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A CASE STUDY OF INTERMODULE DEPENDENCIES IN A VIRTUAL MEMORY SUBSYSTEM®

by
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ABSTRACT

-

A problem currently confronting computer scientists is to develop a

method for the production of large software systems that are easy to
‘understand and certify. The most promising methods involve decomposing a
system into small modules in such a way that there are tew 1ntermodule
dependencies. In contrast to previous research, ‘this’ thgsis foguses on the
nature of ‘the intermodule dependencies, with the gpal of identifyiqg and
eliminating those that are found to be unnecessary. uging_a virtual memory
subsystem as 'a case study, the thesis describea a sgructure in which apparent
dependencies can be eliminated. 0w1ng to the nature of virtual memory
subsystems, many higher level functions can be performed by 1ower level
modules that ‘exhibit minimal interaction. The structuring methods used in
this thesis, inspired by the structure of the LISP, world of a&oaic objects,
depend on the observation thdt a subsystem can maintain a copy of the name of
an object without being dependent upon the object manager. Since the case
‘study virtual memory subsystem is similar to that of the Multiqs system, the
results reported here should aid in the deaign of similar sophisticated
virtual memory subsystems in the future.
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Chapter I

Introduction

1.1 Introduction

This thesis focuses on the interactions betweehAéertain components of an
operating system. Our goal is to show that‘a‘nontbiéial‘Sﬁbaystem, a virtual
memory (VM) subsystem, can be organized as é‘Seﬁvof.moduies that are related
to each other in particularly simple ways. The thesié presents the view'that,
owing to the nature of VM subsystems, the SQpportiné‘hod&ies need.interact

only in a few stylized ways.

1.2 The Problem

The research reported here is devoted to one aspect of the problem of
providing correct and reliable components fgr lapge—acgge computing systems.
The general problem is that it is difficult to maintain and modify, and it is
particularly difficult to verify, the correct operatign of large general-
purpose systems. This general problem is due, in part, to an excessively high
degree of connectivity between system modules. The nature of the interaction
between two modules is such that the correct operation of Onelmodule'depends
upon the correct operation of the other. These intéfﬁétioné are thus evidence
of intermodule dependencies.

This thesis treats one aspect of the general problem by examining
intermodule dependencies in the context of a éaseHStudy‘virtuai memory
subsystem. The reason for limiting the problem in this way is to bély upon
characteristics that are inherent in VM subsystems éo“providé’ghidelineé for

determining classes of dependéncies’ihat may be:éssential in that contekt.
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The specification of the case study VM is based on the specifications of the
Multics [Bensoussan72, Organick72, Multics74], CAL [Sturgis74, Lampson76],
Hydra [WulfT7i, Jone$75], and Stanford Research Institute (SRI) [Neumann75,
Robinson75]‘VM subsystems. These virtual memory subsystems, as well as those
of the Plessey 250 [England72], TSS/360 [Lett68], and HITAC 8800 [Nakazawa72]
systems, support shared segments or segment-like objects. Each of these
subsystems is a relatively complex operating syatem‘component. This study of
intermodule dependencies in a sophisticated VM subsya:em spould aid in the
design of similar subsystems in the future.

| The modular structure of a subsystem should héve the following
properties: 1) no one module should be particularly large, 2) the
interconnections between modules should be siﬁple and few in number, and 3)
the'intérmodule dependencies should_form a partial order, The primary goal of
this thesis is to show, in the context of the case study, how such a
constrained modular structure can be obtained. A se¢0ndary goal of the thesis
is to introduce some novel methods for obtaining this modular structuée that

can be applied to other areas of system design.

1.3 Method of Solution

The method of solution relies on established structuring methodologies,
as well new methodologies developed during the course Qf this research. The
established methodologies are described in this‘section; the new ones are
described in the next sectibn, which summarizes the results of this thesié.

One approach to achieving a modular séructure that can exhibit the three
properties above is called the ob]ect-og;egteg,approacn, in which each module

is a subsystem that supports all computational objects of a particular type.
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The only way to carry out an operation on a particular type of object is to
invoke the corresponding managing subsystem. In general, a module that
supports a certain type of object depends on other modules that suppobt other
types. Dependencies among these modules are straightforward, since they must
correspond to the interfaces of the object manager subsystems.

A second approach for structuring subsystems is the laiering approach, in
which a subsystem is regarded as an ordered set of layers, or abstract
machines, such that each layer uses the environment pro?ided by layers below
it in the ordering to implement a more sophisticated abstract machine. The
important characteristic of this approach is that since each layer is designed
to operate in an environment provided only by those layers below it, no layer
embodies knowledge of any higher layer. Assuming that layers are separated by
protection barriers, the correct operation of a given layer depends only on
that of lower layers.

These two approaches illustrate different aspects of modular structure.

A system organized according to the object-oriented approach appears to be a
collection of data abstractions. Modular structure is achieved because, by
assumption, the procedures that are most likely to interact strongly are
precisely those that serve to produce the same data abstraction. These
procedures are grouped within distinct type managers. Hence the object-
oriented approach should yield a structure in which intermodule invocations
are relatively infrequent. A layered system appears to be a collection of
progressively more sophisticated abstract machines. In this case, modular
structure is achieved because, by assumption, the difference between any two
ad jacent machines in the ordering is rather small. Therefore a module

comprising only a small collection of procedures should be sufficient to
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produce a given abstract machine from the preceding one. The layering
approdch should yield a structure consisting of small modules.

The object-oriented and layering deéign methodoiogies are not
incompatible; a subsystem can have a structure that is both object-oriented
and layered. The most straightfobward intersection of these two methodologies
results in regafding each module as both a manager of an object type and a
layer. In this thesis we do not insist on a one-to-one coérespondence; for
example, some case study VM layers contain several object manager subsystems.

It is possible to structure a subsjsﬁcm by eithéé of these methodologies
so that intermodule dependencies form a'ﬁdrtiallorder. If the dependencies
form a partial order, then the process of verifying correct operation can be
decompdsed in a natural way. Since there are no'depéﬁdency loops; there must
exist modules that depend on no others. The‘correet opération of these’
modules is verified first. Thereafter, any module that depends only on
already-verified modules can be verified. (1) To retain this structure that
is desirable fof verification, we shall insist on‘a‘dependenéy rélationship
among VM modules that is a partial ordering. Sinée the term "layer"™ connotes
a total ordering, we prefer to use the term ggglgg.' Héwéver, wherever the
context is not sufficiently restrictive, we'will usé these terms
interchangeably. 4

The intermodule dépendencies are classified according to their effects.
If a specification of module A that does not take time into account can be
violated by incorrect operation of module B, we say that‘A has a sgbggg

- — > —— Y - - - -

(1) Dependency lcops among modules complicate the verification process. A
technique for breaking dependency loops, called gandwiochipg, is described by
Parnas [Parnas76].

Page 10




dependency on B. If A does not have a strong dependency on B, but a
specification of A that takes time into account can be violated by incorrect
operation of B, we say that A has a weak dependency on B. For example, in a
layered subsystem a lower layer is, by design, not strongly dependent on a
higher layer. As another example, two regions that interact only through a
shared semaphore are mutually weakly dependent. In this thesis, we are
concerned much more with strong dependencies than with weak dependencies,
since failure in the case of weakly dependent modules implies only a denial of
service. We shall use the term "dependency" by itself to mean "strong
dependency", and "independent" to mean "not strongly dependent".

Although some novel notions for implementing a VM subsystem do appear in
this thesis, such notions are not an end in themselves. They serve as a means
of illustrating a structuring methodology. In fact, there is an assumption in
this thesis that the machine architecture supporting the case study VM is
rather conventional. As a consequence some tempting but irrelevant
mechanisms, often mentioned in footnotes, were not included in this analysis.

The approach taken in this thesis is to understand and classify the
dependencies among the case study VM modules. A measure of the success of
this approach is the extent to which each dependency can be explicitly

Jjustified.

1.4 Results

We observe in this thesis that two kinds of operations are fundamental to
the functioning of the case study VM subsystem. The first kind of operation
is one that can associate and dissociate two computational objects. The

second kind of operation is one that fetches attributes of a computational
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object when given its name. We derive two structuring techniques -- one for
each kind of operation -- that implement eacﬁ'opefation in such a way as to
reduce the number of strong intermodulesdepeﬁdénciésx These techniques are
patterned after the view taken by the designers of LISP [McCarthy62] towards
the LISP world of atomic objects. By adapting their point of view to the
problem at hand, it becomes simpler to identify superfiuous intermodule
dependencies.

Corresponding to the operations that.asaociate and dissociate objects are
the LISP operations of binding and unbinding. "The chief virtue of the binding
notion, from the point of view of this thesis, is that it is a one-way
relationship: the behavior of object B is unaffected if object A is bound to
it. Treating the association between two objects as a binding makes explicit
the nature of the dependency between the corresponding subsystems that
implement them.

Corresponéing to the operation thatvnapa_object ﬁameS“to'attributeS'isv
the LISP notion of a property list. The significant observation concerning a
property list is that the module that associates the data therein with an
object need place no interpretation on thé data. Accordingly, if module C
associates an object of module A with an object of module B, its behavior need
not depend (except possibly weakly) upon tﬁe behavior of module A or module B.

Additionally, we suggest a structuring method that serves the engineering
goal of achieving economy of mechanismf ﬁe‘refer to this method as.the
principle of the greatest common mechggigg:"Even in subsystems that are
well-structured according to the above criteria, a number of modules may
contain similar or identical functional subsets. For example, the

specification of several case study VM modules reveals that, given an object
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name, they return a particular attribute. A supporting module that inplements
this mapping function for the other VM moduies could be provided. If'the |
supporting module were too small, in the sense that its mappingvmechanisn were
not sufficiently general to provide a service for each of the other modules,
then economy of mechanism would be sacrificed since at least one of the other
modules must implement its own mapping function If the supporting module
were too large, in the sense that it not only provided the necessary mapping
functions for the other modules but also provided specielized functions for
some of the modules, then the correct operation of alléthe nodules would\w
depend upon the correct operation of these specialized functions In order
that the supportlng module not err in either direction, it should provide the
greatest common mechanism, which would consist of the intersection of,the
functionalities required by the dependent moduies

The principle of greatest common mechanism should be distinguished from
the principle of 1 __ggt,gggggg e h ism, originally suggested by M. D. ‘
Schroeder and described by Popek [Popek74]. The principle of least common
mechanism is relevant to the design of a system that contains a segurity
kernel [Schroeder75]}. A security kernel is an éncapsulated set of programs
and data that implements the security policy of an operating system,
Typically, a security policy specifies conditions that must be met before
information can pass.between two users, or between a data repository and a
user. The kernel should allow information flow only when the specified
conditions are met. An error in any encapsulated program may'allow
information flow that is contrary to the policy. One method for reducing the
likelihood of such errors is to remove all mechanisms not relevant to security

from the kernel. Although such mechanisms may be common mechanisms, they do
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not require the high degbée of privilege that kernel mechanisms do, and errors
in their operation may violate the security policy. ’Theiléast common
mechanism principle states thét such mechanisms should be excluded from the
secﬁrity kernél. Popek mentiohs the subsystem thathaupports a user I/0
interface as an example of a mechanism that ia’éften included in thé most
privileged part of>an operating éystém, evsh théugh it does ﬁot require suéh
privilege. According to the pfinciple 6f leéstvcommon ﬁéehanism, this
subsystem should not be included in a security kebhel. The principle of least
common meehanism is thus a means for reducing the likelihood of unauthorized
information flow, whereas the principle of greatest common mechanlsm is a
means for achieving economy of mechanism These principles are not
incompatible. For example the first principle atates that the user I/0
facility should be outside the kernel, and the second principle atates that it
should be a common mechanism. Both objectives can be met if the user I/O

facility is a common mechanism, outside the aecurity kernel.

1.5 Rg;atgd Research

In the past few years both layered and object-oriented general-purpose
systems have been built, providing evidence that these structuring techniques
can be used in a practical context. More recently researchers have sought to
specify and verify the correct operation of system components. As part of
these efforts, some researchers have foocused on the nature of modules and
their interdependencies.

The layered approach to structuring was employed in the development of

the "THE" system [Dijkstra68]. More recent examples of layered systems
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include the CAL [Lampson76] and Venus [Liskov72] systems, as well as the
family of systems described by Parnas [Parnas76].

The object-oriented approach was employed in the CAL systenm, and more
recently in the Hydra system [Wulf74]. A specification for a layered,
object-oriented system [Robinson75] has been produced by Robinson and others
at SRI. However, none of the object-oriented systems has carried this
structuring approach all the way down to the hardware interface; the CAL
effort was perhaps the most successful attempt to do so.

In order to verify correct operation, it is necessary first to define it.
Naur [Nauré66], Floyd [Floyd67] and Hoare [Hoare69] showed that small programs
can be proved to satisfy a set of assertions. Researchers at SRI, building
upon these efforts and the work of Parnas [Parnas72] in the area of program
specification, are developing a methodology for proving properties of larger
collections of programs. Among the many kinds of assertions that programs may
be shown to satisfy, assertions.about the secure operation of systems [BellT7l,
Neumann75] have probably received most attention.

Assertions made in the following chapters about intermodule dependencies
can be justified without recourse to a formal notion of correctness. There
is, however, an assumption about correctness that is fundamental to this
thesis: the correct operation of a layer may be determined without regard to
its use [Habermann76]. For example, an errant program may appear to "misuse"
a computer hardware layer if it attempts to divide by zero. However, as long
as the hardware behaves as specified in this and in other "erroneous"
situations, it is said to be correct.

Currently, there are a number of research efforts under way that are

related to the design of verifiable, general-purpose systems. At SRI, a
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system design methodology that supports semi-automated eofrectness proofs 1is
being developed [Robinson75]. In an effobt.described by Schroeder
[Schroeder75], parts of the Multics operating aystem are being restructured,
with the goal of making manual verification possible. Parnas [Parnas?ﬁ]
describes a notion of intermodhle dependéncy ﬁhat SQrvés as the basis for
structuring a family of operating systems.

The SRI system design effort is part of a larger effort to develop a
methodoldgy for designing verifiable systémég The operéting system design
serves as a case study for the methodology; Currently, there are no plans for
pfoducing an implementation of the operaﬁing SyStem déSign. A significant
_ feature of the SRI methodology is thaﬁ proof of correct operation can be
carried out as part of the design procesé. Globél asseftiohs, based on the
specifications of a high-level’module, can be brb#ed before the supporting
low-level modules have been specified. Thuéycertéin classes of
inconsistencies can be detected as the system is:beingaépeéified; As part of
this effort, the SRI research team has de#élbped semi-automated tools for
checking the consistency of module specifieétiéné.

The Computer Systéms Research Division of the M.I.T. Laboratory for
Computer Sciencé is nearing completion‘Of a project that supports development
of a certifiable security kernel for the Multics syépem. (1) One activity in
the scope of this project involveé a restructuring 6f thersystem Software that
manages processor and memory resources. As part of this effort Reed [Reed76]
has described a design to simplify the'mahagément of“procesaor resources in

- - - — - - . . e -

(1) Other participants in this project, sponsored by the Air Force Electronic
Systems Division, include Honeywell Information Systems Inc., the MITRE
Corporation, and Stanford Research Institute.
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Multics. 1In this design, the processor management function is distributed
over two layers. The virtual processor abstraction provided by the lower
layer can be used to structure the system supervisor. Janson [Janson76]
describes a way of restructuring the Multics virtual memory so that the
resulting modules are 1) responsible for managing distinct data abstractions,
and 2) small enough to be subject to manual verification. Huber [Huber76] has
shown how the use of dedicated virtual processors can simplify the structure
of the Multics virtual memory. These restructuring efforts are all aimed at
establishing a more coherent layered structure within the Multies supervisor.
A distinctive aspect of this project is the emphasis on viability: the
restructuring efforts must be carried out within the constraints imposed by a
commercially available system.

Work on a family of operating systems by Parnas and his colleagues
represents the first total system design effort in which intermodule
dependencies have received careful scrutiny. Modules interact according to

the "uses" relationship: module A uses module B if A, in order to function

correctly, requires the presence of a correct version of B. The system
structure can be represented as a directed acyclic graph whose edges
correspond to the "uses" relationship. The "uses" relationship is thus a
partial ordering among modules. Assuming that assertions about correct
operation in the Parnas family of systems include assertions about elapsed
time, then the "uses" relation contains the strong dependency relation, but is
contained by the union of the strong and weak dependency relations. For
example, there are weak dependency relations that are not "uses" relations:
if, by invoking module B, module A can cause another entry to be put into a

hash table that is maintained by B, then A may be able to cause long hash

Page 17



table searches and resulting degraded service from module B. In this case B
is weakly dependent on A but does not "use®™ A in the sénse of Parnas.

In contrast to previous work, this thesis investigates conditions under
which a module simply maintains bindings to objects,‘without any embedded
knowledge of the semantics of the objects. If these conditions are satisfied,
then the module maintaining the bindings cannot be strongly dependent upon

those modules that implement the objects.

1.6 Plan of the Thesis

The specifications of the case study virtual memory subsystem are
presented in chapter II. First, the notions of an abstract object and an
abstract type manager are reviewed. The next section of the chapter describes
the capability and access control 1list models of protection, with an emphasis
on the latter model. Additional terms are then defined, and assumptions that
further refine the scope of the problem are stated. The final sections of the
chapter deal with particular issues relating to type extension in the case
study VM, including the relationship of access control lists to extended type
objects, and the treatment of directories as extended type objects.

Chapter III is devoted to the lower layers of the case study VM. The
mechanisms in these lower layers multiplex main memory. We present an
abstract model of a memory multiplexing implementation, based on the
manipulation of bindings between autonomous, low«level objects. Each type of
low-level object is shown to be related to the other types in a simple way
that follows directly from the description of the memory multiplexing model.
Although one application of the simple model provides a eorrespondiﬁgly simple

VM environment, additional (i.e. recursive) applications provide progressively
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more sophisticated environments that approximate segmented address spaces.
The dependencies among the VM modules that support this recursive design are
analyzed and justified.

