
LABORATORY FOR ~ ~~~~i~~~~
COMPUTER SCIENCE ~ I_ TECHNOLOGY

(formerly Project MAC)

MIT/LCS/TR-177

A LAYERED VIRTUAL MEMORY MANAGER

If 11~
Andrew H. Mason

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

This blank page was inserted to presenie pagination.

MIT/LCS/TR-177

A LAYERED VIRTUAL MEMORY MANAGER

ANDREW HALSTEAD MASON

May 1977

This research was supported in part by Honeywell Information Systems Inc., and
in part by the United States Air Force Information Systems Technology Applica­
tions Office (ISTAO) and the Advanced Research Projects Agency (ARPA) of the
Department of Defense of the United States under ARPA Order No. 2641, which
was monitored by ISTAO under Contract No. Fl9628-74-C-Ol93.

CAMRRIDGE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE
(Formerly Project MAC)

MASSACHUSETTS 02139

This empty page was substih1ted for a
blank page in the original document.

A LAYERED VIRTUAL ~EKOllY ,MAN,AGER*

by

ANO&EW · PALSTEAD .MASON

AjS'IRACT

Page 3

This thesis presents a specification for the Multics virtual memory man­
ager. The virtu-.1 memory uaag~r ill tha,t,,p..,t ;qf,,tl\"- Q.Ptt+ating JJYStem whic,h
coordinates the usage of physical memory and which manages the bindings
between logical tJe.taGry al)4 phy•i~l memOJ:J•. ,J.~ ~he c.pe :Qf Multics, pqysical
memory is composed of fixed-length blocks called frames and logical memory
consists of segments, rep1:e11•~ti.n1 ~ts of l~•4Ui. '. .. ~. ·"' ..

The original specification is out of date and obsolete because it
describes an overly complicatecks~ruct,µre ~nd ~$Jlpre~ trhe.J.ssue of resource
control. The specification described here comi)atibly updates the function­
ality of the Multics virtual ~eiaory_ man4& .. ~•,, s~mplif~e'9. the requisite struc-
ture, and addresses resource control problems. · ·

The specification is in 1:he form of a ,.pdel •. WJ~na. the methodologies of
type extension and layers of abstraction. These methodologies provide the
tools to develop a precise a(.>del structure, w.hi.ch.i• c1Pt9le of handH~g the
intricacies of resource control. nie end result is organizational simplicity~
certifiability, and comprehexud.bqity.

THESIS SUPERVISOR: David D. Clark

TITLE: Research Associate in the Department of Electrical Engineering and
Computer Science

*This report is based upon a thesis of the same title submitted to the Depart­
ment of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, on May 12, 1977 in partial fulfillment of the requirements for
the degrees of Master of Science and Electrical Engineer.

Page 4 Acknowledgments

My greatest indebtadaess is >t:l) Dr. ·~1f.!b:f~ ·tor the insight and help

he gave me throughout the iierk Oil ~i• theai.• ad fOT the many nours he spent

reading my drafts.

Many thanks go to Prof. Jeroae Saltzer, for the suggestions and ideas

that he provided me.

I want to especially thank Prof. ~.'Mlell fot: starting me on this

vork and for sharing many diSCU9Bions with ae about the mate-rial.
·. '.·' ,.,. . • . ~-.~· ,.. ; ~ -'·' ' .,_-:::~, f: :·;~! ·<

trernle ·ci~enherg~ Vf'•..,.11 ·ltt!oraa6". s11e·•1 ™~;,,.,aa.·:u:tct Bt.att,
·· .·~ · ,- ·,,: ,,•j'. '' -,":· ·~~ ; .fr:'-•} 1.·-11: ~:._!. ·· ,...3,'J '.• .- -~P.~!·i~. ·;;~· :·J..,' ·~;·: • .

form~tty 'of H6ney9ell ll'lfotiuition. st~te1'i':tue.~ 0Wni••ry~lfJf.UI by 'giVing •• · ·
': ;' ' ' ., .. ',~v :.~·· '"" _,. ,· .. ~ t l .: ~;: .·.- :·; 'l ~ : .. J ·--:~~-,_:. ·. •:·~·. "'I . ,·. · ,

advice on some of th• tec~1.cal~upe~ts 1 6f.!Wdtlc:a 'till,~y ·mrlt~ ,. ·.
: -- -~.:-~~.: '-: '; ·._, •. ~·;:.-L ·~- .!1·.1 :-; ··;~;~-~:-· ::1 '.1:: .• 7 •• ··:,_r ~

I also want us· thn~'~ihi '•tt•r~ of ·che 'Ci:iiiju.ki"'sta~Mii Maearch Divl-
~,,; · ·· ·;~);_: , :: i-·· 1 t· ,.,. ·-1·1J ; :.,J·i ~ ~t~"·1L ·. · .t ·. ,

sion of the M. t.t. Ubon..tcrt fo1f 't.o.pltteti\R~tf'fot-' ~1'eir ~p61.'t, aclviee. •
... :• ~ '."~ 1 "• ! r ('-r -3 (;:(.~:' . _. -· ;_·_ -; C '~" :.;,_, . ~·I. -'- ! \ ~

and c~~nts_on my ~rk''.~•L~' EaJ,!~~·' ta_~~~~~~.~ !"il l-~n- and' J)Oul
Hunt,yiere most helpful ilfi~~-~n• &ll tif!.' ~d .. bttf llf!•-t•nt i..,.eu of ay

~ , . . :. l ~:. - ' · ; I~ ~ ~ r°' ,_-- ~.· \ .! ""t ·3 ;<·, ;: 1 ;"'! , 1 ~ '-'., " - "- • ' ~ ,

expertise.

This research .-a •upported in part by Honeywell taformation Systems

Inc., and in part by the Uaited States Air Poree lnfol'Blation Systems Tech-
:.. ::.: > . "' I'~ ~~(~ f CL ..

nology Applications Office (ISTAO) and the Advanced le11e&rch Projects Agency
. , ~ ""' .f ' '· .- 7 • ~ I • ""-,, ! } ' , / ,,,., p /~-. ; ~ '.:. '_l ;,; " · L

(ARPA) of the Department of Defense of the United States W\d•-~-''Ol"4•r No.

2641, which was monitored by ISTAO under CoutTact No. 119628-74-C-Ol 93.

,·

- ' ~·!' ,- ,,

Table of Contents

ABSTRACT •

ACKNOWLEDGMENTS

TABLE OF CONTENTS

LIST OF FIGURES

Chapter One Introduction

1. 1 The Problem

1.2 Method of Solution •

1.3 Related Research •

1.4 Plan of the Thesis •

TABLE .Q!. CONTENTS

•.

Chapter Two The Multics Virtual Memory Manager

2.1 The Multics File System in Brief •

. . .

.. .

•.

•

2.2 Some Details on Segmentation and Paging in Multics •

2.3 Problems with the Current Virtual Memory Manager •

2.3.1 Page Faults on the FSDCT •

2.3.2 A Peek at the Quota Problem •

2.3.3 Conclusion

2.4 Summary

Chapter Three A Three Layer Virtual MemQry Manager

3.1 Modularization •

3.2 Modularizing the Virtual Memory Manager

... .. .

Page 5

3

4

5

8

9

ll

13

15

17

19

20

25

36

37

38

39

41

43

44

48

Page 6

3.3 Ordering the Moclules . .. • • •

3.4 Objects and Type- Manag~rs .. • • •

3.5 Summary

Chapter Four The Pagin:g Manager . • • • .. •

4.1 PAGE CONTAINER Attributes

4.2 PAGE CONTAINER. Operations • •

4.3 De pendenc: ies in the Pagin.g Manager • . . •

4.4 Discussion . fl . ..

4.5 Extensions to tlM Paging Manager
4.6 Further Thought• •• •.

4.7 Summary " . •

Chapter Five Resource Com:rol •

5. l QUOTA CELLa •

5 .1.1 QUOTA c.&U. A'ttributes •

5.1.2 QUOTA Cn.L e,H&t.tou •

5.2 The PAG!MEn' *-•ft .

5.2. l P~ Attributes •

5.2.2 PAGEMlllT Operations •

. . .
. . . ~ .

.. .
~

• • •

.. . •

.
.. .

5.2.3 I>epe11'dettcies in the P.AGEMEtft' Maftager

Table of Contents

52

56

61

• &3

64

66

68

69

72

. 74

75

• • • 17

• 79

.. . . 19

• 80

. . 84

86

86

88

94

95 5. 3 How PAGEMERTs and QUOTA CELLS Fit Toge'the't •

5. 4 Re·source Control ad PAGE' 'E!Obfr'AOtll.& ~ .. •

5.5 Summary

.. '... " . 9{)

99

Table of Contents

Chapter Six Segment Support ••

6.1 Active Segments

6.1.1 Information in the AST

6.1.2 Splitting Up the AST

6.1.3 Active Segments and PAGEMENTs •

6.2 Functions of Segment Support

6.3 Summary

Chapter Seven Conclusion

7.1 Results

7.2 Differences between Multics and the Model

7.2.1 Visible Functional Differences

7.2.3 Invisible Structural Differences

7.2.3 Philosophical Differences •

7.3 Resource Control • .

7.4 Directions for Future Research and Development

Page 7

101

102

• • 103

104

106

107

110

• 111

112

• 114

. . 114

• 116

118

119

• 122

APPENDIX .•••...•.••.••.•••.•••••..•.••.•• 125

REFERENCES .•••...••.•••.••..•.•••.••.•.••• 129

Page 8 List of Figures

LIST OF FIGURES

Figure Il-1 A Sample Directory Tree 21

Figure Il-2 Quota Cells in the Hierarchy 23

Figure Il-3 The Hardware Addressing Mechanism 28

Figure Il-4 Structure of the Multics Virtual Memory Manager .';Q

Figure Ill-1 A Possible Model Structure 53

Figure III-2 Structure of the Model 55

Figure V-1 ~1ov ing Quota with Segments 83

Figure VII-1 Final Structure of the Model 113

Chapter I Page 9

Chapter One

Introduction

As computer systems find more and more applications, the need grows to

guarantee certain properties about them. For example, some worth-while prop­

erties concern the security of information stored in a computer and the integ­

rity of the names used to reference the information. Attempts to prove the

validity of such properties demonstrate the importance of the operating sys­

tem, because all of the system software relies on the operating system.

lberefore, there is a need to certify an operating system, meaning to guaran­

tee that the operating system matches its specifications. Intuitively, it

should be clear that given two systems supposedly having the same function­

ality, it is easier to certify the one which is simpler. Thus, as a prelude

to the certification of a system, the system should be simplified as much as

possible. This thesis addresses the question of the simplification of one

part of an operating system.

There are few tests or criteria for determining the degree of simplicity

of an operating system. About the best test is to assign a competent person

to study the code of some subsystem for a few hours. The system is too com.­

plex if the person cannot understand how some subsystem works after such

study. This test provides a threshold over which a system is too complex, but

provides no method for engineering a system below the threshold. What, then,

is the nature of complexity? The key to unraveling complexity is structure

Page 10 Chapter I

[Simon, 1962; Liskov, 1972b]. The better a system is structured, the less

complex it is.

Chapter I Page 11

1.1 The Problem

The Multics Security Kernel Design Project, of which this thesis is a

part, is an effort to redesign the Multics supervisor. The goals of the proj­

ect are to simplify the system to increase its security and reliability. Some

of the work included in the project has been a study of virtual memory mecha­

nisms by Philippe Janson [1976] and a redesign of traffic control by David

Reed [1976]. This thesis draws heavily from their work.

The goal of this thesis is a specification of virtual memory management

for the Multics system. A specification for a system is a description of its

operating characteristics. Although a specification can take many forms, a

complete specification dictates the behavior of the system in every situation.

A specification is needed for the Multics virtual memory manager because none

exists which accurately reflects the current functionality. When Multics was

first designed, much thought was given to the specification of virtual memory.

One of the hard problems was the design of a subsystem to control and account

for the usage of the virtual memory. This subsystem was called resource

control. No solution for resource control was found at that time, so its

specification was omitted. Later, a resource control mechanism was invented.

Since the system was then being implemented, resource control was simply added

on to the existing virtual memory manager without updating the specifications.

The result was an example of functional entanglement, meaning that the func­

tions of virtual memory management were poorly distributed among the modules

of the virtual memory manager. The virtual memory manager became difficult to

understand, both because the modules interacted in complex ways, and because

Page 12 Chapter I

these ways were not refllftttt!'d b-y tnair specifieations.. This &ituatidn has

persisted to· this day. 111\'e:· p~-oblEfttl is that re$'0Urcnt' control represents a com­

pletely different dimetMlltMI~ e"f virtual meilo'l''}" llltll\ageacalt:. It cannot be added

il1' a- simple way;. co· ~ el1ea¥11--.er at'idi ~ o.f &t.ructur·e, it must

be incorporated into the' ~git fr.om· the sta'rt.

In essence, the p.r~.lam atcacke.d b-y· th:f.s· tn.ri• haa two- fiacets. The

first,. and mo'I'e i11fport:__,""' fsi that\. the specff:fi«aitdowi <Jf the virtual memory

manager is irtcomple'te.. U tfows: Jl.b't addre'B'S- a. ttt·ew, &t ite.\9euTce control. The

second; is that the ia~~fcm does ha\'tdilei it.e.-o~ e"on-t.rol~ but d.oe.s so in

a· confusing manner ..

Chapter I Page 13

1.2 Method of Solution

The specification proposed here will be pre,~ted in.terms of the

extended type methodology. Some (Jf t~ r.elat4d r~_i;c» ,~11 be men tione¢ tp

section 1.3. As suggested by the intrpductioJL, Ql'le o.~·~-~· important features

of the specification is it$ structw~. It isd.A,.re;d ,. J.n the sense used by

Dijkstra [1968a], and is composed of type managers •. W.. u,se this structui-e tor

two reasons. First, a layered arrangement of extended type managers is quite

precise. This avoids any ambiguity in the specification. Second, a layered

structure has important implications for system certification. Rather than

forcing a proof for the entire system at one time, each layer can be proved

independently. The entire system is proved by a kind of finite induction as

follows: Suppose the system is constructed from.!!. layers. '!be first and low­

est layer is a subset of the hardware. Proving the lowest layer forms the

basis of the induction. Layer .! is proved by assuming the correctness of

layer i-1 and then matching the specification of layer ! with its implementa­

tion. This process is repeated for each layer.

Another implication is that the layers do not have to be proved in any

particular order. The proof of layer.! does not require the correctness of

layer i-1, only the assumption of correctness. Of course, the entire system

is not proved until all layers have been proved.

These implications can be utilized because layering requires strong

assumptions about the dependencies among the layers. In effect, layer .!. may

directly depend only on layer !-1. It may not use or depend in any way on any

higher layer or on any layer lower than i-1. In chapter three, we shall

Page 14 Chapter I

define dependency precisely and explore some of the implications of the defi­

nition.

By using type managers, the specification is a model for the virtual

memory manager. Although a specification need only describe the external

characteristics of the system, the use of type managers also abstracts the

internal implementation. By so doing, comparison of the specification to the

implementation is made easier.

Chapter I. Page 15

1.3 Related Research

The research reported here i~ based on work in sev~r'1, different areas of

Computer Science. These include: JJiodular~ty an~ ~''erin_g, type extension,

and program verification, as they apply to 9perat~~g sy1tt,7~s design.

The concept of layers of abs.t.raction ori,&~4t~d wj,th · D~j kstra and the

design of the "THE" system U968a]. Sub&~q11@l1t syflt@~f :which ex;pand upon

these id•as include the CAL systt;1'1, l~ampso~ and Stu~ais,)976; Sturgis, 1976]

and the Venus system {Liskov. 1972al •. J.>arnf!S [1972-i: 1972b] has studied gen­

eral principles of modularity for systems~ , ~c~utl1,., q~ ~ombin~d. his work

with the layering approach to describe the design of a family of systems

[Parnas, 1976].

Type extension began in the design of languages such as SIMULA [Dahl,

Dijkstra, and Hoare, 1972] and ALGOL-68. Liskov also used it extensively in

CLU [Liskov et al., 1977]. Janson [1976] extended these ideas to be more

flexible in operating systems applications. Type extension was used in sys­

tems design for HYDRA [Wulf et al., 1974]. Robinson and others at SRI pro­

duced a specification for a layered, object-based system [Robinson et al.,

1975]. These are all software efforts; as yet, no one has designed objects

into the hard"'8re.

Program verification also started in the field of languages. Naur

[1966], Floyd [1967], and Hoare [1969] defined correct operation of a program

in terms of assertions about the program and were able to prove assertions

about small programs.

Page 16 Chapter I

Currently, the verif,tcation of operating system• is receiving •uch atten­

tion. A methodology s~ing proofs o.f cMrectnes.a is being developed at

SRI [Robinson et al., 19'.75']. At M.LT., the &1iiput'eT .System• 'Researeh Divi­

sion of ·the Laboratory ·for '~er Sc'ience 'j;j. io ~ 'ft-na.1 ':stages O'f a design

project to facilitate hand ,jerification of tM Multtcs system by identifying

those mechanisms required to guarantee the s~•''e security [Schroeder,

1975]. This project irt•olv~s 'the rest'ructuring af -tbe Strpet./isor. As part of

the project, Janson {1976] add thtnt [197'6} iitiad:l'ed ~~rladves to the virtual

memory implementation, and Httbu {1976] used ·ttepel'~ iptocesses to simplify

the structure of the d:eeancl p4gift1 mt>dule.,. ·

Chapter I Page 17

1.4 Plan of the Thesis

Chapter two presents an overview of the Multics storage system and

explores some of its details. Although understanding of this chapter may

require careful reading, two rewards can be offered. The first is that sev­

eral of the problems inherent in the organization of the current system will

be immediately illustrated. The second is that a sufficient technical back­

ground will be accumulated to understand the motivation for several features

of the specification. The Multics virtual memory manager is complex. This is

why a specification is needed.

In chapter three, we develop the intellectual underpinnings of the model.

We start with several conjectures about how to modularize a given system.

These are integrated and applied to the Multics virtual memory manager. Next,

the notion of layering is examined and found applicable. The result is a vir­

tual memory manager having three layers. Finally, we give a brief introduc­

tion to type managers and the notation (essentially PL/I subroutine calls) to

be used in succeeding chapters. The placement of material in chapter three is

somewhat anomalous. This material was in fact written after the model was

developed, and evolved from some introspection. We decided to place it in

chapter three to give insight into the construction of the model before we

presented the details.

Chapters four, five, and six develop the model itself, from the bottom

upwards. Chapters four and five give precise formulations, in our notation,

of the lower two layers of the model. Chapter six discusses the top layer in

Page 18 Ch;1pter l

general terms. We could not formalize the material in chapter six beca11se of

interactions with other parts of the system.

Chapter seven presents a summary of the thesis. General features of the

~odel arc recapped. Next, we explore how the model, as presented, differs

fron the current ~ultics system. Finally, unsolved problems are discussed,

along with suggestions for further research. The Appendix following chapter

seven gives a brief summary of the model.

Chapter II Page 19

Chapter Two

The Multics Virtual Memory Manager

In this chapter, the Multics virtual memory manager is examined. The

chapter is divided into three sections. The first describes the environment

and context in which the Multics virtual memory manager exists. The second

explains some of the more technical details in the implementation of the

~tultics virtual memory manager. A reader who is familiar with Multics may

skip these sections without loss of continuity. The third section examines

some of the problems in the Multics virtual memory manager which will be

addressed by succeeding chapters.

Page 20 Chapter II

2.1 The Multics File System in Brief

Before examining the details of the Multics virtual memory manager, some

higher level context is necessary. Multics supports a file system which is

organized as a tree hierarchy of directories and segments. A representative

sample tree is shown in figure II-1. In the f;l.gure, circles represent direc­

tories, rectangles stand for segments, and arrows illustrate the hierarchical

nature of the tree. The top-moet directory is named the ll-OOT because it is

the root node of the cii['ectory tree. The directoriee U·SERS and LIBRARIES are

inunediately inferior to the ROOT. By convention, 1-ediate inferfors are

called ~ and superiors are called paret'lte. -Ot:her familial relation names

are used to describe otheC" relationships (e.g. brother). The ROOT is the only

directory or segment in the hierarchy that does not have a parent. Thus, the

parent relation imtmses a partial ordering on all elements of the hierarchy,

and the ROOT is the supremum of the tree. For more detail, the interested

reader may want to examine SOIM of the Multics U.t.erature [Organick, 1972;

Bensoussan, Clingen, and Daley, 1972].

Directories are simply catalogues. They may coo ta in segm:ent.s, links, or

other directories. Segments hold information, which can typically be pro­

grams, data, or text. A link is a named pointer t-o another element in the

file system tree. Thus, directory Jones ·could contain a link to the segment

FORTRAN which is in the directory COMPILERS.

