MIT/LCS/TR-171

A MULTI-PROCESS DESIGN OF A PAGING SYSTEM

Andrew R. Huber

December 1976

The research reported here was sponsored in part by Honeywell Information
Systems Inc., and in part by the Air Force Information Systems Technology
Applications Office (ISTAO), and by the Advanced Research Projects Agency
(ARPA) of the Department of Defense under ARPA order No. 2641 which was
monitored by ISTAO under contract No. F19628-74-C-0193.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE
(formerly Project MAC)

CAMBRIDGE MASSACHUSETTS 02139

A MULTI-PROCESS DESIGN OF A PAGING SYSTEM *
by

Andrew R.kﬂgbgr

ABSTRACT -

This thesis presents a design for a paging system that may be used

to

implement a virtual memory on a large scale, demand paged computer
utility. A model for such a computer system with a multi-level,
hierarchical memory system is presented, The functional requirements of a
paging system for such a model a#é &iséussed, with emphasis on the
parallelism inherent in the algorithms used to implement the memory

management functions.

A complete, multi-process design is presented for the model system.
The design incorporates two system processes, each of which manages one
level of the multi-level memory, being responsible for the paging system
functions for that memory. These processes may execute in parallel with
each other and with user processes. The multi-process design is shown to

have significant advantages over conventional designs‘ 1n terms

~of

simplicity,‘ nodulariéy, System) aecurity, ﬁ'and ,systeg) growth _and
adaptability.' An actual test impfemeqtation on the ﬂultiqs systen was

carried out to validaté the propoaed design

Thesis Supervisor: David D. Clark
Title: Research Associdte

*This report is a minor revision of a thesis of the same title submitted

to

the Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, on May 19, 1976 in partial fulfillment of the

requirements for the degrees of Master of Science and Electrical Engineer.

ACKNOWLEDGEMENTS

I wish to thank my advisor, Dave Clark, for his patience 1in what has
been a rather protracted effort. The original idea for this thesis is due
to him. Three people were of great help to me in implementing the design
presented in this thesis: Bernie Greenberg explained many of the
mysteries of Multics page control and gladly contfibuted his time,
kn;wledge and enthusiasm, Bob Mabee implemented some of the code
necessary to permit page control to be implemented on Multics as parallel
processes, and helped in getting the design working on Multics. Doug
Wells was expert at finding my programming errors and explaining the
pitfalls of PL/1. Without their help, I would still be debugging. Many
other members of the Computer System Research Division contributed in ways
too numerous to mention.

The research reported here was sponsored in part by Honeywell
Information Systems Inc., and in part by the Air Force Information Systems
Technology Applications Office (ISTAO), and by the Advanced Research
Projects Agency (ARPA) of the Department of Defense under ARPA order No.

2641 which was monitored by ISTAO under contract No. F19628-74-C-0193.

ABSTRACT

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

LIST OF FIGURES

CHAPTER 1: Introduction

1.1

1.2

1.3

1.4

Processes
Paged Systems
Paging Systems as Processes

Summary of Thesis

CHAPTER 2: Basic Objects and Functions of Paging Systems

2.1

2.2

Page Control Objects

2.1.1 Pages

2.1.2 Page Frames

2.1.3 Address Translation Registers
2.1.4 Segments and the File System
Page Control Functions

2.2.1 Memory Allocation

2.2.2 Memory Deallocation

10

11

12

15

17

17

18

20

26

27

31

2.2.3 Memory Reconfiguration

2.2.4

Memory Wiring

2.3 Summary

CHAPTER 3: Designs for Paging Systems

3.1 Paging System Structures

3.2 Multics’ User Process Page Control

3.2.1

3.2.2

The Current Multics Paging System
Multics as a Single System Process

Paging System

3.3 Multi-process Combination Paging Systems

3.3.1

3.3.2

3.3.3

3.3.4

A Two Process Paging System
Hoare’s Structured Paging System
Saxena and Bredt’s Hierarchical
Operating System

System Versus Combination Paging Systems

3.4 Advantages of Multi-process Paging Systems

3.4.1
3.4.2

3.4.3

3.1‘.4

Simplicity
Modularity

Security

Expandability

CHAPTER 4: A Multics Implementation of Multi-process

Page Control

4.1 The Multics Implementation

4.1.1

Size and Scope

35
36

38

40
41
43

44

48
50
51

61

65
68
70
71
74
76

71

80
80

81

4.

1.2 Differences from the Model

4.1,3 Performance

4.2 The Interface with Segment Control

4.2.1 Necessary Segment Control Functions

4.

.2 Complications Introduced

4.3 Other Page Control Functions

CHAPTER 5:

Eliminating the Global Page Table Lock

5.1 The Strategy

5.2 Locks on Segments

5.3 Multics Complications

CHAPTER 6:

BIBLIOGRAPHY

APPENDIX A:

APPENDIX B:

APPENDIX C:

Conclusion

Changes made to Multics standard page
control
Components of Multi-process page control

Code from Multi-process page control

82
85
90
91
92

94

96
97
104

107

111

113

116

117

119

Figure

Figure

Figure

Figure
Figure
Figure

Figure

Figure
Figure
Figure

Figure

Figure

2.1:

2.3:

2.4:

3.1:

3.2:

3.3:

5.2:

LIST OF FIGURES

Model of a multi-level hierarchical memory
system

Translation of virtual address page 1,
word n

Virtual address translation with
segmentation

Allocating memory to pages

Multics page control

Algorithm of the Core manager process

Algorithm of the page frame allocating
procedure

Binding a page to a page frame

Multi-process page control

Performance of multi-process page control

Processes accessing page control data
bases

Processes locking multiple locks

16

22

24
30
45

53

55
58
60
87

98

100

CHAPTER 1

Introduction

This thesis will examine a general muiltiple process desigh of a
paging system. Such a design could be used in the implementation of a
demand paged memory in any suitable computer operating system. As
computer systems have grown in size, the operating systems have also
greatly ihcreased in size, scope, and complexity, especially so-~called
computer utilities and large time shared systems. The design presented
here offers a method for simplifying one latge component of such systems:
the memory management task. The resulting system is less complex yet
readily expandable to accomodate future systems growth.

There are two central concepts underlyiung the design presented in the
following chapters. These are the concept of a‘proé¢ess as an abstraction
of a program in execution, and the concept of paging as a means of
implementing a virtual memory. Before the motivatfon for designing’a
paging system as cooperating processes can be discussed, these two

concepts warrant closer examination.

1.1 Processes

The essence of a process is the execution of a program. Numerous
definitions of a process are given by vérious authors [Da68] [Ha70]

[Di68a] but all include the notion of an execution point passing through
the instructions of some program. Thus a process 1s an abstraction of the
locus of control that passes through an executing procedure [Deb66].

The address space of a process, that is, the set of all memory
addresses the process may reference, is an important component of a
process. In fact, the address space of a process influences the
computations the process can carry out to such an extent that we include
the address space in our definition of a process. A process, then,
consists of a pair: an execution point, or locus of control, and an
address space.

The process abstraction provides a natural way of describing an
operating system. Each user’s work is viewed as a process, i.e. a task to
be performed. The operating system itself is seen as a task or process
manager. The various facilities the operating system provides, such as
memory or device management, can themselves be implemented as processes.
Two good examples of systems designed around the process concept in this
manner are Dijkstra’s THE system [Di68b] and a multiprogramming system
described by Hansen in [Ha70].

In any multi-processor computer system, processes offer a
straightforward technique for achieving multi-processing (the simultaneous
execution of two or more programs). Any physical processor (CPU) in the

system can execute any user or system process. This permits the operating

system to be multi-processed, i.e. different functions of the operating
system may be executed in parallel. Parallel execution of the operating
system, or one component of the operating syatem (the pagimg system) 1is a

central theme in this thesis.

1.2 Paged Systems

Paging is a common strategy for solving the meuory allocation
problem, one of the chief tasks any opere:ihé aysten must perform.
Examples of systems using paged memories include Hultics [Da68], TENEX
{(Mu72], and IBM’s VS systems [Hh74] ISc73].

In a paged system the address space of a process is divided into
contiguous pieces of fixed size called pages. Physical memory 1is
partitioned in the same manner into contiguous blocks called page frames.
When allocating memory to a proceas, eny ayeilahle pege frame meyqbe
allocated to hold any page. | - |

. Usually the memory of a latge computer utility is organized into
3evera1 physical levels L1, L2, ... Ln. The access time and capacity of a
level increases with n, and each level is normally a different type of
memory device. For such devices, the smaller the access time the higher
the cost‘per bit and therefore the smaller the cepacity. Ey combining
such components with widely varying speeds and size;icto a multi-level
memory an overall memory system can be constructed uhoselcapacity eguals
that of its largest component yet whose effective speed‘approaches that of

its fastest component.

10

In such multi-level memories a process may reference only pages
residing in the primary (level () memory. Referencing a page not
allocated a page frame at the lowest level results in a page fault, an
event which causes the necessary operating system mechanisms to be invoked
to allocate a level 0 page frame to the page and cause the page to be read
into that page frame. The operating system modules and the data bases
these modules use to perform this task are called the paging system, or

page control., Page control is a resource manager; page frames being the

resource page control manages.

1.3 Paging Systems as Processes

There are many alternative methods for organizing and implementing
the paging system functions. The most widely used is to have the user
process itself perform the necessary memory management functions when
needed, just as with any other system call. That is, the code that
carries out the necessary operations to allocate page frames is executed
in the user’s address space just like a user program.

This thesis will examine several ways for organizing paging systems
as processes. The paging system can be broken down into several
activities, for example, removing pages from primary memory when it
becomes full to make room for other pages. In such a system, each
activity of the paging system can be made a separate process, with its own
address space. Thus the paging system becomes a set of cooperating

sequential processes, running in parallel and asynchronously, Such

11

systems will be called multi-process paging systems, and this thesis will
argue thét such systems offer significant advantages in simplicity,
modularity, security and expandability over more conventional designs.

The work described in this thesis differs from a multiple process
paging system proposed by Hoare [Ho73] in the number of proéesses used and
the function assigned to each. The model developed by Saxena and Bredt
[Sa75] is closer to what is described here. However ‘Saxena ard Bredt use
a multi-leve1 pnging-systen that distinguishes user page Faults from page
faults caused by system processes, a distinction found unanecessary in the
design presented in Chapter 3. These differeaqea and similarities are

considered in more detail in section 3.3.

1.4 Summary of Thesis

The remainder of this thesis will examine the design and
implementation of paging systems for a largs computer utility as several
cooperating processes. The Multics system will be used as a model of such
a computer utility. Multics was chosen because it 1a'typfcal of large,
sophisticated time shared systems and'incotpbrkt&%*ﬁbth'of the
prerequisite ideas already mentioned: a multi~level, demand paged memory,
and processes. Therefore the basic concepts are already present and need
not be added.

Currently a major research effort is being ' made to engineer a
security kernel for Multics {Sc75]. Redesigning the paging system

contributes to the certification of such a-kernel by reducing both the

12

size and complexity of the code that must be verified. The original
lmpetus for the work described in this thesis was the’need;for simplifying
kernel mechaniams such as paging. |

Chapter 2 discusses the basics of paging systems_inudeeail. The ‘
objects page control uses to implement a large demand paged virtdal meﬁory
are examined. Functions which the paging system musi p;oyide to the rest
of the operating system are listed and discussed |

In Chapter 3 paging systems are classed into three groups based on
their organization. User process paging systems, illustrated by Multics,
are those shere the paging functions are performed in the user’s process.
System process paging systems utilize special system processes to
implement the paging functions. Combination paging systems, using
features of both of the other two types, include designs appearing in the
literature due to Hoare (Ho73) and Saxena and Bredt [Sa75]). The author’s
design for a combination multi-process paging system in presented, in
wvhich memory allocation is performed in the user’s process but other page
control functions are done in system processes. The significant
advantages of both types ef multi-process paging systems are cossidered at
some length.

A test implementation of the design on the Multics system is
presented in Chapter 4, concentrating on the difficulties arising in an
actual implementation and the insights gained from such an effort. The
results of this test implementation are compared with the current
implementation to see how well the goals of a multi-process implementation
~can be realized.

Techniques for exploiting fully the parallelism available in a

13

multi-process paging system by eliminating global locking strategies are
examined in Chapter 5.

Chapter 6 concludes the thesls by summarizing the important results
and drawing some final conclusions and observations.

The three appendices present additional information on the
implemented multi-process page control described in Chapter 4. Appendix A
compares the design to the standard Multics page control. Appendix B
lists the components of the implemented design, and Appendix C contains

some of the actual PL/l code from important portions of the design.

14

CHAPTER 2

Basic Objects and Functions of Paging Systems

In Chapter l the paging system, or page control, was lobsely defined
to be those procedures and data bases»ngégssary to resolve page faults and
provide the memory allocation task. This.chapter will focus on exactly
what functions and services page control must provide to the reét of the
system and what objects page control must ;mplgpgnt in providing tﬁese
functions. Such a description will help suggest how the parts of page
control can best be divided along functional lines into several processes.

Figure 2.1 illustrates the model of a memory system that will be
assumed in the remainder of this thesis. The memory system is a
hierarchical, multi-level memory consistiggvof three levels: 1, Primary
memory, in which any data referenced by a processor must regide. 2. The
paging device, or backing store (which need not be a single device) which
acts as a large, high speed buffer between primary and secondary memory.
3. Secondary storage, which provides long term storage of data and
programs. For example, in such a system primaxyvmemory‘is,pften high
speed core memory; the paging device is often a drum (or a bulk store

device in the case of Multics); and disks and perhaps tape normally

15

|
Primary I
| level 1

Memory |

|

|

<+ ————

Paging
level 2
Device

T
|
|
Y

| Secondary

level 3
| Storage

Figure 2.1

Model of a multi-level hierarchical memory system

16

provide secondary storage,

While the model shown incorporates three levels of memory, more or
fewer are possible, The actual number of levels should not be crucial in
a well designed system. Indeed, the design presented in Chapter 3 will be
seen to adapt easily to a multi-~level memory with any number of levels.

Pages are moved from level to level by the paging system., It is
assumed that a page may reside in any or all levels of the memory at any
given time; however only one copy of the page may exist in each level.
If multiple copies of a page do exist in the memory hierarchy, they may
not all be identical. The most up to date version of a page will be the
copy in primary memory (if there is one), then the paging device copy (if

there is one).

2.1 Page Control Objects

There are three objects of fundamental importance to page control:
pages, the basic allocatable unit of virtual memory; page frames, the

corresponding unit of physical memory; and address translation registers,

which translate virtual addresses into absolute physical memory addresses.

2.1.1 Pages

In paged systems, the address space of a process is divided into
units called pages, or sometimes virtual pages. A page is an abstraction

of a portion of a process’s address space, a set of consecutive virtual

17

addresses (hence the term "virtual page"). Procederes and data are both
broken into pages, akthaugh?ﬁhtsudivtifoﬁ%iﬁtéfﬁagéiﬁ%a'tﬂVisthe'Eo the
programmer. ‘ - T S

The number of consecutive virtual addreswes (locations) in'a page s
the page size. The page size is typically fiwéd 4t 'a pousr ‘of two, and
generally ranges from 128 to 4,096. The page #ize ‘1§ usually determined
by characteristics of the hardware in order to optimizé pe¥formasce of
secondary memory. The virtual address spase of w process is restricted =
only by the hardwarée’s limits on thé numbér of pageés the process may

reference.

2,1.2 Page Frames

The physical counterpart of a page is a page framd. Just as the
address space of a process is divided into pages, the physical memory in
the system is broken imto page frames. ‘Aipage frame Is & contfgucus area
of fixed size in some physica¥ memory device. - Bach page frame can store a
number of bita~of?iufurnatiuny?ﬂhaely the sume wukber of bits 46 in a page
(which depends upon the page size and the word sise).

Page f;ames are the raw memory resource of the system. The number of
page frgmes is strictly limited by the capacities of the various devices
in the memory system. Often it is useful to distinguish among the page
frames of each level, hence the terms "paging/%evicg page‘fyamg" or "core
page‘ff;me" ﬁ;y be used. 7 R R

Memory allocation is done by assigning page frames to hold the pages

18

needed by a process. A process may only reference pages which reside in a
primary memory page frame. Since the number:of primary memory. page frames
is quite small (on the order of hundreds) while the number of .pages the
processes in the system can address is much larger (by at least an order
of magnitude) only a fraction of the pages can be in main memory at any
time. The purpose of the paging system is to multiplex the page frames
among the pages to give the appearance of a much larger primary memory.
The paging system must keep track of the status of each page frame,
whether allocated or available, at each level of the memory under its |
control. While there are many ways to organize the required information,
we assume lists are used. There is nothing fundamental about using a list
structure for this purpose, the choice is 1arge1y for convenience. Thus
we assume that page control maintains two lists of page frames for each (
level of memory it manages (primary or core memory, and the paging device
— secondary storage is assumed to be managed by the file system, see
section 2.1.4.). These lists are a "used list"‘containing those page
frames currently allocated, and a "free list" consisting of those page
frames not currently allocated. We further identify each 1ist by its
level, hence there will be a "core used list" and a "core free list , and
corresponding paging device free and used lists. Note page control may
want to keep certain information about the page frames‘oh these various
‘lists. For example, for every frame on the core used list, page control
will want to record the identity of the page using that frame. We assumexd
the page frames in a list may be ordered in an srbitrary manner. i(For
example, the lists might be.structured as linked lists) The reason for

wishing to order the lists 1is made clear in section 2 2 2.

19

These four lists, along with the page tables described in the next
gection, are the fundamental data bases of page contrel, for:they define

the state of the memory.

2.1.3 Address Translation Registers

Since processes make references to virtual addresses of the form
(page, word) while the physical processors executing the instructions of

ST

the process must reference real memory using physical addresses, there
must be a mechanism for translating virtuslh:ddresses (references’to
virtual pages) to physical addresses (references to page frames) This is
done by associating with each virtual psge an address translation‘
register. The address translation register contains the address at which
the contents of the virtual page may be f;und (1.e. the absolute address
.of the page frame bound to the page) All references to pages are made
through the address translation registers. If the{page has not been
allocated a page frsme a special tag indicates the fact and causes a
special hardwsre fault uhen a reference is msde to the address translation
register. - R '

The address translation registers for all the pages in the address

space of a process may be collected together into a page table. Typically /

the virtual pages in the address space are identified by a number° 0, 1,
.sss n. The page table then 18 an array of address translation registers,
the ith page table entry is the address translution register for virtual

page 1. Because the address translstion registers are grouped into a page

20

table, they are often also called page table words, since each is
essentially a word in the page table. Hence we will use the term page
table word to refer to these page address translation registers (and to
distinguish them from address translation registers used for segments; see
the following section). The page table may be contained in special
hardware registers, or reside in memory as any other data. Of course, the
physical processor must know the physical address of the page table. If
the page table is maintained in memory, a special register, the page table
base register, indicates where. This translation mechanism for paging is
illustrated in Figure 2.2,

Besides containing the physical address of the page, the page table
word ¢often contains some additional items, such as whether the page has
been referenced recently or modified. The reason for recording these
facts 1is usually to provide information to various page control
algorithms. More will be said about the function of such additional

information below.

2.1.4 Segments and the File system

At this point a brief digression is in order. Although this thesis
is concerned with paging systems and déals with pages as the basic
component of a process’s address space, it is necessary to also consider a
higher level organization of the address space, namely segmentation.
Segmentation has a profound influence on a paged system.

Until now the address space of a process has been treated as strictly

21

——

Page Table
Base Register

Page Table

Page 1

Word n,
Page i

Figure 2.2

Translation of virtual address page i, word n

22

ord i

linear, a oﬁe dimensional array of words. In Multics and other segmented
systems this is not the case. The address space in a segmented system is
two dimensional, containing mﬁltiple segménts, each of which 1is 1tsélf a
linear address space. Thﬁsiivvirtual address in 3,9?5“9;?4 system
consists of a segment number and a word number (Ofﬁl;t&qwiihin‘thev
segment. Each segment is paged, so the offse;“with4n~tha»oesnﬂét i8 in
two parts, as before: a page number and a word within the page.

Instead of hgving a single page table, the address space of the
process is now defined by a page tabie for each segment. There?muét be a
page table base rggiste;_fog each page table;mqthehewuilitgéwc#iled
segment descriptor ﬁord;iaﬁa collected into a desc?iéibi-ségﬁénﬁ. The jth
segment descript&r word cénta&ns the absolute addresayoiwthe;pake table
for segment j. The descriﬁto; segment of a process completely defines the
address space of the proceés; The physical proceéaor ex?cuting the
instructions of the process must know the location of the descriptor
segment for'that‘pfbceéé.‘ A register called the deécriptor segment base

register is used for thiabéurpose. ‘The translation of a virtual address

¥

LS

in a segmented, paged memory is shown in Figure 2.3.

Segments may be shared, i.e. in the addte;sms?aée ofrﬁbté than one
process. In this case there will be a segment descriptor word fof the
shared segment in the descriptor segment of each process sharing the
segment. These segment descriptor words will gll point to the @ame page
table. s ’

While the paging system bears the tesponsibility for maintéining the
page table words, the job of assigning a page tablerﬁo aqaééﬁé;t will be

assigned to a different module, the segment néﬂager. Since the number of

23

Descriptor Segment

I
I
I
I
|
|
I
I
I
|
|
|
I
I

Descriptor Segment

Base Register

Segment j,
Page 1

|
I
I
I
|
|
|
I
I
I
I
I
I
I

Segment j’s
Page Table

Word n,
Page 1

Figure 2.3

Virtual address translation with segmentation

24

£ <+ ——

ord i

segments in a process’s address space is unlimited for most practical
purposes, a page table cannot be given to every segment. Instead, the
available page tables are multiplexed, just as page frames are multiplexed
among a large number of virtual pages. That is, segmentation implies
dynamic page table word allocation, Allocation of page tables to segments
is a task very similar to allocating page frames to pages. This job is
performed by the segment manager and will not be discussed further here.
Activating a segment (corresponding roughly to opening a file in many
systems) results in the segment being assigned a page table.

The paging system can deal only with segments that are active, i.e.
have page tables. Deactivated segments, those not assigned page tables,
are manipulated by the segment manager and the file system.

Thus the page tables, though indispensable to the paging system, are
not completely implemented by the paging system. Rather the task is
shared with the segment manager (or segment control, as it is often
called). And although segments per se are not really page control
objects, page control is aware of their existence and has some knowledge
of their implementation. As a consequence, there is interaction between
segment control and page éontrol. This interaction is undesirable as it
complicates both segment control and page control, and we would like to
minimize the interface between segment control and page control. This
interface will be examined in detail at a later time. (1)

Similarly, page control interacts with the file system and knows

(1) Research in progress at the Computer Systems Research Division is

attempting to eliminate from page control this knowledge of segment control
and the implementation of segments.

25

about the file system’s organization. Such knowledge complicates page
control, and minimizing the influence of the file system on page control
is highly desirable. By the file system we mean the operating system
modules which manage the permanent storage of segments on secondary
memory. The file system is responsible for knowing where a segment is
stored in secondary memory so that the paging system may bring the
segment’s pages into primary memory when needed. Secondary storage page
frames, or "records", are allocated to segments by the file system when
the segment is created. Thus, the file system must remember the locatiom
of each page, and a '"file map" analogous to a page table is kept for each
segment to retain this information. The file map itself can be stored in
the file system.

