MIT/LCS/TR-167

USING TYPE EXTENSION

TO ORGANIZE VIRTUAL MEMORY MECHANISMS

Philippe Arnaud Janson

September 1976

This research was supported in part by Honeywell Information Systems Inc.,
and 1in- part by the United States Air Force Information Systems Technology
Applications Office (ISTAO) and the Advanced Research Projects Agency (ARPA)
of the Department of Defense of the United States under ARPA Order No. 2641,
which was monitored by ISTAO under Contract No. F 19628 - 74 - C - 0193.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE
(Formerly Project Mac)

CAMBRIDGE ' MASSACHUSETTS 02139

This empty page was substituted for a
blank page in the original document.

USING TYPE EXTENSION
TO ORGANIZE VIRTUAL MEMORY MECHANISMS

by:

Philippe A.iJenson

Abstract.

Much effort is currently being devoted to producing computer systems that

are easy to understand, to verify and to develop., The general methodology for

designing such a system consists of decomposing it into a structured set of
modules so that the modules can be understood verified and developed
ind1v1dua11y, and so that the understanding/verification of the system can be
derived from the understanding/verification of its modules. While many of the
mechanisms in a computer system have been decomposed successfully into a
structured set of modules, no technique has been proposed to organize the
virtual memory mechanism of a system in such a way.

The present thesis proposes to use type extension for that purpose. The
virtual memory mechanism consists of a set:of type manager modules
implementing abstract information containets. The structure of the mechanism
reflects the structure of the containers that are implemented. While using
type extension to organize a virtual memory mechanism is conceptually simple,
it is hard to achieve in practice. All existing or proposed uses type
extension assume the existence of information containers that are uniformly
accessible, can always be grown and are protected. Using type extension
inside a virtual memory mechanism raises implementation problems since such
containers are not implemented. Their implementation is precisely the
objective of the virtual memory mechanism. In addition to explaining how type
extension can be supported inside a virtual memory mechanism, the thesis
demonstrates its use in a case study involving a commercial, general-purpose,
time-sharing system. It concludes by providing some insights into the
organization of virtual memory mechanisms for time-sharing systems,

This report reproduces a thesis of the same title submitted to the Department
of Electrical Engineering and Computer Science of the Massachusetts Institute
of Technology, on 9 August 1976, in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy.

Thesis Supervisor: Michael D. Schroeder,
Title: Assistant Professor of Electrical Engineering and Computer Science.

Acknoyledgements.

=
CE

These lines implement a fundamental . component of an abstract object of
type "doctoral thesis". The type manager for a doctoral thesis is realized by
two interacting processes, called "committee! And "student". These lines
serve as an information containetr’ usedéby ‘the student process to express his
gratitude to the committee process as well as to all lower level type managers

thesis.

"A tout seigneur, tout honneur”, I would like to thank first my thesis
committee for its cooperation in managi “this thesis.: While an ideal
committee looks as a single process to the s;udent process, a real committee
is realized by three parallel processes, pho fortunately, agreed end operated
in reasonable synchrony in this case, and T’ thank thé% for that, 1 thank my
supervisor process, Professor Michael Schroeder fo ?his interesting '

' suggestions, his accurate criticisms, his en%husiastic encouragements and the
many hours of dedicated work he devoted to this thesis, particularly during
the past nine months, 1 thaank my reader processes, Piofessors David Redell
and Barbara Liskov, for their highly appreciated comments on the many drafts
of this thesis and for the enriching discussions we had about the research. I
would also 1like to thank a virtual resaer process, Professor Jack Dennis, for.
his comments on early drafts of. the first chapters of the thesis, and a '
remotely cooperating process, Professor Jerome Saltzer, who, through -
occasional short interrupts, provided us with ,some crisp and insightful
remarks on our research .

Next, I would like to extend my thanks to several peOple associated with
Honeywell Informatian Systems _Inc,: .to André Bensoussan for discussing with
me the high level issues that presided to the. aesign of NSS; to Bernard
Greenberg for helping me discover the marvela and the surprises. hidden in NSS;
to Jerry Stern for his comments on the implementstion of military security '
controls in Multics; and to_ Tom VanVleck for his remarks on the quots
mechanism of Multics, I would also. like to thank some of my fellow students
at M.I.T.: Richard Feiertag and Douglas Hunt for the random discussions we
had, which generated many ideas and much thinking, Andrew Mason for answering
my many questions about the mechanics of NSS; and particularly David Reed for
feeding me information on processor management in Multics, for discussing the
applicability of type extension to it, and for commenting on the final draft

of the thesis.

Perhaps I should thank the Xerox Corporation for having hired 66.7% of my
thesis committee on the West coast starting in August 1976, and the
Commonwealth Fund of New York -- after all -- for having required that I be
out of the country by September 1976. While cqoperation of processes in
physically distributed systems is a fashionable research topic. the prospect
of experimenting with it on a doctoral thesis was not particularly thrilling
and has certainly been a strong incentive to all of us to wrap up the work
within two years.

Thanks are also due to Ellen Lewis, who typed portions of the thesis, and
to Multics, which did not crash too often on me while I was typing the rest.

Last but not least, I express my wholehearted gratitude to those who
supplied the bottom level components that made this whole thesis possible: to
my sweet wife, Catherine, for her patience and her courage throughout these
long years away from the old continent she loves so much;’ to6 my little
Perrine, without whose distracting interrupts this thesis might have been
completed months later (or earlier?); ‘to her’ expected sibling for not
deciding to be born before the thesis was completed, which would have messed
up the sequence of events quite a bit; and to my parents, who not only helped
fuel my wallet but also, through letters and cassettes and transatlantic
calls, provided me with heaps of encouragements. '

P.J.
Cambridge, 21 July 1976.

Chapter

1.
2.

3.
Chapter

1.
2.
3.
4,
5.
6.
7.

Chapter

I.

II.

Table of contents,

Introduction.

Thesis motivations and objectivés.
Background and related work.

Parallel processes to 1mp1ement sequential algorithms,
Partitioning, decomposition. and modularity.

Total ordering vs, partial ordering.

Functional abstractions vs. data abstractions.

Approach and thesis plan.

A data abstraction model.

The nature of abstract types.

The nature of maps.

Sharing components.

Protecting internal type objects,
The nature of type managers.
Conclusion.

III. Use of the type extension technique

to design a virtual memory mechanism.

Use of the type extension concept.

Type extension and modularity.

Type extension and structure.
Causes of dependency.

Construction of the dependency graph.

Conclusion,
Type extension and deadlock prevention.
Conclusion.

Type extension in a virtual memory mechanism.

12
16
17
18
21
25
30

33

34
36
41
46
49
57
59

60

60
65
68
68
76
80
81
85

Chapter 1IV. Case study. 86

1. Introduction. 86
2. The Multics virtual memory mechanism. 89
Abbreviations used in chapter 1V, 90
Processes. ; 90

Pages. ‘ 91

Segments, 91

Address spaces. ’ 92
Directories. _ 95

Quota mechanism. 97

Removable disk packs. ‘ 99

3. Study of NSS. 102
Mechanical operation of NSS. 103
Organization of NSS. 113
Modularity violations in NSS. 116

Structure violations in NSS. 117

4. Design of MSS. 125
Development of MSS type structure. - 127

MSS dependency structure, 139

Solutions to problem areas. 157

5. Structural patterns. 176
Software caches. 176

Merging hierarchies. 180
Notifications. 182

6. Conclusion. 183
Performance, 183

Modules as data abstractions. 185
Horizontal protection of internal objects.) 186
Conclusion. 186

Chapter V. Conclusion, . 188
1. Summary. 188
2. Results, 190
3. Future research. 191
Bibliography. 196
Appendix. Military security controls in Multics. 200

Biographical note. 210

Table of figures.

NSS data bases and interconnections.

Best fit model for the organization of NSS,
Fictitious type structure for NSS.

MSS type structure graph,

1SS component dependencies,

11SS dependency graph,

112

114

134

140

141

156

I. Introduction.

=t e emem e e e

Research reported in this thesis is concerned wiﬁh the organization of
virtual memory mechanisms for computing utilitiés. Tﬁe thesis doés not
explore new algorithms for managing virtual memories bdt presents a technique
for organizing any virtual memory mechanism given the 5pecifications of ité
user interface and the available hardware technology.b The objective of this
technique is to organize the virtual memory mechanism into a structured set of
modules so as to make the resulting implemeﬁtation easier to understand,
verify and maintain. We have reason to believe that the technique that is
presented can be used for organizing the'virfual memory mechanism of almost
any kind of computing utility, be it a disﬁributed system, a réal-time system
or a conventional time-sharing'system. In this thesis,‘the technique has been
elaborated within the contéxt of and applied té the desién of the wirtual
memory mecﬁaﬂism of a general purpose comﬁercial time—shéfing system of the
kind one mighﬁ use on a university campus or iﬁ a reseérch laboratory, for
information stofage, text editing and 1nterac£ive érogrém'developﬁent and
scientific calculation. The interest of the.thesis is fwofold. On one hand,
it presents a technique that we believe is appliﬁablebté any sort of computing
utility. On the other hand, it provides insights into the organization of 4
structured and modﬁlar virtual memory mechanisms fof conventional tiﬁe-shéring
systems, o

A time-sharing computing utility provides a commuﬁity of users with the
ability to share access to a set of hardﬁare-resources such as processérs,
memory and I/0 deviées, to a library of4progfams aﬁd éervices, and to the
information stored in the‘system. if accessvto these facilities were not

controlled, abuses might be committed by users of the system. For instance, a

user could take over the system and cause it to deny any service to other
users, Or a user could covertly téke édv;nt;ge Qf programs and services
written by others and avoid the charges for the usage of such facilities.

Much worse than the above two examplés would be the unconfrollea access to the
information stored in the systéﬁ. Such uncontrolled acéess could fésult in
unauthorized release and modification of that iﬁformation [Saltzer75] and
violation of the privacy of certain people. Whiie ghé usefulness of computing
utilities haé been recognized, the need to cqntrél acéess to the stored
information has also been realized. Thé advent of coméuting utilities has

thus fostered the desire for computer systems that are accredited secure, 1i.e.

certified to protect the information they contain.

Much effort is currently being devoted to producing certified secure
time-sharing systems [see for instance Neﬁmann??, Schioeder75]. P:oducing
such a system inveolves several operations [Schroeder75] as showm in the
following figure. First, iﬁ is necessary to verify thaﬁ the programs of the
system implement the specifications, 1.e. to verify éérrécthess. Second, it
is necessary to verify that the specifications embody tﬁe mddél of informaﬁion
secur ity that the system must support, i.e. té.verify security. Finally, if
is necessary to evaluate the verification of‘correctn;;s,‘tﬁevverification of
security and the model of security to certify that the iﬁplemented system will
meet the seéurity standards demandéd by the community of users it serves. |
Evaluating the verifications of correctness and security means subjectively
rating the quality and the effeetiveness of the §roof techﬁiques or the
automatic verifiers that may have been Qseé:for fhe first two steps.
Evaluating the model of security meaﬁs subjéctively raﬁing fhe fofmal
description that this model proposes forrthe security sfaﬁdar&s that are only

informally defined by the user community. Of the certification process, two

operations =~ the verification of correctness of the implementation and the

evaluation of that verification -- are of particular concern in this thesis.

implementation (formal)

verification of correctness is the validation of
the formal correspondance between

\“(the implementation and the specifications
specifications (formal)

verification of security is the validation of
the formal correspondance between

\ / the specifications and the model

security model (formal)

certification is a subjective evaluation

of the two verifications and of the correspondance

\ / between the model and the standards of security
V

security standards

Verifying the correctness of a system and later evaluating that
verification are impossible tasks if one attempts to verify the whole system
as a single unit. First, existing verification techniques are not
sufficiently powerful to establish the correctness of a program of the size of
current time-sharing operating systems. (For certification purposes, it is

actually sufficient to verify the correctness of the security kernel of the

system, that is of the code critical to security. However, even this simpler
task is beyond the capabilities of present verification techniques.) Second,
even if adequate verification techniques were available, the resulting

verification would probably be too long and too complex for any human auditor

to read it, understand it, evaluate it and accept the responsibility for

10

subsequent certification. The purpose of the evaluation is to convince the
community of users that the verification of correctness is adequate. For this
evaluation to be significant and convincing requires thgt the human auditor
who will certify the system be able to convince himself of the adequacy of the
verification. Thus, the veriflcation of correctness should be short, simple
and systematic or the task of evaluating it would be hopeless. The uae of
higher level system programming languages may improve the situation somewhat
by making programs more amenable to verification and the resulting |
verification easier to evaluate.: Yet,-new systém érogramming languagts will
not suffice to overcome the verification ptoblem.

The alternative to verlfying a whole system as ; single unit consists of
dividing the system into elements called modules to divide the task of |
verifying the system into a set of subtasks of manageable size each of which
consists of verifying an 1ndividual module: This method presumes that each
module is clearly distinct from others and sufficiently small to be verified
individually by existing techniques, It also presumes that all modules are
organized in a structured way that allows the correctness of the system to be
logically inferred from the correctness of its modules. The problem with this
method is thus to organize the system into a structured set of modules that
are distinct and small,

In addition to ease of verification, two significant advantages are
gained from dividing a system into a structured set of modules:
understandability and maintainability. Even 1f one were not going to
undertake the verification of a system, dividing it into a set of modules
allows analyzing and/or modifying modules individually. Purthermore, the
structure of the system may be used to learn about the system in a systematic

fashion (e.g., bottom-up or top-~down).

11

1. Thesis motivations and objectives.

The present thesis is concerned with a technique for brganizing virtual
memory mechanisms for computing utilities in é‘structurea and modular way.
Such a technique is desirable because the virtual memory méchanism of a system
is, in general, part of its security kernel and therefore should be structured
and modular so it can be verified easily,

Some authors [Popek74] claim it is poséible‘to désigh é system such that
the virtual memory mechanism is not part éf the sechity kernel and therefore
need not be verified to verify thércorrectness of the security‘kernel. We
disagree with this claim for two reasons.> Firsﬁ, élthougﬁ we believe that
Popek’s design is interesting and has removed a piéce of the virtual memory
mechanism from the security kernel, we disagree ﬁith the statement that the
whole virtual memory mechanism is’outside ;ﬁe security kernel. Second,
although we believe that Popek’s design can be applied with~great benefit to
simple systems like the PDP-11/45 he has béeﬁ‘considering; we believe the
benefit of exploiting it for more sophisﬁicated systems 1is feiativély small.,
Let us justify our position. First, according té Popek’s deéign, the poiicy
decision to bring a piecerf data intb’pfiﬁary memofy - éven security
critical data -- is left to the users aﬁd cannot affect the seCUfity kernel
but all the mechanisms (space ailocatioﬁ, disk i/O,ﬂetc...) necesséry to
implement that decision are provided by thérsecurity kernel, Thus, only the
policy for driQing the virtual mémofy opération i; oﬁtside the security
kernel. The mechanisms, which are secondary‘in nature but probably larger in
terms of code, must be verified as part of the security kefnel. Second, the
design proposed by Popek is fairly interesting for simple s&stems in whiéh the

functions of multiplexing primary memory and protecting logical information

12

can be supported together. However, in systems where these functions are
decoupled, the relative amount of virtual memory code that can reside outside
the security kernel is very small. Consider the following example. In the
Multies system [Organick72}, protection ofAinformatioc involves mapping
segments into user address spaces while.multiplexing of primary memory
involves mapping pages into primary memory. A ditect applicstion of Popek's
design to Multics would suggest that, wﬁen a user wants to teference a
segment, the entire segment be mapped into the user address space and into the
system primary memory.b This is impractical because, in a system supporting
information containers the size of Multics segments, it is imperative that
mapping a segment 1nto a user address space be decoupled from mapping its
pages into the primary memory. The mechanism for paging segments must be part
of the security kernel because it manlpulates physical 1nformation containers
(pages) that 1mp1ement the logical 1nformation containers (segments) protected
by the security kernel. 1If paging were not in the security kernel, it could
affect the integrity of the correspondance between logical and physicsl |
information containers, theteby defeating the protection mechanism that the
security kernel is supposedly implementing; Thus, in relation to Pcpek’s
design, the only element of the virtuai memory mechanism‘that should still be
under the respousibility of users is the mapping of segﬁents into user address
spaces. This design has indeed been recoﬁﬁended for Multics [Bratt75].
However, the amount of code that is removed from the security kernei as a
result is very small relative to what remains in the security kernel. One
could not claim that this design has remosed the virtual mesory mechanism from
the security kernel.

In summary, we consider that the virtual memory mechanism of a cosputer

systemn is a part of the security kernel of the system becausebsecurity depehds

13

on that mechanism in two ways. First, all information secured by the
protection mechanism of the system is stored in containers (pages and/or
segments) that are handled by the virtual memory mechanism. Thus, if the
virtual memory mechanism did not operate correctly, it could lose, damagé or
interchange information containers, thereby violating security. Second,
security critical programs and data bases themselves are too large to be core
resident at all times. Thus, the security kernel relies on the virtual memory
mechanism to move them in and out of core when necessary. Consequently, the
virtual memory mechanism of a system must be verified in order to produce a
certified secure system,

The lack of a suitable technique to organize the virtual memory mechanism
of a system motivated this thesis., Our objective was thus to develop such a
technique to make virtual memory mechanisms easier to understand, verify and
maintain. The technique :to be presented is based on a concept of type
extension to be defined in chapter II. The virtual memory mechanism is
regarded as implementing a collection of abstract objects (repositories for
data). A different module of the virtual memory mechanism is designed to
support every different type of abstract object. - The formalism of type
extension is used to organize the modules of the virtual memory mechanism into
a structure reflecting that of the abstragct objects supported by the virtual
memory mechanism., That formalism also contributes to simplifying the
specifications of the interfaces of the modules that are defined. The task of
the designer consists of choosing abstract data types such that they can be
implemented by modules of a size amenable to human understanding and hopefully
manageable by known verification techniques. The use of a type extension
formalism makes the virtual memory mechanism modular and structured in a way

that simplifies understanding it, verifying it and maintaining it.

14

One original aspect of the thesis resides in the exploitation of the
systematic approach of type extension in an area of system design to which its
applicability has never been demonstrated before. So far, true, formal type
extension mechanisms have been used only in programming languages and in areas
of system design that are at levels higher than the virtual memory mechanism.
To exploit type extension inside a virtual memory mechanism, one must face the
issues that uniformly accessible and "growable" information containers are not
available,

The type extension technique proposed in the thesis is more than just a
means to evaluate and enforce the organization of a virtual memory mechanism.
With most software organization techniques, all ‘the hard design decisions are
left to the designer of a system in that he must choose how to modularize his
system. The organization techniques provide the designer only with rules to
enforce modularity and structure after he has defined the role of each module.
The type extension technique presented in this thesis provides the designer
not only with rules to enforce modularity and structure but also with hints
about the possible modularization of his system. In .this respect, the type
extension technique is closer to a design methodology than most existing
organization techniques.

In order to show the use and the effectiveness of the type extension
technique, the thesis will exploit it to reorganize the virtual memory
mechanism of a commercially available, general purpose time-sharing computing
utility, the Multics system [Multics74). Emphasis will be placed upon the
conceptual aspects and the engineering aspects of the technique. Some
attention will be given to the performance of the resulting system but an
accurate performance evaluation cannot be given since the reorganized system

has not been implemented. The modularity and structure of the new design and

15

their impact on the understandability of the new system will also be
discussed. However, we will not attempt to verify the correctness the. new
system, again because it has not been implemented.

In the remainder of this introductory chapter, we will first review some
background notions on the organization of st:uctured and modular,systems.
While doing so, we will survey the existing literature on related topics. We
will then present our method of approach to the problem of organizing virtual
memory mechanisms. As we do s0, we will outline the plan of the thesis,

2. Background and related work.

The literature is not very abundant in the area of the organization of
structured and modular virtual memory mechanisms. Hdﬁevér, infofmétion on
that subject can be found in numerous paperé covering a wider topic: thel
design of structured security kernels aﬁd téchﬁiques for the organization'of
structured operating‘systems. Tﬁerefore; we will surveybvaribus teéhniques
used in connection with this wider problém and discuss their apéiicability to
the design of virtual memory mechanisms., ?We emphasizé the fact that most of
thévtechniques to be described are compatible ﬁith 6ne another aﬁd éan be used
complementarily within oné System. It will be séen ihat sevefal systems
indeed exploit more than one techniqﬁe at a time.

Techniques for organizing a system shoul& achieve two goals., First, the
various modules of the system should have the property thaf they are distinct
and sufficiently small to be amenable to human understanding and hopefﬁlly to
existing verification techniques. Second, the organizétion of the modules and
their interactions must have the property that they éllow a verification of
correctness of the entire system to be derived froﬁ‘tﬁe‘verifiéation of its

individual modules, i.e. that they allow a structured verification of

16

correctness of the system to be carried out.

A recent paper [Schroeder75] that surveyed the techniques used in the
design of a security kernel for the Hultics system mentionsg two techniques
that are of particular interest for virtual memory mechanisms, The first
technique is based on the use of parallel processes and the second one on
partitioning the security kernel into separate proteé¢ted subsystems.

Parallel processes to implement sequential algorithms.

This first technique consists of implementing a mechanism with programs
that can execute in separate parallel processes. A paﬁér‘[Hoare73] on a
structured paging system used the technique to design a mechanism for movihg
pages of information between the paging device and the primary memory of a
computer system, This design is extremely clear and understandable.
Individual parallel processes, called monitors, are used for each separate
function: allocating primary memory space, allocating paging device space,
moving one page into primary memory, moving one page out of primary memory,
etc... Each monitor represents a very small amount of code and the
interactions between}the monitors (i.e. the structure ofvthg sys;em) are well
defined and would make a structured verification of the system possible.
However, the design is unrealistic in that it requires two monitors for each
page of information. It seems impossible to keep the status infqrmation for
all those monitors in primary memory at all times.

Another design [Huber76), which is very realistic and has been
implemented in the Multics system, uses only one process per level of memory
to handle the outward movement of pages. Each such process is responsible for
continually maintaining free space at the memory level it is managing by
purging selected pages to the next outer level of memory. Demand paging is

implemented by each user process for itself. This very elegant technique

17

constitutes a definite step towards the simplification of the design of a
paging system: the inward movement of pages can be analysed and verified
independently from the outward movement; and the outward movement can be
analysed and verified separately for each level of memory. We will retain
this technique as a useful and efficient one. It will be used in conjunction
with the technique we will present to further simplify the task of
understanding and verifying the virtual memory mechanism of a computer 'systein.
The elegance of the above technique and the simplification resulting from
its use are not accidental. They are the result of considering the true
nature of the mechanism that is being implemented. It is often thought that
by implementing all the system functions a user can trigger within the process
representing that user, a simpler system will result since the user process is
strictly sequential. Although often correct, this attitude should not be
adopted systematically. Using user processes to implement some function may
actually cause more parallelism to occur. As a result of such'a design, all
kinds of locks may be necessary to synchronize all user processes. Several
functions, like the removal of pages to secondary storage, should be
considered from a system point of view even though they are performed as a
result of the interactions of individual users. Such functions are better
implemented by dedicated system processes than within each user process.
While looking parallel to a user, a dedicated system process casts a
sequential aspect in the implementation of the function it performs. The
resulting implementation is cleaner and more understandable.

Partitioning, decomposition and modularity.

According to Schroeder [Schroeder75], "partitioning is really the same
problem as dividing [a system] into separate procedures and data bases, with

the extra property that the modularity is enforced by the system”s protection

18

mechanisms'". Feiertag has used the term partitioning more loosely to mean
dividing a system into modules with or without the protection connotation
suggested by Schroeder. To clarify the situation, we will use the term
partitioning in the sense proposed by Schroeder and we will use the term

decomposition to mean the division of a system into modules without any

protection connotation. We will use simply modularizing to mean either
decomposition or partitioning. Decomposition is a comceptual technique for
defining modules. Partitioning also includes a practical technique for
enforcing that definition.

Partitioning is more desirable than decomposition from a verification
point of view because the enforced protection allows the. designer of a module
to depend on certain security properties of his medule that are guaranteed to
be true if the protection mechanism operates correctly. Those security
properties can be helpful in the verification of the module. However, there
may be programming environments —-- particularily in a virtual memory mechanism
-- where the protection mechanisms required to support partitioning simply are
not available, In such environments, the designer must satisfy himself with
decomposition,

While partitioning is more helpful than decomposition in verifying a
system, both techniques are of egquivalent-help ia specifying or understanding
the modules of a system. Parnas’s specification technique for software
modules [Parmas72a, Parnas72b] can be used as well with partitioning as with
decomposition. The difference between the two techniques will be felt only at
the level of the security properties of a module. With partitioning, those
properties are guaranteed to hold because of the protection mechanism. With
deconposition, they must always be proved to hold,

Both techniques for modularizing a system consist of dividing what would

19

be a complex mechanism into a set of simpler mechanisms, and impleﬁenting each
simple mechanism with one module that can:be harfdware; software or a
combination of both., In either case, the module is-a collection of algorithms
and data bases. Two concepts of modularity can be found in the literature.
Modules in the strict sense [Liskov72b, Parnas72] are isolated collections of
procedures and data bases where no data base can be shared by several modules:
the data bases in one module can be referenced gnly by the procedures in that
module, Modules in the weak sense [Habermann76, Parnas?6] are collections of
procedures and data bases that are not isolated. They intersect over data
bases that can be shared and managed by several modules. The possibility of
shared data bases belonging in several modules presents two disadvantages.
First, the boundaries of any individual module are not clearly defined and
modules are not clearly distinct. Thus, it is extremely hard to identify and
speeify simply, precisely, completely and correctly the interface of a module,
i.e. the set of channels (including potential shared data bases) over which it
interacts with other modules. Second, the formal specification of the
interface of a module sharing a data base must contain statements about the
behavior of the module with respect to the shared data base. Hence,
implementation level information about a shared data base propagates into the’
design level specifications of the modules that share the data base, thereby
making those specifications harder to understand, harder to use in verifying
the modules and harder to maintain when changing the implementation of the
shared data base. Instead, the interface of a strict module. is much easier to
identify and specify because strict modules respect Parnas’s information
hiding principle [Parnas7l]. Since there are no shared data bases, modules
cannot interact via data bases. Thus, identification of interfaces is easier

because they never include data bases. And specifications of interfaces never

20

contain any information about the implementation of any data base. Based on
these observations, we have chosen to work with strict modules in this thesis,
(More details on the advantages of strict modules will be given in chapter
I1II.) Unless otherwise stated, the word "module" will implicitly mean "strict
module",

Partitioning and decomposition are orly names for denoting two similar
approaches to replacing what would be a large module by a set of small
modules. There are two problems hidden behind those names: how does one
choose modules to implement a dystem and how does one organize them in a way
that makes a structured verification of ‘the system possible? We will consider
various answers to these questions in the next two sections.

Total ordering vs. partial ordering.

One objective of any module organization in a system is the feasibility
of a structured verification of the system. This objective implies that there
be an ordering between the modules of the system such that the verification or
the understanding of a set of modules can be inferred systematically from the
verification or the understanding of subsets of that set. Parnas [Parnas76]
has suggested that an ordering based on a relation he calls "uses" is adequate
to infer the correctness of a system from the correctness of its parts., A
module B is above a module A with respect to the '"uses" relation if A provides
a service used by B. In this thesis, we will use an ordering based on a
relation of dependency. A module B depends on a module A if the correct
operation of B depends in any way on the operation of A, i.e. if verifying the
correctness of B requires making any assumption about the operation of A.
(More details on the dependency relation will be given in chapter II1I.) A
module B that "uses" a module A depends on A because it assumes the

correctness of the service provided by A. However, a module B that depends on

21

A does not necessarily "use" A. For instance, if A and B share a data base, B

might not "use"

A in the sense that it might notwneed,the,service provided by
A but B depends on A for preserving the infegrity of the shared data;pase.
Two modules that interact via a sharedvdqta'bage might not '"use" one another
but are au;omatically mutually dependent on one‘anogher.,AAng mutual
dependence means a dependency loop in the structure of the system, which makes
systematic understanding and verification hatder, T@gs,zphg!dependenqy
relation is preferred‘to the "uses" relation because it discourages the use of
weak modules, which were deemed undesirable earlier, as they encourage cyclic
dependencies., On the other hand, Parnas argues [Pgrnas76],that conside;ing
the "uses" relation and allowing weak modules enhances system efficiency. As
will be seen in chapter IV, we do not beligyg ;ha} the loss of efficiency due
to eliminating weak modules is substantigl. Invaddition, we believe it is
improper to trade clarity for efficieancy of codg, papticularily in products of
the size and complexity of cﬁrrent virtqal»memqry mgchanisms.z(l)

Whatever the ordering relation, two particular ways‘ex;st to organize
modules into a structured system: tﬁe total ordgripg‘;gchniqug and the
partial ordering technique.

The total ordering technique is based on a total ordering of the modules,

i.e. each module is ordered with respect to every othep»module. A module can
depend on (use) only primitives provided by lower level modules and is unaware
of higher level modules, In many systems, the expression "level of

abstraction" has been used to mean modules that are totally ordered. Except

(1) In the absence of weak modules, the dependency relation is equivalent to
the "uses" relation. Since we have decided to not use weak modules, unless
otherwise stated, the phrase "depends on" will mean essentially the same as
"uses". However, the reader must bear in mind the fact that the meanings are
similar only because we restrict ourselves to strict modules.,

22

when talking about such specific systems, we will avoid the expression because
it is confusing. It has been used by too many authors to mean too many
different concepts.

The total ordering technique has been used for the design of numerous
systems. Its use has been very successful in structuring the higher levels of
a security kernel or an operating system. However, it seems to have been less
successful in structuring the lower levels, and particularily the virtual
memory mechanism, of a computer system. For some reason, every published
system design based on the total ordering technique proposes to implement the
virtual memory mechanism of the system with too few modules that are too large
to be verified in most cases.

In the THE system [Dijkstra68] and in a PDP-11/45 security kernel
[Schiller73], the entire virtual memory mechanism is contained in only one
nodule, called a level of abstraction. Given the relative simplicity of these
systems, a one-level virtual memory mechanism may be sufficiently small to be
anderstandable and verifiable by existing techniques. But such an approach
cannot be taken in computer systems with more sophisticated virtual memory
mechanisms.

In a virtual memory mechanism designed at Carnegie Mellon [Price73,
Parnas74] and in an operating system designed at Stanford [Saxena75,
Saxena76], the virtual memory mechanism is implemented by two levels of
abstraction. The existence of two levels of abstraction perhaps clarifies the
structure of the system but it does not necessarily simplify its verification.
Instead of each level of abstraction being half the size that a single level
nf abstraction would be, the levels of abstraction largely duplicate each
other. 1In the Stanford system, the virtual memory mechanism is divided into

two levels to eliminate a cyclic dependency between that mechanism and the

23

™ o

virtual processor mechanism, but not to simpiify the virtual memory mechanism
itself. The lower 1éve1 of abstraction implementé tpevvirtuai mémory
mechanism for a fixed small number of 5y;tem pfpceéses'ﬁﬁile the higher lépel
of abstraction’implements:the virtual memory hééhéhipp for a large number‘pf
user proceéses. ‘Thié désign is'veryrintereéting fo eliminate the cyélicv
dependency but in‘térﬁs’of size and coﬁplexity, each ieVél of abstraction is
comparable to what a single combinea ie&él of abstraptipn wppld be.‘ ﬁoth
leveis of abstraction have to implement resource control and péging for the
kind of processes fhey serve. The CMU syétem is'pa9e6>pnié'disiinction
between fixed size ségﬁents existiﬁg in fixed nhﬁbei and variabié\size
segments existing in variable quantity. ‘bieafly, the level of abstraction
supporting the former kind of segments is SOméﬁﬁét simpler tﬁan the level of
abstraction supporting the latter kind. Howéver; both levels duplicate one
another in impleﬁentiné'paging for the kind of segménfs théy éuppbrt.

In the Cal system [Lampson69, Sturgis74, Lampson75] and in the SRI system
[Neumann74, Robinson75, Neumann75), the virtual memory mechanism is also
implemented by two levels of abstraction. The levels of abstraction were
chosen so that they hardly duplicate each other. Even 'so, each level of
abstraction seems too largebto be amenable to human undérétandiug and to
existing verification techniques. In particular, the levels of abstraction
really implement more than one abstraction. This tends to confuse
understanding and verification as the concepts implemenzéd by the virtual
memory méchanism are not clearly separated.

The Mitre Corporation has proposed a redesign of the Multics system
[Ames75] that includes a virtual memory mechapism composed of three
levels of abstraction. Thé two lower levels of’abétraction (core

management and "other storage" management) look like tﬁey are sufficiently

24

small to be amenable to human understanding and verificatiop. However, the
higher level of abstraction (segment management) is c;uttered with directory
control, access coﬁtrol and 1nfqrmatiqn backup mechanisms. These mechanisms
are not part of the segment manager and 1deally should be implemented at
higher levels. Unfortunately, the original functionality of these mechanisms,
which Mitre has tried to respect as much‘aé possible, suggests that they all
share with the segment management mechanism the access ﬁo thg directories of
the file systenm.

The partial ordering technique has not been exploited as often as the

total ordering technique. As its name suggests, it is based on a partial
orderiﬁg, as oéposed to a total ordering, of thé modules of the system. It
has been exploited in the Venus system [Liskov72a]. ’Feiertag has demonstrated
the advantages of partial ordering in a case study involving the Multics
system. The partial ordering technique is more appealing than the total
ordering technique because it is more flexible and more natural., The designer
is not forced to cast every module into an arbitrary, unrealistic and too
constraining, totally ordered structure.

Functional abstractions vs., data abstractions.

The present section will discuss various ways to define the role of the
modules composing a system. One may distinguish two kinds of modules:
functional abstractions and data abstractionms.

A module defined as a functional abstraction appears as a primitive (or a

set of primitives) implementing a function that can be applied to data
supplied by the caller to transform it in some specified way. A functional

abstraction module may have internal state information but usually does not.

A module defined as a data abstraction appears as a collection of

objects. The primitives supported by the module appear as channels to

25

store/retrieve information into/from the objects. A data abstraction module
always has internal state information: thg representation of the objects it
maintains. Any individual primitive (or subset of primitives) of a data
abstraction module constitutes a functional abstraction. It is only all
together that the primitives constitute the data abstraction.

The data abstraction technique has two advantages over the functional
abstraction technique. First, it is the basis of the concept of type
extension. This concept was first defined in the context of programming
languages (e.g., SIMULA 67). It was then used by various people in the system
design area., Different ways for implemehtiﬁg type extension in this latter
area were proposed by Jones [Jones73] and by Redell [Redell74]. Type
extension mechanisms were first designed for the Cal system [Lampson69,
Sturgis74, Lampson76], the Hydra system [Cohen75, Levin?5, Wulf75] and tﬁe SRI
system [Neumann74, Robinson75, Neumann75]. Very recently, the type extension
concept was used again in the programming language area for CLU [Liskov76], a
language that will be méntioned several times in this thesis.

The formalism of type extension requires that each type of object, that
is each kind of data abstraction, bé managed completely and ékclusively by one

module, called a type manager. All the attributes of an object are defined

and maintained by the type manager for that‘objéct. And any type manager
defines and maintains the attributes of only one type of object. It is always
clear which module is responsible for which type of objéét. Transactions with
a type manager are restricted to operations on objects, i.e. to invocations of
the primitives of the type manager. Thus; a type.manager both hides and
protects the implementation of the objects it supports. Since the primitives
defining a data abstraction are grouped so as to hide ﬁhe implementation of

the data abstraction, the specification of the interface of a type manager

26

contains no knowledge about the implementation of the objects it supports and
is thereby simplified. Since a type manager protects its objects, it
naturally tends to not share its intern#l data bases with other modules.

Thus, data abstractions lead to modules in the strict sense. This point will
be developed further in chapter III1. On the other hand, with functional
abstractions, different modules may be responsible for different attributes of
the same entity or, more generally, it may not be clear what the entities are.
Nothing in the nature of a functional abstraction suggests that it should not
share a data base with another functignal abstraction. Consequently,
functional abstractions may lead to modules in the weak sense, with all the
inconvenience that can result [Habermann76, Parnas76]. In summary, the first
advantage of data abstractions over functional abstractions is that one can
concentrate exclusively on one module when establishing or verifying the
properties of one type of objects, and the interface of a type manager tends
to define an abstraction more simply, more precisely and more completely than
the interface of a (potentially weak) module based on a functional
abstraction,

The second advantage of data abstractions is the ease with which the
partially ordered structure of the system can be derived from the structure of
the abstract objects it manipylates., 1In a system based on type extension,
each data abstraction is defined in terms of more primitive data abstractions
and each abstract object is implemented in terms of more primitive objects.
Thus, if objects of type T are implemented in terms of objects of types Tl to
Tn, the type manager for T will directly depend on (use) the type managers for
Tl to Tn. The organization of the type managers directly rgflects the
structure of the data abstractions they stand for. This organizatiop will be.

called an object based dependency,structurg because of the underlying

27

existence of abstfact objects. 1In general, .it .corresponds to a partial
ordering but it may be cast into totally ordered modules. [NeumannZ75,
Lampson?75].

