‘J:,.' '.“" MASSACHUSETTS
/B YA INSTITUTE OF
TECHNOLOGY

LABORATORY FOR
COMPUTER SCIENCE

{(formerly Project MAC)

4

MIT/LCS/TR-175

A ROBUST ENVIRONMENT FOR &

PROGRAM DEVELOPMENT

Harold J. Goldberg / g)

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

v
cbe Qc‘t(z, N

Tius blank page was inserted to preserve pagination.

MIT/LCS/TR-175

A ROBUST ENVIRONMENT FOR PROGRAM DEVELOPMENT

HAROLD JEFFREY GOLDBERG

February 1977

This research was performed in the Computer Systems Research Division of the
M.I.T. Laboratory for Computer Science. It was sponsored in part by Honeywell
Information Systems Inc., and in part by the Air Force Information Systems
Technology Applications Office (ISTAO), and by the Advanced Research Projects
Agency (ARPA) of the Department of Defense under ARPA order No. 2641, which
was monitored by: ISTAO under contract No. F19628-74-C-0193.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE
(formerly Project MAC)

CAMBRIDGE MASSACHUSETTS 02139

A ROBUST ENVIRONMENT FOR PROGRAM DEVELOPMENT. *
by'

Harold Jeffrey Goldberg

ABSTRACT

_ This thesis examines the problems of debugging and preservation of the
user programming environment .and proposes a scheme by which the program
development environment can be protected, '

Typically, designers of timeshared or multiprogrammed computer systems
only consider inter-user interference as a source of problems and do not worry
about what users do in their own environments. Thus, users can, by writing
incorrect programs, cause the destruction of the programming enviromment and
personal data bases. A protection scheme is proposed that satisfies the needs
of the wuser by employing a protection mechanism, rings, that allows the
program development environment to be protected from user written programs and
yet be outside of the supervisor. Having these programs outside the
supervisor satisfies the goals of creating a '"security kernel", which is a
supervisor containing only security related programs.

The thesis presents a model of the user environment wherein the concept
of a "procedural package" is explained. The procedural package contains not
only the code for the procedure, but in addition, enviromment components
necessary for the proper execution of the procedure such as dynamic, static,
and allocate/free storage. The thesis describes the ‘'"inter-procedure
interference" problem in terms of the model and proposes an ideal solution
based on a domain architecture. Problems with the ideal solution are
presented and an alternate solution suggested.

In addition, the thesis identifies and discusses, in detail, environments
that ‘are needed to control a user’s process, and examines error signalling
mechanisms, particularly in their use in an environment like the one proposed
to solve the inter-procedure interference problem.

THESIS SUPERVISOR: David D. Clark '
TITLE: Research Associate of Electrical Engineering and Computer Science

* This report reproduces a thesis of the same title éubmitted to the
Department of Electrical Engineering and Computer Science on January 21, 1977
in partial fulfillment of the requirements for the Degree of Master of
Science.

-3=

ACKNOWLEDGMENTS

-1 first want to apologize, in advance, to all those that I may have
forgotten to mention in this section, but richly deserve to be included.

I would like to thank...

...Dave Clark, my thesis supervisor, for his guidance f£from
conception of this ‘resesarch ‘through writing of this thesis,
for his help in defining #nd ' dfecussing the issues and
providing structure and’ orgadfration to ‘the ‘{deas presénted in
-this thesis, and finally, for his patience ~and quick
turnaroand tiﬁe in reédingrdfafts.' ‘ '

...Jerry Saltzer for' reading’ and - couneﬂting on a dtaft of this
thenis (and correccing nty euglish) ’ _

. . .Dave Reed for discussing topics im this thesis, espécially'
signalling, and diacusb&ﬁg-tobiea’nat*ﬁn thiu—thesfs but that
attempted to keep ‘rbe a mﬂ%m&e& pétbon. :

..Doug Wells for discudsing some of the Tadues in this thesis and
answering many implementation related questions about Multics

and the*”%igh% uuy" ot pfogra.g@ug; ««««

..All members of GSR, especiaiiy Are - Benjamin, Nancy Federman,
-~ Harry ~Forsdick, Doug Hunt',” Steve Retit, A} Lunfewski, Warrén
Montgomery, Karen Sollins), anﬂhthole‘u&¥eady “mentionéd ' above
for making 1life-at GSﬁAand H. VY. an eﬂ}ﬂ?ﬂble and réharding
experience. SN '

b
e

This section would not ‘be complete Without ° specihl thanks to my
dear wife Esther, without whom this thesis, not'my gfaﬂuate student
career at M.I.T., could ever the hﬁve~ been comglefeﬂh " and to my’
parents, brothers, in<lavs, - fyfende for thwfr Woral support and
encouragement throughoutdtwb~and one half long vears of graduate study.

This research was performed in the Computer Systems Research
Division of the M,I.T. Laboratory for Computer Science. It was
sponsored in part by Honeywell Information Systems Inc., and in part by
the Air Force Information Systems ‘w%chaology‘*Appl&catfons Office
(ISTAG), and by the Advancéd Resedrch Profects Agetty’ (ARPA) of the
Department . of Defense under ARPA order No. 2641, which was monitored by
ISTAO uudet contract No F19628-74-C~0193

To Esther,

who makes all the difference.

TABLE OF CONTENTS

ABSTRACT +uvvanvnnenosnennsnesnensennssonncensnnennennes 3
ACKNOWLEDGMENTS 4
DEDICATION .. vseeunnneennneennsenennseenncoseneesnnnns 5
TABLE OF CONTENTS +.rnvevnsnsnsssnsnesesnssessensnnens 6
LIST OF FIGURES .+ s et vvuncennscennseennncsenseoasnoesesnes B
l. Introductionceeeeeecnocansecansssessassasasssases 9

1.1 MOtIVALION tevcvevvveecrsasnessoncasasansancsasnss 10

1.2 Plan of the TheSiscicecerecossecsassvossees 12

1.3 Related Work R TR 14
2. The Process Model and the User Domaine.eocvenn. 17
Supervisor and User-Domainscevcevereccccns 18

2.1

2.2 Disgecting the User Domain,cccenccreescees. 19
2.3 The Pl‘m .h)zané o' oe e o ki b nn c‘-iii“-qooo--.oo-.n.o 22
2.4 An Tdeal Solytioncieveenvrenccrnsnacas ves 25
3. ANeWHOdel '..lOQQQQOOUQCulIO0.00....O.'.'.O.-.‘o....'o. 29

3.1 Functional Components in the New Model 29
3.2 Deciding on a Protection Mechanism 33

4. A Closer Look at the Support Routines R R 39
Two Cases of Support ROULINES .veveevonnoneenanes 39

4.1
4,2 Guidelines for Support Roytine Coding 40
43Examp1\es ® 0 6 6 6 & 9 sSSP PO O LN SSEEAaT PR SEeEOSS G s 42

5- Command 8nd COntrolROUtines P e s e aes e Rt et 49

5.1 Structure of Environments ...evecsesseccssnccnsss 49
5.1.1 Command Envirommentcoeceececeosee ees 51
5.1.2 Control Environmentccoeeeeeesuacess 93

5.2 Processing Commandscoveeevnsnse seenees eeo 54
5.2.1 Text Substitutionieeeseecens secnessss J6
5.2.2 Parameter Evaluation ...c.ceeececsccascaes 36
5.2.3 Command Files .v.vvececcocnsnan - 1 |
5.2.4 The Command Proce8SOTrccesesseescssecs 60

5.3 Getting to the Control Baviromment 61

5.4 Implementation of Command and Comtrol Environment 63

-6 -

5 Protecting the Command and Control Environments . 63
6 Design Decisions Based on the Protection Scheme . 67
5.6.1 Command Processing Revisited 67
5.6.2 Command Processor Escape Mechanism 70

5.
5.

6. Signalling ...cveeeeocsecsossccascsncnssannes ceaene vees 13

6.1 Purpose of Signalling ...viovencececanances ceares 14
6.2 A Model for Signalling «eeeeeeecesenconcs cereeees Th
6.3 Extensions to Signallingcceceeeecncnasacan . 76
6.4 Signalling Problems ..iesvceeecnsnsecscnacsoncanes 17
6.5 Multi-Ring Signalling .cicicevevovevecennannoass . 82

7. Implementation, Conclusions, and Future Research 87

7.1 Implementation ..eveececeecesennossnanronccanonse 87
7.2 Conclusions ..eveeviacessesscnsenascos cesesnsacas 92
7.3 Areas for Future Researchcoecnenvecinness 93

Appendix A. Certification and Kernel Simplification 95

BIBLIOGRAPHYccoeevavnaanans cectenracens Gesesnonn esee 97

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

O T LN N
e ¢ e+ s & & 2 s

=W N N N

LIST OF FIGURES

Supervisor/User Domainsv.veevennennancans 19
Protected Procedure Packageccevevnnan.. 26
Functional Boundariesiciieeiiinninnesonns 30
Proposed StTUCLULE tuuiiivesenoraosonssnasounnosa 35
Command and Control Structureceeeceeesna. 50
Abbreviation Processingceieiiieeinncenns 57
Total Command Processingeveeeiecenennsaens 58
Sample Call Stack cviiviieiiinnnsennnsncesasons 79

Chapter One

Introduction

The need for increased efficiency in the use of large systems led
to the development of multiprogrammed systems, This led the way to the
development of interactive timesharing systems. Of major concern in the
design‘of these systems was the separation of users so that one user
could not affect the programs, data, or operation of others and yet
users could still be allowed coﬁtrolled sharing. This concern evolved a
frame of mind which based system design decisions on whether or not a
user, by any action, could affect the system or another user.
Self-annihilation (of programs) was considered legal and permissible

under these rules as long as this could not affect the system security.

It is this "laissez faire" attitude towards user programs that is
dealt with in this thesis. Systems should provide sdme self-protection
mechanisms to help users detect and limit the scope . of errors, thus
speeding up the development of programs. This thesis describes how to
accomplish this goal by émploying a protection mechanism (rings) to
protect a '"program -execution environment", containing program support

functions, from user-written programs.

1.1 Motivation

As hardware costs come down, the cost of software begins to
dominate the cost of a computer based,prbduet. Helping the programmer
would therefore reduce software expense and project cost. Numerous
methods of helping a programmer write a correct program the first time
have come about and/or are being studied including high-level languages,
structured programming, module specification, and a programmer’s
apprentice (see '"Related Work" section). In the long run, current
research might pay off; but until that happens many programmers will

face the problem of debugging their software in the '"old fashioned" way.

The proposed program execution enviromment will help programmers
catch errors during testing and limit the scope of those errors. This
capability will undoubtedly speed up pregram development and thus reduce

software cost.

Unfortunately, programs are never completely bug free even after
years of development. Constant upgrading and changing patterns of use
may exercise portions of a program that were not considered important

and therefore not thoroughly tested at the time of the first writing.

To help 1in these situations a protected program execution
environment can be employed that would be safe from user program

modification and could notify the user immediately upon detection of an

-10-

error 1instead of letting the.error propagate and cause more extensive

damage. This monitoring will be referred to as ''guarded execution'.

Program development and guarded e#ecution jusfify‘the work done in
this thesis, in general. However, the actual motivating force that led
to this research was the Multics kernel design project being carried on
in the Computer Systems Research division of Projeet MAC at M.I.T.
(presently the M.I.T. Laboratory for Computer 'Science) [Schroeder 75].
Appendix A contains a brief‘ discussion of “that work and should be
reviewed 1f the reader is unfamiliar with the concepts. In summary,
certification of correctness of the security features of the supervisor
would be easier if the supervisor were made smaller.. Modules wunrelated
to security ﬁould be removed fromvthe supervisor and placed in the user
domain. This increase in the number of support modules existing in the
user domain increases the fragility of the user domain and the possible
scope of damage that errors can cause there. Thqs program development

becomes a more difficult task.

The combination of the requirements of certification and the
traditional "don‘t care" attitude of the systems developers (described

in the introduction) resulted in the research reported in this thesis.

-11=-

1.2 Plan of the Thesis

The thesis proper begins'in chapter 2 with the description of a
basic model of a process in a multiprogrammed timesharing system, in
which Supervisor/User modes are briefly discussed. The User domain is
then dissected into procedural packages containing basic environment
components (as opposed to functions) and the problems of access by the
wrong procedure to those components are discussed. Efficiency
considerations that led to the coélescing of distinct components into a
single object on a particular system are discussed and studied. How
this coalescing aggravates the problems of incorrect access to

environment components is explained.

An ideal solution to the inter-procedure interference problem is
proposed wherein each procedure would exist in its own protection domain
and could not affect any of the environment components of another
procedure. Some basic problems of complexity and efficiency of wusing

this approach are discussed.

A new model of the user domain based on functional wunits 1is then
described in chapter 3. The concept of support routines and command and
control routines are explained. A new, simpler solution to the
inter-procedure interference problem is proposed in which the support
routines are protected as a unit. A mechanism for implementing this new

proposal is then discussed.’

~-12-

Chapter 4 takes a closer look at the support routines and offers
suggestions for their proper coding so that their protection is
facilitated. Examples of major modules ;hat need not exist in the
supervisor and could benefit £from protection in the user domain are

discussed.

In chapter 5 the programs that a user controls a process with, the
command and control routines, are studied in detail. Command line
processing and process control are discussed. The reason for protecting
these routines is explained and pﬁssible methods of protection are

considered, including a separate process "front epd“ approach.

Chapter 6 discusses error signalling mechanisms and their problems.
These probléms can be ignored in a single domain implementation but must
be considered in ordef for a multi-domain environment (such as the one

proposed in this thesis) to work.

Finally, chapter 7 presents conclusions, a summary of results, and
comments about a test implementation. Possible areas for future

research are also discussed.

Appendix A contains a detailed discussion of certification and
explains why reducing the size of a system supervisor facilitates

verifying its correct operation.

-13-

1.3 Related Work

This research was motivated by the kernel design work in the
Computer Systems Research division of ~Project MAC at MIT (now the
Laboratory for Computer Science). . [Schroeder 75] discusses the CSR
kernel design, project and the method of attack. [Janson 74] and
[Bratt 75] describe how pregrams responsible for dynamie linking. and
namespace management, respectively, caa be neléved from, and thus
simplify the supervisor. [Montgomery 76b)] discusses how process
creaiién can be partially reﬁoved fgbm;;hé‘sdéeégi;or thué ;idihg in the

simplification goals.

