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Petri Net Languages 

Abstract 

In a Labelled Petri Net we assign symbols from an alphabet to some 

or all the transitions of a Petri Net. To each firing sequence of such a 

Labelled Petri Net corresponds a string over tne alphabet. We study the 

languages obtained in this way by all firing sequences of a Petri Net, or 

by all firing sequences which reach a given final marking. We consider the 

closure properties of these languages, their characterization, their rela­

tion to other language families, and the decidability of various problems 

concerning these languages. The last chapter relates Petri Nets to Counter 

Automata and Weak Counter Automata, introduces Inhibitor Nets and Priority 

Nets, and considers extensions and limitations of the Petri Net Languages. 
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Petri Net Languages. 

0. Introduction. 

In many applications of Petri nets it is the set of firing sequences generated 

by the net that is of prime importance. Usually,certain transitions represent actions, 

such as synchronization, operator execution, etc., and we would like to know which 

sequences of synchronizations or operations are compatible with the constraints imposed 

by the system being modelled and expressed by the structure of the Petri net. 

For this purpose, it is useful to treat a Petri net like an automaton whose states 

are the markings of the net, and whose state-transition function expresses how and 

when transitions of the Petri net fire. This approach was already implicit in the work 

of Keller [12] and Baker [ 2 ] . 

We shall consider mainly Generalized Petri Nets. For other definitions, and for 

the relationship of Generalized Petri Nets to Ordinary Petri Nets and to Vector Addi­

tion Systems, see Hack [ 7 ] . 

The basic approach consists in assigning a name or label (i.e. a symbol drawn 

from some alphabet; not necessarily a different symbol for each transition) to some 

or all the transitions in the Petri net, and studying the strings obtained from fir­

ing sequences by replacing each transition occurrence by the corresponding transition 

label, or erasing it if it has no label (\-transition). 

Given a Petri net N with labelled transitions, we distinguish two basic kinds 

of Petri net languages: 

a) The language L(N,M,M') obtained from the set of firing sequences starting 

at marking M and leading to marking M' . The class of languages that can be 

obtained in this manner by some Generalized Petri Net (GPN) is designated ~O 
if every transition has a label, and ~ if there are \-transitions, i.e. 

unlabelled or "invisible" transitions in the net. If the initial and final 

markings are understood we often write ~(N) for this language, called the 

terminal language of the net. 

b) The language L(N,M,~'<) obtained from all firing sequences of N starting 

at the initial marking M The class of languages generated in this manner 

is designated -;/!,., or ~ if there are \-transitions. If M is understood, 

we may also write i'._(N), for example. 

We shall study these languages from the point of view of their closure properties, 
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their relation to other language families, and their generation from a set of basis 

languages by certain of their closure properties. This will permit us to give several 

characterizations of the language families~, ~O' :/!_~, ~~. 

We shall also consider the decidability of membership, emptiness, and equivalence 

for these language families. Furthermore, we shall show how the introduction of a 

priority firing rule, or of a zero-testing capability, extends the family ~~ to 

all type 0 (recursively enumerable) languages. This latter fact is of interest because 

many practical synchronization problems involve priority rules of the type "if both 

A and B are enabled, only A shall be allowed to proceed". 

Similar results have recently been obtained by T. Agerwala [l ], and J. Peterson 

has studied a family of languages practically identical to our family ~ [17]. 
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1. Basic Definitions 

1.1. Generalized Petri Nets. 

Definition 1.1: A Generalized Petri Net (GPN) N 

of the following: 

(TI, 'E, F, B, M0) consists 

1. a finite set of places., n = (pl' ... ' pr} 

2. a finite set of transitions,~= (t
1

, ... , ts} disjoint from TI 

3. a forwards incidence function F: TI x 'E 4 :IN' (N is the set of 

non-negative integers) 

4. a backwards incidence function B: TI x °E4 1N 

5. an initial marking MO: TI 4 JN 

It is represented graphically as follows: 

1. places are represented by circles 

2. transitions are represented by bars 

3. circles and bars are connected by bundles of~: if Eis a place 

and t is a transition, and F(p, t) = 3, we have a bundle of 3 arcs 

going from p to t; 3 is the size of the arc bundle. 

4. a marking is represented by drawing a number of tokens into a place, 

or writing the number. 

n [Pl' e2 , e) 
P1 P2 

MO < 5' 1, 0) 

'E ft1,t2,t3,t4} 

. j 
1 2 3 4 

F (p., t.) "1{~ 1 3 0 0 t3 

1. J 0 1 0 0 
0 0 1 5 

ot~ 
j 

1 2 3 4 

B (p., t.) 0 0 1 0 
1. J 2 1 0 0 

0 2 0 0 

Figure 1.1 
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When we draw a bundle of arcs we expect each fibre to carry along one token 

when a transition fires. The firability of a transition is thus defined 

as follows: 

A transition t is said to be firable iff for every place p E TI we have 

M(p) ~ F(p, t). Since this is always true when F(p, t) = 0 we need to 

inspect only the input places of transition t, i.e. those for which 

F(p, t) > 0. 

If a firable transition fires, it changes the marking by removing 

F(p, t) tokens if p is an input place and by adding B(p, t) tokens if p is an 

output place (B(p, t) > 0). The new marking M' is now such that: 

Vp: M' (p) = M(p) - F(p, t) + B(p, t), which can be abbreviated as: 

M' = M + (B(t) - F(t)). By ordering the set of places TI we can interpret 

markings and the effect of firing on a marking as vectors of r-coordinates 1 ... r 

corresponding to the places p1 .. ·Pr· 

In this context we may also view F(t) and B(t) as vectors in lNr, where 

F(t)(i) = F(p.,t) for 1.;;; i <::: r. Then we can define the relation M[t)M' 
1 

which says: "Transition t is firable at marking M and leads to marking M' " as 

follows: 

M[t)M' M ~ F(t) & M' M - F(t) + B(t) 

A firing sequence can now be defined as a sequence of transition names 

(or a string cr in 'U'(), such that each prefix leads to a marking at which the 

following transition is firable. Thus, Figure 1.2 shows the result of firing 

t 2 in the Petri net of Figure 1.1. Since t 3 is firable at that new marking, 

t 2 t 3 is a firing sequence. Note that t 3 t 2 is not a firing sequence, since t 3 
is not firable at the initial marking. 

5 

Figure 1.2 3 
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The dynamic aspects of the Petri Net N can now be described by the 

set of firing sequences SN(M0 ) starting at the initial marking M0 , and by 

the set of reachable markings ~(M0 ), i.e. the markingsM' such that some 

firing sequence cr E SN(M0 ) leads from~ to M'. This we write as M0 [cr)M', 

where the relation [cr) is defined as the composition of the relations [t.) 
1-

for the transitions t. as they occur in the string cr; composition for the 
1-

relations corresponds to concatenation for the strings of transition names, 

so that: 

M[crt)M' M[cr)M" & M"[t)M' 

Thus we have: 

(cr EL,~'( I fili' E :it{: ~[cr)M'} 
r "I< 

(M E JN l 3:cr E L, : Mo [cr)M} 

Given a "final" marking Mf, we also define the set of terminal firing sequences 

TN(M0 , Mf ) which contains all those firing sequences which lead from M0 to Mf : 

* TN(M0 , Mf ) = (cr E L, I M0 [cr)Mf } 

Clearly, TN(Mo, Mf ) ~ SN(Mo) and Mf i ~(Mo) ~ TN(Mo, Mf ) 0. 
We notice that: 

Finally, we observe the following effect of increasing the initial marking. 

Let MQ :<>: ~. Then we have: 

~ [cr)M1 
~ (MQ [cr) M]_ & M]_ - M1 MQ - MO) 

SN(Mo) ~ SN(Mo) t 

( M E :Nr I 3:M1 E ~ (Mo) & M = Ml+ MO - MO} ~ ~(MQ) 

TN(Mo, Mf ) ~ TN(Mo, Mf + M' 
0 

- M ) 
0 

This is also called the contairunent property. 



- 6 -

1.2. Restricted Petri Nets --- ---
In some cases it is useful to restrict the definition of Petri Nets. 

Ordinary Petri Nets are GPN's where the size of arc bundles is restricted 

to one. This corresponds to Holt's original definition [5,10]. Selfloop-free 

Petri Nets have no pairs p,t that are both forwards and backwards connected, 

i.e. B(p, t) · F(p, t) = 0 for all places p and transitions t. Restricted Petri 

Nets t(g.JTI) are Selfloop-free ordinary Petri Nets: any place-transition pair 

is connected by at most one arc. 

The relations between these various restrictions and Vector Addition 

Systems are discussed in a more detailed manner in [ 7 ]. See also Miller [14]. 

1.3. Labelled Petri Nets and Petri lli:!_ Languages 

Definition 1. 2: A Labelled Petri Net A = (N, (J_, /\) over an alphabet ct is a 

GPN N = (TI, ~. F, B, M
0

) together with a labelling function 

/\: ~ ~ Q:. If the labelling function is only partial, the net is said 

to contain ~-transitions, namely those transitions that have no label 

assigned by /\. 

The labelling function is extended to firing sequences in the natural way. 
··-If crt E ~-- is a firing sequence, we have: 

A (at) /\(a) . /\(t) 

A (CJ) 

iff t has a label 

otherwise. 

Finally, /\(A) =A. (the empty string) 

Thus, A-transitions in firing sequences transform as if their label were 

the empty string A. 

If CJ is a firing sequence, then A(cr) is called a label sequence. Note that 

a given label sequence may correspond to several firing sequences, and that if 

there are A-transitions, the firing sequences can be longer than the corre­

sponding label sequences -- in fact, a given label sequence may correspond to 

arbitrarily long firing sequences. This is why we shall distinguish between 

A-free Labelled Petri Nets (no A-transitions) and unrestricted Labelled Petri 

Nets. 

In the context of system modelling, A-transitions may correspond to 

"internal," "invisible," or otherwise "uninteresting" events, whereas similarly 

t C.A. Petri calls these nets "Pure Petri Nets". 
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labelled transitions may be used to model actions which can be enabled by 

several distinct sets of conditions. It should be pointed out, however, 

that describing the behavior of a system by means of label sequences may 

completely hide inherent concurrency, since each label sequence corresponds 

to a totally ordered execution sequence. 

The languages generated by Petri Nets are the sets of label sequences 

corresponding to all firing sequences, or just all terminal firing sequences, 

of the Petri Net. 

We, therefore, distinguish four classes of Petri net languages. 

Definition 1.3: 

(a) ;;[, is the class of all languages obtained as the set of all label 

sequences of some A-free Labelled Petri Net: 

L E:f 3A = (N, Cl.,/\.); N = (t,r, ~' F, B, M0): 

,·~ 

L = {x E Ct l~cr E SN(M0 ) & x = A.(cr)} 

and A. is a total function on ~. We write this as 

L = SA(M0 ) (or :l._(A), if M0 is understood), where A 

is the labelled net. 

(b) '£_A is defined like;{__, except that A-transitions are permitted: -
A. may be partial on ~. 

(c) :J:._
0 

is the class of all A-free languages obtained as the set of 

all terminal label sequences of a A-free Labelled Petri Net: 

L Ec{_
0 ~ [3A Labelled Petri Net as above 

~f final marking for the Petri Net, Mf 

* L = {x E ~ I~ E TN(Mo, Mf ) & x = A.(cr)} 
and A is total on I;. 

We write this as: L = TA(M0 , Mf) 

Or, if the markings are understood: cl:_0 (A) 

(d) ";;f_ ~ is defined like ~O' except that A-transitions are allowed, and 

that the language may contain the empty string A, 

Figure 1.3 illustrates this definition. 



- 8 -

no A-transitions A-transitions 
(A-free) allowed 

all firing 
sequences L ~A 

only terminal io r~ iring sequences f 

Figure 1.3 

Remark: The exclusion from '/:._,
0 

of languages containing the empty string may 

seem arbitrary. It is motivated by reasons similar to those excluding A 

from context-sensitive languages according to the strict definition. In par-

ticular, allowing the initial and final markings of a Labelled Petri net to 

be the same (the only way to include A in the t'._
0

-language) causes unwanted 

side-effects: it demands special consideration in various proofs, and it also 

implies that if an ~0-language L contains A, then it is closed under concate­

nation and Kleene-star: L = L · L = L*. As a result, the class ~O would not 

be closed under union, since both (A} and (a} would be in ;;f:_
0

, but (A, a} would 

not be in :f__
0

. The only way to avoid this peculiarity would be to allow for 

* two possible final markings, one of which is the initial marking. Since this 

is not needed for the other families, we choose the \-free alternative as the 

most consistent one in the general context of this report. 

We notice that languages in ~~ may or may not contain the empty string, 

whereas languages in ;f__
0 

cannot contain the empty string, and languages in ~ 
\ 

or ~ must contain the empty string, since the initial marking is reachable by 

the empty firing sequence. 

For certain purposes it may be useful to define the class of cyclic (terminal) 

languages, which are generated by nets whose final marking is the same as their 

initial marking. (The language family ;f__ ; we may also define?/!_~.) 
c c 

* This is Peterson's [17] approach: He allows any number of final markings in-
cluding the initial marking. His Computation Sequence Sets are thus slightly 
more general than the class ~0 . We will see in Section 2.4 that a CSS which 
does not contain A is in ct 0 , and if it contains A, it is equal to the union of 
(\} and some language in ;[0 . Conversely, ;e0 is precisely the class of A-free 
css. 
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2. Standard Forms for Labelled Petri Nets 

2.1. Some Language-Preserving Transformations Using ~-Transitions 

For many constructions, such as will be used in later proofs, it is 

useful to impose certain constraints on the Petri nets used to generate 

various languages, as long as the additional constraints do not change the 

generating power of the class of nets considered. Since many of the desired 

properties can easily be achieved by using additional ~-transitions, we shall 

first discuss Petri nets generating languages in ~ and ,t'~· 

2.1.1. The ''Run" Place 
-----~ 

A useful property of a Petri net is the ability to be "switched, on" or 

"off." This can be done by adding one place which self-loops on every transi­

tion in the Petri net. If this place contains a token, then the net behaves 

exactly as without the new place, but if we remove this token, then all tran­

sitions are disabled. If we apply the construction to the example of Figure · 

2.1, we get the net in Figure 2.2. 

Figure 2.1 

Figure 2.2 

initial marking: ( 0, 1) 

final marking : ( 1, 0) 

initial marking: ( 0, 1, 1) 

final marking : ( 1, 0, 1) 
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2.1.2. The "Start" Place 
~- -~~ ~~-

Another useful modification is the standardization of the initial and 

final markings. Unless we wish to study how the language generated by a 

Petri net depends on the initial (and/or final) marking, we shall consider 

the standard initial marking to be one token in a designated "start" place, 

and zero tokens everywhere else. This can be combined with the "on-off" 

control place (which we call the "run" place) introduced above: The first 

transition firing in the modified net removes the token in the "start" place, 

deposits the proper initial marking, and drops a token into the "run" place. 
/\, /\, 

In the case of ):_ and ~O' this "first" transition can be a !\.-transition, 

and the construction is trivial. 

2 .1. 3. The "Stop" Transition 

Similarly, we choose the zero marking (zero tokens in all places) as 

the standard final marking. Used in conjunction with the ''run" place, this 

convention implies that no transition is firable at the final marking. 

Basically, all we need is that the last transition firing removes all tokens, 
>.. 

including the "run" token, from the net. In the case of L 
0

, this is again 

very simply achieved with an output-less !\.-transition, called the "stop" 

transition, which removes the final marking and the "run" token. The result 

of adding the "start" and "stop" capabilities to the net of Figure 2.2 is 

shown in Figure 2.3. 

initial: (0,0,0,l) 

final : (0,0,0,0) 

"stop" 

Figure 2 .3 
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2 .1.4. The "Clear" Place, for X 
A. 

In the case of a Petri net used to generate an ot""-language, no final 

marking is involved, but we can still stop the net by removing the token 

from the "run" place with a "stop" transition. In fact, we can go further 

and transfer the token from the "run" place into a "clear" place before dis­

carding it. The "clear" place self-loops on a series of new A.-transitions, 

one per "ordinary" place, which remove all tokens from the net. See the con­

struction in Figure 2.4. 

"start" "first" "run" "finish" "clear" "stop" 

Figure 2.4 

A. A. 
This last construction also shows that .:l ~ .;t

0
, since the terminal language 

(.,(~) of the modified net is precisely the same as the firing language (,,t."-) 
A. 

since a language in,;(_ 
0 

does not 
A. 

case for :J:... . We note this, to-

of the old net. The containment is proper 

have to contain the empty string, as is the 

gether with other obvious inclusions, in: 

Theorem 2 .1: 
A. L"" "'-"" I= L"-L <;;; & 0 0 

,t_ <;;; L"-

;f_ <;;; 
0 

.t!-"" 0 & f..o I= x_ A. 
0 

A. 
Thus L 

0 
is the most general family, as expected; Lis the least general. 

We will show later (Theorem 5.9) that we also have 'tc £. (up to A.). 
A. 0 

An important open question is whether :( 
0 

= ;;(
0 

- (A.} . 
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Remark: The preceding constructions are of the same kind as those used in 

the reducibility proofs for the Reachability Problem in Hack [ 7·, 8]. 

2.1.5. Elimination of Multiple Labels 

In some cases it may be useful to have only one transition labelled 

with a given symbol -- for example, when trying to interconnect two nets by 

sharing similarly-labelled transitions, as will be done in some of the con­

structions of Chapters 3 and 4. If the net has a "run" place, this is easy to 

accomplish: We add one place per symbol in the alphabet, and use these places 

to break the self-loops of the "run" place, as shown on an example in Figure 

2.5, which transforms into the net of Figure 2.6. Each new place remembers the 

symbol of the last firing, and the symbol itself is generated when the "run" 

token is returned to the "run" place. All old transitions become A.-transitions. 

Thus: 

Theorem 2.2: 
A. A. 

All ;[
0 
and~ -languages can be generated without using multiply 

labelled transitions. 

2.2. Some Language-Preserving Transformations Without ~-Transitions 

If we are studying languages in ~ or J::. and we want to modify a ~-free 
Labelled Petri net generating such a language, we would like to be able to keep 

the net A.-free. The constructions of the preceding paragraph must thus be 

modified. 

2. 2. 1. The "Run" Place 

Adding a "run" place to a A.-free net, as in 2.1.1, does not by itself 

introduce any new transitions But if we want to switch the net "on" or "off", 

we will have to do so in a A.-free manner. 

2.2.2. The "Start" Place: Switching the Net "On" 

As before, the objective is to. have a standard initial marking of exactly 

one token in a designated "start" place, and zero tokens everywhere else. The 

first transition firing will then put a token on the "run" place. So let us 

consider all those transitions which might be the first to fire, at the initial 

marking. For each transition ti firable at the initial marking M
0

, we add a 
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Figure 2 .5 

A. 

Figure 2.6 
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new transition t~, labelled like t., which removes the "start" token, 
i i 

deposits the "run" token, and deposits the marking ~[ti) which would have 

resulted from a firing of ti at M0 . This does not change the set of label 

sequences generated by the net. The set of primed transitions is called 

"first." 

Example: Figure 2.7. 

a c 

MO ( 1, 1) 

Figure 2.7 

Adding a "run" place, we get Figure 2.8: 

a 

M
0 

( 1, 1, 1) 

Figure 2 .8 
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The only transitions firable at M
0 

at t
1 

and t
3

, We thus add a "start" 

place and new transitions t{ and t] to get Figure 2.9. 

"run" 

"start" 

M' 
0 

"first" 

"first" 

Figure 2.9 

The output arcs of t{ and t] are determined by the fact that M
0

[t1) 

and M0 [t3) = (0, 0), so that: 

M~[tl) (2, 1, 1, 0) 

M0[t)) = (0, 0, 1, 0) 

P3 

P4 

< 0, o, 
ft{,t]} 

(2, 1) 

Clearly, the set of label sequences has not been changed, because t. and t~ 
1. 1. 

have the same label, and t~ can fire only once, replacing precisely the first 
1. 

occurrence of t .. 
1. 