However, implementations of type extension, under. their current form,
present two disadvantages that functional abstractiomns do not have. First,
not every mechanism in a sysﬁem can be cast easily into a data abstraction.
Many system programs have an intrinsic functional aspect that is hard to model
properly with data abstractions. For instance, a loader is best regarded as a
functional abstraction than as the manager of any type of data abstraction.
Second, all existing type extension mechanisms depend on (use) a memory
management and information protection mechanism, which may itself be complex,
Such a type extension mechanism cannot be used to structure the underlying
memory management and protection mechanism because this would create a
dependency loop between the two mechanisms, which violates the partial
ordering requirement of any module organization, All systems providing a type
extension mechanism to their users do not exploit. the mechanism within their
virtual memory mechanism because the virtual memory mechanism is the memory
management and protection mechanism used by the type extension mechanism. At
best, one can distinguish the shadow of a type extension concept in the
virtual memory mechanism of certain systems, But this shadow is not supported
by any actual type extension formalism, much legs enforced by any type
extension mechanism.

For example, any operating system built around the Hydra kernel can use
the type extension mechanism provided by the kermel. Hpwever, the kerngl
itsélf cannot and does not use the type extension mechanism because it
implements the memory management and protection mechanisms that are precisely

required to support type extension. In fact, the abstract objects (pages)

28

protected by the kernel are manipulated by primitives that evoke functional
abstractions more than data abstractions [Levin75].

In the SRI system [Neumann75], most modules above the two levels of
abstraction that implement the virtual memory mechanism strictly respect type
extension. However, modules at and below the virtual memory levels do not.
First, some of the abstractions supported are not data abstractions but rather
functional abstractions (e.g., interrupt handling, masking, access
revocation). Second, even abstractions that look l{ke data abstractions are
not implemented as data abstractions, Segments and pages are implemented in
terms of lower level functional abstractions rather than being implemented in
terms of more primitive data abstractions like disk records and core blocks,
for instance. Finally, each level of abstraction violates type extension in
that it really implements more than one abstraction, as mentioned earlier.

For instance, concepts such as disk I/0, resource control and information
backup are not recognized as separate abstractions. They are implemented
within the two virtual memory levels of abstraction together with segments and
pages thereby making the two levels of abstraction larger and more complex.

In the Cal system [Lampson75], the two levels of abstraction implementing
the virtual memory mechanism support two different kinds of file: core files
and disk files. As in the SRI system, the formalism of type extension is
violated and some of its advantages are lost because the lower level of
abstraction implements half a dozen data abstractions instead of just one.

Not only does this make that lower level too large for understanding and
verification by existing techniques, but it also increases its complexity
because some of the primitives it provides involve more than one abstract

object.

29

3. Approach and thesis plaan.

From the previous discussion, it appears that the partial ordering
technique is more desirable than the total ordering techniqne to organize the
modules of a system into a structured program. The partial ordering technique
is more flexible and less restrictive‘than tne'total ordering technique.
Therefore, it is easier to use and yields:a‘more understandable system,

It also appears that using type extension and designing modules after
data abstractions rather than functional abstractions simplifies the resulting
system, Not only does type extension naturally lead to a system that has an
object based structure, which is -- in general - a.partially ordered
structure but, in addition, type exten31on protects and hides all the details
of each abstraction inside a type—manager module that embodies that
abstraction. Thus, understanding and verification of any abstraction boils
down to understanding and verifying the single module of the system that
enbodies the abstraction (assuming that the abstractions:it depends on‘(nses)
are correct).. | | | N

Unfortunately, data abstractions are not always easy to use because not
every-mechanism in a system can be cast into a data abstraction and because
type extension mechanisms traditionally require the support of a memory
management and protection mechanism that provides uniformly accessible,
"growable" and protected information containers.“ | |

The use of a type extension mechanism to structure a virtual memory
mechanism is particularly awkward. First,‘a”yittnal memory mechanism may‘
include mechanisms such asvpagingland.resonrce control, nhich have inherent
fnnctional aspects that are hard to model withidatalabstractions;. Second, a

virtual memory mechanism implements the memory management and protection

30

mechanisms required by existing type extension mechanisms. Therefore, a
virtual memory mechanism cannot use a type extension mechanism without
creating dependency loops that violate the partial ordering of the system
structure,

The purpose of this thesis is to present a technique for organizing
virtual memory mechanisms that exhibit an object based structure, that is,
virtual memory mechanisms that are implemented by a set of partially ordered
modules designed on the basis of type extension.

The originality of this technique resides in the use of a new type
extension concept that preserves the advantages of data abstractions over
functional abstractions while overcoming the two problems encountered in
trying to stucture a virtual memory mechanism with a traditional type
extension mechanism. Chapter II will examine in detail the differences
between the traditional and the new type extension concepts.

Chapter I11 will explain how the type extension concept we propose can be
exploited to organize the virtual memory mechanism of a system. It will first
be shown that type extension suggests and greatly helps building modules in
the strict sense. The relation between type extension and dependency will
then be studied. It will be demonstrated that the type extension concept
helps choosing a set of data abstractions to implement the virtual memory
mechanism and deriving the dependency structure that ties the data
abstractions together. Finally, the impact of the type extension concept on
deadlock prevention will be examined.

In chapter IV, the usefulness and the applicability of the type extension
concept will be demonstrated by a case study. The type extension concept will
be used to reorganize the virtual memory mechanism of a commercial

time-sharing computing utility, the Multics system. The functionality of the

31

user interface to the virtual memory mechanism will first be described for the
readers who might not be familiar with Multics. The present implementation of
the Multics virtual memory mechanism will then be examined. The problems
associated with this implementation will be pointed out. Finally, a new
design that respects the functionality of the Multics virtual memory mechanism
and is based on type extension will be presented. Particular care will be
given to showing how the type extensien concept helps avoid thé problems that
were pointed out in the current implementation of the Multics virtual memory
mechanism. To conclude the chapter, a few observations about the organizatidn
of the new design and the benefits of type extension will be made.

While chapters II and III are crucial to the understanding of the type
extension concept and its impact on the organization of a system, chapter IV
is by far the most important part of the thesis. It represents a
demonstration of the use of the type extension techni@ue and reports on the

bulk of the research that was performed to support this thesis.

32

I1. Type extension in a virtual memory mechanism.

This chapter will describe the detéils of a type extension concept
designed to be used in organizing the virtual memory- mechanism of a computing
utility. When we will need to distinguish this concept from all type -
extension concepts proposed earlier, we will refer to it simply as the new
type extension concept or our type extension concept. We will refer to

earlier concepts as classical or traditional' concepts. These names are used

solely to distinguish various kinds of type extension., We do-not imply in any
way that all classical concepts are identical and indistinguishable among
themselves. They are classical or traditional only insofar as they cannot be
used inside a virtual memory mechanism, which distinguishes them from our
concept of type extension. The advantages of using our concept inside a
virtual memory mechanism will be discussed. 1In order to make those advantages
clear to the reader, the differences between our type extension concept and
classical type extension concepts, such as those used in Cal, Hydra and the
SR1I system, for instance, will be pointed out in terms of a data abstraction
model. This model will be used as a reference to talk about the features of
various concepts of type extension and their ability or inability to solve the
problems that are encountered in organizing a structured and modular virtual
memory mechanism. Classical type extension concepts and our concept will be
examined from five different viewpoints: the nature of abstract types, the
nature of abstract objects, the possibility of sharing components among
objects, the protection of abstract objects and the implementation of

abstractions.

33

1. ‘A data abstraction model.

The basis for any data abstraction lies in the concéptsbof’ébstract
objects and abstract types. Our purpoéé here is to givé semi-formal
definitions of these concepts.

The set of all objects in a system is partitioned into subsets called

abstract types. An abstract type has three propéf;ies'[Liskov76]:

l. An abstract type is defined by a set of operations that can be performed
on all objects of that type and are supported by a program designed for
that purpose and called the"type;manager (or the cluster in CLU
[Liskov76]).

2. The users of objects of some abstract type need not be aware of the
implementation of the objects to manipulate them.

3. In fact, it would do the users no good to be aware of the implementation
of the objects, because they are allowed to manipulate them
only by invoking the abstract type operations supported by the type
manager and not by directly accessing their implémentatidn.

Abstract objects are repositories for structured data. Each abstract

object is named by a unique identifier (uid). This uid is the result of the

concatenation of a type identifier defining the type of the object and an
object identifier. An object identifier.is unique over all times but only
within each type. Thus, its interpretation is type dependent. A uid is
unique over all objects and all times.

All abstract types (except the most primitive ones) are defined in terms
of more primitive types (therefore the term "type extension"). An abstract
object O of type T is implemented in terms of abstract objects 01, ...,0n of

more primitive types Tl, ...,Tn respectively. Objects 0l, ...,0On are called

34

the components of 0. The information establishing the correspondance between

0 and its components is called the map of O. The map together with the .

components of 0 is called the representation of O.

object O of type T

manager for type T

\
p map]
y !epresentation
object Ol object 02 object 03Y
type Tl type T2 ‘;;yp¢‘I3;‘_, compqnenqﬁ ’
T1 manager T2 manager T3 manages

Thus, the cdmplete structure of an object could be pictured as a (possibly
multi-level) tree rooted at the object and branching out through the levels of
components and subcomponents of the object. Only one level of this structure
is visible by any type manager since each type manager knows about the
structure of and can access the representation of only the objects it manages.
The structure is nonetheless existant as defined by‘a}l type managers
together. The structure of 0 ref;ects_ajgtrpcture embedded in the defihition
of T. Any object of type T has a structure similar to that of 0 because type
T is defined in terms of types Tl, T2 and T3. Similarily, the structure of O
reflects a dependency structure that exists between the type manager for T and
the type managers for Tl, T2 and T3. Since T is defined in terms of Tl, T2
and T3, any operation supported by the type manager for T is expressed in
terms of operations supported by the type managers for Tl, T2 and T3. Thus,

the type manager for T depends on (uses) the type managers for Tl, T2 and T3

35

(therefore the term "object based dependency-structure").

With the above model of an abstract objeet, we are in a position to point
out the connections and the differences betﬂeen the classical type extension
concept and the one we propose to use for virtual memory mechanisms,

2. The nature of abstract types.

In the rest of the thesis, we will be considering various kinds of
abstract types. In order to help the reader visualize what the various kinds

are, we have tried to capture their relation in the following figure.

in the user enviromment

{classical type extension) .) {C/D) © - Jjuser types

r; base level: .-

. (C/p:and A/F)

N

in the virtual memory environment « - intermediate level:

(our type extension) ' (C/D and A/F) - {linterunal types

bottom:level

\l /P

User types are those visible to the users. Users may invoke user type
managers to operate on user type objects. The most primitive user types will

be called the base level types. Such types are precisely the types of

abstract, virtual information containers (e.g., segments or pages) implemented
by the virtual memory mechanism for the users. The virtual memory mechanism
implements base level types in terms of more primitive types of information

containers called internal types, which are not visible to the users. The

most primitive internal types will be called bottom level types. Such types

of information containers have a direct hardware representation (e.g., disk

36

records or core blocks). Through several layers of intermediate types, base

level objects are ultimately implemented in terms of bottom level objects.

The objective of this section is to discuss the first of five differences
between classical type extension concepts and our type extension concept.
This difference deals with the supply and lifetime, and with the possible
reconfigurability of the objects considered under each concept.

In all existing designs and implementations of the classical type
extension concept, the supply of abstract objects of any type is apparently
unlimited. Users can always create as many objects as they can afford to pay
for. They can never exhaust the supply of objects. After a user has ceased
to use an object, there is no need to ever reuse the object, It is destroyed
and its uid becomes meaningless for ever. Thus, with the classical type
extension concept, there is an essentially infinite supply of objects. And
one can say that the lifetime of an object is bounded by its creation and its
deletion, if such an operation exists. The object does not exist until it is
created and assigned a uid. 1If deletion is a possible operation, the object
is destroyed and ceases to exist after some user deletes it. The object uid

is discarded for ever. Such objects will be called create/delete (C/D)

objects. The abstract types of information containers provided by the virtual
memory mechanism of a system to its users, i.e. the base level types, are in
general C/D types.

With our type extension concept, it is possible to define C/D types but
it is desirable to define other types as well. The purpose of a virtual
memory mechanism is to implement (simulate) an apparently unlimited supply of
base level objects using a definitely limited supply of information containers
like, for instance, core blocks and disk records. Such information containers

are the most primitive types of objects one can conceive. They have a direct

37

hardware representatiqn. They stand for theQS?lves, have‘nokmaps andrno
components. They are the bottom level ijec;s. A bottom_levgl type provides
a supply of objects that is limited because it»directly‘cor:esponds to a
limited amount of physical space. Bottom le§g1 objects are of course never
destroyed. They are only deallocated and are kgpt,arqund for later
reallocation, They have a physical existence qu stay around as long as the _
system operates (except for reconfigu;ation cirfumspances to,bgvdiscussed
soon) . Thus, the bottom level objects exist in limiged supply and need to be»
reused time after time. They are never created and»deleted as are C/D

objects. Instead, they are allocated and freed (A/F). While the lifetime of

a C/D object is finite in the sense of being bounded by the user requests to
create and delete it, the lifetime of an A/F object is infinite in the sense
that a user can only request its allocation and its deallocation.
Deallocation does not mean destruction of the object. Nor does it mean
invalidation of the uid of the object. The uid is temporarily out of service
but not meaningless.

Other types envisioned under our type extension concept (intermediate and
base level) may be either C/D or A/F depending on the needs and the
possibilities. For instance, since the basg level provides_qsers with a¢1arge
supply of abstract information containers ghat can be q:gated and_@eleted,A
some base level objects are obviously C/D.‘ However, tbe;e‘may also be
additional A/F types at the base level, as will be seen in the case study of
chapter IV. It will also be seen there that most intermediate types tend to
be A/F types though this i{s not an absolute rule. Some may be C/D types.

Certain types defined under our type extension concept may differ from
types defined under a tlassical type extension gpnqep;'in terms of the supply

and the lifetime of the objects they provide, as we ha?é»just seen. Certain

38

types considered under our type extension concept may also differ from the
types considered under the classical type extension concept in that the
objects they provide may be dynamically reconfigured. 1In general, this only
requires that the type managers for such fypes providé two primitives,
"configure" and "deconfigure", of which the purpose is to change appropriately
the state of the objects they are invoked to operate on.

At this point, it is desirable to discuss the relation between the
configure/deconfigure'primitives and the allocate/free primitives. To do
this, we will relate our concept of type extension to the model of dynamic
resource reconfiguration proposed by Schell {Schell7l].

Schell’s algorithm for reconfiguring resources first makes a distinction
between physical resources and logical resources. An example of a physical
resource is a memory box. A logical resource is a physical résource that 1is
accessible. The logical resource corresponding to a memory box is a memory
box to which the system 1s connected. To undérstand how a physical resource
can be configured into a logical resource, we refer the reader to Schell’s
thesis [Schell7l]).

We are interested primarily in the configuration of logical resources.
Schell”s logical resources correspond to pools of our A/F objects. (1) 1In
terms of Schell’s model, logical resources evolve bétween one of four states

as explained by the following figure.

(1) For readers familiar with Schell’s terminology, the following
correspondances exist with our terminology:

Schell’s ‘ ours
available configured
unavailable deconfigured
free free

bound allocated

39

free and configure free and allocate | allacated and]

~deconfigured| deconfigure configured .| free . | configured |
deconfigure

free .. .| allocated and
deconfigured

Consider for iﬁs;ange a ngical kconnécﬁe&f ¢org»§;ock. Initiaiiy, a
logical core bléck is frge and.deconfigured,:i.g.tit'mn%ﬁbe poqnegtedvto the
system but it is free in the sense that it cOntaiﬁs no Qseful information and
it is deconfigured in thevsense that the system is unaware of it and cannot
store anything into it. After it is configured, the core block becomes
logically acceséible to store information into it. When it is allocated (for
instance, to an address space, a segment or a page), it does contain
potentially useful information. Whenfitqis decohfigured and if it was free,
it goes back directly'to the initial‘state. 1f itbwas:allocated, it is first
marked4deconfiguted even thbugh\it may still contain information and then it
is freed and returned to the initial state.

Intéonnection with our type extension concept,'the'transition diagram
deserves a comment. It differs from the one suggested by Schell for certain
types of objects. According to Schell, a resource that is aécopfigured
logically must beAfreed (empcied of all useful informa;ion) before it can be
deconfigured physically. This is because Schell‘has_envisioned the
reconfiguration of objects like core blocks that cannot retain information‘
while they are disconneéted.r However, we want to be more general and consider

removable disk packs, for instance, as in the case study of chapter IV.

40

Resources like removable disk. packs are designed to be kept off—line but
allocated to useful abstract information containers. With such resources,
regardless of the allocated/free state of an object, that object can be
deconfigured logically and physically wighout having to return to qhe initial
deconfigured-free logical state before being deconfigured physically. Thus,

the modified transition diagram for such objééiﬁ is the following.

1 | 2 3

free o free | ol allocated
bdnfiédred

T

allocated

deconfigured configured

deconfigured

i

In essence, the resources considered by Schell always had to be deconf%gured
logically and returned to the free state (1) before they could be deconfigured
physically. 1In this thesis, we also consider_resogrces‘that‘need not return
to the free state as they are deconfigured logically before they can be
deconfigured physically. They can be deconfigured physically from either
state (1) or (4).

3. The nature of maps.

The second difference between the classical type extension concept and
our type extension concept deals with the nature of the mébs of objects
supported by the virtual memory mechanism,

Consider the type extension concept in the system design area [Cohen75,

Neumann75). Outside the virtual memory mechanism, the role of object maps is

41

secondary. The essence of any operation on an: abstract object consists of
operating on the components of the object. The map itself is affected only
when components are added or deleted.

Within a virtual memory mechanism, we-ﬁill observe just .the opposite
situation. Most of the code of a type manager will be devoted to manipulating
the map of the objects it supports. Very little will be concerned with
storing/retrieving information into/from the: components of the objects. Such.
operations are usually implemented in hardware, Thisvcontraét with the
classical type extension concept (in the system design field) is justified by
the fact that our type extension concept is designed to orgamize virtual
memory mechanisms. The essence of a wirtual memory mechanism is to perform a
mapping function from base level objects to bottom level objects. Thus, most
of the information stored in the representation of an object is information
mapping that object into its components, Most objects implemented by the
virtual memory mechanism consist essentially of their map. (Of course, bottom
level cbjects have no map and consist only ©f user information that was stored
into them.)

With the classical type extension concept, the implementation of object
maps is fairly straightforward. Maps are implemented by base. level objects.
For instance, in Hydra [Jones73], each map is implemented by an individual
list of capabilities (c-list). In the SRI system [Neumann75), all maps are
collected in a centrally managed segment. Thus, there is a dependency ("uses"
relation) between any type manager and the type manager that implements maps.
This dependency does not reflect the structure of any abstract object. It is
not a component dependency. It is a depehdency resu1ting solely from the need
to implement maps with some type of information container.

With our type extension concept, the 1mp1ementation.of maps is no trivial

42

i o =TT

problem. It is out of the question to envision using base- level objects to
implement the maps for objects implemented by the virtual memory mechanism
since base level objects are themselves implemented by: such objects and we
want to avoid dependency loops in the:structure of the system. The problem
with the new type extension concept is that each type manager must reinvent
its own type extension mechanism, that is, it must decide: what information
containers it will use to implement the map of the&nhjectaéit sn$potts.;‘1n~z
order to avoid violating the partial ordering of the: abstract types and of the
dependency structure of the virtual memory mechanism, a given type manager
must implement the maps for its objects,inutenns.of information containers of
an abstract type defined at a lower level. As will be séen in chapter IV, if
none of the abstract types defined at lower levels are suitable for .
implementing the maps as desired, an. abstract type may be created for that:
special purpose. (1)

A solution that will be exploited in chapter IV. for implementing the maps
of the objects of some -abstract type consists:ef collecting the maps of many
objects of that type into one information container that constitutes am’
internal data base of the type manager for that type.” Maps are in gemeral
very small in terms of storage requirements, often too small to efficieatly .
utilize the amount of physical storase~pf0videdfhy an abstract container of:

any available type. Therefore, it is desirable to gather many maps into one

(1) This observation supports our earlier claim that the SRI system does not
really use type extension to organize its virtual memory mechanism., It fails
to specify means to implement the maps of the abstract objects (pages and
segments) its virtual memory supports. No data abstractions are defined for
that purpose. ' Maps are implemented by some unspecified internal mechanism
that is left to the creativity of the system programmer and to the imagination
of the user. If a true type extension approach. had been taken,.the problem of
the implementation of maps would have been raised explicitly and would not be
left undefined as it is. o

43

abstract container to achieve more efficient utilization of the physical
storage. The implementation of maps is a manifestation of a problem often
referred to as the "small object problem".

This problem is also encountered in praetice (see chapter 1V) for the
implementation of small components of abstract objects. Its solution in this-
case is similar to the one suggested for the implementation of maps. Several
small components are collected in one information container. Consider a
hypothetical abstract type called segment. The structure of a segment is

defined below.

segment

} map

cur_len max len page 1 page 2 ... page_g;“} components

The components called page 1, ..., page n are repositories for user
information. They are implemented by abstract objects of type "page'". The
cur_len and max_len components are repositories for information that is
maintained by the segment manager about the current and the maximum number of
pages in a segment, From the point of view of programming languages, these
components are implemented by objects of type "integer". However, from the
point of view of a virtual memory mechanism, we are not ipterested in the
abstract information (integers) that represents these components but rather in

the abstract containers that implement them. (1) If there existed abstrac;

(1) To relate the programming language view of the small components as
integers and the virtual memory view of the small components as information
containers, one can regard information containers as type generators. The
concept of a type generator has been defined in CLU [Liskov76]. Arrays and -
stacks, for instance, are type generators, i.e, they do not define abstract

44

containers that could contain efficiently small amounts of information, they
would be suitable for our purpose. Unfortunately, existing virtual memory
mechanisms do not support small information containers; much to the contrary,
they tend to support containers that are as large as possible. Thus, we are
faced with the problem of implementing small components with large information
containers. To solve this problem, we propose storing the small components of
an object in one container.

In fact, we can solve the problem of implementing maps and small
components even more efficiently by combining these small objects together.
Assuming that small components are not shared by several objects, we can store
the small components and the map of an object together; and we can even
collect the maps and small components of several objects of the same type in
one information container. 1In our example about segments, we could, for
instance, use one page to implement the maps of four segments, together with
their small components. In fact, since the small components of an object are
implemented together with its map, the map need not explicitly contain the
uids (addresses) of the small components. It may directly contain the
components themselves as illustrated below. To this extent, the small
components are better regarded as attributes than as components of the
segment, They are implemented by (stored in) an information container defined
below the level of segments. They are interpreted and used by the segment
manager. They are analogous to what is called the "data-part" of the object

in Hydra [Cohen75].

types per se but they can be used in conjunction with abstract types to
generate other abstract types, e.g., arrays of integers or stacks of reals.

45

map for segment page (own data base of segment type manager)

S1

$3'

page 1. page 2 E page n-i ‘page n =

4, Sharing components. .

The‘tﬁird differenée between the classical én& the newvtypé extension
concepts deais Qith shéring a component among several objécts. Sucﬁ sha:ing
is generally regarded as dangerous becaﬁse of tﬁe sidé-gffgcts itimay have..
Yet, usé of the new type extension concept for impiementing>a virtualimemory
mechanism has shown that such sharing may.se‘&ésirable precisely for its
side-effects. A few comments are in order agout‘éhére& components.

First, consi&er how sharing can be caused to oc;ﬁr. The following figure

illustrates a sharing situation in a hypothetical virtual memory mechanism,

user segment S arrows indicate
passive segment P active segment A component relationships

disk record R core block B

Five abstract types are involved in the example: disk records and core blocks
at the bottom level, active and passive segments at the intermediate level and
user segments at the base level. In the quiescent state, i.e. while it is not

used, a user segment is composed of only a passive segment. A passive segment

46

is itself composed of a set of N disk records, where N can-be set explicitly
by the user for each passive segment when the corresponding user segment is
created. A passive segment is characterized by the fact that its map resides

in a disk record. When a user éégnéﬁiﬁﬁééﬁﬁéi”ﬁsza; an object called an

,,,,,,,

w.f,,.A

segment to make it a component‘of that usez sesment.b‘The active segment has
the property that its map resides in.a core block andhissinitiaiized to denote
the same N disk records as the map of the passive segment denotes. Thus, when
a user segment S is used, its components P and A share N disk.records as theit
components. When the kth page of S is referenced, a demand“paging mechanism
1mplemented inside the active segment manager requests the allocation of a
core block B ‘makes B a component of A and cOpies into B’the 1nformation
contained in the kth disk record (R) of A.r Sharing occurs’not as a result ot‘
the active segment manager having independently requested the allocation‘of)
the N disk records but as a result of the user segment manager passing from
the passive segment manager to the active segment manager the list of disk .
records composing P. Sharing cannot be the result of two type’managers
requesting the allocation of the same‘components because objects can‘be
allocated only once. Instead, sharing is the result of the uids of the shared
components having propagatedefrom the map of one object,toithe map of another
as the result of an explicit operation of some,modgie‘(theyuser segment
manager in our example) that necessarily executes atva lenel higher than that
of the type managers for the objects sharing components or is one of these
type managers themselves. This observation will be used in the next section
as we discuss the protection of internal type objects.

A second comment is in order on the use of shared components. The second

property of abstract types states that the module using an object of some

47

abstract type need not be aware of the implementation of the object. This may
seem tovcontradict the fact that the user seémeﬁt ﬁénage£ has caused’P and A
to share R and ﬁherefore ié awafe of R.V Iﬁ fact, theré is nb‘éontradiction if
one considers the original intent behind fhe.secohd proﬁerty of abstract
types. The intent is to relieve the module using an object from ﬁﬁrrying
about the details of implementation of the object and to hide from it any
internal feature of the object that it does not need externally to use the
object. That the user segment ﬁanager may see the uidufor R does not mean
that it must know about the implementation of P and A. if does not have to
know how R is used by the passive segment ﬁéhégervahdvthé éttive segment
manager. Nor does it havekto know how R fits toéether‘with 6tﬁer'objects to
compose P and A. The active segment manager and the passive segment manager
hide from the user segment manager intétﬁhi féatures of P and A that are of no
interest to ié. Howeﬁer; if P is a passive segment and A an active segment,
there must be a way for modules‘using such abstractions fovﬁalk about the disk
records in the ségments. Such featufeé are in no way internal. They are
explicitly specified by the various abstract type definitions as externally
accessible, logical atfributes 6f these abstract types.i To compare this to
the programming language area, the disk records in a segment should be

regarded as the integers in an array. Integérs in an array are, by definition

of an array of integers, logical attributes that are accessible to the user of

the array via the array indexing operations.

48

5. Protecting internal type objects. .

The fourth difference between the new type extension concept and the
classical one deals with the protection they afford to the abstract objects
they consider.

In order to ensure the third property of abstract types, i.e.‘the
exclusive privileges of a type manager to manipulate the objects it supports,
any type extension mechanism requires the help of a protection mechanism.r
Most existing and proposed type extension mechanisms rely upon a protection
mechanism based on the use of capabilities. The uids of abstract objects are
locked into capabillties. The first purpose of capabilities is horizontal
protection, i.e. the protection of users against each other. A user can

request a type manager to operate on an object only if he has a capability for

the object. The second purpose of capabilities is vertical protection, i.e.

the protection of type managers from their users. ‘A user cannot directly
manipulate the representation of an object becaose the‘priyilege required to
turn (amplify [Jones731 or unseal [Redell74]) the capability for the object
into a capability for its representation belongs exclusively to the type
manager for the object. Unfortunately; a capability mechanisn (or any other
run—time protection mechanism) appears to be unsuitable and uneconomical to
protect internal type (bottom and intermediate 1eve1) objects.

Consider bottom level objects in particular.‘ 1f capabilities were used,
they would have to be revocable. With bottom level objects, there must exist
a mechanism to guarantee that the user of an object cannot access that object
after it has been deallocated. There exist two classical ways to implement
revocation in a capability mechanism. With the first, every time a capability

€

is given to a user, its location is recorded in a table. When a privilege

49

must be revoked, the system can chase and destroy all the capabilities that
embody it. This scheme is used in the -Multics system [Organick72]. However,
it would be very impractical to use it in.-a system where capabilities can be
freely copied. A better scheme [Redell74] éonsists,essentially of maintaining
a list of currently valid capabilities and matching against that list any
capability that is presented to access an object, With .either revocation
scheme, a revocation table is required (either to record where capabilities
are or to record currently valid ones). In general, there are many objects in
a system. Even though there is a limited supply of bottom level objects, that
supply may be large (e.g., disk records). Therefore, either kind of
revocation table may be very large, possibly too large; to be core resident at
all times. Since bottom level type managers are below the base level of the
virtual memory mechanism, they cannot use base level objects to implement
revocation tables. Thus, they cannot take advantage of the I/0 mechanism
embedded in the virtual memory mechanism to manage revocation tables.
Instead, special purpose mechanisms for I/0 and revocation table manipulation
would have to be provided at the bottom level of the virtual memory mechanism
to enable all bottom level type managers to maintain revocation tables. This
would not only increase the size and the complexity of the virtual memory
mechanism but it might add a sustantial overhead in I/0 time to the system due
to the management of revocation tables. - Thus, using revocable capabilities
for bottom level objects would be inefficient and inconvenient. The same -
argument holds about the inconvenience:of any run-time protection mechanism at
the bottom level: some potentially large data base is always necessary to.
decide what accesses should be authorized.

Furthermore, capabilities are too sophisticated and expensive for the

protection of internal type objects in general. They are not really

50

necessary. As far as the users of the system are concerned, they see only
base level objects. They do not see internal type objects and never own
capabilities for them. The only "users" of internal type objects are the
system programs implementing the virtual ﬁemoty mechanism, Such programs are
very different from user programs in that it can be demonstrated through
compilation and.verification that they do not violate: the protection of.
internal type objects at run-time. Thus, the protection of 1nternalltype
objects from system programs does not require a run-time protection mechanism.
The use of such a mechanism to keep system programs from hurting one another
seems an expensive solution to solve a problem that has a much cheaper
solution, as is explained below.

In the above discussion, we have tried to suggest that to carry the
philosophy of type extension all the way through the lowest levels of a
system, it may be desirable to have a protection mechanism different from
capabilities and other run-time mechanisms, First, it seems difficult to
support revocation if a run-time protection mechanism is used and second, it
seems uneconomical to use a run-time mechanism at those levels. Yet, in no
way are we suggesting that the use of a run-time protection mechanism must be
precluded for all internal types. Furthermore, with new technology, the use
of capabilities might become more practical. For imstance, the machine
described in [Radin76] contains a built-in capability mechanism for doing type
extension from the bottom level up. Although one may argue about the cost of
manufacturing such hardware today, the proposed machine would greatly help
support the type extension concept proposed in this thesis. The protection
mechanism we recommend does away completely with run-time protection for
internal type objects. Vertical protection is provided by a- compile~time

mechanism and horizontal protection partly by the compile~-time mechanism and

51

partly by a verification-time mechanism, as will be seen. These mechanisms
provide the same protection as a run—-time mechanism would provide but at a
much lower cost,

Let us first consider vertical protectfon. We recommend a protection
mechanism similar to the one used in the CLU language [Liskov76]. Instead of
depending on the capability mechanism provided by .the system to the users at
run-time, the CLU type extension mechanism depends on a compile~time

protection mechanism based on type checking. The CLU system consists of a set

of description units (interface specifications) for clusters (type managers)
and procedures (functional abstractions), Every time a new CLU program is
compiled into the CLU system, the type checking wmechanism enforces three
properties. First, it verifies that all clusters-and procedures invoked
{used) by the program being compiled already belong in .the CLU system, i.e.
that there exist description units for them. Second, it verifies that the
type of every argument of every call to every cluster or procedure invoked by
the program being compiled is declared to be the type expected by the invoked
cluster or procedure, as specified in the CLU system. Third, the type
checking mechanism ensures that the program being compiled does not (try to)
access the representation of any of the objects it manipulates except for the
objects it supports if it is a cluster.

We recommend using such a type checking mechanism to enforce the vertical
protection of internal type objects. Thus, modules of -the virtual memory
mechanism must be formally described to the compiler before compilation takes
place so that type checking can be performed at compile-time. The
implementation of vertical protection for internal type objects points out one
difference betweeﬁ user‘and internal type objects. The vertical protection of

an internal type is not guaranteedkby its type manager because the type

52

manager does not provide capabilities or any other mechanism to protect the
objects it impleménts at run-time. (1) Instead, vertical protection.is
guaranteed by the compile-time type checking mechanism.

Let us now consider the horichtal protection of imternal type objects.
Insuring that a module cannot access objects owned by other modules for which
it has received no privilege can also be guaranteed by .the compiler in most .
cases. For instance, the compiler should prevent modules from generating
random references that would cause them to access local variables in the
activation records of other modules. The compiler should also prevent modules
from referencing arrays beyond their bounds, This sort of horizontal
protection issues do not pose any problem. However, the following issue poses
a problem, The problem consists of guaranteeing that no module of the virtual
memory mechanism ever uses the uid of an object after that object has been
deallocated. 1In CLU, objects camnnot be deleted. Therefore, there is no need
to implement revocation of deleted uids. 1In fact, we suspect that objects are
never deleted precisely because there is no obvious way to revoke deleted uids
in a user enviromment like CLU. However, the problem is quite different in a
system enviromment like a virtual memory mechanism.

In & user enviromment, one must expect a user to delete an object but
forget to delete all the uids he has for it or forget to tell other users
sharing the object to delete their uids for it. And one must expect a left
over uid to be used after the .object that it once denoted has been deleted.

Thus, a protection mechanism is necessary to prevent the usage of uids of

(1) An elementary run-time type checking mechanism may be built into the -
programming language for union types [Liskov76], which stand for one of
several types, the actual type being determined only at run-time. Notice that
we have not felt the slightest need for union types in the particular case
study of chapter IV but we do not mean to rule them out in general.

53

deleted objects. Thanks to a capability revocation mechanism, the user can be
prevented from using uids of deleted objects. lf he did, hebwould soon
realize his mistake and could take some aétroprlate corrective actlon.

In the system enviromnment of a virtual ﬁemory mechadlsh,lthe above
situatioh can and must be prevented from ever occurtlng. It hust be prevented
in any caselsimply because it would give tise to errors.‘iThe'users of the
virtual memory mechanism do not see 1nternal tyoe objects. fhey do not have
any knovledge about internal type objects. Therefore they could never take
an appropriate corrective action ifka hodule of the virtual memory mechanism
used the uid of a deallocated or deleted object. Thus, virtual memory modules
should 81mply never put themselves in a situatlon in which they could use the
uid of a deallocated or deleted object. Using the uid of any deallocated
1nterna1 type object is a blatant violation of the protection of some base
level object because the internal type object may have been reallocated in the
meantime. If a core block had been deallocated from one segment ahd |
reallocated to another, the user of the first seément could access a portion
of the other segment if the segment manager had not properly deleted the uid
of the deallocated/reallocated core block from the map ofvthe first segment.

One can prevent the usage of dids of deallocated ot deleted virtual
memory objects precisely because they are never used or seen ih user modules.,
They are confined to virtual memory modules. And unlihe user modules, the
correctness of virtual memory modules must be verified orior to their
execution. Part of their verification consists of showing that they are coded
so as to destroy any copy of the uid of any object vhen it is deallocated or

deleted, We will refer to this property as the conservation of uids‘ all

copies of a uid must disappear from the modules that used it when the

corresponding object is deallocated or deleted. Thus, the horizontal

54

protection of internal type objects is guaranteed not by any run-time
protection mechanism like capabilities but by the uid conservation that is
checked at verification-time.

The above paragraph points out another difference between internal type
objects and user objects. For internal type objects, the type manager does
not implement capabilities or any other run-time protection mechanism. Thus,
it is not responsible for the horizontal protection any more than for the
vertical protection of the objects it maintains., Horizontal protection is
puaranteed by the fact that the virtual memory modules are verified to
conserve the uids of internal type objects. A type manager for an internal
type only guarantees the correct manipulation of internal type objects. It
will never allocate/create an object that is already allocated/created. But
it does not prevent modules having used an object from referencing it after it
is deallocated or deleted. Modules doing so would hurt only themselves or
other modules using the same objects. In practice, they hurt neither
tnemselves nor other modules because all modules are verified to properly
conserve all uids together. Thus, mutual dependencies that would exist
between two modules 1f each one needed to assume that the other conserved uids
properly are eliminated at run-time because uid conservation was checked at
verification-time, globally for all modules.

