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We present a theory about the logical relationships associated with system behavior. The
rules governing the behavior of a system are expressed by a Peiri net. A set of assumptions about
the modelling of a system permit us to ssparate system behavior into two components, what we
refer to as information and control Information i concerned with ghojoss and how they are
resolved. mummmuﬂzmcm thess aspects that
are independent of choices.

_Wedwcbpamaptafmfwmmntmummm It is not inconsistent with
Shannon's approach, but simply proceeds from a more basic ides: It deals with pessibilities, rather
than probabilities. Our approach embodies four common nRotions about information: (1)
information distinguishes betwesn alternatives; (2) it ressives choloss; (3) it is transmitted and
transformed within a systems; (4) it says something abeut past bohavier (memory or possdiction) and
something about future behavior (prediction). We cun. identify thess paints at which infermation
sither enters or leaves a systam, and we can trece information 53 it flows through a system.
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;s:l‘iu‘;iuq When brought together, they provide a technique for predicting and postdicting
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12. Petri Nets: . |

Petri nets are a class of system medel_Litke tog first three types of models mentioned above,
mememmdesmmvm However,
unMeamddwfmmMﬁmmmmnfwmm
employed. Uniike finite-state machines, Petri nets m.mm to describe a syatpm. in. Jerms.of
& total; wnatructused, system e Bt ek they atlemfos, 3-dlaribuind. e state in which
“many individual states- may. hold cangurrentis.  Sinee Pewe nets-ape 3, genecalization. of finite:
machines, they recain ol the repemoninions! pomsr of ks Sahipg - 8. packcUy, the sbiley to
- enpress ahernatives. . In: relation to the medel of SyeemDynamics, Retrl nets.are: based. on more
primitive concepts and, Mmmamm '

APMM“W:WMMMW:NWM‘M&
mmmuwm’uﬁ)hmmmmwammm
mdnwnudrcbmdmuw Mmuhmhl’@mu‘ o




" We say-that state s is & precndition of Event ¢ If hd only if thée Is an arc leading from s to .

 Similarty, Scate s 1s & postsdiNon of Event ¢ if and only if there is an arc leading TOm ¢ t6 5.

Thus, in-our example, smies b snd & sre the précondions ot Tveit 3; while saies & wad ¢ are the

Before we can use a net (0 simulate system behdivior, wm’mﬁm it. ‘This is done

by designating certain sates as it} conditiens:- mmmm shewn graphically
by placing a ‘token’ on them: T '

v
1
0!
0
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- {comtains a token) then that ‘event ‘may ‘ggtur (fire) The cccifreiicsy "if_‘:‘wlnhoﬁhgcf
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prenondlﬂomandm In general, there may He Wverst: mmﬁq
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and, therefore, the occurrence of either event will disable the aﬂ!tln Figure mmq 2

another set of holdings. nmuwmmmwmzmﬁvm
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13. The Problem:
- For the designers and mdmnwmmmmmmm
bukofﬂnday-eo-dlypnblanmiﬁywaf f”)’mMde

'W‘.,

(1) Under what conditions wmm mﬁmm be produced?
(2 Whatmmemmdtmm&ew

8%

() What are the effects of » system modification?
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- bhavior by examining. the. logioal struciure. of the. e, i . W GMe, s, the, net
wm- N D . : £ e e s b g e
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influenced ancther. haMmamuwnuMM For our purposes, we
can distinguish Butwaen o types of choios: {zas chaioe o4 cunsiained choios

P

(a) Example of Free Choice  (b) Example of Constrained Choice

Pigws 1.3 Cholse

In :mrwmmwnnmmymmmmmumum mdthutshow
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dependency. rmmmmmwwmnm»wm

‘at the ‘simd cisdics. - The only: hep appieaied toidie-in discovaring the mechanism

and there was no ‘way of dchitving sar-gosh taing' unrenrinal-nets;: So we -had tofind a set-of
restrictions that permitted us 1o trace the flow of ‘influences’ while still maintaining: genersiity.
* Turing ‘machines -had ‘shown: that & :model could ¥ siversly resivicted withewt: yeducing its
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< will be used. inour theary te pravide 3 netion of. oo,
Mathad graphs are the: dusl of ade mchion, MMM*MMM

Akhough they've not been studied Wuumﬂmm '

‘woll undesstend. B, 4; %12, 161 The:mest astpble: choras

- describe: only: = fixed; sepaiine;patiorn-of. beavier. Il b sunotder
Free-choicg nets are- goneralieation of - beshoiaty meshiensand. ssarked. graphs.. . They

perinit both concurrency and cholce. Some significant resuls have boen obsmined 5, &1 byt as we
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Hok -has continued his work in-the.apm of e but u': mw wmm owr. ‘approach
relates to his since. hia-oew thenry. 4l 4s. UL In. I8 Sommti

o M0t 990, ‘w0 mew body of

- Chapter 2 - Patri. Nes
Thcbukmm'ﬂh&mmwm Its; st 2 bipartite, dirscted graph.
~ A Peri net is.a st to which .we attach..a.special: jnirpretation. and; for which- we defing a

. simatation rule’. A giaie grARh (el meshing) -8 Jatsh net jg. whick sach guans s sxaqly one

; ;mmemmmMmMrmum which sach
' gtate has exactly one: incident ars-and.one amergest. & -A, Siale sammpnent of 2 Reri ot s 2

- smte-graph subset- in which all -ares connectes 10 2. SANSIPAISE . Ml 308 Jeed.. An gysnt

- gpeponant of & Peirl net ummmumu sconmaded. 1o aparticipating

- avent are used. A Petri net covernd. dy:siaie-compangnts (seant. cempanents) is wid.ie. be gate-

- gragh decomparble (eventwreph demmpnsahie): We: provs-tha: i€: 2 Reth nat. is bpth. SGD and
The sosuiation [uls-gmersies & o0 of passial ecslers aigulniiona). ach defining a Nty
- raiation ameng a. s of see.hpidings a5 evenk osgaczmons. Thase 478 fosr s in, which. fwo
instances (holdings or occurrences) x and y may be relatesh %:and.g. sy be colncident e, thy same
instance), x may precede y, x may follow y, and x and y may be concurrent. ﬁeshowthatlna
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Some basic assimptions sbout the modelting of-€ sysem sre presented. Tiise ave:trasiuted
A system is s defined as & Petri net - the gyssem et~ together with (I} & set of subsets of
states and (2) & set of subsets of events. With the help of five axioms (reflscting our sssamptions),
we're able to establish all the features of our model. Thubmdmmuad»xwa
covering of "token' state companents, ﬂnmﬂhm The subsets of events are used to
generate a covering of ‘event components, the modes of the sysem. Th:parts are local itructures
‘gtate behavior. The modes may be viewed-as the ‘neveral frequenciis’ of ‘the sysam.
To extract the control sompanait of syibem bshavior,we Nrstgeierats the ghgrnative giasies
of the system. This is-dene: by ‘cellapaing’ each of the passi. ‘The:akernative ciasses: gartition the
. states and events of the system net: There are:two-types of allerative chases: -those that contain
aiternative clases induce-s: quetiont net that is:an.awent.ghph.. Thia-is the-symtzel siruciupe of the
- sywtam. ‘The mestings form the events of the control ssssuss; ‘whiie the: links: farm:the atates. - As
lost i3 nmm»mmmmmmmm of
the sysmem. net); there is & corresponding centrol simaltie (smulstton of the convel structurs), and
 the two simeiations are-isamerphic. . The second simulaion is cbtained from the first by seplacing
each msumoftnmw%m instance of the akernative cinss to which shat element-belangs.
Distinguishing between alernatives is the domain of information. That's the topic of



chapwi.mm:sacc&pnmm;mm We note here an important
result of mmmumnmmmmmm

| m«uwunhwummmmwnm do not
 Snformation-content. S0 1ew % ajsten mwwmw
/0 the aaERAI1e0 ht 0 which ®t Setprgs-und 104N gl v asmaculn - oplor
R ————— Whink of Yetermaston s tobems wadgmpdots At tekend' a the eontrol
_straceure. By’ mwmummmm
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tapt-of-infermnatic mdﬁmm»m
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 content of the event's

‘ mwmﬁuM¢hﬂundm~mm~h" s
conflict with ».

Tmummduwmcumnammmmnm"
conflict with ¢. | B
“This meam mmumnamnmmm mm is

" forwards confiict, and is st by s Sjehem at precisety th =mﬁbw
" Purthermore, the infofmatioh gained ""»'&umsm' 2'skiation & equivalnt bm nghow

the choice is resolved. The samé sorts of ideas apply. o coNstilned cholols, sRTUpt Now the
information to resolve the choice is supplied by the aystem.
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Chapter 5 Comtrel
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" smame event.are snlty onderad). The vakn of A in this st i reaied 4 e scugrue

- graph shraugh:the comvop,of. psehsenic del.. mmgg. b onnucing

- qvems in-an. mwhm‘mswg*mmm;

s pathe aving mwmam 'l'h
~ sbove.
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of "back-cone’ and 'front cone.’ The back cone-af an event-« in:an-event gmph is the set-of states s
such that: there does not wtist-a path of: delay sere teemisating at:s:and whoss:Sigst state is 5. The
- front cone of ¢is the st of states 5 such m there doss net sxist: s path of delay zero originating
‘at ¢ and whose Inst state is's. There is a siingle selsttenship betwesn:spnchizonic delay-and back
‘and front cones: =
mmm«uyaam;(mmmm)ummmmamm
back boundary-of x'sheed is cromed. -
- Thie synclironic delay-of a path 4 is equal to the: number of times the {rat boundacy of u's
@l 1s crossed.

Cones have an extremely wecssting ‘connestion 1 the simsiations af an event graph: - The mates
of a particular cone define a series of cone-like slices in each simulation. If it's a back cene, then
dmmﬂhmﬁmpﬂmfmﬁgmﬂ“t’nfnn&mﬂm they point backwards. At the
tip of each ‘cone’ is an occurrence of the reiated swent. For that occurrence, the ‘cone’ provides a
boundary between the past-and ‘not past’ - If it's 3 back cone - or: the future and ‘not future’ - if
#t's a front cone. Betwesn any two consecutive ‘conss’, mm'mmd each event.
System space is assuciated with she notion of 'syacheanic distance’’, which is.a messure of the
“dmek’ betwesn two events. - The gnchronic distance betwesn:twe eyants in-an-qyent graph is the
~ neivisnal token loading on these circuits containing: bath events:; When an event graph is strongly
- conmected--and free of blank circuits (circuits withawt any.-johene):syncheamic-dissanes delines a

© reseitan the sst of events.

! Do not confuse synchronic dohy and synchronic distance.
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Within the:coneot somulation, there is 2 'Sotal ordusing Seeng: eccurrences of ‘the same
- mesting. For ench such. toml ordering, there is.3 ‘corvaspinding:seiai erdering in: the: system
. aimwsiation ameng oocurreness of . thess mm..aymmmmmm
. system-simulntion; the -u.mum-u M&wl&fu onuerenet of ‘Rvant ¢ then
1w smy that ¢ i the 13h iaaetion 5t Mesting ' (fe-that spmdn m)- ¢ isn holing or
' aocurrence i the:systern timulation, then: we-oas 3pemk of the: ' mmmm_
1 g’ In this came, movilt be cliher nagative:or paciiive, depuniiig Wpe Wiiethir the: GenvIvance
- associated with-the tranesction-is befersior aftarg. .
‘We now:-consider the following problem: -

w’*mmchwmhmmmmmqummm
-akernptive ciam ¢ If mealdneriwhich M War A MNANS o, Wt WO this
mmmummmmmwmmn,.m
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\ ’mmwmwmmm»mmmrmmmm mu

SR
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My&hmdmanhmfmmmhdmndfmmm and vice verma. Of
mmmm&nynMMMfuanMqummnﬁmrdsu

B

%:mmmmmuymmmdnmmum-@m
" requirements. wwummunqnwa‘mmm)ﬁﬁmm
lnfmﬂonlmdaudwkhqmuhummwwﬂm“nmwbichlt
could mnmmmw mmdtanm
modes. Since wmnmﬁ.nmmﬂﬂthhMqu

mmolyudummoﬂnmh.



 For ensh encheded vade; we-now that by traciag the schusion backwards forwirds) we're

. golng-10. generats & shaet-of the slsuintion sadlinting: e~ (Gen-of) ¢ Tien subnet: defines a
with .figite speterss, thers i & finie: way of charaaterining the det-ef {forwasds and Smckwards)
. partial histories asocietnd with-each !._la ade:: Pibe-omuns dnsiribed in-Chajster: 5 vagr be
used to 'stice up' the forwards and backwards pastiel deltaries <basks werses:for:buskwands histories

and front cones for forwards histories. This pessies a ‘lwlgic To
Sugnf!&ngﬂgg]g;’igggi

,..%gilig ?ﬁ!&li -C.i-s_. 'state’
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;Ba..a..-....!..... gqs!&!..-.g rtsn!.s.ﬁaﬁsapin.!
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" (1) foundations ?? set of 8_?23!..? 89-3833
(2) semantics - (What sumsings:ouwe: sitaciras i wonespths of bk (hisry?) -

(3) methedology (How is the to be applied?)
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CHAPTER 2
PETRINETS

21 Net:
Nmmmmmdmm.

o Aggisn mwn&nmnm;w ,
Auamheutdmcm (Nwﬂbvinduabipmmmphmm
AUB as the vertices and C as the arcs)

lunun:hununwud1nummmnduuhwmnmxgumuwcmﬂﬂfermw&

‘%= {y|9x}
x* = {y | x9}

Definition: If N is the net <A.BC>, then R is a ssbnet of N, witten RGN, #f R=<A’,B’C’
where,

A’gA
B’¢cB
cl c c “Alxnlu leAl)

Property 21: A subnet is a net.

Notation: If R is a subnet of the net <A,B,C> and RecA’,B’.C’>, then,
for X g AUB: Xp = XN(A‘UB’)
for YCC:  Yp = YNC’
Qp i1 the resriction of Q to R.
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22. Petri Neu:
The rules governing the behavior ofia: 9w gre expressed in terms of a Petri net.

Definition: A Petri net is a net S.EF> where,

S is a finite nonempty set of states

E is a finite nonempty set of eYenty
F is the flpw relotion

If seS, mmma‘smmmmdgm the elements of 5°
mwd; EM&MRMI tmuld ﬂnmw

et i a quadruple <8, K, F, 1> where,

I8 4 the s of intinl sonditons

Definition:

Definition: A 3ate graph (state machine) is & Pairi ast S.EF> in which,

Definition: Mmm - }thn zﬁ
vies: [3f= )=
"Each state has exactly ane input event and one: 3.;&




(a) A State Graph B (b) ‘An’ l?v‘nt Grnph

Figure 2.1
w1 . - :
S ORRERR N 17 IR

swmammhmwnmgmphmwdmm;luﬁﬁ;@mmw
. mwmumwmmnw)upmmwmmu

‘ “ﬁ# iy T

L

ovisted refiesintitio hmwunmm:m
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Figure 2.2  Abbreviated Repressntation



Definition: If N«s.t.p is a Potrl net, then Re<8”.5"*> ia » yials camponsot of N iff,

@Risac mmm
(c) P' - Ff‘&’xl U Ex§’) g

'R “‘ . ,

Definition:

(@R psa nen-empty event graph
(B REN W, BT
() F’ « FN(SXE’U E*X8)

'R is 2 connected, mmﬁuﬁﬂhmamm»a

k “ BT L SRy s R T AP A e [ BRI ded ERLE AT
Definition: A Petri net is said to be BGD) I‘cldnlnmt&néﬂms

EENSAR ) A ) & e ¥ n *"ﬁ'ﬂqm bl 4 i@_"ﬂ!g} o s v adreney o ”é s

) .
st

Ctae) Rl e Bias 50

tnrmnzsmm.wmmmu“”
i; b ZETR e
the Petri net N. Each of the two nets in Figurs 250 s & s ’%Md‘?xu&g ‘amn

~ two nets in mehmmmsfﬁ. Netice that sach state component selects all

amwwammpmmmmmmaﬂﬁm With an event
mmmumm kMﬁwMﬁmanmm
mmmdmm.ucormm mmudnmuﬁiﬁnmdm
nndaunmwm l&un’lah&&mmyhmml
‘!d-chtypduumhpdm




(a)

(b) A Sthte-graph -
Detomposition of N

Figire 2.3

»(é)‘An,ﬁvent-é;;ph
°  Decomposition of N

Lz
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Definition: A gircuit is a (directed) path whose two endpoints are the same. An glementary circuit
: uammMmmuwmﬂum

Lemma 21 lnaPuﬂna.tmumof Wmmmua
MM)M&mm

chmexmtymx“

amortheennt
lnddmmandmmwmtw
has exactly one incident arc and one

mmmm««mmm (|

Theorem 21 lnavmnumuumscnmmn mmmmﬂw«yu«n
mbmm | 5 A

Pmof We prove the thedrem’ for state

elementary circuit. N&v from the “m‘r‘d
- connected. rmmumfmumueumm o

23. The Simulation Rule: o
lnmmmpvemuwmbduuspmdmwwrwhmm lnthu

section, we formalize that rule. wmummmmmpm of Hok (10}

The basic idea Is very simple, “Given am ihitinbised m&%’"‘ Wo$ Rule generates all
possible finite "simulations’. Mmﬁm“mamm:mamdm
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‘holdings’ and event 'occurrences’. - m«mm mzﬂkmd ‘terminations' and
‘initiations’ of holdings by occurrences. SRR

Asimuhtion unpuunudna ut <H, O, G»inm&uﬂnutof holdhp, O is the set
ofoccutremu.andcutheuuumynhum lnntd«mdhunguuh betwnnmted instances
of the same element, an instance (either a holding or an occurrence) is represented as an ordered
pair <x;n> where x is an element - the.'instance type’ - and Rhtpﬁlﬁvemm - the ‘instance

number. The Simulation:Rule is-defined recursively. The. initial simulation is a collection of

isolated holdings of the form <sJ> where s is an initial condition. In a simulation, the set of
unterminated hokdings is referred to as the ‘front ma:y'ého simulation. When there exists
amdhﬁmmmrmbwmndmummhmnwnm;dmwmgfor
each pmdtvmo.thmamumhﬂmmhm The new simulation
conmnsonencwmmferlvmumdone;mholdhgfwnchofc’spmxdmom. The
mmmdcm'mbmlgwymmmmmdhpmhmmd
"initiates’ the new holdings of ¢'s postconditions. )

To create new instances, we. smploy an auxiliary function, -
Definition: ¢(xQ) = {<¥, IQN{<]XN)+i>}

w(x,Q) creates a set consisting of a new instance of !:I-m X UheAnstance numes

than the number of instances of x in Q. Asa rwk.m .‘
in numerical order beginning with 1.




