
MIT/LCS/TR-171

A MULTI-PROCESS DESIGN OF A PAGING SYSTEM

Andrew R. Huber

December 1976

The research reported here was sponsored in part by Honeywell Information
Systems Inc., and in part by the Air Force Information Systems Technology
Applications Office (ISTAO), and by the Advanced Research Projects Agency
(ARPA) of the Department of Defense under ARPA order No. 2641 which was
monitored by ISTAO under contract No. Fl9628-74-C-Ol93.

CAMBRIDGE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COHPUTER SCIENCE
(formerly Project MAC)

MASSACHUSETTS 02139

A MULTI-PROCESS DJ!;SIGN OF A.f.~l~G $YST!!:M *
,_. ' ~ ,. : l . .

by

ABSTRACT

This thesis presents a design for a paging system that may be used to
implement a virtual memory on a large scale, de•and paged computer
utility. A model for such a computer system with a multi-level,
hierarchical memory system is presented. The functional requirements of a
paging system for such a model· aH • ·:t.fi~saed, with emphasis on the
parallelism inherent in the algorithms used to implement the memory
management functions.

A complete, multi-process design is presented for the model system.
The design incorporates two system processes, each of which manages one
level of the multi-level memory, being responsible for the paging system
functions for that memory. These proces•ee aay execute in parallel with
each other and with user processes. The multi-process design is shown to
have significant advantages over conventional destgns in terms of .
simplicity,· modul~rtty, system .• ~~(ll~ty,,,' ·i~'·r:' :syste1r1 ~ :growth. .and
adaptability. An actual test impte~ttH:icnf ''.t?n. '·~e . Multi.;'& SY.Ste,nt "8S
carried oot to "1Alida ce the propcu1ed 'dea~jn; · ' · · · · ··

. f' . ·, ·,

Thesis Supervisor: David D. Clark
Title: Research Associ~te

*This report is a minor revision of a theais of the same title submitted to
the Department of Electrical Engineerin~ and Computer Science, Massachusetts
Institute of Technology, on May 19, 1976 in partial fulfillment of the
requirements for the degrees of Master of Science and Electrical Engineer.

2

ACKNOWLEDGEMENTS

I wish to thank my advisor, Dave Clark, for his patience in what has

been a rather protracted effort. The original idea for this thesis is due

to him. Three people were of great help to me in implementing the design

presented in this thesis: Bernie Greenberg explained many of the

mysteries of Multics page control and gladly contributed his time,

knowledge and enthusiasm. Bob Mabee implemented some of the code

necessary to permit page control to be implemented on Multics as parallel

processes, and helped in getting the design working on Multics.

Wells was expert at finding my programming errors and explaining

pitfalls of PL/1. Without their help, I would still be debugging.

Doug

the

Many

other members of the Computer System Research Division contributed in ways

too numerous to mention.

The research reported here was sponsored in part by Honeywell

Information Systems Inc., and in part by the Air Force Information Systems

Technology Applications Office (ISTAO), and by the Advanced Research

Projects Agency (ARPA) of the Department of Defense under ARPA order No.

2641 which was monitored by ISTAO under contract No. F19628-74-C-0193.

3

ABSTRACT

ACKNOWLEDGEMENTS

LIST OF FIGURES

CHAPTER 1: Introduction

1.1 Processes

1. 2 Paged Systems

1. 3 Paging Systems as

1. 4 Summary of Thesis

TABLE OF CONTENTS

Processes

CHAPTER 2: Basic Objects and Functions of Paging Systems

2.1 Page Control Objects

2.1.1 Pages

2.1.2 Page Frames

2.1.3 Address Translation Registers

2.1.4 Segments and the File System

2.2 Page Control Functions

2.2.1 Memory Allocation

2.2.2 Memory Deallocation

4

2

3

7

8

9

10

11

12

15

17

17

18

20

21

26

27

31

2.2.3 Memory Reconfiguration

2.2.4 Memory Wiring

2.3 Summary

CHAPTER 3: Designs for Paging Systems

3.1 Paging System Structures

3.2 Multics' User Process Page Control

3.2.1 The Current Multics Paging System

3.2.2 Multics as a Single System Process

Paging System

3.3 Multi-process Combination Paging Systems

3.3.1 A Two Process Paging System

3.3.2 Hoare's Structured Paging System

3.3.3 Saxena and Bredt's Hierarchical

Operating System

3.3.4 System Versus Combination Paging Systems

3.4 Advantages of Multi-process Paging Systems

3.4.1 Simplicity

3.4.2 Modularity

3.4.3 Security

3.4.4 Expandability

CHAPTER 4: A Multics Implementation of Multi-process

Page Control

4.1 The Multics Implementation

4.1.1 Size and Scope

5

35

36

38

40

41

43

44

48

so

51

61

65

68

70

71

74

76

77

80

80

81

4 .1. 2 Differences from the Model

4.1. 3 Performance

4.2 The Interface with Segment Control

4.2.1 Necessary Segment Control Functions

4.2.2 Complications Introduced

4.3 Other Page Control Functions

CHAPTER 5: Eliminating the Global Page Table Lock

5.1 The Strategy

5.2 Locks on Segments

5.3 Multics Complications

CHAPTER 6: Conclusion

82

85

90

91

92

94

96

97

104

107

111

BIBLIOGRAPHY 113

APPENDIX A: Changes made to Multics standard page

control

APPENDIX B: Components of Multi-process page control

APPENDIX C: Code from Multi-process page control

6

116

117

119

LIST OF FIGURES

Figure 2.1: Model of a multi-level hierarchical memory

system

Figure 2.2: Translation of virtual address page i,

word n

Figure 2.3: Virtual address translation with

segmentation

Figure 2.4: Allocating memory to pages

Figure 3.1: Multics page control

Figure 3.2: Algorithm of the Core manager process

Figure 3.3: Algorithm of the page frame allocating

procedure

Figure 3.4: Binding a page to a page frame

Figure 3.5: Multi-process page control

Figure 4.1: Performance of multi-process page control

Figure 5.1: Processes accessing page control data

bases

Figure 5.2: Processes locking multiple locks

7

16

22

24

30

45

53

55

58

60

87

98

100

CHAPTER 1

Introduction

This thesis will examine a general raultiple p-roc~ss design of a

paging system. Such a design could be used in the- lllplementation of a

demand paged memory in any suitable computer C!ff>erating system. As

computer systems have grown in size, the opet'att!lg systems have also

greatly increased in size, sc·ope, and coaplexity, especially so-called

computer utilities and large time shared syst•s·. The design presented

here offers a method for.sillplifyiag -one lat"gecoaponent of such aystems:

the memory management task. The reeulting &ystea is less complex yet

readily expandable to accomodate future syst ... ~owth.

There are two central concepts under'lJitlg the design presented in the

following chapters. These are- the concept· o--f a'.preeeaa as an abs-traction

of a program in execution, and the concept o-f pa9ing as a means of

implementing a virtual mattory. Before the motivation for designing a

paging system as cooperating processes can be dteauaaed, these two

concepts warrant closer examination.

8

1.1 Processes

The essence of a process is the execution of a program. Numerous

definitions of a process are given by various authors [Da68] [Ha70]

[Di68a] but all include the notion of an execution point passing through

the instructions of some program. Thus a process is an abstraction of the

locus of control that passes through an executing procedure [De66].

The address space of a process, that is, the set of all memory

addresses the process may reference, is an important component of a

process. In fact, the address space of a process influences the

computations the process can carry out to such an extent that we include

the address space in our definition of a process. A process, then,

consists of a pair: an execution point, or locus of control, and an

address space.

The process abstraction provides a natural way of describing an

operating system. Each user's work is viewed as a process, i.e. a task to

be performed. The operating system itself is seen as a task or process

manager. The various facilities the operating system provides, such as

memory or device management, can themselves be implemented as processes.

Two good examples of systems designed around the process concept in this

manner are Dijkstra's THE system [Di68b] and a multiprogramming system

described by Hansen in [Ha70].

In any multi-processor computer system, processes offer a

straightforward technique for achieving multi-processing (the simultaneous

execution of two or more programs). Any physical processor (CPU) in the

system can execute any user or system process. This permits the operating

9

system to be multi-proceHed. i.e. different functions of the operating

system may be executed in parallel. Parallel execution of the operating

system, or one componen.t of the operaeina: •'8t• (tiaerpaghg aya ..) ie a

central theme in thia thesis.

1.2 Paged Systems

Paging is a common strategy for solving the meaory allocation

problem, one of the chief tasks any operating aystea must perform.

Examples of systems using paged memories include Multics [Da68J, TENEX

[Mu72J, and IBM's VS systems [Wh74J .[Sc73}.

In a paged system the address space of a process is divided into

contiguous pieces of fixed size called pages. Physical memory is

partitioned in the same manner into contiguous blocks called page frames.

When allocating memory to a process, any available page frame may be

allocated to hold any page.

Usually the memory of a large computer utility is organized into

several physical levels Ll, 12, ••• Ln. The access time and capacity of a

level increases with n, and each level is normally a different type of

memory device. For such devices, the smaller the access time the higher

the cost per bit and therefore the smaller the capacity. By combining

such components with widely varying speeds and size into a multi-level

memory an overall memory system can be constructed ~ose capacity equals

that of its largest component yet whose effective speed approaches that of

its fastest component.

10

In such multi-level memories a process may reference only pages

residing in the primary (level 0) memory. Referencing a page not

allocated a page frame at the lowest level results in a page fault, an

event which causes the necessary operating system mechanisms to be invoked

to allocate a level 0 page frame to the page and cause the page to be read

into that page frame. The operating system modules and the data bases

these modules use to perform this task are called the paging system, or

page control. Page control is a resource manager; page frames being the

resource page control manages.

1.3 Paging Systems as Processes

There are many alternative methods for organizing and implementing

the paging system functions. The most widely used is to have the user

process itself perform the necessary memory management functions when

needed, just as with any other system call. That is, the code that

carries out the necessary operations to allocate page frames is executed

in the user's address space just like a user program.

This thesis will examine several ways for organizing paging systems

as processes. The paging system can be broken down into several

activities, for example, removing pages from primary memory when it

becomes full to make room for other pages. In such a system, each

activity of the paging system can be made a separate process, with its own

address space. Thus the paging system becomes a set of cooperating

sequential processes, running in parallel and asynchronously. Such

11

•

systems will be called 11.ulti-procees paging ayetema,, and this thesis will

argue that sucb systems offer significant adv.atagea in ltimplicity,

modularity, security and expaadability over more cc>n'V'e~tional designs.

The work df.lscribed in this tlteaia c:i·ff..-a ·&oa a multiple process

paging systea proposed by Hoare [Ho7l] in the nualbt!t" of processes used and

the function assigned to each. ~he aodal developed by Saxena and ~redt

[Sa75] is closer to t.ilat is d4Jscdbed here. llowevet-:··saxena and Bredt use
a multi-level paging syftea that distinpishea· WNn"' PAii! faults from page

faults caused by system processes, a .distincU.en found unnecessary in the

design presented in Chapter 3. These differences and similarities are

considered in more detail in section 3.3.

1.4 S~ry of Thesis

The relllainder of this thesis will elC8tae· 'the desi-gn and ·

implementation of paging systems for a lal'ga- dOlaputer utility as several

cooperatins proceases. The "1ltics systea'Wii'l be ueed as a model of such

a computer utility. Multics was chosen because it is typical of l~rge,

sophisticated t.ime shared systes and inc()$rato l>otb of the

prerequisite id•s already mentioned: a tltllti-level',,eemand paged memory,

and processes. Therefore the basic concept•·are already present and need

not be added.

Currently a major research effort is being; ude to enginl!er a

security kernel for Multics {Sc75). Redeeignlng the pagihg system

contributes to the certification of such a~kernel by reducing bo~h the

12

. ·- ~:...,·:., ;j~ ' .•. -

size and complexity of the code that must be verified. The original

impetus for the work described in this thesis was the need, for simplifying

kernel mechanisms such as paging.

Chapter 2 discusses the basics of paging systems in detail. The

objects page control uses to implement a large demand paged virtual memory

are examined. Functions which the paging system must provide to the rest

of the operating system are listed and discussed.

In Chapter 3 paging systems are classed into three groups based an

their organization. User process paging systems, illustrated by Multics,

are those where the paging functions are performed in the user's process.

System process paging systems utilize special system processes to

implement the paging functions. Combination paging systems, using

features of both of the other two types, include designs appearing in the

literature due to Hoare [Ho73] and Saxena and Bredt [Sa75]. The author's

design for a combination multi-process paging system in presented, in

which memory allocation is performed in the user's process but other page

control functions are done in system processes. The significant

advantages of both types of multi-process paging systems are considered at

some length.

A test implementation of the design on the Multics system is

presented in Chapter 4, concentrating on the difficulties arising in an

actual implementation and the insights gained from such an effort. The

results of this test implementation are compared with the current

implementation to see how well the goals of a multi-process implementation

can be realized.

Techniques for exploiting fully the parallelism available in a

13

multi-process paging system by eliminating global locking strategies are

examined in Chapter 5.

Chapter 6 concludes the thesis by summarizing the important results

and drawing some final conclusions and observations.

The three appendices present additional information on the

implemented multi-process page control described in Chapter 4. Appendix A

compares the design to the standard Multics page control. Appendix B

lists the components of the implemented design, and Appendix C contains

some of the actual PL/l code from important portions of the design.

14

CHAPTER 2

Basic Objects and Functions of Paging Systems

In Chapter l. the paging system, or page control, was loosely defined

to be those procedures and data bases necessary to resolve page faults and

provide the memory allocation task. This chapter will focus on exactly

what functions and services page control,'f~Jift provide to the rest of the

system and what objects page control must impleme~t in providing these

functions. Such a description will help suggest how the parts of page

control can best be divided along functional lines into several proceBSes.

Figure 2.1 illustrates the model of a memory system that will be

assumed in the remainder of this thesis. The memory system is a

hierarchical, multi-level memory consisting of three levels: 1. Primary
/

memory, in which any data referenced by a processor must reside. 2. The

paging device, or backing store (which need not be a single device) which

acts as a large, high speed buffer between pr~ry and secondary memory.

3. Secondary storage, which provides long term storage of data and

programs. For exampl~, in such a system pr.illlary meaory is often high

speed core memory; the paging device is often a drum (or a bulk store

device in the case of Multics); and disks and perhaps tape normally

15

Primary
level 1

Memory

i
I
I
I

Paging
level 2

Device

i
I
I
I

Secondary
level 3

Storage

Figure 2.1

Model of a multi-level hierarchical memory system

16

provide secondary storage,

While the model shown incorporates three levels of memory, more or

fewer are possible. The actual number of levels should not be crucial in

a well designed system. Indeed, the design presented in Chapter 3 will be

seen to adapt easily to a multi-level memory with any number of levels.

Pages are moved from level to level by the paging system, It is

assumed that a page may reside in any or all levels of the memory at any

given time; however only one copy of the page may exist in each level.

If multiple copies of a page do exist in the memory hierarchy, they may

not all be identical. The most up to date version of a page will be the

copy in primary memory (if there is one), then the paging device copy (if

there is one).

2.1 Page Control Objects

There are three objects of fundamental importance to page control:

pages, the basic allocatable unit of virtual memory; page frames, the

corresponding unit of physical memory; and address translation registers,

which translate virtual addresses into absolute physical memory addresses.

2.1.1 Pages

In paged systems, the address space of a process is divided into

units called pages, or sometimes virtual pages. A page is an abstraction

of a portion of a process's address space, a set of consecutive virtual

17

addresses (hence the term "virtual page"). ProcedM'etf and data are both

brokn into paaa•. a:lthoustt tthis 41.vilftff :idc~:pa~ "is i:avlatltle to ehe

progr-.r.

The nut1ber of coneecutive virtual Hiclr•••· Uocttions) in 4 page ts

the page ei.ze. 'nte f>age size is tY'Pieally 'ltxeiick•t 'a po•it 'of tVIO', 'attd

generally ranges fl:C'Jln Uf) to 4i096'. 'ftle pwge ·ei·Ze ·ilt ·usually deteNined

by characteri«ic• of the haNwlt~e :In ordef':toii.,.~ }N#!onaa&c·e of

refe~wnc..

''

2.1.2 Page Frames

The physical cot.mterpart of a page is a page f'IMallf..i Juat a• the

address space of a process is divided into pages, the physical memory in

the s.y.sew· ie broken into pap 'frailea:. · '~'l>&&e f~ Is A' coh~uOU'lt irrea

of fixed sitze in some physical' 8"!Blory device. · BaCh page ·frame: ciut store a

number of b·its of: infbl'llation,. •Idly t:he. ._e!~~. <if.· b>i!t!ila: 49 in a page

Page frames are the raw memory resource of the system. The number of

page frames is strictly limited by the capacities of the various devices

in the memory system. Of ten it is useful to distinguish among the page

frames of each level, hence the terms "paging device page fr .. e" or "core

page frame" may be used.

Memory allocation is done by assigning page frames to hold the pages
.. ;--.'·.

18

needed by a process. A process may only reference pages which reside in a

prima-ry memory page frame. Since the maher1.of pr~J1Ulllory.page £:rues

is quite small (on the order of hundreds) while the n\JUlber of pages the.

processes in the system can addt.ess is much larger (by at least an order

of magnitude) only a fraction of the pages can be in main memory at any

time. The purpose of the paging system is to multiplex the page frames

among the pages to give the appearance of a much larger primary memory.
' .. :

The paging system must keep track of the ·status of each page frame,

whether allocated or available, at each level of the memory under its
•,"'·

control. While there are many ways to organize the required information,

we assume lists are used. There is nothing fundamental about using a list

structure for this purpose, the choice is largely for convenience. Thus

we assume that page control maintains two lists of page frames for each

level of memory it manages (primary or core memory, and the paging device

-- secondary storage is assumed to be managed by the file system, see

section 2.1.4.). These lists are a "used list" containing those page

'
frames currently allocated, and a "free list" consisting of those page

frames not currently allocated. We further identify each list by its

level, hence there will be a "core used list" and a "core free list", and

corresponding paging device free and used lists. Note page control may

want to keep certain information about the page frames on these various

lists. For example, for every frame on the core used list, page control

will want to record the identity of the page using that frame. We assume

the page frames in a list may be ordered in an arbitrary manner. (For

example, the lists might be structured as linked lists.) The reason for

wishing to order the lists is made clear in section 2.2.2.

19

Theae four U.au, along with the page tablae described in the next:

section, are tbe fundaaental clatao beaes of page conu-.l~ .f~~ they: defille

the state of the meaory.

2.1.3 Address Translation Registers

Since processes make references to virtual addresses of the form

(page, word) while the physical processors executing the instructions of

the process must reference real memory using phyaical addressee, there

must be a mechanism for translating virtual addresses (references to

virtual pages) to physical addresses (references to page frames). This is

done by associating with each virtual page an address translation

register. The address translation register contains the address at which
,,,

the contents of the virtual page may be found (i.e. the absolute address

of the page frame bound to the page). All references to pages are made
., ;- i

through the address translation registers. If the page has not been

allocated a page frame a special tag indicates the fact and causes a

special hardware fault when a reference is ••de to the address translation

register.

The address translation registers for all the pages in the address

space of a process may be collected together into a page table. Typically

the virtual pages in the address space are identified by a number: O,· 1,

••• , n. The page table then is an array of address translation registers;

the i.!h, page table entry is the address translation register for virtual

page i. Because the address translation registers are grouped into a page

20

table, they are often also called page table words, since each is

essentially a word in the page table. Hence we will use the term page

table word to refer to these page address translation registers (and to

distinguish them from address translation registers used for segments; see

the following section). The page table may be contained in special

hardware registers, or reside in memory as any other data. Of course, the

physical processor must know the physical address of the page table. If

the page table is maintained in memory, a special register, the page table

base register, indicates where. This translation mechanism for paging is

illustrated in Figure 2.2.

Besides containing the physical address of the page, the page table

word Qften contains some additional items, such as whether the page has

been referenced recently or modified. The reason for recording these

facts is usually to provide information to various page control

algorithms. More will be said about the function of such additional

information below.

2.1.4 Segments and the File system

At this point a brief digression is in order. Although this thesis

is concerned with paging systems and deals with pages as the basic

component of a process's address space, it is necessary to also consider a

higher level organization of the address space, namely segmentation.

Segmentation has a profound influence on a paged system.

Until now the address space of a process has been treated as strictly

21

i
I
I

n

I
I
t

Page Table
Base Register

Page i

Word n,
Page i

Figure 2.2

Page Table

Translation of virtual address page i, word n

22

i
I

i

I
I
t
Word i

linear, a one dimensional array of words. In Multics and other segmented

systems this is not the case. The address space in a segmented system is

two dimensional, containing 11tultiple segments, each of which is itself a

linear address space. Thua-~ virtual address in a segmented system

consists of a segment number and a word nU.ber (of~.t) .. within the

segment. Each segment is paged, so the offset witb1.a ·the ••~t is in

two par ts, as before: a page number and a word within tbe. page.

Instead of having a single page table, the address space of the

process is now defined by a page table for each segment. There' must be a

page table base register foJ: each page table.; ... :thaae .will be called

segment descriptor words ana collected into a descriptor segmen~. The j£!!.

segment descriptor word contains the ab80lute addr ... of.-tba.pa&e table

for segment j. The descriptor segment of a process completely defines the

address space of the process. The physical processor executing the

instructions of the process must know the location of the descriptor

segment for that process. A register called the descriptor segment base

register is used for this purpose. The translation of a virtual address
·•

in a segmented, paged memor;y-. is shown in Pigure 2.3.

Segments tll8Y be shared, i.e. in the address .apace of aore than one

process. In this case there will be a segment descriptor word for the

shared segment in the descriptor segment of each pfocess sharing the

segment. These segment descriptor words will all point to the same page

table.

While the paging system bears the responsibility for maintaining the

page table words, the job of assigning a page table to a segment will be

assigned to a different module, the segment aadager. Since the nUlllber of

23

Descriptor Segment

i
I
I

j

I
I
t

i
I

n

I
t

Segment j,
Page i

Word n,
Page i

Figure 2.3

Descriptor Segment
Base Register

Segment j's
Page Table

Virtual address translation with segmentation

24

i
I

i

I
I
t
Word i

segments in a process's address space is unlimited for most practical

purposes, a page table cannot be given to every segment. Instead, the

available page tables are multiplexed, just as page frames are multiplexed

among a large nmnber of virtual pages. That is, segmentation implies

dynamic page table word allocation. Allocation of page tables to segments

is a task very similar to allocating page frames to pages. This job is

performed by the segment manager and will not be discussed further here.

Activating a segment (corresponding roughly to opening a file in many

systems) results in the segment being assigned a page table.

The paging system can deal only with segments that are active, i.e.

have page tables. Deactivated segments, those not assigned page tables,

are manipulated by the segment manager and the file system.

Thus the page tables, though indispensable to the paging system, are

not completely implemented by the paging system. Rather the task is

shared with the segment manager (or segment control, as it is often

called). And although segments per se are not really page control

objects, page control is aware of their existence and has some knowledge

of their implementation. As a consequence, there is interaction between

segment control and page control. This interaction is undesirable as it

complicates both segment control and page control, and we would like to

minimize the interface between segment control and page control. This

interface will be examined in detail at a later time. (1)

Similarly, page control interacts with the file system and knows

(1) Research in progress at the Computer Systems Research Division is
attempting to eliminate from page control this knowledge of segment control
and the implementation of segments.

25

about the file system's organization. Such knowledge complicates page

control, and minimizing the influence of the file system on page control

is highly desirable. By the file system we mean the operating system

modules which manage the permanent storage of segments on secondary

memory. The file system is responsible for knowing where a segment is

stored in secondary memory so that the paging system may bring the

segment's pages into primary memory when needed. Secondary storage page

frames, or "records", are allocated to segments by the file system when

the segment is created. Thus, the file system must remember the location

of each page, and a "file map" analogous to a page table is kept for each

segment to retain this information. The file map itself can be stored in

the file system.

The structure of the file system may vary widely; however we will not

be concerned here with the specific organization. The file system may be

hierarchical as in Multics or flat (one-level).

2.2 Page Control Functions

Having examined the basic objects the paging system manipulates we

turn to the operations that page control must perform on these objects.

The most important job of page control is allocating memory, that is,

assigning free page frames to hold pages. When all available memory has

been allocated, memory deallocatio~ must occur to enable reuse of page

frames. Memory deallocation removes pages from page frames thereby

freeing the page frame for further use. Note that in a multi-level memory

26

system a page aay be allocated.memory in one, •~vera~ •. or none of the

levels.

Hence the two major functiops of page .,oa.trol a.re;

1. Memory allocation

2. ~-~ry de4llocation

Two ~tber minor fMonctioa• t\l.at a p~g:l.IJ& •YiJt~Jt. ..,ay optipnaJly prov.ic;le ·

are:

1. Reconfiguration

2. Wiring or Locking

'
2.2.1 Memory Allocation

Memory allocation is the primary task of the paging s'ystem~ ··Recall

that a processor may only referen~e pages ~ich are'ail~at~d.main memory

page frames. A reference to a page not all~at~d· ·a ~':..in 11e1nory page fram~
~ > • .~ • ".,,; .:·., t • '

causes a page fault. Assuming a free list is' kept, as mentioned in

section 2 .1. 2, the steps involved in allocating ~ei.ory anif thereby

resolving the page fault are the following:

1. A reference is made to the page, who• page table word. contains a

special tag, causing a hardware fault which re~uit~'' i~ the invocation of

the paging system's main memory allocator.

2. A free page frame is obtained from the core free list.

" 3. The identities of the page to be read in an4 the frame the page is

read from are saved in the collection of informatio~ associated with the

27

,. • ~. ~·_,- I

main memory page· frame. (This ittformatiOTI f:s needed vhen deiilloeatton

occurs.)

4. A read operation is perfottaed te eepy the contettta·~f·tl\e page

into the main memory page frame.

5. The absolute address of the page frame is plaeei in the page's

must remain until the read operation is completed.)

Control may now be returned to the proceea that·1aae·the reference to

the page.

An illlportant complication· arieeil iit''a HltiPftedtet.ng1~-.t~t

with sharing. Care must be taken so that while the sequence of steps

described above is in progress, other processes sharing the, page are
J).

prohibited from repeating the steps. That is, two processes may not

allocate page frames for the same page simultaneously. This would lead to
; ·r ..

several possibly inconsistent copies of the same page. There must be some
,:~ _·,·.:_~·;..:~~.;_} . .~·

inhibiting mechanism which preven~s a process from beginning the

allocation procedure for a page if some other process has.already started

the allocation algorithm for that page.

There are many ways of implementing such a mechanism. One is to

permit only a single page to be involved in the allocation procedure at . ~ . '

any given moment. For example, the allocation code could employ a lock,
-,', -,,:_ J I

·«

which any process executing the allocation algorithm must set. Since

there may be a considerable delay involved during the read operation, this

scheme may .result in an impractically inefficient paging system. A per

page mechanism, rather than a global mechanism which inhibits all
.I i ' . ~'

allocation, seems desirable. There is much more to be said on this topic;

28

the mechanism used to prevent multiple allocations for a single page is

very influential in determining the efficiency of the overall page control

design. A closer examination of this issue is postponed until Chapter 5.