The structure of the file system may vary widely; however we will not
be concerned here with the specific organization. The file system may be

hierarchical as in Multics or flat (one-level).

2.2 Page Control Functions

Having examined the basic objects the paging system manipulates we
turn to the operations that page control must perform on these objects.
The most important job of page control is allocating memory, that is,
assigning free page frames to hold pages. When all available memory has
been allocated, memory deallocation must occur to enable reuse of page
frames. Memory deallocation removes pages from page frames thereby

freeing the page frame for further use. Note that in a multi-level memory

26

eystem a page may be allocated memory in oqe,‘ggvera;,‘dr none of the
levels. |
Hence the two major functions of pagelgoutrol are:
1. Memory allocation
2. Memory deallocation
Two other minor functions that a paging éxst_gm.- may optionally provide
are:
1. Reconfiguration
2. Wiring or Locking

The following segtions will comsider. all four of these in. turn..

2.2.1 MemoryﬁAllocatioﬁ

Memory allocation is the primary teekfe%~theipa§ing eysteelfsnecall |
that awereeeesor‘eey ohlyirefefeﬁee pagesxahicﬁ:e;ihiiiéeeteawmeih mehory”M
page frames. A reference to a page not allocated a main memoty page ftame)
causes a page fault. Asauming a free 1ist is kept, as mentioned in
section 2.1.2, the steps involved in allocating memory and thereby ‘
resolving the page fault are the following. o | /

1. A reference 1s made to the page, whose page table word contains a
special tag, causing a hardware fault which results in the invocation of, .
the paging system'e‘main'ﬁemOtf alleeaeer;‘ h |

J2. A free page frame is dbtaieee from.tﬁe‘cefe freeyliet.

3 The identities of the page to be read 1n and the frame the page is '

read from are saved in the collection of information associated with the

v e

27

main memory page frame. (This information is needed when dedllocation:
occurs,)

4. A read operation is performed to éopy the contents of the page
into the main memory page frame.

5. The absolute address of the page frame is placed in the page’s
page table word, replacing the specianl’ fault tag. (Note the fault tag
must remain until the read operation‘is completed.)

Control may now be returned to the process that made: the reference to
the page.

An important complication arises in"a multipt¥eééssing:emvironment

with sharing. Care must be taken so that while the sequence of steps

described above is in progress, other processes sharing thevpage are
prohibited from repeating the steps. That is, two processes may not

allocate page frames for the same page simultaneously. Thia would lead to

several possibly inconsistent copies of the same psge. There must be ‘some

ot
24 R

inhibiting mechanism which prevents a process from beginning the

allocation procedure for a page if some other proceas has already started

= {"“.

the allocation algorithm for that page.

There are many ways of implementing such a mechanism. One is to

o

permit only a single page to be involved in the allocation procedure at

q.\;

any given moment. For example, the allocstion code could employ a 1ock,

LTy

which any process executing the allocstion algorithm must set. Since
there may be a considerable delay involved during the read operation, this
scheme may result in an impractically inefficient psging system. A per
page mechanism, rather than a global mechanism which inhibits all

i

allocation, seems desirable. There is much more to be said on this topic;

28

the mechanism used to prevent multiple allocations for a single page is
very influential in determining the efficiency of the overall page control
design. A closer examination of this issue is postponed until Chapter 5.

Memory allocation must be performed at each level in the memory
system. Thus memory allocation must also occur for the paging device.
The only difference from main memory allocation is the manner in which
allocation is initiated. Main memory allocation takes place in response
to a page fault; paging device memory allocation is dome in response to
an explicit request made by the main memory deallocation algorithm as
explained in the next section. Otherwise, the steps in allocating paging
device memory to a page are identical to those for allocating main memory:

l. A request is made to the paging device allocator for a paging
device page frame.

2. A free paging device page frame is chosen from -the paging device
free list.

3. The identity of the page is stored in the collection of
information associated with the paging device page frame.

4, The contents of the page are copied into the page frame.

5. If the page has a main memory page frame allocated, the identity
of the paging device page frame is saved in the iInformation associated
with the main memory page frame, and vice versa (see Figure 2.4).
Otherwise, the identity of the paging device page frame is placed in the
page’s page table word so that when a fault occurs thé location of the
page on the paging device is known.

As was the case with main memory allocation, once allocation of a

paging device page frame to a page has begun, the system must insure some

29

Case 1l: Unallocated page

Page Table Word
| |
|

Case 2: Page allocated a main memory page frame

; Main Memory
Page Table Word Page Frame

| |mmmmme |
| PE—

Case 3: Page allocated a paging device page frame

Paging Device :

Page Frame Page Table Word
| <===mm -1 |
| -mmmmmm > |

Case 4: Page allocated both a main memory page frame
and a paging device page frane

Paging Device ‘Main Memory
Page Frame Page Table Word Page Frame
| [=== > | >
! | I | ¢ommmmen | |
| | I I
I [< I o
I I >| o
| | |
Figure 2.4

Allocating memory to pages
30

other process does not duplicate the effort. The same mechanism used to
prohibit multiple main memory,allocatiéns.may‘be employed.

Memory allocation at the finalvlevel of the memory system is the duty
of the file system, since the file system bears the responsibility for

permanent storage of segments.

2.2.2 Memory Deallocation

The second step in allocating main memory listé& in the preceeding
section 1s to obtain a free page frame from)the'coréjfreétliét."Tﬁié‘list
can be maintained only by deallocating méih'memory;‘i.e. reveréing the
steps of the allocation algorithm and thereby freeing page frames. This
operation is commonly termed "page replacement" ln‘paged systems. Page
replaceméht, or memory deallocation, is nothing~ﬁbr; tﬁaﬁ removing phges
from the page frames iﬁ which they reside.

The steps taken in deallocafing a main memory page frame ftbh its
page are summarized below: o

1. A used page frame is selected from the core used list.

2. The page contained in the page ftamé;(which éaﬁ!be ﬂeterﬁiﬁed by
looking at theninformation associated with the ﬁége frame -- see step 3 in
the allocation procedure) is copied to somé ﬁfher p&gé frame ih:the‘memory
hierarchy (more on this shortly).

3. The physical address of the page frame stored in the pége table is
replaced by the address‘of the page frame copied to 1ﬂ;s£§p 2, aﬁd‘the

fault tag is set.

31

4. The page frame is added to the main memory. free list. (For
security reasons, the contents of the page frame should be cleared to all
zeroes.)

Several comments are necessary to explain these steps further.

First, nothing has been said about how the deallocation algorithm is
started. The allocation process might note when performing step 2 that
the free list was empty and thus issue a call to the deallocation routine.
This has the undesirable effect of delaying the allocatidn. The approach
taken in the design presgnted in Chapter 3 is to Qaiqtain the free list at
some minimum size; whenever the supply of free p;gé.fraﬁes is depleted
beléw the system determined limit, deallocatioﬁjbegins until ;he freg list
is sufficiently replenished. Thgre‘is, of ppur#e, #‘significant tradeoff
involved here: time spent in allocating memory vereus effective memory
utilization., Page frames on the free list represent unused physical
memory. It is possible to utilize memory completely by allowing the free
list to become or remain empty. But then alloqating‘memory is slowed due
to the necessity of first deallocating some othef ;aée f:aﬁe so that a
page frame is free. Althpugh a delay in allqcating ﬁemory to apy one
process should not 1ower throughput in a multiprogrammed system, two. costs
are involved: a process that presumably already has pages in memory is
prgvented from running, gnd response time for any one process is
lengthened. | H

Second, nothing has been sa;d about the criteria to ﬁe used in
choosing from the used list the pagewframe that is to be"replaced. The
method for making this decision is commonly called the "page replacement

algorithm" and usually involves usage characteristics of the page

32

contained in each page frame. For example, the First in, First out (FIFO)
page replacement strategy chooses whichever page frame has been allocated
to a page for the longest time. Note this implies it is possible to order
the page frames by the length of time they have been allocated. One way
to do this alluded to earlier is to maintain the used list ‘as a linked
list of page frémes; the head of the list being the page frame in use for
the longest period of time. Newly allocated page frames are addad at the
end of the list. We will not be concerned with the details of specific .
page replacement algorithms; the discussion of paging systems‘here is
intended to be ‘general enough to permit élmosc'any page replacement
algorithm. It is worth noting however that some algoritlims require
special information be kept on each page. For example, a '"used" bit is
often associated with each page. This bit 1s set by thejhardwnre when a
reference is made to the page. The replacement algorithm may examine the
bit, and reset the bit, in deciding what pagevshould be deallocated. The
details of one such scheme are given by Corbato [Co69].

A third éomment with respect to memory deallocation pertains to
copying the contents of the page to some other page frame in the
hiérarchy._ There are two points of interest: what other page frame to
use; and when the copying is necessary.

The question of where the page 18 to go when ejected from main memory
is answered by lookiﬁg in the data associated with the page frame. Recall
that step 3 of the main memory allocation algofithm given above remembers
the page frame a page is read from when allocated main memory. If the
page was read from a paging device page frame, it may be written back to

that same frame by an appropriate output routine. Otherwise, the page was

33

read from disk, and the paging device memory allocation mechanism is
invoked (as discussed in the previous section) t§ obtain a paging device
page frame to allocate to the page and ‘serve as the destination of the
page. Under certain circumstances, or if the:paging device itself is not:
part of the current memory configuration, the'ﬁagefsfconteatS‘nay instead
be returned to their permanent file system location.

The copying is necessary only under .two circumstances: 1. The page
has not yet been written into the paging device page frame. 2, The page
has been altered by a write operation, and hence.the copy in main memory
differs from the paging device copy. The first situation is readily
recognized; to aid in detecting the second .situation many paged systems
include special hardware which associates a "modified" bié with each page.
This is similar to the used bit mentioned in conjunction with page
replacement, but the modified bit is set only when a write reference is
made to the page, e.g. a store instruction. This bit is examined by the
deallocation algorithm; if it has been set then the page has been modified
while in main memory and must be copied.

Deallocation of paging device memory is analogous. The steps
involved are as listed above for deallocating a page frame from its page.
The comments apply equally well with iny the. following alterations:

Utilization of memory on the pagingbdeyicefis less critical than with
main memory. . This is because there is assumed to be a much larger amount
of memory on the paging device. Hence: paging device page frames are a
less critical resource; therefore it is feasible to maintain a larger
number of page frames on the paging device freg l£§;~thanrm¢ghs be the

case for main memory.

34

Used and modified flags may also be associated with each paging
device page frame. The used flag may provide information to the paging
device page replacement algorithm for determining which pagingadevice~page
frame should next be deallocated. The modifted flag determines when

copying the contents of a page is necessary at deallecation time. .

2.2.3 Memory Reconfiguration

The memory configuration is defined by the page frameﬁlava11§bie to
page control for allocation. Memory reconfigurntien‘codsiats\df
dynamically adding or removing page frames to the: supply available to-page.
control. To add memory to the system dynamically, the page frames of the
memory unit must be added to the pool of pageifranea~controllediby the
paging system. The inverse operation of femoving'ﬁemory is 8lightly more
complex; The page frames of the device being reEGVed~au§t'be freed before
they may be removed from the memory configuration,

Reconfiguration is not, strictly speakingqaa:pﬁge-control function.
It i8 included here because page coritrol must cooperate in reconfiguring
memory, and any paging system should be designed with an awa#éness of the
problems of reconfiguration. Thus to assist ia: removing memory, &
removing flag might be associated with each page frame. This flag is
turned on by the reconfiguration algorithm. The allecation:algorithm
should be designed te ignore any page frames on the free list with the
removing flag on. This prevents allocating to a page a page frame that

will only have to be deallocated shortly,

35

Newly added memory may be treated simply as free page frames and
added to the free 113; for future usé. Schell {8c71} provides an
extensive ekamination‘of dynamic reconfiguration. The desire to perform.
dynamic reconfiguration can complicate other page comtrol fnactioas

geverely, as the next section will demonstrate.

2.2.4 Memory Wiring

A useful function for the paging system to provide is thaﬁ»of
"wiring" or "locking" memory. A "wired" page is .simply a page that must
always be allocated a page frame, thereby always remaining referenceable
by a physical processor. There is a second, meore regtricted type of
wiring thch will be called "absolute wiring'"; an '"gbsolute wired" (or
"abs wired") page not only must he allocated a page frame at all times,

- but the same page frame at all times. This meana that the absolute
physical address of the page will not be changed.

Some system functions must be wired, at least im part, in order to
operate properly. The pages of page control and page control’s data bages.
are an excellent example of this. In order to avoid an.infinite recursive
loop of repeaéedly taking page faults while handling a page fault, at
least a portion of page.control’s ptocedhres_and,dlgaqguss be wired.

Absolute wiring is necessary only if absolute physical addresses are
used by parts of the system. The most likely.place for this to ocecur 1is
in the inéut/output programs. Channel or i/o programs-may require

absolute memory addreases;.if this is the case pages used as buffers for

36

doing i/0 to terminals, etc., once allocated a particular page frame, must
remain there. The only alternative, to somehow keep ‘track of all the
instructions that use the absolute address and alter these instructions
every time the page is allocated a different page frame, is generally
impractical.

Providing for wired pages is fairly straightforward. An additional
flag may be associated with each page frame. When a page must be wired,
it is allocated a page frame and the wired flag is turned on, indicating
the page frame may not be deallocated. 1In searching for.a page frame to
replace, the replacement algorithm must skip over any page frame whose
wired flag is on. A page may be unwired at any time if it no longer must
remain referenceable, by merely turning off the wired flag.

Absolute wiring may be provided in a simtlar fashion. An extra

complication arises if in setting up a buffer a.contiguous area of memory -

greater than the size of a page is required. In such a case the paging

- system must contrive to allocate some number of page frames which have

consecutive absolute physical addresses. It may not always be possible to
guarantee this can be accomplished.

The chief difficulties involved in both wiring and abs wiring virtual
pages are due to two sources: sharing of virtual pages, and
reconfiguration. Since the same virtual page may be in the address space
of several processes, two or more proceeses may desire that a particluar
page be wired' In such a case, a simple flag is inadequate, a counter of
the number of processes wiring the page is needed 1nstead Where security
is an issue, additional mechanisms are needed to insure pages may be

unwired only by a process that previousiy wired them.

37

Reconfiguration poses a more difficult problem. Adding memory, of
course, presents no difficulty. But consider~uhat hapﬁene 1f an attempt
is made to remove from the memory configuration page frames which have
been wired or absolute wired., The reconfiguration must fail if an
absolute wired page is encountered, for by definition its physical address
cannot be changed. Simple wired pages can be handled, though not withou;
some awkwardness. Remember a wired page ﬁust’tena&n-referenceable
(allocated a page frame) at all‘times. Thus .the page may be moved by
allocating a new page frame, copying the contents of the page into that
new page frame (meanwhile the page is still allocated the page frame being
deconfigured), and then replacing the address in the page table word of
the page with the physic¢al address of the new page frame. Additional
complications occur if the virtual page is modified during the copy

operation. This problem is discussed fully by :Schell {Sc71].

2.3 Summary

The job of page control is to implement a lafge virtual memory for
processes by multiplexing the limited amount of physical memory. Pagé
control deals with four ijects: Pages are fhe basic unit of a pfocess’s
address space. Page frames are the bésic unit of allocétable physical
memory. Page table words are used to map pageé into page frames by
translating virtual addresses referenced by processes into absolute
physical addresses usable by hardware processors. Segments are logical

units of information, either programs or data, consisting of one or more

38

virtual pages. Each segment has a page table containing all the page
table words for the virtual pages of the segment.

The chief functions of a paging system were seen to be memory
allocation (assigning a page frame to hold the contents of a referenced
page) and memory deallocation (removiné the contents éf a page from a page
frame, freeing the page frame for allocatién). Other functions related to
page control discussed were ﬁemory reconfiguration (changing the pool of
page frames available to page control), and memory wiring (prohibiting the

breaking of a page frame-page binding).

39

CHAPTER 3

Designs for Paging Systems

Now that the underlying concepts Uf»pigtﬁg-syat&mé have been
introduced and the functions reguired of such systeis examined, we turn to
the question of how to structure a pagifg system for a large computer
utility. The Multics system will be used as the basis for the general
computer system model for which sueh a design is intended.

Contemporary paging systems such as the Multics page control have not
been implemented taking full advantdage of the process concept even though
the operating system itself implements and makes extensive use of
processes. Rather each user process performs the functions of page
control, using shared supervisor code and data.

The first part of this chapter will present a method for classifying
paging systems based on whether user or system processes implement the
paging system, Multics will be used as an example of a paging system
where the paging functions are pgrformed by the user’s own process. A
simple change to convert the Multics design to one using a system process
to perform the page control operations is then considered. Next‘a design
splitting the paging functions among several processes is presentéd. This

design was actually implemented and tested on the Multics system.

40

(Chapter 4 discusses the details of this implementation.) Two other
similar designs appearing in the literature are contrasted.to the proposed
design. The advantages of these multi-process paging systems are

demonstrated by comparisons with the current Multics page control.

3.1 Paging System Structures

We will divide paging systems into three broad categories depending -
upon the answer to the following question.v Where, i.e. in what process,
are the paging functions performed? The categories are: N

1. User—process paging systems, in which the page control functions
described in Chapter 2 are performed by the users’ processes. |

2. System—process paging systems, utilizing special system processes
whose exclusive job is to carry out page control operations exclusively.

3. Conbination paging systems, where some page control Operations are
done in the users’ processes, others by system processes.

A further division of paging,systems csn‘be osde based‘on how many
processes 1mplement the paging system. (Clearly this is not meaningful
for user process psging systems, since all the processes in such a system
implement the paging functions.) Thus we might consider system process
paging systems or combination paging systemsiutllising only a sinéle
system process as opposed to multiple processes.. As sillybe seen,
however, the advantages of multiple processes are so compelling that ooce
the concept of using a system process to perform paging fonctiops is

accepted, multiple processes seem a natural and obvious extension.

41

In examining each of the different organizations for paging systems,
we will be particularly iaterested is the molution the design uees for two ..
crucial problems ioherent in a multi~process saviromment sllewing sharing
of pages among users. These t# problems sre dsta base contention and .
page fault contention.

By data base contention we mean the interfetence caused by two or
more processes attempting to access a common data base simultaneously;
Hence data base contention is a direct conaequeace of nulti-processing.

i

Data base contention is only a problen, of courae, whsn the data base may
be written as well as read.y Uhen a proce;a ;;;walt;r a data base, unless |
all alterations can be perforned in a single, uninterruptible operation,
there is the danger that another process nay find the data base in an
inconsistent or outdated state. This is not a problan unique to paging
systeus, ariaing here due to the fact a,centtal acconating of all memory
resources nust be kept by page conttol. As a simple but important)
example, if two processes wish to obtain free psge frames simultaneously,
the paging system must insure the same page frane iaﬂnot allocated to
ot , . L .

Thus we wish to know what mechanisms the paging system design offers
to provide exclusive access to essential data bas;s. Ideally the o
mechanism should be easy to understand and use asivell as guaranteeing
data base integrity and prevention of system deadlock. Usually some forn}
of semaphore or lock‘is involved. T

Page fault contention, or more sinplyApageicontention, is caused by

the sharing of information among users in a multi-processing environment.

When users share information, the pages contsining that information are in

42

the address space of each user’s process, and may be faulted on by any
referencing process. If users were not allowed to share pages, e.g. if
users executing the same program were always given their own copy of the
program, page contention would be non-existent. By page contention, we
mean the problem already mentioned 1nbseétion 2?2.1; fﬁatlié; two
processes may not be allowed to allocate a page frame to the same page
simultaneously, or multiple copies of thé p;ge’in primary“memoty may‘
resulﬁ. | |

In some sense page contention is reallyhdaﬁa ﬁaée conééntion in a
different guise, for after allya page'mayiﬁe considerédyé'data base. We
differeﬁtiate between page contention and détéJBise contention because -
separate mecﬁanisma are ﬁormally employedifo fes&lve'éaéh. ‘While
conceivably careful data base design can minimi#e data base contention,
page contentionwcan not'be'avoided&ﬁg loﬁg aé the time required to régd or
write a page between memory levels is long reléfi%é“ta iﬂéttuétian.spéedé.

The following sections present seﬁer#lu&e;igné<féfyéaging systeﬁs.
Attention will be 3i§en to thé teéhniqﬁes‘inherént t;iéiéh for dealing

with page contention and data base contention.

3.2 Multics’ User Process Page Control

We begin our investigation of paging system designs with a_typigal,
contemporary paging system, namely the Multics page control (as it existed
in fall, 1975). The procedures of Multics page control execute in the

users’ processes, qualifying it as a user process paging system under the

43

definition of the previous section.

3.2.1 The Current Multics Page Control

A process taking a page fault in the Hultics system begins all the
required paging functions at the time of the fault. Thus allocation and |
deallocation of page frames in both levels of- the memory must be done at "
page fault time. The complexity that this results in is well illustrated
| by Figure 3.1, which represents diagrammatically the Multics page control.
The diagram is'necessarily et a rether high level, onittin; much detail.
The boxes represent program modules (procedures) carrying out specified |
functions; the solid arrows depict procedure calls and the dashed arrows
indicate interproceas messages./ The following paragrephs describe the
sequence of events represented by Figure 3 1 happening after a page fault.

When the page fault code is invoked, the first thing done is to run
the paging device page removal algorithm as depicted by the call to the
routine labeled "get free pd record" in Figure 3 1. This procedure checks
to see 1f there are ten free paging device page frames. If there are less
than ten, enough paging device page frames are seletted, one'at a time, to
increase the nomber to ten, and the necessary i/o to remove their pages
from the paging device 1s begun.

At this point two complications arise. The first is due to hardware
limitations of the Multics system. It is not possiblbito perform read or
write operations directly between the paging device and-the disks in

- Multics, only between main memory and the paging device or between main

44

get free |
pd records |
|

Fault

|

| |
| page fault |

|

| allocate |
| pd record |
|

Figure 3.1 -

o
Y]
o
o

Multics page control

i/o
interrupt

memory and the disks. Thus, the operation of writing a page from the
paging device to the disks must be done in two steps: first a read
operation, reading the page from the paging device to main memory; second,
a write operation, writing the page from main memory to disk. This two
step operation, a read followed by a write, is called a "read write
sequence'", or "rws'". Note that performing a read write sequence requires
a free main memory page frame. This is indicated in the diagram by the
call made by the module "start ;ws“ to the "find core" routine.

The second complication results from the relatively long time
required to perform a read or write operation on a page. To require that
the faulting process wait until the i/o operations it may start as part of
read write sequences are completed would intolerably delay the faulting
process, causing poor'response. Thus thé i/0 necessary to evict pages
from the paging device is not waited on, but only started. When the
completion of this i/o is signalled via a hardware interrupt, whatever
process is currently executing must deal with the interrupt. Thus the
task of deallocating paging device page frames, though begun by the
process taking the page fault, is finished by whichever process happens to
be running at the completion of the disk write operation.

Returning to the discussion of Figure 3.1, we are now ready to
resolve the page fault by calling the procedure named "read page', which
must first allocate main memory space. This is done by a call to "find
core" which is the main memory page replacement algorithm. When a free
page frame has been created by evicting a page, it is returned to read
page, which then.may start a read operation to copy the contents of the

faulted-on page into main memory. The faulting process must then wait

46

until the read is completed, as indicated by the call to the procedure
"pagé wait"., The completion is signalled via a hardware interrupt, which
is converted to a software aotify.