“Definition  (The Simulation: Rulsk If Z is the initisliaad Pesri n&ﬂ&& buthem, .

(1) <Ix{l}$.4> is a gipulation of Z. TR RN E5

(2) If T 1s°the enialing stinutition 4,0, € andiif. A ds.0 st of olings’ in the
Tmmf«TMcthmmMﬁwdtvmc.
hh, vy et g e L e

. au‘ 'H)i ‘ T : Cd it e g teep
O U 9(e,0),
cUKN‘:@“iﬁﬁM‘W‘H&Mﬂ&

 Step (2) 1 thuscrated in Figure 24,

m 't“- "1 < W ) i 7"%3‘;;:135.;;4

Definition: If T is the simulation <H,0,C>, then,
'Humuwmwr L EA

t we're using a notational convention hve. I the Uenikiei-of hi “Puintitn“f4s Q, and if the
mmmmwmmmamxm ,

AX) = xgx fix)
Thus, 9(¢", H) = ’2. »s, H).



e
A
' %

The ordered pairs in C are the glemes apnectic

said to (initiate) Holding - mamlmm

leaning from h to q (q to h). mndwm)hﬁmuaued

memnt(buk)ma'r ‘

In thegnphlalwnﬂonof:ﬂmuhﬂu;thvmmdnmum The

slmuhuonlnszéhmdmmtmmwhme)ms“ml.d.md

g designated as initial condisions. m&mm»:mmagnphml

npmmudmaﬂbuuuthqmwhmfundwﬁmmmhmmm The

abbmhudformofthemml’hn%umu}fwu Note that this practice
humcffoamunmwwam

Thcfmmmfollw Mfmmmm

Property 22 Amuﬁm

Property 2.3 Mmgummmmdedﬂmm
mmﬁﬂuduﬁm

Property 2.4 AMM&MMMMMWMBMb’mM
than one occurrénds. -

Property 25 A simulation is circuit-free.

Definition: Consider the result of taking the transitive and refiaxive closures of a simulation.
The new “gructure is transitive, reflexive, and - because of Property 25 -
antisymmetric.In short, it is a partial order. We write x<y to indicate that x is reiated
to 9 by this partial order, and x<y to indicate that x<y but x»). We adopt the
following terminology,

xwy - ‘x and'y are colacident’
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Figure 2.5 A Simulation
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xSy - * precedes 9
y foliows »

*$y A ysx - xandyarecmcumen
(Nmmabymmvm”mmwmdfmw This is not

mluago.huk‘smmrywm Neotice that concurrency is
mthhgmtlmdnuhmd

E .-»“«;‘“ :
mmtmfouﬁm;mﬁhmxf‘qn

Property 28: Ifthcmcfm::mmlym

«n»mhmt‘l‘.ﬁmh&l g temace of x following <cm> iff
HM Py . “';,v"” e

simulations.

Definition: For a directed graph G; () denotes the paths of G."if G is 2 sialation, then each

Notation: u;umm«»,mc-ammnummama
instances in the obvious manner. Rih‘@wnmuapﬁham
Mthaﬁ(hm : .

Theorem 2.2: xf'rmwmmd@mum“a» then,
cd!m"tﬂ(mf
"The image of a path in T is a path in N’



“Proof: Evuymmruahud&tfmmmwmw This
anhmp«qzsmﬁdn diié ,

Definition: AM& a simulation is a path originating in mmmgumhm
and terminating in the front boundary.

 Definiton: If Ta<H,O.C> is a simulation of the initisNsed-Pegri net S.EF.
of <8,EF>, then r

for Ag HUO: Al = {qeANe(SyUER)} )
'AR contains those instances in A M**me
for BEC: By = {<py>eBich, >aFy}

Ta e

Property 2.7: EThamdmem«bawkhnMdN then
Ty is.a subnet.of T. : . ;

Propecy 24 I To<t1,0,Cois 2 plton of o nlbisiond, P et 15

of S.EF>, then
Fp - ms.xr..u EgiSy) o Cp- cm*;no,u OpxHp)

' 'lfF,cnnMcfallm(hP)MmMofR mc,mmaan
_m(thMmdg,, e 5

and R is & subnet

Property 29: If T = <H,0,C> is a simulation of the initialized Petri net <N,I> and R is either a
state component or an event component of N, then,

Cgr= CFKHRXORU OpxHp)

'Cp consists of all arcs in C connecting two instances of HxUOy '



S e e ey

Theorsm 23 IITMW#WWWMMm n~mmm«
N, then Ty conciets of fipidiejint ommade!. - |

Proof: lfTumtnuulumuhMofﬁb.MT‘mﬁmmmlnxm Thcy

Now suppose that <H,, Oy, Cy> is a simulation of <N, I> for which the theorem is satisfied,

and that <Hg, Oy, Cy> is derived from <, Oy, C;> through a single application of Step
(2)dmsmm TMM“&M«“:#‘WA&M
ity O Cismeh e, © 0

Hgq = Hy U g(¢"Hy)
Oz - O; U “‘.Ol)

Cy=C U A"Q(W# Qi Hy)
From Property 29 we have,

(Cy)p = (Cyly U Apiakapiy Wﬂ%“"*@h

TMammmmcumhl wcwm 'R. In the first
case, [Agl = Ke(eOpigl = Kele'Hypl = L And in the sscond Al = Kee.Oplpl =
x.(c.u,».u-a zmm.mmamfc«,o,c,» a

S e g

lnthemtofl’lguu?? thmha?-wkmmm%ﬁmmm.evm
and arcs that le on the outside ring. According to Theorem 23, there should be two strands
"anﬁtmuwmmwhmm mMmmut
thesimuhuoninngunz& Nm:huthenumrwummmz-mkmm
- component - thelmldcrlng andfourmauw TlnMermynrtfythnhe
mmarmuummmmwmwam

t Hpl is the number of ‘tokens' on R.



CuohryulfThamofﬂnWMNu&u».mdkhaH&-\m
mdﬂ.ﬁn?;mdnmm

c:uonuyzzxrdi,o.cm.qummmmm«n».mnmmmmu
component of N, mmmuu,uo.mmum

Corollary 23 uruamwmwmmn byl-bkmmmu.
tlnnwhh'rhmduchduumm m-d



38

«Q
.
rHh
.
lop
0y
0

Ve
N\
AN
N\
AN
AN
N /
\7
/7 N\
/ \
/
/7
/
/
7/
¥

[+))}
/
7/
Ve
=
r d
%
o\
AN
N\
AN
\,
/w
L)
(0]

*®
\
AN
AN
\
N\ N y
7/
\
/
AN
/7 \
Vs
7
7
. 7/
7/
»

\N
/.
7/
7/
7
Ve
%
%
N
\
AN
\.
/-h

/\n
7/ %
AN
N\
N\
\\
AN //
VAN
Ve AN
7/
/7
/
7/
7/
y

.
'—h
o]

\w
/
7/
/
&,
¥
%
>\
\
\
\
/r—'

0]
.
[V}

Figure 2.8 Strands of a State Component
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SYSTEMS:

Like any.theory, the one peessnted hare is based-on-cestain.assumptions. The ms jor ones are
- the following:

4)] Muwnhuchmhamofmmmdm dnsymdumu.

) TmhghlamwsymmvbrmNMupm in terms of the

) Mmmmmmmmmmmmuum
pmmmmmmmdmm '

(4) AsymmthwmmmunWWW

(5) Every.aysem cloment Ja-part-of -t least.

'Assumptions (1) and (2) represent an attempt to find a common ground for describing the
myriad facets of system behavior. The notions of state, event, holding, and accurrence appear to
be general enough to encompass evarything that one might considar to be 'logical behaiar’. Note

Because we're-daaling: with finite spstems, thern.mwt be a:finite way of char
constraints that a system phcu on the holdings and cocurrences of its slements.. Experience with
Patri nets has shown them to be enlly suibwd for chametecining sweh-consalots. This i the basis
for Assumption (3). |




]
3
¥
!
]
¥

0

The most natural wey of introdutifig the mition of aklernativeness is by assuming the
existence of sequential components. Mwmmtmﬂmdm
elements into akernative classes. (To be explined below). By assuming that akernative classes
from different components do not partially overiap, we get a partition of the entire set of system
elements. This is the meaning of Assumption (4).

important concept in many different m kt these disciplines have bpew bestd en
QWMMMBMﬂtmw mmmmwm

