EQUIVALENCE PROBLEMS FOR MONADIC SCHEMAS

Joseph E. Qualitz

June 1975

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139



-2 -

EQUIVALENCE PROBLEMS FOR MQEAD;C_SCHEMAS ,
by
Joseph Edward Qualitz

Submitted to the Department of Electrical Engineering
on May 15, 1975, in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

ABSTRACT

A class of .monadic program schemas is defined. This class, called
iteration schemas, consists of schemas whose programs comprise assignment
statements, .conditional statements, and iteration statements. These
schemas are shown to correspond to program schemas which are structured,
and are shown to be strictly less 'powerful" than the monadic program
schemas. :

A notion of equivalence is formalized as the functional equivalence
of schemas under free interpretations, interpretations which represent
symbolically the met of all interpretations of a schema. It is shown that
the equivalence jproblem for iteration schemas is unsolvable, even if the
schemas possess highly restrictive properties. Questions are raised
regarding the decidability of equivalence for wvarious subclasses of
iteration schemas, and equivalence is shown to be decidable for several of
these classes.

The equivalence problems for structured independent location
schemas are examined in particular detail. A weak form of ‘equivalence is
shown to be undecidable for the schemas, and the general -equivalence
problem is shown to be related in a non-trivial manner to the equivalence
problem for multi-tape finite automata. :

THESIS SUPERVISOR: Jack B. Dennis

TITLE: Profeswser of Computer Science and Enginesering




-3-
ACKNOWLEDGEMENTS

I would 1like to thank my thesis supervisor, Jack Dennis, for the
support and advice he has provided throughout the course of ny ‘research.
His help is greatly appreciated. 2

I would also like to thank Al Meyer for valuable nusseutions
offered prior to the writing of this dissertation, and Peter Elias for
many helpful comments made during the preparation of this final
manuscript.

Finally, I would like to thank my wife, Donna, for three years of
patience, criticism, and encouragement, in juSt the rfght amounta. This
work is dedicated to her. - :

June, 1975 | | - ' Josgéh E. Quaiitz

This work was supported in part by the Natiomal Sciencn Foundation under
research grant GJ- 34671 in part by the Advgqcnd Reaeatch Projects Agency,
Department of Defense, under Office of Naval Research contract number N00014-
70-A-0362-0006, and in part by the IBM Funds for Research in Computer Science.




-4 -
TABLE OF CONTENTS

Abstract --------= ————- L LT mmemsmmccece—eme——oo-
Acknowledgements e L e —————— .
Table of Contents -----c-=cc===- R e L LT
T e

List of Theorems and LemmiAs ~=---+rmwe=ww=ommn wom s o —————

CHAPTER I: INTRODUCTION

1 1 SChGﬂR&OLQﬁy - n e en i S S an W on ----d-----——p--—ﬁ-—-------------
1.2 Schematology: A Brief History -=--=====we= i e
1.3 Schematology: Equivalence Problems -----s-c-cesdcsvcacionsa
1.4 Outline of the Thegls -~~=-crormmcrmcdcncrceccccnncncecccan=

CHAPIER II: MONMADIC PROGRAM SCHEMAS AND ITERATION SCHEMAS

2.1 Monadic Program Schemes -------------=-= i o o T ——
2,1,1 Fo#imml Definitions ----- - e om0 0 e e
2 Iviterpretations and Executions --«-=csceccacacaaia
3 Free¢ Interpretations =----ee-cscoomcacccmmaaoocooon
.4 Clagees of Monadic Program Schemas =--<---<d--cam-e
; 5 Structured Monadic Program Schemmg -~------c-ccweco
" 2,2 Iteration Schemss

2,2,1 Formal Definitions =<--ecrmemwccccmmemcoccoceioana-
2.2,2 Classes of Iteration Schemag ---=----=-c--cacceou-

2.3 Structured Monadic Program Schemas and Iteration Schemas:
A Correspondenicé =----- o e o i B
2.4 Incompleteness of Iteration Schemas ----==--- - o o o o e

CHAPTER III: EQUIVALENCE

3.1 Equivalence =  Introduction ~-=-=--- e TR P T
3.2 Strong Equivalence ~ Definition ------=-crascccinncmada
3.3 Weak Equivalénce ~— Definition ==~-vcne-- S -——

CHAPTER IV: UNSOLVABLE PROBLEMS

Post's Correspondence Problems e e EE L L
A Note on Notation -—--=--==-ce-cecmmmmmmcccccccccnccccncaee
Undegidability of Equivalence for Restricted Location

Iteration Schemas -------- L e L LT
Undecidabiiity of EQdivtlence for Conditional<Pree Schemas-

DchuS'ionv-*‘ ----------- o o o e Y e 0 o G 0 e o v

[FUN

&~ ~ P
W P

CHAPTER V: SOLVABLE PROBLEMS
5.1 Test Sequences and Logic Equivalence ----«--cc-acmacoccuc..
5.2 Productivity and Egsentiality -=----ce-ceccccomcccmacecacaa.

PAGE

N o N

8

8 .

9
11
13

16

16
16
22
23
24
26

30
33

34
37
41
41

46
47

48
50
51

52
59
61

64

65
66




PAGE
5.3 Additional Definitions and Terminology ----=-~=--=ceceeceaaan 68
5.3.1 Definitions ==-ccccccccccancnncrmccccncrcnccncnnccnn- 68
5.3.2 A Note on Terminology =---=-=---ccmemccccmccccnannn" 69
5.4 The Elimination Theorem ===--crcecccmonccacrcceracrccccnnenaxn 70
5.5 Solvable Problems for Single Appearance Schemas ~~-=~-=-==-== 77
5.5.1 Decidability of Equivalence for Conditional-Free '
RLSA Schemag --==-=-==-cccceccorcmcncuncncraranncann" 77
5.5.2 Decidability of Equivalence for FRLSA Schemas ------ 89
5.6 Decidability of Equivalence for FILCF Schemias ===~==-rcccc-=- 98
5,7 DiScusSSion -==--=====-ccmmcmmmcmmmcmcmmmmcemecmemecemem—me- 107
CHAPTER VI: SCHEMAS AND AUTOMATA 108
6.1 Multi-Tape Finite Automita ====---cocmececccecau= femmemme————- 108
6.2 Equivalence Problems for Multi-Tape Finite Automata --=~===--= 112
6.3 "Equivalence' of Independent Location Schemas and Multi-Tape
Finite Automata ------c-r-mccccccocmccc e cnce e cm e 113
6.4 Weak Simulation of Multi-Tape Automata by Structured
Independent Location Schemas --=-=--vercvecemmccccnnrcrecaan= 113
6.4,1 The Simulation =~+=~~--c~mcerecoccmmmcrmnnnrcceermee—— 114
6.4.2 Weak Equivalence: A Reducibility =~--c=--reccmeeac-- 118
6.5 Undecidability of Weak Equivalence for Independent Location
Schemas ---=-c=-ceceaccccmcaccccrcc e m e 121
6.6 Single State Automata ~----------r-mesmccsecmmcmencccecen——— 124
6.6.,1 Single State Automata — Definitions =-==--==-=-- 125
6.6.2 Strong Equivalence ~— A Reducibility =--e----=--- 126
6.7 Equivalence of Multi-Tape Automata ~— A Reducibility Result 129
6.8 Discussion =--==-e--cmmmecccccccce e e mmccee s e o nm e 135
CHAPTER VII: SUMMARY 136
BIBLIOGRAPHY 140
APPENDIX A -------------------- R EGnEEEE LE PP LR PR P e 144
APPENDIX B =-=mcce=ccmece-mcammmcccc—mee-e—————me—eemmmm e ——mmm e 145
APPENDIX C wccermcccc;c;cc;cceo;ecmc——;eee—————m o mmmm e m e memmmm 147

BIOGRAPHICAL NOTE : 149



-6 -

LIST OF FIGURES

PAGE
FIGURE 1: Examples of Monadic Program Schemas ----------==e-c-cn-- 17
FIGURE 2: Example of a Monadic Program Schema --=-==-e=m==c= me————— 18
FIGURE 3: Schemas of Figum 1 in Flowchart Form --=--mcc==mcacaaaa- 19
FIGURE 4: Schema of Figure 2 in Flowchart Form ---------- mem————— 20
FIGURE 5: Structured Schema -~--=-- et it D L2 .

FIGURE 6: Ibemmtion Schema Equivalent to the Schema of Figure 5 -- 31

FIGURE 7: Nom-Structured Schema and Equivalent 'While' Schema With
Boolean Operatorg =----=s-e-emcuce- —meeseccemeccen e een= 39

FIGURE 8: Equivalent Schemas With Distinct Sets of Predicate
Symbols and Function Symbols ---~-- e 42

FIGURE 9: Schewa With Inessential Predicate Symbol ----=-====u-= -~ 67

FIGURE 10: Summary of Results =====e--e meeenme——— L L e PP 138




-7 -
LIST OF THEOREMS AND LEMMAS

RESULT PAGE
Theorem 4.1 58
Theorem 4.2 61
Lemma 5.1 72
Theorem 5.1 74
Lemma 5.2 78
Lemma 5.3 79
Lemma 5.4 80
Lemma 5.5 81
Lemma 5.6 82
Lemma 5.7 84
Theorem 5.2 87
Lemma 5.8 89
Corollary 5.9 91
Lemma 5.10 91
Lemma 5.11 93
Corollary 5.12 95
Lemma 5.13 97
Theorem 5.3 97
Lemma 5.14 98
Lemma 5.15 102
Lemma 5.16 106
Theorem 5.4 106
Lemma 6.1 119
Theorem 6.6 120
Lemma 6.2 121
Lemmas 6.3 and 6.4 122
Theorem 6.2 123
Corollary 6.5 123
Theorem 6.3 128
Lemmas 6.6 and 6.7 130
Theorem 6.4 133






-9 -

v« Hx,y)

uev

v« *(x,u)
is equivalent to the sequence of statements:

v = Hx,y)

u - Hx,y)

v - *(x,v)
which in turn 1is equivalent to the sequence:

v - *(x,x)

u - *(x,y)

v+~ +(v,u)

u* 'l'(x,y)
if we view the sequences as portions of programs exoressed in some
programming language in which '+' and '%*' represent addition and
multiplication, respectively. From a schemstological point of view,
however, only the first two sequences are equivalent. the last sequence
will be equivalent to the others only if the funct:l.on associated with the

symbol '*! distributes over that associated with tbe symbol '+,

1.2 Schematology: A Brief History.

The first schemetized model for computation is'generally atrributed
to Ianov [ 9]. In his model, the data space of a emtetion 1is treated
as a single entity which is altered via a: sequence of fumction

applications, the particular function to be applied at any point in the



- 10 -

sequence depending on the outcomes of a number of predicates applied to
the current value of the data space. Rutledge [26] later demonstrated
a correspondence between the Ianov inodel and a class of finite state
automata, and it is not suzpriaing,. therefore, that the equivalence

problem for lanov schemas is solvable,

The major difficulty with the lanov model is that it discards much
information about the essential properties of programs being represented.
In particular, the data space of real compu'ge;ions is generally divided
into a number of discrete components, and at each step in a -computation
functions and predicates are apo-l;ied to certain subsets of. these
components, rather than to the total ”data space. The specification of
the object components of each application establishes a data dependency
relation among them, and it is precisely this relation which is missing

RS

from the Ianov model.

Luckham, Park,, and Paterson [16] proposed a more familiar
schenﬁtized model | - program schemas .- in which data dependency
is 111ustrat:ed by associat:.ng a unique symbol with each component of the
data space of a canputation and apecifying, by means of an uninterpreted'
program consisting of assignment instructions and transfer instructions,
the sequence of functions and predicates to be applied during the .
‘computation and the object components of ea‘ab;pp&@timm - They were
able to demonstrate that such schemas are: eapable’of simulating in a
natural way mmlti-head finite avtometa (25] and thus thet the equivalence

problem for program schemas is unsolvable.




- 11 -

Much of the subsequent work in schematology has been devoted to the
study of schematized models possessing special features which facilitate
discussions of computational parallelism, determinacy, productivity, etc.
(ef, [31, [51, [71, [10], [14), [21], [24], [27]). 1In several cases,
which are discussed below, equivalence problems have also been considered

in the woxk,

1.3 Schematology: Equivalence Problems.

Equivalence problems for schematized models have been of considerable
interest to theoreticians since several open problems of long standing
in automata theory can be shown reducible to, or closely related to, the
equivalence problems for certain classes of computation schemas., For
example, it has been demonstrated that the equivalence problem for
multi-tape finite automata as defined in [23] is reducible to the
equivalence problem fdr'a particularly simple class of program schemas
containing only monadic function and predicate symbols; similarly, it has
been shown that the equivalence problem for deterministic pushdown
automata is closely related to that for the class of schemas defined by
deBakker and Scott [ 4]. But schema equivalence problems have certain
practical applications as well, particularly with regard to the design
of compilers. Since compilers frequently deal with programs containing
user defined functions and subroutines which have, during compilation,
no semantic content, procedures for deciding whether certain program
transformations are equivalence preserving in a schematological sense
are apt to be of great value, particularly if program optimization or

simplification is to be attempted during the compilation process. For



- 12 -

example, if we are interested in whether the evaluation of some externally
defined function may take place duritig program exeéution at some point
other than that indicated by its position within a given sequence of
instructions (or indeed if it need occur at all), we are dealing with
schematolbgical issues. In fact, since‘tpr’og’raﬁv optimization generally
involves changing the structure of a program without changing its
functional behavior, we must either be prepared to-deal with issues of
schematological -equivalence or restrict any optimization to -those
portions of a program which are completely intctﬁ:otad at compilation
time (or whene’we,i such optimigation is to oceur). SHince increasing
emphasia’ is being placed on encouraging the widespread sharing of
procedures written by many different users, each of whom can be
agsumed to lmow very little about the intermal behavior of precedures
written by others, the former option sg¢ems the more desirabile.

Thus far resuits concerning the decidability of equivalence for
schematized models have been quite elusive, and in most cases in which
results have been obtained for fairly general c’las‘seﬁ of schemas the
results have been megative (i.e. have indicated the undecidability of
equivalence). The few positive results include the 'émwhat trivial
result for Ianov schemas mentioned earlier; the results. of Asheroft
Manna, and Pnueli concerning monadiec functional schemas [ 2]; the
result (for a rather strong definition of egquivalence) of Keller for a
class of program schemas [11}; and the results of Paterson for
"progressive' program schemas (in which a computed value is immediately

reused in the next computation step), and monadic program schemas




- 13 -

without nested loops in their control structures [18]. In any case, the
equivalence problems for a great many interesting classes of schemas are
open and, despite the optimistic predictions of Paterson in [19], results

have not been quickly forthcoming.
1.4 Outline of the Thesis,

In this thesis, we consider the problem of deciding equivalence for
classes of program schemas (as defined by Luckham et al) which have been
restricted in certain ways in an attempt to make the problem somewhat
tractable. Primarily, we are restricting attention to program schemas
which contain only monadic function and predicate symbois and which are
structured in such a way as to represent only "whilish" programs: those
composed of assignment statements, conditional statementé, and iteration
statements (i.e. 'while" and "until" statements). Our choice of program
schemas as a starting point for the study is motivated by the fact that
they are quite general in their ability to model computations, and they
permit a high degree of informality in discussions since they are
inherently familiar to anyone who has dealt with any sort of programming
language. Also, the equivalence problems for certainbclasses of the
schemas have been studied rather extensively because of their relations
to well-known problems in automata theory.

We consider in this thesis several classes of schemas and ﬁur
primary objective is to answer as many as possible of the questions we
pose regarding the decidability of equivalence for the classes. But we

are also interested in the relationships which exist among the classes



B R T

- 14 -

of schemas ~  particularly whether séhemas in one class may be
simulated by schemas in anothér, or whether the ‘équi;rafléncé pfoblem
for one class of schemas is reducible to that for another. VIn tﬁis
regard, the discussions in Sections 2.3 anﬂ 6.6 #ﬁéﬁld}ﬁé thought of

not as diversions, but rather as attempts to meet this objective.
Roughly, the thesis is organized as follows:

In Chapter II we define two classes of schemas gﬁggg;g'zgggxgg
schemas and iteration gchemas. We show that the itetaticm schemas
correspond to a class of monadic program schgmas whose graph
representations possess & certain topologié;lmséfubtﬁre;‘aﬁd that this

class of schemas is an incomplete class of moﬁadié progtam scheﬁns.

In Chapter I1I we ptesent an intuitive‘notion of achema equivalence,
and formalize this notion as the functional equivalence of schemns for
"free" interpretations, interpretations which symbolically represent
families of related intérpretations. We argne that this is a correct

formalization of the intuitive notion.

In the fourth qhaptet, we demonstrate that equivalemce is not
decidable for a restricted ¢1§ss Qf iteration schemas and pose questions
about the decidability of equivalenggyfor clgssgszgﬁ schemas possessing
additional restrictive properties.

In Chapter V we show that the equivalence preblem ig solvable for
certain classes of iteration schemas, apd discuss the extensions of

‘these results to more general classes of schemas.

The sixth chapter is devoted to a study of the equivalence




- 15 -

problems for a particular class of structured schemas (the independent
location schemas) and the relation of such problems to the equivalence

problems for certain automata theoretic models.

Finally, in Chapter VII we summarize the main points of the thesis

and suggest areas for further study.



- 16 -
' CHAPTER II: MONADIC PROGRAM SCHEMAS AND ITERATION SCHEMAS
In this chapter we define formally the classes of schemas we shall

be concerned with, and present notions of schems& interpretations and

executions,

2,1 Monadic Program Schemas.,
Figures 1 and 2 illustrate monadic program schemas; Figs. 3 and 4

illustrate the schemes in flowchart fomm.

2.1.1 Formal Definitioms,
The definitions given below differ in unessential ways from those
in [16] or fl8],. |
A mopadic pxogram schema (MES) is a five-tuplev S=(V, F P, I, )
where:
V is a finite set of yariable symbols.
F is a finite set of fungtion symbols.
P is a finite set of predicate symbols.
I is a finite set of instruction labels.

6’ is the w of S, a finite sequence of instruetions of one of
the following foﬁms: |
(1) An agsigmment instruction of the fomm
i: x ~ £(y)
or of the form
it x~y
where i is an instruction label, f is a function symbol, and x and y are

variable symbols.



(a) V

Les
I

la~
N

T =

{X’y}
{f,g}
{p,a}

{il, cee ilq, e}

C? is the program

il:
iz:
13:
14:
15:

-

ig:

FIGURE 1.

X"y

p(x) i3, igq
x ~ £(y)
p(x) ix, e
y < £(y)
p(y) i,,e

x < g(x)

y « £(x)

P(X) izsiz

. 9(®) 133,145

Xy

: q(x) 13,e
Pplx) 1,51,

1 x +~ f(x)

END

Examples of Monadic Program Schemas.

- 17 -

(b)

les
il

lav
n

I =

= {x,y}

{f,g}
{p,a}

{il’ see ilo, e}

CP is the program

il:
12:

i3:

p(x) 1i,,1g
x ~ £(x)
q(x) i,,e

x « g(x)
q(x) ig,1qg
y < g(y)
p(x) ij,1,
y < &(y)

p(Y) i3’i3

:y < £(y)

END



V= {x,y,2}

@ is the program:

il: X"y

i: p(x) 11951,
izt y < gly)
1,0 p(y) ig,ig
ig: y < gly)
i6: z + £(z)
i7: p(z) e,e
ig: y = f(y)
i9: z « £(z)
ilO: p(z) e,e
illz x ~ £(x)
SVEEE SOV P
i13: q(x) i21,i2
FIGURE 2.

F = {f,g}

- 18 -

P = {p,q,r}

I

Example of a Monadic Program Schema.

1,

: p(z) i

cee s 1og, e}

P ry) iy5108
2y - gly)
:z - £(2)
Pp(2) ip,1y
py = £(y)
:z - £(2)
tp(2) 19,1,
:x - g(x)
ty - £(y)

: z ~ £(z)

13’13
END



fyr-t»] - t, f

FIGng 3. Schemas of'Figure 1 in F1wc§gn Form.

5



FIGURE 4, Schema of Figure 2 in Flowchart Form.




- 21 -

(2) A transfer instruction of the fomrm

i: p(x) it,if

where p is a predicate symbol, x is a variable symbol, and i, i,, and if

t’
are instruction labels. (We refet to it as the true alternative of the

instruction and to iy as the falge alternative.)

(3) A temminal instruction of the fomm
i: END
where i is an instruction label.

We require that the program end with a terminal instruction and that
this be the only such instruction in the program. In addition, we
require that the label appearing as the left portion of each instruction
be unique and that the true alternative and false alternmative of each
transfer instruction appear as the left portion of some statement in the

program.