Multics uses a single semaphore, called the global page table lock,
to solve the data base contention problem. This lock must be set by a
process before it may begin processing a page fault. The lock is released
just before the process blocks itself by calling 'page wait". In between
these times, another process attempting to resolve a, page fault must_wait
until the lock is released. »

Waiting on the lock 1s done by repegtgdly trying to set the lock
until one succeeds in doing so. This "busy" waiting has two major
implications: 1. A process may not block itself, giving up the processor,
while it has the page table lock set. If this were done, all page control
functions would be prevented until the process weére awakened and run
again. 2. For efficiency reasons, the time spent with the lock set should
be minimized, as this in turn miniﬁizes thé 1nterfereﬁce'among processes
due to the lock which results in waéted ﬁrocéssor time.

Measurements show that when running the standard Multics system in a
configuration with two processors, under a moderate to heavy load the
processor time spent looping while waiting to lock the global page table
lock can amount to 10Z of the fotal system prbceésor time. In certain
extreme conditions this overhead can go as high as 20%. This effect would
be even worse in a system with three or more pfocessors. Hence the global

locking strategy can have a severe impact on system performance. (1)

(1) A recent experiment has shown that abandoning fﬁ§;ﬁthessor‘rather than

47

The global page table lock 1s not used to protect against page
contention. To do so wbgld prevent any process from resolving a page
fault until all read and write operations caused by a previous page fault
had compléted (including read write sequences). Instead, a per page lock
(implemented as a bit in the page table word of each page) is used. This
per page lock is set whenever ifo is begunt on a page (which can only
happen with the global page ‘table lock set) and feﬂatns set until the i/o
completes. Thus a process faulting on a locked page, even though it gains
control of the global page table lock, cammot start i/o to bring in the
page (or to throw it out). The proceéss must wait until the lock is

released. Hence the per page lock protetts the page while in transition.

3.2.2 A System Process Page Control Based on Multics

To introduce how a paging system implemented as a system process
might work and to see some of the potential advantages of such a design,
consider the following simple yet radical change to>the design just
described: When a page fault occurs, instead_ofrhaviqg the user process
execute the programs to resolve the fault, simply send a message to a
system page control process, and wait for a return message saying the
desired page has been bound to a page frame in main memory. Nothing else
is changed; the algorithms described previously and illﬁstrated by Figure

3.1 have merely been made a separate process. Essentially what has

looping on the lock will increase the performance of a three [processor
system. This change may be incorporated into the system. =

48

happened is that a page fault~has_been,;ransfofned from a call to the page

fault procedure to an interprocess message to:the page control process.
There are disadvantages to this design, mainly in terms of
efficiency. The time required to resolve a page fault is increased by the
length of time required to send the message to the page control process
and to schedule the page control process. .
What do we gain? First, the page control. process has its owm address

space and execution point. A separate address space enables removal of

all the paging algorithms and data bases from. the user’s address space.

The execution.point, as we shall see, allows parallel: execution of the
page control process.

A second benefit is guaranteed service, : Since the mesaages to. the

page control process (i.e. the page faults) can be ordered, we can serve

the page faults in the order they occur. There is mothing in Multics
currently to prevent an unlucky process from always being locked out of
the page fault handling code by competing processes who always manage to
lock the global page table iockkfirst; '(Tﬁgl tﬁis actﬁélly‘é;et happens
is a very remote possibility, but important if guaranteed service is a
sygtemrgoal.f - : |

A third benefit is the elimination bf the 3105;1 basevﬁébié lock.
Since only a single process, the page conéfol é:bcess:‘ﬁay‘§CCebl the'

paging system data bases, datayﬁhse contention is impossible. ' This

benefit seems illusory because the éiﬁglé broﬁééi'hag réﬁiaéed the globai'f

lock, and the overall effect is the same -4'dn1y one pége.fault;ﬁay'bé
processed at a time; in fact only one pageyéontrdl funcgion may be

performed at a time, since there is only one prodess (and hence one

49

execution point) to perform them. However, reéplacing & lock with a single
process is not only conceptually claaner but :tié‘inliez-to:undexatand.éadw-
show correct.

" The important thing here i theé favt that the précess has an
independent execution point as well as & separate addréss space. Once we
realize this fact, the question arises as to why aot change the algorithm
of Figure 3.1 to take advantage of this &xeéutian~paint? ‘Why coantinue to
deallocate page frames only when resolving # page fault? S8imce the page
control process knows page frames will be needed, why ot have him execute
the page replacemént algorithm between page faults; when he would
otherwise be idle?

Thié‘concept.of allowing independent parallel processing by a system
process performing page control fuhéttons;1Iéﬁ&%‘us‘dﬁtettiy to the

multi-process combination paging systems discussed in the next sections.

3.3 Multi-process Combination Paging Systems

Expanding on the possibilities suggested by the Single s&éﬁem process
design presented in the preceeding section,’thteg multifprocess
combination pgging systems are examined here. 1In eacﬁ of theée, the
necessary allocation of main memory page frqmeq to pages 15 performed by
the faulting process. Deallocatibn,»howeve:, id dong‘by the special
syétem processes. Thus these paging systems classify gs’coﬁbination
paging systems as defined in‘section 3.1. Addition#il&, eéch design uses

multiple processes to implement the system performed paging functions,

50

hence the term multi-process combination paging systems. The number and
organization of the system paging processes are what distinguish the three
designs. The first is due to the author and has been implemented on
Multics (see Chapter 4); the other two deaigns have appeared.in the

literature.

3.3.1 A Two Process Paging System

In Chapter 2 it was noted that the work 6f'the’pagiﬁg system can be
described largely as allocating and deallocating page fraﬁes to and from
pages. Allocating a page frame to a page is a relatively simple task that
a process can do for itself, since there is no need for patalleiism'—— the
process cannot continue until the page fault is resolved. In demand paged
systems, allocation is performed only upon actual reference to a page, "
because it is impossible in general to predict which pages in its address
space a process may reference.

Deallocating p#ge frames (and thereby creating free page frames) is a
more complex task involving decision making, néme1y>choosingrthe page that
is to be replaced. Deallocation, unlike allocation, may be donme at any
time.

In particular, page frames may be freed in advance, maintaining a
pool of free page frames from which page frames are selected as needed.
Replenishing the supply of free pagé frames'dayibe doﬁe whenever
convenient. The job of deallocating page frames méyzbe assigned to a

system process, distinct from user proéeéses. ‘Note this allows us to take

51

advantage of the parallelism offered by & process. This completely

removes the page replacement function'ftOQ'the*uséf\prbcéﬁs. There are
several immediately obvidus advantages té auih'é'éffategygt'l. f;ge faults
may be resolved faster, since deafiocafibn‘13‘no'13nger &ohgfét page'faﬁftw
time. 2. The page fault algorithm is simpler. 3. The procedures and data
involved in doing the deallocation ﬁay be removed from the address space

of the user process. These and other banggita’ongnghaqqﬂgg;ﬁion will be
discussed fully later.

Since the memory model assumed here (Figure 2.1) incorporates two
levels of memory m#paggd by the pgg;nghgyg;em,ngvo‘sggtemﬂppacgasea will
be used in the multirpropeas page conttol,augggapedhhgfg,:yppe will be
assigned the task of deallogatingApagg frames for each level in the
memory. The three parts of the rgaultingpdggigng{hgqg%;pg,pgggjfgglts in

the’faulting process being the third) are discyssed in turn. .

The Core Manager Process

The special system process assigned the task of deallocatipg main
memory page frames will be called the éorg-mgnggeg process. The algorithm
followgd by the core manager is depicted in Figure 3,2.. As-long as the
number of free page frames in the pool available for allocation is less
than aomg.gys;em determinedrvqlue, the core manager gggpavdeqllocating
page f;gmes. Firqt, the page replgcement;algpr;thq ;gﬁiqvokgq‘;q:decide
which pagé frgmgﬁipvto be dgallocgted. Note this is g;giq;ly,g golicy
decision. Once a page{frame has been selec;ed, it can be frqeqiby‘writing
thevpage out Qf main memory and changing‘;he pagg,;ahlg Hogi for the page

appropriately. When the write operation is completed, the newly freed

52

Receive |
Wake up

S

———— t—

— — — — — — — —— —— ———— i — — — — —— — —— ot O " W— W — —— — — — — — — ——— ——

|
t B
/ \ SR S
/ 1s the number \ | ' |
/ of free page frames \ HO";| Go |
\ less than the =/ | Blocked |
\ minimum ? / | : I

\ /

—— Y — g e ot

Choose a page frame
to be unbound

. St gt it

|
I
I
v

Unbind the page
frame from its page

|
|
|
¥
Add the now free

page frame to the
free pool

Figure 3.2

Algorithm of the core manager process

53

page frame may be made available for allocation to some process requesting
a page frame. This sequehce of steps may be repeated until the supply of
free page frames reaches some system éat&ra;hed value, at which time the
core manager process blocks itself. WNotice that processes may be
requesting free page frames from the free:pool even while the core manager
is executing. ‘

There must be some mesns of a:arting.ﬁp‘thg cgr& manager process.
One way to do this 1is to simply wake up the core mapager periodically. An
alternative strategy which adjusft to varytng“lcuiida for free page frames
is to wake up the core manager process whenever the pool of free.page
frames becomes low. This requires interprocess communication, for the
procesas which notices the nusber of free page frames is down must wake up
the core manager. That is, the routfhé ihich{aiigeat?s free page frames
must follow the algorithm shown in Figuteb3.3. 1f there is at least one
free page frame, it is immediately allogated to thercaller. If the
remaining supply of free page frames in‘gndg;;gﬁlysteﬁidefined minimum, a
wakeup is sent to the core manager p;ocesb; Edﬁevé;,%if there are no page
frames in the free pool, the allecation cbdé must do one of two ihings:
1. Report failure to its caller, who nusc;try again later, or 2. Block the
calling process until the core manager groggsq;pignais tha; the ;upply has
been increased. Of course, in either c§§£ ﬁhe‘¢qre manager must be
awakened to start replenishing the ffee pool, The latter approach is
chosen here because it results in an alloeation strategy which always
succeeds in the eyes of the caller, i.e. alwﬁys fétufnsmawff;; page frame.
This simplifies the code in the calling pfbéédure. Indeed the caller will

never know what happened, except perhaps that it took longer for the

54

— . e —

/ - 1s the pool \ |
| of free page frames \ _YES ;I
\ empty ? / |

\ rF

\ _ /

NO 1

) R

I
Chose a page frame |
from the free pool |

I

|

|

|

|

¥
/ \
/ 1Is the number \ |
[of free page frames \ YES*;I
\ less than the / |
\ minimum ? / |

\ | /

I
NO |

“Send wakeup to
core m;nager

I
I
¥

Go blocked

I
|
¥

I
I

Receive wakeup |-w---

I
I
I
I

Send wakeup to |

core manager

|
I
I
I

‘V

¥

|
Return selected |

- page frame to the |
caller |

I

]
¥

END

Figure 3.3

I
|

Algorithm of the page frame allocator procedure

55

e e e e g e ittt ey i i o S e St e e S

allocating procedure to return the requested page frame. (A complication
may arise here with the use of locks; see sectioﬁMSl%S

Two additional points remain to be #adé. Fitét, adopting the just
deaéribed strategy means the algorithm of Figure 35&“1s”ihébmplete. An
additionai step must be included to send ngkguﬁ q;gﬁ#ié';0<qny processes
that have gone blocked because the page frame posi"iis empty. Second,
since anf nunmber of processes may be requéétlnﬁ free pige”ffanes
simultandously, some technique i3 necessaty to insure a page frame is not
allocated to two requestors. For example, ‘W1°°k;99 ;yg f:eg(pool is
sufficient. The fact that several processes may ba competing for any page
frames in the free pool‘alsd'éiglains the 166@ intheialgofithn of Figure
3.3. When a process is awﬁkéhe& by the core managér, there 1s no
guarantee that there are s;ill page frames in the free pool, since other
processes may have grabbed them all. Therefore, after go{ng blocked to
await repleniahment of the free. page . frame pool, thq algorithn must be

repeated from the beginning.

The Paging Device Managg: P:oceag

The paging device manager process ig the secég?wpfbtheMFWb system
processes used to manage memory in our mul;itpggcegs,dggign. .Chapter 2
noted the similarity of the paging device ﬁemofy g;:;herﬁain ﬁemory, and
that allocating and deallocating page frames must be done fbt‘each level
in the multi-level memory hierarchy assumed in our model. In fact, the
allocation and deallocation of paging device pagetféames is so similar to
the allocation and deallocation of main memory page frames that the

algorithms to be used by the paging device manager p;oéeagrgnd the core

56

manager process are almost identical. Figure 3.2 describes the paging
device manager”s algorithm as well as the core manager’s algorithm. The
details need not be the same, e.g. no doubt a different policy may be in
force for deciding which paging device page frames are to be freed, but
the general form and structure are the same.

In a like manner, Figure 3.3 also describes the algorithm used by the
paging device page frame allocating procedure, except of course the wakeup
signals would be directed to the paging device manager process rather than
the core manager process. The parameter used to trigger the signal to the
paging device manager, the number of free paging device page frames, may

also be different.

Handling Page Faults

Now that we have added two system processes to do the deallocating of
page frames at each level of the multi-level memory system, we turn to the
allocation operation. Figure 3.4 shows the steps necessary to resolve a
page fault, i.e, allocate a main memory page frame to a page in a system
using fwo system processes to perform deallocation. The first box invokes
the page frame allocation procedure, previously presented in Figure 3,3,
This may result in the faulting process blocking itself if no free page
frames are available. 1In the usual case however, a free page frame will
be available and will be returned. The page may then be bound to the
allocated page frame, and the necessary read operation begun to read the
contents of the page into the memory locations of the page frame.

The remaining procedure needed to fill in the picture completely is

the procedure which performs the allocating of pages to paging device page

57

START

|
¥

l

| Call page frame allocator
| to get a free page frame
l

I
I
|
¥

Place page frame address
in page table word of
faulted on page

l
I
!
¥

|

| Perform read operation
| to read page into the
| allocated page frame
l

I
A\

END

Figure 3.4

Binding a page to a page frame

58

frames. This occurs during the freeing of main memory page frames. One
of the steps in the algorithm of Figure 3.2 is8 to free the main memory
page frame from its page. This deallocation results in the contents of
the page being copied to some other page f;ame in the memory hierarchy.
Thus the replacement really expands into the three steps already depicted
in Figure 3.4 for allocating a page to a pége.EEAMe%\ That is, a paging
device page frame is allocated and the page is written_to thekgemory
locations of-the paging device page frame.

The interrelationship of the core gapgég:?;roceas, the paéiﬁg,dgvige
' manager process, and a process trying to resolve a page fault is |
illustrated by Figure 3.5. The boxes reprében; program modules which
perform the function indicated by their lahél.b The solid arrows depict
calls made by one module to another, and.the broken arrows represent
interprocess signals. For example, the main'meméry allocation procedure
will send a wakeup signal to the core manager process when‘the number of
core page frames becomes too low, as indicated:by the broken arrow from
the box labeled "allocate core" to the box titled "core manager".
Similarly, if in removing pages from main memory the core manager
discovers there is an insufficient supply of free paging device page
frames, a wakeup signal is sent to the paging deViCe manager process,
represented by the arrow fr&m "allocate pd record" to the "paging device
manager" . |

This design, as implemented on the Multics system aa/QQséribed in
Chapter 4, incorporates the same features as the Multiés’page control for
preventing data base contention and page fault contention. That 18, a

global page table lock prevents the core and paging device managers from

59

Paging Device
Manager Process

|
paging device |
manager r

T\
v

\ P

|
| get pd record
|
I

s g e

l

|
WY
!

Figure 3.5

Core Manager

|
1

Process

core #
manager \

—— ——

Faulting
Process

page fault

aIIOCate

A
|
‘ pd record |
A

Multi-process page control

\ | allocate

*‘ core

- /o
{ interrupt

executing simultaneously, or one of the system procesges from rumning
while a user process was resolving a page fault, Per page locks_ are also
used to solve the page fault contention problem, However, one of the .
benefits seen from this design,‘as.d;sgugsggx1p.§e;t;on,3.4,6,3;s»the -
potential for splitting the global page table lock.. This question will be

considered fully in Chapter 5.

3.3.2 Hoare’s Structured Paging System

Hoare has prbposedllﬂo73j hyhﬁifiépégééséqﬁagidﬁ system intended for
a general computer systeﬁl‘“Thé'modei;HBafé uses for a éénerAI:COhbu%éf‘:h%
system 1s similar to‘theuﬁodel assumed hé%é%i%ﬁéimajbrrdiffefeh&é in the
models used is due to the oﬁeJIEQei ﬁeh0f§ﬁin33fpoféegarinto ﬁaéré'é‘
model. That is, Hoare assumes a memory system consisting of a nain memory
and a drum as a backing store, but does not include a second level of
memory such as the diskaﬁaéshmégiﬁéf;{ Bf

Hoare uses monitors [867Z3k£6 describe h1§l§§éféh.awﬁd;ltbfikhre
procedures with built-in synchronization primitives. A‘ﬁdniiaftaefines a
group of procedures only one of which may be in executinn at any time,
thus ensuring mutual exclusion among processes executing the procedureé '
comprising the monitor. Hence ﬁbﬁitérs'hf;?aiﬁigh'fé@giﬁiécifng device.
In Hoaré;s'syéfem a monitor 1sﬁéssiénédﬂgo hﬁéhhbiéé;“ £h1§ méniﬁofx
includes procedures tdﬂgécéﬁé'thé&bage;'bfiﬁgfitlinibkﬁ;in‘&embfi on
demand, etc. Thus a process féﬁltiﬁgloﬁ“a’ﬁake iAQEEES é'proééaﬁre in the’
monitor for that page to bring the page into core. The built—in

i

6l .

synchronization ability of the momitor énsures that andther process does
not simultanéously attempt to bring the same page intd core.

Memory deallocation is dene by systém proceswses in Hoare’s design.
Rather than using a single procese for edck lewél of memory, Hoare assigns
the page replacement task t6 a separate process for each page. When a
page is brought into main memory in Hoare’s systew, & process is created
and started up which periodically tries to throw the page out of main
memory if it has not been referenced recently.
Hoare’s monitors permit a high level solution t§ bﬁth the page fault
‘ contentiqn,p;oblgm and ;he data hagg ?ogpggt}on p;gplgg, The nqni:org_
assigned to ‘each page are eesentially per page locks. solving the page
fault conten;;on problem. Sinilarly, putcing thg other paging systen
functions inside a “99#F°r_S;PPKBu?Fﬁﬁt?GQEFfFlﬂﬂifF.§9¢¢°§,F° paging o
system data bases, | |

While Hoare's monitors allow him to desctib; ﬁis system in a r;ther
elegant fashion, the system suffer two ssriou{mdtawbacks in practice. The
first is actually 1mplementing the synchroniz;tion 1up11cit in the use of
monitors., There are aerious efficiency 1aaues unansuered here because a
combination of hardware, or "buay" wuitin;. and aoftupre wuiting ia{
required.

- The‘?gcond, pgrhgpg(mote serious dgg;g{gqu”gp Hogrg:p’p;égpsalvis
‘the number éf processes involveﬂr one for every p;gg ;Eiﬁaiéhyegpgy.n
There is‘alwgys overhead involveé {n implgé;é;igg processes, both in
keeping track_of the state of ;he procggs,iggﬂﬁsghedqling tﬁg‘prqcpss,at
the appropt%q;g time. Mos; éys;ems are.notchpgblgvpf gup?qrtipg»th;' |

large number of processes required, and most schedulers are not designed

to give the.fast response that would be necessary to make Hoare’s scheme
efficient enough.for practical.purpgaqs.A For these same.reasona Hoare’s
system would expand poquy-to a system with . mere levels of memory.
Adopting the. same strategy of one-removal precess pex»gége‘would worsen . .
the problems of implementing and acheduling.thc,nacesaqry number of
processes.

There is an orthogonal viewpoint of paging systems from that taken in
this thesis, a view which Hoare’s description adepts.in part. We have .
pilctured pages as objects manipulated by system. and user p#ocesags.
Instead, each virtual page may be thought of a#. ag-precess, a process that
performe all desired actions on the page, moving it in and out of memory,
wiring it, etc. (Not just: removing it fneﬁ nemory as do Hoare’s
processes.)

This concept of a page as a process has also been used to explain
Multics page control. (1) .As already pointad-out.abové, it is -
prohibitively expensive»to.actually implement a process for each page,
however pages can be thought of as being implemented as very simple
processes with page control acting asfap,in:erpreterwfor these processes.
The per page information (e.g. flags, locks) define the current state of
each page process; the various actions of the page processes (such as
wiring themselves, bringing themselves into memory) are done.
interpretively by the pége control code.

A more formal characterization of this view is to define each virtuwal-

page to be a finite state machine. The state of each such finite state

(1) This description of Multics page control is originally due to Bernard
Greenberg of Honeywell Information Systems.

63

machine (page) 18 defined by the values of all:the per page information
contained in snd. assoctated with the page’s page table word <~ the used’
and modified bits, the wited flag, ete. Yach tvaasition of the finite
state machine corresponds to an action parformed s the page, and is.
implemented as some page control procedure.

For example, two states of a page are the "in core" state (i.e.
allocated a core page frase lﬁ<£§di¢&t¢diby:ah§vpug.&ftann address in.the
page table word) and the "out of core" state (aot alloeated a core page
frame as indicated by the fawult tag in the page table-woed). The .
transition from the “in core' state to the Yout of -core" state is
implemented by the code of the page reglacemaent a&garitha; ‘Conversely the
transition from "out of core" te Yan core' is perfosmed by the allocatton
code. The inputs which cause the &axious state trahoitions are requests
from processes, e.g. a user process wishing to refatence a 'pariicular page
may cause that page to move from the "out :6f coze" state to-the “in core”
state (and as a side effect causcﬂsannvotispapgge to:make the tramsition -
from in core to out of core).

Page control, then; emulates these finite state machines by driving
the pages through the various states in responge: to.the demands: of uses
processes. Hoare’s monitors, which perform all the-allowable actions
(transitions) on pages, make emplicit chéanannpt.bi»a:finite'atate~
machine. The procedures of the monitor directly implement the: state

changes of the page.