Segments use storage in 1024-word blocks called pag.es. Associated with

each segment is the number of pages that it uses. This is known as the

segment's length. Users are charged for the storage used by their segments,

--- --~- ----- -----

Chapter II Page 21

LIBRARIES

profile DATA FORTRAN lisp TECO

Figure II-1 A Sample Directory Tree

where the charge for a segment is supposed to reflect the amount of secondary

memory allocated to the segment over some period of time. However, not all

pages of a segment require secondary memory. A very common occurrence is for

all 1024 words of a page to hold the value zero. In this case, the page is

called a~~· By not allocating space for zero pages on secondary

Page 22 Chapter II

memory, the space can be made available for other, non-zero pages. This

policy imposes some restrictions on the operating system which will be dis­

cussed later. For the purposes of this section, the p~licy implies that asso­

ciated with each segment must also be kept the number of its pages which are

non-zero, or, equivalently, the number of 1024-word blocks of secondary memory

which are actually allocated to the segment. This number is called frames

used.

Storage charges are accumulated in a set of designated directories which

are called quota directories. Each quota directory holds a quota ~ for

this purpose. Note that not all directories have qnota cells. However, a

directory may have a quota cell only if its immediate parent has one (except,

of course, the ROOT, which does have a quota cell). Thus, quota directories

are also organized into a hierarchy, which is a connected subset of the direc­

tory hierarchy. To distinguish between them, the hieraTchy of all segments,

directories, and links is called the directol'y hieliarchy, and the hierarchy of

quota directories is called the quota cell hierarchy~

Within a quota cell is kept the sum of the frames used of all segments

charged to the quota cell. Segments in the file system are charged to the

most immediate parent directory which has a quota cell. In figure II-2, the

segments below directory B are charged to the quota cell in directory B, but

the segments below directory C are charged to the quota cell in directory A

because C has no quota cell. Note that the quota cell is considered a part of

a direytory, not inferior to it. Since segments can grow and shrink dynami­

cally, the total number of frames used in the quota cell must be integrated

Chapter II Page 23

Figure II-2 Quota Cells in the Hierarchy

over the accounting period (typically a month) to calculate the proper amount

of storage charged against the quota cell during the period.

To limit the charges for some quota cell, each cell also has a number,

called quota, which is the maximum value that frames used may attain. There­

fore, whenever a segment is grown, the quota and frames used of the appropri­

ate quota cell must be checked and updated to see if more storage may be allo­

cated for the segment. A quota cell is consistent if the values of frames

used and quota are non-negative integers such that O ~ frames used~ quota.

The quota cell hierarchy can be modified in two ways: quota cells can be

created or deleted and quota can be moved from one quota cell to another.

Page 24 Chapter II

These operations can be performed by any user having suffic [ent authority,

meaning any user hJving modify permission to the affected d~rectorics. ~n

modification 1:iay be per formed which would leave any quot:1 cell inconsisterrt.

Chapter II Page 25

2.2 Some Details on Segmentation and Paging in Multics

The basic unit of virtual memory on Multics is the segment. A segment is

a variable-length array of words. It has a length, a maximum length, (1) and

uses some number of secondary memory frames (see the next paragraph). To ref-

erence a word of memory, a two-component address must be specified. The first

is the segment number, which uniquely identifies a segment within a process.

The second component is the offset. This indicates the proper word within the

segment.

To simplify the management of physical memory, segments are broken up

into fixed-length pages. At the same time, the physical storage devices (e.g.

disk packs) are partitioned into frames, which are the same size as a page.

The supervisor moves the pages of the various segments among the frames as

required. For reliability reasons, all of the pages of a segment are perma-

nently stored on the same physical device (physical volume). A Volume Table

Of Contents (VTOC) is maintained on each physical volume. It contains one

entry (VTOCE) for each segment stored on the device. Physical volumes are

grouped into logical volumes. A logical volume may contain one or more physi-

cal volumes. Since a user may own a disk pack, the logical volume concept

provides a way to distinguish among system storage and storage owned by dif-

ferent users.

(1) The maximum length of a segment
At all times, the maximum length of
system-defined maximum length and gr
length.

an be changed by calling the supervisor.
segment must be less than or equal to a

ater than or equal to the segment's

Page 26 Chapter II

The operating system remembers the physical location of every page by

keeping a page descriptor, or page table word (PTW), for each. The PTW's of

the pages of a segment are grouped together, in sequence, to form a~

table. The page table, along with other information about a segment, is per­

manently stored in the segment's VTOCE. In order for the hardware to access a

word, the segment containing the word must be active. When a segment is

active, its page table, and some of the other information in its VTOCE, is

kept in primary memory in a data base called the Active Segment Table (AST).

The concept of the home of a page appears throughout the Multics supervi­

sor. It refers to that secondary memory frame on the physical volume in which

the page is permanently stored. When a segment is made inactive (deacti­

vated), all pages of the segment are returned to their homes.

Associated with each process is a special segment called a descriptor

segment. 1bis segment contains an array, indexed by segment number, of

Segment Descriptor Words (snw•s). A segment is ass18ned an SDW by the address

space manager (see below). If a segment is active and the process has refer­

enced the segment since its activation, its SDW contains the address in pri­

mary memory of the segment's page table and the access privileges which that

process may exercise on the segment. Such an SOW is said to be connected. If

the segment is not active or the process has not referenced it since activa­

tion, a flag in the SDW is set. If the flag is set, it means that the SDW

must be connected before any reference to the segment may be completed. Note

that a segment may have only one page table but an SOW in each of several

processes.

Chapter II Page 27

The descriptor segment also has a page .~!lbl~.,.and, when. the process is

running, its address is kept in a special processor register call.ed the

Descrietor Base Register (DBR) • A pi.:~_cess· can b.e executing only if the page
~· ~

table of its descriptor segment is in~.primar)t Dl8'ory (i.e. the descriptor seg-

ment must be active). In fact, all deac:r~.o.i:, .• gments are always active.

The hardware add res Sing mechaniJml. (see U,g~re II-3) works as follows: It

is supplied with a two-component address, .. ®h .445 <i,j>. The DBR is used to

find the descriptor segment page table. Next, the value of i is divided by

the number of SDW's on a page to determine which page of the descriptor seg-

ment holds the SDW of t~ segment. The hardware .. .then reads the SOW to locate

the page table of the segment. If the segment is not con~cted, a flag has

been set in the SOW. When the flag is sets a pfocesso.r .. ex~~tion, called a
'

segm.ent fault, occurs. The fault causes a trap iqto the supervisor 90 that

the segment can be activated, if necessary, and eonn~ted.

When the page table has been found, j is divided by tb~. sizf:! of. a. page in

words. The quotient is used to index into the' page table to find the address

of the proper page. Ik the page is not in· primary $mory, a flag in the PTW

has been set, which catises a different processor ex&eption, called a~

fault. The fault invokes the supervisor to read in the page. Finally, the

page is in primary memory and the word .is referencetl.

For completeness, it should be mentioned that ,the pages of a descriptor

segment need not always reside in primary mesao.ry •. The page table of a

Page 28

DBR

resolving a

reference to

<i,j>

P1W's

segment i
page tab·Ie

ETW's

descriptor
segment
page table

segment J:.

segment i
page 2

page 0

SDW i

descriptor
se·gment
page 1

' ---

word l

Chapter II

descriptor
segment
page 0

---,
'
j

segment i
page 1

Figure 11-3 The Hardware Addressing Mechanism

Chapter II Page 29

descriptor segment is like any other page table; if a page of the descriptor

segment is not in primary memory, the flag has been set in the PTW and a ref­

erence to the page will cause a page fault.

The supervisor module which resolves page faults is ~ control. In

response to a page fault, page control copies pages into primary memory. In

addition to primary and secondary memory, page control may use the paging

device. The paging device serves as an intermediate holding station for

pages. It is typically smaller and faster than secondary memory but larger

and slower than primary memory. Primary memory and the paging device have a

very limited amount of space for pages. As part of the task of bringing pages

into primary memory, page control also moves pages from primary memory to the

paging device and from the paging device to secondary memory. The part of

page control which performs page removal is called the ~ removal algorithm.

To avoid conflict among different instances of page control, each instance

must lock a mutual exclusion lock called the glob~l ~ table lock.

It should be stressed that a page is a logical unit of 1024 words of

information, whereas a frame or home is a contiguous physical unit of storage.

At any one time, a page may be stored in several frames or none, if the page

is a zero page. Frames and homes may be allocated or freed, modifying the

amount of storage which is used by the segment, but not modifying the informa­

tion content of the segment.

Conceptually, if no value has been written onto a page, the page is

defined to contain only zeroes. Therefore, a process may read from a page

even if no process has ever written into it. This feature creates a problem

Page 30 Chapter II

for the management of segments, namely, what should be done with all of those

zero pages? If they are physically stored, valuable space in secondary memory

may be wasted. If they are not, they will have to be created at the proper

time. The supervisor chooses the latter solution. A special null value is

placed in the PTW for the page and the page fault flag is set. When in this

state, a page is called a null~· If a page fault occurs on a null page,

the fault is called a quota ..l?!.a,! fault, and page control will construct a

frame containing zeroes in primary memory, change .the segment length if neces­

sary, and modify the PTW to indicate the location of the frame of zeroes. For

reliability, page control will also allocate a secondary memory frame from the

correct physical volume to be the home for the page. This sequence of opera­

tions is called ~ creation. Note that the creation of a page does not

cause the page to spring into existence; it causes the logical page to have a

physical representation.

Conversely, before a page is copied back to secondary memory, page con­

trol examines it to see if it ia a zero page. If so. page control will delete

the zero page by freeing the secondary memory frame,. changing the segment

length if necessary, and lftarking the PTW as null. Again, page deletion does

not terminate the exiatence of the page; it eliminates the physical represen­

tation of the page. Zero and null pages can also occur if some process writes

into a page, making the page contain only zeroes. Note that either a read or

a write operation may cause the length of a segment to change.

Secondary memory framea are allocated and freed using the data base known

as the File System Device Control Table (FSDCT). This data base contains one

entry for each frame of each physical volume configured into the system. The

Chapter II Page 31

entry consists of one bit, indicating whether the corresponding frame is allo-

cated or freed.

The supervisor module which handles segment faults is segment control.

It is responsible for activating and connecting segments on demand and con-

trols the AST data base. Because there is a limited amount of space in the

AST for page tables, activating one segment usually requires the deactivation

of another. Segment control also handles deactivations. To conserve space in

the "AST, the page tables of active segments are grouped according to their

size. The size of a page table in the AST is determined by finding the small-

est power of four that is greater than or equal to the length of the segment.

(1) An active segment can grow whenever page control adds zero pages to it.

If an active segment grows too much, it needs a larger page table. The size

of the page table is stored in the SOW. If an attempt is made to reference a

page for which there is no PTW, the hardware will detect this and cause a

bound fault. Segment control resolves a bound fault by allocating a larger

page table.

Naturally, some segments must remain permanently in primary memory. The

most obvious example is the segment which holds page control itself. Since

page control directs paging, if it were not in primary memory, it could not be

executed, and paging would cease. Therefore, segments such as page control

and the AST are implemented from special unpaged segments. An unpaged segment

(1) In a VTOCE, a full-length version of the page table is stored. A shorter
page table can be placed in the AST only if the last pages of the segment are
null.

Page 32 Chapter 11

has no page table. This fact is indicated by the state of a flag in the SOW,

and the processor, upon finding such a segment, knows not to look for a page

table. Instead, the address in the SDW is the absolute address, in primary

memory, of the first word in the segment.

Similarly, some paged segments, such as segment control, should not be

deactivated. If segment control were deactivated, there would be no execut­

able program that could activate segments. Consequently, segment control is

an example of an always active segm.ent. This is shown by the state of a hold

flag in the AST entry (ASTE) for segment control. Segment control knows that

if the hold flag is set, the segment must not be deactivated.

The~ system is responsible for the permanent storage of segments. At

this level, segments are the logical nodes of a directory tree. One of the

purposes of the file system is to provide a convenient, user-oriented, global

name space for segments. In addition, the file system maintains segment

attributes. Some example attributes are the segment's access control list

(ACL), its maximum length, the date and time it was last modified, the identi­

fier of the physical volume on which it is stored, and the address of its

VTOCE. The file system provides the ability to create or delete segments and

list or modify their attributes. Directories are special extended-type

objects, implemented by segments, which may be examined or modified only

through calls to the supervisor.

The file system must also maintain the quota cell hierarchy. The func­

tion of the quota mechanism includes the ability to move quota between a quota

cell and one of its immediate inferiors and the ability to create and delete

Chapter II Page 33

quota cells. When these operations occur, the file system must make the

appropriate modifications to the quota cell tree.

A segment, identified by its file system name, can be assigned a segment

number through a call to the address space manager. When a segment is associ­

ated with a segment number, it is said to be known to the process. The

address space manager also provides facilities to terminate or revoke the seg­

ment number-file system name binding.

The quota mechanism regulates the amount of storage allocated to the sub­

tree under a given directory. One unit of quota corresponds to the ability to

use one secondary memory frame. Every time a zero page is created from a null

page, page control must check the appropriate quota cell, which is part of a

parent directory's VTOCE and ASTE. The checking is expedited by requiring all

parent directories of an active segment to be active. In that way, the quota

cell is guaranteed to be available in primary memory if needed. Unfortu­

nately, this also ties up primary memory space for quota cells which are

rarely needed. Each ASTE contains a pointer to the ASTE of the segment's par­

ent directory. Page control finds the proper quota cell by stepping through

the chain of parent directories until a directory is found which contains a

quota cell. By definition, this is the quota cell for which page control is

searching. Intermediate directories, those between a segment and the direc­

tory containing the quota cell against which the segment is charged, do not

have quota cells. A quota cell contains the amount of quota that may be used

by all segments which are charged against it and the amount that is actually

Page 34 Chapter 11

being used (frames used). At ftO time can the value of fraaes uaed exceed the

value of quota. For accounting purposes, a .,aota cell also contains an esti­

mate of the time-frames ueed integral charged to that quota cell since the

start of the accounting period. -If an attea,c ia aaAle to aae •ore quota than

is available from a quota cell, f record Cft!t•·:P•l'tlolf condition is signaled

to the user by the superviaoT.

Page control reliee Oil eepent control to aalatad.n the correct value of

the parent ASTE pointer. Since segment contntl a1M clepeiul• on page control

to implement the demand pagiag algorit~, there is a dependency loop in the

virtual memory manager.

From time to tiee, it i• ueee••r1' to r'8WOb tM aecese privileges that a

proceJJs may exercise n ao ective eepaent. 'l'M.• u 4-e by eettiq the seg­

ment fault flag in the SDW. s.g..t control c• 41if fer..iti•·te bett1een. this

kind of segment fault aacl a ftOnal sepent ·~ ~ the· v&1qe stored into

the SDW is different ia -each ew. Beaaent com:.J. dleP ~eflect• an a<::ceu

revocation fault to the proper fault 11.aacller •·

tbe concepts of zero page and null page ha¥• Men di-acuaod earlier in

this section. Before gota1 to die nu~ section.:; one yeftneaent o·f a similar

nature needs to be pr-e..ated. A aeat-null .2!I!. Nl.Obg• to an intenaedi.ate

class of pages which hae been 1actt>duced in ,an· effoirt: ;to improve performance.

They are relevant to this theeis because they _.:lab now on Multics. and will

appear in a slightly lllOdified fcn.'11l in- cha~er four•' · A seai-null page repre­

sents a page of zeroes. It ie .!!2!; physicall'f< ator«l in secBndary memory, but

Chapter II Page 35

is associated with a secondary memory home. The system designers feel that a

zero page can be created faster than a zero page can be moved from secondary

memory. Before removing a page from primary memory, page control checks

whether the page is a zero page. If so, contrary to the statement made ear­

lier in this section, the page is transformed into the semi-null state and the

home associated with it is not freed. Frames used, however, is decremented.

If the page is brought back into primary memory before the segment is deacti­

vated, a zero page can be manufactured without also having to allocate a home

on secondary memory. A semi-null page is finally changed into a null page

when the segment is deactivated. The advantages of semi-null pages are that

they can reduce the number of I/O operations to secondary memory and they can

reduce the frequency of allocations from secondary memory. One interesting

aspect of semi-null pages is that, by the current definition, they do not use

quota. This produces the slightly anomalous situation that a home can be

associated with a page and yet not be charged against any quota cell.

Page 36 Chapter II

2.3 Some Problems with the Current Virtual Memory Manager

Although the description of the Multics virtual memory manager given in

section 2.2 is not exhaustive, enough background has been presented to discuss

some of the weaknesses in the implementation. In this section, two specific

problems with the virtual memory manager will be examined. These are not the

only problems, but have been chosen to illustrate the poor modularization of

the virtual memory manager. The nature of the problems can be characterized

as functional entanglement, meaning that the functions to be performed are

poorly distributed among the modules. The modules interact badly, producing

complexity and making the system difficult to understand. These problems are

typical of the confusion in the implementation of the virtual memory manager.

'lltey are examples of the second facet of the overall problem discussed in sec­

tion 1.1.

In the first example, an artificial recursion is used to handle paging

under special circumstances. Besides the fact that the recursion is difficult

to understand, the existence of the recursion masks a much simpler solution,

which will be presented in chapters four and five. In the second example, the

current modularization is shown to be defective because it does not adequately

reflect the needs of virtual memory management. An important factor, resource

control, is underemphasized.

Chapter II Page 37

2.3.1 Page Faults on the FSDCT

A process takes a page fault either to copy a page into primary memory or

to create a page of some segment. The actions required are different for each

case, but the same module, page control, handles both. If a page is to be

created, page control must find a free home for it on the proper physical vol­

ume. To do this, page control uses the FSDCT data base. The FSDCT can be

quite large, so it is kept in a paged segment. Therefore, page control, the

module which handles page faults, must be able to take a page fault on the

FSDCT.

Not surprisingly, this is done with a special case mechanism. Page con­

trol first checks to see if the needed page of the FSDCT is already in primary

memory. If not, page control carefully stores the data about the page fault

being processed and calls itself recursively to copy the FSDCT page. 'lbe size

of the FSDCT cannot be changed by page control, so page control need never try

to create a page for the FSDCT (another special mechanism is used) • This

guarantees that there are no potentially infinite sequences of page faults on

the FSDCT. However, page control must be careful not to destroy any data

relating to the original page fault.

There is a certain elegance to the idea of using a recursive mechanism to

reference the FSDCT. Tak.en as a whole, however, the mechanism reeks of poor

design. Rather than performing a real recursion and faulting on the FSDCT,

page control modifies lts environment to look as though a fault had been

taken. After copying the page of the FSDCT, an artificial return again modi­

fies the environment so that the original page fault can be processed. This

Page 38 Chapter II

very artificial recursion is extremely hard to decipher. Instead of achieving

any economy of mechanim, the recursive use of page control makes the under­

standing of the virtual ~ MAager more difficult..

2. 3. 2 A Peek at the Quo-ta Problem

The term 9uota probl• i• used loosely to refer to a large set of com­

plexities in the superviAtor. It is an e&aDPl• of f.unittibnal entanglement on a

large scale. Rather than attempt to discY&a 1:he ea:ti:re problem, this section

will present one aspect of £he quota problem.

The hierarchy of ct00ta cells is dynaaie;c ..anirtg- that it can undergo fre­

quent modificati(tft&. SUch tllOdifleadon• are Ille r..t4.t -0f requests to the­

&upervisor from ueere hM'fatg ·sutficiant autbort'ty.; · Since quota cells are

modified by page control *en creating <>r delet1ing a page,- modifications to

the quota cell h1erarcb1 •wt be coord<Lnated '11.lth ~· e~ntrol.

When a user wishes to ~haaae the quota c•U hinuchy in some way, the

user isitues a request to d!iat -effect t-o the 'auper"V'iaor. 'ftle supervisor firftt

validates that the usu baa eufftciant authori.ty -co NqUest the tnod'ifications

and then calls the program which modifies the .,eta etil hierarchy, quotaw, -to

perform the operations. To avoid any eOt'lfU.~t Wilt\ page control·9 quotaw first

locks the global page t#ltt lock. Since boti:l qtit(>lfUf -and ,:page ce>fttrol' use

quota cells as data baeee, locking the, lock &*ran tees that only quotaw can

modify the contents of any quota celL UnforttiWtely, loeking the lock also

stops all paging ae tivity irt the system. - Next, q&otaw checks the request to

ensure that the quota cells affected will remain ee>nsistent after the lllodifi-

Chapter II Page 39

cation. Finally, if the check succeeds, the request is performed and the lock

unlocked.

