
EQUIVALENCE PROBLEMS FOR MONADIC SCHEMAS

Joseph E. Qualitz

June 1975

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139

- 2 -

EQUIVALENCE PROBLEMS FOR M~IC SamMAS

by

Joseph Edward Qualitz

Submitted to the Department of Electrical Engineering
on May 15, 1975, in partia 1 fu lf i 11.aaent of the
requirement• for t.he degree of Doetor of Philosophy

ABSTRACT

A class of .monadic program schemas is defined. Thi~s cla•s, called
iteration scheMB,.consi.sts of schemas whose programs COlllPrise assignment
statements, :condi.tional statement•, ·and iteration statements. These
sche1DBs are shown to correspond to program scbeaw.s which are structur·ed,
and are shown to be strictly less "powerful" than the monadic program
schemas.

A notion of equivalence is formalized as the functional equivalence
of schemas under free interpretations, interpretations which represent
symbolically the Mt of all interpretations of a schema. .It is shown that
the equivalence ;.pn!Jblem for iteration scheaas is unsolvable, even if the
schemas possess htghly restrictive properties• Questions are raised
regarding the decidability of equivalence for various subclasses of
iteration sche1188, and equivalence is ehown to be decidable for several of
these classes.

The equivalence problens for structured independent location
schemas are examined in particular detail. A weak form of equivalence is
shown to be undec.idB.ble for the schemas, and the general -equivalence
problem is sbown to be related in a non-trivial mattner to the equivalence
problem for tDUlti-tape finite automata. ·

THESIS SUPERVISOR: Jack B. Dennis

TITLE: Profe•aor ~ Cl)llputer Science and £ngi'la&er111g

- ----~....,.A'•"-- ----- --~----:-----....----~,-

~ ' ' '

-3-

ACKNOWLEDGEMENTS

I would like to thank my thesis supervisor, Jack Dennis, for the
support and advice he bas provided throughout tlie'course of iay research.
His help is greatly apin:ectated.

I would also like to thank Al Meyer for valuable auggeations
offered prior to the writing of this diaaertation, afu! Peter Elias for
many helpful COllllleDts made during thtr prepR'aUon .. g tht• final
manuscript.

Finally, I would like to thank my wife, Donna, for three yeara of
patience, criticism, and encout'agement, iu Juart t:he rf-ght amouuts. 'lbis
work is dedicated to her.

June, 1975 Joaeph E. Qualitz

..

This work waa supported in part by the kttODAll Sete~ Fotmdation under

res.earch grant GJ-34671, bi part by the Adw~ llesearch Projects Aaeacy,

Department of Defense, under Office of Naval lt.esearcb c011tract twmberM00014-

70-A-0362-0006, and in part by the IBM Funds for ~~search in Computer $cience.

- 4 -

TABLE. OF C<lrl'Elf.t'S

PAGE

Abstract -- 2
Ac·knCJ11ledge111tnts -----------------·--·----------.. --.,·-...... -_.-_,,____ 3

Table of Contents ------------------·----------••---------- 4
LiSt Of 1"1~s -~- _. ________ .,,.--'. --.----·--•·--~--------•-- 6

List oif ~am ·L Mlle,_,_ _ _. __ ..._., .. .,_-~•---.-•·----,-- 7

CHAPTER I: !NTRS»UcTIW 8

1.-1 Scl\.._. . .tro~- •--·-----------------••Jllll .. •--·'!"···-~----------·-------- 8
1.2 Schematoloa: A Brief Hia-tory ------------~~~--.~---------... - 9.
1.3 Schematt&~·: Equivalence .PrObleillS ----·•------;..-............ 11
1.4 Outline of the '.l'hes·is ------------------------------------- 13

CHAPTER II: MONADIC PROGRAM SCHEMAS AND rrsRATiot SCHEMAS 16

2.1 Monadic Pt'Ggi!8m Sch'emas ---------------·-·-----------••------ 16
2.1.1 loDlal Definitions ----------•-----------------·-- 16
2.1.2 Int•rpretations and Executions ------------------- 22
2.1.3 Free Interpretations ----------------------------- 23
2.1.4 E:l:..a..a' of Monadic Pr~ Schemas •-----·•-----•- 24
2.1.5 SttuGt1i'.NdMonadic Propaa Sebaas --------------- 26

2.2 Iteration ~s
2.2.1 FonDial Definitions ------------------------------- 30
2.2.2 Clas1tes of Iteration Schemas --------------------- 33

2.3 Structured Monadic Program Schema and Iteration. Schemas:
A Cor'Z'e.&~6· •----··-------~-·-------···---••··------------ 34

2.4 Incompleteness of It:et'4tion Schemas ----------------------- 37

CHAPTER III,: EQUIVALENCE 41

3.1 Equivalence Introduction ---------------------------- 41
3.2 Strong Equivalence ..- Definition --------..;- ... ~---·--·--•- 46
3.3 Weak Equivalence Definition ------------------------- 47

CHAPTER IV: t.m'SOLVABLE PROBLEMS 48

4.1 Post's Correspondence Problems---------------------------- 50
4.2 A Note on N\:>tation -- 51
4.3 Un~j.dal>i.li,ty>of Eq,l;dvalence for Be.Cri.cted Location

Iteration Schelnas •-·-------------------------------------•- 52
4.4 u~ciab'.t:li-ey· of !'(tdf.W.1ence far todtt1on&i .. Trefl sehwas- 59
4.5 DiaCtie•-i--Oll. •-.,.·--·-------,..---···--~---··••··-~-·--·"".'9---•.-·•-·----- 61

CHAPTER. V: SOLVABLE PRoBLEMS 64

5.1 Test Sequences and Logic Equivalence ---------------------- 65
5.2 Productivity and Essentiality ------------~---------------- 66

- 5 -

PAGE

5.3 Additional Definitions and Terminology ---------------------- 68
5.3.1 Definitions -- 68
5.3.2 A Note on Terminology ------------------------------ 69

5.4 Tiie Elimination Tiieorem ------------------------------------- 70
5.5 Solvable Problems for Single Appearance Schemas ------------- 77

5.5.1 Decidability of Equivalence for Conditional-Free
RLSA Schemas --------------------------------------- 77

5.5.2 Decidability of Equivalence for FRLSA Schemas ------ 89
5.6 Decidability of Equivalence for FILCF Schemas --------------- 98
5.7 Discussion-----------------------~-------------------------- 107

CHAPTER VI: SCHEMAS AND AUTCH\TA 108

6.1 Multi-Tape Finite Automata ---------------------------------- 108
6.2 Equivalence Problems for Multi-Tape Finite Automata --------- 112
6.3 "Equivalence" of Independent Location Schemas and Multi-Tape

Finite Automata --- 113
6.4 Weak Simulation of Multi-Tape Automata by Structured

Independent Location Schemas -------------------------------- 113
6.4.1 Tiie Simulation ------------------------------------- 114
6.4.2 Weak Equivalence: A Reducibility ------------------- 118

6.5 Undecidability of Weak Equivalence for Independent Location
Schemas ---~--------- 121

6.6 Single State Automata --------------------------------------- 124
6.6.1 Single State Automata Definitions ------------ 125
6.6.2 Strong Equivalence A Reducibility ------------ 126

6. 7 Equivalence of Multi-Tape Automata · - A Reducibility Result 129
6.8 Discussion -- 135

CHAPTER VII: SUMMARY 136

BIBLIOGRAPHY 1 4 0

APPENDIX A --- 144

APPENDIX B ---------------------------------------~--------------- 145

APPENDIX C --- 147

BIOGRAPHICAL NOTE 149

- 6 -

LIST OF FIGURES

PAGE

FIGURE 1: Examples of Monadic Program Schemas -------------------- 17

FIGURE 2: Ellaalple of a Monadic Pro&J!'l!U\1 s~ -------------------- 18

FIGURE 3: Sch--.a of Figure 1 in Flowchart Form ------------------ 19

FIGURE 4: Schema of Figure 2 in Flowchart Fonn ----------~-------- 20

FIGURE 5: Structuwd Schema ---------------------------·----·-·---- 2·8

FIGURE 6: l.teation Schema Equivalent to the Schema of Figuw 5 31

FIGURE 7: Nen-Struetured Schema and Bquivaient 'Whi1e' Soheaa With

Boolea.n ·Opera.tor& ·----··----------·----·----·--------·-- 39

FIGURE 8: Equiv.lent Schemas With Distinct Sets of Predicate

Symhe'l,s ud Function Symbols --------------------------- 42

FIGURE 9! S~ With Ines1Jential Pred.::(.c&te S)mlbol --------------- 67

FIGURE 10: Suamar.y of R,esults -----------------------:--·----------- 138

- 7 -

LIST OF THEOREMS AND LEMMAS

RESULT PAGE

Theorem 4.1 58

Theorem 4.2 61

Lemma 5.1 72

Theorem 5.1 74

Lemma 5.2 78

Lemma 5.3 79

Lemma 5.4 80

Lemma 5.5 81

Lemma 5.6 82

Lemma 5.7 84

Theorem 5.2 87

Lemma 5.8 89

Corollary 5.9 91

Lemma 5.10 91

Lemma 5.11 93

Corollary 5. 12 95

Lemma 5. 13 97

Theorem 5.3 97

Lemma 5.14 98

Lemma 5.15 102

Lemma 5.16 106

Theorem 5.4 106

Lemma 6.1 119

Theorem 6.6 120

Lemma 6.2 121

Lemmas 6.3 and 6.4 122

Theorem 6.2 123

Corollary 6. 5 123

Theorem 6.3 128

Lemmas 6.6 and 6.7 130

Theorem 6.4 133

- 9 -

v ... +(x,y)

v ... *(x,u)

is equivalent to the sequence of statements:

v ... +(x,y)

u ... +(~,:y)

v ... *(x,v)

which in turn is equivalent to the sequence:

v ... *(x,x)

u ... *(x,y)

v .. +(v,u)

u ... +(x,y)

if we view the sequences as portions of progra1D8 expressed in some
~· ,

progranming language in which '+' and '*' represent addition and

multiplication, respectively. Fran a schematological point of view,

however, only the first two sequences are equivalent: the last sequence

will be equivalent to the others only if the f\Blction associated with the
,,

symbol '*' distributes over that associated with the symbol '+'.

1.2 Schanatology: A Brief History.

1'he first aeh.aatized model for cmpvtatUJD a·genu:ally attributed

t-0 Ianov [9). In his model, the· data apace ~,a ~tion is tt:eated

as a single entity which is a 1 taracl v:La a:; sequaac:e, of &action

applications, the particular function to be; .acpp:liecl a~ auy poillt in the

- 10 -

sequence depending on the outcPDtes of a number of predicates applied to

the current value of the data space. Rutledge [26] later demonstrated

a correspondence between the Xanov model and a class of finite state

automata, anti it is not sui:pd.aing, theaJioa, that the equ:Lva:lience

problem for Ianov schemas is, solvable.

The major difficulty with the Ianov model is that it discards much

information abOQt the essentt.:i.&l properties of programs being represented.

In particular, the data space o.f real: coaputationa is gerie:rally <fivided

into a nuaber of discrete cODlponents, and at each step in a computation

functions and predicates are applied to certain subsets of these

components, i::ather than to the total data space. The specification of

the object components of each application establisbes a data dependency

relation among them, and it is precisely this relation which is missing
:i·

from the Ianov model.

Luckham, Park, and Paterson [16] pl;'oposed a more familiar

schematized model program schemas iri which data dependency

is illustrated by associating a unique symbol with each canponent of the

data space of a computation and specifying, by means of an uninterpreted

program consisting of assigmnent instructions and transfer instructions,

the sequence of functions and predicates .to be applie4: d'UX\itac: the

· canputation and the Dt.lect cm.ponen.ts. Di eack·.Appl~tioa. 'DM!y were

able to clemoa.atmte that schema• are· eapahle'of siJa\llat:Lng in a

natural way 'llmltt•heatl £inite aut~ [25l and t:Jausi.t.Pat the- equivalence

problem for program scbemaa is unsolvable.

- 11 -

Much of the subsequent work in schematology has been devoted to the

study of schematized models possessing special features which facilitate

discussions of computational parallelism, determinacy, productivity, etc.

(cf, [3], [5], [7], [10], [14], [21], [24], [27]). In several cases,

which are discussed below, equivalence problems have also been considered

in the wocrk.

1.3 Schematology: Equivalence Problems.

Equivalence problems for schematized models have been of considerable

interest to theoreticians since several open problems of long standing

in automata theory can be shown reducible to, or closely related to, the

equivalence problems for certain classes of computation schemas. For

example, it has been demonstrated that the equivalence problem for

multi-tape finite automata as defined in [23] is reducible to the

equivalence problem for.a particularly simple class of program schemas

containing only monadic function and predicate symbols; similarly, it has

been shown that the equivalence problem for deterministic pushdown

automata is closely related to that for the class of schemas defined by

deBakker and Scott [4]. But schema equivalence problems have certain

practical applications as well, particularly with regard to the design

of compilers. Since compilers frequently deal with programs containing

user defined functions and subroutines which have, during compilation,

no semantic content, procedures for deciding whether certain program

transfonnations are equivalence preserving in a schematological sense

are apt to be of great value, particularly if program optimization or

simplification is to be attempted during the compilation process. For

- 12 -

example, if we are interested in whether the evaluation of some externally

defined function may take place during program execution at some point

other than that indicated by its position within a given sequence of

instructions (or indeed. if it need occur at all), we are dealing with

schematological issues. In fact, since program opti.Dlhation generally

involves changing the structure of a program without changing its

functional behavior, we must ·either be prepa"d to·deal wi,-tih issues of

schematologi-o&l .. equivalence or re.strict any 4.lptiaiaation to those

portions of a program which are completely in.texpnted at caapilation

time (or whenever such optiaiaat.ion ia ·to occur). ·S.iD.ce inc•aeing

eraphaais is beitlg ·P.16ced on encouraging the wideapcead eJ:un:io.g of

procedures writt!en. by many different uaera,, each of•.whom can be

assUlllRd to know ffT}' little about the illteDULl behavior of pncedUl:'es

written by odlers, the fol'Jler option seeae t1- more d.e•ir&ble.

Thus far l:e'SUlts concerning the decidability of eqttivalence for

schematized models hav-e been qttite elusive, and ill~t ca:sea in which

results have been obtained for fairly gene'1'81 claeees of acheibtla the

results have been negative (i.e. hav~ indicated the \'lntlelcidabilitf of

equivalence). 'l'h:e few positive results include the 8-0llBWhat trivial

-result for Ianav -'Schemas mentiotted earlier; the results . of Ancroft

Manna, and Pnueli cortcerning 1DOM4i'C functional &dlemas [2]; the

result (for a rather st:ron.g definition of equf.valMlee} of hller for a

class of progmm 'schema& [11 l; and the· results of Paterson for

"progressive" program schemas (in which a computed value is illlnediately

reused in the next computation step), and monadic program schemas

- 13 -

without nested loops in their control structures [181. In any case, the

equivalence problems for a great many interesting classes of schemas are

open and, despite the optimistic predictions of Paterson in [19], results

have not been quickly forthcoming.

1.4 Outline of the TIJ.esis.

In this thesis, we consider the problem of deciding equivalence for

classes of program schemas (as defined by Luck.ham et al) which have been

restricted in certain ways in an attempt to make the problem somewhat

tractable. Primarily, we are restricting attention to program schemas

which contain only monadic function and predicate symbols and which are

structured in such a way as to represent only "whilish" programs: those

composed of assignment statements, conditional statements, and iteration

statements (i.e. ''while" and "until" statements). Our choice of program

schemas as a starting point for the study is motivated by the fact that

they are quite general in their ability to model computations, and they

permit a high degree of informality in discussions since they are

inherently familiar to anyone who has dealt with any sort of prograllJiling

language. Also, the equivalence problems for certain classes of the

schemas have been studied rather extensively because of their relations

to well-known problems in automata theory.

We consider in this thesis several classes of schemas and our

primary objective is to answer as many as possible of the questions we

pose regarding the decidability of equivalence for the classes. But we

are also interested in the relationships which exist among the classes

- 14 -

of schemas particularly whether schemas in one class may be

simulated by schemas in another, or whether the equivalence problem

for one class of schemas is reducible to that for another. In this
~ :

regard, the discussions in Sections 2.3 and 6.6 should be thought of

not as diversions, but rather as attempts to -Daeet this obj'ective.

Roughly, the tbes18 is organized as follaws:

In Chapter II we define two classes of schemas: mopadic p;;ggram

sphees and itelj!tion 1shfpe1. We show that the iteration schema

correspond to a class of monadic program schemas whose graph

representations poseess a certain topological structuz:e, and that this

class of schemas is an incomplete class of lllOD&dic program schemas.

In Chapter III we present an intuitive notion of sc~ema equivalence,

and formalize this notion as the functional equivalence of schemas for

"free" interpretations, interpretations which symbolically represent

families of related interpretations. We argue that this is a correct

formalization of the intuitive notion.

In the fourth chapter, we demonstrate. that equivale'1Ce is not
. ' ,}

decidable for a restricted class of iteJ;&tion sch'818 a~ pose questions

about the decidability of equivalence for classe:;i qf sch=11Lsposaessing

additional restrictive properties.

In Chapter V we show that the eq'1ivalence p1;pblem .ii solvable for

certain classes of iteration sche!Dll,&, aQd d~scuas ~he ext~ns,ions of

these results to more general classee of schemas.

The sixth chapter is devoted to a study of the equivalence

- 15 -

problems for a particular class of structured schemas (the independent

location schemas) and the relation of such problems to the equivalence

problems for certain automata theoretic models.

Finally, in Chapter VII we sunu:narize the main points of the thesis

and suggest areas for further study.

- 16 -

CHAPTER II: MONADIC PBOOBAM SCHEMAS AND ITDATION SCHEMAS

In this chapter we define formally the classes of schemas we shall

be concerned with, and present notions of schema interp1'8t&t ions and

executions.

2.1 Monadic ProgJ:am ScheJJJas.

Figures l a.ad 2 illustrate monadic program sQh.-s; figs. 3 and 4

illustrate the ac:llemaa in flowchart fonn.

2.1.1 Foxmal Definitions.

The definitions given below differ in unessential ways from those

in [16] or [1a].

A 1P2R!sJic RJUliV !SW. ~) is a five-tuple S • (V, F, P, I, J))

where:

the

Vis a finite set of yaryble fYl'bols.

F is a finite set of f\!!!&l=ton syJlb9ls.

p is a finite set of RESiiG.ttf 1J1Pol•·
I is a finite set of in&tJ3!S&ion lakela.

Zj> is the 9E$l8r&ll of s, a finite sequence

following foms:

(1) An &Sfi1.91S,P:t iQl&ljl!Stiog of the fonn

i: x ... f(y)

or of the form

i: x ... y

of instructions of one of

where i is an instruction label, f is a function symbol, and x and y are

variable symbols •.

- 17 -

(a) v = [x,y} (b) v;::: [x,y}

F = [f,g} F = [f,g}

p = [p,q} p = [p,q}

I = [il' ... ' il4' e} I = [i1, ... i10' e} '

(j' is the program lj) if3 the program

il: x <- y i1: p(x) iz' is

iz: p(x) i3,i10 i2: x f(x)

i3: x f(y) i3: q(x) i 4 ,e

i4: p(x) is, e i4: x g(x)

i .
s· y <- f(y) is: q(x) i6,i10

i6: p(y) i
7

, e i6: y <- g(y)

i7: x <- g(x) i7: p(x) i2, i2

is: y .- f(x) is: y <- g(y)

i9: p(x) iz, iz i9: p(y) i3' i3

ilO: q(x) i11, i13 ilO: y <- f(y)

ill: x - y e: END

il2: q(x) i 3,e

ii3: p(x) il4' il2

il4: x f(x)

e: END

FIGURE 1. Examples of Monadic Program Schemas.

- lS -

v = [x,y,z} F = [f,g} P = [p,q,r} I . . . '

6> is the program:

il: x y i14: r(y) i15'ils

i2: p(x) ill, i3 iis= y g(y)

i3: y g(y) i16: z f(z)

i4: p(y) is, is i17: p(z) i12' iiz

is: y g(y) i18: y f(y)

i6: z f(z) i19: z f(z)

i7: p(z) e,e izo= p(z) i1z,i12

is: y f(y)
iz1 =

x g(x)

i9: z ,_ f(z) iz2= y f(y)

ilO: p(z) e,e i23: z f(z)

ill: x <- f(x) iz4= p(z) i13, i13

i12: q(y) il4' i13 e: END

i13: q(x) i21' i2

FIGURE 2. Example of a Monadic Program Schema.

- 19 -

FIGUIE 3. Schemas of Figure 1 in Flow~it Foxm.
~ ., . ' '

- 20 -

FIGURE 4. Schema of Figure 2 in Flowchart Form.

- 21 -

(2) A transfer instruction of the form

i: p(x) it,if

where p is a predicate symbol, x is a variable symbol, and i, it, and if

are instruction labels. (We refet to it as the ~ alternative of the

instruction and to if as the false alternative.)

(3) A terminal instruction of the form

i: END

where i is an instruction label.

We require that the program end with a terminal instruction and that

this be the only such instruction in the program. In addition, we

require that the label appearing as the left portion of each instruction

be unique and that the true alternative and false alternative of each

transfer instruction appear as the left portion of some statement in the

program.

Program schemas are conveniently represented in flowchart form.

A flowchart for a schema is a directed graph whose nodes represent the

instructions in the program of the schema. An assignment instruction

is represented in the flowchart by a rectangle containing the righthand

portion of the instruction; a transfer instruction is represented by an

oval containing the center portion of the instruction; a terminating

instruction is represented by a circle. An unlabelled arc is drawn from

a node n to a node n' in the flowchart if n represents an assignment

instruction in the program of the schema and n' represents the instruction

which follows in the program. An arc labelled 't' is drawn from node n

- 22 -

to node n' in the flowchart if n represents a transfer instruction in

the program and n' represents the instruction labelled with the true

alte1!'114tive of the transfer instruction. An arc la.belled 'f' is drawn

from node n te node n' if n xepresents a tmnafer instt"UCtion and n'

represents the inatrucH• labelled with the false alternative of the

transfer instruction. A single arc, ...-.~iaa frca a.o node of the

flowchart, is drawn to the node representing the f·irst instruction in

the program. No other arcs appear in the flowchart.