Program schemas are conveniently represented in flowchart form.
A flowchart for a schema is a directed graph whose nodes_represent the
instructions in the program of the schema. An assigmment instruction
is represented in the flowchart by a rectangle containing the righthand
portion of the instruction; a transfer instruction is represented by an
oval containing the center portion of the instruction; a terminating
instruction is represented by a circle. An unlabelled arc is drawn from
a node n to a node n' in the flowchart if n represents an assignment
instruction in the program of the schema and n' represents the instruction

which follows in the program. An arc labelled 't' is drawn from node n




- 22 -

to node n' in the flowchart if n represents a ttanafér instruction in
the program and n' represents the instruction labelled’ with the true
alternative of the transfer instruction. An arc labelled 'f' is drawn
from node n to node n' 1f n represents a transfer Instruction and n'
represents the instructiom labelled with the falese alternative of the
transfer instruction. A single arc, emanating from no node of the
flowchart, is drawn to the node representing the first instruction in

the program. No other ares appear in the flowchart.

Clearly, representing a schema by a flowchart provides us with no
new information about the computation being represented. A flowchart
is merely a convenient form for representing the contf:ol structure of
the schem's program and facilitates discussiqns of certain topological

features of the structure.

2,1,2 Interpretations and Executions.

We provide an jiaterpretation for an MPS by specifying a domain D
of individuals; total monadic functions from D into D to be associated
with the functiom symbols of the schema; total monadic predicates from
D into {true,false] to be associated with the. predicate symbols of the
schema; and particular elements of the domain to be associated imitially
with the variable symbols of the schema. Each such interpretation
associates an idealigzed computer prograh with the schema and a

corresponding exgcutioy of the schema, defined as follows:

We initially associate the appropriate elements of the domain with

the variable symbols of the schema. We then execute, in the order in




- 23 -

which they are encountered, the instructions in the schema's program.
Execution of an assignment instruction of the form 'if x - £(y)'

causes the element @.(8) to be associated with the variable symbol x,
where @f is the function associated with f by the interpretation and

8 is the element associated with symbol y at the time of the execution.
Executing an assignment instruction of the form 'i: x+~ y' causes

the element associated with y at the time of the execution to be
associated with x. After executing either type of assignment instruction,
we proceed to the next instruction in the program.

Executing a transfer instruction of the form '

ir p(x) it,if'
consists of evaluating Hp(c), where Hp is the predicate associated

with p by the interpretation and ¢ is the element associated with x at
the time of the execution, and then branching to the instruction labelled
with i, or i;, according as the outcome of the evaluation is true or
false.

Executing the final instruction of the program causes the execution
to terminate. If an execution terminates, the final set of elements
associated with the variable symbols of the schema is taken to be the
value of the schema for that execution and for the corresponding

interpretation. (The value is undefined if the execution fails to

terminate. )

2,1,3 Free Interpretations.
In subsequent chapters we will deal almost exclusively with a

particular subset of the possible interpretations for a schema: the



- 24 -

free, or Herbrand, interpretations.

Formally, a free interpret |

function symbols F, and predicate symbols P consists of:

for an MPS with variable symbols V,

(1) The domatn D = F*-Ay, vhere Ay is the set {A, | x € V].

(2) The initial association of the ‘erlegmnt A,.;x ﬁith each symbol
x €V, | | | )

(3) The assogiation of the toj:al function P Dk-* D dgfiqed as
P () = £f+5, & € D, with each function symbol £ in F,

(4) The association, with each predicate ;yml;ol p in P, of some

total predicate Hp: D~ {W,M}.

We note that each free interpretation for a schema has the same domain,
a set of strings which represent symbolically the values which may be
associated with variable symbols during emecutions of the schema. In
fact, the significance of the free interpretations is that they represent
symbolically the set of all interpretations for a schema. In particular,
we shall argue in the next chapter that, with regard to equivalence

problems, we may restrict attention solely to free schema interpretations.

2.1.4 Classes of Monadic Program Schemas.

In this section we define three ciassés-of monadic program schemas:
the free schemas, the independent location schemas, and the restricted
location schemas. A fourth class, the structured -sehemas, 18 discussed

in the following sectiom.

An MPS is free if no predicate is ever applied twice to the same



- 25 -

value during an execution of the schema defined by any free interpretation
for 5. Intuitively, if S is free then either outcome is possible whenever
we apply a predicate to a value during an execution defined by a free
interpretation for S ~—  the outcome is not constrained by the outcomes
of previous applications.

The reader may verify that the schemas of Figs. 1(b) and 2 are free,

while that of Fig. 1(a) is not.

An MPS is an independent location schema if every assigmment

instruction in its program is of the form

i: x « £(x)
for some variable symbol x and some function symbol f, i.e. if the
argument variable and the assignment variable are one and the same in
each assignment instruction. (If we associate a location in a data
space with each variable symbol of such a schema, these locations are
independent in the sense that each value computed during an execution
of the schema is stored back in the location from which the corresponding

argument value was obtained =-- hence the name independent location.)

The schema of Fig, 1(b) is an independent location schema; the

schemas of Figs. 1(a) and 2 are not independent location.

An MPS is a xestricted location schema if it is an independent
location schema except, possibly, for some number of initial assigmment
instructions of the form

i: x -y

where x and y are variable symbols and i is an instruction label which



- 26 -

is not the true or false alternative of any transfer instruction in
the schema's program. (This last condition ensures that such instructions

are executed only at the start of each execution of the schema.)

The schema of Fig. 2 is a restricted locatiom schema, as is the
schema of Fig 1(b), (Clearly, any independent loeation schems is a
restricted location schema.) The schema of Fig. 1(a) is not a

restricted location schema.

We note here (and the reader may verify fo}ioving Chapter III) that
the restricted locgtion schemas form an 1n§mélete s@class of the
monadic program achemas, and the independent loagtion schemas form an
incomplete subclasgs of the restricted ioéation schemes. We note also
thai: f:he free mon&dic program schemas, free réstricted logation séhe:ms,
and free in;lependent l@tion schemas fom incomplete subclasses of the
monadic' program schemé, restricted locatién Vschemns, and independent

location schemas, respectively.

2,1.5 Structured Monadic Program Schemas.

In the flowcharts of Figs. 3 ’and 4 there are sevefal instances of
an arc labelled with both 't' and 'f' emanatiﬁg from a transfer node,
an obvious shorxthand notatiom for & paixr of axcs, one labelled 't' and
the other labelled 'f', which temminate at the same node. In such a
case, the corresponding transfer instruction in the represented
program is clearly functioning as a 'GoTo' statement, necessary in a

sequential progrem but superflous in a flowchart representation.




- 27 -

We may eliminate such transfer nodes from a flowchart after
redirecting any arcs which terminate at such a node to the node's
successor. We refer to the resultant flowchart as reduced, and note
that while it may no longer represent a valid program schema, it
never-the-less represents a computation functionally equivalent to the
original.

Figure 5 shows the reduced flowchart constructed from the
flowchart of Fig. 4. It also shows the decomposition of the reduced

flowchart into simple blocks:

A block is a piece of reduced flowchart which has no more than a
single exit (which may consist of many arcs that terminate at a single
node) and arbitrarily mnay entrances. A transfer node in such a block
is a main node of the block if it is not contained in some sub-block,
and a block is a gimple block if it contains no more than one main
transfer node. We say that an MPS is structured if it can be decomposed

into simple blocks, as is the case in Fig.5.

A few words about the above definition are in order:

Most of the results in this thesis bertain to monadic program
schemas which are structured in such a way as to represent 'while'_
schemas ~— schemas whose programs comprise assigmment instructions,
conditional instructions, and iteration ("while" or "until")
instructions. It has been demonstrated by Ashcroft and Manna (1]
that any program schema may be transformed into a schema so structured,

in such a way that its output behavior is not affected; in addition, if



]
[}
1
(]
]
1
1
1
]
!
1
4
]
1
4
1
1
1
[}
s
1
]
1
1
1
]
]
)
1
1

=

- s o e e 28 e o o o o o o o]

I D D D O% R s N o s S B S G G D W S W e S on e e -

i) J—r

M e D Y D G ED e e n AR P SR D G R TP G G D S ED G A S e e G m W O G e m G e

ze£(z) |
- £(z)

- o .-

Structured Schema.

FIGURE 5.




- 29 -

the original program schema contains only monadic function and predicate

symbols, then so does the resultant structured schema.

Unfortunately, the Ashcroft and Manna results have, for our
purposes, a serious drawback: the resultant 'while' schemas will
contain, in general, conditional and iteration instructions containing
compound predicate expressions, i.e. expressions composed of a number
of simple predicates connected by boolean operators. Moreover, the
argument variables of the predicates within a given expression need

not be the same, and in general cannot be the same.

If we were to define 'while' schemas in the same manner as do
Ashcroft and Manna, we would defeat our purpose in restricting attention
to monadic schemas in the first place, since transfer-type instructions
would have to contain non-monadic predicate structures rather than simple
predicates. What we have chosen to do instead is define a class of
strictly monadic 'while' schemas, the iteration schemas of the next
section, which correspond precisely to the structured schemas we
have defined above. It should be emphasized, however, that unlike the
'while' schemas of Ashcroft and Manna, the iteration schemas form a

strictly proper subset of the monadic program schemas.

In the following section, we formalize the notion of iteration
schema. The correspondence between these schemas and the class of

structured program schemas is established in Section 2.3.



- 30 -

2.2 Iteration Schemas.

Figure 6 illustrates an iteratiomn schema representing a computation
functionally equivalent to that represented by the structured MPS of

Fig. 5.
2.2.1 Formal Definitions.
A (monadic) jteration schema is a five-tuple
$=(,F P I®)

where:

V is a finite set of yariable symbols.
F is a finite set of function symbols.
P is a finite set of predicate symbols.

Z is a finite set of iteration schemas, the gubschemas of S.
@ is the program of S, a finite sequence of statements of the

following types:

(1) Assignment statement of the form
x ~ £(y)
or of the form
X“‘ y
where x and y are variable symbols and f is a function symbol,
(2) Conditional statement of the form
IF p(x) THEN St ELSE Sf

where p is a predicate symbol; x is a variable symbol (the test variable

of the statement), and St and Sf are subschemas (the true and false

subschemas of the statement, respectively).




S = ({X,y,Z}, {f,g}, {p,q,r},

{sl,...,s L®

Sl = ({x,y,z}, {f,g}, {q,r},
{543"':5 }, 01)

2]
|

S3 = ({y,z}, {f}: ﬂ’ ﬂ: D)3)

[%]
]

A ({Ysz}’ {f,g}, {r}:

| 22]
i

7]
()]
]

({y,2},{f,8}, 8, 8, B)

w
]

({Y9z}’ {f}’ ﬂs ﬁs @7)

2 = (2], Ll 9, 8, )

5 = ({xsy,z}: {f,g], 9, 9, yS)

- 31 -

X"y

WHILE p(x) DO S;
vy« g(y)

IF p(y) DO S, ELSE S,
WHILE q(y) DO S,

WHILE q(x) DO S

y < 8(y)
z « f(z)

y ~ £(y)
z + £(z)

IF r(y) THEN S, ELSE S,

x « g(x)
y ~ £(y)
z ~ £(z)

y «~ g(y)
z ~ £(z)

y ~ £(y)
z +~ £(z)

FIGURE 6., Iteration Schema Equivalent to the Schema of Figure 5.



- 32 -

(3) Iteration statement of the form -
WHILE p(x) DO S i
or of the form
umn p(x) DO 8
where p is a pre&:tca‘te symbol, x is a variable symbol (the test yariable

of the statement), and Si is a subscheme (the bgdy of the statement).

If 8' = (V', F', P', 2', ') is a subschema of S, then we require
that V' €V, F'CF, P'CP, and T' C5. We do not permit recursion

in iteration schemas: no iteration schema may be a subschema of itself.

Interxpretations are defined for iteratioh schemas in a manner
identical to that for program schemas. Each interpretai:ibn defines an

execution by the schema in.a manner similar to: that for program schemas:

We assoclate the specified domain elements with the variable
symbols of the schema, and then execute sequentially the statements in
the schema's program. New values are assoeciated with variable symbols
as indicated by assigmment statements, and the programs of appropriate
subschgms are executed in accordance with the outcomes of predicate
applications made while executing conditional or iteration statements.
The execution terminates when and if the execution of the final
statement in the schema's program is completed. If the execution
terminates, we take as the value of the schema for the execution
(and corresponding interpretation) the set of elements assoctated

with the variable symbols of the schema at the end of the execution;




- 33 -

the value of the schema is undefined if the execution fails to

terminate,
Free interpretations are defined for iteration schemas as in

B
"

Section 2.1.3.

2.2,2 Classes of Iteration Schemas.

Eree iteration schemas, ipdepgndent location itexation schemas,
and restricted locatiop iteration schemas are defiped in manners
analogous to those for program schemas.

We define tﬁo additional classes of iteration schemas which will
be of interest in subsequent discussioms: |

An iteration schema is gonditiopal-frge 1f no conditionsl
statement appears in its program, and no condjitional statement appears
in the program of any of its subschemas.,

An iteration schema is a single appeapance schema if no predicate
symbol appears in more than one statement in the collection of programs

belonging to the schema and its subschemas.



-3 -

2.3 Structured Momadic Program Schemas and Iteration Schemas:

A Correspondence.

We have asserted that the iteration schemas of the preceding
section are an alternate formalization of the structured monadic program
schemas of Section 2.1.5. In this section, we describe informally
effective procedures for proceeding from one formalization to the other.
Of course, we have not yet made ‘precise the notion of schema equivalence,
but the procedures are highly intuitive and are correct for virtually

any reasonable notion of equivalence.

It is quite an easy task to construct from an arbitrary iteration
schema a functionally equivalent structured MPS:

Let S be an atbitrary iteration schema and suppose that we are
able to express each subschema of S as an equivalent composition of
simple blocks. Then we can express each statement in the program of S

ag an equivalent -composition of simple blocks:, as follows:

(1) 1If the statement is an assigmment statement @, then the

equivalent composition of blocks is:

-~~~
Q
\al

(2) If the statement is a conditional statement of the form

IF p(x) THEN S_ ELSE S,

then the equivalent composition of blocks is:




Where Bt (Bf) is the

composition of simple

blocks equivalent to

subschema St (Sf).

- R A AP e- e
l-w—e—
- e e em

1
oy @EF GEEN oW G SN G

(3) 1If the statement is an iteration statement of the fom
WHILE p(x) DO S,

then the equivalent composition of simple blocks is:

Where B, is the
composition of simple

blocks equivalent to

subschema Si'

The last case (the statement is an UNTIL statement) is similar to

the third.

The structured MPS equivalent to the schema S is formgd quite simply
by connecting sequentially the compositions of simple blocks correspoding
to each of the elements in the program of S.

It is now clear that we can construct an equivalent structured
MPS from any iteration schema — we need only work from the inside
out, i.e. we need only begin with subschemas composed solely of assignment

statements, then those composed of these schemas and assignment statements,

etc.



- 36 -

The reverse construction is equally styxaightforward:

We begin by replacing each rectangle in the_ﬁ;ﬂqwchart of a
structured MPS by its contemts enclosed in bri@k;tﬁg {The brackets
will denote a portion of the flowchart which m been converted to
equivalent iteration schema formm.) We then metge the contents enclosed

in adjacent brackets, i.e. * | becomes ¢
R
v }

When we have completed this merging, either the entire flowchart
will consist of a bracketed expression (followed by an END node), in

which case we have completed the construction, ar the flowchart will

contain structures of the form:

or of the form:



- 37 =

We replace the first type of structure with:

where Sy becomes the subschema
[IF p(x) THEN S, ELSE Sg ] with program &, and Sg becomes

the subschema with program B.
and the second with:

[WHILE p(x) DO sa] if b is 't', or [UNTIL p(x) DO sa] if b is 'f',

where S 5 becomes the subschema with program .

This procedure is repeated recursively until the entire remaining
"flowchart" consists of a single bracketed expression followed by an
END node. In such a case, the expression in brackets is the program of
the iteration schema equivalent to the original structured program

schema, with subschemas as given above.

2.4 Incompleteness of Iteration Schemas.

Our reason for selecting iteration schemas as the primary
computational model of the thesis is that we wish to deal with
equivalence issues for a class of schemas less 'powerful" than the
class of monadic program schemas, but still general in its ability to
represent computation. Iteration schemas clearly satisfy the latter
criterion, but we might question whether they satisfy the former.
Clearly there exist monadic program schemas which are not structured,
but do the structured schemas represent a complete subset of the
monadic program schemas? In particular, we might ask if the presence

of boolean operators is really essential for the simulation of arbitrary



- 38 -

MPS's by 'while' schemas, or whether any MPS may be simulated by an
iteration schema,

In this final section of the chapter, we demonstrate that such
operators are indeéd essential for the simlatio‘tlt_?ofw arbitrary MPS's
by 'while' schemas. (In the following chapter, we define»formnlly
schematic equivalence. Por the purpose of tﬁe folidwing discuhsion we
state that a pair of schesss are pot equivalent. if there exists an
interpretation for the schemas ,’such ghg; the execution of one schema

terminates, while that of the other schemh fails to terminate, )

- Congider the MPS of Fig. 7(a). - It is intuitively obvious
(and can be derived immediately from resulta in [14] ) that if S is
equivalent to some iteration schems, it is.equivalent to some iterstion

schema which has predicate symbols {p,q} and function symbols {f,g].

We note that an execution of S is guaranteed to diverge if it 1s.
defined by an interpretation in which the predicate associated with p
and that associated with q are each identically truye. Let I denote the
free interpretation which satisfies this condition,

Now, suppose that there exists an iteration schema S' equivalent
to S. S' must contain at least one WHILE 's’l:ateineﬁt '8 containing one
of the predicate symbols, say p, such that s is executed during the
execution of S' defined by I. Let D denote the domain of I, and let X

denote the set of elements of D at which the prédicate ‘associated with q



(@ s

(b)

IF p(x) THEN

- 39 -

[x « £(x)

y«x

IF p(x) THEN [

y«-zx

X - g(x)J ELSE [

y©x

WHILE (p(x) q(y)) DO [x - f(x)]

x =~ f(x

yex

L

’]

ELSE [

x + £(x)

y«x

FIGURE 7. Unstructured Schema and Equivalent 'While' Schema With

Boolean Operators.

|



- 40 -

is evaluated prior to the first execution of statement s. Let I' be the
free interpretation d;lffgri_ngﬂ/f-rom I only in that IIq' is associated with

q, where Hq' is the predicate defined as follows:

Hq'(é) »grus, 8 €X

Uq"(‘-5) = falge, § £ X E
The execution of S' defined by I' clearly cannot terminate since the
behavior of §' for I and I' is identical until stassment s is executed,
whereupon s' must diverge becguse the predicate awu;ed with p is
identically txue. But the execution of S will terminate as soon as II q
is evaluated at an element of (D-X), and since X is finite and I' is a
free interpretation, Hq' Bust evet;t;ual'}.y be evaluated at an element of

(D-X), contradicting the equivalence of the two schemas.

A 'while' schema containing boolean operators is shown in part (b)
of Fig, 7; the reader may verify that this schema is equivalent to the

schema S,



- 41 -

CHAPTER III: EQUIVALENCE

3.1 Equivalence ~—  Introduction.

Intuitively, we wish to consider a pair of schemas equivalent if and
only if the value of each schema is the same whenever both schemas have
been provided with the same interpretation. This notion of equivalence
is rather strong. In particular, it is a much stronger notion than
would be desirable if we intended to apply schematological results to
interpreted models, since it provides no mechanism for the specification
of any relations which might exist among the functions and predicates
comprising the schema primitives. But this is precisely what makes it a
logical notion of schematological equivalence: equivalent schemas are
required to exhibit the same 'black box" behavior, i.e. they are required
to exhibit, for each interpretation, the same output behavior, with no

constraints on their internal behavior.

The notion of equivalence as we have presented it does, however,
have a serious drawback: it makes sense only if applied to pairs of
schemas which have the same sets of predicate symbols, function symbols,
and variable symbéls. This is indeed unfortunate, since we would
certainly like to consider the schemas S and S' of Fig. 8 equivalent,
despite the fact that S' contains a function symbol and a predicate
symbol not contained in S. Likewise, we might wish to add variable
symbols to a schema in order to remgmber intermediate values during an
execution, without considering the affects of these new éymbols on the

resultant schema value. (In fact, the addition of such variable symbols



- 42 -

5= ({xy) (£, 0, 9, §)
where @ is: x ~ £(x)

y + £(x)

s' = ({X:Y}a {f,g}, {p}’ {Sl,sz}, p)

where Q' is: x ~ f(x)

y ~ g(y)

IF p(y) THEN S, ELSE S,

and 5; = ({x,y}, {f}, 8, 9, (?1)
where Ql is: y = £(x)

and S, = ({x,y}, {£}, 0, 9, §2>
where 6)2 is: y©X

y < £(y)

FIGURE 8. Equivalent Schemas With Distinct Sets of Predicate Symbols

and Function Symbols.