This description seems simple enough, but to what module does quotaw

belong? Since quotaw locks the global page table lock, a fair assumption

might be that it belongs in the page control module. This would mean that

page control is responsible for copying pagea, c~a~ing pages, and modifying

the quota cell hierarchy. That is a very large task to be performed by one

module. In addition, the quota cells of active directories are kept in the

ASTE's of the directories, which are suppose&.40 be part of a segment control

data base. If quotaw is part of page control, it should not manipulate the

data bases belonging to other modules. Suppose, on the other hand, that

quotaw is not part of page control. 'nlen it violates al'i¥· 9elllblance of modu­

larity by locking the global page table lock. No aat•er -hew segment control

and page control are chosen, the ex1stence of qw>taw ruins the .division

between them and makes each dependent cm the ·other.

2.3.3 Conclusion

The Multics virtual aemor.y manager is loo.-ly organized into two modules,

segment control and page control. The two modules are pictured in figure

II-4. 'nle fact that each module depends on. the othelJ.,ia eyaptom{ltic of poor

modularization. However, it should be notad.•that the attuctu~e cl.oes conform

to the original specification of the virtual memory manager. When the speci­

fication was developed, mutual dependencies, such as those displayed by page

control and segment control, were not considered unacceptable. Later advances

Page 40

Se.-nt
Coatrol

Page

Control

Chapter II

Figure II-4 Structure of the Multics Virtual Memory Manager

in modularization revealed that •utWll depen.denc:iea led to difficulties in

understam:ling and i11P1-tation (aee secttoa 1..1).

ExaminatiCHt of 'the ioteTeal operation of each 90d1,1le reveals a clue for

how to remedy the probl•: Page coatrol t• ~il>le for two separate func-

tions, paging and the control of page resoure~•· Segment control is also

responsible for two fuoctie>Cl&, control of page r•sow:-ces and segiaentation. It

should therefore not be surprising that the interface between them shows so

many interconnectioas .ad tl\at 11.4&y of the ititel'.~ti<>ns concern resource

control. The interface ie exactly what could be.eapeeted if someone arbi­

trarily divided a reeo~rce control module into two parts a~d incorpo~ated one

part into segment cootrol aa4 the other part into page control.

Chapter II Page 41

2.4 Summary

The Multics virtual memory manager and the Multics addressing mechanism

have been presented in some detail. Using this foundation, two of the prob­

lems found in the current implementation were discussed. The fundamental

weakness is the absence of a simple, complete, consistent specification of

what the virtual memory manager should implement. The existing specification

is not complete in that it does not cover resource control. In the implemen­

tation, the existing specification is followed as closely as possible, but

resource control cannot be simply added to the virtual memory manager without

ruining the modularization. In succeeding chapters, the issue of how to

devise a better modularization will be addressed.

Page 42 Chap ll'r l l

Chapter III Page 43

Chapter Three

A Three Layer Virtual Memory Manager

In chapter two, discussion centered on how the Multics virtual memory

manager is structured and what is wrong with it. Now it is time to address

the question of what to do about it. The relllainder of this thesis will

develop a model of the Multics virtual memory,lllanager. There are two reasons

for doing this: one specific and one general. By p~oposing a model and com­

paring it to the real system., we can attempt to rectify the drawbacks already

outlined. If valid, the model will embody the fUQ.damel}.tals of the virtual

memory manager and can serve as a guide to future development and maintenance

on Multics. In a larger sense, a model can separate the important issues from

the unimportant. In this way, we can learn which .considerations should be

explored when virtual memory is encountered in a different context.

Section one of this chapter discusses modularization issues of how the

model should be constructed. A method will be presented for modularizing a

sys·tem. In section two, the method will be applied to th.e virtual memory man­

ager to arrive at a a particular set of modules. Section three discusses why

and how the set of modules should be ordered into three layers. Finally, we

discuss a particular technique, type extension, for imposing our structure on

the current system. This technique lri.11 be used in cha,pters four and five.

Section four may be skipped if the reader is familiar with type extension in

the context of operating systems.

Page 44 Chapter III

3.1 Modularization

The concept of moc:hi.lcity haa been impe>ttant in p.l'Ograming for a long

time. It grew out of the a.-4 to ~e able to d.-.,elop a-ad lllaintain large, com­

plex systems. By breakiaa l&Tae pff9r•s i11to -i-iw,. .·a'inlpler ones,· the sys­

tem could be wt'itten, co.piletl, teate~, and 4.auaged ta parallel, thus

increasing the producti'1'Uy &f a prograaas teaa. Of cO\lrse, a pro8'ram can.not

be divided arbitrarily, \,.ec:adlle there ta 1lo. l'UMa to b•lte•e 'that .a11 arbi­

trary division would allow t'lle paru to ·'tJ• dftel.,._ Mprately. When a sys­

tem is modulatized, the aocl•l41l• ha•e comeettora• t• .-11 other •in various

ways. By connection.s, w Che a9auapti•a;Wlltdl'"•be module• aak.e about

on.e another (Parus, 191U. · 11 we are not cu•fttl,. tac•••stng the nuaber -of

modules may cause the a.-..r 6f coouecttona to gftlv to· a cel[lb:inatorial e:aplo.­

sion. nterefote, wh:U• ~r .. 'tas .,._, s)l8t• a•o--u·., aiaple,mod.Ues, we

must also try to keep tM ·••hr of intel'lledtde laQ9ft~ftfl t& • ainima. lb•

best way to do this i&' te •lt•U. eke •,.t_ alMg t-...cioaal 'boul\llaries

because, intuitively. t-.. tJoeo4arie.s d.tiue:·a pu"titloa of ·tbe •Y•tea having

a relatively small O·f coeet.eCUOM.

So far, the tent• -4•1• aad futu~tion,bave b•a used loosely. This i•

because they are relative. 'n>' a1l operating sytJt•• one ·fuaetiofl. 11.ight be vir•

tual memory; but inside- of the vhtul mea«y 1Uftager, •any subfun.etions can

be seen. Therefo?"•• eoae~t:.eettin.iquea are •R4ed '11U.ch ~- help.•dif.ferentiate

functions, and thus module boundaries, in a givea eofttettt.

Chapter III Page 45

The first technique deals with data base references. If two parts of a

system reference mutually exclusive external data, they should belong to dif­

ferent modules. The term external here means data other than arguments.

Clearly, both a calling program and its subroutine will reference the argu­

ments passed between them. This techn,ique makes eense because if two parts of

the system can be placed in different modules without increasing the connec­

tivity of the system, they should be. The converse is also useful, i.e. if

two parts of the system reference the same data bases, ~hey are likely to be

parts of the same module. This technique is the strongest because functions

are frequently described and thought of in tenas of their effects on data.

The second technique is that if one part of the system must depend on a

second, but the second does not need the first, then the two parts should be

implemented in different modules. Implementing or understand,ing a single mod­

ule containing both parts is more difficult than implementing or understanding

two separate modules. There are two motivations for this technique. One is

that we wish to explicitly recognize dependenc:l.e,e .in the system, both for

informal certification and to increase our unclerstanding. The other relates

to the principle of least privilege [Saltzer, 1974). If protection barriers

are available within the system, they can be used in this situation to ensure

that damage to the first part of the system does not easily spread to the sec­

ond. This implies, for example, that the trigonometric .functions should be

separated from the floating point package, because fl~tiqg point operations.

are needed to calculate sines and cosines .but trigonometry is not needed for

multiplication.

Page 46 Chapter III

Third, if there is a function or service common to two or more parts of

the system, the common part should be modularized separately. This derives

from the idea that there is no need to reinvent the wheel. Rather than force

each user to implement his own file system, one is provided for all by the

operating system. This has also been called the principle of greatest common

mechanism [Hunt, 1976].

The fourth technique derives from the principle of least common mechanism

[Popek, 1974; Schroeder, 1975] and, in some respects, is the converse of the

second. It says that if one function is common to 11utny users and another is

common to only a few, the tW'O functions should be separated. The idea is that

the amount of the system on which a module depends should be minimized by

placing unneeded function·& in a separate module. This technique is not the

inverse of the third technique and is, in fact, quit~ compatible.

The last technique involves the frequency of use. If two pieces of the

system operate at differ~nt rates, they are likely to be parts of different

modules. Consider a system having one user process and one server process.

'nte user process requests two kinds of services, A and B, from the server.

Service A is requested onc:e a second. Service B is requested once a minute.

Because of the disparity in the rates of the requeets, the server process

could be divided into two modules. One motivation for dividing the server is

to guarantee that service for requests of type A is not impaired by interfer­

ence with service for requests of type B.

These five techniques are not meant to be exhaustive or definitive. They

have been phrased in terms such as should and likely because they are indica­

tors; they can only give clues as to where module boundaries could be placed.

Chapter III Page 47

Certainly, situations exist which would yield conflicting or misleading clues.

In.the process example above, suppose that both services required the same

data base. Then the first technique would suggest that one module is appro­

priate, but the fifth would indicate two. These techniques are advanced to

provide something, besides personal bias, as a basis for modularization.

Given a system comprised of only one module, the techniques can be used,

iteratively, to approximate the optimum modularity. aowever, we will not

attempt to prove that they can be applied deterministically, or that they are

guaranteed to converge to the optimum point. The next step is to return to

the Multics virtual memory manager and identify, using these techniques, what

parts should be in separate modules.

Page 48 Chapter III

3.2 Modularizing the Virtual Memory Manager

The Multics virtual memory manager uses four major data bases: the AST,

quota cells, page tables, and the File System Device Control Table (FSDCT).

(1) The FSDCT contains a list of every secondary memory frame available to

the system, along with an indication of whether the frame is allocated for any

page. It is used during page creation and deletion. The other three data

bases should be familiar from chapter two. Naively, we might think, using

technique one, that there should be four modules. However, some of these data

bases are used together. Rather than examine the uses of each data base, we

shall consider them as one pool of data. This is done for two reasons.

First, we wish to start by assuming the virtual memory manager as one huge

module. In this way, we can apply the techniques and, hopefully, arrive at a

new modularization. Second, we want to allow for the possibility that the

current data bases are not divided along functional lines. By looking at all

of the data together, we can ignore the effects of the current modularization.

Examination of the virtual memory manager reveals three loci of refer­

ence. The first involves only PTW's, which are the elements of page tables,

and a few fields in the AST. These data are used when a page is moved from

secondary memory to primary memory or back again. We shall call this locus

demand paging. The second locus is defined by the data needed for page crea­

tion and deletion. It includes the FSDCT, quota cells, page tables, and some

fields of the AST. This locus will be called resource control. The data

within the AST used for demand paging and resource control is disjoint. The

(1) In the current system, quota cells and page tables are part of the AST.

Chapter III Page 49

only overlap occurs on page tables. Careful study of the overlap shows that

resource control references page tables to create or delete pages. A page

being created or deleted cannot be moved. Thus, although some physical over­

lap exists, temporal factors ensure that demand paging and resource control

never try to use the same data at the same time. The overlap can be conceptu­

ally eliminated by having resource control send requests to the demand paging

locus to create or delete specific pages.

The remainder of the data represents the bulk of the AST. It is composed

of many fields and, correspondingly, has many uses. The principal uses are

for the activation and deacti~ation of segments, for bound faults, and to

service external requests originating outside of the virtual memory manager

(e.g. moving quota from one directory to another). This locus is called

segment support. Remarkably, this locus does not overlap greatly with either

of the other two. Some overlap does exist, but that is mostly a consequence

of having segment support service requests. For example, a request to deacti­

vate a segment will, of necessity, move some pages onto secondary memory and

free a page table. However, only in a very few cases are data belonging to

another locus used as decision variables for segment support. This strongly

suggests the existence of a natural modularization for the virtual memory man­

ager. Namely, one module for each of the three loci of reference.

The programs which are contained in segment support are paged. This

means that they may move freely between primary and secondary memory. This

also means that they must depend on that part of the virtual memory manager

which handles paging. By technique two, this is confirming evidence that

demand paging should be in a separate module.

Page SO Chapter III

The FSDCT can be a very large data baso. It is so large that is cannot

always fit into primary memory. To operate efficiently, the virtual memory

manager uses a highly modified form of paging to move needed pages of the

FSDCT (see section 2.3.1). With some programing effort, page creation and

deletion could use the existing demand paging facility when referencing the

FSDCT. This would eliminate a special mechanism and simplify the virtual

memory manager. 'nlus, by the third technique, there is further evidence that

demand paging should be separate.

The fourth technique also applies to page movement. In the previous

paragraphs, we developed that the demand paging function can be common to both

segment support and resource control. This technique also suggests that the

management of paging belongs .in a separate module.

The last technique provides supporting evidence of three separate mod-

ules. Segments are activated at a frequency of about 1.5 times per second,

about 3 pages are created each second, and over 100 pages are moved from sec-

ondary memory to primary memory every second. (1) Here, again, is strong evi-

dence that demand paging should be separated. Although the frequencies of

segment activations and page creations do not differ greatly, we feel that the

factor of two difference does suggest the possibility of a module boundary.

In essence, the virtual memory manager performs three identifiable func-

tions for users. First, it is assuming the entire responsibility for demand

(1) For our purposes, segments are deactivated at the same rate as they are
activated. They are deactivated to make room for a newly activated segment.
Similarly, pages are removed from primary memory to make room for other pages,
and thus are removed at the same rate as pages are brought into primary
memory. However, page creation and deletion are quite distinct. Figures
could not be obtained on the rate of page deletion, but it is reasonable to
assume that the frequency of page creation or deletion is about 4 per second.

Chapter III Page 51

paging. By this, we mean the management of physical volume frames (homes) and

extant pages so that the user is freed from worries about the physical loca­

tion of pages. Second, the virtual memory manager allows the creation and

deletion of pages. 'nlis second function includes the actual create and delete

operations, the mechanisms to automatically invoke creation or deletion when

appropriate, and the facilities to control their invocation according to poli­

cies specified by higher layers. Third, the virtual memory manager groups

pages together to help implement the information containers called active seg­

ments, and provides many utility functions for external use.

Put another way, the first function physically manages the set of exist­

ing pages. The second function controls how and when the set of existing

pages can change. The third function constructs segments out of pages to

facilitate their implementation. The evidence dictates that the three func­

tions should be placed in separate modules.

Page 52 Chapter III

3.3 Ordering the Modulu

As seen in chapter t•• the Jimltics virtual ,. manager is poorly

modularized. Thee key, a...~ to c1&1::tng the ot.•nd,fuactional entanglement is

to find a better choice of tNdwla vbich can perlor:a the sa11e task. A module

is a responaibility ae•t,...nt. · [Paraas, 1:972.hl. '. la ocner words, a module con­

sists of the· collection·.t:·p.t:ogrmas and <la.ta l'J•M•·aeeded .tq, perform some

task.

As was pointed GUC in MC:tion l. 2, t,he vtitql ..-o·t"y,lliflnager performs

three tasks or functieaa. M a firat atep 1 U. ;vi¥SM1 ,memory manager should

be partitioned itt to i:hrM :.-d••• not the ~nlietiQI; '"'"" Each "oc:lule should

perform exactly one of tbe •trtual •emcn:y maa&&• ftaetlona. This step is

easy to undl!rstaad• ht how thoald the module• l>e etrwtured?

From the considerationa di•cusiu~a .. ia Meti~ac3..i.; a preliminary struct11.re

for the virtual Memory aaaAger can be constructed. lt ie shown in figure

III-1. The circles repr•eent aodules, and the arrow represent the module

dependencies. The preaettce of the arrow labeled ! points out an important

consideration: Should the resource control module control the interactions

between demand paging -.d aegment support? This question will be answered

later in this section, after aome background is presented.

The technique of layers of abstraction was first introduced by Dijkstra

[1968a]. It involves separation of a system into a series of linearly ordered

layers, where each layer, consisting of a set of modules, performs a set of

related functions. Higher layers may use lower layers, but lower layers may

neither use not depend on higher layers in any way. In terms of the connec-

Chapter III Page 53

Segment Support

Resource Control

Demand Paging

Figure III-1 A Possible Model Structure

tions among modules, the layering technique means that no connection between

two modules may pass completely through a layer. If, for example, resource

control is supposed to be a complete layer, the arrow labeled A should not be

allowed because it by-passes resource control. By rigid adherence to a five­

layer structure, Dijkstra was able to design, implement, and debug a medium.­

scale system in a short time and with very few people. This technique seems

to have some attractive properties, but is it applicable here?

The meaning of the term module changes with context. Viewing the operat­

ing system as a whole, the virtual memory manager is one module. However,

within the virtual memory manager, there are three modules. This suggests

Page 54 Chapter III

that the system can be thought of as constituting a hierarchy of modules.

Each module can be successively divided into smaller modules, until we have

only individual machine instructions. In fact, instructions can also be sub­

divided until the boundaries of particle physics are reached. Simon analyzed

systems taken from many disciplines and found the hterarchy concept almost

universal [Simon, 1962]. In his view, organizing a complex system as a hier­

archy is critical to understand, describe, and control the system.

This kind of hierarchy orders increasingly fine partitions of the system.

'nlere is another important module hierarchy, which is the hierarchy of module

dependencies. It is related to the graph of the conaections among the mod­

ules, given a particular partition.

Given that Multics is a hierarchy of module dependencies, Dijkstra

[1968b] states the fundaillental reason why the hierarchy should be viewed as a

series of layers. The reason is that an important function of an operating

system is to provide resource allocation. The modules should be ordered into

layers to hide the fact that the modules themselves use some of the resources

provided by other modules lower in the hierarchy. Otherwise, confusion

reigns.

This is directly applicable to the virtual memory manager because, as has

been stated, one of its functions is resource control. Thus, the virtual

memory manager should be structured into three layers, as in figure III-2.

The ordering constraints on the modules, which were developed in section 3.2,

still apply, so demand paging should be the bottom layer, resource control

should be the middle layer, and segment support should be the top layer.

Note, in particular, the absence of the arrow labeled A from figure III-1.

Chapter III Page 55

Figure III-2 Structure of the Model

Because the system is layered, all dependence of segment support on demand

paging must first be routed through resource control.

A general discussion of modularizing the virtual memory manager is all

very well, but specifics are needed. Are there any methods of module descrip­

tion which can explicitly recognize connections? The answer is yes. Type

extension is such a description method. The next section will briefly intro­

duce type extension and show why it is useful.

Page 56 Chapter III

3.4 Objects and Type M.at'latera

Type extension is baiag .used quite ex~vely in the design of struc­

tured programing laagua,_ •uch as CLU fLiaklllw ec al .. ,. 19771 and SIMULA [Dahl,

Dijkstra, and Hoare, 1972]. However, use of this modeling tec'hnique for oper­

ating systems is still ~•· Philippe Janson {1~76} baa applied type extension

to virtual memory mechani'9118 and Da•id a.ed (1916] has used the technique in

studying processor sclle'Ciul.:lag aad traffic control.

The typ~ manager coutract bas several 'deair&bl.e pro-parties that make it

attractive for modeling ,.rp•s. The object• llMMlled tty type managers are

completely defined, 80 t~• can b4! no "1ast:i:d ~ t:be pur.pose,. function,

or usage of objects. S.Coad, the interfacft"~ tne managers are well­

defined. All communieaU.on aaong type managers 11ut1:t occur openly across the

interfaces. Third, the ~ternal r•preaentatiou of objects are completely

hidden from ot:her type --..M• whica WJe thea., Thu •.'1Jr•s t~,t no wifore- .

seen side-effects can occar.. f...-th; the. ••pe~UI•.~ type managers can

be generated in a •tt'alct.tf~rd tu.ane~,. Fta-.lly,. if tbe object:s and their

attributes are chosen t:Cei4&11.y., thai:r vsag-e C.ll oe utural aad, iatuitiv~~

'nlis is .i111portant~ ia ope.ta.ting ayate•s deatga,. to "'9".ent: the spread of com­

plexity. In other t.ro~cls, type e•t.ension pc.ovU..• .a natural way to modularize

a system along funcd<9ttal bouadaries. .this· i• ~tly tlhat is required by

section 3. 1. These proiwarties are by no means exclusive to type extension,,

but since type extension has them, it is to our advantage to use type exten­

sion in this context.

Chapter III Page 57

An object is defined by the set of operations which may be applied to it.

It has a set of attributes, which correspond to the properties of the object.

One of the attributes of every object is its~· whose value must be unique

over the relevant universe of discourse. A~ is a set of objects which all

have the same set of attributes. All objects of a particular type are managed

by one~ manager. For example, the objects of type REAL NUMBER would be

managed by the REAL NUMBER type manager. They might have attribute sets con­

sisting of the attributes name and value. The name attribute might have val­

ues such as x, y, or z, and the value attribute might be -1, 5, or 3.14159 ••••

Hereafter, type names will be given in capital letters to distinguish formal

types from the concep~s that they are attempting to represent.

Some operations on REAL NUMBERs might be: creation of a REAL NUMBER hav­

ing the name A and value 3, deletion of A, and addition of the values of X and

Y and storing the result in the value of z. Further operations could be

defined so that the type REAL NUMBER corresponds to the mathematical notion

having the same name.