Many researchers are investigating techniques to prove programs
correct and/or help users write correct programs. [Parnas 72a]
describes module specification’techniqués; kaiskcv1f61.is éeveloping a
language, <CLU, which is thoroughly'ﬁ;;;:éﬁeékeéﬂ;ith hoﬁés that it will
prevent (or reduce) programming errors and aiibw. #uﬁdmétic prdgram
;verification. It allows: the.creation .ef extensihle objects which are
manipulated by type. managers or '"CLUsters" and prevents all other
programs but the appropriate type manggeta;ﬁ&aﬂaaineatly»touch;ﬂg‘the
"insides" of the extended type object. [Hewitt] describes a
programmer’s apprentice which should help a program writer avoid such
errors as incorrect number of parameters to subroutines and wrong types
of arguments, thus maintaining consistency of specifications, and answer

the programmer’s questions about dependencies between modules.

~14~

There are many theses and papefs‘ related to the ideal solution
presented in chapter 2, which 1is basicélly a domain architecture.
[Dennis 64i and {Dennis and Van Horn 65) describe spheres of protection.
[Schroeder 72] describes the ﬁardwére that could support mutually
suspicious domains. [Redell 74] discuéses typeAextension and revokable

capabilities. [Jones 73] describes capabilties in a very formal sense.

The concepts of command and control environments are discussed in
this thesis. The General Electric Mark 11 time-sgharing [Montgomery 76a)
is an example of a system which contains these functions in supervisory
code which I claim is unnecessary. given the proposed protected
environment within the user domain. [IBMCP] is an example of a system
that contains the control environment, but mot the command processor,
within the supervisor. (TENEX] contains the command processing
functions coded as system calls while the program that accepts user
commands is in the user domain. [NSW] and [DCS] are examples of current

research that promote the approach of a front end processor.

Of course there is much literature on Multics but I have chosen
{Organick 72] for an ©overall description of concepts although the
details have changed somewhat, and [TR123] because of its exteﬁsive list
of references. [Schroeder and Saltzer 72) describe the ring hardware in

use on Multics today.

Debugging and maintaining the wuser’s ﬁrocess is of prime
consideration in this thesis. Having a debugger protected from user

written code certainly helps in the job of debugging and guarantees that

-15-

some portion of the process 1is preserved despite user programming
errors. [IBMCP] has a primitive debugger in supervisory code that is
protected. The debugging system, "NURSE", described by Gould [Gould 75]
is more extensive than the IBM debugger, but it too 1is 1in the
supervisor. Yates” thesis [Yates 62] contains a proposal for a
protected debugger that would be an "administrative routine', which is

also in the supervisor. A better approach is found in [PSN25] and
[PSN26] which proposes to protect a debugger in the wuser domain using
user controlled base and bound registers on [CTSS]. This approach is

much like the ring structure proposed in this thesis.

~16=-

Chapter Two

The Process Model and the User Domain

_In order to describe more accurately the details of this research,
a model of a user’s computation is néededi The model chosen was based
on the Multics system; however, fhere are ﬁofbthét many'Mulfics specific
items in the model. Thbse items that age noﬁ présent in a given system
can simply be ignored without 1loss of appligability. The model is
intended to reflect a typical process 1in ;vmultiprogrammed computer

environment.

The term "process" appears throughout this thesis. The association
one should make with this word, while reading this thesis, is an active
agent, a processor (real or virtual, i.e. multiplexed), following a
sequence of instructions. The past, present, and‘future effects of the
instructions executed is a process. fhe termsvﬁprocédure" and "program"

are used interchangeably, as are the terms "parameter" and '"argument".

-17-

2.1 Supervisor and User Domains

First the process is broken down into two scopes of access, or
"domains", namely '"supervisor" and "user'", as shown in figure 2.1. The
figure is intended to indicate that the access-privileges of the user
domain are a subset of the privileges of the supervisor domain. The
access privileges of the supervisor include access to I/0 channels and
devices, which may be controlled by a different means from data access.
(1) All interrupts and faults are directed to the supervisor domain so
that it may properly control the user domain and I/0. There may be one
or more real or virtual (multiplexed) processors executing the process,

but for simplicity only a single processor is assumed.

Now the user domain is examined, which is where the problem being

attacked exists.

(1) For example, Multics uses a privileged state bit in the processor to
allow execution of I/0 instructions. PDP/11°s have no 1/0 instructions;
the device registers are addressed as memory locations.

~18~

(| Su p‘.e.vwsor | |
1/0 ,f 7a o Us ﬁ\

Devices ‘ntt.; ﬁi’ pts
E\ Foules
K—’—*\ *_

k.

.

F\gore 2.\ SuperV\sor/Use.r Domains

2.2 Dissecting the User Domain

The user domain is copsideréd to be the collection of procedures
that execute there, The code 1is not the only item that aliows a
procedure to function, though. The description of the user domain will
consist of what environment 1is "seen" by programs that run in that
domain., The user domain is examined in this ﬁeculiar way so that the
program interference problem can more accurately and preéecisely be

described.

-19-

Programs are viewed as 'packages'" containing the code and
additional objects that are needed for execution. This section
identifies those objects that make up the énvironment necessary for most
program execution. Much of the environment has been established as
conventions, but these conventions are indeed necessary for the proper
execution of programs written in higher level languages. Only passive

objects are mentioned in this analysis. Functionality that exists

because of either user or system programs is simply and grossly

categorized as user programs accessible via call, and supervisory

programs accessible via gates (an abstract entity for supervisor calls).

The passive objects that this research has identified are small in
number, but are intended to capture a particular view of the process
which will be examined shortly. The components are 1) dynamic storage,
2) allocate/free storage, 3) '"own" storage, 4) parameter list, 5)

parameters, 6) linkage, and 7) databases.

The dynamic storage area is where blocks of storage are

automatically allocated each time a procedure in called, and

automatically freed when the procedure returns. The class of storage is

known as "automatic" in PL/I. Temporary work areas are typically
allocated in this area. The allocate/freé area is where blocks of
storage are allocated and freed under direct program control. These

allocated blocks remain in use even after the procedure that performed
the allocation has returned. A typical use for this type of area is for

the allocation of I/0 buffers and I/0 access method control blocks (e.g.

-20-

the index of an ISAM file). "Own" storage, or internal static, is

automatically allocated upon first entering a procedure and is not
usually released. The allocation‘may be implicit, since some systems
provide this storage class as a physical part of the executing program
(impure procedures). A typical use for this type of storage 1is for
saving information between program ' invocations, such as whether the
procedure has initialized a data base, or pointers to blocks of

Ailocate/Free storage. (2)

The parameter list identifies arguments to the called procedure,

and may 1include vdescriptions of these arguments including type and
length information. The parameters themselves are typically 1ocated in

some storage external to the called procedure. A linkage section, or

transfer vector, is used to bind named objects to physical machine
addresses. Finally, the last component of the procedural package is the
collection of data bases that are in use by programs. On some systems

this component can be considered the open files for the program.

Note that only the parameters and databases are, or need to be,
external to the procedural package; the other components either should
exist only in the procedural package, or be copied 1in. In no case
should these other components be referenced by external procedures
unless explicitly passed as parameters. fhe violation of this maxim is

exactly the problem that this thesis examines in the next section.

(2) The compiler does not know the address of Allocate/Free blocks
because the programmer may allocate them 1in any procedure and pass
pointers around. The compiler, however, assumes that internal static is
allocated in a certain place, possibly pointed to by a register.

~21- ‘

2.3 The Problem

The reason for discussing this particular breakdown of the program
execution environment is that implementation of the specified components

tend to cause unnecessary common mechanisms between procedures in the

user domain. For instance, the dynamic storage area is typically
implemented as a single object shared between programs - the '"stack".
Usually the Allocate/Free area is a single area for all of the programs
in the user domain to share. Linkage is usually implemented as a single
common transfer vector for an entire collection of programs. On systems
where programs are kept pure, internal static is not part of the program
object module and 1s allocated in an area with all the other static
sections in the user domain. Parameter lists are typically allocated in
the dynamic storage area, causing further entaglement of objects. On

systems which have virtual memory (segmentation), every known segment is
a potential data base. (3) These examples of the concentration of
multiple objects into one object which is global, allows one procedure
to access another’s '"piece" of the object. This is possible because
access control usually extends only to individual objects and not to

sub-objects. Because of this, one faulty procedure can modify and

destroy another’s dynamic, allocated, or static storage.

(3) A known segment is a file of which the address can be constructed.
On Multics, the address is a two~-dimensional quantity (S,0). '"S"
represents an index into an array of "open" files, and "0" is the offset
into the segment S. Hence an arbitrary value for S can select any of
the open, or known, segments.

—29—

This data concentration may result in unpredictable results of
tested and debugged programs. A ‘procéss may be totally destroyed
because of one modified bit. Programs may reference the wrong block in
an allocated/freed, static, or linkage area. File access information
can be destroyed, causing jumbling and loss of records. Data bases may
be written instead of read. The stack may be overwritten or deleted.
Programs and linkage may be wfitten over.r For those systems (like
Multics) where gates are actual programs found by the normai linking
mechanism (as opposed to SVC type insﬁructions), destroying linkage can

prevent any further calls to the supervisor.

An example of the merging of unrelatedAsmall objects into one large
one with no specific access control to bfeQent erroneous access is found
in the current implementation of the Multics stack. In the original
Multics design, segments were suppoéed to contain only data requiring
identical access. This was not foilowed on Multics when the current
stack design is examined. Efficiency, related to reduced page faults,
caused the merging of unrelated data into one object. One segment was
used for all stack frames, and at the low end of tﬁe stack tﬁe infamous

"base of the stack" was designed.

This base of the stack contains many special environment
definitions including. innters to important entries in PL/I operators
(i.e. call, save, return, and stack manipulations), to the procedure to

do the signalling in that ring, and to the Linkage and Internal Static

—23-

Offset Tables, (4) to name a few. Again, these objects were all merged

simply for increased memory utilization.

Because of the merging of all the above areas into one segment
which was writeable, one bad stack reference could destroy the entire

execution environment.

Until recently, linkage and internal static sections were always
combined into one static section. This allowed out of range references

to internal static to affect linkage of programs.

In order to prevent these types of errors from occurring, and
possibly to catch them as they occur (for debugging), it would be
reasonable to protect these elements of the execution environment which
are common mechanisms. There are‘in existance machines which prevent
this sort of wild access from occurring, but are limited to stack
references and a few data types [Organick 73). Current research has
shown ways for preventing this type of behavior in general, (5) but they
are just not applied because of efficiency considerations. In the next

section an ideal solution and the problems with it will be discussed.

(4) The Linkage and Internal Static Offset Tables are used by procedures
to locate their linkage and internal static areas within the segments
containing all linkage and internal static¢ areas.

(5) Interpreters and extended type objects and type managers for
example.

—24~

2.4 An Ideal Solution

To prevent the type of interprocedure interference that could arise
due to sharing of environment components, a protection mechanism of séme
kind is needed. This protection is required not only for the components
of the execution enviromment discussed in the previous section, but for
the actual code of the proce&ures as wéll. Ideally, the procedural
package concept would be enforced by the system; each procedure would
be housed 1in 1its own protection domain and be allowed to access-only
objects that it required for operation. These objects might be
catalogued in a list which would quickly idgntify all those objects that
the program in that environment could eyer_reference. (6) Among those
objects would be the components of the execution ehvironment. Only
required access to each component»would be granted so that, for example,
only read access is allowed for linkage sections and only execute access

for object segments. Furthermore, the components would not be

accessible at all outside the program domain unless explicit permission

were given. This structure is depicted in figure 2.2.

There should be ways of adding and removing objects from the
"list". These addition and removal operatioﬁs>afe necessary so that

blocks that are allocated and then freed would not be accessible to the

(6) This could lead to an easily implementable system given appropriate
hardware.

-25-

original allocator once they are freed, and so that parameters could be
passed for use, then removed from the "list" when the procedure
returned. These pciaiecat capabilities ate shown as dotiéd capabilities

in figure 2.2.

Cape ‘mbty
List

Code

A, Stavwe

[Gopebires.

o bst

f"#f*'}f.i:‘i”' *"Lﬂ .

Y B ¢ s i -
N q’biﬂhtttrﬁl

v[xxnrn%L
SR qu:;ﬁ%wﬁﬁ&ha"ai

Database
F\gum 2.2 Protected Procedove Packa'%é.

-26-

There is some eipense ingurred when dealing with a system with this
architecture; however. Maintenancg‘of‘therindividual capability lists
for each domain requires an extra databaée for each program. With a
sufficiently lérge‘ coilection of p%ogramé (as én .a typical large
system), this:could involve many sﬁch objects. In addition, each
environment component would be a distinct object, Thus, the
implementation is faced with the management and storage of all these
objecté that exist as 1ndepéndent-'entities. (7 During execution,
domain changing with every procedure call would undoubtedly be expensive
because dynamic capabilities would have to be atacked and maintained
[Schroeder 72]. Excessive paging averhead due.to a new capability list
and environment components would also decrease efficiency. As pointed
out earlier in the Multics example, excessive paging overhead is in fact
what led to some of the problems being attacked in this thesis,
Returning to the original state of - affairs just for the promise of
better debuggability is probably not .sufficient motivation to reduce

performance.

Besides performance issues there may still be a problem in using a
program per domain system. Examining in detail how a user could create °
and develop programs points out some problems that have to be overcome
if such a system is to be considered useable. In particular, consider
the set of privileges that have to-be“granted when a mnew program is

created. First, the source must be entered and edited, which requires

(7) This problem has come to be known as the "small objects" problem.

-27-

that an "editor domain" have read and write access to the source. Then
a compiler must be able to read the source and write the object segment.
A debugger must be able to read and write the object segment (perhaps

only temporarily) so that code can be examined and breakpoints set.

All seems fine so far, but it is in the execution of the procedure
where the more complex access problems and controls come into view. The
new procedure must be given the privilege to call all the subroutines it
uses. Similarly, if it is called by another procedure, that other
procedure must be given the right to call it. All the support programs
(e.g. linker, dynamic area manager, etc.) must be given the appropriate
access so that they may operate on the parts of the domain that they are
intended to (linkage section, dynamic storage, etc.). Clearly, if users
had to establish all of these privileges manually, they simply would not

do it; and what good is a pretection mechanism if it is not used?

