LABORATORY FOR
- COMPUTER SCIENCE

(formerly Project MAC)
R

b MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

HI_T/ LCS/TR-166

INDEX SELECTION IN A SELF-ADAPTIVE
RELATIONAL DATA BASE MANAGEMENT SYSTEM

Arvola Y. Chan

This research was supported by the Advanced Research
Projects Agency of the Department of Defense and was
monitored by the Office of Naval Reasearch under
contract no. NOOO1l4-75-C-0661

{
1

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Tius blank page was inserted to preserve pagination.

MIT/LCS/TR-166

INDEX SELECTION IN A SELF-ADAPTIVE
RELATIONAL DATA BASE MANAGEMENT SYSTEM

Arvola Y. Chan

September 1976

LABORATORY FOR COMPUTER SCIENCE
(Formerly Project M AC)

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CAMBRIDGE MASSACHUSETTS 02139

ACKNOWLEDGEMENTS

It is my pleasure to acknowledge the continual encouragement, advice and.support that I
have received from my thesis supervisor, Professor Michael Hammer, during the research
reported in this thesis. I would also like to express my sincere thanks to members of the
Programming Technology Division of the Laboratory for Computer Science: Dennis
McLeod, Sunil Sarin, Bahram Niamir, Bruce Daniels, Christopher Reeve and Timothy
Anderson for the many helps, suggestions, criticisms and comments that they have provided
in the course of this work and in the preparation of this document. Special thanks are due
to Bahram Niamir for the derivation of the closed form solution for the tuple accessing cost
function included in Appendix 1. |

This research was supported by the Advanced Research Projects Agency of the Department
of Defense and was monitored by the Office of Naval Research under contract number
NO00014-75-C-0661.

This report reproduces a thesis of the same title submitted to the Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology, in partial

fulfillment of the degree of Master of Science, August 1976.

INDEX SELECTION IN A SELV-ADAPTIVE
RELATIONAL DATA BASE MANAGEMENT SYSTEM

b

Arvola Y. Chan

Submitted to the Department of Electrical Engineering
and Cemputer Science on-August 9, 1976 in partial-
fulfillment of the requirements for the Degree of
Master of Science

ABSTRACT

The development of large integrated data bases that sappert a variety of apphcanons in an
enterprise promises to be one of the most importint data processing activities of the next
‘decade. The. effective utilization of such data bases depends oif the ability of data base
management systems to cope with the evolution of data base applications. In'this thesis, we
attempt to develop a methodology for monitoring the developing: pattern of atess to a data
base and for choosing near-optimal physical data base organizations based on the evidenced
mode of use. More specifically, we consider the problem ‘of adaptively-selecting the set of
secondary indices to be maintained in an integrated relationai data base. Stress is placed on
the acquisition of an accurate usage model and-on the precise estimation of data base
characteristics, through the use of access monitoring and the application of forecasting and
smoothing techniques. The cost model used to evaluate propésed index sefs is realistic and
flexible enough to incorporate the overhead costs of index maintenance, creation, and
storage. A heuristic algerithm is developed for the selection of a near-opmnal index set
without an exhaustive enumeration of all possxbxhnes

THESIS SUPERVISOR: Michael Hammer
TITLE: Assistant Professor of Computer Science and Engineering

ACKNOWLBDGEMENTS S 0080000000 0esEEAROIEROSPERNSsOSTORITEOEBEOIOIEPREOSEOETSESDRGS .o

ABSTRACT oo-t0'.0o0l'0.0000‘!o...g,!'t..l'if"tllol.u'-o‘l.o.--...‘-oc

TABLE OP CONTENTS S5 0 P EEP L ICIONONPERLEOPELP RN RNIBESOENEEESPINOSEr

LIST OF FIGURES ..l.,‘..j!.ll..;'Q_Ql“ﬁtl":ot,l;".!I‘Q'II:CQQ:‘.':‘-"'..C.l.0..l

Chapter

1

INTRODUCTIOND oooooooooooo ss e s s s 00 *ses0ser0sss B EB O

1.
2.
3.
4,
S.
6.
7.

Integrated Data BaSES i esc-sevcacssccssaroscrsssesvnsas
Relational Data Modelceveevetenececcesasnascannans
Relational Data base IBplementation ...esveeveccecerncin
Architecture of a Protetype Self-adaptive DBMS
Thesis ODJECTIVOS weseraravserssncasesianoascescennseness

Appro“h PR 0 89S UUNFIL2CEIP TSRO ICELELEIOIBOALOIBPIOBOSIBDESISRIROENSTES

org‘nization vnq.’oqlio.n--Dcrco'ooc‘-oo--no-‘..bio.oucﬁ_nicio.u‘-

2 DATA BA.SE ORGANXZATION seessese ...-jy.ga00‘;.-6;&&0‘.'.'00‘.9Q

3

1.
2.
3.
4.
S.
6.
7.
8.

File MOGEl vovivesvecesrcessosresesssncasonsansacccansocs
Access Modelcivveiettncrsnscnasentansccrssrressscnsns
Tuple Organization ...vvveececeecensocsnsocesssansossans
Index Organization .s.coivieevenscenascsenccscssassonessns
Transaction Model and Processingccceeeecvnncvence.
Query Distribution s.cveiercaccunsensacrcanasesecesosanes
Domain Value Distribution .c..ueisivessenccscocncancenes
Objective of Index Selectioncvevevcneseccscsscenans

COST ANALYSIS 68 0 E ISP 0P P IV CEENNSLELENSEBTOTOEODOOLBEROENOSERIOECGESICOTTDSE

1.

20 Index creation .I..O.ll....OQ,'..‘I‘.'D'.".q.....'”.'......'Il(

Tuple Access S 8 8 80O ESEEOROCROIEOOSETIORNNSOEOPIOREOLEPNOSETEDTOSEYN

7
7
8
10
12
13
14 -
15

17

17

17
18
20
23
27
28
29
30

31
35

3. Index Accessing and Maintenance «eeevesesseorcsonscsecns
4! Total system Cost (BN BN BN B RN B I Y R N B BN RN N AN BN RN RN NE BN BN BN B BN BN NN BN BN BN RN B B B BN B BN 4

4 PARAMETER ACQUISITION

1. Statistics Gathering ceevevieeerevrsoesonnssscnncasacoos
2. Application of Forecasting Techniques «cevevececsacsnns .
3. Exponential Smoothing «vveeveecercvenes sesesennuns .
4. Adaptive Forecasting ¢vevevenvncesssnen tesveessrennsanas
S. Parameter Forecasting .e.vecevevesoncenconcnns ceereanaes
S INDEX SELECTION ...vvevrnvans tessesssensaneenssererrsesases

1. Index Selection Heuristics
2. Index Selection Procedure

3. Performance of Index Selection Heuristics «ecveen
4. On Further Reducing the Cost of Index Selection

5. Query Clustering

6 SUMMARY AND FUTURE RESEARCH ...cvvvvevnnns tesecnanas Ceeseae

1. Comparison With Previous Work ...vvvvinvanenees tereanane

2. Directions for Future Research cereranas creesene
Appendix

1 PROOF OF EQUATION (3.3)
2 ANALYSIS OF SORTING COST .

REFERENCES

38
40

42
42
46
47
49
53

55
56
60
63
66
69

74

75
76

80

85

88

Figure

LIST OF FIGURES

Page
A SAMPLE RELATION .iviiiiniviiiiiinnnnenes cevaan ceresesees 9
CONCEPTUAL ORGANIZATION OF AN INDEX tivevivienneennnennsns 21
PHYSTCAL ORGANIZATION OF AN INDEX tvvevnniiiennonnneanesns 22

TUPLE ACCESS COST FUNCTIONS tiitviiinentinenensnnennnancns 34

CHAPTER 1
INTRODUCTION

' The development of large integrated data bases, each serving a wide vaﬁety of applications,
promises to be one of the most important data processing activities of the next decade. The
effective utilization of such data bases is highly deﬁéﬁdeﬁt on the relationship between their
physical orgahizatioh and the prevailing modes of use to ﬁhich they are p’ut. In this thesis,
we address the problem of optimizing the peréom‘nance of an integrated data base by

automatically adapting its physical organization to chahg‘ing access requlirements.

1. Integrated Data bases

An integrated data base may be defined as a collection of interrelated data stored without
harmful or unnecessary redundancy and accessed in a uniform and controlled manner,
serving one or more applications in an optimal fashion [Martin75). It may be viewed as the
respository of information needed for performing certain functions in an enterprise. In
addition to accesses (continuous retrievals and updates)i‘b\y ippﬁﬁf‘ton{programs for regular
control functions, it may be used by interactive users for unanticipated information retrieval

for planning purposes.

The profits to be gained from the integration of previously related but highly duplicated
data bases are manifold [Martin75, Chamberlin76). The 'e”lvini"inati#éh of unn_ecess’arj
redundancy leads to reduced storage and updating costs. More importantly, the consistericy
of information stored in the data base is enhanced,smcethe possiblhty of hiving different

copies of the data in different stages of updating is removed. Furthermore, the improved

Chapter 1 8 Introduction

coherence of the data will significantly increase the usability of the data base. By providing
users with the capability of extracting any information that is logically contained in the data
base, the generation of extensive printed reports on a scheduled base for manual analysis

can often be avoided.

In order for these data bases to be truly effective, the data management systems which
support them will have to manifest two important characteﬂsncs data iﬁdépendence and
non-procedural access. By data independence wé mean tt;at useﬁ and tﬁeir iﬁplication
programs are shxelded from knowledge of the actual phys;cal organuanons used to
represent their data, concentrating on a logical view of the data “This makes the data base
easy to use and avoids the need for application programs to change when the data base’s
physical structure is reorganized. Non-procedural acoess alsﬁ makes the data base easy to
use; this means the provision of access languages which allow the specification of desired
data in terms of properties it possesses rather th‘aﬁ in terms of the sg;rch algorithm used to

locate it in the data base.

2. Relational Data Model

The relational model [Codd70] of data has been proposed ras a means of achieving the
above goals of data-independence and non-procedural access. The user of a relational data
base is provided with a simple and uniform view of the data, a logical view which is.
completely independent of the actual storage st@rq,gud_ to. represent their data. The
simplicity of this logical data ;tructu_ré lends uself to accessbx me‘rans_ of rerasy;-t,o-.u_se
languages, which provide associative referenci;tg (content Md&uing) of the data base

contents.

Chapter | 9 Introduction

Specifically, a relational data base consists of a collection of relations - a relation is a named
two-dimensional table, which has a fixed number of (named) columns and an arbitrary
number of (unnamed) rows (called tuples). Each tuple (tl, to, ™ tm) represents an entry in
the relation; t;, the ith component of a tuple, is a member.of D;, the domain associated with
the ith column. (Henceforth, we will use the terms column and domains interchangably.)
The relation EMP depicted in Figure 1 has four columns; fof each tuple of the relation, the
corresponding columnar values represent the name, age, sex, and salary of the particular
employee. Figure | represents a snapshot of the relation at a particular point in time;
relational data base languages provide users the ability to selectively retrieve or modify

individual tuples, as well as insert and delete tuples.

EMP: TUPLE NAME AGE SEX SALARY

1 Smith 30 M 16000
2 James 25 M 12000 -
3 Black 28 F 14000
4 Brown 35 M 20000
) Jones 20 F 10000
6 White 40 F - 16000
7 Gray 35 M 15000
8 Green 20 F 10000
Figure 1

A Sample Relation

The table of Figure 1 is purely the user's logical-view of the data base; there are no

stipulations as to how this data would actually be stored on the computer.

Chapter 1 10 Introduction

In order to find the names of all male employees making more than 315,000, the user might
express a query [Astrahan?5] as

SELECT NAME

FROM EMP

WHERE SEX = 'M!

AND SAL > 15000.
The query language processor would -translate this specification of the desired information
into searches on the data base that utilize the precise storage structures and auxiliary access
mechanisms used to store the data in order to -locate the: desired tuples and retrieve the

specified column values.

3. Relational Data Base Implementation

Because of the distance of the user's view of a relational data base (and of his queries
against it) from the realities of the data base’s physxcat orgsmzanon, more responsibility is
placed on a relational data base system than on a mnmtmal system. This responsibility
takes two forms: choosmg the physical representation for a relation; and optimizing the
execution of queries against a relation, making optimally efficient use of the available access
structures. Relational data base systems must possess "intelligence” in order to make
decisions in these areas, which have heretofore been the province of human decision-

makers.

We believe that the selection of good storage structures is the primary issue in relational
data base implementation, since the efficiency that can be achieved by a query optimizer is
strictly delimited by the available storage structures. Furthermore the efficient utilization of

Chapter 1 1 Introduction

a data base is highly dependent on the optimal matching of its physical organization to its
access requirements, as well as to other of its characteristics (such as the distribution of
values in it). (For example, certain data base organ‘izationrare suitable for low update -
high retrieval situations, while others yield optimal:performance in' opposite circumstances.):
Hence, the usage pattern of a data base should be ascertained and utilized in cf\oosing its
physical organization. In addition, when viewed as the repdsitory of afl information used in
managing an enterprise, an integrated data base can no longer be considered as a static
entity. Instead, it is continually changing in size, and its access requirements gradually alter
as applications evolve and users develop familiarity with the system. Accordingly, the
tuning of a data base’s physical organization to fit its usage pattern must be an ongoing
process.

In current relational data base systems, the data base administrator (DBA) may make
recommendations to the system about desirable auxiliary access structures, but his
judgements are based largely on intuition and on a limited amount: of communication with
some individual users. For large integrated data bases, a more systematic means for
acquiring information about data base usage, and a more algorithmic way of evaluating the
costs of alternative configurations, will be essential. A minimal capability of a data base
management system should be the incorporation -of monitoring mechanisms that coliect
usage statistics while performing query processing. A more sophisticated system would sense
a change in access requirements, evaluate the cost/benefits of various reorganization
strategies, and choose an optimal structure to be recommended to-the DBA; eventually, such

a system might itself perform the necessary tuning.

The work to be reported in this thesis is part of an ongoing research effort to develop a

self-adaptive data base management system. The intent of this development. is twofeld: to
develop the techniques and methodology for the consiruction of such systems, and to do
performance analysis of these techniques so as.10 assess their costs and payoffs.

