MINIMIZING THE NAMING FACILITIES REQUIRING PROTECTION
IN A COMPUTING UTILITY

Richard Glenn Bratt

September 1975

The ressarch reported here was sponsored in part by Honeywell
Information Systems Inc., and 1in part by the Air Force
Information Systems Technology Applioations Office. :(ISTAO), and
by the Advanced Research Projects Agency (ARPA) of the Department

of Defense under ARPA order No. 264t which uasvncnitored by ISTAO

under contract No. F19628-T4~ C-0193

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

CAMBRIDGE |  MASSACHUSETTS 02139




I would 1like to express my gratitude to my thesis
supervisor, Michael D. Schroeder, for his helpful suggestions
and guidance throughout the ‘conception and execution of this

thesis.

Thanks are also due manyVOthe? members of the Computer
Systems Research group at M.I.T.'s Project MAC for their helpful
comments and suggestions. In particular, I would like to éxtend
my thanks to Doug Wells and David Reed for their help in
isolating two programming bugs in the initial implementation of

the design presented in this thesis.

I would also like to take this opportunity to thank my
girlfriend, Claire, for her kind help and gentle understanding

during the past months.

This research was perfoﬁned in @he Ccmputer Systems
Research Division of Project Nkc, an M I T.‘i Interdepartmental
Laboratory. | It was aponsored in part by Honeywell Information
Systems Inc., and in part by the Air Force Information Systems
Technology Applications Office (ISTA0), and by the Advanced
Research Projects Agency (ARPA) of the Department of Defense
under ARPA ordér ‘No. 2641 which was monitored by ISTAO under
contract No. F19628-74-C—0193.




MINIMIZING THE NAMING FACILITIES REQUIRING PROTECTION
IN A COMPUTING UTILITY® -

by
Richard Glenn Bratt

ABSTRACT

This thesis examines the various mechanisms for naming
the information objects stored in a general-purpose computing
utility, and isolates a basic. set of naming facilities that must
be protected to assure complete control over user interaction and
that allow desired interactions among users: to occur:in a natural
way. Minimizing the protected naming: facilities consistent with
the functional objective of controlled, but. natural, user
interaction contributes to defining a security kernel for a
general-purpose computing utility. . The security kernel 1is " that
complex of programs that must be gorrect if control on ' user
interaction is to be assured. T TR I

The Multics system is used as a  test case, and its
segment naming mechanisms are redesigned to reduce the part that

must be protected as part of the supervisor.  To show that -this

smaller protected naming facility can still support the complete
functionality of Multics, a test implementation of .the.design is
performed. The new design is shown $o have a: asignificant impact
on the size and complexity of. the Haltics aupervisor.

®This report is based upon a thesis of the same title submitted
to the Department of Electrical Englneering, Masdsachusetts
Institute of Technology, on July -7, 1975:im. partial  fulfillment
of the requirements for the degree of Master of Science.

-3-



ACKROWLEDGEMENTS
ABSTRACT

TABLE OF CONTENTS
LIST OF FIGURES

Chapter 1I1: Introduction

Chapter II1:

<NNMNNI\)N
e o b o o s @

1  Brief Statement of the Problem and Result
2 Related Work

3  Background

4 Plan of Thesis

1 Basic faformation Storage angd ?rabaetttu Model
2 Global Machine.Oriented Nemes

3  Global User-Orisnted Nawes

y Local ¥achine~Driented: ﬂuﬁza

5 Local Descriptors

6 Local ﬂser-Oriented aumea

7 Summary

Chapter III: A nodeﬂ of the ﬁultiex Syatmu

Chi,a,i’

¥

3.1 Storage System Model

3.2 Information Protection M@ﬂcl
3.3 Address Space Model

3.4 acferen@e !amm Space u@del

ter IN: aemsign of the m«-my Kernel
M. 1
4.2 Seurce of the Dependence -
u’3

Dependence on the aaf%reace Naﬂe Hanager
Removal of the Depgndenee ;
§,3.2 Details of the Design

4.4 Removal of Pathname Processing

44,1 Parameters to Ring Zero
4.4,2 - Links
4.4.3 Internally Generated Pathnames
4.4.4 Error Conditions
4.5 Summary of the Design
Chapter V: Redesign of Non-kernel Functions
5.1 Reference Name Manager Design
5.2 Pathname Resolution :
5.3 Interface Compatibility
Chapter VI: Implementation
6.1 Plan. . '
2.2 Impact on System Conplexity
3

 Impact on Systenm Perfornaﬁce'

M PR

Name Space Management in a Computing Utility

Qo

(o Yo Q6 R XN ;|
O~ W

E

d _
NDODOI~1 OEWN

NOBWOORN

5= EwWw
Vw o =&

Bt
oo~

~NaN o
TR RV.)

o e
W O

o Co
B —

o
o ON



Chapter VII:

Appendix A:
Appendix B:
Appendix C:
Appendix D:
Appendix E:
Appendix F:
Appendix G:
Appendix H:
Appendix I:

Conclusion

Multics Known Segment Table

Proposed Known Segment Table

Proposed Address Space Manager Interface
Example

Size of Programs

Performance Data

Ring Zero Interface Complexity Data

The Address Space Manager Programs
Unimplemented Address 8pace M&nager Functions

I.1 Reserved Switch
I.2 Copy Switch ‘
I.3 Transparency Switches

BIBLIOGRAPHY

91

94
96
97
98
100
102
104
107
125
125
126
127

128



Figure

List of Figures

Global Machine-Oriented Names
Global User-Oriented Names
Local Machine-Oriented Names
Local Descriptors

Local User-Oriented Names

Action of Initiate_ for Directories

Page

19
23
27
29
32
63



Introduction |
1.1 Brief Statement of the Problem and Result

This thesis investigates the claas-of:eomputing'utility
mechanisms’ that. deal with naming infovnatién*objeetsywithin a
‘computing utility. Our gbal is to Tundéré%and the various
functions played by name spaces  in coutemﬁbbary ‘éomputiﬁg‘
utilities and to decide which -of these fuﬁctions mu;t be’
protected to assure oomplete.cohtrcl over user interaction. The
Multics system, which is a sophisticated computing utility, will
be used to test the validity of our conclusions. (1) We will
find that Multics protects several~nechanisms that 'we claim need
not be protected to assure conbnol-a?cn:usah'interaetion.~“To
substantiate our claim we will present a rgdasrgnvbf‘ﬂultics~that
allows these mechanisms to be unprotected without~saorifieing the
ability to control user interaction. - The pesultins reduction in
the amount of coderthat must be protected to assure control over
user interaction contributes to defining a security kernel for

Multics.

(1) The Multics system was developed as a prototype computing
utility by Honeywell Information Systems, Inc., &nd M.I.T.'s
Project MAC. A complete bibliography of the Multic system may
be found in [M2]. -

-7~



1.2 Relajed Work

The Multics system [C1, C2, M2, 01, S3] is an example
of a sophisticated state~of-the-art computing utility. As part
of a general investigstion into how one goes about the task of
certifying the security of large systems, the Computer Systems
Research Division of Project MAC at M.I.T. is attempting to
produce a c¢ertifiably secure version of the Multics system, by
redesigning Multics to minimize the eollection of programs that
must be c¢orrect to assure ¢omplete control over  user
interactions. AsS a result, this collection of programs, the
Multics security kernel,; has been steadily deereasing in size and
complexity. A recent masters thesis {J1} deseribes how a Multies
security kernel that does not include a dyramic linking mechanism
was developed. This thesis reéoris'the results of another effort

to reduce the size of the Multics security kernel.

1.3  Backarouad

A computing utility is any computer system, or network
of interconnected computing systemé, that provide general
computing services to a community of wusers, Among the most
important services provided by coﬁputing utilities are facilities
that allow users to share, store, retrieve, and process
information. To facilitate the manipulationvvand sharing of

stored information, computing utilities must support a multitude

-8~




of name spaces. . These name spaces, - which  maintain a
correspondence between a collection ofknames and the information
they denote, provide organization of the collections of

information processed in -the system.

We find many name spaces at allv&ayelszof a computing
utility. The base computers on which a  computing .utility runs
implicitly employ a name space that‘maps?arﬂanﬁof‘integer\names
(actually a set of representations of intadena%fcalled addressées
into a set of words of computer memory. Simtlafly;‘direct access
mass storége devices such as magnetic disks and drums define a

name space that mags-physical.atobhggdaddnéaééa%into=;reeords of
bits. At a higher level, most danpngenfutiiiﬁigs support a-name
space that allows:its users to denote files dﬂj infermation - by
character sthing names such as "thn's;fiie". aDétailed analysis:

of most systems reveals many other exaubleéyofaanme spaces.

We have stated. that a computing . utility provides
information processing. .services to A?commuaity;df users. Since
we have not placed any pestrictions;ubon éhe composition .of this
user community, we must assume that:these users harbor ill will
toward each other or toward the cémpu&ingaétilityfoitaelf. :This
ill will can manifest itself in any of three ﬁays;f~A maliecious
user might attempt to use, modify,,oeapnevqnttpthepS"from using
or modifying information in the,computinguutiliby. Even in a

computing utility shared by a non-malicious user community, one

-9



user might accidently compromise another user's information or

computation,

Any general computtﬂgﬂwatility must  prevent such
uﬁdesirable interactions between its users. To this end it must
secure its . users :against unasuthorjized use, modification, or
denial of use of the information they process in the computing
utility. %his requires that the’coaputiﬁg/utilfty implement an
authorization - mechanism that allows - those user-information
interactions that are to be permitted to - be specified. The
information supplied to - the  system: through this authorization
mechanism must then be used by an access control mechanism that
intercepts all wuser-information interactions and verifies that

they are authorized,

The presence of access authorization and control
mechanisms in a computing utility does not prima facie secure its
users from harsful, uncontrolled interactions with other users of
tée,‘computing utility. It ﬁust ‘be established that these
protection mechanisms do indeed perform their intended task
without error. It further must be eﬁtﬁblished' that these
information protection mechanisms cannot be subverted, damaged,
or .cireumvented. - Only then may users of ﬁhev06mputing‘utility
process sensitive, irreplaceable; .or timely information with

reasonable freedom from fear for its security.

-10=




We  identify that subset of the mechanisms of a
computing utility which must be correct in- order' to guarantee
the security of the information contained ‘in. the compﬁting»

utility as its seéurity kernel,

Clearly the task of establishing the correctness of the
security kernel of a computing utility. must  increase
monotonically with 1its size andvéomplexity. For this reason it
would be advantageous to know which computing utility“mechanismé
need be included in the security kernel for intrinsic reasons. A
mechanism has an intrinsic need to be inéludtd in the security
kernel of a computing system if and only if it can be used by one
computation to influence another . oqmpubation.;f~ The access
authorization and control mechanisms of a computing utility are
the two most obvious examples of mechanismé.thét'muSt be included
in a security kernel. If a computing utility sqbpgrts a shared
name space for identifying stored informéfion, then this
mechanism, by virtue of its commonality, 'alsn- allows one
computation to influence anotherA and hence must be considered

part of the security kernel of thefeohputing-ntiiity;

Mechanisms that have novintrinsic need to be. prbtected
often are included in the security kernel of a system. Common
reasons for incorporating a mechanism .in the securiﬁy.kernel of a
computing utility when it has no intrinsic need to be:  protected

include the desire to protect the mechanism from damage, the

-11=




desire to minimise cross doﬁain ¢ails, and the¢ need to protect
the mechanism Beoause some-security kermel wéshanism happens to
depend upon 1its' ecorrect: operstisn.. The: motivation behind
including a mechanism 1in the sedurity kermel of a computing
utility when %1t E@s;no security-related nged'to be protected must
be carefully analyzed,; 'as the incldsion of the mechanism in the
security kernel contributes to the complexity of the security
kernel. Removing the m«nﬁxniswvfruu'&ni«<scaurivy kernel would
have the .advantage of lessening: the task-of ‘establishing the
earreetnesa»of'she~acduriﬁy kernel.  .This tuesis ‘will ‘evaluate
the need for*ea¢h<e£wth¢*ma}opwnamawapsaéa supported by a ‘typical
computing utility to be ineluded ‘in its:security kernel. We will
use the knﬁwledgcf-tnws -agcoumulated: to simplify the Multics

security kernel. - EE A

1.4

In Chapter II we.‘npresenif a -model . of. a computing
ubility.  This: ‘'model pays partieular ‘attention to those
mechanisms that are involved inm naming information stored in a
computing utility} We begin by defining~ a very simple
infcrmatian~sterage'aad;}proteetion‘ model.-; Through successive
e@hancement of this model we érrive at a model that we feel
represents the. essenece of nameaspacennanagéaéne>infafconteMporary
computing utility. As we add esch new nameAQpace to our model,

we consider - its: basic  raison -d*é&tre, the ’advantéges and

-12=~




disadvantages it provides over the previous ‘model, and most
importantly its impact upon which hamé’ spaces in the model must

be protected as a part of the security kernel. =

Chapter 1III begins our case study of name ‘space
management in Multics. We identify the ﬁﬁéjbr name spaces
maintained by Multics that deal with naming stored information
and establish a correBpondenceé between these hamélspaces and the
name spaces of our model.. *'HﬁVihg”:“ésﬁébiiéhéd " “this
correspondence, we attempt to”'vééifﬁ‘ tﬁﬁﬁ”fdhly the naming
functions identified in - our 'médelifaé‘5séedﬁf€ifiséh$itiée are
implemented by the Multies security kernei. This investigation
reveals that the Multics refererce namé spiéd, ‘a ‘name space used
in resolving -1nter-prece&u¥e ‘refaréﬁceéf”ié imﬁleﬁénted’invtﬁg"
Multics security kernel although 1t-ﬁas766*iﬁ%biﬁsié‘need‘ﬁﬁb be
protected. (1) The reasons behihd~%ﬁis'flaﬁffn‘thé"ﬁoduihrity of

the Multics system are investigated. =

In Chapter IV we ‘deVelop ‘a 'd@éiéﬁ‘ithat removes
reference name mahagement from the‘seédffty*kbrdéi,of the Multics
system. In so doing, we also remove several functions related
to the management of the Multics global namihﬁEﬁieraréhy from the
Multics security kernel. The most nbtable cof thgae afe that

function which allows the security kernél to name segments by

(1) The research reported in this thesis is based upon the M.I.T.
Multics system of December 1974, Multics system 24.2.

-13-



hierarchy pathnames and that : funetion which allows multiple
paths in the Multics storage sysjem bjierarghy to designate the
same object. In the course pf removing these functions from the
security kernel, our design drastiecally changes the Multics
security kernel inggpfgce._,iinaily,@nc,.diacggs .the- .jmpact of

this design upom tbe security kersel.

Chapter. V discusses the implications of oeur security
kernel design‘uneh,éode‘runn$ns outside of-the Multies  security
kernel. We diacusa, the .prineiples. involved in.designing a
reference name manager which runs:outside osgﬁnafnulties security
kernel. In the;@burseﬁ,ofi this. presentation. we. . uneover an
important ,cnnaiQQrgtgogf in moving.any .module out of the Multies
security  kernel. Specifically, . Multies  security  kernel
brqcedure; are ggaranpgeﬂ %o . run . 4o completion ance invoked.
This alldws them;to makgrassunp;ipn$%§gatMqu&§;be invalid were
they to be executed in the interuptable environment outside of
the security kernel. Following this discussion, we show how the
functions of  pathname resplution, Tg_ndwustbr#&é»:ﬁystem link
processing may beH 1mp1emented,_outa1de of. the Multics security
kernel. Finally, we  discuss the need for simulating the old

security kerpel interface..
In Chapter. VI we - discuss. theLatﬁanlta~ of a test

implementation ofﬂthe security kernel we have designed. This

test implementation allowed 'us to ‘measure of the impact of our

-1l




design upon the_complexity and performance of the Multics system.
We report this data along with a desdribtibﬁi of our test

implementation.

We have included nine appgndicés*7iﬁ' this thesis.
Appendix A details the structure of the data b&ééﬁfér the Multics
24.2 address space manager and referenéé‘néme”maﬁaéer.‘ Appendix
B shows the impact of our design updn-&he5§ﬁrﬁéfﬁbéfand content
of this data bése. Appéndii Crsummariies*ﬁﬁeinéﬁ:5éddﬁess space
manager interface. proposed in this ‘thesis. In appendix D we
present an example of the use of this new interface. Appendix E
summarizes the inpact of this thesis- upon the*sizé'of the Multiecs
security kernel. In appendix F we report the details and results
of our performance comparison between Muitics'systém\zﬂ.z and our
test system.. Appendix'G*summarizes“the“eftebtfdf;Gﬁr thesis upon
the complexity of the Multics security kernel interface.
Appendix H presents the programs of our rédéaién&d‘address space
manager for the reader's perusal. Appendix I diséusses'several
functions supported by the Multice  system.:'24.2 ‘address space
manager that, fof the sake ofvsimplicity? were not considered in

the body of the thesis.

15~




In this chapter we will develop a model of a computing
utility. Qur emphasgis will be upon-the roles played by name
spaces in. contemporary computing utilities. This model will be
developed by adding successive layers to -a central model of
information storage and proteection. After we add each successive
mechanism or name space to this model, we will present.a graphic
representation of the current state of the model. Each node in
these illustrations will represenﬁ a c¢lass of  names, The name
space binding one group of names to another group of objects or
names will be represented by an undirected line. If a name space
must be protected to control wuser  interaction, then the 1line
representing it will be constructed from the symbol "+", If the
name space need not be protected it will be represented by a line

composed of the symbol ".",

Some basic notion of information storage and protection
must be at the heart of any computing utility model. In our
model the basic vessel of information storage is a gegment. 1In

theory, we do not restrict the amount of information a segment

=16~




may contain. In practice, the amount of information a segmeht
may hold will be bounded by a combination of hardware and

software limitations.

Segments will also serve as our basic unit of
information protection. - We ‘requibéf"thitufﬁﬁnj?ﬁ*informatioﬁ
protection must apply uniformly to all ihforﬁatibﬁ?stored within
a: segment. We will choosevan‘aceesa*'ebﬁtﬂoifiiiétﬁ‘(ACL) based
information proteotiony - scheme =for our  modél. The basic
motivation behind this choice is ‘hhat““nulticéi';dur ‘test “case
system, uses an access contpélylist?prdtectiéﬁﬁﬁchéﬁé. o

We assume that an acé&&s*céntrdlflist is associated
with every segment. - This .access control '1ist encodes the
authority of each principal in the computing‘utility to use or
modify the contents of the associated segﬁent. (1) We will
further assume that the compwting*&fility‘supﬁoﬁts"fhe necessary
principal authentication and access autWorization mechanismS'ror”
maintaining the contents of access ' control Ifsts. We require
that at some point in referencing any segment, its associated

access control list be used to mediate' that ‘reférence.

(1) We assume that the reader is familiar with such computer
science concepts as access, capabilities, domains, processes, and.
principals [S4, F1]. f

-17-




We will hame a segment and its acceas econtrol 1ist by a
name that is unigue within the system. This name, which we will
call a wunique ddentifier (UID), will be'pﬁnpagt, fixed length,
and of high information density, -The mnique ideatifier naming a
segment and its -‘access contrel liet will be assdgned when the
segment is ereated and may mever be: changed: - Once assigned, a
unique identifier will be\yalidwﬁaﬁwall-miuea 3f we allowed a
unique identifier to be reused after -the segment it names is
destroyed, tned.vthat identifier would not:unigquely identify a
segment. It.wou;d ‘be difficult, if not impossible, for a process
to distinguish beﬁweenwdifﬂenqut:sesugmbaaaexiabkngp at- mutually
exclusive points 4in time, named by the same unique identifier.
(1)

It should be noted that we hawe purposely excluded the
pqssibility of ‘having  more ﬁhﬁa;ﬁmaéaﬂﬁaﬂgniﬂantéfiar bound to
the same;object. Tba~reason for th;a,daQtnm:ngsﬂwta.de@armmne if
two segments are i¢gntigalﬂ, 1f we guarantee that no ~two unique
identifiers are bound to. the same objept, then we can decide if
two segments are identical by eomparing‘the%f unique identifiers,
Lacking this guarantee, it is not. clear how :a process could

decide if two segments were the same segment. (2)

(1) A discussion of the need for computing systems to ‘support
unique identifier pame spaces. may be feanﬁ in Fabrg [F1]

(2) By equal we meéan the lisp concept of eq [M&]
-]18-~




Due to their compact aize,:unigue‘idcn&ifiefs are well:
suited to efficient implementation and nanipulation'by computing
hardware. .We will assume, for the moment.,- uhat*_aceeSs control
will operate during the translation of unigue identifier to
object. Certainly this requires. that the anime spaces that
associate unique . idenbifiers with 6bjeebs andfﬁheir aSsoeiaﬁed
access control lists'be protected;*vJOtherwiseaZS"procQSS “could
circumvent the access control mechantamSvoﬁrtne“syStem”ﬁy causing
the unique identifier associated with any seégment to name an
arbitrary access control list or;eq&t@alentiygﬁéaUSing the unique
identifier associated with any access control 1list to name an
arbitrary segment; - It is therefore neasusary%th&t the security
kernel exercise complete control over t&e ’uniqueu identifier to
access control list and unique identifier to segment name spaces.
Since the security kernel must force these two name ‘spaces to
correspond, we will treat them as a singleffant;ty; Figure 2~1 
illustrates this“prptected~ binding vmapping;uniﬁueﬁidentifiers

into segments and their access control lists.