To help in this problem one might decide that a group of programs
should be encapsulated together to alleviate some of the complexity of
establishing the new protection environment. One can, for example,
group '"system routines'" into classes of doméins thch require similar
access, thereby requiring only one access control term or capability for
each group. With appropriate constraints, it might even be possible to
reduce the overhead of procedural packages by having relatively few of
these groups. This approach is exactly what is considered in the next
chapter where problems and other useful properties of such a design is

discussed.

-2 8w

Chapter Three

A New Model

Because of the efficiencf problems related to maintaining
independent protection domains for eVery procedure, the use of a
simpler, more efficient means of separation was investigated. .in this
new approach, the user'domain is viewed iﬁ a different light. Iﬁstead
of trying to separate and protect every user environment program from
every other, a separation by classes is cons£dered. This new separation
divides the environment by functions‘rather than by compbnehts and a new
solution to the problems posed in the previous chapter, based on this

new division, is proposed.

3.1 Functional Components in the New Model

The basic idea of this new approach 1is to Treexamine the user
process and functionally divide the programs in it. 1In figure 3.1 the
gross functionality boundaries are depicted. In this picture it is easy
to illustrate the goals of the supervisor simplification work discussed
in appendix A, that strongly motivated this research. This goal is
simply to move the'user/supervisof boundary down to the resource sharing
and multiplexing functions. By examining the picture, the effect that
moving +this boundéry has on the size and complexity of the user domain

is clearly demonstrated. Moving the boundary places more functionality

-29-

Domain Boundaries
Pfe_- C.U‘t\Q\c_ak\o\ VGIN’.L Des\g'\ Goi\s

A

U ser Ur\ e
User

Command
andm User

Control 5 Y onrt

DI

SUPQY‘V\SOY‘ 4*

Rt‘aou“u. 3\\6*“"\%/ Molxi «9\'-"‘5“%) KCV‘ﬂQ.L“

F\gurc 3.1 Furxgt\oml. Bounéav\g_s

in the wuser domain, thus increasing the harm that an unchecked program
error can cause. For the rest of this work it 1is assumed that the
user/supervisor boundary is in fact moved to the point established as a

goal for the supervisor simplification effort.

The user domain is considered to be broken down into three classes

of programs: command and control, support routines, and user programs.

The command and control programs are those programs that allow users to
control the execution of their processes (e.g. stop and start) and to
tell their processes what to do (i.e. what programs to run). These

programs are unlike any other programs in the user domain and are

-30-

therefore considered independeﬁtly in‘a later chapter. Until fhen, the
command an& control programs shall be ignoréd. ?rocedures that fall
into the support’routiﬁe class afe those that serve no o;her purpo;e but
to provide a more elegant abstfact machine for the wuser programmer.
These procedures include stack managément, calla; save - return macros,
Input/Output access methods, 'softﬁare for floatiﬁg point support,
conversion routines, free storage managemenf, dynamic 1linking, and
namespace management, to name a few. These véroceaures are ﬁsually
provided By the system itself. The user programs are those programs
written by the user to perform a desired task; and make extensive use of

the support routines.

Partitioning the 'user: domain in this way allows the support
routines to be protected, 'as a group, from -the user programs. It is
assumed that the support routines are tested and debugged, and seldom
change. Thus, a manual review.of the support routines can verify that
they will nof interfere with each other. Therefore, protecting’ the

support routines as a group should pose no additiomal problems.

The support routines are common routines, shared by the user
programs. A failing support routine would have a more widespread effect
than a single faiiing user program. Thug, - protecting the support

routines is in fact protecting some of the common mechanisms of the user

domain.

-3]-

Protection of the actual code is not the only thing that is wanted
though. Protecting those components of the user execution environment
discussed earlier so that the aupport routines can function

T

independently from the user programs is desired. The support routines
cannot be alloved to share those celponént;‘ with user programs.
HoweQer, because the éorrectness of the support routines‘can be assumed,
the ‘support rou;iﬁes can be allowed to share the environmeﬁt components
among themselves. In this way, breakage and therefore iﬂefficiency in

memory utilization is held to a miniuum above that of the original
combination éf usegband support routines. This compares favorably with
the ideal solution proposed in the previous chapter, where no such
sharing was possible. The "working set" . [Deaning 68], or number of

pages of memory required by .a cemputation in:this scheme;would“be a
maximum of: twice the number éeqaired‘by the joriginal, 'single enviroament
implementation. This i3 so because thzr!uirn.onlywzu0>domains‘where the
pages. can .be and in each domain those pages tan-be: ~as-'packed as: they

were in the original. implemeantation.

In summary, two environments havé»‘becﬁv created within the user
domain. The next step is'CO‘choose-a'pvotedeionﬁmichtaiim»for keeping
the environments separate.: By examining thé ~ dependencies “and
interactions between the two: environleut;, R sﬂitable uechanism can be

decided upon.

-32a

3.2 Deciding on a Protection Mechanism

The types of functions performed:by the support routines are simple
and likely to be invoked often. With functions éuch as the call-return
sequence and stack management implemented as suppéft foutines, it would
clearly be impossible to have them exist in an independent address space
where some outside active agént performs tﬁe comﬁuﬁication Between the
two, since these fuhctions are necessary to-perform the co@munication.
Thus, a "distributed processing' approach involving parallel processes

is unfeasible.

Some form of linked address space between the two environments is

needed so memory can be shared. Ihe support routines must be able to
manipulate elements of the user programs (stack, linkage, etc.). On the
other hand, it is desired to prevent programs frpm intgrfering with any
of the elements of the support environment; This type of nesting pf
privileges very closely parallels the user/supervisor modes discussed

earlier.

At first,.placing the support routines in the supervisor might be
considered. However, appendix A presents reasons why programs which are
not necessary for correct operation of the system should not be in the
supervisor. Recent research in system certification,[Schroeder 751 has
crystallized these reasons. Appendix A contains a brief description of

this work.

-33-

However, besides certification there are very simple reasons for
not placing programs in the supervisor., These reasons have to do with
extendability and maintainability. Sophisticated wusers of Multics
greatly appreciate the ease with which they can change and replace
almost all parts of their execution enviromment. If the code were in
the supervisor a user dissastisfied with the particular implementation
would be unable to change it. Furthermore, bugs 1in the code would
require supervisor changes to correct, which is more often a harder job
than replacing user programs. A simpler supervisor is obviously more
easily maintained and upgraded, and can be more quickly learned by new

system support personnel.

This point has been reached by noting that the nested privileges
offered by the familiar wuser/supervisor modes would be useful for
protecting the support routines. But reasons for not actually making
use of this scheme have been pointed out. However, the concept of
"rings of protection" [Graham 68, Schroeder and Saltzer 72] can be used

here with much success.

Rings of protection, or more simply just rings, are a
generalization of the supervisor/user domains discussed earlier. Rings
are an ordered set of protection environments such that ring j has at
least as much access to data and programs in rings j + 1 through the
maximum ring number as each of the higher rings themselves do, but only
controlled access (call, read, or no access) to data and programs in

rings 0 through j - 1.

34

The domains of interest here are totally ordered in terms of access
privileges. Therefore, rings can be used for their . separation. Thus,
for example, the supervisor can be put iﬁ ring 0, the user enviromment
in ring 2, and have the critical programs of the wuser execution
environment in ring 1. This propose& structure is shown in figure 3.2
below. The user support routines are protected from uéer programs in
the same way that the supervisor, is, and yet are not part of the

supervisor.

(._ | Supe.w\sor_ . \

User/ Support
SUP{TV\ Hov : r

T) : o
B"““A"}' ! User Pro%mms

—

AT AR A A AT AT AT AV T A AT AL V0N AP

»
KD
L

A N A W T T

T A AT AT A AT AT AT AT AN AT T A AT A A ATS A ATATA AV V.V ATA A A S

N

| F\uéure. 3.2 Proposed Strocture

The significance of this last statement must be emphasized since it
is a major design goal of this research. In a correctly designed
system, the supervisor contains only those programs that enforce the

security of the system. Outside the supervisor, no code can do anything

=35~

I

to interfere with the superviéor 6r another usef. Sé even though the
support routines are prétected froﬁw the.uaer writtegvcode, tﬁey are
outside the supervisor and'éhus‘ cannot :’afifeﬂcf'sy@stm; secu"flity.‘ This is
a mﬁjor aid in éssuring the cofteétnés;'of tﬂ; igééf uéér pr,c»te«:t:i.oﬁ‘j

mechanisms or system security.

From the user stanapoium, havingvthe,qggport}gouainas outside the
supervisor 1is beneficial in that users can be granted the privilege to -
modify or replace the support routines so that their environments can be
tailored to their needs. »theyﬁr,,‘ﬁﬁi:éggq;_qu!:ggn conéﬁrned about
malicious users since as alreadyﬁmq;gﬁiinud; theyﬁéannog affécg Fhe_

supervisor of any user; they can only degrade thair owﬁ environment..

Now that the model and the proteééiﬁﬁ“uiéﬁani§m haéﬁ: baen’ éhoséh;
it is time to <éonsidet' how the finalizedvdesi;n soéwes éhé original
problems stated 1§1chapﬁe;s one and two. Rggaflsubat t@p major goal was
to trap errors as.soon as they occurred sO‘thatlthe‘pro;Ess ﬁbuld not be

destroyed and so thét'débhg§?3§§é%hiﬁ iﬁﬁi&?ﬁ%é&%ﬁisﬁ‘ placeﬁ

With the proposed design, any attempt to wildy store data on the
support routiﬂéé*themtélvé; dr'in“fhéi%?Envété;ntﬁfdﬁﬁéo;ponents, would
cause the hardware to '"trap" the offending instruction, ‘p;evénting it
from cﬁntinuing“y;,An error .ceadition would: thes be signalled (see
chapter six for more information on .signalling),; notifying the user that
the error had occured. The exact ihstrueﬁian~a§deLﬂaa&Len~ causing the
problem could be determined and subgequently. fixed .either by patching.

and continuing, or rewriting and‘récompiling,the‘progtam.

-ggu;

Although it may not always be possible to continue, at least the
process as a whole would be saved. Saving the process allows the user
to continue working on the development of the program and prevents any

damage to databases that might have occured if the error was not caught.

The ideal solution would work just as well but would extend the
protection to each and every program. However, as stated earlier, the
support routines change infrequently and could therefore be checked to
insure that they operate properly together. Thus, the only protection
needed, at a gross level, is for the support routines, allowing the

robust enviromment for program development to be realized.

-37-

-18-

Chapter Four

A Closer Look at the‘Support Routines

This chapter presents more detail on identifying and protecting
support routines. It describes two methods of protection: One for
procedures that have no static storage, and another for the more complex

functions of the user environment with static storage.

4.1 Two Cases of Support Routines

Some of the low level support routines on a system require no
static storage, linkage, or databases for their operation. Simple
mathematical algorithms are examples of such routines, where, for
instance, only proéessor registers are used. The only protection
necessary for tﬁese type of routines is for the code itself. Systems
that feature direct sharing usually provide low level support routines
in a shared area that is not writeablebby any process. This obviously
prevents one user from interfering with another. This same pfotectioh
also prevents users from writing over the code and harming themselves.
Therefore, rings are not needed for these‘routines; but on systems where
every user gets a personal, writeable copy of the routines, rings can be

used.

The more complex and interesting pfotection is for those routines
with static storage (either internal static, linkage, or external data
bases).v (8) In these cases, those §tat1c elementé must be placed in a
lower ;ing for protection. In order for the routines' to access the
areas and function properly, they too must be in the same ring as the
static areas (or lower but would have no additioﬁél advantage from being
there). Code in the lower ring does not pfé&ént the sharing’ of that
code between users, since the éddé‘is (or édn-ﬁé) pdre; The impure
sections (linkage and internal static) are allocated per process,

however.

4.2 Guidelines for Support Routine Coding »

Dependencies among routines must be established to insure that no
procedure 1in the lower ring depends on (uses) a procedure in the higher
ring for its correct‘operation. '1f this occurs, then the module in the

‘higher ring must also be brought into the lower ring.

Once a module is brought into ;ha laqg:yrin;,:suitable entry points
are made into gates, allowing ;he-outer_:gqg‘prqggaqa,go call the inmer
ring procedures,bnly atpthe“spgcifieqtgq;;xﬁpoinggf“w;n;ernglginterfacqs

are thus protected.

(8) If allocate/free areas are used some static storage is required to
remember the location of the allocated block. Otherwise, if the blocks
are used only during the execution of the procedure and then discarded,
it is essentially being treated as automatic storage.

Z40-

Parameters that are passed on user calls to gates are validated by
the ring mechanism to insure that access to the parameters is allowed in
the calling ring. This prevents the calling ring from specifying areas
that are inaccessible in the outer ring, but accessible in the inner
ring. Without such checks, the outer ring could declare that an area
used for static storage in the inner ring was the area for an output
argument, thus causing the inner ring to destroy itself. This problem
is exactly the same as that faced by a use;/supervisor interface
{Schroeder and Saltzer 72] except that here the protection is mainly for

self protection and debuggability, not system integrity.

Modularity of the procedures [Parnas 72a, Liskov 72] 1is necessary
to help in identifying and separating the user domain into functions so
that appropriate ones may be protected. Modules that interact strictly
by standard parameter passing via calls to procedure entrypoints are
likely to be the best candidates for separation and protection.
However, modules that interact via a shared database pose a problem.
Although parameters are usually passed internally as a shared database,
there are specific rules for dealing with those parameters. Module
specifications can specify the range of, and the legal manipulations to
be performed on the parametefs. However, there are no specification
techniques yet devised to specify a 1limited set of operations when
dealing with shared databases directly. Thus, the boundaries of modules
that share a database are not well defined and the dependency between
modules is hard to establish. [Janson 76)] discusses this in some detail

and has termed modules that share a database as weakly modular.

41~

N RURY RLTE SRS PRI R 22 D SN

The way that weak modularity prevents protgétion of a module is
str#ightforward._ 1f one module 1is glaced‘in an ioner ring, it still
depénds on the shared area to operate correctl&. fhe shafgd’ area must
remain in the outer ring so_that the other module:can manipulate.it.
But if the area is in the oute:‘ring, any progr&m’there can write on it

and therefore affect the correct operation of the inner ring module.