The operation of the initial version of the prototype system is envisioned as follows. The
specifications of data base interactions, by both interactive users and application
programmers, will be expressed in a non-procedural language; these are first translated into
an a high level procedural system level interface language, which is then interpreted by the
system modules. The language processor has available to it a model of the current state of
the data base, which contains, among other things, a description of the current physical
organization of the data base, and estimations of the characteristics of the data base’s
current contents. Using this information, the language processor can choose the best
strategy for processing each data base operation in the current environment. Statistics
gathering mechanisms are embedded within the system modules that interpret the ob ject
code of the language processor, and record data capcerning the execution of every data base
transaction. The statistical information gathered for a run is deposited in a collection area
and summarized from time to time. When the reorganization camponent of the system is
invoked (which will be at fixed intervals of time), the statistical information collected over
the preceding iaterval is combined with statistics from previous interval and used to obtain
a forecast of the access requirements for the upcoming interval in addition, a projected
assessment of various characteristics of the data in the data base is made. A near-optimal

physical organization for the data base is then determined heuristically; optimality means

Chapter | 13 _ Introduction-

with respect to total cost for the upcoming interval, taking into account the storage and
maintenance cost of any auxiliary access structures. ‘This-cost i$ compared with the
projected cost for the existing organization. Reorganization will be performed only if its
payoff is great enough to cover an appropriate fraction of its cost as well as that of

PR

application program retransfation.

5. Thesis Objectives

The principal goal of this thesis is to develop the techniques and methodolo

construction of self-adaptive data base management systems. At:‘its Hheart, this is a problem
in pattern recognition, statistical forecasting arid ‘artficial iritelligence: first, tol extract from
a mass of statistics relating to data base performance a succinet’ pattern which characterizes
its mode of use; second, to apply forecasting techniques developed in management science in
the detection of shifts in usage pattern and the projection of upcoming access requirements;
third, since an exhaustive consideration of all possible structures is computationally

infeasible, to develop efficient heuristics that can use the projected usage pattern to

synthesize a near-optimal structure.

The continuous monitoring of accesses to a data base opens up many possibilities for its
reorganization. Rather than providing a comprehensive study on reorganization
possibilities in a data base management system, we have limited the scope of our initial
investigation to a well-defined aspect of data base reorganization, so as to obtain some
concrete results. We have chosen as the vehicle for this study the problem of index
selection in a relational data base. A secondary’index (sometimes referred to as an

inversion) is a well-known software structure which-can improve the performance of

Chapter 1 14 Introduction

accesses to a relation (file) [Bleir67, Date75, Martin75). For each domain (field) of the
relation that is indexed, a table is maintained, which for each value of the domain in
question contains pointers to all those tuples (records) whose contents in the designated
. domain is the specified value. Clearly, the presence of a secondary index for a particular
domain can improve the execution of many queries that reference that domain; on the
other hand, manitenance of such an index has costs that slow down the performance of data
base updates, insertions, and deletions. Roughly speaking, a domam _th;t' is refemced
frequently relative to its modification is a good candidate for index maintenance. The
choice of which (if any) domains to index must be done with. care; a good choice can
significantly improve the performance of the system, while a bad selection can seriously
degrade it. The goal of our system is to make a good choice of those domains for which to
maintain secondary indices, based on how the data base is actually used.

6. Approach

There have been a number of previous studies on the index selection problem [Lum7l,
King74, Stonebraker74, Cardenas75, Held75b, Farley75, Scholnick75). However, we feel that
the results that have been obtained are not directly applicable to a complete or general data
base environment. Some of these have been formal analyses which have made many
simplifying assumptions in order to obtain analytic solutions; others have been system
designs that are incomplete or unrealistic in many ways. Qur thrust here is to relax many
of the simplifying assumptions made in previous studies and to develop more complete and
accurate models of costs and accesses. In addition, we will stress the _importahce of the
acquistion of accurate parameters to the cost madel, an area which is of specul significance

in a dynamic environment where access requirements are continually changing, but which

Chapter 1 ' 15 Introduction

has hardly been addressed in previous works. Four-basic components of our investigations

can be identified:

1

(2)

&)

4)

the development of accurate cost-models: for the procéssing of ddta base transactions
under different indexing organization (i.e. when different sets of domains are

indexed);

the identification of the set of usage parameters that succinctly characterize the data
base usage and which can be inexpensively acquired during the processing of data

base transactions;

the application of appropriate forecasting techniques to detect and respond to shifts in

access patterns and data characteristics;

the design of heuristic computation procedures that exploit the structure of the index
selection problem in the synthesis of a near-optimal data base organization (i.e.

choosing a near optimal index set) at a reasonable cost.

7. Organization

The rest of this thesis is organized as follows. Chapter Two summarizes the data base

environment which we shall utilize: the data model, the transaction model, the storage and

index organizations, and the various assumptions we have made. In Chapter Three, we

present our cost analysis for various basic operations in the data base and describe the

ob jective cost function that we will attempt to minimize. Then in Chapter Four, we explain

Chapter | 16 Introduction

how parameters needed by our cost model are acquired through statistics gathering and
application of forecasting techniques. In chapter Five, we argue for the need of heuristics
for the solution of the index selection problem and describe the heuristics we have devised.

Finally, Chapter Six includes summary, conclusions and suggestions for future research.

17

CHAPTER 2
- DATA BASE ORGANIZATION

In this chapter, we describe the data base environment we have assumed in our research.
Our discussions will be based on a rather general'model of the data base, one which can’
readily be extended to characterize a large variety of existing systems. We will describe the
storage and access structures in the data base, the kinds of transactions that may be
conducted against it, and the way transactions are processed. In addition, we will contrast
our assumptions with those employed in previous studies which wé feel to be incomplete or

unrealistic.

1. File Model

As we have said, we operate in the environment of a relational data base. The totality of
formatted data in the data base consists therefore of one or more relations. However, we
address here the reduced problem of selecting “indices for a data base made’ of a single
relation. (We expect that extensions can be made to the general multi-relation case.) Even
though insertion and deletion of tuples are permitted in our transaction model, we will
assume that the cardinality (number of tuples) of the relatian remains relati?ely%nc’hanged
between two consecutive points at which index selection is considered (i.e. the rate of

change in size of the data base per review interval is small).

2. Access Model Cs

i

Previous studies on index selection have often ‘assumed rather -unrealistic access models:

Chapter 2 18 Data Base Organization

both King [King74] and Schkolnick [Scholnick?5] have assumed that the cost of accessing
an arbitrary subset of all the tuples in a relation is directly proportional to the size of the
set. This will be true only if all tuples are equally accessible, as in the case when they all
reside in primary memory, or equally inaccessible, as in the case when each is independently
stored on secondary storage. For data bases of reasonable size and reasonable tuple length,

neither assumption will hold.

In this study, we will assume that the totality of the data base (both the stored representation
of the relation and the set of secondary indices that are maintained) resides on direct access
secondary storage devices like disks [Rothnie74, Blasgen76] Physical storage space on such
devices is partitioned into fixed size blocks called pages. The page is the unit of memory
allocation and the unit of transfer beﬁveen main memory and secondacry storage. The
accessing cost of a page is assumed to be independent of the sequence of page accesses.
Furthermore, we will assume that the system is I/O bound, so-that page accessing cost
dominates all other internal processing costs. Hence, the processing cost for a data base
transaction is measured solely in terms -of the number of pages that have to be accessed in

its processing.

3. Tuple Organization

We will assume that tuples are of fixed length (i.e..each occupies the same amount of
physical storage space) so that each page has a capacity for a fixed number of tuples. To
retrieve all the tuples in the relation, a scan of all the pages on which- the tuples reside can
be performed. (Henceforth, we will refer to these pages as the segment on which the

relation is stored.) The cost of this sequential acan is just.p pages, where p is the number of

Chapter 2 ' 19 Data Base Organization

pages in the segment. However, in many instances, only a small subset of the tuples will
actually be required for processing; hence, it is desirable to provide additional access paths
to enable access to just those tuples that are needed. In other situations, all tuples may be
required, but in a specific sort order. If the required ordering is different from the one in
which tuples are physically stored, then sorting will be required; for typical sizes of data
bases, an external sort would be in order, and would entail going over the data in several
passes. Hence, it is desirable to physically cluster together tuples that are needed together.
Held and Stonebraker [Held78b] have investigated a variety of organizations for storing
tuples of a relation on pages of a direct access file, and have made a broad categorization of
keyed structures versus non-keyed structures. A key structure is one in-which a domain (or a
combination of domains) is used to determine where in secondary storage the tuple should
be stored. The advantage of a keyed structure is that tuples that are often needed together
can be clustered together physically. However, any modification to a tuple in the keyed
domain(s) will require the tuple to be relocated. ‘Hence, all index entries that peint to this
tuple will have to be modified also. A non-keyed structure is one in which the tuples are
stored using some criteria that is independent of the value of the tuple. The advantage of
a non-keyed structure is that it enables auxiliary access structures like indices to be

maintained more economically.

For the purpose of this thesis, we will assume that the tuples in the relation are organized as
a non-keyed structure. We will assume that they are stored sequentially on the pages of the
segment without any preferred ordering. (For example, they might be stored according to
their chronological order of insertion into the data base) Since the cost of a sequential scan
is dependent ‘on the number of pages in the segment, it is esséntial that the storage

utilization in the tuple space be maximized, so as to minimize the cost of segment scans. We

Chapter 2 20 Data Base Organization

will assume that all empty spaces resulting from the deletion of tuples will be reused for
newly inserted tuples, before a new page is allocated far the sagment. (This can readily be
done by keeping a linked list of the empty spaces in the segment. The linked list can be
stared in the empty spaces in the segment itself. Only a pointer to the head of the list need
to be maintained separately for the purpose of storage allacation in the tuple space) Even.
with the above assumption, poor storage utilization can still. resuit from a long. sequence of
tuple insertions followed by a long sequence.of tuple deletions. On the other hand, garbage
collection in the tuple space would have to bewmpzmdbf!hemodtfm of all those
index entries for tuples that are relocated. To simplify our discussions: here, we will finesse
the need to garbage collect in the tuple space by assuming that there are no clustered
deletions of .tuples from the same page; and that the general trend -is for the data base to
grow in size. (Note that we could readily include garbage cpllection averhead in our cost
model by manitoring the average number of tuples that are relocated per review inserval, in
addition to the actual number of insertions, deletions and modifications, towards the

estimation of index maintenance cost.) . -

4. Index Organization

We assume that each tuple in the relation has associated with it a unique tuple identifier
(TID), a logical address which enables the tuple to be lecated with a single page access. An
index on a column of a relation is then a mapping from values in the column ta TIDs of.
tuples with those values. Conceptually, an index may be viewed as a binary relation
consisting of pairs whose first component is a value from the column and whose second
component is the TID of a tuple with that value. Figure 2 shows an index on the column
salary for the EMP relation depicted in Figure L. (This. sequential arganization is actually

Chapter 2 2 Data Base Organization

assumed in [King74].) However, as Cardenas [Cardenas75] has pointed out, the
organization of the index is itself an important problem in the enhancement of system
‘performance. We will therefore assume that the index is organized in such a way that all
those TIDs associated with the same column value are easily accessible. Specifically, we will
adopt the VSAM-like tree organization as used in Blasgen’s study (Wagner73, Blasgen76].
Figure 3 shows how the index shown in Figure 2 will actually be stored. It is a balanced
tree whose nodes are index pages. Leaf pages contain pairs wHose first component is a
column value and whose second component is a sorted list of the TIDs of those tuples with
that column value. The pairs in each leaf-page are sorted on the value of their first
component. Higher level pages contains pairs consisting of the identifier of a lower page
and the high key value on it. These pairs are also sorted by the values of .their first
components. The tree is kept balanced on insertion or deletion in a way that is similar to

the maintenance of B-trees [Bayer72], with the splitting and merging of pages as necessary.

SALARY TID

16000
12000
14000
20000
10000
16000
15000
10000

L1 0O~ U &I

Figure 2.
Conceptual Organization of an Index

Chapter 2 22 Data Base Organization

2 |
/
7
//>
7
K
‘1'
/7
///
’/
//
}T""H 4 - T
RN IR TR | R i
L IR e B
! L i] LJ { e
/ NN
/S
. \
4 “\\
1/ N
// ~,
,// ~
:
/ { .
N
™~
i :\\ .,
) e) o
B f I ! 1 T i oo
! Sl é,“ i 5&1:‘;"3_;“-!’ ’ ! Lt 11"‘”;I»~~ R R \“' [l‘-;o]
| i | i | S i H - il i

Physical

Figure 3

Organization of an Index

Chapter 2 : s Data Base Organization

5. Transaction Model and Processing

We will consider four types of transactions that may be conducted agamst the data base:
the retrieval, insertion, updating and deletion of tuples. An update or a delete operatlon is
often specified in two components a selection component whxch determmes the set of tuples
to be processed, and an action component (whlch in the case of an update determmes how
each tuple is to be processed). As will be discussed below, the use of an index (or indices) to
identify the set of tuples that satlsfy (or potentlally satrsf y) a selection component entails a
number of steps, after which we can no longer assume that any part of an index still reside
in primary memory. Hence, we can assume that the maintenance to the indices due to an
update or delete is independent of the selectlon component of the transaction (i.e, the
maintenance cost of an index due to a tuple deleuon or modtf ication is the same regardless
of whether the tuple is identified through the use of that mdex or through a sequentxal
scan). Therefore, we will assume that the data base transacttons spec:fxed in the source
language get translated by the language processor mto sequences of quenes, updates inserts,

and deletes, as described below.

(1) Query - this can result either from a retrieval specif ication in the source language or
from the data selection component of an update or delete specrf ication as discussed
above. It enables those tuples to be retrleved or acted upon to be specxf ied in terms of
the propemes they possess In relatlonal access languages that are currently betng
developed, powerful and general data selectxon predtcates are allowed [Codd7l,
Boyce74, Astrahan?5, Held75a, Czarnik‘lsl l-loyvever, in order to be able to eyaluate
the tradeoffs of a parttcular index, we shall ltmxt ourselves to the consxderatxon of only

those data selection predlcates for whose processmg the utility of indices can readtly be

Chapter 2 24 Data Base Organization

(a)

(b)

determined. We will therefore allow only the following predicate types:

a predicate consisting of a single equality condition or a conjunction of two or more

equality conditions;
a predicate consisting of a disjunction of two or more equality conditions.

(By an equality condition, we mean a predicate of the form A=k, where A is some

domain name, and k is a constant or program variable.)

