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ABSTRACT 

A class of .monadic program schemas is defined. Thi~s cla•s, called 
iteration scheMB,.consi.sts of schemas whose programs COlllPrise assignment 
statements, :condi.tional statement•, ·and iteration statements. These 
sche1DBs are shown to correspond to program scbeaw.s which are structur·ed, 
and are shown to be strictly less "powerful" than the monadic program 
schemas. 

A notion of equivalence is formalized as the functional equivalence 
of schemas under free interpretations, interpretations which represent 
symbolically the Mt of all interpretations of a schema. .It is shown that 
the equivalence ;.pn!Jblem for iteration scheaas is unsolvable, even if the 
schemas possess htghly restrictive properties• Questions are raised 
regarding the decidability of equivalence for various subclasses of 
iteration sche1188, and equivalence is ehown to be decidable for several of 
these classes. 

The equivalence problens for structured independent location 
schemas are examined in particular detail. A weak form of equivalence is 
shown to be undec.idB.ble for the schemas, and the general -equivalence 
problem is sbown to be related in a non-trivial mattner to the equivalence 
problem for tDUlti-tape finite automata. · 
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v ... +(x,y) 

v ... *(x,u) 

is equivalent to the sequence of statements: 

v ... +(x,y) 

u ... +(~,:y) 

v ... *(x,v) 

which in turn is equivalent to the sequence: 

v ... *(x,x) 

u ... *(x,y) 

v .. +(v,u) 

u ... +(x,y) 

if we view the sequences as portions of progra1D8 expressed in some 
~· , 

progranming language in which '+' and '*' represent addition and 

multiplication, respectively. Fran a schematological point of view, 

however, only the first two sequences are equivalent: the last sequence 

will be equivalent to the others only if the f\Blction associated with the 
,, 

symbol '*' distributes over that associated with the symbol '+'. 

1.2 Schanatology: A Brief History. 

1'he first aeh.aatized model for cmpvtatUJD a·genu:ally attributed 

t-0 Ianov [ 9). In his model, the· data apace ~,a ~tion is tt:eated 

as a single entity which is a 1 taracl v:La a:; sequaac:e, of &action 

applications, the particular function to be; .acpp:liecl a~ auy poillt in the 
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sequence depending on the outcPDtes of a number of predicates applied to 

the current value of the data space. Rutledge [26] later demonstrated 

a correspondence between the Xanov model and a class of finite state 

automata, anti it is not sui:pd.aing, theaJioa, that the equ:Lva:lience 

problem for Ianov schemas is, solvable. 

The major difficulty with the Ianov model is that it discards much 

information abOQt the essentt.:i.&l properties of programs being represented. 

In particular, the data space o.f real: coaputationa is gerie:rally <fivided 

into a nuaber of discrete cODlponents, and at each step in a computation 

functions and predicates are applied to certain subsets of these 

components, i::ather than to the total data space. The specification of 

the object components of each application establisbes a data dependency 

relation among them, and it is precisely this relation which is missing 
:i· 

from the Ianov model. 

Luckham, Park, and Paterson [16] pl;'oposed a more familiar 

schematized model program schemas iri which data dependency 

is illustrated by associating a unique symbol with each canponent of the 

data space of a computation and specifying, by means of an uninterpreted 

program consisting of assigmnent instructions and transfer instructions, 

the sequence of functions and predicates .to be applie4: d'UX\itac: the 

· canputation and the Dt.lect cm.ponen.ts. Di eack·.Appl~tioa. 'DM!y were 

able to clemoa.atmte that ..... schema• are· eapahle'of siJa\llat:Lng in a 

natural way 'llmltt•heatl £inite aut~ [25l and t:Jausi.t.Pat the- equivalence 

problem for program scbemaa is unsolvable. 



- 11 -

Much of the subsequent work in schematology has been devoted to the 

study of schematized models possessing special features which facilitate 

discussions of computational parallelism, determinacy, productivity, etc. 

(cf, [3 ], [ 5 ], [ 7], [10], [14], [21], [24], [27]). In several cases, 

which are discussed below, equivalence problems have also been considered 

in the wocrk. 

1.3 Schematology: Equivalence Problems. 

Equivalence problems for schematized models have been of considerable 

interest to theoreticians since several open problems of long standing 

in automata theory can be shown reducible to, or closely related to, the 

equivalence problems for certain classes of computation schemas. For 

example, it has been demonstrated that the equivalence problem for 

multi-tape finite automata as defined in [23] is reducible to the 

equivalence problem for.a particularly simple class of program schemas 

containing only monadic function and predicate symbols; similarly, it has 

been shown that the equivalence problem for deterministic pushdown 

automata is closely related to that for the class of schemas defined by 

deBakker and Scott [ 4 ]. But schema equivalence problems have certain 

practical applications as well, particularly with regard to the design 

of compilers. Since compilers frequently deal with programs containing 

user defined functions and subroutines which have, during compilation, 

no semantic content, procedures for deciding whether certain program 

transfonnations are equivalence preserving in a schematological sense 

are apt to be of great value, particularly if program optimization or 

simplification is to be attempted during the compilation process. For 
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example, if we are interested in whether the evaluation of some externally 

defined function may take place during program execution at some point 

other than that indicated by its position within a given sequence of 

instructions (or indeed. if it need occur at all), we are dealing with 

schematological issues. In fact, since program opti.Dlhation generally 

involves changing the structure of a program without changing its 

functional behavior, we must ·either be prepa"d to·deal wi,-tih issues of 

schematologi-o&l .. equivalence or re.strict any 4.lptiaiaation to those 

portions of a program which are completely in.texpnted at caapilation 

time (or whenever such optiaiaat.ion ia ·to occur). ·S.iD.ce inc•aeing 

eraphaais is beitlg ·P.16ced on encouraging the wideapcead eJ:un:io.g of 

procedures writt!en. by many different uaera,, each of•.whom can be 

assUlllRd to know ffT}' little about the illteDULl behavior of pncedUl:'es 

written by odlers, the fol'Jler option seeae t1- more d.e•ir&ble. 

Thus far l:e'SUlts concerning the decidability of eqttivalence for 

schematized models hav-e been qttite elusive, and ill~t ca:sea in which 

results have been obtained for fairly gene'1'81 claeees of acheibtla the 

results have been negative (i.e. hav~ indicated the \'lntlelcidabilitf of 

equivalence). 'l'h:e few positive results include the 8-0llBWhat trivial 

-result for Ianav -'Schemas mentiotted earlier; the results . of Ancroft 

Manna, and Pnueli cortcerning 1DOM4i'C functional &dlemas [ 2 ]; the 

result (for a rather st:ron.g definition of equf.valMlee} of hller for a 

class of progmm 'schema& [11 l; and the· results of Paterson for 

"progressive" program schemas (in which a computed value is illlnediately 

reused in the next computation step), and monadic program schemas 
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without nested loops in their control structures [181. In any case, the 

equivalence problems for a great many interesting classes of schemas are 

open and, despite the optimistic predictions of Paterson in [19], results 

have not been quickly forthcoming. 

1.4 Outline of the TIJ.esis. 

In this thesis, we consider the problem of deciding equivalence for 

classes of program schemas (as defined by Luck.ham et al) which have been 

restricted in certain ways in an attempt to make the problem somewhat 

tractable. Primarily, we are restricting attention to program schemas 

which contain only monadic function and predicate symbols and which are 

structured in such a way as to represent only "whilish" programs: those 

composed of assignment statements, conditional statements, and iteration 

statements (i.e. ''while" and "until" statements). Our choice of program 

schemas as a starting point for the study is motivated by the fact that 

they are quite general in their ability to model computations, and they 

permit a high degree of informality in discussions since they are 

inherently familiar to anyone who has dealt with any sort of prograllJiling 

language. Also, the equivalence problems for certain classes of the 

schemas have been studied rather extensively because of their relations 

to well-known problems in automata theory. 

We consider in this thesis several classes of schemas and our 

primary objective is to answer as many as possible of the questions we 

pose regarding the decidability of equivalence for the classes. But we 

are also interested in the relationships which exist among the classes 
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of schemas particularly whether schemas in one class may be 

simulated by schemas in another, or whether the equivalence problem 

for one class of schemas is reducible to that for another. In this 
~ : 

regard, the discussions in Sections 2.3 and 6.6 should be thought of 

not as diversions, but rather as attempts to -Daeet this obj'ective. 

Roughly, the tbes18 is organized as follaws: 

In Chapter II we define two classes of schemas: mopadic p;;ggram 

sphees and itelj!tion 1shfpe1. We show that the iteration schema 

correspond to a class of monadic program schemas whose graph 

representations poseess a certain topological structuz:e, and that this 

class of schemas is an incomplete class of lllOD&dic program schemas. 

In Chapter III we present an intuitive notion of sc~ema equivalence, 

and formalize this notion as the functional equivalence of schemas for 

"free" interpretations, interpretations which symbolically represent 

families of related interpretations. We argue that this is a correct 

formalization of the intuitive notion. 

In the fourth chapter, we demonstrate. that equivale'1Ce is not 
. ' ,} 

decidable for a restricted class of iteJ;&tion sch'818 a~ pose questions 

about the decidability of equivalence for classe:;i qf sch=11Lsposaessing 

additional restrictive properties. 

In Chapter V we show that the eq'1ivalence p1;pblem .ii solvable for 

certain classes of iteration sche!Dll,&, aQd d~scuas ~he ext~ns,ions of 

these results to more general classee of schemas. 

The sixth chapter is devoted to a study of the equivalence 
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problems for a particular class of structured schemas (the independent 

location schemas) and the relation of such problems to the equivalence 

problems for certain automata theoretic models. 

Finally, in Chapter VII we sunu:narize the main points of the thesis 

and suggest areas for further study. 
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CHAPTER II: MONADIC PBOOBAM SCHEMAS AND ITDATION SCHEMAS 

In this chapter we define formally the classes of schemas we shall 

be concerned with, and present notions of schema interp1'8t&t ions and 

executions. 

2.1 Monadic ProgJ:am ScheJJJas. 

Figures l a.ad 2 illustrate monadic program sQh.-s; figs. 3 and 4 

illustrate the ac:llemaa in flowchart fonn. 

2.1.1 Foxmal Definitions. 

The definitions given below differ in unessential ways from those 

in [16] or [1a]. 

A 1P2R!sJic RJUliV !SW. ~) is a five-tuple S • (V, F, P, I, J)) 

where: 

the 

Vis a finite set of yaryble fYl'bols. 

F is a finite set of f\!!!&l=ton syJlb9ls. 

p is a finite set of RESiiG.ttf 1J1Pol•· 
I is a finite set of in&tJ3!S&ion lakela. 

Zj> is the 9E$l8r&ll of s, a finite sequence 

following foms: 

(1) An &Sfi1.91S,P:t iQl&ljl!Stiog of the fonn 

i: x ... f(y) 

or of the form 

i: x ... y 

of instructions of one of 

where i is an instruction label, f is a function symbol, and x and y are 

variable symbols •. 
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(a) v = [x,y} (b) v;::: [x,y} 

F = [f,g} F = [f,g} 

p = [p,q} p = [p,q} 

I = [il' ... ' il4' e} I = [i1, ... i10' e} ' 

(j' is the program lj) if3 the program 

il: x <- y i1: p(x) iz' is 

iz: p(x) i3,i10 i2: x .... f(x) 

i3: x .... f(y) i3: q(x) i 4 ,e 

i4: p(x) is, e i4: x ..... g(x) 

i . 
s· y <- f(y) is: q(x) i6,i10 

i6: p(y) i
7

, e i6: y <- g(y) 

i7: x <- g(x) i7: p(x) i2, i2 

is: y .- f(x) is: y <- g(y) 

i9: p(x) iz, iz i9: p(y) i3' i3 

ilO: q(x) i11, i13 ilO: y <- f(y) 

ill: x - y e: END 

il2: q(x) i 3,e 

ii3: p(x) il4' il2 

il4: x .... f(x) 

e: END 

FIGURE 1. Examples of Monadic Program Schemas. 
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v = [x,y,z} F = [f,g} P = [p,q,r} I . . . ' 

6> is the program: 

il: x ..... y i14: r(y) i15'ils 

i2: p(x) ill, i3 iis= y .... g(y) 

i3: y ..... g(y) i16: z ..... f(z) 

i4: p(y) is, is i17: p(z) i12' iiz 

is: y ..... g(y) i18: y ..... f(y) 

i6: z ..... f(z) i19: z .... f(z) 

i7: p(z) e,e izo= p(z) i1z,i12 

is: y ..... f(y) 
iz1 = 

x .... g(x) 

i9: z ,_ f(z) iz2= y ..... f(y) 

ilO: p(z) e,e i23: z .... f(z) 

ill: x <- f(x) iz4= p(z) i13, i13 

i12: q(y) il4' i13 e: END 

i13: q(x) i21' i2 

FIGURE 2. Example of a Monadic Program Schema. 
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FIGUIE 3. Schemas of Figure 1 in Flow~it Foxm. 
~ ., . ' ' 
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FIGURE 4. Schema of Figure 2 in Flowchart Form. 
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(2) A transfer instruction of the form 

i: p(x) it,if 

where p is a predicate symbol, x is a variable symbol, and i, it, and if 

are instruction labels. (We refet to it as the ~ alternative of the 

instruction and to if as the false alternative.) 

(3) A terminal instruction of the form 

i: END 

where i is an instruction label. 

We require that the program end with a terminal instruction and that 

this be the only such instruction in the program. In addition, we 

require that the label appearing as the left portion of each instruction 

be unique and that the true alternative and false alternative of each 

transfer instruction appear as the left portion of some statement in the 

program. 

Program schemas are conveniently represented in flowchart form. 

A flowchart for a schema is a directed graph whose nodes represent the 

instructions in the program of the schema. An assignment instruction 

is represented in the flowchart by a rectangle containing the righthand 

portion of the instruction; a transfer instruction is represented by an 

oval containing the center portion of the instruction; a terminating 

instruction is represented by a circle. An unlabelled arc is drawn from 

a node n to a node n' in the flowchart if n represents an assignment 

instruction in the program of the schema and n' represents the instruction 

which follows in the program. An arc labelled 't' is drawn from node n 
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to node n' in the flowchart if n represents a transfer instruction in 

the program and n' represents the instruction labelled with the true 

alte1!'114tive of the transfer instruction. An arc la.belled 'f' is drawn 

from node n te node n' if n xepresents a tmnafer instt"UCtion and n' 

represents the inatrucH• labelled with the false alternative of the 

transfer instruction. A single arc, ...-.~iaa frca a.o node of the 

flowchart, is drawn to the node representing the f·irst instruction in 

the program. No other arcs appear in the flowchart. 

Clearly, representing a scheina by a flowchart provides us with no 

new infonaation about the canputation being represented. A flowchart 

is merely a convenient form for representillg the control structure of 

the schem's program and facilitates discussions of cer~ain topological 

features of the structure. 

2.1.2 Interpretations and Executions. 

We pro.vide an i@;*rpnt;aciop for aa MPS by specifying- a danain D 

of individuals; total monadic functions frGlll D tato D to be •••tiJC:l.ated 

with the functien a,.i>ola of the schema; total monadic predi.catea f.rom 

D into f tm,..f!lMJ to be aeaociated with the predicate ayml>Ola of the 

schema; and particular elements of the domain to lite ••sociated initially 

with the variable eJ'Dlbols of t:he schema. Each such interpretation 

associates an idealilled computer program with the achama and a 

corresponding epc;•.&• of the schema, defined as follows: 

We initially associate the appropriate elements of the danain With 

the variable symbols of the schema. We then ·execute, in the order it1 
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which they are encountered, the instructions in the schema's program. 

Execution of an assignment instruction of the fonn 'i: x ~ f(y)' 

causes the element ~f(o) to be associated with the variable symbol x, 

where ~f is the function associated with f by the interpretation and 

o is the element associated with symbol y at the time of the execution. 

Executing an assignment instruction of the fonn 'i: x ~ y' causes 

the element associated with y at the time of the execution to be 

associated with x. After executing either type of assignment instruction, 

we proceed to the next instruction in the program. 

Executing a transfer instruction of the fonn 'i: p(x) it,if' 

consists of evaluating Ilp(cr), where Ilp is the predicate associated 

with p by the interpretation and cr is the element associated with x at 

the time of the execution, and then branching to the instruction labelled 

with it or if' according as the outccme of the evaluation is ~ or 

false. 

Executing the final instruction of the program causes the execution 

to terminate. If an execution tenninates, the final set of elements 

associated with the variable symbols of the schema is taken to be the 

value of the schema for that execution and for the corresponding 

interpretation. (The value is undefined if the execution fails to 

terminate.) 

2.1.3 Free Interpretations. 

In subsequent chapters we will deal almost exclusively with a 

particular subset of the possible interpretations for a schema: the 
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~' or lietbillW' interpretations. 

Formally, a 1m, 1Qt.11ea1ia,!gn for an MPS with variable symbols V, 

function symbols F, and predicate symbols P consists of: 

(l) 'l'he dama:f;n D = F*·flv, where Av is the set {A~ I :x Ev}. 

(2) 'l'b.e initial association of the element A.'}(. with each symbol 

x EV. 

(3) The aHociatiop. of the total function cpf: D -+ D defined 111 

cpf(6) = f•6, 6 ED, with each function a~ol f in F. 

(4) 'l'he •ssociation, with ~ch predicate symbol p in P, of some 

total predieat.e ITP: D -+ U.,ftlp}. 

We note that e4ch free i.Jlte.i:preta.tion for a, s~ ha• the 8&»18· dCDBin, 

a set of strinp which wpm~ '!l~~lty tb.e va~'*e wbich IQl.y be 

associated with va.-1;iaJ>le symboJ.Jil d-uri~ .e•cut;i~ of the s«;hmqll. ln 

fact, the significance of the free interpretations is that they represent 

symbolically the set of all interpretations for a scpema. In particular, 

we shall arg'Ue in the next chapter that, with regard .to equivalence 

problems, we -'Y restrict attention solely to fi:ee sch~ interpretations. 

2.1.4 Classes of Monadic Program Schemas. 

In this section we define three ciasses of monadic program schemas: 

the free schemas, the independent location schemas, and the restricted 

location schemas. A fourth class, the st~ncl .~s, is discussed 

in the following section. 

An MPS is £.m. if no predicate is ever applied twice to the same 
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value during an execution of the schema defined by any free interpretation 

for S. Intuitively, if S is free then either outcome is possible whenever 

we apply a predicate to a value during an execution defined by a free 

interpretation for S the outcome is not constrained by the outcomes 

of previous applications. 

The reader may verify that the schemas of Figs. l(b) and .2 are free, 

while that of Fig. l(a) is not. 

An MPS is an independent location schema if every assigmnent 

instruction in its program is of the form 

i: x ... f(x) 

for some variable symbol x and some function symbol f, i.e. if the 

argmnent variable and the assignment variable are one and the same in 

each assignment instruction. (If we associate a location in a data 

space with each variable symbol of such a schema, these locations are 

independent in the sense that each value computed during an execution 

of the schema is stored back in the location from which the corresponding 

argument value was obtained -- hence the name independent location.) 

The schema of Fig. l(b) is an independent location schema; the 

schemas of Figs. l(a) and 2 are not independent location. 

An MPS is a restricted location schema if it is an independent 

location schema except, possibly, for some number of initial assignment 

instructions of the form 

i: x ... y 

where x and y are variable symbols and i is an instruction label which 
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is not the true or false alternative of any transfer instruction in 

the schema's program. (1.'his last condition ensures th.at such instructions 

are executed only at the start of each execution of the schema.) 

The schema of Fig. 2 is a restricted 11)C&ti~ ~. as is the 

schema of Fig l(b). (Clearly, any in4epenQat l~tion adieatll is a 

restricted location schema.) The schema Qf Fig. l{a) is not• 

restricted location eehema. 

We note here (and the reader may verify following Chapter III) that 

the restricted location schemas form an incomplete subcla.ss of the 

monadic program schemas, and the independent location schemas form an 

incomplete subcla•s of the restricted location schemas. We note also 

that the free monadic program schemas, free restricted location schemas, 

and free independent location schemas form incomplete subclasses of the 

monadic program schemas, restricted location schemas, and independent 

location schema.a, respectively. 

2.1.5 Structured Monadic Program Schemas. 

In the flowcharts of Figs. 3 and 4 there are several instances of 

an arc labelled with both 't' and 'f' emanating from a transfer node, 

an obvious shorthand notation for • p&ir at •=•• . one labelled 't' and 

the other labellei '£', vhidl te:miute at the sam node. In aueh a 

case, the corresponding transfer instruction in the· rep~ted 

program is clearly functioning as a 'GoTo' statement, necessary tna 

sequential ·progs:am fltut superflows in a flowchart npnsentat:ion. 
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We may eliminate such transfer nodes from a flowchart after 

redirecting any arcs which terminate at such a node to the node's 

successor. We refer to the resultant flowchart as reduced, and note 

that while it may no longer represent a valid program schema, it 

never-the-less represents a computation functionally equivalent to the 

original. 