More complex types, called extended types, can be defined in terms of

already existing types. The representation of an object is the set of objects

used by the type manager to implement the object. The map of a type is a data

base, internal to the type manager, which indicates the set of component

objects which make up the representation of every object of the type. Natu­

rally, any operation defined on objects of some extended type must be express­

ible as operations on the component objects.

One of the strengths of the type extension modeling technique is the

independence of an object from its representation. Users of a type need have

I

Page 58 Chapter Ill

no knowledge whatsoever of haw the type is implamented or internally repre-

sented. Consider, for •ample, the extended :l,JP• YICTOB.0
•• Using the type REAL

NUMBER, the type VECTOR. cat\ be defined to corr-.pond :t:o the 11lAtbemad.cal c~n-

cept of two-dimensional ..et:crr. a..t about d&a s.,reaea-ta:tton.of VECTORs?

The representation is ee1n1tletely up to the iJa9lemaacer of _the VECTOR type 111an-

ager. VECTORs may be inur&ally repl'eeented iii a.i~ -Cartesian coordina•tes

or polar coordinate•. oiq tWI& &BAL KUMBU... ·!he -d\Oice V!..11 probably depend

on the in tended O"t atn:ici.pated U.· &f VEC~; M '*id& representa ti~n is more

appropriate for the aet of -ope't.atiot'l8 provW•. -co.cet..ably, the manager

might use both re'Preae1t'tdicMl9 or switch bet-- thea as conven•ient. The man-

ager might even repre·aent ctMm in -elliptical ceordmaue. '!he point is that

the internal repr&eentatf.oa of a·VEC'fOR 1a·coep1ecal1 irrelevant to a VECTO.I

user. As long aa the -.r ud Che type aaaagu •&M oa a. way of comat.tnicat-

ing about VECTOR.a, the MeY deea ttot need to imov aGf!thing: aboat their repre-

sentation.

Janson [1976 l ieeatified tvo fundamentally different kinda of types~

create/delete (C/D) t:ypetJ &M all«:ate{fw.·(6./P) "Yfe•• 'tllere is easentially _... ~ ,,-~ ... ,
an infinite -supJ'ly -ef Cf.D &'JIMI oftjects.. 'l'Aey ue •rea:ted a8 need~. tlSed, aud

then discarded. Ml>st Wt"k i-l\volv:ing type• ha.e cenceatrate« on C/D objects.

A/F objects can be neit:tler ·<:-teat-ad nor deat:reyed. 'Daey •xist in lilllited nUIB-

hers. '!'hey are all«at-ed •• bedf!d· and ae. avat1111hle,. uaed, and. then freed for

subsequent use. !he '88A1if.C-t:ure of k/F -objects falls uader the cat.egery of

reconfiguration, which is thoroughly treatled by Scnell [Ut71-j. In c0111puter

system, MF obj~cta gener-ally ha\Te hard"11Bre repreaentatiomJ and represent some

reusable r~sourc·e (e.g. secondary memory frames).

Chapter III Page 59

When using objects for operating sys-tem design, .five: dependencies among

type managers can be identified:

(1) Component -- the type manager for type A is dependent upon the type

manager(s) which provides the memory space in which objects of type A are

stored.

(2) Program -- type A type manager depends on the type m~nager(s) which

provides the memory space in which the programs tm.plementing tl\e type A type

manager are stored.

(3) Map -- type A type manager depends upon the type manager(s) which

provides the memory space in which the map and other data bas's are stored for

the manager of type A.

(4) Environment-~ type A type·manager depends on the type manager(s)

which structures the address space or ruuaing envirolimeat of programs that

implement type A.

(5) Interpreter -- type A type manager.,depends oa·· the type manager(s)

which controls the allocation of proceesOT resources which are used to i.Jnple-

ment type A.

Put another way, type manager A depends on type aanager B if .. the incorrect

functioning of B can cause the incorrect functioning <>f A. This definition of

dependence is intentionally precise and is·na~roW!e~ tnan the notion of copnec-

tion. With this definition, we can capture the essanee of which types need
J

which other types and discard other kinds o-f interactions. For example, sup-

pose type manager B performs a service for type manager A. A depends on B, by

Page 60 Chapter III

this definition. By chatlRiin.g inputs,,. clearly Jt e:an, a.ff,eet the operation of B.

However, since a malfun.ction in A cannot cau&e a aallti.unetlqn in B,. B doe,s not

depend on A. B is conn-ectcd to A because B ce~tainly: assumes that A wants the

service performed, and• baClt ~ 11N1JMgers °"'"*· 'l!'U~• any a·qwaeots passes

between them.

Type manager depemie.¢"1les &'lia trans.itiff ta t:blttt if type A depends on

type Band type B depem4!& on. 1,.a e then type- A.ciepencita on hotb types Band c.

In operating systems des:t.p,. it is importan,u to irecognize dependencies to

ensure that no tw type ~l's are symmettr:tealilp ~eat (i;.e., d•pend on

each other). Clearly··· :fif two type man.agers1-d'e:peo4 orueaab. other, the secu­

rity, reliability, and umt:erstanclability of tl'ua S·yrlt.em: is ver.y llllC:h ~n d.Ot.JQt ..

nterefore, the depeadenc.e m;el:dtoo.i: should aitse} M ase•etric and nqt ~eflex­

ive. In o·the-r Wet.trds., tbe•e ab:otl.tci: lte a, pmrti~ ~:- U ..• e .. a hiel"arcby)

among type manage1rs- wbt~h: guarantees that no type llleAl8.ger d.epencls, upo.a. itself.

By examining the Rl'8p8 .t tl\e ~· nnuu1ger•. ~ c-ca~ flepend.eac·y g:raph. can

be gene-Jrated... Siiaptl.e· :fi'1m.paetiaa wil.l rev.eal •t~ the,,. aJ"&pb d,oes. o.r does

not represent a partial eJid\eri:ng. Note that the d·~ency graph is simi.lar

to Parnas's hierarchy 0f uses (1916).

Note that in secticm),.,), ctiscussion cm.~ed· oa. a lllyered structure,

whereas in this seetion·, a- h.iie1rarchy is constctered.. 'fhe, us:e of type managers

does not automatically· l:ead t.o a 1 layered• etruettu;re,. Rather, the use of type

managers helps to :fid:en.tify the dependencies wtthtn the system. To: create a

layered system, the designer muat still exaJD;ilU! the dependencies to check that

no mutual dependencies exist and· that no dependency by-passes a layer.

Chapter III Page 61

3.5 Summary

In this chapter, we developed a method to modularize a system. While the

method was quite useful, no statement can yet be made about the optimality or

applicability of the method in general. It is at least better than arbitrary

choice or personal inclination. The method was applied to the Multics virtual

memory manager. The resulting set of three modules needed to be ordered,

according to their respective dependencies. Finally, a technique of formally

describing a system was introduced, which explicitly recognizes module depend­

encies. In chapters four and five, this technique will be used to model the

bottom two layers of our proposed structure.

Page 62 Chapter III

Chapter IV Page 63

Chapter Four

The Paging Manager

In chapter three, the broad outlines of demand paging were defined and we

showed that demand paging belongs at the bottom of a dependency graph in the

virtual memory manager. This chapter examines in detail the demand paging

function. The function will be modeled by a type manager, called the paging

manager. The model will then be related to actual system operations, as

described in chapter two.

The essential function of the paging manager is to provide PAGE CONTAINER

objects to higher layers of the operating system and, ult:lmately, to the user.

PAGE CONTAINERs are designed to store logical pages so that they may be refer­

enced quickly. The mechanics of physical management of PAGE CONTAINERS is

completely hidden from users of the paging manager. The number of PAGE CON­

TAINERs which may be in use at any one time is limited by the size of primary

memory: The status and physical location of every PAGE CONTAINER must be

maintained in primary memory, and there must be enough room to hold the words

of at least two PAGE CONTAINERs. PAGE CONTAINERs-are A/F objects, meaning

that they always exist, even when not in use.

Page 64 Chapter IV

4.1 PAGE CONTAINER Attributes

The attribute set of a PAGE CONTAINER consists of a name, a data array,

(1) a home, a used flag, a modified flag, a iero flag, and a core flag. The

name of a PAGE CONTAINER uniquely identifies that PAGE CONTAINER from all

other pages. (2) When a PAGE CONTAINER is in the free state, only the name

has any meaning; the other attributes may not be referenced. The data array

attribute holds the values of the words in the PAGE CONTAINER, The data array

is also called the contents of the PAGE CONTAINER. The home attribute refers

to the permanent secondary storage location for the logical data contained in

the PAGE CONTAINER that the paging manager may use to store the contents of an

allocated PAGE CONTAINER. (The use of this attribute will become clearer when

PAGE CONTAINER operations are explained.)

The four flag attributes provide auxiliary info~ation about the page

held in a PAGE CONTAIN£R. The used and modified flags tell whether the page

has been used or modified since it was allocated. ~ zero flag indicates

whether the data array contains all zeroes. The core flag is used by the seg-

(1) In Multics, the number of words contained in a page is 1024. The particu­
lar number is not relevant to this discussion, but all PAGE CONTAINERs must
contain the same number of words. Those familiar with the history of Multics
will recall that the original design called for pages of two sizes, 1024 and
64. In such a design, either another attribute, page size, must be provided,
or two paging managers must b~ used.

(2) There is currently a small controversy over the proper scope of object
names. Purists insist that a name must be completely unique over the entire
set of objects supported by the system. Given the ability to share informa­
tion among computers, one can speculate whether the name must then be unique
over the objects available to some set of computer systems (this is very much
a research topic). On the other hand, more practical designers contend that a
name need be unique only over the most relevant domain, e.g., the set of PAGE
CONTAINER objects available to a-particular computer.

Chapter IV Page 65

ment deactivation algorithm and tells whether the PAGE CONTAINER is in primary

memory.

Page 66 Chapter IV

4. 2 PAGE CONT A tNEll Opera ti-on• .

In the following discussion, operations will be designated like PL/l call

statements. Output argument• Will be underlined.

The most fundamental operations are allocate, free, read, and write. The

allocate operation can be represented as allocate (home, zero_flag, .!!!!!!,) •

Its function is to select a PAGE CONTAINER from the pool of unused PAGE CON­

TAINERs and allow it to be used. The value of the hOlle and zero_flag argu­

ments are assigned to the hoae and zero flag attributes of the PAGE CONTAINER

beillg allocated. If tta. eero_flag argument ia INlt, then the data array attri­

bute of the PAGE CONTAtall. ia defined to contain all eeroea, regardless of the

values found at the hoae location. If the zero_flag argument is not set, the

data array attribute contains the values found at: the home location. If there

is a PAGE CONTAINER available 1n the unused pool, it will be allocated and the

value of its name attribute will be returned in the nmae argument. If, for

some reason, a PAGE COMTAIN!.ll cannot be allocate.cl (e.g. there are no PAGE CON­

TAINElls in the unua" pool), the operation will fail and return to its caller.

The operation fre• (..-e, zero flag) returns the PAGE. CONTAINER specified

by the name argument to the pool of unused PACE COMTAINERs. If the PAGE CON­

TAINER contains all zeroes, the zero_flag argument will be set. Otherwise,

the zero_flag argument will be cleared and the con.tents of the PAGE CONTAINER

will be placed at the hose locat1on. If the PAGE CONTAINER cannot be freed,

the operation will fail.

The read operation can be written as read (name, offset, value). The

operation returns, in value, the contents of the data array element specified

Chapter IV Page 67

by name and offset. Execution of a read operation also sets the used flag

attribute of the PAGE CONTAINER.

The operation write (name, offset, value) modifies the contents of the

data array element specified by name and offset so that it contains the value

given in the value argument. Performing a write operation will also set the

used and modified flag attributes of the PAGE CONTAINER.

The five remaining operations return the values of the home attribute and

the four flag attributes. They can be illustrated as: get home (name, home), - -
usedp {name, flag), modifiedp (name, flag), zerop (name, flag), and corep

{name, flag). If the PAGE CONTAINER specified in the name argument is cur-

rently allocated, these operations will succeed. If not, they will fail.

Page 68 Chapter IV

4.3 Dependencies in the Paging Manager

To satisfy dependency requirements, five object types are available to

the paging manager. Three of the types provide storage: the primary memory

manager, the paging device manager, and the secondary memory manager. There

are also a primitive address space manager and a primitive processor manager.

These last two handle the environment and interpreter dependencies of the pag­

ing manager, respectively. Component dependencies involve all three storage

types. Data arrays stored in primary memory may be referenced immediately,

but primary memory can hold only a small ntunber of data arrays at one time.

The paging device and secondary memory have larger capacities, but can be ref­

erenced relatively slowly because the data arrays must first be copied into

primary memory. This means that the paging manager must perform a complicated

juggling of data arrays among the available storage areas.

Storage needs for programs and maps are handled by the primary memory

manager. This is done for two reasons. First, the programs and maps of the

paging manager do not occupy a large amount of storage space. Therefore, the

cost of maintaining them in primary memory is small. Second, because the pag­

ing manager is heavily used by most of the system, it ought to be as fast and

efficient as possible. By storing programs and maps in primary memory, prob­

able frequent references to secondary memory or the paging device for the pur­

pose of accessing programs and maps can be eliminated.

Chapter IV Page 69

4.4 Discussion

The paging manager provides PAGE CONTAINER objects to many ultimate

users. Because of the importance of paging, the manager ought to be simple

and efficient. The model, exhibited here, supports exactly one function:

referencing pages held in PAGE CONTAINERs; other, more complicated functions

(e.g. resource control) are performed by higher layers.

The most striking features of the model are that it is defined entirely

in terms of PAGE CONTAINERs (no mention of segments) and that the demand pag­

ing nature of the paging manager is hidden. These features are quite appro­

priate and reasonable. As described, the paging manager provides a useful

abstraction of memory for use by higher layers, namely, a set of information

containers which can hold pages. Because of storage limitations, there are

many more pages than PAGE CONTAINERs. Therefore, users of the paging manager

must multiplex the use of PAGE CONTAINERs. This is why PAGE CONTAINERs are

A/F objects. They capture the essence of how to manage a scarce, physical

resource, i.e. by multiplexing. PAGE CONTAINERs should not be C/D objects

because the paging manager would become more complicated and, perhaps, could

not even be implemented because of memory shortages.

The paging manager interface should not be expressed in terms of segments

because the demand paging abstraction operates completely independent of seg­

mentation. Therefore, it should not know about them. By forcing a segment

structure upon demand paging, the paging manager becomes more complex, must

deal with considerations which have little to do with its primary function,

and loses its generality.

Page 70 Chapter IV

The desire that demand paging be hidden from users is also supported by

the independence of demand paging. The internal details of multiplexing logi­

cal information containers among physical storage is exactly what the paging

manager is supposed to hide. How PAGE CONTAINERS are managed is not important

to users of the paging manager.

What is going on when a PAGE CONTAINER is allocated? An allocate opera­

tion is prompted by either of two higher layer events. First, some active

segment is being assigned a page table in primary memory and its pages need to

be accessible. In this case, the contents of the pages are stored in some

home, which are in secondary memory. The module performing the activation

then calls the paging manager, perhaps indirectly, to assign PAGE CONTAINERS

to the non-zero pages of the segment. Second, some page is created for an

active segment. Then the page creator needs an empty PAGE CONTAINER to hold

the zero page. This is accomplished by assigning a home for the page and

calling allocate with the zero_flag set. In section 2.2, a semi-null page was

described. In this model, a semi-null page corresponds to an allocated PAGE

CONTAINER whose zero_flag is set. Whether semi-null pages are actually stored

in their homes is an engineering detail. However, resource control must know

if the page is zero in any case.

Since there are a limited number of PAGE CONTAINERs available, an allo­

cate operation could fail because there are none which are free. In this

case, the paging manager should not automatically free one. First, the paging

manager does not have enough information about the organization of the system

to make an intelligent decision about which PAGE CONTAINER should be freed.

Second, even if it could decide, the paging manager would have much difficulty

--'·~-------
--.:~.,' -)

Chapter IV Page 71

communicating to higher layers which PAGE CON'IAIN~ .was _freed and why. There

are two solutions to this problem. One is to provide enough PAGE CONTAINERs

so that the paging manager would never run out. ~ upper ,pound on the number

needed will be explained i,n chapter five. The q,ther_solution is to implement

a PAGE CONTAINER ft:eer which could be inv:a:~4. wbeP an al.locate fails. Its

operation would resemble the page r~oval part of demand paging. Its sophis-

ticati.on wo.uld naturally de~d on the frequency o,f it.s invocation.

A free operati~m must occur when the -·~ .table .of an active segment is

being moved out of primary me1aory. 'J;'he.n, the~ges of the seginent must be

moth-balled in a stable atate until the segment is Qe4cted again. Any zero

~ges should be ·put in the semi~null state Gui:iog the ~ree; so that resource

control, the caller of the paging me.aager, ,can put ti heal in the null state.

Other pages must be placed in their homes for aafe-.~pii;a.g.

The actual demand pa.gins aiaorithlll is hi4~. insl<l~ of the read and write

operations. Details of the algorit.lut ar.ed:>!litt.e4,.\1u~<:~Ulil' they are covered

quite well by Huber [1976). With oaly $inor c~aetw his multiprocess page

control can 1-plement t~ Jl4ging.manager. P9r ex~le, Huber discusses the

locking issues surrounding the global page t~ble .l~~; a~d proposes several -

alternatives.

Page 72 Chapter IV ·

4.5 Extensions to the Pagt111 Maager

In section 2. 2, one of the topics di:scuBMd _..that the supervd.sor uses

several kinds of specia1 ee..-.t• for va1'1.0U. 1Nr..-•<r lfo&t of ttae:se are

completely static in leirgeh eo t1ie ~rviBM' dtiMble& ·tlhe quo:ta wechahism on

them. In the context of this uaodel ,- •ucll "fiel'l*&tu are not subject to resource

control and can be facttned out. 'lber•fore~<it' is ~priate to tUil'lti'()rt that

such segments can be iaplemented -dkectly o& ·te<p :of .che· pegin9 aane.ger. This

introduces tWo new type: .._4!!"9• .Wich ..-age SIJPlla.W.SOlt·SJS{Blfrs and the

SUPERVISOB. ENVIROMM!1R. ·'ftlle't npport, ·in fH!R'lr :utwe ~l\erltt' ·map, progrant;

and emtironment deplh\d.Cfe• of higher· 'l&Ye:rth ,. '1'\'Mt·---VISOR· SEGMEtrr. manager

provides paged segment• fen the excll,1811/e UM ·of ··ctte ..,erJi'SOr. the-• seg..- .

ments are quite diff•r•t fro. '1*9er sepeat<s ta ·tnac tlwy •l'e •ot associa-ted

with quota cells and rareij, if ner9 C1'a98e lM1C1ha .. 1 :.'Die SU~UVISOI. INVIllON­

MERI aanager controti tllle'a•fni envlromenc·1•f 'pDMe.-..a exac:tatift8 ia. the

supervisor. there are two rea:ton• for intt0ducirl9 the .. aew t,pe maaagers. , : '·

11te first is that the hat"dwre, on 'lfhich Multles :fe<'tiiptne1Hied, prefers to

execute in a segtnen ttad add re•• ' space. '!he eegmeo u aaf1 or 'may not be paged • ·

Because of this limitation, the hardware cannot operate in a purely paged

manner. Second, paged segments of the type described can be extremely useful

to the supervisor. Without them, much of the supervisor would have to perma­

nently reside in primary memory. 'nlis, of course, requires the system to

include a large primary memory to hold the supervisor. By placing much of the

supervisor in paged segments, more primary memory can be devoted to PAGE CON-

(

.·,

Chapter IV Page 73

TAINERs. How these two managers interact with resource control and segment

support will be discussed in chapter five.

Page 74 Chapter IV

4.6 Further 'nloughts

A somewhat hidden is.sue in this model ia the interplay between software

and hardware. The traditional view is that the hardware is more primitive

than the software. However, so far in the model, m) mention has been made of

the hardware. A very reasonable implementation might be constructed as fol­

lows: The read operati.on, say, is always invoked in hardware. If the data

array is in primary memory, the value of the proper vord will be returned

without ever resorting to software. If the data array is not in primary

memory, the hardware will detect this and transfer (fault) to software at the

same layer. The software can then copy the data array int.o primar:y memory and

restart the hardware read. 'nle agent, hard•re or tlOft:ware, which performs

the operations is illlllaterial to the type manager ad layering con.at rue ts.

This theme will reappear in chapter five.

Chapter IV Page 75

4.7 Summary

As seen in chapter two, the principal adverse impact of excess complexity

on page control was that the same routine performed both demand paging and the

creation and deletion of pages. The model outlined here shows how to perform

only the demand paging function. This allows the more complicated create and

delete operations to fit into a context more suited to their complex natures.