64"

3.3.3 Saxena and Bredt’s Hierarchical Paging System

As part of a structured design of an operating system Saxema and
Bredt [Sa75] include.a description of a paging ayé;gn.. Their hierarchical
operating system consigts of four levels, numbered .ome to four, each level
built on top of-the lower numbered levels. (level 0.is the hardware), The
four levels are: 1. A simple 6cheduler for running.and. syachronizing a
fixed number of system processes. 2. A simple memery manager which
implements a virtual memory for‘these system. processes. . 3. A scheduler
for implementing and syachronizing a large number of CORCUr¥ent. processes
using virtual memory. 4. A memory manager for implementation. of the
virtual memory. Essentially the simple gchedqler:an4,simplg memory -
manager implement system processes which provide complete process
multiplexing and virtual memory to a large number of. user processes.
Monitors are also used to describe this_syn;em,uangf;o,§g;ve the data base
and page fault contention prohlam;Q. |

The chief distinction of this system from the bﬁe presented in
section 3.1.1 is in the extra scheduler and memory manager. Like.ﬂnare'g
system, only a single level memory is congidered. .Howgver, unlike Hoare’s
system, only a small fixed number of procesges is ng;essaty»to implgment
the paging syatem, because a process is not assigned to gach’pagel _ Saxena
and Bredt specify a page replacement process which, like the core manager
process of Figure 3.2, can operate on any page, rather than creating a
separate replacement process for each page as Hoare does. .And instead of
assigning a separate monitor to each page, a single monitor performs the

memory allocation function for all pages. Thus, only one page fault may

65

be handled at a time. - .-

Though much closer to the 'dfgstgﬁ pmumd here, there is a
fundamental ‘difference, aaewtheeMMuﬁutmam saneger .
The high level scheduler (whith fe Ltéelf i 'ptetess at:the slmple process:
scheduler level) and-the high Tevel MeRory ‘Sinkger 'processes are both ¢
allowed to ‘take page feults. M"WW’IMWfSrtMN by .-
the sitiple sdory matager. TNIB-ReSnb CRERe S two differant kinds of
page faults: ”Wtﬁ"xmﬁm‘a&dgwﬂw*m{ ahd 1t wust be -
possible to -d4fferentiate Batveth Ched. Thie’ 1y eh -wdded toaplexity; and:
one vhich may téq&i‘ré hiir@Wiie ‘ gbsletahcl Wiich ‘Aot all systias any be
capable of providing. =

What ‘{8 gained by the extra levels uf‘*iehﬂal&lim memory ‘manager?. -
Primarily’the ability of"the high Tebel wehaludet %Wwaw S
use, in a limited Fé#shion, the foastiohs Eath tipleidhts. "Thus, the high.

level memory mansger hay be ‘implemented W' provesses Which: ny tale page
faults; similarly with the high level schélider. “The'entra levels also
solve the problem: of “hether to Hipleint the! virtukl" Mumbry delow the
scheduler br vice vetsa.

System ‘desigters are oEten presented’ WEth & @1l because both e
scheduler and the wemory wansger Would 1 H¥o" dee the' ‘fuffcton

iy e o doerying

hierarchically, vhichever of thiese two WduYewi'ts Wiplehdbited Genesth the

implemented by the other, - Tf the operdts

other ‘cammot use either ithe fumction 1t LESeEe provided orithe function
provided by the highér mddule. “The probléw is gene¥ally sclived by -
splitting the scheduler o¢ ‘the memory wmsrager into twos levels, one below

and one above the other module. Having ‘two Tdwelks Gfigach a8 dd ‘Saxena -

%6

and Bredt removes the mutual dependency of the top two levels.

In practice, the advantages of allowing the meﬁory manager and
scheduler to take page faults may never be realized. Supposedly, paging
the memory manager and scheduler will free physical memory for user pages.
Yet the pages of these two modules are nérmally so heavily used that they
will always be‘in ﬁain ﬁemoryAanyway. Theié'is also hﬁ'éfficiéhcy issue
in allowing the scheduler and ﬁemory manage; to taié’pagé faults; for
overhead is increased and response time advefﬁély affected. This‘is a
major reasonvwhy many systems make these these two méﬁhlégﬂpermanently
resident. |

Hence transparency of structure rather than efficiency is the real
{ssue. Careful design may eliminate the need for two levels of both the
memory manager and the scheduler. Such a design has been proposed for
Multics using a two level scheduler and a single memory manager. A simple
scheduler implemented below the virtual méhofy:woﬁid allow use of
processes by the virtual memory manager, while a more complex scheduler
implemented above the virtual memory would implement user processes and be
able to take page faults. By‘careful design, the Tow level scheduler |
does not need to use the virtual memory. "

One of the kéy questions here is the lafger'iésue’of the proper
structure for an operating system. We have coﬁééntfated on the design of
just one part of an operatihg system, the paging‘aysteﬁ. The previous
discussion points out the need for cbnsidériﬁg'ﬁhe deéign of théﬁpaging
system in the context of the overall system structure. The general |
problem of structuring Opetating systems has been treafed by many

researchers [Li72] [Di68b] ([Ha70], and is beyond the scope of this thesis.

67

3.3.4 System Versus Combination Paging Systems

Little has been said to this point about syagemFProcess paging
systems, with the exception of the discussion in section 3.2.?‘¢ons;dering
Multics as a system process paging system with a qinng»pagegcontrol_
process. Tq remedy this defic%gpcy, we diqguqakin thig aggt;?q how‘the
two process combination paging system presented in section 3.3.1 (and
implemented on Multics as discuaaed‘ip Chap;e; 4)‘cou1d-bgcome a system
process paging system us;ng three system processes to img;enent the page
control funcfions. |

The combination paging system of sec;iqn,3;3.lvc§p be diewinto a
pure system process paging systeg by rgngvingwpage fgq}; hgndling (memory“
allocation) from the user p;qqe;;es.’ Instead, a ﬁhirdygystem procesa‘qil}
be assigned the page fault handling job. Thus a user process taking a
page fault sends an interprocess massaga to this fgu}&_haq@ling‘process,
which performs the steps of Figure 3.§,ihﬂhgq‘the faulged on pngg‘hgg been
read into the allocatgd page f;ame, a message is_pegtnbagpﬂppethe faulting
process, stafting it up again.

The essential‘difference between such a threg process system page
control and the two.prqcess combination page cpntrol iq that memory
allocation (page fault resolution) 1is occurring in a‘s;ngle system process
instead of in many user processes. This has maJorwimpLiégtipna in two

areas: security and efficienqy.

68

- The system process design seemingly offers improved system security.
The memory allocation code, and the data bases reiergnéed'by this code are
removed from the address space of the ugen's»proceés.r This not only makes
the user’s address space smaller and more .compact, -but makes it impossible
for the user to intentionally or inadvertently damage this.code and data
and thereby affect other users, This gseparation is important in systems
" with no protection mechanisms, but since most computer systems do offer
some means of protection (e.g. supervisor mode, write protected memory, or
rings as in Multics) there is likely to be little if any e#tra protecﬁion
from the user afforded in practice by handiinswp;ge4£&ulta”in a separate
process.

More significant is the effect of the.page fault handling process on
system efficiency. First, there is the extra overhead required by the
interprocess messages needed to repo?t tﬁe'page fadlt to the syétem
process, and to 51gna1 completion of the fault to the faulting process.
Even if the message sénding overheadAcan bé miﬁimizé&, there is the
additibnal expense of scheduliné; that is saving ﬁﬁé étate éf tﬁe faulting
process and starting the pagevfault procésé;:aﬁd vice vefséiwhen thé fﬁult
is completed. "

There is yet anothei cbnﬁidergtion with ré8peci to efficiency,
important in multi-processor cohfigurations. ‘Nameiy, only one'pagé fault
may be proéessed at ah& tinme, because‘there is a siﬁgle page4féult
handling process to reédi&e pagé faulﬁs;‘ ﬁhiieﬁthiézébuld conceivably be
remedied by explicitly adding a page fault handling prdﬁess for each
physical processor, note that the combination paging system does this

implicitly by having the user process resolve the page fault. Since as

69

many user proceases may be exscuting simmltansously ae there are physical
processors, the combination paging systes gutomatically expands or
contracts the number of processea handling page faulta at asy time.

Of course, the preceding srgumeat is jrrelevent if a-global -lock is
employed to preveat data base conteantiomn, becsise then only a single
process may be resolving a page fault fa . any cese. -dowever, Chapter 5
will describe how using system procesees swsbles splitting the global lock
into several locks. Hence the tangible diffepences between the two -
designs ‘are likely to be slight, end the décision :msto whichis best for
a given system will depend hesvily on such factors.as :the lockiag strategy

and how efficient the implementation of processes is.

3.4 Advantages of Multi<Process Paging Systems

Having examined numerous multi-ptocess pegiug eyetems, the question

arises as to the euperiotity of such designl over a conventional design
such as the Mnltica page control described in aection 3 2 1. There are
four areas where the multi—process designs offet decided advantages.

simplicity, modularity, eecurity, and expandability.

RS

While theee advantages accrue to ell nulti—process designa appearing
in section 3.3, the following diecussion pertaine ditectly to the two

process design ptesenced in section 3 3 1 whoae inplcnentation is

discussed in the next chapter.

70

3.4.1 Simplicity

The multi—p;pcess design 1s ¢1¢arer‘§qd,g§sisg to undq;s;qnd’due to
the separation of the allocation and dg;;lpcggi§g“§§?kg into separate
processes. Both/§hg-cqre,managgr‘gﬁogeag:andutgg'ggginnggyiqe manager
are simple, agqu;ntial algorithma_yhich can P°~94§§5?t99d without
reference to the other parts of thelpagingtsygg,m, In-cégtgqgg, the
cérresponding a;gorithgs in Multigs are inggg;q;ngq in gfﬁqul;x manner .
This complgfityuis la?ge;y due pé:ghé fgg; :ﬁg;»sﬁc Fhrge tasgg,split intol
sepsrate processes by the aulti-process design sre Limped fnto & single
process, that which tgkgs thg page fag}fﬁwf?his_p?gpggs‘bgcogea songthigg
of a three ring cirquﬁl_;riipg tq dqvgve;y§h¥§g‘g; pgpé - free qugé on
the paging device, frqei§gage.in{ma;n\ngppry, resolve the page fault. In
order to do so, an ordering must be imposed on these tasks, since a single
caused by trying to place a seqqeng;aluorder439‘1nhg:e?;1y parallel tasks.
There is ﬁq satisfactory wayvtg_gvo;dfthqagrd;fficul;%fg except to realize
the parallel nature of theee tasks and allow §h§n_tovbe done in parallel.

Separate proceases‘alao g;eqtly_giqpxiﬁy>§he‘ﬁregtmgnt of 1/o0
interrupts. The chief source of difficulty with input and output
operations is the relativelf‘lqng,time they‘ggquire r@lagiye to
1nstruq;ion‘gxecut;on times. We havg_gL;eady‘geenkgp&t in ;hg]Multica
page con;rol the progessvy@i;h starts a pggdk?ri;g geqﬁgncg does not wait
fqrythe ﬁ??k write to complete, since to dq'qg_gpqldvéelay page fault
resolution. Therefore the completion of the read writebsquegce must be

noticed by whatever process is around at the time. This of course

71

complicates things, as all procésses mist be ready to pick up where
someone else left off.

On the other hdnd, the paging dévice ﬁ§§§§é¥;§§5€§§§ cdh wait for a
read write sequence to complete, Since nis fob ié‘ﬁ&%&i?’h&éﬁing but
performing read write séqueénces. Siifa¥ly, thé core manager process,
once a write has been startéd to copy d page to the paging ddvice or to
disk, can simply wait until the wfitd is Fnfshea. '

Essent{ally we are arguliig If £dVor 5F & Bepirate process for
performing 1/0 (é.g. the pagiily davicé Hadigetr proceéss doing the i/o for
read write sequérces) ds opposdd t8 4 traditfenal interrupt handler, which
spreads the i/o dmong whatevet ﬁrodééﬁgﬁ'&fﬁvﬁigéﬁffﬁg.‘ There afe two
chief advantages of the procédd approdch over thHé Intéfrupt handler.

The first of these is the clarity of stfuctuté of the process
approach. The sequential nature of é‘féia;ﬁgiiégﬁﬁéﬁﬁﬁée {s obvicus from
the paging device manager’s algorithm: stdrf a read, wait for the read to
complete, start the write, wait for thé writeé to completé. In contrast,
the same algorithm impléménted in ah intéffupt handler SHsécdres the fact
that a disk write always follows a bulk store read in performing read
write sequences. Some process starts tﬁéiézﬁﬁi when the read completes
the interrupt handler receives control. Inééffdﬁf handlers are 1ﬁ€£¥fabiy
written as dispatchers -- the aouréé dfvfhé'iﬁtéffﬁﬁf'ié?decérﬁinéd and
appropriate routines performed to do whatever 1§ necessary. ;fhué;‘éféér‘
determining the read portion of a read write sequence has completed, the
interrupt handler starts the write. _The’intéffﬁﬁt”ﬁandief regains control
later, on completion of the wfite, and fi.ri1.13‘;“&;&:'373.1;5.:"'r

In other words, the process which starts ‘the /o 1s best equipped to

72

know what actions should be taken when the i/o completes. Having a
process perform i/o allows us to take advantage of this fact, while using
an interrupt‘handler places ali knowledge of what action to take in the
interrupt handler code, forcing the interrupt handler to sort out all the
various possibilities,

The second major advantage of the process approach 1is that it
permits formalized interprocess communication mechanisms to be used in
implementing the i/o. Block and notify primitives may be used by the 1i/o
process, which blocks after starting 1/o. The process receiving the
interrupt merely turns it into an interprocess notification (the "notify"
of Figure 3.5). The awakened i/o process then continues with whatever
steps are appropriate upon completion of the i/o. In addition, the i/o
process can, if necessary, wait on a lock, where an interrupt handler
cannot (since the interrupt handler-may have-interrupted the process that
locked the»lock).

The end result is a simplification of ;he treatment of interrupts;
only the lowest level of the system, directly above the hardware, need be
aware of and deal with interrupts. All the processes performing i/o
implement the i/0 in terms of waiting on events using the standard
interprocess communication tools.

The philosophy of using separate processes for i/o in place of
interrupt handlers is given in more detail by Clark [Cl74].

Dedicating a process to manage the paging device allows another
.simplification in performing read write sequences, A read write sequence
requires a main memory page frame. If anf process ﬁay start a read write

sequence if may be difficult to obtain the necessary page frame without

73

adding comp‘lex module in:,ercomc;,tqas." HSilnce the paging device manager-
repeatedly performs read write sequesces; ‘a2 majn memory page “frame may be-
assigned to the paging idtvicev»um;g.¢ pnmcntly far use as-a buffer,
avoiding the problem of dynsmic allocstion., .This solution $s pessible in.
the Multics page control, but much more difficult for two'reasdoast 1)
Since any process may start a read write dequesice, sny page frame used as
a buffer must be protected against multiple simultsnecus use. ' (Note in
the multi process scheme ehe_‘miag hvm Reneger procuss acts as a lock
on the frame used as s buffer.) 2) A'simgle prodess may start several
read write sequences at the samg time. (This s Mow the Multics page
control achieves parailelism.) This smeuld require -several page frames be
avallable as main memory buffers.

The factors just discussed result in'a tin;lgr;-otﬂier to understand
paging system. This“has important ramificattons tnimaay areas; Since the
code is simpler and more understandable, it is easier to modify and:
maintain. This is valuable not only in testing and debuggiag the cede,
but in being able to -change the ﬂgcré.«thu: at-a later dste with confidence
that the system will continue ‘to work, and te be sble to-predict any -
changes in system performance. For the same rm,ttm code would be

easier to certify, or to use in proving a givea: ptoperty sbout the system.

3.4,2 Modularity

The separation of the main memory page replacement function and the

E T

paging device page replncement function into separate procesaes makes

74

possible a much cleaner modularization of page control. This is apparent
by comparing Figures 3.] and 3.5. For example, it 1s clear from Figure
3.5 that the main memory replacement algorithm (represented by the box
labeled "get core'") is part of the core manager process, and is invoked
only by the core manager. This is not the case with.the Multics design of
Figure 3.1, where when performing paging device page replacement we can
suddenly find Oufselves executing the main memory page replacement
algorithm. |

Improved modularity reduces the possible paths through the code, 1i.e.
lessens the interconnéctions between moduleé, and simplifies the |
1nterfacés Between the fesulting brogram moddleé.‘ Mﬁﬁy of thé benefité of
bettei modularity match those discdsséd in céﬁjuncfionvwith |
simplification. Howe#er, though improved modularityyﬁnd greater
simplicityccamplémeﬁk'each other they are not the sdme thihg. Modularity
can be bought at the expense of complicating the‘individual modules;
conversely a system often can be made to seeﬁ‘simpler by increasing the
number of modules. |

The most important advantage of the modularity of’thermulti-process
design islwhen consiﬂering modifications‘of thé desigh to dther‘systems.
For example, consider a comﬁuter system with paging but without the
multi-level meﬁory assumed in Figure 2.1, i.é.1consistihg only of main
memory and disks, without a paging device. To-usé the two process design
presented in’sectibn 3.3.1 would require eliminatioﬁ of the paging device
manager and a slight change to the core manager so'thaﬁ pagés evicted from
main memory were always written to disk. Similhrly,vif another level of

memory were added, another module analogous to the paging device manager

75

could be added in a ralatively‘etraightforuurd‘mianer‘toauhnaganthe
additional memory. That is, the design expends and contracts easily and
modularly to fit any multi-level memory system. - Either of these two
modifications woiuld necessitate extenstve, sajor alterations to the page

control of Pigure 3.1, due largely to ¥ts lack: of fumittivnal sodularity.

3.4.3 Security

The multi-process deaign presented here offera significant security

TREDN

advantages over a traditional scheme. By security ue mean the prevention(
of unauthorized release or modification of infotuation (either procedures B
or data). Dividing page control into separate ptoceales increasea |
security between parts of the ayatem, and alloue aeparation of policy from
mechanism within page control |
Protection of the user from the system, or the ayatem from the user;
i8 not directly enhanced uhere nechanisma euch aa aupernieor mode, ringsv
etc. already exiat. However, the advancagea of simplicity and modularityh

iy}

previously discussed would make any attempts at certification of the

multi-process page control much easier. For exanple;‘the placee that read_

Gt u

and write arbitrary pages are localized and eaaily identifiable, and few

in number. o
Security between parts of the system ia 9:£9¢t‘A;;y‘th¢ aeparate

address space afforded each page control proceeo. For instance, only the
paging device manager process need be permitted to execute the paging

~device page replacement algorithm. Since the pagin; device uaed list is

76

used primarily for this task, we can also restrict access to the paging
device used list to the paging device manager process. No other processes
need access to this list.

Separation of policy from mechanism is poesible if the system offers
rings as does Multics (or some other form of protection domains) [Sc75].
The address space of each page control process can further be divided by
use of these protection rings. The programs implementing the mechanics of
paging, e.g. reading or writing a page from or to disk, adding or removing
a page frame from a list, gathering usage statistics, etc. éan be placed -
in the most privileged ring. The policy.algorithms, e.g. deciding what
page to remove from,prinary memory, execute .in a less privileged ring, and
must call the inner ring procedures to get .the information needed and to
actually implement the decisions made. Thus the failure of the policy
algorithms could never cause unauthorized use. or -medification of the
information in the pages. The system could-be certified without having to
certify these policy components. (Failure of the policy algorithms could
still result in denial of service.)

To summarize, the separation of the parts of page control permitted
by the multi-process design effectively allowa extra "fire-wallg" between
pieces of the gystem and and between procedures implementing mechanisms

from procedures deciding policy,

3.4.4 Expandability

Expandability encompasses two ideas, Oné‘has been mentioned in the

77

discussion of modularity and :might better be tareed adsptability, namely . -
the ability to add another manager -process -to:tha pagisg system to
manipulate another level of memory. The second aspéct of expandability is-
the ability to increase=thev§uuber of processes ‘éxdcdting as: ¢ore or
paging device ‘managers as ‘the -size of :the compater myéu‘\l SRTOWS .

In a generaliged computer utiliity with mulktiple:processing units and.
large amounts of mesory, & point wilkl evestually:be neached where -a single
core manager process will be unable :to supply fred-main medory page frames:
fast enough, even if the core manager ‘i{s .always éxeddting, since with
several processors there will ‘be multiple usdr precasses éxeciuting
simultaneously, eaech taking:page :faulkts aud demandtng page frames. In
such a sftuation, the solution 'is to G¢reate additlossl core manager
processes -(or paging device manager processes) '#s wieded to supply free
page frames at ‘a sufficient rate. All :of ‘thé coFe wanager processes would
be identical, and follow the algorithm .of FPigure 3.2,

This design would .be rather inefficient -if -theuglobal locking
strategy used by Multics is employed. The waktiwpiocess dasign, however, :
enables elimination of this lock by structuring the paging system’s data
bases into distinct parts, each -of which neéeds to:be accessed only by a
single process (or type of process, e.g. :lf eheiwi‘eata:kn_uiupkevcore
manager processes), This would significaﬁtly»déé!ei&eﬁthé initerference
among processes, producing a corresponding increase in system efficiency.

This issue is considered in more detail in Chapter 5.

To conclude, the multi-process design offers advantages in
: , i ~ .

simplicity, ease of understanding, increased functional mbdularity,

78

enhanced user and system security, adaptability and expandability. The
implementation described in the next chapter demonstrated that these are

not just theoretical benefits but offer practical advantages as well.

79

CHAPTER 4

A Multics Implementétion of Multi~-process Page Control

4.1 The Multics Implementation

Many readers will doubtlessly be strongly tempted to skip this
chapter; we urge this temptation be resisted. Althbugh the topic of this
chapter is an actual implementation on the Multics aystem of the
multi-process paging system presented in section 3.1.1, the emphasis is
not on the details of Multics or the particular 1mplenéntation of a paging
systém. Rathér, the emphasis is on the insights gained into the design by
its implementation. There are always problems arising in implementing a
system that are not apparent from the design of the system. The purposes
of implementing a real multi-process paging system were to demonstrate the
validity of the design, determine if the system’s theoretical benefits
were manifested in practice, and to measure the‘performance of Buch a

systenm.

4.1.1 Size and Scope of the Implementation

To give some idea of the size of the system implemented, the standard
Multics page control consists of 28 modules written in assembly language
and PL/l. These total approximately 4700 source statements, 3600 in
assembly language and 1100 in PL/1, which compile into almost 11,000 lines
(words) of object code. To implement the multi-process design, extensive
changes were necessary. These chgnges are sgmmgrizedvin\Appendix A, which
lists the modules in the Multics page‘cqntrql,thgt we;e‘chaﬁged or
deleted, and the modules that were added. Appendix B lists the program
modules required for the multi-process page QQnttol,_tfo; ease of
implementation, the entire multi-process page control was written in PL/1
except where already existing componentg written in gsqgmbly‘lqngqgge‘wgre,
used with little or no alterations. The size of each‘of thg modules in
source statements is also listed in Appendix B, and the size of the object
code for each program. Excluding minor changes in existing modules and
some changes to the scheduler nee&e& towéhéﬁlézimplemeﬁfiﬂg page control
as system procésses, approximately 1700 PL/l statements wefe written. The
total size of the 32 modﬁléé comprising muiti—ptééesé’phgé control was
roughly 3700 source statements, 1500 in assembly lénguageJan& 2200 in
PL/1. Note the numbe; of PL/1 source statments doubled while the number
of assembly language source lines was reduced by more than half. Because
of the large increase in PL/1 source lines, the resultiﬁg modules compiled
into slightly more than 13,000 lines (words) object code. This increase
in size was due to the effect of writing the progréﬁétin;a higher level

language.

81

The structure of the implemented system was identical to that
illustrated in Figure 3.5. Both system processes, the core manager
process and the paging device manager process, were driven by centrol
procedures named "core manager' and “pd menager™ respectively. These
programs received wakeup signals from othér processes, determined what
action to take as a result of those signale, ca¥led the necessary routines
to accomplish that action and thén signalled the completion of that action
to any waiting process befote blocking theé system process. A more
specific idea of how these processes wotk may be gotten from ‘Appendix C,
‘which contains some of the actual PL/I source prograws for the
core_manager and pd manager modules. ¥Yor codpleten&ss, comparable code
from the third part of the systewm, the page fault path, fs also included.
This is the code that runs as part of the user process and {s responisible

for resolving page faults,

4.1.2 Differences of the Implementation from the Model

There were several points in the actual 1mp1enéntation where it was
found necessary to deviate from‘what the model imp}ies. One of the mogf
significant of thesé was in the mechaniamkused.to 1mp1emen£‘the core and
paging device manager processes. Thefmodel.déés not differeﬁtiate between
the system processes used to implement the core manager gn@ p#éipg device
mahager and the typical user process except in the fungtiphs they perform.
In practice however, they may need to'be‘implemented differently in order

to obtain the efficiency and responsiveneas'required for system functions.