Memory allocation must be performed at each level in the memory

system. Thus memory allocation must also occur for the paging device.

The only difference from main memory allocation is the manner in which

allocation is initiated. Main memory allocation takes place in response

to a page fault; paging device memory allocation is done in response to

an explicit request made by the main memory deallocation algorithm as

explained in the next section. Otherwise, the steps in allocating paging

device memory to a page are identical to those for allocating main memory:

1. A request is made to the paging device allocator for a paging

device page frame.

2. A free paging device page frame is chosen from·the paging device

free list.

3. The identity of the page is stored in the collection of

information associated with the paging device page frame.

4. The contents of the page are copied into the page frame.

5. If the page has a main memory page frame allocated, the identity

of the paging device page frame is saved in the information associated

with the main memory page frame, and vice versa (see Figure 2.4).

Otherwise, the identity of the paging device page frame is placed in the

page's page table word so that when a fault occurs the location of the

page on the paging device is known.

As was the case with main memory allocation, once allocation of a

paging device page frame to a page has begun, the system must insure some

29

Case 1: Unallocated page

Page Table Word
I I
I I

Case 2: Page allocated a main memory page frame

Main Metllory
Page Table Word Py4'Frae

1--~----> I I
f '<-----...;, I I

~~~ I I 
I I 
I I 
I I 

Case 3: Page allocated a paging device page frame 

Paging Device 
Page Frame Page Table Word 
I l<-------1 
I 1------->I ___ _ 
I I 
I I 
I .1 
I I 

Case 4: Page allocated both a main memory page frame 
and a paging device page f'tale 

Paging Device Main Memory 
Page Fr!!pe Page Table Word Page Ffaae 

I 1-------> I 1-------> I . . , I 
I I I l<-------1 I 
I I .. I I 
I !<-----------------~---------! I 
I 1--------------------------> I I 
I I I I 

Figure 2.4 

Allocating memory to pages 

30 



other process does not duplicate th' effort·. Th~ ...-e 1Qechanisl!l used to 

prohibit multiple main memory allocations may be employed. 

Memory allocation at the final level of the memory system is the duty 

of the file system, since the file system bears the respopsibility for 

permanent storase of sesntents. 

2.2.2 Memory Deallocation 

The second step in allocating main memory listed in the preceeding 

section is to obtain a free page frame from. the core free list. This list 

can be maintained only by deallocating main memory; i.e. reversing the 

steps of the allocation algorithm and thereby freeing page.frames. This 

operation is commonly termed "page replacement" in paged systems. Page 

replacement, or memory deallocation, is nothing more than removing pages 

from the page frames in which they reside. 

The steps taken in deallocating a main memory page frame from its 

page are SUJll11larized below: 

1. A used page frame is selected from the core used list. 

2. The page contained in the page frame (which can be determined by 

looking at the information associated with the page frame ~- see step 3 in 

the allocation procedure) is copied to some other pa·ge frame in the memory 

hierarchy (more on this shortly). 

3. The physical address of the page frame stored in the page table is 

replaced by the address of the page frame copied to in step 2, and the 

fault tag is set. 

31 

--- --- -----



4. The page frame fs added to the main ftH!tnory free list. (For 

security reasons, the contents of the page fi-ame shO'uld be cleared to all 

zeroes.) 

Several comments are necessary to expla·in these step& further. 

First, nothing has been said about how the deall0catrl'.t>n algorithm is 

started. The allocation process might note when performing step 2 that 

the free list was empty and thus issue a call to the deallocation routine. 

This has the undesirable effect of delaying the allocation. The approach 

taken in the design presented in Chapter 3 is to ~aintain the free list at 

some minimum size; whenever the supply of free page frames is depleted 

below the system determined limit, deallocation begins until the free list 

is sufficiently replenished. There is, of cour·se, a· significant tradeoff 

involved here: time spent in allocating memory versus effective memory 

utilization. Page frames on the free list represent unused physical 

memory. It is possible to utilize memory completely by allowing the free 

list to become or remain empty. But then allocating memory is slowed due 

to the necessity of first deallocating some other page frame so that a 

page frame is free. Although a delay in allocating memory to any one 

process should not lower throughput in a multiprogrammed system, two costs 

are involved: a process that presumably already has pages in memory is 

prevented from running, and response time for any one process is 

lengthened. 

Second, nothing has been said about the criteria to be used in 

choosing from the used list the page frame that is to be replaced. The 

method for making this decision is commonly called the "page replacement 

algorithm" and usually involves usage characteristics of the page 

32 



contained in each page frame. For example, the First in, First out (FIFO) 

page replacement strategy chooses whichever page frame has been allocated 

to a page for the longest time. Note this implies it is possible to order 

the page frames by the length of time they have been allocated. One way 

to do this alluded to earlier is to maintain the used list as a linked 

list of page frames; the head of the list: being the page frame in use for 

the longest period of time. Newly allocated page frames are added at the 

end of the list. We will not be concerned with the details of specific 

page replacement algorithms; the discussion of paging systems here is 

intended to be general enough to permit almost any page replacement 

algorithm. It is worth noting however that some algorithms require 

special information be kept on each page. For example, a "used'' 'bit is 

often associated with each page. This bit is setc by the hardware when a 

reference is made to the page. The replacement algorithm may examine the 

bit, and reset the bit, in deciding what page should be deallocated. The 

details of one such scheme are given by Corbato [Co69]. 

A third comment with respect to meiaory deallocation pertains to 

copying the contents of the page to some other page frame in the 

hierarchy. There are two points of interest: what other page frame to 

use, and when the copying is necessary. 

The question of where the page is to go when ejected from main memory 

is answered by looking in the data associated with the page frame. Recall 

that step 3 of the main memory allocation algorithm given above remellbers 

the page frame a page is read from when allocated main memory. If the 

page was read fr0m a paging device page fr8'11e, it may be written back to 

that same frame by an appropriate output routine. Otherwise, the page was 

33 



read from disk. and the pag:i.ng device me11ory allocation mechanism is 

invoked (as 4iscuased in the previous section) to obtain a paging device 

page frame to allocate to the page and ·Hrve as the ~tin•tion of t.he 

page. Under certain circumstances, or iE ttle ·p..a·Ut& eevice itself is not 

part of the current memory configuratioa, the il&ae's conteats may instead 

be returned to their permanent file system location.. 

The copying ia aecessa.ry o.nly under ,two circ•&taaces.: l. The page 

has not yet been written into the paging davice pa1e frame. 2. The page 

has been altered by a write operation, and hence.the ¢-opy in main memory 

differs fr011t the paging cl~vice copy. The first si.tuation dB readily 

recognized; to aid in detecting the sec.and si,tqa;tion many -paged systems 

include special hardware which associates ,a ''modlif:led" bit with each page. 

This is similar to the used bit mentioned in conjunction With page 

replace11ent, but the modified bit is set. only ·'lhen a wwite .. reference is 

made to the page, e.g. a store instruction. 'Ibis bit is examined by the 

deallocation algorithm; if it has been set .then the page has been mod.ifi.ed 

while in main memory and must be copied. 

Deallocation of paging device memory. is analogous. The steps 

involved are as listed abov~ for dealLoc:atin& a paae frame from its page. 

The comments apply equally well with only the foll.owing alterations: 

Utilization of memory on the paging de:,rice is less- criUcal than with 

main memory. This is because there is assumed to be a much larger amount 

of memory on the paging device. Hence.paging device pagefraaes are a 

less critical resource; therefore it is feasible to maintain a larger. 

number of page frames on the paging device fr~ l~at than,ntf;ght be the 

case for main memory. 

34 



Ueed and modified flags may also be aeeotttated with each paging 

device page frame. The used flag may provide information to the paging 

device page replacement algorithm for deteruiaing which paging·device page 

frame should next be deallocated. The modified flag determine• when 

copying the contents of a page 18 necessary at deallocatibn time. 

2.2.3 Memory Reconfiguration 

The memory configuration is defined by the page frau• available to 

page control for allocation. Memory reconfiguration conai•ts.of 

dynamically adding or reaovingpage'fraaes to the supply available to·page 

control. To add memory to the system dynamically, the page fraaee of the 

memory unit must be added to the p0ol of page· frames controlled by the 

paging system. The inverse opera~ion of remov·ing memory is slightly more 

complex. The page frames of the device being remo-ted must be fteed before 

they may be removed from the memory configuration. 

8.econfiguration is not, strictly speaking·•' a page control function. 

It is included here because page control must cooperal:e inreconfi3uring 

memory, and any paging system should be desi&ned with •n awateness of the 

problems of reconfiguration. Thus to aaaiet ia· i'eaoving memory. a 

removing flag might be'aasociated with each page ftae. Thia flag ii 

turned on by the reconfiguration algorithm. The allocaU.on·algc:>rithm 

should be designed· to ignore any page f~ames on the free lis't with tbe 

removing flag on. This prevertts alloeattng to a page a page frame that 

will only have to be deallocated shortly. 

35 

----------



Newly added memory may be trea~ed simply as free page frames and 

added to the free list fo.r future use. Scbell ISc7 l l provtd~s an 

extensive examination of dynaaic reconUa~ation.. The desire to perfonL 

dynamic reconfiguration can com.plicate other page eootrol fuctioo.s 

severely, as the next section will 4-onatl'•te" 

2.2.4 Memory Wiring 

A useful function for the paging system. to .. p.-pvi~e is that of 

"wiring" or "locking" meaory. A "wired" page is·a1JJP1J a page that must 

always be allocated a page fJ;'qe, thereby aJ;wayerc-.ining referenceable 

by a physical processor. There is a s•cond. more re,tricteC,,t type of 

wiring which will be called "absolute wiring"; aa ~~4b6olute wired" (or 

"abs wired") page not only must he alloq.ated a p4ge fr~e at all tiaes, 

but the saae page frame at all times. This means c}ia~ the absolute 

physical address of the page will not be challged. 

Some system functions must be wired, at least in part, in order to 

operate properly. The pages of page control and .page control's data bases 

are an excellent example of this. In order to a~oid ~Jl·11lfin~te recursive 

loop of repeatedly taking page fault.s while bandli•&: a. p•ge feult, at 

least a portion of page control's procedures and dua .. aust: be wired. 

Absolute wi:r:ing is necess.ary only if abse.l.u.~e ,physical addresses are 

used by parts of the system. The .most UJtely place for this to occur is 

in the input/output programs. Channel or i/o,pz;:<?gril,iat•·may require 

absolute memory addresses; if this is the ca•e pages used as buffers for 

36 



doing i/o to terminals, etc., once allocated a particular page frame, must 

remain there. The only alternative, to somehow keep 'track of all the 

instructions that use the absolute address and alter :theae instructions 

every time the page is allocated a different page frame, is generally 

impr ac tic al • 

Providing for wired pages is fairly straigbtfo~11:&rd. An additional 

flag may be associated with each-page frame. When acpag• mqst be wired, 

it is allocated a page frame and the wired flag is turned on, indicating 

the page frame may not be deallocated. ln searching ·for.'& page frame to 

replace, the replacement algorithm must ski\), over an}l° .page frame ·whose 

wired flag is on. A page may be unwired at any time if it no longer must 

remain referenceable, by merely -turning off t• wired flag. 

Absolute wiring may be provided in a simi:lar faahion. An e:x;tra 

complication arises if in se~ting up a buffer ·a :.ccmtigliGus area of memory 

greater than the size of a page is required. In such a case the paging 

system must contrive to allocate some number of page frames which have 

consecutive absolute physical addresses. It may not always be possible to 

guarantee this can be accomplished. 

The chief difficulties involved in both wiring and abs wiring virtual 

pages are due to two sources: sharing of virtual pages, and 

reconfiguration. Since the same virtual page may be in the address space 

of several processes, two or more processes may desire that a particluar 

page be wired. In such a case, a simple flag is in•dequate; a counter of 

the number of processes wiring the page is needed instead. Where security 

is an issue, additional mechanisms are needed to insure pages may be 

unwired only by a process that previously wired them. 

37 



Reconfiguration poses a more difficult problem. Adding memory, of 

course, presents no difficulty. But consider wnat happens if an attempt 

is made to remove from the memory configuration page -frames whttlt h:a11e 

been wired or absolute wired. The reconfiguE'ation must fail if an 

absolute wired page is encountered, for by definition its physical address 

cannot be changed. Sira}lle wired pages can be bandied, though not without 

some awk.vardness. Remember a wired page 11ust· remadlu refe.renceable 

(allocated a page frame) at all times. '!bus the page may be moved by 

allocating a new page fr8llle, copying tha c1Jtltenta of the page into that 

new page frame (meanwhile the .page is still allocated the pag-e frame being 

deconfigured), and then replacing the address in the page table word of 

the page with the physieal address of the new page fratne. Additional 

complications occur if the virtual page is modified during the copy 

operation. This problem is discussed fully by ~Schell [Sc71}. 

2.3 Summary 

The job of page control is to implement a large virtual memory for 

processes by multiplexing the limited amount of physical memory. Page 

control deals with four objects: Pages are the basic unit of a process's 

address space. Page frames are the basic unit of allocatable physical 

memory. Page table words are used to map pages into page frames by 

translating virtual addresses referenced by processes into absolute 

physical addresses usable by hardware processors. Segments are logical 

units of information, either programs or data, consisting of one or more 

38 



virtual pages. Each segJD.ent has a page table containing all the page 

table words for the virtual pages of the segment. 

The chief functions of a paging system were seen to be memory 

allocation (assigning a page frame to hold the contents of a referenced 

page) and memory deallocation (removing the contents of a page from a page 

frame, freeing the page frame for allocation). Other functions related to 

page control discussed were memory reconfiguration (changing the pool of 

page frames available to page control), and memory wiring (prohibiting the 

breaking of~ page fraae-paae binding). 

39 



CHAPTER 3 

Designs for Paging Systems 

Now that the underlying cottcepts of,pati'ftk syateut& hav• been 

introduced and the functions required of auch systems examined, we turn to 

the question of ho• to structure a pagift8 system for a large computer 

utility. The Multics system lri.11 be ttsed as the basis for the general 

computer system model for which su~h a design is intended. 

Contemporary paging systems such as the Multics page control have not 

been implemented taking full advantage of the process concept even though 

the operating system itself implements and makes extensive use of 

processes. Rather each user process performs the functions of page 

control, using shared supervisor code and data. 

The first part of this chapter will present a method for classifying 

paging systems based on whether user or system processes implement the 

paging system. Multics will be used as an example of a paging system 

where the paging functions are performed by the user's own process. A 

simple change to convert the Multics design to one using a system process 

to perform the page control operations is then considered. Next a design 

splitting the paging functions among several processes is presented. This 

design was actually implemented and tested on the Multics system. 

40 



(Chapter 4 diScusses the details of· this i111plemen.tation.) Two other 

similar designs appearing in the literature are contrasted to .the pt:'oposed 

design. The advantages of these multi-process paging sy•tiUDB are 

demonstrated by comparisons with the curreat•Multics page control. 

3.1 Paging System Structures 

We will divide paging systems into three broad categories depending 

upon the answer to the following question: Where, i.e. in what process, 

are the paging functions performed? The categories are: 

1. User-process paging systems, in which the page control functions 

described in Chapter 2 are performed by the users' processes. 

2. System-process paging systems, utilizing special system pr9cesses 

whose exclusive job is to carry out page control operations exclusively. 

3. Combination paging systems, where some page control operations are 

done in the users' processes, others by system processes. 

A further division of paging systems can be made based on how many 

processes implement the paging system. (Clearly this is not meaningful 

for user process paging systems, since all the processes in such a system 

implement the paging functions.) Thus we might consider system process 

paging systems or combination paging systems utilizing only a single 

system process as opposed to multiple processes. As will be seen, 

however, the advantages of multiple processes are so compelling that once 

the concept of using a system process to perform paging functions is 

accepted, multiple processes seem a natural and obvious extension. 

41 



page fault contention. 

By date base contention we meQ t~ Q.terference caused by two or 
·'' '\; 

more processes attempti~g to acce.1$ a c~ ~at& base simultaneously. 

Hence data base contention ie a di~•ct CC>At$q.ueoce of multi-processing. 

Data base contention is only a probleia, of co~ae, wh~n the data base may 

be written as well as read. When (l proceae uy alter a data base, unless 

all alterations can be performed in a sµa.ale, uninterruptible operation, 
:".; .. , 

there is the danger that another J)cr.ocf!Sf qy fi.Dd the data base in an 

inconsistent or outdated state. fbia is n()t a probl• unique to paging 
r ..,.-·.. ". 

systems, arising here due to the fact a central accounting of all memory 

resources must be kept by page control. As a simple but important 

example, if two processes wish to obtain free page frames simultaneously, 

the paging system must insure the same page fraae is not allocated to 

both. 
,, 

Thus we wish to know what mechanisms the paging system design offers 
i. 

to provide exclusive access to essential da.ta bases. Ideally the 
.t y 

mechanism should be easy to understand and use as well as guaranteeing 

data base integrity and prevention of system deadlock. Usually some form 

of semaphore or lock is involved. 

Page fault contention, or more simply page contention, is caused by 
··i?. ' .. : 

the sharing of information among users in a multi-processing environment. 

When users share information, the pages containing that information are in 

42 



the address space of each user's process, and may be faulted on by any 

referencing process. If users were not alloife,d to ~re pages,., e.g. if 

users executing the same program were always given their own copy of the 

program, page contention would be non-existent. By page contention, we 
f., 

mean the problem already mentioned in section 2.2.1. That is, two 

processes may not be allowed to allocate a page frame to the same page 

simultaneously, or multiple copies of the page in primary memory may 

result. 

In some sense page contention is really data base contention in a 

different guise, for after all a page may be considered a data base. We 

differentiate between page contention and data base contention because 

separate mechanisms are normally employed to resolve each. ~ile 

conceivably careful data base design can minimi~e data base contention, 

page contention can not be avoided as long as the time required to read or 

write a page between memory levels is long relative to instruction speeds. 

The following sections present several designs for paging systeas. 

Attention will be given to the techniques inherent to each for dealing 

with page contention and data base contention. 

3.2 Multics' User Pro~esa Page Control 

We begin our investigation of paging sy&t8,fl de~~ ,O.th a typical, 

conteaporary paging sy•tem, naaely the Mul,tics pa,g~ C,~'Qtrol (as it existed 

in fall, 1975). The procedures of Multics. p.ag~ con~rp~ execute in. the 

users' processes, qualifying it as a user pro.~eaa p_.g~~ _.syst• under t~e 

43 



definiticm of ·Ube previous nct!t&n. 

3.2.1 The Current Multics Page Control 

A process taking a page fault in the Multics system begins all the 

required paging functions at the time of the fault. Thus allocation and 

deallocation of page frames in both levels of-the memory must be done at 

page fault time. The complexity that this results in is well illustrated 

by Figure 3.1, which represents diagrammatically the Multics page control. 

The diagram is necessarily at a rather high level, omitting much detail. 

The boxes represent program modules (procedures) carrying out specified 

functions; the solid arrows depict procedure calls and the dashed arrows 

indicate inter~roceas messages. The followtns earagraphs describe the 

sequence of events represented by Figure 3.1 happening after a page fault. 

When the page fault code is invoked, the first thing done is to run 

the paging device page removal algorithm, as depicted by the call to the 

routine labeled "get free pd record" in Figure 3.1. This procedure checks 

to see if there are ten free paging device page frames. If there are less 

than ten, enough paging device page fr8Jltes are aelC!te'd,' oe:~t a time, to 

increase the number to ten, and the necessary 1/o to remove their pages 

from the paging device ts begun. 

At this point two complications arise~ The fit'St is- ·d\M! t& bar.atn1re 

limitations of the Multics system. It is not pdHible to perform read or 

write operations diretdy between the pagittg device and"the d.fsks in 

Multics, only between main memory and the paging device or between main 

44 



+:­
V'l 

Fault 

t 
I 

page fault I 
I 

i/o 
interrupt 

)_L~ _L 
----, I I I I I I 

get free 
pd records 

I I read I I page I I post I 
I I page I I wait I I I 

____ I I I I I I I l _L_ ~,__ I L 
I I I I I I ' 

start I _,,I find core I I notify I I rws I 
I I I I I I done I rws 

___ I I I I I I I 

\__ \_ I 

I I I I 
1

1 

I read I I write I 
I I I page I 

I I ) L/ 
allocate 

pd record 

I I 
I write I 
I I 
I I 

I 

Figure 3.1 -- Multics page control 



memory and the disks. Thus, the operation of writing a page from the 

paging device to the disks must be done in two steps: first a read 

operation, reading the page from the paging device to main memory; second, 

a write operation, writing the page from main memory to disk. This two 

step operation, a read followed by a write, is called a "read write 

sequence", or "rws". Note that performing a read write sequence requires 

a free main memory page frame. This is indicated in the diagram by the 

call made by the module "start rws" to the "find core" routine. 

The second complication results from the relatively long time 

required to perform a read or write operation on a page. To require that 

the faulting process wait until the i/o operations it may start as part of 

read write sequences are completed would intolerably delay the faulting 

process, causing poor response. Thus the i/o necessary to evict pages 

from the paging device is not waited on, but only started. When the 

completion of this i/o is signalled via a hardware interrupt, whatever 