Page 76 Chapter IV

Chapter V Page 77

Chapter Five

Resource Control

Resource control in a virtual memory manager is very tricky. On one

hand, page creation and deletion is a frequent occurrence.and must be handled

efficiently. On the other hand, maintaining the entire file system hierarchy

of directories and quota cells in a readily acce•aible state is simply infea­

sible because of sheer nwabera. Therefore, to perfo.rn reeource control, given

the policy constraints, a subset of the file SJ'Stea hteracchy (those directo­

ries and quota cells currently receiving the moat usaa-) should be accessible.

This chapter will model the desire& behavior of the reaource control part of

virt~l memory management using two type managers.

PAGEMENTs are a new kind of object, in the senae .t.hact t~y do not fit

immediately into the jargon and structure of Multics. In structure, PAGEMENTs

closely resemble segments. Tiley are, in essence, active segments with page

tables. In chapter six, active segments without page tables will be dis­

cussed. Since our task is to separate the functions of the virtual memory

manager, PAGEMENTs may seem out of place in this layer of the model. Tiley are

needed here because of constraints placed on the creation of pages. A page

may be created and added to a segment only if three conditions are met: there

is quota in the proper quota cell against which the segment is charged, there

is space available on the proper physical volume to hold the contents of the

page, and there is room in the segment for a new page. Because of the third

Page 78 Chapter V

condition, which is impo-act: by ehe resource centrol policy, re90urce control

must be aware of the structure of segments.

QUOTA CELLs are ifltl"od'11ced as a formal type to hold those elements of the

quota cell tree which gre CU'lTeittly in use. 1he· remc:tader of the tree is

maintained by the file S"ystem-. QUOTA CELLs· have a :similar. relationship to

quota cells as PAGE COllPl'A:ft&s have to pages·. To cpeait reu(le, both PAGEMENTs

and QUOTA CE-LLs are A:/P objects ..

nte idea of pa:rti'tioaitlg ltlillllU!)Ty obj ecta &to active and inactive elements

because of constraints Rt_.. of'Uen. Orte e11..,Ie 15· ,.:IM4n1 some pag~ in

primary metnory while ta re« •~• ;i,a sec'Ondllll'y ra~ The eonstrabt is the

size of primary memory.. ~r e'X:antt>le ts" ~ve .- btact.ive segments (see

chapter t:wo). The cOMJa'attn, hr·e. 1-• tke ·~ .elif •i.rt:ucl meinoi:y which can

be devoted to AST entrie'.1h Janao,n; (197•6] d-1.seue:se:.• ehe nature· aod advan·ta.ges

of this idea, a·S aipiplid Cb fJb'•J« u and type ~ ..

Chapter V Page 79

5. l QUOTA CELLS

A QUOTA OELL forms the cost center for the stowage accounting system.

For accounting purpos~s, QUOTA C!LLs help maintain records of how much storage

was used over some period of time by a set of aegaents. For: ruource control,:

the unit of account is one page, but pages are g-roupecl -t:ogether- into cost eea­

ters at the QUOTA CELL layer. At this layer, pages are aggregated into

PAGEMENTs and entire PAGEMENTs are charged ag-eia.st ·a nagte.."Qt.JGTA. CELL.· Thia

corresponds to the Multics policy that sets of aepenta are 'Charged against a

single quota cell. Al though it is possible to- perai.ti · the Jfa'g'U of a PAGEKDn'

to be charged against different QUOTA CELLS, no --~in:s:ful -use for such gener;.

ality has yet been found.

QUOTA CELLs are A/F objects, where the number' of QU&'!A ,C£LLs available is·

liaited by the amount of memory given to ehe, QUOTA CELL~ for storage of

components. As rith PAGE CONTA.DlERs, QUOTA CELLil, are,.A{ J, i>b-jec ts because a

single QUOTA CELL can be reused indefinitely -to bo.Ld.; ·di.fieTent quota cells, as

the set of most-used quota cells changes.

5.1.1 QUOTA CELL Attributes

QUOTA CELLs have £our attribUtes: namet -frame qu~, frames used,. and

time-frame product. The name of a -QUOTA CELL servea to·cdi&ttt\guiSh it from

other QUOTA CELLs. The frames used attri"bute is a ,~dgative irtteger ·which

represents the amount of storage (number of frames) currently allocated to

segments and PAGEMENTs which are charged agaiast tfl-Ht QUOTA CELL. The frame

Page 80 Chapter V

quota is a non-negative integer which acts as an upper bound oa frames used;

the value of frames used may not exceed the value of frame quota. The frame

quota and frames used attributes are primarily used for resource control. The

time-frame product is used for accounting purposes. The attribute is auto­

matically maintained by the QUOTA CELL manager and is the time integral of the

values of frames used siace the value of the time-frame product was last reset

to zero.

It must be stressed that the initial conditions, when a QUOTA CELL is

allocated, are very impo,rtant. This layer of the virtual memory manager is

not sophisticated enough to handle resource control all alone. This layer

provides a sort of cache for quota cells already existing in the file system

hierarchy [Janson, 1976]. The values in a QUOTA CELL simply reflect the val­

ues of the file system quota cell which it holds. These values are based on

the status of all segments in the file system and not just the subset of

active segments. This is why a QUOTA CELL must hold the quota and frames used

for segments which are not even active.

5.1. 2 QUOTA CELL Operations

Six operations can be performed on QUOTA CELLs. The first is allocate

(quota, used, time-frame_prod.uct, name). This selects one QUOTA CELL from the

unused pool, sets the values of its frame quota, frames used, and time-frame

product attributes to the values of quota, used, and time-frame_product,

respectively, and returns the name of the QUOTA CELL. This operation will

fail if there are no unused QUOTA CELLs available for allocation.

Chapter V Page 81

Conversely, QUOTA CELLs may be freed. The free operation can be written

as free (name, quota, used, time-frame product). 'lllis returns the specified

QUOTA CELL to the unused pool and indicates the final values of its frame

quota, frames used, and time-frame product attributes. If the name argument

does not refer to an allocated QUOTA CELL, the operation will fail. It is the

responsibility of the file system to merge the output values into the file

system copy of the quota cell.

The frames used attribute of a QUOTA CELL is the sum of the frames used

of all segments and PAGEMENTs which are charged against it. Since segments

and PAGEMENTs can grow and shrink in size, an operation is needed to change

the value of frames used. This operation is change_used (name, quantity).

The change_used operation will fail if name does not refer to an allocated

QUOTA CELL or if the result of changing the value of frames used by the value

of quantity would be less than zero or greater than frame quota. Most of the

changes in frames used occur because of actions by the PAGEMENT manager. How­

ever, if an inactive segment is deleted or truncated (shortened), the attri­

butes of the proper quota cell or QUOTA CELL must be updated.

Most of the time, the storage used by segments is not being charged

against a QUOTA CELL. Instead, the storage charges are accwnulated by the

file system at a higher, more static layer. Periodically, the accounting sys­

tem executes a billing routine which counts the values of the time-frame prod­

ucts, resets them, and prints bills for users. During this process, some seg­

ments will be charging against QUOTA CELLs. Clearly, the accounting system

must be able to extract these charges from both quota cells and QUOTA CELLs.

This is done by providing the operation reset_time-frame_product (name,

Page 82 Chapter, V

product) • This retri:e:qa 'C:he current value of ·the .pre.per titne-frame product

attribute and then .rese.M .•the value' to n~oc..~·' 'it~~~ cbu'~es will start to

accumulate again at tha.:. tt.M<'&lld eo11tinae uacil .dle product i8 again reset.

The operation will fail lf the ,,....·argUDell~ ,4099,_,,.. ~e.praaent an allocated

QUOTA CELL.

The fifth QUOTA CBLL operation allows a 11884.' to :tr:ansfer frame quota from

one QUOTA CELL to another. The operation is move_quo:ta (sowrce,:_name,

target_name, quot•-~"")-•. 'Dae val'.ae o:f.cltl8ta:....;cp!IOttty aua~.be a non­

negative in-t&ger. ·niis .11~ will deoreaee·.tee ~: .. tpOtll of the , ·

source name QUO'm: ·cm. Of' dale . .-t gi.V'911 :in . .-a_••MJ..t,ydl-nd. incce~n• t:be

frame quota of .the ·timget;.;,......-e .f,}UOU. CELL by;~ _.., ~t.. 'J.be, 'reau1t of

this operation mWtt le-. die 111DW:1le_;_naae and .tle':ICj..'1UUIHl; QUQT,.n,CElJ..41 c-onaJ..~- .

ent '(i.e. O ~ .fitames ·u.d ~ ···f:mare quot•). 1.l\ltl,e~i:Pn . .cwJ.'1.l.:fllU. if

quota_quanti•t.y is ·'ftel4'tilve., '.1."f 'die result 't«DIW a-.. e~ jJJQT',A. CELL inocm>­

sist-eftt, or if ·e1:ther ~...:.~ nr· ;t:BJ:get,.;,;.~·...._ J:aoJI indttat!e an dlo­

cated QUOTA CELL. 1ld•·~~- 'is cd.:lea· :b¥' dlec •% ert suppart! l:ayer

described in chapter ltd&.

The final Q00TA .Ca.lo :QIM!~Gi i~ .a btt cC~eJi,.. · lt :is

move_quota_U8ed (110Ur.ce_Ql.-e .. , ·target_Mll&. tfUatraJ_qdml;tUy, used....,x:pSantity). · In

function, Lt is quit·e ~ ;t0· rl\e mov•~41at:ra; -Qpemlt.ion., e~cept t;hat it a>lSQ ,

can trans'fer amounts. •d'f ~r.-a used' f·r-ma the ;llQ\droe.;..;.'l'lame QUOTA ;GELL to .the

target_ name QUOT:A CELL. :As ~haielre. ·source_.18Aii ""target_nQPle .. aus.t -refer to

allocated QUOTA CiliLLB am:l "lQdtla....,.-.ntity ... aml 1'J1811~~ ·~ 1be non- . .

negati:ve -integers. If ooatpl-etion '1l'f the aper111t:ion. ~d :Lea~e any QUOT>l GELL

inconsistent; the <qJer&ti<111. '1'ill. :fail. Thi.s e.peraciob is desig1't!d to Mlp:

------ -------~·--------~---~---~" -~----

Chapter V Page 83

change the quota cell against which a segment or PAGBKSNT is. charged by per ..

l forming the necessary transfer .of frames used. Por • ch4nge in the QUOTA CELL
I

attribute of a PAGEMENT., this oper;ation is eaU.44 by the c™1ng~-'-Ql.JOTA_CELL

'operation of the PAGEMENT '(llanager (see s•ctiqn.5 .• 2.2)'"' "'Thi~:J)peration can

also be called by the segment, a11pPort layeJ: of .,hapter., silt• .

Why is this operation so complicated? On-1,~~ fui;:face, it, we>uld seem that

this operation could be handled by \laing the. si11pla.r ttQVe_quota and

change_ used operations. Conaider Figure V-.l• ,; S.pea.t.»~TA. ~s currently being

charged against. QUOTA CELL 1. The user want1l :te, lliave ~'tt.· ~barge against

QUOTA CELL 2. No sequence of move_quota and c.M,p,ge_usecl.·.Ope\"ations will

QUOTA CELL 1

quota = 15

frames used = 9

·nQUOTA CELL 2
quota = 5

. · friuaes ·used == 0

sf!pent·DAtt

QUOTA. g:LJ,., ~-...; '!' ,9ll~~ CEJ,L 1

length • 9

Figure V-1 Moving Quota with Segments

Page 84 Chapter V

effect the desired chal\g:e without either forcing one of the ~TA CELLs to be

inconsistent or using a dttrd QUOTA CELL ae aa ~iAC!el!'IHtcU.ate. On the other

hand, the operation can he perfot"Med by move_~ta.:.:,usad (QUOTA CELL 1, QUOTA

CELL 2, 9, 9) and change ~UfJTA C~LL 'O>ATA, Qllt?A 'GILL 1) (see section 5. 2. 2). - -
The move_quota_used opeTatton is so compltuated 'because QUOTA CELLs are

only the bottom piece o-f the resource control aectY.ni.•· ·The policies of

resource control are deftl't.'ed on the qUOta cell 't~ee in .d\e-.file system hier-

archy. In order to impleatlll'lt ttte· policies 1.a the lewer resource control

layer, some complicatiOll i• required·. Thia: operation se.eu the best way to

implement the policies •ta.t ,.et 111n;1111i~ ~U:_<;:ad.'911:,. A:Ltec.nativ.ely., the

functions performed by '1IOY'e_quota_used could he handl-ed exclusively at some

higher layer. This, hoveve:r, would force a pcrtentWly large n-umber ·of seg-. /. -.

ments and quota cells to be deactivated to allw tbe O!peratio\1.. The amount of
..:, , . . - ·~ " ;

time involved to accomplish the deactivatio·ns and .t.be potential delays forced

on many processes make Stieb a mechanism unacc-eptAble.

5. 1. 3 De pendenc ie s in the qtJOTA CELL Manager

The paging manager is implemented at a loii layet: of the system to provide

PAGE CONTAINER objects for use by higher layers. The QUOTA CELL manager uses

SUPERVISOR SEGMEN'Is for tti. storage of componef:tts, maps, and programs. SUPER-

VISOR SEGMENTs, in turn, are inade up of PAGE GQWtAINERs requested from the

paging manager. 1b.e Q001'A CELL manager mus-t be given some amount of memory in

SUPERVISOR SEGMENTs at system initialization but should rarely, if ever, need

more. Those rare occasions would be necessitated by a desire to improve per-

Chapter V Page 85

formance, and should be handled by dynamic reconfiguratio.,, •l'ather than .dJ,.ow

the QUOTA CELL manager to directly request more SUPERVISOR SEGMENTs. The

interpreter needs of the man•• can be tl&ti--ffi.ri lJ}\ -~ ,sama low layer proc­

essor au.ager that take• care of the pa.giag ~er:,.,~. f.nvir.p~nt depen~•cies

must be met by a more sopb.isc1cated'1·t'ype -.anti~ .~~ :t~_· O{le which serves the

paging manager. The reason for this is -st.mp~;.:, .t.he .. ,QPOtA CELL manager ~e-_ .

cutes in a SUPUVISOll SEGKim:ed env,iroD111ent. iwP~~~ tJl.9t·- paging, manag~~ _ -eJCe­

cutes in an unpaged environaent. The eavir~ent~ t~. 11anager needed is the

SUPERVISOR ENVIROtlMENT manager which .was de~r~d hlf~:f~y in chapter ·four.

---- -~----·------~---··---- --~·--------··--

'" ,-

Page 86 Chapter V

5.2 The PAGEMENT Manilg.e-t

In Multics terms, MGBWE•.a rep~-t .:ti..ve •111 Rl.tS' 11h.ich are currently'·

arrays of words. rather tltan sets oC·fi'lfe~lengdl.·PAGB•CON:rAINMs •. PAGE CON-

TAINERs are allocated freer ehe paging· mattagie~ ta· PAtGBIUDIT• and· are ord-ered

because of three of the potky constraints in page c::treati:on: pages may be

created for a seg111en.t: a.n:ly if there is room in the s-apen·t for them, all pages

of a segment must reside' pal:'manently on the same ph;yJB(.'Cal volWRe, and all

pages of a segment: musit: lN charged against the same' ~ota cell. Given simpler

policies, PAGEMENTs' wou:l~ not 'be needed. in resource. tftmtrol.

5. 2 .1 PAGEMENT Attri·but:es

PAGEMENTs are som~ ClltDpl.·ex objects and h&ve: twelve attributes. They

are: name, size, leng.-th·., .. frames used, QUOTA CELL !Mme, used flag, modified

flag, physical volume, c-ore count, page table, page· table modified flag, and

data array. PAGEMENTs· can h'e· aJ.:lacated only in th:e d·isc't'ete sizes of 4, 16,

64, or 256. The size refers. to the maximum number of PAGE CONTAINERs that can

be elements of the· PAGEMEm: {Le. the number. af PTW" s in the page table) • If

a user wants to gr.ow a PAGEMEN'I' beyond this size, a new PAGEMENT must be allo-

cated. Fr.ames used indicates the number of PAGE CONTAINERs \fhich have been

Chapter V Page S7

allocated to the PAGEMENT. The length corresponds to segment leng'th, dis­

cussed in chapter two.

The PAGE CONTAINERs used by PAGEM£N'l's are ch&tged agairift,a QUOTA CELL.

'nle QUOTA CELL name attribute irtdicat!es again&t' '8i.ch QUOTA CltLL ,the PAGEMENT

is being charged. 'nlis attribute thus incUe,atea 1'hi:cb;Qlj()'U., CELL' s .frames

used attribute must be chanted when tll~ PAfiMEM? growit 'Or slu:inks. As with:

PAGE CONTAlNERs, the used and modified flags teH whetnet ithe PAGEMENT has

been used or modified since the PAGEMENT was allocated or ,since the flag has

last been tested. All of the pages t:n a PA.GllMElft 111.lSt have homes on the same

physical volume. The physical volume attribute holds the name of that physi­

cal volume. If the PAGEMENT grows or shrinks, homes must:1be allocated or

freed from that physical volume. The core count indicates the number of pages

of the segment which·are currently in prililary tdaory. It is used by the seg•

aent deactivation algoritfua. It is calculated;by,coun~tilg t:ne number: of PAGI

CONTAINERS whose core flags are set.··

A page table is essentially the map of a PACIMDIT• , It indicaties which

PAGE CONTAIN'ERs hold the inf&ttnation in the PACEMEWr'a 4.ata array. Enitries ia

the page table may either be page• homes or special mill vehies. A null value

indicates that the corresponding information in the data array is all zeroes

and, thus, needs no PAGE CONTAINER. to store it. The: page table modified f.lag

indicates whether the page table attribute.· has. iehataged siiu!e- the PAGEMENT was

allocated or since the flag was last tested., the last· &t!tribUte. the da,ta

array, holds information. tt appears as a lineftr· arr-ay· 1cf words'• any of whi-ch

may be referenced whenever the PAGEMENT is a:ll~atedi.

Page 88 Chapter V

The page table is e:40,cral tQ- · t~ PA,GStlE~ ~O.JlC•'*-· 1-~ p~:yides enough

structure to groups of PAGE COHTAINERs to support a. variety <?f s,ophietJcated

resource control p<>li-ci1111h n •l.llO. Ut..s ~ ~tcp,~~ ,ax,i4ti0i& Muiltics

view of a segment. Jin:all!!.- •IK&~lMI P8i81\ ··"~M :f\1'~ ~t,~~e ~sq11len.ta :l.s an

excellent way to ntinSmiM> fuaetmnal enr.~-.l~t . .ii. b~~~ a:a&QUrce co11:trol and

segment support. Ia r...,vce .. coatnl:. 'W8 .wt..Q ~.~~ .. a 11,iililpl ·~~t

structure on Which tao .buiW. Ia ffpteQ~ >f11Plt4'1:1 • '- sl:Laj.l &iee :f,n ~pter

six, several functions tnt&raet,·:te com11lex :;.. l:.J<vr~l.cUng ,paae tabJ.e~ i.n

resource control, tbe eemploit-J' ot .aepent -. .. ~l·rc• ;b' r•<t~cecJ ...

5.2.2 PAGEMENT Operatiou

Since a PAGE!mtr.r i• a. more· eomplic41t•4.. o;:Jee t 1 ~1,4 .f~E.;~YIU'AUEB.,

PAGEMl'RT operatiOCUI ace al# e. ceepU.t:4t.N • . ~i. Ur• j.._,~~ ~locate

operation. It can be written as alloca.te (si.~>- 1..-c~'"~• P~Sli....;.tabl~•

quota cell, .!!!!!!!):. ~ 1'M rize -..-.t t-.11.ift .~•ft~" f~ ,uffereat lfi~es

of P&GEMM'I'sr shouJ.d• M al~wt .. ,.~r• ar• ~, ~•4: pp~ls;. • pn.e for each

size, ,and the. operat.i.N., Mlll. •l~t 4 P~ ,fx-~,*-hiJ<l&N.11'9Pr~;.e po~l. Jb,e r'

other three input- arg.-t.s iait.iali~ t"' 1Nlll.~ el: ·~ 9f, ,tae attribuc,es.

nie values of the ot.hM'- a;t:tctbutes c•n ·l>e 4,er{iye,11tbAJ1a,i-h81!'• , F0-r exuq>le, the

starting vatues of.the~ f:lag :attd.~.Ml i..'9.il.'~"L;;~he,v.fil,_•of leogth

and frames us.ed caa ,be' dieteraBl.ed ;froa -tbe, tMtP ,ta~ y'fl\~ a.fa~tion i;n t,he.

data array is defincl . .to: k ,t;be-. inf.QIJ!dl.t.L• ._....,., ,:j.n ttbe.,?:~c~tv:.e homY'

listed in the page table. Th.it& pPeraiUQ1l gU;: ·fa-tl if t~e,, <f!J.• no free

Chapter V Page 89

PAGEMENTs of the proper size. In Janson' s software cache structure, the allo­

cate operation activates or encaches a segment" data. abatraction as a PAGEMEm:.