<UID> +++ <SEG/ACL>

Figure 2-1: Global Machine-briented Names

2.3 Global User Orlented Names

From the point 6f view of a human user, the unique

identifier name space which we have definedkfob naming segments

-19-



has four major inherent disadvaniages. The Tirst disadvantage is
that humans are poor at dealing with high information density
nages. Second, since unique identifiers must be assigned by the
system and not the haer, they can have no mnesmonic significance,
Third, the binding or meaning of a unique identifier cannot be
changed. The final disadvantage in the wusage of unique
identifiers by humans is that it i3 Often convenient to allow
multiple names in a name space to denote the sawe object. In our
model we have precluded the possibility of ‘having two unique

identifiers name the same segment.

For these reasons, any viable computing utility must
support a user-oriented name space. Tdeally this mname space
should bind arbitrary length, yserﬁsubyliéﬂ_tharacter string
names to unique identifiers. In practice, some wupper bound is
often placed upon the size of user-supplied nhames. In any
reasonable computing utility ¢this restriction must not force
users to use difficult-towremember non-mnemonic names. To
pébmote and encourage information sharing, this name space
should be sharable by all processesAin the computing utility. If
this were not the case, then one user who wished to share a
segment with another user would ha§e ﬁo Eommunieate the unique
identifier of that segment to the other user. A shared
user-oriented name space eases this ' communisation problem by
allowing users to identify segments in  interpersonal

communication by human-oriented names.

=20~




A well known weakness of such a simple, unstructured,

global name space, which results from*&he‘méédeOr a name space -

to define a function, is that two users may not  name different

segments by the same name. ‘If',One: user names a segment

"square_root_program", then no other user may ‘use thiS' name for

another segment. Perhapsfthe-mosb»aevepeuhuﬁiSestation”df“this
problem is that a user may not choose az name _for a segment

without knowledge of every name in the globalznaﬁe'space.[

Another consequence . of theﬂwglobaléscbbe of the name
space we are defining 1is that it provides ‘a path of user
interaction. One user ~misht'.iatentiona11y ‘modify a name to
unique identifier binding that another userawnS“fdepending upon,

This constitutes an‘uneentroiledlmalieioua<usgﬁ%&nﬁéﬁaction since

it allows one proeess to cause another process to reference the

wrong segment., This in turn may cause an unsuspecting process to
fail or compromise the . integrity or-'security of sensitive
information to which it has aceesa; It is-therefore apparent
thatvthe ability to change a global»ﬁsernorionted name space must

be regulated by the security kernel.

One simple adthorizatioh sehehe a computing utility

could adopt for its'globai»usér¥§riénted name space is to allow

only the principal who created a.,ﬁémg binding 'to'“modify that

binding. Unfbrtunately, even ‘suchvla’ primitive authorization
mechanism is an unwieldy extension-tb the unsiructured‘name space

we have défined. Such an eitension Qould requiré that every name

-21=-




binding in the name space have an associated principal name used
to authorize modifications of that name Binding., If the name
space were sﬁpuc&ured inte meawingful dollections of name
bindings, then a more natural authorizatfon scheme based on
controlling a proeess' ability to modify  any of a related

collection of naae‘Eindings:couldﬁha.umﬁidyedt

Hierarchical name spaces, such ' as the user-oriented
name spaces found in the Multies [B1, 01] and UNIX [R2]
time~sharing systems, provide a powerful amd¢ natural solution to
both the naming cenfliet and autherization: problems outlined
above. sinee ;msﬁt name spaces found in eontemporary computer
systems, suckh as the ubiquitous "twe-level™ filé system [M3], may
be described as degenerate fixed~depth Nierarchiles, our model

will suppert a hierarchical global user-oriented name space.

Hierarchical name spaces provide their users with a
powerful organizational mechanism, .= This mechanism encourages
logically related name bindings to be dellected in a single
directory or directory sub-tree of the hi@rareﬁical name space.
For instance, each user could plaee nage'bindingg he creates in
distinct sub«trees of the hierarchy. ﬁéping‘éqnflicﬁs within a
given directory are easily avoidedfby»lodailyvfestructuring the
hierarchical name spaée so that the qﬁﬁfliéting_‘nahe bindings
occur in differentg direetories. The‘diréeﬁo;yisﬁructure of a

hierarchical namé-apace can also serve as the basis for a simple,

-22~




flexible mechanism for controlling the modification of _the name
bindings in the hierarchical name space. The ability to use
and/or change the name bindings in a directory can be specified
by an access control 1list oﬁ that diﬁectbﬁy.;'Ahthorization
control may also be delegated by alldﬁing the access control
lists of a directory to specify which principal may modify the
access control lists of its- sub-directories. 'Figube 2-2 extends
our model to include both human-oriented andfmachine-obiented
global name spaces.
USER ORIENTED | MACﬁiNE»QRIENTED 
NAMES - NAMES
<PATHNAHE) +++4t+++4+4+4 <UIDD> +*¥{ <SEG/ACL>

Figure 2-2: Global User-Oriented Names

2.4 Local Machine Qriented Names

At this point our : model provides twoﬁ very powerful
mechanisms for namidg information. ~ One mgchahism allows any
segment in a computing utility ¢to be denoted by a compact,
fixed-length, unique 1dentifieh. ‘,Ihe other”naming mechanism
allows segments to be named by arbitfary lenstq Qharacter string
names indicating the positioh'of>a segqeﬁpyin a»ngming hierarchy.
In common to both of these mechqnisﬁs.is the fact that their
scope is global; they are shared by all usérs of the computing
utility.

-23-



An. obvious implication of the scope of a unique
identifier is that it must be capabke af -w@gresem&ing as many
distinct aegm#ata\ as  the computing utility could create
throughout its éutira life. Because the set of segments existing
at any one time will be a small subsemlpm;gll segments that have
ever exiated or will ever exist, our unique identifier name space
will be sparsely populated. For large systems with long
lifetimes, this unique jidentifier name space will alse be quite
large. Economics demand that such large, sparse mappings be
stored in a compact form requiring more sophisticated accessing
methods than indexing by unique id@ntifiar vilég;. This need for
sophisticated retrieval methods in conjupetiom . with the large
potential size of the unique identifier to segment mapping tables
suggests that this npame 3space is difficuls to implement
efficiently. As a result, contemporary computing hardware
provides a name space for addressing segments that is much
smaller and denser than the globa1 uaiqﬁe‘ide$tifier name ‘space.
The increased é:ficiency of Eepresantation and mapping of this
name space is achieved by "restridtiné the ‘scopé of the

machine-oriented segment identifiers.

The local' machine-oriented‘haﬁé spaeé in our modei is
patterned after the Multics ﬁgkgggg ﬂumggg nameb space. Like
unique identifiers, segment nuﬁbers‘éfe compéét, fixed~length,
machine-oriented names. Unlike 'uniQQé 'idehtifiehs, relati?ely

few aegment numbers are 'supported (1) and segment numbers are

-24-




locally dense so that simple, efficient hardware translation
techniques can be used. Since segments Will be identified to the
base level of the computing utility by segment number, we will

call a segment number name space an address space.

Theﬁe are many possible  choices fob‘ the scope of
segment numbers. A cooperating ‘colleétioh'bf pbocesses could
 share a common segment number address Spaéé. "Seghent numbefs
could be private to a process, shared‘bi hli'dbmains'in that
process. C(Conversely, the scope of a'segment number could be a
domain. It is even possible to imaginé alsisfem in which the
scope of a segment number is temporally restricted. The choice
of which of these or other posaiBIe'SchéMeéffbr‘iiﬁiting‘the‘
scope of segment numbers is appropriateé for a given computing
utility depends upon both the hardware on which it mist run and
the desired patterns of interaction within the computing utility.
The larger we allow the scope of a name spacé to be, the greater
the cost of translating names in that namé sp§cé. ‘Convérsely,
the smaller we make the scope of a name ‘spaCe;"the"fewer the

naming needs it can satisfy,

If we desire inter<~domain communication to be
efficient, then it would be inappropriate to restrict the scopé

of segment numbers to a domain. Were this done, segments could

(1) Multics supports a 1local, machine-oriented name space of
about four thousand segment numbers. -

~25-




only be named in inter«domain cemmunication by unique identifier
or, worse still, pathname. Since these names are not directly
usable by the base 1evel hardware of the cemputing utility, they
wouid have to be mapped by the receiving domain into its segment

number address space before the segment named could beu
-referenced. By similar reasoning, if inter«process comiiunication
occurs with high frequency in a partiouler computing wtility then
that computing wutility might choose to share a segment number

address space among. a group of cooperating processes.

The choice of the scope of segment numbers represents
an engineering 1trade-off. We must limit the scope of segment
numbers so that‘théy may be}egfieiqn&lygimpsemgnted in  hardware.
Additionally, the smaller the scope of a sSegwent number the less
its need to be protected. If an addreas - apaee5/is local to a
protection domain, then it may be freely manipulated by that
domain without compromising security. In oppesition to the -
efficiency considgrations that weigh in favor of reducing the
scope of segment numbers is the desire .to nakeu'the - gcope of a
segmentv number . as large as possible so as to make communication
between different computer systems, processes, domains, and
moments in time as efficient .as possible. The desired
characteriéties and resourees_availablg to each computing utility
must be careful;y evaluated to determine the largest group of
interacting objéets that can share an address space with;ut

making the address space unacceptably large.

-26-




Routine communication between the@\senurityt kerﬁel
domain and other protection doﬁains in a computing utility should
probably, for performance and modukar-prngrémming reasons, be
performed by using segment numbers to. denote segments. This
requires that the ability to»manipulatgﬁtne~segm¢nt number name
space we have Justldefined be contrelled:by'the.Sééurity kernel.
This need for the security kérnelxto.wantralfthévmanibulation of
an address space would not arise if address spaces did not span
protection domains. The renderrshoulﬂ,take note of the fact that
since segment numbers do not have global scdpe, our global
user-oriented name space ¢anpot be implemented by binding names
to segment numbers, . Figure 2-3 extendafourﬂmodelﬁto include the:
protected binding of segment numbersnteﬁsegnents/and their access
control lists. We also 1ncludaa.;w proteesed5}binding between
segment numbers ahd unique jdentifiers. This binding allows the

identity of a segment named by a segment. number to be

established.
USER ORIENTED  MACHINE ORIENTED
NAMES . .-~ .NAMES ‘-
PER~-SYSTEM <PATHNAME> ++++++++++ <UID> +++ <SEG/ACL>
: + +
. B +*
PER~-ADDRESS SPACE ~ <SEGNO>
Figure 2-3: Local Machine-Oriented Names

-27-




Economics require that we refine the segment number to
access controd list and segwent translations - depieted by our
model. These tremslations must be performed wpoh every refetrence
to a segment. It 1is thus essential that they be efficiently
implemented. In light of ecurrent  oosputing %technology, these
translations must be performed inh hardware if we desire our

computing utility to be economically Teasible.

Contemporary computing hardware supports neither the
ability to addréss arbitrary amounts of Stérage nor the ability
to perform the neceasary access coatrol 1ist search - upon every
reference to a segment. To solve these prodblems one frequently
finds two high-speﬁd, hardware look«aside memories aiding the
processors that implement a computing utility. One assoclative
memory maps a segment number and domain identifier into a
hardware interpretable representation of the domain's access to
the segment specifiéd by that segment numﬁéf;‘ We will call the
entries in this associative memory protectios descriptors (PDS).
The other assoclative memory maps a segment  number into an
addressing descriptor (ADS) that allows the hafdware'to address

the representation of a segment.

The processors we have described look up the address of

a segment in their addressing descriptor associative memory and

-28-




validate their authority to reference the segment with respect to
the appropriate protection descriptor found in their protection
descriptor associative memory. When one of these‘descriptors is
not found 1in its associative memory, a,hardﬁare fault will be
recognized. At this point software may intervene and take the
appropriate steps to load the necessary descriptors and restart

the faulted program.

Clearly the security -  kernel . must control the
manipulation of the protectfon descriptor and addressing
descriptor name spaces. This is necessary since there exists a
one-to-one correspondence between addressing descriptors and
protection descriptors which must be maintained to  preserve the
integrity of the system's access control mechanisms. Figure 2-4
refines our previous model by supplanting the protected segment
number to segment and access control list mapping by the four

protected mappings described above.

USER ORIENTED MACHINE ORIENTED

NAMES ‘NAMES
PER-SYSTEM <PATHNAME> ++++++ <UID» #+++++++ <SEG/ACL>
+ + +
+- L + +
PER-ADDRESS SPACE <SEGNO> + <ADS> + +
+ +
+ +
PER-DOMAIN <PDS> ++4++++++34+++++

Figure 2-4: Local Descriptors

-29-




We have seen that efficiency comsiderations require our
model to support a limited-soope, machine-oriented name space.
It is only natursl to consider whether there would be any
advantages im our model alsc sSwpporting a user-oriented name

space of limited scope. The answer is, quite emphatically, yes.

Like the segment rnumber name space we have defined, a
useraovieﬁted name space of local scope would be easier and
faster to sesrch than its global counterpart. But more
important, it would provide a private name space that could be
manipulated arbitrarily without worrying about interactions with
processes outside of the scope of the name space. This latter

ability is necessary in providing modular programming facilities.

It is c¢lear that a program should not code into itself
the unique idenﬁifier or even the pathname of another program,
such as a square ro¢ot program, thﬁﬁ it wishes to call. This
premature binding between modules would require that the first
program be changed and recompiled if a new and better square root
program was added to the  computing utility. The caller of a
square root program does not, in general, wish to be bound to a
particular square root progranm. If the choice of which routine a
procedure is to call can be delayed until the call is made, then

we gain much flexibility.

-30-




We call a name that one program: . uses to refer to
another program a reference nangn-[01]~ifwit;‘meaning is only
defined in relation to a local mname .space. Such a local
user-oriented name space 1is called a refenonoeiname:space. One
way to imploment a space of reference names is to maintain a list
of reference name to segment associations t01]. Another
mechanism for realizing a referenoe name space, found in many
contemporary computer systems [J1, 11], involves searching an
ordered_ list of apecified,direotoniea,woaxled=search'rules; to
resolve inter-program references. (keferenco nane;;provide a very
useful mechanism for combining separately oonooived subsystems
and testing new subsystems all of whose ocotponents have yet to be
written by allowing reference name to segnent binding to be
defered until the components of a auhaystem-<ére.‘oombined for

execution.

In our model, each domain will have a'privéterreforence
name space. This minimizes the problem of naming confiicto and
allows each protection domain to operate without regard to the
reference names used in other domains. A further advantage of\
per-domain reference names is that they need not be explioitly‘
protected or controlled by the security kernel.» Since reference
names are private to a proteotion domain, each domain may freely
manipulate its own reference name Spaoe.v All that is required is
that the reference names of each protection domain be stored in a
segment accessible to only that proteotion domain.} If referenoo

names spanned protection domains,'it would 'be necessary for a

-31=-



security kernel mechanism to control the manipuiation of
reference names to prevent one domain from exerting uncontrolled
influence over another domain through the manipulation of
reference names. ’Figure 2-5 shows the relationship of the
unprotected reference  name  space. to the other name spaces

deseribed so far.

USER ORIENTED MACHINE ORIENTED

MAMES - "NAMES
PER-SYSTEM CPATHRAME> +++++4 <UID> +444+++ <SEG/ACLD
+ + +
» > T + +
PER-ADDRESS SPACE <SEGNO> + <ADS> + +
» . . P L -+
. + +
PER-DOMAIN <REFERENCE NAME> .. ++ <PDSY> ++4++++++

Figure 2~5: Local Hser—Orienteﬁ'ﬁames

2.7  Summary

In this chapter we’have investigated the basic roles
. played by name spaces in a t?bical coqpqting;utility. Of the
eight name spaces we have described, only the per-domain.
reference name space méy be excluded from the secyrity kernel
without jeopardizing the ability of the computiqg utility to
control user interactions. The cbitical difference between the
reference nahe space, which can be uncontfolled, and the other

seven name spaces we have considered, which must be controlled,

-32-




is that the reference name space 1is not common to multiple
protection environments. Since it cannot be used by one
protection domain to exert influence over another protection

domain, it need not be implemented in the security kernel,

-33-



Before approaching the spcpif;c problem of defining a
security kernel for the Multics system éhat does not support
unnecessary name 3space management mechanisms, we will present a
detailed model of the Multics system and éhow its correspondence
with our general computing utility model. Our Multics model
contains four components: a storage system model, an information
protection model, an address space model, and a reference name
model. These models will contain sufficient detail to allow the
reader who is unfamiliar with the implementation of Multics to

comprehend the important details of the design we will present.

3.1 Storage System Model

The Multics storage system (1) manages two distinctly
different types of objects calleé( seéuents -and directories.
These objects are organized into a single system-wide tree
structure that is known as the storége system hierarchy. This
hierarchy implements the system's human-oriented global name
space. The internal nodes of this hierarchy are‘directory

objects. Each directory object is itself composed of a named

(1) A more complete description of the Multics storage system
than will be presented in this section may be found in Organick
[01] and Bensoussan [B1].

-34-




collection of entries, one for»eabh‘iﬁh%diatéli’inféﬁior segment
or directory in the hierarchy and one ‘for- éach 1link in ‘the
directory. Links are psuedo-objects in the hierarchy that allow
an object to.appear to reside at seve?ﬂl~disﬁ1nc€"’nodeé in the
hierarchy. To accomplish this,'-the”aiﬁectoﬁy‘entry”df a link
contains the pathname of another obféét’ﬁf'fidk’id the hierarchy
that is to be considered as the target object of the link. The
directory entry of a segment or.diﬁébﬁﬁﬁY'?6Hjé¢t*f06ntains many
important attributes of the object. Among these attributes are:
a system-wide unique identifier,’a-holTeeﬁion ‘of ‘human-readable
names for the ‘objeét' that are unique wWithin ‘the directory, an
access control list, and a file map for ﬁheélbbjéétV“thét allows

the system to access the objeef.

Each directory in the Multics hierarchy is stored in a
separate segment. Many advantages aéérué”“?¥%ﬁ, supporting a
hierarchical name apace*fwhbse57direétor1%s"a?efiﬁpleméntéd“ih’
separate segments. These advantages 'are closely jinterrelateﬁ.'
First, since each directory containéfohly*a”énili‘fraétion of the
total name bindings represented by the hiebéibhy, it may be
searched much more quickly than a correSponding’ single ‘segment
implementation 0f>ﬁthe whole hierarchy. 'Fihdiﬁg"a name in a
hierarchically organized name space reéquires searching only those
directories defined by the prefixes of the name. In general,
this will represent a substantial““éavingé*[Inf search time.

Second, the component names in a directory may be viewed as’

-35-




uniform, unstructured names. Finally, the names in a directory

can be relatively small and yet still be unigue.