Clearly, representing a scheina by a flowchart provides us with no

new infonaation about the canputation being represented. A flowchart

is merely a convenient form for representillg the control structure of

the schem's program and facilitates discussions of cer~ain topological

features of the structure.

2.1.2 Interpretations and Executions.

We pro.vide an i@;*rpnt;aciop for aa MPS by specifying- a danain D

of individuals; total monadic functions frGlll D tato D to be •••tiJC:l.ated

with the functien a,.i>ola of the schema; total monadic predi.catea f.rom

D into f tm,..f!lMJ to be aeaociated with the predicate ayml>Ola of the

schema; and particular elements of the domain to lite ••sociated initially

with the variable eJ'Dlbols of t:he schema. Each such interpretation

associates an idealilled computer program with the achama and a

corresponding epc;•.&• of the schema, defined as follows:

We initially associate the appropriate elements of the danain With

the variable symbols of the schema. We then ·execute, in the order it1

- 23 -

which they are encountered, the instructions in the schema's program.

Execution of an assignment instruction of the fonn 'i: x ~ f(y)'

causes the element ~f(o) to be associated with the variable symbol x,

where ~f is the function associated with f by the interpretation and

o is the element associated with symbol y at the time of the execution.

Executing an assignment instruction of the fonn 'i: x ~ y' causes

the element associated with y at the time of the execution to be

associated with x. After executing either type of assignment instruction,

we proceed to the next instruction in the program.

Executing a transfer instruction of the fonn 'i: p(x) it,if'

consists of evaluating Ilp(cr), where Ilp is the predicate associated

with p by the interpretation and cr is the element associated with x at

the time of the execution, and then branching to the instruction labelled

with it or if' according as the outccme of the evaluation is ~ or

false.

Executing the final instruction of the program causes the execution

to terminate. If an execution tenninates, the final set of elements

associated with the variable symbols of the schema is taken to be the

value of the schema for that execution and for the corresponding

interpretation. (The value is undefined if the execution fails to

terminate.)

2.1.3 Free Interpretations.

In subsequent chapters we will deal almost exclusively with a

particular subset of the possible interpretations for a schema: the

- 24 -

~' or lietbillW' interpretations.

Formally, a 1m, 1Qt.11ea1ia,!gn for an MPS with variable symbols V,

function symbols F, and predicate symbols P consists of:

(l) 'l'he dama:f;n D = F*·flv, where Av is the set {A~ I :x Ev}.

(2) 'l'b.e initial association of the element A.'}(. with each symbol

x EV.

(3) The aHociatiop. of the total function cpf: D -+ D defined 111

cpf(6) = f•6, 6 ED, with each function a~ol f in F.

(4) 'l'he •ssociation, with ~ch predicate symbol p in P, of some

total predieat.e ITP: D -+ U.,ftlp}.

We note that e4ch free i.Jlte.i:preta.tion for a, s~ ha• the 8&»18· dCDBin,

a set of strinp which wpm~ '!l~~lty tb.e va~'*e wbich IQl.y be

associated with va.-1;iaJ>le symboJ.Jil d-uri~ .e•cut;i~ of the s«;hmqll. ln

fact, the significance of the free interpretations is that they represent

symbolically the set of all interpretations for a scpema. In particular,

we shall arg'Ue in the next chapter that, with regard .to equivalence

problems, we -'Y restrict attention solely to fi:ee sch~ interpretations.

2.1.4 Classes of Monadic Program Schemas.

In this section we define three ciasses of monadic program schemas:

the free schemas, the independent location schemas, and the restricted

location schemas. A fourth class, the st~ncl .~s, is discussed

in the following section.

An MPS is £.m. if no predicate is ever applied twice to the same

- 25 -

value during an execution of the schema defined by any free interpretation

for S. Intuitively, if S is free then either outcome is possible whenever

we apply a predicate to a value during an execution defined by a free

interpretation for S the outcome is not constrained by the outcomes

of previous applications.

The reader may verify that the schemas of Figs. l(b) and .2 are free,

while that of Fig. l(a) is not.

An MPS is an independent location schema if every assigmnent

instruction in its program is of the form

i: x ... f(x)

for some variable symbol x and some function symbol f, i.e. if the

argmnent variable and the assignment variable are one and the same in

each assignment instruction. (If we associate a location in a data

space with each variable symbol of such a schema, these locations are

independent in the sense that each value computed during an execution

of the schema is stored back in the location from which the corresponding

argument value was obtained -- hence the name independent location.)

The schema of Fig. l(b) is an independent location schema; the

schemas of Figs. l(a) and 2 are not independent location.

An MPS is a restricted location schema if it is an independent

location schema except, possibly, for some number of initial assignment

instructions of the form

i: x ... y

where x and y are variable symbols and i is an instruction label which

- -- --- --·-- --

- 26 -

is not the true or false alternative of any transfer instruction in

the schema's program. (1.'his last condition ensures th.at such instructions

are executed only at the start of each execution of the schema.)

The schema of Fig. 2 is a restricted 11)C&ti~ ~. as is the

schema of Fig l(b). (Clearly, any in4epenQat l~tion adieatll is a

restricted location schema.) The schema Qf Fig. l{a) is not•

restricted location eehema.

We note here (and the reader may verify following Chapter III) that

the restricted location schemas form an incomplete subcla.ss of the

monadic program schemas, and the independent location schemas form an

incomplete subcla•s of the restricted location schemas. We note also

that the free monadic program schemas, free restricted location schemas,

and free independent location schemas form incomplete subclasses of the

monadic program schemas, restricted location schemas, and independent

location schema.a, respectively.

2.1.5 Structured Monadic Program Schemas.

In the flowcharts of Figs. 3 and 4 there are several instances of

an arc labelled with both 't' and 'f' emanating from a transfer node,

an obvious shorthand notation for • p&ir at •=•• . one labelled 't' and

the other labellei '£', vhidl te:miute at the sam node. In aueh a

case, the corresponding transfer instruction in the· rep~ted

program is clearly functioning as a 'GoTo' statement, necessary tna

sequential ·progs:am fltut superflows in a flowchart npnsentat:ion.

- 27 -

We may eliminate such transfer nodes from a flowchart after

redirecting any arcs which terminate at such a node to the node's

successor. We refer to the resultant flowchart as reduced, and note

that while it may no longer represent a valid program schema, it

never-the-less represents a computation functionally equivalent to the

original.

Figure 5 shows the reduced flowchart constructed from the

flowchart of Fig. 4. It also shows the decomposition of the reduced

flowchart into simple blocks:

A block is a piece of reduced flowchart which has no more than a

single exit (which may consist of many arcs that terminate at a single

node) and arbitrarily mnay entrances. A transfer node in such a block

is a ~ node of the block if it is not contained in some sub-block,

and a block is a simple block if it contains no more than one main

transfer node. We say that an MPS is structured if it can be decomposed

into simple blocks, as is the case in Fig.5.

A few words about the above definition are in order:

Most of the results in this thesis pertain to monadic program

schemas which are structured in such a way as to represent 'while'

schemas schemas whose programs comprise assignment instructions,

conditional instructions, and iteration ("while" or "until")

instructions. It has been demonstrated by Ashcroft and Manna [1 l

that any program schema may be transformed into a schema so structured,

in such a way that its output behavior is not affected; in addition, if

- 28 -

~-- -------

~- -----------------' I

• I
I
I
I
I
I
I

:
I

I I
I t
I I

t

: \.. ·--------... 'ti

I
I
I
I
I
I
I

I I
I I
I I
I I
I I
I I
I i
I 1
I I
I I
I I
I I
I I

~----·-----------~-~

• I
I
I

• I
I
I
I • I
I
I
I
I

~-----------------------------------
___ J

--------------------------------- -------
z ... f(s) y ... f y

... f(a) .· • 1-...iy ... f (l')

-----.
I

y ... g(y) :

----'

---------------------------------- ------
FIGURE 5. Structured Schema.

- 29 -

the original program schema contains only monadic function and predicate

symbols, then so does the resultant structured schema.

Unfortunately, the Ashcroft and Manna results have, for our

purposes, a serious drawback: the resultant 'while' schemas will

contain, in general, conditional and iteration instructions containing

compound predicate expressions, i.e. expressions composed of a number

of simple predicates connected by boolean operators. Moreover, the

argument variables of the predicates within a given expression need

not be the same, and in general cannot be the same.

If we were to define 'while' schemas in the same manner as do

Ashcroft and Manna, we would defeat our purpose in restricting attention

to monadic schemas in the first place, since transfer-type instructions

would have to contain non-monadic predicate structures rather than simple

predicates. What we have chosen to do instead is define a class of

strictly monadic 'while' schema.s, the iteration schemas of the next

section, which correspond precisely to the structured schema.s we

have defined above. It should be emphasized, however, that unlike the

'while' schemas of Ashcroft and Manna, the iteration schemas fonn a

strictly proper subset of the monadic program schemas.

In the following section, we formalize the notion of iteration

schema. !he correspondence between these schemas and the class of

structured program schemas is established in Section 2.3.

- 30 -

2.2 Iteration Schemas.

Figure 6 illustrates an iteration schema representing a canputation

functionally equivalent to that represented by the structured MPS of

Fig. 5.

2.,2.1 Fonnal D&finitions.

A (monadic) itmtign psm is a five-tuple

S = (V, F, P, I:, "@)

where:

v is a finite set of variable Jymbgls.

F is a finite set of fupction symbols.

p is a finite set of pt'!;}disate symbols.

r: is a finite set of iteration schemas, the

t9 is the erogr!p! of S, a finite sequence of

following types:

(1) Assignment statement of the form

x f(y)

or of the f onn

1ubscbe!Dtls of

statements of

where x and y are variable symbols and £ is a function synd>ol.

(2) Conditions.! statement of the form

IF p(x) THEN st ELSE sf

s.

the

where p is a predicate symbol, x is a variable symbol (the ~ variable

of the statement), and St and Sf are subschemas (the true and false

subsdiem!s of the statement, respectively).

S = ({x,y,z}, {f,g}, {p,q,r},

{sl' ••• ,s7}' 19)

s1 = ({x,y,z}, {f,g}, {q,r},

{s4, ••• ,s7}, l91)

s2 = ({y,z}, {f,g}, "' 0, (?2)

s4 = ({y,z}, {f,g}, {r},

{s6,s7}, lP4)

SS = ({x,y,z}, {f,g}, 0, "' c9s)

s6 = ({y,z},{f,g}, 0, 0, t5'6)

s
7

= ({y,z}, [f}, 0, 0, 1S' 7)

- 31 -

lY:

l5'1:

tY 2=

@3:

~4:

rJ s:

~6:

'6' 7:

x ... y

WHILE p(x) DO s1
y ... g(y)

IF p(y) DO s2 ELSE s3

WHILE q(y) DO s4
WHILE q(x) DO SS

y ... g(y)

z .- f(z)

y ... f(y)
z ... f(z)

IF r(y) THEN s6 ELSE s7

x ... g(x)

y ... f(y)

z ... f(z)

y ... g(y)
z ... f(z)

y ... f(y)

z ... f(z)

FIGURE 6. Iteration Schema Equivalent to the Schema of Figure S.

- 32 -

(3) Item~;l,OA UitemeQt of the form

Wltn..E p(x) DO Si

or of the form

tJNTIL p(x) 00 Si

where p is a predicate symbol, x is a variable symbol (the 1!tt yariable

of the statement), and Si is a subschema (.the~ of the statement).

If S' = (V', F', P', ~·, J>') is a subschema of S, then we require

that V' c V, F' c F, P" c: P, and ~· ct. We db not pe"J:mit recursion

in iteration schema.a: no iteration achena may be a subschema of itself.

Insergreattw are clef'ined for iteration schemas in a 1'.Dllnner

identical to that for program schemas. :Each interpretation defines an

executiop. by the s~ inia manner s1-iJ,&11t tO\ t~ tor pfograa sche:asas:

We associate the specified domain elements with the variable

symbols of the schema, and then execute sequentially the statements in

the schema's prop&m. New values are assodated with variable aymbols

as indicated by assignment statements, and the programs of appropriate

subschemas are executed in accordance with the outCOIDeS of px-e4icate

applications made while executing conditional or iteration statements.

The execution terminates when and if the execution of the final

statement in the schema's program is canpleted. If the execution

terminates, we take as the va\9 of the schema for ~h~ execution

(and corresponding interpretation) the set of elements associated

with the variable symbols of the schema at the end of the execution;

- 33 -

the value of the schema is und.efined if the exec:nscbm fails to

terminate.

Free interpretations are defined for iteration schemas as in

Section 2.1.3~

2.2.2 Classes of Iteration Schemas.

!I!!, iteration schema.4, HldeWfda&;,!aatliw ~~.ration s.chemas,

and a•~rM;ted lQGtJ;il;gp iteration ,8~~· .. are 4et~ in manners

analogous to those for program scheJDl.a.

We define two additional classes of itena,tiOJl schemas which will

be of interest in subsequent discussiop.s:

An iteration schema is cgnditj.,RQ1·-~ if no c,oµciitional

statement appears in its prograin, and 1'0 c~Uona+ stat~nt appears

in the program of any of its subschemas.

An iteration schema is a sfvie !!Pff PBctV•chem if no predicate

symbol appears in more than one statement in the collection of programs

belonging to the schema and its subschemas.

- 34 -

2.3 Structured ·Monadtc Program Sehea:e and Iteiat:ion Schem1:s:

A Correspondence.

We have asserted that the iteration lilchemas of the preceding

section are an alternate formalization of the structured monadic program

schemas of Section 2.1.5. In this section, we describe informally

effective procedu't'es for proceeding from one formalization to the other.

Of course, we have not "11: made :paoiae the notion of schema equivalence,

but the procedures are highly intuitive and an e:a-trect for v:Lnually

any reasonable notion of equivalence.

It is qu~te an easy task to construct from an arbitrary iteration

schema. a functionally equivalent structured MPS:

Let s be an a'tbitracry itel.'ation schema and suppose that we are

able to expre·ss ea-ch sub·s-chema of s as an equi.va'lent ctaposi:tion of

simple blocks. Then we can e~press each statement in the prt>gram of S

as an equivalent -composition of a:i:mple blocks., as follow&:

(1) If the statement is an assigmnent statement <:X, then the

equivalent composition of blocks is:

I
\
- -
... _ - '

- -
\
I

(2) If the statement is a conditional statement of the form

IF p(x) THEN st ELSE sf

then the equivalent composition of blocks is:

,­
t B
' t ,_-T"_

- 35 -

-- --,

-·
------"""

Where Bt (Bf) is the

composition of simple

blocks equivalent to

subschema St (Sf).

(3) If the statement is an iteration statement of the form

WHILE p(x) DO S.
1

then the equivalent composition of simple blocks is:

r----- --,
I
t
I
I

B.
I i I

\ - =..-------' -

Where Bi is the

composition of simple

blocks equivalent to

sub schema S ..
1,

The last case (the statement is an UNTIL statement) is similar to

the third.

The structured MPS equivalent to the schema S is formed quite simply

by connecting sequentially the compositions of simple blocks correspcniing

to each of the elements in the program of s.

It is now clear that we can construct an equivalent structured

MPS from any iteration schema we need only work from the inside

out, i.e. we need only begin with subschemas composed solely of assignment

statements, then those composed of these schemas and assigmnent statements,

etc.

- 36 -

'!be reverse construction is equally stwightforward:

We begin by replacing each. :tactangle in the_.Jlowchart of a

structw:ed MPS by its contem:s enclosed in bracket•. ('!be brackets

will denote a portion of th• flcwc:bart which hAd: been converted to

equivalent iteration schema form.) We thenmerge the contents enclosed

in adjacent brackets, i.e. becomes

When we have canpleted this merging, either the entire flowchart

will consist of a bracketed expression (fotlowed by an END node), in

which case we have completed the con•truetion, or the flowchart will

contain structures of the fo:cm:

\

or of the form:

- 37 -

We replace the first type of structure with:

[IF p(x) THEN So: ELSE S 13]

and the second with:

where So: becomes the subschema

with program o:, and s13 becomes

the subschema with program 13 •

[WHILE p(x) DO So: J if b is 't', or [UNTIL p(x) DO So:] if b is 'f',

where So: becomes the subschema with program o:.

This procedure is repeated recursively until the entire remain:ing

"flowchart" consists of a single bracketed expression followed by an

END node. In such a case, the expression in brackets is the program of

the iteration schema equivalent to the original structured program

schema, with subschemas as given above.

2.4 Incompleteness of Iteration Schemas.

Our reason for selecting iteration schemas as the primary

computational model of the thesis is that we wish to deal with

equivalence issues for a class of schemas less "powerful" than the

class of monadic program schemas, but still general in its ability to

represent computation. Iteration schemas clearly satisfy the latter

criterion, but we might question whether they satisfy the former.

Clearly there exist monadic program schemas which are not structured,

but do the structured schemas represent a complete subset of the

monadic program schemas? In particular, we might ask if the presence

of boolean operators is really essential for the simulation of arbitrary

- 38 -

MPS' s by 'while' schemas, or whether any MPS may be simulated by an

iteration schema.

In this f i.nal section of the -chapter, we demonstrate that such

operators are indeed essential for the simulatio~ ,of arbitrary MPS' s

by 'while' ach-.s. (In the following chapter, we define formally

schematic equivalence. Por the purpose of th• following discussion we

state that a pair of ~· am Afi1t -.ilvalcit i.f there exists an

interpretation for the schema• such tha~ the elll!Cution of one schema

tei:minates, while that of the other schesaa fails to tenninate.)

Conai4er the MPS of Fig. 7(ah It ia intuU:ive.l:y obviou

(and can be d.erivetl inlae4iately frGm 'l'UUlta in (14]) that if s ia

equivalent to scae iteration sdlema, it. is., equivalent to some itu:ation

schema which has predicate symbols (p,q} and function symbols {f,g}.

We note that an e::recution of S ·is guaunteed to diverge if it is

defined by an ittterpretation in which the predicate alfaociated with p

and that associated with q are each identieally ~· Let I denote the

free interpretation which saeisf ies this condition.

Now, suppose that there exists an iteration schema S' equivalent

to s. S' must contain at least one wm.E statement s containing one

of the predicate symbols, say p, such that s is e::recuted during the

execution of S' defined by I. Let D denote the domain of I, and let X

denote the set of elements of D at which the predicate associated with q

•

(a) S:

(b)

IF p(x) THEN x f(x)
y x

WHILE (p(x)

IF p(x) THEN

- 39 -

q(y))DO [x f(x)l
y x

ELSE [x f(x)J
y x

[
x g(x)l ELSE [x ...,. f(x)l
y x · y x J

FIGURE 7. Unstructured Schema and Equivalent 'While' Schema With

Boolean Operators.

- 40 -

is evaluated prior to the first execution of statement s. Let I' be the

free interpretati01;1. diff•ring" _from I only in that Il ' is associated with
q

q, where II ' is the predicate defined as follows: q

II ' (6) •- t'.rua,. ~ E X
CJ; ~

II '(6) = fal1e, t f. X
q

The e~cution of S' clefined by I' cleiu:-ly cannot t4!\Dli'8-te since the

behavior of S
1
for I allc:l J;' is i~nticfl 1.aatil sta.-nt sis executed,

I , ,
whereupon S muat dive~ b~uee the padicata aNOQiated with p is

identically lJl!I• But the e~cutio~ of S will texminate as soon as II '
q

is evaluated at: an el~nt of {D-X), and since X is finite and I' is a

free interpretation, Ilq' .!EIS. eve~ually be evaluated at an element of

(D-:X), contra.c:Ucti• the equivalel\ce of the two schemas.

A 'while' schema containing boolean operators is shown in part (b}

of Fig. 7; the reader may verify that this schema is equivalent to the

schema s.

- 41 -

CHAPTER III: EQUIVALENCE

3.1 Equivalence Introduction.

Intuitively, we wish to consider a pair of schemas equivalent if and

only if the value of each schema is the same whenever both schemas have

been provided with the same interpretation. This notion of equivalence

is rather strong. In particular, it is a much stronger notion than

would be desirable if we intended to apply schematological results to

interpreted models, since it provides no mechanism for the specification

of any relations which might exist among the functions and predicates

comprising the schema primitives. But this is precisely what makes it a

logical notion of schematological equivalence: equivalent schemas are

required to exhibit the same "black box" behavior, i.e. they are required

to exhibit, for each interpretation, the same output behavior, with no

constraints on their internal behavior.

The notion of equivalence as we have presented it does, however,

have a serious drawback: it makes sense only if applied to pairs of

schemas which have the same sets of predicate symbols, function symbols,

and variable symbols. This is indeed unfortunate, since we would

certainly like to consider the schemas S and S' of Fig. 8 equivalent,

despite the fact that S' contains a function symbol and a predicate

symbol not contained in S. Likewise, we might wish to add variable

symbols to a schema in order to remember intermediate values during an

execution, without considering the affects of these new symbols on the

resultant schema value. (In fact, the addition of such variable symbols

- 42 -

S == ([x,y}, [£}, r/J, r/J, ~)

where fJ> is: x +- f(x)

y +- f(x)

where '@ ' is: x +- f(x)

y g(y)

IF p(y) THEN sl ELSE s2

and s 1 == ({x,y}, {£}, r/J, r/J, 6\)
where ~

1
is: y ,_ f(x)

and S
2

== ({ x, y }, { f } , r/J, r/J , ~ 2)

where '())
2

is:

y +- f(y)

FIGURE 8. Equivalent Schemas With Distinct Sets of Predicate Symbols

and Function Symbols.

- 43 -

is necessary, in general, if one wishes to transform an arbitrary MPS

into an equivalent 'while' schema in which boolean operators are

permitted.)

