (GET (CAR STRING)} *NUL-TYP) *PREFIX)
(PREFIX (CAR STRING} jas above

{CDR STRING)
(GET (CAR STRING) ’NUL-RBP)
(GET (CAR STRING)} °NUL-PAT)))

(7 sdefault case
(NILFIX (CAR STRING) svariable or
{CDR STRING) sconstant
8

' (LAMB))) })

(DEFUN NILFIX (OPERATOR REST RBP PAT)
{CONS (APPEND (LIST OPERATOR)
(CAR (FIND RBP (CONS NIL REST) PAT)))
(CDR (FIND RBP (CONS NIL REST) PAT))))

(DEFUN PREFIX (OPERATOR REST RBP PAT)
(CONS (APPEND (LIST OPERATOR)
| (LIST (LIST "RIGHT (CAR (PARSE RBP REST))))
(CAR (FIND RBP
(CONS NIL (COR (PARSE RBP REST)))
PAT)))
(COR (FIND RBP (CONS NIL (COR(PARSE RBP REST))}PAT)}))

51

Functions to Process LEF-TYPE Operators

(DEFUN LEF-TYPE (STATE) : L
(COND ({(NULL (CODR STATE)) ERROR) . .3end of strlng

({(EQ (GET (CADR STATE) ’LEF-TYP) 'POSTFIX)
(POSTF[X (CAR STATE) sleft arg
(CADR STATE) . soperator
(CODR STATE) . junparsed string

- (GET (CADR STATE) 'LEF-RBP) - ;rbplop)
(GET (CADR STATE) °LEF-PAT))) ;plop)
((EQ (GET (CADR STATE) ’LEF-TYP) *INFIX)
(lNF!X (CAR STATE) , sas above

(CADR STATE) ’
(CDDR STATE)
(GET (CADR STATE) ’LEF-RBP)
(GET (CADR STATE) °'LEF-PAT)))

{7 ERRDR))) sno left def.

(DEFUN POSTFIX (LVAL OPERATOR REST RBP PAT)
(CONS (APPEM) (LIST OPERATOR)
(LIST (LIST "LEFT LVAL))
(CAR (FIND RBP (CONS NIL REST) PAT)))
(CDR (FIND RBP (CONS NIL REST) PAT})))

(DEFUN INFIX (LYAL OPERATOR REST RBP PAT)
(CONS (APPEND (LIST OPERATOR)
(LIST (LIST °LEFT LVAL)})
(LIST (LIST "RIGHT (CAR (PARSE RBP REST)U)
- (CAR (FIND RBP
(CONS NIL (COR (PARSE RBP EST)))
PAT}))
{CDR (FIND RBP (CONS NIL (CDR(PARSE RBP FESTH)PAT))))

52

Annotation Argument Processor

(DEFUN FIND (RBP STATE PAT)
(COND ((EQ (CAR PAT) 'LAMB) s p=A
STATE)
$p=qr
{(EQ (CAR PAT) ’CONC)
(FIND RBP (FIND RBP STATE (CADR PAT)) (CADOR PAT)})
sp=lqir)
(tEQ (CAR PAT} °UNION)
(COND ((MEMBER (CADR STATE) (FIRST (CADR PAT)))
(FIND RBP STATE (CADR PAT)))
((MEMBER (CADR STATE) (FIRST (CADDR PAT)})
(FIND RBP STATE (CADDR PAT)))
((LAMBDA-P PAT)
STATE)
(T ERROR}}) ;neither alternative matches
| ;p=(q)*
((EQ (CAR PAT) °’STAR) :
(COND ((MEMBER (CADR STATE) (FIRST (CADR PAT)))
(FIND RBP (FIND RBP STATE (CADR PAT)) PAT))
{TY STATE)))
' s p="d"
((AND (NULL (CDR PAT}) (EQ (CAR PAT) (CADR STATE)))
(CONS (APPEND (CAR STATE)
(LIST (LIST (CADR STATE))))
(CODR STATE)}))
ip="d" ~
((EQ (CAR PAT) (CADR STATE))
(CONS (APPEND (CAR STATE)
(LIST (LIST (CADR STATE)
(CAR (PARSE RBP (CDDR STATE))))))
(CDR (PARSE RBP (CDDR STATE)))))
(T ERROR)})) smissing token—-- (car pattern)

53

Pattern Processing Functions

(DEFUN LAMBDA-P

(P)
(COND ((EQ (CAR P) ’LAMB) T) | 3P
((EQ (CAR P) ’CONC) s Pqr
(AND (LAMBDA-P (CADR P)) (LAMBDA-P (CADDR P))))
((Eu (CAR P) "UNION) sp=lqlr)
(OR (LAMBDA-P (CADR P}) (LAMBDA-P (cannn P))))
({EQ (CAR P) ’STAR) T) ‘ 1p=(q)*
{T NIL))) - sp="d" or "d"~
(DEFUN FIRST
Py o
(COND ((EQ (CAR P) °LAMB) NIL) Cgp=A
((EQ (CAR P) *CONC) sp=qr

(APPEND (FIRST (CADR P)) ,
(COND ((LAMBDA-P (CADR Pl) (FI_RST {CADDR P))})

(T NILMD) | | -
((EQ (CAR P) "UNION) spelqlr)
" (APPEND (FIRST (CADR P)) (FIRST (CADOR P))))

" ({EQ (CAR P) *STAR) (FIRST (CADR P))} - ;p=(q)*®

(T (LIST (CAR P))))) 7 3p="d® or "d"~

V. CORRECTNESS

Using the definitions presented in Chapter IV, we are now prepared to formally state
and prove the notion of correctness discussed informally in Section IILD. In the first section
of this chapter we state our main result, the PARSE theorem, and discuss three important
coroMaries which embody more closely our intuitive notions of cotrectness. Section V.B
presents a number of preliminary lemmas, dealing primarily with prnperties of annotation
patterns in our meta-language. These results anmmmia and are completely
independent of the parsing algorithm. Sectiens V.C and V.D contain the proofs of parts I
and 11, respectively, of the PARSE theorem; these theorems are Jong but straightforward
since the interesting theoretical results are separately proven.

V.A Formal Statement

We begin a formal statement of correctness by recalling the user-oriented description
of a defined language. For any set of meta-language productions D, the language Sp S ¥
defined by D is Sp = Wp{E'p), where Wy is the writing function and E'p is the set of
grammatical expression trees. The parser for the language, constructed by the algorithm of
Section 1V .C, is represented by the function Py, This function maps strings of I* into
expression trees (defined in IV.C). The function Py is partial; when we write Pp(5) = e,
we mean that the parser, when given the input string &, hafts error-free and returns e. We
state now our main resuit.

PARSE THEOREM:
L VYD VecE’p (Ppilple)) = e)
IL) YD VseI* (Pp(8) halts error-free » § € Sp)

For the rest of tﬁis chapter we assume that D refers to some language definition expressed
in the meta-language of Section IV.A; i.e., we drop the "for all D".

We examine now the sufficiency of the result relative to general notions of
correctness in the form of corollaries. The first is that a translator should be an acceptor for
the language Sp in the ordinary sense: the translator should halt error-f ree exactly when
given a sentence in the language Sp.

Corollary 1 (Acceptor)
VseZ* {Pp(5) halts error-free ¢» § € Sp)
Proof: One direction simply restates part II of the PARSE theorem. Now assume § € Sp.
By definition there is some e € E'psuch that5 = Wp{e). Part I says

PD(HD(G)) - PD(S) = @, i.e, PARSE halts error-free.l

We also expect that the translator, when it halts error-free, returns a valid parse of
the input string.

Corollary 2 (Pirsér):
VseSp (Pp(s) € Ep A HpiPpls)) = &)
Proof: Assume 8 € Sp. Then there is some e € E’such that 5 = Hple). By Part I we
- know Pp(8) = Ppllp(e)) = e € EY. Furthermore, since Pp(s) = e, we have
Wp(Pp(8)) = Uple) = 5.8
We note that Corollary 2 only guarantees the output of some ‘v'a'iid'-'expression tree, or
parse, for each input. We have not proven that such a parse must be unique; i.e., that the

language is unambiguous. Ambiguity is a property of a language and its means of
definition, not of a particular parsing scheme.

Corollary 3 (Uniqueness).
Ye,e'cE’p (Hple)=lple’) » e=e’)

Proof: Assume Wp(e) = Wple’) for e,e’ € Ep. Since the parser is a function,

56

PpHple)) = Ppllple). Then by Part I we have e = Pp(lp(e))
= PD(HD(e’H = el

Although not strictly a property of the parser, we treat this property here for completeness
and convenience of proof.

57

V.B Preliminary Lemmas

This section formally states and proves a number of necessary properties of our
definitional system. Some are merely restatements of definitions and are included for
uniform reference; the ma jority are derived properties which are essential to the program
proof. The final two lemmas are correctness proofs of two simple utility programs,
LAMBDA-P and FIRST.

We begin with binding powers.
Lemma 1 (Binding powers):

(a) If the token op is defined as an operator in D, then rbplop] 2 8 and Ibplopl 2 @
if defined.

{b) If the token d is used as a delimiter in D, then lbp{d] = 8.
(c) For any ecEp, {-index{el 2 Band r-indexle]l 2 8.

Proof: Parts (a) and (b) are immediate from the definitions. Part (c) uses part (a) and
follows by trivial induction over the definitions of 1-index and r-index.}

The following lemmas describe properties of annotation patterns. Although patterns
ultimately determine sequences of labelled subtrees, these properties will be stated and
proven in terms of a simpler but equivalent language. We say that a pattern may be
matched by strings of symbols, where the symbols include the special symbol ~ and tokens
of the defined language. The same convention was used in the discussion of first and cont
in Section IV.A. The correspondence between the strings used here and the ordered sets of
labelled subtrees is straightforward. The symbol ~ can only follow a token in strings which
match patterns. A token d followed by ~ in one of these strings corresponds to a non-null
subtree labelled d. A token d not followed by ~ corresponds to a null subtree labelled d.
Lemmas 4 and Il guarantee that the symbol ~ is invisible; i.e,, it plays no role in any of the
results presented here. The results apply equally to sequences of labelled subtrees.

For convenience we restate here an essential feature of the definition of patterns, the
restrictions on the inductive use of pattern concatenation, alternation, and star closure.