Conversely, the operation free (name, pt!yail&al Vfll•.-· page table,

quota cell, used flag .. inodifiei flag) free~ the . .PMmKW ~pec·ified by name.

'ftle final values of the physical volume, page :table, QUOl'A .CELL name, used

flag, and modified flag attributes are returned by ,the ,qpel."ation. Naturally,

the operation will fail if name. does not refer to. an aJ;.10011.~d. PAGEMENT •. This

operation corresponds to deactivating o.r decaching a· agtJeJl;t data abstraction

in Janson's structure.

It is important to streaa, here, that the attribut.es.-o.f a iAGEMENT, as

visible to a PAGEMENT user, are differeat froa t~ir ,~~,.n-.! representations.

In this case, the visible elements of a page-.table are paae ~s or null yal­

ues. Internally, however, the elements ar,e PAG:S CONTAl!l&a naD).e& or null val ..

ues. In other words, within the PAGBMENt Jllanager, page h@~s are represented

as PAGE CONTAINER names. The homes are ~seed :oa to tbe paging manager.

Similarly, inside the paging manager, aemi-null 1>4ge.s @f.~ ,hidden. When a

PAGEMENT is allocated, the PAGEMBlfl manager, in turn._ allO<lates PAGE .CQNTAIN­

ERs for those pages which have "hemes:. When th• PAGl!iMtllt is freed, the PAGE

CONTAINElls are also freed and the list of homes' iretnarnedrto the caller.

These tran$formations are important because the d'ffe~ent states allow a

segment to be represented with different dynaatc capabil._!Ues •. , In its most

static state, a segment resides.only in seco~dary tleJIQfY5 and its p~ge table

is in its VTOCE, which is also in secondary ·-~~· Al.most o.otlting can change

a segment in this state• bu.t. if the system 1,:rashes 9 ·.th• segment is very l:f.J.c.ely

to survive the crash. In chapter six. the next state •U be· pi-esented. 'Pie

Page 90 Chapter V

third state occurs when the pag~s of the segment are in primary or secondary

memory and the page table is in primary memory. This state is represented by

PAGEMENTs. Non-null pages are held in PAGE CONTAINEils and are very dynamic.

They can move from secondary memory to primary memory and back again quickly.

Null pages have no homes and, if referenced, must be created. In the third

state, a segment is more likely to be damaged by a system crash. By dividing

the dynamics of a segment into states, different, useful information contain­

ers can be provided which abstract the important features in different layers.

Also, low level implementation details can be bidden from higher layers. The

file system does not need to know and cannot be helped by knowing the mechan­

ics of moving PAGE CONTAINER.a from secondary memory t:o primary memory.

The most frequent PAGEMENT operations are read (name, offset, value) and

write (name, offset, value). Both operations translate the name and offset

into a PAGE CONTAINER name and offset and call on the paging manager to obtain

or modify the value. If the page referenced by offset is a null page, the

read operation will automatically return the value zero without calling the

paging manager. The write operation, in this case~ will allocate a PAGE CON­

TAINER. This is done ~y allocating a home on the proper physical volume,

incrementing the frames us~d attribute of the QUOTA CELL specified in the

QUOTA CELL name attribute of the PAGEMENT, calling the allocate operation of

the paging manager, changing the frames used, page table, and page table modi­

fied attributes of the PAGEMENT, and, if necessary, changing the length of the

PAGEMENT. Then the write is completed. If no home can be allocated, the

write will fail. Performing either operation will cause the used flag attri­

bute to be set; performing a write will set the modified flag. Either opera-

Chapter V Page 91

tion will fail if name does not refer to an allocated PAGEMENT or if the off­

set is not within the data array of the PAGEMENT.

The write operation contains the essence of the resource control mecha­

nism. When triggered by a quota page fault (see section 2.2), the write

operation automatically creates pages. Other layers become involved only if,

for some reason, a page cannot be created. This is an elegant method for

resource control. Unless a page cannot be created, resource control operates

quietly and smoothly, but in a well-defined manner.

Three predicate operations exist to return the values of the flag attri­

butes. They are: usedp (name, flag), modifiedp (name, flag), and

page_table_modifiedp (name, flag). If name is the name of an allocated

PAGEMENT, the operations will indicate the values of the used flag, the modi­

fied flag, or the page table modified flag, respectively. Otherwise, the

operations will fail. If the flag is set, the operation will return "true"

and clear the flag.

As an aid to reliability, the get_page_table (name, physical volume,

page table) operation is provided. If the name argument represents an allo­

cated PAGEMENT, the operation will return the values of the physical volume

and page table (list of homes) attributes. This can be used, for example, as

follows: Periodically, a higher layer manager can poll the PAGEMENT manager

to see if the page tables of any of the PAGEMENTs have changed. If any page

tables have changed, the higher layer manager can extract them and store them

in a safer and more reliable place (e.g. in their VTOCE's). The values of the

length and frames used attributes can be inferred from the page table.

Page 92 Chapter V

Two operations allow for the manipulation of the QUOTA CELL name attri­

bute. They are get_QUOTA_CELL (name, cell name) and change_QUOTA_CELL (name,

new_cell_name) • The first operation simply returns the current value of the

QUOTA CELL name attribute. 'nle second change9 the attribute's value, for rea­

sons discussed in section one of this chapter. As usual, these operations

will fail if name does not refer to an allocated PAGEMENT. To preserve the

consistency of QUOTA CELLs, the change_QUOTA_CELL operation calls the

move_quota_used operation of the QUOTA CELL manager (see section 5 .1. 2). The

call is made to transfer the proper amount of frames used from the old QUOTA

CELL to the new QUOTA CELL. Note that during a chattg~ QUOTA CELL operation,

the PAGEMENT manager must inhibit any operation on the specified PAGEMENT

which would change its length. Otherwise, the value of frames used might be

inaccurate.

For the purposes of this model, change_QUOTA_CELL will always call

move_quota_used with the values of quota_quantity and· used_quantity set to the

value of frames used of the PAGEMENT whose attribute is being changed. In any

case, the value of used_qua:ntity must equal frames used. However, if the tar­

get QUOTA CELL has sufficient unused quota, the value of quota_quantity could

be less. Operations could be introduced here which would take advantage of

the unused quota.

For the convenience of the segment deactivation algorithm, the

get_core_count (name, count) operation is provided. Given the name of an

allocated PAGEMENT, it will examine the values of the core flag attributes of

component PAGE CONTAINERs. The operation will return the number of core flags

which are set.

Chapter V Page 93

The truncate (name, length) operation provides a relatively efficient

method of discarding unnecessary pages. If the length of the PAGEMENT is

greater than the value of the length argument, the PAGEMENT will be shortened

by freeing PAGE CONTAINERs off of the end of the PAGEMENT. If the length is

less than or equal to the value of the length argument, no change will occur.

This operation is equivalent to writing zeroes into the relevant PAGE CONTAIN­

ERs, but is less time-consuming.

The final PAGEMENT operation is also motivated by efficiency considera­

tions. The operation is move_contents (name, size, new name). The value of

the size argument must be greater than the current value of the size attri­

bute. This operation says to allocate a larger PAGEMENT, of the size speci­

fied, move the contents of the PAGEMENT given by name into the new one, free

the old PAGEMENT, and return the name of the new one. This is equivalent to

freeing the old PAGEMENT and allocating a larger one for the data array. This

operation is faster than freeing and reallocating because the component PAGE

CONTAINERs do not have to be freed.

Move_contents is an optimization towards quickly growing segments. The

corresponding operation in the current system has proven effective because

segments grow frequently. A segment grows because some process references a

page outside of the PAGEMENT length. Usually, the page can be created immedi­

ately and the reference restarted. Sometimes, the page is also outside of the

PAGEMENT size, which requires a larger PAGEMENT. The move contents operation

speeds up the allocation of a larger PAGEMENT for this purpose.

Page 94 Chapter V

5 .2. 3 Dependencies in sthe •PflGBl!fllln' ·Man•ger

The dependencie-s G.f t1'he PAGEHENT manager .are •attt;J.y ·"the same .as th&

depentlenc1.es of the ·QUat• ~·illaDager. '.81JPavl8Ql;t~• are ua&d for the

storage of components, -.., ;~ ;prog-ra'ltlS·; ·tbe· '.low •er prece&Sf.lr manager

provides processor ·resource&:; and ·the 'SUP.BIW&SCtl. ;~ manager struc­

tures the naming enviroomeat. 1'he difference is dlillt·,1tthe :Pii0£MENT manager

also dl!pends on the .QUOl!'<A ·QBLL 9Ml1Hrger thr.otsi\1 .Uhe.~e_:.\ised artd

move_quota_used oper-atiODa..

Because of har~ ':l'aatT'ict1ona, the ,,_. •~ ,of· 1a PAGEMBNT must be in

primary memory. ''!heref·~., «p&g-e wbi-ee ar.e «&pt· tin .n 'Urfl\Ml.8~ •pent, ·like <

those used to imj)l.eaaen;t ;the 111t11.IJS man.ager. :at otttMtlr ¥AGEHBNT componettt;s can

be stared in SUPBRVIS.OR. :UCl!IBll'!il ~

.. ~. --. ""'

Chapter V Page 95

5.3 How PAGEMENTs and QUOTA CELLs Fit Together

'ftle PAGBMER'I., anct QUOTA , C&LL managers mut c~per ate . closely to provide.

the"aiddle layer of the virtual memory maa.ager. il~lwugh. each supports one

type, the abstraction desired is produced by a f,t.1sj_~,,of thee tWQ• ·

Two obvious connections between the ll&ll&gers.are,that tn-PAGEMENT man­

ager calls the cbange_uaad and move_quota_WJed.()fet'aUone·of the QUOTA CELL

manager. The.ae calls consti tate depeadetleias ,of ~he. ,if A~ aana.ger on t~

QUOTA CELL manager.

A more important connection has to clo wlth ia.tti.al cot>Alitions. 1£ the

managers are given conect data on which to' op&rate• one .can be- conv:f,nced. t¥t

the correctnes& of tke data will. be irre•uvM.. If, bo111eV•• a, h:i,gher layer,.

e.g. the segment support,. paasea .f•ulty or ulieiou.ly eontrived data, the

results at the higher laye.r are uupred··ictable. "ae. burden' of coµsistency,

here, rests on the higher la,.z: manager.

Page 96 Chapter V

5.4 Resource Control .ad PAGE CONTAtME&s

Two final itemts must lte iiseussed. lo.Ch• the -Mnd&dnaanager and the

SUPERVISOR SEGM"5T !Ni_. ._. fAGI .. COlllA.IJl.ll:9i,.t•· -...-.nt differut kinds of

segments: the PAGEME1"1' tMllagk u•e• tl\ea fo~ ftl•! 8'8tea" se8'1en.ta available

to users, and the SBPE&¥lsmt ~ aeager ..._.,..._:.for .SUHitVlSOJl·. SEG­

MENTs. The propeT way to •1*¥ tats is that< P •. C~IllUa .. a~e partitioned

between the two mao.a,era. "lloW·f.o we< avod.iuc1aftari•; .a'81n wicll PA.GE CON­

TAINER is allocated for W:ich. manager? One _,., is to rely on a.c~eful imple­

mentation so that t\~1J.it:her ••••Pr tr,.s to-~ iD91ilY~'1' or malicU;>usly use

the wrong PAGE CON'l'ADJD .. · '?ht• •lution "111"' .,.. ••. Mit .plu:e:s a larger burden

on. certificat'ion- proc~ to· guar~eo eeneectne..._ ··A aore sophi:ati.cated

soluti()n would' irw~lve t4fC4.ag. -each allb'Cat.ei ft.a& e.t:AIWu.: 'llJiith. t'ne name of

the manager for •ich tt ts att:ecate''... !1t.W, ttlle ...-.. tMl:ll&'!Jet'' .could check

each operation to aake ~e that only the pt:O.~ -er~ t& .. perf.o.rming it.. In

lmltics, this solution can only prevent iaadvertent Qifle of the wrong PAGE CON­

TAIBER because there ue no enferc.ed protection h•r~ters in this layer of the

system. Any malicious ,._.TIUB can subvert sueh c.onnstency checks. In a more

advanced architect1;1z:e, ,.rhaps Wiiing domains, • ehecking m.echani• could pre­

vent all incorrect usas.

A perceptive readeJ: uaay bave noticed that the aodel has departed from the

Multics system because aaother 14,.r of indirection has been added to the

addressing mechanism.. In Multics, references go directly from the SDW to the

PTW to the proper word. In the model, they go from the SDW to the PTW to the

paging manager to the word. the difference is that in Multics, the physical

Chapter V Page .97

location of the page .ia kept in the PTW. I~ t;h~ .m~•l• .ti\)«f ;,Phys:t.cal lo(!•tiQn

is hidden w.1.thin the pag~g uoagel'.. 'l'h~fil ·'!'8~ 9-one to a,l.l()W ~tlf! disenta111~~

ment of. the resoul'.ce control ~d <iem~d. p~g~g~f"'-cURllB~ 1"'JiY; inp:o~u~~ng an

extra t~anisJ.ation lay~r ... we can eee. 111uch ·~~~: .. t;J.etJi~¥;~.t·,i~;;!~Oing on iJleid•.

of the virtual memory.man~ger.

In Multics, when a aepeu.~ .is 4cti'fateci~ '~ page tab~, is. allocated and a

set of PAGE CONTADtlll• i.• allocated a.~ ... tlole ,. u.-e, ·! HQ1118v~,;~ th~ s~;e of

the set depends on how many PTW's in the page table are null. The~efore. the

set of PAGE CONTAINERs on which demand paging 11ay operate can change arbi­

trarily and without any explicit notification of the paging manager. To han­

dle such arbitrary changes, the Multics page control becomes quite complicated

because it must frequently check whether its set of PAGE CONTAINERS has been

changed. Using the model, we can see that the Multics PTW serves two differ­

ent purposes. The different purposes are masked because much of the resource

control function is performed by page control. In the model, the difference

becomes clear. For resource control purposes, the PTW represents the name of

a PAGE CONTAINER or a null page. From this, resource control can determine

the values of frames used for PAGEMENTs and QUOTA CELLs. For demand paging,

the PTW holds the physical location of the page so that demand paging can

determine where pages are. Hopefully, a future system designer will realize

that in the virtual memory manager, an engineering decision must be made for

either addressing efficiency or clarity of structure. The inherent complexity

of the system is strongly affected by his choice. 'l'he dual function of the

PTW again points out the independence of the type manager approach from the

boundary between hardware and software.

Page 98 Chapter V

In section 4. 4, dlscusaion touched on the iesue df how mllt'ly PAGE CONTAIN­

ERs there should be. G.iven the fact that the PAGBH!RT taanager ean never allo­

cate more PAGE CONTAINERS than tt has entrf~ls in Pale t•bles, a:n upper bound

on the number of PAC! COM&nt!l• needed' fer 'the ayttem can be cOt'll.tJuted. •That

upper bound is the number of entries in page tables plus a number dependent on

SUPERVISOR SEGMENTS. Sine~ the storage require&ent.•Of 'SUPERVn;oR SEGMENTS

are quite static, ane can detel'1line the tt.:unber e.f P'AQE CeNTAtffgRs needed for

them by counting.

Chapter V Page 99

5.5 Summary

To support sophisticated policies, the resource control layer of the vir­

tual memory manager cannot operate in a vacuum. It must embody enough knowl­

edge about virtual memory to implement the policies, but should avoid exces­

sive complexity. For Multics, we have designed the resource control layer to

be the cache of a software cache structure. Thus, we can maintain the most­

needed elements of the file system hierarchy in a readily accessible state,

and keep track of required information in a natural form. The internal con­

sistency of resource control will take care of itself if no higher layer

attempts to subvert it. However, the consistency of the system as a whole

depends on higher layers feeding the proper_ information to resource control at

the proper times.

Page 100 Chapter V

Chapter VI Page 101

Chapter Six

~gment- Support

The segment support function -of the virtual memo'ry manager ~roups pages

together to provide the concept of active sepetitfi. ·· :htt..a'*le of the MlflUcs

resource control policies, some of this work:i• alr;eady a<:C'OlllP'lished through

PAGEMENTs. However, PAGEMEN'rs are not active sel'**'t•~ so further.·extension

is necessary;.

In contrast to chapters four and five, we will not attempt.. to model seg­

ment support. The reason is tha.t a 1lll.odel would ;coaceatrat& on tlte interface

between segment support· an4 higher layers. ·ftnce'·tne'.hi:gber layers have not

been analyzed and disseeted to the same degree as 'Che virtual naamor;y manager;

a presentation of the interface would not reveal- much. abOut the proper work-··

ings of segment support. AHro, the reader would 9et 'li>Ogged ·ctewn ift . technical

details for which we have not presented tl\e 'prepel'~cotttext.' Instead~ this

chapter will be a general discussion of active se~ts ·and how to supervise

the resource control layer.

Page 102 Chapter VI

6.1 Active Segments

Active segments are be.st thought of as an encached form of file system

segments. They are the first step in allowing words of memory to be refer­

enced. Because there can exist a very large number of segments in the file

system, it would not be faasible to maintain a single, unified data base large

enough to keep track of th•m all. In addition, since so much would depend on

the correctness of such a data baset one crash could irreparably damage the

system. Therefore, necessary information on segments is distributed among

several fragmented data ba.es, each of which is manag~ably small and rela­

tively safe from the effects of a crash. When a segmeot is activated, this

information is copied into the AST. The information is not deleted from the

other data bases, so, in the event of a crash. the system can usually recover

without the loss of any il'lformation.

In the current syste.11, PAGEMENTs do nat exist. 'Ot.eir function is sub­

sumed by active segments. Therefore, it is not immediately clear how to

relate PAGEMENTs with active segaents. The first ord~r of business in this

section is to discus.a the nature of the information in the AST. Then we shall

see how the information can be divided among PAGEMENTs, QUOTA CELLs, and

active segments. Finally, we will discuss why, independent of the resource

control policies, the PAGEMENT concept is valid, and simplifies the task of

segment support.

Chapter VI Page 103

6.1.l Information in the AST

In each ASTE, the information contained consists of. five ~ypes. The

first has to do with the internal management of. the ASt _(thread pointers,

allocated flags, and the like). This inioi;m.,"'1;.:1.on depen4s. only on specific

management strategies and need not con,cern us here. Tne .second kind of infor-

mation determines the segment's context in the. file ayst~. Included in this

category are: a pointer to the ASTE of the segment's immediate parent (remem-

her, all parent directories of an active se~ent are act;\y~; a chain pointer

to an active brother's ASTE; a pointer to t.he ASlE of a son, if any son is
' '. '

active; and an indication whether the ASTE represents a simple segment, a

quota directory, or an intermediate directory. Thus, the ~elative position of

the segment in the hierarchy is maintained. This information is used to help

direct many operations of higher layers. For ex;amp.l~, it.can l:;ie used when

moving quota from a directory to its son. The operat:loq ()rigin_ates from a

call to the supervisor by a user. Using thi.s information, the fields of the

proper ASTE's can be modified.

The third kind of information is the quota cell itself. If a quota
i' .. .

directory is active, its quota cell is kept .in ,its AST.E~ Th,is is used to

implement the resource control policies and acc~ulate ator~e ch~rges.

Unfortunately, the space for a quota cell exists in every ASTE, to simplify.

AST management. Thus, since few ASTE' s repr.e~nt quota directories, most of

this space is wasted.

Fourth, specific information about the segment is kept. This includes

the page table, the various length parameters, used and modified flags, and

Page 104 Chapter VI

the number of pages of the segment which are in primary memory. As described

in chapters two and five, this is used for address translation, resource con­

trol, and demand paging. This is precisely the information which we have

placed inside of PAGEMENTs and PAGE CONTAINERs.

The last kind of infonnation addresses the problem that a segment may

have a different segment number in different processes (see section 2.2).

When a segment is deactivated, the segment fault flag must be set in all SDW' s

which are connected to the segment (Le. all SDW' s must be disconnected) • To

do this efficiently, the system needs a list of the SDW's connected to each

active segment. The list is maintained by the AST manager (segment control).