Henceforfh, we will refer to the process of idenufkying}the set of tuples that satisfy
(qualify for) the selection predicate associated with a query as the resolving of the -
query. (A retrieval specxftcatxon in the source hnguage may in a.ddmon to the selection
of tuples, specxfy what fields in the selected tuples are to be output or further
processed. However, the time to perform these operations is independent of which
indices are maintained, and so will be ignored m our disucsuon here.) For a query
arising from a delete or update specification in the source ’language, we will assume
that each qualified tuple is returned accompanied by its TID, thus allowing it to be
identified in subsequent.delete or update operations. |

An index (or a set of indices) can be used to totally or’partially resolve a query. (A
query is said to be totally resolved when the exact set of tuples fhat satisfy the
associated selection predicate is xdennfxed and it is said to be partially resolved if a
superset (but one which is smaller than the entire set of tuples in the relation) of those

tuples that sausfy the associated selection predxcate is 1dentxf ied. Thls partially

Chapter 2 | 25 Data Base Organization

(a)

qualified set of tuples will have to be brought into main memory and each tuple must
be examined to determine if it satisfies the full predicate) Given a data selection
predicate and an existing set of indices, there are a number of possible strategies for
obtaining the set of selected tuples. Depending on the nature of the predicate and the
selectivities of the domains involved, it may be most profitable to use none, all, or a
subset of the applicable indices. In pr“evimis studies, it is assumed that indices are used
whenever they are available. However, as we will see from our cost analysis in the
next chapter, there may be situations in which it would be most economical to use less
than the full set of applicable indices in resolving a query. For simplicity, we will
assume that the query processor uses the following decision criterion: it will evaluate
the expected cost of processing the query using the full set of applicable indices (i.e.
existing indices on those columns whlcﬁ are specified in the query) and will use all of

them only if this expected cost is less that of a sequential scan; otherwise a sequential

'scan will be utilized. (Note that a-disjunctive query will bé resolved using indices only

if indices on all of the domains referenced in the query are available; a tuple that
does not satisfy any of the predicates resolved through indites can still potentially
satisfy those predicates on domains for which no indices exist, and hence some

qualified tuples can only be identified through a sequential scan of the entire segment.)

We will assume that a query is processed using indices as follows:

For each domain specified in the query and for which an index exists, a list containing

the TIDs of all those tuples that satisfy the equality condition on the column in

question is obtained;

Chapter 2 ‘ % Data Base Organization

(b) Depending on whether the selection predicate is a con junction or disjunction, an

(c)

2)

intersection or union list of all those lists obtainad .in step (a) is formed. This restricted
list contains the TIDs of all thase tuples that satisfy the conjunction or disjunction of
those equality predicates involving domains. for which indices exist;

This restricted set of tuples is brought to main memary for further processing. (In the
case of a canjunctive query that has only been partially resolved, ie, the restricted set
of tuples only satisfy the conjunction of those equality predicates involving domains
which are indexed, each of the restricted tuples is checked against the equality
conditions inveolving the non-indexed domains and then discarded or retained
accordingly. (This is sometimes known as the removal of false-drops [Schkelnick75])

(In the process of obtaining the TID list for. the. restricted tuples that have to be
accessed, it is possible that some.of the TID lists.involved are so long that they cannot
completely reside in primary memory. Therefore, we will assume that the list
manipulation phase is combined with the tuple access. phase:. ie, we will assume that
the individual TID lists are in the same sort order, so that the union or intersection
process can be carried out in a single pass over aill of. the participating lists [Welch76).
By utilizing portions of the resulting TID list as soon as it is available, extra page
accessing can be avoided.)

Insert - this inserts a single tupie into the refation. It is specified by supplying a value
for each of fields.in the tuple to be inserted, and. resuks in the tuple’s insertion into the
main file, together with the necessary maintenance to the existing. set of indices.

Chapter 2 27 Data Base Organization

(3) Delete - this deletes a single tuple from the relation. It is specified by supplying the
TID of the tuple to be deleted, together with values in different fields of the tuple,
and results in the deletion of the tuple from the stored representation of the relation,

and the necessary maintenance to the existing set of indices to reflect this deletion.

(4) Update - this involves a single tuple in the relation. It is specified by three
components: the TID of the tuple to be updated, its old component values, and its new
component values. It causes the tuple to be updated, and the indices on the affected

domains modified accordingly.

6. Query Distribution

In earlier index selection studies, simplifying assumptions on query distributions are often
adopted. In [King74), it is assumed that selection predicates only consist of of single equality
conditions. Hence, it is sufficient to summarize the statistics on query distribution by the
probabilities of each domain being specified in a selection predicate. In [Scholnick75], the
restriction to the consideration of single-domain queries is relaxed, but with the imposition
of the new assumption that domain occurrence probabilities in queries are independent.
Hence, the model that is used there is unable to account for the positive or negative
correlation among domain occurrences in queries; such correlation is common in the usage
of real data bases. (For example, in queries on the EMP relation (Figure 1), age and salary
might often be specified together while name is more likely to be specified alone.) In this
study, we will do away with any such simplifying assumption by observing the occurrence

frequencies of those queries that actually occur.

Chapter 2 28 Data Base Organization

7. Domain Value Distribution

In earlier work, it is often assumed that the set of distinct values in a domain is evenly
distributed among tuples in the relation, and that all domain values are equally likely to be
specified in the constant part of a selection predicate. Consequently, the average fraction of
tuples that can be expected to satisfy an equality condition on a domain is assumed to be the
reciprocal of the number of values in the domain. However, in a real data base, it is often
the case that the distribdtion of domain values among tuples and in query specifications are
skewed; i.e. some values are used more often than others. We would like to take advantage
of our continuous monitoring facility to detect such situations. We will therefore define a
new measure for the resolving power of a domain index. We define the average selectivity:
of a démain as the average fraction of tuples under consideration that have historically

satisfied an equality condition involving that domain.

Since we allow the specification of multiple domains in queries, it is necessary to have a
measure for the joint resolving power of two or more domain indices. Far this purpose, we
will assume that the specification of values from different damains in a query are
uncorrelated (i.e,, given that a query specifies two columns A and B, the probability of a
particular key value in column B being specified is independent of the value in column A
that is specified). Hence, the joint con junctive selectivity of a set of domains D, each with

average selectivity AS; is
(2. 1) Oiep AS4

(The interpretation of this expression is that the expected fraction of tuples that satisfy a

Chapter 2 | 29 Data Base Organization

number of predicates simultaneously is equal to the product of the individual expected
fractions that satisfy the predicates.) Similarly, the joint disjunctive selectivity of a set of

domains D, each with average selectivity AS, is
2.2) 1 -0y .p (- ASD
(The interpretation of this is that the expected fraction of tuples that satisfy a disjunction

of equality conditions is the complement of the fraction expected not to satisfy any of the

equality conditions in the dis junction.)

8. Objective of Index Selection

We assume that index selection will be reconsidered at fixed intervals and that usage
statistics are collected during the processing of each transaction in the data base and
summarized at the end of each interval. The objective of the selection process is to
minimize the total system cost for the upcoming interval. This total cost includes retrieval
processing; index creation, maintenance and storage; and application program
retranslation. In contrast with previous studies, we have chosen to minimize this total cost,
rather than using a probabilistic model of data base transactions and attempting to
minimize only the expected cost of an average transaction. Our information on the absolute
level of activities in the data base (in addition to their relative levels) allows us to amortize
such cost as index creation, index storage and application program retranslation over the

data base transactions, rather than completely omitting them from the cost model.

30

CHAPTER 3
COST ANALYSIS

One of the most important tasks in the analysis and enhancement of performance of any
system is the determination of the set of parameters that have a significant effect on
performance and the formulation of the cost model relating system performance to these
parameters. Since we operate in a.dynamic envirqnq\fent,z wg,haye to resort to thg continuous
monitoring of data base transactions to obtain the parameters in our system. As we shall
see, most of these parameters can be directly measured. E!bweygr,, there are others that are
not directly observable, in which case we have to relate them to statistics that can be readily
obtained through statistics gathering. In this chapter we will anﬂyze the cast of wvarious
basic operations in the data base system and then dxscuss the abjectxve cost function that

our index selection procedure will endeavour to minimize.

As we have seen, the processing of a query using indices involves the retrieval of the
relevant TID hsts from. the indices,y, the mamgulmon of these lists to,ob;ain ';an'mtcrsecti.on
or union list, and the accessing of the restricted set of tuples as 1denuf ied by the resultant
list. As in previous studies, we assume that the manipulation of thé TID lists is done in»
main memory, and is therefore negligible according to our cost criterion of page accesses.
Similarly, any need to remove "false-drops” from the restricted set of tuples is done in
primary memory at a negligible cost. Hence, the processing cost of a query using indices can
be assumed to be made up of two components: the cost of using the relevant indices and
the cost of accessing the restricted set of tuples. As rqgards to modifxcmons to t@gfd_ataj.} base
(update, insert and delete), maimeﬂance: of the exutmg indices in addition to modifications

of the stored representation of the relation must be made. Since the latter cost is incurred

Chapter 3 : 3 Cost Analysis

regardless of what domains are indexed, we will ignore it from further consideration, and
concentrate only on the maintenance cost of the indices in determining the costs of data base

modification.

1. Tuple Access

In order to compare the utility of different sets of indices towards the processing of a query,
we need to have an estimate of the sizes of the sets of tuples that must be accessed in order
to resolve the query, given the availability of each of the index sets. We have earlier
defined the average selectivity of a domain as a measure for the resolving power of an
index on that domain. Using the selectivity of the domains specified in a query which are
indexed, we can estimate the number of tuples that have to be examined to evaluate all the
predicates. Since our cost criterion is the number of pages that have to be accessed, we have
to translate this expected number of tuple accesses to an expected number of page accesses.
We feel most previous index selection studies have been inaccurate in their choice of cost
model for the accessing of such a restricted set of tuples. In [Scholnick75] linear relationship
between the number of tuples to access and the accessing cost is assumed. This is equivalent
to saying that each tuple specified in the resulting TID list will incur one page access. In
[Held75b], a piecewise linear relationship is assumed: if the relation is stored as p pages of t
tuples each, and r tuples are to be accessed, then the number of page accesses is assumed to
be min(r, p). In a paged memory environment in which tuples are blocked together on
pages, neither of the above schemes accurately model the tuple accessing process (since the
restricted set of tuples can be accessed in the order of their TIDs so that tuples from the
same page will incur only a single page access). A more realistic scheme to estimate the

accessing cost for r tuples is to assume that they are equally likely to be any r tuples in the

Chapter 3 ' 82 Cost Analysis

segment, and to use the expected number of page accesses for r randomly selected tuples in
the relation as an estimate for the tuple accessing cost for a query whase resolution under
the availability of a particular set of indices is expected to require the retrieval of r tuples.
This expected number has been considered in a number of previous studies [Rothnie72,
Schmid75, Yue75). However, the formulations that have been derived are often
computationally infeasible or inaccurate. Based on a Markov model approximation to the
underlying process of accessing r randomly selected tuples, Rothnie. [Rothnie72] has obtained
a lower and upper bound on the expected number of pages that have to be touched.
Schmid and Bernstein [Schmid78), using a combinatorial analysis, have derived an exact
formulation that involves a complicated recurrence relation whose cmnputatmn for moderate
values of the parameters becomes very costly and inaccurate because of the significant
round-off errors encountered. The following formulation, due to Yue and Wong [Yue75], is

by far the most satisfactory.

Let n = number of tuples in segment

t = number of tuples per page
P = number of pages in segment
f(r) = expected number of page access for r randomly selected tuples, then
3. 1) £(0) =0
t(p-1-i pt
3. 2) f(r+l) = — £(1) +
pt-i pt-i

The value of f for an arbitrary value of r can be computed from the recurrence relation
with relatively little round-off error. However, this computation involves r multiplications

and r divisions and is therefore quite expensive to carry out. We (in conjunction with.

Chapter 3 | 33 Cost Analysis

Bahram Niamir of the MIT Laboratory for Computer Science) have obtained a closed form

solution of the above difference equation which can be computed more efficiently.

:)

(n)
t

A detailed derivation of this formulation is included in Appendix 1. The above

n
3.3 f(r) = - (1 -
t

formulation also admits of a simple ihterpretation. ~Consider an arbitrary page in the
segment; the probability that it does not contain any of the r desired tuples is equal ’to the
number of ways of choosing t tuples from n - r tuples, divided by the number of ways of
choosing t tuples from n.tuples. Hence, thé expression within the parenthesis gives the
probability that this page contains one or more of the r desired tuples. Thus, multiplying
this expression by the total number of pages in the segment gives the number of pages
expected to contain one or more of the desired tuples, ie, the expected number of page

accesses.

For a fixed value of p (say 1000), and for a typical value of t (say 50), the shape of the
function f(r) is shown in curve 3 of Figure 4. It is instructive to note that for values of r
close to, but less that p, the value of f(r) is roughly 06p, which is substiantially different
from the value given by a linear cost function. (Cufve | ;indicafes a linear cost function

{Scholnick75) while curve #2 indicates a piecewise linear cost function [Held75b].)

Chapter 3 34 | Cost Analysis

4000 | - (1)
//
3500 | A1 /""
///ﬁ
3000 [/
-~ Vs
//

expected Ve

2500 | | V4
number S

‘ s
of 2000 | L //
)
page ///

1500 1

accesses o - ///
,,//
s
1000 |_ i s (2) __(3)
/// //,//f”’”ff—»’-~“--ﬂw_F-
500 - e ///
° R B T e
| N ! { .| _ 1 ! I
0 500 1000 1500 2000 2500 3000 3500 4000

number of tuples to be accessed

Figure 4

Tuple Accss Cost Functions

Chapter 3 ' 35 Cost Analysis

2. Index Creation

In order to determine if reorganization is worthwhile, we need to have an estimate for its
costs and its payoffs. Two major components of the reorganization cost {(due to a change in
indexing policy) are:

(1) cost of retranslating existing application programs;
(2) cost of creating the new indices.

The former can be estimated from the previous transiation cests of the individual
application programs. (In many systems, the data manipulation language is interpreted in
which case no retranslation cost is incurred as a result of physical reorganization.) The
latter, in general, depends both on the current size of the relation and on the number of

distinct key values in each of the domains. we assume that an index is created as follows.

(1) For each tuple in the relation, a pair consisting of the value of the tuple for the

indexed domain, and of the tuple identifier is formed.

(2) These pairs are sorted, with the domain value as the major sort key, and the tuple
identifier as the minor sort key. (Typically, this will involve an external sort consisting

of a sorting and a merging phase.)

(3) A data structure (see Figure 3) that facilitates the accessing of the list of tuple

identifiers for tuples associated with any value in the domain is constructed from the

Chapter 3 3% Cost Analysis

sorted pairs of domain values and tuple id.