0, 1) 
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2.2.3. The "Stop" Transitions 

Now we shall try to switch a Labelled Petri net "off" in a A.-free 

manner, by removing a token from the "run" place. If we are interested 

only in terminal firing sequences (which reach a final marking Mf)' we can 

at the same time introduce a standard final marking, namely the zero marking. 

To do this, we first construct a new set of "stop" transitions t'.' cor-
1. 

responding to those transitions which are likely to fire last, i.e. those t. 
1. 

such that there exists a penultimate marking M: M[ti) = Mf. These transitions 

t'.' will then be used to remove precisely the corresponding penultimate marking 
1. 

(which may be denoted by [ti)Mf or Mf[-ti)), as well as the "run" token. 

We must also be able to take care of terminal firing sequences of a sin­

gle transition, i.e. the case where M0 [ti)Mf. For each such transition, we 

introduce a new transition t~" with the same label which simply removes the 
1. 

"start" token. Such transitions are called "singleton." Since we assume 

Mf ~ M
0

, there is no other case to be considered. 

As an example, let us use the Labelled Petri net of Figure 2.7 with a 

final marking (2, 1), or the partly modified net of Figure 2.9 with a final 

marking (2, 1, 1, 0), as shown in Figure 2.10. 

a 

c 

t II 

3 
a 

t II 

----~----~~------i 1 

"singleton" 

Mf for old net (pl'p2 ) : ( 2, 1) 

Mf for this net : ( 0, 0, 0, 0) ; "stop" 

"first"= [t~,t3}; "singleton11 =ft{"} 

Figure 2 .10 

"stop" 

[ t 11 t''l 
l' 3 J 
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It is clear that the new net will reach the zero marking iff the old 

net reached Mf from M0 ; the new firing sequence is obtained from the cor­

responding old firing sequence by priming the first transition and double­

priming the last one (or triple-priming a single firing); the terminal label 

sequence will be unchanged. 

It turns out that the set of non-terminal firing sequences is also un­

changed by this construction. To show this, we have to prove that the "stop" 

transition t" corresponding to t can only fire if t could also fire. In 

other words, we must show that F(t") ~ F(t). Indeed, a stop transition t" 

is introduced only if Mf can be reached from a penultimate marking by a firing 

of t, which implies Mf ~ B(t). But in this case, we have, by construction: 

F(t") Mf - (B(t) - F(t)) ~ F(t). 

If we are generating a language in../:,, and consider all label sequences, 

the Petri net can be stopped at any time. This can be done by introducing a 

"stop" transition t'.' for each transition t. (with the same label), where t'.' 
i i i 

removes the same tokens as t., plus the "run" token; in addition, we introduce 
i 

a "singleton" transition t!" for each "first" transition t!, where t~" simply 
i i i 

removes the "start" token. This does not change the set of label sequences, 

but we must remember that the net can only be stopped after at least one 

firing. Figure 2.11 shows the result of the construction applied to the net 

of Figure 2.9: 

t3 
"first" 

a c 

a 

t II 

1 

"stop" 
"singleton" 

Figure 2.11 
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If we wanted to save the marking reached after stopping the net, we could 

of course have the "singleton" and "stop" transitions return the correct 

number of tokens, with the exception of the "run" or "start" tokenj of course. 

2.3. The Standard Form Theorem 

By applying the transformations described in the previous paragraphs to 

a Labelled Petri net, we can obtain a new net generating the same language and 

satisfying the following additional properties: 

SFl: There is a distinguished place, called the "start" place, which 

is the output of no transition. The initial marking consists of 

exactly one token in the "start" place, and zero tokens in all 

other places. 

SF2: For the purpose of terminal sequences (;f.
0

, ,t:~), the standard 

final marking is the zero marking, at which no transition is fir­

able. (Each transition has at least one input place.) 

SF3: The transitions are partitioned into four groups (some of which may 

be empty): 

- "singleton": These transitions have as only input the "start" 

place, and no output places. They are only used in 

A-free nets, where they generate the one-symbol 

- "first": 

- "stop": 

strings of the language cJ:.o or rf:_). 
These transitions have as only input the "start" 

place, but they have at least one output place. 

In A-free nets, these transitions represent the 

first symbol generated in any string. If there 
. . A A 

are A-transitions (,;l , ~0 ) this group consists 

exactly of one A-transition. 

These transitions have no output places, but they 

are not connected to the "start" place. Only one 

"stop" firing may ever occur, and its occurrence 

leaves every transition disabled so that no further 

firings can occur. In the case of .,.C,
0 

this firing 

represents the last symbol in a terminal string 
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(of length >l) if the resulting marking is the 

zero marking. If there are A.-transitions, this 

group consists of a single A.-transition. 

All other transitions. 

If a Labelled Petri net satisfies these three Standard Form conditions, it is 

said to be in Standard Form. The constructions of paragraphs 2.1.3. and 

2.2.3 generate nets in Standard Form, but a net need not look like the result 

of these constructions; in particular, nothing is said about a single "run" 

place. If it is desirable to have a central "run" place whose token can be 

removed to disable all transitions, such a place can be added and connected 

in a self-loop on every "internal" transition; it gets a token from every 

"first" transition and has its token removed by every "stop" transition. 

We can thus assert the following Standard Form Theorem: 

.,D J) A. A. 
Theorem 2.3: Every"'-', ..L

0
, ;L, .,t

0
-language can be generated by a net in 

Standard Form, and every string in the language (except the empty string 

in the case of J:..) can be generated in such a way that the last transi­

tion firing was a "stop" or "singleton" transition (and thus leaves 

every transition disabled), 

2.4. The Relation of ~Oto Peterson'~ Computation Sequence Sets 

Peterson has studied the languages generated by Labelled Petri nets 

(which Peterson calls "p-nets") having a standard initial marking of exactly 

one token in a designated "start" place, and a set of final markings con­

sisting in exactly one token in exactly one of several possible "final" places, 

possibly including the "start" place. The generated language consists of those 

label sequences (called "Computation Sequences," or CS) which lead from the 

initial marking to one of the final markings. The language is called a 

"Computation Sequence Set," or CSS [17b]. 

It is clear that every ..t1
0

-language is a CSS: All we have to do is take 

a A.-free Labelled Petri net in standard form and then supply a "final" place 

which gets a token from every "stop" or "singleton" transition. The corre­

sponding CSS is the original La-language. If we list the "start" place as 

another "final" place, we see that augmenting an L 0-language with the empty 

string also yields a CSS. 
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We will now show that the converse is true, namely that every ~-free 

CSS is in ~O' and that if a CSS contains the empty string, we get a language 

in ~ by restricting the CSS to its non-empty strings. 

Assume we are given a Labelled Petri net with an initial marking and 

several possible final markings, one of which may be the initial marking. We 

add to this net a new "start" place, a "run" place, and the appropriate set 

of "first" transitions, as indicated sub 2.2.2. Then we add a set of "singleton" 

and "stop" transitions, as indicated sub 2.2.3, for each final marking 

(possibly including the initial marking). Now it is clear that the zero 

marking in this new net will be reached by some firing sequence iff the corre­

sponding firing sequence in the original "p-net" has reached one of the final 

markings, except for the empty firing sequence. 

An example of a "p-net" is shown in Figure 2.12. 

P-net: 
c initial (S) < 1, : o> 
t3 final (F) < 1, 0) 

(2 possibilities) 

CSS-language: 
n n 

a 0 + b)c , for all ~o . 

Figure 2.12 

The result of the transformation applied to this "p-net" yields the 

Labelled Petri net of Figure 2.13. 

< o, 1) 
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"single ton" 

Figure 2 .13 

c 

c 

t II 

3 

b 

t II 

2 
"stop" 

(old final 
marking ) 

< 0' 1 > 

< 1, 0) 

new final marking: ( 0, 0, O, 0) 

For example, the p-net in Figure 12 is transformed into the Labelled 

Petri net of Figure 13, whose terminal language is the CSS defined by the 

p-net, minus the empty string. 

Note: In his thesis [17a] Peterson used p-nets with a single final place, and 

was mainly interested in the case where the start and final places were diffe­

rent, so that he was, in fact, describing the subset of CSS which exactly cor­

responds to £
0

. His notion of "well behaved" is also very closely related to 

our "Standard Form". 
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3. Simple Closure Properties 

In this section we investigate the closure properties of the language 

families;[!_, :/!.,
0

, i!__~, cf~ under the operations of concurrency, union, inter­

section and concatenation. A family of languages is said to be closed under 

an operation if that operation applied to two languages in the family yields 

a language in the family. 

Remark: The results for ;f!_,
0 

are essentially the same as those obtained by 

Peterson [17], in view of Section 2.4. 

3.1. Closure Under Concurrent Composition 

The expression of concurrency or parallelism is a natural property of 

Petri nets; indeed, Petri nets were originally developed precisely to permit 

a clear and easy representation of concurrency and parallelism. 

Consider the Labelled Petri net of Figure 3.1. 

Figure 3.1 



A: 

B: 

C: 
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initial marking: ( 1, 0) 

final marking: ( 0, 1) 

'f!_CA) 

i.fo CA) 

p.,a,ab} 

(a} 

c 

c 

·-;'( 

initial marking: ( 1, O, 0) 

final marking: ( 0, 1, 0) 

'£.CB) 

io CB) 

(cc) ( A. + c + ca + caa ) 

(cc)~'( 

Figure 3.2 

1- - - - - - - - - - - - - - - - - - - - -
r CA) : 
I I 
r 
I 

I 
I 

~ __ P_l _ _ _ ~ l ____ ~ ~ _ _ _t ~ _: 

-------------- -------
' 

c 
CB renumbered) 

I 

' t I 
61 

------...J 

initial: (l,0,1,0,0) 

final : (O,l,0,1,0) 

£cc) £CA) II ~CB) 
~0 Cc) =~CA) II ~CB) 

Figure 3.3 

i~ "'k 
(cc) (ac+ca)(cc) 
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This net exhibits a simple cyclic behavior, which is most easily described 

by observing that between firings of t
1 

and t
6

, one portion generates the 
1( 

regular language (ab) , the other the string be. A sample firing sequence 

would be t
2

t
3

t
2

t
4

t
3

t
2

t
5

t
3

, generating ababbacb. This can be expressed quite 

conveniently by using the concurrency operator, or parallel composition 2..P.-

1 
>'< 

era tor, denoted by I ; as in (ab) n be. u we had to write a regular expression 

* * * for this, it would be rather complicated, like (ab) (b(ab) (c + acb) + abcb)(ab) 

The concurrent composition of two strings x and y can thus be defined as 

the set of strings obtained by merging the symbols from x and y into a new 

string z such that both x and y appear in z as a scattered substring; the 

length of z is the sum lzl = lxl + lY1. One can imagine two automata generating 

x and y respectively, in parallel and asynchronously, and writing the symbols 

on a shared output tape. Formally, we have: 

Definition 3.1: The concurrent composition xlly 

is defined recursively as follows: 

>'< 
of two strings x,y E (;(__ 

va E a : a,, A. = A. II a = (a} 

va,b ECX .,,} a·xllb·y = 
vx,y E CT. 

[a}•Cxll (b·y)) U [b}· ((a·:x:)llY) 

The dot stands for concatenation, and the operators are extended to sets of 

strings in the natural way. Thus, for example: 

ab II c = [ abc, acb, cab} 

[ab, c} II fa, A.} = [aba, aab, ca, ac, ab, c} 

As we mentioned before, concurrency is a natural property of Petri nets, 

and indeed, closure under concurrency can be trivially established for Petri 

net languages. 

Let A and B be two labelled Petri nets generating LA and LB, respectively 

(in one of the families t_, J:.
0

, £, ~). Let C be the juxtaposition of A 

and B, i.e. C is a new labelled Petri net obtained by regarding A and Bas parts 

of one net, after renumbering the places and transitions of one component, say 

B. Thus the nets A and B of Figure 3.2 become the net of Figure 3.3. The 
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markings of C (including the specified initial and final markings) are 

likewise the "vector-concatenation" of the markings of A and B, as indicated 

by the renumbering. This simple juxtaposition does not introduce any new 

transitions, and neither adds nor removes constraints from the concurrently 

operating parts A and B of C. This permits us to assert: 

Theorem 3.1: :i!_ J:. 0 , ~and cl'~ are closed under concurrent composition , 
(concurrency, parallelism). 

Remark: When standard forms are used, it is useful to share the "run" place. 

To get a single "start C" place, we duplicate the "firstA" transitions and 

have them deposit a token in "start B," and vice versa. 

3.2. Closure Under Intersection ---
Let LA and LB be two languages over the same alphabet: 

•k * LA \;;;; a & LB ~ a. Then the intersection L = LA n LB is: c 
-~ 

LC [x E a' Ix E LA & x E LB}. 

Suppose we are given two Labelled Petri nets A and B. Let us first consider 
A 

the case of ;f_, -languages. We shall construct a Labelled Petri net C such that 

its firing sequences correspond precisely to label sequences connnon to A and B. 

As a first step, we shall combine A and B in a way which forces them to generate 

the same strings. To do this, we juxtapose A and B (each with its initial 

marking). We add a new place TI and, for each symbol a Ea_ (the alphabet a_ is 
0 

connnon to A and B), a new place TI . Initially, TI has one token, all other 
a o 

TI-places are blank. 

As shown in Figure 3.4, we connect TI as an input to each labelled 
0 

t E ~A, and as an output to each labelled t E ; . For each symbol a Ea_ , we 

connect Tia as an output to each a-labelled t E ~A' and as an input to each 

a-labelled t E ~· A-transitions in ~A or~ are not connected to the TI-places. 

This arrangement enforces a strict alternation between labelled firings in 

A and in B; A-firings are not restricted. Each labelled firing in A is further­

more necessarily followed by a similarly labelled firing in B. In a sense, the 

TI-places "remember" which symbol was last generated in A and enforce the repe­

tition of this symbol in B before returning a token to TI . As a result, the 
0 



B: 

t9 

( B is already renumbered ) 

a 

- - - - - - - - - - - - - ----1 

~- - - -- - _ J ' -------- --- --- ___________ .:.. 
B 

c 

Figure 3.4 
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even-length label sequences of C are precisely those obtained by repeating 

twice each symbol from a label sequence that could be generated by both A and 

B. If we now remove the labels from all transitions in /,A' we will in effect 

erase the first symbol in each such repetition. 

Our construction for the intersection of two i:_A-languages consists thus 

of a Labelled Petri net C, as described above, where all transitions in 'E 
A 

have become A-transitions. 

Then we have: t_A (C) = r (A) n L (B). In the case of two 

~~-languages, both nets A and B are to reach a final marking. Let the final 

marking of the net C, constructed as above, be the juxtaposition of the two 

final markings, and one token in TI
0 

and zero tokens in the other TI-places. 

Then it is clear that: 

The situation is more complicated in the case of;;{ 
0 

and ~-languages. 

If the original nets A and B don't have A-transitions, the net C.resulting 

from the previous construction will have A-transitions, namely all the /,A­

transitions. However, each A-firing will be immediately followed by a 

labelled firing. We will show how to combine these two firings into a single 

labelled firing. A more general result will be proved in Theorem 4.12. 

Figure 3. S shows the portion of the Labelled Petri net C of Figure 3 .4 

that is connected to TI . 
a 

We see that any a-labelled firing (t
6 

or t
7

) is always preceded by a 

firing of ts or t 1 . There are four (2 x 2) possible combinations: 

tSt 6 , tst 7, t 1t 6, t 1t 7 , each generating the symbol a. Thus, we can eliminate 

the A-transitions by replacing ts, t 1 , t 6 , t 7 with four new a-labelled transi­

tions which have the same effect as the combined firings tSt 6, tSt? ... ; 

this eliminates place Tr • 
a 
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Figure 3.5 

This reduction can be applied to all other ~-places, except '1T
0 

which 

remains as a marked self- loop on a 11 new (combined) transitions, like a "run" 

place. 

Figure 3.6 shows the result of eliminating place 7( from the partial net 
a 

of Figure 3 .5. 

Figure 3.6 

equivalent firing: 
11 t t II 

5 6 

11t t II 

5 7 

11t t II 
1 6 

11t t II 
1 7 
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This construction shows that, if both A and B were A-free, we can transform 

C into a A-free Labelled Petri net whose 'f!... or .'(
0

-language is the intersection 

of the corresponding languages for A and B. 

From this we may conclude: 

Theorem 3.2: The families ;J!, ;,/!_
0

, ';/!_A, f..~ are closed under intersection. 

3.3. Closure Urider Union 

To establish the closure of f!..., ';£0 , 'J!:., .;('~ under union it is advantageous 

to use Labelled Petri nets in Standard Form. 

We recall that a net in Standard Form has a "start" place, which is the 

only place marked initially, and a standard final marking, the zero marking. 

Suppose we are given two nets A and B, generating LA and LB' respectively, as 

label sequences (f!_, Y:_A) or terminal label sequences <J:.. , J<....A). We then 
0 0 

construct a new net C by juxtaposing the two nets A and B, and by identifying 

the two "start" places; the resulting net has thus one "start" place and two 

"run" places. We note that if A and B are A-free, then so is C. An example 

is shown in Figure 3.7. The resulting net can easily be seen to satisfy the 

Standard Form conditions, and its label sequences are either those of A or 

those of B, depending on the first transition firing. The same applies to ter­

minal sequences, since one portion of the net (corresponding to the language not 

simulated) retains its zero initial marking, and reaching the zero marking is 

thus the same as reaching the zero marking in the "active" portion of the net 

alone. 

Thus: ;;;e__ (C) = ;f__ (A) U ~ (B) 

£0 (C) =lo (A) u to (B) 

This permits us to claim: 

Theorem 3 .3: The language families l, ;( 
0

,l_A, .:(_~ are closed undef union. 
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A: 

"singleton" 
"stop" 

B: 

a 

"stop" 

A 

"stop" 

a 

B "first" 

Figure 3.7 
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3.4. Closure Under Concatenation ---
The concatenation of two languages consists of all strings that can be 

obtained by generating a string from the first language and following it by 

a string from the second language. Again, we will use nets in Standard Form; 

this time, the "stop" (and "singleton") transitions will be useful. 

Suppose we are given two Labelled Petri nets A and B in Standard form. 

Let C be obtained by juxtaposing A and B, by removing the token in B's "start" 

place, and by making this place the output place of every "stop" or "singleton" 

transition of A, as shown in Figure 3.8 for the same example as used in the 

previous paragraph (Figure 3.7). 

"start" "first" (stop A, then 
start B) 

Figure 3.8 

"stop" 

From the Standard Form Theorem it follows that, if LA and LB are the 

;/_0 (or£~ or ,t'._~)-languages of A and B, then each string in LA can be gen­

erated in such a manner as to leave one token in "start B," and to leave every 

A-transition disabled. This string can then npturally be followed by a string 

in LB. Conversely, every firing sequence of C is either a firing sequence of 

A or a firing sequence of A ending in a "stop A"-firing, followed by a firing 

sequence of B (since after the "stop A"-firing, no A-transition can be fired 

anymore, by virtue of the Standard Form conditions). As for terminal sequences, 

it appears that if the A-string was not terminal, i.e. that tokens were left 
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behind in A, then no firings in B will be able to reach the zero marking of 

C (A and B!). Hence, a terminal sequence of C must be a terminal sequence 

of A followed by a terminal sequence of B. 

Thus: ;e 0 (c) £
0

(A) ~0 (B) 

;f_ ~ (C) :ft (A) i!: (B) 

;f_~(B) 

As a matter of fact, the preceding reasoning also shows that: 

;;f_ ( C) = ( £ (A) - [ ~}) · (B) U (~} 

To prove the closure of Y!._ under concatenation, it is sufficient to point out 

that ;f__ is closed under union and that: 

£(A) · 'f..CB) = .f(c) U .;('(B) 

In fact, C can be augmented by adding an extra set of "start B" and "singleton B"­

transitions which have "start A" as input, instead of "start B." To satisfy the 

Standard Form conditions for this construction, we must also add an extra set of 

"singleton A" and "stop A" transitions which have no output place, and thus be­

come "singleton" and "stop"-transitions for the new net. Hence: 

Theorem 3 . 4 : 
.. ~ 

The language families ~' J!.
0

, ;/!.', J:.
0 

are closed under 

concatenation. 
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4. Regular Languages and Related Closure Properties 

In this section we will show that Labelled Petri nets can generate 

Regular Languages by emulating Finite-State Machines. 