process is currently executing must deal with the interrupt. Thus the 

task of deallocating paging device page frames, though begun by the 

process taking the page fault, is finished by whichever process happens to 

be running at the completion of the disk write operation. 

Returning to the discussion of Figure 3.1, we are now ready to 

resolve the page fault by calling the procedure named "read page", which 

must first allocate main memory space. This is done by a call to "find 

core" which is the main memory page replacement algorithm. When a free 

page frame has been created by evicting a page, it is returned to read 

page, which then may start a read operation to copy the contents of the 

faulted-on page into main memory. The faulting process must then wait 

46 



until the read b completed, as indicated by .the call to the procedure 

"page wa!,t". The completion is signalled via a hardware interrupt, which 

is converted to a software aotify. 

Multics uses a single semapbor~, called tQe global page table lock, 

to solve the data base contention probl•m·. This loc~ must be set by a 

process before it may begin pro,ceasing a pa,ge fault. The lock h rehased 

just before the process blocks itself by calling ~'page wait". In between 

these times, another process attempting to resolve a,page fault must.wait 

until the lock is released. 

Waiting on the lock is done by repeat~dly trying to set the lock 

until one succeeds in doing so. This "busy" waiting has two major 

implications: 1. A process may not block itself, giving up the processor, 

while it has the page table lock set. If this were done, all page control 

functions would be prevented until the process were awakened and run 

again. 2. For efficiency reasons, the time spent with the lock set should 

be minimized, as this in turn minimizes the interference among processes 

due to the lock which results in wasted processor time~ 

Measurements show that when running the standard Multics system in a 

configuration with two processors, under a moderate to heavy lilad the 

processor time spent looping while waiting to lock the glob~l page table 

lock can amount to 10% of the total system processor time. In certain 

extreme conditions this overhead can go as high as 20%.· This effect would 

be even worse in a system with three or more processors. Hence the global 

locking strategy can have a severe impact on system performance. (1) 

(1) A recent experiment has shown that abandoning.
1

tG~ ',"ro,cessor rather than 

47 

---··------------



The global page table lock is not used to protect against page 

contention. To do so would prevent atty P,'?'ocees from: resolving a page 

fault until all read and write operations oaueled by a previous page fault 

had completed (including read write sequences). Instead, a per page lock 

(implemented as a bit in the page table 11at'd c;f eaeh page) is used. This 

per page lock is set whenever i/o is begurt on a paae (Which can only 

happen With the global page table lock ftt) and retilai1'lS set until the i/ o 

completes. Thus a process faulting on a ldclled pagt!, evf!!n though it gains 

control of the global page table lock, canuot start i/o to bring in the 

page (or to throw it out). The pr,oce8s ltUSt WS:it until the lock is 

released. Hence the per page lock prote<::ts th~ page while in transition. 

3.2.2 A System Process Page Control Based on Multics 

To introduce how a paging system implemented as a system process 

might work and to see some of the potential advantages of such a design, 

consider the followi,ng simple yet radical change to the design just 

described: When a page fault occurs, instead of having the user process 

execute the programs to resolve the fault, simply send a message to a 

system page control process, and wait for a return message saying the 

desired page has been bound to a page frame in main memory. Nothing else 

is changed; the algorithms described previously and illustrated by Figure 

3.1 have merely been made a separate process. Essentially what has 

looping on the lock will increase the perfonaance of a three .processor 
system. This changetllay be incorporated into the system. 

48 

.. 



happened is that a page fault has.been transfortaed fJoaa a call to. the page 

fault procedure to an interprocees mess-.ae to ~}Je p4ge contrpl px;ocess. 

There are disadvantages to this design, mainly in terms of 

efficiency. The. time J1equir•d:to resqlve • pJg,e faaj.t ia JtJcreased by the 

length of time require« to send the \le&eage ~o the pqe. 11ontrol process 

and to schedule the page control, proceaa. _ 

What do we gain? _First, the page control.-p;roc._.. b.•sits own ~drees 

space and execution poW. A separate ad4rea• .f~ce et;lf.b~ nq1ova.J. of 

all the -paaing al&orithlu and 4•~ bas~• Jr~.~ \If~' Ii\, addr.ea~ apace. 

The execution point, as we e~l .. e, all.o~ p~r~~lel•~W:iop,of the 

page control process. 

A second benefit 1•_ &\18-t'8;1l~fd- a.r:v,.~e., _ , sine~_ the ~~·~ to ti.a 

page control .process (i.e. the page_fault,a) c.xi:be ordered,_ Jll,e o:an sefve 

the page faults in .the order they occur. Th~re.,: is uotj\~3 ,,+u ~lUcs 

currently to prevent an unlucky process from always being locked out of 

the page fault handling code by competing processes who always manage to 

lock the global page table lock first. (That this act1lally e~er happens 

is a very remote possibility, but important if guaranteed service is a 

system goal.) 

A third benefit ia the elimination of the global page table lock. 

Since only a single process, the page control process, may access the 

paging system data bases, data base contention is impossible. This 

benefit seems illusory because the single process has repiaced the global 

lock, and the overall effect is the same _.:. only one page .fault may be 

'' processed at a time; in fact only one page control function may be 

performed at a time, since there is only one process (and hence one 

49 



execution point) to perf&rm tbea. lleweftl', ~eplac&q a lock.with a single 

process is not only conceptually cleuetbut allO'e&eier· to understand and 

show correct. 

The iaportant thitig her~ i• the fact that tt\e procna'b1ts an 

independent execution point as welt aa a Hp&~ate addnn sp•ce. Otlce w 

realize this fact, the question arises •s to Wl\y n6t,..41\&nse the algorithm. 

of Figurt! 3.1 to take advantage of this ueeutiott fMJind tlly tOlltiaue to 

deallocate p-age ft.es only whn renlviq * 'ate fMdU Siace the pag• 

control process \tn.ows page fr8il .. will t>e •9Meil, *Y'bbt have him execute 

the page replacnent algorithw 'bet'Weft pap faelte,·wllen·b• would 

otherwise be idle? 

'nlis coticept of alloWi.ng indeflertient parallel pt'Oceesing by· a aystem 

process perfomin'g page control functt:ons,; lead9 us d'lrec1tly to th~ 

multi-process c0&nbtnadon paging sys:tn• die\lisaed in the ·next sections. 

3.3 Multi-process Combination Paging Systems 

Expanding on the possibilities suggested by the single system process 

design presented in the preceeding section, three multi-process 

combination paging systems are examined here. In each of these, the 

necessary allocation of main memory page frames to pages is performed by 

the faulting process. Deallocation, however, is don.e by the special 

system processes. Thus these paging systems classify as combination 

paging systems as defined in section 3.1. Additionally, each design uses 

multiple processes to implement the system performed paging functions, 

5(') 



hence the term multi-process combination paging systems. 'flle.number and 

organization of the syst~m paging processes .are :~at distinguish tile three 

designs. Th.e first is due to the author and has l;>een im11lemented on 

Multics {see Chapter 4); the other two de~igns have appeared.in the 

literature. 

3.3.1 A Two Process Paging System 

In Chapter 2 it was noted that the work of the paging system can be 

described largely as allocating and deallocating page frames to and from 

pages. Allocating a page fram~ to a page is a relatively simple task that 

a process can do for itself, since there is no need for parallelism~ the 

process cannot continue until the page fault is resolved.. In demand paged 

systems, allocation is performed only upon actual reference to a page, 

because it is impossible in general to predict which pages in its address 

space a process may reference. 

Deallocating page frames (and thereby creating·free page frames) is a 

more complex task involving decision making, namely choosing the page that 

is to be replaced. Deallocation, unlike allocation, may be done at any 

time. 

In particular, page frames may be freed in advance, maintaining a 

pool of free page frames from which page frames are selected as needed. 
. . 

Replenishing the supply of free page frames may be done whenever 

convenient. The job of deallocating page frames may be assigned to a 

system process, distinct from user processes. Note this allows us to take 

51 



advantage of the parallelihl ot'f•red by a process. Ttiis} completely 

removes the page replacemetlt functto,n ftO. tlie user process. There are 

several 11111edtatel1 obv!dus advantage* to such a s'tiategy: · 1. Page faults 

may be resolved faeter, since deafiocation 18 no l!onger don~ at page fault 

time. 2. The page fault algorithll is stapler. 3. The procedures and data 

involved in doing the deallocation may be reaoved from the address space 

of the user process. These and other benf3Ji.ts of_ a~'1 ~ ;.d~t.aton will be 

discussed fully later. 

Since the meaory model aas~ed here (fig~~ ~. l):Jncorpor~~· two. 

levels of memory managed by the p~g:fng. ay~,tem, two 8?~.tU\. P.J:'OC~~a will 

be used in the multi:-process p,age COlltJ'Ol •uu••t1!d, h~e~ .,~ w!ll be 
' " ' ... ' ' ' .,,, , ~:,. .. 

assigned the ~ak of deallo~ating. pa~ f.J.'8111.es .for ~h. l~vel Jn the 

memory. The three parts of the resulting., d,aign, C~nf.Mp.g. page J4ult8 in 

the faulting process being the third) are 41-.C,lJ.BPd ,_in. t~R-,- . 
' -~ ; ' ' '! 

The ££.!:.!. Manager Process 

The special system process asstgne~L the tasJt of def)..lo~atiP.g. main 
' .. • . . 

memory page frames will be cal~ed th• core manqei;- p.f~ce••. The .. algorith111. 

followed by the CC?re manager is depicf~U~ in !'i11.1r• 3,~,., As'~ . .tong aa the 

number of free page frames in the pool available for allocation is less 

than some system determined .. value, the core .man.a..er ~~ps. deallocating 

page frames. First, the page replacement al&pritq11l ~'!, iqvok,'4 t°' decide 

which page frame is to be deallocated. No.t~ ~his ~' ~t~ictly a policy 
-,< ~ - ' . '· . . .. ' ". ' : ' 

decision. Once a page frame has b_een selected, i~ can b~ fre.e4 by ,writing 

the page out of main memory and changing.the page t;able word for the pap 

appropriately. When the write operation is completed, the newly freed 

52 



Receive 
Wake· up 

I \ 
I Is the number \ 

I of free.page frames\ 
\ less than the I 

I 
NO )I 

I 
Go 

Blocked 
\ minimum ? I '-----\ I 

YES 

Choose a page frame 
to be unbound 

Unbind the page 
frame from its page 

Add the now free 
page frame to the 

free pool 

Figure 3.2 

Algorithm of the core manager process 

53 



page frame may be made available for allocation to some process requesting 

a page frame. This sequence of atep1 aay~• repeated until the aupply of 

free page frames reaches soae 1y•tem cleter1dAed value, at 'Which tiae the 

core manager process blocks iteelf. lotice dla~'processea may be 

requesting free page frames fr• the free,yaot even wbU:e -Che core manager 

is executing. 

There llltl8t be some me.wis ef star-ting llP the cc;ire llallager process. 

One way to do this is to simply wke gp ttte,c:.,te _,ager periodically. An 

alternative strategy which adjuca to •aytq·c.ra1wla for free page frames 

is to wake up the core manatet' prfteM l!lhtllMVer the pool of free page 

frames becomes low. This requirea iaterproceu C01111tunication, for the 

process which notices the n~ of fr-. ,.,. f.r ... a is down muat wake up 

the core manager. That is, the routiue wbich'alloeat1ts free page frames 
' 

must follow the algorithm shown in Figure 3.3. If there is at least one 

free page frame, it is immediately allocated to the caller. If the 

remaining supply of free page fr~s ..ta. ua.r~ -,, •Y•te1a defined minimum, a 
' . ·' •: 

wakeup is sent to the core manager process. However,: if there 8Fe no page 

frames in the free pool, the allocation code must do one of two things: 

1. Report failure to its caller, who must. try again later, Qr 2. Block the 

calling process until the core m~aaer pr~ua .aignala that the supply has 

been increased. Of course, in either c~ee the core aaanager must be 

awakened to start replenishing the free ppol. The latter approach is 

chosen here because it results in an allocation strategy which always 

succeeds in the eyes of the caller, i.e. always returns a free page frame. 

This simplifies the code in the calling procedure. Indeed the caller will 

never know what happened, except perhaps that it took longe~· for the 

54 



START 

I \ 
I Is the pool \ 

I of free page frames \ 
\ empty ? I 
\ I 
\ I 

NO 

Chose a page frame 
from the free pool 

I \ 
I Is the nUlllber \ 

I of free page frames \ 
\ less than the I 

\ minimum ? I 
\ I 

NO 

Return selected 
· page frame t.o the 

caller 

I 
t 

END 

I 
YES . I 

>1 
I 

I 
YBS··)I 

I 

Send wakeup· to 
core manager 

I 
I 
:t 

Go blocked 

t 
:t 

Receive wakeup 

Send wakeup to 
core manager 

'---.,.----

Figure 3.3 

1------

Algorithm of the page frame allocator procedure 

55 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
·I 
I 
I 
I 
t 
I 
I 



allocating procedure to return the requested page frame. (A complication 

'' may ariae here with the use of locks; see section s.l) 

Two additional points remain tooe aade-. P'li'•t, adopting the just 

described strategy means the algorithll of Fijute 3~'? ia 1tn!·omplete. An 

; ,· i 

additional step 1uaet be inclu,ded to. •ad "'11;.,411> &_~l\4ls .to 4'1Y processes 

,that have gone blocked because the page ftaae pool ¥as empty.. Second, 

since any number of processes •ay be requelltlnj free page 'Traaes 

simultaneously, some. technique b t\eiees•af'' tC> ~~ur• a page frame is not 

allocated to two requestors. For exaple, a lock on the free pool is 

sufficient. "nle fact that several proce•aa&.Jll~ay .~ coapel:tas (or any page 
- , ' I 

frames in the free pool alsa eltplaine the loop in the algorithm of Figure 

3.3. When a process is awakened by the ct'Jre manager, there is no 

guarantee that there are still page frames in the free pool, since other 

processes may have grabbed them all. Therefore, after going blocked to 

await replenishment of the free ,P••_,-fr.-e ~. ~ al8oritha must be 

repeated from the beginning. 

The Paging Device Manager Process 
I'. ' ., 

The paging device manager process is the seco~ of the two system 

processes used to manage memory in our ll.Ulti-..pi;!)Ceas .d~•i1n. . Chapter 2 

noted the similarity of the paging device memory jothe ~ain memory, and 

that allocating and deallocating page frames must lut clone for each level 

in the multi-level memory hierarchy assumed in our model. In fact, the 

allocation and deallocation of paging device page frames is so similar to 

the allocation and deallocation of main aemory page frames that the 

algorithms to be '1Sed by the pagtn.s device, man•ae,r proce~s, ~nd the core 

56 



manager process are almost identical. Figure 3.2 describes the paging 

device manager's algorithm as well as the core manager's algorithm. The 

details need not be the same, e.g. no doubt a different policy may be in 

force for deciding which paging device page frames are to be freed, but 

the general form and structure are the same. 

In a like manner, Figure 3.3 also describes the algorithm used by the 

paging device page frame allocating procedure, except of course the wakeup 

signals would be directed to the paging device manager process rather than 

the core manager process. The parameter used to trigger the signal to the 

paging device manager, the number of free paging device page frames, may 

also be different. 

Handling Page Faults 

Now that we have added two system processes to do the deallocating of 

page frames at each level of the multi-level memory system, we turn to the 

allocation operation. Figure 3.4 shows the steps necessary to resolve a 

page fault, i.e. allocate a main memory page frame to a page in a system 

using two system processes to perform deallocation. The first box invokes 

the page frame allocation procedure, previously presented in Figure 3.3. 

This may result in the faulting process blocking itself if no free page 

frames are available. In the usual case however, a free page frame will 

be available and will be returned. The page may then be bound to the 

allocated page frame, and the necessary read operation begun to read the 

contents of the page into the memory locations of the page frame. 

The remaining procedure needed to fill in the picture completely is 

the procedure which performs the allocating of pages to paging device page 

57 



START 

Call page frame allocator 
to get a free page frame 

Place page frame address 
in page table word of 

faulted on page 

Perform read operation 
to read page into the 
allocated page frame 

I 
t 

END 

Figure 3.4 

Binding a page to a page frame 

58 



frames. This occurs during the freeing of main memory page frames. One 

of the steps in the algorithm of Figure 3.2 is to free the main memory 

page frame from its page. This deallocation results in the contents of 

the page being copied to some other page frame in the memory hierarchy. 

Thus the replacement really expands into tae three steps already depicted 

in Figure 3.4 for allocating a page to a page fralae... That is, a paging 

device page frame is allocated and the page is written to the aemory 

locations of the paging device page frame. 

The interrelationship of the core manager'proceas, the pagill$ device 

manager process, and a process trying to resolve a page fault is 

illustrated by Figure 3.5. The boxes repre•en~ program modules which 

perform the function indicated by their label. The solid arrows depict 

calls made by one module to another, and, the b.{Oken arrows represent 

interprocess signals. For example, the main memory allocation procedure 

will send a wakeup signal to the core manager process when the number of 

core page frames becomes too low, as indicated·by the br()'ken arrow from 

the box labeled "allocate core'' to the box titled "core nianager". 

Similarly, if in removing pages from main memory the core manager 

discovers there is an insufficient supply of free paging device page 

frames, a wakeup signal is sent to the paging device man~ger process, 
-;..:.., 

represented by the arrow from "allocate pd record" to the "paging device 

manager". 

This design, as .implemented on th~ Multics system as described in 

Chapter 4, incorporates the sa8"! features as the Multics page control for 

preventing data base contention and page fault contention. That is, a 

global page table lock prevents the core and paging device managers from 

59 



"' 0 

I 
I 
I 
I 

Paging Device 
Manager Process 

I 
paging device I 

manager ~ 

\ \ 
\ \ 

t l\ 

I \ \ 
get pd record I 

I \ \ 

I ~
I\\ 

\ \ 

\ \ i -- -

I " I 
I write I \ \ 
I I 
'~·--- I \ \ 

l 
re~d l 

I 

Core Manager 
Process 

Faulting 
Process 

~ 
I I 

~ I page fault l r, I I 

:- <:\_LI j_ I\__ 
t I \ ) I I - I I . 1 

core 
manager 

get core I \ I allocate I I read I l pag.e I 
I i ¢~re I I ,.page I I wait I 

_ _,___I 1 I I I l I 
I . ~ ~ 
I I I 
I 
t_ 

wrib! 
J_ 

I 
I 

_...._......__I __ I 

- \ "' I 
\ \ I 

I 
\ I \ \ I 
~ V: \} :t 

-1 
tiotify " allocate I 

pd record I 
1 ____ ._: __ J 

Figure 3.5 Multi-process page control 



executing ~imultaneousiy, or one oJ the sy·~~m eroce~es frpm):uu,nJ.ng 

while a user process was resolving a pa$e faµ,1.t ~ Per page lock~,,f,re,,.,lso 

used to solve the page fa1,l].t conten~ioJ:l, pt:oblem, Howver, one of the 

benefits seen from this desigp.~ as d,iScUfs~. in. section 3.4_.4 •. , is the 

potential f'°r splitting the gloq4l. page~.+.a.bl.e lopi. ,This <l'f~S~~on will be 

considered fully in Chapter S. 

3.3.2 Hoare"s Structured Paging System 

Hoare has proposed [Ho73] a m~lti-p~~ess .·paging syst,~m intended for 

a general computer system. The model' HOare u8es for' a general comp~ter 

system is ~lmilar to . the model assumed h~r;;J ~h~:: maj~r differenc'e in the 

' . . . ,' - , - ·, ~· -~·- ,.__. '•~ ~ . ·- ·- {: : . ; } , ' 

models used is due to the one level memory ineorporated into Moare s 

model. That is, Hoare assuaes a memory system consieting 0£''~' 1u.iil memory 

and a drUm as a backing store, but does no~ 'include a second ievi~l of 

memory such as the disks assumed here. 

Hoare uses monitors [H~74'r .to delBc:tibe his system. · Mortitors are 

procedures with built-in synchronizatio'n pr_imittves.; ··1 monito~· defines a 

group of procedures only one of which m~y b.e in exeeuiion at any time, 

thus ensuring mutual exclusion among processes executing the procedures 

comprising the monitor. 
• : . . :';. '-. /1""'. . _.- . , - ' ' 

Hence monitors are a high level lbcking device. 
I 

In Hoare' s system a monitor is assigned to ·each page;. this mbnitor 

includes procedures to. access the page, bring it into~main memory on 

demand, etc. Thus a process fauld~g on ·a page i~~~~s a procedure in the 
" ~ 't ' ; 

monitor for that page to bring the page into core.' . The built-fn 

61 



synchronizat'ion ability of tile acmitot' enS'Ure• that anbther proceart does 

not s111u1i:lniously attempt to bring the Uile;81e·inttr core. 

Memory deallocaticm is dord!' 'by sj'stMi ptO~•**'*• it'r Hoare' s derign~ 

Rather than using a single proeea fo~ 811ett'ltrMttff 11emory, Ho•re anigris 

the page replacewent task to a Mpai-atff'proce'n for each pa1e. when a 

page is brought into main mt!!me>ry in Hoare'• ayat•, a'-ptoces•: 18CT•at:ed 

and started up which periodically tries to throw the page out of main 

memory if it has not been referenced rec.~tly. 

Hoare'• monitors permit a high lnel eolution to both the page fault 

contention problem and the data base coo,4tntio~ pr~~lea. The monitors 
•• •• • • c ·, • • ..,_ -". :_; ' > , .... ; : ~-. ~. 

assigned to each page are essentially per '81• locks, solving the page 
:- > ,,,.;_., '. ; } •• ;.,' .:; 

fault contention problem. , S~,par_ly.' ~,~t,H!.18 ~}\e -~t~!r pag~J _syst~ 

functions inside a monitor alao guarantee!' exclusive access to pagina 
. .: ~ ~ i ) . - ·:; • 

system data bases. 

While Hoare's monitors ~llow him to describe his system in a rat~er 
, :--· ,} -

elegant fashion, the system suffer two serious dra.t>acks in practice. The 
'1 ·-.- !- "":ml - ~-' ~: 

first is actual_ly impl~~nting the synchroniutJo"l'.l implicit in the use of 
·._ -;::; : '. I ( • ~-,' • , 

monitors. _There are serious eff,i_ciency issue~, ~an••re$1 h~re because a 
1 • ,_ - ~, -\ . ., •. ' _, ; .: . .., '_; •.-• :; ... ! L ..:. : . - ''' ,: ; : '-I~· ' 

combination of hardware, or "busy': waiti!lJ• ~ aoftw,are waiting _is 
< y ,, • . ' J __ ,_.. .• -·.,? ,' ,, "'•.: ' • : 

required. 

The second,, perhaps more serious deficiency in Hoare' s proposal is 
• •1 !~~,- ~i ~~,. ~ .' · ·.·.··. ._.; ·f 

the number of processes involved, one for every pag~ in main memory. 
- • , : J.> ,:; .\ "' - '• ~ .- c/; • -

There is always overhead involved in implementing processes, both in 
~ ~~~~" ,·_;;·: .' ; ) 

keeping track of the state of the process, _anct. scheduling the. process .at 
. ' - ~ -, . . - ' ~ 

the appropria~e time. Most systems are not capable of supporting the 
. --.'" . . . \ ' .. ·• : 

large number of processes required, and moat schedulers are not designed 

62 

-------~~ -------~-



to give the fast response that would be necea1arJ to iaake Hoare'.s scheme 

efficient enough for practical purpos~s. For th••e aamecreaeone HQare's 

system would expand poorly to a system witb,.Jlore l"eis of me111ory. 

Adopting the same strategy of .one removal proee•s pe~ ,.ge would wor~n 

the problems of implementing and scheduling the.necess4ry nwab•r of 

processes. 

There is an orthogonal viewpoint of paai•a ayatemf from that taken in 

this thesis, a view which Hoare' s descr:i.ption adopts,: in part. We have 

pictured pages as objects manipulated by syste•,,and use• processes •. 

Instead, each virtual page me.y be thought, of .as .ikprocesa, a process that 

performs all desired actions on the page, movil'I it in and out of ,maory, 

~ring it; etc. {Not juet:reaoving it f~om a.-ory as do Hoare's 

processes.) 

This concept of a.pa&e as a pre>cess has also been used to explain 

Multics page control. {1) As alr;eady pointed out above, it is 

prohibitively expensive to actually implement a proeees foi- each page, 

however pages can be thought of as being implemented as very simple 

procesaes with page control acting as an interpreter for the••· processes. 

The per page information (e,.g. flags, locks) define the current state of 