Let n = number of tuples in relation
p = number of pages in segment
W = number of words per page
b = number of pages available for internal buffering

In

number of words in the representation of a:key value in the demain
Step one involves the scanning of the segment and the formatior of the pairs of key value
and TID. For practical sizes of the data base, these pairs have to be written back to

secondary memory for temporary storage. This can be combined with the initial internal
sorting phase of step two with a cost of |

G. 4 P + [a(in+d)/w]
where p is the cost of scanning tuples in the segment and [n{inel}/w] is the number of
pages needed for the writing out of the n pairs (each of ‘length In+l) of demain value and
TID into the initial sorted subfiles. Let

3.5 p' = n{ln+1}/w]

Then we will assume that at the end of step one, s - 1 subfiles of Mngth b and one of length
b’ are formed where

(3.6 s = [p'/b}

Chapter s 87 Cost Analysis

b if mod (p',b) = 0
G. 7 b' (mod (@', b) J

mod (p',b) otherwise -

The cost of merging these s subfiles is derived in Appendix 2 and is given by

However, we note that in the last pass of the merging process, instead of writing out the b
(s - 1) + b’ pages for the single sorted file, we will build the VSAM-like tree for the index.

Hence, the cost of the second phase of the index creation procedure is

3.9 Cherge (S = 1, b") - (b # (s - 1) + b

Finally, the cost of the third phase consists of writing out the leaf and node pages of the
index tree and can be estimated as follows. (We will assume that pages in an index are not

filled to capacity at creation time, so as to facilitate subsequent modifications.)

Let u

n = initial fraction of utilization in a node page

[=
—
n

initial fraction of utilization in a leaf page

<
"

number of distinct key values in the indexed domain

(¢}
]

number of key pointer pairs a node page can contain

»
[}

initial number of key pointer pairs with which a node page is filled (=u:c)

then the number of leaf pages If is

Chapter 3 38 Cost Analysis

3. 10 1f = (v.&aln+n)/(u «w
The height h of the index tree is
(3.11) h = [logy1f]

(where the leaf nodes are at height 0), and the number of node pages is

(3.12) [L£/k] + [ILE/KY/KT + [TTLE/KR/KE/ZKY & oonee
T 1g/k + 1E/KZ o 1S + oee...
= 1f/(k - 1)

From the above analysis, we also have a rough estimate for the storage requirement of an

index on the domain in question, which is

3.13) 1f + 1f/(k - 1)

The above analysis has been motivated by the need to estimate the costs of index creation
and storage. However, it depends very much on the number of distinct keys in the indexed
domain, for which we can only have a rough estimate. Consequently, it will be difficult to

come up with a close estimate of the index c1eation and storage costs.

3. Index Accessing and Maintenance

(The average cost of using an index as well as the total maintenance cost of an index within

Chapter 3 | % Cost Analysis

an interval can be directly measured. The purpose of the amalysis below is only for the

purpose of estimating these parameters for those domains which are not indexed.)

The use of an index to obtain the list of tuple idehtifiers with a particular value in the
indexed domain involves starting from the root of the tree, and followtng a path through’
the nodé pages which leads to the leaf page containing the desired TID list. Let h be the
~ height of the index (where the root of the tree is at height 0, and the leaf pages are at
| height h), then the cost of using the index to obtain an average TID list can be estimated as

3.14) h +« [1£/V]

Similarly, the cost of modifying a TID list in a leaf of the index (as a result of a tuple

insertion or deletion) when no overflow or underfibw is mcurred is
(3.15) ho+ 2 [1£/V]

(The maintenance to an index due'to thé update of a tuple in the indexed domain can be
assumed to be the sum of the maintenarice due to a deleté and an insért) The cost of index’
maintenance due to the splitting and merging (or garbage collection) in the index is more
difficult to parameterize, since it depends on the actual sequence of tuple insertions,
deletions and modifications. This component has often been completely ignored in previous
studies. Here, we can add to the above tost an' average overhead ¢ost per modification, a
parameter which can be obtained by monitoring the zcruil maintenante of an index. For
those domains that Have not been previously iridex; the normatized average overhead

among those indices that have been maintained cah ‘be iised as a ‘very rough estimate.

Chapter 3 ' 40 Cost Analysis

4. Total System Cost

With full knowledge of the upcoming requirements, the total system cost for the next
interval under a particular indexing policy is computed as follows. For each query type, we
can determine, using the selectivities of the domains that occur both in the query and in the
proposed index set, how many tﬁples will need to be scanned to resolve this query type, with
the full use of the indices. Our non-linear cost function transiates this into an expected
number of page accesses. To this is added the expected number of page accesses that are
involved in accessing the indices themselves. This then gives us the total processing cost for
this query type, if the proposed indices are used. We then koow if the query processor
would, given the proposed index set, use them to resolve this query type or would process it
by means of a sequential scan. In any»g\"mt, we thus know the projected cost of processing.
this query type in the presence of the proposed set of mdxca. We multiply this cost by the
expected frequency of this query type, and repeat the process for all the query types. This
gives the projected total query processing cost. Adding to this the projected indexing costs
(creation (if applicable), maintenance (due to tuple insertion, deletion and modification) and
storage) and the applicaltipn,program retranslation costs (nil for the index set which is
identical to the ane that is maintained in the previous interval) yields the tatal system cost

for the next interval.

Let CCy = expected creation cost of index on domain.i (if not already exist)
MCy
SCy

expected maintenance cost of index an domain i

expectedstorage cost of index on.domain i
ACy = expected cost of obtaining.a TID. list using an jndex on domain-i
AS{ = average selectivity of domain i

Chapter 3 | 4 Cost Analysis

Q = projected set of queries in upcoming interval
Fq = occurrence frequency of quéryq where ¢ Q
n = average number tuples in relation
P = average number of pages in stored representation of relation
D, = setof domains indexed in the previous interval -
D, = set of domains specified in query q
T, = type of query q (0 if con junctive, 1 if disjunctive)

RC(D) = application program retransfation cost, 0 if D = D,

Iq (D) = tif Dq < D, 0 otherwise
Cq (D) = cost of processing query q with the index set D
= (T gJomin(p{(E; DanACi%f((nu D‘anAS'ikn)»’ +

The ob jective of the index selection procedure is then to select the ‘index set D which

minimizes the following expression:

42

CHAPTER 4
PARAMETER ACQUISITION

A fundamental problem in an adaptive system operating in a dynamic and uncertain
environment is the exploitation of new information inrcduc}nﬁi the uncertainty of the
system. In our context, this involves the utilization of observed data on how access
requirements and data characteristics change over time in the estimation of exogenous
(uncontrollable) parameters essential for predicting the performance of different indexing
organizations for the planning horizon. In the following sestions; weg,wilt‘»descri-ln the
statistics that are to be collected during transamonpmmsag We. will then explain our
choice of forecasting technique and how the-various parameters m the system are to be

forecasted.

1. Statistics Gathering

Statistics are collected during the procesing of each data base transaction for two purposes:

(1) as a direct measurement of certain system parameters in the current time interval;

(2) to be used in the indirect estimation of certain system parameters, parameters that
cannot be measured directly or whose direct measurement would entail excessive

overhead.

The statistics to be gathered for the purpose of index selection fall into four general classes.

Chapter 4 : | 13 Parameters Acquisition

1)

2

)

Index Maintenance Statistics - This has several components. - First of -all, there is the
total maintenance cost of each active index in the current interval. For domains that
are not indexed, we need to obtain an estimate of the cost that might have been
expended had an.index been maintained-on each of these-domains. For this purpose,
we record the total number of tuples that are deleted from:and inserted into the
relation in the eumsm interval, and the number of updates to-each domain-in the
tuples. In addition, we will break down the maintenance cost of each active index into
two parts: the cost of basic maintenance to a leaf .in-the-index tree, and the more
difficult-to-parameterize costs of node splitting and merging necessary for maintaining
the index as a balanced tree. This will allow us to calulate the normalized node
splitting and merging overhead per insertion or deletion (an update can be counted as
a delete and an insert) in the active indices, which will be used in estimating the cost of

maintaining an index on a domain which is not indexed in-the current interval.

Query Type Statistics - The type of a query is determined by the set of domains it
utilizes and by whether-it is a conjunction or disjunction of equality predicates. We
record the occurrence of eachquery (this can be encoded as a bit ‘pattern) and then

summarize the occurrence frequencies of each query type'from time to time.

Domain Selectivity Statistics - For. each domain, we maintain its average selectivity
over all uses of the domain in equality conditions in the current interval. This is
accomplished by recording the number of times the demain occurs in equality
conditions and the sum of the selectivities of the domain in each of these predicates.
If an index for the'domain-is used to resolve the:partieular equality-condition, then the

precise selectivity of the domain for this query can be calculated as the fraction of

Chapter 4 ‘ 44 Parameters Acquisition

(a)

)

tuples in the relation with the domain value in question. If the equality condition is
resolved through a sequential scan, the selectivity of the:involved domain has to be
calculated in a reduced tuple space and then extrapolated to the: entire tuple space.
This is necessary for two reasons: in the first place, the scan may be of a reduced set
of tuples identified through the use of an index (or indices); secondly, we assume that
the query resolver is efficient in that it will aveid the unnecessiry-checking of tuples
against equality predicates (i.e., avoiding testing subsequent prediestes in a con junction
once one has evaiuated to false, or in a disjunction once dne’is svaluated to true).
The estimation of selectivity can be done'as féllows: -

Suppose the equality condition appears in a conjunction of conditions of the form

ch.czA..‘.'. Acn
where each of the C; is an equality condition invelving doomin D|. (We assume that
the ordering of the equality conditions above reflects: the order of conditions against
which a tuple is checked.) Let Ny be the total number of tuples scanned, and let N;,
N2, s Nn be the number of tuples that 'satisfyct. Ci AC? - q A Cz AT™A Cn
respectively. (Note that these numbers are readily available). The selectivity of

domain D; for this query is then approximated as

Suppose the equality conditien appears in a dis junction of cenditiens of the form

Chapter 4 ' 45 Parameters Acquisition

4)

CIVCZV...... vcn

where each of the C; is an equality condition involving domain D,. Let N, be the
total number of tuples scarnined and let N, N2, =, N, be the number of tuples that

satisfy C;, ~Cy A Cy, =, ~Cy A #Cy A = A C,, respectively. (Again, these numbers

are readily available). The selectivity of domain D, fer this query is then

approximated as

(462) Si = Ni/(NO - 2111(1 NJ)

Index Accessing Statistics - For each active index, we record the number of times it is
used for resolving equality conditions and the total cost cxﬂeﬁm 0 such. gses.‘_ This
allows us to obtain the average cost of using the index. As for a domain that is not
indexed, we can estimate the number of distinct values in each ‘asthe reciprocal of its
observed selectivity and use the procedure described in thve previous chapter for

estimating its average accessing cost.

The foregoing statistics comprise our model of the usage pattern of the data base. The

frequency count of the query types, together with the index maintenance statistics constitute

the record of transactions with the data base. By recording the types of the queries that

actually occur, we detect any correlations (positive or negative) that may exist between the

occurrences of different domains in a query (it may happen:-that some combinations of

domains are frequently used together, while others rarely are). Thus we avoid making the

strong (and often inaccurate) assumptioh that the simultaivéous-oécurrences of domairs in a

query are mutually independent events. (Previous studies have made this assumption, and

Chapter 4 | 46 Parameters Acquisition-

so have recorded access history merely as the frequency of each domain's occurrence in
queries.) We observe that our measure of domain selectivity serves as a succinct yet precise
indication of how a domain-is actually used in queries. By averaging the selectivities of the
actual occurrences of a domain, we take into consideration both skewness in the distribution
of domain values over the tuples as well as non-uniform use of domain values in queries.
This measurement of selectivity is more accurate than its conventional estimate as the
reciprocal of the number of distinct values in the domain. Finally, we note that all of the
foregoing statistics can be collected and maintained with very little overhead, either in
execution time or in storage requirements. All of the required information can be easily

obtained during query or transaction processing, and requires little space for its recording.

As we have said, at each reorganization peint, we forecast a number of characteristics of the

system for the interval up to the next reorganizational point. -Specifically, we predict the

following:

(1) the average size of the relation (number of tupies and number of pages);

(2) the average selectivity of each domain;

(3) the expected cost of maintaining an index for each domain;

(4) the expected storage requirement of an index for each domain;

Chapter 4 47 Parameters Acquisition

(5) the expected cost of each use of an index in obtaining the TIDs of those tuples that

satisfy an equality condition involving the indexed domain,;

(6) the number of occurrences of each query type.

We could do these projections solely on the basis of statistics collected during the latest time
period, or we could combine together the statistics collected over all previous periods.
However, neither alone would be satisfactory for the purpose of a stable and yet responsive
adaptive system. In the former case, the system would be overly vulnerable to chance
fluctuations, whereas in the latter case, it would be too insensitive to real changes. A more
satisfactory approach would be to take into consideration the pattern of change in each of
these parameters in earlier time intervals in arriving at predictions for their values in the
upcoming interval. A broad spectrum of techniques is available for the analysis and
forecasting of time series. However, because of the potentially large number of parameters
in our cost model, we have to restrict ourselves to those forecasting techniques that are
efficient in terms of computation and storage requirement. Specifically, we consider here
the technique of exponential smoothing for our forecasting procedure because of its
simplicity of computation, its minimal storage requirement, its ad justibility for
responsiveness and its generalizability to account for trends. In the following discussion, we
will refer to the t th observation of a time series (i.e, values of a parameter over successive

periods of time) as x(t) and the next forecast based on aobservations up to x(t) as X(t).

3. Exponential Smoothing

Intuitively, a weighted moving average strikes a reasonable balance between the two

Chapter 4 | 48 Parameters Acquisition

extremes for parameter prediction mentioned earlier. Forecasts derived by weighing past
observations exponentially (or geometrically) have been used with some success in operations
research and economics [Brown59, Muth60, Winters60, Brown62] The forecast is based on
two sources of evidence, the most recent observation and the forecast made one period

before. The exponential smoothing procedure, in its simplest form, is carried out as follows:
(4. 3) - (1) = x(1)
4. O RK) =axk) + 1-a) 2k -1)

where « is called a smoothing constant and takes on. values between 0 and L. A closed form
expression. for (k) is

k-1 k-2 i
(4. 5) (k) = x(1) (1 - a) + « Eﬂ xk - 1) (1-a
3

In essence, the new forecast is calculated as a weighted average of all previous observations
with the weight decreasing geometrically over successively earlier observations. The
compactness of the scheme lies in the fact that only two parameters need to be maintained
for each time series: the current observation and the previous estimate. Note that equation

(4.4) can be rewritten as follows:
(4. 6) (k) =%k - 1) +a (x(k) - 2.(}{ - 1))

We see that the new forecast is equal to the sum of the two terms: the old estimate and a

correction term that is proportional to the previous forecasting error (difference between

- Chapter 4 | 49 Parameters Acquisition

forecast and actual observation). The rate of response to recent changes can be ad justed
simply by changing the smoothing constant: the larger the smoothing constant, the more
sensitive is the forecasf to recent changes and chance fluctuations. Since the weights given
to earlier observations sum up to one, no systematic"‘bias is intfbduced (i.e, the expected
value of the forecast is equal to the expected value of the random variable). Hence, this
procedure is appropriate only for the forecasting of the expected values of stochastic
variables whose sums do not change between successive periods [Denning7l]. If there is a
long term upward or downward trend in the series, the forecast will alu}ays lag behind or
lead the actual observation. Since we expect to observe tréhds in various activities in the

data base, it is appropriate to choose a forecasting techniique that can accomodate trends.