4.1. Petri Net Generation of Regular Languages 

4.1.1 . .;i
0 

and ~-Free Regular Languages 

A ~-free Regular Language can be generated by a non-deterministic 

Finite State Machine with n states s1 ... Sn, an initial state s1, a final 

state s2 , and a state-transition diagram where a symbol-labelled arc joins 

two state-labelled vertices to express a state-transition, as illustrated in 

Figure 4.1 

Regular language: * * (ab) (c + aa)b 

Finite-State Machine 

Figure 4.1 

This graphical representation of a Finite-State Machine can directly be 

transformed into a ~-free Labelled Petri net by interpreting the state vertices 

as places, and by drawing a transition bar across each arc. The initial 

marking will consist of one token in the place corresponding to the initial 

state and zero tokens in all other places; the final marking corresponds to 

the final state in a similar way, as shown in Figure 4.2. 
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a 

Figure Ll· 

initial marking: (1, O, 0) 

final marking: (0, 1, 0) 

.ta-language: (ab)~"' (c + aa) b* 

as in Figure 4.1. 

Such one-token State Machines are important building blocks for large 

classes of Petri nets [ 5 , 7 ] . 

h (h .. /A.. ··1) T us we may assert: Te extension to ...t.. 
0 

is trivia . 

Theorem 4.1: The class ofo contains all ~-free Regular Languages. 

The class;(_~ contains all Regular Languages. 

4.1.2. Prefix Regular Languages 

Definition 4.1. A Regular Language is said to be a Prefix Regular Language if, 

for every string in the language, all prefixes (including ~) are in the 

language. 

In other words, in the Finite State Machine generating a Prefix Regular Lan­

guage, every state is a final state. By using the same construction as in 

4.1.1 it is clear -that: 

Theorem 4. 2: The class of Prefix Regular Languages is contained in ;t and ;x_~. 
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4.2. Other Petri~ Codings for Finite State Machines 

In the preceding section the states were encoded into markings in a 

straightforward way: For n states s1 ... Sn there are n places p1 ... pn' 

and state S. is encoded by the marking consisting of one token in p. and zero 
1. 1. 

tokens in all other places. Another coding requires only two places, pl 

and p2 . If there are n states, s1 ... Sn' we encode Si by the marking 

<i-1, n-i). A transition t between S. and S. would be such that 
1. J 

F(t) = (i-1, n-i) and B(t) = <j-1, n-j), so that it is enabled only in state 

S. (all markings are incomparable), and its firing leads to the marking en-
1. 

coding S .. It follows that: 
J 

Theorem 4.3: All (\.-free) regular languages can be generated as <c!o)oL~ by 

two-place Labelled Petri nets. 

If we prohibit Self-loops, we can still get by with four places, by en­

coding S. as (i-1, n-i, 0, 0) or (0, O, i-1, n-i). The transitions are now of 
1. 

the form F(t) = (i-1, n-i, 0, 0) & B(t) = <O, 0, j-1, 'n-j) or 

F(t) = <O, O, i-1, n-i) & B(t) = <j-1, n-j, O, O). If A-transitions are not al­

lowed, we may have to encode some states by both markings indicated above, since 

tokens are always moved from one place-pair to the other. This permits us to 

announce: 

Theorem 4.4: Four-dimensional Vector Addition Systems can simulate all Regular 

Languages, by way of 4-place Labelled Self-loop-free Petri nets. 

4.3. Clean Standard Forms 

A Labelled Petri net in Standard Form has the property that every string 

in the language can be generated by a firing sequence whose last firing is 

that of a "stop" transition, which leaves every transition disabled. If we are 

considering terminal strings (~,cl"~), this last firing leaves the net at the 

zero marking. 

If this net is used as a component in a larger net, as in the constructions 

of the previous chapter, the occurrence of a "stop" firing is used as a signal 

that a certain string is complete, but usually it does not guarantee that the 

string is terminal or that the zero marking has been reached; a non..:terminal 
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firing sequence may fire a "stop" transition and leave the net in an 

a priori indeterminate marking. This is a serious liability in a case 

where one wishes to re-utilize this portion of the Petri net, as one would 

in attempting to construct an iterative closure, such as Kleene star. This 

is where the notion "clean" comes in. 

Definition 4.2: A Labelled Petri net in Standard Form is said to be clean 

iff every firing sequence which fires a "stop" transition leaves the 

net at the zero marking. 

A Petri net language (in J:', ;t'
0

, ;t_A, .,..t'.,~) is said to be clean 

iff it can be generated by a clean net. 

In a clean Labelled Petri net it is not only the case that terminal strings 
.. k 

may always end with a "stop" -firing, but that, conversely, every string which 
* ~ A ends in a "stop" -firing is terminal. In particular, the al.. (or at., )-language 

of a clean net is also its~ (or~~)-language, up to A in the case of~· 
We shall now show that a clean Petri net can generate only Regular Lan­

guages, and that Regular Languages can always be generated by clean nets. 

The second fact can be proved trivially: For the constructions shown in 

the previous paragraphs (4.1 and 4.2), corresponding clean Standard Forms can 

easily be constructed: every transition whose firing would lead to a final 

marking (in the case ofL and ;[A all reachable markings -- a finite number 

are considered final) gives rise to a "stop" transition which removes all the · 

tokens in the present state. This works because every transition is firable at 

only one marking; no other covering markings are reachable, since all markings 

have the same number of tokens (one in 4.1; n-1 in 4.2). For example, a clean 

Standard Form for the net of Figure 4.2 is shown in Figure 4.3, for the 

..L'
0

-language of the net. 

,~ 

For the purpose of "clean"-ness, "singleton" transitions are considered as 
"stop" transitions, since "singleton" firings are always "clean." 
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"stop" 
"start" 

c 

c 
) "singleton" "first" 

Figure 4.3 

It is also easy to show that clean .,/or LX. -languages must be regular. 

Indeed, some "stop"-transition must be firable at every reachable marking, 

but only if the resulting marking is zero, i.e. there must be precisely one 

"stop"-transition for each reachable marking. Since the number of transitions 

in a Petri net is finite, by definition, there can only be a finite number of 

reachable markings, i.e. the net behaves like a Finite State Machine. 

For ~O or c:Z'.'.~-languages, the situation is not so easy. It may be possible 

to reach arbitrarily large markings in a clean net, as shown in Figure 4.4. 

"start" 

"stop" 

Figure 4.4 

clean: 

~ = fab} 
0 
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But we can show that the final marking (zero) is reachable only from a finite 

subset of the reachable markings, so that the number of states required to 

simulate only the terminal firing sequences is finite, which implies a Regular 

Language. 

Assume there exist arbitrarily large reachable markings from which the 

zero marking can be reached. Then at least two such markings must be compar­

* able and unequal: There exist M1 and M2 such that: 

Mo [crl )Ml [ 'T 1 )o 

~ [cr 2 )M2 [ 'T 2 )0 

Since the net is in standard form we know that both 'Tl and 'Tz end in a "stop" 

firing. 

But M2 ~ M1 implies that 'Tl is also firable at Mz' thus: 

Now, M2 ~ M1 & M2 # M1 ~ ~ # 0, and thus the net cannot be clean. 

This permits us to affirm: 

A. 
Theorem 4.5: The class of clean.,t:

0
-languages is precisely the class of all 

Regular. lan,guages; the class of all clean ..l'0-languages is precisely 

the class of all A.-free Regular Languages, and the class of all clean 

at: or .Z:"'-languages is precisely the class of all Prefix Regular Lan­

guages. 

4.4. Closure Under Clean Substitution 

4.4.1. Clean Substitution 

Substitution is an operation in which all occurrences of a given symbol ~ 

in a string from language L
1 

are replaced by some string from language L2 . 

The result of this operation is a new language L
3

. We write this as: 

Thus, for example: 

>'< 
There can be no infinite number of incomparable markings; see Hack [7]. 
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-;( 
in acab ] 

>'( >'( >'( 

(b + a ) c (b + a ) b 

We see that if both L1 and L2 are regular, then L
3 

is regular; this is 

expressed by saying that Regular Languages are closed under substitution. 

Sometimes there are restrictions on the language L
2

. In that case we say 

that a family ;: 1 is closed under ,t
2
-substitution: if L

1 
E J: 

1 
and L

2 
E J;-

2
, 

then [a-+ L2 in L
1

] E jr
1

. 

Usually, the operation of substitution is defined in a more general way: 

Definition 4.3: An .F'-substitution is a mapping 

B ·'( 
S : a. -+ ;:;" (where F !:::: 2 ' ) 

which to every symbol of an alphabet (X assigns a language over an 

alphabet ~from a given family ,J;:; this mapping is extended to strings 
>'( Q_>'( 

in a and languages in 2 

The one symbol case mentioned previously corresponds to the mapping: 

S(a) = L2 

s (a') = (a'}, \fa' Ea: a' #:.a 

In the sequel, we will prove that Petri net languages are closed under 

clean substitutions; this means that we restrict ,;:; to be the family of clean 

Petri net languages of the same family as L
1

. Let us first examine the case 

where a single symbol j!_ is mapped into a clean language L2 ; all others are 

unchanged. 

Let A be a Labelled Petri net generating L
1 

(as ;(
0 
or~ ) , and assume 

that A has a "run" place which self-loops on every transition. Let B be a 

clean Standard Form Petri net generating L
2

, and assume, for the moment, that A 

contains a single transition t labelled a, as shown in Figure 4.5. We will re­

place transition t by the Petri net B, where the "start" place has been re­

placed by the set of input places to t, and where each "stop" or "singleton" 

transition is connected to all output places of t in the same way as t was 

connected. In other words, a firing sequence of B which ends in a "stop" or 

"singleton" firing has exactly the same effect in A as a firing of t. More­

over, since the subnet B swallows A's "run'' token, no other transitions in A 

can fire while B is substituting a string for the firing of t. This construc­

tion is shown in Figure 4.6 for the example of Figure 4.5. 



b 

Petri net A 

S: a-+ £.oCB) 
b ..... b 

c -+ c 
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Figure 4.5 

c 

Petri net C 

;f_O (C) = S (:f..
0 

(A)) 

Figure 4.6 

b 

"stop" 

"sin leton" 

Petri net B 
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Since the net B is clean, its marking before and after generating a string 

is zero. In other words, at all times it is the case that either the "run" 

place is empty or the places of B are empty. B can be started repeatedly, 

and each time it will generate a string in 1
2

, because each time it starts 

with the proper initial marking. If B were not clean, this could not be 

guaranteed. 

We also note that if 1
1 

and 1
2 

are in ;f,, the empty string (which is in 

t'.CB)) cannot be substituted for a firing of t; this restriction has to be 

borne in mind. 

Finally, if there are several transitions labelled "a" in A, we can, of 

course, replace each one by a copy of B. In practice, it would be sufficient 

to have several copies of B's "first," "singleton," and "stop" transitions, 

and extra places to remember which set of "stop" transitions is to be paired 

with a given set of "first" transitions. 

The same construction, repeated for every symbol, yields general substitu­

tion. Hence: 

Theorem 4.6: The families ~O' ~'~are closed under clean substitution, 

and ~ is closed under A-free clean substitution. 

(where A-free substitution means that we may substitute any legal string 

except A). 

4.4.2. Regular Substitution 

A direct consequence of Theorems 4.5 and 4.6 is: 

Theorem 4.7: io is closed under \-free Regular Substitution. 

:e is closed under A.- free Pre fix Regular Substitution. 

~ is closed under Prefix Regular Substitution. 

£.._A 
0 

is closed under Regular Substitution. 

We will show later ( 9.3.2) that Petri net languages are not closed under 

unrestricted substitution. 
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4.4.3. Closure Under Homomorphism 

The homomorphic image of a Language L1 is the result of replacing each 
>'< 

symbol 2-. in a string of Ll by a string h(a), where h: a-+ B is a 

function from the alphabet of L1 into the set of strings from another (or the 

same) alphabet B . It is a special case of regular substitution.· Thus: 

Theorem 4.8: lo is closed under A-free homomorphism. 

~ is closed under unrestricted homomorphism. 

In the case of t. and '/:._A, only single symbols can be substituted, since 

(abc} is not a Prefix Language; we could only substitute (A, a, ab, abc} or 

(a, ab, abc}. 

4.5. Inverse Homomorphism for :f!... and :f_
0 

Given a language L1 over 

want to generate the language 

all those strings x such that 

>'< 
alphabet a and a homomorphism h: lB-+ ~ ' we 

-1 
L

2 
= h (L

1
) over alphabet B , which consists of 

h( ) ( h f · h and h-l f 1 x E L1 . Te unctions are ree y 

extended from alphabets to strings to sets of strings). Warning: h(L2 ) ~ L1 
but not necessarily h(L2 ) = L

1
; some strings in L1 may not have a homomorphic 

inverse! 

In a ~-free Petri net generating L
1

, this can be accomplished by removing 

all transitions and replacing them with new transitions labelled with symbols 

b E {£> and having the same effect as a firing sequence of the old transitions 

which would have spelled out the string h(b). For a given string h(b) there 

may be several possible firing sequences of the old transitions, and corre­

spondingly there will be several new transitions labelled b; in ~-free nets, 

this number is always finite. The "effect" of a firing sequence can be de­

scribed by its hurdle, which is the smallest marking required to completely 

firethe sequence, and its marking change. The same effect will be produced by 

a new transition t such that F(t) equals the hurdle of the sequence, and 

B(t) - F(t) equals the required marking change. In particular, if for some 

symbol b we have h(b) = ~. then the corresponding new transition, labelled b, 

would have no input and no output place, and could of course fire anytime 

without changing the marking. In practice, it would be made to self-loop on 

some "run" place; in a Standard Form Petri net it would also appear as "first," 

"singleton" and "stop" transitions. 
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The construction works for both the ~and the c:t
0

-language of a net. 

An example is shown in Figure 4.7. The homomorphism is as follows: 

(we assume CL= [a,b,c} and E = [a',b',c'} ) h: s~ CT'."' 

h(a') = be h (b') = A. h (c') aa 

The firing sequences in the old net and the corresponding new transitions 

are listed in the table of Figure 4.8. The resulting new net (not in standard 

form) is shown in Figure 4.9. 

Petri net 

string to' be 
replaced 

h (a') = be 

h (b') = A. 

h (c') = aa 

pl 

A 

c 

tl 

b 

tz 

Figure 4.7 

old firing 
sequence 

t2 tl 

t4 tl 

t3 t3 

t3 ts 

ts t3 

ts ts 

Figure 4.8 

. 
< 

a 

new 
transition 

el 

82 

83 

84 

8s 

86 

87 

ts 

corresponding 
symbol 

I a 

b' 

c' 



Petri net B: 

h -l (~(A)) 

h -l (~(A)) 

- 46 -

a' 

(If the same final marking is specified for A and B.) 
Figure 4.9 

It should be clear that to every firing sequence in B there corresponds 

a firing sequence in A, and that no other firing sequences are possible in B. 

We notice that in this example, A has many firing sequences which are outside 

of the homomorphic image of :f.(B). (An example of such a sequence is ccbb). 

Hence: 

Theorem 4.9: ';{_
0 

and ';/__are closed under unrestricted inverse homomorphism. 

In fact, we can strengthen this result to include inverse finite sub­

stitution, where a given new symbol b E (£3 can replace one of several strings 
~'( 

x1 , ... , xn E CL . A first step would use inverse homomorphism to replace 

x. by b! E Xl'., and then rename the b! to busing /....-free homomorphism: 
i i ~ i 

Corollary: ';/!_
0 
and~ are closed under inverse finite substitution. 

For the closure under inverse homomorphism of 'J!- and .:f.~, see section 4.7 

and Theorem 4.11. 
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4.6. Closure Under FST-Mapping 

A Finite-State Transducer is a Finite State Machine as described in 

4.1, wi~h t~e :dditi:nal feature that each state-transition carries two 

symbols: an input symbol and an output symbol. The interpretation is that 

the FST is started in its initial state and '~eads'' an input string, i.e. 

the state-transition input symbols spell out the input string. The FST 

produces an output string by spelling out the output symbols, provided the 

machine ends up in a final state. We may define a Prefix FST to have every 

state be final. To each input string the FST associates a set of output 

strings (empty if it doesn't accept the input string, singleton if it is 

accepting and deterministic). An FST can thus map a language L1 into a lan­

guage L2 : Those strings that can be obtained as output strings when the FST 

accepts an input string from L1 . 

It is easy to show how to generate the FST-image of a given Petri net 

Language: We use a Petri net coding of the FST as indicated in 4.1 (or 4.2) 

and use the construction for the intersection of Petri net Languages described 

in 3.2 using the input labels of the FST transitions. In the end, however, we 

relabel the transitions with their FST output labels: The resulting Labelled 

Petri net clearly generates the FST-image of the original Petri net Language, 

given the proper restrictions: A-free for :/:
0

, Prefix for :f:.., and :/:._A. 

Thus: 

Theorem 4.10: The Petri net languages are closed under Finite-State 

Transducer mappings, provided the FST is A-free for ~O' and Prefix 

FST for ';/_, ';!:_A. 

In conjunction with Theorem 4.8 this proves: 

Corollary: ;e
0 
and~~ are closed under GSM-mappings (A.-free for~0 ) 

(A Generalized State :Machine is like an FST, except that the output labels can 

be strings, not just single symbols). 
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"' "'A. II) "'A. . 4.7. Inverse Regular Substitution and :::..o• ""-

Recall the definition of substitution given in 4.4.1, in the case of 

regular substitution: ( {R. = Regular Languages) 

S: a_.~ 

Each symbol J!. can be replaced by some string from the associated regular 

language S(a); the image of a string xis the Regular Language S(x) which is 

the concatenation of the Regular Languages assigned to the symbols occurring 

in x. 

The inverse image of a language L
1 

under this substitution is the language 

L
2 

defined by: 

It is the largest language whose image under Sis contained in L
1

. 

Let us first note that Inverse Regular Substitution includes inverse 

homomorphism as a special case. In the case of~' however, closure under 

inverse homomorphism follows from closure under regular substitution, homo­

morphism, and union and intersection with regular languages, by a theorem of 

Salomaa [18]. The closure under inverse homomorphism :for ;f!. ~ and ~ cannot 

be established by the same method as used for "'A.-free Petri nets in 4.5, because 

a given label sequence may correspond to an infinite set of firing sequences. 

On the other hand, the availability of "'A.-transitions can be used to prove a 

stronger result. 

As it turns out, Salomaa's proof can be extended to cover Inverse Regular 
-1 

Substitution. Let L2 = S (L1), where L
2 

is over the alphabet £,and L1 
over the alphabet C1.; by renaming we can insure (1... n 8 = 0. Substitution S 

·'<' 
assigns to each a r=. (B a regular language S (a) ~ a_· . Let L

3 
be defined over 

a !J'S as: 

L
3 

=(LJ (S(a) ·a)\''< 
\aEIB J 

In other words, L3 consists of a succession of strings which are S-images 

of symbols from Q?,, followed by the corresponding source symbol. 

Let L4 = L 1 11"~:r, in other words, L
1 

with the symbols of (8 sprinkled 

through the strings in all possible ways. 
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Let LS = L3 n L
4

. Since L
4 

has no constraints at all on symbols from 

63, LS selects from L
3 

precisely those strings whose t'.l.-symbols spell out 

strings in L1 . To get L
2

, all we have to do is erase from L
5 

all ll-symbols, 

only leaving the 8-symbols which record which symbols in the L2-string have 
~·( 

been substituted by the ~-string which matches the L1 ~string. This is done 

by using a homomorphism h: CZ-U £ -+ Q)tJ (!-... }, defined by: 

Then 

a E a_ ::::) h (a) A. 

a E '6 ::::) h (a) = a 

-1 
L2 = h(LS) = S (L1 ) 

Notice that, in a Petri net construction, this homomorphism simply amounts to 

removing the labels from all ct-labelled transitions. 
\[)A. 