LN
Jem *i];,p I

mpn&mwﬂhnmwm“bmww Afural.mntryh‘w

dd it o OwegLe Iodps s

dwlbethcmmhywh“ﬂﬂﬂm
The five | ”mmwwﬁtm m%afm

D eI bg g ‘vf?‘*ﬁﬁ €47 fuy 2%

., incorporates ﬂnum meMwymaﬂdek

~~~~~~~ & e Botnasoreh 80 v e S

mwmwmwwmwm Much more
i - the miimptions they

I 'the preceding chagier we'disinguiihed bewenne/Paieh it and an linttialized - Retni et
We do the same for systoms. This section and the next three are: solicernadwioh thepurely
xl ‘propertiel ‘of u: spitans Sestion"S i -aNanerend: willivtigriiohavisenl propusiies of an
| ’"‘f’fémnamm ; , T el BAT 6 e a5 e aralp o

" We Begin' by defiving the st 5 R wemmuwmm

S O R e ¢
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of states and 3 set of subsets of events. mmmeWuMammnf
state components - the 'parts’ of the system. Thombmdwmwund wgmmaeonﬂng
of event components - the 'modes’ of the system. ‘We could; of :course, have included the parts and
modes themssives in the definition of a system, but thars-would have been::a grest deal of
redundant information. We're taking advantage of the fact that a state wh whiquely
identified by its states, while an event component is uniquely identified by its svents. Note that for
a given Petri net, there may be several coverings of both state components and event components.
The constructs of the theory will, m,Ml. depend. upon -which:covarings are selected, but the
implications of this are not fully understood. -

Dlﬂﬁltﬁ!l 5 <N, DP.Dm>where.

N <S5, E,F>ulPetﬂnet theu#ﬁ
Dp < (P (S) is the part decomposition
Dm < ¢ (E) s the mode decomposition

Xmsu&mmm

Axiom I: N is connected.

This axiom merely prevents a mfmhﬂWMMw Thisisnet a
~ real limitation since in such cases sach connected component can: be treated a3 & separte system.
Axiom 2: S = UDP
A .
VACDp: <A, "AUA’, Fn(AxEUExA)» is a cannected, m-empty m graph
"The sets of stated in Dp generatea covering of state components.’

T (X(A) denotes the power set of A - Lz, the set of all subsets of A.



2

Definition: Tise state companents generited by the 3t in g are calledk she. parts of. 4 The setof
ptmisdm byP

Whaen the system §is: inkialised, we will requirs: that stch past be assigned axactly one initial

Axiom & E = UDp
A
VBeDyy <"BUB’, B, FASXBUBIS) is o conmected, Sen-smpty event graph.
"The sets of events in dyy generate & covesing ol swint companents.’

Definition: mwmwwbththRmmmmu& The set
of modes isdenowd by M. - -

mnmuwummm.mrmmdmvm T’hemforthls
interpretation are simple. ﬂwwmhinvolndlnammofmvbr.mmaﬂd
the states connected to that event are akio invoived. P«ammumdamdmu
pattern the situation is different. chpnmmmm“mwmdmcmum
invoived. So we seu that stendpatate behavier i actunally auuciatnd-with evant-compenenis; In
components that comprise the modes.

Property $.1: Every part and every mode is strongly connected.

This follows from the fact.that N is btk SGD and EGR.. (See Theorern 21) . -



Property 3.2: N is strongly connected.

smNummmemwwww(wa.u
must be strongly connected.

$3. The Parts |
Themlmmmfwh&dmmmw“muumunm”mnwlm
thcnotlonufmum WcmmeWMmmm
munllyexclnuvo. Mh.tfmnmnhmummm«wmmm then
thqannuhm;mun. mmmﬂnydmmmﬂmmmu
wmmhoaumrmﬂyunnpmmmqbuhhmhnm‘blﬂm
state component - that is, a part. But we don't want to say thet iwé Weinunts-dfe shernative just
buuuthqbcbn‘bthcmpm. meuph.lfﬂnpuﬂmhudndnghohm&ry

CEEy

drw&ﬂmmmehmmthcdmkmhuﬁb&muu 'l‘herebanmmon

o
R4

however, in which two elements would definitely be calied akernative: whcn thq are akernatives in
choia. smNrMhhmwNMMm»mtmrds
bukwuds directions of tlm. we MM!‘MMMMM In Figure 81,
Events ¢; and ¢ are akternative, as are Events ¢ and ¢, We carry this idea one step further by
defining the Mn closuee’.of & part:. If: two-elements ins mmmm
immediate successors within the part are alko Muwwm predecessors.



. Figures.2

; hﬂl!mmd' S(Xr)’llld!thll.

= SRR LY S T

thxl;. xecpx .. o
V"xv"z#a&‘ Xp xeprg A «81"3'“‘1"9’ V("a"‘l’*‘o"‘z» » "s‘rx.

Wcuythltxlmds,mm&?)mqu&bﬂqﬂg- (Wedonotnr
that an cloment {5 alemative with idp) « Wi 7 &0

Theorem 8.k For Pep, ocp is an squivatence relation-an'the dleniets'of P, and,

events.'

'It-lsaneqluvalmanhuonontlnmx then X/= denctes the set of equivalence classes
induced by =



1%

Proof: Reflexivity and symmetry follow directly from the definition of «cp; For transitivity and
the second part of the theorem, we make use of the fact that two elements are refated by ocp
iff thmuamfm(m)whkhmmgpmudqulmmuw(from)thon
two elements.! Thmifu,bnhdbd,c.wm W whith e leiug|
and |ual=ln g}

- -

Because a part is strongly connected (Property 3.1), there exist paths ug and ug as shown.
This gives us paths of equal length leading from b to ¢ and ¢ - namely, pguamgey and
Mshgpgny. Thus, cecpc and ocp is transitive. To see that a state and an event can never be

sliernative; it is only necemery:te note thst betwsn-any: twadaies Hit paths. are of even
hngthwhibbﬂmamandwﬂmuapﬂumefddhnﬂh o

Now since ccp is an equivaience selation on the:slements: of: Past P, ocp induom 2:quotiont net
of P.

‘Definition: For Pep,

P = <{l, | se8p}
(leyiley> | wpetpl>

! This fact may be verified by the reader.




Property 33: P* i3 a net.

 The mathod of generating a quatient net 3 iBlustrated in Figure 3.

1 2 {1,2}

b () alC c {bic) {a)

3 4 {3.4}
(a) Part P (b) Equivalence Classes (c) P

‘Induced by o

mmmmm:«m»wuumm Tlisuahqstheau.
Whatsme.thchngthdmehadmﬁhqndh&ugd@“mdlvm)dtm
lengths of ‘the-dlementary circuits in the correspondisg:pert <+ -
Definition: If G 1s a strongly-connected directed graph, then,
7(G) = god {nin is the langth of an elementary circutt in N} |

Theorem 3.2: For Pep, P‘hmmdmﬁtdmm

Proof: The definition of op eliminated alt bnn:hin; both fornrd: and backwards, in P*.
Because P is strongly connected, 50 too is P*. It follows that P* is an elementary circuit.
Let n be the length of the elementary circuit comprising P*. We note that two elements

belong to the same equivalence class iff the length of every path between the two is a
mukiple of n. Now each elementary circuit in P may be viewed a3 a path starting and



a

terminating at the same element. M«gmmﬂvdmmuqdmmml’muu
beamuupled‘u. Thus, » < 9(P).

Letpbcapuhmhhumkumlymmﬁ?‘ Itbqlnundqdnuthcmm
oquivalence.clsts-but ot necessartly &t the same. gjimer Such a path clearly exists. Its
length/is n. Lat ¢ and b be its two endpoinis. Since.s.apd b are in the, sme equivalence

M"Mmm.u"fmm Whgmc
,—'\.\ -
Ao ‘b N\
- \
|
#1 42 ’ M3 |
/’ Ml =n
: 4 2= gl
b’ ! -

? know thet ;y(P) must
' nd Yuy i just n. Therefore,

TMmmmFm&mmmmMmdm&mmmd
hngth 12 Tmmmhduadby»"tﬁh;hm&mmanS%) It ban

mnqchwkdmtwmuﬂn‘dof‘m& ;

e




{a.c,e}

{bldl f:g}

(a) P N ' | (b) P*

Fguedd

TR

=

What vn've dont so far is wgmm% Wm

'g va 0 T

eV

nit‘”for each pm. In order to

construct a single quetient net-for ‘the: m MMMMMM -at fhe possible
relaﬂomhlps bcmm two tmuvechuu fmmdmm pmg? There are thrce poutbmues.
(1) the alternative clusu are dhjotnt. (2) they ptmﬂly o:trhp of}!) 1!\:1 m ldemlal. Since we
needapamttonofthe:ymmwmaqummﬁ;uguchﬂemem
possibility, akternative classes that partially ovchp. This is mwm the following

axiom.



X"

Axiom 4: Vpl. PS‘P‘ VQIxP‘lct’l: 'W(x]p’l“’f R
radg V ger

 Two al tve clisses are Sither disjointor idbmsal’ -

Figure 35 illustrates the type of situation that is prohibited by this axiom. Part Py generates
“an akemative ches consibing

mm:,uﬁ, mr;Wmammcm

v.ow LE _‘;’;‘w:.i’f';«

containing the single event ¢;. Thmahmunmmmml

Figure 3.5 Partially Overlapping Alternative Oliises’
As a resuk of Axiom 4, we now have an equivalence relstion on the set of system elements.

 Definition: o = \oocp

o 1s the akernativeness relation for 4
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Property 3.4 o is an equivalence relationon x,a0d,. . . . -
VAeX/ot: ACS V AcE

"Each equivalence cims-indused by o Sonisins. either
events.'

dvgly. stades or exclusively

. Definition mmmmm,c INERRbS S
;chumnmilnnhdﬂl ¢

- colind amasting. S snse o

Since « is an equivalence refation on-the slemants of the net N, « induces a quatient net of
N. .

Definition: The Wf« Juﬁtm net N* « &° E*, F* where,

Sl InS)  Clpaor H
z* “{l |wE}  (the mesinga ol H
F* = (Xl bl > | x9) o

X* denotes S*UE". Wemmmmw ARecall that x+9 means <x.y> ¢ F)
For peX®,

p* = {g 1 p%q)

Ser W

Propertys.b N* is a net (N‘wmuuwpmda;ahtﬂnd.)

The steps involved Ingmmdngawﬂdmmwwu “Notice that

. SRy

the control structure may be viewed as an Wfﬂ’ dantary

the parts. From this we have the following.



(a) The System Net (N) (b) The Parts

Figure 3.6 Generating a Control Structure

Is




(c¢) The Alternative Classes

Figure 3.6

{1.2}

{b,c] {a}
{3,4}
{e, £} {a}
{5.6}
{h,i} {g}
{7,8)

*
(d) The Control Structure (N )

(Continued)

[49
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Property 36 N"um'gtymnm.
Andmereu-‘omﬁspp&mumanﬁ.y»mnf |
Theorem 33: N* is an event graph.

Proof: Each link { belongs to at least one part. LchQm!npm. Then ! is contained in the
elementary circuit genseated by P. thhth&ﬁw&lm:’mmmmm;
unique output mesting. Because P is a state compenent, those two mestings contain all the

events that are adjacent to the states in 'L Mﬂ&maﬂhmmm‘l

connected to /.

smanuourmmnuwupudﬂyshwﬂ&minmwmmwﬂmulna
'eontrolstrummwlllboduwnu...'unks'.AThud.vﬁcmmmﬂ‘mu(d)wmbe.

depicted as in Figure 8.7.

Figure 3.7 A Control Structure (Abbreviated Representation)



54

nhumsMp.mmatwmmwmmmmmwmwmvw The
relationship is illustrated in Figure 38 and is expressed by the following theorem.

Figute 3.8
Theorem 3.4 VeeE: VieS": )
told, o |IN°¢=] (a)
[o(], o |IN¢=0 | ®)
“The preconditions of Evant ¢ selectione state freem each input link of [el,.”
[ ¢! o Nl - ‘ ©
¢! e jiNe’|=0 o | (d)

*The postconditions of Event ¢ sslect one state from each output Hink of (]’



Proof: The theorem follows from these observations, ;. - <

s

(1) A mesting:m-and-« ink-/ are connacted. in: N 46 :thane: is . part P:auch.that m and / are
connected in P*.

© (2) m and Iave connected in PP i1 ench-event: jnosis conmected-t0 suactly one state it k
(3) 1 and ¢ aremot vonmectet in. N then:nio-aie in L js eonnidted:ta:a0 eventin . - O

35. The Modes:

mnndummmﬂuanﬂ “The event components of N havean

4

Lemma 81 lfuluanng "ﬂ'

Verex: K. *Kn"ﬂ )
'Mnmmmaamwmmmdm
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Proof: Anmmmwmmm anmudemmmln(!mm
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Axiom 5: YMelll vgeX*: Xyngi<l
'A mode and an akemative chiss interseet in no: rmore tima-one element.’

In figure S8 we presented a system net tagether-with a set'of patts. Wiven these are.combined with

- the modes:in Figure 55, we gt a cemmplete spstim. . The-render-may: verify that Axiom 5 is

satisfied.
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Theorem 85 VMeM VgeX® [Xyihgl=1

Corollary 81: VgeX* Wi<M
"The size of an akernative class cannot be.grester than the number of modes.’

Theorem 35 together with the next theorem mbm mw relationship between each

mode and the control structure.

Theorem 3.6: mcm;y;x.,gxu:
xpefy o x40,
Tmummmumnmngxnwamummhmm&]‘w
bl
Proof: » Definition of N* as a quotient net. ’
<+ Assume [x]_¢[y] . m::or}(mmmhmm ‘Assume it's x. By Theorem

84 and the definition of a mode as an event-.component, these exists an element z in
XNyl such that x>eFjy. But by Tm:ﬁ'mtmmmfumlymemt

in Xy N[yl Therefore, y = zand xy>eFy. o

Corollary $.2: VMeTt M is isomorphic to N*

| We now have a nice visual interp retation for the class of nels produced sduce by ‘Axioms 1|
through 5. Each net in this class can be viewed as an interconnection of isomorphic event graphs.

If we imagine the elements in each akernative class to be vertically in line, then each mode will be
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roughly horizontal (see Figure 3.10). In the top view, akternatives are indistinguishable. So too are
the modes. Their projection forms the control structure. In the side view, we can distinguish

between the alternatives in an alternative class, and we can identify the individual modes.

[ Y "

o~

AN

AN
NN

Figure 3.10 Views of a System Net

Individual Modes

From the structure of the modes, we can say something about the structure of the parts.

Theorem 3.7: VPeP: VMelll PNM is an elementary circuit of length 4(P).



‘Proof: P* is an elementary circuit of length 4(P). Since M is isomorphic to N*, M contains an
elementary circuit of length 4(P) whose image is P*. This circuit is also contained in P. O

Corollary 33: VPeP: P is covered by elementary circuits of length y(P).

36. An Initialized System:

Over the last four sections, we've established the structural properties of the system 8 We're

now ready to consider the behavioral properties of the initialized system 2.

Definition: £ = <Z.DP.Dm> where

Z=<,EFD

IgS

VAeDg: |ANI| =1

I is the set of initial conditions of £.

Z is the initialized system net.
The third requirement says that I assigns exactly one initial condition to each part.

If we think of 8 as the system ‘'hardware', then the set of initial conditions may be viewed as

the system 'software’. With this interpretation, a piece of software (i.e. a program) has no meaning

outside the context of a system. This is exactly as it should be.

Since Z is an initialized Petri net, the Simulation Rule can be applied.
Definition: The simulations of Z are called system simulations.

Because Z is covered by I-token state components, namely the parts, the resuits of Section 2.3 are

applicable:
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Property 3.7: Within a system simulation, all instances of the same element are totally ordered.

Property 3.8: If <x,m> and <x,n> are instances within a system simulation, then <x,n> is the next
instance of x following <x,m> iff n=m+.

We've introduced the initialized system net, and now we introduce the 'initialized control

structure’. We use the initial conditions of the system net to generate a corresponding initialization

of the control structure.

Definition: Z* = <N*, I*> where
I* = {[s], | sel}

Z* is the initialized control structure

In Figure 3.1i(a), we show an initialization of the system net from Figure $.6(a). In Figure 3.1L(b),

we show the corresponding initialization of the control strucure from Figure 3.6(d).



(a) z

Definition: The simulations of Z* are called control simulations.

In an event graph, each elementary circuit i & ‘Wabe cornpuent, and vice versa. ‘The control
structure has a special covering of elementary circuits genanited ¥4 'Wée.purts. ‘Because each part is
assigned one token by L the corresponding elementary circuit is assigned one token by I*.

* Theorem 33 Z* is covered by Hoken sats compones.

Corolfary 8.4: Within & control simulation, sil ‘instatices of -the sume aRternative class are totally
ordered.
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Corollary 85: If <¢sm> and <g,n> are instances within a control simulation, then <g¢,n> is the next
instance of ¢ following <gm> iff nem#.
We now show that for each system simulation, there is a corresponding control simulation,