Figure 5 shows the reduced flowchart constructed from the 

flowchart of Fig. 4. It also shows the decomposition of the reduced 

flowchart into simple blocks: 

A block is a piece of reduced flowchart which has no more than a 

single exit (which may consist of many arcs that terminate at a single 

node) and arbitrarily mnay entrances. A transfer node in such a block 

is a ~ node of the block if it is not contained in some sub-block, 

and a block is a simple block if it contains no more than one main 

transfer node. We say that an MPS is structured if it can be decomposed 

into simple blocks, as is the case in Fig.5. 

A few words about the above definition are in order: 

Most of the results in this thesis pertain to monadic program 

schemas which are structured in such a way as to represent 'while' 

schemas schemas whose programs comprise assignment instructions, 

conditional instructions, and iteration ("while" or "until") 

instructions. It has been demonstrated by Ashcroft and Manna [ 1 l 

that any program schema may be transformed into a schema so structured, 

in such a way that its output behavior is not affected; in addition, if 
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the original program schema contains only monadic function and predicate 

symbols, then so does the resultant structured schema. 

Unfortunately, the Ashcroft and Manna results have, for our 

purposes, a serious drawback: the resultant 'while' schemas will 

contain, in general, conditional and iteration instructions containing 

compound predicate expressions, i.e. expressions composed of a number 

of simple predicates connected by boolean operators. Moreover, the 

argument variables of the predicates within a given expression need 

not be the same, and in general cannot be the same. 

If we were to define 'while' schemas in the same manner as do 

Ashcroft and Manna, we would defeat our purpose in restricting attention 

to monadic schemas in the first place, since transfer-type instructions 

would have to contain non-monadic predicate structures rather than simple 

predicates. What we have chosen to do instead is define a class of 

strictly monadic 'while' schema.s, the iteration schemas of the next 

section, which correspond precisely to the structured schema.s we 

have defined above. It should be emphasized, however, that unlike the 

'while' schemas of Ashcroft and Manna, the iteration schemas fonn a 

strictly proper subset of the monadic program schemas. 

In the following section, we formalize the notion of iteration 

schema. !he correspondence between these schemas and the class of 

structured program schemas is established in Section 2.3. 
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2.2 Iteration Schemas. 

Figure 6 illustrates an iteration schema representing a canputation 

functionally equivalent to that represented by the structured MPS of 

Fig. 5. 

2.,2.1 Fonnal D&finitions. 

A (monadic) itmtign psm is a five-tuple 

S = (V, F, P, I:, "@ ) 

where: 

v is a finite set of variable Jymbgls. 

F is a finite set of fupction symbols. 

p is a finite set of pt'!;}disate symbols. 

r: is a finite set of iteration schemas, the 

t9 is the erogr!p! of S, a finite sequence of 

following types: 

(1) Assignment statement of the form 

x .... f(y) 

or of the f onn 

1ubscbe!Dtls of 

statements of 

where x and y are variable symbols and £ is a function synd>ol. 

(2) Conditions.! statement of the form 

IF p(x) THEN st ELSE sf 

s. 

the 

where p is a predicate symbol, x is a variable symbol (the ~ variable 

of the statement), and St and Sf are subschemas (the true and false 

subsdiem!s of the statement, respectively). 



S = ({x,y,z}, {f,g}, {p,q,r}, 

{sl' ••• ,s7}' 19) 

s1 = ({x,y,z}, {f,g}, {q,r}, 

{s4, ••• ,s7}, l91) 

s2 = ({y,z}, {f,g}, "' 0, (?2 ) 

s4 = ({y,z}, {f,g}, {r}, 

{s6,s7}, lP4) 

SS = ({x,y,z}, {f,g}, 0, "' c9s) 

s6 = ({y,z},{f,g}, 0, 0, t5'6) 

s
7 

= ({y,z}, [f}, 0, 0, 1S' 7 ) 
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lY: 

l5'1: 

tY 2= 

@3: 

~4: 

rJ s: 

~6: 

'6' 7: 

x ... y 

WHILE p(x) DO s1 
y ... g(y) 

IF p(y) DO s2 ELSE s3 

WHILE q(y) DO s4 
WHILE q(x) DO SS 

y ... g(y) 

z .- f(z) 

y ... f(y) 
z ... f(z) 

IF r(y) THEN s6 ELSE s7 

x ... g(x) 

y ... f(y) 

z ... f(z) 

y ... g(y) 
z ... f(z) 

y ... f(y) 

z ... f(z) 

FIGURE 6. Iteration Schema Equivalent to the Schema of Figure S. 



- 32 -

(3) Item~;l,OA UitemeQt of the form 

Wltn..E p(x) DO Si 

or of the form 

tJNTIL p(x) 00 Si 

where p is a predicate symbol, x is a variable symbol (the 1!tt yariable 

of the statement), and Si is a subschema (.the~ of the statement). 

If S' = (V', F', P', ~·, J>') is a subschema of S, then we require 

that V' c V, F' c F, P" c: P, and ~· ct. We db not pe"J:mit recursion 

in iteration schema.a: no iteration achena may be a subschema of itself. 

Insergreattw are clef'ined for iteration schemas in a 1'.Dllnner 

identical to that for program schemas. :Each interpretation defines an 

executiop. by the s~ inia manner s1-iJ,&11t tO\ t~ tor pfograa sche:asas: 

We associate the specified domain elements with the variable 

symbols of the schema, and then execute sequentially the statements in 

the schema's prop&m. New values are assodated with variable aymbols 

as indicated by assignment statements, and the programs of appropriate 

subschemas are executed in accordance with the outCOIDeS of px-e4icate 

applications made while executing conditional or iteration statements. 

The execution terminates when and if the execution of the final 

statement in the schema's program is canpleted. If the execution 

terminates, we take as the va\9 of the schema for ~h~ execution 

(and corresponding interpretation) the set of elements associated 

with the variable symbols of the schema at the end of the execution; 
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the value of the schema is und.efined if the exec:nscbm fails to 

terminate. 

Free interpretations are defined for iteration schemas as in 

Section 2.1.3~ 

2.2.2 Classes of Iteration Schemas. 

!I!!, iteration schema.4, HldeWfda&;,!aatliw ~~.ration s.chemas, 

and a•~rM;ted lQGtJ;il;gp iteration ,8~~· .. are 4et~ in manners 

analogous to those for program scheJDl.a. 

We define two additional classes of itena,tiOJl schemas which will 

be of interest in subsequent discussiop.s: 

An iteration schema is cgnditj.,RQ1·-~ if no c,oµciitional 

statement appears in its prograin, and 1'0 c~Uona+ stat~nt appears 

in the program of any of its subschemas. 

An iteration schema is a sfvie !!Pff PBctV•chem if no predicate 

symbol appears in more than one statement in the collection of programs 

belonging to the schema and its subschemas. 
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2.3 Structured ·Monadtc Program Sehea:e and Iteiat:ion Schem1:s: 

A Correspondence. 

We have asserted that the iteration lilchemas of the preceding 

section are an alternate formalization of the structured monadic program 

schemas of Section 2.1.5. In this section, we describe informally 

effective procedu't'es for proceeding from one formalization to the other. 

Of course, we have not "11: made :paoiae the notion of schema equivalence, 

but the procedures are highly intuitive and an e:a-trect for v:Lnually 

any reasonable notion of equivalence. 

It is qu~te an easy task to construct from an arbitrary iteration 

schema. a functionally equivalent structured MPS: 

Let s be an a'tbitracry itel.'ation schema and suppose that we are 

able to expre·ss ea-ch sub·s-chema of s as an equi.va'lent ctaposi:tion of 

simple blocks. Then we can e~press each statement in the prt>gram of S 

as an equivalent -composition of a:i:mple blocks., as follow&: 

(1) If the statement is an assigmnent statement <:X, then the 

equivalent composition of blocks is: 

I 
\ 
- -
... _ - ' 

- -
\ 
I 

(2) If the statement is a conditional statement of the form 

IF p(x) THEN st ELSE sf 

then the equivalent composition of blocks is: 



,­
t B 
' t ,_-T"_ 
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-- --, 

-· 
------""" 

Where Bt (Bf) is the 

composition of simple 

blocks equivalent to 

subschema St (Sf). 

(3) If the statement is an iteration statement of the form 

WHILE p(x) DO S. 
1 

then the equivalent composition of simple blocks is: 

r----- --, 
I 
t 
I 
I 

B. 
I i I 

\ - =..-------' -

Where Bi is the 

composition of simple 

blocks equivalent to 

sub schema S .. 
1, 

The last case (the statement is an UNTIL statement) is similar to 

the third. 

The structured MPS equivalent to the schema S is formed quite simply 

by connecting sequentially the compositions of simple blocks correspcniing 

to each of the elements in the program of s. 

It is now clear that we can construct an equivalent structured 

MPS from any iteration schema we need only work from the inside 

out, i.e. we need only begin with subschemas composed solely of assignment 

statements, then those composed of these schemas and assigmnent statements, 

etc. 
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'!be reverse construction is equally stwightforward: 

We begin by replacing each. :tactangle in the_.Jlowchart of a 

structw:ed MPS by its contem:s enclosed in bracket•. ('!be brackets 

will denote a portion of th• flcwc:bart which hAd: been converted to 

equivalent iteration schema form.) We thenmerge the contents enclosed 

in adjacent brackets, i.e. becomes 

When we have canpleted this merging, either the entire flowchart 

will consist of a bracketed expression (fotlowed by an END node), in 

which case we have completed the con•truetion, or the flowchart will 

contain structures of the fo:cm: 

\ 

or of the form: 
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We replace the first type of structure with: 

[IF p(x) THEN So: ELSE S 13 ] 

and the second with: 

where So: becomes the subschema 

with program o:, and s13 becomes 

the subschema with program 13 • 

[WHILE p(x) DO So: J if b is 't', or [UNTIL p(x) DO So:] if b is 'f', 

where So: becomes the subschema with program o:. 

This procedure is repeated recursively until the entire remain:ing 

"flowchart" consists of a single bracketed expression followed by an 

END node. In such a case, the expression in brackets is the program of 

the iteration schema equivalent to the original structured program 

schema, with subschemas as given above. 

2.4 Incompleteness of Iteration Schemas. 

Our reason for selecting iteration schemas as the primary 

computational model of the thesis is that we wish to deal with 

equivalence issues for a class of schemas less "powerful" than the 

class of monadic program schemas, but still general in its ability to 

represent computation. Iteration schemas clearly satisfy the latter 

criterion, but we might question whether they satisfy the former. 

Clearly there exist monadic program schemas which are not structured, 

but do the structured schemas represent a complete subset of the 

monadic program schemas? In particular, we might ask if the presence 

of boolean operators is really essential for the simulation of arbitrary 
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MPS' s by 'while' schemas, or whether any MPS may be simulated by an 

iteration schema. 

In this f i.nal section of the -chapter, we demonstrate that such 

operators are indeed essential for the simulatio~ ,of arbitrary MPS' s 

by 'while' ach-.s. (In the following chapter, we define formally 

schematic equivalence. Por the purpose of th• following discussion we 

state that a pair of ~· am Afi1t -.ilvalcit i.f there exists an 

interpretation for the schema• such tha~ the elll!Cution of one schema 

tei:minates, while that of the other schesaa fails to tenninate.) 

Conai4er the MPS of Fig. 7(ah It ia intuU:ive.l:y obviou 

(and can be d.erivetl inlae4iately frGm 'l'UUlta in (14] ) that if s ia 

equivalent to scae iteration sdlema, it. is., equivalent to some itu:ation 

schema which has predicate symbols (p,q} and function symbols {f,g}. 

We note that an e::recution of S ·is guaunteed to diverge if it is 

defined by an ittterpretation in which the predicate alfaociated with p 

and that associated with q are each identieally ~· Let I denote the 

free interpretation which saeisf ies this condition. 

Now, suppose that there exists an iteration schema S' equivalent 

to s. S' must contain at least one wm.E statement s containing one 

of the predicate symbols, say p, such that s is e::recuted during the 

execution of S' defined by I. Let D denote the domain of I, and let X 

denote the set of elements of D at which the predicate associated with q 
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(a) S: 

(b) 

IF p(x) THEN x .... f(x) 
y .... x 

WHILE (p(x) 

IF p(x) THEN 
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q(y))DO [x .... f(x)l 
y .... x 

ELSE [x .... f(x)J 
y .... x 

[ 
x .... g(x)l ELSE [x ...,. f(x)l 
y .... x · y .... x J 

FIGURE 7. Unstructured Schema and Equivalent 'While' Schema With 

Boolean Operators. 
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is evaluated prior to the first execution of statement s. Let I' be the 

free interpretati01;1. diff•ring" _from I only in that Il ' is associated with 
q 

q, where II ' is the predicate defined as follows: q 

II ' (6) •- t'.rua,. ~ E X 
CJ; ~ 

II '(6) = fal1e, t f. X 
q 

The e~cution of S' clefined by I' cleiu:-ly cannot t4!\Dli'8-te since the 

behavior of S
1
for I allc:l J;' is i~nticfl 1.aatil sta.-nt sis executed, 

I , , 
whereupon S muat dive~ b~uee the padicata aNOQiated with p is 

identically lJl!I• But the e~cutio~ of S will texminate as soon as II ' 
q 

is evaluated at: an el~nt of {D-X), and since X is finite and I' is a 

free interpretation, Ilq' .!EIS. eve~ually be evaluated at an element of 

(D-:X), contra.c:Ucti• the equivalel\ce of the two schemas. 

A 'while' schema containing boolean operators is shown in part (b} 

of Fig. 7; the reader may verify that this schema is equivalent to the 

schema s. 
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CHAPTER III: EQUIVALENCE 

3.1 Equivalence Introduction. 

Intuitively, we wish to consider a pair of schemas equivalent if and 

only if the value of each schema is the same whenever both schemas have 

been provided with the same interpretation. This notion of equivalence 

is rather strong. In particular, it is a much stronger notion than 

would be desirable if we intended to apply schematological results to 

interpreted models, since it provides no mechanism for the specification 

of any relations which might exist among the functions and predicates 

comprising the schema primitives. But this is precisely what makes it a 

logical notion of schematological equivalence: equivalent schemas are 

required to exhibit the same "black box" behavior, i.e. they are required 

to exhibit, for each interpretation, the same output behavior, with no 

constraints on their internal behavior. 

The notion of equivalence as we have presented it does, however, 

have a serious drawback: it makes sense only if applied to pairs of 

schemas which have the same sets of predicate symbols, function symbols, 

and variable symbols. This is indeed unfortunate, since we would 

certainly like to consider the schemas S and S' of Fig. 8 equivalent, 

despite the fact that S' contains a function symbol and a predicate 

symbol not contained in S. Likewise, we might wish to add variable 

symbols to a schema in order to remember intermediate values during an 

execution, without considering the affects of these new symbols on the 

resultant schema value. (In fact, the addition of such variable symbols 



- 42 -

S == ([x,y}, [£}, r/J, r/J, ~) 

where fJ> is: x +- f(x) 

y +- f(x) 

where '@ ' is: x +- f(x) 

y .... g(y) 

IF p(y) THEN sl ELSE s2 

and s 1 == ( {x,y}, {£}, r/J, r/J, 6\) 
where ~ 

1 
is: y ,_ f(x) 

and S 
2 

== ( { x, y }, { f } , r/J, r/J , ~ 2 ) 

where '()) 
2 

is: 

y +- f(y) 

FIGURE 8. Equivalent Schemas With Distinct Sets of Predicate Symbols 

and Function Symbols. 
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is necessary, in general, if one wishes to transform an arbitrary MPS 

into an equivalent 'while' schema in which boolean operators are 

permitted.) 

We may handle the problem caused by schemas with distinct sets of 

predicate symbols and function symbols by considering extensions of 

interpretations. If we permit an interpretation for a schema to 

associate predicates and functions with symbols which do not appear 

in the schema, we may extend any interpretation in such a way as to 

provide an interpretation for some other schema. If we begin with 

consistent interpretations for a pair of schemas (i.e. interpretations 

which do not associate distinct functions with a common function symbol 

or distinct predicates with a conmon predicate symbol), then we may 

easily construct an interpretation which is an extension of each of the 

interpretations. lb.us we may consider a pair of schemas to be equivalent 

if, whenever they are provided with consistent interpretations, the value 

of the schema for its interpretation is the same in each case. 

lhe problem posed by pairs of schemas with distinct sets of variable 

symbols could be handled quite easily by adding a sixth component in our 

definition of schema a subset of variable symbols which would be 

considered output symbols, symbols whose values at the end of an 

execution would comprise the value of the schema for that execution. We 

prefer to live with the shortcomings of our present notion, however, 

rather than introduce such a component, since the presence of non-output 

symbols in the schemas would add in unessential but tedious ways to the 
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complexity of certain proofs in subsequent chapte-rs. Als~» we would 

not gain much by its introduction, since most results concerning the 

decidability of equivalence for classes of schemas with "t:otal output0 

imply the same .raaults for corre•p~ oCla.sse• of ~s wU.h 

specified c:>utput ~·· In pa.~cu~~, a~e -.qave a pair of 

schemas with a c~ set of ~tput s}'lllbG>l.•, pl• SOfl8 other variable 

symbols which may be di.ffezent in eac:ll·. ~#· We c.l&1l a94, addi..tional 

variable symbol• to e&dl SCU. to en.au.a c:hat tbe set of av.ch symbols 

is th.e se.me in each CAN, and then add to ~ e1J4 .. 9f eadl proap:oaa ·the 

statement 'x .. y' , for each non ... ~t,pu,t s~l x •-' .eQqe ttpecil.,£~ 

output symbol y. Clearly,. the "•µlta~ .. ~s wUl be "uivalait in 

the ~se we ha.ff prcapoeed if aQ4'1 oaly if the o~t&Ln&l .aOO..s an 

equivalent: wbeu &tteation is i-eatricte4 tp fl'-rticvJa~ ()Utpvt sysnbols. 

Earlier we defined the claas of free inter.pntat:i:.one. for schelas, 

and noted that eaeh fate inteJ:Pretatt.on i:epmsentl8 s}'lllbolioally a family 

of closely related iia.taJ:"pretaU.ons. h woal.4· be quite OODYenieat lf we 

could restrict attention to free interpretations in (;)Ur discussions of 

equivalence, since such interpretations have several desJ.rable 

properties. For one thing, all free interpretatiQns for a schema have 

the same domain and interpret each fUQ.Ction sym)>o1 in the saJDe manner. 

Hence, we may specify a free interpretation solely by.· specifyiili the way 

it interprets predicate symbols. Also, du•ing an execution defined by 

a free interpretati® for a schema, identical val~s D.lllY l>e generated 

only if they are genel'8ted via precisely the saUle sequence of fUDQtion 

applications, and the value itself makes explicit this sequence. In 
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addition, the application of a function to a vat~ during. sµc;h an 

execution must result in a different value, and this value must be 

longer than the original when viewed as a string of symbols. This 

last property is particularly significent when dealing with restricted 
.•. 

location schemas, since it implies that the sequence of values associated 

with any variable syml>ol -during sUch an eill'etitbm ·will be a sequence of 

Finally, and pemap• meat 1mp0'.l'tae1y, we (:4n"'exp1oit t'he property of 

freeness in a schelt only if we aze,·dea1ing vi.th aecUt,iou qf the 

schema under free'interpretations. 

Fortunately, it is easy to show that a pair of schemas are 

equivalent for all inte'l'J>'l'et:&tioa8 if aiid only 'tf they SN equivalent 

for all free interpntations. It is only··nece-ry 'to show that if 

than exist consistent i.m:erpz:etat·lona Whidi' ~amte the rtcm .. 
equivalence of two achemas, then the fxee' i'lit'erpretations which 

z:epresent them symbolically are aleo cotia.fetent' «i1el also demonstrate 

the n.on-eq\d.valence of the ICh_.ai...: '.Ebe prc>bf• c#. t:lte' first part of the 

stateamt is trivial; the proof of the second part is by induction on 

the lengths of the final values of vari@,l.ea f.Q~ the •~utionc defined - '·. -, . ,,, ' -

by the free interpretations., and is also at~~JllJ18W•. The .. ieader 

is referred to [l4J for details. 
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3. 2 Strong Eq.uivalence Definition. 

We term the notion of equivalence we have just discussed strong 

equivalence, since it is strong enough to imply.most other reasonably 

defined forms of equivalence. Formally: 

Let I be an interpmtation for S<X98 achema, and let D be the 

domain of the interpretation. Let F be a aiet of funct:£on symbols and 

P a set of predicate symbols whic:.h a,re AQt U\te:cpmted l>y I. ?hen a 

(P ,:r:n-q~aiQQ of I is the objec.t fODIBd by adJ°'ai&g to I, for each 

symbol p in P, a total predicate Ilp: D ... -~1£ala}, .and £or each 

symbol f in F, a total function cpf: D -+ D. 