82

Additionally, the system processes must be able,;o,ﬁperatebwithout taking
page faults, since they are used to implement page faults.

Hence a special type of process was used tb,implement ﬁhe gore‘
manager and paging device manager prdcesseatthgx were simpler and involved
less overhead than a full Multics process,t,All;procedgtes, iableé,'and
temporary variables used by the core and paging,device manager p:ocgsées
were fixed permanently in main-memory. The4p:ocesaes,;lso lacked the
ability to add new segmenté to their addfesa space, but this is not an
ability needed by the page control processes anyway. |

The manager processes were also restricted f:qgwusing the full
interprocess communiéatiqn ngchanism_pﬁ.ﬁglticq, bquuaé_tq éermit them to
use this facility would have requi:ed‘mucgipprg'che,Qnd data be‘kgpt in
main memory permanently. ;ns;ead, less équﬁgqu p:imi;ives$gerg used
which allowed processes to wait on events and gigqax the occurrence of
events but did not allow 1nterp:oce§s message sending. The use of these
primitives, which were already part of the gngdg:dtMg;tics system, héd
some performance iap;ications because df theit ;ntefac;iqn_with ﬁhe
Multics scheduler. Therefore, a speQ1ai set of primitives was implemented
and used only for waking up the memory manager proggcsga.f‘These
ptimitivesrigaured that once either of thejsygteq processes was :eadytto_
run, it was started as séen as possible.

Another difiiculty inveolving the gait,p:igitive grqseifrom?th¢
restricted envirqnmenc‘a process operates in .after a page fault, At this
time, the fault;ng process cannot take another page fault, thus it must
run on a wired s;ack. Myltics does not.provide a wired stack on a per

process basis, but rather on a per physical processor basis. In a

83.

situation where a procéﬂs needs a wired stack, it uses the wired stack
(the "prds", or processor dats segment, in Multics teriinology) associated
with the physical processor curféntly executing the process. 'This has
severe consequences for the waiting operation. ‘If a process surrénders
the processor while using the prds as a stack, {ts stack history is lost.
The next process to run may overwrite the pr&ihsﬁacﬁi*ihd even ‘if this
could be prevented the process ma&irun on ‘Wdifférent ‘physical ‘processor
(with a different prds) when restarted. ¢

The result of this restriction is that 1if a_ﬁtﬂceif’reéolving a page
must do so at a point where it Was ho stack history on the prds. This
situation arises in the implemefited ﬁﬁlti?pfdéedi:phgé“dontfol wien a
faulting'pro;éss calls the main memory pagé frame alldécator, who discovers
there are currently no free page framés. At this pofft the core manager ~
is signalled to free more page ftames, bBit ‘the fadlting process must wait;
blocking itself and sﬁrréﬁééting the procdssor. ‘1f ‘thé’faulting process
did not give up the processor, the core manager protess ight Hever be
able to run (e.g. in'a éingle”pidcéséof”aysfelf; EThﬁéfthg’séaék'histofy '
at this point must be lost. This is nét too sevére; sinte nothifig has
really been done up to this point other thin deteriinifig aﬁatgﬁigé”d&ﬁiéd
the fault. The mechanism used to solve ﬁﬁ;s pioﬁléﬁ 18 tb“ﬁiéi the wait
primitive note the prces; is running oﬁftﬁé‘ﬁrd&33gnﬂjtesthri the process
by repeating thé‘iﬂSttuction that cdused: the page fiult when the process
is unblocked. This saﬁé‘géiibﬁ} reﬁeatiﬁgfthi'faﬁifiﬁg instruction, is
also used to restart a process waiting fot the completion of a read

operation to bring a fauited on page‘intbfcbri.f IA“the first-case, since

84

the fault has not been resolved, the page fault code }éﬂinvokédragain, but
this time there should be a page frame available. In the latter case, the
fault has been successfully resolved, and the process continuea‘merrily on
its way.

To summarize, the implemgg;a;ion,d;ffgrencgg were due primggily to

the simpler type proceas‘usedVQQ implgaentkthe core and paging device

manager processes, which imposed s yg(restgigtiong;pn the»func;ions‘these
processes could perform, and to ;he strategy gged;gp‘nplgicalfgr
‘implementing a wired stack, The q;herld;ffe:gngeg,frgg_thg model due to
segmentation are presented 1n,s¢¢;;on 4,235gndgreault;inladdigg extra
functions required to deal with segmentation to the job of the pystem

processes,

4.1.3 Performance

To compare the performance of the multi-process paging system with
the standard Multics paging syétem,'é Systéhtséﬁchhdrﬁ”wéé run using both
systems. A slight change was made to the standard system in order to
obtain more meaningful results for compari&dnl"Tﬁéutéiﬁqn'fbr this change
was the larger size of thefmuitiéprocess'page'cbnéfoltéystem. ‘Nine
additional pages of memory were devoted tozﬁérhﬁhentlyiﬁited system

progréms and data in the ﬁulti—ﬁfocess pagé control. This meant that the

primary memory available for holding user pages was reduced a
corresponding amount. So that the size of main memory usable for paging

by user processes vbulg_be_compaiable-in bbthvcége;; hine;additipnhl pages

85

were wired in the standard system and left empty.

This modification did not make the size of the pageable memory
exactly equal on both systems. The multi-process page control keeps a
free list, and the number of frames on this list varies constantly as the
core manager adds page frames and faulting processes request them. Each
page frame on the free list reduces the amount of available memory
available for paging; 1f, on the average, two page frames are on the free
list, the effective pagable memory has been reduced by two pages. When
the benchmark was run, the core manager was set to keep between four and
eight page frames free. (That is, when awakened, the core manager would
keep freeing page frames until there were eight; the allocating procedure
would wake up the core core manager when the number fell below four.) A
very conservative estimate is that on the average three pages were on the
free list. To compensate for this effect, another three pages were left
empty and wired when running the benchmark on the standard system, for a
total of twelve (the previous nine pages due to the increased wired code
and data plus three to compensate for the pages on the free list).

The results of running both systems are summarized in Figure 4.1. (1)
The multi-process page control system took 8.7% more page faults. The
increase in page faults is accounted for by three effects. The first of
these is the inability of the adjustment described in the preceding
paragraph to make the effective pageable memory exactly equal for both

systems. The second effect 1s due to differences in the algorithms used

(1) While useful for comparison, these numbers were obtained in a special
test enviromment and do not reflect the normal operating performance of
Multics.

86

Standard MIT Multi-process
System page control

Actual Estimated
Number of

page faults 60,261 65,504 65,504

Average time

to process a 1973 2043 1226
page fault
(microsec.)

Total CPU time
attributable 119 307 184
to paging (sec.)

CPU time spent (sec.):

processing
page faults 134 80

in core manager
process 141 85

in paging device
manager process 32 19

Figure 4.1

Performance of multi-process page control

87

for page replacement, specifically in when pages are replaced. Since the
multi-process page control evicts pages before the system runs out of free
page frames while the standard system only replaces pages when no free
page frames are left, the,pnga8;§g;d 1n:qpqggy,§;ygny given time may
differ. Given the same execution sequence, changing the pages in memory
will cause a different f&ult pattérh:and fault rate. Third, the average
time to resolve a faul:vchgngcd,,ﬁg.kigurg @,L%phoun. AnxidifféEﬁﬁée in
the time required for any event in a multiprocessing environment can alter
the pattern of page faults by changing the contents of ﬁﬁé §é§§:y;

Although the average time speat processing a page f§§L§ ;ggé%ged
relatively constant, these times are measured differently and are not
directly comparable. Since page replacement in both ﬁzig,pemoty”;ﬁh the
paging device 1s done at page fault time in the standard page control,
that time i8 included in the time to process %sﬁﬁﬁﬁff*ﬂéfg vhile this time
is attributed to the core manager or paging device manager in the
multi-process scheme. Thus one JSuId expect the time épent'ptoééssing a
page fault to be much less for the multi-process iné&ﬁhéﬂtggion.

The fact that the time is not smaller is due_ggkghe ogggheéq of PL/1.
In the standard system; all but a small‘ftaction ofﬁ%ﬁéCSOJEthit runs at
page fault time is written in assembly language. In the multi-process
system the situation is reversed, with the_largg‘majority of the programs
written in PL/1. There are two sources of ovérhead attributable to PL/1
at work here. One is the fact that in general, algerithms written 1in
assembly language are ahorteg and execute faéter than the same algorithm
written in PL/1. (In cases, the object code generated by PL/l may be a

factor of two or three larger.) Second, and more important, is the

88

overhead involved in making a PL/1 external procedure call. In the
assembly language version, subroutine calls and returns are made via a
single transfer instruction. A more complex sequence is required in PL/1
so that the stack and the PL/1 environment are managed properly.

In Multics measurements have shown that a PL/l external procedure
call requires on the average 67 microseconds. This figure is for a call
with no arguments; each argument passed adds approximately two
microseconds. The path followed after a page fault occurs in the
multi-process page control involves twelve external calls, Using 70
microseconds as an average time for one,extarna;.call (i.e. assuming one
and a half arguments per call), this means that a total of 840
microseconds of the average 2043 microseconds .required to resolve a page
fault, or about 41X of the total, is due to the procedure call overhead
alone.

A similar calculation shows that twelve PL/l1 calls are also executed
in the course of freeing one main memory page frame. Measurements from
the benchmark show, assuming that all of the ;ime‘spént-hy the core
manager was spent freeing page frames (not strictly true, see sections 4.2
and 4.3), that an average of roughly 2100 microseconds was required to
free one page frame. Agéin, the PL/1 call overhead was 840 microseconds,
or about 40%. |

Using this figure of 40%Z, and reducing the amount of time spent by
each component of page control in the actualyﬁénchmérk by 40, gives the
results shown in Figﬁre 4.1 as the estimated'perfofmanceybf ﬁulti—process
page control. This shows the estimated perforﬁancebimprovement if all tﬁe

external PL/l calls were changed to internal broceduré calls,

89

There is a smaller effect due t5 the repetitiod of certain steps in
each PL/1 program. FPor exdmple, pointérs to ddta biises may have to be
initialized in several proc‘&du‘r“évﬁiitm*bf just onte a8 in the dssembly
language version of page control. Asiothér factor in the increased
percentage of processor time attributable fo the ‘paging system is the fact
that some operations fncluded ifi the totsl tiwme chufgéd to the
multi-process page Contfél are aot coxmted vowdrds the overhead of ‘the
standard Multies paging systeém (see scetfouns #.2 and 4i3)." While it is
extremely difficult to estimate the effeet of ‘these tWS factors on
performance, their elimimatiow wight tesult ¥ 'a Putthér {dpfovement of
5-102 over the estimates in Figure &.1,

Achieving a perforsafnee ‘lével iﬁﬁillihgﬁﬁfriipfqvfng upon the current
Multics page control was not a goal of the test impfeméntation. However:
it is the author’s belief that the multi~process implementation is nét
inherently less effictent; it could be ﬁiﬁb*ﬁiﬁh ﬁéf@’tﬁiﬁﬁfaﬁle'if
appropriate programming style wis used, #uch as only using internal
procedure ¢alls, which Maltics PL/1 “inplements very efficlently, and using

global variables.

4.2 The Interface with Segment Control

Multics 18 a segmented system and has the concept of "active" and
"inactive" segments as discussed in section 2.1.4. This necessitates
some extra function in page control, which leads to a more complex core

manager and paging device manggetvthan wogldko;hgrv;qe;be the case. The

90

extra functions that must be added to page control, and the complications

these extra functions introduce, are examined in the next two sections.

4.2,1 Necessary Segment Control Functions

The chief area of contention between segment control and page control
is the page table. Page tables are allocated by segment control, but must
be maintained by page control. When segment control wants to perform an
action which may affect the page table words, it must call upon page
control. In the case of the multi-process design of this thesis, that
means the core manager and paging device manager processes.

There are four segment control functions which affect page table
words., These are: 1, Activating a segment, which requires the file map
containing the permanent disk addresses of the segment’s pages be copied
into the just allocated page table. 2. Changing the size of the the page
table (a "boundsfault" in Multics), which requires the contents of a page
table be copied into a new, larger page table when a segment grows. 3.
Deactivation, which flushes the segment’s pages back to disk. 4.
Truncation, which deletes some or all of the pages of a segment, requiring
the deletion of all coples of those pages in all levels of the memory
system.

.Of these four, only two require intervention by the core manager and
paging device manager processes., Activation does not, because a process
cannot take a page fault on a segment until the segment has been assigned

a page table; thus segment control can be responsible for initializing the

91

page table. Similarly, when a process extends the size of a segment
causing a larger page table to bé allocated for it, the process can copy
the page table itself, since no memory is allocated or deallocated the
core and paging device processes need not be ;nvglvgdf .On the other hand,
both deactivation and truncation explicitly require memory deallocatiqn,
and thus the assiétance of the memory mgnlgp?ﬁp;gggi;gg, who%e job it is
to do memory deallocation.

Deactivation requires the "cleaning up" of any pages of the segment
remaining in memory. Pages of 1nac;1vg segﬁgn;sygaqgggwstay in mg;n
memory or on the paging device becausgithe:e wi}l no lgnger bgipage tabig',
words for these pages. Thus the pggingwdevice_mqaage:“gust perform read
write sequences on any pages éf the segment bein§t¢g§gtiygtgd;that reside
on the pagingrdevice. Any;ppges”in mqinrgeggxy must alpo bg'qv;cted, gnd‘
the core manager must‘insgre that the gy;cﬁed P?&?‘;%ﬁ?_&?t put back on
the paging device.

Truncation is somewhat easier in one respect, for no i/o0 need be
done. Since ;hevpages are being deleted, copies F??iﬁiﬂg‘oﬂrﬁhﬁ=938138
device or in main memory_maj sipply be_q;sca;ded,?§g§y;hg1r,yag¢,frames
claimed and added to the gppgqp:i&tg”frge ;is;,tlAgy,d;gg copies of the
~deleted pages must algo be throyn away, énd ;hefdisk“recprdsmghgy occupied

returned to the file system for future reuse.

4.2.2 Complications Introduced
Since truncation and deactivation of segments both pdténtially

92

involve main memory and paging device memaory desallocatipn these operations
are logical cendidates for implementation:in the cere-and paging device
' manager processes. Doing 80 .necessarily-complicates these processes as
they no longer perform a single task. They must now be awakened when a
segment is to be truncated or deactivated to perform the necessary ateps.
This means when the core or:paging device .manager-is atarted.up, they muyst
determine why they were awakened, and perform-the correct functiom. Note
also that. just sending a wakeup signal is ipsufficient; more information
is required in' the case:of a truncation om-deactivation: - In both
instances the segment on which the operation is to be performed must be -
specified; additionally for a truncation which pages ‘are to be deleted
musat also be indicated,
Thus the core manager and paging manageruhecone.meesage receivere;

responding to interprocess messages from other processes to free page
frames, truncate specified pages or»clean up designated nesnente.' When a

Lave,

process wishes to truncate a segment, a message is firat sent to the

paging device manager process, uhich deletea any copies of pagea of the -
segment on the paging device, returning the pa;:"franes bound to those
pages to the free pool.‘ Upon receiving notification of the completion of
this part of the task from the paging device manager, a nessage is sent to
the core manager process asking him to finish the 3ob. The core manager)
deletes any copies of the aegment s pages in core, adding their page
frames to the pool of free main memory page framea, and signala that the
truncation is complete. Deactivations are hendled aualogouely, with pages

‘being returned to disk rather than deleted

An alternate strategy is possible and vas contenplated for some time.

93

The truncation and deactivation functions could be performed by the user
process, rather than asking the systém-processes to perform’ these tasks.
This has the advantage of keeping the core: and:paging device manager
processes ‘simple, but distributes part of thé fdimction of page control-
back to the user. This implies deallocation of memory may be going on in
more than one place at a time. There is cleatly:a trade~off here between:
making the aystem process more complex and:shoving.mystam functions back
into the user processes. In the: final ansiyeie tt:.was felt. the prime -
consideration wis: to coilect~ati:enu»plgevoontrélfoieraztonsﬁinto a:aingie

process.

4,3 Other Page Control Functions

In section 2.1 two other page control functions were discussed'

memory reconfiguration and memory wiring. In the context of the system
. g f;

processes, memory reconfiguration amounts tovadding or deleting page
frames from the supply that may be allocated, memory wiringlmeans
guaranteeing certain pages will not be removeo from main memory. These
tasks, though of secondaryVimportance,vare.also within the province of the
core and paging device manager proceases." "

The steps involved in adding or removing memory have already‘been
described in discussing memory reconfiguration (see section 2 2.3). These‘
steps are carried out by the appropriate memory manager process in

response to a request from the process performing the reconfiguration. On

completion, the reconfiguration process is notified Hence reconfiguring

94

page frames presents no additional complications, merely increasing the
number of functions the paging device manager and core manager processes
ﬁust perform.,

Wiring pages (section 2.2.4) was implemented as a system procedure
called by user processes. The only effect ;pon the core manager was to
include a check for wired pages when choosing pages for removal.
Implementing wiring in this fashion reqﬁires no‘;éiioﬁ by the core manager
process and was done largely for convenience, as the currently used wiring
procedure could be used unchanged. Wiring ceuld be done by the core
manger process just as easily; becoming an interprocess call instead of a
simple procedure call, Absolute wiring, however, must be implemented by
the core manager process since desll‘ocacion of.,a_omeApagag;may;,eccur and
special allocation techniques may be necessary. This adds an extra
function to the core manager process.

Unwiring pages can be implemented im the core manager process or
simply by procedure calls., The choice is largely one-of convenieance. To
reduce the amount of code rewritten for the test implementation, unwiring

was implemented without the intervention of the core manager process.

95

CHAPTER 5

Eliminating the Global Page Table Lock

One of the major benefits of having multiple processes implement the -
paging system is the ability to simultsneously execate two processes
performing page control functions. This parslleltsm in the performance of.
page control functions is loat, however, if a global lock such as used 'in
Multics (section 3.2.1) 1s used to prevent data base contention. Since
only a single ptocess may have control of the loc¢k, only one page control"
function may be executing at any moment. This 6f eourse prohibits
handling several page faults im parallel,

In this chapter a strategy for splitting the global page table lock
will be developed. By identifying the processes using each page control
data base and which data bases each process may reference simultaneously a
strategy using individual data base locks can be implemented. Such a
‘scheme allows full advantage to be made of the multi-processing capability
of the combination page control presented in section 3.3;1, including

simultaneous handliﬁg of page faults.

96

5.1 The Strategy

One reason the global lock is used in Multics is that all page
control functions are performed at page fault time. Tﬁﬁé:a’ptacess
handliné‘a page fault ﬁilivfirst access the paging device used and free
lists, then the core used and free lists, etc. Since every user process
taking a page fault must sccésavall the page control data bases, all the
data bases are subject to data base contention., The global lock protects
everything, even tﬁbugh some data will no longer be referenced or are not
yet needed. .

Hence a first stepiiﬁ,éividing the global lock is determining which
data bages are subject to contention, pClea:%¥ §f a data base is accessed
by only a single process that data base need not be protected. Figure 5.1
presents this information for the paggwcggprgL;Qata‘basesf For example, a
user process handling a page fault would have to access the cbre‘frée list
to obtain a free page;f;é¢e to allocéte_totﬁp@jfaulted—on page. Clearly
the core free list must also be referenceﬂ by the core manager process
since the'éore manﬁger'isﬂthe process rehpbnbible fggxadd;ng pagg;franes
to the free list, |

Not surprisingly, all the data bases are used by more than one
process. Pages are refergpced not only by bbfh‘of'the system processes
but also by user processes faulting on the pages. The other four data
bases are each accessed by two or more processes. To allow parallel
execution while preventing contention.'accésé’éﬁ éhese data bages must be
arbitrated in some fashion. A lock on each list is the obvious solution.

Thus we assume a lock is assoclated with each of the four 1ists; the lock

97

core free list

core used‘list

paging device
free list

paging device
used list

pages

(page table words)

Referencing
Process

core manager

user process

core manager

user process

core manager

paging device

manager

core manager

paging device
manager

core manager
paging device

manager

user process

Figure 5.1

Reason for access
CoERT e : . B

add a free page frame

obtain free page frame

to refolve page fault'

chose page frame for

deallocation

add newly allocated
page frame

obtain free page frame
for allocation to page

temoved from core

add a free page frame

add newly allocated
page frame

~ chose page frame for

déallocation
when doing main memory
page réplacement

when doing paging device

page replacement

when resolving page

‘faultes

Processes accessing page control data bases

98

must be set before access to the corresponding list is allowed.

Similarly a lock will be associated ﬁith each page, and the lock must
be lockEdbbe£0re operations may be carried out on the page (e.g. -
resolving a page fault). This of course is not new; Multics already has
such a per page lock. | |

With multiplg locks, precautions are necessary to preclude system
deadlocks. Thus a second important ‘step in eliminating the global lock
and replacing if with distfibuted locks 18 determining under what
conditions a process needs to lock more than one data base. 1f such
conditions never oécut, a system &eadlock cannot occur due ﬁo two
processes walting for locks held by one another.

Situations uherg a process needs accéss.éimultaneoualy to two objects
protected by locks occuf frequently, as shoén in Figﬁre 5.2. For
ingtance, any user process taking a page fault must lock the tqulted on
page wvhile the page ia‘regd in, and while the page is locked the process
must access the core used list to add the page to the used list.

At this point the next step is to develop a locking protocol defining
allowable actions on the locks which guarantee system deadlocks cannot
occur. We will use the standard Multics avoidance strategy which involves
a "locking hierarchy" and "waiting rules”. The locking hierarchy states
the order in which locks are locked. This insures that if two processes
both need locks A and B then both processes lock these locks in the same
order, preventing one process from locking A and waiting for B while the
other process locks B and waits for A. The waiting rules state when a
process may walt for a lock without giving up the processor (i.e. when

waiting may be "busy" waiting, done by repeating the attempt to set the

99

Procegss

user process

core manager
process

paging device

manager process

Data Bases

- Ig Be Locked

pagev .
core used list

page

.core free list.

Page AR
core used list

pase”

‘paging device. .-

free list

page

paging device
uged list - .

Figure 5 » 2

'Situation Requiring
e M;MME&&M“ q -

" Adding a page just allocated
a page frame to. the used. list

N Asiiﬁg fof/&ipaéé fraﬁe
L ooa$0-alloeage .tora page that
has béen faulted on

‘Remgving from the used
"list a page that is to be

. g Femoved- from.main memery

Requésfing a fréé paging
- ~dewige page frame te.sllocate
to a page

.y Deleting frem the used. list

a page that is being removed
-+ from the. paging device used
list ’

‘Processes -locking multiple locks . .

100

lock until successful, as opposed to non-busy waiting, implemented in
software and requiring the process to surrender the processor). Thus a
process must not be allowed to surrender the processor (block itself) with
a lock set if some other ﬁrocess might perform a busy wait on that lock.