and two simuiations are isomorphic.

Definition: If T is the system simulation <H,0,C> and ¢ € HUO, then

o{g) = < [4],,, lfreHUO | r<g A Pucdll >

©1(g) is going to be the image of ¢ in the control simulation corresponding to T. Notice
that ©q{q) Is an instance of the alternative class to which § belongs. Thus, if two instances in T
are associated with alternatives, then those two instances will map into the same type of instance in
the control simulation. Because of this, the instance number assigned to ©v{g) is not necessarily
the instance number of ¢. We must count the number of instances in T that precede (<) ¢ and are
associated with the same alternative class as g. The instance number of ©{g) will never be less

than the instance number of ¢. .

Definition: If T is the system simulation <H,0,C>, then,

T* = <Bq{H),6{0),8(Ch!

In Figure 312(a) is a simulation of the initialized system net in Figure 3.1Ka). In Figure
3.12(b) is the corresponding simulation generated by ©1. Notice that the second holding of State b
in T corresponds to the third holding of Link {b.} in T*

The next two theorems establish the relationship between T and T* and the relationship

between Z* and T*.

! e{(C) = {<Opig).p{r>ig,r>€C)
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Theorem 39: If T is a system simulation, then ©q is an isomorphism from T to T*.

Proof: @ is clearly onto. Now suppose that O-{g;) = @{gg). Then
(9] = (93], L)
Kr 17<gy A Py}l = Kr | 7<gs A Pocfigli (2

and,

Let ¢ = [§)), = [G3),. Since c is an alternative class, there exists a part containing all the
elements of c. Consequently, the instances of elements belonging to ¢ are totally ordered.
Line (2) says that ¢; and ¢y appear at the same peint in that total ordering. Hence, ¢; = ¢3

and @q is I-l. If C is the causality relation for T and C* the causality relation for T, then
it follows immediately from the definition of T* that,

<, 7> €C e <Bqlq), Oq(r)> cC* o

Theorem 310: If T is a system simulation, then T* is a control simulation.

Proof: If T is the initial simulation of Z, then T = <IX{l}, ¢, > and T* = <{[s]_sel}x{l}, $, ¢>.
But {(s]_lsel} = I*, and therefore, T* is the initial simulation of Z*.

Suppose now that T satisfies the requirements of the theorem, and that Ty is derived from
T, through a single application of Step 2 of the Simulation Rule. Let,

Tl - <Hl' 01. C1> \ Tz - <Hz. 0,. cz>
T‘. - <Hl.. Ol‘, Cl"> Tz‘ - <Hz.. Oz‘, Cz‘>

Now there must exist a set of holdings A in the front boundary of T) consisting of one
holding for each precondition of an event ¢ and such that,

Hz - Hl v Q(G., Hl)

Og = O, U nle, Oy)

Cy = Cy U AXn(,0) U 9(¢,0¢)xn{¢" Hy)

We must show that a similar relationship exists between T;* and T,* We note that
le) €E* Let A*= O,(A). Because A is contained in the front boundary of Ty, and 8,
is an isomorphism, A* must be contained in the front boundary of T,*. By Theorem I4(a
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& b), A* consists of one holding for each precondition of [¢] .. For the three components of
Ty we have,

Hy’ = GT (Hy) = 91' Hl)wvr (nle’ Hy)) )
O,* = eT (Og) =067 (°1)U9'r, %e.0y)) (2)
cz d {@Tz(q).e'rz(')ﬂ‘q."‘cz} - [<6Tz(q)se'r (")>|<q,f>ﬁcﬂ (s)

U {<9T q).OT (r)>l<q,r>eAxn(e,0¢)}
U {<B1,(0)8p,(rhlcgr>ene.Og)xnle"Hy)}

Since T} is, in effect, a 'prefix’ of Tj, we have o ACL B-l-l(q) for all geH,UOy. Thus,

eTz(A) - °T1(A) - A*

aTz(Hl) - OTI(HI) - H,;* (4)
eTz(Ol) - a'l‘l(ol) -0y* (5
{<9'r (@), BTz(r)>I<q.r>¢Cﬂ (<9Tl(q). 9'1'1(')’"‘1""01} c,* (6)

Let <s,n> be a holding in 9(¢"H,). Because (5], is an alternative class, there exists a part
containing all the states of [s],. Therefore, the holdings of states belonging to [s] , are
totally ordered in both T; and T, Furthermore, <s, n> is the last holding in the total
ordering of Ty. From all this, we get,

OTz(q(c'.Hl)) = {<[s],,n>| s€¢’ and n is the number of holdings in Hy of states belonging to
Clec}

= {<[s] ,m>lsee’ and n is the number of holdings in H; of states belonging to
(s}, - plus 1}

- But by Theorem 14(c & d), {[s] lsee’} = {[s] | [s) e [¢]¢°}. This, together with the fact
that GTI is a bi jection, gives us,

O, (ne’, Hy)) = {<ls),, o] ] € [e).* and 7 is the number of instances of [s],, in
H,*- plus 1}

-l b H )
Similarly,

eTz('l(‘- Oy)) = nlel ., Oy (8
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(From Lines 1) and (8) an the fucs tha B, ) = A, |

{é'l',(f)- 0'l‘ ")*!h € AXye0y)) = A"‘lﬁ‘}q 0;5 | ' | ®)
{<Br, ), e'l',("’"q” « i‘-oﬂ"*‘” Hyj - &Uw Wl," ﬂl‘) (10)
l-'imlty. we get, ' ' ‘

H, = Hy* Ugllel % H | o |  LineaL4,&7
Og* =0 Ul . O o [ Lines 2,5, & 8
Ca® = C1* U Ayl 0" u«k}.‘,oﬁwy’g;‘) . Lines3,6,9,&10

'sum.bynypama,r, u.m«z‘ ummmr, s abo a
simulation of Z*. , a

Corollary 38 mammmmmmmw the two

mmmpbh _
, e o mmmummumm
pncul.m hmgm&uoﬂﬂhmmmmm;mgh

In this section, we present three examples of initialized systerns. For each ohe we provide an
The initialized systom Whl‘m ments & w bit pipeline. The three
parts comprise the thres mwm corresponds rgon ﬂi he 4 |
'Blu'muﬂnwmemdmpsdﬁimwbﬁpmtﬂﬂnymwum

of epmwnt 'information’,

bottommdtmge.v



;(a)winiiialize§3sy§temguetf

(b) Plrts

Figure 3.i3 :ihreo-stageéﬂit Pipeline
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(1)
COYER 10!
(3.
o 8
(55}
N 16
(7)

(d) Initialized Control Structure

Figure 3.13 (Continued)



Y

Tmmumsmmmrmmufmbymafmmpwmm
connecting the first and last stages. The result is a circulating bit pipeline. Notice that in this case,
"bits’ are conserved. o

mmmm:mdrmm&mhrwm. The choices associated with
Samaanunpmmemmwrummmmmumz
npruent,rapnaivdy.mmwmm Thmmfwnmmunywmpmdw
the four possible operations. mmwmuumwmrlman
components.’ Wevcchmmdwwm Although the choice is arbitrary, it has no
«rmmnnmuagmmmmmmmwmmumm
case. Thenamrlgunmumum wgmmamwh
selected, either of two control structures will be genersted. The significance of this is not yet
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(a) Initialized System Net

Figure 3.14 Circulating Bit Pipeline
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(b). Parts

Figure 3.14 (Continued)
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(d) Initialized Control Structure

Figure 3.14 (Continued)
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[g]
a -
o vvr 4,. -
o
-

(a) Initialiged System Net

Figure 3.15 Half Adder
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(d) Initialized Control Structure

Figure' 3.15 “*(€dritinved)y = -

s Y imme

Figure 3.16 System Net with Two Control Structuresﬁ L
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CHAPFER 4

41 Information Content:

lnthu:hmmmﬁnu%qwmdyﬂthm& In Chapter 3, we showed that
theeonuol:cuctunN‘mmMmdbdnvamtwmm«muvum
made indistinguishable. We are now interested ‘in_jpeoviing the ability to distinguish between
alternatives. WonMWdWMWf«MW

Definition: Thcsudpumwwfsh'my.m The set of modes containing
Element x is dencted by ) :

Definition: For x € X,
I(x) = T - M(x) | |
"Hx) 8 the set of modes exchuded from x* “He) is the iaformation content of x.

TMmmfwwmmmﬁnmumﬂiJ‘Mmh«mm

moduhuwdomehmmnﬁcm mﬁ’whmumdﬁ We

might note that meWMmeMapMWM”}
and, thercfmthcinfomﬂonmoftlu&muﬂhmﬂ,
ltueonvmhntmmuauhr'vmhuebw The information content of an element

'ThummadmnmonbyHolundCotmml In the context of a strongly connected
state graph, Mumm‘mmwﬁamwhnudmm
circuits.



can cmuvmamcmdwmmumrrmmm In Figures 41 through
43 are the ;ymmfwthcsymdmtbdmrm.wmmhm We've associated a
color with the events defining each mode. Next to each system element is its information content
expressed as a set of colors.

Theorem 41 Vx;.x3 € X:

["1&4":].‘ A K*lH(*a) " *1'“:

'lrmmm S ameh
mt.mu..,mua.

ciass and have the same information

' Proof: « Obvious

. Thupndmm;mf@h&ﬂ‘m

(a) Ky )olrg) = My )eMixy)

(b)mmamgmmmm

(c) A mode intersects an alternative class in exactly one element. a
S0 now & sysem element can be waigely identitied by specifying two things: () the akernative
class to which it belongs, and (2) its information content.

42. Information Fiow:
Suppose that q; and gy are instances in a systam simulation, and that there is an elementary

causal connection leading frem g to gz
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Red = {1,3,5,7}

Violet = {2,4,6,8}

Figure 4.1 Bit Pipeline - Information Contents

of the System Elements
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Violet= {2,4,6,3} |

Figure 4.2 Circulating Bit Pipeline ~» Information
Contents of the System Elements



Green = 1,3,3,9,10,12
Red = 1,4,6,9,11,12
Orange = 2,3,7, 9,11,12
Violet =

2,4,8,9,10,13

Figure 4.3 Half Adder - Information Contents
of the System Elements



Let q; be an instance of x;, and qy an instance of xy. Associated with q; is the information
content of xj, and associated with qy is the information content of xy3. We shall interpret the
information that is common to both x; and x, as 'flowing' from q; to q,.

Our convention of associating modes with colors permfu a graphic representation of
information flow. The arcs of a system simulation are colored according to the following
algorithm: An arc connecting instance <xy,n;> with instance <xp,ng> is assigned a particular color
iff the mode represented by that color is contained in I(x;) N I(xy). In Figures 4.4 through 4.6 are
some simulations for the systems described in Figures 3.13 through 8.15. Using the correspondence
between colors and modes given in Figures 4.1 through 43, we've indicated the colors assigned to
each arc. The reader is encouraged to do the actual coloring. Note that some arcs may be assigned
several colors, while other arcs may be assigned no colors at all.

This formalization of information flow corresponds remarkably well with intuition. In
Figure 4.4, we can see quite clearly the flow of bits'! down the bit pipeline. The two colors
correspond to the two different bits. At Events 1 and 2, bits enter the pipeline. At Events 3-and 4,
the bits are transferred from the first to the second stage. At Events 5 and 6, the bits are
transferred from the second to the third stage. And finally, at Events 7 and 8, the bits are lost.

As expected, in the circulating bit pipeline, bits are conserved. As shown in Figure 45, the

same two bits are present at the beginning of the simulation and the end of the simulation.

! The notion of a 'bit' is very restrictive and is used here only in an informal manner. Formally,
information is expressed in terms of excluded modes, not in terms of bits.
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Figure 4.5 Circulating Bit Pipeline - Information Flow



FPigure 4.6 Half Adder - Information Flow

AR i e e

s




89

With the half adder, the situation becomes more complicated. It is no longer possible to
interpret information flow in terms of bits. But the flow of information still corresponds to our
intuition. As shown in Figure 46, information enters at the designated inputs - Events |, 2, 3, and
4 - and is lost at the designated outputs - Events 10, 11, 12, and 13. Notice that in each of the two
middle simulations, information is also lost at an interior event. In the '0H' operation, the color
orange is lost at Event 6, while in the 140" operation the color red is lost at Event 7. At Events 5
and 8, there is no such information loss. The reasons for this are simple. In the case of both 04
and 140, we get the same outputs - a sum of 1 and a carry of 0. In these two situations we are
unable to reconstruct the inputs from the outputs. The information lost at Events 6 and 7 is what
allows us to distinguish between 04 and 140. In the cases of 040 and 14, the conservation of
information at Events 5 and 8 corresponds to the fact that, in both cases, the inputs can be
reconstructed from the outputs. This short discussion is a preview of the ideas contained in the
next two sections and in Chapter 6.

We mention now an interpretation for information flow that the reader might find helpful.
We've shown that the control structure determines those aspects of behavior that result when the
alternatives in an alternative class are lumped together. We've also shown that information content
provides a way of distinguishing between alternatives. Our practice of associating modes with
colors then permits us to think of information as colors assigned to the 'tokens’ on the control
structure. The colors assigned to each token determine a unique system element. By defining
appropriate color transformations for the meetings in the control structure, we can duplicate the

behavior of the original system.
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Proof: We prove just Part (a).
M=) |
Since ees’, .
TAGs™) = TG U TS -
Thus, |
) = M) U Be"-{a). | .
Bocavee Te) N s™-{ell w @ (Thogeam88), .
o) = THs) - TGS},
And,
M) = M‘i‘}»«ﬁnﬂw'ﬁ!&»m
 From the definition-of-information conten we get, -
CKOeKIUMSED D

Corollary ¢1: VseS: VecE:
(s¢e Ves) » Ks)gle)
Tmmf«mmﬁmwmtmmmmummumdmh
To illustrate Theorem 1.2. we note that in l-‘ig\m u. 1(3)-m l(dH. and m»-m So we
have I(3)=1(d)UTTK4) as predmd Gomtlury 41 means tlm, \mh our uheme for cobrlng the arcs
of a system slmuhﬂm.theoolorsmmﬂngmd luvlngaholdmgmthcm ln ochcr mdl.

colors appear and disappear only at occurrences.




What is' the significance of Theorem 4.2? In un‘un of st ¢ is-oneof the: alwrnatives in
the forwards choice associated With 3. WHR thet-shilics s encemmered in the: cowsse: 6 a system-
simulation, it will have to be resolved. (We are not concerned at the momnt- wiither this is a free
choice or a constrained choice, or possibly a combination of the two) Resolving the choice is
equivalent to selecting one of the akernatives in s°. But M an-ovent in 3* is equivalent to
specifying the modes that cover the remaining events in 5°. (Given TNs*-{¢)), we ¢uri determine
TMde) and thus ¢) Therefore, the information gained is géing FIoM: 535 ome<alf the events in s°
resolves the forwards choke associated with =/ TGRS thairwiei. o3 the ohly berwitive’ In s°,
there is no choice to be resolved and there is no informationguiined. 7

For the case where ¢, everything is reversed. W4 are now dealing with s backwards
’ ol iﬁd in:going from s to ¢, we
talk about the information lost in going Trom ¢ &M‘m pinoives: thé backwards

 cholce associated with 5. It s what we would need to ‘back ag?SriwiiSimte X to oam of the events in

s

ﬁ uolvlgggl_tﬂgg
In the preceding section, mmnmmmﬁmm content of an
evenundmmrmummm:dsmmm(pMm)dﬂnwm We now
m.::mmummapmmmmmdmmtmdmmm
mfonmuonof_nnnwnfspmm(pwm S
rmmnu.nmmmm o




Property 41: VeeE:
K’e)cl{e) and Ke")gKe)

Tmmrmmuwwmmmmwmmmd
the event's preconditions (postconditions).’

The concepts of "information gain’ and ‘information loss’ at an event fallow naturally.

Definition: For eeE,

TX0) = Keplie) N w
AR St el
'_“I‘(t)y‘fh thimm mtion gain at Event e. |

\ ‘ r(c)nmmmu Event e

*The infotmation’ gain (oss) at Event ¢ s :hf“,m", saion content of ¢ minus the
mm«:nmtdu asboatdi ! ;

lnmusuﬂnunmmmummmmr«mmurmu4a
NmtmmmmMWMuwmmwum

WemmdmmummmmalemmGum