Let s1 and 62 be arbit:i;ary scbemae with possibly distJnct sets of 

function or predicate symboLs. Let F 1 ~ P1 deQQte t:he eec:s of 

function symbols aad pJ:edicate symbols, ~:spectiwly, which appear in 

s
1 

but not in s
2

• Similarly, let F2 and P2-denote the sets.of function 

symbols and predicate symbols which appear in 62 but not in s1• 'Dten 

an interpretation I1 for s
1 

is coaaj.5agt: with an interpretation 12 for 

s2 if some (Pl'F1 )-extension of 12 is a (P2'F
2

)-extension of 11• 

A schema s1 is stt2!18lv egpivalent to a schema s2 if the value of 

s1 for a free interpretation I 1 is the same as the value of s2 for a 

free interpretation I
2

, whenever I 1 and I 2 are consistent. 

Unless otherwise noted, equivalence shall refer to strong 

equivalence in the remainder of this thesis. 
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3.3 Weak Equivalence Definition. 

Several other notions of equivalence have been proposed in the 

literature, one of which will be of interest later when we explore the 

way in which equivalence problems for structured and unstructured 

independent location schemas are related: 

Schemas s
1 

and s2 are weakly equivalent if the value of s1 for an 

interpretation I 1 is the same as the value of s2 for an interpretation 

I 2 , whenever I
1 

and I 2 are consistent free interpretations and both 

values are defined. 

It should be noted that weak equivalence is not, in fact, an 

equivalence relation. In particular, the relation is not transitive 

since any pair of schemas are each equivalent to one whose executions 

diverge regardless of interpretation. 
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CHAPTER IV: UNSOLVABLE PBOBLEMS 

Luckham, Park, and Paterson have demonstrated in [16] that the 

equivalence problem. for monadic program schemas is recursively 

unsolvable. Br.iefly, thay have demouatmted that the schemas are 

capable of simulating two-head finite automata, and have noted that 

the equivalence problem for the autOlllta was shewn unsolvable in [25]. 

'!be schemas which they constl:UCted to simulate the automata were 

independent location schemas except for an initial assignment instruction 

of the form 'x ... y' (which corresponds to the placu\8 of both heads on 

the tape of an aut:Q91rton} and"we have·, therefare, ·tbft eqoilifel~ce is 

undecidable for restri.-cted· location· monaftc prog.,.. sehema&. 

The e:rample 1n Section 2·.4 demc:mnrates that· re'Stricted location 

iteration schemas are strictly less powerful' than restricted· location 

MPS's. Moreover, it can be shown (cf, [13]) that there exist restricted 

location MPS's which cannot be simulated by restricted location 'while' 

schemas, even if we permit boolean expressions in conditional and 

iteration statements. (Informally, the xeason we cannot, in general, 

construct such a simulating schema is that the flowchart of an arbitrary 

restricted location MPS may contain a directed cycle with many different 

exits. To place such a cycle in 'whilish' form requires merging all of 

these exits into one, and "remembering" the values of relevent variables 

at points in the new cycle which correspond to the exit points in the 

original cycle. When the merged exit is taken, the correct values may 

then be associated with each variable symbol, based on which of the exits 
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would actually have been taken in the original flowchart. The 

appropriate values are remembered by assigning them to new variable 

symbols, and it is precisely these assignments which prevent the 

resultant schema from being a restricted location schema, since they 

must be made within the cycle at points corresponding to the original 

exits.) 

It is clear, therefore, that structured restricted location 

schemas are significently less powerful that restricted location 

schemas in general, and we might hope that the added structure is 

sufficient to render equivalence decidable for such schemas. 

Unfortunately, this does not prove to be the case. In fact, we 

are able to prove that equivalence is undecidable even if we look at 

restricted location schemas which are "totally" structured 

in which even conditional statements have been removed. 

those 

In this chapter we prove that equivalence is undecidable for 

restricted location iteration schemas, and that it is also undecidable 

for such schemas which are conditional-free. For lucidity, we present 

the result for the more general class of schemas first, and then discuss 

the way in which the procedure may be strengthened to establish the 

result for the conditional-free schemas. 
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4.1 Post's Correspondence Problems. 

We begin by considering two well-kaown unsolvable problems: the 

Post Correspondence Problem and the Modified Post Correspondence Problem. 

A !m Contspopdepce ?rgblem is an oraered pair 

C • (A,B) 

where A = { w ' w ' ... w } 
' 

and 

1 2 

B - { yl' y2' 

w = si1·si2· i 

Yi = ri • r. • 
1 l.2 

.... 

... 

.... 

k 

' yk} 

•si 
61 

·r 
ia 

i 

si ,ri E {O,l} 
j j 

We say that the Post Correspondence Problem C hi.ls a solWjion if 

and only if there exists a sequence of integers i 1, ••• ,im' m ~ 1, 

1 s; i s; k, 1 s: n s: m, such that 
n 

• • • ••• • y 
~ 

A Modified !2!S Comspondepee Problem is a pair (C,.t), where C 

is a Post Correspondence Problem as above, and .t is an integer, 1 s: .t s: k. 

We say that the modified problem has a solution if and only if there 

exists a sequence of integers i 1, ••• ,im' m ~ O, 1 s: ins: k, 1 s: n s: m, 

such that 

It is recursively undecidable whether a given Post Correspondence 

Problem or a given Modified Post Correspondence Problem has a solution. 

(See, for example, [ 8 ]. ) 
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4.2 A Note on Notation. 

We will generally define schemas in terms of their programs and 

variable symb9h l>eiag def iped implicitly as tho1e appearia.g in .the 

prog~au. In mo1t cases, in fact, we will aot .»other to diet:,nguish 

between a sch.., ancl its proaraa, .. reierring to etther as • "sch.-'' .. 

When convenient, we will permit. c~ , booleau eapreseions to 

appear in conditional statements of an iteration schema. We note 

that 

for any boolean expression b. is equiv~lent to 

and that 

IF (b v b') THEN st ELSE sf 

for any boolean expressions b and b' is equivalent to 

IF b 'l'BBN st ELSE s I 

where S' is 

IF b' THBH st ELSE sf 

.. 

and we are assured, therefore, that permitting boolean expressions in 
' .. 

conditional statements is indeed a notational convenience, and does not 
\,; 

in any way alter the class of canputations representable by iteration 

schemas. 
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4.3 Undecidability of Equivalence for Restrict&d Location Iteration 

Schemas. 

Let c be a Poet Coneapomieace Probleaaa 4efined in Section 4.1. 

We show how to conatwct a xeatrictei locat:llen> ttentica schema S with 

the property that aa. free iaterpret'atioa I deft.nae a termimting 

execution of s if aad ouly if the··. prob lea C baa a sol1itlon. 

Let 8! be the iteration .chem& wllou prosraa it,eapty, and let st 

be the schema: 

WHILE p(:x} DO SE 

UNTIL p(x) DO 5E 

for some predicate symbol p and sane variable symbol :x. That is, St is 

a schema for which each interpretation defines a non-terminating execution. 

Let Po and p1 be distinct predicate symbols different f ran p, and let 

s0 be the schema: 

IF (po(x)" (""'lpl(:x))) THEN SE ELSE st 

and let s1 be the schema: 

IF (pl(x) "(-ipo(:x))) THEN SE ELSE st 

Suppose we interpret the predicate symbols p, p0, and p1 over sane 

domain D. We may consider an element of the domain as representing the 

symbol 'O' if, when this element is initially associated with symbol x, 

the execution of s0 defined by the interpretation te:cminates. Similarly, 

we may consider the element as representing the symbol 'l' if, when the 

element is initially associated with x, the execution of s
1 

defined by 
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the interpretation tenninates. Viewed in this way, no element of D may 

represent both 'O' and 'l', although some elements may represent neither 

symbol. 

For each i, 1 $ i $ k, let Aw be the schema: 
i 

IF q(x) THEN ss. ELSE st 
l.l 

x .... f(x) 

IF q(x) THEN S s. 
l.2 

x .... f(x) 

IF q(x) THEN S s. 

x +- f(x) 
J.5. 

]. 

ELSE S 
t 

ELSE St 

(In the above, q is some new predicate symbol and ss. 
]. j 

denotes, for each 

j, the schema s 0 or the schema s 1, according as si. is 
J 

0 or 1.) 

In this manner we associate a schema with each string of symbols in 

the first component of the problem c. If we provide an interpretation 

with some domain D for the schema Aw , then the execution of Aw 
i i 

defined by the interpretation will diverge unless the sequence of symbols 

represented (in the way described above) by the elements " , cp ( v ) , 
f 

0.-1 
, Cfl f J. ( " ) comprise the string w i, where " E D is the 

value initially associated with x and q;if: D ~ D is the function 

associated with f by the interpretation. The execution will also diverge 

if any evaluation of the predicate associated with q has outcome false 
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during the execution. (The reason for the inclusion of q in the schema 

will become apparant later.) 

Let s
0

1 be the schema identical to s
0 

except with variable symbol y 

in place of variable symbol x; let s
1

' be the schelm. identical to s
1 

except with y in place of x. 

For each i, 1 s; i s; k, let B y be the schmna: 
i 

IF q(y) THEN s ' ELSE St 
ri 

y .... f(y) 1 

IF q(y) THEN s ELSE St 
ri 

y .... f (y) 2 

• 

IF q(y) THEN s ' ELSE st 
ri 

(j 
y .... f(y) i 

(In the above, Sr ' denotes, for each j, the schema s0
1 or the schema 

ij 
s1 •, according as ri. is 0 or 1.) 

J 

These schemas correspond to the strings in the second component of 

C in the same way as those defined previously correspond to the strings 

in the first. 

For each i, 1 < i < k, let R1 be the scheJD8.: 

IF ti (z) THEN Aw ELSE S 
i E 

IF ti {z) THEN By i ELSE Ri+l 
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where each t is a distinct new predicate symbol. 
i 

Let R1 be the schema: 

and let 

IF t 1 (z) THEN Awl ELSE SE 

IF t 1 (z) THEN By l ELSE Rz 
z ... f(z) 

~be the schema: 

IF tk(z) THEN Awk ELSE SE 

IF tk(z) THEN By ELSE st k 

Finally, let S be the schema: 

y .... x 

IF pI(z) THEN R
1 

ELSE R
1 

WHILE pI(z) DO R
1 

IF q(x) THEN st ELSE SE 

IF q(y) THEN St ELSE SE 

We claim that some execution of S under a free interpretation will 

terminate if and only if the Post Correspondence Problem C has a 

solution. In particular, suppose that some such execution of S 

terminates. Let n denote the number of times during the execution of S 

that the subschema Ri is executed, and let tj , tJ. , ••• , t. be the 
1 2 Jn 

sequence of t's whose applications resulted in~ outcomes during the 

executions of~· It is clear from the construction that the value of 

x at the end of the execution of S must be fml.~ x' where m
1 

= 

... • w . I, and that the value of y at the conclusion of 
Jn 
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the execution must be ffAi·A 
:x' where m2 = I Yj • Y . • • • • • Y I. 

1 12 Jn 
Also, the sequence of symbols represented ·by the elements 

Ax, f•A-x, ••• , fIAi·Ax must comprise w =, wj 1 ·.~j2 • ••• 

otherwise the execution of S would have diverged at the ell:IBcution of 

some subschema Aw when it was discovered that the wrong symbol, or 
i 

no symbol at all, was rep.resented by an element. Similarly, the 

sequence of symbols repreaented by 

comprise Y = Y
11 

· Yj
2 

• ••• • yjn, and. ctxerefore ieimust be the case 

that w is a prefix of Y, or vice veraa. 

But it must also be the case that D\ and m
2 

are' identical: 

The value associated with x is tested with the predicate 

corresponding to symbol q each time a statement of the form 'x .... f (x)' 

is executed, and similarly for the values associated with y. In each 

case but the last the outcane of the test is ..tJil!&, otherwise the 

execution would have diverged. Now, iiupPc>•e ttia't Ill! and ~ s.i:e not the 

same; in particular, suppose that m1 > ~· It mCYt be the case that 

Ilq(f~•,'1 x) is .UY! (where llq is the predicate aH0cf.1ited with q). But 

then the execution of S would have dt¥erged -.hen the £ifth ltatemlllnt in 

its prog:i:a.m was executed, a contftdict:lon. Hence:~·• ~· 

But then it must be the case that w = Y, and thus J
1

, ••• , jn 

must be a solution to the correspondence problem c. 
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The remaining arg\Jlllent, that some execution of S under a free 

interpretation terminates if C has a solution, is also quite easy. 

Suppose that i
1

, ••• ,im is a solution for C. Then we provide S 

with the free interpretation that associates with p
0 

the predicate: 

IIP (fn• .6. ) =~if the (n+l)st symbol of w . 
0 x ii 

.w 

is O, or false otherwise 

that associates with p1 the predicate: 
n 

IIP (f ·Ax) = true if the (n+l)st symbol of w .• 
1 l.1 

is 1, or false othetwise 

that associates with q the predicate: 

II (fn• .6. ) = false if n 
q x ... 

otherwise 

that associates with t., 1 ~ j ~ k, the predicate: 
J 

n 
Ilt ( f ·A ) = ~ if j = i , 1 ~ n ~ m, or fa 1 se 

j z n+l 
otherwise 

that associates with p the predicate: 
I 

n n (f ·!Ji. ) = ~ if n < m, or false otherwise 
Pr z 

and that associates with p an arbitrary predicate. 

i 
m 

The reader will verify that the execution of S defined by the above 

interpretation is guaranteed to terminate. 

From the above construction we have: 
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Theorem 4.1: 

The equivalence problem for restricted location iteration schemas is 

unsolvable. 

Proof: Suppose that the equivalence problem were solvable. Given an 

arbitrary Post Correspondence Problem C we could construct a 

restricted location iteration schema S as outlined above. The 

correspondence problem would have a solution if and only if 

S were not equivalent to the schema St' and we would therefore 

be able to decide if C has a solution, contradicting the known 

unsolvability of Post's Correspondence Problem. 

D 
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4.4 Undecidability of Equivalence for Conditional-Free Schemas. 

In this section we describe how a conditional-free, restricted 

location schema may be constructed from an arbitrary Modified Post 

Correspondence Problem in such a way that some execution of the schema 

terminates if and only if the correspondence problem has a solution. 

Let C be an arbitrary Post Correspondence Problem as defined in 

Section 4.2, and let C' = (C,£) be a modified correspondence problem, 

where £ is an integer between 1 and k, inclusive. We begin by modifying 

some of the subschemas of the preceding section: 

We note first that the schema s0 is equivalent to the conditional­

£ ree schema: 

UNTIL Po(x) DO SE 

WHILE p
1

(x) DO SE 

Similarly, the schema s
1 

is equivalent to: 

UNTIL p
1

(x) DO SE 

WHILE Po(x) DO SE 

For each i, the subschema Aw consists of assignment statements 
i 

and conditional statements of the form: 

IF q(x) THEN Ss. ELSE Si 
].j 

Clearly, we may replace each such conditional statement with the 

statement: 

UNTIL q(x) DO SE 

followed by the sequence of statements which makes up the program of the 
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subschema Ss. • Hence, each such schema Aw can be transformed into 
i. i 

J 
a conditional-free schema. In a similar manner, each subschema of the 

form By i can be transformed into a conditional-free schema. 

For each i, 1 ::;; i ::;; k, let Di be the schema consisting of the 

statements of the schema Aw , followed by the statements of the schema 
i 

By . , followed by the statement: 
i 

z .... f(z) 

Each D can be made conditional-free by using the conditional-free 
i 

schemas equivalent to A w and By .• 
i i 

Let R be the schema 

WHILE t 1(z) DO D1 

WHILE t 2(z) DO D2 

Finally, let S' be the schema: 

y .... x 

a 

f3 

WHILE pI(z) DO R 

WHILE q(x) DO SE 

WHILE q(y) DO SE 

where a is the sequence of statements which makes up the schema Aw i,, 
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and 13 is the sequence of statements which makes up the schema B13 .t. 

Since each of the component schemas of S' is equivalent to a 

conditional-free schema, S' may certainly be made conditional-free. 

The reader may verify that some execution of S' defined by a free 

interpretation for the schema terminates if and only if the problem 

C' has a solution. (The argument is virtually identical to that 

given in the previous section.) 

Thus we have: 

Theorem 4,2: 

The equivalence problem for restricted location, conditional-free schemas 

is unsolvable. 

Proof: The decidability of equivalence for such schemas implies the 

solvability of the Modified Post's Correspondence Problem. 

D 

4.5 Discussion. 

The schemas of Theorem 4.2 are a rather restricted class of monadic 

program schemas, more restricted than any class for which the equivalence 

problem has previously been shown unsolvable. This is not actually 

surprising, however, since the effort which has been expended in the 

study of equivalence problems for schematized models has been directed 

primarily towards finding broad classes of such models for which 

equivalence ]& decidable, rather than restricted classes for which it is 
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.llilt· The paucity of results which have been obtained to date, however, 

suggests that perhaps both directions should be explored, if only to 

gain some insight into the types of restrictions which are apt to lead 

to solvable problems. 

In a modest way Theorem 4.2 provides us with some such insight, 

since it demonstrates that structure, or the lack thereof, is not in 

itself a key to equivalence problems in monadic program schemas. We are 

led to inquire, therefore, whether structure, taken in conjunction with 

other reasonable restrictions, might lead to solvable problems, or 

alternatively whether the constructions of the previous sections can be 

strengthened to yield results analogous to that of Theorem 4.2 for yet 

more restricted classes of schemas. 

For example, what is the effect of restricting the number of 

distinct symbols in the schemas? The schemas in the construction of 

Section 4.4 employ only a single function symbol, but arbitrarily many 

predicate symbols. At the cost of some lucidity, however, we could 

present a construction involving schemas with a single function symbol 

!ll!! a single predicate symbol (see Appendix A), and thus restricting 

the number of predicate and function symbols helps us little in our 

quest for solvable problems, even if dealing with totally structured 

schemas. Matters are slightly different with respect to variable 

symbols, however: while it is an easy matter to present a construction 

employing only two variable symbols (we merely use x or y in place of z), 

no further reduction is possible in the construction, since the 
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equivalence problem for schemas with a single \rariable synlbol reduces 

to that for finite state autt111ata. 0 

Prcxnpted in part by interesting results for certain interpreted 

models for ccxnputation [17,28), we might ask about the effect of 

limiting the number of levels of iteration in structured schemas. We 
.) •\ 

,note, for instance, that the construction of Section 4.3 employs schemas 

with two levels of iteration, while that of Section 4.4 employs schemas 

with three levels. Is equivalence decidable for structured schemas with 
,,., 

' ._, 

one level of iteration? Is equivalence decidable for conditional-free 

schemas with two levels of iteration? (Both· of these questions are 

open. It .!! known, however, that eqUivaience 1~ ·ciecic:l&ble for 

conditional-free schemas with a single level oi'iteration, since these 

schemas are a subclass of the "unnested loop1'· sch.m's of Paterson [ 18 J.) 

Other restrictions we consider follow frcxn the observations that 

the schemas in the previous sections are not free; that they an- p<1:9perly 

restricted location, as opposed to independent location; and that certain 

predicate letters appear in several statements in the schemas. We might 

ask, therefore: 

Is equivalence deeidable for such, ·~~• ybjcb,.,ar.. fnte'l Wb.~ch are 
• ' , .... ., ' ~. ! . ·, ••• ,, ····~·... • • ' • " 

independent location schemas? Which are single ap.,.aJ:"&nc;e •~s? Wh:lch 
~ I • ·l • · • · . 

possess various combinations of these properties? 
r . - ' ' 

Answers to soma of these questions .an pRHnted tatha, following 

chapter. 



- 64 -

CBAPrn V: SOLVAJIJ! PROBLEMS 

In this chapter we provide aff~._t!i.ve ._'1'11 to aae of the 

q-uestions raised at the end of Chapter IV. The techniques we employ 

are hardly ganeraU.aable to non-atructuzed schemas, but we are confident 

that they are applicable to claaaes of etructund acheMs more general . 
than those we consider in this chapter. We are concerned, therefore, .. 
with illustrating theee techniques aa well as with obtaining specific 

results. ('l'he f irat case we con.aider, for uaaple, ii perhaps iather 

more pedantic than theoretically intezesting.) 

Briefly, the approach is as follow~: 

We damoustrate that for certain classe.s of scbemf1s it ia posaible 

to find iteration sta.tements in pairs of eqaj.valft.nt schemas which play 
• • p • -·: -

similar roles during consistent schelqa e:acµti~,. i.e. statement• which . . . . . . 

execute the same number of times and test the same values during such 

e:xecutions, and which affect in a s:f.Jlilar •nner the variable 1ymbols in 
··, .• :_, 

each schema. Given an arbitrary pair of achemaa in the claH, we 

identify statements which must be so related if the sche11Wls are equivalem:, 

and use their assumed similarity to reduce the equivalence of the schemas 

to that of simpler schemas, a procedure which is applied recursively 

until the problem ha• been reduced co·t1ac· for ·acbilll1·w1u;.• iquivalence 

is trivially decidable. 