- 43 -

is necessary, in general, if one wishes to transform an arbitrary MPS
into an equivalent 'while' schema in which boolean operators are

permitted.)

We may handle the problem caused by schemas with distinct sets of
predicate symbols and function symbols by considering extensions of
interpretations. If we permit an interpretation for a schema to
associate predicates and functions with symbols which do not appear
in the schema, we may extend any interpretation in such a way as to
provide an interpretation for some other schema. If we begin with
consistent interpretations for a pair of schemas (i.e. interpretations
which do not associate distinct functions with a common function symbol
or distinct predicates with a common predicate symbol), then we may
easily construct an interpretation which is an extension of each of the
interpretations. Thus we may consider a pair of schemas to be equivalent
if, whenever they are provided with consistent interpretations, the value

of the schema for its interpretation is the same in each case.

The prdblem posed by pairs of schemas with distinct sets of variable
symbols could be handled quite easily by adding a sixth component in our
definition of schema ~—~ a subset of variable symbols which would be
considered output symbols, symbols whose values at the end of an
execution would comprise the value of the schema for that execution. We
prefer to live with the shortcomings of our present notion, however,
rather than introduce such a component, since the presence of non-output

symbols in the schemas would add in unessential but tedious ways to the



- 44 -

complexity of certain proofs in subsequent chapters. Also, we would
not gain much by its introduction, since most results concerning the
decidability of equivalence for classes of schemas with "‘total output"
imply the same results for corresponding classes of schemas with
specified output symbols. In particular, suppose we have a pair of
schemas with a common set of output symbels, plus some othexr variable
symbols which may be diffexent in sach case. We can add additional
variable symbols to each scheme to ensure that the set of such eymbols
is the same in each case, and then add to the end.of each program the
statement 'x - y', for each non-output symbol x and sqne specified
output symbol y. Clearly, the resultant schemas will be equivalent in
the sense we have proposed if and only if the original schewss are

equivalent when attemtion is restricted to particular output symbols.

Earlier we defined the class of free interpretations for schemas,
and noted that each free interpretation represeats symbolically a family
of closely related interpretations. It would be quite convenient if we
could restrict attention to free interpretations in our discussions of
equivalence, since such interpretations have several desirable
properties. For one thing, all free interpretations for a schema have
the same domain and interpret each function symbol in the same manner.
Hence, we may specify a free interpretation solely by specifying the way
it interprets predicate symbols. Also, during an execution defined by
a free interpretation for a& schems, identical velues may be generated
only if they are generated via precisely the same seqﬁgnce of fungtion

applications, and the value itself makes explicit this sequence. In



- 45 -

addition, the application of a fgnct;on to a Yq;:ue du;ing_sugh an
execution must result in a different value, and this value must be
longér than the original when viewed as a string< of symbols. This
last property is particularly significent when dealing with restricted
location schemas, since it implies that the sequence of values associated
with any variable symbol .durfng such an- executfon wiltl be'a sequence of
strings of strictly increasing length, -each 'z ‘Proper suffix of ‘the next.
Finally, and perhaps most importantly, we can‘exploit the ‘propérty of
freeness in a schema only if we are dealing with executions of the -
schema under frea ‘interpretations.

Fortunately, it is easy to show that a pai’r":o'f ‘schemas are
equivalent for all interpretations if and only ‘3f they are equivalent

for all free interpretations. It is only necessiry to show that if

there exist consistent 4interpretations which’ dembfistrate the non-
equivalence of two MS, then the free m&‘rﬁtetations which
represent them symbolically are also catibi'c‘tent“"%hd‘ ui‘s’o demonstrate

the n,on-equivalenée of the pchemas. ' The proof of t:‘h'e*‘_‘first part of the
statement is trivial; the proof of the second pert is by induction on
the lengths of the final values of variables for the executions defined
by the free interpretations, and is ﬂlﬁQ_StW@W"ﬁr - The  yveader

is referred to [14] for details.



- 46 -

3.2 Strong Equivalence <~ Definition.

We term the notion of equivalence we have just discussed strong
equivalence, since it is strong enough to imply most other reasomably

defined forms of equivalence. Formally:

Let I be an interpretation for some schema, and let D be the
domain of the interpretation. Let F be a set of fumction symbols and
P a set of predicate symbols which are not interpreted by I. Then a
(P.F)-extension of I is the object formed by adjoining to I, for each
symbol p in P, a total predicate Hp: D -+ {txue.falipe}, and for each

symbol f in F, a total function cpf: DD,

Let S1 and 8, be arbitrary schemas with posesibly distinct sets of

2
function or predicate symbols. Let F; and P, demote the sets of
function symbols and predicate symbols, respectively, which appear in
S1 but not in SZ. Similarly, let F, and P, denote the sets of function
symbols and predicate symbols which appear in S, but net in Sl. Then
an interpretation I, for S1 is conajstent with an interpretation I, for
52 if some (Pl,Fl)-extension of 12 is a (Pz,Fz)-exbension of Il‘
A schema 5, is strongly equivalent to a schema S, if the value of
S, for a free interpretation I, is the same as the value of s, for a

free interpretation Iz, whenever I1 and 12 are comsistent.

Unless otherwise noted, equivalence shall refer to strong

equivalence in the remainder of this thesis.




- 47 -

3.3 Weak Equivalence —  Definition.

Several other notions of equivalence have been proposed in the
literature, one of which will be of interest later when we explore the
way in which equivalence problems for structured and unstructured

independent location schemas are related:

Schemas S1 and S2 are weakly equivalent if the value of S1 for an
interpretation Il is the same as the value of 32 for an interpretation
12, whenever I1 and 12 are consistent free interpretations and both

values are defined.

It should be noted that weak equivalence is not, in fact, an
equivalence relation. In particular, the relation is not transitive
since any pair of schemas are each equivalent to one whose executions

diverge regardless of interpretation.



- 48 -

CHAPTER 1IV: UNSOLVABLE PROBLEMS

Luckham, Park, and Paterson have demonstrated in [16] that the
equivalence problem for monadic program schemas is tecursively
unsolvable. Briafly, thay have demonstrat:e.d that the schemas are
capable of simulating two-head finite automata, and have noted that
the equivalence‘ problem for the adtomata was shawn‘imsolvable in [25].
The schemas which they constructed to simulate the automata were
independent location schemas except for an ihitial AJSSigm:ent'instmction
of the form 'x = y' (which corresponds to the placiiié of both heads on
the tape of an automaton) and we have, therefore, that eguivalence is
undecidable for restricted location monadic program schemas..

The example in Section 2.4 demomstrates that restricted location
iteration schemas are strictly less powerful than restricted location
MPS's. Moreover, it can be shown (cf, [13]) that there exist restricted
location MPS's which cannot be simulated by restrict:e'd location 'while'
schemas, even 1f we permit boolean expressions in conditional and
iteration statements. (Informally, the reason we cannot, in general,
construct such a simulating schema. is that the flowchart of an arbitrary
restricted location MPS may contain a directed cycle with many different
exits. To place such a cycle in 'whilish' form requires merging all of
these exits into one, and "remembering" the values of relevent variables
at points in the new cycle which correspond to the exit points in the
original cycle. When the merged exit is taken, the correct values may

then be associated with each variable symbol, based on which of the exits




- 49 -

would actually have been taken in the original flowchart. The
appropriate values are remembered by assigning them to new variable
symbols, and it is precisely these assignments which prevent the
resultant schema from being a restricted location schema, since they
must be made within the cycle at points corresponding to the original

exits.)

It is clear, therefore, that structured restricted location
schemas are significently less powerful that restricted location
schemas in general, and we might hope that the added structure is

sufficient to render equivalence decidable for such schemas.

Unfortunately, this does not prove to be the case. In fact, we
are able to prove that equivalence is undecidable even if we look at
restricted location schemas which are "totally" structured ~— those

in which even conditional statements have been removed.

In this chapter we prove that equivalence is undecidable for
restricted location iteration schemas, and that it is also undecidable
for such schemas which are conditionai-free. For lucidity, we present
the result for the more general class of schemas first, and then discuss
the way in which the procedure may be strengthened to establish the

result for the conditional-free schemas,



- 50 -

4.1 Post's Correspondence Problems,

We begin by considering two well-known unsolvable problems: the

Post Correspondence Problem and the Modified Post Correspondence Problem.

A Post Correspondence Problem is an ordered pair
C = (A,B)
*
where A = {wl, wz, cee s wk} 1<isk, o, Yi € {o,1}
B={ ¥ Yy eve s vk}
and W =8, *S, * ... *8 s; ,r, € {0,1}
i, %1 i i.0%4, ’

Yi = ril°ri2° ese .rio—i

We say that the Post Correspondence Problem C has a golution if

and only if there exists a sequence of integers i ""’im’ m=21,

1
lsinsk,lsnsm, such that

A Modified Post Correspondence Problem is a pair (C,Z), where C
is a Post Correspondence Problem as abavé, and £ is an integer, 1 < £ < k,
We say that the modified problem has a sé}g;ion if and only if there
exists a séquence of integers il,...,im, m 2 0, 1= i, = k, 1 <n<m,

such that

It is recursively undecidable whether a given Post Correspondence
Problem or a given Modified Post Correspondence Problem has a solution.

(See, for e::ample; {81)




- 5] -

4.2 A Note on Notation,

We will generally define schemas in terms of their‘programs and
the programs of their subschemes only, the. funotion; predicate, and
variable symbols being defined implicitly as those appearing in the
programs. In most cases, in fact, we will pot bother to distinguish

between a schema and its program, referring to either as 'schema'.

When conuonieht, we will pern&b_campotnd?boalrtn axpressiOns.to
appear in conditional statements of an iteration schema. We note |
that

IF (7b) THEN S, ELSE S
for any boolean expression b is equivalent to

IF b THEN Sf

| ELSE St
and that
IF (b V b')TENS ELSE Sf

for any boolean expreaaions b and b' is equivalent to
IF b THEN S ELSE S'
where S' is

IF b’ "mms ELSE Sf

and we are assured therefore, that permitting boolaan expressions in
conditional statements is indeed a notational convenience, and does not
in any way alter the class of ccmputations representable by iteration

schemas.‘



- 52 -

4.3 Undecidability of Equivalence for Restricted Location Iteration
Schemas. ‘
Let C be a2 Post Correspondence Problem as defined in Section 4.1.
. We show how to construct & restricted location itevation schema § with
the property that some free interpretation I definés 8 termimating

execution of S if aand only if the problem C has a solwution.

Let S, be the iteration schems whose progran is empty, and let St
be thé schema:
WHILE p(x) DO SE

UNTIL p(x) DO Sp

for some predicate symbol p and some variabielsyﬁbbl x, That is, ST is

a schema for which each interpretation defines a non-terminating execution.

Let P and P, be distinct predicate symbols different from p, and let

S0 bevthe schema:

1

IF (py(x) A (mp,(x))) THEN S

ELSE S
and let S1 be the schema: ‘

IF (pl(x) A po(x)_)) THEN S ELSE S,

Suppose we interpret the predicate symbols p, Po» and p; over some
domain D, We may consider an element of the domaih aé réprésenting the
symbol '0' if, when this element is initialiy assoéiatéd with symﬁol x,
the execution of So défined by the intefpretation terminates. Similariy,

we may consider the element as representing the symbol 'l' if, when the

element is initially associated with x, the execution of S1 defined by




- 53 -

the interpretation terminates. Viewed in this way, no element of D may

represent both '0' and 'l', although some elements may represent neither

symbol.

For each i, 1 < i sk, let A, be the schema:
i

IF q(x) THEN Sg  ELSE S,
1

x = £(x)

IF q(x) THEN Ss ELSE S
i2 '
x + £(x)

IF q(x) THEN S,  ELSE S,
ig,
x ~ £(x) *

(In the above, q is some new predicate symbol and SSi denotes, for each
h|

j, the schema S0 or the schema Sl’ according as sij is 0 or 1.)

In this manner we associate a schema with each string of symbols in
the first component of the problem C. If we provide an interpretation
with some domain D for the schema Au)g then the exgcution of A“\
defined by the interpretation will div:rge unless the sequence of ;§mbols
represented (in the way described above) by the elements v, Qf(v ),
¢f(@f(v)), cee s wféi-l(\)) comprise the string wi’ where v € D is the
value initially associated with x and P DD is the function |

associated with f by the interpretation., The execution will also diverge

if any evaluation of the predicate associated with q has outcome false



- 54 - ’

during the execution. (The reason for the inclusion of q in the schema

will become apparant later.)

Let S.' be the schema identical to S_ except with variable symbol y

0 0
in place of variable symbol x; let S 1' be the schemm identical to Sl

except with y in place of x.

For each i, 1 <= i1 < k, let BY be the schema:
i

IF q(y) THEN S_ ' ELSE S

i 1

1
y « £(y)
IF q(y) THEN S ' ELSE S,
Ty
2

y « £(y)

L]
.

IF q(y) THEN Sr ' ELSE Sy

i

y =~ £(y) i

(In the above, Sri ' denotes, for each j, the schema S,' ox the schema

S,', according as ry 1is 0 or 1.)
-3

These schemas correspond to the strings in the second component of
C in the same way as those defined previously correspond to the strings

in the first.
For each i, 1 < i <k, let R be the schema:

IF t.(z) THEN Aw ELSE S

IF S
gi(z) THEN By, ELSER




- 55 ~

where each t:i is a distinct new predicate symbol.
Let Rl be the schema:

IF t,(z) THEN Aw]_ ELSE S_

IF tl(z) THEN BYl ELSE R2

z = £(z)
and let Rk be the schema:

IF
tk(z) THEN Awk ELSE SE

IF t, (z) THEN By  ELSE S,

Finally, let S be the schema:

yrx

F s
IF p (z) THEN R, ELSE R,

WHILE p(z) DO R,

IF q(x) THEN ST ELSE SE

N ELSE SE

IF q(y) THEN S

We claim that some execution of S under a free interpretation will
terminate if and only if the Post Correspondence Problem C has a
solution. In particular, suppose that some such execution of S

terminates. Let n denote the number of times during the execution of S

that the subschema R1 is executed, and let t-l, tj 3 ese o tj be the
2 n

sequence of t's whose applications resulted in true outcomes during the

executions of R1 It is clear from the construction that the value of

x at the end of the execution of S must be fml'Ax, where m =

W, ew, ¢ ., W, |, and that the value of y at the conclusion of
J1 32 In



- 56 -

the execution must be fmZ'A , wherem, = | Y, + Y <« ...Y |.
x 2 o In

Also, the sequence of symbols represanted by the elements

LA, £DBgy oov ml A must compriae W o= * ee o W

j1 iz 3
otherwise the execution of S would have diverged at the execution of

x?

some subschéma Awi when it was discovered that the wrong symbol, or

no symbol at all, was represented by an element. Similarly, the

sequence of symbols represented by Ax” f'A*, cee s fm:Z-Ax must

comprise Y = Y. * Y, * ..o ° ¥, , and therefore it:must be the case
j1 -12 jn N

that W is a prefix of Y, or vice versa,

But it must also be the case that m and m, are identical:

The value associated with x is tes-ted‘witrh the: ﬁredicate
corresponding to symbol q each time a atatement of t:he form 'x - £(x)'
is executed, and similarly for the values associated with y. In each
case but the last the outcome of the test is m otherwise the
execution weuld have diverged. Now, suppose tﬁftmland m, dre not the
same; in particular, suppose that m; >m,. "It ‘must be the case that
Hq(fmz'A x) is Lxue (where lI’q is the predicate associated with-q). But
then the execution of $ would have diverged when the fifth statement in

its program was executed, a contradictiom. 'kncefimi,,. m2

But then it must be the case that W = Yy, and thus j IETII M

must be a solution to the correapondence problem C. '



- 57 -

The remaining argument, that some execution of S under a free
interpretation terminates if C has a solution, is also quite easy.
Suppose that il, vee ,im is a solution for C. Then we provide S

with the free interpretation that associates with po the predicate:

I (fn'A ) = true if the (nt+l)st symbol of W - ,,, W

is 0, or false oi:herwise

that associates with 121 the predicate:
n
Hp (f *Ay) = true if the (n+l)st symbol of W e .. tW

1 1 i
is 1, or false otherwise

that associates with q the predicate:

n
Hq(f -Ax) = falgse if n = | wil ces wim , or true
otherwise

that associates with t , 1 < j < k, the predicate:
1

n
O (f<A )=¢trueif j=41i , 1 <n<m or false
tj z n+1

otherwise
that associates with PI the predicate:

n
l'Ip (£ -Az) = true if n <m, or falge otherwise
1

and that associates with p an arbitrary predicate.

The reader will verify that the execution of S defined by the above

interpretation is guaranteed to terminate.

From the above construction we have:



- 58 -

Theorem 4.1:
The equivalence problem for restricted location iteration schemas is

unsolvable.

Proof: Suppose that the equivalence problem were solvable. Given an
arbitrary Post Correspondence Problem C we could construct a
restricted location iteration schema S as outlined above. The
correspondence problem would have a solution if and only if
S were not equivalent tc the schema ST’ and we would therefore
be able to decide if C has a solution, contradicting the known

unsolvability of Post's Correspondence Problem.

L]



- 59 =

4.4 Undecidability of Equivalence for Conditional-Free Schemas.

In this section we describe how a conditional-free, restricted
location schema may be constructed from an arbitrary Modified Post
Correspondence Problem in such a way that some execution of the schema

terminates if and only if the correspondence problem has a solution.

Let C be an arbitrary Post Correspondence Problem as defined in
Section 4.2, and let C' = (C,4) be a modified correspondence problem,
where £ is an integer between 1 and k, inclusive. We begin by modifying

some of the subschemas of the preceding section:

We note first that the schema S0 is equivalent to the conditional-
free schema:

UNTIL p,(x) DO S,

WHILE p, (%) DO sp

Similarly, the schema S. 1is equivalent to:

1

UNTIL p (x) DO S,

WHILE po(x) DO S

For each i, the subschema A(”i consists of assigmment statements
and conditional statements of the form:
IF q(x) THEN Ssi. ELSE ST
Clearly, we may replace each such condifional'statement with the

statement:

UNTIL q(x) DO S_

followed by the sequence of statements which makes up the program of the



- 60 =~

subschema S, . Hence, each such schema A, can be transformed into
i, i
J

a conditional-free schema. In a similar manner, each subschema of the

form BY . can be transformed into a conditional-free schema.
1 .

For each i, 1 < i = k, let Di be the schema consisting of the
statements of the schema A, , followed by the statements of the schema
i
By,, followed by the statement:
i

z «~ f(z)

Each Di can be made conditional-free by using the conditional-free

schemas equivalent to A, and By
i i

Let R be the schema
WHILE tl(z) DO Dy

WHILE tz(z) DO D2

WHILE
1 tk(z) DO Dk

Finally, let S' be the schema:
y*©x
a
B
WHILE PI(Z) DO R
WHILE q(x) DO Sg

WHILE q(y) DO S_

where @ is the sequence of statements which makes up the .schema sz,



- 61 -

and B is the sequence of statements ?hich makes up the schema 1331.
Since each of the component schemas of S' is equivalent to a
conditional-free schema, S' may certainly be made conditional-free.
The reader may verify that some execution of S' defined by a free
interpretation for the schema terminates if and only if the problem
C' has a solution. (The argument is virtually identical to that

given in the previous section.)

Thus we have:

Theorem 4,2:
The equivalence problem for restricted location, conditional-free schemas

is unsolvable,

Proof: The decidability of equivalence for such schemas implies the

solvability of the Modified Post's Correspondence Problem.

O

4,5 Discussion,

The schemas of Theorem 4.2 are a rather restricted class of monadic
program schemas, more restricted than any ciass for which the equivalence
problem has previously been shown unsolvable. This is not actually
surprising, however, since the effort which has been expended in the
study of equivalence problems for schematized models has been directed
primarily towards finding broad classes of such models for which

equivalence is decidable, rather than restricted classes for which it is



- 62 -

not. The paucity of results which have been obtained to date, however,
suggests that perhaps both directions should be explored, if only to
gain some insight into the types of restrictions which are apt to lead

to solvable problems.