The protection of internal type objects deserves a last comment. We know
what a type checking mechanism consists of and we know it can be built., But
we 1o not have similar experience for uid conservation. We do not know if we
can verify it systematically, if we can verify it at all. Rather than trying
to produce potentially complex rules to write systematically assertions that
would guarantee the conservation of uids in all possible cases, we propose a

pragmatic approach to formulating the assertions. Experience with the type

55

extension concept in the case study of chapter IV has taught us that
formulating the right set of assertioms to ‘guaranteé uid conservation in every
particular case was easy while trying to produce rules to formulate assertions
systematically in all possible cases was ‘extrémely hard. In most cases, the
uid of a inteérnal type object was found to be confined to the module that
requested thé allocation of the object. In 'such cases; one can formulate
easily assertions that guarantee the uid conservation within that module. It
is simple to require that all copies of the uid madé within the single module
be destroyed when the object is returned to the free pool, In‘the few cases
where a uid was found to propagate through several modules, we noticed that
its propagation was controlled by the module that is highest in the dependency
structure of all modules through which the uid propagated. Consequently, it
is easy to produce assertions on that one module to guarantee that it controls
the destruction of copiés of the uid as well:-as it controls their propagation.
Verifying these assertions will automatically suggest to the designer the
assertions that may have to be verified aboiut the lower level modules through
which the uid propagates.

For an example of such a situation, consider the hypothetical system used-
to illustrate sharing in the previous section. The nids of disk records
propagate through the passive segment manager, the’ﬁ;ér segment manager and
the active ségment manager precisely to cause sharing. Yét,‘their propagation
is cont;olled by the user segment manager beéau#e the disk records are
ultimately the bottom level éomponents of user segments. The conservation of
thoée uids is guaranteed as follows. Disk records are deallocated only when
the passive segment they compose is Qeéllocated. rThis passiye segment is
deallocated only when the user segment it is a component of is deléted. At

that time, the semantics of the user segment manager require that the

56

corresponding active -segment also be deallocated. In other words, uid
conservation does not even require verifying:any specisal purpese .assertion. -
It is guaranteed by the fact that the user segment manager always deactivates
a user segment before it deletes it, ,Of,éougse, one can,verify uid
conservation only if it can be shown that the active segment mapnager and the
passive segment manager clear (erase) the map. of..the objects they maintain .
when they are requested to deallocate these gbjech,i Alsa, copies stored in.
working storage must.be destrofed. Such assertions may not be part of the
original definition of the two type managexs but they are easy to formulate
and certainly seem reasonable (not too constraining).. As was mentioned in the
section on shared components, shariag is always controlled explicitly by some
module that depends on (uses) or is one .of the type managers managing the
objects that share components., That module also .controls.the propagation of
the shared uids. Thus, at least in all situations where yids propagate
because of sharing, we suspect it should be as easy as in our example to
formulate the assertions guaranteeing uid conservation. In all sharing
situations of the case study of chapter IV, verifying uid conservation is not .
a probleam.

6. The nature of type managers.

A type manager is an isolated cbllectidn of procedures and data‘béses
that constitute a module. vIn geﬁeral; an iﬁstaﬁée of'a module’is avaiiaSle in
every user érocess in the form of a callable prbgrém. 1f modules are isolated
by a partitionihg technique based on the pfétéctioh mééhanism of the system;
then they are realized by domains that can be invoked only at certain entry
points called gates. If modules are defined Sy a Siﬁpie décomposition of the

system, with no enforcement of isolation by any protection mechanism, then

57

they are realized in every user process by what Feiertag has called a region
that is an unprotected collection of callable procedures. However, there 1is
nothing intrinsic about type managers that implies the above implementation.
Nothing precludes realizing a type manager module with a dedicated process and
its operations with inter-process messages. This kind of implementation is
possible because of the common nature of processes and domains/regions. They
are all made up of procedures and data bases. A domain/region is a set of
procedures that can be executed sequentially with respect to a user
computation. A process is a set of procedures that can be executed in
parallel with a user computation. In practice, modules are often realized
with a domain/region. However, there may be cases where using processes or a
combination of processes and domains/regions is necessary or desirable. The
advantage of using a process is that it can take the initiative of certain
actions and carry them out in parallel to user processes, which would be
impossible with a domain/region that can start operating only upon a
synchronous user request. For instance, to implement the asynchronous but
sequential page removal algorithm described in chapter I, the page manager
would have to be realized by one region that is synchronous to the execution
of user processes and one process that runs in parallel to them. Both the
region and the process are part of the implementation of the page manager
module for the very reason that they manage the page maps that tell whether
any page is in or out of core. Thus, clarity is gained because the region and
the process perform distinct operations on pages in their own way. However,
the interaction between the region and the process cannot be ignored in the
verification of the type manager. As will be seen in chapter III, the
particular realization of a type manager as a region, a domain, a process or a

combination of these does not matter from the point of view of the modularity

58

of the system because modularity considers only modules and is not concerned
about their nature,

7. Conclusion.

This chapter has first defined a data abstraction model. Then, based on
this model, the features of conventional type extension concepts were compared
to those of the type extension concept we propose to use for virtual memory
mechanisms. In particular, we have examined the lifetime and the supply, and
the reconfiguration of objects. We have also discuséed’the problems of
implementing object maps, sharing components and protééting objects in the

specific environment of the virtual meﬁory mechanism,

59

I11. Use of the type extension technique
to design a virtual memory mechanism.

The present chapter will discuss the impact of using the type extension
concept defined in chapter II on several aspects of the design of a virtual
memory mechanism, First, we will discuss the use of type extension as a
technique to organize virtual memory mechanisms. Second, we will discuss the
impact of type extension on modularity and explain in what sense the type
extension concept fosters strict modules. Third, we will discuss the impact
of type extension on structure, we will examine what situations could cause
violations of the partially ordered structure of a system, and we will see
which of those situations the type extension concept helps avoid or simply
eliminates. Finally, we will discuss the advantages of type extension with
respect to a locking strategy for avoiding deadly embraces on system data
bases.

1. Use of the type extension concept.

It should be kept in mind that the topic of this thesis is not the
presentation of a tool for automating the design of virtual memory mechanisms.
We are not trying to systematically produce "off-the-shelf'" virtual memory
mechanisms. (Not because this would be undesirable but just because it is too
hard.) We are concerned primarily with recognizing a well-organized design
once we see it. Thus, the type extension technique is not a tool for
mechanically generating the design. It is mainly a means for evaluating the
organization of an existing system design. The type extension concept is a
context in which the organization of a system can be evaluated and
progressively tuned towards a strictly modular and partially ordered design.

The whole point of the type extension concept is regarding the virtual

60

memory mechanism as a set of modules, most of which are likely to be type
managers, that provide abstract types of information containers. The problem
that must be solved is the choice of an "adequate" set of abstract information
container types. How successful a designer may be at making a good choice of
abstractions depends on his experience and -- shall we say -- his good taste.
There is no single best way to organize a system. There are probably many
good ways to organize it. How fast a designer can arrive at such a good
design depends on his ability to adopt the type extension view, i.e. to
visualize data abstractions providing the functionality he has in mind. This
may require several design iterations in the course of which the designer may
notice modularity and structure problems and should adjust his design
accordingly.

While the design of a system and the choice of abstractions may be very
hard problems and are left entirely to the designer, the type extension
technique more than any other technique provides a few handles on these
problems. On the one hand, it provides feedback such that the organization of
the system may be evaluated and problems may be detected. On the other hand,
it may suggest possible corrective actions for certain problems. In the
remainder of this section on the use of type extension, we review only briefly
the overall process of exploiting type extension to design a system. More
details and specific examples about this process will be given in later
sections of chapters 11T and IV.

Let us first consider the feedback provided by type extension on the
design of a system. When the designer believes he has worked out a possible
decomposition of his system into modules and before he implements any module,
he can construct two graphs that will provide him with useful feedback to

evaluate the organization of his system. Such graphs can always be drawn,

61

even if the system is not well-organized, which the graphs would precisely
indicate. Parts of such graphs are shown below for a hypothetical

well-organized system.

structure graph dependency graph

file file manager
segment segment manager
page page manager

core block core block manager

The structure graph of a virtual memory mechanism is a graph that shows

all the abstract types implemented within the mechanism and their component
relationships. The graph contains one node per abstract type and one directed
arc per component relationship, such that the target of an arc denotes a type
that is a component of the type denoted by the origin of the arc. The
structure graph of a system is constructed by examining the mechanical
operation of the system, envisioning the data bases it should contain,
considering the connections between these data bases, and by attempting to
view the data bases as abstract objects and the links that connect them as
component relationships. The process of constructing the structure graph of a
system will become clearer in chapter IV. For the time being, it would be
presumptuous to be more explicit or more formal about it because the type
extension technique would look like an automatic design tool, which it really
is not, and the construction of a structure graph would seem to be a
mechanical task, which it is not in reality.

The dependency graph of a virtual memory mechanism shows the complete
dependency structure of the system. Every node in the dependency graph stands

for one of the modules of the system and every arc indicates that the module

62

at its origin depends on the module at its tip. The dependency graph of a
system is derived from its structure graph by considering that each type in
the structure graph corresponds to a type manager module in the dependency
graph and each component relationship in the structure graph corresponds to a
dependency relation in the dependency grapﬁ“(ﬁecéuse.if a type T is composed
partly of a type T°, the type manager for T dependsvon§£ﬁe type manager for T’
to manipulate the represen;atidn of objects of type T)g The arcs of the
dependency graph, however, aréia sqperset of those in tﬁe structure graph as
they indicate module dependencies generated by many different causes, not just
by component relationships. The various sorts of dépendency relationships
represented by dependency graph arcs and the construction of the complete
dependency graph will be examined in detail in section 3 of this chapter.

The feedback provided by the two graphs we have ‘just described is the
existence of directed loops they might contain. A directed loop in the
structure graﬁh violates the type extension rule stating that abstract types
may be defined only in terms of more primitive types, 1.e. that the structure
graph must be partially ordered. A directed loop in the dependency graph
should also be eliminated because it means a violatfon of the partial ordering
of the dependency striucture of the system. ‘

Let us now consider the possible corrective actions that are provided by
the type extension technique to eliminate potential loops in the two graphs.
It would be nice to have a complete set of rules for eliminating loops
systematically in all cases. Unfortunately, our éxperience with the type
extension technique is limited to the design of only one system. Thus, we do
not dare claim that the rules that have proved to be sufficient for
eliminating loops in that particular system would be sufficient to eliminate

all loops in any system. Consequently, the following are three interesting

63

but only informal examples of how one may look at a loop and its environment
to try to analyze its cause and perceive a way to eliminate it either by
adding nodes to or by subtracting nodes from the graphs.

For instance, a loop may exist between two nodes A .and B because A and B
stand for abstractions that are so tightly couplé& that>£hey shéuid be
regarded as a single abstraction; Replacing A.ahd B by‘a siﬁgié ﬁode X
obviously eliminates the loop. The c&st éf fhisiéﬁange is that the
abstractions represented byrA and B are no‘loﬁger dis;inct and will nét be
specified by individual internal interfaceé in fhe fiﬁal design.

As another example, a loop may be due to a node standing for a complex
abstraction that could be Spli£ info two simpler abstractions in such a way

that the loop is broken as follows:

This type of action is discussed by Parnas [Pafnas76]. It was used by Reed
[Reed76] to split the Multics virtual processor‘mechanism (A) into two levels
and avoid a dependency loop with the virtuai memory mechanism (B). Splitting
abstractions in such a way presents the advantage of separafing ideas into
modules that will be specified by their ownbinternal interfaces in the final
design. Of course, it costs the price of maintaining an extra level of
mapping between abstractions. In addition, it ﬁay not always be possible to
find a clean split between two abstractions.

As a last example, loops may be due to a failure to recognize several
ideas as parts of the same abstraction (such is the case with the quota

problem discussed in chapter IV) or to provide an adequate abstraction where

64

it is needed (such is the case with the address space problem discussed in
chapter IV). Adding appropriate abstractions to the graphs solves such
problems.

2. Type extension and modularity.

The objective of the designer of a virtual memory mechanism is to
organize his system into a structured set of small and distinct modules. The
next section will discuss the impact of type extension on structure. The
purpose of this section is to discuss the relation between modularity and type
extension,

With the type extension concept, each type manager is a module of the
system. As mentioned earlier, each module is implemented by a set of callable
procedures (domain or region) and/or by a set of dedicated system processes.
While this distinction is important to build the dependency graph of the
system, it is largely drrelevant to the evaluation of modularity because
modularity is defined with respect to the programs that compose a type manager
and not with respect to what process, domain or region type managers are
executed in nor how they are invoked.

As suggested in chapter 1, a type manager is said to be strictly modular
if none of its internal data bases are ever shared with other type managers.
Hence, modularity implies that type managers can interact with one another
strictly via inter-module calls and/or inter-process signals, depending on how
the module is executed. In fact, most of the data kept by a type manager T is
data pertinent to the representation of the objects it maintains. By virtue
of the definition of type extension, such data may never be accessed by other
type managers. In order to access it, other type managers must invoke the

operations defined for the type implemented by the type manager T. Thus, the

65

rule that a type manager should not share any internal data base with other
type managers does not add much of a constraint en type managers since most
data bases cannot be shared anyway by definition of ‘type extension. Only data
bases not directly pertinent to the representation of objects (e.g., metering
and performance monitoring information) could be:shared but should not °
according to the modularity constraint. (1)

The main reason for ruling out interactions via shared data bases is, as
stated earlier, to keep the interfaces of modules as simple and easy to define
as possible, according to Parnas’s informationm hiding principle [Parnas7l].
Strict modules tend to define abstractions that are more meaningful, more
precise, more complete.

A second reason for ruling out shared data bases 1s to keep a tighter
control on the dependencies between modules. -As long as type managers can
interact only by calling one another or by sending signals t~ one another, it
is (relatively) easy to keep track of every interaction and to decide whether
it raises a dependency problem, as will be seen in the next section.
Interactions via shared internal data bases would make the identification of
dependencies extremely hard because every shared data base would have to be
studied from the point of view of every module sharing it. This study would
require a huge (and otherwise practically useless) crossg-reference table that,
for each data item, indicates which module reads from it or writes into it,

A third reason for eliminating shared data bases is to ease explicit
recognition of parallel activity when it is preseat, If data bases can be

shared, the designer of one module may not know whether or not a data base his

(1) One might conceive a situation where several type managers share access to
a common read-only data base. Such a situation is acceptable as reading from
a non-writeable data base cannot mean interacting. :

66

module is using may be used at the same timg by other modules being executed
in parallel processes. Failing to recognize such parallelism would almost
certainly lead to a disaster. By insisting that data bases never be shared ..
among modules, we make it easier to recognize parallelism explicitly. Knowing
that his module is the only one. t6 referemce the data bases it uses, a
designer is in full control of parallel activity over these data bases. He
can code his module so that user and/or system processes that may execute
portions of its code in parallel will appropriately synchronize their activity
over the data bases they share as parallel -instances or portions of the same

module.

A fourth reason for disallowing shared data bases is because disallowance:

helps provide a strategy for avoiding deadly embraces when locking: system data
bases, as will be seen in section 4 of this chapter.

Eliminating the possibility of sharing internal data bases among modules
may sound like a drastic measure likely to impair the performance of the
system and complicate the task of the designer. Based on our experience with
the redesign of the Multics virtual memory mechanism, we do not think this
measure poses any problem in practice. We do not believe that the performance
of the Multics virtual memory mechanism would be any better if data bases
could be shared. And we have not encountered a single circumstance in the
virtual memory mechanism of Multics where a shared data base would have been
desirable. In general, we suspect that the desire to share a data basg among
several modules will not occur to the designers of those modules if they
strictly respect the formalism of type extension. Indeed, each type manager
has a natural tendency to be a strict module because its main function 1is to
manage an isolated.collection of objects, é task which does not réquire

sharing intermnal data bases.

67

Eliminating shared internal data .bases is a sound decision and should
become common practice. If anything, it fosters system flexibility beecause it
makes modulesﬂindependent of one ano;her.invthe sense ;th thgy;do not have to
agree onighe format and semantics of any shared data.

3. Type extension andkstruqture.

The structure graph of a system indicates what data abstréctions are
supported by the system and how they are impléménted iﬁ terms of one another.
The objective of this section is to discuss the relation between the structure
graph and the dependency graph of a system. First, we will give a definition
of the conéept of dependency and we will énalyze all pbssible causes of
dependency. While doing so, we will see hdwvﬁélpfullﬁhe type extension
concept is to eliminate or point out depéﬁdenéies ﬁhétvwbﬁld ﬁiolaﬁe the
partial ordering of the dependency gfaph. Second, Qé will indicate how to
construct the dependency graph of a system, by using the type structure grapﬁ.

Causes of dependen@z.

First of all, it is time to define mote carefully the dépendency
relation. The fact that a type manager A’can influence the operation of a
type manager B does not mean that B depends on A;s actions. In péfticular, if
B implements a service for A, B’s operation will obviously be driven by A’s
commands to B. Yet, B may be declared independent of A. There is no
connection between the concept of dependency we are interested in and the fact
that the operation of B is influenced by the actions of A. There.ié a

dependency, in our sense of the word, only‘if the corfect operation of B

depends on the operation of A, i.e. if some action of A could cause B to
operate in a way different from that stated by its interface specification,

In other words, B depends on A if verifying B”s correct operation requires

68

using assertions defined in the interface specification of A.
With respect to the partially ordered dependency structure of a system,

we define an upward dependency to be one that would violate the partial

ordering. Conceptually, all upward dependencies are of course forbidden as
they make understanding and verifying the system more Cqmplicated.
Practically, however, the designer of a system may encounter situations;that
could résult»in upward dependencies. We will see in this section that one can
distinguish three sets of upward dependgncies Vith respect to the‘type
extension concept. Upward dependencies of the first set, which could
potentially occur in a system not based,on type extension, are totally
eliminated by type extension. Upward dependencies of the secqnd set are not
eliminated but are easy to find thanks to type extens;on and can be corrected.
And type extension is of no help with respgct to upwa;d depegdencies pf the
third set. |

It is interesting to compare in some detail Parnas’s "uses" relation,
which was mentioned in chapter I [Parnas?ﬁ], to the dependenc& relétioﬁ fo
justify our use the latter relation in this thesis. A module that "uses"
another module depends on it becau;e the correcfness of the used module must
be assumed to verify the correctness of thg first module. However, a module

that does not "use"

another module may stili depend on it, as was suggested in
chapter I. For instance, assume that two modules share a common data base.
They may not "use" one another in the sense that neither of them ever causes
the other to perform any service on its behalf. Yet, they mutuaily depend on
one another because verifying thekcqrrectpess of either one implies verifying
the correctness of the data base they share, which depends on the assumption

that the other module always leaves the data base in a consistent state.

One advantage of the dependency relation over the "uses" relation was

69

mentioned in chapter II: it discourages the use of weak modules (shared data
bases) because they cause dependency loops inm ‘the structure of the system.

A second advantage of the dependency relation over the '"uses" relation
deals with the maintenance of the system. With the dependency relation, when
a single module is modified, it is sufficient to reverify the correctness of
that module and the modules that depend on it to guarantee the correctness of
the entire system.. With the "uses" relation, it may be necessary to reverify
any module, whether it uses, is used by or bears no relation to the modified
module, because any module may share a data base with the modified module and
its correctness may be affected by changes in the modified module. In other
words, a change in the modified module may affect the semantics of a data
base, which may implicitly affect the specification of the interface of any
module sharing that data base with the modified module, and require that such.
a module be reverified even ghough its code may not have changed.

Given the definition of dependency, we can analyze the possible causes of
dependency between two modules. The first cause of dependency deals with the
way modules interact. We first consider what module inpgtactionsvare
possible. ' We have just seen that modules may not interact via data bases. We
have also seen earlier that modules may be implemented by callable
domains/regions and/or by dedicated system processes. Thus, a module may
interact with a callable module only by giving control to it. And a module
can interact with a process module only by exchanging messages with it.

We now discuss when module interactions may give rise to dependencies. A
module A that initiates a transaction with a module B becomes dependent on B
if its own continued correct operation depends on an assumed response of B
within a finite amount of time. If A initiates a transaction with B and

abandons control but does not expect any fesppnse'from‘B_in any amount of

70

time, A will be said in the quiescent'state (independent of B). 1In practice,

the quiescent state of a module implies that all its internal-data bases are

consistent, that none of them is locked and thét there is no pénding brocedure
invocation in the module. ‘

We finally discuss what forms of interactions yield dependencies, given
the definition of the quiescent state of a module. First, if a module A
simply sends a message to a module B, does not abandon contro} and does not
expect ény response’ from B, then it is not dependent on B, as explained above.
This is a trivial case of module interaction where a modile informs another
module, as it éxeCutes,'of some situation it has encountered (e.g., some event
to be metered, recorded or accounted for by the recipient of the message).
This form of module interaction will not further retain our attention.:
Second, if a module A sends a message to a module B and then abandons control,
a form of transaction we will further call signalling, A depénds on B only 1if
it abandoned control in a non-quiescent state, thereby implying that it
expects some response from B to resume an unfinished task. Third, if a module

A transfers control ("go to") to a module B, it depends on B only if it

transferred control in a non-quiescent state, thereby implying that it expects
to regain control and compléete some pending work. Finally, if a module A
calls a module B, it is always dependent on B because a call expects a
matching return. To summarize important situations described in this
paragraphs, we will use the terms "invoking" and "notifying"” as defined below
throughout the rest of the thesis. A module A that transfers control or
signals an event to a module B in a non-quiescent state, or calls B will be

said ﬁo invoke (1) the service of B. Invoking a service 1is synonymous to

(1) Invocations to certain type managers may take the form of an implicit
hardware operation if the type manager supports an abstraction that is

71

using a service in Parnas’s sense [Parnas76]. Invoking a module implies
depending on it, This is the first cause of dependency. On the other hand, a
module A that transfers control or signals an event to a module B and remains.
in the quiescent state (independent of B) will be said to notify B of some
event., Notifications are important fprmskof interactions. In particular,
processor exceptions in a system are notifications by a hardware module to
some software module that an exceptional situation requiring software support
was encountered. In fact, most instances of notifications may be regarded as
error returns from implicit invocations. For instance, an implicit invocation
of an operation to access a word of a page that is not in primary memory
results in a processor exception that is often called a page fault.

The type extension concept does not prevent upward dgpendencies due to
upward invocations. Indeed, a designer might conceive two modules that invoke
one another, The type checking compiler can el1m1natq qua;d,galls because it
knows that they all correspond to upward dgpendgnpiesf But it cannot
eliminate upward invocations corresponding tp:ugward ;rgnsfersAq£4control or
signals because it does not have enough knowledge-about modules to distinguish
such upward invocations from upward notifications, which are @llowed, i.e. it
does not know how to decide whethe: a module abandons qontrol'in a quiescent
state or not. However, by restricting module interactions to. calls, transfgrs
of control and signals, type extension makes the detection of upward
dependencies easier to the designer. For every module interaction, the state .
of the module that,initia;es the transaction.shquld berinspgcteg by the
designer, who has sufficient knowledge about his module to decide whether it

is in a quiescent state or not. If it is not quiescent at the time of the

implemented partly in hardware. For instance, fz;ding‘br ﬁfiting an in core
segment are primitives invoked implicitly by hardware operatioms.

72

dependencies because it totally ignores types and ranges of values. Argument
validation is a very hard problem that has to be carefully dealt with by every
individual module designer. The use of programming languages with built~in
language type checking features (e.g., CLU) might provide systematic type
validation for values but still provides no help with respect to range
validation.

The case of references is different. By accepting a reference to an
object, a type manager might become dependent on the supplier of the reference
{the invoke;) and on the supplier of the object denoted byvthe reference (the
type manager implementing the object). It becomes dependent on the type
manager of the object if it uses the object (because using the object implies
invoking the type manager to manipulate the object). It becomes dependent on
the supplier of the reference if it asgumes,that the reference is meaningful,
i.e. that it denotes an accessible object. It‘would also become dependent on
the supplier of: the refexenCe if it assumed anything about tP? type offthe
object denoted by the reference.

Because of the type checking mechanism built into the compiler, a type
manager can never invoke a higher level type m#nager to operate on a higher

level pbject. In other words, a type manager can never interpret a reference

to a higher level object. We will call this the information level rule: high
level references cannot be interpreted in low.level modules. Thus, the type
extension concept systematically prevents the designer from producing modules

that accept as arguments references to higher level objects and use them to

access the objects, (Notice that the type checking compiler does not prevent
a module from accepting and storing references to high level objects as long
as it does not use them to access the objects. References that are never used

are simply regarded as values and are not type checked as denoting information

74

containers.)

Because of the type checking feature also, any assumption a type manager
may make about the type of the objects for which it reeceives references as
arguments is validated at compile~time. :Thus, the type extension concept -
systematically prevents the designer from producing a mbdule:that would be
dependent on its invoker because it failed to validate the type of references
it has received.

Notice that in most virtual memory mechanisms, associated with references
to certain abstract types are certain Systém events. For instance, a-segment
fault might be an event associated with referencing a segment of which the map
is not in primary memory. A page fault might be an event associated with
referencing a page that is not in primary memory. An acceéss violation is an
event associated with referencing an object to which access has been revoked
or which does not exist. If a type manager A depends on a type manager B, it
must be prepared for the events associated with the 6bjects implemented by B
to occur when it references them. On the other hand, if it cannot tolerate
these events, it should not use objects of type B to avoid being dependent on
type manager B. Consider, for instaﬁce, the case of access violations in a
virtual memory mechanism, For internal type objects (i.e. objects not visible
to users, below the base level), the uid conservation property that is checked
at verification-time guarantees that while an object is deallocated, no copy
of its uid exists outside the type manager that manages it. Thus, if a type
manager receives a uid of an internal type'objeCt as argument, it can rely
upon the fact that that uid denotes an allocated object because that fact was
checked when the system was verified. However, for a base level object, a uid
or a capability may still exist in some module after the possibility or the

right to access the corresponding object has been removed. Thus, if a type

75

manager depends on a base level type manager and- .accepts a capability .or a uid
for a base level object as argument, it must expect running into access
violations and be prepared to handle -them in Some appropriate way.

One comment is in order about a situation where the two causes of
dependency {(invocation and lack of argument validation) could frequently cause
dependency loops. By virtue of the first-cause of dependency, a type manager.
is always dependent on a :type manager it invokes to have a service performed.
This implies that the invoked type manager may never depend on its invoker
because a dependency loop violating the desired partially ordered structure
would occur. Thus, instances of dependency due to the second cause (argument
passing) must be eliminated in all cases of module interactions corresponding
to invocations. An invoked type manager should never -assume anything about.
thé’input“arguments it recéives, or if it does, it must validate its
assumptions before using the arguments, otherwise it would be dependent on its
invoker, thereby causing an upward dependency. Therefore, we impose that.the
deésigner of a module performing a service always define in the specifications
of the service interface of his module the assumptions it makes about the
arguments it e#pects and code his module to dynamically validate those
assumptions before performing the service. (If it did not validate these
assumptions, it would be incorrect with respect to its specifications.)

Construction of the dependency graph.

Having analyzed what actions cause dependency, we will now examine the
relation between the dependency graph of a virtual memory mechanism and 1its
structure graph by examining all the possible reasons why:a itype manager might
become dependent on another type manager.

The basic relation between the dependency graph and the structure graph

of a system is the one to one correspondance between nodes. But there are

76

many more arcs in the dependency graph than in the structure graph. Every
node in the structure graph corresponds .to an abstract type. Since every
abstract type requires its own type manager, there must be one node in the
dependency graph for every node in the structure graph. That pode stands for
the corresponding type manager. 1In addition, all ares in the structure graph
have their equivalent in the dependency graph. Every directed arc in the
structure graph corresponds to a component relatiemship. Every operation on
an abstract object is translated by the type manager for that object into
operations on one or more components aof the object. Thus, the type manager
translates invocations to itself into invocations to -the type managers of the
components. of the objects it manages. -Since the type s;rucﬁure.graph,shpuld
correspond to a partially ordered structure of abstract types, the dependency
structure indicates type managers that are partially ordered by the dependency
relation. The instances of dependency identified above are called component

dependencies.

Component dependencies are not the only arcs in the dependency graph. A

second category of dependencies are map dependencies. They were briefly

mentioned in chapter 1I. Any type manager must maintain a map for each object
it implements., The maps themselves must be implemented -out of some type of
information container. Thus, the type manager depends on the type manager for

the maps because it invokes it to manipulate the maps.

A third category of dependencies ig called program dependencies. Every
type manager (except type managers supported by hardware operations) is a
program, i.e. a set of procedures and data bases (not including the objects it
manages and their maps). The procedures and data bases must be stored in some
type of information container. The type manager will be dependent on the type

manager for these information containers because reading, writing and

77

executing its own programs is equivalent to invoking {(usually implicitly
through the hardware) the type manager implementing the program containers.
Like map. dependencies, prpgram\dependegcies:&re not & problem in a .user-
environment. With classical implementations. of type extension, maps and
programs can both bg iﬁplemented-outﬁof\base,1evel objects. (e.g., segments or
pages). However, within the context of the virtual memory mechanism, base
level objects are not defined. Thus, other types must be found. This task is
not trivial. As in the case study of chapter IV, special purpose types may
have to be created to implement maps and programs because none of the types
available at a given level may be adequate for this purpose. This is a first
instance of .a situation where the construction of the dependency graph may
point out deficiencies in the structure graph and require a design iteration

to modify the structure graph.

The fourth category of dependencies is called address space dependencies.

The procedures, data bases and object maps that a type manager uses are
objects., The set of all such objects defines the address space of the type
manager. In most systems, the address space in which a callable subsystem
(domain or region) or a process executes is implemented by some sort of
information container or set of registers. that contains the complete
collection of all uids and capabilities that the .subsystem or the process can
reference as part of its address space. Thus, every type manager depends on
some other type manager to implement the information container materializing
the address space it executes in. Again, in a user environment, sSome base
level container can be used to collect the capabilities in the address space
of a type manager. (For -instance, in Multics, a.descriptor segment is used
for that purpose. In Hydra, a local name space (LNS) defines the address

space of. each procedure.) However, in a virtual memory environment, base

78

level containers cannot be used for that purpose because they are not defined.
Special purpose informatien containers may alse have to be defined to
implement address spaces. This is'a'seeqnd‘instance of a situation where the
construction of the dependency graph may suggest a design iteration.

The fifth category of dependencies‘is*calledfintérpreter dependencies.

Whether a type manager is imblemented as a callable subsystem.or as a
dedicated process, it needs a processor to interpret its code and thus rum it,
and to control its rate of execution, If each type manager could have a
hardware processor all: to itself, it would depend on.only the correct design
of that processor. However, hardware proecessors are too scarce and expensive
resources to be dedicated to executing any- single type manager. 1In practice,
type managers, as well as user modules, run on abstract types of processors,
sometimes called virtual processors, among which the physical processors are
multiplexed. Thus, they depend on the correctness of those virtual processors

and on the correctness of the mechanism -that multiplexes the physical

processors among them. One can envision using a type extension concept for
multiplexing (bottom level) processors among abstract (base level) processes
that is similar to the concept we use to multiplex bottom level core blocks
among higher level abstract pages. A parallel research project [Reed76} that
was concerned with reorganizing the virtual processor management mechanism of
the Multics system has in fact implicitly used a concept of type extension.
The type extension concepts used in the virtual memory and virtual processor

contexts are very similar. In particular, they are identical with respect to
the dependency relation. The same problems of implementing components, maps,
programs, address spaces and interpreters arise with virtual memory type

managers as with virtual processor type managers. Virtual memory type

managers depend on other virtual memory type managers to implement everything

79

but their interpreters. For their interpreter, they depend on some virtual
processor type managers. Virtual processor type managers depend on other
virtual processor type managers to implemengécpmponents~and'intetpveters but
they depend on some virtual memory type managers to implement maps, programs
and address spaces. Thus, the virtual memory and. virtual processor dependency
structures are intimately interleaved. This can be obseryed in the case study
of chapter IV. One must be particularily careful not to cause mutual
dependencies of the sort discussed by Saxena [Saxena76] between the virtual
processor type managers and the virtual memory type managers. If the
dependency graph indicates dependency loops, a design iteration should be
performed to modify’the structure graph.r In fag;,.such,aldeﬂgndengy loop is .
exactly what prompted Reed [Reed76] to.redesign the processor multiplexing .
mgchanism of Multics,

Conclusion.

The concept of type extension does not gq;oqa;@cql{yagliminate all upward
dependencies and guarantee a partiall& 6f&éreduéépen&éhéymétructure. HdweQér,
it does eliminate some upward dependencies which afé'amahg:the most frequently
encountered in existing systems. Accepéing'refereﬁce'afgumeﬁts of an
unexpected type is impossible because thefdéﬁpile—ﬁimé typé‘checking mechanism
validates the type of all references passed to a type ménagér. Using objects
defined at a higher level is impossibie bédéugéﬂdf'the inforﬁation level fulé.
ghat is‘aléo guaranteéd‘fy thé type chéciiﬂg’héchéhism; A second set of
upﬁard dependencies are not eliminated by the type extension mechanism but
they are éasy to épot and remove thanks td it.v Such is the case for upwérd
signals and upwards transfers of control before which a type manager should
return to a quiescent state, Finally, certain kinds of ﬁpward‘dependencies

are not considered at all by our type extension concept. Such is the case for

80

the validation of the range of arguments in general. Such dependenciés must
be watched for explicitly by the desigher of every module.

We have seen how the dependency’grhphiofEa'eytféﬁ”céﬁ5be‘derived from its
type structure graph. By analyzing the implementation of a type manager, one
can identify all the type managers it depends on to interpret its code, to
implement its address space, to store its prdgiéﬁs“Anajto store the components
and the maps of the objects it manages. -

" ‘We have tried to suggest how to iteratively deéign and evaluate a virtual
memory mechanism by iaspecting its type’ structure graph and its dependency
graph. We have seen how helpful type exténsion cdn be in displaying the
modularity and the structure of the system without réquiring mich more
knowledge -about its design than' is eﬁbédaed;iﬁlfhe4dépeﬁdénéy‘gfaph. ‘After
the modularity and the structure of the system are apparent, theé designer may
produce the formal specifications and the code for the modules.

4. Type extension and ‘deadlock prevention’

— e e

In this section, we will study ;he impact of txpemexpension on a thi;d
aspect of the design of a system: deadlock prevention. Deadlocks (otherwise
known as deadly embraces) are situations thegrcen qccq:_chen several paraileiv
processes compete for resources_that can be used by only one of them at a
time. For instance, if two processes P and Q decide simultaneously to acquire
exclusive usage of two resources A and B they will need to lock them to avoid
conflicts. However, if P locks A first and Q locks B first, neither P nor Q
will able to proceed because each will see one of che data basee locked (by
the other) and thus temporarily out of service as far as it is concerned.

This is a deadlock sitcatioe. -

Several algorithms have been designed'to help designers make sure that -

81

their system is deadlock-free, i.e. that it can never put itself in a deadleock
situation [Bensoussan68, Havender68, Habermann69)}. These algorithms are
undoubtedly helpful. But verifying that a3 system respects them and is
~deadlock-free may be hard. In general, it requires: the designer of every
module of the system to be aware of the deadlock prevention algorithm on a
system-wide basis and thus to be aware in some measure of what designers of
other modules have done with respect to deadlock prevention.

In this section, we are concerned with a specific kind of deadlocks,
namely those that may occur when several parallel processes compete for
locking of intermal system data bases to preserve the integrity of these data
bases. ‘We -will show that the type extension concept defined in chapter II,
together with the restriction that modules may: not share data bases,
guarantees- the prevention of deadlocks due to competition for locking of -
internalfsystem data bases, The type extension.concept provides a strategy
for orderly locking of internal system data bases that guarantees a
system-wide respect of Havender’s deadlock prevention algorithm, while not
requiring any particular attention to or awareness of the: algorithm on the
part of the designers of the system,

Havender’s algorithm is summarized here. With every data base that can
be accessed by several parallel processes but by only one of these at a time,
one associdtes a lock (semaphore). Ip order to be allowed to acceés the data
base, any process must test and set the lock in one atomic (hardware)
operation. 1If it sees the iock already set, it must wait on it. Havender’s
algorithm requires that all the locks in the system be ordered by asscciating
a number with them. Furthermore, a process may neither test and set a lock X

nor wait on it if the relation X>Y holds, where Y is the lowest numbered lock

82

that that same process has currently set. (1)

This algorithm guarantees the absence of deadlocks due to competition
over internal system data bases because any process that wants to lock a set
of data bases must lock them in a fixed decreasing order that is the’ same for
all processes. Thus, in our earlier example, if we assume that the fixed lock
ordering is B>A, a deadlock camnot occur because P cannot lock A first and try
to lock B then. Both P and Q must try to lock B first and whichever succeeds:
may go ahead, lock A and do its task while the other is waiting on B but not
deadlocked.

The modularity of type mamagers implies that any data base is local to
one type manager. Thus, if it is shared by parallel processes, these parallel
processes must be executing parallel instances or portions of the same type .
manager. Since locks are attached to data bases, they are also local to type
managers. In other words, locks, as well as the data bases they protect, are
never shared across type managers. Let us temporarily assume that there is
only one lock per type manager.