In chapter IV, the higher layers of the VM are considered. These layers
are intended to support objects with implementation-independent names and with
an arbitrary collection of attributes, as well as to support dynamic type
extension. To provide confidence in the viability of the VM structure, there
is a section of chapter IV devoted to a description of how this VM structure
could support any of several possible segmented addressing environments. An
important common function of the higher VM layers is the mapping of object
names to object attributes. A layer that serves as a common mechanism for
supporting these mappings is described. Applying the LISP-inspired property
list notion and the principle of greatest common mechanism to the
specifications of the higher VM layers results in a design that eliminates
unnecessary dependencies.

Chapter V presents a summary of the research reported in this thesis.

The assumptions underlying the structuring methods of the thesis are reviewed,
together with the particular characteristics of a VM subsystem that have made

them readily applicable. We contrast the structuring approaches of chapters

IIT and IV, showing why the former is more appropriate for the lower VM layers
and the latter is more appropriate for the higher layers. Following this
summary of the thesis results, we mention some problems that remain, and offer

suggestions for further research.
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Chapter II

The Case Study Virtual Memory Subsystgm,

2.1 Introduction ,
It is the purpose of this chapter tq:apgq;fy the case study virtual

memory (VM) subsystem. ‘This specification_uill.aerva as the context for the
analysis given in later chgbters. The case study VM has not been implemented;
rather it is a design inspired by e;i;ting VM'aubsygyens,rpamely those of
Multics [Behsoussan72], CAL [Lampson76], and Hydra [Hulf?k]; as well as the WM
of the system being designed at SRI [Robinson75].

'Since the WM 13 expected to supportngxtQQQed type objects, we begin by
reviewing the notion of type extension. We then describe how extended type
objects can be protected by access control ;igts. Throughout this chapter we
refer to reiated work on extensible systems and protggti9n,, We include a
brief description‘of‘the represenpapipn:of agtpoyi;mihierarchies, and of the
treatment of directories as extended type objects. The next two chapters
introduce methods for structuring an implementation pf this case study VM

subsystem.

2.2 Types and Type Extension

This section reviews the notions of object tYpeé and abstract type
managers. These notions are fundamental to the object-oriented structuring
methodology employed in this thesis.

The entities that are manipulated during thg course of a computation are
called objects. Each object 1is défined by a set of operations. For example,

a "message queue" object might be defined by the operations "enqueue" and
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"dequeue". The set of objects can be partitioned into equivalence ciasses,
such that objects with the same set of operations form a class. Each
equivalence class is called a type. Thus "message queue" is the nameyof a
type, and there may be many message queue objects that are instances bf this
type.

Associated with each object type is a subsystem called an abstract type
manager, or type manager. A type manager comprises a set of procedures that
implement each of the operations of a type. For example, an "enqueue" request
for a given message queue object would be directed to the message queue type
manager. The type manager would then manipulate the data that represents the
given message queue object in such a way that the enqueue operation is
effected.

There are two particular operations, "create" and "delete", that are
applicable to many object types. Since it is difficult to regard these
operations as ones that affect the state of an object, we consider them
instead to be operations on the type manager itself. This suggests that the
type manager is an object in its own right.

The view that "types are objects" was introduced by Jones [Jones73] and
is summarized here. According to this view, the set of all objects forms a
tree that is three levels deep. Figure 2-1 is an illustration of the
three-level tree of objects. A given object has, among other attributes, a
name and a type. The typg attribute is generally the name of a different
object, one level higher in the tree, that is the type manager for the given
object. Leaf nodes, sﬁch as "message queue 26", correspond to instances of a
type. Interior nodes of the tree, such as "message queue manager", correspond

to type managers. The root node corresponds to a special object that has a
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type attribute equal to its own name attribute. The root node object is, in
effect, a manager of type managers. It is not only possible to creaﬁe and
delete instances of objects, but it is also possible tq create and delete type
managers. Creation of a new object instance is accomplished by invoking the
"create" operation of a type manager. SimiIarl&,'créitibn of a new type
manager 1s accomplished by invoking the "create" éperatton of the root node
object. A system that provides for creation of type manigebs (i.e. the
definition of new types) is said to support QlBéQié;;?E& gregtion. The CAL,
Hydra, and SRI systems all support dynamic typeecreﬁfionf The VM of this
thesis also supports dynamic type creatidn, not on}y f&:r the flexibility that
this feature provides to users, but more inportahtly because the VM itself is
organized as a set of type managebs so much common mechanism for supporting
user-defined types already exists.

In general, the reprgaen&atiqp aof an object comprisea a sét of other
objects, and a catalog naming ‘each member of that set. We refer to the
objects in the representation-as represeptation ggjgggg;'ggﬁpgggngjggjgggg, or
e nts, and to the cétalog as‘the map. An obJeQ; that is built but'of
other objedts is called an g;;gnggg,gxgg,QQJEQg (ETd); and its type manager is
called an g;gggggg.gxpg_mgngggg'(EfM). Thus the set of extended type managers
are a proper subset of the set of abstraqt type managers. The“notioh of typg
extension can be applied recursively, 30 a component object may itself be #n
ETO. These relationships are shown in Figure 2-2. :Flgpres 2-1 and 2-2 both
depict a tree-structured'relationship among objécps."Thése two ﬁﬁeéky

structures are independent. The basis of the rglationship in Figure 2-1 is
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type: each child node corresponds to an instance of the type maﬁéged,by the
parent node. - The basis of the relationship in Figuré“z-z is représentation:
each child node correspords to a represéntation object of the parent node.
In order to prevent endless recursion, it is appropriate to regard
certain "low level” objects as being atomie¢. Such objects arevcalledfgggg
level objects. Of course, such a distinction is an arbitrary one, sibce any’
object in a representation tree could be chosen to a base level object. In
the case study VM, it is reasonable to consider segment objects to be base
level objects. Even though segments are implemented by more primitive
objects, subsystems outside the VM cannot access these primitive compénehts.
The segment object was described first’by’DehniS"[DenniSﬁS], and since that
time many operating systems have provided segments or similar abstractions. A
segment is an ordered collection of storage cells (typically words or bytes)
with an associated name. The addﬁeSs:Of a cell ‘within a segmént is an integer
that denotes the position of the cell relative to the beginning of the
segment. The length of a segment is equal to the number of cells it contains,
. which may vary during the course of a computation. The name of a segment is
location-independent; segment names in the case study’VH‘are pon-reusable
unique identifiers. Siﬁée segments may contain eithe;v&gﬁﬁ ér executable
instructions, the operatiéns defined on segmen%;vinc}udé‘"reaQ", "write™, and
"execute". Segments may have a number of attributéé,_éééhvéa "date created",

and "name of creator".
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2.3 Protecting Object Types

This section reviews probectipn‘maghanisus found in contemporary
operating systems. The access control liat mechanism, :to be provided as part
of the case’study VM, is described in greater detail.

The VM of this thesis provides a,meehiniau o express and enforce
protection policies relating to objects. More precisely, the VM supports
protection policies for segment objects and for all ETOs constructed
(recursively) out of segment objects. Access to an object is expressed in a
straightforward way: each operation on an pbject has an associated
permission. The name of the permission is the same as the name of the
operation. For example, there are "enqueue" and "degueue" permissions for a
message queue object, and "read", "write", and "execute? permissions for a
segment object. A collectiqn of acgeas-pernisaiqns,fbr objects is called a.
domain [Lampson69]. A program executing "in a domain" is constrained to
perform only those operations that are speeified in the domain. Table 2-3

illustrates a domain comprising access permissions for three objects.

gefmigsion object gggg

enqueue _ MQ 23

enqueué, dequeue MQ;31'

read; execute segment_16
Table 2-3

A Sample Domain
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The domain model of protection is sufficient to characterize the
protection facilities of most current'geaeralepur§9§g»aystem51 In one .-
realization of the domain model, a dbmain is represented as a set of
capabilities [Dennis66]. A capability has two parts: a name of an object, and-
a set of access perﬁissiéns. (1) In order thaf the piotection policiés not be
circumvented, capabilities are tamperproof. Presenﬁaiion of a capability
specifying a given permission is a prereduisifé for pébforming the
corresponding operatidn on an object. CapabilitiésAé;h‘be passed from one
domain to another in order to achieve sharing.

In a capability system it is not necessary that the agent attempting to
access an object be identifiable; mere possession of an appropriate capability
indicates proper authorization. In another reallzatiéh of the domain model,
which makes use of agcess gontrol lists [Saltzer75], each agent is
identifiable, and has a globally recognized name. .In access .control list
(ACL) systems, an agent that has the potential to accesawobjpctsvis called a
principal. A principal may be characterized as the internal manifestation of
authority in a computer system. Each_principa; is identified by a name kaown
as a principal jdentifier. Every object has an associated access control list
that contains ordered pairs of 1) accéss permissions and 2) pninéipal
identifiers. Every time that.a principal attempts to reference an object, the
associated access control list. is searched to determine whether the type of
access that the principal is attempting is allowed. (2) If it is not allowved,
E;;_;;;-;;;;-;;;;-;;-;-;apability may also contain type information.

(2) In this thesis we shall use the term "prineipal" informally, to replace

the more precise phrase "processor executing a program on behalf of a
principal™.
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the attempted reference is aborted. A sample sccess control list for a

message queue object appears in Table 2-4. -

ermission ~ principal

enqueue Smith

enqueue, dequeue Jone;

dequeue ' Brown
Table 2-4

A Sample Access Control List

If the ACL shown in Table 2-4 were associated with "MQ 31", this would
indicate that the principal named Jones éould perforam both enqueue and dequeue
operations on “MQ_31".

The relative merits of the capability and ACL protection mechanisms have
been described in the literature [Fabry74, Saltzer75]. The VM of this thesis
provides for protection of objects (i.e. segments as well as ETOs) by ACLs.
The primary motivation for choosing the ACL mechanism is that a working
ACL-based system, namely the M.I.T. Multies system, is available for
inspection and'comparison by the author. An additional motivation is that the
use of ACLs as a means of protecting extended type 6bJects has not been
explored in the research literature; current extensible systemgvuse
capability-based protection mechanisms. Providing for variable-length (and
potentially large) ACLs is a design issue that 1srnqt encouhtered in

capability-based VM subsystems.
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2.4 Related Terminology and Assumptions

The purpose of this section is to introduce additional relevant terms, as
well as some underlying assumptions. The terms introduced here are related to
those defined in preceding sections.

We define a protected subsystem to be a set of programs and daté that is
encapsulated so that other programs may invoke those in the set only at
specified entry points. Programs outside the set are prevented, by the
encapsulation, from causing arbitrary transfers of control to dr from
encapsulated programs, and from directly accessing the encapsulated data.

Each extended type manager in the case study VM is implemented as a protected
subsystenm.

We wish to allow for the case in which each protected subsystem may
execute in a distinct domain. Accordingly, we specify a one-to-one
correspondence between protected subsystems and domains. Given our informal
use of the term "principal", each protected subsystem assumes the role of a
principal. Consequently subsystems such as type managers that are not
ordinarily associated with "end users" nonetheless have érincipal identifiers.

To summarize, we are assuming in this thesis that "prinecipal", "protected
subsystem", and "domain" can be used interchangeably. Further, we assume that
each extended type manager is implemented as a distinect protected subsystem.

In general, this brief description of the nature of a domain, a
principal, and related concepts will suffice as a basis for understanding this
thesis. A more detailed description of the naming of these entities is not
necessary here. We do assume, however, that each protected subsystem has a
low-level name that has the form of a system-provided unique identifier. Such

a name may be the same as the name of a canonical component, or it may be
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associated with the protected subsystem as a uholg, Possible representations
for the principal identifier names that appear in ACLS include single unique
identifiers or a sequence of unique identifiers. A further discussion of the
naming of principals, domains, and protected subsystems appears in the work of
Saltzer [Saltzer74] and Montgomery [Montgomery76].

Associated with each object type are two classes of principals. First,
there is a class of principals that are gonaumers of objects of a given type.

A consumer of a type is any principal that lovokes the corresponding type

manager. Second, there is a class of principals (with only one member) that

are suppliers of a given object type. The auﬁpliqr of an EIO0 is the
co:responding ETM. Using the terminology‘ihtroducedvhere, we can characterize
each ETM as the supplier of one object%type and the consumer of at least one
object type.

In this thesis wve do not assume any particular relationship between a
protection con;ext and .an execution sequence. Thus, we wish to allow for the
possibility that there can be 1) one~-to-many, 2) one-to-one, ah‘3) many-to-pne
relationships between domaina and virtual processors. (1) In particular, we
generally will not specify the nunbeb of virtual proceasors that support a
given ETM.

We do not consider the details of an interdomain communication mechanism
in this thesis. However, we do assume that for any such mechanism, the
unforgeable identity of the invoking principal is supplied to the target

domain.

- . 0 - W - - - -

(1) A virtual processor may be either a real processor or an abstraction
provided by multiplexing a real processor.
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2.5 Authority Hierarchies

The authority stricture represented in an acceéss control list is not
expected to be st#tic.>'1n this section we summariie one approach, tohbe'
supported by the case study VM, for impleménting a hierarchical authority
structure in an ACL-based systenm.

The operations to display and update the contents of ACLs must’bé
controlled. Controls can be applied if each ACL has an ACL if its own. This
second ACL might contain permissions for such opetations as "display" and
"update”. (1) Controlling access to an ACL via arother ACL suggests a
hierarchy of access control lists. Rotenberg [Rotenberg7i] describes a
special protected subsystem, called an office, that can embody the access
control policies that are likely to be expréssed in such a hierarchy. Every
ACL is under the control of exactly one office, which we shall call its
controlling office. An office will determine, according to some internal
policy, whether a given prineipal (or ‘group of prineipals) can perform some
operation on an ACL under -its control. The ‘escape meohanism provided by

offices eliminates the need for a hiérarchy of ACLs.

(1) We do not specify any controls on the operation of searching an ACL.
Rather, we assume that any principal cén search any ACL. Were this not the
case, it would be necesasary to determine, by searching the ACL of the given
ACL, whether the given ACL could be searched. Clearl#®,-in order that any
reference to an object not result in an infinite loop of ACL searches, there
must exist :some ultimate ACL for whish Searshing if umrestrioted. We specify
that the ultimate ACL be the same as the original ACL. For those cases in
which the information in ACLs may be exploited-as a covert information channel
{Lampson73], non-discretionary controls [Saltzer75. Hhitnore73] can be used to
prevent a principal from d¢btaining’ such information.- '
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2.6 Protecting Extended Iype Objects iﬂ-ﬁﬁ-é§¥;§2§84J§¥$£Sﬂ :
The use of access control lists, rather than capabilities, for protecting

extended type objects is‘novel& This-sectian specifies the role of ACLs in an
extensible system.

For every reference to an ETO, at least two ACLs are consulted. For
example, suppose that Smith wishes to do .an "engueue" on MQ. 26, and that the
(only) component of MQ_26 is SEG_14. Upom being invoked, the ETM for message
queues searches the ACL of MQ 26 to see if Smith has enguéu§ access. Assuming

he does, the ETM searches its map for MQ 26 and finds SEG_14. To carry out

the enqueue request, the ETM must write into .SEG_14... It invokes the type

manager for segment ¢bjects, whiqh in turn: searches the ACL of SEG_14 to see

if the message queue manager has write access. In general, the height of the
ETO fepresentation tree is a lowef bound on the number of distinc; ACL
searches. |

Eadh extended type object corresponds to the root node of a
representation tree. Any other object "X" in the ;rqg»must be .a component of
some object "Y". We observe that only the type manager for Y must be able to
reference X. Therefore the only principal that should appear on the ACL of X
is the principal for the type manager of Y. An ACL with only one principal is
sufficient for every object in the tree except the root node object. We refer
to this simplified form of ACL as a gggggggg_g AQL, A degenerate ACL can be
searched faster than a normal ACL' thus cheok&ng accsss te repreaentation
obJeets can be optimized. ) ' ‘

In an ACL~based: systen, every ETM performs thnee basie uapping functions
on the name of an argument objeet. First, it aaps the obJeot name to-the

object type, to be sure that the object passad to- it 15 one cf its own.
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Second, it maps the object name to the associated ACL, to see if the éonsumer
has appropriate access for the requested operation. Third, it maps the iject
name into the set of component objects, in order to carry out the reqhested

operation.

2.7 ACLs Versus Capabilities in Extensjible Systems

The effectiveness of ACLs and capabilities in extensible systems is
contrasted in this section. An important difference between these two
mechanisms is that the capability mechanism includes a means for exefcising
dynamic constraints on the invoked ETM. This is because, in a capability
system, a type manager must derive its permission to access component objects
from the capability that it inherits for the ETO. Two methods for obtaining
access to component objects in a capability system are: 1) amplification of
access rights [Jones73], and 2) unsealing a sealed capability [RedellT74].

The amplification method is used in the Hydra system. In Hydra, the
capabilities for the component objects of an ETO are stored in the "capability
part® of the ETO. Consumers of an ETO have capabilities that expréss certain
access privileges; however the capabilities of consumers do not contain
privileges allowing them to load from or to store into the capability part of
an ETO. When the supplier of an ETO is invoked, it obtains via amplification
these "load" and "store" rights that are necessary for manipulating component
objects.