4. Adaptive Forecasting

This is a variant of the simple exponential smoothing technique that takes trend into

consideration. Its form is [Theil64]

(4. 7) CR(L) = R(D) + e(t)
(4. 8) R(L) =ax(t) + (1 -a) R(L-1) +e(t-1)
(4.9) e(t) =8 R(t) =Rt -1) + 1 -8 et - 1)

where (1) and e{t) are the trend and the trend 'éhange'af"time t respectively. (Either an
additive or a multiplicative trend can be incorporated: the latter fhrduéh Io?ga‘i‘ithrhick

transformation of the original seties) To carﬁ"éutﬂé forecsz, we need o't_ﬂy the current

Chapter 4 50 Parameters Acquisition

observation, the previously computed values for the tread, and the trend change, and the

computation is still very simple.

The appropriater choices for the smoothing constants « and 8, however, is. a non-trivial
problem. Itis possxble to take a completely empirical approach [Winters80l By maintaining
the previous values far the time series, it is possxble to_compare the forecasts made using
different sets of the parameters « and # (One reasonable criterion for comparison may be
the standard deviation of forecasting error). Winters [Winters60] has suggested. the method
of steepest descent [Beckenbach56] for finding the best parameters for 3 single senes - This.
method, however, consumes sufficiem storage space ‘andigompgging_ti,me to make its
application to the large number of series in our system f@bk. On the other hand, we
have no reason to believe that a set of paumeters that work best for a particular series will
work equally well for other series, so that it might not be teﬁ practical to choose the
optimum weights for one series and use the same weights for all other series. Theil and
Wage [Theil64] have formulated an explicit stochastic. model as.a_basis for the above

forecasting method (equations (4.7) through (4.10)). The time series is postulated to be

generated by
(4. 10) x(t) = k(L) + u(t)
(4. 1D §(t) = §(t - 1) + 9(D)

where k) is the mean of x(t) and ot) is the trend change from period t - 1 to. period t. (We
can interpret X(t) and e(t) of equations (4.8) and (4.9) as estimators of &t) and «{t)
respectively) The trend change is postulated to be generated by

Chapter ¢ 51 Parameters Acquisition

(4.12) g(t) = 9(t - 1) + »(D) -

where u(t) and »(t) are time series with zero mean, constant variance (cz(p) and 12(1)

respectively) and zero covariance of all kinds.

For this underlying model, Theil and Wage [Theil60] have found the optimal weights «
and B8 to be used. Let

(4.13) g2 = 2/t W

(4. 14) h? = -g2/8 + g1 + g2/16)1/2/2

Then the optimal weights for a and 8 are

(4. 15 « = 2h/(1 + h)

(4. 16) B =nh

The mean square error of the forecasts is dependent on the choices for @ and 8 which in
turn are dependent on the estimate for the variance ratio g2 (ratio between the estimates for
e2(») and ¢2(s)) A sensitivity analysis of the consequences of error in estimating the
variances ratio (g2) in [Theil60] has shown that a 50% error results in less that 15% increase
in the mean square prediction error. We can therefore start with a rough estimate of g2,

determine the appropriate values for a and 8 (or equivalently, we can start with an arbitrary

choice for « and 8), and adapt these coefficients to updated estimates of the variance ratio.

Chapter 4 52 Parameters Acquisition

Our application of the above technique in the forecasting of a time series in our system can

be summarized as follows.

At initialization, let

(4. 17 £(0) = x(0)

(4. 18) e(0) = 0

Att =1,

(4.19) (1) = ax(1) + (1 -a) X0

(4. 20) e(1) = B (X(1) - X(O))

Att =2,

(4.21) () =ax(2 + (1-a &A1 +ed)
(4.22) e(2) =8 (X - X)) + (1 - B e(D)
(4. 23) e, 2) = (R(D) + e(l) - x(2)?

(4. 24) el 2) = () - e(1))?

Chapter 4 ' 58 ~ Parameters Acquisition

(cz(u. t) and fz(v. t) are estimates of the variance cz(u) and '2(» at time t)
Fort>2,

(4.25) X(W) =ax(t) + (1 -a) X(L-1) + g(t -1
(4.26) e(t) =8 (R(1) - R(t - 1) + (1 - B et - 1)

(4.27) 2@, t) = ((t - 3) 20t - 1) +
X() -t -1 -et-1NH7HE -2

(4.28) ¢2(,t) = ((t - 3) e2(8,t - 1) + (e(t) - et - 1D/t - 2

We begin by using arbitrary values for « and B As new estimate for the variance ratio g2
becomes available (from the ratio of #2(, t) to #2(, t)) , we cari adapt the values for « and 8.
(Note that the amount of information that has to be passed on-from one interval to the next
is still quite small, and the computation needed to choose the appropriate weights is

minimal)

B. Parameter Forecasting

Using the foregoing techniques, we can summarize our forecasting procedures for upcoming

parameters as follows:

(1) average size of the relation - we can use the current size of the relation as our current

Chapter ¢ 54 Parameters Acquisition

(2)

&)

@

observation, forecast the size of the relation at the end of the upcoming interval, and
use the average of the two as the average size of the relation over the upcoming

interval

maintenance cost of each domain index - if the domain is indexed in the previous
interval, then its actual maintenance cost can be used as the latest observation;

otherwise we can use the estimated cost as described earlier as the [atest evidence.

number of occurrences of each query type - if an abserved query type has no previous
forecast, then we wilggse the observzd frequency as the Dext, forecast and treat this as
a new series to be forecasted.

average selectivity of each domain, storage requirement and average accessing cost of
each domain index - we note that our estimates for the current values of these
parameters in the case of non-indexed domains.are rather crude, hence we will
reinitialize the forecasting procedure for each "newly” indexed domain, ie. if a domain
is indexed in the most.recent interval but not in.the one before, then we will use the

most recent observation as the sole evidence in the forecasting of these parameters.

55

CHAPTER §
INDEX SELECTION

A straightforward approach to the index selection problem would be to evaluate the
projected total system cost for each possible inidex set {using equation (3.16)), and then select
that set of domains which gives the smallest cost. With m domains in the relation, there are
2™ possible choices of index sets. For small m (say less than 10), this enumerative approach
may be feasible for finding the optimal combination of domains to be indexed. However,
_because of the exponential rate of increase of the number of possible index sets with the
number of domains, the search space becomes prohibitively farge very rapidly. (With 30
domains, there are more than 10% index sets to be considered. The cost of exhaustively
exploring the search space may no longer commensurate with the profits that can be
gained.) Yet, it is not uncommon to find single-relation data bases with tens of domains.
Therefore, it is appropriate to look for ways whereby the séir;:h space of 'potemial index
sets can be systematically reduced. One possible approach is to look for properties of the
cost function that will allow it to be minimized without exhaustive enumeration, such as
through a depth-first search, as exemplified in Schkolnick’s index selection study
[Schkolnick75). However, these properties depend upon unrealistic assumptions that domain
occurrences are uncorrelated and that the tuple scess: cost function is linear; and even 5o,
the associated upper bound of 2"'0'5]“3' M index sets to be tested is not enough of a
reduction to enable the inexpensive selection of the optimal index set for a relation with a

moderate number of domains.

Wheh we remove the above two assumptions, the computation needed to evaluate the utility

of a proposed index set becomes dependent on the humber of distinct query types

Chapter 5 56 Index Selection

forecasted. (All told, there are (2™ - 1) passible conjunctive query types (which specify 1 or
more domains) and (2™ - m - 1) disjunctive query types-(which specify 2 or more domains
for a total of (2™ - m - 2) possible query types.) Except in cases when only a few of the

large number of potential query types actually occur, the evaluation of the cost-effectiveness
o a particular potential index set is quite expensive. Henge, we hav;.;, a strong incentive for
systematically reducing the search space for the optimal index set Yet, because of our lack
of simplifying assumptions, the hope of finding an algerithmic way to explore a reduced
search space of practical size and still finding the aptimum is dim. Therefore, it is
appropriate to draw on the experience of artificial intelligence researchers working in areas
where formal mathematical structures are computatipnally impractical, and use. heuristic
methods [Feigenbaum63, Meier69] that significantly prune down.the search space and that
work towards obtaining a near-optimal solution.

1. Index Selection Heuristics

In this section, we examine the structure of the index selection problem and describe a
number of ways in which the index selection cast can be reduced.

(1) Not alt queries can use indices profitably. The expected set of tuples th# satisfy a
query may be so large (i.e. the qualified tuples are-likely to reside on close to p pages)
that no set of indices could possibly be useful in its processing. Since the cast of
computing the utility of a proposed set of indices is dependent on the tofal number of
queries under consideration, those queries that cannot profitably make use of indices
should be removed from the projected query set whase. processing cost is to be
minimized. This can be done by computing the processing cost of each query given

'Chapt_er] ' 57 Index Selection

(2)

the availability of indices on all domains that are used in the query. If this is more
expensive than a sequential scan, then the query should be removed from the projected

set of queries.

Some domains can be eliminated from the initial candidate set by virtue of their low
occurrence frequencies in queries. This effectively reduces m, the initial number of
domains in the candidate set. Using the forecasted frequency of each query type, and
the projected selectivity of each domain in the relation, we can compute an upper
bound on the number of page accesses that the use of an index on a particular domain
can save in the processing of the forecasted set of ‘queries.. If this upper bound is less
than the projected cost of maintaining an index on the domain, then this domain can
safely be excluded from the initial candidate set; i.e., the domaity is so unselective or is
used in retrievals so infrequently relative to its being updated, that it cannot possibly

be profitable to index it.

The upper bound on the utility of an index-for an arbitrary domain i is computed as
follows. Let q be a conjunctive query type that involves domain i, and let Sq be the
joint selectivity of all the domains of q. Then the tuples that satisfy q are expected to
reside on f(Sqm)ipages, where n is the total number of tuples in the relation and f is
our non-linear function for expected page accesses. So an upper bound on the benefit
that ar index on i could possibly bring to the evaluation of q would be to reduce the
number of pages to be accessed from p to f(Sqm).~ (A similar formula holds as well for
the maximal reduction where q is a disjunctive query, but with S_ there representing

q
the joint disjunctive selectivity of the domains used in-q.) In the case of a conjunctive

' query, an additional upper canbé cornputed which in some cases may be tighter than

Chapter 5 58 Index Selection

&)

the one just mentioned. Note that an index on domain i with. selactivity S; reduces the
number of tuples that have to be examined to resalve a conjunctive query involving
domain i by a factor of S;. However, because of the convexity of out. tuple access cost
function, a reduction by S, in the number of tuples to access leads to less than a
reduction by S; in page accesses. Hence the maximal incmmmal saving (in terms of
page accesses) cannot exceed pu{l - S). Thus the upper bound. on the utility of an

index for i is:

(51 Zqeq Fqr ((1-Tg)snin (s (1-59),pa (1= (g p S awd) +
Tq#prU-£((1-Tjep (-5p)em)

where Q; = set of forecasted query types that use domain i
prajected number of occurrences of q.

set of domains referenced in g

1
L 2
]]

n-l
]

0 if q is conjunctive and 1 if q is disjunctive
total number of tuples in the relation

h =
1)

non-linear tuple access cost function far the relation

Some domains could be known to be included in the optimal index. set by virtue of
their high occurrence frequencies in queries. For each. domain, we can compute a lower
bound on the savings in query processing its indexing can: bring. If the latter is less
than the expected maintenance cost, then the domain. must be inciuded in the optimal
index set. In: cases where a domain is used together with others in a query, it is very
difficult to assess the lower bound on- the utility of the:index. Therefore, we will
compute the lower bound for a domain based.only on those.queries in which the

Chapter 5 59 Index Selection

domain occur alone.

(4) A near optimum choice of the index set can' be made incrementally. This heuristic

permits analysis of the problem as a stepwise minimization, each time adding to the

index set that domain which will bring the best improvement to the cost function.

There have been two previous suggestions regarding the incremental selection of
domains to be indexed. Farley and Schuster [Firley’s] suggest that the incremental

selection process can be terminated once no single domain in the non-indexed set can

" be chosen that wifl yield increfmental cost/benefits. This't$ insufficient for our choice

of query and tuple access models; there are two reasons why it may be necessary to
consider the incremental sivings broiight by adding’ two-or more indices together to
the index set candidate. “First, it may fappen that for a query invoiving a'con junition
of conditions, the selectivity of any one domain may not be sufficient to reduce the
number of pages to be accessed to significantly less than the total number of pages in
the relation, whereas the joint selectivity of o or more dofains might. (Recall that
the reduction must be significant in order to cover the index accessing cost.) Secondly,
a disjunction of conditions can be resolvéd via indices onfy if all of the domains
involved in the disjunction are indexed. An altérmative strategy has been suggested by
Held [Held75b), who, at any stage of the incremental index selection procedure,

considers the incremental savings of each of the possible subset of domains in'the

~candidate set with less than or equal to some fixed number o ‘domains in it. This, of

course, may be very inefficient. We have taken an intermediate approach. We

consider the ad joining of multiple domains to the index set only if no single domain

that will yield positive intremental savings can be-found.

Chapter 5 60 Index Selection

(5) Only a small subset of all possible candidate domains need be considered in

6)

determining the next domain or set of domains to be ad joined to the index set at each
stage. We can rank the domains with respect to the maximal savings each can bring
and then consider only the top ranking M domains, and cambinations of them, for
detailed incremental savings calculation. (Alternatively, we can take the maintenance
cost of each into consideration and divide the maximal savings of each index by its
maintenance cost before doing the ranking) Furthermore, a bound M’ (M’sM) can be
imposed on the number of domains that will be considered together.

An upper bound can be put on the total number of cast evaluations (ie., the total
number of index sets considered) to be performed .in the entire selection procedure.
Also, an upper bound can be put on the maximum size of an index set that will be
considered. The incremental mmn,pmn;wm be terminated when either of
these bounds is exceeded.

2. Index Selection Procedure

To illustrate the above heuristics, we present the details of our. index selection procedure.

Qur procedure can be divided into three phases.