In a modest way Theorem 4.2 provides us with some such insight,
since it demonstrates that structure, or the lack theréof, is not in
itself a key to equivalence problems in monadic program schemas. We are
led to inquire, therefore, whether structure, taken in conjunction with
other reasonable restrictions, might lead to solvable problems, or
alternatively whether the constructions of the previous sections can be
strengthened to yield results analogous to that of Theorem 4.2 for yet

more restricted classes of schemas.

For example, what is the effect of restricting the number of
distinct symbols in the schemas? The schemas in the construction of
Section 4.4 employ only a single function symbol, but arbitrarily many
predicate symbols., At the cost of some lucidity, however, we could
present a construction involving schemas with a single function symbol
and a single predicate symbol (see Appendix A), and thus restricting
the number of predicate and function symbols helps us little in our
quest for solvable problems, even if dealing with totally structured
schemas., Matters are slightly different with fespect to variable
symbols, however: while it is an easy matter to present a construction
employing only two variable symbols (we merely use x or y in place of z),

no further reduction is possible in the construction, since the



equivalence problem for schemas with a single'%’vhris“ble symbol reduces

to that for finite state automata.: -

Prompted in part by interesting results for certain interpreted
models for computation ([17, 28], we might ask ebout the effect: of
limiting the number of levels of iteration in structured schemas. We
«znote, for instance, that the construction of Section 4 3 employs schemaa
with two levels of iteration, while that of Section 4 4 employs schemasg
with three levels. 1Is equivalence decideble for structured schemes with
one level of iteration? 1Is equivalence decidable for; conditioml free
‘schemas with two levels of iteration? (Both"of”"these'questions are
open. It _i__q known, however, that equivalence 1s decidable for
conditional-free schemas with a single level of iteration, since these

schemas are a subclass of the "unnested loop™ schenasof Paterson [18].)

Other restrictions we consider follow from the observations that
the schemas in the previous sections ere not free, hat they are properly
restricted location, as opposed to independent location, and that certein

predicate letters appear in seveml statements in the schemns. We might

ask, therefore.

<<<<<

independent location schemas? Which are singleleppgarence: schemss?. Which

possess various combinations of these properties?

Answers to some of these questions are presented in the following

chapter.




CHAPTER V: SOLVABLE PROBLEMS

In this chapter we provide affd_mt&m answers to some of the
questions raised at the end of Chapter IV 'me techniques we employ
are hardly generalisable to non-stnwturad schems, but we ane confident
that they are applicable to clanes of atructured lchanna more general

than those we consider in this chapter. We are concerned therefore,

with 111uatmting t.heoe techniques as well as vith obt:aining lpecific

results. (The f:l.rst case we consider, for ezlnple, il perhaps rather

‘more pedantic than t:heoreticauy 1ntem-:1.ng )

Briefly, the approav.h is as follows: o

We de-mstra,te that for» certain classes qflsche,ms‘ it is possible
to find _1teretj.op statements in pairs of equg.v:a;{g‘nt’: schemas which play
similar roles during consistent schema executions, l.e. statements which
execute the same number of times and test the same values during such
executions, and which affect in a sinilar mnner t:he variable symbols in
each schema. Given an arbitrary pair of schema in the clans, we
identify statements which must be so related if the sehema are equivalent,
and use their auumd similarity to reduce the equivalence of the achenas
to that of simpler schemas, a procedure which is applied recursively
until the problem has been reduced to that for schems whose equivalence
is trivially decidable. | '

The approach is illustrated in Section 5.5, after formalizing the

notion of "similar roles" and presenting some preliminary results.



- 65 -

5.1 Test Sequences and Logic Equivalence.

Let S be an iteration schema with predicate symbols P, and let D
be the domain of the free interpretations for S. Then the set of tests

for S is the set D X P,

Suppose that s is a conditional or iteration statement in S and
that E is a free execution of S (that is, an execution defined by a free
interpretation for S). Then a test T = (8,p) is said to be made at s
during E if the predicate assigned to symbol p by the interpretation
defining E is evaluated at the expression 0 during the execution of
statement s. (The application must be made during the execution of the
statement itself, rather than‘during the execution of the subschema
appearing in the statement.) We denote by TESTSSS,E) the sequence of
tests made at s during E, and by TESTS*(S.E) the seqﬁence of all tests
made during E (including those made during the execution of statements

in subschemas of S).

Let E and E' be executions of iteration schemas S and S',
respectively., We say that E and E' are gconsistent if they are defined
by consistent interpretations for the schemas., Let s be a conditional
or iteration statement in S, and let s' be a conditional or iteration
statement in S'. Then s and s' are logic equivalent if TESTS(s,E) =
TESTS(s',E') whenever E and E' are finite, consistent executionms.

Later in this chapter we show that for certain classes of schemas
logic equivalent statements must appear in equivalent members of the
classes. In fact, the existence of such statements forms the basis of

our proofs of the decidability of equivalence for these classes.



- 66 -

5.2 Productivity and Essentiality.

It would be naive to assume that equivalent schemas need make
precisely the same tests during consistent executions, since some of
the tests made during the executions may be non-productive tests -
that is, tests whose outcomes do not affect the resultant values of the
schemas. For example, the value of the schema in Fig.9 for any execution
is independent of the outcome of the test made at the statement labelled s.
Since s is the only statement in which symbol q appears, it is clear that
no test of the form (8,q) made during an execution of S can be productive.
Hence, the value of S will be the same for any pair of interpretations
for the schema which differ in the way they interpret q, and we say,

therefore, that q is an inessential symbol of S.

As might be expected, it is undecidable in general whether a given
predicate symbol is essential in an iteration schema. In particular, if
it were decidable we could easily decide whether or not arbitrary
iteration schemas S, and S2 were equivalent: they would be equivalent if

1

and only if p were inessential in the schema
IF p(x) THEN S1 ELSE S2

where p is a predicate symbol not appearing in S1 or 82, and x is an
arbitrary variable symbol.
Fortunately, the fact that essentiality is not decidable does not

preclude us from using the notion to advantage, since essentiality is

assured for symbols of particular interest to us later in the chapter.



- 67 -

S = ({X:y}: {fsg}: {Q}: {Sl’sz}’ @)

where @ is:

Sl = ({Xsy}: {f,g},

where 671 is:

SZ = ({X,‘-y}: {_f,g},

where @2 is:

FIGURE 9.

: IF q(x) THEN S

Xy

SE S
lEL 2

y + £(y)

b, 0, Z?l>

x «~ £(x)
x <~ g(x)

y ~ £(x)
g, 0, @,

y « £(y)
X~y
x + g(x)

y - x

£(y)

Schema With Inessential Predicate Symbol.



- 68 -

5.3 Additional Definitions and Terminology.
5.3.1 Definitions.

Let S be an iteration schema and let k be the maximum number of
distinct iteration statements executed during any execution of S. Then
we say that S is a schema of size k. (While this notion of éize is
certainly not the most intuitive, it shall prove quite useful in

subsequent discussions.)

Let T be a test for an iteration schema S, and let E be a free
execution of S. Then T is free with respect to E if 7 ¢ TESTS*(S,E).
(Intuitively, a test is free with respect to an execution if the outcome

of the test is not fixed by the execution.)

Let S be an iteration schema. Then the set of main statements of S

is defined recursively as follows:

(i) 1f s is a statement in the program of S, then s is a main
statement of S,
(i1) If s is a main conditional statement of S and s' is a statement
in the program of the true or false subschema of s, then s' is a main

statement of S.

Let s be a conditional or iteration statement in a schema S. A
variable is said to be modified at s if, for some execution of the schema,
the value associated with its symbol immediately prior to an execution of
s is different from that associated with the symbol immediately following
_ the execution of s, A variable is said to be active in s if it is the

test variable of s, or it is the test variable of some statement in the



- 69 -

subschema(s) appearing in s; otherwise, the variable is said to be

pagsive in s.

5.3.2 A Note on Terminology.

We shall often want to modify schema interpretations in such a way
as to obtain executions differing in soue respact from those defined by
the original interpretations. For convenience, we éhall generally
express such modifications in terms of the executions themselves, rather
than in terms of the defining interpretations. In particular, we shall
often refer to obtaining a new execution from some given execution by
changing the outcomes of particular tests, whereas what is actually
meant is that we may obtain the new execution by changing appropriately

the interpretation defining the original.




- 70 -

5.4 The Elimination Theorem.

In [24], Rodriguez studied the equivalence problem for m
graphs, a sche:mtiéed model for ﬁarallel. MMMW, and ‘proposed
that one Mt decide the equivalenge of a paix of such .gmaphs by
exniining their bebavier for comsistent fiige -amecutdons, emecutions
in which no cyc’he of either graph is exscuted more than once.
Unfortumately, the proposed approach will .not mosk if applied to our
models: it is an edsy tesk 'to comstruct & pair ef iteratien schemms
which are not eguiwalent, but whiok haxe chgzm.'vlluel for all
consistent exscnticns im whick the body of no itemetion statemest is
axecuted more than once.

For example, let S be the schems

x « £(x)
WHILE p(x) DO 8,
x = f(x) h
x = £(x)
WHILE p(x) DO S1
where S1 is the schema .'x - £f(x)', and let S' be the séhema
x ~ £(x)
x - £(x)
UNTIL p(x) DO Sl
x -~ f(x) ‘ |

WHILE p(x) DO S1



- 71 -

The reader may verify that 5 and S' have the same value for all
pairs of consistent executions in which no instance of S1 is executed
more than once. But Skand S' are clearly not equivalent, since if I is
the free interpretation which assigns to p the predicate Hp defined as
follows: .

Hp(fi-Ax) = false, 0 <1ix<4
np(fi-Ax) = true, 1 >4
then the execution of S defined by I terminates, thlé that of S' must

certainly diverge.

However, it ig possible to show that if a pair of iteratioﬁ schemas
satisfy certain conditions, then‘they must contain a pait of iterﬁtion
statements such that the schémaé are equi#élent'if and only if they have
the same values for all consistent executions in whicﬁ the bodies of
these statements are executed no more than once. This implies that we
can decide the equivalence of such schemas by dé&iﬁing the equivalence
of two pairs of schemas which are "simpler” than the originals in the

sense that they contain fewer iteration statements:

(i) the schemas obtained from the originals by eliminating these

particular iteration statements from their respective programs; and

(ii) the schemas obtained from the ofiginais By réplacing these

iteration statements with their bodies.

Moreover, if we can ensure that the resultant pairs of schemas

satisfy the same conditions as the original pair, we can repeatedly




- 72 -

eliminate iteration statements from successive pairs of schemas until
we have reduced the equivalence of the original schémas to the |
equivalence of sc@ bounded mmmber of pairs of schemas which contain
no iteration statements (and for which équivaleuce ‘\ifé"'tr"ivully
decidable). Thus the.conditions for which such iteration statements

are guaranteed to exist are of considexable interest.

The conditions are explicated in Theorem 5.1 in this section,

after a prelimim:y result:

Let X, Yand Z be sets of words over some alphabet T Let f : X T*
and f3: X '1‘ be total fun.ctions, and let £f,: Y - T be a total
function such that for each §,0 € Y ve have fz(é) fz(c) = fz(é-c)

Let @ € X and let Y € Z, and suppose the following ekgualiti.gs_hoild:

Loy a = f£,(x)-£,(2)
2. yBea= f4(a)-£,(B)-£,(2), all B €Y

Then Y-P O = £.(%).£,(B) £(), all-b €Y.

Proof: We know from (1) and (2 ) that the assertion is correct if P
is the empty string or B is an element of Y.. Agsume the
assertion is correct for all B e Yi 0s1i< j Then
the assertion is correct for all 5 € Yj as follows.

Let B = 51-32, 3 GYj 1, 3 EY Meze are three
cases to consider, based on the relationship of « td fl(a)

in equality (1):




- 73 -

Case 1. « = £,(®)
Then y = f3(a). We have from equality (2):
y-Bl-a = y-fz(Bl)-a and y-Bz'a = y-fz(Bz)'a, whence

51'32 = fZ(Bl)‘fZ(BZ) = fz(Bl-Bz) and thus

y-Bra=y-f,(B)a

Case 2. «a = u-fl(oc), L non-empty.

Then y-p = £,(0). We have:

Vo l(y-pra = £3(0)-£,(p) £, (@) =
(yopru-f,(@) = £,(@-£,(p) £,(@0)) =
(y'prn = f3(a)-f2(p)) =
(yrorw =vypf,00)) =
(prp = p-£,())]

Substituting Bl and Bz for p yields:

w
’—-l
-
|

By m = u'fZ(Bz)

<

w™
Q
1

Y-B-u-f, (0)

Y-Bl-Bz'u-fl(a)

= Y'Bl'p«'fz(Bz)'fl(a)

vou £, (B ) £, (8,) £, (@)

f3(a)-f2(61-82)-f1(a)

£,(0) £, (B) £ (@)



- T4 -

Cage 3. p.0 = flﬁz), { non-empty. -
The proof for Case 3 is similaxr teo that fox Case 2 and is left

to the weader, -

Theorem 5,1: (Elimination Theorem)

Let § and §' be iteration schemas with the same variable symbols, and let
D be the wmion of the donninsbnf Mtxmeintemmtm Let D' be
the set {6]6~A € D, x any vamblasyntsplofthe .schemas}. Let s and
s' be iteration statements in the pmsm -of & aﬂd §', wespectively,

and suppose that for any variable sMal y of the schemms there exist
total functions vfylz D+ D, fyzz, D' # D', and fyjz. D » D', which
satisfy the following condition:
Let E and E' be finite, cohsistent, free swecutions of S
and 8', Let @, B, and Yy be strings :such that Q. is the value
associated with y just prior to the fixst mcution of statement s
during E, B-C is the value associated wit:h y imadiately following
the last execution of s, and Y. B.C ig the value associated with y
at the conclusion of E. Let @', B', and Y' Be strings defined
in 2 gimilar manner with E' in place of B and s' in place of s.

Then:
L. o = f (G)
2. B = f B
Y2
3. v'= £ (a)
Suppose also that concatenation distributes over the function £ i.e.

, y2?
suppose that £ (8)-f_ (o) = £_ (6*0), all 6,0 € D',



- 15 -

Let S, be the schema obtaimed.from §.by,elimjnating statement s

from its program. Let:5, be the sghewa chtained. fxom S by replacing

s with the progrsm of the body of s. .. Let, § g 0 81, be the pchemas

obtained by .eliminating s" in.a smm; uM§£§%§M8¢m$'?
 Then S :Ls' equj.vggljeﬁt to S' if and only 4f §g 18 equivalent to S',,

and slz is equivalent '-tovsllx' G L D SRS T 2%

Proof: From the previous lemme, it must be the case that § and'S" are
equivalént if they have the same valtdes' For ¢onsistent executions
during vhich the bodies of s and’#* wié' eiithted no more than
once. (This ensures that the two équlitie‘sﬁ%ff"tﬁé’ lemna Aarve
satisfied,) - Clearly this; is.the case if apd .ouly if §; is
equivalent to.$'p, and S, is: equi’m»% to 8%y,

Perhaps a few words about the' ‘theorem are’ {# order,” particularly
with regard to its applications - 7 o .
o ‘AS:.;..ippose we hav:e" a pair of schems 4S' and s'thaepmgmmcmsist
of assigmment and iteration staten;‘ehfﬁ only,an;whichhaveidentical
sets of \iariabie~synbola-.' ‘Lt 5 be the mtmmt in the
- program of S, and suppose there extests & staveeMt s'-in ‘the program of
S' such that s and s' are logic equiveledt, ' Far any varisble symbol x
of S, we may divide the value §x associated with x at the conclusion
of a finite, free execution E of S into three parts: the part generated
prior to the executions of statement s, the pértﬁgemrated during the

executions of statement s, and the part generated following the executions




- 76 -

of statement s.. (We note that the last part is a constant: since s is
the last iteration statement in the program of 8, the last part is
determined by the particular assignment statements following s and is
independent of the execution we consider.)

Similarly, we may divide the ﬁlm €', associated with x at the
conclusion of a consistent execution of §' into portions generated
prior to tb.é emgﬁtions of statement s8', during the executions of
statement s', and following the executions of statement s'.

The conditions required by the theorem for the eliminatiom of s

and 8' are these:

(i) The portion of §'x generated during the executions of s'
depends only on the portion of & . Senerated during the executions of s,

while the other portions of §'x do pot depend on this portion of gx .

(i1) The portion of §'x generated during each execution of s'
depends only on the portion of gx generated during the corresponding
execution of statement s. (Intuitively, this ensures that concatenation

distributes over the fumction f,.)

These requirements are of course rather strict, but we shall show
that for several interesting classes of schemas, the requirements must

be satisfied by any pair of equivalent schemas.




- 77 -

5.5 Solvable Problems for Single Appearance Schemas.

In this section we demonstrate that equivalence is decidable for
certain classes of restricted location, single appearance schemas
(RLSA schemas). We begin by considering the class of such schemas

which are conditional-free,
5.5.1 Decidability of Equivalence for Conditional-free RLSA Schemas.

Let S be an iteration schema, and let s be an iteration statement
in 5. We say that s is a trap in S if, whenever the first element of
TESTS(s,E) has outcome true if s is a WHILE statement or outcome false
if s is aﬁ UNTIL statement, E is a non-términating execution of S.
(That is, a statement in a schema is a trap if the execution of its
body is sufficient to guarantee the divergence of the schema's
execution.)

While it is in general undecidable whether an iteration statement
in an arbitrary iteration schema is a trap, it is decidable whether an
iteration statement in a RLSA schema is a trap:

Let S be such a schemé. Clearly, S contains a trap if and only if
it cohtains some iteration statement s such that the body of s contains
no assignment statement of the form 'x « £(x)', where x is the test
variable of s. If such a statement exists, then it is a trap as is any
iteration statement in its body, After being identified, any éuch trap
can be removed from the schema and the schema can be re-examined for

additional traps until all have been found.

Of course we cannot, in general, remove traps from a schema without



- 78 =

affecting its outéut tehavior under certain interpretations. If the
schema is a RLSA schema, however, we can at least ensure that its traps
take a partic;xlarly simple form:

An :Lteretien schema is in proper fomm if the body of each of its
traps is the empty schema SE’ -

We note that any RLSA schema can be effectiveiy ttansfonned into an
equivalent RLSA schema in proper form. - |
Lepma 5.2:
Let S and S' be equivalent RLSA schemas in proper form, auch that neither
schema contains main conditional statements. Let 8 be a main WHILE
(UNTIL) statement in S, and let p be the predicate symbol in 8. Then p

appears in a main WHILE (UNTIL) statement :Ln S'

Proof: Suppose otherwise. In particular, suppose that p appears in a
main WHILE statement in S but does not appear in a main WHILE
statemeﬁt in S'. Let E' be the execution of S' in which the
body of no iteration statement is executed, and let E be any
consistent exzecution of S defined by an interpret:ation in which
the predicate assigned to p is identically true. (8ince no
test of the form (8,p) is made with outcome _f_a_lﬁ during E',
some such E surely exists.) Then E' is a teminating execution,
while E is clearly non-temineting, cotltradictj.ng the equivalence

of S and S'.




-79 -

Lemma 5.3:

Let S and S' be equivalent RLSA schemas such that neither schema contains

main conditional statements. Then if p is a predicate symbol in a main

trap of s, p is a predicate symbol in a main trap of S'.

Proof:

Since p appears in a main iteration statement in S, it must

also appear (according to the previous lemma) in a main iteration
statement in S'; moreover, each of these statements must be WHILE
statementé or each must be UNTIL statements. Let s and s’

denote the statements in S and S', respectively, in which p
appears.

Let E be any finite execution of S, and let E' be a consistent
execution of S'. Since E is finite, TESTS(s,E) must consist of a
single element 7. Clearly, T must be in TESTS(s',E'), since
we éould otherwise change the outcome of 7 in E to obtain a
non-terminating execution of S consistent with E', contradicting
the equivélence of S'and S'. Also, T must be the first element
of TESTS(s',E'), since if it were not we could change the outcome
of this first element to obtain a finite execution E" of S' such
that E"” is consistent with E and T is free with respéct to E",

We couid then change the outcome of 7 in E to obtain a non-
terminating execution of S consistent with E", again contradicting
the equivalence éf S and S', Hence, for any pair of consistent
finite executions by the schemas, the first test made at s must be

the first test made at s'.