We may handle the problem caused by schemas with distinct sets of

predicate symbols and function symbols by considering extensions of

interpretations. If we permit an interpretation for a schema to

associate predicates and functions with symbols which do not appear

in the schema, we may extend any interpretation in such a way as to

provide an interpretation for some other schema. If we begin with

consistent interpretations for a pair of schemas (i.e. interpretations

which do not associate distinct functions with a common function symbol

or distinct predicates with a conmon predicate symbol), then we may

easily construct an interpretation which is an extension of each of the

interpretations. lb.us we may consider a pair of schemas to be equivalent

if, whenever they are provided with consistent interpretations, the value

of the schema for its interpretation is the same in each case.

lhe problem posed by pairs of schemas with distinct sets of variable

symbols could be handled quite easily by adding a sixth component in our

definition of schema a subset of variable symbols which would be

considered output symbols, symbols whose values at the end of an

execution would comprise the value of the schema for that execution. We

prefer to live with the shortcomings of our present notion, however,

rather than introduce such a component, since the presence of non-output

symbols in the schemas would add in unessential but tedious ways to the

- 44 -

complexity of certain proofs in subsequent chapte-rs. Als~» we would

not gain much by its introduction, since most results concerning the

decidability of equivalence for classes of schemas with "t:otal output0

imply the same .raaults for corre•p~ oCla.sse• of ~s wU.h

specified c:>utput ~·· In pa.~cu~~, a~e -.qave a pair of

schemas with a c~ set of ~tput s}'lllbG>l.•, pl• SOfl8 other variable

symbols which may be di.ffezent in eac:ll·. ~#· We c.l&1l a94, addi..tional

variable symbol• to e&dl SCU. to en.au.a c:hat tbe set of av.ch symbols

is th.e se.me in each CAN, and then add to ~ e1J4 .. 9f eadl proap:oaa ·the

statement 'x .. y' , for each non ... ~t,pu,t s~l x •-' .eQqe ttpecil.,£~

output symbol y. Clearly,. the "•µlta~ .. ~s wUl be "uivalait in

the ~se we ha.ff prcapoeed if aQ4'1 oaly if the o~t&Ln&l .aOO..s an

equivalent: wbeu &tteation is i-eatricte4 tp fl'-rticvJa~ ()Utpvt sysnbols.

Earlier we defined the claas of free inter.pntat:i:.one. for schelas,

and noted that eaeh fate inteJ:Pretatt.on i:epmsentl8 s}'lllbolioally a family

of closely related iia.taJ:"pretaU.ons. h woal.4· be quite OODYenieat lf we

could restrict attention to free interpretations in (;)Ur discussions of

equivalence, since such interpretations have several desJ.rable

properties. For one thing, all free interpretatiQns for a schema have

the same domain and interpret each fUQ.Ction sym)>o1 in the saJDe manner.

Hence, we may specify a free interpretation solely by.· specifyiili the way

it interprets predicate symbols. Also, du•ing an execution defined by

a free interpretati® for a schema, identical val~s D.lllY l>e generated

only if they are genel'8ted via precisely the saUle sequence of fUDQtion

applications, and the value itself makes explicit this sequence. In

- 45 -

addition, the application of a function to a vat~ during. sµc;h an

execution must result in a different value, and this value must be

longer than the original when viewed as a string of symbols. This

last property is particularly significent when dealing with restricted
.•.

location schemas, since it implies that the sequence of values associated

with any variable syml>ol -during sUch an eill'etitbm ·will be a sequence of

Finally, and pemap• meat 1mp0'.l'tae1y, we (:4n"'exp1oit t'he property of

freeness in a schelt only if we aze,·dea1ing vi.th aecUt,iou qf the

schema under free'interpretations.

Fortunately, it is easy to show that a pair of schemas are

equivalent for all inte'l'J>'l'et:&tioa8 if aiid only 'tf they SN equivalent

for all free interpntations. It is only··nece-ry 'to show that if

than exist consistent i.m:erpz:etat·lona Whidi' ~amte the rtcm ..
equivalence of two achemas, then the fxee' i'lit'erpretations which

z:epresent them symbolically are aleo cotia.fetent' «i1el also demonstrate

the n.on-eq\d.valence of the ICh_.ai...: '.Ebe prc>bf• c#. t:lte' first part of the

stateamt is trivial; the proof of the second part is by induction on

the lengths of the final values of vari@,l.ea f.Q~ the •~utionc defined - '·. -, . ,,, ' -

by the free interpretations., and is also at~~JllJ18W•. The .. ieader

is referred to [l4J for details.

- 46 -

3. 2 Strong Eq.uivalence Definition.

We term the notion of equivalence we have just discussed strong

equivalence, since it is strong enough to imply.most other reasonably

defined forms of equivalence. Formally:

Let I be an interpmtation for S<X98 achema, and let D be the

domain of the interpretation. Let F be a aiet of funct:£on symbols and

P a set of predicate symbols whic:.h a,re AQt U\te:cpmted l>y I. ?hen a

(P ,:r:n-q~aiQQ of I is the objec.t fODIBd by adJ°'ai&g to I, for each

symbol p in P, a total predicate Ilp: D ... -~1£ala}, .and £or each

symbol f in F, a total function cpf: D -+ D.

Let s1 and 62 be arbit:i;ary scbemae with possibly distJnct sets of

function or predicate symboLs. Let F 1 ~ P1 deQQte t:he eec:s of

function symbols aad pJ:edicate symbols, ~:spectiwly, which appear in

s
1

but not in s
2

• Similarly, let F2 and P2-denote the sets.of function

symbols and predicate symbols which appear in 62 but not in s1• 'Dten

an interpretation I1 for s
1

is coaaj.5agt: with an interpretation 12 for

s2 if some (Pl'F1)-extension of 12 is a (P2'F
2

)-extension of 11•

A schema s1 is stt2!18lv egpivalent to a schema s2 if the value of

s1 for a free interpretation I 1 is the same as the value of s2 for a

free interpretation I
2

, whenever I 1 and I 2 are consistent.

Unless otherwise noted, equivalence shall refer to strong

equivalence in the remainder of this thesis.

- 47 -

3.3 Weak Equivalence Definition.

Several other notions of equivalence have been proposed in the

literature, one of which will be of interest later when we explore the

way in which equivalence problems for structured and unstructured

independent location schemas are related:

Schemas s
1

and s2 are weakly equivalent if the value of s1 for an

interpretation I 1 is the same as the value of s2 for an interpretation

I 2 , whenever I
1

and I 2 are consistent free interpretations and both

values are defined.

It should be noted that weak equivalence is not, in fact, an

equivalence relation. In particular, the relation is not transitive

since any pair of schemas are each equivalent to one whose executions

diverge regardless of interpretation.

- 48 · ...

CHAPTER IV: UNSOLVABLE PBOBLEMS

Luckham, Park, and Paterson have demonstrated in [16] that the

equivalence problem. for monadic program schemas is recursively

unsolvable. Br.iefly, thay have demouatmted that the schemas are

capable of simulating two-head finite automata, and have noted that

the equivalence problem for the autOlllta was shewn unsolvable in [25].

'!be schemas which they constl:UCted to simulate the automata were

independent location schemas except for an initial assignment instruction

of the form 'x ... y' (which corresponds to the placu\8 of both heads on

the tape of an aut:Q91rton} and"we have·, therefare, ·tbft eqoilifel~ce is

undecidable for restri.-cted· location· monaftc prog.,.. sehema&.

The e:rample 1n Section 2·.4 demc:mnrates that· re'Stricted location

iteration schemas are strictly less powerful' than restricted· location

MPS's. Moreover, it can be shown (cf, [13]) that there exist restricted

location MPS's which cannot be simulated by restricted location 'while'

schemas, even if we permit boolean expressions in conditional and

iteration statements. (Informally, the xeason we cannot, in general,

construct such a simulating schema is that the flowchart of an arbitrary

restricted location MPS may contain a directed cycle with many different

exits. To place such a cycle in 'whilish' form requires merging all of

these exits into one, and "remembering" the values of relevent variables

at points in the new cycle which correspond to the exit points in the

original cycle. When the merged exit is taken, the correct values may

then be associated with each variable symbol, based on which of the exits

- 49 -

would actually have been taken in the original flowchart. The

appropriate values are remembered by assigning them to new variable

symbols, and it is precisely these assignments which prevent the

resultant schema from being a restricted location schema, since they

must be made within the cycle at points corresponding to the original

exits.)

It is clear, therefore, that structured restricted location

schemas are significently less powerful that restricted location

schemas in general, and we might hope that the added structure is

sufficient to render equivalence decidable for such schemas.

Unfortunately, this does not prove to be the case. In fact, we

are able to prove that equivalence is undecidable even if we look at

restricted location schemas which are "totally" structured

in which even conditional statements have been removed.

those

In this chapter we prove that equivalence is undecidable for

restricted location iteration schemas, and that it is also undecidable

for such schemas which are conditional-free. For lucidity, we present

the result for the more general class of schemas first, and then discuss

the way in which the procedure may be strengthened to establish the

result for the conditional-free schemas.

- 50 -

4.1 Post's Correspondence Problems.

We begin by considering two well-kaown unsolvable problems: the

Post Correspondence Problem and the Modified Post Correspondence Problem.

A !m Contspopdepce ?rgblem is an oraered pair

C • (A,B)

where A = { w ' w ' ... w }
'

and

1 2

B - { yl' y2'

w = si1·si2· i

Yi = ri • r. •
1 l.2

....

...

....

k

' yk}

•si
61

·r
ia

i

si ,ri E {O,l}
j j

We say that the Post Correspondence Problem C hi.ls a solWjion if

and only if there exists a sequence of integers i 1, ••• ,im' m ~ 1,

1 s; i s; k, 1 s: n s: m, such that
n

• • • ••• • y
~

A Modified !2!S Comspondepee Problem is a pair (C,.t), where C

is a Post Correspondence Problem as above, and .t is an integer, 1 s: .t s: k.

We say that the modified problem has a solution if and only if there

exists a sequence of integers i 1, ••• ,im' m ~ O, 1 s: ins: k, 1 s: n s: m,

such that

It is recursively undecidable whether a given Post Correspondence

Problem or a given Modified Post Correspondence Problem has a solution.

(See, for example, [8].)

- 51 -

4.2 A Note on Notation.

We will generally define schemas in terms of their programs and

variable symb9h l>eiag def iped implicitly as tho1e appearia.g in .the

prog~au. In mo1t cases, in fact, we will aot .»other to diet:,nguish

between a sch.., ancl its proaraa, .. reierring to etther as • "sch.-'' ..

When convenient, we will permit. c~ , booleau eapreseions to

appear in conditional statements of an iteration schema. We note

that

for any boolean expression b. is equiv~lent to

and that

IF (b v b') THEN st ELSE sf

for any boolean expressions b and b' is equivalent to

IF b 'l'BBN st ELSE s I

where S' is

IF b' THBH st ELSE sf

..

and we are assured, therefore, that permitting boolean expressions in
' ..

conditional statements is indeed a notational convenience, and does not
\,;

in any way alter the class of canputations representable by iteration

schemas.

- 52 -

4.3 Undecidability of Equivalence for Restrict&d Location Iteration

Schemas.

Let c be a Poet Coneapomieace Probleaaa 4efined in Section 4.1.

We show how to conatwct a xeatrictei locat:llen> ttentica schema S with

the property that aa. free iaterpret'atioa I deft.nae a termimting

execution of s if aad ouly if the··. prob lea C baa a sol1itlon.

Let 8! be the iteration .chem& wllou prosraa it,eapty, and let st

be the schema:

WHILE p(:x} DO SE

UNTIL p(x) DO 5E

for some predicate symbol p and sane variable symbol :x. That is, St is

a schema for which each interpretation defines a non-terminating execution.

Let Po and p1 be distinct predicate symbols different f ran p, and let

s0 be the schema:

IF (po(x)" (""'lpl(:x))) THEN SE ELSE st

and let s1 be the schema:

IF (pl(x) "(-ipo(:x))) THEN SE ELSE st

Suppose we interpret the predicate symbols p, p0, and p1 over sane

domain D. We may consider an element of the domain as representing the

symbol 'O' if, when this element is initially associated with symbol x,

the execution of s0 defined by the interpretation te:cminates. Similarly,

we may consider the element as representing the symbol 'l' if, when the

element is initially associated with x, the execution of s
1

defined by

- 53 -

the interpretation tenninates. Viewed in this way, no element of D may

represent both 'O' and 'l', although some elements may represent neither

symbol.

For each i, 1 $ i $ k, let Aw be the schema:
i

IF q(x) THEN ss. ELSE st
l.l

x f(x)

IF q(x) THEN S s.
l.2

x f(x)

IF q(x) THEN S s.

x +- f(x)
J.5.

].

ELSE S
t

ELSE St

(In the above, q is some new predicate symbol and ss.
]. j

denotes, for each

j, the schema s 0 or the schema s 1, according as si. is
J

0 or 1.)

In this manner we associate a schema with each string of symbols in

the first component of the problem c. If we provide an interpretation

with some domain D for the schema Aw , then the execution of Aw
i i

defined by the interpretation will diverge unless the sequence of symbols

represented (in the way described above) by the elements " , cp (v) ,
f

0.-1
, Cfl f J. (") comprise the string w i, where " E D is the

value initially associated with x and q;if: D ~ D is the function

associated with f by the interpretation. The execution will also diverge

if any evaluation of the predicate associated with q has outcome false

- 54 - /

during the execution. (The reason for the inclusion of q in the schema

will become apparant later.)

Let s
0

1 be the schema identical to s
0

except with variable symbol y

in place of variable symbol x; let s
1

' be the schelm. identical to s
1

except with y in place of x.

For each i, 1 s; i s; k, let B y be the schmna:
i

IF q(y) THEN s ' ELSE St
ri

y f(y) 1

IF q(y) THEN s ELSE St
ri

y f (y) 2

•

IF q(y) THEN s ' ELSE st
ri

(j
y f(y) i

(In the above, Sr ' denotes, for each j, the schema s0
1 or the schema

ij
s1 •, according as ri. is 0 or 1.)

J

These schemas correspond to the strings in the second component of

C in the same way as those defined previously correspond to the strings

in the first.

For each i, 1 < i < k, let R1 be the scheJD8.:

IF ti (z) THEN Aw ELSE S
i E

IF ti {z) THEN By i ELSE Ri+l

- 55 -

where each t is a distinct new predicate symbol.
i

Let R1 be the schema:

and let

IF t 1 (z) THEN Awl ELSE SE

IF t 1 (z) THEN By l ELSE Rz
z ... f(z)

~be the schema:

IF tk(z) THEN Awk ELSE SE

IF tk(z) THEN By ELSE st k

Finally, let S be the schema:

y x

IF pI(z) THEN R
1

ELSE R
1

WHILE pI(z) DO R
1

IF q(x) THEN st ELSE SE

IF q(y) THEN St ELSE SE

We claim that some execution of S under a free interpretation will

terminate if and only if the Post Correspondence Problem C has a

solution. In particular, suppose that some such execution of S

terminates. Let n denote the number of times during the execution of S

that the subschema Ri is executed, and let tj , tJ. , ••• , t. be the
1 2 Jn

sequence of t's whose applications resulted in~ outcomes during the

executions of~· It is clear from the construction that the value of

x at the end of the execution of S must be fml.~ x' where m
1

=

... • w . I, and that the value of y at the conclusion of
Jn

- 56 ..

the execution must be ffAi·A
:x' where m2 = I Yj • Y . • • • • • Y I.

1 12 Jn
Also, the sequence of symbols represented ·by the elements

Ax, f•A-x, ••• , fIAi·Ax must comprise w =, wj 1 ·.~j2 • •••

otherwise the execution of S would have diverged at the ell:IBcution of

some subschema Aw when it was discovered that the wrong symbol, or
i

no symbol at all, was rep.resented by an element. Similarly, the

sequence of symbols repreaented by

comprise Y = Y
11

· Yj
2

• ••• • yjn, and. ctxerefore ieimust be the case

that w is a prefix of Y, or vice veraa.

But it must also be the case that D\ and m
2

are' identical:

The value associated with x is tested with the predicate

corresponding to symbol q each time a statement of the form 'x f (x)'

is executed, and similarly for the values associated with y. In each

case but the last the outcane of the test is ..tJil!&, otherwise the

execution would have diverged. Now, iiupPc>•e ttia't Ill! and ~ s.i:e not the

same; in particular, suppose that m1 > ~· It mCYt be the case that

Ilq(f~•,'1 x) is .UY! (where llq is the predicate aH0cf.1ited with q). But

then the execution of S would have dt¥erged -.hen the £ifth ltatemlllnt in

its prog:i:a.m was executed, a contftdict:lon. Hence:~·• ~·

But then it must be the case that w = Y, and thus J
1

, ••• , jn

must be a solution to the correspondence problem c.

- 57 -

The remaining arg\Jlllent, that some execution of S under a free

interpretation terminates if C has a solution, is also quite easy.

Suppose that i
1

, ••• ,im is a solution for C. Then we provide S

with the free interpretation that associates with p
0

the predicate:

IIP (fn• .6.) =~if the (n+l)st symbol of w .
0 x ii

.w

is O, or false otherwise

that associates with p1 the predicate:
n

IIP (f ·Ax) = true if the (n+l)st symbol of w .•
1 l.1

is 1, or false othetwise

that associates with q the predicate:

II (fn• .6.) = false if n
q x ...

otherwise

that associates with t., 1 ~ j ~ k, the predicate:
J

n
Ilt (f ·A) = ~ if j = i , 1 ~ n ~ m, or fa 1 se

j z n+l
otherwise

that associates with p the predicate:
I

n n (f ·!Ji.) = ~ if n < m, or false otherwise
Pr z

and that associates with p an arbitrary predicate.

i
m

The reader will verify that the execution of S defined by the above

interpretation is guaranteed to terminate.

From the above construction we have:

- 58 -

Theorem 4.1:

The equivalence problem for restricted location iteration schemas is

unsolvable.

Proof: Suppose that the equivalence problem were solvable. Given an

arbitrary Post Correspondence Problem C we could construct a

restricted location iteration schema S as outlined above. The

correspondence problem would have a solution if and only if

S were not equivalent to the schema St' and we would therefore

be able to decide if C has a solution, contradicting the known

unsolvability of Post's Correspondence Problem.

D

- 59 -

4.4 Undecidability of Equivalence for Conditional-Free Schemas.

In this section we describe how a conditional-free, restricted

location schema may be constructed from an arbitrary Modified Post

Correspondence Problem in such a way that some execution of the schema

terminates if and only if the correspondence problem has a solution.

Let C be an arbitrary Post Correspondence Problem as defined in

Section 4.2, and let C' = (C,£) be a modified correspondence problem,

where £ is an integer between 1 and k, inclusive. We begin by modifying

some of the subschemas of the preceding section:

We note first that the schema s0 is equivalent to the conditional­

£ ree schema:

UNTIL Po(x) DO SE

WHILE p
1

(x) DO SE

Similarly, the schema s
1

is equivalent to:

UNTIL p
1

(x) DO SE

WHILE Po(x) DO SE

For each i, the subschema Aw consists of assignment statements
i

and conditional statements of the form:

IF q(x) THEN Ss. ELSE Si
].j

Clearly, we may replace each such conditional statement with the

statement:

UNTIL q(x) DO SE

followed by the sequence of statements which makes up the program of the

- 60 -

subschema Ss. • Hence, each such schema Aw can be transformed into
i. i

J
a conditional-free schema. In a similar manner, each subschema of the

form By i can be transformed into a conditional-free schema.

For each i, 1 ::;; i ::;; k, let Di be the schema consisting of the

statements of the schema Aw , followed by the statements of the schema
i

By . , followed by the statement:
i

z f(z)

Each D can be made conditional-free by using the conditional-free
i

schemas equivalent to A w and By .•
i i

Let R be the schema

WHILE t 1(z) DO D1

WHILE t 2(z) DO D2

Finally, let S' be the schema:

y x

a

f3

WHILE pI(z) DO R

WHILE q(x) DO SE

WHILE q(y) DO SE

where a is the sequence of statements which makes up the schema Aw i,,

- 61 -

and 13 is the sequence of statements which makes up the schema B13 .t.

Since each of the component schemas of S' is equivalent to a

conditional-free schema, S' may certainly be made conditional-free.

The reader may verify that some execution of S' defined by a free

interpretation for the schema terminates if and only if the problem

C' has a solution. (The argument is virtually identical to that

given in the previous section.)

Thus we have:

Theorem 4,2:

The equivalence problem for restricted location, conditional-free schemas

is unsolvable.

Proof: The decidability of equivalence for such schemas implies the

solvability of the Modified Post's Correspondence Problem.

D

4.5 Discussion.

The schemas of Theorem 4.2 are a rather restricted class of monadic

program schemas, more restricted than any class for which the equivalence

problem has previously been shown unsolvable. This is not actually

surprising, however, since the effort which has been expended in the

study of equivalence problems for schematized models has been directed

primarily towards finding broad classes of such models for which

equivalence]& decidable, rather than restricted classes for which it is

- 62 -

.llilt· The paucity of results which have been obtained to date, however,

suggests that perhaps both directions should be explored, if only to

gain some insight into the types of restrictions which are apt to lead

to solvable problems.

In a modest way Theorem 4.2 provides us with some such insight,

since it demonstrates that structure, or the lack thereof, is not in

itself a key to equivalence problems in monadic program schemas. We are

led to inquire, therefore, whether structure, taken in conjunction with

other reasonable restrictions, might lead to solvable problems, or

alternatively whether the constructions of the previous sections can be

strengthened to yield results analogous to that of Theorem 4.2 for yet

more restricted classes of schemas.

For example, what is the effect of restricting the number of

distinct symbols in the schemas? The schemas in the construction of

Section 4.4 employ only a single function symbol, but arbitrarily many

predicate symbols. At the cost of some lucidity, however, we could

present a construction involving schemas with a single function symbol

!ll!! a single predicate symbol (see Appendix A), and thus restricting

the number of predicate and function symbols helps us little in our

quest for solvable problems, even if dealing with totally structured

schemas. Matters are slightly different with respect to variable

symbols, however: while it is an easy matter to present a construction

employing only two variable symbols (we merely use x or y in place of z),

no further reduction is possible in the construction, since the

- 63 -

equivalence problem for schemas with a single \rariable synlbol reduces

to that for finite state autt111ata. 0

Prcxnpted in part by interesting results for certain interpreted

models for ccxnputation [17,28), we might ask about the effect of

limiting the number of levels of iteration in structured schemas. We
.) •\

,note, for instance, that the construction of Section 4.3 employs schemas

with two levels of iteration, while that of Section 4.4 employs schemas

with three levels. Is equivalence decidable for structured schemas with
,,.,

' ._,

one level of iteration? Is equivalence decidable for conditional-free

schemas with two levels of iteration? (Both· of these questions are

open. It .!! known, however, that eqUivaience 1~ ·ciecic:l&ble for

conditional-free schemas with a single level oi'iteration, since these

schemas are a subclass of the "unnested loop1'· sch.m's of Paterson [18 J.)