It is not difficult to determine what the protocols must be. From
Figure 5.2 it can be seen two levels of locks exist -- the locks on the
four lists, and the page locks. A process needs to have only one of each
locked at a time.‘ Clearly, the protocol must require locking the page
lock first. For example, after a page fault, the process taking the fault
must lock the page before accessing the core free list to allocate a page
frame. This is to insure another process has not already begun allocating
a page frame to the page. Hence we have the following rule defining the
locking hierarchy (order of locking):

A page must be locked before attempting any operation on the page,
and before that page may be added or removed from the core used or free
list, or the paging device used or free list.

The waiting strategy is largely determined by the relatively long i/o
times. That is, pages must remain locked while read and writes from and
to the paging device and disks are in progress. Hence pages will be
locked for long times, making busy waiting on page locks hopelessly
wasteful of processor time. (In addition, a process looping on a page lock
could prevent the process that wished to unlock the page from ever
executing and thereby freeing the lock.) Thus a process wishing to wait
on a page’s lock must block itself, giving up the processor. Note the
hierarchy rule given above implies a process waiting on a page lock cannot

possibly have one of the four used/free lists locked.

101

There is a further question of what to do if a proceés needs to lock
several pages of the same segment simultaneously. Such a case may occur ’
in performing such functions as deactivation or truncation (section 4.2.1)
that operate on all pages within a segment. Usually such a problem may be
solved by locking each page in turn, performing the necessary actions on
the page, unlocking it and continuing with the next page, etc. In Multics
this method is adequate, however if it is not sufficient, locking the
pages in order by page number imposes the necessary lock ordering to
prevent deadlocks.

For the locks on the used/free lists, busy waiting is not only
possible but desirable. These 1ists need only be locked for several
instructions, as long as required to add or delete an entry. Thus wait
time should be minimal. Note assuming busy waiting here implies a process
never gives up the processor with one of the four lists locked; that is,
the add/remove operations must be non~interruptible.

To summarize, the rules for waiting on locks are:

1. A process must block itgelf while waiting on a page lock.

2. A process may block itself with a page lock locked.

3. A process may busy wait on the lock associated with any of the
four lists of Figure 5.1.

4, A process may not block itself with one of the four lists of
Figure 5.1 locked.

The last two rules are enforceable by requiring all additiouns and
deletions to the lists be made using system functions. This has the added
consequence that the callers need not even be aware of the existence of

the locks or the rules. The primitives themselves are written to obey the

102

protocols. Indeed, if the used/free lists could be implemented without
locks by carefully choosing their atructure, ‘the: last two rules would be
unnecessary. Thus the implementation would be transpaxent to the user of
the primitives.

In other cases, following these rules may require knowledge .of the
implementation of certain system fiynctions. In partigular, section 3.3.1
discussed implementation of the routine that allocates.free page frames.
The approach chesen involves blocking the calling process if there .are no
free page frames. Processes using such an allocation.routine must be
aware that they may block themselves by callimg the-allogcation routine,
and ensure this would mot violate the locking rules.

How do these rules manifest themselves in practice? Consider the
core manager while attempting to free page frames. He attempts first to
lock a page. If the core manager fails in this attempt to lcck tha pase, }

yfhe nerely trieq another,page on thelu;ed liat.’ (If he really must have‘
this particular page, by the rules above he rmust goyhlocked.)“vﬂonever
agsuming the core manager succeeds in lockins the page, he may then.
examine it to decide if it ia a good candidate for removal If the core
manager decides the page should be replaced he renoves it from the uaed
list (locking the core uaed list while doing so), gets a paging device |
page frame to write the page to if the page ia not already on the paging
device (locking the paging device free list momentarily) and starts
writing the page. The core manager may then block himself until the write
completes, at which tiae he adds the paging device page frame to the
paging device used list, unlocks the page, and finally adds the now free

core page frame to the core free list.

103

A process taking a page fault blocks himself if he cannot lock the
faulted-on page. When the page is unlocked, the process will be awakened
and can try again. When the process succeeds in locking the page, he can
then determine if the fault still needs fo be resolved.

Adopting the scheme outlined above will indeed permit not only
simultaneous execution of both system paging processes (or multiple
instances of system processes) but also parallel execution of user
processes handling page faults. As long as user processes do not attempt
to resolve faults on the same page they will not interfere with one
another. Waiting for data bases is minimized because the data bases

(1ists) need remain locked only while items are added or deleted.

5.2 Locks on Segments

The locking strategy presented in the preceding section is
insufficient in a segmented system such as Multics. This is because
certain information about each segment is maintained by page control. For
example, the number of pages of the segment that are currently in main
memory 18 one such item of information. 1In é per page locking scheme,
there is no way to protect such déta Qithout additional mechanisms. For
example, a process faulting on a page will need to increase the count of
the number of pages‘in core for the page’s segment; if simultaneously the
core manager process is evicting a page of that segment it must decrement
the number of pages in main memory by one. A race condition may develop

leaving the number in an inconsistent state.

104

Another example of per segﬁent,informnaionawhich~page control
maintains in Multics is "quota". In Multics,.quota is an upper limit on
the number of pages the segments of a directory may coatain. (Multics has
a hierarchical file system where all segments are cataloged in special
directory seg-ents; A directory’s quota restricts the amount of sﬁotage

that may be consuméd~by segments within that directory.) Page control

‘must keep track of the quota as well as: the number of pages used by the

segments in the directory. A full discussion of quota is postponed to the
next section. |

Thus in practice & segmented system would: need to add another level
of locks, namely per segment locks, to pfOtQCtéthﬂ information associated
with each segment and manipulated by page éontzol. It should be
emphasized that although the term segment lock is used, these locks are
used only by page control and not by segment control. Segﬁnnt control may
need to use some sort of lock for proper implementation of. its functions;
however, the segment locks discussed here are not intended for such use.
The per segment locks discussed here are not locks.on the segment, but on
the page control information associated witheeach:seg-ent.s,Inple-ented
beneath segment control, segment control should not be aware of their
existence,

How should theae per segment locks be.incorporated? One solution
would be. to-use the per segment locks in place of the per page locks. In
this scheme, access to all of the pages comprising the segment as well as
to the per segment information, weould be controlled by the sagment lock.
Having a single lock control all the pages in a segmgnt means that once a

process has locked a segment while processing a page fault, no other

105

LTI e TN T

T e e A

process could perform any action: oﬁ that- segment (eig. fault on another
page, remove a page of the segment from: core) until- the page fault had
been completed. :Note, though, this restrictioen would be advantageous
under certain circumstances; i.e. when performing a segment oﬁetation such
as truncation or deactivation which operates on-all of the pages of the:
segment. In such cases lockingiihe sasﬂcntiieckilllowh~theaentite
operation to be performed, where.in a fctupageﬁ10ﬁiiag;seheaz'each page - in
the segment must be locked.

A better strategy is to implement the segment locks beneath the page
locks,; in the same manner as the locks ohseheﬁunod and - free 1ists. - The
segment locks, like the locks on the lists;wnead:aaiy be.locked for a-few
instructions while the pervsegnant information is updated. The rules
applying to the locks protecting the used-aﬁd frae 1ists must also be
observed for the segment locks. T&at is, a ﬁrneeﬁﬁ'niy*1oek afne;ﬂent
only after the page (if any) the process is operating on is already -
locked. Segment locks can be busy waited on, but a process must uanlock
any segments it has locked before &bﬁndoningwehcfprocessot.

This strategy of implementing the segment locks does not conflict
with the implementation of the: locks on.cha free and used lists because a
process never needs to have one of the lists and a segment locked
simultaneously. (If such a situation did arise, appropriate ordering
rules would prevent deadlocks.) Happily~theiaddtéion'offper'segnent locks
does not place any restrictions on what page control functions may be
executing in parallel. Several user page faults may still be resolved at
once; if by chance page faults on two pages of the¢ same segment are being

handled, at worst ome process will wait momeatarily-while the other has

106

the segnent,of interest locked.:

5.3 Multics Complications

The per segnent locking atrstegy just described for Multics has not
s ;
been implemented. This section discusses two complications uhich

prevented the segment 1ocking echene from being added to the multi-process
implementation of page control on Multics in the time avnilsbleQ

' The first problen is ensuring that the globsl psge table lock is not

o T

being used in obscure ways by programs knowledgesble of its function to

protect dsta against contention. In fact, one 3ood argunsnt for renoving

v
¢ e

the glohal lock 1s to force euch sssumptions to he msde erplicitly.
) I;S : "‘

Knowing that a globsl locks protects many dste haseernskes it very
tenpting for a progranner to take advantage of the globsl lock by using a
certain location in a data base as a temporary because he "knows" the

global lock protects that location sgsinst sny other use Hhile he hss the

- - S

lock set.

As an exsmple of a hidden use of the globel psge table lock. consider
E = 2 IR B

the following fron Mnltics- Requests to the bulk store paging device for

o £

i/o are queued as they arrive for actual execution lster. The queues kept

.,3‘ A‘:_ A ,:'; g s

are protected only by the global page tsble lock. That is, the code is
not vritten to allow several processes to be accessing the queues |
simultaneously. Removsl of the global lock could therefore reeult in

errors in these queues unless a separste lock were sdded to protect the

queues.

107

Unfortunately such assumptions are not usually decumented. They are
not discovered until such time as they result in a fatal system error of
some type.

The second source of difficulty is the Multics imolenentation of
quota. Actually, the problem is caused by the interaction of three
features: quota, the hierarchical file structure, and dynamic segneut

EE

growth There are two numbers associated with each directory in Multics,
the quota or maximum number of pages (disk records) the segments of the
directory and inferior directoriea msy occupy, aad the records used which
is the actual current count of storege used. i directory may be specified
as having no quota, in which case any quota placed on superior directories
is the only constraint on the directory (e g. if directory beta is
immediately inferior to directory alpha and assuning alpha has a quota of‘
100 and beta has no quota, segments in beta can never occupy more than 100
ages). i | \
The crucial factor is that Multics allowsidynamic growth of segments.
By merely referencing a non—existent page of a segment a process can
create that page. Referencing the nonuexistent page causes a page fault,
and page control creates a page of zeroes.‘ At this point trouble arises,
for this creation must be reflected in the records used count of the |
segment’s parent directory. Thus, while the segaent the page fault was on
is locked, the segment 8 parent directory must also be locked to update
the records used count. If the records used is 1ess than the directory 8
quota, the creation is valid. However if the records used would now

exceed the quota, the page may not be created and page control must notify

the faulting process of an error. The situation is complicated if the

108

segment’ s pqrentfdirectory does not have a quota limit, in which case the
directory’s parent must be checked, etc.. na;ii‘a‘superio;~d1:gctoryvLs
found that does have such a limit. At each step up the hierarchy, the
directory (which is, of ceurse, a segment) must be locked.in order to
increment its records used count, - When:a directory with a quota is found,
the check can be made.

The difficulty arises in locking all the segments at the same time. .

They must be locked,: because some very important. per segment information

is being changed. Since lockimg the directories is-always from the: bottom

up (in terms of:the hierarchy tree), there is no danger of a deadlock,.
But recall that the previously presented locking rules fofbid.a;process
from blocking itself with any segments locked. Hence if at any point, a
process cannot lock a particular directory in its search for a directory
with a quota limit, it must uhlock.all locked segments and block itself,
starting over again when awakened.

Of course, when pages are deleted (e.g. by a truncate operation), the
records used must also be updated in a like manner. Multics further
complicates matters by always deleting pages of zeroes. That is, 1if a
program or data segment has an entire page of zeroes anywhere, that page
of zeroes is automatically deletéd each time it is reﬁoved from main
memory (and recreated upon next feference).r This is done on the
assuﬁption creating the page is fastér than reading and deleting is faster
than writing, and that disk space will be saved. There is an impact of
this decision on quota, in that such a page of zeroes is only charged
against quota when actually in core.

The implementation of quota and the deletion of zero pages complicate

109

the page controi algorithms, and especially the locking strategy,
tremendously. Various simﬁlifications are‘possiblé; for example: do not
allow segments to grow dynamically, or allew them to grow dynamically but.
insist a maximum size be speé¢ified and always couwnt that maximum size
against the quota (thus no change is needed in records used when a page of
zeroes 1s created). Explicit operations could be used to change the size
of a segment instead of having page control do the work automatically.
Unfortunately all such solutione have noticeable effetts on the system,
and would change its functionality. The issue of quota, its
implementation and impact on the syatem, tsfquite eomplex and is stillg

- being studied.

110

CHAPTER 6

Condlusioh

This thesis has preseﬁted a design, for-a system that implements a
virtual memory using asynchronous, cooperating sequential processes.

This design was demonstrated to offer significant potential advantages
over other designs in terms of simplicity, modularity, system and user
security, and degree of expandability.

The proposed system was built and tested on the Multics system. The
implementation showed the feasibility of the design and the validity of
the claimed advantages.

It is felt that the technique of exploiting parallelism in pgrtorming
system tasks by implementing those tasks as several cooperating sequential
processes 1is ex;remely important and powerful. vThat‘this method can be
made to work in practice and lead to operating systems whose design is
simpler and better structured is the most significant result of this
thesis.

The Multics system offers several additional examples of places where
a system process could be incorporated to perform tasks currently done by
the user process. For example, section 2.1.4 mentioned that page tables

are multiplexed among segments in the same fashion that page frames are

111

multiplexed between pages. Currently, when a segment 1s activated, if no
page tables are available, the user process must execute a "replacement
algorithm" which frees up a page éable by deactivating some other segment.
The similarity with page replaceﬁent is obvious, and a system process
could be used to keep a free pool of pagé fables in the same fashion as
the core manager does for page frames ;n ghe design presented here.

There is much that still can be déne‘iﬁ this area. The test
implementation could be greatly improved if the Multics scheduler were
redesigned to truly implement system ptoeéuielﬂthat c¢ould be:scheduled
without the considerable overhead of theé currest schesduler. The
per-segment locking strategy proposed in section 4.4.2 would greatly
improve the performance of ﬁulti-praeeinipage"eoﬁtfcl in multiple
processor systems.

Finally, it is hoped the success of the implemeatation reported here
will encourage other such attempts, perhaps-along the lines of Hoare’s
proposed system or Saxena and Bredtié system, to see- 4f the diffiecelties
concerning thbsé'syétemﬂ mentioned 1in sectiens 3.3.2 and 3.3.3 can be
overcome. It would be interesting to compare implementations. of such..

systems, or newly proposed systems, with that given here..

112

Bibliography

[C174] Clark, David D., "An Input/Output Architecture for Virtual Memory
Computer Systems'", MIT Project MAC Technical Report TR-117, Cambridge, Mass.,

(Jaﬁuary, 1974).

[Co69] Corbato, F. J., "A Paging Experiment with the Multics System", In Honor
of P. M. Morse, M.I.T. Press, Cambridge, Mass., 1969, pp. 217-228.

[Da68] Daley, Robert C., and Dennis, Jack B., "Virtual Memory, Processes, and
Sharing in MULTICS", Communications of the:ACM; vol. ll, no. 5, (May, 1968),

pp. 306-312.
[De66} Dennis, Jack B., and Van Hofn,~Ear1‘C¢, "Programming Semantics for
Multiprogrammed Computations", Communications of the ACM, vol. 9, no. 3,

(March, 1966), pp. 143-155.

[D168a] Dijkstra, Edsger W., "Co-operating Sequential Processes”, Programming

Languages, F. Genuys editor, Academic Press, ‘New York, (1968), pp. 43-112.

[D168b] Dijkstra, Edsger W., "The Structure of the "THE’ Multiprogramming

System", Communications of the ACM, vol. 11, mno. 5, (May, 1968), pp. 341-346.

113

[6Gr75) Greenberg, Bernard S., and Webber, Steven H., "The Multics Multilevel
Paging Hierarchy", paper presented at the IEEE INTERCON Conference, New York,

New York, (April, 1975).

(Ha70] Hansen, Per Brinch, "The Nucleus of a Multiprogramming System",

Communications of ‘the 'ACM, vol. 13, ne. &; CApril, 1970);, pp. 238~241.

{Ho73) Hoare, C. A. R., "A Structured Paging System", The Computer Journal, :

vol. 16, no. 3, (August, 1973), pp. 209-215.

{Ho74] Hoare, C. A. R., "Monitors: An Operating System Structuring Concept"”,

Communicatioas of the ACM, vol. 17, no. 10, (October, 1974), pp. 549-557.

[L172) Liskov, Barbara H., "The Design of the Venus Operating System",

Communications of the ACM, vol. 15, no. 3, (March, 1972), pp. 144-149.

{Mu72] Murphy, D. L., "Storage Organization and Management in TENEX", AFIPS
Conference Proceedings, 41; vol. 1, (Pall Joint Compater Coriference, 1972},

pp. 25-32.

[Sa75] Saxena, Ashok R., and Bredt; Thomas H., "A Structured Speeification of
a Hierarchical Operating Systed", Proceedings of 1975 Confereace on Software

Reliablity, (May, 1975), pp. 310-318.

[Sc72) Schell, Roger R., "Dynamic Reconfiguration in aModular Computer

System", MAC-TR-86, Project MAC, Cambridge, Mass., June, 1971.

114

[Sc73] Scherr, A. L., "Functional Structure of IBM Virtual Storage Operating
Systems Part II: 0S/VS2 Concepts and Philosophies', IBM Systems Journal,

vol. 12, no. 4, (1973), pp. 382-400.

[Sc75] Schroeder, Michael D., "Engineering a Security Kernel for Multies",

Operating Systems Review, vol. 9, no. 5, pp.25-32.

[Wh74] Wheeler, Jr., T. F., "0S/VS1 Concepts and Philosophies", IBM Systems

Journal, vol. 13, no. 3, (1974), pp. 213-229.

115

Changes made to standard page control

Changed Extensively

page_fault
post_purge

pc

pc_abs
pc_contig
pc_wired
freecore
delete_pd records
wired plm
evict_page
page_error
initialize dims
init_sst

pxss

Changed Slightly

bulk_store control
disk_control

free store
pc_trace

wired fim

wired shutdown

APPEND

IX A

Modules Added

page fault pll
core_manager
pd_manager
read

write
core_free list
core_used list
pd_free_ list
pd_used_ list
utility

Modules Deleted

116

pd_util
get_disk meters
meter disk

APPENDIX B

Components of Multi-process page control

: ; . - Source Object
Name Language statements "~ length
page_fault alm 560 580
page alm 28 116
device control pll 136 ¢ - o 00 896
bulk_store control alm 369 386
pc_trace : © alm 45 \ 68
free_store alm 133 ' 138
read pll 62 - 318
write pll 192 : 956
evict page pll 39 ' 142
page error alm 217 ' 349
post_purge alm 126 E 126
‘get_disk meters - pll - 12 22
disk control - opll - 247 1472
p¢_wired " pll 70 312
page_fault_pll pll - 32 170
pc pll 294 © 1740
core_free list pll ' 54 S - 290
core_used_list pll 49 o232
pd_free list pll 53 230
pd_used_list pll 40 ‘ 180
‘core_manager pll 282 1224
pd_manager pll 179 724
pc_contig pll 16 .80
utility pll ‘ 62 384
quotaw pll 85 ' 310
thread - pll 33 128
‘get_ptrs__ alm 37 88
pc_trace_pll pll 85 812
pc_abs pll 17 160
wired plm pll 45 162
delete pd_records pll 75 416
freecore pll 14 66

alm: 1515
pll: 2173
3688 13,277

117

Components of standard page control

Source Object
Name Language statements length
page_fault alm 1592 1616
page alm . 34 132
device control pll 118 134
bulk_store_ control alm 369 - 376
pc_trace - alm 45 . 252
free_store alm 133 142
evict page pll ‘ 147 : 168
page_error alm - 376 614
post_purge alm 145 . 146
get_disk meters pll 12 : 116
disk control pll 247 : 1478
pc_wired pll 71 . 254
pc pll 389 . 2144
pc_contig pll 69 . 320
quotaw ' pll 85 : 310
thread pll 33 . 128
get_ptrs_ alm 37 88
pc_trace pll pll 8 812
pc_abs pll 69 328
wired plm pll: 36 152
delete_pd_records pll 111 346
freecore pll 34 140
meter_disk pll 12 68
pd_util alm 394 402

alm: 3423
pll: - 1280
4703 , LO,B@G

118

APPENDIX C.
Code from multi-process page control

The following code is taken directly from the implementation of the
multi-process paging system implemented on Multics as described in Chapter
4. The procedure "page fault pll" is the code executed by the user
process at page fault time; the procedurea'"c@rq_panagar"_and,"pQ_ptngger"
are the procedures executed by the core andpd.manager processes
respectively. While some code has been omitted (chiefly lower level
subroutines and segment oparations such as deactivation, trucation,
wiring, etc.), no other changes have been made; all the pregrams listed
were actually run on the Multics system.

The normal operation of the system is fairly straightforward for the
most part and’ follows the ideas already presented. Page.faults are the
event which drive the entire system.” On the. occurrence of a page fault,
the page fault code is invoked. After determining the page causing the
fault, a call is made to allocate a free core: page frame. The allocation
procedure is ultimately responsible for driving the core manager process,
for when the number of free page frames falls too low, a wakeup is asent to
the core manager. On receiving this signal, the ‘core manager.selects an
in-~use page frame to be replaced and writes the page held in the page
frame out of main memory. After waiting for the write operation to.

complete, the core manager adds the now free page:frame to the free list.

119

The writing step may have several results, as an attempt will be made to
write the page to the paging device. If a copy of the page is on the
paging device and the page has not been modified, no write operation is
necessary. But if the page is not yet on the paging device, or has been
modified, a write must be performed. In the former case, a call must be
made to allocate a paging device page frame, and this is the act which
ultimately activates the paging device manager. MWhen the allocation code
notices too few paging device page frames:are available, a wakeup signal
is sent to the paging device wmanager. :After receiviag the.wakeup the pd
manager chooses a used paging device page frame -to remove and performs a
read write sequence if necessary (i.e. if the paging device copy-has been
modified with respect to the disk: copy of the page, or if there is no disk
copy). When the read write 'sequence is £tn13hcd,xthgép§gg frame is added
to the free list.

Both the main memory replacément algorithm -and: the paging device
replacement algorithm operate in a least recently used (LRU) fashion. The
Multics hardware keepe modified and used bits in the page teble word as
mentioned in section 2.2.2. Each used 1ist-ds implemented as a doubly
linked circular 1ist of entries, with a pointer to the least rgcently used
item. This pointer identifies the first page frame examined when one is
to be chosen for deallioceation.

The main memory replacement algorithm examines the used list until a
page whose used bit is off is found. -Any page lopked at during this
sgarch whose used bit is on has the bit turned off. ' Once guch a page is
found, it is a candidate for removal. (Certain other checks are .made, for

example to insure the page is not curreatly lecked because it is

120

undergoing a read or write operation.) As pggeg are exgmined; the pointg;.
to the least recently used item is advanced so that after the page to be
removed is selected the page frame immediately following it in the list
(i.e, the first page not looked at) becomes the least recently used page.
When pages are faulted on and read in, they are placed immediately behind
the page pointed to by the laas; recgntly used,ppintgr; thig makes them
"most recently" used,

The paging device used list is managed in a similar way, however
there are no used bits associated with paging devicé pages. Thus rather
than searching for the first page on the paging device used ligt with a
used bit off, the first page that is not curxently aisq in main memory is
selected for removal. The rationale for this decision 1is that the page is
in use if in core, thus should not be removed from the paging device.