The method of sealing and unsealing was pioneered in the CAL system, and
is used in the SRI system. 1In the SRI system, each ETM is the sole possessor
of a special capability -~ called a "type" capability -- that permits it to

perform "unseal" operations on certain other capabilities. Whenéver an ETM is
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passed a capability for one of its own ET0s, it can pbesént that capability,
together with its type capability, to a lower 1ay9r 1h the systeﬁAandidbtain
all the component capabilities for the ETQ in retu?n. Thié oﬁération is
called "unsealing". Since other subsystems do not possess the particular type
capability, they must regard the capability for the ETO as being "sealed".
Both the amplification and the sealing metheds provide a finer degree of
access control to component objects than an ACL-based system could provide.
In the capability systems, ETMs can aceess the component objects only for the
duration of their invocation. Cohen [Coben75] éailsibhis property
conservation, and describes circumstances under:whieh it may prove useful. 1In
addition, Cohen shows how consumers in capability systess may further
constrain the operation of ETMs.byvdelibeéateiy,éxelﬂaing certain rights from
parameter capabilities. In an ACL-based system, sueh dynamic comnstraints
could be enforced only if the interdomain communication mechanism kere
enhanced to allow cpnsumers to express these constraints. Schroeder
(Schroeder72] has proposed such enhancements for ah dnterdomain communication
mechanism. The VM of this thesis dees not depend on these enhancements, but

neither does it preclude them.

2.8 Directories as Extended Type Objeqfs

Although this case study VM is strongly inspired by the Multics VM, one
of the significant differences is that it supports dynamic type extension. In
particular, directories are ETOs, as in the Hydra andeRI’systeﬁs.

A directory objeqt contains a variable nupmber of entries, each of which
contains a symbolic name and a machine-oriénted name. Operations on a

directory object include mapping symbolic names into maqhine-oriented names,
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and adding and deleting entries. Since directories are objects themaelvea,'
the machine-oriented name of one direcﬁorj may appear in another.
Consequently, directories may be arranged in a treée-structured hierarchy.

The directories of this case study VM are 1mplenehted as extended type
objects, with segments as the»repbesentation objects. Segments are a natural
choice for the representation since, like"c:!ireetéries', they are
variable-length objects. Additionﬁr‘uqtivavioa'fﬁr'iﬁpleuentiﬁg”direétoriea

as ETOs is provided in the work of Redell [Redeli7i] and Bratt [Bratt75].

2.9 Sumpary

The case study virtual memory subsysten of this thesia 1a basad on the

Multics, CAL, Hydra, and SRI virtual memory subsyatoms. As such it should

provide a nontrivial and practieal context for the annlysis of thc next tuo

chapters. The major obJeetive of the next two ohapters is to speoify

intermodule relationahips in the VM. A seeondary but necoaaary obJoctive 1s

to justify the particular nodular deconposition of the VM, which is describedv

in these chapters.
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Chapter III

‘Treating ijects,aat3i8d1n53

3.1 Introduction

In this chapter we apply the LISP notion of object bindings to the
structuring of thé case study virtual memory (VM) subsystem. To begin, we
propose that the memory nultipleing fuhetion,.uhiehkis fundamental to a VM
implementation, should be provided at the léues; level. We then develop an
object-oriented model of memory multiplexing, in which the objects of the
model are belated by bindings. The utility of thié Biﬁding’modél is that,
even though objects may be related by bindings, 4£hé respeetive object managers
may be independent. Much of the chapter is davoted to a description of an

1mp1ementation of the memory multiplexing model thtt preserves the

- independence of type managers inherent in the model Certain dependencies,

such as dependencies on an addressing environnent, are 1ntroduced in an
1mp1euentation however. Finally we show that not one, but several W™ layers
carry out a memory multiplexing function that can be characterized by the
model. Consequently, observations about an imﬁleacntation, and . about

dependencies, apply to a number of the layers in the case study VM.

3.2 Removing Upmecessary Dependencies in the Lower YM Lavers

In the model for memory multiplexing the operations being carried out are
merely the manipulations of bindings between objects. The operations on these
objects are thus no more complex than the oﬁerabions‘defined oﬁ LISP atomic
objects. We show that there are type managers in the lower VM layers that

need embody no knowledge of the semantics of certain other types. Rather,
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these type managers simply store the names of objects of other types in their
internal data bases. The binding and unbinding operations, which are‘
sufficient to characterize memory multiplexing, are implemented as thé storing
and fetching of object names. This chapter concentrates on the parts'of the
VM that provide abstractions more primitive than segments, primarily because
the application of the proposed techniques for eliminating classes of
dependencies is most apparent in these lower VM layers. The VM abstraction
provided by the VM layers of this chapter can he characterized as a
potentially large number of épaces containing a potentially large number of

potentially large objects.

3.3 Plan of the Chapter

The first section of this chapter justifies the choice of a simple memory
multiplexing layer as the lowest layer in the VM. This layer provides the
abstraction of a simple paged addressing environment. The implementation of
the multiplexing function is modelled as a collection of type managers that
can associate their own objects with others via explicit binding and unbinding
operations. We show that these type managers can be partitioned into regions,
so that the correct operation of one region does not depend on the correct
operation of another. Next, we describe another layer of the VM that provides
a memory abstraction that is like a primitive segment. Like the lowest layer,
this second layer carries out a simple multiplexing function. Consequently it
can also be structured as a collection of modules with few interdependencies.
Finally, we describe a third layer that contributes to the VM abstraction by
providing for a large number of spaces of primitive segment objects. The

specification of this layer -~ to carry out a simple multiplexing function --
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is quite similar to that of the first and second layers., Since the
specifications of the three layers are guite slﬂilér, the internal structures
can be as well. Thus the structuring techniques that are based on the memory

multiplexing model of this chapter can apply to each of these layers.

3.4 The Lowest Layer of the Csse Study VM Suboystem
As mentioned in Chapter I, it is neceasary to justify the particular’
modular structure of the case study VH. Since we will specify the case study
VM in a bottom-up fashion, we first justify the functionality of the lowest
layer. The lowest layer provides for the'uultiplexiﬂg‘of main memory.

\
In order to support a large number of objeets -~ whether they be segment

objects or other abstract object typ;; ~-- it is necessary to provide a way of
multiplexing limited primary memory resources;‘ The representation fdr an
object is located somewhere in a hierarchy of siorage devices, but during any
short time interval only a subset of all the object representations is
contained in primary memory. A memory multipicxins mechanism, by moving data
between primary memory and the varioué-storagé devices, provides the illusion
that all the re’preséntatioﬁ‘s are contai‘ntd in primary memory. The memoryﬁ ‘
multiplexing strategy can be justified as 1§ng as 1) computations exhibit
locality of reference, 2) there is a specttun-df storage devices that
comprises large, slow, inexpensive-per-bit deviceés at ohe end and small, fast,
costly-per-bit devices at the other; and 3) the cost of moving inrormatiqn
from one part of the hierarchy to another is relatively low.

We are claiming that memory multiplexing is necessary to support a large

number of objects. In addition, it may be necessary to multiplex main memory

among different parts of the representation of'any single object, if that
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object is large. For these reasons we consider a VM model with a simple

memory multiplexing facility at the lowest layer.

3.5 Overview of Memory Multiplexing

The abstraction provided by multiplexing ¢an be deseribed in terms of -
several sets of objects. The first set is a large set -of state objects, and
the second set is a small set of operationa)l objects. Multiplexing is . a means
for simulating a third set such that: 1) the size.of the third set equals the
size of the first set, and 2) the elements of the third set are operational
objects like those in the second set.

In"a VM implementation, the firast set corresponds to addvgssable sections
of secondary memory and the second set corresponds to addressable sections of
primary meémory. In this thesis we refer to the first set as the set ér home -
objects and to the second set as the set of frgme objects; -The set of home
6bjects is assumed to be.larger; i.e. we.asauUtfth§ amount of secondary memory
is greater than the amount of primary memory. However; only the frame objects
are operational objects -« only they can be referenced directly under progranm
control without any real-time delays. The frames are multiplexed among the‘-
homes to produce a third set of abstract information:containers, We refer to
this third set as the set of blogk objects. By assumption the home, frame,
and block objects are all the same size; i.e. they oantain the same number of
bits. In this pure memory mulbtplexing'model,.thens‘is a one-~to-one

correspondence between: block objects and home objects. (1)

two-level memory architecture. The model could be extended to accommodate a
multilevel memory architecture if the higher level of ‘every two devices were
regarded as primary memory and the lower regarded as secondary memory.
However, explicit consideration:of multilevel memories is beyond the scope of
this thesis.
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3.6 A Model of Memory Multiplexing

We now examine the objectslin the memory ﬁultiplexing model in detail.
Like LISP atomic objects, these objects in the model have bindings, and
operations to manipulate these bindings.

To complete the description of memory multipiexing, we need to introduce
a fourth kind of object called a data object. A data object is a fixed-sized
collection of bits -=- the same size as home, frame, and block objects. It is
strictly an abstract construct, so there is no corresponding physical
representation. The concept of a data objce; is necessary for our
object-oriented description of memory multiplexing. The name of a data object
is equal to its contents. .Thus, if data objects contain K bits, then there
are 2K>data objects, each with a distinet K-bit name. Data objects have no
bindings, and there are no operations defined on them.

The home object is an abstraction of an addressable section of secondary
meﬁory. A home object has a name and a binding. The name of a home object
corresponds to a seéondary memory addresa.  Ferrexagple,iin a system that; uses
disks to provide secondary memory, the name of: a home object might correspond
to the union of: 1) a controller number, 2) a device number, 3) a cylinder
number, 4) a track number, and 5) a record number. The binding of a home
object designates a data object. Every home object is bound to some data
object; in general more than one home object may be bound to the same data
object. Since the (only) binding of a home object designates a data object,
the binding is called the data binding of the home object. There are two
operations on a home object, called the fetch and store operations. However,
these operations are defined jointly on home and frame objects, so they will

be described together with the other operations on frame objects.
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The frame object is an abstraction of an addressable section of brimary
memory. A frame object has a name and two bindings. The name of a frame
object corresponds to a primary memory address. In an implementation'the
frame name would be the absolute address of the first addressable unit (e.g.
the first word or byte) of the section of primary memory. A frame object has
a data binding and a home binding. The data binding designates a data object.
More than one frame object may be bound to the same datalobject. The "home
binding designates either a home object or a special object called NULL. We
impose a restriction on home bindings of frames that is necessary for -the
correct behavior of this memory multiplexing model: non-null home bindings
must designate distinct home objects. Examples of binding relationships are
depicted in Figure 3-1. The data, home, and frame objects in this figure are
the atomic objects of the memory multiplexing model. A reference to the
information "in" a frame or home object is an informal way of referring to the
data object designated by the data binding of the frame or home object.

The operations defined on frame objects are
1) assign (frame_name, home_name),

2) release (frame_name),

3) read (frame_name, data name),

4) write (frame_name, data_name),

5) fetch (frame_name), and

6) store (frame_name).

The assign operation sets the home binding of "frame name" to "home name". It
enforces the constraint mentioned above, that no two frame objects may have
the same home binding. The release operation sets the home binding of

"frame_name" to NULL. The read operation returns "data_name", the current
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Figure 3-1

Bindings Between Objects of the Multiplexing Model

data binding of "frame_name", while the write operation sets the data binding
of "frame name" to "data_name". The effect of each ihétruction in a processor
instruction set on the objects of the model can be represented as a
combination of read and write operations. Tre gggggrand 8tore operations
~correspond to the I/0 operations of fetching information from secondary memory
into primary memory, and storing information from primary memory into
secondary memory, respectively. Neither the fetch nor the store operation

requires a home name as an argument. The appropriate home binding is

implicit, since it must have been set by\an assign operation before any fetch
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or store could take place. The :etch operation replaqes the data binding of
"frame_name" by fhe data binding of the implied home néme.. The‘stqre"
operation replaces the data binding of the 1mp¥}eq home name by that of
"frame_hame" .

The fetch and store operations arerefined‘inntly o? pome and frépg ’
objects. Each operation requires access to the datg??}pdiqgggf.both‘a home
object and a frame object. Ihqrasaign quggtiqp,uin‘g?9§¢a§t,_is definedfqn;y
on a frameuopject. It requirqa_thetname °f‘a‘h9m9 opject as a’paramete;, Sﬁ§4
it places no 1nterpretatiqn on this name. Vnglfgtchganq_gtore operqtions
could be decomposed further; e.g.(the,fetch opeﬁatiqa‘;nyolves:"1) pbbain;ng
the data binding of a hgme object and 2? sgttiggfphe dg;g b;nd%ng of a frame‘
object. However, treating fetch and store as indivisible operations more

closely reflects the behavior of actual I/0 commands.

3.7 'Ihe Block Abstraction

Up to this point we have described the*bbjeéts'that'aérve”&aieoﬂpoﬁent
objects for the block object. The subsystem that &c%s’ﬁi’ﬁhe”fypé manager for
block objects, which we shall call the blogk layer, manipulates the bindifigs
of these'éomponént objects to produce the block objedt. - This section provides
a specification of block objects.

As we have mentioned, in the pure memory:mﬁitipldiiﬁg“model‘thére’is a
one-to-one correspondence between blocks and homes.:' For example, the set of
home names could also-SGEve as the set of block namés in & pure memory
multiplexing scheme. However, if a one-to-one correspondence exists, the set
of block names will be as large as the set qf home names, and ‘individual block

names will be quite long. If block names were short (on the order of ten
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bits) rather than long (on the order of twenty bits) then the main memory
requirements for programs that manipulate block dﬁjeots could be significantly
reduced. To economize on main memory usage, we abandon the one-to-one
correspondence of the pure memory multiplexing model and specify that the set
of block objects be smaller than the set of ho§e>objéets;' In this case, we
reference block objects with shorter names (called 19251:mgghigg=gg;§g§§g
names by Bratt [Bratt75]) and provide operations Yo associate block and home
objects. The cost of periodically re-establishing associations between block
and home objects is acceptable,.aSSuming that programs using block objects
exhibit locality of reference. (1) Unlike the pure’iéﬁory ﬁultiplexing model,
the model we have chosen involves two kinds of multiplexing. First, there is
multiplexing of main memory: the small set of frames is multiplexed among the
large set of homes. Second, there is multipleitngﬂbf the block name space:
the small set of block names is multiplexed among the large set of home names.

Block objects have two bindings that ahe visible above the block layer
interface: a home binding and a data binding. The home binding may designate
a home object or NULL. To allow'shgring, more than one block object may have
the same home binding. Thus there is no restriction on the home binding, as
there is in thé case of frames. A consumer of a block object may invoke the
block layer to set the home binding of a block. Thereafter, a consumer can
reference (i.e. read and write) the block directly. Each reference to a plock
object either returns or cnqnges the data binding. Each block object has one
hidden binding, called the frame binding. The term."hidden"™ is used here as
(1) The general strategy of assigning short, tehhérary ldcal'ﬁames to 6bjécts
that already have long, permanent global names is employed in many

general-purpose operating systems, including the Multics, Hydra, and CAL
systems.
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Robinson has defined it [RobinsonT5], meaning that consumers of block objects
cannot determine the existence of the frame binding. Ihe’frame.binding
designates either a frame object or NULL.

The block layer provides not just one, but rathef’severel,.spacestof
block objects. These spaces of block °bJ?°t§’4931;9d,§;92¥.§23255' form the
addressing’environments for various subsystems in the system,supervisoe, (1)
In particular, some subsystems in the vM executeuin s_block space‘addressing
environment. Other subsystems in\tge case study VM rely on more sophisticated
memory abstractions such as segmentation.

There are four visible operations defined on blook obqects. These are
1) initiete (bloox_pame,ihome,page),

2) terminate (block_name),

3) read (blook name, data name), and

4) write (block_name, data name)

These four operations, unlike all the operations defined on frames and homes,
can be invoked by programs outside of the block layer. In the case of each of
these operations, the particular block space is an implioit additional
argument. The initjate operation replacesktpe’home oipding_of Pplock_pame" by
'home_geee“. The t _g_g;nggg operation replaces the home binding of

"block_ | naﬁe" by NULL. A principal can therefore control which homes are bound
to blocks in its block space by means of the initiate and terminate
operations. The p _ggg and gz;gg operations are analogoue'to the read and write

operations on frames. Any instruction referencing a block (e.g. "exclusive OR

L
LR,

(1) A "level one processor" in the two-level inplenentation of virtual
processors described by Reed [Reed76] is an example’of ‘a ‘subsystem that may
make use of a block space as an addressing environment.
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to memory") is implemented in terms of the read and write operations. The
two operations for manipulating the (hidden) frame binding of a block are
1) connect (block name, frame_name), and
2) disconnect (block_name).
The connect operation sets the frame binding of "block name" to "frame name".
The disconnect operation sets the frame binding oty"block_pame" to NULL.
These two operations can be invoked only by programs in the block layer.

Any processor instruction that refereﬁcesva block object does so using a
two-part address of the form |

(block_name, offset).

The offset is typically given in units of words or bytes. The value of the
offset is irrelevant in this memory multiplexing model; all write operations
on a block change the data binding and all read operations leave it unchanged.
The block space addressing environment is similar to that provided by the
TENEX system [BobrowT72]. (1)

The objects of the memory multiplexing model, and the operations on thenm,
have now been defined. Each of the operations, except fetch and store,
involves only the manipulation of a binding designating some target object.

In verifying the correct operatioh of a module that marniipulates a binding, the

(1) In TENEX the blocks, which are 512 words in size, are considered to be
concatenated so that they form a single linear sgpace. To reference

(blockname, offset)
in TENEX, a sjingle address with the value
blockname * 512 + offset |

is presented.
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semantics of the target object are irrelevant, There is no strong dependency

on the mddule managing the target object.