'!he approach is illustrated in Section 5.5, after formalizing the 

notion of "similar roles" and pnaentiiq •aae preUaiMry reaulta. 
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5.1 Test Sequences and Logic Equivalence. 

Let S be an iteration schema with predicate symbols P, and let D 

be the domain of the free interpretations for s. Then the set of tests 

for S is the set D X P. 

Suppose that s is a conditional or iteration statement in S and 

that E is a free execution of S (that is, an execution defined by a free 

interpretation for S). Then a test T = (o,p) is said to be~ !.t.! 

during ! if the predicate assigned to symbol p by the interpretation 

defining E is evaluated at the expression o during the execution of 

statement s. (The application must be made during the execution of the 

statement itself, rather than during the execution of the subschema 

appearing in the statement.) We denote by TESTS(s,E) the sequence of 

tests ma.de at s during E, and by TESTS*(S,E) the sequence of all tests 

made during E (including those made during the execution of statements 

in subschemas of S). 

Let E and E' be executions of iteration schemas Sand S', 

respectively. We say that E and E' are consistegt if they are defined 

by consistent interpretations for the schemas. Let s be a conditional 

or iteration statement in s, and let s' be a conditional or iteration 

statement in S'. Then s and s' are logic eguivalent if TESTS(s,E) ""' 

TESTS(s',E') whenever E and E' are finite, consistent executions. 

Later in this chapter we show that for certain classes of schemas 

logic equivalent statements must appear in equivalent members of the 

classes. In fact, the existence of such statements forms the basis of 

our proofs of the decidability of equivalence for these classes. 
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5.2 Productivity and Essentiality. 

It would be naive to assume that equivalent schemas need make 

precisely the sa:i;ne tests during consistent executions, since some of 

the tests made during the executions may be .a2!!-productive tests 

that is, tests whose outcomes do not affect the resultant values of the 

schemas. For example, the value of the schema in Fig.9 for any execution 

is independent of the outcome of the test made at the statement labelled s. 

Since s is the only statement in which symbol q appears, it is clear that 

no test of the form (6,q) made during an execution of S can be productive. 

Hence, the value of S will be the same for any pair of interpretations 

for the schema which differ in the way they interpret q, and we say, 

therefore, that q is an inessential symbol of s. 

As might be expected, it is undecidable in general whether a given 

predicate symbol is essential in an iteration schema. In particular, if 

it ~ decidable we could easily decide whether or not arbitrary 

iteration schemas s
1 

and s
2 

were equivalent: they would be equivalent if 

and only if p were inessential in the schema 

IF p(x) THEN sl ELSE s2 

where p is a predicate symbol not appearing in s1 or s
2

, and x is an 

arbitrary variable symbol. 

Fortunately, the fact that essentiality is not decidable does not 

preclude us from using the notion to advantage, since essentiality is 

assured for symbols of particular interest to us later in the chapter. 
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where l)) is: 

s: IF q(x) THEN sl ELSE s2 

y +- f(y) 

sl = ({x,y}, {f,g}, '/J, r/J, G\> 
where @ 1 is: 

x +- f(x) 

x - g(x) 

y ,_ f(x) 

Sz = ({x;y}, {f,g}, '/J, r/J, @2) 

where LY 
2 

is: 

y +- f(y) 

x +- y 

x +- g(x) 

y ..... f(y) 

FIGURE 9. Schema With Inessential Predicate Symbol. 
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5.3 Additional Definitions and Tenninology. 

5.3.l Definitions. 

Let S be an iteration schema and let k be the maximum number of 

distinct iteration statements executed during any execution of s. Then 

we say that S is a schema of ~ k. (While this notion of size is 

certainly not the most intuitive, it shall prove quite useful in 

subsequent discussions.) 

Let T be a test for an iteration schema s, and let E be a free 

execution of s. Then T is~ with respect to E if T ~ TESTS*(S,E). 

(Intuitively, a test is free with respect to an execution if the outcome 

of the test is not fixed by the execution.) 

Let S be an iteration schema. Then the set of .!!!!in statements of S 

is defined recursively as follows: 

(i) If s is a statement in the program of S, then s is a .!!!!..!!!: 

statement of S. 

(ii) If s is a ma.in conditional statement of S and s' is a statement 

in the pi:ogram of the true or false subschema. of s, then s' is a main 

statement of s. 

Let s be a conditional or iteration statement in a schema s. A 

variable is said to be modified at s if, for some execution of the schema, 

the value associated with its symbol immediately prior to an execution of 

s is different from that associated with the symbol ixmnediately following 

the execution of s. A variable is said to be active in s if it is the 

test variable of s, or it is the test variable of some statement in the 
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subschema(s) appearing in s; othetwise, the var:f,able is said to be 

passive in s. 

5.3.2 A Note on Tetminology. 

We shall often want t<> modify schema :tate~etationa in such a way 

as to obtain executions differing ia 80lll8 reepect from tho" defined by 

the original interpretations. For convenience, we shall generally 

express such modifications in tems Q~ ti. eae01U:ions themaelves, rather 

than il'l terms of the defining interpwt:atiou. In particular, we shall 

often refer to obtaining a new e:mcut:ion frOlll SGllB given e:mcution by 

changing the outcc:nes of particular tea.ts; whereas wba-t is actually 

meant is that we may obtain the new execution by changing appropriately 

the interpretation defining the original. 



- 70 -

5.4 The Elimination Theorem. 

In [24], Rodriguez studied the equivalence problem for progrp 

graphs, a schernatized model for parallel -~•'4.oa, ..,_ ''JPSOPO&ed 

ell:llBtnina · their be.._er for ooaeiatieut tlUl :>WO'tltM:ms •• ..icuciiou 

in whieh 110 cy.c'l-e of e-t.theJ: :gJ»ph £8 ewiute4..-ma daan ~· 

Unfortum.tely, tbe ,paposea appreacls :wisll .;,aot ·M01tfi .if ... appl.ied ·t-0 Ollr 

moctels: it i• .:an ..a;sy .ta8 to ~t.a .1P1::ile w it•rataea aah ... 

For e:xaaple, let S be the .. e.ch9n& 

x ... f(x) 

WHILE p(x) DO s
1 

x ... f(x) 

x ... f(x) 

WHILE p(x) DO S 
l 

where S is the schema 'x ... f (x)' , and let S' be the ache. 
1 

x .. f (x) 

x ... f (x) 

UNTIL p(x) DO s
1 

x ... f (x) 

WHILE p(x) DO sl 
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The reader may verify that S and S' have the SSJlle value for all 

pairs of consistent executions in which no instance of s1 is.executed 

more than once. But S and S' are clearly not equivalent, since if I is 

the free interpmtation which assigns to p the .p~dicate np defined as 

follows: 

i 
Ilp(f ·Ax> ... ff:lf', o :;; i ~ 4 

IIP (fi· Ax> = .tt!if&, i > 4 

then the execution of S defined by I terminates, while that of S' must 

certainly diverge. 

However, it .!! possible to show that if a pair of iteration schemas 

satisfy certain condition&, then they must contain a pair of iteration 

statements such that the schemas are equivalent if and only if they have 

the same values for all consistent executions in which the bodies of 

these statements are executed no more than once. This implies that we 

can decide the equivalence of such schemas by deed.ding the equivalence 

of two pairs of schemas which are 0 s:impler" than the originals in the 

sense that they coRt&in fewer iteration statements: 

(i) the schemas obtained fran the originals by eU.mioating theee 

particular iteration statements £ran their respective programs; and 

(ii) the schemas obtained fran the origioals by replacing these 

iteration statements with their bodies. 

Moreover, if we can ensure that the resultant pairs of schemas 
' \.' 

satisfy the same conditions as the original pair, we ca~ repeatedly 
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eliminate iteration statements from successive pairs of schemas until 

we have reduced the equivalence of the otiginal aChemas to the 

equivalence of some bounded 'll'Ulaber of pair$ of scliena"s which contain 

no itel.'&t:ion stateml!nta (and fol:' Which ~1vatence is" trivially 

decidable). Thus the conditions for which such ite1'8tion statements 

are guaranteed to exist are of cenaidenbte :beerest. 

The conditions are explicated in Theorem 5.1 in this section, 

after a preliminai:y result: 

Let X, Y and Z be sets of words over sc:ae alphabet T. * Let f 1: X-+ T 

* * * -and f
3

: X-+ T be total functions, and let f 2 : Y -+ T be a total 

function such that for each o,cr E y* we have f 2(o)•f2(cr) = f2(o•cr). 

Let o: E X and let Y E Z, and suppose thf! following, equalities hold: 

1. y • 0: "" f' ( 0: ) • f 1 ( 0:) 

2. v·P·o:= £3(o:)·f2 CP )·f1{o:), all 13 E Y 

Then y.f3 .o: = £
3
(0:)•f

2
(P)•f1(o:), 

!'rgof: We know from {l) and ( 2) that tb,e ••.erti.on is correct if f3 

is the empty string or JI is au el-.nt ot Y. Ass...- the 

assertion is correct for all f3 E yi, 0 ~ i < j. Then 

the assertion is correct for all f3 E yJ, as follows: 

j-1 
Let f3 = f3 

1 
• f3 

2
, P 

1 
E Y , f3 

2 
E Y. The:ce are three 

cases to consider, based on the relationship of o: to f 1 (o:) 

in equality (1): 
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Case l· a = f 1 (a) 

Then y = f
3

(a). We have from equality (2): 

y·P 1·a = y·f2 (p 1)·a and y·P2 ·a = y·f2 (p2)·a, whence 

P1·P2 = f2 (P 1)·f2 (p2) = f2 (p 1-p2) and thus 

y·P·a = y·f2 (P)·a 

Case 1· a= µ·f 1(a), µnon-empty. 

Then y·µ = f
3

(a). We have: 

~p[(y·p·a = f
3
(a).f2 (p)·f 1(a)) ~ 

(y·p·µ·f 1(a) = f
3
(a)·f2 (p)·f1(a)) ~ 

(y·p·µ = f
3
(a)·f

2
(p)) ~ 

(y·p·µ = y·µ·f2(p)) ~ 

(p·µ = µ·f2(p))] 

Substituting p1 and p2 for p yields: 

P1·µ = µ·f2<P1) 

P2 . µ = µ. f2 <P2) 

Then: 

y·P·a = y·p.µ·f
1

(a) 

= y·P 1·P2 ·µ·f
1

(a) 

= y·P 1·µ·f2 (p2)·f1(a) 

= y·µ·f
2

(p
1
)·f

2
(p2)·f

1
(a) 

= f
3

(a)·f2 (P
1

·p
2
)·f

1
(a) 

= f
3
(a)·f

2
(P)·£

1
(a) 
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f!u l• µ.a • f
1 
(a), µ non-empty. 

The preo.f for ea ... J is aUif.l&r. to. that f ~ .c.~' .2 &nd is left 

D 

'l'heoJ'S .,2...1: (EU.mina t ion Theorem) 

Let S and S' be iteration seh.n. s with the"..- variabl~.~ols, and let 

D be the union of the domains .of the-!r:ifree.,;.tJlte~t~ Let D' be 

the set {ojo•A x E D. x any vamat>l~. ~ 1'4.¢" the .ech..,a}.. Let s and 

s' be iteration •tate•ente 1J1.·· ~· ~.of ~· 4tlld S' .,, nspectiftlYil 

and suppose that for any variable 8"fi1Pol, 'I· Qt. ,the ~ there exist 

total functions fy
1

: D -+ D, £
12

: D' ~·De'•• «-1 £
13 

:. I> .+ D', vhich 

satisfy the follow~ condition: 

Let E and E1 be f'b:dte., conaii~Dt~ f.ne aa:cutf.GUI of s 

and S'. Let a, fl, and y be strinp. ~ that ~;is the value 

associated with y just prior to the f.Lgat . .ell'e~ution, of statement s 
.; ' 

during E, ti• a is the value associated with y illlaediately following 

the last e:xee11tion of s, and y. Jl •a is the value asaocf.ated with y 

at the conclusion of E. Let a', fJ ·•,, and Y' lie strings defined 

in a s:lmilar manner with E' i1l :p.i.a-. .of JI.; ·at14· s' in place of s. 

'l'hen: 

1. a' = ,fYl (a) 

2. fJ ' = f {fl) 
. Y,i .. 

3. Y' = f.Y3 (a) 

Suppose also that concatenation distributes over the function fy
2

, i.e. 

suppose that f (o)• f (er) = f (o•cr), all o,cr E D'. 
Y2 Y2 Y2 



- 75 '." 

X..t s0 be .t4~ ·'cbema o:J?t•ip.ed,if~ .. ~~bt1Sl~'8t:LJ?.g ·~~~~pt Iii 

frc;a its progra~. ~t:S1 be"~ ~.~ ~~~.,£~;·~ )J: re~~·c~ 

s with the pr~~ C>.f the body qf. •• J.e;;r~·~•· ·~~:s,~1 be, th:'r~~~ 

obtained by eliminating s' 1,o..~ a.ia,lil.4J" ~~J°':JlJ~'.Jhe ~ ...... ~;~f;; 

Thea s is eqµiv~l-.nt to S' if aQAi ~LJ. ~£"'~~ ,~ e,q~ya~e~t to S' 0, 

Proof: ·Frcxn the previous"t ... , it '.Utt' b9 dla-··~···that S aiid'fs•·~:are 

equival~nt tf they have th'•' .. wi~'lht·"Cl:mai'Steiit'·e~tions 

during whidl the bodi.88" of: s a~ ... ~p>mi. ~·''no 1no1:e than 
> 

) . 
once. (This ensw:es that the two equalitieastw the' lemma •-re 
aatis£Le4.) Cl~J"J.:redU.J: ~-"~ ca•eL>.if.(,•pcl;.QO.g. if ~0 is 

•' 

0 .. 

with regard' to its a\;t>licat'totts':' 

Suppose we have a pair of "'aches S and sl' ~h~se' programs ~oosist 
I." .i:"<t ,~ ·"'{~:•' •; :', "~".~~ < ~ ... • 

of assignment and iteration statements only, and which have identical 

sets of Variable syal>ols.· Let a·•·dle· 1W8t '~ti.411·:11t:atallabt in the 

pr6gram 'of s, and suppc;M then eete• •·dwl•r• at''~ ;:chs-prognm of 
I 

of s, we may divide the value f! associated with x at the conclusion 
x 

of a finite, free execution E of S into three parts: the part generated 

prior to the executions of statements, the partcgenerated during the 

executU>ns d. statement s, and the part generated following the executions 
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of statement s.. (We note that the last part 18 a constant: since s is 

the last iteradion sta1:eme.nt :ttt ·the progmm of S, the last part is 

determined by tl&e particular assignment su«snents · f oll<Ming s and is 

independent C:Jf· the execution we consider~ ) 

Similarly, we may divide the value ~· x a•ssociat:ed with x at the 

conclusion of a consistent execution of S' into portions generated 

prior to the allBCUtions of statement s' a during the executions of 

statement s' ,. al'Ld f-ollowing the executioas of st.ate-.ut s 1
• 

'l'he conditions req'11.red by the theoreaa fer tlie elimination of s 

and s 1 are these: 

(1) The portion of~· genested dU'l:ingthe emcutiotra of s' 
x 

depends only on the portion of ~· generated during the esec:utions of s, 
x 

while the other portions of ~' x do .Q2t. depend on this portion of ~ x • 

(ii) 'lbe pot"tion of ~ 'x g$nerated during ,!¥h execution of s' 

depends only on the portion of l!;x ~rated d:µ~n.g the. corresponciing 

execution of statement s. (Intuitively, this ensures that concatenation 

distributes over the function £2.) 

These requireaaents are of course rather strict, bu·t we shall show 

that for several iateres.ting classes of schemas, the requi.Dmaeuts J!!!§!. 

be satisfied by any pair of equivalent ~ema.s. 
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5.5 Solvable Problems for Single Appearance Schemas. 

In this section we demonstrate that equivalence is decidable for 

certain classes of restricted location, single appearance schemas 

(RLSA schemas). We begin by considering the class of such schemas 

which are conditional-free. 

5.5.1 Decidability of Equivalence for Conditional-free RLSA Schemas. 

Let S be an iteration schema, and let s be an iteration statement 

in S. We say that s is a trap in S if, whenever the first element of 

TESTS(s,E) has outcome ~ if s is a WHILE statement or outcome false 

if s is an UNTIL statement, E is a non-terminating execution of S. 

(That is, a statement in a schema is a trap if the execution of its 

body is sufficient to guarantee the divergence of the schema's 

execution.) 

While it is in general undecidable whether an iteration statement 

in an arbitrary iteration schema is a trap, it 1:§. decidable whether an 

iteration statement in a RLSA schema is a trap: 

Let S be such a schema. Clearly, S contain~ a trap if and only if 

it contains some iteration statement s such that the body of s contains 

no assigmnent statement of the form 'x ~ f(x)', where xis the test 

variable of s. If such a statement exists, then it is a trap as is any 

iteration statement in its body. After being identified, any such trap 

can be removed from the schema and the schema can be re-examined for 

additional traps until all have been found. 

Of course we cannot, in general, remove traps from a schema without 
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affecting its output behavior under certain interpretations. If the 

schema is a R.LSA schema, however, we can at least ensure that its traps 

take a particularly simple form: 

An iteration schema is in proper !gm if the body of each of its 

traps is the empty schema SE. 

We note that any BLSA schema call be effectively transformed into an 

equivalent RI.SA schema in proper form. 

LS!!ll! ,i.d: 

Let S and S' be equivalent RI.SA schemas in proper form, such that neither 

schema contains main conditional statements. Let s be a main WHILE 

(UNTIL) statement in s, and let p be the predicate symbol in s. l'hen p 

appears in a main WHILE (UNTIL) statement in S'. 

Proof: Suppose otherwise. In particular, suppose that p appears in a 

main WHILE statement in S but does not appear in a main WHILE 

statement in S'. Let E' be the execution of S' in which the 

body of no iteration statement is executed, and let E be any 

consistent eucution of S defined by an interpretation in which 

the predicate assigned to p is identically true. (Since no 

test of the form (6,p) is made with outcome fahe during E', 

some such E surely exists.) l'hen E' is a terminating execution, 

while E is clearly non-terminating, contradicting the equivalence 

of S and S'. 

0 
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Lemma 5.3: 

Let S and S' be equivalent RLSA schemas such that neither schema contains 

main conditional statements. Then if p is a predicate symbol in a main 

trap of s, pis a predicate symbol in a main trap of S'. 

Proof: Since p appears in a main iteration statement in s, it must 

also appear (according to the previous lemma) in a main iteration 

statement in S'; moreover, each of these statements must be WHILE 

statements or each must be UNTIL statements. Let s and s' 

denote the statements in Sand S', respectively, in which p 

appears. 

Let E be any finite execution of s, and let E' be a consistent 

execution of S'. Since Eis finite, TESTS(s,E) must consist of a 

single element T. Clearly, T must be in TESTS(s',E'), since 

we could otherwise change the outcome of T in E to obtain a 

non-terminating execution of S consistent with E', contradicting 

the equivalence of Sand S'. Also, T must be the first element 

of TESTS(s',E'), since if it were not we could change the outcome 

of this first element to obtain a finite execution E" of S' such 

that E" is consistent with E and T is free with respect to E". 

We could then change the outcome of T in E to obtain a non­

terminating execution of S consistent with E", again contradicting 

the equivalence of Sand S'. Hence, for any pair of consistent 

finite executions by the schemas, the first test made at s must be 

the first test made at s'. 

But then s' must be a trap: 
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If not, we could surely find a finite execut.ion E' 
0 

of B' in 

which the body of s' is executed at least once. Since s and s' 

are both WHILE statements or bothUNTtt statements, the body of s 

must .also be executed at least-()JlCe during any e-.cution E0 of S 

consistes¢ w.ith E' 
0 

(stnce tke f i'ut rt.eat made at ·s during E
0 

must be the aa. as that made at '8 1 ·during· E' 0 ). But since s 

is a tap, the hleeutioa E0 mus.t' be non"'tel'illmti1ig, and we 

again coatadict the equivalence of B and st. 

0 

LeD!!!! ~: 

Let S and S' be equi.WLl~nt RI.SA schemas •µch that ne:Lther 4Qlltains main 

conditional ste~eaeats. Let abe a-~ iteration, et:ateine111.c: of s. Then 

there exi.sts a •in iteration .11tat~nt s' Qf S' ~ that s' and s are 

logic equivalent. 

P{ppf: If s is a trap, the result follows frma the pxeceding lemma. 