Since .,c
0 

is closed under all the operations carried out above, we con-

clude that £'..~ is closed under inverse regular substitution (and inverse homo­

morphism). 

Although the proof above does not apply to~, because the intermediate 

languages are not necessarily prefix languages, it can be seen that the 
A. 

X:-language of the resulting Petri net is indeed the result of the inverse 

regular substitution. Hence: 

Theorem 4.11: ~~and :t:.._"- are closed under inverse regular substitution 

(and inverse homomorphism). 

4.8. Other Closures: Regular Control, Limited Erasing, Promptness. 

The various constructions we have used so far demonstrate the flexibility 

of the Petri net model, especially when /...-transitions are allowed. 

The constructions for the various mappings (such as substitution, and its 

inverse) can be extended to several arguments, and in a general way it can be 

said that any~mapping f(L
1

, L
2

, ... ) which is defined by means of finite-state 
A. A. ' 

machines (regular control) transforms~0 languages into ~O languages, and that 

many constructions can be carried out without A-transitions, or be made to 
A. 

respect the prefix property, so as to extend closure to rf!., ~O and/or;;(_. 

For example, it is easy in this way to prove closure under "perfect shuffle," 

where a string from one language is interleaved, symbol by symbol, with a 

string from another. 

t) But beware of the implications of non-closure under Kleene Star. 
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Another important application concerns the elimination of A-transitions. 

Definition 4.4: A Labelled Petri net is said to be k-prompt iff the number of 

consecutive A-firings between labelled firings is bounded by k~ 

This definition closely corresponds to that of Patil [16], who wishes to 

study systems in which only a bounded number of "internal" firings may occur 

between interactions with the environment, so that the response to a stimulus 

occurs "promptly," i.e. cannot be delayed arbitrarily long. 

It turns out that the languages generated by prompt nets can also be 

generated by A-free nets, and are thus ';[0 or ;[ . 

Definition 4.5: A ~-limited erasing is a homomorphism which either maps into 

A (erases) or maps into itself each symbol, but never erases more than 

K consecutive symbols. 

A K-limited erasing can be obtained by first performing inverse homomorphism, 

then A-free homomorphism (renaming). For example, consider a 3-limited erasing 

of the symbol c in a language Lover the alphabet {a, b, c}. A first step 
-1 

would be to effectuate the following inverse homomorphism h : 

h: ao _. a bo ... b 

al ... ac bl ... be 

a2 ... ace b2 ... bee 

a3 ... accc b3 ... bccc 

This works if no string in L starts with c, cc, or ccc; otherwise, we could 

use a .. _. ciacj for all i,j E (0,1,2,3}, for example. 
1.' J 

Next we perform the renaming homomorphism g: 

g(a.) =a; 
1. 

g (b.) 
1. 

b (i = 0,1,2,3) 

-1 
The result of the 3-limited erasing of c in L is g(h (L)), assuming that L 

contains no strings with more than three consecutive e's, which are not in the 
-1 

domain of the erasing (or the inverse homomorphism h , for that matter). 

By virtue of Theorems 4.7, 4.9 and 4.11, we can thus state: 
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Theorem 4.12: >f?, J:..,
0

, 'i...A and 6e~ are closed under K-limited erasing. 

Theorem 4.12 can now 

from prompt nets: If K is 

assign an unused label to 

be used to show that A-transitions can be eliminated 

the bound on A-firings implied by promptness; we can 
A 

all A-transitions to get an ;;('
0

-language (or :f:...
0

), 

and then use K-limited erasing on this language to show that the original 

prompt ;e'.~ ( ~) language is in fact i£
0 

CJ:._). The Petri net construction 

associated with the mappings effectively removes the A-transitions, at the 

price of usually a much larger number of new labelled transitions. This, by 

the way, indicates that many ~0-languages can be more economically generated 

by nets having A-transitions. 

Finally, let us mention that Petri net languages are not closed under un­

limited (basically, unclean) substitution, nor are they closed under Kleene 

star (iteration). This will be proved later (section 9.3'.2). Closure under 

complement is considered unlikely, because it would imply the undecidability 

of the Reachability Problem; but this question is still open. 

t Warning: There exist nets that are prompt, but not k-prompt for any k, in the 
sense that, at any reachable marking, only boundedly many A-firings may occur 
before a labelled firing, but the bound may depend on the marking reached pre­
viously, so there is no a-priori bound. An example is shown in figure 4.10. 

b c 

Figure 4.10 
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5. ~Characterization of .i, ~· ~and~ 
A characterization of a family of languages usually involves defining 

the family as the smallest set of languages containing a given set of lan­

guages (basis) and closed under various operations (induction), thus providing 

at the same time a constructive approach. Thus, for example, we can charac­

terize regular languages as being the smallest class containing the lan-

guages [a}, where a is a symbol from an alphabet, and closed under concatena­

tion, union, and Kleene star (iteration). We shall see that Petri net lan­

guages can be defined by their closure properties, using as a basis the regular 

languages and the simple parenthesis languages. 

5.1. Free Petri Net Languages 

The various Petri net languages are obtained by applying a labelling func­

tion A: !: ~ CC to the firing sequences of a net. This labelling function can 

also be viewed as a homomorphism which renames the transitions from a net 

whose transitions are all distinctly labelled. Thus we define: 

Definition 5.1: A free-labelled Petri net is a labelled Petri net where all 

transitions are labelled distinctly. The non-terminal and the terminal 

firing sequences of a free-labelled Petri net define the families 

;ff. ~ ;f and ~ ~ t'
0 

of free Petri net languages respectively. 

Let a homomorphism whose range contains only one-symbol strings (and A, if 

unrestricted) be called a renaming. Then it follows from the closure properties 

under finite substitution and homomorphism (4.4.3) that: 

Theorem 5 .1: ';f_o is the closure 

'i:._A 
0 

is the closure 

'(f__, is the closure 

r_ is the closure 

of ~ under 

of ;;e; under 

of 'if!- under 

of t:_f under 

A-free homomorphism 

unrestricted homomorphism 

A-free renaming 

unrestricted renaming. 

and that oJ'f . o<...o 1s It is easy to see that ':f..~ is properly contained in ,t'0 , 

not closed under union, since [a, aaa} ~ ~· for example, but {a} and (aaa} 

are . ...pf 
1n oe0 . 
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On the other hand, it can be seen that the constructions for closure 

under intersection (3.2) and inverse homomorphism (4.5), when used with free­

labelled nets, produce new free-labelled nets. Thus: 

Theorem 5. 2: The free Petri net language families 'f!- and ~fare closed 

under intersection and inverse homomorphism. 

5.2. Simple Parenthesis Languages 

A simple parenthesis language is a context-free language over a 2-symbol 

alphabet [(, )} whose strings are well-nested parenthesis strings. We will 

use the symbols + and - instead of ( and ) because parentheses are more use­

ful in the metalanguage, and we will also consider prefixes of well-nested 

strings. 

* Definition 5.2: The complete simple parenthesis language P0 ~ [+, -} is 

defined by the context-free grammar: S -+ SS 

S -+ +S­

S -+ A. 

~~ 

The incomplete simple parenthesis language P ~ [+, -} consists of the 

prefixes of P0 and is generated by the context-free grammar: S-+ SS 

(S is the sentence symbol of the grammar). 

S -+ +S­

S -+ +S 

s .... ;\, 

Another characterization of P is the set of all strings such that, for every 

prefix, the number of "-" symbols does not exceed the number of "+" symbols. 

P0 consists of those strings in P which have an equal number of "+" and "-". 

In other words, we have: P = P0 ll<+)* . The language P0 will indeed turn out 

to express an essential characteristic of Petri nets. 

It is easy to see that P and P0 are the firing language and the cyclic 

terminal firing language , respectively, of the simple buffer shown in figure 5.1: 

(A cyclic terminal language is generated by a net whose final marking is the same 

as the initial marking. It is in CSS, but not strictly in.:t'.a; see the remark at the 

end of section 1.3; for Peterson's CSS see section 2.4). 
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+I 
initial and final marking: (0) 

1 0 £.CA) p 

Petri net A ;i (A) Po c 

Figure 5.1 

In this case it is a little annoying to exclude A from ci0-languages, 

because, strictly speaking, P
0 

is not an ;t'
0

-language; P
0

-[A} is, however, as 

can be seen from Figure 5.2, which shows a net in standard form (for ~ 0 ): 

+ 

Petri net B 
"run" 

5.3. Closed Subnets 

"stop" 

Figure 5.2 

,;/!__ (B) 

~(B) 

p 

The decomposition of Petri nets into subnets is a useful analytical tool, 

and has been used as such in Hack [ 5, 6]. 

Definition 5.3: A closed subnet of a Petri net JN= (TI, L:, F, B, M0) is a Petri 

net N' =(TI', L:', F', B', M ')such that: 
0 

n' s::n (defined by a subset of the places) 

'E' = [t E L:l3:P E TI': F(p, t) > 0 or B (p, t) > O} 

(all transitions connected to places in n•) 

F' and B' are the restrictions of F and B to TI' x 'E'. 

M' 
0 

is the restricticn of M
0 

to TI'. 
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In other words, a closed subnet of a Petri net consists of a subset of the 

places and all transitions connected to these places. 

It is clear that if we look at the subnet N' within the original net N 
~" at some marking M reachable from ~ by a firing sequence cr E ~ , then the 

corresponding marking of N', written M' = M/Il', could be obtained in N' from 

M0 by the firing sequence cr' = crr£' obtained from cr by erasing all transitions 

of~ - ~'. This is the characteristic property of a closed subnet: Its marking 

within the original net depends only on the firings of the subnet. All the 

rest of the net does is restrict the set of possible firing sequences. 

The usefulness of the concept arises from the following Lerrnna: 

Lennna 5 .1: Let A = (11 A, ~A ... ) and B = (TIB, ~ ... ) be two closed subnets 

of a free-labelled Petri net C (TIC' ~C ) such that TIC TIA U TIB. 

Then we have: 

where L is either the :/!_ or l
0 

- language. 

Proof: (Illustrated by means of the example of Figure 5.3). Let A' be the 

Petri net obtained by adding a non-connected transition for each transi­

tion in re - ~A' with the same label. Similarly, let B' be obtained by 

adding ~C - ~ to B. (Figure 5.4). Now both A' and B' are free­

labelled Petri nets over the alphabet ~C' and their respective languages 

are: 

L(A I) 

L(B I) 

Let C' be the net obtained from c by duplicating the places in TIA n TIB· 

(Figure 5.5). This clearly does not change the language, since the two 

copies of a given place will at all times have the same marking and the 

same effect on firings as the single original place. Thus: 

L(C') = L(C) 
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Figure 5.3 

a b c d 

( p
3

. 1 and p
3

. 2 are two copies of place p3 ) 

Figure 5.4 

A' 

I 
e 

B' 
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c' 

Figure 5.5 

If we now refer to the construction for the intersection of two Petri 

net languages (Section 3.2), we notice that C' is precisely the result 

of that construction applied to A' and B', except that the "run" place 

n
0 

is absent. Thus: 

L(C) L(C') L (A ' ) n L (B ' ) 
QED 

As an example, consider the net in Figure 5.6. Its language can be de­

termined by examining the whole reachability set, since it is finite and 
-;'( 

actually quite small; the firing sequences follow the pattern (acbc) . 

But a more structure-oriented approach consists in first observing that 
~~ 

the closed subnet ((p
2

, p
3

}, (a, b}, ···) imposes the alternation (ab) , 

whereas ((p
1

, p
4

}, (a, b, c}, · · · ) inserts a "c" after each "a" or "b": 

* * * * * ((a + b)c) . The result is ((ab) II c ) n ((a + b)c) = (acbc) . 
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a 

Figure Ll 

5.4. 'Ihe Restriction Operation on Languages 

In the previous section (5.3) we have seen that the language of a Petri 

net can be obtained from the languages of component subnets by an operation 

involving concurrency and intersection. Let us recall the formula from Lemma 

5 .1: 

Assuming for the moment that :EC =:EA U :Es• i.e. that the Petri net C did not have 

isolated (unconnected) transitions, we may rewrite this as: (replacing L(A), 

L (B) , · · · by LA, LB · · · ) 

LC= (LAii a; - 'EA)*) n (LBll (:EA - ~/'c) 

'Ihis means that LC consists of strings such that when all symbols from 

C1~B - 'EA) are erased, we get a string from LA' and when all symbols from 

(L'A - 'EB) are erased, we get a string from LB. In other words, the strings of 

LC are constrained only by LA over ('EA - :Es),only by LB over (~ - :EA)' and by 

both LA and LB over :EA n :Es· If~~ 'EA' then LC consists of those strings of 

LA which satisfy the constraints imposed by LB; the interpretation in the gen­

eral case is a mutual restriction over the corrunon alphabet, hence the name 

restriction operation: 
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Definition 5.4: The restriction of two languages LA and LB over alphabets 

~A and~· respectively, is the language LA ~ LB over the alphabet 

~AU~ defined by: 

Note: 

5. 5. 

Since Petri net languages are closed under concurrency and intersection, 

* and contain languages of the form (~ - ~A) , they are also closed under 

~O we observe that restriction; in the case of 
~'( * 

Lll ~ = (Lii (~ - p .. })) U L. 

~ Characterization Using Inverse Homomorphism 

From the two previous sections we know that the language of a free-labelled 

Petri net can be obtained from those of its closed subnets by the operation of 

restriction. 

Consider a Petri net Nin standard form. Let the places be pl ... pn' 

where p1 is the "start" place. Then we can construct a succession of closed 

subnets Ni obtained from N1 = ((p
1

}, "first" U "singleton", ... )by successively 

adding more places: Ni+l =Ni U (fpi+l}' (transitions connected to pi+l}' ···). 

At each step, the language of N. 1 is obtained by the operation of restriction from 
i+ 

the language of Ni and the additional constraints imposed by the new place pi+l· 

Thus, only two primitive language forms are needed: The language of N1 , the 

"start" place, which is precisely the set "first" lJ "singleton" for ae~ or 
f 

"first" lJ "singleton" U ft .. J for £ , and the language of a place with input 

and output transitions and zero initial marking. 

Consider a typical closed subnet defined by a single place, as in Figure 5.7. 

c 

b 

a 

Figure 5.7 



- 61 -

If a, b, c ... also stand for the number of occurrences of the corresponding 

transitions in a firing sequence, then it must be the case that, for every 

firing sequence (and every prefix thereof): 

2a + b ~ c + 3d + e 

Also, c is subject to the additional constraint that it may not fire unless 

there are at least two tokens, i.e. that 2a + b - c - 3d - e ~ 2 for the 

firings that have already occurred. 

This can be transformed into a simple parenthesis language by the fol­

lowing homormophism 

h: (a, b, c, d, e} ~ (+, -} defined by: 

h (a) ++ 
h (b) + a "-" for every arc from the place, 
h (c) --+ followed by a "+" for every arc to the place. 
h (d) 

h (e) 

Now the constraints described before can be simply expressed as: 

x is a firing sequence ~ h(x) E P 

x is a terminal sequence ~ h(x) E P0 

In other words, the 'f..f or cf~ language of the one-place closed subnet 

with zero initial marking is obtained from P or P
0 

by the inverse homomorphism 
-1 

h . 

Thus, every free Petri net language can be generated from a finite lan­

guage consisting of one-symbol strings (and A, for J?.f) and the inverse homo­

morphic images of P
0 

or P by the repeated application of restriction. Note 

that this finite language can also be obtained from the language (-} containing 

the single string "-", or from(-, A}, by inverse homomorphism. Conversely, 

since free Petri net languages are closed under restriction, every language 

generated in the above manner is a free Petri net language. In fact, a corre­

sponding net can very easily be constructed directly from the various homo­

morphisms, one per place. The resulting net is not necessarily in standard form; 

the only properties of standard form we have used are the restriction on the 

initial marking: zero in all places that have input transitions, one in places 

that have no input transitions. Thus: 
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Theorem 5.3; The family t._fci:_;) is precisely the class of languages 

obtained by the operation of restriction (or equivalently, the op­

erations of intersection and concurrency) and inverse homomorphism 

from the (complete) simple parenthesis language P respectively P0 and 

the "start" language ( - } . 

The table in Figure 5.8 shows the characterizations of the various families as 

it follows from Theorems 5.1, 5.2 and 5.3. 

Family Basis Closure Operations 

~ (-}, p inverse homomorphism 
0 

restriction 

t_,f p .. , - } ' p inverse homomorphism 
restriction 

io plus A. ( - } ' Po inverse homomorphism 

i.e. css restriction, or (concurrency t) 

(see 2.4) intersection 

';;l
0 

consists of A.-free renaming, or A.-free homomorphism 

all A.-free lan-
guages in this 
class 

;:l [A.' -} ' p inverse homomorphism 
restriction, or toncurren~y t) 

:t.ntersect:t.on 

A.-free renaming 

;f_A. [ - J' p inverse homomorphism 
restriction, or (concurrency t) 

intersection 

unrestricted renaming 

;tA. (-J, p inverse homomorphism 0 
restriction, or (~oncurren~y t) 

:t.ntersect:t.on 

unrestricted renaming, or unrestricted 
homomorphism 

Figure 5.8 

t) 
If we use concurrency and intersection instead of restriction, we also need 
the Regular language [-}* in the basis. 
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Thus, the general form of a Petri net language is: 

- terminal: 
c£o, ... ) ® h -1 (P ) ) t) 

n 0 

~ non-terminal: 1 
c ce, ... ) 

where h0 is a renaming homomorphism which is identity for ~f and ~~. 
for :f. and ~· unrestricted for x_t... and ro. The other homomorphisms 

1 ~ i ~ n, are unrestricted. 

"A.- free 

h., 
1. 

From this we may also conclude that i and ~0-languages are context-
-1 -1 

sensitive: P and P
0 

are context-free, therefore h (P) or h (P
0

) are context-

free, and thus context sensitive. But context-sensitive languages are closed 

under concurrency, intersection, and "A.-free homomorphism. Thus: 

Theorem 5.4: The families ;;f_ and .t:'
0 

are contained in the family of context­

sensitive languages (except for the empty string in ci-languages). 

5.6. Bounded Subnets 

In the previous section we have generated the free Petri net languages by 

applying .the restriction operation to closed subnets consisting of a single 

place. But often it is advantageous to consider larger subnets whose language 

is easy to determine, thus reducing the number of restriction operations required. 

A logical choice for such larger subnets are State Machines, as described 

in [5, 6 ], and bounded closed subnets in general, because the associated lan­

guages are necessarily regular and can usually be determined without difficulty 

(for a qualification of this assertion, see section 9.4). 

This approach generates the free Petri net languages by applying restric­

tions to one or several regular languages and the homomorphic inverses of P or 

P0 for the remaining unbounded places. 

t) It can be verified that the operation ~ is associative and corrnnutative. 
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5.7. A Simple Characterization of i:_A and~ 

In the case of :f_A and ~ we may use the flexibility offered by A­

trans itions to obtain a simpler generation of ~ and ~' without recourse 

to inverse homomorphism. As a bonus, this approach will also provide us with 

a technique for reducing multiple arcs in a promptness preserving manner 

(see Definition 4.4 in Section 4.8). 

In Hack [ 7] we have shown that a GPN (Generalized, i.e. Multiple-arc Petri 

net) can be transformed into an equivalent -- up to A-firings RPN 

(Restricted, i.e. Self-Loop free Ordinary Petri net). Therefore, the classes 

;;{:and ~can be generated by Restricted Petri nets. But the transformation 

does not preserve promptness, which may be a drawback in some cases. 