Other restrictions we consider follow frcxn the observations that

the schemas in the previous sections are not free; that they an- p<1:9perly

restricted location, as opposed to independent location; and that certain

predicate letters appear in several statements in the schemas. We might

ask, therefore:

Is equivalence deeidable for such, ·~~• ybjcb,.,ar.. fnte'l Wb.~ch are
• ' ,, ' ~. ! . ·, ••• ,, ····~·... • • ' • "

independent location schemas? Which are single ap.,.aJ:"&nc;e •~s? Wh:lch
~ I • ·l • · • · .

possess various combinations of these properties?
r . - ' '

Answers to soma of these questions .an pRHnted tatha, following

chapter.

- 64 -

CBAPrn V: SOLVAJIJ! PROBLEMS

In this chapter we provide aff~._t!i.ve ._'1'11 to aae of the

q-uestions raised at the end of Chapter IV. The techniques we employ

are hardly ganeraU.aable to non-atructuzed schemas, but we are confident

that they are applicable to claaaes of etructund acheMs more general .
than those we consider in this chapter. We are concerned, therefore, ..
with illustrating theee techniques aa well as with obtaining specific

results. ('l'he f irat case we con.aider, for uaaple, ii perhaps iather

more pedantic than theoretically intezesting.)

Briefly, the approach is as follow~:

We damoustrate that for certain classe.s of scbemf1s it ia posaible

to find iteration sta.tements in pairs of eqaj.valft.nt schemas which play
• • p • -·: -

similar roles during consistent schelqa e:acµti~,. i.e. statement• which

execute the same number of times and test the same values during such

e:xecutions, and which affect in a s:f.Jlilar •nner the variable 1ymbols in
··, .• :_,

each schema. Given an arbitrary pair of achemaa in the claH, we

identify statements which must be so related if the sche11Wls are equivalem:,

and use their assumed similarity to reduce the equivalence of the schemas

to that of simpler schemas, a procedure which is applied recursively

until the problem ha• been reduced co·t1ac· for ·acbilll1·w1u;.• iquivalence

is trivially decidable.

'!he approach is illustrated in Section 5.5, after formalizing the

notion of "similar roles" and pnaentiiq •aae preUaiMry reaulta.

- 65 -

5.1 Test Sequences and Logic Equivalence.

Let S be an iteration schema with predicate symbols P, and let D

be the domain of the free interpretations for s. Then the set of tests

for S is the set D X P.

Suppose that s is a conditional or iteration statement in S and

that E is a free execution of S (that is, an execution defined by a free

interpretation for S). Then a test T = (o,p) is said to be~ !.t.!

during ! if the predicate assigned to symbol p by the interpretation

defining E is evaluated at the expression o during the execution of

statement s. (The application must be made during the execution of the

statement itself, rather than during the execution of the subschema

appearing in the statement.) We denote by TESTS(s,E) the sequence of

tests ma.de at s during E, and by TESTS*(S,E) the sequence of all tests

made during E (including those made during the execution of statements

in subschemas of S).

Let E and E' be executions of iteration schemas Sand S',

respectively. We say that E and E' are consistegt if they are defined

by consistent interpretations for the schemas. Let s be a conditional

or iteration statement in s, and let s' be a conditional or iteration

statement in S'. Then s and s' are logic eguivalent if TESTS(s,E) ""'

TESTS(s',E') whenever E and E' are finite, consistent executions.

Later in this chapter we show that for certain classes of schemas

logic equivalent statements must appear in equivalent members of the

classes. In fact, the existence of such statements forms the basis of

our proofs of the decidability of equivalence for these classes.

\

- 66 -

5.2 Productivity and Essentiality.

It would be naive to assume that equivalent schemas need make

precisely the sa:i;ne tests during consistent executions, since some of

the tests made during the executions may be .a2!!-productive tests

that is, tests whose outcomes do not affect the resultant values of the

schemas. For example, the value of the schema in Fig.9 for any execution

is independent of the outcome of the test made at the statement labelled s.

Since s is the only statement in which symbol q appears, it is clear that

no test of the form (6,q) made during an execution of S can be productive.

Hence, the value of S will be the same for any pair of interpretations

for the schema which differ in the way they interpret q, and we say,

therefore, that q is an inessential symbol of s.

As might be expected, it is undecidable in general whether a given

predicate symbol is essential in an iteration schema. In particular, if

it ~ decidable we could easily decide whether or not arbitrary

iteration schemas s
1

and s
2

were equivalent: they would be equivalent if

and only if p were inessential in the schema

IF p(x) THEN sl ELSE s2

where p is a predicate symbol not appearing in s1 or s
2

, and x is an

arbitrary variable symbol.

Fortunately, the fact that essentiality is not decidable does not

preclude us from using the notion to advantage, since essentiality is

assured for symbols of particular interest to us later in the chapter.

- 67 -

where l)) is:

s: IF q(x) THEN sl ELSE s2

y +- f(y)

sl = ({x,y}, {f,g}, '/J, r/J, G\>
where @ 1 is:

x +- f(x)

x - g(x)

y ,_ f(x)

Sz = ({x;y}, {f,g}, '/J, r/J, @2)

where LY
2

is:

y +- f(y)

x +- y

x +- g(x)

y f(y)

FIGURE 9. Schema With Inessential Predicate Symbol.

- 68 -

5.3 Additional Definitions and Tenninology.

5.3.l Definitions.

Let S be an iteration schema and let k be the maximum number of

distinct iteration statements executed during any execution of s. Then

we say that S is a schema of ~ k. (While this notion of size is

certainly not the most intuitive, it shall prove quite useful in

subsequent discussions.)

Let T be a test for an iteration schema s, and let E be a free

execution of s. Then T is~ with respect to E if T ~ TESTS*(S,E).

(Intuitively, a test is free with respect to an execution if the outcome

of the test is not fixed by the execution.)

Let S be an iteration schema. Then the set of .!!!!in statements of S

is defined recursively as follows:

(i) If s is a statement in the program of S, then s is a .!!!!..!!!:

statement of S.

(ii) If s is a ma.in conditional statement of S and s' is a statement

in the pi:ogram of the true or false subschema. of s, then s' is a main

statement of s.

Let s be a conditional or iteration statement in a schema s. A

variable is said to be modified at s if, for some execution of the schema,

the value associated with its symbol immediately prior to an execution of

s is different from that associated with the symbol ixmnediately following

the execution of s. A variable is said to be active in s if it is the

test variable of s, or it is the test variable of some statement in the

- 69 -

subschema(s) appearing in s; othetwise, the var:f,able is said to be

passive in s.

5.3.2 A Note on Tetminology.

We shall often want t<> modify schema :tate~etationa in such a way

as to obtain executions differing ia 80lll8 reepect from tho" defined by

the original interpretations. For convenience, we shall generally

express such modifications in tems Q~ ti. eae01U:ions themaelves, rather

than il'l terms of the defining interpwt:atiou. In particular, we shall

often refer to obtaining a new e:mcut:ion frOlll SGllB given e:mcution by

changing the outcc:nes of particular tea.ts; whereas wba-t is actually

meant is that we may obtain the new execution by changing appropriately

the interpretation defining the original.

- 70 -

5.4 The Elimination Theorem.

In [24], Rodriguez studied the equivalence problem for progrp

graphs, a schernatized model for parallel -~•'4.oa, ..,_ ''JPSOPO&ed

ell:llBtnina · their be.._er for ooaeiatieut tlUl :>WO'tltM:ms •• ..icuciiou

in whieh 110 cy.c'l-e of e-t.theJ: :gJ»ph £8 ewiute4..-ma daan ~·

Unfortum.tely, tbe ,paposea appreacls :wisll .;,aot ·M01tfi .if ... appl.ied ·t-0 Ollr

moctels: it i• .:an ..a;sy .ta8 to ~t.a .1P1::ile w it•rataea aah ...

For e:xaaple, let S be the .. e.ch9n&

x ... f(x)

WHILE p(x) DO s
1

x ... f(x)

x ... f(x)

WHILE p(x) DO S
l

where S is the schema 'x ... f (x)' , and let S' be the ache.
1

x .. f (x)

x ... f (x)

UNTIL p(x) DO s
1

x ... f (x)

WHILE p(x) DO sl

- 71 -

The reader may verify that S and S' have the SSJlle value for all

pairs of consistent executions in which no instance of s1 is.executed

more than once. But S and S' are clearly not equivalent, since if I is

the free interpmtation which assigns to p the .p~dicate np defined as

follows:

i
Ilp(f ·Ax> ... ff:lf', o :;; i ~ 4

IIP (fi· Ax> = .tt!if&, i > 4

then the execution of S defined by I terminates, while that of S' must

certainly diverge.

However, it .!! possible to show that if a pair of iteration schemas

satisfy certain condition&, then they must contain a pair of iteration

statements such that the schemas are equivalent if and only if they have

the same values for all consistent executions in which the bodies of

these statements are executed no more than once. This implies that we

can decide the equivalence of such schemas by deed.ding the equivalence

of two pairs of schemas which are 0 s:impler" than the originals in the

sense that they coRt&in fewer iteration statements:

(i) the schemas obtained fran the originals by eU.mioating theee

particular iteration statements £ran their respective programs; and

(ii) the schemas obtained fran the origioals by replacing these

iteration statements with their bodies.

Moreover, if we can ensure that the resultant pairs of schemas
' \.'

satisfy the same conditions as the original pair, we ca~ repeatedly

- 72 -

eliminate iteration statements from successive pairs of schemas until

we have reduced the equivalence of the otiginal aChemas to the

equivalence of some bounded 'll'Ulaber of pair$ of scliena"s which contain

no itel.'&t:ion stateml!nta (and fol:' Which ~1vatence is" trivially

decidable). Thus the conditions for which such ite1'8tion statements

are guaranteed to exist are of cenaidenbte :beerest.

The conditions are explicated in Theorem 5.1 in this section,

after a preliminai:y result:

Let X, Y and Z be sets of words over sc:ae alphabet T. * Let f 1: X-+ T

* * * -and f
3

: X-+ T be total functions, and let f 2 : Y -+ T be a total

function such that for each o,cr E y* we have f 2(o)•f2(cr) = f2(o•cr).

Let o: E X and let Y E Z, and suppose thf! following, equalities hold:

1. y • 0: "" f' (0:) • f 1 (0:)

2. v·P·o:= £3(o:)·f2 CP)·f1{o:), all 13 E Y

Then y.f3 .o: = £
3
(0:)•f

2
(P)•f1(o:),

!'rgof: We know from {l) and (2) that tb,e ••.erti.on is correct if f3

is the empty string or JI is au el-.nt ot Y. Ass...- the

assertion is correct for all f3 E yi, 0 ~ i < j. Then

the assertion is correct for all f3 E yJ, as follows:

j-1
Let f3 = f3

1
• f3

2
, P

1
E Y , f3

2
E Y. The:ce are three

cases to consider, based on the relationship of o: to f 1 (o:)

in equality (1):

- 73 -

Case l· a = f 1 (a)

Then y = f
3

(a). We have from equality (2):

y·P 1·a = y·f2 (p 1)·a and y·P2 ·a = y·f2 (p2)·a, whence

P1·P2 = f2 (P 1)·f2 (p2) = f2 (p 1-p2) and thus

y·P·a = y·f2 (P)·a

Case 1· a= µ·f 1(a), µnon-empty.

Then y·µ = f
3

(a). We have:

~p[(y·p·a = f
3
(a).f2 (p)·f 1(a)) ~

(y·p·µ·f 1(a) = f
3
(a)·f2 (p)·f1(a)) ~

(y·p·µ = f
3
(a)·f

2
(p)) ~

(y·p·µ = y·µ·f2(p)) ~

(p·µ = µ·f2(p))]

Substituting p1 and p2 for p yields:

P1·µ = µ·f2<P1)

P2 . µ = µ. f2 <P2)

Then:

y·P·a = y·p.µ·f
1

(a)

= y·P 1·P2 ·µ·f
1

(a)

= y·P 1·µ·f2 (p2)·f1(a)

= y·µ·f
2

(p
1
)·f

2
(p2)·f

1
(a)

= f
3

(a)·f2 (P
1

·p
2
)·f

1
(a)

= f
3
(a)·f

2
(P)·£

1
(a)

- 74 -

f!u l• µ.a • f
1
(a), µ non-empty.

The preo.f for ea ... J is aUif.l&r. to. that f ~ .c.~' .2 &nd is left

D

'l'heoJ'S .,2...1: (EU.mina t ion Theorem)

Let S and S' be iteration seh.n. s with the"..- variabl~.~ols, and let

D be the union of the domains .of the-!r:ifree.,;.tJlte~t~ Let D' be

the set {ojo•A x E D. x any vamat>l~. ~ 1'4.¢" the .ech..,a}.. Let s and

s' be iteration •tate•ente 1J1.·· ~· ~.of ~· 4tlld S' .,, nspectiftlYil

and suppose that for any variable 8"fi1Pol, 'I· Qt. ,the ~ there exist

total functions fy
1

: D -+ D, £
12

: D' ~·De'•• «-1 £
13

:. I> .+ D', vhich

satisfy the follow~ condition:

Let E and E1 be f'b:dte., conaii~Dt~ f.ne aa:cutf.GUI of s

and S'. Let a, fl, and y be strinp. ~ that ~;is the value

associated with y just prior to the f.Lgat . .ell'e~ution, of statement s
.; '

during E, ti• a is the value associated with y illlaediately following

the last e:xee11tion of s, and y. Jl •a is the value asaocf.ated with y

at the conclusion of E. Let a', fJ ·•,, and Y' lie strings defined

in a s:lmilar manner with E' i1l :p.i.a-. .of JI.; ·at14· s' in place of s.

'l'hen:

1. a' = ,fYl (a)

2. fJ ' = f {fl)
. Y,i ..

3. Y' = f.Y3 (a)

Suppose also that concatenation distributes over the function fy
2

, i.e.

suppose that f (o)• f (er) = f (o•cr), all o,cr E D'.
Y2 Y2 Y2

- 75 '."

X..t s0 be .t4~ ·'cbema o:J?t•ip.ed,if~ .. ~~bt1Sl~'8t:LJ?.g ·~~~~pt Iii

frc;a its progra~. ~t:S1 be"~ ~.~ ~~~.,£~;·~)J: re~~·c~

s with the pr~~ C>.f the body qf. •• J.e;;r~·~•· ·~~:s,~1 be, th:'r~~~

obtained by eliminating s' 1,o..~ a.ia,lil.4J" ~~J°':JlJ~'.Jhe ~ ~;~f;;

Thea s is eqµiv~l-.nt to S' if aQAi ~LJ. ~£"'~~ ,~ e,q~ya~e~t to S' 0,

Proof: ·Frcxn the previous"t ... , it '.Utt' b9 dla-··~···that S aiid'fs•·~:are

equival~nt tf they have th'•' .. wi~'lht·"Cl:mai'Steiit'·e~tions

during whidl the bodi.88" of: s a~ ... ~p>mi. ~·''no 1no1:e than
>

) .
once. (This ensw:es that the two equalitieastw the' lemma •-re
aatis£Le4.) Cl~J"J.:redU.J: ~-"~ ca•eL>.if.(,•pcl;.QO.g. if ~0 is

•'

0 ..

with regard' to its a\;t>licat'totts':'

Suppose we have a pair of "'aches S and sl' ~h~se' programs ~oosist
I." .i:"<t ,~ ·"'{~:•' •; :', "~".~~ < ~ ... •

of assignment and iteration statements only, and which have identical

sets of Variable syal>ols.· Let a·•·dle· 1W8t '~ti.411·:11t:atallabt in the

pr6gram 'of s, and suppc;M then eete• •·dwl•r• at''~ ;:chs-prognm of
I

of s, we may divide the value f! associated with x at the conclusion
x

of a finite, free execution E of S into three parts: the part generated

prior to the executions of statements, the partcgenerated during the

executU>ns d. statement s, and the part generated following the executions

- 76 -

of statement s.. (We note that the last part 18 a constant: since s is

the last iteradion sta1:eme.nt :ttt ·the progmm of S, the last part is

determined by tl&e particular assignment su«snents · f oll<Ming s and is

independent C:Jf· the execution we consider~)

Similarly, we may divide the value ~· x a•ssociat:ed with x at the

conclusion of a consistent execution of S' into portions generated

prior to the allBCUtions of statement s' a during the executions of

statement s' ,. al'Ld f-ollowing the executioas of st.ate-.ut s 1
•

'l'he conditions req'11.red by the theoreaa fer tlie elimination of s

and s 1 are these:

(1) The portion of~· genested dU'l:ingthe emcutiotra of s'
x

depends only on the portion of ~· generated during the esec:utions of s,
x

while the other portions of ~' x do .Q2t. depend on this portion of ~ x •

(ii) 'lbe pot"tion of ~ 'x g$nerated during ,!¥h execution of s'

depends only on the portion of l!;x ~rated d:µ~n.g the. corresponciing

execution of statement s. (Intuitively, this ensures that concatenation

distributes over the function £2.)

These requireaaents are of course rather strict, bu·t we shall show

that for several iateres.ting classes of schemas, the requi.Dmaeuts J!!!§!.

be satisfied by any pair of equivalent ~ema.s.

- 77 -

5.5 Solvable Problems for Single Appearance Schemas.

In this section we demonstrate that equivalence is decidable for

certain classes of restricted location, single appearance schemas

(RLSA schemas). We begin by considering the class of such schemas

which are conditional-free.

5.5.1 Decidability of Equivalence for Conditional-free RLSA Schemas.

Let S be an iteration schema, and let s be an iteration statement

in S. We say that s is a trap in S if, whenever the first element of

TESTS(s,E) has outcome ~ if s is a WHILE statement or outcome false

if s is an UNTIL statement, E is a non-terminating execution of S.

(That is, a statement in a schema is a trap if the execution of its

body is sufficient to guarantee the divergence of the schema's

execution.)

While it is in general undecidable whether an iteration statement

in an arbitrary iteration schema is a trap, it 1:§. decidable whether an

iteration statement in a RLSA schema is a trap:

Let S be such a schema. Clearly, S contain~ a trap if and only if

it contains some iteration statement s such that the body of s contains

no assigmnent statement of the form 'x ~ f(x)', where xis the test

variable of s. If such a statement exists, then it is a trap as is any

iteration statement in its body. After being identified, any such trap

can be removed from the schema and the schema can be re-examined for

additional traps until all have been found.

Of course we cannot, in general, remove traps from a schema without

- 78 -

affecting its output behavior under certain interpretations. If the

schema is a R.LSA schema, however, we can at least ensure that its traps

take a particularly simple form:

An iteration schema is in proper !gm if the body of each of its

traps is the empty schema SE.

We note that any BLSA schema call be effectively transformed into an

equivalent RI.SA schema in proper form.

LS!!ll! ,i.d:

Let S and S' be equivalent RI.SA schemas in proper form, such that neither

schema contains main conditional statements. Let s be a main WHILE

(UNTIL) statement in s, and let p be the predicate symbol in s. l'hen p

appears in a main WHILE (UNTIL) statement in S'.

Proof: Suppose otherwise. In particular, suppose that p appears in a

main WHILE statement in S but does not appear in a main WHILE

statement in S'. Let E' be the execution of S' in which the

body of no iteration statement is executed, and let E be any

consistent eucution of S defined by an interpretation in which

the predicate assigned to p is identically true. (Since no

test of the form (6,p) is made with outcome fahe during E',

some such E surely exists.) l'hen E' is a terminating execution,

while E is clearly non-terminating, contradicting the equivalence

of S and S'.

0

- 79 -

Lemma 5.3:

Let S and S' be equivalent RLSA schemas such that neither schema contains

main conditional statements. Then if p is a predicate symbol in a main

trap of s, pis a predicate symbol in a main trap of S'.

Proof: Since p appears in a main iteration statement in s, it must

also appear (according to the previous lemma) in a main iteration

statement in S'; moreover, each of these statements must be WHILE

statements or each must be UNTIL statements. Let s and s'

denote the statements in Sand S', respectively, in which p

appears.

Let E be any finite execution of s, and let E' be a consistent

execution of S'. Since Eis finite, TESTS(s,E) must consist of a

single element T. Clearly, T must be in TESTS(s',E'), since

we could otherwise change the outcome of T in E to obtain a

non-terminating execution of S consistent with E', contradicting

the equivalence of Sand S'. Also, T must be the first element

of TESTS(s',E'), since if it were not we could change the outcome

of this first element to obtain a finite execution E" of S' such

that E" is consistent with E and T is free with respect to E".

We could then change the outcome of T in E to obtain a non­

terminating execution of S consistent with E", again contradicting

the equivalence of Sand S'. Hence, for any pair of consistent

finite executions by the schemas, the first test made at s must be

the first test made at s'.

But then s' must be a trap:

- 80 -

If not, we could surely find a finite execut.ion E'
0

of B' in

which the body of s' is executed at least once. Since s and s'

are both WHILE statements or bothUNTtt statements, the body of s

must .also be executed at least-()JlCe during any e-.cution E0 of S

consistes¢ w.ith E'
0

(stnce tke f i'ut rt.eat made at ·s during E
0

must be the aa. as that made at '8 1 ·during· E' 0). But since s

is a tap, the hleeutioa E0 mus.t' be non"'tel'illmti1ig, and we

again coatadict the equivalence of B and st.

0

LeD!!!! ~:

Let S and S' be equi.WLl~nt RI.SA schemas •µch that ne:Lther 4Qlltains main

conditional ste~eaeats. Let abe a-~ iteration, et:ateine111.c: of s. Then

there exi.sts a •in iteration .11tat~nt s' Qf S' ~ that s' and s are

logic equivalent.