mvimmﬂudweﬁ; thmk of wmm loss as hfm”;@ftm the system to the
system environment. The significance of information gain and information loss lies in their
relationship to conflict. |

The term ‘conflict’ has been applied to the sikuation in which two events are concurrently
mbbdandhaveamwm.Smhlmuﬂmaﬂ!ﬂgunﬂ. But for the
class of structures we're dealing with, (forwards) conflict can arise only when two events have the |

same set of preconditions. (This is called free chgice) The reasons for this are as follows. If two
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I (e) I (e)
{o,v} g
{G,R]} 8
{r,v} 4
{c,0} 8
g g
g {o}
8 {R}
g g
8 2
g {r,0}
g {c,v]}
ol (v}
g |{c,r,0}
Table 4.3
Half Adder -

Information Gains
and Losses
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events have a common precondition, then they must belong 10 the same meeting. By theorem 3.4,
each event selects exactly one state from ench input link of that mesting. Because each link is
mmmmhm:lmmhm(lpﬂ).nmmhﬁnmhkanm
concurrently. It follows that if the two events are to be enabled concurrently, then they must have
the same preconditions. As a resu, the situation depicted in Figure 47 cannot arise. However, the
situation in Figure 43 can. nmuwmmmmmmmm
fmmmmmummmuml |

Since in our theory fmmmmmmmmmm

conﬂgunnum.nmlgmunllm mwm

Definition: For ) 8y.¢E,
le+0z L J .Ql-'gz

ex 0y o ¢ 'e0y’
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Wenvmquumhmm#fﬁxuwﬁw We syy-that o)
backwards con lfh,xc,ad"i\n,. (We do not say that an event is

clumofx—‘ are.calied backyards conflict ~ 

Tmrmmmemmmm-ummmm
amnmmm;

mnmg.Mnummmmm’mmm”mmm
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o {2 | e R - EE
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m {6} (8} 8

8 (78} m |

(a) Forwards  (b) Backwards

Table 4.4 Bit Pipeline -
Conflict Classes
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Proof: We prove Part (a). |
‘p s* = (SEENICE: 50}
!«!Wi& sm'ﬁ

- (seEfe'a) Theorem S4{a)(b)
= b+ ’ o , . defislition



. a

- Theorem ¢3: VeeE:
Ho=Mdge-id et e r 0o @
I'(e) = MGel, - ~{e) \ o

mwmwmuzmmmwmudmﬂumm:m
events in forwards (backwards) conflict with ¢.’ ‘

Proof: We prove Part (a).

I%e) « e)1("0) o | ’ definition
=Kor U, Ko | def inition

-, ‘0.— (Ke)-Ks) o DeMorgans's Law

-, ef)’ ™ {e)) ‘ Theorem 4.2(s)

=T, ‘D’ (s*~{eD) | Theorem 3.5

- T( ufJ, sHe} - | | Boolean Algebra

= Tilel, + -{e}) Lemma 4.Ka)

a

Thcmdumyvﬂyﬂthdmbymmmmm_md losses in
Tables 41-43 with the forwards and backwards omﬂic classes of 'l'aﬁu 4.4-46. For example, in
Table 4., we see that the information gain of Event | in the bit pipeline is {V}. In Table 4.4, we
nethattvmtlumfmardsmmmhzvﬁtz The set of modes covering Event 2 is {V}. It
checka. .

We note that when an event is not in forwards (backwards) conflict with any other event, its




- information (loss) is null. Thus, information s gaimed (lost) st precisely those points where there is
forwards (backwards) conflict. Furthermore, the infermation gained or lost in a conflict situation
specifies how the conflict is resolved. This is becanee selecting an mwt conflict: class is
‘equivalent to specifying the modes covering the remaining events v fsor- tither ene we can derive

“the other. | |

ot A R
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51 Event Graphs:

control structure. Since the control structure is an event graph, Ar

_xe.obipin for event-

graph simulations can be applied to system. simulations. . This i, fortunate because event-graph
simulations have some very nice pmperﬁu.' Those properties are thb sub ject of this chapter.
nefmm mhc results, we must umdm mmmwn

Definition:

Definition:

For a directed Graph G, TI(G) denotes the paths of c'

For a path x in a directed graph,

*4 denotes the initial endpoint (tai) of 4

Definition:

Definition:

lfplsapathlnthedlremdgnphc andxuavmofG then,

xq lff xappunlnp

For paths u; and pg in a directed graph,

#y Spug Ml pgisasubpath.of ug

T We're repeating the definition of JI(G) given in Chapte'rr 2.



Definition: If j is a path in the directed graph @, i A is a sat of vertices of G, then,
lni, denotes the number of times s élément of A appears in .

If <N,I> is an initialized event graph, and p is & path in N, then |uj; is called the token
lpading on .

Definition: A gircuit isa p h whose two endpoints

W% clioult Sontaining: o initial

Definition: In sh initisfised event m '

52. Paths | S
Mmyatmumwmumméwmﬂw-mmﬂmmm
event-graph simulations. We begin with busic circuits. |

Property 51: In an mumﬂmmmmmmmm-nmw

This can be seen from the following.

(a) In an event graph, each state has exactly one incident afc aad one emergent arc.
(b) In a state component, each event has exactly one incident are and one emergent arc.
(c) A state component is connected.



When an initialized event graph is coversd by basic circuits, we know from Corollary 23
that in each sinmhﬁonoftheeventgnphiﬁimipwdthemmmmmm.
We also have the following lemma. o -

Lemma 51: uzummmmuwmmmnmm
I is the set of initial conditiony of Z, |

C is the causality relation for ¥ simulafién of Z,
then for <<xyny> g Ne>>eC, |
gy < xyei
Ngenyd o xqdl
'If there is an elementary m! Mfm Instance <y ny> to Instance

<xXgNg>, then ng=n; for xyel uad ,-d for :,d.

Proof: From Theorem 22w knbW thet-nim> mustdeian aic i theaguint graph for Z, and
thuefmmuummnammaz mwdmmammtm
mmw ﬁ%ﬁ wam«l.n>md«,,nz>
are consecutive instancél. “l’ﬁf e Ot DPAo SdiNPisie Mic diun Beginning

attheumthwm\iﬂnmm Since the instances of each element are

numbered he pumd ‘.ﬁ‘mmummmmmhm
2 ! sisv s Ikl

mrlgununmmmuudmmwwwmm ‘I Pigare 524 a simulation of
&%WMWﬂWWm dashed circle.

ke a0 f@*’?ﬂ”ﬁ R oy g; s PR

NottcethannsunceWmhmbylawmdmmmdm.mdmn

""""

ﬂwym’ "mmﬂawm B ey B e e

N R



Figure 5.1 Initinlised Event Gr: ol by Basic Clecuis.

© TheotemBl: If Zisan iniatized eyens.
: 1 s the et of 4 ‘h
T is a simulation of 2, then,

V’:ﬂﬂm;-'qn‘ql\q‘pﬁ‘, * e |
then the

'lt:,andqmmm necth u'rmquum ints,
mmwmmmmmuﬁ* e

Proof: Let ‘eje‘egecxm> and ¢ =¢q’=yn>. By Lanypa 51, the pumbet ang!
wndlﬂmsuundbybdhqmdqhmfcnﬂﬂa—mﬂfu:d In elther case

Pyi=l- o
As an illustration of Theorem 5.1, consider the following two paths in Figure 5.2,
€12 >a2>d.2>D2>2,2>a35d D HRH>ad >SS
€3=<2l><d >AS > >t > >8> 2><1 > 3>A83>
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Since oy and @4 have the same endpoints, their images should have the same token loadings. Let's
see.
#,=2a1b2a1b2d3 and |, }=2

94=2d3f4e3f 4¢3 and [oyl=2

It checks.
For an initialized event graph covered by basic circuits, the next theorem establishes a
special relationship between the paths of the event graph and the paths of a corresponding

simulation.

Theorem 52: If Z=<N,> is an initialized event graph covered by basic circuits, and T is a
simulation of Z, :

then Vuell(N): Veell(T):
‘W0 A W' A iRl o EPIi(T): Pee A frer® A Pep.

'If  is a path in N and ¢ is a path in T, and if the endpoints of g and @ are the
same and 4 and # have the same token loadings, then there exists a path in T having
the same endpoints as ¢ and whose image is 4.'

Proof: Let "g=<xy,n)> and ¢°=<xyny>. The required path { can be constructed by backtracking
from <xs,ny>. Property 23 guarantees that at each step there will be a way of extending

the path in accordance with y. There's one exception though, and that's when a holding in
the back boundary of T is reached. By Lemma 51, when a holding in the back boundary
is reached, the token loading on the path already generated is ny. There are two cases to

consider: (1) <xy,ny> in the back boundary of T and (2) <xy,n;> not in the back boundary
of T. In the first case, @lj=ny by Lemma 51, and, therefore, the path must be complete
(otherwise, we would have lui>ng and |ujy»iel). In the second case, |plj<n; by Lemma 51,

and, thus, this case cannot arise. So we've now got a path [ such that [*=<xyny>=¢° and
P=u. Because “yex;, ‘T must be an instance of x;, and because lulj=i*l;, Ii=¢l;. From
Lemma 5. and the three facts (1) °[="e, (2) Pi=0lj, and (3) ‘?=°0, it follows that “P='s. (]
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Tomumcerhmmu.wemmmmmmmpmtlncmtguphofngmuand
the following path ¢ in the simulation of Figure 52

u = 2alb2alb2ds | |

= dJ»dMJ>éJ>dJ>«M>¢3’<W

We have ‘ueh2, '8, and g2 Therefore, there shouid be a path [ in the simutation
otFlgurthavmgﬂnmmucmdmmuM There is.
r«umzmwwmm.swmw» |

Wemmumwmmm&mmmmwmr
 graph simulition. The fifs part of var i
 Suppoee that q 15 - oocuiFeNerin I limilagont Plemos aad sipaate:the-othet aUTeRCe
1) thiobe’ !Nk ‘prepuiecq; {9 hoss’ tiat: i .- and . {9) shase that . are

g

N\ occurrences
\ q / NP S R A
occurrences /7
G M@
concurrent with qa /\

/7 AN

" otcurrences

.



SR R St TP

\ P B 4; . / % e S L
\ . . ERFT. / IR i

N\ /W L o 2NN occurréﬁnt“és of’
N - -Event:e

" .

|

/ e RN LR e T8N \ ORI

<47 the N'th-Gocasrence sof Bvent. or-preceding X For ANIRINL I be. the, econd-to-last’
‘Occwtrence of Rvent: ¢« proceding g In-Pigere 52, ddr-is the thindricrinst acoucrgmoe. of. Event |
preceding <335, while 3> 18 the last oceurrence of Event | preceding 335>,

to occurrences of Event ¢ following q.

We know that in a stimulation of an event graph coveréd by basic circuits, all instances of
the same element are totafly ordered. wwaameWfam.mmm
what conditions is Occurrence <¢ny> theh‘thmmu of Event ¢; preceding Occurrence

<¢3.ng>. To do that, we need the concept d ':ymhmk?ohy‘ :

Definition: For a path g connecting two events in the initialized event graph Z=<N,I>,

$z) = - Min{h | N A Pu's A fep)

Oz(p)umemmmﬁ.gm”,m:mmlmmmmmmoup-cm

having the same endpoints as .’ d7(s) is the gncheonic delay of s (with respect to Z).
(wmzuumm.nmammmmw.umun

’ﬁ‘ ) TEFIE IV w08 G4 o
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We give the synchronic delays for several of the paths in the event graph of Figure 51.

1 = 1b2d3F4 ¥ey) = 0-0=0
g = 4e3c2al Hoy) =38 =0
o3 = 2d3c2al Hog) =21 =1
a4 = 34e3 Hoy) =10 =1
o5 = 3c2d9f4e3 Hog) =2-0=2

In the special case where y is a circuit, the minimal token loading between the endpoints of

p is 0. We thus have the following property.

Property 52: If Z is the initialized event graph <N,I>, then,
Vwel(N): $z(w) = lui

"The synchronic delay of a circuit is equal to its token loading.'

The following theorem says, in effect, that the synchronic delay of a path cannot be

decreased by extending the path - the synchronic delay either remains the same or increases.

Theorem 53: If 4y and y, are paths connecting events in the initialized event graph Z, then,

piSug » 870u))<87(ny)

If u is a subpath of uy, then the synchronic delay of g, is less than or equal to the
synchronic delay of ' '

Proof: Let uy = tuyE. Let y; be a path of minimal token loading from sy to g;". Let vy be a
path of minimal token loading from “us to us° We have,

87n1) = byl - iy
and, 87(up) = gl - balf



Since pg Sl < e
begly = @p + buyly + 16l
Thus, dz(ug) = By + bgly + By = gy -
Because vy is 2 path of mm
loading from ‘ug to pg°,
bl < B+ b+
Combining lines (1) and (2), we get,

@

Wy g

Boud Prise SEERLie Y Tlgrin B s

bhny) 2 Wil W -

We'nnowmdyforthcmjnrmhofthﬁm,

o e

R I

Theorem 5.4: uzuanmmwmmmwhg*m

T is a simulation of Z,
<01ny> AN sty ng> are

then the following are equivalent

' (a) <epny> is the K'th olcurrence of # priced

i AT A e e AR

ootk P lelgear w0 vy gt gy T

UM e e B me v

k-l

Thmuhutpuhfm «mpw W* ,' ,

R P tingdi

@) » ()

s 1

0 r»f\i )

Proof: We prove that (a) e» (c). It folbm. by symmatry, m &*& ﬁ&!«ﬂ.l»

Since <ay,ny> ummm%mmw‘u«mm must be the
lagt. Lot ¢y be a path from <e;ny> 10 <ty, Ny k-b>, and c,apuh fm <y, g+ k>
t0 <sgny>. Mmﬂnpmmmmé’

PN : Yot oo o
ta i S L AR woopdte g
#h LY
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"o, - .}k oecurrences of e,

:J
!(01,n1+ k-1

oany> ./’«

Autwlv,mdht;hlpﬂuhblfmqnguauw The
| 1_y}wmwmmemwu; is & ,

b e B o ®
From Lewma S, webave
Pih = gty =kl L @

~ We now show that Wyly=sly. smazw-o,usp,;, Lcu-hﬁ—hh and let » be an
. elementary circuit. i N beginning and soding it ¢ 304 having » to 'SF""‘!““
(smhadmnumbumZumbymmm) Lﬂp'-n‘p. p’ isa
puhlanmglwq,.

Wl = osinly = Wyl

Since 4’ mu,hmmmmm(c,mdc,)mww Theorem 5.2
implies the existence of a path-§ in T fromi JcaysigHed> 07 cegny> such that fep’.
Because f-w'y and ¢y, wmmam?mdq after leaving <eyn;+k-b>,
and before reaching <«png>. But qn,k—twkmummo(q preceding -
<tyng>. Therefore, we must conclode-that a=0 and, :

Pah = Wi | - ®
From Lines (1), (2, and (3). we have dglg)ek-1. |

© @) o
Let 5 and w be as defined in the first part, and let u” = w*-1p. We get,
l"li -”k-hh&i x%ﬁ»;i‘w{rf y ~ W R PRI S IR

! @ means that u is repeated a times.




Theorem 52 implies the existence of a path [ in T from <e;,n> to <eg.ng> such that
Pep’ wutlp Letpepypywhere ) = w*-Land by = u [y 13 2 path in T from
<6 nq> t0.<¢y, my+ A-l>, while [y is a path in T from <ey, ny+ A-1> to <epng>. To
showthat«‘.n,+wumnmmdclm«m>.mtbewypath
in T from <e;, #y+ A-b> to <égng>. By Theorem 54,

€l = P2l
Bﬂtm',-;mm)io.

b -0 | | )

Suppose that { contains an occurssnce of 4y AR <y, R+ -l Lgt §y be the part of
£ preceding that occurrence. { is a circuit in N (beginning and ending at'¢;). By
Lemma 51, if1 > 0. In other words-§ conlitingg<circultubity 4 soliintioading greater
than 0. But this is inconsistent with Line (). We must conclude that no path in T
between <oy, ny+ A-b> and <ty ny> containe’dor oRbrntE 60-4 0 Wlr <a, 1)+ -D>.
Thus, <¢y, ny+ A-D> is the lnst occurrence of o) preceding <syne>, and <ey.ny> is the
h\hmquW R o

Sy i e

Tmmivamasum(a)wmm'rwaumnwwwhmmu
SRR NERIE & -8 SRR

T N
LR .

(“h"i) T
i
((<8g,Ng- K14 u F’ * i ,}#f
¥ % ¥R eccurrences
' of 84
E _
i ¢
k occurrences { | 1
of e ! |
2 l : N <" ﬂ‘ ’k 1) o
!
L (ez,nz)l

Figure 5.3 Ordersd Occurrenced in an Event-Graph Simulation
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In the simulation of Figure 5.2, we see that <2l> is the second occurrence of Event 2 preceding
Occurrence <1,3> and that <1,3> is the second occurrence of Event | following <21>. We have the
following path o connecting <2l> and <I,3>.

| @ = <2]><d,1><3,1><,2><2,2><a,3><1,3>

@ = 2d3c2al and &@)=l

The theorem checks out.

53. Cones:
Because synchronic delay is not a convenient concept to work with, we introduce the concepts

of 'back cone' and 'front cone'.

Definition: If Z is an initialized event graph,
N is the event graph associated with Z,
S is the set of states of N,
e is an event in N, then,

$77() = {seS | BueTN): “urs A sew A p'ee A ¥u)=0)

'$7(e) is the set of states s such that there does not exist a path of delay zero
beginning at the input event of s, passing through s, and terminating at e.’

¢7'e) = {3€5 | Iuell(N): “ume Asep Asep® A §u)=0}

'¢7%e) is the set of states s such that there does not exist a path of delay zero
beginning at e, passing through s, and terminating at the output event of s.’

&7 (e) is the back cone of e; and ¢ ™(e) the front cone of e. (Wheﬁ Z is understood,
we shall omit it as a subscript of ¢.)

The two definitions are illustrated in Figure 54. In effect, what se‘z‘(e) means is that the