Restrictions (Definition of patterns): Let p,q, r be patterns.
RL If p = qr thencont, n first, = 4.
R2. If p = (q]r) then flrst‘r n first, = ¢.
R3. If p = (q)* then cont, 0 ftrstq = ¢.

Because our parsing algorithm continually requires us to treat A as a special case, we
would like to know some of the null-string properties of patterns.

Lemma 2 (X predicate): Let p, q, r be patterns.

(@) If p = qr then A«<p iff A=<q A Axr.
(b) If p = (g|r) then A<p iff A<q v Axr.
(c) If p = (q)* then Ax<p.

Proof: Immediate from the definition of match.§

Lemma 2 is the basis for the algorithm used by LAMBDA-P, which calculates whether or not
A matches a particular pattern.
The next lemma is relevant to the computation of the set first for a pattern.

Lemma 3 (first): Let p,q, r be patterns.

(@) If p = qr then
l. if A« q then ftrstp = ftrstq

2. if A=<gq then ftmp = furst, U furst,.
(b) If p = (q]r) then firstp - ﬂrstq U first,.

(c) If p = {q)* then ﬂrstp - ftrstq.

59

Proof: Immediate from the definitions of first and match.i

The parser look at the first symbol of a string in order to decide how to begin
matching the string to a pattern. The next lemma guarantees that the parser never looks at
~ when deciding; ie., that the first symbol is always some delimiter and not part of a
subexpression.

Lemma 4: If p is a pattern, first p contains only tokens (not).

Proof: By induction on the definition of a pattern. If p = A, "d", or "d" ~ then
ftrstp = ¢, {d}, or {d} respectively. If p = qr, (q|r), or (q)*, then by

Lemma 3 and induction first p contains only tokens.1

We turn now to properties of the set cont. We begin with its value relative to the
null string.

Lemma5: If pisa pattern and A«<p then contp(M = ﬂr:tp.
Proof: From definitions,
cont, () = Uyg) aan iftrst)} = Ugop g first(BY] = first, 0

This result has a strong implication for star closure; restriction R3 prevents the use of star
closure on nontrivial patterns matched by the null string.

Lemma 6: If p is a pattern and contp N ﬂrstp = ¢ and A=<p then only A matches p.

Proof: Assume A=<p. By Lemma 5 we have ﬂrstp = cont p(k) S cont), Since we assumed
conty N first, = ¢, it must be that first, = ¢, implying that no string other than A can

match p.§

The next lemma is a preliminary result to be used in the proofs of Lemmas 8 and 10.
It deals with the way in which a string can match a concatenated pattern.

Definition: The string w is a prefix of string w’ iff »’ = wa for some string o; if o« = A
then w is said to be a nontrivial prefix of w’.

Lemma 7 (Ambiguity): Let ¢ and r be patterns. If
(1) cont n first, = ¢,
(2) w = w;wp where w;=<q and Axw,=r,
(3) @ = w;'wy’ where w,’<q and wy'~<r, dand
(4) w isa prefix of w’,
then w; = w,"

Proof: Since w is a prefix of w’, exactly one of the following cases must hold: (i) w, is a
nontrivial prefix of w,’, (ii) w,’ is a nontrivial prefix of w,, or (iii) w; = w;" We will
show that (i) and (ii) do not hold.

(i) w,’" = w,xforsomea = A. By definition, first{a) € contq(w,) < contg. Since

Wz = X, we also have first{a) = first{w,) € first,, violating condition (1).

(i) w; = o)« for some a = A. It cannot be the case that w,’ = A because w = w wp is
a prefix of w” By symmetry this reduces to case 1.1

It is a corollary of Lemma 7 that when a string w matches p = qr, it matches in only one
way. Applying Lemma 7 inductively, we get the same implication for star closure.
Lemmas 8, 9, and [0 describe the contents of the set cont relative to concatenation,
alternation, and star closure. Since these are the essential lemmas for the actual progi'am
proof, they are stated in terms of specific strings; i.e., they describe cont p(m) rather than

cont p,. The lemmas are intended to directly imply the correctness of the pattern matching

part of the parsing algorithm. For example, Lemma 8 guarantees that concatenated patterns
may be dealt with locally, one at a time.

61

Lemma 8 (cont): Let p = qrand w = w wy With w;<¢ and wy=<r, then
(a) if wy=A then cont, (w) = cont . {w5)
(b) if wy=X then cont plw) = cont (wp) U cont (w}.

Proof: (a)

2 We have cont {wp) = Uy pep g tfirstB)) € Uy o aecp g ftrst (81}
= cont) {w) by definition and since wyB=r implies that w wyB=<p.

< By definition cont) (w) = Umﬁ«p,B#A {first (B)). If wB =w,wpB=<p, then let
Wl = w' = w;'wy’ where w;'<q and wy'<r. Since w is a prefix of w’and wy=A, we
have w; = w;" by Lemma 7. Then wy’ = wpf, so first(B) € cont . (wp).

(b)

2 Asin part (a) cont . (wp) < contp {w). In addition,
conty (w)) = le‘;«q,a,)‘{fzrst(m} < Uwia,(p'ﬂﬁiﬁrst(ml = cont p(w) since
w B~<q implies that w;B=w;AB=<p.

S By definition cont , (w) = Uwﬁ«p.&-)« {first (B)}. If wh=wwxPB=w;B=p then let
W B=w'=w,'wy’ where w;’<q and wy'<r. We consider the three cases of the relationship

between w; and w,".
(i) If w is a nontrivial prefix of w)’, then first{B) € first .

(ii) If w,’is a nontrivial prefix of w), then wy’=A. But then first{w,’) € contq(wl’l.
Since first{w,) € first, this violates Rl
(iti) If w; = w)’ then B = wp'and first(B) € furst,. By Lemma b

first, = cont (A) = cont (wp).1
Lemma 9 (cont): Let p,q,r be patternsand p = (q|r).
(@) If w=A then contplw) = first, U first,.
(b) If Arw=<gq then contp(w) = contq(w).
(¢) If Arwe<r then contp(w) = cont . (w).

Proof: (a) By Lemma 5 cont pA) = firsty, and by Lemma 3b first,, = first, U ftrst,.

62

(b) Claim wf~<p iff wB~q. Clearly wf~q implies w@~p. Conversely, if wf<p then either
wf<q or wf=r. If wf<r then firstlwf) € first,. But since wwk,
firsttwf) = first(w) € first,, violating R2; so wfi<q. We 'oondndfe"that
contplw) = U g) ga tfirstt@)) = U g o o ifirst @) = cont (w).

(c) Similar to part (b).#

Lemma 10 (cont): Let p,q,r be patternsand p = (@)*.
(a) If w=x then contp:(wl - ﬁmq,

(b) If Aww=p where w=w,. ..w, for n21 and w;<q for 1<isn, then
conrp(w) = conty {w,) U fmt‘c.

Proof:

(a) If w=)-then.cont, (A} = first, = first, by Lemmas 5 and Sc.

(b) By Lemma 6 we need only consider 2 cases: either ¢ is:matched byonly A, or ¢ is not
matched by A at:all. Since w») we assume the second case; where hq:

2 We have first, = ‘U‘a‘,‘_v.aﬂ (first (@11 € U geep gun tfirsté@d] = contp(w), since

| B~<q and w=<p implies thgt wf~<p. We have aismmtv_,(u,,)’ - U‘“ "3,@' B {first ()}
< Uma,(p'ﬁﬂlﬂrst(ml = comﬂ(u)‘, since wB=<q and w(...w, 1<p implies that
w~=<p.

< By induction on'n.
n=1: By def hntfbn~-cont'p(w|) - Uu,ﬂ‘~< p’aalft‘m B)E. Let wyf=w'=w,". .. 0y
where @,/<q for 1<i<m. Since w'», m21. We consider the three passible relationships
between w; and w," ' ’
(i) If w,’is a nontrivial prefix of w; then m22, and since wy'»A (recalling that A«¢q), we
have firstlwy') € cont, (w)) S cont,. Butalso firstlwy) € ﬂrst¢ violating R3. -
Contradiction. : :
(ii) If w;=w;’then, since B=), we have m22. Again wy'»A so
first(B) = first(w,') € ftrstq.
(iii) If w, is a nontrivial prefix of w,’ then first(p) € cont {w).
n>1: Assume the result for n-1. If w=w,...w, then by definition:
conlp(wl = Uwﬁ«p.ﬁaz {first(B)}. If wB<p then let wf=w'=w,’...wy, Where w;/'<gq
for 1si<m. Apply Lemma 7 as follows. We have w is'a prefix of w’. Decompose w as

63

W = W) Wy...w, where w,;=<¢ and w,...w,<p. Likewise v’ = w;’ wy’c..wy,’ where
w;=<q and wy’...wy'=<p. Since ftrstp = flrstq by Lemma 3c, we have

conty N first, = ¢ (using R3). So by Lemma 7, w;=w,. We now have

Wae o e WpB=wr'. . . wp'<p, so first(B) € conrp(wz. ..w,). By induction we have

contp(wz. cewp) = contq(wn) u ftrstq.l
Our final lemma about the set cont is the counterpart of Lemma 4 for the set first.

Lemma ll: If pisa pattern, cont

p contains only tokens (not ~).

Proof: By induction on the definition of patterns. If p = A, “d", or "d" ~ then
contp = ¢. If p = qr then by Lemma 8 and induction. If p = (¢} r) then by Lemma

9, induction, and Lemma 4. If p = (q)* then by Lemma 10, induction, and Lemma 4.8

The final two lemmas are proofs of the pattern utility programs LAMBDA-P and
FIRST. Their correctness will follow almost directly from Lemmas 2 and 3.

Lemma 12 (LAMBDA-P): Let p be a pattern. Then (LAMBDA-P p) = T iff A<p.