We may take advantage of the observation in 5.6 and transform the bounded 

subnets into State Machines generating the same regular language by the method 

of Section 4.1. This is not necessary, however, and the following transformation 

can be carried out place by place in any GPN. 

The principle behind this method lies in separating the buffering functions 

of a place from its "role" in distributing tokens to firable transitions. Our 

previous reduction did not separate these aspects. 

The reduction still operates locally, on a place and its surrounding transi­

tions (i.e. on a one-place closed subnet). Figure 5.9 shall be our example. 

Figure 5.9 
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The transitions may be shared with other places, and the corresponding arcs 

would be reduced together with these other places. 

We shall first consider the token-distribution function of the place. 

Transitions c and d can fire only if there are at least 2 respectively 3 tokens 

available, and no transition requires more than 3 tokens. Any number of tokens 

above 3 should be handled by the buffering function of the place. 

The distribution of 0 to 3 tokens can be accomplished by means of a 3-token 

pipeline, which may alternatively be looked at as a 4-state counter, indicating 

whether the pipeline contains zero, one, two, or three tokens on the "full" 

side (and the complement to three on the "empty" side). 

This pipeline is shown at the bottom of the transformed net, shown in 

Figure 5.lOa. It consists of three distribution stages (as shown schematically 

in Figure 5.lOb) each of which is a 2-place one-token closed subnet. The token 

is either on the "full" or on the "empty" side. The number of stages which have 

their token on the "full" side determines how many tokens are available for 

firing an output transition (c or d). A similar "collecting" pipeline counts 

the tokens provided by the input transitions (a, b, or c). Adding n counts to 

such a pipeline means switching n tokens from the "empty" to the "full" side, and 

removing n counts does the reverse. Any overflow in the collecting pipeline is 

directed into the buffer place, which in turn fills the distribution pipeline, 

where the counts always travel down to the bottom of the pipeline. The output 

transitions draw their arcs from the bottonunost stages of the pipeline; this 

prevents deadlock. 

The construction preserves promptness, because between any firings of a, b, 

c and d there can be only a bounded number of firings of the newly introduced 

A-transitions -- in this case, seven (if the two pipelines have n and m stages 

respectively, the maximum number of consecutive A-firings is (n
2 

+n)/2 + (m
2 

+m)/2, 

as can easily be established). The number of stages required for the two pipelines 

is the maximum number of input arcs and output arcs, respectively. 

The construction preserves firing sequences both ways, up to ~-firings, 

because equivalent firing sequences produce equivalent markings, and equivalent 

markings generate the same constraints on allowable firing sequences. An "old" 

marking of n tokens is equivalent to a "new" marking of n = C + B + D tokens, 

where C and D are the number of "full" stages in the collecting and distributing 

pipelines, and B is the number of tokens in the buffer. 

It may be verified that the transformation also preserves liveness. 
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Thus we have: 

Theorem 5.5: For each prompt labelled GPN there exists a language-equivalent 

prompt RPN, possibly with more ~-transitions. 

After having transformed all places (or at least all unbounded places) 

of a Petri net, the transformed net only contains one-input-one-output buffers 

and a collection of bounded closed subnets. There is no need to apply inverse 

homomorphisms to P or P0 to obtain the language of these buffers -- a simple 

renaming will do. After transforming the net, we assign new, distinct names 

to all transitions to get a free-labelled net whose language can now be obtained 

by restrictions, then we use unrestricted renaming to get our original language. 

Thus: 

Theorem 5.6: df!:" is the closure of P and the prefix regular languages under 

restriction (concurrency and intersection) and unrestricted renaming. 

~~ is the closure of P
0 

and the regular languages under restriction 

(concurrency and intersection) and unrestricted renaming or homomorphism. 

In both cases, two-state regular languages (Flip-Flops) are sufficient. 

5.8. A Characterization Using Finite Substitution 

Even in the case of :f 0 and :f.., where we may not take advantage of~­
transitions, we may generate the languages without recourse to inverse homomorphism. 

Inverse homomorphism was needed to obtain the language of one-place closed 

subnets such as the one in Figure 5.7, where there are multiple arcs and self­

loops. But consider the one-place closed subnet of Figure 5.11, which is a Re­

stricted Petri Net (RPN): 

a 

b 

Figure 2..:1..! 
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Its language is clearly the result of the finite substitution: 

a(+) (a, b} 

a(-) (c, d} applied to P or P
0

. From this follows: 

Lennna 5.2: The languages of free RPN's can be obtained from the regular lan­

guages and P or PO by closure under finite substitution and restriction. 

In fact, it is sufficient that unbounded places not have multiple arcs or 

self-loops. 

Now we will show that we may replace an unbounded place that has self­

loops and/or multiple arcs by a closed subnet consisting of two bounded places 

and one unbounded place without self-loops or multiple arcs, without using 

/-..-transitions. 

Consider a place p and the transitions connected to it, say t 1 and t 2 
(Figure 5.12). Let F(t) and B(t) be the size of the arc bundle of transition t 

(t1 or t 2 ) from or to place p. 

1 

3 a 

Figure Ll1 

2 

1 

We will replace p with a bounded counter, consisting of new places TT and rr, 

and an (a priori) unbounded buffer, consisting of a third new place ~· The 

bounded counter has m + 1 states representing a count of 0 to m tokens in the 

counter, where a count of x is represented by x tokens in TT and m-x tokens in the 

complementary place rr; m is the capacity of the counter. The buffer is an un­

bounded counter, where each count represents k tokens. A given marking M(p) is 

represented by the combination M(TT) + k • M(~), where 0 ~ M(TT) ~ m. If a tran­

sition fires, and the corresponding change of M(p) = M(rr) + k · M(~) is within 

the bounds of the counter, only M(rr,n) changes; otherwise, k tokens are deposited 

or withdrawn from k· M(~), i.e. ~gets or loses one token, and M(rr) changes so 

as to express the proper new marking. 
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Accordingly, each transition t will be replaced by three transitions 

t
0

, t+ and t , labelled like t, which change only M(TT), or change M(TT) and 

deposit or withdraw k counts from the buffer. This can be summarized in the 

following table (Figure 5.13); the full construction is shown in Figure 5.14. 

F(t) and B(t) stand for F(p, t) and B(p, t), i.e. the forwards (p-+ t) and 

backwards (p ~ t) arc size between p and t. 

Marking Before Firing Marking Change to: 
the Firing: of: 

M (i"r) M(f3) M(TT) + k ·. M(f3) 

M(p) = t B(t) - F(t) 
M(n) + k · M(f3) 

to B(t) - F(t) 0 B(t) - F(t) 

t+ B(t) - F(t) - k +l B(t) - F(t) 

-
t B(t) - F(t) + k -1 B ( t ) - F ( t'). 

Figure 5.13 

Now we must choose m and k such that, for all possible markings at which t is 

firable, at least one of t
0 

t or t+ is firable such that M(TT) stays within 
0 - + bounds, and that when M(p) < F(t), then none of t , t or t are firable. The 

table of Figure 5.15 shows a suitable connection matrix, and the table in Figure 

5.16 shows under which circumstances the various transitions may fire. It is 

advantageous to distinguish the cases B(t) > F(t) and B(t) ~ F(t), because in 

the latter case no t+-transition is needed. It will be seen that, if and only 
0 - t+ will be firable if t is firable at M(p)' then exactly one of t ' t 

' 
or at 

M(TT, TT' f3) ' and the resulting marking change is such that the equation 

M(p) = M(TT) + k · M(f3) remains valid. 

To obtain values for m and k, we must make sure that M(TT) always stays within 

the bounds 0 ~ M(TT) ~ m. From the table of figure 5.16 it can be verified that 

this will be the case if we choose: 

k ~ max( IF(t) - B(t)l ) 
(for all t connected to p) 

and m ~ k - 1 + max ( B (t) ) 
(for all t connected to p). 



a 

m+ 1 - k -------

- -

t+ 
1 

I z due to tl; case B(t 1) > F(t1) 
i 
--
:: due to t

2
; case B(t2) ~ F(t2 ) 

equivalent marking: x + k·y 
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' 

' I 
/ 

I 

< -~----k + B (t2) - F(t2 ) 

- F(t1) 

(k = 3) 

' 

In this example (cf. Fig. 5.12), 

we may choose: k = 3 ; rn = 5 . 

Figure 5.14 
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case B(t) > F(t) case B(t) ~ F(t) 

to - + 0 -
transition e = t t t t 

F(TT,9) F (t) 0 m+ 1- B ( t) +F ( t F (t) 0 

F(n,e) B(t)-F(t) m+l-F(t) 0 0 m+l-F(t) 

F (~ , 9) 0 1 0 0 1 

B(TT ,9) B(t) k+B ( t) -F ( t) m + 1 - k B(t) k+B(t)-F(t) 

B (TI", 9) 0 m+l-k-B(t) k-B(t)+F(t) F(t)-B(t) m+l-k-B(t) 

B(~ ,9) 0 0 1 0 0 

Figure 5.15 

marking of TT firab le marking marking of TT 
before firing transition change after firing 

case from to TT ~ from to 

M(~) = 0 0 F-1 none 
- B-F+k -1 k+B-F k+B-1 M(~) > 0 0 F-1 t 

} N.A. if F=O 

F m+F-B to B-F 0 B m 
B > F + m+F-B+l m t B-F-k +l m-k+l m-k+B-F 

B~ F F m to B-F 0 B m+B-F 

(note: F = F(t), B B(t) ) 

Figure 5.16 

The initial marking of the new places should be such that M(TT) + k·M(~) M(p) 

and M(IT) = m - M(TT). in particular, if M(p) = 0, we start out with M(TT) = 0, 

M(n) = m, and M(~) = 0. It is also always possible to choose m large enough in order 

to have zero tokens in the buffer ~ at the initial marking. 

It appears that this transformation does not preserve free-labelling, since 

each transition may be replaced by two or three similarly-labelled transitions at 

each place-replacement step. But the J::.
0 

or t'.:-language is not changed. By performing 

the transformation until all (or at least all unbounded) places with multiple arcs 

have been eliminated, we arrive at a net which can be decomposed into closed subnets 

of two kinds: bounded, or single-arc buffers such as in figure 5.1. Thus: 
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Theorem 5. 7: The ;\-free Petri net languages (of families £
0 

augmented by >., and :e) 
are obtained by closure under restriction (i.e. concurrency and intersection) 

and ;\-free renaming from the Regular ·languages (prefix in the case of .-£) 
and the images under finite substitution of P0 (or P, in the case of i/!!.). 

Since the various bounded closed subnets, which may still contain multiple arcs, 

can be replaced by Restricted Petri nets by the methods of section 4.1, we also have: 

Theorem 5 .8: a) All Petri net languages (£, "i..
0

, 'I:, cr;;) can be generated using 

only Restricted Petri nets. 

b) Alternate means for generating Petri net languages include Finite 

State Machines constrained by, or interconnected by, token buffers. 

Finally, we remember that P P0 II [+}*. Now, if Sis a substitution (finite 

or not), we have: S( P0 ll f+r·~) = S( P
0

) II (S(+))*. Therefore, .!le-languages 

can in fact be obtained in the same way as c:t:
0
-languages. In effect, each time we 

perform the construction described in figure 5.14, we add transitions t'. which are 
+ i 

connected to places TI and n, and are labelled like t. , but do not deposit a token 
i 

into buffer place ~· It can be seen that no new label sequences are introduced, but 

for each firing sequence cr leading up to submarking M of the buffer places, and for 

each submarking M' ~ M , including zero, there exists a firing sequence cr' generating 

the same label sequence as cr and reaching M' instead of M. No new label sequences are 

possible, because M'~M implies that every label sequence which may follow the label 

sequence generated by cr' could also have followed that generated by cr. If we now make 

every state of the Finite State Machine representing the bounded subnets a final state, 

it appears that every non-empty string of the ;f;.language of the original net can 

be generated by the ~0-language of the modified net. Thus: 

Theorem5.9: a) fL-fA.} !LE~} I:: 'i'_
0 

b) £.,1:: css (cf. section 2.4) 
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6. Decidable Properties of Petri Net Languages 

Most of the decidable properties can be reduced to the decidability of 

boundedness of a place. This was first proved (for Vector Addition Systems) 

by Karp and Miller [11]. 

Lennna 6.1: It is decidable whether a given place is bounded in a given GPN 

with a given initial marking; and also whether a given place can ever 

receive at least one token. 

Proof: See Hack [ 7 ] . 

6.1. Membership, for~.~' c:e~-languages. 

It is clearly decidable whether a given firing sequence is possible from the 

initial marking: Just start at the initial marking and try to fire it, transi­

tion occurence by transition occurrence. Since in the case of a ~-free Labelled 

Petri net, every label sequence corresponds to only a finite number of firing 

sequences, we conclude that membership in;;!_ or ;t'
0

-languages is decidable. 

In fact, since we know that ~ andoL
0

-languages are context-sensitive, and hence 

recursive! we have already proved in the previous chapter that membership in~ 
and of0-languages is decidable. 

The case of~-languages is more interesting. Suppose we wish to decide 

whether a string, say "abac ", is in the £.~-language of some labelled Petri net 

A. Let us construct a Petri net B which spells out the string "abac", as shown 

in Figure 6.1; it is a trivial Finite-State Machine. Place p
5 

will receive a 

token if and only if the string "abac" is actually fired. 

B: 

Figure Ll 

t and effectively so. 
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Now let us perform the intersection construction of Section 3.2 for the 

two nets A and B, as is indicated schematically in Figure 6.2. 

A 

a b a c 

B 

Figure 6.2 

Now the test place p
5 

of B may eventually receive a token if and only if 

abac E 'cf_~(A). Therefore, membership in ;f__~(A) is decidable. 

Theorem 6.1: Membership 

families ;f_ 'i!._ 
0 

' 

is decidable for Petri net languages of the 
~ 

and £;, ; these families are thus included in the 

class of recursive languages. 

We do not know at the present time whether i'._~-languages are context-sensitive . 
..p~ . The decidability of the membership problem for ~O is also open; we shall return 

to this problem in chapter 7. 

6.2. Emptiness and Finiteness for ~and ..t'.~-languages. 

Emptiness of £ and ~~-languages is an "empty" problem, since these lan­

guages always contain at least the empty string ~. If we ask whether the lan­

guage contains other strings besides ~. we may just consider one-symbol strings 

because of the prefix property; this involves a finite number of membership 

tests. The emptiness problem for 'i!.,
0 
andcL~ will be considered in the next 

chapter. 
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To decide whether an 1:_ or ~~languap is infinite, all we ha:ve to do 

is count the number of firing• of labell.H tr&neitiou, by adding a "count" 

place which gets a token fran each labellu tra•itf.on. Sine. a language is 

infinite if and only if it contain& uUouadedly ~ atring•, the "count" 

place will be bounded if and only if the i..,.... i• finite. Thus: 

Theorem 6. 2 : Emptine88 and Finitene•• are decidable for ~ and ';!_">.. - languages. 

;>... 
So far, nothing i• known about the finiteQU& problem for £..o or ct(;-languape. 



"tc ""'~ 'JQ~ ~.£;.{d~~ ·~~~Sl'lll;~ 
""•~ 

J .• 
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7. Problems Equivalent to the Reachability Problem 

The Reachability Problem is the problem to decide whether a given 

marking is reachable from the initial marking in a given Petri net. It is 

equivalent to the Zero Reachability Problem (trying to reach the Zero marking). 

A detailed account of this and related problems can be found in Hack [ 7, 8 ]; 

the decidability of this problem is still an open question. 

7.1. Emptiness of~ and ~-languages 

We ask whether there exists, in a given labelled Petri net, any terminal 

label sequence. If the net is in Standard Form, this is precisely the Zero 

Reachability Problem 

are labelled or not. 

Thus: 

it is actually totally irrelevant whether the transitions 

Theorem 7.1: The emptiness problem for ";/!,
0 

and ~-languages is equivalent to 

the Reachability Problem. 

7.2. Membership in ~-languages 

Since ';f_~ is closed under intersection with regular languages, membership 

in an ii_~-language can be reduced to emptiness of the intersection of that lan­

guage and a one-string language, and thus membership in an t'..~-language is re­

ducible to the Reachability Problem. 

Now we will show that the converse also holds. To do this, we will show 

that .t:~-languages can suitably encode Reachability sets. 

Let A be a GPN with places p1 .•. pn whose Reachability set is to be en­

coded. Let B be the labelled GPN obtained by leaving all of A's transitions 

unlabelled (/...-transitions) and by adding a "run" place rr
0 

which self-loops on 

every transition in A, a set of n places rr
1 

... TTn' a set of new /...-transitions 

el ... en' a set of n labelled transitions with labels al an' and a "stop" 

/...-transition. See Figure 7.1. 
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A 

e 
n 

TT "stop" 
n 

Figure 7.1 

The initial marking consists of the initial marking of A for the old places 

pl ... pn' one token in TIO and zero tokens in ITl ... Tin· The new A-transitions 

8. trans fer a token from TI. 
1 

to IT. ; "stop" removes a token from IT . Each 
i i- i n 

a.-transition self-loops on IT. and removes one token from p .. 
i i i 

While ITO has its token, A fires as it did before being modified, and 

reaches some marking ME R(A) before 91 fires. Now the only way to reach the 

zero marking in the 
M(pl) M(p2) 

81 al e2a2 

modified net B is to 
M(p ) 

... 8 a n "stop" 
n 

fire the firing sequence 

A 
Therefore, the ~ 0-language of B 

encodes the reachability set of A as follows: 

We may now use this encoding to test whether a marking is reachable in A: 

We test whether the corresponding string is in ci~(B). Thus: 

Theorem 7.2: 
A 

The membership problem for ~-languages is equivalent to the 

Reachability Problem. 
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7.3 Equivalence Problems for~ Petri N~t Languages. 

We may recall that in a free-labelled Petri net every transition has a unique 

label. The corresponding families ct:_f and~~ of free Petri net languages are quite 

restricted; in fact, they enjoy practically none of the various closure properties. 

They are only closed under intersection (as can be stablished by transition sharing) 

and under suitably modified operations, such as disjoint concurrency, dijoint con­

catenation, etc .. Also see Theorem 5.2 

In this section we show that the equivalence problems for free Petri net lan­

guages are reducible to the Reachability Problem, and may thus one day be shown to 

be decidable. 

Consider the construction of figure 

Petri nets A and B , with transitions 
A B 

t. and t. have identical labels a .• We 
1 1 1 

0 

Figure L.1,_ 

7.2 . It 
A A 

t .. ·t 
1 n 

wish to 

consists of two free-labelled 

and tB
1 
... tB respectively, where 

n f f 
test whether £. (A) ~ r;_ (B) . 

The two nets are connected as in the construction for for the intersection of 

;;e_(A) and ciCB), with a central place TIO and symbol-remembering places Tii (cf. fi­

gure 3.4, section 3.2). In addition, there is a transition labelled y which takes a 

token from TIO to a place n" (and thus freezes both A and B), and a transition 

0 which self-loops on TI"· This transition is said to be live iff every firing se­

quence of the net can be continued to include or repeat a firing of 9. The problem 
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of deciding whether a transition 0 is live or not is an instance of the Sub-Liveness 

Problem, which is recursively equivalent to the Reachability Problem (Hack, (7,8].) 

It can be seen that the only way 8 can fail to be live is if there exists a 

firing sequence cr which cannot be completed to include 8 ; this means that the 

token originally in TIO must get stuck in some Tii . That, in turn, can only happen 

if the label sequence w spelled out by A's transitions before the last firing of 

t~ was also spelled out by B's transitions, but wa. E .;tfA) and wa. ~ ~B) . 
i i i 

This is because in a free Petri net, for a given label sequence there is exactly one 

firing sequence which generates it. 

Conversely, if ,;efA) ¢ ~B) , then there exists a shortest 

such that for some symbol a., we have wa. E detA) , but also wa. 
i i i 

wE .t{A) n ~B) 
(/. ~B) . Thus: 

Theorem 7.3: The inclusion (and hence also the equivalence) problem for the free 

Petri net language family df!. is reducible to the Reachability Problem. 