3.8 Overview of Block Laver Implementation

We noﬁ considér how thekbindings of ﬂéﬁe; framé,ﬂéhd}block'dbjectélmight
be implemented. It is the intentviﬁ this section; as wélihas”in féllbwiné
sections that describe some aspects of the 1m31;ﬁentatiéﬁﬁiﬁ”gféater d§£éil,
to show th#t'the‘modularkindépendehcé'inﬁeréni in the multiplexing model can
be preserved in an implementation. ' - ”,““ o |

The representation of any'data’bindihg is imﬁiibiﬁ; in'thVSense that‘the
data binding of an object is the contents of't-,‘hé";obj'eét.“ The reméining ‘
bindings, on the other hand; are impléméntéd ih.disﬁiﬁct>&ata strhctufés. ‘One
straightforward way of 1mplemeh£idg‘these bindings is to use fabieé such as

those shown in Figure 3-2. The block space ;égig of Figure 3-2a represents

block space table ' ' ' " framelist

0 | NULL | HN_42 }. | NULL |
| | : |

1 | NULL | NULL | {1 HN_21 %
] ] 1 ] {

] ] i i ] ]
2V FN.5 | HN_16 | KEY 1 HN_33 4
1 ) ] 1 | 1

] 1 ] I ]

3 | FN_4 | HN_6T | HN = home name 1 BULL
H i ] _ R |
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<

Figure 3-2 a i~

 Figure 3-2 b

Tables Representing Frame.ahd,ﬁbwe B1ndi#gs‘
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the home and frame bindings of each block in a blook space. The framelist
table of Figure 3-2b represents the home bindius of each frame in primary
memory. There is one framelist, but there are as many block space tables as
block spaces. Because these two kindé of taﬁ?ﬂﬁbsupp;rt distinct onéct
types, they are managed by distinct subsyatens within the block layer The
subsystem that manages the bindings of block objncts, by manipulating entries
in block space tables, is called the g;ggk‘ggg;gxg;, The subsystem that
ﬁanages the bindings of frame objects, by nanipul#tina entries in the
framelist, is called the frame sublayer. Tha frane sublayer performs fetch
and store operations so it manages data bindinga of home objects as well.
Block layer‘programs can raference these tablgg‘qs b;gck objects, since‘the
addressing environment of the block layer (to be deac}ibedyin the next
section) is a restricted form of block space. |

We can now describe the effects of thevinitiate, terminate, assign,
release, connéCt, and disconnect operatidné on éhe‘&atglsaséa of ﬁhe_block
layer. It is not necesséry to consider the effeats of rQad, wr;te,-fetch, or
store operations since these operatiohs reference ohl}ldﬁta bindings, and
therefore do not ﬁffect the data bases of Figure 3-2. | .

A block space table that contains N ordered pairs of the form

<frame name, home name)>

can describe a block space of N blocks.  Initially, many of the ordered pairs

in a block space table may consist of two null compohahts. (1)

(1) Even in a "new" block space, however, some blocks will be associated with
common utility procedures and procedures that serve as toeholds to the block
‘layer. Similarly, the distributed superviser of ﬁhe ‘Multics system appears in
every newly-created Multics address space.
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Initiate operations set the home name parts of the ordered pairs;
initiate (3, home_name_67)
sets the home name part of the 3rd ordered pair in the block space of‘the
caller to "home_name 67"; i.e. the home binding of block 3 is now the name
"home_name_67", as shown in Figure 3-2. The frame name part of the ordered
pair is set by the connect operation. Performing the operation
connect (3, frame_name_U4),
sets the frame name part of the 3rd ordered pair in the block space tab;e to
frame_name_4, as shown. Entries in the framelist are set by the assign
operation, so performing the operation
assign (frame_name_4, home name_ 67)
% sets the 4th entry in the framelist to home_name_67, as shown in Figure 3-2.
. The respective inverse operations -- terminate, disconnect, and unassign --
set values of bindings to NULL.
As mentioned, block space tables are implemented as blocks and therefore
: have underlying frames. The frame name of the block space table associated
with an executing principal is stored in a special processor register.
Virtual addresses of the form
(block_name, offset)
are converted to absolute addresses by the simple calculation
address = frame_name_part (table + W*block name) + offset;
; in which "table" denotes the frame name of the block space table and W denotes
the number of words occupied By each entry in the block space table. The

value of "address" is simply storage location number "offset" in the desired

frame name. Thus read and write operations on blocks are mapped into read and

write operations on frames.
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3.9 TIhe Addressing Environment of the Block Laver

As mentioned above, the block layer uses block spaces for its addressing
environment. The procedures and data bases of the block layer are addressed
as bldcks. The particular block sphées used by the block layer are called
basic block spaces.

The addressing environment of the basic block space is preset; programs
executing in the basic block space do not perform iniﬁiate or terminate
operations. Furthermore, thé frame binding of every block is guaranteed to be
fixed and non-null. Since blocks in the bgsic block apaéé‘have'fixed,
non-null frame bindings, they do notkneedngrshaig);nonanull home bindings.
Only the data bindings of the blocks (and underlying frames) in a basic block
space can change. As a consequence, bhe«blgak igggr.hever,need‘be'invoked to
manipulate its own addressing environment. _Unlike the block space abstraction
that the block layer provides, the basic block space that it uses is
completely static. The motivation for interpseting thils static environment as
a set df blocks is mérely to achieve economy of hardware (or firmware)
mechanism. Just as there are a number of {real) block spaces available to
support supervisor subsystems, so are there aeverﬁl‘haéic block spaces
available in order to isolate functional eomponent5~bf the block layer.

The basic block space addressing enviﬂbnﬁantAis'essentially the same as
the environment provided by "level 0" in Parnas’ family of operating systems.
It is also quite similar to the environment provided by Multics "unpaged
segments". (1)

(1) Multics unpaged segments are not of uniform length. Rather, the length is
dictated by function, to conserve primary.memory. . Blocks in a basic block
space may also be allowed to be different lengths, without complicating the
supporting mechanism. B '
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3.10 Handling Frame Faults

In preceding sections we have described. the objects of the memory.
multiplexing model, and suggested an underlying 1mplemen;ap;on, 1The biock
sublayer implements the bindings of block objpcts,.and the fbame spblayer
implements the bindings of frame and home objects. In_gddipiqn‘to these
subsystems that serve as type managers for objects of tnq}pultip;gxing'model,
thergjare additional bloqk‘laysr:subsystema‘thgsignvgka;thqsa type,mapagers.
These subsystems, which allocate frames onidenand to ggpport consumers of
block.objects, are described in thig sectiqn,{. _ »l

If a principal references a block with a null fpggg;binding\(buﬁ with a
defined home binding) then a ;ggmggggg;g churs?:AInhgnia thesia,yg choo;g po
model the handling of a frame fault by two coopgrat;ggxppiqcigglg; a
frame~claiming principal and a frahe-freeing prippipa;,,:aggh of these
principals executes in a basic block,spage,, Thsifngggﬂclaimgr_providpg the
faulted block with a supporting frame. The frame freer wrests frames‘ayax
from blocks, in an orderly manner,, (1)

Providing distinet principals that hgndle,frgqg_ﬁau;gg,;;Pcopaiatentzw;th
the principle of least privilege [SaltzerTi], si@ga handling a frame fault
does not require access to programs or data of ppg;£§u¥txng gr;nq;pql.
Furthermore, if the frame claimer and frame freer ang;;gplpmqqtég as
lqo;elchoupled virtual procea;ors,dsystemApgcﬂormancg;maxw;mprqvqvas.g result
of their parallel activity. Other qdvaq;agegoéf implementing these two VM

mechanisms in distinct virtual procgssors are given by Bsed [Reed76].

(1) An experimental version of the Multics paging software developed by Huber
[Huber76] makes use of a dedicated virtual processor for the frame freer.
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The frame claimer and frame freer are described briefly. The intent here
is not to show algorithms in detail, but rather to indicate how these two

principals invoke the block and frame sublayers tolmunipuiata the bindings of
block, frame, and home objects. Although multiple frame claimers and freers
could exist, this description is sufficilent only for a single frame claimer
and a single frame freer.

An explanation of some terms and notationyis necessary, before listing
the steps followed by the frame claimer and frame freer. Each step in the
frame claimer and in the frame freer corresponds to one invocation of either
the block or frame sublayer. The steps below that ihvoke the block sublayer
begin with "[B]", and those that invoke the frame sublayer begin with "[F]".
Some of the steps correspond to utility functions'prOVided by the block or
frame sublayers. The remaining steps correspond to binding manipulation
operations, such as the "connect" operation, that have been described
previously. |

A frame is called a free frame if ita home binding is null. The list of
free frames is implemented as a thread running tbrough the framelist.
Associated with each frame is a list of ordered pairs called a trailer list.
The first component of each pair designates a block spéce table, or
equivalently, a block space. The first coﬂﬁoneﬁt cgn be implemented as the
frame name of the block space table. Theisecond component is a block number,
or block name, in the given block space. A ﬁrailer list indicates those

blocks (in respective block spaces) that aruvbOund'tb a frame.
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First we sketch the operation of the frame claimer. Any principal'that
takes a‘frame fault invokes the frame clainer.A The arguments passed to the
frame claimer are a (block space, block name) pair. The frame claimer carries
out the following steps. | o

1. [B] Obtain the‘home binding of the (bloeck space, bloqk name) pair,
i.e. get a home name. ,

2. [F] Determine if there is any frame that 1§‘b9unqv§§ this home. If
so, get‘the name of this frame and go tq»step ?.“:- o

3. [F] Get the number of free frames. If this nﬁmber is less than é
certain threshold value, signal the fpame freer. qu thepe are no free
frames, wait for a signal from the frame freer. B |

4. [F] sSelect a free frame. N ’

5. [F] Assign the home name of step 1 to the fraﬁeﬂnamg of stgp 4. This
decrements the number of free frames. |

6. [F] Perform a fetch operation on the chosen fﬁgme name7 Tbis updates
the data binding of the frame. | | - . ‘ |

7. [F] Add the ($1§ck épace, block name)‘pa;r téjthe’trailer 1ist of the
chosen frame. ‘ | ‘ |

8. [B]V Perform a Qgggggg operatiqé, théh\seys the frame binding of the

‘block in the (block space, block name) pair to the chosen frame.
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The frame freer is activated whenever the frame elaimer detects that more

frames should be freed. The frame freer carries out the‘following steps.

1.

[F] Get the number of freelframes. 1f the number is'greater than
zero, signal the frame claimer. If the number is greater than the
threshold value, wait for a signal_féuh the frame claimer.

[F] Select a frame that is not free. At least one block must be
bound to this frame.

[F] Find a (block space, block name) pwir in the trailer list of the
chosen frame.

[B] Qgggggnggg the chosen frame from the block found in step 3.

[F] Remove the (block space, block‘maﬁii pair found in stép 3 from

the trailer list of the chosen frame.

. [F] If the trailer list is not empty, go to step 3.

[F] Perform a store operation on the chosen frame name. This updates
the data binding of the associated home .
[(F] Perform a release operation on the chosen frame. This increments

the number of free frames. Go to step 1.k

- The binding states that correspond to steps in the claiming and freeing

sequences are shown in Figure 3.3. Initiaily, g given block, frame, home; and

data object are in state A. 1In state A, tﬁejvariousfbiﬂdings are as they‘

should be following an initiate operation. The frame claimer operates on a

collection of objects that is in state A. Steps 5, 6, and 8 of the frame

claimer cause state transitions to states B, C, and D respectively. The

reapective operations performed in these steps are assign, fetch, and connect.

"The frame freer operates on a collection of objects that is in state D. Steps

4, 7, and 8 of the frame freer cause state transitions to states C, B, and A
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respectively. In this case, the respective operations are disconnect, store,
and release. (1)

Of the sixteen steps listed‘above, 8ix correspond to binding manipulation
operations. The other ten are utility functions provided by the frame or home
sublayers. These utility functidns require their owh supportihg data
structures. For-example, stép 2 of the frame claimer must locate the frame
that 1s bound to a given hone.. It can do so efficiently by searching a
balanced tree [Knuth73], with as many nodes as there are frames, in which each
node maps a home name into a frame name. AS anﬁther exasmple, the frame freer
must have an efficient way of unbinding a frame object from a set of block
objects. The trailer list provides an effieient way of locating the.bloeks
that are bound to a frame. (2) The tratler 1ist provides &n efficient way of
locating these bloek-oﬁjeqts. Of course, these data structures that support
the utility functions are accessed only by the appropriate t}pé managers; e.g.

only the frame sublayer accesses thé trailer 1ist.

- - 0 - S . - . - -

(1) If a block in a block space has a non-null frame binding, then the home
binding of that block may be found either 1) in the block space table eritry
for that block, or 2) in the framelist entry for tié fréme designated by the
- frame binding. Although this redundant information can be tolerated in a VM
model, it cannot be in a practical implementation, since it wastes memory
space. In an implementation, a block space table entry would contain either a
home name or a frame name. The connect operation would replace the home name
by a frame name, and the disconnect operation would replace the frame name by
its home binding, to be found in the framelist.

(2) This method of recycling frames, by removing their names from block space
tables, is similar to the method used in Multies. Another strategy for
managing the bindings between blocks and frames would be to put unique
identifiers, rather than frame names, in the block space tables. These unique
identifiers could be mapped into frame names using a central, hardware-
Supported associative memory. In this case a frame could be unbound from a
set of block objects merely by deleting the corresponding (unique identifier,
frame name) pair from the associative memory. Building an assocclative memory
of the required size and speed seems within the state of the art.
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3.11 Dependencies of Regions Within the Block Layer

In the preceding sections we described four subsystems that are part of
the block layer: the block and frame sublayer and the frame claimer and
freer. In this section we examine the interdependencies among these four
subsystems, and show that only a few strong dependencies exist.

The strong dependencies that do exist include dependencies on an
addressing environment. Each of the four subsystems executes in a basic block
space. Since, as mentioned before, the basic block space environmentvis quite
static, only the data bindings of the supporting objects ever need to‘be
changed. Other bindings do not change; for example, a block in a basic block
space is permanently bound to a particular frame. Only the read and write
operations on blocks, provided by the block sublayer, and the read and write
operations on frames,. provided by the frame sublayer, are needed to support a
basic block space. Thus any principal that executes in a basic block space
strongly depends on the parts of the block and frame sublayers that support
the read and write operations.

These parts of the block and frame sublayers, on the other hand, do not
depend on any other parts of the block or frame sublayers. The read and write
operations for frames merely manipulate data bindings of frames. The read and
write operations for blocks map block names into frame names. Although the
mapping relies on parameters from block space tables, these block space tables
are referenced only to effect read and write operations for blocks in a basic
block space. The remaining parts of the block layer never reference these
block space tables since the basic block space environment is a static one.

In summary, each subsystem in the block layer depends on the mechanisms

that provide read and write operations for block and frame objects. The
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correct operation of these mechanisms, on the other hand, does not depend on
any other block layer facility. It then seems reasonable to‘seﬁarate these
read and write mechanisms from their respectivé Slock and ffame éublayers,
since they represent a greatest common mechanism. Since these mechanisms
woﬁld be impleménted in hérdware in a practical systenm, theyzuould be
protected from interference by block sﬂblayer and franme subiayer programs.

We now consider whether the frame.fr§eb andﬁfrime‘élaimer depend strongly
on the block and frame sublayers. They certalnly depend weakly on the block
and frame sublayers, since their rate 6f'§ro§ress'1§ controlled by the values
of arguments returned by those sublayers. ‘The»intdrraéé‘to the block and
frame sublayers can be specified in such a way that their erroneous operation
would only delay the progress of the fraié‘claiibf aﬁd'fréer. Designing the
interface in this way can be usefui; for example, the frame claimer and frame
freer could be implemehted, and tﬁen tested using dummy #rguments, before the
block and frame Sublayers were implementeé; if 6urﬁspeéifiéation of thé frame
claimer and freer were that they manipulated uninter§§eféd arguments, then
they would not depend strongly on the block and frame sublajers. However we
specify that the frame claimer ﬁust coerée frahé objects from the free state
to the claimed state, and the frame freer must effect the reverse transition.
The frame claimer and freer cannot satisfy.this $pééification‘unless the
underlying block and frame sublayers operate c;;récily}"ﬂence, the frame
claimer and freer depend strongly on thélbloék and frame sublayers. |

It may seem tempting to specify that subéyStems such as the frame claimer
aﬂd frame freer simbly'manipulate uninterpretédﬁarguments.‘ The block and
frame\sublayers have béeﬁigiven such a specifioatibh.x4ﬁs one moves up in a

hierarchy of abstract machines, however, what appears to be uninterpreted data
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at a given layer can and generally should be considered to be an abstfact type
at a higher layer. If many modules in a complex system are insensitive to
errant behavior, it becomes extremely difficult to isolate the erring modules.
We emphasize that we are not attempting to eliminate every intermodulé
dependency; this is neither possible nor desirable. We are trying to
eliminate unnecessary dependencies, and loop dependencies in particular.

With the exception of the strong dependencies just described, there need
be no other strong dependencies between subsystems in the block léyer; The
block sublayer does not depend on the frame sublayer, and vice-versa, since
neither interprets bindings to objects managed by the other. Even the utility
functions that are performed, such as the traversal of a trailer list, are
carried out without interpretation of object bindings. In addition, the frame
claimer and frame freer do not depend strongly on each other, since their only
interaction is to synchronize their progress.

The block layer itself is strongly dependent on all of its components.
The block layer depends on the block subiayer to maintain the proper
correspondence between a block object and a frame object. If the block
sublayer returned some other frame name, the data binding of a block object
would be affected in a way that would not correspond to the specification of
read and write operations for blocks. 1In particular, a réad operation on a
block might, in violation of the specification, cause the data binding of the
block to change. Similarly, the frame sublayer must always choose the home
name corresponding to a given frame name when undertaking a fetch or store
operation. If it chose some other home name, the data binding of a block
object could be changed even though a write operation had not been performed.

The block layer is strongly dependent on the frame claimer and frame freer as
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‘well. By operating incorrectly, either of these two subsystems in the block
layer could change the value of an object binding. Such an erroneous
modification would prevent the block layer from mesting its specification.