Proof: By induction on patterns. The program deals with five exclusive cases. When p=2
the answer is T. When p="d" or "d" ~, then the answer is NIL. When p=¢qr the
answer is (AND (LAMBDA-P ¢) (LAMBDA-P r)), by induction and Lemma 2. Similariy,
when p=(q|r) the answer is (OR (LAMBDA-P ¢q) (LAMBDA-P r)}, and when p={q)*
the answer is T.1

Lemma 13 (FIRST): Let p be a pattern. Then (FIRST p) = a list containing the
symbols of first p

Proof: By induction on patterns, the same five exclusive cases as the previous lemma; we
use now Lemma 3 inductively.. When p=X then NIL. When p="d" or "d" ~, then {d).
When p=qr then (APPEND (FIRST ¢) (COND((LAMBDA-P ¢) (FIRST r}))), where
A=p is determined by Lemma 12. When p={(¢|r) then
(APPEND (FIRST ¢q) (FIRST r}). Finally, when p={(q)* then simply (FIRST ¢}.8

V.C Parse Theorem |
We present now. the proof of the first-PARSE theorem stated: in Seetion V.A:
VOGE'U (95 %(’QX’-L = a)

ed. formally in Section: IV. B, Wy is the writing

where E’'p is the set of expression trees defig
function of Sectipn 1V.B, and the parsing function Py correspends to.the LISP program
PARSE presented in Section IV.C. The program.PARSE accepis.as.input:a list of tokens; its
value, if it halts error-free, is the LISP reptesentation of an-expression tree; as defined in
Section IV.C. The: final token in any inpus; string te PABSE isthe spacial termination
symbol 4; the left binding: power. of: this:symbol.is. assussed: to-be - the-enly: non-negative
left binding power used. In terms of the program:the thearem is:

PARSE Theorem I: If e € E'pand § = Wple) then

(PARSE -1 (5 4)) = (repriel #

Its inductive proof requires a restatement in.the fohmagmgmerﬂ form:
Theorem 1.9: If for some e and rbp we age given
ClL éf'E;'a and § = t|...t, = Hple) for k2l
C2. r-.in.de-x[e]' 2 lbplt,,,l.
C3 t4 E‘ c-set [el.
C4. rbp < I-index(el.
C5. rbp 2 lbplt,).

theﬂ ‘PARSE rbp (5 tblo’ro)’ = ‘rwte! tk.!noo).

65

PARSE Theorem I is a special case of Theorem 1.9 by the following argument. Cl is the
given, letting 8 = t;...t, The symbol t,,, is 4 which has a left binding power of -;
from Lemma | we know that r-index[e] 2 8, so C2 is satisfied. For condition C3 we
observe that since 4 is not is the defined language, it cannot be in c-set [e]l. As above, we
know that |-indexle]l 2 8, so C4is true. Finally, we know that rbp = Ibp(4] = -1,
satisfying C5.

Qutline of Proof

Theorem 19 is the last in a sequence of nine subsidiary theorems, which correspond
roughly to the subroutines of the program PARSE. Theorem 1.1 (FIND) covers the correct
parsing of the annotation part of an expression. Theorems 1.2, 1.3, and 1.4 (NILFIX,
PREFIX, and NUL-TYPE) deal with NUL-TYPE operators, and Theorems 15, 1.6, and 1.7
(POSTFIX, INFIX, and LEF-TYPE) similarly treat LEF-TYPE operators. Theorems 1.8 and 1.9
(PARSEa and PARSED) state the top level behavior of the PARSE and ASSOC programs, the
essential part of the parsing algorithm; Theorem 1.8 corresponds to the recursive parsing of
left arguments and Theorem 19 to right arguments. Each theorem guarantees that if its
arguments meet certain conditions, then the result of the corresponding subroutine has the
desired property; i.e, that the subroutine operates correctly. With the exception of the
language definition attached to property lists, as described in Section 1V.C, each subroutine
uses only values given as explicit arguments. No side-effects need be mentioned since the
given implementation of PARSE contains only local variables.

The theorems are proven using simultaneous induction over the set E‘p of expression
trees. At each level of induction, they may be proven sequentially according to their
dependence by subroutine calls, as diagrammed in the partial ordering of Figure 2. In this
figure the proof of the upper theorem of a linked pair depends on the lower theorem; the
inductive use of Theorems 1.8 and 19 is indicated at the bottom of the graph. For instance,
Theorem 1.4 depends on Theorems 1.2 and 1.3, which in turn depend on 11. In addition, 1.3
and L1 depend inductively on 1.9.

We use simple induction in this theorem to correspond exactly to the definition of the
domain Ep; i.e. using a basis and an induction step. This form of definition was chosen for
clarity and precision. The nature of the domain would, however, allow a proof by strong
induction (without a basis step), since the theorem only requires induction in the cases when
there exist non-null subtrees. Rather than redefine the domain or create unnecessary

{0 PARSE2

18 PARSED

17 LEF ~TYPE

14 NuL-T1 YPE

12 PREFIX 12 NILFIX 15 posTFIX 16 INFIX
\\

, 11 FIND

19 PARSE3

(\nduct ion)

18P ARSED
Hnduct jon

Figure 2. \nterdependence of Theorems 1119

67

confusion, strong induction is not used.

We now want to examine the five conditions we will impose on our input string in
order to guarantee that PARSE returns the correct value. When viewed relative to a call to
PARSE, they have the following interpretations. Condition 1 requires that the input string
begin with a sentence § of the language. Condition 2 insures that no subexpression on the
right end of & becomes associated as a left argument to t,,), if ty,; is an operator. If ty,,
is a delimiter then condition 3 prevents its inclusion in any annotation within 5. The right
binding power of the call to PARSE must be low enough for the entire expression to be
returned, condition 4, but not so low that the expression is given as a left argument to t,,,,
condition 5. '

Statement of Theorems 1.1 through 1.9

We precede our list of nine theorems by a formal statement of the conditions Cl
through C5, on which they depend. For convenience in the proofs, the first three have
been broken down into their definitional components: conditions Cla through Cif are
equivalent to Cl, C2a and C2b are equivalent to C2, and C3a and C3b are equivalent to C3.

Conditions:

Cl. eeEpand § = cOPBw = Hple) = t;...¢,

Cla. a = Hplegn) if ey exists (A otherwise), § = Upleg) if eg exists (A otherwise),
and w = d|¥,...d,Y, for n28, where ¥; = Wp(e,) for 1<is<n when e, is non-null
(A otherwise), and ey,q, €5, €, . . . €,€E’p When they exist and are non-null.

Clb. r-indexf{egnl 2 Ibplopl if e,y exists.

Clc. rbplopl < I-indexlepl if ey exists.

Cld. rbplop) < I-indexle] for 1<i<n, when e; is non-null.

Cle. d, ¢ c-setlepl if €y and d, exist. '

CIf. d; ¢ c-setle;] for 1<is<n when ¢ is non-null.

C2. r-indexlel 2 lbplt,,l.
C2a. roplopl 2 lbplt,] if e, exists and is non-null.
C2b. r-indexle,] 2 Ibplty,,] if e, exists and is non-null.

C3. t,,; ¢ c-setlel.
Cla. t,,, ¢ contp[op](el....e,).
C3b. t,,; ¢ c-setle,] if e, exists.

C4. rbp < l-indexlel.
C5. rbp 2 |bp[tk,|]

Notation:
(i) When writing L1SP expressions, upper case words and parentheses will always
refer to LISP code; when describing known values within L1SP expressions,

lower case and square brackets will be used. Specifically, the meta-variable op
represents the token defined for op.

(ii) The representation of the annotation part produced by FIND is
((d; reprle;])... (d, reprie,])) and will be written repr le,,...¢,].

(iti) Since the representations of patterns are not manipulated in this program, we
will abbreviate repr [p lop1] to simply p lop).

(iv) In proofs, we will use the names Cl, C2, etc. to refer to the given conditions for
the theorem being proved; CI', C2, etc. will refer to the antecedents to be
satisfied when using Theorems 1.8 and 1.9 inductively.

We now state the nine theorems in full.

Theorem 1.1 (FIND)}: Given CI-C3 for some e. Then
(FIND rbplopl (nil @ ty,;...) plopl) = (reprle;,...e,] ty,;...)
Theorem 1.2 (NILFIX): Given CI-C3 for some e. If op is defined’ NILFIX,
(NILFIX op (w ty,y...) roplopl plopl) = (repr‘[el fk,‘. o)
Theorem 1.3 (PREFIX): Given CI-C3 for some e. If op is defined PREFIX,

(PREFIX op (8 w ty,1...) rbplop] plopl) = (repriel t,...)

69
Theorem 1.4 (NUL-TYPE): Given CI-C3 for some e. If op is defined NILFIX or
PREFIX, then
(NUL-TYPE (0p © tyu;...)) = (reprlel ty,;...)

Theorem 1.5 (POSTFIX): Given CI-C3 for some e. If op is defined POSTFIX,

(POSTFIX reprlieg,yl op (@ ty,...) rbplopl plopl) = (f-epr lel ty,...)
Theorem 1.6 (INFIX): Given CI-C3 for some e. If op is defined INFIX,

(INFIX reprilegyl op (B w ty,;...) rbplop) plopl) = (reprlel t,,...)

Theorem 1.7 (LEF-TYPE): Given CI-C3 for some e. If op is defined POSTFIX or
INFIX, then ‘

(LEF-TYPE (repriegy) op B @ ty,g...)) = (repf [ej thope o)
Theorem 1.8 (PARSEa): Given CI-C4 for some e and rbp. Then
(PARSE rbp (5 t.,...)) = (ASSOC rbp (repriel t,,;...))
Theorem 1.9 (PARSEb): Given CI-Ch for some e and rbp. Then
(PARSE rbp (5 t,;...)) = (reprle] t,;...)

Proof of Theorems 1.1 through 1.9, Basis Step

For the basis step we assume that the tree ecE’p is a single node whose label we
denote op. Then op is defined NILFIX, A<plopl, and t; = § = Hple) = op (n=B,
k=1), so the annotation part is w=A. Note that since op is defined NILFIX, Theorems 1.3,
15, 1.6, and L7 are not applicable.

Theorem 1.1 (FIND): If w=A matches plop] and if t; = cont p (op} (2) then

70

(FIND rbplopl (nil ty...) plopl) = (nil tp...)

Proof: The proof is by induction over the definition of the pattern p lop]; the six possible
cases are handled by the six conditional clauses in the program.

Case l. If plop]l = A then (FIND rbplopl (nil ty...) plopl) = (nil ty...)
immediately.

Cases 2,3. Impossible since if plop]l = "d" or "d" ~ it could not be that A=< p [op].