The dependency structure of the system imposes a partial ordering on the
type managers. Thus, that partial ordering is also imposed on the locks of
these type managers. It is true that two locks:corresponding to two type
managers that are not ordered with respect to one another may, as a result,
bear the same number. However, if two type managers are not ordered with
respect to one another, they do not depend on one another and in particular,
control cannot leave one in a non-quiescent state and go to the other. In

other words, there is no computation path that could cause a process to

(1) This is stronger than necessary. Bensoussan’s algorithm states that the
minimal condition for deadlock prevention is only that a process may not wait
on a lock if X>Y but it may always test and set the lock if it can.

83

execute the code of one type manager while'an invocation of thé other 1is
pending in that same process. Pending invocations of the two type*managefs
can never exist at the same time in any procéss. At least one of the type
managers must be in the quiescent state as far as that procéss is ‘concerned,
thereby implying that its associated lock cannot be set by that process.

Thus, the fact that two locks can bear the same number does not matter. This
only means that they are on different computational paths and that no prbéess
will ever be able to set them both in any order. What does matter is that on
‘any single computational (dependency) path, all the lécks that can potentially
be set are ordered.

By virtue of the definition of dependency, if a process is currently
executing in a type manager at a level L, all type managers at lowéer levels
are in the quiescent state as far as that process is conge;ned, and in
particular, none of their locks can be set‘by that process. If execution
moves down one leﬁel, then a lock at level (L-1) may be set or waited on.
This is safe since the current lowest lock set by the process is numbered L.
If execution backs out’of level L into (Lfl), then lqck L must be released
since the type manager at level L, by virtue of the dependeﬁcy graph, retuF?s
to the quiescent state.

Hence, provided the designer of each type manager is careful to always
return to the quiescent state before transferring (or returning) control
upward, which we assumed he was to remain independent of higher level type
managers, respect of Havender’s algorithm is always guaranteed on a
system-wide basis.,

Now, let us release the original assumption that there is only one lock
per type manager. If there may be several locks within one type manager and

if several parallel processes executing parallel instances or portions of that

84

type manager may set them in random order, we again have a deadlock
possibility. What is necessary is a local locking strategy in every type
manager that prevents parallel processes executing within that type manager to
deadlock one another. Type cxtension does nothing to enforce Havender’s
algorithm at the level of an individual type manager but since the size of a
type manager ideally should be manageable by one person, that person can
easily keep track of all the locks used by the type manager and code the type
managey so that processes executing its code always attempt to set locks in
the same order. In essence, type extension suggests that, from a global point
of view, all the locks in a type manager should be regarded as one lock and
must be released to leave the type manager in the quiescent state.

5. Conclusion.

In this chapter, we have first examined how and when the type extension

technique can be exploited to organize the design of system. We have then
examined the relations between the type extension concept and three aspects of
the design of 5 system: modularity, structure and deadlock prevention. We
have seen that type extension was helpful in guaranteeing that the system has

these three properties.

85

Iv, Case Study.

1. Introduction.

The‘dbjéctive of thié chaptér ié towdémonstrate the uséfulness and to
illustrate the exploitation of the typevé;tenéioﬁ technique described in
chapters‘II aﬁd iII by using it td reorgahize é feal.ﬁiftﬁal memory mechaﬁiém.

Our intent is not to design a new ertual memory mechaﬂiém, but ﬁo show
how our type extensionrtéchnique can be expioited'té ofganizé a reél virtual
memofy mechanism. On this basis; there is-no point trying to be creative
about the’functionality of the virtuai mémory mechanism to Be designed. Such
creativity would present two dangeré. First;hit ﬁﬂui& diQerf“the attention of
the reader from the reai purpose of the Case study; And‘seéond, it could
result in an unconvincing paper design of an unrealistic, too ambitious or too
siﬁplified system, |

To avoid these two pitfalls, we have chosen to teorganize an existing and
viable virtual memory mechanism. The specificrexample we have chosen for our
case study is the virtual‘memory mechanism of the Multics system that is
offered commercially by Honeywell Information Systems> Inc. [Bensoussan72,
Multics74, Organick72]. |

‘Our choice of the Multics virtual memofy meéhahism wasamotivated by two
reasons. First, Multics is a large, powerful and éopﬁisticated system. Its
virtual memory mechanism is useful and practical but is currently a maze of
programs that is certainly unamenable to verification and hard fo understand.
Because of this complexity, the Multics virtual memory mechanism is as good as
any other for our case study. If our type éxtension technique succeeds in
modularizing and restructuring the Multics‘virtual memory mechanism, the

chances are high that it could be used successfully for any other system.

86

Second, the Multics system was avai}ableito us, we were familiar with it and
moreover, our case study fitted within the framework of an ongoing research
project aimed at producing a more understandgble version of Multics that will
be a prototyﬁe for a future certifiably’secure system’[Schrogderl.' Thus, the
design that will result from the ;ase study 1is ofrdirect interest to the
project concerﬁed with the over#ll reotggn;zation of Multics.

Throughout the rest of this chapter, we will be concerged with sevg;al
different designs of the same virtu#l memory mechanism,. It may be appropriate
to distinguish them here. Thé original design of the Multics virtual memory
mechanism described in [Bensoussan7;] has been superceded recently py a new
one. The functionality of the original design has been preserved by the new
design. However the new design has added several features to the original
virtual memory mechanism, notably the possibility to add and rempvefdiskfpacks
from the on-line virtual memory of the system. To distinguish the new design
from the original one, the new virtual memory mechanismhis called New Storage
System (NSS). Our case study will not be concerned with the original Multicg
virtual memofy mechanism. Instead, we will produce a system design with the
functionality of NSS. Documentationion NSS is not generally available yet.
All we can say is NSS has preserved the fpnc;ionality?of the original design
and is similar to IBM"s 0S/360 as far as rembvable disk pécks are concerned.
For lack of adequate documentation, we will devote section 2 of this chapter
to the description of the functionality of the user interface of NSS. This
section may be skipped without loss of continuity by readers familiar with the
functionality of the Multics virtual memory mechanism. Preserving the reverse
alphabetical order after 0S/360 and NSS, we will refer to the design presented

in this chapter as My Storage System (MSS) to distinguish it from the other

designs.

87

Section 3 of this chapter will be devoted to an apalyzis of -NSS.
Analyzing NSS is interesting for two reasccs. First, in designing MSS, we
will use the design of NSS as a starting point and evolve NSSvtowards a
well-organized system based on type extension.$ Second; we will describe'some
instances of violations of modularity and we.will eipleip how these.instances
contribute to the complexity of NSS. We will also list the moet important
violations of the dependency structure and we Qill explein how they are a
source of difficulty in understandicg NSS. kIeolatieg;these‘proBlems will
allow us to study their nature and will tell usuﬁhere:tovconcentratebour
attention to later evolve NSS towarde anwell-organized system.

Section 4 will present the deeign of‘MSS.V Eﬁclving NSS towar&s MSS wes a
very long and involved process that required'meny &esign iterations. It is
impossible'and probably uninteresting'to deectibe‘ell‘these desigp iterations
here. Hoﬁever, we will briefly describe the eVélution itom ﬁSS to MSS for two
reasons. First, we hcpe that showing’the cohnectioﬁs and the similaritiee
between NSS and MSS w111 enhance the credibllity of the de51gn of MSS based on
the observation that it is so close to the design of an ex1sting system.
Second;‘shbwiﬁg a sketch of the evolution of MSS'Will;illustrate‘the tﬁought
processes involved in de31gning a system based on type extensicn. o

Section 5 w1ll conclude the chapter by evaluating the impact of type
extension on certain aspects of the design of a virtual memory mechanism like
MSS. We will summarize observations on particular structural patterns that
are encountered several times in MSS and appear to be fundamental to the use
of type extension at the low levels of an operating system. This summary is
particularly‘interesting for reeders who might;read»only quickly and
superficially thelrest_of'chaptertIV’epdyfdt ;eegeis'whd ate interested only

in the general conclusions of our case study.

88

2, The Multics virtual memory mechanism.

e v w—— —— oo

Our purpose here 1is to outline the fuﬁctionality of the user interface of
the Multics virtual memory mechanism we are going to design. This
functionality is that of NSS. We intend to'prggerve iﬁ in MS8S. Someone
familiar with NSS may 1gﬂore this section without loss of continuity.

The level of detail we have adopted #nd the p;rticular aspects we mention
here to describe the virtual memory mechanism were salected,oniy on the basis
of what we felt -~ ex post facto -- poéed organization problems and deserved
attention in this thesis. Thus, the folloqing descrip:ioq 19 by no means a
complete specification of ;he Multics Qirtgal_memory_interfacez many aspects
of this interface present no design or implementation challenge and are
therefore not worth mentioning berg.‘(;) »0n the other band, some features of
the virtual mémory mechaniam afe a constant 80urce of difficulty to the
designer: this explains why certain aspects of the user 1nterface are
discussed at great length, As much as possible, we have eliminated from this
section thebdetailp of the implenentation of the Multics virtual memory
ﬁechanis#. Before diving into the desctiption of Hultics, it may be useful to
inform the reader that the following table provides a brigf and easy to look
up summary of all the abbreviations that are used throughout the rest of this

chapter.

(1) One of the aspects of the Multics virtual memory mechanism that is not
mentioned here is the non-discretionary military protection mechanism that it
implements. This aspect presents no new design challenge related to the use
of type extension and is omitted from chapter IV. Interested readers will
find a discussion of military security controls in an ayyendix. ‘

89

Abbreviations used in chapter 1IV.

APT active process table (describes states of processes in NSS)

AST active segment table (describes all active segments)

ASTEP AST entry pointer (denotes an active ‘segment)

CDSG core descriptor segment (contains SDHs:for system segments in MSS)
CMAP core map (contains bit map of core)

CRU current record usage (of a segment)

CSL current segment length

cu change usage (operation to update U in a quota cell)

DBR descriptor base register (denotes the base of a user address space)
DSG descriptor segment (contains SDWs for connected segments)

DT disk table (describes all disk packs)

DTAM date and time access last modified. (d4n-directory and VTOC)

DTEM date and time entry last modified (in directory and KST)

DTM date and time last modified (a segment)

DTU date and time last used (a segment)

FSDCT file system device configuration table (contains bit maps of disks)
KST known segment table (describes all segments known to a process)
LVID - . logical volume identifier (denotes a .set: of disk packs) :
LVRD logical volume registration data (describes a set of disk packs)
MQ .. move quota (operation.to move Q hetween two quota cells)

MSL maximum segment length

MSS . Multics Storage: System (new mechanism preseanted in this thesis) -
NSS New Storage System (current Multics virtual memory mechanism)
PFT - page frame table (contains all PTWs in MSS) :

PLID principal identifier (denotes a user in the system)

PTA. - . page table address (denotes the first page of a segmeat)

PTW page table word (describes one page of a segment)

PVID physical volume identifier (denotes a disk pack)

PVT physical volume table (describes all mounted packs)

PVTX - PVT index (demotes a mounted pack) :

Q quota (upper bound of U in a quota cell)

QCT - ~quota cell table (contains all (active) gquota cells in MSS)
QCTEP QCT entry pointer (denotes a quota cell in MSS)

RU reset usage (operation to extract and reset the TRP of a quota cell)
SDW segment descriptor word (describes a connected segment)

TRP - time-record product (integral of U ip-a quota cell).

U usage (in a quota cell)

UHT - UIP hash table.(hashes UIDs into ASTEPS)

UID unique identifier (denotes a segment)

UPT user process table (describes states of usexr processes in MSS).
VPT virtual processor table (describes virtual processors in MSS)
VTOC volume table of contents (describes passive segments)

VTOCX VTOC index (denotes a passive segment)

Processes.

Every user authorized to uge a Multics system at a-given site is named.

inside that. system by a primcipal identifier (PLID).. This PLID is used to

90

control the user’s access to the information stored in the system. While a
user is aciually using the system, he is represénted }qternally<5y and .
interacts with a process bearing his PLID. Whatvé process can reference is
determined by the PLID that is tagged oniit.4_1ﬁe physical processors are
multiplexed among all processes.

Pages.,

Multics supports a demand paged virtual memory. A user never has to
worry about bringing the 1nformation'he is going to ref;?ence into primary
Memory or copying an area of primary memory out to secondary storage to make
room for other information in primary memory. When a user referenees a piece’
of information, it is bvought into primary memory automatieally 1f it is not
already there. Then, 1f it is not used for a while, the pieca of information
is removed automatically by the system and flushed out to secondary storage.
Primary memory and secondary storage are divided into ;ogical blocks/records
of a fixed number of sequentially numbered words. The information represented
by any such block/record is called a page. Information ié moved automatically
from primary memory to sécondary storage or vice versa’&y en:ire pages. If a’
user references a page that is not in primary memory, A processor"exception
known as a page fault occurs; It céuses the ;serACOmputation to be suspended
temporarily and directs the system té brfhg‘ih'the'dGSifedipage. A user can
observe page faults insofar as hevcap see thefdglgyk‘theffcguse. He is
otherwise unaware of pages. |
Segments.

A user never references pages direetly. A user réferenées Segments. A
segment is a logical cellection of pages that are sequentially numbered. The
location of the pages of a segment are denoted by the words of its page table.

Segments have many attributes that a user can get at or set. Most of these

91

pose no design challenge. Two kinds of attributes deserve some attention here

as they will be referred to later., First, are the date-time-used (DTU) and

date-time-modified (DTM) attributes. They indicate to the users the date and

the time a segment was respécqively last used and lést modified. Second are

the length attributes of a segment. The maximum-segment-length (MSL) is a

user definable attribute defining the maximum number of pages that a segment

may contain. The current-segment-length (CSL) .is the number of pages a

segment currently contains; it is determined on the basis of the highest

numbered page of the segment that is not full of zeroes (null page), as shown

in the following figure.

| _J null page CRU = 3
7//’/[1 non—nuli page CSL = 6
| MSL = 8

Finally, the current-receord-usage (CRU) of a:segment indicates how many pages

are not null.. The user is charged for the ‘spacé. occupled by his segment . on
the basis of this quantity. He pays only for non-null pages:because null

pages are not actually allocated. 1If a page is mull,. the page table word

(PTW) that describes it does not denote anything. The page has no image and
occupies no physical space. Physical space. is allocated and. the user is
charged for it only if and when the page contains some non-zero bit.

Address Spaces.,

Now comes the question of how a user references a segment. Every user .

process has its own address space. This address space is:implemented by a

descriptor segment (DSG). A descriptor segment has a fixed, small MSL. Every

entry in a descriptor segment is called a segment descriptor word (SDW) and is:

92

indexed by segment number. A SDW is represented schematically below.

page table address fault tag

current segment length : access modes

Every SDW describes one segment. It tells the user about the absolute page

table address (PTA) and the CSL of the segment. It also indicates the access

modes (read mode, write mode, execute mode, etc...) that constrain what the
user can do with the segment. The meaning of -the fault tag 1s examined later.
While the process of a user is running on a physical processor, the PTA of the

process DSG is loaded into the distinguished descriptor base register (DBR) of

the processor. The user procésékiﬁén references a piece of ;nfo;mgcion by a
(segment number, word ﬁumber) péiriindirectly through the Dng,ialspw and a
PIW. The ségment n&mber is‘qsed to index the DSG and gét at.éheVSDW:of the
desired segment, The>vbrd huﬁber,ig divided by the page length to obtain the
nunber of the desired PTW within the page table of the desired segment. And
the remainder of the division is used as an index for: the.desired word within
the desired page. Retrieving the SDW and the PIW on every reference is
speeded up by the use of hardware assoclative memories that hold the most
recently used SDWs and PTWs [Schroeder71l].

If a user references a segment beyond its CSL, a processor exception
known as a bound fault occurs. As a result of it, the CSL attribute of the
segment is increased unless it is already equal to the MSL, In the latter

case, a bound violation is signalled to the user and the computation is

aborted.
Since there may be very many segments in the system, it is impossible to
keep the page table of each of them at a fixed address in primary memory all

the time. When a segment iS-not»beipg used, its page table is removed from

93

primary memory and stored on secondary storage, where it is called the file
map. This is called deactivating ;he seéﬁent (the inverse opératioﬁ‘is called
activation).

It is now time to explain the first roie of the fault tag in é SDW, The
first role is to signal changes in the physical attfibutes of a segment across
processes. If a bound fault or a deactivation occurs, all processes that have
a SDW for the segment must be notified so they can update this SDW if they
care to. To signal bound faults and deactivations, the fault tag is turned on
in all the SDWs that denote the segment tha; is affected, to cause processors
to trap if they try to access the segment. This is called disconnection (the
reverse operation is called conqection). If any of the disconnected processes
later references the segment, it causes a processor exqution[kqown as a

segment fault. As a result, that process is made aware that something has

changed. Either it has to update the bound qf the segment it referénced in
the SDW it trapéed on or it has to retriéve and perhaps reactivate the segment
page table, -

The obvious question to ask now is: how does a process reconnect itself
to a segment? It must be able to retrieve ﬁhe pégé tabie of the segment aﬁd
to recompute its CSL. Fér thié purpose, tﬁe sjstem maintains éysfem—wide data
bases (to be described soon) where it records the CSL and the current PTA of
everyrsegment. On a segﬁent faule, ihe faultiﬁg ﬁrocééé must egtfact from
these data bases the information it needs to perform the‘coﬁnection. This
requires that the process be able to translafevthe faﬁlting, hardware
interprétable segment number, which ideﬁtifies the segmént within the process
address space, into some sort of unique name that identifiés the>segment
within the entirersystem and permiis the péééess to addréés—thefsystem—wide

data bases, For this purpose, every process owns a table called a known

94

segment table (KST) that maps every segment number into a uniqﬁe name. In
fact the KST maps each éegment number into two'unique néﬁés tﬁaanre
synonymous in denoting the same segment but are meaningful at different’iévels
of the system, as will be seen.‘ (The 1mp1emeﬁtation may confer more functions
to the KST, but these have no effect on the user interface.)

Both the DSG and the KST exist only as iong as thé user process exists.
Every time a process is created , a newﬂKSTrahd DSG aré brovided. The |
cohneétion oéeration described earlier fabricates a SDW in the DSG from
information that is in the KST entry with thé corresponding éegmen£ number.
The next éuestion to answer is: how does fhat informatién getfintoythe KST
entry in the first place or, in other words, how is érsegment added to the
address space of a process?

Directories.

The file éyétem is composed of a set of syétehéwide data bases called
directories. Although directories appeaf différenf from segments fo the user,
they are stored like segments by the system. Directories are used for four
functioné: naming, addressing, protection, and resourcé abcodnting;

The naming function consists df proQiéing:system-wide uﬁiqﬁe nameé for
denoting segments. Each directory entry Aeséribés;éifhér another director§ or
a segment. Thus, the file system appearé to the ﬁsef as a hiefaréhical‘tree
of directories (nodés) And segments (ieaves). (1) The ttee>1s‘rooted at a
distinguished directory called "root" that 1§Vnot deséribéd in any difectory
entry. Every entry in a directory bears two.nameé: a Symbélic néﬁe'(éharacter

string) that is unique within the directory and the (numerical) unique

(1) The Multics terminology is often unfortunate,.particularly about segments.
Most of the time, a segment means a logical collection of pages. But in the
context of the file system, a segment means a leaf of the tree. We will try
to make clear what kind of segment we mean when we use the word.

95

identifier (UID) of the segment or directery described by the directory entry.
UIDs are unique over the entire system. Thus, a directory entry is uniquely
defined by its path name im the tree and uniquely recognized by the UID it °
contains. The path name is user oriented; ‘the dID is system oriented. UIDs
are easy to store and use within the system but path names are provided to
users as they are easier to use to name direectory entries. Adding a segment
to an address space is called initiating the segment (the inverse operation is
called terminating). (Initiating a segment is somewhat synonymous to opening
a file on other systems.) When a user requests that the segment described by
a given directory entry be initiated, a KST entry is allocated, the symbolic
name of the directory entry and the UID of the segment it describes are copied
into the KST entry, and the corresponding segment number is returned to the
user. Notice that path names and UIDs are entirely decoupled ways to identify
a directory entry-in the sense that. the path.name may change while the UID
remains the same. If a user has initiated a .segment with a given UID, he can
still use that UID to refer to the segment even if the name of some directory
entry along the tree path for reaching the segment has changed.

The addressing function of the file system consists of providing a way
for the user to get at the physical attributes of a segmént (PTA, CSL). This
function is required to activate a segment or to recompute its CSL, as
mentioned in the description of the connection operation. The directories are
the system~wide data bases mentioned there.

The protection function consists of providing an access control list for

every segment and for every directory. Anm access control list determines what
PLIDs can acquire access to the associated segment or directory and how., The
exact functionality of the access control 1ist mechanism is of no interest

here [see Saltzer’s paper in Multics74}. The only point that deserves

96

attention here is the revocation of access. A user A can cause the access of
another user B to, some segment to be revoked by changing what the access
control list says. The functionality of Multics requires that this change be
effective immediately even if user B has initiated the segment and is
currently connected to it. Access revocatien is the second purpose of the
fault tag in a SDW. It is turned on if access is revoked. When trying to
reconnect a disconnected segment, the system recomputes the access of the

faulting process and denies reconnection, signalling an access violation if

access has been revoked.

Finally, the resource accounting function consists of providing system
administrators with a means to bill users for the space used by their
segments. It also provides a means to project administrators or individual
users to control their own resource usage. The resource accounting function,
otherwise known as quota mechanism, poses many design problems and is
extremely complex to describe. The following is a simplified description of
the mechanism that preserves the design challenges of the original mechanism
while trying to eliminate some of the complexity of its functionality. -

Quota Mechanism.

Resource accounting is done on a per directory basis. Every directory
has associated with it a gquota cell. The resource unit 1s one page. (Notice
that users do not pay for directory pages in the current implementation of
Multics.)

There are two kinds of directories: quota directories and non-quota

directories. Although the following restriction does not quite hold in theory
in Multics, let us assume for simplicity that a directory can be a quota
directory only if its parent is a quota directory. This restriction appears

to hold in practice, as far as users are concerned. Thus, quota directories

97

are aggregated at the higher levels of the directory hierarchy as in the

following example.

ROOT (has to be a quota directory)

CSR (quota directory for project)

JANSON (Quota.ditéctofy for user)

THESIS (non-quota diréctory)

-—— segments

— o\ o ST2, ,'

," -
The quota.cell of a non—quota directory contains only a running total U of the
number of pages used by all the segments (sum of their CRUs) described in that
and inferior directories. For example, the quota cell of THESIS-indicates the
number of pages used by segments in subtree STl. The quota cell of a quota
directory contains resource usage, resource control and resource accounting
information. The resource usage information, fu;ther\referred to as usage
(U), consists of the running total of the number of pages used by segments in
that and inferior non-quota directories. Thus, for CSR, U is thg‘number of
pages used by segments in subtree ST2. The resource control information, also
known as quota (Q),. is an upper bound for U. The resource accounting

information,-also known,as the time-record—-product (TRP), is the integral over

time of U.

The quota mechanism supports three functions: reset,usage»product_(RU);

move quota (MQ) and change usage (CU).

The RU function performs acceunting. It is elear from the above

98

discussion that the sum of the TRPs of all quota directories is equal to the
integral of resource usage for the whole system. Thus, by pefiodically
extracting the TRP of all quota directories and resetting them to zero, system
administrators can bill the owners of those quota directories for the
resources they have used and recover the_total.costrof pages used during the
elapsed accounting period. This is the purpose of the RU operation.

The MQ operation is intended to allow‘prpject‘adm}qistrators and users to
put upper bounds on the amount of pagés they are willing tg pay for in any
directory or subtree of directories. The MQ operation ﬁovgs portions of Q
from a parent directory to its Son or vice versa. The parent‘directory must
be a quota directory. As a result of a MQ operatién, the son directory may
change status from qu;té to non-qudta or Viéé:versa. IQ eithet‘case, and in
order to preserve the meaning of Q relative to U, the MQ primitive must update
the U value of the parent directory. 1If Q is delegated to a son that becéomes
a quota directory, then U (son) must be subtracted from U (parent) as it {is
now charged against Q (son). If all Q is removed from a son that becomes a
non-quota directory, then U (son) must be added to U (parent) as it is now
charged against Q (parent) and Q (son) is zero.

Finally, the purpose of the CU operation is to update the U of quota -
cells when segments are grown or shrunk. Again, to preserve the meaning of a
Q with respect to the associated U, when a segment 1g grown/shrunk, a page
must be added to/subtracted from the U of the quota cell of everyrdirectory
above the affected segment up to and including the lowest quota directory. If
U = Q in that directory, then the segment may not be grown and a quota -
overflow condition is signalled to the user.

Removable disk packs. o

We are now almost done with our description of the functienality of the

99

Multics virtual memory mechanism. We must yet describe the removable disk
pack feature, This desqriptipnvwill be extrgmely simplified for two reasons:
as we are writing this thesis, the exact functionality of removing disk packs
is not defined because the implementation of NSS is not<¢omp1eted, and the
functionality és we perceive if does not seem té pose ;ny major design
challenge.

The purpose of having removable disk packs is to be able to not have all
segments on-line all the time, i.e. to egfend the available virtual memofy to
off-line packs.

" The organization of disk packs is governed by two concepts: physical apd

logical volumes. Physical volumes are physical packs. Logical volumes are

collections of physical volumes. Two rules apply to the organization of
ipformation on volumes, First, all the pages of a segmentvmuét reside on one
physical volume. Every segment>ﬁas as a tag ;he physical vglume its‘pages
belong in. Second, all the segments in one directory must resiée in one
logical volume. Every<directory iémtagged Qith a lpgical volume attribute
defining the logical volume its sonvsegmepﬁs belong in. When a segment is
created, its home logical volume is detefmined from the 1ogical volume
attribute of its parent directory. The home phyéical volume is selected as
the least full of the éﬁysical volumes in tﬁe hpme 1oéica1 volume. 1If the

system lacks physical space to grow a segment on its home physical volume

e

(out-of-physical-volume (OOPV) condition), it may move the entire segment to

the -~ then -- least full physical volqme of‘the(home logical volume.

The removability of disk packs i; governed by two ;qies. First, they
must be mounted/demountéd by gntirerlogical voluﬁes so0 tﬁatAéll the segments
in‘one diregtory ére either on-line o;“off—line at tﬁeksame time. Second, one

logical volume, which is called the root logical volume and contains all

10Q

directories and some segments critical to system operation, can never be
demounted. Thus, the skeleton of the file system ﬁiéfaréhy, i.e. the
direCtories, is permaﬁently éccessible dn;liﬁé. ‘AS a cdnéequence; it is
always possible to find 6ut about the uniqué names, the éecondary storagé
address and the access control list of a segment, and-té access a qudtaicell.
However, it is not always possible to access or find out about the attribuﬁes
(DTU, DTM, CSL, MSL, CRU) of any segment. This is poésible only for segments
stored in logicél volumes that are on-line. If a user ﬁriés to access thé |
content or the attributes of a segment that is off-line, he will receive én
error message indicating that fhe desired 1ogi¢h1 volﬁme is not onéline. In
order to reference an off-iinersegment or“itéraitriﬁufes;jit is necessafy to
first request explicitly that the right logical volume’Sé mounted.

For each logical volume, there exists registration data (LVRD). The LVRD

specify which physical volumes are in the logical volume. These physidal

volumes cannot be mounted individuaily. The‘LVRD4aiéo specify what

directories of the file.system are mastet'difectﬁrieénféf the 1ogicél veluﬁe.
The segménts in a directory D are nbrmally éforé& 1; tﬁe aéﬁe logicai ioiuﬁe.
as the segments in the parent direétorf of D. However, if D is a master
directory for some logical vélume,”the s;gmeﬁ£é>iﬁ D'afé'stdred in that
logical volume, Ih 6ther words, a master:direcéorj is reéognize&>by fhe fact
that its LVID attribute was hot inhéiited from its p#fent bu£ 15 determined by
some LVRD. | |
There is an obvious connectidn bétéeén the spacé that is‘physically
available in a logical volumé énd the fact tkat'thét‘sﬁace will be shared by
’segments described only in thermasﬁer directories of the logical volume and in
inferior non-master directories. In view'of‘fhié connection, dﬁoté on a

master directory cannot be adjusted by moving it to/from its parent directory

101

since the parent directory, by definition, controls resource allocation on a
different logical volume, ;Thus, a master directory is a boundary for the MQ
operation: quota qannot move betweeq a master directory and its parent. In
reality, it will be possible to adjust quoté on a master directory by moving
it to/from the quota pools of a space partition defined in the LVRD of the
corresponding logical volume. However, the functionality of this mechanism is
not yet fully defined and the mechanism is not yet implemented. Since the
mechanism does not seem to pose aﬁy design challenge in a system based on type
extension, we will ignore its details and~ana assume for simplicity in this
thesis that quota on the master directories of a logical volume can be
adjusted externally, in an unspecified way, by the-gxecutives ﬁsee below) of
the logical volume. .

For every logical volume, there is also‘a@ access: control list. This
access control list specifies the authorized 'users" and.'executives" of the
logical volume. The "users" can mount (use) and demount the logical volume.
The "executives" can move quota between the.@aster directories of the logical
volume and quota pools defined in the LVRD oﬂ‘the logical volume. Only the .
person known as the "owner" of the logical vdlume,can set the access control
list of the logical volume.

3. Study of NSS.

The purpose dflthis section is to examing how the virtual memory
mechanism that was described in the previous gection is implemented in NSS.
While sﬁudying NSS, which is not well organiz;d'and not-basedbon type‘
extension, may sound irrelevant to the topic<gfﬁthis theéié,’theré are two
reasons for dbing so.r First, MSS will be eVoivéd difectly from ﬁSS with‘

amazingly few changes., Thus, it is infefesting to describe NSS as it is the

102

basis for MSS and is very similar to it in many respects. Second, in studying
NSS, we will point out the problem'areas in its organization. This will allow
us to concentrate later on these areas to analyze the nature of the problems
and solve them in MSS,

To characterize NSS, we will first describe its mechanical operation by
surveying the data bases it contains and their management. We will then step
back from the detailed mechanical description of NSS to give a somewhat
abstract description of its organization. This will allow us, in a third
step, to point out examples of problems associdted with the modularity of NSS.
And finally, we will isolate problems associated with its structure,

Mechanical operation of NSS,

Our objective here is to describe the mechanical operation of NSS in a
way that will prepare the reader to later visualize data ‘abstractions in NSS,
which was not designed with type extensfon in mind, and to evolve it towards
MSS, which is explicitly based on type extension. From chapter II, we know
that an abstract object is a repository for data. fhua; in more common terms,
an abstract object is a data base or a data item., Therefore, to arrive at a
data abstraction view of NS5, it may be helpful to describe its mechanical
operation from a data base point of view. Adoptingksuch a data base view is
exactly what helped us to produce MSS from ﬁSS'in reality. Thus, the
following discussion will gravitate around NSS data bases and their
interconnections. This discussion does not pretend to give a full description
of all data bases., First, it provides only information necessary to gain an
overall understanding of the mechanical operation of the‘systeh. And second,
it omits the description of specific opefationsrthag.cause organizational

problems as these operations are described later in more detail.

103

a. Logical volumes. (1)

When a user wants to operate on a logical volume, he can name it by a
path name. Thejﬁath name denotes a segment in ;he file systeg\hierarghy that
contains the LVRD for the logical volume to be operated on, This LVRD

contains, first of all, a logical volume identifier (LVID)_for the logical

volume under concern. The LVID of a logical volume is a system oriented name
for talking about a logical volume. While users never see LVIDs, the system
never uses path names to denote logical volumes. The LVRD of a logical volume

also contains a list of physical volume identifiers (PVID) that specifies

which physical volumes compose the logical volume,»and a list qfrpath names
that specifies which directories of the file system are master directories for
the logical vqlumes and how much quota these mas;g:_dirgqtories may have.
Every timé a user wants to mognt/demount a logical volume,»the list of PVIDs
is used to mount/demount the physical volumes_of the logical‘volume. Every
time a user wants to create a master directory for some lqgigal volume, the
list of master directories is used to determine if the dirgctory to be created
may be a master directory for the given logical vplumg and if so, to set the
quota on it. The LVRb finally specifieg if the logical volume is demppntable.
b. Physical volumes.

Thanks to a hash table associated with a data base called the Disk Table
(DT), every PVID is mapped into an entry of thatlDT.> This»eg;ry describes the
corresponding physicalrvolume (device type, size, configu{ation,(etc...). In

particular, the entry indicates if the physical volume is demountable and if

(1) The information in this section may not reflect the true implementation of
NSS because that implementation does not yet exist as we write these lines.
The implementation that is described here is believed to be a close ‘
approximation to what will eventually happen ‘to be a real 1mp1ementat10n. At
any rate, the functionality of the mechanism is respected.

104

it 1is cdrrently mounted, If the physical volume is currently mounted; the

entry Specifies which drive it is mounted on by giéing the index (PVTX) of the

entry corresponding to that drive in a table called the bhxgical volume table
(PVT) . |
c. Configured volumes.

" The PVT is a system table that coatainé one;entry fof every disk drive.
Thus, a PVIX identifies one drive. A PVT entty 1ndic§téé if the corresponding
drive is currently used. If it is, the entry ihdicétés whéther the confiéured
volume (the physical Qolume'mounted on it) ﬁaj‘be déﬁbuﬁted. (This
information duplicates what is in tﬁe DT';nd therLVﬁﬂ;)k The entry alsé
indicates the PVID of the configured volume and the iVID of the logicél voiumé
of which the configured volume is a comﬁonent. The PVT contains tﬁo more
pieces of information. First, it contains a hash table that allows éeérching
the PVT to find out what drive (PVTX) a physical volume with a given PVID is
mounted on. While it is possible to fiﬁd what drive (PVIX) a PVID is bohnd‘to
by looking up the description of the given phyéical volume in the DT, it is
also possible to find out about this binding by searcﬁing fﬁr the drive
description in the PVI. (Notice that while a PVIﬁgié givén and a PVIX is
expected in return, this operation is not an operation on a physical volume.
It does not affect any physical volume in any way. It concerns a configured
volume. This seemingly irrelevant comment will have a tremendous importance
later.) Second, when a logical volume is mouhtéd,‘all‘PVT entries that are
allocated to mount its physical volumes are threaded into a circular list.
Thus, given a PVIX for one configured volume of a logical volume, it is
possible to get the PVIXs for all othérs. ,Thé abbée“;?o,pieces of information
are used to create and move (OOPV),segmenté;iaﬁé’fp activate theﬁ.vas will be

seen soon.

105

d. Directories,

A user may refer to a directory by its path name. However, as soon as he
has initiated the directory in his process, he will address it by segment
number, as does the system internally. A directory contains three data areas:
an entry name hash table, a UID hash table and directory entries. The entry
name hash table is used to find an entry in the directory, given its symbolic
name. The UID hash table is used to find an entry in the directory, given its
UI1b.

As mentioned in section 2 of this chapter, every directory is also tagged
with the LVID of a logical volume. That LVID indicates the logical volume on
which the son segments of the directory should be stored. (Notice that the
LVID is never used to operate on (mount/demount, etc...) the logical volume.
It is only used as a common tag for all the segments im the directory. This
observation will have a fundamental impact on the design of MSS.)

Every entry in a directory describes a file. (The name file is used to
mean either a directory or a segment.) A directory entry associlates its own
symbolic name with the UID, the secondary storage logcation and the access
control list of the file it describes. The access control list is a list
associating PLIDs with the access they should be granted to the file denoted .
by the entry. The secondary storage location of a file is defined as follows.
Every physical volume is divided into two zones: the paging zone and the

cataloging zone called the volume table of content (VTOC). The paging zone is

used to store file pages and the cataloging .zome is used to store file maps.
A VITOC entry contains one file map. The secondary storage location of a file
is defined by the PVID of the physical volume where the file is stored and an
index (VTOCX) to the entry where the map of the file . is -stored inm the VTOC.

- To .create an entry in a directory, i.e. to create a file, the LVID tag of

106

the directory is used to search the PVT until a configured volume with a
matching LVID is found. <{(If none is found, a logical-volume-not-mounted error
is returned.) The circular list of configured volumes with that LVID tag is
then searched to find the least full configured volume. A VIOC entry is then
allocated on th;t volume. A new UID is created. And the (UID, PVID, VIOCX)
for the new file are stored in the new directory entry.

e. Processes,

While we are interested in the virtual memory mechanism of Multics, we
need to say a few words about the virtual processor mechanism insofar as it
interacts with the virtual memory mechanism. (More information on the virtual
processor mechanism can be found in [Reed76].)

Every user attached to the system 1s represented by a process. The

system maintains a table called Active Process Table (APT) of which each entry

describes the state of one process. An APT entry bears as a name the PLID of
the user owning the process. It binds the PLID to a DSG and a KST for the
user process. The DSG and the KST are permanently connected segments, 1.e,
there always 1s a SDW to address them in the DSG. If they were not
permanently connected, the system could never connect them because connecting
a segment requires addressing a DSG and a KST, as will be seen.

f. Initiated segments.