Phase 1 (Initialization) - During this phase, a temtative index set is chosen to include all

those clearly profitable damains, and a ranking of the domains that might be profitable to

ad join to the tentative index set is computed. This involves:the fajlowing steps:

(a)

Remove from the projected set-of queries all those that cannot profitably make use of

Chapter 5 6l ‘ Index Selection

(b)

©

indices.

For each domain, compute a lower and upper bound on the savings an index on the

domain.can bring.

Partition the set of domains D in the refation into three disjoint subsets: D, - the
tentatively chosen index set, Dc‘ - the candidate set, and Dn - the non-profitable set.
Initialize D, with those domains whose maintenance costs are less than the
corresponding minimal savings they can bring; D, with those domains whose
maintenance cost exceeds the corresponding maximat savings they can bring, and ‘D

withD - Dy - D,

(d) Rank the domains in D_ with respect to theit estimated utility.

Phase 2 (Incremental Selection) - The tentative index set is enlarged by the ad joinment of

domain(s) to it incrementally.

(a) Consider in turn the incremental savings gained by indexing each of the M top

ranking domains in the candidate set (i.e, for each of these domains d, compute the
cost associated with D, + d, and compare it to the cost associated with D). Ad join to
D, that one which will give the best improvement to the cost function. If one cannot
be found, then consider larger-sized combinations (up to M’) of these M domains.
Consider combinations of the next larger size only if it ismtfrproﬁftabl‘e 1o adjoin any

of the combinations of the current size.

Chapter 5 62 Index Selection

() Remove the domain(s) from D_ as they are ad joined to D,. Resume considering

individual domains for further ad joinment after an ad joinment to D,.

(c) Terminate the incremental selection if no subset {of size less than or equal\to'-M") of the
M top ranking domains in the candidate set can be chosen such that its ad joinment to
the index set will improve the index set's cost fungstiom;: .or if the upper bound on the

total number of cost evaluations is reached.

Phase 3 (Bump-shift [Kuehn63]) - Domains that have been ad joined to the tentative index
set early in the incremental selection phase may wrn out to be useconomical as-the result of
later addition of other domains to the set, and thus should be removed:from the index set.
Since the probability of the need for the simultaneous removal of more than one domain is
quite small, we will only consider the removal of individual domains. (The necessity to
remove two domains from D, implies that some of those queries whose processihg costs are
significantly improved by the initial ad joinment of these domains. to Dy, become. less
dependent on them as other indices become available. The fact that it is not profitable to
remove one of them alone implies that there are some queries which depend on both of
them, and whose processing costs are improved, in the presence of bﬁh indices, by more
than the maintenance cost of either one, but less than the maintenance cost of both. Such a

combination of circumstances is rare encugh for us to ignore it)

(8) For each domain d teniatively assigned to the index set, subtract the total cost for D,
from that for Dy - d. Remove from D, that d for which the above-difference is largest.

(b) Repeat the process until no domains remain in D, whose removal would improve its

Chapter 5 63 : Index Selection

cost function.
In order to assure that we have a real local optimum, we may go back to the
incremental selection phase after some domains have been removed from the tentative

index set. To guarantee that the process terminates, we would put a domain d into D,

if it is removed from D, by the bump-shift phase ‘

3. Performance of Index Selection Heuristios

We have discussed a number of ways in which the index selection problem may be
simplified. The initialization phase of our heuristic selection procedure leads to a reduction
in the search space for the optimal index set and a reduction in the total number of queries
that have to be considered under any proposed ifidixing' policy, without jeopardizing the
possibility of f inding the real optimum index set. On the other hand, when we make use of
the heuristics of stepwise minimization and of considering only thé top ranking domains for
incremental selection, we have opted for a good solution at reasonable cost rather than the
optimal solution at any cost. There are several reasons why the stepwise minization

procedure should be good.

(a) It resembles the methods that might be employed by an intelligent human being in
solving the index selection problem. For any tentatively chosen index set, we know for
sure that the cost of maintaining these indices is less than the savings that they bring.
Furthermore, the total system cost is monotonically decreasing as siiccessive-domains are
added to (during incremental selection) #nd removed from (during bump-shift) the

tentative index set.

Chapter 5 64 Index Selection

)

©

It has been successfully applied in problem areas of a similar nature. In [Kuehn63],
stepwise minimization was applied to the problem of choosing the sites for warehouses

from a number of potential sites which minimize a particular cost function. The

problem is in many respects similar to the index selection, especially in the fact that for

each potential warehouse site, there is the possibility of having or not baving a
warehouse at that site, just as for each domain, we have the possibility of having or

not having an index on that domain.

It actually finds the optimal index set under certain circum#tances. It is provably
optimal if only single domain queries andfor disjunctive queries are present in the
projected query set. In such a case, it is impossible for the heuristic algorithm to
choose an index set that is a subset of the optimum, since it considers ad joining
combinations when necessary; also, it is imgoss_ibleifqr the hegris;icﬂalgdrithm to
include in its choice a domain that is not in ihe real optimum index set. (The fact that
a domain has been ad joined to the heuristically chosen index set means that there is a
set of queries which depend on the availability of the index m qQuestion in order to be
resolved using indices, and that the savings from processing these queries using indices

more than pay for the maintenance cost of that index.)

In the presence of both conjunctive and disjunctive queries, it is possible that the

heuristically chosen index set can depart significantly from the optimal index set. However,

we can argue that the probability of this occurring -is quite small, and even if it this does

occur, the total system cost under the heuristically chasen set of indices.may not be too

different from that under the optimal index set.

Chapter 5 65 Index Selection

Let Dopt and Dy, be the optimum index set and the set chosen by the heuristic index

selection procedure respectively; then we have the following circumstances in which Dy

will be non-optimal.

(a)

(b

(©)

Dopt strictly includes Dy ... - This is highly unlikely, since we do consider the
ad joinment of multiple domains (up to a certain bound) to the tentatively chosen index

set if no simpler ad joinment is profitable.

Dypeyr strictly includes D, - Because of our bump-shift procedure, we know that

pt

Dheur must include two or more domains that are not in D and as discussed in the

opt’
previous section (on the bump-shift procedure), this is very unlikely.

There are domains in Dy . which are not in Dy ... and vice versa - This is probably

pt

going to be the most common. The fact that domains which are in D, - Dy o, are

P
not ad joined to Dy, implies either that they need to be simultaneously indexed to be

useful and their total number exceeds the bound on the number of domains that the
heuristic index selection procedure will consider for simultaneous ad joinment, a
possibility which is quite remote; or that indices on them are no longer useful in the

presence of domains in Dy, - in which case the total system cost for Dy o, r

Dopt'

may not be too far away from that for Dopt'

We have performed a limited amount of experimentation with the above heuristic

algorithm, applying it to a number of access histories, and comparing its results to those

obtained by an exhaustive consideration of all possible index sets. In the cases that we have

tested, the heuristic algorithm has almost always found the optimal index set at a small

Chapter 5 | 66 Index Selection

fraction of the cost of the exhaustive procedure. Most of the increments to the tentative
index set consist of single domains, so that the toal number of index sets considered only
increased only linearly, instead of exponentially, with the total number of domains in the
relation. Moreover, the bump-shift phase seldom yielded an improved choice over that
given by the incremental selection, which: in many cases was aiready identical to the choice
given by an exhaustive search and therefore optimal.

4. On Further Reducing the Cost of Index Selection

The main thrust of the heuristic index selection algorithm described in the previous section
was towards reducing the search space far potential index sets by making thé selection
procedure an incremental one. However, in addition to the need for cutting down the index
set search space, there is also the need to minimize the cost of assessing the cast/benefits of
each individual index set. By making forecasts of query type occurrence frequencies based
on past abservation, we have thus far avoided the strong assumption that individual
domain occurrence prababilities in a query are independent. In cbmequence.,powever. our
scheme requires that in considering each passible increment to the index set, we evaluate the
costs of processing each of the projected query types that involves any of the domains in the
increment. The number of passible query types is an exponential function of the number of
domains in the relation; so the number of query types that actually occur is also likely to
increase quite rapidly with the number of domains. There may be as many as 2™ - om-k
conjunctive query types that will require individual computation (for new processing cost),
where k is the size of the increment under consideration; these are those queries that use at
least one of the demains in the proposed increment. Ope pessihle simplification is to group
queries together and to characterize the group in terms of a small number of statistical

Chapter 5 67 Index Selection

properties. Instead of finding the savings in the processing of each of the queries that are
affected by a proposed increment, we can compute the savings for the group as a whole,
which can be done more efficiently. In the following:sections, we will examine one query

.grouping scheme that has been suggested previously and suggest extensions to it.

In [Schkolnick75) (who considers only conjunctive queries), all queries are put into a single
group which is described by the query occurrence probabilities of each domain, (i.e, the
fraction of queries in which the domain is used).‘ Furthermore, these probabilities are
assumed to be independent. For example, for a relation with three domains a, b and ¢, each
with occurrence probability P,, P, P, respectively, the probability of having a query that
involves just the domains a-and b is assumed to be

(5. 2) Py * Pp s (1- B

since P, and P}, are the occurrence probabilities of domains a and b, and 1 - P is the
probability of .domain ¢'s non-occurrence. Fora proposed index set D, the total query

processing cost.can then be camputed as follows.

Let N,t = total number of tuples
Nq = tatal number of queries

Q
ASy

set of all possible queries

average selectivity of domain i
ACy = average access cost for index on domain i

AP’q = occurrence prabability of: query g, q¢Q

o
L]

q domains specified in query q, g¢Q

Chapter 5 68 Index Selection

T
n

q = cost of accessing the set of tuples to resolve q using-index set D

cost of accssi-ng(ﬂknqvnn AS{) = N; tuples
Cq = processing cost of query q with index set D:
®yepgnp ACy) + Fq

then the total query processing <ost is

(5.3) N * Zyeq Pq * Cq

With m domains in the relation, there are 2™ pessible-queries. However, in evaluating the
utility of an index set of size s, only 2° distinguishable sub-groups of queries need to be
considered. (A distinguishable sub-group of queries consists of all those queries with the
same expected processing cost under a given set of indices. Given an index set D; two
queries fall into the same sub-group if they use the same set of domains in D, since their
processing will involve the use of the same set of indices, resulting- in: the accessing of sets of
tuples of the same expected size) Consider the above S-demain relation and the index set
which includes only domain a, then the possible queries in the group can be divided into
two sub-groups, those that specify domain a and those don't. In general, it is necessary to
evaluate the processing cost of each of these distinguishable sub-groups individually before
an expected processing cost for an average query can be computed. Hewever, by assuming
that the tuple access cost function is linear, a further simplication results in the following

total query processing cost

(5.4) Nq . ((21€D Pi) ® Aci + nl‘n (1 - pl 1-—'?1 ® ASI))

Chapter 5 ’ 69 Index Selection

The above formula admits of the following ‘simple interpretation: for an average query,
with probability P; domain I in the index set'D is specified, in’ which case the fraction of
tuples that have to be examined-is reduced by AS;; .and with prebability 1 - P; domain i is
not specified in which .ais'e an index on domain-i does not lead to' any reduction in the

number of tuples to:be examined.
We thus see that Schkolnick’s scheme leads to a very simple computation for the evaluation
of the utility of an index set. However, the simplifying assumptions that lead to this

computational simplicity are not altogether realistic. ~

5. Query Clustering

We feel that the idea of grouping queries is fundamentally sound, since it significantly’
reduces the number of query types that have to be considered at each step of the
incremental index selection procedure. On the other hand, grouping can lead to loss in
correlation information. For example, again consider the above 3-domain relation: it may
happen that domains a and b never appear together in queries, whereas the independence
assumption will lead us to assume that a query that specifies only domain a and domain b
does occur with probability P, « Py « (1 - P.). In order to preser{re‘the correlation
information, we should only group similar queries together. Hence, the division of the
queries into more than oﬁe group may be necessary. Since some correlation information is
inevitably lost when queries are grouped together and it often happens that some queries
occur quite frequently while others only rarely, we may want to consider‘the most frequently
occurring queries individually, in the process of incremental imdexing utility calcalation,

while grouping the less frequent ones into one of more groups.

Chapter 5 0 Index Selection

To incorporate the abave scheme, the evaluation of the utility of any proposed increment to
the tentative index set can be modified as follows. The incremental savings afforded by the
increment to each of the frequent (non-grouped) queries. is. computed as before. As for each
of the query groups, we compute the improvement. to- each. distinguishable sub-group of.
queries that is affected by the increment. The improvement ta.the group is then computed.
as a product of the total number of query occurences in the group and the average
improvement to a query in the group. The latier is obtained from the sum of the
impravements to each of the distinguishahle subgroups, weighed by their individual
occurrence probability with respect to the group.

The clustering scheme we suggest for the less frequent queries, wqf she,“nearwmgpidf‘
type [Belford75]. (This involves the definition of a metric or a measure for the distance
between queries and groups of queries. The centroid of a group may be looked upon as an:
average (or representative) query in the group.) Since the cost evaluation process at each
step of the incremental index selection procedure is dependent on the number of query
groups we have, we may a priari determine the number of groups (say G) into which the
less frequent queries are to be divided. A possible clustering strategy is as follows. We rank
the less frequent queries in terms of their occurrence frequencies, and start off with groups
that are singletons of the G tap ranking queries. The remaining. queries are considered
sequentially; each is added to the group with the nearest centroid, afier which the centroid
for the affected group is recomputed.

For each query group, we maintain its centroid and the total number of query occurrences in
the group. We represent a query by means.of a binary vector which indicates. the domains
that are used in the query and the centroid of a group of queries by means.of a vector that

Chapter 5 n Index Selection

indicates the occurrence probability of the individual domains with respect to the group.

Let Vg = vector representation of a query group g
Vq = vector representation of a query q
Fg = total number of query occurrences:in g
Fq = total number of occurrences of q -

The distance between q and g can be computed as
| (5.5 W = Vgll = B Wy - Vgl
When q is added to g, the centroid of the group is- recomputed as

(5. 6) V, « (F, =V, + F th)/(Fq-rF

g« (Fqg*Vq+ Fy g

and the total number of query occurrences in the group is updated as
5.7 F, « F, + F

In order to evaluate the utility of a proposed index set with respect to a given group of
queries, we need to have a scheme for the assignment of occusrence probability to each
possible query in the group. One possibility is to use the independence assumption
discussed previously. However, this results in:the assignment of ‘a non-zero probability to
the query that specifies none of the domains, whichi¢'inadequate since we never include the

query that specifies no domain in our grouping scheme. Therefore, we need to have a

Chapter 5 | 72 Index Selection

scheme for the normalization of probability assignments. In addition, we might want to
take into consideration the complexity (number of domains specified) of the component
queries of the group. For example, if all.of the component.queries in the group involve say
two domains, then we should discount single-domain or mare-thar-two-domain queries in
the probability assignments. In view of the above two considerations, we can keep track of
the number of query occurrences for each complexity in the process of adding queries to a
group, and use the following normalization scheme.