SupPose that s is not a trap: 

Let p be the predicate symbol in s. According to Lemma 5.2, 

S' must contain a main iteration statement s' with predicate 

symbol p. If s and s' are not logic equivalent, there must 

exist finite, consistent, free executions E of S and E' of S' 

such that TESTS(s,E) ~ TES1'S(s',E 1 j, and we can surely find such 

sequences for which all but the last elements of the sequences are 

the same. Let T be the last element of TESTS(s,E) and let T' be 
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the last element of TESTS(s',E'). The first component of one of 

the tests, say T, is at least as long as the first component of 

the other. We need only change the outcome of T to ~ if s is 

a WHILE statement, or to false if s is an UNTIL statement, and 

provide the same outcome for each subsequent test made at s to 

obtain a non-terminating execution of S. But since all of 

these tests must be free with respect to E', the execution is 

consistent with E', contradicting the equivalence of Sand S'. ,, 

D 

Lemma 5.5: 

Let S and S' be equivalent, conditional-free, RLSA schemas in proper 

form. Let s be any main iteration statement of s, and let R be the 

body of s. Let s' be the iteration statement in S' logic equivalent 

to s, and let R' be the body of s'. Then every predicate symbol in 

a main iteration statement of R is in some main iteration statement of 

R' • 

Proof: Let s1 be the schema obtained from S by replacing s with the 

program of R, and let S'1 be the schema obtained from S' by 

replacing s' with the program of R'. Since s and s' are logic 

equivalent, s
1 

and s•
1 

must be equivalent schemas. ~emma 5.2 

ensures, therefore, that each predicate symbol which appears in 

a main iteration statement of s1 must appear in a main iteration 

statement of s• 1, and the result follows immediately. 

D 



- 82 -

We are now in a position to prove the following rather intuitive 

result: 

Lep!l!l.~: 

Let 8 and s• be equivalent, coeditiOD&l·f••• IU..Se\ schemas in proper 

fo:tm. lben each iteration statement :f.n S·:L•logioequivalent to some 

itezati0n statement ill. S'. 

Proof: For simplicity, we a:1B1J111e that S and S' ba\fe only two levels of 

iteration: the obvi,ous generalisation is left to the reader. 

Let s be a main iteration statement of s, and let R be its 

body. Let s' be the main itei:ation statemel1.t of S' wtlich is 

logic eq1.1ivalent to s, and let R' ·be the body of s'. Lenna 5.5 

ensures that for each main iteration statement. r of R, there is 

a: main itention statement r' of lt.' containing the· same predicate 

symbol .. 

Let s1 an4 S' 1 be the schemas constructed as in the proof of 

Lemna 5.5. According to Lemma 5.4, r and r' must be logic 

equivaleat stateaencs ia. these sckemas, iaplyin.g that r>•cisely 

the same tests are made at each statement during the first 

executions of R and I.' in any pair of finite, constatent, free 

executions of Sand S' .. 

Let s:2 be the schema obtained from s by replacing s with two 

copies of the program: of R, ~ let S' 2 be obtained similarly 

from s I. From the pnceding ·~nt, we ruwe that the first 

instance in s
2 

of each main iteration statement of R must be logic 
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equivalent to the first instance in s 1
2 of the statement 

containing the same predicate symbol. Hence, we may change 

the predicate symbol in each such pair of statements to some 

new symbol which does not appear elsewhere in the schemas, 

without affecting the equivalence of s2 and s 1

2• Since the 

resultant schemas are single appearance schemas, we can apply 

Lemma 5.4 to demonstrate that the second occurance in s2 of the 

statement r is logic equivalent to the second occurance in S' 2 

of statement r', implying that the same tests are made at rand 

r' during the first .!.!.!& second executions of R and R' in any 

pair of finite, consistent, free executions of S and S'. 

For any n > O, we need only apply this argument n times 

to demonstrate that, for such executions, the same tests are 

made at rand r' during the first .B executions of Rand R'; 

hence, r and r' are logic equivalent. 

D 

An immediate consequence of the lemma is that predicate symbols 

of such schemas S and S' must be similarly "nested" in each schema, i.e. 

if symbol p is in the body of the statement in S containing symbol q, 

then p must be in the body of the statement in S' containing q. 

Suppose we wish to decide the equivalence of RI.SA schemas Sand S', 

and suppose neither schema contains main conditional statements. From a 

previous lemma, we know that if S contains a main trap which has predicate 
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symbol p and test variable x, then S' can be equivalent to S only if S' 

contains a simU.ar main trap. Suppose that this is the case: 

Let S be the schema obtained fran S by adding a new variable symbol 
p 

vp to the schema and following each statement of the forsn 

x +- f(x) 

in the portion of S preceding the trap with the statement 

and then deleting the trap. (Intuitively, vp is used during an execution 

of S to "record" the value of x which would have been tested at the p 

trap during the corre8petlding execution of s.) Ltlt S' P be the schema 

obtained in a similar manner fran S'. 

We know frc.a tha proof of Lemma 5.3 that if S anci S' are equivalent, 

the value tested at the trap in S must be the same as that tested at the 

trap in S' during any pair of consistent, finite executions of the 

schemas. Hence, S and S' are equivalent if and only if Sp and S' P are 

equivalent, and it is clear that by repeating the construction for each 

corresponding pair of traps in the schemas, we can reduce the equivalence 

problem for S and S' to that for similar schemas which have no main 

traps. 

Lemma 1:.1= 

Let S and S' be conditional-free RI.SA scheaaas, and let k > 0 be the 

maximum of their sizes. Then we may construct fr<Jll S and S' 'two pairs 

of conditional-free RI.SA schemas of size no greater than k-1, such that 
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S and S' are equivalent if and only if each of the pairs comprises 

equivalent schemas. 

Proof: We may ass'lmle that S and S' have the same variable symbols and 

that their predicate symbols are similarly nested, othexwise we 

can immediately conclude that they are not equivalent. Without 

loss of generality, we may also assl.Dlle that the schemas are 

without main traps. 

Let s be the last iteration statement in the program of s, 

and let s' be the statement in S' containing the same predicate 

symbol as s. Let s
0

, S' , S , and S' be the schemas constructed 
0 1 1 

from S and S' as in the proof of Theorem 5.1, and suppose that 

s
0 

is equivalent to s 1

0 and s
1 

is equivalent to s 1

1
: 

Every statement which follows s' in S' must be logic 

equivalent in s 1

0 
to a corresponding statement in s0, and must 

be logic equivalent in s 1

1 to the same statement in s
1

• Clearly, 

this can be the case only if each variable modified at s' is 

passive in all statements in S' which follows'. Now, let E and 

E' be arbitrary consistent, finite, free executions of Sand S', 

and let x be any variable symbol of the schemas: 

We may write the value associated with x at the conclusion 

of E as Y • P • o:, where a is the value associated with x just 

prior to the first execution of statement s, P •a is the value 

associated with x i.nnnediately following the last execution of 

statement s, and Y is the fixed portion of the value due to the 
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assignment statements affecting x which follow statement s in 

the schema. We may write the value associated with :x at the 

conclusion of E' as Y' • P '·a', where a•, P', and y' are 

defined in a manaer similar to that above, although y' is 

not fixed but rather depends in general on the particular 

execution EI .being considered. Since each variable modified at 

s' is paaaive in all statements followings', it must be the 

case that y.a • Y' •a•, and that -that Y' and o:' are 

canpletely determined by a. Aiso, it must be the case that 

ti ' is c<'lll}'letely determined by fJ since every test made during 

an e:xe.cution of the body of s must alao be tna4e dtlring the 

corresponding e:aec\ltion of the body of ~', else by Lemaa 5. 6 

we t:'Ol.'ltrlldict the equivalence ef s
1 

and s• 1. 

Thus, there must exist functions f:x
1

, 

for all executions E and E' as above, a' 

f , and fx such that 
x2 3 

.. fx ( a), ~ ' = fx ( .p ), 
1 2 

and y' • fx (a). As noted above, the portion of P' due to a 
3 . 

particular eacution of s' during E• depends only ·on that portion 

of P due to the corresponding execution of s during E, and hence 

concatenation distributes over f~. The lemna then follows from 

the Elimi.aation 'l'heai:em: 

Sand S' an equivalettt if aitd only if s0 and s• 0 , and s
1 

and 

S' P are pairwise equivalent. 

0 
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Thus we have: 

Theorem 5.2: 

Let S and S' be conditional-free RI.SA schemas. Then it is decidable 

whether S and S' are equivalent. 

Proof: We note that equivalence is trivially decidable for schemas of 

size O. The theorem follows i.mnediately from the previous 

lemma by induction on the maximum of the sizes of Sand S'. 

0 

Theorem 5.2 can hardly be considered a surprising result, and the 

reader will no doubt have observed that there are rather more direct 

approaches to this particular problem than that which we have presented. 

(In particular, Lemma 5.6 can be proved fairly simply without utilizing 

Lemmas 5.4 and 5.5, although our efforts are hardly wasted since these 

lemmas are needed in the next section.) 

The proof presented, however, illustrates the major steps in the 

proofs of our other cases: 

(i) The transformation of schemas into a form facilitating the 

identification of logic equivalent statements. 

(ii) The demonstration that such statements exist in pairs of 

equivalent schemas. 

(iii) The application of the Elimination Theorem to reduce the 

equivalence of a pair of schemas to that of "smaller" schemas. 
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In the present case, all three steps are relatively straightforward. 

In the next case, however, step (i) is complicated by the presence of 

conditional statements in the schemas, while in the third case steps 

(ii) and (iii) are complicated by the multiple appearance of predicate 

symbols. Tile major steps, however, are the same in each proof. 
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5.5.2 Decidability of Equivalence for FRI.SA Schemas. 

In this section we demonstrate that equivalence is decidable for 

the class of free, restricted location, single appearance schemas 

(FRI.SA schemas). 

We begin by showing that essentiality is decidable in such schemas: 

Lemma 5,8: 

Let S be an FRI.SA schema. Then for each predicate symbol p in S, it is 

decidable whether or not p is essential. 

Proof: Since the schema is free, it is clear that p is an essential 

symbol if it appears in an iteration statement in s. Suppose, 

therefore, that p appears in a conditional statement. We claim 

that p is essential if and only if the true and false subschemas 

of this statement are not equivalent: 

Let s be the conditional statement, and suppose that its 

subschemas are not equivalent. Then we can find partial executions 

Et and Ef of S such that the executions end immediately after the 

first execution of a subschema of s, the executions conflict only 

with respect to the outcome of the test made at s, and the value 

associated with some variable symbol x of S is different at the 

end of each of the executions. We complete the execution Et in 

such a way that the outcome of each test subsequently made at a 

WHILE statement is false, the outcome of each test subsequently 

made at an UNTIL statement is ~' and the outcome of each test 

subsequently ma.de at a conditional statement is, say, ~ in each 
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case. We -c~lete the execution Ef in a similar manner. Since S 

is a siugle appea1:1lnce schema, these 'cClllplete e•cutions conflict 

only with ·-reapec.t to the outcane of the teat nlllde at s. But since 

pt'e"Cisely the same sequence of sta·temants is executed after·:e in 

each -•, ttae val\18 of x •t tb.e ead of the execut.ions aust still 

be different. He.nee, p is au essential symbol if and only if the 

sub.t1~a of s are aot e.quivalent. 

If either eubschemll c1'Bt4ins an iterat:iou atatemnt, the 

.subecbeaa• ce.nnot be equivalent .since the otheY subschema 

unnot ~iu an iteration statement with the ·-.me predicate 

symbol. If neither subschema contains an iteration statement, 
. . 

their equivale~e is trivially decidable since there are only a 

finite nimtl>er of distinct free executions of the schemas. 

Hence, it is .decidable wbethes: p is e,eaential. 

0 

We say that a schema is reduced if it contains no inessential 

symbols. We not:e that a conditfona1 statement containing an 

inessential symbol may be replaced in a schema with the program 

of either of its subscheaas, and thus we have: 
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Corollary .2.:j,: 

Let S be a FRI.SA schema. Then we may construct from S a reduced FRI.SA 

schema equivalent to s. _J 

It may be worth mentioning here that the decision not to permit 

the designation of certain schema .variables as "output" variables is 

rewarded with the relative simplicity of the proof of Lemma 5.8. 

While the result is still true for schemas with specified output 

variables (it was established by the author in [22] for a class of 

schemas somewhat more general that the FRI.SA schemas), the proof 

becomes rather complex in that case, since we must show that the final 

value of some output variable, rather than some arbitrary variable, is 

dependent on the outcome of a test made at a conditional statement. 

Since this dependency may be quite indirect, the decision procedure for 

such schemas is quite complicated. 

We use some of the results of the previous section to prove the 

following lemma: 

Lemma .2:1.Q: 

Let S and S' be reduced, equivalent FRI.SA schemas. Then predicate symbol 

p appears in a conditional/WHILE/UNTIL statement in S if and only if it 

appears in a conditional/WHILE/UNTIL statement in S'. Moreover, for each 

iteration statement in S there is a logic equivalent iteration statement 

in S', and ifs ands' are such iteration statements, the sets of 

predicate symbols appearing in their schemas are the same. 
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Proof: Suppose that predicate symbol p appears in a main conditional 

stat:ement: s of s. Since p is an essential 8'mbo1, it inuat appear 

in some &ta:tement s' in S'. MoreO'\tt!'r, a' must· be- a c::onditional 

statement: 

Suppose othei:wise. In particula.r, suppose that s' is a 

WHILE statement. Let S
0 

be the sch- obtained from S by 

replacing a w:Lth the program of its true subschema., and let S 'co 

be the nscbema" obtained frm S' by replacing s' with infinitely 

many copies of its body. 80 must be equivalent to S'co, but since 

S' is free, at least one of its variables (namely the test 

variable of e') is modified at s', and thus S qg,not be 
0 

equivalent to S'm• Hence, s' muat be a conditional statement. 

We note' also that since p is essential, a productive teat may be 

made at s' each time .it is executed. If S and s' are to be 

equivalent, therefore, s' must be a main conditional statement 

of S'. 

We are thus assured that for each main conditional statement 

in s, there is a main conditional statement in S' with the same 

predicate symbol. Let, st and sf b~ the schamas,.obtained 

from S by replacing each main ~oacl.itional s~atement with the 

program of its true subschema and.i~s false.subschema, 

respectively. Let S' t and S' f be obtai~4 i,:l a sill>ilar manner 

from s•. Clearly, St must be equivalent to S't, and Sf 111U8t be 

equivalent to S'f. Applying Lennas 5.2 and 5.4 to each pair of 

schemas, we establish the desired result for the symbols occuring 
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in main statements of the schema. We need only employ the 

methods of Lemmas 5.5 and 5.6 to establish the result for all 

symbols. 

D 

Again, the preceding result is highly intuitive. We note, 

however, that the result is hardly less intuitive, though demonstrably 

false, if we remove the restriction of freeness from the schemas. 

We now show that a "weak" form of logic equivalence must hold 

between certain main conditional statements of equivalent, reduced, FRI.SA 

schemas. The following definition is useful: 

Let r be a main conditional statement in an iteration schema S. 

Then r is a final main conditional statement if, whenever r is executed 

during an execution of S, no main conditional is executed after r. 

Legna 1:11: 

Let S and S' be equivalent, reduced, FRI.SA schemas, and let r be a final 

main conditional statement of s. Let E and E' be consistent, finite, 

free executions of Sand S', respectively. Then a test Tis made at r 

during E only if Tis made during E'. 

Proof: Suppose that such a test is made during E. If either subschema 

of r contains an iteration statement s, then from Lemma 5.10 

s can execute during E only if the statement logic equivalent to 

s executes during E'. Hence, T cannot be free with respect to E'. 

Suppose that neither subschema of r contains an iteration 
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statement, i.e. suppose that both subschemas are composed solely 

of assignment statements. Let x be the test variable of r, and 

let r' denote the main conditional in S' containing the same 

predicate symbol as r. Since S and S' are equivalent and reduced, 

the test variable of r' must also be x and no iteration statement 

which modifies x can precede r' in the program of S' unless its 

logic equivalent counterpart precedes r in the program of s. 

Let E
0 

be the execution obtained from E by choosing outcome 

false f o'l' each test made at a WHILE statement after the execution 

of r, and outcome ~ for each test nade at an UNTIL 

statement; let E'
0 

be a consistent execution of S'. The test 

7' is made· during E0 , and since the predicate symbol in r is 

es111enti4l and· the subschemas of r consist solely ·of aasignment 

statements, the val'Ufl associated with some variable symbol y after 

the execution of r during E
0 

must depend on the outcome of 'T. 

Also, since an assi~nt atat~nt :l,s exec~t.ed aft.er the 

execution of .. r in E0 just if the assiiDDl'nt stat"8)ent is a ma.in 

statement of s, the value assoc.iated with y at tile ;onstuion 

of E0 must also depend on the out.come of 1". Since S and S' ~re 

equivalent schemas, test 1" must be made ,during E' 
0 

and hence 

during E'. 

0 
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We may apply the lemma recursively to a pair of such schemas S and S' 

to obtain: 

Corollary 5.12: 

Let Sand S' be as in Lemma 5.11. Let s be a main conditional of s, 

and let s' be the main conditional of S' with the same predicate symbol. 

Then during any pair of finite, consistent, free executions of Sand S', 

either no test is made at s ors', or the same test is made at both 

statements. _j 

A consequence of the corollary is that the equivalence problem for 

FRLSA schemas reduces to that for FRLSA schemas with no main conditional 

statements: 

Let S and S' be reduced FRLSA schemas, and suppose that for each 

main conditional in S there is a main conditional in S' with the same 

predicate symbol and test variable. (If such is not the case, we may 

conclude from Lemma 5.10 that Sand S' are not equivalent.) Let r be a 

final main conditional of S, and let r' be the corresponding main 

conditional of S'. We construct from Sand S' a pair of schemas S0 and 

S'
0

, as follows: 

We add a new variable symbol xr to each schema to record the 

values tested at r and r' during executions of the schemas, in the 

same manner as when eliminating main traps from the schemas of Section 

5.5.1. If r is in a subschema of some other main conditional of S, we 

replace this conditional with the program of the subschema and replace 
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the cori:esPQllding conditi~l in S' wit.h ~~, pr~ 0,;, its_ coi;-reaponding 

subschema. This is repeated until r is no longer in a sub~ of ,~ main 

conditional of S, and then r and r' are replaced with the programs of one 

of their subschemas, say their true s~a. The reau'.l.tant··~~. axe 
_;, .... 

S and S' • 
0 0 

We construct a second pair of schemas ~t and _S' t from S a~ S' 
' ~' •, . i ' .. { 

by replacing r and r' with the progza .. of their true . aubechemas, and 

reducing the resultant sehenw.s; a thii:d pair of actie.a Sf and ~· ! axe 
.,. -, ~. 

constructed in a similar manner, replaci.Dg rand r' with the progxaaa of 

", '., 

Intuitively• the equivalence of S
0 

eat S 1; 0 ;:..~s ~ a teat 

made at r during an execution of S must also be 9de at r' 4w:~!UY 

made a~ a condit.iQQal ~t-.. _ _,t o.f .. ~· 11JJlc;J!'! .. •~c .. cQJlt&iu .. ,·:X: :wU:J,.,liave 

an outcome differe,a~ fr~ tbat of ~ ~~-~i.J&~,p~~~~ ~ S', 

but from Cc;>roll.ao: .i~.1,2, thia is .:tJ,ut. .• ca~ ~ ~e ~· ~uiv~81',t ~o &~.t> 

and sf is equv'J.aRr~. to S'r . ~,.: ~J:4PC1.St.a~.'"1li~i,~n; U aQ.d.: 

only if S0 and S' 0.-st aud ~'t• &lld,$~~.S.',:f·•:~.H:i:Qriae eq~i"V:8:1.ent. 

Since each of these schemas contains at least one fewe;:. •in:c()nd~ti9nal 

than S and S' , the coostmct.i~~s ~Y ~- :r;e~~ ,.~.o '"~'fCe, the. equivalence 

of S and S' to that of a finite .nulQ):>er of pai:r;s ... of achem$s without main 
~ • ' <· ·•· • ~::: - ., ~;. ''£ ·~ ' ' ;' ~' . 

condition.a ls. 

:~ ' ' 
' ' 

The proof of the following leJ11118 is virtually identical to that of 

Le.1Jlll8 5.7 and is left to the reader: 
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Let S and S' be FBI.SA schemas without main conditionals, and let k > 0 

be the maximum of their sizes.. Then we ~Y construct from S and S' 

two pairs of Fm.SA schemas of size no greater than k-1, such that S and 

S' are equivalent if and only if each of the pairs com.prises equivalent 

schemas. _/ 

We have observed that the equivalence of a pair of Fm.SA schemas 
',.,, ,_:, :'. ··::;; .. 

can be reduced to that of a finite number of pairs of FRI.SA schemas 
. ·;_, 

without main conditionals. We note that the latter schemas are 
. : '.; ,,;, ~.~ 

of the same size as the originals, and thus we have: 

Theorem i.a.1: 

Let S and S' be FBLSA. adl.-a.. then it i•. •~l• if S aad S' are 

equivalent~ 

Proof: From the previous lenna, by imtuction (10.' the size of S and s•. 

o· 
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5.6 Decidability of Equivalence for FILCF Schemas. 