In order to address a file by hardware, it is necessary to acquire a
segment number for it., This is the initiation operation mentioned earlier.
It is impossible to initiate a file in a process unless its parent directory
is already initiated in that process because initiating a file requires
addressing the directory entry that describes it. To initiate a file, the
user must supply the segment;number of its parent diréctory and the symbolic

name of the entry describing the-file in the parent directory. An entry is

107

then allocated in the KST, and the segment number of the parent directory, the
UID of the directory entry and the symbolic name of the directory entry are
stored into it. - The parent directory segment number in every KST entry binds
that entry to the KST entry for the parent and the (parent directory segment
number, UID, entry name) tripie binds the KST entry to the directory eptry
both by name and by UID. From then on, the file is said to be known with a
segment ﬁumber equal to the sequence number of the KST entry allocated to it.

While it is known, it cannot be addressed yet because it is not connected
and it may be inactive. When the user first uses the segment number just
allocated to the file, he takes a segment fault. As a result, the system
looks up ;he faulting segment number in the KST. It follows the (directory
segment number, UID) binding from the KST entry to the directory entry to find
the access control list and the (PVID, VTOCX) of the faulting segment. It
uses these information items to activate the segment if necessary and to
connect it in this process, as explained below. (Notice»that the system
follows the UID binding rather than the entry name binding from the KST entry
to the directory entry. Thus, it is not affected by potential changes in the
name of the directogy entry.)

g Segménts.

NSS is ambiguous about the definition of segments. In this paragraph, we
mean to talk about stored segments, i.e. logical gollqgtiops of pages, as
opposed to file system segments, i.e. leaves in the hiera;phical‘file system.
In the quiescent state, a segment isvmaterialized'by‘igs_VTQQ'eqt;y. The VTOC
entry contains its UID, its file maé and its storage attributes (DTU, DTM,
CSL, MSL, CRU).

To activate a segment, the system uses the (PVIpl£VTOCX) stored in the

directory entry describing the segment. It first éearbheé'the PVT to fin@ ihe

108

PVIX corresponding to the given PVID. It then uses thé‘resulting (PVTX,

VIOCX) to access the VIOC entry of the segment. It procéeds to find a free

entry in a core resident table éalled the Active §ggggﬁt Table (AST). (If
there is no free entry, it deactivates aﬁotherréegmeht, és explained later.)
It finally copies the VIOC entry into the.AST entry, thereby Sringing the page
table of the activated segment in core. It'aiso adds an‘entry to the UID hash
table (UHT) of the AST to map the UID-of the activated segment into a relative
pointer (ASTEP) to its AST entry.

In addition to the page table and the stbragé attributes of the active
segment it describes, an AST entry also contains the (PVTX,‘VTOCX) denoting
the secondary storage home of the segment, If the ségment pagé tabie or ité'
storage attributes change while the segment is active, they are copied back to
the home VIOC entry when the segment is deactivated. Finall&, an AST entry
contains a trailer list. A trailer is an (ASTEP, segment number) pair that
identifies a SDW (denoted by its segment number) inside a DSG (denoted by the
ASTEP to its AST entry)., The trailer list of an AST entry denotes all SDWs
in any DSG that are connected to the active segmeht.' It is used to disconnect
these SDWs if access to the segment is revoked, if its bound'changes or if it
is deactivated.

h. Connected segments.

For every KST entry, there is one SDW. (1) Having initiated a segment is

sufficient to address it by segment number. However, a éegﬁént’fault occurs

when a disconnected SDW is used. On a:ségmént féult; the system follows the

(1) Notice that the inverse is not true. Some SDWs that are permanently
connected permit addressing of certain system segments that are not described
in any KST entry. Segment faults and bound faults on suth segments cannot be
taken because they require the existence of a KST entry to be handled
properly. ’ S S ‘ o o

109

binding from the KST entry with the faulting segment number to the directory
entry describing the segment that must now be connected. In a way to be
explained later, it inspects the access control list to determine the access
mode of the faulting process to the faulting segment and it copies the
computed mode into the SDW. It then uses the (UID, PVID, VIOCX) of the
segment to retrieve its CSL and page table, If the segment is active, the UID
hashes directly into an ASTEP. Otherwise, the segment is first activated, by
using the (PVID, VIOCX), to get an ASTEP for it. In either case, the system
then finds the CSL and the page table in the AST entry denoted by the ASTEP,
stores the PTA and the CSL in the SDW, and turns off the fault tag in the SDW.

(When a bound fault occurs, the system proceeds as for a segment fault to
retrieve the CSL of the segment to be grown.)
i. Pages.,

The paging mechanism is based on three data bases: PIWs, the Core Map

(CMAP) and the File System Device Configuration Table (FSDCT). For every

configured volume, the FSDCT contains a bitmap indicating the allocated/free
status of every disk record on that volume. The CMAP contains one entry per
core block, If a core block is used, its associated CMAP entry points to the
PTW that denotes the core block and to the disk_;ecord that is the home of the
page currently in the core block. A PTW contains the disk or core address of
the page it stands for and a "used" flag and a "modified" flag that describe
the state of the page. These flags are maintained by the hardware as the PTW
is indirected through.

The paging mechanism operates as follows. On-a page fault, if the PTW
faulted on is null and if the quota mechanism (see later) allows creation of a
page, the system looks in the AST entry containjng the faulting PTW for the

PVTX of the home volume of the segment being grown. It searches a free disk

110

record in the bitmap associated with this volume in the FSDCT. If there is no
free disk record, it signals an OOPV condition (see later). If there is a
free record, it allocates it and copies its address in the PIW.

1f, on a page fault, the PIW faulted on denotes a disk record, that
record must be copied into a core block. The system searches the CMAP for a
free entry. If it finds one, it copies the address of the disk record into
the free entry; it copies the absolute address of the faulting PTW into the:
free entry; it copies the address of the associated core block into the PTW;
and it threads the CMAP eutry to a circular list of used CMAP entries,

If no CMAP entry could be found, a page must be thrown out of core to
free a core block. The system walks around the list of used CMAP entries,
From each CMAP entry, it follows the binding to the PIW that uses the
associated core block. If the "used" flag is on in that PTW, the system turns
it off, 1If it is off, meaning that the page has not been used since the
system last revolved around the circular list of used CMAP entries, the system
frees the CMAP entry. To do so, it looks at the "modified" flag in the PTW.
1f 1t is off, the system restores the PIW to its quiescent state by cOpyiﬁg
into it the disk address that was earlier saved in the CMAP entry associated
with the core block denoted by the PTW., It then frees the CMAP entry. If the
"modified" flag is on, the system first copies the core block it is freeing
back into the disk record home of the page it is removing from core, and it
restores the PIW to its quiescent state. It then frees the (MAP entry.

j. Summary.

Figure 4,1 summarizes the data bases involved in the operation of NSS and
their interconnections. Boxes stand for data bases or parts of data bases.
Since these boxes will later be identified with abstract types, we might as

well think of them now as denoting various kinds of objects. Every arc

111

cll

LYLD PLID PVTX

FSDCT bit ymmesmmmmmmes

PVID path name LVID

PVID, VTOCX UID & parent

PVTX, VTOCX

ASTEP l

o
a
S :

VTOC entry é» 5 AST entry traile SDW
PTA
disk ad%ress PTQ
disk“address core address

disk addregs

PLID

segment no.
UHT entry UID —{KST entry ——m—mm
- !

PTW address

Figure 4,1: NSS data bases and interconnections,

indicates a binding between two objects of different kinds. Single lines
indicate explicit bindings or stored denotations.: For instance, a SDW denotes
a page table. Double lines indicate implicit bindinge or correspondances.
For instance, a PVT entry corresponds to a collectidn of disk records and VTOC
entries in the sense that it describes a configured volume that is composed of
these disk records and VIOC entries. The distinction between single and
double lines is purely informative. It hasine-stgnifiCance for the later use
of the figure. The dashed line deserves a;Special comment. A (PVID, VTOCX)
in a directory entry binds that entry to a VIOC entry only on the condition
that the physical volume denoted by. the ‘PVID is mounited, i.e. only if the PVT
maps the PVID into some PVIX. The dashed line stanqs for this condition on
the binding. } ‘

While figure 4.1 is only a summaty Qf‘what was described in this sect;on,i
adds no knowledge to the descriptionﬁof HSS; and nay;seem of 1ittle importance .
now, we will see in the next section of this chapter‘tne intetest it presents |
for deriving a first approximation of a:type structure graph.for MSS.

Organization of NSS.

The purpose -of this section is to try to see a modular decomposition and
a dependency structure in NSS, i.e. to try tc-grcup,the procedures of NSS
around the data bases they manage and see how" they interact.

Since NSS actually is neither modulat nor structured, ve cannot see a
perfectly modulat and structu:ed organizatian where there isfnone. The
organization discussed here is the’one that neat fits the real'organization of
NSS. It will be, the purpose of later parasraphs ‘to. show how the real NSS
differs from the model we try to see here, thereby causing violations of

modularity and structure,

113

volume control LVRD, DT

directory control DIRECTORIES
address space control KSTS
segment control PVT, AST HASH TABLE

VTOCS, AST, DSGS

page control PTWS, FSDCT, CHMAP

traffic control APT

Figure 4.2: best fit model of the organization of NSS.

114

The model that best fits the organization of NSS is given in figure 4.2.
Every line describes one module. For every module, we have indicated a name
and the list of data bases it manages. Every module depends on the modules
below it. The partially ordered dependency structure is thus a total ordering
in the case of NSS.

Volume control manages the LVRD of all logical volumes and the DT. It
implements the operations for creéting, deléiiﬁg; ﬁodntiﬂg and demounting
logical and physical volumes. It also supports the operations for controlling
the use of master directories, although the management of these directories is
obviously done by directory control., leﬁhe controlzdépends on directory
control because LVRD files and the DT are segments stored in the file system
and the concept of a master directory requires the existence of the file
system.

Directory control manages all directories. It implements the operations
for creating and deleting directory entries, and for managing their names and
their access control lists. If'depends on address space control because
directories must be initiated by every user in his own process in order for
the system to be able to address them on the user’s behalf,

Address space control managés KSTs. It iﬁﬁiémenés‘tﬁe operations for
initiating and terminating segments and for handling segment faults and bound
faults. It depends on segment control because handling segment and bound
faults requires activating and connectiné:éegménés.”

Segment control manages the AST and the VIOCs, the PVT, and the DSGs. It
implements the operations for creating, deleting, activating, deactivating,
connecting and disconnecting segments. It also controls the allocation of

disk drives by managing the PVI. It depends on page control because most of

115

its code resides in paged segments.

Page control manages page tables and individual PTWs, the FSDCT and the
CMAP. It implements the page allocation, the page fault and the page removal
algorithms., It depends on traffic controlwﬁecause one cannot afford to keep a
processor idle, waiting in a loop for an 1/0 operation to complete on a page.
fhus, page control depends on traffic control to multiplex processors among
ready processes while other processes wait for I/0 on a page to complete.

finally, traffic control manéges the APT. "It supports the creation,
deletion and scheduling of processes and the multiplexing of processors.

Modularity violations in NSS.

Modularity violations occur when a procedure in one module references a
data base in another module. Such violations are innumerable in NSS. It is
impossible to mention them all here and in addition, it would be uninteresting
to mention them all as most of these violations are benign and could easily be
fixed.

Our purpose here is to pick two illustrative examples of violations of
modularity and to discuss them with respect to the understandability of the
system.

Consider the case of the AST. The AST as a whole is managed by the
segment control module., Yet, page tables are stored in the AST and are
managed by page control. Thus, we have a case of two modules managing one
data base. The problem would not be too bad if each module managed only a
distiﬁct area of the AST. In essence, they would be managing distinct data
bases., Unfortunately, this is not even true. Segment control never touches
PTWs, but page control does touch AST information that belongs in the segment
control module., In particular, for every segment, page control maintains a

"file-modified" switch, a "file-map-modified" switch and a running total of

116

the number of pages that are currently in core. ~These pieces of information .
are used by segment control to deactivate segments., The "modified" switches
are used by segment control to decide wvhether to update the DTM and the file
map of a segment in its VIOC entry when it deactivates it. The number of
pages ‘in core is used by segment control as an approximate measure of the
segment usage rate. This méasure is used to select for deactivation the
segment with the smallest number of pages in core so0 as to minimize the paging
activity that is required to deactivate a segment. The sharing of the AST |
complicates the understanding and the verification ‘of NSS because there is an
implicit interaction between page control and segment. control uver‘daté 1tem$
they share access to. Also, the primary function of ‘page -control is to manage
PTWs but it cannot ignore totally the fact that -pages -are logically grouped
into entities called segments at avhigher'lével. As a result, the interfacg.!
between segment control and page control is very hard to define completely and
correctly.

Second, we would like to mention the case of one procedure uhose,fuﬁciion
is to translate almost any kind of segment identifier into sny‘other~k1nd'and,
to return any segment attribute given any kind of segment idehtifier. Such'a
procedure really cuts across all modules of NSS. It knows about the formats
of directories, KSTs, DSGs and the AST. It’isvnot~a»func:iuna1 abatracgion
that is usable at different levels. It is a cluster of-func;ions‘belohging in
different levels and glued together in one procedure. Understanding such é:"
procedure is extremely awkward as it requires a good deal of knowledge about
several levels of NSS. | |

Structure violations in NSS,

In the rest of this section, we will examine violations of the partial

ordering of the dependency structure in NSS5. :There are only a few instances

117

of such violations. Therefore we will study them all. We study them all
because they all constitute major problem areas in NSS and we want to analyze
them to focus on their solution in MSS.

a. Process loading.

As mentioned earlier, page control depgngg on traffic control to
nmultiplex processors among processes while waiting for I/Oﬂope;ations to
complete on pages. Unfortunately, traffic control also depends on page
contr§1 to load processes. The address space of a process, as materialized by
its DSG, contains SDWs not only for segments the user has initiated and
referenced, but in addition for all system programs, w@ich are thus in every
user address space. (Such programs are of course not accessible in the user
protection environmen;.), In order for a process to run at all, that page_ofv
the DSG which contains the SDWs for system programs must be wired in core.
Otherwise, the process could not handle its page faults and bring in core any
page it references, including the DSG page, since the programs required to
handle page faults are system programs described by SDWs in the DSG page
itself. Thus, prior to switching a p:ocessoffpoiazngw process, the traffic
control module (executed in the old proceas) must invoke the page control
module to "load" (read in and wire the DSG page of) the new process, This
causes a first upward dependency viqlating:;he st;pc;urgfgﬁ,figu;g 4.2, It is
due to an upward call. It is a manifestation of a dependency loop encountered
in many systems betweenxthe:virtuplimemgty?mesban;sm ?Pd,Che processor
mult%glexing mechanism,land=ana1yzedvin}[§gxeng761 apd in [g¢¢d76].

b. Page fault handling., ;
_When a process :eﬁgregges a page pf{a segment ;hapiis not in core, a flgg
in the PIW causes a page fault. As a result, the state of the processor is

saved to record what caused the fault. The processor abandons the user

118

computation and it traps -- within the user process —— to the page control
module of which the function is to bring in the page. Unfortunately, to do
so, page control is dependent upon address space control (and segment control
by transitivity).

Two processes cannot be in page control at the same time., This is to
preserve the consistency of PTWs as a whole. Synchronization is obtained by
using a global page control lock. Every pfocess must test and set that lock
before entering page control code. Unfortuﬁately, there is always a time
window bgtween the moment a process takes a page fault and the moment it sets
the page control lock. Even if the page control lock is not set when a
process P takes a page fault, it may be set by some other proéess Q by the
time P gets a chance to test it. In some rare but possible cases, the
activity of Q in page control may precisely be peftinént to the PTW that P
faulted on. In particular, Q may have entered page control to deactivate or
simply delete the whole page table containing the PTW that P faulted on. As
soon as Q leaves page control, P may set the page control lock and enter page
control., However, to determine what PTW originally caused the fault, P cannot
use the absolute address of the PTW that may have been saved in the processor
state. That absolute address may now denote a PTW in the page table of
another segment or simply a free PTW. Thus, to make sure it finds the correct
PTW, page control must repeat the whole address translation operation that was
originally performed by the processor before it took the fault. This includes
interpreting the segment number to get to the SDW and from there to the page
table. (Of course, if the segment has indeed been deleted or deactivated, the
SDW will be discomnected. At that point, page control mﬁst quit and restore
the processor state, which will cause P to retry the operation and this time

take a segment fault.) The upward dependency of page control on address space

119

control resides in the fact that page control relies on the meaning of segment
numbers and SDWs to get at a faulting PTW. Yet, page control operates at a
very low level, should not know about segment numbers and should not use SDWs
as they are stored in the paged DSG, which makes possible the accumulation of
page faults., This upward dependency corresponds to a violation of the
information level rule mentioned earlier. Debugging has of course shown that
NSS works, but understanding and verifying the system are more complex due to
the above violation.
c. OOPV conditions.

The next upward dependency is due to OOPV conditions mentioned earlier.
When a segment needs to be grown but the physical volume it is on is full, the
segment must be moved to another physical volume prior to being grown. The
overall mechanism for doing so follows. When a user process touches a zero
(null) page of a segment, it causes a page fault. Page control is invoked to
grow the segment. If it discovers an OOPV condition, it posts it in the AST
entry of the segment (this is another violation of modularity) and it invokes
segment control to disconnect the segment” (this constitutes a first upward
dependency). Page control then restores the processor state. The process -
retries referencing the segment and this time takes a segment fault since it
is disconnected. Address space control is entered to process the segment
fault and invokes segment control to reconnect the SDW. Segment control -
eventually discovers that an OOPV condition was posted by page control. It
follows the circular list of threaded PVT entries from the original home
configured volume to the currently least full configured volume within the-
same logical volume and proceeds to move the segment from the original home to
the new one. Finally, the move must be reflected at directory control level

where ‘the (PVID, VIOCX) of the segment must be changed. To do so, segment

120

control reaches up and writes into the directory entry describing the moved
segment, violating both modularity and dependency. Dependency is violated .in
the following way. In order to write into the directory, segment control
obtains the segment number of the directory and the UID of the appropriate
directory entry from the KST. 1In doing so, it relies on address space control
for having stored the right parent directory segment number and the right
entry UID at the right place. Furthermore, a (directory segment number, UID)
pair denotes a directory entry and should be meaningful only at directory
control level, It can be stored at lower levels, but it should remain unused
because it denotes a directory control data base that should, from a type
extension point of view, remain unknown to lower modules according to the
information level rule. By interpreting the pair, segment control becomes
dependent on directory control as it does not know (or should not knéw)
anything about a data base like a directory that belongs in a higher level
module. Notice that a low level module touching a high level data base
results in a violation of modularity on top of which there is a violation of
dependency structure due to violating the information level rule. This was
the case both in the handling of page faults and of OOPV conditions.

d. Access recalculation on segment faults,

The main role of the KST is to bind segment numbers to directory entriés
so that, on a segment fault or a bound fault, one can go to the directory to
recalculate access or reactivate the segment, or to the AST/VIOC to access its
CSL. On a segment fault, address space control uses the (parent segment
number, UID) pair in the KST entry to access the directory entry, obtain the
(PVID,VTOCX) and compute the access mode from the access control list. Since
reading an accesgs control list and extracting from it the desired information

for one process is an expensive operation, the following mechanism is used.

121

The KST is used as a sort of software cache for the access information
residing in‘directory entries. The access information for one process to one
segment resides in the access control list of the directory entry describing
the segment and is stored in a more accessiﬁle and readable form in the
corresponding KST entry. In addition, both the directory entry and the KST

entry contain a date-and-time-entry-was-last-modified (DTEM). On a segment

fault, address space control uses the (directory segment number, UID) pair to
access the directory entry and read its DTEM. If this DTEM is more recent
than the DTEM in the KST entry, access must effectively be. recomputed from the
access control list as it may have changed. (The DTEM.is also updated in the
KST entry). Otherwise, the access information in the KST entry is still up to
date and can readily be used without recomputation. :Address space control
depends on directory control again because of a violation of the information
level rule on top of a violation of modularity. Address space.control should
not touch directories and should'moreover-never use (interpret) a (parent
segment number, UID) pair because, even though it knows about segment numbers,
it,shouid in principle not know what directories are and should not assume
anything about their usage or their management (format).

e. The quota problem.

The implementatiog of the quota mechanism in NSS is the biggest source of
modularity and dependency violations. The quota mechanism invelves every.
module from page control to directory control, In short, the cause of the
problem is the following. Quota cells are organized.into a hierarchy that is .
defined at directory control level; they are stored in the VIOCs and the AST
at segment control level; they are managed at page control level; and
processing page faults that require grpwipg,somg,sggmeng‘requires address

A

space control level information (SDWs) as explained earlier.. Thus, page

122

control depends on address space control to interpret SDWs (see earlier).

Page control also depends on segment control becauseé that is where the quota
cells it manages are stored. And segment control depends on directory control
because it cannot ignore the quota cell hieratchy, which is in fact defined at -
directory control level.,

To understand the above implementation, one must consider the CU
operation. The CU operation is invoked in two cases., First, when a segment
is deactivated or truncated (on a user regquest), the pages that (may) have
become null are deleted, Second, when a user references a null PTW, a page 1s
created, In the above two>situafions thé CRU of the segment changes and
therefore the CU operation must be applied to the quota cells of all superior
directories up to and including the lowest quota difectbry. Unfortunately,
the hardware that supports Multics does not distinguish normal page faults:

from page faults on null PTWs (further referred to as quota faults). Thus,

page control is entered on a quota fault and page control is responsible for
the CU operation. Since two processes must not update a quota cell at the
same time, quota cells must be protected-by some lock. Since the CU operation
is performed under the protection of the page econtrol lock, all other quota
operations must be performed under the protection of the page control lock as
well, This is the argument that was used to justify why page control actually
manages quota cells.

The next question concerns the storage of quota cells, In the original
Multics implementation, quota cells were stored in directories themselves
since each directory has its own quota cell, However, this implementation was
deemed inefficient because updating a- potemtially large set of quota cells on
a CU operation was likely to cause a flurry of'pagé’fauits:oﬁ directories,

which is undesirable while a process is already processing a page fault. In

123

NSS, it was decided to store a quota cell in the VIOC entry of its directory
rather than in the directory itself. And in order to avoid delays due to 1/0
on VIOC entries, it was decided to keep active any directory that has at least
one son active and to copy the quota cell of_an active directory into the AST
entry for the directory. (For this and other reasons, any directory with
active sons was also kept active in the original Multics design so that NSS
did not change that aspect of the implementation of the Multics virtual memory
mechanism.) Thus, when a quota fault is taken on some segment, the quota
cells of all superior directories are guaranteed to be in core and readily
accessible. Since segment control must not arbitrarily deactivate
directories, every AST entry describing a diréctory must contain a count of
the number of segments below that directory that are active. Also, to allow
page control to walk up the quota cell hierarchy on a CU operation, the AST
entry of any segment/directory is threaded to the AST entry for its parent.
Consequently, page control depends on segment control because it uses AST
entry threads that are supplied by segment control and manages quota
information stored in segment control data bases.

. Finally, segment control depends on directory control because, for
various reasons that will not be described here as they lack interest, it may
at times operate on inactive quota cells in VIOC entries. Since these
inactive quota cells are not threaded into a hierarchy as are the active quota
cells in the AST, segment control invokes directory to find out about the
structure of the directory hierarchy.

In addition to being hard to understand, the above design is inefficient
in that it requires many directories to remain active, even though they are
not uéed, when all that needs to be accessible is their quota cell, which

represents only a few words out of each AST entry.

124

f. Program, address space and interpreter dependencies.

Although NSS is not based on type extension, the programs, the address
space and the interpreter of a module should still be implemented in terms of
mechanisms defined at or below the level of the module. Yet, NSS contains
innumerable instances of dependency structure violations resulting from
program, address space and interpreter dependencies.

To name only one such instance, consider the case of the page control
module. The page control module contains certain programs stored into
segments that for obvious reasons need to be petmanentlj‘aCtive and have 2all
their pages wired in core to avoid infinitely recursive page faults.
Unfortunately, there does not exist an abstraction equivalent to a permanently
active, wired down segment. Thus, page control uses regular segments and
assumes that segment control will not deactivate or otherwise damage the PIWs
of these segments. Also, the page control module runs in the user address
space as materialized by a DSG. That DSG should also be a permanently active,
wired down segment. Short of having such objects, the DSG is implemented by a
paged segment, Thus, again, page control trusts segment control not to
deactivate or otherwise damage the DSG it uses to define its address space.
Finally, the page control module depends on processes implemented by the
traffic control module to interpret its code, while the traffic control module
depends on the page control module for loading and unloading (paging in and
out the state of) processes it schedules,

4., Design of MSS. ’ f

|

The objective of this section is to discuss the design{of MSS.
: |

In a first step, we will try to visualize data abstracfions in NSS and

‘ \
after briefly discussing the problems associated with theseﬁabstractions, we
. , . N ,

125

will slightly modify them to yield the type structure graph of MSS. The
transition from NSS to. MSS was a painfully long proéesg in,:eali;y{jwhich we
cannot afford to retrace completely he:e{ Thus, we will not say in detail how
and why we chose to modify the fictitious type structure of NSS the way we did
to arrive at the real type structure graph of MSS. However, by giving a brief
summary of the transition, we hope to communicate to the reader the basic
operations involved in designing a well—organizgd_system that is based on type
extension and we hope to convince the reader that MSS is close enough to NSS
that it could be implemented in pragtice.v

In a second step, we will build the complete dependency graph of MSS. To
do so, as recommended in chapter III, we will take thg type structure graph of
MSS and add to it dependency arcs corresponding to map, program, address space
and interpreter dependencies for gach type manager. We wi;l see that the
graph so constructed is partially ordered.

In a last step, we will look back at the problem areas enq0untered in the
organization of NSS and see how they are no longer problem areas in MSS.
Considering the problem areas last departs from Fhe way we qons;rqc;ed MSS‘inﬁ
reality. In designing MSS, we considered the problems first aqd in trying to
solve them, we progressively arrived at the type struc;ure,graph,and the
dependency graph to be presented at the beginning pf'thisvsection. We have
decided to present the design of MSS first and to discqss Qhe;prpblemg it
solves then for two reasoms. First, some readers might not be interested in
the specific system design problems that MSS;solves{ in which case they may
skip the end of this section without loss of continuity. Second, talking
about the specific problems first and then discussing ghe_orgaqization would
present the risk of distracting the.reader from the importance,of ;he

partially ordered structure of modules.

126.

Development of MSS type structure,

In order to develop the type structure graph for MSS, we want to look at
NSS from a type extension point of view to see if we can distinguish abstract
types in it. Of course, such types cannot be formally stuctured and are
probably not well-defined. But they may provide us with a first cut idea of a

type structure graph for MSS, It will then be possible to formalize those

types and to improve their organization to derive a well formed type structure

graph for MSS.

The basic process for evolving NSS towards a system based on type
extension consists of regarding its data bases as abstract objects and their
interconnections as component relationships. 'We will first associate every
kind of data base in NSS with an abstract type and we will define informally
the semantics of every abstract type. We will then examine the
interconnections between the various kinds of data bases in NSS to see how the
different abstract types are related, i.e. what the type structure graph of
NSS is. We will finally discuss the structure violations found in that type
structure graph and indicate what can be done about them to arrive at a well
structured graph for MSS.

a. Choice of abstractions.

In this section, we associate every kind of data base with an abstract
type and we define informally the semantics and the “raison d”2tre" of that
type. Unless otherwise stated, these semantics will be preserved in MSS. We
are not concerned here about the relation bétween the various abstract types.

Logical volumes represent what the user sees as single ‘(logical) disk
packs and associate these atomic (logical) packs with sets of (physical) disk’
packs and with master directories controlling the use of space on these disk

packs. A logical volume is associated with a LVRD file. A logical volume is

127

named by the path name of its LVRD. It is also Qamed by a LVID tag. However,
this tag only identifieg the logical volumg.. It is_ingqfficignt to retrieve
its LVRD and operate on it, Logical volumes are base leve;, C/D objects.
Logical volumes can be created, deleted, moﬁnted and‘deppunted.k In addition,
it is possible to define master directories for logical volumes.

Physical volumes represent the physical disk packsAthat compose the
logical volume objects defined above, A physical volume is associa;ed with an
entry of the DI. A physical volume is named by its PVID, yhich, thanks to Fhe
DT hash table, denotes the associatgd entry in the DT. Bhysicalﬁvolumes are
C/D objects. (There can be very many entries in the’DI.) They can be
created, deleted, mounted and demountgd, ,The”opergtions degined on physical
volumes are the operations used to implemept‘;he ngratiqgs‘defined on logical
volumes for each of the physical volumes‘that ;omposerghem.

Configured volumes represent disk drives, The allocation of configured
volumes to physical volumes is intended to mo@e;wthe allocation_qf disk drives
to mount disk packs. A configured volume §§_as$ogiated‘with an‘entry of the
PVI. A configured volume is named by its PVIX. Configured volumes are A/F
objects. A configured volume can be allocated to mount a physical volume and
deallocated when the corresponding physical volume is demounted. In addition,
it is possible to search all qllocated“conﬁigp;eg voLgmqs, i.e. all mounted
disk packs, for onme that bearsta given PVID. This operatiqn corresponds to
searching the PVT, as explainéd earlier.

Directories are the places where users catalog files. _Direc;pries are
the nodes of the file system. A directory is namegyky iygnpgphéqgmg.
Directories are base 1evel.-C/D.object_s.g The opg{atiogs defiped on directories
are those defined at the interface of theﬂdirecto;y gqntrqlbmodulewin NSS

(e.g., create, delete, create entry, delete entry, rename entry, set access

128

control‘list, move quota, etc,..). If a directory is initiated in a process,
that process can also name the directory by segment number.

User process objects are the internal representation of users and carry
out inside the system the intentions of the users. The user process concept

is associated with an entry of the APT (later'renamed the User Process Table

(UPT) in MSS). A user process is named by the PLID of its APT entry. User
proceséés are base level C/D objects. (The system supports a limited number
of procésses at a time.) User processes are subject to -synchronization
operations of which one purpose is to multiplex the processors of the system.

A known segment is a slot in the address space of a user process. Every
user process has a finite set of known segments available in his address
space. The user can request the allocation and the deallocation of known
segments but he cannot read or write known segments. Such operations are not
defined on this type of abstraction. The known segment toncept is associated
with a KST entry. ‘A known segment is named by the'ségment'number denoting its
KST entry. (Note that a segment number mﬁst be interpreted with reéspect to
the KST of a specific process. That Speéific process is implicitly defined as
being the one interpreting the segment number.) Known segments are base level
A/F objects. Known segments are allocated/freed in response to a user’s
request to initiate/terminate files. Segmeiit faults and bound faults are
events defined on known segments. (S50 are quota faults in MSS, as will be
seen later,)

The segment abstraction stands for a logical collection of fixed size
physical information containers. A segment is associated with a UHT entry. A
segment is named by a UID. Segments are C/D objects. ~Segments can be
created, deleted, activated and deactivated. ' ‘Segments implement the segments

and directories defined in the file system.

129

A connected segment is also a slot in the address space of a user
process. Every user process has as many connected segments as he has known
segments and they are in a one-to-one,cor:esgondancg. ,The allocation of
connected segments is implicitly controlled by the allocation of known
segments because of this one—to-one;correspondance. Thus, the user cannot
explicitly request the allocation or the deallocation of a connected segment,
However, he can read or write connected segments. The_condected segment
concept is associated with a SDW. A connected segment is named by the segment
number of its SDW. (Note that a.segment number for a conpected segment must
be interpreted with respect to the ﬁSG of a specific process. This specific
process is defined as being the one interpreting the segment number.)
Connected segments are base level A/F objects., 1In additiom to read, write and
execute, two operations defined on connected segments are. connection and
disconnection. They can be invoked only by the system.

The passive segment abstraction stands for the disk image of a segment.

A passive segment is associated with a VIOC entry. A passive‘segment is‘named
by a (UID, PVTX, VTOCX) triple denoting its VIOC entry. Notice that the
(PVIX, VTOCX) pair is sufficient to retrieve the VIOC entry but not to
identify it as corresponding to the right passive segment. The importance of
this remark will become clear soon. Passive segments areﬂA/E objects. One
can read or write their VIOC entry.

The active segment abstraction stands for the image of a segment of which
the page table is in core. An active segment is associated with an AST_egtry.
An active segment is named by its ASTEP. Active segments are A/F objects.

One can read or write their associated AST entry and cause their CSL, MSL,
CRU, DTM and DIU attributes to be updated. Notice that in MSS some active

segments are not the image of any segment. They are stand-alone objects used

130 .

by the system. Such active segments are not components or subcomponents of
any segment, known segment or directory. Segment, bound ‘and quota faults are
not defined on them. They cannot be deactivated (deallocated) because the
segment managér, which multiplexes active segments among passive segment and
implements the segment deactivation algorithm, is unaware of them and has no
ASTEP to name them;

The page frame abstraction stands for a block of contiguous words of
storage. A page frame is associated with a PIW. A page frame is named by the
absolute address of its PTW. Page frames are A/F objects., One can read or
write the PTW of a page frame. Page faults-are events defined on page frames.
We will see in MSS that PTWs are no longer stored in the AST. Instead, they
are stored in a separate table called the Page Frame Table (PFT). The PFT is
an array'of'PTWs; The concept of a segment as a logical collection of page
frames is totally lost at this level. All the page frame manager knows about
is a page table, i.e. a collection of page frames with sequential names (the
absolute addresses of their PTWs). It can allocate and free page frames with
sequential names. It can inspect several page frames at a time given the name
of the first one (PTA) and the number of page frames to be inspected (CSL) but
it never knows what segment a page frame is part of. -

The concept of a disk record is associated with a block of storage on
disk and one bit in the FSDCT. A disk record is named by its disk address.
Disk records are bottom level A/F objects. They can be allocated, freed, read
and written,

The concept of a core block is associated with a block of storage in core
and one entry of the CMAP. A core block is denoted by its core address. Core
blocks are bottom level A/F objects, They can be allocated, freed, read and

written.

131

b. Type structure of NSS.

We now turn our attention to the relation between abstractions in NSS.
In other words, we want to find out what a type structure graph for NSS wguld
be.

We will say that a data base A is bound to a data base B if A contains a
name denoting B. The basic technique for conmstructing the type structure
graph of NSS consists of saying that if a data base A is bound to a data base
B then a procedqre-operating on A may follow.the binding from A to B and
request that some operation be perfqrmed on B. Thus, the abstraction
associated with B should be regarded as a component of the abstraction
associated with A since operations on A may eventually affect B when the
binding is followed to it.

In fact, not all bindings should be viewed as component relationships.

Consider a data base A that is bound to a data base .B.

The binding between A and B can fulfill one of two mutually exclusive roles.

First, it may be there so that the programs managing A may find B and invoke
the programs managing B to perform. some Qperatioq,gqu,: In type extension
terms, this means that the management of A may, on occasiqns,‘require
operating on B. The binding exist to record the name oﬁ the specific object
(B) that should be operated on as part of operating on A. _ The type manager of
A may use this binding to request the type manager of B to:ope:ate on B. In
other words, B is a component of A. A bindiqg pf thig first kind will be
called an interpreted binding. Second, the binding may be stored in A by the
programs managing ‘A only to record some association between A and B (not a

component relationship) but not to ever operate on B. In type extension

132

terms, either the type manager for A does not care at all about this binding
and the binding is stored there on behalf of some othér module, or the type
manager for A cares about the binding only insofar as it establishes a
relation between A and B but not a component relation, This latter case would
be indicated by the fact that the type manager for A never needs to invoke the
type manager for B to operatée on B because’ it cares about B only as an object
somehow related to A but not as a component of A. A binding that does not

correspond to a component relationship will be called an uninterpreted

binding. Examples of interpreted and uninterpreted bindings in a real system
will be discussed soon.

Thus, when considering a binding between two data bases in NSS, we must
wonder whether the binding is interpreted or not by the programs managing the
type of data base at the origin of the binding.

In order to develop a fictitfous type structure graph for NSS, we
consider figure 4.1, which shows all the data bases in NSS and summarizes all
the bindings between them. We regard every kind of data base represented in
that figure as corresponding to one of the 'abstract dita types defined above.
And we wmust carefully review every binding between any two data bases to
decide whether it is interpreted or not. The result of this process is shown
in figure 4.3, Every box stands for an abstraét type and every (solid) arc
for a component relationship. We cannot afford td'jﬁstify here every
component relationship in figure 4.3. From the description of the mechanical
operation of NSS, the reader may, if he cares, verify that every component
relationsﬁip indeed'édrreSponds to an interpreted binding. HNowever, we will
discuss here the uninterpreted bindings of figure 4.1 that are represented by
dashed lines in figure 4.3 and are not component relationships.

First of all, a comment is necessary to interpret the abstractiocn marked

133

AR !