But then s' must be a trap:



T RN e Tl B

- 80 -

If not, we could surely find a finite execution E' of 8' in
which the body of s' is executed at least once. Since s and s'
are both WHILE statements or both UNTIL statements, the body of s
must also be executed at least once during any emecution E, of S
consistent with E'  (since the fivst test made at s during E
must be the same as that made«atfsf'duriag«z'b). But since s
is a trap, the execution E, must: be non~terminating, and we
again contradict the equivalence of éﬂand 8,

O

Lemma 5.4:

Let S and S' be eguivalent RLSA schemas such that peither comtains main

conditional statements. Let 8 be a main iteration statement of S. Then

there exista a maln iteration ptatement s' of S' such that s8' and s are

logic equivalent.

Proof:

If 8 is a trap, the result follows from the preceding lemma.

Suppose that s is not a trap:

Let p be the predicate symbol in s. According to Lemma 5.2,
S* must contain a main iteratioh'statement;s"with'predicate ,
symbol p. If s and s' are not logic equivalént,_thére must
exist finite, consistent, free executions E of S and E' of S'
such that TESTS(s,E) # TESTS(s',E'f; and we can surely find such
sequences for which all but the last”eleﬁenfs of the sequences are

the same. Let T be the last element of TESTS(s,E) and let 7' be



- 81 -
the last element of TESTS(s',E'). The first component of ome of
the tests, say T, is at least as long as the first component of
the other. We need only change the outcome of T to true if s is
a WHILE statement, or to false if s is an UNTIL statement, and
provide the same outcome for each subsequent tést made at s to
obtain a non-terminating execution of S. But since all of

these tests must be free with respect to E', the execution is

consistent with E', contradicting the equivalence of S and S'.

\~

g

Lemma 5.5:
Let S and S' be equivalent, conditional-free, RLSA schemas in proper
form. Let s be any main iteration statement of‘S, and let R be the
body of s. Let s' be the iteration statement in S' logic equivalent
to s, and let R' be the body of s'. Then every predicate symbol in

a main iteration statement of R is in some main iteration statement of

R'.

Proof: Let S1 be the schema obtained from S by replacihg svwith the
program of R, and let S') be the schema obtained from S' by
replacing s' with the program of R'. Since s and s' are logic
equivalent, Sl and S'l must be equivalent schemas., -Liemma 5.2
ensures, therefore, that each predicate symbol which appears in

a main iteration statement of Sl must appear in a main iteration

statement of S';, and the result follows immediately.



- 82 -

We are now in a position to prove the following rather intuitive

result:

Legma 3.6:
Let S and S' be equivalent, conditional-free, RLSA schemas in proper

form. Then each iteration statement in S is 1ogic.equimLent to some

iteration statement in S'.

Proof:

For simplicity, we ascume that S and 8' have only two levels of

iteration: the obvious generalization is left to the reader.

Let s be a main iteration statement of S, and let R be its
body. Let s' be the main iteration statement of S' which is
logic equivalent to s, and let R' be the body of s'. Lemma 5.5
ensures that for each main iteration statement r of R, there is
a main iteration statement r' of R' containing ﬁhe"sam‘e predicate
symbol.

Let S; and S'; be the schemas constructed as in the proof of
Lemma 5.5. According to Lemmr 5.4, r and r' must be logic
equivalent statements in these schemas, implying that precisely
the same tests are made at each statement during the first
executions of R and R' in any pair of finite, consistent, free
executions of S and 8',

Let S, be the schema obtained from S by replacing s with two
copies of the program of R, and let S', be obtained similarly |
from S'. From the preceding argument, we have that the first

instance in 32 of each mein iteration statement of R must be logic




- 83 -

equivalent to the first instance in S'Z of the statement
containing the same predicate symbol. Hence, we may change
the predicate symbol in each such pair of statements to some
new symbol which does not appear elsewhere in the schemas,

without affecting the equivalence of S, and S’z. Since the

2
resultant schemas are single appearance schemas, we can apply
Lemma 5.4 to demonstrate that the second occurance in S2 of the
Statement r is logic equivalent to the second occurance in S'2
of statement r', implying that the same tests are made at r and

r' during the first and second executions of R and R' in any

pair of finite, consistent, free executions of S and S'.

For any n > 0, we need only apply this argument n times
to demonstrate that, for such executions, the same tests are
made at r and r' during the first n executions of R and R'j;

hence, r and r' are logic equivalent.

An immediate consequence of the lemma is that predicate symbols
of such schemas S and S' must be similarly 'nested" in each schema, i.e.
if symbol p is in the body of the statement in S containing symbol q,

then p must be in the body of the statement in S' containing q.

Suppose we wish to decide the equivalence of RLSA schemas S and S',
and suppose neither schema contains main conditional statements. From a

previous lemma, we know that if S5 contains a main trap which has predicate



- 84 -

symbol p and test variable x, then S' can be equivalent to S only if S'

contains a similar main trap. Suppose that this is the case:

Let Sp be the schema obtained from S by adding'a new variable symbol

Vp to the schems and following each statement of the form

x ~ £(x)
in the portion of S preceding the trap with the statement

vp < f(vp)
and then deleting the trap. (Intuitively, Vo is used during an execution
of Sp to "record" the value of x which would have bsen tested at the

trap during the corresponding execution of 8.) Let S'p be the schema

obtained in a similar manner from S'.

We know from the proof of Lemma 5.3 that if S and S' are equivalent,
the value tested at the trap in S must be the same as that tested at the
trap in S' during any pair of consistent, finite executioms of the

schemas. Hence, S and S' are equivalent if and only if S_ and S'p are

P
equivalent, and it is clear that by repeating the construction for each
corresponding pair of traps in the schemas, we can reduce rthe equivalence

problem for S and S' to that for similar schemas which have no main

traps.

Lemma 5.7:
Let S and S' be conditional-free RLSA schemas, and let k > O be the
maximum of their sizes. Then we méy construct from S and S' two pairs

of conditional-free RLSA schemas of size no greater tham k-1, such that




- 85 -

S and S' are equivalent if and only if each of the pairs comprises

eqﬁivalent schemas.

Proof: We may assume that S and S' have the same variable symbols and
that their predicate symbols are similarly ﬁested, otherwise we
can immediately conclude that they are not equivalent. Without
loss of gemerality, we may also assume that the schemas are

without main traps.

Let s be the last iteration statement in the program of S,
and let s' be the statement in S' containing the same predicate
symbol as s. Let So, S'O, Sl, and S'1 be the schemas constructed
»from S and S' as in the proof of Theorem 5.1, and suppose that

S0 is equivalent to S'0 and S1 is equivalent to S'l:

Every statement which follows s' in S' must be logic
equivalent in S'0 to a corresponding statement in SO, and must
be logic equivalent in S'1 to the same statement in Sl. Clearly,
this can be the case only if each variable modified at‘s' is ‘
passive in all statements in S' which follow s'. Now, let E and
E! be arbitrary consistent, finite, free executions of S and S',

and let x be any variable symbol of the schemas:

We may write the value associated with x at the conclusion
of E as YeB. O, where @ is the value associated with x just
prior to the first execution of statement s, B °CQ is the value
associated with x immediately following the last execution of

statement s, and Y is the fixed portion of the value due to the



assignment statements affecting x which follow stai:ement 8 in
the schema. We may write the value associatéd with x at the
conclusion of ' as Y'-B'.Q', where ', B',"andb Y' are
defined in a manner similar to that above, although Y' is

not fixed but rather depends in geheral on\'t.lié particular
execution E' being considered. Since éaéh variable modified at
s' iz passive in all statements following s', it must be the
case that Y.@ = ¥'.0', and thed that Y' and G ' are
completely determined by . Also, it ums)t‘be the case that
B' is completely determined by B since every test made during
an execution of the body of s must also be made during the
corresponding execution of the body of s', else by Lemma 5.6

we contradict the equivalence of 'S, -and S*

1 1°

Thus, there must exist functions ‘fxl, £ Xp° and ‘fx3 such that

for all executions E and E' as abm‘re,( a' = fxl(a), g' = fxz('ﬂ )s
and Y' = £ (@), As noted abové; the portion of B' due to a

particular execution of s' during E' depends only on that portion

of B due to the correspond'ir;.g execution of s during E, and hence

concatenation distributes >over £ ‘.. The lemma then follows frqn

*

the Elimination Theorem:

S and S' are equivalent if and only if 5, and S'O, and Sl and

S'l, are pairwise equivalent.




- 87 -

Thus we have:

Theorem 5.2:
Let S and S' be conditional-free RLSA schemas. Then it is decidable

whether S and S' are equivalent.

Proof: We note that equivalence is trivially decidable for schemas of
size 0., The theorem follows immediately from the previous

lemma by induction on the maximum of the sizes of S and S',

O

Theorem 5,2 can hardly be considered a surprising result, and the
reader will no doubt have observed that there are rather more direct
approaches to this particular problem than that which we have presented.
(In particular, Lemma 5.6 can be proved fairly simply without utilizing
Lemmas 5.4 and 5.5, although our efforts are hardly wasted since these
lemmas are needed in the next section.)

The proof presented, however, illustrates the major steps in the
proofs of our other cases:

(i) The transformation of schemas into a form facilitating the
identification of logic equivalent statements.

(ii) The demonstration that such statements exist in pairs of
equivalent schemas,

(iii) The application of the Elimination Theorem to reduce the

equivalence of a pair of schemas to that of "smaller" schemas.



- 88 -

In the present case, all three steps are relatively straightforward.
In the next case, however, step (i) is complicated by the presence of
conditional statements in the schemas, while in the third case steps
(ii) and (iii) are complicated by the multiple appearance of predicate

symbols. The major steps, however, are the same in each proof.



- 89 -

5.5.2 Decidability of Equivalence for FRLSA Schemas.

In this section we demonstrate that equivalence is decidable for
the class of free, restricted location, single appearance schemas

(FRLSA schemas).

We begin by showing that essentiality is decidable in such schemas:

Lemma 5,.8:
Let S be an FRLSA schema. Then for each predicate symbol p in S, it is

decidable whether or not p is essential.

Proof: Since the schema is free, it is clear that p is an essential
symbol if it appears in an iteration statement in S. Suppose,
therefore, that p appears in a conditional statement. We claim
that p is essential if and only if the true and false subschemas
of this statement are not equivalent:

Let s be the conditional statement, and suppose that its
subschemas are not equivalent. Then we can find partial executions
Et and Ef of S such that the executions end immediately after the
first execution of a subschema of s, the executions conflict only
with respect to the outcome of the test made at s, and the value
associated with some variable symbol x of S is different at the
end of each of the executions. We complete the execution Et in
such a way that the outcome of each test subsequently made at a
WHILE statement is false, the outcome of each test subsequently
made at an UNTIL statement is true, and the outcome of each test

subsequently made at a conditional statement is, say, true in each



- 90 -

case. We complete the execution E; in a similar manner. Since S
is a single appearance schema, these vomplete exécutions conflict
only with respect to the outcome of the test made at s. But since
p:eci-sel-y the same sequence of statements is executed afters in
each case, the value of x at the emd of the executions must still
be difﬁea:ent. Hénce. p is an essential symbol if and pnj,y if the
subschemas of s are not equivalent. .

But it is clearly decideble whether the subachemes of s are
eq‘uivalm.:»

If eirher subschema contains an 1;e:ratién statement, the
subs‘chew'.s cannot be equivalent since the other subschema
cannot M:Ln an iteration staten\ént "fithv the same predicate
symbol. If neither subschema contains an ‘iterationkstatement,
their equivalence is trivially decidable since there are only a

finite mmber of distinct free executions of the schemas.

Kem, it is decidable whetha:: p is essential,

We say that a schema is reduced if it contains no inessential
symbols. We note that a conditional statement containing an
inessential symbol may be replaced in a schema with the program

of either of its subschemas, and thus we have:




- 91 -

Corollary 5.9:

Let S be a FRLSA schema. Then we may construct from S a reduced FRLSA

schema equivaient to S. _J/

It may‘be worth mentioning here that the decision not to permit
the designation of certain schema variables as "output" variables is
rewarded with the relative simplicity of the proof of Lemma 5.8.

While the result is still true for schemas with specified output
variables (it was established by the author in [22] for a class of
schemas somewhat more general that the FRLSA schemas), the proof
becomes rather complex in that case, since we must show that the final
value of some output variable, rather than some arbitrary variable, is
dependent on the outcome of a test made at a conditional statement.
Since this dependency may be quite indirect, the decision procedure for

such schemas is quite complicated.

We use some of the results of the previous section to prove the

following lemma:

Lemma 5,10:

Let S and S' be reduced, equivalent FRLSA schemas. Then predicate symbol
p appears in a conditional/WHILE/UNTIL'statement iﬁ S if and only if it
appears in a conditional/WHILE/UNTIL statement in S'. Moreover, for each
iteration statement in S thefe is a logic equivalent iteration statement
in S', and if s and s' are such iteration statements, the sets of

predicate symbols appearing in their schemas are the same.



Proof:

- 92 -

Suppose that predicate symbol p appears in a main conditional
statement s of S, Since p is an essential s'ym’boi, it must appear
in some statement s' in S'. Moreover, s' must be a conditional
statement:

Suppose otherwise., In’part':il.rcula,r,' aupﬁ;:se that 8' is a
wHILE statement. Let S, be the schems obtained'ﬁfrom S by
replacing s with the program bf ‘i‘ts' tnae subscheun, and let 'S'oo

be the "schems" obtained from S' by teplﬁc:l:ng s' with infinitely

‘many copies of its body. S, must be equivalent to S' s but since

S' is free, at least one of its variableir(nanely the test
variable of s') is modified at s',r‘and thus So m be
equivalent to S'_. Hence, s' must bé a conditional statement.
We note also that since p is essential; a productive test may be
made at s' each time it is executed. If S and S' #re to be
equivalent, therefore, s' must be a ﬁgin conditional statement
of 8',

We are thus assured that for each main conditional statement
in S, there is a main conditional statement in 5' with the same
predicate symbol, Let St and Sf be the schemas obtained
from S by replacing each main conditiopnal statement with the
program of its true subschema and ite false subschema,
respectively, Let S' and S'  be obtained ‘:{.}n a similar manner
from S'. Clearly, S_ must be equivalent to S' , and S must be
equivalent to S'f. Applying Lemmas 5.2 and 5.4 to each pair of

schemas, we establish the desired result for the symbols occuring




- 93 -

in main statements of the schema. We need only employ the

methods of Lemmas 5.5 and 5.6 to establish the result for all

symbols,

Again, the preceding result is highly intuitive. We note,
however, that the result is hardly less intuitive, thbugh demonstrably

false, if we remove the restriction of freeness from the schemas.

We now show that a "weak" form of logic equivalence must hold
between certain main conditional statements of equivalent, reduced, FRLSA

schemas. The following definition is useful:

Let r be a main conditional statement in an iteration schema S.
Then r is a final main conditional statement if, whenever r is executed

during an execution of S, no main conditional is executed after r.

Lemma 5,11:

Let S and S' be equivalent, reduced, FRLSA schemas, and let r be a final
main conditional statement of S. Let E and E' be consistent, finite,
free executions of S and S', respectively. Then a test T is made at r
during E only if T is made during E'.
Proof: Suppose that such a test is made during E. If either subschema
of r contains an iteration statement s, then from Lemma 5,10
s can execute during E only if the statement logic equivalent to

s executes during E'. Hence, T cannot be free with respect to E'.

Suppose that neither subschema of r contains an iteration



-9 -

statement; i.e. suppose that both> subkschéﬁ'zns are composed solely
of assigmment statements. Let x be thé test v;ri;ble of r, and
let r' denote the main conditional in S' cont‘ai’ninrg'the sazhe
predicate symbol as r., Since S and S' are equivalent and reduced,
the test variable of r' must also be x and no iteration statement
which m&ifies x can precede 1;' in t:h;f program of VS" unlessjv its

logic equivalent counterpart precedes r in the program of S.

Let E, be the execution obtained from E by choosing outcome
_f_;a__l_gg for each test made at a m“statehe;nf after the execution
of r, and outcome m for each test made at an UNTIL
statement; let E'{')»:bé a consistent jéﬁﬁecutzi&ti‘of S'. The test
' T 1s made during E,, and since the predicate symbol in r is
essential and the subschemas of r consist solely of aSsighﬂQnt
statements, the value associated with some variable symbol y after
the execution of r during Eo must depend on the outcome of 7.
Also, since an assigmment statement is Vexecutgd after the
execution of r in E, just if the agsignment statement is & main
statement of S, the value associated with y at the gogclugion
of E, must also depend on the»out;‘:comg‘of T. Since S and §! are
equivalent schemas, test T must be made duripg E'o and hence ,

during E'.




- 95 -

We may apply the lemma recursively to a pair of such schemas S and S'

to obtain:

Corollary 5.12:

Let S and S' be as in Lemma 5.11. Let s be a main conditional of S,
and let s' be the main conditional of S' with the same predicate symbol.
Then during any pair of finite, consistent, free executions of S and S',
either no test is made at s or s', or the same test is made at both

statements. _/

A consequence of the corollary is that the equivalence problem for
FRLSA schemas reduces to that for FRLSA schemas with no main conditional

statements:

Let S and S' be reduced FRLSA schemas, and suppose that for each
main conditional in S there is a main conditiohal in S' with the same
predicate symbol and test variable. (If such is not the case, we may
conclude from Lemha 5.10 that S and S' are not equivalent.) Let r be a
final main conditional of S, and let r' be the corresponding main
conditional of S'. We construct from S and S' a pair of schemas S, and
S'o, as follows:

We add a new variable symbol x, to each schema to record the
values tested at r and r' during executions of the schemas, in the
same manner as when eliminating main traps from the schemas of Section

5.5.1. If r is in a subschema of some other main conditional of S, we

replace this conditional with the program of the subschema and replace



the corresponding conditional in S' with the program of its corresponding
subschema. This is repeated until r is no longer in a subschems of a main
conditional of S, and then r and r' are replaced with the programs of one

53

of their subschems, say their true subschems. ‘Ihe ruulunt nchanna are

Sihed lad

S and S'

We construct a second pair of schams S | and S" from S and s'
by replacing T and ' with the progmu of their true :ubachenu, and
reducing the reaultnnt sclumls, a third pair of w;;;a S and S'f
constructed in a similar manner, replacing r and x' wit:h t;ha .érosrama of
their false aubschemes.

Intuitively, the equivalence of S  and $' .ecsures thet & test
made at r during an execution of S must also be made at r' during any

consistent execution of S'. . 0f course, this presupposes that no test
made at a conditional statement of S whose subschema contains x will have

an outcome differeat from that of the test mede at its ci cpart in S',
but from Corollaxy 35.12, this is the casa if § is equivalent to S',,,

and 8¢ is equivalenmt to S‘ - Hence, $.4nd S' ave. gquimle\nt if and

only if S  and S' , Stvand.Sg',t,, and :Sg.and Slg, gre !pq{iwise,:eqqi\rgl\ent.
Since each of these schemas contains at least one fewe‘;{:,mgriq:cqndig:ional
than § and §', the gonstructions may be repeated toreducethe vequ:(;valence
of S and S' to that of a finite number of paigs of schemas without main

conditionals.

The proof of the following lenlna is virtually identical to that of

Lemma 5,7 and is left to the reader.




- 97 =

Let S and S' be FRLSA schemas without main conditiomls, and let k>0

be the maximum of their sizes. Then we my construct from S and S'
two pairs of FRLSA schemas of size no greater than k-l, such that 5 and
S' are equivalent if and only if eaeh of the pairs eomprises equivalent

schemas., _/

We have observed that the equivalen.ce of a pair of FRLSA schemas
can be reduced to that of a finite n\mber of pairs of FRLSA aehemes |
without main conditionals. We note that thc lattar scheunn are

of the same size as the originals, and thus we hAve'

Theorem 5.3: .
Let S and S' be FRLSA schemss. Then it is decidable if S and S' are

eéquivalent.
Proof: From the previocus lemma, by'iﬁd_u‘c”tionvm* the size of § and S',

o




- 98 -

5.6 Decidability of Equivalence for FILCF Schemas.

In the previons aeetion we dealt with ochemas in which predicate
symbols appeered only once. Finding 1oglc‘equivelent statements in
equivalent schemes was quite easy, therefote; beesuse we knew oreeisely
which pairs of statements to examine - "thoge&contaioing the same
predicate symbols.