In the previous section we dealt with schemas in which predicate 

symbols appeared only once. Finding logic equivalent statements in 

equivalent schemas was quite easy, therefore, becauee we knew precisely 

which pairs of statements to examine those containing the same 

predicate symbols. 

In this section we consider the equivalence problem for free, 

independent location, conditional-free s~heaes CF1¥fF schemas). As 

might be expected, the proof that logic equivalent statements exist in 

equivalent pairs of such schemas is not quite as trivial as it was in 

the previous cases~ 

LeDIDS ~: 

Let s and s 1 be FILC:t edtetnas, and let s be the 11tat-< iteration statement 

in the program of s. Then if S and S 1 are equivalent, there esists a 

statement s' Ui the progralll Qf S' such tqat, s,,,a.nd •' al;'e 1.Qgie eq~ivalent. 

Prgof: Suppose that S and S' are equivalent. Let E be a free execution 

of S such that TESTS(s,E) contains infinitely many elements, and 

let E' be a consistent execution of S'. (We note that since E 

is non-tenninating and S and S' are equivalent schemas, E' must 

be a non-terminating execution.) Clearly, every element of 

TESTS(s,E) must be an element of TESTS*(S',E'), since if sane 

T E TESTS(s,E) were not in TESTS*(S' ,E' ), we could change the 

outcome of T during E to obtain a terminating execution of S 

consistent with the non-tenninating execution E', contradicting 
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the equivalence of Sand S'. Also, all but finitely many of 

the elements of TESTS{s,E) must be in TESTS{s',E') for some 

statement s' in S': 

Suppose otherwise. lben there must exist statements s1 

and sz in schema S' such that TESTS(s1,E 1
) and TESTS(s2,E 1

) 

each contain infinitely many elements of TESTS(s,E). {For 

simplicity we shall assume that s1 and s2 are the only such 

statements.) It must be the case that one of the statements, 

say s2, is in the body of the other. Let T be any test in 

TESTS{s,E) n TESTS(s
2

,E 1
). If we change the outcome of T 

during E, we obtain a terminating execution E" of S; also, 

since S is an independent location schema, no value which 

is longer than the first component of T and ends with the 

same symbol is tested during E". Suppose we also change the 

outcome of T during execution E': the first test made at 

statement s1 after T is made at s2 must be free with respect to 

E" since the value tested must be longer that that tested in T 

and must end with the same symbol. If s1 is a WHILE statement, 

we choose the outcome of this test to be ~' as we do for each 

subsequent test made at s1 {each of which must also be free with 

respect to E"). If s 1 is an UNTIL statement, we choose a 

succession of false outcomes. In either case, the resultant 

execution is consistent with E" but is non-tenninating, 

contradicting the equivalence of Sand S'. Hence, there must 

exist a statement s' such that all but finitely many elements 
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of TESTS(s,E) are in TESTS(s',E'). 

We now show thats' must be in the program of S': 

Let x be the test variable of statements s and s', and 

suppose thats' is not in the program of S', i.e. suppose that 

s' is in the body of some iteration sta.teinent r 0 in the program 

of S'. Clearly, no statement r vhich follows r
0 

in the program 

can have test variable x, othei:wise we could obtain from E a 

terminating eacution of S and f ram E' a consistent, 

non-teminating e:xacution of s• by changin.i the Outcome of 

any test 'T E (TESTS(s,E) n T.ESTS(e'• ,E')) as above, using s' in 

place of s2 and r in place of s1• Similarly, the statement r 0 

itself cannot have test variable x. Let 'T' be the first test 

made at r
0 

with the property that durlng the subsequent 

execution of r 0's body, sane test 'T" E TESTS(s,E) is made at s'. 

Let E1 be an execution of S consistent with E e:Xcept for the 

outcome of test T" (if T" is made during E), and such that 

TESTS(s,E1) is infinite. Let E' 1 be an e:xacution of S' 

consistent with E1 and consistent with the porti0n of E' 

preceding the execution of r
0

• If we apply the arguments of 

the preceding paragraph, we have that: there exists a statement 

s 1

1 in schema S' such that all but finitely many of the elements 

of TESTS(s,E1) are in TESTS(s' 1,E' 
1
). Moreover, s' must be in 

1 

the body of sone iteration statement r 1 which follows r 0 in the 

program of S', since E and E' 1 are the sauie prior to the 

execution of r 0, and s 1

1 itself cannot be in the program of S'. 
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But if we repeat this argument ad infinitum, we can show that 

there must exist ~n infinite sequence of statements r 0,r1,r2 , 

which follow one another in the program of S', an impossibility 

since the program must be finite. Hence, the statement s' must 

be in the program of S' (and must in fact be the last iteration 

statement in the program with test variable x). 

The logic equivalence of the statements is now easily 

demonstrated: 

We note that for any pair of finite, consistent, free 

executions E0 of Sand E' 0 of S', the last element of TESTS(s,E
0

) 

must be the same as the last element of TESTS(s',E'
0
). If this 

were not the case, we could change the outcome of whichever test 

had the longer first component, or either test if the components 

were of equal length, without disrupting the consistency of the 

executions. This would cause another test to be made at the 

corresponding statement and since this test, and all subsequent 

tests made at the statement, would be free with respect to the 

execution of the other schema, we could permit this execution 

to diverge while still remaining consistent with the other, thus 

contradicting the equivalence of Sand S'. 

Hence, the last elements of TESTS(s,E
0

) and TESTS(s',E'
0

) 

must be the same for any such E
0 

and E' 0 • But since the schemas 

are free, this can be the case only if TESTS(s,E
0

) = TESTS(s',E'
0
): 

Suppose otherwise. Then there must be a test T in one of the 

sequences, say TESTS(s,E0 ), which is not in the other. Since T 
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must be made during E' 
0

, it must be the case that T E TESTS(r,E' 
0

) 

for some statement r whose e2eution pi:ecetres that of s' during 

E' 
0

• Let 1·
1 

be the execution of a· conflfct:tng with E
0 

only w.ith 

respect to the outcome· of T, and let E' 
1 

.be' an 'execution of S' 

which ia consistent with EJ. and is consi'Stftt with the portion 

of E' 
0 

which precedes the milking of test 'T. It Ul'll8t be the case 

that 'T E 'l'!S'?S(r,E' 1), but since .,. is the lA.at element of 

TESTS(s,E1) it must alao be the last elementt of 1JIS~li(s',E' 1 ), 

contradictfag the fi:eenasa of s•. 

We have, therefore, that TESTS(s,E
0

) ,.. TE'STS(s' ,E'
0

) for 

any pair of finite, consistent, free e•cutions !
0 

and E'
0

, 

and thus s and s' are logic eqUivalent. 

D 

Let S and S' be equivalent FIL1C schemas of s~e g~te.r than O. Let 

s be the last iteiation statement in the. puogr$11 of s, 4ru:l l~t s' be 

the logic equivalent iteration stateaellt in S'. 'l'ben e~c~ va~iable 

which is modified at s' ia passive iJ:l all. statements which fol,low s' 

in the program of S' • 

Proof: Suppose othet"Wise. In particular, suppose that a variable x is 

modified at s' and active in SOile sta.tement s" wh~ch followe s'. 

(For simplicity, we ass1,JJDe that x is the only such variable and 

s" the only such statement the ~neralization is tedious 
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but straightfoIWard.) We can assume without loss of generality 

that x is the test variable of s", for if it is instead the test 

variable of some statement in the body of s", we merely restrict 

attention in the ensuing discussions to executions of S' during 

which this statement is executed. 

Since x is modified at statement s' it is clearly the 

case that x is modified at s, since otheIWise the value of x 

would be independent of the number of times s were executed 

during a free execution of S, while the value of x grows, in 

general, in proportion to the number of times the statement 

s' is executed during a free execution of S'. 

Also, it must be the case that x is active in 

statement s: 

Suppose otheIWise. Let E and E' be consistent, 

finite, free executions of S and S' such that the value 

associated with x after the last execution of s' during E' is 

longer than that associated with x immediately prior to the 

first execution of s during E. Since we are assllllling that x is 

passive in s, the first test ma.de at s" during E' must be free 

with respect to E, as must any subsequent tests ma.de at s". By 

choosing ~ outcomes for all of these tests, if s" is a WHILE 

statement, or false outcomes for all of these tests, if s" is 

an UNTIL statement, we obtain a non-terminating execution of 

S' consistent with E, which contradicts the equivalence of S 

and S'. Hence, x must be active ins. But thens must also 
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be active in s' : 

Suppose otherwise. Let R be the bOdy of s, and let sx 

be a ·sta·tement with test varlablt? ·x irt R. · tet' Ex be a free 

execution of S in which •x i'a ezect'lted iftf~l'tely often 

s·• cons.istent with ·E :ln Which the body of s' is executed 
x 

eactly twice. s tuce s and s' am eqt'.tiva tent: schemas E' ' x 

must 1te • ·mm-tel!l'dllllt:ring ~titm. · !n ·ract; · l:t must ~ the 

case 11ka1: ·BS'rS(a'ff,l'x) ·is Ulfftff'e ·tnld CM.-t all but finitely 

11BUY of its •l--• •n in ~"iix,!x). Le't 1' be in 

(TESTS( ax, Ex) n 'DIST-&(911
, If' xH, •ml' ·l-ft· :fx' b'e an execution of 

s which ,ts cona'istent .wfl:h -Bx: eacept 'for the outcdme of T and 

which has the property that 8x is exec:utett· iliftn1tely often 

-during the second -eacvt>I:Ob t)f a !'a' g .• Then since x is 
x 

pass:Lve in a 11 stat!ements f c>l'l.,!tlg tl' ih the program of S ' , 
.... 

we can find a fink:e eacutiori J!" x 1>f s1•fdd.eh ;is consistent 

-1'be execution E·' x •ilf be consi'steut; -with' E'' x until the 

test: ,,. b made. Since each Statement0 stshst'qbetitly executed 

has a test variable othet: than x, tto more· 'tha'n finitely many 

tests need be made at any state.tit be-~~: a· te'st is made 

which ie free with respect to ~*•" -We choose· the outcane of 

such a test to be .t.m. if it is blade at an mrrn statement, or 

false if it is 111&4e at a WHII.! 11tate11Btlt:. !he resultant 

execution is clearly terminating aad ia consistent with Ex, 
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contradicting the equivalence of Sand S'. Hence, x must be 

active in both sands'. 

Let R' be the body of s', and let s'x be a statement in R' 

with test variable x. For simplicity, we asstune that s'x is 

the only statement in R' with test variable x and that sx is 

the only statement in Rwith test variable x; the generaliza-

tion is again straightforward. Let E' be a free execution of 

of S' in which s'x is executed infinitely often during the 

first execution of R', and let Ebe a consistent execution of 

s. No more than finitely many elements of TESTS(sx,E) may be 

free with respect to E', otherwise we may terminate the 

execution of Sin a manner consistent with E', contradicting 

the equivalence of the schemas. Hence by changing the 

outcome of some test TE (TESTS(sx,E) n TESTS(s'x,E'x)), we 

may obtain from E a finite execution ET of S such that ET is 

consistent with E except for the outcome of T, and such that 

T is the last element of TESTS(sx,E.r). Let E' be an execution 
T 

of S' which is consistent with &,- and is also consistent with 

the portion of E' prior to the ma.king of T. We note that the 

first test ma.de at s" during E' must be free with respect to 
T 

ET, as must each subsequent test ma.de at s", and hence that 

E'T can be chosen so that it is finite, again contradicting 

the equivalence of Sand S'. 

Thus no such variable x can exist, and each variable which 

is modified at s' must be passive in all statements which follow 
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s' in the program of S'. 

D 

The proof of tile follow:l:ag lelllla ie apilll vi'rtually identical to 

that of Lemna 5.7: 

Legna l.:J&: 

Let S and S' be FlLCF schemas, and let k > O be the maxbaum of their 

sizes. 'lllen we -may construct from S and S"I two pair$ of FILCF schemas 

of size no grea'ter l:han. k-l, ,such that S and S' are equivalent if and 

only if -each· .<>f the pairs comprises equl.alent schema.a. __/ 

Finally, we have: 

Theorem 2.s!t,: 

Let S and S' be FILCF schemas. Then it is decidable whether or not 

S and S' are equivalent. 

Proof: Fran Lenna 5.16, by induction on the size of S.and S'. 

D 
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5.7 Discussion. 

Obviously, the preceding results do not provide answers to all of 

the questions raised in Chapter IV. We conjecture, however, that 

techniques similar to those we have presented are applicable to most of 

the classes of schemas considered in the last paragraph of that chapter, 

and that equivalence is decidable for each of the classes. For certain 

of the classes, however, it is not clear that the additional efforts 

required to establish decidability results are well-spent: 

Our motive for studying the conditional-free schemas of the last 

section, for example, is that such schemas may provide a suitable basis 

for the study of structured independent location schemas in general, if 

methods can be developed to remove in sane systematic manner the 

conditional· statements from such schemas. It would hardly seem 

worthwhile, therefore, to expend much effort in extending Theorem 5.4 

to non-free schemas, since the equivalence problem for such schemas can 

be shown reducible to that for free schemas in which conditionals are 

permitted. Of course, it might be argued that freeness is a rather 

undesirable restriction since it is not a decidable property of iteration 

schemas, but it is fairly easy to show (see Appendix B) that freeness .!! 

a decidable property of independent location schemas. 

A similar comment applies to the result for FRI.SA schemas. Again, 

we hope to be able to apply the result to more general classes of schemas 

by identifying logic equivalent statements in pairs of schemas and 

suitably changing the predicate symbols in the statements. {In fact, 
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Theorem 5.4 can be derived in such a way from Theorem 5.2, although the 

proof that: we have pre&e'Bted ia 8GlliilWimt moa direct.) In light of the 

undecidability i:esulta iti Chapte-r IV for restricted locat:ion schemas, 

freeneu 11111 likely W a acwsary mst'tktion if equivalence is to be 

decidable for these more general claseea. We ton little, t:herefore, 

by imposing the watriction ndW. 

A few ·final words are in order about a class of schemas which does 

seem -worth consi4ering, however, and that is the class of free and 

conditional-free schemas which are restricted location, rather than 

independent location. We conjecture that Leana 5.14 is still valid for 

such schemas, although the proof is complicated by the fact that the set 

of tests whose first components end with some given symbol Ax need not 

be made in order of increasing length.a of these components. The 

remainder of the proof for the independent location schemas is, with 

quite minor and obvious modifications, applicable to restricted location 

schemas. 
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CHAPTER VI: 

Independent location program schemas have been studied rather 

extensively (cf, [12], [16], [191) because of the schemas' relative 

simplicity and because their equivalence problems are interchangable 

with those of a rather interesting class of automata, the multi-tape 

finite automata defined in [23]. In this chapter, we consider the way 

in which the equivalence problems for structured independent location 

schemas relate to those for such schemas in general, and to those for 

certain classes of the automata. 

We show that the weak equivalence problems for structured and 

non-structured independent location schemas are interchangable, and 

that both problems are in fact unsolvable. While we are not able to 

show that the equivalence problem for multi-tape automata is reducable 

to that for structured independent location schemas, we !.!! able to 

show that the equivalence problem for multi-tape automata with a single 

control state reduces to that for such schemas, and that the strong 

equivalence problem for independent location schemas in general reduces 

to the problem of deciding whether such automata are equivalent over 

some subset of their tapes. 

6.1 Multi-Tape Finite Automata. 

Our treatment of multi-tape automata differs somewhat from that in 

[16] or [23] since we consider a rather special subclass of the automata 

in a later section, and we wish the notions developed here to be 

reasonable for this subclass. 
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Intuitively, an n-tape automaton M is a finite automaton equipped 

with n one-way scanning heads, each on its own tape. Associated with M 

is an advancement ftm.ction and a transition function 11hich detemine, 

based on the cuttent internal state of Mand the 11-tuple of symbols 

being scanned, tile ta.pe heads, if any, Wh:leh are to be advanced to the 

next symbol, and ·the internal state of M which is then entered. A 

particular state of M is designated the initial state of the autanaton, 

another it• accepting state, and a third its zejecting state. No 

transitions are permitted out of these 'last two states. 

Each input tape of M is initially i.Q.ecdl>eci with a sequence of 

symbols fJ:CG soae f ini~e tape alphabet followed by· a special endmarking 

symbol $, 'beyond which a tape head u not pel!Dlitted to aoan. A 

canputation by M on a set of tapes begiae with M in its initial state 

and each tape head poaitionad at the lefQIOat aqua.re of its tape, and 

proceeds until ea.di head is aeanuing its respect±ve emhmn:ker, at which 

time a set of tapes is accepted if M is in ita ac.cept state or rejected 

if M is in its rej~t state. If M is in neither state, or if such a 

positioning of tape head.a never occurs, K is said to d;lyaxp on the 

tapes. 

Formally: 

An n·~ aµtomaton is a seven-tuple 

M = (T, Q, q1 , qa, qr, f, h) 

where: T is a finite set of~ 1ymbols, including the special 
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endma.rker $. 

Q is a finite set of control states. 

qI E Q is the initial state of M. 

qa E Q is the accepting state of M. 

qr E Q is the rejecting state of M. 

f: Q X Tn ~ Q is the state transition function, a total function 

satisfying the property that f(q ,~) = q and f(q ,~) = q , all ~ E Tn. 
a a r r 

h: Q X Tn ~ 2(l, 2,•••,n}, where 2[l, 2,•••,n} denotes the power 

set of {1,2, ••• ,n}, is the head advancement function, a total function 

satisfying the property that h(q,~) does not contain i whenever the ith 

component of ~ is $, all q E Q and ~ E Tn. 

A configuration of M is a pair (q,A), where q is an element of Q 

+ and A is an n-tuple of strings in T • (For such a A, we denote by TAIL(A) 

the string of length n whose ith symbol is the last symbol of the ith 

component of A, 1 s; is; n.) 

A computation by M is a possibly infinite sequence of configurations 

(ql,Al),(q2,~), ••• ' (qk'~),(qk+l'~+l), ••• 

in which q1 is the initial state q1 , A1 is a tuple of single symbols, and 

for all i > 1: 

(1) 

(2) 

qi = f(qi-l'TAIL(Ai-1)) 

A = A •S, where S is an n-tuple of symbols or nulls in T U 
i i-1 

{t..}, t.. the null string, such that for all j, 1 s: j s: n, the jth 

component of S is t.. iff j f h(qi_
1

,TAIL(Ai_ 1)). (Concatenation is 

extended to tuples of strings in the obvious manner: if X = (61, ••• , ck) 
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and Y = (cr1, ••• ,ak) are tuples of strings, then X•Y is the tuple 

( cl· al' • • • ' Cit• 0 k) • ) 

An n-tuple of strings in T* is asgeptg.d by M if there is a finite 

compu~tion l>y M ending with ·the conf igura.tion (q , A· $n); it is ajes-tsi ;a 

by M if there is a finite computation ending with the configuration 

(q ,A•$n). If A is neither accepted nor rejected by M, we say that M 
r 

divex;&es on A. We note that since there are ue traas.itions leaving 

· q or q , no A may be both accepted and rejected by M. a r 

The ~. ,,!fiJSl.?$1.4 by M, written L(M), ~s the set [A J A is 

accepted by M}. 'l"he i .... •'•&ae ... by )!, Vl'iti.en L(M), :l.s the' ~t 

[/\ I A is reject~ by M}. 

6.2 Equivalence Problems For Multi-Tape Automata. 

Let Mand M' be n-tape automata, eome n > o., 'lben·M andM' an 

strongly equi;valeni: if L(M) = L(M') and L(M) • L(M'). M ·and H' oa:i:e 
I . ··-- ' -···· 

weakly eguivalegt if (L(M) n L(M')) • ~ and (L(M) n L(M')) & ,, i.e. if 

no tuple of strings accepted by M is rejected by M', and vice versa. 

Let Mand M' be n-tape autanata, and let N = (i
1

, • .. ,11) be a set 

of integers between 1 and n, inclusive. Then M and M' are !-restricted 

eguivalent if the set ((c1, ••• ,c£) I for some A E L(M), Ci is the ijth 
' j 

component of A, 1 ~ j ~ £} is equal to the set {(&1, ••• ,6t) I for some 

A E L(M'), Ci is the i.th component of A, 1 ~ j ~.A}, i.e. if Mand M' 
j J 

accept the same tuples of strings when attention is restricted to the 

subset of their tapes designated by N. 
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6.3 "Equivalence" of Independent Location Schemas and Multi-Tape 

Finite Automata. 

Informally, we consider two models for computation to be 

equival_ent if their equivalence problems are interchangable and if, 

given an element in one model, we can effectively construct an element 

in the other which simulates it in some well-defined manner. Luckham, 

Park, and Paterson have demonstrated that independent location schemas 

with n variable symbols are equivalent in this sense to finite automata 

with n tapes. The simulations are straightforward (indeed the simulation 

of the schemas by the automata is rather trivial), but they are of no 

particular interest to us here; the reader is referred to [16] for 

details. We do note here, however, that the weak equivalence and strong 

equivalence problems for the automata correspond directly to the weak 

equivalence and strong equivalence problems for the schemas, while the 

restricted equivalence problem for the automata corresponds to the 

equivalence problem for independent location schemas with designated 

output symbols. 