Note since the page is in main‘memory,.aooner or . later it will be evicted
from main memory, and the eviction will be made easier and faster if the
page 1s already on the paging device. When a page is read from the paging
device to satisfy a fault, that constitutes a usg of thg pqse, so it is
moved to the most recently used position in the used list. Similarly,
when pages are first written .to the\paging d¢g;pe, they are entered into
the most recently used spot in the list,

The code that follows makes use'of several data baseé that are given
rather cryptic names. The comments in the code often refer to these data
bases. The list below explains the meaniag.of aggh,abb:eV1ation and the
purpose of each data base. These data bases are defined by PL/1
structures. In the actual code, a statement of.the form "Zinclude sst;"

causes the PL/l structure declarations for the data base "sst" to be

121

{ncluded in the source file by tlie cqmpifEflﬂﬁgeoﬁbiThtioniffne.'
1. ast - active segment table

The active segment tablé contains omé entry (an "aste”, or "active
segment table entry") for each ddf!&e seguent '{ii the System. Tach aste
consists of all the page table words for pages of the segment plus the per
segment information kept by page control such as qegndﬂt“lhdgfh; qudta,

etc.

2. cmp - core map

Each page frame is desé¢ribed by a "core map entry" ("cme") in the
core map. The cme contains the information associsted with the page
frame, e.g. a pointer to the page table wofd of the page aFlocated the
page frame. The core used and free 1ists dre merély linked liscs of

[

cme’s.

3. pdmap - paging device map
Each paging device page frame 1s deseribéd by a "pdme”, or "paging
device map entry", in a manner analogous to thé ‘ddre-map éntries: -

Similarly, the pd used and free lists are lidked“Lfsts of:pdse’s.

4, ptw - page table word

Each page of an active segment is describéd by a page table word
w@ich contains the current address of- the ¢opy of the pigé‘higheat in the
memory hierarchy; i.e. a core address if the page %8 1 cote; otherwise a

paging device address or if the page is not on the paging device, a disk

122

address. Used and modified bits, a lock bit, and a fault tag are also

kept in the page table word.

5. sst - system storage table

The sst is the primary page control data base. It contains not only
the core map, the paging device map, and the active segment table, but
also all other page control variables and constants such as pointers to
the beginning of the various free and used lists, the global page table
lock, etc. A large portion of the sst is also devoted to metering
information (number of page faults, number of read write sequences

performed, etc.).

123

72t

page_tault_plit procedure (rel_sstep, rel_ptp) returns (bit (18) allgned)}

V Ad

declare

declare

This routlne acts as an [nterface between the ALM page_tault code and
the pli read modules It ls called by tre page_tault code when a read
sust be done on the page that "rel_pte” polnts to (“rel_ptp™ ls offset
of page table word in sst) of the segment whose ast entry ls polnted
to by “rel_astep™. Thls procedure allocates a block of core for the
read anag flils the Intormation concerning the page required by

the read module Into the altocated cme, When tre read completes,

the cme 1S put on the core used llst., This procedure also checks for
the possiblilty of quota overfliows returning to the ALM page_fault
code It 3 page Is to be created and there ls lasufticliert gquots to

do $0. The ALN page_lault code then slgnals the quota overflou.

Wrltten 8-1+«75 by Andrews R. Huber for multl-process page controle. 274

rel_astep bit (18) allgned, /% Rel. ptr 10 8ste of seg. of faulting page */
rel_ptp blt (18) aligned, - /* Rei., Dtr to page tabile word of faulting page %/
pastep pftr, /* Polnter to parent’s aste %/

pdssquo ta_lnhib fixed bin ext, S /* Non-zero mesns Inhiblit quota checking */
pdsspage_feult_data fixed bln ext} /* Saved machlhe conditions %/

(addr, addreil, flxed, multiply, rel) bulltln,
core_free_llstsalliocate_cme entry returns (ptrl,
core_used_Ilstsadd_used_cae antry (ptrl,
readipage entry (ptr);

. %include sst3

Xinclude cmp}
Xinclude ptw}
Zinciude ast?
Zincliude ac}

YA

sstp = addr (SSt_seg8);
astep = otr (sstp, rel_astep)s
pto = ptr (sstp,y rel_otp)}

1t ptu.did = "g"p ,
then 1{ “enough_guota ()
then return (“0%b)3

cuep = core_free_listSalliocate_cae ()¢
checastep = rel_ astens
cn‘.p?np = rel ({ptp)}

it n'-.dld = "%
then cme.diskadd 3 aptw.devadd}
else If ptw.dld = sstepnd_ld
- then do}

/* Get polnter to sst */
/® Get polnter to aste of faulting page ¥/
/% Get polnter to page's page table ward %/

7% It tauited on a null pages */
/% see 11 have snougsh quate to create [t ¥/
/% 11 not return and sional evertiow */

’e Alloca'0~|.iteck of core to the page %/
/% Fltl in Ilnto ahout~o:9t_‘l

o]

/% It the page: ls null *7

/% use the autt ptw aﬁdress as the dlsk address */
/7% Nonenull,s ls Lt on the naging device? ¥/

7% On - oaging devices 30 fl111 in cee.pdnep ¥/

pdmep = addrel (sst.pdmap, nulflolv (tined (ptu.adde 18}, sst.pdslze. 10. 813

cme.pdmep = rel (pdwen)s

cmp.diskadd = pdme.olskadds

7% Conmpute pointer to pndme */ . v
/% Filt In dlsk adaress fronm nd-o ‘l *

sst.pd_vage_taults = sst.pd_page_faults » 1§ /¢ Httcr psge faults from cd */

end?$
else cme.diskadd = mptw.devadds}

¢all readSpage {(cmep)}
call core_used_Iistiadd_used_cae (cmepl)}

ro?urn {rel tcaepd))

/% Not on pd, disk acdrqss.lq_n-gc table word */

7% Walting -tor the 1/0 to complete Is done */
/% by code In page_1fsult since running on prds ¥/

- £%- Pt cng. 00 used list ss mos?t recentiy used */

/® Return rel. ptr to cme assigned ¥/

9¢1

core_managert procedure (unwanted_pointer)s

VAd Thls Is the driving routine for the core manager process. The
core manager Erocess is an Heproc (as isplemented Dy Mabee! See RFC-66)
created by Initlallze_dlms early In iInltlatizatlon.
a polnter passed by create_supervisor_task when [t starts the H-proc
running by calling this routinal In this case It ils 3 null pointer. The
tunction ot the core manager s to manage the core free and used Lists,
pertoraling all duties Invalving operations on trese Iilsts. The baslic
algorithm 1ls to loop untll a wakeup 1S recelved from somg process
requesting something be done. The core manager dliscovers what the

request was by comparing the values of the
the vaiues of the corrasponding *_done”

_slgnais”

A

The arguaent ls

varladles with
requestor

adds one to the “_signals”™ varlable corresponding to the task he wlshes
pertormed: the core manager adds one to the corresponding "™_done™
varlabl e when he has pertormed the taski thus when the two are equal there -

are no reguests of that type outstandling.
sanager complates all outstanding requests of atll

axetut ing Ycall pPxsssnotity (“cmev™)™.

Notes once started, the core

types, Onily

It there IS no work to do does the core manager bleck untll another
wakeup IS received. The standard walt snd notify primitives are used
for Inter-process comsmunication? the core manager ls signalled¢ by

Neitten 0-6-7! by Aadrew ‘Rs Huber for muiti-process page caavrol., S 74

decliare (I, I' Loop- Lad,x ./
|) 7% Counter */
tTrys 4% Lopp- 4ngdax, 09. of times tried coa:lg aig. %/
base, /% Index In core map of flrst cme In a port %/
slze, AR Yuaher of:guels in current pert ¥/ .
port, 2% Yusber of pert gurrentiy baing |coked at */
needad, 1% Mneol contiguovs: abs.uicable casos needed %/
t1agt_1, 4% 5aved vadus: of 4000 logex: 2/ s
otd_abs_wiredy ' /% Bavad vaiug . ef: sct.ob;;;;rod_gaunw .
records;’ A 1% Nusber ot records. truacadsd %/ . :
no_pages, ‘ 7% Nusber of ppces te: be sperated. on 'I 0.
tirstioage, 4* €irst.pags.lp. seq.; 1o be operated on %/
first_core, /7% Index of first cme 0 use for 3abs wirling */
(i%?;sfa". 7% Value cf sst.core_manager_signalis to wait on ¥/
tast page) fixed bln. 1% L3St page-te Ba aperstad . on ¥/
davidd biv (22), 77 Bevice adiérass to:be returned 40 free pool %/

device_ald bit (&) do'ln.d (dovudd) position (19},

Int_calt it (1} ellgneds.

old_gtpd blt (1) sllghed,’

bld _theo ptr,

unwanted_pointer ptr,

olgmask t1xed: bln (7LD,

#ind'blt (18) stigned,

Ing"pit {19) aligned,

scsisys_level fixed bin (71) external,

”
Fia
1
7%
F4.4
[44
49
7%

/*% Device 1d portlon of device address */

Flag:allening interrunts wuhlie ads wiring ¥/
Saved: valua &1 astesgtpd for cleanup enfry */
Polntec 10 on oid che 24

Arg ptr passed when Heproc started up */

$10 mask. valus nesded by pmut rgutines %/
Nelt svent returnsd by pagesSavict ¥/

Page svent to: walt on */

Sys level mask ¥/

null_devadd_not_ ln_coro bit (36) stigned Inlt ("0000000000000000060000000000080000004") Int static)

L2t

decisre (addr, addrel, bity divide, fixed, min, multiply, Ptr) bulltin,

core_free_Illstgadd_Iree_cme entry (ptr),
core_{frea_listsremove_free_cme entry (ptr),
core_used_tlstsadd_vsed_cme entry (otr),
core_used_ilstSremove_used_cme entry (pir),
core_used_llstsselect_core entry returns (ptr),
Lobnstorcc'rlacouts entrys

pagescam entry,

pagescopy esntry (bi? (18) sllgned, blt (18) aillgned),
pagestdeposit entry (blt (22) allgned),

pagesevict entry (ptry blt (18) alligned),

pagesSpwalt entry (bit (10) allgned),

pageSiock_pti entry, '
pagesunlock_pti entry,

pmutsset_mask entry (flxed bin (71), flxed bin (71)),

pxsssblock_on_event entry (tixed bin, fixed bin, fixed bin (7)),

pxsssnotify’ anry (char (4)),
readspage entry (ptr),

syserr entry options (varlablel,
utititysmove_page entry (ptr, ptr),
writespaje entrv (ptr);

Yinctude ssti

Zinclude cwp$

Zinclude as?$

Zinclude ptws

2inciude null_addresses;
Xinclude controlier_datas

8¢1

sstp = addr (sst_seg$);’

call pmutsset_mask (scsssys_level, oldmask); /% Make sSure core_manager aiways runs masked */
last_Sstate = sst.core_manager_signais? /% Malt until someone slignals core manager %/
call pxss$Sblock_on_event (sst.core_manager_slgnals, lesst_state, 3Jeb)}
do while (“1"b)3 /% Maln loop3 reveat forever. */
fast_state = sst.core_manager_slgnalss /* Get counter value for walting on later ¥/
do while (sst.free_cnes < sst.nax_free_cmes)’
call get_core;} /7% Free core unti!l maxisum reached ¥/
end;
do while (sst.cm_cleanups_done < sst.cha_cleanup_slgnals)? /% Do any cleanups ¥/

call ca_cleanups
ssr.c!_cccanucs done = ggt.cm_cleanups _done ¢ 13}
Cﬂd ’

do while (Sste.cm_truncates_done < sst.ce_truncate_slgnals)s /% Do any truncates */
© cafl cm_truncate’
ssf.ca_truncates_done = gSt.CR_truncates_done + 13
ond.

do white - tss& iuc corv:_dono ¢ sst.add_core_slgnais)t /* Any core to add? %/
\ ¢sl) ddg_coréy -

sc};aad;céﬁns_dona s ggt.add_cores_dons ¢ 1}

end

do while tss*.rqnnvo cores _done <€ Sst.renove eorq_slgnals)s /% Any core to resove? %/
~catt rilﬁvi~corot
stt.#atc?n coros_dunc = ssf.rouove cores_done ¢ 13
eﬂdi R

K}

do whille’ lstf.et,eontxgs dono « ss?.cl conflg_sl;nals)s /* Any contiguous page requests? */
" €atl get_contlg_ coret ”
sst.cn contlss ,done = ss?.c- contlgs_done ¢ 3}
end§y

call pxysssdiock_on_event (sst.coro_naﬂagnr_sl9nals. last_state, 3e6)3 /* Walt tor wore work */

621

get_corel procedure;
caii pagesiock_ptis
cmep = core_used_Iilstsselsct_core ()}
caltl core_used_llstsremove_used_cme (caep)}
Ptp = ptr (Cmep, CRe.PTND)}
cali writespage fcmep)}

1t ptu.os .)
then call pagespwalt (rel (ptp))}

call gpfq_troq_lleSACd_troq_c-o (cmep)
call pagesuniack_pti}

call pxss$notlify (“core™)$

rsturni

end get_cores

Vid
/%
7%
VAl
FAd
VAd

/7%

VAd
/7%

Vald

7%

Internal procedure to free up one more ¥/
block of core and add |t to free 1lst */
Filrst fock the page table lock ¥/

Call replacemanet algorithas to find core */
block to be freed %/

Ranove selected core block from used tist ¥/
Get polnter ‘to page table ward */

Write out the contents of the core block ¥/

It page out of service, l.e. 170 st1ii1 %
go;nv on, then welt for 1t to tinish %/

Put the now free core block on tree list %/
Unlock */

Notlty anyone walting for more core %/

e
W
o

core_used_llstt procedure;

Al

declare

declare

Thls module contains all entries needed to malntaln the (1st of cme®s that are currently

In use. The cme®s are organlzed Into a clrculary, doubiy~llrked Iist In order of last

use. The pointer to the head of the list, sst.usedn, polnts to the least recently used
entry. Since the jlst Is clrcular, the most recently used entry Immedlately preceeds the
feast recantly used cme. The number of entrles In the list ls maintalned In the varladbie
sst.used_cmesS. A4

/* Nrltten 8-5-75 by Andrew R. Huber for smultl-process page control. */

1 tixed bln, /* Loop Index */

cme_ptr ptr, /% Parameter, cme to be added or removed %/
up ptre /* Polnter to cme at head of used |list ¥/
many tixed bin Init (100000) Int statics /% Tlmes to try replacement aig., */

{nulty rets ptr) bullting

syserr entry optlons (varliable)$

Xinclude sst}
Zlnciude cmp}
Zinclude ptw?l

add_used _cmel! entry (cme_ptr)} /* This entry adds the cme polinted to by */

/% cmep to the Ilst In the most recently */
/% used posltlion */

cmep = cme_ptrs

sstp = addr (sst_seg$))

It sst.used_cmes = /®* 11 the used Ilst Is currentiy empty */
then do} /% make this the only entry In the tist, */
sst.usedp = rel (cmepn); /% Set ptr to head of llst to thls entry %/
cma.fpy cme.bp = rel (cmepl)} ’ /% Since thls 1ls only entry, set pointers %/
ends /* to next and l(ast entry to ltself ¥/
else do; ’ /% Other entrles In the used ilst %/
cma«fp = sst.usedp) /* Thread this entry In betore first entry ¥/
up = ptr (sstpy sst.usedp); /* Get pointer to head of |1lst */
cme.bp = up => cme.bp} /* Copy back polnter from cme at head of list %/
ptr (SStpe CMme.bD) => Cme.fp 2 rel (cmap)$ /% Make last entry point to this cme ¥/
uUp => cme.bp = rel (cmep)} /% Make next entry polnt back to this cme %/
ends
sst.used _Cmes = sSt.used_cmes ¢ 13 /* Increment count of cme*s In use ¢/

returng /% End of add_used_cme entry %/

T€T

remove_used_cmel entry (cme_ptr);
cmep = cae_ptrs
$s1p = addr ($st_Se€g$)3
ptr (SS1Dy CReefp) => CRe.DD = cme.bp}
ptr (5510, CRQLP) <> CHMeefD = cRe.fD}
sst.used_cmes = $st.usSed _Cmes -~ 135
1t sst.used_cmes =
then sst.usedp = “("b;

eise If sst.usedp to = rel (cmep)
then sste.usedp = cas.fp?

return}

V& d
FAd

/7%
/9
7%
A4
Al

Fid
/7%
/7%
FAJ

7%

This entry removes the cme pointed fo by */
¢mep from the used |lst ¥/

Now thread the cme out =- note ftlese */

steps work even [! there (3 onty one */
entry In the 1]lsty since In that case ¥/
cme.!p and cae.bp point to themselt */

Decrement count of cme®s on used Ilst %/

1f used 1ist now enpty, reset pélater to */
the Ilst to “0"b to Indlcate thls */

It"sti il entries In (ist, set sst,usedp to %/
next entry 1Y entry at head of ilst removed ¥/

End of remove_used_cse entry */

S L A TSR

Zel

select_core! entry returns (ptr); /* Thls entry [mpilements the page replacement */
/* algorithm, seiacting from the core used llst %/
/* a cme whose page wlli be removed from core. */
/% The used I1lst ls scanned for an eilglble ¥/
/% page whose used blt [s oft, Eligibte pages */
/% are those not wired, not undergoling l/0, and ¥/
/% not beling removed. */

sstp = addr (sst_segs)?

cmep = ptr (sstpy, Sst.usedp)$ /% Get polnter to head of used llst */
do l = 1 to many$ /7% Look at many cme"s before falling */
$St.StepsS = SSt.Steps ¢ {3 » /®* Add one to total step count ¥/
ptp = ptr (s5tpy cme.ptwo) 3 /* Get pointer to vage table word for this cme */
it cme.rns _ /7% Is page undergolng rws ? */
then ssteskipspd = sst.skipspa + 13} /® Yes, skip lt, keeplng count of why skipped */
else If ptwenired /% Not undergoing rus? is 1t wired ? */
then sstesklpow = sstesklpw ¢ 13 /* Wired, so sklpy counting 2s wired skip */
eise 1f cme.removing /% Not wlred! 1s 1t belnrg deconfigured ? */
then sstesklpr = sst.skipr + 13 /% Yes, count removing skip */
alise [t ptw,0s 7*% Othervise out of service for 170 7 */
then sstesklpgs = sst.skipos ¢ 1} /*® Count os skip */
else 1t ptu.phu /% llnost - has pa¢e been used 7 %/

thén doi /% VGS. €0 skid 1t turning off */
ptw.phu = "07B3 7% the used bIt ¢/
st.sklpuvt sst.sktou + 13
L
else do} l‘ WIN? c1axn tris cn. v/

$st.usedo = ¢me.fp}
jt?é-n C‘cnot‘ ’

’e io reach mxs“ualnv, the ¢ was skipped ¥/
cmap = ptr (s$tpy Cmeoip)s /* Advance pointer to next entry ¢/
end}
call syserr (1, “cmi Llmpossible to free core.")i /% Crnsh it can'f tree @ che o'ttr seny trles */

return (null)} /% €nd of select_cors entry ‘/

" fhls ‘nos fhi core_used_I1lst module %/

end core_used_IIist}

€eT

core_iree_

A4

ilsts procedurs!

This module contains all entrles needed to malntain the 1ist of cme®s that are currently

tres. The cae"s sre drgunliied Into » circular, doublv-llﬂkid tisty whose head is pointed fo

by sstetfreep. ' Norwel iy entrles are added to and ailocated fros the hsed of the ilsty

since all- frae cRe's are ‘equal. A cme being removed from service, l.e: decontigured,

aay be’ rencvel froe anywhere in the List however. The huaber 61 entrlies on the (isY:. -
1s kept Iin the variadble sst.frae_cmes. The core manager trles to keep thig nuaber >=

sstunin_tree_cads at all times, thus when the count drous btiol thls u slanul 1s sent
to the core fanager to lroc some aore.

T/ Written 845-75 by Angrew R. Muber for multl-recess Page control.: %/

daclare

deciare

fotr p'r: ' /7% Polnter 16 head of free 1]lst %/

(addry, nulily rely ptr) bulltin,
pegesSiock _ptl entry,
pagejuniock _pti entry,
pxitgeddavent entry (char (&)),
pxsstdelisvent entry {(char (4)),
pxssSevent sntry (fixed bin),

- pkisshalt enterys

Zinclude s}

‘Eldtivde copl

4

sdd_free_cemel entry {(cmepl)}
SStp = addr (sst_seg$)}

CRe.ptHp, CME.aStEDs CRe.DAmED = (18)% 0"}
cag.dlskade = (22)"0"b;

it sst.free_cmes = @

then do}
sst.lreep = rel (cmep)}
cme.fp, coe.bp = rel (cmep)s
ends

silse do}
cme.fp = sstefreepd
fotr = ptr (sStp, Sstefreep)’
CRe.DD = 1DpTr => CmesdpS
totr => cee.bp = rel (cwep)?