Aa ue‘héxe mentioned, a praoctical egmpuhing utility
cannot assume that all uysers will ba}benqvo&eﬂh with respect to
their manipulation aof a .global, shared name 3space. We must
assume that aoma‘uagr, through malice or agoident, will attempt
to delete or modify name bhindings that other users are depending
upon. If this global name space is to be useful, th@n users must
be able to control or at laash,knouguhagm&x;change the name
bindings that are of interest to them. ”Canﬁrailing who may read
thé name bindings in a partioulaifdireehpryvof a shared name

space is also desirable since the names in & . directory might

themselves constitute sensitive information.

Since segments are the basie unit of access control in
Multics, it is only natural to contrel the. mapipulation. of the
names in a directory by the Multics segment access control
mechanisms. Inié approach is quite attractive since it allows
the name bindings in a name spgce« to be.protected without
introducing any new, special purpose. access. control mechanisms.
The access contrplﬁlist of a directory specifies which princibals
may read and write itg representation. In this- way, the normal
access control and authorization  .meghanisms of Multics
automatically provide a certain degree of  control over the

manipulation of names in its hierarchical name .space. Multics

-36~



actually provides finer accesé .qontrol on directories than is
afforded by its hardware enforced .access control mechanism by
encapsulating directories and a set of system-supplied procedures
which manipulate directories in a protected subsystemr[81]. The
procedures in this protected subsystem, whioh~nu§t be a part of
the security kernel, exercise control over the use and

manipulation of the name bindingskin a direetony.

If we assume that the nootvdirectory-of the hierarchy
is its own parent, then every objact'in the Multics storage
system has a unique parent directory. Furthermore, since the
hierarchy has the structure of a tree and names of directory
entries are unique within that directory, we can specify an
arbitrary obJect in the hierarchy byran~ondered list of entry
names. Such a specification is called a pathname. - The first
component of a pathname names an entry within the root directory,
and each additional name specifies an entry within the directory
specified by the list of names that preceeded it. By convention
we take the name of the root to be the.null;name, and we write

the pathname a, b, ... q as >a>b>...>q.

A leaf node of the Multics hierarchy can bg either an
empty directory, a 1link, or a segmeht. Segment objects, which
are implemented directly by the Multie¢s hardware, are primitive

objects in which progr&ms»and data are stored.

-37-




In our general ocomputisg utility model a directory
entry consists of one name to unigue idefitiffer mapping stored in
a directory of the user«orierited hierarchicdal name space, The
issue of where to store the access control 1ist and other
attributes of & segment or dirécdtory, which was not addressed by
our general model, was resolved in Muiﬁics by merging this
information with the eéntrieés of its hierarchical name space.
This scheme has three important conseguences. First, because a
directory entryvcontains the attributes df’tﬁé‘éﬁgmeﬂt it names,
no two directory entries in the hierdrchy are allowed to describe
the same segment. (1) This requires that an entry contain all
synonyms of the bbjact it describes, In;ﬁdurd géﬁeral eomputihg
utility model this was not naéessary‘sineé ﬁﬁere was no penality
associated with alidwing nultiple entries (single»name to unique

identifier mappings) to denote the same object.

Second, the unique identifier to Segment name space of
our general computing utility model exists in Multics only as a
collection of 1ndividual mappings scattered throughout all
directory segments in the hierarchy. This renders the task of
locating a segment given its unique identifier prohibitively
expensive. However, Multics does use unique identifiers. to
facilitate the determination of whether two objects denoted by

different pathnames are in fact the same object.

(1) If this rule were not obeyed, then the system would be faced
with the error-prone task of maintaining identical, but separate,
copies of the attributes of a segment. '

-38-




Third, because the access control list of an object 1is
stored 1in the object's superior directory,'it‘is not possible to
have the access éontrolvlisﬁ*bnfthat object aﬁﬁifﬁgte”aecess to-
the object independent of the access control- lists on the
object's superior directories. Tb-séé*ﬁﬁ&ﬁ“bhiﬁ*is‘tﬁue all we
need do is consider the “followfﬁg'hsé%nariﬁi‘bf3 a process
attempting to. reference ‘arfsegment%?t'A%éuﬁ%vfthét' the “access
control 1list of the segment ‘specifies’ that the process is
authorized to reference the segment, but ¢that the segment's
directory entry resides in a directory to which the process has
no access. The system is faced with a paradox. ”If it allows the
process to reference the segment, then it must allow the process
to use information in the segment's  directory entry. But the
process is not authorized to use information in the directory
containing the entry. - Thus, 1f“ehei§ystehipérﬁits,the'prbcess to
reference the segment, then ft must violaté the authorization
specified in the access control list ef the sontaining directory.
Conversely, if the system does not pernit ‘the process to
reference the segment@ then it must violate the authorization
specified in the access ocontrol list " "6f “the- “segment. This

dilemma will be discussed in detail in the fHext chapter.

-39~




3.2

The aetive agent of . computation :in Mudtics is a
process. A process may execute. &nstructipngmvihA any - of eight
protection domains,¢aumberedmfrom 0 to 7. Theae domains have the
property that a process' access rights.to objects in the storage
system while executing in domain n are a subset of its access
rights while executing in domain n-1, -Domains that are so
constrained have been named rings {82).- To identify the user on
whose ,beha;f a . process - is executing instructions, the systenm
associates with. each process an unforgeable perincipal name. This
access contirol name is used to establish a  process' rights to

access directories..and segments. in the storage. system hierarchy.

Associated with each . segment and .directory in the
storage .system ‘hierarchy is an aoness contpol list which, in
conjunction with the access control name .and ring of execution of
a .process, completely . determines . the .access rights of that
process to the,object. The access control list in the directory
entry of an obJeet’:eandes. the . .access -moede or rights each
principal is hom‘haie to - the -associated  object 1in a given

protection ring. (1)

(1) In the current Multics implementation both a segment's access
control 1list and its ring brackets must be considered to
determine the access rights of a principal to the segment in a
given ring. Since this level of detail is unimportant for our
purposes, we will imagine that a segment's access control list
alone is sufficient to determine access.

=40




When a process attempts to reference a ‘segment or
directory, the system evaluates the process' access modes to the
target object. Conceptually, this involves Searchiﬂg the access
control list of’the Objecﬁ; This informatﬂon'is'uSed to validate
the process! right,bo-perfdrm a given‘cperation*upon"the segment
or directory. In the case. of evaluatiug:“acéess‘ to segments;
Multics relies upon the hardware asscoiative memories described

in our general model to make access validation efficient,

For segments the valid acceés modés'aﬁe ‘ read, write,
gnd execute, These acceas modes are enforced direcﬁly by the
Multics hardware. The valid access modes for directories are
status - the right to read the attributes of the-entries in the
directory; modify - the right to change the attributes of the
éntries in the directory; and append:~ the right to add new-
entries to the directory.  Directory ~“a¢déss “modes are

interpretively enforced by the Multios-semuflty kernel.

Links, which are npt full fledged bbjeets in the
Multics hierarchy, are not given “-an “ac@ess: ‘control 1list,
Instead, access to read the contents of a link is granted to any
process that has status permission to the ~limnk's containing

directory.

41



The process of a. narmal user exeoutes in protection
ring four. This allows .the process.to.access only those segments
and directories %o which it has non-nyll access in ring four or
some higher -numbenred ring. .In ordar taxwecessha'storage system
obdectv.aqgessihiaa&q the process only .In . rings -numbered lower
than = four, -a usenr process must .enter an appropriate lower ring.
This may be done.odlyrby-calling-a procedure which is designated,
by its access control list, as a gate into that ring. When such
a gate procedure is called, the process enters the inner ring.
By virtue of .its hawing entered an .inner ring, the access rights
of the .process may increase. ,uhah the process returns from the
gate procedure, it reenters its previous ring : of -execution and '
relinquishes the accesas righta it gained on entry to the lower
ring. To put teeth inte this protectitm meohanism, the - storage
system manager will not allow amgaoceés to create a gate into a
- lower ring than ;hefring tbe process is curreatly executing in.
This insures .that inxaDroeadurpadanﬁhotizbdft0~runLin an inner

ring may create gates into that ring. (1)

The Multics .syatem .takes 'advantage 'of this ‘ring
protection .mechanisg to Rﬁeteqtiita;aeaupitywkennel programs and
data bases from tampering bk non«kérnel proeedures. - This is
accomplished by‘ setting the access control lists of security

kernel procedures and data bases to indicate that they may be

(1) More complete descriptions of the Multics protection
mechanisms may be found in Saltzer [83], Schroeder [32], and
Organick [01].

42~




accessed only by processes execut;&g,in,proﬁedtidn ring zero.
Entry goints in the‘ security kerpel which-are :callable by

non-kernel procedures are declared to be gates -into ring zero.

3.3 Aﬂﬂz&a;.&nﬁssgnsﬂsl

The Multics system associates an address space with'
each process [B1]. The function served by this address space is
to brovide' a :mapping from a - smalil se&'of‘virtual:addresses,
called segment numbers, that can be direetly: translated by the
Multics‘ hardware,  onto the. much larger set.of objects in the
Multics hierarchy. Thisisegment number address space corresponds
to the local_maeh;neeoriented:name;aaade«deﬁined.1n our general
computing utili;ylmpdel. In the.Multies_systgn»eVeny process has

a potential address space of several-thousand 'segment numbers. -

The binding éf_ a segment -number to a:storage system’
object, which incorporates a storage aystem .object into an
address space, is called initiation. - The effect of initiating a
storage system objept is to  make . the . representation of that
object appear directly addrgssable,bynhhe~handwar¢eof>thezuultics
machine, Since Multics relies upon addressing and protection
descriptors, such as those desecribed in our . computing utility
model, to ;mplgmgpt hardyare‘ references: to - segments, only a
fraction of the hardware segment number to segment mappings

implied by a process' address space need exist at any given

U3



instance. A2 im our computing utility model, ‘the Multics
security Xkernel handles faults omised by attempting to use
missing -descriptors by reloading the wnissing addressing or
grotection descriptor and restarting the faulted process. The
unbinding of a storage system object from a ‘segment number, which
removes the object from the process' address space, is called

terpination.

our discussion may have 1lead the reader to the
conclusion that a process may have several segment numbers bound
to the same storage system object. Abtuﬁily, “this 1is not
permitted by the address space manager. During the initiation of
an object, the address space manager\lbeates‘the direCtéry entry
of the object from which it fetches the system-wide unique
identifier of ﬁhé object. This iéentifiér{ is looked up in a
per-process tabie (1) that maps unique identifiers into segment
aumbers, If the unique identifier is found in this table, then
the object is‘alreadyAin—the address space of the process. This
being the case, the initiation primitive returns an indication to
this effect as well as the segment number that is bound to the ”
object. This scheme has several advantages. ‘?ikst,ﬁit "helps a
process conserve its segment numbers - a very scarce resource.
Second, it permits a process to ‘test the identity of two objects

in its address space by comparing the segment numbers assigned to

(1) See appendix A.
Y




these objects. Finally, it simplifies the mahagementTOf‘the

Multics virtual memory.

3.4 Reference Name Space Model

We héve}assérted'fhat léééi uéer;briehﬁed name spaces
in a computing utility need hot be part of its security kernel.
This claim not withstanding, the Multics supérvisdr implements a
reference name space for every ring of evéry proéeés. These name
spaces provide a‘ mechanism for mﬁpﬁing‘character string names
into segment numbers and'viée versa. In ‘the éﬂrrent Multics
iﬁplémentation only segments may be aSsigned reference names.
The security kernel itself does not use reference names for
normal segmenté. It does however misuse its'unique ability to
assigh reference names to the segments with which it implements
directory objects. (1) ’Specifically, the Muitics supervisor uses
the reference name manager to associate the hierarchy pathnames
of initiated directories with the segment number of the segment
containing the representation of the’direetory.‘ Aslwe will see
in the next chépter, ‘this presents problems when directory
objects are renamed. This problem will be discussed in great

detail in the ensuing éhapters.

The address space manager and reference name manager

share a common data base in the current Multics implementation.

(1) In non-kernel domains directory objects are sealed and may
not be accessed as segment objects. ’

~45-



This combined data base is called the Known Segment Table and is
documented 1in appendix A. The reader who 1s unfamilar with the
structure and contents of +the KST 1is urged to review this
material. Additional information on the Multics reference name

manager may be found in Organick [01] and Bensoussan [B1].

-6



Chapter. IV
Design -

The Multics designers recognized the advantages of
building a computing utility on tbp of;a.cen;ralysecurity,kernel,~
As a consequence, - Multics is more-fortunate\thah:mos; existing
computer systems as regards its -securability. B&, eénstruction
most modules of the Multics system are not permitted to. execute
in protection ring zero. This bulk of code. .is thus prevented by
the Multics protection mechanisms from tampering with those
programs and data that are only accessible frbﬁ,proﬁeetian ring
zero. These protected programs constitute the Multics security
kernel. Although the portion.of the Mul;ics,aupehvisor that lies
outside of the security kernel dwarfs,the»secﬁrity kernel in
comparison, the modules of the Multics.security kernel are still
quite numerous as well as complex. - The objeet modules of thef
Multics security kernel presently represeat  approximately one
hundred and = fifty thousand machine instructions. These
instructions implement in excess of two hundred user callable
functions as well as a host of implicit system services such as

demand paging.

We will present a redesign of the current Multics
security kernel that will enhance ita certifiability by reducing
its size and number of external interfaces. -As. a side effect, we

will also improve the modularity and coding of the area of the

U7



system we will investigate. Our dasign will eliminate the need
forv the Multics security kernel o support reference name
management. This requires that we carefully redesign and
remodularize ring zero so that it is independesnt of the reference
name manager. This is necessary since:a security kernel must not
depend ﬂpon”tue‘caérectness:of procedures outside of the kernel.
Before getting into the details of our design, we -will
investigate the reason behind ring zerpis curreat dependence on

the reference name manager.

While <there does not appear to be tny intrinsic need
for the Multies security kernel “to 'support reference name
management, its removal from ring zero is complicated by the faet
that the Multics eddress space manager uses the facilities of the
reference name wmanager to° maintain an asseciation between the
pathnames of directories it has initia%%@fin &' process and the
segment numbers of these directories. The iﬂﬂ%QQGLSpace manager
uses these assoclations to aveid having' to  repeatedly resolve
identical directory pathnames into segment numbers. Since the
security kernel must not depend upon a mechanism outside the
security kernel, it is necessary to decouple the address space
manager from the fefereﬁce name Hmenager before the latter can be

removed from ring zero.

-48- -



The dependence of the address ‘space manager upon the

reference name manager manifests ~‘itself “ith'* " thé " recursive

procedure find_ which the Addréss ‘space manager uses to resolve

directory pathnames ' into “directory ‘segment’ ~nimbers. This
resolution is necessary since the hardwﬁfééﬁaze”6f thé system
only implements references to storage syStem objects'iby segment
number.  When find_ 1is invoked to’ détermiae -the segment ‘number
for a directory,'it calls the beferepce name manager to map the

pathname it is given, interpreted’as“a référence name, into a

segment number. If the pattiname is*a “refereéncé ‘fame ‘known ‘in

ring zero of the'*pﬁacaés;”“tﬁén*ﬂffh&;ﬁﬁéﬁﬁhﬁsﬁthé“asﬁééféﬁéd‘

segment number as the segmedt humbér of €He diredtory. (1) 1If

the pathname 1s: not a known ‘reference ‘name, 'tCheén find_ splits the

pathname into a pathname of t¥e parént directdry  6f the ‘targét

directory and the directory'entry name of the target directory.

It then calls itself recuraively.to obtain a -segment - number for

the - parent dircntuuv» Using'this sagment ﬁﬁhbe‘f?[ refereﬁc€ tha;

parent directony, “find_ a%teﬁt%s fritiate - the tacgg@f
directory. If it succeeds, 1t calls the referenee . hame manager.

to bind the gnthname1 of bhe %aﬁget*d&reotcry, as a referenoeT

name, to the segment ﬁunﬁ%? assfghéd to’the tahget directory.v‘ o

- ’E”"s""i\

(1) Az we will see 1ater, this ‘ean teuse’ probrems since thiﬁ"

segment < number may no'longer be bound' to the df?ﬁvtory specif d
by following the.pathname’ rind“‘ﬁﬁa gﬁ#ﬁnﬂs%%p b& %tep throngh
the directory hierarchy.

~49-



This thesis suggests a radical change in the ring zero
address space .manager.  The esseptial result. of ihis change is
that find_, as described above, need no.longer be called by ring
zero. This allows both find_. and reference napme: management to be

removed from.ring zero. .. - . R

~ One of the. baslc .goals..ef theaiuulﬁies<proteetidnv
mechanism is that a .progess «Should. be..-unable to - .detect the
. eg;Stenqg»1°f:Wa;gt@ngae §¥§t§mﬂQhJec;%&Qﬁuhiehﬁ&t.haB no ‘access,
(1) 4 second baaie kgelf;afﬁtmwﬂu%&s;ﬁaremetmn ‘mechanism’ is:
that the accesa .qoatrol  list. of.an-object sbould be-the sole

specifier of access. to the objeat, (@ .

{ Do e % IR

(1) We will aansinep that - i: A .prooeas -has acqeess to  the -parent
of an object then it has sufficient access to determine the
exigtence of the abjeot. The reason for ks wild: be- discussed
later. -

(2) This goal'was not‘bbiginally embodied in the Multics design.

Originally a grocq;a ., 300688 Lo an ohject was.a: function of three -
different access - control lists. The first 1ist was part of the
directory entry of the object -and-. oornasponds: .. to . the access

control 1fst "we now have. The second 1list was part of the
object's parent and was common to all entries in the directory.
The last 1ist was a one per system master access control list.
The result was a very complex access evaluation mechanism that
allowed an unwary user to increase a principal's access rights to
an object by removing that principal from one access control list
when his intention was actually to deny the principal access to
the object. "The complexity 6f this mecﬁgniam 80 confused users
that  many of them did not attempt to use: &he*aqstem provided‘
protection mechanignn .With the cyrrent. . Multies -design a . user
needs only. review one,acsesa control 1ish: ta dgtetmiaa who has.
aecess to a° given segment. : B

-50- -



These goals have made‘thewdq;qpmingﬁken -of:. whether -a
process should be permitted to initjate.an arbitrary directory
quite difficult. This difficulty stems from the fact that the
access control list of an object and its physical storage map
reside in its parent. Since we wiahgthe:agcegs;gqntral list  of
an object ‘to,ngercise;_gompletc_‘gontppl'10¥ﬁ£;kaccess\tovthat
object,vwe must perm;t a pnoﬂesﬁ‘tpurLg;&;ﬁ&pkwalljvﬁnpepiopsx'Df
accéssiblg ;ggmen;s indepehdent -of access to these superiors.

But this violates our second goal.

Hultics’attemptg,tp_rggoAgg%tne,gaqfligtﬁputlined above
by not pern;tping4§ process running: og;a&dpggof;wring .zero to
initiate a directory.‘ Singce. afgrégegssganaotgreadwthe:aceeas:=
control list of a Segment until its parent is known, the system
still must permit pro¢e§ses.v‘ub;lg exeéptinswgasring;zero, to
initiate directories that they may 99£>havq ;hefﬂrighﬁ to know
exist. By causing the in;tia;;onﬁof%the§¢4gapggior<direehories/
to'égcur in»# single, indivisible ring zero ,cgli, the system
could, in priqciple, ‘prevent secunity. .leaks.  Thia.could be
accomplished by terminating those intermediate . .directories that:
had to be initiated only to find that the process -had no access. .
to the terminal segment, before returning ,to«~the_ caller.
Unfortunately, Multics sy;tem‘zu.z,gqqs‘gqtgdgfqow -As ‘a result, -
any process can determing,,the.~existen9§;ﬁqf;¢any’ postulated
directory by attegpting to initiate..gnymyanbibrarily; named ‘-

descendent (which need not exist) of that directory and observing

-51=




how many segmeént numbers were allocated by ring zero. This is

possible because &l1 rings share a commori address space.

It would ©be relatively easy to corréct the
implementation Tlaw in the Multics address space manager pointed
out above. ~ Howsver, ‘the system would stiYl have to be very
careful to avoid compromising information, Fbﬁﬁéihﬁﬁié; “suppose
a  process filled up 1ts address Space Intentionally and then
called ring zero to initiate >secrstd>x.  IF priAg zero was not
very careful, it might cause the process to die due to its
inability to find an unusea‘setment”haﬁhe%ffb“%iﬁd‘to‘>séeret,'if
and only if >secret existed. This would aliow the ~existence of
>secret to be iaferped by whether or hot the process died. .