Support routines that can be protected are therefore 1limited to
those that do not interact in ways other than through the standard
call/return mechanism. A poorly designed system (i.e. one in which
shared databases are the usual means of communicating pa:ameters) can
thus limit the number of modules prp;gcted. Intqqggtinglyk’enpugh, the
goals of "clean modular programning",ex;ctly identify those modules that

can be protected. Functional abstractions and data hiding both provide

for the type of modules that are acceptable {Parnas 72a, Liskov 72].

4.3 Examples

This section presents exatmples of support routines that may be in
the supervisor but could be moved to the user savironment. Although the
routines could be {n the supervisor, they are not there due to a desire
for a well designed, certifiable system. Examples chosen are event
management, timer managenment, Input Output manigément, and namespace
management. This section also describés how ringé can be used for the

direct protection of linkage.

fyDm

In this section, it must be rembered that should one of the support
routines fail, the process'woold no looger be able’to‘continue program
development and debugging. The reason why keeping the current“ process
is considered 1is due to both. the time and expense that went into
creating the process, which may contain a coneiderable amount of
volatile state information osefulr'forv continued - work.. . Therefore

throwing away the '"broken" process and acquiring a ‘new, good one is less
desirable than continuing with the old process. : The failure modes
considered in this section are those due to "wild" storage of data in

sensitive databases needed for continued execution of the process.

Interprocess communication can be accomplished by direct writing
‘into shared memory. However, to avoid busy waiting (9) processes can go
to sleep or "blocked" and wait to be awakened" by another process.
Only the minimal amouot of softwnre necessary’for the actual process
blocking and awakening need be in the aupervisor. Multiplexing the

blocking for various events‘can be handled by the user.

In use, a process goes blocked and is resumed when g_x event is
sent to it. The user block routine then requests from the supervisor a
list of all the event messages that were sent. If the one that ‘the
process was waiting for is in the set. the user block routine returns to
the waiting program. Otherwise, the received mesoages must be saved for

future reference, and the process goee blocked egain.

(9) Looping while waiting for an event to occur.

43~

The integrity of the area containing the list of events known by
the process and those messages that have arrived but not yet processed
is vital to the normal execution of the process. Thus this area and its

manager are ideal candidates for protection.

Another multiplexed mechanism can .be real and virtual timers.
Suppose that the supervisor provides fof only two timers per process,
one for absolute time and the other for elapsed virtual (chargeable) cpu
time. These timers can then be uultiplexeﬁ .4n the wuser domain thus
reducing supervisor complexity. One way -of accomplishing: this
multiplexing is to maintain a list of timers in use, sorted by "alarm"
time, with the time clqsest fo the pfesent in tﬁe aétual timer supported
by the system. When that timer goes off, orlﬁieh a’ciosgr time to.the
present is added to the list,‘the real ttﬂef>w111 be set to the real
closest time to the present. Thisviiqt of tiﬁe;; for £he timer manager
is considered_another inporiant, but ffagile; ;ﬁpport facility of- the

user environment.

If the hardware of a system is correctly”dﬁsigned, and users do not
share I/0 devices, only a minimal mechanism need bé in fhe supervisor to
support user requested input and butput. Usef; éan be allowed to write
a channel program to control "their" devices and no otﬁers. The
supervisor need only start the channel”fét the apéropri#te device aqd

possibly assign storage for the duration of the operation. (10) Only a

(10) Multics allows users to request that the supervisor not page out a
page of memory for a short duration so 1/0 to fixed addresses can be
accomplished.

~44-

simple interface to the supervisor is needed to ;dén;ify a set of I/0
instructions for a particular channel to> executg. Device control
modules should be in the user environment along with all device access
programs. Higher level database access programs and code reflecting a
device independent environment should also reside in the user domain,
Of course I recommend that all these functions reside in "the protected

portion of the user domain.

Multiplexed devices can be harder to handle. If two users are
allowed to share pottions of a single deQice (e.é.rsections of a single
disk pack), it would Be impossible to keep this code in the user démain.
By definition it musf reside in the supervisor since it deals with
resource ‘sharing aﬂd multiélexing among 1ndependeﬁ£vuéers. However, in
the case of one controller’ with multiple dévices (drives), correct
design of the controllerkcan allow it to be sﬁared by many users. All
that is required is to prevent an 1/0 channél prqgrﬁm from switching
devices during its execution. Then only éiiow the:subervisor, at the
time the channel program is- started, to specify the: - device on the
controller. This approach has in fact been used by Honeywell on their

single controller, multiple drive tape units for Multics {Greenberg 76].

Short reference names are local user defined names that can be

associated with 1long global names to simplify talking®about an object.
Once the relationship between a refetenée'nane and: global name is made,
only the short name need be used. As an example, s reference name might

be 'square_root" for a procedure that computes square roots, while the

—45-

global name might indicate the location of that procedure within a
naming hierarchy such as:

"ROOT>system_library>math_routines>square root". (11)

Typicall& a linker, or binder, associates the reference name as
used in programs (e.g. x = square root (y)) with a particular module in
the system. As Bratt [Bratt 75) explains in his thesis, the reference
name facility need not be in the superviaor. Bratt describes how that
facility can be removed from the supetvisar and be placed in thg user
domain. However, this facility is gteatly dﬂpended on by all programs
in the user domain. If the referenec name manager should fail,
inter~program linkage would fail and no‘;ew programs could bé found or
executed. Thus it is impératiﬁe that ghis facility be‘ protected from
damage by user programs. Placing ehe‘feferance name manager in the
protected enviromment 1s essential ﬁ;-bthe goaly of providing an

"unbreakable" user enviromment.

All the above modules contain significant state information 'in
static storage. Therefore, it would be destrable to place those
programs in the protected environmeat so thetr important state

information is protected.

Finally, consider dynamic limking. Jansea [Jamson 74] explains in
detail how dynamic linking can be rempoved frem the supervisor of an

operating system. However, here too, the. eventual placement of the

(11) A>B indicates B is in directory A. ROOT is the root directory of
the naming heirarchy.

-46~

linker module is in the user domain. The set of search rules, gulding

the linker to find a specific copy of a named procedure, constitutes a
static database used by the linker. To protect the search rules, and
thus the linking mechanism, the linker should be placed in the protected

environment.

Another part of the 1linking mechanism that Janson termed

environment initialization is also important to protect. In Janson’s

design, a procedure locates its static storage ahd linkage section when
it 1is entered. The first time that the procedure attempts to do this
will trigger a mechanism which will allocate and initialize these
sections. This allocation and initialization processes can be

protected.

The tables that procedures use to find their linkage and internal
static sections, the Linkage Offset Table and Internal Static Offset
Table (LOT and ISOT), can also be protected. The LOT and ISOT only have
to be read By procedures; it is an error if a user program writes in
them. Similarly, linkage sectionsvare only read by programs. Thus the
LOT, ISOT and linkage sectioms can, and should be protected from errors
caused by user programs; To do this requires placing not only the
environment initializor in the protected enviromment, but the linker as
well, since the 1linker modifies 1linkage sections. This approach
realizes at least part of the original goal of protecting the components

of the user environment.

47—

—48—

Chapter Five

Command and Control Routines

A human user of a system is aware of other environments besides the
execution environment. Any program that accepts input from the user’s
console inte:prets what the user types in a différent‘ﬁay; hence the
appearance of different environments. This chapter examines those
environments that are used to control a procesé. This research has
identified two enviromments used for ﬁhis purpose, which hﬁve slightly
- different properties. These environments‘are embeddedrin the code that
was classified as command and controlxpfdgrams in ‘an earlier section.

These two environments and their properties are discussed below.

5.1 Structure of Environments

The relationship between the user at a Eerminal, the program
execution environment and the éommand and co;troi éhvironménts is shown
in figure 5.1 below. Between the terminal and the program execution
environment flows user program input and program“outﬁut. Between the
terminal and the command and control ewvironment flows program loading,
stop, and start requests, as well .as messages from«cﬁe command and
control enviromment (e.g. "program not found"). Finally, between the
program execution environment -andvthe~command and control environment

flows a program generated command stream and .control -meséages such as

49—

start, stop, and load a particular program. All these streams will be

discussed in more detail in later eections. o

?"0 camn
" Engcution

. Erswenment

Af "stare step orlos]"

'Fl.;gum 5.1 Cnmmmd W C.gmbf‘ol '3tf0cture.

Consider the components of ‘figure 5.1.. .Fhe pregram execution
environment has already been disciissed in previous chapters and the
reader is probably familiar with some terminal own-a timeasharing system;
thus, an examination of the command and centrol .emvinonment is needed. to
complete the picture. Although these emviromwents are shown merged -into
one in the figure, -they have .differemt. -properties in reality. Anm
attempt will be made to deacribe these differences, but as you will .gee,
it is hard to separate them‘entirely. They will then be considered
merged for the rest of the thesis.

=50~

5.1.1 Command Environment

The command environment is seen as the program that the user is in

communication with immediately after being given a process. In
particular, the command environment responds’ to user Trequests that
deseribe what programs to run for the user. After the specified
programs have completed, the user is again 1in communication with the
command environment. Typical requests to the command environment are
"

run the editor" or 'compile my program'" in whatever syntax is

understood by the command environment.

The types of méssages that are sent between the command environment
and the rest of the user domain are basically "load this program and
transfer to it" in response to a user command, and in the other
direction "execute this command line as théugh the user typed it" for
programs which generate command lines. These messages are shown in the

figure below as user requests and program requests, respectively,

User requests are generally familiar to all computer users. It may

be some form of job control language ('// exec pgm=basic") or one word
command lines on a timesharing system ("basic"). The use or need of

program requests might be doubtful though. However, use of this feature

could be made, for example, for the implementation of a command file

facility (more will be said about this in a 1later section). This

-51-

facility allows users to create a file containing a sequence of commands
to be executed, and -‘invoked by running the commandv file program
specifying that file as it’s 4input. - The comnaﬂd 'filé beogram ‘tﬂen
simply calls the command and control envitonnant with each command line
in sequence. The connand lines are pa.sad to thn command ’environment

via the program request'str&am.

Another use for this stream 4is to allow. programs to pass a
"canned", or user supplied command line to the cdwmend enviromment under
special circumstances. This faeagure wight be employed in a procedure
that céuld accept a generic command »ttt&ﬁgu;ana a@penﬁ,?u:: substitute
generated information into the strimg... Thenm the ccowmand protessor would
be cailed with each such generated command string thus teliéving the
user from having fo t&be the same conm;nd‘ovef ﬁaniriimés. An example
of such a procedure would be one that sinply generatesia list of new or
modified information files, invoking this connaud would generate a list
of modified or new file names. If the user wanted each one of the new
\or modified files to be printed he/she could ;uﬁﬁiy the generic command
- string '"print 2" to the list new files caumand which would then
generate the commands "print mnew file a", "print help file 3",
(etc.). The "%" in the generic ‘command string would be replaced by
actual file names in each’ generated command. Then thefdbhmand«proﬁeasor

would be called with each of the formattad commmad lines. (12)

(12) This is just an example and not a proposal.

-52=

5.1.2 Control Environment

Whereas the command environment quietly waits for requested

programs to complete, the control environment 1is always awake and

listening to the user (at least conceptually). The exact mechanism that
is used is not important here; what is important is that at any time the
user can say "hey you (computer or process), stop and talk to me !". In
this way, the user can stop an infinite loop in a program and not waste
time and/or resources waiting for a failing program to complete. Along
with the power to say '"stop'", the user would also like to say "OK, go

ahead", or "forget that".

Functionally, the user generates a signal causing the process to
enter the control enviromment. (13) Users then have a choice of
debugging and continuing, or forgetting the computation. They may also
run any other program first, before returning to ' the stopped program.
In this way, a calculator program can be used to check intérmediate
results. Similarly, an inter-user message facility can be used -fo ask
the author of a program "hey, what’s wrong ?", get a response, then
continue the interrupted program. This general program calling can be

implemented by allowing the control enviromnment to call the command

(13) On Multics, users generate this signal by using the '"break” or
"attention" key on their terminals. On TENEX, control~C generally does
the same thing. T '

-53=

environment to process all but control enviromment requests. However,
control environment requests might actually be parsed by the command
environment and invoke control environment functions (14) This
apparent double dependency can be resolved by joining thg two
environments, thus providing a single connand environnent to tne user

which is simpler in scruccure and more eaaily understood

In summary, the major differeace Batween: the controel and command
environments 1is that the connncr environment i8 asynchronous with the
rest of the. user process flow, andm vesponds: .to:: simple, base - level
requests, with vposctbkevex&aﬁsian8rbua1nuludi:fuil*nonlind-proceasing;
For the rest of this theeis, the: two-enviromients are:coasidered. merged

into one.

5.2 Processing Commands

This section examines. the: details of how a command may be-
processed. - There are, of course, numerous ways to accomplish the type
of-processing described in this:aaeaﬁonwcneéklﬂroushton} for exampie),
but. - the - ones chosen are useful for.explainiag some protection problems
that will be described later in this chapter. 'The processing 'described

co\r‘ers,,a large variety of lknown systeme.

(1l4) This is done on Multics where the command environment processes all
requests, some of which invoke control enviromment modules,

<oy Fa e vtk S s g A ST ST e Y iRy ST e e R AR R TN

In an overall view, the command environment performs four
operations in response to a user request to execute a module. First it
parses the command line and performs possible substitutions, parameter
evaluations, and conditional evaluations. Ituhtheﬁ séércheskfor the
identified (possibly ambiguously named) module using a set ‘of search
rules. The module is then brought into thé addféés}spacé of the user.

Finally, the module is8 transferred to and it Begins executing.

Note that none of these functions require that the command
environment be part of the supervisor; no special privileges are needed
to perform all of the functions stated. . Even 80, some systems [TENEX,
CTSS] have the command'environment as part of the ’supgrvisor. Placing
the command environmentv in the supervisor suffers from the problems
discussed in ghépte: three. If the re#sons for - having théA command
environment proﬁected is solely for the benefit of the -users. (i.e. they
cannot destroy the command environmenﬁ), then the: discussion on
protection, later on in this chapter, should help. in cheosing a new

approach to solving that problem.