each page process; the various actions of the page processes (such as 

wiring themselves, bringing ·theaselves into aemory.) a.re done 

interpretively by the page control code. 

A more formal characterization of this view is to define each virtual 

page to be a finite state machine. The state of each such finite state 

(1) This description of Multics page control is originally due to Bernard 
Greenberg of Honeywell Information Systems. 

63 



machine (page) i8 cleftnecl by dte values of, alhdie ·par page tnforaation 

contat1'6d in an• asaoctated Witb th•··"84'• p .. e table word ._ tlhe ueed' 

and modified ~U:s, the· vtred fla1, ete. · ·&Ada o•aaatclon::of"Ue Uatte 

state aacbia• correepoad1 to a.a actla ,.rlo• .. • tl\e,pa .. ,, u4·i8. 

implemented •• aoae page conet'ol p#-Oe.,..•. 

For example, t.wo atates of a page ue the "ia core" state (i.e.· 

allocated * cere page'"ftMe as· tculicat .. JW • pap.~~ft'~ Adresa in. the 

page tatUe word} and the "out of ••*'-" .c.tie (-.t alloaate4 4, ce~e 1a1e 

frame as tnduaeted by e;he fade tag in '*9 . ..a•· llaltb ·wo•cO.. 'ft• 

transitio11 f.rom the "in .<:.ore~·at-at• &o dM!J~titC ·of -core·" atate u 

implemen~e4 ·by the code of the page 1!etJlU..a~ al:9ol'ttha. COn•ersel.y the 

transition from. "out of cora~ .u •to. c6teV i• per£•nect by· the. alloeatton 

code. The inputs which cause the various •·tate tra1Hitiona are tettU•t• 

from processes, e •8. a user process Vilehlag"·to ·r•l•••ce a fp&l't:icular page 

may cause that page to aove fro111· tAe ''out 'lJf cotie" 8'tat• to·:tibe "1~ core" 

state (aL'ld •• a aide .effect caua• ·- ocau.,... ~o.,aake die ttuaition 

from in core to out of cote) • . ,, 

Page cont-rol, theni ·emulates these finite state aachtaes ~y driving 

the pages through the varioua stata• ia r•*POIUJ8~,to .ehe deaaad&,~f uaec­

procesees •. Hoare'• 110111.tors, which .perfol'm all the·,allo•t.le action• 

(transitions) on pagea, make. eaplicit the·ceu.pt. of .a. lin:i•e ~ate 

machine. The procedures of the monitor diirec.tly ~eaent the•state 

changes of the page. 

64 



3.3.3 Saxena and Bredt's Hierarchical Paging System 

As pa.rt of a structured_ design of a~ Qperating •Y•~ea Sa11:ea• and 

Bre«t (Sa751 include.a deecript~on of a paging sys~~. Their hierarchical 

operating syste•_consi.ets of four lev~ls, numb•red,~Jleto four, each l~yel 

built oa top of·- the lower n-.bered level,.s (level_(),,~• t\le. hardware) •. The 

four levels ares 1. A simple sebeduler- ,jo-r ~niq, ~:· sya<;t11;9nizing a 

fixed number of systeia processes. 2 •. .\,, supJ.e ~y-•11-...-r which 

implements a virtu•-1 memory for these syste.IL pl'ece.-•~· . l. A sche4~er 

for i.11.pleaent-iog and synchronizJ.na _,._ l•rae- n~t; of COJ\C_U{"°811.~ p.roc_..aes 

using virtual memory. 4. A memory manager for implemea-ta;~iO.l).: of. the 

virtual meaaory. Esaentia-lly the siapl~ sche4lller an~ ~le meaoi-y­

aaa.ager iap-lement syst-. processes which provide cQSJp_,l.eJ:e process 

multiplexing and virtual iaemory to a lU,ge ~er .. p~- ,µser-..erocesses. 

Monitors •re also u41ed_ to describe this _aye..t.em, ancl ~<>-. ~9) .. ye the.._ data base 

and page fault contention prob1-•·-

The chi•f distinction of this ·•ii•tu from tne .•.Jle preeented in 

section 3 .1.1 is in the extra scheduler and memory aymqe.r. Like llos.re' s 

sye-te•., only a single level meiaory is C9'll~ic;ler~ •. ,H<>-~ver,. ~nl.i~, 1'oare' s 

system, only a small fixed nU!lbeJ: of procea414uJ i.s nec..ssary to impl~ei;tt 

the paging sy~tea, because a proceas :J-~.not ~ig~ tO each page.. ~ena 

and Bradt specify a page repl-.c~t pre)(!,ea• which,, J.ii~ the core lllAQ.~er 

process of Figure 3.2, can oper-a~e on ~. pag~, utp~r· than cr~ting a 

separate replacement process for eac)l P••e as llNr,-4! doe~. .An.<f -!n•.tead of 

assigning a Mpiarate monitor to each page, a •in&le. ptanito~ p~r.forma the 

memory allocation function for all pages. 'Ih:l.l&, only one page faul.t. may 

65 



be handled at a time. 

Though much closer to the desir-gn .pre•IRH her., there is a 

fundaiaentai ·atf fftff.C9, tiie • 1t:w:\'th4!heftra•~·••idld:w1••:i•eaot,r ~. 

The' high level· ach:edu!M' ·(wtit~fl. h ttilel;f '*~ at~,_.'.)dm.pl-1 proctUS'. 

s~hedulet' left'l) llt'ld··~tte 1 ·lt!l:lft•''~' ... .,~ ....... J .......... f.ft Mt\la: .t 

allowed to 'take pap 'feuiJ.til'• "•ftewren"•*'i .... '.1-...lt9Ii•r•·hn4W ~1 )· 

the &!tit>'1e'~illMfl8iW'•'.''~ft·itr·• ........ _..;•Mo!\cli.f:'fer.at k:lau of. 

page faultS'1 11~eti"\~'.''fa-. 1a6d· !!Q11W1'·...-·•ff..-a\" atld "t't· .. t ·be 

pose1btlte0'ito·dlf.'f&rerrn.~;'*1...-.· ..... ,dthn'.1 .'i•·•·MN1 ~pa~~·'aod1 

oue Whtch1-., · ~~n Mir...._. 1.alllit'l9t·..,..'*- ~'~iall•i•yait._.~~.tM 

capabl"fr t>f pn1¥!.M.ftW~· ; · · ; - · .. ·. 

Whja t "fil ·gatw~ • by· 'the · wtittl !;ett¥1• 1'Pfthitltatel'l1..i~ memot'1 nn•rt. 

Primarily:'tbe nili.lYfl)•f')d\i hil\l 1ftW1 ~- ~Mmitli')'''~ei"-tlo 

use, in a l'tafted·· ffahi.l>n• ttte~ fMeM._~,,,-llWana"~ 1'l'fhti9t· ~-· hlStt · 

level memoey· mart&ser·iu1y"be ':tlaP!11ite!tl-H -;,~~4illH.dFtAly1 uaa:(pap 

faults; similarly with the high ltWel ~~ ""..,J8t'1:"-a •U!IMla wbo 

solve tfle 1>f'Ob1.'E!fti" bf ..... ett\et'~ iillpH'l'ldt:~•~:~klw· the 

scheduler b'r· vice· :-vehla. ': 

System 'dest~ are :ofir<ett Pt"fteb'te'1'Wt!i flftl..,.'nc'taiilte 'bodf":Nte 

schedul'ar and the "liMlory 'wia~"~d'<1:dlfl•ttf "6Yiohel~etcJbic · 

tmp18lerttett by flte ot~~ ·!ff· cM!· d)et'«lasf~ttilt'l.ff'~~Mi' 

hierarchieally, ~1cbeve"r· of ttroe 'tik>:11tflfti!\lWF19 ·fllilifl~jl~h ~­

other c&nrtot use· eitlter' 'the tuncmc:m n 'l~WH>~fdetf. oruifihie1 lunctton 

provided by t:he highil'!t- tnOdul.e_. "l'he pr.tJldit• It•~lt~''Wl\led-· by ·· 

splitting ·ttie scheduJ.'er '<ff.t ;ehe mmory ...... r tnticJVt'W' ~. 01M below 

ami one abaft. ·tbe ·O.ther aodvle. -HaVtQg JM ..... ~u.taeh 1a• :.dQ ;aaa..· 



and Bredt removes the mutual dependency of the top two levels. 

In practice, the advantages of allowing the memory manager and 

scheduler to take page faults may never be realized. Supposedly, paging 

the memory manager and scheduler will free physical memory for user pages. 

Yet the pages of these two modules are normally so heavily used that they 

will always be in main memory anyway. There is also an efficiency issue 

in allowing the scheduler and memory manager to take' page faults, for 

overhead is increased and response time adversely affected. This is a 

major reason why many systems make these theae tWo modul~~ permanently 

resident. 

Hence transparency of structure rather than eff ieiency is the real 

issue. Careful design may eliminate the need for two levels of both the 

memory manager and the scheduler. Such a design has been proposed for 

Multics Using a two level scheduler and a single m_-ory ntan~ger. A simple 

scheduler implemented below the virtual memory would allow use of 

processes by the virtual memory manager, While a more c0mplex scheduler 

implemented above the virtual memory would implement user processes and be 

able to take page faults. By careful design, the low level scheduler 

does not need to use the virtual memory. 

One of the key questions here is the larger issue of the proper 

structure for an operating system. We have concentrated on the design of 

just one part of an operating system, the paging system. The previous 

discussion points out the need for considering the design of the paging 

system in the context of the overall syste11 structure. The general 

problem of structuring operating systems has been treated by many 

researchers [Li72] [Di68b] [Ha70] , and is beyond the scope of this thesis~ 

67 



3.3.4 System Versus Combin.ation Paging Systeaa 

Little has been said to this point about ays~em-process paging 

systems, with the exception of the discussion in sec,ti,on 3.2.2. considering 

Multics as a system process paging ayst~m with a single page control 

process. To remedy this deficiency, we discuss in this section how the 

two process combination paging system presented in section 3.3.1 (and 

implemented on Multics as discussed in Chapter 4) could become a system 

process paging system using three system processes to implement the page 

control functions. 

The combination paging system of section 3.3 • .1 can be made into a 

pure system process paging system by rea~ins page £•ult handling (memory 
..i . ..., 

allocation) from. the user processes. Inste~, a third system process will 

be assigned the page fault handling job. Thus a use,~ i>rocess taking a 

page fault sends an interprocess message. to this faul.t handling process 
; .,. . ' . .; 

which performs the steps of Figure 3.4.. When th.e faulted on page has been 

read into the allocated page frame, a message is sent back to the faulting 
'·. ~-

process, starting it up again. 

The essential difference between such a three process system page 

control and the two process combination page control is that memory 

allocation (page fault resolution) is occurring in a single system process 

instead of in many user processes. This has maj-or itnJ>lications in two 

areas: security and efficiency. 

68 



The system pTocess design seemingly offer.a impr:oved system security. 

The memory allocation code, and the data bases referenced by this eode are 

removed from the address space of the user's process. Thi& not only makes 

the user's address space smaller and sore .compact, -but makes it impossible 

for the user to intent:t.onally or inadvertently cioa&• this ;ccode ~nd data 

and thereby affect other users. This separation is important in systems 

with no protection mec~niams, but since most computer sy1.iems do offer 

some means of protection (e.g. supervi1t0:r mode, write protected meaory, or 

rings as in Multi-cs) there is likely to 1>e little if any extra protection 

from the user afforded in practice by haadliag. page ,faulte .in a separate 

process. 

More significant is the effect of the page fault handling process on 

system efficiency. First, there is the extra overhead required by the 

interprocess messages needed to report the page fault to the system 

process, and to signal completion of the fault to the faulting process. 

Even if the message sending overhead can be minimized, there is the 

additional expense of scheduling, that is saving the state of the faulting 

process and starting the page fault process, and vice versa when the fault 

is completed. 

There is yet another consideration with respect to efficiency, 

important in multi-processor configurations. Namely, only one page fault 

may be processed at any time, because there is a single page fault 

handling process to resolve page faults. While this could conceivably be 

remedied by explicitly adding a page fault handling process for each 

physical processor, note that the combination paging system does this 

implicitly by having the user process resolve the page fault. Since as 

69 



contracta the n•lter of prec .. aea n...t,,iUat .pace f•wliA·.iat as7 ti.lie. 

will deecribe how using ·ayacem ~ ..-i.. .,i..tttJ.ac ·Ube 1:lQbal lock 

designs ar·e likely to be •lf:IM., 'fM14 da 411c.iaioa:•'-<to .111b:leh''.i• beat for 

a gben syatea will ·Hped ~#.lf •11 ·aueb •~ilQra.ae,,the lock:i.1'8 atrateaJ 

and how efficient the iaplemeata'tioa of .prcte.,...a is. 

3.4 Advantages of Multi-Process Paging Syst .. a 

Having examined ntlllleroua multi-process paging ayatems, the question 

arises as to the superiority of such design• over a conventional design 

such as the Multics page control described in section 3.2.1. There are 

four areas where the multi-process designs offer decided advantages: 

simplicity, modularity, security, and expandability. 

While these advantages accrue to all aulti-proceaa designs appearing 

in section 3.3, the following discussion pertains directly to the two 

process design presented in section 3.3.1 whose iap.l••ntation is 
j,: 

discussed in the next chapter. 

70 



3.4.1 Si~plicity 

The multi-proceaa design is clearer and easier to understand uue to 
. - . ~ .;.·. ,- ~ : ~ 

the separation of the ,allocati<m and deal.location tasks into separate 
''· ; :" ··< ~ :-, -·,. _,. -:'_;,'1_;-_, - •. ;''\ .. -

processes. Both. the core man8$er p~o;ce.as and. t~~ J~~gin~ :~·~vice man,ager 

are siaple 1 sequential algorithms ~ich can be ~er.stood witho.ut 
.. 

reference to the other part;e of the paging, syst<em... In contrast, the 

corresponding algorithms in Multics are intertwined in a complel( mann~r. 
- ' -. . . ' . ·,; .~ . .' .:~. •"'- ,-'.~.-' : ~~~.:.-

This com.pl~ity is largely due to ~he fa4::t tha,t the three tasks split into 

separate pre>cesse.s by .~he ~Q.,lti-pi;oces~ ~:~s~~ ~~~· ~U.-P-:~ into a sbigle 

process, t~t which takes th19 pa$e fa';'.~.~•., •. ~This. proc~.ss .becomes s<>11;ethi1;lg 

of a three ring circus;., .trying to do everythi;,~S at o~ce -- ~ree spac;e on 

the paging device, free apace in main m~ory, resolve the page fault. , In 
\ . . ' ' -

order to do so, an ,ordering ~ust be .,im~sed o.n th.ee'.e t.asks, since a single 

process must do things eequenti.ally. Thf! fundamental problem here is 
~- ,. • • - .- ~ - , 1 . ; - - - , ,__. ., _;-;-_ -~ - ' :· ; - <!' 

caused by trying to place a sequent:J.al order qn inhe.~ently parallel tasks. 
• ' • • .: ~. < . . - ' 

There is no satisfactory way. to. avoi.d thee~ difficult!,:~'! except to realize 
: ' ' ; ' - .. ' . ' . ~· ' . ' 

the parallel nature of these tasks and allow the• to be done in parallel. 

Separate processes also greatly simplify the treatment of i/o 

interrupts. The chief source of difficulty with input and output 

operations is the relatively ,long time they require relative to 

instruction execution times. We have already seen that in the Multics 

page cont:rol the pro~esa . whi.ch starts a read write fequence does not wait 
! 

for the disk write to complete, since to do s~ V()u.ld delay .~aae fault 

resolution. Therefore the COlllpletion of the r.ead write sequence must be 

noticed. by whatever process is a.round at the ti11e• .~is of c.ourse 

71 

- ·--- ·-----·--------------------------~-----



complicates things, as all proceaaee tltiat be ready to pick \t}>' Wt!~e 

someone else l'ft off. 

On the other hand' the p4ging devt«:i' itlifag~t' ;proc~tia c'ilil wait for a 

read write sequence to complet~, sfiice ht~ .f~'t :l:i Tto~tl~' hotbing tiut 

performing read vrite s~quenc'ei. sUH1~t1f~ ·t:li• core aahi's~r process, 

once a write hae been started to dopy a 'paje t~ tft pagltis ct~~foe or t0 

disk, can s11iply W.it until Hae ftit~ h fl'uiihed.':. 

Essentially We are lirguffii l'.tl fai~ot bf a l\parlf~ process 'for 

performing i/o (e.g. thtf tSli:litg ctev:Cce fid'i'te·f. p~€i'i'ii d6£na· the i/o for 

read write sequences) its o'pposiif' t:~· a tti'C!':tttoni'i !iiierrupt' handler .. Vh'ich 

spreads the i/o among whate'let ptroceiist11· afli e:f~c'uitng. Thete 'are t1'0 

chief advantages of the proc,ti 8:p'P'roach ()•er ttie· int~ftupt handle'r. 

The first of these is the clar'ity . ol efrU:c:'tui-~ o'f the proces• 

approach. The sequentiai nature of • ~~~a iH.te ·>aiciJin'ce is 'otrviou&· from 

the paging device manager's alg<>'rithil'i: at'~tf ~· t~.,(f, '"81t fi>'t tll'! read to 

complete, start the Write, wait for tn'e ..irit~ to cblipl:ete. In c:c>ntraat ~ 

the same algorithm iuiplemertted iri a\it ·1ri'ii'trupf frl:n'di~r «~t)8cute8 the fact 

that a disk write always follow a bulk store read in performing read 

write sequences. . Some process starts th.t ·;:,~al; When til~ read ~~pfe:tes 
the interrupt handler receives control. Interrupt handlers are :l.ri..Jariably 

written as dispatchers -- the source of the· inte'-rrupt ''is :determined and 

appropriate routines performed to do whatever 1$ necea~ary. ''Ttius, aft~r 

determining the read portion of a ~ead write· sequence has completeJ~ the. 

interrupt handler starts the write. The interrupt handler regains 
1 
control . 

later, on completion of the write, and finisb'ee' up; 

In other words, the process which st~ita '·the f.lo is 'b'est ·equipped to 

72 



know what actions should be taken when the i/o COlllpletes. Having a 

process perform i/o allows us to take advantage of thts fact, while using 

an interrupt handler places all knowledge of what action to take in the 

interrupt handler code, forcing the interrupt haadl.er to sort out all the. 

various possibilities. 

The second major advantage of the process approach is that it 

permits formalized interprocess communication Ulecha.nisms to be used in 

implementing the i/o. Block and notify prim~tives may be used by the i/o 

process. which blocks after starting i/o. The process receiving the 

interrupt merely turns it into an interprocess notification (tqe "notify" 

of Figure 3.5). The awakened i/o process then continues with whatever 

steps are appropriate upon completion of the t/o. In addition, the i/o 

process can. if necessary, w~it on a lock, where an interrupt handler 

cannot (s.ince the int•rrupt handler may have intei:-rupted the process that 

locked the lock). 

The end result is a simplification of the treataeflt of interrupts; 

only the lowest level of the system, directly above ;the hardware, need be 

aware of and deal with interrupts. All the processes performing i/o 

implement the i/o in ter.ms of waiting on events using the standard 

interprocess communication tools. 

The philosophy of using separate processes for i/o in place of 

interrupt handlers is given in more detail by Clark [Cl74]. 

Dedicating a process to manage the paging device allows another 

simplification in performing read write sequences. A read write sequence 

requires a main memory page frame. If any process may start a read write 

sequence if may be difficult to obtain the necessary page frame without 

73 



repeatedly perform• l'ead wriH -~··• :a •*- ~r~ page "frame ,m.ay be·. 

assigned to the paging 4•v1ce,11&nag~ ,.,._.11~ly for;,uae·aa,a bQffer. 

avoiding the problem of dya•lc: allocai•.: .. 'ftU.-• colvti..on U ,..at•le in 

the Multics page control, but '1WCb -.or.e .difficult for t_, .':reaaoa•c 1): 

Since any process uy sta~t • re.M :write ;.q..-e, My,,.._ II'•• .··Uffd as 

a buffer ·must be proteetecl qaiae£ Ul~ .... ._.,,~._ ... • : (aote la 

the multi procees .Choe me, ,.,t.aa #•ie# ••I.• Jkoe••• acts a• a· tock 

on the frame ~u• aa a buffei-,'J 2~ A' 1-ai.a JJ'o44t,lj .aJ •~are several 

read write aequeru:.es at the ._, U.ae• (tlb.te H"liow tlM 'Multica page: 

available as aain aeaory bdi*r•. 

code is simpler and more understandable, it is easier to moclify·aad 

but in being able to change che algori·~ at ·a; dater ~' w:idl conf.iclence 

changes in syste111 perfOTlltmce. For .the ..._ r-...a~>the code would be 

easier to certify, or to use in proving a g~ .,..fliW':t.y· wltcnrt -the ay."t~. 

3.4.2 Modularity 

The separation of the main memory page replacement function and the 
"· 

paging device page replacement function into separate processes makes 

74 



possible a much cleaner modularization of page control. This is apparent 

by comparing Figures 3.1 and 3.5. For example, it is clear hom Figure 

3.5 that the main memory replacement algorithm (represented by the box 

labeled "get core") is part of the core •aager process, and is invoked 

only by the core manager. This is not the case with the Multics d.esign of 

Figure 3.1, where when performing paging device page replacement we can 

suddenly find ourselves executing the main memory page replacement 

algorithm. 

Improved modularity reduces the possible paths through the code, i.e. 

lessens' the interconnections between modules, and simplifies the 

interfaces between the resulting program modules. Many of the benefits of 

better modularity match those discussed in conjunction with 

simplification. However, though improved modularity and greater 

simplicity complement each other they are not the same thing. Modularity 

can be bought at the expense of complicating the individual modules; 

conversely a system often can be made to seem simpler by increasing the 

number of modules. 

The most important advantage of the modularity of the multi-process 

design is when considering modifications of the design to other systems. 

For example, consider a compute.r system with paging but without the 

multi-level memory assumed in Figure 2.1, i.e. consisting only of main 

memory and disks, without a paging device. To use the two process design 

presented in section 3.3.1 would require elimination of the paging device 

manager and a slight change to the core manager so that pages evicted from 

main memory were always written to disk. Similarly, if another level of 

memory were added, another module analogous to the paging device manager 

75 



could be added in a relatively· atraightfel!WIK"d iuimler 10, IWan•I•· the 

additional memory. That is, &he.· •.ngn • .,.... ... cd.ntraeta eaauy •and 

modularly to fit any multi-le¥'el •Mory •Y9nllt• 'Elmer of ·ttteae two 

modification• would nece.sttat•· extettet-.., INljor al.<t•raltiiQthJl'to the page 

3.4.3 Security 

The multi-process design presented here offers significant security 
~ ~! ' ~·.. - .... ~n1L 

advantages over a traditional scheme. By securi~y va aean the prevention 

of unauthorized release or modification of information (either procedures 
"' ' ; ' '·: .·• " 

or data) • Dividing page c_ontrol into separate procesae• increases 

security between parts of the eyatem, and allows ae,.ration of policy from 
• ., . , ~, . ··. • r:: ~ 

mechanism within page control. 

Protection of the user from the system, or the syatea from the user, 
. ,·~ · .. ,, r: ;] ~ 

is not directly enhanced where mechanisms such as supervisor mode, rings 

etc. already exist. However, the advantages of ai•plicity and modularity 
. '· : ~· . ~ ~ . "' ·. - . 

previously discussed would make any attempts at certification of the 
) ! ; ~;. ~:,.i-. : 

multi-process page control much easier. Por example, the _places that read 
~.: .,iu :J !'· •4 .'.'- -~ , ••• 

and write arbitrary pages are localized and •••ilJ: identifiable, and few 
:>''."• ~ '. 

in number. 
'!J ': ..• 

Security between parts of the system is affected by the separate 
. r l~. 

address space afforded each page control process. For in,sta_nce, only the 

paging device manager process need be permitted to execut,e the paging 
.,, ... f • ,.:..; 

device page replacement algorithm. Since the pa&iDJ devi~e used list is 
~·: . ~ ... !.r •. )r• .· ~:' 

76 

-----~- -- -----



used prilnarily for this task, we can also restrict access to the paging 

device used list to the paging device m.anag~r process. No other processes 

need access to this list. 

Separation of polic1 from mechanism is possible if the system offers 
' 

rings as does Multics (or sQBle other form of protection domains)· {Sc7.)}. 

The addre1s space of each ,page cotJ.trol process can furt.her be divided by 

use of these protection rings. The programs iaplemen~ing the mechanics of 

paging, e.g. read;f.n.g oi:- writing a page from or to disk, adding or r•ov:lng 

a page frame from a list, gathering usage statislics, etc. can be placed 

in the most privileged ring. The policy ,a!gorithas, e.g. deciding what 

page to remove from pri,mary meaory, exec.ute ·.·~n a .lees privileged ring, and 

must call the inner ring procedures to get ·the inionaation needed and to 

actually iapleaent the decisions made. Thus t~e failure of the policy 

algorithaa could ttevei: ca~e uuuthorbed use:or·ip~ification of the 

information in the pages. The system could be certified without having to 

certify these policy C:Qlllponents. (Failure of tbe policy algorithm• could 

still result irt denial of aer"lice.) 

To summarize, the separation of the patts of page control permitted 

by the multi-proceas design effecti"ely.allowa •x~ra "fire-walla" between 

pieces of the eyatem and and between procedures iftl.ple.iaenting 111.echanisms 

from procedures deciding policy. 

3.4.4 Expandability 

Expandability encompasses two ideas. One has been mentioned in the 

77 



manipulate another level of memory. The second aapeot 'of expandaU:U~y ia 

the ability to increase -the camber <if pr....,f.lllPthc~tittg -as,•eore or 

paging device /111-anagers as -th-e -size ,~f ~tlle -iO...-.r -:iaysc. ·il!Ows. 

be identical, and follow the a:Lgottebm .of -'i'iigarj! 3.2.,. 

strategy used by Multics is employed. The ••l'C~toceu-'oesftgn, bewavet. 

enables eUaiaation of thia loctk :by struotUl'ialft th• :paatng •11«1•'• data 

single process (or type of proce•s; e.g. 1:-f ttleiteLare:~aalUple--oore 

manager processes). This would significantly 4ectlea .. :-the interfeirence 

among processes, producing a corresponding increase in system efficiency. 

This issue is considered in more detail in Chapter 5. 

To conclude, the multi-process design offers advantages in 

simplicity, ease of understanding, increased functional modularity, 

78 



enhanced user and system security, adaptability and expandability. The 

implementation described in the next chapter demonstrated that these are 

not just theoretical benefits but offer practical advantages as well. 

79 



CHAPTER 4 

A Multics Implementation of Multi .. process Page Control 

4.1 The Multics Implementation 