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e
Such a path “l-paths with o - "_(—-Such a path
has non-minimal minimal ' has non-minimal

token loading

(a) s € g(-)

token loading 2y

token loading

(b) s€@(e)

Pigure 5.4 Paths Associated with Fxont: and Back Cones

o jota)o

¢ (2)

4@
$~(4)

(a) Back Cones

areh e

.. +3). Pront Canes

b Table 5.1 .Characteristic Functions for Front and Back Cones
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'quickest’ wa'y from the input event of s to e is not through s. Similarly, what se¢y*(e) means is
that the 'quickest’ way from e to the output event of s is not through s. In Tables 5.(a) and 5.1(b)
we give the characteristic functions for the front ;nd back cones of the events in Figure 51. Note
that in our example, ¢z (e) is the complement of ¢7*e) for each event ¢. This is not generally the
case.

The significance of front and back cones is best understood in terms of simulations. (The
first part of our discussion applies to all simulations, not just event-graph simulations). Suppose
that ¢ is an occurrence in a simulation. The occurrences in that simulation can be separated into
two categories: (I) those that precede or are equal to ¢ and (2) all others. With respect to g, these
two sets form, respectively, the past and the 'not past. Now between the two sets of occurrences
there is a boundary, and this boundary is associated with a set of holdings. These holdings have
the property of not preceding ¢ but of being initiated by occurrences that do. This is illustrated in
Figure 55. If we imagine the simulation to be three-dimensional, then the boundary resembles the
surface of a cone. Similar remarks apply to the boundary between the future and the 'not future’
with respect to ¢. In this case, the holdings making up the boundary have the property of not
following ¢ but of being terminated by occurrences that do. This is illustrated in Figure 56. In
Figures 5.7 and 5.8 is a simulation of the event graph in Figure 51. We've indicated the 'back
‘cones' and 'front cones’ for occurrences of Event 3. Notice that the simulation is 'sliced up’ by the
'Ct;,nes' of each type.

The reader has undoubtedly noticed that we've used the term 'cone’ to describe both sets of
states and sets of holdings. The correspondence between the two views is straightforward: If ¢ is

an occurrence of Event e, then the holdings in the 'back cone' of ¢ are holdings of states in ¢ (e)
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Figure 5.6 Boundary between Future and 'Not Future'
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for Occurrences of Event 3

'Back Cones'

Figure 5.7
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'Front Cones'

Figure 5.8



and the hoklings in the front cone’ of 4 are hoidings-of metes in:$y¥e): Thus, we see:that in
Figure 5.7 each hiokling in the “ack cone" of an ‘oocurrence of: Exent:=8:i5's holding of -2 stase.in
@(S)={aT]. Simitarly, we'sie that th:Figure: 5.5 eack-hehbing ¥iithe Yronttone' of an. occurrence
of Event 3 is a holding of & state in $*(3)={bdal. These ideas are:sxprassedt im:the-following

~ Theorem 5% uzummmmmhmwmmw«.omua
simulation of Z, then for am>el and an>e0,

. amSan A (3;«0 q-mmsc.ua) ° n‘z | o @
amSam< A(3e0: amqhansy n&ﬁ# SRR ()
%mdom\m«du)wmhwm)bymm
mmm:mmi SN rieyelieand 0

_ Proof: chmnjut!hﬂuhl! mmwmmm

Let g = <«’,n’>. Then q must necessarily be the kst tor of 4% preceding <en>,
muymmdc would have to follow am>. (cim> must be terminated
before another holding of s is initiated) By T , a path ¢ from q to
<e,n> such that §y(#)=0. Nwwmm;pﬂphummwﬁm ‘pee’A

sen A..-.Ax.)-o.mnby'rmum

 premise that agm>$cens. Therdtére
wmmmuum‘m

We now relate the concept-of cones to the & he proceding.
fonwingmmﬁnmhmwiwwﬁﬁq‘hmmdtm&wlfc
uamﬁW#mquMMﬂg@mag»hﬂnﬂhmm
ofcprmdlngqmcmt-‘lhckm F«Mﬂ»bnnfm-eo-hummof
lEvmtlpreadmd.b mmmmmmmmmfmma

ok 1.



A simiter shosrvation spplies to the ‘feout emmes’ in Figuee S .41 8. arurznee of Event 3,
“and if .o 48 & path erigitating At.q and MEMIROUNG S AR QTS 1R, b g@,umm
ococurrence of ¢ followiag 4 iff o ctomes- kol Tront.sonp’. Tioe. jdems am; reflacted in the
followingtheoremand corallary. - . gt e oo o

Theorem 586: HZMMWMMMnmm“.h.Mhiﬁ.

' W‘W@’) B PN £ & = AU S PR R T e Jda‘,(‘)

$Zn) = Wiy, %) | ®)

SRR (e .
mmm,«;um»mmﬁuwﬁmm back (front) cone of x's
head (cail) is crosapd’ . - e T e

Proof: Well§ prove o Part (a) by mmm* S
For |uj=0, we have §u)=0 and M‘z

| F«ﬂnhdmnnp.ubma

% ending at
Mz'(p’): For thumo,thm ﬁm; «m..» ;’;%”":?w‘%ic
s, mdvhmdehyum m‘ &t m

¥sp)=0. mwmwum
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Byhmmmmuhutmmmww Tbhmthcn'sa
path from ‘y to uwnumwmwwmm
mloff,\nga;guhtm ymr m.mwalﬂ% Since £ is a
path from vm:’andl(t)-o '

‘Froanm(z)aM(S)mhan S
Mok =1
andfmmum(i).
“l)-l(v)ﬂ
s8éz (m) For this case, share axistna path begin ,
 whose delay is zero. Slaeu'ti Mm*mhuchamm
| ?mmwﬂw;ﬁm ) ity _Muwi‘y (ssro). Thus,
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As an illustration of Theorem 5.8, consiier the'path. u s SN Fignre .- We have,
e |
‘w=s and u'=d
¢ )=face} and ¢'Culeibde)
R R
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~Corollary 5.: If Z is an initialized event graph coversd by basic circuits,.
T is a simulation of Z,
S (abnfvmgpwm'&m wendloot g
nmmmm e s

(a)«pnl»hdnh'tﬁmmdq brecidié

" "«s‘w

Wl bos woy e ) Ao
(b) <eg, ng> is the A'th occurrence of ¢g following <¢y, n)>

(©) Iwell(T): ‘e=<eyny> A ¢°ncegng> Mg(o)-u
‘i‘\iﬂﬁh pros T ed

"There is a path from «131>b%>lndﬂlommdlhy?tbwuk-t'
(d) 3edKT): "«l"‘l’ Ae -%> A MW "l

f‘aa!:&" B
"There is a path from «,.npw«,ngs lndmwwmudmdqh-l
times.' ER e

J - i | (i) gtdﬂ'ﬁ: ‘U-ﬂl.ﬁp K* W M, f’%
o m"‘m R }"wﬁj:‘hmmﬁq '

' “fa‘!lﬁm»pv

."'},«’

Thcmtm:hmwmmwmsmmmﬂm

SR Ll A5 S e

£

" Theorem 8.7: If Za<NI> is an mmmwmwmmwm and
E is the set of events of N, then,

 VeaE:" WM ﬂéﬁbfﬁ) ’W?a ST e
T«mywmzc,mmmwuamuqm»mmﬁmub.ck

(front) cone is crossed.’
Proof: We'll prove just the first equality B SO ST

smaNumm:ndmmdbydmm.ﬁ&mm Whupuhfm
‘wand w'toe. Thus, du)=O0and y’ =e. mum.g.

$zup) = lonir-inh 5wl i) w e e —

In addition, we have by Theorem 56(a),

Szlwn) = lunly, (o) = Wiy, ~()* Wlg,-ts)
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s &
‘But'm‘z.(.)?-”%)éo;.m o . #1 |
SZwnY = uig, () @ e e

iy = Tl ~te)
Theorem 58: If ZecN.l> is s inktiniised ovent graph semersd: by basie-cironits, N -is-connecied,
and E is the sat of events of N, then,

VeaE: Vpuypaall(N)
B Amplemg o bl igh 'le g0 " h;b‘u) 2lg*e)
vmpamahmmmmmmmmmmmwmu

mlmhdmmhmmﬁmaqmc’lw(fm)m ~
~ Proof: mmmmwmmfmm
smnummmmmunwm unh;puh

from py” and g’ “hm by ly'rmw e
hlk*‘*'hlb‘(c}f_;’m.’@),‘ | " R R
I+ g = bl * Walget)
Combining, we get,

Il - gl = Wylg-(e) - Walgte)

5.4. Sysem Space:
‘No“theory of systams can be-considaned compisesmitheut sotiens:of: apace: and:time. We
introduge in this section a netier of 'system space’ and-i the-nest ssction:» Retion. of ‘system time'.



Snppou that ¢y and eg are events in an initialiasd ewapt gragh spvered by bakc circuits. In
Section 82, we ieerned that in each ssnwiation of fhe event graph the o 1 B, Jwding from
oecurrmasof ™ mmmmauf ¢y are as shown in WM
oecurrmcu of.e3 %0 occurrances of ¢ are as shews in Figure B5(b). Thlm now is this

deommmmtwnbnﬂnmbM-mmm

P ey and et T quenion wwmmm

adt W Yo upevs Yo

i

<e1,m1 >e (Cg.ﬂgf)

{9y, Mys1 de .y {ey.Nge1)

i Jg M)

<emy+2 )
<enmye3) s T , gﬁ;.n,03>
: {0y my* 2D
<e'.m104) o

: o {0y, M,* 3
t
|

{8y,Mgs4)

(a) (b)
Figure 5.9 Orderings betwesn Ocowrrences

~ Synchronis distance-is & missuse:-of: the lelack’: Aatwain: Iva. syanis I8 a8 swent graph. It

- -
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Definition: For Events ¢; and ¢y in the strongly-connectsd «m&mh z-du»'
0 v if 04-02 »
prieres) - -
minflul; | wdlN) A ¢y eg€u} ife;mey
"Pyley) is the minimal token loading mm containing:both ¢, and ¢y,

prley.sq) is the " mﬂmmbﬂ (When Z is
understood, wemnyemitkuimmlptd;.) :

In Table 5.2 we give the synchronic distances between tlnm in Flguﬁ 5L

pley-ey)
Table 5.2: Synchronic Distances

The’ follwlng ’thoonm provides the connection betwesn synchronic distance and the
- ordering relationship betwesn two events. |

T This is equivalent to the notion of distance used by Conimoner (18] (See pp. 112-16)



n.muz. »
<oy >, Wb, Sivd <oy > are sccarrences in T,

then,

o (@3, My>

‘e {€4,My+ Py, €,))

Proof: lyMMMM(MQMQA»NiwmaMfM oy from

4 tMm_mmﬁﬁthdb Tln

- <agng> to <eyny> such that ) = 0 and o + & Lt Z = NJ> and ¢ = ¢yowy. Bérause
#) is a path from ¢ 1o sy oF Tinimit-tekan-feading and &y is a path from ey to ¢) of
mlmmtmth”MMmmnmm
containing both x and 3. In otherswerds, By = Arley, &) Since @ 15 2 path from <oy > to
«,.lp.whn.byl.muthun;ﬂ &mmmm o

WcuelnF&un&?ﬂm%hthehgmmdlmlm&amd 43> is

hmnmmdunm

occurrences of Event | is 2. nuummmxdmtm;ms

With Theorem 59, if we have an initialized event graph satisfying the necessary

requirements, then we can determine the ordering relationship betwesn occurrences of two events.

All we need know is the synchronic distance between the two events. In Figure 510, we show the

ordering relationships for ssvasal vaks of fleysy).
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Figure 5.10 Ordering Relationships between Occurrences of Two Events

Lz1



The next thesrem states that o is 2 metric when the event graph satisfied two elementary

properties.

et R R
@) prleyag) =0 wo wpoey
() prleray) = priagsy)
() peray) < prnaghirionsy

“Proof: Fw&:lkmxmm'uy‘mtw@hmm Property (a) follows

rmmfmmzumcmmw, from the
defhﬂner synchronic distasice.

'SUmgmmmmymdabmdMMWﬂmwmmumm
,;uwummwm hmm mmmmmm
absence of blank circuits and coverability by basi circults are necessary and sufficient conditions
"for ‘liveness' and 'safeness’ in event graphs.! | |

We now relate the ideas of this section 10 the thesey in Chapter 3. Theorems 33 and 38 and
pmummcmwumwuammmmhm

by basic circuits. Tmmum m'uh"ﬂufMMN
Theorem 5.10.

Corollary 52 ummuummm«z‘umummmwmua
metric space.

'Livmmmthatnmuhmmofthewmmhmhmubmmy far. Safety
means that instances of the same element are totally ordered. .
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Definition: If Z* is free of blank circuits, then <E*,pz#> is called the system space.

55. System Time:

In most theories of system behavior, 'time' is introduced as a primitive concept. Our
approach is novel in that the concept of time is derived from the logical structure of a system. We
only require that the initialized control structure satisfy three simpﬁ properties. There is no need
to augment the definition of a system, and there is no need to modify the simulation rule.
Definition: An initialized event graph <N,I> is said to be synchronous iff it (1) is connected, (2) is

covered by basic cifcuits, and (3) satisfies the synchrony property:

TeN: VullN):  lulekiul

*The length of each elementary circuit is proportional to its.token loading.’

An initialized event graph that is not synchronous is called nonsynchronous. A
synchronous system is one in which the initialized control structure is synchronous. A
system that is not synchronous is called nonsmchronous.'

For examples of synchronous systems, the reader may refer back to Figures 3.13-3.15. In
Figure 3.13(d), the proportionality constant between the length of an elementary circuit and its token
loading is 2l In Figure 314(d), it is also 2. In Figure 8.15(d), it is 4. An example of a

nonsynchronous event graph is shown in Figure 511.

! The question of what an "asynchronous’ system is is outside the scope of this discussion.

In determining the length of a circuit or a path in an event graph, we count the arcs in the
abbreviated representation of the event graph. This reduces the length by a factor of two.



w"‘““"“"mmmwmmm m-mm
event graph is connettid sisd WM*‘MW
Property 53 A mmmm h M?M.

Ahofmthuymhmypmpmy nkmmnhcm&uchmdmltuamumph
of k, and thttthchngthdmhmmtuq;iuk. R!'Mﬂmkhmlbthegdof
the lengthsofthuhnmury&wm Now mmmmummu

vm&utmwﬁmmhmm”nﬂm
These results are reflocted in the next .



Property 8.4 I &N1-is & synchrontus event geaph, them, -~ .
VAN futoy(N)-ol

Towmmmmmmwmmm mmwmwot
the phuerelmon mpmmummfmmmmmmmeummy
thatthcamuvmmumudfm;m Thcm'wthm ptpnn_dunuuugl.

Definition: The fcanmmm.ummmmm
B.SISUEY such that

Vxe(SUE) xSpx

Elements x; and x, are said to be in phase iff x; Syx,.

Thewmd mmmwumm
thephuerchtbn ’

Property 88: If N nmmma&gmﬂmﬂqummusu&md.
VMSUE)MN ACS V AcE

'Endnplulnuchulnduad bypnmmmumwmwumwy
events.' .




Definition: If N is the strongly-connected event guph S then-t Sundamenial siteuit of N
is the quotient net K= 8>, where,
5 = {lg,, | 368}
- Felddlg blg> | aupef)

Loaten ¥

Fropuy 83 Rsa .

mpmymnmammamm' i

In Figure 5.3 s ahow how.the v

The fundamental circuit may be thought of as a ‘dlock’. Now with this interpretation, it
might appear that to make an evant graph ‘syachronous’, & will be Retessary to Yire' the events in

'nummmnmu

g+
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a phase transition ‘in unison'. However, this is net the case. In fact, &Wm,hmry for

~ the initial conditions to be in phase. All that's required is.that the. jnikial:conditions belong to a
‘marking class’ in which it is possible for just those states in a given phase to hold. As it turns out,
there is exactly one such marking class: it bes MMQQM in.a.strongly .connacied. £y
graph free of bisak circults, swa ‘matkingy’ belong, to-the same. surking siass Uf they induce the
same token loading on each circuit Now in the sitontion where . just thaee giates in a given phase
hold, the token loading on each circuit is known:

Vuel(N): ol = —
¥(N)

But this is just Property 55, which is equivalent to the synchrony property. Therefore, a set of
initial conditions:can by beought ‘inte.phse’i{f the yynibmny.propsrty & w.hfm
With the preceding discussion a5 kadkgrouhd, #eire\noe’.aady 1w dasalop. the ma jor results

Theorem 5.!1. lf <N,l> isa :ymhronomcvem gnph, thun,

Vnnm wawww *MWM

'If wy and g are paths in N having the same endpoints, then the length of uy minus
9(N)«(token loading on ;) equals the length of ue minus ¥(N)+token loading on pg).
: T S T T R R B e By e TP e e

..+ Rroof: - Because a synchronows ewent graph. is-strongly connased, Mhere:sniste-a.path. pg (rem »°

and p’. to .‘l and .‘:. From Property 35 we have,
g tHigl = ANl lpHmaly)
Waktimal = (Nl Hslp)

! Theorem 11 in [4)
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* Theorem B12: 1f <N.>1s s syrichrensds event graphi, diem, - <

Vi AT 0'[_' -’I-«!.*;ﬁ'.#ﬁ ot B
W gy Clevaba clouiE A T s dase

Proof: Buuup,p,fmadml.nhnbymu

sy gl = ¥(NXipylgtigly)
The theorem follows.

Theorem 518 I Te<H,OC» s asimulstion of & synciopnent svgntgiaph; then, - '
Ve dlT: o=y Ay ey i

'In amaammmwmmmm
then they must be the same length.’ .

Proof: Fmthmb.l.mkmmp,w mo,auo,mm;uﬁm

Mmmmwmm'mmrwmmu&mo‘mmmn

5
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Definition: If Z is the synchronous event graph <N,I>, then,