P{ppf: If s is a trap, the result follows frma the pxeceding lemma.

SupPose that s is not a trap:

Let p be the predicate symbol in s. According to Lemma 5.2,

S' must contain a main iteration statement s' with predicate

symbol p. If s and s' are not logic equivalent, there must

exist finite, consistent, free executions E of S and E' of S'

such that TESTS(s,E) ~ TES1'S(s',E 1 j, and we can surely find such

sequences for which all but the last elements of the sequences are

the same. Let T be the last element of TESTS(s,E) and let T' be

- 81 -

the last element of TESTS(s',E'). The first component of one of

the tests, say T, is at least as long as the first component of

the other. We need only change the outcome of T to ~ if s is

a WHILE statement, or to false if s is an UNTIL statement, and

provide the same outcome for each subsequent test made at s to

obtain a non-terminating execution of S. But since all of

these tests must be free with respect to E', the execution is

consistent with E', contradicting the equivalence of Sand S'. ,,

D

Lemma 5.5:

Let S and S' be equivalent, conditional-free, RLSA schemas in proper

form. Let s be any main iteration statement of s, and let R be the

body of s. Let s' be the iteration statement in S' logic equivalent

to s, and let R' be the body of s'. Then every predicate symbol in

a main iteration statement of R is in some main iteration statement of

R' •

Proof: Let s1 be the schema obtained from S by replacing s with the

program of R, and let S'1 be the schema obtained from S' by

replacing s' with the program of R'. Since s and s' are logic

equivalent, s
1

and s•
1

must be equivalent schemas. ~emma 5.2

ensures, therefore, that each predicate symbol which appears in

a main iteration statement of s1 must appear in a main iteration

statement of s• 1, and the result follows immediately.

D

- 82 -

We are now in a position to prove the following rather intuitive

result:

Lep!l!l.~:

Let 8 and s• be equivalent, coeditiOD&l·f••• IU..Se\ schemas in proper

fo:tm. lben each iteration statement :f.n S·:L•logioequivalent to some

itezati0n statement ill. S'.

Proof: For simplicity, we a:1B1J111e that S and S' ba\fe only two levels of

iteration: the obvi,ous generalisation is left to the reader.

Let s be a main iteration statement of s, and let R be its

body. Let s' be the main itei:ation statemel1.t of S' wtlich is

logic eq1.1ivalent to s, and let R' ·be the body of s'. Lenna 5.5

ensures that for each main iteration statement. r of R, there is

a: main itention statement r' of lt.' containing the· same predicate

symbol ..

Let s1 an4 S' 1 be the schemas constructed as in the proof of

Lemna 5.5. According to Lemma 5.4, r and r' must be logic

equivaleat stateaencs ia. these sckemas, iaplyin.g that r>•cisely

the same tests are made at each statement during the first

executions of R and I.' in any pair of finite, constatent, free

executions of Sand S' ..

Let s:2 be the schema obtained from s by replacing s with two

copies of the program: of R, ~ let S' 2 be obtained similarly

from s I. From the pnceding ·~nt, we ruwe that the first

instance in s
2

of each main iteration statement of R must be logic

- 83 -

equivalent to the first instance in s 1
2 of the statement

containing the same predicate symbol. Hence, we may change

the predicate symbol in each such pair of statements to some

new symbol which does not appear elsewhere in the schemas,

without affecting the equivalence of s2 and s 1

2• Since the

resultant schemas are single appearance schemas, we can apply

Lemma 5.4 to demonstrate that the second occurance in s2 of the

statement r is logic equivalent to the second occurance in S' 2

of statement r', implying that the same tests are made at rand

r' during the first .!.!.!& second executions of R and R' in any

pair of finite, consistent, free executions of S and S'.

For any n > O, we need only apply this argument n times

to demonstrate that, for such executions, the same tests are

made at rand r' during the first .B executions of Rand R';

hence, r and r' are logic equivalent.

D

An immediate consequence of the lemma is that predicate symbols

of such schemas S and S' must be similarly "nested" in each schema, i.e.

if symbol p is in the body of the statement in S containing symbol q,

then p must be in the body of the statement in S' containing q.

Suppose we wish to decide the equivalence of RI.SA schemas Sand S',

and suppose neither schema contains main conditional statements. From a

previous lemma, we know that if S contains a main trap which has predicate

- 84 -

symbol p and test variable x, then S' can be equivalent to S only if S'

contains a simU.ar main trap. Suppose that this is the case:

Let S be the schema obtained fran S by adding a new variable symbol
p

vp to the schema and following each statement of the forsn

x +- f(x)

in the portion of S preceding the trap with the statement

and then deleting the trap. (Intuitively, vp is used during an execution

of S to "record" the value of x which would have been tested at the p

trap during the corre8petlding execution of s.) Ltlt S' P be the schema

obtained in a similar manner fran S'.

We know frc.a tha proof of Lemma 5.3 that if S anci S' are equivalent,

the value tested at the trap in S must be the same as that tested at the

trap in S' during any pair of consistent, finite executions of the

schemas. Hence, S and S' are equivalent if and only if Sp and S' P are

equivalent, and it is clear that by repeating the construction for each

corresponding pair of traps in the schemas, we can reduce the equivalence

problem for S and S' to that for similar schemas which have no main

traps.

Lemma 1:.1=

Let S and S' be conditional-free RI.SA scheaaas, and let k > 0 be the

maximum of their sizes. Then we may construct fr<Jll S and S' 'two pairs

of conditional-free RI.SA schemas of size no greater than k-1, such that

- 85 -

S and S' are equivalent if and only if each of the pairs comprises

equivalent schemas.

Proof: We may ass'lmle that S and S' have the same variable symbols and

that their predicate symbols are similarly nested, othexwise we

can immediately conclude that they are not equivalent. Without

loss of generality, we may also assl.Dlle that the schemas are

without main traps.

Let s be the last iteration statement in the program of s,

and let s' be the statement in S' containing the same predicate

symbol as s. Let s
0

, S' , S , and S' be the schemas constructed
0 1 1

from S and S' as in the proof of Theorem 5.1, and suppose that

s
0

is equivalent to s 1

0 and s
1

is equivalent to s 1

1
:

Every statement which follows s' in S' must be logic

equivalent in s 1

0
to a corresponding statement in s0, and must

be logic equivalent in s 1

1 to the same statement in s
1

• Clearly,

this can be the case only if each variable modified at s' is

passive in all statements in S' which follows'. Now, let E and

E' be arbitrary consistent, finite, free executions of Sand S',

and let x be any variable symbol of the schemas:

We may write the value associated with x at the conclusion

of E as Y • P • o:, where a is the value associated with x just

prior to the first execution of statement s, P •a is the value

associated with x i.nnnediately following the last execution of

statement s, and Y is the fixed portion of the value due to the

- 86 -

assignment statements affecting x which follow statement s in

the schema. We may write the value associated with :x at the

conclusion of E' as Y' • P '·a', where a•, P', and y' are

defined in a manaer similar to that above, although y' is

not fixed but rather depends in general on the particular

execution EI .being considered. Since each variable modified at

s' is paaaive in all statements followings', it must be the

case that y.a • Y' •a•, and that -that Y' and o:' are

canpletely determined by a. Aiso, it must be the case that

ti ' is c<'lll}'letely determined by fJ since every test made during

an e:xe.cution of the body of s must alao be tna4e dtlring the

corresponding e:aec\ltion of the body of ~', else by Lemaa 5. 6

we t:'Ol.'ltrlldict the equivalence ef s
1

and s• 1.

Thus, there must exist functions f:x
1

,

for all executions E and E' as above, a'

f , and fx such that
x2 3

.. fx (a), ~ ' = fx (.p),
1 2

and y' • fx (a). As noted above, the portion of P' due to a
3 .

particular eacution of s' during E• depends only ·on that portion

of P due to the corresponding execution of s during E, and hence

concatenation distributes over f~. The lemna then follows from

the Elimi.aation 'l'heai:em:

Sand S' an equivalettt if aitd only if s0 and s• 0 , and s
1

and

S' P are pairwise equivalent.

0

/

- 87 -

Thus we have:

Theorem 5.2:

Let S and S' be conditional-free RI.SA schemas. Then it is decidable

whether S and S' are equivalent.

Proof: We note that equivalence is trivially decidable for schemas of

size O. The theorem follows i.mnediately from the previous

lemma by induction on the maximum of the sizes of Sand S'.

0

Theorem 5.2 can hardly be considered a surprising result, and the

reader will no doubt have observed that there are rather more direct

approaches to this particular problem than that which we have presented.

(In particular, Lemma 5.6 can be proved fairly simply without utilizing

Lemmas 5.4 and 5.5, although our efforts are hardly wasted since these

lemmas are needed in the next section.)

The proof presented, however, illustrates the major steps in the

proofs of our other cases:

(i) The transformation of schemas into a form facilitating the

identification of logic equivalent statements.

(ii) The demonstration that such statements exist in pairs of

equivalent schemas.

(iii) The application of the Elimination Theorem to reduce the

equivalence of a pair of schemas to that of "smaller" schemas.

- 88 -

In the present case, all three steps are relatively straightforward.

In the next case, however, step (i) is complicated by the presence of

conditional statements in the schemas, while in the third case steps

(ii) and (iii) are complicated by the multiple appearance of predicate

symbols. Tile major steps, however, are the same in each proof.

- 89 -

5.5.2 Decidability of Equivalence for FRI.SA Schemas.

In this section we demonstrate that equivalence is decidable for

the class of free, restricted location, single appearance schemas

(FRI.SA schemas).

We begin by showing that essentiality is decidable in such schemas:

Lemma 5,8:

Let S be an FRI.SA schema. Then for each predicate symbol p in S, it is

decidable whether or not p is essential.

Proof: Since the schema is free, it is clear that p is an essential

symbol if it appears in an iteration statement in s. Suppose,

therefore, that p appears in a conditional statement. We claim

that p is essential if and only if the true and false subschemas

of this statement are not equivalent:

Let s be the conditional statement, and suppose that its

subschemas are not equivalent. Then we can find partial executions

Et and Ef of S such that the executions end immediately after the

first execution of a subschema of s, the executions conflict only

with respect to the outcome of the test made at s, and the value

associated with some variable symbol x of S is different at the

end of each of the executions. We complete the execution Et in

such a way that the outcome of each test subsequently made at a

WHILE statement is false, the outcome of each test subsequently

made at an UNTIL statement is ~' and the outcome of each test

subsequently ma.de at a conditional statement is, say, ~ in each

- 90 -

case. We -c~lete the execution Ef in a similar manner. Since S

is a siugle appea1:1lnce schema, these 'cClllplete e•cutions conflict

only with ·-reapec.t to the outcane of the teat nlllde at s. But since

pt'e"Cisely the same sequence of sta·temants is executed after·:e in

each -•, ttae val\18 of x •t tb.e ead of the execut.ions aust still

be different. He.nee, p is au essential symbol if and only if the

sub.t1~a of s are aot e.quivalent.

If either eubschemll c1'Bt4ins an iterat:iou atatemnt, the

.subecbeaa• ce.nnot be equivalent .since the otheY subschema

unnot ~iu an iteration statement with the ·-.me predicate

symbol. If neither subschema contains an iteration statement,
. .

their equivale~e is trivially decidable since there are only a

finite nimtl>er of distinct free executions of the schemas.

Hence, it is .decidable wbethes: p is e,eaential.

0

We say that a schema is reduced if it contains no inessential

symbols. We not:e that a conditfona1 statement containing an

inessential symbol may be replaced in a schema with the program

of either of its subscheaas, and thus we have:

- 91 -

Corollary .2.:j,:

Let S be a FRI.SA schema. Then we may construct from S a reduced FRI.SA

schema equivalent to s. _J

It may be worth mentioning here that the decision not to permit

the designation of certain schema .variables as "output" variables is

rewarded with the relative simplicity of the proof of Lemma 5.8.

While the result is still true for schemas with specified output

variables (it was established by the author in [22] for a class of

schemas somewhat more general that the FRI.SA schemas), the proof

becomes rather complex in that case, since we must show that the final

value of some output variable, rather than some arbitrary variable, is

dependent on the outcome of a test made at a conditional statement.

Since this dependency may be quite indirect, the decision procedure for

such schemas is quite complicated.

We use some of the results of the previous section to prove the

following lemma:

Lemma .2:1.Q:

Let S and S' be reduced, equivalent FRI.SA schemas. Then predicate symbol

p appears in a conditional/WHILE/UNTIL statement in S if and only if it

appears in a conditional/WHILE/UNTIL statement in S'. Moreover, for each

iteration statement in S there is a logic equivalent iteration statement

in S', and ifs ands' are such iteration statements, the sets of

predicate symbols appearing in their schemas are the same.

- 92 -

Proof: Suppose that predicate symbol p appears in a main conditional

stat:ement: s of s. Since p is an essential 8'mbo1, it inuat appear

in some &ta:tement s' in S'. MoreO'\tt!'r, a' must· be- a c::onditional

statement:

Suppose othei:wise. In particula.r, suppose that s' is a

WHILE statement. Let S
0

be the sch- obtained from S by

replacing a w:Lth the program of its true subschema., and let S 'co

be the nscbema" obtained frm S' by replacing s' with infinitely

many copies of its body. 80 must be equivalent to S'co, but since

S' is free, at least one of its variables (namely the test

variable of e') is modified at s', and thus S qg,not be
0

equivalent to S'm• Hence, s' muat be a conditional statement.

We note' also that since p is essential, a productive teat may be

made at s' each time .it is executed. If S and s' are to be

equivalent, therefore, s' must be a main conditional statement

of S'.

We are thus assured that for each main conditional statement

in s, there is a main conditional statement in S' with the same

predicate symbol. Let, st and sf b~ the schamas,.obtained

from S by replacing each main ~oacl.itional s~atement with the

program of its true subschema and.i~s false.subschema,

respectively. Let S' t and S' f be obtai~4 i,:l a sill>ilar manner

from s•. Clearly, St must be equivalent to S't, and Sf 111U8t be

equivalent to S'f. Applying Lennas 5.2 and 5.4 to each pair of

schemas, we establish the desired result for the symbols occuring

- 93 -

in main statements of the schema. We need only employ the

methods of Lemmas 5.5 and 5.6 to establish the result for all

symbols.

D

Again, the preceding result is highly intuitive. We note,

however, that the result is hardly less intuitive, though demonstrably

false, if we remove the restriction of freeness from the schemas.

We now show that a "weak" form of logic equivalence must hold

between certain main conditional statements of equivalent, reduced, FRI.SA

schemas. The following definition is useful:

Let r be a main conditional statement in an iteration schema S.

Then r is a final main conditional statement if, whenever r is executed

during an execution of S, no main conditional is executed after r.

Legna 1:11:

Let S and S' be equivalent, reduced, FRI.SA schemas, and let r be a final

main conditional statement of s. Let E and E' be consistent, finite,

free executions of Sand S', respectively. Then a test Tis made at r

during E only if Tis made during E'.

Proof: Suppose that such a test is made during E. If either subschema

of r contains an iteration statement s, then from Lemma 5.10

s can execute during E only if the statement logic equivalent to

s executes during E'. Hence, T cannot be free with respect to E'.

Suppose that neither subschema of r contains an iteration

- 94 -

statement, i.e. suppose that both subschemas are composed solely

of assignment statements. Let x be the test variable of r, and

let r' denote the main conditional in S' containing the same

predicate symbol as r. Since S and S' are equivalent and reduced,

the test variable of r' must also be x and no iteration statement

which modifies x can precede r' in the program of S' unless its

logic equivalent counterpart precedes r in the program of s.

Let E
0

be the execution obtained from E by choosing outcome

false f o'l' each test made at a WHILE statement after the execution

of r, and outcome ~ for each test nade at an UNTIL

statement; let E'
0

be a consistent execution of S'. The test

7' is made· during E0 , and since the predicate symbol in r is

es111enti4l and· the subschemas of r consist solely ·of aasignment

statements, the val'Ufl associated with some variable symbol y after

the execution of r during E
0

must depend on the outcome of 'T.

Also, since an assi~nt atat~nt :l,s exec~t.ed aft.er the

execution of .. r in E0 just if the assiiDDl'nt stat"8)ent is a ma.in

statement of s, the value assoc.iated with y at tile ;onstuion

of E0 must also depend on the out.come of 1". Since S and S' ~re

equivalent schemas, test 1" must be made ,during E'
0

and hence

during E'.

0

- 95 -

We may apply the lemma recursively to a pair of such schemas S and S'

to obtain:

Corollary 5.12:

Let Sand S' be as in Lemma 5.11. Let s be a main conditional of s,

and let s' be the main conditional of S' with the same predicate symbol.

Then during any pair of finite, consistent, free executions of Sand S',

either no test is made at s ors', or the same test is made at both

statements. _j

A consequence of the corollary is that the equivalence problem for

FRLSA schemas reduces to that for FRLSA schemas with no main conditional

statements:

Let S and S' be reduced FRLSA schemas, and suppose that for each

main conditional in S there is a main conditional in S' with the same

predicate symbol and test variable. (If such is not the case, we may

conclude from Lemma 5.10 that Sand S' are not equivalent.) Let r be a

final main conditional of S, and let r' be the corresponding main

conditional of S'. We construct from Sand S' a pair of schemas S0 and

S'
0

, as follows:

We add a new variable symbol xr to each schema to record the

values tested at r and r' during executions of the schemas, in the

same manner as when eliminating main traps from the schemas of Section

5.5.1. If r is in a subschema of some other main conditional of S, we

replace this conditional with the program of the subschema and replace

- 96 -

the cori:esPQllding conditi~l in S' wit.h ~~, pr~ 0,;, its_ coi;-reaponding

subschema. This is repeated until r is no longer in a sub~ of ,~ main

conditional of S, and then r and r' are replaced with the programs of one

of their subschemas, say their true s~a. The reau'.l.tant··~~. axe
_;,

S and S' •
0 0

We construct a second pair of schemas ~t and _S' t from S a~ S'
' ~' •, . i ' .. {

by replacing r and r' with the progza .. of their true . aubechemas, and

reducing the resultant sehenw.s; a thii:d pair of actie.a Sf and ~· ! axe
.,. -, ~.

constructed in a similar manner, replaci.Dg rand r' with the progxaaa of

", '.,

Intuitively• the equivalence of S
0

eat S 1; 0 ;:..~s ~ a teat

made at r during an execution of S must also be 9de at r' 4w:~!UY

made a~ a condit.iQQal ~t-.. _ _,t o.f .. ~· 11JJlc;J!'! .. •~c .. cQJlt&iu .. ,·:X: :wU:J,.,liave

an outcome differe,a~ fr~ tbat of ~ ~~-~i.J&~,p~~~~ ~ S',

but from Cc;>roll.ao: .i~.1,2, thia is .:tJ,ut. .• ca~ ~ ~e ~· ~uiv~81',t ~o &~.t>

and sf is equv'J.aRr~. to S'r . ~,.: ~J:4PC1.St.a~.'"1li~i,~n; U aQ.d.:

only if S0 and S' 0.-st aud ~'t• &lld,$~~.S.',:f·•:~.H:i:Qriae eq~i"V:8:1.ent.

Since each of these schemas contains at least one fewe;:. •in:c()nd~ti9nal

than S and S' , the coostmct.i~~s ~Y ~- :r;e~~ ,.~.o '"~'fCe, the. equivalence

of S and S' to that of a finite .nulQ):>er of pai:r;s ... of achem$s without main
~ • ' <· ·•· • ~::: - ., ~;. ''£ ·~ ' ' ;' ~' .

condition.a ls.

:~ ' '
' '

The proof of the following leJ11118 is virtually identical to that of

Le.1Jlll8 5.7 and is left to the reader:

. r

- 97 -

Let S and S' be FBI.SA schemas without main conditionals, and let k > 0

be the maximum of their sizes.. Then we ~Y construct from S and S'

two pairs of Fm.SA schemas of size no greater than k-1, such that S and

S' are equivalent if and only if each of the pairs com.prises equivalent

schemas. _/

We have observed that the equivalence of a pair of Fm.SA schemas
',.,, ,_:, :'. ··::;; ..

can be reduced to that of a finite number of pairs of FRI.SA schemas
. ·;_,

without main conditionals. We note that the latter schemas are
. : '.; ,,;, ~.~

of the same size as the originals, and thus we have:

Theorem i.a.1:

Let S and S' be FBLSA. adl.-a.. then it i•. •~l• if S aad S' are

equivalent~

Proof: From the previous lenna, by imtuction (10.' the size of S and s•.

o·

- 98 -

5.6 Decidability of Equivalence for FILCF Schemas.

In the previous section we dealt with schemas in which predicate

symbols appeared only once. Finding logic equivalent statements in

equivalent schemas was quite easy, therefore, becauee we knew precisely

which pairs of statements to examine those containing the same

predicate symbols.

In this section we consider the equivalence problem for free,

independent location, conditional-free s~heaes CF1¥fF schemas). As

might be expected, the proof that logic equivalent statements exist in

equivalent pairs of such schemas is not quite as trivial as it was in

the previous cases~

LeDIDS ~:

Let s and s 1 be FILC:t edtetnas, and let s be the 11tat-< iteration statement

in the program of s. Then if S and S 1 are equivalent, there esists a

statement s' Ui the progralll Qf S' such tqat, s,,,a.nd •' al;'e 1.Qgie eq~ivalent.