Case 4. If plop]l = qr, then (FIND rbplopl (nil t,...) plopl)

= (FIND rbplop] (FIND rbp (nil t,...) ¢) r) bythe program. We now use
induction on the expression (FIND rbp {nil t,...)} q). Since A<plop] and
t, ¢ contp lop] {2}, we know by Lemma 2a that A<q and by Lemma 8b that
t; @ congq(:\), so this expression is {(nil t,...) and we have

= (FIND rbplop]l (nil t,...) r). Asabove we have A=r and t; ¢cont.{}), so by
another induction we have
= (nil tz...).

Case 5. If plop]l = (qir), then (FIND rbplop]l (nil t,...) plopl) isa conditional
with three clauses. The first test is (MEMBER t, ftmq), using Lemma 13 for the

| correctness of FIRST. Since t, ¢ contp[op] (2}, we know that t, ¢ ftrstq by Lemma
9a, and this test will fail. Similarly the second test (MEMBER t; first,.) will fail. The

third test (LAMBDA-P plopl) will be true by Lemma 12 and our assumption, so the
result is (nil t,...).

Case 6. If plopl = (q)* then (FIND rbplopl (nil t,...} plopl) is a conditional
with two clauses. The first test is (MEMBER t, ftrstq). Since t, ¢ contp(Al we have

by Lemma I0 that t, ¢ first, and the test fails. The second clause then always returns
(nil tz.-.)-l

Theorem 1.2 (NILFIX): Given CI-C3 for some e. If op is defined NILFIX,

(NILFIX op (tp...) rbplop)l plopl) = (reprlel tj...).

Proof: From the program we have the expression
= (CONS (APPEND (op)
(CAR(FIND rbplopl (nil t,...) plopl)))
(COR(FIND rbplopl (nil ty...) plopl)))

n

By Theorem LI we know the call to FIND returns {(nil t,...}, so we have
= (CONS (APPEND (op) nil} (t,...}), whichis
= (reprlel t,...) by the definition of representation.i

Theorem 1.4 (NUL-TYPE): Given CI-C3 for some e. If op is defined NILFIX or
PREFIX, then

{(NUL-TYPE (op t,...)) = (reprlel t,...)
Proof: By the program and Axiom | covering definitions, we have
= (NILFIX op (t,...) rbplopl plopl), which by Theorem 1.2 is
= (reprlel t,...).1
Theorem 1.8 (PARSEa): Given C1-C4 for some e and rbp. Then

(PARSE rbp (5 tj...)) = (ASSOC rbp (reprle]l t,...})
Proof: By the program we have
= {ASSOC rbp (NUL-TYPE (5 t,...))), which by Theorem 1.4 is
= (ASSOC rbp (reprlel t,...}).1
Theorem 1.9 (PARSEb): Given CI-C5 for some e and rbp. Then
Proof: By Theorem 1.8 we have
= (ASSOC rbp (reprlel t,...}), which makes the test (LESSP rbp (bplty;l). By Cb
this is false, so the value is

= (reprlel t,...).}%

Proof of Theorems 1.1 through 1.9, Induction Step

We assume that the tree ecE’p is a node, whose label we denote op, with subtrees.
We assume Theorems 1.8 and 1.9 inductively for any of these subtrees.

72

Theorem 1.1 (FIND): If w =d,¥,...d,Y, matches plop] for n28 where ¥; = Hple) and
e, € E'pfor 1<isn, and if Cld, Cif, C2b, Cfa, and C3b hold for w, then

(Flm rbp[oﬁ] (ni' W tk‘l"') P[OP]) = (meel,-..en] tk‘,lnoo}

Proof: Since FIND is called recursively, in general there will be some annotation fragment
v, not necessarily nil, which has already been parsed at some previous stage of the
execution. Thus, we will actually prove a maregma! assertion than that in the
problem statement itself: »

(FIND rbplop]l (v @ ty,...} plopl) = (vereprie),...e] t,),
where, for convenience, the result of appending two lists a and b is written aeb. As in
the basis step, the proof is by induction over the definition of the pattern p [op]; the six
possible cases are handled by the six separate clauses of the mﬂiﬁml statement.

Case l. If plop]l = Athen (FIND rbplopl (v w t,4...} plopl))

= (7 0 ty,)...). Since w=2, then n=8 and k=@, so

= (v t,...). Butreprle,,...e,] = nil so we have

= (vereprle),...e] t,,,...).

Case 2. If plop]l = "d" then we must have w = d = t;. Bythepmgram then since d
matches t,, (FIND rbplop] (v w t,,...) plepl)

= (CONS (APPEND » ((d))) (t,...))

= (vel(d)) t,...) whichis

= (vereprle;,...e] t,,...).

Case 3. If plopl = "d" ~ then we must have w = d,¥, where ¥; = Hple;). By the
program we have (FIND roplop]l (v @ t,,...) plop)}

= (CONS (APPEND v (LIST(LIST d (CAR (PARSE rbplop] (Yl t*,,...))))l)

{COR (PARSE rbp [0p] (Y, tyereo-11))
We apply Theorem 19 inductively to (PARSE rbplopl (¥, t,,,...)). CI'is satisfied
by our assumption about w. Since n=1, C2' and C3' are satistied by C2b and C3b
respectively. Finally, C4' and C5' are satisfied directly by Cid’and C2a. We have then
(PARSE rbplopl (¥, ty,;...)) = (reprle;] t,,;...), soour result is

= (CONS (APPEND » ((d reprie]})) (ty,;...}) |

= (vereprie;,...e] t,;...).

Case 4. If plop]l = qr then we must have w = w;wp Wwhere
wy = tj...t = d\¥,...d,Y, matches q, with w28 and j28, and

3

Wy = tjy... b = dp ¥p.g. .. d¥, matches r, with n2m and k2 j.
By the program we have (FIND rbplopl (v @ ty,...) plopl)
= (FIND rbplop] (FIND rbplopl (v @ ty,,...) q) r). We first apply our inductive
assertion to the nested expression which is equivalent to
(FIND rbplopl (v w; t;,,...) ¢). Conditions Cld’ and CIf’ about the internal
properties of w, follow directly from CId and CIf respectively. C2b’ through C3a’ deal
with the token t;,; so we must deal separately with the cases where wo=A and wp=2. If
wp=A, then t;,; must be a delimiter by Lemma 1, so 1bp [t,,;] = 8, satisfying C2b’ and
~ C2a’. In this case tj,; is also the delimiter d,,,, so C3b’ is satisfied by CIf. Finally, we
know that tj,; € first,, and by Rl cont, 0 first, = ¢, so C3a’ is satisfied. If wp=2,
then t; ;=ty,;, and m=n. In this case, since e,=e, C2b’, C2a’, and C3b’ are satisfied
directly by C2b, C2a, and C3b. Finally, since tj,; = ty,, ¢ cont fop) {ey,...e,) by
C3a, Lemma 8b says that t;,| ¢ cont , (ey,...e,), satisfying C3a’. We have then by

induction that this nested expression is (vereprle,,...e,] t;;...), so we have

= (FIND rbplop]l (vereprle;,...e,] wp ty,;...} r). Weagain use the assertion
inductively. As before Cld’ and CIf’ are directly satisfied, but since the last part of w; is
also the last part of w conditions C2b’, C2a’, and C3b’ are also directly satisfied. Since
ty, € C‘mtp[op] (e;,...e,), Lemma 8 says that t,,; ¢ cont, (ey,;,...e,), satisfying
C3a’. We have finally,

= (vereprle,...e,lareprley, ,...€] ty,...)

= (vereprle;,...e] t,,...)

Case 5. If plopl=(q|r) then by the program we have
(FIND rbplop]l (v @ t,(...) plopl)

= (COND ((MEMBER t, flrstq) (FIND rbplop) (v w ty,5...) @)

((MEMBER t, first,) (FIND rbplop]l (v @ ty,...) 1))

{((LAMBDA-P plopl) (v w t,,...)))
"It must be that either w=) matches ¢, w=A matches r, or w=X. In the first case we have
t; € ftrstq, so the first test is true, and we get the value of

(FIND roplopl (v w ty,;...) q). Allconditions for inductibn are satisfied
automatically except C3a’. From C3a we have that t,,, ¢ cont lop] (e),...e,), but

then Lemma 9b tells us that t,,, ¢ contq(e,. ...€,). By induction then, this returns
the correct value. In the second case, the first test will fail because t| € first, and R2
says that fzrstq n first, = ¢. The second will be true, and as above the correct result

will be returned. In the final case where w=2, the first two tests must fail for the

T4

following reason: C3a says that t,, = t; ¢ cont lop] lej,...8) = cont lop] (1), so
we know by Lemma 9a that t; can be in neither ﬂrstq nor first,.. By Lemma I2
(LAMBDA-P plopl) will be true, so {v w t,,;...} is returned; since
reprle;,...e)] = nil, we here too get

= (yerepr te,. ceeyd).