The functions of the command environment are now examined in
detail. The tranlating and parameter evaluation mechanisms are examined
first because they are particularly important in this work. A modular
design of command processing is described. The modules are classified
into two categories: 1) those that look at every command line, and 2)
those that are optional and look at command lines only when asked. This
clagsification will be referred to later onmn in this. ch@pter when the

protection of the command and control enviromment. is discussed.

-55=

5.2.1 Text Substitution

Translation,'or‘substinution of’;uxt, can be a complicated taskvif,
it 1is not restricted. What is meant_here is simply the substitution of
one string of chéracters for‘énother in the command line. A frequently
used form of this type of processing is for abbreviations. For example,
a user types "fortlm" and gets "fortran -list -map" which might execute
the Fortran compiler and provide a listing and statement map. This type
of processing can be neatly packaged in a "front-end filter" preceding
the actual command proceasor as shown in figure 5.2 below.

This approach is useful because the sbbreviation processor can be coded
'in a separate module (allowing easier debugging) and inserted only if
desired. This module is considered a member of the "always used"
category since, once it is aelecéed and inserted in the command
processing path, it examines every command line to determine 1if

substitutions are necessary.

5.2.2 Parameter Evaluatfion

A second aspect of command processing that 1s considered here deals
with how commands can be affected or controlled by the user’s total
environment. With this flexibility users can control the execution of a

command based on the date, a list‘Qf‘fiies in a catalogue or directory,

-G

T~ Command

' S Evnivonment
~

\

\ Sovean -l - “'“P\

Abbrevistion
Processor

’
!
1
abbreviatyn |
\'\\st.

Command
PfoClSSOf

\

AN

"oal fovkyan'

F\gure. 5.7 Abhrenation proussmg

or on the name of the person who sent them thg last message (for
example). Use of these controls easily allows'printing of only new
messages (those that have been created todaf), compilation of all
FORTRAN programs in a certain directory, or-replying to the last person
who sent you an interactive messaée; without ever ‘having to specify the

date, list of files, or the name of the last message sender.

Such features can be implemented as a special cases in the command
processor and use special keywords. However, the most general approach
is simply to call procedures which implement each function and return a

string to the command processor as a result. Such an approach is used

-57-

on Multics; these special ﬂfunctions are referred to as Tactive
functions" [MPM]. The active functien processor evaluates all active
functions in a command line and then calls the command processor with
the resulting string. Figure 5.3 ahﬁvavhow thégcxﬁpple stated earlier

works in combination with the abbf&éiation processor.

dwu.to\ry

a.pil
b.Fortion
C-kext
a-bepl
e.5o¢kion
£ . \wp

»
{ “Tert LrYS ¥ fort) ‘
-y Abbrewation
‘p-(‘ﬁ&%ar

“Goman (‘u&mﬂs !&oﬂ!ﬂ;n}

PR

* g.Nortran"

fam
EXQ(U tion
Emwu\mn

oal Semnan"

Command

Eovironmeny

F\guﬂ. 53 TotaL Cowm\ir\l p(‘oc.(ggmg

-58-

The program invocation mechanism of the acti#e function processor
and command processor arer very similat since béfﬁ call procedures.
Therefore it is possible'to merge these two functions into one. (15)
However, the modules will be conéidéred in&épe;Aént to facilitate the
protection discussion later in this Cﬁébtér. 'Tﬁe acti#e funétion
processor also 1ooksb at every command line to éee if activevfunctiﬁns
must be invoked. Thus, it too belongs to the "alﬁays used" cétegory of
command processing functions. Noticex that the active functions
themselves are not always used band thus the collecfion of bactive

H

functions are members of the "optional éategofy;

5.2.3 Command Files

On many systems long sequences of qommands may be:stdfédlin a file
and executed by only typing a single command line. This type of
processing is useful for réducing typing fime 4aﬁdv eliﬁinating7>errors,
for providing compléx "abbreviations",lvand for 7providiﬁg a simpler
interface to a complex system (e.g. catéiogued prdéedufes). ﬁdst such
implementations allow parameter sﬁbstif&fibns aﬁd offer‘étihnguage to
control execution and flow within thé coﬁﬁand:file (é.g. "1fk e and

"go to ..."), inciuding error handling (e.g; "on error go to ..").

(15) This is done on Multics.

-59-

Such processing canrbe merggd into the commaqd processor, but for
the sake of modularity and clean design it should be a‘separate_modqle
which reads the commandbfile and calls th; comngﬁﬁnptocessbr with‘ egch
command line. This type 6f progesging qlao'nned nﬁt bevprotectediin any
way (at least for system sécurity rgnamna) ;ad the;eforé can execg;e‘ip
the user domaiﬁ making use of the '"program reque#;"’\stream deécribgd
earlier. If implemented as a separate ‘proanm,“;ﬁe command file
interpreter does not look at every\commanA 1ing;7 if :is only 1nqugd
wheﬁ the wuser specifiesl tﬁat it shoul@\be;:vThpgawPhe cqmmagd file
interpreter is considered a member of th; "oﬁtional" command processing

functions.

5.2.4 The Command Proceagor

After all the command line procesaipg"is #pmplete,‘ the' comﬁand
processor is called to invoke th;‘sp§§i£1§d pr$§ram, The program namé
in the command line is used to find fﬁt actual’rptggeguré vi;hip ”the
naming heirarchy._. The linker search lgechapism m§y be used for this
purpose which, if used, would provide‘a'sing;e #earch ‘s;fategy in ‘ﬁhe
user domain for both dynamic(linkiﬁg a#ﬁ‘cquinﬂ?qgg:am 1ogating; one

search strategy is obviously more easily remembered than two.

The parameters supplied on the command line are formatted
appropriately for passage to the specified procedure. The "load

program" signal is sent to the program execution enviromment, which may

b I IR L

cause the program module to be read into main memory, or merely assign
the module a virtual address (making it "known"§ see [Bfatt 75] for
details). Finally, the "go" signal (which may simply be a transfer

instruction), starts the loaded procedure}

Obviously, the command processor is the key module in the command

environment and thus 18 a necessary and always used function.

5.3 Getting to the Control Environment

The simplistic approach to entering the control enviromment is
merely to transfer control from the executing program directly to the
control environment procedures, much like an. - interrupt. sequence.
However, there are times when users wish to program their subsystems
with internal "attention" procedures which get invoked at the time a
stop request 1is issued from the control environment. These procedures
can be used to cancel the effects of a requgst that.is currently being
worked on, or to make a database consistent (e.g. unlock it). For
example, when LISf on Multics [Reed 76a1;tecognize;,;hat the user wishes
to stop the computation, it first,updates all bindings 1in memory from
the working registers so that the most recent effects will be seen by
the user without expliéit knowledge of register .optimization built into
the LISP subsystem. Only then jdoeh LISP. allow the "stop" to take

effect.

-61-

However, if the subsystem is malfunctioning, it would be impossible
for a wuser to abort it and return to .the command environment.
Therefore, there is a need for at least two kinds of stop signals; one
which allows attention procedures to be invoked, and a second which goes
directly to the control environment. Then users can first attempt the
more elegant stop, allowing the procedure to recover, but if that fails,

they can use the "panic stop".

To implement this type of feature there must be a way of specifying
the type of stop desired. The "break" or "attention" key found on most
terminals is usually used as the "stop button” but there is only one of
them. This .can be multiplexed by having users type a single character
after the break key denoting what type of stop is desired, or :by some
coding in the number of breaks sent. The latter approach is prone to
misuse however, because impatient users would wonder whether a single
break got through if no result of that fact is quickly demonstrated and
then would send a second break which would get them into the wrong
environment. The TENEX system [TENEX] has the wuseful feature of
allowing all control characters (16) to generate a variety of process
interrupts. In this way no multiplexing of the break key need be done,
and simple one character strokes can effect desired responses. Each
control character can then invoke a special independent function.
TENEX, for example, responds to control T by first beeping (indicating
that the system 1s still there), and then giving a system load estimate

and resources used since the last request.

(16) A keyboard character sent with the control (CTRL) key pressed
simultaneously.
—62—

5.4 Implementation of Command and Control Environments

How the command and control environmenis are imblemented is of
concern - because they may be 1mp1eﬁented’ as usef érograms running
unprotected in the user execution environment,ias‘;n Mﬁltics; If this
is the case, then these prograﬁs ére also auﬁject to ihterférence from
other user programs as discussed earlief;‘ Control bf a process 1s an
essential feature; therefore - in providing a robust environment it is
necessary to protect the command and control environment. How these

programs can be protected is now considered.

5.5 Protecting the Command and Control Environments

Protecting the command and controi environment meaﬁs that tﬁe
procedural packages implementingv that 'envirdﬁment must be protected.
The choices for doing this basically f#il iﬁto; ﬁwo éatégories. The
programs can exist in independent processes’ with sepéfate address
spaces, or they can share an address space and .memory with the user
programs, as the support routines were allowed to do. - The types of
interactions between these programs and the others ef the user domain

can help in deciding which one to choose.

-63-

The messages to the command environment are simple character
strings, For the control environment, meesases are, more or less,
"stop" and "go". Because of the nature of these messages, they are sent
infrequently (usua;ly once per user requesg)f Fpr Fh;s reason tight
coupling, by memory shating, hatunen ﬁhe tuQM eﬁvironments is not
necessary, and efficiency of conmunication is‘not that 1mportant.‘ Thus,
virtual processors, or . physical separation night prove to be feagiblé,
particularly in 1light of the current ctend towards v"distribu;éd

computing".

The National Software Works projéct {NSW] uses the approach of a
"front end" computer as a user to computer netwdrk interface. The front
end has some memory and a moderate amount of processing power. It can
parse user requests and format them into a ﬁpre.hrigid“ syntgg egs;ly
processed on a vatiéty of host conpﬁtera;v Th;s; froﬁt en& processing
can alleviate some load on the hosﬁ. The front end can also provide a
more reliable computing utility by having low level softwure choose
different computers to perform actual requestu, in the event of failure.

The Distributed Computing System [DCS] has this goal in mind.

A.front endiproeessot can also suppert local ‘editing, -allowing a
usef to compose and'edit'text'withgut'ﬁaking“ﬁsé“of'the host computer,
thus further reducing the»1oad“¢n~the*ﬁesﬁiﬁ“CHérwcter'at a time echoing
can be supported by the front end with spectal *“deétion" keys forcing the
transmission of words 6r lines to the host, This approach alleviates

the need for the host computer to respond to each character typed by

each user and thus also helps 1in reducing system load. This last
facility is in fact currently being implementéd on the ARPANET [ARPANET,

RCTE] .

There are, howevér, problems with this approach, one of which has
to do with the program "loading" feature of the command environment.
The other problem is that some form of communication is needed between
the control, command and user envi:onmenté.‘ The loading function and
communication mechanism can, of codrse, be in the supervisor, but
arguments have already been presented for nét placing similar basic
functions not relating to system secdrity there. The best place for
these features is in the user environment, but as mentioned many times,
programs are subject to failure there. To’ prevent this, the
communication mechanism at the user environment end, and the program
loading function, can be plaéed in the protected ‘suéport routine

environment described earlier.

Another reason for not using multiple processes. is that the 'stop
and go" features of the control environment can very simply be
implemented if there is only one execution point in the user’s
computation. It 1s obvious thatvif some signal from the user causes
immediate transfer to the control environment, the wuser program will
automatically be stopped (much like an interrupt). Similarly, when the
control enviromment transfers back to the user program -(much 1like a

return from interrupt sequence), the "go" function is obtained.
, q

-65-

There are arguments for_’nqt having 1ntet:gp;§,’ however, main;y
base& on complexity and design ‘okaprogfius that service them. The
environment that the interrupt handlers run in is generally fragile and
not complétely specified due to poesible Fancrions affecting 1t that
were in progress st the time of the interruptioh;: The preferred option
is to use ﬁrocesses where appropriate, These procedses simply wait for
the desired signal, then act aecordiagly fit'a syhchrorious memer. When
the job is done, the process them goes "Blocked” wefting for the signal
to occur again. - In this' uny; the énviFonmert that the interript

handlers run in is well defined.

This scheme does not’eiiminaté‘tﬁg'need fopu‘inter:upts, however ,
but 1limits the code tha; .gﬁat »be ‘:HPV ﬁuring.;hehactugl intetrupt
processing to that whi§h pe¥forms Qch§§a11n§~ fﬁ#qtions. Lﬁy ?ﬁt“?em
these sched@iihg funétionsrare designed to egpcp#g in a ;anger thagtdoes
not require full system capabilties. For th;vactual sfopping of the
user execution enviromment, real intertupts mubt alsb be used 80 that

control can be torn away from the execoting code.

I have no argument against the use of processes for such ' functiohs
except that on a large system, like Multiés, Whére processes are very
powerful processing” agents, the expense is sfﬁbIY“teo*grEgt. It would
be advantageous to ptovide cheap, Wweker processes to perform these
functions for simplicity of codiﬁgkén&5End%fﬁ%%ﬁﬂiﬁil%ty:°*ﬁbw procesaes
can be implemented cheaply 18 discussed by Reed in hié thesis

[Reed 76b]. Such processes were used by a memory management design with

~66=

much success [Huber]. Lacking these éheap prqcesses, it was decided to
place these functions in the environment already set up for the support
routines. This gives us the simple contfol over the process discussed
above (because of the single exeqution point);‘ and requires no

additional tools for multi-process intercommunication to be developed.

5.6 Design Decisions Based on the Protection Scheme

The following sections.describe‘decisiohs that were made solely
because of the decision to place thé command and control environment in
the protected half of the user domain. In using a different approach,
such as multiple processes, it is not immediately clear that the same
decisions would have been made although given some thought, it would
seem that they are not totally unreasonable because of other criteria

such as delay time and load transfer to the front end processor.