Let NQ total number of query occurrences in the group

k

tatal number of domains with non-zero occurrence probability
Py = occurrence probability of the i’ domain

NC; = number of query oeammca with complexity i

The conditional occurrence prebability of a query g, which uses domains in Dq' given that

“the query is of complexity C_, can be computed as the product of the occurrence

q

probabilities of domains in D,, normalized by the sum of products of probabilities of all

q’

non-zero-occurrence-probability domains in the group, taken Cq at a time. The above

normalization factor for queries of complexity i can be shown to be the coefficient of x! in

the following expansion [Liu68l
Meiex 1+ Py0)

Hence, the unconditional proability of having a query q which uses the set of domains in
Dq and of complexity Cq“can be computed as

 Chapter5 = ' ;) Index Selection

(5.8) (NC, INA) = ((Py)/RFpr)
: c:q Q iqu i t:‘l

Note that the number of distinguisﬁable sub-groups in a query group with respect to an
index set (and hence the cost of indexing utility evaluation) depends on the number of
domains with non-zero occurrence probability (with respect to the the group) that the index
set contains. (The adjoinment of domains with zero occurrence probability in the group to
the index set will not affect the processing of the group.) Therefore, an alternative to the
above strategy of a priori deciding the number of groups to have is to limit the number of
domains with non-zero occurrence probability in each group. In attempting to add a query
to one of the existing groups, we can take into tonsideration both its distance from the
group and the number of domains with non-zero occurrence probability in the resulting

group, and create a new group if necessary.

74

CHAPTER 6.
SUMMARY AND FUTURE RESEARCH

The research reported in this thesis has been motivated by the need for intelligent data base
management systems, to: support large integrated dalta. bases. -We have propesed a
methodology for the incorporation of optimisation:.and ‘seif-esganization- capabilities into.
data base management system.. Specifically, we suggest the follewing approach:

(1) the development of an‘ accurate cost model that closely .reflects. the: data- base
environsment and data base: system operation (this cost.medel.is. to be-used: both by-the-
query processor for selecting the most econemis. access. path for a given query and by
the reorganization component of the system for the selection of a.neaz-optimal physical
data base organization for the observed access pattern);

(2) the monitoring of accesses to the data base that allows the system to build up an

accurate model of the contents of the data base and the way that the data base is used;

(3) the application of forecasting techniques to detect and respond to changes in access
requirements and data characteristics;

(4) the design of computationally feasible heuristics that select a near-optimal physical
organization at a reasonable cost.

We have applied the foregoing steps to the index selection problem and have achieved a
design for the incorporation of an adaptive index selection capability into a dynamic, single-

Chapter 6 ' 75 Summary and Future Research

relation data base environment. In the following sections, we will summarize the novel

aspects of our approach and suggest possible extensions to it.

1. Comparison with Previous Work

Our experimental and heuristic approach to the index selection: problem is different in
many respects from previous studies by Stonebraker [Stonebraker74], King [King74),
Schkolnick [Schkolnick75], Farley [Farley75}, and Held [Held75b]. These other studies have
either been formal analyses, which have made many simplifying: assumptions in order to
obtain an analytic solution, or else system designs that have been incomplete or unrealistic in

various ways.

Our work attempts to go farther than these by utilizing mere complete and accurate models
of cost and access, and by emphasizing important aspects of realistic data base
environments. Our model of tuple access is realistic in the sense that we take into
consideration the blocking effect of tuples on secondary. storage devices. Our cost models.
for data base access and maintenance account for such real overheads as the expense of
index accessing and the cost of maintaining the index as a balanced tree. Our approach of
minimizing the total processing cost for the upcoming interval, rather than the expected cost
for a single data base transaction, is flexible enough to account. for the overhead costs of

index creation, index storage, and application program retransiation.

We have stressed the importance of accurate usage model acquisition and data characteristic
estimation in a dynamic environment where access requirements are continually changing.

Our scheme endeavours to obtain a precise model of data base usage by recarding actual

Chapter 6 : % Summary and Future Research

query patterns, thereby avoiding the strong and often inaccurate assumption that domain
specifications in queries are uncorrelated. We ale-take into: consideration the facts that
values of a domain may not be equally used in queries and that they may not be evenly
distributed among tuples of the relation, by monisoring (he actual selectivities of the domain
values that are used in queries. On the other hand, we have also made sure that our
schemes for gathering statistics during the processing of ‘data base transactions have as little
effect on system performance as passible.

We believe it necessary to apply forecasting techniques to past-observitions and predict
future access requirements and chuaeurtstks, in order .to capture and respond to the
dynamic and changing nature of data base usage. In the selection of applicable forecasting
techniques, we have stressed the importance of minimal storage requirements, simplicity in

computation, responsiveness and adaptability. - : -

Finally, the size of actual data bases is reflected in our: concern for -efficient heuristics to
speed up the index selection process. Our scheme for the grouping:of queries allows us to
reduce the index selection cost and yet preserve the influence of demain correlation on the
selection procedure.

2. Directions for Future Research

There are numerous optimization opportunities in a complex data base environment. In
this thesis, we have addressed the optimization issues related to the cheice of indices to be
maintained and the strategy for using these indices in query processing. By way of

conclusions, we suggest several directions in which edr work can be extended.

Chapter 6 | n Summary and Future Research

¢)

(2)

There are many separate issues that need resolution in the selection of physical
organization for a general integrated data base, including method of placement of
records on secondary stbrage, primary access mechanism, auxiliary access aids,
clustering parameters etc. Within a single-data base environment, an organizational
issue that might be profitable to consider in conjunction with the selection of indices lis
the division of the stored representation of the relation into a number of subfiles, each
consisting of subtuples containing only a subset of ‘the fields in the relation. The
purpose of such an organization is to limit the amount of irrelevant information that
is accessed, when the qualification and output parts of a query involve only a small
number of domains in the relation. Previous studies [Kennedy?2, Stocker’8, Hof fer75)
have considered this file partitioning problem in the absence of auxiliary access aids.
An adaptive strategy towards the simultaneous selection of indices and ‘file partitions
might be fruitful.

Even though our investigations into index selection are in many respects more
comprehensive than previous studies, wé'tiﬁe considered only the environment of a
single-relation data base accessed through a restricted interface with limited capabilities
for the selection of data. To fully realize the flexibility of a relational data base, it is
necessary to consider a multi-relation environment together with a high-level non-
procedural language interface that permits queries with arbitrary interconnection
between relations in the qualification part-and high' level operations on the qualified
data. In such an environment, it is necessary to consider the utility of indites for more
complicated operations (such as restriction, projection, division, join, etc. [Codd70,
Palermo72, Smith”5, Rothnie75, Pecherer™s, Wong]) and ‘to select indices for all the

relations in the data base as a whole. The recording of detailed access history will be

Chapter 6 78 Summary and Future Research

)

(4)

(a)

necessary for optimal index selection in this environment, and the use of heuristics
should be fruitful in cutting down the search space and for selecting richer index
structures (such as combined indices).

We have proposed that an intelligent data management system. should build up a
model of the contents of the data base and the way that it is used. Such information
can be used for the evaluation of costs of alternative access paths for the processing of
queries. In additien to individual query optimization and glabal choice of optimal
physical organization, a query cost estimatar can find yet another apphcanon in large
integrated data bases. It is all too easy for a naive data base user toask a ‘simple-to-
phrase query that will take a great deal of computational resource and time to answer.
Frequently, the value of this information to the requestor will not be commensurate
with the resources expended to obtain it. If a cost estimator is available at the user
interface, a user can obtain an estimate of the cost of answering his query and then
decide to pay the price and have it answered, or to cancel the query. More wark on the
development of cost models for complex query processing, and schemes for the
acquisition of the necessary parameters, in order to pravide such a facility.

We have applied forecasting techniques to the prediction of upcoming access
requirements and data characteristics. In a truly adaptive system, higher level adaptive
mechanisms will also be necessary. Levin [Levin?5] has suggested the following
hierarchy of adaptive mechanisms to be employed in.an unceztain environment;

a forecasting mechanism that perfarms prediction of various paramaeters in the system
based on past abservations;

Chapter 6 | " Summary and Future Research

)

©)

a parameter adaptive mechanism that for a given forecasting technique chooses the

best values for the basic parameters of the technique.

a meta-adaptation mechanism that automatically switches from one forecasting

technique to another based on their individual perfarmance.

The adpative forecasting procedure we have described actually encompasses the first
two mechanisms. To incorporate the meta-adaptive mechanim;i; for a particular time
series involves keeping around the entire series (or at least the most recent portion) and
companng the amount of forecasting error that would have been resulted from the
application of each of the f orecastmg techmque under consnderatlon The Iarge
number of parameters that we utilize preclude the apphcanon of any meta-adaptanon‘
mechanism to each of them. On the other hand, a selective application of such a
mechanism to parameters to which the cost function is most sensitive may be

appropriate.

We have assumed tﬁat reorganization is to be considered at fixed intervals, the length
of which are to be determined by the data base administrator. Since the overhead of
index selection is incurred at each reorganization paint, it would be desirable to have
the system automatically ad just the intervals between reorganization points to suit the
rate of change in access patterh and the Q‘egndetion of system performance. More
fundamentally, an intelliggent adaptive system must assure that the payoff of the
adaptive mechanisms is commensurate with its overhead costs, and "switeh if off”

when the usage requirements reaches a steady state.

80
APPENDIX 1

PROOF OF EQUATION (3.8)

Consider m tuples Ty, To, ™, T, to be placed into n equaily likely slots that are partitioned
into p blocks of t slots each (n = pst). Let p(r) be the number of blocks that contain Ty, To,
==, T;. Define

(Al. 1) p@) =0
(Al. 2) a(r) = p(r+1) - p(r)

then p(r) and d(r) are random variables, and d(r) takes on values 0 or I Let f(r) be the
expected value of p(r), then we have the following recurrence relation:

0

(A1.3) £(0)

(Al. 4) f(r+1) - £(r) = E{d(1))

Prob [d(r)=1]

Z Prob [d(r)=1 | p(r)=k]l Prob [p(r)=k]

k
kKsPn -kt
P A Prob [p(r)=k]
k=0 n-r
k=p , p kKt
2 2 (- ~) Prob [p(r)=kl
k=0 n-r n-r
n t
- - - £(r)
n-r n-~-r
n - -t
(Al. 5) f(rel) a ——— £(r) +

n-r n-r

Appendix 1 8 Proof of Equation (3.3)

A closed form solution of the above difference equation can be obtained as follows. Let

(Al.6) s=n-r
(AL. D) r = n - s then
- .
(Al1.8) T s f(n-s+1) x5
$=0
[} 0
= 2 (s-1t) f(n-s) x5 + 2 n x5
s=0 s=0

With some manipulations of equation (Al.8) we have

(A1.9) T (s-1+1 f@-(s-1)) x5
s=0
[]
= 2 (s-1+1 f(a-(s-1)) x5
s=1
(-] 00 0
= 2 sfm-s) x5- 2 tfm-s) x5+ 2 n x5
s=0 s=0 s=0
Considering the second equality sign in equation (A19), we get
(-] [-]
(A1. 10) 2 2 (-1 f-(s-1)) x52 + x B f(n-(s-1)) x5°1
szl s=1

0
+x 2 fm-(s-1)) x5-1
s=]1

00
=x 2 sfm-s) x51 -t £ f(m-s) x3+n = x5
. s=0 . s=0 s=0

Appendix 1 82 Proof of Equation (3.3)

Let
o0
(Al.11) FX) = 2 f(n-s) x5
s=0
[]
(Al.12) F'(x) = £ s f(n-s) x5}
s=0

then from equation (ALIO) we get

X

(Al. 13) X2 F'(x) + xFX =xF'@ -t FX) + ot
- X

t+X n
(Al 14) FF(X) -~ —— F(x) a -

x{1-x x 1-x?2

Equation (All4) is a linear first order differential equation, and has the following general

solution
t t-1
X 1-x
(AL. 15) FXx) = —mmmm (c - j——————— dx)
a- ottt xt+l

Appendix | 83 Proof of Equation (3.3)

® t+k n o
=cxt = (] xX + = ® xS
k=0 k t s=0
00 t+k n o
=c 2 FUAL ST
k=0 k t s=0

From equations (AL7) and (Al.8), f(r) = f(n-s) = coefficient of x% in F(x). Letting

(Al. 16) s =t + Xk
= n - r,we have

0 t+k n ®
(A1.17) F(x) =c 2 [)xs + - 2 x5

s=t t t s=0

n-r n
(A1.18) f(r) = ¢ [] + -

t t

Using the initial condition f(0) = 0, we have

n n
(A1.19) c(j«»;:O

(Al. 20) c = -

Appendix 1 84 Proof of Equation (3.3)

Substituting this for c in equation (ALI9) we have,

e

)
IS

0

(Al.21) f(r)

'
LB =

|

85

APPENDIX 2
ANALYSIS OF SORTING COST

The sorting of pairs of domain values and tuple identifiers forms a key step in the creation
of an index. For typicil file sizes in a data b’ase"environmént, an external sorting is
required. The sort merge technique has been extensively studied [s] Ignoring internal
comparison costs, the cost of a sort merge depends on the number of initial sorted subfiles,
the merge factor, and the size of the blocks that are read from and written back into
secondary storage. However, as we have assumed that the page is the fixed unit of storage
aflocation, we will ignore the passibility of improving the disk accessing cost by reading and
writing blocks larger than one page each. o ' '

Consider the sorting of a file of p pages. Let b be the number of pages in main memory
available for internal buffering. As a first step of the sorting process, s sorted subfiles of
the original file can be formed using s internal sorts. To optimize the subsequent merging
process, s should be minimized by maximizing the size of each of the sorted subfiles.
Hence, the size of each sorted subfile should be made équ‘al to the size of the internal
buffer, i.e. b pages. The cost of this phase of the sort-merge is 2¢p page accesses (since the
sorting of each of the subfiles is done internally without incurring extra page accesses). It is
possible that the original p pages of the file are only partially occupied, s0 that the writing
out of the sorted subfiles will incur less than p page accesses. Let u be the occupancy factor
(or fraction of storage utilization) of the original file; then the cost of forming the subfiles
is p » (1 + u) since the total length of the sorted subfiles will only be psu pages. It is also
possible that pu is not a multiple of b, in which case s-] subfiles of length b, and one with

length b’ (= p - b & (s - 1)) will be formed.