Prgof: Suppose that S and S' are equivalent. Let E be a free execution

of S such that TESTS(s,E) contains infinitely many elements, and

let E' be a consistent execution of S'. (We note that since E

is non-tenninating and S and S' are equivalent schemas, E' must

be a non-terminating execution.) Clearly, every element of

TESTS(s,E) must be an element of TESTS*(S',E'), since if sane

T E TESTS(s,E) were not in TESTS*(S' ,E'), we could change the

outcome of T during E to obtain a terminating execution of S

consistent with the non-tenninating execution E', contradicting

- 99 -

the equivalence of Sand S'. Also, all but finitely many of

the elements of TESTS{s,E) must be in TESTS{s',E') for some

statement s' in S':

Suppose otherwise. lben there must exist statements s1

and sz in schema S' such that TESTS(s1,E 1
) and TESTS(s2,E 1

)

each contain infinitely many elements of TESTS(s,E). {For

simplicity we shall assume that s1 and s2 are the only such

statements.) It must be the case that one of the statements,

say s2, is in the body of the other. Let T be any test in

TESTS{s,E) n TESTS(s
2

,E 1
). If we change the outcome of T

during E, we obtain a terminating execution E" of S; also,

since S is an independent location schema, no value which

is longer than the first component of T and ends with the

same symbol is tested during E". Suppose we also change the

outcome of T during execution E': the first test made at

statement s1 after T is made at s2 must be free with respect to

E" since the value tested must be longer that that tested in T

and must end with the same symbol. If s1 is a WHILE statement,

we choose the outcome of this test to be ~' as we do for each

subsequent test made at s1 {each of which must also be free with

respect to E"). If s 1 is an UNTIL statement, we choose a

succession of false outcomes. In either case, the resultant

execution is consistent with E" but is non-tenninating,

contradicting the equivalence of Sand S'. Hence, there must

exist a statement s' such that all but finitely many elements

- 100 -

of TESTS(s,E) are in TESTS(s',E').

We now show thats' must be in the program of S':

Let x be the test variable of statements s and s', and

suppose thats' is not in the program of S', i.e. suppose that

s' is in the body of some iteration sta.teinent r 0 in the program

of S'. Clearly, no statement r vhich follows r
0

in the program

can have test variable x, othei:wise we could obtain from E a

terminating eacution of S and f ram E' a consistent,

non-teminating e:xacution of s• by changin.i the Outcome of

any test 'T E (TESTS(s,E) n T.ESTS(e'• ,E')) as above, using s' in

place of s2 and r in place of s1• Similarly, the statement r 0

itself cannot have test variable x. Let 'T' be the first test

made at r
0

with the property that durlng the subsequent

execution of r 0's body, sane test 'T" E TESTS(s,E) is made at s'.

Let E1 be an execution of S consistent with E e:Xcept for the

outcome of test T" (if T" is made during E), and such that

TESTS(s,E1) is infinite. Let E' 1 be an e:xacution of S'

consistent with E1 and consistent with the porti0n of E'

preceding the execution of r
0

• If we apply the arguments of

the preceding paragraph, we have that: there exists a statement

s 1

1 in schema S' such that all but finitely many of the elements

of TESTS(s,E1) are in TESTS(s' 1,E'
1
). Moreover, s' must be in

1

the body of sone iteration statement r 1 which follows r 0 in the

program of S', since E and E' 1 are the sauie prior to the

execution of r 0, and s 1

1 itself cannot be in the program of S'.

I,

- 101 -

But if we repeat this argument ad infinitum, we can show that

there must exist ~n infinite sequence of statements r 0,r1,r2 ,

which follow one another in the program of S', an impossibility

since the program must be finite. Hence, the statement s' must

be in the program of S' (and must in fact be the last iteration

statement in the program with test variable x).

The logic equivalence of the statements is now easily

demonstrated:

We note that for any pair of finite, consistent, free

executions E0 of Sand E' 0 of S', the last element of TESTS(s,E
0

)

must be the same as the last element of TESTS(s',E'
0
). If this

were not the case, we could change the outcome of whichever test

had the longer first component, or either test if the components

were of equal length, without disrupting the consistency of the

executions. This would cause another test to be made at the

corresponding statement and since this test, and all subsequent

tests made at the statement, would be free with respect to the

execution of the other schema, we could permit this execution

to diverge while still remaining consistent with the other, thus

contradicting the equivalence of Sand S'.

Hence, the last elements of TESTS(s,E
0

) and TESTS(s',E'
0

)

must be the same for any such E
0

and E' 0 • But since the schemas

are free, this can be the case only if TESTS(s,E
0

) = TESTS(s',E'
0
):

Suppose otherwise. Then there must be a test T in one of the

sequences, say TESTS(s,E0), which is not in the other. Since T

- 102 -

must be made during E'
0

, it must be the case that T E TESTS(r,E'
0

)

for some statement r whose e2eution pi:ecetres that of s' during

E'
0

• Let 1·
1

be the execution of a· conflfct:tng with E
0

only w.ith

respect to the outcome· of T, and let E'
1

.be' an 'execution of S'

which ia consistent with EJ. and is consi'Stftt with the portion

of E'
0

which precedes the milking of test 'T. It Ul'll8t be the case

that 'T E 'l'!S'?S(r,E' 1), but since .,. is the lA.at element of

TESTS(s,E1) it must alao be the last elementt of 1JIS~li(s',E' 1),

contradictfag the fi:eenasa of s•.

We have, therefore, that TESTS(s,E
0

) ,.. TE'STS(s' ,E'
0

) for

any pair of finite, consistent, free e•cutions !
0

and E'
0

,

and thus s and s' are logic eqUivalent.

D

Let S and S' be equivalent FIL1C schemas of s~e g~te.r than O. Let

s be the last iteiation statement in the. puogr$11 of s, 4ru:l l~t s' be

the logic equivalent iteration stateaellt in S'. 'l'ben e~c~ va~iable

which is modified at s' ia passive iJ:l all. statements which fol,low s'

in the program of S' •

Proof: Suppose othet"Wise. In particular, suppose that a variable x is

modified at s' and active in SOile sta.tement s" wh~ch followe s'.

(For simplicity, we ass1,JJDe that x is the only such variable and

s" the only such statement the ~neralization is tedious

- 103 -

but straightfoIWard.) We can assume without loss of generality

that x is the test variable of s", for if it is instead the test

variable of some statement in the body of s", we merely restrict

attention in the ensuing discussions to executions of S' during

which this statement is executed.

Since x is modified at statement s' it is clearly the

case that x is modified at s, since otheIWise the value of x

would be independent of the number of times s were executed

during a free execution of S, while the value of x grows, in

general, in proportion to the number of times the statement

s' is executed during a free execution of S'.

Also, it must be the case that x is active in

statement s:

Suppose otheIWise. Let E and E' be consistent,

finite, free executions of S and S' such that the value

associated with x after the last execution of s' during E' is

longer than that associated with x immediately prior to the

first execution of s during E. Since we are assllllling that x is

passive in s, the first test ma.de at s" during E' must be free

with respect to E, as must any subsequent tests ma.de at s". By

choosing ~ outcomes for all of these tests, if s" is a WHILE

statement, or false outcomes for all of these tests, if s" is

an UNTIL statement, we obtain a non-terminating execution of

S' consistent with E, which contradicts the equivalence of S

and S'. Hence, x must be active ins. But thens must also

- 104 -

be active in s' :

Suppose otherwise. Let R be the bOdy of s, and let sx

be a ·sta·tement with test varlablt? ·x irt R. · tet' Ex be a free

execution of S in which •x i'a ezect'lted iftf~l'tely often

s·• cons.istent with ·E :ln Which the body of s' is executed
x

eactly twice. s tuce s and s' am eqt'.tiva tent: schemas E' ' x

must 1te • ·mm-tel!l'dllllt:ring ~titm. · !n ·ract; · l:t must ~ the

case 11ka1: ·BS'rS(a'ff,l'x) ·is Ulfftff'e ·tnld CM.-t all but finitely

11BUY of its •l--• •n in ~"iix,!x). Le't 1' be in

(TESTS(ax, Ex) n 'DIST-&(911
, If' xH, •ml' ·l-ft· :fx' b'e an execution of

s which ,ts cona'istent .wfl:h -Bx: eacept 'for the outcdme of T and

which has the property that 8x is exec:utett· iliftn1tely often

-during the second -eacvt>I:Ob t)f a !'a' g .• Then since x is
x

pass:Lve in a 11 stat!ements f c>l'l.,!tlg tl' ih the program of S ' ,
....

we can find a fink:e eacutiori J!" x 1>f s1•fdd.eh ;is consistent

-1'be execution E·' x •ilf be consi'steut; -with' E'' x until the

test: ,,. b made. Since each Statement0 stshst'qbetitly executed

has a test variable othet: than x, tto more· 'tha'n finitely many

tests need be made at any state.tit be-~~: a· te'st is made

which ie free with respect to ~*•" -We choose· the outcane of

such a test to be .t.m. if it is blade at an mrrn statement, or

false if it is 111&4e at a WHII.! 11tate11Btlt:. !he resultant

execution is clearly terminating aad ia consistent with Ex,

- 105 -

contradicting the equivalence of Sand S'. Hence, x must be

active in both sands'.

Let R' be the body of s', and let s'x be a statement in R'

with test variable x. For simplicity, we asstune that s'x is

the only statement in R' with test variable x and that sx is

the only statement in Rwith test variable x; the generaliza-

tion is again straightforward. Let E' be a free execution of

of S' in which s'x is executed infinitely often during the

first execution of R', and let Ebe a consistent execution of

s. No more than finitely many elements of TESTS(sx,E) may be

free with respect to E', otherwise we may terminate the

execution of Sin a manner consistent with E', contradicting

the equivalence of the schemas. Hence by changing the

outcome of some test TE (TESTS(sx,E) n TESTS(s'x,E'x)), we

may obtain from E a finite execution ET of S such that ET is

consistent with E except for the outcome of T, and such that

T is the last element of TESTS(sx,E.r). Let E' be an execution
T

of S' which is consistent with &,- and is also consistent with

the portion of E' prior to the ma.king of T. We note that the

first test ma.de at s" during E' must be free with respect to
T

ET, as must each subsequent test ma.de at s", and hence that

E'T can be chosen so that it is finite, again contradicting

the equivalence of Sand S'.

Thus no such variable x can exist, and each variable which

is modified at s' must be passive in all statements which follow

- 106 -

s' in the program of S'.

D

The proof of tile follow:l:ag lelllla ie apilll vi'rtually identical to

that of Lemna 5.7:

Legna l.:J&:

Let S and S' be FlLCF schemas, and let k > O be the maxbaum of their

sizes. 'lllen we -may construct from S and S"I two pair$ of FILCF schemas

of size no grea'ter l:han. k-l, ,such that S and S' are equivalent if and

only if -each· .<>f the pairs comprises equl.alent schema.a. __/

Finally, we have:

Theorem 2.s!t,:

Let S and S' be FILCF schemas. Then it is decidable whether or not

S and S' are equivalent.

Proof: Fran Lenna 5.16, by induction on the size of S.and S'.

D

- 107 -

5.7 Discussion.

Obviously, the preceding results do not provide answers to all of

the questions raised in Chapter IV. We conjecture, however, that

techniques similar to those we have presented are applicable to most of

the classes of schemas considered in the last paragraph of that chapter,

and that equivalence is decidable for each of the classes. For certain

of the classes, however, it is not clear that the additional efforts

required to establish decidability results are well-spent:

Our motive for studying the conditional-free schemas of the last

section, for example, is that such schemas may provide a suitable basis

for the study of structured independent location schemas in general, if

methods can be developed to remove in sane systematic manner the

conditional· statements from such schemas. It would hardly seem

worthwhile, therefore, to expend much effort in extending Theorem 5.4

to non-free schemas, since the equivalence problem for such schemas can

be shown reducible to that for free schemas in which conditionals are

permitted. Of course, it might be argued that freeness is a rather

undesirable restriction since it is not a decidable property of iteration

schemas, but it is fairly easy to show (see Appendix B) that freeness .!!

a decidable property of independent location schemas.

A similar comment applies to the result for FRI.SA schemas. Again,

we hope to be able to apply the result to more general classes of schemas

by identifying logic equivalent statements in pairs of schemas and

suitably changing the predicate symbols in the statements. {In fact,

- 108 -

Theorem 5.4 can be derived in such a way from Theorem 5.2, although the

proof that: we have pre&e'Bted ia 8GlliilWimt moa direct.) In light of the

undecidability i:esulta iti Chapte-r IV for restricted locat:ion schemas,

freeneu 11111 likely W a acwsary mst'tktion if equivalence is to be

decidable for these more general claseea. We ton little, t:herefore,

by imposing the watriction ndW.

A few ·final words are in order about a class of schemas which does

seem -worth consi4ering, however, and that is the class of free and

conditional-free schemas which are restricted location, rather than

independent location. We conjecture that Leana 5.14 is still valid for

such schemas, although the proof is complicated by the fact that the set

of tests whose first components end with some given symbol Ax need not

be made in order of increasing length.a of these components. The

remainder of the proof for the independent location schemas is, with

quite minor and obvious modifications, applicable to restricted location

schemas.

- 109 -

CHAPTER VI:

Independent location program schemas have been studied rather

extensively (cf, [12], [16], [191) because of the schemas' relative

simplicity and because their equivalence problems are interchangable

with those of a rather interesting class of automata, the multi-tape

finite automata defined in [23]. In this chapter, we consider the way

in which the equivalence problems for structured independent location

schemas relate to those for such schemas in general, and to those for

certain classes of the automata.

We show that the weak equivalence problems for structured and

non-structured independent location schemas are interchangable, and

that both problems are in fact unsolvable. While we are not able to

show that the equivalence problem for multi-tape automata is reducable

to that for structured independent location schemas, we !.!! able to

show that the equivalence problem for multi-tape automata with a single

control state reduces to that for such schemas, and that the strong

equivalence problem for independent location schemas in general reduces

to the problem of deciding whether such automata are equivalent over

some subset of their tapes.

6.1 Multi-Tape Finite Automata.

Our treatment of multi-tape automata differs somewhat from that in

[16] or [23] since we consider a rather special subclass of the automata

in a later section, and we wish the notions developed here to be

reasonable for this subclass.

- 110 -

Intuitively, an n-tape automaton M is a finite automaton equipped

with n one-way scanning heads, each on its own tape. Associated with M

is an advancement ftm.ction and a transition function 11hich detemine,

based on the cuttent internal state of Mand the 11-tuple of symbols

being scanned, tile ta.pe heads, if any, Wh:leh are to be advanced to the

next symbol, and ·the internal state of M which is then entered. A

particular state of M is designated the initial state of the autanaton,

another it• accepting state, and a third its zejecting state. No

transitions are permitted out of these 'last two states.

Each input tape of M is initially i.Q.ecdl>eci with a sequence of

symbols fJ:CG soae f ini~e tape alphabet followed by· a special endmarking

symbol $, 'beyond which a tape head u not pel!Dlitted to aoan. A

canputation by M on a set of tapes begiae with M in its initial state

and each tape head poaitionad at the lefQIOat aqua.re of its tape, and

proceeds until ea.di head is aeanuing its respect±ve emhmn:ker, at which

time a set of tapes is accepted if M is in ita ac.cept state or rejected

if M is in its rej~t state. If M is in neither state, or if such a

positioning of tape head.a never occurs, K is said to d;lyaxp on the

tapes.

Formally:

An n·~ aµtomaton is a seven-tuple

M = (T, Q, q1 , qa, qr, f, h)

where: T is a finite set of~ 1ymbols, including the special

- 111 -

endma.rker $.

Q is a finite set of control states.

qI E Q is the initial state of M.

qa E Q is the accepting state of M.

qr E Q is the rejecting state of M.

f: Q X Tn ~ Q is the state transition function, a total function

satisfying the property that f(q ,~) = q and f(q ,~) = q , all ~ E Tn.
a a r r

h: Q X Tn ~ 2(l, 2,•••,n}, where 2[l, 2,•••,n} denotes the power

set of {1,2, ••• ,n}, is the head advancement function, a total function

satisfying the property that h(q,~) does not contain i whenever the ith

component of ~ is $, all q E Q and ~ E Tn.

A configuration of M is a pair (q,A), where q is an element of Q

+ and A is an n-tuple of strings in T • (For such a A, we denote by TAIL(A)

the string of length n whose ith symbol is the last symbol of the ith

component of A, 1 s; is; n.)

A computation by M is a possibly infinite sequence of configurations

(ql,Al),(q2,~), ••• ' (qk'~),(qk+l'~+l), •••

in which q1 is the initial state q1 , A1 is a tuple of single symbols, and

for all i > 1:

(1)

(2)

qi = f(qi-l'TAIL(Ai-1))

A = A •S, where S is an n-tuple of symbols or nulls in T U
i i-1

{t..}, t.. the null string, such that for all j, 1 s: j s: n, the jth

component of S is t.. iff j f h(qi_
1

,TAIL(Ai_ 1)). (Concatenation is

extended to tuples of strings in the obvious manner: if X = (61, ••• , ck)

- 112 -

and Y = (cr1, ••• ,ak) are tuples of strings, then X•Y is the tuple

(cl· al' • • • ' Cit• 0 k) •)

An n-tuple of strings in T* is asgeptg.d by M if there is a finite

compu~tion l>y M ending with ·the conf igura.tion (q , A· $n); it is ajes-tsi ;a

by M if there is a finite computation ending with the configuration

(q ,A•$n). If A is neither accepted nor rejected by M, we say that M
r

divex;&es on A. We note that since there are ue traas.itions leaving

· q or q , no A may be both accepted and rejected by M. a r

The ~. ,,!fiJSl.?$1.4 by M, written L(M), ~s the set [A J A is

accepted by M}. 'l"he i •'•&ae ... by)!, Vl'iti.en L(M), :l.s the' ~t

[/\ I A is reject~ by M}.

6.2 Equivalence Problems For Multi-Tape Automata.

Let Mand M' be n-tape automata, eome n > o., 'lben·M andM' an

strongly equi;valeni: if L(M) = L(M') and L(M) • L(M'). M ·and H' oa:i:e
I . ··-- ' -····

weakly eguivalegt if (L(M) n L(M')) • ~ and (L(M) n L(M')) & ,, i.e. if

no tuple of strings accepted by M is rejected by M', and vice versa.

Let Mand M' be n-tape autanata, and let N = (i
1

, • .. ,11) be a set

of integers between 1 and n, inclusive. Then M and M' are !-restricted

eguivalent if the set ((c1, ••• ,c£) I for some A E L(M), Ci is the ijth
' j

component of A, 1 ~ j ~ £} is equal to the set {(&1, ••• ,6t) I for some

A E L(M'), Ci is the i.th component of A, 1 ~ j ~.A}, i.e. if Mand M'
j J

accept the same tuples of strings when attention is restricted to the

subset of their tapes designated by N.

- 113 -

6.3 "Equivalence" of Independent Location Schemas and Multi-Tape

Finite Automata.

Informally, we consider two models for computation to be

equival_ent if their equivalence problems are interchangable and if,

given an element in one model, we can effectively construct an element

in the other which simulates it in some well-defined manner. Luckham,

Park, and Paterson have demonstrated that independent location schemas

with n variable symbols are equivalent in this sense to finite automata

with n tapes. The simulations are straightforward (indeed the simulation

of the schemas by the automata is rather trivial), but they are of no

particular interest to us here; the reader is referred to [16] for

details. We do note here, however, that the weak equivalence and strong

equivalence problems for the automata correspond directly to the weak

equivalence and strong equivalence problems for the schemas, while the

restricted equivalence problem for the automata corresponds to the

equivalence problem for independent location schemas with designated

output symbols.

6.4 Weak Simulation of Multi-Tape Automata by Structured Independent

Location Schemas.

It follows from the discussion in the preceding section that any

independent location iteration schema can be simulated by some multi-tape

automaton. In this section we demonstrate that an arbitrary multi-tape

automaton can be "weakly" simulated by some such schema, i.e. simulated

in such a way that each computation by the automaton corresponds to an

execution of the schema for a suitably chosen interpretation, and each

- 114 -

terminating n.ecut.ioft of' the sche111a corxaapomle to sc:mae computation by

the automaton. We are tbus able to demonstrate the correspondence of·

the weak e-qutvatenee problem· for n aatmata .. and th~ ~sit. though

equivalence probl.811&.

6.4. l The Simula·tion.
.

Let M • Cl•1•••• .. 8tc•'$1 {qv····~qI'~'qlr}, qI' qa, qi:' f, h) .be

an n•t&pe autcaatum, for som u > o, as defined in Section 6.1. We show

how to cQUBtJ:Uet an i~apendant location t;Earation schema s
111

which

weakly siaalate• the autaaa.t.oa:

~will have vai:t.altle s~ols Xi:,.,. • .,.,xn., np~aen.t:l.ng the tapes of M.

It will han &11 addttfioaal variable aJll)aol.;,y which. :will be used to record

the states anctared by K cludng. a aial:ate4 ·~~~on,,,. and. also to

record the outeome ei cha. eaap\JC&tion (Mcap4:anee or,rejecttoa) if the

SM will have predicate symbols Ps ,. •• ,p
8

,p$, corrctspondiag to the
1 k

tape symbols of ~. It will ale<> have. pi:e4toate symbols Pq , ••• , P
0

, P
1

,
. 1 '

pq ,pq , corresponding to the states of M, and a •n'alnber of ~s" symbol
a r

Pm·

~ will have function symbol g representing the advancement of a

tape head, and symbols a and r denoting acceptance and rejection,

respectively.

For notational convenience, we provide simple representations for

certain boolean expressions:

- 115 -

For each i, 1 s i s k, and each j, 1 s j s n, we

the expression {p (x.) /\ (-,{p (x.) V p (x.) V •••
Si J Sl J S2 J

V p (x.) V ••• V p (x.) V p${x))).
si+l J sk J j

represent by P (x.)
Si J

V p (x
3
.)

si-1

Similarly, for each j, 1 s j ~ n, we represent by P$(xj) the

expression (p (x.) /\ (-, {p (x.) V ••• V p (x.))).
$ J sl J sk J

For each i, 1 ~ i ~ m, we represent by Pq the expression (p {y) /\
i qi

(.., (p (y) V p (y) V ••• V Pq {y) V p (y) V ••• V pQ {y) V p {y) V
ql q2 i-1 qi+l "'m qI

Pq (y) V Pq {y))), and define expressions for P , P , and Pq in a
a r qI qa r

similar manner.