The inability of a process %o”iﬁiiiaié diéec£ofie§;in
outer rings directly has 1led to ’ﬁ&ﬁy""ﬁeéaiésél§ rﬁcbmpiéx
mechanisms for m&nipuiatingV diréétéﬁiﬁs.’*jIﬁ?éaaitioﬁ; it has
foreed us always to refer to dirééibéiéé“éﬁyjEﬁﬁéhﬁa&e"1n the
security kernel interface. ‘Not ‘only ‘18 this iné&fficient, but it
has led to;riﬂg‘,zéro's'”aéﬁendéﬁce"&ﬁoﬁ” ffﬁé:[°l If we could
initiste directories directly outsidé rihg Zerc, then the ring
zero interface could take a segmeﬁt'ﬁdmbeﬁ“fﬁi%éad “of taking a
pathname as ‘a . direetory specifier.”’ ‘$ince ring zero would hdr
longer need to c¢all find_, it ‘could move dut of ring zero, along
with reference name marnagement, without'caﬁﬁrcﬁiéiﬁg the security

of ring zero.

-52-



4.3 Removal of the Dependence

We propose allowing directories 'to fbe'In1tiated by'
processes executing in all rings. As was noted earlier, the
basic problem to be solved 1is that of deciding whether a
process should be,alloked to initiate a diéecﬁbh&”to which it has
no explicit access. (1) There are essentiélly four sSchemes for
making this decision. The first SOheme‘1nvolves‘reéognizing that
if the access control 1list of aJ‘diréétoff”iis to completely
express access. to that directory, théh7wé“mu8t?méke‘éxbiicit the
now "hidden" permission to initiate a directory if  some
descendent of the directory is'éccéQSfﬁle ﬁb:fﬁe“brocess;“\Thé‘
obvious way £o accomp11sh‘thisLQis to fInVént,Yg  new directory
access mode called "initiate". 'This'médé;woﬁiﬂ.éllow the named
principal to initiate a directory and to usé the information 1t
contains that is relevent td‘.adééasiﬁ35 debéébdéﬁts of that
directory. This makes the decision of“ﬁhethé?fpr not  a/ process
should be allowed“tb‘%ﬂitiate a di?eétory quite simple. If the
process has non-null access to the ‘directory, then 1t may

initiate it. Otherwise} it may not.’

— -~

(1) The reader should note that we are ignoring, for the purposes.
of this thesis, the possibility of solving thé “problem outlined
above by removing the attributes of a segment from the directory
hierarchy. ‘Removing the ‘sttributes of ‘& segment from its parent
directory, which may be the best long term solution, seems very
attractive but requires a fairly extensive overhaul of the
system. This thesis will investigate less drastic solutions to
the directory initiation problem which do not disturdb the
structure of the Multics hierarchy. v

53~




This scheme does not meat  the geal that:the access
control list of an object completely,q¥presa:which processes may
access that .object. While explicit dinitiate permission is
Dsebabkxaa~warkﬁhle!solusion, and its .simplieity is -appealing,
adovtion of sueh a solution would . produce a quite noticable
change in the system's functionality. . We. choose ::to explore
alternativeg, solgtigng_,»tngtﬂ,_ma;g;g@ngﬁxggwﬁeunreahy.aystanls
functionality., . e et R gyt

A,wgygtogmaipgainyxbg cyrpgat;ﬁgnﬁhknna%&hy'eﬁa(nuktigs
using :egpliggt,é;nitgaLeM7pggmias;qaphiﬁw.Gﬂmﬁcanplan~the.accesa
°°ﬁF?91 list on an,pbject with. the access controk - lists on all
#upgrior Vdipgghgr;esg .89:.that when. a.precess is given acceas to .
an object it jis. also .given  igit4atg$»gg@g;§&;$&ag;ali <§uperian
directories  of. ;Q?F:,Qb¢39tt;;»wn?ﬁ@f@i3959‘Q§§L§#bﬂeﬁﬂ&nt17?i3
deg§edzgcgeggiyqfqn;quggp,:;hgWgegggg§¥@§@rsé&gn93§s;romovs,ﬁﬁnyu
initiate  perpission that  the. Rr90Q§§@wh§4% to- the.: superior
directories of the object. and that..resylted..splely from its
having.. access  te ~khe. objeet.  .Reterminimg;.wbieh initiate
permissions should be. remgved .is .very:..diffieult, -potentially

réquining;that‘the entire directery hierarchy.be examined.

A second way to decide wheﬁher a process may initiate a
directory is to searoh the hierapchx aug&re« rqebe& at-that
dineqtqpyil If the p;geess paa nqn«aukl*%@cﬂqa &o aax member - xof

P

-54-



this subtree then:the.process should be allowad to initiate the
directory‘ in question. Naturally,. this .scheme . is  far teo

inefficient to consider seriously.

A third"'method'WOf:”decidinéivwhether.ﬁa process may
initiate a directory is to require non4nnli ,access' to the
directory. This scheme has the disadvantage, shared by the first
scheme discussed, of preventing the access control 1list of a
directory or segment from being the sole arbiter:'of access to
that directory kor ‘segnent;“ In order to initiate a segment, a
process would need non-null access to the superiors ‘of that

g e TE
e RT3

segment.

We propose a fourth solutionﬂuto the problem of
initiating directories. Instead of. worrying about whether or noth
a process has the right to initiate a directory, let us allow all
processes to initiate any directory -vwhether or not 1t exists.“
The key to this scheme is preventing the process from detecting
any difference‘between”anlinitiated7directorf!thaticoesﬁnot exist
and an initiated directory that exiStsﬁgpt‘tﬁaétthe“‘process has
not proven 1its right to know exists. n6§7tﬁi$fis to be done
will be discussed later. | c S o

The ring zero address space manager interface resulting
from this approach ‘seems quite natural. Ring 'zero -no‘ longer

concerns 1itself with pathnames. Instead, it accepts directory

segment numbers for directory specifiers. To allow this schemeq

-55-




to bootstrap itself, we will define the segment number of the
parent of the root to be zero. Initiation of segments and
directories will be controlled by the protedure initlate_ that
will accept a parameter specifing whgth&r a segment or directory

is to be 1lnitiated.

The rationale behind distinguishing directory and
segment initiatlan is that a process usua;;zahas"a preconceived
idea about the type of the object it wighes to initiate. When
reality does netvsupport,this preconceived idea, the process 1is
usually 1in error. 'FOPcing the process to make explicit the type
of object it 18 expecting allows ring zero to immediately catch
many such errbré, preventing a.carélesy-gracgss from bumbling
aloqg thinking all is well only to die when %tiatte&pts to access
a directafy as a segment or vice versa, Natﬁraliy, it would be a
sacurity viélation:for the kernel FGM??QP?t aftype>yiolation to a
process that has no right to know whether ;he directory or
Segment named aaigally}exists. If a segmenﬁnor_directory should
be undetectable tp a process, then thg{gecurgpy,kernel must treat
it in a manner conSiétent‘with thévtype speq}fled in the initiate

call regardless of its actual type.

To complete our new ring 2zero address space manager
interface we must define a new termination primitive. This
primitive will accept two arguments, The first argument
specifies the segment number to be terminated. The final

argument is a status code. It should be noticed that this

-56-




primitive may be called with either a segment or directory
segment number. In the case of terminating a directory, one
constraint 1is enforced. Since the system requires that a known
segment's parent also be known, terminate_ will not terminate a

directory with known inferiors.

4.3.2 Details of the Desian

So far everything seems rosy. This scheme seems to
remove many functions from ring zero and to sfhplify' the ring
zero interface in the bargain. Where is the hitch? Do we get all
this for free? The adswer is, of course, no. - We have glossed:
over one iﬁportant point. In order to -decouple . directory and
segment initiation we .must be able to successfully cloak the
physical initiation of directories from a process' detection
until it_ has established its right to know of the existende of
the directory. As was pointed out earlier,  this need for
deception is  intrinsic to the hierarchy - structure and
functionality of the Multics system. While this‘design makes the’
system's need to deceiVe the user more obviouﬁ, it 1is not

responsible for the required deceit.

We will call a directory detegtable if a process has
established its right to know that the directory exists.
Detectability may be estaylished either by having ﬁon;null access
to the directory, by having non-null access tovits pafent, or by

establishing the detectability of an inferior of the directory.

57~



The reason that non-null access —on +the  parent-of an object
establishes its detectabilihy is that either' status, modify ‘or
append permissien to a directory is suffici#nt té " allow a process
to deteet if ‘a ~postulated eatry ' ia that directory actually
exists. It should be noted that the detettabifity of a directory

is dependent on the process' history and the ring of execution.

A directory 1is detectable by a process in rings zero
through the highest»ﬁing,tnwuhteh*<it€iéﬁs%@&étecﬁﬁﬁlf““initiated
some member of tiie tree rooted-at that @irestsry.  This Nighest
detectable ring number of a directory is’kept fn “fts KSTE. (1)’
We . will not attempt to reset this- fieid: sﬁourf a oﬁee ‘detectable
directory subsequently beécome urndetectable. '-‘Wot ‘“attewpting to
reset the highest detectable ring field 'in ‘the ®STE of an object
when it becomes undetectable to the process fikes ‘sénise since the
syatem has already admitted ‘the ‘existends of %—-té:‘%i‘?‘tf*iré%étoryr‘ to the
process. -  The pbocesserOuld% have ‘stored - this '”infbmetiﬁni
elsewhere, so it would be of 1little use to~dnhy the‘existence of
tne directory. The record kept in the€§8#~e?i'¥he lipxisternce of
the directory will mnaturally wvanish wﬁehﬂﬁﬁheftaffeetory““is")
terminated or when the process 1s destrioyed. =

We must prevent a process from deteeting any difference
between an initiated directory that does not exiet.gyndgwgni

initiated existing, but rundetectable, directory.‘ If a process

(1) See appendiees A and B.

-58-



could detect a difference in. these 4£wo casesvfthen "it could
establish the existence of any postulated path in the hierarchy.
This would constitute a -clear violation of security. To
accomplish this -means abandoning the curranﬁ‘dneéﬁo-oﬁe‘mappidg'
that exists between -occupied segment numbers and initiated
segments and directories. :-Although we will still only allow one
segment number to be bound to a segment, we must ‘allow multiple

segment numbers for the same directory. -

The reason for this dichotomy between segments and
directories is simple. Since the ‘aceess’ control 1list of a
segment completely controls the righ%Jto'iniﬁiate“théﬁ segment
there is no need to allow a process ' to initiate 'a segment to
which it has‘ n9« access. This allows usfto§hiﬂeAthe physical
existence of a segment from a proceasfthatfhaSVno:right “to know
of its existence by returning the ambiguous status code "noinfo"
in response to an initiate request. This simpieﬂmechanism fails
for directories sihee we must always allow a prddeéa to initiate
an existing directory in case it has asccess ‘to Boﬁe* inferior of
that directory.  This forces us to return more ‘than one segment
number for a directory in some cases '‘in . order to prevént the
process from detecting the existence of physically initiated but

logically undetectable directories. - .7

There are two characteristics ~ of  Multics = that
necessitate our abandonment of the current‘ohe-po—one mapping

between direétory segment numbers and directories. First,

-59-




directories can have multiple entry names. - If iaitiate_ returned
the same  segment. .number for:iwo different: untﬁy hamés within a
given direqtory, then the pracess woukd ‘know “tHat  “these - ‘names
both named the .same dinectopy. . ‘This-edincidence .of ‘names would
establish the existence of the directony (if the directory did
nQﬁﬁ eXi§&,,JQh@n;x&ﬁﬁwﬁﬂuldxithﬁﬁWGﬁﬁwowﬁiﬂﬁ@?)&*:fb;bfbvént the
coincidence of multiple .names on a dimhbtﬁ%?ﬁfﬁﬂh'*ievééling‘"fﬁé”
existence of the directory, we must retdrn 8 new segment number
if a process reinitiates a directory that is - still undetectablé
with a new, . name..  Inmufaﬁt;5we“w&ii*evéh“ﬁetuﬁn a new segment
number if it tries to initiate an undetectable directory with the

same name twice, If we returned the sahe segment number, then in"

order for directories that do:notrphysically &&ii£'%6‘éppéaﬁ the

same to.thg.user ring,-ring zero- would Havé to remembsr the name
of every phoney direckory: This ts'a ‘needless  “démplication of

l"iﬂ; Z,QE'Q. o e v e e hwla Wi

.. The _second ;chacactemis&ie‘efwﬁuktr@vivthat”fcrceé‘ouF'
abandonment, of t@g;ﬁneﬁtepaaezm&pping*hn%ﬁb@u.*miﬂwﬁtéry“ségmeﬁt B
nuqhg;s{ﬁandnggagtoniagais¢£hatxthn:nnsﬂ@ﬁtﬁﬁﬁﬁbers-o?‘a'pﬁdCeSSA
are a f;nipe,neéourCQNsharéduamongta&luprbtbbtﬁéh?rtﬁgs“of"thaf’
process. . As we have commented earlier, the finite size of the
Multics shared segment number address space allows ‘one rihg to
detect the number of segﬁent nunbera being used by all other
rings. This makes it necessary to assign a new .segmentk.number

whenever an attempt is made to initiate an undetectable

-60-



directory. This segment number must not be shared with another
ring so long as the directory remains undetgotablé.‘ The need for
assigning private, per-ring. segment numbérs ‘to undetectable

directories may be.seen in thevarguhentrthﬂt follows.

Assume the system returned the same ‘segment number when
asked to initiate a directory in two different rings.  Assume
also that the directory is undetectable in the upper of the two

~rings. What is the system to do whenfasked to unbind the ségment
number from the direetory by ‘the upper ring? It ecannot unbind
the segment number and return it to the list of'free'Segmeht
numbers since a lower ring 1is wusing the ‘Segment number,
Unfortgnately the ring that reqdqsté&%the‘Syétémvté terminate the
segment number can detect ~ﬁhetbonf or ﬂoﬁ*thé?siStem~actua11y
beturned the segment number to: the free list so the system cannot
Just pretend to honor tgi»tepmknation requést. 5'If ‘the segment
number is not fﬁéedithqn tﬁa fing can-deduce that ‘some other ring’
has the directory initiated. By an argument similar to the one
given in the préviousvparagraph thevning,can'conéludé;'“from the
coincidence of two r'in.gs“ _navi.ng-_thef directory initiated, that the
directory actually exists. Since segment numbers are a scarce
resource, the system cannot take the-easy out —of not allowing
undetectable directories to.  be ternanatedgd: 43 a result,
initiate_ must assign.a new segment number-whenever it initiates

an undetectable directory.

b1




The reader. should note thet we have ignored, up to now,
the problem of preventing a proocess from distinguishing between a
non-existent dinectary and an existegt but ‘undetectable directory
through observation 3a&§autkm%&a&ofﬂseaenéﬁcﬁdéﬁ effects such as
the time required to initiate or terminate a directory. It is
hard to predict &n advance of 'installation /in ‘the standard system
what sort of second .order effects might be obsérved. The plan is
to investigate 4hia problem ' folliowing ~-Hctual ‘installation.
Timing differences can be easily: hidden by ‘insetting extra code
in the shorter . path..  Other: differentes ' also ”prdbabiyt are

disguisable.

, .This scheme will merrily allow'a p?oéesék to initiate
vast trees .of dimectories that do-not eitst.  ‘These directories
will be indistinguishable from real undétectable directories.
The potential -multiplicity aofﬁ:auguéﬁt*ﬁﬁnﬁﬁﬁé‘fdr}directdries
implies that if we .compare two directory 'ségment numbers and find
them to be not equal, then we cannot cdonaludé ‘that the objects to
which they are bound are not one and the :dume. '~ Since processes
running outside ring zena cannot: ourrently cbtain ‘segment numbers
for directories, po user code .can -be - affeeted by this new
restriction. To allow processes  to-" quickly determine if two
segwent . numbers are beund to the same obJect, the system should
support a;func;ionvzargnapadag«aﬁaesﬂ:ﬁtﬁnﬁmbeiﬂihto the unique
identifier of the object to whieh it is bBound. Naturally, this

function must return an error if the object is not detectable to

-62-



the process. The system must also’ dssure that if a process
attempts to reference through any di¥ectory pointer in 'an outar
ring, 1t will get tnevaaméva&%%asﬁviéiitaéﬁﬁﬁﬁﬁénéb‘o%”nbt'ﬁﬁé
segment number it reférenced eerréaﬁonﬂ%d to® &% peal’ ”BrwjbﬁbﬁeQ

ﬁLH

directory_

Figure . 4-1 -summarizes ‘thé- actions ~performed by
initiate_ when mapping a éireétary ‘into &’ proeeas' ‘address space.
The reader should mote.that a target “65§€6€ within a phoney
directory is;eonsideréd a'prtééf*éﬁdeiéﬁﬁfbloﬁihd é‘ndh4éxf§£eﬁf'i'
target object is considered detedtable  by® & ' process if the
process ' has ' non-null access ' té théﬁcdnttinrng directory; They
abbreviation "hdr" used in figure Y-} Wtands ‘for the contents of
afKSTals.highesttdatﬁctablétving'Fié&d**“We"ﬁ&?@?bﬁf%fea‘thé easé“

target is detectable in ring of caller =~ "

»: .target exists in hierarchy

. « .target already: has a segment- humber

« . return values I internal state

. « .istatus eoda,aagnont aumber] © - “U'hdp !
“““““““““““““““ """-"""‘"""'",""T/‘,‘,ff"?"’?'?"'?"?,, o
0 = =| ®no_info" | new’ | R K i

11 0 =} "noentry" | none ! T e o
1 1.0} - 0 1 i‘new’ b % “ping-of caller ]

11 1 11 "known" | old .max(hdr,ring of caller)|
—————————————— ‘Qo‘---‘------dr--‘-.ﬁ‘ﬁ-&gdn---‘bb--wup---‘-— '

N Cae

Figure 4-1: Action of Iﬂiﬁ;gtgﬁpgthyéthtgriéq




_Two possible objections. we cas. see to.this.. scheme are
that it can potentially  waste segmesi-numbers.and it requires
inapecting the parent's.access. control . iist.- A close.examination
of»figure,#-1;indicgtes.tha;qtgsremgaahoggyw$v¢w ways:to" assignf
mﬁltiple segment numbers io a directory. The first waywis“ta;
reinitiate an undetectable directory.. The second is to initiate
a phoney directory,. Neither of.thesg-gperations should occur in
normal operagign._Rihey,cou;d,3hew¢¥Q£wzarisggigs;amsmatteupt, to
use a misspelled pathname.. To comtrel-this:problem, the outer
ring variant of find. <could termingte ;theawgaéhnac%aries*’tﬁ&t”
might be phoney if the terminal segment .could not be initiated.
This would prevent a ‘habitual - misspeller fraem . cluttering his
address pace. .1t peems that with,.this additdon ‘a: process would
be Obllged to go out of its way. in grdevabﬂanimﬁbnr ita -address
space.  If thaf is what. it sants fine. :fyven: if a process wastes
all its segment numbers, it can recover by toﬁuinating no longer
needed segment numbers. . . . o o codes

I T R

The apparent  inefficesncy. kaginaasﬁﬁisg;fthn<-access
control list of the parent of a directopy duripg. :its initiation
is not serious  since it is nnsaa&;y aaﬁaradﬂﬁmad ealy when a
proeésg has:nﬁll iceegs to, ‘an objeoﬁs and haag net previously
espabliahedA,dggec;éb;;i;y for that. gbject is it necessary ‘to
iHSDect‘ﬁhé,5§Qé§§§¢éﬁﬁéél’list of the. panent. (1}

(1) In fact, the frequency with which a process initiates a
directory to which it has has no aceess. is low enough in Multics
‘that our test implementation does not check to see if a process
has previously established detectability for a directory to avoid

-64-




In Multics system 24.2 the address space manager and
the reference name*manager'sharefé‘éﬁté'ﬁéééfgﬁff)"”The‘ address
space manager takes advantage of 'its ability to access the
reference namefmaﬂager'S'dati“baéé'by1scéhﬁiﬁ§“tﬁé per;r1ng,‘Nﬁéfﬁ
segment = number, 1list of befeﬁeth*6hﬁih{kbpf&3f'tﬁé”béferédéé
name manager to determine which”fings“*bf'ﬂﬁj'B}6bé§§*'are Stilik
using a fparticular~segment‘numbé¥§'??hfs information is used to
prevent one ringﬂffonétermiﬁatidg a”Seﬁﬁé%ﬁ9hﬁhbéF*£hatwi§ ‘still
in use by another ring. (2) Only if aTi”Fih§s~iha€Tiﬁitiétéd the
object have terminated it, can the segment number'Bé:unbouhd‘fFSEW‘
the object. Thus, we have the concept of initiatihg'an object in
a particular ring rather than tﬁévcbncépt“bf'ini%ihiiné‘an object
globally in all .rings of a proéess. 'Thiéjschemg”ié desirable

since all rings share the addreas space of’ segmeht numbers.

inspecting the access ‘ecéntrol--tist of -the parent of the
directory. If the process has null access to a  directory, .then
we .always : check “the “proééss’  access 'to "the ‘parent of the
directory. : S , o .