In this seetion we consider the equivalence problem for free,

independent location, conditional free sehemas (g;ggg schemas) Ag
might be expected the proof that logic equivalent statements exist in

equivalent pairs of such schemas is not quate as trivial as 1t was in

the previous cases:

Lemma 5,14:
Let S and S' be FILCF schemas, and let s be the lest’ iteratiom statement

Pl

in the program of S. Then if S and S' are equivalent, there exists a
statement &' in the program of S' such that s.and s' are logic equivalent.
Proof: Suppose that S and S' are equivalent. Let E be a free execution
of S such that TESTS(s,E) contains infinitely many elements, and
let E' be a consistent execution of S'. (We note that since E
is non-terminating and S and S' are equivalent schemas, E' must
be a non-terminating execution.) Clearly, every element of
TESTS(s,E) must be an element of TESTS*(S',E'), since if some
T € TESTSis,E) were not in TESTS*(S',E'), we could change the
outcome of 7 during E to obtain a terminating execution of §

consistent with the non-teminating execution E', contradicting



- 99 -

the equivalence of S and S'. Also, all but finitely many of
the elements of TESTS(s,E) must be in TESTS(s',E') for some

statement s' in S':

Suppose otherwise. Then there must exist statements sy
and sy in schema S' such that TESTS(sl,E') and TESTS(sz,E')
each contain infinitely many elements of TESTS(s,E). (For
simplicity we shall aséume that 8, and s, are the only such
statements.) It must be the case that one of the statements,
say s,, is in the body of the otger. Let T be any test in
TESTS(s,E) N TESTS(sz,E'). If we change the outcome of T
during E,lwe obtain a terminating execution E" of S; also,
since S is an independent location schema, no-value which
is longer than the first component of T and ends with the
same symbol is tested during E'". Suppose we also change the
outcome of T during execution E': the first test made at
statement s; after 7 is made at s) must be free with respect to
E" since the value tested must be longer that that tested in T
aﬁd must end with the same symbol. If sy is a WHILE statement,
we choose the outcome of this test to be true, as we do for each
subsequent test made at 8 (each of which must also be free with
respect to E"), 1If s1 is an UNTIL statement, we choose a
succession of false outcomes. In either case, the resultant
execution is consistent with E" but is non-terminating,
contradicting the equivalence éf S and S'., Hence, there must

exist a statement s' such that all but finitely many elements



- 100 -

of TESTS(s,E) are in TESTS(s',E').

We now show that s' must be in the program of S': |

Let x be the test variable of stateﬁénts s and s', and
suppose that s' is not in the program of S', i.e. suppose that
's' is in the body of some iteration sta"téiheht'ro in the program

of S'. Clearly, no statement r which follows r. in the program

0
can have test variable x, otherwise we could obtain from E a

terminating execution of S and from E' a consistent,
non-terminating execution of S' by changing the outcome of
any test T € (TESTS(s,E) N TESTS(s',E')) as above, using s' in
place of s; and r in place of si. S’imilarlj, the stdtement r,
itself camnot have test variable x. Let 7' be the first test
made at T, with the properfy that during the subsequent

execution of r.'s body, some test T" € TESTS(s,E) is made at s'.

0
Let El be an execution of S consistent with E excépt for the

outcome of test T" (if T" is made during E), and such that
TESTS(s,E,) is infinite. Let E'; be an execution of S'
consistent with E; and consistent with the ‘portion of E'

preéeding the execution of r , If we?apply the arguments of

0
the preceding paragraph, we have that there exists a statement

s'1 in schema S' such that all but finitely niﬁny of the elements

of TESTS(s,El) are in TESTS(‘Q'l,E'l).' "Horeover, s"l" must be in

the body of some iteration statement rl which follows T, in the

program of S', since E and E'_ are the same prior to the

1
execution of r, and s'; itself camnnot be in the program of S'.




- 101t -

—

But if we repeat this argument ad infinitum, we can show that
there must exist ﬁn infinite sequence of statements TgsTysTgs avs
which follow one another in the program of S', an impossibility
since the program must be finite. Hence, the statement s' must
be in the program of S' (and must in fact be the last iteration

statement in the program with test variable x).

The logic equivalence of the statements is now easily
demonstrated:

We note that for any pair of finite, consistent, free
executions E; of S and E', of S', the last element of TESTS(s,E)
must be the same as the last element of TESTS(s',E' ). If this
were not the case, we could change the outcome of whichever test
had the longer first component, or either test if the components
were of equal length, without disrupting the consistency of the
executions. This would cause another test to be made at the
corresponding statement and since this test, and all subsequent
tests made at the statement, would be free with respect to the
execution of the other schema, we could permit this execution
to diverge while still remaining consistent with the other, thus

contradicting the equivalence of S and S'.

Hence, the last elements of TESTS(s,E ) and TESTS(s',E'O)
must be the same for any such Eo and E',. But since the schemas
are free, this can be the case only if TESTS(s,EO) = TESTS(s',E'O):

Suppose otherwise. Then there must be a test T in one of the

sequences, say TESTS(s,E;), which is not in the other. Since T



- 102 -

must be>md2 during E'o, it must be the case t'hat T € TESTS(r,E'o)
for some statement r whose execution precedes that of s' during
E',. Let E’l be the execution of § conflicting with E, only with
respect to the outcome of T, and let E"l be an execution of S'
which is consistent with Ei and is consistent with the portion

of E'o which precedes the making of test 7. It must be the case
that T € TES&S(r,E‘i), but since T is the last element of
TESTB(s,El)'it must also be the last elemeueauﬁuTﬂﬁ&&(s',E'l),

contradicting the freeness of S'.

We have, therefore, that TESTS(s,Eo) = TE?STQ(‘&",E'-’O) for
any pair of finite, consistent, free executions 'E‘o and E' o’

and thus s and s' are logic equivalent.

Lemma 5,15:

Let S and S' be equivalent FILFC schemas of size greater tham 0. Let
s be the last iteration statement in the program of S, and let s' be
the logic equivalent iteration statement in S'. Then each variable
which is modified at s' is passive in all statements which follow s'

in the program of S'.

Proof: Suppose otherwise. In particular, suppose that a variable x is
modified at s' and active in some statement s'" which followe s'.
(For simplicity, we assume that x is the only such variable and

s'" the only such statement =— the generalization is tedious



- 103 -

but straightforward.) We can assume without loss of generality
that x is the test variable of s'", for if it is instead the test
variable of some statement in the body of s", we merely restrict
attention in the ensuing discussions to executions of S' during
which this statement is executed.

Since x is modified at statement s' it is clearly the
case that x is modified at s, since otherwise the value of x
would be independent of the number of times s were executed
during a free execution of S, while the value of x grows, in
general, in proportion to the number of times the statement
s' is executed during a free execution of S'.

Also, it must be the case that x is active in
statement s:

Suppose otherwise. Let E and E' be consistent,
finite, free executions of S and S' such that the value
associated with x after the last execution of s' during E' is
longer than that associated with x immediately prior to the
first execution of s during E. Since we are assuming that x is
passive in s, the first test made at s'" during E' must.be free
with reépect to E, as must any subsequént tests made at s'". By
choosing txue outcomes for all of these tests, if s'" is a WHILE
statement, or false outcomes for all of these tests, if s" is
an UNTIL statement, we obtain a non-terminating execution of
S' consistent with E, which contradicts the equivalence of S

and S'. Hence, x must be active in s. But then s must also



- 104 -

be active in s':

Suppose otherwise. Let R be the body of s, and let By
be a statement with test varisbleé x in R. Let Ex be a free
emecution of § in which s, is éxecuted infinitely often
during the first ewecution of R, let ﬁ"x be%m execution of
S' consistent with ’Ex ‘in which- ‘tﬁef:b’ody of 8' is executed
exactly twice, Sinee § and 8' ave equivalent schemas, E'
must be & non-terminating execution. In Fact, ft must be the
‘case thet TESTS(s",E’,) is infiwite and that all but finitely
.mny of its elemsnts are in TESTS(s,,E ). et T be in
(TESTS(:,E, E,*) I TESTS(s" B’ xé}) s an&l@t‘ﬁx be an execution of
S which is consistent with ‘B, exeept ‘for the outcome of 7 and
which has the property that sy is executed infinwitely often
during the second execution of R i‘n"“%i;‘ Then since x is
passive in all statements following s" in the program of S',
ve can find a finite emecutior E', of S'which 4s consistent
with ‘Ex:

The execution E', will be conststent with E', until the
test T is made. Since each statement’ sﬁi:éiiqﬁéﬁt"iy executed
has a test variable other than x, no more than finitely many
" tests need be made at any statement befére a test is made
which is free with respect to gx.We choose the outcome of
such a test to be true if it is made at an UNTIL statement, or
falge if it is made at a WHILE statemeit. Thé resultant

execution is clearly temminativig-and is ‘consistent with Ex’




- 105 -

contradicting the equivalence of S and S'. Hénce, x must be

active in both s and s',

Let R' be the body of s', and let s'x be a statement in R'
with fest variable x, For simblicity, we assume that s'x is
the only statement in R' with test variable x and that s, is
the only statement in R with test variable x; the generaliza-
tion is again straightforward. Let E' be a free execution of
of S' in which s'x is executed infinitely often during the
first execution of R', and let E be a consistent execution of
S. No more than finitely many elements of TESTS(s,,E) may be
free with respect to E', othexwise we may terminate the
execution of S in a manner consistent with E', contradicting
the equivalence of the schemas., Hence by changing the
outcome of some test T € (TESTS(sx,E) n TESTS(s'x,E'x)), we
may obtain from E a finite executionAET of S such that ET is
consistent with E except for the outcome of T, and such that
T is the last element of TESTS(sx,ET). Let E'T be an execution
of S' which is consistent with E; and is also consistent with
the portion of E' prior to the making of T. We note that the
first test made at s'" during E'T must be free with respect to
ET’ as must each subsequent tesﬁ made at s, and hence that
E'T can be chosen so that it is finite, again contradicting

the equivalence of S and S'.

Thus no such variable x can exist, and each variable which

is modified at s' must be passive in all statements which follow



- 106 -

s' in the program of S'.

The proof of the following lemma is again virtwmally identical to
that of Lemma 5.7:
Lemma 3.16:
Let S and S' be FILCF schemas, and let k >0 be the maximm of their
- sizes. Then we my construct from 5 and 5" two pair.:’is of FILCF schemas
of size no greater than k-1, such that S and S' are ‘equ’:tvalént if and

only if each of the pairs comprises eduivalent schemas., __/

Finally, we have:

Theorem 5.4:
Let S and S' be FILCF schemas., Then it is decidable whether or not

S and S' are equ’ivélent.

Proof: From Lemma 5.16, by induction on the size of S and S'.

O




- 107 -

5.7 Discussion.

Obviously, the preceding results do not provide answers to all of
the questions raised in Chapter IV. We conjecture, however, that
techniques similar to those we have presented are applicable to most of
the classes of schemas considered in the last paragraph of that chapter,
and that equivalence is decidabie for each of the classes. For certain
of the classes, however, it is not clear that the additional efforts

required to establish decidability results are well-spent:

Our motive for studying the conditional-free schemas of the last
section, for example, is that such schemas may provide a suitable basis
for the study of structured independent location schemas in general, if
methods can be developed to remove in some systematic manner the
conditional statements from such schemas. It would hardly seem
worthwhile, therefore, to expend much effort in extending Theorem 5.4
to non-free schemas, since the equivalence problem for such schemas can
be shown reducible to_that for free schemas in which conditionals are
permitted. Of course, it might be argued that freeness is a rather
undesirable restriction since it is not a decidable property of iteration
schemas, but it is fairly easy to show (see Appendix B) that freeness is
a decidable property of independent location schemas.

A similar comment applies to the result for FRLSA schemas. Again,
we hope to be able to apply the result to more general classes of schemas
by identifying logic equivalent statements in pairs of schemas and

suitably changing the predicate symbols in the statements. (In fact,



- 108 -

Theorem 5.4 can be derived in such a way from Theorem 5.2, although the
proof that we have presented is samewhat more divect.) In light of the
undecidability results in Chapter IV for restricted location schemas,
freeness will likely be a necessary resttiction if equivalenmce is to be
decidable for thege more general claﬁse:'s; We lose little, therefore,

by imposing the restriction now.

A few final ﬁords are in order about a class’ of schemas which does
seem worth considering, however, and that is t:i:;e kcklas.s of free and
conditional-fne’ schemas which are f_est’rictéd location, rather than
independent location. We comjecture that Lemma 5.14 is still valid for
such schemas, although the proof is complicated by the bfac‘t that the set
of tests whose first components end with some given symbol Ay need not
be made in order of increasing lengths of these components. The
remainder of the proof for the 'ixidebenﬂent location schemas is, with
quite minor and obvious modifications, épplicab‘ie to restricted location

schemas,




- 109 -

CHAPTER VI:

Independent location program schemas have been studied rather
extensively (cf, [12], [16], [19]) because of the schemas' relative
simplicity and because their equivalence problems are interchangable
with those of a rather interesting class of automata, the multi-tape
finite automata defined in [23]. 1In this chapter, we consider the way
in which the equivalence problems for structured independent location
schemas relate to those for such schemas in general, and to those for

certain classes of the automata.

We show that the weak equivalence problems for structured and
non-structured independent location schemas are interchangable, and
that both problems are in fact unsolvable. While we are not able to
show that the equivalence problem for multi-tape automata is reducable
to that for structured independent location schemas, we are able to
show that the equivalence problem for multi-tape automata with a single
control stafe reduces to that for such schemas, and that the strong
equivalence problem for independent location schemas in general reduces
to the problem of deciding whether such automata are equivalent over

some subset of their tapes.

6.1 Multi-Tape Finite Automata.

Our treatment of multi-tape automata differs somewhat from that in
[16] or [23] since we consider a rather special subclass of the automata
in a later section, and we wish the notions developed here to be

reasonable for this subclass,



- 110 -

Intuitively, an n-tape automaton M is a finite automaton equipped
with n one-way scanning heads, each on its own tape. Associated with M
is an advancement function and a transition function which determine,
based on the current internal state of M and the n-tuple of symbols
being scanned, the tape heads, if any, whieh are to be advanced to the
next symbol, and -the internal state of M which is then entered. A
particular state of M is designated thie initial state of the automaton,
another its accepting state, and a third its rejecting state. No
transitions are permitted out of these ‘last two states.

Each input tape of M is initially inscribed with a sequence of
symbols from some finite tape alphabet followed by & special endmarking
symbol §, beyond which a tape head is not pepmitted to scan. A
computation by M on a set of tapes begins with M in its initial state
and each tape head positioned at the leftmost square of its tape, and
proceeds until each head is scanning its respective endmarker, at which
time a set of tapes is accepted if M is in its accept state or rejected
if M is in its reject state. If M is in neither state, or if such a

positioning of tape heads never occurs, M is said to givexge on the

tapes.
Formally:
An n-tape automaton is a seven-tuple

M = (T’ Q’ qI’ qa’ qr’ f, h)

where: T is a finite set of tape gymbols, including the special




- 111 -

endmarker $.

Q is a finite set of control states.

qr € Q»is the initial state of M.

q, € Q is the accepting state of M.

9, € Q is the rejecting state of M.

£: Q X T" + Q is the state transition function, a total function

satisfying the property that f(qa,w) =aq, and f(qr,w) =4, all ¢ € T,

2,...,n} 2,...,0}
2

3 n {1, {1,
h: QX T 2 where 2 denotes the power
set of {1,2,...,n}, is the head advancement function, a total function
satisfying the property that h(q,p) does not contain i whenever the ith

component of ¢ is $, all q € Q and ¢ € ™,

A configuration of M is a pair (q,A), where q is an element of Q
and A is an n-tuple of strings in T+. (For such a A, we denote by TAIL(A)
the string of length n whose ith symbol is the last symbol of the ith

component of A, 1 < i <n.)

A comgutétion by M is a possibly infinite sequence of configurations
(ql’Al)’(qz’Az)’ cee (qk,A.k)’(qk'*'l’Ak“"l)’ LI ]
in which 9 is the initial state qy, A1 is a tuple of single symbols, and
for all i > 1:

(1) q, = £qy_;, TAIL(A,

(2) Ai Ai l'S, where S is an n-tuple of symbols or nulls in T y

{M}, N the null string, such that for all j, 1 < j <n, the jth
gs

M

component of S is A iff j £ h(qi l,TAIL(Ai_l)). (Concatenation is

extended to tuples of strings in the obvious manner: if X = (61, con s Op)



- 112 -

and Y = (cl, coe ,ck) are tuples of strings, then X-Y is the tuple
(81°07s +ee 5 Ge0,)e)

An n-tuple of strings in ™ is accepted by M if there is a finite
computation by M ending with the configumtion (q A-$™); it is yejected
by M if there is a finite computation ending with I:he configuration
(qr,Ao$ ). If A is neither accepted nor rejeeted by M, we say that M
divexges on A. We note that since there are‘ne tmnaitions leaving

q, or q o 7o A may be both acc,epted and rejected by M.

The langusge acgepted by M, written L(M), is the set {A | A is
accepted by M}. The languagp Zeieghgd by M, written L(M), is the set
{A | A is rejected by M}.

6.2 Equivalence Problems For Multi-Tape Automata.

Let M and M' be n~tape autometa, gsome n > 0. Then'M and M' are
strongly equivalent if L{M) = L(M') and E(M} = E(H'). M.and M' are
weakly equivalent if (L(M) N LM')) =9 and (L(M) n L(M')) =@, i.e. if

no tuple of strings accepted by M is rejected by M', and vice versa.
Let M and M' be n-tape automata, and let N = {11"""12} be a set
of integers between 1 and n, inclusive. Then M and M' are N-restricted

equivalent if the set {(&),...,08,) | for some A € L(M), Gi is the ijth
component of A, 1 < j < £} is equal to the set {(6i,...,52§ | for some
A ELQI), &; is the i.th component of A, 1 < j < £}, i.e. if M and M'
accept the sa;e tuples of strings when attention is restricted to the

subset of their tapes designated by N.



- 113 -

6.3 '"Equivalence" of Independent Location Schemas and Multi-Tape

Finite Automata.

'Informally, we consider two models for computation to be
equivalent if their equivalence problems are interchangable and if,
given an element in one model, we can effectively construct an element
in the other which simulates it in some well-defined mahner. Luckham,
Park, and Paterson have demonstrated that independent location schemas
with n variable symbols are equivalent in this sense to finite automata
with n tapes. The simulations are straightforward (indeed the simulation
of the schemas by the automata is rather trivial), but they are of no
particular interest to us here; the reader is referred to [16] for
details. We do note here, however, that the weak equivalence and strong
equivalence problems for the automata correspond directly to the weak
equivalence and strong equivalence problems for the schemas, while the
restricted equivalence problem for the automata corresponds to the
equivalence problem for independent location schemas with designated
output symbols.

6.4 Weak Simulation of Multi-Tape Automata by Structured Independent

Location Schemas.

It follows from the discussion in the preceding section that any
independent location iteration schema can be simulated by some multi-tape
automaton. In this section we demonstrate that an arbitrary multi-tape
automaton can be 'weakly'" simulated by some such schema, i.e. simulated
in such a way that each computation by the automaton corresponds to an

execution of the schema for a suitably chosen interpretation, and each



- 114 -

terminating exﬁcution of the schnnn-cnn!ua@ondn~to‘sope computation by
the automaton., We are thus able to demonstrate the correspondence of
the weak equivalence problems for the automata and the schemis, though
we are not aBIs'tpi&huonntmlteﬂafcu!tnlpnadhnen/uf their strong

. equivalence problems.

6.4.1 The Simulation.

Let M = ({781,',......,»316,;$‘},. {qL,.‘.,.,qn‘,:ql,a&,q!"}, s 92 9> £ B) 'bé
an n-tape autamsten, for some n > 0, as dsfiped in Sectiom 6.1. We show
how to construct an independent location iteration “Qh‘““_su yh;ch
weakly simulates the automatom:

SM will have variable synbols,xz,g.q,xnt repxesenting the tapes of M,
It will have an additional variable symbol .y which will be used to record
the states entered by M during a simslated computation, and also to
record the cutcome of the eWtim (acceptance or rejectiomn) if the

computation does not diverge.

gM will have predicate symbols psl,...,ps s Pg» corresponding to the
k

tape symbols of M. It will also have predicate symbols gql,...,p P>

I
Pq +Pq > corresponding to the states of M, and a "number of moves" symbol
a ’ o ‘ : .
Pm-
SM will have functioﬁ symbol g representing the advancement of a
tape head, and symbols a and r denoting acceptance and rejection,
respectively.

For notational convenience, we provide simple representations for

certain boolean expressions:




- 115 -

For each i, 1 < i < k, and each j, 1 < j < n, we represent by Ps (xj)
i
the expression (p_ (x. ) A (= (p_ (x.) Vp_  (x,) V... VD (x.)
Sy 5 By ] Si-1 4
Ve (x) V... Vv (x)Vpslx))).
8i+1 J g J 7

Similarly, for each j, 1 < j < n, we represent by P$(xj) the

expression (p$(xj) A (-1(ps (Xj) Veeso V Py (xj)))-

k

For each i, 1 < 1 < m, we represent by P

1

the expression (p_(y) A

4 93

(m(p MWVp MNWVeavp, MWVp MV...Vvp (W Vp (y)V
4 42 94-1 94+ I 9

(y))), and define expressions for P Pq , and Pq in a

p, (¥y) Vp >
qa qI a r

I

similar manner.