. ical volumes},'
N

,Rrocesses
PT

P | all LVRD .
7
g
e ' Q1Y
// N
7 \\)
P physical volumes directories .
P # DT all directories
Vd . /) i .
2y @Y (8)
7
£ pam]
configured volumes X segments kriown segments
PVT - UHT KSTs . .
: &1
(el |
N
assi "‘],, [GeEn | . LL d
assive segments lactive segments JJconnected segments
STOCS : ‘ AST _ DSGs

N

g%§e frames
| T
4" (5%) 1(5)
']
' 1

disk records JQ___ _|core blocks

Figure 4.3: fictitious type structure for NSS.

X, This abstraction maps the (PVID, VTOCX) éto;ad in a directory entry to the
(PVTX, VTOCX) necessary to access a VTOC_ent;y; 7in reality, it maps a PVID
into a PVIX. This mapping is determined by the DT aﬁd,guplicated in the PVT.
As expressed in figure 4.1, this mapping is qogditional on the physical volume
with the given PVID being mounted, i.e. on the PVID being{bognd to some PVTX.
Thus, abstraction X implements a mapping thaﬁ alfeady efotéjin the PVT. As
will be seen in MSS, abstraction X 1s‘merged with the éé@pgnt abstraction. A
segment will be named by a (UID, PVID, VTOCX’ E}iple. EQéiiﬂbime the segment
‘manager is invoked to operate on a segment denoted by such a triple, it first
uses the UID alone in the hope that the segment“isvactive and will Be found in
the UHT. If this search fails, it invokes a primitive df the configured
volume manager to examiné'all cogfigured volumes and seé if any corresponds to
the physical volume with the given PVID. If-such a ccﬁfigured volume'is |
.found, its PVIX is retiarned, The segment manhgét then uses the (PVTX;'VTOCX)
it now has to request operations on the corresponding passive segment. In
other w0rds, the segment manager is dependent on the configured volume manager
to map a segmént into its passive component becausé the‘mapping relatioﬁ is
stored in the PVT that is maintained by the configured volu@e manager. This
will later appear as an appropriate map dependehe&. It is ndt the
‘responsibility of the segment manéger to guarantee against the loss of its
ubjects, Igs only responsibility is fg;gqarantee that tbe‘integrity of its
objects is always preserved even if they arevlost; Notice that losses can be
recovered from if the higher level mechanisms that cause them care to correct
them and retrieve the lost objects.
Now, consider arcs (1), (2) and (3) of figure 4.3. They are all

uninterpreted bindings for the same reason; they are never used by any

135

program to operate on the target objecté they,deno;e. Arc (1) is the LVID tag
of a directpry. As mentioged earlier, it is never used to operate on the
logical volume it denotes. It is used as a sort of color tag that the
directory manager wants to be common to all segments in a directory. The
directory manager does not care about what logical volumg it denotes."In
fact, it does not care about what logical volumes are. bAll it knows is that
every directory has a color tag and that to créate a segment in ; directory,
it is necessary to match that tég with a similar ﬁag in ﬁhe'PVT entry of the
configured volume on which the segment is created. 1In the PVT, arc (2) stands
for this matching tag. Again, it is an uninte:p;eted binding. Inrfgct, it is
the inverse of a component relationship. The configpred segment manager does
not care about what logical volumes are. It only knows that eve;ylgonfigured
volume bears a LVID color tag and that all configured vqlumes Vith the same
tag are threaded in a circular list. The»same sort of_a;gument{could be made
for arc (3), which stands for the PVID tag of a configured volume, yet anofher
sort of color tag used to retrieve passive seéments as egpressed in the’
previous paragraph. |

One might believe that, in MSS, the direc;ory manager gnd the segment
manager would depend on‘the meaning of color tags #hét ére really determined
at the physical volume and logical volume levels. This is ﬁot the case., The
directory manager and the segment manager use the tags toigroup segménts\into
dirgq;ories and‘paggs into segments respecgiyely? Thus,‘tags provide a
strategy for physically organizing, quring andrte;riejing inférmation.
However, the directory and segment managers dg not depénq on them to guarantee
the integrity of the logical objects they ﬁanage begause>tbe ultimate»item
that associates directory entries to segments and to VIOC entries is a UID.

UIDs are not sufficient to retrieve segments but they are sufficent to

136

identify them. Thus, if tags got mixed up somehow by the logical or the
physical volume manager, the segment manager would not be able to retrieve its
segments. However, it would never daﬁagertheh accidentally thanks to the
ultimate integrity check provided by UIDs. Consequently, the segment manager
could signal discrepaﬁéies in the aséociatioﬁs of color ‘tags it sees with
respect to associations it previously saw. But as soon as théserdiSCrepancies
would be fixed, for inétance,}bytsalvaginé'some'LVRD or the DT, the segment
manager would recover its full capacity and no éeéﬁehtﬁﬁbﬁld have been damaged
or lost in the meantime. UIDs eséentialiy‘constiiuté é pfdtectién mechanism
that prevents thersegmeht manager>from suffering'ffoﬁimalfuhctions in the
logical Orhphysical volume ﬁaﬁagers. The‘éémzﬂflés Jfﬁfﬁéigegment méﬁégér
guaranfee the integfityrof aii’segﬁéntszﬁﬁfndé not gﬂérénteé‘iﬁat all segments
can always be accessed. This latter'brdpéffyxﬁéy”bé lmboéed:éhd verified only
at the level of the logical volume manager.

Now consider arcs (4) and (5). These bindiﬂés are used by the page
removal algorithm, as explained earlier. Since the ﬁurpose of this algorithm
is to throw pages out of core when necessary, which requireé'ﬁahipblhting'thé
PTWs that represent the pages, the'algorithﬁ;ié part‘bf what should be called
the page frame manager. (4) and (5) are stored in CMAP entries by'the core
bléck manager only on behalf of the pagé'feﬁoVélnalggfifhm;'”Tﬁe‘éére block
manégéfuﬁevér uses these Bindings tozépérafe’on-PTWsrar on disk records. (4)
is only a Qay to save the address of the home of a ﬁggé (ﬁ’f while thé‘ﬁégé'is
in core. (5) is oniy the inverse Sf-théfcéﬁpdhéﬁiAfélatiénéﬁipq(5').

While arcs (6) éiéarly>establisﬁyan:idéntié§ between segment numbers of
KST entries éﬁdbéegﬁent'numbefs of SDWs, they;ére not’ component relatfonships.
While oﬁerating on a KST entry with segment ﬁﬁﬁﬁéf'ﬁf\gﬁéﬂiST management

programs never invoke the DSG managémeni pfdgiéﬁé to opefaté”dﬁ:tﬁe SDW with

137

number N, Conversely, while operating on an SDW with number N, the DSG.
management programs never depend on the KST management programs to operate on
the KST entry with number N.

We now have a fictitious type structure graph for NSS. It is fictitious
in the sense that NSS does not really respect any type extension formalism and
the type structure graph is not well structured. The partial ordering of
abstract types.is violated in two places, First, an AST entry is composed of
a collection of PTWs but its is also possible to get to an AST entry (7) from
any of its PTWs, to operate on it. This is indeed what the paging mechanism
does to maintain for every segment a '"file-modified" switch, a
"file-map-modified" switch and.a number of pages in core, as described
earlier. Second, there is a loop of component relationships.between
directories, processes and known segments. - |
c. Type structure of MSS.

To construct the type structure graph of MSS by evolving that of NSS, we
consider figure 4.3.

We first consider the dashed lines. Lines (1), (2), (3) and (6) can be
discarded as no module ever interprets them as component relationships. Line
(5) can be discarded as it is interpreted by the page frame manager, as the
inverse of a component relationship represented by line (5°). Line (4) can be
discarded as it is interpreted by the page frame manager, as a component
relationship already represented by line (4°). We then remove line (7) as it
violates partial ordering. This is to say that it is now impossible to go
from a PIW to the containing AST entry. In other words, PTWs are now stored
in a separate table, the PFEF, as announced earlier. We also remove line (8)
for the same reason. This is to say that it is now impgssible to go,ﬁrom,ab

KST entry to the corresponding directory:-entry, jln other words, the known

138

segment manager will not be allowed to invoke the directory manager to operate
on a directory entry or to extract information from it. The impact of the
blunt deletion of the two lines mentioned above will be studied- later.
Finally, we merge abstraction X with the segment abstraction, as explained
earlier. The result of this evolution process is shown in figure 4.4, which
shows the complete type structure graph of MSS., The names of the data bases
under certain abstract typeées denote the data base(s) managed within the type
managers for the corresponding types. ~As we proceed, we will see that these
data bases really implement the maps of the objects of the corresponding
abstract types.

The informal semantics of abstract types defined in NSS are preserved in
MSS. Some new abstract types are defined in figure 4.4. Their purpose will
be justified and their semantics will be gtven“iatefgfas we examine the
problem areas in NSS and take care of them in MSS, The details of the
mechanical sequence of operations for handling such events as. page faults,
quota faults, OOPV conditions, bound faults and segment faults will also be
given in the third part of this section on MSS, as we discuss how MSS handles
situations that caused problems in NSS. Notice that two component
relationships have been slightly moved in figure:-4.4. ‘A UHT entry rather than
the AST entry it points at is designed to contain-the trailer list of an .
active segment and the (PVIX, VIOCX) denoting the home of the segment. These
bindings have been moved from the AST to the UHT because they will yield
component dependenciés that would conflict with the partial ordering of the
dépendency graph of MSS if they were not moved. (Specifically, they would
conflict with map dependencies to be described later.)

MSS dependency structure,

A basic dependency graph for MSS is given in figure 4.5. This graph

139

ov1

b —

physical volumes
DT .

onfigured volumes
VT

quota cells se%ments
UH

CT

disk sectors

| 3

agsive segments active segments

TOCs AST

|

g%%e frames

directories
Segments

s

A BusLy

disk records ore blocks

core segments

Figure 4.4: MSS type structure graph.

derlined: bagse level
ﬁEEEEEEEEB' C/D

|

: A/F

T

fWirtual
processor

I8 A

Di1
directorie

Figure 4.5: MSS component dependencies.

contains only the component dependencies that are derived directly from the
type structure of figure 4.4 by drawing ore type manager for each abstract
type and- one component dependency for each compongntA;elgtiqnship. Eachvnode‘
gives the name of the internal data base(s);pf the type manager.

a. Map dependencies.

The dependency graph of figure 4.5 shgws only\cpmponent dependencies, _We
are now concerned with adding to that graph dependencies due to the
implementation of the maps of objects of each abstract type. We must deéign
the system so that none of the map dependencies to bg_in;roducgd cause a
dependency loop with any of the component dependenqies»that we already have

_drawn.

The map of a logical volume is in its LVRD, whigh binds the logical
volume to a collection of physical volumes and of master direc;oriesf The
LVRD is implemented by a segment that is cagaloged,in»gome directory. AThqs,
to implement maps of logical volumes, the logical‘volqme manager is dependent
on the directory manager.

. The map of a physical volume is stored,in a DT entry, whigh binds the
physical volume to a configured volume if it is mountgﬁ,; The DT is also
implemented by a segment that is ca;gloged_#p some.dipgctory so it can be
backed up like all files of the file systemﬁby a mgghanism (not described
here) operating above the virtual memory meghagigm, which periodically Qrderg
copies of every recently modified file tqv§g_made on a tape. Thus, to
implement maps of physical volumes, the physical quugefyggqggridependsronVthe
directory manager. |

O0f course, LVRD segments and the DT musp'be‘stored on’therroot logical

volume to be on-line at all times. The root logical volume is guaranteed to

142

be on-line at all times by the configured volume manager. Each configured
volume corresponding to a physical volume of the root logical volume is marked
with a special "root" tag that is set at system initialization and prevénts
that volume from being demounted even ifbthe logical volume manager or the
physical volume manager accidentally requested that it be demounted.

The map of a configured volume is in an entry of the PVT, which specifies
what portion of the configured volume constitutes the disk record pool and
what portion constitutes the disk sector pool (see later). The PVT is
implemented by a core segment. thus, the configured volume manager depends on
the core segment manager for implementing maps of configured volumes.

A core segment is a new type of segment that is introduced now for the
first time but will often be needed later at places where NSS used permanently
active, wired down segments. A core segment is an unpaged collection of
contiguous words in core. Core segments are core reéident information
containers. They reside in a portion of core that is determined as the system
is initialized and is distinct from the portion of core used by core blocks.
Core segments are used exclusively by system modules, as will be seen. They
are defined and initialized when the system is brought up. They are never
allocated or freed thereafter. They are fixed size information containers.
The only operaﬁions defiﬁed on core segments are READ, WRITE, and EXECUIE,

The core segment manager is implemented entirely by hardware operations, Core
segments are named by their absolute core address. They-caﬁvbe addressed in
hardware by SDWs of which a dedicated bit indicates that the field normally
containing a PTA denotes the base of the segment itself rather than the base
of its page table.

The map of a directory is the data base that binds the directory to the

set of (UID, PVID, VIOCX) triples of the segments described in the directory

143

and to the set of PLIDs of the users allowed to access these segments. This
data base is the segment containing the diregtory entries, Thus, the
directory manager depends on the segment manager for implgmen;ing directory
maps.,

The map of a user process is its UPT entry. A UPT entry occasionally
binds a user process to a virtual processor (see;later). It also binds the
user process to a collection of known segments and to a collection of
connected segments. (In fact, it binds the_usgr process to the,image{of a
DBR, i.e. to a DSG. Thus, it indirectlyrbinds the user process to a set of
SDWs and to a set of KST entries. A user process is indirectly bound to a KST
because every DSG contains a SDW with a conventional, fixed segment number
that denotes the KST of the correspondigg pfoqegs."TPere is no reason to
regard DSGs and KSTs as abstractions maintained sepa;atg%y,frqm conneqtgd,vx
segments and known segments because the management of such tables is coppgrned
solely with management of SDWs and KST entries respeg;ively. In consequence,
figure 4.5, which maps user processeé directly into known segments and
connected segments is a simplified view of the reality but it is absolutely
correct: user processes are bound (indirectly and imp}igitly) to sets of
known segments and connected segments.) The UPT is implemen;ed by an active
segment. Thus, the user process manager depends on the ac;Lve segment manager
for implementing maps of user processes. An active segment is not cataloged
in the file system, which means that it has no secondary storage home and
vanishes when the system is brought down, This poses pq_problem because, when
the system is shut down, all user processes are deleted and the UPI‘is empty
anyway.

The map of a known segment is contained in a KSI‘entfy, which bipds the

known segment to a segment UID. (In fact, we will see later that a KST entry

144

binds the known segment to the (UID, PVID, VTOCX) triple of a segment.) A KST
is a connected segment that should never be disconnected because the operation
of connecting a segment requires the presence of a connected KST. Thus, the
known segment manager depends on the connected segment manager for
implementing the maps of known segmenté.

The map of a connected segment is its SDW. The DSG containing the SDW is
also a connected'segment that may never be disconnected for the same reasons
as the KST. -Thus, the connected segment managef'dépéﬁds on itself to
implement the maps for connected segments. Although this unquestionably
constitutes a dependency loop, this loop does not pose a conceptual problem,
as explained below.

In reality, a permanently connected segment should be regarded as an
abstract type different from‘other connected segments on which segment faults
can be taken, Then, thefe would be no dependency of the connected segment -
manager on itself. Furthermore, the type checking mechanism could disfiﬁguiSh
permanently connected segments from other connected segments, which is
important since the system will operate correctly only if it can be verified
that KSTs and DSGs are never disconnected. While regarding permanently
connected segments as an abstract type different from connected segments is
the only rigorously correct approach to-type extension, we have taken the
liberty to depart from such strict formalism for two reasons. First,
permanently connected segments arekﬁery'muéﬁ 1ike connected segments and by
slightly modifying the connected segment manager; it can also support
permanently connected segments. Second; there need be only three permanently
connected segments per process., Therefore, it is easy to declare and build
intb the type checking mechanism that three $DWs with identical, fixed segment

numbers in each DSG are dedicated to implementing permanently connected

145

segmenés. The connected segment manager may bg_codnggq never disconnect
these segments even if it were accidentally requested to do so. And the type
checking mechanism may recognize theﬁthrge;fixed segment numbers as denotingt
the equivalent of permanently connected segments. - In essence, when a user
process is created, the user process manager invokes an initialization
primitive of the connected segment manager. This primitive first invokes the
active segment manager to allocate and build three active segments with given
lengths (CSL). It then manufactures three SDWs for these segments. It stores
the three SDWs in one of the. three activgggqgments.,tp bggome the DSG, at a
location corresponding to the three reserved segment numbers. It finally
returns an image of the SDW for the DSG to the user process manager. Ihat_
image binds the process to its DSG and implicitly to its KST and will serve to
load the DBR of a processor every time the process 1$1$§h¢dQled-

The map of a segment is constitu;edlpart}y by a UHT entry, which binds
the segment to its active component, if any, and partly by ipformatiqn
embedded in the PVT, ﬁhich binds the PVID tag of_theﬁsegment to a PVIX tag.
The UHT is implemented as an active segment. Thus, the segment manager
depends on the active segment manager and on the configu;ed volume manager for
mapping segments into their components, L

The map of a passive segment is its file map in its VIOC entry. (In
fact, it is the whole VIOC entry if one comnsiders that the sto;age,atﬁributes
of the segment (DTU, DIM, etC...) tha; teside ig the yIOClentry are what we
called in chapter IT the smali cégpqnggts of thg Segment and are stored
together.with.the map.) A VIOC is impLemented by,disg sgqtors; '&ﬁus, the
passive segment manager depends on the disk sector manager to implemenc*the
maps of passive segments.

. Although thQWCOQCGPt of a disk sector already existed in NSS, it was not

146

recognized as an independent data type. Disk sectors were managed by the page

control module. Every disk is divided info:a'paging'ione and a cataloging
zone, as explained earlier. The paging zone is the disk record pool. The
cataloging zone, i.e. the VTOC;“is'thé dtskjééétorliﬁdl.” Disk sectors are
containers smaller than disk records. A VTOC entry 15 implemented by three
disk sectors that are contiguous. Since disk Sectors are used solely to
implement VTOC entries, there is no need to keep track of their A/F status.

It is implicitly determined by the A/F status of the corresponding VIOC eatry.
All the disk sector manager does is READ and WRITE disk sectors and configure
them when told to by the configured volume manager. Configuring disk sectbrs
consists only in remembering how many sectors are associated with a given PVTX
tag.

The map of an active segment is its AST ehlry, which contains the small
" components of the segment and binds it to a collection of page frames (PTA,
CSL). The AST must be a core segment Because the active segment ﬁanager would
depend on itself if the AST were an active segmentrthat had to be maintained
permanently active,

The map of a page frame is its PTW. PTWs are collected in the PFT, which
must bé a core segment because the page frame manager'may not take a page
fault on the table it maintains to handle page faults.

Disk sectors, disk records, core blocks and core segments are bottom

level objects and have no map. The quota cell table (QCT) and the virtual

processor table (VPT), which serve to store the ﬁaps of quota cells and

virtual processors respectively, will be discussed later. Let us say for now
that the QCT is an active segment and the VPT a core segment.
b. Program dependencies.

Program dependencies are those that make any type manager depéndeﬁt on

147

one or more other type managers for storing»the procedures and data bases that
implement it. By examining thekimplementatipn of maps, we havg answgred‘the
question of the implementation of every data base in figure 4.5 except the
CMAP and the FSDCT. Since these tables are usedvbelgw the 1eye1 of the paging
mechanism, they must be core resident. ?hus,rthey are core segments.

We must now discuss the implementation»of the prpcedures and the working
storage for each type manager. In Multics, the working storage is constituted
by an Algol-like push-down stack for storing the local variables and thg]
argument lists of pending procedure invocations.

For the implementation of procedures in MSS, one must gonsider two
environments of executiqn, the core :esident environmen;tgné the_paged,‘
permanently active (paged for short) environment. The core resident
environment is implemented entirely by core segments and the paged epvironment
is implementeduentirely by active segments, These gc;ivg segments are in
practice permanently active because the segment deactivatiop algorithm, which
operates in the segment manager, can only dgactivate (i.g.»request'the
deallocation of) active seéments that are components of segments. It does not
see and cannot operate on any other active segment becgusg it:does not have
any ASTEPs to name them.

Thg core segment manager is implemented entirely by hardware operations.
Thus, it is in neither the resident nor the paged environment. It is in a
hardware environment below both. The core residentkenvirpnment,comprises‘the‘
disk sector manager, the disk recofd mapage;,ktbe active segment manager, the
page framg manager, the core block maﬁage; and the yir;ugl processor manager.
All other type managers are iq the paged environment.

The’active segment manager must exeqqte in the paged envifonmgpt becguse

it would depend on itself if it executed in the other. The page frame

148

manager, the core block manager and the disk record manager must execute in
the resident enviromnment because they impieﬁéht the mechanism for supporting
non-core resident information containers and cannot depénd-bﬁ'this mechanism,
The disk sector manager executes in the resident enviromment for/efficiency
only to avoid taking page faults when'READiﬁg or WRITing a disk sector. The
virtual processor manager executes in the residéﬁt enviromment by construction
(see later). All other type managers can safely 6perate in the paged
enviromment,

Now consider the implementation of stacks. The type‘managers executing
in the core resident environment obviously require a core resident stack. The
implication of this statement is that any procedure in the paged enviromment
that calls a procedure in the resident enviromment husf’pass its arguments to
the called procedure'on the core resident stack. This is'aApracticai
consequence of the information level rule. Since the resident'en§ir0nment
knows only about core segments, it’tannot'accept‘érguménts'that are not in a
core segment, This constraint is ehforcedrby the typé cheéking mechaniéﬁ,
which will refuse to compile a type manager that pasSes”nbn—resident éiguméhté
to a resident type manager. |

A priori, one resident stack per user process can be used to pile the
pending i;vocations of all resident type managers in that'process. This stack
must be stored in a core segment that is of a size sufficient to hold the
deepest pile of pending invocations that can poSsiBl§'occur along any
computation path through the resident type managers. NSS embodies a similar
design coanstraint in that the resident part of the'system (traffic control and
page control) must use a special stack that is stbred‘iﬁ‘a core resident
(éctually permanently active and ndn¥pagéab1e) ségﬁeut.A Inrféct; in NSS,

there need not be one such stack for each process that can execute resident

149

code because, by design, only one process at a time can execute in traffic
control and one in page control. 1In: practice, there is one such stack for
each physical processor, ' Even though only‘;wo'processars may be executing
resident code (ome in traffie control and ome in page control) at the same
time, every processor needs its own stack because, while two processors are
executing resident code, all others might be waiting (e.g. on the traffic
control lock) in an idle loop to start executing that resident code and while
doing so need to store.the arguments that will be passed to the resident code.
as soon -as it is entered. Thus, we recommend an analogous design for MSS,
where traffic control is to be read as the virtual processor: manager (see
further) and page control is to be read as,the,othetvresidentgiype,managers.

"The implementation of a stack for the paged enviromment is somewhat more
tricky. Whatever the type of that stack is, every argument passed from the
user enviromment into the paged environment must be stored into the stack for
the paged eavironment. A type manager (e.g., the connetted segment manager)
of the paged environment cannot access an argument stored in a random segment
because that segment may be of a type defined at a higher level (e.g. known
segment). This is again an information level problem. But this time, the
user who passes the argument is not subject to the compile-time type checking
mechanism that the system programs are subjeet to. Thus; it may in effect
pass an argument stored 'in a random segment., Consequently, at the user
interface but inside the paged (type checked) enviromment, there must eéxist
conversion routines that accept user supplied :arguments stored 1n.any type of
segment and copy them into the paged stack. The need-fo;‘such routines was
not felt in the early days: of Multics .and many system preoblems (including
crashes) resulted from the absence of such routines.

A priori, one would be tempted to implement one: paged stack per user

150

process with an active segment having a number of pages (CSL) sufficient to
hold the deepest possible pile of invocations in that process along any
computation path through the paged enviromment. In fact, it is necessary that
the per process stack be a (permanently) active segment. - However, this is not.
sufficient., The stack under concern is used, among other cases, while
handling segment faults. Thus, a process must never take a segment fault on
its paged stack to avoid infinitely recursive segment faults. In other words,
the paged stack must be implemented by a permanently connected segment (that
is itself implemented by a permanently active segment). With the DSG and the
KST, the paged stack of a process is the third and last permanently connected
segment needed in every process.. The obvious question to ask now is: why do
we explicitly state that the stack is a permanently connected segment while we
do not explicitly state that the procedures of the known segment manager,
which handles segment faults, are permanently comnected? . The answer to this
question will become clear in the next paragraphs. In short, two kinds of
address spaces are defined: per process address spaces and per processor
address spaces. Since all user processes share the same stored procedures to
- implement the paged type managers, SDWs. for such procedures may be stored in
per processor address spaces, which contain only permanently counected SDWs,
as will be seen. Thus, the procedures of all paged type managers are de facto
permanently connected. However, the working storage of. the paged environment
cannot be shared by all user processes like the procedures are. Every process
may be doing its own computation in the paged enviromment at a given time.
Thus, the SDWs for the paged stacks may not be stored in per.processor address
spaces because a per processor address space is shared by all the processes
that at one time or another get to execute on the corresponding processor,. -

SDWs for paged stacks must therefore be stored in per process address spaces,

151

i.e. in what we have called so far DSGs. We explicitly ipnsist: that SDWs for -
paged stacks be permanently conmected because SPWs in user DSGs normally are
not.

c. Address space dependencies.

This fourth kind of dependency is due to the implementation of the
address space of a type manager. . In NSS, the address space is implemented on
a per process basis. The address space of a user-processﬁis~defined by a DSG.
Because DSGs are permanently connected segments in’ﬁSS,;ataleast all type
managers below the connected segment manager cannot use a DSG as the
realization of their address space. This is example of a situation where the
dependency graph suggests that the N§S-désign is inadequate and another
abstraction (namely core segments) must be used to implemeat the address space
that part -of the virtual memory mechanism will be executing in.

To achieve a proper design for MSS, we recommend the. following hardware
architecture. Rather than usiag onlywone'DBR-anA,consequentiy one DSG .while
it executes, a processor should use two DBRs, DBRO. and DBR1l, defiming
essentially two domains of execution. Any segment number below a fixed
boundary is interpreted.by the hardware as an index denoting.a SDW in the DSG
denoted by DBRQ. The value of the fixed boundary is subtracted from any
segment number superior or equal to it and the result is used as an index
denoting a SDW in the DSG denoted by DBRl. :The DBR1 is similar to the DBR in
NSS. It denotes a DSG that is a permanently connected: segment and contains
the map of all connected segments. It is used to address:all segments that-
may be connected, the paged stack, the KST and the DSG-itself within the
running process. The DBRO is not a per process DBR but a per processor DBR

that denotes a core descriptor segment (CDPSG) . implemented by.a core segment.

The CDSG is a repository for the. SDWs of all the active and core segments

152

implementing all system procedures, data 'bases and maps, except the paged
stack, the KST and the DSG of every process, precisely because there is one of
each per process and their SDWs cannot bg stored in per processor CDSGs. One
CDSG is defined and initialized for each processor. It contains the SDW for
the core stack of the corresponding processor. -The use of 'a per processor
CDSG eliminates the need to load and unload processes in MSS. Indeed, SDWs
for the core segments implementing the active,sagmentvménager and lower level
type managers are in the CDSG that is a core resident segment and never needs
to be loaded and unloaded.

d. Interpreter dependencies.

Every type manager of the virtual memory mechanism has to depend on an-
abstract code interpreter to execute its procedures.. On the other hand,
modules implementing abstract code interpreters (virtual processor type
managers) must depend on some virtual memory type managers to: implement their
maps, programs and address spaces, Oné must therefore pay attention not to
introduce any dependency loop in the system by making a type manager P
implementing a abstract code interpreter depend on a type manager M
implemehting an abstract information container and at the same time making M
dependent on P to implement its code interpreter.

This dependency loop between the virtual memory and virtual processor
mecianisms is present in most existing systems in one form or another. 1In
NSS, it is manifested among other instances by the loop between traffic
control and page control, where page control depends on traffic control to do
processor multiplexing while traffic control depends on page control to load
and unload processes. ’

Solutions are proposed to solve the problem of mutual dependency between

the virtual memory and virtual processor méchanisms both in [Saxena76] and in

153

{Reed76]. The two solutions are very similar in nature. They consist of
interleaving layers of the virtual memory amd virtual processor mechanisms.
Reed”s solution is interesting because it implicitly uses a type extension
concept very similar to ours to implement abstract code interpreters in two
layers (see figure 4.5). The top layer implements user processes as we have
defined them in the description of NSS. The bottom layer implements virtual
processors. User processes are implemented in terms of virtual processors and
virtual processors are implemented in terms of physical process;£s (not
represented in figure 4.5 because they are implemented in hardware, enti;ely
below the virtual memory mechanism described by the figure). The virtual
processor. manager multiplexes physical processors among. virtual processors.
The usef process manager multiplexes virtual processors among user processes.
User processes are bound to virtual processors at the request of the
scheduler, which is a piece of the user process manager that executes in a
dedicated (permanently allocated) virtual processor. ,A‘useerroéess is
unbound from its wvirtual processor.component whenever that component "finishes
its current task', i.e. when it goes blocked, waiting for a user generated
event.

The dependency loop between the virtual memory and virtual processor
mechanisms is avoided in the following way.. The user process manager freely
takes advantage of virtual memory facilities.. However, no virtual memory type
‘manager depends on it to interpret its code. Virtual memory type managers.can
be entered only-as a result pf user initiated calls or as a result of taking a
processor exception that always leads to either handling the exception and
restoring the processor state or aborting the computation and signalling an
error to the user. Thus, while executing in the virtual memory mechanism, a

user process may temporarily lose its physical processor subcomponent (e.g.,

154

while waiting for paging 1/0). However, it will never loose its virtual
processor component as all computation paths in:the virtual memory mechanism
are finite and ultimately return control to user modules without ever putting
themselves in a situation of waiting for a-uber generated event. . In addition,
the user process manager could not accidentally unbind a. user process from its
virtual processor component while the latter executes system code because the
virtual processor manager refuses to deallocate (unbind) amy virtual processor
of which the instruction register currently poimts to a SDW in the CDSG,
thereby indicating that it is executing system code. Thus,.virtual memory-
type managers depend on the yirtual processor manager to interpret their code
and not on the user process manager. In turn, the virtual processor manager
depends only on the core segment manager to implement its maps, programs and
address space, i.e. it is entirely core resident. (As explained earlier, the
core segment manager does not depend on the virtual proceséor manager to
interpret its code because it is implemented .eatirely in hhrdware; ‘Thus, the
core segment manager depends only on hardware. processors, which in turn do not
depend on anything because they are bottom level objects.)

With these last dependencies, we have a complete list of the dependencies
in MSS. Figure 4.6 represents the dependency graph of MSS. The line cutting
across the figure separates the paged environment from the resident
environment. Every box represents a type manager. Solid lines represent
component dependencies. Dashed lines represent map dependencies. Certain map
and all program, address space and 1nterpreter'dépendenciesgare,omitted from
the figure to avoid confusion. The dependencies. that are omitted are-trivial
anyway. The graph summarizes component dependencies and some non-trivial

dependencies for maps.

155

T——

961

CcvM

P D>~
SM_ = ‘KSM’

interpreter dependencies: every module

address space

tiv

except the CSM, depends on the VPM

SCRILED

\\\\ .
~ ~ — — —map— ‘ map
P ~ < 3 _ .
N\ I~ " unlesgotherwise stated
P \\ . mape~afid programs are g ‘
A2 P8 and programs are core. segments
2/ : R - ;
_/ : ~
ma : map
. A
/ _ N
y } N

ependencies: every moduie, except the CSM, depends on the CSM

Figure 4.6 MSS dependency graph.

UPM

Solutions to problem areas.

In this last section on MSS, we will discuss,ho? MSS handles the

situations that caused modularity and structure ptdbléms in NSS. While doing

so, we will describe the mechani%ﬁl sequence of opératidgs for handling all
system events, i.e. page faults,:quota faults, OOPV condifions, bound faults
and segment faults. | A

a. Page faultrh;ndling.

In NSS, the page fault handler was ;équired téiéimulate théfaddressing
hardware to get at the PIW that #aqsed ayﬁage fault. The pgge?féult handler
could not use directly the absoiufe address of the;PTW left in &he copy of the
processor state at the time of Ehé fault becéuse that PTWrmight havevﬁeen
deallocated between the time it.was faulted on and5thé5£ime the page fault
handler could actually procéés the fauli. As a res;;t, the fault handler‘in
page control had to depend upon thé'ébzhihg-of'SD?s in address space control.

An apparent solution to the p:obiem.ynénss:ﬁoﬁld be for the hardware to
signal page faults to the connected segment maaéger so that it could interpret ;
the SDW and then pass the fault down with thevabsolute address of the faulting
PIW to the page frame manager. In fact, this does;not solve the problem. It
is still possiblerfor the page frame to bé dgallocgﬁed between the time the
SDW is interpreted in the conne;ted segmeht &anager and the time control is
given to the page frame manager; for instaﬁce, if the segment containing the
page frame is deactivated during that time ﬁtgdow.

Instead, a way is needed to guarantee th;; a page frame cannot be
deallocated between the time it is faulted on ;nd the time its disk record
component is copied into a core block. Thus,rwé tec9§§end that when a

physical processor faults on a PTW, the PTW be‘iockea so as to indicate that

‘157

the corresponding page frame cannot be deallocated until the I/0 operation it
is subject to completes.

This solution is adequate but raises dne’problem. By setting a lock by
hardware in a PTW, a virtual processor can prevent the“pége frame from being
deallocated. But it will not prevent other virtual processors executing on
other physical processors from faulting on the page frame. What strategy must
be used in this case? 1If a virtual processor faults on a PTW that 1is locked,
it cannot afford to wait in an idle loop for the lock to be reset because this
lock will be set for the entire dﬁratién of the 1/0 operation on the page
frame. Thus, if a faulting virtual processor sees a lock set in a PTW, it
must invoke the virtual processor manager to put itself on a waiting list for
the occurrence of the I/0 completion event corresponding to the page frame it
faulted on. When the event occurs, the PTW is unlocked and all virtual
processors waiting for the event are be notified. At this point, these
virtual processors should not lock the PTW bit should simpIyire9§ore the
processor state that existed before the fault they took to retry referencing
" the page frame. Chances are high that the papge frame will be in core. If so
there is no need to lock the PTW. Or the page frame may have been deallocated
between the time it was unlocked and the time the waiting virtual processors
were-notified, which is why these virtual processors should not lock it anyway
and must restart the faulting computation.

Another problem is now raised.” This is a traffic control problem
examined by Saltzer [Saltzer66] and called the wakeup waiting problem. Assume
a virtual processor A faults on and locks a PTW. Towards the end of the I/0
operation on the affected page frame, a virtual processor B faults on the PTW
and finds the lock set. Assume further that the I/0 operation completes then

and is notified to all waiting virtual processors before B has had a chance to

158

put itself on the waiting list for the event, If so, B will go blocked and
wait for ever for an event that has already occurred. Saltzer has described
the following solution to this problem.

A so called wakeup waiting switch for the I/0 event is associated with B.
The virtual processor manager first notifies all waiting virtual processors of
the 1/0 completion event and then sets the svitch of B. On its part, B first
resets its switch and then calls the virtual processor manager to put itself
on the waiting list., The virtual processor manager will do so only 1if the
wakeup waiting switch of B is still off. If it were on,.it would mean that
the event B was going to be waiting for has just occurred and it is not
necessary for B to wait any longer.

The question is: how does the virtual processor manager know what virtual
processors (like B) are interested in an 1/0 cgmpletigp gvgnt it is
signalling? The answer is simplgr,than it may seem. Since vi;tqa} processors
cannot be preempted while executing system code, as explained earlier, a
virtual processor handling a page fault either is cur;egtly running on a
physical processor or.is already waiting fo;‘so@e I/O_complgtion evént. Thus,
virtual processors interested in a specific 1/0 completion event and not yet
on the waiting list for it can only be among the virtual processors that are
currently running on a physical processor. Thus, the‘wakgup waiting problem
for PTW locks in MSS can be solved with two hardware,registers in each
physical processor. When a physical processor takes a page fault and finds
the PIW locked, it posts the absolute address of the faulting,PTW in the fixst»
register and turns off the wakeup waiting switch in the other register, all in
one atomic operation, to prepare itself to invoke the wait primitive of the
virtual processor manager. On its part, the notify primitive of the virtual

processor manager first notifies waiting virtual processors and then

159

broadcasts to all physical processors the identity of the PTW event it just
no}ifiéd. If this namé'matches the one in the fifst”régiéte& of a physical
processor, that proééséor‘ﬁufné on its switch inrtheVSEEdﬂa registef; “This -
will indicate to the wait primitive of the Vvirtual bréééSsor méhagér that the
event the virtual processor wanted to wait on has aifeadi;dcéurrea.'