(1) See appendix A. , »
(2) Since the address space manager uses the presence of.
reference names in a gfw%nffiﬁzffbrdk'ﬁkékfﬁtfﬁhﬂﬁer'tb detect
that the ring is still using the segment number, the current
initiation primitive must call the reference name manager to give
a segment a reference name in the appropriate ring each time the
segment is initiated. The current initiate ianterface supplies
the address space manager with.-a peference for-thispurpose, 1A
more complete description of the relationship between the address
space man?sm?*aud‘rerb$enh€ h&m@%ﬁiﬁﬁéfﬁtgﬁ“iﬁﬁf%%&;ﬁgj?bunﬂ;fin
Organick [01]. RN '

—65-



Since reference namea_willanogioagerl~be kept in the
KST, some new mechanism must be invented to supply information
about which rings of a process are still using ‘a 'given segment
number. - This is - easily: accomplished by édﬂing”ah‘eight“bit
‘field, called rings, to each KSTE. If the i th bit( 0 origined)
in this field iavon then the corresponding rifig ‘has the segment
number initiated. ' This allows ring zero to detéct when a segment
number may be physically terminated, theépeby preventing one ring
from terminating a segment of 'direétory that is being used by
another ring. (1) |

Our  termination primitive marks-the segment number it
is given as free in'its. caller's ring ' of exécution. If the
segment number is initiated in no other rings and its inferior
count is zero, then the segment number is unbound from the object
and its KSTE is placed on a list of free KSTEs. It should be
carefully noted that the termination: primitive - terminates a
single segment - number; it only removes. an object from the

oS e

fit number for the object

process' - address space if the last ség
is terminated. “Theuneadeﬁ-snb&ldﬂﬁﬁtﬁéhﬁtﬁéf@fﬁ%éaﬂSe initiate_
always assignSuia»_private fsegmen%ﬁfnu&bé?_?wﬁen"é"dibécﬁory;is
undetectably initiated, terminate_-nheéd nbt~wbrry5abcut’revealing‘

the existence of gn;uﬁdatzctabieﬂddrectorydf»

(1) Appendix B summarizes the oqntent of the known segment table
as we have redefined it. ,

=66~




4.4 Removal of Pathname Processing |

Ring zero's ability to resolve a“vﬁéthnéme into a
segment number ‘has bgen»severely-iipaire&'6y56uﬁ design. ‘This
ability, which was embodied in the ring zero 'procedure find_,
depended upon riﬂg ‘iero's ability to call *ﬁhe réference name
manager. Specifically, find_ dependéd ‘on" thé reference name
manager to maintain an assocdiation betwesn pathnames of objects
and the segment number bound to the 'objécﬁf“ F5rtunate1y, this
association was  only used to make finq;‘mdré~ngicient.ﬁ As a
result, we could redefine find_ in such a mannér’ that it would
still operate correctly but would not take advantage of such an

association between pathnames &nd segment humbers.

To maké“find_ independent of ‘the reference name
manager, all we would need to do is bédefine:find; to inspect the
pathname it was given to see-if'itfépébif&éﬂ“théf?&bt}‘i.eﬁ Tnym,
If it did, then find_ would initiate 'the root, and return its
segment number. (1) Otherwise find_ would strip off the last
component of the pathname and call itself recursively with the
pathname of the parent of the‘target*dbjéct ﬁovéet“its ségmént
number. Given this segment number, find_ would éall initiate to

initiate the -entry: named by the componert which was previously

(1) The system treats the root directory as-a special case. The
location of its physical object map as well as the rest of the
information that would reside in its directory entry, if it had a
parent, 1is embedded in the programs of the system. This
guarantees that the root may always be initiated.

=67~



removed from the pathname. For example, if . find_ were called
with >a>b 1t would call itself recursively to get a segment
n?mber for >a. It would then call jnitiate to get a segment

number for the object named b in the direstory >a. -

While the procedure we have deacribed is correct, it
appears to be quite inefficient.  This inefficiency suggests that
we should,either_gize finq_,a~nﬁu»ﬂ@&ﬁ@i&tive%memnny or move it
out of ring zero1stthat it can once again use the reference name
manager. Since giving'find“_a,neuiasaociahtve;memofy would add
code to ring zero ug;gh‘has»no,proteqbiongpmaaonw;ta be ‘in the
security kernel, phis alternative  is untenable. Our approach

will therefore be to remove find_ from ring zero.

The actual removal of find_  from ring zero 1is, of
itself, triyial. In the outer rings it can access the reference
name manager d;cgqt;y once again. It can aelso access our new
initiation primitive»tbpough.; atgndardvgateﬂinto»eing zero. The
problem is that numerous programs in.ring zero depend upon find_
to map pathnames into segment numbers. _Unfortunately,  they
cannot be allowed to call our new find_ in the. outer ring. To do
so  would jeopardize the seourity of ring zero. :To get ourselves -
out of‘this dilemma, we uiil,have to remove -almost all  uses of
pathnames from ring zero. This in itgglf'”repreéents a
sub$tantial $impLification of ring zero. To aacomplish this task

we will conSidervthe'fdur,maJQr:useélbfﬂﬁaﬁhhahméaiﬁ~ ring zero.

-68- .



4.4.1  Parameters to Ring Zgre

The first class of pathnames .used.in ring. zero that we
will consider conéists of those pathnames that were passed into
ring zero as an argument to a E,gm:,e@-,ypro‘.czx;'ef‘:lj!‘tr‘,e.‘..v This class
represents the méjo#vuae‘of;pagpnaqgg in ring zero.  Fortunately,
it is alSo the eaﬁiest clgsg to remove. £rqmamniggfszemq; Since
find_ now residés in thg:ogter,ring;,yg will;hék@‘the“outer ring
responsible for translating all pathnggea;,&h§&~ are currently .
passed into ring zero into segment . numbers....We will then
redefine>all ring zero gates that . accept hpa;hnnhés as object
specifiers to» é?éep@ sggpgntfJhuﬁbersi.;s;~a§gect ‘specifiers

instead.

h.4,2 Links

‘Thq’secondxc;qsa}of,paqpngﬁgﬁ,gsqq‘@n;g&ngmzero are the
pathnames contained in links. Mapg,rihgwqqegmnregnams,-uhnn they
discover that thg.object_thgy_arg_go act u@on,jis‘—a.rlink, are -
defined ’to éct'inatqaq‘upqn,the target of the link. An example -
of a ring zero‘function that is defined thﬁqlgbv :thisx rule is

the segment initiation primitive. (1), We propose that primitives

(1) To prevent a process from causing ring zero, which is masked
against interupts, from looping. indefipately: follewing a circular
chain of 1links, “eabﬂ“p?’grhm“ﬁhat”fbllows links keeps count of
the number of links it traverses duripg each imwvocation:. If this
number exceeds a certain ‘system-specified threshold, then the
computation is aborted. '

-69~




which are defined to follow links return a status code indicating
that a 1link has been encountered as well as the contents of the

link itself, upon discovering that their tafget is a link.

This scheweé requires that 1inka be readable iﬁ the
outer rings which patses the question of what, if any,Aaccess
control should be placed on reading links. The approach taken in
Multics system 24.2 is to make iihkﬁ'éf?edtivély4ﬁéadable by any
process that has non-~hull acoessy to the t@rﬁiﬁéi' target of the
link. This scheme has an inherent seturity Fi&wjﬁna is therefore
unacceptable, . If some process ¢an ”gu&ta' the pathname of an
existing link to whose target the p?éﬁ%%h‘haﬁ"éeéess, then it can
prove the existenc¢e of the parent directories of that link by
initiating the target object through the iink. To éliminate this
security flaw wé' could place access ’oontrol lists on links,
thereby explieitly naming those processes which may read the
link. The complexity of sudhl 4 mechanism Séems unwarranted when
weighed against its benefits. Tna*bhly ioéeés ‘eénthol on the
taﬁget object of the link that is gu%ﬁihtoéd ts specified by the
access control list of that 6bject. Ady access econtrol 8pecifiéd
on a link wmay be avoided by rerq?eﬁaihg.lthé target objeét
directly end thus serves only to protect the contents of the link
itself.

The reasons that access to links must be controlled is

that the existence of a 1link implies the existence of its

-h?O-Q




superior directories and suggests the existence of its target.
We have chosen a simpler mechanism for coﬁfrollidg' accesé to
links which, although not as cOmprehehsivé-as"a‘hechanism that
associates a private access control 1ist with éaéh link, meets
both of the needs for protecting links. we’donéidéb a link to be
part of {its containing directory, - readéblélpniy by processes
having status permission 6n that dirécfory}i\Thisischeme‘has the
virtues of being  simple,‘ easy to 1mplement,v;hd plugging the
information hole that uncontrolled access t67’11dk§ provides in
system 24.2. While this scheme does make 6ﬁe‘éiééé of currently
" legal uses of links illegal, this restriction does not seem too

severe.

To illustrate thé‘ scheme = we have proposed, we will
outline the redesign of ‘link processing ‘by the ring zero
initiation primitive. When inittate;‘*encddntebs a detectable
link, it will return the link and a status code that informs the
outer ring procedﬁre that a link was éhcounﬁeféd.‘(i)‘ The outer
ring procedure m#y then try the new path specifiéd by the 1link.
Since'this iS»happeningiin an outer ring, we need no ionger ha#e
a standard interpretaﬁion of links, 'Sincesiihk'prOQessing will |
be done in the user ring, the process may‘interpret links in any
manner it chooses. Why not let links contain‘rélétive pathnames,

offsets, or even arbitrary character strings? A linkfmight even

(1) As we have mentioned earlier, if an undetectable 1link is
encountered while attempting to initiate a directory, the system
must treat that link as an undetectable, phoney directory.

-T1=-



specify a file residing in anpther computer system. The
ipportant point is that while the kernel may be the keeper of
links, it does not interpret them. Naturally, the restriction oﬁ
link depth, which was intended to‘'keep ring zero from getting

into trouble, vanishes.

4.4.3 1Interpally Geperated Pathuames

In a few.casea, ring zero generates and uses pathnames
1nternally. These generated pathnames constitute the third
general class of uses of pathnames in ring zero, We will further
partitioh this class into those pathnames that are generated only
during system iniﬁialization and those pathnames that are

generated during normal system operation.

During the:\initi&lization‘~o£‘the~&ult1cs~aystem, the
need arises to 1ﬁitiate on the order of ' one -hundred of fewer
segments. The reason the systenm mugp‘ipitiate»;heae segments is
of little intéreat to our thesis. We observe that since system
initialization is an infreguent opgratiépi{naperully once a day
or,iess) and thg'number;of pathnames . to be. .resolved is quite
small, we need‘nctrfeel\remoraela; proposing a very inefficient
mechanism to pesolve these pébhnamas.A In fact, as ﬁhecreader has
undoubtedly guessed, we propose thah these pathnames be resolved
by. calls to ’the'inefficient version pf find_ that we described

earlier,

2

-T2-



In the case of pathnames generated‘by ring zero  during
normal system operation, we cannot be quitg»so cavalier, Or can
‘we? In fact, we can. A careful examination of ring zero reveals
that ten is a reasbnable upper bound on ‘the number of generated
pathnames that must be resolved ‘in ring zero in the 1ife of any

given process.

In fact, these internally generated pathnames are so
restricted - that ﬁe“ have no need to even call our inefficient
find_. Since they all are of tree depth at'ﬁoat;ftﬁree and all
components of these pathnames except possibly the last component
are constant for all. time;, we couldrexpandgthe code of find_  in
line in the programs that use these pathhames; For example, if a
program- needed to initiate >pddimy, th@n‘it“would,firat initiate
the root. Then, giﬁenwthe/segment'numberjcf the1rbbt; it would
initiate pdd. Finallyq.given the segment number of pdd, it would
initiate my. | | =

4.4.%  Error Conditions

The vlast and perhaps 4gostv ﬁroqplesome >class of
pathnames used in Eing zero are patﬁnames thgtyg;e ﬁggd to report
error condition&. There exisf nuﬁerqus 1n;§égéestin} the systém
where a prbcedure'Adetects an ihéonsistgné§‘§p erpor condition
associated with some[Seghent or"directory.“ Fdr} instance; the
system may detect an unrecoverable error while reading the

contents of a segment. Another example would be the detection

=73~



that the doubly threaded 1list which chains the entries in a
directory together is misthreaded, -In error conditions such as
these, the system writes a m&ga&ge £nta_the aystem log explaining
the problem, -th&a measage often contains a .pathname that was
generated from the virtual addreas of the segment or directory in
which the error occured. While the exaoct algoritha for
generating a pathname from a virtual addresas 1s of little
interest to us, this algorithm did depend upon the reference name
manager's ability to map a directory -segment number into a

pathname of the object it was. bound to.

Since we have argued that ring gero must not call the
outer ring name space manager, we RUst propose & . new algorithm
for mapping a segment number intc;;:pcthnnac@' Many schemes are
possible. However, since the error c¢onditioms we are talking
about may be presumed to be quite rare, we will suggest a very
simple, but inefficient, algorithm. This algorithm relies-on the
fact that any virtual address may be mapped, by the known segmept
table, into the virtual address of its diréétbry‘eﬁtry. A name
for the segment can be found in the directory entry. This name
is the last component name in a valid pathname:df the objeét. To
get the other componénts of a pathname of the object, we
recursively apply this teéhnique to the #i;tual addfess of the

directory entry which is, of course, withih the parent directory.

T4



4.5 Summary of the Desjign

This chapter hés presenﬁed a design that allows
directories to be initiated in ali(ﬁing§. :As‘;"éonSeQuence, the
need for the Multiés security kernelAto maihtaiﬁ référence names
has been eliminated. The.kéy'feétuﬁe of this design is that the
security kernel maintains, for‘each'process;t thé‘ illusion tﬁat
any postulated directory exists unless thefbﬁoceSS has sufficient
access to prove otherwise. This permits thé séduri£y“kerne1 to
allow a process to initiate a dihecfbry'to whiéh“it has no access
without disclosing'the‘existence of thatgdiréctéry;‘ The .address
space manager interface-presented in this desig;‘iétsummarizéd}in
appendix C. Appendix D contains an eiaﬁpleabfiﬁhe uée Qf this

interface.




As a result of our design, the interface to ring zero
haS been modified quite extensively. .We have eliminated three
major functions that wére supported by the -eld ring zero:
reference name management, pathname . resolution, and’ storage
system link indirection. If the non~kernel portion of the
Multics supervisor is to use these seryiéeaaor provide them to
the users of the system, then we must design modules capable of
providing these services that run outside of ring zero. We have
albeady explained, to a degree which we hope ~is sufficient to
convince the reéder,v how the 1last function.may be trivially
performed by outer ring modules. In this chapter we will discuss
the important issues involved in resolving pathnames in the outer
ring and designing an outer ring referencé name manager. In
addition, we will address ourselves brieflyvto the problem faced
by wuser programs that depend upon now obsolete ring zero

interfaces.

5.1 Reference Name Mapager Design

We have seen that the Multics reference name manager
provides four ‘primitive functions on name spaces. These
functions provide a process with the ability to: bind a name to

a segment number, unbind a name, determine the segment number

-76-




that a name is bound to, and obtain a list of the names bound to
a segment numberL. Actually, the Multios: reference  name manager
provides a‘ larger set of functions. However, the additionai
functions allk‘can all be expressed in*-tébhg”‘of‘.the" four

primitives we have described.

It is hot our intention to actually deéfgn a'refebéncé’
name manager. we §rust‘that the reader will “accept our assurance
that it can be done and that it is in faot straightforward. We
mdst, however, comment on one‘considefatﬁbn”ﬁhit t&E3&eﬁign“b? an
outer ring reference name manager must’reébgnize. ‘When the name
space manager resided in ring 2zero it was dpérating in an
environment in which it was guarantesd to run:to completion once
invoked. An outer ring namelépaee-uaaaser 1swno£”’aftbrdéd this

luxury.

Executing in the outer:ning'eavirdnn&nt,‘the reference
name manager may be stopped at any instant. This of 1little
consequence excebt when it 1is- stopped -bysﬁﬁé Multics "quit®
mechanism. In this case, the system ‘suspends the process"
current computation and then restarts the prbéeas; The prbcess"'
may then reinvoke the reference name manager and~#tHa later time
‘resume the suspended computation having potentially totally

rearranged the reference name manager's data basé,



LR

Luckily the system provides a mechariism that allows a
process to' inhibit or "mask" qui%*siﬁﬁtli;' Bj masking quits on
éntrancé to the reference ntae-ﬁ&ﬁtyer'and“ﬁﬁmaskinéy quits updh‘
exit the problem can be eliminated. Actually, it is highly
unlikely that the entire computation performed by the reference
name manager need be masked. We shou1d des1gn the reference name
manager so that it has as small a %éritical®™ section or sections
as possible. . In?otnsé,uorda,fwa'ahaulé*fry*ﬁﬁ isolate the code
that might malfunction if it were not mmsked against quits. We
can then mask and unmesk quita~only~wh6n :we’feﬁ%ér‘ and exit a

critical section.

, Before_ leaving the tépie“bannme'sbace‘management, we
should éomnenta on - ane ceaqeqaeﬁaeﬁ“ofﬁ*iliééiné"pfoéésses to
initiate directories directly. Thias abilityaailowg a procesé'td
use,thé reference name manager to bind an arbitrary name to a
directory. One _immediately obviousfuse*of‘thiS"new faéility is
to replace the current special purpose neﬁhiﬁi%ﬁ that identifies
a process' per ring working ”dtreotﬁry tﬁ&“sééréhrdirectOries
[01]. All we need to do is bind the appropriate name, i.e.
ﬁworkins_dir"v or "search_dir_n" to the corredt directory segnéét |

number.

-78-




5.2 Pathname Regolution

We have commented that reference names are per ring.
This prevents programs executing %in ong>‘rins from causing
programs executing in anothér ring to .malfudcﬁion by tampering
with shared reference naﬁes. As a‘result,,riqé(rqur could bind
the namé "sqrt" to one procedure and ring one could bind the same
name to an entirely different pracedure. While.this multiplicity
of name spaces pef process 1is desirable for  protection and
modular programming reasons, it partially defeﬁts find_'s purpose
in wusing the reference name manager to bind pathhames to segment
numbers. Since each ring hés a different»name;spage, associating
the pathname >a>b with segment number 401 in og¢, p1ng will not
help another ring resolve' >a>b. The ’reault. ;s that many
redundant pathname resolutions will occur and, many name spaces.

will contain identical entries.

We suggest thét find__ not wuse the reference name
manager to associate pathnames with segment numbers, In fact, it
was never correct for it to have done so. A name space just
associates an arbitrary name with a segment number. However,
pathnames are not just arbitrary names. Consider, for instance,
what happens when we remove the name b from tne directory >a>b
and then add the name b to the directohy >a>c.  The result of
this change in the environment is external to the reference name

manager and yet it has invalidated a mapping the reference name

-79~



manager was keeping. The pathname >ad>b noylcsger refers to the

object that is bound to segment number U401, but the reference

name manager has no way of knowing this.