Let cp
1

, cp
2

, ••• , cp n be an enumeration of the strings of
(k+l) n

length n over the tape alphabet of M. Th.en for each j, 1 ~ j ~ (k+l) ,

we represent by P the expression
cpj

where sj ·sj • ••• •s. = cp •
1 2 Jn j

... /\ P (x)),
sj n

n

We adopt a shorthand notation for certain sequences of assignment

instructions, as follows:

Let N = [i
1

, ••• ,it} be a set of integers between 1 and n,

inclusive. Th.en we denote by '~ ~ g{~)' the sequences of instructions

'x. ~ g{xi)', ••• 1
1 1

,'x. ~ g{xi)'.
1
t t

The subschemas of SM are as follows:

The empty schema SE and the divergent schema St' as defined in

Chapter IV.

n
For each i, 1 s is (k+l) , and each j, 1 s j s m, the subschema

si,j with program:

- 116 -

xh(qj ,q>i) +- g(~(qj ,tpi»

y ... g(y)

IF P
f(qj,cpi) THEN SE ELSE St

For ea-ch i, 1 s: i s: (k+l)n, the subsChema Si ,I with procram:

xh(qI 'cpi) +- g(~(q ..rn »
I . .,.i .

y +- g(y)

IF '.Pf (.) 'l1lBN SE ELSE St
qI >epi

For each i, 1 so i < (k+l)n, and each j, 1 s: j s: m, .the subschema

Ri,j with program:

IF (P /\ P) 1.'HEti s1 j ELSE Ri+l j
qj cpi • ,

For each j, 1 ~ j < m, the subschema R with program: n .;(W-U ,j

IF (P /\ P) THEN S
qj C?oc+l) 0 (k+l)n ,j &LSE. Rl ,j+l

The subschem R(k+l)n ,a with program:

IF (P /\ P) 'lllEN S . ELSI R
qm Cf>(k+l) 0 (k+l)0 ,m l,I

For each i , · 1 s: i < (k+ 1) 11
, ·the subschema lli, I wi!th pTogram:

IF (p . /\ P) ·-N &I.SE 1t
qI cp

1
.1:m:.

81,I i+l, I

The subschema R n with program:
(k+l) , I

IF (P /\ P) THEN S n ELSE St
qI cp(k+];) n (a+l) ,I

- 117 -

The schema 8M· is then:

IF P THEN S ELSE
qI E

WHILE p (y) DO R
m 1,1

IF Pq (y) THEN 'y ~ a(y)'
a

IF Pq (y) THEN 'y ~ r(y)'
r

ELSE S
E

ELSE S
E

Let I be a free interpretation for S , and for each predicate
M

symbol p of SM let TIP denote the predicate assigned to p by I.

For each i, 1 s i s n, let i,i be the least integer > 0 such that
.£,·

TI (g 1 ·A) is~' and let .£, be the least integer such that
P$.£, xi Y

TI (g Y.A) is false. We say that I is a reasonable interpretation
pm y

for~ if exactly one of the predicates TIP , TI , ••• , TIP , TIP is
s1 Ps2 sk $

~at each element of [g i. Ax I 0 s i s i,j, 1 s j s n}, and exactly
j

one of the predicates TI , TIP , , TIP , TIP , IIP , Ilp is ~
Pq

1
q2 qm qI qa qr

at each element of [gi· A y I 0 s i s .£,y }.

Each interpretation I which is reasonable for SM defines an n-tuple

A of strings over the alphabet of M in a straightfotward manner: the ith

symbol in the jth string, 1 s j s n, 1 s i ~ i., is symbol s if and only
J

if TIP (gi-l·Ax.> is~·
s J

Each such interpretation I for ~ defines a sequence of states of M

in a similar manner: the ith state in the sequence, 1 s i s .£, ,
y

i-1
is q if and only if TIP (g ·A y) is ~·

q

- 118 -

The reader may verify that SM diverges under all unreasonable

interpretations, and converges for the reasonable interpretation I if

and only if the sequence of states defined by I is consistent with a

non-divergent computation of M on A. If the execution of SM converges,

the symbol a or r is prefixed to the value of symbol y, according as

the last state of M in the simulated computation is q or q • a r

Thus, SM weakly simulates the automaton M in the manner described

previously.

6.4.2 Weak Equivalence: A Reducibility.

As noted, the schema ~ constructed in the preceding section diverges

under all unreasonable interpretations, and diverges under reasonable

interpretations which define input strings on which M diverges. But the

schema may also diverge under reasonable interpretations which define

input strings on which M does ,B2t diverge, if the sequence of states

defined by the interpretation does not correspond to the sequence of

states entered by M during its computation on the strings. This behavior

is an inherent feature of the simulation, and is in fact the feature which

makes the simulation "weak" (and thus precludes us from reducing the

strong equivalence problem for the automata to that for the schemas).

We note also that if the execution of ~ terminates for some

interpretation I, the final value associated with symbol y for the

execution will depend on the length of M's computation on the input

strings defined by I. Since the length of the computation ma.de by an

- 119 -

equivalent automaton on the same set of strings may be quite different

from that made by M, it would seem that the simulation is not suitable

even for a reduction of the weak equivalence problem. Fortunately, the

following lemma implies that such is not the case:

Le1IIDS. hl,:

Let M be an n-tape automaton, for some n > O. Then we may construct

from M an equivalent n-tape automaton M' such that precisely one tape

head is advanced at each step of any convergent computation by M.

Proof: Let Q and T be the states and tape symbols, respectively, of M.

Let f be the transition function and h the head advancement

function of M. We first modify M so that no more than a single

head is advanced during a step of any canputation by the

automaton:

n
Let q be a state in Q and let ~ be an element of T such

that h(q,~) = {j 1, ••• ,jm} for some m > 1. We add to Q new

(m-1)
states q', q", ••• , q and extend£ and h to these new

(i) (i+l) (i)
states so that f(q ,6) = q and h(q ,o) = [ji+l}, for all

n n
6 E T and all i, 1 ~ i ~ m-1. For each 6 E T , we define

f(q(m-l),o) to be the state f(q,~) and we define h(q(m-l),6) to

be {j }. Finally, we redefine f(q,~) to be state q' and h(q,~)
m

to be {j 1}. The procedure is repeated for any additional

arguments for which the value of h is a set of cardinality

greater than one, and the resultant automaton has the desired

property.

- 120 -

Assume now that no more than one head is advanced during

any step in a CQJllPUtation by the automaton. Whenever we have

. n
f(q,cp) = q' for some states q and q' and some cp E T such that

h(q,cp) = ~ and h(q' ,cp) ,. ~, we redefine f(q,cp) to be f(q' ,cp)

and redefine h(q,cp) to be h(q',cp). This procedure is repeated

as long as such q,q' and cp can be found. The resultant

automaton is M'.

0

Thus we have:

The weak equival-ence problem for 1RUlti .. tape finite =automata reduces to

the weak equivalence problem for independent location iteJNltion schemas.

Proof: Let ·M
1

a1lCl x2 he n-tape automata for soma n > O, and let M' 1 and

M' 2 be the automata e~atructed f:roa·M1 and H2 as in the

preceding Lemna. Let 88• and 8K• be the dmulatin.g schemas
1 2

constructed :frOll M' 1 and M'
2

as in Section 6;.4.1. Then M and M'

are weakly equivalent if and only if 8ff• amt ~· a.re weakly
1 2

equivalent.

0

As we shall see in the next section, Tlleorem 6• l is a more interesting

result than it seems at first glance, since the weak equivalence problem

for the automata can be shown unsolvable.

- 121 -

6.5 Undecidability of Weak Equivalence for Independent Location Schemas.

In this section we demonstrate that weak equivalence is undecidable

for multi-tape finite automata and hence, according to Theorem 6.1, for

independent location iteration schemas.

The following result was implied in [12] and demonstrated explicitly

in [19]. The proof given here is essentially that in the latter paper.

Lemma .§..1.:

The inclusion problem for multi-tape finite automata is unsolvable.

That is, it is recursively undecidable whether L(M) i:;: L(M') for

arbitrary n-tape automata Mand M'.

Proof: Let C be the Post Correspondence Problem defined in Section 4.1.

It is a trivial matter to construct a 2-tape automaton M such

special symbol, and for each j, 1 s j s £, ij is a symbol

denoting integer iJ., 1 s iJ. s k; and ·w = w. • w • ••• • w. }.
i1 iz i£

Also, we can construct another 2-tape automaton M' such that

L(M') = .[(x., Y) I x. is as in L(M) and Y is any word other than

Yi
1
·Yi

2
• ••• ·Yi£J. Clearly, Chas a solution if and only if

L(M) </; L(M'), and hence the decidability of inclusion for multi-

tape automata implies the solvability of the unsolvable Post's

Correspondence Problem.

0

- 122 -

We now reduce the inclusion problem for multi-tape finite

automata to the weak equivalence problem for the automata.

Lemma §.:.1:

Let M be an n-tape automaton, for some n > o. '!hen we can construct

from M an n-tape automaton M' such that L(M) • L(M') and M' rejects no

input.

P;oof: Infoi:mally, we add a new state q to the states of M, and provide

transitions £ran q back to q for each length n string from M's

alphabet. Each transition into the rejecting state of M is

replaced with a transition into this new state, .and the resultant

automaton is M'.

D

The following lemma is derived :iJmnediately from Lenna 6.1:

Lemma .2si:

Let M be an n-tape automaton, for some n > o. '!hen we can construct

from M an n-tape automaton M' such that L(M) = L(M') and M' rejects any

input which is not accepted.

Proof: We construct from M the automaton M' of Lepima 6.1. We than add

a new state q to this machine, an4 redefine f(qi,q>) to be q

whenever h(qi,cp) • ~' where f and h are the transition and

advancement functions of M', qi is any state in M', and cp is

any length n string of tape symbols. We extend f and h to state

- 123 -

q as follows:

If cp is a striog of lengtb a ot:ker. cllan .,,,..,~·1re·deifine f(q,q>)

to be q and h(q,q>) t·o be {:t·+'°tlut>.idl.-c-.aaent of q> i•not $,

1 s: i ~ n}. n
If q> is $, tlum :'f.(q,qt) k4r• vhe.re 'r is the

rejecting. state of M', aad h(q,cp) :I.a ·the empty: ut:.. l'be

msultant autaatQU .i.• M''.

D

'1'beom 6,2:

The indusion problem for 11Ulti•t-ape ·-finite auttdittll· t's t'ed'ucibte to

the weak equivalence problem for the &litom&'ta.·
'

Proof: Let M1 and-~ be arbitrary n-tape automata, for same n > o.

Let M"
2

be the automaton conatructed frcim ~ as. in Lmmna 6.4.

Then L(Ml) s L~) if and only if M'1 and'M"2 are Weakly

equivalent.

·o

Coro1l!ri .§...2.:

The weak equivalence problemfor indepei\del:&t·tdeation iter4ti0!1 schemas

is unsolvable.

Proof: llllnediate from Theorem 6.1, Lesmna 6.2, aiid Theorem 6,2.

0

-124 •

6.6 Single State Automata.

'l'be problem& which pnvent the: strong.aiallatiion of multi-tape

autanata by ita•~tcm ac._,.. atea fJ!IClln ttie fact tbat a5 interpretation

for a sinmlatiaa ac;besm muat include a sdtablla "defiaittion° of the

sequence of atatea entered by die- --~ta ~· iU. eaaputation; the

schema's execution must diverge if tld.a ~ • ..,.._. ill illcormct or is

unreasonably defined. Since equivalent automata will genexally have

different state sets, there is no way to ensure that schemas which

simulate equivalent automata will both \'liverp or ltota GOllV'eqe under a

given pair of consistent interpretations. In particular,. -. can geaexally

provide such schema.a with intalij>i:et.a.tiau wh~eh p.,~ ••ona~~ (in the

sense of Section 6.4.1) for one schema b\at,:~xea~pl~- fol;' tbe o~r,

thus forcing one schema to diverge under its interpretation while

permitting the other to converge.

We would expect, on the other hand, that automata with a single

state would present no such problems, alth~ we nd~t question whether

such automata are capable of recognizing any interesting languages and

whether their equivalence problems are related in any non-trivial way

to those for multi-tape automata in general.

In this section we deD\Otlstrate that the iteration schemas are

indeed capable of strongly 1imulating such: automat~ .• and also show that

the automata are capable of recognizing non-trivial la~,ges. We show,

in fact, that the equivalence problem for multi-tape automata reduces to

a restricted equivalence problem for the single state automata.

- 125 -

6.6.1 Single State Automata Definitions.

Actually, the term single state automaton i.s sanething of a

misnomer, since the automata which we define below contain two states.

The function of the initial state of an a~tomaton, how~ver, is simply

to ensure that the automaton begin a c~pu~ati~ in one of some finite
L,

number of designated configurations. In partic,\lla~, .once the initial

state is left no transitions back into the state are permitted; also,

no movement of the tape heads is permittecfwhile the automaton is in
I ·" ... ·. ., ;_

its initial state or moving out of the state. (Intuitively, we might

think of the initial state as ~omething of an "input monitor": if the

tuple of initial symbols on the automaton's tapes is acceptable, the

control state of the automaton is entered and the computation carried

out. If the tuple is not acceptable, the initial state is never left

and the computation diverges.)

The definition which follows is essential!~ the same as that.given

in Section 6.1 for multi-tape automata, except that we dispense with

accepting and rejecting st~tes aad d,efiae tl\e •ch~•~nt and, tranlilition

functions in such.a way as to ensure that the.initial:atate is as

described above. (The automata will have ~o reje~~ng. states, .$.D.d their

control states will function as accepting states.)

A s?de atpte n•t§ee ag•tgn is a f ive ... tuple

M = (T, q, q1, f, h)

where: T is a finite set of ~ symbols, including the end.marker $.

q is the control state of the automaton.

.. 126 -

qI is the initial state of the automaton.

f: { q, q1 } x 'fl -t { q, q1 } is the state tJ&91ition funs.tion, a

total function satisfying the property th&t f(q,q>) • q, all cp E rfl.

h: {ci,q
1

} x Tn-+ 2f1 •2•···•n} is the .b.l!Jl dv•'W'!Fnt funstios,

a total function satisfying the properttes tbat,h(q~~cp) • ,,·, and i ~

h(q,cp) whenever the ith ccmponent of cp -ia -$,.-for alf cp E T1.

Conf 11':'!8t1ons and cometations ai=e defined for single state

automata in the same manner as for multi-tape automata in gene'J.'8.1. An

n-tuple A of strings in T* is acceptfi by'-~ if t~n is a finite
.• ' ' .

computation by Mending with the configuration (q,A•$n), and is

re1ested by M if no such canputation exists. The lfpguags acs;ephd

and g1ect@d by M an defined as for multi•tape automata.

Strong and :restricted equivalence are def iDed for s~ngle state
' ~' .,

automata as in Section 6.2. We ahall not consider notions of weak

equivalence for the -autCJlll8ta.

-A BedueD!U.ty.

Let M • ({s1, ••• ,sk,$}, q, qI' f, li' be a ·sittgte state n-tape·

automaton, for scme·n > O.

We shall show how to construet an -independent location iter&t'i0n

schema 8M which aiaulataea M. (The GC9'U!l~-:t~;ia 9..,aite. ~~lar to that

described in Section 6.4.1, and we use much of the 1¥lme tei:minology.)

~ has variable symbols xl' ••• ,xn and y. It has predicate symbols

Ps
1

, ••• ,p9k,p$ and Pm· It has a single function symbol g.

- 127 -

Expressions of the form P 81 (:xj) and P $ (:xJ) ~re as ~efined in

Section 6.4.1; we use the same enumeration of length n strings over the
"'"· '

alphabet of M, and the expressions Pep ,
1

in that section.

... , P n are as defined
; cp(k+l)

~(q, ~i) ... g(~(q,cpi))

IF Pm(y) THEN SE ELSE st
y ... g(y)

J, tiDll!s, where J, is the
cardtila lity of h

(q,tpi)

IF pm(y) THEN SE ELSE St
y ... g(y)

n For each i, 1 s;; i < (k+l) , we define R1 to be the schema:

IF Pepi THEN Si EJ:,SE 8t_+l

We define I. to be the nbemti1
(k+l)n

IF P 'l'BIN S .· . ELSI S .
~(k+l)n (k+l)n t

Row, let 61,. ••, 6.t be an en.-ratiOii: of·' thoift' length n ·strings

for which f(qI' 6i) • q, 1 s;; i s;; L• '!hen ~·:i.a .c;he · M:h-.:

IF (Po v ••• v Po) THEN SE ELSE st
1 J,

WHILE pm(y) DO ~

IF (P$(x1) A ••• A P$(xn)) THEN SE ELSE St

- 128 -

We define reasonable interpretations for 8M in a manner analogous

to that in Section 6.4.1, and note that each reasonable interpretation

defines an n-tuple of strings over M's alphabet. The reader may verify

that S diverges for all unreasonable interpretations,. and converges for
M

a reasonable interpretation· 'I if and only if I defines a tuple of strings

accepted by M and assigns to Pm a predicate TIP such that:
m

TIP. (g
1

• /1) = ~' all i < t
m Y

i
TIP (g ·A y) = false, i = J,

m

where J, is the number of symbols in the tuple of strings defined by I.

In such a case, the final value associated with y will be gJ,• AY.

We have immediately:

Theorem .§.sl:

The strong equivalence problem for single state multi-tape automata

reduces to that for independent location iteration sch-...

Proof: Let M and M' be single state n•tape automatfil., for some n > O.

We construct from M and M' the simulating schemas 8M and 8N•
as above, and note that M and M' are strongly equivalent if

and only if ~ aud ~· are strongly equivalent.

0

- 129 -

6.7 Equivalence of Multi-Tape Automata A Reducibility :Result.
,

We have shown that the strong equivalence problem for single

state multi-tape automata reduces to that for structured independent

location schemas. In this section, we provide motivation for that

result by showing that such automata constitute a surprisingly rich

class of multi-tape automata, and are in fact capable of simulating

arbitrary automata if we allow them additional tapes on which to store

control info1.1D11tion. Since the particular information.which is stored
, <~ '

on these tapes will depend on the automaton being simulated, we must

content ourselves with showing that the strong equivalence problem for

multi-tape automata reduces to a restricted equivalence problem for the

single state automata.

We begin with sane useful definitions:

Let cp • s •s • •s •s • be a·string· over some i1 i2 ••• ik ik+l •••

alphabet T which does not contain the special symbol #. Then an expansion

of cp is any string of the form:

~ • si ·6 ·(l)jl.si •o .(#)j2.
e 1 1 2 2

* in which for each i, o
1

is an arbitrary ~ring i? ? .~ j
1

ia. an j.nteger

greater than O. We extend the notion of expansion to tuple• of strings

and sets of such tuples in the obvious manner:

If A• (cp1, ••• , cpn) is a tuple of strings over T, then an spq>apfion

of A is any tuple Ae • (~ , •••
e

, cp) in which for each i, 1 s: i s: n,
ne - '·

cpi is an expansion of cpi. If X is a set of tuples of strings over T, then
e

the expansion of X is the set EXP(X) • {A IA is an expansion of some A EX). e e

- 130 -

Let M be an n-tape automaton with tape alphabet T and "Control

" states represettted by a set of symbols Q, and such that no more than a

single tape head is advanced during any step in a computation by M.

Let A= (cp1, ••• , cp } be a tuple of strings accepted by M. Then the
n .

trace of A with n.apect to M is the ni4-tuple of strings A =
t

(a ' p ' Y ' Y ' cpl' • • • ' cpn}
.... - -over T U Q U {l, ••• , n}, such that a E

- - * ·{1, ••• , n} represents the sequence of tape heads moved during the

computation by which M accepts A, p E T* is the sequence of symbols

scanned during the computation, and y EQ* represents the sequence of

states entered by M during the ccaputation. We denote by lJMIQ'!) the

set {At I At is the trace of soae A accepted by M}.

As we shall see, it is precisely the info1:1&U.on in the f:t.rtt four

canponents of a trace 'Which constit'-Jtea the control info1:9tion required

by a single state automaton in the simulation of an atbitrary illlllti-tape

automaton.

We note that if cp is a string over an alphabet T not containing #,

then the expansion of cp formed by inserting #. between each pair of

symbols in cp catm.ot be obtahed as an dt>an•ion of att.Y other string.

Thus we haw:

Let M and M' be n-tape finite automata whose tape alphabets do not

contain the symbol I. Then M and M' accept the same language if and

only if EXP(L(M)) • EXP(L(M')) • __/

- 131 -

Lemma hl_:

Let M be an n-tape automaton (T, Q, qI' q , q , f, h) such that exactly
a r

one tape head is advanced during each step of any convergent computation

by M, some n > o. Then we may construct from M a single-state automaton

M' with n+4 tapes, such that L{M') = EXP{TRACE{M)).

Proof: A formal definition of M' appears in Appendix C. We describe

the behavior of M' informally below:

" Let Q be the set of symbols {q. I qi is a state in Q}, and
l.

let N = {1,2, ••• ,~}. The alphabet of M' is the set T' =

T U Q UN U {#}, where # is a special symbol not appearing in T.

We may represent a configuration of M' as an n+4-tuple of

strings over T', and we say that a configuration A is a~
- ,..

configuration of M' if TAll.(A) is of the form i·s•qi•qi·~,

where ~ EN is such that i = h(q.,~) in M, and s is the tth
l.

symbol in ~ E 1'11. Intuitively, a base configuration of M'

represents sane configuration of M just prior to some step A- in

a computation by M. The first four tapes in such a base

configuration contain the following information:

(1) The head of M which is to be advanced at step ...o. of M's

computation.

(2) The symbol currently under scan by this head.

(3) The current internal state of M, recorded on each of tapes

3 and 4.

We shall describe the sequence of moves by which M' advances

- 132 -

to a new base configuration representing the configuration of M

at the conclusion of step A- of its computation:

M' moves head £+4 until the symbol # is scanned. It then

moves head 4 until # is scanned, and likewise head 1.

(Intuitively, we may think of M' as preparing these tapes for

its next base configuration.)

M' advances head 4 past any number of #'s until a non-#

is scanned. Unless this symbol is q , where q = f(q_,cp) in M,
. j j i

the computation diverges, i.e. M' advances no tape head. This

behavior of M' ensures that tape 4 has the symbol representing

the internal state of M after step .,A.- of its computation.