7%
Fid

ptr (SStDy Cmeebp) => Cme.fp = rel (Cmep)?

sstetreep = rel (cmep)}
end}

ssfefree cmes 2 gStofree_cmes ¢ 13
1t sstifree_cmes = gst.max_free_caes

el

returng

remove_~Iree_cast entry (ceep)

sstp = addr (sst_seg$):
ptr ($SSfp, CHEIP) <> CHEIDD T CMEDD]
ptr (s5tDy CRecbP) => chme.fp = cae.fp}
sgt-frio;cnis * s3tofree_cmes = 1}
If sstofren_ches = & -

then sst.fredp = “9'b.~

alse It ll?s'?.tﬂ to = rel (cmep)
fhen sstJfreep = caee.tpd

return;

7%

7%
7%

VAd

Vo d
Fid
/7%
FAs

’e
V4d

7¢
’”

Vs
re

Fis

This entry adds the cee pointed to by */
cmep to the head of the free list ¥/

Blank out polnters In the cme */
and the disk address */

If the free Iist Is currentliy empty %/
nake this the only entry In the tist., %/
Set ptr to head of list to this entry &/
Since thls is only éntry, set polnters ¥/
to next and fast entry to ltself ¥/
Other entrles In the free tlst, so */
sake this entry the nem head of the Iist ¥/
Get pointer to cme at head of Ilst */
Note thls works even L[f onty one entry ¥/
since In that case cma.fp anc cae.dp %/

/® polint to themseif ¥/
Finally, make this entry new head of ilst %/

Increment count of cme’s In use */
Meter tlimes celling hit %/

then sstetines_nax_free cCanes = Sst.times_max_free_cmes ¢ 3

End of add_free_cme entry */

Thls entry removes the cme pointed to by */
cwep from the free 1ist. This Is a speclal %/
sntry for use when resoving 8 speclific cme */
from the fres Ilsty, e.9. deconflguring 1t %/

Now thread the cme out ~- ngte trese ¥/
R ,‘;

dfeps ‘HorK eie¥r It there Is only one ¥/
entry In the ilst, since In that case ¥/
cne.fp and cme.bp polnt to themself ¢/

ntcrcudﬁf couwi ol dno’i on tr&& llsf »y

I tree llst o itﬁf?v reSet golnter to ¥/
the T15¥ to 0”0 *¢ Indlcate this */

Tt stlif entrlés v List, Set Sst.freep to ¥/

next entry It entry st Wead of T i5t removed %/

End of remove_free_cas entry */

GeT

alliocate_cnmet entry () returns (ptri} : - /% Thls entry returnt @ polnter t0o 3 free ¥/
7% cne. It there are none, It signesls the ¥/
/7% core manager to free somq and walts until ¥/
/% he does $0. If the numder of free cue's ¥/
/% drops below the allowed rusber, the core */
: : /® manager ls siso si¢nallied */
sSSP = addr (sst_segs)? : Cee .

do uhllc (sste lroc cnos = 0)§ /% It there are no cme’s on free listy, ¥/
/% teld corc manager to frae soss */
;sst.tiacs out o!bcnos = ssr.tlnos out_ot_cses ¢ % 4% nater tisas out of cmes */
cati. pxssfaddevent ("cors™)}} . 13 Set up walt.ewent %/
call pxssSevent (sst.core_manager_sionsis)s /¢ Joll core mapager to qzt busv L ¥
i1t sstelfree _<mes = § /% 11 st1ll no free core
%ngn do3 - 7% walt.untli there is_ so-c s/,
‘ coil pagesuniock _oti} : /% Myst untock pt! before llJ’lﬂ! /-
o ’ call pxssswalts /% Nalt tor core senagsr. to {ree some core ¥/
call pagesiock_pti} " Ro-lock et bo:eu. continuing ¥/
end} v
elsc cal! pxssSdelevent (“core™} /* I! corc na-*thoush. Just confinu. Y
end} ,
fptr = pir (sstpy, Ssta.freen)$ ' /* Get pointer to cme at head of free ilst %/

OIT. (S50 1917 «> SRR 1D} “2-£ReDP X IDIF => . CORabp] /% Remoye the entry at hesd of the 11ist */
ptr I(sStps 1O1r => cReedp) => Cae.fp = Iptr => cae.lp}

5

t.!nb;aslgaas gsjotggp_cnla . 18 e, e 4* -Pascenent. count of entries on free tist ¥/
sss,agtds 24 Siﬁwhtldc LI S _ Ll 4% Insremgn ;3 copht 0f core biocks needed */

ll C‘f;!;‘;*rlcb = [o ‘b'ﬁ;u ""i vh“ﬂTaI‘ If' rouny'# ’a: fast entry fros frcﬁ 1ist &/
then: sst.1resp = “8“b: PR . R LY 1] 8 pplnac; to heasd of tist to “0%p */
B9, 88t treep = totr => cuc.lp; s s . 4% 31 nets get to entry following that removed %/

it ::t.!roc;cnus < sst.a&n lr-.isnos “;, e I! “uet ve. ta;l’n below the desired alnisum */
~then dod. . .., /7% trae sose sore %/

: $S10CA, npidﬁcorq.ﬁiyn;ls = s:v.c- nocd,corc_sjgn,ls &13 4* Slgnal too few free caes */
- call szssﬁ.xsm? (uctacaro RONAgGEr_ slgaolsas 1Y uakc up cors sanager %/ .
- .n‘" : . -
r-turn cfotr): R f' " 1 /% Retyrn the polnter o the free cse *

/% Eng o! allocate_cas entry */

/% This ends the core_trae_iist module */

oad:corl.froq;lllit ’

9¢€1

pd_nanagerst procedure (unwanted_pointer)i

/% Thls ls the driving routine for the pd manager or

ocess. Th

pd manager process Is an Heproc (as Implemented by Mabee) see RFC-66)
created by inltlatlze_dlms early In Inltlatlization. The argument ls

3 pointer passed by create_supsrvisor_task when It starts the H-proc
running by catling this routine In this case L1 Is a null golnter. The
function of the pd manager Is to manage the pd free and used itlsts,

perforaing all duties Involving operations on these |listse . The

basle

atgerltha:ls to loop untli a wakeup IS recelved fras some Rrocess

requesting something be done. The pd Ranager discovar
request was By comparing the valucs of the “_signals™
the values. et the carresaonddng .~ done” ~Narlabbae A r

s what the
varlables
equestar

uith

sdds one to - tha ialomais™ wartnnto corresnonding. 9 the task no ulshes

perforaeds the pd manager adds one to tre correspondin

g “_done”

varisbtq mhan he has .oerferned the taski thus when the two ace equal there
sre no requests of that type outstanding. Note once started, the pd

aanagen conpletes. all outstanding .reguests of alt type

L 18 Only

it there i3 no week to do does the pd manager block uatil. anather
wekeun - ks seceived. The standard walt snd notity arlglt&gog»{n' used
by processes malting on a8 pd manager event, however the pd esnager

ae il uaes Qah0t~a lqck on_svent and event nrlnlti_:gpv ,‘3%
2980,

e ugke .up .the .p¢ AsNaQer 4 "call pxsttevent (sst.p
is oaueuno.

fore.
Lgnals)*

urum usw!s w Aadnnnﬂ- uunr Mr lult&-w‘oqns gn gaatrclw, T st
declare (l.) " Laoa lndox 8/

| I8 £ ' /* Counter %/

recordsy ... v - RO P SR 4’ 3‘ P 2L AeGe0ae Srynsated Y .

:ast State, . 7% dYatue of :s'.pd-uanasur-slgnals to walt on */
irste Ger Ty % B9t 0009 10500« 10,09 anarated on &/

tast) fixed blﬂraw cse e ' 4 H ‘? Qﬁ‘ mw:mm Q¥ o s Lo
tine fixed Din &3a)y - . - .; et g&;o $ eqtuene ;3 ,cgack & ‘

eldmask tined bin (71), ¥ Saved aggq Y .oggg rz ytines #/

wasanted mainter Rine : 3‘- g_ggzgng gt g;q gg grtgt sunervisor_task %/
ind bkt (18} -abioneds . . - o 4% fege e uyt .

Dased_pdes . L343} 1hined bio based (pdwepds & aedn nnv A%, foyr i‘u-u bin ‘Words */
scstsyu tevel tinqe Rin ¢21) externaly Ii xs Ios;% gk o/

update_ lnterval !lxod btn (71) Int static inlt (1!0&0; ¥ Leosth of . ’k't lgigqon _pd ‘map */

WY BY PR ogmo . v ; . 4% NadBtegy . l@ Q&'Q“Q"ﬁ“ .’

declore ta¢¢r. sddeets Glts divide, tixed. null, ptr, subste)
clock_ entry returns (fixed bin (71)),
core_fres_listsailocate_cme entry returns (ptrd,

: pd_lroe_llsf:adﬂ_lrcc_pdnn entry (ptr),
po_tree_ilistsremove_free_pdme entry (ptr),
pd_used_tListiremave_used_pdme entry {ptrl,

Urpdiusediilistiselect.pisteserd entry returns (ptrd,
pagescan entry,
pagesonalt entry (blt (18) allgned),

bulltln-

[

LE1

pageglock_ptl aentry,

pagegunlock_ptl entry,

pmut$set_mask entry (flxed bln (71), tlxed bin (71)),
pxssiblock_on_event entry (fixed bln, flxed bin, flxed bln (71)),
pxss3notity entry (char (4)),

wrltespdmap entry,

writesrws entry (ptry ptelds

Zinclude sst}
%Zinclude cmps
Zinclude ptws
Xinclude asti

8€1

sstp = addr {(sst_seg$s)?

pdmap = sst.pdmaps : /7% Get uselull paolnters %/
call onut$set_mask (scsssys_ level,y oldmask); /% Mgke sure pd_sanager siways runs masked */
last_state = sst.pd_aanager_signalst /7% Walt untlt flrst pd manager event 3/
call pxsssbiock_on_event (sst.pd_aanager_slionals, last_state, 3e6)$
do nhile ("1"b); : /7% Maln loop} repest feresver. %/
last_State = sst.pd_manager_slgnals; 7% Save counter vsiue for walting or later %/

do while (ssSt.pd_free < sst.max_free _pdmes)s
call get_pd_records
end}

do while (sst.pd_clesnups_done < sst.pd_clesnup_slignals)} /% 0o any cleanups %/
call pd_cleanup; :
sst.pd_cicanups_done = sst.pd_ clcanuos.dono + 13
end;

do whilile (ssSt.pd_truncates_done < sst.pd_truncate_slonsls)s
call pd_truncate’ v
Sstepd_truncates_dons = sst.pd_truncates_done ¢ 1}
end?$

60 while (sst.add_pd_records_done < sst.add_pd_records_sigrais)} /* Any pdmes 1o sdd? */
call add_pd_recordss
ssteodd_pd_records_done = sst.add_pd_records_done ¢ i
. and}

do whlie (sst.remove_pd_recards_ dano < sst.remove_pd_records_signals)! /* Remove pdmses? %/
call remove_pd_records; :
Sst.remove_pd_records_done = sst.remove_pd_records_dons ¢ 13

ond;
ttno a elnck 43 /7% See It time to update pd map agaln */
It time ~ sste.last_update > update_ lntoerl /* 1t longer than update Interval ¥/
*hen do}l /% then write ou?t pd map agaln %/
sst.last_undate = ting} 7% Save time written out ¥/
‘ChH writegndaap$
SEte NS ?lnc start = sst.rus_tine _start ¢ clock, () = time} /® Count time as %/
oﬁd& P PAd r-s start tx-c for comparison wulth cur. sys %/

7

vct&l ontsOUCOG«_on_ovonl (sst.pq‘lnnaqcr txgnnll. lost states 3Jo6)3
an‘;'

6€1

get_pd_recordt procedurel
call pageslock_pti}
ssterus_time_temp = Clock_()%
pdnop = pd_used_Illistsselect_pd_record ()}
call pd_used_listSremove_used _pdme (pdmaepl}
call writeSrus (sst.rus_cmep, pdmep)}
time = clock_{)3
call pd_tree_listSadd_free_pdme iodnio)%
cat! pagesunliock_ ot}

call pxssSnotlty (“prec™)}

FAd
7%
FAd

7%
Fid

”

/°

7%
VAd
FAd

Internal procedurs to free up one more %/
pd record and add 1t to free list */
Flrst lock the page table lock ¥/

Cal) replacemanet algorlthm to find pd %/
block to bs freed */
Remove Selected pd record from free llst &/

Write out the contents of the pd record */

Piace the non free pd bBlock on the free llst %/
Unlock */

Notify anyone walting for a pd rccord_'l

ssterws_tinme_done = sst.rws_fine_done ¢ clock () - time}

return

end get_pd_records

oyl

- pd_used_llstt procedure’

/® Thls module contains all entrles needed to maintajin the 1St of pdme®s that are currently
in use. The pome*s are organlzed Into a8 clrcular, doubly-iinked 1ist In order of |ast
use. The polnter to the head of the 1lst, sst.pdusedp, polnts to the least recently uysed
entry. Silnce tha list Is clrcular, the most recentiy used enfry lamediately preceeds the
feas?t recentiy used pdees The number of entrles In the list Is msaintalined In the varlable

sst. pd_usSed.

.7

/% Written 8-5-75 by Andrew R. Huber for multl-process pags control. */

declare I fixed bin,
pdmep_ ptr,
up ptry
sany fixed bin inlt (108080)%

docliro (addrs rels ptr) duliting
syserr entry options (variadiels

Zinciude sst3
Linclude cap

V Ad
F4d
7%

FAd

VAd

Laop Index ¥/

Pointer to pdme of lnfcrost .,

Polnter to pdee at head of ysed Iist %7

Number of tlmes to loop locking for fres ¢/
pdse betore glving up %/

vl

add_used_pdmet entry {(pdmep_)}

$Stp = addr {(sst_seg$)}
pduep = pdmep_$

11 sste.pd_used = 0

then dol
sst.pdusedp = rel (pdmep)3
pdme.fp, pdme.bp = rel {(pdaep)}
end$

elise do}

. up = ptr {s5tpy SSTepdusedp)’

‘pdne.fp = sst.pdusedp’
pdag.dp = Uup => pdas.bp}

FAJ
FAd
FAd

FAd

/7%
/7%
/7%
FAd
/7%
YA
Vid
FAJ
YA

This entry adds the pdme polnted to by */
pdmep t0 the Iist in the most recentiy ¥/
used poslition %/

Copy argument */

It the used Iist Ils currently aempty */
nake thls the only entry In the list., %/
Set ptr to head of (st to thls entry */
Since this ls only entry, set pointers %/
to next and last entry to ltself! */

Other entries In the used list ¢

Get polnter to head of 1ist %/

Thread this entry In before entry %/
antry polnted t0 By upy leges */

ptr (S$tp, ndma.bp) => pdme.fp = rel (pdmep); /* 1n most recentiy used spot */

up <> pdmesbp = rel (odu.p)!
end}

$st.pd_used = sSte.pd_used *+ 13

returns

remOve_used_pdae! entry (pdmep_i§
SSTp = addr (sst_segs)]
pdmep = pdmep_}
otr ($$10y Ddmectp) => pdaesbp = pdmecdp?
ptr (sS1py Ddme.bp) => pdme.1p = pdwe, Ip}
ist.od,d#:d 3 sS?.ﬁq;uscd - 13
It sst.pd_used =g
then sst.pdusedp = “0"b}

eise It sst.pdusedp = rel (pdmepn)
then sst.pdusedp = pdue.fpd

returng

F A,

7%

’.
FAd

,I.

F A4
[0
'l
FAd

N A4

VAd
F L
7%
7%

FAd

Increment count of pdne’s In use ¥/

End of add_used_ondmne entry %/

by

ths onfrv ‘rOROVES fho ndnc polnted to by &7
odnoo 'roﬁ tﬁ! uscd llsf ‘f :

noﬂv aryuntn1 .y

‘Now fhHread the pdie Gut =~ Note these ¥/

Steps work even 1f there is only one */

‘entry In the t'isty slnce ln that case %/
nano.fp and pduc.bo polnt to themselt */
ﬂccrcncnf co«nt ot pdre’s oh uscd tist ¥/

It used 113t now empty, reset oolntor to ¥/
the 1ist to “I" t¢ Indlicate fils ¥/ :

It stltl entrles In Vist, set pdusedp to ¥/
next entry 1t en¥ry at nead of ‘I ist remdved %/

End of remove_used_pdse entry */

et

select_pd_recordl entry returns (ptr)}

sstp = addr (ist_sog:l;
pgmep = pte (sstds $Stepdusedod
sst.pdusedp = pdme.fp}
g 1 = 1 to many;
sSte.pd_steps = sSste.pd_stens ¢ 13

it pdnc.iucor.

/7%

14
ris

Fid

VAl
VA

7%

,7%

VAl

This entry lmpiesants the page replacement */
algorltha for pages on the paging device. */

‘A pointer to the rext pdue %0 be freed s &/
VA

returned, The feast recentiy used pdne: %/
shose page ls ﬂﬂ' 1n tore ls selected, ¥/

and to least recently used pdme */
Reset head of used l1st to next pdme */

Loop through many entries */
Up totat of steps eround used Iist ®7

It this entry*s page Is Incore then sklp */

then sst.pd_sklos_ lncoro = gst.nd_skips_Iincore ¢ 1} /% [t but count as In core skip */

olso it pame,rus

than sst.pd_sklos_rus = sst.pd_sklps_rwé ¢ 13
eise return (pdmep)}

pdmep = ptr (sstp, pdme.fpl}}
$St.pdusSedp = pdme.fp}

ends

call syserr (1, “pdt lapossible to free pdme.”)}

7% This ends the pd_usad_li3t module o7

.end pd_used_J ist}

,‘
I‘

7%
FAd

-/0

Page not [n cortg is sdme. undeergoing rws? */
7% Yes, count as rus skip 7/
Noes s0 clala this pdee */

Advance polinter to tosk at next entry */
and move ptr to jeast recently used pdme %/

Crash §f can®t tind pdae after asny trles &/

/% End of the select_pd_ Pecord entey #/

eyl

pd_free_listt procadure’

/7%

FAd

declare

deciary

This module cen'alns all entries neededito malntaln the 1lst of pdme®s that are currertiy
free. The pdlc s are orgailzed- into & clrcular, doubly=-ilnked 1is?, whosa head ls nolnted to
by sst.pdfreep. ‘Normally entries are added to and allocated frow the hesd of the tist,
since ail free pdme’s asre equal. A pone being removed from service, l.e. deconfigured,
may be remdoved Trom snywhere lh tThe 1lst however. The nuabsr of entriss on: the iis?

1s kept In thae varlable sst.pd_fres. TPhe pd manager tries to keep this ausber >=
sstemin_fres_pdmes at ail ?x-cs. Thus when fh. count drops befon this 3 signal is sent
to the pd manager to free S0me AOre. - sy

Nritten 3-5-75 by Andrew R. Huber for muitl_process page control, %/

totr ptry ' . /% Polnter to first pdme 1n trea i1ist %/
last_state fixed dbln (35)% /7% Saved counter valus fTor walting on %7
taddri” culy ptr) duliting | ’

pageSiock_ptl entry,
pagesunlock_pt! entry,
pxssSaddevent entry (char (&)),
pxss$delevent entry {(char (&4)),
pxssseven?t sntry (tixed bin),
pxssswalt ehtrys

Zinclude ss14
Xincluge cmp}”

i

add_free_pdmes entry {(pdaep)}
sstp = addr (sst_seg$);
pdue_blts = (f14LW)*g"b}

It sstepd_free = 0
then do}
sst.pdfreep = rel (pamep)?
pdmecfps pdmec.bp = rel (pdmep)?
ends :
alsSe G0}
" fotr = ptr (sstp, SSt.pdfreepl)}
- Pdme.tp = sSt.pdireen;
pdme«bp = fotr => pdme.bp}
totr ~> pdag.bp = rel (pdmep);

FAd
Y Ad

FAd

This entry adds the pdme pointed to by %/
ndmep to the head of the free llist %/

Zero entry before adding to free tlst %/

It the free I]lst s currently eapty %/

make thls the only entry In the Iist, %/
Set ptr to head of {ist to this entry ¥/
Since thils Is oniy entry, set nolinters ¥/
1o next and tast entry to Itself %/

Other entrles In the free tist ¥/

Get pointer to head of free Iist %/

Make this entry the new hsad of the list ¢/
Note this works even lf onty one entry ¥/
since In that case pdme.fp and pdmesdp ¥/

pte (sstpy pdme.dp) => pdme.tp = rel (pdmep)$ /% oolnt to themself ¥/

sst.pdireep = rel (pdmep)}
end}

sstepd_iree = gstopd_ free ¢ 13
1t sstipd_tree = sstenax_1Irese_pdmes

Fad

F Ad
7%

Finally, make this enfry new head of llst ¢/

Increment count of pdme’s In use %/
Meter times celliling hit &/

then sste.tines_nax_free_pines = sstetines_nax_free_pdmes ¢+ 1}

return}

résove_tree_pgdeel ‘entry (pdaep)i

sstp = addr (sst_seg$li
ptr l35tos pdeestp) <> pdme.bp = pdae.bp}
ot (t!fﬂb od-o.no) -> pclc.fu = nﬂnc fa:
sstopd_frde = tst-ac.frqo - %
N § ssf.gd_froc s 0
then sstepdfreep = “Q'bi

efse It sstipdfresp = rel (pdmep)
then sst.pdfrees = pdme.ftp?

returns

7%

7%

1%

'.

Fad
re
F 44

T

7%

FAd

End of add_free_pdne entry ¥/

This entry removes the pdas pointed to by %/
edmep from the free 1lst. This [s a speclel %/

. ontry for Use wlen remaving.s .speclfic pdae ¥/
“tron the treé Fist, e«9. deconliguring [t %/

Now thread the pdme out ~- note these */
steps work even Lf thers Is only one ¢/

enfry In the Elst, since In that case %/
sane.fp and pdee,bp point 1o themselt */

:ﬁocrcncnt ecun? ol nduc s on free Ilst ¥/

} 4] Iroe 1ist now qupty, rcsof polater to %/
the . tist te "I"p to |adicate this */

Et stlt) entrles on (ist,y S6t sstepdfreen to ¥/
naxt entry If sntry at head of 1|ist reacved */

End of remove_free_pdme entry */

allocate_pdaet entry {) returns (ptel)} /* This entry returns a polinter to a */
/% tree pdmes If there are none, 1t slignais %/

/% the pd manager %o free some and walts untlil ¥/
/% he does $0. If the number of free pdme®s */
/* drops below the allowed rumber, the core */

/* manager ls siso slignalled */

sstp = addr (sst_seg$)s
do while (sst.pd_free = 0)3 7% 1t there are no pdme®s on free (ilst, %/

/% tall pd manager to free some */
sstetimes_out_of_pdmes = sst.times_out _of_pdmes ¢ {3 7% Meter times no free pdmwes ¥/

call pxss$addevent (“orec™)3 /* Get set to walt for more pd records %/
call pxssSevent (sst.pd_manager_ slgnals). /% Wake up the pd manager to frse some %/
It sst.pd_1free = @ /% It stlil none free %/
then do3 /* block until some free */
caill pageSuniock_pti} /7% Must unlock pt! before walting ¥/
coll pxss3walt} 7% valt tor completion signal from pd manager */
call pageSlock _pti} /% Re={ock ptl before continuing */
ends;
eise call pxssSdelievant ("prec™); /% But If some now don®?t bother walting */
ends
- fotr = ptr ($sstpy Sste.pdireespls /% Get polnter to pdms at head of (st */
é; otr {(sstpy, fpter => pdme.fp) => pdme.bp = fptr => pdae.bpi /% Remove entry at hesd of the list ¢/
ptr (sstp, Iptr => pdme.bp) => pdme.fp = fptr => pdee.fpn}
$Stepd_tree = sSstepd_free = 13 /% Decrament count of entries on free tist %/
sstepd_ nnoocd z gst.pd_needed ¢ 1} /% Up cumulative total of pdees allocated ¥/
1t sstepd_free =8 /¢ It we removed the last entry fros free tist ¥/
then sst.pdfresp = “0"b} /7% set polnter to hesd of llst to "0"b */
eise sst,.,pdireep = fotr -> pdme.tp} /7% If not, set to eniry folloning that removed */
1t sst.pd_tres ¢ sstomin_free_pdmes /7% 11 wg've fallen Delown the dcslrod ainlaum &/
then do}
sst.pd_need_pdmes_slgnals = sst.pd_need_pdmes_signais ¢ 13
call pxssSevent (sst.pd_sanager_slonais)} /® Neke up the pd manager %/
end} /% to free some more */ 4
return (fptr)} /% End of allocate_pdee entry %/

7* Thls ends the pd_free_Iist nodule %/

ond pd_free_lists

This empty page was substituted for a
blank page in the original document.

CS-TR Scanning Project
Document Control Form Date: /[130 /s

Report # Les TR

Each of the following should be identified by a checkmark:
Originating Department:

O Artificial Intellegence Laboratory (Al)
ﬂ Laboratory for Computer Science (LCS)

Document Type:

/QiTechnical Report MR) [Technical Memo (TM)
O other:

Document Information Number of pages: l%QSo-{m@ﬂ)

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
O Single-sided or O Single-sided or
~# Double-sided >R Double-sided
Print type:
Typewriter [] offsetPress [] Laser Print
[inkletPrinter [] Unknown [J other:

Check each if included with document;

0 pob Form O Funding Agent Form O cover Page

J spine O Printers Notes [0 Photo negatives
O Other:

Page Data:

Blank Pagesy page rumben:

Photographs/Tonal Material wypage numbes:

Other (note description/page number).
Description : Page Number

Lmacrmae! (1~ 146Y iarne'sn TITLE PAGE ;L"HS/(NWI&‘D BLANI-
(43150) Seamcothol TRETS (3

Scanning Agent Signoff:
Date Received: /[/ 30/ 95 Date Scanned: /-/S /9s Date Returned: /% /7 1S

Scanning Agent Signature: W«'AJ/\} ‘ Q—oz'-’\»

Rev /94 DSALCS Document Control Form cstrform.vad

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the ML.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