There are potential advantages to binding pathnames to
directories once per process, as is done in Multics system 24.2.
Consider the problem of installing a new version of a
multi-component subsystem, such as the Multics ﬁéL/I compiler,
while Multies is running. In Multics system 24.2 we couid store
the components of the compiler'in a‘singlevdirectory. To install
a new version or:the‘compiier all we would need to\kdo is build
the new version in a brother directory of the current compiler.
When the new compiler is ready for ihstsllation allithat would be
necessary is to exchahge the names on‘the”neu and old compiler
directories. Processes that had alresdy started to use the
compiier would remember the segment npnber’of the old directory
as the compiler directory and woold' contidue to use the old
compiler and satisfy new dynamic linkage faults to components of
the compiler from the old directory. In this way a process
always gets a consistent copy of'the-compiier. A process tpat~v
had not yet used the compiler would initiate thei directory’
containing the ﬁew compiler when it attempted to invoke the
compiler., It would then remember this new directory as the
compiler directory and satisfy 511 iisﬁage'faults'for pieces of

the compiler from this directory;

-80~




If a prqcesatdocs pét §freez¢?aadfreétbry*aab-tree;*as‘
is done in system 24.2, when it 1n1$§a&ss~tahtﬁéibiétéryg then 1t
becomes very difficult to do on line ‘vinsgg%latiqng of
multi-component subsystems, A brocessxebdld:;;;iii_éét'ﬁélf éf
an old;mult;-compghpnt—aubsystem3andwhakradsr’gi}ﬁéw 'version of
that subsystemf.vgega;an~enl&ne ins;aliatiQniét?tﬁbmsubsyétem*té
done. On the other hand, a process-often wants ‘tc usé ‘the actual’
hierarchy, not‘a_"frozen“Vima&e oﬁ*fﬁbé* hi‘?&ré&yd ©Our - design
allows a bfoceSa to chees. ‘between ‘these two - dI&brnaeives by“

supplyiing an apyropgiate version Qf finmg in: tﬁu,outer ring

He sugsest tngt the: . ayatpn \nuppiind find opt for*
-8olving the "directory renaminsfpﬁobkem" ﬂathhr tuan ‘the "online -
1nsta11gtion;ppob1ga!, ,Ihemaaaieskv-nﬁgnusbﬁattﬂtettvé‘»apprbuch“
to solving the directory renaﬁing.pboblem iauto.not alloﬁ»find_
to use a pathname,. Seancnt number'&sabwdativb> menbry - Instead,
| find_ will always rqcurse to the root: whtmmresolwing a!pathnamé.i’
While this might ;ggghuna$tga9t4ve:forearfieianbyérgiaons;»direet“
' measurgment,ypf,,the‘Iigaaet 'wa,luchiﬁaﬂfﬂégbiéﬁ 5ubOﬁ7’ system ™
ﬁerformgnce neVQ3;§a;aaﬁ asstcm;thtpughpaz;uoaiddanly-beﬁdegradéd“’
by a small frapt;éggqof a=pgnaent.xwin«adaxﬁioﬁ; élir ‘proposed "

address space.manéser,1willi~drastiocllx5fnedue¢o¢€he number ‘of -

pathname resolutions .that -oceur :within ‘the’ ‘System.  This

reductiqn in pathname reselubxdnéxghoukdf'redderi?tﬁé: difference’
between find_'s . having .and. not  having a pathname assodiative -

memory almost immeasurable. This slight performéﬂce degradation

-81=




seems a amall price to pav:@aﬁ'tbuiubiﬁahat@bﬂfbf‘theidirectory

[SIRTEE T

renaming problem- outlined above.: . . 703
. The final . topic we wish to:glgouss fn this’ échapter 1is
that .of . compatibility. A basic Pesponsibili€y of any computing
utility is to .mimimize the effeet of interhdl’ oManged  upon 1ts
user community. If a major change must bé mede in the interfaces
betueea~u§§avuritt§a programs -atid-the systen; ‘or “frr the semantics

of these. interfaces,  then the Systew mist SEppéFt both the new

and old interfaces for a sufficiently ‘long period of time to
allow ;userq;so»ﬁenwertwgneiwmpﬁagr&ihﬂfo§&§¥T&hé§ﬁ%ﬁ*iﬁ%erfaees.
A suitauiewaﬁaaunefaﬁaanmsz~pun§oa;a&sﬁ%sﬁxéfﬁaaéiéﬁ”pﬁﬁbabfy”“be“
measured in months.aon even years; not howrs, da¥y, or weeks,

We have made substantial ehangés to’ the ring zero
interface -and  thus wmust  address the *v@éﬁ%étibiiiiy“ ‘issue.
F6r§gpately,:1teiaaqu¢;¢;31spit'tevp&%&%fi?ﬁéaﬁﬁitibility without
keeping the old fﬁndQJand~nﬁlaaindiaddféﬁﬂéiﬁaeﬁfmaﬁhgers;'“This‘
isipqﬁsible;far:&ucarnésoanﬁe-E&?ﬁﬁ,ﬁﬁivéiniiﬁﬁuﬁaté the old ring
zero interface bi{interpoaing aerznsﬁf&urkﬁroéééﬁ?é‘ betwéeen the.
caller. . of _anfebpoleba»ring;zeréfgﬁcérfiééﬁana;bﬁr*new ring zero
~interface. Second, it iaepOasiblewﬁovfﬁﬁ&rpo&é*4suéh simulation
procedures between . the user -and tHe wéw rifg zero interfaces
without pseedins;@ﬁfsven.peﬁ?ﬁvilﬁﬁé aﬁfﬁﬁaéﬁéﬂﬁﬁkrémsal, R

[T TS UURCINEE S0 S FORT S R

-82+ -




Consider how we would simulate the old interface to
initiate. The outer ring interposing procedure would call the
outer ring referenée name manager to map the pathname directory
specifier of the old interfsce into the segiisht niumber required
by the new interface.' It would then call the new 1initiation
primitive, If bhis returned a link, ‘the buter ring 1nterposing

_—

procedure would start over again.

This simulation procedure would® be ' difffealt to
implement if it were not-for the’ fact that Maitics now has an
interposing procedure on all ealls to ring zéro: “fnis  procedire
is a ring four transfervveetcri%hat*hérﬁalii*ﬁ?ﬁﬁsfers7tﬁé?cails
 to the appropriate ring gero-gate. (1) 'Tﬁis*ﬁbéﬁife? vector can
be modified so as to call an appropriate interposing interface

simulation procedure for the interfaces we have changed.

B

(1). This transfer vector, which 'was ‘diséus¥ed in a ‘previous
masters thesis by Janson [J1] has not yet been installed in the
current Multics system,.

-83-



« We have coded a test implementatiom of the easential
féaturesiof our design. This test implementation, which is based
on Multics system 24.2, was undertaken for four major reasons,
First, a working implementation of  owr ideas serves as an
existence proof of the basic claim of our thesis, Second, a
working implementation helps us demounstrate the practicality of
our design. Third, the actual task of implementing our design
helps insure that #e have not negleeted any important details in
our design. Finally, a test implementation of our design helps

us to quantify the impaet of eour design upon the system.
6.1 Plan

We have indicated that our new design requires an
extensive overh#ui of ring zero. The pervasiveness of the
modifications necessary to riné zero 1s largely a result of the
removal of pathnames from ring zero. While the removal of
pathnames from éing zerc is essential to our design, it is a time

consuming, straightforward, and intellectually unrewarding task.
Instead of undertaking this drudgery,‘we have devised a

scheme that allows the essential ideas of our design to be

implemented while avoiding most of the. uninteresting work. The

-8l




implementation we will describe does not affect any code outside
of ring zero, nor doés it affect the syhtax or seméntics of the
interface to ring zero. As a result of this feature, our test
implementation provides the first step in 'aﬁidrdéhly"fradéftidd’
from the current Multics system to the system we have described.
The implementation we will describe: ‘could 'be ° immediately
installed in the standard Multios system without substantially

affecting users.

What we elected to do'-was'JtoL'&hpIeméht"dur new
initiation, termination, and name space management primitives
inside ring zero. We then reimplementeq,}ihside?ring"zero, the
old initiation, termination, nnd'namcwspa@b+min§geiéat‘@rimitives
using our new primitives, This scheme alldwed us to concentrate
upon the key issues of our design without getttﬁkf%bggedfﬂbwhi'ih
the mechanics of eonverting thirty or more: 1arge éomplex programs

from using pathnames to not using pathnanes.-‘n

The strength of this apprdach is that the modules in-
ring zero may be sloulyéweaned away from using pathnames or' now
obsclete interfaces. . :Also, by supplying ﬁg&ﬁéé“ to our new
primitives, users of Multics can sﬁa&&vceﬂvaatiﬁéﬂﬁheir"programs‘
to take advantage of the new ring zero interfade. ‘WhHen ring zero
has been ocompletely converted, all we need do ‘4 throw away the
code that implemented . the 0ld primitivas in terms of  the new

primitives and move the reference name manager out of ring zero.

-85~



_ Reducing the complexity afwu'sxeton certainly increases
its certifiability (D}, B2, D3, k1, -N1, “P1). f In order to
substantiate tue'ghyaathesia‘thshﬁaﬂnaueatsﬁsnesalks in a system
that is more certifiable tham ‘Multics system 24.2, we will look
at two measures of the complexity of the sedurity kernels of the
two systems. These measures are the difference in size of the
old ring zero aﬁd our new ring gzerc and the difference in the
number and complexity of gates into the 'odd ring ¥ero and our new

ring zero.

Appendix E summarizes the 3dze cobparison dats between
the old ring zerc aad - owr new ring zerv. - As it reports, the
address apace\gaaagsr'p13~radased'iﬁtaﬁkew»ty?vs@?@nty-se#en per
cent. lTh;sneegreapoﬂdﬁst¢~aft#o~nadfagh;&£ﬁp§r“¢ent reduction in
the size of ring zero.  In :nct,gathadﬂvets’ayiée¢hanager‘that
we designed‘waa'sﬁvsmall that we have prtﬁeuted it in appendix H
fdr,thefreaden‘%o Ftruag;:,ih&afsizt&bleééedﬂét&@ﬁiin the size of
the. adqress spaeéananagar'&avqu&tlaeaeﬁtﬁtstﬁs5aﬁd*suhstantiates
our claim that we have produced:a wuureaaedrtitxéﬁbé“~viﬁg zZero.
What is even more eg@eﬁnas&nggiaﬁ&hgwﬂﬂpzl%ﬁﬁhis‘P%gure is in
itself substantjal, it-only represeats &iﬁu?ﬂ&aii‘iﬁglementétion.
Several modnlgal in ring¢zqgn.aceeﬁﬁ:hﬁ@hﬁ#lﬁﬁﬂﬁhﬁafand segnent
numbers as gtoraga system ~§hdsnh ~ﬁpeﬁi{te;s£~~“1n a ‘complete

implementation of our design many of ‘these modules would only

-86-




accept segment numbers. This would allow the: code - that -Handled
the pathnames in these modules to be thrown out of ring zero,

further decreasing.its eomplaxity.”,~‘

The old .ring zgro.supportpffgbéutpﬁtﬁaﬁﬁhundred"gateSf”
Our design :olﬁéc;y; removes .the necessity ofﬁhéGing*gaﬁééiihtbg
ring zero which call the reference name managery It also removes
a whole class of :gates that-allow angobjecﬁ‘éQ”ibeﬁﬁspeéified“*by'
bathname._,yuany_ggtéa inte the old éiﬁgaﬁéra’c§Qéfin'pairs;¥idﬁé
gate woulqjapéeify~the-targetf objeagt :byia;dgﬁbﬁﬁ~“ﬁumber.* ‘Phe
other gate wouid sn&eifgﬁnhe:t@rgetﬁobjédt:br*batﬁﬁame.“?with the
ability to . initiate»:directcrieaﬁﬁin“~thaéﬁoué§»aﬂnings,'3tﬁfé'
multiplicity of gatea becomes unnecessary.  As a resvlt ‘only the
gates that takezaegsggent:number~aamrnb§€e¢n~aﬁaﬁitier%fwould‘*&e‘
retained in . the . ring. zero of«a~cﬁnprzta?iﬁvaéﬁéﬁ%étion*bf'bﬁﬁ
design. When we add wup the number of g;ﬁes that a  full
implementation of? our design‘would remove fbom‘the current ring
zero, 1nterface, we ' ‘£ind. that we  waulal remove ubcut Five ‘per cént
of the Tgates. ln addition to reduciag thefnunben“o? gates into -
ring zero, werhaVQ,significantlyu&1nph££&cd%vﬁeﬂtnterface'to~over'“
fifty of tbe,gatggytnat_pu;t remain in *ming*f@érd&i"(1) " This
reduction in intertgc@;goapaaaity also a%ndagbreﬁibiiity*%o“oﬁ%’“
claim that we have made rink~zz¢rma‘faada:neahé~¥uﬁ1t1esi‘ more -
certifiable.. o Loav G ST R o R

(1) See appendix G. -~ . o oseo e owhoora

-87-



To help assess the i&puaﬁaﬁaf our: design upon the
performance of the Multics system, we developed a small benchmark
that tests the speed and paging behavior of the most used system
functions that our design affecdted. -TWi3 benchmark was run on
both Multics system 24.2 -and ~auwwvttst“ﬁimﬁlamenteﬁioﬁ.~ The
results. of . these runs indicated  tha&t theé virftual epu time to
initiate and .then, terminate dn objeoct drepped from 11.002
milliseconds in the standard system to 10.226 sillissconds in our
test system, a reduction of Jdﬁgﬁt“%ﬁeﬂ?*édﬁﬁ. (1) This is
especially gratifying since the b&ﬁtﬁtﬁé&é*isﬁaee manager Qe
implemented was not in the least optimised for running speed. In
addition, our ‘test implementation wss unfeirly penalized by
having to converse with our benchmark through & simulation of the

0old interfaces.

. We attribute this speed up to many factors; not the
least of which i3 the fact that we greé&xy simplified the
structure of the known. segment table. We also make the someéwhat
immodest elaim that our initiationm, termination, and reference
namemmanagementlprimitives were ainylyf@@éatwbettéf‘than those in
systenm 24.2. But this is not surprising; mest’ thimgs are done

better the second time around. It should also be noted that the -

(1) A description of our benchmark as well as a brief summary of
the performance data can be found in appendix F. '

-88~.




smaller and less complex a module is, the easier it is to program
that module efficiently and correctly. Unless a programmer can
hold all of the relevent details and specifications of a program
in his head at one time, it is very difficult to perform global

optimizations or simplifications of the program.

Qur working set performance data indicates that our
system referenced two more pages running the benchmark than
system 24.2. This did not come as much of a surprise. One of
these extra page faults resulted from splitting the code of the
reference name manager and address space manager apart and the
other resulted from splitting apart their shared data base. We
anticipate that when programs are converted to use the new
interfaces directly the extra page fault that was caused by
splitting the code apart will be compensated for. We expect that
since our code is smaller in total, by eliminating the simulation
code we will decrease the working set by a least a page. This
will make up for the extra page fault caused by splitting the
reference name manager and address spaée manager apart. The
increase in working set due to splitting apart the known segment
table cannot 1in 1itself be avoided. However, this increase in
working set is only on the order of a half of a page and is

independent of the combined size of the new data bases,

-89-



We have not really put much effort iato the performance
arguments above. ﬁe feel that ﬁhg performance data which we have
repbrted above is aot.'iﬁsfact, a gopod measure of the performance
of a full implementation of our design. We claim that there is a
hidden performance factor which :'will easily  swamp out the
performance effects we have been discussing. Fortunately, ﬁhis
hidden ;perfornancé factor is in our favor, The éeffeect to which
we are alluding will not be seen immediately but will slowly
assert itself. This effect has te do withi@he,grédual conversion
of major supervisar and user programs to use segment numbers as
directory ~spec1£ieﬁs. . Since pathname resolution -is fairly
expensive (even whantfinQ;.is,gimmﬂ'a*paeanume*- segment number
associative memory), the use of segmant éﬁﬁb%ps as directory
specifiers will save an~avarage:yrooeaa:njaa%sﬁdhtialamount'df

computation.

-90-



We have argued that referehce‘namefﬁahagéﬁeni‘need”\bbf
be supported by the security kernel of é computing utility. 1In
particular, we have demonstrated a transformation on the Multics
system that removes reference name ‘management fhom its security
kernel. Our design has.turehervsimﬁiffiéd*thé}7Muitids“'seéufif?
kernel by allowing directories e@’ﬁé”initféﬁédnddtsiée‘of ring
zero, and removing the caneept.of»a*étcrigefﬁysﬁém'link from ring-
zero, In the process, we have répafﬁeﬁtéﬁ‘inﬁéféﬂﬁ‘seéﬁritjﬁffaﬁv
in the current Multics design that'allowed‘“ﬁﬁﬁéGSSéét to detect
the existence of objects in the storage system hierarchy to which
they had no access. This flawﬁresﬁ§¥éd“fr65’ﬁavihs insufficient
access control on links and fromfﬁfng‘&e?dié“?ifiﬁﬁe to terminate
undetectable direétoriesu Finally;‘ﬁé“have"ﬁ?oﬁf&é&"a “solution
to 'the problem of clearipg‘finﬁ;'s-pathnaméfdsﬁbéiative'méﬁBEy
when a directory is renamed. - | S -

We have used a-technique iﬁQOUﬁ'reaésignjéf the Multics
system that we feel deserves ‘special’'mention. This technique
involves construeting a careful lie to ﬁéinﬁain.thé éééufity'of a
piece of data. .In our case, we*6on3ﬁrdcté&lé”§écurity kerhel
that lies about the existence of a directory until the caller
proves its right to know of the existence of thé*difectory. This

lie, which was actually quite easy to ‘maintain, prevents a

-G1=



process from detecting directories that should be undetectable by
pretending that all possible pqtggggggacorrespond to an existing
directory wunless the process has sufficient access to the object

specified by the pathname to prove otherwise.

We’havelimplgupnteggand xpstcdsﬁhﬁ»key:~points "of our
design. This implementation . has shown: that our design is both
simpler and more efficient than Multies 24.2. More details of
our design than were presented in the body of the thesis may be
foﬁhd in the appendices that -follow. In.particular, appendix H
p?esents the aétual programs of . the address space manager

designed in this thesis.

In conclusion, we would lxxg'to nQ£e.threeaobservations
we made while designing a new address, space manager for Mﬁltics.
First, our address space. manager, which is: far simpler than the
current Multics address space manager, . elso. 1is more efficient
than ﬁhe current address space hanager.ﬁ;mhe complexity of the
current addreas spéce manager cost Multics both space and
performance. (One is tempted to believe that, in general,
complexity, aned to  improve  performance is frequently
counterproductivg;) ‘Second, because Multics  is .an existing
system, the functionality and use patterns of the Multics address
space manager were thoroughly understood ;uhg§~=we “‘began our
reséarch. A large part of the simplification achieved is the
direct result of insight extracted by observing the existing

-92-




implementation of these mechanisms. Finally, we noticed an
impressive threshold effect. As our design progressed it got
Simpler and simpler. At a certain pecint, when our design was
simple enough so that all of the relevant details of the design
could be considered simultaneously, our design underwent a
further drastic simplification. This simplification was only
discovered when the mechanism became simple enough and small

enough to be kept in the head of one designer all at one time.

-93-



s mEmE

The maln data base for the Multies system 24.2 ring
zero;address~andere£arencevnane manager- is the fxndwn §egmént
Iable. .The EST is:a per-process, piag-sero Seégment. Logically
it contains three items. F&Bst; 1t contains an array of KST
Entries. KS?Es are. indcx#é' by ‘ségment nusiber and contain all
per-process 1nfornation necessary for ‘the proper care and feeding
of the segﬁeht“or.dxrecﬁory‘as;géiated with the indexing segment
number. Secoaﬂ,:itrcontains a haah cpded napping from the space
of Unique Inentifiers 6hto the space of s&gmeﬁt numbers, or
equivalentlyvtne.sﬁéce‘of KSTEs. This mapping provides the means
of locating the  KSTE of an already initiﬁted segment should it
éubaequently .ﬁe riﬁitia%ed by a"different name. Third, it
contains a hasnkj&oﬁed m&pping~fromfthe space of names onto the
space of segéeht ngmbers, This assoﬁiatién is mainly of wuse to
the dynamic linkins 'mechamism. Thé current éontents of a KSTE

dhd their major ué&ges are given in the following table.