for Events ¢ and ¢y,

az(‘l,lz) sn iff M(N): .“-01 A “.'lz A n-hH(N)hh
'd37(e19) = n Iff there exists a path g from ¢; to ¢y such that n = uly(N)lul;.'
for States 5y and sy,
T
d7(sy, s9) = dp(e;, ¢5) where ¢; is the unique output event of sy and ¢y
is the unique output event of s,

(Theorem 5.1l guarantees that 37 is well defined.)

bz(x‘”;xz) tells us 'how far ahead' the first instance of x, is going to be with respect to the first

instance of x;. In Table 53, we give the values of 3(¢),e5) and ¥(s;,5) for the synchronous event

‘;:phofl-‘lcuns.l.
s
e2 2
l1 2 3 4 a b c d e f
1041112} 3 alollf112]2}3
21|-110]112 bi(-11010({1}] 1} 2
€1
3|-2]-1}0{1 cl|-110}10]1t1] 2
®1
4 |-3|-2]-1] 0 d|-2{-1}-11 0] 0} 1
e |-2|-1|-1] 0011
(a)a(el.ez)
f |=-3|=-2{-2|-11-1] O
Table 53

Using 37, we now define the 'time interval' between two holdings or two occurrences in a

synchronous simulation.



Definition: If <xiny> and <cgng> ase.skthar (wo heldings. o ome. aqciceen
the synchronous event graph Z«=<N,I>, then,

Bzt np>gng) = (Broqdr(N) « drbvpg
Az{g14y) is the time inesrvyl frem qizum -

w.nvomumpnmmmmmnrwu lndweut.v(ﬂ)-z

Aldisich®) o m2+s . =7
AABAS) = W28 . ed
ABDLH) = (22 «0

A“:’.‘») - “2 02 - 2 s

mmzmmmmmazwummummmmd

ammm

Theorem 51¢: If ¢, ¢y, and ummmmumu;mdm
WMW!.M ,

() Aglgy, qy) = 0
(®) Agiqi4y) = -SAepny)
@ bginay = dzinyty) + Orayty)
Proof: (a) Follows directly from the definitions of A7 and 3.
(8)-5fnyin3) = -Bfiyty) by Theorem B12. It follews that Sgéfyty) = -Ogit Ay
(c) Lat gyocxynp>, ggecxpity>, gyexgnp, and i 2 o N, I>. We have,
Algrgy = (nymy) y(N) + 39

nd 8lgy49) + Blgpty) = by + sy + gy + deyzy
For occurrences (and similarly for holdm). |



137

Axyxy) + Axgxg) = oo IuyugllN): “wymry A py'=xy A “ugmxy A py'=xg
An = gl + gl - Y(NXigly + lugh)
o JuelI(N): “uxy A p'sxg A n o= (] - (Nl
- dx)xy) =n
Thus, ¥xy, x5) + xy, x3) = Axy, x3). It follows that,

Olg1 g9 + 80y g3) = (ngmy(N) +¥x), xp) = Algpqa) a

Theorem 5.15: If T=<H,0,C> is a simulation of the synchronous event graph Z, then,

Vedl(T):
‘00’'€0 » A ‘es’) =loly (a)
‘es’eH » Oy'00") =0l (®)

.'If @ is a path in T connecting two occurrences (holdings), then the time interval
between ‘¢ and ¢° is equal to the number of holdings (occurrences) crossed by o'

Proof: (a) Let *0 = <¢;,ny>, ¢° = <t3,n9>, and Z = <N, I>. Thus,
Ay(°a,0°) = (ng-ny) ¥(N) + d7(e;.e5)
Since  is a path from ¢; to ¢y, the definition of 2 gives us,
dzleyeq) = Bl - ¥{NYRY
We know that |ely = ¢l and, therefore,
A(‘e,0°) = (ngny) ¥(N) + lelg - ¥(N)#h
From Lemma 51, we have nqg-ny = [¢};. The desired result follows immediately.

(b) Let “g = <s,n;> and ¢° = <s3,n9>. Let p be generated from & according to the following
diagram,



> [’
»
D i el e )

sy.sp) = - NNl = b - 7O
| ~ Which, in turn, produces,
&('s, 6 = (nymydyiN) +lelg - vy

-m&mcmm .a cnsecd;. wa vt framilapme 5
- dethred vevuk follows. : s vs ol fevnn ad e oy gt

Theorem 56 I <H, O, C> s a simwlation of the spacheomens mnt wt giaph z.th-n.
v'l. ,, ] 0 v&‘. " . H TS S £ 23 {»5-.:4-&-’,;,.‘_ : .

f1°hy Aukg - Az(u.n) “z“t "l’ ” i . ) ®

Ay Adggy » Aglgy gp) = Oyl by) N ®)

memg,mnmmmhlﬁhmm’ then the
time interval betwaen ¢; and gy is theaiibme Weliuiatn and Ay

Proof We'll prove jut Put (a).

Lﬂn-«l.np. ;-«,up. Al-cl.np.mdb, W Andlltl-wﬂ;bc We know
that ¢)s; and ¢ges;. Now et x be a path in N from the unique output event of 5, to ¢y
Let ¢3 be the unique output event of s3. We gat,
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b

w
-

IA(ql. gg) = (ng-ny) y(N) + leysyul - y(N)isyuuly
A(Ill, hz) - (MZ‘MI) 1(N) + h“zla' - 7(N)W:Il

We have immediately, leysyu| = lu] +1 = [usqge3l From Lemma 51,
we get, m; = ny +[s5y|; and my = ng + 5l Thus,

O(ky, Ag) = (myHsglny-syidy(N) + leysyul - ¥(Nwsgly

Qe G @ > o em — e QWi § A §

L)
= (ng-ny) ¥(N) + leysyul - ¥(N)syuly sz
= &gy, 99 e, O

The notion of 'simultaneity’ is defined in a straightforward way.

Definition: If ¢, and gy are either two occurrences or two holdings in a simulation of the
synchronous event graph Z, then,

917292 * OZq1. g =0

77 is called the simultaneity relation. We say that Instances ¢; and gy are simuitaneous
iff q) v7 q5.

Property 58: If T is a simulation of the synchronous event graph Z, then ry defines an
equivalence relation on the holdings and occurrences of T. Furthermore, each
equivalence class induced by ry contains either exclusively holdings or exclusively

occurrences.

Definition: In a simulation of the synchronous event graph Z, the equivalence classes induced by
r7 are calied simultaneity classes. A simultaneity class of occurrences is called an
instant of time, or just a time. A simultaneity class of holdings is called an

(elementary) interval of time.

We have the following property from Theorem 5.15.



Property 510: lfmmwuu'smm are simulansous, then they are either
- colncident or concurrent.

RTINS B D B

We have the following property from Theasd 58

Property 5.1k Hn.q,q,mdumwmam%?W%mmz.
then, , ‘

' N uirarzn » 6o K s i @
0193 A 130 A 137285 * 7oy o ®)

Wmmmmmmew‘mﬂm
also simukaneous.’ :

R LI R I T

Pmpuﬂamandwmnthuha mm thcumhudtyclmufmna
series of 'slices’, wunmmemmmm-sqmmwmmmm

Figure 5.1, rmmmummmmmmrmu

‘;g;:we». T g

Tlnomn.’:.l? Ifqlmdq,mlammham.fhmwmwhz.tm.

7293 * §i828 ‘
"IF gy And gy are smeiurioous; e ¢, and ¥ st Ve 48 phase’
Proﬁf: kWe give tln proef fﬁr mmel. mmwaqu Z <N, b,
and let ¢) = <x), 7)> and g3 = <oy 7> We have,
L Az 99 =0
- ;W +ig(q.q) -0 Fiy
ae FUIN): ‘poey A u'oeg A Bl 7N Nalps ymge®)
<> Juedl(N): “wmty A ety A bl = (3 Ry HulhrN)

Thus.qlrzq,m:mmm:mm#,;uiz,wmmuamuluph
of o(N). It follows that x; and xy must be in phase. Q-




et i e g

Figure 5.13 Simultaneity Classes
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In Section 5.2, we introduced the netien of <sy.ay> being the &'th occurrence of ¢) preceding
(following) <syne>. r«.mmmn%mkm the
time interval betwesn <eyny> and W mwwuwm of distance’ in a
directed graph. S

Definition: uv,mv,mvmmmwmmmo then,
dglvyvy) = M(MGN pﬂw vy} |
%(vl.vghMWMMﬁnv,nv,

Theorem 5.18: If«,.npmwmoWMhtmdauMm

a,nphtmx'aswmchpm%
wnmm’mmdd QWW L

Az(«:-ﬂe-mﬂ . uww

Proof: FmThmeckmMMMgp&ch&tmthm«mpw
<egnp> such that byffdek-l Lat s be a minkmal lngth path in N from ¢) to 3. That ia,
Inledp(eg29). uﬁrmmmum; | mmmumm
from ¢; to ¢g. Thersfore,

$2(0) = Wiy-lely = k-l 0) | o b
Theorem 511 also gives us, " ~
hr(Ndsiy = ohpNJy (@)

Combining Lines (1) and (2), we have, e

= GeDyNMul

But Pi=lely and wi=dn(e)sy), and 50,

leig = (-thy(NMdploya)
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From Theorem 5.15(a) we have |l = Az{<s),n ><eqny>). The desired result follows. o

In the simulation.of Figure 5.2, we see that <L1> is the third occurrence of Event 1 preceding <4,3>.
We have ks3, ¥(N)=2, and dp(1,4)=8. Thus,
Ol<l1>,<435) = (3-1)x2 +8 = 7
This checks with the value of A(<l,i>,<43>) computed earlier in this section.
The final results of this section have to do with four functions defined éarller in this
chapter. For general event graphs, these functions depend upon the set of initial conditions, but

for synchronous event graphs, they are independent of the initial conditions.

Property 512: For a path y in the synchronous event gﬁph Ze<N]>,
8200 = (wHdp(ma 1 ¥(N)

Property 513: If ¢ is an event in the synchronous event graph Z=<S,EF 1>, then,
$7(¢) = {s€S | Juell(N): “pes Asep A p'=e A lulndp("ui)

$77(6) = {3€5 | IualI(N): “u=e A sep A sop® A lsledp ()}

Property 514: If ¢; and ¢y are events in the synchronous event graph Z=<N.I>, then,

prleyes) = (dnleye)tdplesey)) / ¥(N)

Before concluding this section, we should perhaps say a word about the distinction between
'system time' and 'observer time’. System time is strictly a system-relative concept, and is observer
independent. Observer time, on the other hand, is relative to a particular observer. In the case of

a clocked system, the two notions of time are, for practical purposes, the same. However, in the




case of an unclocked system, the twe-nations of tige-saay bear: itle resembiance 10. gne. another.
Fwexamph.kuﬂghthpﬂdbhform“nmmgmmmw for ¢y
w&'&!ﬂhmmenmm mwm-:emaywhmqumu

thereluammmugfmuhbﬂm«“mpmhmbuhqmmm
obperv«m
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CHAPTER 6

PREDICTION AND POSTDICTION

6.1. Information ntrol:

In Chapters 4 and 5, we examined separately the two components of system behavior:
information and control. In this chapter, results from the two areas are brought together to
produce a technique for predicting and postdicting system behavior.

As we showed in Chapter 8, for each system simulation there is a corresponding control
simulation, and the two are isomorphic. Consider a pair of corresponding simulations. Because
the control structure is an event graph, the control simulation has the regular properties described
in Cﬁapm 5. Since the system simulation is isomorphic to the control simulation, it too has these
regular properties. Of course, the system simulation also has certain 'irregular’ properties, but these
are describable using the concepts of information flow.

It is the irregular properties of system simulations that are the focus of this chapter.
However, in getting our results, we will take advantage of both the properties of information flow

and the regular properties of event graph simulations.

6.2. Transactions:
Suppose that we have a system simulation and a corresponding control simulation. Within
the control simulation, there is a total ordering among occurrences of the same meeting (Corollary

3.4). For each such total ordering, there is a corresponding total ordering in the system simulation



among occurrences of those events belonging 0 the réiated mesting. These ideas are illustrated in
Figures 61-6.4. In Figures 81 and 62 we've rediion-ihe iNatint

system net and the initialized

control structure for the bit-pipeline exampie of Section 3.7. In Pigures 63 and 6.4 we give a

.mmmmmmmmmi Wée've indicated in the control

simulation the occurrences of Mesting {55), and we've indicaied: 3N ¥he dwten: sienwlittion . the

occurrences of Events 5'and 6. Now the ciitb-dur' Somgondings: betwonr At two sets of
We adopt this terminolefy:

_Dcﬂmuon If, mmammwm‘wwmummam

FE YT R '#Wémmmmh
«umm;

R R SR

r«mmmmmmnwmm LI P

:monmmf,mumm
Event 5 is the third traneaction & M

i)

Nwmppmmuqummamwmmu.qmm Tbunn
an:p.kofﬂnn‘thmuahnumfn Man' | o

Definition: lfTuuymm
gisaninstance in T,
¢isan event,

m is & mesting.
t_n;umnm

B Bl

. then,

K7



Figure 6.1 1Initialized System Net

Pigure 6.2 1Initialized Control Structure

A4t
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Figure 6.4 Corresponding Control ‘Simulation




%0
r«nqmnmmwmmmmgumm is an
occurrence of Event .
Fwnmmn%mammum‘mMQumm is an
occurrence of Evant &
In the simulation of Figure 63, if we let ¢ be the first (and only) occurrence of Event 4 as
indicated, then the transactions relative to ¢ are as given hm Note that for '_‘5‘3 and for
n23, there are no n'th transactions relative to ¢. Note aiso that Waa occurrence is considered
both MpmMWMIM“Mf(thMHWMEvahMthelut

mnuabnandthcmtmmuum{u}uwvtnq Aumghmumymt
mpmdmmdlmumndummm

Meetings sy g 08
Las Trnmctons (=)~ | 2 | ' T35 | nene
Next Transactions (nel) | 1 | PR A s

Table 61 'rumniﬁmm

Having introduced thonubndgammmwﬁlmmammﬂhtin

3

mmmmmmwmgd‘n&m!ﬂnnmm

Definition: If T is a system simulation,
qisan instance in T,
n is & nonzero integer,

then,

t{#.T) = {eaE | Within T, ¢ is the n'th tranmetion at [s],, relative o g}



If we let T be the simulation in Figure:63.and ¢ be-as “"“‘M""’”"‘""*fm
~ values for . (¢.T).

tolgT) = 9}
e = (248)

e - ¢ .vzfﬂ.;ﬂﬂm'fﬂ?ﬂ&w e

TMnmam.ﬂmmmmmmmuumwmm

mmammmmmmmmmmmmum
.Deﬂnmon Ammruwnufméammmmm
mqmrmmmnmtmmammmmr'
(@ ¢ =¢
(B) for 1<k (-ks-us~l) and VmeE" v
L Tmed o
T’huann'thtrmncthnnhtivemg fonnrym;
© @D L@ T) B

"The set of n'th transactions in T relative to ¢ is contained within the set
of n'th transactions in T/ relative to ¢°."




Extendibitity mnmmmmmm

We can state 2 necessary condition and some sufficint conditions for expepdibility... From
earlier work (4] we kmﬁm in an-evemt graph, nmm in a blask circuit can ever
occur. Therefore, if any system simulation uuwmm fmrdl"hép;ckﬁrds. the
initialized control structure must be free of biank circults. -Sippose that ¢his is the.case. Then the
only way for the system net to ‘hang up' in the: forwands {baclivhiis) disection ds for there to be a
pattern of holdings on the inpnt m&ﬁ‘iﬁm such that no event in the mesting
18 forwards (hckvmdl)nbhd bymm mummphuf a buduurds 'hung up',
consider cheumuuuonmmmu uuammmmmvma n;ms.m
with States A and f as initial conditions. mmmdawyamm\mﬂsm
any event in Meeting {5678}, the simulation i not backwards extendible. The following are
uifﬂdnu conditions for all system simulations to be forvwards exdemlible = . o o

~ (b) vmeE*: uawAmdemfmmmmmdm.
mm

- S

The following are sufficient conditions for allsysuwié Snkitibins 40 be: back wads axtendible.

() Z* has no blank circuits. |
(c)VmcE" uauAmdemfmmhmhkdmtm
Jeam: ¢'=A
Except for the situation noted above, the initialised systems in Sections 3.7 all satisfy these



rwid;s Amemamwmm

mm;mmmmﬂ ‘dendlock’ i3 in.order. In the past,
deadlock 4n-a Petri net: bms been used. to:represent the. soeempendioy mamm!m
This approach is net suited to the theory.presented lsess. - If. we aterpret occursences of. svents as
meumuwm A than degdlock. in. the aystem net woukd
" correspend to ‘thme--standing: stiif’. Since Whmmm ity is a reasonable
“nssumption. But; the:quIsiion arises & to-how the phanomenen of- deadlnck 13 to be, represent
Since doadleck 1s. 2 'mode’ of behavior, there will prohably;be ;¢ mode (a1, defined formally)

Our efforts in thuchapmmmum«l wmtthcfm pmbbm

’ Wemmaqummnmmmmmgum with the
akernative class ¢. If we alio knew which element in ¢ ¢ was an instance of, what would this
addtmlkmﬂaﬂmmmwmdmmmnqmd

subsequent to g?



R A ey e R e At e BT

That additional kmwwubmusum, mMimmmmuvu But this
ucxmiythcmtmtm«nmﬂmm 8o the 'information content’
ofmcmmmtmupuqumnmmwmammwu
Anythmgthnmbcdduudfmmﬂhwfmmm
Ourlppmchwmmubmdmnphwhkhmwm
muwkhqwnhummm«ﬂhuphwkhkmuhavc
emanated from thm(pndm). hfmmm&amdumm
Because information is m".mmmmwhqu'mmﬁq
~ separitely and then merge the results. ‘Assttiated wishi eaulr' sxchusion, there-are two suhats of the
sithulation coRtatning ¢. One MHIE tiwols nmmu thee Sther. trages it into
’ ﬂn fature. mwmmmmuwmm Dflﬂd
*’"‘-Muq mmmummmwnm
hMmd&tmmﬂyhmmnM ase there ma) be
 an tnfinioe nismber of disinet persi amries pemibls: Shutainss. welon:desing ith iRk AORT.
there is i”fmi'ny-ir chanictisising the st of Unciomade At fopwards parsind: bisteriss..: The
cones described in Section B3 can be used to 'shior up' thaahmes Shat genernie she gartial hisiories.
This produces a finite set of "history sagments’ as shown in Figure 85. This approach is especiaily
dvaanMn%MMnnghhmhﬂnn&h

Ao i

hmymtubuvemg(mcummﬁm
the different ways in del meu PR

o In uda- &mmmﬂmmwmm
ST TR T B R i e e T st mls T e ‘
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—2— A 'Back Cone'