Many readers will doubtlessly be 'strongly tempted to skip this 

chapter; we urge this temptation be resisted. Although the topic of this 

chapter is an actual implementation on the Multics system of the 

multi-process paging system presented in section 3.1.1, the emphasis is 

not on the details of Multics or the particular implementation of a paging 

system. Rather, the emphasis is on the insights gained into the design by 

its implementation. There are always problems arising in implementing a 

system that are not apparent from. the design of the system. The purposes 

of implementing a ·real multi-process paging system were to demonstrate the 

validity of the design, deterniine if the system's theoretical benefits 

were manifested in practice, and to measure the performance of such a 

system. 

80 



4.1.1 Size and Scope of th~ I.mpl&UMtn.tation 

To give some idea of the size o.f the syst.- impl.~t.ed, th-. standard 

Multics Pase control consists of 28 modul~~ written in_ .assembly language 

and PL/l. These total approximately 4700 soui;ce a.tat.en.ts, 360() .. in 

assembly language 411d 1100 in PL/l, which co.pile in.~o almost 11,000 lines 

(words) of object code. To implement the m1,11ti-proc~as des.ign, extensive 

changes were necessary. The:se changes are &\,lllll!l,arized in.Appendix A, which 

lists the modules in the !Cultice page contr.Ql, th.at wer,e .cha~ged or 

deleted, and the moclul• that ~e 4dded. App.e~~-B.liets the progr~ 

modules required for the mul.ti-procesa page eontrol. For ease of 

impl•entation, the entire 1'Ulti-1n::9.ce'4 p.._a cQn~rol ,was Wfitten in PL/l 

except ~ere already existing component;e wx:itt~n in •s••ttbly lang~ge ~re 

used with little or no alterations. The size of each of th.e m~ules in 

source statements is also listed in Appendix B, and the size of the object 

code for each program. Excluding minor changes in existing modules and 

some changes to the scheduler needed to enab'le impleme~ting page control 

as system processes, approximately 1700 PL/l statements were written. The 

total size of the 32 modules com.prising multi-process page control was 

roughly 3700 source statements, 1500 in assembly language and 2200 in 

PL/l. Note the number of PL/l source stataents doubled while the nU11ber 

of assembly language source lines was reduced by more than· half. Because 

of the large increase in PL/l source lines. the resulting modules coaipiled 

into slightly aore than 13,000 lines (words) object code. This increase 

in size was due to the effect of writing the programe in,a higher level 

language. 

81 



The structure of the impleaiented 8'tft• as i1ientical to that 

illustrated in Figure 3.5. Both system processes, the core manager 

process and the paging device manager proceae, wn-e driven by control 

procedures named "core manager"' and "pdaanager" reapectittly. 'these 

programs received a1teup signals ftota otln!r proce•oa,' d~tertdned what 

action to take as a result of thoae signals, catled the th!CU9llt'y routine& 

to accOlllplish that action arid tht!n ai3rtaalled the coapl•tion of that action 

to any waiting process befote blocktng ~· systft .proce••· A more 

specific idea af how these proc**• Wd'itt •8" be *°tt'en from Appendix C, 

which contains some of the actual PLfl lourc. progr.re fot the 

core_manager and pd_manager m'Oduln• fO'r c-ciipfet:eneee, co.parable code 

from the third part of the ayater, the ,. fault ·path, fa ;also incluffd. 

This is the code tha't runs as part of ttle· user ;Tocen and fS reapoft.si'tile 

for resolving page faults. 

4.1.2 Differences of the Implementation from the Model 

There were several points in the actual implementation where it was 

found necessary to deviate from what the model implies. One of the most 

significant of these was in the mechanism used to implement the core and 

paging device manager processes. The model does not differentiate between 

the system processes used to implement the core manager and paging device 
' ' 

manager and the typical user process except in the functions they perform. 

In practice however, they may need to be implemented differently in order 

to obtain the efficiency and responsiveness required for system functions. 

82 



Additionally, the systea processes must be able .to pperate without taking 

page faults, since .they are used to implement page fault1:1. 

Hence a special type of process was used to illplem.ent the core 

manager and paging device manager processes th"'t were sitllPler and involved 

less overhead than a full Multics process. All proced~res, tables, and 

temporary variables used by the core and paains device manager processes 

were fixed periaaneutly in main memory. The . processes ,a.lso h.cked the 

ability to add new segments to their addl".ess. space, but this is not an 

ability needed by the page control processes anyway. 

The ~er proceases were also restrict•'1 fJ;'Q1la.; using tbe full 

interprocess co11111nmicati9n m'chanisa of ~ltics, be~~use t~ permit them to 

use this f~ility would have require4 muc~ }!lor• code •nd data be kept in 

aain -.ory pe,rmaneo.tly. :instead, less powerfl1l, primitives were us•d 

which allqwed procease• to wait on even~s and IJignal the occurrence of 

events but did not allow inter~rocess aessaae sending. The use of these 

priaitivea, which vere alread~ part of tne st,nd1J;"d Ml1ltic"9 syr.tem, had 

80Dle perfoQlance iaPlications because of their interaction with the 

Therefore, a spe~ial set .of pr1-itives was implemented 
. ' ;.,• :'. ' '; 

and used only for waking up the memory ••n~·~r proce•ses. These 

prillitives ~su{ed ~hat once .either of the.sy .. teui processes.was ready to 

run, it was started as soon as possible. 

Another difUc1,1lty involviqg the wait. prU.itive aroee frOll the 

restricted eQ.viroJllllent a process operates in after a page fault, At this 

time, the faulting process cannot take anoth~t;.J>aae .. tault. thus it autt 

run on a wired stack. Mi.1,ltics does not,pi:-oyide a wired stack o,n a per 

process basis, b\lt rather on a per physii:al processor basi.s. In a 

83 



situation where a procffs needs a wired ataclt, it' uses ·the wired stack 

(the "prds"' or proceslfor data seprit, in Multics teriltfnology) anoeiated 

with the physical processor currently executittg the process.-· ·This has 

severe consequences for the waiting operatioh. tf a l>roco8 anrnm.ders 

the processor lihile using the prds as 4 st4c1t, tts stack history i.s lost. 

The next process to run may overwrtte the prcfa:~at·aek9''and rift -'ff this 

could be prevented the pr<>ceas may rwt (m 'i'idft6iretlt ;9t119'1eal: 'pirecessor 

(with a different prds) when restarted. · 

The result of this restt'icti0n 18 that 'if a tJ!'OC·e•i ·re-$olving a page 

fault must wait in a manner ~'1'.eh reqait'e• ati.irfctou:b:'j the' pro'~'C>r, it 

'( • ·' ; -. ' ·. ,. t .,,., ' , 

must do so at a point were 'it has no aUl!'k'·fttltoty on the prcts. Tbfs 

situation arises in the implead'ted 1iiultt-pioceil8 pate C'ontrol when a 

faulting process calls the main memoty pagi fraae al10catO'r, 'wt'IO d!kovers 

there are currently no free· paae fruia: AtJttils pofi\t'°t:he core manager 

is signalled to free more page ftaMll, 1fo.c'·e11e f-iralting process must wait, · 

blockins itself and surrE!rtc!eH.ng the ptoceseot. It 'tti'.e 1'fauldi\g process 

did not give up· the processor, ·the core uilager ptoceaj -111fight" l:!rier l:Je 

able to run (e.g. in a single ptoces•or eyateaY ~ 'tttua· the 'ata~k history 

at this point must be lost. Thia 1e adt too nv•ref"s1iice nothtt.ig has 

really beeti done up to this pohlt 'either tliMti idetiritnftii 11tat'''tt&ge ·catiiled 

the fault. The mechanism used to solve tb11 problea ta to~baie the w*it· 

primitive note the pt&cess is. ttinning on: tie prdl'. aacl1 t'estart the prt)cess 

by repeatin8 the irtstruction that cauaei:t·thi"page-fiuit wblii\'the proceH 

is unb1ocked. This same ac'tiott, repeatiiig• the faut'Hng inttructiotr, is 

also used to restart a proCe81 waiting fof ltbe Ctwl;1eti6tf Of a read 

operation to· bring a faulted on page into 'core.: Iit';tM' flr'*t•CflM, aihce 

----------- ------~---- ---------------- ·---------



the fault has not been resolved, the pa~e fault code ,i,s. invoked a$ain, but 

this time there should be a page frame availabl.e. ID: .the latter case, the 

fault has been successfully resolved, and the proce.8.~ contipues merrily on 

its way. 

To s~arize, the implemeq.i:ation d~f ference13 were d.ue pri•~n;,ily .to 

the simpler type process uaed t() impleaent the core a~~ paging device 

manager processes, which iD,lpos'd sqia~ restrictj.onson J;he fuQ.c~ions these 

processes could perform, and to 7he strat~gy u1ed,op.Mµltrics ~~r 

implementing a wi,red stack., The e>ther differences fro!.ll.the model due to 

segmentation are presen~ed in secUon 4.2~ t.nd_ result.in.atiding extra 

function• required to deal with sepentati()ll totJ)e job of the syste'IB 

processes. 

4.1.3 Performance 

To ccapare the performance of the multi;_proceae!paging system with 

the standard Multics paging system, a system benchaarlt'was run using both 

systems. A slight change was made to the standard system in order to 

obtain more meaningful results for comparison. The reason for this change 

was the larger size of the multi-process page control system. Nine 

additional pages of memory were· devoted to·penaanently'wired syst~m 

programs and data in the multi-process pag~ control. This meant that the 

primary memory available for holding user pages w~~' ~educed a 

corresponding &111ount. So that the siie of aain m•ory usable for paging 

by user processes wou;l.~ be. cotnp•rable in both ca•e•. n:f,ne additio.nal pages 

85 



were wired in the standard system and left empty. 

This modification did not make the size of the pageable memory 

exactly equal on both systems. The multi-process page control keeps a 

free list, and the number of frames on this list varies constantly as the 

core manager adds page frames and faulting processes request them. Each 

page frame on the free list reduces the amount of available memory 

available for paging; if, on the average, two page frames are on the free 

list, the effective pagable memory has been reduced by two pages. When 

the benchmark was run, the core manager was set to keep between four -and 

eight page frames free. (That is, when awakened, the core manager would 

keep freeing page frames until there were eight; the allocating procedure 

would wake up the core core manager when the number fell below four.) A 

very conservative estimate is that on the average three pages were on the 

free list. To compensate for this effect, another three pages were left 

empty and wired when running the benchmark on the standard system, for a 

total of twelve (the previous nine pages due to the increased wired code 

and data plus three to compensate for the pages on the free list). 

The results of running both systems are summarized in Figure 4.1. (1) 

The multi-process page control system took 8.7% more page faults. The 

increase in page faults is accounted for by three effects. The first of 

these is the inability of the adjustment described in the preceding 

paragraph to make the effective pageable memory exactly equal for both 

systems. The second effect is due to differences in the algorithms used 

(1) While useful for comparison, these numbers were obtained in a special 
test environment and do not reflect the normal operating performance of 
Multics. 

86 



Number of 
page faults 

Average time 
to process a 
page fault 
(microsec.) 

Total CPU time 
attributable 
to paging (sec.) 

Standard MIT 
System 

60,261 

1973 

119 

CPU time spent (sec.): 

processing 
page faults 

in core manager 
process 

in paging device 
manager process 

Figure 4.1 

Multi-process 
page control 

Actual Estimated 

65,504 65,504 

2043 1226 

307 184 

134 80 

141 85 

32 19 

Performance of multi-process page control 

87 



for page replacement, specifically in when pases are replaced. Since the 

multi-process page control evicts pages before the •ystem runs out of free 

page frames while the standard system only replaces pages when no free 

page fr•e• are left, the Pa&•• h~).d in ~~,I'Y .~t, •ny given time may 

differ. Given the same execution sequence'~ 'ct\anging the pages in aeaory 

will cause a different fault pattern and fault rate. Third, the average 

An~4ifference in 
< • ' 'I 

the time required for any event in a multiproceeaing environaent can alter 

the pattern of page faults by ch~I the ,~tents of ~- ~.,aor, .. 

Although the average tiae spent proceeeina a page faui,t r~ip.ed 

relatively constant, these times are aeaaured differently and are not 

directly comparable. $inice page t~laceaeq,t :in both ~:l,..fl. lllellory ~d the 

paging device is done at page fault time in the starUtar'd pag~ 'l:Ontrol, 

that time is included in the time to process ~ 1~~' .fe.,'M,~,' '~le ~.t.s time 
' ., '. ~ 

is attributed to the core manager or paging device naanag,~r iq. the 

multi-process scheme. Thus one would expect the tiae spent processing a 

page fault to be much less for t}\.e multi-process iapl'8.~~t~~ion. 

The fact that the time is not smaller is due tQ th_e o"°erhead of PL/l. 

In the standard system, all but a 811&11 fraction of 'the c'ocie~that runs at 

page fault time is written in as&embly language. In the multi-process 

system the situation is reversed, with tl\e large ujority of the programs 

written in PL/l. There are two sources of overhead attributable to PL/l 

assembly language are shorter and execute faster than the same algorithm 

written in PL/l. (In cases, the object code generated by PL/l may be a 

factor of two or three larger.) Second, and •ore illlportant, is the 

88 

---------------------



overhead involved in making a PL/l extern~! procedure call. In the 

assembly la~guage version, subroutine calls ~nd returns are made via a 

single transfer instruction. A mc:>re CQQlplex sequence is required in PL/l 

so that the stack and the PL/l environment are managed properly. 

In Multics measurements have shown that a PL/l external procedure 

call requires on the average 67 microseconds. This figure is for a call 

with no arguments; each argument passed adds ap,proxi•-tely two 

microseconds. The path followed after a pase .fault occurs in the 

multi-process page control involves .twelve exte1;nal call~. Using 1.0 

microseconds as an average tilll8 for one exte,ro.al call (i.e. assuming one 

and a half arguments per call), this means tQ.at a total of 840 

microseconds of the average 2043 11licrosecoud.s.req,u1red to resolve a page 

fault, or about 41% of the total, is due to the procedure cal1 o~erhead 

alone. 

A similar calculation shows that twelve PL/l calls are also executed 

in the course of freeing one main memory pag~ frame. Measurements from 

the benchmark show, assuming that all of the t;:lme spet)t by the core 

manager was spent freeing page frames (not strictly true, see 98Ctions 4.2 

and 4.3), that an average of roughly 2100 microseconds was required to 

free one page frame. Again, the PL/l call overhead was 840 microseconds, 

or about 40%. 

Using this figure of 40%, and reducing the amount of time spent by 

each component of page control in the actual benchmark by 40%, gives the 

results shown in Figure 4.1 as the estimated performance of multi-process 

page control. This shows the estimated performance improvement if all the 

external PL/l calls were changed to internal procedure calls. 

89 



There is a 8lll&ller eff«!ct due to·· the t•tittoit 6f certa:l:tl •tepa in 

each PL/l program. for e:Jtauapl~. ·'polrittta to cfata .,..._. ilay ha'ff to be 

initialhed it\ several preeederett' t••tft4·of jultt olYC!e •• id tile 49811i~ly 

language version of page cotttrol. ~titer &ctor 11' ·th ittcreaaetl 

percentage of proceaaor tt* 4ttribut•l• tG the' 'P*IUta 9fjtea ie the fact 

that some operations inclwhd ta "tile tot:al 'i:ble ·Clhlfltd. .··t:c; tlre 

multi-process page confr6l •- et ce\lfttM ~•llft••Ft~'oveft.eafl of the 

standard Multiet pa9ing sjatea··f-. 1see~t••"'•~11..td·#fi;J) ~!i'·Whil• ·1t i8 

extremely difficult tc eatiwate' the e:t1&4't itf :the" t:flD· fa~toril -ttn 

5-10% over the estimates in 1i'fttre 4.l. 

Achie•:tng a perfM-llaft"tt'l.,_l .._.tllng"or ~<tth& upon the current 

Multics page coatt:ol •• not a goal of tlle tnt<ill\tl81Hi'ltaticm. Howrever· 

it is the author's belief that the multi•proceaa iaplementation is not 

inherently lesa efficient; it could be~ '~h -~•·cOll~4'Tabh if 

appropriate pro-graming style w• used, iUcl\ es "Onl1·1iift'kig :bt'terttal 

procedure calla, 1'1\id\' Wltl-C• Pt.fl ~itp1•8lt:t'8 ~'-.ffialh'tly,· amt uaiag 

global varia"lee. 

.-'t 

4.2 The Interface with Segment Control 

Multics is a segmented system and has the concept of "active" and 
• '. l . - ,' • ·~ ~~', l 

"inactive" segments as discussed in section 2.1.4. This necessitates 

some extra function in page control, which leads to a more complex core 
·~ i : : ~~.,, 

mana8er and paging device manager than woul~ otherwise be the case. The 

90 



extra functions that must be added to page control, and the complications 

these extra functions introduce, are examined in the next two sections. 

4.2.1 Necessary Segment Control Functions 

The chief area of contention between segment control and page control 

is the page table. Page tables are allocated by segment control, but must 

be maintained by page control. When segment control wants to perform an 

action which may affect the page table words, it must call upon page 

control. In the case of the multi-process design of this thesis, that 

means the core manager and paging device manager processes. 

There are four segment control functions which affect page table 

words. These are: 1. Activating a segment, which requires the file map 

containing the permanent disk addresses of the segment's pages be copied 

into the just allocated page table. 2. Changing the size of the the page 

table (a "bo'llll.dsfault" in Multics), which requires the contents of a page 

table be copied into a new, larger page table when a segment grows. 3. 

Deactivation, which flushes the segment's pages back to disk. 4. 

Truncation, which deletes some or all of the pages of a segment, requiring 

the deletion of all copies of those pages in all levels of the memory 

system. 

Of these four, only two require intervention by the core manager and 

paging device manager processes. Activation does not, because a process 

cannot take a page fault on a segment until the segment has been assigned 

a page table; thus segment control can be responsible for initializing the 

91 



page table. Similarly, when a process extends the size of a segment 

causing a larger page table to be alloca'ted for it, the process can copy 

the page table itself, since no memory is allocated or deallocated the 

core and paging device processes need not be involved... On the other hand, 

both deactivation and truncation explicitly require memory deallocation, 

and thus the assistance of the memor1 ._P&IM°, p.i:_~~--s, 1'ho~ job it is 

to do memory deallocation. 

Deactivation requires the "cleaning up" of arty pages of the segpaent 

remaining in memory. Pages of inactiv• ftgtnen_ts ~~o.t .stay in main 

memory or on the paging device because the.re will no l?nger b.e page tabl~ 

words for these pages. Thus the pa.Jin&,, de'Vice m~ager. must p~:rfo~ reAd 

write sequences on any pag.es of the segmellt being de-4lctivated that reside 

on the paging device. AnY pages in mai,n m~~X'Y ~.t ali&o b~ e.v'-cted, ~nd 

the core manager must insure that the evicted J>a&~•::- •J'e p.ot put bac~ on 

the paging device. 

Truncation is somewhat easier in one re~pec.t, for no i/o neeci be 

done. Since the pages are being del~ted, copies .r~ei~i,tlJ on the .. paging 

device or in main memory may simply be dJscar4•d, •11d, .th.eir page frames 
. ' '.. . ., : ' ; . ~ , ' .. 

claimed and added to the appropriate free ~ist. AnY d,is,k copi,es of t,he 

deleted pages must also be thrown away, and the · d.~s}t records they occupied 

returned to the file system for fut tire reuse. 

4.2.2 Complications Introduced 

Since truncation and deactivation of segments' h~th potentially 

92 



involve main meaory and paging device memory daalloca•~~~:these Qperatioas 

are logical candidate• for implementatioft !iD the c91f::.;and.,pagil)I device 

manager proc•••es. Doing eQ ,neceesarily·complicates th•_.e_procesaea as 

they no longer perform a single task. They mt.ast·a.ow. be awakened wbea.a 

segment is to be truncated or deactivated to p•cform the ~ecesaary steps. 

This aeans when the core or.pagina·device.aaaager"!is 1tarted.$p, they avst 

determine why they were a•kened• and perfqm--the eorl'ec.t fuaction. Note 

also that. just sending a wakeup signal ii iaaufficient;,,110~e infoJ:11ati9n 

is i-equired in, the case ,of a truncation octdeac:tiY&iioth In both 

instances the segment on which the operation is to be performed must be 

specified; additionally for a truncation which pages are to be deleted 

must also be indicated. 

'ftlus the core manager and paging manager become message receivers, 

responding to interprocess messages from other processes to free page 

fraaes, tr\Ulcate specified pages or clean up designated segments. When. a 

process wishes to truncate a segment, a message is first sent to the 

paging device manager process, which deletes any copies of pages of the 
\f hj.?· .., ' . ~ f 

segment on the paging device, returning the page frames bound to those 

pages to the free pool. Upon receiving notification of the completion of 

this part of the task from the paging device manager, a message is sent to 

the core manager process. asking him to finish the job. The core manager 

deletes any copies of the segment's pages in core, adding their page 

frames to the pool of free main memory page frames, and signals that the 

truncation is complete. Deactivations are handled aaalogouely, with pages 

being returned to disk rather than deleted. 

An alternate strategy is possible and was contemplated for some time. 

93 



The truncation and deactivation functions could. be performed by· the user 

process, rather than aaking the-systh·proce .. eato perforarthen taslts. 

This has the advantage of keepin& the con aad;·pagtn1 device; manager 

processes simple, but distribute• part of tliNl f\Qtettoa of page c:ontrol 

back to the user. This implieadeall:ocati-on,of aemory:uy·be· goittg on in 

more than orte place·at a timta. Th•re is:claatly··a crad.,.off he11e··be.tween; 

making the systea· proceH more complex andF ehov"'*'.::,apatHllf. f\Uldtions back. 

process. 

4.3 Other Page Control Functions 
' ;·,-

In section 2.1 two other page control functions were discussed: 

memory reconfiguration and memory wiring. tn the context of the system 
• ' . ,;- 'Jf.' 

processes, memory reconfiguration amounts to adding or deleting page 
.'"· 

frames from the supply that may be allocated; memory wiring means 

guaranteeing certain pages will not be removed from main memory. These 

tasks, though of secondary importance, are also within the province of the 

core and paging device manager processes. 

The steps involved in adding or removing memory have already been 

described in discussing memory reconfiguration (see section 2.2.3). These 

steps are carried out by the appropriate memory manager process in 

response to a request from the process performing the reconfiguration. Ort 

completion, the reconfiguration process is notified. Hence reconfiguring 

94 



page frames presents no additional complications, merely increasing the 

number of functions the paging device manager and core manager processes 

must perform. 

Wiring pages (section 2.2.4) was implemented as a system procedure 

called by user processes. The only effect upon the core manager was to 

include a check for wired pages when choosing pages for removal. 

Implementing wiring in this fashion requires no action by the core manager 

process and was done largely for convenience, as the currently used wiring 

procedut:e could be used uncha•aed. Wiring could ~e d~;>ne .])y tb.e core 

manger proceas just as eaaily; becQllling an interprocess call instead of a 

sitlple procedure call. Abeol•te wi,ring1 however, must be illapl.-ent•d by 

the core.manager process ainc~ deallocatioa of aome pagea may,occur and 

special allocation techniques aay be neQ~&••ry. This ad4• an. extra 

function to the core manager process. 

Unwiring pages Ca!l ~e illaplemented.in the qore manager process or 

simply by procedure calls. The choice 'is largely one -of convtinience, To 

reduce the aaount of code rewritten for t~e teat i•pleaentation, unwiring 

was implemented without the intet'venticnt of the coi:-a manager process. 

95 



CHAPTER 5 

·: '"•. 

Eliminating the Global Page Table Lock 

One of the major 'benefits of having multtfil• p"roo•••e•- i11plement . the 

paging syatea is the abilitjr to eiaultUe<ot18ly .exeeute two proaa•aes 

performing page control functions. Th~• parMlle~l .. in the performance of 