6.4 Weak Simulation of Multi-Tape Automata by Structured Independent 

Location Schemas. 

It follows from the discussion in the preceding section that any 

independent location iteration schema can be simulated by some multi-tape 

automaton. In this section we demonstrate that an arbitrary multi-tape 

automaton can be "weakly" simulated by some such schema, i.e. simulated 

in such a way that each computation by the automaton corresponds to an 

execution of the schema for a suitably chosen interpretation, and each 



- 114 -

terminating n.ecut.ioft of' the sche111a corxaapomle to sc:mae computation by 

the automaton. We are tbus able to demonstrate the correspondence of· 

the weak e-qutvatenee problem· for n aatmata .. and th~ ~sit. though 

equivalence probl.811&. 

6.4. l The Simula·tion. 
. 

Let M • Cl•1•••• .. 8tc•'$1 {qv····~qI'~'qlr}, qI' qa, qi:' f, h) .be 

an n•t&pe autcaatum, for som u > o, as defined in Section 6.1. We show 

how to cQUBtJ:Uet an i~apendant location t;Earation schema s
111 

which 

weakly siaalate• the autaaa.t.oa: 

~will have vai:t.altle s~ols Xi:,.,. • .,.,xn., np~aen.t:l.ng the tapes of M. 

It will han &11 addttfioaal variable aJll)aol.;,y which. :will be used to record 

the states anctared by K cludng. a aial:ate4 ·~~~on,,,. and. also to 

record the outeome ei cha. eaap\JC&tion (Mcap4:anee or,rejecttoa) if the 

SM will have predicate symbols Ps ,. •• ,p
8 

,p$, corrctspondiag to the 
1 k 

tape symbols of ~. It will ale<> have. pi:e4toate symbols Pq , ••• , P 
0 

, P
1

, 
. 1 ' 

pq ,pq , corresponding to the states of M, and a •n'alnber of ~s" symbol 
a r 

Pm· 

~ will have function symbol g representing the advancement of a 

tape head, and symbols a and r denoting acceptance and rejection, 

respectively. 

For notational convenience, we provide simple representations for 

certain boolean expressions: 
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For each i, 1 s i s k, and each j, 1 s j s n, we 

the expression {p (x.) /\ (-,{p (x.) V p (x.) V ••• 
Si J Sl J S2 J 

V p (x.) V ••• V p (x.) V p${x ))). 
si+l J sk J j 

represent by P (x.) 
Si J 

V p (x
3
.) 

si-1 

Similarly, for each j, 1 s j ~ n, we represent by P$(xj) the 

expression (p (x.) /\ (-, {p (x.) V ••• V p (x.))). 
$ J sl J sk J 

For each i, 1 ~ i ~ m, we represent by Pq the expression (p {y) /\ 
i qi 

(.., (p (y) V p (y) V ••• V Pq {y) V p (y) V ••• V pQ {y) V p {y) V 
ql q2 i-1 qi+l "'m qI 

Pq (y) V Pq {y))), and define expressions for P , P , and Pq in a 
a r qI qa r 

similar manner. 

Let cp
1

, cp
2

, ••• , cp n be an enumeration of the strings of 
(k+l) n 

length n over the tape alphabet of M. Th.en for each j, 1 ~ j ~ (k+l) , 

we represent by P the expression 
cpj 

where sj ·sj • ••• •s. = cp • 
1 2 Jn j 

... /\ P (x )), 
sj n 

n 

We adopt a shorthand notation for certain sequences of assignment 

instructions, as follows: 

Let N = [i
1

, ••• ,it} be a set of integers between 1 and n, 

inclusive. Th.en we denote by '~ ~ g{~)' the sequences of instructions 

'x. ~ g{xi )', ••• 1
1 1 

,'x. ~ g{xi )'. 
1
t t 

The subschemas of SM are as follows: 

The empty schema SE and the divergent schema St' as defined in 

Chapter IV. 

n 
For each i, 1 s is (k+l) , and each j, 1 s j s m, the subschema 

si,j with program: 
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xh(qj ,q>i) +- g(~(qj ,tpi» 

y ... g(y) 

IF P 
f(qj,cpi) THEN SE ELSE St 

For ea-ch i, 1 s: i s: (k+l)n, the subsChema Si ,I with procram: 

xh(qI 'cpi) +- g(~(q ..rn » 
I . .,.i . 

y +- g(y) 

IF '.Pf ( . ) 'l1lBN SE ELSE St 
qI >epi 

For each i, 1 so i < (k+l)n, and each j, 1 s: j s: m, .the subschema 

Ri,j with program: 

IF (P /\ P ) 1.'HEti s1 j ELSE Ri+l j 
qj cpi • , 

For each j, 1 ~ j < m, the subschema R with program: n .;(W-U ,j 

IF (P /\ P ) THEN S 
qj C?oc+l) 0 (k+l)n ,j &LSE. Rl ,j+l 

The subschem R(k+l)n ,a with program: 

IF (P /\ P ) 'lllEN S . ELSI R 
qm Cf>(k+l) 0 (k+l)0 ,m l,I 

For each i , · 1 s: i < (k+ 1) 11
, ·the subschema lli, I wi!th pTogram: 

IF (p . /\ P ) ·-N &I.SE 1t 
qI cp

1 
.1:m:. 

81,I i+l, I 

The subschema R n with program: 
(k+l) , I 

IF (P /\ P ) THEN S n ELSE St 
qI cp(k+];) n (a+l) ,I 
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The schema 8M· is then: 

IF P THEN S ELSE 
qI E 

WHILE p (y) DO R 
m 1,1 

IF Pq (y) THEN 'y ~ a(y)' 
a 

IF Pq (y) THEN 'y ~ r(y)' 
r 

ELSE S 
E 

ELSE S 
E 

Let I be a free interpretation for S , and for each predicate 
M 

symbol p of SM let TIP denote the predicate assigned to p by I. 

For each i, 1 s i s n, let i,i be the least integer > 0 such that 
.£,· 

TI (g 1 ·A ) is~' and let .£, be the least integer such that 
P$ .£, xi Y 

TI (g Y.A ) is false. We say that I is a reasonable interpretation 
pm y 

for~ if exactly one of the predicates TIP , TI , ••• , TIP , TIP is 
s1 Ps2 sk $ 

~at each element of [g i. Ax I 0 s i s i,j, 1 s j s n}, and exactly 
j 

one of the predicates TI , TIP , , TIP , TIP , IIP , Ilp is ~ 
Pq

1 
q2 qm qI qa qr 

at each element of [gi· A y I 0 s i s .£,y }. 

Each interpretation I which is reasonable for SM defines an n-tuple 

A of strings over the alphabet of M in a straightfotward manner: the ith 

symbol in the jth string, 1 s j s n, 1 s i ~ i., is symbol s if and only 
J 

if TIP (gi-l·Ax.> is~· 
s J 

Each such interpretation I for ~ defines a sequence of states of M 

in a similar manner: the ith state in the sequence, 1 s i s .£, , 
y 

i-1 
is q if and only if TIP (g ·A y) is ~· 

q 
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The reader may verify that SM diverges under all unreasonable 

interpretations, and converges for the reasonable interpretation I if 

and only if the sequence of states defined by I is consistent with a 

non-divergent computation of M on A. If the execution of SM converges, 

the symbol a or r is prefixed to the value of symbol y, according as 

the last state of M in the simulated computation is q or q • a r 

Thus, SM weakly simulates the automaton M in the manner described 

previously. 

6.4.2 Weak Equivalence: A Reducibility. 

As noted, the schema ~ constructed in the preceding section diverges 

under all unreasonable interpretations, and diverges under reasonable 

interpretations which define input strings on which M diverges. But the 

schema may also diverge under reasonable interpretations which define 

input strings on which M does ,B2t diverge, if the sequence of states 

defined by the interpretation does not correspond to the sequence of 

states entered by M during its computation on the strings. This behavior 

is an inherent feature of the simulation, and is in fact the feature which 

makes the simulation "weak" (and thus precludes us from reducing the 

strong equivalence problem for the automata to that for the schemas). 

We note also that if the execution of ~ terminates for some 

interpretation I, the final value associated with symbol y for the 

execution will depend on the length of M's computation on the input 

strings defined by I. Since the length of the computation ma.de by an 
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equivalent automaton on the same set of strings may be quite different 

from that made by M, it would seem that the simulation is not suitable 

even for a reduction of the weak equivalence problem. Fortunately, the 

following lemma implies that such is not the case: 

Le1IIDS. hl,: 

Let M be an n-tape automaton, for some n > O. Then we may construct 

from M an equivalent n-tape automaton M' such that precisely one tape 

head is advanced at each step of any convergent computation by M. 

Proof: Let Q and T be the states and tape symbols, respectively, of M. 

Let f be the transition function and h the head advancement 

function of M. We first modify M so that no more than a single 

head is advanced during a step of any canputation by the 

automaton: 

n 
Let q be a state in Q and let ~ be an element of T such 

that h(q,~) = {j 1, ••• ,jm} for some m > 1. We add to Q new 

(m-1) 
states q', q", ••• , q and extend£ and h to these new 

(i) (i+l) (i) 
states so that f(q ,6) = q and h(q ,o) = [ji+l}, for all 

n n 
6 E T and all i, 1 ~ i ~ m-1. For each 6 E T , we define 

f(q(m-l),o) to be the state f(q,~) and we define h(q(m-l),6) to 

be {j }. Finally, we redefine f(q,~) to be state q' and h(q,~) 
m 

to be {j 1}. The procedure is repeated for any additional 

arguments for which the value of h is a set of cardinality 

greater than one, and the resultant automaton has the desired 

property. 
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Assume now that no more than one head is advanced during 

any step in a CQJllPUtation by the automaton. Whenever we have 

. n 
f(q,cp) = q' for some states q and q' and some cp E T such that 

h(q,cp) = ~ and h(q' ,cp) ,. ~, we redefine f(q,cp) to be f(q' ,cp) 

and redefine h(q,cp) to be h(q',cp). This procedure is repeated 

as long as such q,q' and cp can be found. The resultant 

automaton is M'. 

0 

Thus we have: 

The weak equival-ence problem for 1RUlti .. tape finite =automata reduces to 

the weak equivalence problem for independent location iteJNltion schemas. 

Proof: Let ·M
1 

a1lCl x2 he n-tape automata for soma n > O, and let M' 1 and 

M' 2 be the automata e~atructed f:roa·M1 and H2 as in the 

preceding Lemna. Let 88• and 8K• be the dmulatin.g schemas 
1 2 

constructed :frOll M' 1 and M' 
2 

as in Section 6;.4.1. Then M and M' 

are weakly equivalent if and only if 8ff• amt ~· a.re weakly 
1 2 

equivalent. 

0 

As we shall see in the next section, Tlleorem 6• l is a more interesting 

result than it seems at first glance, since the weak equivalence problem 

for the automata can be shown unsolvable. 
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6.5 Undecidability of Weak Equivalence for Independent Location Schemas. 

In this section we demonstrate that weak equivalence is undecidable 

for multi-tape finite automata and hence, according to Theorem 6.1, for 

independent location iteration schemas. 

The following result was implied in [12] and demonstrated explicitly 

in [19]. The proof given here is essentially that in the latter paper. 

Lemma .§..1.: 

The inclusion problem for multi-tape finite automata is unsolvable. 

That is, it is recursively undecidable whether L(M) i:;: L(M') for 

arbitrary n-tape automata Mand M'. 

Proof: Let C be the Post Correspondence Problem defined in Section 4.1. 

It is a trivial matter to construct a 2-tape automaton M such 

special symbol, and for each j, 1 s j s £, ij is a symbol 

denoting integer iJ., 1 s iJ. s k; and ·w = w. • w • ••• • w. }. 
i1 iz i£ 

Also, we can construct another 2-tape automaton M' such that 

L(M') = .[ (x., Y ) I x. is as in L(M) and Y is any word other than 

Yi
1
·Yi

2
• ••• ·Yi£J. Clearly, Chas a solution if and only if 

L(M) </; L(M'), and hence the decidability of inclusion for multi-

tape automata implies the solvability of the unsolvable Post's 

Correspondence Problem. 

0 
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We now reduce the inclusion problem for multi-tape finite 

automata to the weak equivalence problem for the automata. 

Lemma §.:.1: 

Let M be an n-tape automaton, for some n > o. '!hen we can construct 

from M an n-tape automaton M' such that L(M) • L(M') and M' rejects no 

input. 

P;oof: Infoi:mally, we add a new state q to the states of M, and provide 

transitions £ran q back to q for each length n string from M's 

alphabet. Each transition into the rejecting state of M is 

replaced with a transition into this new state, .and the resultant 

automaton is M'. 

D 

The following lemma is derived :iJmnediately from Lenna 6.1: 

Lemma .2si: 

Let M be an n-tape automaton, for some n > o. '!hen we can construct 

from M an n-tape automaton M' such that L(M) = L(M') and M' rejects any 

input which is not accepted. 

Proof: We construct from M the automaton M' of Lepima 6.1. We than add 

a new state q to this machine, an4 redefine f(qi,q>) to be q 

whenever h(qi,cp) • ~' where f and h are the transition and 

advancement functions of M', qi is any state in M', and cp is 

any length n string of tape symbols. We extend f and h to state 
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q as follows: 

If cp is a striog of lengtb a ot:ker. cllan .,,,..,~·1re·deifine f(q,q>) 

to be q and h(q,q>) t·o be {:t·+'°tlut>.idl.-c-.aaent of q> i•not $, 

1 s: i ~ n}. n 
If q> is $ , tlum :'f.( q,qt) k4r• vhe.re 'r is the 

rejecting. state of M', aad h(q,cp) :I.a ·the empty: ut:.. l'be 

msultant autaatQU .i.• M''. 

D 

'1'beom 6,2: 

The indusion problem for 11Ulti•t-ape ·-finite auttdittll· t's t'ed'ucibte to 

the weak equivalence problem for the &litom&'ta.· 
' 

Proof: Let M1 and-~ be arbitrary n-tape automata, for same n > o. 

Let M"
2 

be the automaton conatructed frcim ~ as. in Lmmna 6.4. 

Then L(Ml) s L~) if and only if M'1 and'M"2 are Weakly 

equivalent. 

·o 

Coro1l!ri .§...2.: 

The weak equivalence problemfor indepei\del:&t·tdeation iter4ti0!1 schemas 

is unsolvable. 

Proof: llllnediate from Theorem 6.1, Lesmna 6.2, aiid Theorem 6,2. 

0 
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6.6 Single State Automata. 

'l'be problem& which pnvent the: strong.aiallatiion of multi-tape 

autanata by ita•~tcm ac._,.. atea fJ!IClln ttie fact tbat a5 interpretation 

for a sinmlatiaa ac;besm muat include a sdtablla "defiaittion° of the 

sequence of atatea entered by die- --~ta ~· iU. eaaputation; the 

schema's execution must diverge if tld.a ~ • ..,.._. ill illcormct or is 

unreasonably defined. Since equivalent automata will genexally have 

different state sets, there is no way to ensure that schemas which 

simulate equivalent automata will both \'liverp or ltota GOllV'eqe under a 

given pair of consistent interpretations. In particular,. -. can geaexally 

provide such schema.a with intalij>i:et.a.tiau wh~eh p.,~ ••ona~~ (in the 

sense of Section 6.4.1) for one schema b\at,:~xea~pl~- fol;' tbe o~r, 

thus forcing one schema to diverge under its interpretation while 

permitting the other to converge. 

We would expect, on the other hand, that automata with a single 

state would present no such problems, alth~ we nd~t question whether 

such automata are capable of recognizing any interesting languages and 

whether their equivalence problems are related in any non-trivial way 

to those for multi-tape automata in general. 

In this section we deD\Otlstrate that the iteration schemas are 

indeed capable of strongly 1imulating such: automat~ .• and also show that 

the automata are capable of recognizing non-trivial la~,ges. We show, 

in fact, that the equivalence problem for multi-tape automata reduces to 

a restricted equivalence problem for the single state automata. 
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6.6.1 Single State Automata Definitions. 

Actually, the term single state automaton i.s sanething of a 

misnomer, since the automata which we define below contain two states. 

The function of the initial state of an a~tomaton, how~ver, is simply 

to ensure that the automaton begin a c~pu~ati~ in one of some finite 
L, 

number of designated configurations. In partic,\lla~, .once the initial 

state is left no transitions back into the state are permitted; also, 

no movement of the tape heads is permittecfwhile the automaton is in 
I ·" ... ·. ., ;_ 

its initial state or moving out of the state. (Intuitively, we might 

think of the initial state as ~omething of an "input monitor": if the 

tuple of initial symbols on the automaton's tapes is acceptable, the 

control state of the automaton is entered and the computation carried 

out. If the tuple is not acceptable, the initial state is never left 

and the computation diverges.) 

The definition which follows is essential!~ the same as that.given 

in Section 6.1 for multi-tape automata, except that we dispense with 

accepting and rejecting st~tes aad d,efiae tl\e •ch~•~nt and, tranlilition 

functions in such.a way as to ensure that the.initial:atate is as 

described above. (The automata will have ~o reje~~ng. states, .$.D.d their 

control states will function as accepting states.) 

A s?de atpte n•t§ee ag•tgn is a f ive ... tuple 

M = (T, q, q1, f, h) 

where: T is a finite set of ~ symbols, including the end.marker $. 

q is the control state of the automaton. 
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qI is the initial state of the automaton. 

f: { q, q1 } x 'fl -t { q, q1 } is the state tJ&91ition funs.tion, a 

total function satisfying the property th&t f(q,q>) • q, all cp E rfl. 

h: {ci,q
1

} x Tn-+ 2f1 •2•···•n} is the .b.l!Jl dv•'W'!Fnt funstios, 

a total function satisfying the properttes tbat,h(q~~cp) • ,,·, and i ~ 

h(q,cp) whenever the ith ccmponent of cp -ia -$,.-for alf cp E T1. 

Conf 11':'!8t1ons and cometations ai=e defined for single state 

automata in the same manner as for multi-tape automata in gene'J.'8.1. An 

n-tuple A of strings in T* is acceptfi by'-~ if t~n is a finite 
.• ' ' . 

computation by Mending with the configuration (q,A•$n), and is 

re1ested by M if no such canputation exists. The lfpguags acs;ephd 

and g1ect@d by M an defined as for multi•tape automata. 

Strong and :restricted equivalence are def iDed for s~ngle state 
' ~' ., 

automata as in Section 6.2. We ahall not consider notions of weak 

equivalence for the -autCJlll8ta. 

-A BedueD!U.ty. 

Let M • ({s1, ••• ,sk,$}, q, qI' f, li' be a ·sittgte state n-tape· 

automaton, for scme·n > O. 

We shall show how to construet an -independent location iter&t'i0n 

schema 8M which aiaulataea M. (The GC9'U!l~-:t~;ia 9..,aite. ~~lar to that 

described in Section 6.4.1, and we use much of the 1¥lme tei:minology.) 

~ has variable symbols xl' ••• ,xn and y. It has predicate symbols 

Ps
1

, ••• ,p9k,p$ and Pm· It has a single function symbol g. 
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Expressions of the form P 81 (:xj) and P $ (:xJ) ~re as ~efined in 

Section 6.4.1; we use the same enumeration of length n strings over the 
"'"· ' 

alphabet of M, and the expressions Pep , 
1 

in that section. 

... , P n are as defined 
; cp(k+l) 

~(q, ~i) ... g(~(q,cpi)) 

IF Pm(y) THEN SE ELSE st 
y ... g(y) 

J, tiDll!s, where J, is the 
cardtila lity of h 

(q,tpi) 

IF pm(y) THEN SE ELSE St 
y ... g(y) 

n For each i, 1 s;; i < (k+l) , we define R1 to be the schema: 

IF Pepi THEN Si EJ:,SE 8t_+l 

We define I. to be the nbemti1 
(k+l)n 

IF P 'l'BIN S .· . ELSI S . 
~(k+l)n (k+l)n t 

Row, let 61,. ••, 6.t be an en.-ratiOii: of·' thoift' length n ·strings 

for which f(qI' 6i) • q, 1 s;; i s;; L• '!hen ~·:i.a .c;he · M:h-.: 

IF (Po v ••• v Po ) THEN SE ELSE st 
1 J, 

WHILE pm(y) DO ~ 

IF (P$(x1) A ••• A P$(xn)) THEN SE ELSE St 
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We define reasonable interpretations for 8M in a manner analogous 

to that in Section 6.4.1, and note that each reasonable interpretation 

defines an n-tuple of strings over M's alphabet. The reader may verify 

that S diverges for all unreasonable interpretations,. and converges for 
M 

a reasonable interpretation· 'I if and only if I defines a tuple of strings 

accepted by M and assigns to Pm a predicate TIP such that: 
m 

TIP. (g
1

• /1 ) = ~' all i < t 
m Y 

i 
TIP (g ·A y) = false, i = J, 

m 

where J, is the number of symbols in the tuple of strings defined by I. 