Let @ 5, ¥ 5 eeo 5 @ n be an enumeration of the strings of
12 (k+1) a
length n over the tape alphabet of M. Then for each j, 1 < j < (kHl) ,

we represent by qu the expression (st (xl) A st (xz) A eee A st (xn)),
where s; °8. * ... °8, = @_. 1 2 n
a1

‘We adopt a shorthand notation for certain sequences of assignment

instructions, as follows:

Let N = {il, ces ,iz] be a set of integers between 1 and n,

inclusive. Then we denote by Xy - g(xN)' the sequences of instructions

x: +~=g(x: ), ... ,'x, “g(x, ).
1 4 i, 1y

The subschemas of SM are as follows:

The empty schema SE and the divergént schema S,, as defined in

T,
Chapter 1IV.

For each 1, 1 < i < (k+1)n, and each j, 1 < j < m, the subschema

Si,j with program:



For

For

R with

For

The

For

- 116 -

X .

h(qj @i) + S(xh(qj ’cpi))
y + g(y) |

I

F P .
£(qy.p;) THEN Sy ELSE S,

each i, 1s i< (ktl)", the subschema 5, . with program:
9

X
hlag9y) © B0 )
y + g(y)

THEN S, ELSE S

IF P
£ (-qI "?1) t

each i, 1€ i< (k+1)n, and each j, 1 < j < m, the subschema

program:

IF \(P_qj A P‘Pj,) THEN si,j ELSE Ri+1,j

each j, 1€ j < m, the subschema R n » wit.h program:
; . A lel) ;j

IF (P AP ) THEN S o
UG Paer)” )™,y BEE Ry g

subschema ?RL(HI_)'n m with program:

IF (P AP ) THEN S ELSE R
Y Pet)® (+1)% m 1,1

each i, 1< 1 < (k+1)®, the subschema R, ; with program:
’

AP
P

IF b, ELSE R
(qu i) THEN S, 1 41, I
subschema R n with program:
(k+1) , I
IF (P AP ) THEN S "ELSE S

U Paen)” C (er)",I '




- 117 -

The schema SM is then:

IF P THEN S_ ELSE S
qq E

WHILE p (y) DO R
m

i

1,1

IF (P$(x1) A eee A P$

IF P, (y) THEN 'y +~ a(y)' ELSE S
9, E

(xn)) THEN sE ELSE S,

IF P, (y) THEN 'y« x(y)' ELSE sE
r

Let I be a free interpretation for SM’ and for each predicate

symbol p of SM let I denote the predicate assigned to p by I.
p

For each i, 1 = i < n, let ﬂ'i be the least integer > 0 such that

E'
Hp$(g l'Ax ) is true, and let zy be the least integer such that

2 i
I (g Y.A ) is false. We say that I is a reasonable interpretation
Pm y —

for SM if exactly one of the predicates Hp s I 5 eee o I, , I, 1is

8 pSZ ps p$
i 1 , k
true at each element of {g 'Ax | 0<1icx< I'j’ 1 < j < n}, and exactly
J
one of the predicates II_ , II, , .ee , I, , O  , I, , I is true

at each element of {gi-Ay I 0<ix=< Ly}.

Each interpretation I which is reasonable for SM defines an n-tuple
A of strings over the alphabet of M in a straightforward manner: the ith
symbol in the jth string, 1 < j <n, 1 <1i < zj, is symbol s if and only

if T (gl'l-Ax ) is true.
Py S =

Each such interpretation I for SM defines a sequence of states of M
in a similar manner: the ith state in the sequence, 1 < i < Zy,

i-1
is q if and only if Hpq(gl 'Ay) is true.



- 118 =

The reader may verify that SM diverges under all unreasonable
interpretations, and converges for the reasonable interpretation I if
and only if the sequence of states defined by I is consistent with a
non-divergent computatiqn of M on A, If the execution of %M converges,
the symbol a or r is prefixed to the value of symbol y, according as

the last state of M in the simulated computation is q, or qr.

Thus, SM weakly simulates the automaton M in the manner described

previously.

6.4.2 Weak Equivalence: A Reducibility.

As noted, the schema SM constructed in the preceding section diverges
under all unreasonable interpretations, and diverges under reasonable
interpretations which define input strings on which M diverges. But the
schema may also diverge under reasonable interpretations which define
input strings on which M does not diverge, if the sequence of states
defined by the interpretation does not correspond to the sequence of
states entered by M during its computation on the strings. This behavior
is an inherent feature of the simulation, and is in fact the feature which
makes the simulation 'weak!" (and thus precludes us from reducing the

strong equivalence problem for the automata to that for the schemas).

We note also that if the execution of SM terminates for some
interpretation I, the final value associated with symbol y for the
execution will depend on the length of M's computation on the input

strings defined by I. Since the length of the computation made by an




- 119 -

equivalent automaton on the same set of strings may be quite different

from that made by M, it would seem that the simulation is not suitable

even for a reduction of the weak equivalence problem. Fortunately, the

following lemma implies that such is not the case:

Lemma 6,1:

Let M be an n-tape automatdn, for some n > 0. Then we may construct

from M an equivalent n-tape automaton M' such that precisely one tape

head is advanced at each step of any convergent computation by M.

Proof:

Let Q and T be the states and tape symbols, respectively, of M.
Lgt f be the transition function and h the head advancement
function of M. We first modify M so that no more than a single
head is advanced during a step of any computation by the

automaton:

1
Let q be a state in Q and let ¢ be an element of T such
that h(q,p) = {jl,...,jm} for some m > 1. We add to Q new

-1
states q', q", ... , q(m ) and extend f and h to these new

states so that f(q(i),é) = q(i+1) and h(q(i),é) = {ji+1}, for all
5 € T and all i, 1 < i <m-1, For each § € Tn, we define
f(q(m’l),é) to be the state £(q,9) and we define h(q(m-l),é) to
be {jm}. Finally, we redefine f£(q,¢) to be state q' and h(q,¢)
to be {jl}. The procedure is repeated for any additional
arguments for which the value of h is a set of cardinality

greater than one, and the resultant automaton has the desired

property.



- 120 -

Assume now that no more than one head is advanced during
any step in a computation by the automaton. Whenever we have
£(q,9) = q' for some states q and q' and some cpE T such that
h(q,p) = and h(q',p) # H, we redefine £(q,¢) to be £(q',q)
and redefine h(q,¢) to be h(q',p). This procedure is repeated
as long as such q,q' and cp can be found. ~ The resultant

automaton is M'.

Thus we have:

Theorem 6,1:
The weak equivalence problem for multi-tape finite automata reduces to

the weak equivalence problem for independent location iteration schemas.
Proof: Let 'Ml and Mz be n-tape avtomata for émn-én >0, and let M'l and

H'2 be the automata constructed ,frmn'nl and Mz as in the

preceding lemma., Let Sy: and Sy: be the simulating schemas
1 2

constructed from M', ‘and M'z as in Section 6.4.1. Then M and M'
are wedkly equivalent if and only if Sy+ and SM'« are weakly

1 2 -
equlvalent.

O

As we shall see in the next secfion, Theorem 6.1 is a more interesting
result than it seems at first glance, since the weak equiwelence problem

for the automata can be shown unsolvable.




- 121 -

6.5 Undecidability of Weak Equivalence for Independent Location Schemas.

In this section we demonstrate that weak equivalence is undecidable
for multi-tape finite automata and hence, according to Theorem 6.1, for

independent location iteration schemas.

The following result was implied in [12] and demonstrated explicitly

in [19]). The proof given here is essentially that in the latter paper.

Lemma 6,2:
The inclusion problem for multi-tape finite automata is unsolvable.
That is, it is recursively undecidable whether L(M) c L(M') for

arbitrary n-tape automata M and M’',

Proof: Let C be the Post Correspondence Problem defined in Section 4.1.
It is a trivial matter to construct a 2-tape automaton M such
that L) = {(n, w) | u = 1,#i,# ... #1,, where # is some
special symbol, and for each j, 1 < j < A, Zj is a symbol

j Sk; and @ = wil- wiz. ces wi,e}'

Also, we can construct another 2-tape automaton M' such that

denoting integer ij’ 1 <i

LM') = l{(n,?l) I # is as in L(M) and ? is any word other than
Yil-Yiz- cee 'Yiz}' Clearly, C has a solution if and only if
L(M) € LM'), and hence the decidability of inclusion for multi-
tape automata implies the solvability of the unsolvable Post's

Correspondence Problem.



- 122 -

We now reduce the inclusion problem for multi-tape finite

automata to the weak equivalence problem for the automata.

Lemma 6.3:

Let M be an n~tape automaton, for some n > 0, Then we can construct

from M an n-tape automaton M' such that L(M) = L(M') and H'. rejects no

| input. | A

Proof: Infomaily, we add a new state q to the states of M, and pfovide
transitions from q back to q for each length n string from M's
alphabet. Each transition into the rejecting state of M is

replaced with a transition :Lntb this new state, .and the resultant

automaton is M'.

The following lemma is derived immediately from Lemma 6.1:

Lemma 6,4:
Let M be an n-tape automaton, for some n > 0, Then we can construct
from M an n-tape automaton M' such that L(M) = L(M') and M' rejects any

input which is not accepted.

Proof: We construct from M the automaton M' of Lemma 6.1. We than add
a new state q to this machine, and redefine f(qi,:p) to be q
whenever h(qi,cp) = f), where £ and h are the transition and |
advancement functions of M', 9y is any state in M', and ¢ is

any length n string of tape symbols. We extend f and h to state




- 123 -

q as follows:

If ¢ is a string of lemgth=n cmermnﬁn, wedwﬂne £(q,9)
to be q and h(g,y) to be {i |.the ith cemponent of ¢ is not $,
1<1i=<n} If p is $n, then £(q,) ta;;-q;r,: vhere 9. is the
rejecting state of M', and h{g,q) is the empty set. The

resultant automaton iz M,

From these lemmas we obtain:

Theogem 6,2:
The inclusion problem for multi-tape finite automdta ts reducible to

the weak equivalence problem for the automsta.

,,,,,,

Proof: Let H and M2 be arbitrary n-t:ape autout:a, for some n > 0.
Let M'l be the automaton constrticted frm Ml as in Lem 6 3.
Let M"z be the automaton céﬂaéructad: £rom “2 as in Lemma 6.4.
Then L(Ml) c L(Mz) if and only if M ,1‘."‘& M , are weakly

equivalent. '

The ﬁeak’equivalénce'pr051aﬁ“forMindéﬁéﬁdeht?xaéscian iterdtton schemas

P

is unsolvable;' v

Proof: Immediate from Theorem 6.1, Lemma 6.2, and Theorem 6.2,



~124 -

6.6 Single State Automata.

The problems which prevent the strong . simulation of multi-tape
automata by iteration schemas stem from the fact that an imterpretation
for a simulating scheme must include a suitable "dafinition" of the
sequence of states entered by the sutomata during its computation; the
schema's execution must diverge if this sequemce is imcorrect or is
unreasonably defined. Since equivalent automata will generslly have
different state sets, there is no way to ensure that schemas which
simulate equivalent automata wili both diverge or both eonverge under a
given pair of consistent interpretations. In particular, we can generally
provide such schemis with interpretations which are reagomable (in the
sense of Section 6.4.1) for ome schema byt wmreascuahle for the other,
thus forcing one schema to diverge under its interpretation while
permitting the other to converge.

We would expect, on thg other hand, that automata wirh/g single
state would present no such problems, qlt#oégh ve migﬁt gqgrrion whether
such automata are capable of recognizing aﬁylinterérring_iagguages and
whether their equivalence problems are related in anj non-trivinl way

to those for multi-tape automata in general.

In this section we demonstrate that the iteration achemas are
indeed capable of strongly simulating such automata, and also show that
the automata are capable of recognizing non-trivial lan&ggges. We show,
in fact, that the equivalence problem for multi-tape automata reduces to

a restricted equivalence problem for the single state automata.




- 125 -
6.6.1 Single State Automata =~ Definitions.

Actually, the term single state automaton is something of a
misnomer, since the automata which we define below contain two states.
The function of the initial state of an automaton, however, is simply
to ensure that the automaton begin a computation in one of some finite
number of designated configurations. In“narticplar, pncevthe initial
state is left no transitions back into the state are permitted also,
no movement of the tape heads is permitted while the automaton ig in
its initial state or moving out of the state. (Intuitively, we might
think of the initial state as something of an "input monitor if the
tuple of initial gymbols on the automaton 8 tepes is acceptable, the
control state of the automaton is entered and the computation carried
out. If the tuple is not accepteble, the initial state is never left

and the computation diverges{)

The definition which follows is essentially the same as that given
in Section 6.1‘for multi-tape automata, exceptvthat we dispense with
accepting and rejecting states and define the advwangement and tranmsition
functions in such a way as to ensure that the initial state is as
described above. (The automata will have no re;egting‘states,,and their

control states will function as accepting states,):_
A gingle state n-fape autometon is a fivertuple

where: T is a finite set of tape symbols, including the endmarker $.

q is the control state of the automaton.



- 126 -

qy is the initial state of the automaton.
£: {q,qI} X T = {Q‘sqj{} is the M_W > @
total function satisfying the property that f(q,tp) = q, all () € ™,

b: {q,q.} x T = X PP mwm
a total function satisfying the properties that h(qI,cp) = ¢, and i

h(q,®) whenever the ith counponent of ¥ io $ for all q; E ",

Configgmtions and comgtation are defined for single state

automata in the same manner as for multi-tape automlta in general. An
n-tuple A of strings in T is M by M if thare is a finite
computation by M ending with the confignration (q.A‘$ ), and is

rejected by M if no such canputation exist:a. 'I.‘he m _gggp_;g_d_
and m by M are defined as for multi-tape ancomta. |

Strong and restricted equivalewe are defiued for single state

automata as in Section 6,2. We shall not consider notions of weak

equivalence for the automata. )

6.6.2 Strong Bguivalence - A Reductbility,

Let M = ({s;,...,8,,8}, q, a5, £, h) be a ‘gifigle state n-tape
automaton, for some n > 0. '

We shall show how to construct an indépendent location iterdtion
schema Sy which simulates M. (The construetion is gquite similar to that
described in Section 6.4.1, and we use much of the game terminology. )

SM has variable symbols xl,...,x and y. It has predica;e aymbols

Pg ,...,psk,p$ and Py It has a single function symbol g.

1



- 127 -

Expressions of the form Pg (xj) and Ps(xj) are as defined in
Section 6.4.1; we use the same enumeration of length n strings over the
alphabet of M, and the expressions P are as defined

LK 2 P
CP]_,? v ’jp g?( 1>n B
in that section.

For each 1, 1 < i < (kH)", we define 5 to ba the schems ;

*n(a, )~ 5n(q,q,)’

IF p (y) THEN S_ ELSE S, N

E 1
y - 8(y) e _
£ times, where £ is the
. > cardinality o (q’q’i)
IF pm(y) THEN SE ELSE ST
y - 8(y) - J

For each i, 1 < i < (k+1)n, we define Ri to be the schema:

IF Py, THEN S ELSE Byyy

We define R n t° be the achemi.sx :
(k+1)
IF P THEN S - - FELSE S
Plct)® ()t !
Now, let 61,-:,—,6‘& be an enumeration- of those length n strings
for which £(q;,8,) =g, 1 <1 < & ‘Then 8,48 the schems:
IF (P61 V oees V PGL) THEN SE ELSE S1
WHILE pm(y) DO Rl

IF (P (x.) A .. ANP,(x )) THEN S_ ELSE S
. $ 1 n ot

$ E



- 128 ~

We define reasonable interpretations for SM in a manner analogous
to that in Section 6.4.1, and note that each reasonable interprétai:ion
defines an n—tuplé. of strings wef M's alphabet. The reader may ;iérify
that SM diverges for all unreasonable interpretations, and coﬁverges for
a reasonable interpretation' I if and only if I defineg a tuple of strings

accepted by M and assigns to p, a predicate IIp such that:
m

I, (g A ) = true, all 1 <
I, (™A ) = false, 1 = 4
m

where £ is the number of symbols in the tuple of strings defined by I,

In such a case, the final value associated with y will be g'e“Ay.

We have immediately:

Theorem 6.3:

The strong equivalence problem for single state multi-tape automata

reduces to that for independent loeatiomn iteration schemms.

Proof: Let M and M' be single state n-tape automats, for some n > 0.
We construct from M and M' the simulating schemas Sy and S,
as above, and note that M and M' are strongly equivalent if

and only if SM and SM' are strongly equivalent,




- 129 -

6.7 Equivalence of Multi-Tape Automata  ~— A Reducibility Result.

We have shown that the strong equivalence problem for single
state multi-tape automata reduces to that for structured independent
.location schemas. 1In this section, we provide motivation for that
result by showing that such antomnta conatitute a anr.brieingly rich
class of multi-tape automata, and are in fact cépable ofrsimulating
arbitrary automata if we allow them addit'icnal vtapea on which to store
control information. Since the pntticular informition which is stored
on these tapes will depend on the automaton being aimulated we must
content ourselves with showing that the strong equivalence problem for
multi-tape automata reduces to a restricted equivalence problem for the

single state automata,

We begin with some useful definitions:

Let @ = 85 *8;  .u0 *By *8 ¢ v.. be a string over some
A B - 8
alphabet T which does not contain the special symbol #. Then an expansion

of ¢ is any string of the form:

. 3 . i ) et PN

in which for each i, 61 is an arbitrary string in :_l'v*. and j " is an. integer
greater than 0, We extend the notion of exnnnsion to tuples of strings
and sets of such tuples in the obvious manner:

If A= (cpl, cee s @ ) is a tuple of strings over T then an expansion
of A is any tuple A = (¢1 s see s @ ) in which for each i, 1 <is<n,

e

P is an expansion of Py If X is a set of tuples of strings over T then
e

the expansion of X is the set EXP(X) = {AelAe is an‘ expansion of some A €X].




- 130 -

Let M be an n-tape automaton with tape alphabet T and control
states represented by a bset of symbols a, and such that no more than a
single tape he#d is advanced during any step in & computation by M.
Let A = {cpl, coe s cpn} be a tuple of strings accepted by M. Then the
trace of A with respect to M is the nti-tuple pf strings At =
{a,B,v,Y, Pps oe- ,’(pn} over T U a U {-f, cee ,‘;}, such that QE
1, ve. ;}* represents the sequence of tape heads moved during the
computation by which M accepts A, g €T is the sequence of symbols
scanned during the computation, and y € ’é*yrepres%ents the sequence of
states entered by M during the ccmpétation._ ﬁe_ denote by IRACE(M) the

set {At | At is the trace of some A accepted by MJ].

As we shall see, it is precisely the informstion in the first four
components of a trace which constitutes the control information required
by a single state automaton in the simulation of an arbitrary multi-tape

automaton,

We note that if ¢ is a string over an alphabet T not containing #,
then the expansion of ¢ formed by inserting # between each pair of
symbols in ¢ cannot be obtaimed as an expansion of any other string.

Thus we have:

Lemma 6,6:
Let M and M' be n-tape finite automata whose tape alphabets do not

contain the symbol #. Then M and M' aci:ept the same language if and

only if EXP(L(M)) = EXP(L(M')). ./




- 131 -

Lemma 6,7:

Let M be an n-tape automaton (T, Q, qI, q,> qr, f, h) such that exactly
one tape head is advanced during each step of any convergent computation
by M, some n > 0., Then we may construct fromkM’a single-state automaton

M' with n* tapes, such that L(M') = EXP(TRACE(M)).

Proof: A formal definition of M' appears in Appendix C. We describe

the behavior of M' informally below:

A
Let Q be the set of symbols {ﬁi I q; is a state in Q}, and
let N = {1,2, ... ,n}. The alphabet of M' is the set T' =

T UQUN U {#}, where # is a special symbol not appearing in T.

We may represent a configuration of M' as an nH-tuple of
strings over T', and we say that a configuration A is a base
configuration of M' if TAIL(A) is of the form ?Z-s-a}'ai-m,
where £ € N is such that 4 = h(qi,w) in M, and s is the #th
symbol in ¢ € T®. Intuitively, a base configuration of M'
represents some configuration of M just prior to some step 4 in
a computation by M. The first four tapes in such a base
configuration contain the following information:

(1) The head of M which is to be advanced at step .~ of M's
computation.