page control functions is loet ,_ howe'ler 1 if a global l0¢k such •• used ·in 

Multics (section 3. 2.1) is used t-o -preveut clata 'D'•• eOl'lteatio'll• Since 

only a single process may have control of the ,lioelt, oaly one page control 

function may be executing at any mo1nent. Thia of e6urse prohibits 

handling several page faults in parallel. 

In this chapter a strategy for splitting the-global page table lock 

will be developed. By identifying the pro«••••• uling-each pasecontrol 

data base and which data bases each process may reference simultaneously a 

strategy using individual data base locks can be implemented. Such a 

scheme allows full advantage to be made of the multi-processing capability 

of the combination page control presented in section 3. 3.1, including 

simultaneous handling of page faults. 

96 



-. 

5.1 The Strategy 

One reason the global lock is used in Multics is that all page 

control functions are performed at page fault time. Thus a process 

handling a page fault Will first access the pa'ging device used and free 

lists, then the core used and free lists, etc. Since every user process 

taking a page fault m\l$t ac~ess all the page control data bases, •n the 

data bases are subject to data base contention. The global lock protects 

everything, even though some.data will no longer be referenced or are not 

yet needed. 

Hence a firu step in_ cJividing the global lock is determitting which 

data bases,are subject to contention. _Clearl,:y if a data base is accessed 
" '• . 

by only a single process that data base need'not be protected. Figure 5.1 

presents this information for the page cqutrot ~ata bases. For example, a 
, " ' . . ~ 

user process handling a page fault would have to access the core free list 

to obtain a free page frame to allocate to.th~·faulted-on page. Clearly 

the core free list must also be referenced by the core manager process 

since the core aaJ:l•ger is, the process responsible f_o;r, adding paa_e fraaea 

to the free li_st. 

Not surprisingly, all the data bases are used by more than one 

process. Pages are referenced not only by both of the system processes 

but also by user processes faulting on the pages. The other four data 

bases are each accessed by two or more processes. To allow parallel 

execution while preventing contention,- access to these data bases must be 

arbitrated in some fashion. A lock on each list is the obvious solution. 

Thus we assume a lock is associated with each of the' four littta; the lock 

97 

~-~----·----~ ---------------------------------------



Data Base --
core free list 

core \18ed list 

paging device 
free list 

paging device 
uaed list 

Referencing 
PtOC!IB 

core manager 

user process 

core manager 

user ptoce88 

core ma11ager 

paging device 
manager 

core mat'laget 

paging device 
manager 

pages core manager 
(page table words) 

paging device 
manager 

user process 

Figure 5.1 

Reason for access 

add a free page frame 

obtain fi;ee .. Pa$e frame 
to refoivll 'page fault · 

chose page frame for 
de&ltoc•tton: 

add ae•ly allocated 
page fraae 

obtain free page frame 
for allocation to page 
teiloved froa core · 

add·a ftee page·frme 

add ttewly allocated 
page frame 

chose page frame for 
deallocation 

when doing main memory 
pas~ repla~ement 

when doing paging device 
page.replacement 

when resolving page 
faui'ts 

Processes accessing page control data bases. 

98 



must be set before access to the corresponding list is allowed. 

Similarly a lock will be associated with each page, and the lock must 

be locked before operations may be carried out on the page (a.g. 

resolving a page fault). This of course is not new; Multics already has 

such a per page lock. 

With multiple locks, precautions are necessary to preclude system 

deadlocks. Thus a second importadt step'in eliminating the global lock 

and replacing it with distributed locks is determining under what 

conditions a process needs to lock more than one data bas•. If such 

conditions never occur, a system deadlock cannot occur due to two 

processes waiting for locks held by one another. 

Situations where a process needs accees sfaultaneously to two objects 

protected by locks occur frequently, as shown in Figure 5.2. For 

instance, any user process taking a page fault must lock the faulted on 

page mile the page is read in, and while the page is locked the process 

must access the core used list to add the page to the used list. 

At this point the next step is to develop a locking protocol defining 

allowable actions on the locks which guarantee system deadlocks cannot 

occur. We will use the standard Multics avoidance strategy which involves 

a "locking hierarchy" and "waiting rules". !he·· loeking hietarchy states 

the order in which locks are locked. This insures that if two processes 

both need locks A and B then both processes lock these locks in the same 

order, preventing one process from locking A. and waitina for B while the 

other process locks B and waits for A. The waiting rules state when a 

process may wait for a lock without giving up the processor (i.e. when 

waiting may be "busy" waiting, done by repeating the attempt to set the 

99 

------------------------------ -- ----- ----



Proc1s1 

user process 

cc:>re aanaaer 
process 

Data Bases 
19. )!._L9ck1d 

page 
core used list 

page 
.eor.e fr.- 11"$;; 

page .,,, 
. -·"' 

core used list 

pase 
P•gJ.a,a ,c:h1v1-c;~b _. 

free list 

p.agiq device paae 
manager process paging device 

~d-li~ 

Fi1ure S.2 

100 

-. 
Situation Requiring 

- ' .ll&i;)~,Btg!:l!.- lc2~k•d. 

Adding a page just allocated 
a page_t~~e,~o. the used.list 

-- .. 'A.sk.ing for, a page frame 

·:<cmlO ·,~.\~a~e"~~T• P•&• that 
haa been faulted on 

R.e•9v~ng ~r~_the uaed 
list a page that is to be 
~....,,.4'9 ·; fcoa"l"in, .. .-eiaerY 

Requesting a free paging 
,~f~ise,, t•• ~,_.;~,.i•. •!locate 
to a page 

-· t Dtt~ttJ.JJ~ (!;ott the Ul•tl • 111.:lt 
a paae that is being removed 
«~~ t;~e.,p&"8iU:deYi~ used 
lilt 

' '~I 

-------- - --- ---- ----------



lock until successful, as opposed to non-busy waiting, implemented in 

software and requiring the process to surrender the processor). Thus a 

process must not be allowed to surrender the processor (block itself) with 

a lock set if some other process might perform a busy wait on that lock. 

It is not difficult to determine what the protocols must be. From 

Figure 5.2 it can be seen two levels of locks exist -- the locks on the 

four lists, and the page locks. A process needs to have only one of each 

locked at a time. Clearly, the protocol must require locking the page 

lock first. For example, after a page fault, the process taking the fault 

must lock the page before accessing the core free list to allocate a page 

frame. This is to insure another proces~ has not already begun allocating 

a page frame to the page. Hence we have the following rule defining the 

locking hierarchy (order of locking): 

A page must be locked before attempting any operation on the page, 

and before that page may be added or removed from the core used or free 

list, or the paging device used or free list. 

The waiting strategy is largely determined by the relatively long i/o 

times. That is, pages must remain locked while read and writes from and 

to the paging device and disks are in progress. Hence pages will be 

locked for long times, making busy waiting on page locks hopelessly 

Ws.steful of processor time. (In addition, a process looping on a page lock 

could prevent the process that wished to unlock the page from ever 

executing and thereby freeing the lock.) Thus a process wishing to wait 

on a page's lock must block itself, giving up the processor. Note the 

hierarchy rule given above implies a process waiting on a page lock cannot 

possibly have one of the four used/free lists locked. 

101 

---~--~------------------



There is a further question of what to do if a process needs to lock 

several pages of the same segment simultaneously. Such a case may occur 

in performing such functions as deactivation or truncation (section 4.2.l) 

that operate on all pages within a segment. Usually such a problem may be 

solved by locking each page in turn, performing the necessary actions on 

the page, unlocking it and continuing with the next page, etc. In Multics 

this method is adequate, however if it is not sufficient, locking the 

pages in order by page number imposes the necessary lock ordering to 

prevent deadlocks. 

For the locks on the used/free lists, busy waiting is not only 

possible but desirable. These lists need only be locked for several 

instructions, as long as required to add or delete an entry. Thus wait 

time should be minimal. Note assuming busy waiting here implies a process 

never gives up the processor with one of the four lists locked; that is, 

the add/remove operations must be non-interruptible. 

To summarize, the rules for waiting on locks are: 

l. A process must block itself while waiting on a page lock. 

2. A process may block itself with a page lock locked. 

3. A process may busy wait on the lock associated with any of the 

four lists of Figure 5.1. 

4. A process may not block itself with one of the four lists of 

Figure 5.1 locked. 

The last two rules are enforceable by requiring all additions and 

deletions to the lists be made using system functions. This has the added 

consequence that the callers need not even be aware of the existence of 

the locks or the rules. The primitives themselves are written to obey the 

102 



protocols. Indeed, if the used/ f.ree li&ts: could .be tapl~ted without 

locks by carefully cb00a1n:g their structure, dae: lase two· ru~ wquJ.4 be 

unnecessary. Thus the illpleaentation would, be. transpa1ent t;q: .tlle u,.eer of 

the primitives. 

In other cases, following the1te rules .. , requir•· kaowl~ge,0.f the 

implementation of certain syaUaa ~ationB,. In. pa:cti~.ul;ar., ~tion ).3.1 

discussed iapleaeatation of the i:-outine that:· alloc•t••. fJ;ae IN'i• ,£rues. 

The approach ch&sen iltl10lves blocking the calling :1troez:•.•s if ,thel'~ are: no 

free page f'raaes. Proc•sses using· 11uch ·aa .allocation ,routine •~at be 

aware that they aay block ebemsalva by c:allwa tber,allo<iation routine, 

and ensure' this would uot ·violate the lock:t.ng ·rule•. 

How do these rules manifest themselves in practice? Consider the 

core manager while attempting to free page frames. He attempts first to 

lock a page. If the core manager fails in this att811lpt to lock the page, 1 ., 
I , , . . . , I , : 1, 

1 · ~e merely fri~'aj anot~er ;page, ori the Ju~ed list. 
'. ' 

(If he really must have 

this particular page, by the rules above he must go blocked.) However 

assuming the core manager succeeds in locking the page, he may then 

examine it to decide if it is a good candidate for removal. If the core 

manager decides the page should be replaced, he reaoves it from the used 

list (locking the core used list while doing so), gets a paging device 

page frame to write the page to if the page is not already on the paging 

device (locking the paging device free list mOllentarily) and starts 

writing the page. The core manager may then block himself until the write 

completes, at which time he adds the paging device page frame to the 

paging device used list, unlocks the page, and finally adds the now free 

core page frame to the core free list. 

-------------



A process taking a page fault blocks himself if he cannot lock the 

faulted-on page. When the page is unlocked, the process will be awakened 

and can try again. When the process succeeds in locking the page, he can 

then determine if the fault still needs to be resolved. 

Adopting the scheme outlined above will indeed permit not only 

simultaneous execution of both system paging processes (or multiple 

instances of system processes) but also parallel execution of user 

processes handling page faults. As long as user processes do not attempt 

to resolve faults on the same page they will not interfere with one 

another. Waiting for data bases is minimized because the data bases 

(lists) need remain locked only while items are added or deleted. 

5.2 Locks on Segments 

The locking strategy presented in the preceding section is 

insufficient in a segmented system such as Multics. This is because 

certain information about each segment is maintained by page control. For 

example, the number of pages of the segment that are currently in main 

memory is one such item of information. In a per page locking scheme, 

there is no way to protect such data without additional mechanisms. For 

example, a process faulting on a page will need to increase the count of 

the number of pages in core for the page's seg~ent; if simultaneously the 

core manager process is evicting a page of that segment it must decrement 

the number of pages in main memory by one. A race condition may develop 

leaving the number in an inconsistent state. 

104 



Anotb4r exmaple of per aegaent infor-.tion,which page con~ol 

maintains in Multics is "quota". In Multics,, .quoca ia an upper U.ait on 

the nu.nber of pages the aeglnenU of a directory aay coau:l,.n. (Mu:ltics has 

a hierarchical file system llhere all segment• are cataloged in special 

directory aegaents. A directory' a quota reatrtcta/tbe ailount of storage 

that may be conswaed·by segments within that directory.) Page control 

must keep track of t~a quota as well as•the nU11ber of pages used by the 

segments in the directory. A full discussion of qt.iota is postponed to the 

next section. 

Thus in practice a aepeated system wonld·neecl. to add another level 

of locks, n .. •ly per ae .. ent locks, to protect,the information associated 

with eacb segment and •anipulated by page control. It should be 

emphasized that although the term segment lock is .used, these locks are 

used onl:y l:ty page control and not by sapent control. Segaant control may 

need to use some sort of lock for propes iaplea,ntation,of, its functions; 

however. the aepent locks discussed here are not intended for such use. 

The per segment locks diecuaeed here are not locke-oa. the segment, but on 

the paae control information aHociated witb,each aegllent. Iapleaented 

beneath segment coatrol, segaent control should not be aware of their 

existence. 

How should these per sepent locks.be.iaeorporated? One,aolution 

would be to use the per sepent locks iu place of the per page locks. In 

this scheme, access to all of the pages comp?iaing the segment as well as 

to the per segment information, would be controlled by the '"'gment lock. 

Having a single lock control all the pagea in a aep•nt 11eaaa that once a 

process has locked a aepent while processing a paae foault. no other 

105 

------~--



process could perform any action on that: aepent (a .• g. fault on: another 

page, remove a page of the segaen t froa · core) until the page fault had 

been completed. Note, though. this restrictton would be acivahtageoua 

under certain circumstancea; i.e. when·perfocatnc aagaent operatioa aoch 

as truncation or cleactivatiou. which of)flratea on· ·aU. of the page• of the• 

segment. In such caaea leclln& the segment clocJt.allowil··;the..eutire 

operation to be performed, where, in a pes•.page1 loe•1aa: seheae eacb page in 

the aegaent aust be locked. 

A better strategy is to implement the segment locks beneach the page 

locks; in the saae manner as the lock.a on ·tlle,~qed and. free· lists. . The 

segment locks, like the loc:ka on the list•;·••eed •ally be.lock8'4 for a ··few 

instructions while the per segment inf9i:aattoa ta; Ufdated. The rules 

applying to the locks protecting the used and .fi:ae. U.ata m.ust also be 

observed for the segment looks. That ta, a proee•• aay loek a segment 

only after the page (if any) the process 1a·oparating'on;iB already 

locked. Segment locks can be busy waited on.:, but a proeeas aust ualock 

any segments it has locked befora abandortintr·th• ,procaaaot. 

Thia strategy of iaplementi~8 the ae111eat·locka does not conflict 

with tb.e implementation of the locks on the !r.ee aad uaad list• :because a 

process never needs to have one of the lists and a segment locked 

simultaneously. (If such a situation did ariae1 appropriate ordering 

rules would prevent deadlocks.) Happily the add~tion of per-segment locks 

does not place any restrictions on what page control functions m4y be 

executing in parallel. Several user page faults ••Y still be resolved at 

once; if by chance page faults oft two pages of dle .. same segment are beinff 

handled, at worst one process will wait 11lG11lMIUrily. 0;m11e the other has 

106 



the se-.nt .of interfMt locked .• 

5.3 Multics COllplicatione 

The per segaent locking strategy juat described for Mu.ltic• baa not 
, i j • -z ' I · ~ , 

been implemented. Thie section discusses two complications which 

prevented the segment locking scheme from being added to the multi-process 
• -i .l t.~ d:-" ~ t' ·: .' :.· ... ~).u! ;_ l"'. 

implementation of page control on Multics in the time available. 
·•,; ,. ;'.. ·'' I 

The first problem is ensuring that the global page table lock is not 

being used in obscure ways by programs knowledgeable of its function to 

protect data against contention. In fact, one good argwaent for removing 

the global lock is to force such assumptions to be made explicitly. 

Knowing that a global locks protect& many data bases makes it very 
'. . ... .. ; . ·'> .. ~ ·"·; 

tempting for a programmer to take advantage of the global lock by using a 

certain location in a data base as a temporary because he "knows" the 

global lock protects that location against any other use while he has the 
/, '. ;:f; I 

lock set. 

As an example of a hidden uae of the global page table lock, consider 

the following from Multics: Requests to the bulk store paging device for 

i/o are queued as they arrive for actual execution later. The queue& kept 
:1 .. • »!L r· ··.· 

are protected only by the global page table lock. That is, the code is 
·. '· 

not written to allow several processes to be accessing the queues 

simultaneously. Removal of the global lock could therefore result in 

errors in these queue• unless a separate lock were ac:lded to protect the 

queues. 

107· 



Unfortunately such assumptions are not uavally~ented. They are 

not discovered until such tille aa they result in a fatal syatam. error of 

some type. 

The second source of difficulty is the Multics implementation of 

quota. Actually, the problem is caused by the interaction of three 

features: quota, the hierarchical file structure, and dynamic segment 
, , {· 

growth. There are two numbers associated with each directory in Multics; 

the quota or maximum number of pages (disk records) the segments of the 
.. , 

directory and inferior directories may occupy; and the records used, which 

is the actual current count of storage used. A directory may be specified 

as having no quota, in which case any quota placed on superior directories 

is the only constraint on the directory (e.g. if directory beta is 

immediately inferior to directory alpha and assuaing alpha has a quota of 

100 and beta has no quota, segments in beta can never occupy more than 100 

pages). 

The crucial factor is that Multics allows dynamic growth of segments. 

By merely referencing a non-existent page of a segment a process can 

create that page. Referencing the non-existent page causes a page fault, 
. ' 

and page control creates a page of zeroes. At this point trouble arises, 

for this creation must be reflected in the records used count of the 

segment's parent directory. Thus, while the segment the page fault was on 

is locked, the segment's parent directory must also be locked to update 

th.e records used count. If the records used is less than the directory's 

quota, the creation is valid. However if the records used would now 

exceed the quota, the page may not be created and page control must notify 

the faulting process of an error. The situation is complicated if the 

108 



--·-··~---•-----~·- - -·· e-~'---·-~ --• 
·-.-, h.~; -. 

segment's parent directory does not h&VfJ, a q_uota littit, in wb-i~ case the. 

directory'• parent aust l:>e cneclted, etc., ~atil • superior dir~tory i.s 

found that does have· •uch a limit. At each •te,p, up tile ,!iierarchy, the 

directory (which is, of c-.&ree, • eegllent) avJtpe ,i...c~d.in orp,er to 

increment its records .ued. count. · Wh~n, a diJ-.c~o.ry lid.th a. cw.o-ta. is found, 

the check can be made. 

The difficulty arises in lock.in& all, t~e a~nf.8 ~t. t~ same time. 

is being changed. Since lockiag the direetoJ:'J.44' i.•-.-J.""ys from the; b.ottOJ!l 

up (in terms of" th.e hierarchy <tr•e) , t\\Of# i.a no daaa~ ot a ~~ocll,,'. 

But recall that the previously presented locking rules forbid a. process 

from blocking itself with any segments locked. Hence if at any point, a 

process cannot lock a particular directory in its search for a directory 

with a quota limit, it must unlock all locked segments and block itself, 

starting over again when awakened. 

Of course, when pages are deleted (e.g. by a truncate operation), the 

records used must also be updated in a like manner. Multics further 

complicates matters by always deleting pages of zeroes. That is, if a 

program or data segment has an entire page of zeroes anywhere, that page 

of zeroes is automatically deleted each time it is removed from main 

memory <(and. recreated upon next reference). This is done on the 

assumption creating the page is faster than reading an~ deleting is faster 

than writing, and that disk apace will be saved. There is an impact of 

this decision on quota, in that such a page of zeroes is only charged 

against quota when actually in core. 

The implementation of quota and the deletion of zero pages complicate 

109 



the page control algorithms, and especially the locking strategy, 

tremendously. Various simplifications are possibi*; for example: do not 

allow segments to grow dyna11tically, or allbw them to grow dynamically but 

insist a maximum size be specified and always comt that aaaxiaum size 

against the quota (thus no change is needed in records used when a page of 

zeroes is created). Explicit operations could be used to change the·aize 

of a segment instead of having page control do the work aut"omatically. 

Unfortunately all such solutions have tloti~le effectts on the system, 

and would change its f11llcti-enality. The is.,_. of quota, it·• 

iapleaentation and impact on the s~tem, ta· quite 1:-..plex and is still 

being studied. 

110 



CHAPTER 6 

Conclusion 

Thia thesis has presented a design.for a system that impleJlents, a 

virtual memory using asynchronous, cooperating 8equent:!,al processes. 

This design was demonstrated to offer significant potential advantages 

over other designs in terms of simplicity, 1'lOciularity, system and user 

security, and degree of expandability. 

The proposed system wal!I built and tested on the Multics sy•tem. The 

implementation showed the feasib;Uity of the design and the validity of 

the clailaed advantages. 

It is felt that the ·techQ.ique of exploiting par.a.lleU.sll iD performing 

system tasks by implementing those tasks as ••veral cooperating sequential 

processes is extremely important and powe-rful. That this method can be 

made to work in practice and lead to operating systems whose design is 

simpler and better structured is the most significant result of this 

thesis. 

The Multics system offers several additional examples of places where 

a system process could be incorporated to perform tasks currently done by 

the user process. For example, section 2.1.4 mentioned that page tables 

are multiplexed among segments in the same fashion that page frames are 

111 



multiplexed between pages. Currently, when a segment is activated, if no 

page tables are available, the user process must execute a "replacement 

algorithm" which frees up a page table by deactivating some other segment. 

The similarity with page replacement is obvious, and a system process 

could be used to keep a free pool of page tables in the same fashion as 

the core manager does for page frames in the design presented here. 

There is much that still can be done in this area. The test 

implementation could be greatly improved if the Multics scheduler were 

redesigned to truly implement system ptoc-ea*8•·tb•t could be scheduled 

without the considerable oYerheild of the cu•reat aatleduler. The 

per-segttent locking strategy ptopoaetl ift eectto'ft4.4.ol'V0Uld.9reatly 

improve the perfotmance of multt-proee•• pase eon.ere! t.a auitlple 

processor systems. 

Finally, it is hoped the success of tne impl .... tatioa reported here 

will encourage other such attemt'ts, perhap•·aieaj 1:1\e ltuea of Boare'e 

proposed system or Saxena and Bredt's system, to see·tf the diffleelties 

concerning those systems 111entione4, in sect-I.~ l. l. ! an• 3. 3. 3 ·call· be 

overcome. It would he intereeting to contpa~e: iapl-.ntatione. of,:aucn, 

systems, or newly propoeed systems,· With t:h&t.:gi¥• her•• 

112 



Bibliography 