KSTE Fleld

forward pointer,
backward pointer

unique identifier

name pointer

inferior count

‘parent segment number

entry offset

directory switch

.Use

These pointers are used‘ to chain
the KSTE onto ‘a list’ of free KSTEs
when it is not in use.z :

The unique identifier of the
segment ~'is ussEd to validate UID
hash searches and to properly
identify the corresponding
directory entry after an on-line”
salvage.

This pointer chains together a list”
of the reference names associated
with #this segment or directory.
Stored with each. reference name is
the number of the rink in’ uhich ‘the
nam> '@ known. : .

The 1inferior count records - the
number. of inferiors of a directory

that'are in the process' address

space, This information is used to

prevent a directory from being

terminated while it has kfiown sons.

This ‘entry records the segment
number: of this segment's parent.

It is’used at segment fault time to
‘help: = locate this segment's

directory entry. It also is used.
to translate segnent ‘fumbers into
patkntses.

‘This ‘entry, which records the

offset of this segment's directory
entry within its parent, is used in
conjuction with  parent segment
number to locate the segment's
directory entry.

This flag, which is set to indicate
that the segment implements a
directory object, is used to
special case access setting for
directories at segment fault time.

«g5a



Our redesigned KST has been simplified and contains only two

components: a KSTE array, and a UID hash table. The contents of

each KSTE and their major uses are summarized below.

KSTE field

forward pointer,-
backward pointer’

unique identifier

inferior count

entry pointer

directory switchf'

rings

highest detectable ring

Use

Used to thread KSTE onto free or
hash c¢lass list as required.

Unehanged (a phoney directory will

‘have a uild = 0).

Unchanged.

- A peinter to - the directory entry

for this segment,
Unchanged.

An eight bit field containing one
bit  per ring. Whenever ring i has
this segment nunber initiated then
bit i of this field is on.

A number that specifies the highest
ring. in which this process has

established its right to know of

-~ +&he exiatence of this direetory.

-96-




The proposed ring zero address ‘space mardger interface is as

follows.

initiate_ (dirsegno,ename,dirsw,link,segnd,code)

dirsegno segment number of the parent (input)

enane entry name of target (inmput)
dirsw ~directory switch (input)

link - 1link (output) ‘ ‘
segno segment number of target (output)
code status code {(output) ‘

possible status code values-

error_table_g¢$segknown --- segment already known to process

error_ “table _$invalidsegno --- parent is not a directory

error_ table _$noinfo ---,insufficient access to return any
4nformation

error_ table _$¢nrmkst --- no more room in ‘known segment table

error_table_$no_entry =~ entry does not exist

error_ “table $wrong_typ§ --= entry 1s of the wrong type

error_table_$link --=- entry is a link

terninate_(segno,code)

!

segno segment number to be terminated(input)
code see #@bove: .

possible status code values: .

error_table_$invalidsegno --- segment number is not bound to
an object

error_table_¢$infcnt_non_zero --- can't terminate due to
active inferiors :

error_table_$known_in_other_rings --- can't terminate due to
segment number being used in other
rings _

-97-



APRENDIX. D
Exampls -

To help clarify the ideas. presented in this thesis,
let us consider the following scenario in which a process tries
to initiate thefaegaent' >a>b>crd>e>f in ring four. We will
assume that directory e and segment f do .not exist and that the
process has no accéssato a, b or d, and append permission to ¢ in
rings zero through four.  We nave §#Q§§§h§d below a
representation 1of'this path through bheﬁh;gia%éhy along with the

process' access rights to each object in‘ringfﬂéur;:

"root" (== stétus‘
[} : )

{== null

<-= null

<-- append

-0 ——O - -

(== nuifm,

To simplify matters we will ignore the existence of the outer
ring reference néme manager and we will assume that we are
operating in a vibgin envirbnment. What fol;oh#uié'how the: outer

ring find_ would proceed in this case.

-

-98-



step

step

step

step

step

step

step

step

call initiate_(0, e v Ty link segno of_root,code)

The root directory w111 be initiated, its detectable
field in the KSTE will be set to four, and a status

code of zero will be returned, (all processes have
status parmiaaion tq the root Qircetorr) '
call

initiate, (segno of root "a" 1 link segno of a, code)

The directory ’will be initiated its detectable field
in the KSTE will. be set to.four,- aad a: ata&ua code - of
zero will be returned.

-11 initiate (segno_of a,"b" 1 link segno of b code)

"The direotory ‘will be initiated ; its detectable field

in the KSTE will be get to.gero, and - tha -status edde
noinfo will be returned.

11 initiate _(segno_of_ b "c" 1 link aegno of c, code)

-The directory will ‘be initiated its detectable field

in the KSTE will .be set to .four, aad 8 .zero status codé
will be returnéd. In ' addition this initiation
establishes the process' .right-to.know.of the existence

of ‘superior directories at least in rings zero through

four. This is reflected, .in-this.case, by setting the

'~ detectable field’ in the KSTE of >adb to four.

call initiate (segno of c,"d“ 1 link segno of —d, code)

The directory d will be’ initiated its detectable field

in the KSTE will be set to £qunw»&nﬁ»a zero status code

‘will be returned.

call initiate_(segno_of_d,"s",1,1ink,segno_of_e,code)
The non existent directory e will be assigned a KSTE
which will be marked as phoney and the status code
noinfo will be returned. '

call initiate_(segno_of_e,"f",0,link,segno_of_f,code)

No KSTE will be assigned and the status code noinfo
will be returned.

call terminate_(segno_of_e,code)

The segment number assigned to e will be released on
the grounds that e may not really exist. :

-99-



In this appendix we summarizewcompabison déta between
the size of the Huitica system zu.zraecurity,kernelfand the size
of our proposed Hultics»security'karnpi.,”Hevhave only included
data fob the ma jor ﬁrogréms that’werg:aff§bted by our design. As
a basic measure of the size of a procedure we have chosen the
~ number of words of text in its Multicé object code module. This
corresponds roughly tovthé number pf»machine 1nstructions in the
module. We notice that in most cases the procedures in our
systém are markédiyvsmaller thenw their eéunterparts in system
24.2. Our reduction of;fthe sgcurigj‘kegnel by 3345 words or
about two and a half per cent'may\nd;Jggpéqr agectacuiér, but the
reduction in size«ér the addngss'gﬁaegkﬁgnaggr jis,‘Seventy-seven
per cent. This has substantiélly reduced the complexity of the
security kennel.‘,The reason wé can méke this‘clgim~is.;hat while
the reference néme‘manager-in aystemféﬂ}zfia not!that large, it

is complex far out of proportion to its size.

-100~




old procedure

find_
makeknown
kstsrch
kst_man
makeunknown
initialize_kst

initiate

kst_entry_check

size new procedure
791 128 find_entry
732 . 164 makeknown_
U440 103 kstsrch
45 34 get_kstep
1044 123 terminate_
667 82 initialize_kst
698 288 initiate_
112 88 kste_info
84 kste
86 validate_segno
4529 1184

=101~



In order to measure the change in overall performance
between our system and Multics system 24,2, we developed a
special benehmark‘ program. This benchmark #ae designed to
evaluate only the most eommonly'ﬁeed features thet-ﬁe modified in
our design: segment initiation, reference name management and
segment terminatlen. Specifically, our benchmark called the old
ring zero initiation 1nterfaee (1) to 1nitiate a segment and give
it a reference name. It then used (the terminate by> segment'
number primitive “of the old interfaee to terminate the segment
and unbind thelreference name.l This ,was repeated‘ one hundred
times. The virtual cpu time in microseconde te‘complete the
benchmark was then divided by one hundred to obtain a normalized
_performance timing datum. The total number of page faults for

the run was also recorded.

~ The benchmarks for both systems were run on December
10, 1974 within ten -minutes of eaeﬁk other on a dedicated
computer. The stahdard Multics system used was designated as
Multics system 24.2. Our test system was identical to system
24.2 except‘askit:implemented our design. Three rups were made
on each system.l The first run served only‘to cause dynamic

linking to occur and to bring the pages that our benchmark

(1) The old ring zero interfaces were simulated in our system.

-102-



touches into primary memory. Thei aetond run, which took no page
faults, was usqdvtoﬁgb$a;n;ourxziﬁias;ﬂa&iii(4j5fﬁulti°8 syétem
24.2 averaged 11002 microseconds for each iteration of our
benchmark. Our test implementation was aetuaiiy seven per cent
faster, taking 10226-migroseconds peP intération. The final run
was made after the contents of prim#dy memory weré ‘flushed. This
run established .the 'size .of the workfng set of our benchmark
since each page touched while running our -‘benéhmark produced a
missing page fault. The working set of our benchmark in Multiecs
24.2 was five péges. Our. test .implementatidn had a working set

of seven pages.

(1) Prior testing had shown that multiple runs of the benchmark,
under identical conditions, produced times within one hundredth
of one per cent of each other. As a result one timing run was
all that was required.

-103-



This ’appendix lists briefly the changes we have made
1@ the ring zero intunfaee of‘.Huinie;« system 24.2, We havev
excluded fron«tpiaaappe&dix the changes we have made to the ring
zero address,apade;ntnnga &atgrfﬁee as these .changes: have- been

documented in appendix C.

hes_$chname_file
hes_$fs_get_path_name
hes_$delentry_file
hes_$fs_get_ref _name
hes_$fs_get_seg_ptr -
hes_¢$status_minf
hes_$terminate_file
hes_$terminate_name
hcs_$terminate_noname
hes_$truncate_file
hes_$set_be

~-104-



hes $add acl_ entries 1
hes_$add dir acl éntries
hes_$add_dir-iacl. entrtes
hcs_$add_iacTeeh trigsw;“
hes_¢del_dir_ tree e
hes_$delete_ aci_entriés
hes $de1ete dir &y eggrigs
hes_$delete_dif 1& mﬁnﬁﬁies
hes_$deléte. Tacl e, eflga
hes_$gét authop
hes_¢$get_be_author ‘
hes_$get_dir_ring_brackets
hes_$get_max_length
hcs_$get_ring_brackets
hcs_$get_safety sw

hes $set user_effmode
hes slist acl
hes_$1ist_. dir_ael
hes_8$1list_ dir iacl
hes $list inacl
hes_$quota_move
hes_g$replace_acl
hes_$replace_dir_acl
hes_$replace_dir_inacl
hcs_¢$replace_inacl
hes_¢$set_copysw
hes_¢$set_dir ring_bracketa
hes_$set_max_length
hcs_$status_
hcs_$status_long
hphcs_$add_acl_entries:
hphes_s$add_ dir acl_entries
hphcs_ $de1ete acl entries
hphes_$delete_ dir acl_entries.
hphes_$replace_acl
hphcs_$replace_dir_acl
hphes_$set_act
hphes_¢$set_auth
hphes_$set_bc_auth
hphcs_$set_dates
hphes_¢$set_dir_ring_brackets
hphes_$set_ring_brackets
hphes_¢$status_backup_info

-105~



hes. $append branch
hes, $append _branchx
hes_$append_ link

, hca_gquatqmgnt
hcs_$star_

hes ;atar list_

hphcs_$quota_ reloaé |

hphes_$quota set .
hph¢a_$aalvage dir ,
hphes_$star_no_acc_ck

-106-



We have claimed that the address space manager we
designed is simple, small and easy tb*c%?%i?yu‘ffé substantiate
this claim, we are including in this appendix the source code of
our address space manager for the reader's pergsal. These
programs differ from the actual programs that ran in our trial

Multics system only in a few minor details. (1)

We will divide this appendix into three sections. The
first section contains a declération for the KST. This
declaration is used by programs that contain aikﬂtinclude kst;"
statement. The second section‘cohtains the PL)Ifsourde programs
that constitute the address space manager, Finally, the third
section describes the calling seéuence and 'fUneﬁionality of

system modules called by the programs presented in section two.

The baseno and ptr PL/I builtin functions used in the
programs in this appendix are non-standard PL/I‘fuﬂctionS used in
Multies to manipulate pointers. A Muitics pointer'may be viewed
as a pair of integer values. The first compbnent‘of a pointer is
interpreted as a segment number by the Multiésvhardware. The
second component of a pointer is interpreted as a word offset

within the segment specified by the first component. The baseno

(1) See appendix I.

-107=-



builtin function constructs a pointer to the first word in a
segment given a segment number for that segment. The ptr builtin
function constructs a pointer from the segment number in its
first argument, which must be a pointer, and the integer offset

which is its second argument,

-108-



-60L-

/%
del
del

del
del

/%

BEGIN INCLUDE FILE - - - kst.incl.pll = - - #/ ,
kst_seg$ ext; /® kst segment %/

1 kst aligned based (addr (kst_seg$)), /% KST header declaration %/

lowseg fixed bin /% lowest segment number described by kst #/
2 highseg fixed bin, _ - /% highest segment number described by kst #/
2 free_list _ /% free list

(£p, b g bit (18) unaligned,
2 31drﬁ' Plos 127) &n /% uid hash table %/

: 12
bp) bit (18) unali
entry (lowseg:highseg) like kste-

kstep ptr; /* pointer to entry %/ Cd

1 kste based (kstep) aligned, /% KST entry declaration %/

(2 f bit (18) /® forward rel pointer %/
p t (18),’ /% backward relpgointer L7}

2 segno fixed bin (17), : /% segment number of kste #/

2 rings bit (8), : . , /* rings in which this segnent is known %/

2 hdr fixed bin’ (3) : /% h :gest detectable r1n§

2 dirsw bit (1 /% director¥ ge switch %/

2:unuded bit ¢ 3 /% unused blits

2 infcount fixed bin an,. . /® inferior seg-ent count #/

2 entrzg ptP? untl&gndd? ”“1" o S Y L I ptr “to 'dir ‘entry %/

2 id bzt (38? iIignéd, : - - /% unique identifier %/

END Inezsna vrhs - kae “inel. p11 - - Wy '

Do T e



<0Li-

initialize_ksat:
proc (lowseg, highseg);

/%
initialize kst is called during process initialization to build a virgin
USAGE: call initialize kst (lowseg, highseg);

lowseg fixed bin (27) - = =« lowest segment number described by kst
highseg fixed bin (17) - - - highest segment number described by kst

&/

del (lowseg, highseg, 1) fixed bin (17),
¢ (tg:::§£1 ighseg, 1) fixed din (17)

n ext eatry (ptr, ptr);
f include kat:

il o o

end G
end tattialive kst;

P !t“ﬁ'ﬁ; ] . . ‘ :
z ! | ; H
i §Eg§¥%ﬁ§2¥n!%ad§% (kst.free_list), addr (kst.entry (1)));
kst .entry (1).segno = {; | ' |

kst



it B N

initiate_: proc (a_psegno, a_ename, a_dirsw, a_link, a_segno, a_code) ;

/l
--=> initiate_ is the ring zero gate which allows an object to be mapped
into a process’ address space. This module onl; validates its caller s
ri ht to initiate the object in question. If the request is valid then
known_ . 1s called to actually map the object into the process” address space.

US B: call initiate (psegno, ename, dirsw, link, segno, code);

no¢§§:§ ~bin(17) - seg-ent number of parent directo (1n§ut)

e

name. in directo 0 initiate {input
dirsw b g ria g; ?

;,--* sgt 1f ent;z a directo input)
gunggg of target (output)
(= SOgMen er rge utpu
Lbih(3 ) - status-eode (output) -

possiblé: “u_¢ﬁ6§§{¢h1ues. ¢ (or.di ) already o .
error_t&hln Exegkiown —-—v s{or i regtory ‘res own to process
errar. “‘~““?\“o —— insu’f!cient access to return any information
errar td 1»? t: ~~- no more room in known segment table
error_t: o éntry --- entry does not exist

error._tdbla $1ink ~~- qﬁtny is"a link

error table 'v“Iidéeg ~-- invalid parent segment number
errof* table ¥notadir --- parent is not .a directo

vv.gmqﬁgype ro— ngrge& objeet ia af t ”Ke wrong type &/

B O T

o ipit, ('ﬂ&b),
‘il
m:?a) '

Teed bin (1 ;m b deet! é)
Qzed.bin 00 @;
E; oinliasecror table_$segknown, error _table: tnrnksti error_table_$no_entry,

direct
m:&"ﬁ

dcl (error_ tag%
error 23 e nva egno, error_table_$notadir, error_table_!
error_table_$wrong type) ext fixed bin 35);

del get bnagch 1nfo entry (fixed bin ;17; char (32) aligned fixed bin (17), bit (36) aligned,

ptr glzars ”’ie mégd bi?fix a'bin (17)) ret (ptr
€ nu e reurns
Aown_ égx Qm:ry ?;tr, br{ (36) aligned, bit (1), f‘ixgd bin €17), bit (1), fixed bin (35));

Sinclude kst'




BT

&/

psSegno = a_psegno; /% copy input arguments %/

dirsw = agrsw, y . /% 80 our caller cant change them %/
ename = __?

‘katep = va ?e%no$1nuse (psegno),

if kstep = null hen call return code (error table $invalidsegno);

kste.dirsw then call return code (error_tabTe_$notadir);
if kste, id = phoney_uid
then if dirsw
: then call MKN (baseptr (paegno) phene{ uid, acceasible);
else call return_code (error table - $noinf

else do;
Q@iLOQGELQF‘QOh infg no, ename, type, uid, ‘ep, link, code) ;
%g code = error_table. no nfov ’

ir e
ig I§w§¥ﬂ‘ ,=§§ b&dcpbr (psagno) honey. uid, aécessible);
g gg uid, accesslbg

'11 return eode in e}

;. . = 1ink:
831 - return code (error table $link),

a . ‘g&t; é = segment) & dirsw | (type = directory) & “dirsw
” y” 1 return_code (error'tab e $wrong_typg¥-
,.eg 11 MKN (ep, uid, accessible);

uid fo al%q ed
ace ?% _ 36&12 ? ’

e mkaknour (epy.ﬂ%d, dirsw,. aagno, accessible, eode),
-l &dréturqﬁ ode (code).

’ 'ﬁprbh“(
del ¢ e ed bin. fdsg :
‘tﬁeztﬁr£ 11'
o re o _caller;
end rgo ode A ’
return_to_ca ler: reéurn°

end initiate_;



-Erl-

makeknown_:
proc (ep, entry uid, dirsw, segno, accessible, code);

/®

---> mgkeknown_ maps a segment or directory (specified by dirsw) into its
caller s address space. This module assumes that the process right to
initiate the segment specified has already been established. It further
assumes that its input arguments will not be modified while it is executing.
This assumption requires 1lts callers to be sure that arguments passed

to makeknown_ are not a?eesaible to outer ring procedures.