Now let us augment the construction of figure 7.2 as shown in figure 7.3. We 

have added a place TI 1 which receives a token from each A-transition and yields one 

token to each B-transition. So far, TI 1 records the fact that some label sequence 

w E ;i!!(A) has been has been generated by A, but the last firing has not yet been 

echoed by B. 

We also add a number of transitions labelled a which self-loop on the places of 

A, and a number of transitions labelled ~ which self-loop on the places of B. If A 

(or B) has reached the zero marking, then all a-transitions (or all ~-transitions) 

are disabled. Each a-transition carries a token from TI' to TI". Each ~-transition 

carries a token from TIO to TI'; this is possible only if all Tii -places (1:::; i ~ n) are 

empty. 

As before, 8 is not live if and only if a token may get stuck -- in this case 

stuck inn'. This can only happen in one of two ways: 

1) The label sequence w spelled out by A cannot be echoed by B (i.e. 

w E cf(A) & wf_ .:t'fB)) and no a-transition is enabled (i.e. wE .;c;1.A) ). 

Since ~~(B) c ;tfB) we have: w E ~(A) - {(B). 

2) The label sequence w spelled out by A has been fully echoed by B (i.e. 

w E i!cA) & w E:ltB) ), but a ~-transition has fired (i.e. w (/. ~g(B) ) and 

no a-transition is firable (i.e. w E :t:g(A) ). Again, we have: 

w E £J(A) - 4(B) . 

Conversely, if there exists a w E .i'g(A) - .t6(B) , then either 2) or 1) may 
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occur, depending on whether w E .f.~B) or not. 

As before, a test for the liveness of 9 establishes whether ;;£.~(A) ~ ~(B) 
or not. 

8 

Figure 7.3 
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But we also know that the Reachability Pro~lem is equivalent to the emptiness 

problem for terminal Petri net languages, since labelling does not matter for the 

purpose of Theorem 7.1, reachability of the zero marking in a Petri net A is clearly 

an instance of the equivalence problem :f:!CA) =¢.Thus: 

Theorem Lf±: 
.pf 

The equivalence and inclusion Problems for the family oe
0 

of free 

terminal Petri net languages are recursively equivalent to the Reachabi­

lity Problem. 

In all fairness, it must be said that we only considered the zero marking as 

a terminal marking. But the construction of figure 7.3 can be modified, by methods 

such as are used in Hack [7,8], to handle arbitrary final markings. The distinction 

has to be made because free Petri nets usually do not have a free Standard Form. *) 

Finally, let us mention the fact that the familyt: is weak enough, and the 

family ~~ powerful enough, so that the complementation closure of :e_.f is actually 

a subset of fa. Given a free Petri net A , we can add ~-transitions and labelled 

transitions to construct a new net B such that ,t:~(B) =Cf'' - ';f!(A) , where (X_ 

is the alphabet of A . Without going into details, the construction works as fol­

lows: Petri net A can be stopped after having generated some string wE ;f_f(A) . 

Now control is transferred to a construction which "chooses" an arbitrary transition 

t in A . The label of t is generated by some other, new, transitions, and an 

arbitrary marking strictly less than F(t) is removed from the input places of t . 
' 

the other places of A are "cleared", as in paragraph 2.1.4. If twas not firable, 

this could clear all places of A , but if t was firable (and the label sequence 

generated so far was still in ~(A) ), then some tokens must remain in the input 

places of t , and no zero marking can be reached. If we could reach the zero marking 

as described above, we reached it by generating a label sequence wa ~ .;t_f(A) , which 

can then be followed by an arbitrary string from CC~, since £._f (A) has the prefix 

property. Thus: 

Theorem 7. 5: The complementation closure of £:! is in ~~. 

.,., ) 
A construction for the general case can be found in Hack (1976). (Added reference) 
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In the next chapter we shall see that in the general case, equivalence prob­

lems are undecidable, and that the complementation closure of the non-free Petri 

Net Languages would imply the undecidability of the Reachability Problem. 

Note: In Hack [7, 8] we conjectured that the Reachability Problem is de­

cidable, because it seems that if a marking M is reachable, then there 

exists a firing sequence shorter than K • !Ml which reaches it, where 

K is a computable constant. If this is true, it is likely that work-
~ 

space arguments could be used to show that £.0-languages are actually 

context-sensitive. 
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•... 1 d6 t1 '{:> r.t l dolfa• .. Jf .,~ .'h> ~~;u~.~:~ l>i:•"'" .. ~*""" .Ioli! 

·::~:~:i::~:::;~~~~::;~~~ie!?:E: 
~~-.1*.r :L~.··'j llL"..lUJ d 4l.t.;.~U~ .~~ ~.«f .. !U ·. ·-:~,~.:~~ ii e<l >i 

<tJ!;&;.;.::.;10 $'1~ zij<af;.'..~ar.rt1t1~0,.h i!•da ~,at. :),. ~•·.,::.~~~.qi.~~~~~ ~Q-q~ 
. . .. ; . :~}~.li.) .... ~-... 4l(~j!l'(;::) """. ~.~.!il~·~,.. ·~ .. " 

":<:· '"._.. ... ,-: '/:::':-'\~·>:·-· ·• . ,· 

.. '_ . :,) 

< .. ·_ ; 

-;,, ·. 
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8. Undecidable Equivalence Problems. 

The first undecidability result related to Petri nets was obtained by M. Rabin 

in 1967 about Vector Addition Systems. In Petri net language, it concerns the prob­

lem of deciding whether, of two reachability sets, one is a subset of the other. This 

is called the Inclusion Problem for reachability sets (IP). We have recently shown 

that the Equality Problem for reachability sets (EP) is also undecidable (Hack [ 9 ]); 

these undecidability proofs are based on a reduction of Hilbert's Tenth Problem to 

the IP and the EP for reachability sets. 

In this chapter'""we show that a similar reduction can be carried out for the 

Equivalence Problems of the Petri net language families ;!, ;[_ 
0

, ';/_/....., L~ · 

8.1 The Polynomial Graph Inclusion Problem. (PGIP) 

Let P(x
1
,···,xn) be a polynomial with non-negative integer coefficients. The 

corresponding Polynomial Graph G(P) is defined to be: (Hack [ 9]) 

G(P) [ (x
1

, .. ·,xn,y) E lNn+l I y ~ P(xl'"',xn)} 

The PGIP is the problem of deciding whether G(P) ~ G(Q) , where P and Q are two 

given polynomials with non-negative integer coefficients. This problem is undecidable, 

a proof of this fact appears in Hack [ 7, 9]. 

The undecidability of the IP and the EP for reachability sets is established by 

showing how reachability sets can encode polynomial graphs. In the next section we 

shall propose a suitable encoding in terms of Petri net languages of type 'i:_ or ~0 . 

We already know that .;(~-languages can encode reachability sets (see the proof of 
/..... 

Theorem 7.2), so that the undecidability of the equivalence problem for .;e.
0

-languages 

follows from the undecidability of the EP for reachability sets. 

8.2 Encoding of Polynomial Graphs as;/!_ or ~-languages. 

A suitable language for encoding the graph G(P) of a po lynomia 1 P (x · · · x ) 
l' ' n 

is: L(P) 

This language has the prefix property and is thus a suitable candidate for an 

;t:_ -language. Since ot'
0

-languages don't contain the empty string, a suitable ct'.:0-lan­

guage would be L(P)-[t...} or c·L(P). We shall show that Petri nets can be constructed 

to generate these languages. 

*) Hack (1976) contains a much simpler construction than this section. Also see the 
remark on page 93. 
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The construction is fairly complex, and will be presented in stages. We first 

build an elementary multiplier (8.2.1) from which we construct a multiple-input 

multiplier (8.2.2). Then we assemble these multipliers so as to weakly compute a 

polynomial (8.2.3), and finally we complete the design of a Petri net capable of 

generating the language L(P) described above (8.2.4). 

8.2.1 The Elementary Multiplier ~· 

Our first objective is to build a Petri net A(x) whose initial marking con­

tains x tokens in some "input" place, and whose language over an alphabet (a,b} 

is such that the length of the longest label sequence is proportional to the nmnber 

of occurrences of the symbol b , the variable ratio being x • 

Consider the labelled Petri net A(x) of figure 8.1 (disregard for the moment 

the dotted lines). It has an initial marking of x :t l tokens in the "input" place 

pl (hence the name A(x) ) and one token in p
3

• There are six transitions labelled 

~ (a
1
,···,a6) and six transitions labelled £.Inspection of the net shows that 

all firing sequences are prefixes of strings from the following regular language R; 

all terminal firing sequences (i.e. reaching the zero marking) are complete strings 

of R: 

R . ~ * * * (blal~~b2a2') ((b3 + b5a3 as) + (bl al )(b4 + b6a4 a6)) 

In fact, the a-transitions either shuttle tokens from p1 to p2 and back (a1,a2) 

or they empty p1 or p2 (a
3
,···,a

6
). There can be no more than x-1 consecutive 

a-firings between b-firings. Therefore, the :J:.
0 

and ol':-languages of A(x) can be 

characterized by the regular language R (or its prefixes) and the restrictions des-

ribed in the table of figure 8.2 • 

So it appears that: 

\:: ;f__ (A (x) ) 

If we limit the number of b-firings, the length of the longest firing sequence 

or the longest terminal firing sequence is x times the number of b-firings; the 

length of the shortest terminal firing sequence is x-1 plus the number of b-firings. 

This could be enforced by adding a new place p
7 

(drawn in dotted lines in figure 8.1) 

initially marked with y ~ 1 tokens. Now the ";(-language of the modified net contains 

strings up to a length of x·y ; the .t'.'
0

-language contains strings of any length 

between x+y-1 and x·y In tmis manner we shall be able to weakly compute products, 

polynomials, and finally encode polynomial graphs. 
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Strings selected from: 

by the following restrictions: 

Number of successive 
firings of a

1 
or a

2 
Number of successive 
firings of a

3 
or a

4 
Total excess of a dd-firings 
over a -firing~ 

even 

Figure 8.2 

:f_ (A (x)) 

all prefixes 
of R 

::::: x - 1 

::::: x - 2 

::::: x - 1 

;/_O (A(x)) 

R 

= x - 1 

=x.:.2 

= x - 1 
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8.2.2 Then-input Multiplier B (x1,···,x ). 
n n 

Lennna 8.1: 

Proof: 

For each n , there exists a labelled Petri net B(x •••X) 
n l' ' n 

with n distinguished input places initially marked with x ... 
1' ' 

x tokens respectively, such that , for all x. ~ 1 
n \./) y !.! i 

d.._ (Bn(Xl'"'·,xn)) b O~y~dh(xi)} 

by induction on n. 

If n=l, the net B
1

(x1 ) is the simple one-place net of figure 8.3: 

Figure 8.3 

£(Bl (xl)) 

:f.o (Bl (xl)) 

If n > 1, assume that there exists a net B1 (x1, ... ,xn) which satis­

fies the conditions of the Lennna. 

Consider the ;;{_or .:e.
0

-language over the alphabet (a,b} defined by: 

( a -,<r 11 ~o) (B n (xl' .•. 'xn) ) ) n cl:'(O) (A (xn+ 1)) 

The left side of the intersection limits the number of b-firings ~n L(O) (A(xn+l)) 

and, in the case of ;t
0

, also y~ l-n+.:E1 (x.) . 
n 

to y , where y ~.n1 (x.) 
l.:::;. l. l.= l. 

Therefore, the lengths of the firing sequences in the above language are any 

number no greater than x +l ·.TI1 (x.) , and in the case of ;f0 , also no less 
n n i= i 

than x +1-1+(1-n+.:E1 (x.)) . n i= l. 

If we now apply the relabelling function (h: b-+ b, a-+ b ) , we observe 

that: 

= 

Since :f and .t'
0

-languages are closed under concurrency, intersection, and 

relabelling, the corresponding constructions applied to and B (x1 , • • • , x ) n n 
yield an appropriate labelled Petri net Bn+l (x1,···,xn+l) · 
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We may note that the two-input weak multiplier described at the end of 8.2.1 

is precisely the net B2 (x,y) 

8.2.3 Computing Polynomials. 

Having shown how to compute multiple products (monomials), we proceed to show 

how to compute polynomials. 

A polynomial is a stnn of monomials: 

Each monomial is of the form: 

P(x · · · x ) l' ' n 

k 
j~ (Mj (xl'. • • ,xn)) 

n 13. • 
a. ·· n1 (x. 1 

• J) J 1- 1 
a.>O. 

J 

Some examples of such monomials are , or 5. 13. • ~ 0 1,J 

Now let us construct a labelled Petri net C(P) as shown in figure 8.4 for 
2 

the example P(x1 ,x2,x3 ) 2x1x 2x
3 

+ 3x
1
x 2x3 + 2x3 + 5 . Forneach monomial Mj 

we include one copy of labelled Petri net Bn,where 1, = l+.~1 13 •• , i.e. one 
JtJ 1= 1, J 

input per factor, including the coefficient a . . 
J 

Then we add n places (call them p
1
···pn) and 2n transitions (call them 

t 1 ···t2n), where t 2i-l and t 2i (l:5:i:5:n) are labelled ai (not to be confused 

with the set of transitions of figure 8.1). These elements are connected as shown 

in figure 8.4. Each a.-labelled transition deposits one token in each x.-input place 
1 1 

of the monomial subnets. The last transition, t
2
n' also deposits all the coefficients 

(.and also, the constant, or zero-degree monomial), as well as the initial markings 

for the B-nets. This guarantees that no B-net can start to fire before t 2n has 

fired! Therefore, all firing sequences of C(P) are of the form: 

where X is the concurrent composition of firing sequences from the B-nets . Since 

all B-nets have a language over the single letter b , the language of C(P) con­

sists of strings of the form: 

In particular, we have: 

;e(C(P)) 

~O(C(P)) [ 

Y ~ P(x · • • x ) l' ' n 

prefixes of ~~ ~~ a a ···a a 1 1 n n 
axl .. ·axn by 

1 n I x. :2: 1 
1 

& 

axl ... axn by I x. :<!: 1 & 1 n 1 

u 
0:.:; y:.:; P(x · · · x ) l' ' n 

} 

Q(xl'···,xn):2:y:2:P(x1, ... ,xn)} 

where Q(x ··· x) is a linear (first degree) polynomial expressing the minimum 
l' ' n 

number of firings necessary to get rid of all the tokens accumulated by the a-firings. 

t 
Actually, the internal initial tokens of the B-nets can be present at the initial 

marking, since as long as at least one input place is unmarked, no b-transition can 
fire. In this case, depositing the coefficients by t 2n switches the B-nets on. 
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Figure 8.4 
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For a monomial Mj of the form described above we have, in fact (from the .:e
0
-lan­

guage of the corresponding B-net) 

n 
Q . ct . +. 2:

1 
~ . . (x . - 1) 

J J i= i,J i 

Thus: k 
Q (x · · · x ) l' ' n j~l ( Q j ) 

The polynomial illustrated in figure 8.4 is 

P (xl 'x2 ,x3) 
2 

3x
1

x
2

x
3 

2x
3 

+ 5 2x
1
x

2
x

3 + + 

which gives us: Q (xl ,x2 ,x3) 2x1 + 3x
2 

+ 3x
3 

+ 4 

So far, it appears that we have encoded the graph of polynomial P with the 

exception of certain regions close to the origin: The hyperplanes where one or seve­

ral variables are equal to zero, and, in the case of i!_,
0

, the region below the hyper­

plane described by the first degree equation y =Q(x
1

, ... ,xn) . We will produce these 

missing regions in the next paragraph. 

8.2.4 Completion of the Encoding Petri Net. 

Let us call positive polynomial graph G+(P) of a polynomial P the subset 

of G(P) where all variables are positive: 

Then the languages generated by the Petri net C(P) constructed so far can be re­

written as: 

£ (C(P)) 

:t
0 

(C (P)) 

( prefixes of a 1a~···ana:} U G+(P) 

G+(P) G+(Q - 1) , where Q is of first degree. 

In the case of£., it is sufficient take the union of the encodings of positive 

polynomial graphs of the polynomials resulting from the substitution of zero for one 
X· 

or more variables in P, retaining the alphabet (a
1
,···,an} and the pairing aii 

as used in the ot.-encoding of G+(P) . Since (prefixes of a 1a~·· ·ana~} ~ pre-

fixes of a*· ··a* ~ G(P) the union of all these encodings is precisely G(P) 
1 n 

In the case of .J!:
0

, we shall first show that we can encode G+(P) . Then the 

technique used above for f can be used to encode G(P) - (0, · · ·, 0), by means of the 

language L(P) - :\. , which is thus shown to be £
0

. It is then easy to show that all 

of G(P) can be encoded by c · L(P) , for example. 

So it remains to be shown how to encode G+(P) , where Q is of degree one. 
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= 2 

all transitions between a 
pair of dotted lines are 
labelled the same, as shown 
below: 

labelled 

labelled 

labelled 

a3 

label led 
b 

Q(x1 ,x2 ,x
3

) = 2x1 + 3x2 + 3x
3 

+ 4 

cl0 cncQ>> = c a~1a~2a~3 by I xi:?: 1 & y:?: QCx 1 ,x2 ,x3 > J 

_£lD(Q))_= l irreii:i£es_of ~0i_D(Q)} J ___ _ 

Figure 8.5 
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We shall construct a Petri net D(Q) such that: 

n 
i~l (Yi· xi)+ yn+l . The net (figure 8.5) contains n+ 1 

one-place stages (places p1 ···pn+l) and two counting places pn+2 and pn+3 . Initial­

ly, only p1 is marked -- with one token. Each stage i, l::;;i_$;n, contains yi+3 tran­

sitions t .. , where Gs;js;y.+2 . All these transitions are labelled a .. Transitions 
i,J i i 

t. 0 and t. 
1 

self-loop on place p.; transitions t. 
2 
... t. 

2 
transfer one token 

i, i, i i, i, Yi+ 
from p. to p.+1 . In addition, t. 

1 
deposits y. tokens into p 

3
, and transitions 

i i i, i n+ 
t .. (~js;y.+2) deposit j-2 tokens into p 

3
.Stage n has one extra a -labelled 

i, J i n+ n 
transition t' which simply removes the token from p . The firing sequences pennitted 

n 

so far are of the form (tl,O + t 1 , 1f\t 1 , 2 + · · · + t 1 ,y
1
+2 ) · (t 2 , 0 + t 2 , 1 r'~(t 2 , 2 + 

··· + t 2 ,y2+2 ) • ·•· ·(tn,O + tn,l)"'"'(tn, 2 + ··· + tn,Yn+2 + t') , corresponding to a 

label sequence a~ 1 ···a~n The marking resulting from such a firing sequence con-

sists of z tokens in pn+3 and one or zero tokens in pn+l' where z can have any 

value between 0 and Q(x1 , · · · ,xn) - Yn+l 

Stage n+l has yn+l +2 transitions tn+l,j (ls; js; Yn+l +2) , all labelled b. 

All these transitions take one token from each of pn+l and pn+3 ' although 

returns a token to p 
1 

in a self- loop. In addition, t 
1 

. (2:;;; j ~ y +l+2) 
n+ n+ ,J n 

t n+l,l 
also 

deposits j-2 (i.e. anywhere between 0 and yn+l) tokens into counter pn+2 . Finally, 

there is a transition t", also labelled b, which removes tokens one by one from 

Pn+2 . This portion of the net becomes active after the firing of the ai-labelled 

transitions. In order to reach 

z tokens except one from pn+
3

; 

from p 3 and must be followed 
n+ 

the zero marking, transition t 
1 1 

must remove all 
n+ ' 

then t 
1 

. (2:;;; j:;;; y 
1 

+2) removes the last token 
n+ ,J n+ 

by j-2 additional b-firings of t", which takes care 

of the constant term y 
1 n+ of the polynomial Q. The total number of b-firings is thus 

y, where z~ y~ z+yn+l' so that a~ ys; Q(x1,···,xn) 'as intended. 