[C174] Clark, David D., "An Inp¥t/Output Architecture f<>r.Virtual Memory 

Computer Systems", MIT Project MAC Technical Report TR-117, Cambridge, Mass., 

(January, 1974). 

(Co69] Corbato, F. J., "A Paging Experiment with the Multics Systelll", ..!!!, Honor 

of!.· M. Moree, M.LT. Presa, Cambridge, Maas., 1969, pp. 217-228. 

(Da68] Daley, Robert c., and Dennis, Jack B., "Virtual Memory, Processes, and 

Sharing in MULTICS", Communications of the,ACM, vol. 11, no. 5, (May, 1968), 

pp. 306-312. 

[De66} Deanis, Jack B.i1 and Van Horn, Earl. c., "Progr1Uuaiag SeNatic• for 

Multiprogramaad Computations", Communications of tlte ACK, vol. 9, no. 3, 

(March, 1966), pp. 143-155. 

(Di68a] Dijkstra, Edsger w., "Co-operating Sequential Processes", f.rnrasy 

Languages, F. Geuuys editor, Academic l'ress, ·New York, 0963), pp. 43-112. 

[Di68b] Dijkstra, Edsger W., "The Structure of the 'THE' Multiprogra•1ng 

System", Communications of the ACM, vol. 11, .no. 5, (May, 1.968), pp. 341-346. 

113 



_:,·1-' 

[Gr75] Greenberg, Bernard S., and Webber, Steven H., "The Multics Multilevel 

Paging Hierarchy", paper presented at the IEE! INTERCOM Confer~nce, Nev York, 

New York, (April, 1975). 

[Ha70] Hansen, Per Brinch, "The Nucleus of a Multiprogr811111ling System", 

Communicatios of the ACM; vol. ·13, ne. ·4• U1p,ril., 1'970);, PP*'·.:238•!41. 

[Ho73] Hoare, C. A. R., "A Structured Paging System", the Coaput•r Journal;· 

vol. 16, no. 3, (August, 1973), pp. 209-215. 

[Ho74] Hoare, c. A. l't., "Monitors: All O.,.rattag_ Systt• S'ttueturi~a· Coacept" • 

Communications _2!. the ACM, vol. 17, no. 10, (Octob•r, 1974), pp. 549-557. 

{L172] Liakov, Barbara H., "The Design of the VeauaOper•tlng Sy•t•"• 

C01111unicatioll8 of l.h!.~· vol. 15, no. 3, (March, 1972), pp. 144•149. 

{Mu72J Murphy, D. L.; .. Storage Orgaai&attoa. attc'Maftageaant in TKIU"., A.PIPS 

Conference PToceetlinga, ltt ~ vol. 1, (l'all .totut 'Gcmp\lttt·:Confenace. 1972), 

pp. 25-32. 

{Sa75] Saxena, Ashok R.., and Bredt; Thoaas H., "A Structuted Specification of 

a Hierarchical Operating Sys·tea", Pt:eceed·tnaa of 197.S' ·CoafereG.ce on Soft:ware 

Reliablity, (May, 1975), pp. 310-318. 

[Sc72} Schell, Roger R.., "Dynaaie Reconfiguratioa in fl"1Mbclular Computer 

System", MAC-TR-86, Project MAC, Cambridge, Maas., June, 1971. 

114 



[Sc73] Scherr, A. L., "Functional Structure of IBM Virtual Storage Operating 

Systems Part II: OS/VS2 Concepts and Philosophies", IBM Systems Journal, 

vol. 12, no. 4, (1973), pp. 382-400. 

[Sc75] Schroeder, Michael D., "Engineering a Security Kernel for Multics", 

Operating Systems Review, vol. 9, no. 5, pp.25-32. 

[Wh74] Wheeler, Jr., T. F., "OS/VSl Concepts and Philosophies", IBM Systems 

Journal, vol. 13, no. 3, (1974), pp. 213-229. 

115 



APPENDIX A 

Changes made to standard page control 

Changed Extensively 

page_fault 
post_purge 
pc 
pc_abs 
pc_contig 
pc_ wired 
freecore 
delete_pd_records 
wired_plm 
evic t_page 
page_error 
initialize dims 
init sst 
pxss 

Changed Slightly 

bulk store control 
disk control 
free store 
pc_trace 
wired fim 
wired shutdown 

116 

Modules Added 

page_fault_pll 
core_manager 
pd_manager 
read 
write 
core free list 
core used list - -
pd_free_list 
pd_used_list 
utility 

Modules Deleted 

pd util 
get_disk_meters 
meter disk 



APPENDIX B 

Components of Multi-process page control 

Source ()bj~t 

!!!!!. Language stateunts length 

page_fault alm 560 580 
page alm 28 116 
device_control pll 136 896 
bulk_store_control alm 369 386 
pc_trace alm 45 68 
free_ store alm 133 138 
read pll 62 318 
write pll 192 956 
evict_J>age pll 39 142 
page_error alm 217 349 
post_purge alm 126 126 
get_disk_meters pll 12 22 
disk_control pll 247 1412 
pc_wired pll 70 312 
page_fault_J>ll pll 32 170 
pc pll 294 1740 
core free list pll 54 290 
core used list pll 49 Zl2 
pd_free_list pll 53 230 
pd used list pll 40 180 - -core_manager pll . 282 1224 
pd_manager pll 179 724 
pc_contig pll 16 80 
utility pll 62 384 
quotaw pll 85 310 
thread pll 33 128 
get_ptrs_ alm 37 88 
pc_:..trace_J>ll pll 85 812 
pc_abs pll 17 160 
wired_plm pll 45 162 
delete_J>d_records pll 75 416 
freecore pll 14 66 

alm: 1515 
pll: 2173 

3688 13, 277 

117 



Components of standard page control 

Source Object 
~ Layuage statements length 

page_fault alm 1592 1616 
page alm 34 112 
device control pll 118 134 
bulk_store_control alm 369 376 
pc_trace alm 45 252 
free store alm 133 142 
evict_page pll 147 168 
page_error alm 376 614 
post_purge alm 145 146 
get_disk_meters pll 12 116 
disk control pll 247 1478 
pc_wired pll 71 254 
pc pll 389 2144 
pc_contig pll 69 320 
quot aw pll 85 310 
thread pll 33 128 
get_ptrs_ alm 37 88 
pc_trace_pll pll 85 .8.12 
pc_abs pll 69 328 
wired_plm pll 36 152 
delete_pd_records pll 111 $46 
f reecore pll 34 140 
meter_disk pll 72 68 
pd_util alm 394 402 

alm: 3423 
pll: 1280 

4703 ~o,866 

118 



···:-

APPENDIX C. 

Code from multi~procaea page control 

The following code is taken directly·f".om the iaple11entation of the 

multi-process paging system impleaent:ed on *l-ti¢.a. ,aa .qescribed in Chapter 

4. The procedure "paae_fault_pll" is the.code e•~~t.,i b.y the user 

process at page fault time; the procedures "c~re_.JN,nagei:" a~d "pd_mao.ager" 

are the procedures executed by the core ancl;p.4-<.aaiw.ger pt:oc.eaaes 

respectively. While some code has been omitted· (chiefiy lower level 

subroutines and setplenc operations such ae deactiva~ion. trueation, 

wiring, etc.), no other changes have been made; all the prCJgram.,. listed 

were actually run on the Multics system. 

The normal operation of the system is fairly str.dghtforward for the 

most part and·: follows tM ide•• already presented. P-.ge., f•ults aie the 

event wfoh drive the entire system.· On the, occun:f!llce of a page fault, 

the page fault code is invoked. After det&raining the page causing the 

fault, a call is made to allocate a free co~epq,e frame. The allocation 

procedure is ultimately responsible for drivta.g the core manager proc.,._.s, 

for when the number of free page frame.a falls too low, a wakeup is sent to 

the core manager. On receiving this signal, the 'core 11anager selects an 

in-use page frame to be replaced and writes the page held in the page 

frame out of main memory. After waiting for the write operation to 

complete, the core manager adds the now free page;.~rame to the free 11't. 

119 

------~------



The writing step may have several results, as an attempt will be made to 

write the page to the paging device. If a copy of the page is on the 

paging device and the page has not bee. waoclified, no write operation is 

necessary. But if the page is not yet on the paging device, or has been 

modified, a write must be perfot't88d. In the fonmt' O:a&J!, a call must be 

made to allocate a paging device page frame, and this is the act which 

ultimately activates the pagit\8 device 114n•8H'· :When .th~. AJUoca.t;ion code 

notices too few pagfog dfiice page fr.._,,u. avai~le •. a wa)teu.p a:lgna.l 

is sent to the paging device 41fl1M.ger. .,After r.eceivi;M the·,~eup the pd 

manager chooses a used pagiug devi.ce pap f~~ .·t• ~rettqve ;alld perform~ a 

read write sequence if ne4&ssary .(i.e. if .th• .. pagiq·.:4•v~~e copy-has been 

modified with respect to tha ·disk copy of the page. or.:Uithere is no disk 

copy). When the read write ·•equence ia U.niabecl,. .tb• ,~g,_e f;r11-me is adde4 

to the free list. 

Both the main memory replacement algoritlla •ntJ. tti. paging device 

replacement algorithm operate in a least rec1ent1y·\lll~ (LiU~ fashion. The 

Multics hardware k~a mo4i.f1M aa.d used bit.a in .c:Ji~ .pqe ta.b,J,e word as 

mentioned in section 2. 2. 2. EaCh uaed. J4,.a .. J.s iapU-4t~ as a doubly 

linked circular list .o,f entr.:l;es,, with a ,pointec .W· ~ least :r~cen(ly used 

item. This pointer ident.t.fies the f!l.rst Paatl; ;f~•· ~-~ned ,when one i~ 

to be chosen for deallocation. 

The main memory replac:ement algod,thm $X~miAe.s the Wied list unt.il a 

page whose used bit is off is found•· Any p._.. ~d.at ~ring this 

search whose used bit is ou has· the bi.t t~~ .;0:££. ·Once such a page is 
j • • -

found, it is a candidate for rem.ov•l. (.Certiain oth"J: .~hec\(s are :made, for 

example to insure the page is not eur.reatly lack•4 .becaQse it is 

120 



undergoing a read or write opera.tion.) As p~ges ar.e ex.~mined, the pointer 

to the least recently used item is advanced so that after the page to be 

removed is selected the page frame immediately following it in the list 

(i.e, the first page not looked at) b.ecomes the lea~ recently used page. . . . - . 

When pages are faulted on and read in, they are pla.c.ed i~ediately behind 

the page pointed to by the least recently used pointer; this makes them 

"most .recently" used. 

The paging device used list is managed in a similar way, however 

there are no used bits associated with paging device pages. Thus rather 

than searching for the first page on the paging device used list with a 

used bit off, the first page that is not, C\ln;el)t,ly also. i~ main meinory is 

selected for removal. The ~ationale for ~hi,• dec~sioti, .b that the page is 

in use if in core, .thus ahould not; be r-.move4. ft:()lll. the pa,ing device. 

Note since the page is in main ,iaemory, sooner or :l.at:,er it will be evicted 

from main memory, and the eviction will be made easier and faster if the 

page is already on the paging device. When a page is read from the paging 

device to satisfy a fault, that constitutes a use of t~e page, so it is 

moved to the most recently uaed position in the used list. Similarly, 

when page• are first written.to the .paging d•v:l:~e, they are ent;ered into 

the most receutly ustn~ spot. :i;n, the list .• 

The code that follows makes use of several data bases that are given 

rather cryptic names. The comments in the code of~~~ tefer to these data 

bases. Th.e list below e~plabe the meaaia&A)f ••~h aibbreviation aud the 

purpose of each data base. These data basee •~e 4e(iP.ed by PL/i 

structures. In the actual cQd.e. a atate1114i.it of,the<fol'tn "lincl~e ••t;" 

causes the PL/l structure .declarations for t~• data base<, "••t" to be 

121 



included in the source file by tht! c<?B1Pil~i ._t, cotlitf11'ation 't!i.lltt. 

v •. 

1. ast - active segment table 

The actiV'e segment table contains dtte eritfy (an "a•te'', or "active 

segment table enteyt') for each active hpeitt '!ti tfte ~stem. '!ach aste 

consists of all the page table words ·for pagea of the segment· phle 'ttte ptfr 

segment information kept by pa1e control auch aa ••....,rt length; qudt:a, 

etc. 

2. cmp - core map 

Each page £tame is described by· a "cofe aap''1!ntr'y11 (''cme'') in the 

core map. The c~ . contains the infotmition anorl~ted -.ttb the; pag~ 

frame, e.g. a point-er to the page t4b1e *1rd of ·t'fte P-•1e allocated th•• 

page frame. The corti u••d and free liata""ar•'rllerily"-':EidMd 1istl of 

cme's. 

3. pdmap - paging device map 

Each paging device page frame is deacd.1t«4 by a 0 pdae", ·or 0pag1~g 

device map entry", in a manner anillogoua to the-"c!drt1""map eiltrie•• i 

Similarly, the pd used and free list.Ii &r-· lialecl'JJlf:ata·of,~piae"s. 

4. ptw - page table word 

Each page of an active segaent is deacti'hed ·by .t·page table word 

which contains the current Address of-t1te·e~y of'thi t'•ltt h1&heat ill the 

memory hierarchy; i.e. a core address if the page lti in cO-te. otlw!nriee-a 

paging device addrel!IS or if the page is not on· 1!he '4&:i:Ag device, a cli•lt 

122 



address. Used and modified bits, a lock bit, and a fault tag are also 

kept in the page table word. 

5. sst - system storage table 

The sst is the primary page control data base. It contains not only 

the core map, the paging device map, and the active segment table, but 

also all other page control variables and constants such as pointers to 

the beginning of the various free and used lists, the global page table 

lock, etc. A large portion of the sst is also devoted to metering 

information (number of page faults, number of read write sequences 

performed, etc.). 

123 



page_fault_Pl11 procedure (rel_astep, rel_otpt returns (blt (18) allgnedt; 

1• This routlne acts as an interface between the ALH oage_fault code and 
tne 011 read aodule. It ls cal led by t~e oage_fault code when a read 
llUSt be done on the page that •ret_ptp• polnts to (•ret_otp• ls offset 
of page table word 1n sst) of the seg•ent whose ast entry ls polnted 
to by .. rel_astep•. This procedure al locates a block of core for the 
read ano fills the 1nforaatlon concerning the oage required by 
the read aodule lnto the altocated c••• When t~e read complete$, 
tne cae ls put on the core used I 1st. This procedure also chechs for 
the POSSlblllty of quota overflow, returning to the ALH oage_hult 
code lf ~page ls to be created and there ls lnsufflclert quota to 
do so. The ALM page_tault code then slgnals the quota overflow. 

Nrltten 8•1•75 by Andrew R. Huber for •ult1-orocess page control. •/ 

declare rel_asteo blt (18) aligned, 
ret_ptp blt (18) al lgned, 
pasteo ptr, 
pdslquota_lnhlb flxed bln ext, 
Pdsloage_fault_data fixed bin ext; 

...... declare laddr, addrel, fbed, auttlply, rel) bulltln, 
s; core_free_t lstSal tocate_c .. entry returns Cotr) • 

core_use~_llstSadd_used_c•e entry Cptrt, 
raadlpage entry CptrJ; 

X.lnctude sst; 
XlncJude c•PJ 
Xlnclude ptw; 
llnchade ast; 
Zinc tude ac; 

1• Rel. ptr to aste of seg. of feulUng page•/ 
!• R-e I• otr to page tabcl e word of hul t lng Page •/ 
1• Pointer to parent•s este •/ 
1• Mon•zero •etns lnhlblt quota checking •1 
1• Saved aachln• cendltions •/ 

.. , 



I-' 
N 
VI 

sstp • addr csst_setsl; 
astep • otr · C sstp, ,..,_as tePl I 
ptp • ptr list•• rel_ptpt; 

If Pt•.dld • •o•b 
then 1f •enough_QUota ct 

then return c•o•bJ; 

c••P • core_t~••-llstlallocate_cae Ctl 
c•e.astep • rtl_asteo; 
c•••Pt•b • rel Cptptl 

1• Get pointer to sst •./ 
1• Get oolnt•r to Ht• af fau ttln9 page •/ 
I• let Pointer to ••1•• s page ta le •ord •1 

1• lt .faulted on a null P•te• •1 
I• see l t ,. •v• enou9" quote to Cl" eat• 1 t •I 
I'* If not return and sltn•l overt lo• •/ 

I• A I I teat• a ttlock of co.re to the P•t• •/ 
1• 'l 11 ln ln to atlout oage •1 

If Ph.did • •o9b 1• u th• oa1• ls ""'" •1 
then c••·dlskadd • as:tw.devadd; I• use the ~utt ·Pt• address as ttte disk address •1 
else 1f pftl.dld = sst.pd_,d 1• Non•null. ls··H on.the oatlng device? •1 

then do; 1• ctn eaglng dev~c•• so flt I In c••~pdaep •/ 
pdatP • addr•I Csst.pdaap, 11Ult1DIY tfhef,t lot•·~'°• 1••• sst.odslze, 11, UIS 
c11e.pd9ep • rel CPd••PU I• Co11011te Poln,_.. .to .0•• •I 
c•e·dlskadd • Pd•e.olskadd; 1• FHt ln disk· ~d•ess fro• DCll ... •1 . , 
sst.od_oage_faults • sst.pd_pa91_taults • 11 1• Matar.oat• tau~t~ fro• pd •1 
andi . , 

•Isa c••.dlskadd • •Pt•.aavaddl 1• Not .on od, dlsk address 11) page table 111ord •/ 

c•ll readlP•9• (CHP)I 

cell eore.;.uH.ta_UsUedd_uMd;..c•• cc .. Pll 

return •~•• tc•-.>JI 

1• lt•!tlll't J•r •h• 1/o to COllPltte ls done •/ 
1• by code ln P•t•-fault since running on ords •1 

, ·I• Pet c•• " used llst es •oat ,recently used •1 

I• Return r,e 1. ptr to c•• aas lgned •1 

.. ~ 

-'·1 

·~· 
..'j 
I 
i 
i 

:-i 

' 

-i 



..... 
N 
Cl' 

core_•aneger• procedure Cunwanted_polnterlt 

1• Thls ls the drlvlng routlne tor the core •anager process. The 

declare 

core •anager ~rocess 1s an H•proc Cas l•ote•ented by "•beel see RFC•661 
created bY lnUlallze_dlMs early in lnltlallzatlon. The argu•ent ls 
a pointer passed by create_~uoervisor_ta~ when it starts the H•proc 
runnlng by calUng this rou'1"e; ln this cue lt ls a null oolnter. The 
lunctlon of the core •anager ls to manage the core free and used tlsts, 
perfor•lng alt dutles lnvolvln1 operations on trese lists. The baslc 
atgorlth• ls to loop untlt a wakeup ls received fro• so•• process 
requesting so•ethlng be done. The core •~nager discovers what the 
reQuest was by co•oarlng the values of the •_slgnals" varlables •1th 
the values of the corresoondln1 •_done• variable. A reQuestor 
adds one to tf'te •_signals• variable corresponding to the taste he •lshes 
pertor•ed; the core •anager adds one to the corresoondlng "_done• 
varlablewhen he has oerfor•td the task; thvs •hen the two are eQual there 
are no re•uests of that type outstanding. Note once st..-ted, th• core 
•anager co•ohtes all outstandlng requests of .all types. Only 
i't there lS no work to do does the core •anager block untl I another 
wakeuo ls received. The stanclard ••lt and noU fy pr 1•1t hes are used 
tor lnter•process co.•unlcatlonl the core ••na9er ls shnal fed by 
txet'itt 1R9 "ca• I ·oxssSAot 1 ty t•caev•t• • 

.,..ltten 1•6•'5 111, ladr•• R• .ff"'9er tor •vlt1•proces'l5 PtP cootroJ •. ., 
u, 
h ,,.,, 
base, 
slze, 
POrt, 
needed, 
test_1, 
otd_abs_11tlred, 
rec:orbl 
no_pa.-s, 
Urtt::.c>aiJ•• 
flrst_core, 
tiit~htt. 
f'tsl;:JU•t•t fl xad ltln, 
•••add itt· cut, 
dev1co_a1d blt C~t defined (devaddt posltlon 
lnt_cal I bl't hi •Hfne••. 
~ld.,.,.f Pd blt Cit ai 1~edt 
etd.;.CieP ptr, 
unwanted_polnter otr, 
otdtiask thH tln cnt, 
•tfl~'blt CUI ·etlgn .. , 
lntf'bl t tt'I t' at l9n••• 
scs1sys_1evel flx•d bln C7U external, 
null_dev.Od_not_ln_coro blt CJit atlgned lnlt 

,. ""• ,..,.,. •1 
1• Counter •1 
If keto ·4AH•• ••• of UM• ,trJM coo;fls •W• •1 
1• lnctex 1n core aao of Urst c .. ln a Port •1 

• 1#1 ........ oftf•{J lf.' ~9f!tl ffl't: !I . 
tt ---·~·of •..-1.·All'r•fttlw. b•4N J-c:otc•d at •1 
t·f ..... of ,c-.u..-us., ab;$ ... •lr•bt • Pases needed •1 
'':·:Sav•d •••u••., .. ...,. l•tt••· •I , . . . ... , . 
I• leved .,,.,,_.. ·•1 ••t•MJ .. l'JrH.J:•uM' •I 
l.f #--.r •• rtc1'«'dS~ tr.,.c-••fl 'U •. 
it #u•ffi' of ·HOI$ t•:••·ner•ted .. ori '!I 
tf flrs.t.o•e•: .. 1C'.:SM•; t~\9• ooerated on •1 
1• Index of first c•e to use for abs wlrlng •/ 
1• Value cf sst.core_•anager_slgnals to welt on •/ 
I• a.Ht P•t•·te -eOPV-9•d.,<tn •/ 
II tevice •~••• to~b• f"IMUf'a.cl.fo '"•• pool •/ c1••• 1• Device ld oortlon of devlce address •1 
1• rt.,'all•.tft9 t .. terrUP·ts •~lie ds wlrln9 •/ 
I• ttucL ve1"• .r· -'••·•t" ,.,. deanup •ll'trY •/ 
u Polot•r to ea ••• c•• ,,,,. · 
1• Arg Ptr oessed when H•oroc started uo •1 
,, '4d ••J.k. w:alue Ma4•~ e.r·••)l;t ro~i.n•s •1 '' .,._Jt ••nt rotur"_. t>y Pfl•14WlCt •I 
,, Pat• •"•n't to MaU on • / 
1•. Sys level •••k •1 

C"OOOOIOUOOOODGOGHOODllOGOODUDIOOOi•t Int statlct 

' . 



!-" 
N ..... 

dee I ere Caddr, addrel, blt, dlvlde, flxed, •ln, •ultlply, ptr> bulltln, 
core_free_llstSadd_free_c•e entry Cptr), 
core_free_llstSre•ove_free_c•e entry (ptr) 1 

core use~ 11stSadd_used_c•e entry (ptr), 
core:used:llstSre•ove_used_cae entry Cptr), 
core_used_llstSselect_core entry returns Cotr), 
lob•Slorc:e_tl•eouts entry, 
pageSc:a• entry, 
pagelcopy entry CbU '18) al lgned, bl t CU) al lgned), 
pageSdeposl t entry· CbU C 22 l al lgnedl, 
pagelevlct entry (ptr, blt C1Sl allgnedl1 
pagelo•alt entry Cblt C1Sl allgned), 
pageSI ock_pt t entry, 
pagelunlock_Ptl entry, 
p•utSSet_aesk entry Cflxed bln (7111 flxed b1n 11111, 
pxssSbloc:k_on_event entry Cflxed bln, fixed bln, flxed bln C71)t, 
pxsslnotlfy entry Cchar C~tt, 
readSpage entry (ptr), 
syserr entry op1lons Cvarlablel, 
ut111tvs•ove_Page entry (ptr, ptrt, 
MrlteSpa1e entry Cptrt; 

Xlnclude ssU 
Xlnc lude cap; 
Xlnclude·· astl 
Unclude ot•l 
Xlnclude null_addresses; 
Unclude control ter _datal 

j 



I-' 
N 
co 

sstp • addr Csst_segS); 

call pautsset_aask CscsSsys_tevel, oldaaskt; 1• "•ke sure core_aanager always runs •asked•/ 
last_state • sst.core_••nager_slgna1s; 1• Nalt untll so•eone signals core aanager •/ 
call pxsslblock_on_event Csst.core_~nager_s1;nals, tast_state, 3e6t; 

do •h11e c•1"bt; 1• "•1n loop; repeat forever. •/ 

.:·-

tast_state • sst.core_ttanager_slgnats; 1• Get counter value for waltlng on tater •/ 

do Whlle Csst.free_c .. s < sst.•ax_tree_c .. sJ; 
cal t get_corel 1• Free cor• 1.tnt1 I •ax111Ut1 reached •/ 
end; 

do i.hllt Csst.c•_cleanups_dont < sst.c•_cltanuo_slgnatsJ; 
ca I I c•_c l•anup; 
"SSt.cll,,;cteanuos_don. • sst.c•_cleanups_done • 11 
end; 

do ..,l •·• Csst .c._truncates_done c sst .c._trwnca·te_slgnals) I 
tafl ca_trunca·hl 
ss1.c•_truncates_done • sst.ca_truncates_done + lS 
end; 

1• oo· any c teanups •/ 

1• Do any truncates •/ 

do Mhffa ·fsfttiff6-.cof'Ws_do'fte « sst.add_core_sl1na.tstl 1• lny c ... a to •dd'l •1 
ctl I -sdCI tor'•f . ~ .. 
•st ••'ctcf.:.~orts_dona • ss t .ad4l,.cores_done + u 

:• 
:tn.11:' ? ••• : .•. 

~He t'qt.,r ..... e~cer••-clon• c nt.react"'9_c.,.._slgnals); 
: C"d t rf•oH_:core; 
· sst .. f"-.a0V9_coras...done • sst.re•ove_cores_dona + 11 

eftdf ··· · · · 
' 

1• Any core to reaova? •/ 

dO ~· te' Csst.oti,..eoritlts..;4ol\e c sst.ca_cont lg_sltnalsl I 1• Any cont 1guous page requests? •1 
. cat t gat_coritlg_ter...-
••t·c.•~cont lgs~don• • sst.ca_contlgs_dona + 11 
•"l<H . . 

c•l I OlftC•btock..,on_event Csst.core ..... nagar_slgnals, last ... state, 3•61; 1• Walt for .ore .ark •1 

and I 

..:.. 

··~ 



.... 
N 
\0 

9et_core1 procedwre; 

C•ll D•~llOck_ptl; 

c••P • core_used_llstsselect_core cti 

call core_used_llstsreaovc_used_cae Cc••o>I 

ptp • ptr (C••P• C••·Pt•pa; 

call •rH•IPat• Cc••PH 

1f pt •• os 
then clli'll pagelP•alt Cret Coton 1· 

cal I cor• .. frec_llstladd_free_cae cc .. pJ I 

call Da~dunl ~.ck..Pt 11 

cau oxsssnof 1 ty c•cora•t; 

r.eturnl 

end siet_core; 

1• Internal procedure to free up one •ore •1 
I• block or core and add lt to tree llst •I 
I• flrst lock the page table lock •1 

1• Cati replace••n•t algorltha to find core•/ 
1• block to be freed •/ 
1• lteaove sehcted core bl'ock fro• uaed t Ut •1 

l• Get pointer to page. tab I e •Ord •1 

I• Wrlta out the contents of the core block •1 

1• If P•9• out of nrvlce, 1.e. 1/o. sU 11 •/ 
I• golr\9 on, then ••U for It to t·1nhh •1 

I• Put the no• free core·block on tree llst •/ 

1• Unlock •/ 

J• Notify anyone ••ltlng for •ore core •1 

,.,·,, 

·~ 

.j 



t-' 
w 
0 

core_used_llst1 procedure; 

1• Thls 11odule contalns all entrles needed to •alntaln the llst of c•e"s that are currently 
ln use. The cme"s are organized Into a circular, doubly-llrked llst ln order of l•st 
use. The pointer to the head of the list, sst.usedo, points to the least recently used 
entry. Since the tlst ls clrcular, the •ost recently used entry l••edlately oreceeds the 
least recently used cae. The nu~ber of entries ln the list ls •alntalned In the variable 
sst.used_c•es. •1 

1• Nrltten 8•5•75 by Andrew Ro Huber for aultl-process page control. •1 

declare 1 f lxed bin, 
c11e_ptr ptr, 
UP ptr, 

1• Loop Index •/ 

aany flxed bln Lnlt (100000) Int static; 

1• Parameter, c•e to be added or re•oved •/ 
1• Polnter to c•• at head of used llst •/ 
1• Tl•as to try replaca•ent atg. •/ 

declare (null, rel, Ptr) bulltln, 
syserr entry options Cvarlabla); 

:Unclude sst; 
Xlnclude c11p; 
X1nclude ptw; 

add_used_c•al entry (c11e_ptr)I 

c••P = c•e_ptr; 
sstp a addr (Sst_segS); 

lf sst.used_c•es = o 
then do; 

sst.usedp = rel lc•eo); 
c11e. 'Pt CIHebP = re I (c•ePIJ 
end; 

else do; 
c11e.fp = sst.usedo: 
UP = ptr (sstp, sst.usedp); 
c11e.bp = up -> cae.bp; 
ptr Csstp, c•e.bP) •> c••·fP 
up •> c•e.bP = rel Ccaep); 
end I 

sst.used_c•es = sst.used_c•es + 1; 

returns 

1• This entry adds the c•e pointed to by •1 
1• c•eP to the llst In the 11ost recently •/ 
!• used position •/ 

1• If the use-d llst ls currently e•oty •1 
1• Off• this the only entry ln the tlst. •/ 
1• Set ptr to head of llst to thls entry•/ 
I• Since this ls only entry, set pointers •1 
1• to next and last entry to ltself •1 
1• Other entries In the u~ed f lst •/ 
1• Thread thls entry ln before first entry •/ 
1• Get pointer to head of llst •/ 
,. Copy back oolnter fro• c•e at head of llst •/ 

a re I Cc•eo); 1• Kake last entry point to thls c•e •/ 
1• Hake next entry polnt back to thls c•• •1 

1• Increaent count or c•e•s ln use •1 

1• End of 1dd_used_c•e entry •1 



..... 
I,,) ..... 

reaove_used_c••• entry lc•e_otrt; 

c•eP • c••-PtrC 
sstP • addr Csst_segst; 

ptr Cssto, c•e.to• •> cae.bP • cae.bp; 
ptr lssto, cae.bP) •> c•e.to • cae.tol 

sst.used_caes • sst.used_c••s • 1; 

If sst.used_c•es • Q 
then sst.useao • •o•b; 
els• lf sst~usedo to a rel 

then sst.usedp • 

return; 

(c•eoJ 
cae.fpl 

J• Thls entry re•oves the c•e pointed fo by •/ 
J• C••o fro• t~e used llst •1 

1• Now thread th• c•e out •• note ttese •1 
I• stePS •Ork tven tt•·tflert ls onty·one •/ 
1• entry ln t"'9 llst, since In that case•/ 
1• c••·f P and c•e.bo oolnt to the•selt •1 
1• .~ec::re•ent count of c .. ·s on used 1 lst •1 

I• It used ll•t no• ••PtY• reset Pilnter to•/ 
1• the llst to •e•b to lndlcate this •/ 
1• If~~tlll entries In llst. set sst.usedo to•/ 
J• next entry 11 •~try at head of llst reaoved •/ 

J• Encf of reaove_used_cae entry •/ 

~ 
,\_,, 

'{ 

'· ; 



....... 
IJJ 
N 

select_corel entry returns Cptr); 

sstp = a~dr lsst_segS); 
c•eP • ptr lsstp, sst.usedpl; 

do l • 1 to •any; 

sst.steps = sst.steps t 11 

ptp • ptr Csstp, c•e•PtNo); 

lf c•e.r•s 
tnen sst.sklpspd • sst.sk1PSPd + 11 
else lf ptw.•lred 

J• Thls entry 1•Ple•ents the page replacement •/ 
1• alqorlth•, selectlng fro• the core used llst •/ 
1• a c•e •hose page •111 be re•oved fro• core. •/ 
1• The used llst ls scanned for an ellglble •/ 
1• page •hose used blt ls off. Ellglble oases •1 