Appendix 2 | 86 Analysis of Sorting Cost

The merge phase consists of repeatedly merging sorted subfiles until a single one is
obtained. Knuth [+] has shown that merge paiterns can he represented as trees, and that the
merging cost is proportional to the external path length of the correspon’ding tree.
Therefore, sorting cost is minimized by choosing a tree with minimum extgrnal _pg;h, length
(sum of the level nurﬁbers of all the external nodes), such as a comp}ete z-ary tree where z is
as hrge as allowable by the internal buffer size. Allowing ane gagefor the buffering of
tuples from each subfile that participates in a merge, and one page for the output buffer, z
will be chosen to be b-1. Given s initial sorted subf xles(of which the first s-1 are of length.
b, and the last one is.of length b), the algarithm for cagrying out the mtrglng_.,accoidmg, to
a complete z-ary tree pattern can be described as follows., First add dummy wal‘es (of zero

length) as necessary to make s = {modulo (m-l)). to the front of;!;e Quene of initial subfiles,
then combine subfiles according to a first-in-first-out disd;aliﬁe, at any stage mergingr the z
oldest subfiles at the front of the queue into a single file which is placed at the rear. The
merging process terminates when a single sorted { ile.ji, left. The external path length L. for
a complete z-ary merge tree is [s}

(A2. 1) L=gs- L@U-9/z-0]

where s = [p/b]

q = [log,s]
Hence, the paging cast C; for the merging phase for the.case that pu is a multiple of b is:

(A2. 2) Cy = bal

Appendix 2 87 Analysis of Sorting Cost

If pu is not a multiple of b, there will be s - 1 subfiles of length b, and one with length b’ (=

p - b (s-1). In this case, the merge-sort cost C2 is:
(A2.3) Ch=Ci-q* (0=-1b"

Hence, the merging cost C (s -1, b’) for s - 1 subfiles of length b and one of length b’

merge

is

(A2. 4) Cl if b =b'

C, if b #b

{ASTRAHAN75]

{BAYER72]

88

REFERENCES

Astrahan, M. M., Chamberlin, D. D., "Implementation of a Structured
English Query Language®, Proc_eediggs of the ACM-SIGMOD

International Conference on Management of Data, May, 1975.

Bayer, R, McCreight, E, "Organization and Maintenance of Large
Ordered Indexes”, Acta Informatica, Vol 1, Fasc. $, 1972

[BECKENBACHS6]

[BELFORD75}

[BLASGEN?]

Beckenbach, E. F., (editor), "Modern Mathematics for the Engineer”,
McGraw-Hill Inc, New York, 1956.

Belford, G. G., "Dynamic Data Clustering and Partitioning”, CAC 162,
Centre for Advanced Computation, Research in Network Data
Management and Resource Sharing, University of Illinois at Urbana-
Champaign, May, 1975.

Blasgen, M. W, Eswaran, K. P, "On the Evaluation of Queries in a
Relational Data Base System", |BM Research Report, 1976.

[BLEIR67]

[BOYCE™M]

{(BROWNS9]

(BROWNS62)

[CARDENAS?5)

[CHAMBERLIN76]

89 : References

Bleir, R. E, "Treating Hierarchical Data Structures in the SDC Time-

Shared Data Managemeﬁt System (TDMS)", Proceedings of the ACM

National Conferénce, 1967.

Boyce, R. F., Chamberlin, D. D, King, W. F., Hammer, M. M.,
"Specif ying queries as relational expressxons. SQ_UARE" Data Base

Management, Proccedings of the IFIP Workmg Conference, North

Holland Publishmg Co., Amsterdam, The Netherhnds, April, 1974.

Brown, R. G, Statistml Forecastxng for Inventog Control, McGraw
Hill Inc; New York, 1969

Brown, R. G., "Smoothing, Forecastmg and Prediction of Discrete Time

Series”, Prentice Hall" Inc, Eﬁgwwood Chffs. New jersey. 1962.

Cardenas, A. F., Analysls and Performance of Inverted Data Base

Structures”, CACM, Vol. 18 No 5, May 1975.

B ,)4.

Chamberlin, D. D,, "Relational Data-base Management Systems”, ACM

[CODD70]

[CODD™N)

[CZARNIK75]

[(DATE7]

[(DENNINGTI]

90 _ References

Computing Surveys, Vol. 8, No. |, Mar,, 1976.

Codd, E. F., "A Relational Model of Data for Large Shared Data
Banks”, CACM Vol. I3, No. 6, June, I970.

Codd, E. F., "A Data Base Sublanguage founded on the Relational

Cak:ulus'. ngggxngs of the ACM-SIGFIDET Workshop on_Data

. escnp_tlon, Access, a __Cg_m t97l.

Czarnik, B., Schuster, S, Tsichriuls. D, "ZETA. A Relational Data

Base Management System gw gg the &M Pacific Regional

Conference, April, 1975.

Addison-Wesley,

Date, C. J. "An Introduction to Data_Bas
Reading, Mass,, 1975.

Denning, P. _) Elsenstem. 'Statlsncal Methods in Performance

Evaluation®, Proceedings of the ACM Workshop on System
Performance Evaluation, April, 1971.

[FARLEY75]

[FEIGENBAUMB3]

[GOTLIEB5]

[HELD75A)

[HELD75B]

[HOFFER75)

91 References

Farley, J. H. G,, Schuster, S. A, "Query Execution and Index Selection
for Relational Data Bases”, Technical Report CSRG-53, University of

Toronto, Mar., 1975

Feigenbaum, E. A, Feldman,], (editors), "Computers and Thought”,
McGraw-Hill Inc, 1963. ‘

Gotlieb, L. R., "Computing Joins of Relations”, Proceedings of the

ACM SIGMOD Conference, May, 1975.

Held, G. D, Stonebraker, M. R, Wong, E, "INGRES: A Relational
Data Base System", Proceedmgs of the AFIPS Natlonal Computer

' Conference, May, 1975.

Held, G. D Storage Structures for Relanonal Data Base Managemen
zstems , MemOrandum Nb ERL M533 Umverslty of California,

Berkeley, Aug 1975

Hoffer, J. A, Severance, D. G., "The Use of Cluster Analfsis in

KING™)

[KENNEDY72]

[KNUTH?}

{(KUEHN&3]

[LEVIN7S]

[LIU68]

92 References

Physical Data Base Design®, Proceedings of the Intgrn;tional
Conference on Very Large Data Bases, September, 1975.

King, W. F., "On the Selection of Indices for a File", IBM Research R]
1341, San Jose, Jan., 1974.

Kennedy, S. R, "A File Partition Model”, Information Science
Technical Report No. 2, California Institute of Technology, May, 1972.

Knuth, D., "Sorting and Seirching', The Art of Computer
Programming, Vol 8, Addison-Wesley, 1973. |

Kuehn. A A, Hamburger, J. M A Hammc Prognm for Locating
Warehouses”, Management Science, Vol 8, No. 4, July, 1963.

Levin, K D, Adapuve Fnle Asgnmem in Dtstribuned Data Bases”,
internal workmg paper, thg Wharton s:hqol University of

Pennsylvania, 1975.

[LuM™N)

[MARTIN?5]

(MEIER®9]

(MUTHS®60]

{(PECHERER4]

[ROTHNIE72]

93 References

Liu, C. L., "Introduction to Combinatorial Mathematics”", McGraw-Hill

Inc, 1968.

Lum, V. Y, Ling, H, "An Optimization Problem on the Selection of

Secondary Keys", Proceedings of the ACM National Conference, 1971.

Martin, J.,, Computer Data-Base Organization, Prentice Hall Inc,

Englewood Cliffs, New Jersey, 197.

Meier, R. C,, Newell, W. T, Pazer, H. L, "Simulation in Business and

Economics”, Prentice Hall Inc, New Jersey, 1969.

Muth, J. F., "Optimal Properties of Exponentially Weighted Forecasts”,

American Statistical Association Journal, June, 1960.

Pecherer, R. M., "Efficient Retrieval in Relational Data Base System",

Memorandum No. ERL-M547, University of California, Berkeley,

Oct, 1975,

94 References

Rothnie, J. B, "The Design of a Generalized Data Management

System”, Ph. D. Dissertation, Department of Civil Engineering, MIT,
Sept, 1972.

[ROTHNIEM]
Rothnie, J. B., Lozano, T., "Attribute Based File Organization in a
Paged Memory Environment”, CACM, Vol 17, No. 2, Feb., 1974.

(ROTHNIE?5]
Rothnie, J. B., "Evaluating Inter-entity Retrieval Expressions in a
Relational Data Base Management System”, Proceedings of the AFIPS

National Computer Conference, Vol. 44, 1975.

[SCHKOLNICK?75} 4 ,
Schkolnick, M., “Secondary Index Optimization®, Proceedings of the

ACM-SICMOD International Conference on Management of - Data,
May, 1975,

[SMITH75) :
Smith,]J. M., Chang, P., "Optimizing the Performance of a Relational

Data Base Interface”, CACM, Vol. 1§, No. 10, Oct. 1975.

[STOCKERT7S]
Stocker, P. M., Dearnley, P. A, "Self Organizing Data Management
Systems®, The Computer Journal, Vol 16, Ne. 2, 1973.

95 References

[STONEBRAKER74]

[THEIL64]

[(WAGNERT]

[WELCH76]

[WINTERS60]

[WONG?76]

Stonebraker, M., "The Choice of Partial Inversions and Combined

Indices”, International Journal of Computer and Information Sciences,
Vol. 3 No. 2, 1974.

Theil, H., Wage, S., "Some Observations on Adaptive Forecasting”,

Management Science, Vol. 10, No. 2, Jan., 1964.

Wagner, R. E, "Index Design Considerations”, IBM System Journal,

Yol. 4 No. 3,197

Welch, J. W, Graham, J. W., "Retrieval Using Ordgred Lists in
Inverted and Multilist Files", Proceedings of the ACM SIGMOD

Conference, June, 1976.

Winters, P. R,, "Forecasting Sales by Exponentiaily Weighted Moving

Averages”, Management Science, Vol. 60, 1960.

Wong, E., Youssefi, K., "A Strategy for Query Processing”, ACM

Transactions on Database Systems, (to appear).

96 References

[YUET?5]
Yue, P. C, Wong, C. K., "Storage Cost Considerations in Secondary

Index Selection”, International Journal of Computer and Information

Sciences, Vol. 4, No. 4, 1975,

CS-TR Scanning Project _
Document Control Form Date: | [/| 3o0/8s

Report# Lcs-TO~{((

Each of the following should be identified by a checkmark:
Originating Department:

O] Artificial Intellegence Laboratory (Al)
X Laboratory for Computer Science (LCS)

Document Type:

K Technical Report (TR) O Technical Memo (TM)
O other:

Document Information Number of pages: J6((x3-imscse)
. NotloMJdeDODformprmerMMetc original pages only.

Originals are: Intended to be printed as :
[0 Single-sided or O Single-sided or
M Double-sided K Double-sided
Print type:
O Typewriter [offsetPress [} Laser Print
[J inkletPrinter [] Unknown [other:
Check each if included with document:
m DOD Form (1) O Funding Agent Form k Cover Page
] spine O Printers Notes O Photo negatives
O Other:
Page Data:

Blank Pagesy page mumbes:

Photographs/Tonal Material wy pege numbes:

Other (nobe description/page number).
Description : Page Number:

Lmacs nACL(1- 9L) uvHrp TiTLE PAGE - 9¢
(42~ 103) Scancontmor @u&&mm(&)‘m@‘ﬁ' (3)

Scanning Agent Signoff: »
Date Received: [/ /75 /95 Date Scanned: // /30 /95 Date Returned: AL1) 1T

Scanning Agent Signature:_ﬂM:AA&X_/k\L*_Qm'_}L Rev 494 DSILCS Document Control Form ceirform.ved

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

_ N——
' g READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
EPO BER - 7. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
MIT/LCS/TR<166 ~ ‘ ‘
4. TITLE (and Subtitle) .)) 5. T'YPE OF REP-ORT.& PERIOD COVERED

Index Selection in a Self-adaptive ,S.M. Thesis

P '1975-1976

Relational Data Base Management System

8. PERFORMING ORG. REPORT NUMBER

~ . MIT/LCS/TR-166
7 ACTROR(a) §. CONTRACT OR GRANT NUMBER(s)

Arvola Y. Chan N00014-75-C~0661

. NI 1ON NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Massachusetts Institute of Technology AREA 8 WORK UNIT NUMBERS

Laboratory for Computer Science 1.
545 Technology Square; Cambridge, MA N G

t1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE :
Advanced Research Projects Agency September 1976

Department of Defense 13. NUMBER OF PAGES ’
y& Wilson_Bouleyar . 98
1 'eront from Controlling Otfice) 15. SECURITY CLASS. (of thia report)

.Office of Naval Research

Department of the Nacy . Unclassified
Information Systems Program [T5a DECLASSIFICATION/ DOWNGRADING |
Arlington, Virginia 22217. SCHEDULE

T BT RTBU T ION STATEMEN T (of this Report)

Approved for public release; distribution unlimited -

17. DISTRIBUTION gTATEMENT (of the abetract entered in Block 20, if ditferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverae aide if necessary and Identify by black number)

#Data base management, secondary indices, inversions, adaptive
data base system, global optimization, automatic physical data
base reorganization, performance monitoring, heuristics

e —————————— . o
20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

The development of large integrated data bases that support-a
|variety of applications in an enterprise promises to be one of
the most important data processing activities of the. next decade.
The effective utilization of such adata bases depends on the
ability of data base management systems to cope with the
evolution of data PDase applications. In this thesis, we attempt
to develop a methodology for monitoring the developing pattern

DD 1 52:!;3 1473 EDITION OF ! NOV 68 1$ OBSOLETE
: S/N 0102-014-6601 |

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

T s P

A AR AR IR L T T eI I et e S

SECURITY CLASSIFICATION OF THIS PAGE(When Dafa Entered)
- 20. '

v

Lof access to .a. data base and for choosing near-optlmal phy31cal
data base organizations based on the evidenced mode of use.
JMore_specifigally, we consider the problem of adaptively
: selecting the gset of secondary indices to be maintained in an
1ntegrated relatlonal data base. Stress is plhced on the
. acqu1s1tlon of an_ accurate usage model and on e precise
festimation of" aata base characteristics, through -the use of
access monitorifig and the. application of forecasting and
Jsmoathing technlgues.- The cost model used to evaluate proposed
index sets is realistic and flexible enough to incorporate the
overhead costs of index maintenance, creation, and storage.
A heuristic angrlthm is developed for the selection of a near-
optimal index set without. an~exhaustxvnnﬂmmnﬁratlbn Of all
p0551b111t1es.

SECURITY CLASSFICATION OF THIS PAGE(When Date Brtered)

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