We have thus proved (remember that 't!, ~ r and ~ ~ ..('.~ ) : 

Theorem 8.1: The Petri net language families:£., ~,i?'-,~ can all encode poly­

nomial graphs, by means of the language L(P) defined at the beginning 

of this section. 

Remark 1: The constructions we have used in this section are quite large and com­

plicated; the number of transitions required by this method to generate L(P) grows 

roughly like an exponential function of the degree or the number of variables of 

the polynomial P. It is possible to use a different encoding of incomplete polyno­

mial graphs (with a linear subset missing) which is sufficient to establish the 

undecidability results, and which requires much smaller constructions. 
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Remark 1: For generating L(P) as an ~-language, the additional constructions of 

8.2.4 are not required. But it may be observed that the c:e_-language of the net re­

sulting from the complete construction is also L(P), so that the same net can be 

used to generate L(P) as an £-language or as an .,t'0-language, up to A. of course. 

8.3 The Undecidability Results. 

In section 8.1 we indicated that it is undecidable whether G(P) ~ G(Q) for 

given polynomials P and Q with non-negative integer coefficients. From section 8.4 

it follows that for a given polynomial P there exists a Petri net N(P) such that: 

£(N(P)) 

t'
0 

(N(P)) 

L(P) 

L(P) - (A.} 

The following propositions are clearly equivalent: 

G(P) ~ G(Q) 

L (P) !;;; L(Q) 

L(P) - A. !;;; L(Q) - A. 

£'.(N(P)) ~ £(N(Q)) 

~(N(P)) ~ ~(N(Q)) 

Therefore, the inclusion problems for ~ and ~· and hence ;;;!- and ~· -lan­

guages are undecidable. Since all four families are closed under union, and since 

L(P) ~ L(Q) ~ L(P) U L(Q) = L(Q) , it follows that the corresponding equivalence 

problems are also undecidable: 

Theorem 8.2: The inclusion and equivalence problems for the Petri net language 

families ;;t_, ~· ;t!-, ct'~ are undecidable. 

An interesting consequence of this theorem concerns the closure of Petri net 

language families under complementation. It is clear that neither .f:. nor l?-"' are 

closed under complement, because the complement of either contains no prefix lan­

guages. In the strict sense, ci1
0 

is not closed under complementation either, since 

each language whose complement is in ::f!.
0 

contains A.. So let us use the convention 

that£;; = [ L - (:\.} I (CC"" - L) E :f.
0 

} , where <1 is the alphabet of L. Now, 

since .:('.
0 

and ct'~ are closed under intersection, we observe that closure under com­

plement <r-; !;;; ~) implies, for any two :t:.0 (or .:('._~) -languages LA and LB' the 
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existence of an t.
0 

(or t~) -language LC = LA n (a~·~ - LB) , and that L = r/J ~ c 
LA ~ LB , so that the inclusion problem would be reducible to the emptiness problem 

(assuming of course that the complement of a language can be effectively determined), 

and hence reducible to the Reachability Problem (Theorem 7.1). In fact, it is suf-

ficient if the complementation closure of any of the four families 

is a subset of~~. Thus: 

i:_' £0, ct-\ x:_~ 

Theorem 8.3: If the complementation closure of any of the four Petri net language 

families 'i?, ;t?
0

, ;;e_~, .:t'~ is a subset of ~~, then the Reachability Pro­

blem is undecidable (assuming effective complementation). 

Now we shall investigate to what degree the language generated by a Petri net 

depends on the structure of the net. We shall see that the dependency is quite sen­

sitive to minor changes, which may have unpredictable effects. 

Consider the labelled Petri net of figure 8.6. It contains two components A and 

B which are standard form generators for :e_(A) and ~(B), ·Or for ;e
0

(A) and ct'0 (B). 

Let pl and p2 be the respective "start" places for A and B. These places are connec­

ted to a one-token (initially) place p
3 

by t
1 

and t
2

, both labelled c, where c is a 

new symbol, not in the alphabet of A or B. We have clearly: 

;f__(C) 

£0(C) 

c . 

c 

C£CA) U i:{B)) U {~} 

( ~O (A) U ~ (B) ) 

Let (C - t 2 ) be the designation of the Petri net obtained from C by removing 

transition t 2 . Then we have: 

;;/!__ (C - t
2

) c · ;f_(A) U {~} 

~(C-t2 ) = c · ;f_
0

(A) 

Hence: 

£Cc) =£cc - t 2 ) ~ £CB) ~ a(!_(A) 

..t'0 Cc) = ;('
0

cc-t 2 ) ~ .:('0 (B) ~ .:fa (A) 

From the undecidability of the inclusion problem it follows that: 

Theorem 8 .4: It is undecidable whether the addition or removal of a transition 

changes the language generated by a Petri net. 

Now consider figure 8.7. Again, we have two components A and Bin standard 

form, connected by c-labelled transitions t
1 

and t 2 to a one-token place p3 (The 
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new "start" place). In addition, we have a place p
4 

from which t
1 

and t
2 

require 

one token, but pl may also receive a token from p3 alone via transition t 3 , which 

is also labelled c. Call this net D
0 

if p
4 

is not marked, and D
1 

if p
4 

is initially 

marked with one token; in both nets, p
3 

has one token initially. So D1 differs from 

DO only in the additional token of p
4

. Thus: 

~(DO) c · ;f_ (A) U [ \.} c ( ;!_(A) U .x'.(B ) ) U [:>-.} 

.fo (Do) c · ;f
0 

(A) 

As in the previous case, if we could test whether DO and D
1 

generate the same lan­

guage, we could decide whether the A-language contains the B-language. Thus: 

Theorem 8.5: It is undecidable whether adding or removing one token from the 

initial marking will change the language generated by a labelled Petri 

net. (The same goes for adding or removing a place). 

Now consider the Petri net of figure 8.8. It is the result of the union cons­

truction of £(O) (A) and ~O) (B), as described in section 3. 3, plus an extra place 

called ''hold" which receives a token from every "first" or "singleton" transition 

of B; this token cannot disappear. Let us call this net E. We have: 

;t_ (E) 

~(E) 

From remark 2 at the end of paragraph 8.2.4, we know that we may choose a Petri net 

A such that, for a given polynomial P, we have: 

£CA) ..t
0 

(A ) U [ \. } L(P) 

Similarly, let ~(B) = L(Q) for another given plynomial Q. We observe that: 

.,t_(E) L(P) U L(Q) 

cl'
0

(E) U (".} L(P) 

;;f(E) = ~(E) U [\.} ~ L(P) U L(Q) L(P) 

It follows that: 

Theorem 8.6: It is undecidable whether every non-empty label sequence generated 

by a given labelled Petri net is also a terminal label sequence of that 

Petri net. 
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c 

A 

' ' c1 ......_ I -...---- B 

't 2 

Petri net C (or C - t
2

). 

Figure 8.6 

c 

"start A" A 

"start B" B 
2 

Petri net n0 or n1 , depending on token in p
4

. 

Figure 8.7 

Petri net E: "first A" A 

L(P) 

"first B" B 

L(Q) 

1'h0 ld II 

Figure 8.8 
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9. Limitations and Extensions of the Power of Petri Net Languages. 

The broad aim of this chapter is to examine Petri net languages in com­

parison to other families of languages, in particular the recursively 

enumerable languages, and the Context-Free languages. We describe Counter 

Automata andWeak Counter Automata as useful tools in this investigation. 

Two simple modifications of the firing rule for Petri nets increase their 

power to the level of Turing machines. But these modified firing rules could 

be simulated by a Petri net generating a very simple Context-Free language, 

which leads us to conclude that that particular Context-Free language cannot 

be a Petri net language. This, in turn, can be used to show that Petri net 

languages are not closed under Kleene Star. 

Finally, we propose Weak Counter Automata as an alternative generating 

device for Petri net languages, and use them to construct some very fast growing 

primitive recursive functions. 

9.1. Counter Automata 

9.1.1. Program Machines 

Just as powerful and conceptually simple as Turing Machines, but structurally 

more closely related to actual computing devices, are the so-called Register 

Machines (Shephardson and Sturgis [20]) or Program Machines (Minsky [5 ]). 

Briefly, a Program Machine consists of a finite set of variables 

[xill ~ i ~ n} and a program, which is a finite list of labelled statements of 

four types (shown in the table of Figure 9,1), with exactly one occurrence of 

start and at least one occurrence of halt. Alternatively, the Program Machine 

may be thought to consist of a set of registers or counters corresponding to the 

variables, and a finite-state control whose states correspond to the labels in 

the program, and whose transitions correspond to the actual transformation car­

ried out on the contents of the registers. 

Execution of a program begins with start and proceeds through the sequence 

of labelled statements, occasionally branching on a test or looping back, until 

it encounters a halt statement. The function computed by the program is a 
n n 

mapping f: ~ ~ N, where f(x
1

, ... , xn) is the contents of then registers if 

the computation halts with the initial contents of the registers having been 

. . . ' x . 
n 
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Statement Symbol Name 

increment 

p, : if x. 0 then goto p,' test and decrement - ]_ ----
else xi +- x. - 1; -- ]_ 

goto p," 

p, : halt ;Jtl halt 

start ---

Figure 9.1 

Minsky has shown [15] that for every partial recursive function 

w: N -+ NU [undefined} there exists a two-variable program machine such that 

f(2x,O) = (2~(x),O) if w is defined for x, and such that the program machine 

never halts if w(x) is undefinedt, In particular, it is undecidable whether a 

given Program Machine will halt when started in some given initial configuration. 

Figure 9.2 shows some simple examples which show how more complex opera­

tions can be built up from the limited repertoire of Program Machine state­

ments. Such sub-programs can of course be chained (by merging start of one 

and halt of another sub-program). 

tTo compute w(x) directly, three variables are required (Schroeppel [19]); these 
can be encoded in the following way, which yields the result above: 
Three-variable machine: (x,y,z) Two-variable machine: (u,v) 

f(x,0,0) = (~(x),0,0) u=zX3Y5 2 f(u,0) = (zw(logz(u)),0) 
v : scratch provided u is a power of 2. 
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Set x to zero 

At right: 

halt 

Conditional divide-EY.-~, 
useful when encoding into a 
two-counter machine. Scratch 
variable v is assumed to be 
zero at the beginning of the 
subprogram, and is reset to 
zero at the end. If u is not 
divisible by 3 it is returned 

(u+-u/3) 
( u is not di­
visible by 3 ) 

unchanged. The two halt state-
ments are used for the branching of control. 

Figure 9.2 

9.1.2. Language-Generating Counter Automata 

The Program Machines described so far are purely arithmetic; they can 

recognize or generate languages over an arbitrary alphabet only via some 

encoding. In this section we shall add symbol-generating (or recognizing) 

instructions to the instruction repertoire of Program Machines. 

A deterministic recognizer could be obtained by adding a statement such as 

£: read a; goto £ 1 

~ goto ,e,'' 

whose intended meaning is: read the.symbol on the input tape; if it is~. 

advance the head and go to£'; otherwise go to £ 11
• The program would be started 

with read head at the beginning of an input tape and all registers at zero; 

acceptance could be defined as halting with all registers at zero. 

But we are mainly interested in a language generator, i.e. a non­

deterministic device which can print any string from a language-to-be-generated, 

and no other strings. (Such a generator can usually be trivially transformed 

into a non-deterministic acceptor or recognizer.) 
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We propose two new statement types to do the job. These statements 

are shown in the table of Figure 9.3: 

Statement Symbol Name 

£,: goto £,' or £," choice 

Figure 9.3 

There is a print statement for each symbol from some alphabet. The choice 

statement introduces non-determinism. Now we define a Counter Automaton: 

Definition 9.1: (a) A Counter Automaton consists of a finite set of counters 

{x.11 ~ i ~ n} all containing zero initially, a finite alphabet Ct:., and 
l. 

a program consisting of labelled statements of the following types: 

increment (one per counter) 

test & decrement (one per counter) 

start 

halt 

print (one per symbol in Ct) 
choice 

(b) The language generated by the Counter Automaton is the set of all 

strings printed by some halting computation (there may be several due 

to non-determinism) from the initial all-zero counter configuration. 
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Definition 9.2: A Deterministic Counter Automaton is like a Counter Automaton, 

except that it contains no choice statements, and that there is no 

restriction on its initial counter configuration. It expresses a par­

tial function from lNn to c( associating the string generated by a 

halting computation to the argument, which consists of the initial 

counter contents. 

For a given initial configuration, a Deterministic Counter Automaton produces 

a definite output string, if it halts. The language of a Deterministic 

Counter Automaton could be defined as the range of the function it expresses. 

Let us now show that every type 0 language (recursively enumerable) can 

be generated by some Counter Automaton. We know that every recursively 

enumerable language can be encoded into a recursively enumerable set. There 

are many ways to encode a string over an alphabet a = {ap ... ' am} into an 

integer. Let us choose (m + 1)-ary representation, defined recursively as 

follows: 

e: cC-+ lN e(\.) 0 

w E d~) e (ai . w) 
a. FQ 

1. 

(1 s; i ~ m) 

i + (m+l) · e(w) 

For example, if Cl contains the nine numerals 1 ••• 9 in that order, then 

the code of a string of numerals is the decimal number spelled out by the string 

read from right to left, i.e. e(string 123) =number 321. We could of course 

have used the more "natural" order, but it is easier to decode least-significant­

digit first. 

This encoding is not onto. Non-zero numbers containing the numeral 0 in 

m+l-representation are not codes, but this eliminates the worry about leading 

zeros. But the encoding function is clearly one-one (different strings map 

into different integers) and thus has an inverse, the decoding function 
-1 ~~ 

e lN ~ Ct, which is partial recursive. 

As a matter of fact, the Deterministic Counter Automaton of Figure 9.4 

precisely expresses the decoding function. If started with the initial con­

figuration (x, y), it halts after printing the string e-
1

(x) if xis a code 

number, otherwise it does not halt. 
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Figure 9.4 

Since every recursively enumerable language is the image of some 

recursively enumerable set under the decoding function e- 1 , and since every 

recursively enumerable set is the range of some partial recursive function w, 
which in turn can be computed by a 3-register Program Machine, it appears that 

every recursively enumerable language is the range of some Deterministic Counter 

Automaton as shown in Figure 9.5. This construction uses three registers, but 

we may reduce this to two registers by using the coding u=2x3y5z and replacing 

increment and decrement on x,y,z by multiply and conditional divide by 2,3,5 on 

the new variable u, which can easily be done using the second new variable v as 

a scratch variable. The flow of control between these subroutines implementing the 

original statements will be the same as far as the print statements are concerned, 

so that the generated language will not be affected. We should also insure that 

arguments which are not exact powers of 2 will cause the program not to halt; this 

construction is also not difficult. 
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compute 

x +- t1J (x) 

print 
-1 

e (x) 

Figure 9.5 

Finally, a simple non-deterministic Counter Automaton can be used to generate 

an arbitrary value for x. Together with the automaton of Figure 9.5, this 
-1 

yields the Counter Automaton of Figure 9.6 whose language is range (0 °e ), 

as desired. If we use a two-register machine, we could of course directly gene­

rate an arbitrary power of 2 for u; this is easy, but not necessary if arguments 

not a power of two are rejected anyway. 
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x +- w (x) 

print 
-1 

e (x) 

halt 

Figure 9.6 

Thus: 

These subprograms also 

use "scratch" registers 

y and z; these three re­

gisters can be encoded 

into a new register u 

and a new "scratch" re-

gister v, as shown before. 

Theorem 9.1: (a) Every type 0 (recursively enumerable) language is the range 

of some two-register Deterministic Counter Automaton. 

(b) Every type 0 language can be generated by some (non-deterministic) 

two-register Counter Automaton. 
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9.2. Inhibitor Arcs and Priority Firing Rules 

9.2.1. Inhibitor Nets 

It is apparent that all operations carried out by Counter Automata can 

be simulated by Petri nets (having a finite-state component corresponding to 

the program and a number of buffer places corresponding to the counters) 

except for the crucial zero-testing ability. Many people including this author 

have felt for a long time that if Petri nets could in some way react to the 

absence of a token (in an unbounded place, otherwise there is no problem), then 

they could simulate Turing machines, via Program Machines. However, 

R. M. Keller [12] and S. Kosaraju [13J showed that this cannot be done. 

M. Flynn and T. Agerwala [4 J introduced zero testing (inhibiting) arcs in a 

modified Petri net model to solve certain synchronization problems beyond the 

power of Petri nets; they observed that this modification was "quite powerful". 

Agerwala [lJ later proved that they had indeed reached the power of Turing 

machines. In this section we will show how Petri nets augmented by inhibitor 

~ can directly represent counter automata. 

Definition 9.3: An inhibitor arc is a special kind of arc. It has no size 

(i.e. carries no tokens), and is only directed from a place to a transi­

tion. Graphically, it has a small circle instead of an arrowhead. The 

firing rule for transitions having incident inhibitor arcs is modified 

as follows: The transition is firable if and only if it was firable in 

the old sense and all inhibiting places (having inhibitor arcs directed 

at the transition) have zero tokens. Petri nets with inhibitor arcs are 

called Inhibitor Nets. 

Figure 9.7 shows how the various statements of a Counter Automaton can be re­

placed by corresponding portions of an Inhibitor net. Each portion will have 

an input place p£ corresponding to the label£ of the statement, and (except for 

halt), one or two output places pt'' Pin· In addition, there is a place TTi for 

each variable (counter) x.. When interconnecting the portions, places bearing 
l. 

the same name are identified. For the purpdse of generating a language, all 

transitions except those for print statements are unlabelled. 
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The correspondence is trivial; and Inhibitor Nets are at least as 

powerful as Counter Automata and Turing Machines, and can at most be more 

convenient. Let us use the convention that a Counter Automaton only halts 

when all counters contain zero. This can always be arranged by preceding 

every halt statement with a counter-clearing routine. Then we can say: 

Theorem 9.2: Labelled Inhibitor Nets can effectively generate all recursively 

enumerable languages as .;t~-languages. 

Remark: The ;£,~-languages generated by labelled Inhibitor Nets are simply the 

prefixes of all recursively enumerable languages. Some thought will show that 

the languages generated by ~-free labelled Inhibitor Nets must still be recur­

sive. We shall see that they must in fact be context-sensitive. 

9.2.2 Priority Nets 

The synchronization problems which Petri nets are unable to solve usually 

contain priority considerations such as: "if both queues are non-empty, queue 

1 is to be served first". This notion of priority turns out to be just as 

strong as the notion of inhibitor arcs. Consider the Inhibitor Net replacement 

for the test and decrement statement (Figure 9.7). If we remove the inhibitor 

arc and assign priorities to the transitions such that the transition removing 

a token from TI. has a higher priority than the other transition, the effect 
l. 

will be the same: If both are firable, decrement takes place and control is 

transferred top,; if TI. is empty, control is transferred to Pn"" 
f, l. x, 

So let us define: 

Definition 9.4: A Priority Net is a Petri net with a priority partial ordering 

of the transitions. The firing rule is modified to the extent that if 

several transitions are enabled at a given marking, only those whose 

priority is no less than any other enabled transition can fire. 

Because of this definition, it is useful to distinguish between enabledness 

(which does not depend on priority) and firability (which requires enabledness 

and proper priority). We used a partial order in the definition, since this 

actually represents a situation often encountered in modelling parallel systems. 

If the order is total, the firing sequence will be monogenic, and no non­

deterministic system (such as Counter Automata) could be modelled. 
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Since the translation of a Counter Automaton into a labelled 

Priority Net is essentially identical to that for Inhibitor Nets, we have: 

Theorem 9.3: Labelled Priority Nets can effectively generate all recursively 

enumerable languages as i!_ ~. 

It is easy to establish the following consequences of the undecidability of the 

halting problem for Program Machines: 

Theorem 9.4: The boundedness Problem and the Reachability Problem for 

Inhibitor Nets and for Priority Nets are undecidable. 