Case 6. If plopl = (q)* then by the program (FIND rbplopl (v @ ty,...) plopl)
= (COND ((MEMBER t, ﬂrstq)

(FIND rbplop) (FIND rbplopl (v w ty, ...} @) plopl))
(T 0w t,,...)))
By definition either w=X or w=w;...w, for r28, where w;<q for 1si<r. If w=A then
the first test must fail for the following reason: from C3a we have
t; = t,, ¢ “’"tp[op] (efy...€) = cont o (2). But by Lemma 10a we know then
ty @ frst,., so the correct result is returned For r>8 we prove the assertion by
induction on r.
n=0. Then we have w = w; = d,¥,...d,¥, matches ¢. By the program we have
(FIND rbplop]l (v w, ty,;...) plopl)
= (COND ((MEMBER t, furst)
(FIND rbplop] (FIND rbplopl (v w; ty,...) q) plopl))
(T 0w t,...)))
By our assumption the test t; € fzrstq will be true. We first apply our induction

hypothesis on patterns to the nested expression {FIND rbplop]l (v w; ty,...) ¢).
We know by assumption that w,<¢. Conditions Cid’ through C3b’ are satisfied directly
by Cld through C3b respectively. From C3a we know that t,,, ¢ cont lop) (eg,...e,).
By Lemma 10b we know that t,,; ¢ cont , {w,), where wy=w), s0 C3a’ is satisfied. We
then have

= (FIND rbplopl (vereprle,,...e] t,,;...) plopl}). Now we know by C3a that
by € cont lop] (ey,...e;) so we know by Lemma 10b that t,,, ¢ ftrstq. The test is
false and the value of the program is

= {(vereprle,,...e,] t,;...}).

n>B. Then we have w = w wy...w, where w; = t;... ¢ = d\¥,...d,¥, matches ¢,
with m>8 and j>8, and wy. .. w, = tj5. .0ty = dp, Y. - - dp¥, matches p loyl, with
n>m and k> j. By the program we have {FIND rbplop] (v w ty,...) plopl)

75

= (COND ((MEMBER t, first,)

(FIND rbplop]l (FIND roplopl (v w t4,(...) q) plopl))

(T v w t,...)))
By our assumption the test t| € firstq will be true. We first apply our induction
hypothesis on patterns to the the string w; in the nested expression
{FIND rbplop]l (v w; wy...w, t,,) ¢). Condition I is true by our assumption
about w. CId’ and CIf’ are true directly from Cld and CIf. By Lemma 5, t;,,, the first
symbol in w,...w, is a delimiter, and so Ibp[t;,,] = B, satisfying C2b’and C2a’. We
also know that tj,;=d,,,, so C3b' is satisfied by CIf. Finally, since t;,, € ftrstq we know

by restriction R3 that t;,; ¢ cont_, satisfying C3a’. We have then the value

P

= (FIND rbplopl (vereprle;,...e,] wy..w, t,,;) plopl). We now apply the
induction on n to the string w,...w, Conditions Cld’ through C3a’ are directly satisfied
by Cld through C3a respectively, so we have the value

= (vereprle,...e,Jereprie,,;,... €] t,;...) whichis

= (vereprle;,...e)] ty,,...).0
Theorem 1.2 (NILFIX): Given CI-C3 for some e. If op is defined NILFIX,
(NILFIX op (@ ty,...) rbplop) plopl) = (reprlel t,...)

Proof: From the program we have the expression
= (CONS (APPEND (op)
(CAR (FIND rbplop]l (nil w tg,...) plopl)))
(COR (FIND rbplopl (nil w ty;...) plopl)))
By Theorem 1.1 we know that the call to FIND returns {repr le;,...e,] t,,;..:), so
= (CONS (APPEND (op) reprley,...e,]) (t,...))
= {reprle] t,,;...).1

e ————— e — S it ot

Theorem 1.3 (PREFIX): Given CI-C3 for some e. If op is defined PREFIX,
(PREFIX 0p (B @ t,,,...) rbplop] plepl) « (repriel ty,;...)

Proof: From the program we have the expression
= (CONS (APPEND - (op)
{LISTILIST *RIGHT (CAR (PARSE rbp{opl B @ ty...1)))
(CAR(FIND rop lop]
(CONS NIL (COR PARSE rbplopl (8 w ty,...)1))
plopl)))
(CDR(FIND rbp lop]
(CONS NIL (CDR(PARSE rbp [op] B e tk.,. «e1)))
plopl)))
Since 8 = Wplep) and epcE’p, we know that if we can show our f ive conditions hold for
eo then we can apply Theorem 19 inductively in order to obtain '
(PARSE: rbp IOP] (a 14 tk&l' o)) = {repr tC’] W .tbl' el
From Cla we obviously have CI' satisfied. Clc telis us that roplopl < I-indexleg],
which immediately gives us C4. For C2', C%, and C5' we must consider whether the
annotation part « is the null-string or not. If w3, then the im;w@ea of w is the
delimiter d), so C% is satisfied by Cle. Since Ibplt,;] = 8, conditions C2’ and C5’ are
also satisfied. If w=2, then n=8 and we immediately get C3' fram C3b, C2’ from C2b,
and C5 from C2a. Thus, the value of the expression is
= {CONS (APPEND. (op)
((right reprlegl))
{CAR (FIND rbplopl (nil @ tyg...) p[opl)))
(COR (FIND rbplop) (nil @ ty,...) plopl)))
By Theorem LI we know that the value of the call to FIND is
(reprle),...e,} ty,...), sothe value of the expression is
= {reprflel t,,,...}.1

Theorem 1.4 (NUL-TYPE): Given CI-C3 for some e. If op is defined NILFIX or
PREFIX, then

(NUL-TYPE (0p B @ ty,j...)) = (reprlel ty;...)

Proof: We consider the two possible cases. If op is defined NILFIX then
(GET op *NUL-TYP) = NILFIX by Axiom I, so we have by the program and Axiom 1

= (NILFIX op (B w t4,,...) rbplop] plopl), which by Theorem 1.2 is

= (reprlel t,...). Similarly, if op is defined PREFIX the correct value is returned by
the program, Axiom 2, and Theorem 13. If there is no NUL-TYPE definition for op, then
the value is

= (NILFIX op (ty,,...) 8 1), which is the default condition. In this case op is
assumed to be nilfix with no arguments and null pattern, so by Theorem 1.2 the correct
value is returned.§

Theorem 1.5 (POSTFIX): Given CI-C3 for some e. If op is defined POSTFIX,
(POSTFIX reprle,yl op (w ty,,...) roplopl plopl) = (repriel t,,,...)

Proof: By the program we have the value
= (CONS (APPEND (op)
((teft reprlegyl))
(CAR (FIND rbplopl (nil @ ty,;...) plopl)))
(COR (FIND rbplopl (nil w t4,)...) plopl)))
By Theorem 11, the call to FIND has the value (repr[e;,...e,] t;,;...), so we have
the expression
= (CONS (APPEND (op)
((left reprlegyl))
reprle;,...e\l)
(ty,)...))
= (reprilel t,,...).%

Theorem 1.6 (INFIX): Given CI-C3 for some e. If op is defined INFIX,
(INFIX reprlegy] op (B w ty, ...} roplopl plopl) = (reprlel t,,...)

Proof: By the program we have the expression

8

= (CONS (APPEND (op)
((left reprieyl))
(LIST(LIST *RIGHT (CAR{PARSE rbplopl (B w ty,y...)))))
(CAR(FIND roplopl :
(CONS NIL (COREPARSE rbplop]l (8 w t,4...))))
plopl)))
(COR(FIND rbp lop]
(CONS NIL (COR(PARSE rbplopl (8 w ty,;...))))
plopl))
We use Theorem 19 inductively on the expression (PARSE rtplopl (B @ ty,,...)) in
exactly the same manner as in the proof of Theorem 13 (PREF1X), yielding the value
(reprlep] w t,;...). We have then the expression |
= (CONS (APPEND (op)
((left reprleg,,l))
({right repriegl)) S
(CAR (FIND rbplop] (nil @ ty,...) plop1)))
(COR (FIND rbplop] (nil w ty,...) plopli))
By Theorem 11 we know that the call to FIND returns the correct value, giving us
= (CONS (APPEND (op)
‘ ((left reprlegyl))
{{right reprlegl))
reprle;,...el)
(ty,qe..))
= (reprlel t,...).1

Theorem 1.7 (LEF-TYPE): Given CI-C3 for some e. If op is defined POSTFIX or
INFIX, then

(LEF-TYPE (repriegyl op B w ty,4...)) = (reprlel t,,...)

Proof: We consider the two possible cases. If op is defined POSTFIX then
(GET op "LEF-TYP) = POSTFIX by Axiom 3, so we have by the program and Axiom 3
= (POSTFIX reprley] op (w ty, ...} rbplop) plopl), which by Theorem L5 is

79

= (reprlel t,,,...). Similarly, if op is defined INFIX the correct value is returned by
the program, Axiom 4, and Theorem 16.1

Theorem 1.8 (PARSEa): Given CI-C4 for some e and rbp. Then
(PARSE rbp (5 t,,;...)) = (ASSOC rbp (reprlel ty,;...})

Proof: We consider the two possible cases: op is NUL-TYPE or LEF-TYPE.

Case l. If op is defined NILFIX or PREFIX then we have a= in § = copfw, so t; = op.
By the program we have (PARSE rbp (0p B8 w t,,..))

= (ASSOC rbp (NUL-TYPE (op B @ ty,y...))), which by Theorem 1.4 is

= (ASSOC rbp (reprlel t,;...)).

Case 2. If op is defined POSTFIX or INFIX then axA. We apply Theorem 1.8 inductively to
the expression (PARSE rbp (x op B @ ty,j...)). From Cla we have a = Wpleyg)
where ey € E’p, satisfying CI. From Clb we have r-index[e,n] 2 Ibplopl,
satisfying C2’. We do not allow LEF-TYPE operators to be used as delimiters, so since
only delimiters can occur in c-set [e], C3' is trivially satisfied. From C4 we have
rbp < I-indexlel, and since I-index{el = min{ibplopl, I-index[e,ull, we have
rbp < |-indexley,yl, satisfying C4'. By induction, then, we have
(PARSE rbp (a op B w ty,...))

= {(ASSOC rbp (reprlegyl op B w t,;...)). The value of the call to ASSOC is a
conditional whose first test is (LESSP rbp |bplopl}. By the same argument we used to
satisfy C4’ above, we have rbp < Ibp[opl, so the test is true and the result is

= (ASSOC rbp (LEF-TYPE (reprle,yl 0p B @ ty,...)). By Theorem L7 this is

= (ASSOC rbp (reprliel t,;...1).1}

Theorem 1.9 (PARSEb): Given CI-C5 for some e and rbp. Then

(PARSE rbp (5 t,,;...)) = (reprlel t,,...)

Proof: By Theorem 1.8 we have (PARSE rbp (5 ty,...))

= (ASSOC rbp (reprlel t,;...)). The value of the call to ASSOC is a conditional
whose first test is (LESSP rbp 1bplopl). By C5 this is false, so the second clause
returns {repr (el t,,,...).1

V.D PARSE Theorem 1l

We complete this chapter with the proof of the second PARSE theorem stated in
Section V. A:

Y5eT* (Pp(s) halts error-free = &¢S5p)

where Z* is any string of tokens and Sp is the defined language as described in Section
IV.B. The program PARSE is given as input a list of tokens; if it haits error-free then that
string must be the linear representation of a grammatical expression tree. Notice that our
work is simplified by the fact that we do not worry about the value returned by the
program; this leads us to adopt the following convention.