'History Segment’

2 _—— An'Exclusion’

L, __ A Front Cone'

Figure 6.6 Subnets Associated with Excluded Mode



Definition: In a directed graph, a chain is a sequence of arcs such that each arc in the sequence
has one endpoint in common with its predecessor and its other endpoint in common
with its successor. (The diffsrence hatwesn 2 path and a chain is that a path must
traverse an arc only in the forwards direction, while & chain may traverse an arc in
either direction) The sst of chaine of the divesed graph G is denoted C(G).

Definition: lfcuammm:dmmhwdxﬁk&mdmmmumm
aeds _iyﬂh«kmmuﬂfmxwy

Definition: If ¢ 18 & chain in the disscted mom A‘ts sit of vertices in G, then

NdAummamwhcsmmammmd
mmmm-tpﬂumn.

Definition: For meE* and Melll,
o(mM) = {¢eaE | XeCIN) 'c = ¢ A c'om A X Kyg = ¢ ANl g e-im) 2 0} ()

'Fornchevmcinv‘(a.ﬂ).ﬂ;mahha i’xéfmcbmnmmnmchthatc .
does not intersect the mode M'-and. the » of forwards crossing of states in

wz:'(m)'by ¢ umm wﬁhntua‘u*- of backwards crossings.’
v‘(m,M) - {e€E | JeCN): ‘cam A c'=e A XJR“ Ald gm0} ®)

'Foruchemtclna‘(n.m.mmﬁnmcm;n«minntocwch that ¢
dwmmmMHwMMdmmd states in

w«wmcupmm«‘mumwdmm

v'(mM)_isthesetofevenutmanbeconuMhlbukurdshimqngmem for Meeting m
and Mode M. v*(m,M) is the set of events that can be contained in a forwards history segment for
Meeting m and Mode M.

'oz.'(m)umemofunummuckmofumn wzo'(n)umuuormmbewmg
to those links.
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The requirements given ln the following definition:will: be:ueed tn genes
the system net that correspond to the history sagments.

ve the. sbnats of

Definition: Faawbnukdﬂnsymmamuﬂugu.wdlmn.mddmmfm
m“mu. . . [-'"?’"‘h CE AT e P ey

(1a) ¢ cEp g v(mM)
(Ib) ¢ cEq g *'mM)
(2) vaeE*: RNEpi<l ”
'R containng no mece than:one evans from each; ;
® s - (ERUER (SS9
| 'Amhmmmnmnhdmnmmhlaﬁhmmm

in the mode M.
(4) Fy = FiSyXEqU EgSy)

"Fhe arcs of R cenaist of thase arce.in N that cognact
(On) VeelSy- gk (opetped.

'Wltmnll ud-mms.'uoz-‘(a»mmmmmw

(hb) Vie(Sy-Ugze ' m)): ("sip=lsy

- "WaMMn R, “mu%&wmm‘
output event” |

sloments in R

4:and one

“The functions contained: In the next defisition correipend 3e:the fremtand back bauadaries.of a
h R




Definition: For QgE, meE*, and Mell,
b (QmM) = "Q N (Uzx(m)) N (S-Spy)
f(QmM) = Q" N (Udzx(m) N (S-Spy)
bHQmM) = *Q N (Upzx*(m)) N (S-Spg)
fHQmM) = Q" N (Upzx*m)) N (S-Spy)

We're now ready for postdiction graphs and prediction graphs.
Definition: The postdiction graph for Meeting m and Mode m is the graph <u"(mM)w(mM)>
where,

u’(mM) = {Eg | RCN and R satisfies Requirements 12,234 and 5a with respect to m and M}
w'(mM) = {<AB>e(w’(mM))?2 | {(AmM)eb’(BmM)né}

Definition: The prediction graph for Meeting m and Mode M is the graph <u¥(mM)w*(mM)>
where

u*mM) = {Eg | RCN and R satisfies Requirements 1b,23,4, and Bb with respect to m and M}

a*(mM) = {<AB>e(u"mM)2 | FAMM)-b*BaM)nd}

To help clarify these ideas, we'll work through an example. Of the three systems considered
above, the circulating bit pipeline is the most interesting from the sﬁndpoint of prediction and
postdiction. We've redrawn its initialized system net and its initialized control structure in Figure
6.7. (The parts and modes are shown in Figure 3.14.) Let's consider the meeting {56]. For m={56},

we have,

¢ (m)={{a}.{d}.{hi}{k1}} and U (m)=fadhiki}

¢ (m={{bcfef]{ghiil} and Ug*m)=bcesg.i)



6S1

(b) Initialized Control Strictuke

-~

(a) Initialized System Net

b
S
X

N
5

Figure 6.7 Circulating Bit’ Pipelifie




Now suppose that M is the mode associated with Events 245 and 8. Then there are two subnets

of the system net satisfying Requirements ia.23.4 and 38 (shown in_Figure 68(a)) and two subnets

aﬂsfymglqwmu&.zmmd&mg&m “The resuking postdiction and

wmmmmurmu ﬂvmmmmwumm
graphs)

OurMmunmmmmmmman be used to
<wmmmmmﬁwu;mmmunmmmm
‘Dfmmmknymmmtnfuﬁhtwmmmm'nm«
backwards; but we can say that the petierns of tranmsstions must be ‘onsistent’ with certain
Fequirements. | |

Definition: For QgE,

Q is gelf-consistent iff "1&“**1“‘!‘ 31"'8

: 'Audwmummhmmmﬂnammfmmh
meeting.’ i

Definition: !lemdQ,me&M‘M | :
QN - V‘x'Qt VepeQy: ety » oyoeg
chymaﬁtmdQ,mmMmmﬂQgﬁ

TwmdwmmMMmWﬁwmﬁymm no more
thmmnmtmmhm \

Propenye.l. lfTuuymetmwﬂmhamw then,
t.(q:r)tsuwm "

And, from chukm(!).mhanﬂnfm." o
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k h e b
1 7 5 3
b 3 h e
3 : 7
e k

w»

F
o

(a) Backwards 'History Segments' (b) Porwards 'History Segments*

Figure 6.8

{135} , {7} {157} {3}

(a) Postdiction Graph (b) Prediction Graph
for Meeting {5,6} for Meeting {5,6}
and Mode {2,4,6,8} and Mode {2,4,6,8}

Figure 6.9



Property 62 VmeE®: VMan
VQeu(mM): Qs seif-consistent
vQeutmM): Q is seif-consistent

MmJMWMamuammm is self-
consistent.’

The next four theorems corhprise our resuits on pradiction and postdiction. Unfortunatety, they
'mqummmbm TMMMWuﬂmmmpmmd

prediction and postdiction.

Theorem 61: (a) If T isa MMMM(BNWM T, m={€),
~and Mek(@), then 3Qex’(mM):
eQ A tlgT)mQ
MtMMaMMmmT'MMWq
such that,
§ -
'n‘t H ln(’..r)n-(":r')
VaeE*: t (¢’ T'Nen¢
Q= v'(ﬂ.HM’.T')

m)KTnafmmwmmqhmme ma{0],,.
and Mek(@), then 3QexmM) £ ,

§feQ A t g T) = Q

andthmuwafmmﬂwwmmT'Mmmmq

§ =8

VneZ" t,(¢.T)ct (¢".T")
VaeE": t (¢’ T' Ve =¢
Q = MMt g ")
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Proof: We prove just Part (a).

Because T is backwards extendible, there exists a system simulation T with an occurrence
¢’ such that,

§ =§
vneZ: t (¢.T)ct (¢".T")
VaecE®: t(¢".T')a = ¢

Now since T is backwards extendible, it must be possible to select T so that it too is
backwards extendible. Let R be the subnet of N defined as follows.

ER = v'(mM)Nt (¢’ T")

Sg = ("ERUE"RIN(S-Sy)
FR - FNSRXERUERXSR)

We can deduce the following about R:

(a) ¢cEgcv(mM) §eER and def. of Ey
(b) Va€eE®": sNER|<I Epcty(¢”.T")

(C) sR-(.ERUE'R)fKS'SM) def. of SR

(d) FR=Fr{Sg XERUER XSg) def. of Fg

(e) Vse(Sg-Uzs (m)): ("s)g=(s")g=l def. of R and Cor. 41

In other words, R satisfies Requirements 12,234, and 5a. Thus Egeu’(mM). We know that

@ is an element of both v'(mM) and t(¢",T”), and therefore, §eEg. Finally, because
t_1(¢.T) and Eg are both subsets of t.{(¢9*,T), it follows that t.(¢,T) » Eg. a

Theorem 62: (a) If T is a backwardi—extendlble system simulation, 4 is a holding in T, Mel(3),

and m is the unique input meeting of (], then 3IQeu(mM):
Ae(Qm)® A t(AT) »Q

and there exists a backwards-extendible system simulation T with a holding h” such
that .

A=A

VneZ: t,(kT) ¢t (A",T")
VaeE*: ¢t (h'T)Nan¢
Q= (mM) Nt y(h".T°)



(®) If T is a forwards-extendible system simuletion, 4 is & helding.in T. Maif2).2
umwmm&%hw

Aci(Qrm) A l.;“-'r) sQ

and there exists a forward-extendible system simuiation T/ with a hplding A° such
A =R
. VneR*, wm ST

FIRPE T,

Q- v*(a.u) N tyh"T)

Proof: We prove just Part (a).

wurummmmwx'mmi’
tlm.

Aok | o »
Vael: e(a'r') | et A @
VeeE*: 1A T") e vg | EEe ()

Nwmfummwunm’mm%ummmu

TeQ wd Q-vm0NLGT)
Becuuse e @w)end #4, o
| x-(am)’ T W
mqmmgh'.

L ARGT ) et T
It follows that,

Q = v'mM) N 1_y(4°,T*) | SR TR . ®
And finally, because ¢_y(4T) and Q are both mm.,a'r'). g

(AT ~Q o ®)
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Lines 1-8 comprise the desired resuit. =

Definition: Within the context of a prediction or postdiction graph <u,w>, we write AVB to mean
<A, B>ew. For Aey,

VA = (BBVA}
AV = {(BIAVB}

Theorem 63 (a) If T isa system simulation, ¢ is an occurrence in T, m = [§]_,, M€l(§), Qeu'(m,M),

k is a negative integer, and there exists a backwards-extendible system simulation T*
with an occurrence ¢ such that,

G =3

vneZ: t,(q.T) ¢ 1,(¢".T")
VaeE*: (¢’ T')Nax¢
Q = o’(mM) N ,(¢",T*)

then for YQ » ¢é UeVQ;
t-1(qT) = U

and there exists a backwards-extendible system simulation T/ with an occurrence ¢*“
such that

el’ - el

vneZ: t(¢.T") gt,(q”".T")
VaeE™ f (¢’ T’)Naxn¢
U= v-(m’M)ntk-l(ql I'TII)

(b) If T is a system simulation, ¢ is an occurrence in T, m={§] , MeK#), Qeu*(mM), A

is a positive integer, and there exists a forwards-extendible system simulation T with
an occurrence ¢” such that

7 =7

vneZ* ¢, (q.T) ¢t (¢°.T")
VaeE®: {(¢".T)Nax=¢
Q = v*mM) N 1,(g".T")



then for Q7 « ¢, WeqV:
halgT) = U

~und thess exias afmmm T" m__h PCCHITIGS. ¢
m M oy 1 s

§ -8

Vuaﬂ ‘. l I)G‘.(‘ll-rft)
VeeE": f (¢’ T’))Ne ¢
U = s%mM) Nty g4°"T")

Proof: We prove Part (a)

G £

mr'ummmmm-mmr"mn
occurrence §° such that,

all - el

g - .
FA N f’} EIE T R
T < :

. Vﬂ‘t: ‘.(’I’Tl)s"-“ll:rll)

VeeE*: t, {4’ T’)Ne » ¢ L 3
T :

MmT’hMm&uMkmthuﬂT”anmh

backwards extendible. mmmnsau’au?mimhwcn

. defined aa follows.

EREWERSE A el st Lo

Eg = v"(mM) N :,‘_,(,"'r")

. Sp = CEQUER") N (5-8y)

Now because tg(q"l"):tg(q' T")md uﬁ:ﬁmuuw mnm fmusting,

tk(, QT’) - ‘k(’"l’r”)

‘We'how have,

Q=7 (mM)Nle’".T’)
En = " (mM) N tk- (q”.T")

It is a straightforward matter to show that,
f(EgmM) = 5(QmM)

R AR A I et e R L M Sl
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since VQ = ¢, it follows that b(QmM) » ¢ and ER # ¢. Using the arguments in the
proof of Theorem 6.1, we then have,

ER € w(mM)
Thus, Eg € VQ

It remains to be shown that #; (¢,T) » Eg. This follows from the fact that ¢, _;(¢.T) and
ER are both subsets of ¢t _(¢”“,T""). (w

Theorem 6.4: (a) If T is a system simulation, 4 is a holding in T, m is the unique input meeting of
(A, Mel(R), Qeu(mM), & is a negative integer, and there exists a backwards-
extendible system simulation T’ with a holding A” such that,

A =h

vneZ: 1 (AT) ct (A" T)
VaeE® (AT )Nan¢
Q = o (mM) N 1, (A°.T")

then for YQ # ¢,3U e VQ;
tk_l(q,'l') s U

and there exists a backwards-extendible system simulation T/ with a holding A“*
such that,

ZII - II

VneZ': tn(hl:rl) ; ‘n(AII.TII)
VaeE®: ¢ (A" T’')Nané
U =v(mM) N 1(4°T)

(b) If T is a system simulation, 4 is a holding in T, m is the unique output meeting of
(A, Mel(3), Qeu’(mM) & is a positive integer, and there exists a forwards-extendible
system simulation T/ with a holding A” such that,

A =R

vneZ* t (AT) g1, (A".T")
vaeE®: {(A'T')Nan¢
Q = s} mM) N ((A°,T")



then for QV » ¢, UeQY:

and there exists a forwards-extendible system simulation T with a holding A”“ such
that,

al’ - ;I
vneZ* 1 (A’.T*) gt (A" T*")

VaeE": ¢ AT )Nané
U = 2'mM) N g ,4(4°*,T*)

Proof: Similar to that of Theorem 63.

As a limited illustration of the preceding results, consider the system of Figure 6.7 and the
postdiction graph of Figure 6.9(a). All system simulations are backwards (and forwards)
extendible. Consider Event 5. It belongs to Meeting {56}, and its information content contains
Mode {2,46,8]. Now if ¢ is any occurrence of Event 5 in a system simulation T, then from
Theorems 6.1(a) and 6.5(a), we have,

t1(qT) ~ {1, 3,5}
t.2(q.T) = {7}
t.3qT)~{1,8,5)
t4(qT) = {7}

.

The odd-numbered transactions preceding ¢ are consistent with {135}, while the even numbered-
transactions preceding ¢ are consistent with {7}. This checks out with the system simulation in

Figure 6.10. Here we have,

£4qT) = {1,558
‘.z(q.T) - {*’ 6| 7}
‘.a(q'T) - ‘
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Figure 6.10 A System Simulation



CHAPTER 7
CONCLUSIONS

71. Evaluation: |

With tmmmwmmmmmdnmmmmabhwmummm
kind:omeﬂmmpmmmmapimm Thenurq:mﬂngm
half adder is just one example. mwmmmd@nwaﬁmmu
rich and varied. Q "

The theory has the following sdvantages:

(l)ﬂenmﬁmumpnﬂbmmmuwym Among those
concepts are some that are fundamentel. wwwﬁm and ‘causality’ are
the most notable.

mmmu«mmmammdm Concurrency is the key
mmmmummmdmm

(s)mmmmmMmmmmemew the complexity of a
system model is reduced significantiy.

(4) Idendfylngthemumncmmsym ‘hardware’, asid the set of initial conditions
with the system Muunpmuwwwmuudm
~and software. .

(5) The techniques of the theory lnd themam;.ﬁ amuon.
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7.2. Future Work:
The work that needs to be done falls into two categories: theory and metatheory. The
metatheory is concerned with four related topics: (i) foundations, (2) semantics, (3) methodology,

and (1) scope.

(I) foundations - The theory we've presented depends upon five axioms. We've tried to
make those axioms plausible, but clearly more work needs to be done. The goal here
should be to reduce those five axioms to another set of axioms that are more or less
self-evident.

(2) semantics - A number of concepts have been introduced in the theory, and we need to
understand the meanings of those concepts. The two that are of the most concern are
parts and modes. We've said that parts are associated with strictly sequential behavior,
and that modes are associated with steady-state behavior. But we need to know much
more about these concepts - in particular, how they relate to concepts atready familiar to
us. (Note that foundations and semantics are intertwined.)

(3) methodology - For the theory to be a practical tool, there has to be a methodology for
applying the theory. A set of practical examples is necessary in establishing such a
methodology.

(4) scope - The scope of a theory is the range of problems to which it is suited. We must
find out for which probiems the above theory is suited and for which it is not suited.

In the mathematical development of the theory, there are several areas that deserve attention.

(1) For a particular system net, there may be several ways of choosing a covering of parts and
a covering of modes. We need to determine precisely the effects of those choices. We
already know that the control structure and the information contents of the system
elements are, in general, affected.

(2) The four theorems of Chapter 6 are quite cumbersome, and are only the first tentative
steps in the area of prediction and postdiction. Much more work remains to be done.
(In this area, Theorem 4.3 ought to play an important role.)

(8) The ability to predict and postdict system behavior should provide the key to answering
the following questions about a system. These questions were posed in Section 1.3.

Under what conditions will a certain pattern of behavior be produced?



m

-What are the consequences of a decision within a system?
What sre the effects of a system modif Kation?
How does behavior: in-one part of 2 spsensinflwence belivior in another part? . -

How do the outputs of a system depend upon the inputs? (Le, What is.the 'functien’
of the system?)

symckmhnmmwbowmmd Mqums.

(4) Within this thesls, we-have et m&m mm This is a
major area, and one which will require considarable offort. ‘Fhatseffart will entail
relating the approach presented here with the ideas of Information Theory. In
particular, mmw%wwm um mumumon'
informuonmm o AN

(5) In Section 55, we mmmwmmm This property
allowed -us to deline instants -of tme. ‘R rhigit: S0 Iveeering W investigate other
possible constraints - on'* the " tontrol " sructerd (T | i sKkivids -of space/time
mmmmnmmm)

The success of these efforts will determine the fruitfuiness of the keas presinted:in this thesis. In
any event, we hope to frave stimulsted £he readur 19 AnkINg Ab0U thertesues ratsed
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