9.2.3. Converting Inhibitor Nets Into Priority Nets 

Both Inhibitor Nets and Priority Nets can, of course, be translated into 

Counter Automata. Any of the methods used to simulate Petri nets (with slightly 

modified firing rules) on a computer will do. Actually, the structure of Counter 

Automata is quite appropriate for this job. For example, a simple (non-prompt) 

approach is to first select an arbitrary transition (using choice), then test 

whether it is firable (by simulating the firing rule, taking whatever priorities 

into account), and accordingly either fire it or choose again. 

But converting Inhibitor Nets into Priority Nets via Counter Automata is 

clumsy, introduces A-transitions, and usually does not preserve structural 

transparency, which is important when we are modelling parallel systems, for 

example. 

Now let us describe a A-free method for transforming an Inhibitor Net into 

a Priority Net. Suppose the Inhibitor Net has n places p1 .•. pn and m transi­

tions t 1 .•. tm. As a first step, let us assign incomparable priorities to 

all transitions. A priority will be a vector of positive integers, and the 

partial order will be the~ relation for vectors. The transformation will be 

progressive, place by place, and the priority partial order will be progressively 

refined by adding new coordinates (vector concatenation). Thus (1, 2) has 

higher priority than (2, 2) because (1, 2) ~ (2, 2), whereas (1, 2) and (2, 1) 
are incomparable, 

be incomparable. 

for 1 ~ j ~ m. 

Vectors with different dimensions will also be considered to 

The initial priority assignment will be Pr(t.) = (j, m+l-j'>, 
J 
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At each step i we replace place pi by two places p; and p~, and we 

consider all transitions connected to pi. The transitions are transformed as 

shown in Figure 9.8. Each transition becomes one or two transitions, labelled 

like the original transition and with the same priority, except in one case, 

where the priority is refined. 
+ The transformation is such that place pi always has the same marking 

as pi in the original net, and p~ contains one token if and only if p; is 

empty; the initial marking is translated accordingly. We note that the number 

of transitions may increase significantly, as some are doubled, quadrupled, or 

multiplied even more. This can be moderated by only transforming places from 

which no inhibitor arcs originate. 

We leave it to the reader to verify that the translation produces the de­

sired effect: A Priority Net that has the same :f!. or ~-language as the given 

Inhibitor Net, except that the standard final marking is one token in every 
0 p.-place (this can be further transformed by the methods of Section 2.2). 
i 

9.2.4. Converting Priority Nets Into Inhibitor Nets 

This conversion can also be carried out without introducing ~-transitions. 

As a first step we transform the net by the methods of Sections 5.8 and 4.1 into 

a Restricted Petri Net. (See Theorem 5.8.) This may create several new transi­

tions corresponding to each original transition; each such new transition will 

have the same priority (and the same label) as the corresponding original tran­

sition. It can be verified that at any marking at most one of the new transi­

tions corresponding to a given original transition will be firable. In other 

words, everything a Priority Net can do can also be done by a Priority RPN. 

We shall thus only transform these simpler Priority Nets (recall: no multiple 

arcs, no self-loops) into Inhibitor Nets. 

Our objective is to enforce the firing constraints imposed by the priority 

rule. Let us define: 

hpr(t) 

I(t') 

{t'Jtransition t' has strictly higher priority than t} 

{pJp is an input place oft', i.e. F(p, t') = l} 
t) 

Now we have: 

(t is firable) ~ (t is enabled) & (not' with higher priority is enabled) 

In other words, at a given marking M: 

t) In Hack [5,6] the set of input places I(t) is denoted by t 
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Transformation of Inhibitor Nets into Priority Nets: 

1) An example involving the five possible transition types. 

b ( 2 ,4) 

b 

a 

(5,1) 

~t priori y or-
dering being 

(4,2) refined. 

2) An example of the successive transformation of two places. 

a 

original 

after two steps: 

after one step: 

(1,2,2,1) 

Figure 9.8 

(1,2,2) 

0 
P2 
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(t is firable) ~ (t is enabled) & (t has priority) 
where: 

(t has priority) ~ A N D ( 0 R ( M(p)=O ) ) 
Vt'Ehpr(t) Vp~I(t') 

This condition can be rewritten in disjunctive normal form. Each disjunct 

expresses one possibility where t has priority. So we create as many copies of 

transition t as there are disjuncts (minterms). Each disjunct is of the form: 

(M(p) = 0 & M(p I) = 0 ... & M(p") = 0) 

This firability condition is expressed by drawing an inhibitor arc from 

each place p ... p" in this disjunct to the copy of t corresponding to this 

disjunct. 

After carrying out this operation for each transition, all priority rules 

will be enforced by the inhibitor arcs. 

From this (9.2.4), and the previous section (9.2.3) we may conclude: 

Theorem 9.5: Inhibitor Nets and Priority Nets can be transformed into each 

other in a ~-free, language-preserving manner. 

9.2.5. Characterization of the Languages Generated £y_ ~-Free Inhibitor Nets 
or Priority Nets 

In the previous section we have seen that Restricted Petri nets are suf­

ficient in the case of Priority Nets. Transforming a Priority RPN into an Inhibitor 

Net may at most introduce self-loops of the kind shown in Figure 9.9, where part of 

it is an inhibitor arc: 

Figure 9.9 
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But such self-loops can be eliminated in a \-free, language preserving manner. 

1 1 b 1 O + I d Q Th 1 h d P ace p is rep aced y four p aces p, p , p an p . e ast t ree are in i-

cator places sharing one token; they are used to describe whether p holds zero 

(token in po), one (p') or more than one (p+) tokens in the original net 

(Figure 9.9). The marking of~ in the transformed net is one less than that of p 

in the original net. The transformed net appears in Figure 9.10. Each input or 

01tput transition (such as ti) of p (except those in a self-loop on p) is trans­

formed into three copies (t 2 , t;, t~). A firing of such a transition is rendered 

in the transformed net by a firing of the appropriate copy. A transition in a 

self-loop on p can fire only if p has no token and puts a token on p. This is 

precisely what is simulated in the transformed net. 

I 

t3 

Figure 2.:1Q 

Thus: 

Theorem 9.6: Inhibitor Nets and Priority Nets can be transformed in a ~-free, 

language preserving manner into Restricted (i.e. RPN) Inhibitor Nets or 

Restricted Priority Nets (Priority RPN's). 

Now, Restricted Inhibitor Nets consist of an interconnection of closed subnets 

of the form shown in Figure 9.11, whose language can be obtained by finite sub­

stitution from that of the net of Figure 9.12 (recall Section 5.8). 
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c 

+ 
b 

a p 

Figure 9.11 Figure 9.12 

The .t'
0

-languagetQ
0

ofthe net in Figure 9.12 over the alphabet[+, 

seen to be: 

* Qo = (Po · O) · Po 

The :J. -language Q of this net are all the prefixes of Q0 : 

~~ 

Q=(P0 ·0) P 

0} is 

The complete and incomplete parenthesis languages P
0 

and P were defined in 

Section 5.2. We call the languages q
0 

and Q the complete and incomplete 

separated parenthesis languages. q
0 

and Q have very simple Context-Free Grammars: 

Qo: s -+ sos Q: s .... BC 

s .... A B .... BOB c .... cc 
A .... AA B .... A c .... +c 

A .... +A- A .... AA c - +c-
A .... A. A - +A- c ... A. 

By using the methods of Chapter 5, 
A .... A. 

we get: 

Theorem 9.7: (a) The ;J? and ot'
0

-languages generated by A.-free Priority Nets 

or Inhibitor Nets are the closure under finite substitution, restriction 

(i.e. concurrency and intersection) and A.-free renaming of the language 

[-} and Q respectively Q
0

. 

(b) These languages are context-sensitive. 

(c) These cl'0-languages yield all recursively enumerable (type O) 
languages through erasure. 

tactually, the cyclic language~, as in section 5.8. 
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Part (c) of this theorem is a consequence of Theorem 9.3 and is a novel 

characterization of the recursively enumerable languages. The closest 

classical characterization is as closure under homomorphism and intersection 

of Regular languages and Dyck-languages. The language Q
0 

is related to a 

simple Dyck-language: Leth be the homomorphism: 

h(+) "(" 

h(-) ")" 

h (O) "] [II 

Then the language [h(Q0 )] is the subset of a Dyck language of two kinds of 

parentheses () and [J, where the nesting depth of [] is limited to one (no 

nesting). A sample string is [(()())()][] [()((()()))]. 

9.3. Limits to the Power of Petri Net Languages 

9.3.1. The Context-Free Language ~ 

In the previous section we have seen how a Priority Net or an Inhibitor net 

can be transformed into an interconnection of one-place Inhibitor subnets whose 

language is S(Q0 ) for some finite substitution s. If there existed a labelled 

Petri net whose~~-language were Q
0

, we could construct a net A whose .,t'~­
language is S(Q0) (Section 4.5). Such a net could be coupled to the one-place 

closed subnet of Figure 9.11 as illustrated in Figure 9.13: 

Labelled Petri Net A: 

cl~ (A) 

a b c d e 

Figure 2..:Jl 

f g 

!>fl, 

substitution: 

S(+) (a,b,c} 
S (O) ( d, e} 
S(-) (f,g} 
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But now, Petri net A takes over the firing constraints of the inhibitor 

arcs from p to transitions d and e. After removing these inhibitor arcs, the 

Inhibitor Net of Figure 9.13 becomes just a plain labelled Petri net, and the 

interconnection of such closed subnets will be the original Inhibitor Net without 

the inhibitor arcs, but with added places and A-transitions provided by nets 

such as A. 

This Petri net simulates the original Inhibitor Net in the sense that the 

markings reachable in the original places are unchanged, and are reachable by 

the same firing sequences, disregarding the new A-transitions. In particular, 

boundedness in the original places would now be decidable in the resulting Petri 

net, contradicting Theorem 9.4. Thus: 

Theorem 9.8: 
A 

The context-free language Q
0 

is not in :f.
0

, and can thus not be 

generated by any labelled Petri net. 

9.3.2. Non-closure under Kleene Star. 

We recall that the language Q
0 

can be defined from P0 by the Kleene Star: 

Q0 = (P0 · o)* · P0 . Since P0 is in ;f!.
0 

(up to A) and Q0 is not in~~. we 

conclude that neither .1!_
0 
norJ:~ can be closed under Kleene Star. (Recall that 

both are closed under concatenation and that ;;/!
0 
~ ~.) Also remember that 

~·( 'P .p ./)A 
ab f °'--0' which excludes closure under substitution by °'-o or °'-a· Thus: 

Theorem 9.9: The Petri net language families ;f!.
0 

(completed by A) and ct'~ are 

not closed under Kleene Star, nor are they closed under arbitrary substitution. 

9.3.3. The Languages of A-Free Priority Nets and Inhibitor Nets. 

Returning now to Priority Nets and Inhibitor Nets, we know that they can 

generate -- even without A-transitions -- non-Petri net languages such as Q . 
0 

A careful analysis of the constructions in Chapter 8 reveals that they can also 

generate the "surface" of polynomial graphs, i.e. languages of the form 
Xl X y 

(a. a n b lY = P(x1 , ... , x )), as opposed to the full graph 
i n n 

(y ~ P(x1 , ... , x )) generated in it:.
0

. It is not known whether such languages 

are in ;t.
0 

or ;e~7 if they are, then the Reachability Problem could easily be 

shown to be undecidable, using the methods of Chapter 8. 

But we also know that A-free Inhibitor Net languages must be context-
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sensitive (Theorem 9.7b). Do we get all c~ntext-sensitive languages? 

The answer is no. We still don't get even all context-free languages. 

Peterson [17] has shown that CSS (and hence ;f!__
0

) cannot generate all 

palindromes over an alphabet with two or more symbols. His argument is that 

the number of distinct intermediate markings needed to generate palindromes 

of length n grows like an exponential function of n, whereas the number of dis­

tinct intermediate markings reachable via firing sequences of length n (remember, 

no A-transitions!) grows like a power of n. 

But Peterson's argument applies equally well to A-free Priority Nets or 

A-free Inhibitor nets. A characteristic feature of languages generated by A-free 

nets, whether Priority or not, is that the number of distinct markings reachable 

during the generation of a string of length n grows like a polynomial function 

of n. 

Thus: 

Theorem 9.10: A-free Priority Nets (or Inhibitor Nets) cannot generate the 

context-free language of palindromes over a two-symbol alphabet. 

Note 1: These remarks seem to indicate that the languages generated by A-free 

Priority Nets are closely related, if not identical, to log-space recognizable 

languages for Turing machines with a work tape and a one-way read-only input 

tape. 

Note 2: It is interesting to observe the relative power of ;;f_O and the Context­

Free languages. Both are a subfamily of the Context-Sensitive languages, and 

both contain the regular languages. (Peterson has also shown that CSS, and 

hence ~O up to A, contains all Bounded Context-Free languages [17].) They 

differ essentially in the fact that Context-Free language generators have one 

pushdown stack with several symbol types, whereas Petri nets have several 

"stacks", each with only one symbol type: indistinguishable tokens. The combi­

nation of the two properties immediately gives us the power of Turing machines. 

9.4 Weak Counter Automata. 

The only feature of a Counter Automaton which Petri nets cannot simulate 

without modifying the firing rule is the zero-testing capability. So let us drop 

this feature to get a new kind of automaton, which we call a Weak Counter Automaton. 



- 119 -

Definition 9.5: A Weak Counter Automaton (WCA) is a Counter Automaton where the 

branching implied by the test&decrement is rendered non-deterministic 

by prefixing each test&decrement statement with a choice statement, as 

illustrated in figure 9.14. 

is replaced by 

i, II 

(CA) (WCA) 

Figure 9.14 

Unlike Counter Automata, Weak Counter Automata cannot usually be made to halt 

only when all counters contain zero. On the other hand, we can always modify a WCA 

such that, if there exists a halting computation, then there exists a zero-reaching 

halting computation. We take this into account in: 

Definition 9.6: The language generated by a WCA consists of the strings printed 

by halting zero-reaching computations. 

Now we observe that the translation of a WCA into an Inhibitor Net according 

to the rules illustrated in figure 9.7 always introduces inhibitor arcs in the con­

text shown in figure 9.15a, which yields the Inhibitor Net shown in figure 9.15b. 

The Petri net of figure 9.15c, which has no inhibitor arcs, clearly performs the 

same coordination as the Inhibitor Net of figure 9.15b: 

a) c) 

Figure 9.15 
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This implies that every language generated by a WCA is in 'J!.~. 
~ 

Conversely, the results of chapter 5 imply that every :t0-language can be 

generated by a Finite-State machine whose transitions are restricted by a number 

of token buffers. One method for doing this is the following (we may wish to first 

reduce the net to an RPN, but this is not necessary): We replace the closed subnet 

formed by all bounded places by a state machine (sections 4.1 and 5.6), some of 

whose transitions may add or remove tokens from collections of buffers. Then we de­

compose such multiple-buffer operations. It is not known whether this can always be 

done both in a promptness-preserving and in a hang-up-free manner, but we can do it 

one way or the other. Figure 9.16 shows a portion of the Finite State control acting 

on a few buffers. Figure 9.17 shows a (locally) hang-up-free, non-prompt WCA reali­

zation, and figure 9.18 shows a prompt WCA realization which may however halt pre­

maturely. This does not of course affect the language of the WCA, as defined in 

definition 9.6, because not all counters are at zero. 

This permits us to conclude: 

Theorem 9.11: The languages generated by Weak Counter Automata are exactly the 
- ~ 

Petri net languages of family .,(._
0

. 

a 

portion of the Finite-State control 

Figure 9.16 

possibly unbounded places, 
not incorporated into the 
Finite-State Control part. 

We may also define a restriction on WCA's which parallels the restriction of 

~-free Petri nets: We want WCA's where print statements are always separated by an 

a priori bounded number of other statements. This is easily seen to be precisely 

the case if every loop contains a print statement: 
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success 

_R, I 

Non-prompt, locally 
hang-up-free reali­
zation of the Petri 
net portion of fig­
ure 9.16 as a WCA. 

Figure 9.17 

_R, II success 

again 

V'" 
backtrack 

for the un­
successful 
firing of t 2 
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try to fire 
halt try to fire halt 

tl t2 

(as in Fig. 9.17 (as in Fig. 9.17 

success 

f, I j, II 

Figure 9.18 

Definition 9.7: A Prompt WCA is a WCA where each directed simple circuit in the 

program contains at least one print statement. 

A consequence of Theorem 4.12 (closure under k-limited erasing of :f._ 0 ) is that 

the language of a prompt WCA is in :f.
0

• Conversely, we may use the methods of chap­

ter 5 and the construction illustrated in figure 9.18 to transform a A-free label­

led Petri net into a prompt WCA generating the same language. Hence: 

Theorem 9.12: The languages generated by prompt WCA's are the family ct'0 comple­

ted by A; in fact, the family CSS. 

Note 2: In case the reader is wondering what languages would be generated by WCA's 

if all halting computations were accepted (as opposed to Definition 9.6), let 

us point out that these languages form the closure of ~A (or /:_, for prompt 

WCA's) under intersection with all Regular languages and unrestricted (or 

k-restricted) renaming. 
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As an application of WCA's, let us construct a WCA that generates a lan-

guage which encodes the graph of a very fast growing function, as a matter of 

fact, an arbitrarily fast growing primitive recursive function. 

We first define a series of sub-programs A., recursively. The sub-program 
1. 

Ai has one entry and one exit, and it operates on variables x 1 ···xi . It has 

the property that (a) no matter what the initial values of the variables are, 

the final values are bounded, and (b) there exists at least one computation 

such that y<?:. ct. (x) where x and y are the value of x. before and after the 
1. 1. 

computation. The function cti is defined by the double recursion: 

9.19. 

Q'i-l ( 1 + cti(x -1)) 

0 

= x + 1 

The recursive construction of the sub-programs is illustrated in figure 

A. , i;;:: 2 
1. 

Figure 9.19 

A. l 
1. -

The boundedness property (a) can be established by observing that every 

loop decrements at least one variable that is not incremented in that loop. 

(This also establishes primitive-recursiveness). The achievability of large 

numbers (b) is due to the fact that if "scratch" variables x 1 · · ·Xi-Z are zero 

at the beginning of each iteration, then the next iteration may achieve 



- 124 -

x. 1 := ct. 1 (x. 1) ; if the "scratch" variables are initially positive, we 
i- i- i-

can execute exactly the same statement sequence as before (this is a distinc-

tive property of Weak Counter Automata, and corresponds to the covering pro­

perty of markings in a Petri net; it has also been called the 'containment' 

property); but we might be able to do better. 

Now, for any n, we may construct the WCA described in figure 9.20, which 

has n variables and 6n + 3 statements: 

Figure 9.20 

The language generated is (a~Y I ys:~(x)}, where ~(x)~O!n(x). By 

choosing n, ~ can be made to grow faster than any given primitive recursive 

function. It can be seen that: 

0!2 (x) 

a
3 

(x) 

2x 

x 
2· (2 -1) 

2 

2· x times 
0!4 (x) ~ 22 

For example, a
5

(3) is a number so large it cannot really be comprehended, and 

yet it can be generated by a small bounded WCA, namely A
5 

with an initial con­

figuration of (0,0,0,0,3). There corresponds to it a bounded Petri Net with less 

than a dozen places and transitions whose largest reachable marking is that big. 

The main application of WCA's is, in fact, as a tool to understand the 

computational power of Petri nets. It appears that arbitrarily fast growing 

primitive recursive functions (though not all primitive recursive functions) 
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can be weakly computed by WCA's and by Petri nets, in the sense defined in 

Hack [7,9]. Some recent, unpublished results by Da-Lunwang, of MIT [3], in 

combinatorial geometry can be used to show that only primitive recursive func­

tions can be weakly computed by Petri nets, but it is not clear yet what impact 

this has on Petri net languages and their complexity. 

Another consequence, in view of the remark about small Petri nets with 

very large bounded markings, is that the transformation of a bounded Petri net 

into a State Machine, as suggested in section 5.6, has at least the complexity 

of Ackermann's function A(n), which is similar to a (n). 
n 
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