Notation: We write (...) = (...) to mean that the LISP expression on the left
evaluates error-free to the value on the right. The presence of L1SP expressions whose
value need not be discussed will be indicated by {...).

We can now restate our theorem in terms of the program PARSE as follows.

PARSE Theorem lI: If seZ* and if (PARSE -1 (6 4)) = ({...) 4), then §€Sp.

Outline of Proof

The statement and proof of this theorem closély paraliel those of the first PARSE
theorem. As before, our desired result is a corollary of the last in a series of nine subsidiary
theorems, which correspond (in this case precisely) to the subroutines of the program PARSE.
These theorems, however, are now in the converse form: whenever the subroutine returns a
value certain properties are shown to be true about the input string. The proof is again by
simultaneous induction with the theorems proven sequentially at each level. Their
interdependence, including the inductive use of Theorem 2.9, is illustrated in Figure 3. The
essential dif ference between the two PARSE theorems is the domain of induction; in this case
we use induction on the length of strings in the set Z*. |

81
2.9 PARSE

\

2.8 ASS50C

2.4 NUL-TYPE 2.7 LEF-TYPE

/NN

23 PREFIX 2.2 NILFIX 25 POSTFIX 26 INFIX

\\//

21 FIND

2.9 PARSE
{Induction)

Figure 3. Interdependence of Theorems 2.1-2.9

82

Statement of Theorems 2.1 through 2.9

Since we are given that ¢ 3%, we will assume that the input list to PARSE is the list
of tokens (t;...t,), for s21, with the convention that ty=4. As in the proof of PARSE
Theorem I, we use an inductive generalization, Thearem 2.9, which makes use of
Conditions Ci through C5. In this case, however, Cl through C5 are the consequents of the
theorem. From CI we have the desired result that t;...t, € Sp

Conditions:

Cl. ecE‘pand § = oOPfw = Hple) = t,...¢

Cla. o = Hpleeq) if ey exists (A otherwise), 8 = Hpley) if eg exists (A otherwise),
and @ = d,Y,. ..d,Y, for n28, where ¥; = Ugle;) for 1<isn when e, is non-null
(A otherwise), and e, €. €1, . . . €,€E'p when they exist and are non-null.

Cib. r-indexlegul 2 1bplopl if ey exists.

Clc. rbplopl < I-indexlepl if eq exists.

Cid. rbplopl < I-indexle] for 1<isn, when e; is non-nufl.

Cle. d; ¢ c-setlep] if epand d, exist.

Cif. d;, ¢ c-setfe; ;] for 1<isn when ¢; is non-null.

C2. r-indexlel 2 Ibplt,,,].
C2a. rbplopl 2 lbplty,,] if e, exists and is non-null. -
C2b. r-indexle,] 2 lbplty,,] if e, exists and is non-null.

C3. t,; ¢ c-setlel.
C3a. tkol (4 ;ontp[oﬁ] (el,...e“).

C3b. ty,, ¢ c-setle,] if e, exists.
C4. rbp < I-index(el.
Cs. rbp 2 lbp[tkd]

We state now the theorems in full.

83
Theorem 2.1 (FIND): If (FIND rbplop] (nil t,...t) plopl) = state for
1<j<s then :
(a) state = ({...} t,,,...t,) where jsk<s

(b) tkl‘ .o tk = W = dlYl...dnYn for n28 where Yi-ND(ei) aﬂd e;EE’D for ISisn,
and we<p.

(c) Cid, Cif, C2a, C2b, C3a, and C3b hold for t;,)... t,.

/

Theorem 2.2 (NILFIX): If t; = op is defined NILFIX and _
(NILFIX op (tz...t,) rbplop) plopl) = state, for 1<s, then

(a) state = ((...) t,,...t;) where 1sk<s
(b) CI, C2, and C3 hold for t,... t,

Theorem 2.3 (PREFIX): If t, = opis defined PREFIX and
(PREFIX op (t,...t,) rbplopl plopl) = state, for 1<s, then

(a) state = ((...) t,;...ts) where 1sk<s
(b) CI, C2, and C3 hold for t;... ty

Theorem 2.4 (.NUL"-TYPE)x If for 1<s (NUL-TYP (t,...t,)) - state then
(a) state = | ((...) ty,...t,) where 1<k<s

(b) CI, C2, and C3 hold for t,...t, where t; is defined NILFIX or PREFIX.

84

Theorem 2.5 (POSTFIX): If t,,; = op is defimed POSTFIX, t ... t, = Hple,qy) for
epncEp r-indexie,ul > lbplt,,,], and
(POSTFIX (...} op (t,...t) rbplep]l plop]l = state where a+l<s then

(b) CI, C2, and C3 hold for t;... t;.
Theorem 2.6 (INFIX): If t,,; = op is defined INFIX, t;...t, = Hpleyy) for
€tt€E’p. r-index (el > tbplt,,l, and
(INFIX (...) op (t,3...t,) rbplop]l plop}) = state where a+l<s then

(a) State = ((co.' tk.l..lt‘) Whﬂ'e 8<k<8

(b) CI, C2, and C3 hold for t;... ¢,
Theorem 2.7 (LEF-TYPE): If t;...t, = Upleyy) for eyucEn
r-indexle,q] > lbplt,, 1, and (LEF-TYPE (...} (t,,;...t;)) = state where a<s
then

(@) state = ((...) ty,...ts) where a<k<s

(b) CI, C2, and C3 hold for t,...t, where t,,, is defined POSTFEX or INFIX.

Theorem 2.8 (ASSOC): If t,... t; satisfy Cl, C2, C3, and C4, and
(ASSOC rbp ({...) t,,...t,) = state where j<s then

(1) if rbp > lbplt,,], state = ((...) t,,...t).
(2) If rbp < Ibp[ti.',], then

(a) state = (ASSOC rbp ((...) ty,;...t;)) where j<k<s
(b) CI, C2, C3, and C4 hold for t...t, where t,, is defined POSTFIX or INFIX.

Theorem 2.9 (PARSE): If (PARSE rbp (t;..t,)) = state for 1<s then
(a) state = ((...) t,,,...t,) where 1sk<s
(b) Cl through C5 hold for t;...t,

Since this proof is essentially concerned with error handling, we precede the basis
step with a preliminary lemma about the behavior of the PARSE program on trivially
invalid inputs. The theorem itself deals with list arguments to PARSE of length two or
more, and it.is important to know that no value will be returned for shorter lists.

Lemma 2.1: (PARSE rbp (t,...tg)) returns an error if s<2.
Proof By the program (PARSE rbp (t)...t;))
= (ASSOC rbp (NUL-TYPE (t;...tg))), but NUL-TYPE lmmediately tests by evaluating

(CODR (t,...ty)). If s<2 this will cause an error.§

Proof of Theorems 2.1 through 2.9, Basis Step

For the basis step we assume that s=2, so the input string is (t; t;) = (t; 4).
Since Theorem 29 is the final result and is the only theorem to be used inductively, it is the
only essential part of the basis step proof. To prove Theorem 29 for the case s=2 we will
also need Theorems 2.1, 2.2, and 2.4.
Theorem 2.1 (FIND): If (FIND rbplop] (nil 4) plopl) = state, then
(a) state = ((...) 4)
(b) A=w matches p [op]

(c) Cld, CIf, C2a, C2b, C3a, and C3b hold for A.

Proof: Since k<s, the second argument to FIND must be (ni| 4). We prove then the
following assertion inductively over the definition of the pattern plop). If

(FIND roplop]l (nil 4) plopl) = state, then x<pand state = (nil 4). This
assertion implies that w=X and so Cld and CIf are trivially satisfied. Since Ibp [1]=-1
C2 is satisfied, and C3 because 4 is not in the defined Kenguage.

Case 1. If plopl=2 then true immediately.

Cases 2,3. It cannot be that plopl="d" or "d" ~, because a value would only be returned
if d=4 and we know that 4 is not part of the defined language.

Case 4. If plop)=¢r then the value must be
(FIND roplop] (FINB rbplopl (nil 4) ¢) r}. By two uses of pattern induction
we have A<q and A«<r 50 A<plop], and the final result (nil 9.

Case 5. If plopl={q|r) then, since 4 cannot be in either of ﬂm or first,., it must be that
A=<plop} and (nil 4} is returned.

Case 6. If plopl=(q)* then, since 4 cannot be in firsty, the result (nil 4) is returned

and x=<plop] by definition.§

Theorem 2.2 (NILFIX}: If op is defined NILFIX and
(NILFIX op (4) rbplop] plopl) = state then
(a) state = ((...) 4
(b) Cl, C2, and C3 hold for t,.

Proof: By the pfogram (NILFIX oﬁ (4} rbplopl plopl)

= (CONS (...) (COR(FIND rbplopl (nil 4} plopl))). By Theurem 21 this is

= ((...) -ﬂ and we know A<plopl. Since op is defined NMILFIX we have then that
§=t =0p=Hple) for eck’p, completing Cl. We have already C2 and C3 from -
Theorem 2.1

Theorem 2.4 (NUL-TYPE): If (NUL-TYP (t; 4)) = state then

(a) state = ({...) 4)

(b) Cl, C2, and C3 hold for t, where t, is defined NILFIX or PREFIX.
Proof: NUL-TYPE only returns a value in three cases.

Case 1. If t;=0p is defined NILFIX then we have the value
(NILFIX op (4) rbplop] plopl) and we are done immediately by Theorem 2.2.

87

Case 2. If t;=op is defined PREFIX then we have the value
(PREFIX op (4) rbplop]l plopl). But PREFIX evaluates the expression
(PARSE rbplop] (4)) which by Lemma 2.1 causes an error.8

Case 3. If t;=0p is not defined, then it is assumed by default to be a variable or constant;
we have then the value (NILFIX op (4) 8) and we are again done by Theorem 2.2.

Theorem 2.9 (PARSE)}: If (PARSE rbp (t; 4)) = state then
(a) state = ((...))

(b) CI through C5 hold for t,.

Proof: By the program (PARSE rbp (t; 4)) = (ASSOC rbp (NUL-TYP (t; 4))). By
Theorem 2.4 we know that this is = (ASSOC rbp ({...) 4)) and that Cl, C2, and C3
hold. Since we know that 1bp [4]1=-1, ASSOC returns the value ((...)), and Ch is
satisfied. Finally, since op has no left argument we have I-index[e]l = w, satisfying

C41

Proof of Theorems 2.1 through 2.9, Induction Step

We now assume that s>2 and that Theorem 2.9 holds for strings of length less
than s.