5.6.1 Command Processing Revisited

As a result of placing the command and control enviromment in the
protected half of the user ‘domain, design decisions have to be made
regarding the placement of each of the command enviromment modules. The
major .factor that influenced the deciasions discussed below was the
desire to provide a path to the command processor that was unaffected

by failures in the unprotected half of the user domain so that control

-67-

over the process could be maintain&d; Thus the "alwaysiused" moduies;
categorized earlier, are precisely the ohéa that must bé in. tﬁe
protected environment, The "optiondi" 'oﬁes need not: be, howe#ér.
Unlike the decisions made 1in the eeftification work discﬁssed in’
appendix A,r there’>is no eiact mininai‘legiéé ;rog;amgiéhﬁt hafézéo’be
_protected. The choice can therefore be based on considerations other
than security. One rule that can be used is “if it cen be protected it
should be", but this might lead to proiecting the entire collection of

programs in the user domain. While .. thie is not a real problem, it
clutters up the protected envircament with many simple programs that are
not essential support modules, Altheugh it mould -be deairable to

protect all programs, as in the 1daai;se}u;anaptgaentad;in chapter two,
we must remember that the preservation.of ihe: precess and control over
it is of péramounx importance and the less af :a simple fuynction could be
remedied dynamically when it is disceovered, . Keeping the protected
environment simple also helps iﬁ understanding and maintaining it

leading to a more robust enviromment,

Obviously the command processor itself must be placed in the
protected .enviromment, as it is thc;e@sqnmial component ‘of ‘the command
environment. The active fuaction hﬁraetnéoxvanustw also exist din the
protected envitonéent ‘because 1if : 1. fﬁils.'nQ:cbamand line will get
vthrough to the command processor. However, the active functions
themselves should not execute within tb&rﬁfﬂtsehqd;énwitonment for three
reasons. First of all, they may beguser supplied and might be in the

process of being debugged. ' Secondly, the protected enviromment is

diffgrent from the one the user "sees". The working environment is
‘Supposed to be the one that controls the execution of ﬁhe command . But
by executing in the protected enviromment, activé functions refer to the
wrong working enviromment. Within the protected environment the active
func;ions have accéss to more areas than the normal user programs, and
know about more files or information than the user ' intended.
Consequently, they might specify operations that should not or cannot be
done (e.g. compile the command processor because its name mafched "all
PL/1 programé"). There can also be naming conflicts between the
protected enﬁironment and the normal execution environment. The wuser
may request the compilation of a new version of a program but get the
old one because it 18 found in the protécted environment. Finally,
active funqtions are not required in order to pass a simple command line
to the command processor, which 1is all that is desired for process

control.

The abbreviation processor must exist in the protected environment
because it 1looks at every command line and could prevent any commands

from getting through to the command processor if it fails.

Finally, the command file processor need notbbe in fhe protected
environment since it is not used for simple command lines and can
therefore execute in the unprotected part of thé user domain without
fear of 1loss of control over the ﬁfocess. The cboice of placement of
this module was just a matter of taste and could have, just as easily;

been placed in the protected environment. However, the decision for its

-9~

R AR o0 S e

placement was also due to a desire to not clutter up the protected

environment with non-essential support aodulee.

5.6.2 Command Processpr. Escape Mechanism

Since the placement of the command and cemtrel envirenment programs
are in the protected envirowment, sowe.user commands have to be. executed
in the protected eaviromment. In particular, all control . enviromment
commands such as -"start", .to comtinue a stopped . computatioen, and
"release", to abaadon a computation, have to be - executed withisn the
control environment. - Since only one command interpreter exists, it has
to know that it should treat theee;couupeda,differently. Thus, a .table
of commands to execute 1ia the ptotectedunnvirennentnean be used which is

looked at by the command interpreter.

It is also useful to provide an additional mechanism. for users to
specify execution of a’.eonmand.iaqthe protected environment for just
that one instance. An.example of such a progeam nnight-~be the-~access
control setting program. Executing in the user program environment the
eccess control program could not affect Aprograms in the protected
environment; this could only be done from within the protected
environment (this is exactly what is wanted. noruaily) . However, elneer
might want to invoke the access control program once for specifically

setting the access control 1isr on a protected program, possibly for

installing a neW'version of the command processor, and at another time

-~70-

escape mechanism-is necessary. Justification for allowing thisi and
still claiming to offer some proteetion for the support routines is
found in the belief that the type of error described is a rare one and
not expeeted to occur. After all it is assuned that the user programs
are not mslicious in nature. Thus maintaining this feature provides a

single ugser interface to the command processor.

An important guestion that might be pusaling the reader at this

point 1is '"why should anyone trust user programs to behave respectably

?". This question deserves a good answer and is an “important part of

the overall design. Recall that all:systew security related programs

exist in the supervisor and are protected fron all users, once beyond

the supervisor boundary, one user cannot affect snother. Partitioning
the user domain only helped the user from self harn, no additional side

effects could occur. Thus, a truly malicious user, using the proposed

system, could only affect the user portion of the process. No other

user process, nor system program oould be dansged. The proposed design

is merely an optionsl aid to a willing user and not a must.

-72-

to merely add someone’s identifier to a user program’s access control
list.v The aécess control program should not always execute in the
protected environment or it will have more access than it needs most of

the time. This extra "freedoﬁ" allows mistakes to have more serious
effects than they would have had otherwi;e. (L7) Thus, the escape
mechanism allows users to explicitly specify the times when commands
should execute with increased .privilege. All othér times, commands
execute in the 1less privileged user execution enviromment (except for
those listed in the "special" list). Letting a program execute with

only enough access and privilege to do its job has been a design goal

known for many years and is discussed in [Saltzer and Schroeder 75].

The command processor escape mechanism coupled with the feature of
allowing user programs to call the command processor seems to point out
a gaping hole in the protection of the support routines and the command
and control environment programs. Apparently, any user program could
call the command processor with the escape mechanism and cause a failing

user program to execute in the protected environment and destroy it.

One simple and obvious solution to this problem is to have the
command processor recognize from which envifonment it is being invoked
and ignore the escape mgchanism in calls from user programs. However,
this presents a different user interface and might possibly confuse
users who wish to make use of the escape mechanism from within another

program, such as the editor. For this reason, I feel that allowing the

(17) This is similar to the major problem reported in this thesis.

-71~

Chapter Six

Signalling

Signalling is discussed in this separate chapter mainly because it
is a subject» that can be factored out for simplicity. The reason for
discussing signalling at all is due to the é;oﬁléms that appear when two
domains interact so that signals can pass between them. This structure
is relevant because of the method chosenrto proteét support routines of

the execution environment.

To treat this subject properly a model of signalling is described.
Extensions to this basic model are then introduced so that it is useable
in real world situations. Problems with signalling are then discussed
to point out basic pitfalls in the original model of signalling. A
solution to those problems 1is suggested that is basgd on a newly
designed language (CLU). Finally, problemsr é#plicitly related to
signalling in multiple rings are presented and discussed in the context

of the model, its problems, and the solution presented.

-73=

6.1 Purpose of Signalling

Signalling allous ‘the establishment of.e procedure thatl knows how
to deal with a particular situation, usually an error condition, and
invokes that procedure at the time the eondition is detected Return
codes (an output paraneter whose value indicates success or failure of
an operation) are often used to denote ;error situations. Signalling
differs from simple return codes because the procedure to handle the
error i8 called at the time the error is detected and may - allow the
computation to proceed imstead of simply uedoing the computation sud

returning.

6.2 A Model for Signalling

The PL/I language has a facility, described in the next paragraph
for dynamically setting Up., calling, and renoving condition handlers
[Noble 69]. The method used for choosing which condition handler to
invoke is straightforward and generally familiar and thus will be used
as the basic model for signalling. The signalling mechanism used on
Multics is based on this structure. I believe that Multics is the only
system on which the entire collection of aoftwure operates under a
common signalling frameuork. Thus it seems reasonable to use PL/I as a

model .

i

In PL/I, handlers for various conditions are established by the
execution of the "ON" statement. Multiple handlers may be set up for
any condition in different procedures, .The most recently established
handler will be the one that is invoked upon detectién of the condition.
Handlers are automatically reverted‘ when the establishing procedure

returns.

This mechanism allows any procedure to -handle an .error locally or
pass handling on to a system default handler or handler supplied by the
calling procedure. Local handling is‘ considered more appropriate by
some since the local procedure is more aware of theuactual.situation at
hand at the time of the error. Parnas [Parmas :72b} however, describes
how a high level routine may, in fact, bevbetter.equiéped to. handle an
error than a low level procedure simply because it understands the more
global context and significance of the error. More will be said about

this later.

-75=

6.3 Extensions to Signalling

It has been found that Se;ng abie to note tgé ‘oécurrence of QQ
error but not handle it explicitly is useful. Similarly, taking only
partial action :towards fixing . the -problem: miglit be desired. Using
Parnas® -exanple,‘.aﬁ 1/0 routine may discovera read error but does not
explicitly handle ‘the error siace it is wot ‘aware of the use or need of
the record. - It may however desire to méisutairnlocal ‘error statistics
and then ask its:caller -whether it whnuldYaﬁ&tyﬁokfigncte the operation.
In these types of :cases: Goodenough’s ftcanﬁinnugﬁs#&]‘??%SSI,operation
might ‘prove uuaeﬁul;\ 'iisswailduufafhindethb~W¢}yemﬁlieitiyﬁﬂiaclaim
interest in (futﬁhnm)rqwmcesiﬁuszoiunnu;cnnqpﬁhumy}zdit.@atng=ﬂthatr~the

‘exception be passed on'to-somenhtgher.handler".

Working in harmony with PASS is the useful extension of having a
handler for any condition that is not explicitly named in a procedure.
The condition name "any_other” [MPM] 1is used on Multics for this
purpose. This extension ;s useful in light of the previous example
where the tape I/0 routine wanted to detect all errors and jhst‘ make a
note of them, then pass them on. It would be extremely awkward to list
all possible conditions that could arise at any point and have the same
processing for each. Furthermore, since error conditions can be user
defined, it may not even be possible to identify all the errors that

could arise. The any_other handler solves these problems.

-76~

A third extension to the .signalling mechanism is the "cleanup"
condition [MPM, Goodenough 75]. This condition is signalléd in every
block that is'abnormally terminated (i.e; does not execute a "return"
sequence). A handler _that‘ specifies the tefﬁination of a procedure
because of an error automatically triggers this .mechanism in the
procedure(s) implementing that operation. This allows the procedure(s)
to restore the original state of and/or eliminate "impossible states"

[Parnas 72b] in its operation.

6.4 Signalling Problems

With the basics explained, 1t 1s now possible to discuss the
problems associated with a PL/I-like signalling mechanism. The problems
all arise from the ability for a handler to be set up in one procedure
that can handle conditions arising in another procedure. This "feature"
was introduced to overcome the "inconvenience" of specifying a single
handler in separately compiled external procedures (multiple times).
This "dynamic descendence" rule [Noble 69] of PL/I violates modularity

and thus understandability of programs in two ways.

First a low level procedure must know how its callers will react to
errors arising in the procedure so that it will kﬁow what to expect from
incomplete operations within itself (e.g. overflow). Thus, it cannot be
programmed without knowledge of "layers" that use it and so it is not

modular. A procedure méy not be expecting any particular action from

=77~

its callers; it could depend on the system default handlers. However,
any procedure may handle its own errors and unintentionglly also handle
errors of programs that it calls simply because it has a handler for

itself.

Secondly, a high level procedure that handles etfrors of ~ low level
procedures . must know the way in which the ‘error wes caused in the low
level so that it can handle it properly (e.g. overflow results in

highest positive or negative value).

A final problem arises when error handlers ~ themselves generate
errors. In this situation the wrong handler may be chosen to handle the
error. Consider two procedures <A> and ' * both having ‘condition
handlers for various conditions. ‘<A> calls ¢B> ‘resulting in an error in
. does not have & handler for that etror, ekxpecting that the
system default error handler will aufi&té;“br“thht its caller will know
what to do. Assuming <A> does heve a handler For that &rror"(céll' the
handler -<A’>), the eall ituckﬁMiil«iodk“lths-théifig%r!<ﬁ;l below. Now
if <A’> should take an error like -overflow,” "s handler could get
invoked even though the mOdulef'<3;“ﬁﬁs7pri§a¥ed:fof handling <A‘>‘s
errors! °s handler could obviocusly chqpse a _completely d@fferent
method than <A> for handling'the efror andvthngh;§f> yillnot function

properly.

These problems all arise from the incomplete speciffcation of error
handling within each module. I am net arguing for not allowing higher

level handlers to "handle" errors of low level procedures; I agree with

~78=-

(A \

: : Stack
(B> | Growth

CA>

F\%uve, G\ Sav;\p\e. Calh Stack

Parnas that this is reasonable, subject . to certain restrictions. I

contend (like Parnas) that these mechanisms should be explicitly coded
into the procedures. The "inconvenience" of doing this would be more
than paid off in terms of understahdabiiity-and eése of debugging of

such software.

Thus, every module would explicitly detail its error handling
intentions with possible options like "ON ANY OTHER CALL
SYSTEM DEFAULT_ HANDLER" or "ON ANY OTHER ABORT" for the conditions not
explicitly handled 1in the procedure itself. For passing of conditions
upward the '"pass' mechanism may be employed but I think that passihg on
the same condition that arose in the low level procedure is a violation
of modularity since the operation of the low level procedure must be
known by the high level procedure in order to effectively deal with the
error. A better approach would be to have the low level call a high

level routine allowing it to return values such as "abort", "continue",
8

-79~

"retry", or "use this answer” iti a more'global s?nse. In this way the
types of respona@s are knowm in a‘dv&;:ée';' Horé will be said on this in
the next tection. Eithéi: way,’ the error hanadling should still be
explicit and hawe the progrmer and progras reader aware of what is

going on.

The CLU language [Ldiskov] provid;s fcr just: such explicitness in
error handling [CLUnoté >43, Ciﬁnbteuﬁel . | Any error not handled by a
procedure automatically causes that procedm:e to be terminated and
results in a "failure of mechanism" ; condition to be signalled to its
caller. Any upward "traps" [Parnas 72%] ¢(Wigher Tevel handfing of Ilow

level errors) must be explicitly coded.