The dependencies among block layer modules are 1llustrated in Figure 3-4.

3.12 The Next Laver in the Virtual Memory

The block layer provides not only a primitive virtual memory for the
layers abo?e it, but also the heart of the ngepgniapﬂnengd‘to implement the
segment object. In this section we describe another region in the case study
VM that is necessary for the support of segments,

The block space abstraction can be characterized as a small number of
spaces containipg a large number of sm?llkobiecpa.;JIp contra;t. the
abstraction specified at the beginning of this a ehgpter is a potentially
large number of spaces containing a_potgqtia{;g lgpgg'nugbgr Qf pogentiglly

large objects. To extend the block space abstraction to the desired
abstraction, there must exist facilities for: 1) making large spaces (or
objects) out of small ones, and 2) growing and ahrinking the size of spaces
(or objects). The first facility is providgd\gj ghe block layer subsystém. .
We now describe the second facility. It provides for the allocation and
freeing of home objects. Allocation and freeing of home pbjpgts is an
economic necessity since the number of home objects ;;,rinité., We refer to
the layer that performs these functions ka»‘s- the home allocation layer/ or home
a;locator_‘ The two operations proyidgd by th;g ;éyer are

allocate (home_ name), and

free (home_name).

The home name is an output argument in the ';‘irat; operation and an input
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argument in the second operation. The specification of the home allocator is
‘quite simple: to change the state of "home_name"™ from free to allocated, or
vice-versa, on any invocation. }

‘The home allocator maintains a data base that indicates whether or not
any home object is allocated. This data base, called the homelist, maﬁ in
general be 1arge enough that only portiona of it occupy primary mesmory at any
time. (1) A natural uay to multiplex primary memory alcng portions of the
homelist is to implement the homelist aa a set of bloek objecbs The home

allocator is thus a consumer of the abatraetian providsd by the block layer.

3.13 Dependencies Between the Block and Home Alleeation Lavers

As mentioned before, the addressing en&ircﬁlpqz*af‘tge block layer is
static. The block layer doea'not need tQ r0qﬁ0a£ the ﬁlloﬁation or fréeing of
homes. Hence it does not depend on the home allocator. The home allocator,
which 1is 5 consumer of block objects, does depend on the block layer;f

T§ see hd; the‘hé;b allocator might‘depond'on th?ﬁblockﬂiiyer, wéﬁneed to
consider: 1) how the home allocator uses Bloek gbjﬂé?a. and 2) the failure
modes of the block layer. Since the oncka fbrning the haneliat are supplied

by the block layer, and since the block layer uight 5&11 to -anase abject

bindings properly, the homelist could become garblad.j.COnaeqpently the
"allocated" attribute of a home may no loéger-be correctly represented. The
home allocator might therefore allocate the same home objJect twice, without
any 1ntervening "free"™ operation. Sinee:the home allocator programs could not

detect a garbled homelist*(hnlosu redindant inforsmatlon were kept in the

(1) The M.I.T. Multics data base that corresponds to the homelist currently is
about 500,000 bits in size.
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homelist or another data base), they could.conting‘bpﬁopeggpgxggpertdrbe§,
In a narrow sense, the home allocator would be operating "porregtly" Since a
failure of the block layer would\pot_qauae it to_"plqw\uéﬁ. Houeier,'a
failure of the block layer can cause the specification of the home allocator
to be violated. According to our gefinitionloff(gtnong)uerendgncy, the home

allocator thus depends upon the block layer,

3.14 Specification of Large Block Oblects |
The block iéyer'toge'tﬁermv‘tith“the ‘home allocation layer produce an
abstraction that can be eharacterized as a small number of spaces ¢ontaining a
potentiallyjlarge numbervdf‘shall objects. We now extend thiévabStraétion, to
~one that can be ohabactebized as a sﬁall nuﬁbeﬁisf sb&ées'éohﬁaining a
potentially large number of potentially large objeats. These objects, called
;Qggg_glgggg, are addressed jhbt like Block'objects{°i.é."via"Z;part
addresses. The maximum 1ength of a large block, however, is much greater than
the small, fixed length of a block object. Since large blocks are to be
‘variable-length objects, we 5pecify an operation; ‘ |
set_length (large_block name, length),
that can grow or shrink the current length of a lérge block. The initial
state of a large block (which includes a current length) is specified in an
initializing operation | B
initialize (large_block name, initial attributes).
By definition the initial contents of any partiafﬁﬁhé'large‘block between the
beginningkand the current length ié zéro;‘ZReading.dr ufiting'a large block at

a point beyohd.the current length causes an érror.
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3.15 Implementation of Large Blocks

Eachrlarge'block can be represented by a table called a large block

table, (LB table) which contains M ordered pairs of the form

<{frame name, home name>.
The home named in the i-th pair contains the data of the i-th piece of the
large block, and the frame named in the i<th pair designates the current
primary.memory frame (if any) for the data. A large blogk table may contain,
in addition to the ordered pairs, eerpain attributes of the corresponding
large block object. | | | |

Although there is a considgrablg diffenenge between the-block and the
large block abstractions, there is a significapt gompon‘meehanism4for
supporting them. Many of the ppeqations tpa; need to be pgrformed on a large
block table to support large blocks are the same as those that must be
performed on a block table to support blocks. For example, 1) adding a new
block to a block space and »2)‘addingytovtheiampﬁnt gf‘(ponzero) information
in a large block can both be supported by “tﬁitiatef‘operations that change
the appropriate underlying tables.

Since there may be numerous large block tabies, it is a desigh objective
that only a subset of them need be in priﬁqry menory at‘any’time, A natural
way to achieve this objective 1s to implement each large block table as a
block object. Thus, a large_block space is realized a$ a gpaéé of blocks,
each of which contains a large block table. Each lérge,blbck table, in turn,
describes a collection of homes (and possibly frames) phat form the large
block. In the context of large block space implementation, Qe shall refer to
any block space table that describes a space of large block tables as a large

block space (LBS) table. These data structures are shown in Figure 3-5.
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Virtual addresses of the form
(L, 0),

in which L is a large block name and O is an offset, are translated by the
hardware as follows.
1. LB_table =.framq_name_part (LBS_table + V * L)
2. frame = frame_name part (LB_table + W ¢ [0/F] )
3. address = frame + MOD (O,F)
Here, "V" and "W" are the number of words per entryrinvan LBS table and an LB
table respectively, and "F" is the frame aize for a pioébwor\a large block.

‘ Since LB tables are implemented as block objects, it is possible to take
a frame fault either in step i or in step 2 of the virtual Address trénSlation
sequence above. We wish to distinguish between the incarnations of the block
layer that deal with leaf nodes of the large block implementation tree and
those that deal with the interior nodes (lhféémﬁiook tables) of the tree. We
shall refer to the former as the 1gggg_g;gngf£Lﬁa.;gﬁg;vand to the latter as
ihe large block space (LBS) layer. The LBS layer is responsible for handling
frame faults that occur whenever any LB table, representing one large block in
the LB space, must‘be~moved.into primaky memory. The LB layer handles frame
faults for pieces of large blocks. (1)

There are some smali diffgrences between the operation of the LBS layer

and the previously described operation of the block layer. Ih particular, the
frame freer of the LBS layer cannot arbitrarily free frames that contain LB

tables. To see this, we refer to the example in Figure 3-6. For clarity, we

(1) We can relate these two layers to the Multics VM as follows: the LB layer
corresponds to the Multics page fault handler, and the LBS layer would
correspond to a subsystem that handles page faults on page tables.
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use upper case "FN" to mean "frame name" in the case of frames that contain LB
tables, and lower case "fn" to mean "frame name" for the leaf node frames. In
the figure, we show two framelists -- one for each class of frame objects.
Suppose that the LBS iayer chose to free FN_2, debiCt&d in Figure 3-6. The
frame FN_2, however, contains the frame bindihngs for several pieces of a large
block; e.g, the frame binding for the firSt piiece’is fn_3 When the frame
freer of the LB layer sélects fn_3 for freeing, itimust be able to cause any
reference to fo_3 that appears in an LB table to be deleted. It would be £00
eostly to retrieve an LB table from seconﬁari uémory ﬁerely to set one of its
frame name parts to NULL; therefore ad lohg as &n‘LB;table has any non-null
frame name parts, it should remain in pri@g;y’ngmory{:

We propose that the LBS layer have»the option of freeing a frame, aucb as
'FN_2, that appears in a trailer list. It céuld do so by signalling the LB
layer to undo appropriate bindings. In this example, the LB layer would
replace both fn_3 and fn_6 by NULL, and reuove‘fﬂ_g from the trailer lists of
fn_3 and fn_6. Following these steps, the LBS layer could berform a a;ore
operation on FN_2. The‘correspondence between a frame, such as fn_3, and a
hoﬁefis not lost; ’thie‘correspondénee is »till retained, by the LB layer, in
the framelist.

The LBS layer supplies operational objects -- blocks -- that contain the
representation of large block objects. If the LBS layer claims a frame, such
as FN_2, that supports one of these blocks, eﬁd'does 80 without informing the
LB layer, the LB layer can fail to meei its specification. The LB layer is

therefore strongly dependent on the LBS layer. #However, the LBS layer
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operates independently of the LB layer. It simply supplies information

containers to the LB layer.

3.16 Further Aspects of Large Block Implementation ~ =

For completeness we include a brief description of the part of the LB
layer that supports the growing and shrinking ‘of large blocks. The role of
this sublayer is to interpret a "raw" LB table in such a th that it produces
a variable-length object with the properties that weksﬁecified“éarlier; e.g.
that the initial value of any part of the LB with address less than the
current length is zero. We include this section primarily to illustrate that,
to provide a variable-length object, only a small‘amount of mechanism need be
built on top of the common mechanism shared by eﬁé“LBS and LB layers.

There is a sublayer of the LB layer that distinguishes among several
types of "NULL" that may appear in the framée name part of an LB table. In
particular, three kinds of" *NULL" are
1.. NULL(1): no corresponding home name;

2. NULL(2): there is a corresponding home name; and

3. NULL(3): beyond the current length.

We provide a scenario to illustrate how these‘igggpprepedlvalggg of NULL are
used. Initially,.;h LB table would have‘the r1;$£ K f;ame nage parts
céntaining NULL(1) and the remﬁining M-K containing NULL(3). (1) Suppose that
a write operation occurs, d;rected towards a piece o? the LB that falls within
the scope of a NULL(1). In this case, a new home needs to be a;located. Note

that if a secondary storage quota checking mechagismvexigtgi it should be

(1) The granularity of the current length measure 1s only as fine as the frame.
size of the leaf node frames.
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invoked at this time. Assusting sufficfent quota, the LB layer does an
allocate operation to get a home name, and then does an initiate 6peration,
associating the home with the appropriaﬁetgiqpp 9? £§0 large blook. At this
peint, the frame-claiming (ﬁnd freeing) mechanisms are irnvoked to provide a
frame for this piece of the large block. = At sosie later time, if the frame is
freed, the frame name part would contain NULL{2).. |

A read operation in the scope of a WULL(1) returns a value of zero,
whereas a read in the scope of a NULL(2) generates a frame fault. A read or
write operation in the scope of a NULL(3) geunerates an error condition.

The set_length operation merely moves fhs bousidary: between the NULL(3)
entries and the other NULL entries. Shrinking the length of a large block may
involve some terminate operations, since hemies may have been associated with
the section of the large block being truricated..

The LB layer can provide objeéts thatigrc;srguaﬁle¢lnd shrinkable,; and
that are implemented using subatantially thO:SQMGiéit&nataugtures that support
objects of non-varying length. The mechanism that supports the block

abstraction is also the greatest common mechsnism for the LBS and LB layers.

3.17 The Relation of the Larae Block sud Hose Allscatic

Like the block layer, the large bié&ﬁ Iﬁyé; sispiyfm&ﬁipulaies the names
of frame and home objects. However, part 5f‘€h§‘dﬁta base of the LB l&yer‘i--
namely the set of LB tables -~ must: 1) uif,maeeiy residé in secondary
memory due to its size, and 2) grow and shrink dynsmically since large blocks
can be allocated and freed. Thus, unlike the block i;yer, éhe LB‘lﬁyer relies
on the home allocation layer to manage the rescurces out of which some of its

data bases are built. If the home alloéaﬁdr'u%ﬁe‘ﬁgngldggta the s#ne home
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twice, to two different large blocks; thekspgciriqation of thg LBvlaer would
not be met. | | |

The home allocation layer, however, does not depend on the LB la&er. The
home allocation layer;exééutes‘in a block Spabé, and ‘embodies no ﬁnOHiedge.df
large block objects. As mentioned before, though, the home allocation layer
does depend on the block layer.

Although-there is no intrinsi¢ reason why the home alloc'étéif should
depend on the LB layer, there is a possibility of accidental dependency
because both layers are consumers of the bibék"lfaiéi'.i fﬁis'is‘a‘speéifiq case
of the more general problem’ih(whieh'two‘léyérsfdeﬁénd'6hAthéiiloék 1#Yer to
provide an addressing environment. Either layer could initiate a block that
»properly belongs to the other layer and modif&fit -Z thus introducing a a
two-way dependency. If two layeﬁé'intentidniilfyahafé information, and each
trusts the other to "do the right thing” with éﬁggdatii‘%hey are necessarily
interdependent. In this caée, it mafxbé aréﬁed‘tﬂét"%h;} aréﬁééaiiy'one
layer. This form of dependency is obviously intrinsic. On the ‘other hand,
system designears may wish to provide mechaniims{ﬁﬁéi prevent accidental
‘interactions among layers. Consumers of a VM subsystem may rely on ACLs as a
mechanism to prevent accidentdl interaction. However, in the lower iayehs of
the VM itself, where ACLS are not available, ahothér mechanism must be used.
The mechanism we propose s the storage protection key mechanism, which exists
in the IBM 370 series [IBM73]. VM layérs such as the LB layer and the home
‘allocation layer would have an adsociated ey, and each home object would have
an associated mask. The mask could be éboéé&f,féé;exﬁnpié; s a header word

preceding the first data word in the home objéct. A layer could associate a
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home with a block in its block space only if the:kay'andkhask satisfied some

predefined relation.

3.18 One More Application of the Blook sad foms Allgostion layere

An objective of this chapter i; to QQaqube:gwparxieular implementation
of a VM abstraction that can be characterized q;ia‘pqpentially large number of
spaces containing a potentially large number of popqptia}ly:;arge objects. At
this point, it should be apparen{ that one more application of the block and
home allocation layers should yield an impien;nggt;gn of this abstraction.

In this case, each LBS table that describes a set of LB pgb;es.shogld be
implemgnted as a block object. Thus, we add one more level to the
implementation tree, as shown in F;gur‘e 3-7.," ":l‘h_e,,;pgax:nat;on of the block
layer that manages blocks contajining LBSZtab;qgﬂisﬁggllqd the lapge blogk .
space space (LBSS)_lgyer,__That 1;,‘1t'ggnagggﬁgga§§gerof large block :spaces.

As mentioned previously a small number of principais that are part of the
supervisor may use a block space fop an addpeag;gg‘qu;gonqqgt,. A second. set
of principals uses an LB space as an addressing enviromment. There is a
one-to-one correspondence between each principal in fhl? second set and an.LBS3
table. There is thus a need to allcqatg andwfgge>bgpeg that contain LBS
tabies corresponding to priqc;palsf Thekhqugigllacagio@ layer pqrfonnsfthis 
function. Accordingly, the LBS layer depends on.the home allocation layer.

The block layer mechpni;m describeq ;nﬁhhis cﬂqp;erJaenves~gs a greatest
common mechanism for the LB, LBS, gnqﬁLQSS‘%qycgg.;f§;nce the structure of the
LBSS layer is, py degign,ilike that of the LBS and LB layers, previous

observations regarding intra- and inter—lajnr,depen@pgaies.gnply to the LBSS
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layer as well. The dependencies that relate each of the regions described in

this chapter are shown in Figure 3-8.

3.19 Summary
In the lower layers of the case study VM, the primary function is the

multiplexing of either real main memory or virtual memery objects. We have
developed a model that characterizes 'mancryznultip@exing'aa the manipulation
of bindings among a few simple object types. From the vi@upﬁint of the model
it is apparent that a type manager for any :of these aimple objects need not
embody kndwledge of the semantics of the other types. A feature of the
‘multiplexing model is a high degree of mnéylar inddhendence.

Proceeding vfrom the model, we show that a straightforward implementation
preserves much of the desirable independenge. This implementation can be
supported by a hardware arohitectgre stm;;dr to .architectures of contemporary
systems. Future architectures, which may incorporete hardware-assisted
associative searching, should be able to auppont‘im;lementations that are
truer to the model, i. e. there should be fewer implementation-induced
dependencies.

The intermodule dependgncies of the M layérs deseribed in this chapter
are either: 1) weakv(i.e. timing) dependencies, 2) dependencies on an
addressing environment, or 3) dependencies that accur_beeau;e the
specification of a layer embodies assumptions about objects that the layer
references; for example, there_is an assumptidn in the block layer
specification that the data binding of a block object will not change unless a
wr;te operation occurs. The dependencies that do exist form a partial order

among the modules of the case study VM subsystem.
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Chapter IV

Treating Objects as Elements of a Property List

4.1 Introduction

In the previous chapter we described an object-oriented structure for the
lower layers of the case study VM, in which relationships between objects took
the form of LISP bindings. Even though bindings may exist between two
different object types, the correct behavior of their respective managers can
be independent.

In contrast, the higher layers of the VM resemble a hierarchy of type
managers in which the correct operation of the manager of a type depends on
the correct operation of the managers of its component objects. This chapter
explores a method, based on the LISP concept of a property list, to minimize
intermodule dependencies and achieve economy of mechanism in the higher VM

layers.