1• are those not •lred, not undersolng l/o, and •/ 
1• not belng r••oved. •/ 

1• Get pointer to head of used llst •/ 

1• Look at •any cae•s before fall Ing•/ 

1• Add one to total steo count •1 

1• Get pointer to oage table •Ord for thls c•• •/ 

1• Is Page undergoing rws 1 •1 
1• Yes, sklo It, keeping count of •hY sklooed •/ 
1• Not undergoing rMs; ls lt wlred ? •/ 

tnen sst.sk lP• = sst.sklP• 
else lf c•e.re•ovlng 

+ 1; 1• Wired, so sklo, counting es •Ired sklo •1 
1• Not •lred; ls 1t belnq deconflgured ? •1 

then sst.sklPr 
e I Se 1f P flt• OS 

then 
else 

C•eD • ptr Csstp. C.••· ~p); 
end I 

= sst.sk16r + 1; 1• Yes, count re•ovlng SklP •/ 
1• Other•lse out of service for 1/o ? •/ 

sst.sklocis • sst.sk1pos+ 11 1• Count os sklo •1 
lf pt•.phu 1• a1•ost -- has oa5• been used 1 •1 

thin cso; 1• Ye$, ~ sklb 1 t turning off •1 
ot•.ohu : •o"b; 1• tht used blt •/ 
~~iskl~" • sst.skU>U + U 

else do; 1• WiNt Clal11 tl'ls c•e •1 
sst.usedo • c•it.toJ 
',.!tilrr\ ~depn '""f . ' . 

I• ff rdch tftls point, tP'le e•• •H sklPoeCI •/ 
1• Advance oolnter to next entry •/ ... ,, 

call syserr c1, •c•• l•Posslblt to free cor1.•11 1• Crash lf can•t the Ii ·c•e ifttr ••nv t,.les •1 

t'tturn 'nulltl 1• End of select_core entry •/ 

1• Thls tnos the core_ustd_llst •odule •/ 

end core_used_llstl 

' 



I-' 
w 
IN 

core_free_llst• procedur•I 

1• Thls •oc:lule cont.Ins al I entries needed to •alntaln the I 1st of c•e•s that are currently 
frH. The ue•-S are 6'-t-nlhd lnt-o • clrculer, do'-t>ty'•HM•d I Ut, whose 11 .. 4 is PGlnhd to 
by cst.tr-.p9: 'NOrtret ly entrles ah edc:led to and ai located fr:o•: the hltld ol• the I lsh 
since a'll tree cee•·s ...._ •ual. a c•e beln9 re•mct- fl-o•- servlc .. I·•• cNConfl9UNdt 
HY"lM'. raov•'lf ff"Oil any•her• Jn the Ust hO•ev•r·· Th nu11111er ef -~1r1·..a en tM Ut·'· 
_ls keot 1n the varlabl• sst.rrae_c•es. The cere •anater tries to keeP thls nu•ber >• 
•ste'•1n_frt._can· at alt tlitn. thus 11then the count dl"oo~ b•h• tttls • sl9'al ls seftt 
to t~ core ••na .. r t_o frH SOiie •ore. ·· · •1 

t• •tt·ten t•S•JS by Anare• R. """'" tor mu I tl•Of"ocess Paga· cont-rot• •I 

dee,.,.. fotr otr; I• Pointer to head of fr .. llst •/ 

d.c:l are C ac:ldr, nut I, re I, ptr t bull un, 
pagellock_Ptl entry, 
pageJunlock_1»tl entry, 
pxsthfiwent··ttWtry Cchar Clt>t, 
pxssldetevent entry Cchar Cit)), 
pxsslevent entry Cf lxed blnt, 

· 61c'hlhlt entry; 

Zlncluff Mt1 
·11Mlv•• c•1 

;. ' ~ . \ 

k :; 

. ~· 

. ' :, 

~ 

·'" 
/ 

~.-.... 
)' 



to-' 
w 
.i:--

add_free_cMI entry Cc••P> I 

sstp = •ddr Csst_seglJI 

c ... pt"P• c•e-•step, c•e.Od••P = c1a>•o•b1 
cat.dlskadd = C22l"O"b; 

lf sst.tree_c•es = O 
then aol 

sst.treep •rel CcllePJ; 
c•e.tp, c•e.bp =rel Cc•eo>I 
end; 

else dol 
cae.tp • sst.treeo; 
fptr = ptr Csstp, sst.treeot: 
c•e.bp = fptr -> c•e.bpl 
fptr •> c•e.bp •rel Cc•eo>I 
otr Cssto, cae.bi)) •> c••·fP = rel 
sst.freep =rel Cc•eo>I 
end; 

1• This entry adds the cee pointed to by •1 
1• c••P to the he•d of the free list•/ 

1• Blank out pointers In the c•e •/ 
1• and the disk address •/ 

,. ,. ,. ,. ,. ,. ,. ,. ,. ,. 
Ccaep) I ,. 

If the free llst ls currently e•oty •1 
eake thls the only entry ln the llst. •1 
Set otr to head of llst to thls entry •/ 
Slnce this Is only entry, set oolnters •/ 
to next and l•st entry to Itself•/ 
Other entries In the free llst, so •/ 
••ke this entry the ne• head of the llst •/ 
Get pointer to c•• at head of llst •/ 
Mote t~ls "orks even lf only one entry •/ 
slnce ln that en• c••· fp ane c•e.bp •1 

1• oelnt to theasett •/ 
Finally, •~ke this entry ne• h••d of llst •/ 

sst.tree_c:•es = sst.free_caes • 11 1• lncreaent count of c•e•s In use •/ 
1f ur. f;,. .. _caes • sst .aa.x_fr .. _caes 1• MetW' ti ••s eel ting hlt •1 

then Sst.ttaes_•ax_free_C•H • sst.tlaes_aax_free_c .. s • 1' 

r•twnt · 

re•ove_rr .. _c .. a Mtrr f.cffttH 

ssto • addr Csst_se9't; . ' 

pt1" (SS to, c••. fp) •> c•••t>P • Cff~tlp; 
ptr Cssto, c•e.bp) -> cae.fp • c•e.fp; 

. ' . 
sst.rr••-c••• • ~t.r ... e_ca.s • 11 

1f nt. tr••-~•u ·• I' 
th•n sst~frHS> • •t .. b: 
else If sst.treu to • rel cc .. P> 

,fh•n sst'.~r••~ • ·c••·fPI 

return; 

1• End of add_tree_cH entry •/ 

1• This entry re•oves the c .. pointed to by •/ 
1• c-.. fro• the free llst. Tttls ls• saeclel •1 
1• entry for use •hen re1t0vlng •specific c•• •1 
1• fro• the fr .. llst, ••9• d•conflgurlng lt •/ 

1• No• thr••d the c•• out ·- note ttese •/ 
1• 0 sferi lion ~ 1f there ls only one •/ 
1• M\try In the llst, since In th•t c•s• •1 
1• cae.fp and c•e.bp polnt to t~••self •/ 
I• hcrea~t eoutri "of c.a9'.•s on tr'tt'·llst •1 

-) ~ 

1• n ,,. •• lltt now eHt'lt ..... , .lfolnter to ., 
t• the I 1 l'f' to .., • ., to lmfJ.c:at• 'fcftk • / 
1• 11 •fl It •ttlrl•s ·l'ft llst, nt ·s•f· fre•P to •/ 
i•· newt tfttry n entry et WMd or ·JM r9*0ved •1 

1• End of re•ove_free_cae entry •/ 

\ 



,.... 
w 
\.n 

al locate_c••• entrf U returns CPtrU 

sstp • addr Csst_st11>t 

dO •hll• csst.free_caes. 011 

1• Thls entry returns • pointer to 1 free •/ 
1• c••· If 1htre art none, lt sltnels the •/ 
1• core •anager to tree so•• and ••lts untll •/ 
1• he does so. If the nu•ber of fret c•e•s •/ 
1• drops belo~ th• ellowed ru•b.-, tht core•/ 
1• •anege.r ls etso slcnelled •/ 

1• If there .,., no c•e•s pn tree list, •/ 
1• te I I COf'.'e ••n•ter .to tr9• so .. •/ 

. , sshU••s ... out;;.of.._ca.es • Hf• U•es_out_ot_c•ts t U . /• !titter, tl••s out of c••• •1 
cau PtcUf•d~ew•nt c •ctH"•"' H /~ S.t u1> 111.eU,, evtn' .ti . , . 
caU PJCH••Mn·t Csst.core_Hne9er ... slgnatsl; 1• :hU cot:"• •M••..- .. ' '' 9ft bus, •/ 
U nt .. fr .. _.c•.H • t 1• U stl II no ff:'tt core I 

ta.n. dO; 1• •tU un,~1 ttl1re ••~s.o•e •1, 
f:,!i,I p19eSun tocic_ot If 1• ~t, ,uni .o~lc .,, ~•t•r.• uJ.'1"' •1 
cat I pxsshalt; /'J Malt '"° Ct>f"•i. •8"M~~. to fro' so .. cort •1 
eel I p1ge1tock_ptl; 1• R.-J,cJc, •·tt •·~~· contlny.Jf't·•f 
en cu . , , ;. 

else call pxssldelevent c•core•ti 1• i• cort f'O.""··'ho¥th•:.·1""5t continue•/ 
end I 

tptr • ptr Csstp, sst.treepl I 
•tr las'•·" .,,,,. •>, _.. • o,.. ·• ''° .... ~~ • to tr 
ptr Css u, fptr •> c•e.bp\ •> c•e. fp • fptr 

':!· · ~ ~} · f, · f'r 

fat•l1l'•'"'c•• • fS-J.,ff'N ... a.ej..~ ii 
!IJf•n,~:• ••f~,._qc: • H, , , . 

>· \ .... : ;.,, ~ ·~ j;: ~~'if ~--\ 

1f .... ,,. .. .s~ .. !!l Q . 
. .f.Ntn sst. tr._ • "J"ltl 
·•lffi•••· .,.. ••• ,,.,,., :!'> C;~··'PI 

1• ~et pointer to c•e at head of tree llst •/ 
•>. ~•:•b•..; 1• R•••V• th• entry at h-.d of the t lst •/ 
•> c••. fol · 

,1 

(,f V1.sc~1, ~oy"' of entrhs on tree llst •1 
I'!. ~rH'!'I; cOj,iM 6f core blocks ntected •/ 

~ . :r.-~- "·- - "-~ -~. 

1•: lf .. -..,;~e.•f.1"94,,,f~ last entry from frH llst •1 
1•,,,pt; -.,J,.~ . .,-, to "4l•d of t 1st to •o•b •1 
I• J,J not. fet to entry tol lo•ll'9 tt!et re11oved •/ 

U.. •t·l~e:c~u c ~st.•ln'.:.tree~·~·,,, ". 1• J't"••~.v,e, ta)IJ~ below th• desired •lnl•u• •/ 
· then ct~I· , . 1• tree sHt •0r• •1 

, sst·•C•-NtM....cor._.ltn•I• • &s.t.H_n .. d..,cpr-...5:49'\•IS ~. 11,, 1• Signal too tew frH caes •/ 
catt ••de.Mftt t'9t11 cor•-~aoer _sl9N 1 s.,H I;• Mek• uo core ••nater •/ 

·•n11il 

rettrft. C fptrl I 

1• This .nets the cort .. free_Ust •"ult •/ 

•• cera_fr•~ll•tl 

I• Ret¥t"n tk• pointer to the trff CH •/ 
1• Eno of •I fO:Cate_c .. entry •1 

-~i1 

·jl 

:·\ 

;;~ 



"'-

.... 
\_.) 
0\ 

pd_a.na .. ra procedure Cunwanted_po&nterJI 

,. 

declare 

Thli ls the drlvlng routine tor the Dd Man399r orocess. The 
INl•arta .. r ... oc•ss ls an H•proc Cas l•Pl•••nted by Habee; see RFC•66J 
created by lnltlallze_dl•s early ln lnltlallzatlon. The argu•ent ls 
a oolnter passed by create_suoervlsor_task when lt starts the H•proc 
f'.'lif\nln9 11y calUn9·u.1s r..outt'": l:R t~h case lt U a null s:olnter. The 
function of the pd •anager ls to •anage the pd fret and used lltts, 
perfor•lng al I duths lnwolvlng operations on thes' 1 lst,s. _ th' •aslc 
at.geP1!f~ 1& to loop unU I a wakeup ls received fr11,11 s4ttl,• . .-~~·''' 
requesting so•ethlng be done. The od ••naqer dlscovers wha.t the 
reQuest was a, co•parln11 the values of the '"_slgnals" verlabltt dtf'I 
the values at ttle .c~ort4'4'f)t ~.-dot).•':' ~-.l~bl• ·~ .request-r; 
adds one to -ti•• ~:..•t_.,. ••"!, ,..,,,.,_. L• CllJN";•fftO~. t• · ...,_ t~~ ti• •d shes 
p.-for....,; ,.,. pa •anager adds one to th corrtSPOftCl.lnt "-"..,.,.. . 
't¥'1Ct' .. -.- ..,_ ~•.-t:ter~V1'tii ••• task I thus when th• hl4 ~·.•""al tl;\ere · 
are no rtQ\lests of that type CNtstandlng. Note once started, the pd 
Mn•"'! -oowl.etn .atJ 9'ltstt.ndl'N .rt4uests of all ~~D•$• Qt\I' 
H t"'r,• "-• ,f\O ,...- t.o .•• .qoes the od •an3ger block ,u-ii~t ,~, .. r 
"'"'._ ,lt. .._•.w.4•. The stan>tard •alt end notlfr 1tt:1~1t'-it•tnV.,,. ~ .. cs 
by process•s ••ltlne on a pd .. n•t•r event, ho•ever the pd ••nager 
4-"et;t~' ,.......:•;..•lttc~~event and event Pl"lalt\v:=.,t\.:',!f~t;.~. • 
M ~ •. ,._ "'9 •• ,,...,,...,. .,,ttc,1~ pxsstevent Csst.tif- ~ur •• l~•ltl 
Is executed. · 

; • • ..,, ~ , ; ' ·' : .~· ~J ·".: ; ~. 1 ~ ·' ,·. , ~ 7 ~ ) ; 

lldtt.en ._,.6"!1.·I b¥ A,.._llf·~· KIAt.,. 1.,. lll'tlU·1ro~·· ;'Mt• .~Oftt,~9h 
J. .j, .. u, 
h 

' ~, ,.<· '!; ii> • \_,, I'- ~· ' 

J• 'oop lntt•x •1 
1• C~ter •1 

._, 

retords, ''·····• ··... "' · ., ... "· 
last_state, 

'.:! IN._ ,,.,~~>l'"••'•~LH :. i• , . ,. filu• of sst.pct_•tna .... _sltn••• to wait on ., 
first, . . · 
taso uxed b1n1:1n 1 "· fl•• fixed bln t•~• . 
olct•tsk ,,,_. .. a.•~Clu, 
_.ant,d.-t,k\t4'l\•W• 
llMI bt•,U••'.'•\......,,,;; · ·::~ .... 
bH•d.i#cf .. t ttt•ft '.'!U..0.i.D_.Q : ...... cf, Cpd••••• 
scsts~••••ti ,ti.•·!lthl1·UU Mt•~n•t. ·· 
uPdate_lnterval flx•d bin C7U lnt static 
'e':.l M- r~- ~ ~ .~ ,: .'.'. .: ~ .-

<4 t4':'-1l,_.. .. i...,$'l .. • t-t. .. ~'~!~d on•/ 

~'. ~.t "t'. :t!';'~'''' ''. 7v i~ir· •;-· , ... . , "·'·~·~~ ••t'«¥•~~ ~ ... '.-. 
1 . .. •• ""'" ~w ,•1.?ofi~ "t'tflnd / · :_ i' H 1 ~t.4•!Uf _,,,_V••te_suur •. v. lsor _tuk •1 

·, . . .t ...... t.,tj..U.t~tn·t~ ., '~'" . 
, .. ,._ ,. ~· . ·~:., M1::t1:'~J·. thtd ,;~ln _-.°,'"~~ •1 

lnlt C11t,Oth I 'l "''"'" of , t ,.,. ,IJtf.M•Q .,pct ·HP •/ 
1•$VM•t•h -it tl I Uttc"Cf' •/,.. 

oeclere ta4.-, •fl*•t• talt•·'44.,lde, fluca. null, D,,., substrJ bulltln, 
clock_ entry raturns Cflxtd bln C71t), 
COf'e_tr••-llltlaltocate_c .. entry returns Cptrl, 
Pd_free_llstSadd.frtt..Pd•• entry (ptr), 
llCl_tree_llstlre•ove_free_Dd•• entry Cptrl, 
pcl.used_llstlreeove_us.cl_Pd .. entry Cptrl, 
·•~u••.wf..lstsselact..,;plfJ:i«t•••rcl entry returns CttrJ, 
pqetca• entry, 
P-..IP••lt entry Cblt 1111 all1nec11, 

' 



,...... 
w 
-....J 

page$1ock_ptl entry, 
pdge$unlock_ptl entry, 
pmutiset_mask entry (fixed bin <711, fixed bin (7111, 
pxss$block_on_event entry (fixed bln, flxed bln, flxed bln (7111, 
pxssinotlfy entry (char (~)), 
wrlte$pdmap entry, 
wrlteirws entry (ptr, ptr>; 

Xlnclude sst; 
'Unclude c111p; 
41nclude ptw; 
XJ.nclude ast; 

v 



t-' 
(,.) 
00 

sstD • addr Csst_seglll 
Pd••P • ~Sf oDdaap; 1• Get useful I pointers •/ 

call pautSset_•ask (scslsvs_le."•I • oldaastd; 1• Kake SUl"e P«l...•anater at•aYS runs •asked •/ 
last_state • sst.pd_aana9v_sl9nals& 1• Walt untll .Urst pd aanag.er event•/ 
call pxssSblock_on_event Csst.pd_aanager_slgnals, last_state, ~e6ll 

cao llhl •• c•1 •.,,; 1• Kain IOOPI r'90••t t•revar. •1 

last_state • sst.pd_aanager_sl9ftels; 1• Save counter value for ••ltJng or later •/ 

do llhlle Csst.pd_free c sst.a..._tree_Pd•est; 
call 9et_pd_record; 
end; 

do MhHe Csst.od_cleenuos_done c sst.pQ_clffnUl)_sltnals)I 
c•ll Pcl_c laanup; 

1• 00 any c leanuPs •/ 

sst.pd_cleanups_done • sst.pd_cle-"uPs_done + 1; 
end; 

do llhl le Csst. Pd_truncates_d.one c sst.Pd_trunc.r._sl9ftalsl; 
eel I ltd_truncate; 
sst.pd_truncates_done • sst.•d-truncatas_done • ii 
end I 

..... 11• tsat.add_Pd_records_dof\9 c sst.add_pd_records_s11rafS)1 1• Any Pd .. • to add? •1 
call add_Pd_recordsJ 
sst~adCl_pd_records_dctne • sst.add_Pct_records_don.e + 11 
and; 

do white Csst.r•Nve_pd_records_aona c sst.reaov._pd_record$_Sltnalstl 1• R .. ovt pd .. sT •/ 
cal I re110ve_pc1_recorcts; · 
nt .reaove_pd_r tcoros_done • sst .raaoM_ocLracords_ctone • U 
and; 
; ... ?' 

t'bte',. ·c tock_ ct I 
1'f'.;tl4M:• sst. tast_vodate > uod•tt_lnt ... v.I 

1• See 1 t t 1•• to uodat• Pd ••D •taln •1 
1• If lon99r that\ u•dat• Interval •/ 

·'t'Mn dol 
sst. last_ul>date • u .. 1 
caH tfr 1 Utodaao; 

1• then •rlt• out pd ••D again •/ 
1• Sava tl•• •rlttan out •/ 

, .. f.rws_u .. _start • sst.r•s_tlat_stwt • clock_U • u .. ; 1• 
eftclJ 1• rws start tl .. for coaoarlson 

c•U ft••••octc_on..:;ave,.t hsteP~•M*Vtl"-Sllft•ls, last_stat•• Ja6U 

...... 

Co'-'\t'tl•• as•/ 
•Ith cur. sys •/ 

. ' 



r;; 
\C 

1•t-Pd_recordl procedure; 

C•ll P•l•Sloctc_ptll 

sst.rws_tl••-t••P • c1ock_l1; 

pdaep a pd_used_llstSselect_pd_record (II 

c• 11 pd_used_ I lstSre•ove_used_pd•• CPd••PI J 

c•ll •rltesrws Csst.r•s_c .. p. Pd•eotl 

u .. a clock_ ct I 

call pd_tree_llstladd_fr ... _Pd .. CPd•ePJ; 

call pagelunlock_ptll 

c•ll pxsslnotlfy c•prec••; 

1• Internal procedure to free up one •ore •/ 
1• pd record and add lt to tree llst •/ 
1• Flrst lock the P•I• t•bl• lock •1 

1• Call reol•c••anet altorlth• to flnd pd •1 
1• block to be freed •1 
1• Re•ove selected pd record froa free llst •/ 

1• Write out the contents of the pd record •1 

1• Place the no• free Pd block on the free llst •/ 

1• Unlock •1 

1• Notify anyone ••ltlng for a Dd record •/ 

sst.rws_tlae_done a sst.rws_tlae_done + clock_CI - t1••1 

return I 

eftd ,.,_od_rtcordl 



$'. 
0 

pd_used~llst• procedure; 

1• This •odule contains alt entrles needed to •alntaln the llst of pd•e•s that are currently 
In use. Th• pct .. •s are or9anh•d Into a clrcul ar-, doubly•l lnked 1 lst ln or-der of I ast 
use. The pointer to the head of the llst, sst.pdusedo, polnts to the least recently used 
entry. Slnce the llst ls clrcutar, the •ost recently used entry l••edlatefy prec .. ds the 
least recently used pd••• The nu•ber of entries ln the llst ls •alntalned ln the varleble 
sat.pet_used. •1 

1• Written l•S•75 by Ancar .. R. Huber for •ultl•crocess P•9• control. •/ 

decl.,.• l f lxed bln, 
pdaep_ ptr, 
up ptr, 
.. ny fl xtd bln lnlt UHHIU I 

dtClere Ceddl', rel, ptrl bulltln, 
syseN" entry options Cv.rlabltlf 

Xll\C lude sstl 
11r.c1uc1e c•c»i 

1• Loop lndex •/ 
1• Pointer to pd•• of Interest •/ 
1• Pointer to lld•• at head of used llst •1 
1• Mu•ber of tl•es to looP looklng tor free •/ 
1• •d•• before 9lvln1 up •/ . 

-.. -



..... 

.i:­..... 

•dd_used_pd•e• entry (Pd••P_t; 

sstp • addr Csst_segSll 
Pd•eP • Pd•eP_ I 

11 sst.pd_used • o 
then uo; 

sst.odusedp •rel COd••DI; 
Pd•eofPt Pd•eobP • rel (Pd•ePll 
end; 

else do; 
up • ptr Csstp, sst.pdusedp); 
pc111e•i1> = sst.pdusedp; 
pd•e.bp = uo -> pd•e.bpl 
ptr (SstP,, pdMo~P) •> Pd••• fp = rtl 
UP -> Pd•t•~P •rel (Pd•eptl 
end; 

sst.pd_used • sst.pd_used • 11 

return; 

re.owe_useo_pd••• •n~ry CPd•,e~i I , 

sstp • addt:. hst_se9S) I 
PdHP • pdiltP.) 

Ptr (ssto, PdleefPI •> Pd .. obP • Pd•tebPI 
ptr Cssto, od9e.bpl •> Pd•eofD • pd ... tp; 

sst.od_used ~ sst.1>4,.us•d - 11 

lt sst.pd_usea • a 
then sst.pdusedp • •o•b; 
else lf sst.pdusedp • re1 Cpd••PI 

then sst.pdusedp • Pd•••fPI 

retw-n; 

J• Th1s entry adds the Pd•• oolnted to b~ •1 
I• Pd•eo to the llst ln the most recently •/ 
1• used oosltlon •/ 

I• Copy •rgueent •/ 

1• If the used llst ls currently ••pty •/ 
I• •ake thls the only entry ln the llst. •1 
1• Set otr to head of llst to thls entry •1 
I• Slnce this ls only entry. set pointers •/ 
1• to next and last entry to Itself •/ 
I• Other entrles ln th• used llst •/ 
1• Get oolnter to heed of llst •/ 
I• Thre•d thls entry ln betore entry •/ 
1• entry polnted to by up, 1.e. •/ 

(pd•ep); 1• ln •ost recently used spot •/ 

1• Incre•ent count of Pdtl•" s ln use •1 

I• End of •dd_used_od•• entry •1 

1• 'ttlU entry removes the od•t poln1•Cf to ty •/ . 
1• o<J••O troii tke uud Hd •1 

J• • Co~y ertu••nt \•/ 

1• ~Nolf frii"eact t~e' Od•t 'Ctut ·- note these •1 
1• st•~ MOl"k even lf th.,.• ls only one •1 
1• entry i·n the 'fist, Slf'rce '·ln that cese •1 
1• oo~e.fo •nd pd•t.bo point to the•s•tf •1 
1• OttretUnt duilt of oci•e•s on·ustd t 1st •1 

'. • ' .~ .; .: > • 

1• It used tlst no• ••Pty, l"eset oolnter to •1 
1• tt)• ust to .. _.._ ,.. lndlcefe ttus •1 
1• It sH It entrUt In Ust• set odusdo to •1 
1• neict fr\try 1f entrf •t tt .. d of , 1 lst re•av•d •1 

1• End of re•ove_used_Pd•e entry •/ 



~ 
N 

select_pd_recordl entrv returns (ptr>; 

sstp • •ddr C sst_segl>; 
~••o • p.tr <ssto, nt.pduHdPt I 
sst.Pduse~ • pd•e.fp; 

d9 l • ~ to ••nv; 

sst.pd_steps • sst.pc:t_steos • 1; 

1• Thls entry l•Pl•••nts the page reolac@•ent •/ 
1• •l9orlth• for pages on the P•9lng device. •/ 
1• A oolnter to th• ft••t 1uhte to be h"Hd ls •1 
1• · retUt'ned. The feast rec:ef'\t IY used Pill•• •/ 
1• lliloH Ptii• ls no't ln t•r• ls'seteeted. •/ 

1• •nd to least recently used pd•• •1 
1• Reset Plead of used 1 lst to ne1tt Pd•• •1 

1• Loop through ••nY entries •/ 

1• uo totat ot sttos 1round used llst •1 

1• If thl s entry• s pege ls lncore then sklP •/ H Pd•.•·1ncore 
then'sst.od_sklos_lncore 
else 1t ~aa4.rws 

• sst.od~sklos_incore • U 1• 1t but count as ln core sklo •1 
1• Pate not 1n core,· Is ••••· ut1deergoln9 r-s? •/ 

sst.Pd_Sklttt_rwi • 11 · 1• tu, clMlnt as r'9s shlti •I 
1• No, so c la!• thls 1td•• •/ 

· ttten sst.Pd_s1clos_,..s • 
els• return CDd••Ptl 

od••o • otr Cssto. odme.totl 
sst.pduSeGP • Pd••·fPI 

encU 

c•I t srserr Ciw ·,cu 1••9••1ble t.o '"'" Pdtle.•t I 

1• Thl s encts the "-""d-Jltt aotvle •1 

. end pca_usect_l Lat,, 

1• Wvence oolnt.,. to I ook at next entry • / 
1• and •ovo pt4"' to least recently used Pd•• •1 

1• Crest\ U cen•t fln4 ••• ettr Hny tries •/ 
,. [d'of "'• nloct_.e1.:;,Hc0f"d. entl'' ., 

., 
i 



pd_tree_llst• proc•dure; 

1• Thls •odule c,o,nte,lnS 111 el"ltr let nHd•d'''o •elnteln the Hst of pd•e•s thet •"• curt'ef'tlY 
frH. The cictae•s .,., or91n'lzed,lAfo • clrculer, doubly•tlnk• lllt, wf'los• heed ls Dolnted to 
by sst.pdfreep. · Nor•slly entrlH ere aOd•d to •nd allocHtl trn the tleed of t"4 ll•h 
slnc• all free Pd•e•s are equal. A PO•• beln9 r .. oved fro• service, 1.e. deconflgured, 
••Y be re•oted Troll anywhere lh tne I 1st however. The n~ et ef\trlet on' tne 1 lst 
lS keo.t ln !he varlablt sst.Pd.,.free. Tt'e pd Hneger trles to kt" tt\ls nutM>er >a 
sst.aln_tr•~-Pil•es 1t •fl tl••St 'thus wtlen the count droN "-'•• thls a s19ft• I ls sent 
to the Pd •ana~r to tree so_. •ore. •1 

I• Wr ltten &:-5•75 by An~raw Re Huber for •ul tl_process page contro I• •1 

declare fptr ptr,· 
lest_state fixed bln C35J; 

declare' Cactdl-~ . ., r'et.; ptt<)· ))ult tln; 
pagellock_Ptl entry, 
pagelun I ock_ptl entry, 
pxssladdevent entry (char C~tl, 
pxssldelevent entry Cchar C~ll, 
pxsslevent entry (fixed blnl, 

1• Poll\ter te first 911•• ln fr"ea Ust •1 
,. SIVM COUft~ ... v•h .. 10f" welt Ing ~ ·~ 

~ pxssswalt •Atry; 
w 

Xlnclude sn; 
llncaua. c11oJ · 

.... :· •' ·>'., 

r 

,,,, ·.~; . 
>.\= 
·~ 

-~ 



..... 
~ 

••d_free_pdllea entry CpdaepJ; 

sstp • addr Csst_segst; 

Pd••-blts • c1~~•·o•b; 

lf SSfePd_free • 0 
then dol 

sst.pdfreep •rel fPd•epJ; 
pd•e•fPt Pd•e•bP : rel (pd•eptf 
.,_cu 

else oo; 
totr • ptr fssto, sst.odfreepJI 
Pd••·fP • sst.p~treeo; 
pdae.bp • fptr •> pae.bp; 
fptr •> Pd•••bP = ret Cod•epJ; 
ptr CsstP• Pd•e•bPt •> Pd••·fP • rel 
sst.•dfreep = rel coct .. pJ; 
encl; 

1• Thls entry adds the pd•• oolnted to by •/ 
1• ad••P to t~e head ot the free llst •1 

1• Zero entry before adding to free llst •1 

1• It the free llst ls currently ••oty •/ 
1• •aka t~ls the only entry In the llst. •1 
1• Set ptr to head of llst to thls entry •1 
1• Since thls ls only entry, set ooJnters •1 
1• to next and last entry to ltsetr •/ 
1• Other entries 1n the free tlst •1 
1• '•t pointer to head of free llst •/ 
1• Kake thls entry the nH hlff of fl\e llst •/ 
1• Note tnls •orks eftn 1t only one entry •1 
1• Since ln that case pO... fp and pdtteebP •/ 

CDd•eotl 1• ooJnt to ttle•self •1 
1• Finally, aake this entry ne• hea4of Ust •/ 

/_,,.· 

ast.pct_free • sst.p41_frff • U 1• lncre•ent count of ••••• In use •/ 
H sct.pd_tree • sst.aax_tree_paes 1• Meter tlHs eel Ung hit •1 
~ ast.tl .. s-•ax_free.-IN••s • sst.t1 ... _ ... _tree_Dd••s • 11 

re'furnl 

retloVO.;.fraa..,Jld .. I .,,,.., .. fpdlle~t l 

sstp • aadr Csst_seglll 

ptr t~dp, pdHe fpl •> PdMetiP • pdaeebPI 
otr <ntit, Pdaa.llstt •> OCflle•·tP • .,.... fol 

nfe'Pd~frff • tSt•Pd...f'rH - t'I 

lf •sf•l)d..frtt • 0 
t9'•n •,U ~p~ft'tep • :ee~•o; . 
efse H ISf•Pdfl"••P • ,. •• C••••Pt 

then sst.pdfreeo • od•e.tpl 

t'eturn; 

1• Ind of add_fr•e-pdlle entr., •1 

1• Thls entry r .. eves the Pd•• Pointed to by •/ 
1• od••P trH the '"" llst. This ls a soedal •1 

·. Pf.· ~f,.Y; for utt •M9ft ~ln9.a soec1 Uc odae •1 
P1 't-r .. tiM tr• flfh .... ,decontlgurln9 1t •1 

1• No• thread the Pd•• out •• note fl\es• •/ 
1• st••• 110rk av.,. lf th.-e ls an ly one •/ 
1• et\frv ln ttte U•f• sl'nc• In that case •/ 
t• •d9e. fD and pd"~" Point to th••••I f •/ 
,. ·Oecre•ent ceunt ot ttd••• s on free I 1st •1 

1• If tree llst fMl• .. aty, reset pointer to •/ 
1• t1'e . Ust t• •1•-. to ladlcate tnl• •1 
1• If st1 tt ant,. las Ill\ lls't, Mt sst.pdft'eeo to •1 
1• next entry lf ant~y at head of IJst reaoved •/ 

1• End of t'e•ovt_fret_od•• entry •1 



,_. 
~ 

',. 

elloc•t•-Pd••• entry C> returns Cptr>I 

ssto • addr Csst_se91t i 

1• Thls entry returns • polnter to a •/ 
1• free od••• If there er• non•• lt slgnals •/ 
1• the pd ••n•ter to free so•• and •alts untll •/ 
1• he dOes so. If the nu•b•r of frt• pd••"s •1 
!• drops belo• the allO•td r.u•ber. th• core•/ 
I• •anager ls also slgnalltd •/ 

dO •hlle Csst.pd_free = a>J 1• If there are no pd•e•s on free llste •/ 
1• te 11 pd •ane9er to free so•• •/ 

sst.tlHs_out_ot_pd•ts • sst.u .. s_out_of_pdmes + 1l 1• ffeter tlHs no free pdns •/ 
call pxssladdevent c•orec•J; 1• Get set to •alt for More pd records •/ 
cal I pxsssevent Csst .od_Manager _slgnals); 1• Wake uo the pd Manager to free soH •/ 
lf sst.pa_free • o 1• If stlll none free •1 

then do; 1• block untll so•• free•/ 
call pageSunlock_ottJ 1• Hust unlock otl before ••ltlf\9 •1 
cal I PXSSl••ltl I• Malt for coapletlon sl9nal fro• e>d aanager •/ 
call pageUock_ptl; 1• Re-lock 13tl before cont1nuln9 •/ 
end; 

else call pxssSdelevent C"prec"); !• But lf so•• no• don"t bother waltln9 •/ 
end; 

fptr • ptr csstp. sst.pdtreepl1 1• Get pointer to Pd•• at head of t 1st •/ 
otr Cssto, fotr •> Pd••·f Pl •> od•••bP • fptr •> odae.bPI 1• Re•ove entry at head of the list •/ 
ptr Cssto. fptr •> pdae.bol •> od••·fP • tptr •> Pd•e.tp; 

sst.Dd_tree • sst.pd_fre• - 1; 
sst.pd_neeeled a sst .• od_needed • 11 

If sst.od_tree •I 
then sst.pdtreep • •o•b1 
else sst.odfreep • fotr •> pdae.fol 

1• Oecre•.nt count of entries on free llst •/ 
1• Up cUt1ulatlve total of pdaes al located •/ 

1• lf •• reaoved the l•st entry fro• tree tlst •/ 
I• set oolnter to tuted of llst to •o-b •/ 
1• If not9 set to entry follo•ln9 t~•t rt•oved •/ 

1f sst.Dd_free c sst.aln_tree_pdaes 1• It ••"v• fallen below the d•slr•CI dnl•4'11 •1 
then do; 

sst.pd_need_Pd•es_sl9nats • sst.od_need_Dd•es_sltn•ls • 1; 
cat I pnslevent <sst. Pd-•M•ger _Slgne Is> I 1• w.a<• UD th• pd aenqer •/ 
•ndl 1• to tree so•• •ore •/ 

rtturn Up1rl I 1• End of atlocet•..Pd•t entry•/ 

1• This ends th• pd_fr••-llst aodute •1 

•nd Pd_tree_flstl 

'· 

'.~ 
.\, 

-~r 

. :·i. 



This empty page was substih1ted for a 
blank page in the original document. 



CS-TR Scanning Project 
Document Control Form 

Report# Les-~ 171 

Date : J.L1 3° Jj2_ 

Each of the following should be identified by a checkmark: 
Originating Department: 

D Artificial lntellegence Laboratory (Al) 
~ Laboratory for Computer Science (LCS) 

Document Type: 

Ji'( Technical Report (TR) D Technical Memo (TM) 

D Other: -----------
Document Information Number of pages: l'fbVso-11/MGt.'s) 

• Not to include DOD forms, printer lntstructions, etc ... original pages only. 

Originals are: 

D Single-sided or 

~ouble-sided 

Print type: 
D Laser Print 

Intended to be printed as : 

D Single-sided or 

~Double-sided 

~ Typewriter 0 Offset Presa 

D InkJet Printer D Unknown D Other:-----~-
Check each if included with document: 

D DODForm 

D Spine 

D Funding Agent Form 

D Printers Notes 

D CoverPage 

D Photo negatives 

D Other: ------------
Page Data: 

Blank Pages(by.,. nuinbel): __________ _ 

PhotographsfT onal Material lbY.-ue numll9rl: ________ _ 

Other <nae. ci.ai111i11111p11ge llllmber): 
Description : Page Number: , 

::1:/nsc;FGf\ A fl (I - 14(;) <AJV1f 11<0 TiTUf ffo.Gf c1-1i5 L\iivi~o Blflt.Jl<-

( (l;J~ I s·o ) J<Arvoo.J\A(JL.TA.WS (3) 
7 

J 

Scanning Agent Signoff: 

Date Received: _Jj_/ 3o I 9S Date Scanned: /)__ 1.5__1.:J.2 Date Returned: /j_ 1.1_1.J..s. 

Scanning Agent Signature: __ ~---~ _J_,_W __ . -~---



Scanning Agent Identification· Target 

Scanning of this document was supported in part by 
the Corporation for National Resear,ch Initiatives, 
using funds from the Advanced Research Projects 
Agency of the United states Government under 
Grant: MDA972-92-Jl029. 

The scanning agent for this project was the 
Document Services department of the M.I. T 
Libraries. Technical support for this project was 
also provided by the M.I. T. Laboratory for 
Computer Sciences. 

darptrgt.wpw Rev. 9/94 