The only problem with CLU has to do with d&bminsk ‘This aapect is
bt
extremely important since it is a major topic of concern in this theais.
On Multics there is a default error handler at the "base of the stack”
that performs the "stamdard fixup" or Péporté #n udhandled error'tc the
ugser and eriters a new level ‘of cmn&henvimw for debugging. Sihrce
the default error hendler tw:called, the stack histoty is preserved and
debugging 1s possible. Unfortunately, fn ©CLU, an ' ‘unhandled error
terminates the procedure 'so 'mo dynamic debugging is possible. CLY
enthusiasts claim that “debugging mode" cad*hbeé turned ov -thus preventing
any terminations due - to a failure of mechani em, but this has two

problems assdciated with it. - L

First, debugging mode must be cxpliaitly ea:hled ‘the Multics

default handler is always there. Of course. it caﬂld altuys he enabled

‘but that leads to apother problea. This second : robles 18 that a
: gt'{}:f B gaigm shugy

nornal. expccted failu:e of nchmim e:tar thst can ﬂbq pmxly handled

by ;he calung procedm'e is alﬁo £lag ad told ta the user. Thug the'-
e miotnt Bebiooag sl ogeliiesgie ﬁj‘? Brabanie galeveih

conputation could aot contim withoue ing myﬁu measages and :
s o 4 ik & 3 ﬁ#i j~wmumzzﬁ;/

""ﬁ: as: 210, Yoxte ae 4T

Ann

- The: only: -mum b 3 hﬂf&&e a m wﬂ_w‘mwwwmc

C&t-iw MQ”} w ‘“t a ; '.
procadury mwgﬁ,&“ i

ﬁlﬁlﬁ tﬁ%ﬁ!&l&ﬁ ihﬁiia‘ tmﬁgggaag? ,:.fw st
: fbnm e ém; izt nels f"-““»"{ifi:v . »-té‘mti::& %ﬁ N’"&ihﬁ:&a} L tavsi
Hw ol e e Ww amm‘: a4 m;gﬁ

Giveu that luch a uchtniﬂ eoulé ’ m in YW

wr ot wEn ,}"?;',.

&kwmﬁme

isdnl :a'

FL I S X

] ’%‘«;:; aaey

the 1deal a:lgnalltng wechanise would &g avai
: fim niwess pats swesl 867 gg

e

‘:W‘?i HAd o pelbes

cme oo e Th oy mestrgs [TERREvT aifi’?}r&%a 4$a*&§a% %E%ﬁgﬁ. ko gndy

e \”3@ iﬁ‘:iﬁm 5 maanibnl
el E T e CTniet T i Disiogs ki g *‘z‘{%f, rend :is:i‘.s BIED akbar yineis

P T SR S LR RS RF S I E N SUTR AT St S 331 STt SN - &

Do e Ees wend anie oed blvede meypmres Yovimoo o

~81~

U S i

6.5 Multi-Ring Signalling

Assuming standafd éL/t iignaiiing is ptdvidéd for.in a multi—ring
.envirohﬁéht, thé fitsi proBle;‘fﬁatﬂatié;; fbllowé_a élgﬁie inward call.
If an ef:br éccufs in vthe/ lowéf hring and‘ i§ ;no£. handled thére
_explicitly, PL/I dictates that the eignal shouwld propagate to the
caller, However, aince .&he caller &a4ina§~highe; ring and has less
privileges, éhaneea are that it could not deal with the actual errvor
since it fcanngca«agtect,‘dg;ahaaeov?ia the lower ring. Thuse, it seems
useless to. allow signals to pass outuutddu.lﬁtsnnt»allovtng;zsignals to
.pass outward apparently cpittgdicgq;uhg;gggs»satdgaarlien,raganding;high
level handling of errors. Since the higher ting knows more about. the
global situation it should have a say in what should occur if an error
is detected.‘ fhis dpﬁatént cohfllﬁi c;ﬁ 'be fésﬁlvéd‘bj the.proper
coding of the lower ting. The léuﬁr%;ingbqhéuld égg-‘aliaﬁ the highér
.ring to handle intgrunl ertotaLlikcy"ﬂVEﬂiﬁxﬁr', rather it should just
.indicate a logical error in the lower ring. Then the higher ring can
simply indicate that the lower ring shqﬁld either retry the operation or
abort. It is situations like this that Parnas may have been alluding to
in' discussing “upward traps"” [Pérnas 72b), but hé does not explicitly
say it. Similérly, Goodenough’s 'PASS" operation seems to pass on the
handling of the original error. This is where I disagree; the fact that

an error occurred should be made known and a higher level should be

~§2-

2H

allowed to decided whether to continue or abort, but should not handle

the original error.

It i1s in situations like this that Multics falls down. On Multics,
if an unhandled error is detected in a lower ring the computation is
aborted. The outer ring is notified of this fact but cannot ask for a
retry or continuation from that point. There is cu;rently no general
mechanism for inner ring programs toﬂspecify ayacheckpoint" and wait for
outer ring intevention to continue. (18) The chéckpéint feature allows
some inner ring history to be preserved so that 1f continuation is
desired, the inner ring need‘not recompute everything up to the point of
the error; it would merely continue from the éheckpoint. The checkpoint
feature, however, should not allow the pértial results to be seen by the
outer ring. Any other request given in between the time of the error
and the continuation or abort should function normally and independently
of the partial reéults held in the inner ring. The checkpoint is merely
a technique to help improve efficiency in cases where the precomputation
involves a sinificant amount of resource usage. However, the checkpoint
feature is not required for the proper operation of the signalling

mechanism.

The second problem in multi-ring signalling has to do with outward
calls. Outward calls is how the command enviromment that exists in an

inner ring would call a user procedure. If the default error handler

(18) Errors during dynamic linking are an exception to this; they are
handled as a special case and are "restartable”.

-83-

" should be protected as a common mechanism, signals have to travel from

the outer ring to the inner ring to activate the default error handler.

But there is.no way to guarantee that the mechanism used to transmit the

condition from the outer ring to the fnner ring is breakproof since it

would involve outer rimg mechanisss: to operate. °

To solve this ptoblem the procedure that does the signalling in the
outer ring can be placed in the inner ring (the protected environment)
it would then be able to signal conditions nornally on the outer ring
stack and then switch over to the 1nner ring utack if no handler were
féund or if there were an error uhile attenpting to signal such as a

misthreaded stack in the outer ring.

A final problem discovered in multiwrtng sighalling has to do with
an outward call followed by ‘am tnwdrd ¢all, " In this case there are two
outstanding invocations . :of the inrer - ‘ring. Now, if thé second
invocation of the inner ring were a sdbprécedure of the first, the
second invocation might depend on condftion hand¥ers 1in its barent
procedure. However, ' in the normal PL#T signalling’ structure first the
outer ring would have a chance of fielding an error in the second

invocation of the 1nner ring before the expected handlers of the parent

procedure in the inner ring would get control (if ever)

Using a debugger and figure 6.l as an exmmple, comsider <A> to be
the main procedure of the debugger and <A’> to be an internal procedure
called by an activated breakpoint.4‘Le£ 'be the pfog;am‘thatvis being

debugged. Now if <A’> signals a condition, would Hdve a chance to

-84=

field it, not allowing <A>, the main debugger program, to properly
handle it. This example 1is somewhat contrived and may not seem
realistic enough to the reader. However, programs are written with
internal procedures and the error handling may be expected to work this
way . Because of the lexical proximity of the internal procedures, the
programmer might not consider the problem discussed. Again the solution
is complete specification of error handlers even in subprocedures, and

el imination of the "dynamic descendence" rule.

-85-

-86-

Chapter Seven

Implementation, Conclusions, and Futufe Research

7.1 Implementation

An implementatioh of some of the 1deas"iﬁ‘ this thesis was
undertaken to show that 1) the user environment can be partitioned in
the manner described, 2) all the interactions Betweén the environments
were identified, and 3) rings are efficient for this éepafation.
Multics was chosen as the system on which to imélement the test
environment because it supports the process model described in chapter
two and suffers from the problems described in chéptéfs one and two.
Furthermore, Multics has rings 1implemented in hardware which would
undoubtedly»help make thg implementation gfficiegt. Finally, Multics

was an easily available system to experiment on.

Chapter four discusses guidelines for support routinev coding that
facilitate their separation and protection. 'Those_'guidelineé are
basically modular design providing functional abstractions and data
hiding. Experience with the test impleméntation'reinforcés the belief
that protection would be simpler for those routines that followed the
guidelines sdggested, and harder for those that did not. In particular,
both the event manager and timer manager (discussed in chapter four)

were designed and coded as functional abstractions. ,Th“s-. by merely

-87-

assigning those procedures to the lower user ring and writing simple
transfer vectors as gates to the,Aen;rzpaings%w_the event and timer

mechanisms were protected.,

On the bther hﬁnd, the design of the I/0 system programs did not
provide for information hiding. This forced I/0 access programs to know
the exact layout of the control Slocka and to manipulate the blocks
directly because of the lack qg‘func;ionglaahgtraggigns. ‘MA{qhough the
ideas 1in the I/0 system are'gppd (qg;gggg.ﬂit@*h}ghjlevel interactions)
[Feiertag and Otgaﬁick 7L]t‘:h§ L@g}ﬁgpqﬁ*}ipé‘ ‘94%; it impossible to
protect any of the features of the‘llq system. Not P“QFEF‘%&S ;he 1/0
system as a whole did not affect the "/'ggnnjeet‘gqp" between the user and
the commaﬁd and .cong:ol gngj;onmen;,Ahgggggr,; 2?9;§EE§°hE9“FHQf the
- terminal was "ownedﬁ_by the inner ‘1&3,335355“9 could not be affected by

user written programs.

With the modules identified, tha protécted environment was
established and a scheme for ﬁéking{Bui%Qfﬁféhiiii;ﬁé‘subséhﬁéht inward
returns was designedAanﬂ‘1mplenen§g§._El@gwgggggigpgggcxdat };his‘/point
was that of the original Multics process; ?1P‘E:ﬁﬁy“?d a command line
and the specified programs were found, executed, and followed by a ready
message. The only diffg;engg»vwas- :hng>th¢_uépec%figgh‘Spmmapd"yas
executing in a ring of less privilege‘;hgg,Fgg*Wgorqglﬂ;qggx ring, which

might cause the program to trip pvgtﬁ}gcprrgct access problems. (19)

(19) Since users were basically not concerned %itﬁwilngs, and programs
only ran in a single ring, access was usually granted only to ring 4

-88-

Incorrect access to the command and control environment programs was

just what was desired, though.

Earlier 1 described how a user gets into the control environment.
Briefly repeating it here, the user presses the break or attention key
on the terminal and is then talking to the control environment.
Examining how this is aectually accomplished identifies a problem on

Multics,

The break is noted by terminal control software in the supervisor.

A process interrupt is generated which causes the computation in the

user’s process to cease, and a condition ''quit" is signalled on the
user’s stack in the PL/I defined manner. (20) Usually, the only handler
for the quit condition 1is a default handler called when no other
handlers have been found, and the bottom of the stack is reached looking
for one. At this point, the listener/command processor modules are
called, essentially entering the command environment. The process
interrupt acts just like an interrupt on other systems in the sense that
control 1is torn away from the executing‘procedure and is transferred
elsewhere. This process interrupt essentially implements the 'stop"
mechanism of the control environment. .Some of the commands the user may
type actually execute in the protected environment, as described

earlier, and perform the other control environment functions.

(the default when setting access is to choose the current ring). Thus,
initially, many access problems were encountered.

(20) See chapter six for details on signalling.

-89-

Because the control environmment is in a different ring now, care
must be exercised to be sure that the quit signal is directed to that
ring. Unfortunately, in the current system, all signals, including
those arising from process interrupts, are signalled on the stack of the
current ring of execution. This meané that when actually executing a
user program, the quit signal would be first signalled on the user
program stack, and then, if directed properly, would continue on the
protected environment stack. Thus, a destroyed user program stack could

prevent returning to the control environment forever!

Timers afe implemented as process interrupts too. Thus an inner
ring wishing to be notified at a certain time, or after a certain amount
of chargeable execution time, would be subject to user stack integrity.
This sort of dependency obviously violates ring structure and the goals

set forward in chapters one and two.

Recently a proposal a been made to solve this problem. The
solution 1is simply to poll inner rings first when a process interrupt

condition is to be signalled. Thus an inner ring has "first crack" at

handling these conditions and would allow user programs to handle them

only if they were of no interest to the inner ring at that time.

The problem of user programs wanting to handle quits comes up again
here. (21) The solution proposed in chapter five 1is wuseable here as

well; the quit key can be multiplexed by some means and the proper

(21) This was discussed in chapter five.

~90-

process interrupt will be generated depending on the "severity" of the

abort that the user wanted,

Error condition handling resulted in a study of error signalling
" mechanisms in detail. The results of the study are presented in chapter
six. The implementatibn " finessed sgome - of the problems discussed in
chapter six with special case code that handled the more common

problems. | .

In1summéry,bthe implementation proved thaf the proposed separation
could be done,‘and furtherﬁore, was relatiQely easy given a certain good
style of coding to deal with. ’Simple'experimentslindicated that the
cost of using thekimplementation ﬁés apprqximately two to three times
that of the original system whenvexechting‘a program that di& nothing
more than return. For more éompliéated prograﬁs, fhe cost was
essentially a fixed overhead (of two or three times the normal program
invocation cost, as in the "nothing" program) wﬁich becomes
insignificant when compared to a PL/I éompilaiion,‘for‘example. The
cost can be expected to decrease if more ;éérs wérév ;ﬁaring thé code,

but the amount is not determinable.

-9]-

7.2 Conclusions

Thie thesis shows how system designers:, interested in a system with
verifiable security properties, - and users of -system; interestéd in
self-protection measures, can both be satisfied by a rather simple

hardware mechanism that provides (at least) three protection

‘environments. Digital Equipment Corporation included three protection
environments in the PDP 11/45 (and extenaions to it), but failed to

provide an ordering for all three° one environnent, "kernel" mode, was
given usual supervisory privileges but the remaining two were 1eft

4

unordered. This thesis discusses why the erdaring of privileges is

needed and useful to facilitate the eatabliahment of a program
development environment. In addition, thia thesis ahows that rings are
indeed useful, and suggests that designere should consider including a

i
ring-like mechanism in new systeus.

-92-

7.3 Afeés for Future Research

Many of the concepts diséussed in this thesis constitute areas
needing more research. Primariiy, the problems §f the "ideal solution"
require research and experience with domain oriented systems to
determine how the various components of the user environment should be
managed. It may turn out that to solve some of the problems pointed out
in chapter two, such as the access required by a linker or debugger,

rings may be needed.