4.2 Removing Unnecessary Dependencies in the Higher VM Layers

We observe that many of the operations in the higher layers of the VM are
mapping operations; i.e. a significant function of each layer is merely to
return the attributes of an object given its name. To minimize unnecessary
inter-layer dependencies, it might appear that each layer would need to
implement its own mapping function., However, we show that many layers can
rely on a common layer to provide multiple mapping functions. This scheme
certainly provides a greater economy of mechanism, and at the same time, the

scheme can be implemented in such a way that the common layer does not depend
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on the other layers. The common layer treats the range of values of éach
mapping function as elements of an uninterpreted property list, rende}ing_it
insensitive to anomalous behavior of the other layers. Of course, thé other
layers do depend on the common layer. In this sense this scheme is nbt.as
powerful as the binding schenme qf«chapter,III,,wnich,has theipotgnbigi of
eliminating all dependencies between object managers. On the other hand, the
property list scheme seems more generally applicable thap;the,b;nding'sgheme.
The goal of this chapter is to present a structuring method that is more

appropriate for reducing inter-region dependencies in the higher VM layers.

4.3 Plan of the Chapter
In this chapter we justify the deéirabilit§ of impiementatidn-indeﬁendent

object names, and in particularfthe desirability of such names for segﬁenf
objects. We describe a layer, called the géﬁzlgxgé,séhat'assoéiateé the
implementation-independent names with‘the‘segméniyrep;éseﬁtétidns. ‘The
segment is rebresented by large block (LB) objécﬁs. :Siﬁée’thé map lé&ér
manipulates some potentially large data bases, some form of ﬁndeflyiﬁg memory
managemant function is needed. We show that the block and home alloeatidn
layers, described in chapter IiI, are sufficient as well as cqnyenient.,

The next section of the chapter describes how the map and LB layers
together provide a viable substructure for any of several reasonable -segment
addressing mechanisms. Since addressing mechanisms-likevthoaeudeScribed exist
in current systems, this section should prowvide inareaéed conf1dence in the
viability of the VM layers described in preceding .sections of the thesis.

This chapter then focuses on the 1mplementation,9f éocessfoqntncl lists,

as an example of a class of nontrivial segment attributes. The ACL is

Page T7



nontrivial since it is a potentially large attribute. We describe a layer
called the ACL layer that supports the various ACL operations. As will be
shown, some functions that are logically part of the ACL layer may nonetheless
be provided by the map layer without causisg the l1latter layer to depend on the
former. These observations regarding ACLs can be generslized to other object
attributes.

We next show that the VM layers that have been specified up to this point
can provide effective support for a generalized type extension facility. This
is because a common mechanism for supporting ETMs has already been provided
for the support of segment and ACL objects. 4&s mentioned in chapter II, a
function that every ETM must perform is to map namgs_to{attributes. The map
layer can provide this common function aithoutibsggning dependent on any ETM.

For completeness, we conclude this chapter with a br;ef discussion of 1)
the répresentation of authority»hierarqhigs‘in this VM gtructgre, and 2) the
implementation of directories as extended type Ghjgets. These two features
can be provided without complicating the structure qf the supporting VM

layers.

4.4 Extending Large Blocks to Segments

The VM abstraction provided by the mechanisms in chapter III can be
characterized as a potentially large number of ‘spaces containing a potentially
large number of potentially large objects. Further layers of the VM to be
described in this chapter extend the above abstraction to that of a segment
object; Before describing the additional layers, we review some
characteristics of a segment object, as defined 1in chapter II, that still need

to be provided.
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First, the names of segment objects, unlike the names of LB objects, are
implementation -~ independent. In particular, we are considering a segment
name to be a unique identifier (UID), derived by reading a high-resolution
clock. A segment UID may be bound to some representation object or objects --
in this case a home object containing an LB table. The advantages of such
implementation - independent names are several. Since naming is distinet from
implementation, the implementation can be changed "underneath" the names.
Thus, a facility for backup of segment objects [Stern74, Benjamin76] can move
the representation of the segment from one secondary storage device to another
in a manner that is invisible to éonsumers. In addition, once a segment is
deleted, the resources devoted to its implementation may be freed. It matters
not if consumers retain the UID of the deleted segment, since implementation
resources will never again be associated with that UID. The segment UID is an
example of a non-recyclable name. A discussion of other advantages of using
UIDs as segment names appears in Bratt [Bratt75] and Fabry [Fabry74]. (1)

Second, segment objects are expected to have a set of attributes.
Examples of segment attributes are the name of the creating principal, and an
access control list (ACL). The ACL is an example of an attribute that is
potentially large. Although such an attribute requires more support mechanism

than an attribute that is small and does not vary in size, we must be able to

(1) A less obvious advantage becomes apparent in the context of secure
systems. If an objective of the system design is to minimize unauthorized
information channels, then UIDs derived from clock readings are a good choice
for object names. If the object name contained any information about the
implementation or number of existent objects, then a user might be able to
infer whether any objects were created between the times that he created two
objects. Thus such a naming scheme would provide an unauthorized information
channel (called a covert channel by Lampson [Lampson73]). The UIDs, on the
other hand, provide no information to the creator other than the time of the
creation.
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support it, as it is part of our specification of a segment object. The
underlying large block layer may indeed provide attributes, such as the
current length value described in chapter III, that show through to the
segment interface. However, the LB layer would not be expected to provide any
potentially large attributes for LB objects, since the LB objeets that it
implements are precisely tﬁe ﬁost primitive objects that could conveniently
support these attributes. Thus it is up to the higher VM layers, as consumers
of the LB layer, to provide these attributes for segment objects.

There are other characteristics of a segment that’appear in some
implementations, such as automatic increase of the current length by a write
operation, that can be built on top of the large block abstraction. We shall
concentrate, however, on segment naming and segment attributes in this chapter
since 1) it is our belief that these are two of the most distinctive
characteristics of segment objects, and 2) we are able to describe an
implementation of these characteristics that exhibitslféw interdependencies

with other regions.

4.5 The Map Layer

The next VM laygr to be described, the map layer, provides support for
segment néming és well as for segment attributes. The map layer may be a
consumer of abstractions supplied by layers that we have already described.
However, the map layer is not a consumer of segment'objects. If it were,\
there would be a circular dependency within the VM structure since the map
layer and the type manager fqr segments would'be,mgtually dependent. Such a
circular dependency does occur, for example, in the Multics system since

directory objects, which are built out of segments, implement the mapping from
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segment names to segment representations. The case study VM, with ifs map
layer, has no such dependency.

For purposes of explanation we begin by describing a mechanism that can
support the segment naming function, and later extend that mechanism to
support segment attributes. Thus the present concern is to describe the
mechanism that maps each segment name, i.e. UID, into a corresponding home
containing the appropriate large block table.

The map layer maintains a data base that associates segment UIDs with
home objects. Following the terminology of Redell [Redell74], we refer to the
data base as the Map. We have chosen here to use the capitalized form of the
word, to distinguish this data base from any other data base that can be
described by the generic term "map". The main requirement that the Map must
satisfy is that any given lookup be rapid; although efficient insertion and
deletion are desirable, they are of secondary importance. The Map must be
able to provide the UID-to-home association for a very large number (say at
least 10 million) of segments. Consequently it is an example of a large data
base that must ultimately reside in secondary memory.

There are viable alternatives for the implementation of the Map. The
Hydra system employs two hash tables. One hash table is in primary memory and
the other is in secondary memory. The CAL system made use of a "master object
table", residing in the extended core storage of a CDC 6400. Among other
things, CAL capabilities contained indices into the master object table,
providing for fast access to representation objects. In the case study VM, we
suggest a B-tree [Knuth73] as the implementation of the Map. A B-tree is a
balanced n-ary tree for which searching, insertion, and deletion operations

have a guaranteed worst-case efficiency. It is a data structure that is
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well-suited for external searching since each node can be implemented as one
secondary storage record.

To maximize economy of mechanism, the lower VM layers already described
should be employed to multiplex main memory among the B-tree nodes. Each
B-tree node is accordingly implemented as a home object. The leaf nodes of
the B-tree are simply homes that contain LB tables. The 1nt-ei'ior nodes are

homes containing data with the format shown in Figure 4-1.

<home name> <UID> <home name> <UID> . . . <UID> <home name>

Figure 4-1

Contents of a Bwtree node

Each home name in an interior node is the name of some other node. The UIDs
surrounding a home name in Figure 4-1 are the lower and upper bounds on all
UIDs reachable in the subtree with the given home name as the root node.

The B=-tree structure supports a Map for a large number of objects at low
cost. For example, supposg‘that the Map must accommodate 100 million segment
objects. The home corresponding to a given UID can be located in 3 references
to secondary storége if the B-tree is bf order 100 (or more), and if the root
node is already in primary memory. The average search time can be reduced if
an associative memory containing (UID;'home) pairs is pnovided.

The map layer can treat each of the B-~tree nodes as blocks in a block

space. For example, whenever it selects a home name from one of the interior
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nodes during a tree search, it invokes the initiate operation to bind a block
to the selected home. It then references the block d;rgctly.to find the next
home name in the sequence. The map layer can manage its block space so that
nodes near the root of the B-tree tend to remain bound to blocks.

It is possible to regard the map layér as a?type~hanager; it manages a
collection of objects of type "name". The relevant “operations are to make
names known or unknown to the map layer, and to add, delete, or retrieve

attributes of the known names.

4.6 Dependencies of the Map Layer

The block and home allocation léyers described in chapter III are
sufficient to provide the memory management suypport fqr’thepmap layer. No
speeial-purpose.memory manager is needed.

The map layer strongly depends on the block laygr sigce each node of a
majér data base of the map layer (i.e. the Map itself) is.implemented‘as'a
block object. In addition, the map layer dependg_on the homewalloeatibn layer
since it must allocate new homes to grow the map. The strong dependencies of
the map layer are thus the same as those of the largq block layer (see chaptgr
II1I) even though the specifications of these léyers_ﬁre qu;te different.

Since the addressing environment of the map layer is a block space, the
map layer and éther layers that use this addressing envifonment could become
interdependent.. To provide some controls on the contents of azblock”spape,
storage protection keys, deseribed in chapter'III, can;pe_used to prevent any
layer from accessing programs and data private to other layers.

We emphasize that although the leaf nodes of the Map are data bases

manipulated by the large block layer, the map layer does not depend on the

Page 83



large block layer. The role of the mép‘layer is mérely to‘réturn the name of
a home contalning such a data base. The actual data’base is never referenced

by the map layer.

4.7 Alternative Addressing Modes for Seggents

The purpose of this section is to illustrate the viability of the case
study VM mechanisms. These mechanisms can support any of several segment
addressing modes, including those of the Multieskénd Plessey 250 systems.

We have described two mechanisms that, when used together, allow a
consumer to reference the contents of a segﬁéﬁt objecﬁygiVen its UID. The
first mechanism is the map layer, which retubns‘the home containing the LB
table for a segment, given its UID. The second ﬁeéhanism is the LB layeb,
which associates an LB object with such a home, and‘which provides an
interface for referencing the contents of the LB. There are a number of ways
that the facilities provided by these two layers may be'combined to provide an
interface for addressing segments. At one end of the spectrumrof choices, all
references to a segment object would be by its UID; 'At the other end of fhe
spectrum, a local machine-oriented name could be associated with the uiD, ahd
thereafter all references to the segment object'(from within that local
context) would specify the local name. (1) We 11lustrate how the VM layers
described so far can support several addressing'hodes chosen from this
spectrum of possibilities.

The home containing the LB table for a segment is in essence an
underlying state object; the large block that is used to contain the

(1) The justification for local names, as well as a discussion of alternative
scopes for local names, appears in the work of Bratt [Bratt75].
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information in a segment is an operational ob._ject»,. Together thgg@ﬂoﬁjects are
used to provide a segment object. Since a segyman»t is named by. U;D, .t‘he‘r'e must
be a way to referenée the supporting operational object given the UIb. A
mapping must be provided from segment name. to supporting large block 'object{.
We define the segment layer to be the layer that performs this, mappirig, shown

in Figure 4-2.

U1D

KEY
Mappings managed by

-large block layer z ww—wommey» . N\l . bloek
map layer 2 ———— object
ségmént layer E e——

Figure 4.2

Mappings Mancgcd by ‘Three Q-tvf’f&i“ent ‘Layers
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The segment layer is the type manager for segment objects. Given the
name of a segment, it retrieves the components. It supports operations on
segments (i.e. read and write) by associating underlying operational and state
objects, and mapping segment operations into 6peratioh§;bh;the underlying
operational object.

The implementation of the segment layer may rely on some optimizations to
achieve efficient operation. For example, instead of mapping UIDs to large
block names, the segmentVlayer could ﬁép UIDSyﬁo frames eontainiﬁg large block
tables. In order to support this more efficient mapping, the LB layer would
need to include in its interface to the segment layer an operation that, given
an LB name, would return the corresppndinsvframe‘naﬁe. Such an interface
would cause the LB layer to become dependent on the seg@ent layer, since the
segment layer would read and write frames directly gpd thus change the state
of a large block. The problem is not very severe in this case, however,
since: 1) the segment layer will hide frame‘néﬁea from all layers above it,
and 2) the segment layer (which is expected to be implemented in hardware) is
exceedingly simple and therefore the assertion that it hides frame names
should be easy to verify.

As mentioned, a possible addressing environment is one in which segments

are named by UID. This addressing environment, sometimes called a unjv ggg
address space, has the advantage that segment names are context- independent.
The name of a segment can be passed, without any translation, as a parameter
or in a shared data base from one subsystem to another. The universal
address space is the most flexible addresaing scheme in the spectrum. As
Bratt [Bratt75] points out, the reasons-for -cheosing some other point along

the spectrum are technological, not intrinsiec.
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There are no{implemented systems, deacpiped in the research litérature,
that support a universal address'spacq.,,Sgcb,aystema, however, have been
proposed. In a recent report, Radin and Schneider. [Radin76] describe a
machine interface that includes a qniygpsal address space. Redell [Redell7h]
has suggested an implementatiqn of a universa} address space that relies«on ,
hardware- (or firmware-) supported mappings from object UID to object
representation. The suggested hardware support eonsistgiof a hash table
supplemented by an associative memory. IQg representations of relatively
active objects appear invthe hash table, and thq}peprgsentations of the most
active objects appear in the asaociative memory. ‘In this_ggse,lthe
associative memory would associate on UIps,'rgturping avframg}for‘an LB table.
The hash table would alsc map UIDs into frames cgntgin;pgﬁLB‘tablesﬁ
Together, these two structures would igplgment the gggment layer.

An alternative addressing environment that is quite similar to the
universal address space makes use of register numbers for local
machine-oriented names. The processor woglq proyide a SGF of base registers
that could be loaded w;th segment UIDs (and‘pgppﬁps with offsets askwell).
Programs could then load segment UIDs into theﬂpegis;erg and refer to segments
by register number. The mapping from register numberg to UIDs is carried out
vexplicitly by programs referencing segments. An advantage of this alternative
over the previous one i; that programs can use shorter saegment identifiers.
However, an identifier in this case is context-dependent so it must be
translated if the object it designate§ is to be referenced in another context .
Fortunately, the translation from UID to régistqr number -- or vice versa --
is an inexpensive operation (i.e. a "load register" or "store registev"

instruction).
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This scheme requires some form of harduaré‘suppart,'such as the
associative memory and hash table of the previous Section, to map segment UlDs
into frame names. Alternatively, shadow ﬁegi&ters:aséociated.with each of the
base registers can be loaded with frame names of LB tables on demand. 1In
either case, these forms of hardware support provide the function of. the
segment 1ayer. This method of using basé registers'is similér to‘the'approach
adopted for the Plessey 250 system.

Finally, we mention the alternative of allbuing large block names to be
visible above the segment layer. In this case, programs would invoke an
"initiate" primitive similar to that of the LB’la&ér}

initiate (local_segment_name, uID),
in which "local segment name" is an input.par&metef,,i.e. a segment index in a
local segment space. Thereafter, all machine instructions would reference the
segment by its local name. The shortecut émpiéyéd"in this case to make segment
referencing efficient 1is to ensure that ﬁhe'underlyihg>LB hame'is the samé as
the local segment name. A consequence of uéing this shortcut is that the role
of the segment layer is diminished. It simply implements this high-level:
initiation primitive as follows:
1. 1t invokes the map layer to get a home name, H, given the parameter "UID",
and
2. it invokes the LB layer t§ associate an LB name, namely
"local_segment_name", with the home H.
‘The important observation here is that since the local‘segmeﬁt name and the
underlying large block name are érranged to be the same it does not matter, in
the case of executing programs, whether this common name 1is bound to the

segment UID. That is, after a segment object has been initiated, read and
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write operations can be interpreted directly by the LB layer as.readlandkwrite
operations on an LB object. It is necessary to retr;eve‘the [139)) qglj if a
context-independent name for the segment is desired. Ihisvalpernatife~°ffeﬂs
an advantage over the previous one in that the set of local names would be
larger, since the number of large blocks in an LB space is assumed to be
larger than the number of processor - supported base.registers for segment
UIDs. On the other hand, the cost of determin;ngwtheﬁugbﬂthat is_bounq‘to a
local name is greater in this case than in the preceding .case, since this
operation invokes VM layers thatxwould probably be,igplgmengeq in software.

In order to relieve qegment‘congumers of the necgasity;ot managing local
segment names, a simple layer can be built on top of (or in) the segment
layer. This simple layer would implement some policy of assigning local
segment names to UIDs, and would represent this assignment in a table that .
corresponds to‘eacn:large block space table. Such a_ggﬁle.gpuld be similar in
function to the Known Segment Table in thewuulticsvayggg@i[aensoussan72.
Bratt75].