USAGE: call makeknown_  (ep, entry_ uid, dirsw, segno, accessible, code);

ep ptr —-- foint r to the object“s branch (input)

entry uid b t(363 aligned --~- unique identifier of the object (input)

dirsw bit(1) --- set If object is a directory (inﬁu

segno fixed bin%l?) -— se!lent number bound to the object (output)

accessaible biti ) === set 1If process has access to the object or its parent (input)
code fixed bin(35) --- status code (output)

&/

del epipbey. i
entry:uid:bit (36)aligned,
dirsw bit (1)
segno fixedﬁbin*(!?), ,
acces 1b1e4!1tai¥)'”‘1< ,
code fixed:vim {38);

del ring fixes: bin:(3) o i » | , |
¢ :r%r? Xe. Juog &m, error_table_$rioinfo) ext fixed bin (35), Y
pkstepy diaghp) ptr; ~ . , E

dcl level$get ext entvy () refurns (fixed bin (3))
E:&_kgg:p ngtﬁiut?{§$%!%§gih;n $17§) returns (itn), . i
tﬁ”iggi’%“ ™y . “‘"{;g ~y:h igned, bit (1), ptr, ptr),

e n-OR% - pr D)y PR e 2
kovebreserve exy oAty (Efea Bn C17), per, tixsd pin (35));

del (baseno, fixed; null, substr) builtin; R

/%



‘ﬁbl'

#/

rin? levels%et ();
kstsrech entr¥ uid, accessidble, hashp, kstep);
if kstep = nul

- then do; /® object already has a detectable KSTE #/

code = error_table_$segknown;
segno = kste.segno;

end;
else do; /® must allocate a new KSTE #/

if accessible then code = error_table_ $noinfo;
call katg reserve ?segno, kstep, code);

, 0 t return;
d?lk~hbaea ?ﬁashp, kstep), ‘ /% thread KSTE into hash class %/
= nul :
0} : /% increment parent’s inferior count #/

ﬁﬁgggﬁ = sgéfksigg (fixgd é£:::§°-§egé€e i%%count+1'

oty P
kobe. /% £111 in KSTE %/
| ‘%’:.m rYD 3 D7 |
kste id entry uid°
, ‘xr {icots .rings, rings1, 1) = "1%b; /% mark kste as known in proper ring %/
" then do ubgle (ring > kste.hdr); /% update hdr of superiors #/

ikBte.hde = ring;
1f ke e.entryp = null é) A
‘theh kstep = get_kstep (fixed (baseno (kste.entryp), 17));



=Gli=

terminate_: proc (a_segno, a_code);
/8

--=> terminate_ 18 the gate into ring zero Hhich allows a process to unbind

a segment number from the object to which it was bound. If the KSTE has no

inferiors and the segment number is not in use bK other rings then the

segnent number is physically disconnected from the object to which it was bound
the segment number is returned to the free or reserved pool as specified

by the reaerved switch argument. If these conditions do not obtain then the

segnent number is not discopgnected. The KSTE is merely marked as no

nﬁgr in use in the caller s protection ring.
UsA call terminate_ (segno, code)

o fixed bin(17) - - - segment number of the segment
e fixed bin 2353 - - - erg:: code (output)

possible status code values:
error_table ;invalidsegnc -=-- segmenf number 1is not bound to an object

nfont_non_zero --- can t terminate due to active inferiors
own_In_other rings --- can t terminate due to segment number being used in other rings

error_| —table
error_téble

.’/ Z;i'

dcl a_segno fixed bin ;),
a_code fixan hin (

del bin ($7}; returns (ptr),

(17)) mtuma (pbr), ,‘

del (erro n er s et'ror table $infent non zero) ext fixed bin (35)
del error § }i&;ﬁ%ﬁ:&&é ‘ﬁﬁg e§% xﬁd‘bin 135);. ‘
del (baseno,_gix;ﬂ, nn;;,.substr) builtin, e

% include kst;
/e e kst;




ﬁgllu

*/

‘ e /® copy values of 1nput arguments #/
segno = a segn /% 30 our caller can change them %/
kstep = vali te segno$inuse (segno); /* make sure call is legal

if kstep = null

then call abort error _table_$invalidsegno);

ring = level$ge

:gbatr kzte r;ngab ging+1 1) = "0"b; /% make unknown in this ring %/
§¥933%211 ort £gnr8r table_$known_in_other_rings); /# can’t terminate in another ring #/

nfeount

(error t?blb $infcnt_pon zero); /% can't terminate if infcount non zero #*/

(Ii d (hla (kste‘ 5 k/:dn teme?t ?arént'afinfeéior count %/
X6 eno -> kste.en :
pkstep ~> > Kkst6. infoount -1; rypl

/% deposit kste in free pool #*/

in TBg?e)’

e = ﬁatua code'
et .éw |




=Ll

kstsrch: proc (uid, accessible, hashp, kstep);

/%

&/

to the desired and the hash class thread word. Only if the process has established
its right o detect the existence of the object bound to the KSTE will a match be found.

-—D kgtarch searches the KST unigue identifier hash table and returns pointers
The conditions ggggire for kstarch to return a given segn?nt number are:

1) the segmen er must be bound to the correct object (as identitied by uid),

2) the a ent number must be detectable in the caller sri ng and

3) no higher ring nay have the segment number initiated. At the expense of assigning multiple
segment object when not necessary for protection reasons, kstsrch co

orithh such as matching only if the caller has access to the target
ob ect or-tnekgggggﬁ target object.
USAGE: call (uid, acceasible, “hashp, kstep);

uid bit(36) al gged ---~ unique id of object searched for (input)
accessible bit “==- set 1f the process has any access to the object or its parent (1nput)
hashp ptr ---- pointer to the hash class thread word (output)

kstep ptr —— pointer to the desired KSTE if found else null (output)

del uid bit (3‘6) alig

match: &urna (bit (1) z |
; kste.id & acoessible ! kste. hdr >= ring)

agcesaibrs tiged in (3),

§§ pir, null, ‘mod, dimension) builtin
levei&ggt ext . entry O returns (fixed bin (3));

‘1ﬁﬁctu3é kst;

$ .'1
’ %gzggtgaadd (kst.uid hash (mod (fixed (uid), dimension (kst.uid_hash, 1))));
do hz ksutgp(kat bkate fp);
@ = e ’ ’
AT mton’ () then pétarm; "

o nnll ()
, netu

then
1h acg3231ble (kst, hd ing);
then max (kste.hdr, r
‘else hdr = kste.hdr; » R8T
1f substr (kste. rings, hdr + 2, 7 - hdr) = "0"b then return ("1"b);

end;
return ("0"b);
end match;
end kstsrch;




“gli=

kste: proe ();
/%

kste provides the functions of freeing and reserving segment numbers

-==)> kste$reserve extracts a kste from the free list
USAGE: call kste$reserve (segno,kstep,code);

~==> kste$free frees a segment number given a kSt entry pointer
st.

The kste is threaded onto the free 1i
USAGE: call kste$free (kstep); =

g' no fixed bin.(1;)t-‘-t- €§gn§n§ nu??er éout uta)
3 PEP. = - neer Lo e Xstep tinput/ou
33“‘ fgged bin(3g? - = - error oodep(Outgut{ P

del code fixed din (3?)
(segno, save_segnd) fixed bin (17) ;

dcl thread$in ext entry (ptr, ptr),
threadjout ext entry (ptr);
del (addr, ptr, unspec) builtin;
del error_table $nrmkst ext fixed bin (35);
‘% inblude kst;
entry (segno, kstep, code);
_r,git.gpiz_ st.fp = "O"b
¢ &n?%gié erre table_$nrmkst
’
katep = ptr (addr (kst), kst.free_list.fp);
S b Deaton Ckotan) ] P
B, T om
e% b E 3 g f:‘ L H
code 6 3.0p H

.
$

reserve:

return;
free: o
entry (kstep);
save_segno = ﬂste.aegno;
unspec {kste) = "0"b;
kate.segno = savqagegno; .
ca%1~thread$in (addr (kst.free_list), kstep);
return;

end kste;

/"terningte»chaina &/



get _kstep: proc (segno) returns (ptr);
et_kstep translates a segment number into a pointer to the associated KSTE

/I'
-—>

USAGE:

1; segno fixed bin(17) ---- the se
2) kstep ptr ---- pointer to a KST

%/

gev_
kstep = get_kstep (segno);
%ment nunber

% include kst;

del segno fixed bin (17),
null, addr) builtin;
if segno < kst.lowseg ) segno > kst.highseg
then return (null ());
return (addr (kst.entry (segno)));

end get_kstep;

-6ll-



=0ci-

validate_ segno:
proc ();

/%
validate_segno provides generallz useful kste validation functions
Each entry returns a pointer to the associated kste if a particular conditions holds.
If the stated condition does not obtain then the null pointer is returned.

--=> validate segnosfree checks to ee thﬁt the segment number is free
USAGE: kstep = validate_s

=== validate . Segno inuse cheeks to ?ee ¢t the segment number is bound to an object
USAGE: kstep = validate_segno$inuse (se H

gnc fixed bin (17) = = - scgment number (input)
kstep ptr - - = pointer to. the kstep (output)

L7
del segno fixed bin an);
del get_kstep ext entry (fixed bin (17)) returns (ptr),
del (null, unspec) builtin, ‘

viinclude kxt,

free: :‘~ ry ( Q) returns'(ptr),
: :_retnrn eval ("1"b));

inuseﬁA‘:~ (se, turns (ptr)
‘ ‘ Mrgt;;n ?eval (*0“b)) }me,v’

1: Rl iq&upnasﬁpe ,.»
gg? unassfgned bit i ’ :f w3
atep. = 8‘5 e? (segno);
) then return (nu

kstep 3 ())
f unassign {unspec (kste.entryp) = "%0"b) then return (null ());
“patara’ kstep)
end eval;

end validate_segno;



-1t

kste_info: proc (segno, uid, branchp, code);

/%

&/

-==> kste_info returns the uid of thg¢ object bound to a segment number

as well as the address of the object branch. This information is used
to lock the ent dir?ctory and 1ocate ‘the desired branch.

USAGE: call te _info (segno, uid, branchp, code);

--~> kste_info$update_| branch offset is c¢alled by the file aystem when it notices that
the online salvager has moved an entry in a directory.

It updates the pointer in the kste to reflect thc new location of

of the branch within the directory.

USAGE’ call katq_intotupdité branch oftsct (segno, branch, oftsgt),,

3n bin (17) ---- 3% nt nusber of the object (1 ngu
gi b%t 36) aligned -—-» und ue(idcnt% ier of tge object output)
ranc T — er (outpu

branch o set bit ( ht ed —we= ftnet of branch of ob ct- in rent (output)
code fIxed bin(35) ---- status code ? Je P _ ,

del :gs:o fixed bin (1;)5

return
update_branch_ offaet'

dcl (error_table_$invalid . o, error table: nbent ext fixed bin (35);
del = ’& p '¥) ptri 35

rixed bin (35
gﬁ:ﬂgﬁ () f t bit (18) an ed
uid bit (333 aligned; gned,

returns

validate_segno$inuse nﬁtry (Tixng (17)
_$include kst; $ o <

kstep = validat inuse (segmol;
1&%3:;»': nunqﬂ'g““ nuse m

Ble = error: mre muudacszré- e
: return, BT L e : :

end;
uid’=z kste. 1d,~v. ,,1
if kate .entryp = null () :

then do "
co&e z error table Qnoentry,
return;

end;
brunchp = kste. entryp,

s

entry (segno, branth offset); ’
kat zntrys?ségnnstanfbyp tr (kat.entry (segno) entryp, bnancb offset)
return; ,

end kste info, ’ ’ = ‘




-—=> get_brahch_info

This file system routine is called by initiate_ to get
the attributes of a named entry in a directory. If the caller
has no access to the named object (if it exists) or to the parent
directory then the status code error_table_$noinfo is returned.
The reader should note that get_branch_info must read the access
control 1list of the directory containing %he‘named entry if the
entry does not exist or if the process has no  access to the
entry. To locaté the access control 1list of the containing
directory, get_branch_info must call the kste_;pfqvmodule of the
address space manager, a recursive inv&eation df the address
space manager.

Usagei call get_branch_info (psegno, ename, type, uid, ep, 1link,
code);
psegno fixed bin (17) =e- directory segmqnt uamber (1nput)
ename char (32) aligned ---'name of entry in directery (input)
type fixed bin (17) --= type of the obJect~(@utput)

0 -< no entry

1 -- segment

2 -- directory

3 == 1link "~

uid bit (36} aligned --- unique identifier of object (output)
ep pointer --- pointer to the entry of the*eijcc (output)

link char(*) varying --~- contents of the: Iﬁnk (output)
code fixed bin (35) -=-= error code (output) f

-122~




~=-=> thread$in

This routine adds an element to a two way 1linked 1ist
of elements. . The first word 'of each eYement contains the

necessary forward and backward pointers,

Usage: call thread$in (where, what);
where pointer --- pointer to an element in the list after which
the new element is to be threaded.g

what pointer --- pointer to the element: to “be threaded into
the list. ) ,

--=> thread$out

This routine threads an element out of a two way linked

list built by thread$in.

Usage: call thread$out (what);

what pointer --- pointer to the element to be threaded out of
the list. ‘

-==> level$get

This routine returns the validation 1level of the
calling procedure. In all cases considered in this thesis the
validation 1level of a process is equal to the number of the ring

in which the process was executing when it called into ring zero.

Usage: ring = 1level$get ();

ring fixed bin (3) --- validation level of the process.

-123=-



--=~> disconnect

This routine physically removes a segment number from a
process' address space by zeroing the segment descriptor word for
that segment number in the process' virtual address translation

table.

Usage: call disconnect (segno);

segno fixed bin (17) --- segment number to be disconnected.

~124-



In our discussion of the Multics address space manager
we omitted three mechanisms that it currently . supports. These
mechanisms, which are non-essential to our design, were omitted
to simplify our presentation 'and avoid confusionf In this
appendix we will briefly describe these mechanisms and show how

they fit into our design.

I.1 Reserved Switeh

The Muitics initiation and termination primitives take
a reserved switch argument. In the case of initiation, this
switch specifies, if set, that the caller wishes to specify what
segment number to bind to the object when it is initiated.
Naturally, ring zero must check that the c¢aller has in fact
reserved the segment number. When the ring zZero initiation
primitive is called without the reserved switch set, then ring
zero chooses a segment number from a list'iuvmaintains of free
segment numbers. This segment number is boumd to the object and
returned to thevcaller. In the case-of termination, the reserved
switech specifies whether the freed - segment number is to be

eligible for assignment when a free: segment.number is needed.

-125=-



The reserved switch must e¢learly remain a protected
security kernel mechanism in our new address space manager. Were
this not the case, one protection domain could cause another
protection domain to malfunction by using a segment number that

the first protection domain had reserved.

I.2 Copy Switgh

During the process of initiating a segment, an
attribute in its directory entry called a copy switch is
examined. If the segment has the copy attribute, then a copy of
the segment is made and this copy 1is made accessible to the

process instead of the original.

We can use the mechanism of reflecting information out
to an outer ring by setting a status code to remove copy switch
processing from ring zero. This is possible since the current
initiation primitive takes an argument that allows a process to
bypass copy switch processing. Together with the fact that no
ring zero procedurés or data bases have their copy switch set,
this insures that the protection mechanisms of the system do not
depend upon the sngﬁent,copy on initiation facility. To take
advantage of this, our new initiate primitive will not process
the copy switch. ‘Instead, it will always initiate the target

segment and return a status flag indicating whether or not the

segment's copy switch was set. The outer rings can then worry

~126=




about creating a copy of the segment, terminating the original,
and returning the segment number of the eopy if the eopy switch
was set. This allows the eeneept of ‘a edpy switch to move out of

ring zero.
I.3 ZIransparencv Switches

When a segment His initiated in the current Multics.
system, the address space nanager sets two éwitches,* called the
transparent usage switeh and. the trannparent modification switch,
in its KSTE. These switches detenmine whetner this process'
usage and modification of the segmdntx is to- be detectable to
other processes in the systenm. Theae transparency switches have
no influence upon our design: exoept»thtﬁ 'in an- implementation of
our design (as in our test implementation) these switches would
be kept in the KSTE of a segment and the addness’ space manager
would retain the two lines of eode froa the o@nvenﬁ address space

manager that sets these suitehes.

-12T~-




B1
C1
Ce

D1

D2
D3

F1

J1

I

L1

M1

M2

M3

Bibliosraphy

Bensoussan, A., Clingen, C. T., and Daley, R.C., "The
Multics.  Virtual Memory:: Comoepts and Design," CACM 15,
5 (May 1972), pp. 308-318.

Corbaté, F. J., J.H. Saltzer, and C.T. Clingen,
"Multics -- The First Seven Years," AFIPS Conf. Proc.
40 (1972 SJCC), AFIPS Press: MontVale, N. J.

Corbatdé F.J., and Vyssotsky, V. A., "Introduction and

- Overview of the Multics System," AFIPS Conf. Proc. 27

(1965 FJCC), Spartan Books- Washington D.C.

Dijkstra E.W., "Complexity controlled by hierarchical
ordering of function .and -vaviability," Software
(P. Naur and B. Randell, eds.), NATO.

Epgineering
Scientific. Affairs Division:. ﬁ?uésels, January ‘1969,

Dijkstra E.W., "The structure of the "THE" -
multipgesranming system,® "CACH 11, 5 (May 1968), pp.
341-34

Dahl, 0. J., Dijkstra, E. w., and Hoare, C A.R.,
RLLUS ‘Programming, Acsdemic Preéss: New York, N.Y.,
1972.

Fabry, R.S., "Capability-Based Addressing, CACM 1T, T
(July 1974), pp. HO3=W12, = I

Janson, P.A., "Removing the Dynamic Linkér from ‘the
Security Kernel of a Computing Utility," MIT Project
MAC Technical Report TR-132;, 1974.

IBM, "IBM 0S Linkage Editor", IBM Systems Reference
Library, GC 28-6538, January 1972.

Liskov, B. H., "A design methodology for reliable

software systems," AFIPS Conf. Proc. Al (1972 FJCC),
AFIPS Press: Montvale, N.J.

Mills, H. D., "On the development of large reliable

programs," Proceedings of lh: IEEE sSymposium on
Computer Software Reliabilitv, 1973. v -

M.I.T. Project MAC, Introduction o Multics, MIT
Project MAC Technical Report TR-123, 1974,

Madnick, S.E., "Design Strategies for File Systems,"
MIT Project MAC Technical Report TR-78, 1970.

-128-



My

N1

01

P1

R1

R2

S1

S2

S3

S4

W1

w2

PPN e M e vy T SRR 1 e R e ‘r R S S S N e S AR R By

McCarthy, J., Abrahams, P., et al.,
r
1965.

Naur, P. and B. Randell (Eds.), 52111333 Engineering,
report by the NATO Science Couﬂittea, Garmisch,’
Germany, 1968. ’

Organick, E.I., The Multics Syatem: An
its §;_ng§u£§ MIT Press: Cambridge, Haas., 1972.

Parnas, D.L., "A technique for software module
specification with examples,"™ CACM 15, 5 (May 1972),
pp. 330-336.

Rotenberg, L.J. "Making Computers Keap Secrets,” MIT
Project MAC Technical Report TR-115, 1974.

Ritche, D.M. and Thompson K., "The UNIX Time-Sharing

System," CACM 17, 7 (July 1974), pp. 365-375.

Schroeder, M.D., "Cooperation of Hutually Suspicious
Subsystems in a Computer Utility,"  MIT Project MAC
Technical Report TR-104, 1972. :

Schroeder, M.D. and J.H. Saltzer, "A Hardware
Architecture for Implonentins Protection Rings, CACM

Saltzer, J.H., "Protection and the Control of
Information Sharing in Multics,™ CACM 17,. 7 (July
1974), pp. 388-402.

Saltzer, J.H., and M.D. Schroeder, "The Protection of
Information in Computer Systems," IEEE Proc., 63, 9
(Sept. 1975), pp. 1278 - 1308. -

Wirth, N., "Program Developmentf,  by Stepwise
Refinement," CACM 14, 4 (April 1970), pp. 221-227.

wirth, N., JSyatematic nnezznnnlns
Prentice~Hall: Englewood Cliffs, New. Jeraey,'1973.

-129-

. , Lisp 1.2
! Manugl, MIT Press: Cambridge, Mass.,

3




This empty page was substituted for a
blank page in the original document.



CS-TR Scanning Project
Document Control Form Date: !l / £ /35

Report# LcS-TR-156

Each of the following should be identified by a checkmark:
Originating Department:

O Artificial Intellegence Laboratory (Al)
Laboratory for Computer Science (LCS)

Document Type:

Technical Report (TR) O Technical Memo (TM)
O Other:

Document Information  Number of pages: /30 (134-imscxs)

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
O Single-sided or O Single-sided or
X Double-sided X Double-sided
Print type:

[ Typewriter [ offsetPress  [] Laser Print
[ tnkJet Printer Kumm [] otner;
Check each if included with document:

[0 DOD Form O Funding Agent Form O cover Page

O spine [0 Printers Notes O Photo negatives
O Other:

Page Data:

Blank Pagesy e mmbe;_ToLlo wy NG LAST PAFE 129

Photographs/Tonal Material (y pege numbes:

Other (note descriptionpage numben
Description : Page Number:

I mage_map? (=130 ) un#E'ED -TLE PAEE (l—/n WARBLAN K
(i31- 2134 S ancoTTR L TRETS 3D

Scanning Agent Signoff:
Date Received: ! / 4 /S Date Scanned: [/ ) /35  Date Returned: 317 /35

Scanning Agent Signature: %MAM}/ ¢V 4&&

Rev 9/84 DSALCS Document Control Form cstrform.vsd




Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94