Better high level languages with more intelligent compilers can
help solve some of the problems of the programmer. More often than not
it 1is the problem of representation of information that causes
programmers to invent wunclean techniques 1in their programming. CLU
[Liskov 76] might help in this respect, allowing users to define
extended ‘type objects and procedures to manage them and preventing any
other procedures from manipulaﬁing the internal structure of the

~ extended type objects.

The programmer’s apprentice concept [Hewitt] can be a very valuable
"aid to the programmer, but this seems years off. The concept of front
end processors requires more research to decide the functionality and
level of independence from the host required by the front end to make it

suitable for wuse with differing machines, a coilection of similar

~93-

machines (as in a network), and a combination of these two {ideas. In

the future we might encapsulate the complete command and control
environment, discussed in chapter five, 1in a personal computer that
would determine the resouces required for any command and dynamically

acquire them from a network of resources.

—94—

~Appendix A

Certification and Kernel Simplification

With the growing trend of entrusting computer based systems with
important company inforﬁation and/or finances, as well as computerized
cash flow, it becomes important to many companies to have a guarantee or
proof that the system will not malfunction nor produce erroneous
results, becauge the system is now deéling with real dollars. Thus the
concept of certifying a system came»about.which‘meant that 'someone was
willing to guarantee that a system functions properly under all
circumstances and will not allow unauthorized’modes 7of_ access to the
system . or data. In particular, the system‘has to Se shown to 1) not
release information to unéuthorized personnel; 2) not allow unauthorized
modification of information, and 3)’not ailow one user to deny service
to another. It is hard to prove these types of negative attributes
about a computer system because modern systems are so large and have
many complex transactions going on within them. Many researchers are
wbrking on developing methods that can automatically verify that a
system performs.as specified, but even the specification techniques have
not yet been perfected. One problem with developing specifications is
that all the types of interactions arelnot fully known or wunderstood
especially in a system which has some degree of undecidedness built into
it (i.e. multiple processes and their scheduling). Automatic program

verification techniques are still in their infanecy and furthermore would

-95-

usually require rewriting the entire system in a new language with other
constraints. Thus, the only altesnotiue‘at this time 18 to review the
code of the system manually and understand it fully so that it would

then be possible to decide if the system is "secure".

An approach to ease the:burden om a system certifier, or even make
it possible, is to concentrate those programs dealing with security into

a security kerpel and leave aiil other functions ‘outside,. This approach

enables a certifier to ignore all :hoaa-progmlasw§outeiﬁe - the security
kernel, and thus leaves behind a smaller emount of.code to be examined.

It is obvious that less codehwould,he-eaeierstbfrevieW» and comprehend.

Thus, any programs not dealing with the security of the eystem, as
described by the three points mentioned ahove, should be removed from
the supervisor | In keeping with this aim, Janson and Bratt >have
described how. the dynamic linker and name apace‘manager can be removed
from the Multics supervisor [Janson 74 Bratty;;i | |

In the past, ﬁowever,.there’was another reason-WHy programé, which
were primarily user programs, . should not be in‘ the supervisor. This
reason was based on the : "principle -of - ' least privilege"
(Saltzer and Schroeder 75] when deciding proper: placement of a module.
This principle, stated simply, means.that a: program should only have as '
much access as it needs to do iﬁs job. Otherwise programming errors in
one program may lead to the destruction or usnrelated databases and other'

programs, which obviously is fatal in a supervisor. {22) This guideline

-96~

was follqwed as a simple rule of good design; but now, certification
researchers realize that uneeded access‘makes it harder to certify a
system correct because it must be shown that programs do not take
advantage of extra privileges they might posess in addition to showing
that they do their job correctly. It is ﬁet unusuél, to discover that
good design principles also fit in well with certification work, as seen

in this thesis.

As a result of the certification wofk, it becéme apparent that the
user enviromment would £ill wup with -modﬁles that . were previously
protectéd, and now these programs would be suﬁject to the same
programming errors that harm other user programs. .This loss of function
due ‘to the incfeased fragility of the usef»domatﬂ iskwhat this thesis

is about.

(22) In fact, this is the same problem thét'is being attacked 1in this
thesis, only this time the effects are more serious than a lost user
process.

-97-

BIBLIOGRAPHY

The M.I.T. Laboratory for Computer Science
was formerly known as Project MAC

[ARPANET] Roberts, L. G. and Wessler, B. D., "Computer Network
Development to Achieve Resource Sharing'", Proc. AFIPS SJCC,
vol. 36, 1970, pp. 543-549.

[Bratt 75) Bratt, R. G., "Minimizing the Naming Facilities Requiring
Protection in a Computing Utility", M.I.T. Laboratory for
Computer Science Technical Report 156, Cambridge, Mass.,
September, 1975.

[Broughton] Broughton, J. M., "An Extensible Command Language for the
Multics System", B.S. and M.S. thesis at the Massachusetts
Institute of Technology, Cambridge, Mass., May, 1976.

[CLUnote 43] Snyder, A., "A Proposal for an Error Handling Mechanism",
M.I.T. Laboratory for Computer Science Computation Structures
Group, CLU Design Note #43, Cambridge, Mass., March 1975.

[CLUnote 60] Liskov, B., "Exception Handling", M.I.T. Laboratory for
Computer Science Computation Structures Group, CLU Design Note
#60, Cambridge, Mass., August, 1976.

[CTSS] The Compatible Time-Sharing System: A Programmer’s Guide,
M.I.T. Press, 1966.

[DCS] Rowe, L. A., "The Distributed Computing Operating System",
University of California at Irvine, Department of Computer
Science Technical Report #66, June, 1975.

[Denning 68] Denning, P. J., "The Working Set Model for Program
Behavior", CACM 11, 5 (May 1968), pp. 323-333.

[Dennis 64] Dennis, J. B., "Program Structure in a Multi-Access
Computer", M.I.T. Laboratory for Computer Science Technical
Report 11, Cambridge, Mass., May, 1964,

[Dennis and Van Horn 65] Dennis, J. B., Van Horn, E. C., '"Programming
Semantics for Multiprogrammed Computations", M.I.T. Laboratory
for Computer Science Technical Report 23, Cambridge, Mass.,
December, 1965.

~98-

[Feiertag and Organick 71) Feiertag, R. J. and Organick, E. I., "The
Multics Input/Output System", ACM 3rd Symposium on Operating
System Principles, Palo Alto, California, October, 1971,
pp. 35=41. -

[Goodendugh 75] Goedepough, J. B., "Structured Exception Handling",
Proceedings 2nd ACM Symposium on Principles of Programming
Languages, January 20-22, 1975, | Pp. 204=224.

[Gould 75];Gould, 1. H., "Interaetive,Debdgging System for a
Multiprogrammed Minicomputer”, Interactive Systems, London,
England, September, 1975 (Uxbridge, Middx., England
Online 75), pp. 431-464.

[Graham 68] Graham,nR, M., "Protection in'anklnfbtmation Processing
Utility", CACM 11, 5 (May 1968), pp. 365~369.

[Greenberg 76] Greenberg, B, S., Private. cammnnication

[Hewitt] Hewitt, C., “Towards a Programming Agprentice s IE

o ———

Transactions on Software Engineering SE~1, 1, March, 1975.

(Huber] Huber, A. R., "A Multi-Process Dééign of a Paging System",
M.I.T. Laboratory for Computer Science Technical Report 171,
Cambrldge, Mass., December, 1976. '

[IBMCP) IBM Virtual Machine Facility/370: CMS User’s caide (Release 3),
Interpational Business Machines- Corp Order no:.- GCZO-1819,
February, 1976.

[{Janson 74] Janson, P. A., "Removing the Dynamic Linker From the
Security Kernel of a Computing Utility", M.I.T. Laboratory for
Computer Science Technical Report 132, Cambridge, Mass.,
June, 1974.

[Janson 76) Janson, P. A., "Using Type Extension to Organize Virtual.
Memory Mechanisms", M.I.T. Laboratory for Computer Science
Technical Report 167, Cambridge, Mass., September, 1976.

[Jones 73] Jones, A. K., "Protection in Programmed Systems", Ph.D.
Thesis, Carnegie-Mellon,University. 1973,

[Liskov 72] Liskov, B., "A Design Methodology for Reliable Software
Systems", Proc. AFIPS FJCC 41, 1972, pp. 191-199,

[Liskov 76] Liskov B.,'et él.,'"Abstract Mechaniémsxin CLu", M.I.T.
Laboratory for Computer Science, Gomputatien. Structures Group
Memo #144, Cambridge, Mass., April, 1976.

-99-

[Montgomery 76a] Montgomery, W. A Private Communieation.

[Montgomery 76b] Montgomery, W. A., "A Secure and Flexible Moéel of
Process Initiation for a Computer Utility", M.I.T. Laboratory
for Computer Science Technica& Reporc 1&3, c%mbridgeyxnasa.,‘
December, 1976.

(MPM] Multics Programmer’s Manual - Refetence Ggide. Order No. AG9I,
Rev. 1, mmu‘ﬁ%mcim@sy' a&' ¥, Weltham,- mm.,
December, 1975.- ‘ ‘

[NSW] Crocker, S. D., "The National Softu&re Wbrki; eA\NeW Meﬁhod for
Providing Software Development Tools Using the ARPANET", Proc.
Meeting on 20 Years ef Couputer seience. Piaa, Italy, :
July, 1975. ‘ R

[Noble 69] Noble, J. M., "The Control of Exceptiomal Conditions in PL/1
Object Programs”, Information P 881 ﬁgg,‘ﬂorth Holland
Publishing Co;;‘ﬂiﬁt&%aamgfi9%’}~ ;f’f%*a SR

P

[Organick 72] Organick, E. I.. The Mult cs Sx:t&% An Examination 2£ its
Sttucth’te; H 1.T. Preﬂ’ m*l e" o, i 72- .

[Organick 73] Organick, E. I., Computer E!E!!! ggjagizﬁﬁibn' The
85700136700 Series, Acadenic Press, Nev York, 1973.

[Parnas 72a) Parnas, B. L., "& Teehnique far Se!tw&!e Module -
Specification with Examples", CACM 15, 12, pp: 105351058
(December 1972)

[Parnas 72b] Parnas, D. L», "RésPense to Deteéted %rrﬁrs in Well
Structured Programs", Carhegie~Méllen- Eﬁi%ersity‘Tbcﬁnical
Report, July, 1972b.

[PSN25] Saltzer, J. H., Hastings, T. N. and Baley, R. C.," "Unified
Control of Enabled User Traps, Including Mémory Protection and
Relocation”, M.I.T. Computéy Centet Piégyatming 8taff Note 25,
May 27, 1964.

[PSN26] Hastings, T. N., "Requirements of- thé—F%PBBG"Progtdm"QGM.I.T.
Computer Center Progamming Staff Bote 26, March 9, 1964

[RCTE) Crocker, D. C. and Postel, J. Bx; ﬂbﬁbte Ebntrolled Transmission
and Echoing TELNET Option", Arpanet Protocol Handbook, Rev. 1,
Network Information Center, S afo:&»»aatureh fmsenute, Meflo’
Park, Caliiotnia, Apriz, 1976.- i ,\W
[Redell 74] Redell, D. D., "Naming and Protection in Extendible
Operating Systems", M.I.T. Laboratory for Computer Science
Technical Report 140, Cambridge, Mass., November, 1974.

-100-

[Reed 76a)l Reed, D. P., Private Communication.

[Reed 76b] Reed, D. P., "Process Multiplexing in a Layered Operating
System", M.I.T. Laboratory for Computer Science Technical
Report 164, Cambridge, Mass., June, 1976,

[Saltzer and Schroeder 75] Saltzer, J. H. and Schroeder, M. D., '"The
Protection of Information in Computer Systems", Proceedings of
the IEEE 63, 9 (September 1975), pp. 1278-1308.

[Schroeder 72] Schroeder, M, D. "Cooperation of Mutually Suspicious
Subsystems in a Computer Utility", M.I.T. Laboratory for
Computer Science Technical Report 104, Cambridge, Mass.,
September, 1972.

[Schroeder 75] Schroeder, M. D.. "Engineering a Security Kernel for
Multics", ACM 5th Symposium on Operating System Principles,
Austin, Texas, November, 1975, pp. 25-32.

{Schroeder and Saltzer 72] Schroeder, M. D. and Saltzer, J. H., "A
Hardware Architecture for Implementing Protection Rings'",
CACM 15, 3 (March 1972), pp. 157-170.

[TENEX] Bobrow, D. G., et al., "TENEX, A Paged Time Sharing System for
the PDP-10", CACM 15, 3 (March 1972), pp. 135-143.

(TR123] Saltzer, J. H. ed., "Introduction to Multics", M.I.T. Laboratory
for Computer Science Technical Report 123, Cambridge, Mass.,
February, 1974, ‘

[Yates 62) Yates, J. E., "A Time Sharing System for the PDP-1 Computer",

S.M. Thesis at the Massachusetts Institute of Technology,
Cambridge, Mass., May, 1962.

-101-

This empty page was substituted for a
blank page in the original document.

CS-TR Scanning Project
Document Control Form Date: /17 198

Report# b<5-TR-11S

Each of the following should be identified by a checkmark:
Originating Department:

O Artificial Intellegence Laboratory (Al)
Laboratory for Computer Science (LCS)

Document Type:

)XL Technical Report (TR) [Technical Memo (TM)
O other:

Document Information Number of pages: _[03.(108-imn¢xs)

“ Notto include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
O Single-sided or O Single-sided or
X Double-sided X Double-sided
Print type:
Typewriter [offsetPress [] Laser Print
[(] ‘nkietPrinter [] Unknown [J other

Check each if included with document:

0 pob Form O Funding Agent Form %5 Cover Page
K Spine O Printers Notes [0 Photo negatives
O oOther:
Page Data:

Blank Pageswy page umbes: -233;@4‘3: J élf AGK fotlowsvG 10\

Photographs/Tonal Material wy page numben:

Other (o description/page number).
Description : Page Number:

Imace _mpp![t-1od D yvilsoTIE PRGE d-10),© WD BLavk

//03 [0¥ memzﬁ_cezm,ﬁ_._,mm

Scanning Agent Signoff:
Date Received: /1.7 115 Date Scanned: A 1 /771 Date Returned: B~/) / QS

Scanning Agent Signature:_Mmﬁﬂ%n&;_ e oot DSALCS Docmart ot Form ctform

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