In such a case, the final value associated with y will be gJ,• AY. 

We have immediately: 

Theorem .§.sl: 

The strong equivalence problem for single state multi-tape automata 

reduces to that for independent location iteration sch-... 

Proof: Let M and M' be single state n•tape automatfil., for some n > O. 

We construct from M and M' the simulating schemas 8M and 8N• 
as above, and note that M and M' are strongly equivalent if 

and only if ~ aud ~· are strongly equivalent. 

0 
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6.7 Equivalence of Multi-Tape Automata A Reducibility :Result. 
, 

We have shown that the strong equivalence problem for single 

state multi-tape automata reduces to that for structured independent 

location schemas. In this section, we provide motivation for that 

result by showing that such automata constitute a surprisingly rich 

class of multi-tape automata, and are in fact capable of simulating 

arbitrary automata if we allow them additional tapes on which to store 

control info1.1D11tion. Since the particular information.which is stored 
, <~ ' 

on these tapes will depend on the automaton being simulated, we must 

content ourselves with showing that the strong equivalence problem for 

multi-tape automata reduces to a restricted equivalence problem for the 

single state automata. 

We begin with sane useful definitions: 

Let cp • s •s • •s •s • be a·string· over some i1 i2 ••• ik ik+l ••• 

alphabet T which does not contain the special symbol #. Then an expansion 

of cp is any string of the form: 

~ • si ·6 ·(l)jl.si •o .(#)j2. 
e 1 1 2 2 

* in which for each i, o 
1 

is an arbitrary ~ring i? ? .~ j 
1 

ia. an j.nteger 

greater than O. We extend the notion of expansion to tuple• of strings 

and sets of such tuples in the obvious manner: 

If A• (cp1, ••• , cpn) is a tuple of strings over T, then an spq>apfion 

of A is any tuple Ae • (~ , ••• 
e 

, cp ) in which for each i, 1 s: i s: n, 
ne - '· 

cpi is an expansion of cpi. If X is a set of tuples of strings over T, then 
e 

the expansion of X is the set EXP(X) • {A IA is an expansion of some A EX). e e 
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Let M be an n-tape automaton with tape alphabet T and "Control 

" states represettted by a set of symbols Q, and such that no more than a 

single tape head is advanced during any step in a computation by M. 

Let A= (cp1, ••• , cp } be a tuple of strings accepted by M. Then the 
n . 

trace of A with n.apect to M is the ni4-tuple of strings A = 
t 

( a ' p ' Y ' Y ' cpl' • • • ' cpn} 
.... - -over T U Q U {l, ••• , n}, such that a E 

- - * ·{1, ••• , n} represents the sequence of tape heads moved during the 

computation by which M accepts A, p E T* is the sequence of symbols 

scanned during the computation, and y EQ* represents the sequence of 

states entered by M during the ccaputation. We denote by lJMIQ'!) the 

set {At I At is the trace of soae A accepted by M}. 

As we shall see, it is precisely the info1:1&U.on in the f:t.rtt four 

canponents of a trace 'Which constit'-Jtea the control info1:9tion required 

by a single state automaton in the simulation of an atbitrary illlllti-tape 

automaton. 

We note that if cp is a string over an alphabet T not containing #, 

then the expansion of cp formed by inserting #. between each pair of 

symbols in cp catm.ot be obtahed as an dt>an•ion of att.Y other string. 

Thus we haw: 

Let M and M' be n-tape finite automata whose tape alphabets do not 

contain the symbol I. Then M and M' accept the same language if and 

only if EXP(L(M)) • EXP(L(M' ) ) • __/ 
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Lemma hl_: 

Let M be an n-tape automaton (T, Q, qI' q , q , f, h) such that exactly 
a r 

one tape head is advanced during each step of any convergent computation 

by M, some n > o. Then we may construct from M a single-state automaton 

M' with n+4 tapes, such that L{M') = EXP{TRACE{M)). 

Proof: A formal definition of M' appears in Appendix C. We describe 

the behavior of M' informally below: 

" Let Q be the set of symbols {q. I qi is a state in Q}, and 
l. 

let N = {1,2, ••• ,~}. The alphabet of M' is the set T' = 

T U Q UN U {#}, where # is a special symbol not appearing in T. 

We may represent a configuration of M' as an n+4-tuple of 

strings over T', and we say that a configuration A is a~ 
- ..... ,.. 

configuration of M' if TAll.(A) is of the form i·s•qi•qi·~, 

where ~ EN is such that i = h(q.,~) in M, and s is the tth 
l. 

symbol in ~ E 1'11. Intuitively, a base configuration of M' 

represents sane configuration of M just prior to some step A- in 

a computation by M. The first four tapes in such a base 

configuration contain the following information: 

(1) The head of M which is to be advanced at step ...o. of M's 

computation. 

(2) The symbol currently under scan by this head. 

(3) The current internal state of M, recorded on each of tapes 

3 and 4. 

We shall describe the sequence of moves by which M' advances 
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to a new base configuration representing the configuration of M 

at the conclusion of step A- of its computation: 

M' moves head £+4 until the symbol # is scanned. It then 

moves head 4 until # is scanned, and likewise head 1. 

(Intuitively, we may think of M' as preparing these tapes for 

its next base configuration.) 

M' advances head 4 past any number of #'s until a non-# 

is scanned. Unless this symbol is q , where q = f(q_,cp) in M, 
. j j i 

the computation diverges, i.e. M' advances no tape head. This 

behavior of M' ensures that tape 4 has the symbol representing 

the internal state of M after step .,A.- of its computation. 

M' advances head 2 and then head 3 until #'s are scanned 

on these tapes. It then advances head £+4 past any number of 

#'s until some symbol s' ET is scanned on the tape, diverging 

if the first symbol after the #'s is ,nQl a symbol in T. At this 

point, M' has discarded the original scanned symbol and internal 

state of M since this information is no longer needed; it has 

also advanced the appropriate tape head and scanned symbol s' 
' 

so that each of the· last n tape heads is scanning a symbol in T. 

Let cp' denote the string composed of these n scanned symbols: 

M' advances head 2 past 1!' s, until sone s" E T is scanned 

such that s" is under scan on the k+4th tape of M', where k is 

h(q. ,cp' ). If the first symbol after the 1F' s is not such an s", M' 
J 

diverges. M' will thus have ensured that the "symbol under scan" 

component of its next base configuration is correct. 
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M' now advances head l paat any nullber of #'a "Lm.til a symbol 

t' EN is 1canned such that J,' ... h(qj,cp' ). If any aymbol other 

than J,' iJlaediately follows the I's, M' cUversea. M' thus ensures 

that the "head to be advanced" ~ponent ;0f itenext base 

configuration is correct. 

Finaliy, M' advances head 3 past ~1 ~•r of # 1
1 until 

symbol qj is scanned on that ~pe, .diverging,: tf a aJISbol other 

A 
than qj is scaimed first. At this pout. ·ll' luf.s nached the 

desired base configuration. 

The readeJ;" ~Y verify .thai; the,:cqo.ditionJ geverrd.ng moves 

are unique in each cate, and thus ,that ~. 0ebav1ar of M' as 

oqtlined .is con8istent with the -~\11.reaeo.t that M' have a single 

control state. (Of course, we.~ to .edc:l.wles •aeuring that a 

computation of M' begins at a base configuration representing an 

initial configuration of M, and additional rules allowing a 

computation of M' to terminate if a base configuretion represents 

a terminal configuration of M, but the addition of such rules 

is straightforward: the curious reader is referred to Appendix C). 

0 

We are now in a position to prove the main result of this section: 

Theorem hl: 

The strong equivalence problem for multi-tape autcuata reduces to a 

restricted equivalence problem for single state automata. 
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l?roqf: Let M and M' be arbitrary n•tape autcnata, for some n > O. From 

Lemma 6.1, -we can assume without loss of genenlity that exactly 

one tape head moves during each step of any convergent canputation 

by either scthem. Let M andM' be single state acceptors for 
s 8 

EXP(TBACE(M)) and EXP('l'RACE(M')), raape'Ctively, constructed as in 

the preceding lenna. Then from Leaaa 6. 6, L(M) • L(M') if and 

only if M8 and M' 
8 

are N-reatricted equivalent, N • {5,6, ••• ,n-+4}. 

We may int~hange the accepting and- rejecting states of M and M' 

to obtain n-tape automata M and M1 such that LcM) • t(M) and 

LcM') • L(M'). If we coYt:ruct single state acceptors M8 and M's 

for !Xl>('l'MCB(i)) &nd UP(TMCIEJi')), then M ia equivalent to M' 

if and aaly if Ms and M' 
8

, and M
8 

and ii• 
8

, are pllirwiae 

N-i:estr:f.eced equiva len'f:. 

0 
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6.7 Discussion. 

We have attempted in this chapter to relate the equivalence problems 

for structured and non-structured independent location schemas. We began 

by looking at a class of automata equivalent to the non-structured 

schemas, and showed that such automata could be simulated by structured 

schemas which diverge whenever they are provided with interpretations 

not corresponding to valid computations. While such a simulation might 

be of some practical interest, Corollary 6.5 shows that it is of little 

value if our concern is with such issues as schematological equivalence. 

In fact, the corollary suggests that weak equivalence is likely to be 

undecidable even for classes of schemas for which strong equivalence .!! 

decidable. If we are looking for potentially solvable problems or 

potentially useful reducibilities, therefore, we had best restrict 

attention to strong equivalence and strong simulations. 

Via Theorems 6.3 and 6.4, we have been able to establish another 

relation between the equivalence problems for the structured and non­

structured schemas. While the relation is admittedly sanewhat indirect, 

it never-the-less raises some questions (for example, regarding the 

decidability of equivalence for single state automata) which are of 

interest in their own right. 

relation is worth pursuing. 

It would seem, therefore, that this 



- 136 -

CHAPTER VII: St.H4AllY 

In this thesis we have introduced itppti.Qp achem@s (monadic 

schemas ccciposed of assignment statements, conditional statements, and 

iteration statements) and have shown that such scheas corre•pond to 

monadic program schemas with structured flowcharts. We have also sh<*ll 

that the schemas form an incomplete subclass of the monadic program schemas 

in the sense that there exist monadic program schemas which are not 

equivalent to any iteration schema. 

We have defined several subclasses o~ iteration schemas: 

( i) Im sch-• in which teats a;w:e ~vei repeated ,~uriq schema 

executiona. 

(ii) Sipj.f MIM•ISI schemas in wb.ieh p1:1lclica~ ·.symbols occur only 

once. 

and iteration statements. 

(iv) !nd•PSm\'i' lOJCft~sm schemas in wb~ch t~e assi~nt and argument 

variables are one and the same in each assignsQent sta~~nt. 

(v) k•tris~IS iqsa.tipn schemas in~9i~h initial.assigmnent 

stateinents of the fonn 'x ... y', •:re peajtted, l>ut wtiich otber:wiJe are 
,'' ' ,' 

independent location schemas. 

We have formalized the notion of schE!Blll equivalence as the functional 

equivalence of schemas under free interpretations, and have explored the 

equivalence problems for these various classes of iteration schemas. We 
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were able to show that equivalence is undecidable for restricted location 

schemas, and strengthened the proof to demonstrate the undecidability of 

equivalence for such schemas which are conditional-free. We concluded 

that restricting the schemas to a single function and predicate symbol 

avails nothing in solvability, and that equivalence is unsolvable for 

such schemas with just two variable symbols. We have also shown that 

arbitrary nesting of iteration statements is not essential to unsolvable 

problems, and that unsolvability is with us for schemas with just two 

levels of iteration and for conditional-free schemas with just three 

levels. 

We considered other features of the schemas for which we were able 

to demonstrate unsolvability, and this suggested several possibly solvable 

domains. We established techniques enabling us to demonstrate the 

decidability of equivalence for free schemas which are single appearance, 

or which are independent location and conditional-free; and for the class 

of schemas which are single appearance and conditional-free. While several 

interesting problems are left open, we are confident that the methodology 

developed can be extended to more general classes of iteration schemas. 

The results established in this thesis are summarized in Fig.10, along 

with some of the more interesting open problems. 

We have explored in some detail the way in which equivalence problems 

for independent location iteration schemas are related to equivalence 

problems for independent location program schemas and multi-tape finite 

automata. We have shown that the iteration schemas are capable of 

"weakly" simulating such automata, and have used this result to demonstrate 

-------------- ----- -
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---------------·-------~-----------------... -----------------------• ·I I t I I 

: FREE : SINGLE :coNDITIONAL~ BESTB.IC'l'ED : DIDEPENDENT: 
: : ·~-I FIB ' : LOG&!rmt ': .•ooe\"?IOR : ,a. ___________ _, ___________ ,,,_ __________ .._ ___________ ..... __________ ... 

I I I I I I 

: : l I X I : Unablvable 
~-----------~-------·----'-----------..._ __________ .._ __________ ~ 
I I I I I I 

: ~ : X : X .: : Unsolvable 
t-----------~-----------t------------:-----------+----------~ 
: X : X : : : : Solvable 
'-----------~-----------~-----------...._ __________ ....._ __________ ~ 
I I I I I I 
I I I I I I • x 1 • x 1 . x 1 • Solvable 
+-----------i-----------~-----------+----------+----------~ 

I I I I I 
• X • X '• • • Solvable 

+-----------1-----------~-----------+----------+----------~ 
I I I I I I 
I 1 x t • I . I &lvable* 
f-----------i-----------~-----------+----------+----------~ 
: X : : : ! :0pen +------------1-------------1-----------+----------+-----------: 
I I I I I I 
I I I I I X 1·$pen 

f-----------i-----------+·-----~---+~--------·+-----------: 
I I I I I I 

t-----:_----~----···-··-f.----•·-----t----•----•..f..-•--1<-----4 Open...., 
I I I I I I *"' 
t-----------~·--·--·-·--+----2<·----+--· .. ·--... --+----1<-----~ .ot>eo ·_ 

1 I I I 
X I X I 1. l Open 

+------------1-------·---~--,·--------+----------+------------: 
I I I I I I 
I X I I X I X I· •Open 1------------'----·-·---.-.1------------'-911!'----------;;,;L __________ ., 

Multi-Tape Finite Automata Open 

Single State Multi-Tape Automata Open..__.._,,, 

Directed arcs ind.ic:ate reducibilities: A--+ B indicates that the 
solvability of A implies that of B. Trivial reducibilities are not 
shown. 

*Solvable, but details •re not given. 

FIGUBE 10: Summary of Results. 
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the undecidability of weak ecru.i.Slence (i.e. equivalence for terminating 

computations) for the independent location iteration schemas. We have 

shown that the equivalence prqbl~ ~or· .W.ti-t4JW;,·••C1M.• with a single 

control state· ii reducible to that for·ind\lp.M*irt locat'ion itel."&tion 

schemas, and have also demonstDf.ted til&t tile '~~~l~nce pr9blem for the 

automata in gellAW&l recluces to the·pntil• of.4kt41ag·whether single 

state automata are equivalent over scae arbitrary subset of their tapes. . . . . ' . 

The obvious areas for further study are suggested by Fig,lD. 

A positive solution to the equivaleaee· ,probl.eme: fol' fna iceration schemas 

would be a major achievement since it 1'ould. lend ~f:l.d s~pport to the 

conjecture that non-freeness is an es8'nti&~ ch~litctel'i•~i.c qf unsolvable 

problems. Such a solution for restricted l~:ltm"s&emari would also be 

welcome since it would at least establish a "freeness" boundary between 

decidability and undecidability for th~• aohMlb FiDally, • positive 

solution to the equivalence probl~ for inde~~t '10cation iteration 
t '"'' 

schemas would be, we feel, a major step in the solution of the equivalence 

problem for independent location schemas in general; at the very least 

it would provide, by implying the clec:Wab.i~ity o,f •quiv;alence for single 

state automata, an additional avenue by which to approach the equivalence 

problem for multi-tape automata in general, .an ~pen problem· of long 

standing. 
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APPENDIX A: Decidability of Freeness for Independent Location Schemas 

Let S be an arbitrary independent location schema, and let F be its 

flowchart. We say that a pair of nodes in F are similar if both nodes 

are transfer nodes labelled 'p(x)' for some predicate symbol p and 

variable symbol x. We claim that S is free if and only if each directed 

path from a node n to a similar node n' in F contains an assignment node 

labelled 'x ~ f(x)' where f is some function symbol and xis the 

variable symbol of n and n': 

(IF) If such is the case, then no variable is ever tested twice with the 

same predicate during an execution of S without an intervening assignment 

to the variable. Since S is an independent location schema, it is clear 

that no test can ever be repeated during a free execution of S. 

(ONLY IF) An essential characteristic of a free schema is that every path 

through its flowchart corresponds to an execution of the schema. If there 

exists a directed path from n to n' containing no assignment labelled 

'x ~ f(x)' for some f, then a value associated with x will be tested at 

both n and n' during any execution of S which traverses this path, and 

thus S cannot be free. 
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APPENDIX B: Undecidability of Equivalence for Restricted Location Schemas 

With One Function Symbol and One Predicate SyQabol. 

We shall redefine the schemas of Section 4.3. · 

UNTIL p(x) 00 SE 

The schema s
1 

is: 

WHILE p(x) 00 SE 

Schemas s• 0 and s• 1 are defined similarly. 

For each i , 1 s i s k, A i w
1 

s: 

IF p(v) THEN s. ELSE St 
il 

x ... f(x) 

v +- f(v) 

IF p(v) THEN S ELSE St 
Si 

x ... f(x) 2 

v +- f(v) 

IF p(v) THEN S El.SI s. 
Si ' 

x ... f (:x:) 8 i 

v ... f(v) 

ae achema so is: 

wheres •s • •si • w1 , as befot'e. Sen•• of the form B are 
il i2 8i Yi 

defined similarly, wtth symbol u itt plece of v. 

For each i, 1 < i < k, Ri is: 

w
1 

+- f(w
1

) 

IF p(wi) .THEN A ELSE SE 
wi 

IF p(w1) THEN Byi ELSE Ri+l 



The schema R1 

The schema ~ 

The schema S 
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is: 

w
1 

... f(w
1
) 

z +- f (z) 

IF p(w1) THEN A 
wl 

ELSE SE 

ll' p(w1) THEN B . y 
1 

ELSE ~ 

is: 

wk+- f(wk) 

IF p(wk) THEN Aw 
k 

ELSE SJ!: 

IF p(wk) THEN B 
yk 

ELSE St 

is: 

y .. x 

u ... v 

IF p(z) THEN Rl ELSE R1 

WHILE p(z) DO R1 

ll' p(v) THEN St ELSE SE 

IF p(u) THEN St ELSE SE 

We note here that, in contrast to the results established .in (18) 

for monadic program schemas in general, we are uaable to establish the 

undecidability result for achemas which have simultaneously single 

predicate and function symbols !!14. two variable symbols. 
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APPENDIX C: Definition of M'. 

- "A 

Let T, N, Q, and T' be as in the proof of~ 6.7. In tbe following, 

s's shall denote elements of T, t' s ele~nta of •ii,:~'• elements ~f ~, 

lower case Greek letters elements of T*, and x'• .rh:'bitrary symbols in T' 

other than I and $. 

M' is (T', q, q1 ', f', h') where f' is defined ae follows: 

i) f'(qt',X) •q ifX iet·••.;1·'41·1-1tji:*82'•·<11 ia~r~W) iilM•; 

t • h(qi,w) in M, and e is the jth symbol of w. 

ii) f'(q,X) • q, all XE (T')n+4. 

and h' is defined as follows: 

- "'" I i) b'(q, .t·s·qi·qi·a·x·P) • .t+4, al • .t-1. 

- " " ii) h'(q, .t·•·q •q ·0·f·f3) - 4. 
i i 

iii) b'(q, x·s·qi·#·a·#·P) = 1. 

iv) h'(q, #·s·qi·f·a·f·P) • 4. 

) '( ~ ..... ) v h q, f·s·qi·qfa·f·P .. 2, 

vi) h'(q, ff·qi·qfa·'lfr·P) • 3. 

vii) h ' ( q , HI · q f a.f • f3) • I al +s. 

viii) h'(q, .fff·qj·Y) • 2. 

ix) h'(q, #·•·#·qfy) • 1, if h(qj,y) is defined in Mand equale .t 

for some .t such that s' is the .tth symbol of y; or s' •$and y • $n. 

- ,. 
x) h'(q, .t·s·f·qj·y) • 3 if h(qj•y) • .t and a' is the .tth 

symbol in y. 

--- ---~------- --~---- ----------
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xi) h'(q, #-$·q.·q.·$n) = 1. 
J J 

xii) h' (q, 
n 

$$·q.·q.·$ ) = 3. 
J J 

xiii) h' (q, 
n = 4. $$#·q, ·$ ) 

J 

xiv) h' (q, $$##$n) = 3. 

xv) h' (q, $$$#$n) = 4. 

and is undefined in all other cases. 
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