It has been the purpose of this section to dgqcpipelngw_thexmap and largg
block layers, desgribed‘previously,»can be usgdtby hig@qq ;ayers,to'provide
any one of several VM addressing environments fhat are, found in current and
planned general-purpose systems. This dea&niption‘igjpotiyated by a secondary
goal of this thesis: to provide some justification that the case study VM is

a viable one.

4.8 The Access Control List Layer
Our definition of a segment object includes the presence of an access

control list (ACL) attribute. An ACL has a property in common with a segment:

Page 89



g TR L e g e B

it is potentially large. This suggests that the mechanism for providing this
property can be common to the 1mplehaht§fion‘of both ACLs and segments. We
present a design for the‘support of ACLS that maintains economy of mechanism
on the one hand, and preserves strict layering modularity on thé other. The
design for the support of ACLS is general enough that it can Suppbrt any
attribute that is potentially large.

Methods for implementing small segment attributes are not appropriate for
ACLs. In the case of the 'small attribute, the value could be stored in the LB
table or in an expanded’Hap“éntry'foé‘the“ségﬁdﬁt.' For eiémple, the current
length attribute described in chapter III is represented in the LB table.
However, since Map entries as well as LB tables are data bases thétrgre small
(i.e. they arevimplementéd using blbck'dbjacta), thoy‘éinnot contain the
representation of an attribute like an ACL. Even tﬁéﬁgh an ACL could be
small, it may be as large as any segment Gﬁjectllrﬂené%, the representation
for an ACL cannot, in general, be ﬁﬁbfed either in a Map entry or in an LB
table. Of course, the Map entry or LB table could contain some kind of
pointer to the representation of a 1afg€‘&¥fribhté;”‘l“

It is more difficult to implement a potentially large object, like an ACL
or segment, than it is to implement one that is eithar lérge'But”constahtfsize
or variable length but small. Large representation objects will suffice for
objects in the first class, and small representation objects will suffice for
objects in the second. If an object may be either small or large, the
supporting mechanism must be able to concatenate small objects, as necessary,
to effect an implementation. o

The subsystem that implements ACLs, which we shall call the ACL layer or

ACL region, uses large block objects as the representation objects. Although
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a segment object is a variable-length container that could represent an ACL,
segments have ACL attributes of their own, so such an implementation would
introduce a circular dependency between the segment and ACL regions. Even if
this circular dependency were tolerated, some fixed point must be established.
The large block object suffices as the fixed point since it is a potentially
large container that has no ACL attribute. As a consequenée of choosing the
LB object to serve as the representation for ACLs, no circular dependency is
introduced. This method for decomposing potential circular dependencies is
called sandwiching by Parnas [Parnas76].

Access control list objects that are small can waste space in the
supporting LB tables and home objects. However since the ACL layer allocates
large blocks, as necessary, to represent ACL objects, it can represent many
ACLs in the same large block. This strategy would eliminate the wasted
resources caused by breakage, but it would require that there be a dynamic
storage allocation facility within the ACL layer.

This method for implementing ACLs treats each ACL as a distinet object.
Such a treatment is quite natural: any attribute of a given object may, at
some lower level of abstraction, be considered a distinct object. The
operations that can be performed on an ACL are search, display, and update.
The search operation is invoked to determine whether a given principél can
perform a particular operation on the associated object. The display
operation lists ACL entries, and the update operation changes them.

On each segment reference, a principal must invoke the ACL layer to
search the corresponding ACL. To provide for efficient reference to the ACL,
part of the ACL layer is implemented in hardware. Corresponding to each

principal’s large block space table is a parallel table that comprises access
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rights fields. Each access rights field contains a bit-encoding of the
principal ‘s access rights to the corresponding segment object. Every machine
instruction reference to a segment 1is chebknd against the appropriate field of
encoded access rights. (1) The access rights field i initialized the firat
time a principal references a segment. On the‘rirsé”?eferbhce, the hardware
part of the ACL layer causes a processor fault, and the following steps are
performed. |
1. The ACL object corresponding to the segmeént object that was faulted upon
is located in a system-wide table. ‘ |

2. The ACL layer initiates the large SImk'repreaén.tmg the ACL, if

‘ necessaéy,‘and searéhes it.
3. If access is not allowed, the ACL layer signals an agcess’violatioh.'
4. Otherwise, it sets the access righta'ftéld to contain the proper encoding

‘of rights for the referencing principdl.

4.9 Eliminating Potential Dependencies by Usiug Bromerty Lists
| In this section we consider two mappihga, daaqrinod in steps 1 and 2iot
the preceding section, and illustrate how the map layer can be used as a
greatest common mechanism to support both or them. The tuo mappings are '
1. the mapping that, given a ;qgmenp object name, cetqrnS'ghg_agsociated ACL
object ﬁame, and

2. the mapping from ACL objects to their representation (LB) objects.

(1) The Multics system employs an encached form of access control list entry
such as this. In the Miltics implementatitii, the eénoached dccess rights and
the encached addressing information are included in a single table called a

descriptor segment.
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Providing the second of these two mappings is a functioﬁ of the ACL
layer, the type manager for ACL objects. It is the standard mapping from
object name to object representation. Providiag the first mapping shéuld
really be a function of a layer that manages "Eégﬁent-with-ACL" obJecﬁs. This
layer would provide a mapping from each sug¢ch object into its two compénents:

a "segment-without-ACL" object‘and an ACL objegf; All of these mappihgs are
shown in Figure 4-3. Providing distinet impleﬁenéations of either of these
mapping functions appears to be a disécoﬁomy of heéh@nism, since there already
exists a similar mechanism in the map layer that relﬁtes object names to
object representations. Other layers could use this mechanism in the map
layer. Of course, neither the ACL layer nor any othen,layét should be able to
manipulate thé'Map directly in order to provide these;mappipgﬁfunctions, as
this would violate layering.

We solve this problem by‘appealing to a technique that'preperves.strict
layering on the one hand, while maintaining economy of mechanism on the other.
The technique is derived from the LISP notion of a pfgperty 1ist -- i.e. a
set of uninterpretedﬂatﬁributes asaoeiatedruith_agrobjgct. There is no
violation of layering if a lowér layer maiﬁtain§<data,§in a property list, for
a higher layer. The hig@er layer can attaéh a ;ﬁriicu;ar interpretation to
the data. The lower layer can provide a mappingnof‘fﬁe form

property name —ememcca-e- > property value |
for the higher layer. The higher layer has precisely two ways to interface to
the lower layer, which are :
1. fetch_property (object_name, proberty_pé;é;'value),'and7
2. store_property (object_name, property name, value).

The only causes for error conditions are object names or property names
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Possible Representation Objects for Segments
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unknown to the lower layer. The correct operation of the lower layer.does not
depend on the correct operation, or even the existence, of the higher layer.

The map layer is in fact a layer that pérforms a

property name -—--=-eee-- > property value
mapping for a higher layer, namely Por the ségment layer. In this case, the
segment layer invokes the map Iayer/to obtain ‘the "representation" property of
a segment, by performing the operation

fetch_property (segment_UID, represeqtapiqn, value).
The value of "representation" returned by the’iap%lafer is the home name of
the underlying LB table for the segment.i of course,ithe map layer places no
interpretation on this value; rather it éonéidéfs iihto be a prqperty of the
object named "segment_UID". ; |

Since, as mentioned previously, the segment 1ayer is the type manager for
segment objects, we see that the map layer actually igplements the mapping
from object name to object representétion for the segment layer. In our
characterization of type managers in chapter II, we indiégted tﬁat every type
manager is responsible, given the name of one of its objects, for locating the
corresponding representation objects. The segment layer thuvaelies on the
map layer as a utility'subsyatem,.for performing this mappihg.

The map layér can glso be used by other t&pe maﬁgggrs to lqgate
representations, given object names. In particular, thosevﬁapping functions
depicted in Figure u-3:§ould be carried out by the map layer. However, not
all those mappings need be realized, since there is no need to reference

either "segment-without-ACL" objects or ACL objects directly. These objects

are of interest only insofar as they are attribites of "segment-with-ACL"
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object;. Thus, a superfluous set of names and mappings can be eliminated by
treating both the LB representing a "segment-without-ACL" and the LB
representing an ACL as two representation objects of a "segment-with-ACL". We
can then rename the "segment-with-ACL" ob;eqt, simp;y calling it a segment,
with the understanding that all segments have ACL. attributes. The number of

mappings is now only two, as shown in Figure 4~4. We can then rely on the map

segment

map

\l'/ \41
large  large
bloeck ‘ block

representation : . ‘representation
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the : ‘the
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Actual Representation Objects for Segments
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layer to implement the mapping to twp representation objectg of»a segﬁent: the

repfesentation of the information part of the segment, énd thé‘reprgséntation

of the ACL attribute of the segment. Each Map entry for a segment object is
thus expanded to contain the home nameavof fwo lafge block tables. The ACL

layer can then obtain the representation objgct for the ACL of a segmént by‘
invoking the "feten_property" operation degéribed previously.

From the standpoiﬁt of the map layeb,weach segmenf-object name has two
properties: the ACL property and the representation propefty; ‘The value of
the ACL property, interpreted py”the ACL layer, is the name of the‘home that
contains the LB table deseribiﬁg the ACL. fhe valqg qf the representation
property, interpreted by the segment layer, is the name of the home that
contains the LB table describing the information of the segment

Some operations on a segment object, such as read and write, are
implemented by the segment layer Other opera;ions,xsuch as the operation to
search an ACL of a segment, are implemenggévby(the’Agy iéyer. Operations onr
segment objects involve the ﬁégmeﬂf and ACLY}ayersnasifq;;dws.

1. The segment layer is invoked in ordetho determine what bit-encoding of
access rights correaponds t§ the operatiéﬁ ie.g. read) that i§ being
requested. | |

2. The segment laygr_invokes the "searéh" opergtion ofﬁthe ACL layer, passing
the bit-gncoding, the consumer name, anq ﬁbe segmeqt UID as argumenté.

3. 1If the ACL layer indicates that the search was successful, tﬁe segment
layer perfqrms the requesped operatiop. |

We have, in this design,’treaﬁed the‘AQL'iqforggt;Qg fpr‘a segment as a
property in a property list maintained_by thg map layéf. This design

technique pbeserves the layered structure of the VM, since the ACL object -- a
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good candidate for objecthood -- is indeed managed by its own type manager.
At the same time, a duplicate mechanism for obtaining the names of
representation objects has been avoided.

Even though ACL objects do not haQe distinct implementation - independent
names, the programs of the ACL layer can be written under the assumption that
they do. The UID of the segment can be regarded by ACL layer programs as the
unique identifier of the ACL object instead. The ACL layer invokes the map
layer operation

fetch_property (segment_UID, ACL, value),
causing the map layer to return the value of the ACL property. This naming
technique could be applied to other attributes of segments which, like ACLs,
require distinct implementation objects.

However, there are limitations to this approach. First, this approach is
applicable only to objects that are used solely as attributes of other
objects. For example, if an ACL were a free-standing object that could be
referenced by arbitrary consumers, then it would need an implementation-
independent UID for a name. Second, this approach is biased towards
efficiency rather than towards generality. It is appropriate for supporting
only a fixed number of attributes since, for each attribute, there must be a
field in the Map entry of an object. To avoid inefficient Map searches, the
format of a Map entry should be the same for all segments. Hence the size of
a Map entry cannot vary, and neither can the number of attributes. In
contrast, LISP systems are biased towards generality since they support large
property lists for objects. Locating an arbitrary property typically involves
searching a list structure, which would not be as efficient as referencing a

Map entry.
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4.10 A Layer to Support wmw

This section illustrates how a layer for ;upportig; dynamic type
extension can be built on top of the layers already described. The}type
extension facility rgpresents the 1ast‘funétional coqponent of this,cése study
VM subsystem. We intend to show that techniques for achieving modular
structure and economy of mechanism at the same t;me,>§uoh as those employed to
support the ACL layer, can al;o be used to suppgytmdyngm;c type extension.

As described in ehapter 11, eachypperation“on‘annpip causgsr1) type
information, 2) ACL information, and 3) component objects to be referenced by
the ETM. The ETM may rely on some Qtper_subsystgyvtglfepeh this_infopmation.
Nonetheless, each of these three kinds of information are obtained on every
ETO operation. We specify a distinct layer, called the extended type manager
(ETM) layer, that supports these common operations. The ETM layer is the
first layer we have described that places any interpretation on type .
information.

The ETM layer of this thesis is quite similar to the Extended Object
Manager layer of the SRI system. The SRI Extended Object Manager is
responsible for storing and retrieving the component objects (called
implementation ‘capabilities) for each exterided type object. The ETM layer of
this thesis also stores and retrieves compéneﬁt 6bjects.' In"additioﬁ;'it
stores and retrieves both ACL and type information. Since one of our goals is
to describe a VM in which all types are protected by ACLs, mapping from object
name to ACL information is 1ndeed g;mgqpaniémVcommonigbng;l ETMS; (1) In
order to reduce errors, the ETM layer also éﬁrqbces"twdvpolicies: 1) a type

(1) The preceding section described how the map layer could support such a
mapping, but only for segment objects.
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manager may search only those ACLs of its own objects; and 2) a type manager
may request the component names of its own objects only.

The ETM layer can be considered to be the type hanager for a data base
object that contains type, ACL, and comporients information. Higher layers
call upon the ETM layer in ordér to enter or to retrieve this information.

In the preceding section, we showed how the map layer can be extended to
provide ACL information for segments. In following sections we show that the
map layer can be extended further to assooiate object'ﬁIDs with the above
three kinds of information, for any objecf type. The map layer can thus serve

as a common mechanism for the segment, ACL, and extendéd type manager layers.

4.11 Ine Extended Type Manager Laver Interfage

The three important interfaces to the ETM layer are listed below. The
first interface could be invoked by any pringipal; however only EIMs will |
make use of the latter two interfaces.,

The first interface, the mapping from object UID to type information, can
be specified as follows:

| get_type (object_UID, type),
in which "type" is an output arggment. By invoking this interface, any

principal may determine the type of any object. (1) .

(1) As mentioned previously, attributes of objects, and even the existence of
objects, may be viewed as covert information channels. In applications where
this is important, type information should not.be available to an arbitrary
principal. This policy could be enforced’ by non-discretionary controls.  In
this case if a principal unauthorized to know about the existence of an object
managed to guess the right UID and pass it as a parameter to the above .
interface, it would receive an error mesaage of the form: -"Either the
specified object does not exist, or you are not allowed to know if it exists."
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The second common interface returns ACL information It is specified as
search_ACL (object_] UID supplier UID, consumer UID,
bit encoding, boolean),

in which a "true" value of the boolean out put parameter would indicate a
successful ACL search. Since the type of an obJect is implemented as the UuID
of the managing subsystem the ETM layer can check to make sure that the
(unforgeable) value of "supplier UID" equals the type of the object named
"object_ UID". This check ensures that only the type manager for an object‘
will be able to search the corresponding ACL. lr the UlD of the supplier is
correct, the ETM layer can invoke the "searchﬁhCL" entry(of,the ACL layer,_
Just as the segment layer does. The ACL layer will perform the search
operation for any principal. Thus the check performed by the ETM layer merely
separates type managers, according to the principle of least privilege.

The third common interface obtains component objects. It has the form

get components (object UID, supplier UID, components),

in which "components" is an output parameter. Since the component objects of
every ETO are either segments or other ETOs, the value of "components" is a
set of UIDs. As before, the ETﬁrlayer checks that this mapping function is
invoked by the correct type manager. This check is provided only for
self-protection purposes, so that an ETM will not erroneously request the
components of an object of another:type.. n&malicious ETM might guess the
components of any ETQ; however those eompenents are protected from

unauthorized access by ACLs.
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4.12 Support of the Extended Type Manager Laver by the Map Layer

Some mechanism within or below the ETM 1aYér Qusﬁ support the mappings
from object name to type, ACL, and represénf;tiﬁn information. The ACL
information for ETOs is supplied by the ACL lhiér which, in‘turn, obtains it
from the map layer. Type aﬁdicomponeht info;iatibn for ETOs is supplied by
the map layer. “ \ |

The map layer can treat the ETOs aﬁd associated attributes as a set of
objects with property lists. The Map itself wiil thus”eontain entries not |
only for segment objects, but for objecﬁéxdé evéryAé;pe. Eéch entry in thev
Map must then contain type information, 1ﬁ‘é&dition to thé ACL and. |
representation information piéviously speéifie&. be any 6bject, the map
1ayeb can return type, ACL, and representétibh prppebties. The revised format

of a Map entry is shown in Figure 4-5.

UID

type

ACL

representation

—— —— —— - - . ——— -
e e . — T —— - ——— -

Figure 4-5

Revised Format of a Map Entry
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For all objects, the "UID" field contains a system-wide unique identifier.

For segment objects, the value of the "type" field is some flag indicating
that the object is a segment, and the value of the "representation" field is
the home name of the home containing the underlying LB table. For extended
type objects, the "type" field contains the UID of the principal that is the
type manager of the object, and the "representation" field contains the UID of
some other object that serves as the representation object. (The
representation object may, in turn, contain a list of UIDs of additional
representation objects.)

The contents of the "ACL" field may take two forms. If the object is not
a component of some other object, then the ACL field consists of the home name
of the home containing the LB table for the ACL object. Otherwise, if the
object is not a component of some other object, then the ACL field contains a
degenerate ACL. The degenerate ACL, consisting of a type manager UID and mode
bits, is sufficient in this case, as was pointed out in chapter II. 1In
contrast to an ordinary ACL, it can be searched faster and requires no
underlying potentially large representation object.