M' advances head 2 and then head 3 until #'s are scanned

on these tapes. It then advances head £+4 past any number of

#'s until some symbol s' ET is scanned on the tape, diverging

if the first symbol after the #'s is ,nQl a symbol in T. At this

point, M' has discarded the original scanned symbol and internal

state of M since this information is no longer needed; it has

also advanced the appropriate tape head and scanned symbol s'
'

so that each of the· last n tape heads is scanning a symbol in T.

Let cp' denote the string composed of these n scanned symbols:

M' advances head 2 past 1!' s, until sone s" E T is scanned

such that s" is under scan on the k+4th tape of M', where k is

h(q. ,cp'). If the first symbol after the 1F' s is not such an s", M'
J

diverges. M' will thus have ensured that the "symbol under scan"

component of its next base configuration is correct.

- 133 -

M' now advances head l paat any nullber of #'a "Lm.til a symbol

t' EN is 1canned such that J,' ... h(qj,cp'). If any aymbol other

than J,' iJlaediately follows the I's, M' cUversea. M' thus ensures

that the "head to be advanced" ~ponent ;0f itenext base

configuration is correct.

Finaliy, M' advances head 3 past ~1 ~•r of # 1
1 until

symbol qj is scanned on that ~pe, .diverging,: tf a aJISbol other

A
than qj is scaimed first. At this pout. ·ll' luf.s nached the

desired base configuration.

The readeJ;" ~Y verify .thai; the,:cqo.ditionJ geverrd.ng moves

are unique in each cate, and thus ,that ~. 0ebav1ar of M' as

oqtlined .is con8istent with the -~\11.reaeo.t that M' have a single

control state. (Of course, we.~ to .edc:l.wles •aeuring that a

computation of M' begins at a base configuration representing an

initial configuration of M, and additional rules allowing a

computation of M' to terminate if a base configuretion represents

a terminal configuration of M, but the addition of such rules

is straightforward: the curious reader is referred to Appendix C).

0

We are now in a position to prove the main result of this section:

Theorem hl:

The strong equivalence problem for multi-tape autcuata reduces to a

restricted equivalence problem for single state automata.

- 134 -

l?roqf: Let M and M' be arbitrary n•tape autcnata, for some n > O. From

Lemma 6.1, -we can assume without loss of genenlity that exactly

one tape head moves during each step of any convergent canputation

by either scthem. Let M andM' be single state acceptors for
s 8

EXP(TBACE(M)) and EXP('l'RACE(M')), raape'Ctively, constructed as in

the preceding lenna. Then from Leaaa 6. 6, L(M) • L(M') if and

only if M8 and M'
8

are N-reatricted equivalent, N • {5,6, ••• ,n-+4}.

We may int~hange the accepting and- rejecting states of M and M'

to obtain n-tape automata M and M1 such that LcM) • t(M) and

LcM') • L(M'). If we coYt:ruct single state acceptors M8 and M's

for !Xl>('l'MCB(i)) &nd UP(TMCIEJi')), then M ia equivalent to M'

if and aaly if Ms and M'
8

, and M
8

and ii•
8

, are pllirwiae

N-i:estr:f.eced equiva len'f:.

0

- 135 -

6.7 Discussion.

We have attempted in this chapter to relate the equivalence problems

for structured and non-structured independent location schemas. We began

by looking at a class of automata equivalent to the non-structured

schemas, and showed that such automata could be simulated by structured

schemas which diverge whenever they are provided with interpretations

not corresponding to valid computations. While such a simulation might

be of some practical interest, Corollary 6.5 shows that it is of little

value if our concern is with such issues as schematological equivalence.

In fact, the corollary suggests that weak equivalence is likely to be

undecidable even for classes of schemas for which strong equivalence .!!

decidable. If we are looking for potentially solvable problems or

potentially useful reducibilities, therefore, we had best restrict

attention to strong equivalence and strong simulations.

Via Theorems 6.3 and 6.4, we have been able to establish another

relation between the equivalence problems for the structured and non­

structured schemas. While the relation is admittedly sanewhat indirect,

it never-the-less raises some questions (for example, regarding the

decidability of equivalence for single state automata) which are of

interest in their own right.

relation is worth pursuing.

It would seem, therefore, that this

- 136 -

CHAPTER VII: St.H4AllY

In this thesis we have introduced itppti.Qp achem@s (monadic

schemas ccciposed of assignment statements, conditional statements, and

iteration statements) and have shown that such scheas corre•pond to

monadic program schemas with structured flowcharts. We have also sh<*ll

that the schemas form an incomplete subclass of the monadic program schemas

in the sense that there exist monadic program schemas which are not

equivalent to any iteration schema.

We have defined several subclasses o~ iteration schemas:

(i) Im sch-• in which teats a;w:e ~vei repeated ,~uriq schema

executiona.

(ii) Sipj.f MIM•ISI schemas in wb.ieh p1:1lclica~ ·.symbols occur only

once.

and iteration statements.

(iv) !nd•PSm\'i' lOJCft~sm schemas in wb~ch t~e assi~nt and argument

variables are one and the same in each assignsQent sta~~nt.

(v) k•tris~IS iqsa.tipn schemas in~9i~h initial.assigmnent

stateinents of the fonn 'x ... y', •:re peajtted, l>ut wtiich otber:wiJe are
,'' ' ,'

independent location schemas.

We have formalized the notion of schE!Blll equivalence as the functional

equivalence of schemas under free interpretations, and have explored the

equivalence problems for these various classes of iteration schemas. We

- 137 -

were able to show that equivalence is undecidable for restricted location

schemas, and strengthened the proof to demonstrate the undecidability of

equivalence for such schemas which are conditional-free. We concluded

that restricting the schemas to a single function and predicate symbol

avails nothing in solvability, and that equivalence is unsolvable for

such schemas with just two variable symbols. We have also shown that

arbitrary nesting of iteration statements is not essential to unsolvable

problems, and that unsolvability is with us for schemas with just two

levels of iteration and for conditional-free schemas with just three

levels.

We considered other features of the schemas for which we were able

to demonstrate unsolvability, and this suggested several possibly solvable

domains. We established techniques enabling us to demonstrate the

decidability of equivalence for free schemas which are single appearance,

or which are independent location and conditional-free; and for the class

of schemas which are single appearance and conditional-free. While several

interesting problems are left open, we are confident that the methodology

developed can be extended to more general classes of iteration schemas.

The results established in this thesis are summarized in Fig.10, along

with some of the more interesting open problems.

We have explored in some detail the way in which equivalence problems

for independent location iteration schemas are related to equivalence

problems for independent location program schemas and multi-tape finite

automata. We have shown that the iteration schemas are capable of

"weakly" simulating such automata, and have used this result to demonstrate

-------------- ----- -

- 138 ..

---------------·-------~-----------------... -----------------------• ·I I t I I

: FREE : SINGLE :coNDITIONAL~ BESTB.IC'l'ED : DIDEPENDENT:
: : ·~-I FIB ' : LOG&!rmt ': .•ooe\"?IOR : ,a. ___________ _, ___________ ,,,_ __________ .._ ___________ __________ ...

I I I I I I

: : l I X I : Unablvable
~-----------~-------·----'-----------..._ __________ .._ __________ ~
I I I I I I

: ~ : X : X .: : Unsolvable
t-----------~-----------t------------:-----------+----------~
: X : X : : : : Solvable
'-----------~-----------~-----------...._ ___________ __________ ~
I I I I I I
I I I I I I • x 1 • x 1 . x 1 • Solvable
+-----------i-----------~-----------+----------+----------~

I I I I I
• X • X '• • • Solvable

+-----------1-----------~-----------+----------+----------~
I I I I I I
I 1 x t • I . I &lvable*
f-----------i-----------~-----------+----------+----------~
: X : : : ! :0pen +------------1-------------1-----------+----------+-----------:
I I I I I I
I I I I I X 1·$pen

f-----------i-----------+·-----~---+~--------·+-----------:
I I I I I I

t-----:_----~----···-··-f.----•·-----t----•----•..f..-•--1<-----4 Open....,
I I I I I I *"'
t-----------~·--·--·-·--+----2<·----+--· .. ·--... --+----1<-----~ .ot>eo ·_

1 I I I
X I X I 1. l Open

+------------1-------·---~--,·--------+----------+------------:
I I I I I I
I X I I X I X I· •Open 1------------'----·-·---.-.1------------'-911!'----------;;,;L __________ .,

Multi-Tape Finite Automata Open

Single State Multi-Tape Automata Open..__.._,,,

Directed arcs ind.ic:ate reducibilities: A--+ B indicates that the
solvability of A implies that of B. Trivial reducibilities are not
shown.

*Solvable, but details •re not given.

FIGUBE 10: Summary of Results.

- 139 -

the undecidability of weak ecru.i.Slence (i.e. equivalence for terminating

computations) for the independent location iteration schemas. We have

shown that the equivalence prqbl~ ~or· .W.ti-t4JW;,·••C1M.• with a single

control state· ii reducible to that for·ind\lp.M*irt locat'ion itel."&tion

schemas, and have also demonstDf.ted til&t tile '~~~l~nce pr9blem for the

automata in gellAW&l recluces to the·pntil• of.4kt41ag·whether single

state automata are equivalent over scae arbitrary subset of their tapes. ' .

The obvious areas for further study are suggested by Fig,lD.

A positive solution to the equivaleaee· ,probl.eme: fol' fna iceration schemas

would be a major achievement since it 1'ould. lend ~f:l.d s~pport to the

conjecture that non-freeness is an es8'nti&~ ch~litctel'i•~i.c qf unsolvable

problems. Such a solution for restricted l~:ltm"s&emari would also be

welcome since it would at least establish a "freeness" boundary between

decidability and undecidability for th~• aohMlb FiDally, • positive

solution to the equivalence probl~ for inde~~t '10cation iteration
t '"''

schemas would be, we feel, a major step in the solution of the equivalence

problem for independent location schemas in general; at the very least

it would provide, by implying the clec:Wab.i~ity o,f •quiv;alence for single

state automata, an additional avenue by which to approach the equivalence

problem for multi-tape automata in general, .an ~pen problem· of long

standing.

- 140 -

BIBLIOGIAPBY

1. Ashcroft, E., and Manna, z.
"The translation of 'GoTo' Programs to 'While·' hograms",

InfoPl!!tion frss;1ews .n, »orth-Holland. Publ~lhµig co ... 1972.

2. Ashcroft, E •• >Janna, Z., and Priueli, A.
"Decidable Properties of MosMl.dk Functional sea-a",
International Symposium on the '.l'heory of Machines and Computations
.<Israel), 1971.

3. Chandra, A.K.
"On the Properties and Applications of Program ScheMs",
Ph.D. Thesis, Dept. of Ccmaputer Science, Stanford University, 1973.

4. deBakker, J., and Scott, D.
"A Theory of P1"QSRIU11

Unpublished memo, 1969. Reported in [19].

5. Dennis, J.B., and Fosseen, J.

"Introduction to Data Flaw Schemas",
Computation Structures Group Memo 81-1, MIT, 1973.

6. Ershov, A.P.
"Theory of Program Schemata",
CSG Document, Computation Structures Group, MIT, 1971.

7. Fosseen, J.B.

"Representation of Algorithms by Maximally Parallel Schemata",
S.M. Thesis, Dept. of Electrical Engineering, MIT, 1972.

8. Hopcroft, J.E., and Ullman, J.D.

"Formal Languages and Their Relation to Automata",
Addison-Wesley Publishing Co., 1969.

- 141 -

9. Ianov, Y. I.

"The Logical Scheme of AlgorithmS", English ttan:Slation in

Problgs Ji!! Cybernetics, Vbl.l. \>•%..,.,..,_ Pn-•i. J,~iO.

10. Karp, R.M., and Miller, R.E.

"Properties of a Mod.el for Pa~llel C~~ti011s",

~ .:!· !22!· !11.Sll·' :£21. Jr!t., ¥2·!· 1966.

11. Keller, R.M.

"A Solvable Proiftm Scheme ~q~'YfM~ Pr~..-"?__ __

Prcasa~1!JRI a --~ $Ja»!!l ~- f);4BSf'~~ ~.",,.JWI a ¢!f2PP1tiop
Sciences !a\ sy1tps, 1971. - "

12. Kfouri, D.
"~dvcing tjle ~c:idability.of _Eq~yal•pce for Multi-Tape 4utomata
to the Decrdal>ilfty of EOLT" - ,

Private conmunication, 1974.

13. Leung, C.
(In progreaa)

M. s. Thesis, Department of Electrical Engineering, MIT, 1975.

14. Lindenuan, J.P.
"Productivity in Parallel C"'9\lt4~iOll Sc:h~U.",

, .. ' . -'

Report MAC TR-111, Project MAC, MIT, 1973.

15. Luckham, D., and Park, D.

''Undecidability of the Equivalence Problem for Program Schema bl",

Bolt Beranek and Newman, Inc., Report 1141, 1964.

16. Luck.ham, D., Park, D., and Paterson, M. s.
"On Formalized Ca..puter Programs",

:!· .2f. Compvter .!a4 Systems Scieaces, Vol.4, !!2.l. 1970.

- 142 -

17. Meyer, A., and Ritchie, D.

"The Complexity of Loop Programs",

~· 22nd National ACM Conference, 1967.

18. Paterson, M.S.

"Equivalence Problems in a Model of Computation",

Ph.D. Thesis, University of Cambridge, 1967.

19. Paterson, M.S.
"Decision Problems in Computational MOO.els",

~· ~ Conference on Proving Assertions about Programs, 1972

20. Paterson, M.S., and Hewitt, c.
"Comparative Schematology"

Record .2£ the Project ~ Conference El! Concurrent Systems !.!li!
Parallel Computation, ACM, 1970.

21. Qualitz, J.E.
''Weakly Productive Computation Schemata",

S.M. Thesis, Dept. of Elictrical Engineering, MIT, 1972.

22. Qualitz, J.E.

"Decidability of Equivalence for a Class of Data Flow Schemas'',
Tech. Memo 58, Project MAC, MIT, 1975.

23. Rabin, M., and Scott, D.

"Finite Automata and Their Decision Problems",

IBM J. of Research and Development, 1,2, 1959.

24. Rodriguez, J.

"A Graph Model for Parallel Computations",

Sc.D. Thesis, Department of Electrical Engineering, MIT, 1967.

- 143 -

25. Rosenburg, A.

"On Multi-Head Finite Automata",

IBM J. of Research and Development, 10,5, 1966.

26. Rutledge, J.

"On Ianov' s Program Schema ta",

JACM .ll, 1, 1964.

27. Slutz, D.R.

"Flow Graph Schemata",

Record of the Project MAC Conference .£!! Concurrent Systems and

Parallel Computation, ACM, 1970.

28. Tsichritzis, D.

"The Equivalence Problem of Simple Programs",

JACM lZ,4, 1970.

- 144 -

APPENDIX A: Decidability of Freeness for Independent Location Schemas

Let S be an arbitrary independent location schema, and let F be its

flowchart. We say that a pair of nodes in F are similar if both nodes

are transfer nodes labelled 'p(x)' for some predicate symbol p and

variable symbol x. We claim that S is free if and only if each directed

path from a node n to a similar node n' in F contains an assignment node

labelled 'x ~ f(x)' where f is some function symbol and xis the

variable symbol of n and n':

(IF) If such is the case, then no variable is ever tested twice with the

same predicate during an execution of S without an intervening assignment

to the variable. Since S is an independent location schema, it is clear

that no test can ever be repeated during a free execution of S.

(ONLY IF) An essential characteristic of a free schema is that every path

through its flowchart corresponds to an execution of the schema. If there

exists a directed path from n to n' containing no assignment labelled

'x ~ f(x)' for some f, then a value associated with x will be tested at

both n and n' during any execution of S which traverses this path, and

thus S cannot be free.

- 145 -

APPENDIX B: Undecidability of Equivalence for Restricted Location Schemas

With One Function Symbol and One Predicate SyQabol.

We shall redefine the schemas of Section 4.3. ·

UNTIL p(x) 00 SE

The schema s
1

is:

WHILE p(x) 00 SE

Schemas s• 0 and s• 1 are defined similarly.

For each i , 1 s i s k, A i w
1

s:

IF p(v) THEN s. ELSE St
il

x ... f(x)

v +- f(v)

IF p(v) THEN S ELSE St
Si

x ... f(x) 2

v +- f(v)

IF p(v) THEN S El.SI s.
Si '

x ... f (:x:) 8 i

v ... f(v)

ae achema so is:

wheres •s • •si • w1 , as befot'e. Sen•• of the form B are
il i2 8i Yi

defined similarly, wtth symbol u itt plece of v.

For each i, 1 < i < k, Ri is:

w
1

+- f(w
1

)

IF p(wi) .THEN A ELSE SE
wi

IF p(w1) THEN Byi ELSE Ri+l

The schema R1

The schema ~

The schema S

- •146 -

is:

w
1

... f(w
1
)

z +- f (z)

IF p(w1) THEN A
wl

ELSE SE

ll' p(w1) THEN B . y
1

ELSE ~

is:

wk+- f(wk)

IF p(wk) THEN Aw
k

ELSE SJ!:

IF p(wk) THEN B
yk

ELSE St

is:

y .. x

u ... v

IF p(z) THEN Rl ELSE R1

WHILE p(z) DO R1

ll' p(v) THEN St ELSE SE

IF p(u) THEN St ELSE SE

We note here that, in contrast to the results established .in (18)

for monadic program schemas in general, we are uaable to establish the

undecidability result for achemas which have simultaneously single

predicate and function symbols !!14. two variable symbols.

- 147 -

APPENDIX C: Definition of M'.

- "A

Let T, N, Q, and T' be as in the proof of~ 6.7. In tbe following,

s's shall denote elements of T, t' s ele~nta of •ii,:~'• elements ~f ~,

lower case Greek letters elements of T*, and x'• .rh:'bitrary symbols in T'

other than I and $.

M' is (T', q, q1 ', f', h') where f' is defined ae follows:

i) f'(qt',X) •q ifX iet·••.;1·'41·1-1tji:*82'•·<11 ia~r~W) iilM•;

t • h(qi,w) in M, and e is the jth symbol of w.

ii) f'(q,X) • q, all XE (T')n+4.

and h' is defined as follows:

- "'" I i) b'(q, .t·s·qi·qi·a·x·P) • .t+4, al • .t-1.

- " " ii) h'(q, .t·•·q •q ·0·f·f3) - 4.
i i

iii) b'(q, x·s·qi·#·a·#·P) = 1.

iv) h'(q, #·s·qi·f·a·f·P) • 4.

) '(~) v h q, f·s·qi·qfa·f·P .. 2,

vi) h'(q, ff·qi·qfa·'lfr·P) • 3.

vii) h ' (q , HI · q f a.f • f3) • I al +s.

viii) h'(q, .fff·qj·Y) • 2.

ix) h'(q, #·•·#·qfy) • 1, if h(qj,y) is defined in Mand equale .t

for some .t such that s' is the .tth symbol of y; or s' •$and y • $n.

- ,.
x) h'(q, .t·s·f·qj·y) • 3 if h(qj•y) • .t and a' is the .tth

symbol in y.

--- ---~------- --~---- ----------

- 148 -

xi) h'(q, #-$·q.·q.·$n) = 1.
J J

xii) h' (q,
n

$$·q.·q.·$) = 3.
J J

xiii) h' (q,
n = 4. $$#·q, ·$)

J

xiv) h' (q, $$##$n) = 3.

xv) h' (q, $$$#$n) = 4.

and is undefined in all other cases.

'; - ·'.~ -· ,., --· k ~-

- 149 -

BIOGIAPHlCAL NOTE

Joseph Edward Qualitz was born in Waltham, Massachusetts on April l,

1948. He attended public schools in Waltham, and graduated frOQl Waltham

High School in 1966. Mr. Qualitz received an S.B. and S.M. in Elect~ical

Engineering from MIT in 1972, and a Ph.D. in Computer Science in 1975.

As a graduate student at MIT, Mr. Qualitz served as a teaching

assistant until June of 1972, at which time he became an instructor in the

Department of Electrical Engineering. He was the recipient in 1973 of an

Electrical Engineering Department Teaching Award, and remained an

instructor until January of 1975, at which time he resigned the position

and became a full time research assistant at Project MAC.

Mr. Qualitz expects to join the engineering department of Art~san

Industries of Waltham.

----------~---- -----------------------------------

This empty page was substih1ted for a
blank page in the original document.

CS-TR Scanning Project
Document Control Form

Report # Lc.s -TR.IS l._

Date : _jJ_j I~ I 'iS

Each of the following should be identified by a checkmark:
Originating Department:

D Artificial lntellegence Laboratory {Al)
~ Laboratory for Computer Science {LCS)

Document Type:

~Technical Report (TR) 0 Technical Memo (TM)

D Other: -----------
Document Information Number of pages: J 5° (ls'I-; {'f\A,~~5

Not to include DOD forms, printer lntstructions, etc ... original pages only.

Originals are:

D Single-sided or

.l& Double-sided

Print type:
~ Type'Mier 0 Offset Press

Intended to be printed as :

D Single-sided or

'kDouble-sided

D Laser Print

D Ink.Jet Printer D Unknown D Other:.~~~~~~-
Check each if included with document:

D DODForm

D Spine

D Funding Agent Form

D Printers Notes

D CoverPage

D Photo negatives

D Other: ------------
Page Data:

Blank Pages(by,.l'llllftber): __________ _

Photographs!Tonal Material (bypegenumb91): ________ _

Other (nal9 c1w:1i11•a111pege number):

Description : Page Number:

~MAG~ /'{)A f> ! (1 ~ IS'o) IAil\/i:t.J~ o]J'yl-1 fAcA') cf- v 141u..>V1f CJLAtJk. _

(1;;1~ Is</) 5<;-tSltYGoi-it'A-O~:rf?G!'s- (3)

Scanning Agent Signoff:

Date Received: _..!.!..J.J..iJ <ts Date Scanned: _l:Jj.!...!_1 qs Date Returned: l}-1J.j_1 iS'

Scanning Agent Signature: __ _./yy""--'-,.._£) J,._..._A /,__!Jv:;...:;._.J.;..>C._~""u.+o'-=-

Scanning Agent Identification· Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
A~ency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I. T
Libraries. Technical support for this project was
also provided by the M.I. T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

--~ ---------- ~--