Theorem 2.1 (FIND): If (FIND rbplop] (nil tg,...t) plopl) = state for
1<j<s then :

(b) tj, ...t = @ = d\¥...d¥, for n20 uhere Y=ly(e;) and e€E’p for 1<isn,
and wep.

(c) Cld, CIf, C2a, C2b, C3a, and C3b hold for t,... t,.

Proof: The proof is by induction over the definition of the pattern plopl; the six possible

88

cases are handled separately by the six conditional clauses in the program.

Case l. If plopl=x then (FIND rbplop] (nil tj,,...t5) plopl)

= (0.) t,,...t5). In this case w=A which clearly matches p [op]. Only condition C3a
is relevant to this éase, but since p=2, we have cont p lop) = ¢.

Case 2. If plopl="d" then the program will only return a value if d=t;,;. If it does, the

~ value is '

= ((...) t;...t5). It must be the case that j+1<s, since j+1=8 would imply that
t;.;=+4 which we know cannot match any delimiter in the defined language. Clearly
w=t;,; matches p [0p], and since there is no e;, the only relevant condition to satisfy is
again C3a. Since p="d", we have cont fop) = ¢.

Case 3. If plopl="d" ~, then the program will only return a value if d=t,;. If it does,
the value is

= ({...) (COR {PARSE rbplop] (t;,,...t;)))). We must have j+2<s, since PARSE
returns an error otherwise by Lemma 21. We have then by an inductive use of Theorem
2.9 the value '

= (..} ty,)...t5) where j+2<k<s. We also know that the following conditions hold
for ¥; = t,,...t: CI'Y;=lple|) for e;eE’p, C2 r-indexle;] 2 Ibplty,,],
C3 ty,1¢c-setle;]), C4 rbplop]l < I-indexle;], and C5 rbplop) 2 Ibplt,;]. We
now show that the necessary conditions hold for t,;...t, We have first that
ti.j. .« ty=d¥, which clearly matches [op]. ClId is satisfied directly by C4. Condition
CIf does not apply, since n=1. C2a is satisfied by C5 and C2b by C2". C3b is satisfied
directly by C3’ and C3a from the fact that cont p [op] =¢ in this case.

Case 4. If plopl=qr, then the value of the program is

= (FIND rbplop]l (FIND rbplopl ((...) t;;...ts)) r). By pattern induction on
the innermost expression we have the value

= (FIND rbplopl ((...) t,,,...t5)} r) for jsh<s. We know that
tije oo tp=d ¥ ... dp¥p=w,, for B<m, which matches ¢, and that all conditions (call them
Cid’, Cif’, etc) hold for w;. By another use of pattern induction we have the value

= ((...) t,...t) for hsk<s. We know that ty,;... ti=dp, ¥m. - » dp¥p=w,, for msn,
which matches r, and that all conditions (call them Cld", CIf”, etc.) hold for w,. We now
show that all conditions hold for tj,;...t,. Clearly j<k<s and t,;... ty=w 0, matches
p lopl. Cld follows directly from Cld’ and Cld”. CIf follows from CIf’ and CIf” with
one exception. We must show that d,,;¢c-setle,]; i.e, that the first delimiter of w5 is
not in the c-set of the last argument of w,. This case is covered by C3b’. If w,=x then

89

C2a follows directly from C2a”, otherwise from C2’. Similarly C2b follows from either
C2b” or C2b". We know from C3a” that t, ¢cont (e,€,). If wp»d then by
Lemma 8a we know tk,,uontp[o‘b] (ej,...e,). If wp=A then t,, =t,,; and we also
know that tj. 7 cont (ey,...e,). But by Lemma 8b it is also true that
ty,€cont) lop) (e},...¢e,), satisfying C3a. Finally, C3b follows from C3b” when wy=2,
otherwise from C3b’.

Case 5. If plopl={(q]r) then the program only returns a value in one of three cases. If
the first test is true, tj,leftrstq, then we have

= (FIND roplop) ((...} t;,...t5) q. By pattern induction this is

= ((...) tg,,...ts), where all conditions except C3a are satisfied immediately. We know
from C3a’ that ty, € cont, (ey,...e,). By Lemma 9b, since w=A in this case, we also
know tk,luontp lop] {e,,...e,), satisfying C3a. If the first test is false and the second
test, tj, € first ., is true then we have the same situation. If the first two tests are false,
and the third is true, A=< plopl, then the result is

= ((...) t;,...t5), where w=A. In this case the only relevant condition is C3a. Since
we know by the failure of the first two tests that t,,,zftrstq and t;, ¢ first,, we know by

Lemma 8 that t;, #cont, lop] {a).
Case 6. If plopl={q)* then value of the program is a conditional whose test is t,,,eﬂrstq.

If the test fails then the value is

= ((...) t,,...t;). If the test succeeds, then the value is a a recursive call to FIND for
p lop]), after another w; has been found to match ¢. We prove by induction on the
number of calls to FIND for p [op] made before returning. The hypothesis is that each
time there is a call of the form (FIND rbplopl ({...) t,,,...t;) plopl), then all of

~ the conditions except C3a are true of the string t;,;...t,. Thus, when the test finally
fails, we only need show that C3a is true to be done, but by Lemma 10 we know that if
tk,leftrstq, when the test fails, and if tk,,uont,’(en), which we know from the
induction hypothesis C3b’, then t,¢cont), lop] (e}, ...e,), satisfying C3a. We now
prave the hypothesis. :

Basis: At the first call, we have j=h, or w=X. Since plop]l={q)*, we know that w=p [op].
No other conditions are relevant to this case.

Induction: If all conditions except C3a are true of tj,;... ty=w;...; {call these conditions
Cid’, CIf’, etc), and if the test t), € firstq is true, then we have

(FIND rbplopl ((...) (t,,...t5) plopl) .
= (FIND rbplopl (FIND rbplopl ((...) ty,...t;) q) plopl). We know by our

induction over patterns (the higher level induction in this theorem) that this is

= (FIND rbplop]l ((...) t,...t,) plopl), where the string t,,;... tx=w; matches ¢.
We also know that all the conditions are true for this string (call these Cld”, CIf”", etc.).
We now show that all conditions are true for the whole string ‘t;,. . . ty,;. Since
We .- wip=<p and w;=<q, we know that tj,;... ty=w...@;<p. Cld is satisfied directly by
Cld’ and CId”. CIf is similarly satisfied by CIf' and Clif” with one exception. We need
to show that the first symbol of w, is not in the c-set of the last argument in w;.,.w;y,
but this follows from C3b’. We recali that Lemma 6 says that A cannot match q. Then
we have conditions C2a, C2b, and C3b following directly from C2a', C2b’, and C3b’
respectively. Thus all conditions except C3a are satisfied.§

Theorem 2.2 (NILFIX): If t; = op is defined NILFIX and
(NILFIX op (t,...t;) roplop] plopl) = state, for 1<s, then

(a) state = ((...) t,...ts) where 1<k<s

Proof: By the program (NILFIX op (t;...ts) rbplopl plopl)

= (CONS (...) (COR (FIND rbplop] (nil ty...ty) plopl)}). So by Theorem 21

= {(...) ty,...ts) where 2<k<s. Since the annotation part ta.. . t, matches p lop] by
the theorem and Cld and CIf hold, we have satisfied Cl, b_ecause Clb, Clc, and Cle are
not relevant to the NILFIX case. Then t;...t, = Wple} for ecE’p. By Theorem 21 we
also have C2a, C2b, C3a, and C3b, which give us C2 and C3 for e.§ |

Theorem 2.3 (PREFIX): If t, = op is defined PREFIX and
(PREFIX op (t,...t;) rbplop]l plopl} = state, for 1<s, then

(a) state = ((...) t,,...t;) where 1<k<s

Proof: By the program (PREFIX op (tp...t;) rbplopl plopl)

9

= (CONS (...) (CDR (FIND rbplop]
(CONS NIL (CDR (PARSE rbplopl (ty...tg))))
plopl))).
We first consider the expression (PARSE rbplop] (t,...tg)). It must be the case that
s>2, otherwise PARSE causes an error by Lemma 21. We have then by the inductive use
of Theorem 2.9 that the result is
= {CONS (...) (COR (FIND rbplop]l (nil t;;...t)) plopl))), where we know the
following about t;...t; = B: CI' B=lpley) for egeE’p, C2’ r-indexlegl 2 Ibplty,],
C3' t;,1¢c-setleg], C4' rbplopl < I-indexlepl, and C5 rbplopl > lbplt,,].
Finally, we know that j<s, so we apply Theorem 2. and get
= (...} t,,;...t5), where we know k<s and that Cld, CIf, C2a, C2b, C3a, and C3b
already hold for the expression t;...t,. We satisfy the others as follows. We have now
ty. .. t=0pBw where op is defined PREFIX, and annotation part w matches p [op],
satisfying Cla. CIb is not relevant to this case. Clc is satisfied by C4’. Cle is only
relevant if w=X in which case it is satisfied by C3'. If w=2 then e, is part of the
annotation w and conditions C2 and C3 follow from C2a, C2b, C3a, and C3b obtained
from Theorem 2. If w=), then e,=ey. In this case C2 is satisfied by C5’, and C3 is
satisfied by C3a and C3'.8

Theorem 2.4 (NUL-TYPE): If for 1<s (NUL-TYP (t,..ts)) = state then
(a) state = ((...) tg,...ts) where 1<k<s
(b) CI, C2, and C3 hold for t,...t, where t, is defined NILFIX or PREFIX.

Proof: NUL-TYPE returns a value in three possible cases.

Case 1. If t|=o0p is defined NILFIX then we have the value

= (NILFIX op (t,...t5) rbplop]l plopl) and the result is immediate by Theorem 2.2.

Case 2. If t|=op is defined PREFIX then we have the value

= (PREFIX op (t,...t5) roplop]l plopl) and the result is immediate by Theorem 2.2.