(2) The symbol currently under scan by this head.

(3) The current internal state of M, recorded on each of tapes
3 and 4.

We shall describe the sequence of moves by which M' advances



- 132 -

to a new base configuration representing the configuration of M

at the conclusion of step .4 of its computation:

M' moves head 4+4 until the symbol # is scanned. It then
moves head 4 until # is scanned, and likewise head 1.
(Intuitively, we may think of M' as preparing these tapes for
its next base configuration.)

M' advances head 4 past any number of #'s until a non-#
is scanned. Unless this symbol is aj’ where qj = f(qi,Q) in M,
the computation diverges, i.e.‘M' advances no tape head. This
behavior of M' ensures that tape 4 has the symbol representing
the internal state of M afte; step .4 of its computation.

M' advances head 2 and then head 3 until #'s are scanned
on these tapes. It then advances head {+: past any number of
#'s until some symbol s' € T is scanned on the tape, diverging
if the first symbol after the #'s is not a symbol in T. At this
point, M' has discarded the original scanned symbol and intermal
state of M since this information is no longer needed; it has
also advanced the appropriate tape head and scanned symbol s',
so that each of the‘iast n tape heads is scanning a symbol in T,
Let ¢' denote the string composed of these n scanned symbols:

M' advances head 2 past #'s, until some s" € T is scanned
such that s" is under scan on the k+ith tape of M', where k is
h(qj,w'). If the first symbol after the #'s is not such an s", M'
diverges. M' will thus have ensured that the "symbol under scan"

component of its next base configuration is correct.




- 133 -

M' now advances head 1 past any number of #'s until a symbol
2' €N is scanned such that £' =~h(qj,cp')., If any symbol other
than £' immediately follows the #'s, M' diverges. M' thus ensures
that the "head to be advanced” capponent of its next base
configuration is correct.

Finally, M' advances head 3 past any sumber of #'s until
symbol ﬁj is scanned on that tape, ,_dj.va_r&ingﬁ 4f a symbol other

A

than q, is scanned first. At this peint, M' has reached the

dgsirefl base configuratiom.

The reader may verify that.the conditions geverning moves
are unique in each cage, and thus that the behavior of M' as
outlined is consistent with the requirement -f;hat M' have a single
control state. (Of course, we need .to add rules ensuring that a
computation of M' begins at a base configuration representing an
initial configuration of M, and additional rules allowing a
computation of M' to terminate if a base configuration represents

a terminal configuration of M, but the addition of. such rules

is straightforward: the curious reader is referred to Appendix C).

|

We are now in a position to prove the main result of this section:

Theopem 6,4
The strong equivalence problem for multi-tape automata reduces to a

restricted equivalence problem for single state automata.




- 134 -

Proof: Let.M and M' be arbitrary n-tape automata, for some n > 0. From
Lesma 6.1, we can assume without loss of generality that exactly
one tape head moves during each step of any convergent computation
by either schema, Let Hs and H"B be single state acceptors for
EXP(TRACE(M)) and EXP(TRACE(M')), respectively, constructed as in
the preceding lemma. Then from Lemma 6.6, L(M) = L(M') if and
only if M, and M'_ are N-restricted equivalent, N = {5,650 nti}.
We may intexchange the accepting and rejecting states of M and M'
to obtain n-tape automata M and~ﬁ‘ such that L(i)‘- E(’M) and
L(M') = TM'), If we construct single state acceptors ﬁs and ﬁ's
for EXP(TRACE(M)) and EXP(TRACE(M')), then M 1s equivalent to M'
if and only 1f M_ and M'_, and ¥_ ang '

gs» are palrwise

N-restricted egquivalent,




- 135 -
6.7 Discussion.

We have attempted in this chapter to relate the equivalence problems
for structured and non-structured independent location schemas. We began
by looking at a class of automata equivalent to the non-structured
schemas, and showed that such automata could be simulated by structured
schemas which diverge whenever they are provided with interpretations
not corresponding to valid computations. While such a simulation might
be of some practical interest, Corollary 6.5 shows that it is of little
value if our concern is with such issues as schematological equivalence.
In fact, the corollary suggests that weak equivalence is likely to be
undecidable even for classes of schemas for which strong equivalence is
decidable., If we are looking for potentially solvable problems or
potentially useful reducibilities, therefore, we had best restrict

attention to strong equivalence and strong simulations.

Via Theorems 6.3 and 6.4, we have been able to establish another
relation between the equivalence problems for the structured and non-
structured schemas, While the relation is admittedly scmewhat indirect,
it never-the-less raises some questions (for example, regarding the
decidability of equivalence for single state automata) which are of
interest in their own right. It would seem, therefore, that this

relation is worth pursuing.



- 136 ~

CHAPTER VII: SmM_ARY

In this thesis we have introduced i m m_ (monadic
schemas canposed of assignment statmnts, conditioml statements, and
iteration statements) and have shown t:hat rauch schenas correspond to
monadic program schemaa with structured flowcharts. We have also shown
that the schemns form an incomplete subclass of the monadic program schemas
in the sense that there exist monadic progmm schms which are not

equivalent to any iterution schema.
We have defined several subclasses of iteration schemas:

(i) Fxge schemas in which tests are never :epeai:e‘d_ﬁeuting‘ schema
executions.
(i1) Sipzle appeazrepse schewas in which predicate symbols occur only
once. ) ‘ .
(ii1) Conditiepel-free schemas composed solely of asgignment statements
and iteration statements. _
(iv) Independeng location schemas in which the assignment and argument

variables are one and the same in each assigmment statement.

(v) BRestzicted lgcatjon schemas in which initial assignment

statements of the form 'x +~ y' are pemmitted, but which otherwise are

independent location schemas.

We have formalized the notion of scheéms equivalence as the functional
equivalence of schemas under free interpretations, and have explored the

equivalence problems for these various classes of iteration schemas. We




- 137 -

were able to shoﬁ that equivalence is undecidable for restricted location
schemas, and strengthened the proof to demonstrate the undecidability of
equivalence for such schemas which are conditional-free. We concluded
that restricting the schemas to a single function and predicate symbol
avails nothing in solvability, and that equivalence is unsolvable for
such schemas with just two variable symbols. We have also shown that
arbitrary nesting of iteration statements is not essential to unsolvable
problems, and that unsolvability is with us for schemas with just two
levels of iteration and for conditional-free schemas with just three

levels.

We considered other features of the schemas for which we were able
to demonstrate unsolvability, and this suggested several possibly solvable
domains, We established techniques enabling us to demonstrate the
decidability of equivalence for free schemas which are single appearance,
or which are independent location and conditional-free; and for the class
of schemas which are single appearance and conditional-free. While several
interesting problems are left open, we are confident that the methodology
developed can be extended to more general classes of iteration schemas.
The results established in this thesis are summarized in Fig.10, along

with some of the more interesting open problems.,

We have explored in some detail the way in which equivalence problems
for independent location iteration schemas are related to equivalence
problems for independent location program schemas and multi~tape finite
automata. We have shown that the iteration schemas are capable of

"weakly" simulating such automata, and have used this result to demonstrate




- 138 -

¢ 3 A

£ 3 33 9% 1\ —

> k-4 Q Nl o= o] 4

m ? _m g _m ,m g € & g g g

i3s3 EREEE
I A N U M
8=F - F T S T S S A S N B S B
"mnn N N N S I T
-1 F I R R T S T A S N A B B
"mm" N
HEWE S M M M Wt St St St M M w
LIFNE N,
_mm"xn o TR ek T T T I I N I
'L HEE A I A A N A
NS Rk e R M B M s M B M St M
& TR I T A A O O O O
H:1 I ek Tt T R B RS B Bl B
m A
R S St N M M St s M S St M Bk
0 S
1 IR S VS B NV Y T O
._mmn A
- A A N A O O O
- M S S e S S It s
SN S R T R A O
- I AT I S I B B )
-E A A A A

Open-———’/

Open

A——p B indicates that the

Irivial reducibilities are not

Directed arcs indicate reducibilities:
solvability of A implies that of B,
Summary of Results.

Single State Multi-Tape Automata
shown,

Multi-Tape Finite Automata

FIGURE 10:

*Solvable, but details are not given.




SRR £ ooy 1

- 139 -

the undecidability of weak equivalence (i.e. equivalence for terminating
computations) for the independent location iteration schems. We have
shown that the equivalence problem for: mlti-upa automata with a single
control state 1s reducible to that forindhpaiﬁmt location iteration
schemas, and have also qunstuted t:hat tl;e gg_gi,ga_leipce_prpblem for the
automata in genezal reduces to the: problu of: ucidng ‘whetheyr single

state automata are equivalent over some arbitrary subset of their tapes.

The obvious areas for further study are suggested by Fig,10,
A positive solution to the equivalence problem: for free iteration schemas
would be a majofacliieve‘meht since itwould let;xi soI:l.d 43'1;.{pp6‘rt' ﬁo the =
| conjecture t:hat non-freeness is an essential chapacteristic qf unsolvable
problems. Such a solution for restricted ldéutﬁbn schends would also be
welcome since it would at least establish a "freeness" boundary between
decidability and undecidability for these achemsa. Finally, a posit:_ive
solution to the equivalence proﬁlé for independent: looation iteration
schemas would be, we feel, a major step in the séiﬁtion of the equivalence
problen for independent location schemas in genetal at the very least
it would provide, by implying the d&cidability o.ﬁ aquivaleuce for single
state automta, an additional avenue by which to approach the equivalence
problem for mﬁlti—tape automata in general, ,,‘a‘n_ open ﬁtébleﬁx "of long

standing.




1.

3.

Se

7.

- 140 -
' BIBLIOGRAPHY

Ashcroft, E., and Manna, Z.‘
"The translation of 'GoTo' Programs to ‘While' Programs"”,
Information Progeasing Jl, North-Holland Publishing Co., 1972.

Ashcroft, E., Manna, Z., and Pnueli, A,

"Decidable Properties of Momadic Functiomal Schemas",
International Symposimn on the Theory of mchines and Computations
(Israel), 1971.

Chandra, A.K.
""On the Properties and Applications of Program Schemas',
Ph.D. Thesis, Dept. of Computer Science, Stanford University, 1973.

deBakker, J., and Scott, D.
"A Theory of Programs' -
Unpublished memo, 1969. Reported in [19].

Dennis, J,B., and Fosseen, J,
"Introduction to Data Flow Schemas",
Computation Structures Group Memo 81-1, MIT, 1973.

Ershov, A.P,
"Theory of Program Schemata',
CSG Document, Computation Structures Group, MIT, 1971.

Fosseen, J.B.
"Representation of Algorithms by Maximally Parallel Schemata",
S.M. Thesis, Dept. of Electrical Engineering, MIT, 1972.

Hoperoft, J.E., and Ullman, J.D.
"Formal Languages and Their Relation to Automata',
Addison-Wesley Publishing Co., 1969.




9.

10.

11.

12,

13.

14,

15.

16,

- 141 -

Ianov, Yb.I.
"The Logical Scheme of Algorithms", English translation in
Problems in Cybermetics, Vol.1l, Pergevion Pyress, 1.960.

Karp, R.M.,, and Miller, R.E. C
"Properties of a Model for Parallel Canpumt;iona s

SIAM J. Appl. Math., Vol. 14, No.6, 1966.

Keller, R.M.

"A Solvable Program Schems Equivalence Prohlqm oot
Execgedings of the Jth Apguel m EW s W
Sciences apd Systems, 1971.

Kfouri, D.

"Reducing the Decidability of Equivalence for Multi-l‘ape Automata
to the Decidability of EOLT"

Private communication, 1974,

Leung, C.
(In progress)

M.S. Thesis, Department of Electrical Engineering, MIT 1975.

Linderman, J,P. ;
"Productivity in Parallel Cmu;g;ioy Schemata'',
Report MAC TR-111, Project MAC, MIT, 1973.

Luckham, D., and Park, D.
"Undecidability of the Equivalence Problem for Progrm Schemata "

Bolt Beranek and Newman, Inc., Report 1141 1964

Luckham, D., Park, D., and Paterson, M.S.
"On Formalized Computer Programs',

. of Computer and Systems Sciences, Yol.4, No,3, 1970.




17.

18.

19,

20,

21.

22,

23.

24,

- 142 -

Meyer, A., and Ritchie, D.
"The Complexity of Loop Programs',
Proc. 22nd National ACM Conference, 1967.

Paterson, M.S.

"Equivalence Problems in a Model of Computation",
Ph.D. Thesis, University of Cambridge, 1967.

Paterson, M.S.
"Decision Problems in Computational Models",

Proc. ACM Conference on Proving Assertions about Programs, 1972

Paterson, M.S,.,, and Hewitt, C,

"Comparative Schematology"

Record of the Project MAC Conference on Concurrent Systems and
Parallel Computation, ACM, 1970.

Qualitz, J.E.
"Weakly Productive Computation Schemata'',

S.M. Thesis, Dept. of Elictrical Engineering, MIT, 1972,

Qualitz, J.E.

"Decidability of Equivalence for a Class of Data Flow Schemas',
Tech. Memo 58, Project MAC, MIT, 1975.

Rabin, M,, and Scott, D,
"Finite Automata and Their Decision Problems",
IBM J. of Research and Development, 3,2, 1959.

Rodriguez, J.
"A Graph Model for Parallel Computations',
Sc.D. Thesis, Department of Electrical Engineering, MIT, 1967.



25.

26,

27.

28.

- 143 -

Rosenburg, A.
"On Multi-Head Finite Automata',
IBM J. of Research and Development, 10,5, 1966.

Rutledge, J.
"On Ianov's Program Schemata'',

JACM 11, 1, 1964.

Slutz, D.R.
"Flow Graph Schemata'',

Record of the Project MAC Conference on Concurrent Systems and

Parallel Computation, ACM, 1970,

Tsichritzis, D.
"The Equivalence Problem of Simple Programs',

JACM 17,4, 1970.



- 144 -
APPENDIX A: Decidability of Freeness for Independent Location Schemas

Let S be an arbitrary independent location schema; and let F be its
flowchart. We say that a pair of nodes in F are similar if both nodes
are transfer nodes labelled 'p(x)' for some predicate symbol p and
variable symbol x. We claim that S is free if and only if each directed
path from a node n to a similar node n' in F contains an assignment node
labelled 'x ¢ f(x)' where f is some function symbol and x is the

variable symbol of n and n':

(IF) If such is the case, then no variable is ever tested twice with the
same predicate during an execution of S without an intervening assignment
to the variable. Since S is an independent location schema, it is clear

that no test can ever be repeated during a free execution of S.

(ONLY IF) An essential characteristic of a free schema is that every path
through its flowchart corresponds to an execution of the schema. If there
exists a directed path from n to n' containing no assignment labelled

'x ¢ f(x)' for some f, then a value associated with x will be tested at

both n and n' during any execution of S which traverses this path, and

thus S cannot be free.



- 145 -

APPENDIX B: Undecidability of Equivalence for Restricted location Schemas
With One Function Symbol and Ome Predicate Sywbol.

We shall redefine the schemas of Section 4.3. The schema S0 is:

UNTIL-p(x) DO S

The schema 51 is:

WHILE p(x) DO S'E

Schemas S'O and S'1 are defined similarly.

For each 1, 1; igk, Am1 ia:

IF p(v) THEN S. ELSE S
s, t

x ¢ f(x) 1

v « £(v)
IF p(v) THEN S ELSE S
’1 : t

x « £(x) 2

v« f(v)

IF p(v) THEN s, ELSE S,

15
x ¢ £(x) i
v ¢ £(v)
where 8, *s8, - ... 's =  , as before. ‘Schemas af the form B. are

defined similarly, with'symbol u in place of v.

For each 1, 1< i < k, Ri is:

w, & f(wi)

IF p(w,) THEN Awi ELSE Sp
IF p(w,) THEN B, ELSE R,
1




- 146 -

The schemALRI is:

L - f(wl)

z ¢« £(2)
I? p(wl) THEN Awl ELSE SE
IF p(wl) THEN BYl ELSE Rz

The schema Rk is:

Vi - f(wk)

 IF p(w,) THEN Awk ELSE S,

IF p(w ) THEN BYk

ELSE S?

The schema S is:
y&x
uev

IF p(z) THEN R; ELSE R,

WHILE p(z) DO R,

IF p(v) THEN S  ELSE S,

t

IF p(u) THEN SbeLSE Sg

We note here that, in contrast to the results establighed in [18]
for monadic program schemas in general, we are umable to establish the
undecidability result for schemas which have simultaneously single

predicate and function symbols and two variable symbols.




- 147 -
APPENDIX C: Definition of M'.

Let T, N, Q, and T' be as in the proof of Lemma 6.7. In the following,
s8's shall denote elements of T, 1's eleﬁenti offa;?a's elementabdf 3,
lower case Greek letters elements of T*, ahd x's ifbitrafj_afmbols’in T'

other than # and §.

M' is (T', q, qI', £f', h') where £' is defined as followa:
i) £' (QI' X) =q if X is l-s-.;isai-(dﬁ:ﬂetl&qi is mlpﬁ) in M5
L = h(qi,w) in M, and s is the gth symbol of w.

11) £'(q,X) = q, all X € (T")*,
and h' is defined as follows:

1) b'(q, Toa-8,°3,-00xB) = ¥4, o = gl
11) h'(q, £-8-9,°q, -a-#-B) = 4.
111) b'(q, x-..ai-#-a.#-s') -1
1v) h'(q, #-8°q, -$-a-$-B) = 4.
v) h'(q, #-s-ﬁi-'&j-a-#-ﬂ) =2, 1if g
vi) h'(q, #'Ei-aj-a-#-p) -3,
vii) h'(q, #'Hr-ﬁj-a-#-ﬂ) = |a]+s.
viii) b'(q, #-3,-) = 2.

ix) h'(q,'#---#'aj-y) =1, if h(qj,y) is defined in M and equals g

3 = h(qi, a~s-$} in M.

for some 4 such that s' is the gth symbol of y; or 8' = $. and y = $n.

x) h'(q, I:B-#'aj'v) =3 if h(q,-y) =4 and s' is the gth

. 3
symbol in vy.




xi) h'(q, #$-qj-qj'-$n)
xii) h'(q, $$-qj-qj-$“>
xiii) h'(q, $$#-qj-$“) =
xiv) h'(q, $$H#$™T) = 3.

xv) h'(q, $$%$M) = 4.

and is undefined in all other

- 148 -

S

cases.



TR

- 149 -
BIOGRAPHICAL NOTE

Joseph Edward Qualitz was born in Waltham, Massachusetts on April 1,
1948. He attended public schools in Waltham, and graduated from Waltham
High School in 1966. Mr. Qualitz received an S.B. and S.M. in Electrical
Engineering from MIT in 1972, and a Ph.D. in Computer Science in 1975. '

As a graduate student at MIT, Mr. Qualitz served as a teaching
assistant until June of 1972, at which time he became an instructor in the
Department of Electrical Engineering. "He was the recipient in 1973 of an
Electrical Engineering Department Teaching Award, and remained an
instructor until January of 1975, at which time he resigned the position

and became a full time research assistant at Project MAC.

Mr. Qualitz expects to join the engineering department of Artisan
Industries of Waltham.




This empty page was substituted for a
blank page in the original document.



CS-TR Scanning Project ,
Document Control Form Date: /I / 16 | T

Report # _~<.5-TRISL

Each of the following should be identified by a checkmark:
Originating Department:

O Artificial Intellegence Laboratory (Al)
)ﬁ\ Laboratory for Computer Science (LCS)

Document Type:

ﬁﬁechnical Report (TR) O Technical Memo (TM)
O Other:

Document Information  Number of pages: 150 (isy-imac¥s

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
[0 Single-sided or O Single-sided or
X Double-sided ~ PXDouble-sided
Print type:
IR Typewnter [ offsetPress [ Laser Print
[J inkletPrinter [] Unknown [0 other:

Check each if included with document:

O pob Form O Funding Agent Form O cover Page

[0 spine [0 Printers Notes O Photo negatives
Ol oOther:

Page Data:

Blank Pagesy sege sumben:

Photographs/Tonal Material wypage nmben:

Other description/page number).
Description : Page Number;

FEMAGE malI(]- IS0 ) wni’sp ToTLE Pack &“I‘(?}ur\ﬁ?@’—”"’h
(151- 159 L?cANQo»JT'MKJ"TﬂG‘T’S (3)

Scanning Agent Signoff:
Date Received: /! /16 /95 Date Scanned: J3//{ [§S  Date Retuned: (/{1 115

)
Scanning Agent Signature: /h/ J Rev 8494 DSALCS Document Control Form cstrform.ved




Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the ML.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94