In fact, the lock in a PTW serves a more general purpose. It means that
some (any) I/0 operation is going on on the ?TW,'as”évreSult of a page fault
or of a decision of'the'page removal élngithm; The reader can verify for
himself that the operation of the hﬁkéﬂ# wéiting“éwitéh is not affected by the
more general meaning of the PTW lock. The page removal algorithm operates, ‘as
reéoﬁmen&ed by Huber [ﬁﬁbef76}, iﬁfa'Qirtual processor that is dedicated to
executing just that'algéfiﬁhﬁ; The aIgBritﬁm’is iﬁﬁléméhféd'ds part of the
page frame manager even ihéugﬁ the circular 1ist of coére blocks that is the
bééis of the algorithm is maintained by thréading;ﬁMAP entries together in the
core block maﬁager; The core block maﬁagérladﬁé as a subroutine to the page
frame'managef both for allocating and‘deallocating core blécks. However, the
driving procedures both for the page fault and the page removal algorithms are
part of the page frame manager. This‘explains why the core block to page
frame and core block to disk récofd bindiﬁgésthat are kept in CMAP entries’
remain uninterpreted at the core block level. They are kept only on behalf of
the pagé frame manager.

In the implementation of NSS (and MSS by inférence), the mechanism for
deéctivating a segment is triggered only after the segment is disconnected in
all processes. Since a virtual processor needs a SDW to get at a PTW, a
virtual processor could never take a page fault on a segment being
deactivated. Thus, it is not necessary that the page frame deallocation

algorithm, which is invoked to "deactivate™ the page table of a segment,: set

160

the PTW locks while it qleans up the page table. However, not sgtting the
locks is assuming somethingﬂaboug the segment disconqectiopralgoiithm~and thus
depending on the correctness of higher type managers. Hence, Qe re;ommend
setting PTW locks while deallocating a collection of page f?ames‘as desirable
for clarity although not necessary for proper operation. | |

b. The quota mechanism,

The manipulation of quota ;glls in NS5 is a major source of problems
because it occurs at page control level while ggqtapce11§ are stored at
segment control level and related by a hierarchy defiggd,at_directogy control
level.

There are two reasons why quota cells are manipula;gd by page control in
NS§S. First, quota faults are not_distinggighgd frqm‘gagq faqlts by the
hardware. Thus, they are passed to the page fault handler iﬁ page éontrol.
Second, in response to a quota fault, a disk record must be allocated and made
a component of a page frame. Since this part of quota fa#it handling occurs
in page control anyway, NSS implements all of quota handling in'page control
so that the manipulation of quota cellskis protected by the page control lock.
The above reasons are plausible excuses for manipulating quota cells in page
control but they are not sufficient to warrant doing it that way in a
well-organized systenm.

In MSS, the hardware is modified so that quota faults are distinguished
from page faults. {(The hardware is alsoﬁmodified so as to avoid taking a
quota. fault when only reading a zero (null) page. A word of ze;oes is simply
returned.) Quota faults should not be regarded as page related events since
no page exists when they occur. Quota faults should instead be regarded as
segment related events. Thus, quota faults do not involve locking a PTW.

They are directed into the known segment manager and appear as an error return

161

from an operation to write into a connected segmeht;v Thé known segment
-manager translates the segment number}of théisegmeht to be grown into a UID
and then invokes the segment managér,'which‘will handle the fault. If the
segment to be grown is deactivated by then, the segﬁeht manager simply returns
and the reference that caused the quota fault must be retried.

If the segment to be grown is aétive,‘thé:Segmeht manager will drive the
operations to allocate the page frame and“ﬁanipuiate the quota cell, However,
the operations themselves are carried out'By the page frame manager on one
hand and by a new type manager, called the quota cell managér, on the other
hand (see figure 4.6).

The quota cell manager manages the QCT, whicﬁ contains one entry per

quota cell. A quota cell is named by the relative pointer (QCTEP) to the

entry that implements it in the QCT. The quota cell manager supports the:CU,
MQ and RU operations. The quota cell managér is designed to fulfill the lack
of a type'managér dedicated to iﬁplémenting"coﬂCepts (quota faults and quota
cells) that are logically related but are scattered across several modules 1in
NSS. Under its quiescent state, the quota information associated with a’
directory is not called a quota cell and is stored as uninterpreted bits in
the VIOC efitry of the directory. - The quota inférmation is copied into a quota
cell of the quota cell manager only while it might be- used, i.e, while a .
segment béloéw the directory is. active. Thus, the quota cell manager really
implements the concept of an active quota cell, The segment manager maintains
the UHT to map UlDs of segments into corresponding ASTEPs and (PVIX, VTOCX)
pairs. It also maintains, in a similar way, a hash table associated with the
UHT, which maps UIDs of segments representing directories into corresponding -
QCTEPs and (PVTX, VIOCX) pairs. ' In essence, this second UID hash table maps

UIDs of quota cells into -passive quota cells and active guota cells. The

162

activation of quota cells is done as followsf

When the segment manager is‘invqked to gc;ivatg a segment, itrmust be _
given the (UID, PVID, VTOCX) for that segment and the list o§ similar triples
for all superior directories, in order,Av(We will see soon that it is always
possible to generate this list because thernly type manager to ever request
that a segment be activated is the known segment manager and every KST entry
contains the triple for the corresponding segment as well as the segment
number of the KST entry describing the parent of that segment.,) After the
segment is activated, the segment manager searéhe;kthe,;able associated with
the UHT for the UIDs of all superior directories to find out what_superior
quota cells are already active. It activates those that are not, using the
list of (PVID, VIOCX) pairs. The procedure for dgaptivaping quota cells will
be explained soon,

At this point, the following has been gained over NSS. First, thankg to
a separate quota fault mechanism and the creation of a dedicated quota cell
manager, the actual allocation of a page frameropcurs in ;hg page frame.
manager while the manipulation and the_s;orage of (active) quo;algells is
under the'responsibility of the quota cell manager. Secénd._sincg (activ¢) V
quota cells are stored in the QCT of the quota cell manager as opposed to the
AST, segments and directories can be deactivated uniformly, without any
consideration of hierarchy at the segment manager level. However, three
problems remain.

First, while the segment manager and the passive.segment manager see
quota information, the quota cell manager is responsible for handling quota
cells. Thus, when a request to access a quota cell is passed to the segment
manager, the segment manager may not directly reference the quota information.

A strict type extension view says that the segment manager contains the

163

mechanism to activate segments and quota cells but not to manipulate thesni.
Thus, the segment manager may never directly update quota information. It
must always activate the quota cell first and then operate on it via requests
to the quota ‘cell manager. The ﬁuota“céll‘méﬁager“guarantéés'the‘correct"‘
management of-a quota cell given the- information- in that cell: But the
segment manager is responsible for the integtity of that inférmation. (To
parallel this situation, the active segment manager guarantees the semantics
of the CSL, MSL and CRU-of an active segment while the segmént manager is
responsible for the integrity of those items between aétivations.)

‘Second, in order to support the~CU operation‘to grow and shrink Segments,
every segment that is active (susceptible to grow or shrink) must now be bound
to the quota cell of its parent directory. - Every UHT entry (1) could contain
the QCTEP of its parent directory quota cell. ©On a quota fault, the segment:
manager would then-extract this QCTEP from the”UHT entry and present it to the-
quota cell manager to perform the CU dperatibh;

Finally, there is the problem of the quota cell hierarchy. This
hierarchy is fundamental to the CU operation and it must be used to decide how
quota cells may be deactivated. Indeed; direéctories and ‘segments can be
deactivated uniformly only because quota cells have been removed: from the AST.
However, the concept of a hierarchy must now éxist among quota cells in the
QCT to allow a CU operation to walk up the hterarchy-of quota cells, updating
all cells up to and including the ‘quota eéll of the lowest quota directory,
and to prevent quota cells from being deactivated as léng as any segment that

1s lower in the hierarchy is active. Thus, quota cells in the QCT must be

(1) This is true only for UHT entries corresponding to segments that are
charged to a quota cell. - Directory segments and éven:some’ user seégments are - -
never charged to any quota cell. The UHT entries for such segments point to

no quota cell. ‘ - R TR T VR BTSN I S

164

threaded to their parent just as AST.entries were in NSS and they must contain
a count of inferior active segments. This defjnes a.hierarchy-ef quota cells..

... The quota cell deactivation algorithm may be part of the segment .
deactivation algerithm. Every time a~segmgp;ﬁisdsgccgsgfp;ly deactivated, :the
segment managex calls the quota cell mamager to find out whether the quota.
cell associated with the parent directpory of the deactivated segment has any
other segment charged to it cu:;ently.gpyiye.u If not, the segment manager
requests the deactivation of the .quota cell. and repeatedly calls the quota -
cell manager to walk up.the hierarchy of quota cells until.a. cell is found.
that cannot be.deactivated because it has a segmeat charged to it currently
active. . -

While this design is plausible, it has several g;saévan;ages. First, the
ability to deactivate segments and directeries uniformly is an advantage but
the price we have paid for this advantage is dear. A list of (UID, PVID,
VITOCX) triples must be given to agtivate;any;segmen;vso,;hat the hierarchy 0£
quota cells above that segment can be reconstructed. Second, the sheer. idea
of maintaining a hierarchy of quota cells is a source of.complexity for the .
quota cell manager. Of course, the hierarchy is necessary.to_support the MQ
operation but it would appear redundant to keep a dup;icgte copy. of that
hierarchy in the quota cell manager while it also exists (in a less accessible
form) in the directory manager. Would it not be possible to have a quota cell
manager that can move quota between- any two quota pellg»agd let the direetory
manager constrain which two quota cells can be subject to a specific MQ
operation? The following paragraphs explain how this is possible.

The hierarchy of quota qells is kept in the quogarcell manager so ;hat
when a CU oéeiatibn is performed,‘the u fiéldxbfvthé;chéin,éf;affgcted éuo;a

cells may be updated. 'However, the CU operétionvubdateé the U in the,ébéin}of(

165

indirect quota cells not for itself but to support the MQ operation. When a
directory changes status from quota to non-quota or vice-versa as a result of
a MQ operation; the U of its associated quota'Cell'has'tb'be'édded
to/subtracted from the U of the quota cell of its parent. If the CU operation
did not maintain the U for all quota cells, changing the quota status of a
directory on a MQ operation would require computing its U at the time of the
operation. This means adding the CRU of all the segments in the subtree below
the affected ditectory,'which may be a very ékpensive'task; In fact, it is an
impossible task because it would require "ftééziﬁg" the subtree and the CRU of
every segment in the subtree so that the computation would be consistent and
look atomic., "Freezing" would require the use of a lock keeping every process
temporarily out of both the segment manager and the directory manager since

the computation requires adding quéntitiés‘thét are defined at the segment

level but are related by a hierarchy defined at tﬁefdireétory level. Such a
lock would violate modularity and is thus ruled out.

Based on the observation that all quoté cell threads and the associated
complexity in the quota cell manager result from the need to support the MQ
operation, we suggest a slight change to ‘the definition of the MQ operation
that will eliminate these problems. When the directory manager is invoked by
a user to move'dﬁota between a parent directory P and one of its sons s, it
passes the call down through the seghent manager to'the‘qudté cell manager and
tells the qudta cell maﬁager whether S contains any entry. If as a result of
the MQ operation defined in NSS, 'S would'not“changé quota status (1.e. from
quota directory to non-quota or vice-versa), the new MQ is defined to perform -
like the original one. But if S would change quota status aecording to the
original functionality of MQ, the new MQ will let“the change occur as expected

only if the directory manager indicated that S is empty (contains no entry).

166-

If S is not empty, the new MQ opgration is defined to abort and return an
error code indicating that the move is illegal. Thus, the new MQ operation is
identical to the original one except for the fact that one may not move any
quota to a non-quota directory or remove all quota from a quota directory if
that directory contains one or more entries. This modification has two

conse quences.

First, when the quota cell manager moves quota down,frqm P to S, which is
assumed empty and non-quota, it need not read the U of S to subtract_i§ from
the U of P because the U of S is guaranteed to be null since S is empty. 1In
other words, it is not necessary to ever maintain the quota cell of a
non-quota directory because ;he only useful item itruged to contain was the U
field and the new MQ operation never 1ooks»atyit»anyway.

Second, in addition to not maintaining the qpo;a cell of a non-quota
directory, it is not necessary to thread quota cells together. Since a quota
directory can become a non-quota directory only if it is empty, it is
guaranteed to not change'status as long as there is any segment charged to it.
Thus, a segment can be charged directly to the same quota cell during its
whole life because the existence of the segment guaramtees that all
directories above it are not empty and therefore cannot change status.

In consequence, when a directory entry is created,_it should be tagged
with an integer N indicating how many levels higher‘in,thg file system
hierarchy the lowest quota directory is. This integer is incremented by one.
at each level of the hierarchy unless a new quota directory.is created, in
which case the integer is reset to Q. VWhenhavsegment is initiated, the KST
entry should be tagged with the integer N of the corresponding directory
entry. Finally, when the segment is activated, the known segment manager,

which always requests the activation, as will be seen, need not comstruct a

167 -

whole list of (UID, PVID, VIOCX) triples but need only retrieve the triple for
the 1owest-quota‘director} above the segment being activated. Retrieving this
triple is easy since every KST entry is bound by segment number to the KST
entry for the parent directory of the segment it describes; the KST entry of
the segment to be activated contains the integer N telling how many KST
entries "above" the current one must be followed to reach the lowest quota
directory, and the KST entry for that quota directory contains the desired
triple, as will be seen soon. . To control the deactivation of quota cells, it
is sufficient to have a tount in each quota cell of the number of segments
charged to it that are currently active.

While the functionality change we recommend for the MQ operation may
sound drastic, experience with Multics shows that it would not be in practice,
A data collection experiment on Multics has shown that almost all quota
directories are so-called project directories or user directories. (Each
project on Multics has its own directory and each user has 1ts own directory
that is a son of the directory of the project the user 1s working on.) Such
directories are quota directories from their creation' to their destruction,
i.e, since a time when they are obviously empty to a time when they have to be
emptied anyway. Only on the order of a dozen directories were made quota
directories by individual users. For such users, it is still possible to
simulate NSS with MSS'if they want to move quota to a non-émpty non-quota
directory or to remove all quota from a non~empty quota directory. They tan
create an empty directory named X, move quota. to 4it, thenm move the subtree
below the original directory into- X, delete the original ditectory and rename
X after the original directery. This+is an invelved operation that requires
extra quota for the transition state with two directories but it should

satisfy the:need of the few sophisticated users who would ever want to use it.

168:

As we have designed it, the MSS quota mechanism is perfectly clear,
structured and modular. The policy for the MQ and RU operations, which are
based on the existence of a hierarchy and are conditional on certain directory
attributes, is defined at the directory level. However, the directory manager
does not know anything about the storage and the manipulation of quota cells.
This mechanism is implemented by the quota cell manager, which in turm ignores
everything about the hierarchy. All the quota cell manager needs is a count,
in each quota cell, of how many inferior segments charged to it are active.
This count is updated by the segment manager every: time a segment is activated
or deactivated. The page frame manager is not at all involved in the
management of quota cells. It only allocates page frames upon requests
originating from the segment manager, after the quota cell manager has
authorized such allocation.

c. OOPV conditions and access recalculation.

OOPV conditions and access recalculation cause modularity and structure
violations in NSS because they require accessing information that resides at
directory control level ((PVID, VIOCX) and access control list) but they are
handled at lower levels (segment control and address space control).

These two problems admit of similar solutions in MSS. It is tempting to
say that OOPV conditions and segment faults should be reflected as high as the
directory manager since that 1is where the necessary information 1is stored to
handle those events. However, OOPV conditions are events detected on only a
very small subset of quota faults. Since the occurrence of an OOPV condition
can be detected only after some processing has been-done, the proposed design
would imply that all quota faults be reflected as high as the directory
manager level. This design is not plausible because quota faults are error

returns from operations on segments. and have nothing to do with directories.

169

As to segment faults, it would be inappropriate to reflect them to the
directory manager. Segment faults are f;ults involving the address space of a
process and not the whole file system. Thus, segment faults as well as quota
faults should be reflected no higher than the known segment manager.

In NSS, the address space control module uses the (parent segment number,
ULD) pair in the KST entry of a faulting segment to update the (PVID, VTOCX)
of the segment on an OOPV conditiom and to get the (PVID, VIOCX) and the
access control list on a segment fault. Suchra design. is ruled out im MSS
since we declared earlier that the known segment manager may never interpret
the binding between a KST entry and a directory .entry to access or operate .on
the directory. This would violate the partially ordered structure of the
dependency graph.

In MSS, not only the UID_and-access-infgrmatioa but also the (PVID,
VIOCX) of a segment are stored im its KST entry. Thus, as long as these
attributes do not change, segment fault (and bound fault) handling is more
efficient than in NSS as it does not require getting at the directory entry at
all for either the (PVID, VTOCX) or the access control list, :Activat@oniand
connection of a segment can always be,reques;ed directly by the known segment
manager without requiring accessing directordes.

Access must be recalculated in NSS when, the. DTEM in tbe directory entry
is more recent than the .DTEM in the KST entry. Ia MSS,.the comparison between
two such quanf.iti.es cannot be made by the known .segment manager since it
cannot read the directory or invoke the directory manager to read it. Thus,

instead: of using DTEMs to decide whether access must beﬁgqulculgted, we

propose. using a dedicated attribute,.called_ggpertimesacgggggmodified‘(DTAM),
that is stored in the VIOC entry of every segment below the kpown segment

manager level rather than in the directory entry above the known segment

170

manager level. Every time the access control list of a segment is modified,
the DTEM and the DTAM must be modified. On a segment fault, the known segment
manager invokes the connected segment manager through the segment manager to
reconnect the faulting segment. It passes to the segment manager the UID, the
(PVID, VTOCX), the access information and the DTAM that are stored in the KST
entry. If that DTAM happens to be less recent than the DTAM in the VTOC
entry, indicating that the access control list has changed, the segment

manager simply returns an access fault code to the kinown ségment manager. If

the UID that is found in the VTOC entry denoted by the (PVID, VIOCX) is not
the UID that was given by the known segment manager to the segment manager,
indicating that the segment with the given UID has been moved, the segment
manager returns a move fault code to the segment manager. In either case,
when the known segment manager receives a fault code, it deduces that the KST
entry is no more up to date. It thus returns to the guiescent state and
notifies the directory manager that the KST entry needs to be updated if it -
cares to proceed.

One problem remains to be solved. Changing an access control list is the
resﬁlt of a user call to the directory manéger.' The directory manager is in a
position to request updating the DTAM in the VTOC entry and the access control
list in the directory entry without causing violations of organization.-
However, changing a (PVID, VTOCX) is the result of an OOPV condition, which is
detected by the disk record manager when it canmnot find a disk record to
satisfy a quota fault. Thus, the disk record manager must return an OOPV code
to the page frame manager, the page frame manager returns the code to the
active segment manager, the active segment manager to the- segment manager and
the segment manager to the known segment manager that originally intercepted

the quota fault, Unfortunately, the known segment manager is not in a

171

position to move the affected segment, much less to update the (PVID, VTOCX)
in the directory entry. Our design specifies: thdt the ‘known. segment manager
must again return to a quiéscent state and notify the directory manager :to let
the move happen and the directory be updated.

The MSS answer to both access recalculation and OOPV handling is based -on
the comparison of DTAMs or UlDs in K8T and VIOC euntries and on notifications
from the known segment manager to the directory manager. The known segment
manager transfers to the directory manager on quota faults it cannot handle
because of OOPV conditions and on segment faults it cannot handle because of
an out of date KST entry. 1In both cases, when it receives control, the
directory manager can move the segment or update the.KST entry as appropriate
by invoking respectively the segment manager or the known segment manager with
information it keeps. After doing so, it can invoke the known segment manager
to retry processing the quota/segment fault it was handling and restore the
processor state that existed before the fault. Notice that the known segment
manager does not depend on the directory manager because it cannot be hurt if
the directory manager fails to call it to finish up its task. The known
segment manager only performs a service for the directery manager. It
notifies OOPV conditions and out-of-date KST entries and. is willing to support
quota and segment fault if the directory manager cares to invoke it for that
purpose. The known segment manager is not dependent on the directory manager -
any more than the hardware notifying quota and ‘segment faults is dependeunt on
the known segment manager.

d. Segment deactivation.

So far, we have examined how dependency stucture violations: that existed

in NSS were avoided in MSS, -‘All violations of modularity that existed im: NSS

are fixed in MSS in the sense that every module in MSS manages its own data - -

172

bases. However, the radical decision not to share data -bases may have an
impact on the design in certain cages. It does in the case of the AST. 1In
NS§, segment control and page control share access to the AST. For every
segment in the AST, page control maintains a ruaning total of the number of
pages in core, a "file-modified" switch and a "file-map-modified" switch that
are used to deactivate segments. Such items eannot be maintained by the page
frame manager in MSS because it is totally unaware of the grouping of pages
into segments., This is indicated by our earlier declaration that there is no
binding from a PTW to the segment that contains it.

In MSS, the segment deactivation algorithm is executed as part of the
segment manager but in a dedicated virtual processor that runs in parallel to
virtual processors implementing user processes, Thus, in a way similar to the
page removal activity, the segment- deactivation agctivity is a task that is
performed "on the side" and is asynchronous with the activity of user
processes, The segment deactivation algorithm consists of sequentially
inspecting all active segments that are components of segmeants to find those
that have been used the least recently. This is a sort of LRU algorithm for
segments, In order to record the identity of all active segments that are
components of segments, the active segmeht manager threads them together in a
circular list on behalf of the segment manager as the core block manager
threads together the core blocks. on behalf of the page frame manager. Thus,
the segment manager will never accidentally deactivate an active segment that
is not a component of a segment (i.e., an active segment used to store the
maps, procedures, or working storage of some type manager) because it simply
does not have names for them and they dre not threaded in the list of
candidates for deactivation. The selection and deactivation of a segment are

performed as follows.

173

First, consider the problem of evaluating the usage of a segment, which
was possible in NSS thanks to the count of in-core pages maintained by page
control for each segment. MSS answer to this problem is based on the
observation that it is desirable that the paging activity be heavier than the
segment activation activity, i.e. it is desirable that there always be many
more AST entries than there are core blocks. Otherwise, deactivating a
segment would often require throwing out of core several pages, which makes
deactivation more expensive. Page removal would be driven mainly by segment
deactivation and not so much by the page removal algorithm. The hypothesis
that there should be many more AST éntries than there are core blocks in a
system is verified for all existing Multics installations. Under, this
hypothesis, there will always be at least one segment that has no page in
core, Thus, the segment deactivation algorithm that we propose for MSS, which
looks for a segment with no page in core, performs in practice like the NSS
segment deactivation algorithm, which looks for the segment with the least
number of pages in core, The advantage of the algorithm we propose for MSS is
that it does not require keeping a running total of in-core pages for each
segment. Instead, to determine if a segment has any page in core, the page
frame manager can be invoked with the name of the first page frame (PTA) and a
number of page frames (CSL). Determining if any of these page frames is in
core is extremely fast as it only requires "ORing" a collection of sequential
PTWs together and checking if the result of the "OR" operation has the in-core
flag on. To find a segment that has no page in core, the segment deactivation
algorithm must repeatedly invoke the page frame manager until it finds a
collection of page frames of which none is in core. Of course, the "ORing"
operation may still be somewhat less efficient than directly looking up a

pages-in-core count. However, experience with Multics indicates that the

174

average CSL of a segment is between one and two pages. Thus, only one or two
PTWs must be looked at on the average.

Now consider the problem-of deactivating a selected segment. In MSS,
like in NSS, segment dgactivation is the time to update the DTM, DTU and file
map of a segment in its VIOC entry if necessary. DTU is always updated
(because the segment would not have been activated if.it were not to be used).
The DIM is updated only if the segment was written- into. 1In NSS, this
situation was detected by looking at the "file-modified" switch kept by page
control in the AST entry. For the purpose of detecting this situation in MSS,
each PTW contains not one but two "modified" bits. .They are both set by
hardware. When the page removal algorithm copies out a page that has been
modified, it looks at and resets only one bit., . The other serves as a-reminder.
to tel} the segment manager at segment deactivation time that the segment
containing that PIW was modified. In NSS, the file map of the segment must be
updated in its VIOC entry if the "file-map-modified" switch is on in the AST.
In MSS, there can be no such switch. Thus, the segment manager proceeds as
follows., The file map of a segment must be updated if the segment has grown
or if it has shrunk while it was active. A segment grows as the result of a
quota fault. Since the segment manager is involved in handling quota faults,
every time it handles a quota fault on some segment, it can record that fact
in the UHT entry for the segment to remind itself of,léter,updating the file
map when it deactivates the segment. A segment: shrinks when the page frame
manager decides to throw out ome of its pages and discovers that the page has
become null while it was in core, in which case the page frame manager
requests the deallocation of the home disk record of the page and zeroes out
the disk address field of its PIW. - When the time comes to deactivate a

segment, the page frames of that segment. -that: have become null during. the

175

latest activity period are recognized to the fact that their PTW contains a
null disk address but has the second "modified" bit on. Thus, when the page
frame manager is invoked to deallocate the collection of page frames of a
segment being deactivated, it returns the number of the highest page frame
that is not null and the number of page frames that have become null over the
latest activity period. The former number becomes the new CSL of the segment.
If the latter number is not zero, it is subtracted from the CRU of the segment
and the U field of the quota cell to which the segment is charged. The file
map is then updated in the VTOC entry. This overwrites the address of any
disk record that was deallocated'by‘the page frame manager, thereby
guaranteeing horizontal protection of these disk records.

5. Structural patterns.

In producing the design of MSS, we have come across three interesting
structural patterns that appear to be related to the nature of certain
problems they solve. The objective of the present section is to review the

nature of these three patterns and to discuss the problems they solve.

Software caches.

The basic pattern is the following.

-container}

. container

container

176

On several occasions, two kinds of data abstractions are defined to centain
the same sort of information. For one of them, called the slow container,
only two operations are defined. They are READ and WRITE, of which:the
purpose is obviously to extract information from or-to: pour:down. information
into-a slow container. Many operations may be defined on:the other, called
the cache container. A third abstraction is defined on top of both, of which.
the purpose is to move information from the-slow:-container to.the cache
container and vice-versa to allow operating on that: information while it
resides in ‘the cache.container.r The top abstraction may be viewed as a
functional abstraction if it implements only the movement: of: information -
between the two lower types of contaimers.: On the other hand, it may be
viewed as a data abstraction (as we did in MSS) if it supports for the -top

level information containers all the operations that are supported for theA
cache information containers and implements them by moving the 1nformation to
be operated on from a slow container to a eache container and'then invokiné‘ |
the operations on the eache container, thereby making the encaching/decaching
function transparent to the user. B - - o -
This basic pattern manifests itself in MSS with disk records (slow), core
blocks (cache) and page frames (top), with passive segments (slow), active
segments (cache) and segments (top). It is also found with passive segments
(slow), quota cells (cache) and segments (top) from the point of view of quota
cells, In fact, we could havesinplementeo the concepts of a passive quota
cell, an active quota celI'and a quota celllindependently from segments, which
would have isolated the quota cell cache pattern:fron'thGLSEgment cache
pattern totally. Yet, we decided not to do so beéa&se:the“slow abstractions
(passive segmentsTand passive quota cells) are ver&»s;nilsrtas far as their

implementation and maintenance are concerned, and the top abstractions

177

(segment and quota cell) are intimately related by the synchrony of their
activations and deactivations. Separating the abstractions would have
increased the complexity of the organization of the system while not reducing
the size of the passive segment manager or the segment manager substantially.
Thus, we estimated that it would be better to merge the abstractions at those
levels,

On occasions, the management of the slow containers requires so little
data and is so simple that sloﬁ contaiﬁers need not be managéd explicitly by
their own type manéger. The concept of a slow contalner is collapsed into

that of the top abstraction. The féllowing»dependency graph results.

container

container

An example of this pattern is the configured volume manager {cache) and the
physical volume manager (top and slow) case where a demounted physical volume
is such a trivial abstraction that it is merged with the physical volume
abstraction, i.e. all DT entries are kept together, whether they correspond to
mounted physical volumes or not. Another example of such collapsing can be
found below.

The software cache pattern is not limited to the virtual memory mechanism
dependency structure. It also shows up in the virtual processor mechanism

dependency structure, as noted in [Reed76]. Here, the pattern involves

178

abstract code interpreters instead of abstract information containers. The
virtual processor structure is in fact a triple repetition with collapsing of

the software cache pattern.

user
processes

v
”

——-

/s N o
; virtual v
! processo%'

\ states 7
S P

—

[oy
| . processor; processors
\ I/‘
N
Negates,

Physical processors are ﬁigh speed code intefprgtersxf Physical processor
states are loaded into real processors when possible. This represents an
abstraction called a virtual processor. Virtuéi processors are capable of
interpreting Virtual processor states. Thus, virtual ﬁrbcessor states are
loaded into virtual processors as these are available, thereby implementing a
user process abstraction. In fact, the management of the user process and
virtual processor state abstractions is so simple that these abstractions are
collapsed into the user process concept in MSS,

Interestingly, one notices that the "slow" type manager tends to depend
on the "cache" type manager in a software cache pattern., This is betause it
takes advantage of the software cache abstraction to implement its own
programs, maps or interpreters. For instance, the passive segment manager

depends on the active segment manager to implement its ptogramS'aﬁd the user

179

process manager depends on the virtual processor manager to interpret its
code.

The existence of the software cache pattern is an. independent
confirmation of the results observed by Parnas [Parnas76} who .noted that a
series of functions is often repeated at two levels within a gystem in such a
way that the higher occurrence has more abstract resources availlable to it but
the lower occurrence contains functions that are more.efficient and are used
ﬁore frequently.

Merging. hierarchies,

The second structural pattern that gove;ns the organization of_several
modules of MSS is the merging hierarchies pattern. One:can distinguish two
hierarchies of abstractiouns in MSS: physical resources.and logical resources.
The physical resources hierarchy is composed of.iggical.volumes, physical
volumes, configured voluges:and.diskirecords, A logical volume is a
collection of physical volumes; a physical volume is the top abstraction of a.
cache pattern of which the cache:abstraction‘is a.configured volume; and a
configured volume is a set of disk reco:ds.::The,logiqAL resources hierarchy
is composed of directories, segments, passive segments and disk records. A
directory describes a collection of segments; a segment ig the top
abstraction of a cache pattern of which the slow abstraction is a passive
segment; and a passive segment is a set of disk records, -These hierarchies
merge in the sense that they share, at the bottom level, the disk records,
which can be viewed either as physical resources @r as logical rescurces.

The interesting fact about these merging hierarchies is-that they are not
unrelated. As might be expected in almost any system, . there exists:a policy
for grouping logical information containers into physical information

containers. Logical resources are grouped in a way dictated by physical

180

resources. In MSS, all the disk records of one segment must reside on the
same physical volume and all the segments in one directory must reside in the
same logical volume. One might suspect, as we did until we saw the final
design of MSS, that two situations would result from the tight coupling of the
hierarchies., First, directories and -segments would be composed of (dependent
on) logical volumes and physical volumes since these physical containers
dictate the grouping of those logical containers. (This would not be
outrageous but disappointing since physical containers conceptually contain
several logical containers rather than the other way around.) Second, the
coupling between the two hierarchies might in fact be 8o tight that it would
generate some unavoidable dependency loops.

It is interesting to see that directories and ségments are not componénts
of volumes and it is satisfying to observe that there are no upward
dependencies in MSS. This design was achieved by the simultaneous use of UIDs
and of tags, as we called the LVIDs, PVIDs and PVIXs earlier. The tags serve
as a means to retrieve and associate containers while the UIDs serve for:
naming them and ultimately validating their identity. Tags are viewed as mere
bit strings on which to associate cbjects. "They are not used for what they
denote but only for what they are. 1If they get mixed up by their managers,
the integrity of information will not be hurt because it is protected by the
UIDs. 1In other words the directory manager, the sSegment manager and the
passive segment manager are not dependent on the logical and physical volume
manager because the latter can never cause the former ‘toc operate in a way
different from that stated in their formal specifications. While these
specifications do not guarantee that a piece of ‘information can atways be
accessed, they-do guarantee that if 1t can Ee’accessed;3its'integrity is

unaltered.

181

Notifications.

The last interesting pattern that is found in MSS is t¥ivial but very
useful. It consists of a low level module notifying a higher level module and
abandoning control without making itself dependent on the higher level module,

This pattern is of course very frequent in any processor in thevfb;m’of‘
hardware processor exceptions. A processor exception is a notification from
the bottom level codevinterp:gter to some higher~1evg1 type manager indicating‘
that interpretation cannot proceed becéusg some element necessary to proceed
is not accessible to the code interpreter. ,Iﬁ gxecu:#pg a_hardware
instruction is regarded, as it shoul@ be, as iquking an Qpe:ation of the
bottom level code interpreter, a processor exception may be viewed as an error
return from an operation that could not be performed.

The pattern is also used in software in MSS to notify OOPV condit;ops and
out-of-date KST entries. In,either case, the_kpown seg@ggt manager notifies
the directory manager that it cannot praceed Vi;h what it is doing. 1In the
OOPV case, the hardware first notifies the known segment m#nager that it
cannot write into some page of some segment because the page does not exist,
This is an indication that a reference to a connecte@ segment could not be
interpreted. The knoyn segment_managgt‘gnows hquto cgusq‘qhanges in the
connected segment that will make the reference succeed. In a few cases
though, it is told that‘thg connected segment cannotvbg grown for lack of
physical space. This implies that the segment‘shou1¢;bg moved and hence that
the directory entry must be updated., Since the known segmgnt manager does not
know what directories are, it translates the original quota fault on a |
connected segment into a move fault on.a known segment, which the directory
manager intercepts and handles appropriately. The same sort of reasoning can

be proposed for the case of access recalculation. The known segment manager

182

can handle segment faults on connected segments for which access has not
changed. But it cannot handle other segment faults and therefore maps them
into access faults on known segments that the directory manager intercepts and
handies.

6. Conclusion.

At this stage, it is probably unﬁecessaty to review the modularity and
the structure of MSS. It is cléar from the preceding sections that none of
the data bases are shared and that the dependency structure contains no
directed loop. It is also clear that ever§‘type manager is substantially
simpler and smaller than the modules defined in NSS. The purpose of this
concluding section is to discuss a few consequences of having used type
extension to organize MSS.

Performance.

The efficiency aspects of MSS deserve some comments. It is impossible to
rate the efficiency on an absolute scale as we have no unit of efficiency. It
is even inappropriate to dare evaluate the efficiency of MSS versus that of
NSS. MSS has not been implemented. Because it is so similar to NSS, we are
convinced that MSS is a logically plausible systéﬁ but it would be ambitious
to make any firm statement about its performance versus that of NSS. Not only
is it difficult to distinguish in MSS the areas that might be more or less
efficient than their equivalent in NSS but 1t is impossible to predict the
impact of MSS on the performance of the whole operating system. Regardless of
the particular strong or weak points in the performance of MSS itself, certain
design features that are individually more efficient may cause bottle necks in
the overall system because their logical conception causes them to be executed

more frequently. Conversely, certain functions that might be individually

183

less efficient in MSS may in fact not’have a negative’impact on the overall
design because they are performedvless often than in NSS.: |
However, we would like to risk two comments”onvthe performance of MSS.
First, we believe that it would be comparable to that of NSS | To justify
this, we observe several facts. The overall structurerof‘MSS can be mapped
into the overall structure of NSS so that the higherllevel type managers of‘
MSS correspond to the higher level modules of NSS.k MSS maintains the same
data bases as NSS except for the fact that the AST the QCT and the PFT are
separated in MSS. Those MSS data bases that have an equivalent in NSS fulfill
the same function as that equivalent except for a few instances (e.g., the |
DTEM in a directory entry is no 1onger used for’access recalculation, and the
number of in-core pages is no longer kept for every active segment)‘ The |
handling of certain situations in MSS is slower than in NSS (e.g., 00PV
conditions and access recalculations) because‘more computation goes on before ;
. they are detected. On the other hand’ those situations are rare and the
handling of the corresponding situations in NSS (page fault and segment fault)
is more efficient because it is assumed a priori that the rare situations do
not occur normally. (Page faults do not require sorting out quota faultsvand
O0PV conditions and segment faults do not require fetching the (PVID, VTOCX)
from the directory entry on every occurrence.) In addition, the handling of
the quota problem in MSS has released the constraint that all the directories
above an active segment or directory must be active. This represents a ‘ -
non—negligible saving of space in the AST which is bound to be translated
into an improvement in the performance of the system (less paging activity if
the core block pool is increased or less AST activity‘if the original AST size

is preserved.) The point we are driving at is that the structure and the

modularity are primarily -- though not exclusively -- abstract views of the

184

design. In essence, the resulting implementation is very close -- though not
identical -- to that of NSS. Therefore, we suspect that the performances of
MSS and NSS should be in the same vicinity.