Case 3. If t; is undefined, then it is assumed by default to be NILFIX with rbp=8 and
plopl=x. We have the value

= (NILFIX op (t,...t;) @ A) and the result is immediate by Theorem 2.2.8

Theorem 2.5 (POSTFIX): If t,,, = op is defined POSTFIX, t;...t, = Hplegq) for
eert€E’p, r-indexieyy] > lbplt,,,], and
(POSTFIX (...) op (t,,...%) roplop]l plop]l = state where a+l<s then

(a) state = ((...) t,,;...t,) where ack<s

Proof: By the program we have (POSTFIX (...) op (t,5...%) roplopl plopl)

= (CONS (...) (COR (FIND roplopl (nil t,a...ty) plopl))). Soby Theorem 21

e (.0 ty,g... tg) for atlskes, and w=t,,;. . . , matches p [op] with Cld, CIf, C2a,
C2b, C3a, and C3b already true. Since t;... t,sa=lp(eyy) by assumption we have
t)... ty=copw, satisfying Cla. Clb is satisfied by given, and Cic and Cle are not
relevant to the POSTFIX case, so we have t,... t,<lp(e) for ecE’p, satisfying Cl. C2
and C3 now follow directly from C2a, C2b, C3a, and C3b.4 "

Theorem 2.6 (INFIX): If t,,, = op is defined INFIX, t,...t - HD(e,,ﬁ) for
eent€E'p r-indexieyyl > tbplt,,], and
(INFIX (...) op (t,3...t) rbplopl plopl) = state where a+l<s then

(b) Cl, C2, and C3 hold for t;...t.

Proof: By the program we have(INFIX (...) op (t,5...%;) rbplopl plopl)
= (CONS (...) (CDR (FIND rbplop]
(CONS NIL (COR (PARSE rbplopl (t,...15))))
plopl)))
Using the same argument as in Theorem 2.3, substituting (t.,, . tg) for (ty...%,), we
apply Theorems 2.9 and 21 in order to get
= ((...) t,,...ts). Conditions CI-C3 are also satisfied for the same reasons as in
Theorem 2.3, with the exception of Clb which is no kmger lrrelevant but is satisfied by
the given.l

93

Theorem 2.7 (LEF-TYPE): If t,...t, = Upleyy) for en<E’p,
r-indexlegyl > lbplt,, 1, and (LEF-TYPE (...) (t,,...t;)) = state where a<s
then

(a) state = ((...) t,,...t;) where a<k<s
(b) CI, C2, and C3 hold for t,...t, where t,,, is defined POSTFIX or INFIX.

Proof: It must be the case that a+l<s, otherwise LEF-TYPE returns an error by checking
(CODR (t,,;...tg)), and LEF-TYPE only returns a value in f dllowing two cases.

Case L. If t,,,=0p is defined POSTFIX then we have the value

= (POSTFIX (...} op (t,...t5) rbplop]l plopl) and the result is immediate by
Theorem 25.

Case 2. If t,, =0p is defined INFIX then we have the value

= (INFIX (...} op (t,...t;) roplopl plopl) and the result is immediate by
Theorem 26.1

Theorem 2.8 (ASSOC): If t,... t;satisfy Cl, C2, C3, and C4, and
(ASSOC rbp ((...) t;,...t;) = state where j<s then

(2) If rbp < Ibplt;, 1, then

(b) CI, C2, C3, and C4 hold for t,...t, where t;,, is defined POSTFIX or INFIX.

Proof: The program is a conditional which tests (LESSP rbp Ibp(t,;1). If the test is
true then we have part |. If false we have

= (ASSOC rbp (LEF-TYPE ((...) t,;...tg)). From the given we know CI’, C2, C%’,
and C#4' for t;...t; By CI' and C2’ the conditions for Theorem 2.7 are satisfied so we
have

= (ASSOC rbp ((...) t,,,...t;) where j<k<s. We know further that Cl, C2, and C3
hold for t;...t, where t;,, is defined POSTFIX or INFIX. C4 holds since we have

rbp < Ibplt,,] by assumption and C4'4

Theorem 2.9 (PARSE): If (PARSE rbp (t;..t,)) = state fof 1<s then
(a) state = ((...) t,,;...%;) where 1sk<s
(b) CI through C5 hold for t,... ¢

Proof: By the program (PARSE rbp (t,...t,))

= {ASSOC rbp (NUL-TYP (t,...t,))). By Theorem 24 we know that this is

= (ASSOC rbp ((...) t,...t;) wherelsj<s, and Cl, C2, and C3 hold for t,... t;
Since t, is defined NILFIX or INFIX we know by definition that 1-index(e] = =, s0
C+4 is also satisfied. We know by Theorem 2.8 that ASSOC either returns when
rop fop] 2 loplt,,] or calls itself recursively with conditions Cl, C2, C3, and C4 still
satisfied. By induction, when ASSOC does halt, Cl, C2, C3, and C4 still hold. In
addition condition C5 is satisfied by the failure of the test. Clearly ASSOC must
eventually halt, since at each call we know j<k<s; i.e, every call removes more symbols
from the input stream.} '

9

VI. CONCLUSIONS

VILA Summary

We began with the observation that BNF is not effective as a practical
meta-language for programming language designers, implementers, and users. We used
Pratt’s CGOL technique for translator construction, and specified a meta-language which
avoids many of the difficulties inherent in BNF approaches. Its essential feature is an
expressive power which is very closely related to the actual parsing technique of the
translator: we can conveniently describe exactly those languages which the translator
technique handles well. An immediate consequence is freedom from the awkward
restrictions inherent in most automatic translator construction systems.

We have demonstrated these advantages by presenting the design of a CGOL based
parsing program; although the meta-language is based on Pratt's informal syntactic
guidelines, we have demonstrated with a formal correctness proof that none of the rigor of
more traditional approaches has been sacrificed. The first part of this proof deals
exclusively with properties of the meta-language; these results permit a very straightforward
program proof, and may be applied equally well to proofs of other implementations.

VI.B Further Work

The use of nonstandard syntactic descriptions is an open area for research. The
example presented in this paper treats a class of languages appropriate to the CGOL
technique; it should be feasible to apply the same approach in other, perhaps more
specialized, contexts. Even within the CGOL system there are a number of issues which
need more thought. For example, the meta-language presented in this paper uses regular
expressions to specify multiple right arguments. More than half of the proof is devoted to
patterns, and the parser for them is the one long program in the system. The generality of
regular expressions may not be worth the effort involved. Other unresolved issues deal
with delimiters, e.g. it is not absolutely necessary that they have left binding powers of zero.
This convention was imposed for simplicity.

There are also a number of unfinished implementation issues. The LISP
implementation of the parser is much longer and less efficient than necessary but could be
immediately improved by the use of global variables and side effects. The actual parser
should be as short as most of the definitions for CGOL given in [Pratt 1974]. In addition,
an actual implementation of the meta-language processor is desirable. This could take the
form of an interactive definitional facility, providing the designer with on-line assistance,
such as production debugging, and with incremental implementation, eg. for bootstrapping.

97

SUMMARY OF NOTATION

P, q,r are CGOL annotation patterns :
~ is a metasymbol used in productions to denote the presence of an argument
D is a language definition (a set of productions)

e is an expression tree .
Ep is the set of expression trees corresponding to a definition D
 is the set of grammatical expression trees corresponding to a definition D.

op is an operator

t is a token, a lexeme

d is a delimiting token

o,B,¥,8,w are strings of tokens

A is the empty string

Sp is a set of strings, over some alphabet of tokens, corresponding to a definition D

Wp is a writing function defined on Ep with values in Sp

Pp is the parse function corresponding to a definition D

‘BIBLIOGRAPHY

[Aho 1968] A. V. Aho, "Indexed Grammars,” JACM, 15:4 1968

[Aho, Johnson, & Uliman 1973] A. V. Aho, S. C. johason, and J. D. Uliman, "Deterministic
parsing of ambiguous grammars’, ACM Sympostum on Principles of Programming
Languages, 1973.

{Baumann 1954] R. :Baammn, M. Feliciano, F. L. Bawer, K. Samelson, Introduction to
ALGOL, Prentice-Hall, Englewood Cliffs, N.}.

[Aho & Uliman 1972] A. V. Aho and J. D. Ullman, The Theory of Parsing, Translation and
Compiling. Volume 1: Parsing. Prentice-Hall, Englewood Cliffs, N. ., 1972. Volume
2: Compiling, 1973. -

[Cheatham 1967] T. E. Cheatham Jr., The Theory and Construction of Comptlers, Computer
Associates, Wakefield, Mass., 1967.

[Floyd 1963] R. W. Floyd, "Syntactic analysis and operator precedence”. JACM 10:3 1963.
(irons 1961] E. T. Irons, "A Syntax Directed Compiler for ALGOL 607, CACM, 4:1 1961.

[Knuth 1968] D. E. Knuth, "Semantics of context-free languages”, Math. Systems T heory, 2:2
1968.

[(Knuth 1971] D. E. Knuth, "Top-down syntax analysis”. Acta Informatica 1:2 1971.
[Kurki-Suonio 1969] R. Kurki-Suonio, "Notes on Top Down languages,” BIT, 9:3, 1969.

[Lewis & Stearns 1968] P. M. Lewis and R. E. Stearns, "Syntax directed transduction.”
J ACM 153 1968.

{McCarthy 1963] J. McCarthy, "A basis for the mathematical theory of computation,”
Computer Programming and Formal Systems, North-Holland, Amsterdam, 1963.

[Nauer 1963] P. Nauer, "Revised report on the algorithmic language ALGOL 60," CACM
6:1, 1963.

[Pratt 1973] V. R. Pratt, "Top down operator precedence”, ACM Sympostum on Princtples of
Programming Languages, 1973.

[(Pratt 1974] V. R. Pratt, "Quick and Clean - A Structured Approach to Language
Definition,” unpublished, March, 1974.

[Randell 1964] B. Randell and L. J. Russell, ALGOL 60 lmplemmtatton Academic Press,
New York, 1964

[Rosenkrantz and Lewis 1970] D. J. Rosenkrantz and P. M. Lewis, "Deterministic left corner
parsing”, I[EEE Sympostum on Switching and Automata T heory, 1970.

[Stearns 1971] R. E. Stearns, "Deterministic top-down parsing™. Proc. Fifth Annual
Princeton Conference on Information Sctences and Systems T heory, 1971.