6.1.2 Splitting Up the KST

The AST is the primary data base for the virtual memory manager. The

information which it contains is used for all of the virtual memory functions

which we have described. However, we have carefully tried to disentangle the

functions so that they aTe clear.er and easier to understand. If this clarity

could not be extended to :tne AST, our model would be suspect. Fortunately,

this is not the case. The information can be neatly divided. The third kind

of information becomes the QUOTA CELL. A QUOTA CELL is allocated whenever a

quota directory is activated. Conversely, a QUOTA CELL is freed whenever a

quota directory is deactivated. 'Til.is may seem to be parallel to the current

system. It is, in the important sense that the QUOTA CELL is available when

the directory is active. However, this scheme has the advantages that it fits

smoothly into the model and it does not waste as much space in unused QUOTA

---------·---------~~~~ ---- ----- --· --­. ...;_ ',; ...

Chapter VI Page 105

CELLs. Further, by providing separate data bases for resource control and

segment support, we can feel confident that the t~ fUJlctions do not interfere

with each other or permit communication through some data base.

The fourth kind of infaf:IUltion becomes P-AGEtl&Nl:s ap,d J?AGE CONTAINERs. A

PAGEMENT is allocated whenever a segment is activate,d. , .. Ho~v.er, a PAGEKENT

may be freed -before the segmen.t is deactivate,P. This can be used, for exam-

ple, to allow intermediate dir-ectories _.ep be act~e, yet npt tie up valuable

page table resources. This makes PAGEKBNls mo.re u.saj>le, })eca~e, the process of

freeing one does not require the de.activation of a ~t.

The renu~inder of the .in~o~tion- stays witbin .:the AST_. The first kind

obviously belongs there b~ause it is c~ncer~, '4,~ A$'.t map.ag~ent. The

fifth kind must stay in the AST because .segments may be_ 4,isconnec ted for sev-

eral reasons, only one of which is for de4ctivation (see section 2. 2). The
' ' ' '"

second kind shows what the real nature of sep.ent s~ppoi;:t_: is, Segment support

directs the operation of the virtual memory ma,n$ger. W:Lthin it is the infor-

mation needed to accurately decipher s.upervi,sor and us~r commands which are

necessary for operation of ttie system. In certain respects, the segment sup-

port layer acts like a traffic cop: Operat~ons may ~e receiveci at any time.

Segment support must coordinate the executio~o~ th~ operations to maintain

the consistency of the syste~. This may seem unuaual since we have already

stated that the role of segment support is to provide support for segments.

In fact, the two functions are the same. th~ oaly difference is in perspec-

tive. Segment support is like a traffic cop &tf,se~R ~y lowr layers. Higher

layers need know nothing of this. They only see that segment support performs

many operations related to virtual memory.

Page 106 Chapter VI.

6.1.3 Active ·segments 1lld1 '~11

We have s"tat~d ~h&1: ~8 lft'~ im!!Uttnt' 'tit; lldht! ~eiaource conn·ol layer

because o'f the pol:ic-il!-S '.£twol!1ttdi. '?his-, ht1~, ·i:·a "tiUl: ·the ;reilson 'for thei't'

existence. 'PAGEKEN'l's ·occupy ·an ;i111pctrt'lrft't 'piee ~t ·of the resourc-e

control pol iciH, ·al,"t~ 1'.be ~ic'ie'B itt'fl~ ~ 'lieruct\Jit:e. To operate

propetiy, the v:irtmd ~ry 1111Ml~ 't"~¥ele-<itJ~ftW.Mbt ':tc:tinds c:Of 1.nfonuation

which have d.iffererrt 1~'1'.llifew.. PAGE O~'lllBR9' bWe ~.'8hbI'test l·ifet:ime&.

One is n~ded ·only a• .l:Ullg :a.,. lf8ae ·1a ~'~~,• 'At the other end of

the spectrm, active ·u-attts 'mwe ··tlftldt 11~ l~ff4lfilia1n '1'hety are needed to

iaake all pages M ~801Dl! ...-U'tff;&O'CeB'S~e.. · ·\'JhWy itJlto 11dld 1dttectari-es ·'tl\ich .

are parerrts of 6ther --~,tiw -~ts. A l'JM'~ ~ way only be · 1Ustantly ·

related 'to any Hpent \1Jlett«g ll'~•d. 1?n 1t;et!IM!eit~' 1.tflWre i:s ·a ·ttC!~ for solile

information contlltrter ~ ~d ·1'tllgJte '•segittnita.. ._ tcntairrer · ·stun1ld al'lov· an ~

ent-ire segment to be 'N6er...a.., "b..st does-~t ~._ -~arerhy con·text of an

ASTE. That conta'iner ·f!ri ~-¥~MT. tf, n·'m ·~Jcurrttn:t ·•ystem, this

.tnfor111:ation conta:iftM '~ ·~ '4ft.;th 'the AS't, a:~e ta ·•riet, ·because ·tfu! AST

must have entries 1itrr '~:ts 'llot ~tng '.referWt!Ceatr"l'.f; ·mstt1Uil, -'PAGBMEH'ts

and acttve ·segiaen:t:s .tft :•:pe:rillMfd, 'the ·diffft'<ent ··fuaetHt•s that· thi!Y'·help

implement become cleareT,. ·,!.ftle 'P*OIMEMT m&l\q.r iJrs 'CUttmerne8 rith ordering

pages into segments •ntl · ait.'lO#l'nt 't!heill .to be "l-efdeneed. · ACU~e segments are

used foT interprebing lrpUCi'ottil acco'ldln.g ;fe;...tie ftle .,.Stem ·1ttnarchy.

Chapter VI Page 107

6.2 Functions of Segment Support

Segment support is entrusted with the respon!'ih~lity of maintaining the

consistency of the viirtual memory manager •. ~y th~s ~.·mean that segment sup-.

port must supply resource control with the .correct dafa and must return the

proper information to the file syste111. QUOTA CE~ ,.nd fAGEMENTs are .allo­

cated and freed at the exclusive direction: .of ~gment ~port. '.the caveata

noted in chapter five should therefore be a.pp,J.ied: .. to, sepent support.

Sever.al specific operations, to :which previpua chap,ter$ qave alluded,

occur w.l~hin the domain of segment support. First, segment support must allo­

cate and free PAGEMENTs. One •Y to do this WQul.d be :tP .have, available as

many PAGEMEN'Is as there are ASI&'s and· to. e~te, .~pent activation with

PAGEMENt .. allocation and segment de.activation '4tb .t~ fr-4eing of PAGEMENTs~

While conceptually simple, this ·s~heme requires..~.Y, Jt~ENT.~ that wou+d n,ot

often be used. A better scheme involves fa~. P.A.GEM,~s.. A P~GEMENT would be

allocat-;ed :whenever a segment wer:I' activatecLor, .. llben an active segment, which

does not corr•spond to a PAGEMENT, were refer~ by .a WJe.r ~ A PAGEMENT

would be· freed if one were needed fo.r some o~er a+,locaticm or if .a segment

"'1hich does correspond to a PAG~ENT. were cle~c tivated ! ~turall~, when freeing

a PAGEMENT, segment support should try t;o free. tn4t one which .has been least

recently used. Such a scheme parallels the .algorithms used fo~ page repl~ce­

ment in primary memory and for segiaant de~tiva~i,Qu. l;l:J.e parallel should not

be surprising, ~ince it is a c..9mmon one for the 1J!,41'l:~g-ent of a scarce

resource.

A second operation is the allocation a~d freeing of QUOTA CELLs. Again,

this could be simply accomplished by having as many QUOTA CELLS as ASTE's. Of

Page 108 Chapter VI

course, this, too, wastes space. A recent survey of ~he MIT Multics system

shows that there ar-t! abodt stro· quota directortes, a• -cmpared With about 1100

ASTE' s. A some~a t bett:er sdleme.. tlien, woul'! ·need 1mty as~ many QUOTA CELLs

as there are quota dtreeto~:. 1ht.•· 1110ul.-d ·~ ~-:but titia.t would ha-ppen

if a user created more quota 't!t$ectories? k ~ 1.adtiitious algorithm would

have even fewe.r QUOTA est.ta.. If segment-~ .~ .tt-0 altocate a QUOTA

CELL and there ar~ none 11tft ft:ee9 ..epe1u: ~ "Oeul'd deactivate a ·quota·

directory and i.ts .aa1t0e~a.ted ~ee, t:hus for~;• ~A. .CELL. 'nle fre-­

quency of forced de«:ti..-'lOll8 of 'qUOta direeigorrtn u 9trong1'y affected .t>y.

the total number · o·f QIJOt1l e'E'Lt.e 1r1ai1able:, it<> t• •t**8 shoUld be tuned cat'e­

f ully to mintmize it.. •Oo.e _,. '&r ·the sj"&'tea1'to ·.~ iit•if vould be to have

it monitor the forced deac:tivations ·of quota :cltrec~. ·If they occurTed

too frequently, segment «-..Po« couHl a•'•k the'~l -cBLL manager •J::-o perfot'm a

dynamic r.econfiguratio:n to o't>·t.n ·~'4! for~~ CELLB.- 'This, of

course, would re1!ft11re duLt a MW ~tat10. JN adlleit 1:0 t'hei -qu<JIA CELL iltan4g'er •

As part of AST ·-~ .. eepeat: ~ ..- ';ptov:ld.e ·1to :~'hl:tt k~i~

the facilf.ti.es to aet'i-..a.~ er deactivate segment• .. 'tct ·add or remCN'e entries

from the connectt!d sepaat: U:s:t.. Higher layeril'c~l'tbe:ae operation

accordi.t\g to the ra·te at which segments &Te r«~ed.

Segment suppo.x"t ha:r:adle.e ~nd· faults. As eK?b.ined in ·section 2.!, a

bound fault occurs if a .er tt1es to referea'l'!'e':;a<-pap 6·f a segment which is

outside of the bounds of the page table. If the .,.age is withi11 t:he aegment,..s

maximum length, segment support s.iaply calls the move~cont:ents operation of

the PAGEMeNT nianage.r. Otherwise, 'an approp.rlate cerrot message 11!J·;relayed to

the user.

Chapter VI Page 109

Another situation which must be handled by segment support occurs if the

PAGEMENT manager tries to create a page and there is no space left on the

proper physical vol Utile for another page home. The PAGBMENT manager informs

segment support of the problem. Segment support tri~s to relocate the segaent

on another physical volume in the same 10gic~l volume, because of the relia­

bility constraint that all pages of a segment must have homes on the same

physical volume. Segment su-pport must try to find another physical volume and

move the segtil.ent to it. If this cannot be done, the user must be inform~

that he cannot further grow the segment.

The above operations usually occur as the result of a segment, bound, or

page fault. A different class of operations handled by segment support occur

because of user calls to the supervisor. It includes such operations as dele­

tion of segments, creation and deletion of quota cells, movement ,of quota

among quota cells, and changes to segment attributes. The principal action of

segment support is to interpret these operations according to the directory

hierarchy pointers in the AST and invoke the proper operations of the resource

control layer.

For example, suppose that a user wants to change the maximum length of a

segment to X. 'nle maximum length is maintained and enforced by segment sup­

port, when the segment is active. However, segment support will also check

with the PAGEMENT manager, if the segment is associated with a PAGEMENT, to

make sure that the length of the segment is not already greater than X. If it

is, the operation cannot be completed.

Page 110 Chapter VI

6.3 Summary

Segment support is the guiding light of the virtual memory manager. It

must coordinate activities and maintain the context of active segments in the

file system. The operations for which it is responsible fall into two

classes: those arising from hardware faults during address translation, and

those resulting from user and supervisor software calls. The information cur­

rently in the AST can be neatly divided among the resource control and segment

support layers of our model.

Chapter VII Page 111

Chapter Seven

Conclusion

This thesis has attempted to model virtual mem,ory management in a com­

puter system. As part of the modeling ,effort, the methodologies of type

extension and layers of abstraction were used exteu11Jively. Type extenl!lion and

layering have a broad applicability to computer sy.•tct.ms. Several new lan­

guages use these ideas as a basis for the structuring of data. In this the­

sis, we have attempted to show their usefulo.eB;S in opei;ating. systems.. The

resulting model and specification is, at least on paper, simpler and easier to

understand. In the future, we can look forwa~ to hardware sup.port for

objects. Therefore, it is important now to develop, tile, necessary tools to use

them for the construction of operating sytitems. ,

The significance of this thesis is moz;e than that of a simple paper

design. The system modeled is not a toy. !f.ultics J.s. ~--large, complex operat­

ing system sold commercially by Honeywell. The use of a real system is impor­

tant to demonstrate that the issues involv.ed are .not ~.~Y academic. The basic

issue is simplicity. The task of proving ,the cor:r~t;p.~ss of a system, either

formally or informally, is much eaaier on a simpl,e S1:8tem than on a complex

one. Perhaps more important, an operating system is,.mai~tained by people.

Over time, the system evolves and the set _of people "10 maintain it changes.

The maintainers must understand how and lfby the system works. Because of

this, a simpler system is easier to maintain tb.an a complex system.

-----------------~~----------------

Page 112 Chapter VU

7.1 Results

Chapter two discussed some of the-problems found in the current Multics

virtual memory manager. Although the details are quite specific to this

implementation, the general prOblem of functtOn&l enbittlement is a common

phenomenon of l~rge sof't•te' prijects~ In· t:~pt:ft ~l\tee~ we coMidered.' tech•

niqties which con~'rcl coaplritty. 'lbe bye 'ilH'e --•&re-and hierarchical

structures. Then~ we· arg\titd tao¥ la,ettt\• Md· t~ e&.U.eion-~an tlelp: achieve-·

a modular hierarchy. ·· ·

A speci'flc model M dnsnd· pagi~~ aftil· ~cit eontrol •• presented in-·

chapters four and five. fti1J model ts e][pree9ef· lft' tera'.fi''Of ~ject•• \be

point of the model is t~; 'tl'e tmilft'lyiag fUtlc't!t:on•li~iO-f. the' virtual meaory

manager· can be preserved, t.ut ean· be iiapieaetri.a' Iii• 11Kmp!l.ec, 'ilbr• i.truct:ured

way. Although designed for !*Jlticw~·--tne madti· etroc'.:tura··i:S al>t>lfkabl!e tt> any

implementation of virtual iltt!ilabry·'b4a-caU8'e t-he bnlc pt>obl4!rllas' t'eMa1.a the same.

In chapter ai1c, Ve' <fisclssMd-· -t:li~ final laY*I' 'Of tbiit'tfodet·; · &egmeftt sup-'

port, in general tents. Thf! reason foT tlti1f -.Ote •..-rat pre9entet:t-on i& that

there is functirinal ft~eMftt' n.Otig·· ~''1tup'pott amf nigher layers of

the supervisor. A s'i•ple •b4~1. of tse-gmeta:t 9Uftpol't; dlnndt. be- 'deslgtied without

a detailed analysis and ~a!gn"af· the higmtr 'iayen,·\,h.fdt"was beyond the

scope of this stUdy. 1Qae of the ~rtant pdtntil i1l ~"the'sis is the im}>ac·t

of module dependencies on tne 'Cletdgri of a sytrteiat. ~ '·hi:et"archy of modules i.n

any system is defined b1 tboae d~denc iett. "

The structure of ~ flttal ll'Odel is given in figuri! VIr-1. 'l'he circles

represent type managers and the arrows are dependencies. The horizontal lines

Chapter VII

Layer 3

PAGEMENT

Manager

Segment Support

Figure VII-1 Final Structure of the Model

Page 113

show the layering. Fo·r clarity, dependeaci,ee· have been o~!-tted on managers

such as the SUPERVISOR SEGMENT manager. Although 80"1! of the dependencies

have been omitted, the entire d.e~ency graph caii b' drawn, and the graph

conforms to the layering· structur.e given in tae figure. Note that in the

given structu;re, the QUOTA CELL manager can.not be. placed in a separate layer,

because then there would be a dependency of tl;)e segment support layer on the

QUOTA CELL manager which would by~pass the PA~ENT llUlnager.

Page 114 Chapter Vll .

7. 2 Differences between Multics and the Modal. ..

A new model or implementation can difcfer fll01D an existing one in three
;·,,... "''~""' ' ,,

mentation is visibly different from thatt of the ori~·., An experienced user
,,,.)' ";..,9,

; l '~
can notice the differences, so the proP,l'iety of th~ functiotl!fll changes must be

?,; 1 ~) ' ' . ' ,,~ J
examined. Second, the internal at:ruc~re aad J6c ti,.!_..,Sei(be rearranged

~j /

without visible change. Such a ~ff;;~..._would be/vtaible only if the model

or implementation were ~med ln detai~,i. 'lb.ird'' and most subtly, the new
.,,

model or implementation can represent a. differeit perception of the functions
~·· . ,,. ' -·~ , .. ~. ~"" '''" , ... , .• _. '~~". '""''""*"' ,._- ~ ,~' >-c..·~"---•---- -·- .,..~·•·-• • ·--~~...,_,_-~_,.,-~ • ...,~~· ~-·'·· -~>-;,-.- ~· < ... -~,---""' "• • •_.•.;o.v-~,v·,.. "'

' '
that need not force any pby•ical structu~· ificationa, i.e. a logical

y(.r "·,

restructuring.

../

7.2.1 Visible Functional Differences

The model pr~ted bere 4efart&• fh8 "ttlle.>vt.U.1-i fuactionality ef ·

Multics in tw iiays. 'ate f!nt'Cfi'fr'e-rence 1*'~ttat1;9:~ liod~V• read.illg a

null page Wili' not iti-t'C11mit t'he pate >creatift'~'alta.·'~~· c~e te vi'.ff1.ble

to user~ thtough quot• ceila>aad t:hto'olh' ree.r11 1~•,.~.:fl6"·.fa'Glts:. ~;o.

ter two discussed the in'coi1.i•tencte's of cratfas!.~ ~···eft: t~ •. the

it remedies a basic flaw in the design of !'klltice. This difference does

require a change to the hard"8re, but several acceptable hardware modifica-

tions are known. While philosophically important, this difference can be

·'

Chapter VII Page 115

omitted from the model or from an implementation·. A more detailed discussion

of the issues surrounding the reading of null pages is given by Stern [1976].

Second, the model modifies t'.he external ·apphrance of intermediate direc­

tories. In !t.iltics, a count of frames used is mainta4.-ned ·for all directories,

whether or not they are quota directories. ·Por ·quota directories, this count

is identical to the count in the uodel, namely, tbe nuaber of frames charged

to the quota cell. For an intermedi.a,te directo~, the count is identical to

what it would be, if the directory were a quot.4· dir..ecttory. Therefore, in

~ltics, all directories have ·sorae "sort of a. qu'ot:a C4Jll, but in some directo•

ries, the quota element: of the quota cell is igno.recf·. llbis can be done, in

the current Multics, because page control must step ~hrough all intermed·iate

directories when finding a quota e~ll. 'l'hus, i.nc't"emental changes .to all quota

cells affected by creation or deletion of a page "ar• very easy. · The couat,

however, has little meaning for i.ntermediate <d:J:r.ctories. · In the model, we

have omitted frames· used from intermediate df.rectorieW so that the resource·

control layer may immedia-tely accees the pro-per 'q\io-ta cell without referetlcing

any directories. In this way, th~ petential .depen~C&-'of resource control on

directories is eliminated:. 'lbi& dHference •i.11 also viaible to users because,

in the model, frames used is not maintained ·tn itttemediate d·irectories. The

·advantages, however, are that referencing 4· quota cell is fast'4r and the

structure of resource corttrol ia simpler because:, in .V.uy case, the quota

cell may be accessed directly.

Page 116 Chapt.er ,VII

7. 2. 2 Invisible Structv•l O!f(ttr:en«.es

The internal structure .of .. ~ vi,l:tual ~ .~r ~el. also departs

from the .structur• of MulCtq.. l'lMt· >ftret; dif,~ ~f ,..,.hia eort is relateci

Multics, all changes to the .. ~ .ciell hierQCAJ 4l'• ~~pUshed through the.

to any active segaent, ttut it al90 requtt)lte tt.t al1...,.•t:• in one directory

di rec to~Y does ~t ·~ a .-ota cal,\,. a . 'J.IOU ~"1ili 1llMl,ti " c.r~ted for it, and

-
all · aepents in the tubtJ{ff .~_. ·~· c;.ar.- ,,~t~, , •. ~ ,.1;4,charged

aga·inst the sa;urce di?ec.t.e.ry" • cp.tota ;cell ·~ .o. ~ed · ltio charge. to the. new.

move_quota_used operations on eac:th 11.ffac.ted -.•t. S~ the pt'Oceaa of

moving quota is infnqumtt• .an..y ·lo•• e>f e.tU:c.<.'le:J w.Ul lie insigaific~n.t.

changes to the quota hierarchy as in the model is to :al.14¥ .f lexJbility in the

resource control policy. 'nlis point will be expanded in section 7. 3. Note

that this difference and the second one above occur jointly. Accept both or

Chapter VII Page 117

neither. They are introduced to simplify the model and to clean up the quota

cell concept.

The second structural difference is that the model has three principal

modules, while the current Multics system has two.. This difference has an

important implication: The management of logical changes to segments (i.e.

the creation and deletion of. pages) has entirely. different concerns than the

physical management of pages. The two need not and should not be intertwined.