Second, readers might object that the performance of MSS may suffer from
its modularity. Since data bases are never shared, a module can find out
about some information re81ding in the data bases of some other module only by
asking the other module about it., It cannot directly reference the data base.
Calling the other module would of course be less efficient than directly
referencing the data base. In reality, we do not believe that modularity at
the level of the language used to code the system can affect performance at
the level of the machine language. Indeed, the type checking compiler may and
shouldbinclude macro expansion and global optimization teatures. Thus, it is
possible to have strict modules at the level of the coding language, which is
all that counts for understanding, maintaining and verifying the system. And
at the same time, the compiler may compile a module by substituting code |
in-line. The resulting MSS object code would no longer be a strict module,
but this does not matter, and its performance could,be as good as the
equivalent code in NSS. | | R

Modules as data abstractions,

The nature of all the modules in MSS deserves onehcomment. All modules
happen to stand for data abstractions (type managers) only because we have
sttictly resPected the type extension view at all times and have regarded
every concept from an object based point of view. However, the type extension
technique does not intrinsically rule out functional abstractions. We»are |
convinced that there may exist systems for which a certain aspect cannot be

properly designed if it is viewed from a data abstraction point of view.

185

Horizontal protection of internal objects.

In chapter II, we made the point that the horizontal protection of
internal type objects, i.e. the objects implemented by the virtual memory
mechanism below the base level, was not guaranteed by their type manager.
Instead, assertions must be verified about the modules using the internal type
objects to show that they never use the uid of a deallocated/deleted object.
We suggested then that, while the task of producing the assertions might seem
hard, it was not in practice. In most cases, only one module ever sees the
uid of an object provided by some type manager, Thus, assertions can easily
be imposed on that module to guarantee that it destroys all copies of the uid
of an object it releases. One can verify in this way the protection of all
internal types except disk records and page frames, whiéh are used by several
modules in the sense that their uids may at times be seen by several modules,
For the latter internal types, we suggested in chapter II that it nonetheless
would be sufficient, in general, to produce assertions on only one module
because, usually, only one module has caused the propagation of copies of the
uids through several modules, is aware of the distribution of the uids and can
cause their destruction. This is indeed the case of disk records and page
frames. Disk records are shared by page frames and passive segments. The
segment manager controls the propagation of their uids. Page frames are
shared by active segments and connected segments. The segment manager also
controls the propagation of their uids.

Conclusion.,

This chapter has demonstrated the applicability of type extension as a
technique for organizing the virtual memory mechanism of a real general
purpose time-sharing system. In a first section of the chapter, we have

presented the functionality of the mechanism as the user sees it. 1In a second

186

section, we have described the implementation of the mechanism as it exist in
reality. We have pointed out where and why @6duiaiity and structure were
violated in this real implementation. In a third section, we have pfoposed a
new design based on type extension that preserves the ;riginal functionality
of the mechanism. We have briefly charaéterized each mgdule éf the mechanism
and we have systematically inspectedsthe structure of the mech#nism to
conclude that the design was stricflyvmoduiar and partially ordered by the
dependency relation.. We have then explained how the organization problems
encountered in the real implemenfation of the mechanism are eliminated in the
proposed design. In a fourth section, we ha?e discusséé three structu;al
patterns that seem to be fundamental in the design of a well-organized virtual
memory mechanism for a genefél purpose time—sha;ing systeﬁ. The software
caéhe pattern appears every time a scarce résource is mﬁltiplexed among more
abundant abstraCtions. The merging hierarchieé pé;tern appears where the
organization of logical containers isvgoverned by4the.§rganizatiqn of physical
containers., The notification pattern appearé every tiﬁé a ﬁodule notifies an

event upward to implement an error return from an operation that was,

sometimes implicitly, invoked.

187

V. Conclusion,

=3c

1. Summary.

This thesis has presented a technique for organizing the virtual memory
mechanism of a computing utility. The technique is based on the concept of
type extension. The virtual memory méchanism:of a-system is regarded as a’'set
of type managers .supporting abstract information containers. These abstract
containers areﬂimplemenyed in terms of more primitive-containers such as core
blocks and disk 'records. Strictly. applied to -a virtual memory mechanism, the .
formalism: of .type extension helps organize the design of the mechanism into:a
structured set of modules. The-modules:are-the:type managers: for the abstract.
containers utilized and supported by the virtual memory mechanism. The.
structure of - the mechanism reflects the structure of the information
containers it implements. .

In addition . to reviewing some 'backgroumd notions and existing literature:
on organization techniques for computing systems,.chapter I justified why:a
technique for organizing virtual memory mechanisms is desirable. . Such -
mechanisms are often complex and require g fairly large amount of code. Thus,
it is desirable that they be well-organized to facilitate understanding and
maintaining them. In addition, the rise in:interest for certifiably secure
systems has fostered the need for systems of which the security kernel can be
verified correct. A verification of ¢orrectness-cannat be carried out unless -
the security kernel is well-organized.. Since the virtual memcryvmechanism of:
a system is, in general, part of the 'security kermel, it is necessary to
organize it so it can be verified cerrect,

Chapter I1 has defined . the meaning of type extension in the:enviromment .

of a virtual memory mechanism. - It has examined the nature of .the abstractions,

188

one may encounter in such an enviromment. In particular, it has introduced
the idea of abstract types providing éllinitedwsuppiy of objects that have an
essentially unbounded lifetime. Such abstractions are necessary to model the
behavior of storage resources that are scarce and need be multiplexed among
all users over time. It has also pointed out the difficulty of providing a
mechanism (e.g., capabilities) for protecting abstraet information containers
at run~time inside a virtual memory mechanism. ‘Implementing run-time
protection inside a virtual memory mechanism is difficult with. today’s
technology because run-time protection depends on addressing patentially large
access control data bases while addressing of large data bases depends on
precisely having a virtual memory mechanism or a special purpose but then
cumbersome I/0 mechanism,

Chapter III has explained how the type extension concept can be exploited
as an organization technique in a virtual memory mechanism, and what the
advantages of this technique are. The usefulness of the technique for
selecting abstractions to modularize a virtual memory-mechanism was pointed
out. The property of type extension to foster modularity and structure in a
virtual memory mechanism was discussed. 1In particular, it was explained how
the enviromment of execution of a type manager (maps, programs, address space,
code interpreter) should be set up to avoid violations of the partially
ordered, object based dependency structure of the systeﬁ. Finally, the
advantages of type extension towards providing a strategy for avoiding deadly
embraces when locking system data bases were stressed.

In chapter IV, we have demonstrated the applicability and the usefulness
of the type extension technique by exploiting it to (re)organize the virtual
memory mechanism of a real computing utility, the Multics system. This case

study is interesting because it showed the ability of the type extension

189

technique to cope with the complex functionality of a real system. Most
existing techniqués have been illustréted by examples bf applicatiouns
involving "paper" systems. Such exaﬁples demoﬁstratélonly the conceptual
aspects of the technique that is employed but fail to déﬁonstrate its
applicabiliﬁy to the organization of a real system. The functionality of the
"paper" systems is in some sense built to fit what their otgénizétion permits.
In this thesis, we wanted to examine both the cdﬁceptual énd tﬁé engineéring
aspects of the type extension teChﬁique. Thus, we took the unconstrained
functionality of a viable system as granted and worked from there towards a
clean organization.

2. Results.

The first contribution of the thesis is a technique for organizing the
virtual memory mechanism of a computing utility, This technique has proved
convenient to use and capable of yielding modular and structured designs for
virtual memory mechanisms. It was demonstrated useful to organize even real
systems with all the complexity and hardware constraints associated with them.

The second contribution of the thesis is in the area of the design of
general purpose, time-sharing systems. By illustrating the use of the type
extension technidﬁé in chapter IV, we have at the same time produced a
well-orgaﬁized design for the virtual memory mechanism of such a system. To
the best of our knowledge, such a clean design has never before been proposed
for virtual memory mechanisms of the size and complexity of the Multics
storage system. It is satisfying to know that well—brgénized desighs for such
mechanisms exist and could lead to feaSonably efficient implementations.

A third result of the thesis, which was not expected as an initial

objective but came as an interesting conclusion, is the demonstration of the

190

analogy be;ween the type extension concept we have used to organize MSS and
the type extension concept that was used implicitly to organize;the virtual
processor mechanismrof Multics [Reed76].' The two concepts serve somgwhat
different purposes. Reed used type extensiqn to break a dependency lopf
between the virtual memory and the virtual processor mechanisms of Multics.
We used type extension to break the virtual memory mechgqism of Multics into a
set of smaller and simpler mechanisms. However, for all practical purposes,
the two concepts are equivalent. They deal with the same problem, the
organization of a mechanism in the security kernel. Thgy face the same
issues, designing partially ordered modules in the constrained execution
environment of the security kernel. They are equivalent with respect to ;hg
dependency relation in that the dependency structures that result from using
them are interleaved. And last but not lTeast, the software cache structural
pattern appears to be fundamental to the exploitation of type extension for
multiplexing resources, be they storage or processing resources.

3. Future research.

N

A first research topic that‘remains‘qpen is the practigality of virtual
memory mechanisms based on type extension. We believe:thgt a,system,like MSS
is conceptually plausible and could achievewg reasonaﬁle performgnce if 1;
were implemented, However, ve cannot assgrt ﬁhis until somepng‘will have
built such a system clear through the implementation, so that the system can
be tested. Even with the type extension technique as it was described in this
thesis, we have a long way to go to implement a system based on type
extension, We\lack the most elementary tools to achieve a cgrregt‘and
efficient implementation, namely a compiler that can perform type che¢king,

verify uid conservation, do in-line substitution of macros and optimize code

191

across type managers to break the barriers of strict modules at the level of
the object code.

The thesis has developed a technique based on type extension for
organizing the virtual memory mechanism of a system. This technique appears
very similar in nature if not in origin to the technique used elsewhere
[Reed76] to organize the virtual processor mechanism of a system. A question
that naturally comes to the mind is: 1is the type extension technique used for
virtual memory and virtual processor mechanisms also applicable to I/0
mechanisms? Could it be exploited to organizé the external communication
interfaces of a system, including the eventual network interfaces? 1In our own
mind, we suspect type extension is applicable to this area. Since it proved
applicable to the organization of the virtual memory I/0 of a system, it is
probably applicable to the non-virtual memory (external) I/0 of a system.
However, we have given no further thoughts to the idea and we do not have any
demonstration of its validity.

As technology evolves, we observe a trend towards distributed computing
and very large distributed data bases. Also, we may forecast for the not too
distant future the introduction in the market of personal computers that can
tap into a cable or be hooked to a network to communicate with distant hosts
to access enhanced storage and processing facilities. Because of these
observations, there is little doubt that what is called today the external
network interface of a system will be looked at tomorrow as an internal
interface in some distributed storage system. What looks today like a
transfer of information between physically and logically separate storage
systems might look tomorrow like a transfer of information between two
components of a higher level abstract file in a physically distributed but

logically integrated storage system. One may wonder whether the type

192

extension technique or some variatiqn of 1t will pgﬁuseable:fo;’ppganizipg
such distributed systems. In particular, will it be capable of coping with a
storage system of which some parts may beﬁinaccessiblg at times due to local
failures while ther parts must remain accessible and consistent? Will it be
capable of collecting different local storage system architectures into a
single global formalism of type extension? Many more questions could be
formulated along these linesi ,

Leaving the concept of type extension agd returning:to present systems,
further research is necessary to producg Cer;ifiably secure systems. While
the type extension technique, among others, represents a step in the direction
of more understandable and religble sys;ems,-it_dpes in no way constitute the
final answer to all problems. Further research is needed in four directions:
programming languages, specification techniéueg, secu;ity,standards and
verification techniques.

As far as programming languages are concerned, it is desirable to have
high—leyel languages with type extension £g§tu:es_and a system programming
orientation., CLU [Liskov76] includes the desirable ;ype)extgnsiqg features.
'~ However, under its current implgmentation, it is npt»adeqpatevfor system
programming purposes. The CLU system assumes the,e;istegﬁe Qf_é "heap" for
storing all its variables. One of'theAmpig.p;pble@s of doing type extension
inside the kernel of a system is that such a heap is not available and
variables must be stored in different kinds of containers with different
addressing characteristics.

While module specification techniques such as the one proposed by Parnas
[Parnas72a)] or the one used by SRI {Neumann75] seem appealing, theyvlack
several features. First, they lack adequate semantics to express certain

facts dealing with, for instance, parallelism and whgt Parnas calls the

193

"global properties" of a module (properties inyolving several of the functions
supported by the module). Second, they lack an‘adequateilanguage to formulate
specifications. Neither Parnas nor SRI claim the.language they use is
adequate. But the fact that it is:not is an indication thatbwe lack a
language that is altogether powerful and'readable; yet formal.

Only one concept of security -~ the U.S.bbenartment ofIDefense security
controls - has:heen analyzedlto therpointywhere formal models could be
formulated for 1t [Bell73] While this concept is interesting for military
purposes, 1t is not for most civilian applications. Protection mechanisms |
such as access control listsrand capabilities have heen huilt into various
systems that are designed mainly fafhci§111ah'ﬁsél :Hoﬁeyer, we have no idea |
of what formal security models these mechanisms might support, Before we
embark on certifying a system, we should know what we are trying to certify’
about it. o | | |

Finally, verification techniques will be necessary to prove the
correctness and the security of systems, Some good work has already been
produced in the area. However, we are not convinced that a system like MSS,
for instance, could be verified with existing techniques, even if complete
specifications existed for it. The same problem is encountered with
verification techniques as with specification techniques. There is a lack of

ability to handle problems like parallelism and "global properties".

This thesis has attempted to present a technique for organizing virtual
memory mechanisms to make them understandable and verifiable. Considering the
crucial role played by the virtual memory mechanism of a system with respect
to security, this is not a negligible result. However, it falls far short of

achieving the objectives contemplated in our quest for certifiably secure

194

systems, as indicated by the previous paragraphs. All the tasks evoked
earlier -- choice of a security model, formulation of specifications,
verification of correctness and security, and certification -- are necessary
steps towards a secure system but we do ﬁot know how to take most of them.
Yet, it is worthwhile attacking these problems because there will be a need to
solve them for as long as there will be computers. Because of the ever
expanding applications of computers in private and public éectors, and because
of the ever increasing costs of developing and maintaining software, computer
systems that are easy to understand, to maintain and to yerify are becomipg a
necessity. The times of perhaps efficient butr"quick and dirty computer
hacking" are over. Considering what evil computers can do to us, it is time
that we consi&gr what good we could do to them so theyrwillvbe cheaper to
maintain, they will be safer to use, they wiil be harder té break and they

will serve us better.

195

4Bibliography. =

 [Ames75] S.R.Ames, "The design of a eecurity kernel®, H75-212, Mitre Corp.
(Apr.1975).

IBe11731 D.E;Bell, L.J.LaPadula, "Secure computer systems",: ESD-TR-73-278,
Mitre Corp. (Nov.1973).

[Bensoussan68] A.Bensoussan, "Overview of the 16ck1ng strategy' in the:file
system", Multics System Programmers’ Manual, section BG 19.00 (Dec 1968)

[Bensoussan72] A. Bensoussan, C.T. Clingen, R.C.Daley, "The Multics: virtual
memory: concepts and design'", CACM 15 5, pp 308-318 (May 1972).

[Bratt75] R.G. Bratt, "Minimlzlng the . naming facilities requiring protectlon in
a computing utility", S.M.Th., MIT & MAC-TR-156, MIT Lab. for Comp. Sc.
(Sep.1975).

[Cohen75] E.Cohen, D.Jefferson, "Protection in the Hydra;opetaxing system",
Proc. ACM 5 Symp. on Oper. Syst. Princ., pp 141-160 (Nov.1975).

[Dijkstra68] E.w;Dijkstra, "The structure of the THE.multiprogramming system",
CACM 11 5, pp 341-346 (May 1968).

[Habermann69j A.N.Habermane, "Prevention of;eyetem;deadiockg", CACM 12 .7, pp
373-377 (Jul.1969).

[Habermann76] A.N.Habermann, L.Flon, L Cooprider,."Modularizatlon and
hierarchy in a family of operating systems", CACM 19 5, pp 266 272 (May
1976).

[Havender68] J.W.Havender, "Av01ding deadlocks in multl—tasklng systems™, IBM
SJ 7 2, pp 74-84 (1968). - .

[Hoare73] C.A.R.Hoare, "A structufed'peging syatem“, Compdter Journal 16 3, pp
209-215 (Aug.l1973).

[Huber76] A.R, Huber,»"A multl—process design of a paging system s S.M. Th., MIT
& to appear as TR, MIT Lab. for Gomp. Sc. (1976).

[Jones73]) A.K.Jones, "Protection in programmed systems » Ph.D.Th., Dept. of
Comp. Sc.; CMU (Jun.1973).

[Lampson69] B.W.Lampson, '"On reliable and extendable operating systems", 2nd
NATO Conf. on Softw. Eng. (0ct.1969) & Infotech State .of the Art Report
(1971). : : , ,

[Lampson76) B.W.Lampson, H.E.Sturgis, "Reflections on an operatlng system
~ design", CACM 19 5, pp 251-265 (May 1976). m

196

[Levin75] R.Levin, et al., "Policy/mechanism separation in Hydra", Proc. ACM 5
Symp. on Oper.Syst. Princ., pp 132-140 (Nov.1975).

[Liskov72al B.H.Liskov, "The design of the Venus operating system » CACM 15 3,
pp 144-149 (Mar.1972).

[Liskov72b] B.H.Liskov, "A design methodology for reliable software systems",
Proc. AFIPS FJCC 41, pp 191-199 (1972).

{Liskov76] B.H.Liskov, "A note on CLU" CSG Memo 136, MIT Lab. for Comp. Sc.
(Feb.1976). : R

[Multics74] --—- "Introduction to Multics", MAC-TR-123, MIT Lab. for Comp. Sc.
(Feb.1974).

[Neumann74] P.G.Neumann, et al., "On the design of a provably secure operating
system”, Proc. Intl. Workshop on Prot. in Oper. Syst., IRIA, pp 161-170
(Aug.1975).

[Neumann75] P.G.Neumann, et al., "A provably secure operating system", SRI
Final Report (Jun.l1975 partly modified Dec.1975).

[Organick72] E.1.0rganick, "The Multics system: an examination of its
structure”, MIT Press (1972).

[Parnas71] D.L.Parnas, "Information distribution aspects of design
methodology", Proc. IFIP Cong., pp 340-344 (Aug.l1971).

[Parnas72a] D.L.Parnas, "A technique for software module specification with
examples", CACM 15 5, pp 330-336 (May 1972).

[Parnas72b] D.L.Parnas, "On the criteria to be used in decomposing systems
into modules", CACM 15 12, pp 1053-1058 (Dec.1972).

[Parnas74) D.L.Parnas, W.R.Price, "Using memory access control as the only
protection mechanism", Proc. Intl. Workshop on Prot. in Oper. Syst.,
IRIA, pp 177-182 (Aug.1974).

[Parnas76] D.L.Parnas, "Some hypotheses about the "uses" hierarchy for
operating systems", Research Report BS I 76/1, Technishe Hochschule
Darmstadt, Fachbereich Informatik (Mar.1976). '

[Popek74] G.J.Pokek, C.S.Kline, "The design of a verified protection system”,
Proc. Intl. Workshop on Prot. in Oper. Syst., IRIA, pp 183-196
(Aug.1974).

[Price73] W.R.Price, "Implications of a virtual memory mechanism for
implementing protection in a family of operating systems", Ph.D.Th.,
Dept. of Comp. Sc., CMU (Jun.1973).

[Radin76] G.Radin, P.R.Schneider, "™An architecture for an extended machine
with protected addressing", IBM, TR 00.2757 (May 1976).

197

[Redell74] D.D.Redell, "Naming and protection in extensible operating
systems", Ph.D.Th., U.C.Berkeley & MAC~-TR-140, MIT Lab. for Comp. Sc.
(Nov.1974).

[Reed76] D.P.Reed, "Processor multiplexing in a layered operating system',
facility", S.M.Th., MIT & MIT/LCS/TR-164, MIT Lab. for Comp. Sc.
(Jun.1976).

[Robinson75] L.Robinson, et al., "On attaining reliable software for a secure
operating system'", Proc. Intl. Conf. on Reliable Software, pp 267-284
(Apr.1975).

[Saltzer66] J.H.Saltzer, "Traffic control in a multiplexed computer system'",
Sc.D.Th., MIT & MAC-TR-30, MIT Lab. for Comp. Sc. (Jul.l966).

[Saltzer75] J.H.Saltzer, M.D.Schroeder, "The protection of information in
computer systems', Proc. IEEE 63 9, pp 1278-1308 (Sep.1975).

[Saxena75] A.R.Saxena, T.H.Bredt. "A structured specification of a
hierarchical operating system'", Proc. Intl. Conf. on Reliable Software,
pp 310-318 (Apr.1975).

[Saxena76] A.R.Saxena, "A verified specification of a hierarchical operating
system", TR-107, Stanford Electronics Laboratories (Jan.1976).

[Schell71] R.R.Schell, '"Dynamic reconfiguration in a modular computer system',
Ph.D.Th., MIT & TR-86, MIT Lab. for Comp. Sc. (Jun.1971).

[Schiller73] W.L.Schiller, "The design and specification of a security kernel
for the PDP-11/45", ESD-TR-75-69 & MTR-2934, Mitre Corp. (republished May
1975).

[Schroeder71] M.D.Schroeder, "Performance of the GE-645 associative memory
while Multics in operation", Proc. ACM Workshop on Syst. Perf. Eval., pp
227-245 (Apr.1971).

[Schroeder75] M.D.Schroeder, "Engineering a security kernel for Multics',
Proc. ACM 5 Symp. on Oper. Syst. Princ., pp 25-32 (Nov.l1975).

[Sturgis74] H.E.Sturgis, "A postmortem for a time-sharing system", Ph.D.Th.,
U.C.Berkeley & Report CSL 74-1, XEROX PARC (Jan.1974).

[Wulf75] W.A.Wulf, R.Levin, C.Pierson, "Overview of the Hydra operating system
development', Proc. ACM 5 Symp. on Oper. Syst. Princ., pp 122-131
(Nov.1975).

198

199

ppendi . Military security controls in Multics.

Among the various aspects of the functionality of Multics that we have
ignored in the design of MSS is the Access Isolation Mechanism (AIM) , which 1s.
a protection mechanism capable of supporting isolated compartments for storing
information. The AIM was initially designed to enforce the security controls
defined by the U.S. Department of Defense. lhisvmechanism was purposely .
ignored because type extension does neither help nor hinder its design. No
new modularity or structural issues are raised by the AIM with respect to type
extension. There is no interest in discussing the AIM from a type extension
point of view. o - .’ |

However, there are two reasons for discussing type extension from the AIM
point of view in an appendix. First military security controls are the‘only
concept of security for which there ex1sts a‘formal model [Bell73]

Therefore, chances are that the first system to be certified secure will be
certified with respect to that model. We wanted to demonstrate that the typeJ
extension technique, which was developed among other‘reasons, to make virtual
memory mechanisms easier to certify, can be used to oréaniae the virtual
memory mechanism of the sort of system that will precisely be certified first.
Second, this thesis is one result of a project aimed at producing a prototype
security kernel for Multics [Schroeder75). This project, intturn,bis one
piece of the U.S.A.F. security program that sponsoredrthe development of the

military security controls model [Bell73].

Military security controls.

For more information on the functionality of these controls, we refer the
reader to the formal model [Bell73]. Here, we will only summarize the main

concepts involved in the AIM. Four levels of security are defined in a total

200 -

et m

ordering: wunclassified, confidential, secret and top secret (four more may be
defined in Multics). Several categories may be defined: e.g., AEC, NATO, US,
etc.. Sets of categories are partially_ordéred by the set containment
relation. The cross-product of a level and a.category sét defines a
compartment. Compartments are thus also partially ordered by a relation that
is the product of the set containment relation and the total ordering relation
of levels. Every piece of information ié classified into some compartment.
Every agent (user) is cleared for a given compartment?anhe seéurity controls
state that an agent can read a piecé of information only if his clearance is
greater than or equal to the classification of thaf information. This is
called the no-read-up rule. To confine a piece of information to its
compartmént and higher compartments, the no-read-up rule is nof sufficient.
It‘is neceséary to prevent an agent authorized to read the information from
copying it down into lower cdmpartments wheie unauthb;ized agents would be

able to read it. This is called the no-ﬁrite-down rule or more generally the

*-property. These security controls are called non-discretionary, which means

that they not only prevent unauthorized access but they also prevent
authorized agents from leaking information to unauthorized ones at their
discretion.

Computer environment.

In a computer environment, the enforcement of the security controls may
be implemented as follows. For the no-read;up rule, 1£ is éﬁfficient to nevef
give a user READ access to informatidn stdréd in higher‘compartments. For the
no-write-down rule, things are more complex. Of course, it is necessary to
never give a user WRITE accéss‘to iﬁformétion stored in lower compartments.
However, this is not sufficient. This blocks only overt information channels

between compartments.

201

There also exist covert channels, These channels are divided into
storage channels and time channels. S;orqgg channels are those involving
stored data as the support for transmitting information. For instance, if a
low clearagce_user and a high clearance user. gshare the resources of a disk,
they both depend on the disk manager for using the disk. By varying his usage
of space on the disk, the high clearance_user may transmit information to the
low clearance user. The information is transmitted via the stored data kept..
by the disk manager to manage space on the disks. Time channels are those
involving elapsed time betweep observable events as the support for
transmitting information. For instance, if a high clearance user and a low
clearance user share core, by varying heavily his page fault rate with time,
the high clearance user may transmit information to the low clearance user.
The information is transmitted via the variations with time of the page fault
rate, which might not be stored anywhere but. causes delays observable by any .
user.

In general, it is demanded that storage chgnnelsHbe blocked because.they
tend to have a relatively large bandwidth. There are two ways to block them.
First, shared storage resources can be preallocated by compartment so that-.the
resource usage of one compartment is invisible to and cannot.affect other
compartments. Second, shared storage resoupggaﬁganEbeimul;;ple;ed over time
in such a wayrthat two compartments are never.awvare that they compete for the
resources.0On the other hand, it is not requiged, in gggg;al,vthat storage -
channgls be blocked because they tend to be relatively low bandq;dth.chaqnels
and because blocking them would imply preallqgcating time. This would be
1ogica11y_equ;vq1en; go_having;an independent computer for each compartment so
that time dependent events and signals generated by a high clearapce user

could not be observed by low clearance users. This design would be grossly

202

inefficient as it ignores the fundamental principles of multiprogramming. As
long as time channels are identified, they present a limited risk and are
usually tolerated. Notice that this paragraph has only described current
techniques for implementing the AIM. Since we are only interested in showing
that type extension does neither help nor hinder implementing the AIM as it
exists today, it is not our intention to formulate any judgement about the
current implementation of the AIM nor to try do do better than current
technology does.

Application to MSS.

Since the incarnation of an agent inh MSS is a user process, the concept
of clearance is attached to user processes., And since the mode of access
(READ or WRITE) to information is controlled on a per segment basis, the
concept of classification is attached to segments. 1In terms of MSS
abstractions, we have the choice of attaching it to the directory entry that
describes a segment or to the segment itself. If we are concerned about only
non-discretionary controls, i.e. if we care to certify the system against only
Bell’s model and do not care about the correctness of the discretionary access
control list mechanism, it is better to attach classifications to segments.

By doing so, the directory manager, which is a substantial module, and higher
level modules are essentially outside the AIM security kernel. What they cam
access will be constrained entirely by the AIM built into the segment managér>
and lower level type managers. This is a vivid example of the interest of a
partial ordering based on the dependency relation. Within the same system,
one can consider two (or more) different security kernels. The discretionary
security kernel is built on top of and includes the AIM security kernel. The
interface of the discretionary security kernél is the interface presented to

the users. The interface of the AIM security kernel is the interface

203

presented to the discretionary security kernel. It is defined by the
specifications of the qonfigured volume manager, the segment manager, the
known segment manager, the connected segment manager and the user process
manager. Thus, thanks to the partial orde;ing of modules, we can define
layered security kernel interfaces. Every layer of a security kernel is
responsible for the enforcement of a distinguished set of security properties.,
Each security kernel embodies more securi;y_prgperties than. the lower one.
Let us now consider the impact of the AIM,Qn the design of MSS.

Let us first consider the abstractions outside the AIM security kernel.
The classification of a 1qgica1 volume, a physical volume or a dirgctory is
defined by the classification of thg_segment that directly or’indirectly
implements its maps. (The DT is assumed to be split into as many Physical
Volume Registration Data (PVRD) segments as there are physical volumes, Thus,
every physical volume needs a path name denoting its PVRD segment in the file
system,) A priori, a logical volume might contain physical volumes (1) and
master directories in different compartments, a directory may desgribe sons in
different compartments and a physical volume may contain disk records
belonging to segments in different compartments. There is however ome
fundamental restriction on the possible classification of the components of
such abstractions. The classification of the components of an object 0 must

be higher than or equal to the classification of (the map of) 0. If this were

(1) We do not see any use for having physical vqlumes in different
compartments inside the same logical volume. Since all physical volumes in a
logical volume are logically equivalent as far as the user is concerned, we
fail to see any situation that would justify classifying the physical volumes
in a logical volume into different compartments. In addition, this would
complicate the mounting/demounting operations as will soon become clear.
Thus, even though it may be conceivable to have physical volumes in different
compartments, we will assume that this is never desired in practice in the
remainder of this appendix.

204

not the case, it would be impossible to access the components because of the '
AIM. If a user had the clearance for 0, he would not be able to operate on
the components by virtue of the *-property. And, if he had the clearance for
the components, he would not be able to find out what they are because he
would not be allowed to read the map of O by virtue of the no-read-up rule.
The conclusion that the structure of an object must correspond to a
non-decreasing hierarchy of compartments was arrived at independently in NSS,
where the file system hierarchy of directories and segments must be
non-decreasing in classification.

In MSS, like in NSS, we have the concept of a transition object, which
denotes an object of which the classification is higher than the
classification of the object it is a component of. In MSS, like in NSS, the
manipulation of transition objects is extremely delicate. Indeed, a user who
is cleared to operate on a transition object T may read the map of the object
0 of which T is a compénent but he may not write into that map by virtue of
the *-property. Thus, he cannot perform any operation on T that would regquire
changing the map of 0. (In particular, he cannot delete/deallocate T unless
he lowers his clearance or requests the assistance of a so-called trusted
user, i.e. a user who has the privilege to write-down but is trusted not to
abuse it to transmit sensitive information.) We will say that transition
objects are frozen. Practical consequences of this statement for MSS as well
as for NSS follow. A user cleared to manipulate a transition master directory
cannot operate on it (e.g., set quota on it) in any way that would require
modifying the LVRD of the logical volume composed of the'mascér directory
because this LVRD has a lower classification. A'qset cleared to use a
transition segment (directory or file system segment) cannot operate on it in

any fashion that would require modifying the directory entry that describes

205

the segment because this entry is part of a directory with a lower
classification. In more specific terms, a transition segment implementing a ..
directory can never be subject to access control list changes or to moves
resulting from OOPV conditions because this wpuld require modifying the access
control list or the PVID,VIOCX in the directory entry describing the
transition directory, which is ruled out by the *-property. A tramnsition
segment implementing a file system segment may never be subject to access.
control list changes or to OOPV moves and in addition may never be subject.to
a quota fault because this would require updating the quota cell of some .
superior quota directory that has, by definition, a lower classification. -
Furthermore, every transition directory should.be a quota directory to allow
the inferior segments to be grown/shrunk, If this were not the case, the CU
operation would (because it should be coded so) refuse to grow/shrink a
segment if it discovered that the quota cell which jt shoumld update has a
lower classification than the segment charged to it,

Until now, we have examined the impact of the AIM:primarily on the type
managers outside the AIM security kernel, As far.-as this.security kernel is
concerned, we have only concluded that it should never-grant a user READ
access to segments in higher compartments and that it should refuse to handle
O0OPV eonditions and quota faults on transition segments. .

Let us now examine in more details what. .the AIM security kernel should do
to enforce the AIM. In particular, let us study what is necessary to block
the covert storage channels., As explained earlier, it is necessary to
guarantee that every type of shared storage resource be preallocated by
compartment. Segments are not a problem. They are C/D resources, which means
that every UID is given out only once. It is never reused by (shared with)

other users. Thus, whether it is used. or not cannot be exploited as a .storage

206

channel. A burst in the creation of segments would use up many UIDs at once,
which might be exploited as a time channel, However, if UIDs were generated
by reading a microsecond clock and if we assume that it is impossible to
create more than one segment every microsecond, it would be impossible to tell
whether a given UID is in use or not. Known and connected segments are not a
problem as they are never shared by several user processes. Every process has
its own. Thus, a process could never use its KST or DSG as a covert channel
to another process. Core segments are not a problem either because they are
used strictly inside the security kernel, which will obviously not try to
exploit them to leak information. Active segments, quota cells, page frames
and core blocks are not a problem because, even though they ére shared- by all
processes, processes do not directly control their deallocation. Deallocation
ie under the control of the segment deactivation’gnd page removal algorithms.
The above abstractions might be exploited as time channels (e.g., varying page
fault and segment activation rates) but such-channels are very slow because of
the noise introduced by the deallocation algorithms and by all processes
competing for the same resources at once.

Disk records could be a problem because processes are in full control of
their allocation and deallocation. For instance, a high classification
process could use up all the records on a physical volume, thereby causing a
low classification process to observe OOPV conditions on any segment it might
try to grow. In fact, this sort of channel can be blocked in practice 1if the
security officers of the system are careful not to overallocate guota,

Indeed, if the sum of all quota allocated to the compartments sharing a
physical volume is no greater than the total amount of disk records available
on the physical volume, then the disk records are essentially preallocated by

compartment and OOPV conditions will never be observed.

207

Passive segments and disk sectors (i.e. VIOC entr}es) are a problem (in
MSS as well as in NSS!) because there is‘no meghgnism I;ke quota for
controlling their preallocation. Thus,rby varying its usage of VIOC entries,

a high classification process canAtransmi; information to a loV classification
process. The only obvious way torblock this channel §Qort of introduciqg

quota on VIOC entries is to require that all‘tragsi;ignQQiFgthFiesipgvmaste::5
directories‘and that all master directories foria>%ogiqa1;vqlume:be in the .
same compartment, OT, in short, that each;log§¢a} volume belong in a single
compartment. In other words, this says that all the segments of which the
passive image is on one logical volume must be in the same compartments so
that the VIOC entries (and the disk records too, by the way) on that logical
volume are not, in practice, shared by several compartments. The latter
statement does not require that the logical volume, physical volume and
directory entry managers be in the AIM security kernel. The compartment
associated with a given logical volume and its component physical volumes may
be recorded in the label of every physical volume. This label is secure
because it can be accessed only by the configured volume manager, which is
part of the security kernel, Thus, every time a user process requests the
creation of a segment with a given classification on a given logical volume,
the given classification is compared with the classification of the given
logical volume. 1If they are not equal, creation is denied.

Finally, configured volumes are not a problem., While it is true that
they are shared and not preallocated, it would be hard to use them as channels
to communicate information. Allocating and releasing configured volumes
implies mounting and demounting physical volumes, which is a slow and easy to |
monitor information channel, |

In this appendix, we have not tried to propose any new solution to the

208

implementation of the AIM. We have not tried to design a new mechanism for
better implementing the military security controls. We have simply attempted
to show that the restrictions imposed by the AIM in a state of the art system,
the problems of implementing the AIM and the solutions to these problems can
be handled by the type extension concept. Whatever can be done in NSS can be
done in MSS. And MSS is not particularily helpful to implement the AIM. Type
extension neither helps nor hinders sealing off storage channels. Type

extension and the military security controls are orthogonal issues.

209

Biographical note.

Philippe Janson was born in Brussels, Belgium on 7 December 1949. He
attended high school there, graduating from the Athenée Robert Catteau in June
1967. He entered the Université Libre de Bruxelles in September 1967,
receiving the degrees of Candidat Ingénieur Civil (June 1969), Candidat en
Sciences Mathématiques (October 1970) and Ingénieur Civil
Mécanicien-Electricien (June 1972). His major field of interest then was
electronics. He received a Harkness Fellowship from the Commonwealth Fund of
New York in September 1972, which permitted him to study Computer Science at
the Massachusetts Institute of Technology, where he received the degrees of
S.tl, (June 1974) and E.E. (February 1975).

During the summer of 1974, he was a staff member at Project MAC (now
Laboratory for Computer Science), working on the development of the Multics
system. In September of 1974, he became a research assistant at Project MAC,
working in the area of system design, which is the subject of his doctoral
thesis.

He is a member of the Association for Computing Machinery and of the
Association des Ingénieurs de 1°Université de Bruxelles.

In December 1971, he married the former Catherine Rolin. The Jansons
have 1.9 children, Perrine and X.

Publications,.

"Study and discrete simulation of the scheduler of the CDC SCOPE 3.4 operating
system'", (French), Engineering Dissertation, U.L.Brussels (June 1972).

"Removing the dynamic linker from the security kernel of a computing utility",
S.M. and E.E. thesis, M.I.T. & MAC-TR-132, MIT Lab. for Comp. Sc. (June 1974).

"Dynamic linking and environment initialization in a multi-domain process",
Proc. ACM 5th Symp. on Oper. Syst. Princ., ACM Oper. Syst. Review 9 5, pp
43-50 (Nov. 1975).

"Validating the protection mechanism of a computer system'", TRIA Workshop on
Protection and Security in Data Networks, Paris (28-30 June 1976).

210