To tie these ideas together we show, in Figure U4-6, typical map entries
for an ETO and a component object. Let a message queue object, "MQ 26", be
managed by the type manager "MQ_mgr". The only component object representing
MQ_26 is the segment "SEG_14". Located in the home object "home_Uu3" is the LB
table for the LB that contains the (non-degenerate) ACL for MQ_26. The ACL
for SEG_14 is a degenerate ACL containing the sole principal identifier
"MQ mgr". The LB object representing "SEG_14" is described by the LB table
located in "home_31". The Map entries for the two objects named "MQ_26" and

"SEG_14" are shown in Figure H4-6.
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1 | | 1
1 i ] ]
I oMQ26 | -> | SEG_14 |
| i / i i
i | / i |
| MQ_mgr | / | segment |
| | / i i
| i / f i
| home_Uu3 | / i MQ_mgr |
i P/ i i
; i / H |
| SEG_14 | == | home_31 |
| i | g
Figure 4-6

Map Entries for an Extended Type and a Component Object

4.13 Dependencies of the Extended Type Manager Layer

The ETM layer depends on the ACL and map layers to support its mapping
functions. It depends also on the segment layer (or possibly the large block
layer) to support its addressing environment.

A role of the ETM layer is to subdivide the set of all objects into
types. Thus, it must associate types with objects. Based on type
information, it makes ACL and component information available only to the
appropriate type manager. If the underlying ACL and map layers incorrectly
map an object name into an object attribute, the ETM layer cannot meet its
- specifications. It thus depends strongly on the ACL and map layers.

The ETM layer may depend on either the LB or segment layers to support

its addressing environment. Since the ETM layer is not necessary for the
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implementation of segment objects, it could execute in a segmeqted‘addressing
environment. In this case it would be dependent on the segment layer; (1) An
aiternative implementation is that the ETM layer execute in an L$ qpaée. Ihis
suggestion is based‘uhon the‘observation ghgt singe mucq of the functionality
of the ETM layer is‘already provided by the ﬁap laygr, the ETM layer could be
implemented as an uppef sublayer wifhin the ﬁap layer and thereby exeéute in
the same LB space. Given this alternative, the ETM layer would depend oﬁ the

LB layer.

4.14 Representation gzigg,gggggg;gx ﬂiggazghx}vr

The purpose of this section is to suggest how a simple authority
hierarchy, as specified in chapter II, might be implemented in a way ﬁhat does
not complicate the VM structure we have described so fﬁf} Pin ghapter I1 we
indicated that a special class of protected subsysteﬁs, eélled»effices, can
implement administrative control over access control lists. We can consider
each office to be the consumer of a set of ACL objects.

The kinds of operations that an office performs on an ACL are to display
and update the local authority strﬁcfuﬁe‘ﬁephéﬁéntéd in fhe ACL;h The
principal identifier (i.e. a UID) of the controlling off;ce of an ACL is
containéd in the ACL. A suggésteg ACL forma@ ig shown-iﬁ F;gure 977. The
object-specific rights are in_regionl1 of the,ACL. gEér qxqqple, in a segment
AQL, rights for read, write, and execute uoulq_gppearAin this region.‘ The_
ACL-specific'rights, display and quate, appgqr‘in re@{gn 2. One
interpretation of tﬁese rights is thaﬁ a\ppinc{pé; witﬁ digplay“rights can

- — ————— - S W . - - - S - Y -

(1) Certainly, layers above the ETM layer must execute in a segmented
environment since they may be provided by arbitrary users.
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dispiay the contents of all three regions, whereas a priheipal with updaté
rights can change entries only in region 1. A prinecipal atﬁempting to pefform
some operation on the associated object will succeed only if it is named in
region 1. Only the principal appeafing in région'3, nahelj the controliiﬂg”
office, can update entries in region 2. The contbnba of region 3 cannot be

changed.

[ |

1 [} P L

! REGION 1 | {==== object-specific rights
i 1

! | |

i REGION 2 | <===- ACL-specific rights
1 1 - .

E i |

| | (==== office name

1 [}

] ]

REGION 3

Figure 4-7

Contents of an Access Control List

In this implementation of an authoriﬁy hiebarohy,rthe ACL layér is the
type manager for all ACL objects. The inpleﬁentation details of ACLs are the
sole responsibility of the ACL layer. ﬂoﬁé;éb, the ACL layer will carry out
the policy embedded in the controlling office of an ACL. The office, in some
unspecified way, can determine that a displﬁy or update op&ration'should'také

place, and invoke the ACL layer tb effect it.
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4.15 Directories as Extended Objects

We have shown how access control lists can be incorporated, as distinct.
objects, into a VM structure that is chgracterizeq,byvl)‘a small number of
intermodule dependencies, as well as 2) economy of mechanism. 1In this secﬁion
we sketch how directories may be implemented As extended,type ijects;‘while
still preserving tnese two characteristics of the VM structure. | |

As Redell [Redell74] points out, directories are typically implemented as
ETOs in capability-based systems. However, in the,Agugpgsed Multicsyéystem,
directories are base level objects t@gtkcontain,phys;cal descriptor;,las well
as ACLs, for other objects. Refergnces to Mult;ca‘pbjegts, mediated by ACLs,
necessarily involve the directory layer. In additjon, references to directory
objectS»themselves are mediated by ACLs. The Multics directory and ACL
mechanisms are mutually erendent. In the case study VM, we break this ..
dependency by 1mplementing‘d1rpcto§}es as_ETQs, w;ph ACL objects implementgq
in a lower layer. The ETM for directory objects, the directory layer, depénds
(indirectly through the ETM 1aygp) on the ACL layer, butkhot vice-versa.

As indiéated in chapter II, directory objects associate alppann@gric
names with object UIDs. Like all EIQ§, directories have ACLs, The operations
that appear in directory ACLs include "append", "disp}gyﬁ, "search", and
"delete". Directory objects are implemented in terms of segment objects.

Since directories are implemented in perma‘of segments, the directory
layer depends on the segment layer. Another reason for ;piavdependgpce is
that the directory layer -- a true extended type manager -- must execute in a
segmented addressing environment.

Of greater interest are possible depgadencies of ;pweFFVM layers on the

directory layer. The correct operation of each‘indivian;,layer up.to and..
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including the ETM layer is independent of the correct operation of the
directory layer, since no lower layer invokes the directory layer. For
example, neither the segment layer nor the ACL layer depends on the directory
" layer.

The correct operation of the directory layer is hohetﬁeless critical for
carrying out intended naming and protection pblicies. The directory layer is
responsible for mapping user-readable names into UIDs. Consequently incorrect
operation of this layer may cause a consimer to read the wrong segment, or to
update the ACL on the wrong message queue. If the directory layer associates
names incorrectly, the lower layers that deal with objects named by UID will
still function correctly; however the intended réqﬁﬁst of some higher layer
will not have.been carried out. It should bé emphasized that there is no
difference between ACL-based systems and capability-based systems in this
regard: directories in capability-based systems, such és‘the‘SRI and Hydra
systems, are used to associate names with éapabilities and malfunction of this
assoclation may violate the naming intentions of a uaer.

4.16 Summary

In contrast to the VM layers considered in the previous chapter, the
higher VM layers considered here carry out’napping functions from object names
to object attributes. The cﬁallenge in this chapter is to describe a modular
structure that both exhibits few ihtermbdﬁiéwdebehdéabies and also minimizes
costly duplication of the mapping mechahism; To eliminate duplicate mapping
mechanisms, a greatest common mechanism -- the map layer -- is included in
this VM subsystem.

The intermodule dependencies in the higher VM layers form a directed

acyclie graph, as shown in Figure 4-8. To achieve this structure, we have
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Dependencies of the Higher VM Layers
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relied on the sandwiching technique,; and, more importantly, on the LISP notion
of a property list. The applications of the sandwiching technique described
here are effective, but seem to be ad hoe , Iﬁ contrast, the use of the
property list notion seems to be4a more gener@lly applicable technique for
eliminating potential circular dependencies.

Implementing ACLs as large block objects, rather than segments, is an
example of sandwiching. Large block objects are an apprppriaté representation
object since they are potentially large, but do not have ACLs ;s segﬁents do.
‘Maintaining the physical attributes of segment objects in the ﬁap,.rather,than
in some higher-level directory object, is another example of sandwiching. The
functioning of the Map, unlike'the functioning of directory objects, does not
depend upon correct behavior of the segment. layer.

In this chapter we have shown hog the map- layer, by treating the
attributes of higher-level objects as elémonts,of a property list, can avoid a
strong dependence on the type managers for such objéets.'»This design
principle is open-ended: the map layer can associate objects and properties,

for an arbitrary collection of type managers.
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Chapter V

Conclusions and Suggestions for Further Research

5.1 Introduction

The purpose of this thesis has‘been to present-teghniques for
understanding the structure of Qomputer operatingrsystems. Techniqueé for
achieving modular struétﬁre, éuch as lgyering and object-orientation, wé;e
used in this thesis. The research reported here, qbgever, goes beyond the use
of such techniques. |

One reasbn that we strive to achieve a clean, modular structure of a
system is to make ihe system as a whole more amenable to verificat;pn; To
verify the correct operation of a module, it is necessary to consider
intermodule depeﬂdeneies. This thesis not only suggests how to achleve
modular structure, but also presents a point of view thatvprovides for
straightforward identification of intermodule dependencies in the context of a
case study subsystem. Using this pdint'bf view, we can determine whiéh
dependencies are necessary and which are superfluous. | | B

The framework presented in this thesis for'understanding ihtermbdﬁle |
dependencies is derived from the LISP world of aﬁomie 6bjec£s. Atomic 6;Ject$
in the LISP world have bindings and propertyklists. A binding, in turn, is ank
atomic object, and each element of a property iist is anbatémic object. Every
atomic objeét is characterized by its binding and properﬁy list. A collection
of such objecis can serve as a formal modél for describing the Sﬁructuée of
complex systems. In this object world there is a strong notion of modularity.

the behavior of any one object can be characterized completely without any
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knowledge of the objects designated by the property list or by the binding.
In this thesis, we have considered a virtual memory subsystem to which this
notion of modularity is applicable. The VM subsystem has not been
implemented; however, it is patterned after virtual memory subsystems of
several contemporary, general-purpose operating systems. There are several
reasoﬁs for the choice of a VM subsystem as the case study. First, it
provides a challenge: the actual VM subsystems that serve as a basis for the
case study VM are quite complex. Second, the LISP notion of modularity is
well-suited to a case study subsystem that includes memory multiplexing
facilities and extended type managers. In this thesis, we model memory
multiplexing simply as the manipulation of bindings among objects, and we
model the mapping from an extended object to a component simply as a list of

properties of the extended object name.

5.2 Results

We have shown how the notion of binding and the notion of property list
may be used to make intermodule dependencies explicit. Application of the
binding notion was considered in chapter III, and application of property
lists was considered in chapter IV.

Chapter III presented the point of view that the structure of a system
can be simplified if the relations between objects are represented as
bindings. If system designers exploit this binding notion, they should be
able to identify and eliminate unnecessary dependencies. Since the memory
multiplexing model presented in chapter III is a model of objects related by
bindings, the multiplexing function should be able to be provided by a

collection of modules that exhibit few interdependencies. 1In chapter III we
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pointed out that not one, but rather several, of the layers of the case study
VM carry out a multiplexing function. Higher layers multiplex abstract
objects supplied by lower layers. Thus the structuring advanteges provided by
the memory multiplexing model can be applied'to'severelbof the VM layers.
Additionally, much of the multiplexing mechanism serves-as a greatest’common
mechanism for these VM layers. . o

Chapter IV focused on the higher VM 1ayers; in which mapping from
extended obJects to component objects, rather than memory multiplexing, is a
common function. We stressed that the subsystem that actually implements such
a mapping need not depend upon the subsystems that manage either the extended
object or the component obJects. It is sufficient for one to regard the
component objects (or any attributes that may be just a part of an object) as
properties of the object name. Since several of the VM layers described in
chapter IV require a mechanis% for mapping objects to attributes, a particular
subsystem called the map layer can perform the mapping, serving as a greatest

common mechanism.

5.3 Comparison of Oblect Bindings and Property Lists

The binding and property list notions correspond to two somewhat
different points of view about interpretation-of object: names-in
object;oriented systems, To see this,ewe consider several scenarios.

In an object-oriented system it is reasonable to expect,that,databeses
contain descriptors, or names, of objeots. In particular, the name of an
object managed by type manager A mey*exiet~in:a:databese of typekuanager B.
If B relies on the validity of'this\aahe, then 1t will probably depend on A -

since A could invalidate the name. If A relies on the validity of the name,
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then it will probably depend on B since B manages the database. If both the
above conditions exist, then there is a potential for a circular dependency
between A and B. There are three other cases, which, by themselves, will not
lead to a c¢ircular dependency.

First, type manager A may not rely on the validity of the name (and
moreover may not know of its existence). 1In this case A cannot depend on B,
assuming there are no other causes for a dependency. This case is typical in
computer software systems; for example, the manager of an object depends on
the managers of the representation objects.

Second, type manager B may not rely on the validity of the name. 1In this
case, B is maintaining a property list for type manager A. Accordingly type
manager B should not depend on type manager A. This case is probably
encountered less frequently thgn the preceding one. A facility for storing
and forwarding (but not interpreting) messages is an example of this caée. A
message is simply a property of a message container name.

Third, neither type manager may rely on the validity of the name. This
case corresponds to the situation in which type manager B maintains a binding
to an object of type A. Accordingly, there need not be a dependency in either
direction. Instances of this case probably occur infrequently in operating
systems. The behavior of the object managers of the memory multiplexing model
corresponds to this case.

The latter two cases are those in which the maintainer of an object
descriptor need not depend on the semantics of the object. This independence
characteristic also applies to object managers in the LISP world of atomic
objects. Although a situation in which‘one subsystem maintains a property

list that is used by another corresponds only to "one-way" independence, it
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should be able to be exploited frequently. A situation in which a subsystem
maintains bindings to pbjects corresponds to a "two-way" independence, but it

probably arises only infrequently.

5.4 Remaining Problems and Future Research Directions

The goal of this research has been to suggest a new point of view that
méy be applied to the structuring of largef%bf%ﬁahi*b&étemﬁsArInfthis section
we raise some questions about the assumptions ‘underi¥ing the research and
about the generality of the résults. In addition we suggest directions for
future research that may hnsweﬁ“somé of'thdéégqu63t16h3.~’

The object-oriented approach‘tékénfin’tﬁisfthe31s has 'allowed us to take
a strict view of modularity. It has the drawback; however; that it is
difficult to apply in some cases. Operations that affect ‘more than one
object, for example, cannot be modelled conventently: ' -In chapter IIi-#e
defined the fetch and store operations to apply’jointly ‘to home -and ‘frame
objects, since they affect the data bindings of both objects. Conseqﬁentiy
the home and frame objects cannot bé managed by distinct type managers.
Either these two types must be managed by a single, larger -type ‘Manager or
more than one subsystem must serve as a type manager for & given object type.
Neither alternative is desirable: in the first case, it may be hard to show -
that unexpected interactions between the two objsot-typescanrot exist; in
the second case, a subsystem that dépeﬂd% 5n30ﬁe of the ¢ontending type
managers probably must depend on the othdr as well. We dan conclude that the
kind of modularity imposed by an object-oriented view may not always be
appropriate for software systems. Further inquiry into the nature of

modularity in large software systems is needed. =
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The structuring methods of this thesis have been applied to a case study
virtual memory subsystem. Relevant questions about the applicability of these
methods include 1) whether an implemented VM subsystem could actually be
structured in this way, and 2) whether these methods have a wider range of
applicability -~ such as applicability to a file manager node in a distributed
system or to the input/output facilities of a computer system. In chapter IV
it was argued that a VM design, structured according to these methods, should
be able to be carried through to an implementation without sacrificing the
structure. The second question, however, has not been considered in this
thesis, anq ié still an open research issue.

Although the notion of correct module operation used in this thesis is
informal, it includes some rather strong assumptions. As a result, in several
cases one module was declared to be dependent on another even though, in a
narrower sense, the former could operate correctly in spite of failures of the
latter.

A first approach to specifying correct operation, which we call the
"accumulated semantics" approach, states that in order for a subsystem to be
correct, not only must it manipulate some set of objects as specified, but all
the type managers for objects in that set must (recursively) do so. The
accumulated semantics approach focuses on the correct operation of an
interface, rather than of any single module.

A second approach to specifying correct operation, which we call the
"isolated semantics" approach, states that in order for a subsystem to be
correct, it is necessary only that it manipulate some set of objects as
specified. Whether the objects in the set behave according to their

specification is irrelevant. It is assumed that the subsystem can tolerate
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errant behavior of any of the corresponding type managers. Even with this
approach, though, there can exist interfaces for which correct operation
depends on the correct operation of a collection of subsystens. |

At some points in this thesis we have favored the accuﬁulated sgﬁantics
approach since it is stronger and ﬁore generally applicabie. Nonetheiess, the
isolated semantics approach appears to be~a Q§§fﬁl one. For gxample,'
subsystems like the block and frame sublayers, which‘arélindebeddent‘in this
narrower sense, can be implemented and'déhugged~gepafatély. In addition, it
should be easier to locate an errant modﬁle ih a collection of modules that is
independent in the isolated“sép;é. Further research into the nature of ‘the
correct operation of modular systems can help us better apply a'tra&itionally
abs;b&ct notion to the éﬁgineeﬁihg of complex softﬁare'systems, ‘

The goal of this thesis has been to enhancélour”ﬁn&erstﬁnding of ‘modular
structure and dependency in computer software systems. While we feel ‘that
these research results are applicable to a variety of such systehs, further
research will be required to detemipe the scope of these results. We should
develop the breadth and deéth of our knowledge by improving our models §f
modularity and dependency. Reseafch on these topics should lead to better
methodologies for the design of cqrrect, reliable systems; it should help
offset the rising cost of softwaré producﬁion; &nd~itkshould improve our

ability to predict the performance of large systems.
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