Therefore, we can consider the usefulness of physical management (paging)

independent of logical management (resource control). 'the advantage for the

implementation is that the problems mentioned in "ction 2. 3 and other similar

problems have been solved. Several supervisor programs and-data bases, most

notably the FSJ)CT, can be paged in a natural way and re~urce control can be

performed in a modular fashion. This results in econo1des of mechanisin and a

cleaner structure. The new structure facilitate• understanding and comparison

of the implementation with the specification. Examining the model, we can

more easily appreciate how virtual memory works.

The final difference in structure, as noted in chapte.r four, is the added

level of indirection in the segment addressing path. To implement the model

fully would require a completely redesigned CPU, which is not feasible for

Multics. The real point in this difference is not to suggest a hardware

change at this time. Instead, we want to alert system designers that the

Multics PTW serves two different purposes for two different layers of the vir­

tual memory manager. This presents a trade-off between clean structure and

efficiency which should be recognized. Given the trend in hardware speeds and

prices, this trade-off may soon swing towards cleaner structure.

Page 118 Chapter VU

7.2.3 Philosophical Differences

There is a qual :tc:au-.. cliftuei-ee· be~ t:be .-el and' Che !t.llt'ics of

today that :1s Cl(ld:te g&MT-1 co. tl'Mf, stJmy <J.f Qf19Nti11g sy&tems., This differ­

ence exists inclepet\derlt ·c>f 111lwtller 111t1y code :b rwwi.tt:en•· It is the strict

view, in the model, of Che s:,wtn a& a hierafthtcal oo.llee.tion of· extended

types, as opposed to the Mrd~k• view 'Whi4a·o.~u- the• .s~em loosely. The

most obvious us~ of a n•kt objectt appr-oacl\! :ff• m .,._.., verification. Veri- ·

fication,. of neee•tt1,, r..-;\:l!ff l'ilg«. ·and ~· OtllltllK ·t>e ap,i:ied to my

loosely deUned syatem.. 'l•• Clli& eel, obj.ct• *'14 e,;.s •• ·t'f't·ite-·4'>pr.opriate.

Type extension !'epr.-wt.• *>•• tbaa II ~if~ca:ioill cool,• ic if• alao a

general method· <>f cfeiterllt-illg .,.at-.&.. It :ta a •1 .i lOtllll:l.118 at • syitt:elll

which neatly ca.puura• ci. ~ls ot· .etie . .,._, ... ~a'ics. Type e1tten-

sion is concise,. JJY«ise, allel .,_., fl-.iltle.1.; ·~, i.C :l4J :a1Hm1ble .to formal

de·scription and manipulation. 'mli•·--• ·:tlule· u,,-~oa "i& a. more powM"­

ful method c>f system: d·~~jfei<* thr:m ••J.1 ••c:i!l:diliJ&8 a .,.stem in terms o·f

module&.

Chapter VII Page 119

7.3 Resource Control

In this thesis, we have examined some of the issues of storage resource

control and how they relate to virtual memory. In this section, we will

attempt to sum up those relationships. There are many.policies which can be

used to control the usage of storage resources. They range from almost non-.

existent, where the only constraint is the amount of physical storage avail­

able to the system, to sophisticated, like those in Multics. This variety is

one of the reasons for splitting resource control and demand paging. Any vir­

tual memory implementation will need a standard demand paging algorithm to

support it. The resource control policies, however, are part of the virtual

memory definition, and will change as the virtual memory implementation

changes.

In general, resource control involves four elements: a policy maker, a

mechanism, a set of requestors, and a supplier. The policy maker dictates the

policies under which all allocation and freeing decisions are made. The

mechanism enforces the policies. It must be at the same layer or lower than

the policy maker. Of course, there must be a way for the policy maker to

inform the mechanism of changes in policy. The requestors are the source of

requests to allocate or free resources. All of the requestors must be at the

same layer or higher than the mechanism, but need have no particular relation

to the policy maker or each other. All requests are directed to the mecha­

nism, which decides whether to honor them based on the policies of which it is

aware. The supplier actually performs the allocation and freeings and inter-

Page 120 Chapter VII

prets all other operations on the resource. In addition to the policies

enforced by the mechanism, the supplier may impose restrictions of its own,

e.g. it may decide not to. a11ocatla a resource, ·tJll::1:.eea ,.,._., i& ava:ilahle:.. The

supplier must be at the •ame layer .o.r lo•r !Chiaar. >the nrechard.sa+ It is quite

possible to com.'bine the fµnceioruf,,of tha mech&ld9·and; che supplier. The

critical factor in the location of the .aechan~;:ia that :Lt is between the

supplier and all re~tor&.

Resource control polic1•s can ba div:ided .ittt;:o .~ classes: ·one where

resources are pre-alloca1*4 • and one where r888U~W ~e ;allocated only as

needed. The first cla·s• of •peilki.ea kas ctbe ·.t.~s·•thatJ·oYet:head is

small, and, once resourco· baa•· bee'ft· alltJCatecl. U• .. -.iR :need be wsted in

waiting for resources to be ava:1'l•abl.•. .Whl!N· polieles can :lJe. showtl to be free··

of deadlock, as long as all resources are requested before any are used. They

have the disadvantage that a requestor may not know how many resources it

needs, so unnecessary resourcta "114.Y be allocate& •. 11he second ~lase of poli­

cie• is less wasteful of rt1J1oui:cea, · but requi:dlf• &Ofh.i9t1icat.ed methods to

avoid deadlocl.cis. The •«'ood claes include-•''•<*41' tttll')i etmtpl'icatea policies·

because a resource ~an be tmplUitly alloe.ated by, -a Er•q\i4!!st.,t; by simply using

one that it does n&'t have. In the mod.el, dne :c·al &ee· itHJt'an~es wtsere· both

classes of policies are ued for different reeo.-cee:.. PAGE CON.'fAIN&R.s are

only allocated as needm for PAGIMmrr&:, Ho:tlaYar, ·vbenev.er ·a PAGE CONTAINER is

allocated, a home it!I ass:tgtM!d to it, regard le••· .ffi, whe.t:her' the!· home is ever

needed ..

Chapter VII Page 121

Very early in this thesis, problems with the Multics resource control

system were encountered (see chapter two). Much of the work here can be

described as reorganizing the resource control mechanism so that it will fit

neatly into a type exte.nsion hierarchy. The reorganization, ho\iever, leaves

the current guiding policies of Multics intact. The quota system is quite

useful. It permits the creation of a set of resource allocation centers

(quota cells). Resources may be allocated and cQarged to a center if the cen­

ter has enough quota. The problem with the :t{ultiqs resource control policy is

that the centers are tied to the directory hie~archy. The directory hierarchy

originated as a naming system. It solved ~me of the problems of global name

spaces and the occurrence of duplicate naiiies. ln Multics, the directory hier­

archy is much more. In addition to. a naming hierarchy, it also embodies the

authority hierarchy (access control) and the resqurce control hierarchy.

Instead, we propose the separation of these hierafchies, as much as pos­

sible. Logically, they a:i:-e independent. Forcing them to be identical creates

other problems. For example, a directory which contains a qiiota cell, against

which any active segment is charged, must stay active •. We have intentionally

designed the bottom two layers of the.virtual memory manager so that they make

no assumptions about the hierarchies. Therefore, they could be used, without

modification, regardless of how the hierarchies are combi~ed. Separate direc­

tory and resource control hierarchies would allow segments in many different

directories to be charged against the same quota cell, or segments in the same

directory to be charged against different qQota cellij. These facilities are

useful so that a user may structure his nallling environment as he likes. inde­

pendent of how his resources are controlled.

Page 122 Chapter VII

7.4 Directions for Future Research and Development

Since the virtual memory manager model is entirely on paper, we have had

to appeal to the reader's intuition as to its simplicity and consistency. The

acid test of any design is implementation. The existence of a working imple­

mentation guarantees that nothing has been ignored or overlooked. While we

feel that the model is correct, the only way to prove correctness is to imple­

ment it. An implementation would require large amounts of time and computer

resources, but would, hopefully, verify our results.

To further simplify the Multics supervisor, we can suggest that the

interactions between directory control and segment support be studied. We

have asserted that they interact poorly, but we have made no attempt to change

them. The interesting problem lies in the relationships among the directory,

authority, and resource control hierarchies. These hierarchies serve differ­

ent functions, so should not necessarily be combined [Rotenberg 1974]. One of

the advantages of the model over Multics is that the model makes no assump­

tions about these hierarchies. Thus, separate directory and resource control

hierarchies could be implemented on top of the model, allowing segments in the

same directory to be charged to different accounts (quota cells). Another

interesting approach would be a multiprocess implementation of segment support

and directory control. This could be along the lines followed by Huber

[1976].

A process executing on Multics operates in several related address

spaces. At times, the process is in an environment where it may only refer­

ence primary memory by absolute address. Most of the time, the process is in

Chapter VII Page 123

a segmented address space, but the segments might be unpaged segments, super­

visor segments, or file system segments. The variety of segment types means

that the process must operate in at least four different address spaces. How

these address spaces overlap and interact is poorly understood. Research in

this direction might point out a clearer and more efficient way to manage the

sharing of address spaces.

In a more academic vein, another research direction is suggested by chap­

ter three. In that chapter, we spoke loosely of a procedure for modularizing

a system. The procedure involved the iterative application of a set of tech­

niques. Projects, such as the one described in this thesis, would be greatly

aided by a formal modularizing procedure. However, devising such a procedure

is quite difficult. It requires careful definitions of modules and connec­

tions, a method for comparing them, and a proof that such a procedure will

terminate with a correct result.

We also suggest further study of the need for objects in operating sys­

tems. The third difference between Multics and the model, noted in section

7.2.2, arose because we have no semantics for describing an object which is

created or allocated by one layer and manipulated by a lower layer. One pos­

sible direction for study of this problem is provided by Janson's software

cache structure [1976]. The appeal of objects is growing. Since operating

systems are fundamental to computer systems, the uses of objects in operating

systems should be better understood.

Page 124 Chapter VII

Appendix

APPENDIX

Summary of Types Used in the Model

Type: PAGE CONTAINER

Attributes:

name

data array

home

used flag

modified flag

zero flag

core flag

Operations:

allocate (home, zero_flag, name)

free (name, zero flag)

read (name, offset, value)

write (name, offset, value)

get_home (name, home)

usedp (name, flag)

modifiedp (name, flag)

zerop (name, flag)

corep (name, flag)

Page 125

Page 126

Type: QUOTA CELL

Attributes:

name

frame quota

frames used

time-frame product

Operations:

allocate (quota, used, time-frame_product, name)

free (name, quota, used, time-frame product)

change_used (name, quantity)

reset_time-frame_product (name, product)

move_quota (source_name, target_name, quota_quantity)

move quota_used (source_name, target_name, quota_quantity,

used_ quantity)

Appendix

Appendix

Type: PAGEMENT

Attributes:

name

size

length

frames used

QUOTA CELL name

used flag

modified flag

physical volume

core count

page table

page table modified flag

data array

Operations:

Page 127

allocate (size, physical_volume, page_table, quota cell, name)

free (name, physical volume, page table, quota cell, used flag,

modified flag)

read (name, offset, value)

write (name, offset, value)

used p (name, flag)

modifiedp (name, flag)

page_table_modifiedp (name, flag)

get_page_table (name, physical volume, page table)

get_QUOTA_CELL (name, cell name)

Page 128

change_QUOTA_CELL (name, new cell name)

get_core_count (name, count)

truncate (name, length)

move contents (name, size, new name)

Appendix

References Page 129

REFERENCES

[Bensoussan, Clingen, and Daley, 1972] A. Bensouss.an, C. T. Clingen, and R. C.

Daley, "The Multics Virtual Memory: Concepts and Design," CoJDlllunications

of ~ ~ ll' 3 (March 1972), pp. 135 - 143.

[Dahl, Dijkstra, and Hoare, 1972] o.-J. Dahl, E. w. Dijkstra, and C. A. R.

Hoare, Structureq Prog~41111a.iqa, A.P.I.C. Studies in Da~a Processing No. 8,

Academic Press, London and New York, 1972.

[Dijkstra, 1968a] E. W. Dijkstra, "The Structure of the .!!!!,-Multiprogramming

System," Communications of the ACM 11, 5 (MIJ,y 1968), pp. 341 - 346. - ___.. __.,.. -

[Dijkstra, 1968b] ----, "Complexity Controlled by Hierarchical Ordering of

Function and Variability," Proceedings .2f .!!!!, ~Science Committee

Conference, ed. P. Naur and B. Rande.11 (October 1968), pp. 181 - 185.

[Floyd, 1967] R. W. Floyd, "Assigning Meanings to Programs," Proceedings .2.f

Symposium.!.!!, Applied Mathematics, Volume 19 (ed. J. T. Schwartz) American

Mathematical Society, Providence, R. I. (19~7), pp~ 19 - 32.

[Hoare, 1969] C. A. R. Hoare, "An Axiomatic Basis for Computer Programming,"

Communications .2.f .!!!!, !9!. ll• 10 (OctQ~~r 19(>9), pp. 576 - 580.

Page '130 References

[Huber, 1976] A. R. Huber, "AMulti-Preceeso.e'ign of a Paging System," S .. M.

and E. E. 'ntesis, M. l. T •. , Department of Electrical Engineering and Com­

puter Science, 1976, 'and M.1.T. t.aboratory for O:*pllter Sc'i.en:ce Technical

Report Tll-1 71.

[Hunt, 1976] D. H. Hunt, "A Case Study, of Inte.raodule Dependencies in a Vir­

tual Memory Subsystem~'" s .. M. and £. E. "'thesis, H.·1.·T.' Department of Elec­

trical Engineering and Computer Scieace,' aai ·& t:.'.'f'.'. l.:a-...r.co-ry for Com-

puter Science Technical Report TR.-174.

[Janson, 1976] P. A. Jan•n, '"Using type Extea.aion to Orgarifze Virtual Memory

Mechanisms, 11 Ph.D. thesis, M.I.T., Be~twleftt:·--oftiec-t'.r'i-cal Bngirteering

and Computer Science, 1976, and M. I. T. Laboratory for Computer Science

Technical Report Tll-167.

;

(Laapson and Sturgis, 1976] B. W. Lalllpson and K. E. Stutgis, "Reflections on

an Operating System Design," Communications of the ACM 19, 5 (May 1976), . .._..,...,..... __
pp. 251 - 2-65.

[Liskov, 1972a] B. H. Lisb:w, "The Design of t~ Veaus ()peratin.g System,"

Communications .!?!. !!!!, ,!g!_ J.2., 3 {March 1972), J>p. 144 - 149.

[Liskov, 1972b] ____ ., "A Design Metliodolo&y for· &eiieble Sef,twre Sys-

tems," Proceedings of £!!!. !!.!!. Joint C?!P!ter Conference, 1972, pp. 191 -

199.

References Page 131

[Liskov et al., 1977] B. H. LiskoY, A. Snyder, R. Atkinson, and c. Schaffert,

"Abstraction Mechanisms in CLU," to appear in Communications ~ !.!!,! ~

20, 7 (July 1977).

[Naur, 1966] P. Naur, "Proof of Algorithms by General Snapshots," fil i' 4

(1966), pp. 310 - 316.

[Organick, 1972] E. I. Organick, .'.!!!!.Multics System: An Examination .2!..!!!.

Structure, M.I.T. Press, Cambridge, Massachusetts, 1972.

[Parnas, 1971] D. L. Parnas, "Information Distribution Aspects of Design Meth-

odology," Proceedings ,2!. !!!!, Congress 1.!.t ed. c. V. Freiman (August

1971), Volume I, pp. 339 - 344.

[Parnas, 1972a] ____ , "A Technique for Software Module Specification with

Examples," Communications of the ACM 15, 5 (May 1972), pp. 330 - 336 •, _

[Parnas, 1972b] ____ , "On the Criteria To Be Used in Decomposing Systems

into Modules," Communications of the ACM 15, 12 (December 1972) PP• 1053
-..-----~

- 1058.

[Parnas, 1976] ----·' "Some Hypotheses about the .!!.!.!!. Hierarchy for Operat-

ing Systems," Research Report BS I 76/1, Technische Hochschule Darmstadt,

Fachbereich Informatik (March 1976).

Page 132 References

[Popek, 1974] G. J. Popek, "A Principle of Kernel Design," AFIPS National

Couipu'ter Conference P-rocddiuga, Volume 43, AYlPS Press, Mentvale, New

Jersey (1974), pp. 977 - ~18 ..

[Reed, 1976] D. P. Reed, "Processor MUltiplexing in a Layered' Operating Sys­

tem," S.M. thesis, K.I.T., Depa.rtment of Electrical ~ineering and Com-

puter Science, 1976,. and M.I.T. Laboratory, for COmputer Science Technical

Report TR-164.

[Robinson et al .. , 1975] L. Robinaou, K. N. Levitt, P. G. Neumann, and A. R.

Saxena, "On Attainittg Reliable' Software tor' a Secure Operating System,"

Proceedings .2! the Iaternatioual CUnf•re.Ce ·!!. bltabie· Software, and ACM

SIGPLAN Noticee !Q., 6 (Jun.a 1~75), pp. 267 - 284.

[Rotenberg, 1974] L .. J. Rotenberg,. "Making Coatputers Keep Secrets," Ph.D.

Thesis, M.I.T., Dctpartment of Eiect.rtcal f!in~eer~, 19'74, and M.I.T.

Project MAC Technical laport TR-115.

(Saltzer, 19741 J. B. Saltzer, "Pratectiott and the- &mtrol of Infortiultion

Sharing in Multics," Commnicatioua of the M::M 17, 7 (July 1974), pp. 188 _._,..,.. __
- 402.

References Page 133

[Schell, 1971] R. R. Schell, "Dynamic Reconfiguration in a Modular Computer

System, 11 Ph.D. Thesis, M. I. T., Department of Electrical Engineering,

1971, and M.I.T. Project MAC Technical Report TR-86.

[Schroeder, 1975] M. D. Schroeder, "Engineering a Security Kernel for

Multics, 11 Proceedings .2.f !!!!, Fifth Symposium .£!! Operating Systems

Principles, and !9:!, Operating Systems Review .2,, 5 (November 1975), pp. 25

- 32.

[Simon, 1962] H. A. Simon, "The Architecture of Complexity," Proceedings .2.f

the American Philosophical Society .!.Q.&., 6 (December 1962), pp. 467 - 482.

[Stern, 1976] J. Stern, "Multics Security Kernel Top Level Specification,"

Draft Project Guardian Report, November, 1976.

[Sturgis, 19741 H. E. Sturgis, "A Postmortem for a Time Sharing System," Ph.D.

Thesis, University of California at Berkeley, Department of Computer Sci­

ence, 1974, and Xerox Palo Alto Research Center, Palo Alto, California,

CSL 74-1.

[Wulf et al., 1974] W. Wulf, E. Cohen, w. Corwin, A. Jones, R. Levin, C.

Pierson, and F. Pollack, "HYDRA: The Kernel of a Multiprocessor Operat­

ing System," Communications .2.f !!!!, !9:!, .!l• 6 (June 1974), pp. 337 - 345.

This empty page was substih1ted for a
blank page in the original document.

CS-TR Scanning Project
Document Control Form

Report # L <-s Tg_- 111

Date : _!!_; 9 I ~)

Each of the following should be identified by a checkmark:
Originating Department:

D Artificial lntellegence Laboratory (Al)
~Laboratory for Computer Science (LCS)

Document Type:

~Technical Report (TR) D Technical Memo (TM)

D Other: -----------
Document Information Number of pages: 13ll ~'f0-1 1 m~~)

- Not to include DOD forms, printer intstructions, etc ... orlglnal pages only.

Originals are:

D Single-sided or

~· Double-sided

Print type:
~ Type'M'hr D Offset Press

Intended to be printed as :

D Single-sided or

)a.' Double-sided

D Laser Print

D Ink.Jet Printer D Unknown D other: ______ _

Check each if included with document:

D DODForm

B(Spine

D Other:

D Funding Agent Form

D Printers Notes

Page Data:

JK Cover Page

D Photo negatives

Blank Pages(bys-ee--i: Lf \ 6~ 7f,) /OOjJ..-'-/) fAGK F'oLLow/,..if;TJJ'L.J< f~K d-173

Photographs/Tonal Material (byi-ee IWlllllerl: ________ _

Scanning Agent Signoff:

Date Received: Jj_1.1_1 Cf 5 Date Scanned: /'J._ 1.!i_1 qs Date Returned: f)-Jj_JC:CS-

Scanning Agent Signature: ___ ~--'_...__+--.._~ V_J_tL~---;....

Scanning Agent Identification· Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I. T
Libraries. Technical support for this project was
also provided by the M.I. T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

